xref: /linux/kernel/sched/core.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84 
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91 
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 	unsigned long delta;
95 	ktime_t soft, hard, now;
96 
97 	for (;;) {
98 		if (hrtimer_active(period_timer))
99 			break;
100 
101 		now = hrtimer_cb_get_time(period_timer);
102 		hrtimer_forward(period_timer, now, period);
103 
104 		soft = hrtimer_get_softexpires(period_timer);
105 		hard = hrtimer_get_expires(period_timer);
106 		delta = ktime_to_ns(ktime_sub(hard, soft));
107 		__hrtimer_start_range_ns(period_timer, soft, delta,
108 					 HRTIMER_MODE_ABS_PINNED, 0);
109 	}
110 }
111 
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114 
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116 
117 void update_rq_clock(struct rq *rq)
118 {
119 	s64 delta;
120 
121 	if (rq->skip_clock_update > 0)
122 		return;
123 
124 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 	rq->clock += delta;
126 	update_rq_clock_task(rq, delta);
127 }
128 
129 /*
130  * Debugging: various feature bits
131  */
132 
133 #define SCHED_FEAT(name, enabled)	\
134 	(1UL << __SCHED_FEAT_##name) * enabled |
135 
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 	0;
139 
140 #undef SCHED_FEAT
141 
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled)	\
144 	#name ,
145 
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149 
150 #undef SCHED_FEAT
151 
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 	int i;
155 
156 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 		if (!(sysctl_sched_features & (1UL << i)))
158 			seq_puts(m, "NO_");
159 		seq_printf(m, "%s ", sched_feat_names[i]);
160 	}
161 	seq_puts(m, "\n");
162 
163 	return 0;
164 }
165 
166 #ifdef HAVE_JUMP_LABEL
167 
168 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170 
171 #define SCHED_FEAT(name, enabled)	\
172 	jump_label_key__##enabled ,
173 
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177 
178 #undef SCHED_FEAT
179 
180 static void sched_feat_disable(int i)
181 {
182 	if (static_key_enabled(&sched_feat_keys[i]))
183 		static_key_slow_dec(&sched_feat_keys[i]);
184 }
185 
186 static void sched_feat_enable(int i)
187 {
188 	if (!static_key_enabled(&sched_feat_keys[i]))
189 		static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195 
196 static int sched_feat_set(char *cmp)
197 {
198 	int i;
199 	int neg = 0;
200 
201 	if (strncmp(cmp, "NO_", 3) == 0) {
202 		neg = 1;
203 		cmp += 3;
204 	}
205 
206 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 			if (neg) {
209 				sysctl_sched_features &= ~(1UL << i);
210 				sched_feat_disable(i);
211 			} else {
212 				sysctl_sched_features |= (1UL << i);
213 				sched_feat_enable(i);
214 			}
215 			break;
216 		}
217 	}
218 
219 	return i;
220 }
221 
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 		size_t cnt, loff_t *ppos)
225 {
226 	char buf[64];
227 	char *cmp;
228 	int i;
229 
230 	if (cnt > 63)
231 		cnt = 63;
232 
233 	if (copy_from_user(&buf, ubuf, cnt))
234 		return -EFAULT;
235 
236 	buf[cnt] = 0;
237 	cmp = strstrip(buf);
238 
239 	i = sched_feat_set(cmp);
240 	if (i == __SCHED_FEAT_NR)
241 		return -EINVAL;
242 
243 	*ppos += cnt;
244 
245 	return cnt;
246 }
247 
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 	return single_open(filp, sched_feat_show, NULL);
251 }
252 
253 static const struct file_operations sched_feat_fops = {
254 	.open		= sched_feat_open,
255 	.write		= sched_feat_write,
256 	.read		= seq_read,
257 	.llseek		= seq_lseek,
258 	.release	= single_release,
259 };
260 
261 static __init int sched_init_debug(void)
262 {
263 	debugfs_create_file("sched_features", 0644, NULL, NULL,
264 			&sched_feat_fops);
265 
266 	return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270 
271 /*
272  * Number of tasks to iterate in a single balance run.
273  * Limited because this is done with IRQs disabled.
274  */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276 
277 /*
278  * period over which we average the RT time consumption, measured
279  * in ms.
280  *
281  * default: 1s
282  */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284 
285 /*
286  * period over which we measure -rt task cpu usage in us.
287  * default: 1s
288  */
289 unsigned int sysctl_sched_rt_period = 1000000;
290 
291 __read_mostly int scheduler_running;
292 
293 /*
294  * part of the period that we allow rt tasks to run in us.
295  * default: 0.95s
296  */
297 int sysctl_sched_rt_runtime = 950000;
298 
299 
300 
301 /*
302  * __task_rq_lock - lock the rq @p resides on.
303  */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 	__acquires(rq->lock)
306 {
307 	struct rq *rq;
308 
309 	lockdep_assert_held(&p->pi_lock);
310 
311 	for (;;) {
312 		rq = task_rq(p);
313 		raw_spin_lock(&rq->lock);
314 		if (likely(rq == task_rq(p)))
315 			return rq;
316 		raw_spin_unlock(&rq->lock);
317 	}
318 }
319 
320 /*
321  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322  */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 	__acquires(p->pi_lock)
325 	__acquires(rq->lock)
326 {
327 	struct rq *rq;
328 
329 	for (;;) {
330 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 		rq = task_rq(p);
332 		raw_spin_lock(&rq->lock);
333 		if (likely(rq == task_rq(p)))
334 			return rq;
335 		raw_spin_unlock(&rq->lock);
336 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 	}
338 }
339 
340 static void __task_rq_unlock(struct rq *rq)
341 	__releases(rq->lock)
342 {
343 	raw_spin_unlock(&rq->lock);
344 }
345 
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 	__releases(rq->lock)
349 	__releases(p->pi_lock)
350 {
351 	raw_spin_unlock(&rq->lock);
352 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354 
355 /*
356  * this_rq_lock - lock this runqueue and disable interrupts.
357  */
358 static struct rq *this_rq_lock(void)
359 	__acquires(rq->lock)
360 {
361 	struct rq *rq;
362 
363 	local_irq_disable();
364 	rq = this_rq();
365 	raw_spin_lock(&rq->lock);
366 
367 	return rq;
368 }
369 
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372  * Use HR-timers to deliver accurate preemption points.
373  *
374  * Its all a bit involved since we cannot program an hrt while holding the
375  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376  * reschedule event.
377  *
378  * When we get rescheduled we reprogram the hrtick_timer outside of the
379  * rq->lock.
380  */
381 
382 static void hrtick_clear(struct rq *rq)
383 {
384 	if (hrtimer_active(&rq->hrtick_timer))
385 		hrtimer_cancel(&rq->hrtick_timer);
386 }
387 
388 /*
389  * High-resolution timer tick.
390  * Runs from hardirq context with interrupts disabled.
391  */
392 static enum hrtimer_restart hrtick(struct hrtimer *timer)
393 {
394 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395 
396 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397 
398 	raw_spin_lock(&rq->lock);
399 	update_rq_clock(rq);
400 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401 	raw_spin_unlock(&rq->lock);
402 
403 	return HRTIMER_NORESTART;
404 }
405 
406 #ifdef CONFIG_SMP
407 /*
408  * called from hardirq (IPI) context
409  */
410 static void __hrtick_start(void *arg)
411 {
412 	struct rq *rq = arg;
413 
414 	raw_spin_lock(&rq->lock);
415 	hrtimer_restart(&rq->hrtick_timer);
416 	rq->hrtick_csd_pending = 0;
417 	raw_spin_unlock(&rq->lock);
418 }
419 
420 /*
421  * Called to set the hrtick timer state.
422  *
423  * called with rq->lock held and irqs disabled
424  */
425 void hrtick_start(struct rq *rq, u64 delay)
426 {
427 	struct hrtimer *timer = &rq->hrtick_timer;
428 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429 
430 	hrtimer_set_expires(timer, time);
431 
432 	if (rq == this_rq()) {
433 		hrtimer_restart(timer);
434 	} else if (!rq->hrtick_csd_pending) {
435 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 		rq->hrtick_csd_pending = 1;
437 	}
438 }
439 
440 static int
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442 {
443 	int cpu = (int)(long)hcpu;
444 
445 	switch (action) {
446 	case CPU_UP_CANCELED:
447 	case CPU_UP_CANCELED_FROZEN:
448 	case CPU_DOWN_PREPARE:
449 	case CPU_DOWN_PREPARE_FROZEN:
450 	case CPU_DEAD:
451 	case CPU_DEAD_FROZEN:
452 		hrtick_clear(cpu_rq(cpu));
453 		return NOTIFY_OK;
454 	}
455 
456 	return NOTIFY_DONE;
457 }
458 
459 static __init void init_hrtick(void)
460 {
461 	hotcpu_notifier(hotplug_hrtick, 0);
462 }
463 #else
464 /*
465  * Called to set the hrtick timer state.
466  *
467  * called with rq->lock held and irqs disabled
468  */
469 void hrtick_start(struct rq *rq, u64 delay)
470 {
471 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 			HRTIMER_MODE_REL_PINNED, 0);
473 }
474 
475 static inline void init_hrtick(void)
476 {
477 }
478 #endif /* CONFIG_SMP */
479 
480 static void init_rq_hrtick(struct rq *rq)
481 {
482 #ifdef CONFIG_SMP
483 	rq->hrtick_csd_pending = 0;
484 
485 	rq->hrtick_csd.flags = 0;
486 	rq->hrtick_csd.func = __hrtick_start;
487 	rq->hrtick_csd.info = rq;
488 #endif
489 
490 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 	rq->hrtick_timer.function = hrtick;
492 }
493 #else	/* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
495 {
496 }
497 
498 static inline void init_rq_hrtick(struct rq *rq)
499 {
500 }
501 
502 static inline void init_hrtick(void)
503 {
504 }
505 #endif	/* CONFIG_SCHED_HRTICK */
506 
507 /*
508  * resched_task - mark a task 'to be rescheduled now'.
509  *
510  * On UP this means the setting of the need_resched flag, on SMP it
511  * might also involve a cross-CPU call to trigger the scheduler on
512  * the target CPU.
513  */
514 #ifdef CONFIG_SMP
515 
516 #ifndef tsk_is_polling
517 #define tsk_is_polling(t) 0
518 #endif
519 
520 void resched_task(struct task_struct *p)
521 {
522 	int cpu;
523 
524 	assert_raw_spin_locked(&task_rq(p)->lock);
525 
526 	if (test_tsk_need_resched(p))
527 		return;
528 
529 	set_tsk_need_resched(p);
530 
531 	cpu = task_cpu(p);
532 	if (cpu == smp_processor_id())
533 		return;
534 
535 	/* NEED_RESCHED must be visible before we test polling */
536 	smp_mb();
537 	if (!tsk_is_polling(p))
538 		smp_send_reschedule(cpu);
539 }
540 
541 void resched_cpu(int cpu)
542 {
543 	struct rq *rq = cpu_rq(cpu);
544 	unsigned long flags;
545 
546 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
547 		return;
548 	resched_task(cpu_curr(cpu));
549 	raw_spin_unlock_irqrestore(&rq->lock, flags);
550 }
551 
552 #ifdef CONFIG_NO_HZ
553 /*
554  * In the semi idle case, use the nearest busy cpu for migrating timers
555  * from an idle cpu.  This is good for power-savings.
556  *
557  * We don't do similar optimization for completely idle system, as
558  * selecting an idle cpu will add more delays to the timers than intended
559  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560  */
561 int get_nohz_timer_target(void)
562 {
563 	int cpu = smp_processor_id();
564 	int i;
565 	struct sched_domain *sd;
566 
567 	rcu_read_lock();
568 	for_each_domain(cpu, sd) {
569 		for_each_cpu(i, sched_domain_span(sd)) {
570 			if (!idle_cpu(i)) {
571 				cpu = i;
572 				goto unlock;
573 			}
574 		}
575 	}
576 unlock:
577 	rcu_read_unlock();
578 	return cpu;
579 }
580 /*
581  * When add_timer_on() enqueues a timer into the timer wheel of an
582  * idle CPU then this timer might expire before the next timer event
583  * which is scheduled to wake up that CPU. In case of a completely
584  * idle system the next event might even be infinite time into the
585  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586  * leaves the inner idle loop so the newly added timer is taken into
587  * account when the CPU goes back to idle and evaluates the timer
588  * wheel for the next timer event.
589  */
590 void wake_up_idle_cpu(int cpu)
591 {
592 	struct rq *rq = cpu_rq(cpu);
593 
594 	if (cpu == smp_processor_id())
595 		return;
596 
597 	/*
598 	 * This is safe, as this function is called with the timer
599 	 * wheel base lock of (cpu) held. When the CPU is on the way
600 	 * to idle and has not yet set rq->curr to idle then it will
601 	 * be serialized on the timer wheel base lock and take the new
602 	 * timer into account automatically.
603 	 */
604 	if (rq->curr != rq->idle)
605 		return;
606 
607 	/*
608 	 * We can set TIF_RESCHED on the idle task of the other CPU
609 	 * lockless. The worst case is that the other CPU runs the
610 	 * idle task through an additional NOOP schedule()
611 	 */
612 	set_tsk_need_resched(rq->idle);
613 
614 	/* NEED_RESCHED must be visible before we test polling */
615 	smp_mb();
616 	if (!tsk_is_polling(rq->idle))
617 		smp_send_reschedule(cpu);
618 }
619 
620 static inline bool got_nohz_idle_kick(void)
621 {
622 	int cpu = smp_processor_id();
623 	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
624 }
625 
626 #else /* CONFIG_NO_HZ */
627 
628 static inline bool got_nohz_idle_kick(void)
629 {
630 	return false;
631 }
632 
633 #endif /* CONFIG_NO_HZ */
634 
635 void sched_avg_update(struct rq *rq)
636 {
637 	s64 period = sched_avg_period();
638 
639 	while ((s64)(rq->clock - rq->age_stamp) > period) {
640 		/*
641 		 * Inline assembly required to prevent the compiler
642 		 * optimising this loop into a divmod call.
643 		 * See __iter_div_u64_rem() for another example of this.
644 		 */
645 		asm("" : "+rm" (rq->age_stamp));
646 		rq->age_stamp += period;
647 		rq->rt_avg /= 2;
648 	}
649 }
650 
651 #else /* !CONFIG_SMP */
652 void resched_task(struct task_struct *p)
653 {
654 	assert_raw_spin_locked(&task_rq(p)->lock);
655 	set_tsk_need_resched(p);
656 }
657 #endif /* CONFIG_SMP */
658 
659 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
661 /*
662  * Iterate task_group tree rooted at *from, calling @down when first entering a
663  * node and @up when leaving it for the final time.
664  *
665  * Caller must hold rcu_lock or sufficient equivalent.
666  */
667 int walk_tg_tree_from(struct task_group *from,
668 			     tg_visitor down, tg_visitor up, void *data)
669 {
670 	struct task_group *parent, *child;
671 	int ret;
672 
673 	parent = from;
674 
675 down:
676 	ret = (*down)(parent, data);
677 	if (ret)
678 		goto out;
679 	list_for_each_entry_rcu(child, &parent->children, siblings) {
680 		parent = child;
681 		goto down;
682 
683 up:
684 		continue;
685 	}
686 	ret = (*up)(parent, data);
687 	if (ret || parent == from)
688 		goto out;
689 
690 	child = parent;
691 	parent = parent->parent;
692 	if (parent)
693 		goto up;
694 out:
695 	return ret;
696 }
697 
698 int tg_nop(struct task_group *tg, void *data)
699 {
700 	return 0;
701 }
702 #endif
703 
704 static void set_load_weight(struct task_struct *p)
705 {
706 	int prio = p->static_prio - MAX_RT_PRIO;
707 	struct load_weight *load = &p->se.load;
708 
709 	/*
710 	 * SCHED_IDLE tasks get minimal weight:
711 	 */
712 	if (p->policy == SCHED_IDLE) {
713 		load->weight = scale_load(WEIGHT_IDLEPRIO);
714 		load->inv_weight = WMULT_IDLEPRIO;
715 		return;
716 	}
717 
718 	load->weight = scale_load(prio_to_weight[prio]);
719 	load->inv_weight = prio_to_wmult[prio];
720 }
721 
722 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
723 {
724 	update_rq_clock(rq);
725 	sched_info_queued(p);
726 	p->sched_class->enqueue_task(rq, p, flags);
727 }
728 
729 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
730 {
731 	update_rq_clock(rq);
732 	sched_info_dequeued(p);
733 	p->sched_class->dequeue_task(rq, p, flags);
734 }
735 
736 void activate_task(struct rq *rq, struct task_struct *p, int flags)
737 {
738 	if (task_contributes_to_load(p))
739 		rq->nr_uninterruptible--;
740 
741 	enqueue_task(rq, p, flags);
742 }
743 
744 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
745 {
746 	if (task_contributes_to_load(p))
747 		rq->nr_uninterruptible++;
748 
749 	dequeue_task(rq, p, flags);
750 }
751 
752 static void update_rq_clock_task(struct rq *rq, s64 delta)
753 {
754 /*
755  * In theory, the compile should just see 0 here, and optimize out the call
756  * to sched_rt_avg_update. But I don't trust it...
757  */
758 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759 	s64 steal = 0, irq_delta = 0;
760 #endif
761 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
762 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
763 
764 	/*
765 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766 	 * this case when a previous update_rq_clock() happened inside a
767 	 * {soft,}irq region.
768 	 *
769 	 * When this happens, we stop ->clock_task and only update the
770 	 * prev_irq_time stamp to account for the part that fit, so that a next
771 	 * update will consume the rest. This ensures ->clock_task is
772 	 * monotonic.
773 	 *
774 	 * It does however cause some slight miss-attribution of {soft,}irq
775 	 * time, a more accurate solution would be to update the irq_time using
776 	 * the current rq->clock timestamp, except that would require using
777 	 * atomic ops.
778 	 */
779 	if (irq_delta > delta)
780 		irq_delta = delta;
781 
782 	rq->prev_irq_time += irq_delta;
783 	delta -= irq_delta;
784 #endif
785 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
786 	if (static_key_false((&paravirt_steal_rq_enabled))) {
787 		u64 st;
788 
789 		steal = paravirt_steal_clock(cpu_of(rq));
790 		steal -= rq->prev_steal_time_rq;
791 
792 		if (unlikely(steal > delta))
793 			steal = delta;
794 
795 		st = steal_ticks(steal);
796 		steal = st * TICK_NSEC;
797 
798 		rq->prev_steal_time_rq += steal;
799 
800 		delta -= steal;
801 	}
802 #endif
803 
804 	rq->clock_task += delta;
805 
806 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808 		sched_rt_avg_update(rq, irq_delta + steal);
809 #endif
810 }
811 
812 void sched_set_stop_task(int cpu, struct task_struct *stop)
813 {
814 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
816 
817 	if (stop) {
818 		/*
819 		 * Make it appear like a SCHED_FIFO task, its something
820 		 * userspace knows about and won't get confused about.
821 		 *
822 		 * Also, it will make PI more or less work without too
823 		 * much confusion -- but then, stop work should not
824 		 * rely on PI working anyway.
825 		 */
826 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
827 
828 		stop->sched_class = &stop_sched_class;
829 	}
830 
831 	cpu_rq(cpu)->stop = stop;
832 
833 	if (old_stop) {
834 		/*
835 		 * Reset it back to a normal scheduling class so that
836 		 * it can die in pieces.
837 		 */
838 		old_stop->sched_class = &rt_sched_class;
839 	}
840 }
841 
842 /*
843  * __normal_prio - return the priority that is based on the static prio
844  */
845 static inline int __normal_prio(struct task_struct *p)
846 {
847 	return p->static_prio;
848 }
849 
850 /*
851  * Calculate the expected normal priority: i.e. priority
852  * without taking RT-inheritance into account. Might be
853  * boosted by interactivity modifiers. Changes upon fork,
854  * setprio syscalls, and whenever the interactivity
855  * estimator recalculates.
856  */
857 static inline int normal_prio(struct task_struct *p)
858 {
859 	int prio;
860 
861 	if (task_has_rt_policy(p))
862 		prio = MAX_RT_PRIO-1 - p->rt_priority;
863 	else
864 		prio = __normal_prio(p);
865 	return prio;
866 }
867 
868 /*
869  * Calculate the current priority, i.e. the priority
870  * taken into account by the scheduler. This value might
871  * be boosted by RT tasks, or might be boosted by
872  * interactivity modifiers. Will be RT if the task got
873  * RT-boosted. If not then it returns p->normal_prio.
874  */
875 static int effective_prio(struct task_struct *p)
876 {
877 	p->normal_prio = normal_prio(p);
878 	/*
879 	 * If we are RT tasks or we were boosted to RT priority,
880 	 * keep the priority unchanged. Otherwise, update priority
881 	 * to the normal priority:
882 	 */
883 	if (!rt_prio(p->prio))
884 		return p->normal_prio;
885 	return p->prio;
886 }
887 
888 /**
889  * task_curr - is this task currently executing on a CPU?
890  * @p: the task in question.
891  */
892 inline int task_curr(const struct task_struct *p)
893 {
894 	return cpu_curr(task_cpu(p)) == p;
895 }
896 
897 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898 				       const struct sched_class *prev_class,
899 				       int oldprio)
900 {
901 	if (prev_class != p->sched_class) {
902 		if (prev_class->switched_from)
903 			prev_class->switched_from(rq, p);
904 		p->sched_class->switched_to(rq, p);
905 	} else if (oldprio != p->prio)
906 		p->sched_class->prio_changed(rq, p, oldprio);
907 }
908 
909 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
910 {
911 	const struct sched_class *class;
912 
913 	if (p->sched_class == rq->curr->sched_class) {
914 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
915 	} else {
916 		for_each_class(class) {
917 			if (class == rq->curr->sched_class)
918 				break;
919 			if (class == p->sched_class) {
920 				resched_task(rq->curr);
921 				break;
922 			}
923 		}
924 	}
925 
926 	/*
927 	 * A queue event has occurred, and we're going to schedule.  In
928 	 * this case, we can save a useless back to back clock update.
929 	 */
930 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
931 		rq->skip_clock_update = 1;
932 }
933 
934 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
935 
936 void register_task_migration_notifier(struct notifier_block *n)
937 {
938 	atomic_notifier_chain_register(&task_migration_notifier, n);
939 }
940 
941 #ifdef CONFIG_SMP
942 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
943 {
944 #ifdef CONFIG_SCHED_DEBUG
945 	/*
946 	 * We should never call set_task_cpu() on a blocked task,
947 	 * ttwu() will sort out the placement.
948 	 */
949 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
951 
952 #ifdef CONFIG_LOCKDEP
953 	/*
954 	 * The caller should hold either p->pi_lock or rq->lock, when changing
955 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
956 	 *
957 	 * sched_move_task() holds both and thus holding either pins the cgroup,
958 	 * see task_group().
959 	 *
960 	 * Furthermore, all task_rq users should acquire both locks, see
961 	 * task_rq_lock().
962 	 */
963 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964 				      lockdep_is_held(&task_rq(p)->lock)));
965 #endif
966 #endif
967 
968 	trace_sched_migrate_task(p, new_cpu);
969 
970 	if (task_cpu(p) != new_cpu) {
971 		struct task_migration_notifier tmn;
972 
973 		if (p->sched_class->migrate_task_rq)
974 			p->sched_class->migrate_task_rq(p, new_cpu);
975 		p->se.nr_migrations++;
976 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
977 
978 		tmn.task = p;
979 		tmn.from_cpu = task_cpu(p);
980 		tmn.to_cpu = new_cpu;
981 
982 		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
983 	}
984 
985 	__set_task_cpu(p, new_cpu);
986 }
987 
988 struct migration_arg {
989 	struct task_struct *task;
990 	int dest_cpu;
991 };
992 
993 static int migration_cpu_stop(void *data);
994 
995 /*
996  * wait_task_inactive - wait for a thread to unschedule.
997  *
998  * If @match_state is nonzero, it's the @p->state value just checked and
999  * not expected to change.  If it changes, i.e. @p might have woken up,
1000  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1001  * we return a positive number (its total switch count).  If a second call
1002  * a short while later returns the same number, the caller can be sure that
1003  * @p has remained unscheduled the whole time.
1004  *
1005  * The caller must ensure that the task *will* unschedule sometime soon,
1006  * else this function might spin for a *long* time. This function can't
1007  * be called with interrupts off, or it may introduce deadlock with
1008  * smp_call_function() if an IPI is sent by the same process we are
1009  * waiting to become inactive.
1010  */
1011 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1012 {
1013 	unsigned long flags;
1014 	int running, on_rq;
1015 	unsigned long ncsw;
1016 	struct rq *rq;
1017 
1018 	for (;;) {
1019 		/*
1020 		 * We do the initial early heuristics without holding
1021 		 * any task-queue locks at all. We'll only try to get
1022 		 * the runqueue lock when things look like they will
1023 		 * work out!
1024 		 */
1025 		rq = task_rq(p);
1026 
1027 		/*
1028 		 * If the task is actively running on another CPU
1029 		 * still, just relax and busy-wait without holding
1030 		 * any locks.
1031 		 *
1032 		 * NOTE! Since we don't hold any locks, it's not
1033 		 * even sure that "rq" stays as the right runqueue!
1034 		 * But we don't care, since "task_running()" will
1035 		 * return false if the runqueue has changed and p
1036 		 * is actually now running somewhere else!
1037 		 */
1038 		while (task_running(rq, p)) {
1039 			if (match_state && unlikely(p->state != match_state))
1040 				return 0;
1041 			cpu_relax();
1042 		}
1043 
1044 		/*
1045 		 * Ok, time to look more closely! We need the rq
1046 		 * lock now, to be *sure*. If we're wrong, we'll
1047 		 * just go back and repeat.
1048 		 */
1049 		rq = task_rq_lock(p, &flags);
1050 		trace_sched_wait_task(p);
1051 		running = task_running(rq, p);
1052 		on_rq = p->on_rq;
1053 		ncsw = 0;
1054 		if (!match_state || p->state == match_state)
1055 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1056 		task_rq_unlock(rq, p, &flags);
1057 
1058 		/*
1059 		 * If it changed from the expected state, bail out now.
1060 		 */
1061 		if (unlikely(!ncsw))
1062 			break;
1063 
1064 		/*
1065 		 * Was it really running after all now that we
1066 		 * checked with the proper locks actually held?
1067 		 *
1068 		 * Oops. Go back and try again..
1069 		 */
1070 		if (unlikely(running)) {
1071 			cpu_relax();
1072 			continue;
1073 		}
1074 
1075 		/*
1076 		 * It's not enough that it's not actively running,
1077 		 * it must be off the runqueue _entirely_, and not
1078 		 * preempted!
1079 		 *
1080 		 * So if it was still runnable (but just not actively
1081 		 * running right now), it's preempted, and we should
1082 		 * yield - it could be a while.
1083 		 */
1084 		if (unlikely(on_rq)) {
1085 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1086 
1087 			set_current_state(TASK_UNINTERRUPTIBLE);
1088 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1089 			continue;
1090 		}
1091 
1092 		/*
1093 		 * Ahh, all good. It wasn't running, and it wasn't
1094 		 * runnable, which means that it will never become
1095 		 * running in the future either. We're all done!
1096 		 */
1097 		break;
1098 	}
1099 
1100 	return ncsw;
1101 }
1102 
1103 /***
1104  * kick_process - kick a running thread to enter/exit the kernel
1105  * @p: the to-be-kicked thread
1106  *
1107  * Cause a process which is running on another CPU to enter
1108  * kernel-mode, without any delay. (to get signals handled.)
1109  *
1110  * NOTE: this function doesn't have to take the runqueue lock,
1111  * because all it wants to ensure is that the remote task enters
1112  * the kernel. If the IPI races and the task has been migrated
1113  * to another CPU then no harm is done and the purpose has been
1114  * achieved as well.
1115  */
1116 void kick_process(struct task_struct *p)
1117 {
1118 	int cpu;
1119 
1120 	preempt_disable();
1121 	cpu = task_cpu(p);
1122 	if ((cpu != smp_processor_id()) && task_curr(p))
1123 		smp_send_reschedule(cpu);
1124 	preempt_enable();
1125 }
1126 EXPORT_SYMBOL_GPL(kick_process);
1127 #endif /* CONFIG_SMP */
1128 
1129 #ifdef CONFIG_SMP
1130 /*
1131  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1132  */
1133 static int select_fallback_rq(int cpu, struct task_struct *p)
1134 {
1135 	int nid = cpu_to_node(cpu);
1136 	const struct cpumask *nodemask = NULL;
1137 	enum { cpuset, possible, fail } state = cpuset;
1138 	int dest_cpu;
1139 
1140 	/*
1141 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1142 	 * will return -1. There is no cpu on the node, and we should
1143 	 * select the cpu on the other node.
1144 	 */
1145 	if (nid != -1) {
1146 		nodemask = cpumask_of_node(nid);
1147 
1148 		/* Look for allowed, online CPU in same node. */
1149 		for_each_cpu(dest_cpu, nodemask) {
1150 			if (!cpu_online(dest_cpu))
1151 				continue;
1152 			if (!cpu_active(dest_cpu))
1153 				continue;
1154 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1155 				return dest_cpu;
1156 		}
1157 	}
1158 
1159 	for (;;) {
1160 		/* Any allowed, online CPU? */
1161 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1162 			if (!cpu_online(dest_cpu))
1163 				continue;
1164 			if (!cpu_active(dest_cpu))
1165 				continue;
1166 			goto out;
1167 		}
1168 
1169 		switch (state) {
1170 		case cpuset:
1171 			/* No more Mr. Nice Guy. */
1172 			cpuset_cpus_allowed_fallback(p);
1173 			state = possible;
1174 			break;
1175 
1176 		case possible:
1177 			do_set_cpus_allowed(p, cpu_possible_mask);
1178 			state = fail;
1179 			break;
1180 
1181 		case fail:
1182 			BUG();
1183 			break;
1184 		}
1185 	}
1186 
1187 out:
1188 	if (state != cpuset) {
1189 		/*
1190 		 * Don't tell them about moving exiting tasks or
1191 		 * kernel threads (both mm NULL), since they never
1192 		 * leave kernel.
1193 		 */
1194 		if (p->mm && printk_ratelimit()) {
1195 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1196 					task_pid_nr(p), p->comm, cpu);
1197 		}
1198 	}
1199 
1200 	return dest_cpu;
1201 }
1202 
1203 /*
1204  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1205  */
1206 static inline
1207 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1208 {
1209 	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1210 
1211 	/*
1212 	 * In order not to call set_task_cpu() on a blocking task we need
1213 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1214 	 * cpu.
1215 	 *
1216 	 * Since this is common to all placement strategies, this lives here.
1217 	 *
1218 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1219 	 *   not worry about this generic constraint ]
1220 	 */
1221 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1222 		     !cpu_online(cpu)))
1223 		cpu = select_fallback_rq(task_cpu(p), p);
1224 
1225 	return cpu;
1226 }
1227 
1228 static void update_avg(u64 *avg, u64 sample)
1229 {
1230 	s64 diff = sample - *avg;
1231 	*avg += diff >> 3;
1232 }
1233 #endif
1234 
1235 static void
1236 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1237 {
1238 #ifdef CONFIG_SCHEDSTATS
1239 	struct rq *rq = this_rq();
1240 
1241 #ifdef CONFIG_SMP
1242 	int this_cpu = smp_processor_id();
1243 
1244 	if (cpu == this_cpu) {
1245 		schedstat_inc(rq, ttwu_local);
1246 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1247 	} else {
1248 		struct sched_domain *sd;
1249 
1250 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1251 		rcu_read_lock();
1252 		for_each_domain(this_cpu, sd) {
1253 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1254 				schedstat_inc(sd, ttwu_wake_remote);
1255 				break;
1256 			}
1257 		}
1258 		rcu_read_unlock();
1259 	}
1260 
1261 	if (wake_flags & WF_MIGRATED)
1262 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1263 
1264 #endif /* CONFIG_SMP */
1265 
1266 	schedstat_inc(rq, ttwu_count);
1267 	schedstat_inc(p, se.statistics.nr_wakeups);
1268 
1269 	if (wake_flags & WF_SYNC)
1270 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1271 
1272 #endif /* CONFIG_SCHEDSTATS */
1273 }
1274 
1275 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1276 {
1277 	activate_task(rq, p, en_flags);
1278 	p->on_rq = 1;
1279 
1280 	/* if a worker is waking up, notify workqueue */
1281 	if (p->flags & PF_WQ_WORKER)
1282 		wq_worker_waking_up(p, cpu_of(rq));
1283 }
1284 
1285 /*
1286  * Mark the task runnable and perform wakeup-preemption.
1287  */
1288 static void
1289 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1290 {
1291 	trace_sched_wakeup(p, true);
1292 	check_preempt_curr(rq, p, wake_flags);
1293 
1294 	p->state = TASK_RUNNING;
1295 #ifdef CONFIG_SMP
1296 	if (p->sched_class->task_woken)
1297 		p->sched_class->task_woken(rq, p);
1298 
1299 	if (rq->idle_stamp) {
1300 		u64 delta = rq->clock - rq->idle_stamp;
1301 		u64 max = 2*sysctl_sched_migration_cost;
1302 
1303 		if (delta > max)
1304 			rq->avg_idle = max;
1305 		else
1306 			update_avg(&rq->avg_idle, delta);
1307 		rq->idle_stamp = 0;
1308 	}
1309 #endif
1310 }
1311 
1312 static void
1313 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1314 {
1315 #ifdef CONFIG_SMP
1316 	if (p->sched_contributes_to_load)
1317 		rq->nr_uninterruptible--;
1318 #endif
1319 
1320 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1321 	ttwu_do_wakeup(rq, p, wake_flags);
1322 }
1323 
1324 /*
1325  * Called in case the task @p isn't fully descheduled from its runqueue,
1326  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1327  * since all we need to do is flip p->state to TASK_RUNNING, since
1328  * the task is still ->on_rq.
1329  */
1330 static int ttwu_remote(struct task_struct *p, int wake_flags)
1331 {
1332 	struct rq *rq;
1333 	int ret = 0;
1334 
1335 	rq = __task_rq_lock(p);
1336 	if (p->on_rq) {
1337 		ttwu_do_wakeup(rq, p, wake_flags);
1338 		ret = 1;
1339 	}
1340 	__task_rq_unlock(rq);
1341 
1342 	return ret;
1343 }
1344 
1345 #ifdef CONFIG_SMP
1346 static void sched_ttwu_pending(void)
1347 {
1348 	struct rq *rq = this_rq();
1349 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1350 	struct task_struct *p;
1351 
1352 	raw_spin_lock(&rq->lock);
1353 
1354 	while (llist) {
1355 		p = llist_entry(llist, struct task_struct, wake_entry);
1356 		llist = llist_next(llist);
1357 		ttwu_do_activate(rq, p, 0);
1358 	}
1359 
1360 	raw_spin_unlock(&rq->lock);
1361 }
1362 
1363 void scheduler_ipi(void)
1364 {
1365 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1366 		return;
1367 
1368 	/*
1369 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1370 	 * traditionally all their work was done from the interrupt return
1371 	 * path. Now that we actually do some work, we need to make sure
1372 	 * we do call them.
1373 	 *
1374 	 * Some archs already do call them, luckily irq_enter/exit nest
1375 	 * properly.
1376 	 *
1377 	 * Arguably we should visit all archs and update all handlers,
1378 	 * however a fair share of IPIs are still resched only so this would
1379 	 * somewhat pessimize the simple resched case.
1380 	 */
1381 	irq_enter();
1382 	sched_ttwu_pending();
1383 
1384 	/*
1385 	 * Check if someone kicked us for doing the nohz idle load balance.
1386 	 */
1387 	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1388 		this_rq()->idle_balance = 1;
1389 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1390 	}
1391 	irq_exit();
1392 }
1393 
1394 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1395 {
1396 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1397 		smp_send_reschedule(cpu);
1398 }
1399 
1400 bool cpus_share_cache(int this_cpu, int that_cpu)
1401 {
1402 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1403 }
1404 #endif /* CONFIG_SMP */
1405 
1406 static void ttwu_queue(struct task_struct *p, int cpu)
1407 {
1408 	struct rq *rq = cpu_rq(cpu);
1409 
1410 #if defined(CONFIG_SMP)
1411 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1412 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1413 		ttwu_queue_remote(p, cpu);
1414 		return;
1415 	}
1416 #endif
1417 
1418 	raw_spin_lock(&rq->lock);
1419 	ttwu_do_activate(rq, p, 0);
1420 	raw_spin_unlock(&rq->lock);
1421 }
1422 
1423 /**
1424  * try_to_wake_up - wake up a thread
1425  * @p: the thread to be awakened
1426  * @state: the mask of task states that can be woken
1427  * @wake_flags: wake modifier flags (WF_*)
1428  *
1429  * Put it on the run-queue if it's not already there. The "current"
1430  * thread is always on the run-queue (except when the actual
1431  * re-schedule is in progress), and as such you're allowed to do
1432  * the simpler "current->state = TASK_RUNNING" to mark yourself
1433  * runnable without the overhead of this.
1434  *
1435  * Returns %true if @p was woken up, %false if it was already running
1436  * or @state didn't match @p's state.
1437  */
1438 static int
1439 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1440 {
1441 	unsigned long flags;
1442 	int cpu, success = 0;
1443 
1444 	smp_wmb();
1445 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1446 	if (!(p->state & state))
1447 		goto out;
1448 
1449 	success = 1; /* we're going to change ->state */
1450 	cpu = task_cpu(p);
1451 
1452 	if (p->on_rq && ttwu_remote(p, wake_flags))
1453 		goto stat;
1454 
1455 #ifdef CONFIG_SMP
1456 	/*
1457 	 * If the owning (remote) cpu is still in the middle of schedule() with
1458 	 * this task as prev, wait until its done referencing the task.
1459 	 */
1460 	while (p->on_cpu)
1461 		cpu_relax();
1462 	/*
1463 	 * Pairs with the smp_wmb() in finish_lock_switch().
1464 	 */
1465 	smp_rmb();
1466 
1467 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1468 	p->state = TASK_WAKING;
1469 
1470 	if (p->sched_class->task_waking)
1471 		p->sched_class->task_waking(p);
1472 
1473 	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1474 	if (task_cpu(p) != cpu) {
1475 		wake_flags |= WF_MIGRATED;
1476 		set_task_cpu(p, cpu);
1477 	}
1478 #endif /* CONFIG_SMP */
1479 
1480 	ttwu_queue(p, cpu);
1481 stat:
1482 	ttwu_stat(p, cpu, wake_flags);
1483 out:
1484 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1485 
1486 	return success;
1487 }
1488 
1489 /**
1490  * try_to_wake_up_local - try to wake up a local task with rq lock held
1491  * @p: the thread to be awakened
1492  *
1493  * Put @p on the run-queue if it's not already there. The caller must
1494  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1495  * the current task.
1496  */
1497 static void try_to_wake_up_local(struct task_struct *p)
1498 {
1499 	struct rq *rq = task_rq(p);
1500 
1501 	if (WARN_ON_ONCE(rq != this_rq()) ||
1502 	    WARN_ON_ONCE(p == current))
1503 		return;
1504 
1505 	lockdep_assert_held(&rq->lock);
1506 
1507 	if (!raw_spin_trylock(&p->pi_lock)) {
1508 		raw_spin_unlock(&rq->lock);
1509 		raw_spin_lock(&p->pi_lock);
1510 		raw_spin_lock(&rq->lock);
1511 	}
1512 
1513 	if (!(p->state & TASK_NORMAL))
1514 		goto out;
1515 
1516 	if (!p->on_rq)
1517 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1518 
1519 	ttwu_do_wakeup(rq, p, 0);
1520 	ttwu_stat(p, smp_processor_id(), 0);
1521 out:
1522 	raw_spin_unlock(&p->pi_lock);
1523 }
1524 
1525 /**
1526  * wake_up_process - Wake up a specific process
1527  * @p: The process to be woken up.
1528  *
1529  * Attempt to wake up the nominated process and move it to the set of runnable
1530  * processes.  Returns 1 if the process was woken up, 0 if it was already
1531  * running.
1532  *
1533  * It may be assumed that this function implies a write memory barrier before
1534  * changing the task state if and only if any tasks are woken up.
1535  */
1536 int wake_up_process(struct task_struct *p)
1537 {
1538 	WARN_ON(task_is_stopped_or_traced(p));
1539 	return try_to_wake_up(p, TASK_NORMAL, 0);
1540 }
1541 EXPORT_SYMBOL(wake_up_process);
1542 
1543 int wake_up_state(struct task_struct *p, unsigned int state)
1544 {
1545 	return try_to_wake_up(p, state, 0);
1546 }
1547 
1548 /*
1549  * Perform scheduler related setup for a newly forked process p.
1550  * p is forked by current.
1551  *
1552  * __sched_fork() is basic setup used by init_idle() too:
1553  */
1554 static void __sched_fork(struct task_struct *p)
1555 {
1556 	p->on_rq			= 0;
1557 
1558 	p->se.on_rq			= 0;
1559 	p->se.exec_start		= 0;
1560 	p->se.sum_exec_runtime		= 0;
1561 	p->se.prev_sum_exec_runtime	= 0;
1562 	p->se.nr_migrations		= 0;
1563 	p->se.vruntime			= 0;
1564 	INIT_LIST_HEAD(&p->se.group_node);
1565 
1566 /*
1567  * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1568  * removed when useful for applications beyond shares distribution (e.g.
1569  * load-balance).
1570  */
1571 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1572 	p->se.avg.runnable_avg_period = 0;
1573 	p->se.avg.runnable_avg_sum = 0;
1574 #endif
1575 #ifdef CONFIG_SCHEDSTATS
1576 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1577 #endif
1578 
1579 	INIT_LIST_HEAD(&p->rt.run_list);
1580 
1581 #ifdef CONFIG_PREEMPT_NOTIFIERS
1582 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1583 #endif
1584 
1585 #ifdef CONFIG_NUMA_BALANCING
1586 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1587 		p->mm->numa_next_scan = jiffies;
1588 		p->mm->numa_next_reset = jiffies;
1589 		p->mm->numa_scan_seq = 0;
1590 	}
1591 
1592 	p->node_stamp = 0ULL;
1593 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1594 	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1595 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1596 	p->numa_work.next = &p->numa_work;
1597 #endif /* CONFIG_NUMA_BALANCING */
1598 }
1599 
1600 #ifdef CONFIG_NUMA_BALANCING
1601 #ifdef CONFIG_SCHED_DEBUG
1602 void set_numabalancing_state(bool enabled)
1603 {
1604 	if (enabled)
1605 		sched_feat_set("NUMA");
1606 	else
1607 		sched_feat_set("NO_NUMA");
1608 }
1609 #else
1610 __read_mostly bool numabalancing_enabled;
1611 
1612 void set_numabalancing_state(bool enabled)
1613 {
1614 	numabalancing_enabled = enabled;
1615 }
1616 #endif /* CONFIG_SCHED_DEBUG */
1617 #endif /* CONFIG_NUMA_BALANCING */
1618 
1619 /*
1620  * fork()/clone()-time setup:
1621  */
1622 void sched_fork(struct task_struct *p)
1623 {
1624 	unsigned long flags;
1625 	int cpu = get_cpu();
1626 
1627 	__sched_fork(p);
1628 	/*
1629 	 * We mark the process as running here. This guarantees that
1630 	 * nobody will actually run it, and a signal or other external
1631 	 * event cannot wake it up and insert it on the runqueue either.
1632 	 */
1633 	p->state = TASK_RUNNING;
1634 
1635 	/*
1636 	 * Make sure we do not leak PI boosting priority to the child.
1637 	 */
1638 	p->prio = current->normal_prio;
1639 
1640 	/*
1641 	 * Revert to default priority/policy on fork if requested.
1642 	 */
1643 	if (unlikely(p->sched_reset_on_fork)) {
1644 		if (task_has_rt_policy(p)) {
1645 			p->policy = SCHED_NORMAL;
1646 			p->static_prio = NICE_TO_PRIO(0);
1647 			p->rt_priority = 0;
1648 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1649 			p->static_prio = NICE_TO_PRIO(0);
1650 
1651 		p->prio = p->normal_prio = __normal_prio(p);
1652 		set_load_weight(p);
1653 
1654 		/*
1655 		 * We don't need the reset flag anymore after the fork. It has
1656 		 * fulfilled its duty:
1657 		 */
1658 		p->sched_reset_on_fork = 0;
1659 	}
1660 
1661 	if (!rt_prio(p->prio))
1662 		p->sched_class = &fair_sched_class;
1663 
1664 	if (p->sched_class->task_fork)
1665 		p->sched_class->task_fork(p);
1666 
1667 	/*
1668 	 * The child is not yet in the pid-hash so no cgroup attach races,
1669 	 * and the cgroup is pinned to this child due to cgroup_fork()
1670 	 * is ran before sched_fork().
1671 	 *
1672 	 * Silence PROVE_RCU.
1673 	 */
1674 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1675 	set_task_cpu(p, cpu);
1676 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1677 
1678 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1679 	if (likely(sched_info_on()))
1680 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1681 #endif
1682 #if defined(CONFIG_SMP)
1683 	p->on_cpu = 0;
1684 #endif
1685 #ifdef CONFIG_PREEMPT_COUNT
1686 	/* Want to start with kernel preemption disabled. */
1687 	task_thread_info(p)->preempt_count = 1;
1688 #endif
1689 #ifdef CONFIG_SMP
1690 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1691 #endif
1692 
1693 	put_cpu();
1694 }
1695 
1696 /*
1697  * wake_up_new_task - wake up a newly created task for the first time.
1698  *
1699  * This function will do some initial scheduler statistics housekeeping
1700  * that must be done for every newly created context, then puts the task
1701  * on the runqueue and wakes it.
1702  */
1703 void wake_up_new_task(struct task_struct *p)
1704 {
1705 	unsigned long flags;
1706 	struct rq *rq;
1707 
1708 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1709 #ifdef CONFIG_SMP
1710 	/*
1711 	 * Fork balancing, do it here and not earlier because:
1712 	 *  - cpus_allowed can change in the fork path
1713 	 *  - any previously selected cpu might disappear through hotplug
1714 	 */
1715 	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1716 #endif
1717 
1718 	rq = __task_rq_lock(p);
1719 	activate_task(rq, p, 0);
1720 	p->on_rq = 1;
1721 	trace_sched_wakeup_new(p, true);
1722 	check_preempt_curr(rq, p, WF_FORK);
1723 #ifdef CONFIG_SMP
1724 	if (p->sched_class->task_woken)
1725 		p->sched_class->task_woken(rq, p);
1726 #endif
1727 	task_rq_unlock(rq, p, &flags);
1728 }
1729 
1730 #ifdef CONFIG_PREEMPT_NOTIFIERS
1731 
1732 /**
1733  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1734  * @notifier: notifier struct to register
1735  */
1736 void preempt_notifier_register(struct preempt_notifier *notifier)
1737 {
1738 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1739 }
1740 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1741 
1742 /**
1743  * preempt_notifier_unregister - no longer interested in preemption notifications
1744  * @notifier: notifier struct to unregister
1745  *
1746  * This is safe to call from within a preemption notifier.
1747  */
1748 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1749 {
1750 	hlist_del(&notifier->link);
1751 }
1752 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1753 
1754 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1755 {
1756 	struct preempt_notifier *notifier;
1757 
1758 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1759 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1760 }
1761 
1762 static void
1763 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1764 				 struct task_struct *next)
1765 {
1766 	struct preempt_notifier *notifier;
1767 
1768 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1769 		notifier->ops->sched_out(notifier, next);
1770 }
1771 
1772 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1773 
1774 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1775 {
1776 }
1777 
1778 static void
1779 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1780 				 struct task_struct *next)
1781 {
1782 }
1783 
1784 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1785 
1786 /**
1787  * prepare_task_switch - prepare to switch tasks
1788  * @rq: the runqueue preparing to switch
1789  * @prev: the current task that is being switched out
1790  * @next: the task we are going to switch to.
1791  *
1792  * This is called with the rq lock held and interrupts off. It must
1793  * be paired with a subsequent finish_task_switch after the context
1794  * switch.
1795  *
1796  * prepare_task_switch sets up locking and calls architecture specific
1797  * hooks.
1798  */
1799 static inline void
1800 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1801 		    struct task_struct *next)
1802 {
1803 	trace_sched_switch(prev, next);
1804 	sched_info_switch(prev, next);
1805 	perf_event_task_sched_out(prev, next);
1806 	fire_sched_out_preempt_notifiers(prev, next);
1807 	prepare_lock_switch(rq, next);
1808 	prepare_arch_switch(next);
1809 }
1810 
1811 /**
1812  * finish_task_switch - clean up after a task-switch
1813  * @rq: runqueue associated with task-switch
1814  * @prev: the thread we just switched away from.
1815  *
1816  * finish_task_switch must be called after the context switch, paired
1817  * with a prepare_task_switch call before the context switch.
1818  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1819  * and do any other architecture-specific cleanup actions.
1820  *
1821  * Note that we may have delayed dropping an mm in context_switch(). If
1822  * so, we finish that here outside of the runqueue lock. (Doing it
1823  * with the lock held can cause deadlocks; see schedule() for
1824  * details.)
1825  */
1826 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1827 	__releases(rq->lock)
1828 {
1829 	struct mm_struct *mm = rq->prev_mm;
1830 	long prev_state;
1831 
1832 	rq->prev_mm = NULL;
1833 
1834 	/*
1835 	 * A task struct has one reference for the use as "current".
1836 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1837 	 * schedule one last time. The schedule call will never return, and
1838 	 * the scheduled task must drop that reference.
1839 	 * The test for TASK_DEAD must occur while the runqueue locks are
1840 	 * still held, otherwise prev could be scheduled on another cpu, die
1841 	 * there before we look at prev->state, and then the reference would
1842 	 * be dropped twice.
1843 	 *		Manfred Spraul <manfred@colorfullife.com>
1844 	 */
1845 	prev_state = prev->state;
1846 	vtime_task_switch(prev);
1847 	finish_arch_switch(prev);
1848 	perf_event_task_sched_in(prev, current);
1849 	finish_lock_switch(rq, prev);
1850 	finish_arch_post_lock_switch();
1851 
1852 	fire_sched_in_preempt_notifiers(current);
1853 	if (mm)
1854 		mmdrop(mm);
1855 	if (unlikely(prev_state == TASK_DEAD)) {
1856 		/*
1857 		 * Remove function-return probe instances associated with this
1858 		 * task and put them back on the free list.
1859 		 */
1860 		kprobe_flush_task(prev);
1861 		put_task_struct(prev);
1862 	}
1863 }
1864 
1865 #ifdef CONFIG_SMP
1866 
1867 /* assumes rq->lock is held */
1868 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1869 {
1870 	if (prev->sched_class->pre_schedule)
1871 		prev->sched_class->pre_schedule(rq, prev);
1872 }
1873 
1874 /* rq->lock is NOT held, but preemption is disabled */
1875 static inline void post_schedule(struct rq *rq)
1876 {
1877 	if (rq->post_schedule) {
1878 		unsigned long flags;
1879 
1880 		raw_spin_lock_irqsave(&rq->lock, flags);
1881 		if (rq->curr->sched_class->post_schedule)
1882 			rq->curr->sched_class->post_schedule(rq);
1883 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1884 
1885 		rq->post_schedule = 0;
1886 	}
1887 }
1888 
1889 #else
1890 
1891 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1892 {
1893 }
1894 
1895 static inline void post_schedule(struct rq *rq)
1896 {
1897 }
1898 
1899 #endif
1900 
1901 /**
1902  * schedule_tail - first thing a freshly forked thread must call.
1903  * @prev: the thread we just switched away from.
1904  */
1905 asmlinkage void schedule_tail(struct task_struct *prev)
1906 	__releases(rq->lock)
1907 {
1908 	struct rq *rq = this_rq();
1909 
1910 	finish_task_switch(rq, prev);
1911 
1912 	/*
1913 	 * FIXME: do we need to worry about rq being invalidated by the
1914 	 * task_switch?
1915 	 */
1916 	post_schedule(rq);
1917 
1918 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1919 	/* In this case, finish_task_switch does not reenable preemption */
1920 	preempt_enable();
1921 #endif
1922 	if (current->set_child_tid)
1923 		put_user(task_pid_vnr(current), current->set_child_tid);
1924 }
1925 
1926 /*
1927  * context_switch - switch to the new MM and the new
1928  * thread's register state.
1929  */
1930 static inline void
1931 context_switch(struct rq *rq, struct task_struct *prev,
1932 	       struct task_struct *next)
1933 {
1934 	struct mm_struct *mm, *oldmm;
1935 
1936 	prepare_task_switch(rq, prev, next);
1937 
1938 	mm = next->mm;
1939 	oldmm = prev->active_mm;
1940 	/*
1941 	 * For paravirt, this is coupled with an exit in switch_to to
1942 	 * combine the page table reload and the switch backend into
1943 	 * one hypercall.
1944 	 */
1945 	arch_start_context_switch(prev);
1946 
1947 	if (!mm) {
1948 		next->active_mm = oldmm;
1949 		atomic_inc(&oldmm->mm_count);
1950 		enter_lazy_tlb(oldmm, next);
1951 	} else
1952 		switch_mm(oldmm, mm, next);
1953 
1954 	if (!prev->mm) {
1955 		prev->active_mm = NULL;
1956 		rq->prev_mm = oldmm;
1957 	}
1958 	/*
1959 	 * Since the runqueue lock will be released by the next
1960 	 * task (which is an invalid locking op but in the case
1961 	 * of the scheduler it's an obvious special-case), so we
1962 	 * do an early lockdep release here:
1963 	 */
1964 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1965 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1966 #endif
1967 
1968 	context_tracking_task_switch(prev, next);
1969 	/* Here we just switch the register state and the stack. */
1970 	switch_to(prev, next, prev);
1971 
1972 	barrier();
1973 	/*
1974 	 * this_rq must be evaluated again because prev may have moved
1975 	 * CPUs since it called schedule(), thus the 'rq' on its stack
1976 	 * frame will be invalid.
1977 	 */
1978 	finish_task_switch(this_rq(), prev);
1979 }
1980 
1981 /*
1982  * nr_running and nr_context_switches:
1983  *
1984  * externally visible scheduler statistics: current number of runnable
1985  * threads, total number of context switches performed since bootup.
1986  */
1987 unsigned long nr_running(void)
1988 {
1989 	unsigned long i, sum = 0;
1990 
1991 	for_each_online_cpu(i)
1992 		sum += cpu_rq(i)->nr_running;
1993 
1994 	return sum;
1995 }
1996 
1997 unsigned long long nr_context_switches(void)
1998 {
1999 	int i;
2000 	unsigned long long sum = 0;
2001 
2002 	for_each_possible_cpu(i)
2003 		sum += cpu_rq(i)->nr_switches;
2004 
2005 	return sum;
2006 }
2007 
2008 unsigned long nr_iowait(void)
2009 {
2010 	unsigned long i, sum = 0;
2011 
2012 	for_each_possible_cpu(i)
2013 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2014 
2015 	return sum;
2016 }
2017 
2018 unsigned long nr_iowait_cpu(int cpu)
2019 {
2020 	struct rq *this = cpu_rq(cpu);
2021 	return atomic_read(&this->nr_iowait);
2022 }
2023 
2024 unsigned long this_cpu_load(void)
2025 {
2026 	struct rq *this = this_rq();
2027 	return this->cpu_load[0];
2028 }
2029 
2030 
2031 /*
2032  * Global load-average calculations
2033  *
2034  * We take a distributed and async approach to calculating the global load-avg
2035  * in order to minimize overhead.
2036  *
2037  * The global load average is an exponentially decaying average of nr_running +
2038  * nr_uninterruptible.
2039  *
2040  * Once every LOAD_FREQ:
2041  *
2042  *   nr_active = 0;
2043  *   for_each_possible_cpu(cpu)
2044  *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2045  *
2046  *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2047  *
2048  * Due to a number of reasons the above turns in the mess below:
2049  *
2050  *  - for_each_possible_cpu() is prohibitively expensive on machines with
2051  *    serious number of cpus, therefore we need to take a distributed approach
2052  *    to calculating nr_active.
2053  *
2054  *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2055  *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2056  *
2057  *    So assuming nr_active := 0 when we start out -- true per definition, we
2058  *    can simply take per-cpu deltas and fold those into a global accumulate
2059  *    to obtain the same result. See calc_load_fold_active().
2060  *
2061  *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2062  *    across the machine, we assume 10 ticks is sufficient time for every
2063  *    cpu to have completed this task.
2064  *
2065  *    This places an upper-bound on the IRQ-off latency of the machine. Then
2066  *    again, being late doesn't loose the delta, just wrecks the sample.
2067  *
2068  *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2069  *    this would add another cross-cpu cacheline miss and atomic operation
2070  *    to the wakeup path. Instead we increment on whatever cpu the task ran
2071  *    when it went into uninterruptible state and decrement on whatever cpu
2072  *    did the wakeup. This means that only the sum of nr_uninterruptible over
2073  *    all cpus yields the correct result.
2074  *
2075  *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2076  */
2077 
2078 /* Variables and functions for calc_load */
2079 static atomic_long_t calc_load_tasks;
2080 static unsigned long calc_load_update;
2081 unsigned long avenrun[3];
2082 EXPORT_SYMBOL(avenrun); /* should be removed */
2083 
2084 /**
2085  * get_avenrun - get the load average array
2086  * @loads:	pointer to dest load array
2087  * @offset:	offset to add
2088  * @shift:	shift count to shift the result left
2089  *
2090  * These values are estimates at best, so no need for locking.
2091  */
2092 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2093 {
2094 	loads[0] = (avenrun[0] + offset) << shift;
2095 	loads[1] = (avenrun[1] + offset) << shift;
2096 	loads[2] = (avenrun[2] + offset) << shift;
2097 }
2098 
2099 static long calc_load_fold_active(struct rq *this_rq)
2100 {
2101 	long nr_active, delta = 0;
2102 
2103 	nr_active = this_rq->nr_running;
2104 	nr_active += (long) this_rq->nr_uninterruptible;
2105 
2106 	if (nr_active != this_rq->calc_load_active) {
2107 		delta = nr_active - this_rq->calc_load_active;
2108 		this_rq->calc_load_active = nr_active;
2109 	}
2110 
2111 	return delta;
2112 }
2113 
2114 /*
2115  * a1 = a0 * e + a * (1 - e)
2116  */
2117 static unsigned long
2118 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2119 {
2120 	load *= exp;
2121 	load += active * (FIXED_1 - exp);
2122 	load += 1UL << (FSHIFT - 1);
2123 	return load >> FSHIFT;
2124 }
2125 
2126 #ifdef CONFIG_NO_HZ
2127 /*
2128  * Handle NO_HZ for the global load-average.
2129  *
2130  * Since the above described distributed algorithm to compute the global
2131  * load-average relies on per-cpu sampling from the tick, it is affected by
2132  * NO_HZ.
2133  *
2134  * The basic idea is to fold the nr_active delta into a global idle-delta upon
2135  * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2136  * when we read the global state.
2137  *
2138  * Obviously reality has to ruin such a delightfully simple scheme:
2139  *
2140  *  - When we go NO_HZ idle during the window, we can negate our sample
2141  *    contribution, causing under-accounting.
2142  *
2143  *    We avoid this by keeping two idle-delta counters and flipping them
2144  *    when the window starts, thus separating old and new NO_HZ load.
2145  *
2146  *    The only trick is the slight shift in index flip for read vs write.
2147  *
2148  *        0s            5s            10s           15s
2149  *          +10           +10           +10           +10
2150  *        |-|-----------|-|-----------|-|-----------|-|
2151  *    r:0 0 1           1 0           0 1           1 0
2152  *    w:0 1 1           0 0           1 1           0 0
2153  *
2154  *    This ensures we'll fold the old idle contribution in this window while
2155  *    accumlating the new one.
2156  *
2157  *  - When we wake up from NO_HZ idle during the window, we push up our
2158  *    contribution, since we effectively move our sample point to a known
2159  *    busy state.
2160  *
2161  *    This is solved by pushing the window forward, and thus skipping the
2162  *    sample, for this cpu (effectively using the idle-delta for this cpu which
2163  *    was in effect at the time the window opened). This also solves the issue
2164  *    of having to deal with a cpu having been in NOHZ idle for multiple
2165  *    LOAD_FREQ intervals.
2166  *
2167  * When making the ILB scale, we should try to pull this in as well.
2168  */
2169 static atomic_long_t calc_load_idle[2];
2170 static int calc_load_idx;
2171 
2172 static inline int calc_load_write_idx(void)
2173 {
2174 	int idx = calc_load_idx;
2175 
2176 	/*
2177 	 * See calc_global_nohz(), if we observe the new index, we also
2178 	 * need to observe the new update time.
2179 	 */
2180 	smp_rmb();
2181 
2182 	/*
2183 	 * If the folding window started, make sure we start writing in the
2184 	 * next idle-delta.
2185 	 */
2186 	if (!time_before(jiffies, calc_load_update))
2187 		idx++;
2188 
2189 	return idx & 1;
2190 }
2191 
2192 static inline int calc_load_read_idx(void)
2193 {
2194 	return calc_load_idx & 1;
2195 }
2196 
2197 void calc_load_enter_idle(void)
2198 {
2199 	struct rq *this_rq = this_rq();
2200 	long delta;
2201 
2202 	/*
2203 	 * We're going into NOHZ mode, if there's any pending delta, fold it
2204 	 * into the pending idle delta.
2205 	 */
2206 	delta = calc_load_fold_active(this_rq);
2207 	if (delta) {
2208 		int idx = calc_load_write_idx();
2209 		atomic_long_add(delta, &calc_load_idle[idx]);
2210 	}
2211 }
2212 
2213 void calc_load_exit_idle(void)
2214 {
2215 	struct rq *this_rq = this_rq();
2216 
2217 	/*
2218 	 * If we're still before the sample window, we're done.
2219 	 */
2220 	if (time_before(jiffies, this_rq->calc_load_update))
2221 		return;
2222 
2223 	/*
2224 	 * We woke inside or after the sample window, this means we're already
2225 	 * accounted through the nohz accounting, so skip the entire deal and
2226 	 * sync up for the next window.
2227 	 */
2228 	this_rq->calc_load_update = calc_load_update;
2229 	if (time_before(jiffies, this_rq->calc_load_update + 10))
2230 		this_rq->calc_load_update += LOAD_FREQ;
2231 }
2232 
2233 static long calc_load_fold_idle(void)
2234 {
2235 	int idx = calc_load_read_idx();
2236 	long delta = 0;
2237 
2238 	if (atomic_long_read(&calc_load_idle[idx]))
2239 		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2240 
2241 	return delta;
2242 }
2243 
2244 /**
2245  * fixed_power_int - compute: x^n, in O(log n) time
2246  *
2247  * @x:         base of the power
2248  * @frac_bits: fractional bits of @x
2249  * @n:         power to raise @x to.
2250  *
2251  * By exploiting the relation between the definition of the natural power
2252  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2253  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2254  * (where: n_i \elem {0, 1}, the binary vector representing n),
2255  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2256  * of course trivially computable in O(log_2 n), the length of our binary
2257  * vector.
2258  */
2259 static unsigned long
2260 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2261 {
2262 	unsigned long result = 1UL << frac_bits;
2263 
2264 	if (n) for (;;) {
2265 		if (n & 1) {
2266 			result *= x;
2267 			result += 1UL << (frac_bits - 1);
2268 			result >>= frac_bits;
2269 		}
2270 		n >>= 1;
2271 		if (!n)
2272 			break;
2273 		x *= x;
2274 		x += 1UL << (frac_bits - 1);
2275 		x >>= frac_bits;
2276 	}
2277 
2278 	return result;
2279 }
2280 
2281 /*
2282  * a1 = a0 * e + a * (1 - e)
2283  *
2284  * a2 = a1 * e + a * (1 - e)
2285  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2286  *    = a0 * e^2 + a * (1 - e) * (1 + e)
2287  *
2288  * a3 = a2 * e + a * (1 - e)
2289  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2290  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2291  *
2292  *  ...
2293  *
2294  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2295  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2296  *    = a0 * e^n + a * (1 - e^n)
2297  *
2298  * [1] application of the geometric series:
2299  *
2300  *              n         1 - x^(n+1)
2301  *     S_n := \Sum x^i = -------------
2302  *             i=0          1 - x
2303  */
2304 static unsigned long
2305 calc_load_n(unsigned long load, unsigned long exp,
2306 	    unsigned long active, unsigned int n)
2307 {
2308 
2309 	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2310 }
2311 
2312 /*
2313  * NO_HZ can leave us missing all per-cpu ticks calling
2314  * calc_load_account_active(), but since an idle CPU folds its delta into
2315  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2316  * in the pending idle delta if our idle period crossed a load cycle boundary.
2317  *
2318  * Once we've updated the global active value, we need to apply the exponential
2319  * weights adjusted to the number of cycles missed.
2320  */
2321 static void calc_global_nohz(void)
2322 {
2323 	long delta, active, n;
2324 
2325 	if (!time_before(jiffies, calc_load_update + 10)) {
2326 		/*
2327 		 * Catch-up, fold however many we are behind still
2328 		 */
2329 		delta = jiffies - calc_load_update - 10;
2330 		n = 1 + (delta / LOAD_FREQ);
2331 
2332 		active = atomic_long_read(&calc_load_tasks);
2333 		active = active > 0 ? active * FIXED_1 : 0;
2334 
2335 		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2336 		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2337 		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2338 
2339 		calc_load_update += n * LOAD_FREQ;
2340 	}
2341 
2342 	/*
2343 	 * Flip the idle index...
2344 	 *
2345 	 * Make sure we first write the new time then flip the index, so that
2346 	 * calc_load_write_idx() will see the new time when it reads the new
2347 	 * index, this avoids a double flip messing things up.
2348 	 */
2349 	smp_wmb();
2350 	calc_load_idx++;
2351 }
2352 #else /* !CONFIG_NO_HZ */
2353 
2354 static inline long calc_load_fold_idle(void) { return 0; }
2355 static inline void calc_global_nohz(void) { }
2356 
2357 #endif /* CONFIG_NO_HZ */
2358 
2359 /*
2360  * calc_load - update the avenrun load estimates 10 ticks after the
2361  * CPUs have updated calc_load_tasks.
2362  */
2363 void calc_global_load(unsigned long ticks)
2364 {
2365 	long active, delta;
2366 
2367 	if (time_before(jiffies, calc_load_update + 10))
2368 		return;
2369 
2370 	/*
2371 	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2372 	 */
2373 	delta = calc_load_fold_idle();
2374 	if (delta)
2375 		atomic_long_add(delta, &calc_load_tasks);
2376 
2377 	active = atomic_long_read(&calc_load_tasks);
2378 	active = active > 0 ? active * FIXED_1 : 0;
2379 
2380 	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2381 	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2382 	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2383 
2384 	calc_load_update += LOAD_FREQ;
2385 
2386 	/*
2387 	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2388 	 */
2389 	calc_global_nohz();
2390 }
2391 
2392 /*
2393  * Called from update_cpu_load() to periodically update this CPU's
2394  * active count.
2395  */
2396 static void calc_load_account_active(struct rq *this_rq)
2397 {
2398 	long delta;
2399 
2400 	if (time_before(jiffies, this_rq->calc_load_update))
2401 		return;
2402 
2403 	delta  = calc_load_fold_active(this_rq);
2404 	if (delta)
2405 		atomic_long_add(delta, &calc_load_tasks);
2406 
2407 	this_rq->calc_load_update += LOAD_FREQ;
2408 }
2409 
2410 /*
2411  * End of global load-average stuff
2412  */
2413 
2414 /*
2415  * The exact cpuload at various idx values, calculated at every tick would be
2416  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2417  *
2418  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2419  * on nth tick when cpu may be busy, then we have:
2420  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2421  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2422  *
2423  * decay_load_missed() below does efficient calculation of
2424  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2425  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2426  *
2427  * The calculation is approximated on a 128 point scale.
2428  * degrade_zero_ticks is the number of ticks after which load at any
2429  * particular idx is approximated to be zero.
2430  * degrade_factor is a precomputed table, a row for each load idx.
2431  * Each column corresponds to degradation factor for a power of two ticks,
2432  * based on 128 point scale.
2433  * Example:
2434  * row 2, col 3 (=12) says that the degradation at load idx 2 after
2435  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2436  *
2437  * With this power of 2 load factors, we can degrade the load n times
2438  * by looking at 1 bits in n and doing as many mult/shift instead of
2439  * n mult/shifts needed by the exact degradation.
2440  */
2441 #define DEGRADE_SHIFT		7
2442 static const unsigned char
2443 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2444 static const unsigned char
2445 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2446 					{0, 0, 0, 0, 0, 0, 0, 0},
2447 					{64, 32, 8, 0, 0, 0, 0, 0},
2448 					{96, 72, 40, 12, 1, 0, 0},
2449 					{112, 98, 75, 43, 15, 1, 0},
2450 					{120, 112, 98, 76, 45, 16, 2} };
2451 
2452 /*
2453  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2454  * would be when CPU is idle and so we just decay the old load without
2455  * adding any new load.
2456  */
2457 static unsigned long
2458 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2459 {
2460 	int j = 0;
2461 
2462 	if (!missed_updates)
2463 		return load;
2464 
2465 	if (missed_updates >= degrade_zero_ticks[idx])
2466 		return 0;
2467 
2468 	if (idx == 1)
2469 		return load >> missed_updates;
2470 
2471 	while (missed_updates) {
2472 		if (missed_updates % 2)
2473 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2474 
2475 		missed_updates >>= 1;
2476 		j++;
2477 	}
2478 	return load;
2479 }
2480 
2481 /*
2482  * Update rq->cpu_load[] statistics. This function is usually called every
2483  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2484  * every tick. We fix it up based on jiffies.
2485  */
2486 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2487 			      unsigned long pending_updates)
2488 {
2489 	int i, scale;
2490 
2491 	this_rq->nr_load_updates++;
2492 
2493 	/* Update our load: */
2494 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2495 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2496 		unsigned long old_load, new_load;
2497 
2498 		/* scale is effectively 1 << i now, and >> i divides by scale */
2499 
2500 		old_load = this_rq->cpu_load[i];
2501 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2502 		new_load = this_load;
2503 		/*
2504 		 * Round up the averaging division if load is increasing. This
2505 		 * prevents us from getting stuck on 9 if the load is 10, for
2506 		 * example.
2507 		 */
2508 		if (new_load > old_load)
2509 			new_load += scale - 1;
2510 
2511 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2512 	}
2513 
2514 	sched_avg_update(this_rq);
2515 }
2516 
2517 #ifdef CONFIG_NO_HZ
2518 /*
2519  * There is no sane way to deal with nohz on smp when using jiffies because the
2520  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2521  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2522  *
2523  * Therefore we cannot use the delta approach from the regular tick since that
2524  * would seriously skew the load calculation. However we'll make do for those
2525  * updates happening while idle (nohz_idle_balance) or coming out of idle
2526  * (tick_nohz_idle_exit).
2527  *
2528  * This means we might still be one tick off for nohz periods.
2529  */
2530 
2531 /*
2532  * Called from nohz_idle_balance() to update the load ratings before doing the
2533  * idle balance.
2534  */
2535 void update_idle_cpu_load(struct rq *this_rq)
2536 {
2537 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2538 	unsigned long load = this_rq->load.weight;
2539 	unsigned long pending_updates;
2540 
2541 	/*
2542 	 * bail if there's load or we're actually up-to-date.
2543 	 */
2544 	if (load || curr_jiffies == this_rq->last_load_update_tick)
2545 		return;
2546 
2547 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2548 	this_rq->last_load_update_tick = curr_jiffies;
2549 
2550 	__update_cpu_load(this_rq, load, pending_updates);
2551 }
2552 
2553 /*
2554  * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2555  */
2556 void update_cpu_load_nohz(void)
2557 {
2558 	struct rq *this_rq = this_rq();
2559 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2560 	unsigned long pending_updates;
2561 
2562 	if (curr_jiffies == this_rq->last_load_update_tick)
2563 		return;
2564 
2565 	raw_spin_lock(&this_rq->lock);
2566 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2567 	if (pending_updates) {
2568 		this_rq->last_load_update_tick = curr_jiffies;
2569 		/*
2570 		 * We were idle, this means load 0, the current load might be
2571 		 * !0 due to remote wakeups and the sort.
2572 		 */
2573 		__update_cpu_load(this_rq, 0, pending_updates);
2574 	}
2575 	raw_spin_unlock(&this_rq->lock);
2576 }
2577 #endif /* CONFIG_NO_HZ */
2578 
2579 /*
2580  * Called from scheduler_tick()
2581  */
2582 static void update_cpu_load_active(struct rq *this_rq)
2583 {
2584 	/*
2585 	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2586 	 */
2587 	this_rq->last_load_update_tick = jiffies;
2588 	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2589 
2590 	calc_load_account_active(this_rq);
2591 }
2592 
2593 #ifdef CONFIG_SMP
2594 
2595 /*
2596  * sched_exec - execve() is a valuable balancing opportunity, because at
2597  * this point the task has the smallest effective memory and cache footprint.
2598  */
2599 void sched_exec(void)
2600 {
2601 	struct task_struct *p = current;
2602 	unsigned long flags;
2603 	int dest_cpu;
2604 
2605 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2606 	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2607 	if (dest_cpu == smp_processor_id())
2608 		goto unlock;
2609 
2610 	if (likely(cpu_active(dest_cpu))) {
2611 		struct migration_arg arg = { p, dest_cpu };
2612 
2613 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2614 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2615 		return;
2616 	}
2617 unlock:
2618 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2619 }
2620 
2621 #endif
2622 
2623 DEFINE_PER_CPU(struct kernel_stat, kstat);
2624 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2625 
2626 EXPORT_PER_CPU_SYMBOL(kstat);
2627 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2628 
2629 /*
2630  * Return any ns on the sched_clock that have not yet been accounted in
2631  * @p in case that task is currently running.
2632  *
2633  * Called with task_rq_lock() held on @rq.
2634  */
2635 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2636 {
2637 	u64 ns = 0;
2638 
2639 	if (task_current(rq, p)) {
2640 		update_rq_clock(rq);
2641 		ns = rq->clock_task - p->se.exec_start;
2642 		if ((s64)ns < 0)
2643 			ns = 0;
2644 	}
2645 
2646 	return ns;
2647 }
2648 
2649 unsigned long long task_delta_exec(struct task_struct *p)
2650 {
2651 	unsigned long flags;
2652 	struct rq *rq;
2653 	u64 ns = 0;
2654 
2655 	rq = task_rq_lock(p, &flags);
2656 	ns = do_task_delta_exec(p, rq);
2657 	task_rq_unlock(rq, p, &flags);
2658 
2659 	return ns;
2660 }
2661 
2662 /*
2663  * Return accounted runtime for the task.
2664  * In case the task is currently running, return the runtime plus current's
2665  * pending runtime that have not been accounted yet.
2666  */
2667 unsigned long long task_sched_runtime(struct task_struct *p)
2668 {
2669 	unsigned long flags;
2670 	struct rq *rq;
2671 	u64 ns = 0;
2672 
2673 	rq = task_rq_lock(p, &flags);
2674 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2675 	task_rq_unlock(rq, p, &flags);
2676 
2677 	return ns;
2678 }
2679 
2680 /*
2681  * This function gets called by the timer code, with HZ frequency.
2682  * We call it with interrupts disabled.
2683  */
2684 void scheduler_tick(void)
2685 {
2686 	int cpu = smp_processor_id();
2687 	struct rq *rq = cpu_rq(cpu);
2688 	struct task_struct *curr = rq->curr;
2689 
2690 	sched_clock_tick();
2691 
2692 	raw_spin_lock(&rq->lock);
2693 	update_rq_clock(rq);
2694 	update_cpu_load_active(rq);
2695 	curr->sched_class->task_tick(rq, curr, 0);
2696 	raw_spin_unlock(&rq->lock);
2697 
2698 	perf_event_task_tick();
2699 
2700 #ifdef CONFIG_SMP
2701 	rq->idle_balance = idle_cpu(cpu);
2702 	trigger_load_balance(rq, cpu);
2703 #endif
2704 }
2705 
2706 notrace unsigned long get_parent_ip(unsigned long addr)
2707 {
2708 	if (in_lock_functions(addr)) {
2709 		addr = CALLER_ADDR2;
2710 		if (in_lock_functions(addr))
2711 			addr = CALLER_ADDR3;
2712 	}
2713 	return addr;
2714 }
2715 
2716 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2717 				defined(CONFIG_PREEMPT_TRACER))
2718 
2719 void __kprobes add_preempt_count(int val)
2720 {
2721 #ifdef CONFIG_DEBUG_PREEMPT
2722 	/*
2723 	 * Underflow?
2724 	 */
2725 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2726 		return;
2727 #endif
2728 	preempt_count() += val;
2729 #ifdef CONFIG_DEBUG_PREEMPT
2730 	/*
2731 	 * Spinlock count overflowing soon?
2732 	 */
2733 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2734 				PREEMPT_MASK - 10);
2735 #endif
2736 	if (preempt_count() == val)
2737 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2738 }
2739 EXPORT_SYMBOL(add_preempt_count);
2740 
2741 void __kprobes sub_preempt_count(int val)
2742 {
2743 #ifdef CONFIG_DEBUG_PREEMPT
2744 	/*
2745 	 * Underflow?
2746 	 */
2747 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2748 		return;
2749 	/*
2750 	 * Is the spinlock portion underflowing?
2751 	 */
2752 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2753 			!(preempt_count() & PREEMPT_MASK)))
2754 		return;
2755 #endif
2756 
2757 	if (preempt_count() == val)
2758 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2759 	preempt_count() -= val;
2760 }
2761 EXPORT_SYMBOL(sub_preempt_count);
2762 
2763 #endif
2764 
2765 /*
2766  * Print scheduling while atomic bug:
2767  */
2768 static noinline void __schedule_bug(struct task_struct *prev)
2769 {
2770 	if (oops_in_progress)
2771 		return;
2772 
2773 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2774 		prev->comm, prev->pid, preempt_count());
2775 
2776 	debug_show_held_locks(prev);
2777 	print_modules();
2778 	if (irqs_disabled())
2779 		print_irqtrace_events(prev);
2780 	dump_stack();
2781 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2782 }
2783 
2784 /*
2785  * Various schedule()-time debugging checks and statistics:
2786  */
2787 static inline void schedule_debug(struct task_struct *prev)
2788 {
2789 	/*
2790 	 * Test if we are atomic. Since do_exit() needs to call into
2791 	 * schedule() atomically, we ignore that path for now.
2792 	 * Otherwise, whine if we are scheduling when we should not be.
2793 	 */
2794 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2795 		__schedule_bug(prev);
2796 	rcu_sleep_check();
2797 
2798 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2799 
2800 	schedstat_inc(this_rq(), sched_count);
2801 }
2802 
2803 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2804 {
2805 	if (prev->on_rq || rq->skip_clock_update < 0)
2806 		update_rq_clock(rq);
2807 	prev->sched_class->put_prev_task(rq, prev);
2808 }
2809 
2810 /*
2811  * Pick up the highest-prio task:
2812  */
2813 static inline struct task_struct *
2814 pick_next_task(struct rq *rq)
2815 {
2816 	const struct sched_class *class;
2817 	struct task_struct *p;
2818 
2819 	/*
2820 	 * Optimization: we know that if all tasks are in
2821 	 * the fair class we can call that function directly:
2822 	 */
2823 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2824 		p = fair_sched_class.pick_next_task(rq);
2825 		if (likely(p))
2826 			return p;
2827 	}
2828 
2829 	for_each_class(class) {
2830 		p = class->pick_next_task(rq);
2831 		if (p)
2832 			return p;
2833 	}
2834 
2835 	BUG(); /* the idle class will always have a runnable task */
2836 }
2837 
2838 /*
2839  * __schedule() is the main scheduler function.
2840  *
2841  * The main means of driving the scheduler and thus entering this function are:
2842  *
2843  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2844  *
2845  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2846  *      paths. For example, see arch/x86/entry_64.S.
2847  *
2848  *      To drive preemption between tasks, the scheduler sets the flag in timer
2849  *      interrupt handler scheduler_tick().
2850  *
2851  *   3. Wakeups don't really cause entry into schedule(). They add a
2852  *      task to the run-queue and that's it.
2853  *
2854  *      Now, if the new task added to the run-queue preempts the current
2855  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2856  *      called on the nearest possible occasion:
2857  *
2858  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2859  *
2860  *         - in syscall or exception context, at the next outmost
2861  *           preempt_enable(). (this might be as soon as the wake_up()'s
2862  *           spin_unlock()!)
2863  *
2864  *         - in IRQ context, return from interrupt-handler to
2865  *           preemptible context
2866  *
2867  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2868  *         then at the next:
2869  *
2870  *          - cond_resched() call
2871  *          - explicit schedule() call
2872  *          - return from syscall or exception to user-space
2873  *          - return from interrupt-handler to user-space
2874  */
2875 static void __sched __schedule(void)
2876 {
2877 	struct task_struct *prev, *next;
2878 	unsigned long *switch_count;
2879 	struct rq *rq;
2880 	int cpu;
2881 
2882 need_resched:
2883 	preempt_disable();
2884 	cpu = smp_processor_id();
2885 	rq = cpu_rq(cpu);
2886 	rcu_note_context_switch(cpu);
2887 	prev = rq->curr;
2888 
2889 	schedule_debug(prev);
2890 
2891 	if (sched_feat(HRTICK))
2892 		hrtick_clear(rq);
2893 
2894 	raw_spin_lock_irq(&rq->lock);
2895 
2896 	switch_count = &prev->nivcsw;
2897 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2898 		if (unlikely(signal_pending_state(prev->state, prev))) {
2899 			prev->state = TASK_RUNNING;
2900 		} else {
2901 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2902 			prev->on_rq = 0;
2903 
2904 			/*
2905 			 * If a worker went to sleep, notify and ask workqueue
2906 			 * whether it wants to wake up a task to maintain
2907 			 * concurrency.
2908 			 */
2909 			if (prev->flags & PF_WQ_WORKER) {
2910 				struct task_struct *to_wakeup;
2911 
2912 				to_wakeup = wq_worker_sleeping(prev, cpu);
2913 				if (to_wakeup)
2914 					try_to_wake_up_local(to_wakeup);
2915 			}
2916 		}
2917 		switch_count = &prev->nvcsw;
2918 	}
2919 
2920 	pre_schedule(rq, prev);
2921 
2922 	if (unlikely(!rq->nr_running))
2923 		idle_balance(cpu, rq);
2924 
2925 	put_prev_task(rq, prev);
2926 	next = pick_next_task(rq);
2927 	clear_tsk_need_resched(prev);
2928 	rq->skip_clock_update = 0;
2929 
2930 	if (likely(prev != next)) {
2931 		rq->nr_switches++;
2932 		rq->curr = next;
2933 		++*switch_count;
2934 
2935 		context_switch(rq, prev, next); /* unlocks the rq */
2936 		/*
2937 		 * The context switch have flipped the stack from under us
2938 		 * and restored the local variables which were saved when
2939 		 * this task called schedule() in the past. prev == current
2940 		 * is still correct, but it can be moved to another cpu/rq.
2941 		 */
2942 		cpu = smp_processor_id();
2943 		rq = cpu_rq(cpu);
2944 	} else
2945 		raw_spin_unlock_irq(&rq->lock);
2946 
2947 	post_schedule(rq);
2948 
2949 	sched_preempt_enable_no_resched();
2950 	if (need_resched())
2951 		goto need_resched;
2952 }
2953 
2954 static inline void sched_submit_work(struct task_struct *tsk)
2955 {
2956 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2957 		return;
2958 	/*
2959 	 * If we are going to sleep and we have plugged IO queued,
2960 	 * make sure to submit it to avoid deadlocks.
2961 	 */
2962 	if (blk_needs_flush_plug(tsk))
2963 		blk_schedule_flush_plug(tsk);
2964 }
2965 
2966 asmlinkage void __sched schedule(void)
2967 {
2968 	struct task_struct *tsk = current;
2969 
2970 	sched_submit_work(tsk);
2971 	__schedule();
2972 }
2973 EXPORT_SYMBOL(schedule);
2974 
2975 #ifdef CONFIG_CONTEXT_TRACKING
2976 asmlinkage void __sched schedule_user(void)
2977 {
2978 	/*
2979 	 * If we come here after a random call to set_need_resched(),
2980 	 * or we have been woken up remotely but the IPI has not yet arrived,
2981 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2982 	 * we find a better solution.
2983 	 */
2984 	user_exit();
2985 	schedule();
2986 	user_enter();
2987 }
2988 #endif
2989 
2990 /**
2991  * schedule_preempt_disabled - called with preemption disabled
2992  *
2993  * Returns with preemption disabled. Note: preempt_count must be 1
2994  */
2995 void __sched schedule_preempt_disabled(void)
2996 {
2997 	sched_preempt_enable_no_resched();
2998 	schedule();
2999 	preempt_disable();
3000 }
3001 
3002 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3003 
3004 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3005 {
3006 	if (lock->owner != owner)
3007 		return false;
3008 
3009 	/*
3010 	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3011 	 * lock->owner still matches owner, if that fails, owner might
3012 	 * point to free()d memory, if it still matches, the rcu_read_lock()
3013 	 * ensures the memory stays valid.
3014 	 */
3015 	barrier();
3016 
3017 	return owner->on_cpu;
3018 }
3019 
3020 /*
3021  * Look out! "owner" is an entirely speculative pointer
3022  * access and not reliable.
3023  */
3024 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3025 {
3026 	if (!sched_feat(OWNER_SPIN))
3027 		return 0;
3028 
3029 	rcu_read_lock();
3030 	while (owner_running(lock, owner)) {
3031 		if (need_resched())
3032 			break;
3033 
3034 		arch_mutex_cpu_relax();
3035 	}
3036 	rcu_read_unlock();
3037 
3038 	/*
3039 	 * We break out the loop above on need_resched() and when the
3040 	 * owner changed, which is a sign for heavy contention. Return
3041 	 * success only when lock->owner is NULL.
3042 	 */
3043 	return lock->owner == NULL;
3044 }
3045 #endif
3046 
3047 #ifdef CONFIG_PREEMPT
3048 /*
3049  * this is the entry point to schedule() from in-kernel preemption
3050  * off of preempt_enable. Kernel preemptions off return from interrupt
3051  * occur there and call schedule directly.
3052  */
3053 asmlinkage void __sched notrace preempt_schedule(void)
3054 {
3055 	struct thread_info *ti = current_thread_info();
3056 
3057 	/*
3058 	 * If there is a non-zero preempt_count or interrupts are disabled,
3059 	 * we do not want to preempt the current task. Just return..
3060 	 */
3061 	if (likely(ti->preempt_count || irqs_disabled()))
3062 		return;
3063 
3064 	do {
3065 		add_preempt_count_notrace(PREEMPT_ACTIVE);
3066 		__schedule();
3067 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3068 
3069 		/*
3070 		 * Check again in case we missed a preemption opportunity
3071 		 * between schedule and now.
3072 		 */
3073 		barrier();
3074 	} while (need_resched());
3075 }
3076 EXPORT_SYMBOL(preempt_schedule);
3077 
3078 /*
3079  * this is the entry point to schedule() from kernel preemption
3080  * off of irq context.
3081  * Note, that this is called and return with irqs disabled. This will
3082  * protect us against recursive calling from irq.
3083  */
3084 asmlinkage void __sched preempt_schedule_irq(void)
3085 {
3086 	struct thread_info *ti = current_thread_info();
3087 
3088 	/* Catch callers which need to be fixed */
3089 	BUG_ON(ti->preempt_count || !irqs_disabled());
3090 
3091 	user_exit();
3092 	do {
3093 		add_preempt_count(PREEMPT_ACTIVE);
3094 		local_irq_enable();
3095 		__schedule();
3096 		local_irq_disable();
3097 		sub_preempt_count(PREEMPT_ACTIVE);
3098 
3099 		/*
3100 		 * Check again in case we missed a preemption opportunity
3101 		 * between schedule and now.
3102 		 */
3103 		barrier();
3104 	} while (need_resched());
3105 }
3106 
3107 #endif /* CONFIG_PREEMPT */
3108 
3109 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3110 			  void *key)
3111 {
3112 	return try_to_wake_up(curr->private, mode, wake_flags);
3113 }
3114 EXPORT_SYMBOL(default_wake_function);
3115 
3116 /*
3117  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3118  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3119  * number) then we wake all the non-exclusive tasks and one exclusive task.
3120  *
3121  * There are circumstances in which we can try to wake a task which has already
3122  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3123  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3124  */
3125 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3126 			int nr_exclusive, int wake_flags, void *key)
3127 {
3128 	wait_queue_t *curr, *next;
3129 
3130 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3131 		unsigned flags = curr->flags;
3132 
3133 		if (curr->func(curr, mode, wake_flags, key) &&
3134 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3135 			break;
3136 	}
3137 }
3138 
3139 /**
3140  * __wake_up - wake up threads blocked on a waitqueue.
3141  * @q: the waitqueue
3142  * @mode: which threads
3143  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3144  * @key: is directly passed to the wakeup function
3145  *
3146  * It may be assumed that this function implies a write memory barrier before
3147  * changing the task state if and only if any tasks are woken up.
3148  */
3149 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3150 			int nr_exclusive, void *key)
3151 {
3152 	unsigned long flags;
3153 
3154 	spin_lock_irqsave(&q->lock, flags);
3155 	__wake_up_common(q, mode, nr_exclusive, 0, key);
3156 	spin_unlock_irqrestore(&q->lock, flags);
3157 }
3158 EXPORT_SYMBOL(__wake_up);
3159 
3160 /*
3161  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3162  */
3163 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3164 {
3165 	__wake_up_common(q, mode, nr, 0, NULL);
3166 }
3167 EXPORT_SYMBOL_GPL(__wake_up_locked);
3168 
3169 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3170 {
3171 	__wake_up_common(q, mode, 1, 0, key);
3172 }
3173 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3174 
3175 /**
3176  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3177  * @q: the waitqueue
3178  * @mode: which threads
3179  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3180  * @key: opaque value to be passed to wakeup targets
3181  *
3182  * The sync wakeup differs that the waker knows that it will schedule
3183  * away soon, so while the target thread will be woken up, it will not
3184  * be migrated to another CPU - ie. the two threads are 'synchronized'
3185  * with each other. This can prevent needless bouncing between CPUs.
3186  *
3187  * On UP it can prevent extra preemption.
3188  *
3189  * It may be assumed that this function implies a write memory barrier before
3190  * changing the task state if and only if any tasks are woken up.
3191  */
3192 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3193 			int nr_exclusive, void *key)
3194 {
3195 	unsigned long flags;
3196 	int wake_flags = WF_SYNC;
3197 
3198 	if (unlikely(!q))
3199 		return;
3200 
3201 	if (unlikely(!nr_exclusive))
3202 		wake_flags = 0;
3203 
3204 	spin_lock_irqsave(&q->lock, flags);
3205 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3206 	spin_unlock_irqrestore(&q->lock, flags);
3207 }
3208 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3209 
3210 /*
3211  * __wake_up_sync - see __wake_up_sync_key()
3212  */
3213 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3214 {
3215 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3216 }
3217 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3218 
3219 /**
3220  * complete: - signals a single thread waiting on this completion
3221  * @x:  holds the state of this particular completion
3222  *
3223  * This will wake up a single thread waiting on this completion. Threads will be
3224  * awakened in the same order in which they were queued.
3225  *
3226  * See also complete_all(), wait_for_completion() and related routines.
3227  *
3228  * It may be assumed that this function implies a write memory barrier before
3229  * changing the task state if and only if any tasks are woken up.
3230  */
3231 void complete(struct completion *x)
3232 {
3233 	unsigned long flags;
3234 
3235 	spin_lock_irqsave(&x->wait.lock, flags);
3236 	x->done++;
3237 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3238 	spin_unlock_irqrestore(&x->wait.lock, flags);
3239 }
3240 EXPORT_SYMBOL(complete);
3241 
3242 /**
3243  * complete_all: - signals all threads waiting on this completion
3244  * @x:  holds the state of this particular completion
3245  *
3246  * This will wake up all threads waiting on this particular completion event.
3247  *
3248  * It may be assumed that this function implies a write memory barrier before
3249  * changing the task state if and only if any tasks are woken up.
3250  */
3251 void complete_all(struct completion *x)
3252 {
3253 	unsigned long flags;
3254 
3255 	spin_lock_irqsave(&x->wait.lock, flags);
3256 	x->done += UINT_MAX/2;
3257 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3258 	spin_unlock_irqrestore(&x->wait.lock, flags);
3259 }
3260 EXPORT_SYMBOL(complete_all);
3261 
3262 static inline long __sched
3263 do_wait_for_common(struct completion *x,
3264 		   long (*action)(long), long timeout, int state)
3265 {
3266 	if (!x->done) {
3267 		DECLARE_WAITQUEUE(wait, current);
3268 
3269 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3270 		do {
3271 			if (signal_pending_state(state, current)) {
3272 				timeout = -ERESTARTSYS;
3273 				break;
3274 			}
3275 			__set_current_state(state);
3276 			spin_unlock_irq(&x->wait.lock);
3277 			timeout = action(timeout);
3278 			spin_lock_irq(&x->wait.lock);
3279 		} while (!x->done && timeout);
3280 		__remove_wait_queue(&x->wait, &wait);
3281 		if (!x->done)
3282 			return timeout;
3283 	}
3284 	x->done--;
3285 	return timeout ?: 1;
3286 }
3287 
3288 static inline long __sched
3289 __wait_for_common(struct completion *x,
3290 		  long (*action)(long), long timeout, int state)
3291 {
3292 	might_sleep();
3293 
3294 	spin_lock_irq(&x->wait.lock);
3295 	timeout = do_wait_for_common(x, action, timeout, state);
3296 	spin_unlock_irq(&x->wait.lock);
3297 	return timeout;
3298 }
3299 
3300 static long __sched
3301 wait_for_common(struct completion *x, long timeout, int state)
3302 {
3303 	return __wait_for_common(x, schedule_timeout, timeout, state);
3304 }
3305 
3306 static long __sched
3307 wait_for_common_io(struct completion *x, long timeout, int state)
3308 {
3309 	return __wait_for_common(x, io_schedule_timeout, timeout, state);
3310 }
3311 
3312 /**
3313  * wait_for_completion: - waits for completion of a task
3314  * @x:  holds the state of this particular completion
3315  *
3316  * This waits to be signaled for completion of a specific task. It is NOT
3317  * interruptible and there is no timeout.
3318  *
3319  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3320  * and interrupt capability. Also see complete().
3321  */
3322 void __sched wait_for_completion(struct completion *x)
3323 {
3324 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3325 }
3326 EXPORT_SYMBOL(wait_for_completion);
3327 
3328 /**
3329  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3330  * @x:  holds the state of this particular completion
3331  * @timeout:  timeout value in jiffies
3332  *
3333  * This waits for either a completion of a specific task to be signaled or for a
3334  * specified timeout to expire. The timeout is in jiffies. It is not
3335  * interruptible.
3336  *
3337  * The return value is 0 if timed out, and positive (at least 1, or number of
3338  * jiffies left till timeout) if completed.
3339  */
3340 unsigned long __sched
3341 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3342 {
3343 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3344 }
3345 EXPORT_SYMBOL(wait_for_completion_timeout);
3346 
3347 /**
3348  * wait_for_completion_io: - waits for completion of a task
3349  * @x:  holds the state of this particular completion
3350  *
3351  * This waits to be signaled for completion of a specific task. It is NOT
3352  * interruptible and there is no timeout. The caller is accounted as waiting
3353  * for IO.
3354  */
3355 void __sched wait_for_completion_io(struct completion *x)
3356 {
3357 	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3358 }
3359 EXPORT_SYMBOL(wait_for_completion_io);
3360 
3361 /**
3362  * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
3363  * @x:  holds the state of this particular completion
3364  * @timeout:  timeout value in jiffies
3365  *
3366  * This waits for either a completion of a specific task to be signaled or for a
3367  * specified timeout to expire. The timeout is in jiffies. It is not
3368  * interruptible. The caller is accounted as waiting for IO.
3369  *
3370  * The return value is 0 if timed out, and positive (at least 1, or number of
3371  * jiffies left till timeout) if completed.
3372  */
3373 unsigned long __sched
3374 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
3375 {
3376 	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
3377 }
3378 EXPORT_SYMBOL(wait_for_completion_io_timeout);
3379 
3380 /**
3381  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3382  * @x:  holds the state of this particular completion
3383  *
3384  * This waits for completion of a specific task to be signaled. It is
3385  * interruptible.
3386  *
3387  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3388  */
3389 int __sched wait_for_completion_interruptible(struct completion *x)
3390 {
3391 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3392 	if (t == -ERESTARTSYS)
3393 		return t;
3394 	return 0;
3395 }
3396 EXPORT_SYMBOL(wait_for_completion_interruptible);
3397 
3398 /**
3399  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3400  * @x:  holds the state of this particular completion
3401  * @timeout:  timeout value in jiffies
3402  *
3403  * This waits for either a completion of a specific task to be signaled or for a
3404  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3405  *
3406  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3407  * positive (at least 1, or number of jiffies left till timeout) if completed.
3408  */
3409 long __sched
3410 wait_for_completion_interruptible_timeout(struct completion *x,
3411 					  unsigned long timeout)
3412 {
3413 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3414 }
3415 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3416 
3417 /**
3418  * wait_for_completion_killable: - waits for completion of a task (killable)
3419  * @x:  holds the state of this particular completion
3420  *
3421  * This waits to be signaled for completion of a specific task. It can be
3422  * interrupted by a kill signal.
3423  *
3424  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3425  */
3426 int __sched wait_for_completion_killable(struct completion *x)
3427 {
3428 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3429 	if (t == -ERESTARTSYS)
3430 		return t;
3431 	return 0;
3432 }
3433 EXPORT_SYMBOL(wait_for_completion_killable);
3434 
3435 /**
3436  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3437  * @x:  holds the state of this particular completion
3438  * @timeout:  timeout value in jiffies
3439  *
3440  * This waits for either a completion of a specific task to be
3441  * signaled or for a specified timeout to expire. It can be
3442  * interrupted by a kill signal. The timeout is in jiffies.
3443  *
3444  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3445  * positive (at least 1, or number of jiffies left till timeout) if completed.
3446  */
3447 long __sched
3448 wait_for_completion_killable_timeout(struct completion *x,
3449 				     unsigned long timeout)
3450 {
3451 	return wait_for_common(x, timeout, TASK_KILLABLE);
3452 }
3453 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3454 
3455 /**
3456  *	try_wait_for_completion - try to decrement a completion without blocking
3457  *	@x:	completion structure
3458  *
3459  *	Returns: 0 if a decrement cannot be done without blocking
3460  *		 1 if a decrement succeeded.
3461  *
3462  *	If a completion is being used as a counting completion,
3463  *	attempt to decrement the counter without blocking. This
3464  *	enables us to avoid waiting if the resource the completion
3465  *	is protecting is not available.
3466  */
3467 bool try_wait_for_completion(struct completion *x)
3468 {
3469 	unsigned long flags;
3470 	int ret = 1;
3471 
3472 	spin_lock_irqsave(&x->wait.lock, flags);
3473 	if (!x->done)
3474 		ret = 0;
3475 	else
3476 		x->done--;
3477 	spin_unlock_irqrestore(&x->wait.lock, flags);
3478 	return ret;
3479 }
3480 EXPORT_SYMBOL(try_wait_for_completion);
3481 
3482 /**
3483  *	completion_done - Test to see if a completion has any waiters
3484  *	@x:	completion structure
3485  *
3486  *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3487  *		 1 if there are no waiters.
3488  *
3489  */
3490 bool completion_done(struct completion *x)
3491 {
3492 	unsigned long flags;
3493 	int ret = 1;
3494 
3495 	spin_lock_irqsave(&x->wait.lock, flags);
3496 	if (!x->done)
3497 		ret = 0;
3498 	spin_unlock_irqrestore(&x->wait.lock, flags);
3499 	return ret;
3500 }
3501 EXPORT_SYMBOL(completion_done);
3502 
3503 static long __sched
3504 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3505 {
3506 	unsigned long flags;
3507 	wait_queue_t wait;
3508 
3509 	init_waitqueue_entry(&wait, current);
3510 
3511 	__set_current_state(state);
3512 
3513 	spin_lock_irqsave(&q->lock, flags);
3514 	__add_wait_queue(q, &wait);
3515 	spin_unlock(&q->lock);
3516 	timeout = schedule_timeout(timeout);
3517 	spin_lock_irq(&q->lock);
3518 	__remove_wait_queue(q, &wait);
3519 	spin_unlock_irqrestore(&q->lock, flags);
3520 
3521 	return timeout;
3522 }
3523 
3524 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3525 {
3526 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3527 }
3528 EXPORT_SYMBOL(interruptible_sleep_on);
3529 
3530 long __sched
3531 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3532 {
3533 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3534 }
3535 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3536 
3537 void __sched sleep_on(wait_queue_head_t *q)
3538 {
3539 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3540 }
3541 EXPORT_SYMBOL(sleep_on);
3542 
3543 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3544 {
3545 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3546 }
3547 EXPORT_SYMBOL(sleep_on_timeout);
3548 
3549 #ifdef CONFIG_RT_MUTEXES
3550 
3551 /*
3552  * rt_mutex_setprio - set the current priority of a task
3553  * @p: task
3554  * @prio: prio value (kernel-internal form)
3555  *
3556  * This function changes the 'effective' priority of a task. It does
3557  * not touch ->normal_prio like __setscheduler().
3558  *
3559  * Used by the rt_mutex code to implement priority inheritance logic.
3560  */
3561 void rt_mutex_setprio(struct task_struct *p, int prio)
3562 {
3563 	int oldprio, on_rq, running;
3564 	struct rq *rq;
3565 	const struct sched_class *prev_class;
3566 
3567 	BUG_ON(prio < 0 || prio > MAX_PRIO);
3568 
3569 	rq = __task_rq_lock(p);
3570 
3571 	/*
3572 	 * Idle task boosting is a nono in general. There is one
3573 	 * exception, when PREEMPT_RT and NOHZ is active:
3574 	 *
3575 	 * The idle task calls get_next_timer_interrupt() and holds
3576 	 * the timer wheel base->lock on the CPU and another CPU wants
3577 	 * to access the timer (probably to cancel it). We can safely
3578 	 * ignore the boosting request, as the idle CPU runs this code
3579 	 * with interrupts disabled and will complete the lock
3580 	 * protected section without being interrupted. So there is no
3581 	 * real need to boost.
3582 	 */
3583 	if (unlikely(p == rq->idle)) {
3584 		WARN_ON(p != rq->curr);
3585 		WARN_ON(p->pi_blocked_on);
3586 		goto out_unlock;
3587 	}
3588 
3589 	trace_sched_pi_setprio(p, prio);
3590 	oldprio = p->prio;
3591 	prev_class = p->sched_class;
3592 	on_rq = p->on_rq;
3593 	running = task_current(rq, p);
3594 	if (on_rq)
3595 		dequeue_task(rq, p, 0);
3596 	if (running)
3597 		p->sched_class->put_prev_task(rq, p);
3598 
3599 	if (rt_prio(prio))
3600 		p->sched_class = &rt_sched_class;
3601 	else
3602 		p->sched_class = &fair_sched_class;
3603 
3604 	p->prio = prio;
3605 
3606 	if (running)
3607 		p->sched_class->set_curr_task(rq);
3608 	if (on_rq)
3609 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3610 
3611 	check_class_changed(rq, p, prev_class, oldprio);
3612 out_unlock:
3613 	__task_rq_unlock(rq);
3614 }
3615 #endif
3616 void set_user_nice(struct task_struct *p, long nice)
3617 {
3618 	int old_prio, delta, on_rq;
3619 	unsigned long flags;
3620 	struct rq *rq;
3621 
3622 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3623 		return;
3624 	/*
3625 	 * We have to be careful, if called from sys_setpriority(),
3626 	 * the task might be in the middle of scheduling on another CPU.
3627 	 */
3628 	rq = task_rq_lock(p, &flags);
3629 	/*
3630 	 * The RT priorities are set via sched_setscheduler(), but we still
3631 	 * allow the 'normal' nice value to be set - but as expected
3632 	 * it wont have any effect on scheduling until the task is
3633 	 * SCHED_FIFO/SCHED_RR:
3634 	 */
3635 	if (task_has_rt_policy(p)) {
3636 		p->static_prio = NICE_TO_PRIO(nice);
3637 		goto out_unlock;
3638 	}
3639 	on_rq = p->on_rq;
3640 	if (on_rq)
3641 		dequeue_task(rq, p, 0);
3642 
3643 	p->static_prio = NICE_TO_PRIO(nice);
3644 	set_load_weight(p);
3645 	old_prio = p->prio;
3646 	p->prio = effective_prio(p);
3647 	delta = p->prio - old_prio;
3648 
3649 	if (on_rq) {
3650 		enqueue_task(rq, p, 0);
3651 		/*
3652 		 * If the task increased its priority or is running and
3653 		 * lowered its priority, then reschedule its CPU:
3654 		 */
3655 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3656 			resched_task(rq->curr);
3657 	}
3658 out_unlock:
3659 	task_rq_unlock(rq, p, &flags);
3660 }
3661 EXPORT_SYMBOL(set_user_nice);
3662 
3663 /*
3664  * can_nice - check if a task can reduce its nice value
3665  * @p: task
3666  * @nice: nice value
3667  */
3668 int can_nice(const struct task_struct *p, const int nice)
3669 {
3670 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3671 	int nice_rlim = 20 - nice;
3672 
3673 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3674 		capable(CAP_SYS_NICE));
3675 }
3676 
3677 #ifdef __ARCH_WANT_SYS_NICE
3678 
3679 /*
3680  * sys_nice - change the priority of the current process.
3681  * @increment: priority increment
3682  *
3683  * sys_setpriority is a more generic, but much slower function that
3684  * does similar things.
3685  */
3686 SYSCALL_DEFINE1(nice, int, increment)
3687 {
3688 	long nice, retval;
3689 
3690 	/*
3691 	 * Setpriority might change our priority at the same moment.
3692 	 * We don't have to worry. Conceptually one call occurs first
3693 	 * and we have a single winner.
3694 	 */
3695 	if (increment < -40)
3696 		increment = -40;
3697 	if (increment > 40)
3698 		increment = 40;
3699 
3700 	nice = TASK_NICE(current) + increment;
3701 	if (nice < -20)
3702 		nice = -20;
3703 	if (nice > 19)
3704 		nice = 19;
3705 
3706 	if (increment < 0 && !can_nice(current, nice))
3707 		return -EPERM;
3708 
3709 	retval = security_task_setnice(current, nice);
3710 	if (retval)
3711 		return retval;
3712 
3713 	set_user_nice(current, nice);
3714 	return 0;
3715 }
3716 
3717 #endif
3718 
3719 /**
3720  * task_prio - return the priority value of a given task.
3721  * @p: the task in question.
3722  *
3723  * This is the priority value as seen by users in /proc.
3724  * RT tasks are offset by -200. Normal tasks are centered
3725  * around 0, value goes from -16 to +15.
3726  */
3727 int task_prio(const struct task_struct *p)
3728 {
3729 	return p->prio - MAX_RT_PRIO;
3730 }
3731 
3732 /**
3733  * task_nice - return the nice value of a given task.
3734  * @p: the task in question.
3735  */
3736 int task_nice(const struct task_struct *p)
3737 {
3738 	return TASK_NICE(p);
3739 }
3740 EXPORT_SYMBOL(task_nice);
3741 
3742 /**
3743  * idle_cpu - is a given cpu idle currently?
3744  * @cpu: the processor in question.
3745  */
3746 int idle_cpu(int cpu)
3747 {
3748 	struct rq *rq = cpu_rq(cpu);
3749 
3750 	if (rq->curr != rq->idle)
3751 		return 0;
3752 
3753 	if (rq->nr_running)
3754 		return 0;
3755 
3756 #ifdef CONFIG_SMP
3757 	if (!llist_empty(&rq->wake_list))
3758 		return 0;
3759 #endif
3760 
3761 	return 1;
3762 }
3763 
3764 /**
3765  * idle_task - return the idle task for a given cpu.
3766  * @cpu: the processor in question.
3767  */
3768 struct task_struct *idle_task(int cpu)
3769 {
3770 	return cpu_rq(cpu)->idle;
3771 }
3772 
3773 /**
3774  * find_process_by_pid - find a process with a matching PID value.
3775  * @pid: the pid in question.
3776  */
3777 static struct task_struct *find_process_by_pid(pid_t pid)
3778 {
3779 	return pid ? find_task_by_vpid(pid) : current;
3780 }
3781 
3782 /* Actually do priority change: must hold rq lock. */
3783 static void
3784 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3785 {
3786 	p->policy = policy;
3787 	p->rt_priority = prio;
3788 	p->normal_prio = normal_prio(p);
3789 	/* we are holding p->pi_lock already */
3790 	p->prio = rt_mutex_getprio(p);
3791 	if (rt_prio(p->prio))
3792 		p->sched_class = &rt_sched_class;
3793 	else
3794 		p->sched_class = &fair_sched_class;
3795 	set_load_weight(p);
3796 }
3797 
3798 /*
3799  * check the target process has a UID that matches the current process's
3800  */
3801 static bool check_same_owner(struct task_struct *p)
3802 {
3803 	const struct cred *cred = current_cred(), *pcred;
3804 	bool match;
3805 
3806 	rcu_read_lock();
3807 	pcred = __task_cred(p);
3808 	match = (uid_eq(cred->euid, pcred->euid) ||
3809 		 uid_eq(cred->euid, pcred->uid));
3810 	rcu_read_unlock();
3811 	return match;
3812 }
3813 
3814 static int __sched_setscheduler(struct task_struct *p, int policy,
3815 				const struct sched_param *param, bool user)
3816 {
3817 	int retval, oldprio, oldpolicy = -1, on_rq, running;
3818 	unsigned long flags;
3819 	const struct sched_class *prev_class;
3820 	struct rq *rq;
3821 	int reset_on_fork;
3822 
3823 	/* may grab non-irq protected spin_locks */
3824 	BUG_ON(in_interrupt());
3825 recheck:
3826 	/* double check policy once rq lock held */
3827 	if (policy < 0) {
3828 		reset_on_fork = p->sched_reset_on_fork;
3829 		policy = oldpolicy = p->policy;
3830 	} else {
3831 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3832 		policy &= ~SCHED_RESET_ON_FORK;
3833 
3834 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3835 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3836 				policy != SCHED_IDLE)
3837 			return -EINVAL;
3838 	}
3839 
3840 	/*
3841 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3842 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3843 	 * SCHED_BATCH and SCHED_IDLE is 0.
3844 	 */
3845 	if (param->sched_priority < 0 ||
3846 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3847 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3848 		return -EINVAL;
3849 	if (rt_policy(policy) != (param->sched_priority != 0))
3850 		return -EINVAL;
3851 
3852 	/*
3853 	 * Allow unprivileged RT tasks to decrease priority:
3854 	 */
3855 	if (user && !capable(CAP_SYS_NICE)) {
3856 		if (rt_policy(policy)) {
3857 			unsigned long rlim_rtprio =
3858 					task_rlimit(p, RLIMIT_RTPRIO);
3859 
3860 			/* can't set/change the rt policy */
3861 			if (policy != p->policy && !rlim_rtprio)
3862 				return -EPERM;
3863 
3864 			/* can't increase priority */
3865 			if (param->sched_priority > p->rt_priority &&
3866 			    param->sched_priority > rlim_rtprio)
3867 				return -EPERM;
3868 		}
3869 
3870 		/*
3871 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3872 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3873 		 */
3874 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3875 			if (!can_nice(p, TASK_NICE(p)))
3876 				return -EPERM;
3877 		}
3878 
3879 		/* can't change other user's priorities */
3880 		if (!check_same_owner(p))
3881 			return -EPERM;
3882 
3883 		/* Normal users shall not reset the sched_reset_on_fork flag */
3884 		if (p->sched_reset_on_fork && !reset_on_fork)
3885 			return -EPERM;
3886 	}
3887 
3888 	if (user) {
3889 		retval = security_task_setscheduler(p);
3890 		if (retval)
3891 			return retval;
3892 	}
3893 
3894 	/*
3895 	 * make sure no PI-waiters arrive (or leave) while we are
3896 	 * changing the priority of the task:
3897 	 *
3898 	 * To be able to change p->policy safely, the appropriate
3899 	 * runqueue lock must be held.
3900 	 */
3901 	rq = task_rq_lock(p, &flags);
3902 
3903 	/*
3904 	 * Changing the policy of the stop threads its a very bad idea
3905 	 */
3906 	if (p == rq->stop) {
3907 		task_rq_unlock(rq, p, &flags);
3908 		return -EINVAL;
3909 	}
3910 
3911 	/*
3912 	 * If not changing anything there's no need to proceed further:
3913 	 */
3914 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3915 			param->sched_priority == p->rt_priority))) {
3916 		task_rq_unlock(rq, p, &flags);
3917 		return 0;
3918 	}
3919 
3920 #ifdef CONFIG_RT_GROUP_SCHED
3921 	if (user) {
3922 		/*
3923 		 * Do not allow realtime tasks into groups that have no runtime
3924 		 * assigned.
3925 		 */
3926 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3927 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3928 				!task_group_is_autogroup(task_group(p))) {
3929 			task_rq_unlock(rq, p, &flags);
3930 			return -EPERM;
3931 		}
3932 	}
3933 #endif
3934 
3935 	/* recheck policy now with rq lock held */
3936 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3937 		policy = oldpolicy = -1;
3938 		task_rq_unlock(rq, p, &flags);
3939 		goto recheck;
3940 	}
3941 	on_rq = p->on_rq;
3942 	running = task_current(rq, p);
3943 	if (on_rq)
3944 		dequeue_task(rq, p, 0);
3945 	if (running)
3946 		p->sched_class->put_prev_task(rq, p);
3947 
3948 	p->sched_reset_on_fork = reset_on_fork;
3949 
3950 	oldprio = p->prio;
3951 	prev_class = p->sched_class;
3952 	__setscheduler(rq, p, policy, param->sched_priority);
3953 
3954 	if (running)
3955 		p->sched_class->set_curr_task(rq);
3956 	if (on_rq)
3957 		enqueue_task(rq, p, 0);
3958 
3959 	check_class_changed(rq, p, prev_class, oldprio);
3960 	task_rq_unlock(rq, p, &flags);
3961 
3962 	rt_mutex_adjust_pi(p);
3963 
3964 	return 0;
3965 }
3966 
3967 /**
3968  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3969  * @p: the task in question.
3970  * @policy: new policy.
3971  * @param: structure containing the new RT priority.
3972  *
3973  * NOTE that the task may be already dead.
3974  */
3975 int sched_setscheduler(struct task_struct *p, int policy,
3976 		       const struct sched_param *param)
3977 {
3978 	return __sched_setscheduler(p, policy, param, true);
3979 }
3980 EXPORT_SYMBOL_GPL(sched_setscheduler);
3981 
3982 /**
3983  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3984  * @p: the task in question.
3985  * @policy: new policy.
3986  * @param: structure containing the new RT priority.
3987  *
3988  * Just like sched_setscheduler, only don't bother checking if the
3989  * current context has permission.  For example, this is needed in
3990  * stop_machine(): we create temporary high priority worker threads,
3991  * but our caller might not have that capability.
3992  */
3993 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3994 			       const struct sched_param *param)
3995 {
3996 	return __sched_setscheduler(p, policy, param, false);
3997 }
3998 
3999 static int
4000 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4001 {
4002 	struct sched_param lparam;
4003 	struct task_struct *p;
4004 	int retval;
4005 
4006 	if (!param || pid < 0)
4007 		return -EINVAL;
4008 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4009 		return -EFAULT;
4010 
4011 	rcu_read_lock();
4012 	retval = -ESRCH;
4013 	p = find_process_by_pid(pid);
4014 	if (p != NULL)
4015 		retval = sched_setscheduler(p, policy, &lparam);
4016 	rcu_read_unlock();
4017 
4018 	return retval;
4019 }
4020 
4021 /**
4022  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4023  * @pid: the pid in question.
4024  * @policy: new policy.
4025  * @param: structure containing the new RT priority.
4026  */
4027 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4028 		struct sched_param __user *, param)
4029 {
4030 	/* negative values for policy are not valid */
4031 	if (policy < 0)
4032 		return -EINVAL;
4033 
4034 	return do_sched_setscheduler(pid, policy, param);
4035 }
4036 
4037 /**
4038  * sys_sched_setparam - set/change the RT priority of a thread
4039  * @pid: the pid in question.
4040  * @param: structure containing the new RT priority.
4041  */
4042 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4043 {
4044 	return do_sched_setscheduler(pid, -1, param);
4045 }
4046 
4047 /**
4048  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4049  * @pid: the pid in question.
4050  */
4051 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4052 {
4053 	struct task_struct *p;
4054 	int retval;
4055 
4056 	if (pid < 0)
4057 		return -EINVAL;
4058 
4059 	retval = -ESRCH;
4060 	rcu_read_lock();
4061 	p = find_process_by_pid(pid);
4062 	if (p) {
4063 		retval = security_task_getscheduler(p);
4064 		if (!retval)
4065 			retval = p->policy
4066 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4067 	}
4068 	rcu_read_unlock();
4069 	return retval;
4070 }
4071 
4072 /**
4073  * sys_sched_getparam - get the RT priority of a thread
4074  * @pid: the pid in question.
4075  * @param: structure containing the RT priority.
4076  */
4077 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4078 {
4079 	struct sched_param lp;
4080 	struct task_struct *p;
4081 	int retval;
4082 
4083 	if (!param || pid < 0)
4084 		return -EINVAL;
4085 
4086 	rcu_read_lock();
4087 	p = find_process_by_pid(pid);
4088 	retval = -ESRCH;
4089 	if (!p)
4090 		goto out_unlock;
4091 
4092 	retval = security_task_getscheduler(p);
4093 	if (retval)
4094 		goto out_unlock;
4095 
4096 	lp.sched_priority = p->rt_priority;
4097 	rcu_read_unlock();
4098 
4099 	/*
4100 	 * This one might sleep, we cannot do it with a spinlock held ...
4101 	 */
4102 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4103 
4104 	return retval;
4105 
4106 out_unlock:
4107 	rcu_read_unlock();
4108 	return retval;
4109 }
4110 
4111 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4112 {
4113 	cpumask_var_t cpus_allowed, new_mask;
4114 	struct task_struct *p;
4115 	int retval;
4116 
4117 	get_online_cpus();
4118 	rcu_read_lock();
4119 
4120 	p = find_process_by_pid(pid);
4121 	if (!p) {
4122 		rcu_read_unlock();
4123 		put_online_cpus();
4124 		return -ESRCH;
4125 	}
4126 
4127 	/* Prevent p going away */
4128 	get_task_struct(p);
4129 	rcu_read_unlock();
4130 
4131 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4132 		retval = -ENOMEM;
4133 		goto out_put_task;
4134 	}
4135 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4136 		retval = -ENOMEM;
4137 		goto out_free_cpus_allowed;
4138 	}
4139 	retval = -EPERM;
4140 	if (!check_same_owner(p)) {
4141 		rcu_read_lock();
4142 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4143 			rcu_read_unlock();
4144 			goto out_unlock;
4145 		}
4146 		rcu_read_unlock();
4147 	}
4148 
4149 	retval = security_task_setscheduler(p);
4150 	if (retval)
4151 		goto out_unlock;
4152 
4153 	cpuset_cpus_allowed(p, cpus_allowed);
4154 	cpumask_and(new_mask, in_mask, cpus_allowed);
4155 again:
4156 	retval = set_cpus_allowed_ptr(p, new_mask);
4157 
4158 	if (!retval) {
4159 		cpuset_cpus_allowed(p, cpus_allowed);
4160 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4161 			/*
4162 			 * We must have raced with a concurrent cpuset
4163 			 * update. Just reset the cpus_allowed to the
4164 			 * cpuset's cpus_allowed
4165 			 */
4166 			cpumask_copy(new_mask, cpus_allowed);
4167 			goto again;
4168 		}
4169 	}
4170 out_unlock:
4171 	free_cpumask_var(new_mask);
4172 out_free_cpus_allowed:
4173 	free_cpumask_var(cpus_allowed);
4174 out_put_task:
4175 	put_task_struct(p);
4176 	put_online_cpus();
4177 	return retval;
4178 }
4179 
4180 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4181 			     struct cpumask *new_mask)
4182 {
4183 	if (len < cpumask_size())
4184 		cpumask_clear(new_mask);
4185 	else if (len > cpumask_size())
4186 		len = cpumask_size();
4187 
4188 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4189 }
4190 
4191 /**
4192  * sys_sched_setaffinity - set the cpu affinity of a process
4193  * @pid: pid of the process
4194  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4195  * @user_mask_ptr: user-space pointer to the new cpu mask
4196  */
4197 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4198 		unsigned long __user *, user_mask_ptr)
4199 {
4200 	cpumask_var_t new_mask;
4201 	int retval;
4202 
4203 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4204 		return -ENOMEM;
4205 
4206 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4207 	if (retval == 0)
4208 		retval = sched_setaffinity(pid, new_mask);
4209 	free_cpumask_var(new_mask);
4210 	return retval;
4211 }
4212 
4213 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4214 {
4215 	struct task_struct *p;
4216 	unsigned long flags;
4217 	int retval;
4218 
4219 	get_online_cpus();
4220 	rcu_read_lock();
4221 
4222 	retval = -ESRCH;
4223 	p = find_process_by_pid(pid);
4224 	if (!p)
4225 		goto out_unlock;
4226 
4227 	retval = security_task_getscheduler(p);
4228 	if (retval)
4229 		goto out_unlock;
4230 
4231 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4232 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4233 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4234 
4235 out_unlock:
4236 	rcu_read_unlock();
4237 	put_online_cpus();
4238 
4239 	return retval;
4240 }
4241 
4242 /**
4243  * sys_sched_getaffinity - get the cpu affinity of a process
4244  * @pid: pid of the process
4245  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4246  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4247  */
4248 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4249 		unsigned long __user *, user_mask_ptr)
4250 {
4251 	int ret;
4252 	cpumask_var_t mask;
4253 
4254 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4255 		return -EINVAL;
4256 	if (len & (sizeof(unsigned long)-1))
4257 		return -EINVAL;
4258 
4259 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4260 		return -ENOMEM;
4261 
4262 	ret = sched_getaffinity(pid, mask);
4263 	if (ret == 0) {
4264 		size_t retlen = min_t(size_t, len, cpumask_size());
4265 
4266 		if (copy_to_user(user_mask_ptr, mask, retlen))
4267 			ret = -EFAULT;
4268 		else
4269 			ret = retlen;
4270 	}
4271 	free_cpumask_var(mask);
4272 
4273 	return ret;
4274 }
4275 
4276 /**
4277  * sys_sched_yield - yield the current processor to other threads.
4278  *
4279  * This function yields the current CPU to other tasks. If there are no
4280  * other threads running on this CPU then this function will return.
4281  */
4282 SYSCALL_DEFINE0(sched_yield)
4283 {
4284 	struct rq *rq = this_rq_lock();
4285 
4286 	schedstat_inc(rq, yld_count);
4287 	current->sched_class->yield_task(rq);
4288 
4289 	/*
4290 	 * Since we are going to call schedule() anyway, there's
4291 	 * no need to preempt or enable interrupts:
4292 	 */
4293 	__release(rq->lock);
4294 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4295 	do_raw_spin_unlock(&rq->lock);
4296 	sched_preempt_enable_no_resched();
4297 
4298 	schedule();
4299 
4300 	return 0;
4301 }
4302 
4303 static inline int should_resched(void)
4304 {
4305 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4306 }
4307 
4308 static void __cond_resched(void)
4309 {
4310 	add_preempt_count(PREEMPT_ACTIVE);
4311 	__schedule();
4312 	sub_preempt_count(PREEMPT_ACTIVE);
4313 }
4314 
4315 int __sched _cond_resched(void)
4316 {
4317 	if (should_resched()) {
4318 		__cond_resched();
4319 		return 1;
4320 	}
4321 	return 0;
4322 }
4323 EXPORT_SYMBOL(_cond_resched);
4324 
4325 /*
4326  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4327  * call schedule, and on return reacquire the lock.
4328  *
4329  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4330  * operations here to prevent schedule() from being called twice (once via
4331  * spin_unlock(), once by hand).
4332  */
4333 int __cond_resched_lock(spinlock_t *lock)
4334 {
4335 	int resched = should_resched();
4336 	int ret = 0;
4337 
4338 	lockdep_assert_held(lock);
4339 
4340 	if (spin_needbreak(lock) || resched) {
4341 		spin_unlock(lock);
4342 		if (resched)
4343 			__cond_resched();
4344 		else
4345 			cpu_relax();
4346 		ret = 1;
4347 		spin_lock(lock);
4348 	}
4349 	return ret;
4350 }
4351 EXPORT_SYMBOL(__cond_resched_lock);
4352 
4353 int __sched __cond_resched_softirq(void)
4354 {
4355 	BUG_ON(!in_softirq());
4356 
4357 	if (should_resched()) {
4358 		local_bh_enable();
4359 		__cond_resched();
4360 		local_bh_disable();
4361 		return 1;
4362 	}
4363 	return 0;
4364 }
4365 EXPORT_SYMBOL(__cond_resched_softirq);
4366 
4367 /**
4368  * yield - yield the current processor to other threads.
4369  *
4370  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4371  *
4372  * The scheduler is at all times free to pick the calling task as the most
4373  * eligible task to run, if removing the yield() call from your code breaks
4374  * it, its already broken.
4375  *
4376  * Typical broken usage is:
4377  *
4378  * while (!event)
4379  * 	yield();
4380  *
4381  * where one assumes that yield() will let 'the other' process run that will
4382  * make event true. If the current task is a SCHED_FIFO task that will never
4383  * happen. Never use yield() as a progress guarantee!!
4384  *
4385  * If you want to use yield() to wait for something, use wait_event().
4386  * If you want to use yield() to be 'nice' for others, use cond_resched().
4387  * If you still want to use yield(), do not!
4388  */
4389 void __sched yield(void)
4390 {
4391 	set_current_state(TASK_RUNNING);
4392 	sys_sched_yield();
4393 }
4394 EXPORT_SYMBOL(yield);
4395 
4396 /**
4397  * yield_to - yield the current processor to another thread in
4398  * your thread group, or accelerate that thread toward the
4399  * processor it's on.
4400  * @p: target task
4401  * @preempt: whether task preemption is allowed or not
4402  *
4403  * It's the caller's job to ensure that the target task struct
4404  * can't go away on us before we can do any checks.
4405  *
4406  * Returns:
4407  *	true (>0) if we indeed boosted the target task.
4408  *	false (0) if we failed to boost the target.
4409  *	-ESRCH if there's no task to yield to.
4410  */
4411 bool __sched yield_to(struct task_struct *p, bool preempt)
4412 {
4413 	struct task_struct *curr = current;
4414 	struct rq *rq, *p_rq;
4415 	unsigned long flags;
4416 	int yielded = 0;
4417 
4418 	local_irq_save(flags);
4419 	rq = this_rq();
4420 
4421 again:
4422 	p_rq = task_rq(p);
4423 	/*
4424 	 * If we're the only runnable task on the rq and target rq also
4425 	 * has only one task, there's absolutely no point in yielding.
4426 	 */
4427 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4428 		yielded = -ESRCH;
4429 		goto out_irq;
4430 	}
4431 
4432 	double_rq_lock(rq, p_rq);
4433 	while (task_rq(p) != p_rq) {
4434 		double_rq_unlock(rq, p_rq);
4435 		goto again;
4436 	}
4437 
4438 	if (!curr->sched_class->yield_to_task)
4439 		goto out_unlock;
4440 
4441 	if (curr->sched_class != p->sched_class)
4442 		goto out_unlock;
4443 
4444 	if (task_running(p_rq, p) || p->state)
4445 		goto out_unlock;
4446 
4447 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4448 	if (yielded) {
4449 		schedstat_inc(rq, yld_count);
4450 		/*
4451 		 * Make p's CPU reschedule; pick_next_entity takes care of
4452 		 * fairness.
4453 		 */
4454 		if (preempt && rq != p_rq)
4455 			resched_task(p_rq->curr);
4456 	}
4457 
4458 out_unlock:
4459 	double_rq_unlock(rq, p_rq);
4460 out_irq:
4461 	local_irq_restore(flags);
4462 
4463 	if (yielded > 0)
4464 		schedule();
4465 
4466 	return yielded;
4467 }
4468 EXPORT_SYMBOL_GPL(yield_to);
4469 
4470 /*
4471  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4472  * that process accounting knows that this is a task in IO wait state.
4473  */
4474 void __sched io_schedule(void)
4475 {
4476 	struct rq *rq = raw_rq();
4477 
4478 	delayacct_blkio_start();
4479 	atomic_inc(&rq->nr_iowait);
4480 	blk_flush_plug(current);
4481 	current->in_iowait = 1;
4482 	schedule();
4483 	current->in_iowait = 0;
4484 	atomic_dec(&rq->nr_iowait);
4485 	delayacct_blkio_end();
4486 }
4487 EXPORT_SYMBOL(io_schedule);
4488 
4489 long __sched io_schedule_timeout(long timeout)
4490 {
4491 	struct rq *rq = raw_rq();
4492 	long ret;
4493 
4494 	delayacct_blkio_start();
4495 	atomic_inc(&rq->nr_iowait);
4496 	blk_flush_plug(current);
4497 	current->in_iowait = 1;
4498 	ret = schedule_timeout(timeout);
4499 	current->in_iowait = 0;
4500 	atomic_dec(&rq->nr_iowait);
4501 	delayacct_blkio_end();
4502 	return ret;
4503 }
4504 
4505 /**
4506  * sys_sched_get_priority_max - return maximum RT priority.
4507  * @policy: scheduling class.
4508  *
4509  * this syscall returns the maximum rt_priority that can be used
4510  * by a given scheduling class.
4511  */
4512 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4513 {
4514 	int ret = -EINVAL;
4515 
4516 	switch (policy) {
4517 	case SCHED_FIFO:
4518 	case SCHED_RR:
4519 		ret = MAX_USER_RT_PRIO-1;
4520 		break;
4521 	case SCHED_NORMAL:
4522 	case SCHED_BATCH:
4523 	case SCHED_IDLE:
4524 		ret = 0;
4525 		break;
4526 	}
4527 	return ret;
4528 }
4529 
4530 /**
4531  * sys_sched_get_priority_min - return minimum RT priority.
4532  * @policy: scheduling class.
4533  *
4534  * this syscall returns the minimum rt_priority that can be used
4535  * by a given scheduling class.
4536  */
4537 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4538 {
4539 	int ret = -EINVAL;
4540 
4541 	switch (policy) {
4542 	case SCHED_FIFO:
4543 	case SCHED_RR:
4544 		ret = 1;
4545 		break;
4546 	case SCHED_NORMAL:
4547 	case SCHED_BATCH:
4548 	case SCHED_IDLE:
4549 		ret = 0;
4550 	}
4551 	return ret;
4552 }
4553 
4554 /**
4555  * sys_sched_rr_get_interval - return the default timeslice of a process.
4556  * @pid: pid of the process.
4557  * @interval: userspace pointer to the timeslice value.
4558  *
4559  * this syscall writes the default timeslice value of a given process
4560  * into the user-space timespec buffer. A value of '0' means infinity.
4561  */
4562 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4563 		struct timespec __user *, interval)
4564 {
4565 	struct task_struct *p;
4566 	unsigned int time_slice;
4567 	unsigned long flags;
4568 	struct rq *rq;
4569 	int retval;
4570 	struct timespec t;
4571 
4572 	if (pid < 0)
4573 		return -EINVAL;
4574 
4575 	retval = -ESRCH;
4576 	rcu_read_lock();
4577 	p = find_process_by_pid(pid);
4578 	if (!p)
4579 		goto out_unlock;
4580 
4581 	retval = security_task_getscheduler(p);
4582 	if (retval)
4583 		goto out_unlock;
4584 
4585 	rq = task_rq_lock(p, &flags);
4586 	time_slice = p->sched_class->get_rr_interval(rq, p);
4587 	task_rq_unlock(rq, p, &flags);
4588 
4589 	rcu_read_unlock();
4590 	jiffies_to_timespec(time_slice, &t);
4591 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4592 	return retval;
4593 
4594 out_unlock:
4595 	rcu_read_unlock();
4596 	return retval;
4597 }
4598 
4599 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4600 
4601 void sched_show_task(struct task_struct *p)
4602 {
4603 	unsigned long free = 0;
4604 	int ppid;
4605 	unsigned state;
4606 
4607 	state = p->state ? __ffs(p->state) + 1 : 0;
4608 	printk(KERN_INFO "%-15.15s %c", p->comm,
4609 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4610 #if BITS_PER_LONG == 32
4611 	if (state == TASK_RUNNING)
4612 		printk(KERN_CONT " running  ");
4613 	else
4614 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4615 #else
4616 	if (state == TASK_RUNNING)
4617 		printk(KERN_CONT "  running task    ");
4618 	else
4619 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4620 #endif
4621 #ifdef CONFIG_DEBUG_STACK_USAGE
4622 	free = stack_not_used(p);
4623 #endif
4624 	rcu_read_lock();
4625 	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4626 	rcu_read_unlock();
4627 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4628 		task_pid_nr(p), ppid,
4629 		(unsigned long)task_thread_info(p)->flags);
4630 
4631 	show_stack(p, NULL);
4632 }
4633 
4634 void show_state_filter(unsigned long state_filter)
4635 {
4636 	struct task_struct *g, *p;
4637 
4638 #if BITS_PER_LONG == 32
4639 	printk(KERN_INFO
4640 		"  task                PC stack   pid father\n");
4641 #else
4642 	printk(KERN_INFO
4643 		"  task                        PC stack   pid father\n");
4644 #endif
4645 	rcu_read_lock();
4646 	do_each_thread(g, p) {
4647 		/*
4648 		 * reset the NMI-timeout, listing all files on a slow
4649 		 * console might take a lot of time:
4650 		 */
4651 		touch_nmi_watchdog();
4652 		if (!state_filter || (p->state & state_filter))
4653 			sched_show_task(p);
4654 	} while_each_thread(g, p);
4655 
4656 	touch_all_softlockup_watchdogs();
4657 
4658 #ifdef CONFIG_SCHED_DEBUG
4659 	sysrq_sched_debug_show();
4660 #endif
4661 	rcu_read_unlock();
4662 	/*
4663 	 * Only show locks if all tasks are dumped:
4664 	 */
4665 	if (!state_filter)
4666 		debug_show_all_locks();
4667 }
4668 
4669 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4670 {
4671 	idle->sched_class = &idle_sched_class;
4672 }
4673 
4674 /**
4675  * init_idle - set up an idle thread for a given CPU
4676  * @idle: task in question
4677  * @cpu: cpu the idle task belongs to
4678  *
4679  * NOTE: this function does not set the idle thread's NEED_RESCHED
4680  * flag, to make booting more robust.
4681  */
4682 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4683 {
4684 	struct rq *rq = cpu_rq(cpu);
4685 	unsigned long flags;
4686 
4687 	raw_spin_lock_irqsave(&rq->lock, flags);
4688 
4689 	__sched_fork(idle);
4690 	idle->state = TASK_RUNNING;
4691 	idle->se.exec_start = sched_clock();
4692 
4693 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4694 	/*
4695 	 * We're having a chicken and egg problem, even though we are
4696 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4697 	 * lockdep check in task_group() will fail.
4698 	 *
4699 	 * Similar case to sched_fork(). / Alternatively we could
4700 	 * use task_rq_lock() here and obtain the other rq->lock.
4701 	 *
4702 	 * Silence PROVE_RCU
4703 	 */
4704 	rcu_read_lock();
4705 	__set_task_cpu(idle, cpu);
4706 	rcu_read_unlock();
4707 
4708 	rq->curr = rq->idle = idle;
4709 #if defined(CONFIG_SMP)
4710 	idle->on_cpu = 1;
4711 #endif
4712 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4713 
4714 	/* Set the preempt count _outside_ the spinlocks! */
4715 	task_thread_info(idle)->preempt_count = 0;
4716 
4717 	/*
4718 	 * The idle tasks have their own, simple scheduling class:
4719 	 */
4720 	idle->sched_class = &idle_sched_class;
4721 	ftrace_graph_init_idle_task(idle, cpu);
4722 	vtime_init_idle(idle);
4723 #if defined(CONFIG_SMP)
4724 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4725 #endif
4726 }
4727 
4728 #ifdef CONFIG_SMP
4729 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4730 {
4731 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4732 		p->sched_class->set_cpus_allowed(p, new_mask);
4733 
4734 	cpumask_copy(&p->cpus_allowed, new_mask);
4735 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4736 }
4737 
4738 /*
4739  * This is how migration works:
4740  *
4741  * 1) we invoke migration_cpu_stop() on the target CPU using
4742  *    stop_one_cpu().
4743  * 2) stopper starts to run (implicitly forcing the migrated thread
4744  *    off the CPU)
4745  * 3) it checks whether the migrated task is still in the wrong runqueue.
4746  * 4) if it's in the wrong runqueue then the migration thread removes
4747  *    it and puts it into the right queue.
4748  * 5) stopper completes and stop_one_cpu() returns and the migration
4749  *    is done.
4750  */
4751 
4752 /*
4753  * Change a given task's CPU affinity. Migrate the thread to a
4754  * proper CPU and schedule it away if the CPU it's executing on
4755  * is removed from the allowed bitmask.
4756  *
4757  * NOTE: the caller must have a valid reference to the task, the
4758  * task must not exit() & deallocate itself prematurely. The
4759  * call is not atomic; no spinlocks may be held.
4760  */
4761 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4762 {
4763 	unsigned long flags;
4764 	struct rq *rq;
4765 	unsigned int dest_cpu;
4766 	int ret = 0;
4767 
4768 	rq = task_rq_lock(p, &flags);
4769 
4770 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4771 		goto out;
4772 
4773 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4774 		ret = -EINVAL;
4775 		goto out;
4776 	}
4777 
4778 	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4779 		ret = -EINVAL;
4780 		goto out;
4781 	}
4782 
4783 	do_set_cpus_allowed(p, new_mask);
4784 
4785 	/* Can the task run on the task's current CPU? If so, we're done */
4786 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4787 		goto out;
4788 
4789 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4790 	if (p->on_rq) {
4791 		struct migration_arg arg = { p, dest_cpu };
4792 		/* Need help from migration thread: drop lock and wait. */
4793 		task_rq_unlock(rq, p, &flags);
4794 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4795 		tlb_migrate_finish(p->mm);
4796 		return 0;
4797 	}
4798 out:
4799 	task_rq_unlock(rq, p, &flags);
4800 
4801 	return ret;
4802 }
4803 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4804 
4805 /*
4806  * Move (not current) task off this cpu, onto dest cpu. We're doing
4807  * this because either it can't run here any more (set_cpus_allowed()
4808  * away from this CPU, or CPU going down), or because we're
4809  * attempting to rebalance this task on exec (sched_exec).
4810  *
4811  * So we race with normal scheduler movements, but that's OK, as long
4812  * as the task is no longer on this CPU.
4813  *
4814  * Returns non-zero if task was successfully migrated.
4815  */
4816 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4817 {
4818 	struct rq *rq_dest, *rq_src;
4819 	int ret = 0;
4820 
4821 	if (unlikely(!cpu_active(dest_cpu)))
4822 		return ret;
4823 
4824 	rq_src = cpu_rq(src_cpu);
4825 	rq_dest = cpu_rq(dest_cpu);
4826 
4827 	raw_spin_lock(&p->pi_lock);
4828 	double_rq_lock(rq_src, rq_dest);
4829 	/* Already moved. */
4830 	if (task_cpu(p) != src_cpu)
4831 		goto done;
4832 	/* Affinity changed (again). */
4833 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4834 		goto fail;
4835 
4836 	/*
4837 	 * If we're not on a rq, the next wake-up will ensure we're
4838 	 * placed properly.
4839 	 */
4840 	if (p->on_rq) {
4841 		dequeue_task(rq_src, p, 0);
4842 		set_task_cpu(p, dest_cpu);
4843 		enqueue_task(rq_dest, p, 0);
4844 		check_preempt_curr(rq_dest, p, 0);
4845 	}
4846 done:
4847 	ret = 1;
4848 fail:
4849 	double_rq_unlock(rq_src, rq_dest);
4850 	raw_spin_unlock(&p->pi_lock);
4851 	return ret;
4852 }
4853 
4854 /*
4855  * migration_cpu_stop - this will be executed by a highprio stopper thread
4856  * and performs thread migration by bumping thread off CPU then
4857  * 'pushing' onto another runqueue.
4858  */
4859 static int migration_cpu_stop(void *data)
4860 {
4861 	struct migration_arg *arg = data;
4862 
4863 	/*
4864 	 * The original target cpu might have gone down and we might
4865 	 * be on another cpu but it doesn't matter.
4866 	 */
4867 	local_irq_disable();
4868 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4869 	local_irq_enable();
4870 	return 0;
4871 }
4872 
4873 #ifdef CONFIG_HOTPLUG_CPU
4874 
4875 /*
4876  * Ensures that the idle task is using init_mm right before its cpu goes
4877  * offline.
4878  */
4879 void idle_task_exit(void)
4880 {
4881 	struct mm_struct *mm = current->active_mm;
4882 
4883 	BUG_ON(cpu_online(smp_processor_id()));
4884 
4885 	if (mm != &init_mm)
4886 		switch_mm(mm, &init_mm, current);
4887 	mmdrop(mm);
4888 }
4889 
4890 /*
4891  * Since this CPU is going 'away' for a while, fold any nr_active delta
4892  * we might have. Assumes we're called after migrate_tasks() so that the
4893  * nr_active count is stable.
4894  *
4895  * Also see the comment "Global load-average calculations".
4896  */
4897 static void calc_load_migrate(struct rq *rq)
4898 {
4899 	long delta = calc_load_fold_active(rq);
4900 	if (delta)
4901 		atomic_long_add(delta, &calc_load_tasks);
4902 }
4903 
4904 /*
4905  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4906  * try_to_wake_up()->select_task_rq().
4907  *
4908  * Called with rq->lock held even though we'er in stop_machine() and
4909  * there's no concurrency possible, we hold the required locks anyway
4910  * because of lock validation efforts.
4911  */
4912 static void migrate_tasks(unsigned int dead_cpu)
4913 {
4914 	struct rq *rq = cpu_rq(dead_cpu);
4915 	struct task_struct *next, *stop = rq->stop;
4916 	int dest_cpu;
4917 
4918 	/*
4919 	 * Fudge the rq selection such that the below task selection loop
4920 	 * doesn't get stuck on the currently eligible stop task.
4921 	 *
4922 	 * We're currently inside stop_machine() and the rq is either stuck
4923 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4924 	 * either way we should never end up calling schedule() until we're
4925 	 * done here.
4926 	 */
4927 	rq->stop = NULL;
4928 
4929 	for ( ; ; ) {
4930 		/*
4931 		 * There's this thread running, bail when that's the only
4932 		 * remaining thread.
4933 		 */
4934 		if (rq->nr_running == 1)
4935 			break;
4936 
4937 		next = pick_next_task(rq);
4938 		BUG_ON(!next);
4939 		next->sched_class->put_prev_task(rq, next);
4940 
4941 		/* Find suitable destination for @next, with force if needed. */
4942 		dest_cpu = select_fallback_rq(dead_cpu, next);
4943 		raw_spin_unlock(&rq->lock);
4944 
4945 		__migrate_task(next, dead_cpu, dest_cpu);
4946 
4947 		raw_spin_lock(&rq->lock);
4948 	}
4949 
4950 	rq->stop = stop;
4951 }
4952 
4953 #endif /* CONFIG_HOTPLUG_CPU */
4954 
4955 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4956 
4957 static struct ctl_table sd_ctl_dir[] = {
4958 	{
4959 		.procname	= "sched_domain",
4960 		.mode		= 0555,
4961 	},
4962 	{}
4963 };
4964 
4965 static struct ctl_table sd_ctl_root[] = {
4966 	{
4967 		.procname	= "kernel",
4968 		.mode		= 0555,
4969 		.child		= sd_ctl_dir,
4970 	},
4971 	{}
4972 };
4973 
4974 static struct ctl_table *sd_alloc_ctl_entry(int n)
4975 {
4976 	struct ctl_table *entry =
4977 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4978 
4979 	return entry;
4980 }
4981 
4982 static void sd_free_ctl_entry(struct ctl_table **tablep)
4983 {
4984 	struct ctl_table *entry;
4985 
4986 	/*
4987 	 * In the intermediate directories, both the child directory and
4988 	 * procname are dynamically allocated and could fail but the mode
4989 	 * will always be set. In the lowest directory the names are
4990 	 * static strings and all have proc handlers.
4991 	 */
4992 	for (entry = *tablep; entry->mode; entry++) {
4993 		if (entry->child)
4994 			sd_free_ctl_entry(&entry->child);
4995 		if (entry->proc_handler == NULL)
4996 			kfree(entry->procname);
4997 	}
4998 
4999 	kfree(*tablep);
5000 	*tablep = NULL;
5001 }
5002 
5003 static int min_load_idx = 0;
5004 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5005 
5006 static void
5007 set_table_entry(struct ctl_table *entry,
5008 		const char *procname, void *data, int maxlen,
5009 		umode_t mode, proc_handler *proc_handler,
5010 		bool load_idx)
5011 {
5012 	entry->procname = procname;
5013 	entry->data = data;
5014 	entry->maxlen = maxlen;
5015 	entry->mode = mode;
5016 	entry->proc_handler = proc_handler;
5017 
5018 	if (load_idx) {
5019 		entry->extra1 = &min_load_idx;
5020 		entry->extra2 = &max_load_idx;
5021 	}
5022 }
5023 
5024 static struct ctl_table *
5025 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5026 {
5027 	struct ctl_table *table = sd_alloc_ctl_entry(13);
5028 
5029 	if (table == NULL)
5030 		return NULL;
5031 
5032 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5033 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5034 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5035 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5036 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5037 		sizeof(int), 0644, proc_dointvec_minmax, true);
5038 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5039 		sizeof(int), 0644, proc_dointvec_minmax, true);
5040 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5041 		sizeof(int), 0644, proc_dointvec_minmax, true);
5042 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5043 		sizeof(int), 0644, proc_dointvec_minmax, true);
5044 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5045 		sizeof(int), 0644, proc_dointvec_minmax, true);
5046 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5047 		sizeof(int), 0644, proc_dointvec_minmax, false);
5048 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5049 		sizeof(int), 0644, proc_dointvec_minmax, false);
5050 	set_table_entry(&table[9], "cache_nice_tries",
5051 		&sd->cache_nice_tries,
5052 		sizeof(int), 0644, proc_dointvec_minmax, false);
5053 	set_table_entry(&table[10], "flags", &sd->flags,
5054 		sizeof(int), 0644, proc_dointvec_minmax, false);
5055 	set_table_entry(&table[11], "name", sd->name,
5056 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5057 	/* &table[12] is terminator */
5058 
5059 	return table;
5060 }
5061 
5062 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5063 {
5064 	struct ctl_table *entry, *table;
5065 	struct sched_domain *sd;
5066 	int domain_num = 0, i;
5067 	char buf[32];
5068 
5069 	for_each_domain(cpu, sd)
5070 		domain_num++;
5071 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5072 	if (table == NULL)
5073 		return NULL;
5074 
5075 	i = 0;
5076 	for_each_domain(cpu, sd) {
5077 		snprintf(buf, 32, "domain%d", i);
5078 		entry->procname = kstrdup(buf, GFP_KERNEL);
5079 		entry->mode = 0555;
5080 		entry->child = sd_alloc_ctl_domain_table(sd);
5081 		entry++;
5082 		i++;
5083 	}
5084 	return table;
5085 }
5086 
5087 static struct ctl_table_header *sd_sysctl_header;
5088 static void register_sched_domain_sysctl(void)
5089 {
5090 	int i, cpu_num = num_possible_cpus();
5091 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5092 	char buf[32];
5093 
5094 	WARN_ON(sd_ctl_dir[0].child);
5095 	sd_ctl_dir[0].child = entry;
5096 
5097 	if (entry == NULL)
5098 		return;
5099 
5100 	for_each_possible_cpu(i) {
5101 		snprintf(buf, 32, "cpu%d", i);
5102 		entry->procname = kstrdup(buf, GFP_KERNEL);
5103 		entry->mode = 0555;
5104 		entry->child = sd_alloc_ctl_cpu_table(i);
5105 		entry++;
5106 	}
5107 
5108 	WARN_ON(sd_sysctl_header);
5109 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5110 }
5111 
5112 /* may be called multiple times per register */
5113 static void unregister_sched_domain_sysctl(void)
5114 {
5115 	if (sd_sysctl_header)
5116 		unregister_sysctl_table(sd_sysctl_header);
5117 	sd_sysctl_header = NULL;
5118 	if (sd_ctl_dir[0].child)
5119 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5120 }
5121 #else
5122 static void register_sched_domain_sysctl(void)
5123 {
5124 }
5125 static void unregister_sched_domain_sysctl(void)
5126 {
5127 }
5128 #endif
5129 
5130 static void set_rq_online(struct rq *rq)
5131 {
5132 	if (!rq->online) {
5133 		const struct sched_class *class;
5134 
5135 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5136 		rq->online = 1;
5137 
5138 		for_each_class(class) {
5139 			if (class->rq_online)
5140 				class->rq_online(rq);
5141 		}
5142 	}
5143 }
5144 
5145 static void set_rq_offline(struct rq *rq)
5146 {
5147 	if (rq->online) {
5148 		const struct sched_class *class;
5149 
5150 		for_each_class(class) {
5151 			if (class->rq_offline)
5152 				class->rq_offline(rq);
5153 		}
5154 
5155 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5156 		rq->online = 0;
5157 	}
5158 }
5159 
5160 /*
5161  * migration_call - callback that gets triggered when a CPU is added.
5162  * Here we can start up the necessary migration thread for the new CPU.
5163  */
5164 static int __cpuinit
5165 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5166 {
5167 	int cpu = (long)hcpu;
5168 	unsigned long flags;
5169 	struct rq *rq = cpu_rq(cpu);
5170 
5171 	switch (action & ~CPU_TASKS_FROZEN) {
5172 
5173 	case CPU_UP_PREPARE:
5174 		rq->calc_load_update = calc_load_update;
5175 		break;
5176 
5177 	case CPU_ONLINE:
5178 		/* Update our root-domain */
5179 		raw_spin_lock_irqsave(&rq->lock, flags);
5180 		if (rq->rd) {
5181 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5182 
5183 			set_rq_online(rq);
5184 		}
5185 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5186 		break;
5187 
5188 #ifdef CONFIG_HOTPLUG_CPU
5189 	case CPU_DYING:
5190 		sched_ttwu_pending();
5191 		/* Update our root-domain */
5192 		raw_spin_lock_irqsave(&rq->lock, flags);
5193 		if (rq->rd) {
5194 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5195 			set_rq_offline(rq);
5196 		}
5197 		migrate_tasks(cpu);
5198 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5199 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5200 		break;
5201 
5202 	case CPU_DEAD:
5203 		calc_load_migrate(rq);
5204 		break;
5205 #endif
5206 	}
5207 
5208 	update_max_interval();
5209 
5210 	return NOTIFY_OK;
5211 }
5212 
5213 /*
5214  * Register at high priority so that task migration (migrate_all_tasks)
5215  * happens before everything else.  This has to be lower priority than
5216  * the notifier in the perf_event subsystem, though.
5217  */
5218 static struct notifier_block __cpuinitdata migration_notifier = {
5219 	.notifier_call = migration_call,
5220 	.priority = CPU_PRI_MIGRATION,
5221 };
5222 
5223 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5224 				      unsigned long action, void *hcpu)
5225 {
5226 	switch (action & ~CPU_TASKS_FROZEN) {
5227 	case CPU_STARTING:
5228 	case CPU_DOWN_FAILED:
5229 		set_cpu_active((long)hcpu, true);
5230 		return NOTIFY_OK;
5231 	default:
5232 		return NOTIFY_DONE;
5233 	}
5234 }
5235 
5236 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5237 					unsigned long action, void *hcpu)
5238 {
5239 	switch (action & ~CPU_TASKS_FROZEN) {
5240 	case CPU_DOWN_PREPARE:
5241 		set_cpu_active((long)hcpu, false);
5242 		return NOTIFY_OK;
5243 	default:
5244 		return NOTIFY_DONE;
5245 	}
5246 }
5247 
5248 static int __init migration_init(void)
5249 {
5250 	void *cpu = (void *)(long)smp_processor_id();
5251 	int err;
5252 
5253 	/* Initialize migration for the boot CPU */
5254 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5255 	BUG_ON(err == NOTIFY_BAD);
5256 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5257 	register_cpu_notifier(&migration_notifier);
5258 
5259 	/* Register cpu active notifiers */
5260 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5261 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5262 
5263 	return 0;
5264 }
5265 early_initcall(migration_init);
5266 #endif
5267 
5268 #ifdef CONFIG_SMP
5269 
5270 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5271 
5272 #ifdef CONFIG_SCHED_DEBUG
5273 
5274 static __read_mostly int sched_debug_enabled;
5275 
5276 static int __init sched_debug_setup(char *str)
5277 {
5278 	sched_debug_enabled = 1;
5279 
5280 	return 0;
5281 }
5282 early_param("sched_debug", sched_debug_setup);
5283 
5284 static inline bool sched_debug(void)
5285 {
5286 	return sched_debug_enabled;
5287 }
5288 
5289 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5290 				  struct cpumask *groupmask)
5291 {
5292 	struct sched_group *group = sd->groups;
5293 	char str[256];
5294 
5295 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5296 	cpumask_clear(groupmask);
5297 
5298 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5299 
5300 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5301 		printk("does not load-balance\n");
5302 		if (sd->parent)
5303 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5304 					" has parent");
5305 		return -1;
5306 	}
5307 
5308 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5309 
5310 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5311 		printk(KERN_ERR "ERROR: domain->span does not contain "
5312 				"CPU%d\n", cpu);
5313 	}
5314 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5315 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5316 				" CPU%d\n", cpu);
5317 	}
5318 
5319 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5320 	do {
5321 		if (!group) {
5322 			printk("\n");
5323 			printk(KERN_ERR "ERROR: group is NULL\n");
5324 			break;
5325 		}
5326 
5327 		/*
5328 		 * Even though we initialize ->power to something semi-sane,
5329 		 * we leave power_orig unset. This allows us to detect if
5330 		 * domain iteration is still funny without causing /0 traps.
5331 		 */
5332 		if (!group->sgp->power_orig) {
5333 			printk(KERN_CONT "\n");
5334 			printk(KERN_ERR "ERROR: domain->cpu_power not "
5335 					"set\n");
5336 			break;
5337 		}
5338 
5339 		if (!cpumask_weight(sched_group_cpus(group))) {
5340 			printk(KERN_CONT "\n");
5341 			printk(KERN_ERR "ERROR: empty group\n");
5342 			break;
5343 		}
5344 
5345 		if (!(sd->flags & SD_OVERLAP) &&
5346 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5347 			printk(KERN_CONT "\n");
5348 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5349 			break;
5350 		}
5351 
5352 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5353 
5354 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5355 
5356 		printk(KERN_CONT " %s", str);
5357 		if (group->sgp->power != SCHED_POWER_SCALE) {
5358 			printk(KERN_CONT " (cpu_power = %d)",
5359 				group->sgp->power);
5360 		}
5361 
5362 		group = group->next;
5363 	} while (group != sd->groups);
5364 	printk(KERN_CONT "\n");
5365 
5366 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5367 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5368 
5369 	if (sd->parent &&
5370 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5371 		printk(KERN_ERR "ERROR: parent span is not a superset "
5372 			"of domain->span\n");
5373 	return 0;
5374 }
5375 
5376 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5377 {
5378 	int level = 0;
5379 
5380 	if (!sched_debug_enabled)
5381 		return;
5382 
5383 	if (!sd) {
5384 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5385 		return;
5386 	}
5387 
5388 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5389 
5390 	for (;;) {
5391 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5392 			break;
5393 		level++;
5394 		sd = sd->parent;
5395 		if (!sd)
5396 			break;
5397 	}
5398 }
5399 #else /* !CONFIG_SCHED_DEBUG */
5400 # define sched_domain_debug(sd, cpu) do { } while (0)
5401 static inline bool sched_debug(void)
5402 {
5403 	return false;
5404 }
5405 #endif /* CONFIG_SCHED_DEBUG */
5406 
5407 static int sd_degenerate(struct sched_domain *sd)
5408 {
5409 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5410 		return 1;
5411 
5412 	/* Following flags need at least 2 groups */
5413 	if (sd->flags & (SD_LOAD_BALANCE |
5414 			 SD_BALANCE_NEWIDLE |
5415 			 SD_BALANCE_FORK |
5416 			 SD_BALANCE_EXEC |
5417 			 SD_SHARE_CPUPOWER |
5418 			 SD_SHARE_PKG_RESOURCES)) {
5419 		if (sd->groups != sd->groups->next)
5420 			return 0;
5421 	}
5422 
5423 	/* Following flags don't use groups */
5424 	if (sd->flags & (SD_WAKE_AFFINE))
5425 		return 0;
5426 
5427 	return 1;
5428 }
5429 
5430 static int
5431 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5432 {
5433 	unsigned long cflags = sd->flags, pflags = parent->flags;
5434 
5435 	if (sd_degenerate(parent))
5436 		return 1;
5437 
5438 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5439 		return 0;
5440 
5441 	/* Flags needing groups don't count if only 1 group in parent */
5442 	if (parent->groups == parent->groups->next) {
5443 		pflags &= ~(SD_LOAD_BALANCE |
5444 				SD_BALANCE_NEWIDLE |
5445 				SD_BALANCE_FORK |
5446 				SD_BALANCE_EXEC |
5447 				SD_SHARE_CPUPOWER |
5448 				SD_SHARE_PKG_RESOURCES);
5449 		if (nr_node_ids == 1)
5450 			pflags &= ~SD_SERIALIZE;
5451 	}
5452 	if (~cflags & pflags)
5453 		return 0;
5454 
5455 	return 1;
5456 }
5457 
5458 static void free_rootdomain(struct rcu_head *rcu)
5459 {
5460 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5461 
5462 	cpupri_cleanup(&rd->cpupri);
5463 	free_cpumask_var(rd->rto_mask);
5464 	free_cpumask_var(rd->online);
5465 	free_cpumask_var(rd->span);
5466 	kfree(rd);
5467 }
5468 
5469 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5470 {
5471 	struct root_domain *old_rd = NULL;
5472 	unsigned long flags;
5473 
5474 	raw_spin_lock_irqsave(&rq->lock, flags);
5475 
5476 	if (rq->rd) {
5477 		old_rd = rq->rd;
5478 
5479 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5480 			set_rq_offline(rq);
5481 
5482 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5483 
5484 		/*
5485 		 * If we dont want to free the old_rt yet then
5486 		 * set old_rd to NULL to skip the freeing later
5487 		 * in this function:
5488 		 */
5489 		if (!atomic_dec_and_test(&old_rd->refcount))
5490 			old_rd = NULL;
5491 	}
5492 
5493 	atomic_inc(&rd->refcount);
5494 	rq->rd = rd;
5495 
5496 	cpumask_set_cpu(rq->cpu, rd->span);
5497 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5498 		set_rq_online(rq);
5499 
5500 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5501 
5502 	if (old_rd)
5503 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5504 }
5505 
5506 static int init_rootdomain(struct root_domain *rd)
5507 {
5508 	memset(rd, 0, sizeof(*rd));
5509 
5510 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5511 		goto out;
5512 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5513 		goto free_span;
5514 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5515 		goto free_online;
5516 
5517 	if (cpupri_init(&rd->cpupri) != 0)
5518 		goto free_rto_mask;
5519 	return 0;
5520 
5521 free_rto_mask:
5522 	free_cpumask_var(rd->rto_mask);
5523 free_online:
5524 	free_cpumask_var(rd->online);
5525 free_span:
5526 	free_cpumask_var(rd->span);
5527 out:
5528 	return -ENOMEM;
5529 }
5530 
5531 /*
5532  * By default the system creates a single root-domain with all cpus as
5533  * members (mimicking the global state we have today).
5534  */
5535 struct root_domain def_root_domain;
5536 
5537 static void init_defrootdomain(void)
5538 {
5539 	init_rootdomain(&def_root_domain);
5540 
5541 	atomic_set(&def_root_domain.refcount, 1);
5542 }
5543 
5544 static struct root_domain *alloc_rootdomain(void)
5545 {
5546 	struct root_domain *rd;
5547 
5548 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5549 	if (!rd)
5550 		return NULL;
5551 
5552 	if (init_rootdomain(rd) != 0) {
5553 		kfree(rd);
5554 		return NULL;
5555 	}
5556 
5557 	return rd;
5558 }
5559 
5560 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5561 {
5562 	struct sched_group *tmp, *first;
5563 
5564 	if (!sg)
5565 		return;
5566 
5567 	first = sg;
5568 	do {
5569 		tmp = sg->next;
5570 
5571 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5572 			kfree(sg->sgp);
5573 
5574 		kfree(sg);
5575 		sg = tmp;
5576 	} while (sg != first);
5577 }
5578 
5579 static void free_sched_domain(struct rcu_head *rcu)
5580 {
5581 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5582 
5583 	/*
5584 	 * If its an overlapping domain it has private groups, iterate and
5585 	 * nuke them all.
5586 	 */
5587 	if (sd->flags & SD_OVERLAP) {
5588 		free_sched_groups(sd->groups, 1);
5589 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5590 		kfree(sd->groups->sgp);
5591 		kfree(sd->groups);
5592 	}
5593 	kfree(sd);
5594 }
5595 
5596 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5597 {
5598 	call_rcu(&sd->rcu, free_sched_domain);
5599 }
5600 
5601 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5602 {
5603 	for (; sd; sd = sd->parent)
5604 		destroy_sched_domain(sd, cpu);
5605 }
5606 
5607 /*
5608  * Keep a special pointer to the highest sched_domain that has
5609  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5610  * allows us to avoid some pointer chasing select_idle_sibling().
5611  *
5612  * Also keep a unique ID per domain (we use the first cpu number in
5613  * the cpumask of the domain), this allows us to quickly tell if
5614  * two cpus are in the same cache domain, see cpus_share_cache().
5615  */
5616 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5617 DEFINE_PER_CPU(int, sd_llc_id);
5618 
5619 static void update_top_cache_domain(int cpu)
5620 {
5621 	struct sched_domain *sd;
5622 	int id = cpu;
5623 
5624 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5625 	if (sd)
5626 		id = cpumask_first(sched_domain_span(sd));
5627 
5628 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5629 	per_cpu(sd_llc_id, cpu) = id;
5630 }
5631 
5632 /*
5633  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5634  * hold the hotplug lock.
5635  */
5636 static void
5637 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5638 {
5639 	struct rq *rq = cpu_rq(cpu);
5640 	struct sched_domain *tmp;
5641 
5642 	/* Remove the sched domains which do not contribute to scheduling. */
5643 	for (tmp = sd; tmp; ) {
5644 		struct sched_domain *parent = tmp->parent;
5645 		if (!parent)
5646 			break;
5647 
5648 		if (sd_parent_degenerate(tmp, parent)) {
5649 			tmp->parent = parent->parent;
5650 			if (parent->parent)
5651 				parent->parent->child = tmp;
5652 			destroy_sched_domain(parent, cpu);
5653 		} else
5654 			tmp = tmp->parent;
5655 	}
5656 
5657 	if (sd && sd_degenerate(sd)) {
5658 		tmp = sd;
5659 		sd = sd->parent;
5660 		destroy_sched_domain(tmp, cpu);
5661 		if (sd)
5662 			sd->child = NULL;
5663 	}
5664 
5665 	sched_domain_debug(sd, cpu);
5666 
5667 	rq_attach_root(rq, rd);
5668 	tmp = rq->sd;
5669 	rcu_assign_pointer(rq->sd, sd);
5670 	destroy_sched_domains(tmp, cpu);
5671 
5672 	update_top_cache_domain(cpu);
5673 }
5674 
5675 /* cpus with isolated domains */
5676 static cpumask_var_t cpu_isolated_map;
5677 
5678 /* Setup the mask of cpus configured for isolated domains */
5679 static int __init isolated_cpu_setup(char *str)
5680 {
5681 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5682 	cpulist_parse(str, cpu_isolated_map);
5683 	return 1;
5684 }
5685 
5686 __setup("isolcpus=", isolated_cpu_setup);
5687 
5688 static const struct cpumask *cpu_cpu_mask(int cpu)
5689 {
5690 	return cpumask_of_node(cpu_to_node(cpu));
5691 }
5692 
5693 struct sd_data {
5694 	struct sched_domain **__percpu sd;
5695 	struct sched_group **__percpu sg;
5696 	struct sched_group_power **__percpu sgp;
5697 };
5698 
5699 struct s_data {
5700 	struct sched_domain ** __percpu sd;
5701 	struct root_domain	*rd;
5702 };
5703 
5704 enum s_alloc {
5705 	sa_rootdomain,
5706 	sa_sd,
5707 	sa_sd_storage,
5708 	sa_none,
5709 };
5710 
5711 struct sched_domain_topology_level;
5712 
5713 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5714 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5715 
5716 #define SDTL_OVERLAP	0x01
5717 
5718 struct sched_domain_topology_level {
5719 	sched_domain_init_f init;
5720 	sched_domain_mask_f mask;
5721 	int		    flags;
5722 	int		    numa_level;
5723 	struct sd_data      data;
5724 };
5725 
5726 /*
5727  * Build an iteration mask that can exclude certain CPUs from the upwards
5728  * domain traversal.
5729  *
5730  * Asymmetric node setups can result in situations where the domain tree is of
5731  * unequal depth, make sure to skip domains that already cover the entire
5732  * range.
5733  *
5734  * In that case build_sched_domains() will have terminated the iteration early
5735  * and our sibling sd spans will be empty. Domains should always include the
5736  * cpu they're built on, so check that.
5737  *
5738  */
5739 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5740 {
5741 	const struct cpumask *span = sched_domain_span(sd);
5742 	struct sd_data *sdd = sd->private;
5743 	struct sched_domain *sibling;
5744 	int i;
5745 
5746 	for_each_cpu(i, span) {
5747 		sibling = *per_cpu_ptr(sdd->sd, i);
5748 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5749 			continue;
5750 
5751 		cpumask_set_cpu(i, sched_group_mask(sg));
5752 	}
5753 }
5754 
5755 /*
5756  * Return the canonical balance cpu for this group, this is the first cpu
5757  * of this group that's also in the iteration mask.
5758  */
5759 int group_balance_cpu(struct sched_group *sg)
5760 {
5761 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5762 }
5763 
5764 static int
5765 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5766 {
5767 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5768 	const struct cpumask *span = sched_domain_span(sd);
5769 	struct cpumask *covered = sched_domains_tmpmask;
5770 	struct sd_data *sdd = sd->private;
5771 	struct sched_domain *child;
5772 	int i;
5773 
5774 	cpumask_clear(covered);
5775 
5776 	for_each_cpu(i, span) {
5777 		struct cpumask *sg_span;
5778 
5779 		if (cpumask_test_cpu(i, covered))
5780 			continue;
5781 
5782 		child = *per_cpu_ptr(sdd->sd, i);
5783 
5784 		/* See the comment near build_group_mask(). */
5785 		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5786 			continue;
5787 
5788 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5789 				GFP_KERNEL, cpu_to_node(cpu));
5790 
5791 		if (!sg)
5792 			goto fail;
5793 
5794 		sg_span = sched_group_cpus(sg);
5795 		if (child->child) {
5796 			child = child->child;
5797 			cpumask_copy(sg_span, sched_domain_span(child));
5798 		} else
5799 			cpumask_set_cpu(i, sg_span);
5800 
5801 		cpumask_or(covered, covered, sg_span);
5802 
5803 		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5804 		if (atomic_inc_return(&sg->sgp->ref) == 1)
5805 			build_group_mask(sd, sg);
5806 
5807 		/*
5808 		 * Initialize sgp->power such that even if we mess up the
5809 		 * domains and no possible iteration will get us here, we won't
5810 		 * die on a /0 trap.
5811 		 */
5812 		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5813 
5814 		/*
5815 		 * Make sure the first group of this domain contains the
5816 		 * canonical balance cpu. Otherwise the sched_domain iteration
5817 		 * breaks. See update_sg_lb_stats().
5818 		 */
5819 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5820 		    group_balance_cpu(sg) == cpu)
5821 			groups = sg;
5822 
5823 		if (!first)
5824 			first = sg;
5825 		if (last)
5826 			last->next = sg;
5827 		last = sg;
5828 		last->next = first;
5829 	}
5830 	sd->groups = groups;
5831 
5832 	return 0;
5833 
5834 fail:
5835 	free_sched_groups(first, 0);
5836 
5837 	return -ENOMEM;
5838 }
5839 
5840 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5841 {
5842 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5843 	struct sched_domain *child = sd->child;
5844 
5845 	if (child)
5846 		cpu = cpumask_first(sched_domain_span(child));
5847 
5848 	if (sg) {
5849 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5850 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5851 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5852 	}
5853 
5854 	return cpu;
5855 }
5856 
5857 /*
5858  * build_sched_groups will build a circular linked list of the groups
5859  * covered by the given span, and will set each group's ->cpumask correctly,
5860  * and ->cpu_power to 0.
5861  *
5862  * Assumes the sched_domain tree is fully constructed
5863  */
5864 static int
5865 build_sched_groups(struct sched_domain *sd, int cpu)
5866 {
5867 	struct sched_group *first = NULL, *last = NULL;
5868 	struct sd_data *sdd = sd->private;
5869 	const struct cpumask *span = sched_domain_span(sd);
5870 	struct cpumask *covered;
5871 	int i;
5872 
5873 	get_group(cpu, sdd, &sd->groups);
5874 	atomic_inc(&sd->groups->ref);
5875 
5876 	if (cpu != cpumask_first(sched_domain_span(sd)))
5877 		return 0;
5878 
5879 	lockdep_assert_held(&sched_domains_mutex);
5880 	covered = sched_domains_tmpmask;
5881 
5882 	cpumask_clear(covered);
5883 
5884 	for_each_cpu(i, span) {
5885 		struct sched_group *sg;
5886 		int group = get_group(i, sdd, &sg);
5887 		int j;
5888 
5889 		if (cpumask_test_cpu(i, covered))
5890 			continue;
5891 
5892 		cpumask_clear(sched_group_cpus(sg));
5893 		sg->sgp->power = 0;
5894 		cpumask_setall(sched_group_mask(sg));
5895 
5896 		for_each_cpu(j, span) {
5897 			if (get_group(j, sdd, NULL) != group)
5898 				continue;
5899 
5900 			cpumask_set_cpu(j, covered);
5901 			cpumask_set_cpu(j, sched_group_cpus(sg));
5902 		}
5903 
5904 		if (!first)
5905 			first = sg;
5906 		if (last)
5907 			last->next = sg;
5908 		last = sg;
5909 	}
5910 	last->next = first;
5911 
5912 	return 0;
5913 }
5914 
5915 /*
5916  * Initialize sched groups cpu_power.
5917  *
5918  * cpu_power indicates the capacity of sched group, which is used while
5919  * distributing the load between different sched groups in a sched domain.
5920  * Typically cpu_power for all the groups in a sched domain will be same unless
5921  * there are asymmetries in the topology. If there are asymmetries, group
5922  * having more cpu_power will pickup more load compared to the group having
5923  * less cpu_power.
5924  */
5925 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5926 {
5927 	struct sched_group *sg = sd->groups;
5928 
5929 	WARN_ON(!sd || !sg);
5930 
5931 	do {
5932 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5933 		sg = sg->next;
5934 	} while (sg != sd->groups);
5935 
5936 	if (cpu != group_balance_cpu(sg))
5937 		return;
5938 
5939 	update_group_power(sd, cpu);
5940 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5941 }
5942 
5943 int __weak arch_sd_sibling_asym_packing(void)
5944 {
5945        return 0*SD_ASYM_PACKING;
5946 }
5947 
5948 /*
5949  * Initializers for schedule domains
5950  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5951  */
5952 
5953 #ifdef CONFIG_SCHED_DEBUG
5954 # define SD_INIT_NAME(sd, type)		sd->name = #type
5955 #else
5956 # define SD_INIT_NAME(sd, type)		do { } while (0)
5957 #endif
5958 
5959 #define SD_INIT_FUNC(type)						\
5960 static noinline struct sched_domain *					\
5961 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5962 {									\
5963 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5964 	*sd = SD_##type##_INIT;						\
5965 	SD_INIT_NAME(sd, type);						\
5966 	sd->private = &tl->data;					\
5967 	return sd;							\
5968 }
5969 
5970 SD_INIT_FUNC(CPU)
5971 #ifdef CONFIG_SCHED_SMT
5972  SD_INIT_FUNC(SIBLING)
5973 #endif
5974 #ifdef CONFIG_SCHED_MC
5975  SD_INIT_FUNC(MC)
5976 #endif
5977 #ifdef CONFIG_SCHED_BOOK
5978  SD_INIT_FUNC(BOOK)
5979 #endif
5980 
5981 static int default_relax_domain_level = -1;
5982 int sched_domain_level_max;
5983 
5984 static int __init setup_relax_domain_level(char *str)
5985 {
5986 	if (kstrtoint(str, 0, &default_relax_domain_level))
5987 		pr_warn("Unable to set relax_domain_level\n");
5988 
5989 	return 1;
5990 }
5991 __setup("relax_domain_level=", setup_relax_domain_level);
5992 
5993 static void set_domain_attribute(struct sched_domain *sd,
5994 				 struct sched_domain_attr *attr)
5995 {
5996 	int request;
5997 
5998 	if (!attr || attr->relax_domain_level < 0) {
5999 		if (default_relax_domain_level < 0)
6000 			return;
6001 		else
6002 			request = default_relax_domain_level;
6003 	} else
6004 		request = attr->relax_domain_level;
6005 	if (request < sd->level) {
6006 		/* turn off idle balance on this domain */
6007 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6008 	} else {
6009 		/* turn on idle balance on this domain */
6010 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6011 	}
6012 }
6013 
6014 static void __sdt_free(const struct cpumask *cpu_map);
6015 static int __sdt_alloc(const struct cpumask *cpu_map);
6016 
6017 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6018 				 const struct cpumask *cpu_map)
6019 {
6020 	switch (what) {
6021 	case sa_rootdomain:
6022 		if (!atomic_read(&d->rd->refcount))
6023 			free_rootdomain(&d->rd->rcu); /* fall through */
6024 	case sa_sd:
6025 		free_percpu(d->sd); /* fall through */
6026 	case sa_sd_storage:
6027 		__sdt_free(cpu_map); /* fall through */
6028 	case sa_none:
6029 		break;
6030 	}
6031 }
6032 
6033 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6034 						   const struct cpumask *cpu_map)
6035 {
6036 	memset(d, 0, sizeof(*d));
6037 
6038 	if (__sdt_alloc(cpu_map))
6039 		return sa_sd_storage;
6040 	d->sd = alloc_percpu(struct sched_domain *);
6041 	if (!d->sd)
6042 		return sa_sd_storage;
6043 	d->rd = alloc_rootdomain();
6044 	if (!d->rd)
6045 		return sa_sd;
6046 	return sa_rootdomain;
6047 }
6048 
6049 /*
6050  * NULL the sd_data elements we've used to build the sched_domain and
6051  * sched_group structure so that the subsequent __free_domain_allocs()
6052  * will not free the data we're using.
6053  */
6054 static void claim_allocations(int cpu, struct sched_domain *sd)
6055 {
6056 	struct sd_data *sdd = sd->private;
6057 
6058 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6059 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6060 
6061 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6062 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6063 
6064 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6065 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6066 }
6067 
6068 #ifdef CONFIG_SCHED_SMT
6069 static const struct cpumask *cpu_smt_mask(int cpu)
6070 {
6071 	return topology_thread_cpumask(cpu);
6072 }
6073 #endif
6074 
6075 /*
6076  * Topology list, bottom-up.
6077  */
6078 static struct sched_domain_topology_level default_topology[] = {
6079 #ifdef CONFIG_SCHED_SMT
6080 	{ sd_init_SIBLING, cpu_smt_mask, },
6081 #endif
6082 #ifdef CONFIG_SCHED_MC
6083 	{ sd_init_MC, cpu_coregroup_mask, },
6084 #endif
6085 #ifdef CONFIG_SCHED_BOOK
6086 	{ sd_init_BOOK, cpu_book_mask, },
6087 #endif
6088 	{ sd_init_CPU, cpu_cpu_mask, },
6089 	{ NULL, },
6090 };
6091 
6092 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6093 
6094 #ifdef CONFIG_NUMA
6095 
6096 static int sched_domains_numa_levels;
6097 static int *sched_domains_numa_distance;
6098 static struct cpumask ***sched_domains_numa_masks;
6099 static int sched_domains_curr_level;
6100 
6101 static inline int sd_local_flags(int level)
6102 {
6103 	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6104 		return 0;
6105 
6106 	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6107 }
6108 
6109 static struct sched_domain *
6110 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6111 {
6112 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6113 	int level = tl->numa_level;
6114 	int sd_weight = cpumask_weight(
6115 			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6116 
6117 	*sd = (struct sched_domain){
6118 		.min_interval		= sd_weight,
6119 		.max_interval		= 2*sd_weight,
6120 		.busy_factor		= 32,
6121 		.imbalance_pct		= 125,
6122 		.cache_nice_tries	= 2,
6123 		.busy_idx		= 3,
6124 		.idle_idx		= 2,
6125 		.newidle_idx		= 0,
6126 		.wake_idx		= 0,
6127 		.forkexec_idx		= 0,
6128 
6129 		.flags			= 1*SD_LOAD_BALANCE
6130 					| 1*SD_BALANCE_NEWIDLE
6131 					| 0*SD_BALANCE_EXEC
6132 					| 0*SD_BALANCE_FORK
6133 					| 0*SD_BALANCE_WAKE
6134 					| 0*SD_WAKE_AFFINE
6135 					| 0*SD_SHARE_CPUPOWER
6136 					| 0*SD_SHARE_PKG_RESOURCES
6137 					| 1*SD_SERIALIZE
6138 					| 0*SD_PREFER_SIBLING
6139 					| sd_local_flags(level)
6140 					,
6141 		.last_balance		= jiffies,
6142 		.balance_interval	= sd_weight,
6143 	};
6144 	SD_INIT_NAME(sd, NUMA);
6145 	sd->private = &tl->data;
6146 
6147 	/*
6148 	 * Ugly hack to pass state to sd_numa_mask()...
6149 	 */
6150 	sched_domains_curr_level = tl->numa_level;
6151 
6152 	return sd;
6153 }
6154 
6155 static const struct cpumask *sd_numa_mask(int cpu)
6156 {
6157 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6158 }
6159 
6160 static void sched_numa_warn(const char *str)
6161 {
6162 	static int done = false;
6163 	int i,j;
6164 
6165 	if (done)
6166 		return;
6167 
6168 	done = true;
6169 
6170 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6171 
6172 	for (i = 0; i < nr_node_ids; i++) {
6173 		printk(KERN_WARNING "  ");
6174 		for (j = 0; j < nr_node_ids; j++)
6175 			printk(KERN_CONT "%02d ", node_distance(i,j));
6176 		printk(KERN_CONT "\n");
6177 	}
6178 	printk(KERN_WARNING "\n");
6179 }
6180 
6181 static bool find_numa_distance(int distance)
6182 {
6183 	int i;
6184 
6185 	if (distance == node_distance(0, 0))
6186 		return true;
6187 
6188 	for (i = 0; i < sched_domains_numa_levels; i++) {
6189 		if (sched_domains_numa_distance[i] == distance)
6190 			return true;
6191 	}
6192 
6193 	return false;
6194 }
6195 
6196 static void sched_init_numa(void)
6197 {
6198 	int next_distance, curr_distance = node_distance(0, 0);
6199 	struct sched_domain_topology_level *tl;
6200 	int level = 0;
6201 	int i, j, k;
6202 
6203 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6204 	if (!sched_domains_numa_distance)
6205 		return;
6206 
6207 	/*
6208 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6209 	 * unique distances in the node_distance() table.
6210 	 *
6211 	 * Assumes node_distance(0,j) includes all distances in
6212 	 * node_distance(i,j) in order to avoid cubic time.
6213 	 */
6214 	next_distance = curr_distance;
6215 	for (i = 0; i < nr_node_ids; i++) {
6216 		for (j = 0; j < nr_node_ids; j++) {
6217 			for (k = 0; k < nr_node_ids; k++) {
6218 				int distance = node_distance(i, k);
6219 
6220 				if (distance > curr_distance &&
6221 				    (distance < next_distance ||
6222 				     next_distance == curr_distance))
6223 					next_distance = distance;
6224 
6225 				/*
6226 				 * While not a strong assumption it would be nice to know
6227 				 * about cases where if node A is connected to B, B is not
6228 				 * equally connected to A.
6229 				 */
6230 				if (sched_debug() && node_distance(k, i) != distance)
6231 					sched_numa_warn("Node-distance not symmetric");
6232 
6233 				if (sched_debug() && i && !find_numa_distance(distance))
6234 					sched_numa_warn("Node-0 not representative");
6235 			}
6236 			if (next_distance != curr_distance) {
6237 				sched_domains_numa_distance[level++] = next_distance;
6238 				sched_domains_numa_levels = level;
6239 				curr_distance = next_distance;
6240 			} else break;
6241 		}
6242 
6243 		/*
6244 		 * In case of sched_debug() we verify the above assumption.
6245 		 */
6246 		if (!sched_debug())
6247 			break;
6248 	}
6249 	/*
6250 	 * 'level' contains the number of unique distances, excluding the
6251 	 * identity distance node_distance(i,i).
6252 	 *
6253 	 * The sched_domains_nume_distance[] array includes the actual distance
6254 	 * numbers.
6255 	 */
6256 
6257 	/*
6258 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6259 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6260 	 * the array will contain less then 'level' members. This could be
6261 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6262 	 * in other functions.
6263 	 *
6264 	 * We reset it to 'level' at the end of this function.
6265 	 */
6266 	sched_domains_numa_levels = 0;
6267 
6268 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6269 	if (!sched_domains_numa_masks)
6270 		return;
6271 
6272 	/*
6273 	 * Now for each level, construct a mask per node which contains all
6274 	 * cpus of nodes that are that many hops away from us.
6275 	 */
6276 	for (i = 0; i < level; i++) {
6277 		sched_domains_numa_masks[i] =
6278 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6279 		if (!sched_domains_numa_masks[i])
6280 			return;
6281 
6282 		for (j = 0; j < nr_node_ids; j++) {
6283 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6284 			if (!mask)
6285 				return;
6286 
6287 			sched_domains_numa_masks[i][j] = mask;
6288 
6289 			for (k = 0; k < nr_node_ids; k++) {
6290 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6291 					continue;
6292 
6293 				cpumask_or(mask, mask, cpumask_of_node(k));
6294 			}
6295 		}
6296 	}
6297 
6298 	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6299 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6300 	if (!tl)
6301 		return;
6302 
6303 	/*
6304 	 * Copy the default topology bits..
6305 	 */
6306 	for (i = 0; default_topology[i].init; i++)
6307 		tl[i] = default_topology[i];
6308 
6309 	/*
6310 	 * .. and append 'j' levels of NUMA goodness.
6311 	 */
6312 	for (j = 0; j < level; i++, j++) {
6313 		tl[i] = (struct sched_domain_topology_level){
6314 			.init = sd_numa_init,
6315 			.mask = sd_numa_mask,
6316 			.flags = SDTL_OVERLAP,
6317 			.numa_level = j,
6318 		};
6319 	}
6320 
6321 	sched_domain_topology = tl;
6322 
6323 	sched_domains_numa_levels = level;
6324 }
6325 
6326 static void sched_domains_numa_masks_set(int cpu)
6327 {
6328 	int i, j;
6329 	int node = cpu_to_node(cpu);
6330 
6331 	for (i = 0; i < sched_domains_numa_levels; i++) {
6332 		for (j = 0; j < nr_node_ids; j++) {
6333 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6334 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6335 		}
6336 	}
6337 }
6338 
6339 static void sched_domains_numa_masks_clear(int cpu)
6340 {
6341 	int i, j;
6342 	for (i = 0; i < sched_domains_numa_levels; i++) {
6343 		for (j = 0; j < nr_node_ids; j++)
6344 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6345 	}
6346 }
6347 
6348 /*
6349  * Update sched_domains_numa_masks[level][node] array when new cpus
6350  * are onlined.
6351  */
6352 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6353 					   unsigned long action,
6354 					   void *hcpu)
6355 {
6356 	int cpu = (long)hcpu;
6357 
6358 	switch (action & ~CPU_TASKS_FROZEN) {
6359 	case CPU_ONLINE:
6360 		sched_domains_numa_masks_set(cpu);
6361 		break;
6362 
6363 	case CPU_DEAD:
6364 		sched_domains_numa_masks_clear(cpu);
6365 		break;
6366 
6367 	default:
6368 		return NOTIFY_DONE;
6369 	}
6370 
6371 	return NOTIFY_OK;
6372 }
6373 #else
6374 static inline void sched_init_numa(void)
6375 {
6376 }
6377 
6378 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6379 					   unsigned long action,
6380 					   void *hcpu)
6381 {
6382 	return 0;
6383 }
6384 #endif /* CONFIG_NUMA */
6385 
6386 static int __sdt_alloc(const struct cpumask *cpu_map)
6387 {
6388 	struct sched_domain_topology_level *tl;
6389 	int j;
6390 
6391 	for (tl = sched_domain_topology; tl->init; tl++) {
6392 		struct sd_data *sdd = &tl->data;
6393 
6394 		sdd->sd = alloc_percpu(struct sched_domain *);
6395 		if (!sdd->sd)
6396 			return -ENOMEM;
6397 
6398 		sdd->sg = alloc_percpu(struct sched_group *);
6399 		if (!sdd->sg)
6400 			return -ENOMEM;
6401 
6402 		sdd->sgp = alloc_percpu(struct sched_group_power *);
6403 		if (!sdd->sgp)
6404 			return -ENOMEM;
6405 
6406 		for_each_cpu(j, cpu_map) {
6407 			struct sched_domain *sd;
6408 			struct sched_group *sg;
6409 			struct sched_group_power *sgp;
6410 
6411 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6412 					GFP_KERNEL, cpu_to_node(j));
6413 			if (!sd)
6414 				return -ENOMEM;
6415 
6416 			*per_cpu_ptr(sdd->sd, j) = sd;
6417 
6418 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6419 					GFP_KERNEL, cpu_to_node(j));
6420 			if (!sg)
6421 				return -ENOMEM;
6422 
6423 			sg->next = sg;
6424 
6425 			*per_cpu_ptr(sdd->sg, j) = sg;
6426 
6427 			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6428 					GFP_KERNEL, cpu_to_node(j));
6429 			if (!sgp)
6430 				return -ENOMEM;
6431 
6432 			*per_cpu_ptr(sdd->sgp, j) = sgp;
6433 		}
6434 	}
6435 
6436 	return 0;
6437 }
6438 
6439 static void __sdt_free(const struct cpumask *cpu_map)
6440 {
6441 	struct sched_domain_topology_level *tl;
6442 	int j;
6443 
6444 	for (tl = sched_domain_topology; tl->init; tl++) {
6445 		struct sd_data *sdd = &tl->data;
6446 
6447 		for_each_cpu(j, cpu_map) {
6448 			struct sched_domain *sd;
6449 
6450 			if (sdd->sd) {
6451 				sd = *per_cpu_ptr(sdd->sd, j);
6452 				if (sd && (sd->flags & SD_OVERLAP))
6453 					free_sched_groups(sd->groups, 0);
6454 				kfree(*per_cpu_ptr(sdd->sd, j));
6455 			}
6456 
6457 			if (sdd->sg)
6458 				kfree(*per_cpu_ptr(sdd->sg, j));
6459 			if (sdd->sgp)
6460 				kfree(*per_cpu_ptr(sdd->sgp, j));
6461 		}
6462 		free_percpu(sdd->sd);
6463 		sdd->sd = NULL;
6464 		free_percpu(sdd->sg);
6465 		sdd->sg = NULL;
6466 		free_percpu(sdd->sgp);
6467 		sdd->sgp = NULL;
6468 	}
6469 }
6470 
6471 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6472 		struct s_data *d, const struct cpumask *cpu_map,
6473 		struct sched_domain_attr *attr, struct sched_domain *child,
6474 		int cpu)
6475 {
6476 	struct sched_domain *sd = tl->init(tl, cpu);
6477 	if (!sd)
6478 		return child;
6479 
6480 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6481 	if (child) {
6482 		sd->level = child->level + 1;
6483 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6484 		child->parent = sd;
6485 	}
6486 	sd->child = child;
6487 	set_domain_attribute(sd, attr);
6488 
6489 	return sd;
6490 }
6491 
6492 /*
6493  * Build sched domains for a given set of cpus and attach the sched domains
6494  * to the individual cpus
6495  */
6496 static int build_sched_domains(const struct cpumask *cpu_map,
6497 			       struct sched_domain_attr *attr)
6498 {
6499 	enum s_alloc alloc_state = sa_none;
6500 	struct sched_domain *sd;
6501 	struct s_data d;
6502 	int i, ret = -ENOMEM;
6503 
6504 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6505 	if (alloc_state != sa_rootdomain)
6506 		goto error;
6507 
6508 	/* Set up domains for cpus specified by the cpu_map. */
6509 	for_each_cpu(i, cpu_map) {
6510 		struct sched_domain_topology_level *tl;
6511 
6512 		sd = NULL;
6513 		for (tl = sched_domain_topology; tl->init; tl++) {
6514 			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6515 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6516 				sd->flags |= SD_OVERLAP;
6517 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6518 				break;
6519 		}
6520 
6521 		while (sd->child)
6522 			sd = sd->child;
6523 
6524 		*per_cpu_ptr(d.sd, i) = sd;
6525 	}
6526 
6527 	/* Build the groups for the domains */
6528 	for_each_cpu(i, cpu_map) {
6529 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6530 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6531 			if (sd->flags & SD_OVERLAP) {
6532 				if (build_overlap_sched_groups(sd, i))
6533 					goto error;
6534 			} else {
6535 				if (build_sched_groups(sd, i))
6536 					goto error;
6537 			}
6538 		}
6539 	}
6540 
6541 	/* Calculate CPU power for physical packages and nodes */
6542 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6543 		if (!cpumask_test_cpu(i, cpu_map))
6544 			continue;
6545 
6546 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6547 			claim_allocations(i, sd);
6548 			init_sched_groups_power(i, sd);
6549 		}
6550 	}
6551 
6552 	/* Attach the domains */
6553 	rcu_read_lock();
6554 	for_each_cpu(i, cpu_map) {
6555 		sd = *per_cpu_ptr(d.sd, i);
6556 		cpu_attach_domain(sd, d.rd, i);
6557 	}
6558 	rcu_read_unlock();
6559 
6560 	ret = 0;
6561 error:
6562 	__free_domain_allocs(&d, alloc_state, cpu_map);
6563 	return ret;
6564 }
6565 
6566 static cpumask_var_t *doms_cur;	/* current sched domains */
6567 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6568 static struct sched_domain_attr *dattr_cur;
6569 				/* attribues of custom domains in 'doms_cur' */
6570 
6571 /*
6572  * Special case: If a kmalloc of a doms_cur partition (array of
6573  * cpumask) fails, then fallback to a single sched domain,
6574  * as determined by the single cpumask fallback_doms.
6575  */
6576 static cpumask_var_t fallback_doms;
6577 
6578 /*
6579  * arch_update_cpu_topology lets virtualized architectures update the
6580  * cpu core maps. It is supposed to return 1 if the topology changed
6581  * or 0 if it stayed the same.
6582  */
6583 int __attribute__((weak)) arch_update_cpu_topology(void)
6584 {
6585 	return 0;
6586 }
6587 
6588 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6589 {
6590 	int i;
6591 	cpumask_var_t *doms;
6592 
6593 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6594 	if (!doms)
6595 		return NULL;
6596 	for (i = 0; i < ndoms; i++) {
6597 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6598 			free_sched_domains(doms, i);
6599 			return NULL;
6600 		}
6601 	}
6602 	return doms;
6603 }
6604 
6605 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6606 {
6607 	unsigned int i;
6608 	for (i = 0; i < ndoms; i++)
6609 		free_cpumask_var(doms[i]);
6610 	kfree(doms);
6611 }
6612 
6613 /*
6614  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6615  * For now this just excludes isolated cpus, but could be used to
6616  * exclude other special cases in the future.
6617  */
6618 static int init_sched_domains(const struct cpumask *cpu_map)
6619 {
6620 	int err;
6621 
6622 	arch_update_cpu_topology();
6623 	ndoms_cur = 1;
6624 	doms_cur = alloc_sched_domains(ndoms_cur);
6625 	if (!doms_cur)
6626 		doms_cur = &fallback_doms;
6627 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6628 	err = build_sched_domains(doms_cur[0], NULL);
6629 	register_sched_domain_sysctl();
6630 
6631 	return err;
6632 }
6633 
6634 /*
6635  * Detach sched domains from a group of cpus specified in cpu_map
6636  * These cpus will now be attached to the NULL domain
6637  */
6638 static void detach_destroy_domains(const struct cpumask *cpu_map)
6639 {
6640 	int i;
6641 
6642 	rcu_read_lock();
6643 	for_each_cpu(i, cpu_map)
6644 		cpu_attach_domain(NULL, &def_root_domain, i);
6645 	rcu_read_unlock();
6646 }
6647 
6648 /* handle null as "default" */
6649 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6650 			struct sched_domain_attr *new, int idx_new)
6651 {
6652 	struct sched_domain_attr tmp;
6653 
6654 	/* fast path */
6655 	if (!new && !cur)
6656 		return 1;
6657 
6658 	tmp = SD_ATTR_INIT;
6659 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6660 			new ? (new + idx_new) : &tmp,
6661 			sizeof(struct sched_domain_attr));
6662 }
6663 
6664 /*
6665  * Partition sched domains as specified by the 'ndoms_new'
6666  * cpumasks in the array doms_new[] of cpumasks. This compares
6667  * doms_new[] to the current sched domain partitioning, doms_cur[].
6668  * It destroys each deleted domain and builds each new domain.
6669  *
6670  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6671  * The masks don't intersect (don't overlap.) We should setup one
6672  * sched domain for each mask. CPUs not in any of the cpumasks will
6673  * not be load balanced. If the same cpumask appears both in the
6674  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6675  * it as it is.
6676  *
6677  * The passed in 'doms_new' should be allocated using
6678  * alloc_sched_domains.  This routine takes ownership of it and will
6679  * free_sched_domains it when done with it. If the caller failed the
6680  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6681  * and partition_sched_domains() will fallback to the single partition
6682  * 'fallback_doms', it also forces the domains to be rebuilt.
6683  *
6684  * If doms_new == NULL it will be replaced with cpu_online_mask.
6685  * ndoms_new == 0 is a special case for destroying existing domains,
6686  * and it will not create the default domain.
6687  *
6688  * Call with hotplug lock held
6689  */
6690 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6691 			     struct sched_domain_attr *dattr_new)
6692 {
6693 	int i, j, n;
6694 	int new_topology;
6695 
6696 	mutex_lock(&sched_domains_mutex);
6697 
6698 	/* always unregister in case we don't destroy any domains */
6699 	unregister_sched_domain_sysctl();
6700 
6701 	/* Let architecture update cpu core mappings. */
6702 	new_topology = arch_update_cpu_topology();
6703 
6704 	n = doms_new ? ndoms_new : 0;
6705 
6706 	/* Destroy deleted domains */
6707 	for (i = 0; i < ndoms_cur; i++) {
6708 		for (j = 0; j < n && !new_topology; j++) {
6709 			if (cpumask_equal(doms_cur[i], doms_new[j])
6710 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6711 				goto match1;
6712 		}
6713 		/* no match - a current sched domain not in new doms_new[] */
6714 		detach_destroy_domains(doms_cur[i]);
6715 match1:
6716 		;
6717 	}
6718 
6719 	if (doms_new == NULL) {
6720 		ndoms_cur = 0;
6721 		doms_new = &fallback_doms;
6722 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6723 		WARN_ON_ONCE(dattr_new);
6724 	}
6725 
6726 	/* Build new domains */
6727 	for (i = 0; i < ndoms_new; i++) {
6728 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6729 			if (cpumask_equal(doms_new[i], doms_cur[j])
6730 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6731 				goto match2;
6732 		}
6733 		/* no match - add a new doms_new */
6734 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6735 match2:
6736 		;
6737 	}
6738 
6739 	/* Remember the new sched domains */
6740 	if (doms_cur != &fallback_doms)
6741 		free_sched_domains(doms_cur, ndoms_cur);
6742 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6743 	doms_cur = doms_new;
6744 	dattr_cur = dattr_new;
6745 	ndoms_cur = ndoms_new;
6746 
6747 	register_sched_domain_sysctl();
6748 
6749 	mutex_unlock(&sched_domains_mutex);
6750 }
6751 
6752 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6753 
6754 /*
6755  * Update cpusets according to cpu_active mask.  If cpusets are
6756  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6757  * around partition_sched_domains().
6758  *
6759  * If we come here as part of a suspend/resume, don't touch cpusets because we
6760  * want to restore it back to its original state upon resume anyway.
6761  */
6762 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6763 			     void *hcpu)
6764 {
6765 	switch (action) {
6766 	case CPU_ONLINE_FROZEN:
6767 	case CPU_DOWN_FAILED_FROZEN:
6768 
6769 		/*
6770 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6771 		 * resume sequence. As long as this is not the last online
6772 		 * operation in the resume sequence, just build a single sched
6773 		 * domain, ignoring cpusets.
6774 		 */
6775 		num_cpus_frozen--;
6776 		if (likely(num_cpus_frozen)) {
6777 			partition_sched_domains(1, NULL, NULL);
6778 			break;
6779 		}
6780 
6781 		/*
6782 		 * This is the last CPU online operation. So fall through and
6783 		 * restore the original sched domains by considering the
6784 		 * cpuset configurations.
6785 		 */
6786 
6787 	case CPU_ONLINE:
6788 	case CPU_DOWN_FAILED:
6789 		cpuset_update_active_cpus(true);
6790 		break;
6791 	default:
6792 		return NOTIFY_DONE;
6793 	}
6794 	return NOTIFY_OK;
6795 }
6796 
6797 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6798 			       void *hcpu)
6799 {
6800 	switch (action) {
6801 	case CPU_DOWN_PREPARE:
6802 		cpuset_update_active_cpus(false);
6803 		break;
6804 	case CPU_DOWN_PREPARE_FROZEN:
6805 		num_cpus_frozen++;
6806 		partition_sched_domains(1, NULL, NULL);
6807 		break;
6808 	default:
6809 		return NOTIFY_DONE;
6810 	}
6811 	return NOTIFY_OK;
6812 }
6813 
6814 void __init sched_init_smp(void)
6815 {
6816 	cpumask_var_t non_isolated_cpus;
6817 
6818 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6819 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6820 
6821 	sched_init_numa();
6822 
6823 	get_online_cpus();
6824 	mutex_lock(&sched_domains_mutex);
6825 	init_sched_domains(cpu_active_mask);
6826 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6827 	if (cpumask_empty(non_isolated_cpus))
6828 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6829 	mutex_unlock(&sched_domains_mutex);
6830 	put_online_cpus();
6831 
6832 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6833 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6834 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6835 
6836 	/* RT runtime code needs to handle some hotplug events */
6837 	hotcpu_notifier(update_runtime, 0);
6838 
6839 	init_hrtick();
6840 
6841 	/* Move init over to a non-isolated CPU */
6842 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6843 		BUG();
6844 	sched_init_granularity();
6845 	free_cpumask_var(non_isolated_cpus);
6846 
6847 	init_sched_rt_class();
6848 }
6849 #else
6850 void __init sched_init_smp(void)
6851 {
6852 	sched_init_granularity();
6853 }
6854 #endif /* CONFIG_SMP */
6855 
6856 const_debug unsigned int sysctl_timer_migration = 1;
6857 
6858 int in_sched_functions(unsigned long addr)
6859 {
6860 	return in_lock_functions(addr) ||
6861 		(addr >= (unsigned long)__sched_text_start
6862 		&& addr < (unsigned long)__sched_text_end);
6863 }
6864 
6865 #ifdef CONFIG_CGROUP_SCHED
6866 struct task_group root_task_group;
6867 LIST_HEAD(task_groups);
6868 #endif
6869 
6870 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6871 
6872 void __init sched_init(void)
6873 {
6874 	int i, j;
6875 	unsigned long alloc_size = 0, ptr;
6876 
6877 #ifdef CONFIG_FAIR_GROUP_SCHED
6878 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6879 #endif
6880 #ifdef CONFIG_RT_GROUP_SCHED
6881 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6882 #endif
6883 #ifdef CONFIG_CPUMASK_OFFSTACK
6884 	alloc_size += num_possible_cpus() * cpumask_size();
6885 #endif
6886 	if (alloc_size) {
6887 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6888 
6889 #ifdef CONFIG_FAIR_GROUP_SCHED
6890 		root_task_group.se = (struct sched_entity **)ptr;
6891 		ptr += nr_cpu_ids * sizeof(void **);
6892 
6893 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6894 		ptr += nr_cpu_ids * sizeof(void **);
6895 
6896 #endif /* CONFIG_FAIR_GROUP_SCHED */
6897 #ifdef CONFIG_RT_GROUP_SCHED
6898 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6899 		ptr += nr_cpu_ids * sizeof(void **);
6900 
6901 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6902 		ptr += nr_cpu_ids * sizeof(void **);
6903 
6904 #endif /* CONFIG_RT_GROUP_SCHED */
6905 #ifdef CONFIG_CPUMASK_OFFSTACK
6906 		for_each_possible_cpu(i) {
6907 			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6908 			ptr += cpumask_size();
6909 		}
6910 #endif /* CONFIG_CPUMASK_OFFSTACK */
6911 	}
6912 
6913 #ifdef CONFIG_SMP
6914 	init_defrootdomain();
6915 #endif
6916 
6917 	init_rt_bandwidth(&def_rt_bandwidth,
6918 			global_rt_period(), global_rt_runtime());
6919 
6920 #ifdef CONFIG_RT_GROUP_SCHED
6921 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6922 			global_rt_period(), global_rt_runtime());
6923 #endif /* CONFIG_RT_GROUP_SCHED */
6924 
6925 #ifdef CONFIG_CGROUP_SCHED
6926 	list_add(&root_task_group.list, &task_groups);
6927 	INIT_LIST_HEAD(&root_task_group.children);
6928 	INIT_LIST_HEAD(&root_task_group.siblings);
6929 	autogroup_init(&init_task);
6930 
6931 #endif /* CONFIG_CGROUP_SCHED */
6932 
6933 #ifdef CONFIG_CGROUP_CPUACCT
6934 	root_cpuacct.cpustat = &kernel_cpustat;
6935 	root_cpuacct.cpuusage = alloc_percpu(u64);
6936 	/* Too early, not expected to fail */
6937 	BUG_ON(!root_cpuacct.cpuusage);
6938 #endif
6939 	for_each_possible_cpu(i) {
6940 		struct rq *rq;
6941 
6942 		rq = cpu_rq(i);
6943 		raw_spin_lock_init(&rq->lock);
6944 		rq->nr_running = 0;
6945 		rq->calc_load_active = 0;
6946 		rq->calc_load_update = jiffies + LOAD_FREQ;
6947 		init_cfs_rq(&rq->cfs);
6948 		init_rt_rq(&rq->rt, rq);
6949 #ifdef CONFIG_FAIR_GROUP_SCHED
6950 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6951 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6952 		/*
6953 		 * How much cpu bandwidth does root_task_group get?
6954 		 *
6955 		 * In case of task-groups formed thr' the cgroup filesystem, it
6956 		 * gets 100% of the cpu resources in the system. This overall
6957 		 * system cpu resource is divided among the tasks of
6958 		 * root_task_group and its child task-groups in a fair manner,
6959 		 * based on each entity's (task or task-group's) weight
6960 		 * (se->load.weight).
6961 		 *
6962 		 * In other words, if root_task_group has 10 tasks of weight
6963 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6964 		 * then A0's share of the cpu resource is:
6965 		 *
6966 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6967 		 *
6968 		 * We achieve this by letting root_task_group's tasks sit
6969 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6970 		 */
6971 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6972 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6973 #endif /* CONFIG_FAIR_GROUP_SCHED */
6974 
6975 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6976 #ifdef CONFIG_RT_GROUP_SCHED
6977 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6978 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6979 #endif
6980 
6981 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6982 			rq->cpu_load[j] = 0;
6983 
6984 		rq->last_load_update_tick = jiffies;
6985 
6986 #ifdef CONFIG_SMP
6987 		rq->sd = NULL;
6988 		rq->rd = NULL;
6989 		rq->cpu_power = SCHED_POWER_SCALE;
6990 		rq->post_schedule = 0;
6991 		rq->active_balance = 0;
6992 		rq->next_balance = jiffies;
6993 		rq->push_cpu = 0;
6994 		rq->cpu = i;
6995 		rq->online = 0;
6996 		rq->idle_stamp = 0;
6997 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6998 
6999 		INIT_LIST_HEAD(&rq->cfs_tasks);
7000 
7001 		rq_attach_root(rq, &def_root_domain);
7002 #ifdef CONFIG_NO_HZ
7003 		rq->nohz_flags = 0;
7004 #endif
7005 #endif
7006 		init_rq_hrtick(rq);
7007 		atomic_set(&rq->nr_iowait, 0);
7008 	}
7009 
7010 	set_load_weight(&init_task);
7011 
7012 #ifdef CONFIG_PREEMPT_NOTIFIERS
7013 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7014 #endif
7015 
7016 #ifdef CONFIG_RT_MUTEXES
7017 	plist_head_init(&init_task.pi_waiters);
7018 #endif
7019 
7020 	/*
7021 	 * The boot idle thread does lazy MMU switching as well:
7022 	 */
7023 	atomic_inc(&init_mm.mm_count);
7024 	enter_lazy_tlb(&init_mm, current);
7025 
7026 	/*
7027 	 * Make us the idle thread. Technically, schedule() should not be
7028 	 * called from this thread, however somewhere below it might be,
7029 	 * but because we are the idle thread, we just pick up running again
7030 	 * when this runqueue becomes "idle".
7031 	 */
7032 	init_idle(current, smp_processor_id());
7033 
7034 	calc_load_update = jiffies + LOAD_FREQ;
7035 
7036 	/*
7037 	 * During early bootup we pretend to be a normal task:
7038 	 */
7039 	current->sched_class = &fair_sched_class;
7040 
7041 #ifdef CONFIG_SMP
7042 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7043 	/* May be allocated at isolcpus cmdline parse time */
7044 	if (cpu_isolated_map == NULL)
7045 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7046 	idle_thread_set_boot_cpu();
7047 #endif
7048 	init_sched_fair_class();
7049 
7050 	scheduler_running = 1;
7051 }
7052 
7053 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7054 static inline int preempt_count_equals(int preempt_offset)
7055 {
7056 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7057 
7058 	return (nested == preempt_offset);
7059 }
7060 
7061 void __might_sleep(const char *file, int line, int preempt_offset)
7062 {
7063 	static unsigned long prev_jiffy;	/* ratelimiting */
7064 
7065 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7066 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7067 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7068 		return;
7069 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7070 		return;
7071 	prev_jiffy = jiffies;
7072 
7073 	printk(KERN_ERR
7074 		"BUG: sleeping function called from invalid context at %s:%d\n",
7075 			file, line);
7076 	printk(KERN_ERR
7077 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7078 			in_atomic(), irqs_disabled(),
7079 			current->pid, current->comm);
7080 
7081 	debug_show_held_locks(current);
7082 	if (irqs_disabled())
7083 		print_irqtrace_events(current);
7084 	dump_stack();
7085 }
7086 EXPORT_SYMBOL(__might_sleep);
7087 #endif
7088 
7089 #ifdef CONFIG_MAGIC_SYSRQ
7090 static void normalize_task(struct rq *rq, struct task_struct *p)
7091 {
7092 	const struct sched_class *prev_class = p->sched_class;
7093 	int old_prio = p->prio;
7094 	int on_rq;
7095 
7096 	on_rq = p->on_rq;
7097 	if (on_rq)
7098 		dequeue_task(rq, p, 0);
7099 	__setscheduler(rq, p, SCHED_NORMAL, 0);
7100 	if (on_rq) {
7101 		enqueue_task(rq, p, 0);
7102 		resched_task(rq->curr);
7103 	}
7104 
7105 	check_class_changed(rq, p, prev_class, old_prio);
7106 }
7107 
7108 void normalize_rt_tasks(void)
7109 {
7110 	struct task_struct *g, *p;
7111 	unsigned long flags;
7112 	struct rq *rq;
7113 
7114 	read_lock_irqsave(&tasklist_lock, flags);
7115 	do_each_thread(g, p) {
7116 		/*
7117 		 * Only normalize user tasks:
7118 		 */
7119 		if (!p->mm)
7120 			continue;
7121 
7122 		p->se.exec_start		= 0;
7123 #ifdef CONFIG_SCHEDSTATS
7124 		p->se.statistics.wait_start	= 0;
7125 		p->se.statistics.sleep_start	= 0;
7126 		p->se.statistics.block_start	= 0;
7127 #endif
7128 
7129 		if (!rt_task(p)) {
7130 			/*
7131 			 * Renice negative nice level userspace
7132 			 * tasks back to 0:
7133 			 */
7134 			if (TASK_NICE(p) < 0 && p->mm)
7135 				set_user_nice(p, 0);
7136 			continue;
7137 		}
7138 
7139 		raw_spin_lock(&p->pi_lock);
7140 		rq = __task_rq_lock(p);
7141 
7142 		normalize_task(rq, p);
7143 
7144 		__task_rq_unlock(rq);
7145 		raw_spin_unlock(&p->pi_lock);
7146 	} while_each_thread(g, p);
7147 
7148 	read_unlock_irqrestore(&tasklist_lock, flags);
7149 }
7150 
7151 #endif /* CONFIG_MAGIC_SYSRQ */
7152 
7153 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7154 /*
7155  * These functions are only useful for the IA64 MCA handling, or kdb.
7156  *
7157  * They can only be called when the whole system has been
7158  * stopped - every CPU needs to be quiescent, and no scheduling
7159  * activity can take place. Using them for anything else would
7160  * be a serious bug, and as a result, they aren't even visible
7161  * under any other configuration.
7162  */
7163 
7164 /**
7165  * curr_task - return the current task for a given cpu.
7166  * @cpu: the processor in question.
7167  *
7168  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7169  */
7170 struct task_struct *curr_task(int cpu)
7171 {
7172 	return cpu_curr(cpu);
7173 }
7174 
7175 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7176 
7177 #ifdef CONFIG_IA64
7178 /**
7179  * set_curr_task - set the current task for a given cpu.
7180  * @cpu: the processor in question.
7181  * @p: the task pointer to set.
7182  *
7183  * Description: This function must only be used when non-maskable interrupts
7184  * are serviced on a separate stack. It allows the architecture to switch the
7185  * notion of the current task on a cpu in a non-blocking manner. This function
7186  * must be called with all CPU's synchronized, and interrupts disabled, the
7187  * and caller must save the original value of the current task (see
7188  * curr_task() above) and restore that value before reenabling interrupts and
7189  * re-starting the system.
7190  *
7191  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7192  */
7193 void set_curr_task(int cpu, struct task_struct *p)
7194 {
7195 	cpu_curr(cpu) = p;
7196 }
7197 
7198 #endif
7199 
7200 #ifdef CONFIG_CGROUP_SCHED
7201 /* task_group_lock serializes the addition/removal of task groups */
7202 static DEFINE_SPINLOCK(task_group_lock);
7203 
7204 static void free_sched_group(struct task_group *tg)
7205 {
7206 	free_fair_sched_group(tg);
7207 	free_rt_sched_group(tg);
7208 	autogroup_free(tg);
7209 	kfree(tg);
7210 }
7211 
7212 /* allocate runqueue etc for a new task group */
7213 struct task_group *sched_create_group(struct task_group *parent)
7214 {
7215 	struct task_group *tg;
7216 
7217 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7218 	if (!tg)
7219 		return ERR_PTR(-ENOMEM);
7220 
7221 	if (!alloc_fair_sched_group(tg, parent))
7222 		goto err;
7223 
7224 	if (!alloc_rt_sched_group(tg, parent))
7225 		goto err;
7226 
7227 	return tg;
7228 
7229 err:
7230 	free_sched_group(tg);
7231 	return ERR_PTR(-ENOMEM);
7232 }
7233 
7234 void sched_online_group(struct task_group *tg, struct task_group *parent)
7235 {
7236 	unsigned long flags;
7237 
7238 	spin_lock_irqsave(&task_group_lock, flags);
7239 	list_add_rcu(&tg->list, &task_groups);
7240 
7241 	WARN_ON(!parent); /* root should already exist */
7242 
7243 	tg->parent = parent;
7244 	INIT_LIST_HEAD(&tg->children);
7245 	list_add_rcu(&tg->siblings, &parent->children);
7246 	spin_unlock_irqrestore(&task_group_lock, flags);
7247 }
7248 
7249 /* rcu callback to free various structures associated with a task group */
7250 static void free_sched_group_rcu(struct rcu_head *rhp)
7251 {
7252 	/* now it should be safe to free those cfs_rqs */
7253 	free_sched_group(container_of(rhp, struct task_group, rcu));
7254 }
7255 
7256 /* Destroy runqueue etc associated with a task group */
7257 void sched_destroy_group(struct task_group *tg)
7258 {
7259 	/* wait for possible concurrent references to cfs_rqs complete */
7260 	call_rcu(&tg->rcu, free_sched_group_rcu);
7261 }
7262 
7263 void sched_offline_group(struct task_group *tg)
7264 {
7265 	unsigned long flags;
7266 	int i;
7267 
7268 	/* end participation in shares distribution */
7269 	for_each_possible_cpu(i)
7270 		unregister_fair_sched_group(tg, i);
7271 
7272 	spin_lock_irqsave(&task_group_lock, flags);
7273 	list_del_rcu(&tg->list);
7274 	list_del_rcu(&tg->siblings);
7275 	spin_unlock_irqrestore(&task_group_lock, flags);
7276 }
7277 
7278 /* change task's runqueue when it moves between groups.
7279  *	The caller of this function should have put the task in its new group
7280  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7281  *	reflect its new group.
7282  */
7283 void sched_move_task(struct task_struct *tsk)
7284 {
7285 	struct task_group *tg;
7286 	int on_rq, running;
7287 	unsigned long flags;
7288 	struct rq *rq;
7289 
7290 	rq = task_rq_lock(tsk, &flags);
7291 
7292 	running = task_current(rq, tsk);
7293 	on_rq = tsk->on_rq;
7294 
7295 	if (on_rq)
7296 		dequeue_task(rq, tsk, 0);
7297 	if (unlikely(running))
7298 		tsk->sched_class->put_prev_task(rq, tsk);
7299 
7300 	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7301 				lockdep_is_held(&tsk->sighand->siglock)),
7302 			  struct task_group, css);
7303 	tg = autogroup_task_group(tsk, tg);
7304 	tsk->sched_task_group = tg;
7305 
7306 #ifdef CONFIG_FAIR_GROUP_SCHED
7307 	if (tsk->sched_class->task_move_group)
7308 		tsk->sched_class->task_move_group(tsk, on_rq);
7309 	else
7310 #endif
7311 		set_task_rq(tsk, task_cpu(tsk));
7312 
7313 	if (unlikely(running))
7314 		tsk->sched_class->set_curr_task(rq);
7315 	if (on_rq)
7316 		enqueue_task(rq, tsk, 0);
7317 
7318 	task_rq_unlock(rq, tsk, &flags);
7319 }
7320 #endif /* CONFIG_CGROUP_SCHED */
7321 
7322 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7323 static unsigned long to_ratio(u64 period, u64 runtime)
7324 {
7325 	if (runtime == RUNTIME_INF)
7326 		return 1ULL << 20;
7327 
7328 	return div64_u64(runtime << 20, period);
7329 }
7330 #endif
7331 
7332 #ifdef CONFIG_RT_GROUP_SCHED
7333 /*
7334  * Ensure that the real time constraints are schedulable.
7335  */
7336 static DEFINE_MUTEX(rt_constraints_mutex);
7337 
7338 /* Must be called with tasklist_lock held */
7339 static inline int tg_has_rt_tasks(struct task_group *tg)
7340 {
7341 	struct task_struct *g, *p;
7342 
7343 	do_each_thread(g, p) {
7344 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7345 			return 1;
7346 	} while_each_thread(g, p);
7347 
7348 	return 0;
7349 }
7350 
7351 struct rt_schedulable_data {
7352 	struct task_group *tg;
7353 	u64 rt_period;
7354 	u64 rt_runtime;
7355 };
7356 
7357 static int tg_rt_schedulable(struct task_group *tg, void *data)
7358 {
7359 	struct rt_schedulable_data *d = data;
7360 	struct task_group *child;
7361 	unsigned long total, sum = 0;
7362 	u64 period, runtime;
7363 
7364 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7365 	runtime = tg->rt_bandwidth.rt_runtime;
7366 
7367 	if (tg == d->tg) {
7368 		period = d->rt_period;
7369 		runtime = d->rt_runtime;
7370 	}
7371 
7372 	/*
7373 	 * Cannot have more runtime than the period.
7374 	 */
7375 	if (runtime > period && runtime != RUNTIME_INF)
7376 		return -EINVAL;
7377 
7378 	/*
7379 	 * Ensure we don't starve existing RT tasks.
7380 	 */
7381 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7382 		return -EBUSY;
7383 
7384 	total = to_ratio(period, runtime);
7385 
7386 	/*
7387 	 * Nobody can have more than the global setting allows.
7388 	 */
7389 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7390 		return -EINVAL;
7391 
7392 	/*
7393 	 * The sum of our children's runtime should not exceed our own.
7394 	 */
7395 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7396 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7397 		runtime = child->rt_bandwidth.rt_runtime;
7398 
7399 		if (child == d->tg) {
7400 			period = d->rt_period;
7401 			runtime = d->rt_runtime;
7402 		}
7403 
7404 		sum += to_ratio(period, runtime);
7405 	}
7406 
7407 	if (sum > total)
7408 		return -EINVAL;
7409 
7410 	return 0;
7411 }
7412 
7413 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7414 {
7415 	int ret;
7416 
7417 	struct rt_schedulable_data data = {
7418 		.tg = tg,
7419 		.rt_period = period,
7420 		.rt_runtime = runtime,
7421 	};
7422 
7423 	rcu_read_lock();
7424 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7425 	rcu_read_unlock();
7426 
7427 	return ret;
7428 }
7429 
7430 static int tg_set_rt_bandwidth(struct task_group *tg,
7431 		u64 rt_period, u64 rt_runtime)
7432 {
7433 	int i, err = 0;
7434 
7435 	mutex_lock(&rt_constraints_mutex);
7436 	read_lock(&tasklist_lock);
7437 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7438 	if (err)
7439 		goto unlock;
7440 
7441 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7442 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7443 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7444 
7445 	for_each_possible_cpu(i) {
7446 		struct rt_rq *rt_rq = tg->rt_rq[i];
7447 
7448 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7449 		rt_rq->rt_runtime = rt_runtime;
7450 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7451 	}
7452 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7453 unlock:
7454 	read_unlock(&tasklist_lock);
7455 	mutex_unlock(&rt_constraints_mutex);
7456 
7457 	return err;
7458 }
7459 
7460 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7461 {
7462 	u64 rt_runtime, rt_period;
7463 
7464 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7465 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7466 	if (rt_runtime_us < 0)
7467 		rt_runtime = RUNTIME_INF;
7468 
7469 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7470 }
7471 
7472 long sched_group_rt_runtime(struct task_group *tg)
7473 {
7474 	u64 rt_runtime_us;
7475 
7476 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7477 		return -1;
7478 
7479 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7480 	do_div(rt_runtime_us, NSEC_PER_USEC);
7481 	return rt_runtime_us;
7482 }
7483 
7484 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7485 {
7486 	u64 rt_runtime, rt_period;
7487 
7488 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7489 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7490 
7491 	if (rt_period == 0)
7492 		return -EINVAL;
7493 
7494 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7495 }
7496 
7497 long sched_group_rt_period(struct task_group *tg)
7498 {
7499 	u64 rt_period_us;
7500 
7501 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7502 	do_div(rt_period_us, NSEC_PER_USEC);
7503 	return rt_period_us;
7504 }
7505 
7506 static int sched_rt_global_constraints(void)
7507 {
7508 	u64 runtime, period;
7509 	int ret = 0;
7510 
7511 	if (sysctl_sched_rt_period <= 0)
7512 		return -EINVAL;
7513 
7514 	runtime = global_rt_runtime();
7515 	period = global_rt_period();
7516 
7517 	/*
7518 	 * Sanity check on the sysctl variables.
7519 	 */
7520 	if (runtime > period && runtime != RUNTIME_INF)
7521 		return -EINVAL;
7522 
7523 	mutex_lock(&rt_constraints_mutex);
7524 	read_lock(&tasklist_lock);
7525 	ret = __rt_schedulable(NULL, 0, 0);
7526 	read_unlock(&tasklist_lock);
7527 	mutex_unlock(&rt_constraints_mutex);
7528 
7529 	return ret;
7530 }
7531 
7532 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7533 {
7534 	/* Don't accept realtime tasks when there is no way for them to run */
7535 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7536 		return 0;
7537 
7538 	return 1;
7539 }
7540 
7541 #else /* !CONFIG_RT_GROUP_SCHED */
7542 static int sched_rt_global_constraints(void)
7543 {
7544 	unsigned long flags;
7545 	int i;
7546 
7547 	if (sysctl_sched_rt_period <= 0)
7548 		return -EINVAL;
7549 
7550 	/*
7551 	 * There's always some RT tasks in the root group
7552 	 * -- migration, kstopmachine etc..
7553 	 */
7554 	if (sysctl_sched_rt_runtime == 0)
7555 		return -EBUSY;
7556 
7557 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7558 	for_each_possible_cpu(i) {
7559 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7560 
7561 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7562 		rt_rq->rt_runtime = global_rt_runtime();
7563 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7564 	}
7565 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7566 
7567 	return 0;
7568 }
7569 #endif /* CONFIG_RT_GROUP_SCHED */
7570 
7571 int sched_rr_handler(struct ctl_table *table, int write,
7572 		void __user *buffer, size_t *lenp,
7573 		loff_t *ppos)
7574 {
7575 	int ret;
7576 	static DEFINE_MUTEX(mutex);
7577 
7578 	mutex_lock(&mutex);
7579 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7580 	/* make sure that internally we keep jiffies */
7581 	/* also, writing zero resets timeslice to default */
7582 	if (!ret && write) {
7583 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7584 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7585 	}
7586 	mutex_unlock(&mutex);
7587 	return ret;
7588 }
7589 
7590 int sched_rt_handler(struct ctl_table *table, int write,
7591 		void __user *buffer, size_t *lenp,
7592 		loff_t *ppos)
7593 {
7594 	int ret;
7595 	int old_period, old_runtime;
7596 	static DEFINE_MUTEX(mutex);
7597 
7598 	mutex_lock(&mutex);
7599 	old_period = sysctl_sched_rt_period;
7600 	old_runtime = sysctl_sched_rt_runtime;
7601 
7602 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7603 
7604 	if (!ret && write) {
7605 		ret = sched_rt_global_constraints();
7606 		if (ret) {
7607 			sysctl_sched_rt_period = old_period;
7608 			sysctl_sched_rt_runtime = old_runtime;
7609 		} else {
7610 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7611 			def_rt_bandwidth.rt_period =
7612 				ns_to_ktime(global_rt_period());
7613 		}
7614 	}
7615 	mutex_unlock(&mutex);
7616 
7617 	return ret;
7618 }
7619 
7620 #ifdef CONFIG_CGROUP_SCHED
7621 
7622 /* return corresponding task_group object of a cgroup */
7623 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7624 {
7625 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7626 			    struct task_group, css);
7627 }
7628 
7629 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7630 {
7631 	struct task_group *tg, *parent;
7632 
7633 	if (!cgrp->parent) {
7634 		/* This is early initialization for the top cgroup */
7635 		return &root_task_group.css;
7636 	}
7637 
7638 	parent = cgroup_tg(cgrp->parent);
7639 	tg = sched_create_group(parent);
7640 	if (IS_ERR(tg))
7641 		return ERR_PTR(-ENOMEM);
7642 
7643 	return &tg->css;
7644 }
7645 
7646 static int cpu_cgroup_css_online(struct cgroup *cgrp)
7647 {
7648 	struct task_group *tg = cgroup_tg(cgrp);
7649 	struct task_group *parent;
7650 
7651 	if (!cgrp->parent)
7652 		return 0;
7653 
7654 	parent = cgroup_tg(cgrp->parent);
7655 	sched_online_group(tg, parent);
7656 	return 0;
7657 }
7658 
7659 static void cpu_cgroup_css_free(struct cgroup *cgrp)
7660 {
7661 	struct task_group *tg = cgroup_tg(cgrp);
7662 
7663 	sched_destroy_group(tg);
7664 }
7665 
7666 static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7667 {
7668 	struct task_group *tg = cgroup_tg(cgrp);
7669 
7670 	sched_offline_group(tg);
7671 }
7672 
7673 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7674 				 struct cgroup_taskset *tset)
7675 {
7676 	struct task_struct *task;
7677 
7678 	cgroup_taskset_for_each(task, cgrp, tset) {
7679 #ifdef CONFIG_RT_GROUP_SCHED
7680 		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7681 			return -EINVAL;
7682 #else
7683 		/* We don't support RT-tasks being in separate groups */
7684 		if (task->sched_class != &fair_sched_class)
7685 			return -EINVAL;
7686 #endif
7687 	}
7688 	return 0;
7689 }
7690 
7691 static void cpu_cgroup_attach(struct cgroup *cgrp,
7692 			      struct cgroup_taskset *tset)
7693 {
7694 	struct task_struct *task;
7695 
7696 	cgroup_taskset_for_each(task, cgrp, tset)
7697 		sched_move_task(task);
7698 }
7699 
7700 static void
7701 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7702 		struct task_struct *task)
7703 {
7704 	/*
7705 	 * cgroup_exit() is called in the copy_process() failure path.
7706 	 * Ignore this case since the task hasn't ran yet, this avoids
7707 	 * trying to poke a half freed task state from generic code.
7708 	 */
7709 	if (!(task->flags & PF_EXITING))
7710 		return;
7711 
7712 	sched_move_task(task);
7713 }
7714 
7715 #ifdef CONFIG_FAIR_GROUP_SCHED
7716 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7717 				u64 shareval)
7718 {
7719 	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7720 }
7721 
7722 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7723 {
7724 	struct task_group *tg = cgroup_tg(cgrp);
7725 
7726 	return (u64) scale_load_down(tg->shares);
7727 }
7728 
7729 #ifdef CONFIG_CFS_BANDWIDTH
7730 static DEFINE_MUTEX(cfs_constraints_mutex);
7731 
7732 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7733 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7734 
7735 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7736 
7737 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7738 {
7739 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7740 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7741 
7742 	if (tg == &root_task_group)
7743 		return -EINVAL;
7744 
7745 	/*
7746 	 * Ensure we have at some amount of bandwidth every period.  This is
7747 	 * to prevent reaching a state of large arrears when throttled via
7748 	 * entity_tick() resulting in prolonged exit starvation.
7749 	 */
7750 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7751 		return -EINVAL;
7752 
7753 	/*
7754 	 * Likewise, bound things on the otherside by preventing insane quota
7755 	 * periods.  This also allows us to normalize in computing quota
7756 	 * feasibility.
7757 	 */
7758 	if (period > max_cfs_quota_period)
7759 		return -EINVAL;
7760 
7761 	mutex_lock(&cfs_constraints_mutex);
7762 	ret = __cfs_schedulable(tg, period, quota);
7763 	if (ret)
7764 		goto out_unlock;
7765 
7766 	runtime_enabled = quota != RUNTIME_INF;
7767 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7768 	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7769 	raw_spin_lock_irq(&cfs_b->lock);
7770 	cfs_b->period = ns_to_ktime(period);
7771 	cfs_b->quota = quota;
7772 
7773 	__refill_cfs_bandwidth_runtime(cfs_b);
7774 	/* restart the period timer (if active) to handle new period expiry */
7775 	if (runtime_enabled && cfs_b->timer_active) {
7776 		/* force a reprogram */
7777 		cfs_b->timer_active = 0;
7778 		__start_cfs_bandwidth(cfs_b);
7779 	}
7780 	raw_spin_unlock_irq(&cfs_b->lock);
7781 
7782 	for_each_possible_cpu(i) {
7783 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7784 		struct rq *rq = cfs_rq->rq;
7785 
7786 		raw_spin_lock_irq(&rq->lock);
7787 		cfs_rq->runtime_enabled = runtime_enabled;
7788 		cfs_rq->runtime_remaining = 0;
7789 
7790 		if (cfs_rq->throttled)
7791 			unthrottle_cfs_rq(cfs_rq);
7792 		raw_spin_unlock_irq(&rq->lock);
7793 	}
7794 out_unlock:
7795 	mutex_unlock(&cfs_constraints_mutex);
7796 
7797 	return ret;
7798 }
7799 
7800 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7801 {
7802 	u64 quota, period;
7803 
7804 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7805 	if (cfs_quota_us < 0)
7806 		quota = RUNTIME_INF;
7807 	else
7808 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7809 
7810 	return tg_set_cfs_bandwidth(tg, period, quota);
7811 }
7812 
7813 long tg_get_cfs_quota(struct task_group *tg)
7814 {
7815 	u64 quota_us;
7816 
7817 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7818 		return -1;
7819 
7820 	quota_us = tg->cfs_bandwidth.quota;
7821 	do_div(quota_us, NSEC_PER_USEC);
7822 
7823 	return quota_us;
7824 }
7825 
7826 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7827 {
7828 	u64 quota, period;
7829 
7830 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7831 	quota = tg->cfs_bandwidth.quota;
7832 
7833 	return tg_set_cfs_bandwidth(tg, period, quota);
7834 }
7835 
7836 long tg_get_cfs_period(struct task_group *tg)
7837 {
7838 	u64 cfs_period_us;
7839 
7840 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7841 	do_div(cfs_period_us, NSEC_PER_USEC);
7842 
7843 	return cfs_period_us;
7844 }
7845 
7846 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7847 {
7848 	return tg_get_cfs_quota(cgroup_tg(cgrp));
7849 }
7850 
7851 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7852 				s64 cfs_quota_us)
7853 {
7854 	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7855 }
7856 
7857 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7858 {
7859 	return tg_get_cfs_period(cgroup_tg(cgrp));
7860 }
7861 
7862 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7863 				u64 cfs_period_us)
7864 {
7865 	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7866 }
7867 
7868 struct cfs_schedulable_data {
7869 	struct task_group *tg;
7870 	u64 period, quota;
7871 };
7872 
7873 /*
7874  * normalize group quota/period to be quota/max_period
7875  * note: units are usecs
7876  */
7877 static u64 normalize_cfs_quota(struct task_group *tg,
7878 			       struct cfs_schedulable_data *d)
7879 {
7880 	u64 quota, period;
7881 
7882 	if (tg == d->tg) {
7883 		period = d->period;
7884 		quota = d->quota;
7885 	} else {
7886 		period = tg_get_cfs_period(tg);
7887 		quota = tg_get_cfs_quota(tg);
7888 	}
7889 
7890 	/* note: these should typically be equivalent */
7891 	if (quota == RUNTIME_INF || quota == -1)
7892 		return RUNTIME_INF;
7893 
7894 	return to_ratio(period, quota);
7895 }
7896 
7897 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7898 {
7899 	struct cfs_schedulable_data *d = data;
7900 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7901 	s64 quota = 0, parent_quota = -1;
7902 
7903 	if (!tg->parent) {
7904 		quota = RUNTIME_INF;
7905 	} else {
7906 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7907 
7908 		quota = normalize_cfs_quota(tg, d);
7909 		parent_quota = parent_b->hierarchal_quota;
7910 
7911 		/*
7912 		 * ensure max(child_quota) <= parent_quota, inherit when no
7913 		 * limit is set
7914 		 */
7915 		if (quota == RUNTIME_INF)
7916 			quota = parent_quota;
7917 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7918 			return -EINVAL;
7919 	}
7920 	cfs_b->hierarchal_quota = quota;
7921 
7922 	return 0;
7923 }
7924 
7925 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7926 {
7927 	int ret;
7928 	struct cfs_schedulable_data data = {
7929 		.tg = tg,
7930 		.period = period,
7931 		.quota = quota,
7932 	};
7933 
7934 	if (quota != RUNTIME_INF) {
7935 		do_div(data.period, NSEC_PER_USEC);
7936 		do_div(data.quota, NSEC_PER_USEC);
7937 	}
7938 
7939 	rcu_read_lock();
7940 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7941 	rcu_read_unlock();
7942 
7943 	return ret;
7944 }
7945 
7946 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7947 		struct cgroup_map_cb *cb)
7948 {
7949 	struct task_group *tg = cgroup_tg(cgrp);
7950 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7951 
7952 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7953 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7954 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7955 
7956 	return 0;
7957 }
7958 #endif /* CONFIG_CFS_BANDWIDTH */
7959 #endif /* CONFIG_FAIR_GROUP_SCHED */
7960 
7961 #ifdef CONFIG_RT_GROUP_SCHED
7962 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7963 				s64 val)
7964 {
7965 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7966 }
7967 
7968 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7969 {
7970 	return sched_group_rt_runtime(cgroup_tg(cgrp));
7971 }
7972 
7973 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7974 		u64 rt_period_us)
7975 {
7976 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7977 }
7978 
7979 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7980 {
7981 	return sched_group_rt_period(cgroup_tg(cgrp));
7982 }
7983 #endif /* CONFIG_RT_GROUP_SCHED */
7984 
7985 static struct cftype cpu_files[] = {
7986 #ifdef CONFIG_FAIR_GROUP_SCHED
7987 	{
7988 		.name = "shares",
7989 		.read_u64 = cpu_shares_read_u64,
7990 		.write_u64 = cpu_shares_write_u64,
7991 	},
7992 #endif
7993 #ifdef CONFIG_CFS_BANDWIDTH
7994 	{
7995 		.name = "cfs_quota_us",
7996 		.read_s64 = cpu_cfs_quota_read_s64,
7997 		.write_s64 = cpu_cfs_quota_write_s64,
7998 	},
7999 	{
8000 		.name = "cfs_period_us",
8001 		.read_u64 = cpu_cfs_period_read_u64,
8002 		.write_u64 = cpu_cfs_period_write_u64,
8003 	},
8004 	{
8005 		.name = "stat",
8006 		.read_map = cpu_stats_show,
8007 	},
8008 #endif
8009 #ifdef CONFIG_RT_GROUP_SCHED
8010 	{
8011 		.name = "rt_runtime_us",
8012 		.read_s64 = cpu_rt_runtime_read,
8013 		.write_s64 = cpu_rt_runtime_write,
8014 	},
8015 	{
8016 		.name = "rt_period_us",
8017 		.read_u64 = cpu_rt_period_read_uint,
8018 		.write_u64 = cpu_rt_period_write_uint,
8019 	},
8020 #endif
8021 	{ }	/* terminate */
8022 };
8023 
8024 struct cgroup_subsys cpu_cgroup_subsys = {
8025 	.name		= "cpu",
8026 	.css_alloc	= cpu_cgroup_css_alloc,
8027 	.css_free	= cpu_cgroup_css_free,
8028 	.css_online	= cpu_cgroup_css_online,
8029 	.css_offline	= cpu_cgroup_css_offline,
8030 	.can_attach	= cpu_cgroup_can_attach,
8031 	.attach		= cpu_cgroup_attach,
8032 	.exit		= cpu_cgroup_exit,
8033 	.subsys_id	= cpu_cgroup_subsys_id,
8034 	.base_cftypes	= cpu_files,
8035 	.early_init	= 1,
8036 };
8037 
8038 #endif	/* CONFIG_CGROUP_SCHED */
8039 
8040 #ifdef CONFIG_CGROUP_CPUACCT
8041 
8042 /*
8043  * CPU accounting code for task groups.
8044  *
8045  * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8046  * (balbir@in.ibm.com).
8047  */
8048 
8049 struct cpuacct root_cpuacct;
8050 
8051 /* create a new cpu accounting group */
8052 static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
8053 {
8054 	struct cpuacct *ca;
8055 
8056 	if (!cgrp->parent)
8057 		return &root_cpuacct.css;
8058 
8059 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8060 	if (!ca)
8061 		goto out;
8062 
8063 	ca->cpuusage = alloc_percpu(u64);
8064 	if (!ca->cpuusage)
8065 		goto out_free_ca;
8066 
8067 	ca->cpustat = alloc_percpu(struct kernel_cpustat);
8068 	if (!ca->cpustat)
8069 		goto out_free_cpuusage;
8070 
8071 	return &ca->css;
8072 
8073 out_free_cpuusage:
8074 	free_percpu(ca->cpuusage);
8075 out_free_ca:
8076 	kfree(ca);
8077 out:
8078 	return ERR_PTR(-ENOMEM);
8079 }
8080 
8081 /* destroy an existing cpu accounting group */
8082 static void cpuacct_css_free(struct cgroup *cgrp)
8083 {
8084 	struct cpuacct *ca = cgroup_ca(cgrp);
8085 
8086 	free_percpu(ca->cpustat);
8087 	free_percpu(ca->cpuusage);
8088 	kfree(ca);
8089 }
8090 
8091 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8092 {
8093 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8094 	u64 data;
8095 
8096 #ifndef CONFIG_64BIT
8097 	/*
8098 	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8099 	 */
8100 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8101 	data = *cpuusage;
8102 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8103 #else
8104 	data = *cpuusage;
8105 #endif
8106 
8107 	return data;
8108 }
8109 
8110 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8111 {
8112 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8113 
8114 #ifndef CONFIG_64BIT
8115 	/*
8116 	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8117 	 */
8118 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8119 	*cpuusage = val;
8120 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8121 #else
8122 	*cpuusage = val;
8123 #endif
8124 }
8125 
8126 /* return total cpu usage (in nanoseconds) of a group */
8127 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8128 {
8129 	struct cpuacct *ca = cgroup_ca(cgrp);
8130 	u64 totalcpuusage = 0;
8131 	int i;
8132 
8133 	for_each_present_cpu(i)
8134 		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8135 
8136 	return totalcpuusage;
8137 }
8138 
8139 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8140 								u64 reset)
8141 {
8142 	struct cpuacct *ca = cgroup_ca(cgrp);
8143 	int err = 0;
8144 	int i;
8145 
8146 	if (reset) {
8147 		err = -EINVAL;
8148 		goto out;
8149 	}
8150 
8151 	for_each_present_cpu(i)
8152 		cpuacct_cpuusage_write(ca, i, 0);
8153 
8154 out:
8155 	return err;
8156 }
8157 
8158 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8159 				   struct seq_file *m)
8160 {
8161 	struct cpuacct *ca = cgroup_ca(cgroup);
8162 	u64 percpu;
8163 	int i;
8164 
8165 	for_each_present_cpu(i) {
8166 		percpu = cpuacct_cpuusage_read(ca, i);
8167 		seq_printf(m, "%llu ", (unsigned long long) percpu);
8168 	}
8169 	seq_printf(m, "\n");
8170 	return 0;
8171 }
8172 
8173 static const char *cpuacct_stat_desc[] = {
8174 	[CPUACCT_STAT_USER] = "user",
8175 	[CPUACCT_STAT_SYSTEM] = "system",
8176 };
8177 
8178 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8179 			      struct cgroup_map_cb *cb)
8180 {
8181 	struct cpuacct *ca = cgroup_ca(cgrp);
8182 	int cpu;
8183 	s64 val = 0;
8184 
8185 	for_each_online_cpu(cpu) {
8186 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8187 		val += kcpustat->cpustat[CPUTIME_USER];
8188 		val += kcpustat->cpustat[CPUTIME_NICE];
8189 	}
8190 	val = cputime64_to_clock_t(val);
8191 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8192 
8193 	val = 0;
8194 	for_each_online_cpu(cpu) {
8195 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8196 		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8197 		val += kcpustat->cpustat[CPUTIME_IRQ];
8198 		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8199 	}
8200 
8201 	val = cputime64_to_clock_t(val);
8202 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8203 
8204 	return 0;
8205 }
8206 
8207 static struct cftype files[] = {
8208 	{
8209 		.name = "usage",
8210 		.read_u64 = cpuusage_read,
8211 		.write_u64 = cpuusage_write,
8212 	},
8213 	{
8214 		.name = "usage_percpu",
8215 		.read_seq_string = cpuacct_percpu_seq_read,
8216 	},
8217 	{
8218 		.name = "stat",
8219 		.read_map = cpuacct_stats_show,
8220 	},
8221 	{ }	/* terminate */
8222 };
8223 
8224 /*
8225  * charge this task's execution time to its accounting group.
8226  *
8227  * called with rq->lock held.
8228  */
8229 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8230 {
8231 	struct cpuacct *ca;
8232 	int cpu;
8233 
8234 	if (unlikely(!cpuacct_subsys.active))
8235 		return;
8236 
8237 	cpu = task_cpu(tsk);
8238 
8239 	rcu_read_lock();
8240 
8241 	ca = task_ca(tsk);
8242 
8243 	for (; ca; ca = parent_ca(ca)) {
8244 		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8245 		*cpuusage += cputime;
8246 	}
8247 
8248 	rcu_read_unlock();
8249 }
8250 
8251 struct cgroup_subsys cpuacct_subsys = {
8252 	.name = "cpuacct",
8253 	.css_alloc = cpuacct_css_alloc,
8254 	.css_free = cpuacct_css_free,
8255 	.subsys_id = cpuacct_subsys_id,
8256 	.base_cftypes = files,
8257 };
8258 #endif	/* CONFIG_CGROUP_CPUACCT */
8259 
8260 void dump_cpu_task(int cpu)
8261 {
8262 	pr_info("Task dump for CPU %d:\n", cpu);
8263 	sched_show_task(cpu_curr(cpu));
8264 }
8265