1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 75 #include <asm/tlb.h> 76 #include <asm/irq_regs.h> 77 #include <asm/mutex.h> 78 #ifdef CONFIG_PARAVIRT 79 #include <asm/paravirt.h> 80 #endif 81 82 #include "sched.h" 83 #include "../workqueue_sched.h" 84 85 #define CREATE_TRACE_POINTS 86 #include <trace/events/sched.h> 87 88 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 89 { 90 unsigned long delta; 91 ktime_t soft, hard, now; 92 93 for (;;) { 94 if (hrtimer_active(period_timer)) 95 break; 96 97 now = hrtimer_cb_get_time(period_timer); 98 hrtimer_forward(period_timer, now, period); 99 100 soft = hrtimer_get_softexpires(period_timer); 101 hard = hrtimer_get_expires(period_timer); 102 delta = ktime_to_ns(ktime_sub(hard, soft)); 103 __hrtimer_start_range_ns(period_timer, soft, delta, 104 HRTIMER_MODE_ABS_PINNED, 0); 105 } 106 } 107 108 DEFINE_MUTEX(sched_domains_mutex); 109 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 110 111 static void update_rq_clock_task(struct rq *rq, s64 delta); 112 113 void update_rq_clock(struct rq *rq) 114 { 115 s64 delta; 116 117 if (rq->skip_clock_update > 0) 118 return; 119 120 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 121 rq->clock += delta; 122 update_rq_clock_task(rq, delta); 123 } 124 125 /* 126 * Debugging: various feature bits 127 */ 128 129 #define SCHED_FEAT(name, enabled) \ 130 (1UL << __SCHED_FEAT_##name) * enabled | 131 132 const_debug unsigned int sysctl_sched_features = 133 #include "features.h" 134 0; 135 136 #undef SCHED_FEAT 137 138 #ifdef CONFIG_SCHED_DEBUG 139 #define SCHED_FEAT(name, enabled) \ 140 #name , 141 142 static __read_mostly char *sched_feat_names[] = { 143 #include "features.h" 144 NULL 145 }; 146 147 #undef SCHED_FEAT 148 149 static int sched_feat_show(struct seq_file *m, void *v) 150 { 151 int i; 152 153 for (i = 0; i < __SCHED_FEAT_NR; i++) { 154 if (!(sysctl_sched_features & (1UL << i))) 155 seq_puts(m, "NO_"); 156 seq_printf(m, "%s ", sched_feat_names[i]); 157 } 158 seq_puts(m, "\n"); 159 160 return 0; 161 } 162 163 #ifdef HAVE_JUMP_LABEL 164 165 #define jump_label_key__true jump_label_key_enabled 166 #define jump_label_key__false jump_label_key_disabled 167 168 #define SCHED_FEAT(name, enabled) \ 169 jump_label_key__##enabled , 170 171 struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = { 172 #include "features.h" 173 }; 174 175 #undef SCHED_FEAT 176 177 static void sched_feat_disable(int i) 178 { 179 if (jump_label_enabled(&sched_feat_keys[i])) 180 jump_label_dec(&sched_feat_keys[i]); 181 } 182 183 static void sched_feat_enable(int i) 184 { 185 if (!jump_label_enabled(&sched_feat_keys[i])) 186 jump_label_inc(&sched_feat_keys[i]); 187 } 188 #else 189 static void sched_feat_disable(int i) { }; 190 static void sched_feat_enable(int i) { }; 191 #endif /* HAVE_JUMP_LABEL */ 192 193 static ssize_t 194 sched_feat_write(struct file *filp, const char __user *ubuf, 195 size_t cnt, loff_t *ppos) 196 { 197 char buf[64]; 198 char *cmp; 199 int neg = 0; 200 int i; 201 202 if (cnt > 63) 203 cnt = 63; 204 205 if (copy_from_user(&buf, ubuf, cnt)) 206 return -EFAULT; 207 208 buf[cnt] = 0; 209 cmp = strstrip(buf); 210 211 if (strncmp(cmp, "NO_", 3) == 0) { 212 neg = 1; 213 cmp += 3; 214 } 215 216 for (i = 0; i < __SCHED_FEAT_NR; i++) { 217 if (strcmp(cmp, sched_feat_names[i]) == 0) { 218 if (neg) { 219 sysctl_sched_features &= ~(1UL << i); 220 sched_feat_disable(i); 221 } else { 222 sysctl_sched_features |= (1UL << i); 223 sched_feat_enable(i); 224 } 225 break; 226 } 227 } 228 229 if (i == __SCHED_FEAT_NR) 230 return -EINVAL; 231 232 *ppos += cnt; 233 234 return cnt; 235 } 236 237 static int sched_feat_open(struct inode *inode, struct file *filp) 238 { 239 return single_open(filp, sched_feat_show, NULL); 240 } 241 242 static const struct file_operations sched_feat_fops = { 243 .open = sched_feat_open, 244 .write = sched_feat_write, 245 .read = seq_read, 246 .llseek = seq_lseek, 247 .release = single_release, 248 }; 249 250 static __init int sched_init_debug(void) 251 { 252 debugfs_create_file("sched_features", 0644, NULL, NULL, 253 &sched_feat_fops); 254 255 return 0; 256 } 257 late_initcall(sched_init_debug); 258 #endif /* CONFIG_SCHED_DEBUG */ 259 260 /* 261 * Number of tasks to iterate in a single balance run. 262 * Limited because this is done with IRQs disabled. 263 */ 264 const_debug unsigned int sysctl_sched_nr_migrate = 32; 265 266 /* 267 * period over which we average the RT time consumption, measured 268 * in ms. 269 * 270 * default: 1s 271 */ 272 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 273 274 /* 275 * period over which we measure -rt task cpu usage in us. 276 * default: 1s 277 */ 278 unsigned int sysctl_sched_rt_period = 1000000; 279 280 __read_mostly int scheduler_running; 281 282 /* 283 * part of the period that we allow rt tasks to run in us. 284 * default: 0.95s 285 */ 286 int sysctl_sched_rt_runtime = 950000; 287 288 289 290 /* 291 * __task_rq_lock - lock the rq @p resides on. 292 */ 293 static inline struct rq *__task_rq_lock(struct task_struct *p) 294 __acquires(rq->lock) 295 { 296 struct rq *rq; 297 298 lockdep_assert_held(&p->pi_lock); 299 300 for (;;) { 301 rq = task_rq(p); 302 raw_spin_lock(&rq->lock); 303 if (likely(rq == task_rq(p))) 304 return rq; 305 raw_spin_unlock(&rq->lock); 306 } 307 } 308 309 /* 310 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 311 */ 312 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 313 __acquires(p->pi_lock) 314 __acquires(rq->lock) 315 { 316 struct rq *rq; 317 318 for (;;) { 319 raw_spin_lock_irqsave(&p->pi_lock, *flags); 320 rq = task_rq(p); 321 raw_spin_lock(&rq->lock); 322 if (likely(rq == task_rq(p))) 323 return rq; 324 raw_spin_unlock(&rq->lock); 325 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 326 } 327 } 328 329 static void __task_rq_unlock(struct rq *rq) 330 __releases(rq->lock) 331 { 332 raw_spin_unlock(&rq->lock); 333 } 334 335 static inline void 336 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 337 __releases(rq->lock) 338 __releases(p->pi_lock) 339 { 340 raw_spin_unlock(&rq->lock); 341 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 342 } 343 344 /* 345 * this_rq_lock - lock this runqueue and disable interrupts. 346 */ 347 static struct rq *this_rq_lock(void) 348 __acquires(rq->lock) 349 { 350 struct rq *rq; 351 352 local_irq_disable(); 353 rq = this_rq(); 354 raw_spin_lock(&rq->lock); 355 356 return rq; 357 } 358 359 #ifdef CONFIG_SCHED_HRTICK 360 /* 361 * Use HR-timers to deliver accurate preemption points. 362 * 363 * Its all a bit involved since we cannot program an hrt while holding the 364 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a 365 * reschedule event. 366 * 367 * When we get rescheduled we reprogram the hrtick_timer outside of the 368 * rq->lock. 369 */ 370 371 static void hrtick_clear(struct rq *rq) 372 { 373 if (hrtimer_active(&rq->hrtick_timer)) 374 hrtimer_cancel(&rq->hrtick_timer); 375 } 376 377 /* 378 * High-resolution timer tick. 379 * Runs from hardirq context with interrupts disabled. 380 */ 381 static enum hrtimer_restart hrtick(struct hrtimer *timer) 382 { 383 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 384 385 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 386 387 raw_spin_lock(&rq->lock); 388 update_rq_clock(rq); 389 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 390 raw_spin_unlock(&rq->lock); 391 392 return HRTIMER_NORESTART; 393 } 394 395 #ifdef CONFIG_SMP 396 /* 397 * called from hardirq (IPI) context 398 */ 399 static void __hrtick_start(void *arg) 400 { 401 struct rq *rq = arg; 402 403 raw_spin_lock(&rq->lock); 404 hrtimer_restart(&rq->hrtick_timer); 405 rq->hrtick_csd_pending = 0; 406 raw_spin_unlock(&rq->lock); 407 } 408 409 /* 410 * Called to set the hrtick timer state. 411 * 412 * called with rq->lock held and irqs disabled 413 */ 414 void hrtick_start(struct rq *rq, u64 delay) 415 { 416 struct hrtimer *timer = &rq->hrtick_timer; 417 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 418 419 hrtimer_set_expires(timer, time); 420 421 if (rq == this_rq()) { 422 hrtimer_restart(timer); 423 } else if (!rq->hrtick_csd_pending) { 424 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); 425 rq->hrtick_csd_pending = 1; 426 } 427 } 428 429 static int 430 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 431 { 432 int cpu = (int)(long)hcpu; 433 434 switch (action) { 435 case CPU_UP_CANCELED: 436 case CPU_UP_CANCELED_FROZEN: 437 case CPU_DOWN_PREPARE: 438 case CPU_DOWN_PREPARE_FROZEN: 439 case CPU_DEAD: 440 case CPU_DEAD_FROZEN: 441 hrtick_clear(cpu_rq(cpu)); 442 return NOTIFY_OK; 443 } 444 445 return NOTIFY_DONE; 446 } 447 448 static __init void init_hrtick(void) 449 { 450 hotcpu_notifier(hotplug_hrtick, 0); 451 } 452 #else 453 /* 454 * Called to set the hrtick timer state. 455 * 456 * called with rq->lock held and irqs disabled 457 */ 458 void hrtick_start(struct rq *rq, u64 delay) 459 { 460 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 461 HRTIMER_MODE_REL_PINNED, 0); 462 } 463 464 static inline void init_hrtick(void) 465 { 466 } 467 #endif /* CONFIG_SMP */ 468 469 static void init_rq_hrtick(struct rq *rq) 470 { 471 #ifdef CONFIG_SMP 472 rq->hrtick_csd_pending = 0; 473 474 rq->hrtick_csd.flags = 0; 475 rq->hrtick_csd.func = __hrtick_start; 476 rq->hrtick_csd.info = rq; 477 #endif 478 479 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 480 rq->hrtick_timer.function = hrtick; 481 } 482 #else /* CONFIG_SCHED_HRTICK */ 483 static inline void hrtick_clear(struct rq *rq) 484 { 485 } 486 487 static inline void init_rq_hrtick(struct rq *rq) 488 { 489 } 490 491 static inline void init_hrtick(void) 492 { 493 } 494 #endif /* CONFIG_SCHED_HRTICK */ 495 496 /* 497 * resched_task - mark a task 'to be rescheduled now'. 498 * 499 * On UP this means the setting of the need_resched flag, on SMP it 500 * might also involve a cross-CPU call to trigger the scheduler on 501 * the target CPU. 502 */ 503 #ifdef CONFIG_SMP 504 505 #ifndef tsk_is_polling 506 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) 507 #endif 508 509 void resched_task(struct task_struct *p) 510 { 511 int cpu; 512 513 assert_raw_spin_locked(&task_rq(p)->lock); 514 515 if (test_tsk_need_resched(p)) 516 return; 517 518 set_tsk_need_resched(p); 519 520 cpu = task_cpu(p); 521 if (cpu == smp_processor_id()) 522 return; 523 524 /* NEED_RESCHED must be visible before we test polling */ 525 smp_mb(); 526 if (!tsk_is_polling(p)) 527 smp_send_reschedule(cpu); 528 } 529 530 void resched_cpu(int cpu) 531 { 532 struct rq *rq = cpu_rq(cpu); 533 unsigned long flags; 534 535 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 536 return; 537 resched_task(cpu_curr(cpu)); 538 raw_spin_unlock_irqrestore(&rq->lock, flags); 539 } 540 541 #ifdef CONFIG_NO_HZ 542 /* 543 * In the semi idle case, use the nearest busy cpu for migrating timers 544 * from an idle cpu. This is good for power-savings. 545 * 546 * We don't do similar optimization for completely idle system, as 547 * selecting an idle cpu will add more delays to the timers than intended 548 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 549 */ 550 int get_nohz_timer_target(void) 551 { 552 int cpu = smp_processor_id(); 553 int i; 554 struct sched_domain *sd; 555 556 rcu_read_lock(); 557 for_each_domain(cpu, sd) { 558 for_each_cpu(i, sched_domain_span(sd)) { 559 if (!idle_cpu(i)) { 560 cpu = i; 561 goto unlock; 562 } 563 } 564 } 565 unlock: 566 rcu_read_unlock(); 567 return cpu; 568 } 569 /* 570 * When add_timer_on() enqueues a timer into the timer wheel of an 571 * idle CPU then this timer might expire before the next timer event 572 * which is scheduled to wake up that CPU. In case of a completely 573 * idle system the next event might even be infinite time into the 574 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 575 * leaves the inner idle loop so the newly added timer is taken into 576 * account when the CPU goes back to idle and evaluates the timer 577 * wheel for the next timer event. 578 */ 579 void wake_up_idle_cpu(int cpu) 580 { 581 struct rq *rq = cpu_rq(cpu); 582 583 if (cpu == smp_processor_id()) 584 return; 585 586 /* 587 * This is safe, as this function is called with the timer 588 * wheel base lock of (cpu) held. When the CPU is on the way 589 * to idle and has not yet set rq->curr to idle then it will 590 * be serialized on the timer wheel base lock and take the new 591 * timer into account automatically. 592 */ 593 if (rq->curr != rq->idle) 594 return; 595 596 /* 597 * We can set TIF_RESCHED on the idle task of the other CPU 598 * lockless. The worst case is that the other CPU runs the 599 * idle task through an additional NOOP schedule() 600 */ 601 set_tsk_need_resched(rq->idle); 602 603 /* NEED_RESCHED must be visible before we test polling */ 604 smp_mb(); 605 if (!tsk_is_polling(rq->idle)) 606 smp_send_reschedule(cpu); 607 } 608 609 static inline bool got_nohz_idle_kick(void) 610 { 611 int cpu = smp_processor_id(); 612 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 613 } 614 615 #else /* CONFIG_NO_HZ */ 616 617 static inline bool got_nohz_idle_kick(void) 618 { 619 return false; 620 } 621 622 #endif /* CONFIG_NO_HZ */ 623 624 void sched_avg_update(struct rq *rq) 625 { 626 s64 period = sched_avg_period(); 627 628 while ((s64)(rq->clock - rq->age_stamp) > period) { 629 /* 630 * Inline assembly required to prevent the compiler 631 * optimising this loop into a divmod call. 632 * See __iter_div_u64_rem() for another example of this. 633 */ 634 asm("" : "+rm" (rq->age_stamp)); 635 rq->age_stamp += period; 636 rq->rt_avg /= 2; 637 } 638 } 639 640 #else /* !CONFIG_SMP */ 641 void resched_task(struct task_struct *p) 642 { 643 assert_raw_spin_locked(&task_rq(p)->lock); 644 set_tsk_need_resched(p); 645 } 646 #endif /* CONFIG_SMP */ 647 648 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 649 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 650 /* 651 * Iterate task_group tree rooted at *from, calling @down when first entering a 652 * node and @up when leaving it for the final time. 653 * 654 * Caller must hold rcu_lock or sufficient equivalent. 655 */ 656 int walk_tg_tree_from(struct task_group *from, 657 tg_visitor down, tg_visitor up, void *data) 658 { 659 struct task_group *parent, *child; 660 int ret; 661 662 parent = from; 663 664 down: 665 ret = (*down)(parent, data); 666 if (ret) 667 goto out; 668 list_for_each_entry_rcu(child, &parent->children, siblings) { 669 parent = child; 670 goto down; 671 672 up: 673 continue; 674 } 675 ret = (*up)(parent, data); 676 if (ret || parent == from) 677 goto out; 678 679 child = parent; 680 parent = parent->parent; 681 if (parent) 682 goto up; 683 out: 684 return ret; 685 } 686 687 int tg_nop(struct task_group *tg, void *data) 688 { 689 return 0; 690 } 691 #endif 692 693 void update_cpu_load(struct rq *this_rq); 694 695 static void set_load_weight(struct task_struct *p) 696 { 697 int prio = p->static_prio - MAX_RT_PRIO; 698 struct load_weight *load = &p->se.load; 699 700 /* 701 * SCHED_IDLE tasks get minimal weight: 702 */ 703 if (p->policy == SCHED_IDLE) { 704 load->weight = scale_load(WEIGHT_IDLEPRIO); 705 load->inv_weight = WMULT_IDLEPRIO; 706 return; 707 } 708 709 load->weight = scale_load(prio_to_weight[prio]); 710 load->inv_weight = prio_to_wmult[prio]; 711 } 712 713 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 714 { 715 update_rq_clock(rq); 716 sched_info_queued(p); 717 p->sched_class->enqueue_task(rq, p, flags); 718 } 719 720 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 721 { 722 update_rq_clock(rq); 723 sched_info_dequeued(p); 724 p->sched_class->dequeue_task(rq, p, flags); 725 } 726 727 void activate_task(struct rq *rq, struct task_struct *p, int flags) 728 { 729 if (task_contributes_to_load(p)) 730 rq->nr_uninterruptible--; 731 732 enqueue_task(rq, p, flags); 733 } 734 735 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 736 { 737 if (task_contributes_to_load(p)) 738 rq->nr_uninterruptible++; 739 740 dequeue_task(rq, p, flags); 741 } 742 743 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 744 745 /* 746 * There are no locks covering percpu hardirq/softirq time. 747 * They are only modified in account_system_vtime, on corresponding CPU 748 * with interrupts disabled. So, writes are safe. 749 * They are read and saved off onto struct rq in update_rq_clock(). 750 * This may result in other CPU reading this CPU's irq time and can 751 * race with irq/account_system_vtime on this CPU. We would either get old 752 * or new value with a side effect of accounting a slice of irq time to wrong 753 * task when irq is in progress while we read rq->clock. That is a worthy 754 * compromise in place of having locks on each irq in account_system_time. 755 */ 756 static DEFINE_PER_CPU(u64, cpu_hardirq_time); 757 static DEFINE_PER_CPU(u64, cpu_softirq_time); 758 759 static DEFINE_PER_CPU(u64, irq_start_time); 760 static int sched_clock_irqtime; 761 762 void enable_sched_clock_irqtime(void) 763 { 764 sched_clock_irqtime = 1; 765 } 766 767 void disable_sched_clock_irqtime(void) 768 { 769 sched_clock_irqtime = 0; 770 } 771 772 #ifndef CONFIG_64BIT 773 static DEFINE_PER_CPU(seqcount_t, irq_time_seq); 774 775 static inline void irq_time_write_begin(void) 776 { 777 __this_cpu_inc(irq_time_seq.sequence); 778 smp_wmb(); 779 } 780 781 static inline void irq_time_write_end(void) 782 { 783 smp_wmb(); 784 __this_cpu_inc(irq_time_seq.sequence); 785 } 786 787 static inline u64 irq_time_read(int cpu) 788 { 789 u64 irq_time; 790 unsigned seq; 791 792 do { 793 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); 794 irq_time = per_cpu(cpu_softirq_time, cpu) + 795 per_cpu(cpu_hardirq_time, cpu); 796 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); 797 798 return irq_time; 799 } 800 #else /* CONFIG_64BIT */ 801 static inline void irq_time_write_begin(void) 802 { 803 } 804 805 static inline void irq_time_write_end(void) 806 { 807 } 808 809 static inline u64 irq_time_read(int cpu) 810 { 811 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); 812 } 813 #endif /* CONFIG_64BIT */ 814 815 /* 816 * Called before incrementing preempt_count on {soft,}irq_enter 817 * and before decrementing preempt_count on {soft,}irq_exit. 818 */ 819 void account_system_vtime(struct task_struct *curr) 820 { 821 unsigned long flags; 822 s64 delta; 823 int cpu; 824 825 if (!sched_clock_irqtime) 826 return; 827 828 local_irq_save(flags); 829 830 cpu = smp_processor_id(); 831 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); 832 __this_cpu_add(irq_start_time, delta); 833 834 irq_time_write_begin(); 835 /* 836 * We do not account for softirq time from ksoftirqd here. 837 * We want to continue accounting softirq time to ksoftirqd thread 838 * in that case, so as not to confuse scheduler with a special task 839 * that do not consume any time, but still wants to run. 840 */ 841 if (hardirq_count()) 842 __this_cpu_add(cpu_hardirq_time, delta); 843 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) 844 __this_cpu_add(cpu_softirq_time, delta); 845 846 irq_time_write_end(); 847 local_irq_restore(flags); 848 } 849 EXPORT_SYMBOL_GPL(account_system_vtime); 850 851 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 852 853 #ifdef CONFIG_PARAVIRT 854 static inline u64 steal_ticks(u64 steal) 855 { 856 if (unlikely(steal > NSEC_PER_SEC)) 857 return div_u64(steal, TICK_NSEC); 858 859 return __iter_div_u64_rem(steal, TICK_NSEC, &steal); 860 } 861 #endif 862 863 static void update_rq_clock_task(struct rq *rq, s64 delta) 864 { 865 /* 866 * In theory, the compile should just see 0 here, and optimize out the call 867 * to sched_rt_avg_update. But I don't trust it... 868 */ 869 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 870 s64 steal = 0, irq_delta = 0; 871 #endif 872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 874 875 /* 876 * Since irq_time is only updated on {soft,}irq_exit, we might run into 877 * this case when a previous update_rq_clock() happened inside a 878 * {soft,}irq region. 879 * 880 * When this happens, we stop ->clock_task and only update the 881 * prev_irq_time stamp to account for the part that fit, so that a next 882 * update will consume the rest. This ensures ->clock_task is 883 * monotonic. 884 * 885 * It does however cause some slight miss-attribution of {soft,}irq 886 * time, a more accurate solution would be to update the irq_time using 887 * the current rq->clock timestamp, except that would require using 888 * atomic ops. 889 */ 890 if (irq_delta > delta) 891 irq_delta = delta; 892 893 rq->prev_irq_time += irq_delta; 894 delta -= irq_delta; 895 #endif 896 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 897 if (static_branch((¶virt_steal_rq_enabled))) { 898 u64 st; 899 900 steal = paravirt_steal_clock(cpu_of(rq)); 901 steal -= rq->prev_steal_time_rq; 902 903 if (unlikely(steal > delta)) 904 steal = delta; 905 906 st = steal_ticks(steal); 907 steal = st * TICK_NSEC; 908 909 rq->prev_steal_time_rq += steal; 910 911 delta -= steal; 912 } 913 #endif 914 915 rq->clock_task += delta; 916 917 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 918 if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) 919 sched_rt_avg_update(rq, irq_delta + steal); 920 #endif 921 } 922 923 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 924 static int irqtime_account_hi_update(void) 925 { 926 u64 *cpustat = kcpustat_this_cpu->cpustat; 927 unsigned long flags; 928 u64 latest_ns; 929 int ret = 0; 930 931 local_irq_save(flags); 932 latest_ns = this_cpu_read(cpu_hardirq_time); 933 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) 934 ret = 1; 935 local_irq_restore(flags); 936 return ret; 937 } 938 939 static int irqtime_account_si_update(void) 940 { 941 u64 *cpustat = kcpustat_this_cpu->cpustat; 942 unsigned long flags; 943 u64 latest_ns; 944 int ret = 0; 945 946 local_irq_save(flags); 947 latest_ns = this_cpu_read(cpu_softirq_time); 948 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) 949 ret = 1; 950 local_irq_restore(flags); 951 return ret; 952 } 953 954 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 955 956 #define sched_clock_irqtime (0) 957 958 #endif 959 960 void sched_set_stop_task(int cpu, struct task_struct *stop) 961 { 962 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 963 struct task_struct *old_stop = cpu_rq(cpu)->stop; 964 965 if (stop) { 966 /* 967 * Make it appear like a SCHED_FIFO task, its something 968 * userspace knows about and won't get confused about. 969 * 970 * Also, it will make PI more or less work without too 971 * much confusion -- but then, stop work should not 972 * rely on PI working anyway. 973 */ 974 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 975 976 stop->sched_class = &stop_sched_class; 977 } 978 979 cpu_rq(cpu)->stop = stop; 980 981 if (old_stop) { 982 /* 983 * Reset it back to a normal scheduling class so that 984 * it can die in pieces. 985 */ 986 old_stop->sched_class = &rt_sched_class; 987 } 988 } 989 990 /* 991 * __normal_prio - return the priority that is based on the static prio 992 */ 993 static inline int __normal_prio(struct task_struct *p) 994 { 995 return p->static_prio; 996 } 997 998 /* 999 * Calculate the expected normal priority: i.e. priority 1000 * without taking RT-inheritance into account. Might be 1001 * boosted by interactivity modifiers. Changes upon fork, 1002 * setprio syscalls, and whenever the interactivity 1003 * estimator recalculates. 1004 */ 1005 static inline int normal_prio(struct task_struct *p) 1006 { 1007 int prio; 1008 1009 if (task_has_rt_policy(p)) 1010 prio = MAX_RT_PRIO-1 - p->rt_priority; 1011 else 1012 prio = __normal_prio(p); 1013 return prio; 1014 } 1015 1016 /* 1017 * Calculate the current priority, i.e. the priority 1018 * taken into account by the scheduler. This value might 1019 * be boosted by RT tasks, or might be boosted by 1020 * interactivity modifiers. Will be RT if the task got 1021 * RT-boosted. If not then it returns p->normal_prio. 1022 */ 1023 static int effective_prio(struct task_struct *p) 1024 { 1025 p->normal_prio = normal_prio(p); 1026 /* 1027 * If we are RT tasks or we were boosted to RT priority, 1028 * keep the priority unchanged. Otherwise, update priority 1029 * to the normal priority: 1030 */ 1031 if (!rt_prio(p->prio)) 1032 return p->normal_prio; 1033 return p->prio; 1034 } 1035 1036 /** 1037 * task_curr - is this task currently executing on a CPU? 1038 * @p: the task in question. 1039 */ 1040 inline int task_curr(const struct task_struct *p) 1041 { 1042 return cpu_curr(task_cpu(p)) == p; 1043 } 1044 1045 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1046 const struct sched_class *prev_class, 1047 int oldprio) 1048 { 1049 if (prev_class != p->sched_class) { 1050 if (prev_class->switched_from) 1051 prev_class->switched_from(rq, p); 1052 p->sched_class->switched_to(rq, p); 1053 } else if (oldprio != p->prio) 1054 p->sched_class->prio_changed(rq, p, oldprio); 1055 } 1056 1057 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1058 { 1059 const struct sched_class *class; 1060 1061 if (p->sched_class == rq->curr->sched_class) { 1062 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1063 } else { 1064 for_each_class(class) { 1065 if (class == rq->curr->sched_class) 1066 break; 1067 if (class == p->sched_class) { 1068 resched_task(rq->curr); 1069 break; 1070 } 1071 } 1072 } 1073 1074 /* 1075 * A queue event has occurred, and we're going to schedule. In 1076 * this case, we can save a useless back to back clock update. 1077 */ 1078 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 1079 rq->skip_clock_update = 1; 1080 } 1081 1082 #ifdef CONFIG_SMP 1083 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1084 { 1085 #ifdef CONFIG_SCHED_DEBUG 1086 /* 1087 * We should never call set_task_cpu() on a blocked task, 1088 * ttwu() will sort out the placement. 1089 */ 1090 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1091 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); 1092 1093 #ifdef CONFIG_LOCKDEP 1094 /* 1095 * The caller should hold either p->pi_lock or rq->lock, when changing 1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1097 * 1098 * sched_move_task() holds both and thus holding either pins the cgroup, 1099 * see set_task_rq(). 1100 * 1101 * Furthermore, all task_rq users should acquire both locks, see 1102 * task_rq_lock(). 1103 */ 1104 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1105 lockdep_is_held(&task_rq(p)->lock))); 1106 #endif 1107 #endif 1108 1109 trace_sched_migrate_task(p, new_cpu); 1110 1111 if (task_cpu(p) != new_cpu) { 1112 p->se.nr_migrations++; 1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 1114 } 1115 1116 __set_task_cpu(p, new_cpu); 1117 } 1118 1119 struct migration_arg { 1120 struct task_struct *task; 1121 int dest_cpu; 1122 }; 1123 1124 static int migration_cpu_stop(void *data); 1125 1126 /* 1127 * wait_task_inactive - wait for a thread to unschedule. 1128 * 1129 * If @match_state is nonzero, it's the @p->state value just checked and 1130 * not expected to change. If it changes, i.e. @p might have woken up, 1131 * then return zero. When we succeed in waiting for @p to be off its CPU, 1132 * we return a positive number (its total switch count). If a second call 1133 * a short while later returns the same number, the caller can be sure that 1134 * @p has remained unscheduled the whole time. 1135 * 1136 * The caller must ensure that the task *will* unschedule sometime soon, 1137 * else this function might spin for a *long* time. This function can't 1138 * be called with interrupts off, or it may introduce deadlock with 1139 * smp_call_function() if an IPI is sent by the same process we are 1140 * waiting to become inactive. 1141 */ 1142 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1143 { 1144 unsigned long flags; 1145 int running, on_rq; 1146 unsigned long ncsw; 1147 struct rq *rq; 1148 1149 for (;;) { 1150 /* 1151 * We do the initial early heuristics without holding 1152 * any task-queue locks at all. We'll only try to get 1153 * the runqueue lock when things look like they will 1154 * work out! 1155 */ 1156 rq = task_rq(p); 1157 1158 /* 1159 * If the task is actively running on another CPU 1160 * still, just relax and busy-wait without holding 1161 * any locks. 1162 * 1163 * NOTE! Since we don't hold any locks, it's not 1164 * even sure that "rq" stays as the right runqueue! 1165 * But we don't care, since "task_running()" will 1166 * return false if the runqueue has changed and p 1167 * is actually now running somewhere else! 1168 */ 1169 while (task_running(rq, p)) { 1170 if (match_state && unlikely(p->state != match_state)) 1171 return 0; 1172 cpu_relax(); 1173 } 1174 1175 /* 1176 * Ok, time to look more closely! We need the rq 1177 * lock now, to be *sure*. If we're wrong, we'll 1178 * just go back and repeat. 1179 */ 1180 rq = task_rq_lock(p, &flags); 1181 trace_sched_wait_task(p); 1182 running = task_running(rq, p); 1183 on_rq = p->on_rq; 1184 ncsw = 0; 1185 if (!match_state || p->state == match_state) 1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1187 task_rq_unlock(rq, p, &flags); 1188 1189 /* 1190 * If it changed from the expected state, bail out now. 1191 */ 1192 if (unlikely(!ncsw)) 1193 break; 1194 1195 /* 1196 * Was it really running after all now that we 1197 * checked with the proper locks actually held? 1198 * 1199 * Oops. Go back and try again.. 1200 */ 1201 if (unlikely(running)) { 1202 cpu_relax(); 1203 continue; 1204 } 1205 1206 /* 1207 * It's not enough that it's not actively running, 1208 * it must be off the runqueue _entirely_, and not 1209 * preempted! 1210 * 1211 * So if it was still runnable (but just not actively 1212 * running right now), it's preempted, and we should 1213 * yield - it could be a while. 1214 */ 1215 if (unlikely(on_rq)) { 1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1217 1218 set_current_state(TASK_UNINTERRUPTIBLE); 1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1220 continue; 1221 } 1222 1223 /* 1224 * Ahh, all good. It wasn't running, and it wasn't 1225 * runnable, which means that it will never become 1226 * running in the future either. We're all done! 1227 */ 1228 break; 1229 } 1230 1231 return ncsw; 1232 } 1233 1234 /*** 1235 * kick_process - kick a running thread to enter/exit the kernel 1236 * @p: the to-be-kicked thread 1237 * 1238 * Cause a process which is running on another CPU to enter 1239 * kernel-mode, without any delay. (to get signals handled.) 1240 * 1241 * NOTE: this function doesn't have to take the runqueue lock, 1242 * because all it wants to ensure is that the remote task enters 1243 * the kernel. If the IPI races and the task has been migrated 1244 * to another CPU then no harm is done and the purpose has been 1245 * achieved as well. 1246 */ 1247 void kick_process(struct task_struct *p) 1248 { 1249 int cpu; 1250 1251 preempt_disable(); 1252 cpu = task_cpu(p); 1253 if ((cpu != smp_processor_id()) && task_curr(p)) 1254 smp_send_reschedule(cpu); 1255 preempt_enable(); 1256 } 1257 EXPORT_SYMBOL_GPL(kick_process); 1258 #endif /* CONFIG_SMP */ 1259 1260 #ifdef CONFIG_SMP 1261 /* 1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1263 */ 1264 static int select_fallback_rq(int cpu, struct task_struct *p) 1265 { 1266 int dest_cpu; 1267 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); 1268 1269 /* Look for allowed, online CPU in same node. */ 1270 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask) 1271 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1272 return dest_cpu; 1273 1274 /* Any allowed, online CPU? */ 1275 dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask); 1276 if (dest_cpu < nr_cpu_ids) 1277 return dest_cpu; 1278 1279 /* No more Mr. Nice Guy. */ 1280 dest_cpu = cpuset_cpus_allowed_fallback(p); 1281 /* 1282 * Don't tell them about moving exiting tasks or 1283 * kernel threads (both mm NULL), since they never 1284 * leave kernel. 1285 */ 1286 if (p->mm && printk_ratelimit()) { 1287 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n", 1288 task_pid_nr(p), p->comm, cpu); 1289 } 1290 1291 return dest_cpu; 1292 } 1293 1294 /* 1295 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1296 */ 1297 static inline 1298 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) 1299 { 1300 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); 1301 1302 /* 1303 * In order not to call set_task_cpu() on a blocking task we need 1304 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1305 * cpu. 1306 * 1307 * Since this is common to all placement strategies, this lives here. 1308 * 1309 * [ this allows ->select_task() to simply return task_cpu(p) and 1310 * not worry about this generic constraint ] 1311 */ 1312 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1313 !cpu_online(cpu))) 1314 cpu = select_fallback_rq(task_cpu(p), p); 1315 1316 return cpu; 1317 } 1318 1319 static void update_avg(u64 *avg, u64 sample) 1320 { 1321 s64 diff = sample - *avg; 1322 *avg += diff >> 3; 1323 } 1324 #endif 1325 1326 static void 1327 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1328 { 1329 #ifdef CONFIG_SCHEDSTATS 1330 struct rq *rq = this_rq(); 1331 1332 #ifdef CONFIG_SMP 1333 int this_cpu = smp_processor_id(); 1334 1335 if (cpu == this_cpu) { 1336 schedstat_inc(rq, ttwu_local); 1337 schedstat_inc(p, se.statistics.nr_wakeups_local); 1338 } else { 1339 struct sched_domain *sd; 1340 1341 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1342 rcu_read_lock(); 1343 for_each_domain(this_cpu, sd) { 1344 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1345 schedstat_inc(sd, ttwu_wake_remote); 1346 break; 1347 } 1348 } 1349 rcu_read_unlock(); 1350 } 1351 1352 if (wake_flags & WF_MIGRATED) 1353 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1354 1355 #endif /* CONFIG_SMP */ 1356 1357 schedstat_inc(rq, ttwu_count); 1358 schedstat_inc(p, se.statistics.nr_wakeups); 1359 1360 if (wake_flags & WF_SYNC) 1361 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1362 1363 #endif /* CONFIG_SCHEDSTATS */ 1364 } 1365 1366 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1367 { 1368 activate_task(rq, p, en_flags); 1369 p->on_rq = 1; 1370 1371 /* if a worker is waking up, notify workqueue */ 1372 if (p->flags & PF_WQ_WORKER) 1373 wq_worker_waking_up(p, cpu_of(rq)); 1374 } 1375 1376 /* 1377 * Mark the task runnable and perform wakeup-preemption. 1378 */ 1379 static void 1380 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1381 { 1382 trace_sched_wakeup(p, true); 1383 check_preempt_curr(rq, p, wake_flags); 1384 1385 p->state = TASK_RUNNING; 1386 #ifdef CONFIG_SMP 1387 if (p->sched_class->task_woken) 1388 p->sched_class->task_woken(rq, p); 1389 1390 if (rq->idle_stamp) { 1391 u64 delta = rq->clock - rq->idle_stamp; 1392 u64 max = 2*sysctl_sched_migration_cost; 1393 1394 if (delta > max) 1395 rq->avg_idle = max; 1396 else 1397 update_avg(&rq->avg_idle, delta); 1398 rq->idle_stamp = 0; 1399 } 1400 #endif 1401 } 1402 1403 static void 1404 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1405 { 1406 #ifdef CONFIG_SMP 1407 if (p->sched_contributes_to_load) 1408 rq->nr_uninterruptible--; 1409 #endif 1410 1411 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1412 ttwu_do_wakeup(rq, p, wake_flags); 1413 } 1414 1415 /* 1416 * Called in case the task @p isn't fully descheduled from its runqueue, 1417 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1418 * since all we need to do is flip p->state to TASK_RUNNING, since 1419 * the task is still ->on_rq. 1420 */ 1421 static int ttwu_remote(struct task_struct *p, int wake_flags) 1422 { 1423 struct rq *rq; 1424 int ret = 0; 1425 1426 rq = __task_rq_lock(p); 1427 if (p->on_rq) { 1428 ttwu_do_wakeup(rq, p, wake_flags); 1429 ret = 1; 1430 } 1431 __task_rq_unlock(rq); 1432 1433 return ret; 1434 } 1435 1436 #ifdef CONFIG_SMP 1437 static void sched_ttwu_pending(void) 1438 { 1439 struct rq *rq = this_rq(); 1440 struct llist_node *llist = llist_del_all(&rq->wake_list); 1441 struct task_struct *p; 1442 1443 raw_spin_lock(&rq->lock); 1444 1445 while (llist) { 1446 p = llist_entry(llist, struct task_struct, wake_entry); 1447 llist = llist_next(llist); 1448 ttwu_do_activate(rq, p, 0); 1449 } 1450 1451 raw_spin_unlock(&rq->lock); 1452 } 1453 1454 void scheduler_ipi(void) 1455 { 1456 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1457 return; 1458 1459 /* 1460 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1461 * traditionally all their work was done from the interrupt return 1462 * path. Now that we actually do some work, we need to make sure 1463 * we do call them. 1464 * 1465 * Some archs already do call them, luckily irq_enter/exit nest 1466 * properly. 1467 * 1468 * Arguably we should visit all archs and update all handlers, 1469 * however a fair share of IPIs are still resched only so this would 1470 * somewhat pessimize the simple resched case. 1471 */ 1472 irq_enter(); 1473 sched_ttwu_pending(); 1474 1475 /* 1476 * Check if someone kicked us for doing the nohz idle load balance. 1477 */ 1478 if (unlikely(got_nohz_idle_kick() && !need_resched())) { 1479 this_rq()->idle_balance = 1; 1480 raise_softirq_irqoff(SCHED_SOFTIRQ); 1481 } 1482 irq_exit(); 1483 } 1484 1485 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1486 { 1487 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) 1488 smp_send_reschedule(cpu); 1489 } 1490 1491 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1492 static int ttwu_activate_remote(struct task_struct *p, int wake_flags) 1493 { 1494 struct rq *rq; 1495 int ret = 0; 1496 1497 rq = __task_rq_lock(p); 1498 if (p->on_cpu) { 1499 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1500 ttwu_do_wakeup(rq, p, wake_flags); 1501 ret = 1; 1502 } 1503 __task_rq_unlock(rq); 1504 1505 return ret; 1506 1507 } 1508 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1509 1510 bool cpus_share_cache(int this_cpu, int that_cpu) 1511 { 1512 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1513 } 1514 #endif /* CONFIG_SMP */ 1515 1516 static void ttwu_queue(struct task_struct *p, int cpu) 1517 { 1518 struct rq *rq = cpu_rq(cpu); 1519 1520 #if defined(CONFIG_SMP) 1521 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1522 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1523 ttwu_queue_remote(p, cpu); 1524 return; 1525 } 1526 #endif 1527 1528 raw_spin_lock(&rq->lock); 1529 ttwu_do_activate(rq, p, 0); 1530 raw_spin_unlock(&rq->lock); 1531 } 1532 1533 /** 1534 * try_to_wake_up - wake up a thread 1535 * @p: the thread to be awakened 1536 * @state: the mask of task states that can be woken 1537 * @wake_flags: wake modifier flags (WF_*) 1538 * 1539 * Put it on the run-queue if it's not already there. The "current" 1540 * thread is always on the run-queue (except when the actual 1541 * re-schedule is in progress), and as such you're allowed to do 1542 * the simpler "current->state = TASK_RUNNING" to mark yourself 1543 * runnable without the overhead of this. 1544 * 1545 * Returns %true if @p was woken up, %false if it was already running 1546 * or @state didn't match @p's state. 1547 */ 1548 static int 1549 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1550 { 1551 unsigned long flags; 1552 int cpu, success = 0; 1553 1554 smp_wmb(); 1555 raw_spin_lock_irqsave(&p->pi_lock, flags); 1556 if (!(p->state & state)) 1557 goto out; 1558 1559 success = 1; /* we're going to change ->state */ 1560 cpu = task_cpu(p); 1561 1562 if (p->on_rq && ttwu_remote(p, wake_flags)) 1563 goto stat; 1564 1565 #ifdef CONFIG_SMP 1566 /* 1567 * If the owning (remote) cpu is still in the middle of schedule() with 1568 * this task as prev, wait until its done referencing the task. 1569 */ 1570 while (p->on_cpu) { 1571 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1572 /* 1573 * In case the architecture enables interrupts in 1574 * context_switch(), we cannot busy wait, since that 1575 * would lead to deadlocks when an interrupt hits and 1576 * tries to wake up @prev. So bail and do a complete 1577 * remote wakeup. 1578 */ 1579 if (ttwu_activate_remote(p, wake_flags)) 1580 goto stat; 1581 #else 1582 cpu_relax(); 1583 #endif 1584 } 1585 /* 1586 * Pairs with the smp_wmb() in finish_lock_switch(). 1587 */ 1588 smp_rmb(); 1589 1590 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1591 p->state = TASK_WAKING; 1592 1593 if (p->sched_class->task_waking) 1594 p->sched_class->task_waking(p); 1595 1596 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); 1597 if (task_cpu(p) != cpu) { 1598 wake_flags |= WF_MIGRATED; 1599 set_task_cpu(p, cpu); 1600 } 1601 #endif /* CONFIG_SMP */ 1602 1603 ttwu_queue(p, cpu); 1604 stat: 1605 ttwu_stat(p, cpu, wake_flags); 1606 out: 1607 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1608 1609 return success; 1610 } 1611 1612 /** 1613 * try_to_wake_up_local - try to wake up a local task with rq lock held 1614 * @p: the thread to be awakened 1615 * 1616 * Put @p on the run-queue if it's not already there. The caller must 1617 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1618 * the current task. 1619 */ 1620 static void try_to_wake_up_local(struct task_struct *p) 1621 { 1622 struct rq *rq = task_rq(p); 1623 1624 BUG_ON(rq != this_rq()); 1625 BUG_ON(p == current); 1626 lockdep_assert_held(&rq->lock); 1627 1628 if (!raw_spin_trylock(&p->pi_lock)) { 1629 raw_spin_unlock(&rq->lock); 1630 raw_spin_lock(&p->pi_lock); 1631 raw_spin_lock(&rq->lock); 1632 } 1633 1634 if (!(p->state & TASK_NORMAL)) 1635 goto out; 1636 1637 if (!p->on_rq) 1638 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1639 1640 ttwu_do_wakeup(rq, p, 0); 1641 ttwu_stat(p, smp_processor_id(), 0); 1642 out: 1643 raw_spin_unlock(&p->pi_lock); 1644 } 1645 1646 /** 1647 * wake_up_process - Wake up a specific process 1648 * @p: The process to be woken up. 1649 * 1650 * Attempt to wake up the nominated process and move it to the set of runnable 1651 * processes. Returns 1 if the process was woken up, 0 if it was already 1652 * running. 1653 * 1654 * It may be assumed that this function implies a write memory barrier before 1655 * changing the task state if and only if any tasks are woken up. 1656 */ 1657 int wake_up_process(struct task_struct *p) 1658 { 1659 return try_to_wake_up(p, TASK_ALL, 0); 1660 } 1661 EXPORT_SYMBOL(wake_up_process); 1662 1663 int wake_up_state(struct task_struct *p, unsigned int state) 1664 { 1665 return try_to_wake_up(p, state, 0); 1666 } 1667 1668 /* 1669 * Perform scheduler related setup for a newly forked process p. 1670 * p is forked by current. 1671 * 1672 * __sched_fork() is basic setup used by init_idle() too: 1673 */ 1674 static void __sched_fork(struct task_struct *p) 1675 { 1676 p->on_rq = 0; 1677 1678 p->se.on_rq = 0; 1679 p->se.exec_start = 0; 1680 p->se.sum_exec_runtime = 0; 1681 p->se.prev_sum_exec_runtime = 0; 1682 p->se.nr_migrations = 0; 1683 p->se.vruntime = 0; 1684 INIT_LIST_HEAD(&p->se.group_node); 1685 1686 #ifdef CONFIG_SCHEDSTATS 1687 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1688 #endif 1689 1690 INIT_LIST_HEAD(&p->rt.run_list); 1691 1692 #ifdef CONFIG_PREEMPT_NOTIFIERS 1693 INIT_HLIST_HEAD(&p->preempt_notifiers); 1694 #endif 1695 } 1696 1697 /* 1698 * fork()/clone()-time setup: 1699 */ 1700 void sched_fork(struct task_struct *p) 1701 { 1702 unsigned long flags; 1703 int cpu = get_cpu(); 1704 1705 __sched_fork(p); 1706 /* 1707 * We mark the process as running here. This guarantees that 1708 * nobody will actually run it, and a signal or other external 1709 * event cannot wake it up and insert it on the runqueue either. 1710 */ 1711 p->state = TASK_RUNNING; 1712 1713 /* 1714 * Make sure we do not leak PI boosting priority to the child. 1715 */ 1716 p->prio = current->normal_prio; 1717 1718 /* 1719 * Revert to default priority/policy on fork if requested. 1720 */ 1721 if (unlikely(p->sched_reset_on_fork)) { 1722 if (task_has_rt_policy(p)) { 1723 p->policy = SCHED_NORMAL; 1724 p->static_prio = NICE_TO_PRIO(0); 1725 p->rt_priority = 0; 1726 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1727 p->static_prio = NICE_TO_PRIO(0); 1728 1729 p->prio = p->normal_prio = __normal_prio(p); 1730 set_load_weight(p); 1731 1732 /* 1733 * We don't need the reset flag anymore after the fork. It has 1734 * fulfilled its duty: 1735 */ 1736 p->sched_reset_on_fork = 0; 1737 } 1738 1739 if (!rt_prio(p->prio)) 1740 p->sched_class = &fair_sched_class; 1741 1742 if (p->sched_class->task_fork) 1743 p->sched_class->task_fork(p); 1744 1745 /* 1746 * The child is not yet in the pid-hash so no cgroup attach races, 1747 * and the cgroup is pinned to this child due to cgroup_fork() 1748 * is ran before sched_fork(). 1749 * 1750 * Silence PROVE_RCU. 1751 */ 1752 raw_spin_lock_irqsave(&p->pi_lock, flags); 1753 set_task_cpu(p, cpu); 1754 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1755 1756 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1757 if (likely(sched_info_on())) 1758 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1759 #endif 1760 #if defined(CONFIG_SMP) 1761 p->on_cpu = 0; 1762 #endif 1763 #ifdef CONFIG_PREEMPT_COUNT 1764 /* Want to start with kernel preemption disabled. */ 1765 task_thread_info(p)->preempt_count = 1; 1766 #endif 1767 #ifdef CONFIG_SMP 1768 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1769 #endif 1770 1771 put_cpu(); 1772 } 1773 1774 /* 1775 * wake_up_new_task - wake up a newly created task for the first time. 1776 * 1777 * This function will do some initial scheduler statistics housekeeping 1778 * that must be done for every newly created context, then puts the task 1779 * on the runqueue and wakes it. 1780 */ 1781 void wake_up_new_task(struct task_struct *p) 1782 { 1783 unsigned long flags; 1784 struct rq *rq; 1785 1786 raw_spin_lock_irqsave(&p->pi_lock, flags); 1787 #ifdef CONFIG_SMP 1788 /* 1789 * Fork balancing, do it here and not earlier because: 1790 * - cpus_allowed can change in the fork path 1791 * - any previously selected cpu might disappear through hotplug 1792 */ 1793 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0)); 1794 #endif 1795 1796 rq = __task_rq_lock(p); 1797 activate_task(rq, p, 0); 1798 p->on_rq = 1; 1799 trace_sched_wakeup_new(p, true); 1800 check_preempt_curr(rq, p, WF_FORK); 1801 #ifdef CONFIG_SMP 1802 if (p->sched_class->task_woken) 1803 p->sched_class->task_woken(rq, p); 1804 #endif 1805 task_rq_unlock(rq, p, &flags); 1806 } 1807 1808 #ifdef CONFIG_PREEMPT_NOTIFIERS 1809 1810 /** 1811 * preempt_notifier_register - tell me when current is being preempted & rescheduled 1812 * @notifier: notifier struct to register 1813 */ 1814 void preempt_notifier_register(struct preempt_notifier *notifier) 1815 { 1816 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 1817 } 1818 EXPORT_SYMBOL_GPL(preempt_notifier_register); 1819 1820 /** 1821 * preempt_notifier_unregister - no longer interested in preemption notifications 1822 * @notifier: notifier struct to unregister 1823 * 1824 * This is safe to call from within a preemption notifier. 1825 */ 1826 void preempt_notifier_unregister(struct preempt_notifier *notifier) 1827 { 1828 hlist_del(¬ifier->link); 1829 } 1830 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 1831 1832 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1833 { 1834 struct preempt_notifier *notifier; 1835 struct hlist_node *node; 1836 1837 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 1838 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 1839 } 1840 1841 static void 1842 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1843 struct task_struct *next) 1844 { 1845 struct preempt_notifier *notifier; 1846 struct hlist_node *node; 1847 1848 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 1849 notifier->ops->sched_out(notifier, next); 1850 } 1851 1852 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 1853 1854 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1855 { 1856 } 1857 1858 static void 1859 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1860 struct task_struct *next) 1861 { 1862 } 1863 1864 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 1865 1866 /** 1867 * prepare_task_switch - prepare to switch tasks 1868 * @rq: the runqueue preparing to switch 1869 * @prev: the current task that is being switched out 1870 * @next: the task we are going to switch to. 1871 * 1872 * This is called with the rq lock held and interrupts off. It must 1873 * be paired with a subsequent finish_task_switch after the context 1874 * switch. 1875 * 1876 * prepare_task_switch sets up locking and calls architecture specific 1877 * hooks. 1878 */ 1879 static inline void 1880 prepare_task_switch(struct rq *rq, struct task_struct *prev, 1881 struct task_struct *next) 1882 { 1883 sched_info_switch(prev, next); 1884 perf_event_task_sched_out(prev, next); 1885 fire_sched_out_preempt_notifiers(prev, next); 1886 prepare_lock_switch(rq, next); 1887 prepare_arch_switch(next); 1888 trace_sched_switch(prev, next); 1889 } 1890 1891 /** 1892 * finish_task_switch - clean up after a task-switch 1893 * @rq: runqueue associated with task-switch 1894 * @prev: the thread we just switched away from. 1895 * 1896 * finish_task_switch must be called after the context switch, paired 1897 * with a prepare_task_switch call before the context switch. 1898 * finish_task_switch will reconcile locking set up by prepare_task_switch, 1899 * and do any other architecture-specific cleanup actions. 1900 * 1901 * Note that we may have delayed dropping an mm in context_switch(). If 1902 * so, we finish that here outside of the runqueue lock. (Doing it 1903 * with the lock held can cause deadlocks; see schedule() for 1904 * details.) 1905 */ 1906 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 1907 __releases(rq->lock) 1908 { 1909 struct mm_struct *mm = rq->prev_mm; 1910 long prev_state; 1911 1912 rq->prev_mm = NULL; 1913 1914 /* 1915 * A task struct has one reference for the use as "current". 1916 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 1917 * schedule one last time. The schedule call will never return, and 1918 * the scheduled task must drop that reference. 1919 * The test for TASK_DEAD must occur while the runqueue locks are 1920 * still held, otherwise prev could be scheduled on another cpu, die 1921 * there before we look at prev->state, and then the reference would 1922 * be dropped twice. 1923 * Manfred Spraul <manfred@colorfullife.com> 1924 */ 1925 prev_state = prev->state; 1926 finish_arch_switch(prev); 1927 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1928 local_irq_disable(); 1929 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1930 perf_event_task_sched_in(prev, current); 1931 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1932 local_irq_enable(); 1933 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1934 finish_lock_switch(rq, prev); 1935 1936 fire_sched_in_preempt_notifiers(current); 1937 if (mm) 1938 mmdrop(mm); 1939 if (unlikely(prev_state == TASK_DEAD)) { 1940 /* 1941 * Remove function-return probe instances associated with this 1942 * task and put them back on the free list. 1943 */ 1944 kprobe_flush_task(prev); 1945 put_task_struct(prev); 1946 } 1947 } 1948 1949 #ifdef CONFIG_SMP 1950 1951 /* assumes rq->lock is held */ 1952 static inline void pre_schedule(struct rq *rq, struct task_struct *prev) 1953 { 1954 if (prev->sched_class->pre_schedule) 1955 prev->sched_class->pre_schedule(rq, prev); 1956 } 1957 1958 /* rq->lock is NOT held, but preemption is disabled */ 1959 static inline void post_schedule(struct rq *rq) 1960 { 1961 if (rq->post_schedule) { 1962 unsigned long flags; 1963 1964 raw_spin_lock_irqsave(&rq->lock, flags); 1965 if (rq->curr->sched_class->post_schedule) 1966 rq->curr->sched_class->post_schedule(rq); 1967 raw_spin_unlock_irqrestore(&rq->lock, flags); 1968 1969 rq->post_schedule = 0; 1970 } 1971 } 1972 1973 #else 1974 1975 static inline void pre_schedule(struct rq *rq, struct task_struct *p) 1976 { 1977 } 1978 1979 static inline void post_schedule(struct rq *rq) 1980 { 1981 } 1982 1983 #endif 1984 1985 /** 1986 * schedule_tail - first thing a freshly forked thread must call. 1987 * @prev: the thread we just switched away from. 1988 */ 1989 asmlinkage void schedule_tail(struct task_struct *prev) 1990 __releases(rq->lock) 1991 { 1992 struct rq *rq = this_rq(); 1993 1994 finish_task_switch(rq, prev); 1995 1996 /* 1997 * FIXME: do we need to worry about rq being invalidated by the 1998 * task_switch? 1999 */ 2000 post_schedule(rq); 2001 2002 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 2003 /* In this case, finish_task_switch does not reenable preemption */ 2004 preempt_enable(); 2005 #endif 2006 if (current->set_child_tid) 2007 put_user(task_pid_vnr(current), current->set_child_tid); 2008 } 2009 2010 /* 2011 * context_switch - switch to the new MM and the new 2012 * thread's register state. 2013 */ 2014 static inline void 2015 context_switch(struct rq *rq, struct task_struct *prev, 2016 struct task_struct *next) 2017 { 2018 struct mm_struct *mm, *oldmm; 2019 2020 prepare_task_switch(rq, prev, next); 2021 2022 mm = next->mm; 2023 oldmm = prev->active_mm; 2024 /* 2025 * For paravirt, this is coupled with an exit in switch_to to 2026 * combine the page table reload and the switch backend into 2027 * one hypercall. 2028 */ 2029 arch_start_context_switch(prev); 2030 2031 if (!mm) { 2032 next->active_mm = oldmm; 2033 atomic_inc(&oldmm->mm_count); 2034 enter_lazy_tlb(oldmm, next); 2035 } else 2036 switch_mm(oldmm, mm, next); 2037 2038 if (!prev->mm) { 2039 prev->active_mm = NULL; 2040 rq->prev_mm = oldmm; 2041 } 2042 /* 2043 * Since the runqueue lock will be released by the next 2044 * task (which is an invalid locking op but in the case 2045 * of the scheduler it's an obvious special-case), so we 2046 * do an early lockdep release here: 2047 */ 2048 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 2049 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2050 #endif 2051 2052 /* Here we just switch the register state and the stack. */ 2053 switch_to(prev, next, prev); 2054 2055 barrier(); 2056 /* 2057 * this_rq must be evaluated again because prev may have moved 2058 * CPUs since it called schedule(), thus the 'rq' on its stack 2059 * frame will be invalid. 2060 */ 2061 finish_task_switch(this_rq(), prev); 2062 } 2063 2064 /* 2065 * nr_running, nr_uninterruptible and nr_context_switches: 2066 * 2067 * externally visible scheduler statistics: current number of runnable 2068 * threads, current number of uninterruptible-sleeping threads, total 2069 * number of context switches performed since bootup. 2070 */ 2071 unsigned long nr_running(void) 2072 { 2073 unsigned long i, sum = 0; 2074 2075 for_each_online_cpu(i) 2076 sum += cpu_rq(i)->nr_running; 2077 2078 return sum; 2079 } 2080 2081 unsigned long nr_uninterruptible(void) 2082 { 2083 unsigned long i, sum = 0; 2084 2085 for_each_possible_cpu(i) 2086 sum += cpu_rq(i)->nr_uninterruptible; 2087 2088 /* 2089 * Since we read the counters lockless, it might be slightly 2090 * inaccurate. Do not allow it to go below zero though: 2091 */ 2092 if (unlikely((long)sum < 0)) 2093 sum = 0; 2094 2095 return sum; 2096 } 2097 2098 unsigned long long nr_context_switches(void) 2099 { 2100 int i; 2101 unsigned long long sum = 0; 2102 2103 for_each_possible_cpu(i) 2104 sum += cpu_rq(i)->nr_switches; 2105 2106 return sum; 2107 } 2108 2109 unsigned long nr_iowait(void) 2110 { 2111 unsigned long i, sum = 0; 2112 2113 for_each_possible_cpu(i) 2114 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2115 2116 return sum; 2117 } 2118 2119 unsigned long nr_iowait_cpu(int cpu) 2120 { 2121 struct rq *this = cpu_rq(cpu); 2122 return atomic_read(&this->nr_iowait); 2123 } 2124 2125 unsigned long this_cpu_load(void) 2126 { 2127 struct rq *this = this_rq(); 2128 return this->cpu_load[0]; 2129 } 2130 2131 2132 /* Variables and functions for calc_load */ 2133 static atomic_long_t calc_load_tasks; 2134 static unsigned long calc_load_update; 2135 unsigned long avenrun[3]; 2136 EXPORT_SYMBOL(avenrun); 2137 2138 static long calc_load_fold_active(struct rq *this_rq) 2139 { 2140 long nr_active, delta = 0; 2141 2142 nr_active = this_rq->nr_running; 2143 nr_active += (long) this_rq->nr_uninterruptible; 2144 2145 if (nr_active != this_rq->calc_load_active) { 2146 delta = nr_active - this_rq->calc_load_active; 2147 this_rq->calc_load_active = nr_active; 2148 } 2149 2150 return delta; 2151 } 2152 2153 static unsigned long 2154 calc_load(unsigned long load, unsigned long exp, unsigned long active) 2155 { 2156 load *= exp; 2157 load += active * (FIXED_1 - exp); 2158 load += 1UL << (FSHIFT - 1); 2159 return load >> FSHIFT; 2160 } 2161 2162 #ifdef CONFIG_NO_HZ 2163 /* 2164 * For NO_HZ we delay the active fold to the next LOAD_FREQ update. 2165 * 2166 * When making the ILB scale, we should try to pull this in as well. 2167 */ 2168 static atomic_long_t calc_load_tasks_idle; 2169 2170 void calc_load_account_idle(struct rq *this_rq) 2171 { 2172 long delta; 2173 2174 delta = calc_load_fold_active(this_rq); 2175 if (delta) 2176 atomic_long_add(delta, &calc_load_tasks_idle); 2177 } 2178 2179 static long calc_load_fold_idle(void) 2180 { 2181 long delta = 0; 2182 2183 /* 2184 * Its got a race, we don't care... 2185 */ 2186 if (atomic_long_read(&calc_load_tasks_idle)) 2187 delta = atomic_long_xchg(&calc_load_tasks_idle, 0); 2188 2189 return delta; 2190 } 2191 2192 /** 2193 * fixed_power_int - compute: x^n, in O(log n) time 2194 * 2195 * @x: base of the power 2196 * @frac_bits: fractional bits of @x 2197 * @n: power to raise @x to. 2198 * 2199 * By exploiting the relation between the definition of the natural power 2200 * function: x^n := x*x*...*x (x multiplied by itself for n times), and 2201 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, 2202 * (where: n_i \elem {0, 1}, the binary vector representing n), 2203 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is 2204 * of course trivially computable in O(log_2 n), the length of our binary 2205 * vector. 2206 */ 2207 static unsigned long 2208 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) 2209 { 2210 unsigned long result = 1UL << frac_bits; 2211 2212 if (n) for (;;) { 2213 if (n & 1) { 2214 result *= x; 2215 result += 1UL << (frac_bits - 1); 2216 result >>= frac_bits; 2217 } 2218 n >>= 1; 2219 if (!n) 2220 break; 2221 x *= x; 2222 x += 1UL << (frac_bits - 1); 2223 x >>= frac_bits; 2224 } 2225 2226 return result; 2227 } 2228 2229 /* 2230 * a1 = a0 * e + a * (1 - e) 2231 * 2232 * a2 = a1 * e + a * (1 - e) 2233 * = (a0 * e + a * (1 - e)) * e + a * (1 - e) 2234 * = a0 * e^2 + a * (1 - e) * (1 + e) 2235 * 2236 * a3 = a2 * e + a * (1 - e) 2237 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) 2238 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) 2239 * 2240 * ... 2241 * 2242 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] 2243 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) 2244 * = a0 * e^n + a * (1 - e^n) 2245 * 2246 * [1] application of the geometric series: 2247 * 2248 * n 1 - x^(n+1) 2249 * S_n := \Sum x^i = ------------- 2250 * i=0 1 - x 2251 */ 2252 static unsigned long 2253 calc_load_n(unsigned long load, unsigned long exp, 2254 unsigned long active, unsigned int n) 2255 { 2256 2257 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); 2258 } 2259 2260 /* 2261 * NO_HZ can leave us missing all per-cpu ticks calling 2262 * calc_load_account_active(), but since an idle CPU folds its delta into 2263 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold 2264 * in the pending idle delta if our idle period crossed a load cycle boundary. 2265 * 2266 * Once we've updated the global active value, we need to apply the exponential 2267 * weights adjusted to the number of cycles missed. 2268 */ 2269 static void calc_global_nohz(unsigned long ticks) 2270 { 2271 long delta, active, n; 2272 2273 if (time_before(jiffies, calc_load_update)) 2274 return; 2275 2276 /* 2277 * If we crossed a calc_load_update boundary, make sure to fold 2278 * any pending idle changes, the respective CPUs might have 2279 * missed the tick driven calc_load_account_active() update 2280 * due to NO_HZ. 2281 */ 2282 delta = calc_load_fold_idle(); 2283 if (delta) 2284 atomic_long_add(delta, &calc_load_tasks); 2285 2286 /* 2287 * If we were idle for multiple load cycles, apply them. 2288 */ 2289 if (ticks >= LOAD_FREQ) { 2290 n = ticks / LOAD_FREQ; 2291 2292 active = atomic_long_read(&calc_load_tasks); 2293 active = active > 0 ? active * FIXED_1 : 0; 2294 2295 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); 2296 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); 2297 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); 2298 2299 calc_load_update += n * LOAD_FREQ; 2300 } 2301 2302 /* 2303 * Its possible the remainder of the above division also crosses 2304 * a LOAD_FREQ period, the regular check in calc_global_load() 2305 * which comes after this will take care of that. 2306 * 2307 * Consider us being 11 ticks before a cycle completion, and us 2308 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will 2309 * age us 4 cycles, and the test in calc_global_load() will 2310 * pick up the final one. 2311 */ 2312 } 2313 #else 2314 void calc_load_account_idle(struct rq *this_rq) 2315 { 2316 } 2317 2318 static inline long calc_load_fold_idle(void) 2319 { 2320 return 0; 2321 } 2322 2323 static void calc_global_nohz(unsigned long ticks) 2324 { 2325 } 2326 #endif 2327 2328 /** 2329 * get_avenrun - get the load average array 2330 * @loads: pointer to dest load array 2331 * @offset: offset to add 2332 * @shift: shift count to shift the result left 2333 * 2334 * These values are estimates at best, so no need for locking. 2335 */ 2336 void get_avenrun(unsigned long *loads, unsigned long offset, int shift) 2337 { 2338 loads[0] = (avenrun[0] + offset) << shift; 2339 loads[1] = (avenrun[1] + offset) << shift; 2340 loads[2] = (avenrun[2] + offset) << shift; 2341 } 2342 2343 /* 2344 * calc_load - update the avenrun load estimates 10 ticks after the 2345 * CPUs have updated calc_load_tasks. 2346 */ 2347 void calc_global_load(unsigned long ticks) 2348 { 2349 long active; 2350 2351 calc_global_nohz(ticks); 2352 2353 if (time_before(jiffies, calc_load_update + 10)) 2354 return; 2355 2356 active = atomic_long_read(&calc_load_tasks); 2357 active = active > 0 ? active * FIXED_1 : 0; 2358 2359 avenrun[0] = calc_load(avenrun[0], EXP_1, active); 2360 avenrun[1] = calc_load(avenrun[1], EXP_5, active); 2361 avenrun[2] = calc_load(avenrun[2], EXP_15, active); 2362 2363 calc_load_update += LOAD_FREQ; 2364 } 2365 2366 /* 2367 * Called from update_cpu_load() to periodically update this CPU's 2368 * active count. 2369 */ 2370 static void calc_load_account_active(struct rq *this_rq) 2371 { 2372 long delta; 2373 2374 if (time_before(jiffies, this_rq->calc_load_update)) 2375 return; 2376 2377 delta = calc_load_fold_active(this_rq); 2378 delta += calc_load_fold_idle(); 2379 if (delta) 2380 atomic_long_add(delta, &calc_load_tasks); 2381 2382 this_rq->calc_load_update += LOAD_FREQ; 2383 } 2384 2385 /* 2386 * The exact cpuload at various idx values, calculated at every tick would be 2387 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load 2388 * 2389 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called 2390 * on nth tick when cpu may be busy, then we have: 2391 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2392 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load 2393 * 2394 * decay_load_missed() below does efficient calculation of 2395 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2396 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load 2397 * 2398 * The calculation is approximated on a 128 point scale. 2399 * degrade_zero_ticks is the number of ticks after which load at any 2400 * particular idx is approximated to be zero. 2401 * degrade_factor is a precomputed table, a row for each load idx. 2402 * Each column corresponds to degradation factor for a power of two ticks, 2403 * based on 128 point scale. 2404 * Example: 2405 * row 2, col 3 (=12) says that the degradation at load idx 2 after 2406 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). 2407 * 2408 * With this power of 2 load factors, we can degrade the load n times 2409 * by looking at 1 bits in n and doing as many mult/shift instead of 2410 * n mult/shifts needed by the exact degradation. 2411 */ 2412 #define DEGRADE_SHIFT 7 2413 static const unsigned char 2414 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 2415 static const unsigned char 2416 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 2417 {0, 0, 0, 0, 0, 0, 0, 0}, 2418 {64, 32, 8, 0, 0, 0, 0, 0}, 2419 {96, 72, 40, 12, 1, 0, 0}, 2420 {112, 98, 75, 43, 15, 1, 0}, 2421 {120, 112, 98, 76, 45, 16, 2} }; 2422 2423 /* 2424 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 2425 * would be when CPU is idle and so we just decay the old load without 2426 * adding any new load. 2427 */ 2428 static unsigned long 2429 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 2430 { 2431 int j = 0; 2432 2433 if (!missed_updates) 2434 return load; 2435 2436 if (missed_updates >= degrade_zero_ticks[idx]) 2437 return 0; 2438 2439 if (idx == 1) 2440 return load >> missed_updates; 2441 2442 while (missed_updates) { 2443 if (missed_updates % 2) 2444 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 2445 2446 missed_updates >>= 1; 2447 j++; 2448 } 2449 return load; 2450 } 2451 2452 /* 2453 * Update rq->cpu_load[] statistics. This function is usually called every 2454 * scheduler tick (TICK_NSEC). With tickless idle this will not be called 2455 * every tick. We fix it up based on jiffies. 2456 */ 2457 void update_cpu_load(struct rq *this_rq) 2458 { 2459 unsigned long this_load = this_rq->load.weight; 2460 unsigned long curr_jiffies = jiffies; 2461 unsigned long pending_updates; 2462 int i, scale; 2463 2464 this_rq->nr_load_updates++; 2465 2466 /* Avoid repeated calls on same jiffy, when moving in and out of idle */ 2467 if (curr_jiffies == this_rq->last_load_update_tick) 2468 return; 2469 2470 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2471 this_rq->last_load_update_tick = curr_jiffies; 2472 2473 /* Update our load: */ 2474 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 2475 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 2476 unsigned long old_load, new_load; 2477 2478 /* scale is effectively 1 << i now, and >> i divides by scale */ 2479 2480 old_load = this_rq->cpu_load[i]; 2481 old_load = decay_load_missed(old_load, pending_updates - 1, i); 2482 new_load = this_load; 2483 /* 2484 * Round up the averaging division if load is increasing. This 2485 * prevents us from getting stuck on 9 if the load is 10, for 2486 * example. 2487 */ 2488 if (new_load > old_load) 2489 new_load += scale - 1; 2490 2491 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 2492 } 2493 2494 sched_avg_update(this_rq); 2495 } 2496 2497 static void update_cpu_load_active(struct rq *this_rq) 2498 { 2499 update_cpu_load(this_rq); 2500 2501 calc_load_account_active(this_rq); 2502 } 2503 2504 #ifdef CONFIG_SMP 2505 2506 /* 2507 * sched_exec - execve() is a valuable balancing opportunity, because at 2508 * this point the task has the smallest effective memory and cache footprint. 2509 */ 2510 void sched_exec(void) 2511 { 2512 struct task_struct *p = current; 2513 unsigned long flags; 2514 int dest_cpu; 2515 2516 raw_spin_lock_irqsave(&p->pi_lock, flags); 2517 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0); 2518 if (dest_cpu == smp_processor_id()) 2519 goto unlock; 2520 2521 if (likely(cpu_active(dest_cpu))) { 2522 struct migration_arg arg = { p, dest_cpu }; 2523 2524 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2525 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2526 return; 2527 } 2528 unlock: 2529 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2530 } 2531 2532 #endif 2533 2534 DEFINE_PER_CPU(struct kernel_stat, kstat); 2535 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2536 2537 EXPORT_PER_CPU_SYMBOL(kstat); 2538 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2539 2540 /* 2541 * Return any ns on the sched_clock that have not yet been accounted in 2542 * @p in case that task is currently running. 2543 * 2544 * Called with task_rq_lock() held on @rq. 2545 */ 2546 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2547 { 2548 u64 ns = 0; 2549 2550 if (task_current(rq, p)) { 2551 update_rq_clock(rq); 2552 ns = rq->clock_task - p->se.exec_start; 2553 if ((s64)ns < 0) 2554 ns = 0; 2555 } 2556 2557 return ns; 2558 } 2559 2560 unsigned long long task_delta_exec(struct task_struct *p) 2561 { 2562 unsigned long flags; 2563 struct rq *rq; 2564 u64 ns = 0; 2565 2566 rq = task_rq_lock(p, &flags); 2567 ns = do_task_delta_exec(p, rq); 2568 task_rq_unlock(rq, p, &flags); 2569 2570 return ns; 2571 } 2572 2573 /* 2574 * Return accounted runtime for the task. 2575 * In case the task is currently running, return the runtime plus current's 2576 * pending runtime that have not been accounted yet. 2577 */ 2578 unsigned long long task_sched_runtime(struct task_struct *p) 2579 { 2580 unsigned long flags; 2581 struct rq *rq; 2582 u64 ns = 0; 2583 2584 rq = task_rq_lock(p, &flags); 2585 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2586 task_rq_unlock(rq, p, &flags); 2587 2588 return ns; 2589 } 2590 2591 #ifdef CONFIG_CGROUP_CPUACCT 2592 struct cgroup_subsys cpuacct_subsys; 2593 struct cpuacct root_cpuacct; 2594 #endif 2595 2596 static inline void task_group_account_field(struct task_struct *p, int index, 2597 u64 tmp) 2598 { 2599 #ifdef CONFIG_CGROUP_CPUACCT 2600 struct kernel_cpustat *kcpustat; 2601 struct cpuacct *ca; 2602 #endif 2603 /* 2604 * Since all updates are sure to touch the root cgroup, we 2605 * get ourselves ahead and touch it first. If the root cgroup 2606 * is the only cgroup, then nothing else should be necessary. 2607 * 2608 */ 2609 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp; 2610 2611 #ifdef CONFIG_CGROUP_CPUACCT 2612 if (unlikely(!cpuacct_subsys.active)) 2613 return; 2614 2615 rcu_read_lock(); 2616 ca = task_ca(p); 2617 while (ca && (ca != &root_cpuacct)) { 2618 kcpustat = this_cpu_ptr(ca->cpustat); 2619 kcpustat->cpustat[index] += tmp; 2620 ca = parent_ca(ca); 2621 } 2622 rcu_read_unlock(); 2623 #endif 2624 } 2625 2626 2627 /* 2628 * Account user cpu time to a process. 2629 * @p: the process that the cpu time gets accounted to 2630 * @cputime: the cpu time spent in user space since the last update 2631 * @cputime_scaled: cputime scaled by cpu frequency 2632 */ 2633 void account_user_time(struct task_struct *p, cputime_t cputime, 2634 cputime_t cputime_scaled) 2635 { 2636 int index; 2637 2638 /* Add user time to process. */ 2639 p->utime += cputime; 2640 p->utimescaled += cputime_scaled; 2641 account_group_user_time(p, cputime); 2642 2643 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 2644 2645 /* Add user time to cpustat. */ 2646 task_group_account_field(p, index, (__force u64) cputime); 2647 2648 /* Account for user time used */ 2649 acct_update_integrals(p); 2650 } 2651 2652 /* 2653 * Account guest cpu time to a process. 2654 * @p: the process that the cpu time gets accounted to 2655 * @cputime: the cpu time spent in virtual machine since the last update 2656 * @cputime_scaled: cputime scaled by cpu frequency 2657 */ 2658 static void account_guest_time(struct task_struct *p, cputime_t cputime, 2659 cputime_t cputime_scaled) 2660 { 2661 u64 *cpustat = kcpustat_this_cpu->cpustat; 2662 2663 /* Add guest time to process. */ 2664 p->utime += cputime; 2665 p->utimescaled += cputime_scaled; 2666 account_group_user_time(p, cputime); 2667 p->gtime += cputime; 2668 2669 /* Add guest time to cpustat. */ 2670 if (TASK_NICE(p) > 0) { 2671 cpustat[CPUTIME_NICE] += (__force u64) cputime; 2672 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; 2673 } else { 2674 cpustat[CPUTIME_USER] += (__force u64) cputime; 2675 cpustat[CPUTIME_GUEST] += (__force u64) cputime; 2676 } 2677 } 2678 2679 /* 2680 * Account system cpu time to a process and desired cpustat field 2681 * @p: the process that the cpu time gets accounted to 2682 * @cputime: the cpu time spent in kernel space since the last update 2683 * @cputime_scaled: cputime scaled by cpu frequency 2684 * @target_cputime64: pointer to cpustat field that has to be updated 2685 */ 2686 static inline 2687 void __account_system_time(struct task_struct *p, cputime_t cputime, 2688 cputime_t cputime_scaled, int index) 2689 { 2690 /* Add system time to process. */ 2691 p->stime += cputime; 2692 p->stimescaled += cputime_scaled; 2693 account_group_system_time(p, cputime); 2694 2695 /* Add system time to cpustat. */ 2696 task_group_account_field(p, index, (__force u64) cputime); 2697 2698 /* Account for system time used */ 2699 acct_update_integrals(p); 2700 } 2701 2702 /* 2703 * Account system cpu time to a process. 2704 * @p: the process that the cpu time gets accounted to 2705 * @hardirq_offset: the offset to subtract from hardirq_count() 2706 * @cputime: the cpu time spent in kernel space since the last update 2707 * @cputime_scaled: cputime scaled by cpu frequency 2708 */ 2709 void account_system_time(struct task_struct *p, int hardirq_offset, 2710 cputime_t cputime, cputime_t cputime_scaled) 2711 { 2712 int index; 2713 2714 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 2715 account_guest_time(p, cputime, cputime_scaled); 2716 return; 2717 } 2718 2719 if (hardirq_count() - hardirq_offset) 2720 index = CPUTIME_IRQ; 2721 else if (in_serving_softirq()) 2722 index = CPUTIME_SOFTIRQ; 2723 else 2724 index = CPUTIME_SYSTEM; 2725 2726 __account_system_time(p, cputime, cputime_scaled, index); 2727 } 2728 2729 /* 2730 * Account for involuntary wait time. 2731 * @cputime: the cpu time spent in involuntary wait 2732 */ 2733 void account_steal_time(cputime_t cputime) 2734 { 2735 u64 *cpustat = kcpustat_this_cpu->cpustat; 2736 2737 cpustat[CPUTIME_STEAL] += (__force u64) cputime; 2738 } 2739 2740 /* 2741 * Account for idle time. 2742 * @cputime: the cpu time spent in idle wait 2743 */ 2744 void account_idle_time(cputime_t cputime) 2745 { 2746 u64 *cpustat = kcpustat_this_cpu->cpustat; 2747 struct rq *rq = this_rq(); 2748 2749 if (atomic_read(&rq->nr_iowait) > 0) 2750 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; 2751 else 2752 cpustat[CPUTIME_IDLE] += (__force u64) cputime; 2753 } 2754 2755 static __always_inline bool steal_account_process_tick(void) 2756 { 2757 #ifdef CONFIG_PARAVIRT 2758 if (static_branch(¶virt_steal_enabled)) { 2759 u64 steal, st = 0; 2760 2761 steal = paravirt_steal_clock(smp_processor_id()); 2762 steal -= this_rq()->prev_steal_time; 2763 2764 st = steal_ticks(steal); 2765 this_rq()->prev_steal_time += st * TICK_NSEC; 2766 2767 account_steal_time(st); 2768 return st; 2769 } 2770 #endif 2771 return false; 2772 } 2773 2774 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 2775 2776 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2777 /* 2778 * Account a tick to a process and cpustat 2779 * @p: the process that the cpu time gets accounted to 2780 * @user_tick: is the tick from userspace 2781 * @rq: the pointer to rq 2782 * 2783 * Tick demultiplexing follows the order 2784 * - pending hardirq update 2785 * - pending softirq update 2786 * - user_time 2787 * - idle_time 2788 * - system time 2789 * - check for guest_time 2790 * - else account as system_time 2791 * 2792 * Check for hardirq is done both for system and user time as there is 2793 * no timer going off while we are on hardirq and hence we may never get an 2794 * opportunity to update it solely in system time. 2795 * p->stime and friends are only updated on system time and not on irq 2796 * softirq as those do not count in task exec_runtime any more. 2797 */ 2798 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 2799 struct rq *rq) 2800 { 2801 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 2802 u64 *cpustat = kcpustat_this_cpu->cpustat; 2803 2804 if (steal_account_process_tick()) 2805 return; 2806 2807 if (irqtime_account_hi_update()) { 2808 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy; 2809 } else if (irqtime_account_si_update()) { 2810 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy; 2811 } else if (this_cpu_ksoftirqd() == p) { 2812 /* 2813 * ksoftirqd time do not get accounted in cpu_softirq_time. 2814 * So, we have to handle it separately here. 2815 * Also, p->stime needs to be updated for ksoftirqd. 2816 */ 2817 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 2818 CPUTIME_SOFTIRQ); 2819 } else if (user_tick) { 2820 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 2821 } else if (p == rq->idle) { 2822 account_idle_time(cputime_one_jiffy); 2823 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 2824 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); 2825 } else { 2826 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 2827 CPUTIME_SYSTEM); 2828 } 2829 } 2830 2831 static void irqtime_account_idle_ticks(int ticks) 2832 { 2833 int i; 2834 struct rq *rq = this_rq(); 2835 2836 for (i = 0; i < ticks; i++) 2837 irqtime_account_process_tick(current, 0, rq); 2838 } 2839 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 2840 static void irqtime_account_idle_ticks(int ticks) {} 2841 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 2842 struct rq *rq) {} 2843 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 2844 2845 /* 2846 * Account a single tick of cpu time. 2847 * @p: the process that the cpu time gets accounted to 2848 * @user_tick: indicates if the tick is a user or a system tick 2849 */ 2850 void account_process_tick(struct task_struct *p, int user_tick) 2851 { 2852 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 2853 struct rq *rq = this_rq(); 2854 2855 if (sched_clock_irqtime) { 2856 irqtime_account_process_tick(p, user_tick, rq); 2857 return; 2858 } 2859 2860 if (steal_account_process_tick()) 2861 return; 2862 2863 if (user_tick) 2864 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 2865 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 2866 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, 2867 one_jiffy_scaled); 2868 else 2869 account_idle_time(cputime_one_jiffy); 2870 } 2871 2872 /* 2873 * Account multiple ticks of steal time. 2874 * @p: the process from which the cpu time has been stolen 2875 * @ticks: number of stolen ticks 2876 */ 2877 void account_steal_ticks(unsigned long ticks) 2878 { 2879 account_steal_time(jiffies_to_cputime(ticks)); 2880 } 2881 2882 /* 2883 * Account multiple ticks of idle time. 2884 * @ticks: number of stolen ticks 2885 */ 2886 void account_idle_ticks(unsigned long ticks) 2887 { 2888 2889 if (sched_clock_irqtime) { 2890 irqtime_account_idle_ticks(ticks); 2891 return; 2892 } 2893 2894 account_idle_time(jiffies_to_cputime(ticks)); 2895 } 2896 2897 #endif 2898 2899 /* 2900 * Use precise platform statistics if available: 2901 */ 2902 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 2903 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2904 { 2905 *ut = p->utime; 2906 *st = p->stime; 2907 } 2908 2909 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2910 { 2911 struct task_cputime cputime; 2912 2913 thread_group_cputime(p, &cputime); 2914 2915 *ut = cputime.utime; 2916 *st = cputime.stime; 2917 } 2918 #else 2919 2920 #ifndef nsecs_to_cputime 2921 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) 2922 #endif 2923 2924 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2925 { 2926 cputime_t rtime, utime = p->utime, total = utime + p->stime; 2927 2928 /* 2929 * Use CFS's precise accounting: 2930 */ 2931 rtime = nsecs_to_cputime(p->se.sum_exec_runtime); 2932 2933 if (total) { 2934 u64 temp = (__force u64) rtime; 2935 2936 temp *= (__force u64) utime; 2937 do_div(temp, (__force u32) total); 2938 utime = (__force cputime_t) temp; 2939 } else 2940 utime = rtime; 2941 2942 /* 2943 * Compare with previous values, to keep monotonicity: 2944 */ 2945 p->prev_utime = max(p->prev_utime, utime); 2946 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime); 2947 2948 *ut = p->prev_utime; 2949 *st = p->prev_stime; 2950 } 2951 2952 /* 2953 * Must be called with siglock held. 2954 */ 2955 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2956 { 2957 struct signal_struct *sig = p->signal; 2958 struct task_cputime cputime; 2959 cputime_t rtime, utime, total; 2960 2961 thread_group_cputime(p, &cputime); 2962 2963 total = cputime.utime + cputime.stime; 2964 rtime = nsecs_to_cputime(cputime.sum_exec_runtime); 2965 2966 if (total) { 2967 u64 temp = (__force u64) rtime; 2968 2969 temp *= (__force u64) cputime.utime; 2970 do_div(temp, (__force u32) total); 2971 utime = (__force cputime_t) temp; 2972 } else 2973 utime = rtime; 2974 2975 sig->prev_utime = max(sig->prev_utime, utime); 2976 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime); 2977 2978 *ut = sig->prev_utime; 2979 *st = sig->prev_stime; 2980 } 2981 #endif 2982 2983 /* 2984 * This function gets called by the timer code, with HZ frequency. 2985 * We call it with interrupts disabled. 2986 */ 2987 void scheduler_tick(void) 2988 { 2989 int cpu = smp_processor_id(); 2990 struct rq *rq = cpu_rq(cpu); 2991 struct task_struct *curr = rq->curr; 2992 2993 sched_clock_tick(); 2994 2995 raw_spin_lock(&rq->lock); 2996 update_rq_clock(rq); 2997 update_cpu_load_active(rq); 2998 curr->sched_class->task_tick(rq, curr, 0); 2999 raw_spin_unlock(&rq->lock); 3000 3001 perf_event_task_tick(); 3002 3003 #ifdef CONFIG_SMP 3004 rq->idle_balance = idle_cpu(cpu); 3005 trigger_load_balance(rq, cpu); 3006 #endif 3007 } 3008 3009 notrace unsigned long get_parent_ip(unsigned long addr) 3010 { 3011 if (in_lock_functions(addr)) { 3012 addr = CALLER_ADDR2; 3013 if (in_lock_functions(addr)) 3014 addr = CALLER_ADDR3; 3015 } 3016 return addr; 3017 } 3018 3019 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3020 defined(CONFIG_PREEMPT_TRACER)) 3021 3022 void __kprobes add_preempt_count(int val) 3023 { 3024 #ifdef CONFIG_DEBUG_PREEMPT 3025 /* 3026 * Underflow? 3027 */ 3028 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3029 return; 3030 #endif 3031 preempt_count() += val; 3032 #ifdef CONFIG_DEBUG_PREEMPT 3033 /* 3034 * Spinlock count overflowing soon? 3035 */ 3036 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3037 PREEMPT_MASK - 10); 3038 #endif 3039 if (preempt_count() == val) 3040 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 3041 } 3042 EXPORT_SYMBOL(add_preempt_count); 3043 3044 void __kprobes sub_preempt_count(int val) 3045 { 3046 #ifdef CONFIG_DEBUG_PREEMPT 3047 /* 3048 * Underflow? 3049 */ 3050 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3051 return; 3052 /* 3053 * Is the spinlock portion underflowing? 3054 */ 3055 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3056 !(preempt_count() & PREEMPT_MASK))) 3057 return; 3058 #endif 3059 3060 if (preempt_count() == val) 3061 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 3062 preempt_count() -= val; 3063 } 3064 EXPORT_SYMBOL(sub_preempt_count); 3065 3066 #endif 3067 3068 /* 3069 * Print scheduling while atomic bug: 3070 */ 3071 static noinline void __schedule_bug(struct task_struct *prev) 3072 { 3073 struct pt_regs *regs = get_irq_regs(); 3074 3075 if (oops_in_progress) 3076 return; 3077 3078 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3079 prev->comm, prev->pid, preempt_count()); 3080 3081 debug_show_held_locks(prev); 3082 print_modules(); 3083 if (irqs_disabled()) 3084 print_irqtrace_events(prev); 3085 3086 if (regs) 3087 show_regs(regs); 3088 else 3089 dump_stack(); 3090 } 3091 3092 /* 3093 * Various schedule()-time debugging checks and statistics: 3094 */ 3095 static inline void schedule_debug(struct task_struct *prev) 3096 { 3097 /* 3098 * Test if we are atomic. Since do_exit() needs to call into 3099 * schedule() atomically, we ignore that path for now. 3100 * Otherwise, whine if we are scheduling when we should not be. 3101 */ 3102 if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) 3103 __schedule_bug(prev); 3104 rcu_sleep_check(); 3105 3106 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3107 3108 schedstat_inc(this_rq(), sched_count); 3109 } 3110 3111 static void put_prev_task(struct rq *rq, struct task_struct *prev) 3112 { 3113 if (prev->on_rq || rq->skip_clock_update < 0) 3114 update_rq_clock(rq); 3115 prev->sched_class->put_prev_task(rq, prev); 3116 } 3117 3118 /* 3119 * Pick up the highest-prio task: 3120 */ 3121 static inline struct task_struct * 3122 pick_next_task(struct rq *rq) 3123 { 3124 const struct sched_class *class; 3125 struct task_struct *p; 3126 3127 /* 3128 * Optimization: we know that if all tasks are in 3129 * the fair class we can call that function directly: 3130 */ 3131 if (likely(rq->nr_running == rq->cfs.h_nr_running)) { 3132 p = fair_sched_class.pick_next_task(rq); 3133 if (likely(p)) 3134 return p; 3135 } 3136 3137 for_each_class(class) { 3138 p = class->pick_next_task(rq); 3139 if (p) 3140 return p; 3141 } 3142 3143 BUG(); /* the idle class will always have a runnable task */ 3144 } 3145 3146 /* 3147 * __schedule() is the main scheduler function. 3148 */ 3149 static void __sched __schedule(void) 3150 { 3151 struct task_struct *prev, *next; 3152 unsigned long *switch_count; 3153 struct rq *rq; 3154 int cpu; 3155 3156 need_resched: 3157 preempt_disable(); 3158 cpu = smp_processor_id(); 3159 rq = cpu_rq(cpu); 3160 rcu_note_context_switch(cpu); 3161 prev = rq->curr; 3162 3163 schedule_debug(prev); 3164 3165 if (sched_feat(HRTICK)) 3166 hrtick_clear(rq); 3167 3168 raw_spin_lock_irq(&rq->lock); 3169 3170 switch_count = &prev->nivcsw; 3171 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 3172 if (unlikely(signal_pending_state(prev->state, prev))) { 3173 prev->state = TASK_RUNNING; 3174 } else { 3175 deactivate_task(rq, prev, DEQUEUE_SLEEP); 3176 prev->on_rq = 0; 3177 3178 /* 3179 * If a worker went to sleep, notify and ask workqueue 3180 * whether it wants to wake up a task to maintain 3181 * concurrency. 3182 */ 3183 if (prev->flags & PF_WQ_WORKER) { 3184 struct task_struct *to_wakeup; 3185 3186 to_wakeup = wq_worker_sleeping(prev, cpu); 3187 if (to_wakeup) 3188 try_to_wake_up_local(to_wakeup); 3189 } 3190 } 3191 switch_count = &prev->nvcsw; 3192 } 3193 3194 pre_schedule(rq, prev); 3195 3196 if (unlikely(!rq->nr_running)) 3197 idle_balance(cpu, rq); 3198 3199 put_prev_task(rq, prev); 3200 next = pick_next_task(rq); 3201 clear_tsk_need_resched(prev); 3202 rq->skip_clock_update = 0; 3203 3204 if (likely(prev != next)) { 3205 rq->nr_switches++; 3206 rq->curr = next; 3207 ++*switch_count; 3208 3209 context_switch(rq, prev, next); /* unlocks the rq */ 3210 /* 3211 * The context switch have flipped the stack from under us 3212 * and restored the local variables which were saved when 3213 * this task called schedule() in the past. prev == current 3214 * is still correct, but it can be moved to another cpu/rq. 3215 */ 3216 cpu = smp_processor_id(); 3217 rq = cpu_rq(cpu); 3218 } else 3219 raw_spin_unlock_irq(&rq->lock); 3220 3221 post_schedule(rq); 3222 3223 preempt_enable_no_resched(); 3224 if (need_resched()) 3225 goto need_resched; 3226 } 3227 3228 static inline void sched_submit_work(struct task_struct *tsk) 3229 { 3230 if (!tsk->state) 3231 return; 3232 /* 3233 * If we are going to sleep and we have plugged IO queued, 3234 * make sure to submit it to avoid deadlocks. 3235 */ 3236 if (blk_needs_flush_plug(tsk)) 3237 blk_schedule_flush_plug(tsk); 3238 } 3239 3240 asmlinkage void __sched schedule(void) 3241 { 3242 struct task_struct *tsk = current; 3243 3244 sched_submit_work(tsk); 3245 __schedule(); 3246 } 3247 EXPORT_SYMBOL(schedule); 3248 3249 /** 3250 * schedule_preempt_disabled - called with preemption disabled 3251 * 3252 * Returns with preemption disabled. Note: preempt_count must be 1 3253 */ 3254 void __sched schedule_preempt_disabled(void) 3255 { 3256 preempt_enable_no_resched(); 3257 schedule(); 3258 preempt_disable(); 3259 } 3260 3261 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 3262 3263 static inline bool owner_running(struct mutex *lock, struct task_struct *owner) 3264 { 3265 if (lock->owner != owner) 3266 return false; 3267 3268 /* 3269 * Ensure we emit the owner->on_cpu, dereference _after_ checking 3270 * lock->owner still matches owner, if that fails, owner might 3271 * point to free()d memory, if it still matches, the rcu_read_lock() 3272 * ensures the memory stays valid. 3273 */ 3274 barrier(); 3275 3276 return owner->on_cpu; 3277 } 3278 3279 /* 3280 * Look out! "owner" is an entirely speculative pointer 3281 * access and not reliable. 3282 */ 3283 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) 3284 { 3285 if (!sched_feat(OWNER_SPIN)) 3286 return 0; 3287 3288 rcu_read_lock(); 3289 while (owner_running(lock, owner)) { 3290 if (need_resched()) 3291 break; 3292 3293 arch_mutex_cpu_relax(); 3294 } 3295 rcu_read_unlock(); 3296 3297 /* 3298 * We break out the loop above on need_resched() and when the 3299 * owner changed, which is a sign for heavy contention. Return 3300 * success only when lock->owner is NULL. 3301 */ 3302 return lock->owner == NULL; 3303 } 3304 #endif 3305 3306 #ifdef CONFIG_PREEMPT 3307 /* 3308 * this is the entry point to schedule() from in-kernel preemption 3309 * off of preempt_enable. Kernel preemptions off return from interrupt 3310 * occur there and call schedule directly. 3311 */ 3312 asmlinkage void __sched notrace preempt_schedule(void) 3313 { 3314 struct thread_info *ti = current_thread_info(); 3315 3316 /* 3317 * If there is a non-zero preempt_count or interrupts are disabled, 3318 * we do not want to preempt the current task. Just return.. 3319 */ 3320 if (likely(ti->preempt_count || irqs_disabled())) 3321 return; 3322 3323 do { 3324 add_preempt_count_notrace(PREEMPT_ACTIVE); 3325 __schedule(); 3326 sub_preempt_count_notrace(PREEMPT_ACTIVE); 3327 3328 /* 3329 * Check again in case we missed a preemption opportunity 3330 * between schedule and now. 3331 */ 3332 barrier(); 3333 } while (need_resched()); 3334 } 3335 EXPORT_SYMBOL(preempt_schedule); 3336 3337 /* 3338 * this is the entry point to schedule() from kernel preemption 3339 * off of irq context. 3340 * Note, that this is called and return with irqs disabled. This will 3341 * protect us against recursive calling from irq. 3342 */ 3343 asmlinkage void __sched preempt_schedule_irq(void) 3344 { 3345 struct thread_info *ti = current_thread_info(); 3346 3347 /* Catch callers which need to be fixed */ 3348 BUG_ON(ti->preempt_count || !irqs_disabled()); 3349 3350 do { 3351 add_preempt_count(PREEMPT_ACTIVE); 3352 local_irq_enable(); 3353 __schedule(); 3354 local_irq_disable(); 3355 sub_preempt_count(PREEMPT_ACTIVE); 3356 3357 /* 3358 * Check again in case we missed a preemption opportunity 3359 * between schedule and now. 3360 */ 3361 barrier(); 3362 } while (need_resched()); 3363 } 3364 3365 #endif /* CONFIG_PREEMPT */ 3366 3367 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3368 void *key) 3369 { 3370 return try_to_wake_up(curr->private, mode, wake_flags); 3371 } 3372 EXPORT_SYMBOL(default_wake_function); 3373 3374 /* 3375 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 3376 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 3377 * number) then we wake all the non-exclusive tasks and one exclusive task. 3378 * 3379 * There are circumstances in which we can try to wake a task which has already 3380 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 3381 * zero in this (rare) case, and we handle it by continuing to scan the queue. 3382 */ 3383 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, 3384 int nr_exclusive, int wake_flags, void *key) 3385 { 3386 wait_queue_t *curr, *next; 3387 3388 list_for_each_entry_safe(curr, next, &q->task_list, task_list) { 3389 unsigned flags = curr->flags; 3390 3391 if (curr->func(curr, mode, wake_flags, key) && 3392 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 3393 break; 3394 } 3395 } 3396 3397 /** 3398 * __wake_up - wake up threads blocked on a waitqueue. 3399 * @q: the waitqueue 3400 * @mode: which threads 3401 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3402 * @key: is directly passed to the wakeup function 3403 * 3404 * It may be assumed that this function implies a write memory barrier before 3405 * changing the task state if and only if any tasks are woken up. 3406 */ 3407 void __wake_up(wait_queue_head_t *q, unsigned int mode, 3408 int nr_exclusive, void *key) 3409 { 3410 unsigned long flags; 3411 3412 spin_lock_irqsave(&q->lock, flags); 3413 __wake_up_common(q, mode, nr_exclusive, 0, key); 3414 spin_unlock_irqrestore(&q->lock, flags); 3415 } 3416 EXPORT_SYMBOL(__wake_up); 3417 3418 /* 3419 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 3420 */ 3421 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) 3422 { 3423 __wake_up_common(q, mode, 1, 0, NULL); 3424 } 3425 EXPORT_SYMBOL_GPL(__wake_up_locked); 3426 3427 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) 3428 { 3429 __wake_up_common(q, mode, 1, 0, key); 3430 } 3431 EXPORT_SYMBOL_GPL(__wake_up_locked_key); 3432 3433 /** 3434 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 3435 * @q: the waitqueue 3436 * @mode: which threads 3437 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3438 * @key: opaque value to be passed to wakeup targets 3439 * 3440 * The sync wakeup differs that the waker knows that it will schedule 3441 * away soon, so while the target thread will be woken up, it will not 3442 * be migrated to another CPU - ie. the two threads are 'synchronized' 3443 * with each other. This can prevent needless bouncing between CPUs. 3444 * 3445 * On UP it can prevent extra preemption. 3446 * 3447 * It may be assumed that this function implies a write memory barrier before 3448 * changing the task state if and only if any tasks are woken up. 3449 */ 3450 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, 3451 int nr_exclusive, void *key) 3452 { 3453 unsigned long flags; 3454 int wake_flags = WF_SYNC; 3455 3456 if (unlikely(!q)) 3457 return; 3458 3459 if (unlikely(!nr_exclusive)) 3460 wake_flags = 0; 3461 3462 spin_lock_irqsave(&q->lock, flags); 3463 __wake_up_common(q, mode, nr_exclusive, wake_flags, key); 3464 spin_unlock_irqrestore(&q->lock, flags); 3465 } 3466 EXPORT_SYMBOL_GPL(__wake_up_sync_key); 3467 3468 /* 3469 * __wake_up_sync - see __wake_up_sync_key() 3470 */ 3471 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) 3472 { 3473 __wake_up_sync_key(q, mode, nr_exclusive, NULL); 3474 } 3475 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 3476 3477 /** 3478 * complete: - signals a single thread waiting on this completion 3479 * @x: holds the state of this particular completion 3480 * 3481 * This will wake up a single thread waiting on this completion. Threads will be 3482 * awakened in the same order in which they were queued. 3483 * 3484 * See also complete_all(), wait_for_completion() and related routines. 3485 * 3486 * It may be assumed that this function implies a write memory barrier before 3487 * changing the task state if and only if any tasks are woken up. 3488 */ 3489 void complete(struct completion *x) 3490 { 3491 unsigned long flags; 3492 3493 spin_lock_irqsave(&x->wait.lock, flags); 3494 x->done++; 3495 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); 3496 spin_unlock_irqrestore(&x->wait.lock, flags); 3497 } 3498 EXPORT_SYMBOL(complete); 3499 3500 /** 3501 * complete_all: - signals all threads waiting on this completion 3502 * @x: holds the state of this particular completion 3503 * 3504 * This will wake up all threads waiting on this particular completion event. 3505 * 3506 * It may be assumed that this function implies a write memory barrier before 3507 * changing the task state if and only if any tasks are woken up. 3508 */ 3509 void complete_all(struct completion *x) 3510 { 3511 unsigned long flags; 3512 3513 spin_lock_irqsave(&x->wait.lock, flags); 3514 x->done += UINT_MAX/2; 3515 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); 3516 spin_unlock_irqrestore(&x->wait.lock, flags); 3517 } 3518 EXPORT_SYMBOL(complete_all); 3519 3520 static inline long __sched 3521 do_wait_for_common(struct completion *x, long timeout, int state) 3522 { 3523 if (!x->done) { 3524 DECLARE_WAITQUEUE(wait, current); 3525 3526 __add_wait_queue_tail_exclusive(&x->wait, &wait); 3527 do { 3528 if (signal_pending_state(state, current)) { 3529 timeout = -ERESTARTSYS; 3530 break; 3531 } 3532 __set_current_state(state); 3533 spin_unlock_irq(&x->wait.lock); 3534 timeout = schedule_timeout(timeout); 3535 spin_lock_irq(&x->wait.lock); 3536 } while (!x->done && timeout); 3537 __remove_wait_queue(&x->wait, &wait); 3538 if (!x->done) 3539 return timeout; 3540 } 3541 x->done--; 3542 return timeout ?: 1; 3543 } 3544 3545 static long __sched 3546 wait_for_common(struct completion *x, long timeout, int state) 3547 { 3548 might_sleep(); 3549 3550 spin_lock_irq(&x->wait.lock); 3551 timeout = do_wait_for_common(x, timeout, state); 3552 spin_unlock_irq(&x->wait.lock); 3553 return timeout; 3554 } 3555 3556 /** 3557 * wait_for_completion: - waits for completion of a task 3558 * @x: holds the state of this particular completion 3559 * 3560 * This waits to be signaled for completion of a specific task. It is NOT 3561 * interruptible and there is no timeout. 3562 * 3563 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout 3564 * and interrupt capability. Also see complete(). 3565 */ 3566 void __sched wait_for_completion(struct completion *x) 3567 { 3568 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 3569 } 3570 EXPORT_SYMBOL(wait_for_completion); 3571 3572 /** 3573 * wait_for_completion_timeout: - waits for completion of a task (w/timeout) 3574 * @x: holds the state of this particular completion 3575 * @timeout: timeout value in jiffies 3576 * 3577 * This waits for either a completion of a specific task to be signaled or for a 3578 * specified timeout to expire. The timeout is in jiffies. It is not 3579 * interruptible. 3580 * 3581 * The return value is 0 if timed out, and positive (at least 1, or number of 3582 * jiffies left till timeout) if completed. 3583 */ 3584 unsigned long __sched 3585 wait_for_completion_timeout(struct completion *x, unsigned long timeout) 3586 { 3587 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); 3588 } 3589 EXPORT_SYMBOL(wait_for_completion_timeout); 3590 3591 /** 3592 * wait_for_completion_interruptible: - waits for completion of a task (w/intr) 3593 * @x: holds the state of this particular completion 3594 * 3595 * This waits for completion of a specific task to be signaled. It is 3596 * interruptible. 3597 * 3598 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3599 */ 3600 int __sched wait_for_completion_interruptible(struct completion *x) 3601 { 3602 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); 3603 if (t == -ERESTARTSYS) 3604 return t; 3605 return 0; 3606 } 3607 EXPORT_SYMBOL(wait_for_completion_interruptible); 3608 3609 /** 3610 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) 3611 * @x: holds the state of this particular completion 3612 * @timeout: timeout value in jiffies 3613 * 3614 * This waits for either a completion of a specific task to be signaled or for a 3615 * specified timeout to expire. It is interruptible. The timeout is in jiffies. 3616 * 3617 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3618 * positive (at least 1, or number of jiffies left till timeout) if completed. 3619 */ 3620 long __sched 3621 wait_for_completion_interruptible_timeout(struct completion *x, 3622 unsigned long timeout) 3623 { 3624 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); 3625 } 3626 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); 3627 3628 /** 3629 * wait_for_completion_killable: - waits for completion of a task (killable) 3630 * @x: holds the state of this particular completion 3631 * 3632 * This waits to be signaled for completion of a specific task. It can be 3633 * interrupted by a kill signal. 3634 * 3635 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3636 */ 3637 int __sched wait_for_completion_killable(struct completion *x) 3638 { 3639 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); 3640 if (t == -ERESTARTSYS) 3641 return t; 3642 return 0; 3643 } 3644 EXPORT_SYMBOL(wait_for_completion_killable); 3645 3646 /** 3647 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) 3648 * @x: holds the state of this particular completion 3649 * @timeout: timeout value in jiffies 3650 * 3651 * This waits for either a completion of a specific task to be 3652 * signaled or for a specified timeout to expire. It can be 3653 * interrupted by a kill signal. The timeout is in jiffies. 3654 * 3655 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3656 * positive (at least 1, or number of jiffies left till timeout) if completed. 3657 */ 3658 long __sched 3659 wait_for_completion_killable_timeout(struct completion *x, 3660 unsigned long timeout) 3661 { 3662 return wait_for_common(x, timeout, TASK_KILLABLE); 3663 } 3664 EXPORT_SYMBOL(wait_for_completion_killable_timeout); 3665 3666 /** 3667 * try_wait_for_completion - try to decrement a completion without blocking 3668 * @x: completion structure 3669 * 3670 * Returns: 0 if a decrement cannot be done without blocking 3671 * 1 if a decrement succeeded. 3672 * 3673 * If a completion is being used as a counting completion, 3674 * attempt to decrement the counter without blocking. This 3675 * enables us to avoid waiting if the resource the completion 3676 * is protecting is not available. 3677 */ 3678 bool try_wait_for_completion(struct completion *x) 3679 { 3680 unsigned long flags; 3681 int ret = 1; 3682 3683 spin_lock_irqsave(&x->wait.lock, flags); 3684 if (!x->done) 3685 ret = 0; 3686 else 3687 x->done--; 3688 spin_unlock_irqrestore(&x->wait.lock, flags); 3689 return ret; 3690 } 3691 EXPORT_SYMBOL(try_wait_for_completion); 3692 3693 /** 3694 * completion_done - Test to see if a completion has any waiters 3695 * @x: completion structure 3696 * 3697 * Returns: 0 if there are waiters (wait_for_completion() in progress) 3698 * 1 if there are no waiters. 3699 * 3700 */ 3701 bool completion_done(struct completion *x) 3702 { 3703 unsigned long flags; 3704 int ret = 1; 3705 3706 spin_lock_irqsave(&x->wait.lock, flags); 3707 if (!x->done) 3708 ret = 0; 3709 spin_unlock_irqrestore(&x->wait.lock, flags); 3710 return ret; 3711 } 3712 EXPORT_SYMBOL(completion_done); 3713 3714 static long __sched 3715 sleep_on_common(wait_queue_head_t *q, int state, long timeout) 3716 { 3717 unsigned long flags; 3718 wait_queue_t wait; 3719 3720 init_waitqueue_entry(&wait, current); 3721 3722 __set_current_state(state); 3723 3724 spin_lock_irqsave(&q->lock, flags); 3725 __add_wait_queue(q, &wait); 3726 spin_unlock(&q->lock); 3727 timeout = schedule_timeout(timeout); 3728 spin_lock_irq(&q->lock); 3729 __remove_wait_queue(q, &wait); 3730 spin_unlock_irqrestore(&q->lock, flags); 3731 3732 return timeout; 3733 } 3734 3735 void __sched interruptible_sleep_on(wait_queue_head_t *q) 3736 { 3737 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3738 } 3739 EXPORT_SYMBOL(interruptible_sleep_on); 3740 3741 long __sched 3742 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) 3743 { 3744 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); 3745 } 3746 EXPORT_SYMBOL(interruptible_sleep_on_timeout); 3747 3748 void __sched sleep_on(wait_queue_head_t *q) 3749 { 3750 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3751 } 3752 EXPORT_SYMBOL(sleep_on); 3753 3754 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) 3755 { 3756 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); 3757 } 3758 EXPORT_SYMBOL(sleep_on_timeout); 3759 3760 #ifdef CONFIG_RT_MUTEXES 3761 3762 /* 3763 * rt_mutex_setprio - set the current priority of a task 3764 * @p: task 3765 * @prio: prio value (kernel-internal form) 3766 * 3767 * This function changes the 'effective' priority of a task. It does 3768 * not touch ->normal_prio like __setscheduler(). 3769 * 3770 * Used by the rt_mutex code to implement priority inheritance logic. 3771 */ 3772 void rt_mutex_setprio(struct task_struct *p, int prio) 3773 { 3774 int oldprio, on_rq, running; 3775 struct rq *rq; 3776 const struct sched_class *prev_class; 3777 3778 BUG_ON(prio < 0 || prio > MAX_PRIO); 3779 3780 rq = __task_rq_lock(p); 3781 3782 trace_sched_pi_setprio(p, prio); 3783 oldprio = p->prio; 3784 prev_class = p->sched_class; 3785 on_rq = p->on_rq; 3786 running = task_current(rq, p); 3787 if (on_rq) 3788 dequeue_task(rq, p, 0); 3789 if (running) 3790 p->sched_class->put_prev_task(rq, p); 3791 3792 if (rt_prio(prio)) 3793 p->sched_class = &rt_sched_class; 3794 else 3795 p->sched_class = &fair_sched_class; 3796 3797 p->prio = prio; 3798 3799 if (running) 3800 p->sched_class->set_curr_task(rq); 3801 if (on_rq) 3802 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); 3803 3804 check_class_changed(rq, p, prev_class, oldprio); 3805 __task_rq_unlock(rq); 3806 } 3807 3808 #endif 3809 3810 void set_user_nice(struct task_struct *p, long nice) 3811 { 3812 int old_prio, delta, on_rq; 3813 unsigned long flags; 3814 struct rq *rq; 3815 3816 if (TASK_NICE(p) == nice || nice < -20 || nice > 19) 3817 return; 3818 /* 3819 * We have to be careful, if called from sys_setpriority(), 3820 * the task might be in the middle of scheduling on another CPU. 3821 */ 3822 rq = task_rq_lock(p, &flags); 3823 /* 3824 * The RT priorities are set via sched_setscheduler(), but we still 3825 * allow the 'normal' nice value to be set - but as expected 3826 * it wont have any effect on scheduling until the task is 3827 * SCHED_FIFO/SCHED_RR: 3828 */ 3829 if (task_has_rt_policy(p)) { 3830 p->static_prio = NICE_TO_PRIO(nice); 3831 goto out_unlock; 3832 } 3833 on_rq = p->on_rq; 3834 if (on_rq) 3835 dequeue_task(rq, p, 0); 3836 3837 p->static_prio = NICE_TO_PRIO(nice); 3838 set_load_weight(p); 3839 old_prio = p->prio; 3840 p->prio = effective_prio(p); 3841 delta = p->prio - old_prio; 3842 3843 if (on_rq) { 3844 enqueue_task(rq, p, 0); 3845 /* 3846 * If the task increased its priority or is running and 3847 * lowered its priority, then reschedule its CPU: 3848 */ 3849 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3850 resched_task(rq->curr); 3851 } 3852 out_unlock: 3853 task_rq_unlock(rq, p, &flags); 3854 } 3855 EXPORT_SYMBOL(set_user_nice); 3856 3857 /* 3858 * can_nice - check if a task can reduce its nice value 3859 * @p: task 3860 * @nice: nice value 3861 */ 3862 int can_nice(const struct task_struct *p, const int nice) 3863 { 3864 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3865 int nice_rlim = 20 - nice; 3866 3867 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3868 capable(CAP_SYS_NICE)); 3869 } 3870 3871 #ifdef __ARCH_WANT_SYS_NICE 3872 3873 /* 3874 * sys_nice - change the priority of the current process. 3875 * @increment: priority increment 3876 * 3877 * sys_setpriority is a more generic, but much slower function that 3878 * does similar things. 3879 */ 3880 SYSCALL_DEFINE1(nice, int, increment) 3881 { 3882 long nice, retval; 3883 3884 /* 3885 * Setpriority might change our priority at the same moment. 3886 * We don't have to worry. Conceptually one call occurs first 3887 * and we have a single winner. 3888 */ 3889 if (increment < -40) 3890 increment = -40; 3891 if (increment > 40) 3892 increment = 40; 3893 3894 nice = TASK_NICE(current) + increment; 3895 if (nice < -20) 3896 nice = -20; 3897 if (nice > 19) 3898 nice = 19; 3899 3900 if (increment < 0 && !can_nice(current, nice)) 3901 return -EPERM; 3902 3903 retval = security_task_setnice(current, nice); 3904 if (retval) 3905 return retval; 3906 3907 set_user_nice(current, nice); 3908 return 0; 3909 } 3910 3911 #endif 3912 3913 /** 3914 * task_prio - return the priority value of a given task. 3915 * @p: the task in question. 3916 * 3917 * This is the priority value as seen by users in /proc. 3918 * RT tasks are offset by -200. Normal tasks are centered 3919 * around 0, value goes from -16 to +15. 3920 */ 3921 int task_prio(const struct task_struct *p) 3922 { 3923 return p->prio - MAX_RT_PRIO; 3924 } 3925 3926 /** 3927 * task_nice - return the nice value of a given task. 3928 * @p: the task in question. 3929 */ 3930 int task_nice(const struct task_struct *p) 3931 { 3932 return TASK_NICE(p); 3933 } 3934 EXPORT_SYMBOL(task_nice); 3935 3936 /** 3937 * idle_cpu - is a given cpu idle currently? 3938 * @cpu: the processor in question. 3939 */ 3940 int idle_cpu(int cpu) 3941 { 3942 struct rq *rq = cpu_rq(cpu); 3943 3944 if (rq->curr != rq->idle) 3945 return 0; 3946 3947 if (rq->nr_running) 3948 return 0; 3949 3950 #ifdef CONFIG_SMP 3951 if (!llist_empty(&rq->wake_list)) 3952 return 0; 3953 #endif 3954 3955 return 1; 3956 } 3957 3958 /** 3959 * idle_task - return the idle task for a given cpu. 3960 * @cpu: the processor in question. 3961 */ 3962 struct task_struct *idle_task(int cpu) 3963 { 3964 return cpu_rq(cpu)->idle; 3965 } 3966 3967 /** 3968 * find_process_by_pid - find a process with a matching PID value. 3969 * @pid: the pid in question. 3970 */ 3971 static struct task_struct *find_process_by_pid(pid_t pid) 3972 { 3973 return pid ? find_task_by_vpid(pid) : current; 3974 } 3975 3976 /* Actually do priority change: must hold rq lock. */ 3977 static void 3978 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) 3979 { 3980 p->policy = policy; 3981 p->rt_priority = prio; 3982 p->normal_prio = normal_prio(p); 3983 /* we are holding p->pi_lock already */ 3984 p->prio = rt_mutex_getprio(p); 3985 if (rt_prio(p->prio)) 3986 p->sched_class = &rt_sched_class; 3987 else 3988 p->sched_class = &fair_sched_class; 3989 set_load_weight(p); 3990 } 3991 3992 /* 3993 * check the target process has a UID that matches the current process's 3994 */ 3995 static bool check_same_owner(struct task_struct *p) 3996 { 3997 const struct cred *cred = current_cred(), *pcred; 3998 bool match; 3999 4000 rcu_read_lock(); 4001 pcred = __task_cred(p); 4002 if (cred->user->user_ns == pcred->user->user_ns) 4003 match = (cred->euid == pcred->euid || 4004 cred->euid == pcred->uid); 4005 else 4006 match = false; 4007 rcu_read_unlock(); 4008 return match; 4009 } 4010 4011 static int __sched_setscheduler(struct task_struct *p, int policy, 4012 const struct sched_param *param, bool user) 4013 { 4014 int retval, oldprio, oldpolicy = -1, on_rq, running; 4015 unsigned long flags; 4016 const struct sched_class *prev_class; 4017 struct rq *rq; 4018 int reset_on_fork; 4019 4020 /* may grab non-irq protected spin_locks */ 4021 BUG_ON(in_interrupt()); 4022 recheck: 4023 /* double check policy once rq lock held */ 4024 if (policy < 0) { 4025 reset_on_fork = p->sched_reset_on_fork; 4026 policy = oldpolicy = p->policy; 4027 } else { 4028 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); 4029 policy &= ~SCHED_RESET_ON_FORK; 4030 4031 if (policy != SCHED_FIFO && policy != SCHED_RR && 4032 policy != SCHED_NORMAL && policy != SCHED_BATCH && 4033 policy != SCHED_IDLE) 4034 return -EINVAL; 4035 } 4036 4037 /* 4038 * Valid priorities for SCHED_FIFO and SCHED_RR are 4039 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4040 * SCHED_BATCH and SCHED_IDLE is 0. 4041 */ 4042 if (param->sched_priority < 0 || 4043 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || 4044 (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) 4045 return -EINVAL; 4046 if (rt_policy(policy) != (param->sched_priority != 0)) 4047 return -EINVAL; 4048 4049 /* 4050 * Allow unprivileged RT tasks to decrease priority: 4051 */ 4052 if (user && !capable(CAP_SYS_NICE)) { 4053 if (rt_policy(policy)) { 4054 unsigned long rlim_rtprio = 4055 task_rlimit(p, RLIMIT_RTPRIO); 4056 4057 /* can't set/change the rt policy */ 4058 if (policy != p->policy && !rlim_rtprio) 4059 return -EPERM; 4060 4061 /* can't increase priority */ 4062 if (param->sched_priority > p->rt_priority && 4063 param->sched_priority > rlim_rtprio) 4064 return -EPERM; 4065 } 4066 4067 /* 4068 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4069 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4070 */ 4071 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 4072 if (!can_nice(p, TASK_NICE(p))) 4073 return -EPERM; 4074 } 4075 4076 /* can't change other user's priorities */ 4077 if (!check_same_owner(p)) 4078 return -EPERM; 4079 4080 /* Normal users shall not reset the sched_reset_on_fork flag */ 4081 if (p->sched_reset_on_fork && !reset_on_fork) 4082 return -EPERM; 4083 } 4084 4085 if (user) { 4086 retval = security_task_setscheduler(p); 4087 if (retval) 4088 return retval; 4089 } 4090 4091 /* 4092 * make sure no PI-waiters arrive (or leave) while we are 4093 * changing the priority of the task: 4094 * 4095 * To be able to change p->policy safely, the appropriate 4096 * runqueue lock must be held. 4097 */ 4098 rq = task_rq_lock(p, &flags); 4099 4100 /* 4101 * Changing the policy of the stop threads its a very bad idea 4102 */ 4103 if (p == rq->stop) { 4104 task_rq_unlock(rq, p, &flags); 4105 return -EINVAL; 4106 } 4107 4108 /* 4109 * If not changing anything there's no need to proceed further: 4110 */ 4111 if (unlikely(policy == p->policy && (!rt_policy(policy) || 4112 param->sched_priority == p->rt_priority))) { 4113 4114 __task_rq_unlock(rq); 4115 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4116 return 0; 4117 } 4118 4119 #ifdef CONFIG_RT_GROUP_SCHED 4120 if (user) { 4121 /* 4122 * Do not allow realtime tasks into groups that have no runtime 4123 * assigned. 4124 */ 4125 if (rt_bandwidth_enabled() && rt_policy(policy) && 4126 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4127 !task_group_is_autogroup(task_group(p))) { 4128 task_rq_unlock(rq, p, &flags); 4129 return -EPERM; 4130 } 4131 } 4132 #endif 4133 4134 /* recheck policy now with rq lock held */ 4135 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4136 policy = oldpolicy = -1; 4137 task_rq_unlock(rq, p, &flags); 4138 goto recheck; 4139 } 4140 on_rq = p->on_rq; 4141 running = task_current(rq, p); 4142 if (on_rq) 4143 dequeue_task(rq, p, 0); 4144 if (running) 4145 p->sched_class->put_prev_task(rq, p); 4146 4147 p->sched_reset_on_fork = reset_on_fork; 4148 4149 oldprio = p->prio; 4150 prev_class = p->sched_class; 4151 __setscheduler(rq, p, policy, param->sched_priority); 4152 4153 if (running) 4154 p->sched_class->set_curr_task(rq); 4155 if (on_rq) 4156 enqueue_task(rq, p, 0); 4157 4158 check_class_changed(rq, p, prev_class, oldprio); 4159 task_rq_unlock(rq, p, &flags); 4160 4161 rt_mutex_adjust_pi(p); 4162 4163 return 0; 4164 } 4165 4166 /** 4167 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4168 * @p: the task in question. 4169 * @policy: new policy. 4170 * @param: structure containing the new RT priority. 4171 * 4172 * NOTE that the task may be already dead. 4173 */ 4174 int sched_setscheduler(struct task_struct *p, int policy, 4175 const struct sched_param *param) 4176 { 4177 return __sched_setscheduler(p, policy, param, true); 4178 } 4179 EXPORT_SYMBOL_GPL(sched_setscheduler); 4180 4181 /** 4182 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4183 * @p: the task in question. 4184 * @policy: new policy. 4185 * @param: structure containing the new RT priority. 4186 * 4187 * Just like sched_setscheduler, only don't bother checking if the 4188 * current context has permission. For example, this is needed in 4189 * stop_machine(): we create temporary high priority worker threads, 4190 * but our caller might not have that capability. 4191 */ 4192 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4193 const struct sched_param *param) 4194 { 4195 return __sched_setscheduler(p, policy, param, false); 4196 } 4197 4198 static int 4199 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4200 { 4201 struct sched_param lparam; 4202 struct task_struct *p; 4203 int retval; 4204 4205 if (!param || pid < 0) 4206 return -EINVAL; 4207 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4208 return -EFAULT; 4209 4210 rcu_read_lock(); 4211 retval = -ESRCH; 4212 p = find_process_by_pid(pid); 4213 if (p != NULL) 4214 retval = sched_setscheduler(p, policy, &lparam); 4215 rcu_read_unlock(); 4216 4217 return retval; 4218 } 4219 4220 /** 4221 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4222 * @pid: the pid in question. 4223 * @policy: new policy. 4224 * @param: structure containing the new RT priority. 4225 */ 4226 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4227 struct sched_param __user *, param) 4228 { 4229 /* negative values for policy are not valid */ 4230 if (policy < 0) 4231 return -EINVAL; 4232 4233 return do_sched_setscheduler(pid, policy, param); 4234 } 4235 4236 /** 4237 * sys_sched_setparam - set/change the RT priority of a thread 4238 * @pid: the pid in question. 4239 * @param: structure containing the new RT priority. 4240 */ 4241 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4242 { 4243 return do_sched_setscheduler(pid, -1, param); 4244 } 4245 4246 /** 4247 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4248 * @pid: the pid in question. 4249 */ 4250 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4251 { 4252 struct task_struct *p; 4253 int retval; 4254 4255 if (pid < 0) 4256 return -EINVAL; 4257 4258 retval = -ESRCH; 4259 rcu_read_lock(); 4260 p = find_process_by_pid(pid); 4261 if (p) { 4262 retval = security_task_getscheduler(p); 4263 if (!retval) 4264 retval = p->policy 4265 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4266 } 4267 rcu_read_unlock(); 4268 return retval; 4269 } 4270 4271 /** 4272 * sys_sched_getparam - get the RT priority of a thread 4273 * @pid: the pid in question. 4274 * @param: structure containing the RT priority. 4275 */ 4276 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4277 { 4278 struct sched_param lp; 4279 struct task_struct *p; 4280 int retval; 4281 4282 if (!param || pid < 0) 4283 return -EINVAL; 4284 4285 rcu_read_lock(); 4286 p = find_process_by_pid(pid); 4287 retval = -ESRCH; 4288 if (!p) 4289 goto out_unlock; 4290 4291 retval = security_task_getscheduler(p); 4292 if (retval) 4293 goto out_unlock; 4294 4295 lp.sched_priority = p->rt_priority; 4296 rcu_read_unlock(); 4297 4298 /* 4299 * This one might sleep, we cannot do it with a spinlock held ... 4300 */ 4301 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4302 4303 return retval; 4304 4305 out_unlock: 4306 rcu_read_unlock(); 4307 return retval; 4308 } 4309 4310 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4311 { 4312 cpumask_var_t cpus_allowed, new_mask; 4313 struct task_struct *p; 4314 int retval; 4315 4316 get_online_cpus(); 4317 rcu_read_lock(); 4318 4319 p = find_process_by_pid(pid); 4320 if (!p) { 4321 rcu_read_unlock(); 4322 put_online_cpus(); 4323 return -ESRCH; 4324 } 4325 4326 /* Prevent p going away */ 4327 get_task_struct(p); 4328 rcu_read_unlock(); 4329 4330 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4331 retval = -ENOMEM; 4332 goto out_put_task; 4333 } 4334 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4335 retval = -ENOMEM; 4336 goto out_free_cpus_allowed; 4337 } 4338 retval = -EPERM; 4339 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE)) 4340 goto out_unlock; 4341 4342 retval = security_task_setscheduler(p); 4343 if (retval) 4344 goto out_unlock; 4345 4346 cpuset_cpus_allowed(p, cpus_allowed); 4347 cpumask_and(new_mask, in_mask, cpus_allowed); 4348 again: 4349 retval = set_cpus_allowed_ptr(p, new_mask); 4350 4351 if (!retval) { 4352 cpuset_cpus_allowed(p, cpus_allowed); 4353 if (!cpumask_subset(new_mask, cpus_allowed)) { 4354 /* 4355 * We must have raced with a concurrent cpuset 4356 * update. Just reset the cpus_allowed to the 4357 * cpuset's cpus_allowed 4358 */ 4359 cpumask_copy(new_mask, cpus_allowed); 4360 goto again; 4361 } 4362 } 4363 out_unlock: 4364 free_cpumask_var(new_mask); 4365 out_free_cpus_allowed: 4366 free_cpumask_var(cpus_allowed); 4367 out_put_task: 4368 put_task_struct(p); 4369 put_online_cpus(); 4370 return retval; 4371 } 4372 4373 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4374 struct cpumask *new_mask) 4375 { 4376 if (len < cpumask_size()) 4377 cpumask_clear(new_mask); 4378 else if (len > cpumask_size()) 4379 len = cpumask_size(); 4380 4381 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4382 } 4383 4384 /** 4385 * sys_sched_setaffinity - set the cpu affinity of a process 4386 * @pid: pid of the process 4387 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4388 * @user_mask_ptr: user-space pointer to the new cpu mask 4389 */ 4390 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4391 unsigned long __user *, user_mask_ptr) 4392 { 4393 cpumask_var_t new_mask; 4394 int retval; 4395 4396 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4397 return -ENOMEM; 4398 4399 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4400 if (retval == 0) 4401 retval = sched_setaffinity(pid, new_mask); 4402 free_cpumask_var(new_mask); 4403 return retval; 4404 } 4405 4406 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4407 { 4408 struct task_struct *p; 4409 unsigned long flags; 4410 int retval; 4411 4412 get_online_cpus(); 4413 rcu_read_lock(); 4414 4415 retval = -ESRCH; 4416 p = find_process_by_pid(pid); 4417 if (!p) 4418 goto out_unlock; 4419 4420 retval = security_task_getscheduler(p); 4421 if (retval) 4422 goto out_unlock; 4423 4424 raw_spin_lock_irqsave(&p->pi_lock, flags); 4425 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); 4426 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4427 4428 out_unlock: 4429 rcu_read_unlock(); 4430 put_online_cpus(); 4431 4432 return retval; 4433 } 4434 4435 /** 4436 * sys_sched_getaffinity - get the cpu affinity of a process 4437 * @pid: pid of the process 4438 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4439 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4440 */ 4441 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4442 unsigned long __user *, user_mask_ptr) 4443 { 4444 int ret; 4445 cpumask_var_t mask; 4446 4447 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4448 return -EINVAL; 4449 if (len & (sizeof(unsigned long)-1)) 4450 return -EINVAL; 4451 4452 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4453 return -ENOMEM; 4454 4455 ret = sched_getaffinity(pid, mask); 4456 if (ret == 0) { 4457 size_t retlen = min_t(size_t, len, cpumask_size()); 4458 4459 if (copy_to_user(user_mask_ptr, mask, retlen)) 4460 ret = -EFAULT; 4461 else 4462 ret = retlen; 4463 } 4464 free_cpumask_var(mask); 4465 4466 return ret; 4467 } 4468 4469 /** 4470 * sys_sched_yield - yield the current processor to other threads. 4471 * 4472 * This function yields the current CPU to other tasks. If there are no 4473 * other threads running on this CPU then this function will return. 4474 */ 4475 SYSCALL_DEFINE0(sched_yield) 4476 { 4477 struct rq *rq = this_rq_lock(); 4478 4479 schedstat_inc(rq, yld_count); 4480 current->sched_class->yield_task(rq); 4481 4482 /* 4483 * Since we are going to call schedule() anyway, there's 4484 * no need to preempt or enable interrupts: 4485 */ 4486 __release(rq->lock); 4487 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4488 do_raw_spin_unlock(&rq->lock); 4489 preempt_enable_no_resched(); 4490 4491 schedule(); 4492 4493 return 0; 4494 } 4495 4496 static inline int should_resched(void) 4497 { 4498 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); 4499 } 4500 4501 static void __cond_resched(void) 4502 { 4503 add_preempt_count(PREEMPT_ACTIVE); 4504 __schedule(); 4505 sub_preempt_count(PREEMPT_ACTIVE); 4506 } 4507 4508 int __sched _cond_resched(void) 4509 { 4510 if (should_resched()) { 4511 __cond_resched(); 4512 return 1; 4513 } 4514 return 0; 4515 } 4516 EXPORT_SYMBOL(_cond_resched); 4517 4518 /* 4519 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4520 * call schedule, and on return reacquire the lock. 4521 * 4522 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4523 * operations here to prevent schedule() from being called twice (once via 4524 * spin_unlock(), once by hand). 4525 */ 4526 int __cond_resched_lock(spinlock_t *lock) 4527 { 4528 int resched = should_resched(); 4529 int ret = 0; 4530 4531 lockdep_assert_held(lock); 4532 4533 if (spin_needbreak(lock) || resched) { 4534 spin_unlock(lock); 4535 if (resched) 4536 __cond_resched(); 4537 else 4538 cpu_relax(); 4539 ret = 1; 4540 spin_lock(lock); 4541 } 4542 return ret; 4543 } 4544 EXPORT_SYMBOL(__cond_resched_lock); 4545 4546 int __sched __cond_resched_softirq(void) 4547 { 4548 BUG_ON(!in_softirq()); 4549 4550 if (should_resched()) { 4551 local_bh_enable(); 4552 __cond_resched(); 4553 local_bh_disable(); 4554 return 1; 4555 } 4556 return 0; 4557 } 4558 EXPORT_SYMBOL(__cond_resched_softirq); 4559 4560 /** 4561 * yield - yield the current processor to other threads. 4562 * 4563 * This is a shortcut for kernel-space yielding - it marks the 4564 * thread runnable and calls sys_sched_yield(). 4565 */ 4566 void __sched yield(void) 4567 { 4568 set_current_state(TASK_RUNNING); 4569 sys_sched_yield(); 4570 } 4571 EXPORT_SYMBOL(yield); 4572 4573 /** 4574 * yield_to - yield the current processor to another thread in 4575 * your thread group, or accelerate that thread toward the 4576 * processor it's on. 4577 * @p: target task 4578 * @preempt: whether task preemption is allowed or not 4579 * 4580 * It's the caller's job to ensure that the target task struct 4581 * can't go away on us before we can do any checks. 4582 * 4583 * Returns true if we indeed boosted the target task. 4584 */ 4585 bool __sched yield_to(struct task_struct *p, bool preempt) 4586 { 4587 struct task_struct *curr = current; 4588 struct rq *rq, *p_rq; 4589 unsigned long flags; 4590 bool yielded = 0; 4591 4592 local_irq_save(flags); 4593 rq = this_rq(); 4594 4595 again: 4596 p_rq = task_rq(p); 4597 double_rq_lock(rq, p_rq); 4598 while (task_rq(p) != p_rq) { 4599 double_rq_unlock(rq, p_rq); 4600 goto again; 4601 } 4602 4603 if (!curr->sched_class->yield_to_task) 4604 goto out; 4605 4606 if (curr->sched_class != p->sched_class) 4607 goto out; 4608 4609 if (task_running(p_rq, p) || p->state) 4610 goto out; 4611 4612 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4613 if (yielded) { 4614 schedstat_inc(rq, yld_count); 4615 /* 4616 * Make p's CPU reschedule; pick_next_entity takes care of 4617 * fairness. 4618 */ 4619 if (preempt && rq != p_rq) 4620 resched_task(p_rq->curr); 4621 } else { 4622 /* 4623 * We might have set it in task_yield_fair(), but are 4624 * not going to schedule(), so don't want to skip 4625 * the next update. 4626 */ 4627 rq->skip_clock_update = 0; 4628 } 4629 4630 out: 4631 double_rq_unlock(rq, p_rq); 4632 local_irq_restore(flags); 4633 4634 if (yielded) 4635 schedule(); 4636 4637 return yielded; 4638 } 4639 EXPORT_SYMBOL_GPL(yield_to); 4640 4641 /* 4642 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4643 * that process accounting knows that this is a task in IO wait state. 4644 */ 4645 void __sched io_schedule(void) 4646 { 4647 struct rq *rq = raw_rq(); 4648 4649 delayacct_blkio_start(); 4650 atomic_inc(&rq->nr_iowait); 4651 blk_flush_plug(current); 4652 current->in_iowait = 1; 4653 schedule(); 4654 current->in_iowait = 0; 4655 atomic_dec(&rq->nr_iowait); 4656 delayacct_blkio_end(); 4657 } 4658 EXPORT_SYMBOL(io_schedule); 4659 4660 long __sched io_schedule_timeout(long timeout) 4661 { 4662 struct rq *rq = raw_rq(); 4663 long ret; 4664 4665 delayacct_blkio_start(); 4666 atomic_inc(&rq->nr_iowait); 4667 blk_flush_plug(current); 4668 current->in_iowait = 1; 4669 ret = schedule_timeout(timeout); 4670 current->in_iowait = 0; 4671 atomic_dec(&rq->nr_iowait); 4672 delayacct_blkio_end(); 4673 return ret; 4674 } 4675 4676 /** 4677 * sys_sched_get_priority_max - return maximum RT priority. 4678 * @policy: scheduling class. 4679 * 4680 * this syscall returns the maximum rt_priority that can be used 4681 * by a given scheduling class. 4682 */ 4683 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4684 { 4685 int ret = -EINVAL; 4686 4687 switch (policy) { 4688 case SCHED_FIFO: 4689 case SCHED_RR: 4690 ret = MAX_USER_RT_PRIO-1; 4691 break; 4692 case SCHED_NORMAL: 4693 case SCHED_BATCH: 4694 case SCHED_IDLE: 4695 ret = 0; 4696 break; 4697 } 4698 return ret; 4699 } 4700 4701 /** 4702 * sys_sched_get_priority_min - return minimum RT priority. 4703 * @policy: scheduling class. 4704 * 4705 * this syscall returns the minimum rt_priority that can be used 4706 * by a given scheduling class. 4707 */ 4708 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4709 { 4710 int ret = -EINVAL; 4711 4712 switch (policy) { 4713 case SCHED_FIFO: 4714 case SCHED_RR: 4715 ret = 1; 4716 break; 4717 case SCHED_NORMAL: 4718 case SCHED_BATCH: 4719 case SCHED_IDLE: 4720 ret = 0; 4721 } 4722 return ret; 4723 } 4724 4725 /** 4726 * sys_sched_rr_get_interval - return the default timeslice of a process. 4727 * @pid: pid of the process. 4728 * @interval: userspace pointer to the timeslice value. 4729 * 4730 * this syscall writes the default timeslice value of a given process 4731 * into the user-space timespec buffer. A value of '0' means infinity. 4732 */ 4733 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4734 struct timespec __user *, interval) 4735 { 4736 struct task_struct *p; 4737 unsigned int time_slice; 4738 unsigned long flags; 4739 struct rq *rq; 4740 int retval; 4741 struct timespec t; 4742 4743 if (pid < 0) 4744 return -EINVAL; 4745 4746 retval = -ESRCH; 4747 rcu_read_lock(); 4748 p = find_process_by_pid(pid); 4749 if (!p) 4750 goto out_unlock; 4751 4752 retval = security_task_getscheduler(p); 4753 if (retval) 4754 goto out_unlock; 4755 4756 rq = task_rq_lock(p, &flags); 4757 time_slice = p->sched_class->get_rr_interval(rq, p); 4758 task_rq_unlock(rq, p, &flags); 4759 4760 rcu_read_unlock(); 4761 jiffies_to_timespec(time_slice, &t); 4762 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4763 return retval; 4764 4765 out_unlock: 4766 rcu_read_unlock(); 4767 return retval; 4768 } 4769 4770 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4771 4772 void sched_show_task(struct task_struct *p) 4773 { 4774 unsigned long free = 0; 4775 unsigned state; 4776 4777 state = p->state ? __ffs(p->state) + 1 : 0; 4778 printk(KERN_INFO "%-15.15s %c", p->comm, 4779 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4780 #if BITS_PER_LONG == 32 4781 if (state == TASK_RUNNING) 4782 printk(KERN_CONT " running "); 4783 else 4784 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4785 #else 4786 if (state == TASK_RUNNING) 4787 printk(KERN_CONT " running task "); 4788 else 4789 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4790 #endif 4791 #ifdef CONFIG_DEBUG_STACK_USAGE 4792 free = stack_not_used(p); 4793 #endif 4794 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4795 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)), 4796 (unsigned long)task_thread_info(p)->flags); 4797 4798 show_stack(p, NULL); 4799 } 4800 4801 void show_state_filter(unsigned long state_filter) 4802 { 4803 struct task_struct *g, *p; 4804 4805 #if BITS_PER_LONG == 32 4806 printk(KERN_INFO 4807 " task PC stack pid father\n"); 4808 #else 4809 printk(KERN_INFO 4810 " task PC stack pid father\n"); 4811 #endif 4812 rcu_read_lock(); 4813 do_each_thread(g, p) { 4814 /* 4815 * reset the NMI-timeout, listing all files on a slow 4816 * console might take a lot of time: 4817 */ 4818 touch_nmi_watchdog(); 4819 if (!state_filter || (p->state & state_filter)) 4820 sched_show_task(p); 4821 } while_each_thread(g, p); 4822 4823 touch_all_softlockup_watchdogs(); 4824 4825 #ifdef CONFIG_SCHED_DEBUG 4826 sysrq_sched_debug_show(); 4827 #endif 4828 rcu_read_unlock(); 4829 /* 4830 * Only show locks if all tasks are dumped: 4831 */ 4832 if (!state_filter) 4833 debug_show_all_locks(); 4834 } 4835 4836 void __cpuinit init_idle_bootup_task(struct task_struct *idle) 4837 { 4838 idle->sched_class = &idle_sched_class; 4839 } 4840 4841 /** 4842 * init_idle - set up an idle thread for a given CPU 4843 * @idle: task in question 4844 * @cpu: cpu the idle task belongs to 4845 * 4846 * NOTE: this function does not set the idle thread's NEED_RESCHED 4847 * flag, to make booting more robust. 4848 */ 4849 void __cpuinit init_idle(struct task_struct *idle, int cpu) 4850 { 4851 struct rq *rq = cpu_rq(cpu); 4852 unsigned long flags; 4853 4854 raw_spin_lock_irqsave(&rq->lock, flags); 4855 4856 __sched_fork(idle); 4857 idle->state = TASK_RUNNING; 4858 idle->se.exec_start = sched_clock(); 4859 4860 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4861 /* 4862 * We're having a chicken and egg problem, even though we are 4863 * holding rq->lock, the cpu isn't yet set to this cpu so the 4864 * lockdep check in task_group() will fail. 4865 * 4866 * Similar case to sched_fork(). / Alternatively we could 4867 * use task_rq_lock() here and obtain the other rq->lock. 4868 * 4869 * Silence PROVE_RCU 4870 */ 4871 rcu_read_lock(); 4872 __set_task_cpu(idle, cpu); 4873 rcu_read_unlock(); 4874 4875 rq->curr = rq->idle = idle; 4876 #if defined(CONFIG_SMP) 4877 idle->on_cpu = 1; 4878 #endif 4879 raw_spin_unlock_irqrestore(&rq->lock, flags); 4880 4881 /* Set the preempt count _outside_ the spinlocks! */ 4882 task_thread_info(idle)->preempt_count = 0; 4883 4884 /* 4885 * The idle tasks have their own, simple scheduling class: 4886 */ 4887 idle->sched_class = &idle_sched_class; 4888 ftrace_graph_init_idle_task(idle, cpu); 4889 #if defined(CONFIG_SMP) 4890 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4891 #endif 4892 } 4893 4894 #ifdef CONFIG_SMP 4895 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4896 { 4897 if (p->sched_class && p->sched_class->set_cpus_allowed) 4898 p->sched_class->set_cpus_allowed(p, new_mask); 4899 4900 cpumask_copy(&p->cpus_allowed, new_mask); 4901 p->rt.nr_cpus_allowed = cpumask_weight(new_mask); 4902 } 4903 4904 /* 4905 * This is how migration works: 4906 * 4907 * 1) we invoke migration_cpu_stop() on the target CPU using 4908 * stop_one_cpu(). 4909 * 2) stopper starts to run (implicitly forcing the migrated thread 4910 * off the CPU) 4911 * 3) it checks whether the migrated task is still in the wrong runqueue. 4912 * 4) if it's in the wrong runqueue then the migration thread removes 4913 * it and puts it into the right queue. 4914 * 5) stopper completes and stop_one_cpu() returns and the migration 4915 * is done. 4916 */ 4917 4918 /* 4919 * Change a given task's CPU affinity. Migrate the thread to a 4920 * proper CPU and schedule it away if the CPU it's executing on 4921 * is removed from the allowed bitmask. 4922 * 4923 * NOTE: the caller must have a valid reference to the task, the 4924 * task must not exit() & deallocate itself prematurely. The 4925 * call is not atomic; no spinlocks may be held. 4926 */ 4927 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4928 { 4929 unsigned long flags; 4930 struct rq *rq; 4931 unsigned int dest_cpu; 4932 int ret = 0; 4933 4934 rq = task_rq_lock(p, &flags); 4935 4936 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4937 goto out; 4938 4939 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4940 ret = -EINVAL; 4941 goto out; 4942 } 4943 4944 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) { 4945 ret = -EINVAL; 4946 goto out; 4947 } 4948 4949 do_set_cpus_allowed(p, new_mask); 4950 4951 /* Can the task run on the task's current CPU? If so, we're done */ 4952 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4953 goto out; 4954 4955 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4956 if (p->on_rq) { 4957 struct migration_arg arg = { p, dest_cpu }; 4958 /* Need help from migration thread: drop lock and wait. */ 4959 task_rq_unlock(rq, p, &flags); 4960 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4961 tlb_migrate_finish(p->mm); 4962 return 0; 4963 } 4964 out: 4965 task_rq_unlock(rq, p, &flags); 4966 4967 return ret; 4968 } 4969 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4970 4971 /* 4972 * Move (not current) task off this cpu, onto dest cpu. We're doing 4973 * this because either it can't run here any more (set_cpus_allowed() 4974 * away from this CPU, or CPU going down), or because we're 4975 * attempting to rebalance this task on exec (sched_exec). 4976 * 4977 * So we race with normal scheduler movements, but that's OK, as long 4978 * as the task is no longer on this CPU. 4979 * 4980 * Returns non-zero if task was successfully migrated. 4981 */ 4982 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4983 { 4984 struct rq *rq_dest, *rq_src; 4985 int ret = 0; 4986 4987 if (unlikely(!cpu_active(dest_cpu))) 4988 return ret; 4989 4990 rq_src = cpu_rq(src_cpu); 4991 rq_dest = cpu_rq(dest_cpu); 4992 4993 raw_spin_lock(&p->pi_lock); 4994 double_rq_lock(rq_src, rq_dest); 4995 /* Already moved. */ 4996 if (task_cpu(p) != src_cpu) 4997 goto done; 4998 /* Affinity changed (again). */ 4999 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 5000 goto fail; 5001 5002 /* 5003 * If we're not on a rq, the next wake-up will ensure we're 5004 * placed properly. 5005 */ 5006 if (p->on_rq) { 5007 dequeue_task(rq_src, p, 0); 5008 set_task_cpu(p, dest_cpu); 5009 enqueue_task(rq_dest, p, 0); 5010 check_preempt_curr(rq_dest, p, 0); 5011 } 5012 done: 5013 ret = 1; 5014 fail: 5015 double_rq_unlock(rq_src, rq_dest); 5016 raw_spin_unlock(&p->pi_lock); 5017 return ret; 5018 } 5019 5020 /* 5021 * migration_cpu_stop - this will be executed by a highprio stopper thread 5022 * and performs thread migration by bumping thread off CPU then 5023 * 'pushing' onto another runqueue. 5024 */ 5025 static int migration_cpu_stop(void *data) 5026 { 5027 struct migration_arg *arg = data; 5028 5029 /* 5030 * The original target cpu might have gone down and we might 5031 * be on another cpu but it doesn't matter. 5032 */ 5033 local_irq_disable(); 5034 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 5035 local_irq_enable(); 5036 return 0; 5037 } 5038 5039 #ifdef CONFIG_HOTPLUG_CPU 5040 5041 /* 5042 * Ensures that the idle task is using init_mm right before its cpu goes 5043 * offline. 5044 */ 5045 void idle_task_exit(void) 5046 { 5047 struct mm_struct *mm = current->active_mm; 5048 5049 BUG_ON(cpu_online(smp_processor_id())); 5050 5051 if (mm != &init_mm) 5052 switch_mm(mm, &init_mm, current); 5053 mmdrop(mm); 5054 } 5055 5056 /* 5057 * While a dead CPU has no uninterruptible tasks queued at this point, 5058 * it might still have a nonzero ->nr_uninterruptible counter, because 5059 * for performance reasons the counter is not stricly tracking tasks to 5060 * their home CPUs. So we just add the counter to another CPU's counter, 5061 * to keep the global sum constant after CPU-down: 5062 */ 5063 static void migrate_nr_uninterruptible(struct rq *rq_src) 5064 { 5065 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); 5066 5067 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; 5068 rq_src->nr_uninterruptible = 0; 5069 } 5070 5071 /* 5072 * remove the tasks which were accounted by rq from calc_load_tasks. 5073 */ 5074 static void calc_global_load_remove(struct rq *rq) 5075 { 5076 atomic_long_sub(rq->calc_load_active, &calc_load_tasks); 5077 rq->calc_load_active = 0; 5078 } 5079 5080 /* 5081 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5082 * try_to_wake_up()->select_task_rq(). 5083 * 5084 * Called with rq->lock held even though we'er in stop_machine() and 5085 * there's no concurrency possible, we hold the required locks anyway 5086 * because of lock validation efforts. 5087 */ 5088 static void migrate_tasks(unsigned int dead_cpu) 5089 { 5090 struct rq *rq = cpu_rq(dead_cpu); 5091 struct task_struct *next, *stop = rq->stop; 5092 int dest_cpu; 5093 5094 /* 5095 * Fudge the rq selection such that the below task selection loop 5096 * doesn't get stuck on the currently eligible stop task. 5097 * 5098 * We're currently inside stop_machine() and the rq is either stuck 5099 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5100 * either way we should never end up calling schedule() until we're 5101 * done here. 5102 */ 5103 rq->stop = NULL; 5104 5105 /* Ensure any throttled groups are reachable by pick_next_task */ 5106 unthrottle_offline_cfs_rqs(rq); 5107 5108 for ( ; ; ) { 5109 /* 5110 * There's this thread running, bail when that's the only 5111 * remaining thread. 5112 */ 5113 if (rq->nr_running == 1) 5114 break; 5115 5116 next = pick_next_task(rq); 5117 BUG_ON(!next); 5118 next->sched_class->put_prev_task(rq, next); 5119 5120 /* Find suitable destination for @next, with force if needed. */ 5121 dest_cpu = select_fallback_rq(dead_cpu, next); 5122 raw_spin_unlock(&rq->lock); 5123 5124 __migrate_task(next, dead_cpu, dest_cpu); 5125 5126 raw_spin_lock(&rq->lock); 5127 } 5128 5129 rq->stop = stop; 5130 } 5131 5132 #endif /* CONFIG_HOTPLUG_CPU */ 5133 5134 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 5135 5136 static struct ctl_table sd_ctl_dir[] = { 5137 { 5138 .procname = "sched_domain", 5139 .mode = 0555, 5140 }, 5141 {} 5142 }; 5143 5144 static struct ctl_table sd_ctl_root[] = { 5145 { 5146 .procname = "kernel", 5147 .mode = 0555, 5148 .child = sd_ctl_dir, 5149 }, 5150 {} 5151 }; 5152 5153 static struct ctl_table *sd_alloc_ctl_entry(int n) 5154 { 5155 struct ctl_table *entry = 5156 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 5157 5158 return entry; 5159 } 5160 5161 static void sd_free_ctl_entry(struct ctl_table **tablep) 5162 { 5163 struct ctl_table *entry; 5164 5165 /* 5166 * In the intermediate directories, both the child directory and 5167 * procname are dynamically allocated and could fail but the mode 5168 * will always be set. In the lowest directory the names are 5169 * static strings and all have proc handlers. 5170 */ 5171 for (entry = *tablep; entry->mode; entry++) { 5172 if (entry->child) 5173 sd_free_ctl_entry(&entry->child); 5174 if (entry->proc_handler == NULL) 5175 kfree(entry->procname); 5176 } 5177 5178 kfree(*tablep); 5179 *tablep = NULL; 5180 } 5181 5182 static void 5183 set_table_entry(struct ctl_table *entry, 5184 const char *procname, void *data, int maxlen, 5185 umode_t mode, proc_handler *proc_handler) 5186 { 5187 entry->procname = procname; 5188 entry->data = data; 5189 entry->maxlen = maxlen; 5190 entry->mode = mode; 5191 entry->proc_handler = proc_handler; 5192 } 5193 5194 static struct ctl_table * 5195 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5196 { 5197 struct ctl_table *table = sd_alloc_ctl_entry(13); 5198 5199 if (table == NULL) 5200 return NULL; 5201 5202 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5203 sizeof(long), 0644, proc_doulongvec_minmax); 5204 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5205 sizeof(long), 0644, proc_doulongvec_minmax); 5206 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5207 sizeof(int), 0644, proc_dointvec_minmax); 5208 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5209 sizeof(int), 0644, proc_dointvec_minmax); 5210 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5211 sizeof(int), 0644, proc_dointvec_minmax); 5212 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5213 sizeof(int), 0644, proc_dointvec_minmax); 5214 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5215 sizeof(int), 0644, proc_dointvec_minmax); 5216 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5217 sizeof(int), 0644, proc_dointvec_minmax); 5218 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5219 sizeof(int), 0644, proc_dointvec_minmax); 5220 set_table_entry(&table[9], "cache_nice_tries", 5221 &sd->cache_nice_tries, 5222 sizeof(int), 0644, proc_dointvec_minmax); 5223 set_table_entry(&table[10], "flags", &sd->flags, 5224 sizeof(int), 0644, proc_dointvec_minmax); 5225 set_table_entry(&table[11], "name", sd->name, 5226 CORENAME_MAX_SIZE, 0444, proc_dostring); 5227 /* &table[12] is terminator */ 5228 5229 return table; 5230 } 5231 5232 static ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5233 { 5234 struct ctl_table *entry, *table; 5235 struct sched_domain *sd; 5236 int domain_num = 0, i; 5237 char buf[32]; 5238 5239 for_each_domain(cpu, sd) 5240 domain_num++; 5241 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5242 if (table == NULL) 5243 return NULL; 5244 5245 i = 0; 5246 for_each_domain(cpu, sd) { 5247 snprintf(buf, 32, "domain%d", i); 5248 entry->procname = kstrdup(buf, GFP_KERNEL); 5249 entry->mode = 0555; 5250 entry->child = sd_alloc_ctl_domain_table(sd); 5251 entry++; 5252 i++; 5253 } 5254 return table; 5255 } 5256 5257 static struct ctl_table_header *sd_sysctl_header; 5258 static void register_sched_domain_sysctl(void) 5259 { 5260 int i, cpu_num = num_possible_cpus(); 5261 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5262 char buf[32]; 5263 5264 WARN_ON(sd_ctl_dir[0].child); 5265 sd_ctl_dir[0].child = entry; 5266 5267 if (entry == NULL) 5268 return; 5269 5270 for_each_possible_cpu(i) { 5271 snprintf(buf, 32, "cpu%d", i); 5272 entry->procname = kstrdup(buf, GFP_KERNEL); 5273 entry->mode = 0555; 5274 entry->child = sd_alloc_ctl_cpu_table(i); 5275 entry++; 5276 } 5277 5278 WARN_ON(sd_sysctl_header); 5279 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5280 } 5281 5282 /* may be called multiple times per register */ 5283 static void unregister_sched_domain_sysctl(void) 5284 { 5285 if (sd_sysctl_header) 5286 unregister_sysctl_table(sd_sysctl_header); 5287 sd_sysctl_header = NULL; 5288 if (sd_ctl_dir[0].child) 5289 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5290 } 5291 #else 5292 static void register_sched_domain_sysctl(void) 5293 { 5294 } 5295 static void unregister_sched_domain_sysctl(void) 5296 { 5297 } 5298 #endif 5299 5300 static void set_rq_online(struct rq *rq) 5301 { 5302 if (!rq->online) { 5303 const struct sched_class *class; 5304 5305 cpumask_set_cpu(rq->cpu, rq->rd->online); 5306 rq->online = 1; 5307 5308 for_each_class(class) { 5309 if (class->rq_online) 5310 class->rq_online(rq); 5311 } 5312 } 5313 } 5314 5315 static void set_rq_offline(struct rq *rq) 5316 { 5317 if (rq->online) { 5318 const struct sched_class *class; 5319 5320 for_each_class(class) { 5321 if (class->rq_offline) 5322 class->rq_offline(rq); 5323 } 5324 5325 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5326 rq->online = 0; 5327 } 5328 } 5329 5330 /* 5331 * migration_call - callback that gets triggered when a CPU is added. 5332 * Here we can start up the necessary migration thread for the new CPU. 5333 */ 5334 static int __cpuinit 5335 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5336 { 5337 int cpu = (long)hcpu; 5338 unsigned long flags; 5339 struct rq *rq = cpu_rq(cpu); 5340 5341 switch (action & ~CPU_TASKS_FROZEN) { 5342 5343 case CPU_UP_PREPARE: 5344 rq->calc_load_update = calc_load_update; 5345 break; 5346 5347 case CPU_ONLINE: 5348 /* Update our root-domain */ 5349 raw_spin_lock_irqsave(&rq->lock, flags); 5350 if (rq->rd) { 5351 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5352 5353 set_rq_online(rq); 5354 } 5355 raw_spin_unlock_irqrestore(&rq->lock, flags); 5356 break; 5357 5358 #ifdef CONFIG_HOTPLUG_CPU 5359 case CPU_DYING: 5360 sched_ttwu_pending(); 5361 /* Update our root-domain */ 5362 raw_spin_lock_irqsave(&rq->lock, flags); 5363 if (rq->rd) { 5364 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5365 set_rq_offline(rq); 5366 } 5367 migrate_tasks(cpu); 5368 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5369 raw_spin_unlock_irqrestore(&rq->lock, flags); 5370 5371 migrate_nr_uninterruptible(rq); 5372 calc_global_load_remove(rq); 5373 break; 5374 #endif 5375 } 5376 5377 update_max_interval(); 5378 5379 return NOTIFY_OK; 5380 } 5381 5382 /* 5383 * Register at high priority so that task migration (migrate_all_tasks) 5384 * happens before everything else. This has to be lower priority than 5385 * the notifier in the perf_event subsystem, though. 5386 */ 5387 static struct notifier_block __cpuinitdata migration_notifier = { 5388 .notifier_call = migration_call, 5389 .priority = CPU_PRI_MIGRATION, 5390 }; 5391 5392 static int __cpuinit sched_cpu_active(struct notifier_block *nfb, 5393 unsigned long action, void *hcpu) 5394 { 5395 switch (action & ~CPU_TASKS_FROZEN) { 5396 case CPU_ONLINE: 5397 case CPU_DOWN_FAILED: 5398 set_cpu_active((long)hcpu, true); 5399 return NOTIFY_OK; 5400 default: 5401 return NOTIFY_DONE; 5402 } 5403 } 5404 5405 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, 5406 unsigned long action, void *hcpu) 5407 { 5408 switch (action & ~CPU_TASKS_FROZEN) { 5409 case CPU_DOWN_PREPARE: 5410 set_cpu_active((long)hcpu, false); 5411 return NOTIFY_OK; 5412 default: 5413 return NOTIFY_DONE; 5414 } 5415 } 5416 5417 static int __init migration_init(void) 5418 { 5419 void *cpu = (void *)(long)smp_processor_id(); 5420 int err; 5421 5422 /* Initialize migration for the boot CPU */ 5423 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5424 BUG_ON(err == NOTIFY_BAD); 5425 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5426 register_cpu_notifier(&migration_notifier); 5427 5428 /* Register cpu active notifiers */ 5429 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5430 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5431 5432 return 0; 5433 } 5434 early_initcall(migration_init); 5435 #endif 5436 5437 #ifdef CONFIG_SMP 5438 5439 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5440 5441 #ifdef CONFIG_SCHED_DEBUG 5442 5443 static __read_mostly int sched_domain_debug_enabled; 5444 5445 static int __init sched_domain_debug_setup(char *str) 5446 { 5447 sched_domain_debug_enabled = 1; 5448 5449 return 0; 5450 } 5451 early_param("sched_debug", sched_domain_debug_setup); 5452 5453 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5454 struct cpumask *groupmask) 5455 { 5456 struct sched_group *group = sd->groups; 5457 char str[256]; 5458 5459 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5460 cpumask_clear(groupmask); 5461 5462 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5463 5464 if (!(sd->flags & SD_LOAD_BALANCE)) { 5465 printk("does not load-balance\n"); 5466 if (sd->parent) 5467 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5468 " has parent"); 5469 return -1; 5470 } 5471 5472 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5473 5474 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5475 printk(KERN_ERR "ERROR: domain->span does not contain " 5476 "CPU%d\n", cpu); 5477 } 5478 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5479 printk(KERN_ERR "ERROR: domain->groups does not contain" 5480 " CPU%d\n", cpu); 5481 } 5482 5483 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5484 do { 5485 if (!group) { 5486 printk("\n"); 5487 printk(KERN_ERR "ERROR: group is NULL\n"); 5488 break; 5489 } 5490 5491 if (!group->sgp->power) { 5492 printk(KERN_CONT "\n"); 5493 printk(KERN_ERR "ERROR: domain->cpu_power not " 5494 "set\n"); 5495 break; 5496 } 5497 5498 if (!cpumask_weight(sched_group_cpus(group))) { 5499 printk(KERN_CONT "\n"); 5500 printk(KERN_ERR "ERROR: empty group\n"); 5501 break; 5502 } 5503 5504 if (cpumask_intersects(groupmask, sched_group_cpus(group))) { 5505 printk(KERN_CONT "\n"); 5506 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5507 break; 5508 } 5509 5510 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5511 5512 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5513 5514 printk(KERN_CONT " %s", str); 5515 if (group->sgp->power != SCHED_POWER_SCALE) { 5516 printk(KERN_CONT " (cpu_power = %d)", 5517 group->sgp->power); 5518 } 5519 5520 group = group->next; 5521 } while (group != sd->groups); 5522 printk(KERN_CONT "\n"); 5523 5524 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5525 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5526 5527 if (sd->parent && 5528 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5529 printk(KERN_ERR "ERROR: parent span is not a superset " 5530 "of domain->span\n"); 5531 return 0; 5532 } 5533 5534 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5535 { 5536 int level = 0; 5537 5538 if (!sched_domain_debug_enabled) 5539 return; 5540 5541 if (!sd) { 5542 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5543 return; 5544 } 5545 5546 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5547 5548 for (;;) { 5549 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5550 break; 5551 level++; 5552 sd = sd->parent; 5553 if (!sd) 5554 break; 5555 } 5556 } 5557 #else /* !CONFIG_SCHED_DEBUG */ 5558 # define sched_domain_debug(sd, cpu) do { } while (0) 5559 #endif /* CONFIG_SCHED_DEBUG */ 5560 5561 static int sd_degenerate(struct sched_domain *sd) 5562 { 5563 if (cpumask_weight(sched_domain_span(sd)) == 1) 5564 return 1; 5565 5566 /* Following flags need at least 2 groups */ 5567 if (sd->flags & (SD_LOAD_BALANCE | 5568 SD_BALANCE_NEWIDLE | 5569 SD_BALANCE_FORK | 5570 SD_BALANCE_EXEC | 5571 SD_SHARE_CPUPOWER | 5572 SD_SHARE_PKG_RESOURCES)) { 5573 if (sd->groups != sd->groups->next) 5574 return 0; 5575 } 5576 5577 /* Following flags don't use groups */ 5578 if (sd->flags & (SD_WAKE_AFFINE)) 5579 return 0; 5580 5581 return 1; 5582 } 5583 5584 static int 5585 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5586 { 5587 unsigned long cflags = sd->flags, pflags = parent->flags; 5588 5589 if (sd_degenerate(parent)) 5590 return 1; 5591 5592 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5593 return 0; 5594 5595 /* Flags needing groups don't count if only 1 group in parent */ 5596 if (parent->groups == parent->groups->next) { 5597 pflags &= ~(SD_LOAD_BALANCE | 5598 SD_BALANCE_NEWIDLE | 5599 SD_BALANCE_FORK | 5600 SD_BALANCE_EXEC | 5601 SD_SHARE_CPUPOWER | 5602 SD_SHARE_PKG_RESOURCES); 5603 if (nr_node_ids == 1) 5604 pflags &= ~SD_SERIALIZE; 5605 } 5606 if (~cflags & pflags) 5607 return 0; 5608 5609 return 1; 5610 } 5611 5612 static void free_rootdomain(struct rcu_head *rcu) 5613 { 5614 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5615 5616 cpupri_cleanup(&rd->cpupri); 5617 free_cpumask_var(rd->rto_mask); 5618 free_cpumask_var(rd->online); 5619 free_cpumask_var(rd->span); 5620 kfree(rd); 5621 } 5622 5623 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5624 { 5625 struct root_domain *old_rd = NULL; 5626 unsigned long flags; 5627 5628 raw_spin_lock_irqsave(&rq->lock, flags); 5629 5630 if (rq->rd) { 5631 old_rd = rq->rd; 5632 5633 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5634 set_rq_offline(rq); 5635 5636 cpumask_clear_cpu(rq->cpu, old_rd->span); 5637 5638 /* 5639 * If we dont want to free the old_rt yet then 5640 * set old_rd to NULL to skip the freeing later 5641 * in this function: 5642 */ 5643 if (!atomic_dec_and_test(&old_rd->refcount)) 5644 old_rd = NULL; 5645 } 5646 5647 atomic_inc(&rd->refcount); 5648 rq->rd = rd; 5649 5650 cpumask_set_cpu(rq->cpu, rd->span); 5651 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5652 set_rq_online(rq); 5653 5654 raw_spin_unlock_irqrestore(&rq->lock, flags); 5655 5656 if (old_rd) 5657 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5658 } 5659 5660 static int init_rootdomain(struct root_domain *rd) 5661 { 5662 memset(rd, 0, sizeof(*rd)); 5663 5664 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5665 goto out; 5666 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5667 goto free_span; 5668 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5669 goto free_online; 5670 5671 if (cpupri_init(&rd->cpupri) != 0) 5672 goto free_rto_mask; 5673 return 0; 5674 5675 free_rto_mask: 5676 free_cpumask_var(rd->rto_mask); 5677 free_online: 5678 free_cpumask_var(rd->online); 5679 free_span: 5680 free_cpumask_var(rd->span); 5681 out: 5682 return -ENOMEM; 5683 } 5684 5685 /* 5686 * By default the system creates a single root-domain with all cpus as 5687 * members (mimicking the global state we have today). 5688 */ 5689 struct root_domain def_root_domain; 5690 5691 static void init_defrootdomain(void) 5692 { 5693 init_rootdomain(&def_root_domain); 5694 5695 atomic_set(&def_root_domain.refcount, 1); 5696 } 5697 5698 static struct root_domain *alloc_rootdomain(void) 5699 { 5700 struct root_domain *rd; 5701 5702 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5703 if (!rd) 5704 return NULL; 5705 5706 if (init_rootdomain(rd) != 0) { 5707 kfree(rd); 5708 return NULL; 5709 } 5710 5711 return rd; 5712 } 5713 5714 static void free_sched_groups(struct sched_group *sg, int free_sgp) 5715 { 5716 struct sched_group *tmp, *first; 5717 5718 if (!sg) 5719 return; 5720 5721 first = sg; 5722 do { 5723 tmp = sg->next; 5724 5725 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) 5726 kfree(sg->sgp); 5727 5728 kfree(sg); 5729 sg = tmp; 5730 } while (sg != first); 5731 } 5732 5733 static void free_sched_domain(struct rcu_head *rcu) 5734 { 5735 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5736 5737 /* 5738 * If its an overlapping domain it has private groups, iterate and 5739 * nuke them all. 5740 */ 5741 if (sd->flags & SD_OVERLAP) { 5742 free_sched_groups(sd->groups, 1); 5743 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5744 kfree(sd->groups->sgp); 5745 kfree(sd->groups); 5746 } 5747 kfree(sd); 5748 } 5749 5750 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5751 { 5752 call_rcu(&sd->rcu, free_sched_domain); 5753 } 5754 5755 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5756 { 5757 for (; sd; sd = sd->parent) 5758 destroy_sched_domain(sd, cpu); 5759 } 5760 5761 /* 5762 * Keep a special pointer to the highest sched_domain that has 5763 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5764 * allows us to avoid some pointer chasing select_idle_sibling(). 5765 * 5766 * Also keep a unique ID per domain (we use the first cpu number in 5767 * the cpumask of the domain), this allows us to quickly tell if 5768 * two cpus are in the same cache domain, see cpus_share_cache(). 5769 */ 5770 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5771 DEFINE_PER_CPU(int, sd_llc_id); 5772 5773 static void update_top_cache_domain(int cpu) 5774 { 5775 struct sched_domain *sd; 5776 int id = cpu; 5777 5778 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5779 if (sd) 5780 id = cpumask_first(sched_domain_span(sd)); 5781 5782 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5783 per_cpu(sd_llc_id, cpu) = id; 5784 } 5785 5786 /* 5787 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5788 * hold the hotplug lock. 5789 */ 5790 static void 5791 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5792 { 5793 struct rq *rq = cpu_rq(cpu); 5794 struct sched_domain *tmp; 5795 5796 /* Remove the sched domains which do not contribute to scheduling. */ 5797 for (tmp = sd; tmp; ) { 5798 struct sched_domain *parent = tmp->parent; 5799 if (!parent) 5800 break; 5801 5802 if (sd_parent_degenerate(tmp, parent)) { 5803 tmp->parent = parent->parent; 5804 if (parent->parent) 5805 parent->parent->child = tmp; 5806 destroy_sched_domain(parent, cpu); 5807 } else 5808 tmp = tmp->parent; 5809 } 5810 5811 if (sd && sd_degenerate(sd)) { 5812 tmp = sd; 5813 sd = sd->parent; 5814 destroy_sched_domain(tmp, cpu); 5815 if (sd) 5816 sd->child = NULL; 5817 } 5818 5819 sched_domain_debug(sd, cpu); 5820 5821 rq_attach_root(rq, rd); 5822 tmp = rq->sd; 5823 rcu_assign_pointer(rq->sd, sd); 5824 destroy_sched_domains(tmp, cpu); 5825 5826 update_top_cache_domain(cpu); 5827 } 5828 5829 /* cpus with isolated domains */ 5830 static cpumask_var_t cpu_isolated_map; 5831 5832 /* Setup the mask of cpus configured for isolated domains */ 5833 static int __init isolated_cpu_setup(char *str) 5834 { 5835 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5836 cpulist_parse(str, cpu_isolated_map); 5837 return 1; 5838 } 5839 5840 __setup("isolcpus=", isolated_cpu_setup); 5841 5842 #ifdef CONFIG_NUMA 5843 5844 /** 5845 * find_next_best_node - find the next node to include in a sched_domain 5846 * @node: node whose sched_domain we're building 5847 * @used_nodes: nodes already in the sched_domain 5848 * 5849 * Find the next node to include in a given scheduling domain. Simply 5850 * finds the closest node not already in the @used_nodes map. 5851 * 5852 * Should use nodemask_t. 5853 */ 5854 static int find_next_best_node(int node, nodemask_t *used_nodes) 5855 { 5856 int i, n, val, min_val, best_node = -1; 5857 5858 min_val = INT_MAX; 5859 5860 for (i = 0; i < nr_node_ids; i++) { 5861 /* Start at @node */ 5862 n = (node + i) % nr_node_ids; 5863 5864 if (!nr_cpus_node(n)) 5865 continue; 5866 5867 /* Skip already used nodes */ 5868 if (node_isset(n, *used_nodes)) 5869 continue; 5870 5871 /* Simple min distance search */ 5872 val = node_distance(node, n); 5873 5874 if (val < min_val) { 5875 min_val = val; 5876 best_node = n; 5877 } 5878 } 5879 5880 if (best_node != -1) 5881 node_set(best_node, *used_nodes); 5882 return best_node; 5883 } 5884 5885 /** 5886 * sched_domain_node_span - get a cpumask for a node's sched_domain 5887 * @node: node whose cpumask we're constructing 5888 * @span: resulting cpumask 5889 * 5890 * Given a node, construct a good cpumask for its sched_domain to span. It 5891 * should be one that prevents unnecessary balancing, but also spreads tasks 5892 * out optimally. 5893 */ 5894 static void sched_domain_node_span(int node, struct cpumask *span) 5895 { 5896 nodemask_t used_nodes; 5897 int i; 5898 5899 cpumask_clear(span); 5900 nodes_clear(used_nodes); 5901 5902 cpumask_or(span, span, cpumask_of_node(node)); 5903 node_set(node, used_nodes); 5904 5905 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { 5906 int next_node = find_next_best_node(node, &used_nodes); 5907 if (next_node < 0) 5908 break; 5909 cpumask_or(span, span, cpumask_of_node(next_node)); 5910 } 5911 } 5912 5913 static const struct cpumask *cpu_node_mask(int cpu) 5914 { 5915 lockdep_assert_held(&sched_domains_mutex); 5916 5917 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask); 5918 5919 return sched_domains_tmpmask; 5920 } 5921 5922 static const struct cpumask *cpu_allnodes_mask(int cpu) 5923 { 5924 return cpu_possible_mask; 5925 } 5926 #endif /* CONFIG_NUMA */ 5927 5928 static const struct cpumask *cpu_cpu_mask(int cpu) 5929 { 5930 return cpumask_of_node(cpu_to_node(cpu)); 5931 } 5932 5933 int sched_smt_power_savings = 0, sched_mc_power_savings = 0; 5934 5935 struct sd_data { 5936 struct sched_domain **__percpu sd; 5937 struct sched_group **__percpu sg; 5938 struct sched_group_power **__percpu sgp; 5939 }; 5940 5941 struct s_data { 5942 struct sched_domain ** __percpu sd; 5943 struct root_domain *rd; 5944 }; 5945 5946 enum s_alloc { 5947 sa_rootdomain, 5948 sa_sd, 5949 sa_sd_storage, 5950 sa_none, 5951 }; 5952 5953 struct sched_domain_topology_level; 5954 5955 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); 5956 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 5957 5958 #define SDTL_OVERLAP 0x01 5959 5960 struct sched_domain_topology_level { 5961 sched_domain_init_f init; 5962 sched_domain_mask_f mask; 5963 int flags; 5964 struct sd_data data; 5965 }; 5966 5967 static int 5968 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5969 { 5970 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5971 const struct cpumask *span = sched_domain_span(sd); 5972 struct cpumask *covered = sched_domains_tmpmask; 5973 struct sd_data *sdd = sd->private; 5974 struct sched_domain *child; 5975 int i; 5976 5977 cpumask_clear(covered); 5978 5979 for_each_cpu(i, span) { 5980 struct cpumask *sg_span; 5981 5982 if (cpumask_test_cpu(i, covered)) 5983 continue; 5984 5985 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5986 GFP_KERNEL, cpu_to_node(cpu)); 5987 5988 if (!sg) 5989 goto fail; 5990 5991 sg_span = sched_group_cpus(sg); 5992 5993 child = *per_cpu_ptr(sdd->sd, i); 5994 if (child->child) { 5995 child = child->child; 5996 cpumask_copy(sg_span, sched_domain_span(child)); 5997 } else 5998 cpumask_set_cpu(i, sg_span); 5999 6000 cpumask_or(covered, covered, sg_span); 6001 6002 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span)); 6003 atomic_inc(&sg->sgp->ref); 6004 6005 if (cpumask_test_cpu(cpu, sg_span)) 6006 groups = sg; 6007 6008 if (!first) 6009 first = sg; 6010 if (last) 6011 last->next = sg; 6012 last = sg; 6013 last->next = first; 6014 } 6015 sd->groups = groups; 6016 6017 return 0; 6018 6019 fail: 6020 free_sched_groups(first, 0); 6021 6022 return -ENOMEM; 6023 } 6024 6025 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 6026 { 6027 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6028 struct sched_domain *child = sd->child; 6029 6030 if (child) 6031 cpu = cpumask_first(sched_domain_span(child)); 6032 6033 if (sg) { 6034 *sg = *per_cpu_ptr(sdd->sg, cpu); 6035 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); 6036 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ 6037 } 6038 6039 return cpu; 6040 } 6041 6042 /* 6043 * build_sched_groups will build a circular linked list of the groups 6044 * covered by the given span, and will set each group's ->cpumask correctly, 6045 * and ->cpu_power to 0. 6046 * 6047 * Assumes the sched_domain tree is fully constructed 6048 */ 6049 static int 6050 build_sched_groups(struct sched_domain *sd, int cpu) 6051 { 6052 struct sched_group *first = NULL, *last = NULL; 6053 struct sd_data *sdd = sd->private; 6054 const struct cpumask *span = sched_domain_span(sd); 6055 struct cpumask *covered; 6056 int i; 6057 6058 get_group(cpu, sdd, &sd->groups); 6059 atomic_inc(&sd->groups->ref); 6060 6061 if (cpu != cpumask_first(sched_domain_span(sd))) 6062 return 0; 6063 6064 lockdep_assert_held(&sched_domains_mutex); 6065 covered = sched_domains_tmpmask; 6066 6067 cpumask_clear(covered); 6068 6069 for_each_cpu(i, span) { 6070 struct sched_group *sg; 6071 int group = get_group(i, sdd, &sg); 6072 int j; 6073 6074 if (cpumask_test_cpu(i, covered)) 6075 continue; 6076 6077 cpumask_clear(sched_group_cpus(sg)); 6078 sg->sgp->power = 0; 6079 6080 for_each_cpu(j, span) { 6081 if (get_group(j, sdd, NULL) != group) 6082 continue; 6083 6084 cpumask_set_cpu(j, covered); 6085 cpumask_set_cpu(j, sched_group_cpus(sg)); 6086 } 6087 6088 if (!first) 6089 first = sg; 6090 if (last) 6091 last->next = sg; 6092 last = sg; 6093 } 6094 last->next = first; 6095 6096 return 0; 6097 } 6098 6099 /* 6100 * Initialize sched groups cpu_power. 6101 * 6102 * cpu_power indicates the capacity of sched group, which is used while 6103 * distributing the load between different sched groups in a sched domain. 6104 * Typically cpu_power for all the groups in a sched domain will be same unless 6105 * there are asymmetries in the topology. If there are asymmetries, group 6106 * having more cpu_power will pickup more load compared to the group having 6107 * less cpu_power. 6108 */ 6109 static void init_sched_groups_power(int cpu, struct sched_domain *sd) 6110 { 6111 struct sched_group *sg = sd->groups; 6112 6113 WARN_ON(!sd || !sg); 6114 6115 do { 6116 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6117 sg = sg->next; 6118 } while (sg != sd->groups); 6119 6120 if (cpu != group_first_cpu(sg)) 6121 return; 6122 6123 update_group_power(sd, cpu); 6124 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); 6125 } 6126 6127 int __weak arch_sd_sibling_asym_packing(void) 6128 { 6129 return 0*SD_ASYM_PACKING; 6130 } 6131 6132 /* 6133 * Initializers for schedule domains 6134 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6135 */ 6136 6137 #ifdef CONFIG_SCHED_DEBUG 6138 # define SD_INIT_NAME(sd, type) sd->name = #type 6139 #else 6140 # define SD_INIT_NAME(sd, type) do { } while (0) 6141 #endif 6142 6143 #define SD_INIT_FUNC(type) \ 6144 static noinline struct sched_domain * \ 6145 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ 6146 { \ 6147 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ 6148 *sd = SD_##type##_INIT; \ 6149 SD_INIT_NAME(sd, type); \ 6150 sd->private = &tl->data; \ 6151 return sd; \ 6152 } 6153 6154 SD_INIT_FUNC(CPU) 6155 #ifdef CONFIG_NUMA 6156 SD_INIT_FUNC(ALLNODES) 6157 SD_INIT_FUNC(NODE) 6158 #endif 6159 #ifdef CONFIG_SCHED_SMT 6160 SD_INIT_FUNC(SIBLING) 6161 #endif 6162 #ifdef CONFIG_SCHED_MC 6163 SD_INIT_FUNC(MC) 6164 #endif 6165 #ifdef CONFIG_SCHED_BOOK 6166 SD_INIT_FUNC(BOOK) 6167 #endif 6168 6169 static int default_relax_domain_level = -1; 6170 int sched_domain_level_max; 6171 6172 static int __init setup_relax_domain_level(char *str) 6173 { 6174 unsigned long val; 6175 6176 val = simple_strtoul(str, NULL, 0); 6177 if (val < sched_domain_level_max) 6178 default_relax_domain_level = val; 6179 6180 return 1; 6181 } 6182 __setup("relax_domain_level=", setup_relax_domain_level); 6183 6184 static void set_domain_attribute(struct sched_domain *sd, 6185 struct sched_domain_attr *attr) 6186 { 6187 int request; 6188 6189 if (!attr || attr->relax_domain_level < 0) { 6190 if (default_relax_domain_level < 0) 6191 return; 6192 else 6193 request = default_relax_domain_level; 6194 } else 6195 request = attr->relax_domain_level; 6196 if (request < sd->level) { 6197 /* turn off idle balance on this domain */ 6198 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6199 } else { 6200 /* turn on idle balance on this domain */ 6201 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6202 } 6203 } 6204 6205 static void __sdt_free(const struct cpumask *cpu_map); 6206 static int __sdt_alloc(const struct cpumask *cpu_map); 6207 6208 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6209 const struct cpumask *cpu_map) 6210 { 6211 switch (what) { 6212 case sa_rootdomain: 6213 if (!atomic_read(&d->rd->refcount)) 6214 free_rootdomain(&d->rd->rcu); /* fall through */ 6215 case sa_sd: 6216 free_percpu(d->sd); /* fall through */ 6217 case sa_sd_storage: 6218 __sdt_free(cpu_map); /* fall through */ 6219 case sa_none: 6220 break; 6221 } 6222 } 6223 6224 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6225 const struct cpumask *cpu_map) 6226 { 6227 memset(d, 0, sizeof(*d)); 6228 6229 if (__sdt_alloc(cpu_map)) 6230 return sa_sd_storage; 6231 d->sd = alloc_percpu(struct sched_domain *); 6232 if (!d->sd) 6233 return sa_sd_storage; 6234 d->rd = alloc_rootdomain(); 6235 if (!d->rd) 6236 return sa_sd; 6237 return sa_rootdomain; 6238 } 6239 6240 /* 6241 * NULL the sd_data elements we've used to build the sched_domain and 6242 * sched_group structure so that the subsequent __free_domain_allocs() 6243 * will not free the data we're using. 6244 */ 6245 static void claim_allocations(int cpu, struct sched_domain *sd) 6246 { 6247 struct sd_data *sdd = sd->private; 6248 6249 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6250 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6251 6252 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6253 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6254 6255 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) 6256 *per_cpu_ptr(sdd->sgp, cpu) = NULL; 6257 } 6258 6259 #ifdef CONFIG_SCHED_SMT 6260 static const struct cpumask *cpu_smt_mask(int cpu) 6261 { 6262 return topology_thread_cpumask(cpu); 6263 } 6264 #endif 6265 6266 /* 6267 * Topology list, bottom-up. 6268 */ 6269 static struct sched_domain_topology_level default_topology[] = { 6270 #ifdef CONFIG_SCHED_SMT 6271 { sd_init_SIBLING, cpu_smt_mask, }, 6272 #endif 6273 #ifdef CONFIG_SCHED_MC 6274 { sd_init_MC, cpu_coregroup_mask, }, 6275 #endif 6276 #ifdef CONFIG_SCHED_BOOK 6277 { sd_init_BOOK, cpu_book_mask, }, 6278 #endif 6279 { sd_init_CPU, cpu_cpu_mask, }, 6280 #ifdef CONFIG_NUMA 6281 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, }, 6282 { sd_init_ALLNODES, cpu_allnodes_mask, }, 6283 #endif 6284 { NULL, }, 6285 }; 6286 6287 static struct sched_domain_topology_level *sched_domain_topology = default_topology; 6288 6289 static int __sdt_alloc(const struct cpumask *cpu_map) 6290 { 6291 struct sched_domain_topology_level *tl; 6292 int j; 6293 6294 for (tl = sched_domain_topology; tl->init; tl++) { 6295 struct sd_data *sdd = &tl->data; 6296 6297 sdd->sd = alloc_percpu(struct sched_domain *); 6298 if (!sdd->sd) 6299 return -ENOMEM; 6300 6301 sdd->sg = alloc_percpu(struct sched_group *); 6302 if (!sdd->sg) 6303 return -ENOMEM; 6304 6305 sdd->sgp = alloc_percpu(struct sched_group_power *); 6306 if (!sdd->sgp) 6307 return -ENOMEM; 6308 6309 for_each_cpu(j, cpu_map) { 6310 struct sched_domain *sd; 6311 struct sched_group *sg; 6312 struct sched_group_power *sgp; 6313 6314 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6315 GFP_KERNEL, cpu_to_node(j)); 6316 if (!sd) 6317 return -ENOMEM; 6318 6319 *per_cpu_ptr(sdd->sd, j) = sd; 6320 6321 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6322 GFP_KERNEL, cpu_to_node(j)); 6323 if (!sg) 6324 return -ENOMEM; 6325 6326 *per_cpu_ptr(sdd->sg, j) = sg; 6327 6328 sgp = kzalloc_node(sizeof(struct sched_group_power), 6329 GFP_KERNEL, cpu_to_node(j)); 6330 if (!sgp) 6331 return -ENOMEM; 6332 6333 *per_cpu_ptr(sdd->sgp, j) = sgp; 6334 } 6335 } 6336 6337 return 0; 6338 } 6339 6340 static void __sdt_free(const struct cpumask *cpu_map) 6341 { 6342 struct sched_domain_topology_level *tl; 6343 int j; 6344 6345 for (tl = sched_domain_topology; tl->init; tl++) { 6346 struct sd_data *sdd = &tl->data; 6347 6348 for_each_cpu(j, cpu_map) { 6349 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j); 6350 if (sd && (sd->flags & SD_OVERLAP)) 6351 free_sched_groups(sd->groups, 0); 6352 kfree(*per_cpu_ptr(sdd->sd, j)); 6353 kfree(*per_cpu_ptr(sdd->sg, j)); 6354 kfree(*per_cpu_ptr(sdd->sgp, j)); 6355 } 6356 free_percpu(sdd->sd); 6357 free_percpu(sdd->sg); 6358 free_percpu(sdd->sgp); 6359 } 6360 } 6361 6362 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6363 struct s_data *d, const struct cpumask *cpu_map, 6364 struct sched_domain_attr *attr, struct sched_domain *child, 6365 int cpu) 6366 { 6367 struct sched_domain *sd = tl->init(tl, cpu); 6368 if (!sd) 6369 return child; 6370 6371 set_domain_attribute(sd, attr); 6372 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6373 if (child) { 6374 sd->level = child->level + 1; 6375 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6376 child->parent = sd; 6377 } 6378 sd->child = child; 6379 6380 return sd; 6381 } 6382 6383 /* 6384 * Build sched domains for a given set of cpus and attach the sched domains 6385 * to the individual cpus 6386 */ 6387 static int build_sched_domains(const struct cpumask *cpu_map, 6388 struct sched_domain_attr *attr) 6389 { 6390 enum s_alloc alloc_state = sa_none; 6391 struct sched_domain *sd; 6392 struct s_data d; 6393 int i, ret = -ENOMEM; 6394 6395 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6396 if (alloc_state != sa_rootdomain) 6397 goto error; 6398 6399 /* Set up domains for cpus specified by the cpu_map. */ 6400 for_each_cpu(i, cpu_map) { 6401 struct sched_domain_topology_level *tl; 6402 6403 sd = NULL; 6404 for (tl = sched_domain_topology; tl->init; tl++) { 6405 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); 6406 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6407 sd->flags |= SD_OVERLAP; 6408 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6409 break; 6410 } 6411 6412 while (sd->child) 6413 sd = sd->child; 6414 6415 *per_cpu_ptr(d.sd, i) = sd; 6416 } 6417 6418 /* Build the groups for the domains */ 6419 for_each_cpu(i, cpu_map) { 6420 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6421 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6422 if (sd->flags & SD_OVERLAP) { 6423 if (build_overlap_sched_groups(sd, i)) 6424 goto error; 6425 } else { 6426 if (build_sched_groups(sd, i)) 6427 goto error; 6428 } 6429 } 6430 } 6431 6432 /* Calculate CPU power for physical packages and nodes */ 6433 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6434 if (!cpumask_test_cpu(i, cpu_map)) 6435 continue; 6436 6437 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6438 claim_allocations(i, sd); 6439 init_sched_groups_power(i, sd); 6440 } 6441 } 6442 6443 /* Attach the domains */ 6444 rcu_read_lock(); 6445 for_each_cpu(i, cpu_map) { 6446 sd = *per_cpu_ptr(d.sd, i); 6447 cpu_attach_domain(sd, d.rd, i); 6448 } 6449 rcu_read_unlock(); 6450 6451 ret = 0; 6452 error: 6453 __free_domain_allocs(&d, alloc_state, cpu_map); 6454 return ret; 6455 } 6456 6457 static cpumask_var_t *doms_cur; /* current sched domains */ 6458 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6459 static struct sched_domain_attr *dattr_cur; 6460 /* attribues of custom domains in 'doms_cur' */ 6461 6462 /* 6463 * Special case: If a kmalloc of a doms_cur partition (array of 6464 * cpumask) fails, then fallback to a single sched domain, 6465 * as determined by the single cpumask fallback_doms. 6466 */ 6467 static cpumask_var_t fallback_doms; 6468 6469 /* 6470 * arch_update_cpu_topology lets virtualized architectures update the 6471 * cpu core maps. It is supposed to return 1 if the topology changed 6472 * or 0 if it stayed the same. 6473 */ 6474 int __attribute__((weak)) arch_update_cpu_topology(void) 6475 { 6476 return 0; 6477 } 6478 6479 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6480 { 6481 int i; 6482 cpumask_var_t *doms; 6483 6484 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6485 if (!doms) 6486 return NULL; 6487 for (i = 0; i < ndoms; i++) { 6488 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6489 free_sched_domains(doms, i); 6490 return NULL; 6491 } 6492 } 6493 return doms; 6494 } 6495 6496 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6497 { 6498 unsigned int i; 6499 for (i = 0; i < ndoms; i++) 6500 free_cpumask_var(doms[i]); 6501 kfree(doms); 6502 } 6503 6504 /* 6505 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6506 * For now this just excludes isolated cpus, but could be used to 6507 * exclude other special cases in the future. 6508 */ 6509 static int init_sched_domains(const struct cpumask *cpu_map) 6510 { 6511 int err; 6512 6513 arch_update_cpu_topology(); 6514 ndoms_cur = 1; 6515 doms_cur = alloc_sched_domains(ndoms_cur); 6516 if (!doms_cur) 6517 doms_cur = &fallback_doms; 6518 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6519 dattr_cur = NULL; 6520 err = build_sched_domains(doms_cur[0], NULL); 6521 register_sched_domain_sysctl(); 6522 6523 return err; 6524 } 6525 6526 /* 6527 * Detach sched domains from a group of cpus specified in cpu_map 6528 * These cpus will now be attached to the NULL domain 6529 */ 6530 static void detach_destroy_domains(const struct cpumask *cpu_map) 6531 { 6532 int i; 6533 6534 rcu_read_lock(); 6535 for_each_cpu(i, cpu_map) 6536 cpu_attach_domain(NULL, &def_root_domain, i); 6537 rcu_read_unlock(); 6538 } 6539 6540 /* handle null as "default" */ 6541 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6542 struct sched_domain_attr *new, int idx_new) 6543 { 6544 struct sched_domain_attr tmp; 6545 6546 /* fast path */ 6547 if (!new && !cur) 6548 return 1; 6549 6550 tmp = SD_ATTR_INIT; 6551 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6552 new ? (new + idx_new) : &tmp, 6553 sizeof(struct sched_domain_attr)); 6554 } 6555 6556 /* 6557 * Partition sched domains as specified by the 'ndoms_new' 6558 * cpumasks in the array doms_new[] of cpumasks. This compares 6559 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6560 * It destroys each deleted domain and builds each new domain. 6561 * 6562 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6563 * The masks don't intersect (don't overlap.) We should setup one 6564 * sched domain for each mask. CPUs not in any of the cpumasks will 6565 * not be load balanced. If the same cpumask appears both in the 6566 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6567 * it as it is. 6568 * 6569 * The passed in 'doms_new' should be allocated using 6570 * alloc_sched_domains. This routine takes ownership of it and will 6571 * free_sched_domains it when done with it. If the caller failed the 6572 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6573 * and partition_sched_domains() will fallback to the single partition 6574 * 'fallback_doms', it also forces the domains to be rebuilt. 6575 * 6576 * If doms_new == NULL it will be replaced with cpu_online_mask. 6577 * ndoms_new == 0 is a special case for destroying existing domains, 6578 * and it will not create the default domain. 6579 * 6580 * Call with hotplug lock held 6581 */ 6582 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6583 struct sched_domain_attr *dattr_new) 6584 { 6585 int i, j, n; 6586 int new_topology; 6587 6588 mutex_lock(&sched_domains_mutex); 6589 6590 /* always unregister in case we don't destroy any domains */ 6591 unregister_sched_domain_sysctl(); 6592 6593 /* Let architecture update cpu core mappings. */ 6594 new_topology = arch_update_cpu_topology(); 6595 6596 n = doms_new ? ndoms_new : 0; 6597 6598 /* Destroy deleted domains */ 6599 for (i = 0; i < ndoms_cur; i++) { 6600 for (j = 0; j < n && !new_topology; j++) { 6601 if (cpumask_equal(doms_cur[i], doms_new[j]) 6602 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6603 goto match1; 6604 } 6605 /* no match - a current sched domain not in new doms_new[] */ 6606 detach_destroy_domains(doms_cur[i]); 6607 match1: 6608 ; 6609 } 6610 6611 if (doms_new == NULL) { 6612 ndoms_cur = 0; 6613 doms_new = &fallback_doms; 6614 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6615 WARN_ON_ONCE(dattr_new); 6616 } 6617 6618 /* Build new domains */ 6619 for (i = 0; i < ndoms_new; i++) { 6620 for (j = 0; j < ndoms_cur && !new_topology; j++) { 6621 if (cpumask_equal(doms_new[i], doms_cur[j]) 6622 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6623 goto match2; 6624 } 6625 /* no match - add a new doms_new */ 6626 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6627 match2: 6628 ; 6629 } 6630 6631 /* Remember the new sched domains */ 6632 if (doms_cur != &fallback_doms) 6633 free_sched_domains(doms_cur, ndoms_cur); 6634 kfree(dattr_cur); /* kfree(NULL) is safe */ 6635 doms_cur = doms_new; 6636 dattr_cur = dattr_new; 6637 ndoms_cur = ndoms_new; 6638 6639 register_sched_domain_sysctl(); 6640 6641 mutex_unlock(&sched_domains_mutex); 6642 } 6643 6644 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) 6645 static void reinit_sched_domains(void) 6646 { 6647 get_online_cpus(); 6648 6649 /* Destroy domains first to force the rebuild */ 6650 partition_sched_domains(0, NULL, NULL); 6651 6652 rebuild_sched_domains(); 6653 put_online_cpus(); 6654 } 6655 6656 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) 6657 { 6658 unsigned int level = 0; 6659 6660 if (sscanf(buf, "%u", &level) != 1) 6661 return -EINVAL; 6662 6663 /* 6664 * level is always be positive so don't check for 6665 * level < POWERSAVINGS_BALANCE_NONE which is 0 6666 * What happens on 0 or 1 byte write, 6667 * need to check for count as well? 6668 */ 6669 6670 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) 6671 return -EINVAL; 6672 6673 if (smt) 6674 sched_smt_power_savings = level; 6675 else 6676 sched_mc_power_savings = level; 6677 6678 reinit_sched_domains(); 6679 6680 return count; 6681 } 6682 6683 #ifdef CONFIG_SCHED_MC 6684 static ssize_t sched_mc_power_savings_show(struct device *dev, 6685 struct device_attribute *attr, 6686 char *buf) 6687 { 6688 return sprintf(buf, "%u\n", sched_mc_power_savings); 6689 } 6690 static ssize_t sched_mc_power_savings_store(struct device *dev, 6691 struct device_attribute *attr, 6692 const char *buf, size_t count) 6693 { 6694 return sched_power_savings_store(buf, count, 0); 6695 } 6696 static DEVICE_ATTR(sched_mc_power_savings, 0644, 6697 sched_mc_power_savings_show, 6698 sched_mc_power_savings_store); 6699 #endif 6700 6701 #ifdef CONFIG_SCHED_SMT 6702 static ssize_t sched_smt_power_savings_show(struct device *dev, 6703 struct device_attribute *attr, 6704 char *buf) 6705 { 6706 return sprintf(buf, "%u\n", sched_smt_power_savings); 6707 } 6708 static ssize_t sched_smt_power_savings_store(struct device *dev, 6709 struct device_attribute *attr, 6710 const char *buf, size_t count) 6711 { 6712 return sched_power_savings_store(buf, count, 1); 6713 } 6714 static DEVICE_ATTR(sched_smt_power_savings, 0644, 6715 sched_smt_power_savings_show, 6716 sched_smt_power_savings_store); 6717 #endif 6718 6719 int __init sched_create_sysfs_power_savings_entries(struct device *dev) 6720 { 6721 int err = 0; 6722 6723 #ifdef CONFIG_SCHED_SMT 6724 if (smt_capable()) 6725 err = device_create_file(dev, &dev_attr_sched_smt_power_savings); 6726 #endif 6727 #ifdef CONFIG_SCHED_MC 6728 if (!err && mc_capable()) 6729 err = device_create_file(dev, &dev_attr_sched_mc_power_savings); 6730 #endif 6731 return err; 6732 } 6733 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ 6734 6735 /* 6736 * Update cpusets according to cpu_active mask. If cpusets are 6737 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6738 * around partition_sched_domains(). 6739 */ 6740 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6741 void *hcpu) 6742 { 6743 switch (action & ~CPU_TASKS_FROZEN) { 6744 case CPU_ONLINE: 6745 case CPU_DOWN_FAILED: 6746 cpuset_update_active_cpus(); 6747 return NOTIFY_OK; 6748 default: 6749 return NOTIFY_DONE; 6750 } 6751 } 6752 6753 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6754 void *hcpu) 6755 { 6756 switch (action & ~CPU_TASKS_FROZEN) { 6757 case CPU_DOWN_PREPARE: 6758 cpuset_update_active_cpus(); 6759 return NOTIFY_OK; 6760 default: 6761 return NOTIFY_DONE; 6762 } 6763 } 6764 6765 void __init sched_init_smp(void) 6766 { 6767 cpumask_var_t non_isolated_cpus; 6768 6769 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6770 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6771 6772 get_online_cpus(); 6773 mutex_lock(&sched_domains_mutex); 6774 init_sched_domains(cpu_active_mask); 6775 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6776 if (cpumask_empty(non_isolated_cpus)) 6777 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6778 mutex_unlock(&sched_domains_mutex); 6779 put_online_cpus(); 6780 6781 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6782 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6783 6784 /* RT runtime code needs to handle some hotplug events */ 6785 hotcpu_notifier(update_runtime, 0); 6786 6787 init_hrtick(); 6788 6789 /* Move init over to a non-isolated CPU */ 6790 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6791 BUG(); 6792 sched_init_granularity(); 6793 free_cpumask_var(non_isolated_cpus); 6794 6795 init_sched_rt_class(); 6796 } 6797 #else 6798 void __init sched_init_smp(void) 6799 { 6800 sched_init_granularity(); 6801 } 6802 #endif /* CONFIG_SMP */ 6803 6804 const_debug unsigned int sysctl_timer_migration = 1; 6805 6806 int in_sched_functions(unsigned long addr) 6807 { 6808 return in_lock_functions(addr) || 6809 (addr >= (unsigned long)__sched_text_start 6810 && addr < (unsigned long)__sched_text_end); 6811 } 6812 6813 #ifdef CONFIG_CGROUP_SCHED 6814 struct task_group root_task_group; 6815 #endif 6816 6817 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask); 6818 6819 void __init sched_init(void) 6820 { 6821 int i, j; 6822 unsigned long alloc_size = 0, ptr; 6823 6824 #ifdef CONFIG_FAIR_GROUP_SCHED 6825 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6826 #endif 6827 #ifdef CONFIG_RT_GROUP_SCHED 6828 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6829 #endif 6830 #ifdef CONFIG_CPUMASK_OFFSTACK 6831 alloc_size += num_possible_cpus() * cpumask_size(); 6832 #endif 6833 if (alloc_size) { 6834 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6835 6836 #ifdef CONFIG_FAIR_GROUP_SCHED 6837 root_task_group.se = (struct sched_entity **)ptr; 6838 ptr += nr_cpu_ids * sizeof(void **); 6839 6840 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6841 ptr += nr_cpu_ids * sizeof(void **); 6842 6843 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6844 #ifdef CONFIG_RT_GROUP_SCHED 6845 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6846 ptr += nr_cpu_ids * sizeof(void **); 6847 6848 root_task_group.rt_rq = (struct rt_rq **)ptr; 6849 ptr += nr_cpu_ids * sizeof(void **); 6850 6851 #endif /* CONFIG_RT_GROUP_SCHED */ 6852 #ifdef CONFIG_CPUMASK_OFFSTACK 6853 for_each_possible_cpu(i) { 6854 per_cpu(load_balance_tmpmask, i) = (void *)ptr; 6855 ptr += cpumask_size(); 6856 } 6857 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6858 } 6859 6860 #ifdef CONFIG_SMP 6861 init_defrootdomain(); 6862 #endif 6863 6864 init_rt_bandwidth(&def_rt_bandwidth, 6865 global_rt_period(), global_rt_runtime()); 6866 6867 #ifdef CONFIG_RT_GROUP_SCHED 6868 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6869 global_rt_period(), global_rt_runtime()); 6870 #endif /* CONFIG_RT_GROUP_SCHED */ 6871 6872 #ifdef CONFIG_CGROUP_SCHED 6873 list_add(&root_task_group.list, &task_groups); 6874 INIT_LIST_HEAD(&root_task_group.children); 6875 INIT_LIST_HEAD(&root_task_group.siblings); 6876 autogroup_init(&init_task); 6877 6878 #endif /* CONFIG_CGROUP_SCHED */ 6879 6880 #ifdef CONFIG_CGROUP_CPUACCT 6881 root_cpuacct.cpustat = &kernel_cpustat; 6882 root_cpuacct.cpuusage = alloc_percpu(u64); 6883 /* Too early, not expected to fail */ 6884 BUG_ON(!root_cpuacct.cpuusage); 6885 #endif 6886 for_each_possible_cpu(i) { 6887 struct rq *rq; 6888 6889 rq = cpu_rq(i); 6890 raw_spin_lock_init(&rq->lock); 6891 rq->nr_running = 0; 6892 rq->calc_load_active = 0; 6893 rq->calc_load_update = jiffies + LOAD_FREQ; 6894 init_cfs_rq(&rq->cfs); 6895 init_rt_rq(&rq->rt, rq); 6896 #ifdef CONFIG_FAIR_GROUP_SCHED 6897 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6898 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6899 /* 6900 * How much cpu bandwidth does root_task_group get? 6901 * 6902 * In case of task-groups formed thr' the cgroup filesystem, it 6903 * gets 100% of the cpu resources in the system. This overall 6904 * system cpu resource is divided among the tasks of 6905 * root_task_group and its child task-groups in a fair manner, 6906 * based on each entity's (task or task-group's) weight 6907 * (se->load.weight). 6908 * 6909 * In other words, if root_task_group has 10 tasks of weight 6910 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6911 * then A0's share of the cpu resource is: 6912 * 6913 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6914 * 6915 * We achieve this by letting root_task_group's tasks sit 6916 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6917 */ 6918 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6919 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6920 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6921 6922 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6923 #ifdef CONFIG_RT_GROUP_SCHED 6924 INIT_LIST_HEAD(&rq->leaf_rt_rq_list); 6925 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6926 #endif 6927 6928 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6929 rq->cpu_load[j] = 0; 6930 6931 rq->last_load_update_tick = jiffies; 6932 6933 #ifdef CONFIG_SMP 6934 rq->sd = NULL; 6935 rq->rd = NULL; 6936 rq->cpu_power = SCHED_POWER_SCALE; 6937 rq->post_schedule = 0; 6938 rq->active_balance = 0; 6939 rq->next_balance = jiffies; 6940 rq->push_cpu = 0; 6941 rq->cpu = i; 6942 rq->online = 0; 6943 rq->idle_stamp = 0; 6944 rq->avg_idle = 2*sysctl_sched_migration_cost; 6945 rq_attach_root(rq, &def_root_domain); 6946 #ifdef CONFIG_NO_HZ 6947 rq->nohz_flags = 0; 6948 #endif 6949 #endif 6950 init_rq_hrtick(rq); 6951 atomic_set(&rq->nr_iowait, 0); 6952 } 6953 6954 set_load_weight(&init_task); 6955 6956 #ifdef CONFIG_PREEMPT_NOTIFIERS 6957 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 6958 #endif 6959 6960 #ifdef CONFIG_RT_MUTEXES 6961 plist_head_init(&init_task.pi_waiters); 6962 #endif 6963 6964 /* 6965 * The boot idle thread does lazy MMU switching as well: 6966 */ 6967 atomic_inc(&init_mm.mm_count); 6968 enter_lazy_tlb(&init_mm, current); 6969 6970 /* 6971 * Make us the idle thread. Technically, schedule() should not be 6972 * called from this thread, however somewhere below it might be, 6973 * but because we are the idle thread, we just pick up running again 6974 * when this runqueue becomes "idle". 6975 */ 6976 init_idle(current, smp_processor_id()); 6977 6978 calc_load_update = jiffies + LOAD_FREQ; 6979 6980 /* 6981 * During early bootup we pretend to be a normal task: 6982 */ 6983 current->sched_class = &fair_sched_class; 6984 6985 #ifdef CONFIG_SMP 6986 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 6987 /* May be allocated at isolcpus cmdline parse time */ 6988 if (cpu_isolated_map == NULL) 6989 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 6990 #endif 6991 init_sched_fair_class(); 6992 6993 scheduler_running = 1; 6994 } 6995 6996 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6997 static inline int preempt_count_equals(int preempt_offset) 6998 { 6999 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7000 7001 return (nested == preempt_offset); 7002 } 7003 7004 void __might_sleep(const char *file, int line, int preempt_offset) 7005 { 7006 static unsigned long prev_jiffy; /* ratelimiting */ 7007 7008 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7009 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || 7010 system_state != SYSTEM_RUNNING || oops_in_progress) 7011 return; 7012 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7013 return; 7014 prev_jiffy = jiffies; 7015 7016 printk(KERN_ERR 7017 "BUG: sleeping function called from invalid context at %s:%d\n", 7018 file, line); 7019 printk(KERN_ERR 7020 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7021 in_atomic(), irqs_disabled(), 7022 current->pid, current->comm); 7023 7024 debug_show_held_locks(current); 7025 if (irqs_disabled()) 7026 print_irqtrace_events(current); 7027 dump_stack(); 7028 } 7029 EXPORT_SYMBOL(__might_sleep); 7030 #endif 7031 7032 #ifdef CONFIG_MAGIC_SYSRQ 7033 static void normalize_task(struct rq *rq, struct task_struct *p) 7034 { 7035 const struct sched_class *prev_class = p->sched_class; 7036 int old_prio = p->prio; 7037 int on_rq; 7038 7039 on_rq = p->on_rq; 7040 if (on_rq) 7041 dequeue_task(rq, p, 0); 7042 __setscheduler(rq, p, SCHED_NORMAL, 0); 7043 if (on_rq) { 7044 enqueue_task(rq, p, 0); 7045 resched_task(rq->curr); 7046 } 7047 7048 check_class_changed(rq, p, prev_class, old_prio); 7049 } 7050 7051 void normalize_rt_tasks(void) 7052 { 7053 struct task_struct *g, *p; 7054 unsigned long flags; 7055 struct rq *rq; 7056 7057 read_lock_irqsave(&tasklist_lock, flags); 7058 do_each_thread(g, p) { 7059 /* 7060 * Only normalize user tasks: 7061 */ 7062 if (!p->mm) 7063 continue; 7064 7065 p->se.exec_start = 0; 7066 #ifdef CONFIG_SCHEDSTATS 7067 p->se.statistics.wait_start = 0; 7068 p->se.statistics.sleep_start = 0; 7069 p->se.statistics.block_start = 0; 7070 #endif 7071 7072 if (!rt_task(p)) { 7073 /* 7074 * Renice negative nice level userspace 7075 * tasks back to 0: 7076 */ 7077 if (TASK_NICE(p) < 0 && p->mm) 7078 set_user_nice(p, 0); 7079 continue; 7080 } 7081 7082 raw_spin_lock(&p->pi_lock); 7083 rq = __task_rq_lock(p); 7084 7085 normalize_task(rq, p); 7086 7087 __task_rq_unlock(rq); 7088 raw_spin_unlock(&p->pi_lock); 7089 } while_each_thread(g, p); 7090 7091 read_unlock_irqrestore(&tasklist_lock, flags); 7092 } 7093 7094 #endif /* CONFIG_MAGIC_SYSRQ */ 7095 7096 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7097 /* 7098 * These functions are only useful for the IA64 MCA handling, or kdb. 7099 * 7100 * They can only be called when the whole system has been 7101 * stopped - every CPU needs to be quiescent, and no scheduling 7102 * activity can take place. Using them for anything else would 7103 * be a serious bug, and as a result, they aren't even visible 7104 * under any other configuration. 7105 */ 7106 7107 /** 7108 * curr_task - return the current task for a given cpu. 7109 * @cpu: the processor in question. 7110 * 7111 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7112 */ 7113 struct task_struct *curr_task(int cpu) 7114 { 7115 return cpu_curr(cpu); 7116 } 7117 7118 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7119 7120 #ifdef CONFIG_IA64 7121 /** 7122 * set_curr_task - set the current task for a given cpu. 7123 * @cpu: the processor in question. 7124 * @p: the task pointer to set. 7125 * 7126 * Description: This function must only be used when non-maskable interrupts 7127 * are serviced on a separate stack. It allows the architecture to switch the 7128 * notion of the current task on a cpu in a non-blocking manner. This function 7129 * must be called with all CPU's synchronized, and interrupts disabled, the 7130 * and caller must save the original value of the current task (see 7131 * curr_task() above) and restore that value before reenabling interrupts and 7132 * re-starting the system. 7133 * 7134 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7135 */ 7136 void set_curr_task(int cpu, struct task_struct *p) 7137 { 7138 cpu_curr(cpu) = p; 7139 } 7140 7141 #endif 7142 7143 #ifdef CONFIG_CGROUP_SCHED 7144 /* task_group_lock serializes the addition/removal of task groups */ 7145 static DEFINE_SPINLOCK(task_group_lock); 7146 7147 static void free_sched_group(struct task_group *tg) 7148 { 7149 free_fair_sched_group(tg); 7150 free_rt_sched_group(tg); 7151 autogroup_free(tg); 7152 kfree(tg); 7153 } 7154 7155 /* allocate runqueue etc for a new task group */ 7156 struct task_group *sched_create_group(struct task_group *parent) 7157 { 7158 struct task_group *tg; 7159 unsigned long flags; 7160 7161 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7162 if (!tg) 7163 return ERR_PTR(-ENOMEM); 7164 7165 if (!alloc_fair_sched_group(tg, parent)) 7166 goto err; 7167 7168 if (!alloc_rt_sched_group(tg, parent)) 7169 goto err; 7170 7171 spin_lock_irqsave(&task_group_lock, flags); 7172 list_add_rcu(&tg->list, &task_groups); 7173 7174 WARN_ON(!parent); /* root should already exist */ 7175 7176 tg->parent = parent; 7177 INIT_LIST_HEAD(&tg->children); 7178 list_add_rcu(&tg->siblings, &parent->children); 7179 spin_unlock_irqrestore(&task_group_lock, flags); 7180 7181 return tg; 7182 7183 err: 7184 free_sched_group(tg); 7185 return ERR_PTR(-ENOMEM); 7186 } 7187 7188 /* rcu callback to free various structures associated with a task group */ 7189 static void free_sched_group_rcu(struct rcu_head *rhp) 7190 { 7191 /* now it should be safe to free those cfs_rqs */ 7192 free_sched_group(container_of(rhp, struct task_group, rcu)); 7193 } 7194 7195 /* Destroy runqueue etc associated with a task group */ 7196 void sched_destroy_group(struct task_group *tg) 7197 { 7198 unsigned long flags; 7199 int i; 7200 7201 /* end participation in shares distribution */ 7202 for_each_possible_cpu(i) 7203 unregister_fair_sched_group(tg, i); 7204 7205 spin_lock_irqsave(&task_group_lock, flags); 7206 list_del_rcu(&tg->list); 7207 list_del_rcu(&tg->siblings); 7208 spin_unlock_irqrestore(&task_group_lock, flags); 7209 7210 /* wait for possible concurrent references to cfs_rqs complete */ 7211 call_rcu(&tg->rcu, free_sched_group_rcu); 7212 } 7213 7214 /* change task's runqueue when it moves between groups. 7215 * The caller of this function should have put the task in its new group 7216 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7217 * reflect its new group. 7218 */ 7219 void sched_move_task(struct task_struct *tsk) 7220 { 7221 int on_rq, running; 7222 unsigned long flags; 7223 struct rq *rq; 7224 7225 rq = task_rq_lock(tsk, &flags); 7226 7227 running = task_current(rq, tsk); 7228 on_rq = tsk->on_rq; 7229 7230 if (on_rq) 7231 dequeue_task(rq, tsk, 0); 7232 if (unlikely(running)) 7233 tsk->sched_class->put_prev_task(rq, tsk); 7234 7235 #ifdef CONFIG_FAIR_GROUP_SCHED 7236 if (tsk->sched_class->task_move_group) 7237 tsk->sched_class->task_move_group(tsk, on_rq); 7238 else 7239 #endif 7240 set_task_rq(tsk, task_cpu(tsk)); 7241 7242 if (unlikely(running)) 7243 tsk->sched_class->set_curr_task(rq); 7244 if (on_rq) 7245 enqueue_task(rq, tsk, 0); 7246 7247 task_rq_unlock(rq, tsk, &flags); 7248 } 7249 #endif /* CONFIG_CGROUP_SCHED */ 7250 7251 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) 7252 static unsigned long to_ratio(u64 period, u64 runtime) 7253 { 7254 if (runtime == RUNTIME_INF) 7255 return 1ULL << 20; 7256 7257 return div64_u64(runtime << 20, period); 7258 } 7259 #endif 7260 7261 #ifdef CONFIG_RT_GROUP_SCHED 7262 /* 7263 * Ensure that the real time constraints are schedulable. 7264 */ 7265 static DEFINE_MUTEX(rt_constraints_mutex); 7266 7267 /* Must be called with tasklist_lock held */ 7268 static inline int tg_has_rt_tasks(struct task_group *tg) 7269 { 7270 struct task_struct *g, *p; 7271 7272 do_each_thread(g, p) { 7273 if (rt_task(p) && task_rq(p)->rt.tg == tg) 7274 return 1; 7275 } while_each_thread(g, p); 7276 7277 return 0; 7278 } 7279 7280 struct rt_schedulable_data { 7281 struct task_group *tg; 7282 u64 rt_period; 7283 u64 rt_runtime; 7284 }; 7285 7286 static int tg_rt_schedulable(struct task_group *tg, void *data) 7287 { 7288 struct rt_schedulable_data *d = data; 7289 struct task_group *child; 7290 unsigned long total, sum = 0; 7291 u64 period, runtime; 7292 7293 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7294 runtime = tg->rt_bandwidth.rt_runtime; 7295 7296 if (tg == d->tg) { 7297 period = d->rt_period; 7298 runtime = d->rt_runtime; 7299 } 7300 7301 /* 7302 * Cannot have more runtime than the period. 7303 */ 7304 if (runtime > period && runtime != RUNTIME_INF) 7305 return -EINVAL; 7306 7307 /* 7308 * Ensure we don't starve existing RT tasks. 7309 */ 7310 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7311 return -EBUSY; 7312 7313 total = to_ratio(period, runtime); 7314 7315 /* 7316 * Nobody can have more than the global setting allows. 7317 */ 7318 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7319 return -EINVAL; 7320 7321 /* 7322 * The sum of our children's runtime should not exceed our own. 7323 */ 7324 list_for_each_entry_rcu(child, &tg->children, siblings) { 7325 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7326 runtime = child->rt_bandwidth.rt_runtime; 7327 7328 if (child == d->tg) { 7329 period = d->rt_period; 7330 runtime = d->rt_runtime; 7331 } 7332 7333 sum += to_ratio(period, runtime); 7334 } 7335 7336 if (sum > total) 7337 return -EINVAL; 7338 7339 return 0; 7340 } 7341 7342 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7343 { 7344 int ret; 7345 7346 struct rt_schedulable_data data = { 7347 .tg = tg, 7348 .rt_period = period, 7349 .rt_runtime = runtime, 7350 }; 7351 7352 rcu_read_lock(); 7353 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7354 rcu_read_unlock(); 7355 7356 return ret; 7357 } 7358 7359 static int tg_set_rt_bandwidth(struct task_group *tg, 7360 u64 rt_period, u64 rt_runtime) 7361 { 7362 int i, err = 0; 7363 7364 mutex_lock(&rt_constraints_mutex); 7365 read_lock(&tasklist_lock); 7366 err = __rt_schedulable(tg, rt_period, rt_runtime); 7367 if (err) 7368 goto unlock; 7369 7370 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7371 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7372 tg->rt_bandwidth.rt_runtime = rt_runtime; 7373 7374 for_each_possible_cpu(i) { 7375 struct rt_rq *rt_rq = tg->rt_rq[i]; 7376 7377 raw_spin_lock(&rt_rq->rt_runtime_lock); 7378 rt_rq->rt_runtime = rt_runtime; 7379 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7380 } 7381 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7382 unlock: 7383 read_unlock(&tasklist_lock); 7384 mutex_unlock(&rt_constraints_mutex); 7385 7386 return err; 7387 } 7388 7389 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7390 { 7391 u64 rt_runtime, rt_period; 7392 7393 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7394 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7395 if (rt_runtime_us < 0) 7396 rt_runtime = RUNTIME_INF; 7397 7398 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7399 } 7400 7401 long sched_group_rt_runtime(struct task_group *tg) 7402 { 7403 u64 rt_runtime_us; 7404 7405 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7406 return -1; 7407 7408 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7409 do_div(rt_runtime_us, NSEC_PER_USEC); 7410 return rt_runtime_us; 7411 } 7412 7413 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7414 { 7415 u64 rt_runtime, rt_period; 7416 7417 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7418 rt_runtime = tg->rt_bandwidth.rt_runtime; 7419 7420 if (rt_period == 0) 7421 return -EINVAL; 7422 7423 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7424 } 7425 7426 long sched_group_rt_period(struct task_group *tg) 7427 { 7428 u64 rt_period_us; 7429 7430 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7431 do_div(rt_period_us, NSEC_PER_USEC); 7432 return rt_period_us; 7433 } 7434 7435 static int sched_rt_global_constraints(void) 7436 { 7437 u64 runtime, period; 7438 int ret = 0; 7439 7440 if (sysctl_sched_rt_period <= 0) 7441 return -EINVAL; 7442 7443 runtime = global_rt_runtime(); 7444 period = global_rt_period(); 7445 7446 /* 7447 * Sanity check on the sysctl variables. 7448 */ 7449 if (runtime > period && runtime != RUNTIME_INF) 7450 return -EINVAL; 7451 7452 mutex_lock(&rt_constraints_mutex); 7453 read_lock(&tasklist_lock); 7454 ret = __rt_schedulable(NULL, 0, 0); 7455 read_unlock(&tasklist_lock); 7456 mutex_unlock(&rt_constraints_mutex); 7457 7458 return ret; 7459 } 7460 7461 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7462 { 7463 /* Don't accept realtime tasks when there is no way for them to run */ 7464 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7465 return 0; 7466 7467 return 1; 7468 } 7469 7470 #else /* !CONFIG_RT_GROUP_SCHED */ 7471 static int sched_rt_global_constraints(void) 7472 { 7473 unsigned long flags; 7474 int i; 7475 7476 if (sysctl_sched_rt_period <= 0) 7477 return -EINVAL; 7478 7479 /* 7480 * There's always some RT tasks in the root group 7481 * -- migration, kstopmachine etc.. 7482 */ 7483 if (sysctl_sched_rt_runtime == 0) 7484 return -EBUSY; 7485 7486 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7487 for_each_possible_cpu(i) { 7488 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7489 7490 raw_spin_lock(&rt_rq->rt_runtime_lock); 7491 rt_rq->rt_runtime = global_rt_runtime(); 7492 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7493 } 7494 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7495 7496 return 0; 7497 } 7498 #endif /* CONFIG_RT_GROUP_SCHED */ 7499 7500 int sched_rt_handler(struct ctl_table *table, int write, 7501 void __user *buffer, size_t *lenp, 7502 loff_t *ppos) 7503 { 7504 int ret; 7505 int old_period, old_runtime; 7506 static DEFINE_MUTEX(mutex); 7507 7508 mutex_lock(&mutex); 7509 old_period = sysctl_sched_rt_period; 7510 old_runtime = sysctl_sched_rt_runtime; 7511 7512 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7513 7514 if (!ret && write) { 7515 ret = sched_rt_global_constraints(); 7516 if (ret) { 7517 sysctl_sched_rt_period = old_period; 7518 sysctl_sched_rt_runtime = old_runtime; 7519 } else { 7520 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7521 def_rt_bandwidth.rt_period = 7522 ns_to_ktime(global_rt_period()); 7523 } 7524 } 7525 mutex_unlock(&mutex); 7526 7527 return ret; 7528 } 7529 7530 #ifdef CONFIG_CGROUP_SCHED 7531 7532 /* return corresponding task_group object of a cgroup */ 7533 static inline struct task_group *cgroup_tg(struct cgroup *cgrp) 7534 { 7535 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), 7536 struct task_group, css); 7537 } 7538 7539 static struct cgroup_subsys_state * 7540 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) 7541 { 7542 struct task_group *tg, *parent; 7543 7544 if (!cgrp->parent) { 7545 /* This is early initialization for the top cgroup */ 7546 return &root_task_group.css; 7547 } 7548 7549 parent = cgroup_tg(cgrp->parent); 7550 tg = sched_create_group(parent); 7551 if (IS_ERR(tg)) 7552 return ERR_PTR(-ENOMEM); 7553 7554 return &tg->css; 7555 } 7556 7557 static void 7558 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) 7559 { 7560 struct task_group *tg = cgroup_tg(cgrp); 7561 7562 sched_destroy_group(tg); 7563 } 7564 7565 static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, 7566 struct cgroup_taskset *tset) 7567 { 7568 struct task_struct *task; 7569 7570 cgroup_taskset_for_each(task, cgrp, tset) { 7571 #ifdef CONFIG_RT_GROUP_SCHED 7572 if (!sched_rt_can_attach(cgroup_tg(cgrp), task)) 7573 return -EINVAL; 7574 #else 7575 /* We don't support RT-tasks being in separate groups */ 7576 if (task->sched_class != &fair_sched_class) 7577 return -EINVAL; 7578 #endif 7579 } 7580 return 0; 7581 } 7582 7583 static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, 7584 struct cgroup_taskset *tset) 7585 { 7586 struct task_struct *task; 7587 7588 cgroup_taskset_for_each(task, cgrp, tset) 7589 sched_move_task(task); 7590 } 7591 7592 static void 7593 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp, 7594 struct cgroup *old_cgrp, struct task_struct *task) 7595 { 7596 /* 7597 * cgroup_exit() is called in the copy_process() failure path. 7598 * Ignore this case since the task hasn't ran yet, this avoids 7599 * trying to poke a half freed task state from generic code. 7600 */ 7601 if (!(task->flags & PF_EXITING)) 7602 return; 7603 7604 sched_move_task(task); 7605 } 7606 7607 #ifdef CONFIG_FAIR_GROUP_SCHED 7608 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7609 u64 shareval) 7610 { 7611 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval)); 7612 } 7613 7614 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) 7615 { 7616 struct task_group *tg = cgroup_tg(cgrp); 7617 7618 return (u64) scale_load_down(tg->shares); 7619 } 7620 7621 #ifdef CONFIG_CFS_BANDWIDTH 7622 static DEFINE_MUTEX(cfs_constraints_mutex); 7623 7624 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7625 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7626 7627 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7628 7629 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7630 { 7631 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7632 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7633 7634 if (tg == &root_task_group) 7635 return -EINVAL; 7636 7637 /* 7638 * Ensure we have at some amount of bandwidth every period. This is 7639 * to prevent reaching a state of large arrears when throttled via 7640 * entity_tick() resulting in prolonged exit starvation. 7641 */ 7642 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7643 return -EINVAL; 7644 7645 /* 7646 * Likewise, bound things on the otherside by preventing insane quota 7647 * periods. This also allows us to normalize in computing quota 7648 * feasibility. 7649 */ 7650 if (period > max_cfs_quota_period) 7651 return -EINVAL; 7652 7653 mutex_lock(&cfs_constraints_mutex); 7654 ret = __cfs_schedulable(tg, period, quota); 7655 if (ret) 7656 goto out_unlock; 7657 7658 runtime_enabled = quota != RUNTIME_INF; 7659 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7660 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled); 7661 raw_spin_lock_irq(&cfs_b->lock); 7662 cfs_b->period = ns_to_ktime(period); 7663 cfs_b->quota = quota; 7664 7665 __refill_cfs_bandwidth_runtime(cfs_b); 7666 /* restart the period timer (if active) to handle new period expiry */ 7667 if (runtime_enabled && cfs_b->timer_active) { 7668 /* force a reprogram */ 7669 cfs_b->timer_active = 0; 7670 __start_cfs_bandwidth(cfs_b); 7671 } 7672 raw_spin_unlock_irq(&cfs_b->lock); 7673 7674 for_each_possible_cpu(i) { 7675 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7676 struct rq *rq = cfs_rq->rq; 7677 7678 raw_spin_lock_irq(&rq->lock); 7679 cfs_rq->runtime_enabled = runtime_enabled; 7680 cfs_rq->runtime_remaining = 0; 7681 7682 if (cfs_rq->throttled) 7683 unthrottle_cfs_rq(cfs_rq); 7684 raw_spin_unlock_irq(&rq->lock); 7685 } 7686 out_unlock: 7687 mutex_unlock(&cfs_constraints_mutex); 7688 7689 return ret; 7690 } 7691 7692 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7693 { 7694 u64 quota, period; 7695 7696 period = ktime_to_ns(tg->cfs_bandwidth.period); 7697 if (cfs_quota_us < 0) 7698 quota = RUNTIME_INF; 7699 else 7700 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7701 7702 return tg_set_cfs_bandwidth(tg, period, quota); 7703 } 7704 7705 long tg_get_cfs_quota(struct task_group *tg) 7706 { 7707 u64 quota_us; 7708 7709 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7710 return -1; 7711 7712 quota_us = tg->cfs_bandwidth.quota; 7713 do_div(quota_us, NSEC_PER_USEC); 7714 7715 return quota_us; 7716 } 7717 7718 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7719 { 7720 u64 quota, period; 7721 7722 period = (u64)cfs_period_us * NSEC_PER_USEC; 7723 quota = tg->cfs_bandwidth.quota; 7724 7725 return tg_set_cfs_bandwidth(tg, period, quota); 7726 } 7727 7728 long tg_get_cfs_period(struct task_group *tg) 7729 { 7730 u64 cfs_period_us; 7731 7732 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7733 do_div(cfs_period_us, NSEC_PER_USEC); 7734 7735 return cfs_period_us; 7736 } 7737 7738 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft) 7739 { 7740 return tg_get_cfs_quota(cgroup_tg(cgrp)); 7741 } 7742 7743 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype, 7744 s64 cfs_quota_us) 7745 { 7746 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us); 7747 } 7748 7749 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft) 7750 { 7751 return tg_get_cfs_period(cgroup_tg(cgrp)); 7752 } 7753 7754 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7755 u64 cfs_period_us) 7756 { 7757 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us); 7758 } 7759 7760 struct cfs_schedulable_data { 7761 struct task_group *tg; 7762 u64 period, quota; 7763 }; 7764 7765 /* 7766 * normalize group quota/period to be quota/max_period 7767 * note: units are usecs 7768 */ 7769 static u64 normalize_cfs_quota(struct task_group *tg, 7770 struct cfs_schedulable_data *d) 7771 { 7772 u64 quota, period; 7773 7774 if (tg == d->tg) { 7775 period = d->period; 7776 quota = d->quota; 7777 } else { 7778 period = tg_get_cfs_period(tg); 7779 quota = tg_get_cfs_quota(tg); 7780 } 7781 7782 /* note: these should typically be equivalent */ 7783 if (quota == RUNTIME_INF || quota == -1) 7784 return RUNTIME_INF; 7785 7786 return to_ratio(period, quota); 7787 } 7788 7789 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7790 { 7791 struct cfs_schedulable_data *d = data; 7792 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7793 s64 quota = 0, parent_quota = -1; 7794 7795 if (!tg->parent) { 7796 quota = RUNTIME_INF; 7797 } else { 7798 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7799 7800 quota = normalize_cfs_quota(tg, d); 7801 parent_quota = parent_b->hierarchal_quota; 7802 7803 /* 7804 * ensure max(child_quota) <= parent_quota, inherit when no 7805 * limit is set 7806 */ 7807 if (quota == RUNTIME_INF) 7808 quota = parent_quota; 7809 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7810 return -EINVAL; 7811 } 7812 cfs_b->hierarchal_quota = quota; 7813 7814 return 0; 7815 } 7816 7817 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7818 { 7819 int ret; 7820 struct cfs_schedulable_data data = { 7821 .tg = tg, 7822 .period = period, 7823 .quota = quota, 7824 }; 7825 7826 if (quota != RUNTIME_INF) { 7827 do_div(data.period, NSEC_PER_USEC); 7828 do_div(data.quota, NSEC_PER_USEC); 7829 } 7830 7831 rcu_read_lock(); 7832 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7833 rcu_read_unlock(); 7834 7835 return ret; 7836 } 7837 7838 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft, 7839 struct cgroup_map_cb *cb) 7840 { 7841 struct task_group *tg = cgroup_tg(cgrp); 7842 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7843 7844 cb->fill(cb, "nr_periods", cfs_b->nr_periods); 7845 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); 7846 cb->fill(cb, "throttled_time", cfs_b->throttled_time); 7847 7848 return 0; 7849 } 7850 #endif /* CONFIG_CFS_BANDWIDTH */ 7851 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7852 7853 #ifdef CONFIG_RT_GROUP_SCHED 7854 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, 7855 s64 val) 7856 { 7857 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); 7858 } 7859 7860 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) 7861 { 7862 return sched_group_rt_runtime(cgroup_tg(cgrp)); 7863 } 7864 7865 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, 7866 u64 rt_period_us) 7867 { 7868 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); 7869 } 7870 7871 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) 7872 { 7873 return sched_group_rt_period(cgroup_tg(cgrp)); 7874 } 7875 #endif /* CONFIG_RT_GROUP_SCHED */ 7876 7877 static struct cftype cpu_files[] = { 7878 #ifdef CONFIG_FAIR_GROUP_SCHED 7879 { 7880 .name = "shares", 7881 .read_u64 = cpu_shares_read_u64, 7882 .write_u64 = cpu_shares_write_u64, 7883 }, 7884 #endif 7885 #ifdef CONFIG_CFS_BANDWIDTH 7886 { 7887 .name = "cfs_quota_us", 7888 .read_s64 = cpu_cfs_quota_read_s64, 7889 .write_s64 = cpu_cfs_quota_write_s64, 7890 }, 7891 { 7892 .name = "cfs_period_us", 7893 .read_u64 = cpu_cfs_period_read_u64, 7894 .write_u64 = cpu_cfs_period_write_u64, 7895 }, 7896 { 7897 .name = "stat", 7898 .read_map = cpu_stats_show, 7899 }, 7900 #endif 7901 #ifdef CONFIG_RT_GROUP_SCHED 7902 { 7903 .name = "rt_runtime_us", 7904 .read_s64 = cpu_rt_runtime_read, 7905 .write_s64 = cpu_rt_runtime_write, 7906 }, 7907 { 7908 .name = "rt_period_us", 7909 .read_u64 = cpu_rt_period_read_uint, 7910 .write_u64 = cpu_rt_period_write_uint, 7911 }, 7912 #endif 7913 }; 7914 7915 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) 7916 { 7917 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); 7918 } 7919 7920 struct cgroup_subsys cpu_cgroup_subsys = { 7921 .name = "cpu", 7922 .create = cpu_cgroup_create, 7923 .destroy = cpu_cgroup_destroy, 7924 .can_attach = cpu_cgroup_can_attach, 7925 .attach = cpu_cgroup_attach, 7926 .exit = cpu_cgroup_exit, 7927 .populate = cpu_cgroup_populate, 7928 .subsys_id = cpu_cgroup_subsys_id, 7929 .early_init = 1, 7930 }; 7931 7932 #endif /* CONFIG_CGROUP_SCHED */ 7933 7934 #ifdef CONFIG_CGROUP_CPUACCT 7935 7936 /* 7937 * CPU accounting code for task groups. 7938 * 7939 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh 7940 * (balbir@in.ibm.com). 7941 */ 7942 7943 /* create a new cpu accounting group */ 7944 static struct cgroup_subsys_state *cpuacct_create( 7945 struct cgroup_subsys *ss, struct cgroup *cgrp) 7946 { 7947 struct cpuacct *ca; 7948 7949 if (!cgrp->parent) 7950 return &root_cpuacct.css; 7951 7952 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 7953 if (!ca) 7954 goto out; 7955 7956 ca->cpuusage = alloc_percpu(u64); 7957 if (!ca->cpuusage) 7958 goto out_free_ca; 7959 7960 ca->cpustat = alloc_percpu(struct kernel_cpustat); 7961 if (!ca->cpustat) 7962 goto out_free_cpuusage; 7963 7964 return &ca->css; 7965 7966 out_free_cpuusage: 7967 free_percpu(ca->cpuusage); 7968 out_free_ca: 7969 kfree(ca); 7970 out: 7971 return ERR_PTR(-ENOMEM); 7972 } 7973 7974 /* destroy an existing cpu accounting group */ 7975 static void 7976 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) 7977 { 7978 struct cpuacct *ca = cgroup_ca(cgrp); 7979 7980 free_percpu(ca->cpustat); 7981 free_percpu(ca->cpuusage); 7982 kfree(ca); 7983 } 7984 7985 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) 7986 { 7987 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 7988 u64 data; 7989 7990 #ifndef CONFIG_64BIT 7991 /* 7992 * Take rq->lock to make 64-bit read safe on 32-bit platforms. 7993 */ 7994 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 7995 data = *cpuusage; 7996 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 7997 #else 7998 data = *cpuusage; 7999 #endif 8000 8001 return data; 8002 } 8003 8004 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) 8005 { 8006 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8007 8008 #ifndef CONFIG_64BIT 8009 /* 8010 * Take rq->lock to make 64-bit write safe on 32-bit platforms. 8011 */ 8012 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 8013 *cpuusage = val; 8014 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 8015 #else 8016 *cpuusage = val; 8017 #endif 8018 } 8019 8020 /* return total cpu usage (in nanoseconds) of a group */ 8021 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) 8022 { 8023 struct cpuacct *ca = cgroup_ca(cgrp); 8024 u64 totalcpuusage = 0; 8025 int i; 8026 8027 for_each_present_cpu(i) 8028 totalcpuusage += cpuacct_cpuusage_read(ca, i); 8029 8030 return totalcpuusage; 8031 } 8032 8033 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, 8034 u64 reset) 8035 { 8036 struct cpuacct *ca = cgroup_ca(cgrp); 8037 int err = 0; 8038 int i; 8039 8040 if (reset) { 8041 err = -EINVAL; 8042 goto out; 8043 } 8044 8045 for_each_present_cpu(i) 8046 cpuacct_cpuusage_write(ca, i, 0); 8047 8048 out: 8049 return err; 8050 } 8051 8052 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, 8053 struct seq_file *m) 8054 { 8055 struct cpuacct *ca = cgroup_ca(cgroup); 8056 u64 percpu; 8057 int i; 8058 8059 for_each_present_cpu(i) { 8060 percpu = cpuacct_cpuusage_read(ca, i); 8061 seq_printf(m, "%llu ", (unsigned long long) percpu); 8062 } 8063 seq_printf(m, "\n"); 8064 return 0; 8065 } 8066 8067 static const char *cpuacct_stat_desc[] = { 8068 [CPUACCT_STAT_USER] = "user", 8069 [CPUACCT_STAT_SYSTEM] = "system", 8070 }; 8071 8072 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, 8073 struct cgroup_map_cb *cb) 8074 { 8075 struct cpuacct *ca = cgroup_ca(cgrp); 8076 int cpu; 8077 s64 val = 0; 8078 8079 for_each_online_cpu(cpu) { 8080 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8081 val += kcpustat->cpustat[CPUTIME_USER]; 8082 val += kcpustat->cpustat[CPUTIME_NICE]; 8083 } 8084 val = cputime64_to_clock_t(val); 8085 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val); 8086 8087 val = 0; 8088 for_each_online_cpu(cpu) { 8089 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8090 val += kcpustat->cpustat[CPUTIME_SYSTEM]; 8091 val += kcpustat->cpustat[CPUTIME_IRQ]; 8092 val += kcpustat->cpustat[CPUTIME_SOFTIRQ]; 8093 } 8094 8095 val = cputime64_to_clock_t(val); 8096 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val); 8097 8098 return 0; 8099 } 8100 8101 static struct cftype files[] = { 8102 { 8103 .name = "usage", 8104 .read_u64 = cpuusage_read, 8105 .write_u64 = cpuusage_write, 8106 }, 8107 { 8108 .name = "usage_percpu", 8109 .read_seq_string = cpuacct_percpu_seq_read, 8110 }, 8111 { 8112 .name = "stat", 8113 .read_map = cpuacct_stats_show, 8114 }, 8115 }; 8116 8117 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) 8118 { 8119 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); 8120 } 8121 8122 /* 8123 * charge this task's execution time to its accounting group. 8124 * 8125 * called with rq->lock held. 8126 */ 8127 void cpuacct_charge(struct task_struct *tsk, u64 cputime) 8128 { 8129 struct cpuacct *ca; 8130 int cpu; 8131 8132 if (unlikely(!cpuacct_subsys.active)) 8133 return; 8134 8135 cpu = task_cpu(tsk); 8136 8137 rcu_read_lock(); 8138 8139 ca = task_ca(tsk); 8140 8141 for (; ca; ca = parent_ca(ca)) { 8142 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8143 *cpuusage += cputime; 8144 } 8145 8146 rcu_read_unlock(); 8147 } 8148 8149 struct cgroup_subsys cpuacct_subsys = { 8150 .name = "cpuacct", 8151 .create = cpuacct_create, 8152 .destroy = cpuacct_destroy, 8153 .populate = cpuacct_populate, 8154 .subsys_id = cpuacct_subsys_id, 8155 }; 8156 #endif /* CONFIG_CGROUP_CPUACCT */ 8157