xref: /linux/kernel/sched/core.c (revision c4c14c3bd177ea769fee938674f73a8ec0cdd47a)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Core kernel scheduler code and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  */
8 #include "sched.h"
9 
10 #include <linux/nospec.h>
11 
12 #include <linux/kcov.h>
13 
14 #include <asm/switch_to.h>
15 #include <asm/tlb.h>
16 
17 #include "../workqueue_internal.h"
18 #include "../smpboot.h"
19 
20 #include "pelt.h"
21 
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/sched.h>
24 
25 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
26 
27 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
28 /*
29  * Debugging: various feature bits
30  *
31  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
32  * sysctl_sched_features, defined in sched.h, to allow constants propagation
33  * at compile time and compiler optimization based on features default.
34  */
35 #define SCHED_FEAT(name, enabled)	\
36 	(1UL << __SCHED_FEAT_##name) * enabled |
37 const_debug unsigned int sysctl_sched_features =
38 #include "features.h"
39 	0;
40 #undef SCHED_FEAT
41 #endif
42 
43 /*
44  * Number of tasks to iterate in a single balance run.
45  * Limited because this is done with IRQs disabled.
46  */
47 const_debug unsigned int sysctl_sched_nr_migrate = 32;
48 
49 /*
50  * period over which we measure -rt task CPU usage in us.
51  * default: 1s
52  */
53 unsigned int sysctl_sched_rt_period = 1000000;
54 
55 __read_mostly int scheduler_running;
56 
57 /*
58  * part of the period that we allow rt tasks to run in us.
59  * default: 0.95s
60  */
61 int sysctl_sched_rt_runtime = 950000;
62 
63 /*
64  * __task_rq_lock - lock the rq @p resides on.
65  */
66 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
67 	__acquires(rq->lock)
68 {
69 	struct rq *rq;
70 
71 	lockdep_assert_held(&p->pi_lock);
72 
73 	for (;;) {
74 		rq = task_rq(p);
75 		raw_spin_lock(&rq->lock);
76 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
77 			rq_pin_lock(rq, rf);
78 			return rq;
79 		}
80 		raw_spin_unlock(&rq->lock);
81 
82 		while (unlikely(task_on_rq_migrating(p)))
83 			cpu_relax();
84 	}
85 }
86 
87 /*
88  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
89  */
90 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
91 	__acquires(p->pi_lock)
92 	__acquires(rq->lock)
93 {
94 	struct rq *rq;
95 
96 	for (;;) {
97 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
98 		rq = task_rq(p);
99 		raw_spin_lock(&rq->lock);
100 		/*
101 		 *	move_queued_task()		task_rq_lock()
102 		 *
103 		 *	ACQUIRE (rq->lock)
104 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
105 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
106 		 *	[S] ->cpu = new_cpu		[L] task_rq()
107 		 *					[L] ->on_rq
108 		 *	RELEASE (rq->lock)
109 		 *
110 		 * If we observe the old CPU in task_rq_lock, the acquire of
111 		 * the old rq->lock will fully serialize against the stores.
112 		 *
113 		 * If we observe the new CPU in task_rq_lock, the acquire will
114 		 * pair with the WMB to ensure we must then also see migrating.
115 		 */
116 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
117 			rq_pin_lock(rq, rf);
118 			return rq;
119 		}
120 		raw_spin_unlock(&rq->lock);
121 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
122 
123 		while (unlikely(task_on_rq_migrating(p)))
124 			cpu_relax();
125 	}
126 }
127 
128 /*
129  * RQ-clock updating methods:
130  */
131 
132 static void update_rq_clock_task(struct rq *rq, s64 delta)
133 {
134 /*
135  * In theory, the compile should just see 0 here, and optimize out the call
136  * to sched_rt_avg_update. But I don't trust it...
137  */
138 	s64 __maybe_unused steal = 0, irq_delta = 0;
139 
140 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
141 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
142 
143 	/*
144 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
145 	 * this case when a previous update_rq_clock() happened inside a
146 	 * {soft,}irq region.
147 	 *
148 	 * When this happens, we stop ->clock_task and only update the
149 	 * prev_irq_time stamp to account for the part that fit, so that a next
150 	 * update will consume the rest. This ensures ->clock_task is
151 	 * monotonic.
152 	 *
153 	 * It does however cause some slight miss-attribution of {soft,}irq
154 	 * time, a more accurate solution would be to update the irq_time using
155 	 * the current rq->clock timestamp, except that would require using
156 	 * atomic ops.
157 	 */
158 	if (irq_delta > delta)
159 		irq_delta = delta;
160 
161 	rq->prev_irq_time += irq_delta;
162 	delta -= irq_delta;
163 #endif
164 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
165 	if (static_key_false((&paravirt_steal_rq_enabled))) {
166 		steal = paravirt_steal_clock(cpu_of(rq));
167 		steal -= rq->prev_steal_time_rq;
168 
169 		if (unlikely(steal > delta))
170 			steal = delta;
171 
172 		rq->prev_steal_time_rq += steal;
173 		delta -= steal;
174 	}
175 #endif
176 
177 	rq->clock_task += delta;
178 
179 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
180 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
181 		update_irq_load_avg(rq, irq_delta + steal);
182 #endif
183 }
184 
185 void update_rq_clock(struct rq *rq)
186 {
187 	s64 delta;
188 
189 	lockdep_assert_held(&rq->lock);
190 
191 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
192 		return;
193 
194 #ifdef CONFIG_SCHED_DEBUG
195 	if (sched_feat(WARN_DOUBLE_CLOCK))
196 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
197 	rq->clock_update_flags |= RQCF_UPDATED;
198 #endif
199 
200 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
201 	if (delta < 0)
202 		return;
203 	rq->clock += delta;
204 	update_rq_clock_task(rq, delta);
205 }
206 
207 
208 #ifdef CONFIG_SCHED_HRTICK
209 /*
210  * Use HR-timers to deliver accurate preemption points.
211  */
212 
213 static void hrtick_clear(struct rq *rq)
214 {
215 	if (hrtimer_active(&rq->hrtick_timer))
216 		hrtimer_cancel(&rq->hrtick_timer);
217 }
218 
219 /*
220  * High-resolution timer tick.
221  * Runs from hardirq context with interrupts disabled.
222  */
223 static enum hrtimer_restart hrtick(struct hrtimer *timer)
224 {
225 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
226 	struct rq_flags rf;
227 
228 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
229 
230 	rq_lock(rq, &rf);
231 	update_rq_clock(rq);
232 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
233 	rq_unlock(rq, &rf);
234 
235 	return HRTIMER_NORESTART;
236 }
237 
238 #ifdef CONFIG_SMP
239 
240 static void __hrtick_restart(struct rq *rq)
241 {
242 	struct hrtimer *timer = &rq->hrtick_timer;
243 
244 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
245 }
246 
247 /*
248  * called from hardirq (IPI) context
249  */
250 static void __hrtick_start(void *arg)
251 {
252 	struct rq *rq = arg;
253 	struct rq_flags rf;
254 
255 	rq_lock(rq, &rf);
256 	__hrtick_restart(rq);
257 	rq->hrtick_csd_pending = 0;
258 	rq_unlock(rq, &rf);
259 }
260 
261 /*
262  * Called to set the hrtick timer state.
263  *
264  * called with rq->lock held and irqs disabled
265  */
266 void hrtick_start(struct rq *rq, u64 delay)
267 {
268 	struct hrtimer *timer = &rq->hrtick_timer;
269 	ktime_t time;
270 	s64 delta;
271 
272 	/*
273 	 * Don't schedule slices shorter than 10000ns, that just
274 	 * doesn't make sense and can cause timer DoS.
275 	 */
276 	delta = max_t(s64, delay, 10000LL);
277 	time = ktime_add_ns(timer->base->get_time(), delta);
278 
279 	hrtimer_set_expires(timer, time);
280 
281 	if (rq == this_rq()) {
282 		__hrtick_restart(rq);
283 	} else if (!rq->hrtick_csd_pending) {
284 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
285 		rq->hrtick_csd_pending = 1;
286 	}
287 }
288 
289 #else
290 /*
291  * Called to set the hrtick timer state.
292  *
293  * called with rq->lock held and irqs disabled
294  */
295 void hrtick_start(struct rq *rq, u64 delay)
296 {
297 	/*
298 	 * Don't schedule slices shorter than 10000ns, that just
299 	 * doesn't make sense. Rely on vruntime for fairness.
300 	 */
301 	delay = max_t(u64, delay, 10000LL);
302 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
303 		      HRTIMER_MODE_REL_PINNED);
304 }
305 #endif /* CONFIG_SMP */
306 
307 static void hrtick_rq_init(struct rq *rq)
308 {
309 #ifdef CONFIG_SMP
310 	rq->hrtick_csd_pending = 0;
311 
312 	rq->hrtick_csd.flags = 0;
313 	rq->hrtick_csd.func = __hrtick_start;
314 	rq->hrtick_csd.info = rq;
315 #endif
316 
317 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
318 	rq->hrtick_timer.function = hrtick;
319 }
320 #else	/* CONFIG_SCHED_HRTICK */
321 static inline void hrtick_clear(struct rq *rq)
322 {
323 }
324 
325 static inline void hrtick_rq_init(struct rq *rq)
326 {
327 }
328 #endif	/* CONFIG_SCHED_HRTICK */
329 
330 /*
331  * cmpxchg based fetch_or, macro so it works for different integer types
332  */
333 #define fetch_or(ptr, mask)						\
334 	({								\
335 		typeof(ptr) _ptr = (ptr);				\
336 		typeof(mask) _mask = (mask);				\
337 		typeof(*_ptr) _old, _val = *_ptr;			\
338 									\
339 		for (;;) {						\
340 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
341 			if (_old == _val)				\
342 				break;					\
343 			_val = _old;					\
344 		}							\
345 	_old;								\
346 })
347 
348 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
349 /*
350  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
351  * this avoids any races wrt polling state changes and thereby avoids
352  * spurious IPIs.
353  */
354 static bool set_nr_and_not_polling(struct task_struct *p)
355 {
356 	struct thread_info *ti = task_thread_info(p);
357 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
358 }
359 
360 /*
361  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
362  *
363  * If this returns true, then the idle task promises to call
364  * sched_ttwu_pending() and reschedule soon.
365  */
366 static bool set_nr_if_polling(struct task_struct *p)
367 {
368 	struct thread_info *ti = task_thread_info(p);
369 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
370 
371 	for (;;) {
372 		if (!(val & _TIF_POLLING_NRFLAG))
373 			return false;
374 		if (val & _TIF_NEED_RESCHED)
375 			return true;
376 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
377 		if (old == val)
378 			break;
379 		val = old;
380 	}
381 	return true;
382 }
383 
384 #else
385 static bool set_nr_and_not_polling(struct task_struct *p)
386 {
387 	set_tsk_need_resched(p);
388 	return true;
389 }
390 
391 #ifdef CONFIG_SMP
392 static bool set_nr_if_polling(struct task_struct *p)
393 {
394 	return false;
395 }
396 #endif
397 #endif
398 
399 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
400 {
401 	struct wake_q_node *node = &task->wake_q;
402 
403 	/*
404 	 * Atomically grab the task, if ->wake_q is !nil already it means
405 	 * its already queued (either by us or someone else) and will get the
406 	 * wakeup due to that.
407 	 *
408 	 * This cmpxchg() executes a full barrier, which pairs with the full
409 	 * barrier executed by the wakeup in wake_up_q().
410 	 */
411 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
412 		return;
413 
414 	get_task_struct(task);
415 
416 	/*
417 	 * The head is context local, there can be no concurrency.
418 	 */
419 	*head->lastp = node;
420 	head->lastp = &node->next;
421 }
422 
423 void wake_up_q(struct wake_q_head *head)
424 {
425 	struct wake_q_node *node = head->first;
426 
427 	while (node != WAKE_Q_TAIL) {
428 		struct task_struct *task;
429 
430 		task = container_of(node, struct task_struct, wake_q);
431 		BUG_ON(!task);
432 		/* Task can safely be re-inserted now: */
433 		node = node->next;
434 		task->wake_q.next = NULL;
435 
436 		/*
437 		 * wake_up_process() executes a full barrier, which pairs with
438 		 * the queueing in wake_q_add() so as not to miss wakeups.
439 		 */
440 		wake_up_process(task);
441 		put_task_struct(task);
442 	}
443 }
444 
445 /*
446  * resched_curr - mark rq's current task 'to be rescheduled now'.
447  *
448  * On UP this means the setting of the need_resched flag, on SMP it
449  * might also involve a cross-CPU call to trigger the scheduler on
450  * the target CPU.
451  */
452 void resched_curr(struct rq *rq)
453 {
454 	struct task_struct *curr = rq->curr;
455 	int cpu;
456 
457 	lockdep_assert_held(&rq->lock);
458 
459 	if (test_tsk_need_resched(curr))
460 		return;
461 
462 	cpu = cpu_of(rq);
463 
464 	if (cpu == smp_processor_id()) {
465 		set_tsk_need_resched(curr);
466 		set_preempt_need_resched();
467 		return;
468 	}
469 
470 	if (set_nr_and_not_polling(curr))
471 		smp_send_reschedule(cpu);
472 	else
473 		trace_sched_wake_idle_without_ipi(cpu);
474 }
475 
476 void resched_cpu(int cpu)
477 {
478 	struct rq *rq = cpu_rq(cpu);
479 	unsigned long flags;
480 
481 	raw_spin_lock_irqsave(&rq->lock, flags);
482 	if (cpu_online(cpu) || cpu == smp_processor_id())
483 		resched_curr(rq);
484 	raw_spin_unlock_irqrestore(&rq->lock, flags);
485 }
486 
487 #ifdef CONFIG_SMP
488 #ifdef CONFIG_NO_HZ_COMMON
489 /*
490  * In the semi idle case, use the nearest busy CPU for migrating timers
491  * from an idle CPU.  This is good for power-savings.
492  *
493  * We don't do similar optimization for completely idle system, as
494  * selecting an idle CPU will add more delays to the timers than intended
495  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
496  */
497 int get_nohz_timer_target(void)
498 {
499 	int i, cpu = smp_processor_id();
500 	struct sched_domain *sd;
501 
502 	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
503 		return cpu;
504 
505 	rcu_read_lock();
506 	for_each_domain(cpu, sd) {
507 		for_each_cpu(i, sched_domain_span(sd)) {
508 			if (cpu == i)
509 				continue;
510 
511 			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
512 				cpu = i;
513 				goto unlock;
514 			}
515 		}
516 	}
517 
518 	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
519 		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
520 unlock:
521 	rcu_read_unlock();
522 	return cpu;
523 }
524 
525 /*
526  * When add_timer_on() enqueues a timer into the timer wheel of an
527  * idle CPU then this timer might expire before the next timer event
528  * which is scheduled to wake up that CPU. In case of a completely
529  * idle system the next event might even be infinite time into the
530  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
531  * leaves the inner idle loop so the newly added timer is taken into
532  * account when the CPU goes back to idle and evaluates the timer
533  * wheel for the next timer event.
534  */
535 static void wake_up_idle_cpu(int cpu)
536 {
537 	struct rq *rq = cpu_rq(cpu);
538 
539 	if (cpu == smp_processor_id())
540 		return;
541 
542 	if (set_nr_and_not_polling(rq->idle))
543 		smp_send_reschedule(cpu);
544 	else
545 		trace_sched_wake_idle_without_ipi(cpu);
546 }
547 
548 static bool wake_up_full_nohz_cpu(int cpu)
549 {
550 	/*
551 	 * We just need the target to call irq_exit() and re-evaluate
552 	 * the next tick. The nohz full kick at least implies that.
553 	 * If needed we can still optimize that later with an
554 	 * empty IRQ.
555 	 */
556 	if (cpu_is_offline(cpu))
557 		return true;  /* Don't try to wake offline CPUs. */
558 	if (tick_nohz_full_cpu(cpu)) {
559 		if (cpu != smp_processor_id() ||
560 		    tick_nohz_tick_stopped())
561 			tick_nohz_full_kick_cpu(cpu);
562 		return true;
563 	}
564 
565 	return false;
566 }
567 
568 /*
569  * Wake up the specified CPU.  If the CPU is going offline, it is the
570  * caller's responsibility to deal with the lost wakeup, for example,
571  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
572  */
573 void wake_up_nohz_cpu(int cpu)
574 {
575 	if (!wake_up_full_nohz_cpu(cpu))
576 		wake_up_idle_cpu(cpu);
577 }
578 
579 static inline bool got_nohz_idle_kick(void)
580 {
581 	int cpu = smp_processor_id();
582 
583 	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
584 		return false;
585 
586 	if (idle_cpu(cpu) && !need_resched())
587 		return true;
588 
589 	/*
590 	 * We can't run Idle Load Balance on this CPU for this time so we
591 	 * cancel it and clear NOHZ_BALANCE_KICK
592 	 */
593 	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
594 	return false;
595 }
596 
597 #else /* CONFIG_NO_HZ_COMMON */
598 
599 static inline bool got_nohz_idle_kick(void)
600 {
601 	return false;
602 }
603 
604 #endif /* CONFIG_NO_HZ_COMMON */
605 
606 #ifdef CONFIG_NO_HZ_FULL
607 bool sched_can_stop_tick(struct rq *rq)
608 {
609 	int fifo_nr_running;
610 
611 	/* Deadline tasks, even if single, need the tick */
612 	if (rq->dl.dl_nr_running)
613 		return false;
614 
615 	/*
616 	 * If there are more than one RR tasks, we need the tick to effect the
617 	 * actual RR behaviour.
618 	 */
619 	if (rq->rt.rr_nr_running) {
620 		if (rq->rt.rr_nr_running == 1)
621 			return true;
622 		else
623 			return false;
624 	}
625 
626 	/*
627 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
628 	 * forced preemption between FIFO tasks.
629 	 */
630 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
631 	if (fifo_nr_running)
632 		return true;
633 
634 	/*
635 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
636 	 * if there's more than one we need the tick for involuntary
637 	 * preemption.
638 	 */
639 	if (rq->nr_running > 1)
640 		return false;
641 
642 	return true;
643 }
644 #endif /* CONFIG_NO_HZ_FULL */
645 #endif /* CONFIG_SMP */
646 
647 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
648 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
649 /*
650  * Iterate task_group tree rooted at *from, calling @down when first entering a
651  * node and @up when leaving it for the final time.
652  *
653  * Caller must hold rcu_lock or sufficient equivalent.
654  */
655 int walk_tg_tree_from(struct task_group *from,
656 			     tg_visitor down, tg_visitor up, void *data)
657 {
658 	struct task_group *parent, *child;
659 	int ret;
660 
661 	parent = from;
662 
663 down:
664 	ret = (*down)(parent, data);
665 	if (ret)
666 		goto out;
667 	list_for_each_entry_rcu(child, &parent->children, siblings) {
668 		parent = child;
669 		goto down;
670 
671 up:
672 		continue;
673 	}
674 	ret = (*up)(parent, data);
675 	if (ret || parent == from)
676 		goto out;
677 
678 	child = parent;
679 	parent = parent->parent;
680 	if (parent)
681 		goto up;
682 out:
683 	return ret;
684 }
685 
686 int tg_nop(struct task_group *tg, void *data)
687 {
688 	return 0;
689 }
690 #endif
691 
692 static void set_load_weight(struct task_struct *p, bool update_load)
693 {
694 	int prio = p->static_prio - MAX_RT_PRIO;
695 	struct load_weight *load = &p->se.load;
696 
697 	/*
698 	 * SCHED_IDLE tasks get minimal weight:
699 	 */
700 	if (idle_policy(p->policy)) {
701 		load->weight = scale_load(WEIGHT_IDLEPRIO);
702 		load->inv_weight = WMULT_IDLEPRIO;
703 		p->se.runnable_weight = load->weight;
704 		return;
705 	}
706 
707 	/*
708 	 * SCHED_OTHER tasks have to update their load when changing their
709 	 * weight
710 	 */
711 	if (update_load && p->sched_class == &fair_sched_class) {
712 		reweight_task(p, prio);
713 	} else {
714 		load->weight = scale_load(sched_prio_to_weight[prio]);
715 		load->inv_weight = sched_prio_to_wmult[prio];
716 		p->se.runnable_weight = load->weight;
717 	}
718 }
719 
720 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
721 {
722 	if (!(flags & ENQUEUE_NOCLOCK))
723 		update_rq_clock(rq);
724 
725 	if (!(flags & ENQUEUE_RESTORE)) {
726 		sched_info_queued(rq, p);
727 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
728 	}
729 
730 	p->sched_class->enqueue_task(rq, p, flags);
731 }
732 
733 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
734 {
735 	if (!(flags & DEQUEUE_NOCLOCK))
736 		update_rq_clock(rq);
737 
738 	if (!(flags & DEQUEUE_SAVE)) {
739 		sched_info_dequeued(rq, p);
740 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
741 	}
742 
743 	p->sched_class->dequeue_task(rq, p, flags);
744 }
745 
746 void activate_task(struct rq *rq, struct task_struct *p, int flags)
747 {
748 	if (task_contributes_to_load(p))
749 		rq->nr_uninterruptible--;
750 
751 	enqueue_task(rq, p, flags);
752 }
753 
754 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
755 {
756 	if (task_contributes_to_load(p))
757 		rq->nr_uninterruptible++;
758 
759 	dequeue_task(rq, p, flags);
760 }
761 
762 /*
763  * __normal_prio - return the priority that is based on the static prio
764  */
765 static inline int __normal_prio(struct task_struct *p)
766 {
767 	return p->static_prio;
768 }
769 
770 /*
771  * Calculate the expected normal priority: i.e. priority
772  * without taking RT-inheritance into account. Might be
773  * boosted by interactivity modifiers. Changes upon fork,
774  * setprio syscalls, and whenever the interactivity
775  * estimator recalculates.
776  */
777 static inline int normal_prio(struct task_struct *p)
778 {
779 	int prio;
780 
781 	if (task_has_dl_policy(p))
782 		prio = MAX_DL_PRIO-1;
783 	else if (task_has_rt_policy(p))
784 		prio = MAX_RT_PRIO-1 - p->rt_priority;
785 	else
786 		prio = __normal_prio(p);
787 	return prio;
788 }
789 
790 /*
791  * Calculate the current priority, i.e. the priority
792  * taken into account by the scheduler. This value might
793  * be boosted by RT tasks, or might be boosted by
794  * interactivity modifiers. Will be RT if the task got
795  * RT-boosted. If not then it returns p->normal_prio.
796  */
797 static int effective_prio(struct task_struct *p)
798 {
799 	p->normal_prio = normal_prio(p);
800 	/*
801 	 * If we are RT tasks or we were boosted to RT priority,
802 	 * keep the priority unchanged. Otherwise, update priority
803 	 * to the normal priority:
804 	 */
805 	if (!rt_prio(p->prio))
806 		return p->normal_prio;
807 	return p->prio;
808 }
809 
810 /**
811  * task_curr - is this task currently executing on a CPU?
812  * @p: the task in question.
813  *
814  * Return: 1 if the task is currently executing. 0 otherwise.
815  */
816 inline int task_curr(const struct task_struct *p)
817 {
818 	return cpu_curr(task_cpu(p)) == p;
819 }
820 
821 /*
822  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
823  * use the balance_callback list if you want balancing.
824  *
825  * this means any call to check_class_changed() must be followed by a call to
826  * balance_callback().
827  */
828 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
829 				       const struct sched_class *prev_class,
830 				       int oldprio)
831 {
832 	if (prev_class != p->sched_class) {
833 		if (prev_class->switched_from)
834 			prev_class->switched_from(rq, p);
835 
836 		p->sched_class->switched_to(rq, p);
837 	} else if (oldprio != p->prio || dl_task(p))
838 		p->sched_class->prio_changed(rq, p, oldprio);
839 }
840 
841 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
842 {
843 	const struct sched_class *class;
844 
845 	if (p->sched_class == rq->curr->sched_class) {
846 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
847 	} else {
848 		for_each_class(class) {
849 			if (class == rq->curr->sched_class)
850 				break;
851 			if (class == p->sched_class) {
852 				resched_curr(rq);
853 				break;
854 			}
855 		}
856 	}
857 
858 	/*
859 	 * A queue event has occurred, and we're going to schedule.  In
860 	 * this case, we can save a useless back to back clock update.
861 	 */
862 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
863 		rq_clock_skip_update(rq);
864 }
865 
866 #ifdef CONFIG_SMP
867 
868 static inline bool is_per_cpu_kthread(struct task_struct *p)
869 {
870 	if (!(p->flags & PF_KTHREAD))
871 		return false;
872 
873 	if (p->nr_cpus_allowed != 1)
874 		return false;
875 
876 	return true;
877 }
878 
879 /*
880  * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
881  * __set_cpus_allowed_ptr() and select_fallback_rq().
882  */
883 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
884 {
885 	if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
886 		return false;
887 
888 	if (is_per_cpu_kthread(p))
889 		return cpu_online(cpu);
890 
891 	return cpu_active(cpu);
892 }
893 
894 /*
895  * This is how migration works:
896  *
897  * 1) we invoke migration_cpu_stop() on the target CPU using
898  *    stop_one_cpu().
899  * 2) stopper starts to run (implicitly forcing the migrated thread
900  *    off the CPU)
901  * 3) it checks whether the migrated task is still in the wrong runqueue.
902  * 4) if it's in the wrong runqueue then the migration thread removes
903  *    it and puts it into the right queue.
904  * 5) stopper completes and stop_one_cpu() returns and the migration
905  *    is done.
906  */
907 
908 /*
909  * move_queued_task - move a queued task to new rq.
910  *
911  * Returns (locked) new rq. Old rq's lock is released.
912  */
913 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
914 				   struct task_struct *p, int new_cpu)
915 {
916 	lockdep_assert_held(&rq->lock);
917 
918 	p->on_rq = TASK_ON_RQ_MIGRATING;
919 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
920 	set_task_cpu(p, new_cpu);
921 	rq_unlock(rq, rf);
922 
923 	rq = cpu_rq(new_cpu);
924 
925 	rq_lock(rq, rf);
926 	BUG_ON(task_cpu(p) != new_cpu);
927 	enqueue_task(rq, p, 0);
928 	p->on_rq = TASK_ON_RQ_QUEUED;
929 	check_preempt_curr(rq, p, 0);
930 
931 	return rq;
932 }
933 
934 struct migration_arg {
935 	struct task_struct *task;
936 	int dest_cpu;
937 };
938 
939 /*
940  * Move (not current) task off this CPU, onto the destination CPU. We're doing
941  * this because either it can't run here any more (set_cpus_allowed()
942  * away from this CPU, or CPU going down), or because we're
943  * attempting to rebalance this task on exec (sched_exec).
944  *
945  * So we race with normal scheduler movements, but that's OK, as long
946  * as the task is no longer on this CPU.
947  */
948 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
949 				 struct task_struct *p, int dest_cpu)
950 {
951 	/* Affinity changed (again). */
952 	if (!is_cpu_allowed(p, dest_cpu))
953 		return rq;
954 
955 	update_rq_clock(rq);
956 	rq = move_queued_task(rq, rf, p, dest_cpu);
957 
958 	return rq;
959 }
960 
961 /*
962  * migration_cpu_stop - this will be executed by a highprio stopper thread
963  * and performs thread migration by bumping thread off CPU then
964  * 'pushing' onto another runqueue.
965  */
966 static int migration_cpu_stop(void *data)
967 {
968 	struct migration_arg *arg = data;
969 	struct task_struct *p = arg->task;
970 	struct rq *rq = this_rq();
971 	struct rq_flags rf;
972 
973 	/*
974 	 * The original target CPU might have gone down and we might
975 	 * be on another CPU but it doesn't matter.
976 	 */
977 	local_irq_disable();
978 	/*
979 	 * We need to explicitly wake pending tasks before running
980 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
981 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
982 	 */
983 	sched_ttwu_pending();
984 
985 	raw_spin_lock(&p->pi_lock);
986 	rq_lock(rq, &rf);
987 	/*
988 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
989 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
990 	 * we're holding p->pi_lock.
991 	 */
992 	if (task_rq(p) == rq) {
993 		if (task_on_rq_queued(p))
994 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
995 		else
996 			p->wake_cpu = arg->dest_cpu;
997 	}
998 	rq_unlock(rq, &rf);
999 	raw_spin_unlock(&p->pi_lock);
1000 
1001 	local_irq_enable();
1002 	return 0;
1003 }
1004 
1005 /*
1006  * sched_class::set_cpus_allowed must do the below, but is not required to
1007  * actually call this function.
1008  */
1009 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1010 {
1011 	cpumask_copy(&p->cpus_allowed, new_mask);
1012 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1013 }
1014 
1015 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1016 {
1017 	struct rq *rq = task_rq(p);
1018 	bool queued, running;
1019 
1020 	lockdep_assert_held(&p->pi_lock);
1021 
1022 	queued = task_on_rq_queued(p);
1023 	running = task_current(rq, p);
1024 
1025 	if (queued) {
1026 		/*
1027 		 * Because __kthread_bind() calls this on blocked tasks without
1028 		 * holding rq->lock.
1029 		 */
1030 		lockdep_assert_held(&rq->lock);
1031 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1032 	}
1033 	if (running)
1034 		put_prev_task(rq, p);
1035 
1036 	p->sched_class->set_cpus_allowed(p, new_mask);
1037 
1038 	if (queued)
1039 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1040 	if (running)
1041 		set_curr_task(rq, p);
1042 }
1043 
1044 /*
1045  * Change a given task's CPU affinity. Migrate the thread to a
1046  * proper CPU and schedule it away if the CPU it's executing on
1047  * is removed from the allowed bitmask.
1048  *
1049  * NOTE: the caller must have a valid reference to the task, the
1050  * task must not exit() & deallocate itself prematurely. The
1051  * call is not atomic; no spinlocks may be held.
1052  */
1053 static int __set_cpus_allowed_ptr(struct task_struct *p,
1054 				  const struct cpumask *new_mask, bool check)
1055 {
1056 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1057 	unsigned int dest_cpu;
1058 	struct rq_flags rf;
1059 	struct rq *rq;
1060 	int ret = 0;
1061 
1062 	rq = task_rq_lock(p, &rf);
1063 	update_rq_clock(rq);
1064 
1065 	if (p->flags & PF_KTHREAD) {
1066 		/*
1067 		 * Kernel threads are allowed on online && !active CPUs
1068 		 */
1069 		cpu_valid_mask = cpu_online_mask;
1070 	}
1071 
1072 	/*
1073 	 * Must re-check here, to close a race against __kthread_bind(),
1074 	 * sched_setaffinity() is not guaranteed to observe the flag.
1075 	 */
1076 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1077 		ret = -EINVAL;
1078 		goto out;
1079 	}
1080 
1081 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1082 		goto out;
1083 
1084 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1085 		ret = -EINVAL;
1086 		goto out;
1087 	}
1088 
1089 	do_set_cpus_allowed(p, new_mask);
1090 
1091 	if (p->flags & PF_KTHREAD) {
1092 		/*
1093 		 * For kernel threads that do indeed end up on online &&
1094 		 * !active we want to ensure they are strict per-CPU threads.
1095 		 */
1096 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1097 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1098 			p->nr_cpus_allowed != 1);
1099 	}
1100 
1101 	/* Can the task run on the task's current CPU? If so, we're done */
1102 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1103 		goto out;
1104 
1105 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1106 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1107 		struct migration_arg arg = { p, dest_cpu };
1108 		/* Need help from migration thread: drop lock and wait. */
1109 		task_rq_unlock(rq, p, &rf);
1110 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1111 		tlb_migrate_finish(p->mm);
1112 		return 0;
1113 	} else if (task_on_rq_queued(p)) {
1114 		/*
1115 		 * OK, since we're going to drop the lock immediately
1116 		 * afterwards anyway.
1117 		 */
1118 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1119 	}
1120 out:
1121 	task_rq_unlock(rq, p, &rf);
1122 
1123 	return ret;
1124 }
1125 
1126 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1127 {
1128 	return __set_cpus_allowed_ptr(p, new_mask, false);
1129 }
1130 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1131 
1132 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1133 {
1134 #ifdef CONFIG_SCHED_DEBUG
1135 	/*
1136 	 * We should never call set_task_cpu() on a blocked task,
1137 	 * ttwu() will sort out the placement.
1138 	 */
1139 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1140 			!p->on_rq);
1141 
1142 	/*
1143 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1144 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1145 	 * time relying on p->on_rq.
1146 	 */
1147 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1148 		     p->sched_class == &fair_sched_class &&
1149 		     (p->on_rq && !task_on_rq_migrating(p)));
1150 
1151 #ifdef CONFIG_LOCKDEP
1152 	/*
1153 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1154 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1155 	 *
1156 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1157 	 * see task_group().
1158 	 *
1159 	 * Furthermore, all task_rq users should acquire both locks, see
1160 	 * task_rq_lock().
1161 	 */
1162 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1163 				      lockdep_is_held(&task_rq(p)->lock)));
1164 #endif
1165 	/*
1166 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1167 	 */
1168 	WARN_ON_ONCE(!cpu_online(new_cpu));
1169 #endif
1170 
1171 	trace_sched_migrate_task(p, new_cpu);
1172 
1173 	if (task_cpu(p) != new_cpu) {
1174 		if (p->sched_class->migrate_task_rq)
1175 			p->sched_class->migrate_task_rq(p, new_cpu);
1176 		p->se.nr_migrations++;
1177 		rseq_migrate(p);
1178 		perf_event_task_migrate(p);
1179 	}
1180 
1181 	__set_task_cpu(p, new_cpu);
1182 }
1183 
1184 #ifdef CONFIG_NUMA_BALANCING
1185 static void __migrate_swap_task(struct task_struct *p, int cpu)
1186 {
1187 	if (task_on_rq_queued(p)) {
1188 		struct rq *src_rq, *dst_rq;
1189 		struct rq_flags srf, drf;
1190 
1191 		src_rq = task_rq(p);
1192 		dst_rq = cpu_rq(cpu);
1193 
1194 		rq_pin_lock(src_rq, &srf);
1195 		rq_pin_lock(dst_rq, &drf);
1196 
1197 		p->on_rq = TASK_ON_RQ_MIGRATING;
1198 		deactivate_task(src_rq, p, 0);
1199 		set_task_cpu(p, cpu);
1200 		activate_task(dst_rq, p, 0);
1201 		p->on_rq = TASK_ON_RQ_QUEUED;
1202 		check_preempt_curr(dst_rq, p, 0);
1203 
1204 		rq_unpin_lock(dst_rq, &drf);
1205 		rq_unpin_lock(src_rq, &srf);
1206 
1207 	} else {
1208 		/*
1209 		 * Task isn't running anymore; make it appear like we migrated
1210 		 * it before it went to sleep. This means on wakeup we make the
1211 		 * previous CPU our target instead of where it really is.
1212 		 */
1213 		p->wake_cpu = cpu;
1214 	}
1215 }
1216 
1217 struct migration_swap_arg {
1218 	struct task_struct *src_task, *dst_task;
1219 	int src_cpu, dst_cpu;
1220 };
1221 
1222 static int migrate_swap_stop(void *data)
1223 {
1224 	struct migration_swap_arg *arg = data;
1225 	struct rq *src_rq, *dst_rq;
1226 	int ret = -EAGAIN;
1227 
1228 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1229 		return -EAGAIN;
1230 
1231 	src_rq = cpu_rq(arg->src_cpu);
1232 	dst_rq = cpu_rq(arg->dst_cpu);
1233 
1234 	double_raw_lock(&arg->src_task->pi_lock,
1235 			&arg->dst_task->pi_lock);
1236 	double_rq_lock(src_rq, dst_rq);
1237 
1238 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1239 		goto unlock;
1240 
1241 	if (task_cpu(arg->src_task) != arg->src_cpu)
1242 		goto unlock;
1243 
1244 	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1245 		goto unlock;
1246 
1247 	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1248 		goto unlock;
1249 
1250 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1251 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1252 
1253 	ret = 0;
1254 
1255 unlock:
1256 	double_rq_unlock(src_rq, dst_rq);
1257 	raw_spin_unlock(&arg->dst_task->pi_lock);
1258 	raw_spin_unlock(&arg->src_task->pi_lock);
1259 
1260 	return ret;
1261 }
1262 
1263 /*
1264  * Cross migrate two tasks
1265  */
1266 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1267 		int target_cpu, int curr_cpu)
1268 {
1269 	struct migration_swap_arg arg;
1270 	int ret = -EINVAL;
1271 
1272 	arg = (struct migration_swap_arg){
1273 		.src_task = cur,
1274 		.src_cpu = curr_cpu,
1275 		.dst_task = p,
1276 		.dst_cpu = target_cpu,
1277 	};
1278 
1279 	if (arg.src_cpu == arg.dst_cpu)
1280 		goto out;
1281 
1282 	/*
1283 	 * These three tests are all lockless; this is OK since all of them
1284 	 * will be re-checked with proper locks held further down the line.
1285 	 */
1286 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1287 		goto out;
1288 
1289 	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1290 		goto out;
1291 
1292 	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1293 		goto out;
1294 
1295 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1296 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1297 
1298 out:
1299 	return ret;
1300 }
1301 #endif /* CONFIG_NUMA_BALANCING */
1302 
1303 /*
1304  * wait_task_inactive - wait for a thread to unschedule.
1305  *
1306  * If @match_state is nonzero, it's the @p->state value just checked and
1307  * not expected to change.  If it changes, i.e. @p might have woken up,
1308  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1309  * we return a positive number (its total switch count).  If a second call
1310  * a short while later returns the same number, the caller can be sure that
1311  * @p has remained unscheduled the whole time.
1312  *
1313  * The caller must ensure that the task *will* unschedule sometime soon,
1314  * else this function might spin for a *long* time. This function can't
1315  * be called with interrupts off, or it may introduce deadlock with
1316  * smp_call_function() if an IPI is sent by the same process we are
1317  * waiting to become inactive.
1318  */
1319 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1320 {
1321 	int running, queued;
1322 	struct rq_flags rf;
1323 	unsigned long ncsw;
1324 	struct rq *rq;
1325 
1326 	for (;;) {
1327 		/*
1328 		 * We do the initial early heuristics without holding
1329 		 * any task-queue locks at all. We'll only try to get
1330 		 * the runqueue lock when things look like they will
1331 		 * work out!
1332 		 */
1333 		rq = task_rq(p);
1334 
1335 		/*
1336 		 * If the task is actively running on another CPU
1337 		 * still, just relax and busy-wait without holding
1338 		 * any locks.
1339 		 *
1340 		 * NOTE! Since we don't hold any locks, it's not
1341 		 * even sure that "rq" stays as the right runqueue!
1342 		 * But we don't care, since "task_running()" will
1343 		 * return false if the runqueue has changed and p
1344 		 * is actually now running somewhere else!
1345 		 */
1346 		while (task_running(rq, p)) {
1347 			if (match_state && unlikely(p->state != match_state))
1348 				return 0;
1349 			cpu_relax();
1350 		}
1351 
1352 		/*
1353 		 * Ok, time to look more closely! We need the rq
1354 		 * lock now, to be *sure*. If we're wrong, we'll
1355 		 * just go back and repeat.
1356 		 */
1357 		rq = task_rq_lock(p, &rf);
1358 		trace_sched_wait_task(p);
1359 		running = task_running(rq, p);
1360 		queued = task_on_rq_queued(p);
1361 		ncsw = 0;
1362 		if (!match_state || p->state == match_state)
1363 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1364 		task_rq_unlock(rq, p, &rf);
1365 
1366 		/*
1367 		 * If it changed from the expected state, bail out now.
1368 		 */
1369 		if (unlikely(!ncsw))
1370 			break;
1371 
1372 		/*
1373 		 * Was it really running after all now that we
1374 		 * checked with the proper locks actually held?
1375 		 *
1376 		 * Oops. Go back and try again..
1377 		 */
1378 		if (unlikely(running)) {
1379 			cpu_relax();
1380 			continue;
1381 		}
1382 
1383 		/*
1384 		 * It's not enough that it's not actively running,
1385 		 * it must be off the runqueue _entirely_, and not
1386 		 * preempted!
1387 		 *
1388 		 * So if it was still runnable (but just not actively
1389 		 * running right now), it's preempted, and we should
1390 		 * yield - it could be a while.
1391 		 */
1392 		if (unlikely(queued)) {
1393 			ktime_t to = NSEC_PER_SEC / HZ;
1394 
1395 			set_current_state(TASK_UNINTERRUPTIBLE);
1396 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1397 			continue;
1398 		}
1399 
1400 		/*
1401 		 * Ahh, all good. It wasn't running, and it wasn't
1402 		 * runnable, which means that it will never become
1403 		 * running in the future either. We're all done!
1404 		 */
1405 		break;
1406 	}
1407 
1408 	return ncsw;
1409 }
1410 
1411 /***
1412  * kick_process - kick a running thread to enter/exit the kernel
1413  * @p: the to-be-kicked thread
1414  *
1415  * Cause a process which is running on another CPU to enter
1416  * kernel-mode, without any delay. (to get signals handled.)
1417  *
1418  * NOTE: this function doesn't have to take the runqueue lock,
1419  * because all it wants to ensure is that the remote task enters
1420  * the kernel. If the IPI races and the task has been migrated
1421  * to another CPU then no harm is done and the purpose has been
1422  * achieved as well.
1423  */
1424 void kick_process(struct task_struct *p)
1425 {
1426 	int cpu;
1427 
1428 	preempt_disable();
1429 	cpu = task_cpu(p);
1430 	if ((cpu != smp_processor_id()) && task_curr(p))
1431 		smp_send_reschedule(cpu);
1432 	preempt_enable();
1433 }
1434 EXPORT_SYMBOL_GPL(kick_process);
1435 
1436 /*
1437  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1438  *
1439  * A few notes on cpu_active vs cpu_online:
1440  *
1441  *  - cpu_active must be a subset of cpu_online
1442  *
1443  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1444  *    see __set_cpus_allowed_ptr(). At this point the newly online
1445  *    CPU isn't yet part of the sched domains, and balancing will not
1446  *    see it.
1447  *
1448  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1449  *    avoid the load balancer to place new tasks on the to be removed
1450  *    CPU. Existing tasks will remain running there and will be taken
1451  *    off.
1452  *
1453  * This means that fallback selection must not select !active CPUs.
1454  * And can assume that any active CPU must be online. Conversely
1455  * select_task_rq() below may allow selection of !active CPUs in order
1456  * to satisfy the above rules.
1457  */
1458 static int select_fallback_rq(int cpu, struct task_struct *p)
1459 {
1460 	int nid = cpu_to_node(cpu);
1461 	const struct cpumask *nodemask = NULL;
1462 	enum { cpuset, possible, fail } state = cpuset;
1463 	int dest_cpu;
1464 
1465 	/*
1466 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1467 	 * will return -1. There is no CPU on the node, and we should
1468 	 * select the CPU on the other node.
1469 	 */
1470 	if (nid != -1) {
1471 		nodemask = cpumask_of_node(nid);
1472 
1473 		/* Look for allowed, online CPU in same node. */
1474 		for_each_cpu(dest_cpu, nodemask) {
1475 			if (!cpu_active(dest_cpu))
1476 				continue;
1477 			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1478 				return dest_cpu;
1479 		}
1480 	}
1481 
1482 	for (;;) {
1483 		/* Any allowed, online CPU? */
1484 		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1485 			if (!is_cpu_allowed(p, dest_cpu))
1486 				continue;
1487 
1488 			goto out;
1489 		}
1490 
1491 		/* No more Mr. Nice Guy. */
1492 		switch (state) {
1493 		case cpuset:
1494 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1495 				cpuset_cpus_allowed_fallback(p);
1496 				state = possible;
1497 				break;
1498 			}
1499 			/* Fall-through */
1500 		case possible:
1501 			do_set_cpus_allowed(p, cpu_possible_mask);
1502 			state = fail;
1503 			break;
1504 
1505 		case fail:
1506 			BUG();
1507 			break;
1508 		}
1509 	}
1510 
1511 out:
1512 	if (state != cpuset) {
1513 		/*
1514 		 * Don't tell them about moving exiting tasks or
1515 		 * kernel threads (both mm NULL), since they never
1516 		 * leave kernel.
1517 		 */
1518 		if (p->mm && printk_ratelimit()) {
1519 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1520 					task_pid_nr(p), p->comm, cpu);
1521 		}
1522 	}
1523 
1524 	return dest_cpu;
1525 }
1526 
1527 /*
1528  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1529  */
1530 static inline
1531 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1532 {
1533 	lockdep_assert_held(&p->pi_lock);
1534 
1535 	if (p->nr_cpus_allowed > 1)
1536 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1537 	else
1538 		cpu = cpumask_any(&p->cpus_allowed);
1539 
1540 	/*
1541 	 * In order not to call set_task_cpu() on a blocking task we need
1542 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1543 	 * CPU.
1544 	 *
1545 	 * Since this is common to all placement strategies, this lives here.
1546 	 *
1547 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1548 	 *   not worry about this generic constraint ]
1549 	 */
1550 	if (unlikely(!is_cpu_allowed(p, cpu)))
1551 		cpu = select_fallback_rq(task_cpu(p), p);
1552 
1553 	return cpu;
1554 }
1555 
1556 static void update_avg(u64 *avg, u64 sample)
1557 {
1558 	s64 diff = sample - *avg;
1559 	*avg += diff >> 3;
1560 }
1561 
1562 void sched_set_stop_task(int cpu, struct task_struct *stop)
1563 {
1564 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1565 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
1566 
1567 	if (stop) {
1568 		/*
1569 		 * Make it appear like a SCHED_FIFO task, its something
1570 		 * userspace knows about and won't get confused about.
1571 		 *
1572 		 * Also, it will make PI more or less work without too
1573 		 * much confusion -- but then, stop work should not
1574 		 * rely on PI working anyway.
1575 		 */
1576 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1577 
1578 		stop->sched_class = &stop_sched_class;
1579 	}
1580 
1581 	cpu_rq(cpu)->stop = stop;
1582 
1583 	if (old_stop) {
1584 		/*
1585 		 * Reset it back to a normal scheduling class so that
1586 		 * it can die in pieces.
1587 		 */
1588 		old_stop->sched_class = &rt_sched_class;
1589 	}
1590 }
1591 
1592 #else
1593 
1594 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1595 					 const struct cpumask *new_mask, bool check)
1596 {
1597 	return set_cpus_allowed_ptr(p, new_mask);
1598 }
1599 
1600 #endif /* CONFIG_SMP */
1601 
1602 static void
1603 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1604 {
1605 	struct rq *rq;
1606 
1607 	if (!schedstat_enabled())
1608 		return;
1609 
1610 	rq = this_rq();
1611 
1612 #ifdef CONFIG_SMP
1613 	if (cpu == rq->cpu) {
1614 		__schedstat_inc(rq->ttwu_local);
1615 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
1616 	} else {
1617 		struct sched_domain *sd;
1618 
1619 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
1620 		rcu_read_lock();
1621 		for_each_domain(rq->cpu, sd) {
1622 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1623 				__schedstat_inc(sd->ttwu_wake_remote);
1624 				break;
1625 			}
1626 		}
1627 		rcu_read_unlock();
1628 	}
1629 
1630 	if (wake_flags & WF_MIGRATED)
1631 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1632 #endif /* CONFIG_SMP */
1633 
1634 	__schedstat_inc(rq->ttwu_count);
1635 	__schedstat_inc(p->se.statistics.nr_wakeups);
1636 
1637 	if (wake_flags & WF_SYNC)
1638 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
1639 }
1640 
1641 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1642 {
1643 	activate_task(rq, p, en_flags);
1644 	p->on_rq = TASK_ON_RQ_QUEUED;
1645 
1646 	/* If a worker is waking up, notify the workqueue: */
1647 	if (p->flags & PF_WQ_WORKER)
1648 		wq_worker_waking_up(p, cpu_of(rq));
1649 }
1650 
1651 /*
1652  * Mark the task runnable and perform wakeup-preemption.
1653  */
1654 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1655 			   struct rq_flags *rf)
1656 {
1657 	check_preempt_curr(rq, p, wake_flags);
1658 	p->state = TASK_RUNNING;
1659 	trace_sched_wakeup(p);
1660 
1661 #ifdef CONFIG_SMP
1662 	if (p->sched_class->task_woken) {
1663 		/*
1664 		 * Our task @p is fully woken up and running; so its safe to
1665 		 * drop the rq->lock, hereafter rq is only used for statistics.
1666 		 */
1667 		rq_unpin_lock(rq, rf);
1668 		p->sched_class->task_woken(rq, p);
1669 		rq_repin_lock(rq, rf);
1670 	}
1671 
1672 	if (rq->idle_stamp) {
1673 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1674 		u64 max = 2*rq->max_idle_balance_cost;
1675 
1676 		update_avg(&rq->avg_idle, delta);
1677 
1678 		if (rq->avg_idle > max)
1679 			rq->avg_idle = max;
1680 
1681 		rq->idle_stamp = 0;
1682 	}
1683 #endif
1684 }
1685 
1686 static void
1687 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1688 		 struct rq_flags *rf)
1689 {
1690 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1691 
1692 	lockdep_assert_held(&rq->lock);
1693 
1694 #ifdef CONFIG_SMP
1695 	if (p->sched_contributes_to_load)
1696 		rq->nr_uninterruptible--;
1697 
1698 	if (wake_flags & WF_MIGRATED)
1699 		en_flags |= ENQUEUE_MIGRATED;
1700 #endif
1701 
1702 	ttwu_activate(rq, p, en_flags);
1703 	ttwu_do_wakeup(rq, p, wake_flags, rf);
1704 }
1705 
1706 /*
1707  * Called in case the task @p isn't fully descheduled from its runqueue,
1708  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1709  * since all we need to do is flip p->state to TASK_RUNNING, since
1710  * the task is still ->on_rq.
1711  */
1712 static int ttwu_remote(struct task_struct *p, int wake_flags)
1713 {
1714 	struct rq_flags rf;
1715 	struct rq *rq;
1716 	int ret = 0;
1717 
1718 	rq = __task_rq_lock(p, &rf);
1719 	if (task_on_rq_queued(p)) {
1720 		/* check_preempt_curr() may use rq clock */
1721 		update_rq_clock(rq);
1722 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1723 		ret = 1;
1724 	}
1725 	__task_rq_unlock(rq, &rf);
1726 
1727 	return ret;
1728 }
1729 
1730 #ifdef CONFIG_SMP
1731 void sched_ttwu_pending(void)
1732 {
1733 	struct rq *rq = this_rq();
1734 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1735 	struct task_struct *p, *t;
1736 	struct rq_flags rf;
1737 
1738 	if (!llist)
1739 		return;
1740 
1741 	rq_lock_irqsave(rq, &rf);
1742 	update_rq_clock(rq);
1743 
1744 	llist_for_each_entry_safe(p, t, llist, wake_entry)
1745 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1746 
1747 	rq_unlock_irqrestore(rq, &rf);
1748 }
1749 
1750 void scheduler_ipi(void)
1751 {
1752 	/*
1753 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1754 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1755 	 * this IPI.
1756 	 */
1757 	preempt_fold_need_resched();
1758 
1759 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1760 		return;
1761 
1762 	/*
1763 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1764 	 * traditionally all their work was done from the interrupt return
1765 	 * path. Now that we actually do some work, we need to make sure
1766 	 * we do call them.
1767 	 *
1768 	 * Some archs already do call them, luckily irq_enter/exit nest
1769 	 * properly.
1770 	 *
1771 	 * Arguably we should visit all archs and update all handlers,
1772 	 * however a fair share of IPIs are still resched only so this would
1773 	 * somewhat pessimize the simple resched case.
1774 	 */
1775 	irq_enter();
1776 	sched_ttwu_pending();
1777 
1778 	/*
1779 	 * Check if someone kicked us for doing the nohz idle load balance.
1780 	 */
1781 	if (unlikely(got_nohz_idle_kick())) {
1782 		this_rq()->idle_balance = 1;
1783 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1784 	}
1785 	irq_exit();
1786 }
1787 
1788 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1789 {
1790 	struct rq *rq = cpu_rq(cpu);
1791 
1792 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1793 
1794 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1795 		if (!set_nr_if_polling(rq->idle))
1796 			smp_send_reschedule(cpu);
1797 		else
1798 			trace_sched_wake_idle_without_ipi(cpu);
1799 	}
1800 }
1801 
1802 void wake_up_if_idle(int cpu)
1803 {
1804 	struct rq *rq = cpu_rq(cpu);
1805 	struct rq_flags rf;
1806 
1807 	rcu_read_lock();
1808 
1809 	if (!is_idle_task(rcu_dereference(rq->curr)))
1810 		goto out;
1811 
1812 	if (set_nr_if_polling(rq->idle)) {
1813 		trace_sched_wake_idle_without_ipi(cpu);
1814 	} else {
1815 		rq_lock_irqsave(rq, &rf);
1816 		if (is_idle_task(rq->curr))
1817 			smp_send_reschedule(cpu);
1818 		/* Else CPU is not idle, do nothing here: */
1819 		rq_unlock_irqrestore(rq, &rf);
1820 	}
1821 
1822 out:
1823 	rcu_read_unlock();
1824 }
1825 
1826 bool cpus_share_cache(int this_cpu, int that_cpu)
1827 {
1828 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1829 }
1830 #endif /* CONFIG_SMP */
1831 
1832 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1833 {
1834 	struct rq *rq = cpu_rq(cpu);
1835 	struct rq_flags rf;
1836 
1837 #if defined(CONFIG_SMP)
1838 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1839 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1840 		ttwu_queue_remote(p, cpu, wake_flags);
1841 		return;
1842 	}
1843 #endif
1844 
1845 	rq_lock(rq, &rf);
1846 	update_rq_clock(rq);
1847 	ttwu_do_activate(rq, p, wake_flags, &rf);
1848 	rq_unlock(rq, &rf);
1849 }
1850 
1851 /*
1852  * Notes on Program-Order guarantees on SMP systems.
1853  *
1854  *  MIGRATION
1855  *
1856  * The basic program-order guarantee on SMP systems is that when a task [t]
1857  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1858  * execution on its new CPU [c1].
1859  *
1860  * For migration (of runnable tasks) this is provided by the following means:
1861  *
1862  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1863  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1864  *     rq(c1)->lock (if not at the same time, then in that order).
1865  *  C) LOCK of the rq(c1)->lock scheduling in task
1866  *
1867  * Release/acquire chaining guarantees that B happens after A and C after B.
1868  * Note: the CPU doing B need not be c0 or c1
1869  *
1870  * Example:
1871  *
1872  *   CPU0            CPU1            CPU2
1873  *
1874  *   LOCK rq(0)->lock
1875  *   sched-out X
1876  *   sched-in Y
1877  *   UNLOCK rq(0)->lock
1878  *
1879  *                                   LOCK rq(0)->lock // orders against CPU0
1880  *                                   dequeue X
1881  *                                   UNLOCK rq(0)->lock
1882  *
1883  *                                   LOCK rq(1)->lock
1884  *                                   enqueue X
1885  *                                   UNLOCK rq(1)->lock
1886  *
1887  *                   LOCK rq(1)->lock // orders against CPU2
1888  *                   sched-out Z
1889  *                   sched-in X
1890  *                   UNLOCK rq(1)->lock
1891  *
1892  *
1893  *  BLOCKING -- aka. SLEEP + WAKEUP
1894  *
1895  * For blocking we (obviously) need to provide the same guarantee as for
1896  * migration. However the means are completely different as there is no lock
1897  * chain to provide order. Instead we do:
1898  *
1899  *   1) smp_store_release(X->on_cpu, 0)
1900  *   2) smp_cond_load_acquire(!X->on_cpu)
1901  *
1902  * Example:
1903  *
1904  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1905  *
1906  *   LOCK rq(0)->lock LOCK X->pi_lock
1907  *   dequeue X
1908  *   sched-out X
1909  *   smp_store_release(X->on_cpu, 0);
1910  *
1911  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1912  *                    X->state = WAKING
1913  *                    set_task_cpu(X,2)
1914  *
1915  *                    LOCK rq(2)->lock
1916  *                    enqueue X
1917  *                    X->state = RUNNING
1918  *                    UNLOCK rq(2)->lock
1919  *
1920  *                                          LOCK rq(2)->lock // orders against CPU1
1921  *                                          sched-out Z
1922  *                                          sched-in X
1923  *                                          UNLOCK rq(2)->lock
1924  *
1925  *                    UNLOCK X->pi_lock
1926  *   UNLOCK rq(0)->lock
1927  *
1928  *
1929  * However, for wakeups there is a second guarantee we must provide, namely we
1930  * must ensure that CONDITION=1 done by the caller can not be reordered with
1931  * accesses to the task state; see try_to_wake_up() and set_current_state().
1932  */
1933 
1934 /**
1935  * try_to_wake_up - wake up a thread
1936  * @p: the thread to be awakened
1937  * @state: the mask of task states that can be woken
1938  * @wake_flags: wake modifier flags (WF_*)
1939  *
1940  * If (@state & @p->state) @p->state = TASK_RUNNING.
1941  *
1942  * If the task was not queued/runnable, also place it back on a runqueue.
1943  *
1944  * Atomic against schedule() which would dequeue a task, also see
1945  * set_current_state().
1946  *
1947  * This function executes a full memory barrier before accessing the task
1948  * state; see set_current_state().
1949  *
1950  * Return: %true if @p->state changes (an actual wakeup was done),
1951  *	   %false otherwise.
1952  */
1953 static int
1954 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1955 {
1956 	unsigned long flags;
1957 	int cpu, success = 0;
1958 
1959 	/*
1960 	 * If we are going to wake up a thread waiting for CONDITION we
1961 	 * need to ensure that CONDITION=1 done by the caller can not be
1962 	 * reordered with p->state check below. This pairs with mb() in
1963 	 * set_current_state() the waiting thread does.
1964 	 */
1965 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1966 	smp_mb__after_spinlock();
1967 	if (!(p->state & state))
1968 		goto out;
1969 
1970 	trace_sched_waking(p);
1971 
1972 	/* We're going to change ->state: */
1973 	success = 1;
1974 	cpu = task_cpu(p);
1975 
1976 	/*
1977 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1978 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1979 	 * in smp_cond_load_acquire() below.
1980 	 *
1981 	 * sched_ttwu_pending()			try_to_wake_up()
1982 	 *   STORE p->on_rq = 1			  LOAD p->state
1983 	 *   UNLOCK rq->lock
1984 	 *
1985 	 * __schedule() (switch to task 'p')
1986 	 *   LOCK rq->lock			  smp_rmb();
1987 	 *   smp_mb__after_spinlock();
1988 	 *   UNLOCK rq->lock
1989 	 *
1990 	 * [task p]
1991 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
1992 	 *
1993 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
1994 	 * __schedule().  See the comment for smp_mb__after_spinlock().
1995 	 */
1996 	smp_rmb();
1997 	if (p->on_rq && ttwu_remote(p, wake_flags))
1998 		goto stat;
1999 
2000 #ifdef CONFIG_SMP
2001 	/*
2002 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2003 	 * possible to, falsely, observe p->on_cpu == 0.
2004 	 *
2005 	 * One must be running (->on_cpu == 1) in order to remove oneself
2006 	 * from the runqueue.
2007 	 *
2008 	 * __schedule() (switch to task 'p')	try_to_wake_up()
2009 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2010 	 *   UNLOCK rq->lock
2011 	 *
2012 	 * __schedule() (put 'p' to sleep)
2013 	 *   LOCK rq->lock			  smp_rmb();
2014 	 *   smp_mb__after_spinlock();
2015 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2016 	 *
2017 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2018 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2019 	 */
2020 	smp_rmb();
2021 
2022 	/*
2023 	 * If the owning (remote) CPU is still in the middle of schedule() with
2024 	 * this task as prev, wait until its done referencing the task.
2025 	 *
2026 	 * Pairs with the smp_store_release() in finish_task().
2027 	 *
2028 	 * This ensures that tasks getting woken will be fully ordered against
2029 	 * their previous state and preserve Program Order.
2030 	 */
2031 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2032 
2033 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2034 	p->state = TASK_WAKING;
2035 
2036 	if (p->in_iowait) {
2037 		delayacct_blkio_end(p);
2038 		atomic_dec(&task_rq(p)->nr_iowait);
2039 	}
2040 
2041 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2042 	if (task_cpu(p) != cpu) {
2043 		wake_flags |= WF_MIGRATED;
2044 		psi_ttwu_dequeue(p);
2045 		set_task_cpu(p, cpu);
2046 	}
2047 
2048 #else /* CONFIG_SMP */
2049 
2050 	if (p->in_iowait) {
2051 		delayacct_blkio_end(p);
2052 		atomic_dec(&task_rq(p)->nr_iowait);
2053 	}
2054 
2055 #endif /* CONFIG_SMP */
2056 
2057 	ttwu_queue(p, cpu, wake_flags);
2058 stat:
2059 	ttwu_stat(p, cpu, wake_flags);
2060 out:
2061 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2062 
2063 	return success;
2064 }
2065 
2066 /**
2067  * try_to_wake_up_local - try to wake up a local task with rq lock held
2068  * @p: the thread to be awakened
2069  * @rf: request-queue flags for pinning
2070  *
2071  * Put @p on the run-queue if it's not already there. The caller must
2072  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2073  * the current task.
2074  */
2075 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2076 {
2077 	struct rq *rq = task_rq(p);
2078 
2079 	if (WARN_ON_ONCE(rq != this_rq()) ||
2080 	    WARN_ON_ONCE(p == current))
2081 		return;
2082 
2083 	lockdep_assert_held(&rq->lock);
2084 
2085 	if (!raw_spin_trylock(&p->pi_lock)) {
2086 		/*
2087 		 * This is OK, because current is on_cpu, which avoids it being
2088 		 * picked for load-balance and preemption/IRQs are still
2089 		 * disabled avoiding further scheduler activity on it and we've
2090 		 * not yet picked a replacement task.
2091 		 */
2092 		rq_unlock(rq, rf);
2093 		raw_spin_lock(&p->pi_lock);
2094 		rq_relock(rq, rf);
2095 	}
2096 
2097 	if (!(p->state & TASK_NORMAL))
2098 		goto out;
2099 
2100 	trace_sched_waking(p);
2101 
2102 	if (!task_on_rq_queued(p)) {
2103 		if (p->in_iowait) {
2104 			delayacct_blkio_end(p);
2105 			atomic_dec(&rq->nr_iowait);
2106 		}
2107 		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2108 	}
2109 
2110 	ttwu_do_wakeup(rq, p, 0, rf);
2111 	ttwu_stat(p, smp_processor_id(), 0);
2112 out:
2113 	raw_spin_unlock(&p->pi_lock);
2114 }
2115 
2116 /**
2117  * wake_up_process - Wake up a specific process
2118  * @p: The process to be woken up.
2119  *
2120  * Attempt to wake up the nominated process and move it to the set of runnable
2121  * processes.
2122  *
2123  * Return: 1 if the process was woken up, 0 if it was already running.
2124  *
2125  * This function executes a full memory barrier before accessing the task state.
2126  */
2127 int wake_up_process(struct task_struct *p)
2128 {
2129 	return try_to_wake_up(p, TASK_NORMAL, 0);
2130 }
2131 EXPORT_SYMBOL(wake_up_process);
2132 
2133 int wake_up_state(struct task_struct *p, unsigned int state)
2134 {
2135 	return try_to_wake_up(p, state, 0);
2136 }
2137 
2138 /*
2139  * Perform scheduler related setup for a newly forked process p.
2140  * p is forked by current.
2141  *
2142  * __sched_fork() is basic setup used by init_idle() too:
2143  */
2144 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2145 {
2146 	p->on_rq			= 0;
2147 
2148 	p->se.on_rq			= 0;
2149 	p->se.exec_start		= 0;
2150 	p->se.sum_exec_runtime		= 0;
2151 	p->se.prev_sum_exec_runtime	= 0;
2152 	p->se.nr_migrations		= 0;
2153 	p->se.vruntime			= 0;
2154 	INIT_LIST_HEAD(&p->se.group_node);
2155 
2156 #ifdef CONFIG_FAIR_GROUP_SCHED
2157 	p->se.cfs_rq			= NULL;
2158 #endif
2159 
2160 #ifdef CONFIG_SCHEDSTATS
2161 	/* Even if schedstat is disabled, there should not be garbage */
2162 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2163 #endif
2164 
2165 	RB_CLEAR_NODE(&p->dl.rb_node);
2166 	init_dl_task_timer(&p->dl);
2167 	init_dl_inactive_task_timer(&p->dl);
2168 	__dl_clear_params(p);
2169 
2170 	INIT_LIST_HEAD(&p->rt.run_list);
2171 	p->rt.timeout		= 0;
2172 	p->rt.time_slice	= sched_rr_timeslice;
2173 	p->rt.on_rq		= 0;
2174 	p->rt.on_list		= 0;
2175 
2176 #ifdef CONFIG_PREEMPT_NOTIFIERS
2177 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2178 #endif
2179 
2180 	init_numa_balancing(clone_flags, p);
2181 }
2182 
2183 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2184 
2185 #ifdef CONFIG_NUMA_BALANCING
2186 
2187 void set_numabalancing_state(bool enabled)
2188 {
2189 	if (enabled)
2190 		static_branch_enable(&sched_numa_balancing);
2191 	else
2192 		static_branch_disable(&sched_numa_balancing);
2193 }
2194 
2195 #ifdef CONFIG_PROC_SYSCTL
2196 int sysctl_numa_balancing(struct ctl_table *table, int write,
2197 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2198 {
2199 	struct ctl_table t;
2200 	int err;
2201 	int state = static_branch_likely(&sched_numa_balancing);
2202 
2203 	if (write && !capable(CAP_SYS_ADMIN))
2204 		return -EPERM;
2205 
2206 	t = *table;
2207 	t.data = &state;
2208 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2209 	if (err < 0)
2210 		return err;
2211 	if (write)
2212 		set_numabalancing_state(state);
2213 	return err;
2214 }
2215 #endif
2216 #endif
2217 
2218 #ifdef CONFIG_SCHEDSTATS
2219 
2220 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2221 static bool __initdata __sched_schedstats = false;
2222 
2223 static void set_schedstats(bool enabled)
2224 {
2225 	if (enabled)
2226 		static_branch_enable(&sched_schedstats);
2227 	else
2228 		static_branch_disable(&sched_schedstats);
2229 }
2230 
2231 void force_schedstat_enabled(void)
2232 {
2233 	if (!schedstat_enabled()) {
2234 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2235 		static_branch_enable(&sched_schedstats);
2236 	}
2237 }
2238 
2239 static int __init setup_schedstats(char *str)
2240 {
2241 	int ret = 0;
2242 	if (!str)
2243 		goto out;
2244 
2245 	/*
2246 	 * This code is called before jump labels have been set up, so we can't
2247 	 * change the static branch directly just yet.  Instead set a temporary
2248 	 * variable so init_schedstats() can do it later.
2249 	 */
2250 	if (!strcmp(str, "enable")) {
2251 		__sched_schedstats = true;
2252 		ret = 1;
2253 	} else if (!strcmp(str, "disable")) {
2254 		__sched_schedstats = false;
2255 		ret = 1;
2256 	}
2257 out:
2258 	if (!ret)
2259 		pr_warn("Unable to parse schedstats=\n");
2260 
2261 	return ret;
2262 }
2263 __setup("schedstats=", setup_schedstats);
2264 
2265 static void __init init_schedstats(void)
2266 {
2267 	set_schedstats(__sched_schedstats);
2268 }
2269 
2270 #ifdef CONFIG_PROC_SYSCTL
2271 int sysctl_schedstats(struct ctl_table *table, int write,
2272 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2273 {
2274 	struct ctl_table t;
2275 	int err;
2276 	int state = static_branch_likely(&sched_schedstats);
2277 
2278 	if (write && !capable(CAP_SYS_ADMIN))
2279 		return -EPERM;
2280 
2281 	t = *table;
2282 	t.data = &state;
2283 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2284 	if (err < 0)
2285 		return err;
2286 	if (write)
2287 		set_schedstats(state);
2288 	return err;
2289 }
2290 #endif /* CONFIG_PROC_SYSCTL */
2291 #else  /* !CONFIG_SCHEDSTATS */
2292 static inline void init_schedstats(void) {}
2293 #endif /* CONFIG_SCHEDSTATS */
2294 
2295 /*
2296  * fork()/clone()-time setup:
2297  */
2298 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2299 {
2300 	unsigned long flags;
2301 
2302 	__sched_fork(clone_flags, p);
2303 	/*
2304 	 * We mark the process as NEW here. This guarantees that
2305 	 * nobody will actually run it, and a signal or other external
2306 	 * event cannot wake it up and insert it on the runqueue either.
2307 	 */
2308 	p->state = TASK_NEW;
2309 
2310 	/*
2311 	 * Make sure we do not leak PI boosting priority to the child.
2312 	 */
2313 	p->prio = current->normal_prio;
2314 
2315 	/*
2316 	 * Revert to default priority/policy on fork if requested.
2317 	 */
2318 	if (unlikely(p->sched_reset_on_fork)) {
2319 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2320 			p->policy = SCHED_NORMAL;
2321 			p->static_prio = NICE_TO_PRIO(0);
2322 			p->rt_priority = 0;
2323 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2324 			p->static_prio = NICE_TO_PRIO(0);
2325 
2326 		p->prio = p->normal_prio = __normal_prio(p);
2327 		set_load_weight(p, false);
2328 
2329 		/*
2330 		 * We don't need the reset flag anymore after the fork. It has
2331 		 * fulfilled its duty:
2332 		 */
2333 		p->sched_reset_on_fork = 0;
2334 	}
2335 
2336 	if (dl_prio(p->prio))
2337 		return -EAGAIN;
2338 	else if (rt_prio(p->prio))
2339 		p->sched_class = &rt_sched_class;
2340 	else
2341 		p->sched_class = &fair_sched_class;
2342 
2343 	init_entity_runnable_average(&p->se);
2344 
2345 	/*
2346 	 * The child is not yet in the pid-hash so no cgroup attach races,
2347 	 * and the cgroup is pinned to this child due to cgroup_fork()
2348 	 * is ran before sched_fork().
2349 	 *
2350 	 * Silence PROVE_RCU.
2351 	 */
2352 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2353 	/*
2354 	 * We're setting the CPU for the first time, we don't migrate,
2355 	 * so use __set_task_cpu().
2356 	 */
2357 	__set_task_cpu(p, smp_processor_id());
2358 	if (p->sched_class->task_fork)
2359 		p->sched_class->task_fork(p);
2360 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2361 
2362 #ifdef CONFIG_SCHED_INFO
2363 	if (likely(sched_info_on()))
2364 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2365 #endif
2366 #if defined(CONFIG_SMP)
2367 	p->on_cpu = 0;
2368 #endif
2369 	init_task_preempt_count(p);
2370 #ifdef CONFIG_SMP
2371 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2372 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2373 #endif
2374 	return 0;
2375 }
2376 
2377 unsigned long to_ratio(u64 period, u64 runtime)
2378 {
2379 	if (runtime == RUNTIME_INF)
2380 		return BW_UNIT;
2381 
2382 	/*
2383 	 * Doing this here saves a lot of checks in all
2384 	 * the calling paths, and returning zero seems
2385 	 * safe for them anyway.
2386 	 */
2387 	if (period == 0)
2388 		return 0;
2389 
2390 	return div64_u64(runtime << BW_SHIFT, period);
2391 }
2392 
2393 /*
2394  * wake_up_new_task - wake up a newly created task for the first time.
2395  *
2396  * This function will do some initial scheduler statistics housekeeping
2397  * that must be done for every newly created context, then puts the task
2398  * on the runqueue and wakes it.
2399  */
2400 void wake_up_new_task(struct task_struct *p)
2401 {
2402 	struct rq_flags rf;
2403 	struct rq *rq;
2404 
2405 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2406 	p->state = TASK_RUNNING;
2407 #ifdef CONFIG_SMP
2408 	/*
2409 	 * Fork balancing, do it here and not earlier because:
2410 	 *  - cpus_allowed can change in the fork path
2411 	 *  - any previously selected CPU might disappear through hotplug
2412 	 *
2413 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2414 	 * as we're not fully set-up yet.
2415 	 */
2416 	p->recent_used_cpu = task_cpu(p);
2417 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2418 #endif
2419 	rq = __task_rq_lock(p, &rf);
2420 	update_rq_clock(rq);
2421 	post_init_entity_util_avg(&p->se);
2422 
2423 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2424 	p->on_rq = TASK_ON_RQ_QUEUED;
2425 	trace_sched_wakeup_new(p);
2426 	check_preempt_curr(rq, p, WF_FORK);
2427 #ifdef CONFIG_SMP
2428 	if (p->sched_class->task_woken) {
2429 		/*
2430 		 * Nothing relies on rq->lock after this, so its fine to
2431 		 * drop it.
2432 		 */
2433 		rq_unpin_lock(rq, &rf);
2434 		p->sched_class->task_woken(rq, p);
2435 		rq_repin_lock(rq, &rf);
2436 	}
2437 #endif
2438 	task_rq_unlock(rq, p, &rf);
2439 }
2440 
2441 #ifdef CONFIG_PREEMPT_NOTIFIERS
2442 
2443 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2444 
2445 void preempt_notifier_inc(void)
2446 {
2447 	static_branch_inc(&preempt_notifier_key);
2448 }
2449 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2450 
2451 void preempt_notifier_dec(void)
2452 {
2453 	static_branch_dec(&preempt_notifier_key);
2454 }
2455 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2456 
2457 /**
2458  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2459  * @notifier: notifier struct to register
2460  */
2461 void preempt_notifier_register(struct preempt_notifier *notifier)
2462 {
2463 	if (!static_branch_unlikely(&preempt_notifier_key))
2464 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2465 
2466 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2467 }
2468 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2469 
2470 /**
2471  * preempt_notifier_unregister - no longer interested in preemption notifications
2472  * @notifier: notifier struct to unregister
2473  *
2474  * This is *not* safe to call from within a preemption notifier.
2475  */
2476 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2477 {
2478 	hlist_del(&notifier->link);
2479 }
2480 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2481 
2482 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2483 {
2484 	struct preempt_notifier *notifier;
2485 
2486 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2487 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2488 }
2489 
2490 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2491 {
2492 	if (static_branch_unlikely(&preempt_notifier_key))
2493 		__fire_sched_in_preempt_notifiers(curr);
2494 }
2495 
2496 static void
2497 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2498 				   struct task_struct *next)
2499 {
2500 	struct preempt_notifier *notifier;
2501 
2502 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2503 		notifier->ops->sched_out(notifier, next);
2504 }
2505 
2506 static __always_inline void
2507 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2508 				 struct task_struct *next)
2509 {
2510 	if (static_branch_unlikely(&preempt_notifier_key))
2511 		__fire_sched_out_preempt_notifiers(curr, next);
2512 }
2513 
2514 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2515 
2516 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2517 {
2518 }
2519 
2520 static inline void
2521 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2522 				 struct task_struct *next)
2523 {
2524 }
2525 
2526 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2527 
2528 static inline void prepare_task(struct task_struct *next)
2529 {
2530 #ifdef CONFIG_SMP
2531 	/*
2532 	 * Claim the task as running, we do this before switching to it
2533 	 * such that any running task will have this set.
2534 	 */
2535 	next->on_cpu = 1;
2536 #endif
2537 }
2538 
2539 static inline void finish_task(struct task_struct *prev)
2540 {
2541 #ifdef CONFIG_SMP
2542 	/*
2543 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2544 	 * We must ensure this doesn't happen until the switch is completely
2545 	 * finished.
2546 	 *
2547 	 * In particular, the load of prev->state in finish_task_switch() must
2548 	 * happen before this.
2549 	 *
2550 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2551 	 */
2552 	smp_store_release(&prev->on_cpu, 0);
2553 #endif
2554 }
2555 
2556 static inline void
2557 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2558 {
2559 	/*
2560 	 * Since the runqueue lock will be released by the next
2561 	 * task (which is an invalid locking op but in the case
2562 	 * of the scheduler it's an obvious special-case), so we
2563 	 * do an early lockdep release here:
2564 	 */
2565 	rq_unpin_lock(rq, rf);
2566 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2567 #ifdef CONFIG_DEBUG_SPINLOCK
2568 	/* this is a valid case when another task releases the spinlock */
2569 	rq->lock.owner = next;
2570 #endif
2571 }
2572 
2573 static inline void finish_lock_switch(struct rq *rq)
2574 {
2575 	/*
2576 	 * If we are tracking spinlock dependencies then we have to
2577 	 * fix up the runqueue lock - which gets 'carried over' from
2578 	 * prev into current:
2579 	 */
2580 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2581 	raw_spin_unlock_irq(&rq->lock);
2582 }
2583 
2584 /*
2585  * NOP if the arch has not defined these:
2586  */
2587 
2588 #ifndef prepare_arch_switch
2589 # define prepare_arch_switch(next)	do { } while (0)
2590 #endif
2591 
2592 #ifndef finish_arch_post_lock_switch
2593 # define finish_arch_post_lock_switch()	do { } while (0)
2594 #endif
2595 
2596 /**
2597  * prepare_task_switch - prepare to switch tasks
2598  * @rq: the runqueue preparing to switch
2599  * @prev: the current task that is being switched out
2600  * @next: the task we are going to switch to.
2601  *
2602  * This is called with the rq lock held and interrupts off. It must
2603  * be paired with a subsequent finish_task_switch after the context
2604  * switch.
2605  *
2606  * prepare_task_switch sets up locking and calls architecture specific
2607  * hooks.
2608  */
2609 static inline void
2610 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2611 		    struct task_struct *next)
2612 {
2613 	kcov_prepare_switch(prev);
2614 	sched_info_switch(rq, prev, next);
2615 	perf_event_task_sched_out(prev, next);
2616 	rseq_preempt(prev);
2617 	fire_sched_out_preempt_notifiers(prev, next);
2618 	prepare_task(next);
2619 	prepare_arch_switch(next);
2620 }
2621 
2622 /**
2623  * finish_task_switch - clean up after a task-switch
2624  * @prev: the thread we just switched away from.
2625  *
2626  * finish_task_switch must be called after the context switch, paired
2627  * with a prepare_task_switch call before the context switch.
2628  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2629  * and do any other architecture-specific cleanup actions.
2630  *
2631  * Note that we may have delayed dropping an mm in context_switch(). If
2632  * so, we finish that here outside of the runqueue lock. (Doing it
2633  * with the lock held can cause deadlocks; see schedule() for
2634  * details.)
2635  *
2636  * The context switch have flipped the stack from under us and restored the
2637  * local variables which were saved when this task called schedule() in the
2638  * past. prev == current is still correct but we need to recalculate this_rq
2639  * because prev may have moved to another CPU.
2640  */
2641 static struct rq *finish_task_switch(struct task_struct *prev)
2642 	__releases(rq->lock)
2643 {
2644 	struct rq *rq = this_rq();
2645 	struct mm_struct *mm = rq->prev_mm;
2646 	long prev_state;
2647 
2648 	/*
2649 	 * The previous task will have left us with a preempt_count of 2
2650 	 * because it left us after:
2651 	 *
2652 	 *	schedule()
2653 	 *	  preempt_disable();			// 1
2654 	 *	  __schedule()
2655 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2656 	 *
2657 	 * Also, see FORK_PREEMPT_COUNT.
2658 	 */
2659 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2660 		      "corrupted preempt_count: %s/%d/0x%x\n",
2661 		      current->comm, current->pid, preempt_count()))
2662 		preempt_count_set(FORK_PREEMPT_COUNT);
2663 
2664 	rq->prev_mm = NULL;
2665 
2666 	/*
2667 	 * A task struct has one reference for the use as "current".
2668 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2669 	 * schedule one last time. The schedule call will never return, and
2670 	 * the scheduled task must drop that reference.
2671 	 *
2672 	 * We must observe prev->state before clearing prev->on_cpu (in
2673 	 * finish_task), otherwise a concurrent wakeup can get prev
2674 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2675 	 * transition, resulting in a double drop.
2676 	 */
2677 	prev_state = prev->state;
2678 	vtime_task_switch(prev);
2679 	perf_event_task_sched_in(prev, current);
2680 	finish_task(prev);
2681 	finish_lock_switch(rq);
2682 	finish_arch_post_lock_switch();
2683 	kcov_finish_switch(current);
2684 
2685 	fire_sched_in_preempt_notifiers(current);
2686 	/*
2687 	 * When switching through a kernel thread, the loop in
2688 	 * membarrier_{private,global}_expedited() may have observed that
2689 	 * kernel thread and not issued an IPI. It is therefore possible to
2690 	 * schedule between user->kernel->user threads without passing though
2691 	 * switch_mm(). Membarrier requires a barrier after storing to
2692 	 * rq->curr, before returning to userspace, so provide them here:
2693 	 *
2694 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2695 	 *   provided by mmdrop(),
2696 	 * - a sync_core for SYNC_CORE.
2697 	 */
2698 	if (mm) {
2699 		membarrier_mm_sync_core_before_usermode(mm);
2700 		mmdrop(mm);
2701 	}
2702 	if (unlikely(prev_state == TASK_DEAD)) {
2703 		if (prev->sched_class->task_dead)
2704 			prev->sched_class->task_dead(prev);
2705 
2706 		/*
2707 		 * Remove function-return probe instances associated with this
2708 		 * task and put them back on the free list.
2709 		 */
2710 		kprobe_flush_task(prev);
2711 
2712 		/* Task is done with its stack. */
2713 		put_task_stack(prev);
2714 
2715 		put_task_struct(prev);
2716 	}
2717 
2718 	tick_nohz_task_switch();
2719 	return rq;
2720 }
2721 
2722 #ifdef CONFIG_SMP
2723 
2724 /* rq->lock is NOT held, but preemption is disabled */
2725 static void __balance_callback(struct rq *rq)
2726 {
2727 	struct callback_head *head, *next;
2728 	void (*func)(struct rq *rq);
2729 	unsigned long flags;
2730 
2731 	raw_spin_lock_irqsave(&rq->lock, flags);
2732 	head = rq->balance_callback;
2733 	rq->balance_callback = NULL;
2734 	while (head) {
2735 		func = (void (*)(struct rq *))head->func;
2736 		next = head->next;
2737 		head->next = NULL;
2738 		head = next;
2739 
2740 		func(rq);
2741 	}
2742 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2743 }
2744 
2745 static inline void balance_callback(struct rq *rq)
2746 {
2747 	if (unlikely(rq->balance_callback))
2748 		__balance_callback(rq);
2749 }
2750 
2751 #else
2752 
2753 static inline void balance_callback(struct rq *rq)
2754 {
2755 }
2756 
2757 #endif
2758 
2759 /**
2760  * schedule_tail - first thing a freshly forked thread must call.
2761  * @prev: the thread we just switched away from.
2762  */
2763 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2764 	__releases(rq->lock)
2765 {
2766 	struct rq *rq;
2767 
2768 	/*
2769 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2770 	 * finish_task_switch() for details.
2771 	 *
2772 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2773 	 * and the preempt_enable() will end up enabling preemption (on
2774 	 * PREEMPT_COUNT kernels).
2775 	 */
2776 
2777 	rq = finish_task_switch(prev);
2778 	balance_callback(rq);
2779 	preempt_enable();
2780 
2781 	if (current->set_child_tid)
2782 		put_user(task_pid_vnr(current), current->set_child_tid);
2783 
2784 	calculate_sigpending();
2785 }
2786 
2787 /*
2788  * context_switch - switch to the new MM and the new thread's register state.
2789  */
2790 static __always_inline struct rq *
2791 context_switch(struct rq *rq, struct task_struct *prev,
2792 	       struct task_struct *next, struct rq_flags *rf)
2793 {
2794 	struct mm_struct *mm, *oldmm;
2795 
2796 	prepare_task_switch(rq, prev, next);
2797 
2798 	mm = next->mm;
2799 	oldmm = prev->active_mm;
2800 	/*
2801 	 * For paravirt, this is coupled with an exit in switch_to to
2802 	 * combine the page table reload and the switch backend into
2803 	 * one hypercall.
2804 	 */
2805 	arch_start_context_switch(prev);
2806 
2807 	/*
2808 	 * If mm is non-NULL, we pass through switch_mm(). If mm is
2809 	 * NULL, we will pass through mmdrop() in finish_task_switch().
2810 	 * Both of these contain the full memory barrier required by
2811 	 * membarrier after storing to rq->curr, before returning to
2812 	 * user-space.
2813 	 */
2814 	if (!mm) {
2815 		next->active_mm = oldmm;
2816 		mmgrab(oldmm);
2817 		enter_lazy_tlb(oldmm, next);
2818 	} else
2819 		switch_mm_irqs_off(oldmm, mm, next);
2820 
2821 	if (!prev->mm) {
2822 		prev->active_mm = NULL;
2823 		rq->prev_mm = oldmm;
2824 	}
2825 
2826 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2827 
2828 	prepare_lock_switch(rq, next, rf);
2829 
2830 	/* Here we just switch the register state and the stack. */
2831 	switch_to(prev, next, prev);
2832 	barrier();
2833 
2834 	return finish_task_switch(prev);
2835 }
2836 
2837 /*
2838  * nr_running and nr_context_switches:
2839  *
2840  * externally visible scheduler statistics: current number of runnable
2841  * threads, total number of context switches performed since bootup.
2842  */
2843 unsigned long nr_running(void)
2844 {
2845 	unsigned long i, sum = 0;
2846 
2847 	for_each_online_cpu(i)
2848 		sum += cpu_rq(i)->nr_running;
2849 
2850 	return sum;
2851 }
2852 
2853 /*
2854  * Check if only the current task is running on the CPU.
2855  *
2856  * Caution: this function does not check that the caller has disabled
2857  * preemption, thus the result might have a time-of-check-to-time-of-use
2858  * race.  The caller is responsible to use it correctly, for example:
2859  *
2860  * - from a non-preemptable section (of course)
2861  *
2862  * - from a thread that is bound to a single CPU
2863  *
2864  * - in a loop with very short iterations (e.g. a polling loop)
2865  */
2866 bool single_task_running(void)
2867 {
2868 	return raw_rq()->nr_running == 1;
2869 }
2870 EXPORT_SYMBOL(single_task_running);
2871 
2872 unsigned long long nr_context_switches(void)
2873 {
2874 	int i;
2875 	unsigned long long sum = 0;
2876 
2877 	for_each_possible_cpu(i)
2878 		sum += cpu_rq(i)->nr_switches;
2879 
2880 	return sum;
2881 }
2882 
2883 /*
2884  * IO-wait accounting, and how its mostly bollocks (on SMP).
2885  *
2886  * The idea behind IO-wait account is to account the idle time that we could
2887  * have spend running if it were not for IO. That is, if we were to improve the
2888  * storage performance, we'd have a proportional reduction in IO-wait time.
2889  *
2890  * This all works nicely on UP, where, when a task blocks on IO, we account
2891  * idle time as IO-wait, because if the storage were faster, it could've been
2892  * running and we'd not be idle.
2893  *
2894  * This has been extended to SMP, by doing the same for each CPU. This however
2895  * is broken.
2896  *
2897  * Imagine for instance the case where two tasks block on one CPU, only the one
2898  * CPU will have IO-wait accounted, while the other has regular idle. Even
2899  * though, if the storage were faster, both could've ran at the same time,
2900  * utilising both CPUs.
2901  *
2902  * This means, that when looking globally, the current IO-wait accounting on
2903  * SMP is a lower bound, by reason of under accounting.
2904  *
2905  * Worse, since the numbers are provided per CPU, they are sometimes
2906  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2907  * associated with any one particular CPU, it can wake to another CPU than it
2908  * blocked on. This means the per CPU IO-wait number is meaningless.
2909  *
2910  * Task CPU affinities can make all that even more 'interesting'.
2911  */
2912 
2913 unsigned long nr_iowait(void)
2914 {
2915 	unsigned long i, sum = 0;
2916 
2917 	for_each_possible_cpu(i)
2918 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2919 
2920 	return sum;
2921 }
2922 
2923 /*
2924  * Consumers of these two interfaces, like for example the cpuidle menu
2925  * governor, are using nonsensical data. Preferring shallow idle state selection
2926  * for a CPU that has IO-wait which might not even end up running the task when
2927  * it does become runnable.
2928  */
2929 
2930 unsigned long nr_iowait_cpu(int cpu)
2931 {
2932 	struct rq *this = cpu_rq(cpu);
2933 	return atomic_read(&this->nr_iowait);
2934 }
2935 
2936 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2937 {
2938 	struct rq *rq = this_rq();
2939 	*nr_waiters = atomic_read(&rq->nr_iowait);
2940 	*load = rq->load.weight;
2941 }
2942 
2943 #ifdef CONFIG_SMP
2944 
2945 /*
2946  * sched_exec - execve() is a valuable balancing opportunity, because at
2947  * this point the task has the smallest effective memory and cache footprint.
2948  */
2949 void sched_exec(void)
2950 {
2951 	struct task_struct *p = current;
2952 	unsigned long flags;
2953 	int dest_cpu;
2954 
2955 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2956 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2957 	if (dest_cpu == smp_processor_id())
2958 		goto unlock;
2959 
2960 	if (likely(cpu_active(dest_cpu))) {
2961 		struct migration_arg arg = { p, dest_cpu };
2962 
2963 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2964 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2965 		return;
2966 	}
2967 unlock:
2968 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2969 }
2970 
2971 #endif
2972 
2973 DEFINE_PER_CPU(struct kernel_stat, kstat);
2974 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2975 
2976 EXPORT_PER_CPU_SYMBOL(kstat);
2977 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2978 
2979 /*
2980  * The function fair_sched_class.update_curr accesses the struct curr
2981  * and its field curr->exec_start; when called from task_sched_runtime(),
2982  * we observe a high rate of cache misses in practice.
2983  * Prefetching this data results in improved performance.
2984  */
2985 static inline void prefetch_curr_exec_start(struct task_struct *p)
2986 {
2987 #ifdef CONFIG_FAIR_GROUP_SCHED
2988 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2989 #else
2990 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2991 #endif
2992 	prefetch(curr);
2993 	prefetch(&curr->exec_start);
2994 }
2995 
2996 /*
2997  * Return accounted runtime for the task.
2998  * In case the task is currently running, return the runtime plus current's
2999  * pending runtime that have not been accounted yet.
3000  */
3001 unsigned long long task_sched_runtime(struct task_struct *p)
3002 {
3003 	struct rq_flags rf;
3004 	struct rq *rq;
3005 	u64 ns;
3006 
3007 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3008 	/*
3009 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3010 	 * So we have a optimization chance when the task's delta_exec is 0.
3011 	 * Reading ->on_cpu is racy, but this is ok.
3012 	 *
3013 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3014 	 * If we race with it entering CPU, unaccounted time is 0. This is
3015 	 * indistinguishable from the read occurring a few cycles earlier.
3016 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3017 	 * been accounted, so we're correct here as well.
3018 	 */
3019 	if (!p->on_cpu || !task_on_rq_queued(p))
3020 		return p->se.sum_exec_runtime;
3021 #endif
3022 
3023 	rq = task_rq_lock(p, &rf);
3024 	/*
3025 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3026 	 * project cycles that may never be accounted to this
3027 	 * thread, breaking clock_gettime().
3028 	 */
3029 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3030 		prefetch_curr_exec_start(p);
3031 		update_rq_clock(rq);
3032 		p->sched_class->update_curr(rq);
3033 	}
3034 	ns = p->se.sum_exec_runtime;
3035 	task_rq_unlock(rq, p, &rf);
3036 
3037 	return ns;
3038 }
3039 
3040 /*
3041  * This function gets called by the timer code, with HZ frequency.
3042  * We call it with interrupts disabled.
3043  */
3044 void scheduler_tick(void)
3045 {
3046 	int cpu = smp_processor_id();
3047 	struct rq *rq = cpu_rq(cpu);
3048 	struct task_struct *curr = rq->curr;
3049 	struct rq_flags rf;
3050 
3051 	sched_clock_tick();
3052 
3053 	rq_lock(rq, &rf);
3054 
3055 	update_rq_clock(rq);
3056 	curr->sched_class->task_tick(rq, curr, 0);
3057 	cpu_load_update_active(rq);
3058 	calc_global_load_tick(rq);
3059 	psi_task_tick(rq);
3060 
3061 	rq_unlock(rq, &rf);
3062 
3063 	perf_event_task_tick();
3064 
3065 #ifdef CONFIG_SMP
3066 	rq->idle_balance = idle_cpu(cpu);
3067 	trigger_load_balance(rq);
3068 #endif
3069 }
3070 
3071 #ifdef CONFIG_NO_HZ_FULL
3072 
3073 struct tick_work {
3074 	int			cpu;
3075 	struct delayed_work	work;
3076 };
3077 
3078 static struct tick_work __percpu *tick_work_cpu;
3079 
3080 static void sched_tick_remote(struct work_struct *work)
3081 {
3082 	struct delayed_work *dwork = to_delayed_work(work);
3083 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3084 	int cpu = twork->cpu;
3085 	struct rq *rq = cpu_rq(cpu);
3086 	struct task_struct *curr;
3087 	struct rq_flags rf;
3088 	u64 delta;
3089 
3090 	/*
3091 	 * Handle the tick only if it appears the remote CPU is running in full
3092 	 * dynticks mode. The check is racy by nature, but missing a tick or
3093 	 * having one too much is no big deal because the scheduler tick updates
3094 	 * statistics and checks timeslices in a time-independent way, regardless
3095 	 * of when exactly it is running.
3096 	 */
3097 	if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3098 		goto out_requeue;
3099 
3100 	rq_lock_irq(rq, &rf);
3101 	curr = rq->curr;
3102 	if (is_idle_task(curr))
3103 		goto out_unlock;
3104 
3105 	update_rq_clock(rq);
3106 	delta = rq_clock_task(rq) - curr->se.exec_start;
3107 
3108 	/*
3109 	 * Make sure the next tick runs within a reasonable
3110 	 * amount of time.
3111 	 */
3112 	WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3113 	curr->sched_class->task_tick(rq, curr, 0);
3114 
3115 out_unlock:
3116 	rq_unlock_irq(rq, &rf);
3117 
3118 out_requeue:
3119 	/*
3120 	 * Run the remote tick once per second (1Hz). This arbitrary
3121 	 * frequency is large enough to avoid overload but short enough
3122 	 * to keep scheduler internal stats reasonably up to date.
3123 	 */
3124 	queue_delayed_work(system_unbound_wq, dwork, HZ);
3125 }
3126 
3127 static void sched_tick_start(int cpu)
3128 {
3129 	struct tick_work *twork;
3130 
3131 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3132 		return;
3133 
3134 	WARN_ON_ONCE(!tick_work_cpu);
3135 
3136 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3137 	twork->cpu = cpu;
3138 	INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3139 	queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3140 }
3141 
3142 #ifdef CONFIG_HOTPLUG_CPU
3143 static void sched_tick_stop(int cpu)
3144 {
3145 	struct tick_work *twork;
3146 
3147 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3148 		return;
3149 
3150 	WARN_ON_ONCE(!tick_work_cpu);
3151 
3152 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3153 	cancel_delayed_work_sync(&twork->work);
3154 }
3155 #endif /* CONFIG_HOTPLUG_CPU */
3156 
3157 int __init sched_tick_offload_init(void)
3158 {
3159 	tick_work_cpu = alloc_percpu(struct tick_work);
3160 	BUG_ON(!tick_work_cpu);
3161 
3162 	return 0;
3163 }
3164 
3165 #else /* !CONFIG_NO_HZ_FULL */
3166 static inline void sched_tick_start(int cpu) { }
3167 static inline void sched_tick_stop(int cpu) { }
3168 #endif
3169 
3170 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3171 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3172 /*
3173  * If the value passed in is equal to the current preempt count
3174  * then we just disabled preemption. Start timing the latency.
3175  */
3176 static inline void preempt_latency_start(int val)
3177 {
3178 	if (preempt_count() == val) {
3179 		unsigned long ip = get_lock_parent_ip();
3180 #ifdef CONFIG_DEBUG_PREEMPT
3181 		current->preempt_disable_ip = ip;
3182 #endif
3183 		trace_preempt_off(CALLER_ADDR0, ip);
3184 	}
3185 }
3186 
3187 void preempt_count_add(int val)
3188 {
3189 #ifdef CONFIG_DEBUG_PREEMPT
3190 	/*
3191 	 * Underflow?
3192 	 */
3193 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3194 		return;
3195 #endif
3196 	__preempt_count_add(val);
3197 #ifdef CONFIG_DEBUG_PREEMPT
3198 	/*
3199 	 * Spinlock count overflowing soon?
3200 	 */
3201 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3202 				PREEMPT_MASK - 10);
3203 #endif
3204 	preempt_latency_start(val);
3205 }
3206 EXPORT_SYMBOL(preempt_count_add);
3207 NOKPROBE_SYMBOL(preempt_count_add);
3208 
3209 /*
3210  * If the value passed in equals to the current preempt count
3211  * then we just enabled preemption. Stop timing the latency.
3212  */
3213 static inline void preempt_latency_stop(int val)
3214 {
3215 	if (preempt_count() == val)
3216 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3217 }
3218 
3219 void preempt_count_sub(int val)
3220 {
3221 #ifdef CONFIG_DEBUG_PREEMPT
3222 	/*
3223 	 * Underflow?
3224 	 */
3225 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3226 		return;
3227 	/*
3228 	 * Is the spinlock portion underflowing?
3229 	 */
3230 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3231 			!(preempt_count() & PREEMPT_MASK)))
3232 		return;
3233 #endif
3234 
3235 	preempt_latency_stop(val);
3236 	__preempt_count_sub(val);
3237 }
3238 EXPORT_SYMBOL(preempt_count_sub);
3239 NOKPROBE_SYMBOL(preempt_count_sub);
3240 
3241 #else
3242 static inline void preempt_latency_start(int val) { }
3243 static inline void preempt_latency_stop(int val) { }
3244 #endif
3245 
3246 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3247 {
3248 #ifdef CONFIG_DEBUG_PREEMPT
3249 	return p->preempt_disable_ip;
3250 #else
3251 	return 0;
3252 #endif
3253 }
3254 
3255 /*
3256  * Print scheduling while atomic bug:
3257  */
3258 static noinline void __schedule_bug(struct task_struct *prev)
3259 {
3260 	/* Save this before calling printk(), since that will clobber it */
3261 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3262 
3263 	if (oops_in_progress)
3264 		return;
3265 
3266 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3267 		prev->comm, prev->pid, preempt_count());
3268 
3269 	debug_show_held_locks(prev);
3270 	print_modules();
3271 	if (irqs_disabled())
3272 		print_irqtrace_events(prev);
3273 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3274 	    && in_atomic_preempt_off()) {
3275 		pr_err("Preemption disabled at:");
3276 		print_ip_sym(preempt_disable_ip);
3277 		pr_cont("\n");
3278 	}
3279 	if (panic_on_warn)
3280 		panic("scheduling while atomic\n");
3281 
3282 	dump_stack();
3283 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3284 }
3285 
3286 /*
3287  * Various schedule()-time debugging checks and statistics:
3288  */
3289 static inline void schedule_debug(struct task_struct *prev)
3290 {
3291 #ifdef CONFIG_SCHED_STACK_END_CHECK
3292 	if (task_stack_end_corrupted(prev))
3293 		panic("corrupted stack end detected inside scheduler\n");
3294 #endif
3295 
3296 	if (unlikely(in_atomic_preempt_off())) {
3297 		__schedule_bug(prev);
3298 		preempt_count_set(PREEMPT_DISABLED);
3299 	}
3300 	rcu_sleep_check();
3301 
3302 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3303 
3304 	schedstat_inc(this_rq()->sched_count);
3305 }
3306 
3307 /*
3308  * Pick up the highest-prio task:
3309  */
3310 static inline struct task_struct *
3311 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3312 {
3313 	const struct sched_class *class;
3314 	struct task_struct *p;
3315 
3316 	/*
3317 	 * Optimization: we know that if all tasks are in the fair class we can
3318 	 * call that function directly, but only if the @prev task wasn't of a
3319 	 * higher scheduling class, because otherwise those loose the
3320 	 * opportunity to pull in more work from other CPUs.
3321 	 */
3322 	if (likely((prev->sched_class == &idle_sched_class ||
3323 		    prev->sched_class == &fair_sched_class) &&
3324 		   rq->nr_running == rq->cfs.h_nr_running)) {
3325 
3326 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3327 		if (unlikely(p == RETRY_TASK))
3328 			goto again;
3329 
3330 		/* Assumes fair_sched_class->next == idle_sched_class */
3331 		if (unlikely(!p))
3332 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3333 
3334 		return p;
3335 	}
3336 
3337 again:
3338 	for_each_class(class) {
3339 		p = class->pick_next_task(rq, prev, rf);
3340 		if (p) {
3341 			if (unlikely(p == RETRY_TASK))
3342 				goto again;
3343 			return p;
3344 		}
3345 	}
3346 
3347 	/* The idle class should always have a runnable task: */
3348 	BUG();
3349 }
3350 
3351 /*
3352  * __schedule() is the main scheduler function.
3353  *
3354  * The main means of driving the scheduler and thus entering this function are:
3355  *
3356  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3357  *
3358  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3359  *      paths. For example, see arch/x86/entry_64.S.
3360  *
3361  *      To drive preemption between tasks, the scheduler sets the flag in timer
3362  *      interrupt handler scheduler_tick().
3363  *
3364  *   3. Wakeups don't really cause entry into schedule(). They add a
3365  *      task to the run-queue and that's it.
3366  *
3367  *      Now, if the new task added to the run-queue preempts the current
3368  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3369  *      called on the nearest possible occasion:
3370  *
3371  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3372  *
3373  *         - in syscall or exception context, at the next outmost
3374  *           preempt_enable(). (this might be as soon as the wake_up()'s
3375  *           spin_unlock()!)
3376  *
3377  *         - in IRQ context, return from interrupt-handler to
3378  *           preemptible context
3379  *
3380  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3381  *         then at the next:
3382  *
3383  *          - cond_resched() call
3384  *          - explicit schedule() call
3385  *          - return from syscall or exception to user-space
3386  *          - return from interrupt-handler to user-space
3387  *
3388  * WARNING: must be called with preemption disabled!
3389  */
3390 static void __sched notrace __schedule(bool preempt)
3391 {
3392 	struct task_struct *prev, *next;
3393 	unsigned long *switch_count;
3394 	struct rq_flags rf;
3395 	struct rq *rq;
3396 	int cpu;
3397 
3398 	cpu = smp_processor_id();
3399 	rq = cpu_rq(cpu);
3400 	prev = rq->curr;
3401 
3402 	schedule_debug(prev);
3403 
3404 	if (sched_feat(HRTICK))
3405 		hrtick_clear(rq);
3406 
3407 	local_irq_disable();
3408 	rcu_note_context_switch(preempt);
3409 
3410 	/*
3411 	 * Make sure that signal_pending_state()->signal_pending() below
3412 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3413 	 * done by the caller to avoid the race with signal_wake_up().
3414 	 *
3415 	 * The membarrier system call requires a full memory barrier
3416 	 * after coming from user-space, before storing to rq->curr.
3417 	 */
3418 	rq_lock(rq, &rf);
3419 	smp_mb__after_spinlock();
3420 
3421 	/* Promote REQ to ACT */
3422 	rq->clock_update_flags <<= 1;
3423 	update_rq_clock(rq);
3424 
3425 	switch_count = &prev->nivcsw;
3426 	if (!preempt && prev->state) {
3427 		if (unlikely(signal_pending_state(prev->state, prev))) {
3428 			prev->state = TASK_RUNNING;
3429 		} else {
3430 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3431 			prev->on_rq = 0;
3432 
3433 			if (prev->in_iowait) {
3434 				atomic_inc(&rq->nr_iowait);
3435 				delayacct_blkio_start();
3436 			}
3437 
3438 			/*
3439 			 * If a worker went to sleep, notify and ask workqueue
3440 			 * whether it wants to wake up a task to maintain
3441 			 * concurrency.
3442 			 */
3443 			if (prev->flags & PF_WQ_WORKER) {
3444 				struct task_struct *to_wakeup;
3445 
3446 				to_wakeup = wq_worker_sleeping(prev);
3447 				if (to_wakeup)
3448 					try_to_wake_up_local(to_wakeup, &rf);
3449 			}
3450 		}
3451 		switch_count = &prev->nvcsw;
3452 	}
3453 
3454 	next = pick_next_task(rq, prev, &rf);
3455 	clear_tsk_need_resched(prev);
3456 	clear_preempt_need_resched();
3457 
3458 	if (likely(prev != next)) {
3459 		rq->nr_switches++;
3460 		rq->curr = next;
3461 		/*
3462 		 * The membarrier system call requires each architecture
3463 		 * to have a full memory barrier after updating
3464 		 * rq->curr, before returning to user-space.
3465 		 *
3466 		 * Here are the schemes providing that barrier on the
3467 		 * various architectures:
3468 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3469 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3470 		 * - finish_lock_switch() for weakly-ordered
3471 		 *   architectures where spin_unlock is a full barrier,
3472 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3473 		 *   is a RELEASE barrier),
3474 		 */
3475 		++*switch_count;
3476 
3477 		trace_sched_switch(preempt, prev, next);
3478 
3479 		/* Also unlocks the rq: */
3480 		rq = context_switch(rq, prev, next, &rf);
3481 	} else {
3482 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3483 		rq_unlock_irq(rq, &rf);
3484 	}
3485 
3486 	balance_callback(rq);
3487 }
3488 
3489 void __noreturn do_task_dead(void)
3490 {
3491 	/* Causes final put_task_struct in finish_task_switch(): */
3492 	set_special_state(TASK_DEAD);
3493 
3494 	/* Tell freezer to ignore us: */
3495 	current->flags |= PF_NOFREEZE;
3496 
3497 	__schedule(false);
3498 	BUG();
3499 
3500 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3501 	for (;;)
3502 		cpu_relax();
3503 }
3504 
3505 static inline void sched_submit_work(struct task_struct *tsk)
3506 {
3507 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3508 		return;
3509 	/*
3510 	 * If we are going to sleep and we have plugged IO queued,
3511 	 * make sure to submit it to avoid deadlocks.
3512 	 */
3513 	if (blk_needs_flush_plug(tsk))
3514 		blk_schedule_flush_plug(tsk);
3515 }
3516 
3517 asmlinkage __visible void __sched schedule(void)
3518 {
3519 	struct task_struct *tsk = current;
3520 
3521 	sched_submit_work(tsk);
3522 	do {
3523 		preempt_disable();
3524 		__schedule(false);
3525 		sched_preempt_enable_no_resched();
3526 	} while (need_resched());
3527 }
3528 EXPORT_SYMBOL(schedule);
3529 
3530 /*
3531  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3532  * state (have scheduled out non-voluntarily) by making sure that all
3533  * tasks have either left the run queue or have gone into user space.
3534  * As idle tasks do not do either, they must not ever be preempted
3535  * (schedule out non-voluntarily).
3536  *
3537  * schedule_idle() is similar to schedule_preempt_disable() except that it
3538  * never enables preemption because it does not call sched_submit_work().
3539  */
3540 void __sched schedule_idle(void)
3541 {
3542 	/*
3543 	 * As this skips calling sched_submit_work(), which the idle task does
3544 	 * regardless because that function is a nop when the task is in a
3545 	 * TASK_RUNNING state, make sure this isn't used someplace that the
3546 	 * current task can be in any other state. Note, idle is always in the
3547 	 * TASK_RUNNING state.
3548 	 */
3549 	WARN_ON_ONCE(current->state);
3550 	do {
3551 		__schedule(false);
3552 	} while (need_resched());
3553 }
3554 
3555 #ifdef CONFIG_CONTEXT_TRACKING
3556 asmlinkage __visible void __sched schedule_user(void)
3557 {
3558 	/*
3559 	 * If we come here after a random call to set_need_resched(),
3560 	 * or we have been woken up remotely but the IPI has not yet arrived,
3561 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3562 	 * we find a better solution.
3563 	 *
3564 	 * NB: There are buggy callers of this function.  Ideally we
3565 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3566 	 * too frequently to make sense yet.
3567 	 */
3568 	enum ctx_state prev_state = exception_enter();
3569 	schedule();
3570 	exception_exit(prev_state);
3571 }
3572 #endif
3573 
3574 /**
3575  * schedule_preempt_disabled - called with preemption disabled
3576  *
3577  * Returns with preemption disabled. Note: preempt_count must be 1
3578  */
3579 void __sched schedule_preempt_disabled(void)
3580 {
3581 	sched_preempt_enable_no_resched();
3582 	schedule();
3583 	preempt_disable();
3584 }
3585 
3586 static void __sched notrace preempt_schedule_common(void)
3587 {
3588 	do {
3589 		/*
3590 		 * Because the function tracer can trace preempt_count_sub()
3591 		 * and it also uses preempt_enable/disable_notrace(), if
3592 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3593 		 * by the function tracer will call this function again and
3594 		 * cause infinite recursion.
3595 		 *
3596 		 * Preemption must be disabled here before the function
3597 		 * tracer can trace. Break up preempt_disable() into two
3598 		 * calls. One to disable preemption without fear of being
3599 		 * traced. The other to still record the preemption latency,
3600 		 * which can also be traced by the function tracer.
3601 		 */
3602 		preempt_disable_notrace();
3603 		preempt_latency_start(1);
3604 		__schedule(true);
3605 		preempt_latency_stop(1);
3606 		preempt_enable_no_resched_notrace();
3607 
3608 		/*
3609 		 * Check again in case we missed a preemption opportunity
3610 		 * between schedule and now.
3611 		 */
3612 	} while (need_resched());
3613 }
3614 
3615 #ifdef CONFIG_PREEMPT
3616 /*
3617  * this is the entry point to schedule() from in-kernel preemption
3618  * off of preempt_enable. Kernel preemptions off return from interrupt
3619  * occur there and call schedule directly.
3620  */
3621 asmlinkage __visible void __sched notrace preempt_schedule(void)
3622 {
3623 	/*
3624 	 * If there is a non-zero preempt_count or interrupts are disabled,
3625 	 * we do not want to preempt the current task. Just return..
3626 	 */
3627 	if (likely(!preemptible()))
3628 		return;
3629 
3630 	preempt_schedule_common();
3631 }
3632 NOKPROBE_SYMBOL(preempt_schedule);
3633 EXPORT_SYMBOL(preempt_schedule);
3634 
3635 /**
3636  * preempt_schedule_notrace - preempt_schedule called by tracing
3637  *
3638  * The tracing infrastructure uses preempt_enable_notrace to prevent
3639  * recursion and tracing preempt enabling caused by the tracing
3640  * infrastructure itself. But as tracing can happen in areas coming
3641  * from userspace or just about to enter userspace, a preempt enable
3642  * can occur before user_exit() is called. This will cause the scheduler
3643  * to be called when the system is still in usermode.
3644  *
3645  * To prevent this, the preempt_enable_notrace will use this function
3646  * instead of preempt_schedule() to exit user context if needed before
3647  * calling the scheduler.
3648  */
3649 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3650 {
3651 	enum ctx_state prev_ctx;
3652 
3653 	if (likely(!preemptible()))
3654 		return;
3655 
3656 	do {
3657 		/*
3658 		 * Because the function tracer can trace preempt_count_sub()
3659 		 * and it also uses preempt_enable/disable_notrace(), if
3660 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3661 		 * by the function tracer will call this function again and
3662 		 * cause infinite recursion.
3663 		 *
3664 		 * Preemption must be disabled here before the function
3665 		 * tracer can trace. Break up preempt_disable() into two
3666 		 * calls. One to disable preemption without fear of being
3667 		 * traced. The other to still record the preemption latency,
3668 		 * which can also be traced by the function tracer.
3669 		 */
3670 		preempt_disable_notrace();
3671 		preempt_latency_start(1);
3672 		/*
3673 		 * Needs preempt disabled in case user_exit() is traced
3674 		 * and the tracer calls preempt_enable_notrace() causing
3675 		 * an infinite recursion.
3676 		 */
3677 		prev_ctx = exception_enter();
3678 		__schedule(true);
3679 		exception_exit(prev_ctx);
3680 
3681 		preempt_latency_stop(1);
3682 		preempt_enable_no_resched_notrace();
3683 	} while (need_resched());
3684 }
3685 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3686 
3687 #endif /* CONFIG_PREEMPT */
3688 
3689 /*
3690  * this is the entry point to schedule() from kernel preemption
3691  * off of irq context.
3692  * Note, that this is called and return with irqs disabled. This will
3693  * protect us against recursive calling from irq.
3694  */
3695 asmlinkage __visible void __sched preempt_schedule_irq(void)
3696 {
3697 	enum ctx_state prev_state;
3698 
3699 	/* Catch callers which need to be fixed */
3700 	BUG_ON(preempt_count() || !irqs_disabled());
3701 
3702 	prev_state = exception_enter();
3703 
3704 	do {
3705 		preempt_disable();
3706 		local_irq_enable();
3707 		__schedule(true);
3708 		local_irq_disable();
3709 		sched_preempt_enable_no_resched();
3710 	} while (need_resched());
3711 
3712 	exception_exit(prev_state);
3713 }
3714 
3715 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3716 			  void *key)
3717 {
3718 	return try_to_wake_up(curr->private, mode, wake_flags);
3719 }
3720 EXPORT_SYMBOL(default_wake_function);
3721 
3722 #ifdef CONFIG_RT_MUTEXES
3723 
3724 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3725 {
3726 	if (pi_task)
3727 		prio = min(prio, pi_task->prio);
3728 
3729 	return prio;
3730 }
3731 
3732 static inline int rt_effective_prio(struct task_struct *p, int prio)
3733 {
3734 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3735 
3736 	return __rt_effective_prio(pi_task, prio);
3737 }
3738 
3739 /*
3740  * rt_mutex_setprio - set the current priority of a task
3741  * @p: task to boost
3742  * @pi_task: donor task
3743  *
3744  * This function changes the 'effective' priority of a task. It does
3745  * not touch ->normal_prio like __setscheduler().
3746  *
3747  * Used by the rt_mutex code to implement priority inheritance
3748  * logic. Call site only calls if the priority of the task changed.
3749  */
3750 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3751 {
3752 	int prio, oldprio, queued, running, queue_flag =
3753 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3754 	const struct sched_class *prev_class;
3755 	struct rq_flags rf;
3756 	struct rq *rq;
3757 
3758 	/* XXX used to be waiter->prio, not waiter->task->prio */
3759 	prio = __rt_effective_prio(pi_task, p->normal_prio);
3760 
3761 	/*
3762 	 * If nothing changed; bail early.
3763 	 */
3764 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3765 		return;
3766 
3767 	rq = __task_rq_lock(p, &rf);
3768 	update_rq_clock(rq);
3769 	/*
3770 	 * Set under pi_lock && rq->lock, such that the value can be used under
3771 	 * either lock.
3772 	 *
3773 	 * Note that there is loads of tricky to make this pointer cache work
3774 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3775 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
3776 	 * task is allowed to run again (and can exit). This ensures the pointer
3777 	 * points to a blocked task -- which guaratees the task is present.
3778 	 */
3779 	p->pi_top_task = pi_task;
3780 
3781 	/*
3782 	 * For FIFO/RR we only need to set prio, if that matches we're done.
3783 	 */
3784 	if (prio == p->prio && !dl_prio(prio))
3785 		goto out_unlock;
3786 
3787 	/*
3788 	 * Idle task boosting is a nono in general. There is one
3789 	 * exception, when PREEMPT_RT and NOHZ is active:
3790 	 *
3791 	 * The idle task calls get_next_timer_interrupt() and holds
3792 	 * the timer wheel base->lock on the CPU and another CPU wants
3793 	 * to access the timer (probably to cancel it). We can safely
3794 	 * ignore the boosting request, as the idle CPU runs this code
3795 	 * with interrupts disabled and will complete the lock
3796 	 * protected section without being interrupted. So there is no
3797 	 * real need to boost.
3798 	 */
3799 	if (unlikely(p == rq->idle)) {
3800 		WARN_ON(p != rq->curr);
3801 		WARN_ON(p->pi_blocked_on);
3802 		goto out_unlock;
3803 	}
3804 
3805 	trace_sched_pi_setprio(p, pi_task);
3806 	oldprio = p->prio;
3807 
3808 	if (oldprio == prio)
3809 		queue_flag &= ~DEQUEUE_MOVE;
3810 
3811 	prev_class = p->sched_class;
3812 	queued = task_on_rq_queued(p);
3813 	running = task_current(rq, p);
3814 	if (queued)
3815 		dequeue_task(rq, p, queue_flag);
3816 	if (running)
3817 		put_prev_task(rq, p);
3818 
3819 	/*
3820 	 * Boosting condition are:
3821 	 * 1. -rt task is running and holds mutex A
3822 	 *      --> -dl task blocks on mutex A
3823 	 *
3824 	 * 2. -dl task is running and holds mutex A
3825 	 *      --> -dl task blocks on mutex A and could preempt the
3826 	 *          running task
3827 	 */
3828 	if (dl_prio(prio)) {
3829 		if (!dl_prio(p->normal_prio) ||
3830 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3831 			p->dl.dl_boosted = 1;
3832 			queue_flag |= ENQUEUE_REPLENISH;
3833 		} else
3834 			p->dl.dl_boosted = 0;
3835 		p->sched_class = &dl_sched_class;
3836 	} else if (rt_prio(prio)) {
3837 		if (dl_prio(oldprio))
3838 			p->dl.dl_boosted = 0;
3839 		if (oldprio < prio)
3840 			queue_flag |= ENQUEUE_HEAD;
3841 		p->sched_class = &rt_sched_class;
3842 	} else {
3843 		if (dl_prio(oldprio))
3844 			p->dl.dl_boosted = 0;
3845 		if (rt_prio(oldprio))
3846 			p->rt.timeout = 0;
3847 		p->sched_class = &fair_sched_class;
3848 	}
3849 
3850 	p->prio = prio;
3851 
3852 	if (queued)
3853 		enqueue_task(rq, p, queue_flag);
3854 	if (running)
3855 		set_curr_task(rq, p);
3856 
3857 	check_class_changed(rq, p, prev_class, oldprio);
3858 out_unlock:
3859 	/* Avoid rq from going away on us: */
3860 	preempt_disable();
3861 	__task_rq_unlock(rq, &rf);
3862 
3863 	balance_callback(rq);
3864 	preempt_enable();
3865 }
3866 #else
3867 static inline int rt_effective_prio(struct task_struct *p, int prio)
3868 {
3869 	return prio;
3870 }
3871 #endif
3872 
3873 void set_user_nice(struct task_struct *p, long nice)
3874 {
3875 	bool queued, running;
3876 	int old_prio, delta;
3877 	struct rq_flags rf;
3878 	struct rq *rq;
3879 
3880 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3881 		return;
3882 	/*
3883 	 * We have to be careful, if called from sys_setpriority(),
3884 	 * the task might be in the middle of scheduling on another CPU.
3885 	 */
3886 	rq = task_rq_lock(p, &rf);
3887 	update_rq_clock(rq);
3888 
3889 	/*
3890 	 * The RT priorities are set via sched_setscheduler(), but we still
3891 	 * allow the 'normal' nice value to be set - but as expected
3892 	 * it wont have any effect on scheduling until the task is
3893 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3894 	 */
3895 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3896 		p->static_prio = NICE_TO_PRIO(nice);
3897 		goto out_unlock;
3898 	}
3899 	queued = task_on_rq_queued(p);
3900 	running = task_current(rq, p);
3901 	if (queued)
3902 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3903 	if (running)
3904 		put_prev_task(rq, p);
3905 
3906 	p->static_prio = NICE_TO_PRIO(nice);
3907 	set_load_weight(p, true);
3908 	old_prio = p->prio;
3909 	p->prio = effective_prio(p);
3910 	delta = p->prio - old_prio;
3911 
3912 	if (queued) {
3913 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3914 		/*
3915 		 * If the task increased its priority or is running and
3916 		 * lowered its priority, then reschedule its CPU:
3917 		 */
3918 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3919 			resched_curr(rq);
3920 	}
3921 	if (running)
3922 		set_curr_task(rq, p);
3923 out_unlock:
3924 	task_rq_unlock(rq, p, &rf);
3925 }
3926 EXPORT_SYMBOL(set_user_nice);
3927 
3928 /*
3929  * can_nice - check if a task can reduce its nice value
3930  * @p: task
3931  * @nice: nice value
3932  */
3933 int can_nice(const struct task_struct *p, const int nice)
3934 {
3935 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3936 	int nice_rlim = nice_to_rlimit(nice);
3937 
3938 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3939 		capable(CAP_SYS_NICE));
3940 }
3941 
3942 #ifdef __ARCH_WANT_SYS_NICE
3943 
3944 /*
3945  * sys_nice - change the priority of the current process.
3946  * @increment: priority increment
3947  *
3948  * sys_setpriority is a more generic, but much slower function that
3949  * does similar things.
3950  */
3951 SYSCALL_DEFINE1(nice, int, increment)
3952 {
3953 	long nice, retval;
3954 
3955 	/*
3956 	 * Setpriority might change our priority at the same moment.
3957 	 * We don't have to worry. Conceptually one call occurs first
3958 	 * and we have a single winner.
3959 	 */
3960 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3961 	nice = task_nice(current) + increment;
3962 
3963 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3964 	if (increment < 0 && !can_nice(current, nice))
3965 		return -EPERM;
3966 
3967 	retval = security_task_setnice(current, nice);
3968 	if (retval)
3969 		return retval;
3970 
3971 	set_user_nice(current, nice);
3972 	return 0;
3973 }
3974 
3975 #endif
3976 
3977 /**
3978  * task_prio - return the priority value of a given task.
3979  * @p: the task in question.
3980  *
3981  * Return: The priority value as seen by users in /proc.
3982  * RT tasks are offset by -200. Normal tasks are centered
3983  * around 0, value goes from -16 to +15.
3984  */
3985 int task_prio(const struct task_struct *p)
3986 {
3987 	return p->prio - MAX_RT_PRIO;
3988 }
3989 
3990 /**
3991  * idle_cpu - is a given CPU idle currently?
3992  * @cpu: the processor in question.
3993  *
3994  * Return: 1 if the CPU is currently idle. 0 otherwise.
3995  */
3996 int idle_cpu(int cpu)
3997 {
3998 	struct rq *rq = cpu_rq(cpu);
3999 
4000 	if (rq->curr != rq->idle)
4001 		return 0;
4002 
4003 	if (rq->nr_running)
4004 		return 0;
4005 
4006 #ifdef CONFIG_SMP
4007 	if (!llist_empty(&rq->wake_list))
4008 		return 0;
4009 #endif
4010 
4011 	return 1;
4012 }
4013 
4014 /**
4015  * available_idle_cpu - is a given CPU idle for enqueuing work.
4016  * @cpu: the CPU in question.
4017  *
4018  * Return: 1 if the CPU is currently idle. 0 otherwise.
4019  */
4020 int available_idle_cpu(int cpu)
4021 {
4022 	if (!idle_cpu(cpu))
4023 		return 0;
4024 
4025 	if (vcpu_is_preempted(cpu))
4026 		return 0;
4027 
4028 	return 1;
4029 }
4030 
4031 /**
4032  * idle_task - return the idle task for a given CPU.
4033  * @cpu: the processor in question.
4034  *
4035  * Return: The idle task for the CPU @cpu.
4036  */
4037 struct task_struct *idle_task(int cpu)
4038 {
4039 	return cpu_rq(cpu)->idle;
4040 }
4041 
4042 /**
4043  * find_process_by_pid - find a process with a matching PID value.
4044  * @pid: the pid in question.
4045  *
4046  * The task of @pid, if found. %NULL otherwise.
4047  */
4048 static struct task_struct *find_process_by_pid(pid_t pid)
4049 {
4050 	return pid ? find_task_by_vpid(pid) : current;
4051 }
4052 
4053 /*
4054  * sched_setparam() passes in -1 for its policy, to let the functions
4055  * it calls know not to change it.
4056  */
4057 #define SETPARAM_POLICY	-1
4058 
4059 static void __setscheduler_params(struct task_struct *p,
4060 		const struct sched_attr *attr)
4061 {
4062 	int policy = attr->sched_policy;
4063 
4064 	if (policy == SETPARAM_POLICY)
4065 		policy = p->policy;
4066 
4067 	p->policy = policy;
4068 
4069 	if (dl_policy(policy))
4070 		__setparam_dl(p, attr);
4071 	else if (fair_policy(policy))
4072 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4073 
4074 	/*
4075 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4076 	 * !rt_policy. Always setting this ensures that things like
4077 	 * getparam()/getattr() don't report silly values for !rt tasks.
4078 	 */
4079 	p->rt_priority = attr->sched_priority;
4080 	p->normal_prio = normal_prio(p);
4081 	set_load_weight(p, true);
4082 }
4083 
4084 /* Actually do priority change: must hold pi & rq lock. */
4085 static void __setscheduler(struct rq *rq, struct task_struct *p,
4086 			   const struct sched_attr *attr, bool keep_boost)
4087 {
4088 	__setscheduler_params(p, attr);
4089 
4090 	/*
4091 	 * Keep a potential priority boosting if called from
4092 	 * sched_setscheduler().
4093 	 */
4094 	p->prio = normal_prio(p);
4095 	if (keep_boost)
4096 		p->prio = rt_effective_prio(p, p->prio);
4097 
4098 	if (dl_prio(p->prio))
4099 		p->sched_class = &dl_sched_class;
4100 	else if (rt_prio(p->prio))
4101 		p->sched_class = &rt_sched_class;
4102 	else
4103 		p->sched_class = &fair_sched_class;
4104 }
4105 
4106 /*
4107  * Check the target process has a UID that matches the current process's:
4108  */
4109 static bool check_same_owner(struct task_struct *p)
4110 {
4111 	const struct cred *cred = current_cred(), *pcred;
4112 	bool match;
4113 
4114 	rcu_read_lock();
4115 	pcred = __task_cred(p);
4116 	match = (uid_eq(cred->euid, pcred->euid) ||
4117 		 uid_eq(cred->euid, pcred->uid));
4118 	rcu_read_unlock();
4119 	return match;
4120 }
4121 
4122 static int __sched_setscheduler(struct task_struct *p,
4123 				const struct sched_attr *attr,
4124 				bool user, bool pi)
4125 {
4126 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4127 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4128 	int retval, oldprio, oldpolicy = -1, queued, running;
4129 	int new_effective_prio, policy = attr->sched_policy;
4130 	const struct sched_class *prev_class;
4131 	struct rq_flags rf;
4132 	int reset_on_fork;
4133 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4134 	struct rq *rq;
4135 
4136 	/* The pi code expects interrupts enabled */
4137 	BUG_ON(pi && in_interrupt());
4138 recheck:
4139 	/* Double check policy once rq lock held: */
4140 	if (policy < 0) {
4141 		reset_on_fork = p->sched_reset_on_fork;
4142 		policy = oldpolicy = p->policy;
4143 	} else {
4144 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4145 
4146 		if (!valid_policy(policy))
4147 			return -EINVAL;
4148 	}
4149 
4150 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4151 		return -EINVAL;
4152 
4153 	/*
4154 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4155 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4156 	 * SCHED_BATCH and SCHED_IDLE is 0.
4157 	 */
4158 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4159 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4160 		return -EINVAL;
4161 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4162 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4163 		return -EINVAL;
4164 
4165 	/*
4166 	 * Allow unprivileged RT tasks to decrease priority:
4167 	 */
4168 	if (user && !capable(CAP_SYS_NICE)) {
4169 		if (fair_policy(policy)) {
4170 			if (attr->sched_nice < task_nice(p) &&
4171 			    !can_nice(p, attr->sched_nice))
4172 				return -EPERM;
4173 		}
4174 
4175 		if (rt_policy(policy)) {
4176 			unsigned long rlim_rtprio =
4177 					task_rlimit(p, RLIMIT_RTPRIO);
4178 
4179 			/* Can't set/change the rt policy: */
4180 			if (policy != p->policy && !rlim_rtprio)
4181 				return -EPERM;
4182 
4183 			/* Can't increase priority: */
4184 			if (attr->sched_priority > p->rt_priority &&
4185 			    attr->sched_priority > rlim_rtprio)
4186 				return -EPERM;
4187 		}
4188 
4189 		 /*
4190 		  * Can't set/change SCHED_DEADLINE policy at all for now
4191 		  * (safest behavior); in the future we would like to allow
4192 		  * unprivileged DL tasks to increase their relative deadline
4193 		  * or reduce their runtime (both ways reducing utilization)
4194 		  */
4195 		if (dl_policy(policy))
4196 			return -EPERM;
4197 
4198 		/*
4199 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4200 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4201 		 */
4202 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4203 			if (!can_nice(p, task_nice(p)))
4204 				return -EPERM;
4205 		}
4206 
4207 		/* Can't change other user's priorities: */
4208 		if (!check_same_owner(p))
4209 			return -EPERM;
4210 
4211 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4212 		if (p->sched_reset_on_fork && !reset_on_fork)
4213 			return -EPERM;
4214 	}
4215 
4216 	if (user) {
4217 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4218 			return -EINVAL;
4219 
4220 		retval = security_task_setscheduler(p);
4221 		if (retval)
4222 			return retval;
4223 	}
4224 
4225 	/*
4226 	 * Make sure no PI-waiters arrive (or leave) while we are
4227 	 * changing the priority of the task:
4228 	 *
4229 	 * To be able to change p->policy safely, the appropriate
4230 	 * runqueue lock must be held.
4231 	 */
4232 	rq = task_rq_lock(p, &rf);
4233 	update_rq_clock(rq);
4234 
4235 	/*
4236 	 * Changing the policy of the stop threads its a very bad idea:
4237 	 */
4238 	if (p == rq->stop) {
4239 		task_rq_unlock(rq, p, &rf);
4240 		return -EINVAL;
4241 	}
4242 
4243 	/*
4244 	 * If not changing anything there's no need to proceed further,
4245 	 * but store a possible modification of reset_on_fork.
4246 	 */
4247 	if (unlikely(policy == p->policy)) {
4248 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4249 			goto change;
4250 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4251 			goto change;
4252 		if (dl_policy(policy) && dl_param_changed(p, attr))
4253 			goto change;
4254 
4255 		p->sched_reset_on_fork = reset_on_fork;
4256 		task_rq_unlock(rq, p, &rf);
4257 		return 0;
4258 	}
4259 change:
4260 
4261 	if (user) {
4262 #ifdef CONFIG_RT_GROUP_SCHED
4263 		/*
4264 		 * Do not allow realtime tasks into groups that have no runtime
4265 		 * assigned.
4266 		 */
4267 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4268 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4269 				!task_group_is_autogroup(task_group(p))) {
4270 			task_rq_unlock(rq, p, &rf);
4271 			return -EPERM;
4272 		}
4273 #endif
4274 #ifdef CONFIG_SMP
4275 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4276 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4277 			cpumask_t *span = rq->rd->span;
4278 
4279 			/*
4280 			 * Don't allow tasks with an affinity mask smaller than
4281 			 * the entire root_domain to become SCHED_DEADLINE. We
4282 			 * will also fail if there's no bandwidth available.
4283 			 */
4284 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4285 			    rq->rd->dl_bw.bw == 0) {
4286 				task_rq_unlock(rq, p, &rf);
4287 				return -EPERM;
4288 			}
4289 		}
4290 #endif
4291 	}
4292 
4293 	/* Re-check policy now with rq lock held: */
4294 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4295 		policy = oldpolicy = -1;
4296 		task_rq_unlock(rq, p, &rf);
4297 		goto recheck;
4298 	}
4299 
4300 	/*
4301 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4302 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4303 	 * is available.
4304 	 */
4305 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4306 		task_rq_unlock(rq, p, &rf);
4307 		return -EBUSY;
4308 	}
4309 
4310 	p->sched_reset_on_fork = reset_on_fork;
4311 	oldprio = p->prio;
4312 
4313 	if (pi) {
4314 		/*
4315 		 * Take priority boosted tasks into account. If the new
4316 		 * effective priority is unchanged, we just store the new
4317 		 * normal parameters and do not touch the scheduler class and
4318 		 * the runqueue. This will be done when the task deboost
4319 		 * itself.
4320 		 */
4321 		new_effective_prio = rt_effective_prio(p, newprio);
4322 		if (new_effective_prio == oldprio)
4323 			queue_flags &= ~DEQUEUE_MOVE;
4324 	}
4325 
4326 	queued = task_on_rq_queued(p);
4327 	running = task_current(rq, p);
4328 	if (queued)
4329 		dequeue_task(rq, p, queue_flags);
4330 	if (running)
4331 		put_prev_task(rq, p);
4332 
4333 	prev_class = p->sched_class;
4334 	__setscheduler(rq, p, attr, pi);
4335 
4336 	if (queued) {
4337 		/*
4338 		 * We enqueue to tail when the priority of a task is
4339 		 * increased (user space view).
4340 		 */
4341 		if (oldprio < p->prio)
4342 			queue_flags |= ENQUEUE_HEAD;
4343 
4344 		enqueue_task(rq, p, queue_flags);
4345 	}
4346 	if (running)
4347 		set_curr_task(rq, p);
4348 
4349 	check_class_changed(rq, p, prev_class, oldprio);
4350 
4351 	/* Avoid rq from going away on us: */
4352 	preempt_disable();
4353 	task_rq_unlock(rq, p, &rf);
4354 
4355 	if (pi)
4356 		rt_mutex_adjust_pi(p);
4357 
4358 	/* Run balance callbacks after we've adjusted the PI chain: */
4359 	balance_callback(rq);
4360 	preempt_enable();
4361 
4362 	return 0;
4363 }
4364 
4365 static int _sched_setscheduler(struct task_struct *p, int policy,
4366 			       const struct sched_param *param, bool check)
4367 {
4368 	struct sched_attr attr = {
4369 		.sched_policy   = policy,
4370 		.sched_priority = param->sched_priority,
4371 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4372 	};
4373 
4374 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4375 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4376 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4377 		policy &= ~SCHED_RESET_ON_FORK;
4378 		attr.sched_policy = policy;
4379 	}
4380 
4381 	return __sched_setscheduler(p, &attr, check, true);
4382 }
4383 /**
4384  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4385  * @p: the task in question.
4386  * @policy: new policy.
4387  * @param: structure containing the new RT priority.
4388  *
4389  * Return: 0 on success. An error code otherwise.
4390  *
4391  * NOTE that the task may be already dead.
4392  */
4393 int sched_setscheduler(struct task_struct *p, int policy,
4394 		       const struct sched_param *param)
4395 {
4396 	return _sched_setscheduler(p, policy, param, true);
4397 }
4398 EXPORT_SYMBOL_GPL(sched_setscheduler);
4399 
4400 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4401 {
4402 	return __sched_setscheduler(p, attr, true, true);
4403 }
4404 EXPORT_SYMBOL_GPL(sched_setattr);
4405 
4406 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4407 {
4408 	return __sched_setscheduler(p, attr, false, true);
4409 }
4410 
4411 /**
4412  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4413  * @p: the task in question.
4414  * @policy: new policy.
4415  * @param: structure containing the new RT priority.
4416  *
4417  * Just like sched_setscheduler, only don't bother checking if the
4418  * current context has permission.  For example, this is needed in
4419  * stop_machine(): we create temporary high priority worker threads,
4420  * but our caller might not have that capability.
4421  *
4422  * Return: 0 on success. An error code otherwise.
4423  */
4424 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4425 			       const struct sched_param *param)
4426 {
4427 	return _sched_setscheduler(p, policy, param, false);
4428 }
4429 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4430 
4431 static int
4432 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4433 {
4434 	struct sched_param lparam;
4435 	struct task_struct *p;
4436 	int retval;
4437 
4438 	if (!param || pid < 0)
4439 		return -EINVAL;
4440 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4441 		return -EFAULT;
4442 
4443 	rcu_read_lock();
4444 	retval = -ESRCH;
4445 	p = find_process_by_pid(pid);
4446 	if (p != NULL)
4447 		retval = sched_setscheduler(p, policy, &lparam);
4448 	rcu_read_unlock();
4449 
4450 	return retval;
4451 }
4452 
4453 /*
4454  * Mimics kernel/events/core.c perf_copy_attr().
4455  */
4456 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4457 {
4458 	u32 size;
4459 	int ret;
4460 
4461 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4462 		return -EFAULT;
4463 
4464 	/* Zero the full structure, so that a short copy will be nice: */
4465 	memset(attr, 0, sizeof(*attr));
4466 
4467 	ret = get_user(size, &uattr->size);
4468 	if (ret)
4469 		return ret;
4470 
4471 	/* Bail out on silly large: */
4472 	if (size > PAGE_SIZE)
4473 		goto err_size;
4474 
4475 	/* ABI compatibility quirk: */
4476 	if (!size)
4477 		size = SCHED_ATTR_SIZE_VER0;
4478 
4479 	if (size < SCHED_ATTR_SIZE_VER0)
4480 		goto err_size;
4481 
4482 	/*
4483 	 * If we're handed a bigger struct than we know of,
4484 	 * ensure all the unknown bits are 0 - i.e. new
4485 	 * user-space does not rely on any kernel feature
4486 	 * extensions we dont know about yet.
4487 	 */
4488 	if (size > sizeof(*attr)) {
4489 		unsigned char __user *addr;
4490 		unsigned char __user *end;
4491 		unsigned char val;
4492 
4493 		addr = (void __user *)uattr + sizeof(*attr);
4494 		end  = (void __user *)uattr + size;
4495 
4496 		for (; addr < end; addr++) {
4497 			ret = get_user(val, addr);
4498 			if (ret)
4499 				return ret;
4500 			if (val)
4501 				goto err_size;
4502 		}
4503 		size = sizeof(*attr);
4504 	}
4505 
4506 	ret = copy_from_user(attr, uattr, size);
4507 	if (ret)
4508 		return -EFAULT;
4509 
4510 	/*
4511 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4512 	 * to be strict and return an error on out-of-bounds values?
4513 	 */
4514 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4515 
4516 	return 0;
4517 
4518 err_size:
4519 	put_user(sizeof(*attr), &uattr->size);
4520 	return -E2BIG;
4521 }
4522 
4523 /**
4524  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4525  * @pid: the pid in question.
4526  * @policy: new policy.
4527  * @param: structure containing the new RT priority.
4528  *
4529  * Return: 0 on success. An error code otherwise.
4530  */
4531 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4532 {
4533 	if (policy < 0)
4534 		return -EINVAL;
4535 
4536 	return do_sched_setscheduler(pid, policy, param);
4537 }
4538 
4539 /**
4540  * sys_sched_setparam - set/change the RT priority of a thread
4541  * @pid: the pid in question.
4542  * @param: structure containing the new RT priority.
4543  *
4544  * Return: 0 on success. An error code otherwise.
4545  */
4546 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4547 {
4548 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4549 }
4550 
4551 /**
4552  * sys_sched_setattr - same as above, but with extended sched_attr
4553  * @pid: the pid in question.
4554  * @uattr: structure containing the extended parameters.
4555  * @flags: for future extension.
4556  */
4557 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4558 			       unsigned int, flags)
4559 {
4560 	struct sched_attr attr;
4561 	struct task_struct *p;
4562 	int retval;
4563 
4564 	if (!uattr || pid < 0 || flags)
4565 		return -EINVAL;
4566 
4567 	retval = sched_copy_attr(uattr, &attr);
4568 	if (retval)
4569 		return retval;
4570 
4571 	if ((int)attr.sched_policy < 0)
4572 		return -EINVAL;
4573 
4574 	rcu_read_lock();
4575 	retval = -ESRCH;
4576 	p = find_process_by_pid(pid);
4577 	if (p != NULL)
4578 		retval = sched_setattr(p, &attr);
4579 	rcu_read_unlock();
4580 
4581 	return retval;
4582 }
4583 
4584 /**
4585  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4586  * @pid: the pid in question.
4587  *
4588  * Return: On success, the policy of the thread. Otherwise, a negative error
4589  * code.
4590  */
4591 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4592 {
4593 	struct task_struct *p;
4594 	int retval;
4595 
4596 	if (pid < 0)
4597 		return -EINVAL;
4598 
4599 	retval = -ESRCH;
4600 	rcu_read_lock();
4601 	p = find_process_by_pid(pid);
4602 	if (p) {
4603 		retval = security_task_getscheduler(p);
4604 		if (!retval)
4605 			retval = p->policy
4606 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4607 	}
4608 	rcu_read_unlock();
4609 	return retval;
4610 }
4611 
4612 /**
4613  * sys_sched_getparam - get the RT priority of a thread
4614  * @pid: the pid in question.
4615  * @param: structure containing the RT priority.
4616  *
4617  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4618  * code.
4619  */
4620 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4621 {
4622 	struct sched_param lp = { .sched_priority = 0 };
4623 	struct task_struct *p;
4624 	int retval;
4625 
4626 	if (!param || pid < 0)
4627 		return -EINVAL;
4628 
4629 	rcu_read_lock();
4630 	p = find_process_by_pid(pid);
4631 	retval = -ESRCH;
4632 	if (!p)
4633 		goto out_unlock;
4634 
4635 	retval = security_task_getscheduler(p);
4636 	if (retval)
4637 		goto out_unlock;
4638 
4639 	if (task_has_rt_policy(p))
4640 		lp.sched_priority = p->rt_priority;
4641 	rcu_read_unlock();
4642 
4643 	/*
4644 	 * This one might sleep, we cannot do it with a spinlock held ...
4645 	 */
4646 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4647 
4648 	return retval;
4649 
4650 out_unlock:
4651 	rcu_read_unlock();
4652 	return retval;
4653 }
4654 
4655 static int sched_read_attr(struct sched_attr __user *uattr,
4656 			   struct sched_attr *attr,
4657 			   unsigned int usize)
4658 {
4659 	int ret;
4660 
4661 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4662 		return -EFAULT;
4663 
4664 	/*
4665 	 * If we're handed a smaller struct than we know of,
4666 	 * ensure all the unknown bits are 0 - i.e. old
4667 	 * user-space does not get uncomplete information.
4668 	 */
4669 	if (usize < sizeof(*attr)) {
4670 		unsigned char *addr;
4671 		unsigned char *end;
4672 
4673 		addr = (void *)attr + usize;
4674 		end  = (void *)attr + sizeof(*attr);
4675 
4676 		for (; addr < end; addr++) {
4677 			if (*addr)
4678 				return -EFBIG;
4679 		}
4680 
4681 		attr->size = usize;
4682 	}
4683 
4684 	ret = copy_to_user(uattr, attr, attr->size);
4685 	if (ret)
4686 		return -EFAULT;
4687 
4688 	return 0;
4689 }
4690 
4691 /**
4692  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4693  * @pid: the pid in question.
4694  * @uattr: structure containing the extended parameters.
4695  * @size: sizeof(attr) for fwd/bwd comp.
4696  * @flags: for future extension.
4697  */
4698 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4699 		unsigned int, size, unsigned int, flags)
4700 {
4701 	struct sched_attr attr = {
4702 		.size = sizeof(struct sched_attr),
4703 	};
4704 	struct task_struct *p;
4705 	int retval;
4706 
4707 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4708 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4709 		return -EINVAL;
4710 
4711 	rcu_read_lock();
4712 	p = find_process_by_pid(pid);
4713 	retval = -ESRCH;
4714 	if (!p)
4715 		goto out_unlock;
4716 
4717 	retval = security_task_getscheduler(p);
4718 	if (retval)
4719 		goto out_unlock;
4720 
4721 	attr.sched_policy = p->policy;
4722 	if (p->sched_reset_on_fork)
4723 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4724 	if (task_has_dl_policy(p))
4725 		__getparam_dl(p, &attr);
4726 	else if (task_has_rt_policy(p))
4727 		attr.sched_priority = p->rt_priority;
4728 	else
4729 		attr.sched_nice = task_nice(p);
4730 
4731 	rcu_read_unlock();
4732 
4733 	retval = sched_read_attr(uattr, &attr, size);
4734 	return retval;
4735 
4736 out_unlock:
4737 	rcu_read_unlock();
4738 	return retval;
4739 }
4740 
4741 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4742 {
4743 	cpumask_var_t cpus_allowed, new_mask;
4744 	struct task_struct *p;
4745 	int retval;
4746 
4747 	rcu_read_lock();
4748 
4749 	p = find_process_by_pid(pid);
4750 	if (!p) {
4751 		rcu_read_unlock();
4752 		return -ESRCH;
4753 	}
4754 
4755 	/* Prevent p going away */
4756 	get_task_struct(p);
4757 	rcu_read_unlock();
4758 
4759 	if (p->flags & PF_NO_SETAFFINITY) {
4760 		retval = -EINVAL;
4761 		goto out_put_task;
4762 	}
4763 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4764 		retval = -ENOMEM;
4765 		goto out_put_task;
4766 	}
4767 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4768 		retval = -ENOMEM;
4769 		goto out_free_cpus_allowed;
4770 	}
4771 	retval = -EPERM;
4772 	if (!check_same_owner(p)) {
4773 		rcu_read_lock();
4774 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4775 			rcu_read_unlock();
4776 			goto out_free_new_mask;
4777 		}
4778 		rcu_read_unlock();
4779 	}
4780 
4781 	retval = security_task_setscheduler(p);
4782 	if (retval)
4783 		goto out_free_new_mask;
4784 
4785 
4786 	cpuset_cpus_allowed(p, cpus_allowed);
4787 	cpumask_and(new_mask, in_mask, cpus_allowed);
4788 
4789 	/*
4790 	 * Since bandwidth control happens on root_domain basis,
4791 	 * if admission test is enabled, we only admit -deadline
4792 	 * tasks allowed to run on all the CPUs in the task's
4793 	 * root_domain.
4794 	 */
4795 #ifdef CONFIG_SMP
4796 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4797 		rcu_read_lock();
4798 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4799 			retval = -EBUSY;
4800 			rcu_read_unlock();
4801 			goto out_free_new_mask;
4802 		}
4803 		rcu_read_unlock();
4804 	}
4805 #endif
4806 again:
4807 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4808 
4809 	if (!retval) {
4810 		cpuset_cpus_allowed(p, cpus_allowed);
4811 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4812 			/*
4813 			 * We must have raced with a concurrent cpuset
4814 			 * update. Just reset the cpus_allowed to the
4815 			 * cpuset's cpus_allowed
4816 			 */
4817 			cpumask_copy(new_mask, cpus_allowed);
4818 			goto again;
4819 		}
4820 	}
4821 out_free_new_mask:
4822 	free_cpumask_var(new_mask);
4823 out_free_cpus_allowed:
4824 	free_cpumask_var(cpus_allowed);
4825 out_put_task:
4826 	put_task_struct(p);
4827 	return retval;
4828 }
4829 
4830 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4831 			     struct cpumask *new_mask)
4832 {
4833 	if (len < cpumask_size())
4834 		cpumask_clear(new_mask);
4835 	else if (len > cpumask_size())
4836 		len = cpumask_size();
4837 
4838 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4839 }
4840 
4841 /**
4842  * sys_sched_setaffinity - set the CPU affinity of a process
4843  * @pid: pid of the process
4844  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4845  * @user_mask_ptr: user-space pointer to the new CPU mask
4846  *
4847  * Return: 0 on success. An error code otherwise.
4848  */
4849 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4850 		unsigned long __user *, user_mask_ptr)
4851 {
4852 	cpumask_var_t new_mask;
4853 	int retval;
4854 
4855 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4856 		return -ENOMEM;
4857 
4858 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4859 	if (retval == 0)
4860 		retval = sched_setaffinity(pid, new_mask);
4861 	free_cpumask_var(new_mask);
4862 	return retval;
4863 }
4864 
4865 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4866 {
4867 	struct task_struct *p;
4868 	unsigned long flags;
4869 	int retval;
4870 
4871 	rcu_read_lock();
4872 
4873 	retval = -ESRCH;
4874 	p = find_process_by_pid(pid);
4875 	if (!p)
4876 		goto out_unlock;
4877 
4878 	retval = security_task_getscheduler(p);
4879 	if (retval)
4880 		goto out_unlock;
4881 
4882 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4883 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4884 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4885 
4886 out_unlock:
4887 	rcu_read_unlock();
4888 
4889 	return retval;
4890 }
4891 
4892 /**
4893  * sys_sched_getaffinity - get the CPU affinity of a process
4894  * @pid: pid of the process
4895  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4896  * @user_mask_ptr: user-space pointer to hold the current CPU mask
4897  *
4898  * Return: size of CPU mask copied to user_mask_ptr on success. An
4899  * error code otherwise.
4900  */
4901 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4902 		unsigned long __user *, user_mask_ptr)
4903 {
4904 	int ret;
4905 	cpumask_var_t mask;
4906 
4907 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4908 		return -EINVAL;
4909 	if (len & (sizeof(unsigned long)-1))
4910 		return -EINVAL;
4911 
4912 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4913 		return -ENOMEM;
4914 
4915 	ret = sched_getaffinity(pid, mask);
4916 	if (ret == 0) {
4917 		unsigned int retlen = min(len, cpumask_size());
4918 
4919 		if (copy_to_user(user_mask_ptr, mask, retlen))
4920 			ret = -EFAULT;
4921 		else
4922 			ret = retlen;
4923 	}
4924 	free_cpumask_var(mask);
4925 
4926 	return ret;
4927 }
4928 
4929 /**
4930  * sys_sched_yield - yield the current processor to other threads.
4931  *
4932  * This function yields the current CPU to other tasks. If there are no
4933  * other threads running on this CPU then this function will return.
4934  *
4935  * Return: 0.
4936  */
4937 static void do_sched_yield(void)
4938 {
4939 	struct rq_flags rf;
4940 	struct rq *rq;
4941 
4942 	rq = this_rq_lock_irq(&rf);
4943 
4944 	schedstat_inc(rq->yld_count);
4945 	current->sched_class->yield_task(rq);
4946 
4947 	/*
4948 	 * Since we are going to call schedule() anyway, there's
4949 	 * no need to preempt or enable interrupts:
4950 	 */
4951 	preempt_disable();
4952 	rq_unlock(rq, &rf);
4953 	sched_preempt_enable_no_resched();
4954 
4955 	schedule();
4956 }
4957 
4958 SYSCALL_DEFINE0(sched_yield)
4959 {
4960 	do_sched_yield();
4961 	return 0;
4962 }
4963 
4964 #ifndef CONFIG_PREEMPT
4965 int __sched _cond_resched(void)
4966 {
4967 	if (should_resched(0)) {
4968 		preempt_schedule_common();
4969 		return 1;
4970 	}
4971 	rcu_all_qs();
4972 	return 0;
4973 }
4974 EXPORT_SYMBOL(_cond_resched);
4975 #endif
4976 
4977 /*
4978  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4979  * call schedule, and on return reacquire the lock.
4980  *
4981  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4982  * operations here to prevent schedule() from being called twice (once via
4983  * spin_unlock(), once by hand).
4984  */
4985 int __cond_resched_lock(spinlock_t *lock)
4986 {
4987 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4988 	int ret = 0;
4989 
4990 	lockdep_assert_held(lock);
4991 
4992 	if (spin_needbreak(lock) || resched) {
4993 		spin_unlock(lock);
4994 		if (resched)
4995 			preempt_schedule_common();
4996 		else
4997 			cpu_relax();
4998 		ret = 1;
4999 		spin_lock(lock);
5000 	}
5001 	return ret;
5002 }
5003 EXPORT_SYMBOL(__cond_resched_lock);
5004 
5005 /**
5006  * yield - yield the current processor to other threads.
5007  *
5008  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5009  *
5010  * The scheduler is at all times free to pick the calling task as the most
5011  * eligible task to run, if removing the yield() call from your code breaks
5012  * it, its already broken.
5013  *
5014  * Typical broken usage is:
5015  *
5016  * while (!event)
5017  *	yield();
5018  *
5019  * where one assumes that yield() will let 'the other' process run that will
5020  * make event true. If the current task is a SCHED_FIFO task that will never
5021  * happen. Never use yield() as a progress guarantee!!
5022  *
5023  * If you want to use yield() to wait for something, use wait_event().
5024  * If you want to use yield() to be 'nice' for others, use cond_resched().
5025  * If you still want to use yield(), do not!
5026  */
5027 void __sched yield(void)
5028 {
5029 	set_current_state(TASK_RUNNING);
5030 	do_sched_yield();
5031 }
5032 EXPORT_SYMBOL(yield);
5033 
5034 /**
5035  * yield_to - yield the current processor to another thread in
5036  * your thread group, or accelerate that thread toward the
5037  * processor it's on.
5038  * @p: target task
5039  * @preempt: whether task preemption is allowed or not
5040  *
5041  * It's the caller's job to ensure that the target task struct
5042  * can't go away on us before we can do any checks.
5043  *
5044  * Return:
5045  *	true (>0) if we indeed boosted the target task.
5046  *	false (0) if we failed to boost the target.
5047  *	-ESRCH if there's no task to yield to.
5048  */
5049 int __sched yield_to(struct task_struct *p, bool preempt)
5050 {
5051 	struct task_struct *curr = current;
5052 	struct rq *rq, *p_rq;
5053 	unsigned long flags;
5054 	int yielded = 0;
5055 
5056 	local_irq_save(flags);
5057 	rq = this_rq();
5058 
5059 again:
5060 	p_rq = task_rq(p);
5061 	/*
5062 	 * If we're the only runnable task on the rq and target rq also
5063 	 * has only one task, there's absolutely no point in yielding.
5064 	 */
5065 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5066 		yielded = -ESRCH;
5067 		goto out_irq;
5068 	}
5069 
5070 	double_rq_lock(rq, p_rq);
5071 	if (task_rq(p) != p_rq) {
5072 		double_rq_unlock(rq, p_rq);
5073 		goto again;
5074 	}
5075 
5076 	if (!curr->sched_class->yield_to_task)
5077 		goto out_unlock;
5078 
5079 	if (curr->sched_class != p->sched_class)
5080 		goto out_unlock;
5081 
5082 	if (task_running(p_rq, p) || p->state)
5083 		goto out_unlock;
5084 
5085 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5086 	if (yielded) {
5087 		schedstat_inc(rq->yld_count);
5088 		/*
5089 		 * Make p's CPU reschedule; pick_next_entity takes care of
5090 		 * fairness.
5091 		 */
5092 		if (preempt && rq != p_rq)
5093 			resched_curr(p_rq);
5094 	}
5095 
5096 out_unlock:
5097 	double_rq_unlock(rq, p_rq);
5098 out_irq:
5099 	local_irq_restore(flags);
5100 
5101 	if (yielded > 0)
5102 		schedule();
5103 
5104 	return yielded;
5105 }
5106 EXPORT_SYMBOL_GPL(yield_to);
5107 
5108 int io_schedule_prepare(void)
5109 {
5110 	int old_iowait = current->in_iowait;
5111 
5112 	current->in_iowait = 1;
5113 	blk_schedule_flush_plug(current);
5114 
5115 	return old_iowait;
5116 }
5117 
5118 void io_schedule_finish(int token)
5119 {
5120 	current->in_iowait = token;
5121 }
5122 
5123 /*
5124  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5125  * that process accounting knows that this is a task in IO wait state.
5126  */
5127 long __sched io_schedule_timeout(long timeout)
5128 {
5129 	int token;
5130 	long ret;
5131 
5132 	token = io_schedule_prepare();
5133 	ret = schedule_timeout(timeout);
5134 	io_schedule_finish(token);
5135 
5136 	return ret;
5137 }
5138 EXPORT_SYMBOL(io_schedule_timeout);
5139 
5140 void io_schedule(void)
5141 {
5142 	int token;
5143 
5144 	token = io_schedule_prepare();
5145 	schedule();
5146 	io_schedule_finish(token);
5147 }
5148 EXPORT_SYMBOL(io_schedule);
5149 
5150 /**
5151  * sys_sched_get_priority_max - return maximum RT priority.
5152  * @policy: scheduling class.
5153  *
5154  * Return: On success, this syscall returns the maximum
5155  * rt_priority that can be used by a given scheduling class.
5156  * On failure, a negative error code is returned.
5157  */
5158 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5159 {
5160 	int ret = -EINVAL;
5161 
5162 	switch (policy) {
5163 	case SCHED_FIFO:
5164 	case SCHED_RR:
5165 		ret = MAX_USER_RT_PRIO-1;
5166 		break;
5167 	case SCHED_DEADLINE:
5168 	case SCHED_NORMAL:
5169 	case SCHED_BATCH:
5170 	case SCHED_IDLE:
5171 		ret = 0;
5172 		break;
5173 	}
5174 	return ret;
5175 }
5176 
5177 /**
5178  * sys_sched_get_priority_min - return minimum RT priority.
5179  * @policy: scheduling class.
5180  *
5181  * Return: On success, this syscall returns the minimum
5182  * rt_priority that can be used by a given scheduling class.
5183  * On failure, a negative error code is returned.
5184  */
5185 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5186 {
5187 	int ret = -EINVAL;
5188 
5189 	switch (policy) {
5190 	case SCHED_FIFO:
5191 	case SCHED_RR:
5192 		ret = 1;
5193 		break;
5194 	case SCHED_DEADLINE:
5195 	case SCHED_NORMAL:
5196 	case SCHED_BATCH:
5197 	case SCHED_IDLE:
5198 		ret = 0;
5199 	}
5200 	return ret;
5201 }
5202 
5203 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5204 {
5205 	struct task_struct *p;
5206 	unsigned int time_slice;
5207 	struct rq_flags rf;
5208 	struct rq *rq;
5209 	int retval;
5210 
5211 	if (pid < 0)
5212 		return -EINVAL;
5213 
5214 	retval = -ESRCH;
5215 	rcu_read_lock();
5216 	p = find_process_by_pid(pid);
5217 	if (!p)
5218 		goto out_unlock;
5219 
5220 	retval = security_task_getscheduler(p);
5221 	if (retval)
5222 		goto out_unlock;
5223 
5224 	rq = task_rq_lock(p, &rf);
5225 	time_slice = 0;
5226 	if (p->sched_class->get_rr_interval)
5227 		time_slice = p->sched_class->get_rr_interval(rq, p);
5228 	task_rq_unlock(rq, p, &rf);
5229 
5230 	rcu_read_unlock();
5231 	jiffies_to_timespec64(time_slice, t);
5232 	return 0;
5233 
5234 out_unlock:
5235 	rcu_read_unlock();
5236 	return retval;
5237 }
5238 
5239 /**
5240  * sys_sched_rr_get_interval - return the default timeslice of a process.
5241  * @pid: pid of the process.
5242  * @interval: userspace pointer to the timeslice value.
5243  *
5244  * this syscall writes the default timeslice value of a given process
5245  * into the user-space timespec buffer. A value of '0' means infinity.
5246  *
5247  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5248  * an error code.
5249  */
5250 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5251 		struct __kernel_timespec __user *, interval)
5252 {
5253 	struct timespec64 t;
5254 	int retval = sched_rr_get_interval(pid, &t);
5255 
5256 	if (retval == 0)
5257 		retval = put_timespec64(&t, interval);
5258 
5259 	return retval;
5260 }
5261 
5262 #ifdef CONFIG_COMPAT_32BIT_TIME
5263 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5264 		       compat_pid_t, pid,
5265 		       struct old_timespec32 __user *, interval)
5266 {
5267 	struct timespec64 t;
5268 	int retval = sched_rr_get_interval(pid, &t);
5269 
5270 	if (retval == 0)
5271 		retval = put_old_timespec32(&t, interval);
5272 	return retval;
5273 }
5274 #endif
5275 
5276 void sched_show_task(struct task_struct *p)
5277 {
5278 	unsigned long free = 0;
5279 	int ppid;
5280 
5281 	if (!try_get_task_stack(p))
5282 		return;
5283 
5284 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5285 
5286 	if (p->state == TASK_RUNNING)
5287 		printk(KERN_CONT "  running task    ");
5288 #ifdef CONFIG_DEBUG_STACK_USAGE
5289 	free = stack_not_used(p);
5290 #endif
5291 	ppid = 0;
5292 	rcu_read_lock();
5293 	if (pid_alive(p))
5294 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5295 	rcu_read_unlock();
5296 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5297 		task_pid_nr(p), ppid,
5298 		(unsigned long)task_thread_info(p)->flags);
5299 
5300 	print_worker_info(KERN_INFO, p);
5301 	show_stack(p, NULL);
5302 	put_task_stack(p);
5303 }
5304 EXPORT_SYMBOL_GPL(sched_show_task);
5305 
5306 static inline bool
5307 state_filter_match(unsigned long state_filter, struct task_struct *p)
5308 {
5309 	/* no filter, everything matches */
5310 	if (!state_filter)
5311 		return true;
5312 
5313 	/* filter, but doesn't match */
5314 	if (!(p->state & state_filter))
5315 		return false;
5316 
5317 	/*
5318 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5319 	 * TASK_KILLABLE).
5320 	 */
5321 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5322 		return false;
5323 
5324 	return true;
5325 }
5326 
5327 
5328 void show_state_filter(unsigned long state_filter)
5329 {
5330 	struct task_struct *g, *p;
5331 
5332 #if BITS_PER_LONG == 32
5333 	printk(KERN_INFO
5334 		"  task                PC stack   pid father\n");
5335 #else
5336 	printk(KERN_INFO
5337 		"  task                        PC stack   pid father\n");
5338 #endif
5339 	rcu_read_lock();
5340 	for_each_process_thread(g, p) {
5341 		/*
5342 		 * reset the NMI-timeout, listing all files on a slow
5343 		 * console might take a lot of time:
5344 		 * Also, reset softlockup watchdogs on all CPUs, because
5345 		 * another CPU might be blocked waiting for us to process
5346 		 * an IPI.
5347 		 */
5348 		touch_nmi_watchdog();
5349 		touch_all_softlockup_watchdogs();
5350 		if (state_filter_match(state_filter, p))
5351 			sched_show_task(p);
5352 	}
5353 
5354 #ifdef CONFIG_SCHED_DEBUG
5355 	if (!state_filter)
5356 		sysrq_sched_debug_show();
5357 #endif
5358 	rcu_read_unlock();
5359 	/*
5360 	 * Only show locks if all tasks are dumped:
5361 	 */
5362 	if (!state_filter)
5363 		debug_show_all_locks();
5364 }
5365 
5366 /**
5367  * init_idle - set up an idle thread for a given CPU
5368  * @idle: task in question
5369  * @cpu: CPU the idle task belongs to
5370  *
5371  * NOTE: this function does not set the idle thread's NEED_RESCHED
5372  * flag, to make booting more robust.
5373  */
5374 void init_idle(struct task_struct *idle, int cpu)
5375 {
5376 	struct rq *rq = cpu_rq(cpu);
5377 	unsigned long flags;
5378 
5379 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5380 	raw_spin_lock(&rq->lock);
5381 
5382 	__sched_fork(0, idle);
5383 	idle->state = TASK_RUNNING;
5384 	idle->se.exec_start = sched_clock();
5385 	idle->flags |= PF_IDLE;
5386 
5387 	kasan_unpoison_task_stack(idle);
5388 
5389 #ifdef CONFIG_SMP
5390 	/*
5391 	 * Its possible that init_idle() gets called multiple times on a task,
5392 	 * in that case do_set_cpus_allowed() will not do the right thing.
5393 	 *
5394 	 * And since this is boot we can forgo the serialization.
5395 	 */
5396 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5397 #endif
5398 	/*
5399 	 * We're having a chicken and egg problem, even though we are
5400 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5401 	 * lockdep check in task_group() will fail.
5402 	 *
5403 	 * Similar case to sched_fork(). / Alternatively we could
5404 	 * use task_rq_lock() here and obtain the other rq->lock.
5405 	 *
5406 	 * Silence PROVE_RCU
5407 	 */
5408 	rcu_read_lock();
5409 	__set_task_cpu(idle, cpu);
5410 	rcu_read_unlock();
5411 
5412 	rq->curr = rq->idle = idle;
5413 	idle->on_rq = TASK_ON_RQ_QUEUED;
5414 #ifdef CONFIG_SMP
5415 	idle->on_cpu = 1;
5416 #endif
5417 	raw_spin_unlock(&rq->lock);
5418 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5419 
5420 	/* Set the preempt count _outside_ the spinlocks! */
5421 	init_idle_preempt_count(idle, cpu);
5422 
5423 	/*
5424 	 * The idle tasks have their own, simple scheduling class:
5425 	 */
5426 	idle->sched_class = &idle_sched_class;
5427 	ftrace_graph_init_idle_task(idle, cpu);
5428 	vtime_init_idle(idle, cpu);
5429 #ifdef CONFIG_SMP
5430 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5431 #endif
5432 }
5433 
5434 #ifdef CONFIG_SMP
5435 
5436 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5437 			      const struct cpumask *trial)
5438 {
5439 	int ret = 1;
5440 
5441 	if (!cpumask_weight(cur))
5442 		return ret;
5443 
5444 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5445 
5446 	return ret;
5447 }
5448 
5449 int task_can_attach(struct task_struct *p,
5450 		    const struct cpumask *cs_cpus_allowed)
5451 {
5452 	int ret = 0;
5453 
5454 	/*
5455 	 * Kthreads which disallow setaffinity shouldn't be moved
5456 	 * to a new cpuset; we don't want to change their CPU
5457 	 * affinity and isolating such threads by their set of
5458 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5459 	 * applicable for such threads.  This prevents checking for
5460 	 * success of set_cpus_allowed_ptr() on all attached tasks
5461 	 * before cpus_allowed may be changed.
5462 	 */
5463 	if (p->flags & PF_NO_SETAFFINITY) {
5464 		ret = -EINVAL;
5465 		goto out;
5466 	}
5467 
5468 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5469 					      cs_cpus_allowed))
5470 		ret = dl_task_can_attach(p, cs_cpus_allowed);
5471 
5472 out:
5473 	return ret;
5474 }
5475 
5476 bool sched_smp_initialized __read_mostly;
5477 
5478 #ifdef CONFIG_NUMA_BALANCING
5479 /* Migrate current task p to target_cpu */
5480 int migrate_task_to(struct task_struct *p, int target_cpu)
5481 {
5482 	struct migration_arg arg = { p, target_cpu };
5483 	int curr_cpu = task_cpu(p);
5484 
5485 	if (curr_cpu == target_cpu)
5486 		return 0;
5487 
5488 	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5489 		return -EINVAL;
5490 
5491 	/* TODO: This is not properly updating schedstats */
5492 
5493 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5494 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5495 }
5496 
5497 /*
5498  * Requeue a task on a given node and accurately track the number of NUMA
5499  * tasks on the runqueues
5500  */
5501 void sched_setnuma(struct task_struct *p, int nid)
5502 {
5503 	bool queued, running;
5504 	struct rq_flags rf;
5505 	struct rq *rq;
5506 
5507 	rq = task_rq_lock(p, &rf);
5508 	queued = task_on_rq_queued(p);
5509 	running = task_current(rq, p);
5510 
5511 	if (queued)
5512 		dequeue_task(rq, p, DEQUEUE_SAVE);
5513 	if (running)
5514 		put_prev_task(rq, p);
5515 
5516 	p->numa_preferred_nid = nid;
5517 
5518 	if (queued)
5519 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5520 	if (running)
5521 		set_curr_task(rq, p);
5522 	task_rq_unlock(rq, p, &rf);
5523 }
5524 #endif /* CONFIG_NUMA_BALANCING */
5525 
5526 #ifdef CONFIG_HOTPLUG_CPU
5527 /*
5528  * Ensure that the idle task is using init_mm right before its CPU goes
5529  * offline.
5530  */
5531 void idle_task_exit(void)
5532 {
5533 	struct mm_struct *mm = current->active_mm;
5534 
5535 	BUG_ON(cpu_online(smp_processor_id()));
5536 
5537 	if (mm != &init_mm) {
5538 		switch_mm(mm, &init_mm, current);
5539 		current->active_mm = &init_mm;
5540 		finish_arch_post_lock_switch();
5541 	}
5542 	mmdrop(mm);
5543 }
5544 
5545 /*
5546  * Since this CPU is going 'away' for a while, fold any nr_active delta
5547  * we might have. Assumes we're called after migrate_tasks() so that the
5548  * nr_active count is stable. We need to take the teardown thread which
5549  * is calling this into account, so we hand in adjust = 1 to the load
5550  * calculation.
5551  *
5552  * Also see the comment "Global load-average calculations".
5553  */
5554 static void calc_load_migrate(struct rq *rq)
5555 {
5556 	long delta = calc_load_fold_active(rq, 1);
5557 	if (delta)
5558 		atomic_long_add(delta, &calc_load_tasks);
5559 }
5560 
5561 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5562 {
5563 }
5564 
5565 static const struct sched_class fake_sched_class = {
5566 	.put_prev_task = put_prev_task_fake,
5567 };
5568 
5569 static struct task_struct fake_task = {
5570 	/*
5571 	 * Avoid pull_{rt,dl}_task()
5572 	 */
5573 	.prio = MAX_PRIO + 1,
5574 	.sched_class = &fake_sched_class,
5575 };
5576 
5577 /*
5578  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5579  * try_to_wake_up()->select_task_rq().
5580  *
5581  * Called with rq->lock held even though we'er in stop_machine() and
5582  * there's no concurrency possible, we hold the required locks anyway
5583  * because of lock validation efforts.
5584  */
5585 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5586 {
5587 	struct rq *rq = dead_rq;
5588 	struct task_struct *next, *stop = rq->stop;
5589 	struct rq_flags orf = *rf;
5590 	int dest_cpu;
5591 
5592 	/*
5593 	 * Fudge the rq selection such that the below task selection loop
5594 	 * doesn't get stuck on the currently eligible stop task.
5595 	 *
5596 	 * We're currently inside stop_machine() and the rq is either stuck
5597 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5598 	 * either way we should never end up calling schedule() until we're
5599 	 * done here.
5600 	 */
5601 	rq->stop = NULL;
5602 
5603 	/*
5604 	 * put_prev_task() and pick_next_task() sched
5605 	 * class method both need to have an up-to-date
5606 	 * value of rq->clock[_task]
5607 	 */
5608 	update_rq_clock(rq);
5609 
5610 	for (;;) {
5611 		/*
5612 		 * There's this thread running, bail when that's the only
5613 		 * remaining thread:
5614 		 */
5615 		if (rq->nr_running == 1)
5616 			break;
5617 
5618 		/*
5619 		 * pick_next_task() assumes pinned rq->lock:
5620 		 */
5621 		next = pick_next_task(rq, &fake_task, rf);
5622 		BUG_ON(!next);
5623 		put_prev_task(rq, next);
5624 
5625 		/*
5626 		 * Rules for changing task_struct::cpus_allowed are holding
5627 		 * both pi_lock and rq->lock, such that holding either
5628 		 * stabilizes the mask.
5629 		 *
5630 		 * Drop rq->lock is not quite as disastrous as it usually is
5631 		 * because !cpu_active at this point, which means load-balance
5632 		 * will not interfere. Also, stop-machine.
5633 		 */
5634 		rq_unlock(rq, rf);
5635 		raw_spin_lock(&next->pi_lock);
5636 		rq_relock(rq, rf);
5637 
5638 		/*
5639 		 * Since we're inside stop-machine, _nothing_ should have
5640 		 * changed the task, WARN if weird stuff happened, because in
5641 		 * that case the above rq->lock drop is a fail too.
5642 		 */
5643 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5644 			raw_spin_unlock(&next->pi_lock);
5645 			continue;
5646 		}
5647 
5648 		/* Find suitable destination for @next, with force if needed. */
5649 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5650 		rq = __migrate_task(rq, rf, next, dest_cpu);
5651 		if (rq != dead_rq) {
5652 			rq_unlock(rq, rf);
5653 			rq = dead_rq;
5654 			*rf = orf;
5655 			rq_relock(rq, rf);
5656 		}
5657 		raw_spin_unlock(&next->pi_lock);
5658 	}
5659 
5660 	rq->stop = stop;
5661 }
5662 #endif /* CONFIG_HOTPLUG_CPU */
5663 
5664 void set_rq_online(struct rq *rq)
5665 {
5666 	if (!rq->online) {
5667 		const struct sched_class *class;
5668 
5669 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5670 		rq->online = 1;
5671 
5672 		for_each_class(class) {
5673 			if (class->rq_online)
5674 				class->rq_online(rq);
5675 		}
5676 	}
5677 }
5678 
5679 void set_rq_offline(struct rq *rq)
5680 {
5681 	if (rq->online) {
5682 		const struct sched_class *class;
5683 
5684 		for_each_class(class) {
5685 			if (class->rq_offline)
5686 				class->rq_offline(rq);
5687 		}
5688 
5689 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5690 		rq->online = 0;
5691 	}
5692 }
5693 
5694 /*
5695  * used to mark begin/end of suspend/resume:
5696  */
5697 static int num_cpus_frozen;
5698 
5699 /*
5700  * Update cpusets according to cpu_active mask.  If cpusets are
5701  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5702  * around partition_sched_domains().
5703  *
5704  * If we come here as part of a suspend/resume, don't touch cpusets because we
5705  * want to restore it back to its original state upon resume anyway.
5706  */
5707 static void cpuset_cpu_active(void)
5708 {
5709 	if (cpuhp_tasks_frozen) {
5710 		/*
5711 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
5712 		 * resume sequence. As long as this is not the last online
5713 		 * operation in the resume sequence, just build a single sched
5714 		 * domain, ignoring cpusets.
5715 		 */
5716 		partition_sched_domains(1, NULL, NULL);
5717 		if (--num_cpus_frozen)
5718 			return;
5719 		/*
5720 		 * This is the last CPU online operation. So fall through and
5721 		 * restore the original sched domains by considering the
5722 		 * cpuset configurations.
5723 		 */
5724 		cpuset_force_rebuild();
5725 	}
5726 	cpuset_update_active_cpus();
5727 }
5728 
5729 static int cpuset_cpu_inactive(unsigned int cpu)
5730 {
5731 	if (!cpuhp_tasks_frozen) {
5732 		if (dl_cpu_busy(cpu))
5733 			return -EBUSY;
5734 		cpuset_update_active_cpus();
5735 	} else {
5736 		num_cpus_frozen++;
5737 		partition_sched_domains(1, NULL, NULL);
5738 	}
5739 	return 0;
5740 }
5741 
5742 int sched_cpu_activate(unsigned int cpu)
5743 {
5744 	struct rq *rq = cpu_rq(cpu);
5745 	struct rq_flags rf;
5746 
5747 #ifdef CONFIG_SCHED_SMT
5748 	/*
5749 	 * The sched_smt_present static key needs to be evaluated on every
5750 	 * hotplug event because at boot time SMT might be disabled when
5751 	 * the number of booted CPUs is limited.
5752 	 *
5753 	 * If then later a sibling gets hotplugged, then the key would stay
5754 	 * off and SMT scheduling would never be functional.
5755 	 */
5756 	if (cpumask_weight(cpu_smt_mask(cpu)) > 1)
5757 		static_branch_enable_cpuslocked(&sched_smt_present);
5758 #endif
5759 	set_cpu_active(cpu, true);
5760 
5761 	if (sched_smp_initialized) {
5762 		sched_domains_numa_masks_set(cpu);
5763 		cpuset_cpu_active();
5764 	}
5765 
5766 	/*
5767 	 * Put the rq online, if not already. This happens:
5768 	 *
5769 	 * 1) In the early boot process, because we build the real domains
5770 	 *    after all CPUs have been brought up.
5771 	 *
5772 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5773 	 *    domains.
5774 	 */
5775 	rq_lock_irqsave(rq, &rf);
5776 	if (rq->rd) {
5777 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5778 		set_rq_online(rq);
5779 	}
5780 	rq_unlock_irqrestore(rq, &rf);
5781 
5782 	update_max_interval();
5783 
5784 	return 0;
5785 }
5786 
5787 int sched_cpu_deactivate(unsigned int cpu)
5788 {
5789 	int ret;
5790 
5791 	set_cpu_active(cpu, false);
5792 	/*
5793 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5794 	 * users of this state to go away such that all new such users will
5795 	 * observe it.
5796 	 *
5797 	 * Do sync before park smpboot threads to take care the rcu boost case.
5798 	 */
5799 	synchronize_rcu_mult(call_rcu, call_rcu_sched);
5800 
5801 	if (!sched_smp_initialized)
5802 		return 0;
5803 
5804 	ret = cpuset_cpu_inactive(cpu);
5805 	if (ret) {
5806 		set_cpu_active(cpu, true);
5807 		return ret;
5808 	}
5809 	sched_domains_numa_masks_clear(cpu);
5810 	return 0;
5811 }
5812 
5813 static void sched_rq_cpu_starting(unsigned int cpu)
5814 {
5815 	struct rq *rq = cpu_rq(cpu);
5816 
5817 	rq->calc_load_update = calc_load_update;
5818 	update_max_interval();
5819 }
5820 
5821 int sched_cpu_starting(unsigned int cpu)
5822 {
5823 	sched_rq_cpu_starting(cpu);
5824 	sched_tick_start(cpu);
5825 	return 0;
5826 }
5827 
5828 #ifdef CONFIG_HOTPLUG_CPU
5829 int sched_cpu_dying(unsigned int cpu)
5830 {
5831 	struct rq *rq = cpu_rq(cpu);
5832 	struct rq_flags rf;
5833 
5834 	/* Handle pending wakeups and then migrate everything off */
5835 	sched_ttwu_pending();
5836 	sched_tick_stop(cpu);
5837 
5838 	rq_lock_irqsave(rq, &rf);
5839 	if (rq->rd) {
5840 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5841 		set_rq_offline(rq);
5842 	}
5843 	migrate_tasks(rq, &rf);
5844 	BUG_ON(rq->nr_running != 1);
5845 	rq_unlock_irqrestore(rq, &rf);
5846 
5847 	calc_load_migrate(rq);
5848 	update_max_interval();
5849 	nohz_balance_exit_idle(rq);
5850 	hrtick_clear(rq);
5851 	return 0;
5852 }
5853 #endif
5854 
5855 void __init sched_init_smp(void)
5856 {
5857 	sched_init_numa();
5858 
5859 	/*
5860 	 * There's no userspace yet to cause hotplug operations; hence all the
5861 	 * CPU masks are stable and all blatant races in the below code cannot
5862 	 * happen.
5863 	 */
5864 	mutex_lock(&sched_domains_mutex);
5865 	sched_init_domains(cpu_active_mask);
5866 	mutex_unlock(&sched_domains_mutex);
5867 
5868 	/* Move init over to a non-isolated CPU */
5869 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5870 		BUG();
5871 	sched_init_granularity();
5872 
5873 	init_sched_rt_class();
5874 	init_sched_dl_class();
5875 
5876 	sched_smp_initialized = true;
5877 }
5878 
5879 static int __init migration_init(void)
5880 {
5881 	sched_rq_cpu_starting(smp_processor_id());
5882 	return 0;
5883 }
5884 early_initcall(migration_init);
5885 
5886 #else
5887 void __init sched_init_smp(void)
5888 {
5889 	sched_init_granularity();
5890 }
5891 #endif /* CONFIG_SMP */
5892 
5893 int in_sched_functions(unsigned long addr)
5894 {
5895 	return in_lock_functions(addr) ||
5896 		(addr >= (unsigned long)__sched_text_start
5897 		&& addr < (unsigned long)__sched_text_end);
5898 }
5899 
5900 #ifdef CONFIG_CGROUP_SCHED
5901 /*
5902  * Default task group.
5903  * Every task in system belongs to this group at bootup.
5904  */
5905 struct task_group root_task_group;
5906 LIST_HEAD(task_groups);
5907 
5908 /* Cacheline aligned slab cache for task_group */
5909 static struct kmem_cache *task_group_cache __read_mostly;
5910 #endif
5911 
5912 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5913 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5914 
5915 void __init sched_init(void)
5916 {
5917 	int i, j;
5918 	unsigned long alloc_size = 0, ptr;
5919 
5920 	wait_bit_init();
5921 
5922 #ifdef CONFIG_FAIR_GROUP_SCHED
5923 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5924 #endif
5925 #ifdef CONFIG_RT_GROUP_SCHED
5926 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5927 #endif
5928 	if (alloc_size) {
5929 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5930 
5931 #ifdef CONFIG_FAIR_GROUP_SCHED
5932 		root_task_group.se = (struct sched_entity **)ptr;
5933 		ptr += nr_cpu_ids * sizeof(void **);
5934 
5935 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5936 		ptr += nr_cpu_ids * sizeof(void **);
5937 
5938 #endif /* CONFIG_FAIR_GROUP_SCHED */
5939 #ifdef CONFIG_RT_GROUP_SCHED
5940 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5941 		ptr += nr_cpu_ids * sizeof(void **);
5942 
5943 		root_task_group.rt_rq = (struct rt_rq **)ptr;
5944 		ptr += nr_cpu_ids * sizeof(void **);
5945 
5946 #endif /* CONFIG_RT_GROUP_SCHED */
5947 	}
5948 #ifdef CONFIG_CPUMASK_OFFSTACK
5949 	for_each_possible_cpu(i) {
5950 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5951 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5952 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5953 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5954 	}
5955 #endif /* CONFIG_CPUMASK_OFFSTACK */
5956 
5957 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5958 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5959 
5960 #ifdef CONFIG_SMP
5961 	init_defrootdomain();
5962 #endif
5963 
5964 #ifdef CONFIG_RT_GROUP_SCHED
5965 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
5966 			global_rt_period(), global_rt_runtime());
5967 #endif /* CONFIG_RT_GROUP_SCHED */
5968 
5969 #ifdef CONFIG_CGROUP_SCHED
5970 	task_group_cache = KMEM_CACHE(task_group, 0);
5971 
5972 	list_add(&root_task_group.list, &task_groups);
5973 	INIT_LIST_HEAD(&root_task_group.children);
5974 	INIT_LIST_HEAD(&root_task_group.siblings);
5975 	autogroup_init(&init_task);
5976 #endif /* CONFIG_CGROUP_SCHED */
5977 
5978 	for_each_possible_cpu(i) {
5979 		struct rq *rq;
5980 
5981 		rq = cpu_rq(i);
5982 		raw_spin_lock_init(&rq->lock);
5983 		rq->nr_running = 0;
5984 		rq->calc_load_active = 0;
5985 		rq->calc_load_update = jiffies + LOAD_FREQ;
5986 		init_cfs_rq(&rq->cfs);
5987 		init_rt_rq(&rq->rt);
5988 		init_dl_rq(&rq->dl);
5989 #ifdef CONFIG_FAIR_GROUP_SCHED
5990 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
5991 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5992 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
5993 		/*
5994 		 * How much CPU bandwidth does root_task_group get?
5995 		 *
5996 		 * In case of task-groups formed thr' the cgroup filesystem, it
5997 		 * gets 100% of the CPU resources in the system. This overall
5998 		 * system CPU resource is divided among the tasks of
5999 		 * root_task_group and its child task-groups in a fair manner,
6000 		 * based on each entity's (task or task-group's) weight
6001 		 * (se->load.weight).
6002 		 *
6003 		 * In other words, if root_task_group has 10 tasks of weight
6004 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6005 		 * then A0's share of the CPU resource is:
6006 		 *
6007 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6008 		 *
6009 		 * We achieve this by letting root_task_group's tasks sit
6010 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6011 		 */
6012 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6013 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6014 #endif /* CONFIG_FAIR_GROUP_SCHED */
6015 
6016 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6017 #ifdef CONFIG_RT_GROUP_SCHED
6018 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6019 #endif
6020 
6021 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6022 			rq->cpu_load[j] = 0;
6023 
6024 #ifdef CONFIG_SMP
6025 		rq->sd = NULL;
6026 		rq->rd = NULL;
6027 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6028 		rq->balance_callback = NULL;
6029 		rq->active_balance = 0;
6030 		rq->next_balance = jiffies;
6031 		rq->push_cpu = 0;
6032 		rq->cpu = i;
6033 		rq->online = 0;
6034 		rq->idle_stamp = 0;
6035 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6036 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6037 
6038 		INIT_LIST_HEAD(&rq->cfs_tasks);
6039 
6040 		rq_attach_root(rq, &def_root_domain);
6041 #ifdef CONFIG_NO_HZ_COMMON
6042 		rq->last_load_update_tick = jiffies;
6043 		rq->last_blocked_load_update_tick = jiffies;
6044 		atomic_set(&rq->nohz_flags, 0);
6045 #endif
6046 #endif /* CONFIG_SMP */
6047 		hrtick_rq_init(rq);
6048 		atomic_set(&rq->nr_iowait, 0);
6049 	}
6050 
6051 	set_load_weight(&init_task, false);
6052 
6053 	/*
6054 	 * The boot idle thread does lazy MMU switching as well:
6055 	 */
6056 	mmgrab(&init_mm);
6057 	enter_lazy_tlb(&init_mm, current);
6058 
6059 	/*
6060 	 * Make us the idle thread. Technically, schedule() should not be
6061 	 * called from this thread, however somewhere below it might be,
6062 	 * but because we are the idle thread, we just pick up running again
6063 	 * when this runqueue becomes "idle".
6064 	 */
6065 	init_idle(current, smp_processor_id());
6066 
6067 	calc_load_update = jiffies + LOAD_FREQ;
6068 
6069 #ifdef CONFIG_SMP
6070 	idle_thread_set_boot_cpu();
6071 #endif
6072 	init_sched_fair_class();
6073 
6074 	init_schedstats();
6075 
6076 	psi_init();
6077 
6078 	scheduler_running = 1;
6079 }
6080 
6081 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6082 static inline int preempt_count_equals(int preempt_offset)
6083 {
6084 	int nested = preempt_count() + rcu_preempt_depth();
6085 
6086 	return (nested == preempt_offset);
6087 }
6088 
6089 void __might_sleep(const char *file, int line, int preempt_offset)
6090 {
6091 	/*
6092 	 * Blocking primitives will set (and therefore destroy) current->state,
6093 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6094 	 * otherwise we will destroy state.
6095 	 */
6096 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6097 			"do not call blocking ops when !TASK_RUNNING; "
6098 			"state=%lx set at [<%p>] %pS\n",
6099 			current->state,
6100 			(void *)current->task_state_change,
6101 			(void *)current->task_state_change);
6102 
6103 	___might_sleep(file, line, preempt_offset);
6104 }
6105 EXPORT_SYMBOL(__might_sleep);
6106 
6107 void ___might_sleep(const char *file, int line, int preempt_offset)
6108 {
6109 	/* Ratelimiting timestamp: */
6110 	static unsigned long prev_jiffy;
6111 
6112 	unsigned long preempt_disable_ip;
6113 
6114 	/* WARN_ON_ONCE() by default, no rate limit required: */
6115 	rcu_sleep_check();
6116 
6117 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6118 	     !is_idle_task(current)) ||
6119 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6120 	    oops_in_progress)
6121 		return;
6122 
6123 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6124 		return;
6125 	prev_jiffy = jiffies;
6126 
6127 	/* Save this before calling printk(), since that will clobber it: */
6128 	preempt_disable_ip = get_preempt_disable_ip(current);
6129 
6130 	printk(KERN_ERR
6131 		"BUG: sleeping function called from invalid context at %s:%d\n",
6132 			file, line);
6133 	printk(KERN_ERR
6134 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6135 			in_atomic(), irqs_disabled(),
6136 			current->pid, current->comm);
6137 
6138 	if (task_stack_end_corrupted(current))
6139 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6140 
6141 	debug_show_held_locks(current);
6142 	if (irqs_disabled())
6143 		print_irqtrace_events(current);
6144 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6145 	    && !preempt_count_equals(preempt_offset)) {
6146 		pr_err("Preemption disabled at:");
6147 		print_ip_sym(preempt_disable_ip);
6148 		pr_cont("\n");
6149 	}
6150 	dump_stack();
6151 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6152 }
6153 EXPORT_SYMBOL(___might_sleep);
6154 #endif
6155 
6156 #ifdef CONFIG_MAGIC_SYSRQ
6157 void normalize_rt_tasks(void)
6158 {
6159 	struct task_struct *g, *p;
6160 	struct sched_attr attr = {
6161 		.sched_policy = SCHED_NORMAL,
6162 	};
6163 
6164 	read_lock(&tasklist_lock);
6165 	for_each_process_thread(g, p) {
6166 		/*
6167 		 * Only normalize user tasks:
6168 		 */
6169 		if (p->flags & PF_KTHREAD)
6170 			continue;
6171 
6172 		p->se.exec_start = 0;
6173 		schedstat_set(p->se.statistics.wait_start,  0);
6174 		schedstat_set(p->se.statistics.sleep_start, 0);
6175 		schedstat_set(p->se.statistics.block_start, 0);
6176 
6177 		if (!dl_task(p) && !rt_task(p)) {
6178 			/*
6179 			 * Renice negative nice level userspace
6180 			 * tasks back to 0:
6181 			 */
6182 			if (task_nice(p) < 0)
6183 				set_user_nice(p, 0);
6184 			continue;
6185 		}
6186 
6187 		__sched_setscheduler(p, &attr, false, false);
6188 	}
6189 	read_unlock(&tasklist_lock);
6190 }
6191 
6192 #endif /* CONFIG_MAGIC_SYSRQ */
6193 
6194 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6195 /*
6196  * These functions are only useful for the IA64 MCA handling, or kdb.
6197  *
6198  * They can only be called when the whole system has been
6199  * stopped - every CPU needs to be quiescent, and no scheduling
6200  * activity can take place. Using them for anything else would
6201  * be a serious bug, and as a result, they aren't even visible
6202  * under any other configuration.
6203  */
6204 
6205 /**
6206  * curr_task - return the current task for a given CPU.
6207  * @cpu: the processor in question.
6208  *
6209  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6210  *
6211  * Return: The current task for @cpu.
6212  */
6213 struct task_struct *curr_task(int cpu)
6214 {
6215 	return cpu_curr(cpu);
6216 }
6217 
6218 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6219 
6220 #ifdef CONFIG_IA64
6221 /**
6222  * set_curr_task - set the current task for a given CPU.
6223  * @cpu: the processor in question.
6224  * @p: the task pointer to set.
6225  *
6226  * Description: This function must only be used when non-maskable interrupts
6227  * are serviced on a separate stack. It allows the architecture to switch the
6228  * notion of the current task on a CPU in a non-blocking manner. This function
6229  * must be called with all CPU's synchronized, and interrupts disabled, the
6230  * and caller must save the original value of the current task (see
6231  * curr_task() above) and restore that value before reenabling interrupts and
6232  * re-starting the system.
6233  *
6234  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6235  */
6236 void ia64_set_curr_task(int cpu, struct task_struct *p)
6237 {
6238 	cpu_curr(cpu) = p;
6239 }
6240 
6241 #endif
6242 
6243 #ifdef CONFIG_CGROUP_SCHED
6244 /* task_group_lock serializes the addition/removal of task groups */
6245 static DEFINE_SPINLOCK(task_group_lock);
6246 
6247 static void sched_free_group(struct task_group *tg)
6248 {
6249 	free_fair_sched_group(tg);
6250 	free_rt_sched_group(tg);
6251 	autogroup_free(tg);
6252 	kmem_cache_free(task_group_cache, tg);
6253 }
6254 
6255 /* allocate runqueue etc for a new task group */
6256 struct task_group *sched_create_group(struct task_group *parent)
6257 {
6258 	struct task_group *tg;
6259 
6260 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6261 	if (!tg)
6262 		return ERR_PTR(-ENOMEM);
6263 
6264 	if (!alloc_fair_sched_group(tg, parent))
6265 		goto err;
6266 
6267 	if (!alloc_rt_sched_group(tg, parent))
6268 		goto err;
6269 
6270 	return tg;
6271 
6272 err:
6273 	sched_free_group(tg);
6274 	return ERR_PTR(-ENOMEM);
6275 }
6276 
6277 void sched_online_group(struct task_group *tg, struct task_group *parent)
6278 {
6279 	unsigned long flags;
6280 
6281 	spin_lock_irqsave(&task_group_lock, flags);
6282 	list_add_rcu(&tg->list, &task_groups);
6283 
6284 	/* Root should already exist: */
6285 	WARN_ON(!parent);
6286 
6287 	tg->parent = parent;
6288 	INIT_LIST_HEAD(&tg->children);
6289 	list_add_rcu(&tg->siblings, &parent->children);
6290 	spin_unlock_irqrestore(&task_group_lock, flags);
6291 
6292 	online_fair_sched_group(tg);
6293 }
6294 
6295 /* rcu callback to free various structures associated with a task group */
6296 static void sched_free_group_rcu(struct rcu_head *rhp)
6297 {
6298 	/* Now it should be safe to free those cfs_rqs: */
6299 	sched_free_group(container_of(rhp, struct task_group, rcu));
6300 }
6301 
6302 void sched_destroy_group(struct task_group *tg)
6303 {
6304 	/* Wait for possible concurrent references to cfs_rqs complete: */
6305 	call_rcu(&tg->rcu, sched_free_group_rcu);
6306 }
6307 
6308 void sched_offline_group(struct task_group *tg)
6309 {
6310 	unsigned long flags;
6311 
6312 	/* End participation in shares distribution: */
6313 	unregister_fair_sched_group(tg);
6314 
6315 	spin_lock_irqsave(&task_group_lock, flags);
6316 	list_del_rcu(&tg->list);
6317 	list_del_rcu(&tg->siblings);
6318 	spin_unlock_irqrestore(&task_group_lock, flags);
6319 }
6320 
6321 static void sched_change_group(struct task_struct *tsk, int type)
6322 {
6323 	struct task_group *tg;
6324 
6325 	/*
6326 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6327 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6328 	 * to prevent lockdep warnings.
6329 	 */
6330 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6331 			  struct task_group, css);
6332 	tg = autogroup_task_group(tsk, tg);
6333 	tsk->sched_task_group = tg;
6334 
6335 #ifdef CONFIG_FAIR_GROUP_SCHED
6336 	if (tsk->sched_class->task_change_group)
6337 		tsk->sched_class->task_change_group(tsk, type);
6338 	else
6339 #endif
6340 		set_task_rq(tsk, task_cpu(tsk));
6341 }
6342 
6343 /*
6344  * Change task's runqueue when it moves between groups.
6345  *
6346  * The caller of this function should have put the task in its new group by
6347  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6348  * its new group.
6349  */
6350 void sched_move_task(struct task_struct *tsk)
6351 {
6352 	int queued, running, queue_flags =
6353 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6354 	struct rq_flags rf;
6355 	struct rq *rq;
6356 
6357 	rq = task_rq_lock(tsk, &rf);
6358 	update_rq_clock(rq);
6359 
6360 	running = task_current(rq, tsk);
6361 	queued = task_on_rq_queued(tsk);
6362 
6363 	if (queued)
6364 		dequeue_task(rq, tsk, queue_flags);
6365 	if (running)
6366 		put_prev_task(rq, tsk);
6367 
6368 	sched_change_group(tsk, TASK_MOVE_GROUP);
6369 
6370 	if (queued)
6371 		enqueue_task(rq, tsk, queue_flags);
6372 	if (running)
6373 		set_curr_task(rq, tsk);
6374 
6375 	task_rq_unlock(rq, tsk, &rf);
6376 }
6377 
6378 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6379 {
6380 	return css ? container_of(css, struct task_group, css) : NULL;
6381 }
6382 
6383 static struct cgroup_subsys_state *
6384 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6385 {
6386 	struct task_group *parent = css_tg(parent_css);
6387 	struct task_group *tg;
6388 
6389 	if (!parent) {
6390 		/* This is early initialization for the top cgroup */
6391 		return &root_task_group.css;
6392 	}
6393 
6394 	tg = sched_create_group(parent);
6395 	if (IS_ERR(tg))
6396 		return ERR_PTR(-ENOMEM);
6397 
6398 	return &tg->css;
6399 }
6400 
6401 /* Expose task group only after completing cgroup initialization */
6402 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6403 {
6404 	struct task_group *tg = css_tg(css);
6405 	struct task_group *parent = css_tg(css->parent);
6406 
6407 	if (parent)
6408 		sched_online_group(tg, parent);
6409 	return 0;
6410 }
6411 
6412 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6413 {
6414 	struct task_group *tg = css_tg(css);
6415 
6416 	sched_offline_group(tg);
6417 }
6418 
6419 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6420 {
6421 	struct task_group *tg = css_tg(css);
6422 
6423 	/*
6424 	 * Relies on the RCU grace period between css_released() and this.
6425 	 */
6426 	sched_free_group(tg);
6427 }
6428 
6429 /*
6430  * This is called before wake_up_new_task(), therefore we really only
6431  * have to set its group bits, all the other stuff does not apply.
6432  */
6433 static void cpu_cgroup_fork(struct task_struct *task)
6434 {
6435 	struct rq_flags rf;
6436 	struct rq *rq;
6437 
6438 	rq = task_rq_lock(task, &rf);
6439 
6440 	update_rq_clock(rq);
6441 	sched_change_group(task, TASK_SET_GROUP);
6442 
6443 	task_rq_unlock(rq, task, &rf);
6444 }
6445 
6446 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6447 {
6448 	struct task_struct *task;
6449 	struct cgroup_subsys_state *css;
6450 	int ret = 0;
6451 
6452 	cgroup_taskset_for_each(task, css, tset) {
6453 #ifdef CONFIG_RT_GROUP_SCHED
6454 		if (!sched_rt_can_attach(css_tg(css), task))
6455 			return -EINVAL;
6456 #else
6457 		/* We don't support RT-tasks being in separate groups */
6458 		if (task->sched_class != &fair_sched_class)
6459 			return -EINVAL;
6460 #endif
6461 		/*
6462 		 * Serialize against wake_up_new_task() such that if its
6463 		 * running, we're sure to observe its full state.
6464 		 */
6465 		raw_spin_lock_irq(&task->pi_lock);
6466 		/*
6467 		 * Avoid calling sched_move_task() before wake_up_new_task()
6468 		 * has happened. This would lead to problems with PELT, due to
6469 		 * move wanting to detach+attach while we're not attached yet.
6470 		 */
6471 		if (task->state == TASK_NEW)
6472 			ret = -EINVAL;
6473 		raw_spin_unlock_irq(&task->pi_lock);
6474 
6475 		if (ret)
6476 			break;
6477 	}
6478 	return ret;
6479 }
6480 
6481 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6482 {
6483 	struct task_struct *task;
6484 	struct cgroup_subsys_state *css;
6485 
6486 	cgroup_taskset_for_each(task, css, tset)
6487 		sched_move_task(task);
6488 }
6489 
6490 #ifdef CONFIG_FAIR_GROUP_SCHED
6491 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6492 				struct cftype *cftype, u64 shareval)
6493 {
6494 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6495 }
6496 
6497 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6498 			       struct cftype *cft)
6499 {
6500 	struct task_group *tg = css_tg(css);
6501 
6502 	return (u64) scale_load_down(tg->shares);
6503 }
6504 
6505 #ifdef CONFIG_CFS_BANDWIDTH
6506 static DEFINE_MUTEX(cfs_constraints_mutex);
6507 
6508 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6509 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6510 
6511 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6512 
6513 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6514 {
6515 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6516 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6517 
6518 	if (tg == &root_task_group)
6519 		return -EINVAL;
6520 
6521 	/*
6522 	 * Ensure we have at some amount of bandwidth every period.  This is
6523 	 * to prevent reaching a state of large arrears when throttled via
6524 	 * entity_tick() resulting in prolonged exit starvation.
6525 	 */
6526 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6527 		return -EINVAL;
6528 
6529 	/*
6530 	 * Likewise, bound things on the otherside by preventing insane quota
6531 	 * periods.  This also allows us to normalize in computing quota
6532 	 * feasibility.
6533 	 */
6534 	if (period > max_cfs_quota_period)
6535 		return -EINVAL;
6536 
6537 	/*
6538 	 * Prevent race between setting of cfs_rq->runtime_enabled and
6539 	 * unthrottle_offline_cfs_rqs().
6540 	 */
6541 	get_online_cpus();
6542 	mutex_lock(&cfs_constraints_mutex);
6543 	ret = __cfs_schedulable(tg, period, quota);
6544 	if (ret)
6545 		goto out_unlock;
6546 
6547 	runtime_enabled = quota != RUNTIME_INF;
6548 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6549 	/*
6550 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
6551 	 * before making related changes, and on->off must occur afterwards
6552 	 */
6553 	if (runtime_enabled && !runtime_was_enabled)
6554 		cfs_bandwidth_usage_inc();
6555 	raw_spin_lock_irq(&cfs_b->lock);
6556 	cfs_b->period = ns_to_ktime(period);
6557 	cfs_b->quota = quota;
6558 
6559 	__refill_cfs_bandwidth_runtime(cfs_b);
6560 
6561 	/* Restart the period timer (if active) to handle new period expiry: */
6562 	if (runtime_enabled)
6563 		start_cfs_bandwidth(cfs_b);
6564 
6565 	raw_spin_unlock_irq(&cfs_b->lock);
6566 
6567 	for_each_online_cpu(i) {
6568 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6569 		struct rq *rq = cfs_rq->rq;
6570 		struct rq_flags rf;
6571 
6572 		rq_lock_irq(rq, &rf);
6573 		cfs_rq->runtime_enabled = runtime_enabled;
6574 		cfs_rq->runtime_remaining = 0;
6575 
6576 		if (cfs_rq->throttled)
6577 			unthrottle_cfs_rq(cfs_rq);
6578 		rq_unlock_irq(rq, &rf);
6579 	}
6580 	if (runtime_was_enabled && !runtime_enabled)
6581 		cfs_bandwidth_usage_dec();
6582 out_unlock:
6583 	mutex_unlock(&cfs_constraints_mutex);
6584 	put_online_cpus();
6585 
6586 	return ret;
6587 }
6588 
6589 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6590 {
6591 	u64 quota, period;
6592 
6593 	period = ktime_to_ns(tg->cfs_bandwidth.period);
6594 	if (cfs_quota_us < 0)
6595 		quota = RUNTIME_INF;
6596 	else
6597 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6598 
6599 	return tg_set_cfs_bandwidth(tg, period, quota);
6600 }
6601 
6602 long tg_get_cfs_quota(struct task_group *tg)
6603 {
6604 	u64 quota_us;
6605 
6606 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6607 		return -1;
6608 
6609 	quota_us = tg->cfs_bandwidth.quota;
6610 	do_div(quota_us, NSEC_PER_USEC);
6611 
6612 	return quota_us;
6613 }
6614 
6615 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6616 {
6617 	u64 quota, period;
6618 
6619 	period = (u64)cfs_period_us * NSEC_PER_USEC;
6620 	quota = tg->cfs_bandwidth.quota;
6621 
6622 	return tg_set_cfs_bandwidth(tg, period, quota);
6623 }
6624 
6625 long tg_get_cfs_period(struct task_group *tg)
6626 {
6627 	u64 cfs_period_us;
6628 
6629 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6630 	do_div(cfs_period_us, NSEC_PER_USEC);
6631 
6632 	return cfs_period_us;
6633 }
6634 
6635 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6636 				  struct cftype *cft)
6637 {
6638 	return tg_get_cfs_quota(css_tg(css));
6639 }
6640 
6641 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6642 				   struct cftype *cftype, s64 cfs_quota_us)
6643 {
6644 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6645 }
6646 
6647 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6648 				   struct cftype *cft)
6649 {
6650 	return tg_get_cfs_period(css_tg(css));
6651 }
6652 
6653 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6654 				    struct cftype *cftype, u64 cfs_period_us)
6655 {
6656 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6657 }
6658 
6659 struct cfs_schedulable_data {
6660 	struct task_group *tg;
6661 	u64 period, quota;
6662 };
6663 
6664 /*
6665  * normalize group quota/period to be quota/max_period
6666  * note: units are usecs
6667  */
6668 static u64 normalize_cfs_quota(struct task_group *tg,
6669 			       struct cfs_schedulable_data *d)
6670 {
6671 	u64 quota, period;
6672 
6673 	if (tg == d->tg) {
6674 		period = d->period;
6675 		quota = d->quota;
6676 	} else {
6677 		period = tg_get_cfs_period(tg);
6678 		quota = tg_get_cfs_quota(tg);
6679 	}
6680 
6681 	/* note: these should typically be equivalent */
6682 	if (quota == RUNTIME_INF || quota == -1)
6683 		return RUNTIME_INF;
6684 
6685 	return to_ratio(period, quota);
6686 }
6687 
6688 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6689 {
6690 	struct cfs_schedulable_data *d = data;
6691 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6692 	s64 quota = 0, parent_quota = -1;
6693 
6694 	if (!tg->parent) {
6695 		quota = RUNTIME_INF;
6696 	} else {
6697 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6698 
6699 		quota = normalize_cfs_quota(tg, d);
6700 		parent_quota = parent_b->hierarchical_quota;
6701 
6702 		/*
6703 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
6704 		 * always take the min.  On cgroup1, only inherit when no
6705 		 * limit is set:
6706 		 */
6707 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6708 			quota = min(quota, parent_quota);
6709 		} else {
6710 			if (quota == RUNTIME_INF)
6711 				quota = parent_quota;
6712 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6713 				return -EINVAL;
6714 		}
6715 	}
6716 	cfs_b->hierarchical_quota = quota;
6717 
6718 	return 0;
6719 }
6720 
6721 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6722 {
6723 	int ret;
6724 	struct cfs_schedulable_data data = {
6725 		.tg = tg,
6726 		.period = period,
6727 		.quota = quota,
6728 	};
6729 
6730 	if (quota != RUNTIME_INF) {
6731 		do_div(data.period, NSEC_PER_USEC);
6732 		do_div(data.quota, NSEC_PER_USEC);
6733 	}
6734 
6735 	rcu_read_lock();
6736 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6737 	rcu_read_unlock();
6738 
6739 	return ret;
6740 }
6741 
6742 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6743 {
6744 	struct task_group *tg = css_tg(seq_css(sf));
6745 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6746 
6747 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6748 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6749 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6750 
6751 	if (schedstat_enabled() && tg != &root_task_group) {
6752 		u64 ws = 0;
6753 		int i;
6754 
6755 		for_each_possible_cpu(i)
6756 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
6757 
6758 		seq_printf(sf, "wait_sum %llu\n", ws);
6759 	}
6760 
6761 	return 0;
6762 }
6763 #endif /* CONFIG_CFS_BANDWIDTH */
6764 #endif /* CONFIG_FAIR_GROUP_SCHED */
6765 
6766 #ifdef CONFIG_RT_GROUP_SCHED
6767 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6768 				struct cftype *cft, s64 val)
6769 {
6770 	return sched_group_set_rt_runtime(css_tg(css), val);
6771 }
6772 
6773 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6774 			       struct cftype *cft)
6775 {
6776 	return sched_group_rt_runtime(css_tg(css));
6777 }
6778 
6779 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6780 				    struct cftype *cftype, u64 rt_period_us)
6781 {
6782 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6783 }
6784 
6785 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6786 				   struct cftype *cft)
6787 {
6788 	return sched_group_rt_period(css_tg(css));
6789 }
6790 #endif /* CONFIG_RT_GROUP_SCHED */
6791 
6792 static struct cftype cpu_legacy_files[] = {
6793 #ifdef CONFIG_FAIR_GROUP_SCHED
6794 	{
6795 		.name = "shares",
6796 		.read_u64 = cpu_shares_read_u64,
6797 		.write_u64 = cpu_shares_write_u64,
6798 	},
6799 #endif
6800 #ifdef CONFIG_CFS_BANDWIDTH
6801 	{
6802 		.name = "cfs_quota_us",
6803 		.read_s64 = cpu_cfs_quota_read_s64,
6804 		.write_s64 = cpu_cfs_quota_write_s64,
6805 	},
6806 	{
6807 		.name = "cfs_period_us",
6808 		.read_u64 = cpu_cfs_period_read_u64,
6809 		.write_u64 = cpu_cfs_period_write_u64,
6810 	},
6811 	{
6812 		.name = "stat",
6813 		.seq_show = cpu_cfs_stat_show,
6814 	},
6815 #endif
6816 #ifdef CONFIG_RT_GROUP_SCHED
6817 	{
6818 		.name = "rt_runtime_us",
6819 		.read_s64 = cpu_rt_runtime_read,
6820 		.write_s64 = cpu_rt_runtime_write,
6821 	},
6822 	{
6823 		.name = "rt_period_us",
6824 		.read_u64 = cpu_rt_period_read_uint,
6825 		.write_u64 = cpu_rt_period_write_uint,
6826 	},
6827 #endif
6828 	{ }	/* Terminate */
6829 };
6830 
6831 static int cpu_extra_stat_show(struct seq_file *sf,
6832 			       struct cgroup_subsys_state *css)
6833 {
6834 #ifdef CONFIG_CFS_BANDWIDTH
6835 	{
6836 		struct task_group *tg = css_tg(css);
6837 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6838 		u64 throttled_usec;
6839 
6840 		throttled_usec = cfs_b->throttled_time;
6841 		do_div(throttled_usec, NSEC_PER_USEC);
6842 
6843 		seq_printf(sf, "nr_periods %d\n"
6844 			   "nr_throttled %d\n"
6845 			   "throttled_usec %llu\n",
6846 			   cfs_b->nr_periods, cfs_b->nr_throttled,
6847 			   throttled_usec);
6848 	}
6849 #endif
6850 	return 0;
6851 }
6852 
6853 #ifdef CONFIG_FAIR_GROUP_SCHED
6854 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6855 			       struct cftype *cft)
6856 {
6857 	struct task_group *tg = css_tg(css);
6858 	u64 weight = scale_load_down(tg->shares);
6859 
6860 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6861 }
6862 
6863 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6864 				struct cftype *cft, u64 weight)
6865 {
6866 	/*
6867 	 * cgroup weight knobs should use the common MIN, DFL and MAX
6868 	 * values which are 1, 100 and 10000 respectively.  While it loses
6869 	 * a bit of range on both ends, it maps pretty well onto the shares
6870 	 * value used by scheduler and the round-trip conversions preserve
6871 	 * the original value over the entire range.
6872 	 */
6873 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6874 		return -ERANGE;
6875 
6876 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6877 
6878 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6879 }
6880 
6881 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6882 				    struct cftype *cft)
6883 {
6884 	unsigned long weight = scale_load_down(css_tg(css)->shares);
6885 	int last_delta = INT_MAX;
6886 	int prio, delta;
6887 
6888 	/* find the closest nice value to the current weight */
6889 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6890 		delta = abs(sched_prio_to_weight[prio] - weight);
6891 		if (delta >= last_delta)
6892 			break;
6893 		last_delta = delta;
6894 	}
6895 
6896 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6897 }
6898 
6899 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6900 				     struct cftype *cft, s64 nice)
6901 {
6902 	unsigned long weight;
6903 	int idx;
6904 
6905 	if (nice < MIN_NICE || nice > MAX_NICE)
6906 		return -ERANGE;
6907 
6908 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6909 	idx = array_index_nospec(idx, 40);
6910 	weight = sched_prio_to_weight[idx];
6911 
6912 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6913 }
6914 #endif
6915 
6916 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6917 						  long period, long quota)
6918 {
6919 	if (quota < 0)
6920 		seq_puts(sf, "max");
6921 	else
6922 		seq_printf(sf, "%ld", quota);
6923 
6924 	seq_printf(sf, " %ld\n", period);
6925 }
6926 
6927 /* caller should put the current value in *@periodp before calling */
6928 static int __maybe_unused cpu_period_quota_parse(char *buf,
6929 						 u64 *periodp, u64 *quotap)
6930 {
6931 	char tok[21];	/* U64_MAX */
6932 
6933 	if (!sscanf(buf, "%s %llu", tok, periodp))
6934 		return -EINVAL;
6935 
6936 	*periodp *= NSEC_PER_USEC;
6937 
6938 	if (sscanf(tok, "%llu", quotap))
6939 		*quotap *= NSEC_PER_USEC;
6940 	else if (!strcmp(tok, "max"))
6941 		*quotap = RUNTIME_INF;
6942 	else
6943 		return -EINVAL;
6944 
6945 	return 0;
6946 }
6947 
6948 #ifdef CONFIG_CFS_BANDWIDTH
6949 static int cpu_max_show(struct seq_file *sf, void *v)
6950 {
6951 	struct task_group *tg = css_tg(seq_css(sf));
6952 
6953 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6954 	return 0;
6955 }
6956 
6957 static ssize_t cpu_max_write(struct kernfs_open_file *of,
6958 			     char *buf, size_t nbytes, loff_t off)
6959 {
6960 	struct task_group *tg = css_tg(of_css(of));
6961 	u64 period = tg_get_cfs_period(tg);
6962 	u64 quota;
6963 	int ret;
6964 
6965 	ret = cpu_period_quota_parse(buf, &period, &quota);
6966 	if (!ret)
6967 		ret = tg_set_cfs_bandwidth(tg, period, quota);
6968 	return ret ?: nbytes;
6969 }
6970 #endif
6971 
6972 static struct cftype cpu_files[] = {
6973 #ifdef CONFIG_FAIR_GROUP_SCHED
6974 	{
6975 		.name = "weight",
6976 		.flags = CFTYPE_NOT_ON_ROOT,
6977 		.read_u64 = cpu_weight_read_u64,
6978 		.write_u64 = cpu_weight_write_u64,
6979 	},
6980 	{
6981 		.name = "weight.nice",
6982 		.flags = CFTYPE_NOT_ON_ROOT,
6983 		.read_s64 = cpu_weight_nice_read_s64,
6984 		.write_s64 = cpu_weight_nice_write_s64,
6985 	},
6986 #endif
6987 #ifdef CONFIG_CFS_BANDWIDTH
6988 	{
6989 		.name = "max",
6990 		.flags = CFTYPE_NOT_ON_ROOT,
6991 		.seq_show = cpu_max_show,
6992 		.write = cpu_max_write,
6993 	},
6994 #endif
6995 	{ }	/* terminate */
6996 };
6997 
6998 struct cgroup_subsys cpu_cgrp_subsys = {
6999 	.css_alloc	= cpu_cgroup_css_alloc,
7000 	.css_online	= cpu_cgroup_css_online,
7001 	.css_released	= cpu_cgroup_css_released,
7002 	.css_free	= cpu_cgroup_css_free,
7003 	.css_extra_stat_show = cpu_extra_stat_show,
7004 	.fork		= cpu_cgroup_fork,
7005 	.can_attach	= cpu_cgroup_can_attach,
7006 	.attach		= cpu_cgroup_attach,
7007 	.legacy_cftypes	= cpu_legacy_files,
7008 	.dfl_cftypes	= cpu_files,
7009 	.early_init	= true,
7010 	.threaded	= true,
7011 };
7012 
7013 #endif	/* CONFIG_CGROUP_SCHED */
7014 
7015 void dump_cpu_task(int cpu)
7016 {
7017 	pr_info("Task dump for CPU %d:\n", cpu);
7018 	sched_show_task(cpu_curr(cpu));
7019 }
7020 
7021 /*
7022  * Nice levels are multiplicative, with a gentle 10% change for every
7023  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7024  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7025  * that remained on nice 0.
7026  *
7027  * The "10% effect" is relative and cumulative: from _any_ nice level,
7028  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7029  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7030  * If a task goes up by ~10% and another task goes down by ~10% then
7031  * the relative distance between them is ~25%.)
7032  */
7033 const int sched_prio_to_weight[40] = {
7034  /* -20 */     88761,     71755,     56483,     46273,     36291,
7035  /* -15 */     29154,     23254,     18705,     14949,     11916,
7036  /* -10 */      9548,      7620,      6100,      4904,      3906,
7037  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7038  /*   0 */      1024,       820,       655,       526,       423,
7039  /*   5 */       335,       272,       215,       172,       137,
7040  /*  10 */       110,        87,        70,        56,        45,
7041  /*  15 */        36,        29,        23,        18,        15,
7042 };
7043 
7044 /*
7045  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7046  *
7047  * In cases where the weight does not change often, we can use the
7048  * precalculated inverse to speed up arithmetics by turning divisions
7049  * into multiplications:
7050  */
7051 const u32 sched_prio_to_wmult[40] = {
7052  /* -20 */     48388,     59856,     76040,     92818,    118348,
7053  /* -15 */    147320,    184698,    229616,    287308,    360437,
7054  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7055  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7056  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7057  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7058  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7059  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7060 };
7061 
7062 #undef CREATE_TRACE_POINTS
7063