1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 #include <asm/irq_regs.h> 80 #include <asm/mutex.h> 81 #ifdef CONFIG_PARAVIRT 82 #include <asm/paravirt.h> 83 #endif 84 85 #include "sched.h" 86 #include "../workqueue_internal.h" 87 #include "../smpboot.h" 88 89 #define CREATE_TRACE_POINTS 90 #include <trace/events/sched.h> 91 92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 93 { 94 unsigned long delta; 95 ktime_t soft, hard, now; 96 97 for (;;) { 98 if (hrtimer_active(period_timer)) 99 break; 100 101 now = hrtimer_cb_get_time(period_timer); 102 hrtimer_forward(period_timer, now, period); 103 104 soft = hrtimer_get_softexpires(period_timer); 105 hard = hrtimer_get_expires(period_timer); 106 delta = ktime_to_ns(ktime_sub(hard, soft)); 107 __hrtimer_start_range_ns(period_timer, soft, delta, 108 HRTIMER_MODE_ABS_PINNED, 0); 109 } 110 } 111 112 DEFINE_MUTEX(sched_domains_mutex); 113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 114 115 static void update_rq_clock_task(struct rq *rq, s64 delta); 116 117 void update_rq_clock(struct rq *rq) 118 { 119 s64 delta; 120 121 if (rq->skip_clock_update > 0) 122 return; 123 124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 125 rq->clock += delta; 126 update_rq_clock_task(rq, delta); 127 } 128 129 /* 130 * Debugging: various feature bits 131 */ 132 133 #define SCHED_FEAT(name, enabled) \ 134 (1UL << __SCHED_FEAT_##name) * enabled | 135 136 const_debug unsigned int sysctl_sched_features = 137 #include "features.h" 138 0; 139 140 #undef SCHED_FEAT 141 142 #ifdef CONFIG_SCHED_DEBUG 143 #define SCHED_FEAT(name, enabled) \ 144 #name , 145 146 static const char * const sched_feat_names[] = { 147 #include "features.h" 148 }; 149 150 #undef SCHED_FEAT 151 152 static int sched_feat_show(struct seq_file *m, void *v) 153 { 154 int i; 155 156 for (i = 0; i < __SCHED_FEAT_NR; i++) { 157 if (!(sysctl_sched_features & (1UL << i))) 158 seq_puts(m, "NO_"); 159 seq_printf(m, "%s ", sched_feat_names[i]); 160 } 161 seq_puts(m, "\n"); 162 163 return 0; 164 } 165 166 #ifdef HAVE_JUMP_LABEL 167 168 #define jump_label_key__true STATIC_KEY_INIT_TRUE 169 #define jump_label_key__false STATIC_KEY_INIT_FALSE 170 171 #define SCHED_FEAT(name, enabled) \ 172 jump_label_key__##enabled , 173 174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 175 #include "features.h" 176 }; 177 178 #undef SCHED_FEAT 179 180 static void sched_feat_disable(int i) 181 { 182 if (static_key_enabled(&sched_feat_keys[i])) 183 static_key_slow_dec(&sched_feat_keys[i]); 184 } 185 186 static void sched_feat_enable(int i) 187 { 188 if (!static_key_enabled(&sched_feat_keys[i])) 189 static_key_slow_inc(&sched_feat_keys[i]); 190 } 191 #else 192 static void sched_feat_disable(int i) { }; 193 static void sched_feat_enable(int i) { }; 194 #endif /* HAVE_JUMP_LABEL */ 195 196 static int sched_feat_set(char *cmp) 197 { 198 int i; 199 int neg = 0; 200 201 if (strncmp(cmp, "NO_", 3) == 0) { 202 neg = 1; 203 cmp += 3; 204 } 205 206 for (i = 0; i < __SCHED_FEAT_NR; i++) { 207 if (strcmp(cmp, sched_feat_names[i]) == 0) { 208 if (neg) { 209 sysctl_sched_features &= ~(1UL << i); 210 sched_feat_disable(i); 211 } else { 212 sysctl_sched_features |= (1UL << i); 213 sched_feat_enable(i); 214 } 215 break; 216 } 217 } 218 219 return i; 220 } 221 222 static ssize_t 223 sched_feat_write(struct file *filp, const char __user *ubuf, 224 size_t cnt, loff_t *ppos) 225 { 226 char buf[64]; 227 char *cmp; 228 int i; 229 230 if (cnt > 63) 231 cnt = 63; 232 233 if (copy_from_user(&buf, ubuf, cnt)) 234 return -EFAULT; 235 236 buf[cnt] = 0; 237 cmp = strstrip(buf); 238 239 i = sched_feat_set(cmp); 240 if (i == __SCHED_FEAT_NR) 241 return -EINVAL; 242 243 *ppos += cnt; 244 245 return cnt; 246 } 247 248 static int sched_feat_open(struct inode *inode, struct file *filp) 249 { 250 return single_open(filp, sched_feat_show, NULL); 251 } 252 253 static const struct file_operations sched_feat_fops = { 254 .open = sched_feat_open, 255 .write = sched_feat_write, 256 .read = seq_read, 257 .llseek = seq_lseek, 258 .release = single_release, 259 }; 260 261 static __init int sched_init_debug(void) 262 { 263 debugfs_create_file("sched_features", 0644, NULL, NULL, 264 &sched_feat_fops); 265 266 return 0; 267 } 268 late_initcall(sched_init_debug); 269 #endif /* CONFIG_SCHED_DEBUG */ 270 271 /* 272 * Number of tasks to iterate in a single balance run. 273 * Limited because this is done with IRQs disabled. 274 */ 275 const_debug unsigned int sysctl_sched_nr_migrate = 32; 276 277 /* 278 * period over which we average the RT time consumption, measured 279 * in ms. 280 * 281 * default: 1s 282 */ 283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 284 285 /* 286 * period over which we measure -rt task cpu usage in us. 287 * default: 1s 288 */ 289 unsigned int sysctl_sched_rt_period = 1000000; 290 291 __read_mostly int scheduler_running; 292 293 /* 294 * part of the period that we allow rt tasks to run in us. 295 * default: 0.95s 296 */ 297 int sysctl_sched_rt_runtime = 950000; 298 299 300 301 /* 302 * __task_rq_lock - lock the rq @p resides on. 303 */ 304 static inline struct rq *__task_rq_lock(struct task_struct *p) 305 __acquires(rq->lock) 306 { 307 struct rq *rq; 308 309 lockdep_assert_held(&p->pi_lock); 310 311 for (;;) { 312 rq = task_rq(p); 313 raw_spin_lock(&rq->lock); 314 if (likely(rq == task_rq(p))) 315 return rq; 316 raw_spin_unlock(&rq->lock); 317 } 318 } 319 320 /* 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 322 */ 323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 324 __acquires(p->pi_lock) 325 __acquires(rq->lock) 326 { 327 struct rq *rq; 328 329 for (;;) { 330 raw_spin_lock_irqsave(&p->pi_lock, *flags); 331 rq = task_rq(p); 332 raw_spin_lock(&rq->lock); 333 if (likely(rq == task_rq(p))) 334 return rq; 335 raw_spin_unlock(&rq->lock); 336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 337 } 338 } 339 340 static void __task_rq_unlock(struct rq *rq) 341 __releases(rq->lock) 342 { 343 raw_spin_unlock(&rq->lock); 344 } 345 346 static inline void 347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 348 __releases(rq->lock) 349 __releases(p->pi_lock) 350 { 351 raw_spin_unlock(&rq->lock); 352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 353 } 354 355 /* 356 * this_rq_lock - lock this runqueue and disable interrupts. 357 */ 358 static struct rq *this_rq_lock(void) 359 __acquires(rq->lock) 360 { 361 struct rq *rq; 362 363 local_irq_disable(); 364 rq = this_rq(); 365 raw_spin_lock(&rq->lock); 366 367 return rq; 368 } 369 370 #ifdef CONFIG_SCHED_HRTICK 371 /* 372 * Use HR-timers to deliver accurate preemption points. 373 * 374 * Its all a bit involved since we cannot program an hrt while holding the 375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a 376 * reschedule event. 377 * 378 * When we get rescheduled we reprogram the hrtick_timer outside of the 379 * rq->lock. 380 */ 381 382 static void hrtick_clear(struct rq *rq) 383 { 384 if (hrtimer_active(&rq->hrtick_timer)) 385 hrtimer_cancel(&rq->hrtick_timer); 386 } 387 388 /* 389 * High-resolution timer tick. 390 * Runs from hardirq context with interrupts disabled. 391 */ 392 static enum hrtimer_restart hrtick(struct hrtimer *timer) 393 { 394 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 395 396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 397 398 raw_spin_lock(&rq->lock); 399 update_rq_clock(rq); 400 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 401 raw_spin_unlock(&rq->lock); 402 403 return HRTIMER_NORESTART; 404 } 405 406 #ifdef CONFIG_SMP 407 /* 408 * called from hardirq (IPI) context 409 */ 410 static void __hrtick_start(void *arg) 411 { 412 struct rq *rq = arg; 413 414 raw_spin_lock(&rq->lock); 415 hrtimer_restart(&rq->hrtick_timer); 416 rq->hrtick_csd_pending = 0; 417 raw_spin_unlock(&rq->lock); 418 } 419 420 /* 421 * Called to set the hrtick timer state. 422 * 423 * called with rq->lock held and irqs disabled 424 */ 425 void hrtick_start(struct rq *rq, u64 delay) 426 { 427 struct hrtimer *timer = &rq->hrtick_timer; 428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 429 430 hrtimer_set_expires(timer, time); 431 432 if (rq == this_rq()) { 433 hrtimer_restart(timer); 434 } else if (!rq->hrtick_csd_pending) { 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); 436 rq->hrtick_csd_pending = 1; 437 } 438 } 439 440 static int 441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 442 { 443 int cpu = (int)(long)hcpu; 444 445 switch (action) { 446 case CPU_UP_CANCELED: 447 case CPU_UP_CANCELED_FROZEN: 448 case CPU_DOWN_PREPARE: 449 case CPU_DOWN_PREPARE_FROZEN: 450 case CPU_DEAD: 451 case CPU_DEAD_FROZEN: 452 hrtick_clear(cpu_rq(cpu)); 453 return NOTIFY_OK; 454 } 455 456 return NOTIFY_DONE; 457 } 458 459 static __init void init_hrtick(void) 460 { 461 hotcpu_notifier(hotplug_hrtick, 0); 462 } 463 #else 464 /* 465 * Called to set the hrtick timer state. 466 * 467 * called with rq->lock held and irqs disabled 468 */ 469 void hrtick_start(struct rq *rq, u64 delay) 470 { 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 472 HRTIMER_MODE_REL_PINNED, 0); 473 } 474 475 static inline void init_hrtick(void) 476 { 477 } 478 #endif /* CONFIG_SMP */ 479 480 static void init_rq_hrtick(struct rq *rq) 481 { 482 #ifdef CONFIG_SMP 483 rq->hrtick_csd_pending = 0; 484 485 rq->hrtick_csd.flags = 0; 486 rq->hrtick_csd.func = __hrtick_start; 487 rq->hrtick_csd.info = rq; 488 #endif 489 490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 491 rq->hrtick_timer.function = hrtick; 492 } 493 #else /* CONFIG_SCHED_HRTICK */ 494 static inline void hrtick_clear(struct rq *rq) 495 { 496 } 497 498 static inline void init_rq_hrtick(struct rq *rq) 499 { 500 } 501 502 static inline void init_hrtick(void) 503 { 504 } 505 #endif /* CONFIG_SCHED_HRTICK */ 506 507 /* 508 * resched_task - mark a task 'to be rescheduled now'. 509 * 510 * On UP this means the setting of the need_resched flag, on SMP it 511 * might also involve a cross-CPU call to trigger the scheduler on 512 * the target CPU. 513 */ 514 #ifdef CONFIG_SMP 515 516 #ifndef tsk_is_polling 517 #define tsk_is_polling(t) 0 518 #endif 519 520 void resched_task(struct task_struct *p) 521 { 522 int cpu; 523 524 assert_raw_spin_locked(&task_rq(p)->lock); 525 526 if (test_tsk_need_resched(p)) 527 return; 528 529 set_tsk_need_resched(p); 530 531 cpu = task_cpu(p); 532 if (cpu == smp_processor_id()) 533 return; 534 535 /* NEED_RESCHED must be visible before we test polling */ 536 smp_mb(); 537 if (!tsk_is_polling(p)) 538 smp_send_reschedule(cpu); 539 } 540 541 void resched_cpu(int cpu) 542 { 543 struct rq *rq = cpu_rq(cpu); 544 unsigned long flags; 545 546 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 547 return; 548 resched_task(cpu_curr(cpu)); 549 raw_spin_unlock_irqrestore(&rq->lock, flags); 550 } 551 552 #ifdef CONFIG_NO_HZ 553 /* 554 * In the semi idle case, use the nearest busy cpu for migrating timers 555 * from an idle cpu. This is good for power-savings. 556 * 557 * We don't do similar optimization for completely idle system, as 558 * selecting an idle cpu will add more delays to the timers than intended 559 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 560 */ 561 int get_nohz_timer_target(void) 562 { 563 int cpu = smp_processor_id(); 564 int i; 565 struct sched_domain *sd; 566 567 rcu_read_lock(); 568 for_each_domain(cpu, sd) { 569 for_each_cpu(i, sched_domain_span(sd)) { 570 if (!idle_cpu(i)) { 571 cpu = i; 572 goto unlock; 573 } 574 } 575 } 576 unlock: 577 rcu_read_unlock(); 578 return cpu; 579 } 580 /* 581 * When add_timer_on() enqueues a timer into the timer wheel of an 582 * idle CPU then this timer might expire before the next timer event 583 * which is scheduled to wake up that CPU. In case of a completely 584 * idle system the next event might even be infinite time into the 585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 586 * leaves the inner idle loop so the newly added timer is taken into 587 * account when the CPU goes back to idle and evaluates the timer 588 * wheel for the next timer event. 589 */ 590 void wake_up_idle_cpu(int cpu) 591 { 592 struct rq *rq = cpu_rq(cpu); 593 594 if (cpu == smp_processor_id()) 595 return; 596 597 /* 598 * This is safe, as this function is called with the timer 599 * wheel base lock of (cpu) held. When the CPU is on the way 600 * to idle and has not yet set rq->curr to idle then it will 601 * be serialized on the timer wheel base lock and take the new 602 * timer into account automatically. 603 */ 604 if (rq->curr != rq->idle) 605 return; 606 607 /* 608 * We can set TIF_RESCHED on the idle task of the other CPU 609 * lockless. The worst case is that the other CPU runs the 610 * idle task through an additional NOOP schedule() 611 */ 612 set_tsk_need_resched(rq->idle); 613 614 /* NEED_RESCHED must be visible before we test polling */ 615 smp_mb(); 616 if (!tsk_is_polling(rq->idle)) 617 smp_send_reschedule(cpu); 618 } 619 620 static inline bool got_nohz_idle_kick(void) 621 { 622 int cpu = smp_processor_id(); 623 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 624 } 625 626 #else /* CONFIG_NO_HZ */ 627 628 static inline bool got_nohz_idle_kick(void) 629 { 630 return false; 631 } 632 633 #endif /* CONFIG_NO_HZ */ 634 635 void sched_avg_update(struct rq *rq) 636 { 637 s64 period = sched_avg_period(); 638 639 while ((s64)(rq->clock - rq->age_stamp) > period) { 640 /* 641 * Inline assembly required to prevent the compiler 642 * optimising this loop into a divmod call. 643 * See __iter_div_u64_rem() for another example of this. 644 */ 645 asm("" : "+rm" (rq->age_stamp)); 646 rq->age_stamp += period; 647 rq->rt_avg /= 2; 648 } 649 } 650 651 #else /* !CONFIG_SMP */ 652 void resched_task(struct task_struct *p) 653 { 654 assert_raw_spin_locked(&task_rq(p)->lock); 655 set_tsk_need_resched(p); 656 } 657 #endif /* CONFIG_SMP */ 658 659 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 660 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 661 /* 662 * Iterate task_group tree rooted at *from, calling @down when first entering a 663 * node and @up when leaving it for the final time. 664 * 665 * Caller must hold rcu_lock or sufficient equivalent. 666 */ 667 int walk_tg_tree_from(struct task_group *from, 668 tg_visitor down, tg_visitor up, void *data) 669 { 670 struct task_group *parent, *child; 671 int ret; 672 673 parent = from; 674 675 down: 676 ret = (*down)(parent, data); 677 if (ret) 678 goto out; 679 list_for_each_entry_rcu(child, &parent->children, siblings) { 680 parent = child; 681 goto down; 682 683 up: 684 continue; 685 } 686 ret = (*up)(parent, data); 687 if (ret || parent == from) 688 goto out; 689 690 child = parent; 691 parent = parent->parent; 692 if (parent) 693 goto up; 694 out: 695 return ret; 696 } 697 698 int tg_nop(struct task_group *tg, void *data) 699 { 700 return 0; 701 } 702 #endif 703 704 static void set_load_weight(struct task_struct *p) 705 { 706 int prio = p->static_prio - MAX_RT_PRIO; 707 struct load_weight *load = &p->se.load; 708 709 /* 710 * SCHED_IDLE tasks get minimal weight: 711 */ 712 if (p->policy == SCHED_IDLE) { 713 load->weight = scale_load(WEIGHT_IDLEPRIO); 714 load->inv_weight = WMULT_IDLEPRIO; 715 return; 716 } 717 718 load->weight = scale_load(prio_to_weight[prio]); 719 load->inv_weight = prio_to_wmult[prio]; 720 } 721 722 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 723 { 724 update_rq_clock(rq); 725 sched_info_queued(p); 726 p->sched_class->enqueue_task(rq, p, flags); 727 } 728 729 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 730 { 731 update_rq_clock(rq); 732 sched_info_dequeued(p); 733 p->sched_class->dequeue_task(rq, p, flags); 734 } 735 736 void activate_task(struct rq *rq, struct task_struct *p, int flags) 737 { 738 if (task_contributes_to_load(p)) 739 rq->nr_uninterruptible--; 740 741 enqueue_task(rq, p, flags); 742 } 743 744 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 745 { 746 if (task_contributes_to_load(p)) 747 rq->nr_uninterruptible++; 748 749 dequeue_task(rq, p, flags); 750 } 751 752 static void update_rq_clock_task(struct rq *rq, s64 delta) 753 { 754 /* 755 * In theory, the compile should just see 0 here, and optimize out the call 756 * to sched_rt_avg_update. But I don't trust it... 757 */ 758 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 759 s64 steal = 0, irq_delta = 0; 760 #endif 761 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 762 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 763 764 /* 765 * Since irq_time is only updated on {soft,}irq_exit, we might run into 766 * this case when a previous update_rq_clock() happened inside a 767 * {soft,}irq region. 768 * 769 * When this happens, we stop ->clock_task and only update the 770 * prev_irq_time stamp to account for the part that fit, so that a next 771 * update will consume the rest. This ensures ->clock_task is 772 * monotonic. 773 * 774 * It does however cause some slight miss-attribution of {soft,}irq 775 * time, a more accurate solution would be to update the irq_time using 776 * the current rq->clock timestamp, except that would require using 777 * atomic ops. 778 */ 779 if (irq_delta > delta) 780 irq_delta = delta; 781 782 rq->prev_irq_time += irq_delta; 783 delta -= irq_delta; 784 #endif 785 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 786 if (static_key_false((¶virt_steal_rq_enabled))) { 787 u64 st; 788 789 steal = paravirt_steal_clock(cpu_of(rq)); 790 steal -= rq->prev_steal_time_rq; 791 792 if (unlikely(steal > delta)) 793 steal = delta; 794 795 st = steal_ticks(steal); 796 steal = st * TICK_NSEC; 797 798 rq->prev_steal_time_rq += steal; 799 800 delta -= steal; 801 } 802 #endif 803 804 rq->clock_task += delta; 805 806 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 807 if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) 808 sched_rt_avg_update(rq, irq_delta + steal); 809 #endif 810 } 811 812 void sched_set_stop_task(int cpu, struct task_struct *stop) 813 { 814 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 815 struct task_struct *old_stop = cpu_rq(cpu)->stop; 816 817 if (stop) { 818 /* 819 * Make it appear like a SCHED_FIFO task, its something 820 * userspace knows about and won't get confused about. 821 * 822 * Also, it will make PI more or less work without too 823 * much confusion -- but then, stop work should not 824 * rely on PI working anyway. 825 */ 826 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 827 828 stop->sched_class = &stop_sched_class; 829 } 830 831 cpu_rq(cpu)->stop = stop; 832 833 if (old_stop) { 834 /* 835 * Reset it back to a normal scheduling class so that 836 * it can die in pieces. 837 */ 838 old_stop->sched_class = &rt_sched_class; 839 } 840 } 841 842 /* 843 * __normal_prio - return the priority that is based on the static prio 844 */ 845 static inline int __normal_prio(struct task_struct *p) 846 { 847 return p->static_prio; 848 } 849 850 /* 851 * Calculate the expected normal priority: i.e. priority 852 * without taking RT-inheritance into account. Might be 853 * boosted by interactivity modifiers. Changes upon fork, 854 * setprio syscalls, and whenever the interactivity 855 * estimator recalculates. 856 */ 857 static inline int normal_prio(struct task_struct *p) 858 { 859 int prio; 860 861 if (task_has_rt_policy(p)) 862 prio = MAX_RT_PRIO-1 - p->rt_priority; 863 else 864 prio = __normal_prio(p); 865 return prio; 866 } 867 868 /* 869 * Calculate the current priority, i.e. the priority 870 * taken into account by the scheduler. This value might 871 * be boosted by RT tasks, or might be boosted by 872 * interactivity modifiers. Will be RT if the task got 873 * RT-boosted. If not then it returns p->normal_prio. 874 */ 875 static int effective_prio(struct task_struct *p) 876 { 877 p->normal_prio = normal_prio(p); 878 /* 879 * If we are RT tasks or we were boosted to RT priority, 880 * keep the priority unchanged. Otherwise, update priority 881 * to the normal priority: 882 */ 883 if (!rt_prio(p->prio)) 884 return p->normal_prio; 885 return p->prio; 886 } 887 888 /** 889 * task_curr - is this task currently executing on a CPU? 890 * @p: the task in question. 891 */ 892 inline int task_curr(const struct task_struct *p) 893 { 894 return cpu_curr(task_cpu(p)) == p; 895 } 896 897 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 898 const struct sched_class *prev_class, 899 int oldprio) 900 { 901 if (prev_class != p->sched_class) { 902 if (prev_class->switched_from) 903 prev_class->switched_from(rq, p); 904 p->sched_class->switched_to(rq, p); 905 } else if (oldprio != p->prio) 906 p->sched_class->prio_changed(rq, p, oldprio); 907 } 908 909 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 910 { 911 const struct sched_class *class; 912 913 if (p->sched_class == rq->curr->sched_class) { 914 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 915 } else { 916 for_each_class(class) { 917 if (class == rq->curr->sched_class) 918 break; 919 if (class == p->sched_class) { 920 resched_task(rq->curr); 921 break; 922 } 923 } 924 } 925 926 /* 927 * A queue event has occurred, and we're going to schedule. In 928 * this case, we can save a useless back to back clock update. 929 */ 930 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 931 rq->skip_clock_update = 1; 932 } 933 934 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier); 935 936 void register_task_migration_notifier(struct notifier_block *n) 937 { 938 atomic_notifier_chain_register(&task_migration_notifier, n); 939 } 940 941 #ifdef CONFIG_SMP 942 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 943 { 944 #ifdef CONFIG_SCHED_DEBUG 945 /* 946 * We should never call set_task_cpu() on a blocked task, 947 * ttwu() will sort out the placement. 948 */ 949 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 950 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); 951 952 #ifdef CONFIG_LOCKDEP 953 /* 954 * The caller should hold either p->pi_lock or rq->lock, when changing 955 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 956 * 957 * sched_move_task() holds both and thus holding either pins the cgroup, 958 * see task_group(). 959 * 960 * Furthermore, all task_rq users should acquire both locks, see 961 * task_rq_lock(). 962 */ 963 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 964 lockdep_is_held(&task_rq(p)->lock))); 965 #endif 966 #endif 967 968 trace_sched_migrate_task(p, new_cpu); 969 970 if (task_cpu(p) != new_cpu) { 971 struct task_migration_notifier tmn; 972 973 if (p->sched_class->migrate_task_rq) 974 p->sched_class->migrate_task_rq(p, new_cpu); 975 p->se.nr_migrations++; 976 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 977 978 tmn.task = p; 979 tmn.from_cpu = task_cpu(p); 980 tmn.to_cpu = new_cpu; 981 982 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn); 983 } 984 985 __set_task_cpu(p, new_cpu); 986 } 987 988 struct migration_arg { 989 struct task_struct *task; 990 int dest_cpu; 991 }; 992 993 static int migration_cpu_stop(void *data); 994 995 /* 996 * wait_task_inactive - wait for a thread to unschedule. 997 * 998 * If @match_state is nonzero, it's the @p->state value just checked and 999 * not expected to change. If it changes, i.e. @p might have woken up, 1000 * then return zero. When we succeed in waiting for @p to be off its CPU, 1001 * we return a positive number (its total switch count). If a second call 1002 * a short while later returns the same number, the caller can be sure that 1003 * @p has remained unscheduled the whole time. 1004 * 1005 * The caller must ensure that the task *will* unschedule sometime soon, 1006 * else this function might spin for a *long* time. This function can't 1007 * be called with interrupts off, or it may introduce deadlock with 1008 * smp_call_function() if an IPI is sent by the same process we are 1009 * waiting to become inactive. 1010 */ 1011 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1012 { 1013 unsigned long flags; 1014 int running, on_rq; 1015 unsigned long ncsw; 1016 struct rq *rq; 1017 1018 for (;;) { 1019 /* 1020 * We do the initial early heuristics without holding 1021 * any task-queue locks at all. We'll only try to get 1022 * the runqueue lock when things look like they will 1023 * work out! 1024 */ 1025 rq = task_rq(p); 1026 1027 /* 1028 * If the task is actively running on another CPU 1029 * still, just relax and busy-wait without holding 1030 * any locks. 1031 * 1032 * NOTE! Since we don't hold any locks, it's not 1033 * even sure that "rq" stays as the right runqueue! 1034 * But we don't care, since "task_running()" will 1035 * return false if the runqueue has changed and p 1036 * is actually now running somewhere else! 1037 */ 1038 while (task_running(rq, p)) { 1039 if (match_state && unlikely(p->state != match_state)) 1040 return 0; 1041 cpu_relax(); 1042 } 1043 1044 /* 1045 * Ok, time to look more closely! We need the rq 1046 * lock now, to be *sure*. If we're wrong, we'll 1047 * just go back and repeat. 1048 */ 1049 rq = task_rq_lock(p, &flags); 1050 trace_sched_wait_task(p); 1051 running = task_running(rq, p); 1052 on_rq = p->on_rq; 1053 ncsw = 0; 1054 if (!match_state || p->state == match_state) 1055 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1056 task_rq_unlock(rq, p, &flags); 1057 1058 /* 1059 * If it changed from the expected state, bail out now. 1060 */ 1061 if (unlikely(!ncsw)) 1062 break; 1063 1064 /* 1065 * Was it really running after all now that we 1066 * checked with the proper locks actually held? 1067 * 1068 * Oops. Go back and try again.. 1069 */ 1070 if (unlikely(running)) { 1071 cpu_relax(); 1072 continue; 1073 } 1074 1075 /* 1076 * It's not enough that it's not actively running, 1077 * it must be off the runqueue _entirely_, and not 1078 * preempted! 1079 * 1080 * So if it was still runnable (but just not actively 1081 * running right now), it's preempted, and we should 1082 * yield - it could be a while. 1083 */ 1084 if (unlikely(on_rq)) { 1085 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1086 1087 set_current_state(TASK_UNINTERRUPTIBLE); 1088 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1089 continue; 1090 } 1091 1092 /* 1093 * Ahh, all good. It wasn't running, and it wasn't 1094 * runnable, which means that it will never become 1095 * running in the future either. We're all done! 1096 */ 1097 break; 1098 } 1099 1100 return ncsw; 1101 } 1102 1103 /*** 1104 * kick_process - kick a running thread to enter/exit the kernel 1105 * @p: the to-be-kicked thread 1106 * 1107 * Cause a process which is running on another CPU to enter 1108 * kernel-mode, without any delay. (to get signals handled.) 1109 * 1110 * NOTE: this function doesn't have to take the runqueue lock, 1111 * because all it wants to ensure is that the remote task enters 1112 * the kernel. If the IPI races and the task has been migrated 1113 * to another CPU then no harm is done and the purpose has been 1114 * achieved as well. 1115 */ 1116 void kick_process(struct task_struct *p) 1117 { 1118 int cpu; 1119 1120 preempt_disable(); 1121 cpu = task_cpu(p); 1122 if ((cpu != smp_processor_id()) && task_curr(p)) 1123 smp_send_reschedule(cpu); 1124 preempt_enable(); 1125 } 1126 EXPORT_SYMBOL_GPL(kick_process); 1127 #endif /* CONFIG_SMP */ 1128 1129 #ifdef CONFIG_SMP 1130 /* 1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1132 */ 1133 static int select_fallback_rq(int cpu, struct task_struct *p) 1134 { 1135 int nid = cpu_to_node(cpu); 1136 const struct cpumask *nodemask = NULL; 1137 enum { cpuset, possible, fail } state = cpuset; 1138 int dest_cpu; 1139 1140 /* 1141 * If the node that the cpu is on has been offlined, cpu_to_node() 1142 * will return -1. There is no cpu on the node, and we should 1143 * select the cpu on the other node. 1144 */ 1145 if (nid != -1) { 1146 nodemask = cpumask_of_node(nid); 1147 1148 /* Look for allowed, online CPU in same node. */ 1149 for_each_cpu(dest_cpu, nodemask) { 1150 if (!cpu_online(dest_cpu)) 1151 continue; 1152 if (!cpu_active(dest_cpu)) 1153 continue; 1154 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1155 return dest_cpu; 1156 } 1157 } 1158 1159 for (;;) { 1160 /* Any allowed, online CPU? */ 1161 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1162 if (!cpu_online(dest_cpu)) 1163 continue; 1164 if (!cpu_active(dest_cpu)) 1165 continue; 1166 goto out; 1167 } 1168 1169 switch (state) { 1170 case cpuset: 1171 /* No more Mr. Nice Guy. */ 1172 cpuset_cpus_allowed_fallback(p); 1173 state = possible; 1174 break; 1175 1176 case possible: 1177 do_set_cpus_allowed(p, cpu_possible_mask); 1178 state = fail; 1179 break; 1180 1181 case fail: 1182 BUG(); 1183 break; 1184 } 1185 } 1186 1187 out: 1188 if (state != cpuset) { 1189 /* 1190 * Don't tell them about moving exiting tasks or 1191 * kernel threads (both mm NULL), since they never 1192 * leave kernel. 1193 */ 1194 if (p->mm && printk_ratelimit()) { 1195 printk_sched("process %d (%s) no longer affine to cpu%d\n", 1196 task_pid_nr(p), p->comm, cpu); 1197 } 1198 } 1199 1200 return dest_cpu; 1201 } 1202 1203 /* 1204 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1205 */ 1206 static inline 1207 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) 1208 { 1209 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); 1210 1211 /* 1212 * In order not to call set_task_cpu() on a blocking task we need 1213 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1214 * cpu. 1215 * 1216 * Since this is common to all placement strategies, this lives here. 1217 * 1218 * [ this allows ->select_task() to simply return task_cpu(p) and 1219 * not worry about this generic constraint ] 1220 */ 1221 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1222 !cpu_online(cpu))) 1223 cpu = select_fallback_rq(task_cpu(p), p); 1224 1225 return cpu; 1226 } 1227 1228 static void update_avg(u64 *avg, u64 sample) 1229 { 1230 s64 diff = sample - *avg; 1231 *avg += diff >> 3; 1232 } 1233 #endif 1234 1235 static void 1236 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1237 { 1238 #ifdef CONFIG_SCHEDSTATS 1239 struct rq *rq = this_rq(); 1240 1241 #ifdef CONFIG_SMP 1242 int this_cpu = smp_processor_id(); 1243 1244 if (cpu == this_cpu) { 1245 schedstat_inc(rq, ttwu_local); 1246 schedstat_inc(p, se.statistics.nr_wakeups_local); 1247 } else { 1248 struct sched_domain *sd; 1249 1250 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1251 rcu_read_lock(); 1252 for_each_domain(this_cpu, sd) { 1253 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1254 schedstat_inc(sd, ttwu_wake_remote); 1255 break; 1256 } 1257 } 1258 rcu_read_unlock(); 1259 } 1260 1261 if (wake_flags & WF_MIGRATED) 1262 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1263 1264 #endif /* CONFIG_SMP */ 1265 1266 schedstat_inc(rq, ttwu_count); 1267 schedstat_inc(p, se.statistics.nr_wakeups); 1268 1269 if (wake_flags & WF_SYNC) 1270 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1271 1272 #endif /* CONFIG_SCHEDSTATS */ 1273 } 1274 1275 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1276 { 1277 activate_task(rq, p, en_flags); 1278 p->on_rq = 1; 1279 1280 /* if a worker is waking up, notify workqueue */ 1281 if (p->flags & PF_WQ_WORKER) 1282 wq_worker_waking_up(p, cpu_of(rq)); 1283 } 1284 1285 /* 1286 * Mark the task runnable and perform wakeup-preemption. 1287 */ 1288 static void 1289 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1290 { 1291 trace_sched_wakeup(p, true); 1292 check_preempt_curr(rq, p, wake_flags); 1293 1294 p->state = TASK_RUNNING; 1295 #ifdef CONFIG_SMP 1296 if (p->sched_class->task_woken) 1297 p->sched_class->task_woken(rq, p); 1298 1299 if (rq->idle_stamp) { 1300 u64 delta = rq->clock - rq->idle_stamp; 1301 u64 max = 2*sysctl_sched_migration_cost; 1302 1303 if (delta > max) 1304 rq->avg_idle = max; 1305 else 1306 update_avg(&rq->avg_idle, delta); 1307 rq->idle_stamp = 0; 1308 } 1309 #endif 1310 } 1311 1312 static void 1313 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1314 { 1315 #ifdef CONFIG_SMP 1316 if (p->sched_contributes_to_load) 1317 rq->nr_uninterruptible--; 1318 #endif 1319 1320 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1321 ttwu_do_wakeup(rq, p, wake_flags); 1322 } 1323 1324 /* 1325 * Called in case the task @p isn't fully descheduled from its runqueue, 1326 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1327 * since all we need to do is flip p->state to TASK_RUNNING, since 1328 * the task is still ->on_rq. 1329 */ 1330 static int ttwu_remote(struct task_struct *p, int wake_flags) 1331 { 1332 struct rq *rq; 1333 int ret = 0; 1334 1335 rq = __task_rq_lock(p); 1336 if (p->on_rq) { 1337 ttwu_do_wakeup(rq, p, wake_flags); 1338 ret = 1; 1339 } 1340 __task_rq_unlock(rq); 1341 1342 return ret; 1343 } 1344 1345 #ifdef CONFIG_SMP 1346 static void sched_ttwu_pending(void) 1347 { 1348 struct rq *rq = this_rq(); 1349 struct llist_node *llist = llist_del_all(&rq->wake_list); 1350 struct task_struct *p; 1351 1352 raw_spin_lock(&rq->lock); 1353 1354 while (llist) { 1355 p = llist_entry(llist, struct task_struct, wake_entry); 1356 llist = llist_next(llist); 1357 ttwu_do_activate(rq, p, 0); 1358 } 1359 1360 raw_spin_unlock(&rq->lock); 1361 } 1362 1363 void scheduler_ipi(void) 1364 { 1365 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1366 return; 1367 1368 /* 1369 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1370 * traditionally all their work was done from the interrupt return 1371 * path. Now that we actually do some work, we need to make sure 1372 * we do call them. 1373 * 1374 * Some archs already do call them, luckily irq_enter/exit nest 1375 * properly. 1376 * 1377 * Arguably we should visit all archs and update all handlers, 1378 * however a fair share of IPIs are still resched only so this would 1379 * somewhat pessimize the simple resched case. 1380 */ 1381 irq_enter(); 1382 sched_ttwu_pending(); 1383 1384 /* 1385 * Check if someone kicked us for doing the nohz idle load balance. 1386 */ 1387 if (unlikely(got_nohz_idle_kick() && !need_resched())) { 1388 this_rq()->idle_balance = 1; 1389 raise_softirq_irqoff(SCHED_SOFTIRQ); 1390 } 1391 irq_exit(); 1392 } 1393 1394 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1395 { 1396 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) 1397 smp_send_reschedule(cpu); 1398 } 1399 1400 bool cpus_share_cache(int this_cpu, int that_cpu) 1401 { 1402 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1403 } 1404 #endif /* CONFIG_SMP */ 1405 1406 static void ttwu_queue(struct task_struct *p, int cpu) 1407 { 1408 struct rq *rq = cpu_rq(cpu); 1409 1410 #if defined(CONFIG_SMP) 1411 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1412 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1413 ttwu_queue_remote(p, cpu); 1414 return; 1415 } 1416 #endif 1417 1418 raw_spin_lock(&rq->lock); 1419 ttwu_do_activate(rq, p, 0); 1420 raw_spin_unlock(&rq->lock); 1421 } 1422 1423 /** 1424 * try_to_wake_up - wake up a thread 1425 * @p: the thread to be awakened 1426 * @state: the mask of task states that can be woken 1427 * @wake_flags: wake modifier flags (WF_*) 1428 * 1429 * Put it on the run-queue if it's not already there. The "current" 1430 * thread is always on the run-queue (except when the actual 1431 * re-schedule is in progress), and as such you're allowed to do 1432 * the simpler "current->state = TASK_RUNNING" to mark yourself 1433 * runnable without the overhead of this. 1434 * 1435 * Returns %true if @p was woken up, %false if it was already running 1436 * or @state didn't match @p's state. 1437 */ 1438 static int 1439 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1440 { 1441 unsigned long flags; 1442 int cpu, success = 0; 1443 1444 smp_wmb(); 1445 raw_spin_lock_irqsave(&p->pi_lock, flags); 1446 if (!(p->state & state)) 1447 goto out; 1448 1449 success = 1; /* we're going to change ->state */ 1450 cpu = task_cpu(p); 1451 1452 if (p->on_rq && ttwu_remote(p, wake_flags)) 1453 goto stat; 1454 1455 #ifdef CONFIG_SMP 1456 /* 1457 * If the owning (remote) cpu is still in the middle of schedule() with 1458 * this task as prev, wait until its done referencing the task. 1459 */ 1460 while (p->on_cpu) 1461 cpu_relax(); 1462 /* 1463 * Pairs with the smp_wmb() in finish_lock_switch(). 1464 */ 1465 smp_rmb(); 1466 1467 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1468 p->state = TASK_WAKING; 1469 1470 if (p->sched_class->task_waking) 1471 p->sched_class->task_waking(p); 1472 1473 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); 1474 if (task_cpu(p) != cpu) { 1475 wake_flags |= WF_MIGRATED; 1476 set_task_cpu(p, cpu); 1477 } 1478 #endif /* CONFIG_SMP */ 1479 1480 ttwu_queue(p, cpu); 1481 stat: 1482 ttwu_stat(p, cpu, wake_flags); 1483 out: 1484 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1485 1486 return success; 1487 } 1488 1489 /** 1490 * try_to_wake_up_local - try to wake up a local task with rq lock held 1491 * @p: the thread to be awakened 1492 * 1493 * Put @p on the run-queue if it's not already there. The caller must 1494 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1495 * the current task. 1496 */ 1497 static void try_to_wake_up_local(struct task_struct *p) 1498 { 1499 struct rq *rq = task_rq(p); 1500 1501 if (WARN_ON_ONCE(rq != this_rq()) || 1502 WARN_ON_ONCE(p == current)) 1503 return; 1504 1505 lockdep_assert_held(&rq->lock); 1506 1507 if (!raw_spin_trylock(&p->pi_lock)) { 1508 raw_spin_unlock(&rq->lock); 1509 raw_spin_lock(&p->pi_lock); 1510 raw_spin_lock(&rq->lock); 1511 } 1512 1513 if (!(p->state & TASK_NORMAL)) 1514 goto out; 1515 1516 if (!p->on_rq) 1517 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1518 1519 ttwu_do_wakeup(rq, p, 0); 1520 ttwu_stat(p, smp_processor_id(), 0); 1521 out: 1522 raw_spin_unlock(&p->pi_lock); 1523 } 1524 1525 /** 1526 * wake_up_process - Wake up a specific process 1527 * @p: The process to be woken up. 1528 * 1529 * Attempt to wake up the nominated process and move it to the set of runnable 1530 * processes. Returns 1 if the process was woken up, 0 if it was already 1531 * running. 1532 * 1533 * It may be assumed that this function implies a write memory barrier before 1534 * changing the task state if and only if any tasks are woken up. 1535 */ 1536 int wake_up_process(struct task_struct *p) 1537 { 1538 WARN_ON(task_is_stopped_or_traced(p)); 1539 return try_to_wake_up(p, TASK_NORMAL, 0); 1540 } 1541 EXPORT_SYMBOL(wake_up_process); 1542 1543 int wake_up_state(struct task_struct *p, unsigned int state) 1544 { 1545 return try_to_wake_up(p, state, 0); 1546 } 1547 1548 /* 1549 * Perform scheduler related setup for a newly forked process p. 1550 * p is forked by current. 1551 * 1552 * __sched_fork() is basic setup used by init_idle() too: 1553 */ 1554 static void __sched_fork(struct task_struct *p) 1555 { 1556 p->on_rq = 0; 1557 1558 p->se.on_rq = 0; 1559 p->se.exec_start = 0; 1560 p->se.sum_exec_runtime = 0; 1561 p->se.prev_sum_exec_runtime = 0; 1562 p->se.nr_migrations = 0; 1563 p->se.vruntime = 0; 1564 INIT_LIST_HEAD(&p->se.group_node); 1565 1566 /* 1567 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be 1568 * removed when useful for applications beyond shares distribution (e.g. 1569 * load-balance). 1570 */ 1571 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED) 1572 p->se.avg.runnable_avg_period = 0; 1573 p->se.avg.runnable_avg_sum = 0; 1574 #endif 1575 #ifdef CONFIG_SCHEDSTATS 1576 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1577 #endif 1578 1579 INIT_LIST_HEAD(&p->rt.run_list); 1580 1581 #ifdef CONFIG_PREEMPT_NOTIFIERS 1582 INIT_HLIST_HEAD(&p->preempt_notifiers); 1583 #endif 1584 1585 #ifdef CONFIG_NUMA_BALANCING 1586 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1587 p->mm->numa_next_scan = jiffies; 1588 p->mm->numa_next_reset = jiffies; 1589 p->mm->numa_scan_seq = 0; 1590 } 1591 1592 p->node_stamp = 0ULL; 1593 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1594 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0; 1595 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1596 p->numa_work.next = &p->numa_work; 1597 #endif /* CONFIG_NUMA_BALANCING */ 1598 } 1599 1600 #ifdef CONFIG_NUMA_BALANCING 1601 #ifdef CONFIG_SCHED_DEBUG 1602 void set_numabalancing_state(bool enabled) 1603 { 1604 if (enabled) 1605 sched_feat_set("NUMA"); 1606 else 1607 sched_feat_set("NO_NUMA"); 1608 } 1609 #else 1610 __read_mostly bool numabalancing_enabled; 1611 1612 void set_numabalancing_state(bool enabled) 1613 { 1614 numabalancing_enabled = enabled; 1615 } 1616 #endif /* CONFIG_SCHED_DEBUG */ 1617 #endif /* CONFIG_NUMA_BALANCING */ 1618 1619 /* 1620 * fork()/clone()-time setup: 1621 */ 1622 void sched_fork(struct task_struct *p) 1623 { 1624 unsigned long flags; 1625 int cpu = get_cpu(); 1626 1627 __sched_fork(p); 1628 /* 1629 * We mark the process as running here. This guarantees that 1630 * nobody will actually run it, and a signal or other external 1631 * event cannot wake it up and insert it on the runqueue either. 1632 */ 1633 p->state = TASK_RUNNING; 1634 1635 /* 1636 * Make sure we do not leak PI boosting priority to the child. 1637 */ 1638 p->prio = current->normal_prio; 1639 1640 /* 1641 * Revert to default priority/policy on fork if requested. 1642 */ 1643 if (unlikely(p->sched_reset_on_fork)) { 1644 if (task_has_rt_policy(p)) { 1645 p->policy = SCHED_NORMAL; 1646 p->static_prio = NICE_TO_PRIO(0); 1647 p->rt_priority = 0; 1648 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1649 p->static_prio = NICE_TO_PRIO(0); 1650 1651 p->prio = p->normal_prio = __normal_prio(p); 1652 set_load_weight(p); 1653 1654 /* 1655 * We don't need the reset flag anymore after the fork. It has 1656 * fulfilled its duty: 1657 */ 1658 p->sched_reset_on_fork = 0; 1659 } 1660 1661 if (!rt_prio(p->prio)) 1662 p->sched_class = &fair_sched_class; 1663 1664 if (p->sched_class->task_fork) 1665 p->sched_class->task_fork(p); 1666 1667 /* 1668 * The child is not yet in the pid-hash so no cgroup attach races, 1669 * and the cgroup is pinned to this child due to cgroup_fork() 1670 * is ran before sched_fork(). 1671 * 1672 * Silence PROVE_RCU. 1673 */ 1674 raw_spin_lock_irqsave(&p->pi_lock, flags); 1675 set_task_cpu(p, cpu); 1676 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1677 1678 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1679 if (likely(sched_info_on())) 1680 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1681 #endif 1682 #if defined(CONFIG_SMP) 1683 p->on_cpu = 0; 1684 #endif 1685 #ifdef CONFIG_PREEMPT_COUNT 1686 /* Want to start with kernel preemption disabled. */ 1687 task_thread_info(p)->preempt_count = 1; 1688 #endif 1689 #ifdef CONFIG_SMP 1690 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1691 #endif 1692 1693 put_cpu(); 1694 } 1695 1696 /* 1697 * wake_up_new_task - wake up a newly created task for the first time. 1698 * 1699 * This function will do some initial scheduler statistics housekeeping 1700 * that must be done for every newly created context, then puts the task 1701 * on the runqueue and wakes it. 1702 */ 1703 void wake_up_new_task(struct task_struct *p) 1704 { 1705 unsigned long flags; 1706 struct rq *rq; 1707 1708 raw_spin_lock_irqsave(&p->pi_lock, flags); 1709 #ifdef CONFIG_SMP 1710 /* 1711 * Fork balancing, do it here and not earlier because: 1712 * - cpus_allowed can change in the fork path 1713 * - any previously selected cpu might disappear through hotplug 1714 */ 1715 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0)); 1716 #endif 1717 1718 rq = __task_rq_lock(p); 1719 activate_task(rq, p, 0); 1720 p->on_rq = 1; 1721 trace_sched_wakeup_new(p, true); 1722 check_preempt_curr(rq, p, WF_FORK); 1723 #ifdef CONFIG_SMP 1724 if (p->sched_class->task_woken) 1725 p->sched_class->task_woken(rq, p); 1726 #endif 1727 task_rq_unlock(rq, p, &flags); 1728 } 1729 1730 #ifdef CONFIG_PREEMPT_NOTIFIERS 1731 1732 /** 1733 * preempt_notifier_register - tell me when current is being preempted & rescheduled 1734 * @notifier: notifier struct to register 1735 */ 1736 void preempt_notifier_register(struct preempt_notifier *notifier) 1737 { 1738 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 1739 } 1740 EXPORT_SYMBOL_GPL(preempt_notifier_register); 1741 1742 /** 1743 * preempt_notifier_unregister - no longer interested in preemption notifications 1744 * @notifier: notifier struct to unregister 1745 * 1746 * This is safe to call from within a preemption notifier. 1747 */ 1748 void preempt_notifier_unregister(struct preempt_notifier *notifier) 1749 { 1750 hlist_del(¬ifier->link); 1751 } 1752 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 1753 1754 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1755 { 1756 struct preempt_notifier *notifier; 1757 1758 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 1759 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 1760 } 1761 1762 static void 1763 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1764 struct task_struct *next) 1765 { 1766 struct preempt_notifier *notifier; 1767 1768 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 1769 notifier->ops->sched_out(notifier, next); 1770 } 1771 1772 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 1773 1774 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1775 { 1776 } 1777 1778 static void 1779 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1780 struct task_struct *next) 1781 { 1782 } 1783 1784 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 1785 1786 /** 1787 * prepare_task_switch - prepare to switch tasks 1788 * @rq: the runqueue preparing to switch 1789 * @prev: the current task that is being switched out 1790 * @next: the task we are going to switch to. 1791 * 1792 * This is called with the rq lock held and interrupts off. It must 1793 * be paired with a subsequent finish_task_switch after the context 1794 * switch. 1795 * 1796 * prepare_task_switch sets up locking and calls architecture specific 1797 * hooks. 1798 */ 1799 static inline void 1800 prepare_task_switch(struct rq *rq, struct task_struct *prev, 1801 struct task_struct *next) 1802 { 1803 trace_sched_switch(prev, next); 1804 sched_info_switch(prev, next); 1805 perf_event_task_sched_out(prev, next); 1806 fire_sched_out_preempt_notifiers(prev, next); 1807 prepare_lock_switch(rq, next); 1808 prepare_arch_switch(next); 1809 } 1810 1811 /** 1812 * finish_task_switch - clean up after a task-switch 1813 * @rq: runqueue associated with task-switch 1814 * @prev: the thread we just switched away from. 1815 * 1816 * finish_task_switch must be called after the context switch, paired 1817 * with a prepare_task_switch call before the context switch. 1818 * finish_task_switch will reconcile locking set up by prepare_task_switch, 1819 * and do any other architecture-specific cleanup actions. 1820 * 1821 * Note that we may have delayed dropping an mm in context_switch(). If 1822 * so, we finish that here outside of the runqueue lock. (Doing it 1823 * with the lock held can cause deadlocks; see schedule() for 1824 * details.) 1825 */ 1826 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 1827 __releases(rq->lock) 1828 { 1829 struct mm_struct *mm = rq->prev_mm; 1830 long prev_state; 1831 1832 rq->prev_mm = NULL; 1833 1834 /* 1835 * A task struct has one reference for the use as "current". 1836 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 1837 * schedule one last time. The schedule call will never return, and 1838 * the scheduled task must drop that reference. 1839 * The test for TASK_DEAD must occur while the runqueue locks are 1840 * still held, otherwise prev could be scheduled on another cpu, die 1841 * there before we look at prev->state, and then the reference would 1842 * be dropped twice. 1843 * Manfred Spraul <manfred@colorfullife.com> 1844 */ 1845 prev_state = prev->state; 1846 vtime_task_switch(prev); 1847 finish_arch_switch(prev); 1848 perf_event_task_sched_in(prev, current); 1849 finish_lock_switch(rq, prev); 1850 finish_arch_post_lock_switch(); 1851 1852 fire_sched_in_preempt_notifiers(current); 1853 if (mm) 1854 mmdrop(mm); 1855 if (unlikely(prev_state == TASK_DEAD)) { 1856 /* 1857 * Remove function-return probe instances associated with this 1858 * task and put them back on the free list. 1859 */ 1860 kprobe_flush_task(prev); 1861 put_task_struct(prev); 1862 } 1863 } 1864 1865 #ifdef CONFIG_SMP 1866 1867 /* assumes rq->lock is held */ 1868 static inline void pre_schedule(struct rq *rq, struct task_struct *prev) 1869 { 1870 if (prev->sched_class->pre_schedule) 1871 prev->sched_class->pre_schedule(rq, prev); 1872 } 1873 1874 /* rq->lock is NOT held, but preemption is disabled */ 1875 static inline void post_schedule(struct rq *rq) 1876 { 1877 if (rq->post_schedule) { 1878 unsigned long flags; 1879 1880 raw_spin_lock_irqsave(&rq->lock, flags); 1881 if (rq->curr->sched_class->post_schedule) 1882 rq->curr->sched_class->post_schedule(rq); 1883 raw_spin_unlock_irqrestore(&rq->lock, flags); 1884 1885 rq->post_schedule = 0; 1886 } 1887 } 1888 1889 #else 1890 1891 static inline void pre_schedule(struct rq *rq, struct task_struct *p) 1892 { 1893 } 1894 1895 static inline void post_schedule(struct rq *rq) 1896 { 1897 } 1898 1899 #endif 1900 1901 /** 1902 * schedule_tail - first thing a freshly forked thread must call. 1903 * @prev: the thread we just switched away from. 1904 */ 1905 asmlinkage void schedule_tail(struct task_struct *prev) 1906 __releases(rq->lock) 1907 { 1908 struct rq *rq = this_rq(); 1909 1910 finish_task_switch(rq, prev); 1911 1912 /* 1913 * FIXME: do we need to worry about rq being invalidated by the 1914 * task_switch? 1915 */ 1916 post_schedule(rq); 1917 1918 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 1919 /* In this case, finish_task_switch does not reenable preemption */ 1920 preempt_enable(); 1921 #endif 1922 if (current->set_child_tid) 1923 put_user(task_pid_vnr(current), current->set_child_tid); 1924 } 1925 1926 /* 1927 * context_switch - switch to the new MM and the new 1928 * thread's register state. 1929 */ 1930 static inline void 1931 context_switch(struct rq *rq, struct task_struct *prev, 1932 struct task_struct *next) 1933 { 1934 struct mm_struct *mm, *oldmm; 1935 1936 prepare_task_switch(rq, prev, next); 1937 1938 mm = next->mm; 1939 oldmm = prev->active_mm; 1940 /* 1941 * For paravirt, this is coupled with an exit in switch_to to 1942 * combine the page table reload and the switch backend into 1943 * one hypercall. 1944 */ 1945 arch_start_context_switch(prev); 1946 1947 if (!mm) { 1948 next->active_mm = oldmm; 1949 atomic_inc(&oldmm->mm_count); 1950 enter_lazy_tlb(oldmm, next); 1951 } else 1952 switch_mm(oldmm, mm, next); 1953 1954 if (!prev->mm) { 1955 prev->active_mm = NULL; 1956 rq->prev_mm = oldmm; 1957 } 1958 /* 1959 * Since the runqueue lock will be released by the next 1960 * task (which is an invalid locking op but in the case 1961 * of the scheduler it's an obvious special-case), so we 1962 * do an early lockdep release here: 1963 */ 1964 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 1965 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 1966 #endif 1967 1968 context_tracking_task_switch(prev, next); 1969 /* Here we just switch the register state and the stack. */ 1970 switch_to(prev, next, prev); 1971 1972 barrier(); 1973 /* 1974 * this_rq must be evaluated again because prev may have moved 1975 * CPUs since it called schedule(), thus the 'rq' on its stack 1976 * frame will be invalid. 1977 */ 1978 finish_task_switch(this_rq(), prev); 1979 } 1980 1981 /* 1982 * nr_running and nr_context_switches: 1983 * 1984 * externally visible scheduler statistics: current number of runnable 1985 * threads, total number of context switches performed since bootup. 1986 */ 1987 unsigned long nr_running(void) 1988 { 1989 unsigned long i, sum = 0; 1990 1991 for_each_online_cpu(i) 1992 sum += cpu_rq(i)->nr_running; 1993 1994 return sum; 1995 } 1996 1997 unsigned long long nr_context_switches(void) 1998 { 1999 int i; 2000 unsigned long long sum = 0; 2001 2002 for_each_possible_cpu(i) 2003 sum += cpu_rq(i)->nr_switches; 2004 2005 return sum; 2006 } 2007 2008 unsigned long nr_iowait(void) 2009 { 2010 unsigned long i, sum = 0; 2011 2012 for_each_possible_cpu(i) 2013 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2014 2015 return sum; 2016 } 2017 2018 unsigned long nr_iowait_cpu(int cpu) 2019 { 2020 struct rq *this = cpu_rq(cpu); 2021 return atomic_read(&this->nr_iowait); 2022 } 2023 2024 unsigned long this_cpu_load(void) 2025 { 2026 struct rq *this = this_rq(); 2027 return this->cpu_load[0]; 2028 } 2029 2030 2031 /* 2032 * Global load-average calculations 2033 * 2034 * We take a distributed and async approach to calculating the global load-avg 2035 * in order to minimize overhead. 2036 * 2037 * The global load average is an exponentially decaying average of nr_running + 2038 * nr_uninterruptible. 2039 * 2040 * Once every LOAD_FREQ: 2041 * 2042 * nr_active = 0; 2043 * for_each_possible_cpu(cpu) 2044 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible; 2045 * 2046 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n) 2047 * 2048 * Due to a number of reasons the above turns in the mess below: 2049 * 2050 * - for_each_possible_cpu() is prohibitively expensive on machines with 2051 * serious number of cpus, therefore we need to take a distributed approach 2052 * to calculating nr_active. 2053 * 2054 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0 2055 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) } 2056 * 2057 * So assuming nr_active := 0 when we start out -- true per definition, we 2058 * can simply take per-cpu deltas and fold those into a global accumulate 2059 * to obtain the same result. See calc_load_fold_active(). 2060 * 2061 * Furthermore, in order to avoid synchronizing all per-cpu delta folding 2062 * across the machine, we assume 10 ticks is sufficient time for every 2063 * cpu to have completed this task. 2064 * 2065 * This places an upper-bound on the IRQ-off latency of the machine. Then 2066 * again, being late doesn't loose the delta, just wrecks the sample. 2067 * 2068 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because 2069 * this would add another cross-cpu cacheline miss and atomic operation 2070 * to the wakeup path. Instead we increment on whatever cpu the task ran 2071 * when it went into uninterruptible state and decrement on whatever cpu 2072 * did the wakeup. This means that only the sum of nr_uninterruptible over 2073 * all cpus yields the correct result. 2074 * 2075 * This covers the NO_HZ=n code, for extra head-aches, see the comment below. 2076 */ 2077 2078 /* Variables and functions for calc_load */ 2079 static atomic_long_t calc_load_tasks; 2080 static unsigned long calc_load_update; 2081 unsigned long avenrun[3]; 2082 EXPORT_SYMBOL(avenrun); /* should be removed */ 2083 2084 /** 2085 * get_avenrun - get the load average array 2086 * @loads: pointer to dest load array 2087 * @offset: offset to add 2088 * @shift: shift count to shift the result left 2089 * 2090 * These values are estimates at best, so no need for locking. 2091 */ 2092 void get_avenrun(unsigned long *loads, unsigned long offset, int shift) 2093 { 2094 loads[0] = (avenrun[0] + offset) << shift; 2095 loads[1] = (avenrun[1] + offset) << shift; 2096 loads[2] = (avenrun[2] + offset) << shift; 2097 } 2098 2099 static long calc_load_fold_active(struct rq *this_rq) 2100 { 2101 long nr_active, delta = 0; 2102 2103 nr_active = this_rq->nr_running; 2104 nr_active += (long) this_rq->nr_uninterruptible; 2105 2106 if (nr_active != this_rq->calc_load_active) { 2107 delta = nr_active - this_rq->calc_load_active; 2108 this_rq->calc_load_active = nr_active; 2109 } 2110 2111 return delta; 2112 } 2113 2114 /* 2115 * a1 = a0 * e + a * (1 - e) 2116 */ 2117 static unsigned long 2118 calc_load(unsigned long load, unsigned long exp, unsigned long active) 2119 { 2120 load *= exp; 2121 load += active * (FIXED_1 - exp); 2122 load += 1UL << (FSHIFT - 1); 2123 return load >> FSHIFT; 2124 } 2125 2126 #ifdef CONFIG_NO_HZ 2127 /* 2128 * Handle NO_HZ for the global load-average. 2129 * 2130 * Since the above described distributed algorithm to compute the global 2131 * load-average relies on per-cpu sampling from the tick, it is affected by 2132 * NO_HZ. 2133 * 2134 * The basic idea is to fold the nr_active delta into a global idle-delta upon 2135 * entering NO_HZ state such that we can include this as an 'extra' cpu delta 2136 * when we read the global state. 2137 * 2138 * Obviously reality has to ruin such a delightfully simple scheme: 2139 * 2140 * - When we go NO_HZ idle during the window, we can negate our sample 2141 * contribution, causing under-accounting. 2142 * 2143 * We avoid this by keeping two idle-delta counters and flipping them 2144 * when the window starts, thus separating old and new NO_HZ load. 2145 * 2146 * The only trick is the slight shift in index flip for read vs write. 2147 * 2148 * 0s 5s 10s 15s 2149 * +10 +10 +10 +10 2150 * |-|-----------|-|-----------|-|-----------|-| 2151 * r:0 0 1 1 0 0 1 1 0 2152 * w:0 1 1 0 0 1 1 0 0 2153 * 2154 * This ensures we'll fold the old idle contribution in this window while 2155 * accumlating the new one. 2156 * 2157 * - When we wake up from NO_HZ idle during the window, we push up our 2158 * contribution, since we effectively move our sample point to a known 2159 * busy state. 2160 * 2161 * This is solved by pushing the window forward, and thus skipping the 2162 * sample, for this cpu (effectively using the idle-delta for this cpu which 2163 * was in effect at the time the window opened). This also solves the issue 2164 * of having to deal with a cpu having been in NOHZ idle for multiple 2165 * LOAD_FREQ intervals. 2166 * 2167 * When making the ILB scale, we should try to pull this in as well. 2168 */ 2169 static atomic_long_t calc_load_idle[2]; 2170 static int calc_load_idx; 2171 2172 static inline int calc_load_write_idx(void) 2173 { 2174 int idx = calc_load_idx; 2175 2176 /* 2177 * See calc_global_nohz(), if we observe the new index, we also 2178 * need to observe the new update time. 2179 */ 2180 smp_rmb(); 2181 2182 /* 2183 * If the folding window started, make sure we start writing in the 2184 * next idle-delta. 2185 */ 2186 if (!time_before(jiffies, calc_load_update)) 2187 idx++; 2188 2189 return idx & 1; 2190 } 2191 2192 static inline int calc_load_read_idx(void) 2193 { 2194 return calc_load_idx & 1; 2195 } 2196 2197 void calc_load_enter_idle(void) 2198 { 2199 struct rq *this_rq = this_rq(); 2200 long delta; 2201 2202 /* 2203 * We're going into NOHZ mode, if there's any pending delta, fold it 2204 * into the pending idle delta. 2205 */ 2206 delta = calc_load_fold_active(this_rq); 2207 if (delta) { 2208 int idx = calc_load_write_idx(); 2209 atomic_long_add(delta, &calc_load_idle[idx]); 2210 } 2211 } 2212 2213 void calc_load_exit_idle(void) 2214 { 2215 struct rq *this_rq = this_rq(); 2216 2217 /* 2218 * If we're still before the sample window, we're done. 2219 */ 2220 if (time_before(jiffies, this_rq->calc_load_update)) 2221 return; 2222 2223 /* 2224 * We woke inside or after the sample window, this means we're already 2225 * accounted through the nohz accounting, so skip the entire deal and 2226 * sync up for the next window. 2227 */ 2228 this_rq->calc_load_update = calc_load_update; 2229 if (time_before(jiffies, this_rq->calc_load_update + 10)) 2230 this_rq->calc_load_update += LOAD_FREQ; 2231 } 2232 2233 static long calc_load_fold_idle(void) 2234 { 2235 int idx = calc_load_read_idx(); 2236 long delta = 0; 2237 2238 if (atomic_long_read(&calc_load_idle[idx])) 2239 delta = atomic_long_xchg(&calc_load_idle[idx], 0); 2240 2241 return delta; 2242 } 2243 2244 /** 2245 * fixed_power_int - compute: x^n, in O(log n) time 2246 * 2247 * @x: base of the power 2248 * @frac_bits: fractional bits of @x 2249 * @n: power to raise @x to. 2250 * 2251 * By exploiting the relation between the definition of the natural power 2252 * function: x^n := x*x*...*x (x multiplied by itself for n times), and 2253 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, 2254 * (where: n_i \elem {0, 1}, the binary vector representing n), 2255 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is 2256 * of course trivially computable in O(log_2 n), the length of our binary 2257 * vector. 2258 */ 2259 static unsigned long 2260 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) 2261 { 2262 unsigned long result = 1UL << frac_bits; 2263 2264 if (n) for (;;) { 2265 if (n & 1) { 2266 result *= x; 2267 result += 1UL << (frac_bits - 1); 2268 result >>= frac_bits; 2269 } 2270 n >>= 1; 2271 if (!n) 2272 break; 2273 x *= x; 2274 x += 1UL << (frac_bits - 1); 2275 x >>= frac_bits; 2276 } 2277 2278 return result; 2279 } 2280 2281 /* 2282 * a1 = a0 * e + a * (1 - e) 2283 * 2284 * a2 = a1 * e + a * (1 - e) 2285 * = (a0 * e + a * (1 - e)) * e + a * (1 - e) 2286 * = a0 * e^2 + a * (1 - e) * (1 + e) 2287 * 2288 * a3 = a2 * e + a * (1 - e) 2289 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) 2290 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) 2291 * 2292 * ... 2293 * 2294 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] 2295 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) 2296 * = a0 * e^n + a * (1 - e^n) 2297 * 2298 * [1] application of the geometric series: 2299 * 2300 * n 1 - x^(n+1) 2301 * S_n := \Sum x^i = ------------- 2302 * i=0 1 - x 2303 */ 2304 static unsigned long 2305 calc_load_n(unsigned long load, unsigned long exp, 2306 unsigned long active, unsigned int n) 2307 { 2308 2309 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); 2310 } 2311 2312 /* 2313 * NO_HZ can leave us missing all per-cpu ticks calling 2314 * calc_load_account_active(), but since an idle CPU folds its delta into 2315 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold 2316 * in the pending idle delta if our idle period crossed a load cycle boundary. 2317 * 2318 * Once we've updated the global active value, we need to apply the exponential 2319 * weights adjusted to the number of cycles missed. 2320 */ 2321 static void calc_global_nohz(void) 2322 { 2323 long delta, active, n; 2324 2325 if (!time_before(jiffies, calc_load_update + 10)) { 2326 /* 2327 * Catch-up, fold however many we are behind still 2328 */ 2329 delta = jiffies - calc_load_update - 10; 2330 n = 1 + (delta / LOAD_FREQ); 2331 2332 active = atomic_long_read(&calc_load_tasks); 2333 active = active > 0 ? active * FIXED_1 : 0; 2334 2335 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); 2336 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); 2337 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); 2338 2339 calc_load_update += n * LOAD_FREQ; 2340 } 2341 2342 /* 2343 * Flip the idle index... 2344 * 2345 * Make sure we first write the new time then flip the index, so that 2346 * calc_load_write_idx() will see the new time when it reads the new 2347 * index, this avoids a double flip messing things up. 2348 */ 2349 smp_wmb(); 2350 calc_load_idx++; 2351 } 2352 #else /* !CONFIG_NO_HZ */ 2353 2354 static inline long calc_load_fold_idle(void) { return 0; } 2355 static inline void calc_global_nohz(void) { } 2356 2357 #endif /* CONFIG_NO_HZ */ 2358 2359 /* 2360 * calc_load - update the avenrun load estimates 10 ticks after the 2361 * CPUs have updated calc_load_tasks. 2362 */ 2363 void calc_global_load(unsigned long ticks) 2364 { 2365 long active, delta; 2366 2367 if (time_before(jiffies, calc_load_update + 10)) 2368 return; 2369 2370 /* 2371 * Fold the 'old' idle-delta to include all NO_HZ cpus. 2372 */ 2373 delta = calc_load_fold_idle(); 2374 if (delta) 2375 atomic_long_add(delta, &calc_load_tasks); 2376 2377 active = atomic_long_read(&calc_load_tasks); 2378 active = active > 0 ? active * FIXED_1 : 0; 2379 2380 avenrun[0] = calc_load(avenrun[0], EXP_1, active); 2381 avenrun[1] = calc_load(avenrun[1], EXP_5, active); 2382 avenrun[2] = calc_load(avenrun[2], EXP_15, active); 2383 2384 calc_load_update += LOAD_FREQ; 2385 2386 /* 2387 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk. 2388 */ 2389 calc_global_nohz(); 2390 } 2391 2392 /* 2393 * Called from update_cpu_load() to periodically update this CPU's 2394 * active count. 2395 */ 2396 static void calc_load_account_active(struct rq *this_rq) 2397 { 2398 long delta; 2399 2400 if (time_before(jiffies, this_rq->calc_load_update)) 2401 return; 2402 2403 delta = calc_load_fold_active(this_rq); 2404 if (delta) 2405 atomic_long_add(delta, &calc_load_tasks); 2406 2407 this_rq->calc_load_update += LOAD_FREQ; 2408 } 2409 2410 /* 2411 * End of global load-average stuff 2412 */ 2413 2414 /* 2415 * The exact cpuload at various idx values, calculated at every tick would be 2416 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load 2417 * 2418 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called 2419 * on nth tick when cpu may be busy, then we have: 2420 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2421 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load 2422 * 2423 * decay_load_missed() below does efficient calculation of 2424 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2425 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load 2426 * 2427 * The calculation is approximated on a 128 point scale. 2428 * degrade_zero_ticks is the number of ticks after which load at any 2429 * particular idx is approximated to be zero. 2430 * degrade_factor is a precomputed table, a row for each load idx. 2431 * Each column corresponds to degradation factor for a power of two ticks, 2432 * based on 128 point scale. 2433 * Example: 2434 * row 2, col 3 (=12) says that the degradation at load idx 2 after 2435 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). 2436 * 2437 * With this power of 2 load factors, we can degrade the load n times 2438 * by looking at 1 bits in n and doing as many mult/shift instead of 2439 * n mult/shifts needed by the exact degradation. 2440 */ 2441 #define DEGRADE_SHIFT 7 2442 static const unsigned char 2443 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 2444 static const unsigned char 2445 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 2446 {0, 0, 0, 0, 0, 0, 0, 0}, 2447 {64, 32, 8, 0, 0, 0, 0, 0}, 2448 {96, 72, 40, 12, 1, 0, 0}, 2449 {112, 98, 75, 43, 15, 1, 0}, 2450 {120, 112, 98, 76, 45, 16, 2} }; 2451 2452 /* 2453 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 2454 * would be when CPU is idle and so we just decay the old load without 2455 * adding any new load. 2456 */ 2457 static unsigned long 2458 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 2459 { 2460 int j = 0; 2461 2462 if (!missed_updates) 2463 return load; 2464 2465 if (missed_updates >= degrade_zero_ticks[idx]) 2466 return 0; 2467 2468 if (idx == 1) 2469 return load >> missed_updates; 2470 2471 while (missed_updates) { 2472 if (missed_updates % 2) 2473 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 2474 2475 missed_updates >>= 1; 2476 j++; 2477 } 2478 return load; 2479 } 2480 2481 /* 2482 * Update rq->cpu_load[] statistics. This function is usually called every 2483 * scheduler tick (TICK_NSEC). With tickless idle this will not be called 2484 * every tick. We fix it up based on jiffies. 2485 */ 2486 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load, 2487 unsigned long pending_updates) 2488 { 2489 int i, scale; 2490 2491 this_rq->nr_load_updates++; 2492 2493 /* Update our load: */ 2494 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 2495 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 2496 unsigned long old_load, new_load; 2497 2498 /* scale is effectively 1 << i now, and >> i divides by scale */ 2499 2500 old_load = this_rq->cpu_load[i]; 2501 old_load = decay_load_missed(old_load, pending_updates - 1, i); 2502 new_load = this_load; 2503 /* 2504 * Round up the averaging division if load is increasing. This 2505 * prevents us from getting stuck on 9 if the load is 10, for 2506 * example. 2507 */ 2508 if (new_load > old_load) 2509 new_load += scale - 1; 2510 2511 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 2512 } 2513 2514 sched_avg_update(this_rq); 2515 } 2516 2517 #ifdef CONFIG_NO_HZ 2518 /* 2519 * There is no sane way to deal with nohz on smp when using jiffies because the 2520 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 2521 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 2522 * 2523 * Therefore we cannot use the delta approach from the regular tick since that 2524 * would seriously skew the load calculation. However we'll make do for those 2525 * updates happening while idle (nohz_idle_balance) or coming out of idle 2526 * (tick_nohz_idle_exit). 2527 * 2528 * This means we might still be one tick off for nohz periods. 2529 */ 2530 2531 /* 2532 * Called from nohz_idle_balance() to update the load ratings before doing the 2533 * idle balance. 2534 */ 2535 void update_idle_cpu_load(struct rq *this_rq) 2536 { 2537 unsigned long curr_jiffies = ACCESS_ONCE(jiffies); 2538 unsigned long load = this_rq->load.weight; 2539 unsigned long pending_updates; 2540 2541 /* 2542 * bail if there's load or we're actually up-to-date. 2543 */ 2544 if (load || curr_jiffies == this_rq->last_load_update_tick) 2545 return; 2546 2547 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2548 this_rq->last_load_update_tick = curr_jiffies; 2549 2550 __update_cpu_load(this_rq, load, pending_updates); 2551 } 2552 2553 /* 2554 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed. 2555 */ 2556 void update_cpu_load_nohz(void) 2557 { 2558 struct rq *this_rq = this_rq(); 2559 unsigned long curr_jiffies = ACCESS_ONCE(jiffies); 2560 unsigned long pending_updates; 2561 2562 if (curr_jiffies == this_rq->last_load_update_tick) 2563 return; 2564 2565 raw_spin_lock(&this_rq->lock); 2566 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2567 if (pending_updates) { 2568 this_rq->last_load_update_tick = curr_jiffies; 2569 /* 2570 * We were idle, this means load 0, the current load might be 2571 * !0 due to remote wakeups and the sort. 2572 */ 2573 __update_cpu_load(this_rq, 0, pending_updates); 2574 } 2575 raw_spin_unlock(&this_rq->lock); 2576 } 2577 #endif /* CONFIG_NO_HZ */ 2578 2579 /* 2580 * Called from scheduler_tick() 2581 */ 2582 static void update_cpu_load_active(struct rq *this_rq) 2583 { 2584 /* 2585 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz(). 2586 */ 2587 this_rq->last_load_update_tick = jiffies; 2588 __update_cpu_load(this_rq, this_rq->load.weight, 1); 2589 2590 calc_load_account_active(this_rq); 2591 } 2592 2593 #ifdef CONFIG_SMP 2594 2595 /* 2596 * sched_exec - execve() is a valuable balancing opportunity, because at 2597 * this point the task has the smallest effective memory and cache footprint. 2598 */ 2599 void sched_exec(void) 2600 { 2601 struct task_struct *p = current; 2602 unsigned long flags; 2603 int dest_cpu; 2604 2605 raw_spin_lock_irqsave(&p->pi_lock, flags); 2606 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0); 2607 if (dest_cpu == smp_processor_id()) 2608 goto unlock; 2609 2610 if (likely(cpu_active(dest_cpu))) { 2611 struct migration_arg arg = { p, dest_cpu }; 2612 2613 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2614 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2615 return; 2616 } 2617 unlock: 2618 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2619 } 2620 2621 #endif 2622 2623 DEFINE_PER_CPU(struct kernel_stat, kstat); 2624 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2625 2626 EXPORT_PER_CPU_SYMBOL(kstat); 2627 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2628 2629 /* 2630 * Return any ns on the sched_clock that have not yet been accounted in 2631 * @p in case that task is currently running. 2632 * 2633 * Called with task_rq_lock() held on @rq. 2634 */ 2635 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2636 { 2637 u64 ns = 0; 2638 2639 if (task_current(rq, p)) { 2640 update_rq_clock(rq); 2641 ns = rq->clock_task - p->se.exec_start; 2642 if ((s64)ns < 0) 2643 ns = 0; 2644 } 2645 2646 return ns; 2647 } 2648 2649 unsigned long long task_delta_exec(struct task_struct *p) 2650 { 2651 unsigned long flags; 2652 struct rq *rq; 2653 u64 ns = 0; 2654 2655 rq = task_rq_lock(p, &flags); 2656 ns = do_task_delta_exec(p, rq); 2657 task_rq_unlock(rq, p, &flags); 2658 2659 return ns; 2660 } 2661 2662 /* 2663 * Return accounted runtime for the task. 2664 * In case the task is currently running, return the runtime plus current's 2665 * pending runtime that have not been accounted yet. 2666 */ 2667 unsigned long long task_sched_runtime(struct task_struct *p) 2668 { 2669 unsigned long flags; 2670 struct rq *rq; 2671 u64 ns = 0; 2672 2673 rq = task_rq_lock(p, &flags); 2674 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2675 task_rq_unlock(rq, p, &flags); 2676 2677 return ns; 2678 } 2679 2680 /* 2681 * This function gets called by the timer code, with HZ frequency. 2682 * We call it with interrupts disabled. 2683 */ 2684 void scheduler_tick(void) 2685 { 2686 int cpu = smp_processor_id(); 2687 struct rq *rq = cpu_rq(cpu); 2688 struct task_struct *curr = rq->curr; 2689 2690 sched_clock_tick(); 2691 2692 raw_spin_lock(&rq->lock); 2693 update_rq_clock(rq); 2694 update_cpu_load_active(rq); 2695 curr->sched_class->task_tick(rq, curr, 0); 2696 raw_spin_unlock(&rq->lock); 2697 2698 perf_event_task_tick(); 2699 2700 #ifdef CONFIG_SMP 2701 rq->idle_balance = idle_cpu(cpu); 2702 trigger_load_balance(rq, cpu); 2703 #endif 2704 } 2705 2706 notrace unsigned long get_parent_ip(unsigned long addr) 2707 { 2708 if (in_lock_functions(addr)) { 2709 addr = CALLER_ADDR2; 2710 if (in_lock_functions(addr)) 2711 addr = CALLER_ADDR3; 2712 } 2713 return addr; 2714 } 2715 2716 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2717 defined(CONFIG_PREEMPT_TRACER)) 2718 2719 void __kprobes add_preempt_count(int val) 2720 { 2721 #ifdef CONFIG_DEBUG_PREEMPT 2722 /* 2723 * Underflow? 2724 */ 2725 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2726 return; 2727 #endif 2728 preempt_count() += val; 2729 #ifdef CONFIG_DEBUG_PREEMPT 2730 /* 2731 * Spinlock count overflowing soon? 2732 */ 2733 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2734 PREEMPT_MASK - 10); 2735 #endif 2736 if (preempt_count() == val) 2737 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2738 } 2739 EXPORT_SYMBOL(add_preempt_count); 2740 2741 void __kprobes sub_preempt_count(int val) 2742 { 2743 #ifdef CONFIG_DEBUG_PREEMPT 2744 /* 2745 * Underflow? 2746 */ 2747 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2748 return; 2749 /* 2750 * Is the spinlock portion underflowing? 2751 */ 2752 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2753 !(preempt_count() & PREEMPT_MASK))) 2754 return; 2755 #endif 2756 2757 if (preempt_count() == val) 2758 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2759 preempt_count() -= val; 2760 } 2761 EXPORT_SYMBOL(sub_preempt_count); 2762 2763 #endif 2764 2765 /* 2766 * Print scheduling while atomic bug: 2767 */ 2768 static noinline void __schedule_bug(struct task_struct *prev) 2769 { 2770 if (oops_in_progress) 2771 return; 2772 2773 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2774 prev->comm, prev->pid, preempt_count()); 2775 2776 debug_show_held_locks(prev); 2777 print_modules(); 2778 if (irqs_disabled()) 2779 print_irqtrace_events(prev); 2780 dump_stack(); 2781 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2782 } 2783 2784 /* 2785 * Various schedule()-time debugging checks and statistics: 2786 */ 2787 static inline void schedule_debug(struct task_struct *prev) 2788 { 2789 /* 2790 * Test if we are atomic. Since do_exit() needs to call into 2791 * schedule() atomically, we ignore that path for now. 2792 * Otherwise, whine if we are scheduling when we should not be. 2793 */ 2794 if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) 2795 __schedule_bug(prev); 2796 rcu_sleep_check(); 2797 2798 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2799 2800 schedstat_inc(this_rq(), sched_count); 2801 } 2802 2803 static void put_prev_task(struct rq *rq, struct task_struct *prev) 2804 { 2805 if (prev->on_rq || rq->skip_clock_update < 0) 2806 update_rq_clock(rq); 2807 prev->sched_class->put_prev_task(rq, prev); 2808 } 2809 2810 /* 2811 * Pick up the highest-prio task: 2812 */ 2813 static inline struct task_struct * 2814 pick_next_task(struct rq *rq) 2815 { 2816 const struct sched_class *class; 2817 struct task_struct *p; 2818 2819 /* 2820 * Optimization: we know that if all tasks are in 2821 * the fair class we can call that function directly: 2822 */ 2823 if (likely(rq->nr_running == rq->cfs.h_nr_running)) { 2824 p = fair_sched_class.pick_next_task(rq); 2825 if (likely(p)) 2826 return p; 2827 } 2828 2829 for_each_class(class) { 2830 p = class->pick_next_task(rq); 2831 if (p) 2832 return p; 2833 } 2834 2835 BUG(); /* the idle class will always have a runnable task */ 2836 } 2837 2838 /* 2839 * __schedule() is the main scheduler function. 2840 * 2841 * The main means of driving the scheduler and thus entering this function are: 2842 * 2843 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2844 * 2845 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2846 * paths. For example, see arch/x86/entry_64.S. 2847 * 2848 * To drive preemption between tasks, the scheduler sets the flag in timer 2849 * interrupt handler scheduler_tick(). 2850 * 2851 * 3. Wakeups don't really cause entry into schedule(). They add a 2852 * task to the run-queue and that's it. 2853 * 2854 * Now, if the new task added to the run-queue preempts the current 2855 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2856 * called on the nearest possible occasion: 2857 * 2858 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2859 * 2860 * - in syscall or exception context, at the next outmost 2861 * preempt_enable(). (this might be as soon as the wake_up()'s 2862 * spin_unlock()!) 2863 * 2864 * - in IRQ context, return from interrupt-handler to 2865 * preemptible context 2866 * 2867 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2868 * then at the next: 2869 * 2870 * - cond_resched() call 2871 * - explicit schedule() call 2872 * - return from syscall or exception to user-space 2873 * - return from interrupt-handler to user-space 2874 */ 2875 static void __sched __schedule(void) 2876 { 2877 struct task_struct *prev, *next; 2878 unsigned long *switch_count; 2879 struct rq *rq; 2880 int cpu; 2881 2882 need_resched: 2883 preempt_disable(); 2884 cpu = smp_processor_id(); 2885 rq = cpu_rq(cpu); 2886 rcu_note_context_switch(cpu); 2887 prev = rq->curr; 2888 2889 schedule_debug(prev); 2890 2891 if (sched_feat(HRTICK)) 2892 hrtick_clear(rq); 2893 2894 raw_spin_lock_irq(&rq->lock); 2895 2896 switch_count = &prev->nivcsw; 2897 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2898 if (unlikely(signal_pending_state(prev->state, prev))) { 2899 prev->state = TASK_RUNNING; 2900 } else { 2901 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2902 prev->on_rq = 0; 2903 2904 /* 2905 * If a worker went to sleep, notify and ask workqueue 2906 * whether it wants to wake up a task to maintain 2907 * concurrency. 2908 */ 2909 if (prev->flags & PF_WQ_WORKER) { 2910 struct task_struct *to_wakeup; 2911 2912 to_wakeup = wq_worker_sleeping(prev, cpu); 2913 if (to_wakeup) 2914 try_to_wake_up_local(to_wakeup); 2915 } 2916 } 2917 switch_count = &prev->nvcsw; 2918 } 2919 2920 pre_schedule(rq, prev); 2921 2922 if (unlikely(!rq->nr_running)) 2923 idle_balance(cpu, rq); 2924 2925 put_prev_task(rq, prev); 2926 next = pick_next_task(rq); 2927 clear_tsk_need_resched(prev); 2928 rq->skip_clock_update = 0; 2929 2930 if (likely(prev != next)) { 2931 rq->nr_switches++; 2932 rq->curr = next; 2933 ++*switch_count; 2934 2935 context_switch(rq, prev, next); /* unlocks the rq */ 2936 /* 2937 * The context switch have flipped the stack from under us 2938 * and restored the local variables which were saved when 2939 * this task called schedule() in the past. prev == current 2940 * is still correct, but it can be moved to another cpu/rq. 2941 */ 2942 cpu = smp_processor_id(); 2943 rq = cpu_rq(cpu); 2944 } else 2945 raw_spin_unlock_irq(&rq->lock); 2946 2947 post_schedule(rq); 2948 2949 sched_preempt_enable_no_resched(); 2950 if (need_resched()) 2951 goto need_resched; 2952 } 2953 2954 static inline void sched_submit_work(struct task_struct *tsk) 2955 { 2956 if (!tsk->state || tsk_is_pi_blocked(tsk)) 2957 return; 2958 /* 2959 * If we are going to sleep and we have plugged IO queued, 2960 * make sure to submit it to avoid deadlocks. 2961 */ 2962 if (blk_needs_flush_plug(tsk)) 2963 blk_schedule_flush_plug(tsk); 2964 } 2965 2966 asmlinkage void __sched schedule(void) 2967 { 2968 struct task_struct *tsk = current; 2969 2970 sched_submit_work(tsk); 2971 __schedule(); 2972 } 2973 EXPORT_SYMBOL(schedule); 2974 2975 #ifdef CONFIG_CONTEXT_TRACKING 2976 asmlinkage void __sched schedule_user(void) 2977 { 2978 /* 2979 * If we come here after a random call to set_need_resched(), 2980 * or we have been woken up remotely but the IPI has not yet arrived, 2981 * we haven't yet exited the RCU idle mode. Do it here manually until 2982 * we find a better solution. 2983 */ 2984 user_exit(); 2985 schedule(); 2986 user_enter(); 2987 } 2988 #endif 2989 2990 /** 2991 * schedule_preempt_disabled - called with preemption disabled 2992 * 2993 * Returns with preemption disabled. Note: preempt_count must be 1 2994 */ 2995 void __sched schedule_preempt_disabled(void) 2996 { 2997 sched_preempt_enable_no_resched(); 2998 schedule(); 2999 preempt_disable(); 3000 } 3001 3002 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 3003 3004 static inline bool owner_running(struct mutex *lock, struct task_struct *owner) 3005 { 3006 if (lock->owner != owner) 3007 return false; 3008 3009 /* 3010 * Ensure we emit the owner->on_cpu, dereference _after_ checking 3011 * lock->owner still matches owner, if that fails, owner might 3012 * point to free()d memory, if it still matches, the rcu_read_lock() 3013 * ensures the memory stays valid. 3014 */ 3015 barrier(); 3016 3017 return owner->on_cpu; 3018 } 3019 3020 /* 3021 * Look out! "owner" is an entirely speculative pointer 3022 * access and not reliable. 3023 */ 3024 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) 3025 { 3026 if (!sched_feat(OWNER_SPIN)) 3027 return 0; 3028 3029 rcu_read_lock(); 3030 while (owner_running(lock, owner)) { 3031 if (need_resched()) 3032 break; 3033 3034 arch_mutex_cpu_relax(); 3035 } 3036 rcu_read_unlock(); 3037 3038 /* 3039 * We break out the loop above on need_resched() and when the 3040 * owner changed, which is a sign for heavy contention. Return 3041 * success only when lock->owner is NULL. 3042 */ 3043 return lock->owner == NULL; 3044 } 3045 #endif 3046 3047 #ifdef CONFIG_PREEMPT 3048 /* 3049 * this is the entry point to schedule() from in-kernel preemption 3050 * off of preempt_enable. Kernel preemptions off return from interrupt 3051 * occur there and call schedule directly. 3052 */ 3053 asmlinkage void __sched notrace preempt_schedule(void) 3054 { 3055 struct thread_info *ti = current_thread_info(); 3056 3057 /* 3058 * If there is a non-zero preempt_count or interrupts are disabled, 3059 * we do not want to preempt the current task. Just return.. 3060 */ 3061 if (likely(ti->preempt_count || irqs_disabled())) 3062 return; 3063 3064 do { 3065 add_preempt_count_notrace(PREEMPT_ACTIVE); 3066 __schedule(); 3067 sub_preempt_count_notrace(PREEMPT_ACTIVE); 3068 3069 /* 3070 * Check again in case we missed a preemption opportunity 3071 * between schedule and now. 3072 */ 3073 barrier(); 3074 } while (need_resched()); 3075 } 3076 EXPORT_SYMBOL(preempt_schedule); 3077 3078 /* 3079 * this is the entry point to schedule() from kernel preemption 3080 * off of irq context. 3081 * Note, that this is called and return with irqs disabled. This will 3082 * protect us against recursive calling from irq. 3083 */ 3084 asmlinkage void __sched preempt_schedule_irq(void) 3085 { 3086 struct thread_info *ti = current_thread_info(); 3087 3088 /* Catch callers which need to be fixed */ 3089 BUG_ON(ti->preempt_count || !irqs_disabled()); 3090 3091 user_exit(); 3092 do { 3093 add_preempt_count(PREEMPT_ACTIVE); 3094 local_irq_enable(); 3095 __schedule(); 3096 local_irq_disable(); 3097 sub_preempt_count(PREEMPT_ACTIVE); 3098 3099 /* 3100 * Check again in case we missed a preemption opportunity 3101 * between schedule and now. 3102 */ 3103 barrier(); 3104 } while (need_resched()); 3105 } 3106 3107 #endif /* CONFIG_PREEMPT */ 3108 3109 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3110 void *key) 3111 { 3112 return try_to_wake_up(curr->private, mode, wake_flags); 3113 } 3114 EXPORT_SYMBOL(default_wake_function); 3115 3116 /* 3117 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 3118 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 3119 * number) then we wake all the non-exclusive tasks and one exclusive task. 3120 * 3121 * There are circumstances in which we can try to wake a task which has already 3122 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 3123 * zero in this (rare) case, and we handle it by continuing to scan the queue. 3124 */ 3125 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, 3126 int nr_exclusive, int wake_flags, void *key) 3127 { 3128 wait_queue_t *curr, *next; 3129 3130 list_for_each_entry_safe(curr, next, &q->task_list, task_list) { 3131 unsigned flags = curr->flags; 3132 3133 if (curr->func(curr, mode, wake_flags, key) && 3134 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 3135 break; 3136 } 3137 } 3138 3139 /** 3140 * __wake_up - wake up threads blocked on a waitqueue. 3141 * @q: the waitqueue 3142 * @mode: which threads 3143 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3144 * @key: is directly passed to the wakeup function 3145 * 3146 * It may be assumed that this function implies a write memory barrier before 3147 * changing the task state if and only if any tasks are woken up. 3148 */ 3149 void __wake_up(wait_queue_head_t *q, unsigned int mode, 3150 int nr_exclusive, void *key) 3151 { 3152 unsigned long flags; 3153 3154 spin_lock_irqsave(&q->lock, flags); 3155 __wake_up_common(q, mode, nr_exclusive, 0, key); 3156 spin_unlock_irqrestore(&q->lock, flags); 3157 } 3158 EXPORT_SYMBOL(__wake_up); 3159 3160 /* 3161 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 3162 */ 3163 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) 3164 { 3165 __wake_up_common(q, mode, nr, 0, NULL); 3166 } 3167 EXPORT_SYMBOL_GPL(__wake_up_locked); 3168 3169 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) 3170 { 3171 __wake_up_common(q, mode, 1, 0, key); 3172 } 3173 EXPORT_SYMBOL_GPL(__wake_up_locked_key); 3174 3175 /** 3176 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 3177 * @q: the waitqueue 3178 * @mode: which threads 3179 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3180 * @key: opaque value to be passed to wakeup targets 3181 * 3182 * The sync wakeup differs that the waker knows that it will schedule 3183 * away soon, so while the target thread will be woken up, it will not 3184 * be migrated to another CPU - ie. the two threads are 'synchronized' 3185 * with each other. This can prevent needless bouncing between CPUs. 3186 * 3187 * On UP it can prevent extra preemption. 3188 * 3189 * It may be assumed that this function implies a write memory barrier before 3190 * changing the task state if and only if any tasks are woken up. 3191 */ 3192 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, 3193 int nr_exclusive, void *key) 3194 { 3195 unsigned long flags; 3196 int wake_flags = WF_SYNC; 3197 3198 if (unlikely(!q)) 3199 return; 3200 3201 if (unlikely(!nr_exclusive)) 3202 wake_flags = 0; 3203 3204 spin_lock_irqsave(&q->lock, flags); 3205 __wake_up_common(q, mode, nr_exclusive, wake_flags, key); 3206 spin_unlock_irqrestore(&q->lock, flags); 3207 } 3208 EXPORT_SYMBOL_GPL(__wake_up_sync_key); 3209 3210 /* 3211 * __wake_up_sync - see __wake_up_sync_key() 3212 */ 3213 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) 3214 { 3215 __wake_up_sync_key(q, mode, nr_exclusive, NULL); 3216 } 3217 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 3218 3219 /** 3220 * complete: - signals a single thread waiting on this completion 3221 * @x: holds the state of this particular completion 3222 * 3223 * This will wake up a single thread waiting on this completion. Threads will be 3224 * awakened in the same order in which they were queued. 3225 * 3226 * See also complete_all(), wait_for_completion() and related routines. 3227 * 3228 * It may be assumed that this function implies a write memory barrier before 3229 * changing the task state if and only if any tasks are woken up. 3230 */ 3231 void complete(struct completion *x) 3232 { 3233 unsigned long flags; 3234 3235 spin_lock_irqsave(&x->wait.lock, flags); 3236 x->done++; 3237 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); 3238 spin_unlock_irqrestore(&x->wait.lock, flags); 3239 } 3240 EXPORT_SYMBOL(complete); 3241 3242 /** 3243 * complete_all: - signals all threads waiting on this completion 3244 * @x: holds the state of this particular completion 3245 * 3246 * This will wake up all threads waiting on this particular completion event. 3247 * 3248 * It may be assumed that this function implies a write memory barrier before 3249 * changing the task state if and only if any tasks are woken up. 3250 */ 3251 void complete_all(struct completion *x) 3252 { 3253 unsigned long flags; 3254 3255 spin_lock_irqsave(&x->wait.lock, flags); 3256 x->done += UINT_MAX/2; 3257 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); 3258 spin_unlock_irqrestore(&x->wait.lock, flags); 3259 } 3260 EXPORT_SYMBOL(complete_all); 3261 3262 static inline long __sched 3263 do_wait_for_common(struct completion *x, 3264 long (*action)(long), long timeout, int state) 3265 { 3266 if (!x->done) { 3267 DECLARE_WAITQUEUE(wait, current); 3268 3269 __add_wait_queue_tail_exclusive(&x->wait, &wait); 3270 do { 3271 if (signal_pending_state(state, current)) { 3272 timeout = -ERESTARTSYS; 3273 break; 3274 } 3275 __set_current_state(state); 3276 spin_unlock_irq(&x->wait.lock); 3277 timeout = action(timeout); 3278 spin_lock_irq(&x->wait.lock); 3279 } while (!x->done && timeout); 3280 __remove_wait_queue(&x->wait, &wait); 3281 if (!x->done) 3282 return timeout; 3283 } 3284 x->done--; 3285 return timeout ?: 1; 3286 } 3287 3288 static inline long __sched 3289 __wait_for_common(struct completion *x, 3290 long (*action)(long), long timeout, int state) 3291 { 3292 might_sleep(); 3293 3294 spin_lock_irq(&x->wait.lock); 3295 timeout = do_wait_for_common(x, action, timeout, state); 3296 spin_unlock_irq(&x->wait.lock); 3297 return timeout; 3298 } 3299 3300 static long __sched 3301 wait_for_common(struct completion *x, long timeout, int state) 3302 { 3303 return __wait_for_common(x, schedule_timeout, timeout, state); 3304 } 3305 3306 static long __sched 3307 wait_for_common_io(struct completion *x, long timeout, int state) 3308 { 3309 return __wait_for_common(x, io_schedule_timeout, timeout, state); 3310 } 3311 3312 /** 3313 * wait_for_completion: - waits for completion of a task 3314 * @x: holds the state of this particular completion 3315 * 3316 * This waits to be signaled for completion of a specific task. It is NOT 3317 * interruptible and there is no timeout. 3318 * 3319 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout 3320 * and interrupt capability. Also see complete(). 3321 */ 3322 void __sched wait_for_completion(struct completion *x) 3323 { 3324 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 3325 } 3326 EXPORT_SYMBOL(wait_for_completion); 3327 3328 /** 3329 * wait_for_completion_timeout: - waits for completion of a task (w/timeout) 3330 * @x: holds the state of this particular completion 3331 * @timeout: timeout value in jiffies 3332 * 3333 * This waits for either a completion of a specific task to be signaled or for a 3334 * specified timeout to expire. The timeout is in jiffies. It is not 3335 * interruptible. 3336 * 3337 * The return value is 0 if timed out, and positive (at least 1, or number of 3338 * jiffies left till timeout) if completed. 3339 */ 3340 unsigned long __sched 3341 wait_for_completion_timeout(struct completion *x, unsigned long timeout) 3342 { 3343 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); 3344 } 3345 EXPORT_SYMBOL(wait_for_completion_timeout); 3346 3347 /** 3348 * wait_for_completion_io: - waits for completion of a task 3349 * @x: holds the state of this particular completion 3350 * 3351 * This waits to be signaled for completion of a specific task. It is NOT 3352 * interruptible and there is no timeout. The caller is accounted as waiting 3353 * for IO. 3354 */ 3355 void __sched wait_for_completion_io(struct completion *x) 3356 { 3357 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 3358 } 3359 EXPORT_SYMBOL(wait_for_completion_io); 3360 3361 /** 3362 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout) 3363 * @x: holds the state of this particular completion 3364 * @timeout: timeout value in jiffies 3365 * 3366 * This waits for either a completion of a specific task to be signaled or for a 3367 * specified timeout to expire. The timeout is in jiffies. It is not 3368 * interruptible. The caller is accounted as waiting for IO. 3369 * 3370 * The return value is 0 if timed out, and positive (at least 1, or number of 3371 * jiffies left till timeout) if completed. 3372 */ 3373 unsigned long __sched 3374 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout) 3375 { 3376 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE); 3377 } 3378 EXPORT_SYMBOL(wait_for_completion_io_timeout); 3379 3380 /** 3381 * wait_for_completion_interruptible: - waits for completion of a task (w/intr) 3382 * @x: holds the state of this particular completion 3383 * 3384 * This waits for completion of a specific task to be signaled. It is 3385 * interruptible. 3386 * 3387 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3388 */ 3389 int __sched wait_for_completion_interruptible(struct completion *x) 3390 { 3391 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); 3392 if (t == -ERESTARTSYS) 3393 return t; 3394 return 0; 3395 } 3396 EXPORT_SYMBOL(wait_for_completion_interruptible); 3397 3398 /** 3399 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) 3400 * @x: holds the state of this particular completion 3401 * @timeout: timeout value in jiffies 3402 * 3403 * This waits for either a completion of a specific task to be signaled or for a 3404 * specified timeout to expire. It is interruptible. The timeout is in jiffies. 3405 * 3406 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3407 * positive (at least 1, or number of jiffies left till timeout) if completed. 3408 */ 3409 long __sched 3410 wait_for_completion_interruptible_timeout(struct completion *x, 3411 unsigned long timeout) 3412 { 3413 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); 3414 } 3415 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); 3416 3417 /** 3418 * wait_for_completion_killable: - waits for completion of a task (killable) 3419 * @x: holds the state of this particular completion 3420 * 3421 * This waits to be signaled for completion of a specific task. It can be 3422 * interrupted by a kill signal. 3423 * 3424 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3425 */ 3426 int __sched wait_for_completion_killable(struct completion *x) 3427 { 3428 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); 3429 if (t == -ERESTARTSYS) 3430 return t; 3431 return 0; 3432 } 3433 EXPORT_SYMBOL(wait_for_completion_killable); 3434 3435 /** 3436 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) 3437 * @x: holds the state of this particular completion 3438 * @timeout: timeout value in jiffies 3439 * 3440 * This waits for either a completion of a specific task to be 3441 * signaled or for a specified timeout to expire. It can be 3442 * interrupted by a kill signal. The timeout is in jiffies. 3443 * 3444 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3445 * positive (at least 1, or number of jiffies left till timeout) if completed. 3446 */ 3447 long __sched 3448 wait_for_completion_killable_timeout(struct completion *x, 3449 unsigned long timeout) 3450 { 3451 return wait_for_common(x, timeout, TASK_KILLABLE); 3452 } 3453 EXPORT_SYMBOL(wait_for_completion_killable_timeout); 3454 3455 /** 3456 * try_wait_for_completion - try to decrement a completion without blocking 3457 * @x: completion structure 3458 * 3459 * Returns: 0 if a decrement cannot be done without blocking 3460 * 1 if a decrement succeeded. 3461 * 3462 * If a completion is being used as a counting completion, 3463 * attempt to decrement the counter without blocking. This 3464 * enables us to avoid waiting if the resource the completion 3465 * is protecting is not available. 3466 */ 3467 bool try_wait_for_completion(struct completion *x) 3468 { 3469 unsigned long flags; 3470 int ret = 1; 3471 3472 spin_lock_irqsave(&x->wait.lock, flags); 3473 if (!x->done) 3474 ret = 0; 3475 else 3476 x->done--; 3477 spin_unlock_irqrestore(&x->wait.lock, flags); 3478 return ret; 3479 } 3480 EXPORT_SYMBOL(try_wait_for_completion); 3481 3482 /** 3483 * completion_done - Test to see if a completion has any waiters 3484 * @x: completion structure 3485 * 3486 * Returns: 0 if there are waiters (wait_for_completion() in progress) 3487 * 1 if there are no waiters. 3488 * 3489 */ 3490 bool completion_done(struct completion *x) 3491 { 3492 unsigned long flags; 3493 int ret = 1; 3494 3495 spin_lock_irqsave(&x->wait.lock, flags); 3496 if (!x->done) 3497 ret = 0; 3498 spin_unlock_irqrestore(&x->wait.lock, flags); 3499 return ret; 3500 } 3501 EXPORT_SYMBOL(completion_done); 3502 3503 static long __sched 3504 sleep_on_common(wait_queue_head_t *q, int state, long timeout) 3505 { 3506 unsigned long flags; 3507 wait_queue_t wait; 3508 3509 init_waitqueue_entry(&wait, current); 3510 3511 __set_current_state(state); 3512 3513 spin_lock_irqsave(&q->lock, flags); 3514 __add_wait_queue(q, &wait); 3515 spin_unlock(&q->lock); 3516 timeout = schedule_timeout(timeout); 3517 spin_lock_irq(&q->lock); 3518 __remove_wait_queue(q, &wait); 3519 spin_unlock_irqrestore(&q->lock, flags); 3520 3521 return timeout; 3522 } 3523 3524 void __sched interruptible_sleep_on(wait_queue_head_t *q) 3525 { 3526 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3527 } 3528 EXPORT_SYMBOL(interruptible_sleep_on); 3529 3530 long __sched 3531 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) 3532 { 3533 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); 3534 } 3535 EXPORT_SYMBOL(interruptible_sleep_on_timeout); 3536 3537 void __sched sleep_on(wait_queue_head_t *q) 3538 { 3539 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3540 } 3541 EXPORT_SYMBOL(sleep_on); 3542 3543 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) 3544 { 3545 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); 3546 } 3547 EXPORT_SYMBOL(sleep_on_timeout); 3548 3549 #ifdef CONFIG_RT_MUTEXES 3550 3551 /* 3552 * rt_mutex_setprio - set the current priority of a task 3553 * @p: task 3554 * @prio: prio value (kernel-internal form) 3555 * 3556 * This function changes the 'effective' priority of a task. It does 3557 * not touch ->normal_prio like __setscheduler(). 3558 * 3559 * Used by the rt_mutex code to implement priority inheritance logic. 3560 */ 3561 void rt_mutex_setprio(struct task_struct *p, int prio) 3562 { 3563 int oldprio, on_rq, running; 3564 struct rq *rq; 3565 const struct sched_class *prev_class; 3566 3567 BUG_ON(prio < 0 || prio > MAX_PRIO); 3568 3569 rq = __task_rq_lock(p); 3570 3571 /* 3572 * Idle task boosting is a nono in general. There is one 3573 * exception, when PREEMPT_RT and NOHZ is active: 3574 * 3575 * The idle task calls get_next_timer_interrupt() and holds 3576 * the timer wheel base->lock on the CPU and another CPU wants 3577 * to access the timer (probably to cancel it). We can safely 3578 * ignore the boosting request, as the idle CPU runs this code 3579 * with interrupts disabled and will complete the lock 3580 * protected section without being interrupted. So there is no 3581 * real need to boost. 3582 */ 3583 if (unlikely(p == rq->idle)) { 3584 WARN_ON(p != rq->curr); 3585 WARN_ON(p->pi_blocked_on); 3586 goto out_unlock; 3587 } 3588 3589 trace_sched_pi_setprio(p, prio); 3590 oldprio = p->prio; 3591 prev_class = p->sched_class; 3592 on_rq = p->on_rq; 3593 running = task_current(rq, p); 3594 if (on_rq) 3595 dequeue_task(rq, p, 0); 3596 if (running) 3597 p->sched_class->put_prev_task(rq, p); 3598 3599 if (rt_prio(prio)) 3600 p->sched_class = &rt_sched_class; 3601 else 3602 p->sched_class = &fair_sched_class; 3603 3604 p->prio = prio; 3605 3606 if (running) 3607 p->sched_class->set_curr_task(rq); 3608 if (on_rq) 3609 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); 3610 3611 check_class_changed(rq, p, prev_class, oldprio); 3612 out_unlock: 3613 __task_rq_unlock(rq); 3614 } 3615 #endif 3616 void set_user_nice(struct task_struct *p, long nice) 3617 { 3618 int old_prio, delta, on_rq; 3619 unsigned long flags; 3620 struct rq *rq; 3621 3622 if (TASK_NICE(p) == nice || nice < -20 || nice > 19) 3623 return; 3624 /* 3625 * We have to be careful, if called from sys_setpriority(), 3626 * the task might be in the middle of scheduling on another CPU. 3627 */ 3628 rq = task_rq_lock(p, &flags); 3629 /* 3630 * The RT priorities are set via sched_setscheduler(), but we still 3631 * allow the 'normal' nice value to be set - but as expected 3632 * it wont have any effect on scheduling until the task is 3633 * SCHED_FIFO/SCHED_RR: 3634 */ 3635 if (task_has_rt_policy(p)) { 3636 p->static_prio = NICE_TO_PRIO(nice); 3637 goto out_unlock; 3638 } 3639 on_rq = p->on_rq; 3640 if (on_rq) 3641 dequeue_task(rq, p, 0); 3642 3643 p->static_prio = NICE_TO_PRIO(nice); 3644 set_load_weight(p); 3645 old_prio = p->prio; 3646 p->prio = effective_prio(p); 3647 delta = p->prio - old_prio; 3648 3649 if (on_rq) { 3650 enqueue_task(rq, p, 0); 3651 /* 3652 * If the task increased its priority or is running and 3653 * lowered its priority, then reschedule its CPU: 3654 */ 3655 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3656 resched_task(rq->curr); 3657 } 3658 out_unlock: 3659 task_rq_unlock(rq, p, &flags); 3660 } 3661 EXPORT_SYMBOL(set_user_nice); 3662 3663 /* 3664 * can_nice - check if a task can reduce its nice value 3665 * @p: task 3666 * @nice: nice value 3667 */ 3668 int can_nice(const struct task_struct *p, const int nice) 3669 { 3670 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3671 int nice_rlim = 20 - nice; 3672 3673 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3674 capable(CAP_SYS_NICE)); 3675 } 3676 3677 #ifdef __ARCH_WANT_SYS_NICE 3678 3679 /* 3680 * sys_nice - change the priority of the current process. 3681 * @increment: priority increment 3682 * 3683 * sys_setpriority is a more generic, but much slower function that 3684 * does similar things. 3685 */ 3686 SYSCALL_DEFINE1(nice, int, increment) 3687 { 3688 long nice, retval; 3689 3690 /* 3691 * Setpriority might change our priority at the same moment. 3692 * We don't have to worry. Conceptually one call occurs first 3693 * and we have a single winner. 3694 */ 3695 if (increment < -40) 3696 increment = -40; 3697 if (increment > 40) 3698 increment = 40; 3699 3700 nice = TASK_NICE(current) + increment; 3701 if (nice < -20) 3702 nice = -20; 3703 if (nice > 19) 3704 nice = 19; 3705 3706 if (increment < 0 && !can_nice(current, nice)) 3707 return -EPERM; 3708 3709 retval = security_task_setnice(current, nice); 3710 if (retval) 3711 return retval; 3712 3713 set_user_nice(current, nice); 3714 return 0; 3715 } 3716 3717 #endif 3718 3719 /** 3720 * task_prio - return the priority value of a given task. 3721 * @p: the task in question. 3722 * 3723 * This is the priority value as seen by users in /proc. 3724 * RT tasks are offset by -200. Normal tasks are centered 3725 * around 0, value goes from -16 to +15. 3726 */ 3727 int task_prio(const struct task_struct *p) 3728 { 3729 return p->prio - MAX_RT_PRIO; 3730 } 3731 3732 /** 3733 * task_nice - return the nice value of a given task. 3734 * @p: the task in question. 3735 */ 3736 int task_nice(const struct task_struct *p) 3737 { 3738 return TASK_NICE(p); 3739 } 3740 EXPORT_SYMBOL(task_nice); 3741 3742 /** 3743 * idle_cpu - is a given cpu idle currently? 3744 * @cpu: the processor in question. 3745 */ 3746 int idle_cpu(int cpu) 3747 { 3748 struct rq *rq = cpu_rq(cpu); 3749 3750 if (rq->curr != rq->idle) 3751 return 0; 3752 3753 if (rq->nr_running) 3754 return 0; 3755 3756 #ifdef CONFIG_SMP 3757 if (!llist_empty(&rq->wake_list)) 3758 return 0; 3759 #endif 3760 3761 return 1; 3762 } 3763 3764 /** 3765 * idle_task - return the idle task for a given cpu. 3766 * @cpu: the processor in question. 3767 */ 3768 struct task_struct *idle_task(int cpu) 3769 { 3770 return cpu_rq(cpu)->idle; 3771 } 3772 3773 /** 3774 * find_process_by_pid - find a process with a matching PID value. 3775 * @pid: the pid in question. 3776 */ 3777 static struct task_struct *find_process_by_pid(pid_t pid) 3778 { 3779 return pid ? find_task_by_vpid(pid) : current; 3780 } 3781 3782 /* Actually do priority change: must hold rq lock. */ 3783 static void 3784 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) 3785 { 3786 p->policy = policy; 3787 p->rt_priority = prio; 3788 p->normal_prio = normal_prio(p); 3789 /* we are holding p->pi_lock already */ 3790 p->prio = rt_mutex_getprio(p); 3791 if (rt_prio(p->prio)) 3792 p->sched_class = &rt_sched_class; 3793 else 3794 p->sched_class = &fair_sched_class; 3795 set_load_weight(p); 3796 } 3797 3798 /* 3799 * check the target process has a UID that matches the current process's 3800 */ 3801 static bool check_same_owner(struct task_struct *p) 3802 { 3803 const struct cred *cred = current_cred(), *pcred; 3804 bool match; 3805 3806 rcu_read_lock(); 3807 pcred = __task_cred(p); 3808 match = (uid_eq(cred->euid, pcred->euid) || 3809 uid_eq(cred->euid, pcred->uid)); 3810 rcu_read_unlock(); 3811 return match; 3812 } 3813 3814 static int __sched_setscheduler(struct task_struct *p, int policy, 3815 const struct sched_param *param, bool user) 3816 { 3817 int retval, oldprio, oldpolicy = -1, on_rq, running; 3818 unsigned long flags; 3819 const struct sched_class *prev_class; 3820 struct rq *rq; 3821 int reset_on_fork; 3822 3823 /* may grab non-irq protected spin_locks */ 3824 BUG_ON(in_interrupt()); 3825 recheck: 3826 /* double check policy once rq lock held */ 3827 if (policy < 0) { 3828 reset_on_fork = p->sched_reset_on_fork; 3829 policy = oldpolicy = p->policy; 3830 } else { 3831 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); 3832 policy &= ~SCHED_RESET_ON_FORK; 3833 3834 if (policy != SCHED_FIFO && policy != SCHED_RR && 3835 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3836 policy != SCHED_IDLE) 3837 return -EINVAL; 3838 } 3839 3840 /* 3841 * Valid priorities for SCHED_FIFO and SCHED_RR are 3842 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3843 * SCHED_BATCH and SCHED_IDLE is 0. 3844 */ 3845 if (param->sched_priority < 0 || 3846 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || 3847 (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) 3848 return -EINVAL; 3849 if (rt_policy(policy) != (param->sched_priority != 0)) 3850 return -EINVAL; 3851 3852 /* 3853 * Allow unprivileged RT tasks to decrease priority: 3854 */ 3855 if (user && !capable(CAP_SYS_NICE)) { 3856 if (rt_policy(policy)) { 3857 unsigned long rlim_rtprio = 3858 task_rlimit(p, RLIMIT_RTPRIO); 3859 3860 /* can't set/change the rt policy */ 3861 if (policy != p->policy && !rlim_rtprio) 3862 return -EPERM; 3863 3864 /* can't increase priority */ 3865 if (param->sched_priority > p->rt_priority && 3866 param->sched_priority > rlim_rtprio) 3867 return -EPERM; 3868 } 3869 3870 /* 3871 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3872 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3873 */ 3874 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3875 if (!can_nice(p, TASK_NICE(p))) 3876 return -EPERM; 3877 } 3878 3879 /* can't change other user's priorities */ 3880 if (!check_same_owner(p)) 3881 return -EPERM; 3882 3883 /* Normal users shall not reset the sched_reset_on_fork flag */ 3884 if (p->sched_reset_on_fork && !reset_on_fork) 3885 return -EPERM; 3886 } 3887 3888 if (user) { 3889 retval = security_task_setscheduler(p); 3890 if (retval) 3891 return retval; 3892 } 3893 3894 /* 3895 * make sure no PI-waiters arrive (or leave) while we are 3896 * changing the priority of the task: 3897 * 3898 * To be able to change p->policy safely, the appropriate 3899 * runqueue lock must be held. 3900 */ 3901 rq = task_rq_lock(p, &flags); 3902 3903 /* 3904 * Changing the policy of the stop threads its a very bad idea 3905 */ 3906 if (p == rq->stop) { 3907 task_rq_unlock(rq, p, &flags); 3908 return -EINVAL; 3909 } 3910 3911 /* 3912 * If not changing anything there's no need to proceed further: 3913 */ 3914 if (unlikely(policy == p->policy && (!rt_policy(policy) || 3915 param->sched_priority == p->rt_priority))) { 3916 task_rq_unlock(rq, p, &flags); 3917 return 0; 3918 } 3919 3920 #ifdef CONFIG_RT_GROUP_SCHED 3921 if (user) { 3922 /* 3923 * Do not allow realtime tasks into groups that have no runtime 3924 * assigned. 3925 */ 3926 if (rt_bandwidth_enabled() && rt_policy(policy) && 3927 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3928 !task_group_is_autogroup(task_group(p))) { 3929 task_rq_unlock(rq, p, &flags); 3930 return -EPERM; 3931 } 3932 } 3933 #endif 3934 3935 /* recheck policy now with rq lock held */ 3936 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3937 policy = oldpolicy = -1; 3938 task_rq_unlock(rq, p, &flags); 3939 goto recheck; 3940 } 3941 on_rq = p->on_rq; 3942 running = task_current(rq, p); 3943 if (on_rq) 3944 dequeue_task(rq, p, 0); 3945 if (running) 3946 p->sched_class->put_prev_task(rq, p); 3947 3948 p->sched_reset_on_fork = reset_on_fork; 3949 3950 oldprio = p->prio; 3951 prev_class = p->sched_class; 3952 __setscheduler(rq, p, policy, param->sched_priority); 3953 3954 if (running) 3955 p->sched_class->set_curr_task(rq); 3956 if (on_rq) 3957 enqueue_task(rq, p, 0); 3958 3959 check_class_changed(rq, p, prev_class, oldprio); 3960 task_rq_unlock(rq, p, &flags); 3961 3962 rt_mutex_adjust_pi(p); 3963 3964 return 0; 3965 } 3966 3967 /** 3968 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3969 * @p: the task in question. 3970 * @policy: new policy. 3971 * @param: structure containing the new RT priority. 3972 * 3973 * NOTE that the task may be already dead. 3974 */ 3975 int sched_setscheduler(struct task_struct *p, int policy, 3976 const struct sched_param *param) 3977 { 3978 return __sched_setscheduler(p, policy, param, true); 3979 } 3980 EXPORT_SYMBOL_GPL(sched_setscheduler); 3981 3982 /** 3983 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3984 * @p: the task in question. 3985 * @policy: new policy. 3986 * @param: structure containing the new RT priority. 3987 * 3988 * Just like sched_setscheduler, only don't bother checking if the 3989 * current context has permission. For example, this is needed in 3990 * stop_machine(): we create temporary high priority worker threads, 3991 * but our caller might not have that capability. 3992 */ 3993 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 3994 const struct sched_param *param) 3995 { 3996 return __sched_setscheduler(p, policy, param, false); 3997 } 3998 3999 static int 4000 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4001 { 4002 struct sched_param lparam; 4003 struct task_struct *p; 4004 int retval; 4005 4006 if (!param || pid < 0) 4007 return -EINVAL; 4008 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4009 return -EFAULT; 4010 4011 rcu_read_lock(); 4012 retval = -ESRCH; 4013 p = find_process_by_pid(pid); 4014 if (p != NULL) 4015 retval = sched_setscheduler(p, policy, &lparam); 4016 rcu_read_unlock(); 4017 4018 return retval; 4019 } 4020 4021 /** 4022 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4023 * @pid: the pid in question. 4024 * @policy: new policy. 4025 * @param: structure containing the new RT priority. 4026 */ 4027 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4028 struct sched_param __user *, param) 4029 { 4030 /* negative values for policy are not valid */ 4031 if (policy < 0) 4032 return -EINVAL; 4033 4034 return do_sched_setscheduler(pid, policy, param); 4035 } 4036 4037 /** 4038 * sys_sched_setparam - set/change the RT priority of a thread 4039 * @pid: the pid in question. 4040 * @param: structure containing the new RT priority. 4041 */ 4042 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4043 { 4044 return do_sched_setscheduler(pid, -1, param); 4045 } 4046 4047 /** 4048 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4049 * @pid: the pid in question. 4050 */ 4051 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4052 { 4053 struct task_struct *p; 4054 int retval; 4055 4056 if (pid < 0) 4057 return -EINVAL; 4058 4059 retval = -ESRCH; 4060 rcu_read_lock(); 4061 p = find_process_by_pid(pid); 4062 if (p) { 4063 retval = security_task_getscheduler(p); 4064 if (!retval) 4065 retval = p->policy 4066 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4067 } 4068 rcu_read_unlock(); 4069 return retval; 4070 } 4071 4072 /** 4073 * sys_sched_getparam - get the RT priority of a thread 4074 * @pid: the pid in question. 4075 * @param: structure containing the RT priority. 4076 */ 4077 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4078 { 4079 struct sched_param lp; 4080 struct task_struct *p; 4081 int retval; 4082 4083 if (!param || pid < 0) 4084 return -EINVAL; 4085 4086 rcu_read_lock(); 4087 p = find_process_by_pid(pid); 4088 retval = -ESRCH; 4089 if (!p) 4090 goto out_unlock; 4091 4092 retval = security_task_getscheduler(p); 4093 if (retval) 4094 goto out_unlock; 4095 4096 lp.sched_priority = p->rt_priority; 4097 rcu_read_unlock(); 4098 4099 /* 4100 * This one might sleep, we cannot do it with a spinlock held ... 4101 */ 4102 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4103 4104 return retval; 4105 4106 out_unlock: 4107 rcu_read_unlock(); 4108 return retval; 4109 } 4110 4111 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4112 { 4113 cpumask_var_t cpus_allowed, new_mask; 4114 struct task_struct *p; 4115 int retval; 4116 4117 get_online_cpus(); 4118 rcu_read_lock(); 4119 4120 p = find_process_by_pid(pid); 4121 if (!p) { 4122 rcu_read_unlock(); 4123 put_online_cpus(); 4124 return -ESRCH; 4125 } 4126 4127 /* Prevent p going away */ 4128 get_task_struct(p); 4129 rcu_read_unlock(); 4130 4131 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4132 retval = -ENOMEM; 4133 goto out_put_task; 4134 } 4135 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4136 retval = -ENOMEM; 4137 goto out_free_cpus_allowed; 4138 } 4139 retval = -EPERM; 4140 if (!check_same_owner(p)) { 4141 rcu_read_lock(); 4142 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4143 rcu_read_unlock(); 4144 goto out_unlock; 4145 } 4146 rcu_read_unlock(); 4147 } 4148 4149 retval = security_task_setscheduler(p); 4150 if (retval) 4151 goto out_unlock; 4152 4153 cpuset_cpus_allowed(p, cpus_allowed); 4154 cpumask_and(new_mask, in_mask, cpus_allowed); 4155 again: 4156 retval = set_cpus_allowed_ptr(p, new_mask); 4157 4158 if (!retval) { 4159 cpuset_cpus_allowed(p, cpus_allowed); 4160 if (!cpumask_subset(new_mask, cpus_allowed)) { 4161 /* 4162 * We must have raced with a concurrent cpuset 4163 * update. Just reset the cpus_allowed to the 4164 * cpuset's cpus_allowed 4165 */ 4166 cpumask_copy(new_mask, cpus_allowed); 4167 goto again; 4168 } 4169 } 4170 out_unlock: 4171 free_cpumask_var(new_mask); 4172 out_free_cpus_allowed: 4173 free_cpumask_var(cpus_allowed); 4174 out_put_task: 4175 put_task_struct(p); 4176 put_online_cpus(); 4177 return retval; 4178 } 4179 4180 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4181 struct cpumask *new_mask) 4182 { 4183 if (len < cpumask_size()) 4184 cpumask_clear(new_mask); 4185 else if (len > cpumask_size()) 4186 len = cpumask_size(); 4187 4188 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4189 } 4190 4191 /** 4192 * sys_sched_setaffinity - set the cpu affinity of a process 4193 * @pid: pid of the process 4194 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4195 * @user_mask_ptr: user-space pointer to the new cpu mask 4196 */ 4197 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4198 unsigned long __user *, user_mask_ptr) 4199 { 4200 cpumask_var_t new_mask; 4201 int retval; 4202 4203 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4204 return -ENOMEM; 4205 4206 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4207 if (retval == 0) 4208 retval = sched_setaffinity(pid, new_mask); 4209 free_cpumask_var(new_mask); 4210 return retval; 4211 } 4212 4213 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4214 { 4215 struct task_struct *p; 4216 unsigned long flags; 4217 int retval; 4218 4219 get_online_cpus(); 4220 rcu_read_lock(); 4221 4222 retval = -ESRCH; 4223 p = find_process_by_pid(pid); 4224 if (!p) 4225 goto out_unlock; 4226 4227 retval = security_task_getscheduler(p); 4228 if (retval) 4229 goto out_unlock; 4230 4231 raw_spin_lock_irqsave(&p->pi_lock, flags); 4232 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); 4233 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4234 4235 out_unlock: 4236 rcu_read_unlock(); 4237 put_online_cpus(); 4238 4239 return retval; 4240 } 4241 4242 /** 4243 * sys_sched_getaffinity - get the cpu affinity of a process 4244 * @pid: pid of the process 4245 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4246 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4247 */ 4248 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4249 unsigned long __user *, user_mask_ptr) 4250 { 4251 int ret; 4252 cpumask_var_t mask; 4253 4254 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4255 return -EINVAL; 4256 if (len & (sizeof(unsigned long)-1)) 4257 return -EINVAL; 4258 4259 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4260 return -ENOMEM; 4261 4262 ret = sched_getaffinity(pid, mask); 4263 if (ret == 0) { 4264 size_t retlen = min_t(size_t, len, cpumask_size()); 4265 4266 if (copy_to_user(user_mask_ptr, mask, retlen)) 4267 ret = -EFAULT; 4268 else 4269 ret = retlen; 4270 } 4271 free_cpumask_var(mask); 4272 4273 return ret; 4274 } 4275 4276 /** 4277 * sys_sched_yield - yield the current processor to other threads. 4278 * 4279 * This function yields the current CPU to other tasks. If there are no 4280 * other threads running on this CPU then this function will return. 4281 */ 4282 SYSCALL_DEFINE0(sched_yield) 4283 { 4284 struct rq *rq = this_rq_lock(); 4285 4286 schedstat_inc(rq, yld_count); 4287 current->sched_class->yield_task(rq); 4288 4289 /* 4290 * Since we are going to call schedule() anyway, there's 4291 * no need to preempt or enable interrupts: 4292 */ 4293 __release(rq->lock); 4294 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4295 do_raw_spin_unlock(&rq->lock); 4296 sched_preempt_enable_no_resched(); 4297 4298 schedule(); 4299 4300 return 0; 4301 } 4302 4303 static inline int should_resched(void) 4304 { 4305 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); 4306 } 4307 4308 static void __cond_resched(void) 4309 { 4310 add_preempt_count(PREEMPT_ACTIVE); 4311 __schedule(); 4312 sub_preempt_count(PREEMPT_ACTIVE); 4313 } 4314 4315 int __sched _cond_resched(void) 4316 { 4317 if (should_resched()) { 4318 __cond_resched(); 4319 return 1; 4320 } 4321 return 0; 4322 } 4323 EXPORT_SYMBOL(_cond_resched); 4324 4325 /* 4326 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4327 * call schedule, and on return reacquire the lock. 4328 * 4329 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4330 * operations here to prevent schedule() from being called twice (once via 4331 * spin_unlock(), once by hand). 4332 */ 4333 int __cond_resched_lock(spinlock_t *lock) 4334 { 4335 int resched = should_resched(); 4336 int ret = 0; 4337 4338 lockdep_assert_held(lock); 4339 4340 if (spin_needbreak(lock) || resched) { 4341 spin_unlock(lock); 4342 if (resched) 4343 __cond_resched(); 4344 else 4345 cpu_relax(); 4346 ret = 1; 4347 spin_lock(lock); 4348 } 4349 return ret; 4350 } 4351 EXPORT_SYMBOL(__cond_resched_lock); 4352 4353 int __sched __cond_resched_softirq(void) 4354 { 4355 BUG_ON(!in_softirq()); 4356 4357 if (should_resched()) { 4358 local_bh_enable(); 4359 __cond_resched(); 4360 local_bh_disable(); 4361 return 1; 4362 } 4363 return 0; 4364 } 4365 EXPORT_SYMBOL(__cond_resched_softirq); 4366 4367 /** 4368 * yield - yield the current processor to other threads. 4369 * 4370 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4371 * 4372 * The scheduler is at all times free to pick the calling task as the most 4373 * eligible task to run, if removing the yield() call from your code breaks 4374 * it, its already broken. 4375 * 4376 * Typical broken usage is: 4377 * 4378 * while (!event) 4379 * yield(); 4380 * 4381 * where one assumes that yield() will let 'the other' process run that will 4382 * make event true. If the current task is a SCHED_FIFO task that will never 4383 * happen. Never use yield() as a progress guarantee!! 4384 * 4385 * If you want to use yield() to wait for something, use wait_event(). 4386 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4387 * If you still want to use yield(), do not! 4388 */ 4389 void __sched yield(void) 4390 { 4391 set_current_state(TASK_RUNNING); 4392 sys_sched_yield(); 4393 } 4394 EXPORT_SYMBOL(yield); 4395 4396 /** 4397 * yield_to - yield the current processor to another thread in 4398 * your thread group, or accelerate that thread toward the 4399 * processor it's on. 4400 * @p: target task 4401 * @preempt: whether task preemption is allowed or not 4402 * 4403 * It's the caller's job to ensure that the target task struct 4404 * can't go away on us before we can do any checks. 4405 * 4406 * Returns: 4407 * true (>0) if we indeed boosted the target task. 4408 * false (0) if we failed to boost the target. 4409 * -ESRCH if there's no task to yield to. 4410 */ 4411 bool __sched yield_to(struct task_struct *p, bool preempt) 4412 { 4413 struct task_struct *curr = current; 4414 struct rq *rq, *p_rq; 4415 unsigned long flags; 4416 int yielded = 0; 4417 4418 local_irq_save(flags); 4419 rq = this_rq(); 4420 4421 again: 4422 p_rq = task_rq(p); 4423 /* 4424 * If we're the only runnable task on the rq and target rq also 4425 * has only one task, there's absolutely no point in yielding. 4426 */ 4427 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4428 yielded = -ESRCH; 4429 goto out_irq; 4430 } 4431 4432 double_rq_lock(rq, p_rq); 4433 while (task_rq(p) != p_rq) { 4434 double_rq_unlock(rq, p_rq); 4435 goto again; 4436 } 4437 4438 if (!curr->sched_class->yield_to_task) 4439 goto out_unlock; 4440 4441 if (curr->sched_class != p->sched_class) 4442 goto out_unlock; 4443 4444 if (task_running(p_rq, p) || p->state) 4445 goto out_unlock; 4446 4447 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4448 if (yielded) { 4449 schedstat_inc(rq, yld_count); 4450 /* 4451 * Make p's CPU reschedule; pick_next_entity takes care of 4452 * fairness. 4453 */ 4454 if (preempt && rq != p_rq) 4455 resched_task(p_rq->curr); 4456 } 4457 4458 out_unlock: 4459 double_rq_unlock(rq, p_rq); 4460 out_irq: 4461 local_irq_restore(flags); 4462 4463 if (yielded > 0) 4464 schedule(); 4465 4466 return yielded; 4467 } 4468 EXPORT_SYMBOL_GPL(yield_to); 4469 4470 /* 4471 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4472 * that process accounting knows that this is a task in IO wait state. 4473 */ 4474 void __sched io_schedule(void) 4475 { 4476 struct rq *rq = raw_rq(); 4477 4478 delayacct_blkio_start(); 4479 atomic_inc(&rq->nr_iowait); 4480 blk_flush_plug(current); 4481 current->in_iowait = 1; 4482 schedule(); 4483 current->in_iowait = 0; 4484 atomic_dec(&rq->nr_iowait); 4485 delayacct_blkio_end(); 4486 } 4487 EXPORT_SYMBOL(io_schedule); 4488 4489 long __sched io_schedule_timeout(long timeout) 4490 { 4491 struct rq *rq = raw_rq(); 4492 long ret; 4493 4494 delayacct_blkio_start(); 4495 atomic_inc(&rq->nr_iowait); 4496 blk_flush_plug(current); 4497 current->in_iowait = 1; 4498 ret = schedule_timeout(timeout); 4499 current->in_iowait = 0; 4500 atomic_dec(&rq->nr_iowait); 4501 delayacct_blkio_end(); 4502 return ret; 4503 } 4504 4505 /** 4506 * sys_sched_get_priority_max - return maximum RT priority. 4507 * @policy: scheduling class. 4508 * 4509 * this syscall returns the maximum rt_priority that can be used 4510 * by a given scheduling class. 4511 */ 4512 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4513 { 4514 int ret = -EINVAL; 4515 4516 switch (policy) { 4517 case SCHED_FIFO: 4518 case SCHED_RR: 4519 ret = MAX_USER_RT_PRIO-1; 4520 break; 4521 case SCHED_NORMAL: 4522 case SCHED_BATCH: 4523 case SCHED_IDLE: 4524 ret = 0; 4525 break; 4526 } 4527 return ret; 4528 } 4529 4530 /** 4531 * sys_sched_get_priority_min - return minimum RT priority. 4532 * @policy: scheduling class. 4533 * 4534 * this syscall returns the minimum rt_priority that can be used 4535 * by a given scheduling class. 4536 */ 4537 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4538 { 4539 int ret = -EINVAL; 4540 4541 switch (policy) { 4542 case SCHED_FIFO: 4543 case SCHED_RR: 4544 ret = 1; 4545 break; 4546 case SCHED_NORMAL: 4547 case SCHED_BATCH: 4548 case SCHED_IDLE: 4549 ret = 0; 4550 } 4551 return ret; 4552 } 4553 4554 /** 4555 * sys_sched_rr_get_interval - return the default timeslice of a process. 4556 * @pid: pid of the process. 4557 * @interval: userspace pointer to the timeslice value. 4558 * 4559 * this syscall writes the default timeslice value of a given process 4560 * into the user-space timespec buffer. A value of '0' means infinity. 4561 */ 4562 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4563 struct timespec __user *, interval) 4564 { 4565 struct task_struct *p; 4566 unsigned int time_slice; 4567 unsigned long flags; 4568 struct rq *rq; 4569 int retval; 4570 struct timespec t; 4571 4572 if (pid < 0) 4573 return -EINVAL; 4574 4575 retval = -ESRCH; 4576 rcu_read_lock(); 4577 p = find_process_by_pid(pid); 4578 if (!p) 4579 goto out_unlock; 4580 4581 retval = security_task_getscheduler(p); 4582 if (retval) 4583 goto out_unlock; 4584 4585 rq = task_rq_lock(p, &flags); 4586 time_slice = p->sched_class->get_rr_interval(rq, p); 4587 task_rq_unlock(rq, p, &flags); 4588 4589 rcu_read_unlock(); 4590 jiffies_to_timespec(time_slice, &t); 4591 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4592 return retval; 4593 4594 out_unlock: 4595 rcu_read_unlock(); 4596 return retval; 4597 } 4598 4599 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4600 4601 void sched_show_task(struct task_struct *p) 4602 { 4603 unsigned long free = 0; 4604 int ppid; 4605 unsigned state; 4606 4607 state = p->state ? __ffs(p->state) + 1 : 0; 4608 printk(KERN_INFO "%-15.15s %c", p->comm, 4609 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4610 #if BITS_PER_LONG == 32 4611 if (state == TASK_RUNNING) 4612 printk(KERN_CONT " running "); 4613 else 4614 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4615 #else 4616 if (state == TASK_RUNNING) 4617 printk(KERN_CONT " running task "); 4618 else 4619 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4620 #endif 4621 #ifdef CONFIG_DEBUG_STACK_USAGE 4622 free = stack_not_used(p); 4623 #endif 4624 rcu_read_lock(); 4625 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4626 rcu_read_unlock(); 4627 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4628 task_pid_nr(p), ppid, 4629 (unsigned long)task_thread_info(p)->flags); 4630 4631 show_stack(p, NULL); 4632 } 4633 4634 void show_state_filter(unsigned long state_filter) 4635 { 4636 struct task_struct *g, *p; 4637 4638 #if BITS_PER_LONG == 32 4639 printk(KERN_INFO 4640 " task PC stack pid father\n"); 4641 #else 4642 printk(KERN_INFO 4643 " task PC stack pid father\n"); 4644 #endif 4645 rcu_read_lock(); 4646 do_each_thread(g, p) { 4647 /* 4648 * reset the NMI-timeout, listing all files on a slow 4649 * console might take a lot of time: 4650 */ 4651 touch_nmi_watchdog(); 4652 if (!state_filter || (p->state & state_filter)) 4653 sched_show_task(p); 4654 } while_each_thread(g, p); 4655 4656 touch_all_softlockup_watchdogs(); 4657 4658 #ifdef CONFIG_SCHED_DEBUG 4659 sysrq_sched_debug_show(); 4660 #endif 4661 rcu_read_unlock(); 4662 /* 4663 * Only show locks if all tasks are dumped: 4664 */ 4665 if (!state_filter) 4666 debug_show_all_locks(); 4667 } 4668 4669 void __cpuinit init_idle_bootup_task(struct task_struct *idle) 4670 { 4671 idle->sched_class = &idle_sched_class; 4672 } 4673 4674 /** 4675 * init_idle - set up an idle thread for a given CPU 4676 * @idle: task in question 4677 * @cpu: cpu the idle task belongs to 4678 * 4679 * NOTE: this function does not set the idle thread's NEED_RESCHED 4680 * flag, to make booting more robust. 4681 */ 4682 void __cpuinit init_idle(struct task_struct *idle, int cpu) 4683 { 4684 struct rq *rq = cpu_rq(cpu); 4685 unsigned long flags; 4686 4687 raw_spin_lock_irqsave(&rq->lock, flags); 4688 4689 __sched_fork(idle); 4690 idle->state = TASK_RUNNING; 4691 idle->se.exec_start = sched_clock(); 4692 4693 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4694 /* 4695 * We're having a chicken and egg problem, even though we are 4696 * holding rq->lock, the cpu isn't yet set to this cpu so the 4697 * lockdep check in task_group() will fail. 4698 * 4699 * Similar case to sched_fork(). / Alternatively we could 4700 * use task_rq_lock() here and obtain the other rq->lock. 4701 * 4702 * Silence PROVE_RCU 4703 */ 4704 rcu_read_lock(); 4705 __set_task_cpu(idle, cpu); 4706 rcu_read_unlock(); 4707 4708 rq->curr = rq->idle = idle; 4709 #if defined(CONFIG_SMP) 4710 idle->on_cpu = 1; 4711 #endif 4712 raw_spin_unlock_irqrestore(&rq->lock, flags); 4713 4714 /* Set the preempt count _outside_ the spinlocks! */ 4715 task_thread_info(idle)->preempt_count = 0; 4716 4717 /* 4718 * The idle tasks have their own, simple scheduling class: 4719 */ 4720 idle->sched_class = &idle_sched_class; 4721 ftrace_graph_init_idle_task(idle, cpu); 4722 vtime_init_idle(idle); 4723 #if defined(CONFIG_SMP) 4724 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4725 #endif 4726 } 4727 4728 #ifdef CONFIG_SMP 4729 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4730 { 4731 if (p->sched_class && p->sched_class->set_cpus_allowed) 4732 p->sched_class->set_cpus_allowed(p, new_mask); 4733 4734 cpumask_copy(&p->cpus_allowed, new_mask); 4735 p->nr_cpus_allowed = cpumask_weight(new_mask); 4736 } 4737 4738 /* 4739 * This is how migration works: 4740 * 4741 * 1) we invoke migration_cpu_stop() on the target CPU using 4742 * stop_one_cpu(). 4743 * 2) stopper starts to run (implicitly forcing the migrated thread 4744 * off the CPU) 4745 * 3) it checks whether the migrated task is still in the wrong runqueue. 4746 * 4) if it's in the wrong runqueue then the migration thread removes 4747 * it and puts it into the right queue. 4748 * 5) stopper completes and stop_one_cpu() returns and the migration 4749 * is done. 4750 */ 4751 4752 /* 4753 * Change a given task's CPU affinity. Migrate the thread to a 4754 * proper CPU and schedule it away if the CPU it's executing on 4755 * is removed from the allowed bitmask. 4756 * 4757 * NOTE: the caller must have a valid reference to the task, the 4758 * task must not exit() & deallocate itself prematurely. The 4759 * call is not atomic; no spinlocks may be held. 4760 */ 4761 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4762 { 4763 unsigned long flags; 4764 struct rq *rq; 4765 unsigned int dest_cpu; 4766 int ret = 0; 4767 4768 rq = task_rq_lock(p, &flags); 4769 4770 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4771 goto out; 4772 4773 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4774 ret = -EINVAL; 4775 goto out; 4776 } 4777 4778 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) { 4779 ret = -EINVAL; 4780 goto out; 4781 } 4782 4783 do_set_cpus_allowed(p, new_mask); 4784 4785 /* Can the task run on the task's current CPU? If so, we're done */ 4786 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4787 goto out; 4788 4789 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4790 if (p->on_rq) { 4791 struct migration_arg arg = { p, dest_cpu }; 4792 /* Need help from migration thread: drop lock and wait. */ 4793 task_rq_unlock(rq, p, &flags); 4794 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4795 tlb_migrate_finish(p->mm); 4796 return 0; 4797 } 4798 out: 4799 task_rq_unlock(rq, p, &flags); 4800 4801 return ret; 4802 } 4803 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4804 4805 /* 4806 * Move (not current) task off this cpu, onto dest cpu. We're doing 4807 * this because either it can't run here any more (set_cpus_allowed() 4808 * away from this CPU, or CPU going down), or because we're 4809 * attempting to rebalance this task on exec (sched_exec). 4810 * 4811 * So we race with normal scheduler movements, but that's OK, as long 4812 * as the task is no longer on this CPU. 4813 * 4814 * Returns non-zero if task was successfully migrated. 4815 */ 4816 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4817 { 4818 struct rq *rq_dest, *rq_src; 4819 int ret = 0; 4820 4821 if (unlikely(!cpu_active(dest_cpu))) 4822 return ret; 4823 4824 rq_src = cpu_rq(src_cpu); 4825 rq_dest = cpu_rq(dest_cpu); 4826 4827 raw_spin_lock(&p->pi_lock); 4828 double_rq_lock(rq_src, rq_dest); 4829 /* Already moved. */ 4830 if (task_cpu(p) != src_cpu) 4831 goto done; 4832 /* Affinity changed (again). */ 4833 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4834 goto fail; 4835 4836 /* 4837 * If we're not on a rq, the next wake-up will ensure we're 4838 * placed properly. 4839 */ 4840 if (p->on_rq) { 4841 dequeue_task(rq_src, p, 0); 4842 set_task_cpu(p, dest_cpu); 4843 enqueue_task(rq_dest, p, 0); 4844 check_preempt_curr(rq_dest, p, 0); 4845 } 4846 done: 4847 ret = 1; 4848 fail: 4849 double_rq_unlock(rq_src, rq_dest); 4850 raw_spin_unlock(&p->pi_lock); 4851 return ret; 4852 } 4853 4854 /* 4855 * migration_cpu_stop - this will be executed by a highprio stopper thread 4856 * and performs thread migration by bumping thread off CPU then 4857 * 'pushing' onto another runqueue. 4858 */ 4859 static int migration_cpu_stop(void *data) 4860 { 4861 struct migration_arg *arg = data; 4862 4863 /* 4864 * The original target cpu might have gone down and we might 4865 * be on another cpu but it doesn't matter. 4866 */ 4867 local_irq_disable(); 4868 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4869 local_irq_enable(); 4870 return 0; 4871 } 4872 4873 #ifdef CONFIG_HOTPLUG_CPU 4874 4875 /* 4876 * Ensures that the idle task is using init_mm right before its cpu goes 4877 * offline. 4878 */ 4879 void idle_task_exit(void) 4880 { 4881 struct mm_struct *mm = current->active_mm; 4882 4883 BUG_ON(cpu_online(smp_processor_id())); 4884 4885 if (mm != &init_mm) 4886 switch_mm(mm, &init_mm, current); 4887 mmdrop(mm); 4888 } 4889 4890 /* 4891 * Since this CPU is going 'away' for a while, fold any nr_active delta 4892 * we might have. Assumes we're called after migrate_tasks() so that the 4893 * nr_active count is stable. 4894 * 4895 * Also see the comment "Global load-average calculations". 4896 */ 4897 static void calc_load_migrate(struct rq *rq) 4898 { 4899 long delta = calc_load_fold_active(rq); 4900 if (delta) 4901 atomic_long_add(delta, &calc_load_tasks); 4902 } 4903 4904 /* 4905 * Migrate all tasks from the rq, sleeping tasks will be migrated by 4906 * try_to_wake_up()->select_task_rq(). 4907 * 4908 * Called with rq->lock held even though we'er in stop_machine() and 4909 * there's no concurrency possible, we hold the required locks anyway 4910 * because of lock validation efforts. 4911 */ 4912 static void migrate_tasks(unsigned int dead_cpu) 4913 { 4914 struct rq *rq = cpu_rq(dead_cpu); 4915 struct task_struct *next, *stop = rq->stop; 4916 int dest_cpu; 4917 4918 /* 4919 * Fudge the rq selection such that the below task selection loop 4920 * doesn't get stuck on the currently eligible stop task. 4921 * 4922 * We're currently inside stop_machine() and the rq is either stuck 4923 * in the stop_machine_cpu_stop() loop, or we're executing this code, 4924 * either way we should never end up calling schedule() until we're 4925 * done here. 4926 */ 4927 rq->stop = NULL; 4928 4929 for ( ; ; ) { 4930 /* 4931 * There's this thread running, bail when that's the only 4932 * remaining thread. 4933 */ 4934 if (rq->nr_running == 1) 4935 break; 4936 4937 next = pick_next_task(rq); 4938 BUG_ON(!next); 4939 next->sched_class->put_prev_task(rq, next); 4940 4941 /* Find suitable destination for @next, with force if needed. */ 4942 dest_cpu = select_fallback_rq(dead_cpu, next); 4943 raw_spin_unlock(&rq->lock); 4944 4945 __migrate_task(next, dead_cpu, dest_cpu); 4946 4947 raw_spin_lock(&rq->lock); 4948 } 4949 4950 rq->stop = stop; 4951 } 4952 4953 #endif /* CONFIG_HOTPLUG_CPU */ 4954 4955 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 4956 4957 static struct ctl_table sd_ctl_dir[] = { 4958 { 4959 .procname = "sched_domain", 4960 .mode = 0555, 4961 }, 4962 {} 4963 }; 4964 4965 static struct ctl_table sd_ctl_root[] = { 4966 { 4967 .procname = "kernel", 4968 .mode = 0555, 4969 .child = sd_ctl_dir, 4970 }, 4971 {} 4972 }; 4973 4974 static struct ctl_table *sd_alloc_ctl_entry(int n) 4975 { 4976 struct ctl_table *entry = 4977 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 4978 4979 return entry; 4980 } 4981 4982 static void sd_free_ctl_entry(struct ctl_table **tablep) 4983 { 4984 struct ctl_table *entry; 4985 4986 /* 4987 * In the intermediate directories, both the child directory and 4988 * procname are dynamically allocated and could fail but the mode 4989 * will always be set. In the lowest directory the names are 4990 * static strings and all have proc handlers. 4991 */ 4992 for (entry = *tablep; entry->mode; entry++) { 4993 if (entry->child) 4994 sd_free_ctl_entry(&entry->child); 4995 if (entry->proc_handler == NULL) 4996 kfree(entry->procname); 4997 } 4998 4999 kfree(*tablep); 5000 *tablep = NULL; 5001 } 5002 5003 static int min_load_idx = 0; 5004 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 5005 5006 static void 5007 set_table_entry(struct ctl_table *entry, 5008 const char *procname, void *data, int maxlen, 5009 umode_t mode, proc_handler *proc_handler, 5010 bool load_idx) 5011 { 5012 entry->procname = procname; 5013 entry->data = data; 5014 entry->maxlen = maxlen; 5015 entry->mode = mode; 5016 entry->proc_handler = proc_handler; 5017 5018 if (load_idx) { 5019 entry->extra1 = &min_load_idx; 5020 entry->extra2 = &max_load_idx; 5021 } 5022 } 5023 5024 static struct ctl_table * 5025 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5026 { 5027 struct ctl_table *table = sd_alloc_ctl_entry(13); 5028 5029 if (table == NULL) 5030 return NULL; 5031 5032 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5033 sizeof(long), 0644, proc_doulongvec_minmax, false); 5034 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5035 sizeof(long), 0644, proc_doulongvec_minmax, false); 5036 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5037 sizeof(int), 0644, proc_dointvec_minmax, true); 5038 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5039 sizeof(int), 0644, proc_dointvec_minmax, true); 5040 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5041 sizeof(int), 0644, proc_dointvec_minmax, true); 5042 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5043 sizeof(int), 0644, proc_dointvec_minmax, true); 5044 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5045 sizeof(int), 0644, proc_dointvec_minmax, true); 5046 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5047 sizeof(int), 0644, proc_dointvec_minmax, false); 5048 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5049 sizeof(int), 0644, proc_dointvec_minmax, false); 5050 set_table_entry(&table[9], "cache_nice_tries", 5051 &sd->cache_nice_tries, 5052 sizeof(int), 0644, proc_dointvec_minmax, false); 5053 set_table_entry(&table[10], "flags", &sd->flags, 5054 sizeof(int), 0644, proc_dointvec_minmax, false); 5055 set_table_entry(&table[11], "name", sd->name, 5056 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 5057 /* &table[12] is terminator */ 5058 5059 return table; 5060 } 5061 5062 static ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5063 { 5064 struct ctl_table *entry, *table; 5065 struct sched_domain *sd; 5066 int domain_num = 0, i; 5067 char buf[32]; 5068 5069 for_each_domain(cpu, sd) 5070 domain_num++; 5071 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5072 if (table == NULL) 5073 return NULL; 5074 5075 i = 0; 5076 for_each_domain(cpu, sd) { 5077 snprintf(buf, 32, "domain%d", i); 5078 entry->procname = kstrdup(buf, GFP_KERNEL); 5079 entry->mode = 0555; 5080 entry->child = sd_alloc_ctl_domain_table(sd); 5081 entry++; 5082 i++; 5083 } 5084 return table; 5085 } 5086 5087 static struct ctl_table_header *sd_sysctl_header; 5088 static void register_sched_domain_sysctl(void) 5089 { 5090 int i, cpu_num = num_possible_cpus(); 5091 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5092 char buf[32]; 5093 5094 WARN_ON(sd_ctl_dir[0].child); 5095 sd_ctl_dir[0].child = entry; 5096 5097 if (entry == NULL) 5098 return; 5099 5100 for_each_possible_cpu(i) { 5101 snprintf(buf, 32, "cpu%d", i); 5102 entry->procname = kstrdup(buf, GFP_KERNEL); 5103 entry->mode = 0555; 5104 entry->child = sd_alloc_ctl_cpu_table(i); 5105 entry++; 5106 } 5107 5108 WARN_ON(sd_sysctl_header); 5109 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5110 } 5111 5112 /* may be called multiple times per register */ 5113 static void unregister_sched_domain_sysctl(void) 5114 { 5115 if (sd_sysctl_header) 5116 unregister_sysctl_table(sd_sysctl_header); 5117 sd_sysctl_header = NULL; 5118 if (sd_ctl_dir[0].child) 5119 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5120 } 5121 #else 5122 static void register_sched_domain_sysctl(void) 5123 { 5124 } 5125 static void unregister_sched_domain_sysctl(void) 5126 { 5127 } 5128 #endif 5129 5130 static void set_rq_online(struct rq *rq) 5131 { 5132 if (!rq->online) { 5133 const struct sched_class *class; 5134 5135 cpumask_set_cpu(rq->cpu, rq->rd->online); 5136 rq->online = 1; 5137 5138 for_each_class(class) { 5139 if (class->rq_online) 5140 class->rq_online(rq); 5141 } 5142 } 5143 } 5144 5145 static void set_rq_offline(struct rq *rq) 5146 { 5147 if (rq->online) { 5148 const struct sched_class *class; 5149 5150 for_each_class(class) { 5151 if (class->rq_offline) 5152 class->rq_offline(rq); 5153 } 5154 5155 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5156 rq->online = 0; 5157 } 5158 } 5159 5160 /* 5161 * migration_call - callback that gets triggered when a CPU is added. 5162 * Here we can start up the necessary migration thread for the new CPU. 5163 */ 5164 static int __cpuinit 5165 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5166 { 5167 int cpu = (long)hcpu; 5168 unsigned long flags; 5169 struct rq *rq = cpu_rq(cpu); 5170 5171 switch (action & ~CPU_TASKS_FROZEN) { 5172 5173 case CPU_UP_PREPARE: 5174 rq->calc_load_update = calc_load_update; 5175 break; 5176 5177 case CPU_ONLINE: 5178 /* Update our root-domain */ 5179 raw_spin_lock_irqsave(&rq->lock, flags); 5180 if (rq->rd) { 5181 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5182 5183 set_rq_online(rq); 5184 } 5185 raw_spin_unlock_irqrestore(&rq->lock, flags); 5186 break; 5187 5188 #ifdef CONFIG_HOTPLUG_CPU 5189 case CPU_DYING: 5190 sched_ttwu_pending(); 5191 /* Update our root-domain */ 5192 raw_spin_lock_irqsave(&rq->lock, flags); 5193 if (rq->rd) { 5194 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5195 set_rq_offline(rq); 5196 } 5197 migrate_tasks(cpu); 5198 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5199 raw_spin_unlock_irqrestore(&rq->lock, flags); 5200 break; 5201 5202 case CPU_DEAD: 5203 calc_load_migrate(rq); 5204 break; 5205 #endif 5206 } 5207 5208 update_max_interval(); 5209 5210 return NOTIFY_OK; 5211 } 5212 5213 /* 5214 * Register at high priority so that task migration (migrate_all_tasks) 5215 * happens before everything else. This has to be lower priority than 5216 * the notifier in the perf_event subsystem, though. 5217 */ 5218 static struct notifier_block __cpuinitdata migration_notifier = { 5219 .notifier_call = migration_call, 5220 .priority = CPU_PRI_MIGRATION, 5221 }; 5222 5223 static int __cpuinit sched_cpu_active(struct notifier_block *nfb, 5224 unsigned long action, void *hcpu) 5225 { 5226 switch (action & ~CPU_TASKS_FROZEN) { 5227 case CPU_STARTING: 5228 case CPU_DOWN_FAILED: 5229 set_cpu_active((long)hcpu, true); 5230 return NOTIFY_OK; 5231 default: 5232 return NOTIFY_DONE; 5233 } 5234 } 5235 5236 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, 5237 unsigned long action, void *hcpu) 5238 { 5239 switch (action & ~CPU_TASKS_FROZEN) { 5240 case CPU_DOWN_PREPARE: 5241 set_cpu_active((long)hcpu, false); 5242 return NOTIFY_OK; 5243 default: 5244 return NOTIFY_DONE; 5245 } 5246 } 5247 5248 static int __init migration_init(void) 5249 { 5250 void *cpu = (void *)(long)smp_processor_id(); 5251 int err; 5252 5253 /* Initialize migration for the boot CPU */ 5254 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5255 BUG_ON(err == NOTIFY_BAD); 5256 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5257 register_cpu_notifier(&migration_notifier); 5258 5259 /* Register cpu active notifiers */ 5260 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5261 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5262 5263 return 0; 5264 } 5265 early_initcall(migration_init); 5266 #endif 5267 5268 #ifdef CONFIG_SMP 5269 5270 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5271 5272 #ifdef CONFIG_SCHED_DEBUG 5273 5274 static __read_mostly int sched_debug_enabled; 5275 5276 static int __init sched_debug_setup(char *str) 5277 { 5278 sched_debug_enabled = 1; 5279 5280 return 0; 5281 } 5282 early_param("sched_debug", sched_debug_setup); 5283 5284 static inline bool sched_debug(void) 5285 { 5286 return sched_debug_enabled; 5287 } 5288 5289 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5290 struct cpumask *groupmask) 5291 { 5292 struct sched_group *group = sd->groups; 5293 char str[256]; 5294 5295 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5296 cpumask_clear(groupmask); 5297 5298 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5299 5300 if (!(sd->flags & SD_LOAD_BALANCE)) { 5301 printk("does not load-balance\n"); 5302 if (sd->parent) 5303 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5304 " has parent"); 5305 return -1; 5306 } 5307 5308 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5309 5310 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5311 printk(KERN_ERR "ERROR: domain->span does not contain " 5312 "CPU%d\n", cpu); 5313 } 5314 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5315 printk(KERN_ERR "ERROR: domain->groups does not contain" 5316 " CPU%d\n", cpu); 5317 } 5318 5319 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5320 do { 5321 if (!group) { 5322 printk("\n"); 5323 printk(KERN_ERR "ERROR: group is NULL\n"); 5324 break; 5325 } 5326 5327 /* 5328 * Even though we initialize ->power to something semi-sane, 5329 * we leave power_orig unset. This allows us to detect if 5330 * domain iteration is still funny without causing /0 traps. 5331 */ 5332 if (!group->sgp->power_orig) { 5333 printk(KERN_CONT "\n"); 5334 printk(KERN_ERR "ERROR: domain->cpu_power not " 5335 "set\n"); 5336 break; 5337 } 5338 5339 if (!cpumask_weight(sched_group_cpus(group))) { 5340 printk(KERN_CONT "\n"); 5341 printk(KERN_ERR "ERROR: empty group\n"); 5342 break; 5343 } 5344 5345 if (!(sd->flags & SD_OVERLAP) && 5346 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5347 printk(KERN_CONT "\n"); 5348 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5349 break; 5350 } 5351 5352 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5353 5354 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5355 5356 printk(KERN_CONT " %s", str); 5357 if (group->sgp->power != SCHED_POWER_SCALE) { 5358 printk(KERN_CONT " (cpu_power = %d)", 5359 group->sgp->power); 5360 } 5361 5362 group = group->next; 5363 } while (group != sd->groups); 5364 printk(KERN_CONT "\n"); 5365 5366 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5367 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5368 5369 if (sd->parent && 5370 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5371 printk(KERN_ERR "ERROR: parent span is not a superset " 5372 "of domain->span\n"); 5373 return 0; 5374 } 5375 5376 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5377 { 5378 int level = 0; 5379 5380 if (!sched_debug_enabled) 5381 return; 5382 5383 if (!sd) { 5384 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5385 return; 5386 } 5387 5388 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5389 5390 for (;;) { 5391 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5392 break; 5393 level++; 5394 sd = sd->parent; 5395 if (!sd) 5396 break; 5397 } 5398 } 5399 #else /* !CONFIG_SCHED_DEBUG */ 5400 # define sched_domain_debug(sd, cpu) do { } while (0) 5401 static inline bool sched_debug(void) 5402 { 5403 return false; 5404 } 5405 #endif /* CONFIG_SCHED_DEBUG */ 5406 5407 static int sd_degenerate(struct sched_domain *sd) 5408 { 5409 if (cpumask_weight(sched_domain_span(sd)) == 1) 5410 return 1; 5411 5412 /* Following flags need at least 2 groups */ 5413 if (sd->flags & (SD_LOAD_BALANCE | 5414 SD_BALANCE_NEWIDLE | 5415 SD_BALANCE_FORK | 5416 SD_BALANCE_EXEC | 5417 SD_SHARE_CPUPOWER | 5418 SD_SHARE_PKG_RESOURCES)) { 5419 if (sd->groups != sd->groups->next) 5420 return 0; 5421 } 5422 5423 /* Following flags don't use groups */ 5424 if (sd->flags & (SD_WAKE_AFFINE)) 5425 return 0; 5426 5427 return 1; 5428 } 5429 5430 static int 5431 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5432 { 5433 unsigned long cflags = sd->flags, pflags = parent->flags; 5434 5435 if (sd_degenerate(parent)) 5436 return 1; 5437 5438 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5439 return 0; 5440 5441 /* Flags needing groups don't count if only 1 group in parent */ 5442 if (parent->groups == parent->groups->next) { 5443 pflags &= ~(SD_LOAD_BALANCE | 5444 SD_BALANCE_NEWIDLE | 5445 SD_BALANCE_FORK | 5446 SD_BALANCE_EXEC | 5447 SD_SHARE_CPUPOWER | 5448 SD_SHARE_PKG_RESOURCES); 5449 if (nr_node_ids == 1) 5450 pflags &= ~SD_SERIALIZE; 5451 } 5452 if (~cflags & pflags) 5453 return 0; 5454 5455 return 1; 5456 } 5457 5458 static void free_rootdomain(struct rcu_head *rcu) 5459 { 5460 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5461 5462 cpupri_cleanup(&rd->cpupri); 5463 free_cpumask_var(rd->rto_mask); 5464 free_cpumask_var(rd->online); 5465 free_cpumask_var(rd->span); 5466 kfree(rd); 5467 } 5468 5469 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5470 { 5471 struct root_domain *old_rd = NULL; 5472 unsigned long flags; 5473 5474 raw_spin_lock_irqsave(&rq->lock, flags); 5475 5476 if (rq->rd) { 5477 old_rd = rq->rd; 5478 5479 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5480 set_rq_offline(rq); 5481 5482 cpumask_clear_cpu(rq->cpu, old_rd->span); 5483 5484 /* 5485 * If we dont want to free the old_rt yet then 5486 * set old_rd to NULL to skip the freeing later 5487 * in this function: 5488 */ 5489 if (!atomic_dec_and_test(&old_rd->refcount)) 5490 old_rd = NULL; 5491 } 5492 5493 atomic_inc(&rd->refcount); 5494 rq->rd = rd; 5495 5496 cpumask_set_cpu(rq->cpu, rd->span); 5497 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5498 set_rq_online(rq); 5499 5500 raw_spin_unlock_irqrestore(&rq->lock, flags); 5501 5502 if (old_rd) 5503 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5504 } 5505 5506 static int init_rootdomain(struct root_domain *rd) 5507 { 5508 memset(rd, 0, sizeof(*rd)); 5509 5510 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5511 goto out; 5512 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5513 goto free_span; 5514 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5515 goto free_online; 5516 5517 if (cpupri_init(&rd->cpupri) != 0) 5518 goto free_rto_mask; 5519 return 0; 5520 5521 free_rto_mask: 5522 free_cpumask_var(rd->rto_mask); 5523 free_online: 5524 free_cpumask_var(rd->online); 5525 free_span: 5526 free_cpumask_var(rd->span); 5527 out: 5528 return -ENOMEM; 5529 } 5530 5531 /* 5532 * By default the system creates a single root-domain with all cpus as 5533 * members (mimicking the global state we have today). 5534 */ 5535 struct root_domain def_root_domain; 5536 5537 static void init_defrootdomain(void) 5538 { 5539 init_rootdomain(&def_root_domain); 5540 5541 atomic_set(&def_root_domain.refcount, 1); 5542 } 5543 5544 static struct root_domain *alloc_rootdomain(void) 5545 { 5546 struct root_domain *rd; 5547 5548 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5549 if (!rd) 5550 return NULL; 5551 5552 if (init_rootdomain(rd) != 0) { 5553 kfree(rd); 5554 return NULL; 5555 } 5556 5557 return rd; 5558 } 5559 5560 static void free_sched_groups(struct sched_group *sg, int free_sgp) 5561 { 5562 struct sched_group *tmp, *first; 5563 5564 if (!sg) 5565 return; 5566 5567 first = sg; 5568 do { 5569 tmp = sg->next; 5570 5571 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) 5572 kfree(sg->sgp); 5573 5574 kfree(sg); 5575 sg = tmp; 5576 } while (sg != first); 5577 } 5578 5579 static void free_sched_domain(struct rcu_head *rcu) 5580 { 5581 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5582 5583 /* 5584 * If its an overlapping domain it has private groups, iterate and 5585 * nuke them all. 5586 */ 5587 if (sd->flags & SD_OVERLAP) { 5588 free_sched_groups(sd->groups, 1); 5589 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5590 kfree(sd->groups->sgp); 5591 kfree(sd->groups); 5592 } 5593 kfree(sd); 5594 } 5595 5596 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5597 { 5598 call_rcu(&sd->rcu, free_sched_domain); 5599 } 5600 5601 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5602 { 5603 for (; sd; sd = sd->parent) 5604 destroy_sched_domain(sd, cpu); 5605 } 5606 5607 /* 5608 * Keep a special pointer to the highest sched_domain that has 5609 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5610 * allows us to avoid some pointer chasing select_idle_sibling(). 5611 * 5612 * Also keep a unique ID per domain (we use the first cpu number in 5613 * the cpumask of the domain), this allows us to quickly tell if 5614 * two cpus are in the same cache domain, see cpus_share_cache(). 5615 */ 5616 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5617 DEFINE_PER_CPU(int, sd_llc_id); 5618 5619 static void update_top_cache_domain(int cpu) 5620 { 5621 struct sched_domain *sd; 5622 int id = cpu; 5623 5624 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5625 if (sd) 5626 id = cpumask_first(sched_domain_span(sd)); 5627 5628 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5629 per_cpu(sd_llc_id, cpu) = id; 5630 } 5631 5632 /* 5633 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5634 * hold the hotplug lock. 5635 */ 5636 static void 5637 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5638 { 5639 struct rq *rq = cpu_rq(cpu); 5640 struct sched_domain *tmp; 5641 5642 /* Remove the sched domains which do not contribute to scheduling. */ 5643 for (tmp = sd; tmp; ) { 5644 struct sched_domain *parent = tmp->parent; 5645 if (!parent) 5646 break; 5647 5648 if (sd_parent_degenerate(tmp, parent)) { 5649 tmp->parent = parent->parent; 5650 if (parent->parent) 5651 parent->parent->child = tmp; 5652 destroy_sched_domain(parent, cpu); 5653 } else 5654 tmp = tmp->parent; 5655 } 5656 5657 if (sd && sd_degenerate(sd)) { 5658 tmp = sd; 5659 sd = sd->parent; 5660 destroy_sched_domain(tmp, cpu); 5661 if (sd) 5662 sd->child = NULL; 5663 } 5664 5665 sched_domain_debug(sd, cpu); 5666 5667 rq_attach_root(rq, rd); 5668 tmp = rq->sd; 5669 rcu_assign_pointer(rq->sd, sd); 5670 destroy_sched_domains(tmp, cpu); 5671 5672 update_top_cache_domain(cpu); 5673 } 5674 5675 /* cpus with isolated domains */ 5676 static cpumask_var_t cpu_isolated_map; 5677 5678 /* Setup the mask of cpus configured for isolated domains */ 5679 static int __init isolated_cpu_setup(char *str) 5680 { 5681 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5682 cpulist_parse(str, cpu_isolated_map); 5683 return 1; 5684 } 5685 5686 __setup("isolcpus=", isolated_cpu_setup); 5687 5688 static const struct cpumask *cpu_cpu_mask(int cpu) 5689 { 5690 return cpumask_of_node(cpu_to_node(cpu)); 5691 } 5692 5693 struct sd_data { 5694 struct sched_domain **__percpu sd; 5695 struct sched_group **__percpu sg; 5696 struct sched_group_power **__percpu sgp; 5697 }; 5698 5699 struct s_data { 5700 struct sched_domain ** __percpu sd; 5701 struct root_domain *rd; 5702 }; 5703 5704 enum s_alloc { 5705 sa_rootdomain, 5706 sa_sd, 5707 sa_sd_storage, 5708 sa_none, 5709 }; 5710 5711 struct sched_domain_topology_level; 5712 5713 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); 5714 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 5715 5716 #define SDTL_OVERLAP 0x01 5717 5718 struct sched_domain_topology_level { 5719 sched_domain_init_f init; 5720 sched_domain_mask_f mask; 5721 int flags; 5722 int numa_level; 5723 struct sd_data data; 5724 }; 5725 5726 /* 5727 * Build an iteration mask that can exclude certain CPUs from the upwards 5728 * domain traversal. 5729 * 5730 * Asymmetric node setups can result in situations where the domain tree is of 5731 * unequal depth, make sure to skip domains that already cover the entire 5732 * range. 5733 * 5734 * In that case build_sched_domains() will have terminated the iteration early 5735 * and our sibling sd spans will be empty. Domains should always include the 5736 * cpu they're built on, so check that. 5737 * 5738 */ 5739 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5740 { 5741 const struct cpumask *span = sched_domain_span(sd); 5742 struct sd_data *sdd = sd->private; 5743 struct sched_domain *sibling; 5744 int i; 5745 5746 for_each_cpu(i, span) { 5747 sibling = *per_cpu_ptr(sdd->sd, i); 5748 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5749 continue; 5750 5751 cpumask_set_cpu(i, sched_group_mask(sg)); 5752 } 5753 } 5754 5755 /* 5756 * Return the canonical balance cpu for this group, this is the first cpu 5757 * of this group that's also in the iteration mask. 5758 */ 5759 int group_balance_cpu(struct sched_group *sg) 5760 { 5761 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5762 } 5763 5764 static int 5765 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5766 { 5767 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5768 const struct cpumask *span = sched_domain_span(sd); 5769 struct cpumask *covered = sched_domains_tmpmask; 5770 struct sd_data *sdd = sd->private; 5771 struct sched_domain *child; 5772 int i; 5773 5774 cpumask_clear(covered); 5775 5776 for_each_cpu(i, span) { 5777 struct cpumask *sg_span; 5778 5779 if (cpumask_test_cpu(i, covered)) 5780 continue; 5781 5782 child = *per_cpu_ptr(sdd->sd, i); 5783 5784 /* See the comment near build_group_mask(). */ 5785 if (!cpumask_test_cpu(i, sched_domain_span(child))) 5786 continue; 5787 5788 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5789 GFP_KERNEL, cpu_to_node(cpu)); 5790 5791 if (!sg) 5792 goto fail; 5793 5794 sg_span = sched_group_cpus(sg); 5795 if (child->child) { 5796 child = child->child; 5797 cpumask_copy(sg_span, sched_domain_span(child)); 5798 } else 5799 cpumask_set_cpu(i, sg_span); 5800 5801 cpumask_or(covered, covered, sg_span); 5802 5803 sg->sgp = *per_cpu_ptr(sdd->sgp, i); 5804 if (atomic_inc_return(&sg->sgp->ref) == 1) 5805 build_group_mask(sd, sg); 5806 5807 /* 5808 * Initialize sgp->power such that even if we mess up the 5809 * domains and no possible iteration will get us here, we won't 5810 * die on a /0 trap. 5811 */ 5812 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span); 5813 5814 /* 5815 * Make sure the first group of this domain contains the 5816 * canonical balance cpu. Otherwise the sched_domain iteration 5817 * breaks. See update_sg_lb_stats(). 5818 */ 5819 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 5820 group_balance_cpu(sg) == cpu) 5821 groups = sg; 5822 5823 if (!first) 5824 first = sg; 5825 if (last) 5826 last->next = sg; 5827 last = sg; 5828 last->next = first; 5829 } 5830 sd->groups = groups; 5831 5832 return 0; 5833 5834 fail: 5835 free_sched_groups(first, 0); 5836 5837 return -ENOMEM; 5838 } 5839 5840 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 5841 { 5842 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 5843 struct sched_domain *child = sd->child; 5844 5845 if (child) 5846 cpu = cpumask_first(sched_domain_span(child)); 5847 5848 if (sg) { 5849 *sg = *per_cpu_ptr(sdd->sg, cpu); 5850 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); 5851 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ 5852 } 5853 5854 return cpu; 5855 } 5856 5857 /* 5858 * build_sched_groups will build a circular linked list of the groups 5859 * covered by the given span, and will set each group's ->cpumask correctly, 5860 * and ->cpu_power to 0. 5861 * 5862 * Assumes the sched_domain tree is fully constructed 5863 */ 5864 static int 5865 build_sched_groups(struct sched_domain *sd, int cpu) 5866 { 5867 struct sched_group *first = NULL, *last = NULL; 5868 struct sd_data *sdd = sd->private; 5869 const struct cpumask *span = sched_domain_span(sd); 5870 struct cpumask *covered; 5871 int i; 5872 5873 get_group(cpu, sdd, &sd->groups); 5874 atomic_inc(&sd->groups->ref); 5875 5876 if (cpu != cpumask_first(sched_domain_span(sd))) 5877 return 0; 5878 5879 lockdep_assert_held(&sched_domains_mutex); 5880 covered = sched_domains_tmpmask; 5881 5882 cpumask_clear(covered); 5883 5884 for_each_cpu(i, span) { 5885 struct sched_group *sg; 5886 int group = get_group(i, sdd, &sg); 5887 int j; 5888 5889 if (cpumask_test_cpu(i, covered)) 5890 continue; 5891 5892 cpumask_clear(sched_group_cpus(sg)); 5893 sg->sgp->power = 0; 5894 cpumask_setall(sched_group_mask(sg)); 5895 5896 for_each_cpu(j, span) { 5897 if (get_group(j, sdd, NULL) != group) 5898 continue; 5899 5900 cpumask_set_cpu(j, covered); 5901 cpumask_set_cpu(j, sched_group_cpus(sg)); 5902 } 5903 5904 if (!first) 5905 first = sg; 5906 if (last) 5907 last->next = sg; 5908 last = sg; 5909 } 5910 last->next = first; 5911 5912 return 0; 5913 } 5914 5915 /* 5916 * Initialize sched groups cpu_power. 5917 * 5918 * cpu_power indicates the capacity of sched group, which is used while 5919 * distributing the load between different sched groups in a sched domain. 5920 * Typically cpu_power for all the groups in a sched domain will be same unless 5921 * there are asymmetries in the topology. If there are asymmetries, group 5922 * having more cpu_power will pickup more load compared to the group having 5923 * less cpu_power. 5924 */ 5925 static void init_sched_groups_power(int cpu, struct sched_domain *sd) 5926 { 5927 struct sched_group *sg = sd->groups; 5928 5929 WARN_ON(!sd || !sg); 5930 5931 do { 5932 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 5933 sg = sg->next; 5934 } while (sg != sd->groups); 5935 5936 if (cpu != group_balance_cpu(sg)) 5937 return; 5938 5939 update_group_power(sd, cpu); 5940 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); 5941 } 5942 5943 int __weak arch_sd_sibling_asym_packing(void) 5944 { 5945 return 0*SD_ASYM_PACKING; 5946 } 5947 5948 /* 5949 * Initializers for schedule domains 5950 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 5951 */ 5952 5953 #ifdef CONFIG_SCHED_DEBUG 5954 # define SD_INIT_NAME(sd, type) sd->name = #type 5955 #else 5956 # define SD_INIT_NAME(sd, type) do { } while (0) 5957 #endif 5958 5959 #define SD_INIT_FUNC(type) \ 5960 static noinline struct sched_domain * \ 5961 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ 5962 { \ 5963 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ 5964 *sd = SD_##type##_INIT; \ 5965 SD_INIT_NAME(sd, type); \ 5966 sd->private = &tl->data; \ 5967 return sd; \ 5968 } 5969 5970 SD_INIT_FUNC(CPU) 5971 #ifdef CONFIG_SCHED_SMT 5972 SD_INIT_FUNC(SIBLING) 5973 #endif 5974 #ifdef CONFIG_SCHED_MC 5975 SD_INIT_FUNC(MC) 5976 #endif 5977 #ifdef CONFIG_SCHED_BOOK 5978 SD_INIT_FUNC(BOOK) 5979 #endif 5980 5981 static int default_relax_domain_level = -1; 5982 int sched_domain_level_max; 5983 5984 static int __init setup_relax_domain_level(char *str) 5985 { 5986 if (kstrtoint(str, 0, &default_relax_domain_level)) 5987 pr_warn("Unable to set relax_domain_level\n"); 5988 5989 return 1; 5990 } 5991 __setup("relax_domain_level=", setup_relax_domain_level); 5992 5993 static void set_domain_attribute(struct sched_domain *sd, 5994 struct sched_domain_attr *attr) 5995 { 5996 int request; 5997 5998 if (!attr || attr->relax_domain_level < 0) { 5999 if (default_relax_domain_level < 0) 6000 return; 6001 else 6002 request = default_relax_domain_level; 6003 } else 6004 request = attr->relax_domain_level; 6005 if (request < sd->level) { 6006 /* turn off idle balance on this domain */ 6007 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6008 } else { 6009 /* turn on idle balance on this domain */ 6010 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6011 } 6012 } 6013 6014 static void __sdt_free(const struct cpumask *cpu_map); 6015 static int __sdt_alloc(const struct cpumask *cpu_map); 6016 6017 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6018 const struct cpumask *cpu_map) 6019 { 6020 switch (what) { 6021 case sa_rootdomain: 6022 if (!atomic_read(&d->rd->refcount)) 6023 free_rootdomain(&d->rd->rcu); /* fall through */ 6024 case sa_sd: 6025 free_percpu(d->sd); /* fall through */ 6026 case sa_sd_storage: 6027 __sdt_free(cpu_map); /* fall through */ 6028 case sa_none: 6029 break; 6030 } 6031 } 6032 6033 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6034 const struct cpumask *cpu_map) 6035 { 6036 memset(d, 0, sizeof(*d)); 6037 6038 if (__sdt_alloc(cpu_map)) 6039 return sa_sd_storage; 6040 d->sd = alloc_percpu(struct sched_domain *); 6041 if (!d->sd) 6042 return sa_sd_storage; 6043 d->rd = alloc_rootdomain(); 6044 if (!d->rd) 6045 return sa_sd; 6046 return sa_rootdomain; 6047 } 6048 6049 /* 6050 * NULL the sd_data elements we've used to build the sched_domain and 6051 * sched_group structure so that the subsequent __free_domain_allocs() 6052 * will not free the data we're using. 6053 */ 6054 static void claim_allocations(int cpu, struct sched_domain *sd) 6055 { 6056 struct sd_data *sdd = sd->private; 6057 6058 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6059 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6060 6061 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6062 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6063 6064 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) 6065 *per_cpu_ptr(sdd->sgp, cpu) = NULL; 6066 } 6067 6068 #ifdef CONFIG_SCHED_SMT 6069 static const struct cpumask *cpu_smt_mask(int cpu) 6070 { 6071 return topology_thread_cpumask(cpu); 6072 } 6073 #endif 6074 6075 /* 6076 * Topology list, bottom-up. 6077 */ 6078 static struct sched_domain_topology_level default_topology[] = { 6079 #ifdef CONFIG_SCHED_SMT 6080 { sd_init_SIBLING, cpu_smt_mask, }, 6081 #endif 6082 #ifdef CONFIG_SCHED_MC 6083 { sd_init_MC, cpu_coregroup_mask, }, 6084 #endif 6085 #ifdef CONFIG_SCHED_BOOK 6086 { sd_init_BOOK, cpu_book_mask, }, 6087 #endif 6088 { sd_init_CPU, cpu_cpu_mask, }, 6089 { NULL, }, 6090 }; 6091 6092 static struct sched_domain_topology_level *sched_domain_topology = default_topology; 6093 6094 #ifdef CONFIG_NUMA 6095 6096 static int sched_domains_numa_levels; 6097 static int *sched_domains_numa_distance; 6098 static struct cpumask ***sched_domains_numa_masks; 6099 static int sched_domains_curr_level; 6100 6101 static inline int sd_local_flags(int level) 6102 { 6103 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE) 6104 return 0; 6105 6106 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE; 6107 } 6108 6109 static struct sched_domain * 6110 sd_numa_init(struct sched_domain_topology_level *tl, int cpu) 6111 { 6112 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6113 int level = tl->numa_level; 6114 int sd_weight = cpumask_weight( 6115 sched_domains_numa_masks[level][cpu_to_node(cpu)]); 6116 6117 *sd = (struct sched_domain){ 6118 .min_interval = sd_weight, 6119 .max_interval = 2*sd_weight, 6120 .busy_factor = 32, 6121 .imbalance_pct = 125, 6122 .cache_nice_tries = 2, 6123 .busy_idx = 3, 6124 .idle_idx = 2, 6125 .newidle_idx = 0, 6126 .wake_idx = 0, 6127 .forkexec_idx = 0, 6128 6129 .flags = 1*SD_LOAD_BALANCE 6130 | 1*SD_BALANCE_NEWIDLE 6131 | 0*SD_BALANCE_EXEC 6132 | 0*SD_BALANCE_FORK 6133 | 0*SD_BALANCE_WAKE 6134 | 0*SD_WAKE_AFFINE 6135 | 0*SD_SHARE_CPUPOWER 6136 | 0*SD_SHARE_PKG_RESOURCES 6137 | 1*SD_SERIALIZE 6138 | 0*SD_PREFER_SIBLING 6139 | sd_local_flags(level) 6140 , 6141 .last_balance = jiffies, 6142 .balance_interval = sd_weight, 6143 }; 6144 SD_INIT_NAME(sd, NUMA); 6145 sd->private = &tl->data; 6146 6147 /* 6148 * Ugly hack to pass state to sd_numa_mask()... 6149 */ 6150 sched_domains_curr_level = tl->numa_level; 6151 6152 return sd; 6153 } 6154 6155 static const struct cpumask *sd_numa_mask(int cpu) 6156 { 6157 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6158 } 6159 6160 static void sched_numa_warn(const char *str) 6161 { 6162 static int done = false; 6163 int i,j; 6164 6165 if (done) 6166 return; 6167 6168 done = true; 6169 6170 printk(KERN_WARNING "ERROR: %s\n\n", str); 6171 6172 for (i = 0; i < nr_node_ids; i++) { 6173 printk(KERN_WARNING " "); 6174 for (j = 0; j < nr_node_ids; j++) 6175 printk(KERN_CONT "%02d ", node_distance(i,j)); 6176 printk(KERN_CONT "\n"); 6177 } 6178 printk(KERN_WARNING "\n"); 6179 } 6180 6181 static bool find_numa_distance(int distance) 6182 { 6183 int i; 6184 6185 if (distance == node_distance(0, 0)) 6186 return true; 6187 6188 for (i = 0; i < sched_domains_numa_levels; i++) { 6189 if (sched_domains_numa_distance[i] == distance) 6190 return true; 6191 } 6192 6193 return false; 6194 } 6195 6196 static void sched_init_numa(void) 6197 { 6198 int next_distance, curr_distance = node_distance(0, 0); 6199 struct sched_domain_topology_level *tl; 6200 int level = 0; 6201 int i, j, k; 6202 6203 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6204 if (!sched_domains_numa_distance) 6205 return; 6206 6207 /* 6208 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6209 * unique distances in the node_distance() table. 6210 * 6211 * Assumes node_distance(0,j) includes all distances in 6212 * node_distance(i,j) in order to avoid cubic time. 6213 */ 6214 next_distance = curr_distance; 6215 for (i = 0; i < nr_node_ids; i++) { 6216 for (j = 0; j < nr_node_ids; j++) { 6217 for (k = 0; k < nr_node_ids; k++) { 6218 int distance = node_distance(i, k); 6219 6220 if (distance > curr_distance && 6221 (distance < next_distance || 6222 next_distance == curr_distance)) 6223 next_distance = distance; 6224 6225 /* 6226 * While not a strong assumption it would be nice to know 6227 * about cases where if node A is connected to B, B is not 6228 * equally connected to A. 6229 */ 6230 if (sched_debug() && node_distance(k, i) != distance) 6231 sched_numa_warn("Node-distance not symmetric"); 6232 6233 if (sched_debug() && i && !find_numa_distance(distance)) 6234 sched_numa_warn("Node-0 not representative"); 6235 } 6236 if (next_distance != curr_distance) { 6237 sched_domains_numa_distance[level++] = next_distance; 6238 sched_domains_numa_levels = level; 6239 curr_distance = next_distance; 6240 } else break; 6241 } 6242 6243 /* 6244 * In case of sched_debug() we verify the above assumption. 6245 */ 6246 if (!sched_debug()) 6247 break; 6248 } 6249 /* 6250 * 'level' contains the number of unique distances, excluding the 6251 * identity distance node_distance(i,i). 6252 * 6253 * The sched_domains_nume_distance[] array includes the actual distance 6254 * numbers. 6255 */ 6256 6257 /* 6258 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6259 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6260 * the array will contain less then 'level' members. This could be 6261 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6262 * in other functions. 6263 * 6264 * We reset it to 'level' at the end of this function. 6265 */ 6266 sched_domains_numa_levels = 0; 6267 6268 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6269 if (!sched_domains_numa_masks) 6270 return; 6271 6272 /* 6273 * Now for each level, construct a mask per node which contains all 6274 * cpus of nodes that are that many hops away from us. 6275 */ 6276 for (i = 0; i < level; i++) { 6277 sched_domains_numa_masks[i] = 6278 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6279 if (!sched_domains_numa_masks[i]) 6280 return; 6281 6282 for (j = 0; j < nr_node_ids; j++) { 6283 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6284 if (!mask) 6285 return; 6286 6287 sched_domains_numa_masks[i][j] = mask; 6288 6289 for (k = 0; k < nr_node_ids; k++) { 6290 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6291 continue; 6292 6293 cpumask_or(mask, mask, cpumask_of_node(k)); 6294 } 6295 } 6296 } 6297 6298 tl = kzalloc((ARRAY_SIZE(default_topology) + level) * 6299 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6300 if (!tl) 6301 return; 6302 6303 /* 6304 * Copy the default topology bits.. 6305 */ 6306 for (i = 0; default_topology[i].init; i++) 6307 tl[i] = default_topology[i]; 6308 6309 /* 6310 * .. and append 'j' levels of NUMA goodness. 6311 */ 6312 for (j = 0; j < level; i++, j++) { 6313 tl[i] = (struct sched_domain_topology_level){ 6314 .init = sd_numa_init, 6315 .mask = sd_numa_mask, 6316 .flags = SDTL_OVERLAP, 6317 .numa_level = j, 6318 }; 6319 } 6320 6321 sched_domain_topology = tl; 6322 6323 sched_domains_numa_levels = level; 6324 } 6325 6326 static void sched_domains_numa_masks_set(int cpu) 6327 { 6328 int i, j; 6329 int node = cpu_to_node(cpu); 6330 6331 for (i = 0; i < sched_domains_numa_levels; i++) { 6332 for (j = 0; j < nr_node_ids; j++) { 6333 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6334 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6335 } 6336 } 6337 } 6338 6339 static void sched_domains_numa_masks_clear(int cpu) 6340 { 6341 int i, j; 6342 for (i = 0; i < sched_domains_numa_levels; i++) { 6343 for (j = 0; j < nr_node_ids; j++) 6344 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6345 } 6346 } 6347 6348 /* 6349 * Update sched_domains_numa_masks[level][node] array when new cpus 6350 * are onlined. 6351 */ 6352 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6353 unsigned long action, 6354 void *hcpu) 6355 { 6356 int cpu = (long)hcpu; 6357 6358 switch (action & ~CPU_TASKS_FROZEN) { 6359 case CPU_ONLINE: 6360 sched_domains_numa_masks_set(cpu); 6361 break; 6362 6363 case CPU_DEAD: 6364 sched_domains_numa_masks_clear(cpu); 6365 break; 6366 6367 default: 6368 return NOTIFY_DONE; 6369 } 6370 6371 return NOTIFY_OK; 6372 } 6373 #else 6374 static inline void sched_init_numa(void) 6375 { 6376 } 6377 6378 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6379 unsigned long action, 6380 void *hcpu) 6381 { 6382 return 0; 6383 } 6384 #endif /* CONFIG_NUMA */ 6385 6386 static int __sdt_alloc(const struct cpumask *cpu_map) 6387 { 6388 struct sched_domain_topology_level *tl; 6389 int j; 6390 6391 for (tl = sched_domain_topology; tl->init; tl++) { 6392 struct sd_data *sdd = &tl->data; 6393 6394 sdd->sd = alloc_percpu(struct sched_domain *); 6395 if (!sdd->sd) 6396 return -ENOMEM; 6397 6398 sdd->sg = alloc_percpu(struct sched_group *); 6399 if (!sdd->sg) 6400 return -ENOMEM; 6401 6402 sdd->sgp = alloc_percpu(struct sched_group_power *); 6403 if (!sdd->sgp) 6404 return -ENOMEM; 6405 6406 for_each_cpu(j, cpu_map) { 6407 struct sched_domain *sd; 6408 struct sched_group *sg; 6409 struct sched_group_power *sgp; 6410 6411 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6412 GFP_KERNEL, cpu_to_node(j)); 6413 if (!sd) 6414 return -ENOMEM; 6415 6416 *per_cpu_ptr(sdd->sd, j) = sd; 6417 6418 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6419 GFP_KERNEL, cpu_to_node(j)); 6420 if (!sg) 6421 return -ENOMEM; 6422 6423 sg->next = sg; 6424 6425 *per_cpu_ptr(sdd->sg, j) = sg; 6426 6427 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(), 6428 GFP_KERNEL, cpu_to_node(j)); 6429 if (!sgp) 6430 return -ENOMEM; 6431 6432 *per_cpu_ptr(sdd->sgp, j) = sgp; 6433 } 6434 } 6435 6436 return 0; 6437 } 6438 6439 static void __sdt_free(const struct cpumask *cpu_map) 6440 { 6441 struct sched_domain_topology_level *tl; 6442 int j; 6443 6444 for (tl = sched_domain_topology; tl->init; tl++) { 6445 struct sd_data *sdd = &tl->data; 6446 6447 for_each_cpu(j, cpu_map) { 6448 struct sched_domain *sd; 6449 6450 if (sdd->sd) { 6451 sd = *per_cpu_ptr(sdd->sd, j); 6452 if (sd && (sd->flags & SD_OVERLAP)) 6453 free_sched_groups(sd->groups, 0); 6454 kfree(*per_cpu_ptr(sdd->sd, j)); 6455 } 6456 6457 if (sdd->sg) 6458 kfree(*per_cpu_ptr(sdd->sg, j)); 6459 if (sdd->sgp) 6460 kfree(*per_cpu_ptr(sdd->sgp, j)); 6461 } 6462 free_percpu(sdd->sd); 6463 sdd->sd = NULL; 6464 free_percpu(sdd->sg); 6465 sdd->sg = NULL; 6466 free_percpu(sdd->sgp); 6467 sdd->sgp = NULL; 6468 } 6469 } 6470 6471 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6472 struct s_data *d, const struct cpumask *cpu_map, 6473 struct sched_domain_attr *attr, struct sched_domain *child, 6474 int cpu) 6475 { 6476 struct sched_domain *sd = tl->init(tl, cpu); 6477 if (!sd) 6478 return child; 6479 6480 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6481 if (child) { 6482 sd->level = child->level + 1; 6483 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6484 child->parent = sd; 6485 } 6486 sd->child = child; 6487 set_domain_attribute(sd, attr); 6488 6489 return sd; 6490 } 6491 6492 /* 6493 * Build sched domains for a given set of cpus and attach the sched domains 6494 * to the individual cpus 6495 */ 6496 static int build_sched_domains(const struct cpumask *cpu_map, 6497 struct sched_domain_attr *attr) 6498 { 6499 enum s_alloc alloc_state = sa_none; 6500 struct sched_domain *sd; 6501 struct s_data d; 6502 int i, ret = -ENOMEM; 6503 6504 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6505 if (alloc_state != sa_rootdomain) 6506 goto error; 6507 6508 /* Set up domains for cpus specified by the cpu_map. */ 6509 for_each_cpu(i, cpu_map) { 6510 struct sched_domain_topology_level *tl; 6511 6512 sd = NULL; 6513 for (tl = sched_domain_topology; tl->init; tl++) { 6514 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); 6515 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6516 sd->flags |= SD_OVERLAP; 6517 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6518 break; 6519 } 6520 6521 while (sd->child) 6522 sd = sd->child; 6523 6524 *per_cpu_ptr(d.sd, i) = sd; 6525 } 6526 6527 /* Build the groups for the domains */ 6528 for_each_cpu(i, cpu_map) { 6529 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6530 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6531 if (sd->flags & SD_OVERLAP) { 6532 if (build_overlap_sched_groups(sd, i)) 6533 goto error; 6534 } else { 6535 if (build_sched_groups(sd, i)) 6536 goto error; 6537 } 6538 } 6539 } 6540 6541 /* Calculate CPU power for physical packages and nodes */ 6542 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6543 if (!cpumask_test_cpu(i, cpu_map)) 6544 continue; 6545 6546 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6547 claim_allocations(i, sd); 6548 init_sched_groups_power(i, sd); 6549 } 6550 } 6551 6552 /* Attach the domains */ 6553 rcu_read_lock(); 6554 for_each_cpu(i, cpu_map) { 6555 sd = *per_cpu_ptr(d.sd, i); 6556 cpu_attach_domain(sd, d.rd, i); 6557 } 6558 rcu_read_unlock(); 6559 6560 ret = 0; 6561 error: 6562 __free_domain_allocs(&d, alloc_state, cpu_map); 6563 return ret; 6564 } 6565 6566 static cpumask_var_t *doms_cur; /* current sched domains */ 6567 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6568 static struct sched_domain_attr *dattr_cur; 6569 /* attribues of custom domains in 'doms_cur' */ 6570 6571 /* 6572 * Special case: If a kmalloc of a doms_cur partition (array of 6573 * cpumask) fails, then fallback to a single sched domain, 6574 * as determined by the single cpumask fallback_doms. 6575 */ 6576 static cpumask_var_t fallback_doms; 6577 6578 /* 6579 * arch_update_cpu_topology lets virtualized architectures update the 6580 * cpu core maps. It is supposed to return 1 if the topology changed 6581 * or 0 if it stayed the same. 6582 */ 6583 int __attribute__((weak)) arch_update_cpu_topology(void) 6584 { 6585 return 0; 6586 } 6587 6588 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6589 { 6590 int i; 6591 cpumask_var_t *doms; 6592 6593 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6594 if (!doms) 6595 return NULL; 6596 for (i = 0; i < ndoms; i++) { 6597 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6598 free_sched_domains(doms, i); 6599 return NULL; 6600 } 6601 } 6602 return doms; 6603 } 6604 6605 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6606 { 6607 unsigned int i; 6608 for (i = 0; i < ndoms; i++) 6609 free_cpumask_var(doms[i]); 6610 kfree(doms); 6611 } 6612 6613 /* 6614 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6615 * For now this just excludes isolated cpus, but could be used to 6616 * exclude other special cases in the future. 6617 */ 6618 static int init_sched_domains(const struct cpumask *cpu_map) 6619 { 6620 int err; 6621 6622 arch_update_cpu_topology(); 6623 ndoms_cur = 1; 6624 doms_cur = alloc_sched_domains(ndoms_cur); 6625 if (!doms_cur) 6626 doms_cur = &fallback_doms; 6627 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6628 err = build_sched_domains(doms_cur[0], NULL); 6629 register_sched_domain_sysctl(); 6630 6631 return err; 6632 } 6633 6634 /* 6635 * Detach sched domains from a group of cpus specified in cpu_map 6636 * These cpus will now be attached to the NULL domain 6637 */ 6638 static void detach_destroy_domains(const struct cpumask *cpu_map) 6639 { 6640 int i; 6641 6642 rcu_read_lock(); 6643 for_each_cpu(i, cpu_map) 6644 cpu_attach_domain(NULL, &def_root_domain, i); 6645 rcu_read_unlock(); 6646 } 6647 6648 /* handle null as "default" */ 6649 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6650 struct sched_domain_attr *new, int idx_new) 6651 { 6652 struct sched_domain_attr tmp; 6653 6654 /* fast path */ 6655 if (!new && !cur) 6656 return 1; 6657 6658 tmp = SD_ATTR_INIT; 6659 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6660 new ? (new + idx_new) : &tmp, 6661 sizeof(struct sched_domain_attr)); 6662 } 6663 6664 /* 6665 * Partition sched domains as specified by the 'ndoms_new' 6666 * cpumasks in the array doms_new[] of cpumasks. This compares 6667 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6668 * It destroys each deleted domain and builds each new domain. 6669 * 6670 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6671 * The masks don't intersect (don't overlap.) We should setup one 6672 * sched domain for each mask. CPUs not in any of the cpumasks will 6673 * not be load balanced. If the same cpumask appears both in the 6674 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6675 * it as it is. 6676 * 6677 * The passed in 'doms_new' should be allocated using 6678 * alloc_sched_domains. This routine takes ownership of it and will 6679 * free_sched_domains it when done with it. If the caller failed the 6680 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6681 * and partition_sched_domains() will fallback to the single partition 6682 * 'fallback_doms', it also forces the domains to be rebuilt. 6683 * 6684 * If doms_new == NULL it will be replaced with cpu_online_mask. 6685 * ndoms_new == 0 is a special case for destroying existing domains, 6686 * and it will not create the default domain. 6687 * 6688 * Call with hotplug lock held 6689 */ 6690 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6691 struct sched_domain_attr *dattr_new) 6692 { 6693 int i, j, n; 6694 int new_topology; 6695 6696 mutex_lock(&sched_domains_mutex); 6697 6698 /* always unregister in case we don't destroy any domains */ 6699 unregister_sched_domain_sysctl(); 6700 6701 /* Let architecture update cpu core mappings. */ 6702 new_topology = arch_update_cpu_topology(); 6703 6704 n = doms_new ? ndoms_new : 0; 6705 6706 /* Destroy deleted domains */ 6707 for (i = 0; i < ndoms_cur; i++) { 6708 for (j = 0; j < n && !new_topology; j++) { 6709 if (cpumask_equal(doms_cur[i], doms_new[j]) 6710 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6711 goto match1; 6712 } 6713 /* no match - a current sched domain not in new doms_new[] */ 6714 detach_destroy_domains(doms_cur[i]); 6715 match1: 6716 ; 6717 } 6718 6719 if (doms_new == NULL) { 6720 ndoms_cur = 0; 6721 doms_new = &fallback_doms; 6722 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6723 WARN_ON_ONCE(dattr_new); 6724 } 6725 6726 /* Build new domains */ 6727 for (i = 0; i < ndoms_new; i++) { 6728 for (j = 0; j < ndoms_cur && !new_topology; j++) { 6729 if (cpumask_equal(doms_new[i], doms_cur[j]) 6730 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6731 goto match2; 6732 } 6733 /* no match - add a new doms_new */ 6734 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6735 match2: 6736 ; 6737 } 6738 6739 /* Remember the new sched domains */ 6740 if (doms_cur != &fallback_doms) 6741 free_sched_domains(doms_cur, ndoms_cur); 6742 kfree(dattr_cur); /* kfree(NULL) is safe */ 6743 doms_cur = doms_new; 6744 dattr_cur = dattr_new; 6745 ndoms_cur = ndoms_new; 6746 6747 register_sched_domain_sysctl(); 6748 6749 mutex_unlock(&sched_domains_mutex); 6750 } 6751 6752 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 6753 6754 /* 6755 * Update cpusets according to cpu_active mask. If cpusets are 6756 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6757 * around partition_sched_domains(). 6758 * 6759 * If we come here as part of a suspend/resume, don't touch cpusets because we 6760 * want to restore it back to its original state upon resume anyway. 6761 */ 6762 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6763 void *hcpu) 6764 { 6765 switch (action) { 6766 case CPU_ONLINE_FROZEN: 6767 case CPU_DOWN_FAILED_FROZEN: 6768 6769 /* 6770 * num_cpus_frozen tracks how many CPUs are involved in suspend 6771 * resume sequence. As long as this is not the last online 6772 * operation in the resume sequence, just build a single sched 6773 * domain, ignoring cpusets. 6774 */ 6775 num_cpus_frozen--; 6776 if (likely(num_cpus_frozen)) { 6777 partition_sched_domains(1, NULL, NULL); 6778 break; 6779 } 6780 6781 /* 6782 * This is the last CPU online operation. So fall through and 6783 * restore the original sched domains by considering the 6784 * cpuset configurations. 6785 */ 6786 6787 case CPU_ONLINE: 6788 case CPU_DOWN_FAILED: 6789 cpuset_update_active_cpus(true); 6790 break; 6791 default: 6792 return NOTIFY_DONE; 6793 } 6794 return NOTIFY_OK; 6795 } 6796 6797 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6798 void *hcpu) 6799 { 6800 switch (action) { 6801 case CPU_DOWN_PREPARE: 6802 cpuset_update_active_cpus(false); 6803 break; 6804 case CPU_DOWN_PREPARE_FROZEN: 6805 num_cpus_frozen++; 6806 partition_sched_domains(1, NULL, NULL); 6807 break; 6808 default: 6809 return NOTIFY_DONE; 6810 } 6811 return NOTIFY_OK; 6812 } 6813 6814 void __init sched_init_smp(void) 6815 { 6816 cpumask_var_t non_isolated_cpus; 6817 6818 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6819 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6820 6821 sched_init_numa(); 6822 6823 get_online_cpus(); 6824 mutex_lock(&sched_domains_mutex); 6825 init_sched_domains(cpu_active_mask); 6826 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6827 if (cpumask_empty(non_isolated_cpus)) 6828 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6829 mutex_unlock(&sched_domains_mutex); 6830 put_online_cpus(); 6831 6832 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 6833 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6834 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6835 6836 /* RT runtime code needs to handle some hotplug events */ 6837 hotcpu_notifier(update_runtime, 0); 6838 6839 init_hrtick(); 6840 6841 /* Move init over to a non-isolated CPU */ 6842 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6843 BUG(); 6844 sched_init_granularity(); 6845 free_cpumask_var(non_isolated_cpus); 6846 6847 init_sched_rt_class(); 6848 } 6849 #else 6850 void __init sched_init_smp(void) 6851 { 6852 sched_init_granularity(); 6853 } 6854 #endif /* CONFIG_SMP */ 6855 6856 const_debug unsigned int sysctl_timer_migration = 1; 6857 6858 int in_sched_functions(unsigned long addr) 6859 { 6860 return in_lock_functions(addr) || 6861 (addr >= (unsigned long)__sched_text_start 6862 && addr < (unsigned long)__sched_text_end); 6863 } 6864 6865 #ifdef CONFIG_CGROUP_SCHED 6866 struct task_group root_task_group; 6867 LIST_HEAD(task_groups); 6868 #endif 6869 6870 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask); 6871 6872 void __init sched_init(void) 6873 { 6874 int i, j; 6875 unsigned long alloc_size = 0, ptr; 6876 6877 #ifdef CONFIG_FAIR_GROUP_SCHED 6878 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6879 #endif 6880 #ifdef CONFIG_RT_GROUP_SCHED 6881 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6882 #endif 6883 #ifdef CONFIG_CPUMASK_OFFSTACK 6884 alloc_size += num_possible_cpus() * cpumask_size(); 6885 #endif 6886 if (alloc_size) { 6887 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6888 6889 #ifdef CONFIG_FAIR_GROUP_SCHED 6890 root_task_group.se = (struct sched_entity **)ptr; 6891 ptr += nr_cpu_ids * sizeof(void **); 6892 6893 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6894 ptr += nr_cpu_ids * sizeof(void **); 6895 6896 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6897 #ifdef CONFIG_RT_GROUP_SCHED 6898 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6899 ptr += nr_cpu_ids * sizeof(void **); 6900 6901 root_task_group.rt_rq = (struct rt_rq **)ptr; 6902 ptr += nr_cpu_ids * sizeof(void **); 6903 6904 #endif /* CONFIG_RT_GROUP_SCHED */ 6905 #ifdef CONFIG_CPUMASK_OFFSTACK 6906 for_each_possible_cpu(i) { 6907 per_cpu(load_balance_tmpmask, i) = (void *)ptr; 6908 ptr += cpumask_size(); 6909 } 6910 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6911 } 6912 6913 #ifdef CONFIG_SMP 6914 init_defrootdomain(); 6915 #endif 6916 6917 init_rt_bandwidth(&def_rt_bandwidth, 6918 global_rt_period(), global_rt_runtime()); 6919 6920 #ifdef CONFIG_RT_GROUP_SCHED 6921 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6922 global_rt_period(), global_rt_runtime()); 6923 #endif /* CONFIG_RT_GROUP_SCHED */ 6924 6925 #ifdef CONFIG_CGROUP_SCHED 6926 list_add(&root_task_group.list, &task_groups); 6927 INIT_LIST_HEAD(&root_task_group.children); 6928 INIT_LIST_HEAD(&root_task_group.siblings); 6929 autogroup_init(&init_task); 6930 6931 #endif /* CONFIG_CGROUP_SCHED */ 6932 6933 #ifdef CONFIG_CGROUP_CPUACCT 6934 root_cpuacct.cpustat = &kernel_cpustat; 6935 root_cpuacct.cpuusage = alloc_percpu(u64); 6936 /* Too early, not expected to fail */ 6937 BUG_ON(!root_cpuacct.cpuusage); 6938 #endif 6939 for_each_possible_cpu(i) { 6940 struct rq *rq; 6941 6942 rq = cpu_rq(i); 6943 raw_spin_lock_init(&rq->lock); 6944 rq->nr_running = 0; 6945 rq->calc_load_active = 0; 6946 rq->calc_load_update = jiffies + LOAD_FREQ; 6947 init_cfs_rq(&rq->cfs); 6948 init_rt_rq(&rq->rt, rq); 6949 #ifdef CONFIG_FAIR_GROUP_SCHED 6950 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6951 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6952 /* 6953 * How much cpu bandwidth does root_task_group get? 6954 * 6955 * In case of task-groups formed thr' the cgroup filesystem, it 6956 * gets 100% of the cpu resources in the system. This overall 6957 * system cpu resource is divided among the tasks of 6958 * root_task_group and its child task-groups in a fair manner, 6959 * based on each entity's (task or task-group's) weight 6960 * (se->load.weight). 6961 * 6962 * In other words, if root_task_group has 10 tasks of weight 6963 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6964 * then A0's share of the cpu resource is: 6965 * 6966 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6967 * 6968 * We achieve this by letting root_task_group's tasks sit 6969 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6970 */ 6971 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6972 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6973 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6974 6975 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6976 #ifdef CONFIG_RT_GROUP_SCHED 6977 INIT_LIST_HEAD(&rq->leaf_rt_rq_list); 6978 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6979 #endif 6980 6981 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6982 rq->cpu_load[j] = 0; 6983 6984 rq->last_load_update_tick = jiffies; 6985 6986 #ifdef CONFIG_SMP 6987 rq->sd = NULL; 6988 rq->rd = NULL; 6989 rq->cpu_power = SCHED_POWER_SCALE; 6990 rq->post_schedule = 0; 6991 rq->active_balance = 0; 6992 rq->next_balance = jiffies; 6993 rq->push_cpu = 0; 6994 rq->cpu = i; 6995 rq->online = 0; 6996 rq->idle_stamp = 0; 6997 rq->avg_idle = 2*sysctl_sched_migration_cost; 6998 6999 INIT_LIST_HEAD(&rq->cfs_tasks); 7000 7001 rq_attach_root(rq, &def_root_domain); 7002 #ifdef CONFIG_NO_HZ 7003 rq->nohz_flags = 0; 7004 #endif 7005 #endif 7006 init_rq_hrtick(rq); 7007 atomic_set(&rq->nr_iowait, 0); 7008 } 7009 7010 set_load_weight(&init_task); 7011 7012 #ifdef CONFIG_PREEMPT_NOTIFIERS 7013 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7014 #endif 7015 7016 #ifdef CONFIG_RT_MUTEXES 7017 plist_head_init(&init_task.pi_waiters); 7018 #endif 7019 7020 /* 7021 * The boot idle thread does lazy MMU switching as well: 7022 */ 7023 atomic_inc(&init_mm.mm_count); 7024 enter_lazy_tlb(&init_mm, current); 7025 7026 /* 7027 * Make us the idle thread. Technically, schedule() should not be 7028 * called from this thread, however somewhere below it might be, 7029 * but because we are the idle thread, we just pick up running again 7030 * when this runqueue becomes "idle". 7031 */ 7032 init_idle(current, smp_processor_id()); 7033 7034 calc_load_update = jiffies + LOAD_FREQ; 7035 7036 /* 7037 * During early bootup we pretend to be a normal task: 7038 */ 7039 current->sched_class = &fair_sched_class; 7040 7041 #ifdef CONFIG_SMP 7042 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7043 /* May be allocated at isolcpus cmdline parse time */ 7044 if (cpu_isolated_map == NULL) 7045 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7046 idle_thread_set_boot_cpu(); 7047 #endif 7048 init_sched_fair_class(); 7049 7050 scheduler_running = 1; 7051 } 7052 7053 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7054 static inline int preempt_count_equals(int preempt_offset) 7055 { 7056 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7057 7058 return (nested == preempt_offset); 7059 } 7060 7061 void __might_sleep(const char *file, int line, int preempt_offset) 7062 { 7063 static unsigned long prev_jiffy; /* ratelimiting */ 7064 7065 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7066 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || 7067 system_state != SYSTEM_RUNNING || oops_in_progress) 7068 return; 7069 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7070 return; 7071 prev_jiffy = jiffies; 7072 7073 printk(KERN_ERR 7074 "BUG: sleeping function called from invalid context at %s:%d\n", 7075 file, line); 7076 printk(KERN_ERR 7077 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7078 in_atomic(), irqs_disabled(), 7079 current->pid, current->comm); 7080 7081 debug_show_held_locks(current); 7082 if (irqs_disabled()) 7083 print_irqtrace_events(current); 7084 dump_stack(); 7085 } 7086 EXPORT_SYMBOL(__might_sleep); 7087 #endif 7088 7089 #ifdef CONFIG_MAGIC_SYSRQ 7090 static void normalize_task(struct rq *rq, struct task_struct *p) 7091 { 7092 const struct sched_class *prev_class = p->sched_class; 7093 int old_prio = p->prio; 7094 int on_rq; 7095 7096 on_rq = p->on_rq; 7097 if (on_rq) 7098 dequeue_task(rq, p, 0); 7099 __setscheduler(rq, p, SCHED_NORMAL, 0); 7100 if (on_rq) { 7101 enqueue_task(rq, p, 0); 7102 resched_task(rq->curr); 7103 } 7104 7105 check_class_changed(rq, p, prev_class, old_prio); 7106 } 7107 7108 void normalize_rt_tasks(void) 7109 { 7110 struct task_struct *g, *p; 7111 unsigned long flags; 7112 struct rq *rq; 7113 7114 read_lock_irqsave(&tasklist_lock, flags); 7115 do_each_thread(g, p) { 7116 /* 7117 * Only normalize user tasks: 7118 */ 7119 if (!p->mm) 7120 continue; 7121 7122 p->se.exec_start = 0; 7123 #ifdef CONFIG_SCHEDSTATS 7124 p->se.statistics.wait_start = 0; 7125 p->se.statistics.sleep_start = 0; 7126 p->se.statistics.block_start = 0; 7127 #endif 7128 7129 if (!rt_task(p)) { 7130 /* 7131 * Renice negative nice level userspace 7132 * tasks back to 0: 7133 */ 7134 if (TASK_NICE(p) < 0 && p->mm) 7135 set_user_nice(p, 0); 7136 continue; 7137 } 7138 7139 raw_spin_lock(&p->pi_lock); 7140 rq = __task_rq_lock(p); 7141 7142 normalize_task(rq, p); 7143 7144 __task_rq_unlock(rq); 7145 raw_spin_unlock(&p->pi_lock); 7146 } while_each_thread(g, p); 7147 7148 read_unlock_irqrestore(&tasklist_lock, flags); 7149 } 7150 7151 #endif /* CONFIG_MAGIC_SYSRQ */ 7152 7153 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7154 /* 7155 * These functions are only useful for the IA64 MCA handling, or kdb. 7156 * 7157 * They can only be called when the whole system has been 7158 * stopped - every CPU needs to be quiescent, and no scheduling 7159 * activity can take place. Using them for anything else would 7160 * be a serious bug, and as a result, they aren't even visible 7161 * under any other configuration. 7162 */ 7163 7164 /** 7165 * curr_task - return the current task for a given cpu. 7166 * @cpu: the processor in question. 7167 * 7168 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7169 */ 7170 struct task_struct *curr_task(int cpu) 7171 { 7172 return cpu_curr(cpu); 7173 } 7174 7175 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7176 7177 #ifdef CONFIG_IA64 7178 /** 7179 * set_curr_task - set the current task for a given cpu. 7180 * @cpu: the processor in question. 7181 * @p: the task pointer to set. 7182 * 7183 * Description: This function must only be used when non-maskable interrupts 7184 * are serviced on a separate stack. It allows the architecture to switch the 7185 * notion of the current task on a cpu in a non-blocking manner. This function 7186 * must be called with all CPU's synchronized, and interrupts disabled, the 7187 * and caller must save the original value of the current task (see 7188 * curr_task() above) and restore that value before reenabling interrupts and 7189 * re-starting the system. 7190 * 7191 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7192 */ 7193 void set_curr_task(int cpu, struct task_struct *p) 7194 { 7195 cpu_curr(cpu) = p; 7196 } 7197 7198 #endif 7199 7200 #ifdef CONFIG_CGROUP_SCHED 7201 /* task_group_lock serializes the addition/removal of task groups */ 7202 static DEFINE_SPINLOCK(task_group_lock); 7203 7204 static void free_sched_group(struct task_group *tg) 7205 { 7206 free_fair_sched_group(tg); 7207 free_rt_sched_group(tg); 7208 autogroup_free(tg); 7209 kfree(tg); 7210 } 7211 7212 /* allocate runqueue etc for a new task group */ 7213 struct task_group *sched_create_group(struct task_group *parent) 7214 { 7215 struct task_group *tg; 7216 7217 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7218 if (!tg) 7219 return ERR_PTR(-ENOMEM); 7220 7221 if (!alloc_fair_sched_group(tg, parent)) 7222 goto err; 7223 7224 if (!alloc_rt_sched_group(tg, parent)) 7225 goto err; 7226 7227 return tg; 7228 7229 err: 7230 free_sched_group(tg); 7231 return ERR_PTR(-ENOMEM); 7232 } 7233 7234 void sched_online_group(struct task_group *tg, struct task_group *parent) 7235 { 7236 unsigned long flags; 7237 7238 spin_lock_irqsave(&task_group_lock, flags); 7239 list_add_rcu(&tg->list, &task_groups); 7240 7241 WARN_ON(!parent); /* root should already exist */ 7242 7243 tg->parent = parent; 7244 INIT_LIST_HEAD(&tg->children); 7245 list_add_rcu(&tg->siblings, &parent->children); 7246 spin_unlock_irqrestore(&task_group_lock, flags); 7247 } 7248 7249 /* rcu callback to free various structures associated with a task group */ 7250 static void free_sched_group_rcu(struct rcu_head *rhp) 7251 { 7252 /* now it should be safe to free those cfs_rqs */ 7253 free_sched_group(container_of(rhp, struct task_group, rcu)); 7254 } 7255 7256 /* Destroy runqueue etc associated with a task group */ 7257 void sched_destroy_group(struct task_group *tg) 7258 { 7259 /* wait for possible concurrent references to cfs_rqs complete */ 7260 call_rcu(&tg->rcu, free_sched_group_rcu); 7261 } 7262 7263 void sched_offline_group(struct task_group *tg) 7264 { 7265 unsigned long flags; 7266 int i; 7267 7268 /* end participation in shares distribution */ 7269 for_each_possible_cpu(i) 7270 unregister_fair_sched_group(tg, i); 7271 7272 spin_lock_irqsave(&task_group_lock, flags); 7273 list_del_rcu(&tg->list); 7274 list_del_rcu(&tg->siblings); 7275 spin_unlock_irqrestore(&task_group_lock, flags); 7276 } 7277 7278 /* change task's runqueue when it moves between groups. 7279 * The caller of this function should have put the task in its new group 7280 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7281 * reflect its new group. 7282 */ 7283 void sched_move_task(struct task_struct *tsk) 7284 { 7285 struct task_group *tg; 7286 int on_rq, running; 7287 unsigned long flags; 7288 struct rq *rq; 7289 7290 rq = task_rq_lock(tsk, &flags); 7291 7292 running = task_current(rq, tsk); 7293 on_rq = tsk->on_rq; 7294 7295 if (on_rq) 7296 dequeue_task(rq, tsk, 0); 7297 if (unlikely(running)) 7298 tsk->sched_class->put_prev_task(rq, tsk); 7299 7300 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id, 7301 lockdep_is_held(&tsk->sighand->siglock)), 7302 struct task_group, css); 7303 tg = autogroup_task_group(tsk, tg); 7304 tsk->sched_task_group = tg; 7305 7306 #ifdef CONFIG_FAIR_GROUP_SCHED 7307 if (tsk->sched_class->task_move_group) 7308 tsk->sched_class->task_move_group(tsk, on_rq); 7309 else 7310 #endif 7311 set_task_rq(tsk, task_cpu(tsk)); 7312 7313 if (unlikely(running)) 7314 tsk->sched_class->set_curr_task(rq); 7315 if (on_rq) 7316 enqueue_task(rq, tsk, 0); 7317 7318 task_rq_unlock(rq, tsk, &flags); 7319 } 7320 #endif /* CONFIG_CGROUP_SCHED */ 7321 7322 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) 7323 static unsigned long to_ratio(u64 period, u64 runtime) 7324 { 7325 if (runtime == RUNTIME_INF) 7326 return 1ULL << 20; 7327 7328 return div64_u64(runtime << 20, period); 7329 } 7330 #endif 7331 7332 #ifdef CONFIG_RT_GROUP_SCHED 7333 /* 7334 * Ensure that the real time constraints are schedulable. 7335 */ 7336 static DEFINE_MUTEX(rt_constraints_mutex); 7337 7338 /* Must be called with tasklist_lock held */ 7339 static inline int tg_has_rt_tasks(struct task_group *tg) 7340 { 7341 struct task_struct *g, *p; 7342 7343 do_each_thread(g, p) { 7344 if (rt_task(p) && task_rq(p)->rt.tg == tg) 7345 return 1; 7346 } while_each_thread(g, p); 7347 7348 return 0; 7349 } 7350 7351 struct rt_schedulable_data { 7352 struct task_group *tg; 7353 u64 rt_period; 7354 u64 rt_runtime; 7355 }; 7356 7357 static int tg_rt_schedulable(struct task_group *tg, void *data) 7358 { 7359 struct rt_schedulable_data *d = data; 7360 struct task_group *child; 7361 unsigned long total, sum = 0; 7362 u64 period, runtime; 7363 7364 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7365 runtime = tg->rt_bandwidth.rt_runtime; 7366 7367 if (tg == d->tg) { 7368 period = d->rt_period; 7369 runtime = d->rt_runtime; 7370 } 7371 7372 /* 7373 * Cannot have more runtime than the period. 7374 */ 7375 if (runtime > period && runtime != RUNTIME_INF) 7376 return -EINVAL; 7377 7378 /* 7379 * Ensure we don't starve existing RT tasks. 7380 */ 7381 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7382 return -EBUSY; 7383 7384 total = to_ratio(period, runtime); 7385 7386 /* 7387 * Nobody can have more than the global setting allows. 7388 */ 7389 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7390 return -EINVAL; 7391 7392 /* 7393 * The sum of our children's runtime should not exceed our own. 7394 */ 7395 list_for_each_entry_rcu(child, &tg->children, siblings) { 7396 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7397 runtime = child->rt_bandwidth.rt_runtime; 7398 7399 if (child == d->tg) { 7400 period = d->rt_period; 7401 runtime = d->rt_runtime; 7402 } 7403 7404 sum += to_ratio(period, runtime); 7405 } 7406 7407 if (sum > total) 7408 return -EINVAL; 7409 7410 return 0; 7411 } 7412 7413 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7414 { 7415 int ret; 7416 7417 struct rt_schedulable_data data = { 7418 .tg = tg, 7419 .rt_period = period, 7420 .rt_runtime = runtime, 7421 }; 7422 7423 rcu_read_lock(); 7424 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7425 rcu_read_unlock(); 7426 7427 return ret; 7428 } 7429 7430 static int tg_set_rt_bandwidth(struct task_group *tg, 7431 u64 rt_period, u64 rt_runtime) 7432 { 7433 int i, err = 0; 7434 7435 mutex_lock(&rt_constraints_mutex); 7436 read_lock(&tasklist_lock); 7437 err = __rt_schedulable(tg, rt_period, rt_runtime); 7438 if (err) 7439 goto unlock; 7440 7441 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7442 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7443 tg->rt_bandwidth.rt_runtime = rt_runtime; 7444 7445 for_each_possible_cpu(i) { 7446 struct rt_rq *rt_rq = tg->rt_rq[i]; 7447 7448 raw_spin_lock(&rt_rq->rt_runtime_lock); 7449 rt_rq->rt_runtime = rt_runtime; 7450 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7451 } 7452 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7453 unlock: 7454 read_unlock(&tasklist_lock); 7455 mutex_unlock(&rt_constraints_mutex); 7456 7457 return err; 7458 } 7459 7460 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7461 { 7462 u64 rt_runtime, rt_period; 7463 7464 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7465 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7466 if (rt_runtime_us < 0) 7467 rt_runtime = RUNTIME_INF; 7468 7469 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7470 } 7471 7472 long sched_group_rt_runtime(struct task_group *tg) 7473 { 7474 u64 rt_runtime_us; 7475 7476 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7477 return -1; 7478 7479 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7480 do_div(rt_runtime_us, NSEC_PER_USEC); 7481 return rt_runtime_us; 7482 } 7483 7484 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7485 { 7486 u64 rt_runtime, rt_period; 7487 7488 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7489 rt_runtime = tg->rt_bandwidth.rt_runtime; 7490 7491 if (rt_period == 0) 7492 return -EINVAL; 7493 7494 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7495 } 7496 7497 long sched_group_rt_period(struct task_group *tg) 7498 { 7499 u64 rt_period_us; 7500 7501 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7502 do_div(rt_period_us, NSEC_PER_USEC); 7503 return rt_period_us; 7504 } 7505 7506 static int sched_rt_global_constraints(void) 7507 { 7508 u64 runtime, period; 7509 int ret = 0; 7510 7511 if (sysctl_sched_rt_period <= 0) 7512 return -EINVAL; 7513 7514 runtime = global_rt_runtime(); 7515 period = global_rt_period(); 7516 7517 /* 7518 * Sanity check on the sysctl variables. 7519 */ 7520 if (runtime > period && runtime != RUNTIME_INF) 7521 return -EINVAL; 7522 7523 mutex_lock(&rt_constraints_mutex); 7524 read_lock(&tasklist_lock); 7525 ret = __rt_schedulable(NULL, 0, 0); 7526 read_unlock(&tasklist_lock); 7527 mutex_unlock(&rt_constraints_mutex); 7528 7529 return ret; 7530 } 7531 7532 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7533 { 7534 /* Don't accept realtime tasks when there is no way for them to run */ 7535 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7536 return 0; 7537 7538 return 1; 7539 } 7540 7541 #else /* !CONFIG_RT_GROUP_SCHED */ 7542 static int sched_rt_global_constraints(void) 7543 { 7544 unsigned long flags; 7545 int i; 7546 7547 if (sysctl_sched_rt_period <= 0) 7548 return -EINVAL; 7549 7550 /* 7551 * There's always some RT tasks in the root group 7552 * -- migration, kstopmachine etc.. 7553 */ 7554 if (sysctl_sched_rt_runtime == 0) 7555 return -EBUSY; 7556 7557 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7558 for_each_possible_cpu(i) { 7559 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7560 7561 raw_spin_lock(&rt_rq->rt_runtime_lock); 7562 rt_rq->rt_runtime = global_rt_runtime(); 7563 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7564 } 7565 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7566 7567 return 0; 7568 } 7569 #endif /* CONFIG_RT_GROUP_SCHED */ 7570 7571 int sched_rr_handler(struct ctl_table *table, int write, 7572 void __user *buffer, size_t *lenp, 7573 loff_t *ppos) 7574 { 7575 int ret; 7576 static DEFINE_MUTEX(mutex); 7577 7578 mutex_lock(&mutex); 7579 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7580 /* make sure that internally we keep jiffies */ 7581 /* also, writing zero resets timeslice to default */ 7582 if (!ret && write) { 7583 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 7584 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 7585 } 7586 mutex_unlock(&mutex); 7587 return ret; 7588 } 7589 7590 int sched_rt_handler(struct ctl_table *table, int write, 7591 void __user *buffer, size_t *lenp, 7592 loff_t *ppos) 7593 { 7594 int ret; 7595 int old_period, old_runtime; 7596 static DEFINE_MUTEX(mutex); 7597 7598 mutex_lock(&mutex); 7599 old_period = sysctl_sched_rt_period; 7600 old_runtime = sysctl_sched_rt_runtime; 7601 7602 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7603 7604 if (!ret && write) { 7605 ret = sched_rt_global_constraints(); 7606 if (ret) { 7607 sysctl_sched_rt_period = old_period; 7608 sysctl_sched_rt_runtime = old_runtime; 7609 } else { 7610 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7611 def_rt_bandwidth.rt_period = 7612 ns_to_ktime(global_rt_period()); 7613 } 7614 } 7615 mutex_unlock(&mutex); 7616 7617 return ret; 7618 } 7619 7620 #ifdef CONFIG_CGROUP_SCHED 7621 7622 /* return corresponding task_group object of a cgroup */ 7623 static inline struct task_group *cgroup_tg(struct cgroup *cgrp) 7624 { 7625 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), 7626 struct task_group, css); 7627 } 7628 7629 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp) 7630 { 7631 struct task_group *tg, *parent; 7632 7633 if (!cgrp->parent) { 7634 /* This is early initialization for the top cgroup */ 7635 return &root_task_group.css; 7636 } 7637 7638 parent = cgroup_tg(cgrp->parent); 7639 tg = sched_create_group(parent); 7640 if (IS_ERR(tg)) 7641 return ERR_PTR(-ENOMEM); 7642 7643 return &tg->css; 7644 } 7645 7646 static int cpu_cgroup_css_online(struct cgroup *cgrp) 7647 { 7648 struct task_group *tg = cgroup_tg(cgrp); 7649 struct task_group *parent; 7650 7651 if (!cgrp->parent) 7652 return 0; 7653 7654 parent = cgroup_tg(cgrp->parent); 7655 sched_online_group(tg, parent); 7656 return 0; 7657 } 7658 7659 static void cpu_cgroup_css_free(struct cgroup *cgrp) 7660 { 7661 struct task_group *tg = cgroup_tg(cgrp); 7662 7663 sched_destroy_group(tg); 7664 } 7665 7666 static void cpu_cgroup_css_offline(struct cgroup *cgrp) 7667 { 7668 struct task_group *tg = cgroup_tg(cgrp); 7669 7670 sched_offline_group(tg); 7671 } 7672 7673 static int cpu_cgroup_can_attach(struct cgroup *cgrp, 7674 struct cgroup_taskset *tset) 7675 { 7676 struct task_struct *task; 7677 7678 cgroup_taskset_for_each(task, cgrp, tset) { 7679 #ifdef CONFIG_RT_GROUP_SCHED 7680 if (!sched_rt_can_attach(cgroup_tg(cgrp), task)) 7681 return -EINVAL; 7682 #else 7683 /* We don't support RT-tasks being in separate groups */ 7684 if (task->sched_class != &fair_sched_class) 7685 return -EINVAL; 7686 #endif 7687 } 7688 return 0; 7689 } 7690 7691 static void cpu_cgroup_attach(struct cgroup *cgrp, 7692 struct cgroup_taskset *tset) 7693 { 7694 struct task_struct *task; 7695 7696 cgroup_taskset_for_each(task, cgrp, tset) 7697 sched_move_task(task); 7698 } 7699 7700 static void 7701 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, 7702 struct task_struct *task) 7703 { 7704 /* 7705 * cgroup_exit() is called in the copy_process() failure path. 7706 * Ignore this case since the task hasn't ran yet, this avoids 7707 * trying to poke a half freed task state from generic code. 7708 */ 7709 if (!(task->flags & PF_EXITING)) 7710 return; 7711 7712 sched_move_task(task); 7713 } 7714 7715 #ifdef CONFIG_FAIR_GROUP_SCHED 7716 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7717 u64 shareval) 7718 { 7719 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval)); 7720 } 7721 7722 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) 7723 { 7724 struct task_group *tg = cgroup_tg(cgrp); 7725 7726 return (u64) scale_load_down(tg->shares); 7727 } 7728 7729 #ifdef CONFIG_CFS_BANDWIDTH 7730 static DEFINE_MUTEX(cfs_constraints_mutex); 7731 7732 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7733 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7734 7735 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7736 7737 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7738 { 7739 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7740 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7741 7742 if (tg == &root_task_group) 7743 return -EINVAL; 7744 7745 /* 7746 * Ensure we have at some amount of bandwidth every period. This is 7747 * to prevent reaching a state of large arrears when throttled via 7748 * entity_tick() resulting in prolonged exit starvation. 7749 */ 7750 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7751 return -EINVAL; 7752 7753 /* 7754 * Likewise, bound things on the otherside by preventing insane quota 7755 * periods. This also allows us to normalize in computing quota 7756 * feasibility. 7757 */ 7758 if (period > max_cfs_quota_period) 7759 return -EINVAL; 7760 7761 mutex_lock(&cfs_constraints_mutex); 7762 ret = __cfs_schedulable(tg, period, quota); 7763 if (ret) 7764 goto out_unlock; 7765 7766 runtime_enabled = quota != RUNTIME_INF; 7767 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7768 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled); 7769 raw_spin_lock_irq(&cfs_b->lock); 7770 cfs_b->period = ns_to_ktime(period); 7771 cfs_b->quota = quota; 7772 7773 __refill_cfs_bandwidth_runtime(cfs_b); 7774 /* restart the period timer (if active) to handle new period expiry */ 7775 if (runtime_enabled && cfs_b->timer_active) { 7776 /* force a reprogram */ 7777 cfs_b->timer_active = 0; 7778 __start_cfs_bandwidth(cfs_b); 7779 } 7780 raw_spin_unlock_irq(&cfs_b->lock); 7781 7782 for_each_possible_cpu(i) { 7783 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7784 struct rq *rq = cfs_rq->rq; 7785 7786 raw_spin_lock_irq(&rq->lock); 7787 cfs_rq->runtime_enabled = runtime_enabled; 7788 cfs_rq->runtime_remaining = 0; 7789 7790 if (cfs_rq->throttled) 7791 unthrottle_cfs_rq(cfs_rq); 7792 raw_spin_unlock_irq(&rq->lock); 7793 } 7794 out_unlock: 7795 mutex_unlock(&cfs_constraints_mutex); 7796 7797 return ret; 7798 } 7799 7800 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7801 { 7802 u64 quota, period; 7803 7804 period = ktime_to_ns(tg->cfs_bandwidth.period); 7805 if (cfs_quota_us < 0) 7806 quota = RUNTIME_INF; 7807 else 7808 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7809 7810 return tg_set_cfs_bandwidth(tg, period, quota); 7811 } 7812 7813 long tg_get_cfs_quota(struct task_group *tg) 7814 { 7815 u64 quota_us; 7816 7817 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7818 return -1; 7819 7820 quota_us = tg->cfs_bandwidth.quota; 7821 do_div(quota_us, NSEC_PER_USEC); 7822 7823 return quota_us; 7824 } 7825 7826 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7827 { 7828 u64 quota, period; 7829 7830 period = (u64)cfs_period_us * NSEC_PER_USEC; 7831 quota = tg->cfs_bandwidth.quota; 7832 7833 return tg_set_cfs_bandwidth(tg, period, quota); 7834 } 7835 7836 long tg_get_cfs_period(struct task_group *tg) 7837 { 7838 u64 cfs_period_us; 7839 7840 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7841 do_div(cfs_period_us, NSEC_PER_USEC); 7842 7843 return cfs_period_us; 7844 } 7845 7846 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft) 7847 { 7848 return tg_get_cfs_quota(cgroup_tg(cgrp)); 7849 } 7850 7851 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype, 7852 s64 cfs_quota_us) 7853 { 7854 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us); 7855 } 7856 7857 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft) 7858 { 7859 return tg_get_cfs_period(cgroup_tg(cgrp)); 7860 } 7861 7862 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7863 u64 cfs_period_us) 7864 { 7865 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us); 7866 } 7867 7868 struct cfs_schedulable_data { 7869 struct task_group *tg; 7870 u64 period, quota; 7871 }; 7872 7873 /* 7874 * normalize group quota/period to be quota/max_period 7875 * note: units are usecs 7876 */ 7877 static u64 normalize_cfs_quota(struct task_group *tg, 7878 struct cfs_schedulable_data *d) 7879 { 7880 u64 quota, period; 7881 7882 if (tg == d->tg) { 7883 period = d->period; 7884 quota = d->quota; 7885 } else { 7886 period = tg_get_cfs_period(tg); 7887 quota = tg_get_cfs_quota(tg); 7888 } 7889 7890 /* note: these should typically be equivalent */ 7891 if (quota == RUNTIME_INF || quota == -1) 7892 return RUNTIME_INF; 7893 7894 return to_ratio(period, quota); 7895 } 7896 7897 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7898 { 7899 struct cfs_schedulable_data *d = data; 7900 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7901 s64 quota = 0, parent_quota = -1; 7902 7903 if (!tg->parent) { 7904 quota = RUNTIME_INF; 7905 } else { 7906 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7907 7908 quota = normalize_cfs_quota(tg, d); 7909 parent_quota = parent_b->hierarchal_quota; 7910 7911 /* 7912 * ensure max(child_quota) <= parent_quota, inherit when no 7913 * limit is set 7914 */ 7915 if (quota == RUNTIME_INF) 7916 quota = parent_quota; 7917 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7918 return -EINVAL; 7919 } 7920 cfs_b->hierarchal_quota = quota; 7921 7922 return 0; 7923 } 7924 7925 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7926 { 7927 int ret; 7928 struct cfs_schedulable_data data = { 7929 .tg = tg, 7930 .period = period, 7931 .quota = quota, 7932 }; 7933 7934 if (quota != RUNTIME_INF) { 7935 do_div(data.period, NSEC_PER_USEC); 7936 do_div(data.quota, NSEC_PER_USEC); 7937 } 7938 7939 rcu_read_lock(); 7940 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7941 rcu_read_unlock(); 7942 7943 return ret; 7944 } 7945 7946 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft, 7947 struct cgroup_map_cb *cb) 7948 { 7949 struct task_group *tg = cgroup_tg(cgrp); 7950 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7951 7952 cb->fill(cb, "nr_periods", cfs_b->nr_periods); 7953 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); 7954 cb->fill(cb, "throttled_time", cfs_b->throttled_time); 7955 7956 return 0; 7957 } 7958 #endif /* CONFIG_CFS_BANDWIDTH */ 7959 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7960 7961 #ifdef CONFIG_RT_GROUP_SCHED 7962 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, 7963 s64 val) 7964 { 7965 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); 7966 } 7967 7968 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) 7969 { 7970 return sched_group_rt_runtime(cgroup_tg(cgrp)); 7971 } 7972 7973 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, 7974 u64 rt_period_us) 7975 { 7976 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); 7977 } 7978 7979 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) 7980 { 7981 return sched_group_rt_period(cgroup_tg(cgrp)); 7982 } 7983 #endif /* CONFIG_RT_GROUP_SCHED */ 7984 7985 static struct cftype cpu_files[] = { 7986 #ifdef CONFIG_FAIR_GROUP_SCHED 7987 { 7988 .name = "shares", 7989 .read_u64 = cpu_shares_read_u64, 7990 .write_u64 = cpu_shares_write_u64, 7991 }, 7992 #endif 7993 #ifdef CONFIG_CFS_BANDWIDTH 7994 { 7995 .name = "cfs_quota_us", 7996 .read_s64 = cpu_cfs_quota_read_s64, 7997 .write_s64 = cpu_cfs_quota_write_s64, 7998 }, 7999 { 8000 .name = "cfs_period_us", 8001 .read_u64 = cpu_cfs_period_read_u64, 8002 .write_u64 = cpu_cfs_period_write_u64, 8003 }, 8004 { 8005 .name = "stat", 8006 .read_map = cpu_stats_show, 8007 }, 8008 #endif 8009 #ifdef CONFIG_RT_GROUP_SCHED 8010 { 8011 .name = "rt_runtime_us", 8012 .read_s64 = cpu_rt_runtime_read, 8013 .write_s64 = cpu_rt_runtime_write, 8014 }, 8015 { 8016 .name = "rt_period_us", 8017 .read_u64 = cpu_rt_period_read_uint, 8018 .write_u64 = cpu_rt_period_write_uint, 8019 }, 8020 #endif 8021 { } /* terminate */ 8022 }; 8023 8024 struct cgroup_subsys cpu_cgroup_subsys = { 8025 .name = "cpu", 8026 .css_alloc = cpu_cgroup_css_alloc, 8027 .css_free = cpu_cgroup_css_free, 8028 .css_online = cpu_cgroup_css_online, 8029 .css_offline = cpu_cgroup_css_offline, 8030 .can_attach = cpu_cgroup_can_attach, 8031 .attach = cpu_cgroup_attach, 8032 .exit = cpu_cgroup_exit, 8033 .subsys_id = cpu_cgroup_subsys_id, 8034 .base_cftypes = cpu_files, 8035 .early_init = 1, 8036 }; 8037 8038 #endif /* CONFIG_CGROUP_SCHED */ 8039 8040 #ifdef CONFIG_CGROUP_CPUACCT 8041 8042 /* 8043 * CPU accounting code for task groups. 8044 * 8045 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh 8046 * (balbir@in.ibm.com). 8047 */ 8048 8049 struct cpuacct root_cpuacct; 8050 8051 /* create a new cpu accounting group */ 8052 static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp) 8053 { 8054 struct cpuacct *ca; 8055 8056 if (!cgrp->parent) 8057 return &root_cpuacct.css; 8058 8059 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 8060 if (!ca) 8061 goto out; 8062 8063 ca->cpuusage = alloc_percpu(u64); 8064 if (!ca->cpuusage) 8065 goto out_free_ca; 8066 8067 ca->cpustat = alloc_percpu(struct kernel_cpustat); 8068 if (!ca->cpustat) 8069 goto out_free_cpuusage; 8070 8071 return &ca->css; 8072 8073 out_free_cpuusage: 8074 free_percpu(ca->cpuusage); 8075 out_free_ca: 8076 kfree(ca); 8077 out: 8078 return ERR_PTR(-ENOMEM); 8079 } 8080 8081 /* destroy an existing cpu accounting group */ 8082 static void cpuacct_css_free(struct cgroup *cgrp) 8083 { 8084 struct cpuacct *ca = cgroup_ca(cgrp); 8085 8086 free_percpu(ca->cpustat); 8087 free_percpu(ca->cpuusage); 8088 kfree(ca); 8089 } 8090 8091 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) 8092 { 8093 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8094 u64 data; 8095 8096 #ifndef CONFIG_64BIT 8097 /* 8098 * Take rq->lock to make 64-bit read safe on 32-bit platforms. 8099 */ 8100 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 8101 data = *cpuusage; 8102 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 8103 #else 8104 data = *cpuusage; 8105 #endif 8106 8107 return data; 8108 } 8109 8110 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) 8111 { 8112 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8113 8114 #ifndef CONFIG_64BIT 8115 /* 8116 * Take rq->lock to make 64-bit write safe on 32-bit platforms. 8117 */ 8118 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 8119 *cpuusage = val; 8120 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 8121 #else 8122 *cpuusage = val; 8123 #endif 8124 } 8125 8126 /* return total cpu usage (in nanoseconds) of a group */ 8127 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) 8128 { 8129 struct cpuacct *ca = cgroup_ca(cgrp); 8130 u64 totalcpuusage = 0; 8131 int i; 8132 8133 for_each_present_cpu(i) 8134 totalcpuusage += cpuacct_cpuusage_read(ca, i); 8135 8136 return totalcpuusage; 8137 } 8138 8139 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, 8140 u64 reset) 8141 { 8142 struct cpuacct *ca = cgroup_ca(cgrp); 8143 int err = 0; 8144 int i; 8145 8146 if (reset) { 8147 err = -EINVAL; 8148 goto out; 8149 } 8150 8151 for_each_present_cpu(i) 8152 cpuacct_cpuusage_write(ca, i, 0); 8153 8154 out: 8155 return err; 8156 } 8157 8158 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, 8159 struct seq_file *m) 8160 { 8161 struct cpuacct *ca = cgroup_ca(cgroup); 8162 u64 percpu; 8163 int i; 8164 8165 for_each_present_cpu(i) { 8166 percpu = cpuacct_cpuusage_read(ca, i); 8167 seq_printf(m, "%llu ", (unsigned long long) percpu); 8168 } 8169 seq_printf(m, "\n"); 8170 return 0; 8171 } 8172 8173 static const char *cpuacct_stat_desc[] = { 8174 [CPUACCT_STAT_USER] = "user", 8175 [CPUACCT_STAT_SYSTEM] = "system", 8176 }; 8177 8178 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, 8179 struct cgroup_map_cb *cb) 8180 { 8181 struct cpuacct *ca = cgroup_ca(cgrp); 8182 int cpu; 8183 s64 val = 0; 8184 8185 for_each_online_cpu(cpu) { 8186 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8187 val += kcpustat->cpustat[CPUTIME_USER]; 8188 val += kcpustat->cpustat[CPUTIME_NICE]; 8189 } 8190 val = cputime64_to_clock_t(val); 8191 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val); 8192 8193 val = 0; 8194 for_each_online_cpu(cpu) { 8195 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8196 val += kcpustat->cpustat[CPUTIME_SYSTEM]; 8197 val += kcpustat->cpustat[CPUTIME_IRQ]; 8198 val += kcpustat->cpustat[CPUTIME_SOFTIRQ]; 8199 } 8200 8201 val = cputime64_to_clock_t(val); 8202 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val); 8203 8204 return 0; 8205 } 8206 8207 static struct cftype files[] = { 8208 { 8209 .name = "usage", 8210 .read_u64 = cpuusage_read, 8211 .write_u64 = cpuusage_write, 8212 }, 8213 { 8214 .name = "usage_percpu", 8215 .read_seq_string = cpuacct_percpu_seq_read, 8216 }, 8217 { 8218 .name = "stat", 8219 .read_map = cpuacct_stats_show, 8220 }, 8221 { } /* terminate */ 8222 }; 8223 8224 /* 8225 * charge this task's execution time to its accounting group. 8226 * 8227 * called with rq->lock held. 8228 */ 8229 void cpuacct_charge(struct task_struct *tsk, u64 cputime) 8230 { 8231 struct cpuacct *ca; 8232 int cpu; 8233 8234 if (unlikely(!cpuacct_subsys.active)) 8235 return; 8236 8237 cpu = task_cpu(tsk); 8238 8239 rcu_read_lock(); 8240 8241 ca = task_ca(tsk); 8242 8243 for (; ca; ca = parent_ca(ca)) { 8244 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8245 *cpuusage += cputime; 8246 } 8247 8248 rcu_read_unlock(); 8249 } 8250 8251 struct cgroup_subsys cpuacct_subsys = { 8252 .name = "cpuacct", 8253 .css_alloc = cpuacct_css_alloc, 8254 .css_free = cpuacct_css_free, 8255 .subsys_id = cpuacct_subsys_id, 8256 .base_cftypes = files, 8257 }; 8258 #endif /* CONFIG_CGROUP_CPUACCT */ 8259 8260 void dump_cpu_task(int cpu) 8261 { 8262 pr_info("Task dump for CPU %d:\n", cpu); 8263 sched_show_task(cpu_curr(cpu)); 8264 } 8265