1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel CPU scheduler code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #include <linux/highmem.h> 11 #include <linux/hrtimer_api.h> 12 #include <linux/ktime_api.h> 13 #include <linux/sched/signal.h> 14 #include <linux/syscalls_api.h> 15 #include <linux/debug_locks.h> 16 #include <linux/prefetch.h> 17 #include <linux/capability.h> 18 #include <linux/pgtable_api.h> 19 #include <linux/wait_bit.h> 20 #include <linux/jiffies.h> 21 #include <linux/spinlock_api.h> 22 #include <linux/cpumask_api.h> 23 #include <linux/lockdep_api.h> 24 #include <linux/hardirq.h> 25 #include <linux/softirq.h> 26 #include <linux/refcount_api.h> 27 #include <linux/topology.h> 28 #include <linux/sched/clock.h> 29 #include <linux/sched/cond_resched.h> 30 #include <linux/sched/cputime.h> 31 #include <linux/sched/debug.h> 32 #include <linux/sched/hotplug.h> 33 #include <linux/sched/init.h> 34 #include <linux/sched/isolation.h> 35 #include <linux/sched/loadavg.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/nohz.h> 38 #include <linux/sched/rseq_api.h> 39 #include <linux/sched/rt.h> 40 41 #include <linux/blkdev.h> 42 #include <linux/context_tracking.h> 43 #include <linux/cpuset.h> 44 #include <linux/delayacct.h> 45 #include <linux/init_task.h> 46 #include <linux/interrupt.h> 47 #include <linux/ioprio.h> 48 #include <linux/kallsyms.h> 49 #include <linux/kcov.h> 50 #include <linux/kprobes.h> 51 #include <linux/llist_api.h> 52 #include <linux/mmu_context.h> 53 #include <linux/mmzone.h> 54 #include <linux/mutex_api.h> 55 #include <linux/nmi.h> 56 #include <linux/nospec.h> 57 #include <linux/perf_event_api.h> 58 #include <linux/profile.h> 59 #include <linux/psi.h> 60 #include <linux/rcuwait_api.h> 61 #include <linux/rseq.h> 62 #include <linux/sched/wake_q.h> 63 #include <linux/scs.h> 64 #include <linux/slab.h> 65 #include <linux/syscalls.h> 66 #include <linux/vtime.h> 67 #include <linux/wait_api.h> 68 #include <linux/workqueue_api.h> 69 70 #ifdef CONFIG_PREEMPT_DYNAMIC 71 # ifdef CONFIG_GENERIC_ENTRY 72 # include <linux/entry-common.h> 73 # endif 74 #endif 75 76 #include <uapi/linux/sched/types.h> 77 78 #include <asm/irq_regs.h> 79 #include <asm/switch_to.h> 80 #include <asm/tlb.h> 81 82 #define CREATE_TRACE_POINTS 83 #include <linux/sched/rseq_api.h> 84 #include <trace/events/sched.h> 85 #include <trace/events/ipi.h> 86 #undef CREATE_TRACE_POINTS 87 88 #include "sched.h" 89 #include "stats.h" 90 91 #include "autogroup.h" 92 #include "pelt.h" 93 #include "smp.h" 94 #include "stats.h" 95 96 #include "../workqueue_internal.h" 97 #include "../../io_uring/io-wq.h" 98 #include "../smpboot.h" 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 102 103 /* 104 * Export tracepoints that act as a bare tracehook (ie: have no trace event 105 * associated with them) to allow external modules to probe them. 106 */ 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 119 120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 121 122 #ifdef CONFIG_SCHED_DEBUG 123 /* 124 * Debugging: various feature bits 125 * 126 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 127 * sysctl_sched_features, defined in sched.h, to allow constants propagation 128 * at compile time and compiler optimization based on features default. 129 */ 130 #define SCHED_FEAT(name, enabled) \ 131 (1UL << __SCHED_FEAT_##name) * enabled | 132 const_debug unsigned int sysctl_sched_features = 133 #include "features.h" 134 0; 135 #undef SCHED_FEAT 136 137 /* 138 * Print a warning if need_resched is set for the given duration (if 139 * LATENCY_WARN is enabled). 140 * 141 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 142 * per boot. 143 */ 144 __read_mostly int sysctl_resched_latency_warn_ms = 100; 145 __read_mostly int sysctl_resched_latency_warn_once = 1; 146 #endif /* CONFIG_SCHED_DEBUG */ 147 148 /* 149 * Number of tasks to iterate in a single balance run. 150 * Limited because this is done with IRQs disabled. 151 */ 152 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 153 154 __read_mostly int scheduler_running; 155 156 #ifdef CONFIG_SCHED_CORE 157 158 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 159 160 /* kernel prio, less is more */ 161 static inline int __task_prio(const struct task_struct *p) 162 { 163 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 164 return -2; 165 166 if (p->dl_server) 167 return -1; /* deadline */ 168 169 if (rt_or_dl_prio(p->prio)) 170 return p->prio; /* [-1, 99] */ 171 172 if (p->sched_class == &idle_sched_class) 173 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 174 175 if (task_on_scx(p)) 176 return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ 177 178 return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ 179 } 180 181 /* 182 * l(a,b) 183 * le(a,b) := !l(b,a) 184 * g(a,b) := l(b,a) 185 * ge(a,b) := !l(a,b) 186 */ 187 188 /* real prio, less is less */ 189 static inline bool prio_less(const struct task_struct *a, 190 const struct task_struct *b, bool in_fi) 191 { 192 193 int pa = __task_prio(a), pb = __task_prio(b); 194 195 if (-pa < -pb) 196 return true; 197 198 if (-pb < -pa) 199 return false; 200 201 if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */ 202 const struct sched_dl_entity *a_dl, *b_dl; 203 204 a_dl = &a->dl; 205 /* 206 * Since,'a' and 'b' can be CFS tasks served by DL server, 207 * __task_prio() can return -1 (for DL) even for those. In that 208 * case, get to the dl_server's DL entity. 209 */ 210 if (a->dl_server) 211 a_dl = a->dl_server; 212 213 b_dl = &b->dl; 214 if (b->dl_server) 215 b_dl = b->dl_server; 216 217 return !dl_time_before(a_dl->deadline, b_dl->deadline); 218 } 219 220 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 221 return cfs_prio_less(a, b, in_fi); 222 223 #ifdef CONFIG_SCHED_CLASS_EXT 224 if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */ 225 return scx_prio_less(a, b, in_fi); 226 #endif 227 228 return false; 229 } 230 231 static inline bool __sched_core_less(const struct task_struct *a, 232 const struct task_struct *b) 233 { 234 if (a->core_cookie < b->core_cookie) 235 return true; 236 237 if (a->core_cookie > b->core_cookie) 238 return false; 239 240 /* flip prio, so high prio is leftmost */ 241 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 242 return true; 243 244 return false; 245 } 246 247 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 248 249 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 250 { 251 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 252 } 253 254 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 255 { 256 const struct task_struct *p = __node_2_sc(node); 257 unsigned long cookie = (unsigned long)key; 258 259 if (cookie < p->core_cookie) 260 return -1; 261 262 if (cookie > p->core_cookie) 263 return 1; 264 265 return 0; 266 } 267 268 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 269 { 270 if (p->se.sched_delayed) 271 return; 272 273 rq->core->core_task_seq++; 274 275 if (!p->core_cookie) 276 return; 277 278 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 279 } 280 281 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 282 { 283 if (p->se.sched_delayed) 284 return; 285 286 rq->core->core_task_seq++; 287 288 if (sched_core_enqueued(p)) { 289 rb_erase(&p->core_node, &rq->core_tree); 290 RB_CLEAR_NODE(&p->core_node); 291 } 292 293 /* 294 * Migrating the last task off the cpu, with the cpu in forced idle 295 * state. Reschedule to create an accounting edge for forced idle, 296 * and re-examine whether the core is still in forced idle state. 297 */ 298 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 299 rq->core->core_forceidle_count && rq->curr == rq->idle) 300 resched_curr(rq); 301 } 302 303 static int sched_task_is_throttled(struct task_struct *p, int cpu) 304 { 305 if (p->sched_class->task_is_throttled) 306 return p->sched_class->task_is_throttled(p, cpu); 307 308 return 0; 309 } 310 311 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 312 { 313 struct rb_node *node = &p->core_node; 314 int cpu = task_cpu(p); 315 316 do { 317 node = rb_next(node); 318 if (!node) 319 return NULL; 320 321 p = __node_2_sc(node); 322 if (p->core_cookie != cookie) 323 return NULL; 324 325 } while (sched_task_is_throttled(p, cpu)); 326 327 return p; 328 } 329 330 /* 331 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 332 * If no suitable task is found, NULL will be returned. 333 */ 334 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 335 { 336 struct task_struct *p; 337 struct rb_node *node; 338 339 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 340 if (!node) 341 return NULL; 342 343 p = __node_2_sc(node); 344 if (!sched_task_is_throttled(p, rq->cpu)) 345 return p; 346 347 return sched_core_next(p, cookie); 348 } 349 350 /* 351 * Magic required such that: 352 * 353 * raw_spin_rq_lock(rq); 354 * ... 355 * raw_spin_rq_unlock(rq); 356 * 357 * ends up locking and unlocking the _same_ lock, and all CPUs 358 * always agree on what rq has what lock. 359 * 360 * XXX entirely possible to selectively enable cores, don't bother for now. 361 */ 362 363 static DEFINE_MUTEX(sched_core_mutex); 364 static atomic_t sched_core_count; 365 static struct cpumask sched_core_mask; 366 367 static void sched_core_lock(int cpu, unsigned long *flags) 368 { 369 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 370 int t, i = 0; 371 372 local_irq_save(*flags); 373 for_each_cpu(t, smt_mask) 374 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 375 } 376 377 static void sched_core_unlock(int cpu, unsigned long *flags) 378 { 379 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 380 int t; 381 382 for_each_cpu(t, smt_mask) 383 raw_spin_unlock(&cpu_rq(t)->__lock); 384 local_irq_restore(*flags); 385 } 386 387 static void __sched_core_flip(bool enabled) 388 { 389 unsigned long flags; 390 int cpu, t; 391 392 cpus_read_lock(); 393 394 /* 395 * Toggle the online cores, one by one. 396 */ 397 cpumask_copy(&sched_core_mask, cpu_online_mask); 398 for_each_cpu(cpu, &sched_core_mask) { 399 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 400 401 sched_core_lock(cpu, &flags); 402 403 for_each_cpu(t, smt_mask) 404 cpu_rq(t)->core_enabled = enabled; 405 406 cpu_rq(cpu)->core->core_forceidle_start = 0; 407 408 sched_core_unlock(cpu, &flags); 409 410 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 411 } 412 413 /* 414 * Toggle the offline CPUs. 415 */ 416 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 417 cpu_rq(cpu)->core_enabled = enabled; 418 419 cpus_read_unlock(); 420 } 421 422 static void sched_core_assert_empty(void) 423 { 424 int cpu; 425 426 for_each_possible_cpu(cpu) 427 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 428 } 429 430 static void __sched_core_enable(void) 431 { 432 static_branch_enable(&__sched_core_enabled); 433 /* 434 * Ensure all previous instances of raw_spin_rq_*lock() have finished 435 * and future ones will observe !sched_core_disabled(). 436 */ 437 synchronize_rcu(); 438 __sched_core_flip(true); 439 sched_core_assert_empty(); 440 } 441 442 static void __sched_core_disable(void) 443 { 444 sched_core_assert_empty(); 445 __sched_core_flip(false); 446 static_branch_disable(&__sched_core_enabled); 447 } 448 449 void sched_core_get(void) 450 { 451 if (atomic_inc_not_zero(&sched_core_count)) 452 return; 453 454 mutex_lock(&sched_core_mutex); 455 if (!atomic_read(&sched_core_count)) 456 __sched_core_enable(); 457 458 smp_mb__before_atomic(); 459 atomic_inc(&sched_core_count); 460 mutex_unlock(&sched_core_mutex); 461 } 462 463 static void __sched_core_put(struct work_struct *work) 464 { 465 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 466 __sched_core_disable(); 467 mutex_unlock(&sched_core_mutex); 468 } 469 } 470 471 void sched_core_put(void) 472 { 473 static DECLARE_WORK(_work, __sched_core_put); 474 475 /* 476 * "There can be only one" 477 * 478 * Either this is the last one, or we don't actually need to do any 479 * 'work'. If it is the last *again*, we rely on 480 * WORK_STRUCT_PENDING_BIT. 481 */ 482 if (!atomic_add_unless(&sched_core_count, -1, 1)) 483 schedule_work(&_work); 484 } 485 486 #else /* !CONFIG_SCHED_CORE */ 487 488 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 489 static inline void 490 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 491 492 #endif /* CONFIG_SCHED_CORE */ 493 494 /* 495 * Serialization rules: 496 * 497 * Lock order: 498 * 499 * p->pi_lock 500 * rq->lock 501 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 502 * 503 * rq1->lock 504 * rq2->lock where: rq1 < rq2 505 * 506 * Regular state: 507 * 508 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 509 * local CPU's rq->lock, it optionally removes the task from the runqueue and 510 * always looks at the local rq data structures to find the most eligible task 511 * to run next. 512 * 513 * Task enqueue is also under rq->lock, possibly taken from another CPU. 514 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 515 * the local CPU to avoid bouncing the runqueue state around [ see 516 * ttwu_queue_wakelist() ] 517 * 518 * Task wakeup, specifically wakeups that involve migration, are horribly 519 * complicated to avoid having to take two rq->locks. 520 * 521 * Special state: 522 * 523 * System-calls and anything external will use task_rq_lock() which acquires 524 * both p->pi_lock and rq->lock. As a consequence the state they change is 525 * stable while holding either lock: 526 * 527 * - sched_setaffinity()/ 528 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 529 * - set_user_nice(): p->se.load, p->*prio 530 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 531 * p->se.load, p->rt_priority, 532 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 533 * - sched_setnuma(): p->numa_preferred_nid 534 * - sched_move_task(): p->sched_task_group 535 * - uclamp_update_active() p->uclamp* 536 * 537 * p->state <- TASK_*: 538 * 539 * is changed locklessly using set_current_state(), __set_current_state() or 540 * set_special_state(), see their respective comments, or by 541 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 542 * concurrent self. 543 * 544 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 545 * 546 * is set by activate_task() and cleared by deactivate_task(), under 547 * rq->lock. Non-zero indicates the task is runnable, the special 548 * ON_RQ_MIGRATING state is used for migration without holding both 549 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 550 * 551 * p->on_cpu <- { 0, 1 }: 552 * 553 * is set by prepare_task() and cleared by finish_task() such that it will be 554 * set before p is scheduled-in and cleared after p is scheduled-out, both 555 * under rq->lock. Non-zero indicates the task is running on its CPU. 556 * 557 * [ The astute reader will observe that it is possible for two tasks on one 558 * CPU to have ->on_cpu = 1 at the same time. ] 559 * 560 * task_cpu(p): is changed by set_task_cpu(), the rules are: 561 * 562 * - Don't call set_task_cpu() on a blocked task: 563 * 564 * We don't care what CPU we're not running on, this simplifies hotplug, 565 * the CPU assignment of blocked tasks isn't required to be valid. 566 * 567 * - for try_to_wake_up(), called under p->pi_lock: 568 * 569 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 570 * 571 * - for migration called under rq->lock: 572 * [ see task_on_rq_migrating() in task_rq_lock() ] 573 * 574 * o move_queued_task() 575 * o detach_task() 576 * 577 * - for migration called under double_rq_lock(): 578 * 579 * o __migrate_swap_task() 580 * o push_rt_task() / pull_rt_task() 581 * o push_dl_task() / pull_dl_task() 582 * o dl_task_offline_migration() 583 * 584 */ 585 586 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 587 { 588 raw_spinlock_t *lock; 589 590 /* Matches synchronize_rcu() in __sched_core_enable() */ 591 preempt_disable(); 592 if (sched_core_disabled()) { 593 raw_spin_lock_nested(&rq->__lock, subclass); 594 /* preempt_count *MUST* be > 1 */ 595 preempt_enable_no_resched(); 596 return; 597 } 598 599 for (;;) { 600 lock = __rq_lockp(rq); 601 raw_spin_lock_nested(lock, subclass); 602 if (likely(lock == __rq_lockp(rq))) { 603 /* preempt_count *MUST* be > 1 */ 604 preempt_enable_no_resched(); 605 return; 606 } 607 raw_spin_unlock(lock); 608 } 609 } 610 611 bool raw_spin_rq_trylock(struct rq *rq) 612 { 613 raw_spinlock_t *lock; 614 bool ret; 615 616 /* Matches synchronize_rcu() in __sched_core_enable() */ 617 preempt_disable(); 618 if (sched_core_disabled()) { 619 ret = raw_spin_trylock(&rq->__lock); 620 preempt_enable(); 621 return ret; 622 } 623 624 for (;;) { 625 lock = __rq_lockp(rq); 626 ret = raw_spin_trylock(lock); 627 if (!ret || (likely(lock == __rq_lockp(rq)))) { 628 preempt_enable(); 629 return ret; 630 } 631 raw_spin_unlock(lock); 632 } 633 } 634 635 void raw_spin_rq_unlock(struct rq *rq) 636 { 637 raw_spin_unlock(rq_lockp(rq)); 638 } 639 640 #ifdef CONFIG_SMP 641 /* 642 * double_rq_lock - safely lock two runqueues 643 */ 644 void double_rq_lock(struct rq *rq1, struct rq *rq2) 645 { 646 lockdep_assert_irqs_disabled(); 647 648 if (rq_order_less(rq2, rq1)) 649 swap(rq1, rq2); 650 651 raw_spin_rq_lock(rq1); 652 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 653 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 654 655 double_rq_clock_clear_update(rq1, rq2); 656 } 657 #endif 658 659 /* 660 * __task_rq_lock - lock the rq @p resides on. 661 */ 662 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 663 __acquires(rq->lock) 664 { 665 struct rq *rq; 666 667 lockdep_assert_held(&p->pi_lock); 668 669 for (;;) { 670 rq = task_rq(p); 671 raw_spin_rq_lock(rq); 672 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 673 rq_pin_lock(rq, rf); 674 return rq; 675 } 676 raw_spin_rq_unlock(rq); 677 678 while (unlikely(task_on_rq_migrating(p))) 679 cpu_relax(); 680 } 681 } 682 683 /* 684 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 685 */ 686 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 687 __acquires(p->pi_lock) 688 __acquires(rq->lock) 689 { 690 struct rq *rq; 691 692 for (;;) { 693 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 694 rq = task_rq(p); 695 raw_spin_rq_lock(rq); 696 /* 697 * move_queued_task() task_rq_lock() 698 * 699 * ACQUIRE (rq->lock) 700 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 701 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 702 * [S] ->cpu = new_cpu [L] task_rq() 703 * [L] ->on_rq 704 * RELEASE (rq->lock) 705 * 706 * If we observe the old CPU in task_rq_lock(), the acquire of 707 * the old rq->lock will fully serialize against the stores. 708 * 709 * If we observe the new CPU in task_rq_lock(), the address 710 * dependency headed by '[L] rq = task_rq()' and the acquire 711 * will pair with the WMB to ensure we then also see migrating. 712 */ 713 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 714 rq_pin_lock(rq, rf); 715 return rq; 716 } 717 raw_spin_rq_unlock(rq); 718 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 719 720 while (unlikely(task_on_rq_migrating(p))) 721 cpu_relax(); 722 } 723 } 724 725 /* 726 * RQ-clock updating methods: 727 */ 728 729 static void update_rq_clock_task(struct rq *rq, s64 delta) 730 { 731 /* 732 * In theory, the compile should just see 0 here, and optimize out the call 733 * to sched_rt_avg_update. But I don't trust it... 734 */ 735 s64 __maybe_unused steal = 0, irq_delta = 0; 736 737 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 738 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 739 740 /* 741 * Since irq_time is only updated on {soft,}irq_exit, we might run into 742 * this case when a previous update_rq_clock() happened inside a 743 * {soft,}IRQ region. 744 * 745 * When this happens, we stop ->clock_task and only update the 746 * prev_irq_time stamp to account for the part that fit, so that a next 747 * update will consume the rest. This ensures ->clock_task is 748 * monotonic. 749 * 750 * It does however cause some slight miss-attribution of {soft,}IRQ 751 * time, a more accurate solution would be to update the irq_time using 752 * the current rq->clock timestamp, except that would require using 753 * atomic ops. 754 */ 755 if (irq_delta > delta) 756 irq_delta = delta; 757 758 rq->prev_irq_time += irq_delta; 759 delta -= irq_delta; 760 delayacct_irq(rq->curr, irq_delta); 761 #endif 762 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 763 if (static_key_false((¶virt_steal_rq_enabled))) { 764 steal = paravirt_steal_clock(cpu_of(rq)); 765 steal -= rq->prev_steal_time_rq; 766 767 if (unlikely(steal > delta)) 768 steal = delta; 769 770 rq->prev_steal_time_rq += steal; 771 delta -= steal; 772 } 773 #endif 774 775 rq->clock_task += delta; 776 777 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 778 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 779 update_irq_load_avg(rq, irq_delta + steal); 780 #endif 781 update_rq_clock_pelt(rq, delta); 782 } 783 784 void update_rq_clock(struct rq *rq) 785 { 786 s64 delta; 787 788 lockdep_assert_rq_held(rq); 789 790 if (rq->clock_update_flags & RQCF_ACT_SKIP) 791 return; 792 793 #ifdef CONFIG_SCHED_DEBUG 794 if (sched_feat(WARN_DOUBLE_CLOCK)) 795 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 796 rq->clock_update_flags |= RQCF_UPDATED; 797 #endif 798 799 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 800 if (delta < 0) 801 return; 802 rq->clock += delta; 803 update_rq_clock_task(rq, delta); 804 } 805 806 #ifdef CONFIG_SCHED_HRTICK 807 /* 808 * Use HR-timers to deliver accurate preemption points. 809 */ 810 811 static void hrtick_clear(struct rq *rq) 812 { 813 if (hrtimer_active(&rq->hrtick_timer)) 814 hrtimer_cancel(&rq->hrtick_timer); 815 } 816 817 /* 818 * High-resolution timer tick. 819 * Runs from hardirq context with interrupts disabled. 820 */ 821 static enum hrtimer_restart hrtick(struct hrtimer *timer) 822 { 823 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 824 struct rq_flags rf; 825 826 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 827 828 rq_lock(rq, &rf); 829 update_rq_clock(rq); 830 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 831 rq_unlock(rq, &rf); 832 833 return HRTIMER_NORESTART; 834 } 835 836 #ifdef CONFIG_SMP 837 838 static void __hrtick_restart(struct rq *rq) 839 { 840 struct hrtimer *timer = &rq->hrtick_timer; 841 ktime_t time = rq->hrtick_time; 842 843 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 844 } 845 846 /* 847 * called from hardirq (IPI) context 848 */ 849 static void __hrtick_start(void *arg) 850 { 851 struct rq *rq = arg; 852 struct rq_flags rf; 853 854 rq_lock(rq, &rf); 855 __hrtick_restart(rq); 856 rq_unlock(rq, &rf); 857 } 858 859 /* 860 * Called to set the hrtick timer state. 861 * 862 * called with rq->lock held and IRQs disabled 863 */ 864 void hrtick_start(struct rq *rq, u64 delay) 865 { 866 struct hrtimer *timer = &rq->hrtick_timer; 867 s64 delta; 868 869 /* 870 * Don't schedule slices shorter than 10000ns, that just 871 * doesn't make sense and can cause timer DoS. 872 */ 873 delta = max_t(s64, delay, 10000LL); 874 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 875 876 if (rq == this_rq()) 877 __hrtick_restart(rq); 878 else 879 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 880 } 881 882 #else 883 /* 884 * Called to set the hrtick timer state. 885 * 886 * called with rq->lock held and IRQs disabled 887 */ 888 void hrtick_start(struct rq *rq, u64 delay) 889 { 890 /* 891 * Don't schedule slices shorter than 10000ns, that just 892 * doesn't make sense. Rely on vruntime for fairness. 893 */ 894 delay = max_t(u64, delay, 10000LL); 895 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 896 HRTIMER_MODE_REL_PINNED_HARD); 897 } 898 899 #endif /* CONFIG_SMP */ 900 901 static void hrtick_rq_init(struct rq *rq) 902 { 903 #ifdef CONFIG_SMP 904 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 905 #endif 906 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 907 rq->hrtick_timer.function = hrtick; 908 } 909 #else /* CONFIG_SCHED_HRTICK */ 910 static inline void hrtick_clear(struct rq *rq) 911 { 912 } 913 914 static inline void hrtick_rq_init(struct rq *rq) 915 { 916 } 917 #endif /* CONFIG_SCHED_HRTICK */ 918 919 /* 920 * try_cmpxchg based fetch_or() macro so it works for different integer types: 921 */ 922 #define fetch_or(ptr, mask) \ 923 ({ \ 924 typeof(ptr) _ptr = (ptr); \ 925 typeof(mask) _mask = (mask); \ 926 typeof(*_ptr) _val = *_ptr; \ 927 \ 928 do { \ 929 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 930 _val; \ 931 }) 932 933 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 934 /* 935 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 936 * this avoids any races wrt polling state changes and thereby avoids 937 * spurious IPIs. 938 */ 939 static inline bool set_nr_and_not_polling(struct task_struct *p) 940 { 941 struct thread_info *ti = task_thread_info(p); 942 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 943 } 944 945 /* 946 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 947 * 948 * If this returns true, then the idle task promises to call 949 * sched_ttwu_pending() and reschedule soon. 950 */ 951 static bool set_nr_if_polling(struct task_struct *p) 952 { 953 struct thread_info *ti = task_thread_info(p); 954 typeof(ti->flags) val = READ_ONCE(ti->flags); 955 956 do { 957 if (!(val & _TIF_POLLING_NRFLAG)) 958 return false; 959 if (val & _TIF_NEED_RESCHED) 960 return true; 961 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 962 963 return true; 964 } 965 966 #else 967 static inline bool set_nr_and_not_polling(struct task_struct *p) 968 { 969 set_tsk_need_resched(p); 970 return true; 971 } 972 973 #ifdef CONFIG_SMP 974 static inline bool set_nr_if_polling(struct task_struct *p) 975 { 976 return false; 977 } 978 #endif 979 #endif 980 981 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 982 { 983 struct wake_q_node *node = &task->wake_q; 984 985 /* 986 * Atomically grab the task, if ->wake_q is !nil already it means 987 * it's already queued (either by us or someone else) and will get the 988 * wakeup due to that. 989 * 990 * In order to ensure that a pending wakeup will observe our pending 991 * state, even in the failed case, an explicit smp_mb() must be used. 992 */ 993 smp_mb__before_atomic(); 994 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 995 return false; 996 997 /* 998 * The head is context local, there can be no concurrency. 999 */ 1000 *head->lastp = node; 1001 head->lastp = &node->next; 1002 return true; 1003 } 1004 1005 /** 1006 * wake_q_add() - queue a wakeup for 'later' waking. 1007 * @head: the wake_q_head to add @task to 1008 * @task: the task to queue for 'later' wakeup 1009 * 1010 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1011 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1012 * instantly. 1013 * 1014 * This function must be used as-if it were wake_up_process(); IOW the task 1015 * must be ready to be woken at this location. 1016 */ 1017 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 1018 { 1019 if (__wake_q_add(head, task)) 1020 get_task_struct(task); 1021 } 1022 1023 /** 1024 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 1025 * @head: the wake_q_head to add @task to 1026 * @task: the task to queue for 'later' wakeup 1027 * 1028 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1029 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1030 * instantly. 1031 * 1032 * This function must be used as-if it were wake_up_process(); IOW the task 1033 * must be ready to be woken at this location. 1034 * 1035 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1036 * that already hold reference to @task can call the 'safe' version and trust 1037 * wake_q to do the right thing depending whether or not the @task is already 1038 * queued for wakeup. 1039 */ 1040 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1041 { 1042 if (!__wake_q_add(head, task)) 1043 put_task_struct(task); 1044 } 1045 1046 void wake_up_q(struct wake_q_head *head) 1047 { 1048 struct wake_q_node *node = head->first; 1049 1050 while (node != WAKE_Q_TAIL) { 1051 struct task_struct *task; 1052 1053 task = container_of(node, struct task_struct, wake_q); 1054 /* Task can safely be re-inserted now: */ 1055 node = node->next; 1056 task->wake_q.next = NULL; 1057 1058 /* 1059 * wake_up_process() executes a full barrier, which pairs with 1060 * the queueing in wake_q_add() so as not to miss wakeups. 1061 */ 1062 wake_up_process(task); 1063 put_task_struct(task); 1064 } 1065 } 1066 1067 /* 1068 * resched_curr - mark rq's current task 'to be rescheduled now'. 1069 * 1070 * On UP this means the setting of the need_resched flag, on SMP it 1071 * might also involve a cross-CPU call to trigger the scheduler on 1072 * the target CPU. 1073 */ 1074 void resched_curr(struct rq *rq) 1075 { 1076 struct task_struct *curr = rq->curr; 1077 int cpu; 1078 1079 lockdep_assert_rq_held(rq); 1080 1081 if (test_tsk_need_resched(curr)) 1082 return; 1083 1084 cpu = cpu_of(rq); 1085 1086 if (cpu == smp_processor_id()) { 1087 set_tsk_need_resched(curr); 1088 set_preempt_need_resched(); 1089 return; 1090 } 1091 1092 if (set_nr_and_not_polling(curr)) 1093 smp_send_reschedule(cpu); 1094 else 1095 trace_sched_wake_idle_without_ipi(cpu); 1096 } 1097 1098 void resched_cpu(int cpu) 1099 { 1100 struct rq *rq = cpu_rq(cpu); 1101 unsigned long flags; 1102 1103 raw_spin_rq_lock_irqsave(rq, flags); 1104 if (cpu_online(cpu) || cpu == smp_processor_id()) 1105 resched_curr(rq); 1106 raw_spin_rq_unlock_irqrestore(rq, flags); 1107 } 1108 1109 #ifdef CONFIG_SMP 1110 #ifdef CONFIG_NO_HZ_COMMON 1111 /* 1112 * In the semi idle case, use the nearest busy CPU for migrating timers 1113 * from an idle CPU. This is good for power-savings. 1114 * 1115 * We don't do similar optimization for completely idle system, as 1116 * selecting an idle CPU will add more delays to the timers than intended 1117 * (as that CPU's timer base may not be up to date wrt jiffies etc). 1118 */ 1119 int get_nohz_timer_target(void) 1120 { 1121 int i, cpu = smp_processor_id(), default_cpu = -1; 1122 struct sched_domain *sd; 1123 const struct cpumask *hk_mask; 1124 1125 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1126 if (!idle_cpu(cpu)) 1127 return cpu; 1128 default_cpu = cpu; 1129 } 1130 1131 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1132 1133 guard(rcu)(); 1134 1135 for_each_domain(cpu, sd) { 1136 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1137 if (cpu == i) 1138 continue; 1139 1140 if (!idle_cpu(i)) 1141 return i; 1142 } 1143 } 1144 1145 if (default_cpu == -1) 1146 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1147 1148 return default_cpu; 1149 } 1150 1151 /* 1152 * When add_timer_on() enqueues a timer into the timer wheel of an 1153 * idle CPU then this timer might expire before the next timer event 1154 * which is scheduled to wake up that CPU. In case of a completely 1155 * idle system the next event might even be infinite time into the 1156 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1157 * leaves the inner idle loop so the newly added timer is taken into 1158 * account when the CPU goes back to idle and evaluates the timer 1159 * wheel for the next timer event. 1160 */ 1161 static void wake_up_idle_cpu(int cpu) 1162 { 1163 struct rq *rq = cpu_rq(cpu); 1164 1165 if (cpu == smp_processor_id()) 1166 return; 1167 1168 /* 1169 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling 1170 * part of the idle loop. This forces an exit from the idle loop 1171 * and a round trip to schedule(). Now this could be optimized 1172 * because a simple new idle loop iteration is enough to 1173 * re-evaluate the next tick. Provided some re-ordering of tick 1174 * nohz functions that would need to follow TIF_NR_POLLING 1175 * clearing: 1176 * 1177 * - On most architectures, a simple fetch_or on ti::flags with a 1178 * "0" value would be enough to know if an IPI needs to be sent. 1179 * 1180 * - x86 needs to perform a last need_resched() check between 1181 * monitor and mwait which doesn't take timers into account. 1182 * There a dedicated TIF_TIMER flag would be required to 1183 * fetch_or here and be checked along with TIF_NEED_RESCHED 1184 * before mwait(). 1185 * 1186 * However, remote timer enqueue is not such a frequent event 1187 * and testing of the above solutions didn't appear to report 1188 * much benefits. 1189 */ 1190 if (set_nr_and_not_polling(rq->idle)) 1191 smp_send_reschedule(cpu); 1192 else 1193 trace_sched_wake_idle_without_ipi(cpu); 1194 } 1195 1196 static bool wake_up_full_nohz_cpu(int cpu) 1197 { 1198 /* 1199 * We just need the target to call irq_exit() and re-evaluate 1200 * the next tick. The nohz full kick at least implies that. 1201 * If needed we can still optimize that later with an 1202 * empty IRQ. 1203 */ 1204 if (cpu_is_offline(cpu)) 1205 return true; /* Don't try to wake offline CPUs. */ 1206 if (tick_nohz_full_cpu(cpu)) { 1207 if (cpu != smp_processor_id() || 1208 tick_nohz_tick_stopped()) 1209 tick_nohz_full_kick_cpu(cpu); 1210 return true; 1211 } 1212 1213 return false; 1214 } 1215 1216 /* 1217 * Wake up the specified CPU. If the CPU is going offline, it is the 1218 * caller's responsibility to deal with the lost wakeup, for example, 1219 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1220 */ 1221 void wake_up_nohz_cpu(int cpu) 1222 { 1223 if (!wake_up_full_nohz_cpu(cpu)) 1224 wake_up_idle_cpu(cpu); 1225 } 1226 1227 static void nohz_csd_func(void *info) 1228 { 1229 struct rq *rq = info; 1230 int cpu = cpu_of(rq); 1231 unsigned int flags; 1232 1233 /* 1234 * Release the rq::nohz_csd. 1235 */ 1236 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1237 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1238 1239 rq->idle_balance = idle_cpu(cpu); 1240 if (rq->idle_balance && !need_resched()) { 1241 rq->nohz_idle_balance = flags; 1242 raise_softirq_irqoff(SCHED_SOFTIRQ); 1243 } 1244 } 1245 1246 #endif /* CONFIG_NO_HZ_COMMON */ 1247 1248 #ifdef CONFIG_NO_HZ_FULL 1249 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1250 { 1251 if (rq->nr_running != 1) 1252 return false; 1253 1254 if (p->sched_class != &fair_sched_class) 1255 return false; 1256 1257 if (!task_on_rq_queued(p)) 1258 return false; 1259 1260 return true; 1261 } 1262 1263 bool sched_can_stop_tick(struct rq *rq) 1264 { 1265 int fifo_nr_running; 1266 1267 /* Deadline tasks, even if single, need the tick */ 1268 if (rq->dl.dl_nr_running) 1269 return false; 1270 1271 /* 1272 * If there are more than one RR tasks, we need the tick to affect the 1273 * actual RR behaviour. 1274 */ 1275 if (rq->rt.rr_nr_running) { 1276 if (rq->rt.rr_nr_running == 1) 1277 return true; 1278 else 1279 return false; 1280 } 1281 1282 /* 1283 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1284 * forced preemption between FIFO tasks. 1285 */ 1286 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1287 if (fifo_nr_running) 1288 return true; 1289 1290 /* 1291 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks 1292 * left. For CFS, if there's more than one we need the tick for 1293 * involuntary preemption. For SCX, ask. 1294 */ 1295 if (scx_enabled() && !scx_can_stop_tick(rq)) 1296 return false; 1297 1298 if (rq->cfs.nr_running > 1) 1299 return false; 1300 1301 /* 1302 * If there is one task and it has CFS runtime bandwidth constraints 1303 * and it's on the cpu now we don't want to stop the tick. 1304 * This check prevents clearing the bit if a newly enqueued task here is 1305 * dequeued by migrating while the constrained task continues to run. 1306 * E.g. going from 2->1 without going through pick_next_task(). 1307 */ 1308 if (__need_bw_check(rq, rq->curr)) { 1309 if (cfs_task_bw_constrained(rq->curr)) 1310 return false; 1311 } 1312 1313 return true; 1314 } 1315 #endif /* CONFIG_NO_HZ_FULL */ 1316 #endif /* CONFIG_SMP */ 1317 1318 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1319 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1320 /* 1321 * Iterate task_group tree rooted at *from, calling @down when first entering a 1322 * node and @up when leaving it for the final time. 1323 * 1324 * Caller must hold rcu_lock or sufficient equivalent. 1325 */ 1326 int walk_tg_tree_from(struct task_group *from, 1327 tg_visitor down, tg_visitor up, void *data) 1328 { 1329 struct task_group *parent, *child; 1330 int ret; 1331 1332 parent = from; 1333 1334 down: 1335 ret = (*down)(parent, data); 1336 if (ret) 1337 goto out; 1338 list_for_each_entry_rcu(child, &parent->children, siblings) { 1339 parent = child; 1340 goto down; 1341 1342 up: 1343 continue; 1344 } 1345 ret = (*up)(parent, data); 1346 if (ret || parent == from) 1347 goto out; 1348 1349 child = parent; 1350 parent = parent->parent; 1351 if (parent) 1352 goto up; 1353 out: 1354 return ret; 1355 } 1356 1357 int tg_nop(struct task_group *tg, void *data) 1358 { 1359 return 0; 1360 } 1361 #endif 1362 1363 void set_load_weight(struct task_struct *p, bool update_load) 1364 { 1365 int prio = p->static_prio - MAX_RT_PRIO; 1366 struct load_weight lw; 1367 1368 if (task_has_idle_policy(p)) { 1369 lw.weight = scale_load(WEIGHT_IDLEPRIO); 1370 lw.inv_weight = WMULT_IDLEPRIO; 1371 } else { 1372 lw.weight = scale_load(sched_prio_to_weight[prio]); 1373 lw.inv_weight = sched_prio_to_wmult[prio]; 1374 } 1375 1376 /* 1377 * SCHED_OTHER tasks have to update their load when changing their 1378 * weight 1379 */ 1380 if (update_load && p->sched_class->reweight_task) 1381 p->sched_class->reweight_task(task_rq(p), p, &lw); 1382 else 1383 p->se.load = lw; 1384 } 1385 1386 #ifdef CONFIG_UCLAMP_TASK 1387 /* 1388 * Serializes updates of utilization clamp values 1389 * 1390 * The (slow-path) user-space triggers utilization clamp value updates which 1391 * can require updates on (fast-path) scheduler's data structures used to 1392 * support enqueue/dequeue operations. 1393 * While the per-CPU rq lock protects fast-path update operations, user-space 1394 * requests are serialized using a mutex to reduce the risk of conflicting 1395 * updates or API abuses. 1396 */ 1397 static DEFINE_MUTEX(uclamp_mutex); 1398 1399 /* Max allowed minimum utilization */ 1400 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1401 1402 /* Max allowed maximum utilization */ 1403 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1404 1405 /* 1406 * By default RT tasks run at the maximum performance point/capacity of the 1407 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1408 * SCHED_CAPACITY_SCALE. 1409 * 1410 * This knob allows admins to change the default behavior when uclamp is being 1411 * used. In battery powered devices, particularly, running at the maximum 1412 * capacity and frequency will increase energy consumption and shorten the 1413 * battery life. 1414 * 1415 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1416 * 1417 * This knob will not override the system default sched_util_clamp_min defined 1418 * above. 1419 */ 1420 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1421 1422 /* All clamps are required to be less or equal than these values */ 1423 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1424 1425 /* 1426 * This static key is used to reduce the uclamp overhead in the fast path. It 1427 * primarily disables the call to uclamp_rq_{inc, dec}() in 1428 * enqueue/dequeue_task(). 1429 * 1430 * This allows users to continue to enable uclamp in their kernel config with 1431 * minimum uclamp overhead in the fast path. 1432 * 1433 * As soon as userspace modifies any of the uclamp knobs, the static key is 1434 * enabled, since we have an actual users that make use of uclamp 1435 * functionality. 1436 * 1437 * The knobs that would enable this static key are: 1438 * 1439 * * A task modifying its uclamp value with sched_setattr(). 1440 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1441 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1442 */ 1443 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1444 1445 static inline unsigned int 1446 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1447 unsigned int clamp_value) 1448 { 1449 /* 1450 * Avoid blocked utilization pushing up the frequency when we go 1451 * idle (which drops the max-clamp) by retaining the last known 1452 * max-clamp. 1453 */ 1454 if (clamp_id == UCLAMP_MAX) { 1455 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1456 return clamp_value; 1457 } 1458 1459 return uclamp_none(UCLAMP_MIN); 1460 } 1461 1462 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1463 unsigned int clamp_value) 1464 { 1465 /* Reset max-clamp retention only on idle exit */ 1466 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1467 return; 1468 1469 uclamp_rq_set(rq, clamp_id, clamp_value); 1470 } 1471 1472 static inline 1473 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1474 unsigned int clamp_value) 1475 { 1476 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1477 int bucket_id = UCLAMP_BUCKETS - 1; 1478 1479 /* 1480 * Since both min and max clamps are max aggregated, find the 1481 * top most bucket with tasks in. 1482 */ 1483 for ( ; bucket_id >= 0; bucket_id--) { 1484 if (!bucket[bucket_id].tasks) 1485 continue; 1486 return bucket[bucket_id].value; 1487 } 1488 1489 /* No tasks -- default clamp values */ 1490 return uclamp_idle_value(rq, clamp_id, clamp_value); 1491 } 1492 1493 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1494 { 1495 unsigned int default_util_min; 1496 struct uclamp_se *uc_se; 1497 1498 lockdep_assert_held(&p->pi_lock); 1499 1500 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1501 1502 /* Only sync if user didn't override the default */ 1503 if (uc_se->user_defined) 1504 return; 1505 1506 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1507 uclamp_se_set(uc_se, default_util_min, false); 1508 } 1509 1510 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1511 { 1512 if (!rt_task(p)) 1513 return; 1514 1515 /* Protect updates to p->uclamp_* */ 1516 guard(task_rq_lock)(p); 1517 __uclamp_update_util_min_rt_default(p); 1518 } 1519 1520 static inline struct uclamp_se 1521 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1522 { 1523 /* Copy by value as we could modify it */ 1524 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1525 #ifdef CONFIG_UCLAMP_TASK_GROUP 1526 unsigned int tg_min, tg_max, value; 1527 1528 /* 1529 * Tasks in autogroups or root task group will be 1530 * restricted by system defaults. 1531 */ 1532 if (task_group_is_autogroup(task_group(p))) 1533 return uc_req; 1534 if (task_group(p) == &root_task_group) 1535 return uc_req; 1536 1537 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1538 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1539 value = uc_req.value; 1540 value = clamp(value, tg_min, tg_max); 1541 uclamp_se_set(&uc_req, value, false); 1542 #endif 1543 1544 return uc_req; 1545 } 1546 1547 /* 1548 * The effective clamp bucket index of a task depends on, by increasing 1549 * priority: 1550 * - the task specific clamp value, when explicitly requested from userspace 1551 * - the task group effective clamp value, for tasks not either in the root 1552 * group or in an autogroup 1553 * - the system default clamp value, defined by the sysadmin 1554 */ 1555 static inline struct uclamp_se 1556 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1557 { 1558 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1559 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1560 1561 /* System default restrictions always apply */ 1562 if (unlikely(uc_req.value > uc_max.value)) 1563 return uc_max; 1564 1565 return uc_req; 1566 } 1567 1568 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1569 { 1570 struct uclamp_se uc_eff; 1571 1572 /* Task currently refcounted: use back-annotated (effective) value */ 1573 if (p->uclamp[clamp_id].active) 1574 return (unsigned long)p->uclamp[clamp_id].value; 1575 1576 uc_eff = uclamp_eff_get(p, clamp_id); 1577 1578 return (unsigned long)uc_eff.value; 1579 } 1580 1581 /* 1582 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1583 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1584 * updates the rq's clamp value if required. 1585 * 1586 * Tasks can have a task-specific value requested from user-space, track 1587 * within each bucket the maximum value for tasks refcounted in it. 1588 * This "local max aggregation" allows to track the exact "requested" value 1589 * for each bucket when all its RUNNABLE tasks require the same clamp. 1590 */ 1591 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1592 enum uclamp_id clamp_id) 1593 { 1594 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1595 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1596 struct uclamp_bucket *bucket; 1597 1598 lockdep_assert_rq_held(rq); 1599 1600 /* Update task effective clamp */ 1601 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1602 1603 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1604 bucket->tasks++; 1605 uc_se->active = true; 1606 1607 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1608 1609 /* 1610 * Local max aggregation: rq buckets always track the max 1611 * "requested" clamp value of its RUNNABLE tasks. 1612 */ 1613 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1614 bucket->value = uc_se->value; 1615 1616 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1617 uclamp_rq_set(rq, clamp_id, uc_se->value); 1618 } 1619 1620 /* 1621 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1622 * is released. If this is the last task reference counting the rq's max 1623 * active clamp value, then the rq's clamp value is updated. 1624 * 1625 * Both refcounted tasks and rq's cached clamp values are expected to be 1626 * always valid. If it's detected they are not, as defensive programming, 1627 * enforce the expected state and warn. 1628 */ 1629 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1630 enum uclamp_id clamp_id) 1631 { 1632 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1633 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1634 struct uclamp_bucket *bucket; 1635 unsigned int bkt_clamp; 1636 unsigned int rq_clamp; 1637 1638 lockdep_assert_rq_held(rq); 1639 1640 /* 1641 * If sched_uclamp_used was enabled after task @p was enqueued, 1642 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1643 * 1644 * In this case the uc_se->active flag should be false since no uclamp 1645 * accounting was performed at enqueue time and we can just return 1646 * here. 1647 * 1648 * Need to be careful of the following enqueue/dequeue ordering 1649 * problem too 1650 * 1651 * enqueue(taskA) 1652 * // sched_uclamp_used gets enabled 1653 * enqueue(taskB) 1654 * dequeue(taskA) 1655 * // Must not decrement bucket->tasks here 1656 * dequeue(taskB) 1657 * 1658 * where we could end up with stale data in uc_se and 1659 * bucket[uc_se->bucket_id]. 1660 * 1661 * The following check here eliminates the possibility of such race. 1662 */ 1663 if (unlikely(!uc_se->active)) 1664 return; 1665 1666 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1667 1668 SCHED_WARN_ON(!bucket->tasks); 1669 if (likely(bucket->tasks)) 1670 bucket->tasks--; 1671 1672 uc_se->active = false; 1673 1674 /* 1675 * Keep "local max aggregation" simple and accept to (possibly) 1676 * overboost some RUNNABLE tasks in the same bucket. 1677 * The rq clamp bucket value is reset to its base value whenever 1678 * there are no more RUNNABLE tasks refcounting it. 1679 */ 1680 if (likely(bucket->tasks)) 1681 return; 1682 1683 rq_clamp = uclamp_rq_get(rq, clamp_id); 1684 /* 1685 * Defensive programming: this should never happen. If it happens, 1686 * e.g. due to future modification, warn and fix up the expected value. 1687 */ 1688 SCHED_WARN_ON(bucket->value > rq_clamp); 1689 if (bucket->value >= rq_clamp) { 1690 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1691 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1692 } 1693 } 1694 1695 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1696 { 1697 enum uclamp_id clamp_id; 1698 1699 /* 1700 * Avoid any overhead until uclamp is actually used by the userspace. 1701 * 1702 * The condition is constructed such that a NOP is generated when 1703 * sched_uclamp_used is disabled. 1704 */ 1705 if (!static_branch_unlikely(&sched_uclamp_used)) 1706 return; 1707 1708 if (unlikely(!p->sched_class->uclamp_enabled)) 1709 return; 1710 1711 if (p->se.sched_delayed) 1712 return; 1713 1714 for_each_clamp_id(clamp_id) 1715 uclamp_rq_inc_id(rq, p, clamp_id); 1716 1717 /* Reset clamp idle holding when there is one RUNNABLE task */ 1718 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1719 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1720 } 1721 1722 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1723 { 1724 enum uclamp_id clamp_id; 1725 1726 /* 1727 * Avoid any overhead until uclamp is actually used by the userspace. 1728 * 1729 * The condition is constructed such that a NOP is generated when 1730 * sched_uclamp_used is disabled. 1731 */ 1732 if (!static_branch_unlikely(&sched_uclamp_used)) 1733 return; 1734 1735 if (unlikely(!p->sched_class->uclamp_enabled)) 1736 return; 1737 1738 if (p->se.sched_delayed) 1739 return; 1740 1741 for_each_clamp_id(clamp_id) 1742 uclamp_rq_dec_id(rq, p, clamp_id); 1743 } 1744 1745 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1746 enum uclamp_id clamp_id) 1747 { 1748 if (!p->uclamp[clamp_id].active) 1749 return; 1750 1751 uclamp_rq_dec_id(rq, p, clamp_id); 1752 uclamp_rq_inc_id(rq, p, clamp_id); 1753 1754 /* 1755 * Make sure to clear the idle flag if we've transiently reached 0 1756 * active tasks on rq. 1757 */ 1758 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1759 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1760 } 1761 1762 static inline void 1763 uclamp_update_active(struct task_struct *p) 1764 { 1765 enum uclamp_id clamp_id; 1766 struct rq_flags rf; 1767 struct rq *rq; 1768 1769 /* 1770 * Lock the task and the rq where the task is (or was) queued. 1771 * 1772 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1773 * price to pay to safely serialize util_{min,max} updates with 1774 * enqueues, dequeues and migration operations. 1775 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1776 */ 1777 rq = task_rq_lock(p, &rf); 1778 1779 /* 1780 * Setting the clamp bucket is serialized by task_rq_lock(). 1781 * If the task is not yet RUNNABLE and its task_struct is not 1782 * affecting a valid clamp bucket, the next time it's enqueued, 1783 * it will already see the updated clamp bucket value. 1784 */ 1785 for_each_clamp_id(clamp_id) 1786 uclamp_rq_reinc_id(rq, p, clamp_id); 1787 1788 task_rq_unlock(rq, p, &rf); 1789 } 1790 1791 #ifdef CONFIG_UCLAMP_TASK_GROUP 1792 static inline void 1793 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1794 { 1795 struct css_task_iter it; 1796 struct task_struct *p; 1797 1798 css_task_iter_start(css, 0, &it); 1799 while ((p = css_task_iter_next(&it))) 1800 uclamp_update_active(p); 1801 css_task_iter_end(&it); 1802 } 1803 1804 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1805 #endif 1806 1807 #ifdef CONFIG_SYSCTL 1808 #ifdef CONFIG_UCLAMP_TASK_GROUP 1809 static void uclamp_update_root_tg(void) 1810 { 1811 struct task_group *tg = &root_task_group; 1812 1813 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1814 sysctl_sched_uclamp_util_min, false); 1815 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1816 sysctl_sched_uclamp_util_max, false); 1817 1818 guard(rcu)(); 1819 cpu_util_update_eff(&root_task_group.css); 1820 } 1821 #else 1822 static void uclamp_update_root_tg(void) { } 1823 #endif 1824 1825 static void uclamp_sync_util_min_rt_default(void) 1826 { 1827 struct task_struct *g, *p; 1828 1829 /* 1830 * copy_process() sysctl_uclamp 1831 * uclamp_min_rt = X; 1832 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1833 * // link thread smp_mb__after_spinlock() 1834 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1835 * sched_post_fork() for_each_process_thread() 1836 * __uclamp_sync_rt() __uclamp_sync_rt() 1837 * 1838 * Ensures that either sched_post_fork() will observe the new 1839 * uclamp_min_rt or for_each_process_thread() will observe the new 1840 * task. 1841 */ 1842 read_lock(&tasklist_lock); 1843 smp_mb__after_spinlock(); 1844 read_unlock(&tasklist_lock); 1845 1846 guard(rcu)(); 1847 for_each_process_thread(g, p) 1848 uclamp_update_util_min_rt_default(p); 1849 } 1850 1851 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write, 1852 void *buffer, size_t *lenp, loff_t *ppos) 1853 { 1854 bool update_root_tg = false; 1855 int old_min, old_max, old_min_rt; 1856 int result; 1857 1858 guard(mutex)(&uclamp_mutex); 1859 1860 old_min = sysctl_sched_uclamp_util_min; 1861 old_max = sysctl_sched_uclamp_util_max; 1862 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1863 1864 result = proc_dointvec(table, write, buffer, lenp, ppos); 1865 if (result) 1866 goto undo; 1867 if (!write) 1868 return 0; 1869 1870 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1871 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1872 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1873 1874 result = -EINVAL; 1875 goto undo; 1876 } 1877 1878 if (old_min != sysctl_sched_uclamp_util_min) { 1879 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1880 sysctl_sched_uclamp_util_min, false); 1881 update_root_tg = true; 1882 } 1883 if (old_max != sysctl_sched_uclamp_util_max) { 1884 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1885 sysctl_sched_uclamp_util_max, false); 1886 update_root_tg = true; 1887 } 1888 1889 if (update_root_tg) { 1890 static_branch_enable(&sched_uclamp_used); 1891 uclamp_update_root_tg(); 1892 } 1893 1894 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1895 static_branch_enable(&sched_uclamp_used); 1896 uclamp_sync_util_min_rt_default(); 1897 } 1898 1899 /* 1900 * We update all RUNNABLE tasks only when task groups are in use. 1901 * Otherwise, keep it simple and do just a lazy update at each next 1902 * task enqueue time. 1903 */ 1904 return 0; 1905 1906 undo: 1907 sysctl_sched_uclamp_util_min = old_min; 1908 sysctl_sched_uclamp_util_max = old_max; 1909 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1910 return result; 1911 } 1912 #endif 1913 1914 static void uclamp_fork(struct task_struct *p) 1915 { 1916 enum uclamp_id clamp_id; 1917 1918 /* 1919 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1920 * as the task is still at its early fork stages. 1921 */ 1922 for_each_clamp_id(clamp_id) 1923 p->uclamp[clamp_id].active = false; 1924 1925 if (likely(!p->sched_reset_on_fork)) 1926 return; 1927 1928 for_each_clamp_id(clamp_id) { 1929 uclamp_se_set(&p->uclamp_req[clamp_id], 1930 uclamp_none(clamp_id), false); 1931 } 1932 } 1933 1934 static void uclamp_post_fork(struct task_struct *p) 1935 { 1936 uclamp_update_util_min_rt_default(p); 1937 } 1938 1939 static void __init init_uclamp_rq(struct rq *rq) 1940 { 1941 enum uclamp_id clamp_id; 1942 struct uclamp_rq *uc_rq = rq->uclamp; 1943 1944 for_each_clamp_id(clamp_id) { 1945 uc_rq[clamp_id] = (struct uclamp_rq) { 1946 .value = uclamp_none(clamp_id) 1947 }; 1948 } 1949 1950 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 1951 } 1952 1953 static void __init init_uclamp(void) 1954 { 1955 struct uclamp_se uc_max = {}; 1956 enum uclamp_id clamp_id; 1957 int cpu; 1958 1959 for_each_possible_cpu(cpu) 1960 init_uclamp_rq(cpu_rq(cpu)); 1961 1962 for_each_clamp_id(clamp_id) { 1963 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1964 uclamp_none(clamp_id), false); 1965 } 1966 1967 /* System defaults allow max clamp values for both indexes */ 1968 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1969 for_each_clamp_id(clamp_id) { 1970 uclamp_default[clamp_id] = uc_max; 1971 #ifdef CONFIG_UCLAMP_TASK_GROUP 1972 root_task_group.uclamp_req[clamp_id] = uc_max; 1973 root_task_group.uclamp[clamp_id] = uc_max; 1974 #endif 1975 } 1976 } 1977 1978 #else /* !CONFIG_UCLAMP_TASK */ 1979 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1980 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1981 static inline void uclamp_fork(struct task_struct *p) { } 1982 static inline void uclamp_post_fork(struct task_struct *p) { } 1983 static inline void init_uclamp(void) { } 1984 #endif /* CONFIG_UCLAMP_TASK */ 1985 1986 bool sched_task_on_rq(struct task_struct *p) 1987 { 1988 return task_on_rq_queued(p); 1989 } 1990 1991 unsigned long get_wchan(struct task_struct *p) 1992 { 1993 unsigned long ip = 0; 1994 unsigned int state; 1995 1996 if (!p || p == current) 1997 return 0; 1998 1999 /* Only get wchan if task is blocked and we can keep it that way. */ 2000 raw_spin_lock_irq(&p->pi_lock); 2001 state = READ_ONCE(p->__state); 2002 smp_rmb(); /* see try_to_wake_up() */ 2003 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2004 ip = __get_wchan(p); 2005 raw_spin_unlock_irq(&p->pi_lock); 2006 2007 return ip; 2008 } 2009 2010 void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2011 { 2012 if (!(flags & ENQUEUE_NOCLOCK)) 2013 update_rq_clock(rq); 2014 2015 if (!(flags & ENQUEUE_RESTORE)) { 2016 sched_info_enqueue(rq, p); 2017 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED)); 2018 } 2019 2020 p->sched_class->enqueue_task(rq, p, flags); 2021 /* 2022 * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear 2023 * ->sched_delayed. 2024 */ 2025 uclamp_rq_inc(rq, p); 2026 2027 if (sched_core_enabled(rq)) 2028 sched_core_enqueue(rq, p); 2029 } 2030 2031 /* 2032 * Must only return false when DEQUEUE_SLEEP. 2033 */ 2034 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2035 { 2036 if (sched_core_enabled(rq)) 2037 sched_core_dequeue(rq, p, flags); 2038 2039 if (!(flags & DEQUEUE_NOCLOCK)) 2040 update_rq_clock(rq); 2041 2042 if (!(flags & DEQUEUE_SAVE)) { 2043 sched_info_dequeue(rq, p); 2044 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2045 } 2046 2047 /* 2048 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail' 2049 * and mark the task ->sched_delayed. 2050 */ 2051 uclamp_rq_dec(rq, p); 2052 return p->sched_class->dequeue_task(rq, p, flags); 2053 } 2054 2055 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2056 { 2057 if (task_on_rq_migrating(p)) 2058 flags |= ENQUEUE_MIGRATED; 2059 if (flags & ENQUEUE_MIGRATED) 2060 sched_mm_cid_migrate_to(rq, p); 2061 2062 enqueue_task(rq, p, flags); 2063 2064 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); 2065 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2066 } 2067 2068 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2069 { 2070 SCHED_WARN_ON(flags & DEQUEUE_SLEEP); 2071 2072 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 2073 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2074 2075 /* 2076 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before* 2077 * dequeue_task() and cleared *after* enqueue_task(). 2078 */ 2079 2080 dequeue_task(rq, p, flags); 2081 } 2082 2083 static void block_task(struct rq *rq, struct task_struct *p, int flags) 2084 { 2085 if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags)) 2086 __block_task(rq, p); 2087 } 2088 2089 /** 2090 * task_curr - is this task currently executing on a CPU? 2091 * @p: the task in question. 2092 * 2093 * Return: 1 if the task is currently executing. 0 otherwise. 2094 */ 2095 inline int task_curr(const struct task_struct *p) 2096 { 2097 return cpu_curr(task_cpu(p)) == p; 2098 } 2099 2100 /* 2101 * ->switching_to() is called with the pi_lock and rq_lock held and must not 2102 * mess with locking. 2103 */ 2104 void check_class_changing(struct rq *rq, struct task_struct *p, 2105 const struct sched_class *prev_class) 2106 { 2107 if (prev_class != p->sched_class && p->sched_class->switching_to) 2108 p->sched_class->switching_to(rq, p); 2109 } 2110 2111 /* 2112 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2113 * use the balance_callback list if you want balancing. 2114 * 2115 * this means any call to check_class_changed() must be followed by a call to 2116 * balance_callback(). 2117 */ 2118 void check_class_changed(struct rq *rq, struct task_struct *p, 2119 const struct sched_class *prev_class, 2120 int oldprio) 2121 { 2122 if (prev_class != p->sched_class) { 2123 if (prev_class->switched_from) 2124 prev_class->switched_from(rq, p); 2125 2126 p->sched_class->switched_to(rq, p); 2127 } else if (oldprio != p->prio || dl_task(p)) 2128 p->sched_class->prio_changed(rq, p, oldprio); 2129 } 2130 2131 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2132 { 2133 if (p->sched_class == rq->curr->sched_class) 2134 rq->curr->sched_class->wakeup_preempt(rq, p, flags); 2135 else if (sched_class_above(p->sched_class, rq->curr->sched_class)) 2136 resched_curr(rq); 2137 2138 /* 2139 * A queue event has occurred, and we're going to schedule. In 2140 * this case, we can save a useless back to back clock update. 2141 */ 2142 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2143 rq_clock_skip_update(rq); 2144 } 2145 2146 static __always_inline 2147 int __task_state_match(struct task_struct *p, unsigned int state) 2148 { 2149 if (READ_ONCE(p->__state) & state) 2150 return 1; 2151 2152 if (READ_ONCE(p->saved_state) & state) 2153 return -1; 2154 2155 return 0; 2156 } 2157 2158 static __always_inline 2159 int task_state_match(struct task_struct *p, unsigned int state) 2160 { 2161 /* 2162 * Serialize against current_save_and_set_rtlock_wait_state(), 2163 * current_restore_rtlock_saved_state(), and __refrigerator(). 2164 */ 2165 guard(raw_spinlock_irq)(&p->pi_lock); 2166 return __task_state_match(p, state); 2167 } 2168 2169 /* 2170 * wait_task_inactive - wait for a thread to unschedule. 2171 * 2172 * Wait for the thread to block in any of the states set in @match_state. 2173 * If it changes, i.e. @p might have woken up, then return zero. When we 2174 * succeed in waiting for @p to be off its CPU, we return a positive number 2175 * (its total switch count). If a second call a short while later returns the 2176 * same number, the caller can be sure that @p has remained unscheduled the 2177 * whole time. 2178 * 2179 * The caller must ensure that the task *will* unschedule sometime soon, 2180 * else this function might spin for a *long* time. This function can't 2181 * be called with interrupts off, or it may introduce deadlock with 2182 * smp_call_function() if an IPI is sent by the same process we are 2183 * waiting to become inactive. 2184 */ 2185 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2186 { 2187 int running, queued, match; 2188 struct rq_flags rf; 2189 unsigned long ncsw; 2190 struct rq *rq; 2191 2192 for (;;) { 2193 /* 2194 * We do the initial early heuristics without holding 2195 * any task-queue locks at all. We'll only try to get 2196 * the runqueue lock when things look like they will 2197 * work out! 2198 */ 2199 rq = task_rq(p); 2200 2201 /* 2202 * If the task is actively running on another CPU 2203 * still, just relax and busy-wait without holding 2204 * any locks. 2205 * 2206 * NOTE! Since we don't hold any locks, it's not 2207 * even sure that "rq" stays as the right runqueue! 2208 * But we don't care, since "task_on_cpu()" will 2209 * return false if the runqueue has changed and p 2210 * is actually now running somewhere else! 2211 */ 2212 while (task_on_cpu(rq, p)) { 2213 if (!task_state_match(p, match_state)) 2214 return 0; 2215 cpu_relax(); 2216 } 2217 2218 /* 2219 * Ok, time to look more closely! We need the rq 2220 * lock now, to be *sure*. If we're wrong, we'll 2221 * just go back and repeat. 2222 */ 2223 rq = task_rq_lock(p, &rf); 2224 trace_sched_wait_task(p); 2225 running = task_on_cpu(rq, p); 2226 queued = task_on_rq_queued(p); 2227 ncsw = 0; 2228 if ((match = __task_state_match(p, match_state))) { 2229 /* 2230 * When matching on p->saved_state, consider this task 2231 * still queued so it will wait. 2232 */ 2233 if (match < 0) 2234 queued = 1; 2235 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2236 } 2237 task_rq_unlock(rq, p, &rf); 2238 2239 /* 2240 * If it changed from the expected state, bail out now. 2241 */ 2242 if (unlikely(!ncsw)) 2243 break; 2244 2245 /* 2246 * Was it really running after all now that we 2247 * checked with the proper locks actually held? 2248 * 2249 * Oops. Go back and try again.. 2250 */ 2251 if (unlikely(running)) { 2252 cpu_relax(); 2253 continue; 2254 } 2255 2256 /* 2257 * It's not enough that it's not actively running, 2258 * it must be off the runqueue _entirely_, and not 2259 * preempted! 2260 * 2261 * So if it was still runnable (but just not actively 2262 * running right now), it's preempted, and we should 2263 * yield - it could be a while. 2264 */ 2265 if (unlikely(queued)) { 2266 ktime_t to = NSEC_PER_SEC / HZ; 2267 2268 set_current_state(TASK_UNINTERRUPTIBLE); 2269 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2270 continue; 2271 } 2272 2273 /* 2274 * Ahh, all good. It wasn't running, and it wasn't 2275 * runnable, which means that it will never become 2276 * running in the future either. We're all done! 2277 */ 2278 break; 2279 } 2280 2281 return ncsw; 2282 } 2283 2284 #ifdef CONFIG_SMP 2285 2286 static void 2287 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2288 2289 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2290 { 2291 struct affinity_context ac = { 2292 .new_mask = cpumask_of(rq->cpu), 2293 .flags = SCA_MIGRATE_DISABLE, 2294 }; 2295 2296 if (likely(!p->migration_disabled)) 2297 return; 2298 2299 if (p->cpus_ptr != &p->cpus_mask) 2300 return; 2301 2302 /* 2303 * Violates locking rules! See comment in __do_set_cpus_allowed(). 2304 */ 2305 __do_set_cpus_allowed(p, &ac); 2306 } 2307 2308 void migrate_disable(void) 2309 { 2310 struct task_struct *p = current; 2311 2312 if (p->migration_disabled) { 2313 #ifdef CONFIG_DEBUG_PREEMPT 2314 /* 2315 *Warn about overflow half-way through the range. 2316 */ 2317 WARN_ON_ONCE((s16)p->migration_disabled < 0); 2318 #endif 2319 p->migration_disabled++; 2320 return; 2321 } 2322 2323 guard(preempt)(); 2324 this_rq()->nr_pinned++; 2325 p->migration_disabled = 1; 2326 } 2327 EXPORT_SYMBOL_GPL(migrate_disable); 2328 2329 void migrate_enable(void) 2330 { 2331 struct task_struct *p = current; 2332 struct affinity_context ac = { 2333 .new_mask = &p->cpus_mask, 2334 .flags = SCA_MIGRATE_ENABLE, 2335 }; 2336 2337 #ifdef CONFIG_DEBUG_PREEMPT 2338 /* 2339 * Check both overflow from migrate_disable() and superfluous 2340 * migrate_enable(). 2341 */ 2342 if (WARN_ON_ONCE((s16)p->migration_disabled <= 0)) 2343 return; 2344 #endif 2345 2346 if (p->migration_disabled > 1) { 2347 p->migration_disabled--; 2348 return; 2349 } 2350 2351 /* 2352 * Ensure stop_task runs either before or after this, and that 2353 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2354 */ 2355 guard(preempt)(); 2356 if (p->cpus_ptr != &p->cpus_mask) 2357 __set_cpus_allowed_ptr(p, &ac); 2358 /* 2359 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2360 * regular cpus_mask, otherwise things that race (eg. 2361 * select_fallback_rq) get confused. 2362 */ 2363 barrier(); 2364 p->migration_disabled = 0; 2365 this_rq()->nr_pinned--; 2366 } 2367 EXPORT_SYMBOL_GPL(migrate_enable); 2368 2369 static inline bool rq_has_pinned_tasks(struct rq *rq) 2370 { 2371 return rq->nr_pinned; 2372 } 2373 2374 /* 2375 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2376 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2377 */ 2378 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2379 { 2380 /* When not in the task's cpumask, no point in looking further. */ 2381 if (!task_allowed_on_cpu(p, cpu)) 2382 return false; 2383 2384 /* migrate_disabled() must be allowed to finish. */ 2385 if (is_migration_disabled(p)) 2386 return cpu_online(cpu); 2387 2388 /* Non kernel threads are not allowed during either online or offline. */ 2389 if (!(p->flags & PF_KTHREAD)) 2390 return cpu_active(cpu); 2391 2392 /* KTHREAD_IS_PER_CPU is always allowed. */ 2393 if (kthread_is_per_cpu(p)) 2394 return cpu_online(cpu); 2395 2396 /* Regular kernel threads don't get to stay during offline. */ 2397 if (cpu_dying(cpu)) 2398 return false; 2399 2400 /* But are allowed during online. */ 2401 return cpu_online(cpu); 2402 } 2403 2404 /* 2405 * This is how migration works: 2406 * 2407 * 1) we invoke migration_cpu_stop() on the target CPU using 2408 * stop_one_cpu(). 2409 * 2) stopper starts to run (implicitly forcing the migrated thread 2410 * off the CPU) 2411 * 3) it checks whether the migrated task is still in the wrong runqueue. 2412 * 4) if it's in the wrong runqueue then the migration thread removes 2413 * it and puts it into the right queue. 2414 * 5) stopper completes and stop_one_cpu() returns and the migration 2415 * is done. 2416 */ 2417 2418 /* 2419 * move_queued_task - move a queued task to new rq. 2420 * 2421 * Returns (locked) new rq. Old rq's lock is released. 2422 */ 2423 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2424 struct task_struct *p, int new_cpu) 2425 { 2426 lockdep_assert_rq_held(rq); 2427 2428 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2429 set_task_cpu(p, new_cpu); 2430 rq_unlock(rq, rf); 2431 2432 rq = cpu_rq(new_cpu); 2433 2434 rq_lock(rq, rf); 2435 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2436 activate_task(rq, p, 0); 2437 wakeup_preempt(rq, p, 0); 2438 2439 return rq; 2440 } 2441 2442 struct migration_arg { 2443 struct task_struct *task; 2444 int dest_cpu; 2445 struct set_affinity_pending *pending; 2446 }; 2447 2448 /* 2449 * @refs: number of wait_for_completion() 2450 * @stop_pending: is @stop_work in use 2451 */ 2452 struct set_affinity_pending { 2453 refcount_t refs; 2454 unsigned int stop_pending; 2455 struct completion done; 2456 struct cpu_stop_work stop_work; 2457 struct migration_arg arg; 2458 }; 2459 2460 /* 2461 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2462 * this because either it can't run here any more (set_cpus_allowed() 2463 * away from this CPU, or CPU going down), or because we're 2464 * attempting to rebalance this task on exec (sched_exec). 2465 * 2466 * So we race with normal scheduler movements, but that's OK, as long 2467 * as the task is no longer on this CPU. 2468 */ 2469 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2470 struct task_struct *p, int dest_cpu) 2471 { 2472 /* Affinity changed (again). */ 2473 if (!is_cpu_allowed(p, dest_cpu)) 2474 return rq; 2475 2476 rq = move_queued_task(rq, rf, p, dest_cpu); 2477 2478 return rq; 2479 } 2480 2481 /* 2482 * migration_cpu_stop - this will be executed by a high-prio stopper thread 2483 * and performs thread migration by bumping thread off CPU then 2484 * 'pushing' onto another runqueue. 2485 */ 2486 static int migration_cpu_stop(void *data) 2487 { 2488 struct migration_arg *arg = data; 2489 struct set_affinity_pending *pending = arg->pending; 2490 struct task_struct *p = arg->task; 2491 struct rq *rq = this_rq(); 2492 bool complete = false; 2493 struct rq_flags rf; 2494 2495 /* 2496 * The original target CPU might have gone down and we might 2497 * be on another CPU but it doesn't matter. 2498 */ 2499 local_irq_save(rf.flags); 2500 /* 2501 * We need to explicitly wake pending tasks before running 2502 * __migrate_task() such that we will not miss enforcing cpus_ptr 2503 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2504 */ 2505 flush_smp_call_function_queue(); 2506 2507 raw_spin_lock(&p->pi_lock); 2508 rq_lock(rq, &rf); 2509 2510 /* 2511 * If we were passed a pending, then ->stop_pending was set, thus 2512 * p->migration_pending must have remained stable. 2513 */ 2514 WARN_ON_ONCE(pending && pending != p->migration_pending); 2515 2516 /* 2517 * If task_rq(p) != rq, it cannot be migrated here, because we're 2518 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2519 * we're holding p->pi_lock. 2520 */ 2521 if (task_rq(p) == rq) { 2522 if (is_migration_disabled(p)) 2523 goto out; 2524 2525 if (pending) { 2526 p->migration_pending = NULL; 2527 complete = true; 2528 2529 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2530 goto out; 2531 } 2532 2533 if (task_on_rq_queued(p)) { 2534 update_rq_clock(rq); 2535 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2536 } else { 2537 p->wake_cpu = arg->dest_cpu; 2538 } 2539 2540 /* 2541 * XXX __migrate_task() can fail, at which point we might end 2542 * up running on a dodgy CPU, AFAICT this can only happen 2543 * during CPU hotplug, at which point we'll get pushed out 2544 * anyway, so it's probably not a big deal. 2545 */ 2546 2547 } else if (pending) { 2548 /* 2549 * This happens when we get migrated between migrate_enable()'s 2550 * preempt_enable() and scheduling the stopper task. At that 2551 * point we're a regular task again and not current anymore. 2552 * 2553 * A !PREEMPT kernel has a giant hole here, which makes it far 2554 * more likely. 2555 */ 2556 2557 /* 2558 * The task moved before the stopper got to run. We're holding 2559 * ->pi_lock, so the allowed mask is stable - if it got 2560 * somewhere allowed, we're done. 2561 */ 2562 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2563 p->migration_pending = NULL; 2564 complete = true; 2565 goto out; 2566 } 2567 2568 /* 2569 * When migrate_enable() hits a rq mis-match we can't reliably 2570 * determine is_migration_disabled() and so have to chase after 2571 * it. 2572 */ 2573 WARN_ON_ONCE(!pending->stop_pending); 2574 preempt_disable(); 2575 task_rq_unlock(rq, p, &rf); 2576 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2577 &pending->arg, &pending->stop_work); 2578 preempt_enable(); 2579 return 0; 2580 } 2581 out: 2582 if (pending) 2583 pending->stop_pending = false; 2584 task_rq_unlock(rq, p, &rf); 2585 2586 if (complete) 2587 complete_all(&pending->done); 2588 2589 return 0; 2590 } 2591 2592 int push_cpu_stop(void *arg) 2593 { 2594 struct rq *lowest_rq = NULL, *rq = this_rq(); 2595 struct task_struct *p = arg; 2596 2597 raw_spin_lock_irq(&p->pi_lock); 2598 raw_spin_rq_lock(rq); 2599 2600 if (task_rq(p) != rq) 2601 goto out_unlock; 2602 2603 if (is_migration_disabled(p)) { 2604 p->migration_flags |= MDF_PUSH; 2605 goto out_unlock; 2606 } 2607 2608 p->migration_flags &= ~MDF_PUSH; 2609 2610 if (p->sched_class->find_lock_rq) 2611 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2612 2613 if (!lowest_rq) 2614 goto out_unlock; 2615 2616 // XXX validate p is still the highest prio task 2617 if (task_rq(p) == rq) { 2618 deactivate_task(rq, p, 0); 2619 set_task_cpu(p, lowest_rq->cpu); 2620 activate_task(lowest_rq, p, 0); 2621 resched_curr(lowest_rq); 2622 } 2623 2624 double_unlock_balance(rq, lowest_rq); 2625 2626 out_unlock: 2627 rq->push_busy = false; 2628 raw_spin_rq_unlock(rq); 2629 raw_spin_unlock_irq(&p->pi_lock); 2630 2631 put_task_struct(p); 2632 return 0; 2633 } 2634 2635 /* 2636 * sched_class::set_cpus_allowed must do the below, but is not required to 2637 * actually call this function. 2638 */ 2639 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2640 { 2641 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2642 p->cpus_ptr = ctx->new_mask; 2643 return; 2644 } 2645 2646 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2647 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2648 2649 /* 2650 * Swap in a new user_cpus_ptr if SCA_USER flag set 2651 */ 2652 if (ctx->flags & SCA_USER) 2653 swap(p->user_cpus_ptr, ctx->user_mask); 2654 } 2655 2656 static void 2657 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2658 { 2659 struct rq *rq = task_rq(p); 2660 bool queued, running; 2661 2662 /* 2663 * This here violates the locking rules for affinity, since we're only 2664 * supposed to change these variables while holding both rq->lock and 2665 * p->pi_lock. 2666 * 2667 * HOWEVER, it magically works, because ttwu() is the only code that 2668 * accesses these variables under p->pi_lock and only does so after 2669 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2670 * before finish_task(). 2671 * 2672 * XXX do further audits, this smells like something putrid. 2673 */ 2674 if (ctx->flags & SCA_MIGRATE_DISABLE) 2675 SCHED_WARN_ON(!p->on_cpu); 2676 else 2677 lockdep_assert_held(&p->pi_lock); 2678 2679 queued = task_on_rq_queued(p); 2680 running = task_current(rq, p); 2681 2682 if (queued) { 2683 /* 2684 * Because __kthread_bind() calls this on blocked tasks without 2685 * holding rq->lock. 2686 */ 2687 lockdep_assert_rq_held(rq); 2688 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2689 } 2690 if (running) 2691 put_prev_task(rq, p); 2692 2693 p->sched_class->set_cpus_allowed(p, ctx); 2694 2695 if (queued) 2696 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2697 if (running) 2698 set_next_task(rq, p); 2699 } 2700 2701 /* 2702 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2703 * affinity (if any) should be destroyed too. 2704 */ 2705 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2706 { 2707 struct affinity_context ac = { 2708 .new_mask = new_mask, 2709 .user_mask = NULL, 2710 .flags = SCA_USER, /* clear the user requested mask */ 2711 }; 2712 union cpumask_rcuhead { 2713 cpumask_t cpumask; 2714 struct rcu_head rcu; 2715 }; 2716 2717 __do_set_cpus_allowed(p, &ac); 2718 2719 /* 2720 * Because this is called with p->pi_lock held, it is not possible 2721 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2722 * kfree_rcu(). 2723 */ 2724 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2725 } 2726 2727 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2728 int node) 2729 { 2730 cpumask_t *user_mask; 2731 unsigned long flags; 2732 2733 /* 2734 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2735 * may differ by now due to racing. 2736 */ 2737 dst->user_cpus_ptr = NULL; 2738 2739 /* 2740 * This check is racy and losing the race is a valid situation. 2741 * It is not worth the extra overhead of taking the pi_lock on 2742 * every fork/clone. 2743 */ 2744 if (data_race(!src->user_cpus_ptr)) 2745 return 0; 2746 2747 user_mask = alloc_user_cpus_ptr(node); 2748 if (!user_mask) 2749 return -ENOMEM; 2750 2751 /* 2752 * Use pi_lock to protect content of user_cpus_ptr 2753 * 2754 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2755 * do_set_cpus_allowed(). 2756 */ 2757 raw_spin_lock_irqsave(&src->pi_lock, flags); 2758 if (src->user_cpus_ptr) { 2759 swap(dst->user_cpus_ptr, user_mask); 2760 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2761 } 2762 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2763 2764 if (unlikely(user_mask)) 2765 kfree(user_mask); 2766 2767 return 0; 2768 } 2769 2770 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2771 { 2772 struct cpumask *user_mask = NULL; 2773 2774 swap(p->user_cpus_ptr, user_mask); 2775 2776 return user_mask; 2777 } 2778 2779 void release_user_cpus_ptr(struct task_struct *p) 2780 { 2781 kfree(clear_user_cpus_ptr(p)); 2782 } 2783 2784 /* 2785 * This function is wildly self concurrent; here be dragons. 2786 * 2787 * 2788 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2789 * designated task is enqueued on an allowed CPU. If that task is currently 2790 * running, we have to kick it out using the CPU stopper. 2791 * 2792 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2793 * Consider: 2794 * 2795 * Initial conditions: P0->cpus_mask = [0, 1] 2796 * 2797 * P0@CPU0 P1 2798 * 2799 * migrate_disable(); 2800 * <preempted> 2801 * set_cpus_allowed_ptr(P0, [1]); 2802 * 2803 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2804 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2805 * This means we need the following scheme: 2806 * 2807 * P0@CPU0 P1 2808 * 2809 * migrate_disable(); 2810 * <preempted> 2811 * set_cpus_allowed_ptr(P0, [1]); 2812 * <blocks> 2813 * <resumes> 2814 * migrate_enable(); 2815 * __set_cpus_allowed_ptr(); 2816 * <wakes local stopper> 2817 * `--> <woken on migration completion> 2818 * 2819 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2820 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2821 * task p are serialized by p->pi_lock, which we can leverage: the one that 2822 * should come into effect at the end of the Migrate-Disable region is the last 2823 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2824 * but we still need to properly signal those waiting tasks at the appropriate 2825 * moment. 2826 * 2827 * This is implemented using struct set_affinity_pending. The first 2828 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2829 * setup an instance of that struct and install it on the targeted task_struct. 2830 * Any and all further callers will reuse that instance. Those then wait for 2831 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2832 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2833 * 2834 * 2835 * (1) In the cases covered above. There is one more where the completion is 2836 * signaled within affine_move_task() itself: when a subsequent affinity request 2837 * occurs after the stopper bailed out due to the targeted task still being 2838 * Migrate-Disable. Consider: 2839 * 2840 * Initial conditions: P0->cpus_mask = [0, 1] 2841 * 2842 * CPU0 P1 P2 2843 * <P0> 2844 * migrate_disable(); 2845 * <preempted> 2846 * set_cpus_allowed_ptr(P0, [1]); 2847 * <blocks> 2848 * <migration/0> 2849 * migration_cpu_stop() 2850 * is_migration_disabled() 2851 * <bails> 2852 * set_cpus_allowed_ptr(P0, [0, 1]); 2853 * <signal completion> 2854 * <awakes> 2855 * 2856 * Note that the above is safe vs a concurrent migrate_enable(), as any 2857 * pending affinity completion is preceded by an uninstallation of 2858 * p->migration_pending done with p->pi_lock held. 2859 */ 2860 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2861 int dest_cpu, unsigned int flags) 2862 __releases(rq->lock) 2863 __releases(p->pi_lock) 2864 { 2865 struct set_affinity_pending my_pending = { }, *pending = NULL; 2866 bool stop_pending, complete = false; 2867 2868 /* Can the task run on the task's current CPU? If so, we're done */ 2869 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2870 struct task_struct *push_task = NULL; 2871 2872 if ((flags & SCA_MIGRATE_ENABLE) && 2873 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2874 rq->push_busy = true; 2875 push_task = get_task_struct(p); 2876 } 2877 2878 /* 2879 * If there are pending waiters, but no pending stop_work, 2880 * then complete now. 2881 */ 2882 pending = p->migration_pending; 2883 if (pending && !pending->stop_pending) { 2884 p->migration_pending = NULL; 2885 complete = true; 2886 } 2887 2888 preempt_disable(); 2889 task_rq_unlock(rq, p, rf); 2890 if (push_task) { 2891 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2892 p, &rq->push_work); 2893 } 2894 preempt_enable(); 2895 2896 if (complete) 2897 complete_all(&pending->done); 2898 2899 return 0; 2900 } 2901 2902 if (!(flags & SCA_MIGRATE_ENABLE)) { 2903 /* serialized by p->pi_lock */ 2904 if (!p->migration_pending) { 2905 /* Install the request */ 2906 refcount_set(&my_pending.refs, 1); 2907 init_completion(&my_pending.done); 2908 my_pending.arg = (struct migration_arg) { 2909 .task = p, 2910 .dest_cpu = dest_cpu, 2911 .pending = &my_pending, 2912 }; 2913 2914 p->migration_pending = &my_pending; 2915 } else { 2916 pending = p->migration_pending; 2917 refcount_inc(&pending->refs); 2918 /* 2919 * Affinity has changed, but we've already installed a 2920 * pending. migration_cpu_stop() *must* see this, else 2921 * we risk a completion of the pending despite having a 2922 * task on a disallowed CPU. 2923 * 2924 * Serialized by p->pi_lock, so this is safe. 2925 */ 2926 pending->arg.dest_cpu = dest_cpu; 2927 } 2928 } 2929 pending = p->migration_pending; 2930 /* 2931 * - !MIGRATE_ENABLE: 2932 * we'll have installed a pending if there wasn't one already. 2933 * 2934 * - MIGRATE_ENABLE: 2935 * we're here because the current CPU isn't matching anymore, 2936 * the only way that can happen is because of a concurrent 2937 * set_cpus_allowed_ptr() call, which should then still be 2938 * pending completion. 2939 * 2940 * Either way, we really should have a @pending here. 2941 */ 2942 if (WARN_ON_ONCE(!pending)) { 2943 task_rq_unlock(rq, p, rf); 2944 return -EINVAL; 2945 } 2946 2947 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2948 /* 2949 * MIGRATE_ENABLE gets here because 'p == current', but for 2950 * anything else we cannot do is_migration_disabled(), punt 2951 * and have the stopper function handle it all race-free. 2952 */ 2953 stop_pending = pending->stop_pending; 2954 if (!stop_pending) 2955 pending->stop_pending = true; 2956 2957 if (flags & SCA_MIGRATE_ENABLE) 2958 p->migration_flags &= ~MDF_PUSH; 2959 2960 preempt_disable(); 2961 task_rq_unlock(rq, p, rf); 2962 if (!stop_pending) { 2963 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2964 &pending->arg, &pending->stop_work); 2965 } 2966 preempt_enable(); 2967 2968 if (flags & SCA_MIGRATE_ENABLE) 2969 return 0; 2970 } else { 2971 2972 if (!is_migration_disabled(p)) { 2973 if (task_on_rq_queued(p)) 2974 rq = move_queued_task(rq, rf, p, dest_cpu); 2975 2976 if (!pending->stop_pending) { 2977 p->migration_pending = NULL; 2978 complete = true; 2979 } 2980 } 2981 task_rq_unlock(rq, p, rf); 2982 2983 if (complete) 2984 complete_all(&pending->done); 2985 } 2986 2987 wait_for_completion(&pending->done); 2988 2989 if (refcount_dec_and_test(&pending->refs)) 2990 wake_up_var(&pending->refs); /* No UaF, just an address */ 2991 2992 /* 2993 * Block the original owner of &pending until all subsequent callers 2994 * have seen the completion and decremented the refcount 2995 */ 2996 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2997 2998 /* ARGH */ 2999 WARN_ON_ONCE(my_pending.stop_pending); 3000 3001 return 0; 3002 } 3003 3004 /* 3005 * Called with both p->pi_lock and rq->lock held; drops both before returning. 3006 */ 3007 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 3008 struct affinity_context *ctx, 3009 struct rq *rq, 3010 struct rq_flags *rf) 3011 __releases(rq->lock) 3012 __releases(p->pi_lock) 3013 { 3014 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 3015 const struct cpumask *cpu_valid_mask = cpu_active_mask; 3016 bool kthread = p->flags & PF_KTHREAD; 3017 unsigned int dest_cpu; 3018 int ret = 0; 3019 3020 update_rq_clock(rq); 3021 3022 if (kthread || is_migration_disabled(p)) { 3023 /* 3024 * Kernel threads are allowed on online && !active CPUs, 3025 * however, during cpu-hot-unplug, even these might get pushed 3026 * away if not KTHREAD_IS_PER_CPU. 3027 * 3028 * Specifically, migration_disabled() tasks must not fail the 3029 * cpumask_any_and_distribute() pick below, esp. so on 3030 * SCA_MIGRATE_ENABLE, otherwise we'll not call 3031 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 3032 */ 3033 cpu_valid_mask = cpu_online_mask; 3034 } 3035 3036 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 3037 ret = -EINVAL; 3038 goto out; 3039 } 3040 3041 /* 3042 * Must re-check here, to close a race against __kthread_bind(), 3043 * sched_setaffinity() is not guaranteed to observe the flag. 3044 */ 3045 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 3046 ret = -EINVAL; 3047 goto out; 3048 } 3049 3050 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 3051 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 3052 if (ctx->flags & SCA_USER) 3053 swap(p->user_cpus_ptr, ctx->user_mask); 3054 goto out; 3055 } 3056 3057 if (WARN_ON_ONCE(p == current && 3058 is_migration_disabled(p) && 3059 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 3060 ret = -EBUSY; 3061 goto out; 3062 } 3063 } 3064 3065 /* 3066 * Picking a ~random cpu helps in cases where we are changing affinity 3067 * for groups of tasks (ie. cpuset), so that load balancing is not 3068 * immediately required to distribute the tasks within their new mask. 3069 */ 3070 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 3071 if (dest_cpu >= nr_cpu_ids) { 3072 ret = -EINVAL; 3073 goto out; 3074 } 3075 3076 __do_set_cpus_allowed(p, ctx); 3077 3078 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3079 3080 out: 3081 task_rq_unlock(rq, p, rf); 3082 3083 return ret; 3084 } 3085 3086 /* 3087 * Change a given task's CPU affinity. Migrate the thread to a 3088 * proper CPU and schedule it away if the CPU it's executing on 3089 * is removed from the allowed bitmask. 3090 * 3091 * NOTE: the caller must have a valid reference to the task, the 3092 * task must not exit() & deallocate itself prematurely. The 3093 * call is not atomic; no spinlocks may be held. 3094 */ 3095 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) 3096 { 3097 struct rq_flags rf; 3098 struct rq *rq; 3099 3100 rq = task_rq_lock(p, &rf); 3101 /* 3102 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3103 * flags are set. 3104 */ 3105 if (p->user_cpus_ptr && 3106 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3107 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3108 ctx->new_mask = rq->scratch_mask; 3109 3110 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3111 } 3112 3113 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3114 { 3115 struct affinity_context ac = { 3116 .new_mask = new_mask, 3117 .flags = 0, 3118 }; 3119 3120 return __set_cpus_allowed_ptr(p, &ac); 3121 } 3122 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3123 3124 /* 3125 * Change a given task's CPU affinity to the intersection of its current 3126 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3127 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3128 * affinity or use cpu_online_mask instead. 3129 * 3130 * If the resulting mask is empty, leave the affinity unchanged and return 3131 * -EINVAL. 3132 */ 3133 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3134 struct cpumask *new_mask, 3135 const struct cpumask *subset_mask) 3136 { 3137 struct affinity_context ac = { 3138 .new_mask = new_mask, 3139 .flags = 0, 3140 }; 3141 struct rq_flags rf; 3142 struct rq *rq; 3143 int err; 3144 3145 rq = task_rq_lock(p, &rf); 3146 3147 /* 3148 * Forcefully restricting the affinity of a deadline task is 3149 * likely to cause problems, so fail and noisily override the 3150 * mask entirely. 3151 */ 3152 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3153 err = -EPERM; 3154 goto err_unlock; 3155 } 3156 3157 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3158 err = -EINVAL; 3159 goto err_unlock; 3160 } 3161 3162 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3163 3164 err_unlock: 3165 task_rq_unlock(rq, p, &rf); 3166 return err; 3167 } 3168 3169 /* 3170 * Restrict the CPU affinity of task @p so that it is a subset of 3171 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3172 * old affinity mask. If the resulting mask is empty, we warn and walk 3173 * up the cpuset hierarchy until we find a suitable mask. 3174 */ 3175 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3176 { 3177 cpumask_var_t new_mask; 3178 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3179 3180 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3181 3182 /* 3183 * __migrate_task() can fail silently in the face of concurrent 3184 * offlining of the chosen destination CPU, so take the hotplug 3185 * lock to ensure that the migration succeeds. 3186 */ 3187 cpus_read_lock(); 3188 if (!cpumask_available(new_mask)) 3189 goto out_set_mask; 3190 3191 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3192 goto out_free_mask; 3193 3194 /* 3195 * We failed to find a valid subset of the affinity mask for the 3196 * task, so override it based on its cpuset hierarchy. 3197 */ 3198 cpuset_cpus_allowed(p, new_mask); 3199 override_mask = new_mask; 3200 3201 out_set_mask: 3202 if (printk_ratelimit()) { 3203 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3204 task_pid_nr(p), p->comm, 3205 cpumask_pr_args(override_mask)); 3206 } 3207 3208 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3209 out_free_mask: 3210 cpus_read_unlock(); 3211 free_cpumask_var(new_mask); 3212 } 3213 3214 /* 3215 * Restore the affinity of a task @p which was previously restricted by a 3216 * call to force_compatible_cpus_allowed_ptr(). 3217 * 3218 * It is the caller's responsibility to serialise this with any calls to 3219 * force_compatible_cpus_allowed_ptr(@p). 3220 */ 3221 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3222 { 3223 struct affinity_context ac = { 3224 .new_mask = task_user_cpus(p), 3225 .flags = 0, 3226 }; 3227 int ret; 3228 3229 /* 3230 * Try to restore the old affinity mask with __sched_setaffinity(). 3231 * Cpuset masking will be done there too. 3232 */ 3233 ret = __sched_setaffinity(p, &ac); 3234 WARN_ON_ONCE(ret); 3235 } 3236 3237 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3238 { 3239 #ifdef CONFIG_SCHED_DEBUG 3240 unsigned int state = READ_ONCE(p->__state); 3241 3242 /* 3243 * We should never call set_task_cpu() on a blocked task, 3244 * ttwu() will sort out the placement. 3245 */ 3246 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3247 3248 /* 3249 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3250 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3251 * time relying on p->on_rq. 3252 */ 3253 WARN_ON_ONCE(state == TASK_RUNNING && 3254 p->sched_class == &fair_sched_class && 3255 (p->on_rq && !task_on_rq_migrating(p))); 3256 3257 #ifdef CONFIG_LOCKDEP 3258 /* 3259 * The caller should hold either p->pi_lock or rq->lock, when changing 3260 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3261 * 3262 * sched_move_task() holds both and thus holding either pins the cgroup, 3263 * see task_group(). 3264 * 3265 * Furthermore, all task_rq users should acquire both locks, see 3266 * task_rq_lock(). 3267 */ 3268 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3269 lockdep_is_held(__rq_lockp(task_rq(p))))); 3270 #endif 3271 /* 3272 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3273 */ 3274 WARN_ON_ONCE(!cpu_online(new_cpu)); 3275 3276 WARN_ON_ONCE(is_migration_disabled(p)); 3277 #endif 3278 3279 trace_sched_migrate_task(p, new_cpu); 3280 3281 if (task_cpu(p) != new_cpu) { 3282 if (p->sched_class->migrate_task_rq) 3283 p->sched_class->migrate_task_rq(p, new_cpu); 3284 p->se.nr_migrations++; 3285 rseq_migrate(p); 3286 sched_mm_cid_migrate_from(p); 3287 perf_event_task_migrate(p); 3288 } 3289 3290 __set_task_cpu(p, new_cpu); 3291 } 3292 3293 #ifdef CONFIG_NUMA_BALANCING 3294 static void __migrate_swap_task(struct task_struct *p, int cpu) 3295 { 3296 if (task_on_rq_queued(p)) { 3297 struct rq *src_rq, *dst_rq; 3298 struct rq_flags srf, drf; 3299 3300 src_rq = task_rq(p); 3301 dst_rq = cpu_rq(cpu); 3302 3303 rq_pin_lock(src_rq, &srf); 3304 rq_pin_lock(dst_rq, &drf); 3305 3306 deactivate_task(src_rq, p, 0); 3307 set_task_cpu(p, cpu); 3308 activate_task(dst_rq, p, 0); 3309 wakeup_preempt(dst_rq, p, 0); 3310 3311 rq_unpin_lock(dst_rq, &drf); 3312 rq_unpin_lock(src_rq, &srf); 3313 3314 } else { 3315 /* 3316 * Task isn't running anymore; make it appear like we migrated 3317 * it before it went to sleep. This means on wakeup we make the 3318 * previous CPU our target instead of where it really is. 3319 */ 3320 p->wake_cpu = cpu; 3321 } 3322 } 3323 3324 struct migration_swap_arg { 3325 struct task_struct *src_task, *dst_task; 3326 int src_cpu, dst_cpu; 3327 }; 3328 3329 static int migrate_swap_stop(void *data) 3330 { 3331 struct migration_swap_arg *arg = data; 3332 struct rq *src_rq, *dst_rq; 3333 3334 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3335 return -EAGAIN; 3336 3337 src_rq = cpu_rq(arg->src_cpu); 3338 dst_rq = cpu_rq(arg->dst_cpu); 3339 3340 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3341 guard(double_rq_lock)(src_rq, dst_rq); 3342 3343 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3344 return -EAGAIN; 3345 3346 if (task_cpu(arg->src_task) != arg->src_cpu) 3347 return -EAGAIN; 3348 3349 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3350 return -EAGAIN; 3351 3352 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3353 return -EAGAIN; 3354 3355 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3356 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3357 3358 return 0; 3359 } 3360 3361 /* 3362 * Cross migrate two tasks 3363 */ 3364 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3365 int target_cpu, int curr_cpu) 3366 { 3367 struct migration_swap_arg arg; 3368 int ret = -EINVAL; 3369 3370 arg = (struct migration_swap_arg){ 3371 .src_task = cur, 3372 .src_cpu = curr_cpu, 3373 .dst_task = p, 3374 .dst_cpu = target_cpu, 3375 }; 3376 3377 if (arg.src_cpu == arg.dst_cpu) 3378 goto out; 3379 3380 /* 3381 * These three tests are all lockless; this is OK since all of them 3382 * will be re-checked with proper locks held further down the line. 3383 */ 3384 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3385 goto out; 3386 3387 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3388 goto out; 3389 3390 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3391 goto out; 3392 3393 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3394 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3395 3396 out: 3397 return ret; 3398 } 3399 #endif /* CONFIG_NUMA_BALANCING */ 3400 3401 /*** 3402 * kick_process - kick a running thread to enter/exit the kernel 3403 * @p: the to-be-kicked thread 3404 * 3405 * Cause a process which is running on another CPU to enter 3406 * kernel-mode, without any delay. (to get signals handled.) 3407 * 3408 * NOTE: this function doesn't have to take the runqueue lock, 3409 * because all it wants to ensure is that the remote task enters 3410 * the kernel. If the IPI races and the task has been migrated 3411 * to another CPU then no harm is done and the purpose has been 3412 * achieved as well. 3413 */ 3414 void kick_process(struct task_struct *p) 3415 { 3416 guard(preempt)(); 3417 int cpu = task_cpu(p); 3418 3419 if ((cpu != smp_processor_id()) && task_curr(p)) 3420 smp_send_reschedule(cpu); 3421 } 3422 EXPORT_SYMBOL_GPL(kick_process); 3423 3424 /* 3425 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3426 * 3427 * A few notes on cpu_active vs cpu_online: 3428 * 3429 * - cpu_active must be a subset of cpu_online 3430 * 3431 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3432 * see __set_cpus_allowed_ptr(). At this point the newly online 3433 * CPU isn't yet part of the sched domains, and balancing will not 3434 * see it. 3435 * 3436 * - on CPU-down we clear cpu_active() to mask the sched domains and 3437 * avoid the load balancer to place new tasks on the to be removed 3438 * CPU. Existing tasks will remain running there and will be taken 3439 * off. 3440 * 3441 * This means that fallback selection must not select !active CPUs. 3442 * And can assume that any active CPU must be online. Conversely 3443 * select_task_rq() below may allow selection of !active CPUs in order 3444 * to satisfy the above rules. 3445 */ 3446 static int select_fallback_rq(int cpu, struct task_struct *p) 3447 { 3448 int nid = cpu_to_node(cpu); 3449 const struct cpumask *nodemask = NULL; 3450 enum { cpuset, possible, fail } state = cpuset; 3451 int dest_cpu; 3452 3453 /* 3454 * If the node that the CPU is on has been offlined, cpu_to_node() 3455 * will return -1. There is no CPU on the node, and we should 3456 * select the CPU on the other node. 3457 */ 3458 if (nid != -1) { 3459 nodemask = cpumask_of_node(nid); 3460 3461 /* Look for allowed, online CPU in same node. */ 3462 for_each_cpu(dest_cpu, nodemask) { 3463 if (is_cpu_allowed(p, dest_cpu)) 3464 return dest_cpu; 3465 } 3466 } 3467 3468 for (;;) { 3469 /* Any allowed, online CPU? */ 3470 for_each_cpu(dest_cpu, p->cpus_ptr) { 3471 if (!is_cpu_allowed(p, dest_cpu)) 3472 continue; 3473 3474 goto out; 3475 } 3476 3477 /* No more Mr. Nice Guy. */ 3478 switch (state) { 3479 case cpuset: 3480 if (cpuset_cpus_allowed_fallback(p)) { 3481 state = possible; 3482 break; 3483 } 3484 fallthrough; 3485 case possible: 3486 /* 3487 * XXX When called from select_task_rq() we only 3488 * hold p->pi_lock and again violate locking order. 3489 * 3490 * More yuck to audit. 3491 */ 3492 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3493 state = fail; 3494 break; 3495 case fail: 3496 BUG(); 3497 break; 3498 } 3499 } 3500 3501 out: 3502 if (state != cpuset) { 3503 /* 3504 * Don't tell them about moving exiting tasks or 3505 * kernel threads (both mm NULL), since they never 3506 * leave kernel. 3507 */ 3508 if (p->mm && printk_ratelimit()) { 3509 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3510 task_pid_nr(p), p->comm, cpu); 3511 } 3512 } 3513 3514 return dest_cpu; 3515 } 3516 3517 /* 3518 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3519 */ 3520 static inline 3521 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3522 { 3523 lockdep_assert_held(&p->pi_lock); 3524 3525 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3526 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3527 else 3528 cpu = cpumask_any(p->cpus_ptr); 3529 3530 /* 3531 * In order not to call set_task_cpu() on a blocking task we need 3532 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3533 * CPU. 3534 * 3535 * Since this is common to all placement strategies, this lives here. 3536 * 3537 * [ this allows ->select_task() to simply return task_cpu(p) and 3538 * not worry about this generic constraint ] 3539 */ 3540 if (unlikely(!is_cpu_allowed(p, cpu))) 3541 cpu = select_fallback_rq(task_cpu(p), p); 3542 3543 return cpu; 3544 } 3545 3546 void sched_set_stop_task(int cpu, struct task_struct *stop) 3547 { 3548 static struct lock_class_key stop_pi_lock; 3549 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3550 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3551 3552 if (stop) { 3553 /* 3554 * Make it appear like a SCHED_FIFO task, its something 3555 * userspace knows about and won't get confused about. 3556 * 3557 * Also, it will make PI more or less work without too 3558 * much confusion -- but then, stop work should not 3559 * rely on PI working anyway. 3560 */ 3561 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3562 3563 stop->sched_class = &stop_sched_class; 3564 3565 /* 3566 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3567 * adjust the effective priority of a task. As a result, 3568 * rt_mutex_setprio() can trigger (RT) balancing operations, 3569 * which can then trigger wakeups of the stop thread to push 3570 * around the current task. 3571 * 3572 * The stop task itself will never be part of the PI-chain, it 3573 * never blocks, therefore that ->pi_lock recursion is safe. 3574 * Tell lockdep about this by placing the stop->pi_lock in its 3575 * own class. 3576 */ 3577 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3578 } 3579 3580 cpu_rq(cpu)->stop = stop; 3581 3582 if (old_stop) { 3583 /* 3584 * Reset it back to a normal scheduling class so that 3585 * it can die in pieces. 3586 */ 3587 old_stop->sched_class = &rt_sched_class; 3588 } 3589 } 3590 3591 #else /* CONFIG_SMP */ 3592 3593 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3594 3595 static inline bool rq_has_pinned_tasks(struct rq *rq) 3596 { 3597 return false; 3598 } 3599 3600 #endif /* !CONFIG_SMP */ 3601 3602 static void 3603 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3604 { 3605 struct rq *rq; 3606 3607 if (!schedstat_enabled()) 3608 return; 3609 3610 rq = this_rq(); 3611 3612 #ifdef CONFIG_SMP 3613 if (cpu == rq->cpu) { 3614 __schedstat_inc(rq->ttwu_local); 3615 __schedstat_inc(p->stats.nr_wakeups_local); 3616 } else { 3617 struct sched_domain *sd; 3618 3619 __schedstat_inc(p->stats.nr_wakeups_remote); 3620 3621 guard(rcu)(); 3622 for_each_domain(rq->cpu, sd) { 3623 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3624 __schedstat_inc(sd->ttwu_wake_remote); 3625 break; 3626 } 3627 } 3628 } 3629 3630 if (wake_flags & WF_MIGRATED) 3631 __schedstat_inc(p->stats.nr_wakeups_migrate); 3632 #endif /* CONFIG_SMP */ 3633 3634 __schedstat_inc(rq->ttwu_count); 3635 __schedstat_inc(p->stats.nr_wakeups); 3636 3637 if (wake_flags & WF_SYNC) 3638 __schedstat_inc(p->stats.nr_wakeups_sync); 3639 } 3640 3641 /* 3642 * Mark the task runnable. 3643 */ 3644 static inline void ttwu_do_wakeup(struct task_struct *p) 3645 { 3646 WRITE_ONCE(p->__state, TASK_RUNNING); 3647 trace_sched_wakeup(p); 3648 } 3649 3650 static void 3651 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3652 struct rq_flags *rf) 3653 { 3654 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3655 3656 lockdep_assert_rq_held(rq); 3657 3658 if (p->sched_contributes_to_load) 3659 rq->nr_uninterruptible--; 3660 3661 #ifdef CONFIG_SMP 3662 if (wake_flags & WF_MIGRATED) 3663 en_flags |= ENQUEUE_MIGRATED; 3664 else 3665 #endif 3666 if (p->in_iowait) { 3667 delayacct_blkio_end(p); 3668 atomic_dec(&task_rq(p)->nr_iowait); 3669 } 3670 3671 activate_task(rq, p, en_flags); 3672 wakeup_preempt(rq, p, wake_flags); 3673 3674 ttwu_do_wakeup(p); 3675 3676 #ifdef CONFIG_SMP 3677 if (p->sched_class->task_woken) { 3678 /* 3679 * Our task @p is fully woken up and running; so it's safe to 3680 * drop the rq->lock, hereafter rq is only used for statistics. 3681 */ 3682 rq_unpin_lock(rq, rf); 3683 p->sched_class->task_woken(rq, p); 3684 rq_repin_lock(rq, rf); 3685 } 3686 3687 if (rq->idle_stamp) { 3688 u64 delta = rq_clock(rq) - rq->idle_stamp; 3689 u64 max = 2*rq->max_idle_balance_cost; 3690 3691 update_avg(&rq->avg_idle, delta); 3692 3693 if (rq->avg_idle > max) 3694 rq->avg_idle = max; 3695 3696 rq->idle_stamp = 0; 3697 } 3698 #endif 3699 } 3700 3701 /* 3702 * Consider @p being inside a wait loop: 3703 * 3704 * for (;;) { 3705 * set_current_state(TASK_UNINTERRUPTIBLE); 3706 * 3707 * if (CONDITION) 3708 * break; 3709 * 3710 * schedule(); 3711 * } 3712 * __set_current_state(TASK_RUNNING); 3713 * 3714 * between set_current_state() and schedule(). In this case @p is still 3715 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3716 * an atomic manner. 3717 * 3718 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3719 * then schedule() must still happen and p->state can be changed to 3720 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3721 * need to do a full wakeup with enqueue. 3722 * 3723 * Returns: %true when the wakeup is done, 3724 * %false otherwise. 3725 */ 3726 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3727 { 3728 struct rq_flags rf; 3729 struct rq *rq; 3730 int ret = 0; 3731 3732 rq = __task_rq_lock(p, &rf); 3733 if (task_on_rq_queued(p)) { 3734 update_rq_clock(rq); 3735 if (p->se.sched_delayed) 3736 enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED); 3737 if (!task_on_cpu(rq, p)) { 3738 /* 3739 * When on_rq && !on_cpu the task is preempted, see if 3740 * it should preempt the task that is current now. 3741 */ 3742 wakeup_preempt(rq, p, wake_flags); 3743 } 3744 ttwu_do_wakeup(p); 3745 ret = 1; 3746 } 3747 __task_rq_unlock(rq, &rf); 3748 3749 return ret; 3750 } 3751 3752 #ifdef CONFIG_SMP 3753 void sched_ttwu_pending(void *arg) 3754 { 3755 struct llist_node *llist = arg; 3756 struct rq *rq = this_rq(); 3757 struct task_struct *p, *t; 3758 struct rq_flags rf; 3759 3760 if (!llist) 3761 return; 3762 3763 rq_lock_irqsave(rq, &rf); 3764 update_rq_clock(rq); 3765 3766 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3767 if (WARN_ON_ONCE(p->on_cpu)) 3768 smp_cond_load_acquire(&p->on_cpu, !VAL); 3769 3770 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3771 set_task_cpu(p, cpu_of(rq)); 3772 3773 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3774 } 3775 3776 /* 3777 * Must be after enqueueing at least once task such that 3778 * idle_cpu() does not observe a false-negative -- if it does, 3779 * it is possible for select_idle_siblings() to stack a number 3780 * of tasks on this CPU during that window. 3781 * 3782 * It is OK to clear ttwu_pending when another task pending. 3783 * We will receive IPI after local IRQ enabled and then enqueue it. 3784 * Since now nr_running > 0, idle_cpu() will always get correct result. 3785 */ 3786 WRITE_ONCE(rq->ttwu_pending, 0); 3787 rq_unlock_irqrestore(rq, &rf); 3788 } 3789 3790 /* 3791 * Prepare the scene for sending an IPI for a remote smp_call 3792 * 3793 * Returns true if the caller can proceed with sending the IPI. 3794 * Returns false otherwise. 3795 */ 3796 bool call_function_single_prep_ipi(int cpu) 3797 { 3798 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3799 trace_sched_wake_idle_without_ipi(cpu); 3800 return false; 3801 } 3802 3803 return true; 3804 } 3805 3806 /* 3807 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3808 * necessary. The wakee CPU on receipt of the IPI will queue the task 3809 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3810 * of the wakeup instead of the waker. 3811 */ 3812 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3813 { 3814 struct rq *rq = cpu_rq(cpu); 3815 3816 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3817 3818 WRITE_ONCE(rq->ttwu_pending, 1); 3819 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3820 } 3821 3822 void wake_up_if_idle(int cpu) 3823 { 3824 struct rq *rq = cpu_rq(cpu); 3825 3826 guard(rcu)(); 3827 if (is_idle_task(rcu_dereference(rq->curr))) { 3828 guard(rq_lock_irqsave)(rq); 3829 if (is_idle_task(rq->curr)) 3830 resched_curr(rq); 3831 } 3832 } 3833 3834 bool cpus_equal_capacity(int this_cpu, int that_cpu) 3835 { 3836 if (!sched_asym_cpucap_active()) 3837 return true; 3838 3839 if (this_cpu == that_cpu) 3840 return true; 3841 3842 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); 3843 } 3844 3845 bool cpus_share_cache(int this_cpu, int that_cpu) 3846 { 3847 if (this_cpu == that_cpu) 3848 return true; 3849 3850 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3851 } 3852 3853 /* 3854 * Whether CPUs are share cache resources, which means LLC on non-cluster 3855 * machines and LLC tag or L2 on machines with clusters. 3856 */ 3857 bool cpus_share_resources(int this_cpu, int that_cpu) 3858 { 3859 if (this_cpu == that_cpu) 3860 return true; 3861 3862 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3863 } 3864 3865 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3866 { 3867 /* 3868 * The BPF scheduler may depend on select_task_rq() being invoked during 3869 * wakeups. In addition, @p may end up executing on a different CPU 3870 * regardless of what happens in the wakeup path making the ttwu_queue 3871 * optimization less meaningful. Skip if on SCX. 3872 */ 3873 if (task_on_scx(p)) 3874 return false; 3875 3876 /* 3877 * Do not complicate things with the async wake_list while the CPU is 3878 * in hotplug state. 3879 */ 3880 if (!cpu_active(cpu)) 3881 return false; 3882 3883 /* Ensure the task will still be allowed to run on the CPU. */ 3884 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3885 return false; 3886 3887 /* 3888 * If the CPU does not share cache, then queue the task on the 3889 * remote rqs wakelist to avoid accessing remote data. 3890 */ 3891 if (!cpus_share_cache(smp_processor_id(), cpu)) 3892 return true; 3893 3894 if (cpu == smp_processor_id()) 3895 return false; 3896 3897 /* 3898 * If the wakee cpu is idle, or the task is descheduling and the 3899 * only running task on the CPU, then use the wakelist to offload 3900 * the task activation to the idle (or soon-to-be-idle) CPU as 3901 * the current CPU is likely busy. nr_running is checked to 3902 * avoid unnecessary task stacking. 3903 * 3904 * Note that we can only get here with (wakee) p->on_rq=0, 3905 * p->on_cpu can be whatever, we've done the dequeue, so 3906 * the wakee has been accounted out of ->nr_running. 3907 */ 3908 if (!cpu_rq(cpu)->nr_running) 3909 return true; 3910 3911 return false; 3912 } 3913 3914 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3915 { 3916 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3917 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3918 __ttwu_queue_wakelist(p, cpu, wake_flags); 3919 return true; 3920 } 3921 3922 return false; 3923 } 3924 3925 #else /* !CONFIG_SMP */ 3926 3927 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3928 { 3929 return false; 3930 } 3931 3932 #endif /* CONFIG_SMP */ 3933 3934 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3935 { 3936 struct rq *rq = cpu_rq(cpu); 3937 struct rq_flags rf; 3938 3939 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3940 return; 3941 3942 rq_lock(rq, &rf); 3943 update_rq_clock(rq); 3944 ttwu_do_activate(rq, p, wake_flags, &rf); 3945 rq_unlock(rq, &rf); 3946 } 3947 3948 /* 3949 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3950 * 3951 * The caller holds p::pi_lock if p != current or has preemption 3952 * disabled when p == current. 3953 * 3954 * The rules of saved_state: 3955 * 3956 * The related locking code always holds p::pi_lock when updating 3957 * p::saved_state, which means the code is fully serialized in both cases. 3958 * 3959 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 3960 * No other bits set. This allows to distinguish all wakeup scenarios. 3961 * 3962 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 3963 * allows us to prevent early wakeup of tasks before they can be run on 3964 * asymmetric ISA architectures (eg ARMv9). 3965 */ 3966 static __always_inline 3967 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3968 { 3969 int match; 3970 3971 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3972 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3973 state != TASK_RTLOCK_WAIT); 3974 } 3975 3976 *success = !!(match = __task_state_match(p, state)); 3977 3978 /* 3979 * Saved state preserves the task state across blocking on 3980 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 3981 * set p::saved_state to TASK_RUNNING, but do not wake the task 3982 * because it waits for a lock wakeup or __thaw_task(). Also 3983 * indicate success because from the regular waker's point of 3984 * view this has succeeded. 3985 * 3986 * After acquiring the lock the task will restore p::__state 3987 * from p::saved_state which ensures that the regular 3988 * wakeup is not lost. The restore will also set 3989 * p::saved_state to TASK_RUNNING so any further tests will 3990 * not result in false positives vs. @success 3991 */ 3992 if (match < 0) 3993 p->saved_state = TASK_RUNNING; 3994 3995 return match > 0; 3996 } 3997 3998 /* 3999 * Notes on Program-Order guarantees on SMP systems. 4000 * 4001 * MIGRATION 4002 * 4003 * The basic program-order guarantee on SMP systems is that when a task [t] 4004 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 4005 * execution on its new CPU [c1]. 4006 * 4007 * For migration (of runnable tasks) this is provided by the following means: 4008 * 4009 * A) UNLOCK of the rq(c0)->lock scheduling out task t 4010 * B) migration for t is required to synchronize *both* rq(c0)->lock and 4011 * rq(c1)->lock (if not at the same time, then in that order). 4012 * C) LOCK of the rq(c1)->lock scheduling in task 4013 * 4014 * Release/acquire chaining guarantees that B happens after A and C after B. 4015 * Note: the CPU doing B need not be c0 or c1 4016 * 4017 * Example: 4018 * 4019 * CPU0 CPU1 CPU2 4020 * 4021 * LOCK rq(0)->lock 4022 * sched-out X 4023 * sched-in Y 4024 * UNLOCK rq(0)->lock 4025 * 4026 * LOCK rq(0)->lock // orders against CPU0 4027 * dequeue X 4028 * UNLOCK rq(0)->lock 4029 * 4030 * LOCK rq(1)->lock 4031 * enqueue X 4032 * UNLOCK rq(1)->lock 4033 * 4034 * LOCK rq(1)->lock // orders against CPU2 4035 * sched-out Z 4036 * sched-in X 4037 * UNLOCK rq(1)->lock 4038 * 4039 * 4040 * BLOCKING -- aka. SLEEP + WAKEUP 4041 * 4042 * For blocking we (obviously) need to provide the same guarantee as for 4043 * migration. However the means are completely different as there is no lock 4044 * chain to provide order. Instead we do: 4045 * 4046 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 4047 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 4048 * 4049 * Example: 4050 * 4051 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4052 * 4053 * LOCK rq(0)->lock LOCK X->pi_lock 4054 * dequeue X 4055 * sched-out X 4056 * smp_store_release(X->on_cpu, 0); 4057 * 4058 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4059 * X->state = WAKING 4060 * set_task_cpu(X,2) 4061 * 4062 * LOCK rq(2)->lock 4063 * enqueue X 4064 * X->state = RUNNING 4065 * UNLOCK rq(2)->lock 4066 * 4067 * LOCK rq(2)->lock // orders against CPU1 4068 * sched-out Z 4069 * sched-in X 4070 * UNLOCK rq(2)->lock 4071 * 4072 * UNLOCK X->pi_lock 4073 * UNLOCK rq(0)->lock 4074 * 4075 * 4076 * However, for wakeups there is a second guarantee we must provide, namely we 4077 * must ensure that CONDITION=1 done by the caller can not be reordered with 4078 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4079 */ 4080 4081 /** 4082 * try_to_wake_up - wake up a thread 4083 * @p: the thread to be awakened 4084 * @state: the mask of task states that can be woken 4085 * @wake_flags: wake modifier flags (WF_*) 4086 * 4087 * Conceptually does: 4088 * 4089 * If (@state & @p->state) @p->state = TASK_RUNNING. 4090 * 4091 * If the task was not queued/runnable, also place it back on a runqueue. 4092 * 4093 * This function is atomic against schedule() which would dequeue the task. 4094 * 4095 * It issues a full memory barrier before accessing @p->state, see the comment 4096 * with set_current_state(). 4097 * 4098 * Uses p->pi_lock to serialize against concurrent wake-ups. 4099 * 4100 * Relies on p->pi_lock stabilizing: 4101 * - p->sched_class 4102 * - p->cpus_ptr 4103 * - p->sched_task_group 4104 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4105 * 4106 * Tries really hard to only take one task_rq(p)->lock for performance. 4107 * Takes rq->lock in: 4108 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4109 * - ttwu_queue() -- new rq, for enqueue of the task; 4110 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4111 * 4112 * As a consequence we race really badly with just about everything. See the 4113 * many memory barriers and their comments for details. 4114 * 4115 * Return: %true if @p->state changes (an actual wakeup was done), 4116 * %false otherwise. 4117 */ 4118 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4119 { 4120 guard(preempt)(); 4121 int cpu, success = 0; 4122 4123 if (p == current) { 4124 /* 4125 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4126 * == smp_processor_id()'. Together this means we can special 4127 * case the whole 'p->on_rq && ttwu_runnable()' case below 4128 * without taking any locks. 4129 * 4130 * Specifically, given current runs ttwu() we must be before 4131 * schedule()'s block_task(), as such this must not observe 4132 * sched_delayed. 4133 * 4134 * In particular: 4135 * - we rely on Program-Order guarantees for all the ordering, 4136 * - we're serialized against set_special_state() by virtue of 4137 * it disabling IRQs (this allows not taking ->pi_lock). 4138 */ 4139 SCHED_WARN_ON(p->se.sched_delayed); 4140 if (!ttwu_state_match(p, state, &success)) 4141 goto out; 4142 4143 trace_sched_waking(p); 4144 ttwu_do_wakeup(p); 4145 goto out; 4146 } 4147 4148 /* 4149 * If we are going to wake up a thread waiting for CONDITION we 4150 * need to ensure that CONDITION=1 done by the caller can not be 4151 * reordered with p->state check below. This pairs with smp_store_mb() 4152 * in set_current_state() that the waiting thread does. 4153 */ 4154 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4155 smp_mb__after_spinlock(); 4156 if (!ttwu_state_match(p, state, &success)) 4157 break; 4158 4159 trace_sched_waking(p); 4160 4161 /* 4162 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4163 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4164 * in smp_cond_load_acquire() below. 4165 * 4166 * sched_ttwu_pending() try_to_wake_up() 4167 * STORE p->on_rq = 1 LOAD p->state 4168 * UNLOCK rq->lock 4169 * 4170 * __schedule() (switch to task 'p') 4171 * LOCK rq->lock smp_rmb(); 4172 * smp_mb__after_spinlock(); 4173 * UNLOCK rq->lock 4174 * 4175 * [task p] 4176 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4177 * 4178 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4179 * __schedule(). See the comment for smp_mb__after_spinlock(). 4180 * 4181 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4182 */ 4183 smp_rmb(); 4184 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4185 break; 4186 4187 #ifdef CONFIG_SMP 4188 /* 4189 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4190 * possible to, falsely, observe p->on_cpu == 0. 4191 * 4192 * One must be running (->on_cpu == 1) in order to remove oneself 4193 * from the runqueue. 4194 * 4195 * __schedule() (switch to task 'p') try_to_wake_up() 4196 * STORE p->on_cpu = 1 LOAD p->on_rq 4197 * UNLOCK rq->lock 4198 * 4199 * __schedule() (put 'p' to sleep) 4200 * LOCK rq->lock smp_rmb(); 4201 * smp_mb__after_spinlock(); 4202 * STORE p->on_rq = 0 LOAD p->on_cpu 4203 * 4204 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4205 * __schedule(). See the comment for smp_mb__after_spinlock(). 4206 * 4207 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4208 * schedule()'s deactivate_task() has 'happened' and p will no longer 4209 * care about it's own p->state. See the comment in __schedule(). 4210 */ 4211 smp_acquire__after_ctrl_dep(); 4212 4213 /* 4214 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4215 * == 0), which means we need to do an enqueue, change p->state to 4216 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4217 * enqueue, such as ttwu_queue_wakelist(). 4218 */ 4219 WRITE_ONCE(p->__state, TASK_WAKING); 4220 4221 /* 4222 * If the owning (remote) CPU is still in the middle of schedule() with 4223 * this task as prev, considering queueing p on the remote CPUs wake_list 4224 * which potentially sends an IPI instead of spinning on p->on_cpu to 4225 * let the waker make forward progress. This is safe because IRQs are 4226 * disabled and the IPI will deliver after on_cpu is cleared. 4227 * 4228 * Ensure we load task_cpu(p) after p->on_cpu: 4229 * 4230 * set_task_cpu(p, cpu); 4231 * STORE p->cpu = @cpu 4232 * __schedule() (switch to task 'p') 4233 * LOCK rq->lock 4234 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4235 * STORE p->on_cpu = 1 LOAD p->cpu 4236 * 4237 * to ensure we observe the correct CPU on which the task is currently 4238 * scheduling. 4239 */ 4240 if (smp_load_acquire(&p->on_cpu) && 4241 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4242 break; 4243 4244 /* 4245 * If the owning (remote) CPU is still in the middle of schedule() with 4246 * this task as prev, wait until it's done referencing the task. 4247 * 4248 * Pairs with the smp_store_release() in finish_task(). 4249 * 4250 * This ensures that tasks getting woken will be fully ordered against 4251 * their previous state and preserve Program Order. 4252 */ 4253 smp_cond_load_acquire(&p->on_cpu, !VAL); 4254 4255 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4256 if (task_cpu(p) != cpu) { 4257 if (p->in_iowait) { 4258 delayacct_blkio_end(p); 4259 atomic_dec(&task_rq(p)->nr_iowait); 4260 } 4261 4262 wake_flags |= WF_MIGRATED; 4263 psi_ttwu_dequeue(p); 4264 set_task_cpu(p, cpu); 4265 } 4266 #else 4267 cpu = task_cpu(p); 4268 #endif /* CONFIG_SMP */ 4269 4270 ttwu_queue(p, cpu, wake_flags); 4271 } 4272 out: 4273 if (success) 4274 ttwu_stat(p, task_cpu(p), wake_flags); 4275 4276 return success; 4277 } 4278 4279 static bool __task_needs_rq_lock(struct task_struct *p) 4280 { 4281 unsigned int state = READ_ONCE(p->__state); 4282 4283 /* 4284 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4285 * the task is blocked. Make sure to check @state since ttwu() can drop 4286 * locks at the end, see ttwu_queue_wakelist(). 4287 */ 4288 if (state == TASK_RUNNING || state == TASK_WAKING) 4289 return true; 4290 4291 /* 4292 * Ensure we load p->on_rq after p->__state, otherwise it would be 4293 * possible to, falsely, observe p->on_rq == 0. 4294 * 4295 * See try_to_wake_up() for a longer comment. 4296 */ 4297 smp_rmb(); 4298 if (p->on_rq) 4299 return true; 4300 4301 #ifdef CONFIG_SMP 4302 /* 4303 * Ensure the task has finished __schedule() and will not be referenced 4304 * anymore. Again, see try_to_wake_up() for a longer comment. 4305 */ 4306 smp_rmb(); 4307 smp_cond_load_acquire(&p->on_cpu, !VAL); 4308 #endif 4309 4310 return false; 4311 } 4312 4313 /** 4314 * task_call_func - Invoke a function on task in fixed state 4315 * @p: Process for which the function is to be invoked, can be @current. 4316 * @func: Function to invoke. 4317 * @arg: Argument to function. 4318 * 4319 * Fix the task in it's current state by avoiding wakeups and or rq operations 4320 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4321 * to work out what the state is, if required. Given that @func can be invoked 4322 * with a runqueue lock held, it had better be quite lightweight. 4323 * 4324 * Returns: 4325 * Whatever @func returns 4326 */ 4327 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4328 { 4329 struct rq *rq = NULL; 4330 struct rq_flags rf; 4331 int ret; 4332 4333 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4334 4335 if (__task_needs_rq_lock(p)) 4336 rq = __task_rq_lock(p, &rf); 4337 4338 /* 4339 * At this point the task is pinned; either: 4340 * - blocked and we're holding off wakeups (pi->lock) 4341 * - woken, and we're holding off enqueue (rq->lock) 4342 * - queued, and we're holding off schedule (rq->lock) 4343 * - running, and we're holding off de-schedule (rq->lock) 4344 * 4345 * The called function (@func) can use: task_curr(), p->on_rq and 4346 * p->__state to differentiate between these states. 4347 */ 4348 ret = func(p, arg); 4349 4350 if (rq) 4351 rq_unlock(rq, &rf); 4352 4353 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4354 return ret; 4355 } 4356 4357 /** 4358 * cpu_curr_snapshot - Return a snapshot of the currently running task 4359 * @cpu: The CPU on which to snapshot the task. 4360 * 4361 * Returns the task_struct pointer of the task "currently" running on 4362 * the specified CPU. 4363 * 4364 * If the specified CPU was offline, the return value is whatever it 4365 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4366 * task, but there is no guarantee. Callers wishing a useful return 4367 * value must take some action to ensure that the specified CPU remains 4368 * online throughout. 4369 * 4370 * This function executes full memory barriers before and after fetching 4371 * the pointer, which permits the caller to confine this function's fetch 4372 * with respect to the caller's accesses to other shared variables. 4373 */ 4374 struct task_struct *cpu_curr_snapshot(int cpu) 4375 { 4376 struct rq *rq = cpu_rq(cpu); 4377 struct task_struct *t; 4378 struct rq_flags rf; 4379 4380 rq_lock_irqsave(rq, &rf); 4381 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */ 4382 t = rcu_dereference(cpu_curr(cpu)); 4383 rq_unlock_irqrestore(rq, &rf); 4384 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4385 4386 return t; 4387 } 4388 4389 /** 4390 * wake_up_process - Wake up a specific process 4391 * @p: The process to be woken up. 4392 * 4393 * Attempt to wake up the nominated process and move it to the set of runnable 4394 * processes. 4395 * 4396 * Return: 1 if the process was woken up, 0 if it was already running. 4397 * 4398 * This function executes a full memory barrier before accessing the task state. 4399 */ 4400 int wake_up_process(struct task_struct *p) 4401 { 4402 return try_to_wake_up(p, TASK_NORMAL, 0); 4403 } 4404 EXPORT_SYMBOL(wake_up_process); 4405 4406 int wake_up_state(struct task_struct *p, unsigned int state) 4407 { 4408 return try_to_wake_up(p, state, 0); 4409 } 4410 4411 /* 4412 * Perform scheduler related setup for a newly forked process p. 4413 * p is forked by current. 4414 * 4415 * __sched_fork() is basic setup used by init_idle() too: 4416 */ 4417 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4418 { 4419 p->on_rq = 0; 4420 4421 p->se.on_rq = 0; 4422 p->se.exec_start = 0; 4423 p->se.sum_exec_runtime = 0; 4424 p->se.prev_sum_exec_runtime = 0; 4425 p->se.nr_migrations = 0; 4426 p->se.vruntime = 0; 4427 p->se.vlag = 0; 4428 INIT_LIST_HEAD(&p->se.group_node); 4429 4430 /* A delayed task cannot be in clone(). */ 4431 SCHED_WARN_ON(p->se.sched_delayed); 4432 4433 #ifdef CONFIG_FAIR_GROUP_SCHED 4434 p->se.cfs_rq = NULL; 4435 #endif 4436 4437 #ifdef CONFIG_SCHEDSTATS 4438 /* Even if schedstat is disabled, there should not be garbage */ 4439 memset(&p->stats, 0, sizeof(p->stats)); 4440 #endif 4441 4442 init_dl_entity(&p->dl); 4443 4444 INIT_LIST_HEAD(&p->rt.run_list); 4445 p->rt.timeout = 0; 4446 p->rt.time_slice = sched_rr_timeslice; 4447 p->rt.on_rq = 0; 4448 p->rt.on_list = 0; 4449 4450 #ifdef CONFIG_SCHED_CLASS_EXT 4451 init_scx_entity(&p->scx); 4452 #endif 4453 4454 #ifdef CONFIG_PREEMPT_NOTIFIERS 4455 INIT_HLIST_HEAD(&p->preempt_notifiers); 4456 #endif 4457 4458 #ifdef CONFIG_COMPACTION 4459 p->capture_control = NULL; 4460 #endif 4461 init_numa_balancing(clone_flags, p); 4462 #ifdef CONFIG_SMP 4463 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4464 p->migration_pending = NULL; 4465 #endif 4466 init_sched_mm_cid(p); 4467 } 4468 4469 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4470 4471 #ifdef CONFIG_NUMA_BALANCING 4472 4473 int sysctl_numa_balancing_mode; 4474 4475 static void __set_numabalancing_state(bool enabled) 4476 { 4477 if (enabled) 4478 static_branch_enable(&sched_numa_balancing); 4479 else 4480 static_branch_disable(&sched_numa_balancing); 4481 } 4482 4483 void set_numabalancing_state(bool enabled) 4484 { 4485 if (enabled) 4486 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4487 else 4488 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4489 __set_numabalancing_state(enabled); 4490 } 4491 4492 #ifdef CONFIG_PROC_SYSCTL 4493 static void reset_memory_tiering(void) 4494 { 4495 struct pglist_data *pgdat; 4496 4497 for_each_online_pgdat(pgdat) { 4498 pgdat->nbp_threshold = 0; 4499 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4500 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4501 } 4502 } 4503 4504 static int sysctl_numa_balancing(const struct ctl_table *table, int write, 4505 void *buffer, size_t *lenp, loff_t *ppos) 4506 { 4507 struct ctl_table t; 4508 int err; 4509 int state = sysctl_numa_balancing_mode; 4510 4511 if (write && !capable(CAP_SYS_ADMIN)) 4512 return -EPERM; 4513 4514 t = *table; 4515 t.data = &state; 4516 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4517 if (err < 0) 4518 return err; 4519 if (write) { 4520 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4521 (state & NUMA_BALANCING_MEMORY_TIERING)) 4522 reset_memory_tiering(); 4523 sysctl_numa_balancing_mode = state; 4524 __set_numabalancing_state(state); 4525 } 4526 return err; 4527 } 4528 #endif 4529 #endif 4530 4531 #ifdef CONFIG_SCHEDSTATS 4532 4533 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4534 4535 static void set_schedstats(bool enabled) 4536 { 4537 if (enabled) 4538 static_branch_enable(&sched_schedstats); 4539 else 4540 static_branch_disable(&sched_schedstats); 4541 } 4542 4543 void force_schedstat_enabled(void) 4544 { 4545 if (!schedstat_enabled()) { 4546 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4547 static_branch_enable(&sched_schedstats); 4548 } 4549 } 4550 4551 static int __init setup_schedstats(char *str) 4552 { 4553 int ret = 0; 4554 if (!str) 4555 goto out; 4556 4557 if (!strcmp(str, "enable")) { 4558 set_schedstats(true); 4559 ret = 1; 4560 } else if (!strcmp(str, "disable")) { 4561 set_schedstats(false); 4562 ret = 1; 4563 } 4564 out: 4565 if (!ret) 4566 pr_warn("Unable to parse schedstats=\n"); 4567 4568 return ret; 4569 } 4570 __setup("schedstats=", setup_schedstats); 4571 4572 #ifdef CONFIG_PROC_SYSCTL 4573 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer, 4574 size_t *lenp, loff_t *ppos) 4575 { 4576 struct ctl_table t; 4577 int err; 4578 int state = static_branch_likely(&sched_schedstats); 4579 4580 if (write && !capable(CAP_SYS_ADMIN)) 4581 return -EPERM; 4582 4583 t = *table; 4584 t.data = &state; 4585 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4586 if (err < 0) 4587 return err; 4588 if (write) 4589 set_schedstats(state); 4590 return err; 4591 } 4592 #endif /* CONFIG_PROC_SYSCTL */ 4593 #endif /* CONFIG_SCHEDSTATS */ 4594 4595 #ifdef CONFIG_SYSCTL 4596 static struct ctl_table sched_core_sysctls[] = { 4597 #ifdef CONFIG_SCHEDSTATS 4598 { 4599 .procname = "sched_schedstats", 4600 .data = NULL, 4601 .maxlen = sizeof(unsigned int), 4602 .mode = 0644, 4603 .proc_handler = sysctl_schedstats, 4604 .extra1 = SYSCTL_ZERO, 4605 .extra2 = SYSCTL_ONE, 4606 }, 4607 #endif /* CONFIG_SCHEDSTATS */ 4608 #ifdef CONFIG_UCLAMP_TASK 4609 { 4610 .procname = "sched_util_clamp_min", 4611 .data = &sysctl_sched_uclamp_util_min, 4612 .maxlen = sizeof(unsigned int), 4613 .mode = 0644, 4614 .proc_handler = sysctl_sched_uclamp_handler, 4615 }, 4616 { 4617 .procname = "sched_util_clamp_max", 4618 .data = &sysctl_sched_uclamp_util_max, 4619 .maxlen = sizeof(unsigned int), 4620 .mode = 0644, 4621 .proc_handler = sysctl_sched_uclamp_handler, 4622 }, 4623 { 4624 .procname = "sched_util_clamp_min_rt_default", 4625 .data = &sysctl_sched_uclamp_util_min_rt_default, 4626 .maxlen = sizeof(unsigned int), 4627 .mode = 0644, 4628 .proc_handler = sysctl_sched_uclamp_handler, 4629 }, 4630 #endif /* CONFIG_UCLAMP_TASK */ 4631 #ifdef CONFIG_NUMA_BALANCING 4632 { 4633 .procname = "numa_balancing", 4634 .data = NULL, /* filled in by handler */ 4635 .maxlen = sizeof(unsigned int), 4636 .mode = 0644, 4637 .proc_handler = sysctl_numa_balancing, 4638 .extra1 = SYSCTL_ZERO, 4639 .extra2 = SYSCTL_FOUR, 4640 }, 4641 #endif /* CONFIG_NUMA_BALANCING */ 4642 }; 4643 static int __init sched_core_sysctl_init(void) 4644 { 4645 register_sysctl_init("kernel", sched_core_sysctls); 4646 return 0; 4647 } 4648 late_initcall(sched_core_sysctl_init); 4649 #endif /* CONFIG_SYSCTL */ 4650 4651 /* 4652 * fork()/clone()-time setup: 4653 */ 4654 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4655 { 4656 __sched_fork(clone_flags, p); 4657 /* 4658 * We mark the process as NEW here. This guarantees that 4659 * nobody will actually run it, and a signal or other external 4660 * event cannot wake it up and insert it on the runqueue either. 4661 */ 4662 p->__state = TASK_NEW; 4663 4664 /* 4665 * Make sure we do not leak PI boosting priority to the child. 4666 */ 4667 p->prio = current->normal_prio; 4668 4669 uclamp_fork(p); 4670 4671 /* 4672 * Revert to default priority/policy on fork if requested. 4673 */ 4674 if (unlikely(p->sched_reset_on_fork)) { 4675 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4676 p->policy = SCHED_NORMAL; 4677 p->static_prio = NICE_TO_PRIO(0); 4678 p->rt_priority = 0; 4679 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4680 p->static_prio = NICE_TO_PRIO(0); 4681 4682 p->prio = p->normal_prio = p->static_prio; 4683 set_load_weight(p, false); 4684 p->se.custom_slice = 0; 4685 p->se.slice = sysctl_sched_base_slice; 4686 4687 /* 4688 * We don't need the reset flag anymore after the fork. It has 4689 * fulfilled its duty: 4690 */ 4691 p->sched_reset_on_fork = 0; 4692 } 4693 4694 if (dl_prio(p->prio)) 4695 return -EAGAIN; 4696 4697 scx_pre_fork(p); 4698 4699 if (rt_prio(p->prio)) { 4700 p->sched_class = &rt_sched_class; 4701 #ifdef CONFIG_SCHED_CLASS_EXT 4702 } else if (task_should_scx(p)) { 4703 p->sched_class = &ext_sched_class; 4704 #endif 4705 } else { 4706 p->sched_class = &fair_sched_class; 4707 } 4708 4709 init_entity_runnable_average(&p->se); 4710 4711 4712 #ifdef CONFIG_SCHED_INFO 4713 if (likely(sched_info_on())) 4714 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4715 #endif 4716 #if defined(CONFIG_SMP) 4717 p->on_cpu = 0; 4718 #endif 4719 init_task_preempt_count(p); 4720 #ifdef CONFIG_SMP 4721 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4722 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4723 #endif 4724 return 0; 4725 } 4726 4727 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4728 { 4729 unsigned long flags; 4730 4731 /* 4732 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4733 * required yet, but lockdep gets upset if rules are violated. 4734 */ 4735 raw_spin_lock_irqsave(&p->pi_lock, flags); 4736 #ifdef CONFIG_CGROUP_SCHED 4737 if (1) { 4738 struct task_group *tg; 4739 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4740 struct task_group, css); 4741 tg = autogroup_task_group(p, tg); 4742 p->sched_task_group = tg; 4743 } 4744 #endif 4745 rseq_migrate(p); 4746 /* 4747 * We're setting the CPU for the first time, we don't migrate, 4748 * so use __set_task_cpu(). 4749 */ 4750 __set_task_cpu(p, smp_processor_id()); 4751 if (p->sched_class->task_fork) 4752 p->sched_class->task_fork(p); 4753 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4754 4755 return scx_fork(p); 4756 } 4757 4758 void sched_cancel_fork(struct task_struct *p) 4759 { 4760 scx_cancel_fork(p); 4761 } 4762 4763 void sched_post_fork(struct task_struct *p) 4764 { 4765 uclamp_post_fork(p); 4766 scx_post_fork(p); 4767 } 4768 4769 unsigned long to_ratio(u64 period, u64 runtime) 4770 { 4771 if (runtime == RUNTIME_INF) 4772 return BW_UNIT; 4773 4774 /* 4775 * Doing this here saves a lot of checks in all 4776 * the calling paths, and returning zero seems 4777 * safe for them anyway. 4778 */ 4779 if (period == 0) 4780 return 0; 4781 4782 return div64_u64(runtime << BW_SHIFT, period); 4783 } 4784 4785 /* 4786 * wake_up_new_task - wake up a newly created task for the first time. 4787 * 4788 * This function will do some initial scheduler statistics housekeeping 4789 * that must be done for every newly created context, then puts the task 4790 * on the runqueue and wakes it. 4791 */ 4792 void wake_up_new_task(struct task_struct *p) 4793 { 4794 struct rq_flags rf; 4795 struct rq *rq; 4796 4797 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4798 WRITE_ONCE(p->__state, TASK_RUNNING); 4799 #ifdef CONFIG_SMP 4800 /* 4801 * Fork balancing, do it here and not earlier because: 4802 * - cpus_ptr can change in the fork path 4803 * - any previously selected CPU might disappear through hotplug 4804 * 4805 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4806 * as we're not fully set-up yet. 4807 */ 4808 p->recent_used_cpu = task_cpu(p); 4809 rseq_migrate(p); 4810 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4811 #endif 4812 rq = __task_rq_lock(p, &rf); 4813 update_rq_clock(rq); 4814 post_init_entity_util_avg(p); 4815 4816 activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL); 4817 trace_sched_wakeup_new(p); 4818 wakeup_preempt(rq, p, WF_FORK); 4819 #ifdef CONFIG_SMP 4820 if (p->sched_class->task_woken) { 4821 /* 4822 * Nothing relies on rq->lock after this, so it's fine to 4823 * drop it. 4824 */ 4825 rq_unpin_lock(rq, &rf); 4826 p->sched_class->task_woken(rq, p); 4827 rq_repin_lock(rq, &rf); 4828 } 4829 #endif 4830 task_rq_unlock(rq, p, &rf); 4831 } 4832 4833 #ifdef CONFIG_PREEMPT_NOTIFIERS 4834 4835 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4836 4837 void preempt_notifier_inc(void) 4838 { 4839 static_branch_inc(&preempt_notifier_key); 4840 } 4841 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4842 4843 void preempt_notifier_dec(void) 4844 { 4845 static_branch_dec(&preempt_notifier_key); 4846 } 4847 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4848 4849 /** 4850 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4851 * @notifier: notifier struct to register 4852 */ 4853 void preempt_notifier_register(struct preempt_notifier *notifier) 4854 { 4855 if (!static_branch_unlikely(&preempt_notifier_key)) 4856 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4857 4858 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4859 } 4860 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4861 4862 /** 4863 * preempt_notifier_unregister - no longer interested in preemption notifications 4864 * @notifier: notifier struct to unregister 4865 * 4866 * This is *not* safe to call from within a preemption notifier. 4867 */ 4868 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4869 { 4870 hlist_del(¬ifier->link); 4871 } 4872 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4873 4874 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4875 { 4876 struct preempt_notifier *notifier; 4877 4878 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4879 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4880 } 4881 4882 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4883 { 4884 if (static_branch_unlikely(&preempt_notifier_key)) 4885 __fire_sched_in_preempt_notifiers(curr); 4886 } 4887 4888 static void 4889 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4890 struct task_struct *next) 4891 { 4892 struct preempt_notifier *notifier; 4893 4894 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4895 notifier->ops->sched_out(notifier, next); 4896 } 4897 4898 static __always_inline void 4899 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4900 struct task_struct *next) 4901 { 4902 if (static_branch_unlikely(&preempt_notifier_key)) 4903 __fire_sched_out_preempt_notifiers(curr, next); 4904 } 4905 4906 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4907 4908 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4909 { 4910 } 4911 4912 static inline void 4913 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4914 struct task_struct *next) 4915 { 4916 } 4917 4918 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4919 4920 static inline void prepare_task(struct task_struct *next) 4921 { 4922 #ifdef CONFIG_SMP 4923 /* 4924 * Claim the task as running, we do this before switching to it 4925 * such that any running task will have this set. 4926 * 4927 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4928 * its ordering comment. 4929 */ 4930 WRITE_ONCE(next->on_cpu, 1); 4931 #endif 4932 } 4933 4934 static inline void finish_task(struct task_struct *prev) 4935 { 4936 #ifdef CONFIG_SMP 4937 /* 4938 * This must be the very last reference to @prev from this CPU. After 4939 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4940 * must ensure this doesn't happen until the switch is completely 4941 * finished. 4942 * 4943 * In particular, the load of prev->state in finish_task_switch() must 4944 * happen before this. 4945 * 4946 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4947 */ 4948 smp_store_release(&prev->on_cpu, 0); 4949 #endif 4950 } 4951 4952 #ifdef CONFIG_SMP 4953 4954 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 4955 { 4956 void (*func)(struct rq *rq); 4957 struct balance_callback *next; 4958 4959 lockdep_assert_rq_held(rq); 4960 4961 while (head) { 4962 func = (void (*)(struct rq *))head->func; 4963 next = head->next; 4964 head->next = NULL; 4965 head = next; 4966 4967 func(rq); 4968 } 4969 } 4970 4971 static void balance_push(struct rq *rq); 4972 4973 /* 4974 * balance_push_callback is a right abuse of the callback interface and plays 4975 * by significantly different rules. 4976 * 4977 * Where the normal balance_callback's purpose is to be ran in the same context 4978 * that queued it (only later, when it's safe to drop rq->lock again), 4979 * balance_push_callback is specifically targeted at __schedule(). 4980 * 4981 * This abuse is tolerated because it places all the unlikely/odd cases behind 4982 * a single test, namely: rq->balance_callback == NULL. 4983 */ 4984 struct balance_callback balance_push_callback = { 4985 .next = NULL, 4986 .func = balance_push, 4987 }; 4988 4989 static inline struct balance_callback * 4990 __splice_balance_callbacks(struct rq *rq, bool split) 4991 { 4992 struct balance_callback *head = rq->balance_callback; 4993 4994 if (likely(!head)) 4995 return NULL; 4996 4997 lockdep_assert_rq_held(rq); 4998 /* 4999 * Must not take balance_push_callback off the list when 5000 * splice_balance_callbacks() and balance_callbacks() are not 5001 * in the same rq->lock section. 5002 * 5003 * In that case it would be possible for __schedule() to interleave 5004 * and observe the list empty. 5005 */ 5006 if (split && head == &balance_push_callback) 5007 head = NULL; 5008 else 5009 rq->balance_callback = NULL; 5010 5011 return head; 5012 } 5013 5014 struct balance_callback *splice_balance_callbacks(struct rq *rq) 5015 { 5016 return __splice_balance_callbacks(rq, true); 5017 } 5018 5019 static void __balance_callbacks(struct rq *rq) 5020 { 5021 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 5022 } 5023 5024 void balance_callbacks(struct rq *rq, struct balance_callback *head) 5025 { 5026 unsigned long flags; 5027 5028 if (unlikely(head)) { 5029 raw_spin_rq_lock_irqsave(rq, flags); 5030 do_balance_callbacks(rq, head); 5031 raw_spin_rq_unlock_irqrestore(rq, flags); 5032 } 5033 } 5034 5035 #else 5036 5037 static inline void __balance_callbacks(struct rq *rq) 5038 { 5039 } 5040 5041 #endif 5042 5043 static inline void 5044 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 5045 { 5046 /* 5047 * Since the runqueue lock will be released by the next 5048 * task (which is an invalid locking op but in the case 5049 * of the scheduler it's an obvious special-case), so we 5050 * do an early lockdep release here: 5051 */ 5052 rq_unpin_lock(rq, rf); 5053 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 5054 #ifdef CONFIG_DEBUG_SPINLOCK 5055 /* this is a valid case when another task releases the spinlock */ 5056 rq_lockp(rq)->owner = next; 5057 #endif 5058 } 5059 5060 static inline void finish_lock_switch(struct rq *rq) 5061 { 5062 /* 5063 * If we are tracking spinlock dependencies then we have to 5064 * fix up the runqueue lock - which gets 'carried over' from 5065 * prev into current: 5066 */ 5067 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5068 __balance_callbacks(rq); 5069 raw_spin_rq_unlock_irq(rq); 5070 } 5071 5072 /* 5073 * NOP if the arch has not defined these: 5074 */ 5075 5076 #ifndef prepare_arch_switch 5077 # define prepare_arch_switch(next) do { } while (0) 5078 #endif 5079 5080 #ifndef finish_arch_post_lock_switch 5081 # define finish_arch_post_lock_switch() do { } while (0) 5082 #endif 5083 5084 static inline void kmap_local_sched_out(void) 5085 { 5086 #ifdef CONFIG_KMAP_LOCAL 5087 if (unlikely(current->kmap_ctrl.idx)) 5088 __kmap_local_sched_out(); 5089 #endif 5090 } 5091 5092 static inline void kmap_local_sched_in(void) 5093 { 5094 #ifdef CONFIG_KMAP_LOCAL 5095 if (unlikely(current->kmap_ctrl.idx)) 5096 __kmap_local_sched_in(); 5097 #endif 5098 } 5099 5100 /** 5101 * prepare_task_switch - prepare to switch tasks 5102 * @rq: the runqueue preparing to switch 5103 * @prev: the current task that is being switched out 5104 * @next: the task we are going to switch to. 5105 * 5106 * This is called with the rq lock held and interrupts off. It must 5107 * be paired with a subsequent finish_task_switch after the context 5108 * switch. 5109 * 5110 * prepare_task_switch sets up locking and calls architecture specific 5111 * hooks. 5112 */ 5113 static inline void 5114 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5115 struct task_struct *next) 5116 { 5117 kcov_prepare_switch(prev); 5118 sched_info_switch(rq, prev, next); 5119 perf_event_task_sched_out(prev, next); 5120 rseq_preempt(prev); 5121 fire_sched_out_preempt_notifiers(prev, next); 5122 kmap_local_sched_out(); 5123 prepare_task(next); 5124 prepare_arch_switch(next); 5125 } 5126 5127 /** 5128 * finish_task_switch - clean up after a task-switch 5129 * @prev: the thread we just switched away from. 5130 * 5131 * finish_task_switch must be called after the context switch, paired 5132 * with a prepare_task_switch call before the context switch. 5133 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5134 * and do any other architecture-specific cleanup actions. 5135 * 5136 * Note that we may have delayed dropping an mm in context_switch(). If 5137 * so, we finish that here outside of the runqueue lock. (Doing it 5138 * with the lock held can cause deadlocks; see schedule() for 5139 * details.) 5140 * 5141 * The context switch have flipped the stack from under us and restored the 5142 * local variables which were saved when this task called schedule() in the 5143 * past. 'prev == current' is still correct but we need to recalculate this_rq 5144 * because prev may have moved to another CPU. 5145 */ 5146 static struct rq *finish_task_switch(struct task_struct *prev) 5147 __releases(rq->lock) 5148 { 5149 struct rq *rq = this_rq(); 5150 struct mm_struct *mm = rq->prev_mm; 5151 unsigned int prev_state; 5152 5153 /* 5154 * The previous task will have left us with a preempt_count of 2 5155 * because it left us after: 5156 * 5157 * schedule() 5158 * preempt_disable(); // 1 5159 * __schedule() 5160 * raw_spin_lock_irq(&rq->lock) // 2 5161 * 5162 * Also, see FORK_PREEMPT_COUNT. 5163 */ 5164 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5165 "corrupted preempt_count: %s/%d/0x%x\n", 5166 current->comm, current->pid, preempt_count())) 5167 preempt_count_set(FORK_PREEMPT_COUNT); 5168 5169 rq->prev_mm = NULL; 5170 5171 /* 5172 * A task struct has one reference for the use as "current". 5173 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5174 * schedule one last time. The schedule call will never return, and 5175 * the scheduled task must drop that reference. 5176 * 5177 * We must observe prev->state before clearing prev->on_cpu (in 5178 * finish_task), otherwise a concurrent wakeup can get prev 5179 * running on another CPU and we could rave with its RUNNING -> DEAD 5180 * transition, resulting in a double drop. 5181 */ 5182 prev_state = READ_ONCE(prev->__state); 5183 vtime_task_switch(prev); 5184 perf_event_task_sched_in(prev, current); 5185 finish_task(prev); 5186 tick_nohz_task_switch(); 5187 finish_lock_switch(rq); 5188 finish_arch_post_lock_switch(); 5189 kcov_finish_switch(current); 5190 /* 5191 * kmap_local_sched_out() is invoked with rq::lock held and 5192 * interrupts disabled. There is no requirement for that, but the 5193 * sched out code does not have an interrupt enabled section. 5194 * Restoring the maps on sched in does not require interrupts being 5195 * disabled either. 5196 */ 5197 kmap_local_sched_in(); 5198 5199 fire_sched_in_preempt_notifiers(current); 5200 /* 5201 * When switching through a kernel thread, the loop in 5202 * membarrier_{private,global}_expedited() may have observed that 5203 * kernel thread and not issued an IPI. It is therefore possible to 5204 * schedule between user->kernel->user threads without passing though 5205 * switch_mm(). Membarrier requires a barrier after storing to 5206 * rq->curr, before returning to userspace, so provide them here: 5207 * 5208 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5209 * provided by mmdrop_lazy_tlb(), 5210 * - a sync_core for SYNC_CORE. 5211 */ 5212 if (mm) { 5213 membarrier_mm_sync_core_before_usermode(mm); 5214 mmdrop_lazy_tlb_sched(mm); 5215 } 5216 5217 if (unlikely(prev_state == TASK_DEAD)) { 5218 if (prev->sched_class->task_dead) 5219 prev->sched_class->task_dead(prev); 5220 5221 /* Task is done with its stack. */ 5222 put_task_stack(prev); 5223 5224 put_task_struct_rcu_user(prev); 5225 } 5226 5227 return rq; 5228 } 5229 5230 /** 5231 * schedule_tail - first thing a freshly forked thread must call. 5232 * @prev: the thread we just switched away from. 5233 */ 5234 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5235 __releases(rq->lock) 5236 { 5237 /* 5238 * New tasks start with FORK_PREEMPT_COUNT, see there and 5239 * finish_task_switch() for details. 5240 * 5241 * finish_task_switch() will drop rq->lock() and lower preempt_count 5242 * and the preempt_enable() will end up enabling preemption (on 5243 * PREEMPT_COUNT kernels). 5244 */ 5245 5246 finish_task_switch(prev); 5247 preempt_enable(); 5248 5249 if (current->set_child_tid) 5250 put_user(task_pid_vnr(current), current->set_child_tid); 5251 5252 calculate_sigpending(); 5253 } 5254 5255 /* 5256 * context_switch - switch to the new MM and the new thread's register state. 5257 */ 5258 static __always_inline struct rq * 5259 context_switch(struct rq *rq, struct task_struct *prev, 5260 struct task_struct *next, struct rq_flags *rf) 5261 { 5262 prepare_task_switch(rq, prev, next); 5263 5264 /* 5265 * For paravirt, this is coupled with an exit in switch_to to 5266 * combine the page table reload and the switch backend into 5267 * one hypercall. 5268 */ 5269 arch_start_context_switch(prev); 5270 5271 /* 5272 * kernel -> kernel lazy + transfer active 5273 * user -> kernel lazy + mmgrab_lazy_tlb() active 5274 * 5275 * kernel -> user switch + mmdrop_lazy_tlb() active 5276 * user -> user switch 5277 * 5278 * switch_mm_cid() needs to be updated if the barriers provided 5279 * by context_switch() are modified. 5280 */ 5281 if (!next->mm) { // to kernel 5282 enter_lazy_tlb(prev->active_mm, next); 5283 5284 next->active_mm = prev->active_mm; 5285 if (prev->mm) // from user 5286 mmgrab_lazy_tlb(prev->active_mm); 5287 else 5288 prev->active_mm = NULL; 5289 } else { // to user 5290 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5291 /* 5292 * sys_membarrier() requires an smp_mb() between setting 5293 * rq->curr / membarrier_switch_mm() and returning to userspace. 5294 * 5295 * The below provides this either through switch_mm(), or in 5296 * case 'prev->active_mm == next->mm' through 5297 * finish_task_switch()'s mmdrop(). 5298 */ 5299 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5300 lru_gen_use_mm(next->mm); 5301 5302 if (!prev->mm) { // from kernel 5303 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5304 rq->prev_mm = prev->active_mm; 5305 prev->active_mm = NULL; 5306 } 5307 } 5308 5309 /* switch_mm_cid() requires the memory barriers above. */ 5310 switch_mm_cid(rq, prev, next); 5311 5312 prepare_lock_switch(rq, next, rf); 5313 5314 /* Here we just switch the register state and the stack. */ 5315 switch_to(prev, next, prev); 5316 barrier(); 5317 5318 return finish_task_switch(prev); 5319 } 5320 5321 /* 5322 * nr_running and nr_context_switches: 5323 * 5324 * externally visible scheduler statistics: current number of runnable 5325 * threads, total number of context switches performed since bootup. 5326 */ 5327 unsigned int nr_running(void) 5328 { 5329 unsigned int i, sum = 0; 5330 5331 for_each_online_cpu(i) 5332 sum += cpu_rq(i)->nr_running; 5333 5334 return sum; 5335 } 5336 5337 /* 5338 * Check if only the current task is running on the CPU. 5339 * 5340 * Caution: this function does not check that the caller has disabled 5341 * preemption, thus the result might have a time-of-check-to-time-of-use 5342 * race. The caller is responsible to use it correctly, for example: 5343 * 5344 * - from a non-preemptible section (of course) 5345 * 5346 * - from a thread that is bound to a single CPU 5347 * 5348 * - in a loop with very short iterations (e.g. a polling loop) 5349 */ 5350 bool single_task_running(void) 5351 { 5352 return raw_rq()->nr_running == 1; 5353 } 5354 EXPORT_SYMBOL(single_task_running); 5355 5356 unsigned long long nr_context_switches_cpu(int cpu) 5357 { 5358 return cpu_rq(cpu)->nr_switches; 5359 } 5360 5361 unsigned long long nr_context_switches(void) 5362 { 5363 int i; 5364 unsigned long long sum = 0; 5365 5366 for_each_possible_cpu(i) 5367 sum += cpu_rq(i)->nr_switches; 5368 5369 return sum; 5370 } 5371 5372 /* 5373 * Consumers of these two interfaces, like for example the cpuidle menu 5374 * governor, are using nonsensical data. Preferring shallow idle state selection 5375 * for a CPU that has IO-wait which might not even end up running the task when 5376 * it does become runnable. 5377 */ 5378 5379 unsigned int nr_iowait_cpu(int cpu) 5380 { 5381 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5382 } 5383 5384 /* 5385 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5386 * 5387 * The idea behind IO-wait account is to account the idle time that we could 5388 * have spend running if it were not for IO. That is, if we were to improve the 5389 * storage performance, we'd have a proportional reduction in IO-wait time. 5390 * 5391 * This all works nicely on UP, where, when a task blocks on IO, we account 5392 * idle time as IO-wait, because if the storage were faster, it could've been 5393 * running and we'd not be idle. 5394 * 5395 * This has been extended to SMP, by doing the same for each CPU. This however 5396 * is broken. 5397 * 5398 * Imagine for instance the case where two tasks block on one CPU, only the one 5399 * CPU will have IO-wait accounted, while the other has regular idle. Even 5400 * though, if the storage were faster, both could've ran at the same time, 5401 * utilising both CPUs. 5402 * 5403 * This means, that when looking globally, the current IO-wait accounting on 5404 * SMP is a lower bound, by reason of under accounting. 5405 * 5406 * Worse, since the numbers are provided per CPU, they are sometimes 5407 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5408 * associated with any one particular CPU, it can wake to another CPU than it 5409 * blocked on. This means the per CPU IO-wait number is meaningless. 5410 * 5411 * Task CPU affinities can make all that even more 'interesting'. 5412 */ 5413 5414 unsigned int nr_iowait(void) 5415 { 5416 unsigned int i, sum = 0; 5417 5418 for_each_possible_cpu(i) 5419 sum += nr_iowait_cpu(i); 5420 5421 return sum; 5422 } 5423 5424 #ifdef CONFIG_SMP 5425 5426 /* 5427 * sched_exec - execve() is a valuable balancing opportunity, because at 5428 * this point the task has the smallest effective memory and cache footprint. 5429 */ 5430 void sched_exec(void) 5431 { 5432 struct task_struct *p = current; 5433 struct migration_arg arg; 5434 int dest_cpu; 5435 5436 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5437 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5438 if (dest_cpu == smp_processor_id()) 5439 return; 5440 5441 if (unlikely(!cpu_active(dest_cpu))) 5442 return; 5443 5444 arg = (struct migration_arg){ p, dest_cpu }; 5445 } 5446 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5447 } 5448 5449 #endif 5450 5451 DEFINE_PER_CPU(struct kernel_stat, kstat); 5452 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5453 5454 EXPORT_PER_CPU_SYMBOL(kstat); 5455 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5456 5457 /* 5458 * The function fair_sched_class.update_curr accesses the struct curr 5459 * and its field curr->exec_start; when called from task_sched_runtime(), 5460 * we observe a high rate of cache misses in practice. 5461 * Prefetching this data results in improved performance. 5462 */ 5463 static inline void prefetch_curr_exec_start(struct task_struct *p) 5464 { 5465 #ifdef CONFIG_FAIR_GROUP_SCHED 5466 struct sched_entity *curr = p->se.cfs_rq->curr; 5467 #else 5468 struct sched_entity *curr = task_rq(p)->cfs.curr; 5469 #endif 5470 prefetch(curr); 5471 prefetch(&curr->exec_start); 5472 } 5473 5474 /* 5475 * Return accounted runtime for the task. 5476 * In case the task is currently running, return the runtime plus current's 5477 * pending runtime that have not been accounted yet. 5478 */ 5479 unsigned long long task_sched_runtime(struct task_struct *p) 5480 { 5481 struct rq_flags rf; 5482 struct rq *rq; 5483 u64 ns; 5484 5485 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5486 /* 5487 * 64-bit doesn't need locks to atomically read a 64-bit value. 5488 * So we have a optimization chance when the task's delta_exec is 0. 5489 * Reading ->on_cpu is racy, but this is OK. 5490 * 5491 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5492 * If we race with it entering CPU, unaccounted time is 0. This is 5493 * indistinguishable from the read occurring a few cycles earlier. 5494 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5495 * been accounted, so we're correct here as well. 5496 */ 5497 if (!p->on_cpu || !task_on_rq_queued(p)) 5498 return p->se.sum_exec_runtime; 5499 #endif 5500 5501 rq = task_rq_lock(p, &rf); 5502 /* 5503 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5504 * project cycles that may never be accounted to this 5505 * thread, breaking clock_gettime(). 5506 */ 5507 if (task_current(rq, p) && task_on_rq_queued(p)) { 5508 prefetch_curr_exec_start(p); 5509 update_rq_clock(rq); 5510 p->sched_class->update_curr(rq); 5511 } 5512 ns = p->se.sum_exec_runtime; 5513 task_rq_unlock(rq, p, &rf); 5514 5515 return ns; 5516 } 5517 5518 #ifdef CONFIG_SCHED_DEBUG 5519 static u64 cpu_resched_latency(struct rq *rq) 5520 { 5521 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5522 u64 resched_latency, now = rq_clock(rq); 5523 static bool warned_once; 5524 5525 if (sysctl_resched_latency_warn_once && warned_once) 5526 return 0; 5527 5528 if (!need_resched() || !latency_warn_ms) 5529 return 0; 5530 5531 if (system_state == SYSTEM_BOOTING) 5532 return 0; 5533 5534 if (!rq->last_seen_need_resched_ns) { 5535 rq->last_seen_need_resched_ns = now; 5536 rq->ticks_without_resched = 0; 5537 return 0; 5538 } 5539 5540 rq->ticks_without_resched++; 5541 resched_latency = now - rq->last_seen_need_resched_ns; 5542 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5543 return 0; 5544 5545 warned_once = true; 5546 5547 return resched_latency; 5548 } 5549 5550 static int __init setup_resched_latency_warn_ms(char *str) 5551 { 5552 long val; 5553 5554 if ((kstrtol(str, 0, &val))) { 5555 pr_warn("Unable to set resched_latency_warn_ms\n"); 5556 return 1; 5557 } 5558 5559 sysctl_resched_latency_warn_ms = val; 5560 return 1; 5561 } 5562 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5563 #else 5564 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5565 #endif /* CONFIG_SCHED_DEBUG */ 5566 5567 /* 5568 * This function gets called by the timer code, with HZ frequency. 5569 * We call it with interrupts disabled. 5570 */ 5571 void sched_tick(void) 5572 { 5573 int cpu = smp_processor_id(); 5574 struct rq *rq = cpu_rq(cpu); 5575 struct task_struct *curr; 5576 struct rq_flags rf; 5577 unsigned long hw_pressure; 5578 u64 resched_latency; 5579 5580 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5581 arch_scale_freq_tick(); 5582 5583 sched_clock_tick(); 5584 5585 rq_lock(rq, &rf); 5586 5587 curr = rq->curr; 5588 psi_account_irqtime(rq, curr, NULL); 5589 5590 update_rq_clock(rq); 5591 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 5592 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); 5593 curr->sched_class->task_tick(rq, curr, 0); 5594 if (sched_feat(LATENCY_WARN)) 5595 resched_latency = cpu_resched_latency(rq); 5596 calc_global_load_tick(rq); 5597 sched_core_tick(rq); 5598 task_tick_mm_cid(rq, curr); 5599 scx_tick(rq); 5600 5601 rq_unlock(rq, &rf); 5602 5603 if (sched_feat(LATENCY_WARN) && resched_latency) 5604 resched_latency_warn(cpu, resched_latency); 5605 5606 perf_event_task_tick(); 5607 5608 if (curr->flags & PF_WQ_WORKER) 5609 wq_worker_tick(curr); 5610 5611 #ifdef CONFIG_SMP 5612 if (!scx_switched_all()) { 5613 rq->idle_balance = idle_cpu(cpu); 5614 sched_balance_trigger(rq); 5615 } 5616 #endif 5617 } 5618 5619 #ifdef CONFIG_NO_HZ_FULL 5620 5621 struct tick_work { 5622 int cpu; 5623 atomic_t state; 5624 struct delayed_work work; 5625 }; 5626 /* Values for ->state, see diagram below. */ 5627 #define TICK_SCHED_REMOTE_OFFLINE 0 5628 #define TICK_SCHED_REMOTE_OFFLINING 1 5629 #define TICK_SCHED_REMOTE_RUNNING 2 5630 5631 /* 5632 * State diagram for ->state: 5633 * 5634 * 5635 * TICK_SCHED_REMOTE_OFFLINE 5636 * | ^ 5637 * | | 5638 * | | sched_tick_remote() 5639 * | | 5640 * | | 5641 * +--TICK_SCHED_REMOTE_OFFLINING 5642 * | ^ 5643 * | | 5644 * sched_tick_start() | | sched_tick_stop() 5645 * | | 5646 * V | 5647 * TICK_SCHED_REMOTE_RUNNING 5648 * 5649 * 5650 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5651 * and sched_tick_start() are happy to leave the state in RUNNING. 5652 */ 5653 5654 static struct tick_work __percpu *tick_work_cpu; 5655 5656 static void sched_tick_remote(struct work_struct *work) 5657 { 5658 struct delayed_work *dwork = to_delayed_work(work); 5659 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5660 int cpu = twork->cpu; 5661 struct rq *rq = cpu_rq(cpu); 5662 int os; 5663 5664 /* 5665 * Handle the tick only if it appears the remote CPU is running in full 5666 * dynticks mode. The check is racy by nature, but missing a tick or 5667 * having one too much is no big deal because the scheduler tick updates 5668 * statistics and checks timeslices in a time-independent way, regardless 5669 * of when exactly it is running. 5670 */ 5671 if (tick_nohz_tick_stopped_cpu(cpu)) { 5672 guard(rq_lock_irq)(rq); 5673 struct task_struct *curr = rq->curr; 5674 5675 if (cpu_online(cpu)) { 5676 update_rq_clock(rq); 5677 5678 if (!is_idle_task(curr)) { 5679 /* 5680 * Make sure the next tick runs within a 5681 * reasonable amount of time. 5682 */ 5683 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5684 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5685 } 5686 curr->sched_class->task_tick(rq, curr, 0); 5687 5688 calc_load_nohz_remote(rq); 5689 } 5690 } 5691 5692 /* 5693 * Run the remote tick once per second (1Hz). This arbitrary 5694 * frequency is large enough to avoid overload but short enough 5695 * to keep scheduler internal stats reasonably up to date. But 5696 * first update state to reflect hotplug activity if required. 5697 */ 5698 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5699 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5700 if (os == TICK_SCHED_REMOTE_RUNNING) 5701 queue_delayed_work(system_unbound_wq, dwork, HZ); 5702 } 5703 5704 static void sched_tick_start(int cpu) 5705 { 5706 int os; 5707 struct tick_work *twork; 5708 5709 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5710 return; 5711 5712 WARN_ON_ONCE(!tick_work_cpu); 5713 5714 twork = per_cpu_ptr(tick_work_cpu, cpu); 5715 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5716 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5717 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5718 twork->cpu = cpu; 5719 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5720 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5721 } 5722 } 5723 5724 #ifdef CONFIG_HOTPLUG_CPU 5725 static void sched_tick_stop(int cpu) 5726 { 5727 struct tick_work *twork; 5728 int os; 5729 5730 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5731 return; 5732 5733 WARN_ON_ONCE(!tick_work_cpu); 5734 5735 twork = per_cpu_ptr(tick_work_cpu, cpu); 5736 /* There cannot be competing actions, but don't rely on stop-machine. */ 5737 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5738 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5739 /* Don't cancel, as this would mess up the state machine. */ 5740 } 5741 #endif /* CONFIG_HOTPLUG_CPU */ 5742 5743 int __init sched_tick_offload_init(void) 5744 { 5745 tick_work_cpu = alloc_percpu(struct tick_work); 5746 BUG_ON(!tick_work_cpu); 5747 return 0; 5748 } 5749 5750 #else /* !CONFIG_NO_HZ_FULL */ 5751 static inline void sched_tick_start(int cpu) { } 5752 static inline void sched_tick_stop(int cpu) { } 5753 #endif 5754 5755 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5756 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5757 /* 5758 * If the value passed in is equal to the current preempt count 5759 * then we just disabled preemption. Start timing the latency. 5760 */ 5761 static inline void preempt_latency_start(int val) 5762 { 5763 if (preempt_count() == val) { 5764 unsigned long ip = get_lock_parent_ip(); 5765 #ifdef CONFIG_DEBUG_PREEMPT 5766 current->preempt_disable_ip = ip; 5767 #endif 5768 trace_preempt_off(CALLER_ADDR0, ip); 5769 } 5770 } 5771 5772 void preempt_count_add(int val) 5773 { 5774 #ifdef CONFIG_DEBUG_PREEMPT 5775 /* 5776 * Underflow? 5777 */ 5778 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5779 return; 5780 #endif 5781 __preempt_count_add(val); 5782 #ifdef CONFIG_DEBUG_PREEMPT 5783 /* 5784 * Spinlock count overflowing soon? 5785 */ 5786 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5787 PREEMPT_MASK - 10); 5788 #endif 5789 preempt_latency_start(val); 5790 } 5791 EXPORT_SYMBOL(preempt_count_add); 5792 NOKPROBE_SYMBOL(preempt_count_add); 5793 5794 /* 5795 * If the value passed in equals to the current preempt count 5796 * then we just enabled preemption. Stop timing the latency. 5797 */ 5798 static inline void preempt_latency_stop(int val) 5799 { 5800 if (preempt_count() == val) 5801 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5802 } 5803 5804 void preempt_count_sub(int val) 5805 { 5806 #ifdef CONFIG_DEBUG_PREEMPT 5807 /* 5808 * Underflow? 5809 */ 5810 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5811 return; 5812 /* 5813 * Is the spinlock portion underflowing? 5814 */ 5815 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5816 !(preempt_count() & PREEMPT_MASK))) 5817 return; 5818 #endif 5819 5820 preempt_latency_stop(val); 5821 __preempt_count_sub(val); 5822 } 5823 EXPORT_SYMBOL(preempt_count_sub); 5824 NOKPROBE_SYMBOL(preempt_count_sub); 5825 5826 #else 5827 static inline void preempt_latency_start(int val) { } 5828 static inline void preempt_latency_stop(int val) { } 5829 #endif 5830 5831 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5832 { 5833 #ifdef CONFIG_DEBUG_PREEMPT 5834 return p->preempt_disable_ip; 5835 #else 5836 return 0; 5837 #endif 5838 } 5839 5840 /* 5841 * Print scheduling while atomic bug: 5842 */ 5843 static noinline void __schedule_bug(struct task_struct *prev) 5844 { 5845 /* Save this before calling printk(), since that will clobber it */ 5846 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5847 5848 if (oops_in_progress) 5849 return; 5850 5851 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5852 prev->comm, prev->pid, preempt_count()); 5853 5854 debug_show_held_locks(prev); 5855 print_modules(); 5856 if (irqs_disabled()) 5857 print_irqtrace_events(prev); 5858 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5859 pr_err("Preemption disabled at:"); 5860 print_ip_sym(KERN_ERR, preempt_disable_ip); 5861 } 5862 check_panic_on_warn("scheduling while atomic"); 5863 5864 dump_stack(); 5865 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5866 } 5867 5868 /* 5869 * Various schedule()-time debugging checks and statistics: 5870 */ 5871 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5872 { 5873 #ifdef CONFIG_SCHED_STACK_END_CHECK 5874 if (task_stack_end_corrupted(prev)) 5875 panic("corrupted stack end detected inside scheduler\n"); 5876 5877 if (task_scs_end_corrupted(prev)) 5878 panic("corrupted shadow stack detected inside scheduler\n"); 5879 #endif 5880 5881 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5882 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5883 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5884 prev->comm, prev->pid, prev->non_block_count); 5885 dump_stack(); 5886 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5887 } 5888 #endif 5889 5890 if (unlikely(in_atomic_preempt_off())) { 5891 __schedule_bug(prev); 5892 preempt_count_set(PREEMPT_DISABLED); 5893 } 5894 rcu_sleep_check(); 5895 SCHED_WARN_ON(ct_state() == CT_STATE_USER); 5896 5897 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5898 5899 schedstat_inc(this_rq()->sched_count); 5900 } 5901 5902 static void prev_balance(struct rq *rq, struct task_struct *prev, 5903 struct rq_flags *rf) 5904 { 5905 const struct sched_class *start_class = prev->sched_class; 5906 const struct sched_class *class; 5907 5908 #ifdef CONFIG_SCHED_CLASS_EXT 5909 /* 5910 * SCX requires a balance() call before every pick_next_task() including 5911 * when waking up from SCHED_IDLE. If @start_class is below SCX, start 5912 * from SCX instead. 5913 */ 5914 if (scx_enabled() && sched_class_above(&ext_sched_class, start_class)) 5915 start_class = &ext_sched_class; 5916 #endif 5917 5918 /* 5919 * We must do the balancing pass before put_prev_task(), such 5920 * that when we release the rq->lock the task is in the same 5921 * state as before we took rq->lock. 5922 * 5923 * We can terminate the balance pass as soon as we know there is 5924 * a runnable task of @class priority or higher. 5925 */ 5926 for_active_class_range(class, start_class, &idle_sched_class) { 5927 if (class->balance && class->balance(rq, prev, rf)) 5928 break; 5929 } 5930 } 5931 5932 /* 5933 * Pick up the highest-prio task: 5934 */ 5935 static inline struct task_struct * 5936 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5937 { 5938 const struct sched_class *class; 5939 struct task_struct *p; 5940 5941 rq->dl_server = NULL; 5942 5943 if (scx_enabled()) 5944 goto restart; 5945 5946 /* 5947 * Optimization: we know that if all tasks are in the fair class we can 5948 * call that function directly, but only if the @prev task wasn't of a 5949 * higher scheduling class, because otherwise those lose the 5950 * opportunity to pull in more work from other CPUs. 5951 */ 5952 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5953 rq->nr_running == rq->cfs.h_nr_running)) { 5954 5955 p = pick_next_task_fair(rq, prev, rf); 5956 if (unlikely(p == RETRY_TASK)) 5957 goto restart; 5958 5959 /* Assume the next prioritized class is idle_sched_class */ 5960 if (!p) { 5961 p = pick_task_idle(rq); 5962 put_prev_set_next_task(rq, prev, p); 5963 } 5964 5965 return p; 5966 } 5967 5968 restart: 5969 prev_balance(rq, prev, rf); 5970 5971 for_each_active_class(class) { 5972 if (class->pick_next_task) { 5973 p = class->pick_next_task(rq, prev); 5974 if (p) 5975 return p; 5976 } else { 5977 p = class->pick_task(rq); 5978 if (p) { 5979 put_prev_set_next_task(rq, prev, p); 5980 return p; 5981 } 5982 } 5983 } 5984 5985 BUG(); /* The idle class should always have a runnable task. */ 5986 } 5987 5988 #ifdef CONFIG_SCHED_CORE 5989 static inline bool is_task_rq_idle(struct task_struct *t) 5990 { 5991 return (task_rq(t)->idle == t); 5992 } 5993 5994 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5995 { 5996 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5997 } 5998 5999 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 6000 { 6001 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 6002 return true; 6003 6004 return a->core_cookie == b->core_cookie; 6005 } 6006 6007 static inline struct task_struct *pick_task(struct rq *rq) 6008 { 6009 const struct sched_class *class; 6010 struct task_struct *p; 6011 6012 rq->dl_server = NULL; 6013 6014 for_each_active_class(class) { 6015 p = class->pick_task(rq); 6016 if (p) 6017 return p; 6018 } 6019 6020 BUG(); /* The idle class should always have a runnable task. */ 6021 } 6022 6023 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 6024 6025 static void queue_core_balance(struct rq *rq); 6026 6027 static struct task_struct * 6028 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6029 { 6030 struct task_struct *next, *p, *max = NULL; 6031 const struct cpumask *smt_mask; 6032 bool fi_before = false; 6033 bool core_clock_updated = (rq == rq->core); 6034 unsigned long cookie; 6035 int i, cpu, occ = 0; 6036 struct rq *rq_i; 6037 bool need_sync; 6038 6039 if (!sched_core_enabled(rq)) 6040 return __pick_next_task(rq, prev, rf); 6041 6042 cpu = cpu_of(rq); 6043 6044 /* Stopper task is switching into idle, no need core-wide selection. */ 6045 if (cpu_is_offline(cpu)) { 6046 /* 6047 * Reset core_pick so that we don't enter the fastpath when 6048 * coming online. core_pick would already be migrated to 6049 * another cpu during offline. 6050 */ 6051 rq->core_pick = NULL; 6052 rq->core_dl_server = NULL; 6053 return __pick_next_task(rq, prev, rf); 6054 } 6055 6056 /* 6057 * If there were no {en,de}queues since we picked (IOW, the task 6058 * pointers are all still valid), and we haven't scheduled the last 6059 * pick yet, do so now. 6060 * 6061 * rq->core_pick can be NULL if no selection was made for a CPU because 6062 * it was either offline or went offline during a sibling's core-wide 6063 * selection. In this case, do a core-wide selection. 6064 */ 6065 if (rq->core->core_pick_seq == rq->core->core_task_seq && 6066 rq->core->core_pick_seq != rq->core_sched_seq && 6067 rq->core_pick) { 6068 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6069 6070 next = rq->core_pick; 6071 rq->dl_server = rq->core_dl_server; 6072 rq->core_pick = NULL; 6073 rq->core_dl_server = NULL; 6074 goto out_set_next; 6075 } 6076 6077 prev_balance(rq, prev, rf); 6078 6079 smt_mask = cpu_smt_mask(cpu); 6080 need_sync = !!rq->core->core_cookie; 6081 6082 /* reset state */ 6083 rq->core->core_cookie = 0UL; 6084 if (rq->core->core_forceidle_count) { 6085 if (!core_clock_updated) { 6086 update_rq_clock(rq->core); 6087 core_clock_updated = true; 6088 } 6089 sched_core_account_forceidle(rq); 6090 /* reset after accounting force idle */ 6091 rq->core->core_forceidle_start = 0; 6092 rq->core->core_forceidle_count = 0; 6093 rq->core->core_forceidle_occupation = 0; 6094 need_sync = true; 6095 fi_before = true; 6096 } 6097 6098 /* 6099 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6100 * 6101 * @task_seq guards the task state ({en,de}queues) 6102 * @pick_seq is the @task_seq we did a selection on 6103 * @sched_seq is the @pick_seq we scheduled 6104 * 6105 * However, preemptions can cause multiple picks on the same task set. 6106 * 'Fix' this by also increasing @task_seq for every pick. 6107 */ 6108 rq->core->core_task_seq++; 6109 6110 /* 6111 * Optimize for common case where this CPU has no cookies 6112 * and there are no cookied tasks running on siblings. 6113 */ 6114 if (!need_sync) { 6115 next = pick_task(rq); 6116 if (!next->core_cookie) { 6117 rq->core_pick = NULL; 6118 rq->core_dl_server = NULL; 6119 /* 6120 * For robustness, update the min_vruntime_fi for 6121 * unconstrained picks as well. 6122 */ 6123 WARN_ON_ONCE(fi_before); 6124 task_vruntime_update(rq, next, false); 6125 goto out_set_next; 6126 } 6127 } 6128 6129 /* 6130 * For each thread: do the regular task pick and find the max prio task 6131 * amongst them. 6132 * 6133 * Tie-break prio towards the current CPU 6134 */ 6135 for_each_cpu_wrap(i, smt_mask, cpu) { 6136 rq_i = cpu_rq(i); 6137 6138 /* 6139 * Current cpu always has its clock updated on entrance to 6140 * pick_next_task(). If the current cpu is not the core, 6141 * the core may also have been updated above. 6142 */ 6143 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6144 update_rq_clock(rq_i); 6145 6146 rq_i->core_pick = p = pick_task(rq_i); 6147 rq_i->core_dl_server = rq_i->dl_server; 6148 6149 if (!max || prio_less(max, p, fi_before)) 6150 max = p; 6151 } 6152 6153 cookie = rq->core->core_cookie = max->core_cookie; 6154 6155 /* 6156 * For each thread: try and find a runnable task that matches @max or 6157 * force idle. 6158 */ 6159 for_each_cpu(i, smt_mask) { 6160 rq_i = cpu_rq(i); 6161 p = rq_i->core_pick; 6162 6163 if (!cookie_equals(p, cookie)) { 6164 p = NULL; 6165 if (cookie) 6166 p = sched_core_find(rq_i, cookie); 6167 if (!p) 6168 p = idle_sched_class.pick_task(rq_i); 6169 } 6170 6171 rq_i->core_pick = p; 6172 rq_i->core_dl_server = NULL; 6173 6174 if (p == rq_i->idle) { 6175 if (rq_i->nr_running) { 6176 rq->core->core_forceidle_count++; 6177 if (!fi_before) 6178 rq->core->core_forceidle_seq++; 6179 } 6180 } else { 6181 occ++; 6182 } 6183 } 6184 6185 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6186 rq->core->core_forceidle_start = rq_clock(rq->core); 6187 rq->core->core_forceidle_occupation = occ; 6188 } 6189 6190 rq->core->core_pick_seq = rq->core->core_task_seq; 6191 next = rq->core_pick; 6192 rq->core_sched_seq = rq->core->core_pick_seq; 6193 6194 /* Something should have been selected for current CPU */ 6195 WARN_ON_ONCE(!next); 6196 6197 /* 6198 * Reschedule siblings 6199 * 6200 * NOTE: L1TF -- at this point we're no longer running the old task and 6201 * sending an IPI (below) ensures the sibling will no longer be running 6202 * their task. This ensures there is no inter-sibling overlap between 6203 * non-matching user state. 6204 */ 6205 for_each_cpu(i, smt_mask) { 6206 rq_i = cpu_rq(i); 6207 6208 /* 6209 * An online sibling might have gone offline before a task 6210 * could be picked for it, or it might be offline but later 6211 * happen to come online, but its too late and nothing was 6212 * picked for it. That's Ok - it will pick tasks for itself, 6213 * so ignore it. 6214 */ 6215 if (!rq_i->core_pick) 6216 continue; 6217 6218 /* 6219 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6220 * fi_before fi update? 6221 * 0 0 1 6222 * 0 1 1 6223 * 1 0 1 6224 * 1 1 0 6225 */ 6226 if (!(fi_before && rq->core->core_forceidle_count)) 6227 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6228 6229 rq_i->core_pick->core_occupation = occ; 6230 6231 if (i == cpu) { 6232 rq_i->core_pick = NULL; 6233 rq_i->core_dl_server = NULL; 6234 continue; 6235 } 6236 6237 /* Did we break L1TF mitigation requirements? */ 6238 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6239 6240 if (rq_i->curr == rq_i->core_pick) { 6241 rq_i->core_pick = NULL; 6242 rq_i->core_dl_server = NULL; 6243 continue; 6244 } 6245 6246 resched_curr(rq_i); 6247 } 6248 6249 out_set_next: 6250 put_prev_set_next_task(rq, prev, next); 6251 if (rq->core->core_forceidle_count && next == rq->idle) 6252 queue_core_balance(rq); 6253 6254 return next; 6255 } 6256 6257 static bool try_steal_cookie(int this, int that) 6258 { 6259 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6260 struct task_struct *p; 6261 unsigned long cookie; 6262 bool success = false; 6263 6264 guard(irq)(); 6265 guard(double_rq_lock)(dst, src); 6266 6267 cookie = dst->core->core_cookie; 6268 if (!cookie) 6269 return false; 6270 6271 if (dst->curr != dst->idle) 6272 return false; 6273 6274 p = sched_core_find(src, cookie); 6275 if (!p) 6276 return false; 6277 6278 do { 6279 if (p == src->core_pick || p == src->curr) 6280 goto next; 6281 6282 if (!is_cpu_allowed(p, this)) 6283 goto next; 6284 6285 if (p->core_occupation > dst->idle->core_occupation) 6286 goto next; 6287 /* 6288 * sched_core_find() and sched_core_next() will ensure 6289 * that task @p is not throttled now, we also need to 6290 * check whether the runqueue of the destination CPU is 6291 * being throttled. 6292 */ 6293 if (sched_task_is_throttled(p, this)) 6294 goto next; 6295 6296 deactivate_task(src, p, 0); 6297 set_task_cpu(p, this); 6298 activate_task(dst, p, 0); 6299 6300 resched_curr(dst); 6301 6302 success = true; 6303 break; 6304 6305 next: 6306 p = sched_core_next(p, cookie); 6307 } while (p); 6308 6309 return success; 6310 } 6311 6312 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6313 { 6314 int i; 6315 6316 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6317 if (i == cpu) 6318 continue; 6319 6320 if (need_resched()) 6321 break; 6322 6323 if (try_steal_cookie(cpu, i)) 6324 return true; 6325 } 6326 6327 return false; 6328 } 6329 6330 static void sched_core_balance(struct rq *rq) 6331 { 6332 struct sched_domain *sd; 6333 int cpu = cpu_of(rq); 6334 6335 guard(preempt)(); 6336 guard(rcu)(); 6337 6338 raw_spin_rq_unlock_irq(rq); 6339 for_each_domain(cpu, sd) { 6340 if (need_resched()) 6341 break; 6342 6343 if (steal_cookie_task(cpu, sd)) 6344 break; 6345 } 6346 raw_spin_rq_lock_irq(rq); 6347 } 6348 6349 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6350 6351 static void queue_core_balance(struct rq *rq) 6352 { 6353 if (!sched_core_enabled(rq)) 6354 return; 6355 6356 if (!rq->core->core_cookie) 6357 return; 6358 6359 if (!rq->nr_running) /* not forced idle */ 6360 return; 6361 6362 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6363 } 6364 6365 DEFINE_LOCK_GUARD_1(core_lock, int, 6366 sched_core_lock(*_T->lock, &_T->flags), 6367 sched_core_unlock(*_T->lock, &_T->flags), 6368 unsigned long flags) 6369 6370 static void sched_core_cpu_starting(unsigned int cpu) 6371 { 6372 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6373 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6374 int t; 6375 6376 guard(core_lock)(&cpu); 6377 6378 WARN_ON_ONCE(rq->core != rq); 6379 6380 /* if we're the first, we'll be our own leader */ 6381 if (cpumask_weight(smt_mask) == 1) 6382 return; 6383 6384 /* find the leader */ 6385 for_each_cpu(t, smt_mask) { 6386 if (t == cpu) 6387 continue; 6388 rq = cpu_rq(t); 6389 if (rq->core == rq) { 6390 core_rq = rq; 6391 break; 6392 } 6393 } 6394 6395 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6396 return; 6397 6398 /* install and validate core_rq */ 6399 for_each_cpu(t, smt_mask) { 6400 rq = cpu_rq(t); 6401 6402 if (t == cpu) 6403 rq->core = core_rq; 6404 6405 WARN_ON_ONCE(rq->core != core_rq); 6406 } 6407 } 6408 6409 static void sched_core_cpu_deactivate(unsigned int cpu) 6410 { 6411 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6412 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6413 int t; 6414 6415 guard(core_lock)(&cpu); 6416 6417 /* if we're the last man standing, nothing to do */ 6418 if (cpumask_weight(smt_mask) == 1) { 6419 WARN_ON_ONCE(rq->core != rq); 6420 return; 6421 } 6422 6423 /* if we're not the leader, nothing to do */ 6424 if (rq->core != rq) 6425 return; 6426 6427 /* find a new leader */ 6428 for_each_cpu(t, smt_mask) { 6429 if (t == cpu) 6430 continue; 6431 core_rq = cpu_rq(t); 6432 break; 6433 } 6434 6435 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6436 return; 6437 6438 /* copy the shared state to the new leader */ 6439 core_rq->core_task_seq = rq->core_task_seq; 6440 core_rq->core_pick_seq = rq->core_pick_seq; 6441 core_rq->core_cookie = rq->core_cookie; 6442 core_rq->core_forceidle_count = rq->core_forceidle_count; 6443 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6444 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6445 6446 /* 6447 * Accounting edge for forced idle is handled in pick_next_task(). 6448 * Don't need another one here, since the hotplug thread shouldn't 6449 * have a cookie. 6450 */ 6451 core_rq->core_forceidle_start = 0; 6452 6453 /* install new leader */ 6454 for_each_cpu(t, smt_mask) { 6455 rq = cpu_rq(t); 6456 rq->core = core_rq; 6457 } 6458 } 6459 6460 static inline void sched_core_cpu_dying(unsigned int cpu) 6461 { 6462 struct rq *rq = cpu_rq(cpu); 6463 6464 if (rq->core != rq) 6465 rq->core = rq; 6466 } 6467 6468 #else /* !CONFIG_SCHED_CORE */ 6469 6470 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6471 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6472 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6473 6474 static struct task_struct * 6475 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6476 { 6477 return __pick_next_task(rq, prev, rf); 6478 } 6479 6480 #endif /* CONFIG_SCHED_CORE */ 6481 6482 /* 6483 * Constants for the sched_mode argument of __schedule(). 6484 * 6485 * The mode argument allows RT enabled kernels to differentiate a 6486 * preemption from blocking on an 'sleeping' spin/rwlock. 6487 */ 6488 #define SM_IDLE (-1) 6489 #define SM_NONE 0 6490 #define SM_PREEMPT 1 6491 #define SM_RTLOCK_WAIT 2 6492 6493 /* 6494 * __schedule() is the main scheduler function. 6495 * 6496 * The main means of driving the scheduler and thus entering this function are: 6497 * 6498 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6499 * 6500 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6501 * paths. For example, see arch/x86/entry_64.S. 6502 * 6503 * To drive preemption between tasks, the scheduler sets the flag in timer 6504 * interrupt handler sched_tick(). 6505 * 6506 * 3. Wakeups don't really cause entry into schedule(). They add a 6507 * task to the run-queue and that's it. 6508 * 6509 * Now, if the new task added to the run-queue preempts the current 6510 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6511 * called on the nearest possible occasion: 6512 * 6513 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6514 * 6515 * - in syscall or exception context, at the next outmost 6516 * preempt_enable(). (this might be as soon as the wake_up()'s 6517 * spin_unlock()!) 6518 * 6519 * - in IRQ context, return from interrupt-handler to 6520 * preemptible context 6521 * 6522 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6523 * then at the next: 6524 * 6525 * - cond_resched() call 6526 * - explicit schedule() call 6527 * - return from syscall or exception to user-space 6528 * - return from interrupt-handler to user-space 6529 * 6530 * WARNING: must be called with preemption disabled! 6531 */ 6532 static void __sched notrace __schedule(int sched_mode) 6533 { 6534 struct task_struct *prev, *next; 6535 /* 6536 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted 6537 * as a preemption by schedule_debug() and RCU. 6538 */ 6539 bool preempt = sched_mode > SM_NONE; 6540 unsigned long *switch_count; 6541 unsigned long prev_state; 6542 struct rq_flags rf; 6543 struct rq *rq; 6544 int cpu; 6545 6546 cpu = smp_processor_id(); 6547 rq = cpu_rq(cpu); 6548 prev = rq->curr; 6549 6550 schedule_debug(prev, preempt); 6551 6552 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6553 hrtick_clear(rq); 6554 6555 local_irq_disable(); 6556 rcu_note_context_switch(preempt); 6557 6558 /* 6559 * Make sure that signal_pending_state()->signal_pending() below 6560 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6561 * done by the caller to avoid the race with signal_wake_up(): 6562 * 6563 * __set_current_state(@state) signal_wake_up() 6564 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6565 * wake_up_state(p, state) 6566 * LOCK rq->lock LOCK p->pi_state 6567 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6568 * if (signal_pending_state()) if (p->state & @state) 6569 * 6570 * Also, the membarrier system call requires a full memory barrier 6571 * after coming from user-space, before storing to rq->curr; this 6572 * barrier matches a full barrier in the proximity of the membarrier 6573 * system call exit. 6574 */ 6575 rq_lock(rq, &rf); 6576 smp_mb__after_spinlock(); 6577 6578 /* Promote REQ to ACT */ 6579 rq->clock_update_flags <<= 1; 6580 update_rq_clock(rq); 6581 rq->clock_update_flags = RQCF_UPDATED; 6582 6583 switch_count = &prev->nivcsw; 6584 6585 /* Task state changes only considers SM_PREEMPT as preemption */ 6586 preempt = sched_mode == SM_PREEMPT; 6587 6588 /* 6589 * We must load prev->state once (task_struct::state is volatile), such 6590 * that we form a control dependency vs deactivate_task() below. 6591 */ 6592 prev_state = READ_ONCE(prev->__state); 6593 if (sched_mode == SM_IDLE) { 6594 /* SCX must consult the BPF scheduler to tell if rq is empty */ 6595 if (!rq->nr_running && !scx_enabled()) { 6596 next = prev; 6597 goto picked; 6598 } 6599 } else if (!preempt && prev_state) { 6600 if (signal_pending_state(prev_state, prev)) { 6601 WRITE_ONCE(prev->__state, TASK_RUNNING); 6602 } else { 6603 int flags = DEQUEUE_NOCLOCK; 6604 6605 prev->sched_contributes_to_load = 6606 (prev_state & TASK_UNINTERRUPTIBLE) && 6607 !(prev_state & TASK_NOLOAD) && 6608 !(prev_state & TASK_FROZEN); 6609 6610 if (unlikely(is_special_task_state(prev_state))) 6611 flags |= DEQUEUE_SPECIAL; 6612 6613 /* 6614 * __schedule() ttwu() 6615 * prev_state = prev->state; if (p->on_rq && ...) 6616 * if (prev_state) goto out; 6617 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6618 * p->state = TASK_WAKING 6619 * 6620 * Where __schedule() and ttwu() have matching control dependencies. 6621 * 6622 * After this, schedule() must not care about p->state any more. 6623 */ 6624 block_task(rq, prev, flags); 6625 } 6626 switch_count = &prev->nvcsw; 6627 } 6628 6629 next = pick_next_task(rq, prev, &rf); 6630 picked: 6631 clear_tsk_need_resched(prev); 6632 clear_preempt_need_resched(); 6633 #ifdef CONFIG_SCHED_DEBUG 6634 rq->last_seen_need_resched_ns = 0; 6635 #endif 6636 6637 if (likely(prev != next)) { 6638 rq->nr_switches++; 6639 /* 6640 * RCU users of rcu_dereference(rq->curr) may not see 6641 * changes to task_struct made by pick_next_task(). 6642 */ 6643 RCU_INIT_POINTER(rq->curr, next); 6644 /* 6645 * The membarrier system call requires each architecture 6646 * to have a full memory barrier after updating 6647 * rq->curr, before returning to user-space. 6648 * 6649 * Here are the schemes providing that barrier on the 6650 * various architectures: 6651 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, 6652 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() 6653 * on PowerPC and on RISC-V. 6654 * - finish_lock_switch() for weakly-ordered 6655 * architectures where spin_unlock is a full barrier, 6656 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6657 * is a RELEASE barrier), 6658 * 6659 * The barrier matches a full barrier in the proximity of 6660 * the membarrier system call entry. 6661 * 6662 * On RISC-V, this barrier pairing is also needed for the 6663 * SYNC_CORE command when switching between processes, cf. 6664 * the inline comments in membarrier_arch_switch_mm(). 6665 */ 6666 ++*switch_count; 6667 6668 migrate_disable_switch(rq, prev); 6669 psi_account_irqtime(rq, prev, next); 6670 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6671 6672 trace_sched_switch(preempt, prev, next, prev_state); 6673 6674 /* Also unlocks the rq: */ 6675 rq = context_switch(rq, prev, next, &rf); 6676 } else { 6677 rq_unpin_lock(rq, &rf); 6678 __balance_callbacks(rq); 6679 raw_spin_rq_unlock_irq(rq); 6680 } 6681 } 6682 6683 void __noreturn do_task_dead(void) 6684 { 6685 /* Causes final put_task_struct in finish_task_switch(): */ 6686 set_special_state(TASK_DEAD); 6687 6688 /* Tell freezer to ignore us: */ 6689 current->flags |= PF_NOFREEZE; 6690 6691 __schedule(SM_NONE); 6692 BUG(); 6693 6694 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6695 for (;;) 6696 cpu_relax(); 6697 } 6698 6699 static inline void sched_submit_work(struct task_struct *tsk) 6700 { 6701 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6702 unsigned int task_flags; 6703 6704 /* 6705 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6706 * will use a blocking primitive -- which would lead to recursion. 6707 */ 6708 lock_map_acquire_try(&sched_map); 6709 6710 task_flags = tsk->flags; 6711 /* 6712 * If a worker goes to sleep, notify and ask workqueue whether it 6713 * wants to wake up a task to maintain concurrency. 6714 */ 6715 if (task_flags & PF_WQ_WORKER) 6716 wq_worker_sleeping(tsk); 6717 else if (task_flags & PF_IO_WORKER) 6718 io_wq_worker_sleeping(tsk); 6719 6720 /* 6721 * spinlock and rwlock must not flush block requests. This will 6722 * deadlock if the callback attempts to acquire a lock which is 6723 * already acquired. 6724 */ 6725 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6726 6727 /* 6728 * If we are going to sleep and we have plugged IO queued, 6729 * make sure to submit it to avoid deadlocks. 6730 */ 6731 blk_flush_plug(tsk->plug, true); 6732 6733 lock_map_release(&sched_map); 6734 } 6735 6736 static void sched_update_worker(struct task_struct *tsk) 6737 { 6738 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { 6739 if (tsk->flags & PF_BLOCK_TS) 6740 blk_plug_invalidate_ts(tsk); 6741 if (tsk->flags & PF_WQ_WORKER) 6742 wq_worker_running(tsk); 6743 else if (tsk->flags & PF_IO_WORKER) 6744 io_wq_worker_running(tsk); 6745 } 6746 } 6747 6748 static __always_inline void __schedule_loop(int sched_mode) 6749 { 6750 do { 6751 preempt_disable(); 6752 __schedule(sched_mode); 6753 sched_preempt_enable_no_resched(); 6754 } while (need_resched()); 6755 } 6756 6757 asmlinkage __visible void __sched schedule(void) 6758 { 6759 struct task_struct *tsk = current; 6760 6761 #ifdef CONFIG_RT_MUTEXES 6762 lockdep_assert(!tsk->sched_rt_mutex); 6763 #endif 6764 6765 if (!task_is_running(tsk)) 6766 sched_submit_work(tsk); 6767 __schedule_loop(SM_NONE); 6768 sched_update_worker(tsk); 6769 } 6770 EXPORT_SYMBOL(schedule); 6771 6772 /* 6773 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6774 * state (have scheduled out non-voluntarily) by making sure that all 6775 * tasks have either left the run queue or have gone into user space. 6776 * As idle tasks do not do either, they must not ever be preempted 6777 * (schedule out non-voluntarily). 6778 * 6779 * schedule_idle() is similar to schedule_preempt_disable() except that it 6780 * never enables preemption because it does not call sched_submit_work(). 6781 */ 6782 void __sched schedule_idle(void) 6783 { 6784 /* 6785 * As this skips calling sched_submit_work(), which the idle task does 6786 * regardless because that function is a NOP when the task is in a 6787 * TASK_RUNNING state, make sure this isn't used someplace that the 6788 * current task can be in any other state. Note, idle is always in the 6789 * TASK_RUNNING state. 6790 */ 6791 WARN_ON_ONCE(current->__state); 6792 do { 6793 __schedule(SM_IDLE); 6794 } while (need_resched()); 6795 } 6796 6797 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6798 asmlinkage __visible void __sched schedule_user(void) 6799 { 6800 /* 6801 * If we come here after a random call to set_need_resched(), 6802 * or we have been woken up remotely but the IPI has not yet arrived, 6803 * we haven't yet exited the RCU idle mode. Do it here manually until 6804 * we find a better solution. 6805 * 6806 * NB: There are buggy callers of this function. Ideally we 6807 * should warn if prev_state != CT_STATE_USER, but that will trigger 6808 * too frequently to make sense yet. 6809 */ 6810 enum ctx_state prev_state = exception_enter(); 6811 schedule(); 6812 exception_exit(prev_state); 6813 } 6814 #endif 6815 6816 /** 6817 * schedule_preempt_disabled - called with preemption disabled 6818 * 6819 * Returns with preemption disabled. Note: preempt_count must be 1 6820 */ 6821 void __sched schedule_preempt_disabled(void) 6822 { 6823 sched_preempt_enable_no_resched(); 6824 schedule(); 6825 preempt_disable(); 6826 } 6827 6828 #ifdef CONFIG_PREEMPT_RT 6829 void __sched notrace schedule_rtlock(void) 6830 { 6831 __schedule_loop(SM_RTLOCK_WAIT); 6832 } 6833 NOKPROBE_SYMBOL(schedule_rtlock); 6834 #endif 6835 6836 static void __sched notrace preempt_schedule_common(void) 6837 { 6838 do { 6839 /* 6840 * Because the function tracer can trace preempt_count_sub() 6841 * and it also uses preempt_enable/disable_notrace(), if 6842 * NEED_RESCHED is set, the preempt_enable_notrace() called 6843 * by the function tracer will call this function again and 6844 * cause infinite recursion. 6845 * 6846 * Preemption must be disabled here before the function 6847 * tracer can trace. Break up preempt_disable() into two 6848 * calls. One to disable preemption without fear of being 6849 * traced. The other to still record the preemption latency, 6850 * which can also be traced by the function tracer. 6851 */ 6852 preempt_disable_notrace(); 6853 preempt_latency_start(1); 6854 __schedule(SM_PREEMPT); 6855 preempt_latency_stop(1); 6856 preempt_enable_no_resched_notrace(); 6857 6858 /* 6859 * Check again in case we missed a preemption opportunity 6860 * between schedule and now. 6861 */ 6862 } while (need_resched()); 6863 } 6864 6865 #ifdef CONFIG_PREEMPTION 6866 /* 6867 * This is the entry point to schedule() from in-kernel preemption 6868 * off of preempt_enable. 6869 */ 6870 asmlinkage __visible void __sched notrace preempt_schedule(void) 6871 { 6872 /* 6873 * If there is a non-zero preempt_count or interrupts are disabled, 6874 * we do not want to preempt the current task. Just return.. 6875 */ 6876 if (likely(!preemptible())) 6877 return; 6878 preempt_schedule_common(); 6879 } 6880 NOKPROBE_SYMBOL(preempt_schedule); 6881 EXPORT_SYMBOL(preempt_schedule); 6882 6883 #ifdef CONFIG_PREEMPT_DYNAMIC 6884 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6885 #ifndef preempt_schedule_dynamic_enabled 6886 #define preempt_schedule_dynamic_enabled preempt_schedule 6887 #define preempt_schedule_dynamic_disabled NULL 6888 #endif 6889 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6890 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6891 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6892 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6893 void __sched notrace dynamic_preempt_schedule(void) 6894 { 6895 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6896 return; 6897 preempt_schedule(); 6898 } 6899 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6900 EXPORT_SYMBOL(dynamic_preempt_schedule); 6901 #endif 6902 #endif 6903 6904 /** 6905 * preempt_schedule_notrace - preempt_schedule called by tracing 6906 * 6907 * The tracing infrastructure uses preempt_enable_notrace to prevent 6908 * recursion and tracing preempt enabling caused by the tracing 6909 * infrastructure itself. But as tracing can happen in areas coming 6910 * from userspace or just about to enter userspace, a preempt enable 6911 * can occur before user_exit() is called. This will cause the scheduler 6912 * to be called when the system is still in usermode. 6913 * 6914 * To prevent this, the preempt_enable_notrace will use this function 6915 * instead of preempt_schedule() to exit user context if needed before 6916 * calling the scheduler. 6917 */ 6918 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6919 { 6920 enum ctx_state prev_ctx; 6921 6922 if (likely(!preemptible())) 6923 return; 6924 6925 do { 6926 /* 6927 * Because the function tracer can trace preempt_count_sub() 6928 * and it also uses preempt_enable/disable_notrace(), if 6929 * NEED_RESCHED is set, the preempt_enable_notrace() called 6930 * by the function tracer will call this function again and 6931 * cause infinite recursion. 6932 * 6933 * Preemption must be disabled here before the function 6934 * tracer can trace. Break up preempt_disable() into two 6935 * calls. One to disable preemption without fear of being 6936 * traced. The other to still record the preemption latency, 6937 * which can also be traced by the function tracer. 6938 */ 6939 preempt_disable_notrace(); 6940 preempt_latency_start(1); 6941 /* 6942 * Needs preempt disabled in case user_exit() is traced 6943 * and the tracer calls preempt_enable_notrace() causing 6944 * an infinite recursion. 6945 */ 6946 prev_ctx = exception_enter(); 6947 __schedule(SM_PREEMPT); 6948 exception_exit(prev_ctx); 6949 6950 preempt_latency_stop(1); 6951 preempt_enable_no_resched_notrace(); 6952 } while (need_resched()); 6953 } 6954 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6955 6956 #ifdef CONFIG_PREEMPT_DYNAMIC 6957 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6958 #ifndef preempt_schedule_notrace_dynamic_enabled 6959 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6960 #define preempt_schedule_notrace_dynamic_disabled NULL 6961 #endif 6962 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6963 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6964 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6965 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6966 void __sched notrace dynamic_preempt_schedule_notrace(void) 6967 { 6968 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6969 return; 6970 preempt_schedule_notrace(); 6971 } 6972 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6973 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6974 #endif 6975 #endif 6976 6977 #endif /* CONFIG_PREEMPTION */ 6978 6979 /* 6980 * This is the entry point to schedule() from kernel preemption 6981 * off of IRQ context. 6982 * Note, that this is called and return with IRQs disabled. This will 6983 * protect us against recursive calling from IRQ contexts. 6984 */ 6985 asmlinkage __visible void __sched preempt_schedule_irq(void) 6986 { 6987 enum ctx_state prev_state; 6988 6989 /* Catch callers which need to be fixed */ 6990 BUG_ON(preempt_count() || !irqs_disabled()); 6991 6992 prev_state = exception_enter(); 6993 6994 do { 6995 preempt_disable(); 6996 local_irq_enable(); 6997 __schedule(SM_PREEMPT); 6998 local_irq_disable(); 6999 sched_preempt_enable_no_resched(); 7000 } while (need_resched()); 7001 7002 exception_exit(prev_state); 7003 } 7004 7005 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 7006 void *key) 7007 { 7008 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 7009 return try_to_wake_up(curr->private, mode, wake_flags); 7010 } 7011 EXPORT_SYMBOL(default_wake_function); 7012 7013 void __setscheduler_prio(struct task_struct *p, int prio) 7014 { 7015 if (dl_prio(prio)) 7016 p->sched_class = &dl_sched_class; 7017 else if (rt_prio(prio)) 7018 p->sched_class = &rt_sched_class; 7019 #ifdef CONFIG_SCHED_CLASS_EXT 7020 else if (task_should_scx(p)) 7021 p->sched_class = &ext_sched_class; 7022 #endif 7023 else 7024 p->sched_class = &fair_sched_class; 7025 7026 p->prio = prio; 7027 } 7028 7029 #ifdef CONFIG_RT_MUTEXES 7030 7031 /* 7032 * Would be more useful with typeof()/auto_type but they don't mix with 7033 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 7034 * name such that if someone were to implement this function we get to compare 7035 * notes. 7036 */ 7037 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 7038 7039 void rt_mutex_pre_schedule(void) 7040 { 7041 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 7042 sched_submit_work(current); 7043 } 7044 7045 void rt_mutex_schedule(void) 7046 { 7047 lockdep_assert(current->sched_rt_mutex); 7048 __schedule_loop(SM_NONE); 7049 } 7050 7051 void rt_mutex_post_schedule(void) 7052 { 7053 sched_update_worker(current); 7054 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 7055 } 7056 7057 /* 7058 * rt_mutex_setprio - set the current priority of a task 7059 * @p: task to boost 7060 * @pi_task: donor task 7061 * 7062 * This function changes the 'effective' priority of a task. It does 7063 * not touch ->normal_prio like __setscheduler(). 7064 * 7065 * Used by the rt_mutex code to implement priority inheritance 7066 * logic. Call site only calls if the priority of the task changed. 7067 */ 7068 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 7069 { 7070 int prio, oldprio, queued, running, queue_flag = 7071 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7072 const struct sched_class *prev_class; 7073 struct rq_flags rf; 7074 struct rq *rq; 7075 7076 /* XXX used to be waiter->prio, not waiter->task->prio */ 7077 prio = __rt_effective_prio(pi_task, p->normal_prio); 7078 7079 /* 7080 * If nothing changed; bail early. 7081 */ 7082 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7083 return; 7084 7085 rq = __task_rq_lock(p, &rf); 7086 update_rq_clock(rq); 7087 /* 7088 * Set under pi_lock && rq->lock, such that the value can be used under 7089 * either lock. 7090 * 7091 * Note that there is loads of tricky to make this pointer cache work 7092 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7093 * ensure a task is de-boosted (pi_task is set to NULL) before the 7094 * task is allowed to run again (and can exit). This ensures the pointer 7095 * points to a blocked task -- which guarantees the task is present. 7096 */ 7097 p->pi_top_task = pi_task; 7098 7099 /* 7100 * For FIFO/RR we only need to set prio, if that matches we're done. 7101 */ 7102 if (prio == p->prio && !dl_prio(prio)) 7103 goto out_unlock; 7104 7105 /* 7106 * Idle task boosting is a no-no in general. There is one 7107 * exception, when PREEMPT_RT and NOHZ is active: 7108 * 7109 * The idle task calls get_next_timer_interrupt() and holds 7110 * the timer wheel base->lock on the CPU and another CPU wants 7111 * to access the timer (probably to cancel it). We can safely 7112 * ignore the boosting request, as the idle CPU runs this code 7113 * with interrupts disabled and will complete the lock 7114 * protected section without being interrupted. So there is no 7115 * real need to boost. 7116 */ 7117 if (unlikely(p == rq->idle)) { 7118 WARN_ON(p != rq->curr); 7119 WARN_ON(p->pi_blocked_on); 7120 goto out_unlock; 7121 } 7122 7123 trace_sched_pi_setprio(p, pi_task); 7124 oldprio = p->prio; 7125 7126 if (oldprio == prio) 7127 queue_flag &= ~DEQUEUE_MOVE; 7128 7129 prev_class = p->sched_class; 7130 queued = task_on_rq_queued(p); 7131 running = task_current(rq, p); 7132 if (queued) 7133 dequeue_task(rq, p, queue_flag); 7134 if (running) 7135 put_prev_task(rq, p); 7136 7137 /* 7138 * Boosting condition are: 7139 * 1. -rt task is running and holds mutex A 7140 * --> -dl task blocks on mutex A 7141 * 7142 * 2. -dl task is running and holds mutex A 7143 * --> -dl task blocks on mutex A and could preempt the 7144 * running task 7145 */ 7146 if (dl_prio(prio)) { 7147 if (!dl_prio(p->normal_prio) || 7148 (pi_task && dl_prio(pi_task->prio) && 7149 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7150 p->dl.pi_se = pi_task->dl.pi_se; 7151 queue_flag |= ENQUEUE_REPLENISH; 7152 } else { 7153 p->dl.pi_se = &p->dl; 7154 } 7155 } else if (rt_prio(prio)) { 7156 if (dl_prio(oldprio)) 7157 p->dl.pi_se = &p->dl; 7158 if (oldprio < prio) 7159 queue_flag |= ENQUEUE_HEAD; 7160 } else { 7161 if (dl_prio(oldprio)) 7162 p->dl.pi_se = &p->dl; 7163 if (rt_prio(oldprio)) 7164 p->rt.timeout = 0; 7165 } 7166 7167 __setscheduler_prio(p, prio); 7168 check_class_changing(rq, p, prev_class); 7169 7170 if (queued) 7171 enqueue_task(rq, p, queue_flag); 7172 if (running) 7173 set_next_task(rq, p); 7174 7175 check_class_changed(rq, p, prev_class, oldprio); 7176 out_unlock: 7177 /* Avoid rq from going away on us: */ 7178 preempt_disable(); 7179 7180 rq_unpin_lock(rq, &rf); 7181 __balance_callbacks(rq); 7182 raw_spin_rq_unlock(rq); 7183 7184 preempt_enable(); 7185 } 7186 #endif 7187 7188 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7189 int __sched __cond_resched(void) 7190 { 7191 if (should_resched(0)) { 7192 preempt_schedule_common(); 7193 return 1; 7194 } 7195 /* 7196 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 7197 * whether the current CPU is in an RCU read-side critical section, 7198 * so the tick can report quiescent states even for CPUs looping 7199 * in kernel context. In contrast, in non-preemptible kernels, 7200 * RCU readers leave no in-memory hints, which means that CPU-bound 7201 * processes executing in kernel context might never report an 7202 * RCU quiescent state. Therefore, the following code causes 7203 * cond_resched() to report a quiescent state, but only when RCU 7204 * is in urgent need of one. 7205 */ 7206 #ifndef CONFIG_PREEMPT_RCU 7207 rcu_all_qs(); 7208 #endif 7209 return 0; 7210 } 7211 EXPORT_SYMBOL(__cond_resched); 7212 #endif 7213 7214 #ifdef CONFIG_PREEMPT_DYNAMIC 7215 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7216 #define cond_resched_dynamic_enabled __cond_resched 7217 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 7218 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7219 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7220 7221 #define might_resched_dynamic_enabled __cond_resched 7222 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 7223 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7224 EXPORT_STATIC_CALL_TRAMP(might_resched); 7225 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7226 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 7227 int __sched dynamic_cond_resched(void) 7228 { 7229 klp_sched_try_switch(); 7230 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 7231 return 0; 7232 return __cond_resched(); 7233 } 7234 EXPORT_SYMBOL(dynamic_cond_resched); 7235 7236 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 7237 int __sched dynamic_might_resched(void) 7238 { 7239 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 7240 return 0; 7241 return __cond_resched(); 7242 } 7243 EXPORT_SYMBOL(dynamic_might_resched); 7244 #endif 7245 #endif 7246 7247 /* 7248 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7249 * call schedule, and on return reacquire the lock. 7250 * 7251 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7252 * operations here to prevent schedule() from being called twice (once via 7253 * spin_unlock(), once by hand). 7254 */ 7255 int __cond_resched_lock(spinlock_t *lock) 7256 { 7257 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7258 int ret = 0; 7259 7260 lockdep_assert_held(lock); 7261 7262 if (spin_needbreak(lock) || resched) { 7263 spin_unlock(lock); 7264 if (!_cond_resched()) 7265 cpu_relax(); 7266 ret = 1; 7267 spin_lock(lock); 7268 } 7269 return ret; 7270 } 7271 EXPORT_SYMBOL(__cond_resched_lock); 7272 7273 int __cond_resched_rwlock_read(rwlock_t *lock) 7274 { 7275 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7276 int ret = 0; 7277 7278 lockdep_assert_held_read(lock); 7279 7280 if (rwlock_needbreak(lock) || resched) { 7281 read_unlock(lock); 7282 if (!_cond_resched()) 7283 cpu_relax(); 7284 ret = 1; 7285 read_lock(lock); 7286 } 7287 return ret; 7288 } 7289 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7290 7291 int __cond_resched_rwlock_write(rwlock_t *lock) 7292 { 7293 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7294 int ret = 0; 7295 7296 lockdep_assert_held_write(lock); 7297 7298 if (rwlock_needbreak(lock) || resched) { 7299 write_unlock(lock); 7300 if (!_cond_resched()) 7301 cpu_relax(); 7302 ret = 1; 7303 write_lock(lock); 7304 } 7305 return ret; 7306 } 7307 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7308 7309 #ifdef CONFIG_PREEMPT_DYNAMIC 7310 7311 #ifdef CONFIG_GENERIC_ENTRY 7312 #include <linux/entry-common.h> 7313 #endif 7314 7315 /* 7316 * SC:cond_resched 7317 * SC:might_resched 7318 * SC:preempt_schedule 7319 * SC:preempt_schedule_notrace 7320 * SC:irqentry_exit_cond_resched 7321 * 7322 * 7323 * NONE: 7324 * cond_resched <- __cond_resched 7325 * might_resched <- RET0 7326 * preempt_schedule <- NOP 7327 * preempt_schedule_notrace <- NOP 7328 * irqentry_exit_cond_resched <- NOP 7329 * 7330 * VOLUNTARY: 7331 * cond_resched <- __cond_resched 7332 * might_resched <- __cond_resched 7333 * preempt_schedule <- NOP 7334 * preempt_schedule_notrace <- NOP 7335 * irqentry_exit_cond_resched <- NOP 7336 * 7337 * FULL: 7338 * cond_resched <- RET0 7339 * might_resched <- RET0 7340 * preempt_schedule <- preempt_schedule 7341 * preempt_schedule_notrace <- preempt_schedule_notrace 7342 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7343 */ 7344 7345 enum { 7346 preempt_dynamic_undefined = -1, 7347 preempt_dynamic_none, 7348 preempt_dynamic_voluntary, 7349 preempt_dynamic_full, 7350 }; 7351 7352 int preempt_dynamic_mode = preempt_dynamic_undefined; 7353 7354 int sched_dynamic_mode(const char *str) 7355 { 7356 if (!strcmp(str, "none")) 7357 return preempt_dynamic_none; 7358 7359 if (!strcmp(str, "voluntary")) 7360 return preempt_dynamic_voluntary; 7361 7362 if (!strcmp(str, "full")) 7363 return preempt_dynamic_full; 7364 7365 return -EINVAL; 7366 } 7367 7368 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7369 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 7370 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 7371 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7372 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) 7373 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) 7374 #else 7375 #error "Unsupported PREEMPT_DYNAMIC mechanism" 7376 #endif 7377 7378 static DEFINE_MUTEX(sched_dynamic_mutex); 7379 static bool klp_override; 7380 7381 static void __sched_dynamic_update(int mode) 7382 { 7383 /* 7384 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 7385 * the ZERO state, which is invalid. 7386 */ 7387 if (!klp_override) 7388 preempt_dynamic_enable(cond_resched); 7389 preempt_dynamic_enable(might_resched); 7390 preempt_dynamic_enable(preempt_schedule); 7391 preempt_dynamic_enable(preempt_schedule_notrace); 7392 preempt_dynamic_enable(irqentry_exit_cond_resched); 7393 7394 switch (mode) { 7395 case preempt_dynamic_none: 7396 if (!klp_override) 7397 preempt_dynamic_enable(cond_resched); 7398 preempt_dynamic_disable(might_resched); 7399 preempt_dynamic_disable(preempt_schedule); 7400 preempt_dynamic_disable(preempt_schedule_notrace); 7401 preempt_dynamic_disable(irqentry_exit_cond_resched); 7402 if (mode != preempt_dynamic_mode) 7403 pr_info("Dynamic Preempt: none\n"); 7404 break; 7405 7406 case preempt_dynamic_voluntary: 7407 if (!klp_override) 7408 preempt_dynamic_enable(cond_resched); 7409 preempt_dynamic_enable(might_resched); 7410 preempt_dynamic_disable(preempt_schedule); 7411 preempt_dynamic_disable(preempt_schedule_notrace); 7412 preempt_dynamic_disable(irqentry_exit_cond_resched); 7413 if (mode != preempt_dynamic_mode) 7414 pr_info("Dynamic Preempt: voluntary\n"); 7415 break; 7416 7417 case preempt_dynamic_full: 7418 if (!klp_override) 7419 preempt_dynamic_disable(cond_resched); 7420 preempt_dynamic_disable(might_resched); 7421 preempt_dynamic_enable(preempt_schedule); 7422 preempt_dynamic_enable(preempt_schedule_notrace); 7423 preempt_dynamic_enable(irqentry_exit_cond_resched); 7424 if (mode != preempt_dynamic_mode) 7425 pr_info("Dynamic Preempt: full\n"); 7426 break; 7427 } 7428 7429 preempt_dynamic_mode = mode; 7430 } 7431 7432 void sched_dynamic_update(int mode) 7433 { 7434 mutex_lock(&sched_dynamic_mutex); 7435 __sched_dynamic_update(mode); 7436 mutex_unlock(&sched_dynamic_mutex); 7437 } 7438 7439 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7440 7441 static int klp_cond_resched(void) 7442 { 7443 __klp_sched_try_switch(); 7444 return __cond_resched(); 7445 } 7446 7447 void sched_dynamic_klp_enable(void) 7448 { 7449 mutex_lock(&sched_dynamic_mutex); 7450 7451 klp_override = true; 7452 static_call_update(cond_resched, klp_cond_resched); 7453 7454 mutex_unlock(&sched_dynamic_mutex); 7455 } 7456 7457 void sched_dynamic_klp_disable(void) 7458 { 7459 mutex_lock(&sched_dynamic_mutex); 7460 7461 klp_override = false; 7462 __sched_dynamic_update(preempt_dynamic_mode); 7463 7464 mutex_unlock(&sched_dynamic_mutex); 7465 } 7466 7467 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ 7468 7469 static int __init setup_preempt_mode(char *str) 7470 { 7471 int mode = sched_dynamic_mode(str); 7472 if (mode < 0) { 7473 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 7474 return 0; 7475 } 7476 7477 sched_dynamic_update(mode); 7478 return 1; 7479 } 7480 __setup("preempt=", setup_preempt_mode); 7481 7482 static void __init preempt_dynamic_init(void) 7483 { 7484 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 7485 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 7486 sched_dynamic_update(preempt_dynamic_none); 7487 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 7488 sched_dynamic_update(preempt_dynamic_voluntary); 7489 } else { 7490 /* Default static call setting, nothing to do */ 7491 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 7492 preempt_dynamic_mode = preempt_dynamic_full; 7493 pr_info("Dynamic Preempt: full\n"); 7494 } 7495 } 7496 } 7497 7498 #define PREEMPT_MODEL_ACCESSOR(mode) \ 7499 bool preempt_model_##mode(void) \ 7500 { \ 7501 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 7502 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 7503 } \ 7504 EXPORT_SYMBOL_GPL(preempt_model_##mode) 7505 7506 PREEMPT_MODEL_ACCESSOR(none); 7507 PREEMPT_MODEL_ACCESSOR(voluntary); 7508 PREEMPT_MODEL_ACCESSOR(full); 7509 7510 #else /* !CONFIG_PREEMPT_DYNAMIC: */ 7511 7512 static inline void preempt_dynamic_init(void) { } 7513 7514 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7515 7516 int io_schedule_prepare(void) 7517 { 7518 int old_iowait = current->in_iowait; 7519 7520 current->in_iowait = 1; 7521 blk_flush_plug(current->plug, true); 7522 return old_iowait; 7523 } 7524 7525 void io_schedule_finish(int token) 7526 { 7527 current->in_iowait = token; 7528 } 7529 7530 /* 7531 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7532 * that process accounting knows that this is a task in IO wait state. 7533 */ 7534 long __sched io_schedule_timeout(long timeout) 7535 { 7536 int token; 7537 long ret; 7538 7539 token = io_schedule_prepare(); 7540 ret = schedule_timeout(timeout); 7541 io_schedule_finish(token); 7542 7543 return ret; 7544 } 7545 EXPORT_SYMBOL(io_schedule_timeout); 7546 7547 void __sched io_schedule(void) 7548 { 7549 int token; 7550 7551 token = io_schedule_prepare(); 7552 schedule(); 7553 io_schedule_finish(token); 7554 } 7555 EXPORT_SYMBOL(io_schedule); 7556 7557 void sched_show_task(struct task_struct *p) 7558 { 7559 unsigned long free; 7560 int ppid; 7561 7562 if (!try_get_task_stack(p)) 7563 return; 7564 7565 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7566 7567 if (task_is_running(p)) 7568 pr_cont(" running task "); 7569 free = stack_not_used(p); 7570 ppid = 0; 7571 rcu_read_lock(); 7572 if (pid_alive(p)) 7573 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7574 rcu_read_unlock(); 7575 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n", 7576 free, task_pid_nr(p), task_tgid_nr(p), 7577 ppid, read_task_thread_flags(p)); 7578 7579 print_worker_info(KERN_INFO, p); 7580 print_stop_info(KERN_INFO, p); 7581 print_scx_info(KERN_INFO, p); 7582 show_stack(p, NULL, KERN_INFO); 7583 put_task_stack(p); 7584 } 7585 EXPORT_SYMBOL_GPL(sched_show_task); 7586 7587 static inline bool 7588 state_filter_match(unsigned long state_filter, struct task_struct *p) 7589 { 7590 unsigned int state = READ_ONCE(p->__state); 7591 7592 /* no filter, everything matches */ 7593 if (!state_filter) 7594 return true; 7595 7596 /* filter, but doesn't match */ 7597 if (!(state & state_filter)) 7598 return false; 7599 7600 /* 7601 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7602 * TASK_KILLABLE). 7603 */ 7604 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 7605 return false; 7606 7607 return true; 7608 } 7609 7610 7611 void show_state_filter(unsigned int state_filter) 7612 { 7613 struct task_struct *g, *p; 7614 7615 rcu_read_lock(); 7616 for_each_process_thread(g, p) { 7617 /* 7618 * reset the NMI-timeout, listing all files on a slow 7619 * console might take a lot of time: 7620 * Also, reset softlockup watchdogs on all CPUs, because 7621 * another CPU might be blocked waiting for us to process 7622 * an IPI. 7623 */ 7624 touch_nmi_watchdog(); 7625 touch_all_softlockup_watchdogs(); 7626 if (state_filter_match(state_filter, p)) 7627 sched_show_task(p); 7628 } 7629 7630 #ifdef CONFIG_SCHED_DEBUG 7631 if (!state_filter) 7632 sysrq_sched_debug_show(); 7633 #endif 7634 rcu_read_unlock(); 7635 /* 7636 * Only show locks if all tasks are dumped: 7637 */ 7638 if (!state_filter) 7639 debug_show_all_locks(); 7640 } 7641 7642 /** 7643 * init_idle - set up an idle thread for a given CPU 7644 * @idle: task in question 7645 * @cpu: CPU the idle task belongs to 7646 * 7647 * NOTE: this function does not set the idle thread's NEED_RESCHED 7648 * flag, to make booting more robust. 7649 */ 7650 void __init init_idle(struct task_struct *idle, int cpu) 7651 { 7652 #ifdef CONFIG_SMP 7653 struct affinity_context ac = (struct affinity_context) { 7654 .new_mask = cpumask_of(cpu), 7655 .flags = 0, 7656 }; 7657 #endif 7658 struct rq *rq = cpu_rq(cpu); 7659 unsigned long flags; 7660 7661 __sched_fork(0, idle); 7662 7663 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7664 raw_spin_rq_lock(rq); 7665 7666 idle->__state = TASK_RUNNING; 7667 idle->se.exec_start = sched_clock(); 7668 /* 7669 * PF_KTHREAD should already be set at this point; regardless, make it 7670 * look like a proper per-CPU kthread. 7671 */ 7672 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 7673 kthread_set_per_cpu(idle, cpu); 7674 7675 #ifdef CONFIG_SMP 7676 /* 7677 * It's possible that init_idle() gets called multiple times on a task, 7678 * in that case do_set_cpus_allowed() will not do the right thing. 7679 * 7680 * And since this is boot we can forgo the serialization. 7681 */ 7682 set_cpus_allowed_common(idle, &ac); 7683 #endif 7684 /* 7685 * We're having a chicken and egg problem, even though we are 7686 * holding rq->lock, the CPU isn't yet set to this CPU so the 7687 * lockdep check in task_group() will fail. 7688 * 7689 * Similar case to sched_fork(). / Alternatively we could 7690 * use task_rq_lock() here and obtain the other rq->lock. 7691 * 7692 * Silence PROVE_RCU 7693 */ 7694 rcu_read_lock(); 7695 __set_task_cpu(idle, cpu); 7696 rcu_read_unlock(); 7697 7698 rq->idle = idle; 7699 rcu_assign_pointer(rq->curr, idle); 7700 idle->on_rq = TASK_ON_RQ_QUEUED; 7701 #ifdef CONFIG_SMP 7702 idle->on_cpu = 1; 7703 #endif 7704 raw_spin_rq_unlock(rq); 7705 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7706 7707 /* Set the preempt count _outside_ the spinlocks! */ 7708 init_idle_preempt_count(idle, cpu); 7709 7710 /* 7711 * The idle tasks have their own, simple scheduling class: 7712 */ 7713 idle->sched_class = &idle_sched_class; 7714 ftrace_graph_init_idle_task(idle, cpu); 7715 vtime_init_idle(idle, cpu); 7716 #ifdef CONFIG_SMP 7717 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7718 #endif 7719 } 7720 7721 #ifdef CONFIG_SMP 7722 7723 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7724 const struct cpumask *trial) 7725 { 7726 int ret = 1; 7727 7728 if (cpumask_empty(cur)) 7729 return ret; 7730 7731 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7732 7733 return ret; 7734 } 7735 7736 int task_can_attach(struct task_struct *p) 7737 { 7738 int ret = 0; 7739 7740 /* 7741 * Kthreads which disallow setaffinity shouldn't be moved 7742 * to a new cpuset; we don't want to change their CPU 7743 * affinity and isolating such threads by their set of 7744 * allowed nodes is unnecessary. Thus, cpusets are not 7745 * applicable for such threads. This prevents checking for 7746 * success of set_cpus_allowed_ptr() on all attached tasks 7747 * before cpus_mask may be changed. 7748 */ 7749 if (p->flags & PF_NO_SETAFFINITY) 7750 ret = -EINVAL; 7751 7752 return ret; 7753 } 7754 7755 bool sched_smp_initialized __read_mostly; 7756 7757 #ifdef CONFIG_NUMA_BALANCING 7758 /* Migrate current task p to target_cpu */ 7759 int migrate_task_to(struct task_struct *p, int target_cpu) 7760 { 7761 struct migration_arg arg = { p, target_cpu }; 7762 int curr_cpu = task_cpu(p); 7763 7764 if (curr_cpu == target_cpu) 7765 return 0; 7766 7767 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7768 return -EINVAL; 7769 7770 /* TODO: This is not properly updating schedstats */ 7771 7772 trace_sched_move_numa(p, curr_cpu, target_cpu); 7773 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7774 } 7775 7776 /* 7777 * Requeue a task on a given node and accurately track the number of NUMA 7778 * tasks on the runqueues 7779 */ 7780 void sched_setnuma(struct task_struct *p, int nid) 7781 { 7782 bool queued, running; 7783 struct rq_flags rf; 7784 struct rq *rq; 7785 7786 rq = task_rq_lock(p, &rf); 7787 queued = task_on_rq_queued(p); 7788 running = task_current(rq, p); 7789 7790 if (queued) 7791 dequeue_task(rq, p, DEQUEUE_SAVE); 7792 if (running) 7793 put_prev_task(rq, p); 7794 7795 p->numa_preferred_nid = nid; 7796 7797 if (queued) 7798 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7799 if (running) 7800 set_next_task(rq, p); 7801 task_rq_unlock(rq, p, &rf); 7802 } 7803 #endif /* CONFIG_NUMA_BALANCING */ 7804 7805 #ifdef CONFIG_HOTPLUG_CPU 7806 /* 7807 * Ensure that the idle task is using init_mm right before its CPU goes 7808 * offline. 7809 */ 7810 void idle_task_exit(void) 7811 { 7812 struct mm_struct *mm = current->active_mm; 7813 7814 BUG_ON(cpu_online(smp_processor_id())); 7815 BUG_ON(current != this_rq()->idle); 7816 7817 if (mm != &init_mm) { 7818 switch_mm(mm, &init_mm, current); 7819 finish_arch_post_lock_switch(); 7820 } 7821 7822 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 7823 } 7824 7825 static int __balance_push_cpu_stop(void *arg) 7826 { 7827 struct task_struct *p = arg; 7828 struct rq *rq = this_rq(); 7829 struct rq_flags rf; 7830 int cpu; 7831 7832 raw_spin_lock_irq(&p->pi_lock); 7833 rq_lock(rq, &rf); 7834 7835 update_rq_clock(rq); 7836 7837 if (task_rq(p) == rq && task_on_rq_queued(p)) { 7838 cpu = select_fallback_rq(rq->cpu, p); 7839 rq = __migrate_task(rq, &rf, p, cpu); 7840 } 7841 7842 rq_unlock(rq, &rf); 7843 raw_spin_unlock_irq(&p->pi_lock); 7844 7845 put_task_struct(p); 7846 7847 return 0; 7848 } 7849 7850 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 7851 7852 /* 7853 * Ensure we only run per-cpu kthreads once the CPU goes !active. 7854 * 7855 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 7856 * effective when the hotplug motion is down. 7857 */ 7858 static void balance_push(struct rq *rq) 7859 { 7860 struct task_struct *push_task = rq->curr; 7861 7862 lockdep_assert_rq_held(rq); 7863 7864 /* 7865 * Ensure the thing is persistent until balance_push_set(.on = false); 7866 */ 7867 rq->balance_callback = &balance_push_callback; 7868 7869 /* 7870 * Only active while going offline and when invoked on the outgoing 7871 * CPU. 7872 */ 7873 if (!cpu_dying(rq->cpu) || rq != this_rq()) 7874 return; 7875 7876 /* 7877 * Both the cpu-hotplug and stop task are in this case and are 7878 * required to complete the hotplug process. 7879 */ 7880 if (kthread_is_per_cpu(push_task) || 7881 is_migration_disabled(push_task)) { 7882 7883 /* 7884 * If this is the idle task on the outgoing CPU try to wake 7885 * up the hotplug control thread which might wait for the 7886 * last task to vanish. The rcuwait_active() check is 7887 * accurate here because the waiter is pinned on this CPU 7888 * and can't obviously be running in parallel. 7889 * 7890 * On RT kernels this also has to check whether there are 7891 * pinned and scheduled out tasks on the runqueue. They 7892 * need to leave the migrate disabled section first. 7893 */ 7894 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 7895 rcuwait_active(&rq->hotplug_wait)) { 7896 raw_spin_rq_unlock(rq); 7897 rcuwait_wake_up(&rq->hotplug_wait); 7898 raw_spin_rq_lock(rq); 7899 } 7900 return; 7901 } 7902 7903 get_task_struct(push_task); 7904 /* 7905 * Temporarily drop rq->lock such that we can wake-up the stop task. 7906 * Both preemption and IRQs are still disabled. 7907 */ 7908 preempt_disable(); 7909 raw_spin_rq_unlock(rq); 7910 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 7911 this_cpu_ptr(&push_work)); 7912 preempt_enable(); 7913 /* 7914 * At this point need_resched() is true and we'll take the loop in 7915 * schedule(). The next pick is obviously going to be the stop task 7916 * which kthread_is_per_cpu() and will push this task away. 7917 */ 7918 raw_spin_rq_lock(rq); 7919 } 7920 7921 static void balance_push_set(int cpu, bool on) 7922 { 7923 struct rq *rq = cpu_rq(cpu); 7924 struct rq_flags rf; 7925 7926 rq_lock_irqsave(rq, &rf); 7927 if (on) { 7928 WARN_ON_ONCE(rq->balance_callback); 7929 rq->balance_callback = &balance_push_callback; 7930 } else if (rq->balance_callback == &balance_push_callback) { 7931 rq->balance_callback = NULL; 7932 } 7933 rq_unlock_irqrestore(rq, &rf); 7934 } 7935 7936 /* 7937 * Invoked from a CPUs hotplug control thread after the CPU has been marked 7938 * inactive. All tasks which are not per CPU kernel threads are either 7939 * pushed off this CPU now via balance_push() or placed on a different CPU 7940 * during wakeup. Wait until the CPU is quiescent. 7941 */ 7942 static void balance_hotplug_wait(void) 7943 { 7944 struct rq *rq = this_rq(); 7945 7946 rcuwait_wait_event(&rq->hotplug_wait, 7947 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 7948 TASK_UNINTERRUPTIBLE); 7949 } 7950 7951 #else 7952 7953 static inline void balance_push(struct rq *rq) 7954 { 7955 } 7956 7957 static inline void balance_push_set(int cpu, bool on) 7958 { 7959 } 7960 7961 static inline void balance_hotplug_wait(void) 7962 { 7963 } 7964 7965 #endif /* CONFIG_HOTPLUG_CPU */ 7966 7967 void set_rq_online(struct rq *rq) 7968 { 7969 if (!rq->online) { 7970 const struct sched_class *class; 7971 7972 cpumask_set_cpu(rq->cpu, rq->rd->online); 7973 rq->online = 1; 7974 7975 for_each_class(class) { 7976 if (class->rq_online) 7977 class->rq_online(rq); 7978 } 7979 } 7980 } 7981 7982 void set_rq_offline(struct rq *rq) 7983 { 7984 if (rq->online) { 7985 const struct sched_class *class; 7986 7987 update_rq_clock(rq); 7988 for_each_class(class) { 7989 if (class->rq_offline) 7990 class->rq_offline(rq); 7991 } 7992 7993 cpumask_clear_cpu(rq->cpu, rq->rd->online); 7994 rq->online = 0; 7995 } 7996 } 7997 7998 static inline void sched_set_rq_online(struct rq *rq, int cpu) 7999 { 8000 struct rq_flags rf; 8001 8002 rq_lock_irqsave(rq, &rf); 8003 if (rq->rd) { 8004 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8005 set_rq_online(rq); 8006 } 8007 rq_unlock_irqrestore(rq, &rf); 8008 } 8009 8010 static inline void sched_set_rq_offline(struct rq *rq, int cpu) 8011 { 8012 struct rq_flags rf; 8013 8014 rq_lock_irqsave(rq, &rf); 8015 if (rq->rd) { 8016 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8017 set_rq_offline(rq); 8018 } 8019 rq_unlock_irqrestore(rq, &rf); 8020 } 8021 8022 /* 8023 * used to mark begin/end of suspend/resume: 8024 */ 8025 static int num_cpus_frozen; 8026 8027 /* 8028 * Update cpusets according to cpu_active mask. If cpusets are 8029 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 8030 * around partition_sched_domains(). 8031 * 8032 * If we come here as part of a suspend/resume, don't touch cpusets because we 8033 * want to restore it back to its original state upon resume anyway. 8034 */ 8035 static void cpuset_cpu_active(void) 8036 { 8037 if (cpuhp_tasks_frozen) { 8038 /* 8039 * num_cpus_frozen tracks how many CPUs are involved in suspend 8040 * resume sequence. As long as this is not the last online 8041 * operation in the resume sequence, just build a single sched 8042 * domain, ignoring cpusets. 8043 */ 8044 partition_sched_domains(1, NULL, NULL); 8045 if (--num_cpus_frozen) 8046 return; 8047 /* 8048 * This is the last CPU online operation. So fall through and 8049 * restore the original sched domains by considering the 8050 * cpuset configurations. 8051 */ 8052 cpuset_force_rebuild(); 8053 } 8054 cpuset_update_active_cpus(); 8055 } 8056 8057 static int cpuset_cpu_inactive(unsigned int cpu) 8058 { 8059 if (!cpuhp_tasks_frozen) { 8060 int ret = dl_bw_check_overflow(cpu); 8061 8062 if (ret) 8063 return ret; 8064 cpuset_update_active_cpus(); 8065 } else { 8066 num_cpus_frozen++; 8067 partition_sched_domains(1, NULL, NULL); 8068 } 8069 return 0; 8070 } 8071 8072 static inline void sched_smt_present_inc(int cpu) 8073 { 8074 #ifdef CONFIG_SCHED_SMT 8075 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8076 static_branch_inc_cpuslocked(&sched_smt_present); 8077 #endif 8078 } 8079 8080 static inline void sched_smt_present_dec(int cpu) 8081 { 8082 #ifdef CONFIG_SCHED_SMT 8083 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8084 static_branch_dec_cpuslocked(&sched_smt_present); 8085 #endif 8086 } 8087 8088 int sched_cpu_activate(unsigned int cpu) 8089 { 8090 struct rq *rq = cpu_rq(cpu); 8091 8092 /* 8093 * Clear the balance_push callback and prepare to schedule 8094 * regular tasks. 8095 */ 8096 balance_push_set(cpu, false); 8097 8098 /* 8099 * When going up, increment the number of cores with SMT present. 8100 */ 8101 sched_smt_present_inc(cpu); 8102 set_cpu_active(cpu, true); 8103 8104 if (sched_smp_initialized) { 8105 sched_update_numa(cpu, true); 8106 sched_domains_numa_masks_set(cpu); 8107 cpuset_cpu_active(); 8108 } 8109 8110 scx_rq_activate(rq); 8111 8112 /* 8113 * Put the rq online, if not already. This happens: 8114 * 8115 * 1) In the early boot process, because we build the real domains 8116 * after all CPUs have been brought up. 8117 * 8118 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 8119 * domains. 8120 */ 8121 sched_set_rq_online(rq, cpu); 8122 8123 return 0; 8124 } 8125 8126 int sched_cpu_deactivate(unsigned int cpu) 8127 { 8128 struct rq *rq = cpu_rq(cpu); 8129 int ret; 8130 8131 /* 8132 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 8133 * load balancing when not active 8134 */ 8135 nohz_balance_exit_idle(rq); 8136 8137 set_cpu_active(cpu, false); 8138 8139 /* 8140 * From this point forward, this CPU will refuse to run any task that 8141 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8142 * push those tasks away until this gets cleared, see 8143 * sched_cpu_dying(). 8144 */ 8145 balance_push_set(cpu, true); 8146 8147 /* 8148 * We've cleared cpu_active_mask / set balance_push, wait for all 8149 * preempt-disabled and RCU users of this state to go away such that 8150 * all new such users will observe it. 8151 * 8152 * Specifically, we rely on ttwu to no longer target this CPU, see 8153 * ttwu_queue_cond() and is_cpu_allowed(). 8154 * 8155 * Do sync before park smpboot threads to take care the RCU boost case. 8156 */ 8157 synchronize_rcu(); 8158 8159 sched_set_rq_offline(rq, cpu); 8160 8161 scx_rq_deactivate(rq); 8162 8163 /* 8164 * When going down, decrement the number of cores with SMT present. 8165 */ 8166 sched_smt_present_dec(cpu); 8167 8168 #ifdef CONFIG_SCHED_SMT 8169 sched_core_cpu_deactivate(cpu); 8170 #endif 8171 8172 if (!sched_smp_initialized) 8173 return 0; 8174 8175 sched_update_numa(cpu, false); 8176 ret = cpuset_cpu_inactive(cpu); 8177 if (ret) { 8178 sched_smt_present_inc(cpu); 8179 sched_set_rq_online(rq, cpu); 8180 balance_push_set(cpu, false); 8181 set_cpu_active(cpu, true); 8182 sched_update_numa(cpu, true); 8183 return ret; 8184 } 8185 sched_domains_numa_masks_clear(cpu); 8186 return 0; 8187 } 8188 8189 static void sched_rq_cpu_starting(unsigned int cpu) 8190 { 8191 struct rq *rq = cpu_rq(cpu); 8192 8193 rq->calc_load_update = calc_load_update; 8194 update_max_interval(); 8195 } 8196 8197 int sched_cpu_starting(unsigned int cpu) 8198 { 8199 sched_core_cpu_starting(cpu); 8200 sched_rq_cpu_starting(cpu); 8201 sched_tick_start(cpu); 8202 return 0; 8203 } 8204 8205 #ifdef CONFIG_HOTPLUG_CPU 8206 8207 /* 8208 * Invoked immediately before the stopper thread is invoked to bring the 8209 * CPU down completely. At this point all per CPU kthreads except the 8210 * hotplug thread (current) and the stopper thread (inactive) have been 8211 * either parked or have been unbound from the outgoing CPU. Ensure that 8212 * any of those which might be on the way out are gone. 8213 * 8214 * If after this point a bound task is being woken on this CPU then the 8215 * responsible hotplug callback has failed to do it's job. 8216 * sched_cpu_dying() will catch it with the appropriate fireworks. 8217 */ 8218 int sched_cpu_wait_empty(unsigned int cpu) 8219 { 8220 balance_hotplug_wait(); 8221 return 0; 8222 } 8223 8224 /* 8225 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8226 * might have. Called from the CPU stopper task after ensuring that the 8227 * stopper is the last running task on the CPU, so nr_active count is 8228 * stable. We need to take the tear-down thread which is calling this into 8229 * account, so we hand in adjust = 1 to the load calculation. 8230 * 8231 * Also see the comment "Global load-average calculations". 8232 */ 8233 static void calc_load_migrate(struct rq *rq) 8234 { 8235 long delta = calc_load_fold_active(rq, 1); 8236 8237 if (delta) 8238 atomic_long_add(delta, &calc_load_tasks); 8239 } 8240 8241 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8242 { 8243 struct task_struct *g, *p; 8244 int cpu = cpu_of(rq); 8245 8246 lockdep_assert_rq_held(rq); 8247 8248 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8249 for_each_process_thread(g, p) { 8250 if (task_cpu(p) != cpu) 8251 continue; 8252 8253 if (!task_on_rq_queued(p)) 8254 continue; 8255 8256 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8257 } 8258 } 8259 8260 int sched_cpu_dying(unsigned int cpu) 8261 { 8262 struct rq *rq = cpu_rq(cpu); 8263 struct rq_flags rf; 8264 8265 /* Handle pending wakeups and then migrate everything off */ 8266 sched_tick_stop(cpu); 8267 8268 rq_lock_irqsave(rq, &rf); 8269 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8270 WARN(true, "Dying CPU not properly vacated!"); 8271 dump_rq_tasks(rq, KERN_WARNING); 8272 } 8273 rq_unlock_irqrestore(rq, &rf); 8274 8275 calc_load_migrate(rq); 8276 update_max_interval(); 8277 hrtick_clear(rq); 8278 sched_core_cpu_dying(cpu); 8279 return 0; 8280 } 8281 #endif 8282 8283 void __init sched_init_smp(void) 8284 { 8285 sched_init_numa(NUMA_NO_NODE); 8286 8287 /* 8288 * There's no userspace yet to cause hotplug operations; hence all the 8289 * CPU masks are stable and all blatant races in the below code cannot 8290 * happen. 8291 */ 8292 mutex_lock(&sched_domains_mutex); 8293 sched_init_domains(cpu_active_mask); 8294 mutex_unlock(&sched_domains_mutex); 8295 8296 /* Move init over to a non-isolated CPU */ 8297 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 8298 BUG(); 8299 current->flags &= ~PF_NO_SETAFFINITY; 8300 sched_init_granularity(); 8301 8302 init_sched_rt_class(); 8303 init_sched_dl_class(); 8304 8305 sched_smp_initialized = true; 8306 } 8307 8308 static int __init migration_init(void) 8309 { 8310 sched_cpu_starting(smp_processor_id()); 8311 return 0; 8312 } 8313 early_initcall(migration_init); 8314 8315 #else 8316 void __init sched_init_smp(void) 8317 { 8318 sched_init_granularity(); 8319 } 8320 #endif /* CONFIG_SMP */ 8321 8322 int in_sched_functions(unsigned long addr) 8323 { 8324 return in_lock_functions(addr) || 8325 (addr >= (unsigned long)__sched_text_start 8326 && addr < (unsigned long)__sched_text_end); 8327 } 8328 8329 #ifdef CONFIG_CGROUP_SCHED 8330 /* 8331 * Default task group. 8332 * Every task in system belongs to this group at bootup. 8333 */ 8334 struct task_group root_task_group; 8335 LIST_HEAD(task_groups); 8336 8337 /* Cacheline aligned slab cache for task_group */ 8338 static struct kmem_cache *task_group_cache __ro_after_init; 8339 #endif 8340 8341 void __init sched_init(void) 8342 { 8343 unsigned long ptr = 0; 8344 int i; 8345 8346 /* Make sure the linker didn't screw up */ 8347 #ifdef CONFIG_SMP 8348 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); 8349 #endif 8350 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); 8351 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); 8352 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); 8353 #ifdef CONFIG_SCHED_CLASS_EXT 8354 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); 8355 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); 8356 #endif 8357 8358 wait_bit_init(); 8359 8360 #ifdef CONFIG_FAIR_GROUP_SCHED 8361 ptr += 2 * nr_cpu_ids * sizeof(void **); 8362 #endif 8363 #ifdef CONFIG_RT_GROUP_SCHED 8364 ptr += 2 * nr_cpu_ids * sizeof(void **); 8365 #endif 8366 if (ptr) { 8367 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8368 8369 #ifdef CONFIG_FAIR_GROUP_SCHED 8370 root_task_group.se = (struct sched_entity **)ptr; 8371 ptr += nr_cpu_ids * sizeof(void **); 8372 8373 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8374 ptr += nr_cpu_ids * sizeof(void **); 8375 8376 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8377 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 8378 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8379 #ifdef CONFIG_EXT_GROUP_SCHED 8380 root_task_group.scx_weight = CGROUP_WEIGHT_DFL; 8381 #endif /* CONFIG_EXT_GROUP_SCHED */ 8382 #ifdef CONFIG_RT_GROUP_SCHED 8383 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8384 ptr += nr_cpu_ids * sizeof(void **); 8385 8386 root_task_group.rt_rq = (struct rt_rq **)ptr; 8387 ptr += nr_cpu_ids * sizeof(void **); 8388 8389 #endif /* CONFIG_RT_GROUP_SCHED */ 8390 } 8391 8392 #ifdef CONFIG_SMP 8393 init_defrootdomain(); 8394 #endif 8395 8396 #ifdef CONFIG_RT_GROUP_SCHED 8397 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8398 global_rt_period(), global_rt_runtime()); 8399 #endif /* CONFIG_RT_GROUP_SCHED */ 8400 8401 #ifdef CONFIG_CGROUP_SCHED 8402 task_group_cache = KMEM_CACHE(task_group, 0); 8403 8404 list_add(&root_task_group.list, &task_groups); 8405 INIT_LIST_HEAD(&root_task_group.children); 8406 INIT_LIST_HEAD(&root_task_group.siblings); 8407 autogroup_init(&init_task); 8408 #endif /* CONFIG_CGROUP_SCHED */ 8409 8410 for_each_possible_cpu(i) { 8411 struct rq *rq; 8412 8413 rq = cpu_rq(i); 8414 raw_spin_lock_init(&rq->__lock); 8415 rq->nr_running = 0; 8416 rq->calc_load_active = 0; 8417 rq->calc_load_update = jiffies + LOAD_FREQ; 8418 init_cfs_rq(&rq->cfs); 8419 init_rt_rq(&rq->rt); 8420 init_dl_rq(&rq->dl); 8421 #ifdef CONFIG_FAIR_GROUP_SCHED 8422 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8423 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8424 /* 8425 * How much CPU bandwidth does root_task_group get? 8426 * 8427 * In case of task-groups formed through the cgroup filesystem, it 8428 * gets 100% of the CPU resources in the system. This overall 8429 * system CPU resource is divided among the tasks of 8430 * root_task_group and its child task-groups in a fair manner, 8431 * based on each entity's (task or task-group's) weight 8432 * (se->load.weight). 8433 * 8434 * In other words, if root_task_group has 10 tasks of weight 8435 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8436 * then A0's share of the CPU resource is: 8437 * 8438 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8439 * 8440 * We achieve this by letting root_task_group's tasks sit 8441 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8442 */ 8443 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8444 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8445 8446 #ifdef CONFIG_RT_GROUP_SCHED 8447 /* 8448 * This is required for init cpu because rt.c:__enable_runtime() 8449 * starts working after scheduler_running, which is not the case 8450 * yet. 8451 */ 8452 rq->rt.rt_runtime = global_rt_runtime(); 8453 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8454 #endif 8455 #ifdef CONFIG_SMP 8456 rq->sd = NULL; 8457 rq->rd = NULL; 8458 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 8459 rq->balance_callback = &balance_push_callback; 8460 rq->active_balance = 0; 8461 rq->next_balance = jiffies; 8462 rq->push_cpu = 0; 8463 rq->cpu = i; 8464 rq->online = 0; 8465 rq->idle_stamp = 0; 8466 rq->avg_idle = 2*sysctl_sched_migration_cost; 8467 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8468 8469 INIT_LIST_HEAD(&rq->cfs_tasks); 8470 8471 rq_attach_root(rq, &def_root_domain); 8472 #ifdef CONFIG_NO_HZ_COMMON 8473 rq->last_blocked_load_update_tick = jiffies; 8474 atomic_set(&rq->nohz_flags, 0); 8475 8476 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8477 #endif 8478 #ifdef CONFIG_HOTPLUG_CPU 8479 rcuwait_init(&rq->hotplug_wait); 8480 #endif 8481 #endif /* CONFIG_SMP */ 8482 hrtick_rq_init(rq); 8483 atomic_set(&rq->nr_iowait, 0); 8484 fair_server_init(rq); 8485 8486 #ifdef CONFIG_SCHED_CORE 8487 rq->core = rq; 8488 rq->core_pick = NULL; 8489 rq->core_dl_server = NULL; 8490 rq->core_enabled = 0; 8491 rq->core_tree = RB_ROOT; 8492 rq->core_forceidle_count = 0; 8493 rq->core_forceidle_occupation = 0; 8494 rq->core_forceidle_start = 0; 8495 8496 rq->core_cookie = 0UL; 8497 #endif 8498 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 8499 } 8500 8501 set_load_weight(&init_task, false); 8502 init_task.se.slice = sysctl_sched_base_slice, 8503 8504 /* 8505 * The boot idle thread does lazy MMU switching as well: 8506 */ 8507 mmgrab_lazy_tlb(&init_mm); 8508 enter_lazy_tlb(&init_mm, current); 8509 8510 /* 8511 * The idle task doesn't need the kthread struct to function, but it 8512 * is dressed up as a per-CPU kthread and thus needs to play the part 8513 * if we want to avoid special-casing it in code that deals with per-CPU 8514 * kthreads. 8515 */ 8516 WARN_ON(!set_kthread_struct(current)); 8517 8518 /* 8519 * Make us the idle thread. Technically, schedule() should not be 8520 * called from this thread, however somewhere below it might be, 8521 * but because we are the idle thread, we just pick up running again 8522 * when this runqueue becomes "idle". 8523 */ 8524 init_idle(current, smp_processor_id()); 8525 8526 calc_load_update = jiffies + LOAD_FREQ; 8527 8528 #ifdef CONFIG_SMP 8529 idle_thread_set_boot_cpu(); 8530 balance_push_set(smp_processor_id(), false); 8531 #endif 8532 init_sched_fair_class(); 8533 init_sched_ext_class(); 8534 8535 psi_init(); 8536 8537 init_uclamp(); 8538 8539 preempt_dynamic_init(); 8540 8541 scheduler_running = 1; 8542 } 8543 8544 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8545 8546 void __might_sleep(const char *file, int line) 8547 { 8548 unsigned int state = get_current_state(); 8549 /* 8550 * Blocking primitives will set (and therefore destroy) current->state, 8551 * since we will exit with TASK_RUNNING make sure we enter with it, 8552 * otherwise we will destroy state. 8553 */ 8554 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 8555 "do not call blocking ops when !TASK_RUNNING; " 8556 "state=%x set at [<%p>] %pS\n", state, 8557 (void *)current->task_state_change, 8558 (void *)current->task_state_change); 8559 8560 __might_resched(file, line, 0); 8561 } 8562 EXPORT_SYMBOL(__might_sleep); 8563 8564 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 8565 { 8566 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 8567 return; 8568 8569 if (preempt_count() == preempt_offset) 8570 return; 8571 8572 pr_err("Preemption disabled at:"); 8573 print_ip_sym(KERN_ERR, ip); 8574 } 8575 8576 static inline bool resched_offsets_ok(unsigned int offsets) 8577 { 8578 unsigned int nested = preempt_count(); 8579 8580 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 8581 8582 return nested == offsets; 8583 } 8584 8585 void __might_resched(const char *file, int line, unsigned int offsets) 8586 { 8587 /* Ratelimiting timestamp: */ 8588 static unsigned long prev_jiffy; 8589 8590 unsigned long preempt_disable_ip; 8591 8592 /* WARN_ON_ONCE() by default, no rate limit required: */ 8593 rcu_sleep_check(); 8594 8595 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 8596 !is_idle_task(current) && !current->non_block_count) || 8597 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8598 oops_in_progress) 8599 return; 8600 8601 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8602 return; 8603 prev_jiffy = jiffies; 8604 8605 /* Save this before calling printk(), since that will clobber it: */ 8606 preempt_disable_ip = get_preempt_disable_ip(current); 8607 8608 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 8609 file, line); 8610 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8611 in_atomic(), irqs_disabled(), current->non_block_count, 8612 current->pid, current->comm); 8613 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 8614 offsets & MIGHT_RESCHED_PREEMPT_MASK); 8615 8616 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 8617 pr_err("RCU nest depth: %d, expected: %u\n", 8618 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 8619 } 8620 8621 if (task_stack_end_corrupted(current)) 8622 pr_emerg("Thread overran stack, or stack corrupted\n"); 8623 8624 debug_show_held_locks(current); 8625 if (irqs_disabled()) 8626 print_irqtrace_events(current); 8627 8628 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 8629 preempt_disable_ip); 8630 8631 dump_stack(); 8632 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8633 } 8634 EXPORT_SYMBOL(__might_resched); 8635 8636 void __cant_sleep(const char *file, int line, int preempt_offset) 8637 { 8638 static unsigned long prev_jiffy; 8639 8640 if (irqs_disabled()) 8641 return; 8642 8643 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8644 return; 8645 8646 if (preempt_count() > preempt_offset) 8647 return; 8648 8649 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8650 return; 8651 prev_jiffy = jiffies; 8652 8653 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8654 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8655 in_atomic(), irqs_disabled(), 8656 current->pid, current->comm); 8657 8658 debug_show_held_locks(current); 8659 dump_stack(); 8660 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8661 } 8662 EXPORT_SYMBOL_GPL(__cant_sleep); 8663 8664 #ifdef CONFIG_SMP 8665 void __cant_migrate(const char *file, int line) 8666 { 8667 static unsigned long prev_jiffy; 8668 8669 if (irqs_disabled()) 8670 return; 8671 8672 if (is_migration_disabled(current)) 8673 return; 8674 8675 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8676 return; 8677 8678 if (preempt_count() > 0) 8679 return; 8680 8681 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8682 return; 8683 prev_jiffy = jiffies; 8684 8685 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8686 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8687 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8688 current->pid, current->comm); 8689 8690 debug_show_held_locks(current); 8691 dump_stack(); 8692 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8693 } 8694 EXPORT_SYMBOL_GPL(__cant_migrate); 8695 #endif 8696 #endif 8697 8698 #ifdef CONFIG_MAGIC_SYSRQ 8699 void normalize_rt_tasks(void) 8700 { 8701 struct task_struct *g, *p; 8702 struct sched_attr attr = { 8703 .sched_policy = SCHED_NORMAL, 8704 }; 8705 8706 read_lock(&tasklist_lock); 8707 for_each_process_thread(g, p) { 8708 /* 8709 * Only normalize user tasks: 8710 */ 8711 if (p->flags & PF_KTHREAD) 8712 continue; 8713 8714 p->se.exec_start = 0; 8715 schedstat_set(p->stats.wait_start, 0); 8716 schedstat_set(p->stats.sleep_start, 0); 8717 schedstat_set(p->stats.block_start, 0); 8718 8719 if (!rt_or_dl_task(p)) { 8720 /* 8721 * Renice negative nice level userspace 8722 * tasks back to 0: 8723 */ 8724 if (task_nice(p) < 0) 8725 set_user_nice(p, 0); 8726 continue; 8727 } 8728 8729 __sched_setscheduler(p, &attr, false, false); 8730 } 8731 read_unlock(&tasklist_lock); 8732 } 8733 8734 #endif /* CONFIG_MAGIC_SYSRQ */ 8735 8736 #if defined(CONFIG_KGDB_KDB) 8737 /* 8738 * These functions are only useful for KDB. 8739 * 8740 * They can only be called when the whole system has been 8741 * stopped - every CPU needs to be quiescent, and no scheduling 8742 * activity can take place. Using them for anything else would 8743 * be a serious bug, and as a result, they aren't even visible 8744 * under any other configuration. 8745 */ 8746 8747 /** 8748 * curr_task - return the current task for a given CPU. 8749 * @cpu: the processor in question. 8750 * 8751 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8752 * 8753 * Return: The current task for @cpu. 8754 */ 8755 struct task_struct *curr_task(int cpu) 8756 { 8757 return cpu_curr(cpu); 8758 } 8759 8760 #endif /* defined(CONFIG_KGDB_KDB) */ 8761 8762 #ifdef CONFIG_CGROUP_SCHED 8763 /* task_group_lock serializes the addition/removal of task groups */ 8764 static DEFINE_SPINLOCK(task_group_lock); 8765 8766 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8767 struct task_group *parent) 8768 { 8769 #ifdef CONFIG_UCLAMP_TASK_GROUP 8770 enum uclamp_id clamp_id; 8771 8772 for_each_clamp_id(clamp_id) { 8773 uclamp_se_set(&tg->uclamp_req[clamp_id], 8774 uclamp_none(clamp_id), false); 8775 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8776 } 8777 #endif 8778 } 8779 8780 static void sched_free_group(struct task_group *tg) 8781 { 8782 free_fair_sched_group(tg); 8783 free_rt_sched_group(tg); 8784 autogroup_free(tg); 8785 kmem_cache_free(task_group_cache, tg); 8786 } 8787 8788 static void sched_free_group_rcu(struct rcu_head *rcu) 8789 { 8790 sched_free_group(container_of(rcu, struct task_group, rcu)); 8791 } 8792 8793 static void sched_unregister_group(struct task_group *tg) 8794 { 8795 unregister_fair_sched_group(tg); 8796 unregister_rt_sched_group(tg); 8797 /* 8798 * We have to wait for yet another RCU grace period to expire, as 8799 * print_cfs_stats() might run concurrently. 8800 */ 8801 call_rcu(&tg->rcu, sched_free_group_rcu); 8802 } 8803 8804 /* allocate runqueue etc for a new task group */ 8805 struct task_group *sched_create_group(struct task_group *parent) 8806 { 8807 struct task_group *tg; 8808 8809 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 8810 if (!tg) 8811 return ERR_PTR(-ENOMEM); 8812 8813 if (!alloc_fair_sched_group(tg, parent)) 8814 goto err; 8815 8816 if (!alloc_rt_sched_group(tg, parent)) 8817 goto err; 8818 8819 scx_group_set_weight(tg, CGROUP_WEIGHT_DFL); 8820 alloc_uclamp_sched_group(tg, parent); 8821 8822 return tg; 8823 8824 err: 8825 sched_free_group(tg); 8826 return ERR_PTR(-ENOMEM); 8827 } 8828 8829 void sched_online_group(struct task_group *tg, struct task_group *parent) 8830 { 8831 unsigned long flags; 8832 8833 spin_lock_irqsave(&task_group_lock, flags); 8834 list_add_rcu(&tg->list, &task_groups); 8835 8836 /* Root should already exist: */ 8837 WARN_ON(!parent); 8838 8839 tg->parent = parent; 8840 INIT_LIST_HEAD(&tg->children); 8841 list_add_rcu(&tg->siblings, &parent->children); 8842 spin_unlock_irqrestore(&task_group_lock, flags); 8843 8844 online_fair_sched_group(tg); 8845 } 8846 8847 /* RCU callback to free various structures associated with a task group */ 8848 static void sched_unregister_group_rcu(struct rcu_head *rhp) 8849 { 8850 /* Now it should be safe to free those cfs_rqs: */ 8851 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 8852 } 8853 8854 void sched_destroy_group(struct task_group *tg) 8855 { 8856 /* Wait for possible concurrent references to cfs_rqs complete: */ 8857 call_rcu(&tg->rcu, sched_unregister_group_rcu); 8858 } 8859 8860 void sched_release_group(struct task_group *tg) 8861 { 8862 unsigned long flags; 8863 8864 /* 8865 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 8866 * sched_cfs_period_timer()). 8867 * 8868 * For this to be effective, we have to wait for all pending users of 8869 * this task group to leave their RCU critical section to ensure no new 8870 * user will see our dying task group any more. Specifically ensure 8871 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 8872 * 8873 * We therefore defer calling unregister_fair_sched_group() to 8874 * sched_unregister_group() which is guarantied to get called only after the 8875 * current RCU grace period has expired. 8876 */ 8877 spin_lock_irqsave(&task_group_lock, flags); 8878 list_del_rcu(&tg->list); 8879 list_del_rcu(&tg->siblings); 8880 spin_unlock_irqrestore(&task_group_lock, flags); 8881 } 8882 8883 static struct task_group *sched_get_task_group(struct task_struct *tsk) 8884 { 8885 struct task_group *tg; 8886 8887 /* 8888 * All callers are synchronized by task_rq_lock(); we do not use RCU 8889 * which is pointless here. Thus, we pass "true" to task_css_check() 8890 * to prevent lockdep warnings. 8891 */ 8892 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 8893 struct task_group, css); 8894 tg = autogroup_task_group(tsk, tg); 8895 8896 return tg; 8897 } 8898 8899 static void sched_change_group(struct task_struct *tsk, struct task_group *group) 8900 { 8901 tsk->sched_task_group = group; 8902 8903 #ifdef CONFIG_FAIR_GROUP_SCHED 8904 if (tsk->sched_class->task_change_group) 8905 tsk->sched_class->task_change_group(tsk); 8906 else 8907 #endif 8908 set_task_rq(tsk, task_cpu(tsk)); 8909 } 8910 8911 /* 8912 * Change task's runqueue when it moves between groups. 8913 * 8914 * The caller of this function should have put the task in its new group by 8915 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 8916 * its new group. 8917 */ 8918 void sched_move_task(struct task_struct *tsk) 8919 { 8920 int queued, running, queue_flags = 8921 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 8922 struct task_group *group; 8923 struct rq *rq; 8924 8925 CLASS(task_rq_lock, rq_guard)(tsk); 8926 rq = rq_guard.rq; 8927 8928 /* 8929 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous 8930 * group changes. 8931 */ 8932 group = sched_get_task_group(tsk); 8933 if (group == tsk->sched_task_group) 8934 return; 8935 8936 update_rq_clock(rq); 8937 8938 running = task_current(rq, tsk); 8939 queued = task_on_rq_queued(tsk); 8940 8941 if (queued) 8942 dequeue_task(rq, tsk, queue_flags); 8943 if (running) 8944 put_prev_task(rq, tsk); 8945 8946 sched_change_group(tsk, group); 8947 scx_move_task(tsk); 8948 8949 if (queued) 8950 enqueue_task(rq, tsk, queue_flags); 8951 if (running) { 8952 set_next_task(rq, tsk); 8953 /* 8954 * After changing group, the running task may have joined a 8955 * throttled one but it's still the running task. Trigger a 8956 * resched to make sure that task can still run. 8957 */ 8958 resched_curr(rq); 8959 } 8960 } 8961 8962 static struct cgroup_subsys_state * 8963 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8964 { 8965 struct task_group *parent = css_tg(parent_css); 8966 struct task_group *tg; 8967 8968 if (!parent) { 8969 /* This is early initialization for the top cgroup */ 8970 return &root_task_group.css; 8971 } 8972 8973 tg = sched_create_group(parent); 8974 if (IS_ERR(tg)) 8975 return ERR_PTR(-ENOMEM); 8976 8977 return &tg->css; 8978 } 8979 8980 /* Expose task group only after completing cgroup initialization */ 8981 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 8982 { 8983 struct task_group *tg = css_tg(css); 8984 struct task_group *parent = css_tg(css->parent); 8985 int ret; 8986 8987 ret = scx_tg_online(tg); 8988 if (ret) 8989 return ret; 8990 8991 if (parent) 8992 sched_online_group(tg, parent); 8993 8994 #ifdef CONFIG_UCLAMP_TASK_GROUP 8995 /* Propagate the effective uclamp value for the new group */ 8996 guard(mutex)(&uclamp_mutex); 8997 guard(rcu)(); 8998 cpu_util_update_eff(css); 8999 #endif 9000 9001 return 0; 9002 } 9003 9004 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 9005 { 9006 struct task_group *tg = css_tg(css); 9007 9008 scx_tg_offline(tg); 9009 } 9010 9011 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 9012 { 9013 struct task_group *tg = css_tg(css); 9014 9015 sched_release_group(tg); 9016 } 9017 9018 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 9019 { 9020 struct task_group *tg = css_tg(css); 9021 9022 /* 9023 * Relies on the RCU grace period between css_released() and this. 9024 */ 9025 sched_unregister_group(tg); 9026 } 9027 9028 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 9029 { 9030 #ifdef CONFIG_RT_GROUP_SCHED 9031 struct task_struct *task; 9032 struct cgroup_subsys_state *css; 9033 9034 cgroup_taskset_for_each(task, css, tset) { 9035 if (!sched_rt_can_attach(css_tg(css), task)) 9036 return -EINVAL; 9037 } 9038 #endif 9039 return scx_cgroup_can_attach(tset); 9040 } 9041 9042 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 9043 { 9044 struct task_struct *task; 9045 struct cgroup_subsys_state *css; 9046 9047 cgroup_taskset_for_each(task, css, tset) 9048 sched_move_task(task); 9049 9050 scx_cgroup_finish_attach(); 9051 } 9052 9053 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset) 9054 { 9055 scx_cgroup_cancel_attach(tset); 9056 } 9057 9058 #ifdef CONFIG_UCLAMP_TASK_GROUP 9059 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 9060 { 9061 struct cgroup_subsys_state *top_css = css; 9062 struct uclamp_se *uc_parent = NULL; 9063 struct uclamp_se *uc_se = NULL; 9064 unsigned int eff[UCLAMP_CNT]; 9065 enum uclamp_id clamp_id; 9066 unsigned int clamps; 9067 9068 lockdep_assert_held(&uclamp_mutex); 9069 SCHED_WARN_ON(!rcu_read_lock_held()); 9070 9071 css_for_each_descendant_pre(css, top_css) { 9072 uc_parent = css_tg(css)->parent 9073 ? css_tg(css)->parent->uclamp : NULL; 9074 9075 for_each_clamp_id(clamp_id) { 9076 /* Assume effective clamps matches requested clamps */ 9077 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 9078 /* Cap effective clamps with parent's effective clamps */ 9079 if (uc_parent && 9080 eff[clamp_id] > uc_parent[clamp_id].value) { 9081 eff[clamp_id] = uc_parent[clamp_id].value; 9082 } 9083 } 9084 /* Ensure protection is always capped by limit */ 9085 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 9086 9087 /* Propagate most restrictive effective clamps */ 9088 clamps = 0x0; 9089 uc_se = css_tg(css)->uclamp; 9090 for_each_clamp_id(clamp_id) { 9091 if (eff[clamp_id] == uc_se[clamp_id].value) 9092 continue; 9093 uc_se[clamp_id].value = eff[clamp_id]; 9094 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 9095 clamps |= (0x1 << clamp_id); 9096 } 9097 if (!clamps) { 9098 css = css_rightmost_descendant(css); 9099 continue; 9100 } 9101 9102 /* Immediately update descendants RUNNABLE tasks */ 9103 uclamp_update_active_tasks(css); 9104 } 9105 } 9106 9107 /* 9108 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 9109 * C expression. Since there is no way to convert a macro argument (N) into a 9110 * character constant, use two levels of macros. 9111 */ 9112 #define _POW10(exp) ((unsigned int)1e##exp) 9113 #define POW10(exp) _POW10(exp) 9114 9115 struct uclamp_request { 9116 #define UCLAMP_PERCENT_SHIFT 2 9117 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 9118 s64 percent; 9119 u64 util; 9120 int ret; 9121 }; 9122 9123 static inline struct uclamp_request 9124 capacity_from_percent(char *buf) 9125 { 9126 struct uclamp_request req = { 9127 .percent = UCLAMP_PERCENT_SCALE, 9128 .util = SCHED_CAPACITY_SCALE, 9129 .ret = 0, 9130 }; 9131 9132 buf = strim(buf); 9133 if (strcmp(buf, "max")) { 9134 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 9135 &req.percent); 9136 if (req.ret) 9137 return req; 9138 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 9139 req.ret = -ERANGE; 9140 return req; 9141 } 9142 9143 req.util = req.percent << SCHED_CAPACITY_SHIFT; 9144 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 9145 } 9146 9147 return req; 9148 } 9149 9150 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 9151 size_t nbytes, loff_t off, 9152 enum uclamp_id clamp_id) 9153 { 9154 struct uclamp_request req; 9155 struct task_group *tg; 9156 9157 req = capacity_from_percent(buf); 9158 if (req.ret) 9159 return req.ret; 9160 9161 static_branch_enable(&sched_uclamp_used); 9162 9163 guard(mutex)(&uclamp_mutex); 9164 guard(rcu)(); 9165 9166 tg = css_tg(of_css(of)); 9167 if (tg->uclamp_req[clamp_id].value != req.util) 9168 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 9169 9170 /* 9171 * Because of not recoverable conversion rounding we keep track of the 9172 * exact requested value 9173 */ 9174 tg->uclamp_pct[clamp_id] = req.percent; 9175 9176 /* Update effective clamps to track the most restrictive value */ 9177 cpu_util_update_eff(of_css(of)); 9178 9179 return nbytes; 9180 } 9181 9182 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9183 char *buf, size_t nbytes, 9184 loff_t off) 9185 { 9186 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9187 } 9188 9189 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9190 char *buf, size_t nbytes, 9191 loff_t off) 9192 { 9193 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9194 } 9195 9196 static inline void cpu_uclamp_print(struct seq_file *sf, 9197 enum uclamp_id clamp_id) 9198 { 9199 struct task_group *tg; 9200 u64 util_clamp; 9201 u64 percent; 9202 u32 rem; 9203 9204 scoped_guard (rcu) { 9205 tg = css_tg(seq_css(sf)); 9206 util_clamp = tg->uclamp_req[clamp_id].value; 9207 } 9208 9209 if (util_clamp == SCHED_CAPACITY_SCALE) { 9210 seq_puts(sf, "max\n"); 9211 return; 9212 } 9213 9214 percent = tg->uclamp_pct[clamp_id]; 9215 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9216 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9217 } 9218 9219 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9220 { 9221 cpu_uclamp_print(sf, UCLAMP_MIN); 9222 return 0; 9223 } 9224 9225 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9226 { 9227 cpu_uclamp_print(sf, UCLAMP_MAX); 9228 return 0; 9229 } 9230 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9231 9232 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9233 static unsigned long tg_weight(struct task_group *tg) 9234 { 9235 #ifdef CONFIG_FAIR_GROUP_SCHED 9236 return scale_load_down(tg->shares); 9237 #else 9238 return sched_weight_from_cgroup(tg->scx_weight); 9239 #endif 9240 } 9241 9242 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9243 struct cftype *cftype, u64 shareval) 9244 { 9245 int ret; 9246 9247 if (shareval > scale_load_down(ULONG_MAX)) 9248 shareval = MAX_SHARES; 9249 ret = sched_group_set_shares(css_tg(css), scale_load(shareval)); 9250 if (!ret) 9251 scx_group_set_weight(css_tg(css), 9252 sched_weight_to_cgroup(shareval)); 9253 return ret; 9254 } 9255 9256 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9257 struct cftype *cft) 9258 { 9259 return tg_weight(css_tg(css)); 9260 } 9261 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9262 9263 #ifdef CONFIG_CFS_BANDWIDTH 9264 static DEFINE_MUTEX(cfs_constraints_mutex); 9265 9266 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 9267 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 9268 /* More than 203 days if BW_SHIFT equals 20. */ 9269 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 9270 9271 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9272 9273 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 9274 u64 burst) 9275 { 9276 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9277 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9278 9279 if (tg == &root_task_group) 9280 return -EINVAL; 9281 9282 /* 9283 * Ensure we have at some amount of bandwidth every period. This is 9284 * to prevent reaching a state of large arrears when throttled via 9285 * entity_tick() resulting in prolonged exit starvation. 9286 */ 9287 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 9288 return -EINVAL; 9289 9290 /* 9291 * Likewise, bound things on the other side by preventing insane quota 9292 * periods. This also allows us to normalize in computing quota 9293 * feasibility. 9294 */ 9295 if (period > max_cfs_quota_period) 9296 return -EINVAL; 9297 9298 /* 9299 * Bound quota to defend quota against overflow during bandwidth shift. 9300 */ 9301 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 9302 return -EINVAL; 9303 9304 if (quota != RUNTIME_INF && (burst > quota || 9305 burst + quota > max_cfs_runtime)) 9306 return -EINVAL; 9307 9308 /* 9309 * Prevent race between setting of cfs_rq->runtime_enabled and 9310 * unthrottle_offline_cfs_rqs(). 9311 */ 9312 guard(cpus_read_lock)(); 9313 guard(mutex)(&cfs_constraints_mutex); 9314 9315 ret = __cfs_schedulable(tg, period, quota); 9316 if (ret) 9317 return ret; 9318 9319 runtime_enabled = quota != RUNTIME_INF; 9320 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9321 /* 9322 * If we need to toggle cfs_bandwidth_used, off->on must occur 9323 * before making related changes, and on->off must occur afterwards 9324 */ 9325 if (runtime_enabled && !runtime_was_enabled) 9326 cfs_bandwidth_usage_inc(); 9327 9328 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 9329 cfs_b->period = ns_to_ktime(period); 9330 cfs_b->quota = quota; 9331 cfs_b->burst = burst; 9332 9333 __refill_cfs_bandwidth_runtime(cfs_b); 9334 9335 /* 9336 * Restart the period timer (if active) to handle new 9337 * period expiry: 9338 */ 9339 if (runtime_enabled) 9340 start_cfs_bandwidth(cfs_b); 9341 } 9342 9343 for_each_online_cpu(i) { 9344 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9345 struct rq *rq = cfs_rq->rq; 9346 9347 guard(rq_lock_irq)(rq); 9348 cfs_rq->runtime_enabled = runtime_enabled; 9349 cfs_rq->runtime_remaining = 0; 9350 9351 if (cfs_rq->throttled) 9352 unthrottle_cfs_rq(cfs_rq); 9353 } 9354 9355 if (runtime_was_enabled && !runtime_enabled) 9356 cfs_bandwidth_usage_dec(); 9357 9358 return 0; 9359 } 9360 9361 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 9362 { 9363 u64 quota, period, burst; 9364 9365 period = ktime_to_ns(tg->cfs_bandwidth.period); 9366 burst = tg->cfs_bandwidth.burst; 9367 if (cfs_quota_us < 0) 9368 quota = RUNTIME_INF; 9369 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 9370 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 9371 else 9372 return -EINVAL; 9373 9374 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9375 } 9376 9377 static long tg_get_cfs_quota(struct task_group *tg) 9378 { 9379 u64 quota_us; 9380 9381 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9382 return -1; 9383 9384 quota_us = tg->cfs_bandwidth.quota; 9385 do_div(quota_us, NSEC_PER_USEC); 9386 9387 return quota_us; 9388 } 9389 9390 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 9391 { 9392 u64 quota, period, burst; 9393 9394 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 9395 return -EINVAL; 9396 9397 period = (u64)cfs_period_us * NSEC_PER_USEC; 9398 quota = tg->cfs_bandwidth.quota; 9399 burst = tg->cfs_bandwidth.burst; 9400 9401 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9402 } 9403 9404 static long tg_get_cfs_period(struct task_group *tg) 9405 { 9406 u64 cfs_period_us; 9407 9408 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9409 do_div(cfs_period_us, NSEC_PER_USEC); 9410 9411 return cfs_period_us; 9412 } 9413 9414 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 9415 { 9416 u64 quota, period, burst; 9417 9418 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 9419 return -EINVAL; 9420 9421 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 9422 period = ktime_to_ns(tg->cfs_bandwidth.period); 9423 quota = tg->cfs_bandwidth.quota; 9424 9425 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9426 } 9427 9428 static long tg_get_cfs_burst(struct task_group *tg) 9429 { 9430 u64 burst_us; 9431 9432 burst_us = tg->cfs_bandwidth.burst; 9433 do_div(burst_us, NSEC_PER_USEC); 9434 9435 return burst_us; 9436 } 9437 9438 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 9439 struct cftype *cft) 9440 { 9441 return tg_get_cfs_quota(css_tg(css)); 9442 } 9443 9444 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 9445 struct cftype *cftype, s64 cfs_quota_us) 9446 { 9447 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 9448 } 9449 9450 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 9451 struct cftype *cft) 9452 { 9453 return tg_get_cfs_period(css_tg(css)); 9454 } 9455 9456 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 9457 struct cftype *cftype, u64 cfs_period_us) 9458 { 9459 return tg_set_cfs_period(css_tg(css), cfs_period_us); 9460 } 9461 9462 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 9463 struct cftype *cft) 9464 { 9465 return tg_get_cfs_burst(css_tg(css)); 9466 } 9467 9468 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 9469 struct cftype *cftype, u64 cfs_burst_us) 9470 { 9471 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 9472 } 9473 9474 struct cfs_schedulable_data { 9475 struct task_group *tg; 9476 u64 period, quota; 9477 }; 9478 9479 /* 9480 * normalize group quota/period to be quota/max_period 9481 * note: units are usecs 9482 */ 9483 static u64 normalize_cfs_quota(struct task_group *tg, 9484 struct cfs_schedulable_data *d) 9485 { 9486 u64 quota, period; 9487 9488 if (tg == d->tg) { 9489 period = d->period; 9490 quota = d->quota; 9491 } else { 9492 period = tg_get_cfs_period(tg); 9493 quota = tg_get_cfs_quota(tg); 9494 } 9495 9496 /* note: these should typically be equivalent */ 9497 if (quota == RUNTIME_INF || quota == -1) 9498 return RUNTIME_INF; 9499 9500 return to_ratio(period, quota); 9501 } 9502 9503 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9504 { 9505 struct cfs_schedulable_data *d = data; 9506 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9507 s64 quota = 0, parent_quota = -1; 9508 9509 if (!tg->parent) { 9510 quota = RUNTIME_INF; 9511 } else { 9512 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9513 9514 quota = normalize_cfs_quota(tg, d); 9515 parent_quota = parent_b->hierarchical_quota; 9516 9517 /* 9518 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9519 * always take the non-RUNTIME_INF min. On cgroup1, only 9520 * inherit when no limit is set. In both cases this is used 9521 * by the scheduler to determine if a given CFS task has a 9522 * bandwidth constraint at some higher level. 9523 */ 9524 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9525 if (quota == RUNTIME_INF) 9526 quota = parent_quota; 9527 else if (parent_quota != RUNTIME_INF) 9528 quota = min(quota, parent_quota); 9529 } else { 9530 if (quota == RUNTIME_INF) 9531 quota = parent_quota; 9532 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9533 return -EINVAL; 9534 } 9535 } 9536 cfs_b->hierarchical_quota = quota; 9537 9538 return 0; 9539 } 9540 9541 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9542 { 9543 struct cfs_schedulable_data data = { 9544 .tg = tg, 9545 .period = period, 9546 .quota = quota, 9547 }; 9548 9549 if (quota != RUNTIME_INF) { 9550 do_div(data.period, NSEC_PER_USEC); 9551 do_div(data.quota, NSEC_PER_USEC); 9552 } 9553 9554 guard(rcu)(); 9555 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9556 } 9557 9558 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9559 { 9560 struct task_group *tg = css_tg(seq_css(sf)); 9561 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9562 9563 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9564 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9565 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9566 9567 if (schedstat_enabled() && tg != &root_task_group) { 9568 struct sched_statistics *stats; 9569 u64 ws = 0; 9570 int i; 9571 9572 for_each_possible_cpu(i) { 9573 stats = __schedstats_from_se(tg->se[i]); 9574 ws += schedstat_val(stats->wait_sum); 9575 } 9576 9577 seq_printf(sf, "wait_sum %llu\n", ws); 9578 } 9579 9580 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 9581 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 9582 9583 return 0; 9584 } 9585 9586 static u64 throttled_time_self(struct task_group *tg) 9587 { 9588 int i; 9589 u64 total = 0; 9590 9591 for_each_possible_cpu(i) { 9592 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 9593 } 9594 9595 return total; 9596 } 9597 9598 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 9599 { 9600 struct task_group *tg = css_tg(seq_css(sf)); 9601 9602 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 9603 9604 return 0; 9605 } 9606 #endif /* CONFIG_CFS_BANDWIDTH */ 9607 9608 #ifdef CONFIG_RT_GROUP_SCHED 9609 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9610 struct cftype *cft, s64 val) 9611 { 9612 return sched_group_set_rt_runtime(css_tg(css), val); 9613 } 9614 9615 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9616 struct cftype *cft) 9617 { 9618 return sched_group_rt_runtime(css_tg(css)); 9619 } 9620 9621 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9622 struct cftype *cftype, u64 rt_period_us) 9623 { 9624 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9625 } 9626 9627 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9628 struct cftype *cft) 9629 { 9630 return sched_group_rt_period(css_tg(css)); 9631 } 9632 #endif /* CONFIG_RT_GROUP_SCHED */ 9633 9634 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9635 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 9636 struct cftype *cft) 9637 { 9638 return css_tg(css)->idle; 9639 } 9640 9641 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 9642 struct cftype *cft, s64 idle) 9643 { 9644 int ret; 9645 9646 ret = sched_group_set_idle(css_tg(css), idle); 9647 if (!ret) 9648 scx_group_set_idle(css_tg(css), idle); 9649 return ret; 9650 } 9651 #endif 9652 9653 static struct cftype cpu_legacy_files[] = { 9654 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9655 { 9656 .name = "shares", 9657 .read_u64 = cpu_shares_read_u64, 9658 .write_u64 = cpu_shares_write_u64, 9659 }, 9660 { 9661 .name = "idle", 9662 .read_s64 = cpu_idle_read_s64, 9663 .write_s64 = cpu_idle_write_s64, 9664 }, 9665 #endif 9666 #ifdef CONFIG_CFS_BANDWIDTH 9667 { 9668 .name = "cfs_quota_us", 9669 .read_s64 = cpu_cfs_quota_read_s64, 9670 .write_s64 = cpu_cfs_quota_write_s64, 9671 }, 9672 { 9673 .name = "cfs_period_us", 9674 .read_u64 = cpu_cfs_period_read_u64, 9675 .write_u64 = cpu_cfs_period_write_u64, 9676 }, 9677 { 9678 .name = "cfs_burst_us", 9679 .read_u64 = cpu_cfs_burst_read_u64, 9680 .write_u64 = cpu_cfs_burst_write_u64, 9681 }, 9682 { 9683 .name = "stat", 9684 .seq_show = cpu_cfs_stat_show, 9685 }, 9686 { 9687 .name = "stat.local", 9688 .seq_show = cpu_cfs_local_stat_show, 9689 }, 9690 #endif 9691 #ifdef CONFIG_RT_GROUP_SCHED 9692 { 9693 .name = "rt_runtime_us", 9694 .read_s64 = cpu_rt_runtime_read, 9695 .write_s64 = cpu_rt_runtime_write, 9696 }, 9697 { 9698 .name = "rt_period_us", 9699 .read_u64 = cpu_rt_period_read_uint, 9700 .write_u64 = cpu_rt_period_write_uint, 9701 }, 9702 #endif 9703 #ifdef CONFIG_UCLAMP_TASK_GROUP 9704 { 9705 .name = "uclamp.min", 9706 .flags = CFTYPE_NOT_ON_ROOT, 9707 .seq_show = cpu_uclamp_min_show, 9708 .write = cpu_uclamp_min_write, 9709 }, 9710 { 9711 .name = "uclamp.max", 9712 .flags = CFTYPE_NOT_ON_ROOT, 9713 .seq_show = cpu_uclamp_max_show, 9714 .write = cpu_uclamp_max_write, 9715 }, 9716 #endif 9717 { } /* Terminate */ 9718 }; 9719 9720 static int cpu_extra_stat_show(struct seq_file *sf, 9721 struct cgroup_subsys_state *css) 9722 { 9723 #ifdef CONFIG_CFS_BANDWIDTH 9724 { 9725 struct task_group *tg = css_tg(css); 9726 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9727 u64 throttled_usec, burst_usec; 9728 9729 throttled_usec = cfs_b->throttled_time; 9730 do_div(throttled_usec, NSEC_PER_USEC); 9731 burst_usec = cfs_b->burst_time; 9732 do_div(burst_usec, NSEC_PER_USEC); 9733 9734 seq_printf(sf, "nr_periods %d\n" 9735 "nr_throttled %d\n" 9736 "throttled_usec %llu\n" 9737 "nr_bursts %d\n" 9738 "burst_usec %llu\n", 9739 cfs_b->nr_periods, cfs_b->nr_throttled, 9740 throttled_usec, cfs_b->nr_burst, burst_usec); 9741 } 9742 #endif 9743 return 0; 9744 } 9745 9746 static int cpu_local_stat_show(struct seq_file *sf, 9747 struct cgroup_subsys_state *css) 9748 { 9749 #ifdef CONFIG_CFS_BANDWIDTH 9750 { 9751 struct task_group *tg = css_tg(css); 9752 u64 throttled_self_usec; 9753 9754 throttled_self_usec = throttled_time_self(tg); 9755 do_div(throttled_self_usec, NSEC_PER_USEC); 9756 9757 seq_printf(sf, "throttled_usec %llu\n", 9758 throttled_self_usec); 9759 } 9760 #endif 9761 return 0; 9762 } 9763 9764 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9765 9766 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 9767 struct cftype *cft) 9768 { 9769 return sched_weight_to_cgroup(tg_weight(css_tg(css))); 9770 } 9771 9772 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 9773 struct cftype *cft, u64 cgrp_weight) 9774 { 9775 unsigned long weight; 9776 int ret; 9777 9778 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) 9779 return -ERANGE; 9780 9781 weight = sched_weight_from_cgroup(cgrp_weight); 9782 9783 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 9784 if (!ret) 9785 scx_group_set_weight(css_tg(css), cgrp_weight); 9786 return ret; 9787 } 9788 9789 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 9790 struct cftype *cft) 9791 { 9792 unsigned long weight = tg_weight(css_tg(css)); 9793 int last_delta = INT_MAX; 9794 int prio, delta; 9795 9796 /* find the closest nice value to the current weight */ 9797 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 9798 delta = abs(sched_prio_to_weight[prio] - weight); 9799 if (delta >= last_delta) 9800 break; 9801 last_delta = delta; 9802 } 9803 9804 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 9805 } 9806 9807 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 9808 struct cftype *cft, s64 nice) 9809 { 9810 unsigned long weight; 9811 int idx, ret; 9812 9813 if (nice < MIN_NICE || nice > MAX_NICE) 9814 return -ERANGE; 9815 9816 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 9817 idx = array_index_nospec(idx, 40); 9818 weight = sched_prio_to_weight[idx]; 9819 9820 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 9821 if (!ret) 9822 scx_group_set_weight(css_tg(css), 9823 sched_weight_to_cgroup(weight)); 9824 return ret; 9825 } 9826 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9827 9828 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 9829 long period, long quota) 9830 { 9831 if (quota < 0) 9832 seq_puts(sf, "max"); 9833 else 9834 seq_printf(sf, "%ld", quota); 9835 9836 seq_printf(sf, " %ld\n", period); 9837 } 9838 9839 /* caller should put the current value in *@periodp before calling */ 9840 static int __maybe_unused cpu_period_quota_parse(char *buf, 9841 u64 *periodp, u64 *quotap) 9842 { 9843 char tok[21]; /* U64_MAX */ 9844 9845 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 9846 return -EINVAL; 9847 9848 *periodp *= NSEC_PER_USEC; 9849 9850 if (sscanf(tok, "%llu", quotap)) 9851 *quotap *= NSEC_PER_USEC; 9852 else if (!strcmp(tok, "max")) 9853 *quotap = RUNTIME_INF; 9854 else 9855 return -EINVAL; 9856 9857 return 0; 9858 } 9859 9860 #ifdef CONFIG_CFS_BANDWIDTH 9861 static int cpu_max_show(struct seq_file *sf, void *v) 9862 { 9863 struct task_group *tg = css_tg(seq_css(sf)); 9864 9865 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 9866 return 0; 9867 } 9868 9869 static ssize_t cpu_max_write(struct kernfs_open_file *of, 9870 char *buf, size_t nbytes, loff_t off) 9871 { 9872 struct task_group *tg = css_tg(of_css(of)); 9873 u64 period = tg_get_cfs_period(tg); 9874 u64 burst = tg->cfs_bandwidth.burst; 9875 u64 quota; 9876 int ret; 9877 9878 ret = cpu_period_quota_parse(buf, &period, "a); 9879 if (!ret) 9880 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 9881 return ret ?: nbytes; 9882 } 9883 #endif 9884 9885 static struct cftype cpu_files[] = { 9886 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9887 { 9888 .name = "weight", 9889 .flags = CFTYPE_NOT_ON_ROOT, 9890 .read_u64 = cpu_weight_read_u64, 9891 .write_u64 = cpu_weight_write_u64, 9892 }, 9893 { 9894 .name = "weight.nice", 9895 .flags = CFTYPE_NOT_ON_ROOT, 9896 .read_s64 = cpu_weight_nice_read_s64, 9897 .write_s64 = cpu_weight_nice_write_s64, 9898 }, 9899 { 9900 .name = "idle", 9901 .flags = CFTYPE_NOT_ON_ROOT, 9902 .read_s64 = cpu_idle_read_s64, 9903 .write_s64 = cpu_idle_write_s64, 9904 }, 9905 #endif 9906 #ifdef CONFIG_CFS_BANDWIDTH 9907 { 9908 .name = "max", 9909 .flags = CFTYPE_NOT_ON_ROOT, 9910 .seq_show = cpu_max_show, 9911 .write = cpu_max_write, 9912 }, 9913 { 9914 .name = "max.burst", 9915 .flags = CFTYPE_NOT_ON_ROOT, 9916 .read_u64 = cpu_cfs_burst_read_u64, 9917 .write_u64 = cpu_cfs_burst_write_u64, 9918 }, 9919 #endif 9920 #ifdef CONFIG_UCLAMP_TASK_GROUP 9921 { 9922 .name = "uclamp.min", 9923 .flags = CFTYPE_NOT_ON_ROOT, 9924 .seq_show = cpu_uclamp_min_show, 9925 .write = cpu_uclamp_min_write, 9926 }, 9927 { 9928 .name = "uclamp.max", 9929 .flags = CFTYPE_NOT_ON_ROOT, 9930 .seq_show = cpu_uclamp_max_show, 9931 .write = cpu_uclamp_max_write, 9932 }, 9933 #endif 9934 { } /* terminate */ 9935 }; 9936 9937 struct cgroup_subsys cpu_cgrp_subsys = { 9938 .css_alloc = cpu_cgroup_css_alloc, 9939 .css_online = cpu_cgroup_css_online, 9940 .css_offline = cpu_cgroup_css_offline, 9941 .css_released = cpu_cgroup_css_released, 9942 .css_free = cpu_cgroup_css_free, 9943 .css_extra_stat_show = cpu_extra_stat_show, 9944 .css_local_stat_show = cpu_local_stat_show, 9945 .can_attach = cpu_cgroup_can_attach, 9946 .attach = cpu_cgroup_attach, 9947 .cancel_attach = cpu_cgroup_cancel_attach, 9948 .legacy_cftypes = cpu_legacy_files, 9949 .dfl_cftypes = cpu_files, 9950 .early_init = true, 9951 .threaded = true, 9952 }; 9953 9954 #endif /* CONFIG_CGROUP_SCHED */ 9955 9956 void dump_cpu_task(int cpu) 9957 { 9958 if (in_hardirq() && cpu == smp_processor_id()) { 9959 struct pt_regs *regs; 9960 9961 regs = get_irq_regs(); 9962 if (regs) { 9963 show_regs(regs); 9964 return; 9965 } 9966 } 9967 9968 if (trigger_single_cpu_backtrace(cpu)) 9969 return; 9970 9971 pr_info("Task dump for CPU %d:\n", cpu); 9972 sched_show_task(cpu_curr(cpu)); 9973 } 9974 9975 /* 9976 * Nice levels are multiplicative, with a gentle 10% change for every 9977 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 9978 * nice 1, it will get ~10% less CPU time than another CPU-bound task 9979 * that remained on nice 0. 9980 * 9981 * The "10% effect" is relative and cumulative: from _any_ nice level, 9982 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 9983 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 9984 * If a task goes up by ~10% and another task goes down by ~10% then 9985 * the relative distance between them is ~25%.) 9986 */ 9987 const int sched_prio_to_weight[40] = { 9988 /* -20 */ 88761, 71755, 56483, 46273, 36291, 9989 /* -15 */ 29154, 23254, 18705, 14949, 11916, 9990 /* -10 */ 9548, 7620, 6100, 4904, 3906, 9991 /* -5 */ 3121, 2501, 1991, 1586, 1277, 9992 /* 0 */ 1024, 820, 655, 526, 423, 9993 /* 5 */ 335, 272, 215, 172, 137, 9994 /* 10 */ 110, 87, 70, 56, 45, 9995 /* 15 */ 36, 29, 23, 18, 15, 9996 }; 9997 9998 /* 9999 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. 10000 * 10001 * In cases where the weight does not change often, we can use the 10002 * pre-calculated inverse to speed up arithmetics by turning divisions 10003 * into multiplications: 10004 */ 10005 const u32 sched_prio_to_wmult[40] = { 10006 /* -20 */ 48388, 59856, 76040, 92818, 118348, 10007 /* -15 */ 147320, 184698, 229616, 287308, 360437, 10008 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 10009 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 10010 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 10011 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 10012 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 10013 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 10014 }; 10015 10016 void call_trace_sched_update_nr_running(struct rq *rq, int count) 10017 { 10018 trace_sched_update_nr_running_tp(rq, count); 10019 } 10020 10021 #ifdef CONFIG_SCHED_MM_CID 10022 10023 /* 10024 * @cid_lock: Guarantee forward-progress of cid allocation. 10025 * 10026 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock 10027 * is only used when contention is detected by the lock-free allocation so 10028 * forward progress can be guaranteed. 10029 */ 10030 DEFINE_RAW_SPINLOCK(cid_lock); 10031 10032 /* 10033 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. 10034 * 10035 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is 10036 * detected, it is set to 1 to ensure that all newly coming allocations are 10037 * serialized by @cid_lock until the allocation which detected contention 10038 * completes and sets @use_cid_lock back to 0. This guarantees forward progress 10039 * of a cid allocation. 10040 */ 10041 int use_cid_lock; 10042 10043 /* 10044 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid 10045 * concurrently with respect to the execution of the source runqueue context 10046 * switch. 10047 * 10048 * There is one basic properties we want to guarantee here: 10049 * 10050 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively 10051 * used by a task. That would lead to concurrent allocation of the cid and 10052 * userspace corruption. 10053 * 10054 * Provide this guarantee by introducing a Dekker memory ordering to guarantee 10055 * that a pair of loads observe at least one of a pair of stores, which can be 10056 * shown as: 10057 * 10058 * X = Y = 0 10059 * 10060 * w[X]=1 w[Y]=1 10061 * MB MB 10062 * r[Y]=y r[X]=x 10063 * 10064 * Which guarantees that x==0 && y==0 is impossible. But rather than using 10065 * values 0 and 1, this algorithm cares about specific state transitions of the 10066 * runqueue current task (as updated by the scheduler context switch), and the 10067 * per-mm/cpu cid value. 10068 * 10069 * Let's introduce task (Y) which has task->mm == mm and task (N) which has 10070 * task->mm != mm for the rest of the discussion. There are two scheduler state 10071 * transitions on context switch we care about: 10072 * 10073 * (TSA) Store to rq->curr with transition from (N) to (Y) 10074 * 10075 * (TSB) Store to rq->curr with transition from (Y) to (N) 10076 * 10077 * On the remote-clear side, there is one transition we care about: 10078 * 10079 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag 10080 * 10081 * There is also a transition to UNSET state which can be performed from all 10082 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which 10083 * guarantees that only a single thread will succeed: 10084 * 10085 * (TMB) cmpxchg to *pcpu_cid to mark UNSET 10086 * 10087 * Just to be clear, what we do _not_ want to happen is a transition to UNSET 10088 * when a thread is actively using the cid (property (1)). 10089 * 10090 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. 10091 * 10092 * Scenario A) (TSA)+(TMA) (from next task perspective) 10093 * 10094 * CPU0 CPU1 10095 * 10096 * Context switch CS-1 Remote-clear 10097 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) 10098 * (implied barrier after cmpxchg) 10099 * - switch_mm_cid() 10100 * - memory barrier (see switch_mm_cid() 10101 * comment explaining how this barrier 10102 * is combined with other scheduler 10103 * barriers) 10104 * - mm_cid_get (next) 10105 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) 10106 * 10107 * This Dekker ensures that either task (Y) is observed by the 10108 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are 10109 * observed. 10110 * 10111 * If task (Y) store is observed by rcu_dereference(), it means that there is 10112 * still an active task on the cpu. Remote-clear will therefore not transition 10113 * to UNSET, which fulfills property (1). 10114 * 10115 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), 10116 * it will move its state to UNSET, which clears the percpu cid perhaps 10117 * uselessly (which is not an issue for correctness). Because task (Y) is not 10118 * observed, CPU1 can move ahead to set the state to UNSET. Because moving 10119 * state to UNSET is done with a cmpxchg expecting that the old state has the 10120 * LAZY flag set, only one thread will successfully UNSET. 10121 * 10122 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 10123 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and 10124 * CPU1 will observe task (Y) and do nothing more, which is fine. 10125 * 10126 * What we are effectively preventing with this Dekker is a scenario where 10127 * neither LAZY flag nor store (Y) are observed, which would fail property (1) 10128 * because this would UNSET a cid which is actively used. 10129 */ 10130 10131 void sched_mm_cid_migrate_from(struct task_struct *t) 10132 { 10133 t->migrate_from_cpu = task_cpu(t); 10134 } 10135 10136 static 10137 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, 10138 struct task_struct *t, 10139 struct mm_cid *src_pcpu_cid) 10140 { 10141 struct mm_struct *mm = t->mm; 10142 struct task_struct *src_task; 10143 int src_cid, last_mm_cid; 10144 10145 if (!mm) 10146 return -1; 10147 10148 last_mm_cid = t->last_mm_cid; 10149 /* 10150 * If the migrated task has no last cid, or if the current 10151 * task on src rq uses the cid, it means the source cid does not need 10152 * to be moved to the destination cpu. 10153 */ 10154 if (last_mm_cid == -1) 10155 return -1; 10156 src_cid = READ_ONCE(src_pcpu_cid->cid); 10157 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) 10158 return -1; 10159 10160 /* 10161 * If we observe an active task using the mm on this rq, it means we 10162 * are not the last task to be migrated from this cpu for this mm, so 10163 * there is no need to move src_cid to the destination cpu. 10164 */ 10165 guard(rcu)(); 10166 src_task = rcu_dereference(src_rq->curr); 10167 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10168 t->last_mm_cid = -1; 10169 return -1; 10170 } 10171 10172 return src_cid; 10173 } 10174 10175 static 10176 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, 10177 struct task_struct *t, 10178 struct mm_cid *src_pcpu_cid, 10179 int src_cid) 10180 { 10181 struct task_struct *src_task; 10182 struct mm_struct *mm = t->mm; 10183 int lazy_cid; 10184 10185 if (src_cid == -1) 10186 return -1; 10187 10188 /* 10189 * Attempt to clear the source cpu cid to move it to the destination 10190 * cpu. 10191 */ 10192 lazy_cid = mm_cid_set_lazy_put(src_cid); 10193 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) 10194 return -1; 10195 10196 /* 10197 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10198 * rq->curr->mm matches the scheduler barrier in context_switch() 10199 * between store to rq->curr and load of prev and next task's 10200 * per-mm/cpu cid. 10201 * 10202 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10203 * rq->curr->mm_cid_active matches the barrier in 10204 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10205 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10206 * load of per-mm/cpu cid. 10207 */ 10208 10209 /* 10210 * If we observe an active task using the mm on this rq after setting 10211 * the lazy-put flag, this task will be responsible for transitioning 10212 * from lazy-put flag set to MM_CID_UNSET. 10213 */ 10214 scoped_guard (rcu) { 10215 src_task = rcu_dereference(src_rq->curr); 10216 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10217 /* 10218 * We observed an active task for this mm, there is therefore 10219 * no point in moving this cid to the destination cpu. 10220 */ 10221 t->last_mm_cid = -1; 10222 return -1; 10223 } 10224 } 10225 10226 /* 10227 * The src_cid is unused, so it can be unset. 10228 */ 10229 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10230 return -1; 10231 return src_cid; 10232 } 10233 10234 /* 10235 * Migration to dst cpu. Called with dst_rq lock held. 10236 * Interrupts are disabled, which keeps the window of cid ownership without the 10237 * source rq lock held small. 10238 */ 10239 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) 10240 { 10241 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; 10242 struct mm_struct *mm = t->mm; 10243 int src_cid, dst_cid, src_cpu; 10244 struct rq *src_rq; 10245 10246 lockdep_assert_rq_held(dst_rq); 10247 10248 if (!mm) 10249 return; 10250 src_cpu = t->migrate_from_cpu; 10251 if (src_cpu == -1) { 10252 t->last_mm_cid = -1; 10253 return; 10254 } 10255 /* 10256 * Move the src cid if the dst cid is unset. This keeps id 10257 * allocation closest to 0 in cases where few threads migrate around 10258 * many CPUs. 10259 * 10260 * If destination cid is already set, we may have to just clear 10261 * the src cid to ensure compactness in frequent migrations 10262 * scenarios. 10263 * 10264 * It is not useful to clear the src cid when the number of threads is 10265 * greater or equal to the number of allowed CPUs, because user-space 10266 * can expect that the number of allowed cids can reach the number of 10267 * allowed CPUs. 10268 */ 10269 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); 10270 dst_cid = READ_ONCE(dst_pcpu_cid->cid); 10271 if (!mm_cid_is_unset(dst_cid) && 10272 atomic_read(&mm->mm_users) >= t->nr_cpus_allowed) 10273 return; 10274 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); 10275 src_rq = cpu_rq(src_cpu); 10276 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); 10277 if (src_cid == -1) 10278 return; 10279 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, 10280 src_cid); 10281 if (src_cid == -1) 10282 return; 10283 if (!mm_cid_is_unset(dst_cid)) { 10284 __mm_cid_put(mm, src_cid); 10285 return; 10286 } 10287 /* Move src_cid to dst cpu. */ 10288 mm_cid_snapshot_time(dst_rq, mm); 10289 WRITE_ONCE(dst_pcpu_cid->cid, src_cid); 10290 } 10291 10292 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, 10293 int cpu) 10294 { 10295 struct rq *rq = cpu_rq(cpu); 10296 struct task_struct *t; 10297 int cid, lazy_cid; 10298 10299 cid = READ_ONCE(pcpu_cid->cid); 10300 if (!mm_cid_is_valid(cid)) 10301 return; 10302 10303 /* 10304 * Clear the cpu cid if it is set to keep cid allocation compact. If 10305 * there happens to be other tasks left on the source cpu using this 10306 * mm, the next task using this mm will reallocate its cid on context 10307 * switch. 10308 */ 10309 lazy_cid = mm_cid_set_lazy_put(cid); 10310 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) 10311 return; 10312 10313 /* 10314 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10315 * rq->curr->mm matches the scheduler barrier in context_switch() 10316 * between store to rq->curr and load of prev and next task's 10317 * per-mm/cpu cid. 10318 * 10319 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10320 * rq->curr->mm_cid_active matches the barrier in 10321 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10322 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10323 * load of per-mm/cpu cid. 10324 */ 10325 10326 /* 10327 * If we observe an active task using the mm on this rq after setting 10328 * the lazy-put flag, that task will be responsible for transitioning 10329 * from lazy-put flag set to MM_CID_UNSET. 10330 */ 10331 scoped_guard (rcu) { 10332 t = rcu_dereference(rq->curr); 10333 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) 10334 return; 10335 } 10336 10337 /* 10338 * The cid is unused, so it can be unset. 10339 * Disable interrupts to keep the window of cid ownership without rq 10340 * lock small. 10341 */ 10342 scoped_guard (irqsave) { 10343 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10344 __mm_cid_put(mm, cid); 10345 } 10346 } 10347 10348 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) 10349 { 10350 struct rq *rq = cpu_rq(cpu); 10351 struct mm_cid *pcpu_cid; 10352 struct task_struct *curr; 10353 u64 rq_clock; 10354 10355 /* 10356 * rq->clock load is racy on 32-bit but one spurious clear once in a 10357 * while is irrelevant. 10358 */ 10359 rq_clock = READ_ONCE(rq->clock); 10360 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10361 10362 /* 10363 * In order to take care of infrequently scheduled tasks, bump the time 10364 * snapshot associated with this cid if an active task using the mm is 10365 * observed on this rq. 10366 */ 10367 scoped_guard (rcu) { 10368 curr = rcu_dereference(rq->curr); 10369 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { 10370 WRITE_ONCE(pcpu_cid->time, rq_clock); 10371 return; 10372 } 10373 } 10374 10375 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) 10376 return; 10377 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10378 } 10379 10380 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, 10381 int weight) 10382 { 10383 struct mm_cid *pcpu_cid; 10384 int cid; 10385 10386 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10387 cid = READ_ONCE(pcpu_cid->cid); 10388 if (!mm_cid_is_valid(cid) || cid < weight) 10389 return; 10390 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10391 } 10392 10393 static void task_mm_cid_work(struct callback_head *work) 10394 { 10395 unsigned long now = jiffies, old_scan, next_scan; 10396 struct task_struct *t = current; 10397 struct cpumask *cidmask; 10398 struct mm_struct *mm; 10399 int weight, cpu; 10400 10401 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work)); 10402 10403 work->next = work; /* Prevent double-add */ 10404 if (t->flags & PF_EXITING) 10405 return; 10406 mm = t->mm; 10407 if (!mm) 10408 return; 10409 old_scan = READ_ONCE(mm->mm_cid_next_scan); 10410 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10411 if (!old_scan) { 10412 unsigned long res; 10413 10414 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); 10415 if (res != old_scan) 10416 old_scan = res; 10417 else 10418 old_scan = next_scan; 10419 } 10420 if (time_before(now, old_scan)) 10421 return; 10422 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) 10423 return; 10424 cidmask = mm_cidmask(mm); 10425 /* Clear cids that were not recently used. */ 10426 for_each_possible_cpu(cpu) 10427 sched_mm_cid_remote_clear_old(mm, cpu); 10428 weight = cpumask_weight(cidmask); 10429 /* 10430 * Clear cids that are greater or equal to the cidmask weight to 10431 * recompact it. 10432 */ 10433 for_each_possible_cpu(cpu) 10434 sched_mm_cid_remote_clear_weight(mm, cpu, weight); 10435 } 10436 10437 void init_sched_mm_cid(struct task_struct *t) 10438 { 10439 struct mm_struct *mm = t->mm; 10440 int mm_users = 0; 10441 10442 if (mm) { 10443 mm_users = atomic_read(&mm->mm_users); 10444 if (mm_users == 1) 10445 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10446 } 10447 t->cid_work.next = &t->cid_work; /* Protect against double add */ 10448 init_task_work(&t->cid_work, task_mm_cid_work); 10449 } 10450 10451 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) 10452 { 10453 struct callback_head *work = &curr->cid_work; 10454 unsigned long now = jiffies; 10455 10456 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || 10457 work->next != work) 10458 return; 10459 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) 10460 return; 10461 task_work_add(curr, work, TWA_RESUME); 10462 } 10463 10464 void sched_mm_cid_exit_signals(struct task_struct *t) 10465 { 10466 struct mm_struct *mm = t->mm; 10467 struct rq *rq; 10468 10469 if (!mm) 10470 return; 10471 10472 preempt_disable(); 10473 rq = this_rq(); 10474 guard(rq_lock_irqsave)(rq); 10475 preempt_enable_no_resched(); /* holding spinlock */ 10476 WRITE_ONCE(t->mm_cid_active, 0); 10477 /* 10478 * Store t->mm_cid_active before loading per-mm/cpu cid. 10479 * Matches barrier in sched_mm_cid_remote_clear_old(). 10480 */ 10481 smp_mb(); 10482 mm_cid_put(mm); 10483 t->last_mm_cid = t->mm_cid = -1; 10484 } 10485 10486 void sched_mm_cid_before_execve(struct task_struct *t) 10487 { 10488 struct mm_struct *mm = t->mm; 10489 struct rq *rq; 10490 10491 if (!mm) 10492 return; 10493 10494 preempt_disable(); 10495 rq = this_rq(); 10496 guard(rq_lock_irqsave)(rq); 10497 preempt_enable_no_resched(); /* holding spinlock */ 10498 WRITE_ONCE(t->mm_cid_active, 0); 10499 /* 10500 * Store t->mm_cid_active before loading per-mm/cpu cid. 10501 * Matches barrier in sched_mm_cid_remote_clear_old(). 10502 */ 10503 smp_mb(); 10504 mm_cid_put(mm); 10505 t->last_mm_cid = t->mm_cid = -1; 10506 } 10507 10508 void sched_mm_cid_after_execve(struct task_struct *t) 10509 { 10510 struct mm_struct *mm = t->mm; 10511 struct rq *rq; 10512 10513 if (!mm) 10514 return; 10515 10516 preempt_disable(); 10517 rq = this_rq(); 10518 scoped_guard (rq_lock_irqsave, rq) { 10519 preempt_enable_no_resched(); /* holding spinlock */ 10520 WRITE_ONCE(t->mm_cid_active, 1); 10521 /* 10522 * Store t->mm_cid_active before loading per-mm/cpu cid. 10523 * Matches barrier in sched_mm_cid_remote_clear_old(). 10524 */ 10525 smp_mb(); 10526 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm); 10527 } 10528 rseq_set_notify_resume(t); 10529 } 10530 10531 void sched_mm_cid_fork(struct task_struct *t) 10532 { 10533 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 10534 t->mm_cid_active = 1; 10535 } 10536 #endif 10537 10538 #ifdef CONFIG_SCHED_CLASS_EXT 10539 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 10540 struct sched_enq_and_set_ctx *ctx) 10541 { 10542 struct rq *rq = task_rq(p); 10543 10544 lockdep_assert_rq_held(rq); 10545 10546 *ctx = (struct sched_enq_and_set_ctx){ 10547 .p = p, 10548 .queue_flags = queue_flags, 10549 .queued = task_on_rq_queued(p), 10550 .running = task_current(rq, p), 10551 }; 10552 10553 update_rq_clock(rq); 10554 if (ctx->queued) 10555 dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK); 10556 if (ctx->running) 10557 put_prev_task(rq, p); 10558 } 10559 10560 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx) 10561 { 10562 struct rq *rq = task_rq(ctx->p); 10563 10564 lockdep_assert_rq_held(rq); 10565 10566 if (ctx->queued) 10567 enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK); 10568 if (ctx->running) 10569 set_next_task(rq, ctx->p); 10570 } 10571 #endif /* CONFIG_SCHED_CLASS_EXT */ 10572