xref: /linux/kernel/sched/core.c (revision c5491ea779793f977d282754db478157cc409d82)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78 #ifdef CONFIG_PARAVIRT
79 #include <asm/paravirt.h>
80 #endif
81 
82 #include "sched.h"
83 #include "../workqueue_sched.h"
84 
85 #define CREATE_TRACE_POINTS
86 #include <trace/events/sched.h>
87 
88 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
89 {
90 	unsigned long delta;
91 	ktime_t soft, hard, now;
92 
93 	for (;;) {
94 		if (hrtimer_active(period_timer))
95 			break;
96 
97 		now = hrtimer_cb_get_time(period_timer);
98 		hrtimer_forward(period_timer, now, period);
99 
100 		soft = hrtimer_get_softexpires(period_timer);
101 		hard = hrtimer_get_expires(period_timer);
102 		delta = ktime_to_ns(ktime_sub(hard, soft));
103 		__hrtimer_start_range_ns(period_timer, soft, delta,
104 					 HRTIMER_MODE_ABS_PINNED, 0);
105 	}
106 }
107 
108 DEFINE_MUTEX(sched_domains_mutex);
109 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
110 
111 static void update_rq_clock_task(struct rq *rq, s64 delta);
112 
113 void update_rq_clock(struct rq *rq)
114 {
115 	s64 delta;
116 
117 	if (rq->skip_clock_update > 0)
118 		return;
119 
120 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
121 	rq->clock += delta;
122 	update_rq_clock_task(rq, delta);
123 }
124 
125 /*
126  * Debugging: various feature bits
127  */
128 
129 #define SCHED_FEAT(name, enabled)	\
130 	(1UL << __SCHED_FEAT_##name) * enabled |
131 
132 const_debug unsigned int sysctl_sched_features =
133 #include "features.h"
134 	0;
135 
136 #undef SCHED_FEAT
137 
138 #ifdef CONFIG_SCHED_DEBUG
139 #define SCHED_FEAT(name, enabled)	\
140 	#name ,
141 
142 static __read_mostly char *sched_feat_names[] = {
143 #include "features.h"
144 	NULL
145 };
146 
147 #undef SCHED_FEAT
148 
149 static int sched_feat_show(struct seq_file *m, void *v)
150 {
151 	int i;
152 
153 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
154 		if (!(sysctl_sched_features & (1UL << i)))
155 			seq_puts(m, "NO_");
156 		seq_printf(m, "%s ", sched_feat_names[i]);
157 	}
158 	seq_puts(m, "\n");
159 
160 	return 0;
161 }
162 
163 #ifdef HAVE_JUMP_LABEL
164 
165 #define jump_label_key__true  jump_label_key_enabled
166 #define jump_label_key__false jump_label_key_disabled
167 
168 #define SCHED_FEAT(name, enabled)	\
169 	jump_label_key__##enabled ,
170 
171 struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
172 #include "features.h"
173 };
174 
175 #undef SCHED_FEAT
176 
177 static void sched_feat_disable(int i)
178 {
179 	if (jump_label_enabled(&sched_feat_keys[i]))
180 		jump_label_dec(&sched_feat_keys[i]);
181 }
182 
183 static void sched_feat_enable(int i)
184 {
185 	if (!jump_label_enabled(&sched_feat_keys[i]))
186 		jump_label_inc(&sched_feat_keys[i]);
187 }
188 #else
189 static void sched_feat_disable(int i) { };
190 static void sched_feat_enable(int i) { };
191 #endif /* HAVE_JUMP_LABEL */
192 
193 static ssize_t
194 sched_feat_write(struct file *filp, const char __user *ubuf,
195 		size_t cnt, loff_t *ppos)
196 {
197 	char buf[64];
198 	char *cmp;
199 	int neg = 0;
200 	int i;
201 
202 	if (cnt > 63)
203 		cnt = 63;
204 
205 	if (copy_from_user(&buf, ubuf, cnt))
206 		return -EFAULT;
207 
208 	buf[cnt] = 0;
209 	cmp = strstrip(buf);
210 
211 	if (strncmp(cmp, "NO_", 3) == 0) {
212 		neg = 1;
213 		cmp += 3;
214 	}
215 
216 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
217 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
218 			if (neg) {
219 				sysctl_sched_features &= ~(1UL << i);
220 				sched_feat_disable(i);
221 			} else {
222 				sysctl_sched_features |= (1UL << i);
223 				sched_feat_enable(i);
224 			}
225 			break;
226 		}
227 	}
228 
229 	if (i == __SCHED_FEAT_NR)
230 		return -EINVAL;
231 
232 	*ppos += cnt;
233 
234 	return cnt;
235 }
236 
237 static int sched_feat_open(struct inode *inode, struct file *filp)
238 {
239 	return single_open(filp, sched_feat_show, NULL);
240 }
241 
242 static const struct file_operations sched_feat_fops = {
243 	.open		= sched_feat_open,
244 	.write		= sched_feat_write,
245 	.read		= seq_read,
246 	.llseek		= seq_lseek,
247 	.release	= single_release,
248 };
249 
250 static __init int sched_init_debug(void)
251 {
252 	debugfs_create_file("sched_features", 0644, NULL, NULL,
253 			&sched_feat_fops);
254 
255 	return 0;
256 }
257 late_initcall(sched_init_debug);
258 #endif /* CONFIG_SCHED_DEBUG */
259 
260 /*
261  * Number of tasks to iterate in a single balance run.
262  * Limited because this is done with IRQs disabled.
263  */
264 const_debug unsigned int sysctl_sched_nr_migrate = 32;
265 
266 /*
267  * period over which we average the RT time consumption, measured
268  * in ms.
269  *
270  * default: 1s
271  */
272 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
273 
274 /*
275  * period over which we measure -rt task cpu usage in us.
276  * default: 1s
277  */
278 unsigned int sysctl_sched_rt_period = 1000000;
279 
280 __read_mostly int scheduler_running;
281 
282 /*
283  * part of the period that we allow rt tasks to run in us.
284  * default: 0.95s
285  */
286 int sysctl_sched_rt_runtime = 950000;
287 
288 
289 
290 /*
291  * __task_rq_lock - lock the rq @p resides on.
292  */
293 static inline struct rq *__task_rq_lock(struct task_struct *p)
294 	__acquires(rq->lock)
295 {
296 	struct rq *rq;
297 
298 	lockdep_assert_held(&p->pi_lock);
299 
300 	for (;;) {
301 		rq = task_rq(p);
302 		raw_spin_lock(&rq->lock);
303 		if (likely(rq == task_rq(p)))
304 			return rq;
305 		raw_spin_unlock(&rq->lock);
306 	}
307 }
308 
309 /*
310  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
311  */
312 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
313 	__acquires(p->pi_lock)
314 	__acquires(rq->lock)
315 {
316 	struct rq *rq;
317 
318 	for (;;) {
319 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
320 		rq = task_rq(p);
321 		raw_spin_lock(&rq->lock);
322 		if (likely(rq == task_rq(p)))
323 			return rq;
324 		raw_spin_unlock(&rq->lock);
325 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
326 	}
327 }
328 
329 static void __task_rq_unlock(struct rq *rq)
330 	__releases(rq->lock)
331 {
332 	raw_spin_unlock(&rq->lock);
333 }
334 
335 static inline void
336 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
337 	__releases(rq->lock)
338 	__releases(p->pi_lock)
339 {
340 	raw_spin_unlock(&rq->lock);
341 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
342 }
343 
344 /*
345  * this_rq_lock - lock this runqueue and disable interrupts.
346  */
347 static struct rq *this_rq_lock(void)
348 	__acquires(rq->lock)
349 {
350 	struct rq *rq;
351 
352 	local_irq_disable();
353 	rq = this_rq();
354 	raw_spin_lock(&rq->lock);
355 
356 	return rq;
357 }
358 
359 #ifdef CONFIG_SCHED_HRTICK
360 /*
361  * Use HR-timers to deliver accurate preemption points.
362  *
363  * Its all a bit involved since we cannot program an hrt while holding the
364  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
365  * reschedule event.
366  *
367  * When we get rescheduled we reprogram the hrtick_timer outside of the
368  * rq->lock.
369  */
370 
371 static void hrtick_clear(struct rq *rq)
372 {
373 	if (hrtimer_active(&rq->hrtick_timer))
374 		hrtimer_cancel(&rq->hrtick_timer);
375 }
376 
377 /*
378  * High-resolution timer tick.
379  * Runs from hardirq context with interrupts disabled.
380  */
381 static enum hrtimer_restart hrtick(struct hrtimer *timer)
382 {
383 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
384 
385 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
386 
387 	raw_spin_lock(&rq->lock);
388 	update_rq_clock(rq);
389 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
390 	raw_spin_unlock(&rq->lock);
391 
392 	return HRTIMER_NORESTART;
393 }
394 
395 #ifdef CONFIG_SMP
396 /*
397  * called from hardirq (IPI) context
398  */
399 static void __hrtick_start(void *arg)
400 {
401 	struct rq *rq = arg;
402 
403 	raw_spin_lock(&rq->lock);
404 	hrtimer_restart(&rq->hrtick_timer);
405 	rq->hrtick_csd_pending = 0;
406 	raw_spin_unlock(&rq->lock);
407 }
408 
409 /*
410  * Called to set the hrtick timer state.
411  *
412  * called with rq->lock held and irqs disabled
413  */
414 void hrtick_start(struct rq *rq, u64 delay)
415 {
416 	struct hrtimer *timer = &rq->hrtick_timer;
417 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
418 
419 	hrtimer_set_expires(timer, time);
420 
421 	if (rq == this_rq()) {
422 		hrtimer_restart(timer);
423 	} else if (!rq->hrtick_csd_pending) {
424 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
425 		rq->hrtick_csd_pending = 1;
426 	}
427 }
428 
429 static int
430 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
431 {
432 	int cpu = (int)(long)hcpu;
433 
434 	switch (action) {
435 	case CPU_UP_CANCELED:
436 	case CPU_UP_CANCELED_FROZEN:
437 	case CPU_DOWN_PREPARE:
438 	case CPU_DOWN_PREPARE_FROZEN:
439 	case CPU_DEAD:
440 	case CPU_DEAD_FROZEN:
441 		hrtick_clear(cpu_rq(cpu));
442 		return NOTIFY_OK;
443 	}
444 
445 	return NOTIFY_DONE;
446 }
447 
448 static __init void init_hrtick(void)
449 {
450 	hotcpu_notifier(hotplug_hrtick, 0);
451 }
452 #else
453 /*
454  * Called to set the hrtick timer state.
455  *
456  * called with rq->lock held and irqs disabled
457  */
458 void hrtick_start(struct rq *rq, u64 delay)
459 {
460 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
461 			HRTIMER_MODE_REL_PINNED, 0);
462 }
463 
464 static inline void init_hrtick(void)
465 {
466 }
467 #endif /* CONFIG_SMP */
468 
469 static void init_rq_hrtick(struct rq *rq)
470 {
471 #ifdef CONFIG_SMP
472 	rq->hrtick_csd_pending = 0;
473 
474 	rq->hrtick_csd.flags = 0;
475 	rq->hrtick_csd.func = __hrtick_start;
476 	rq->hrtick_csd.info = rq;
477 #endif
478 
479 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
480 	rq->hrtick_timer.function = hrtick;
481 }
482 #else	/* CONFIG_SCHED_HRTICK */
483 static inline void hrtick_clear(struct rq *rq)
484 {
485 }
486 
487 static inline void init_rq_hrtick(struct rq *rq)
488 {
489 }
490 
491 static inline void init_hrtick(void)
492 {
493 }
494 #endif	/* CONFIG_SCHED_HRTICK */
495 
496 /*
497  * resched_task - mark a task 'to be rescheduled now'.
498  *
499  * On UP this means the setting of the need_resched flag, on SMP it
500  * might also involve a cross-CPU call to trigger the scheduler on
501  * the target CPU.
502  */
503 #ifdef CONFIG_SMP
504 
505 #ifndef tsk_is_polling
506 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
507 #endif
508 
509 void resched_task(struct task_struct *p)
510 {
511 	int cpu;
512 
513 	assert_raw_spin_locked(&task_rq(p)->lock);
514 
515 	if (test_tsk_need_resched(p))
516 		return;
517 
518 	set_tsk_need_resched(p);
519 
520 	cpu = task_cpu(p);
521 	if (cpu == smp_processor_id())
522 		return;
523 
524 	/* NEED_RESCHED must be visible before we test polling */
525 	smp_mb();
526 	if (!tsk_is_polling(p))
527 		smp_send_reschedule(cpu);
528 }
529 
530 void resched_cpu(int cpu)
531 {
532 	struct rq *rq = cpu_rq(cpu);
533 	unsigned long flags;
534 
535 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
536 		return;
537 	resched_task(cpu_curr(cpu));
538 	raw_spin_unlock_irqrestore(&rq->lock, flags);
539 }
540 
541 #ifdef CONFIG_NO_HZ
542 /*
543  * In the semi idle case, use the nearest busy cpu for migrating timers
544  * from an idle cpu.  This is good for power-savings.
545  *
546  * We don't do similar optimization for completely idle system, as
547  * selecting an idle cpu will add more delays to the timers than intended
548  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
549  */
550 int get_nohz_timer_target(void)
551 {
552 	int cpu = smp_processor_id();
553 	int i;
554 	struct sched_domain *sd;
555 
556 	rcu_read_lock();
557 	for_each_domain(cpu, sd) {
558 		for_each_cpu(i, sched_domain_span(sd)) {
559 			if (!idle_cpu(i)) {
560 				cpu = i;
561 				goto unlock;
562 			}
563 		}
564 	}
565 unlock:
566 	rcu_read_unlock();
567 	return cpu;
568 }
569 /*
570  * When add_timer_on() enqueues a timer into the timer wheel of an
571  * idle CPU then this timer might expire before the next timer event
572  * which is scheduled to wake up that CPU. In case of a completely
573  * idle system the next event might even be infinite time into the
574  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
575  * leaves the inner idle loop so the newly added timer is taken into
576  * account when the CPU goes back to idle and evaluates the timer
577  * wheel for the next timer event.
578  */
579 void wake_up_idle_cpu(int cpu)
580 {
581 	struct rq *rq = cpu_rq(cpu);
582 
583 	if (cpu == smp_processor_id())
584 		return;
585 
586 	/*
587 	 * This is safe, as this function is called with the timer
588 	 * wheel base lock of (cpu) held. When the CPU is on the way
589 	 * to idle and has not yet set rq->curr to idle then it will
590 	 * be serialized on the timer wheel base lock and take the new
591 	 * timer into account automatically.
592 	 */
593 	if (rq->curr != rq->idle)
594 		return;
595 
596 	/*
597 	 * We can set TIF_RESCHED on the idle task of the other CPU
598 	 * lockless. The worst case is that the other CPU runs the
599 	 * idle task through an additional NOOP schedule()
600 	 */
601 	set_tsk_need_resched(rq->idle);
602 
603 	/* NEED_RESCHED must be visible before we test polling */
604 	smp_mb();
605 	if (!tsk_is_polling(rq->idle))
606 		smp_send_reschedule(cpu);
607 }
608 
609 static inline bool got_nohz_idle_kick(void)
610 {
611 	int cpu = smp_processor_id();
612 	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
613 }
614 
615 #else /* CONFIG_NO_HZ */
616 
617 static inline bool got_nohz_idle_kick(void)
618 {
619 	return false;
620 }
621 
622 #endif /* CONFIG_NO_HZ */
623 
624 void sched_avg_update(struct rq *rq)
625 {
626 	s64 period = sched_avg_period();
627 
628 	while ((s64)(rq->clock - rq->age_stamp) > period) {
629 		/*
630 		 * Inline assembly required to prevent the compiler
631 		 * optimising this loop into a divmod call.
632 		 * See __iter_div_u64_rem() for another example of this.
633 		 */
634 		asm("" : "+rm" (rq->age_stamp));
635 		rq->age_stamp += period;
636 		rq->rt_avg /= 2;
637 	}
638 }
639 
640 #else /* !CONFIG_SMP */
641 void resched_task(struct task_struct *p)
642 {
643 	assert_raw_spin_locked(&task_rq(p)->lock);
644 	set_tsk_need_resched(p);
645 }
646 #endif /* CONFIG_SMP */
647 
648 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
649 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
650 /*
651  * Iterate task_group tree rooted at *from, calling @down when first entering a
652  * node and @up when leaving it for the final time.
653  *
654  * Caller must hold rcu_lock or sufficient equivalent.
655  */
656 int walk_tg_tree_from(struct task_group *from,
657 			     tg_visitor down, tg_visitor up, void *data)
658 {
659 	struct task_group *parent, *child;
660 	int ret;
661 
662 	parent = from;
663 
664 down:
665 	ret = (*down)(parent, data);
666 	if (ret)
667 		goto out;
668 	list_for_each_entry_rcu(child, &parent->children, siblings) {
669 		parent = child;
670 		goto down;
671 
672 up:
673 		continue;
674 	}
675 	ret = (*up)(parent, data);
676 	if (ret || parent == from)
677 		goto out;
678 
679 	child = parent;
680 	parent = parent->parent;
681 	if (parent)
682 		goto up;
683 out:
684 	return ret;
685 }
686 
687 int tg_nop(struct task_group *tg, void *data)
688 {
689 	return 0;
690 }
691 #endif
692 
693 void update_cpu_load(struct rq *this_rq);
694 
695 static void set_load_weight(struct task_struct *p)
696 {
697 	int prio = p->static_prio - MAX_RT_PRIO;
698 	struct load_weight *load = &p->se.load;
699 
700 	/*
701 	 * SCHED_IDLE tasks get minimal weight:
702 	 */
703 	if (p->policy == SCHED_IDLE) {
704 		load->weight = scale_load(WEIGHT_IDLEPRIO);
705 		load->inv_weight = WMULT_IDLEPRIO;
706 		return;
707 	}
708 
709 	load->weight = scale_load(prio_to_weight[prio]);
710 	load->inv_weight = prio_to_wmult[prio];
711 }
712 
713 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714 {
715 	update_rq_clock(rq);
716 	sched_info_queued(p);
717 	p->sched_class->enqueue_task(rq, p, flags);
718 }
719 
720 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721 {
722 	update_rq_clock(rq);
723 	sched_info_dequeued(p);
724 	p->sched_class->dequeue_task(rq, p, flags);
725 }
726 
727 void activate_task(struct rq *rq, struct task_struct *p, int flags)
728 {
729 	if (task_contributes_to_load(p))
730 		rq->nr_uninterruptible--;
731 
732 	enqueue_task(rq, p, flags);
733 }
734 
735 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736 {
737 	if (task_contributes_to_load(p))
738 		rq->nr_uninterruptible++;
739 
740 	dequeue_task(rq, p, flags);
741 }
742 
743 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
744 
745 /*
746  * There are no locks covering percpu hardirq/softirq time.
747  * They are only modified in account_system_vtime, on corresponding CPU
748  * with interrupts disabled. So, writes are safe.
749  * They are read and saved off onto struct rq in update_rq_clock().
750  * This may result in other CPU reading this CPU's irq time and can
751  * race with irq/account_system_vtime on this CPU. We would either get old
752  * or new value with a side effect of accounting a slice of irq time to wrong
753  * task when irq is in progress while we read rq->clock. That is a worthy
754  * compromise in place of having locks on each irq in account_system_time.
755  */
756 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757 static DEFINE_PER_CPU(u64, cpu_softirq_time);
758 
759 static DEFINE_PER_CPU(u64, irq_start_time);
760 static int sched_clock_irqtime;
761 
762 void enable_sched_clock_irqtime(void)
763 {
764 	sched_clock_irqtime = 1;
765 }
766 
767 void disable_sched_clock_irqtime(void)
768 {
769 	sched_clock_irqtime = 0;
770 }
771 
772 #ifndef CONFIG_64BIT
773 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
774 
775 static inline void irq_time_write_begin(void)
776 {
777 	__this_cpu_inc(irq_time_seq.sequence);
778 	smp_wmb();
779 }
780 
781 static inline void irq_time_write_end(void)
782 {
783 	smp_wmb();
784 	__this_cpu_inc(irq_time_seq.sequence);
785 }
786 
787 static inline u64 irq_time_read(int cpu)
788 {
789 	u64 irq_time;
790 	unsigned seq;
791 
792 	do {
793 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794 		irq_time = per_cpu(cpu_softirq_time, cpu) +
795 			   per_cpu(cpu_hardirq_time, cpu);
796 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
797 
798 	return irq_time;
799 }
800 #else /* CONFIG_64BIT */
801 static inline void irq_time_write_begin(void)
802 {
803 }
804 
805 static inline void irq_time_write_end(void)
806 {
807 }
808 
809 static inline u64 irq_time_read(int cpu)
810 {
811 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
812 }
813 #endif /* CONFIG_64BIT */
814 
815 /*
816  * Called before incrementing preempt_count on {soft,}irq_enter
817  * and before decrementing preempt_count on {soft,}irq_exit.
818  */
819 void account_system_vtime(struct task_struct *curr)
820 {
821 	unsigned long flags;
822 	s64 delta;
823 	int cpu;
824 
825 	if (!sched_clock_irqtime)
826 		return;
827 
828 	local_irq_save(flags);
829 
830 	cpu = smp_processor_id();
831 	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832 	__this_cpu_add(irq_start_time, delta);
833 
834 	irq_time_write_begin();
835 	/*
836 	 * We do not account for softirq time from ksoftirqd here.
837 	 * We want to continue accounting softirq time to ksoftirqd thread
838 	 * in that case, so as not to confuse scheduler with a special task
839 	 * that do not consume any time, but still wants to run.
840 	 */
841 	if (hardirq_count())
842 		__this_cpu_add(cpu_hardirq_time, delta);
843 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
844 		__this_cpu_add(cpu_softirq_time, delta);
845 
846 	irq_time_write_end();
847 	local_irq_restore(flags);
848 }
849 EXPORT_SYMBOL_GPL(account_system_vtime);
850 
851 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
852 
853 #ifdef CONFIG_PARAVIRT
854 static inline u64 steal_ticks(u64 steal)
855 {
856 	if (unlikely(steal > NSEC_PER_SEC))
857 		return div_u64(steal, TICK_NSEC);
858 
859 	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
860 }
861 #endif
862 
863 static void update_rq_clock_task(struct rq *rq, s64 delta)
864 {
865 /*
866  * In theory, the compile should just see 0 here, and optimize out the call
867  * to sched_rt_avg_update. But I don't trust it...
868  */
869 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 	s64 steal = 0, irq_delta = 0;
871 #endif
872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
873 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
874 
875 	/*
876 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 	 * this case when a previous update_rq_clock() happened inside a
878 	 * {soft,}irq region.
879 	 *
880 	 * When this happens, we stop ->clock_task and only update the
881 	 * prev_irq_time stamp to account for the part that fit, so that a next
882 	 * update will consume the rest. This ensures ->clock_task is
883 	 * monotonic.
884 	 *
885 	 * It does however cause some slight miss-attribution of {soft,}irq
886 	 * time, a more accurate solution would be to update the irq_time using
887 	 * the current rq->clock timestamp, except that would require using
888 	 * atomic ops.
889 	 */
890 	if (irq_delta > delta)
891 		irq_delta = delta;
892 
893 	rq->prev_irq_time += irq_delta;
894 	delta -= irq_delta;
895 #endif
896 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 	if (static_branch((&paravirt_steal_rq_enabled))) {
898 		u64 st;
899 
900 		steal = paravirt_steal_clock(cpu_of(rq));
901 		steal -= rq->prev_steal_time_rq;
902 
903 		if (unlikely(steal > delta))
904 			steal = delta;
905 
906 		st = steal_ticks(steal);
907 		steal = st * TICK_NSEC;
908 
909 		rq->prev_steal_time_rq += steal;
910 
911 		delta -= steal;
912 	}
913 #endif
914 
915 	rq->clock_task += delta;
916 
917 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919 		sched_rt_avg_update(rq, irq_delta + steal);
920 #endif
921 }
922 
923 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
924 static int irqtime_account_hi_update(void)
925 {
926 	u64 *cpustat = kcpustat_this_cpu->cpustat;
927 	unsigned long flags;
928 	u64 latest_ns;
929 	int ret = 0;
930 
931 	local_irq_save(flags);
932 	latest_ns = this_cpu_read(cpu_hardirq_time);
933 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
934 		ret = 1;
935 	local_irq_restore(flags);
936 	return ret;
937 }
938 
939 static int irqtime_account_si_update(void)
940 {
941 	u64 *cpustat = kcpustat_this_cpu->cpustat;
942 	unsigned long flags;
943 	u64 latest_ns;
944 	int ret = 0;
945 
946 	local_irq_save(flags);
947 	latest_ns = this_cpu_read(cpu_softirq_time);
948 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
949 		ret = 1;
950 	local_irq_restore(flags);
951 	return ret;
952 }
953 
954 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
955 
956 #define sched_clock_irqtime	(0)
957 
958 #endif
959 
960 void sched_set_stop_task(int cpu, struct task_struct *stop)
961 {
962 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
964 
965 	if (stop) {
966 		/*
967 		 * Make it appear like a SCHED_FIFO task, its something
968 		 * userspace knows about and won't get confused about.
969 		 *
970 		 * Also, it will make PI more or less work without too
971 		 * much confusion -- but then, stop work should not
972 		 * rely on PI working anyway.
973 		 */
974 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
975 
976 		stop->sched_class = &stop_sched_class;
977 	}
978 
979 	cpu_rq(cpu)->stop = stop;
980 
981 	if (old_stop) {
982 		/*
983 		 * Reset it back to a normal scheduling class so that
984 		 * it can die in pieces.
985 		 */
986 		old_stop->sched_class = &rt_sched_class;
987 	}
988 }
989 
990 /*
991  * __normal_prio - return the priority that is based on the static prio
992  */
993 static inline int __normal_prio(struct task_struct *p)
994 {
995 	return p->static_prio;
996 }
997 
998 /*
999  * Calculate the expected normal priority: i.e. priority
1000  * without taking RT-inheritance into account. Might be
1001  * boosted by interactivity modifiers. Changes upon fork,
1002  * setprio syscalls, and whenever the interactivity
1003  * estimator recalculates.
1004  */
1005 static inline int normal_prio(struct task_struct *p)
1006 {
1007 	int prio;
1008 
1009 	if (task_has_rt_policy(p))
1010 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1011 	else
1012 		prio = __normal_prio(p);
1013 	return prio;
1014 }
1015 
1016 /*
1017  * Calculate the current priority, i.e. the priority
1018  * taken into account by the scheduler. This value might
1019  * be boosted by RT tasks, or might be boosted by
1020  * interactivity modifiers. Will be RT if the task got
1021  * RT-boosted. If not then it returns p->normal_prio.
1022  */
1023 static int effective_prio(struct task_struct *p)
1024 {
1025 	p->normal_prio = normal_prio(p);
1026 	/*
1027 	 * If we are RT tasks or we were boosted to RT priority,
1028 	 * keep the priority unchanged. Otherwise, update priority
1029 	 * to the normal priority:
1030 	 */
1031 	if (!rt_prio(p->prio))
1032 		return p->normal_prio;
1033 	return p->prio;
1034 }
1035 
1036 /**
1037  * task_curr - is this task currently executing on a CPU?
1038  * @p: the task in question.
1039  */
1040 inline int task_curr(const struct task_struct *p)
1041 {
1042 	return cpu_curr(task_cpu(p)) == p;
1043 }
1044 
1045 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046 				       const struct sched_class *prev_class,
1047 				       int oldprio)
1048 {
1049 	if (prev_class != p->sched_class) {
1050 		if (prev_class->switched_from)
1051 			prev_class->switched_from(rq, p);
1052 		p->sched_class->switched_to(rq, p);
1053 	} else if (oldprio != p->prio)
1054 		p->sched_class->prio_changed(rq, p, oldprio);
1055 }
1056 
1057 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1058 {
1059 	const struct sched_class *class;
1060 
1061 	if (p->sched_class == rq->curr->sched_class) {
1062 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063 	} else {
1064 		for_each_class(class) {
1065 			if (class == rq->curr->sched_class)
1066 				break;
1067 			if (class == p->sched_class) {
1068 				resched_task(rq->curr);
1069 				break;
1070 			}
1071 		}
1072 	}
1073 
1074 	/*
1075 	 * A queue event has occurred, and we're going to schedule.  In
1076 	 * this case, we can save a useless back to back clock update.
1077 	 */
1078 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1079 		rq->skip_clock_update = 1;
1080 }
1081 
1082 #ifdef CONFIG_SMP
1083 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1084 {
1085 #ifdef CONFIG_SCHED_DEBUG
1086 	/*
1087 	 * We should never call set_task_cpu() on a blocked task,
1088 	 * ttwu() will sort out the placement.
1089 	 */
1090 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1092 
1093 #ifdef CONFIG_LOCKDEP
1094 	/*
1095 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097 	 *
1098 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1099 	 * see set_task_rq().
1100 	 *
1101 	 * Furthermore, all task_rq users should acquire both locks, see
1102 	 * task_rq_lock().
1103 	 */
1104 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105 				      lockdep_is_held(&task_rq(p)->lock)));
1106 #endif
1107 #endif
1108 
1109 	trace_sched_migrate_task(p, new_cpu);
1110 
1111 	if (task_cpu(p) != new_cpu) {
1112 		p->se.nr_migrations++;
1113 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1114 	}
1115 
1116 	__set_task_cpu(p, new_cpu);
1117 }
1118 
1119 struct migration_arg {
1120 	struct task_struct *task;
1121 	int dest_cpu;
1122 };
1123 
1124 static int migration_cpu_stop(void *data);
1125 
1126 /*
1127  * wait_task_inactive - wait for a thread to unschedule.
1128  *
1129  * If @match_state is nonzero, it's the @p->state value just checked and
1130  * not expected to change.  If it changes, i.e. @p might have woken up,
1131  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1132  * we return a positive number (its total switch count).  If a second call
1133  * a short while later returns the same number, the caller can be sure that
1134  * @p has remained unscheduled the whole time.
1135  *
1136  * The caller must ensure that the task *will* unschedule sometime soon,
1137  * else this function might spin for a *long* time. This function can't
1138  * be called with interrupts off, or it may introduce deadlock with
1139  * smp_call_function() if an IPI is sent by the same process we are
1140  * waiting to become inactive.
1141  */
1142 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1143 {
1144 	unsigned long flags;
1145 	int running, on_rq;
1146 	unsigned long ncsw;
1147 	struct rq *rq;
1148 
1149 	for (;;) {
1150 		/*
1151 		 * We do the initial early heuristics without holding
1152 		 * any task-queue locks at all. We'll only try to get
1153 		 * the runqueue lock when things look like they will
1154 		 * work out!
1155 		 */
1156 		rq = task_rq(p);
1157 
1158 		/*
1159 		 * If the task is actively running on another CPU
1160 		 * still, just relax and busy-wait without holding
1161 		 * any locks.
1162 		 *
1163 		 * NOTE! Since we don't hold any locks, it's not
1164 		 * even sure that "rq" stays as the right runqueue!
1165 		 * But we don't care, since "task_running()" will
1166 		 * return false if the runqueue has changed and p
1167 		 * is actually now running somewhere else!
1168 		 */
1169 		while (task_running(rq, p)) {
1170 			if (match_state && unlikely(p->state != match_state))
1171 				return 0;
1172 			cpu_relax();
1173 		}
1174 
1175 		/*
1176 		 * Ok, time to look more closely! We need the rq
1177 		 * lock now, to be *sure*. If we're wrong, we'll
1178 		 * just go back and repeat.
1179 		 */
1180 		rq = task_rq_lock(p, &flags);
1181 		trace_sched_wait_task(p);
1182 		running = task_running(rq, p);
1183 		on_rq = p->on_rq;
1184 		ncsw = 0;
1185 		if (!match_state || p->state == match_state)
1186 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1187 		task_rq_unlock(rq, p, &flags);
1188 
1189 		/*
1190 		 * If it changed from the expected state, bail out now.
1191 		 */
1192 		if (unlikely(!ncsw))
1193 			break;
1194 
1195 		/*
1196 		 * Was it really running after all now that we
1197 		 * checked with the proper locks actually held?
1198 		 *
1199 		 * Oops. Go back and try again..
1200 		 */
1201 		if (unlikely(running)) {
1202 			cpu_relax();
1203 			continue;
1204 		}
1205 
1206 		/*
1207 		 * It's not enough that it's not actively running,
1208 		 * it must be off the runqueue _entirely_, and not
1209 		 * preempted!
1210 		 *
1211 		 * So if it was still runnable (but just not actively
1212 		 * running right now), it's preempted, and we should
1213 		 * yield - it could be a while.
1214 		 */
1215 		if (unlikely(on_rq)) {
1216 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217 
1218 			set_current_state(TASK_UNINTERRUPTIBLE);
1219 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1220 			continue;
1221 		}
1222 
1223 		/*
1224 		 * Ahh, all good. It wasn't running, and it wasn't
1225 		 * runnable, which means that it will never become
1226 		 * running in the future either. We're all done!
1227 		 */
1228 		break;
1229 	}
1230 
1231 	return ncsw;
1232 }
1233 
1234 /***
1235  * kick_process - kick a running thread to enter/exit the kernel
1236  * @p: the to-be-kicked thread
1237  *
1238  * Cause a process which is running on another CPU to enter
1239  * kernel-mode, without any delay. (to get signals handled.)
1240  *
1241  * NOTE: this function doesn't have to take the runqueue lock,
1242  * because all it wants to ensure is that the remote task enters
1243  * the kernel. If the IPI races and the task has been migrated
1244  * to another CPU then no harm is done and the purpose has been
1245  * achieved as well.
1246  */
1247 void kick_process(struct task_struct *p)
1248 {
1249 	int cpu;
1250 
1251 	preempt_disable();
1252 	cpu = task_cpu(p);
1253 	if ((cpu != smp_processor_id()) && task_curr(p))
1254 		smp_send_reschedule(cpu);
1255 	preempt_enable();
1256 }
1257 EXPORT_SYMBOL_GPL(kick_process);
1258 #endif /* CONFIG_SMP */
1259 
1260 #ifdef CONFIG_SMP
1261 /*
1262  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1263  */
1264 static int select_fallback_rq(int cpu, struct task_struct *p)
1265 {
1266 	int dest_cpu;
1267 	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1268 
1269 	/* Look for allowed, online CPU in same node. */
1270 	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
1271 		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1272 			return dest_cpu;
1273 
1274 	/* Any allowed, online CPU? */
1275 	dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
1276 	if (dest_cpu < nr_cpu_ids)
1277 		return dest_cpu;
1278 
1279 	/* No more Mr. Nice Guy. */
1280 	dest_cpu = cpuset_cpus_allowed_fallback(p);
1281 	/*
1282 	 * Don't tell them about moving exiting tasks or
1283 	 * kernel threads (both mm NULL), since they never
1284 	 * leave kernel.
1285 	 */
1286 	if (p->mm && printk_ratelimit()) {
1287 		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
1288 				task_pid_nr(p), p->comm, cpu);
1289 	}
1290 
1291 	return dest_cpu;
1292 }
1293 
1294 /*
1295  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1296  */
1297 static inline
1298 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1299 {
1300 	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1301 
1302 	/*
1303 	 * In order not to call set_task_cpu() on a blocking task we need
1304 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1305 	 * cpu.
1306 	 *
1307 	 * Since this is common to all placement strategies, this lives here.
1308 	 *
1309 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1310 	 *   not worry about this generic constraint ]
1311 	 */
1312 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1313 		     !cpu_online(cpu)))
1314 		cpu = select_fallback_rq(task_cpu(p), p);
1315 
1316 	return cpu;
1317 }
1318 
1319 static void update_avg(u64 *avg, u64 sample)
1320 {
1321 	s64 diff = sample - *avg;
1322 	*avg += diff >> 3;
1323 }
1324 #endif
1325 
1326 static void
1327 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1328 {
1329 #ifdef CONFIG_SCHEDSTATS
1330 	struct rq *rq = this_rq();
1331 
1332 #ifdef CONFIG_SMP
1333 	int this_cpu = smp_processor_id();
1334 
1335 	if (cpu == this_cpu) {
1336 		schedstat_inc(rq, ttwu_local);
1337 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1338 	} else {
1339 		struct sched_domain *sd;
1340 
1341 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1342 		rcu_read_lock();
1343 		for_each_domain(this_cpu, sd) {
1344 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1345 				schedstat_inc(sd, ttwu_wake_remote);
1346 				break;
1347 			}
1348 		}
1349 		rcu_read_unlock();
1350 	}
1351 
1352 	if (wake_flags & WF_MIGRATED)
1353 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1354 
1355 #endif /* CONFIG_SMP */
1356 
1357 	schedstat_inc(rq, ttwu_count);
1358 	schedstat_inc(p, se.statistics.nr_wakeups);
1359 
1360 	if (wake_flags & WF_SYNC)
1361 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1362 
1363 #endif /* CONFIG_SCHEDSTATS */
1364 }
1365 
1366 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1367 {
1368 	activate_task(rq, p, en_flags);
1369 	p->on_rq = 1;
1370 
1371 	/* if a worker is waking up, notify workqueue */
1372 	if (p->flags & PF_WQ_WORKER)
1373 		wq_worker_waking_up(p, cpu_of(rq));
1374 }
1375 
1376 /*
1377  * Mark the task runnable and perform wakeup-preemption.
1378  */
1379 static void
1380 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1381 {
1382 	trace_sched_wakeup(p, true);
1383 	check_preempt_curr(rq, p, wake_flags);
1384 
1385 	p->state = TASK_RUNNING;
1386 #ifdef CONFIG_SMP
1387 	if (p->sched_class->task_woken)
1388 		p->sched_class->task_woken(rq, p);
1389 
1390 	if (rq->idle_stamp) {
1391 		u64 delta = rq->clock - rq->idle_stamp;
1392 		u64 max = 2*sysctl_sched_migration_cost;
1393 
1394 		if (delta > max)
1395 			rq->avg_idle = max;
1396 		else
1397 			update_avg(&rq->avg_idle, delta);
1398 		rq->idle_stamp = 0;
1399 	}
1400 #endif
1401 }
1402 
1403 static void
1404 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1405 {
1406 #ifdef CONFIG_SMP
1407 	if (p->sched_contributes_to_load)
1408 		rq->nr_uninterruptible--;
1409 #endif
1410 
1411 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1412 	ttwu_do_wakeup(rq, p, wake_flags);
1413 }
1414 
1415 /*
1416  * Called in case the task @p isn't fully descheduled from its runqueue,
1417  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1418  * since all we need to do is flip p->state to TASK_RUNNING, since
1419  * the task is still ->on_rq.
1420  */
1421 static int ttwu_remote(struct task_struct *p, int wake_flags)
1422 {
1423 	struct rq *rq;
1424 	int ret = 0;
1425 
1426 	rq = __task_rq_lock(p);
1427 	if (p->on_rq) {
1428 		ttwu_do_wakeup(rq, p, wake_flags);
1429 		ret = 1;
1430 	}
1431 	__task_rq_unlock(rq);
1432 
1433 	return ret;
1434 }
1435 
1436 #ifdef CONFIG_SMP
1437 static void sched_ttwu_pending(void)
1438 {
1439 	struct rq *rq = this_rq();
1440 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1441 	struct task_struct *p;
1442 
1443 	raw_spin_lock(&rq->lock);
1444 
1445 	while (llist) {
1446 		p = llist_entry(llist, struct task_struct, wake_entry);
1447 		llist = llist_next(llist);
1448 		ttwu_do_activate(rq, p, 0);
1449 	}
1450 
1451 	raw_spin_unlock(&rq->lock);
1452 }
1453 
1454 void scheduler_ipi(void)
1455 {
1456 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1457 		return;
1458 
1459 	/*
1460 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1461 	 * traditionally all their work was done from the interrupt return
1462 	 * path. Now that we actually do some work, we need to make sure
1463 	 * we do call them.
1464 	 *
1465 	 * Some archs already do call them, luckily irq_enter/exit nest
1466 	 * properly.
1467 	 *
1468 	 * Arguably we should visit all archs and update all handlers,
1469 	 * however a fair share of IPIs are still resched only so this would
1470 	 * somewhat pessimize the simple resched case.
1471 	 */
1472 	irq_enter();
1473 	sched_ttwu_pending();
1474 
1475 	/*
1476 	 * Check if someone kicked us for doing the nohz idle load balance.
1477 	 */
1478 	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1479 		this_rq()->idle_balance = 1;
1480 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1481 	}
1482 	irq_exit();
1483 }
1484 
1485 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1486 {
1487 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1488 		smp_send_reschedule(cpu);
1489 }
1490 
1491 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1492 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1493 {
1494 	struct rq *rq;
1495 	int ret = 0;
1496 
1497 	rq = __task_rq_lock(p);
1498 	if (p->on_cpu) {
1499 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1500 		ttwu_do_wakeup(rq, p, wake_flags);
1501 		ret = 1;
1502 	}
1503 	__task_rq_unlock(rq);
1504 
1505 	return ret;
1506 
1507 }
1508 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1509 
1510 bool cpus_share_cache(int this_cpu, int that_cpu)
1511 {
1512 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1513 }
1514 #endif /* CONFIG_SMP */
1515 
1516 static void ttwu_queue(struct task_struct *p, int cpu)
1517 {
1518 	struct rq *rq = cpu_rq(cpu);
1519 
1520 #if defined(CONFIG_SMP)
1521 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1522 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1523 		ttwu_queue_remote(p, cpu);
1524 		return;
1525 	}
1526 #endif
1527 
1528 	raw_spin_lock(&rq->lock);
1529 	ttwu_do_activate(rq, p, 0);
1530 	raw_spin_unlock(&rq->lock);
1531 }
1532 
1533 /**
1534  * try_to_wake_up - wake up a thread
1535  * @p: the thread to be awakened
1536  * @state: the mask of task states that can be woken
1537  * @wake_flags: wake modifier flags (WF_*)
1538  *
1539  * Put it on the run-queue if it's not already there. The "current"
1540  * thread is always on the run-queue (except when the actual
1541  * re-schedule is in progress), and as such you're allowed to do
1542  * the simpler "current->state = TASK_RUNNING" to mark yourself
1543  * runnable without the overhead of this.
1544  *
1545  * Returns %true if @p was woken up, %false if it was already running
1546  * or @state didn't match @p's state.
1547  */
1548 static int
1549 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1550 {
1551 	unsigned long flags;
1552 	int cpu, success = 0;
1553 
1554 	smp_wmb();
1555 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1556 	if (!(p->state & state))
1557 		goto out;
1558 
1559 	success = 1; /* we're going to change ->state */
1560 	cpu = task_cpu(p);
1561 
1562 	if (p->on_rq && ttwu_remote(p, wake_flags))
1563 		goto stat;
1564 
1565 #ifdef CONFIG_SMP
1566 	/*
1567 	 * If the owning (remote) cpu is still in the middle of schedule() with
1568 	 * this task as prev, wait until its done referencing the task.
1569 	 */
1570 	while (p->on_cpu) {
1571 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1572 		/*
1573 		 * In case the architecture enables interrupts in
1574 		 * context_switch(), we cannot busy wait, since that
1575 		 * would lead to deadlocks when an interrupt hits and
1576 		 * tries to wake up @prev. So bail and do a complete
1577 		 * remote wakeup.
1578 		 */
1579 		if (ttwu_activate_remote(p, wake_flags))
1580 			goto stat;
1581 #else
1582 		cpu_relax();
1583 #endif
1584 	}
1585 	/*
1586 	 * Pairs with the smp_wmb() in finish_lock_switch().
1587 	 */
1588 	smp_rmb();
1589 
1590 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1591 	p->state = TASK_WAKING;
1592 
1593 	if (p->sched_class->task_waking)
1594 		p->sched_class->task_waking(p);
1595 
1596 	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1597 	if (task_cpu(p) != cpu) {
1598 		wake_flags |= WF_MIGRATED;
1599 		set_task_cpu(p, cpu);
1600 	}
1601 #endif /* CONFIG_SMP */
1602 
1603 	ttwu_queue(p, cpu);
1604 stat:
1605 	ttwu_stat(p, cpu, wake_flags);
1606 out:
1607 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1608 
1609 	return success;
1610 }
1611 
1612 /**
1613  * try_to_wake_up_local - try to wake up a local task with rq lock held
1614  * @p: the thread to be awakened
1615  *
1616  * Put @p on the run-queue if it's not already there. The caller must
1617  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1618  * the current task.
1619  */
1620 static void try_to_wake_up_local(struct task_struct *p)
1621 {
1622 	struct rq *rq = task_rq(p);
1623 
1624 	BUG_ON(rq != this_rq());
1625 	BUG_ON(p == current);
1626 	lockdep_assert_held(&rq->lock);
1627 
1628 	if (!raw_spin_trylock(&p->pi_lock)) {
1629 		raw_spin_unlock(&rq->lock);
1630 		raw_spin_lock(&p->pi_lock);
1631 		raw_spin_lock(&rq->lock);
1632 	}
1633 
1634 	if (!(p->state & TASK_NORMAL))
1635 		goto out;
1636 
1637 	if (!p->on_rq)
1638 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1639 
1640 	ttwu_do_wakeup(rq, p, 0);
1641 	ttwu_stat(p, smp_processor_id(), 0);
1642 out:
1643 	raw_spin_unlock(&p->pi_lock);
1644 }
1645 
1646 /**
1647  * wake_up_process - Wake up a specific process
1648  * @p: The process to be woken up.
1649  *
1650  * Attempt to wake up the nominated process and move it to the set of runnable
1651  * processes.  Returns 1 if the process was woken up, 0 if it was already
1652  * running.
1653  *
1654  * It may be assumed that this function implies a write memory barrier before
1655  * changing the task state if and only if any tasks are woken up.
1656  */
1657 int wake_up_process(struct task_struct *p)
1658 {
1659 	return try_to_wake_up(p, TASK_ALL, 0);
1660 }
1661 EXPORT_SYMBOL(wake_up_process);
1662 
1663 int wake_up_state(struct task_struct *p, unsigned int state)
1664 {
1665 	return try_to_wake_up(p, state, 0);
1666 }
1667 
1668 /*
1669  * Perform scheduler related setup for a newly forked process p.
1670  * p is forked by current.
1671  *
1672  * __sched_fork() is basic setup used by init_idle() too:
1673  */
1674 static void __sched_fork(struct task_struct *p)
1675 {
1676 	p->on_rq			= 0;
1677 
1678 	p->se.on_rq			= 0;
1679 	p->se.exec_start		= 0;
1680 	p->se.sum_exec_runtime		= 0;
1681 	p->se.prev_sum_exec_runtime	= 0;
1682 	p->se.nr_migrations		= 0;
1683 	p->se.vruntime			= 0;
1684 	INIT_LIST_HEAD(&p->se.group_node);
1685 
1686 #ifdef CONFIG_SCHEDSTATS
1687 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1688 #endif
1689 
1690 	INIT_LIST_HEAD(&p->rt.run_list);
1691 
1692 #ifdef CONFIG_PREEMPT_NOTIFIERS
1693 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1694 #endif
1695 }
1696 
1697 /*
1698  * fork()/clone()-time setup:
1699  */
1700 void sched_fork(struct task_struct *p)
1701 {
1702 	unsigned long flags;
1703 	int cpu = get_cpu();
1704 
1705 	__sched_fork(p);
1706 	/*
1707 	 * We mark the process as running here. This guarantees that
1708 	 * nobody will actually run it, and a signal or other external
1709 	 * event cannot wake it up and insert it on the runqueue either.
1710 	 */
1711 	p->state = TASK_RUNNING;
1712 
1713 	/*
1714 	 * Make sure we do not leak PI boosting priority to the child.
1715 	 */
1716 	p->prio = current->normal_prio;
1717 
1718 	/*
1719 	 * Revert to default priority/policy on fork if requested.
1720 	 */
1721 	if (unlikely(p->sched_reset_on_fork)) {
1722 		if (task_has_rt_policy(p)) {
1723 			p->policy = SCHED_NORMAL;
1724 			p->static_prio = NICE_TO_PRIO(0);
1725 			p->rt_priority = 0;
1726 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1727 			p->static_prio = NICE_TO_PRIO(0);
1728 
1729 		p->prio = p->normal_prio = __normal_prio(p);
1730 		set_load_weight(p);
1731 
1732 		/*
1733 		 * We don't need the reset flag anymore after the fork. It has
1734 		 * fulfilled its duty:
1735 		 */
1736 		p->sched_reset_on_fork = 0;
1737 	}
1738 
1739 	if (!rt_prio(p->prio))
1740 		p->sched_class = &fair_sched_class;
1741 
1742 	if (p->sched_class->task_fork)
1743 		p->sched_class->task_fork(p);
1744 
1745 	/*
1746 	 * The child is not yet in the pid-hash so no cgroup attach races,
1747 	 * and the cgroup is pinned to this child due to cgroup_fork()
1748 	 * is ran before sched_fork().
1749 	 *
1750 	 * Silence PROVE_RCU.
1751 	 */
1752 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1753 	set_task_cpu(p, cpu);
1754 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1755 
1756 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1757 	if (likely(sched_info_on()))
1758 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1759 #endif
1760 #if defined(CONFIG_SMP)
1761 	p->on_cpu = 0;
1762 #endif
1763 #ifdef CONFIG_PREEMPT_COUNT
1764 	/* Want to start with kernel preemption disabled. */
1765 	task_thread_info(p)->preempt_count = 1;
1766 #endif
1767 #ifdef CONFIG_SMP
1768 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1769 #endif
1770 
1771 	put_cpu();
1772 }
1773 
1774 /*
1775  * wake_up_new_task - wake up a newly created task for the first time.
1776  *
1777  * This function will do some initial scheduler statistics housekeeping
1778  * that must be done for every newly created context, then puts the task
1779  * on the runqueue and wakes it.
1780  */
1781 void wake_up_new_task(struct task_struct *p)
1782 {
1783 	unsigned long flags;
1784 	struct rq *rq;
1785 
1786 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1787 #ifdef CONFIG_SMP
1788 	/*
1789 	 * Fork balancing, do it here and not earlier because:
1790 	 *  - cpus_allowed can change in the fork path
1791 	 *  - any previously selected cpu might disappear through hotplug
1792 	 */
1793 	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1794 #endif
1795 
1796 	rq = __task_rq_lock(p);
1797 	activate_task(rq, p, 0);
1798 	p->on_rq = 1;
1799 	trace_sched_wakeup_new(p, true);
1800 	check_preempt_curr(rq, p, WF_FORK);
1801 #ifdef CONFIG_SMP
1802 	if (p->sched_class->task_woken)
1803 		p->sched_class->task_woken(rq, p);
1804 #endif
1805 	task_rq_unlock(rq, p, &flags);
1806 }
1807 
1808 #ifdef CONFIG_PREEMPT_NOTIFIERS
1809 
1810 /**
1811  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1812  * @notifier: notifier struct to register
1813  */
1814 void preempt_notifier_register(struct preempt_notifier *notifier)
1815 {
1816 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1817 }
1818 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1819 
1820 /**
1821  * preempt_notifier_unregister - no longer interested in preemption notifications
1822  * @notifier: notifier struct to unregister
1823  *
1824  * This is safe to call from within a preemption notifier.
1825  */
1826 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1827 {
1828 	hlist_del(&notifier->link);
1829 }
1830 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1831 
1832 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1833 {
1834 	struct preempt_notifier *notifier;
1835 	struct hlist_node *node;
1836 
1837 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1838 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1839 }
1840 
1841 static void
1842 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1843 				 struct task_struct *next)
1844 {
1845 	struct preempt_notifier *notifier;
1846 	struct hlist_node *node;
1847 
1848 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1849 		notifier->ops->sched_out(notifier, next);
1850 }
1851 
1852 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1853 
1854 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1855 {
1856 }
1857 
1858 static void
1859 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1860 				 struct task_struct *next)
1861 {
1862 }
1863 
1864 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1865 
1866 /**
1867  * prepare_task_switch - prepare to switch tasks
1868  * @rq: the runqueue preparing to switch
1869  * @prev: the current task that is being switched out
1870  * @next: the task we are going to switch to.
1871  *
1872  * This is called with the rq lock held and interrupts off. It must
1873  * be paired with a subsequent finish_task_switch after the context
1874  * switch.
1875  *
1876  * prepare_task_switch sets up locking and calls architecture specific
1877  * hooks.
1878  */
1879 static inline void
1880 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1881 		    struct task_struct *next)
1882 {
1883 	sched_info_switch(prev, next);
1884 	perf_event_task_sched_out(prev, next);
1885 	fire_sched_out_preempt_notifiers(prev, next);
1886 	prepare_lock_switch(rq, next);
1887 	prepare_arch_switch(next);
1888 	trace_sched_switch(prev, next);
1889 }
1890 
1891 /**
1892  * finish_task_switch - clean up after a task-switch
1893  * @rq: runqueue associated with task-switch
1894  * @prev: the thread we just switched away from.
1895  *
1896  * finish_task_switch must be called after the context switch, paired
1897  * with a prepare_task_switch call before the context switch.
1898  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1899  * and do any other architecture-specific cleanup actions.
1900  *
1901  * Note that we may have delayed dropping an mm in context_switch(). If
1902  * so, we finish that here outside of the runqueue lock. (Doing it
1903  * with the lock held can cause deadlocks; see schedule() for
1904  * details.)
1905  */
1906 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1907 	__releases(rq->lock)
1908 {
1909 	struct mm_struct *mm = rq->prev_mm;
1910 	long prev_state;
1911 
1912 	rq->prev_mm = NULL;
1913 
1914 	/*
1915 	 * A task struct has one reference for the use as "current".
1916 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1917 	 * schedule one last time. The schedule call will never return, and
1918 	 * the scheduled task must drop that reference.
1919 	 * The test for TASK_DEAD must occur while the runqueue locks are
1920 	 * still held, otherwise prev could be scheduled on another cpu, die
1921 	 * there before we look at prev->state, and then the reference would
1922 	 * be dropped twice.
1923 	 *		Manfred Spraul <manfred@colorfullife.com>
1924 	 */
1925 	prev_state = prev->state;
1926 	finish_arch_switch(prev);
1927 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1928 	local_irq_disable();
1929 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1930 	perf_event_task_sched_in(prev, current);
1931 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1932 	local_irq_enable();
1933 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1934 	finish_lock_switch(rq, prev);
1935 
1936 	fire_sched_in_preempt_notifiers(current);
1937 	if (mm)
1938 		mmdrop(mm);
1939 	if (unlikely(prev_state == TASK_DEAD)) {
1940 		/*
1941 		 * Remove function-return probe instances associated with this
1942 		 * task and put them back on the free list.
1943 		 */
1944 		kprobe_flush_task(prev);
1945 		put_task_struct(prev);
1946 	}
1947 }
1948 
1949 #ifdef CONFIG_SMP
1950 
1951 /* assumes rq->lock is held */
1952 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1953 {
1954 	if (prev->sched_class->pre_schedule)
1955 		prev->sched_class->pre_schedule(rq, prev);
1956 }
1957 
1958 /* rq->lock is NOT held, but preemption is disabled */
1959 static inline void post_schedule(struct rq *rq)
1960 {
1961 	if (rq->post_schedule) {
1962 		unsigned long flags;
1963 
1964 		raw_spin_lock_irqsave(&rq->lock, flags);
1965 		if (rq->curr->sched_class->post_schedule)
1966 			rq->curr->sched_class->post_schedule(rq);
1967 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1968 
1969 		rq->post_schedule = 0;
1970 	}
1971 }
1972 
1973 #else
1974 
1975 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1976 {
1977 }
1978 
1979 static inline void post_schedule(struct rq *rq)
1980 {
1981 }
1982 
1983 #endif
1984 
1985 /**
1986  * schedule_tail - first thing a freshly forked thread must call.
1987  * @prev: the thread we just switched away from.
1988  */
1989 asmlinkage void schedule_tail(struct task_struct *prev)
1990 	__releases(rq->lock)
1991 {
1992 	struct rq *rq = this_rq();
1993 
1994 	finish_task_switch(rq, prev);
1995 
1996 	/*
1997 	 * FIXME: do we need to worry about rq being invalidated by the
1998 	 * task_switch?
1999 	 */
2000 	post_schedule(rq);
2001 
2002 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2003 	/* In this case, finish_task_switch does not reenable preemption */
2004 	preempt_enable();
2005 #endif
2006 	if (current->set_child_tid)
2007 		put_user(task_pid_vnr(current), current->set_child_tid);
2008 }
2009 
2010 /*
2011  * context_switch - switch to the new MM and the new
2012  * thread's register state.
2013  */
2014 static inline void
2015 context_switch(struct rq *rq, struct task_struct *prev,
2016 	       struct task_struct *next)
2017 {
2018 	struct mm_struct *mm, *oldmm;
2019 
2020 	prepare_task_switch(rq, prev, next);
2021 
2022 	mm = next->mm;
2023 	oldmm = prev->active_mm;
2024 	/*
2025 	 * For paravirt, this is coupled with an exit in switch_to to
2026 	 * combine the page table reload and the switch backend into
2027 	 * one hypercall.
2028 	 */
2029 	arch_start_context_switch(prev);
2030 
2031 	if (!mm) {
2032 		next->active_mm = oldmm;
2033 		atomic_inc(&oldmm->mm_count);
2034 		enter_lazy_tlb(oldmm, next);
2035 	} else
2036 		switch_mm(oldmm, mm, next);
2037 
2038 	if (!prev->mm) {
2039 		prev->active_mm = NULL;
2040 		rq->prev_mm = oldmm;
2041 	}
2042 	/*
2043 	 * Since the runqueue lock will be released by the next
2044 	 * task (which is an invalid locking op but in the case
2045 	 * of the scheduler it's an obvious special-case), so we
2046 	 * do an early lockdep release here:
2047 	 */
2048 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2049 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2050 #endif
2051 
2052 	/* Here we just switch the register state and the stack. */
2053 	switch_to(prev, next, prev);
2054 
2055 	barrier();
2056 	/*
2057 	 * this_rq must be evaluated again because prev may have moved
2058 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2059 	 * frame will be invalid.
2060 	 */
2061 	finish_task_switch(this_rq(), prev);
2062 }
2063 
2064 /*
2065  * nr_running, nr_uninterruptible and nr_context_switches:
2066  *
2067  * externally visible scheduler statistics: current number of runnable
2068  * threads, current number of uninterruptible-sleeping threads, total
2069  * number of context switches performed since bootup.
2070  */
2071 unsigned long nr_running(void)
2072 {
2073 	unsigned long i, sum = 0;
2074 
2075 	for_each_online_cpu(i)
2076 		sum += cpu_rq(i)->nr_running;
2077 
2078 	return sum;
2079 }
2080 
2081 unsigned long nr_uninterruptible(void)
2082 {
2083 	unsigned long i, sum = 0;
2084 
2085 	for_each_possible_cpu(i)
2086 		sum += cpu_rq(i)->nr_uninterruptible;
2087 
2088 	/*
2089 	 * Since we read the counters lockless, it might be slightly
2090 	 * inaccurate. Do not allow it to go below zero though:
2091 	 */
2092 	if (unlikely((long)sum < 0))
2093 		sum = 0;
2094 
2095 	return sum;
2096 }
2097 
2098 unsigned long long nr_context_switches(void)
2099 {
2100 	int i;
2101 	unsigned long long sum = 0;
2102 
2103 	for_each_possible_cpu(i)
2104 		sum += cpu_rq(i)->nr_switches;
2105 
2106 	return sum;
2107 }
2108 
2109 unsigned long nr_iowait(void)
2110 {
2111 	unsigned long i, sum = 0;
2112 
2113 	for_each_possible_cpu(i)
2114 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2115 
2116 	return sum;
2117 }
2118 
2119 unsigned long nr_iowait_cpu(int cpu)
2120 {
2121 	struct rq *this = cpu_rq(cpu);
2122 	return atomic_read(&this->nr_iowait);
2123 }
2124 
2125 unsigned long this_cpu_load(void)
2126 {
2127 	struct rq *this = this_rq();
2128 	return this->cpu_load[0];
2129 }
2130 
2131 
2132 /* Variables and functions for calc_load */
2133 static atomic_long_t calc_load_tasks;
2134 static unsigned long calc_load_update;
2135 unsigned long avenrun[3];
2136 EXPORT_SYMBOL(avenrun);
2137 
2138 static long calc_load_fold_active(struct rq *this_rq)
2139 {
2140 	long nr_active, delta = 0;
2141 
2142 	nr_active = this_rq->nr_running;
2143 	nr_active += (long) this_rq->nr_uninterruptible;
2144 
2145 	if (nr_active != this_rq->calc_load_active) {
2146 		delta = nr_active - this_rq->calc_load_active;
2147 		this_rq->calc_load_active = nr_active;
2148 	}
2149 
2150 	return delta;
2151 }
2152 
2153 static unsigned long
2154 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2155 {
2156 	load *= exp;
2157 	load += active * (FIXED_1 - exp);
2158 	load += 1UL << (FSHIFT - 1);
2159 	return load >> FSHIFT;
2160 }
2161 
2162 #ifdef CONFIG_NO_HZ
2163 /*
2164  * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2165  *
2166  * When making the ILB scale, we should try to pull this in as well.
2167  */
2168 static atomic_long_t calc_load_tasks_idle;
2169 
2170 void calc_load_account_idle(struct rq *this_rq)
2171 {
2172 	long delta;
2173 
2174 	delta = calc_load_fold_active(this_rq);
2175 	if (delta)
2176 		atomic_long_add(delta, &calc_load_tasks_idle);
2177 }
2178 
2179 static long calc_load_fold_idle(void)
2180 {
2181 	long delta = 0;
2182 
2183 	/*
2184 	 * Its got a race, we don't care...
2185 	 */
2186 	if (atomic_long_read(&calc_load_tasks_idle))
2187 		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2188 
2189 	return delta;
2190 }
2191 
2192 /**
2193  * fixed_power_int - compute: x^n, in O(log n) time
2194  *
2195  * @x:         base of the power
2196  * @frac_bits: fractional bits of @x
2197  * @n:         power to raise @x to.
2198  *
2199  * By exploiting the relation between the definition of the natural power
2200  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2201  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2202  * (where: n_i \elem {0, 1}, the binary vector representing n),
2203  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2204  * of course trivially computable in O(log_2 n), the length of our binary
2205  * vector.
2206  */
2207 static unsigned long
2208 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2209 {
2210 	unsigned long result = 1UL << frac_bits;
2211 
2212 	if (n) for (;;) {
2213 		if (n & 1) {
2214 			result *= x;
2215 			result += 1UL << (frac_bits - 1);
2216 			result >>= frac_bits;
2217 		}
2218 		n >>= 1;
2219 		if (!n)
2220 			break;
2221 		x *= x;
2222 		x += 1UL << (frac_bits - 1);
2223 		x >>= frac_bits;
2224 	}
2225 
2226 	return result;
2227 }
2228 
2229 /*
2230  * a1 = a0 * e + a * (1 - e)
2231  *
2232  * a2 = a1 * e + a * (1 - e)
2233  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2234  *    = a0 * e^2 + a * (1 - e) * (1 + e)
2235  *
2236  * a3 = a2 * e + a * (1 - e)
2237  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2238  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2239  *
2240  *  ...
2241  *
2242  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2243  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2244  *    = a0 * e^n + a * (1 - e^n)
2245  *
2246  * [1] application of the geometric series:
2247  *
2248  *              n         1 - x^(n+1)
2249  *     S_n := \Sum x^i = -------------
2250  *             i=0          1 - x
2251  */
2252 static unsigned long
2253 calc_load_n(unsigned long load, unsigned long exp,
2254 	    unsigned long active, unsigned int n)
2255 {
2256 
2257 	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2258 }
2259 
2260 /*
2261  * NO_HZ can leave us missing all per-cpu ticks calling
2262  * calc_load_account_active(), but since an idle CPU folds its delta into
2263  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2264  * in the pending idle delta if our idle period crossed a load cycle boundary.
2265  *
2266  * Once we've updated the global active value, we need to apply the exponential
2267  * weights adjusted to the number of cycles missed.
2268  */
2269 static void calc_global_nohz(unsigned long ticks)
2270 {
2271 	long delta, active, n;
2272 
2273 	if (time_before(jiffies, calc_load_update))
2274 		return;
2275 
2276 	/*
2277 	 * If we crossed a calc_load_update boundary, make sure to fold
2278 	 * any pending idle changes, the respective CPUs might have
2279 	 * missed the tick driven calc_load_account_active() update
2280 	 * due to NO_HZ.
2281 	 */
2282 	delta = calc_load_fold_idle();
2283 	if (delta)
2284 		atomic_long_add(delta, &calc_load_tasks);
2285 
2286 	/*
2287 	 * If we were idle for multiple load cycles, apply them.
2288 	 */
2289 	if (ticks >= LOAD_FREQ) {
2290 		n = ticks / LOAD_FREQ;
2291 
2292 		active = atomic_long_read(&calc_load_tasks);
2293 		active = active > 0 ? active * FIXED_1 : 0;
2294 
2295 		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2296 		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2297 		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2298 
2299 		calc_load_update += n * LOAD_FREQ;
2300 	}
2301 
2302 	/*
2303 	 * Its possible the remainder of the above division also crosses
2304 	 * a LOAD_FREQ period, the regular check in calc_global_load()
2305 	 * which comes after this will take care of that.
2306 	 *
2307 	 * Consider us being 11 ticks before a cycle completion, and us
2308 	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
2309 	 * age us 4 cycles, and the test in calc_global_load() will
2310 	 * pick up the final one.
2311 	 */
2312 }
2313 #else
2314 void calc_load_account_idle(struct rq *this_rq)
2315 {
2316 }
2317 
2318 static inline long calc_load_fold_idle(void)
2319 {
2320 	return 0;
2321 }
2322 
2323 static void calc_global_nohz(unsigned long ticks)
2324 {
2325 }
2326 #endif
2327 
2328 /**
2329  * get_avenrun - get the load average array
2330  * @loads:	pointer to dest load array
2331  * @offset:	offset to add
2332  * @shift:	shift count to shift the result left
2333  *
2334  * These values are estimates at best, so no need for locking.
2335  */
2336 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2337 {
2338 	loads[0] = (avenrun[0] + offset) << shift;
2339 	loads[1] = (avenrun[1] + offset) << shift;
2340 	loads[2] = (avenrun[2] + offset) << shift;
2341 }
2342 
2343 /*
2344  * calc_load - update the avenrun load estimates 10 ticks after the
2345  * CPUs have updated calc_load_tasks.
2346  */
2347 void calc_global_load(unsigned long ticks)
2348 {
2349 	long active;
2350 
2351 	calc_global_nohz(ticks);
2352 
2353 	if (time_before(jiffies, calc_load_update + 10))
2354 		return;
2355 
2356 	active = atomic_long_read(&calc_load_tasks);
2357 	active = active > 0 ? active * FIXED_1 : 0;
2358 
2359 	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2360 	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2361 	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2362 
2363 	calc_load_update += LOAD_FREQ;
2364 }
2365 
2366 /*
2367  * Called from update_cpu_load() to periodically update this CPU's
2368  * active count.
2369  */
2370 static void calc_load_account_active(struct rq *this_rq)
2371 {
2372 	long delta;
2373 
2374 	if (time_before(jiffies, this_rq->calc_load_update))
2375 		return;
2376 
2377 	delta  = calc_load_fold_active(this_rq);
2378 	delta += calc_load_fold_idle();
2379 	if (delta)
2380 		atomic_long_add(delta, &calc_load_tasks);
2381 
2382 	this_rq->calc_load_update += LOAD_FREQ;
2383 }
2384 
2385 /*
2386  * The exact cpuload at various idx values, calculated at every tick would be
2387  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2388  *
2389  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2390  * on nth tick when cpu may be busy, then we have:
2391  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2392  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2393  *
2394  * decay_load_missed() below does efficient calculation of
2395  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2396  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2397  *
2398  * The calculation is approximated on a 128 point scale.
2399  * degrade_zero_ticks is the number of ticks after which load at any
2400  * particular idx is approximated to be zero.
2401  * degrade_factor is a precomputed table, a row for each load idx.
2402  * Each column corresponds to degradation factor for a power of two ticks,
2403  * based on 128 point scale.
2404  * Example:
2405  * row 2, col 3 (=12) says that the degradation at load idx 2 after
2406  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2407  *
2408  * With this power of 2 load factors, we can degrade the load n times
2409  * by looking at 1 bits in n and doing as many mult/shift instead of
2410  * n mult/shifts needed by the exact degradation.
2411  */
2412 #define DEGRADE_SHIFT		7
2413 static const unsigned char
2414 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2415 static const unsigned char
2416 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2417 					{0, 0, 0, 0, 0, 0, 0, 0},
2418 					{64, 32, 8, 0, 0, 0, 0, 0},
2419 					{96, 72, 40, 12, 1, 0, 0},
2420 					{112, 98, 75, 43, 15, 1, 0},
2421 					{120, 112, 98, 76, 45, 16, 2} };
2422 
2423 /*
2424  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2425  * would be when CPU is idle and so we just decay the old load without
2426  * adding any new load.
2427  */
2428 static unsigned long
2429 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2430 {
2431 	int j = 0;
2432 
2433 	if (!missed_updates)
2434 		return load;
2435 
2436 	if (missed_updates >= degrade_zero_ticks[idx])
2437 		return 0;
2438 
2439 	if (idx == 1)
2440 		return load >> missed_updates;
2441 
2442 	while (missed_updates) {
2443 		if (missed_updates % 2)
2444 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2445 
2446 		missed_updates >>= 1;
2447 		j++;
2448 	}
2449 	return load;
2450 }
2451 
2452 /*
2453  * Update rq->cpu_load[] statistics. This function is usually called every
2454  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2455  * every tick. We fix it up based on jiffies.
2456  */
2457 void update_cpu_load(struct rq *this_rq)
2458 {
2459 	unsigned long this_load = this_rq->load.weight;
2460 	unsigned long curr_jiffies = jiffies;
2461 	unsigned long pending_updates;
2462 	int i, scale;
2463 
2464 	this_rq->nr_load_updates++;
2465 
2466 	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
2467 	if (curr_jiffies == this_rq->last_load_update_tick)
2468 		return;
2469 
2470 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2471 	this_rq->last_load_update_tick = curr_jiffies;
2472 
2473 	/* Update our load: */
2474 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2475 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2476 		unsigned long old_load, new_load;
2477 
2478 		/* scale is effectively 1 << i now, and >> i divides by scale */
2479 
2480 		old_load = this_rq->cpu_load[i];
2481 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2482 		new_load = this_load;
2483 		/*
2484 		 * Round up the averaging division if load is increasing. This
2485 		 * prevents us from getting stuck on 9 if the load is 10, for
2486 		 * example.
2487 		 */
2488 		if (new_load > old_load)
2489 			new_load += scale - 1;
2490 
2491 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2492 	}
2493 
2494 	sched_avg_update(this_rq);
2495 }
2496 
2497 static void update_cpu_load_active(struct rq *this_rq)
2498 {
2499 	update_cpu_load(this_rq);
2500 
2501 	calc_load_account_active(this_rq);
2502 }
2503 
2504 #ifdef CONFIG_SMP
2505 
2506 /*
2507  * sched_exec - execve() is a valuable balancing opportunity, because at
2508  * this point the task has the smallest effective memory and cache footprint.
2509  */
2510 void sched_exec(void)
2511 {
2512 	struct task_struct *p = current;
2513 	unsigned long flags;
2514 	int dest_cpu;
2515 
2516 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2517 	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2518 	if (dest_cpu == smp_processor_id())
2519 		goto unlock;
2520 
2521 	if (likely(cpu_active(dest_cpu))) {
2522 		struct migration_arg arg = { p, dest_cpu };
2523 
2524 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2525 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2526 		return;
2527 	}
2528 unlock:
2529 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2530 }
2531 
2532 #endif
2533 
2534 DEFINE_PER_CPU(struct kernel_stat, kstat);
2535 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2536 
2537 EXPORT_PER_CPU_SYMBOL(kstat);
2538 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2539 
2540 /*
2541  * Return any ns on the sched_clock that have not yet been accounted in
2542  * @p in case that task is currently running.
2543  *
2544  * Called with task_rq_lock() held on @rq.
2545  */
2546 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2547 {
2548 	u64 ns = 0;
2549 
2550 	if (task_current(rq, p)) {
2551 		update_rq_clock(rq);
2552 		ns = rq->clock_task - p->se.exec_start;
2553 		if ((s64)ns < 0)
2554 			ns = 0;
2555 	}
2556 
2557 	return ns;
2558 }
2559 
2560 unsigned long long task_delta_exec(struct task_struct *p)
2561 {
2562 	unsigned long flags;
2563 	struct rq *rq;
2564 	u64 ns = 0;
2565 
2566 	rq = task_rq_lock(p, &flags);
2567 	ns = do_task_delta_exec(p, rq);
2568 	task_rq_unlock(rq, p, &flags);
2569 
2570 	return ns;
2571 }
2572 
2573 /*
2574  * Return accounted runtime for the task.
2575  * In case the task is currently running, return the runtime plus current's
2576  * pending runtime that have not been accounted yet.
2577  */
2578 unsigned long long task_sched_runtime(struct task_struct *p)
2579 {
2580 	unsigned long flags;
2581 	struct rq *rq;
2582 	u64 ns = 0;
2583 
2584 	rq = task_rq_lock(p, &flags);
2585 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2586 	task_rq_unlock(rq, p, &flags);
2587 
2588 	return ns;
2589 }
2590 
2591 #ifdef CONFIG_CGROUP_CPUACCT
2592 struct cgroup_subsys cpuacct_subsys;
2593 struct cpuacct root_cpuacct;
2594 #endif
2595 
2596 static inline void task_group_account_field(struct task_struct *p, int index,
2597 					    u64 tmp)
2598 {
2599 #ifdef CONFIG_CGROUP_CPUACCT
2600 	struct kernel_cpustat *kcpustat;
2601 	struct cpuacct *ca;
2602 #endif
2603 	/*
2604 	 * Since all updates are sure to touch the root cgroup, we
2605 	 * get ourselves ahead and touch it first. If the root cgroup
2606 	 * is the only cgroup, then nothing else should be necessary.
2607 	 *
2608 	 */
2609 	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2610 
2611 #ifdef CONFIG_CGROUP_CPUACCT
2612 	if (unlikely(!cpuacct_subsys.active))
2613 		return;
2614 
2615 	rcu_read_lock();
2616 	ca = task_ca(p);
2617 	while (ca && (ca != &root_cpuacct)) {
2618 		kcpustat = this_cpu_ptr(ca->cpustat);
2619 		kcpustat->cpustat[index] += tmp;
2620 		ca = parent_ca(ca);
2621 	}
2622 	rcu_read_unlock();
2623 #endif
2624 }
2625 
2626 
2627 /*
2628  * Account user cpu time to a process.
2629  * @p: the process that the cpu time gets accounted to
2630  * @cputime: the cpu time spent in user space since the last update
2631  * @cputime_scaled: cputime scaled by cpu frequency
2632  */
2633 void account_user_time(struct task_struct *p, cputime_t cputime,
2634 		       cputime_t cputime_scaled)
2635 {
2636 	int index;
2637 
2638 	/* Add user time to process. */
2639 	p->utime += cputime;
2640 	p->utimescaled += cputime_scaled;
2641 	account_group_user_time(p, cputime);
2642 
2643 	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2644 
2645 	/* Add user time to cpustat. */
2646 	task_group_account_field(p, index, (__force u64) cputime);
2647 
2648 	/* Account for user time used */
2649 	acct_update_integrals(p);
2650 }
2651 
2652 /*
2653  * Account guest cpu time to a process.
2654  * @p: the process that the cpu time gets accounted to
2655  * @cputime: the cpu time spent in virtual machine since the last update
2656  * @cputime_scaled: cputime scaled by cpu frequency
2657  */
2658 static void account_guest_time(struct task_struct *p, cputime_t cputime,
2659 			       cputime_t cputime_scaled)
2660 {
2661 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2662 
2663 	/* Add guest time to process. */
2664 	p->utime += cputime;
2665 	p->utimescaled += cputime_scaled;
2666 	account_group_user_time(p, cputime);
2667 	p->gtime += cputime;
2668 
2669 	/* Add guest time to cpustat. */
2670 	if (TASK_NICE(p) > 0) {
2671 		cpustat[CPUTIME_NICE] += (__force u64) cputime;
2672 		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2673 	} else {
2674 		cpustat[CPUTIME_USER] += (__force u64) cputime;
2675 		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2676 	}
2677 }
2678 
2679 /*
2680  * Account system cpu time to a process and desired cpustat field
2681  * @p: the process that the cpu time gets accounted to
2682  * @cputime: the cpu time spent in kernel space since the last update
2683  * @cputime_scaled: cputime scaled by cpu frequency
2684  * @target_cputime64: pointer to cpustat field that has to be updated
2685  */
2686 static inline
2687 void __account_system_time(struct task_struct *p, cputime_t cputime,
2688 			cputime_t cputime_scaled, int index)
2689 {
2690 	/* Add system time to process. */
2691 	p->stime += cputime;
2692 	p->stimescaled += cputime_scaled;
2693 	account_group_system_time(p, cputime);
2694 
2695 	/* Add system time to cpustat. */
2696 	task_group_account_field(p, index, (__force u64) cputime);
2697 
2698 	/* Account for system time used */
2699 	acct_update_integrals(p);
2700 }
2701 
2702 /*
2703  * Account system cpu time to a process.
2704  * @p: the process that the cpu time gets accounted to
2705  * @hardirq_offset: the offset to subtract from hardirq_count()
2706  * @cputime: the cpu time spent in kernel space since the last update
2707  * @cputime_scaled: cputime scaled by cpu frequency
2708  */
2709 void account_system_time(struct task_struct *p, int hardirq_offset,
2710 			 cputime_t cputime, cputime_t cputime_scaled)
2711 {
2712 	int index;
2713 
2714 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2715 		account_guest_time(p, cputime, cputime_scaled);
2716 		return;
2717 	}
2718 
2719 	if (hardirq_count() - hardirq_offset)
2720 		index = CPUTIME_IRQ;
2721 	else if (in_serving_softirq())
2722 		index = CPUTIME_SOFTIRQ;
2723 	else
2724 		index = CPUTIME_SYSTEM;
2725 
2726 	__account_system_time(p, cputime, cputime_scaled, index);
2727 }
2728 
2729 /*
2730  * Account for involuntary wait time.
2731  * @cputime: the cpu time spent in involuntary wait
2732  */
2733 void account_steal_time(cputime_t cputime)
2734 {
2735 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2736 
2737 	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2738 }
2739 
2740 /*
2741  * Account for idle time.
2742  * @cputime: the cpu time spent in idle wait
2743  */
2744 void account_idle_time(cputime_t cputime)
2745 {
2746 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2747 	struct rq *rq = this_rq();
2748 
2749 	if (atomic_read(&rq->nr_iowait) > 0)
2750 		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2751 	else
2752 		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2753 }
2754 
2755 static __always_inline bool steal_account_process_tick(void)
2756 {
2757 #ifdef CONFIG_PARAVIRT
2758 	if (static_branch(&paravirt_steal_enabled)) {
2759 		u64 steal, st = 0;
2760 
2761 		steal = paravirt_steal_clock(smp_processor_id());
2762 		steal -= this_rq()->prev_steal_time;
2763 
2764 		st = steal_ticks(steal);
2765 		this_rq()->prev_steal_time += st * TICK_NSEC;
2766 
2767 		account_steal_time(st);
2768 		return st;
2769 	}
2770 #endif
2771 	return false;
2772 }
2773 
2774 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2775 
2776 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2777 /*
2778  * Account a tick to a process and cpustat
2779  * @p: the process that the cpu time gets accounted to
2780  * @user_tick: is the tick from userspace
2781  * @rq: the pointer to rq
2782  *
2783  * Tick demultiplexing follows the order
2784  * - pending hardirq update
2785  * - pending softirq update
2786  * - user_time
2787  * - idle_time
2788  * - system time
2789  *   - check for guest_time
2790  *   - else account as system_time
2791  *
2792  * Check for hardirq is done both for system and user time as there is
2793  * no timer going off while we are on hardirq and hence we may never get an
2794  * opportunity to update it solely in system time.
2795  * p->stime and friends are only updated on system time and not on irq
2796  * softirq as those do not count in task exec_runtime any more.
2797  */
2798 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2799 						struct rq *rq)
2800 {
2801 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2802 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2803 
2804 	if (steal_account_process_tick())
2805 		return;
2806 
2807 	if (irqtime_account_hi_update()) {
2808 		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2809 	} else if (irqtime_account_si_update()) {
2810 		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2811 	} else if (this_cpu_ksoftirqd() == p) {
2812 		/*
2813 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
2814 		 * So, we have to handle it separately here.
2815 		 * Also, p->stime needs to be updated for ksoftirqd.
2816 		 */
2817 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2818 					CPUTIME_SOFTIRQ);
2819 	} else if (user_tick) {
2820 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2821 	} else if (p == rq->idle) {
2822 		account_idle_time(cputime_one_jiffy);
2823 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
2824 		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2825 	} else {
2826 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2827 					CPUTIME_SYSTEM);
2828 	}
2829 }
2830 
2831 static void irqtime_account_idle_ticks(int ticks)
2832 {
2833 	int i;
2834 	struct rq *rq = this_rq();
2835 
2836 	for (i = 0; i < ticks; i++)
2837 		irqtime_account_process_tick(current, 0, rq);
2838 }
2839 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2840 static void irqtime_account_idle_ticks(int ticks) {}
2841 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2842 						struct rq *rq) {}
2843 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2844 
2845 /*
2846  * Account a single tick of cpu time.
2847  * @p: the process that the cpu time gets accounted to
2848  * @user_tick: indicates if the tick is a user or a system tick
2849  */
2850 void account_process_tick(struct task_struct *p, int user_tick)
2851 {
2852 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2853 	struct rq *rq = this_rq();
2854 
2855 	if (sched_clock_irqtime) {
2856 		irqtime_account_process_tick(p, user_tick, rq);
2857 		return;
2858 	}
2859 
2860 	if (steal_account_process_tick())
2861 		return;
2862 
2863 	if (user_tick)
2864 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2865 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2866 		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2867 				    one_jiffy_scaled);
2868 	else
2869 		account_idle_time(cputime_one_jiffy);
2870 }
2871 
2872 /*
2873  * Account multiple ticks of steal time.
2874  * @p: the process from which the cpu time has been stolen
2875  * @ticks: number of stolen ticks
2876  */
2877 void account_steal_ticks(unsigned long ticks)
2878 {
2879 	account_steal_time(jiffies_to_cputime(ticks));
2880 }
2881 
2882 /*
2883  * Account multiple ticks of idle time.
2884  * @ticks: number of stolen ticks
2885  */
2886 void account_idle_ticks(unsigned long ticks)
2887 {
2888 
2889 	if (sched_clock_irqtime) {
2890 		irqtime_account_idle_ticks(ticks);
2891 		return;
2892 	}
2893 
2894 	account_idle_time(jiffies_to_cputime(ticks));
2895 }
2896 
2897 #endif
2898 
2899 /*
2900  * Use precise platform statistics if available:
2901  */
2902 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
2903 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2904 {
2905 	*ut = p->utime;
2906 	*st = p->stime;
2907 }
2908 
2909 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2910 {
2911 	struct task_cputime cputime;
2912 
2913 	thread_group_cputime(p, &cputime);
2914 
2915 	*ut = cputime.utime;
2916 	*st = cputime.stime;
2917 }
2918 #else
2919 
2920 #ifndef nsecs_to_cputime
2921 # define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
2922 #endif
2923 
2924 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2925 {
2926 	cputime_t rtime, utime = p->utime, total = utime + p->stime;
2927 
2928 	/*
2929 	 * Use CFS's precise accounting:
2930 	 */
2931 	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2932 
2933 	if (total) {
2934 		u64 temp = (__force u64) rtime;
2935 
2936 		temp *= (__force u64) utime;
2937 		do_div(temp, (__force u32) total);
2938 		utime = (__force cputime_t) temp;
2939 	} else
2940 		utime = rtime;
2941 
2942 	/*
2943 	 * Compare with previous values, to keep monotonicity:
2944 	 */
2945 	p->prev_utime = max(p->prev_utime, utime);
2946 	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2947 
2948 	*ut = p->prev_utime;
2949 	*st = p->prev_stime;
2950 }
2951 
2952 /*
2953  * Must be called with siglock held.
2954  */
2955 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2956 {
2957 	struct signal_struct *sig = p->signal;
2958 	struct task_cputime cputime;
2959 	cputime_t rtime, utime, total;
2960 
2961 	thread_group_cputime(p, &cputime);
2962 
2963 	total = cputime.utime + cputime.stime;
2964 	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2965 
2966 	if (total) {
2967 		u64 temp = (__force u64) rtime;
2968 
2969 		temp *= (__force u64) cputime.utime;
2970 		do_div(temp, (__force u32) total);
2971 		utime = (__force cputime_t) temp;
2972 	} else
2973 		utime = rtime;
2974 
2975 	sig->prev_utime = max(sig->prev_utime, utime);
2976 	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
2977 
2978 	*ut = sig->prev_utime;
2979 	*st = sig->prev_stime;
2980 }
2981 #endif
2982 
2983 /*
2984  * This function gets called by the timer code, with HZ frequency.
2985  * We call it with interrupts disabled.
2986  */
2987 void scheduler_tick(void)
2988 {
2989 	int cpu = smp_processor_id();
2990 	struct rq *rq = cpu_rq(cpu);
2991 	struct task_struct *curr = rq->curr;
2992 
2993 	sched_clock_tick();
2994 
2995 	raw_spin_lock(&rq->lock);
2996 	update_rq_clock(rq);
2997 	update_cpu_load_active(rq);
2998 	curr->sched_class->task_tick(rq, curr, 0);
2999 	raw_spin_unlock(&rq->lock);
3000 
3001 	perf_event_task_tick();
3002 
3003 #ifdef CONFIG_SMP
3004 	rq->idle_balance = idle_cpu(cpu);
3005 	trigger_load_balance(rq, cpu);
3006 #endif
3007 }
3008 
3009 notrace unsigned long get_parent_ip(unsigned long addr)
3010 {
3011 	if (in_lock_functions(addr)) {
3012 		addr = CALLER_ADDR2;
3013 		if (in_lock_functions(addr))
3014 			addr = CALLER_ADDR3;
3015 	}
3016 	return addr;
3017 }
3018 
3019 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3020 				defined(CONFIG_PREEMPT_TRACER))
3021 
3022 void __kprobes add_preempt_count(int val)
3023 {
3024 #ifdef CONFIG_DEBUG_PREEMPT
3025 	/*
3026 	 * Underflow?
3027 	 */
3028 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3029 		return;
3030 #endif
3031 	preempt_count() += val;
3032 #ifdef CONFIG_DEBUG_PREEMPT
3033 	/*
3034 	 * Spinlock count overflowing soon?
3035 	 */
3036 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3037 				PREEMPT_MASK - 10);
3038 #endif
3039 	if (preempt_count() == val)
3040 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3041 }
3042 EXPORT_SYMBOL(add_preempt_count);
3043 
3044 void __kprobes sub_preempt_count(int val)
3045 {
3046 #ifdef CONFIG_DEBUG_PREEMPT
3047 	/*
3048 	 * Underflow?
3049 	 */
3050 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3051 		return;
3052 	/*
3053 	 * Is the spinlock portion underflowing?
3054 	 */
3055 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3056 			!(preempt_count() & PREEMPT_MASK)))
3057 		return;
3058 #endif
3059 
3060 	if (preempt_count() == val)
3061 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3062 	preempt_count() -= val;
3063 }
3064 EXPORT_SYMBOL(sub_preempt_count);
3065 
3066 #endif
3067 
3068 /*
3069  * Print scheduling while atomic bug:
3070  */
3071 static noinline void __schedule_bug(struct task_struct *prev)
3072 {
3073 	struct pt_regs *regs = get_irq_regs();
3074 
3075 	if (oops_in_progress)
3076 		return;
3077 
3078 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3079 		prev->comm, prev->pid, preempt_count());
3080 
3081 	debug_show_held_locks(prev);
3082 	print_modules();
3083 	if (irqs_disabled())
3084 		print_irqtrace_events(prev);
3085 
3086 	if (regs)
3087 		show_regs(regs);
3088 	else
3089 		dump_stack();
3090 }
3091 
3092 /*
3093  * Various schedule()-time debugging checks and statistics:
3094  */
3095 static inline void schedule_debug(struct task_struct *prev)
3096 {
3097 	/*
3098 	 * Test if we are atomic. Since do_exit() needs to call into
3099 	 * schedule() atomically, we ignore that path for now.
3100 	 * Otherwise, whine if we are scheduling when we should not be.
3101 	 */
3102 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3103 		__schedule_bug(prev);
3104 	rcu_sleep_check();
3105 
3106 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3107 
3108 	schedstat_inc(this_rq(), sched_count);
3109 }
3110 
3111 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3112 {
3113 	if (prev->on_rq || rq->skip_clock_update < 0)
3114 		update_rq_clock(rq);
3115 	prev->sched_class->put_prev_task(rq, prev);
3116 }
3117 
3118 /*
3119  * Pick up the highest-prio task:
3120  */
3121 static inline struct task_struct *
3122 pick_next_task(struct rq *rq)
3123 {
3124 	const struct sched_class *class;
3125 	struct task_struct *p;
3126 
3127 	/*
3128 	 * Optimization: we know that if all tasks are in
3129 	 * the fair class we can call that function directly:
3130 	 */
3131 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3132 		p = fair_sched_class.pick_next_task(rq);
3133 		if (likely(p))
3134 			return p;
3135 	}
3136 
3137 	for_each_class(class) {
3138 		p = class->pick_next_task(rq);
3139 		if (p)
3140 			return p;
3141 	}
3142 
3143 	BUG(); /* the idle class will always have a runnable task */
3144 }
3145 
3146 /*
3147  * __schedule() is the main scheduler function.
3148  */
3149 static void __sched __schedule(void)
3150 {
3151 	struct task_struct *prev, *next;
3152 	unsigned long *switch_count;
3153 	struct rq *rq;
3154 	int cpu;
3155 
3156 need_resched:
3157 	preempt_disable();
3158 	cpu = smp_processor_id();
3159 	rq = cpu_rq(cpu);
3160 	rcu_note_context_switch(cpu);
3161 	prev = rq->curr;
3162 
3163 	schedule_debug(prev);
3164 
3165 	if (sched_feat(HRTICK))
3166 		hrtick_clear(rq);
3167 
3168 	raw_spin_lock_irq(&rq->lock);
3169 
3170 	switch_count = &prev->nivcsw;
3171 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3172 		if (unlikely(signal_pending_state(prev->state, prev))) {
3173 			prev->state = TASK_RUNNING;
3174 		} else {
3175 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3176 			prev->on_rq = 0;
3177 
3178 			/*
3179 			 * If a worker went to sleep, notify and ask workqueue
3180 			 * whether it wants to wake up a task to maintain
3181 			 * concurrency.
3182 			 */
3183 			if (prev->flags & PF_WQ_WORKER) {
3184 				struct task_struct *to_wakeup;
3185 
3186 				to_wakeup = wq_worker_sleeping(prev, cpu);
3187 				if (to_wakeup)
3188 					try_to_wake_up_local(to_wakeup);
3189 			}
3190 		}
3191 		switch_count = &prev->nvcsw;
3192 	}
3193 
3194 	pre_schedule(rq, prev);
3195 
3196 	if (unlikely(!rq->nr_running))
3197 		idle_balance(cpu, rq);
3198 
3199 	put_prev_task(rq, prev);
3200 	next = pick_next_task(rq);
3201 	clear_tsk_need_resched(prev);
3202 	rq->skip_clock_update = 0;
3203 
3204 	if (likely(prev != next)) {
3205 		rq->nr_switches++;
3206 		rq->curr = next;
3207 		++*switch_count;
3208 
3209 		context_switch(rq, prev, next); /* unlocks the rq */
3210 		/*
3211 		 * The context switch have flipped the stack from under us
3212 		 * and restored the local variables which were saved when
3213 		 * this task called schedule() in the past. prev == current
3214 		 * is still correct, but it can be moved to another cpu/rq.
3215 		 */
3216 		cpu = smp_processor_id();
3217 		rq = cpu_rq(cpu);
3218 	} else
3219 		raw_spin_unlock_irq(&rq->lock);
3220 
3221 	post_schedule(rq);
3222 
3223 	preempt_enable_no_resched();
3224 	if (need_resched())
3225 		goto need_resched;
3226 }
3227 
3228 static inline void sched_submit_work(struct task_struct *tsk)
3229 {
3230 	if (!tsk->state)
3231 		return;
3232 	/*
3233 	 * If we are going to sleep and we have plugged IO queued,
3234 	 * make sure to submit it to avoid deadlocks.
3235 	 */
3236 	if (blk_needs_flush_plug(tsk))
3237 		blk_schedule_flush_plug(tsk);
3238 }
3239 
3240 asmlinkage void __sched schedule(void)
3241 {
3242 	struct task_struct *tsk = current;
3243 
3244 	sched_submit_work(tsk);
3245 	__schedule();
3246 }
3247 EXPORT_SYMBOL(schedule);
3248 
3249 /**
3250  * schedule_preempt_disabled - called with preemption disabled
3251  *
3252  * Returns with preemption disabled. Note: preempt_count must be 1
3253  */
3254 void __sched schedule_preempt_disabled(void)
3255 {
3256 	preempt_enable_no_resched();
3257 	schedule();
3258 	preempt_disable();
3259 }
3260 
3261 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3262 
3263 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3264 {
3265 	if (lock->owner != owner)
3266 		return false;
3267 
3268 	/*
3269 	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3270 	 * lock->owner still matches owner, if that fails, owner might
3271 	 * point to free()d memory, if it still matches, the rcu_read_lock()
3272 	 * ensures the memory stays valid.
3273 	 */
3274 	barrier();
3275 
3276 	return owner->on_cpu;
3277 }
3278 
3279 /*
3280  * Look out! "owner" is an entirely speculative pointer
3281  * access and not reliable.
3282  */
3283 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3284 {
3285 	if (!sched_feat(OWNER_SPIN))
3286 		return 0;
3287 
3288 	rcu_read_lock();
3289 	while (owner_running(lock, owner)) {
3290 		if (need_resched())
3291 			break;
3292 
3293 		arch_mutex_cpu_relax();
3294 	}
3295 	rcu_read_unlock();
3296 
3297 	/*
3298 	 * We break out the loop above on need_resched() and when the
3299 	 * owner changed, which is a sign for heavy contention. Return
3300 	 * success only when lock->owner is NULL.
3301 	 */
3302 	return lock->owner == NULL;
3303 }
3304 #endif
3305 
3306 #ifdef CONFIG_PREEMPT
3307 /*
3308  * this is the entry point to schedule() from in-kernel preemption
3309  * off of preempt_enable. Kernel preemptions off return from interrupt
3310  * occur there and call schedule directly.
3311  */
3312 asmlinkage void __sched notrace preempt_schedule(void)
3313 {
3314 	struct thread_info *ti = current_thread_info();
3315 
3316 	/*
3317 	 * If there is a non-zero preempt_count or interrupts are disabled,
3318 	 * we do not want to preempt the current task. Just return..
3319 	 */
3320 	if (likely(ti->preempt_count || irqs_disabled()))
3321 		return;
3322 
3323 	do {
3324 		add_preempt_count_notrace(PREEMPT_ACTIVE);
3325 		__schedule();
3326 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3327 
3328 		/*
3329 		 * Check again in case we missed a preemption opportunity
3330 		 * between schedule and now.
3331 		 */
3332 		barrier();
3333 	} while (need_resched());
3334 }
3335 EXPORT_SYMBOL(preempt_schedule);
3336 
3337 /*
3338  * this is the entry point to schedule() from kernel preemption
3339  * off of irq context.
3340  * Note, that this is called and return with irqs disabled. This will
3341  * protect us against recursive calling from irq.
3342  */
3343 asmlinkage void __sched preempt_schedule_irq(void)
3344 {
3345 	struct thread_info *ti = current_thread_info();
3346 
3347 	/* Catch callers which need to be fixed */
3348 	BUG_ON(ti->preempt_count || !irqs_disabled());
3349 
3350 	do {
3351 		add_preempt_count(PREEMPT_ACTIVE);
3352 		local_irq_enable();
3353 		__schedule();
3354 		local_irq_disable();
3355 		sub_preempt_count(PREEMPT_ACTIVE);
3356 
3357 		/*
3358 		 * Check again in case we missed a preemption opportunity
3359 		 * between schedule and now.
3360 		 */
3361 		barrier();
3362 	} while (need_resched());
3363 }
3364 
3365 #endif /* CONFIG_PREEMPT */
3366 
3367 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3368 			  void *key)
3369 {
3370 	return try_to_wake_up(curr->private, mode, wake_flags);
3371 }
3372 EXPORT_SYMBOL(default_wake_function);
3373 
3374 /*
3375  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3376  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3377  * number) then we wake all the non-exclusive tasks and one exclusive task.
3378  *
3379  * There are circumstances in which we can try to wake a task which has already
3380  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3381  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3382  */
3383 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3384 			int nr_exclusive, int wake_flags, void *key)
3385 {
3386 	wait_queue_t *curr, *next;
3387 
3388 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3389 		unsigned flags = curr->flags;
3390 
3391 		if (curr->func(curr, mode, wake_flags, key) &&
3392 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3393 			break;
3394 	}
3395 }
3396 
3397 /**
3398  * __wake_up - wake up threads blocked on a waitqueue.
3399  * @q: the waitqueue
3400  * @mode: which threads
3401  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3402  * @key: is directly passed to the wakeup function
3403  *
3404  * It may be assumed that this function implies a write memory barrier before
3405  * changing the task state if and only if any tasks are woken up.
3406  */
3407 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3408 			int nr_exclusive, void *key)
3409 {
3410 	unsigned long flags;
3411 
3412 	spin_lock_irqsave(&q->lock, flags);
3413 	__wake_up_common(q, mode, nr_exclusive, 0, key);
3414 	spin_unlock_irqrestore(&q->lock, flags);
3415 }
3416 EXPORT_SYMBOL(__wake_up);
3417 
3418 /*
3419  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3420  */
3421 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3422 {
3423 	__wake_up_common(q, mode, 1, 0, NULL);
3424 }
3425 EXPORT_SYMBOL_GPL(__wake_up_locked);
3426 
3427 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3428 {
3429 	__wake_up_common(q, mode, 1, 0, key);
3430 }
3431 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3432 
3433 /**
3434  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3435  * @q: the waitqueue
3436  * @mode: which threads
3437  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3438  * @key: opaque value to be passed to wakeup targets
3439  *
3440  * The sync wakeup differs that the waker knows that it will schedule
3441  * away soon, so while the target thread will be woken up, it will not
3442  * be migrated to another CPU - ie. the two threads are 'synchronized'
3443  * with each other. This can prevent needless bouncing between CPUs.
3444  *
3445  * On UP it can prevent extra preemption.
3446  *
3447  * It may be assumed that this function implies a write memory barrier before
3448  * changing the task state if and only if any tasks are woken up.
3449  */
3450 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3451 			int nr_exclusive, void *key)
3452 {
3453 	unsigned long flags;
3454 	int wake_flags = WF_SYNC;
3455 
3456 	if (unlikely(!q))
3457 		return;
3458 
3459 	if (unlikely(!nr_exclusive))
3460 		wake_flags = 0;
3461 
3462 	spin_lock_irqsave(&q->lock, flags);
3463 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3464 	spin_unlock_irqrestore(&q->lock, flags);
3465 }
3466 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3467 
3468 /*
3469  * __wake_up_sync - see __wake_up_sync_key()
3470  */
3471 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3472 {
3473 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3474 }
3475 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3476 
3477 /**
3478  * complete: - signals a single thread waiting on this completion
3479  * @x:  holds the state of this particular completion
3480  *
3481  * This will wake up a single thread waiting on this completion. Threads will be
3482  * awakened in the same order in which they were queued.
3483  *
3484  * See also complete_all(), wait_for_completion() and related routines.
3485  *
3486  * It may be assumed that this function implies a write memory barrier before
3487  * changing the task state if and only if any tasks are woken up.
3488  */
3489 void complete(struct completion *x)
3490 {
3491 	unsigned long flags;
3492 
3493 	spin_lock_irqsave(&x->wait.lock, flags);
3494 	x->done++;
3495 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3496 	spin_unlock_irqrestore(&x->wait.lock, flags);
3497 }
3498 EXPORT_SYMBOL(complete);
3499 
3500 /**
3501  * complete_all: - signals all threads waiting on this completion
3502  * @x:  holds the state of this particular completion
3503  *
3504  * This will wake up all threads waiting on this particular completion event.
3505  *
3506  * It may be assumed that this function implies a write memory barrier before
3507  * changing the task state if and only if any tasks are woken up.
3508  */
3509 void complete_all(struct completion *x)
3510 {
3511 	unsigned long flags;
3512 
3513 	spin_lock_irqsave(&x->wait.lock, flags);
3514 	x->done += UINT_MAX/2;
3515 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3516 	spin_unlock_irqrestore(&x->wait.lock, flags);
3517 }
3518 EXPORT_SYMBOL(complete_all);
3519 
3520 static inline long __sched
3521 do_wait_for_common(struct completion *x, long timeout, int state)
3522 {
3523 	if (!x->done) {
3524 		DECLARE_WAITQUEUE(wait, current);
3525 
3526 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3527 		do {
3528 			if (signal_pending_state(state, current)) {
3529 				timeout = -ERESTARTSYS;
3530 				break;
3531 			}
3532 			__set_current_state(state);
3533 			spin_unlock_irq(&x->wait.lock);
3534 			timeout = schedule_timeout(timeout);
3535 			spin_lock_irq(&x->wait.lock);
3536 		} while (!x->done && timeout);
3537 		__remove_wait_queue(&x->wait, &wait);
3538 		if (!x->done)
3539 			return timeout;
3540 	}
3541 	x->done--;
3542 	return timeout ?: 1;
3543 }
3544 
3545 static long __sched
3546 wait_for_common(struct completion *x, long timeout, int state)
3547 {
3548 	might_sleep();
3549 
3550 	spin_lock_irq(&x->wait.lock);
3551 	timeout = do_wait_for_common(x, timeout, state);
3552 	spin_unlock_irq(&x->wait.lock);
3553 	return timeout;
3554 }
3555 
3556 /**
3557  * wait_for_completion: - waits for completion of a task
3558  * @x:  holds the state of this particular completion
3559  *
3560  * This waits to be signaled for completion of a specific task. It is NOT
3561  * interruptible and there is no timeout.
3562  *
3563  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3564  * and interrupt capability. Also see complete().
3565  */
3566 void __sched wait_for_completion(struct completion *x)
3567 {
3568 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3569 }
3570 EXPORT_SYMBOL(wait_for_completion);
3571 
3572 /**
3573  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3574  * @x:  holds the state of this particular completion
3575  * @timeout:  timeout value in jiffies
3576  *
3577  * This waits for either a completion of a specific task to be signaled or for a
3578  * specified timeout to expire. The timeout is in jiffies. It is not
3579  * interruptible.
3580  *
3581  * The return value is 0 if timed out, and positive (at least 1, or number of
3582  * jiffies left till timeout) if completed.
3583  */
3584 unsigned long __sched
3585 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3586 {
3587 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3588 }
3589 EXPORT_SYMBOL(wait_for_completion_timeout);
3590 
3591 /**
3592  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3593  * @x:  holds the state of this particular completion
3594  *
3595  * This waits for completion of a specific task to be signaled. It is
3596  * interruptible.
3597  *
3598  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3599  */
3600 int __sched wait_for_completion_interruptible(struct completion *x)
3601 {
3602 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3603 	if (t == -ERESTARTSYS)
3604 		return t;
3605 	return 0;
3606 }
3607 EXPORT_SYMBOL(wait_for_completion_interruptible);
3608 
3609 /**
3610  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3611  * @x:  holds the state of this particular completion
3612  * @timeout:  timeout value in jiffies
3613  *
3614  * This waits for either a completion of a specific task to be signaled or for a
3615  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3616  *
3617  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3618  * positive (at least 1, or number of jiffies left till timeout) if completed.
3619  */
3620 long __sched
3621 wait_for_completion_interruptible_timeout(struct completion *x,
3622 					  unsigned long timeout)
3623 {
3624 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3625 }
3626 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3627 
3628 /**
3629  * wait_for_completion_killable: - waits for completion of a task (killable)
3630  * @x:  holds the state of this particular completion
3631  *
3632  * This waits to be signaled for completion of a specific task. It can be
3633  * interrupted by a kill signal.
3634  *
3635  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3636  */
3637 int __sched wait_for_completion_killable(struct completion *x)
3638 {
3639 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3640 	if (t == -ERESTARTSYS)
3641 		return t;
3642 	return 0;
3643 }
3644 EXPORT_SYMBOL(wait_for_completion_killable);
3645 
3646 /**
3647  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3648  * @x:  holds the state of this particular completion
3649  * @timeout:  timeout value in jiffies
3650  *
3651  * This waits for either a completion of a specific task to be
3652  * signaled or for a specified timeout to expire. It can be
3653  * interrupted by a kill signal. The timeout is in jiffies.
3654  *
3655  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3656  * positive (at least 1, or number of jiffies left till timeout) if completed.
3657  */
3658 long __sched
3659 wait_for_completion_killable_timeout(struct completion *x,
3660 				     unsigned long timeout)
3661 {
3662 	return wait_for_common(x, timeout, TASK_KILLABLE);
3663 }
3664 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3665 
3666 /**
3667  *	try_wait_for_completion - try to decrement a completion without blocking
3668  *	@x:	completion structure
3669  *
3670  *	Returns: 0 if a decrement cannot be done without blocking
3671  *		 1 if a decrement succeeded.
3672  *
3673  *	If a completion is being used as a counting completion,
3674  *	attempt to decrement the counter without blocking. This
3675  *	enables us to avoid waiting if the resource the completion
3676  *	is protecting is not available.
3677  */
3678 bool try_wait_for_completion(struct completion *x)
3679 {
3680 	unsigned long flags;
3681 	int ret = 1;
3682 
3683 	spin_lock_irqsave(&x->wait.lock, flags);
3684 	if (!x->done)
3685 		ret = 0;
3686 	else
3687 		x->done--;
3688 	spin_unlock_irqrestore(&x->wait.lock, flags);
3689 	return ret;
3690 }
3691 EXPORT_SYMBOL(try_wait_for_completion);
3692 
3693 /**
3694  *	completion_done - Test to see if a completion has any waiters
3695  *	@x:	completion structure
3696  *
3697  *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3698  *		 1 if there are no waiters.
3699  *
3700  */
3701 bool completion_done(struct completion *x)
3702 {
3703 	unsigned long flags;
3704 	int ret = 1;
3705 
3706 	spin_lock_irqsave(&x->wait.lock, flags);
3707 	if (!x->done)
3708 		ret = 0;
3709 	spin_unlock_irqrestore(&x->wait.lock, flags);
3710 	return ret;
3711 }
3712 EXPORT_SYMBOL(completion_done);
3713 
3714 static long __sched
3715 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3716 {
3717 	unsigned long flags;
3718 	wait_queue_t wait;
3719 
3720 	init_waitqueue_entry(&wait, current);
3721 
3722 	__set_current_state(state);
3723 
3724 	spin_lock_irqsave(&q->lock, flags);
3725 	__add_wait_queue(q, &wait);
3726 	spin_unlock(&q->lock);
3727 	timeout = schedule_timeout(timeout);
3728 	spin_lock_irq(&q->lock);
3729 	__remove_wait_queue(q, &wait);
3730 	spin_unlock_irqrestore(&q->lock, flags);
3731 
3732 	return timeout;
3733 }
3734 
3735 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3736 {
3737 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3738 }
3739 EXPORT_SYMBOL(interruptible_sleep_on);
3740 
3741 long __sched
3742 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3743 {
3744 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3745 }
3746 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3747 
3748 void __sched sleep_on(wait_queue_head_t *q)
3749 {
3750 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3751 }
3752 EXPORT_SYMBOL(sleep_on);
3753 
3754 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3755 {
3756 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3757 }
3758 EXPORT_SYMBOL(sleep_on_timeout);
3759 
3760 #ifdef CONFIG_RT_MUTEXES
3761 
3762 /*
3763  * rt_mutex_setprio - set the current priority of a task
3764  * @p: task
3765  * @prio: prio value (kernel-internal form)
3766  *
3767  * This function changes the 'effective' priority of a task. It does
3768  * not touch ->normal_prio like __setscheduler().
3769  *
3770  * Used by the rt_mutex code to implement priority inheritance logic.
3771  */
3772 void rt_mutex_setprio(struct task_struct *p, int prio)
3773 {
3774 	int oldprio, on_rq, running;
3775 	struct rq *rq;
3776 	const struct sched_class *prev_class;
3777 
3778 	BUG_ON(prio < 0 || prio > MAX_PRIO);
3779 
3780 	rq = __task_rq_lock(p);
3781 
3782 	trace_sched_pi_setprio(p, prio);
3783 	oldprio = p->prio;
3784 	prev_class = p->sched_class;
3785 	on_rq = p->on_rq;
3786 	running = task_current(rq, p);
3787 	if (on_rq)
3788 		dequeue_task(rq, p, 0);
3789 	if (running)
3790 		p->sched_class->put_prev_task(rq, p);
3791 
3792 	if (rt_prio(prio))
3793 		p->sched_class = &rt_sched_class;
3794 	else
3795 		p->sched_class = &fair_sched_class;
3796 
3797 	p->prio = prio;
3798 
3799 	if (running)
3800 		p->sched_class->set_curr_task(rq);
3801 	if (on_rq)
3802 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3803 
3804 	check_class_changed(rq, p, prev_class, oldprio);
3805 	__task_rq_unlock(rq);
3806 }
3807 
3808 #endif
3809 
3810 void set_user_nice(struct task_struct *p, long nice)
3811 {
3812 	int old_prio, delta, on_rq;
3813 	unsigned long flags;
3814 	struct rq *rq;
3815 
3816 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3817 		return;
3818 	/*
3819 	 * We have to be careful, if called from sys_setpriority(),
3820 	 * the task might be in the middle of scheduling on another CPU.
3821 	 */
3822 	rq = task_rq_lock(p, &flags);
3823 	/*
3824 	 * The RT priorities are set via sched_setscheduler(), but we still
3825 	 * allow the 'normal' nice value to be set - but as expected
3826 	 * it wont have any effect on scheduling until the task is
3827 	 * SCHED_FIFO/SCHED_RR:
3828 	 */
3829 	if (task_has_rt_policy(p)) {
3830 		p->static_prio = NICE_TO_PRIO(nice);
3831 		goto out_unlock;
3832 	}
3833 	on_rq = p->on_rq;
3834 	if (on_rq)
3835 		dequeue_task(rq, p, 0);
3836 
3837 	p->static_prio = NICE_TO_PRIO(nice);
3838 	set_load_weight(p);
3839 	old_prio = p->prio;
3840 	p->prio = effective_prio(p);
3841 	delta = p->prio - old_prio;
3842 
3843 	if (on_rq) {
3844 		enqueue_task(rq, p, 0);
3845 		/*
3846 		 * If the task increased its priority or is running and
3847 		 * lowered its priority, then reschedule its CPU:
3848 		 */
3849 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3850 			resched_task(rq->curr);
3851 	}
3852 out_unlock:
3853 	task_rq_unlock(rq, p, &flags);
3854 }
3855 EXPORT_SYMBOL(set_user_nice);
3856 
3857 /*
3858  * can_nice - check if a task can reduce its nice value
3859  * @p: task
3860  * @nice: nice value
3861  */
3862 int can_nice(const struct task_struct *p, const int nice)
3863 {
3864 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3865 	int nice_rlim = 20 - nice;
3866 
3867 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3868 		capable(CAP_SYS_NICE));
3869 }
3870 
3871 #ifdef __ARCH_WANT_SYS_NICE
3872 
3873 /*
3874  * sys_nice - change the priority of the current process.
3875  * @increment: priority increment
3876  *
3877  * sys_setpriority is a more generic, but much slower function that
3878  * does similar things.
3879  */
3880 SYSCALL_DEFINE1(nice, int, increment)
3881 {
3882 	long nice, retval;
3883 
3884 	/*
3885 	 * Setpriority might change our priority at the same moment.
3886 	 * We don't have to worry. Conceptually one call occurs first
3887 	 * and we have a single winner.
3888 	 */
3889 	if (increment < -40)
3890 		increment = -40;
3891 	if (increment > 40)
3892 		increment = 40;
3893 
3894 	nice = TASK_NICE(current) + increment;
3895 	if (nice < -20)
3896 		nice = -20;
3897 	if (nice > 19)
3898 		nice = 19;
3899 
3900 	if (increment < 0 && !can_nice(current, nice))
3901 		return -EPERM;
3902 
3903 	retval = security_task_setnice(current, nice);
3904 	if (retval)
3905 		return retval;
3906 
3907 	set_user_nice(current, nice);
3908 	return 0;
3909 }
3910 
3911 #endif
3912 
3913 /**
3914  * task_prio - return the priority value of a given task.
3915  * @p: the task in question.
3916  *
3917  * This is the priority value as seen by users in /proc.
3918  * RT tasks are offset by -200. Normal tasks are centered
3919  * around 0, value goes from -16 to +15.
3920  */
3921 int task_prio(const struct task_struct *p)
3922 {
3923 	return p->prio - MAX_RT_PRIO;
3924 }
3925 
3926 /**
3927  * task_nice - return the nice value of a given task.
3928  * @p: the task in question.
3929  */
3930 int task_nice(const struct task_struct *p)
3931 {
3932 	return TASK_NICE(p);
3933 }
3934 EXPORT_SYMBOL(task_nice);
3935 
3936 /**
3937  * idle_cpu - is a given cpu idle currently?
3938  * @cpu: the processor in question.
3939  */
3940 int idle_cpu(int cpu)
3941 {
3942 	struct rq *rq = cpu_rq(cpu);
3943 
3944 	if (rq->curr != rq->idle)
3945 		return 0;
3946 
3947 	if (rq->nr_running)
3948 		return 0;
3949 
3950 #ifdef CONFIG_SMP
3951 	if (!llist_empty(&rq->wake_list))
3952 		return 0;
3953 #endif
3954 
3955 	return 1;
3956 }
3957 
3958 /**
3959  * idle_task - return the idle task for a given cpu.
3960  * @cpu: the processor in question.
3961  */
3962 struct task_struct *idle_task(int cpu)
3963 {
3964 	return cpu_rq(cpu)->idle;
3965 }
3966 
3967 /**
3968  * find_process_by_pid - find a process with a matching PID value.
3969  * @pid: the pid in question.
3970  */
3971 static struct task_struct *find_process_by_pid(pid_t pid)
3972 {
3973 	return pid ? find_task_by_vpid(pid) : current;
3974 }
3975 
3976 /* Actually do priority change: must hold rq lock. */
3977 static void
3978 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3979 {
3980 	p->policy = policy;
3981 	p->rt_priority = prio;
3982 	p->normal_prio = normal_prio(p);
3983 	/* we are holding p->pi_lock already */
3984 	p->prio = rt_mutex_getprio(p);
3985 	if (rt_prio(p->prio))
3986 		p->sched_class = &rt_sched_class;
3987 	else
3988 		p->sched_class = &fair_sched_class;
3989 	set_load_weight(p);
3990 }
3991 
3992 /*
3993  * check the target process has a UID that matches the current process's
3994  */
3995 static bool check_same_owner(struct task_struct *p)
3996 {
3997 	const struct cred *cred = current_cred(), *pcred;
3998 	bool match;
3999 
4000 	rcu_read_lock();
4001 	pcred = __task_cred(p);
4002 	if (cred->user->user_ns == pcred->user->user_ns)
4003 		match = (cred->euid == pcred->euid ||
4004 			 cred->euid == pcred->uid);
4005 	else
4006 		match = false;
4007 	rcu_read_unlock();
4008 	return match;
4009 }
4010 
4011 static int __sched_setscheduler(struct task_struct *p, int policy,
4012 				const struct sched_param *param, bool user)
4013 {
4014 	int retval, oldprio, oldpolicy = -1, on_rq, running;
4015 	unsigned long flags;
4016 	const struct sched_class *prev_class;
4017 	struct rq *rq;
4018 	int reset_on_fork;
4019 
4020 	/* may grab non-irq protected spin_locks */
4021 	BUG_ON(in_interrupt());
4022 recheck:
4023 	/* double check policy once rq lock held */
4024 	if (policy < 0) {
4025 		reset_on_fork = p->sched_reset_on_fork;
4026 		policy = oldpolicy = p->policy;
4027 	} else {
4028 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4029 		policy &= ~SCHED_RESET_ON_FORK;
4030 
4031 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
4032 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4033 				policy != SCHED_IDLE)
4034 			return -EINVAL;
4035 	}
4036 
4037 	/*
4038 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4039 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4040 	 * SCHED_BATCH and SCHED_IDLE is 0.
4041 	 */
4042 	if (param->sched_priority < 0 ||
4043 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4044 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4045 		return -EINVAL;
4046 	if (rt_policy(policy) != (param->sched_priority != 0))
4047 		return -EINVAL;
4048 
4049 	/*
4050 	 * Allow unprivileged RT tasks to decrease priority:
4051 	 */
4052 	if (user && !capable(CAP_SYS_NICE)) {
4053 		if (rt_policy(policy)) {
4054 			unsigned long rlim_rtprio =
4055 					task_rlimit(p, RLIMIT_RTPRIO);
4056 
4057 			/* can't set/change the rt policy */
4058 			if (policy != p->policy && !rlim_rtprio)
4059 				return -EPERM;
4060 
4061 			/* can't increase priority */
4062 			if (param->sched_priority > p->rt_priority &&
4063 			    param->sched_priority > rlim_rtprio)
4064 				return -EPERM;
4065 		}
4066 
4067 		/*
4068 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4069 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4070 		 */
4071 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4072 			if (!can_nice(p, TASK_NICE(p)))
4073 				return -EPERM;
4074 		}
4075 
4076 		/* can't change other user's priorities */
4077 		if (!check_same_owner(p))
4078 			return -EPERM;
4079 
4080 		/* Normal users shall not reset the sched_reset_on_fork flag */
4081 		if (p->sched_reset_on_fork && !reset_on_fork)
4082 			return -EPERM;
4083 	}
4084 
4085 	if (user) {
4086 		retval = security_task_setscheduler(p);
4087 		if (retval)
4088 			return retval;
4089 	}
4090 
4091 	/*
4092 	 * make sure no PI-waiters arrive (or leave) while we are
4093 	 * changing the priority of the task:
4094 	 *
4095 	 * To be able to change p->policy safely, the appropriate
4096 	 * runqueue lock must be held.
4097 	 */
4098 	rq = task_rq_lock(p, &flags);
4099 
4100 	/*
4101 	 * Changing the policy of the stop threads its a very bad idea
4102 	 */
4103 	if (p == rq->stop) {
4104 		task_rq_unlock(rq, p, &flags);
4105 		return -EINVAL;
4106 	}
4107 
4108 	/*
4109 	 * If not changing anything there's no need to proceed further:
4110 	 */
4111 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4112 			param->sched_priority == p->rt_priority))) {
4113 
4114 		__task_rq_unlock(rq);
4115 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4116 		return 0;
4117 	}
4118 
4119 #ifdef CONFIG_RT_GROUP_SCHED
4120 	if (user) {
4121 		/*
4122 		 * Do not allow realtime tasks into groups that have no runtime
4123 		 * assigned.
4124 		 */
4125 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4126 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4127 				!task_group_is_autogroup(task_group(p))) {
4128 			task_rq_unlock(rq, p, &flags);
4129 			return -EPERM;
4130 		}
4131 	}
4132 #endif
4133 
4134 	/* recheck policy now with rq lock held */
4135 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4136 		policy = oldpolicy = -1;
4137 		task_rq_unlock(rq, p, &flags);
4138 		goto recheck;
4139 	}
4140 	on_rq = p->on_rq;
4141 	running = task_current(rq, p);
4142 	if (on_rq)
4143 		dequeue_task(rq, p, 0);
4144 	if (running)
4145 		p->sched_class->put_prev_task(rq, p);
4146 
4147 	p->sched_reset_on_fork = reset_on_fork;
4148 
4149 	oldprio = p->prio;
4150 	prev_class = p->sched_class;
4151 	__setscheduler(rq, p, policy, param->sched_priority);
4152 
4153 	if (running)
4154 		p->sched_class->set_curr_task(rq);
4155 	if (on_rq)
4156 		enqueue_task(rq, p, 0);
4157 
4158 	check_class_changed(rq, p, prev_class, oldprio);
4159 	task_rq_unlock(rq, p, &flags);
4160 
4161 	rt_mutex_adjust_pi(p);
4162 
4163 	return 0;
4164 }
4165 
4166 /**
4167  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4168  * @p: the task in question.
4169  * @policy: new policy.
4170  * @param: structure containing the new RT priority.
4171  *
4172  * NOTE that the task may be already dead.
4173  */
4174 int sched_setscheduler(struct task_struct *p, int policy,
4175 		       const struct sched_param *param)
4176 {
4177 	return __sched_setscheduler(p, policy, param, true);
4178 }
4179 EXPORT_SYMBOL_GPL(sched_setscheduler);
4180 
4181 /**
4182  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4183  * @p: the task in question.
4184  * @policy: new policy.
4185  * @param: structure containing the new RT priority.
4186  *
4187  * Just like sched_setscheduler, only don't bother checking if the
4188  * current context has permission.  For example, this is needed in
4189  * stop_machine(): we create temporary high priority worker threads,
4190  * but our caller might not have that capability.
4191  */
4192 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4193 			       const struct sched_param *param)
4194 {
4195 	return __sched_setscheduler(p, policy, param, false);
4196 }
4197 
4198 static int
4199 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4200 {
4201 	struct sched_param lparam;
4202 	struct task_struct *p;
4203 	int retval;
4204 
4205 	if (!param || pid < 0)
4206 		return -EINVAL;
4207 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4208 		return -EFAULT;
4209 
4210 	rcu_read_lock();
4211 	retval = -ESRCH;
4212 	p = find_process_by_pid(pid);
4213 	if (p != NULL)
4214 		retval = sched_setscheduler(p, policy, &lparam);
4215 	rcu_read_unlock();
4216 
4217 	return retval;
4218 }
4219 
4220 /**
4221  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4222  * @pid: the pid in question.
4223  * @policy: new policy.
4224  * @param: structure containing the new RT priority.
4225  */
4226 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4227 		struct sched_param __user *, param)
4228 {
4229 	/* negative values for policy are not valid */
4230 	if (policy < 0)
4231 		return -EINVAL;
4232 
4233 	return do_sched_setscheduler(pid, policy, param);
4234 }
4235 
4236 /**
4237  * sys_sched_setparam - set/change the RT priority of a thread
4238  * @pid: the pid in question.
4239  * @param: structure containing the new RT priority.
4240  */
4241 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4242 {
4243 	return do_sched_setscheduler(pid, -1, param);
4244 }
4245 
4246 /**
4247  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4248  * @pid: the pid in question.
4249  */
4250 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4251 {
4252 	struct task_struct *p;
4253 	int retval;
4254 
4255 	if (pid < 0)
4256 		return -EINVAL;
4257 
4258 	retval = -ESRCH;
4259 	rcu_read_lock();
4260 	p = find_process_by_pid(pid);
4261 	if (p) {
4262 		retval = security_task_getscheduler(p);
4263 		if (!retval)
4264 			retval = p->policy
4265 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4266 	}
4267 	rcu_read_unlock();
4268 	return retval;
4269 }
4270 
4271 /**
4272  * sys_sched_getparam - get the RT priority of a thread
4273  * @pid: the pid in question.
4274  * @param: structure containing the RT priority.
4275  */
4276 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4277 {
4278 	struct sched_param lp;
4279 	struct task_struct *p;
4280 	int retval;
4281 
4282 	if (!param || pid < 0)
4283 		return -EINVAL;
4284 
4285 	rcu_read_lock();
4286 	p = find_process_by_pid(pid);
4287 	retval = -ESRCH;
4288 	if (!p)
4289 		goto out_unlock;
4290 
4291 	retval = security_task_getscheduler(p);
4292 	if (retval)
4293 		goto out_unlock;
4294 
4295 	lp.sched_priority = p->rt_priority;
4296 	rcu_read_unlock();
4297 
4298 	/*
4299 	 * This one might sleep, we cannot do it with a spinlock held ...
4300 	 */
4301 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4302 
4303 	return retval;
4304 
4305 out_unlock:
4306 	rcu_read_unlock();
4307 	return retval;
4308 }
4309 
4310 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4311 {
4312 	cpumask_var_t cpus_allowed, new_mask;
4313 	struct task_struct *p;
4314 	int retval;
4315 
4316 	get_online_cpus();
4317 	rcu_read_lock();
4318 
4319 	p = find_process_by_pid(pid);
4320 	if (!p) {
4321 		rcu_read_unlock();
4322 		put_online_cpus();
4323 		return -ESRCH;
4324 	}
4325 
4326 	/* Prevent p going away */
4327 	get_task_struct(p);
4328 	rcu_read_unlock();
4329 
4330 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4331 		retval = -ENOMEM;
4332 		goto out_put_task;
4333 	}
4334 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4335 		retval = -ENOMEM;
4336 		goto out_free_cpus_allowed;
4337 	}
4338 	retval = -EPERM;
4339 	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4340 		goto out_unlock;
4341 
4342 	retval = security_task_setscheduler(p);
4343 	if (retval)
4344 		goto out_unlock;
4345 
4346 	cpuset_cpus_allowed(p, cpus_allowed);
4347 	cpumask_and(new_mask, in_mask, cpus_allowed);
4348 again:
4349 	retval = set_cpus_allowed_ptr(p, new_mask);
4350 
4351 	if (!retval) {
4352 		cpuset_cpus_allowed(p, cpus_allowed);
4353 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4354 			/*
4355 			 * We must have raced with a concurrent cpuset
4356 			 * update. Just reset the cpus_allowed to the
4357 			 * cpuset's cpus_allowed
4358 			 */
4359 			cpumask_copy(new_mask, cpus_allowed);
4360 			goto again;
4361 		}
4362 	}
4363 out_unlock:
4364 	free_cpumask_var(new_mask);
4365 out_free_cpus_allowed:
4366 	free_cpumask_var(cpus_allowed);
4367 out_put_task:
4368 	put_task_struct(p);
4369 	put_online_cpus();
4370 	return retval;
4371 }
4372 
4373 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4374 			     struct cpumask *new_mask)
4375 {
4376 	if (len < cpumask_size())
4377 		cpumask_clear(new_mask);
4378 	else if (len > cpumask_size())
4379 		len = cpumask_size();
4380 
4381 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4382 }
4383 
4384 /**
4385  * sys_sched_setaffinity - set the cpu affinity of a process
4386  * @pid: pid of the process
4387  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4388  * @user_mask_ptr: user-space pointer to the new cpu mask
4389  */
4390 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4391 		unsigned long __user *, user_mask_ptr)
4392 {
4393 	cpumask_var_t new_mask;
4394 	int retval;
4395 
4396 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4397 		return -ENOMEM;
4398 
4399 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4400 	if (retval == 0)
4401 		retval = sched_setaffinity(pid, new_mask);
4402 	free_cpumask_var(new_mask);
4403 	return retval;
4404 }
4405 
4406 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4407 {
4408 	struct task_struct *p;
4409 	unsigned long flags;
4410 	int retval;
4411 
4412 	get_online_cpus();
4413 	rcu_read_lock();
4414 
4415 	retval = -ESRCH;
4416 	p = find_process_by_pid(pid);
4417 	if (!p)
4418 		goto out_unlock;
4419 
4420 	retval = security_task_getscheduler(p);
4421 	if (retval)
4422 		goto out_unlock;
4423 
4424 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4425 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4426 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4427 
4428 out_unlock:
4429 	rcu_read_unlock();
4430 	put_online_cpus();
4431 
4432 	return retval;
4433 }
4434 
4435 /**
4436  * sys_sched_getaffinity - get the cpu affinity of a process
4437  * @pid: pid of the process
4438  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4439  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4440  */
4441 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4442 		unsigned long __user *, user_mask_ptr)
4443 {
4444 	int ret;
4445 	cpumask_var_t mask;
4446 
4447 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4448 		return -EINVAL;
4449 	if (len & (sizeof(unsigned long)-1))
4450 		return -EINVAL;
4451 
4452 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4453 		return -ENOMEM;
4454 
4455 	ret = sched_getaffinity(pid, mask);
4456 	if (ret == 0) {
4457 		size_t retlen = min_t(size_t, len, cpumask_size());
4458 
4459 		if (copy_to_user(user_mask_ptr, mask, retlen))
4460 			ret = -EFAULT;
4461 		else
4462 			ret = retlen;
4463 	}
4464 	free_cpumask_var(mask);
4465 
4466 	return ret;
4467 }
4468 
4469 /**
4470  * sys_sched_yield - yield the current processor to other threads.
4471  *
4472  * This function yields the current CPU to other tasks. If there are no
4473  * other threads running on this CPU then this function will return.
4474  */
4475 SYSCALL_DEFINE0(sched_yield)
4476 {
4477 	struct rq *rq = this_rq_lock();
4478 
4479 	schedstat_inc(rq, yld_count);
4480 	current->sched_class->yield_task(rq);
4481 
4482 	/*
4483 	 * Since we are going to call schedule() anyway, there's
4484 	 * no need to preempt or enable interrupts:
4485 	 */
4486 	__release(rq->lock);
4487 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4488 	do_raw_spin_unlock(&rq->lock);
4489 	preempt_enable_no_resched();
4490 
4491 	schedule();
4492 
4493 	return 0;
4494 }
4495 
4496 static inline int should_resched(void)
4497 {
4498 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4499 }
4500 
4501 static void __cond_resched(void)
4502 {
4503 	add_preempt_count(PREEMPT_ACTIVE);
4504 	__schedule();
4505 	sub_preempt_count(PREEMPT_ACTIVE);
4506 }
4507 
4508 int __sched _cond_resched(void)
4509 {
4510 	if (should_resched()) {
4511 		__cond_resched();
4512 		return 1;
4513 	}
4514 	return 0;
4515 }
4516 EXPORT_SYMBOL(_cond_resched);
4517 
4518 /*
4519  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4520  * call schedule, and on return reacquire the lock.
4521  *
4522  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4523  * operations here to prevent schedule() from being called twice (once via
4524  * spin_unlock(), once by hand).
4525  */
4526 int __cond_resched_lock(spinlock_t *lock)
4527 {
4528 	int resched = should_resched();
4529 	int ret = 0;
4530 
4531 	lockdep_assert_held(lock);
4532 
4533 	if (spin_needbreak(lock) || resched) {
4534 		spin_unlock(lock);
4535 		if (resched)
4536 			__cond_resched();
4537 		else
4538 			cpu_relax();
4539 		ret = 1;
4540 		spin_lock(lock);
4541 	}
4542 	return ret;
4543 }
4544 EXPORT_SYMBOL(__cond_resched_lock);
4545 
4546 int __sched __cond_resched_softirq(void)
4547 {
4548 	BUG_ON(!in_softirq());
4549 
4550 	if (should_resched()) {
4551 		local_bh_enable();
4552 		__cond_resched();
4553 		local_bh_disable();
4554 		return 1;
4555 	}
4556 	return 0;
4557 }
4558 EXPORT_SYMBOL(__cond_resched_softirq);
4559 
4560 /**
4561  * yield - yield the current processor to other threads.
4562  *
4563  * This is a shortcut for kernel-space yielding - it marks the
4564  * thread runnable and calls sys_sched_yield().
4565  */
4566 void __sched yield(void)
4567 {
4568 	set_current_state(TASK_RUNNING);
4569 	sys_sched_yield();
4570 }
4571 EXPORT_SYMBOL(yield);
4572 
4573 /**
4574  * yield_to - yield the current processor to another thread in
4575  * your thread group, or accelerate that thread toward the
4576  * processor it's on.
4577  * @p: target task
4578  * @preempt: whether task preemption is allowed or not
4579  *
4580  * It's the caller's job to ensure that the target task struct
4581  * can't go away on us before we can do any checks.
4582  *
4583  * Returns true if we indeed boosted the target task.
4584  */
4585 bool __sched yield_to(struct task_struct *p, bool preempt)
4586 {
4587 	struct task_struct *curr = current;
4588 	struct rq *rq, *p_rq;
4589 	unsigned long flags;
4590 	bool yielded = 0;
4591 
4592 	local_irq_save(flags);
4593 	rq = this_rq();
4594 
4595 again:
4596 	p_rq = task_rq(p);
4597 	double_rq_lock(rq, p_rq);
4598 	while (task_rq(p) != p_rq) {
4599 		double_rq_unlock(rq, p_rq);
4600 		goto again;
4601 	}
4602 
4603 	if (!curr->sched_class->yield_to_task)
4604 		goto out;
4605 
4606 	if (curr->sched_class != p->sched_class)
4607 		goto out;
4608 
4609 	if (task_running(p_rq, p) || p->state)
4610 		goto out;
4611 
4612 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4613 	if (yielded) {
4614 		schedstat_inc(rq, yld_count);
4615 		/*
4616 		 * Make p's CPU reschedule; pick_next_entity takes care of
4617 		 * fairness.
4618 		 */
4619 		if (preempt && rq != p_rq)
4620 			resched_task(p_rq->curr);
4621 	} else {
4622 		/*
4623 		 * We might have set it in task_yield_fair(), but are
4624 		 * not going to schedule(), so don't want to skip
4625 		 * the next update.
4626 		 */
4627 		rq->skip_clock_update = 0;
4628 	}
4629 
4630 out:
4631 	double_rq_unlock(rq, p_rq);
4632 	local_irq_restore(flags);
4633 
4634 	if (yielded)
4635 		schedule();
4636 
4637 	return yielded;
4638 }
4639 EXPORT_SYMBOL_GPL(yield_to);
4640 
4641 /*
4642  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4643  * that process accounting knows that this is a task in IO wait state.
4644  */
4645 void __sched io_schedule(void)
4646 {
4647 	struct rq *rq = raw_rq();
4648 
4649 	delayacct_blkio_start();
4650 	atomic_inc(&rq->nr_iowait);
4651 	blk_flush_plug(current);
4652 	current->in_iowait = 1;
4653 	schedule();
4654 	current->in_iowait = 0;
4655 	atomic_dec(&rq->nr_iowait);
4656 	delayacct_blkio_end();
4657 }
4658 EXPORT_SYMBOL(io_schedule);
4659 
4660 long __sched io_schedule_timeout(long timeout)
4661 {
4662 	struct rq *rq = raw_rq();
4663 	long ret;
4664 
4665 	delayacct_blkio_start();
4666 	atomic_inc(&rq->nr_iowait);
4667 	blk_flush_plug(current);
4668 	current->in_iowait = 1;
4669 	ret = schedule_timeout(timeout);
4670 	current->in_iowait = 0;
4671 	atomic_dec(&rq->nr_iowait);
4672 	delayacct_blkio_end();
4673 	return ret;
4674 }
4675 
4676 /**
4677  * sys_sched_get_priority_max - return maximum RT priority.
4678  * @policy: scheduling class.
4679  *
4680  * this syscall returns the maximum rt_priority that can be used
4681  * by a given scheduling class.
4682  */
4683 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4684 {
4685 	int ret = -EINVAL;
4686 
4687 	switch (policy) {
4688 	case SCHED_FIFO:
4689 	case SCHED_RR:
4690 		ret = MAX_USER_RT_PRIO-1;
4691 		break;
4692 	case SCHED_NORMAL:
4693 	case SCHED_BATCH:
4694 	case SCHED_IDLE:
4695 		ret = 0;
4696 		break;
4697 	}
4698 	return ret;
4699 }
4700 
4701 /**
4702  * sys_sched_get_priority_min - return minimum RT priority.
4703  * @policy: scheduling class.
4704  *
4705  * this syscall returns the minimum rt_priority that can be used
4706  * by a given scheduling class.
4707  */
4708 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4709 {
4710 	int ret = -EINVAL;
4711 
4712 	switch (policy) {
4713 	case SCHED_FIFO:
4714 	case SCHED_RR:
4715 		ret = 1;
4716 		break;
4717 	case SCHED_NORMAL:
4718 	case SCHED_BATCH:
4719 	case SCHED_IDLE:
4720 		ret = 0;
4721 	}
4722 	return ret;
4723 }
4724 
4725 /**
4726  * sys_sched_rr_get_interval - return the default timeslice of a process.
4727  * @pid: pid of the process.
4728  * @interval: userspace pointer to the timeslice value.
4729  *
4730  * this syscall writes the default timeslice value of a given process
4731  * into the user-space timespec buffer. A value of '0' means infinity.
4732  */
4733 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4734 		struct timespec __user *, interval)
4735 {
4736 	struct task_struct *p;
4737 	unsigned int time_slice;
4738 	unsigned long flags;
4739 	struct rq *rq;
4740 	int retval;
4741 	struct timespec t;
4742 
4743 	if (pid < 0)
4744 		return -EINVAL;
4745 
4746 	retval = -ESRCH;
4747 	rcu_read_lock();
4748 	p = find_process_by_pid(pid);
4749 	if (!p)
4750 		goto out_unlock;
4751 
4752 	retval = security_task_getscheduler(p);
4753 	if (retval)
4754 		goto out_unlock;
4755 
4756 	rq = task_rq_lock(p, &flags);
4757 	time_slice = p->sched_class->get_rr_interval(rq, p);
4758 	task_rq_unlock(rq, p, &flags);
4759 
4760 	rcu_read_unlock();
4761 	jiffies_to_timespec(time_slice, &t);
4762 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4763 	return retval;
4764 
4765 out_unlock:
4766 	rcu_read_unlock();
4767 	return retval;
4768 }
4769 
4770 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4771 
4772 void sched_show_task(struct task_struct *p)
4773 {
4774 	unsigned long free = 0;
4775 	unsigned state;
4776 
4777 	state = p->state ? __ffs(p->state) + 1 : 0;
4778 	printk(KERN_INFO "%-15.15s %c", p->comm,
4779 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4780 #if BITS_PER_LONG == 32
4781 	if (state == TASK_RUNNING)
4782 		printk(KERN_CONT " running  ");
4783 	else
4784 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4785 #else
4786 	if (state == TASK_RUNNING)
4787 		printk(KERN_CONT "  running task    ");
4788 	else
4789 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4790 #endif
4791 #ifdef CONFIG_DEBUG_STACK_USAGE
4792 	free = stack_not_used(p);
4793 #endif
4794 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4795 		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4796 		(unsigned long)task_thread_info(p)->flags);
4797 
4798 	show_stack(p, NULL);
4799 }
4800 
4801 void show_state_filter(unsigned long state_filter)
4802 {
4803 	struct task_struct *g, *p;
4804 
4805 #if BITS_PER_LONG == 32
4806 	printk(KERN_INFO
4807 		"  task                PC stack   pid father\n");
4808 #else
4809 	printk(KERN_INFO
4810 		"  task                        PC stack   pid father\n");
4811 #endif
4812 	rcu_read_lock();
4813 	do_each_thread(g, p) {
4814 		/*
4815 		 * reset the NMI-timeout, listing all files on a slow
4816 		 * console might take a lot of time:
4817 		 */
4818 		touch_nmi_watchdog();
4819 		if (!state_filter || (p->state & state_filter))
4820 			sched_show_task(p);
4821 	} while_each_thread(g, p);
4822 
4823 	touch_all_softlockup_watchdogs();
4824 
4825 #ifdef CONFIG_SCHED_DEBUG
4826 	sysrq_sched_debug_show();
4827 #endif
4828 	rcu_read_unlock();
4829 	/*
4830 	 * Only show locks if all tasks are dumped:
4831 	 */
4832 	if (!state_filter)
4833 		debug_show_all_locks();
4834 }
4835 
4836 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4837 {
4838 	idle->sched_class = &idle_sched_class;
4839 }
4840 
4841 /**
4842  * init_idle - set up an idle thread for a given CPU
4843  * @idle: task in question
4844  * @cpu: cpu the idle task belongs to
4845  *
4846  * NOTE: this function does not set the idle thread's NEED_RESCHED
4847  * flag, to make booting more robust.
4848  */
4849 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4850 {
4851 	struct rq *rq = cpu_rq(cpu);
4852 	unsigned long flags;
4853 
4854 	raw_spin_lock_irqsave(&rq->lock, flags);
4855 
4856 	__sched_fork(idle);
4857 	idle->state = TASK_RUNNING;
4858 	idle->se.exec_start = sched_clock();
4859 
4860 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4861 	/*
4862 	 * We're having a chicken and egg problem, even though we are
4863 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4864 	 * lockdep check in task_group() will fail.
4865 	 *
4866 	 * Similar case to sched_fork(). / Alternatively we could
4867 	 * use task_rq_lock() here and obtain the other rq->lock.
4868 	 *
4869 	 * Silence PROVE_RCU
4870 	 */
4871 	rcu_read_lock();
4872 	__set_task_cpu(idle, cpu);
4873 	rcu_read_unlock();
4874 
4875 	rq->curr = rq->idle = idle;
4876 #if defined(CONFIG_SMP)
4877 	idle->on_cpu = 1;
4878 #endif
4879 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4880 
4881 	/* Set the preempt count _outside_ the spinlocks! */
4882 	task_thread_info(idle)->preempt_count = 0;
4883 
4884 	/*
4885 	 * The idle tasks have their own, simple scheduling class:
4886 	 */
4887 	idle->sched_class = &idle_sched_class;
4888 	ftrace_graph_init_idle_task(idle, cpu);
4889 #if defined(CONFIG_SMP)
4890 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4891 #endif
4892 }
4893 
4894 #ifdef CONFIG_SMP
4895 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4896 {
4897 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4898 		p->sched_class->set_cpus_allowed(p, new_mask);
4899 
4900 	cpumask_copy(&p->cpus_allowed, new_mask);
4901 	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4902 }
4903 
4904 /*
4905  * This is how migration works:
4906  *
4907  * 1) we invoke migration_cpu_stop() on the target CPU using
4908  *    stop_one_cpu().
4909  * 2) stopper starts to run (implicitly forcing the migrated thread
4910  *    off the CPU)
4911  * 3) it checks whether the migrated task is still in the wrong runqueue.
4912  * 4) if it's in the wrong runqueue then the migration thread removes
4913  *    it and puts it into the right queue.
4914  * 5) stopper completes and stop_one_cpu() returns and the migration
4915  *    is done.
4916  */
4917 
4918 /*
4919  * Change a given task's CPU affinity. Migrate the thread to a
4920  * proper CPU and schedule it away if the CPU it's executing on
4921  * is removed from the allowed bitmask.
4922  *
4923  * NOTE: the caller must have a valid reference to the task, the
4924  * task must not exit() & deallocate itself prematurely. The
4925  * call is not atomic; no spinlocks may be held.
4926  */
4927 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4928 {
4929 	unsigned long flags;
4930 	struct rq *rq;
4931 	unsigned int dest_cpu;
4932 	int ret = 0;
4933 
4934 	rq = task_rq_lock(p, &flags);
4935 
4936 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4937 		goto out;
4938 
4939 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4940 		ret = -EINVAL;
4941 		goto out;
4942 	}
4943 
4944 	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4945 		ret = -EINVAL;
4946 		goto out;
4947 	}
4948 
4949 	do_set_cpus_allowed(p, new_mask);
4950 
4951 	/* Can the task run on the task's current CPU? If so, we're done */
4952 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4953 		goto out;
4954 
4955 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4956 	if (p->on_rq) {
4957 		struct migration_arg arg = { p, dest_cpu };
4958 		/* Need help from migration thread: drop lock and wait. */
4959 		task_rq_unlock(rq, p, &flags);
4960 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4961 		tlb_migrate_finish(p->mm);
4962 		return 0;
4963 	}
4964 out:
4965 	task_rq_unlock(rq, p, &flags);
4966 
4967 	return ret;
4968 }
4969 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4970 
4971 /*
4972  * Move (not current) task off this cpu, onto dest cpu. We're doing
4973  * this because either it can't run here any more (set_cpus_allowed()
4974  * away from this CPU, or CPU going down), or because we're
4975  * attempting to rebalance this task on exec (sched_exec).
4976  *
4977  * So we race with normal scheduler movements, but that's OK, as long
4978  * as the task is no longer on this CPU.
4979  *
4980  * Returns non-zero if task was successfully migrated.
4981  */
4982 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4983 {
4984 	struct rq *rq_dest, *rq_src;
4985 	int ret = 0;
4986 
4987 	if (unlikely(!cpu_active(dest_cpu)))
4988 		return ret;
4989 
4990 	rq_src = cpu_rq(src_cpu);
4991 	rq_dest = cpu_rq(dest_cpu);
4992 
4993 	raw_spin_lock(&p->pi_lock);
4994 	double_rq_lock(rq_src, rq_dest);
4995 	/* Already moved. */
4996 	if (task_cpu(p) != src_cpu)
4997 		goto done;
4998 	/* Affinity changed (again). */
4999 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5000 		goto fail;
5001 
5002 	/*
5003 	 * If we're not on a rq, the next wake-up will ensure we're
5004 	 * placed properly.
5005 	 */
5006 	if (p->on_rq) {
5007 		dequeue_task(rq_src, p, 0);
5008 		set_task_cpu(p, dest_cpu);
5009 		enqueue_task(rq_dest, p, 0);
5010 		check_preempt_curr(rq_dest, p, 0);
5011 	}
5012 done:
5013 	ret = 1;
5014 fail:
5015 	double_rq_unlock(rq_src, rq_dest);
5016 	raw_spin_unlock(&p->pi_lock);
5017 	return ret;
5018 }
5019 
5020 /*
5021  * migration_cpu_stop - this will be executed by a highprio stopper thread
5022  * and performs thread migration by bumping thread off CPU then
5023  * 'pushing' onto another runqueue.
5024  */
5025 static int migration_cpu_stop(void *data)
5026 {
5027 	struct migration_arg *arg = data;
5028 
5029 	/*
5030 	 * The original target cpu might have gone down and we might
5031 	 * be on another cpu but it doesn't matter.
5032 	 */
5033 	local_irq_disable();
5034 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5035 	local_irq_enable();
5036 	return 0;
5037 }
5038 
5039 #ifdef CONFIG_HOTPLUG_CPU
5040 
5041 /*
5042  * Ensures that the idle task is using init_mm right before its cpu goes
5043  * offline.
5044  */
5045 void idle_task_exit(void)
5046 {
5047 	struct mm_struct *mm = current->active_mm;
5048 
5049 	BUG_ON(cpu_online(smp_processor_id()));
5050 
5051 	if (mm != &init_mm)
5052 		switch_mm(mm, &init_mm, current);
5053 	mmdrop(mm);
5054 }
5055 
5056 /*
5057  * While a dead CPU has no uninterruptible tasks queued at this point,
5058  * it might still have a nonzero ->nr_uninterruptible counter, because
5059  * for performance reasons the counter is not stricly tracking tasks to
5060  * their home CPUs. So we just add the counter to another CPU's counter,
5061  * to keep the global sum constant after CPU-down:
5062  */
5063 static void migrate_nr_uninterruptible(struct rq *rq_src)
5064 {
5065 	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5066 
5067 	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5068 	rq_src->nr_uninterruptible = 0;
5069 }
5070 
5071 /*
5072  * remove the tasks which were accounted by rq from calc_load_tasks.
5073  */
5074 static void calc_global_load_remove(struct rq *rq)
5075 {
5076 	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5077 	rq->calc_load_active = 0;
5078 }
5079 
5080 /*
5081  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5082  * try_to_wake_up()->select_task_rq().
5083  *
5084  * Called with rq->lock held even though we'er in stop_machine() and
5085  * there's no concurrency possible, we hold the required locks anyway
5086  * because of lock validation efforts.
5087  */
5088 static void migrate_tasks(unsigned int dead_cpu)
5089 {
5090 	struct rq *rq = cpu_rq(dead_cpu);
5091 	struct task_struct *next, *stop = rq->stop;
5092 	int dest_cpu;
5093 
5094 	/*
5095 	 * Fudge the rq selection such that the below task selection loop
5096 	 * doesn't get stuck on the currently eligible stop task.
5097 	 *
5098 	 * We're currently inside stop_machine() and the rq is either stuck
5099 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5100 	 * either way we should never end up calling schedule() until we're
5101 	 * done here.
5102 	 */
5103 	rq->stop = NULL;
5104 
5105 	/* Ensure any throttled groups are reachable by pick_next_task */
5106 	unthrottle_offline_cfs_rqs(rq);
5107 
5108 	for ( ; ; ) {
5109 		/*
5110 		 * There's this thread running, bail when that's the only
5111 		 * remaining thread.
5112 		 */
5113 		if (rq->nr_running == 1)
5114 			break;
5115 
5116 		next = pick_next_task(rq);
5117 		BUG_ON(!next);
5118 		next->sched_class->put_prev_task(rq, next);
5119 
5120 		/* Find suitable destination for @next, with force if needed. */
5121 		dest_cpu = select_fallback_rq(dead_cpu, next);
5122 		raw_spin_unlock(&rq->lock);
5123 
5124 		__migrate_task(next, dead_cpu, dest_cpu);
5125 
5126 		raw_spin_lock(&rq->lock);
5127 	}
5128 
5129 	rq->stop = stop;
5130 }
5131 
5132 #endif /* CONFIG_HOTPLUG_CPU */
5133 
5134 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5135 
5136 static struct ctl_table sd_ctl_dir[] = {
5137 	{
5138 		.procname	= "sched_domain",
5139 		.mode		= 0555,
5140 	},
5141 	{}
5142 };
5143 
5144 static struct ctl_table sd_ctl_root[] = {
5145 	{
5146 		.procname	= "kernel",
5147 		.mode		= 0555,
5148 		.child		= sd_ctl_dir,
5149 	},
5150 	{}
5151 };
5152 
5153 static struct ctl_table *sd_alloc_ctl_entry(int n)
5154 {
5155 	struct ctl_table *entry =
5156 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5157 
5158 	return entry;
5159 }
5160 
5161 static void sd_free_ctl_entry(struct ctl_table **tablep)
5162 {
5163 	struct ctl_table *entry;
5164 
5165 	/*
5166 	 * In the intermediate directories, both the child directory and
5167 	 * procname are dynamically allocated and could fail but the mode
5168 	 * will always be set. In the lowest directory the names are
5169 	 * static strings and all have proc handlers.
5170 	 */
5171 	for (entry = *tablep; entry->mode; entry++) {
5172 		if (entry->child)
5173 			sd_free_ctl_entry(&entry->child);
5174 		if (entry->proc_handler == NULL)
5175 			kfree(entry->procname);
5176 	}
5177 
5178 	kfree(*tablep);
5179 	*tablep = NULL;
5180 }
5181 
5182 static void
5183 set_table_entry(struct ctl_table *entry,
5184 		const char *procname, void *data, int maxlen,
5185 		umode_t mode, proc_handler *proc_handler)
5186 {
5187 	entry->procname = procname;
5188 	entry->data = data;
5189 	entry->maxlen = maxlen;
5190 	entry->mode = mode;
5191 	entry->proc_handler = proc_handler;
5192 }
5193 
5194 static struct ctl_table *
5195 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5196 {
5197 	struct ctl_table *table = sd_alloc_ctl_entry(13);
5198 
5199 	if (table == NULL)
5200 		return NULL;
5201 
5202 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5203 		sizeof(long), 0644, proc_doulongvec_minmax);
5204 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5205 		sizeof(long), 0644, proc_doulongvec_minmax);
5206 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5207 		sizeof(int), 0644, proc_dointvec_minmax);
5208 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5209 		sizeof(int), 0644, proc_dointvec_minmax);
5210 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5211 		sizeof(int), 0644, proc_dointvec_minmax);
5212 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5213 		sizeof(int), 0644, proc_dointvec_minmax);
5214 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5215 		sizeof(int), 0644, proc_dointvec_minmax);
5216 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5217 		sizeof(int), 0644, proc_dointvec_minmax);
5218 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5219 		sizeof(int), 0644, proc_dointvec_minmax);
5220 	set_table_entry(&table[9], "cache_nice_tries",
5221 		&sd->cache_nice_tries,
5222 		sizeof(int), 0644, proc_dointvec_minmax);
5223 	set_table_entry(&table[10], "flags", &sd->flags,
5224 		sizeof(int), 0644, proc_dointvec_minmax);
5225 	set_table_entry(&table[11], "name", sd->name,
5226 		CORENAME_MAX_SIZE, 0444, proc_dostring);
5227 	/* &table[12] is terminator */
5228 
5229 	return table;
5230 }
5231 
5232 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5233 {
5234 	struct ctl_table *entry, *table;
5235 	struct sched_domain *sd;
5236 	int domain_num = 0, i;
5237 	char buf[32];
5238 
5239 	for_each_domain(cpu, sd)
5240 		domain_num++;
5241 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5242 	if (table == NULL)
5243 		return NULL;
5244 
5245 	i = 0;
5246 	for_each_domain(cpu, sd) {
5247 		snprintf(buf, 32, "domain%d", i);
5248 		entry->procname = kstrdup(buf, GFP_KERNEL);
5249 		entry->mode = 0555;
5250 		entry->child = sd_alloc_ctl_domain_table(sd);
5251 		entry++;
5252 		i++;
5253 	}
5254 	return table;
5255 }
5256 
5257 static struct ctl_table_header *sd_sysctl_header;
5258 static void register_sched_domain_sysctl(void)
5259 {
5260 	int i, cpu_num = num_possible_cpus();
5261 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5262 	char buf[32];
5263 
5264 	WARN_ON(sd_ctl_dir[0].child);
5265 	sd_ctl_dir[0].child = entry;
5266 
5267 	if (entry == NULL)
5268 		return;
5269 
5270 	for_each_possible_cpu(i) {
5271 		snprintf(buf, 32, "cpu%d", i);
5272 		entry->procname = kstrdup(buf, GFP_KERNEL);
5273 		entry->mode = 0555;
5274 		entry->child = sd_alloc_ctl_cpu_table(i);
5275 		entry++;
5276 	}
5277 
5278 	WARN_ON(sd_sysctl_header);
5279 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5280 }
5281 
5282 /* may be called multiple times per register */
5283 static void unregister_sched_domain_sysctl(void)
5284 {
5285 	if (sd_sysctl_header)
5286 		unregister_sysctl_table(sd_sysctl_header);
5287 	sd_sysctl_header = NULL;
5288 	if (sd_ctl_dir[0].child)
5289 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5290 }
5291 #else
5292 static void register_sched_domain_sysctl(void)
5293 {
5294 }
5295 static void unregister_sched_domain_sysctl(void)
5296 {
5297 }
5298 #endif
5299 
5300 static void set_rq_online(struct rq *rq)
5301 {
5302 	if (!rq->online) {
5303 		const struct sched_class *class;
5304 
5305 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5306 		rq->online = 1;
5307 
5308 		for_each_class(class) {
5309 			if (class->rq_online)
5310 				class->rq_online(rq);
5311 		}
5312 	}
5313 }
5314 
5315 static void set_rq_offline(struct rq *rq)
5316 {
5317 	if (rq->online) {
5318 		const struct sched_class *class;
5319 
5320 		for_each_class(class) {
5321 			if (class->rq_offline)
5322 				class->rq_offline(rq);
5323 		}
5324 
5325 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5326 		rq->online = 0;
5327 	}
5328 }
5329 
5330 /*
5331  * migration_call - callback that gets triggered when a CPU is added.
5332  * Here we can start up the necessary migration thread for the new CPU.
5333  */
5334 static int __cpuinit
5335 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5336 {
5337 	int cpu = (long)hcpu;
5338 	unsigned long flags;
5339 	struct rq *rq = cpu_rq(cpu);
5340 
5341 	switch (action & ~CPU_TASKS_FROZEN) {
5342 
5343 	case CPU_UP_PREPARE:
5344 		rq->calc_load_update = calc_load_update;
5345 		break;
5346 
5347 	case CPU_ONLINE:
5348 		/* Update our root-domain */
5349 		raw_spin_lock_irqsave(&rq->lock, flags);
5350 		if (rq->rd) {
5351 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5352 
5353 			set_rq_online(rq);
5354 		}
5355 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5356 		break;
5357 
5358 #ifdef CONFIG_HOTPLUG_CPU
5359 	case CPU_DYING:
5360 		sched_ttwu_pending();
5361 		/* Update our root-domain */
5362 		raw_spin_lock_irqsave(&rq->lock, flags);
5363 		if (rq->rd) {
5364 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5365 			set_rq_offline(rq);
5366 		}
5367 		migrate_tasks(cpu);
5368 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5369 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5370 
5371 		migrate_nr_uninterruptible(rq);
5372 		calc_global_load_remove(rq);
5373 		break;
5374 #endif
5375 	}
5376 
5377 	update_max_interval();
5378 
5379 	return NOTIFY_OK;
5380 }
5381 
5382 /*
5383  * Register at high priority so that task migration (migrate_all_tasks)
5384  * happens before everything else.  This has to be lower priority than
5385  * the notifier in the perf_event subsystem, though.
5386  */
5387 static struct notifier_block __cpuinitdata migration_notifier = {
5388 	.notifier_call = migration_call,
5389 	.priority = CPU_PRI_MIGRATION,
5390 };
5391 
5392 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5393 				      unsigned long action, void *hcpu)
5394 {
5395 	switch (action & ~CPU_TASKS_FROZEN) {
5396 	case CPU_ONLINE:
5397 	case CPU_DOWN_FAILED:
5398 		set_cpu_active((long)hcpu, true);
5399 		return NOTIFY_OK;
5400 	default:
5401 		return NOTIFY_DONE;
5402 	}
5403 }
5404 
5405 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5406 					unsigned long action, void *hcpu)
5407 {
5408 	switch (action & ~CPU_TASKS_FROZEN) {
5409 	case CPU_DOWN_PREPARE:
5410 		set_cpu_active((long)hcpu, false);
5411 		return NOTIFY_OK;
5412 	default:
5413 		return NOTIFY_DONE;
5414 	}
5415 }
5416 
5417 static int __init migration_init(void)
5418 {
5419 	void *cpu = (void *)(long)smp_processor_id();
5420 	int err;
5421 
5422 	/* Initialize migration for the boot CPU */
5423 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5424 	BUG_ON(err == NOTIFY_BAD);
5425 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5426 	register_cpu_notifier(&migration_notifier);
5427 
5428 	/* Register cpu active notifiers */
5429 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5430 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5431 
5432 	return 0;
5433 }
5434 early_initcall(migration_init);
5435 #endif
5436 
5437 #ifdef CONFIG_SMP
5438 
5439 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5440 
5441 #ifdef CONFIG_SCHED_DEBUG
5442 
5443 static __read_mostly int sched_domain_debug_enabled;
5444 
5445 static int __init sched_domain_debug_setup(char *str)
5446 {
5447 	sched_domain_debug_enabled = 1;
5448 
5449 	return 0;
5450 }
5451 early_param("sched_debug", sched_domain_debug_setup);
5452 
5453 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5454 				  struct cpumask *groupmask)
5455 {
5456 	struct sched_group *group = sd->groups;
5457 	char str[256];
5458 
5459 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5460 	cpumask_clear(groupmask);
5461 
5462 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5463 
5464 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5465 		printk("does not load-balance\n");
5466 		if (sd->parent)
5467 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5468 					" has parent");
5469 		return -1;
5470 	}
5471 
5472 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5473 
5474 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5475 		printk(KERN_ERR "ERROR: domain->span does not contain "
5476 				"CPU%d\n", cpu);
5477 	}
5478 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5479 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5480 				" CPU%d\n", cpu);
5481 	}
5482 
5483 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5484 	do {
5485 		if (!group) {
5486 			printk("\n");
5487 			printk(KERN_ERR "ERROR: group is NULL\n");
5488 			break;
5489 		}
5490 
5491 		if (!group->sgp->power) {
5492 			printk(KERN_CONT "\n");
5493 			printk(KERN_ERR "ERROR: domain->cpu_power not "
5494 					"set\n");
5495 			break;
5496 		}
5497 
5498 		if (!cpumask_weight(sched_group_cpus(group))) {
5499 			printk(KERN_CONT "\n");
5500 			printk(KERN_ERR "ERROR: empty group\n");
5501 			break;
5502 		}
5503 
5504 		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5505 			printk(KERN_CONT "\n");
5506 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5507 			break;
5508 		}
5509 
5510 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5511 
5512 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5513 
5514 		printk(KERN_CONT " %s", str);
5515 		if (group->sgp->power != SCHED_POWER_SCALE) {
5516 			printk(KERN_CONT " (cpu_power = %d)",
5517 				group->sgp->power);
5518 		}
5519 
5520 		group = group->next;
5521 	} while (group != sd->groups);
5522 	printk(KERN_CONT "\n");
5523 
5524 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5525 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5526 
5527 	if (sd->parent &&
5528 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5529 		printk(KERN_ERR "ERROR: parent span is not a superset "
5530 			"of domain->span\n");
5531 	return 0;
5532 }
5533 
5534 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5535 {
5536 	int level = 0;
5537 
5538 	if (!sched_domain_debug_enabled)
5539 		return;
5540 
5541 	if (!sd) {
5542 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5543 		return;
5544 	}
5545 
5546 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5547 
5548 	for (;;) {
5549 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5550 			break;
5551 		level++;
5552 		sd = sd->parent;
5553 		if (!sd)
5554 			break;
5555 	}
5556 }
5557 #else /* !CONFIG_SCHED_DEBUG */
5558 # define sched_domain_debug(sd, cpu) do { } while (0)
5559 #endif /* CONFIG_SCHED_DEBUG */
5560 
5561 static int sd_degenerate(struct sched_domain *sd)
5562 {
5563 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5564 		return 1;
5565 
5566 	/* Following flags need at least 2 groups */
5567 	if (sd->flags & (SD_LOAD_BALANCE |
5568 			 SD_BALANCE_NEWIDLE |
5569 			 SD_BALANCE_FORK |
5570 			 SD_BALANCE_EXEC |
5571 			 SD_SHARE_CPUPOWER |
5572 			 SD_SHARE_PKG_RESOURCES)) {
5573 		if (sd->groups != sd->groups->next)
5574 			return 0;
5575 	}
5576 
5577 	/* Following flags don't use groups */
5578 	if (sd->flags & (SD_WAKE_AFFINE))
5579 		return 0;
5580 
5581 	return 1;
5582 }
5583 
5584 static int
5585 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5586 {
5587 	unsigned long cflags = sd->flags, pflags = parent->flags;
5588 
5589 	if (sd_degenerate(parent))
5590 		return 1;
5591 
5592 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5593 		return 0;
5594 
5595 	/* Flags needing groups don't count if only 1 group in parent */
5596 	if (parent->groups == parent->groups->next) {
5597 		pflags &= ~(SD_LOAD_BALANCE |
5598 				SD_BALANCE_NEWIDLE |
5599 				SD_BALANCE_FORK |
5600 				SD_BALANCE_EXEC |
5601 				SD_SHARE_CPUPOWER |
5602 				SD_SHARE_PKG_RESOURCES);
5603 		if (nr_node_ids == 1)
5604 			pflags &= ~SD_SERIALIZE;
5605 	}
5606 	if (~cflags & pflags)
5607 		return 0;
5608 
5609 	return 1;
5610 }
5611 
5612 static void free_rootdomain(struct rcu_head *rcu)
5613 {
5614 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5615 
5616 	cpupri_cleanup(&rd->cpupri);
5617 	free_cpumask_var(rd->rto_mask);
5618 	free_cpumask_var(rd->online);
5619 	free_cpumask_var(rd->span);
5620 	kfree(rd);
5621 }
5622 
5623 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5624 {
5625 	struct root_domain *old_rd = NULL;
5626 	unsigned long flags;
5627 
5628 	raw_spin_lock_irqsave(&rq->lock, flags);
5629 
5630 	if (rq->rd) {
5631 		old_rd = rq->rd;
5632 
5633 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5634 			set_rq_offline(rq);
5635 
5636 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5637 
5638 		/*
5639 		 * If we dont want to free the old_rt yet then
5640 		 * set old_rd to NULL to skip the freeing later
5641 		 * in this function:
5642 		 */
5643 		if (!atomic_dec_and_test(&old_rd->refcount))
5644 			old_rd = NULL;
5645 	}
5646 
5647 	atomic_inc(&rd->refcount);
5648 	rq->rd = rd;
5649 
5650 	cpumask_set_cpu(rq->cpu, rd->span);
5651 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5652 		set_rq_online(rq);
5653 
5654 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5655 
5656 	if (old_rd)
5657 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5658 }
5659 
5660 static int init_rootdomain(struct root_domain *rd)
5661 {
5662 	memset(rd, 0, sizeof(*rd));
5663 
5664 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5665 		goto out;
5666 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5667 		goto free_span;
5668 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5669 		goto free_online;
5670 
5671 	if (cpupri_init(&rd->cpupri) != 0)
5672 		goto free_rto_mask;
5673 	return 0;
5674 
5675 free_rto_mask:
5676 	free_cpumask_var(rd->rto_mask);
5677 free_online:
5678 	free_cpumask_var(rd->online);
5679 free_span:
5680 	free_cpumask_var(rd->span);
5681 out:
5682 	return -ENOMEM;
5683 }
5684 
5685 /*
5686  * By default the system creates a single root-domain with all cpus as
5687  * members (mimicking the global state we have today).
5688  */
5689 struct root_domain def_root_domain;
5690 
5691 static void init_defrootdomain(void)
5692 {
5693 	init_rootdomain(&def_root_domain);
5694 
5695 	atomic_set(&def_root_domain.refcount, 1);
5696 }
5697 
5698 static struct root_domain *alloc_rootdomain(void)
5699 {
5700 	struct root_domain *rd;
5701 
5702 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5703 	if (!rd)
5704 		return NULL;
5705 
5706 	if (init_rootdomain(rd) != 0) {
5707 		kfree(rd);
5708 		return NULL;
5709 	}
5710 
5711 	return rd;
5712 }
5713 
5714 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5715 {
5716 	struct sched_group *tmp, *first;
5717 
5718 	if (!sg)
5719 		return;
5720 
5721 	first = sg;
5722 	do {
5723 		tmp = sg->next;
5724 
5725 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5726 			kfree(sg->sgp);
5727 
5728 		kfree(sg);
5729 		sg = tmp;
5730 	} while (sg != first);
5731 }
5732 
5733 static void free_sched_domain(struct rcu_head *rcu)
5734 {
5735 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5736 
5737 	/*
5738 	 * If its an overlapping domain it has private groups, iterate and
5739 	 * nuke them all.
5740 	 */
5741 	if (sd->flags & SD_OVERLAP) {
5742 		free_sched_groups(sd->groups, 1);
5743 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5744 		kfree(sd->groups->sgp);
5745 		kfree(sd->groups);
5746 	}
5747 	kfree(sd);
5748 }
5749 
5750 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5751 {
5752 	call_rcu(&sd->rcu, free_sched_domain);
5753 }
5754 
5755 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5756 {
5757 	for (; sd; sd = sd->parent)
5758 		destroy_sched_domain(sd, cpu);
5759 }
5760 
5761 /*
5762  * Keep a special pointer to the highest sched_domain that has
5763  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5764  * allows us to avoid some pointer chasing select_idle_sibling().
5765  *
5766  * Also keep a unique ID per domain (we use the first cpu number in
5767  * the cpumask of the domain), this allows us to quickly tell if
5768  * two cpus are in the same cache domain, see cpus_share_cache().
5769  */
5770 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5771 DEFINE_PER_CPU(int, sd_llc_id);
5772 
5773 static void update_top_cache_domain(int cpu)
5774 {
5775 	struct sched_domain *sd;
5776 	int id = cpu;
5777 
5778 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5779 	if (sd)
5780 		id = cpumask_first(sched_domain_span(sd));
5781 
5782 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5783 	per_cpu(sd_llc_id, cpu) = id;
5784 }
5785 
5786 /*
5787  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5788  * hold the hotplug lock.
5789  */
5790 static void
5791 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5792 {
5793 	struct rq *rq = cpu_rq(cpu);
5794 	struct sched_domain *tmp;
5795 
5796 	/* Remove the sched domains which do not contribute to scheduling. */
5797 	for (tmp = sd; tmp; ) {
5798 		struct sched_domain *parent = tmp->parent;
5799 		if (!parent)
5800 			break;
5801 
5802 		if (sd_parent_degenerate(tmp, parent)) {
5803 			tmp->parent = parent->parent;
5804 			if (parent->parent)
5805 				parent->parent->child = tmp;
5806 			destroy_sched_domain(parent, cpu);
5807 		} else
5808 			tmp = tmp->parent;
5809 	}
5810 
5811 	if (sd && sd_degenerate(sd)) {
5812 		tmp = sd;
5813 		sd = sd->parent;
5814 		destroy_sched_domain(tmp, cpu);
5815 		if (sd)
5816 			sd->child = NULL;
5817 	}
5818 
5819 	sched_domain_debug(sd, cpu);
5820 
5821 	rq_attach_root(rq, rd);
5822 	tmp = rq->sd;
5823 	rcu_assign_pointer(rq->sd, sd);
5824 	destroy_sched_domains(tmp, cpu);
5825 
5826 	update_top_cache_domain(cpu);
5827 }
5828 
5829 /* cpus with isolated domains */
5830 static cpumask_var_t cpu_isolated_map;
5831 
5832 /* Setup the mask of cpus configured for isolated domains */
5833 static int __init isolated_cpu_setup(char *str)
5834 {
5835 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5836 	cpulist_parse(str, cpu_isolated_map);
5837 	return 1;
5838 }
5839 
5840 __setup("isolcpus=", isolated_cpu_setup);
5841 
5842 #ifdef CONFIG_NUMA
5843 
5844 /**
5845  * find_next_best_node - find the next node to include in a sched_domain
5846  * @node: node whose sched_domain we're building
5847  * @used_nodes: nodes already in the sched_domain
5848  *
5849  * Find the next node to include in a given scheduling domain. Simply
5850  * finds the closest node not already in the @used_nodes map.
5851  *
5852  * Should use nodemask_t.
5853  */
5854 static int find_next_best_node(int node, nodemask_t *used_nodes)
5855 {
5856 	int i, n, val, min_val, best_node = -1;
5857 
5858 	min_val = INT_MAX;
5859 
5860 	for (i = 0; i < nr_node_ids; i++) {
5861 		/* Start at @node */
5862 		n = (node + i) % nr_node_ids;
5863 
5864 		if (!nr_cpus_node(n))
5865 			continue;
5866 
5867 		/* Skip already used nodes */
5868 		if (node_isset(n, *used_nodes))
5869 			continue;
5870 
5871 		/* Simple min distance search */
5872 		val = node_distance(node, n);
5873 
5874 		if (val < min_val) {
5875 			min_val = val;
5876 			best_node = n;
5877 		}
5878 	}
5879 
5880 	if (best_node != -1)
5881 		node_set(best_node, *used_nodes);
5882 	return best_node;
5883 }
5884 
5885 /**
5886  * sched_domain_node_span - get a cpumask for a node's sched_domain
5887  * @node: node whose cpumask we're constructing
5888  * @span: resulting cpumask
5889  *
5890  * Given a node, construct a good cpumask for its sched_domain to span. It
5891  * should be one that prevents unnecessary balancing, but also spreads tasks
5892  * out optimally.
5893  */
5894 static void sched_domain_node_span(int node, struct cpumask *span)
5895 {
5896 	nodemask_t used_nodes;
5897 	int i;
5898 
5899 	cpumask_clear(span);
5900 	nodes_clear(used_nodes);
5901 
5902 	cpumask_or(span, span, cpumask_of_node(node));
5903 	node_set(node, used_nodes);
5904 
5905 	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5906 		int next_node = find_next_best_node(node, &used_nodes);
5907 		if (next_node < 0)
5908 			break;
5909 		cpumask_or(span, span, cpumask_of_node(next_node));
5910 	}
5911 }
5912 
5913 static const struct cpumask *cpu_node_mask(int cpu)
5914 {
5915 	lockdep_assert_held(&sched_domains_mutex);
5916 
5917 	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5918 
5919 	return sched_domains_tmpmask;
5920 }
5921 
5922 static const struct cpumask *cpu_allnodes_mask(int cpu)
5923 {
5924 	return cpu_possible_mask;
5925 }
5926 #endif /* CONFIG_NUMA */
5927 
5928 static const struct cpumask *cpu_cpu_mask(int cpu)
5929 {
5930 	return cpumask_of_node(cpu_to_node(cpu));
5931 }
5932 
5933 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5934 
5935 struct sd_data {
5936 	struct sched_domain **__percpu sd;
5937 	struct sched_group **__percpu sg;
5938 	struct sched_group_power **__percpu sgp;
5939 };
5940 
5941 struct s_data {
5942 	struct sched_domain ** __percpu sd;
5943 	struct root_domain	*rd;
5944 };
5945 
5946 enum s_alloc {
5947 	sa_rootdomain,
5948 	sa_sd,
5949 	sa_sd_storage,
5950 	sa_none,
5951 };
5952 
5953 struct sched_domain_topology_level;
5954 
5955 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5956 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5957 
5958 #define SDTL_OVERLAP	0x01
5959 
5960 struct sched_domain_topology_level {
5961 	sched_domain_init_f init;
5962 	sched_domain_mask_f mask;
5963 	int		    flags;
5964 	struct sd_data      data;
5965 };
5966 
5967 static int
5968 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5969 {
5970 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5971 	const struct cpumask *span = sched_domain_span(sd);
5972 	struct cpumask *covered = sched_domains_tmpmask;
5973 	struct sd_data *sdd = sd->private;
5974 	struct sched_domain *child;
5975 	int i;
5976 
5977 	cpumask_clear(covered);
5978 
5979 	for_each_cpu(i, span) {
5980 		struct cpumask *sg_span;
5981 
5982 		if (cpumask_test_cpu(i, covered))
5983 			continue;
5984 
5985 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5986 				GFP_KERNEL, cpu_to_node(cpu));
5987 
5988 		if (!sg)
5989 			goto fail;
5990 
5991 		sg_span = sched_group_cpus(sg);
5992 
5993 		child = *per_cpu_ptr(sdd->sd, i);
5994 		if (child->child) {
5995 			child = child->child;
5996 			cpumask_copy(sg_span, sched_domain_span(child));
5997 		} else
5998 			cpumask_set_cpu(i, sg_span);
5999 
6000 		cpumask_or(covered, covered, sg_span);
6001 
6002 		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
6003 		atomic_inc(&sg->sgp->ref);
6004 
6005 		if (cpumask_test_cpu(cpu, sg_span))
6006 			groups = sg;
6007 
6008 		if (!first)
6009 			first = sg;
6010 		if (last)
6011 			last->next = sg;
6012 		last = sg;
6013 		last->next = first;
6014 	}
6015 	sd->groups = groups;
6016 
6017 	return 0;
6018 
6019 fail:
6020 	free_sched_groups(first, 0);
6021 
6022 	return -ENOMEM;
6023 }
6024 
6025 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6026 {
6027 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6028 	struct sched_domain *child = sd->child;
6029 
6030 	if (child)
6031 		cpu = cpumask_first(sched_domain_span(child));
6032 
6033 	if (sg) {
6034 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6035 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6036 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6037 	}
6038 
6039 	return cpu;
6040 }
6041 
6042 /*
6043  * build_sched_groups will build a circular linked list of the groups
6044  * covered by the given span, and will set each group's ->cpumask correctly,
6045  * and ->cpu_power to 0.
6046  *
6047  * Assumes the sched_domain tree is fully constructed
6048  */
6049 static int
6050 build_sched_groups(struct sched_domain *sd, int cpu)
6051 {
6052 	struct sched_group *first = NULL, *last = NULL;
6053 	struct sd_data *sdd = sd->private;
6054 	const struct cpumask *span = sched_domain_span(sd);
6055 	struct cpumask *covered;
6056 	int i;
6057 
6058 	get_group(cpu, sdd, &sd->groups);
6059 	atomic_inc(&sd->groups->ref);
6060 
6061 	if (cpu != cpumask_first(sched_domain_span(sd)))
6062 		return 0;
6063 
6064 	lockdep_assert_held(&sched_domains_mutex);
6065 	covered = sched_domains_tmpmask;
6066 
6067 	cpumask_clear(covered);
6068 
6069 	for_each_cpu(i, span) {
6070 		struct sched_group *sg;
6071 		int group = get_group(i, sdd, &sg);
6072 		int j;
6073 
6074 		if (cpumask_test_cpu(i, covered))
6075 			continue;
6076 
6077 		cpumask_clear(sched_group_cpus(sg));
6078 		sg->sgp->power = 0;
6079 
6080 		for_each_cpu(j, span) {
6081 			if (get_group(j, sdd, NULL) != group)
6082 				continue;
6083 
6084 			cpumask_set_cpu(j, covered);
6085 			cpumask_set_cpu(j, sched_group_cpus(sg));
6086 		}
6087 
6088 		if (!first)
6089 			first = sg;
6090 		if (last)
6091 			last->next = sg;
6092 		last = sg;
6093 	}
6094 	last->next = first;
6095 
6096 	return 0;
6097 }
6098 
6099 /*
6100  * Initialize sched groups cpu_power.
6101  *
6102  * cpu_power indicates the capacity of sched group, which is used while
6103  * distributing the load between different sched groups in a sched domain.
6104  * Typically cpu_power for all the groups in a sched domain will be same unless
6105  * there are asymmetries in the topology. If there are asymmetries, group
6106  * having more cpu_power will pickup more load compared to the group having
6107  * less cpu_power.
6108  */
6109 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6110 {
6111 	struct sched_group *sg = sd->groups;
6112 
6113 	WARN_ON(!sd || !sg);
6114 
6115 	do {
6116 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6117 		sg = sg->next;
6118 	} while (sg != sd->groups);
6119 
6120 	if (cpu != group_first_cpu(sg))
6121 		return;
6122 
6123 	update_group_power(sd, cpu);
6124 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6125 }
6126 
6127 int __weak arch_sd_sibling_asym_packing(void)
6128 {
6129        return 0*SD_ASYM_PACKING;
6130 }
6131 
6132 /*
6133  * Initializers for schedule domains
6134  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6135  */
6136 
6137 #ifdef CONFIG_SCHED_DEBUG
6138 # define SD_INIT_NAME(sd, type)		sd->name = #type
6139 #else
6140 # define SD_INIT_NAME(sd, type)		do { } while (0)
6141 #endif
6142 
6143 #define SD_INIT_FUNC(type)						\
6144 static noinline struct sched_domain *					\
6145 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
6146 {									\
6147 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
6148 	*sd = SD_##type##_INIT;						\
6149 	SD_INIT_NAME(sd, type);						\
6150 	sd->private = &tl->data;					\
6151 	return sd;							\
6152 }
6153 
6154 SD_INIT_FUNC(CPU)
6155 #ifdef CONFIG_NUMA
6156  SD_INIT_FUNC(ALLNODES)
6157  SD_INIT_FUNC(NODE)
6158 #endif
6159 #ifdef CONFIG_SCHED_SMT
6160  SD_INIT_FUNC(SIBLING)
6161 #endif
6162 #ifdef CONFIG_SCHED_MC
6163  SD_INIT_FUNC(MC)
6164 #endif
6165 #ifdef CONFIG_SCHED_BOOK
6166  SD_INIT_FUNC(BOOK)
6167 #endif
6168 
6169 static int default_relax_domain_level = -1;
6170 int sched_domain_level_max;
6171 
6172 static int __init setup_relax_domain_level(char *str)
6173 {
6174 	unsigned long val;
6175 
6176 	val = simple_strtoul(str, NULL, 0);
6177 	if (val < sched_domain_level_max)
6178 		default_relax_domain_level = val;
6179 
6180 	return 1;
6181 }
6182 __setup("relax_domain_level=", setup_relax_domain_level);
6183 
6184 static void set_domain_attribute(struct sched_domain *sd,
6185 				 struct sched_domain_attr *attr)
6186 {
6187 	int request;
6188 
6189 	if (!attr || attr->relax_domain_level < 0) {
6190 		if (default_relax_domain_level < 0)
6191 			return;
6192 		else
6193 			request = default_relax_domain_level;
6194 	} else
6195 		request = attr->relax_domain_level;
6196 	if (request < sd->level) {
6197 		/* turn off idle balance on this domain */
6198 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6199 	} else {
6200 		/* turn on idle balance on this domain */
6201 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6202 	}
6203 }
6204 
6205 static void __sdt_free(const struct cpumask *cpu_map);
6206 static int __sdt_alloc(const struct cpumask *cpu_map);
6207 
6208 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6209 				 const struct cpumask *cpu_map)
6210 {
6211 	switch (what) {
6212 	case sa_rootdomain:
6213 		if (!atomic_read(&d->rd->refcount))
6214 			free_rootdomain(&d->rd->rcu); /* fall through */
6215 	case sa_sd:
6216 		free_percpu(d->sd); /* fall through */
6217 	case sa_sd_storage:
6218 		__sdt_free(cpu_map); /* fall through */
6219 	case sa_none:
6220 		break;
6221 	}
6222 }
6223 
6224 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6225 						   const struct cpumask *cpu_map)
6226 {
6227 	memset(d, 0, sizeof(*d));
6228 
6229 	if (__sdt_alloc(cpu_map))
6230 		return sa_sd_storage;
6231 	d->sd = alloc_percpu(struct sched_domain *);
6232 	if (!d->sd)
6233 		return sa_sd_storage;
6234 	d->rd = alloc_rootdomain();
6235 	if (!d->rd)
6236 		return sa_sd;
6237 	return sa_rootdomain;
6238 }
6239 
6240 /*
6241  * NULL the sd_data elements we've used to build the sched_domain and
6242  * sched_group structure so that the subsequent __free_domain_allocs()
6243  * will not free the data we're using.
6244  */
6245 static void claim_allocations(int cpu, struct sched_domain *sd)
6246 {
6247 	struct sd_data *sdd = sd->private;
6248 
6249 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6250 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6251 
6252 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6253 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6254 
6255 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6256 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6257 }
6258 
6259 #ifdef CONFIG_SCHED_SMT
6260 static const struct cpumask *cpu_smt_mask(int cpu)
6261 {
6262 	return topology_thread_cpumask(cpu);
6263 }
6264 #endif
6265 
6266 /*
6267  * Topology list, bottom-up.
6268  */
6269 static struct sched_domain_topology_level default_topology[] = {
6270 #ifdef CONFIG_SCHED_SMT
6271 	{ sd_init_SIBLING, cpu_smt_mask, },
6272 #endif
6273 #ifdef CONFIG_SCHED_MC
6274 	{ sd_init_MC, cpu_coregroup_mask, },
6275 #endif
6276 #ifdef CONFIG_SCHED_BOOK
6277 	{ sd_init_BOOK, cpu_book_mask, },
6278 #endif
6279 	{ sd_init_CPU, cpu_cpu_mask, },
6280 #ifdef CONFIG_NUMA
6281 	{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6282 	{ sd_init_ALLNODES, cpu_allnodes_mask, },
6283 #endif
6284 	{ NULL, },
6285 };
6286 
6287 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6288 
6289 static int __sdt_alloc(const struct cpumask *cpu_map)
6290 {
6291 	struct sched_domain_topology_level *tl;
6292 	int j;
6293 
6294 	for (tl = sched_domain_topology; tl->init; tl++) {
6295 		struct sd_data *sdd = &tl->data;
6296 
6297 		sdd->sd = alloc_percpu(struct sched_domain *);
6298 		if (!sdd->sd)
6299 			return -ENOMEM;
6300 
6301 		sdd->sg = alloc_percpu(struct sched_group *);
6302 		if (!sdd->sg)
6303 			return -ENOMEM;
6304 
6305 		sdd->sgp = alloc_percpu(struct sched_group_power *);
6306 		if (!sdd->sgp)
6307 			return -ENOMEM;
6308 
6309 		for_each_cpu(j, cpu_map) {
6310 			struct sched_domain *sd;
6311 			struct sched_group *sg;
6312 			struct sched_group_power *sgp;
6313 
6314 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6315 					GFP_KERNEL, cpu_to_node(j));
6316 			if (!sd)
6317 				return -ENOMEM;
6318 
6319 			*per_cpu_ptr(sdd->sd, j) = sd;
6320 
6321 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6322 					GFP_KERNEL, cpu_to_node(j));
6323 			if (!sg)
6324 				return -ENOMEM;
6325 
6326 			*per_cpu_ptr(sdd->sg, j) = sg;
6327 
6328 			sgp = kzalloc_node(sizeof(struct sched_group_power),
6329 					GFP_KERNEL, cpu_to_node(j));
6330 			if (!sgp)
6331 				return -ENOMEM;
6332 
6333 			*per_cpu_ptr(sdd->sgp, j) = sgp;
6334 		}
6335 	}
6336 
6337 	return 0;
6338 }
6339 
6340 static void __sdt_free(const struct cpumask *cpu_map)
6341 {
6342 	struct sched_domain_topology_level *tl;
6343 	int j;
6344 
6345 	for (tl = sched_domain_topology; tl->init; tl++) {
6346 		struct sd_data *sdd = &tl->data;
6347 
6348 		for_each_cpu(j, cpu_map) {
6349 			struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6350 			if (sd && (sd->flags & SD_OVERLAP))
6351 				free_sched_groups(sd->groups, 0);
6352 			kfree(*per_cpu_ptr(sdd->sd, j));
6353 			kfree(*per_cpu_ptr(sdd->sg, j));
6354 			kfree(*per_cpu_ptr(sdd->sgp, j));
6355 		}
6356 		free_percpu(sdd->sd);
6357 		free_percpu(sdd->sg);
6358 		free_percpu(sdd->sgp);
6359 	}
6360 }
6361 
6362 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6363 		struct s_data *d, const struct cpumask *cpu_map,
6364 		struct sched_domain_attr *attr, struct sched_domain *child,
6365 		int cpu)
6366 {
6367 	struct sched_domain *sd = tl->init(tl, cpu);
6368 	if (!sd)
6369 		return child;
6370 
6371 	set_domain_attribute(sd, attr);
6372 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6373 	if (child) {
6374 		sd->level = child->level + 1;
6375 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6376 		child->parent = sd;
6377 	}
6378 	sd->child = child;
6379 
6380 	return sd;
6381 }
6382 
6383 /*
6384  * Build sched domains for a given set of cpus and attach the sched domains
6385  * to the individual cpus
6386  */
6387 static int build_sched_domains(const struct cpumask *cpu_map,
6388 			       struct sched_domain_attr *attr)
6389 {
6390 	enum s_alloc alloc_state = sa_none;
6391 	struct sched_domain *sd;
6392 	struct s_data d;
6393 	int i, ret = -ENOMEM;
6394 
6395 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6396 	if (alloc_state != sa_rootdomain)
6397 		goto error;
6398 
6399 	/* Set up domains for cpus specified by the cpu_map. */
6400 	for_each_cpu(i, cpu_map) {
6401 		struct sched_domain_topology_level *tl;
6402 
6403 		sd = NULL;
6404 		for (tl = sched_domain_topology; tl->init; tl++) {
6405 			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6406 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6407 				sd->flags |= SD_OVERLAP;
6408 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6409 				break;
6410 		}
6411 
6412 		while (sd->child)
6413 			sd = sd->child;
6414 
6415 		*per_cpu_ptr(d.sd, i) = sd;
6416 	}
6417 
6418 	/* Build the groups for the domains */
6419 	for_each_cpu(i, cpu_map) {
6420 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6421 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6422 			if (sd->flags & SD_OVERLAP) {
6423 				if (build_overlap_sched_groups(sd, i))
6424 					goto error;
6425 			} else {
6426 				if (build_sched_groups(sd, i))
6427 					goto error;
6428 			}
6429 		}
6430 	}
6431 
6432 	/* Calculate CPU power for physical packages and nodes */
6433 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6434 		if (!cpumask_test_cpu(i, cpu_map))
6435 			continue;
6436 
6437 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6438 			claim_allocations(i, sd);
6439 			init_sched_groups_power(i, sd);
6440 		}
6441 	}
6442 
6443 	/* Attach the domains */
6444 	rcu_read_lock();
6445 	for_each_cpu(i, cpu_map) {
6446 		sd = *per_cpu_ptr(d.sd, i);
6447 		cpu_attach_domain(sd, d.rd, i);
6448 	}
6449 	rcu_read_unlock();
6450 
6451 	ret = 0;
6452 error:
6453 	__free_domain_allocs(&d, alloc_state, cpu_map);
6454 	return ret;
6455 }
6456 
6457 static cpumask_var_t *doms_cur;	/* current sched domains */
6458 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6459 static struct sched_domain_attr *dattr_cur;
6460 				/* attribues of custom domains in 'doms_cur' */
6461 
6462 /*
6463  * Special case: If a kmalloc of a doms_cur partition (array of
6464  * cpumask) fails, then fallback to a single sched domain,
6465  * as determined by the single cpumask fallback_doms.
6466  */
6467 static cpumask_var_t fallback_doms;
6468 
6469 /*
6470  * arch_update_cpu_topology lets virtualized architectures update the
6471  * cpu core maps. It is supposed to return 1 if the topology changed
6472  * or 0 if it stayed the same.
6473  */
6474 int __attribute__((weak)) arch_update_cpu_topology(void)
6475 {
6476 	return 0;
6477 }
6478 
6479 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6480 {
6481 	int i;
6482 	cpumask_var_t *doms;
6483 
6484 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6485 	if (!doms)
6486 		return NULL;
6487 	for (i = 0; i < ndoms; i++) {
6488 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6489 			free_sched_domains(doms, i);
6490 			return NULL;
6491 		}
6492 	}
6493 	return doms;
6494 }
6495 
6496 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6497 {
6498 	unsigned int i;
6499 	for (i = 0; i < ndoms; i++)
6500 		free_cpumask_var(doms[i]);
6501 	kfree(doms);
6502 }
6503 
6504 /*
6505  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6506  * For now this just excludes isolated cpus, but could be used to
6507  * exclude other special cases in the future.
6508  */
6509 static int init_sched_domains(const struct cpumask *cpu_map)
6510 {
6511 	int err;
6512 
6513 	arch_update_cpu_topology();
6514 	ndoms_cur = 1;
6515 	doms_cur = alloc_sched_domains(ndoms_cur);
6516 	if (!doms_cur)
6517 		doms_cur = &fallback_doms;
6518 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6519 	dattr_cur = NULL;
6520 	err = build_sched_domains(doms_cur[0], NULL);
6521 	register_sched_domain_sysctl();
6522 
6523 	return err;
6524 }
6525 
6526 /*
6527  * Detach sched domains from a group of cpus specified in cpu_map
6528  * These cpus will now be attached to the NULL domain
6529  */
6530 static void detach_destroy_domains(const struct cpumask *cpu_map)
6531 {
6532 	int i;
6533 
6534 	rcu_read_lock();
6535 	for_each_cpu(i, cpu_map)
6536 		cpu_attach_domain(NULL, &def_root_domain, i);
6537 	rcu_read_unlock();
6538 }
6539 
6540 /* handle null as "default" */
6541 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6542 			struct sched_domain_attr *new, int idx_new)
6543 {
6544 	struct sched_domain_attr tmp;
6545 
6546 	/* fast path */
6547 	if (!new && !cur)
6548 		return 1;
6549 
6550 	tmp = SD_ATTR_INIT;
6551 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6552 			new ? (new + idx_new) : &tmp,
6553 			sizeof(struct sched_domain_attr));
6554 }
6555 
6556 /*
6557  * Partition sched domains as specified by the 'ndoms_new'
6558  * cpumasks in the array doms_new[] of cpumasks. This compares
6559  * doms_new[] to the current sched domain partitioning, doms_cur[].
6560  * It destroys each deleted domain and builds each new domain.
6561  *
6562  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6563  * The masks don't intersect (don't overlap.) We should setup one
6564  * sched domain for each mask. CPUs not in any of the cpumasks will
6565  * not be load balanced. If the same cpumask appears both in the
6566  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6567  * it as it is.
6568  *
6569  * The passed in 'doms_new' should be allocated using
6570  * alloc_sched_domains.  This routine takes ownership of it and will
6571  * free_sched_domains it when done with it. If the caller failed the
6572  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6573  * and partition_sched_domains() will fallback to the single partition
6574  * 'fallback_doms', it also forces the domains to be rebuilt.
6575  *
6576  * If doms_new == NULL it will be replaced with cpu_online_mask.
6577  * ndoms_new == 0 is a special case for destroying existing domains,
6578  * and it will not create the default domain.
6579  *
6580  * Call with hotplug lock held
6581  */
6582 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6583 			     struct sched_domain_attr *dattr_new)
6584 {
6585 	int i, j, n;
6586 	int new_topology;
6587 
6588 	mutex_lock(&sched_domains_mutex);
6589 
6590 	/* always unregister in case we don't destroy any domains */
6591 	unregister_sched_domain_sysctl();
6592 
6593 	/* Let architecture update cpu core mappings. */
6594 	new_topology = arch_update_cpu_topology();
6595 
6596 	n = doms_new ? ndoms_new : 0;
6597 
6598 	/* Destroy deleted domains */
6599 	for (i = 0; i < ndoms_cur; i++) {
6600 		for (j = 0; j < n && !new_topology; j++) {
6601 			if (cpumask_equal(doms_cur[i], doms_new[j])
6602 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6603 				goto match1;
6604 		}
6605 		/* no match - a current sched domain not in new doms_new[] */
6606 		detach_destroy_domains(doms_cur[i]);
6607 match1:
6608 		;
6609 	}
6610 
6611 	if (doms_new == NULL) {
6612 		ndoms_cur = 0;
6613 		doms_new = &fallback_doms;
6614 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6615 		WARN_ON_ONCE(dattr_new);
6616 	}
6617 
6618 	/* Build new domains */
6619 	for (i = 0; i < ndoms_new; i++) {
6620 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6621 			if (cpumask_equal(doms_new[i], doms_cur[j])
6622 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6623 				goto match2;
6624 		}
6625 		/* no match - add a new doms_new */
6626 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6627 match2:
6628 		;
6629 	}
6630 
6631 	/* Remember the new sched domains */
6632 	if (doms_cur != &fallback_doms)
6633 		free_sched_domains(doms_cur, ndoms_cur);
6634 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6635 	doms_cur = doms_new;
6636 	dattr_cur = dattr_new;
6637 	ndoms_cur = ndoms_new;
6638 
6639 	register_sched_domain_sysctl();
6640 
6641 	mutex_unlock(&sched_domains_mutex);
6642 }
6643 
6644 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6645 static void reinit_sched_domains(void)
6646 {
6647 	get_online_cpus();
6648 
6649 	/* Destroy domains first to force the rebuild */
6650 	partition_sched_domains(0, NULL, NULL);
6651 
6652 	rebuild_sched_domains();
6653 	put_online_cpus();
6654 }
6655 
6656 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6657 {
6658 	unsigned int level = 0;
6659 
6660 	if (sscanf(buf, "%u", &level) != 1)
6661 		return -EINVAL;
6662 
6663 	/*
6664 	 * level is always be positive so don't check for
6665 	 * level < POWERSAVINGS_BALANCE_NONE which is 0
6666 	 * What happens on 0 or 1 byte write,
6667 	 * need to check for count as well?
6668 	 */
6669 
6670 	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6671 		return -EINVAL;
6672 
6673 	if (smt)
6674 		sched_smt_power_savings = level;
6675 	else
6676 		sched_mc_power_savings = level;
6677 
6678 	reinit_sched_domains();
6679 
6680 	return count;
6681 }
6682 
6683 #ifdef CONFIG_SCHED_MC
6684 static ssize_t sched_mc_power_savings_show(struct device *dev,
6685 					   struct device_attribute *attr,
6686 					   char *buf)
6687 {
6688 	return sprintf(buf, "%u\n", sched_mc_power_savings);
6689 }
6690 static ssize_t sched_mc_power_savings_store(struct device *dev,
6691 					    struct device_attribute *attr,
6692 					    const char *buf, size_t count)
6693 {
6694 	return sched_power_savings_store(buf, count, 0);
6695 }
6696 static DEVICE_ATTR(sched_mc_power_savings, 0644,
6697 		   sched_mc_power_savings_show,
6698 		   sched_mc_power_savings_store);
6699 #endif
6700 
6701 #ifdef CONFIG_SCHED_SMT
6702 static ssize_t sched_smt_power_savings_show(struct device *dev,
6703 					    struct device_attribute *attr,
6704 					    char *buf)
6705 {
6706 	return sprintf(buf, "%u\n", sched_smt_power_savings);
6707 }
6708 static ssize_t sched_smt_power_savings_store(struct device *dev,
6709 					    struct device_attribute *attr,
6710 					     const char *buf, size_t count)
6711 {
6712 	return sched_power_savings_store(buf, count, 1);
6713 }
6714 static DEVICE_ATTR(sched_smt_power_savings, 0644,
6715 		   sched_smt_power_savings_show,
6716 		   sched_smt_power_savings_store);
6717 #endif
6718 
6719 int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6720 {
6721 	int err = 0;
6722 
6723 #ifdef CONFIG_SCHED_SMT
6724 	if (smt_capable())
6725 		err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6726 #endif
6727 #ifdef CONFIG_SCHED_MC
6728 	if (!err && mc_capable())
6729 		err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6730 #endif
6731 	return err;
6732 }
6733 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6734 
6735 /*
6736  * Update cpusets according to cpu_active mask.  If cpusets are
6737  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6738  * around partition_sched_domains().
6739  */
6740 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6741 			     void *hcpu)
6742 {
6743 	switch (action & ~CPU_TASKS_FROZEN) {
6744 	case CPU_ONLINE:
6745 	case CPU_DOWN_FAILED:
6746 		cpuset_update_active_cpus();
6747 		return NOTIFY_OK;
6748 	default:
6749 		return NOTIFY_DONE;
6750 	}
6751 }
6752 
6753 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6754 			       void *hcpu)
6755 {
6756 	switch (action & ~CPU_TASKS_FROZEN) {
6757 	case CPU_DOWN_PREPARE:
6758 		cpuset_update_active_cpus();
6759 		return NOTIFY_OK;
6760 	default:
6761 		return NOTIFY_DONE;
6762 	}
6763 }
6764 
6765 void __init sched_init_smp(void)
6766 {
6767 	cpumask_var_t non_isolated_cpus;
6768 
6769 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6770 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6771 
6772 	get_online_cpus();
6773 	mutex_lock(&sched_domains_mutex);
6774 	init_sched_domains(cpu_active_mask);
6775 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6776 	if (cpumask_empty(non_isolated_cpus))
6777 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6778 	mutex_unlock(&sched_domains_mutex);
6779 	put_online_cpus();
6780 
6781 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6782 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6783 
6784 	/* RT runtime code needs to handle some hotplug events */
6785 	hotcpu_notifier(update_runtime, 0);
6786 
6787 	init_hrtick();
6788 
6789 	/* Move init over to a non-isolated CPU */
6790 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6791 		BUG();
6792 	sched_init_granularity();
6793 	free_cpumask_var(non_isolated_cpus);
6794 
6795 	init_sched_rt_class();
6796 }
6797 #else
6798 void __init sched_init_smp(void)
6799 {
6800 	sched_init_granularity();
6801 }
6802 #endif /* CONFIG_SMP */
6803 
6804 const_debug unsigned int sysctl_timer_migration = 1;
6805 
6806 int in_sched_functions(unsigned long addr)
6807 {
6808 	return in_lock_functions(addr) ||
6809 		(addr >= (unsigned long)__sched_text_start
6810 		&& addr < (unsigned long)__sched_text_end);
6811 }
6812 
6813 #ifdef CONFIG_CGROUP_SCHED
6814 struct task_group root_task_group;
6815 #endif
6816 
6817 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6818 
6819 void __init sched_init(void)
6820 {
6821 	int i, j;
6822 	unsigned long alloc_size = 0, ptr;
6823 
6824 #ifdef CONFIG_FAIR_GROUP_SCHED
6825 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6826 #endif
6827 #ifdef CONFIG_RT_GROUP_SCHED
6828 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6829 #endif
6830 #ifdef CONFIG_CPUMASK_OFFSTACK
6831 	alloc_size += num_possible_cpus() * cpumask_size();
6832 #endif
6833 	if (alloc_size) {
6834 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6835 
6836 #ifdef CONFIG_FAIR_GROUP_SCHED
6837 		root_task_group.se = (struct sched_entity **)ptr;
6838 		ptr += nr_cpu_ids * sizeof(void **);
6839 
6840 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6841 		ptr += nr_cpu_ids * sizeof(void **);
6842 
6843 #endif /* CONFIG_FAIR_GROUP_SCHED */
6844 #ifdef CONFIG_RT_GROUP_SCHED
6845 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6846 		ptr += nr_cpu_ids * sizeof(void **);
6847 
6848 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6849 		ptr += nr_cpu_ids * sizeof(void **);
6850 
6851 #endif /* CONFIG_RT_GROUP_SCHED */
6852 #ifdef CONFIG_CPUMASK_OFFSTACK
6853 		for_each_possible_cpu(i) {
6854 			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6855 			ptr += cpumask_size();
6856 		}
6857 #endif /* CONFIG_CPUMASK_OFFSTACK */
6858 	}
6859 
6860 #ifdef CONFIG_SMP
6861 	init_defrootdomain();
6862 #endif
6863 
6864 	init_rt_bandwidth(&def_rt_bandwidth,
6865 			global_rt_period(), global_rt_runtime());
6866 
6867 #ifdef CONFIG_RT_GROUP_SCHED
6868 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6869 			global_rt_period(), global_rt_runtime());
6870 #endif /* CONFIG_RT_GROUP_SCHED */
6871 
6872 #ifdef CONFIG_CGROUP_SCHED
6873 	list_add(&root_task_group.list, &task_groups);
6874 	INIT_LIST_HEAD(&root_task_group.children);
6875 	INIT_LIST_HEAD(&root_task_group.siblings);
6876 	autogroup_init(&init_task);
6877 
6878 #endif /* CONFIG_CGROUP_SCHED */
6879 
6880 #ifdef CONFIG_CGROUP_CPUACCT
6881 	root_cpuacct.cpustat = &kernel_cpustat;
6882 	root_cpuacct.cpuusage = alloc_percpu(u64);
6883 	/* Too early, not expected to fail */
6884 	BUG_ON(!root_cpuacct.cpuusage);
6885 #endif
6886 	for_each_possible_cpu(i) {
6887 		struct rq *rq;
6888 
6889 		rq = cpu_rq(i);
6890 		raw_spin_lock_init(&rq->lock);
6891 		rq->nr_running = 0;
6892 		rq->calc_load_active = 0;
6893 		rq->calc_load_update = jiffies + LOAD_FREQ;
6894 		init_cfs_rq(&rq->cfs);
6895 		init_rt_rq(&rq->rt, rq);
6896 #ifdef CONFIG_FAIR_GROUP_SCHED
6897 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6898 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6899 		/*
6900 		 * How much cpu bandwidth does root_task_group get?
6901 		 *
6902 		 * In case of task-groups formed thr' the cgroup filesystem, it
6903 		 * gets 100% of the cpu resources in the system. This overall
6904 		 * system cpu resource is divided among the tasks of
6905 		 * root_task_group and its child task-groups in a fair manner,
6906 		 * based on each entity's (task or task-group's) weight
6907 		 * (se->load.weight).
6908 		 *
6909 		 * In other words, if root_task_group has 10 tasks of weight
6910 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6911 		 * then A0's share of the cpu resource is:
6912 		 *
6913 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6914 		 *
6915 		 * We achieve this by letting root_task_group's tasks sit
6916 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6917 		 */
6918 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6919 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6920 #endif /* CONFIG_FAIR_GROUP_SCHED */
6921 
6922 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6923 #ifdef CONFIG_RT_GROUP_SCHED
6924 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6925 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6926 #endif
6927 
6928 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6929 			rq->cpu_load[j] = 0;
6930 
6931 		rq->last_load_update_tick = jiffies;
6932 
6933 #ifdef CONFIG_SMP
6934 		rq->sd = NULL;
6935 		rq->rd = NULL;
6936 		rq->cpu_power = SCHED_POWER_SCALE;
6937 		rq->post_schedule = 0;
6938 		rq->active_balance = 0;
6939 		rq->next_balance = jiffies;
6940 		rq->push_cpu = 0;
6941 		rq->cpu = i;
6942 		rq->online = 0;
6943 		rq->idle_stamp = 0;
6944 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6945 		rq_attach_root(rq, &def_root_domain);
6946 #ifdef CONFIG_NO_HZ
6947 		rq->nohz_flags = 0;
6948 #endif
6949 #endif
6950 		init_rq_hrtick(rq);
6951 		atomic_set(&rq->nr_iowait, 0);
6952 	}
6953 
6954 	set_load_weight(&init_task);
6955 
6956 #ifdef CONFIG_PREEMPT_NOTIFIERS
6957 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6958 #endif
6959 
6960 #ifdef CONFIG_RT_MUTEXES
6961 	plist_head_init(&init_task.pi_waiters);
6962 #endif
6963 
6964 	/*
6965 	 * The boot idle thread does lazy MMU switching as well:
6966 	 */
6967 	atomic_inc(&init_mm.mm_count);
6968 	enter_lazy_tlb(&init_mm, current);
6969 
6970 	/*
6971 	 * Make us the idle thread. Technically, schedule() should not be
6972 	 * called from this thread, however somewhere below it might be,
6973 	 * but because we are the idle thread, we just pick up running again
6974 	 * when this runqueue becomes "idle".
6975 	 */
6976 	init_idle(current, smp_processor_id());
6977 
6978 	calc_load_update = jiffies + LOAD_FREQ;
6979 
6980 	/*
6981 	 * During early bootup we pretend to be a normal task:
6982 	 */
6983 	current->sched_class = &fair_sched_class;
6984 
6985 #ifdef CONFIG_SMP
6986 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6987 	/* May be allocated at isolcpus cmdline parse time */
6988 	if (cpu_isolated_map == NULL)
6989 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6990 #endif
6991 	init_sched_fair_class();
6992 
6993 	scheduler_running = 1;
6994 }
6995 
6996 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6997 static inline int preempt_count_equals(int preempt_offset)
6998 {
6999 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7000 
7001 	return (nested == preempt_offset);
7002 }
7003 
7004 void __might_sleep(const char *file, int line, int preempt_offset)
7005 {
7006 	static unsigned long prev_jiffy;	/* ratelimiting */
7007 
7008 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7009 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7010 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7011 		return;
7012 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7013 		return;
7014 	prev_jiffy = jiffies;
7015 
7016 	printk(KERN_ERR
7017 		"BUG: sleeping function called from invalid context at %s:%d\n",
7018 			file, line);
7019 	printk(KERN_ERR
7020 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7021 			in_atomic(), irqs_disabled(),
7022 			current->pid, current->comm);
7023 
7024 	debug_show_held_locks(current);
7025 	if (irqs_disabled())
7026 		print_irqtrace_events(current);
7027 	dump_stack();
7028 }
7029 EXPORT_SYMBOL(__might_sleep);
7030 #endif
7031 
7032 #ifdef CONFIG_MAGIC_SYSRQ
7033 static void normalize_task(struct rq *rq, struct task_struct *p)
7034 {
7035 	const struct sched_class *prev_class = p->sched_class;
7036 	int old_prio = p->prio;
7037 	int on_rq;
7038 
7039 	on_rq = p->on_rq;
7040 	if (on_rq)
7041 		dequeue_task(rq, p, 0);
7042 	__setscheduler(rq, p, SCHED_NORMAL, 0);
7043 	if (on_rq) {
7044 		enqueue_task(rq, p, 0);
7045 		resched_task(rq->curr);
7046 	}
7047 
7048 	check_class_changed(rq, p, prev_class, old_prio);
7049 }
7050 
7051 void normalize_rt_tasks(void)
7052 {
7053 	struct task_struct *g, *p;
7054 	unsigned long flags;
7055 	struct rq *rq;
7056 
7057 	read_lock_irqsave(&tasklist_lock, flags);
7058 	do_each_thread(g, p) {
7059 		/*
7060 		 * Only normalize user tasks:
7061 		 */
7062 		if (!p->mm)
7063 			continue;
7064 
7065 		p->se.exec_start		= 0;
7066 #ifdef CONFIG_SCHEDSTATS
7067 		p->se.statistics.wait_start	= 0;
7068 		p->se.statistics.sleep_start	= 0;
7069 		p->se.statistics.block_start	= 0;
7070 #endif
7071 
7072 		if (!rt_task(p)) {
7073 			/*
7074 			 * Renice negative nice level userspace
7075 			 * tasks back to 0:
7076 			 */
7077 			if (TASK_NICE(p) < 0 && p->mm)
7078 				set_user_nice(p, 0);
7079 			continue;
7080 		}
7081 
7082 		raw_spin_lock(&p->pi_lock);
7083 		rq = __task_rq_lock(p);
7084 
7085 		normalize_task(rq, p);
7086 
7087 		__task_rq_unlock(rq);
7088 		raw_spin_unlock(&p->pi_lock);
7089 	} while_each_thread(g, p);
7090 
7091 	read_unlock_irqrestore(&tasklist_lock, flags);
7092 }
7093 
7094 #endif /* CONFIG_MAGIC_SYSRQ */
7095 
7096 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7097 /*
7098  * These functions are only useful for the IA64 MCA handling, or kdb.
7099  *
7100  * They can only be called when the whole system has been
7101  * stopped - every CPU needs to be quiescent, and no scheduling
7102  * activity can take place. Using them for anything else would
7103  * be a serious bug, and as a result, they aren't even visible
7104  * under any other configuration.
7105  */
7106 
7107 /**
7108  * curr_task - return the current task for a given cpu.
7109  * @cpu: the processor in question.
7110  *
7111  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7112  */
7113 struct task_struct *curr_task(int cpu)
7114 {
7115 	return cpu_curr(cpu);
7116 }
7117 
7118 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7119 
7120 #ifdef CONFIG_IA64
7121 /**
7122  * set_curr_task - set the current task for a given cpu.
7123  * @cpu: the processor in question.
7124  * @p: the task pointer to set.
7125  *
7126  * Description: This function must only be used when non-maskable interrupts
7127  * are serviced on a separate stack. It allows the architecture to switch the
7128  * notion of the current task on a cpu in a non-blocking manner. This function
7129  * must be called with all CPU's synchronized, and interrupts disabled, the
7130  * and caller must save the original value of the current task (see
7131  * curr_task() above) and restore that value before reenabling interrupts and
7132  * re-starting the system.
7133  *
7134  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7135  */
7136 void set_curr_task(int cpu, struct task_struct *p)
7137 {
7138 	cpu_curr(cpu) = p;
7139 }
7140 
7141 #endif
7142 
7143 #ifdef CONFIG_CGROUP_SCHED
7144 /* task_group_lock serializes the addition/removal of task groups */
7145 static DEFINE_SPINLOCK(task_group_lock);
7146 
7147 static void free_sched_group(struct task_group *tg)
7148 {
7149 	free_fair_sched_group(tg);
7150 	free_rt_sched_group(tg);
7151 	autogroup_free(tg);
7152 	kfree(tg);
7153 }
7154 
7155 /* allocate runqueue etc for a new task group */
7156 struct task_group *sched_create_group(struct task_group *parent)
7157 {
7158 	struct task_group *tg;
7159 	unsigned long flags;
7160 
7161 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7162 	if (!tg)
7163 		return ERR_PTR(-ENOMEM);
7164 
7165 	if (!alloc_fair_sched_group(tg, parent))
7166 		goto err;
7167 
7168 	if (!alloc_rt_sched_group(tg, parent))
7169 		goto err;
7170 
7171 	spin_lock_irqsave(&task_group_lock, flags);
7172 	list_add_rcu(&tg->list, &task_groups);
7173 
7174 	WARN_ON(!parent); /* root should already exist */
7175 
7176 	tg->parent = parent;
7177 	INIT_LIST_HEAD(&tg->children);
7178 	list_add_rcu(&tg->siblings, &parent->children);
7179 	spin_unlock_irqrestore(&task_group_lock, flags);
7180 
7181 	return tg;
7182 
7183 err:
7184 	free_sched_group(tg);
7185 	return ERR_PTR(-ENOMEM);
7186 }
7187 
7188 /* rcu callback to free various structures associated with a task group */
7189 static void free_sched_group_rcu(struct rcu_head *rhp)
7190 {
7191 	/* now it should be safe to free those cfs_rqs */
7192 	free_sched_group(container_of(rhp, struct task_group, rcu));
7193 }
7194 
7195 /* Destroy runqueue etc associated with a task group */
7196 void sched_destroy_group(struct task_group *tg)
7197 {
7198 	unsigned long flags;
7199 	int i;
7200 
7201 	/* end participation in shares distribution */
7202 	for_each_possible_cpu(i)
7203 		unregister_fair_sched_group(tg, i);
7204 
7205 	spin_lock_irqsave(&task_group_lock, flags);
7206 	list_del_rcu(&tg->list);
7207 	list_del_rcu(&tg->siblings);
7208 	spin_unlock_irqrestore(&task_group_lock, flags);
7209 
7210 	/* wait for possible concurrent references to cfs_rqs complete */
7211 	call_rcu(&tg->rcu, free_sched_group_rcu);
7212 }
7213 
7214 /* change task's runqueue when it moves between groups.
7215  *	The caller of this function should have put the task in its new group
7216  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7217  *	reflect its new group.
7218  */
7219 void sched_move_task(struct task_struct *tsk)
7220 {
7221 	int on_rq, running;
7222 	unsigned long flags;
7223 	struct rq *rq;
7224 
7225 	rq = task_rq_lock(tsk, &flags);
7226 
7227 	running = task_current(rq, tsk);
7228 	on_rq = tsk->on_rq;
7229 
7230 	if (on_rq)
7231 		dequeue_task(rq, tsk, 0);
7232 	if (unlikely(running))
7233 		tsk->sched_class->put_prev_task(rq, tsk);
7234 
7235 #ifdef CONFIG_FAIR_GROUP_SCHED
7236 	if (tsk->sched_class->task_move_group)
7237 		tsk->sched_class->task_move_group(tsk, on_rq);
7238 	else
7239 #endif
7240 		set_task_rq(tsk, task_cpu(tsk));
7241 
7242 	if (unlikely(running))
7243 		tsk->sched_class->set_curr_task(rq);
7244 	if (on_rq)
7245 		enqueue_task(rq, tsk, 0);
7246 
7247 	task_rq_unlock(rq, tsk, &flags);
7248 }
7249 #endif /* CONFIG_CGROUP_SCHED */
7250 
7251 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7252 static unsigned long to_ratio(u64 period, u64 runtime)
7253 {
7254 	if (runtime == RUNTIME_INF)
7255 		return 1ULL << 20;
7256 
7257 	return div64_u64(runtime << 20, period);
7258 }
7259 #endif
7260 
7261 #ifdef CONFIG_RT_GROUP_SCHED
7262 /*
7263  * Ensure that the real time constraints are schedulable.
7264  */
7265 static DEFINE_MUTEX(rt_constraints_mutex);
7266 
7267 /* Must be called with tasklist_lock held */
7268 static inline int tg_has_rt_tasks(struct task_group *tg)
7269 {
7270 	struct task_struct *g, *p;
7271 
7272 	do_each_thread(g, p) {
7273 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7274 			return 1;
7275 	} while_each_thread(g, p);
7276 
7277 	return 0;
7278 }
7279 
7280 struct rt_schedulable_data {
7281 	struct task_group *tg;
7282 	u64 rt_period;
7283 	u64 rt_runtime;
7284 };
7285 
7286 static int tg_rt_schedulable(struct task_group *tg, void *data)
7287 {
7288 	struct rt_schedulable_data *d = data;
7289 	struct task_group *child;
7290 	unsigned long total, sum = 0;
7291 	u64 period, runtime;
7292 
7293 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7294 	runtime = tg->rt_bandwidth.rt_runtime;
7295 
7296 	if (tg == d->tg) {
7297 		period = d->rt_period;
7298 		runtime = d->rt_runtime;
7299 	}
7300 
7301 	/*
7302 	 * Cannot have more runtime than the period.
7303 	 */
7304 	if (runtime > period && runtime != RUNTIME_INF)
7305 		return -EINVAL;
7306 
7307 	/*
7308 	 * Ensure we don't starve existing RT tasks.
7309 	 */
7310 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7311 		return -EBUSY;
7312 
7313 	total = to_ratio(period, runtime);
7314 
7315 	/*
7316 	 * Nobody can have more than the global setting allows.
7317 	 */
7318 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7319 		return -EINVAL;
7320 
7321 	/*
7322 	 * The sum of our children's runtime should not exceed our own.
7323 	 */
7324 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7325 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7326 		runtime = child->rt_bandwidth.rt_runtime;
7327 
7328 		if (child == d->tg) {
7329 			period = d->rt_period;
7330 			runtime = d->rt_runtime;
7331 		}
7332 
7333 		sum += to_ratio(period, runtime);
7334 	}
7335 
7336 	if (sum > total)
7337 		return -EINVAL;
7338 
7339 	return 0;
7340 }
7341 
7342 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7343 {
7344 	int ret;
7345 
7346 	struct rt_schedulable_data data = {
7347 		.tg = tg,
7348 		.rt_period = period,
7349 		.rt_runtime = runtime,
7350 	};
7351 
7352 	rcu_read_lock();
7353 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7354 	rcu_read_unlock();
7355 
7356 	return ret;
7357 }
7358 
7359 static int tg_set_rt_bandwidth(struct task_group *tg,
7360 		u64 rt_period, u64 rt_runtime)
7361 {
7362 	int i, err = 0;
7363 
7364 	mutex_lock(&rt_constraints_mutex);
7365 	read_lock(&tasklist_lock);
7366 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7367 	if (err)
7368 		goto unlock;
7369 
7370 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7371 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7372 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7373 
7374 	for_each_possible_cpu(i) {
7375 		struct rt_rq *rt_rq = tg->rt_rq[i];
7376 
7377 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7378 		rt_rq->rt_runtime = rt_runtime;
7379 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7380 	}
7381 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7382 unlock:
7383 	read_unlock(&tasklist_lock);
7384 	mutex_unlock(&rt_constraints_mutex);
7385 
7386 	return err;
7387 }
7388 
7389 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7390 {
7391 	u64 rt_runtime, rt_period;
7392 
7393 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7394 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7395 	if (rt_runtime_us < 0)
7396 		rt_runtime = RUNTIME_INF;
7397 
7398 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7399 }
7400 
7401 long sched_group_rt_runtime(struct task_group *tg)
7402 {
7403 	u64 rt_runtime_us;
7404 
7405 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7406 		return -1;
7407 
7408 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7409 	do_div(rt_runtime_us, NSEC_PER_USEC);
7410 	return rt_runtime_us;
7411 }
7412 
7413 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7414 {
7415 	u64 rt_runtime, rt_period;
7416 
7417 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7418 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7419 
7420 	if (rt_period == 0)
7421 		return -EINVAL;
7422 
7423 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7424 }
7425 
7426 long sched_group_rt_period(struct task_group *tg)
7427 {
7428 	u64 rt_period_us;
7429 
7430 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7431 	do_div(rt_period_us, NSEC_PER_USEC);
7432 	return rt_period_us;
7433 }
7434 
7435 static int sched_rt_global_constraints(void)
7436 {
7437 	u64 runtime, period;
7438 	int ret = 0;
7439 
7440 	if (sysctl_sched_rt_period <= 0)
7441 		return -EINVAL;
7442 
7443 	runtime = global_rt_runtime();
7444 	period = global_rt_period();
7445 
7446 	/*
7447 	 * Sanity check on the sysctl variables.
7448 	 */
7449 	if (runtime > period && runtime != RUNTIME_INF)
7450 		return -EINVAL;
7451 
7452 	mutex_lock(&rt_constraints_mutex);
7453 	read_lock(&tasklist_lock);
7454 	ret = __rt_schedulable(NULL, 0, 0);
7455 	read_unlock(&tasklist_lock);
7456 	mutex_unlock(&rt_constraints_mutex);
7457 
7458 	return ret;
7459 }
7460 
7461 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7462 {
7463 	/* Don't accept realtime tasks when there is no way for them to run */
7464 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7465 		return 0;
7466 
7467 	return 1;
7468 }
7469 
7470 #else /* !CONFIG_RT_GROUP_SCHED */
7471 static int sched_rt_global_constraints(void)
7472 {
7473 	unsigned long flags;
7474 	int i;
7475 
7476 	if (sysctl_sched_rt_period <= 0)
7477 		return -EINVAL;
7478 
7479 	/*
7480 	 * There's always some RT tasks in the root group
7481 	 * -- migration, kstopmachine etc..
7482 	 */
7483 	if (sysctl_sched_rt_runtime == 0)
7484 		return -EBUSY;
7485 
7486 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7487 	for_each_possible_cpu(i) {
7488 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7489 
7490 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7491 		rt_rq->rt_runtime = global_rt_runtime();
7492 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7493 	}
7494 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7495 
7496 	return 0;
7497 }
7498 #endif /* CONFIG_RT_GROUP_SCHED */
7499 
7500 int sched_rt_handler(struct ctl_table *table, int write,
7501 		void __user *buffer, size_t *lenp,
7502 		loff_t *ppos)
7503 {
7504 	int ret;
7505 	int old_period, old_runtime;
7506 	static DEFINE_MUTEX(mutex);
7507 
7508 	mutex_lock(&mutex);
7509 	old_period = sysctl_sched_rt_period;
7510 	old_runtime = sysctl_sched_rt_runtime;
7511 
7512 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7513 
7514 	if (!ret && write) {
7515 		ret = sched_rt_global_constraints();
7516 		if (ret) {
7517 			sysctl_sched_rt_period = old_period;
7518 			sysctl_sched_rt_runtime = old_runtime;
7519 		} else {
7520 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7521 			def_rt_bandwidth.rt_period =
7522 				ns_to_ktime(global_rt_period());
7523 		}
7524 	}
7525 	mutex_unlock(&mutex);
7526 
7527 	return ret;
7528 }
7529 
7530 #ifdef CONFIG_CGROUP_SCHED
7531 
7532 /* return corresponding task_group object of a cgroup */
7533 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7534 {
7535 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7536 			    struct task_group, css);
7537 }
7538 
7539 static struct cgroup_subsys_state *
7540 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7541 {
7542 	struct task_group *tg, *parent;
7543 
7544 	if (!cgrp->parent) {
7545 		/* This is early initialization for the top cgroup */
7546 		return &root_task_group.css;
7547 	}
7548 
7549 	parent = cgroup_tg(cgrp->parent);
7550 	tg = sched_create_group(parent);
7551 	if (IS_ERR(tg))
7552 		return ERR_PTR(-ENOMEM);
7553 
7554 	return &tg->css;
7555 }
7556 
7557 static void
7558 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7559 {
7560 	struct task_group *tg = cgroup_tg(cgrp);
7561 
7562 	sched_destroy_group(tg);
7563 }
7564 
7565 static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7566 				 struct cgroup_taskset *tset)
7567 {
7568 	struct task_struct *task;
7569 
7570 	cgroup_taskset_for_each(task, cgrp, tset) {
7571 #ifdef CONFIG_RT_GROUP_SCHED
7572 		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7573 			return -EINVAL;
7574 #else
7575 		/* We don't support RT-tasks being in separate groups */
7576 		if (task->sched_class != &fair_sched_class)
7577 			return -EINVAL;
7578 #endif
7579 	}
7580 	return 0;
7581 }
7582 
7583 static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7584 			      struct cgroup_taskset *tset)
7585 {
7586 	struct task_struct *task;
7587 
7588 	cgroup_taskset_for_each(task, cgrp, tset)
7589 		sched_move_task(task);
7590 }
7591 
7592 static void
7593 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7594 		struct cgroup *old_cgrp, struct task_struct *task)
7595 {
7596 	/*
7597 	 * cgroup_exit() is called in the copy_process() failure path.
7598 	 * Ignore this case since the task hasn't ran yet, this avoids
7599 	 * trying to poke a half freed task state from generic code.
7600 	 */
7601 	if (!(task->flags & PF_EXITING))
7602 		return;
7603 
7604 	sched_move_task(task);
7605 }
7606 
7607 #ifdef CONFIG_FAIR_GROUP_SCHED
7608 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7609 				u64 shareval)
7610 {
7611 	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7612 }
7613 
7614 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7615 {
7616 	struct task_group *tg = cgroup_tg(cgrp);
7617 
7618 	return (u64) scale_load_down(tg->shares);
7619 }
7620 
7621 #ifdef CONFIG_CFS_BANDWIDTH
7622 static DEFINE_MUTEX(cfs_constraints_mutex);
7623 
7624 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7625 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7626 
7627 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7628 
7629 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7630 {
7631 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7632 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7633 
7634 	if (tg == &root_task_group)
7635 		return -EINVAL;
7636 
7637 	/*
7638 	 * Ensure we have at some amount of bandwidth every period.  This is
7639 	 * to prevent reaching a state of large arrears when throttled via
7640 	 * entity_tick() resulting in prolonged exit starvation.
7641 	 */
7642 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7643 		return -EINVAL;
7644 
7645 	/*
7646 	 * Likewise, bound things on the otherside by preventing insane quota
7647 	 * periods.  This also allows us to normalize in computing quota
7648 	 * feasibility.
7649 	 */
7650 	if (period > max_cfs_quota_period)
7651 		return -EINVAL;
7652 
7653 	mutex_lock(&cfs_constraints_mutex);
7654 	ret = __cfs_schedulable(tg, period, quota);
7655 	if (ret)
7656 		goto out_unlock;
7657 
7658 	runtime_enabled = quota != RUNTIME_INF;
7659 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7660 	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7661 	raw_spin_lock_irq(&cfs_b->lock);
7662 	cfs_b->period = ns_to_ktime(period);
7663 	cfs_b->quota = quota;
7664 
7665 	__refill_cfs_bandwidth_runtime(cfs_b);
7666 	/* restart the period timer (if active) to handle new period expiry */
7667 	if (runtime_enabled && cfs_b->timer_active) {
7668 		/* force a reprogram */
7669 		cfs_b->timer_active = 0;
7670 		__start_cfs_bandwidth(cfs_b);
7671 	}
7672 	raw_spin_unlock_irq(&cfs_b->lock);
7673 
7674 	for_each_possible_cpu(i) {
7675 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7676 		struct rq *rq = cfs_rq->rq;
7677 
7678 		raw_spin_lock_irq(&rq->lock);
7679 		cfs_rq->runtime_enabled = runtime_enabled;
7680 		cfs_rq->runtime_remaining = 0;
7681 
7682 		if (cfs_rq->throttled)
7683 			unthrottle_cfs_rq(cfs_rq);
7684 		raw_spin_unlock_irq(&rq->lock);
7685 	}
7686 out_unlock:
7687 	mutex_unlock(&cfs_constraints_mutex);
7688 
7689 	return ret;
7690 }
7691 
7692 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7693 {
7694 	u64 quota, period;
7695 
7696 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7697 	if (cfs_quota_us < 0)
7698 		quota = RUNTIME_INF;
7699 	else
7700 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7701 
7702 	return tg_set_cfs_bandwidth(tg, period, quota);
7703 }
7704 
7705 long tg_get_cfs_quota(struct task_group *tg)
7706 {
7707 	u64 quota_us;
7708 
7709 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7710 		return -1;
7711 
7712 	quota_us = tg->cfs_bandwidth.quota;
7713 	do_div(quota_us, NSEC_PER_USEC);
7714 
7715 	return quota_us;
7716 }
7717 
7718 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7719 {
7720 	u64 quota, period;
7721 
7722 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7723 	quota = tg->cfs_bandwidth.quota;
7724 
7725 	return tg_set_cfs_bandwidth(tg, period, quota);
7726 }
7727 
7728 long tg_get_cfs_period(struct task_group *tg)
7729 {
7730 	u64 cfs_period_us;
7731 
7732 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7733 	do_div(cfs_period_us, NSEC_PER_USEC);
7734 
7735 	return cfs_period_us;
7736 }
7737 
7738 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7739 {
7740 	return tg_get_cfs_quota(cgroup_tg(cgrp));
7741 }
7742 
7743 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7744 				s64 cfs_quota_us)
7745 {
7746 	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7747 }
7748 
7749 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7750 {
7751 	return tg_get_cfs_period(cgroup_tg(cgrp));
7752 }
7753 
7754 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7755 				u64 cfs_period_us)
7756 {
7757 	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7758 }
7759 
7760 struct cfs_schedulable_data {
7761 	struct task_group *tg;
7762 	u64 period, quota;
7763 };
7764 
7765 /*
7766  * normalize group quota/period to be quota/max_period
7767  * note: units are usecs
7768  */
7769 static u64 normalize_cfs_quota(struct task_group *tg,
7770 			       struct cfs_schedulable_data *d)
7771 {
7772 	u64 quota, period;
7773 
7774 	if (tg == d->tg) {
7775 		period = d->period;
7776 		quota = d->quota;
7777 	} else {
7778 		period = tg_get_cfs_period(tg);
7779 		quota = tg_get_cfs_quota(tg);
7780 	}
7781 
7782 	/* note: these should typically be equivalent */
7783 	if (quota == RUNTIME_INF || quota == -1)
7784 		return RUNTIME_INF;
7785 
7786 	return to_ratio(period, quota);
7787 }
7788 
7789 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7790 {
7791 	struct cfs_schedulable_data *d = data;
7792 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7793 	s64 quota = 0, parent_quota = -1;
7794 
7795 	if (!tg->parent) {
7796 		quota = RUNTIME_INF;
7797 	} else {
7798 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7799 
7800 		quota = normalize_cfs_quota(tg, d);
7801 		parent_quota = parent_b->hierarchal_quota;
7802 
7803 		/*
7804 		 * ensure max(child_quota) <= parent_quota, inherit when no
7805 		 * limit is set
7806 		 */
7807 		if (quota == RUNTIME_INF)
7808 			quota = parent_quota;
7809 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7810 			return -EINVAL;
7811 	}
7812 	cfs_b->hierarchal_quota = quota;
7813 
7814 	return 0;
7815 }
7816 
7817 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7818 {
7819 	int ret;
7820 	struct cfs_schedulable_data data = {
7821 		.tg = tg,
7822 		.period = period,
7823 		.quota = quota,
7824 	};
7825 
7826 	if (quota != RUNTIME_INF) {
7827 		do_div(data.period, NSEC_PER_USEC);
7828 		do_div(data.quota, NSEC_PER_USEC);
7829 	}
7830 
7831 	rcu_read_lock();
7832 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7833 	rcu_read_unlock();
7834 
7835 	return ret;
7836 }
7837 
7838 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7839 		struct cgroup_map_cb *cb)
7840 {
7841 	struct task_group *tg = cgroup_tg(cgrp);
7842 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7843 
7844 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7845 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7846 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7847 
7848 	return 0;
7849 }
7850 #endif /* CONFIG_CFS_BANDWIDTH */
7851 #endif /* CONFIG_FAIR_GROUP_SCHED */
7852 
7853 #ifdef CONFIG_RT_GROUP_SCHED
7854 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7855 				s64 val)
7856 {
7857 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7858 }
7859 
7860 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7861 {
7862 	return sched_group_rt_runtime(cgroup_tg(cgrp));
7863 }
7864 
7865 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7866 		u64 rt_period_us)
7867 {
7868 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7869 }
7870 
7871 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7872 {
7873 	return sched_group_rt_period(cgroup_tg(cgrp));
7874 }
7875 #endif /* CONFIG_RT_GROUP_SCHED */
7876 
7877 static struct cftype cpu_files[] = {
7878 #ifdef CONFIG_FAIR_GROUP_SCHED
7879 	{
7880 		.name = "shares",
7881 		.read_u64 = cpu_shares_read_u64,
7882 		.write_u64 = cpu_shares_write_u64,
7883 	},
7884 #endif
7885 #ifdef CONFIG_CFS_BANDWIDTH
7886 	{
7887 		.name = "cfs_quota_us",
7888 		.read_s64 = cpu_cfs_quota_read_s64,
7889 		.write_s64 = cpu_cfs_quota_write_s64,
7890 	},
7891 	{
7892 		.name = "cfs_period_us",
7893 		.read_u64 = cpu_cfs_period_read_u64,
7894 		.write_u64 = cpu_cfs_period_write_u64,
7895 	},
7896 	{
7897 		.name = "stat",
7898 		.read_map = cpu_stats_show,
7899 	},
7900 #endif
7901 #ifdef CONFIG_RT_GROUP_SCHED
7902 	{
7903 		.name = "rt_runtime_us",
7904 		.read_s64 = cpu_rt_runtime_read,
7905 		.write_s64 = cpu_rt_runtime_write,
7906 	},
7907 	{
7908 		.name = "rt_period_us",
7909 		.read_u64 = cpu_rt_period_read_uint,
7910 		.write_u64 = cpu_rt_period_write_uint,
7911 	},
7912 #endif
7913 };
7914 
7915 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7916 {
7917 	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7918 }
7919 
7920 struct cgroup_subsys cpu_cgroup_subsys = {
7921 	.name		= "cpu",
7922 	.create		= cpu_cgroup_create,
7923 	.destroy	= cpu_cgroup_destroy,
7924 	.can_attach	= cpu_cgroup_can_attach,
7925 	.attach		= cpu_cgroup_attach,
7926 	.exit		= cpu_cgroup_exit,
7927 	.populate	= cpu_cgroup_populate,
7928 	.subsys_id	= cpu_cgroup_subsys_id,
7929 	.early_init	= 1,
7930 };
7931 
7932 #endif	/* CONFIG_CGROUP_SCHED */
7933 
7934 #ifdef CONFIG_CGROUP_CPUACCT
7935 
7936 /*
7937  * CPU accounting code for task groups.
7938  *
7939  * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7940  * (balbir@in.ibm.com).
7941  */
7942 
7943 /* create a new cpu accounting group */
7944 static struct cgroup_subsys_state *cpuacct_create(
7945 	struct cgroup_subsys *ss, struct cgroup *cgrp)
7946 {
7947 	struct cpuacct *ca;
7948 
7949 	if (!cgrp->parent)
7950 		return &root_cpuacct.css;
7951 
7952 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7953 	if (!ca)
7954 		goto out;
7955 
7956 	ca->cpuusage = alloc_percpu(u64);
7957 	if (!ca->cpuusage)
7958 		goto out_free_ca;
7959 
7960 	ca->cpustat = alloc_percpu(struct kernel_cpustat);
7961 	if (!ca->cpustat)
7962 		goto out_free_cpuusage;
7963 
7964 	return &ca->css;
7965 
7966 out_free_cpuusage:
7967 	free_percpu(ca->cpuusage);
7968 out_free_ca:
7969 	kfree(ca);
7970 out:
7971 	return ERR_PTR(-ENOMEM);
7972 }
7973 
7974 /* destroy an existing cpu accounting group */
7975 static void
7976 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7977 {
7978 	struct cpuacct *ca = cgroup_ca(cgrp);
7979 
7980 	free_percpu(ca->cpustat);
7981 	free_percpu(ca->cpuusage);
7982 	kfree(ca);
7983 }
7984 
7985 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7986 {
7987 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7988 	u64 data;
7989 
7990 #ifndef CONFIG_64BIT
7991 	/*
7992 	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7993 	 */
7994 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7995 	data = *cpuusage;
7996 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7997 #else
7998 	data = *cpuusage;
7999 #endif
8000 
8001 	return data;
8002 }
8003 
8004 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8005 {
8006 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8007 
8008 #ifndef CONFIG_64BIT
8009 	/*
8010 	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8011 	 */
8012 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8013 	*cpuusage = val;
8014 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8015 #else
8016 	*cpuusage = val;
8017 #endif
8018 }
8019 
8020 /* return total cpu usage (in nanoseconds) of a group */
8021 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8022 {
8023 	struct cpuacct *ca = cgroup_ca(cgrp);
8024 	u64 totalcpuusage = 0;
8025 	int i;
8026 
8027 	for_each_present_cpu(i)
8028 		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8029 
8030 	return totalcpuusage;
8031 }
8032 
8033 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8034 								u64 reset)
8035 {
8036 	struct cpuacct *ca = cgroup_ca(cgrp);
8037 	int err = 0;
8038 	int i;
8039 
8040 	if (reset) {
8041 		err = -EINVAL;
8042 		goto out;
8043 	}
8044 
8045 	for_each_present_cpu(i)
8046 		cpuacct_cpuusage_write(ca, i, 0);
8047 
8048 out:
8049 	return err;
8050 }
8051 
8052 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8053 				   struct seq_file *m)
8054 {
8055 	struct cpuacct *ca = cgroup_ca(cgroup);
8056 	u64 percpu;
8057 	int i;
8058 
8059 	for_each_present_cpu(i) {
8060 		percpu = cpuacct_cpuusage_read(ca, i);
8061 		seq_printf(m, "%llu ", (unsigned long long) percpu);
8062 	}
8063 	seq_printf(m, "\n");
8064 	return 0;
8065 }
8066 
8067 static const char *cpuacct_stat_desc[] = {
8068 	[CPUACCT_STAT_USER] = "user",
8069 	[CPUACCT_STAT_SYSTEM] = "system",
8070 };
8071 
8072 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8073 			      struct cgroup_map_cb *cb)
8074 {
8075 	struct cpuacct *ca = cgroup_ca(cgrp);
8076 	int cpu;
8077 	s64 val = 0;
8078 
8079 	for_each_online_cpu(cpu) {
8080 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8081 		val += kcpustat->cpustat[CPUTIME_USER];
8082 		val += kcpustat->cpustat[CPUTIME_NICE];
8083 	}
8084 	val = cputime64_to_clock_t(val);
8085 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8086 
8087 	val = 0;
8088 	for_each_online_cpu(cpu) {
8089 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8090 		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8091 		val += kcpustat->cpustat[CPUTIME_IRQ];
8092 		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8093 	}
8094 
8095 	val = cputime64_to_clock_t(val);
8096 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8097 
8098 	return 0;
8099 }
8100 
8101 static struct cftype files[] = {
8102 	{
8103 		.name = "usage",
8104 		.read_u64 = cpuusage_read,
8105 		.write_u64 = cpuusage_write,
8106 	},
8107 	{
8108 		.name = "usage_percpu",
8109 		.read_seq_string = cpuacct_percpu_seq_read,
8110 	},
8111 	{
8112 		.name = "stat",
8113 		.read_map = cpuacct_stats_show,
8114 	},
8115 };
8116 
8117 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8118 {
8119 	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8120 }
8121 
8122 /*
8123  * charge this task's execution time to its accounting group.
8124  *
8125  * called with rq->lock held.
8126  */
8127 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8128 {
8129 	struct cpuacct *ca;
8130 	int cpu;
8131 
8132 	if (unlikely(!cpuacct_subsys.active))
8133 		return;
8134 
8135 	cpu = task_cpu(tsk);
8136 
8137 	rcu_read_lock();
8138 
8139 	ca = task_ca(tsk);
8140 
8141 	for (; ca; ca = parent_ca(ca)) {
8142 		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8143 		*cpuusage += cputime;
8144 	}
8145 
8146 	rcu_read_unlock();
8147 }
8148 
8149 struct cgroup_subsys cpuacct_subsys = {
8150 	.name = "cpuacct",
8151 	.create = cpuacct_create,
8152 	.destroy = cpuacct_destroy,
8153 	.populate = cpuacct_populate,
8154 	.subsys_id = cpuacct_subsys_id,
8155 };
8156 #endif	/* CONFIG_CGROUP_CPUACCT */
8157