1 /* 2 * kernel/sched/core.c 3 * 4 * Core kernel scheduler code and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 */ 8 #include "sched.h" 9 10 #include <linux/nospec.h> 11 12 #include <linux/kcov.h> 13 14 #include <asm/switch_to.h> 15 #include <asm/tlb.h> 16 17 #include "../workqueue_internal.h" 18 #include "../smpboot.h" 19 20 #include "pelt.h" 21 22 #define CREATE_TRACE_POINTS 23 #include <trace/events/sched.h> 24 25 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 26 27 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 28 /* 29 * Debugging: various feature bits 30 * 31 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 32 * sysctl_sched_features, defined in sched.h, to allow constants propagation 33 * at compile time and compiler optimization based on features default. 34 */ 35 #define SCHED_FEAT(name, enabled) \ 36 (1UL << __SCHED_FEAT_##name) * enabled | 37 const_debug unsigned int sysctl_sched_features = 38 #include "features.h" 39 0; 40 #undef SCHED_FEAT 41 #endif 42 43 /* 44 * Number of tasks to iterate in a single balance run. 45 * Limited because this is done with IRQs disabled. 46 */ 47 const_debug unsigned int sysctl_sched_nr_migrate = 32; 48 49 /* 50 * period over which we measure -rt task CPU usage in us. 51 * default: 1s 52 */ 53 unsigned int sysctl_sched_rt_period = 1000000; 54 55 __read_mostly int scheduler_running; 56 57 /* 58 * part of the period that we allow rt tasks to run in us. 59 * default: 0.95s 60 */ 61 int sysctl_sched_rt_runtime = 950000; 62 63 /* 64 * __task_rq_lock - lock the rq @p resides on. 65 */ 66 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 67 __acquires(rq->lock) 68 { 69 struct rq *rq; 70 71 lockdep_assert_held(&p->pi_lock); 72 73 for (;;) { 74 rq = task_rq(p); 75 raw_spin_lock(&rq->lock); 76 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 77 rq_pin_lock(rq, rf); 78 return rq; 79 } 80 raw_spin_unlock(&rq->lock); 81 82 while (unlikely(task_on_rq_migrating(p))) 83 cpu_relax(); 84 } 85 } 86 87 /* 88 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 89 */ 90 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 91 __acquires(p->pi_lock) 92 __acquires(rq->lock) 93 { 94 struct rq *rq; 95 96 for (;;) { 97 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 98 rq = task_rq(p); 99 raw_spin_lock(&rq->lock); 100 /* 101 * move_queued_task() task_rq_lock() 102 * 103 * ACQUIRE (rq->lock) 104 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 105 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 106 * [S] ->cpu = new_cpu [L] task_rq() 107 * [L] ->on_rq 108 * RELEASE (rq->lock) 109 * 110 * If we observe the old CPU in task_rq_lock, the acquire of 111 * the old rq->lock will fully serialize against the stores. 112 * 113 * If we observe the new CPU in task_rq_lock, the acquire will 114 * pair with the WMB to ensure we must then also see migrating. 115 */ 116 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 117 rq_pin_lock(rq, rf); 118 return rq; 119 } 120 raw_spin_unlock(&rq->lock); 121 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 122 123 while (unlikely(task_on_rq_migrating(p))) 124 cpu_relax(); 125 } 126 } 127 128 /* 129 * RQ-clock updating methods: 130 */ 131 132 static void update_rq_clock_task(struct rq *rq, s64 delta) 133 { 134 /* 135 * In theory, the compile should just see 0 here, and optimize out the call 136 * to sched_rt_avg_update. But I don't trust it... 137 */ 138 s64 __maybe_unused steal = 0, irq_delta = 0; 139 140 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 141 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 142 143 /* 144 * Since irq_time is only updated on {soft,}irq_exit, we might run into 145 * this case when a previous update_rq_clock() happened inside a 146 * {soft,}irq region. 147 * 148 * When this happens, we stop ->clock_task and only update the 149 * prev_irq_time stamp to account for the part that fit, so that a next 150 * update will consume the rest. This ensures ->clock_task is 151 * monotonic. 152 * 153 * It does however cause some slight miss-attribution of {soft,}irq 154 * time, a more accurate solution would be to update the irq_time using 155 * the current rq->clock timestamp, except that would require using 156 * atomic ops. 157 */ 158 if (irq_delta > delta) 159 irq_delta = delta; 160 161 rq->prev_irq_time += irq_delta; 162 delta -= irq_delta; 163 #endif 164 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 165 if (static_key_false((¶virt_steal_rq_enabled))) { 166 steal = paravirt_steal_clock(cpu_of(rq)); 167 steal -= rq->prev_steal_time_rq; 168 169 if (unlikely(steal > delta)) 170 steal = delta; 171 172 rq->prev_steal_time_rq += steal; 173 delta -= steal; 174 } 175 #endif 176 177 rq->clock_task += delta; 178 179 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 180 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 181 update_irq_load_avg(rq, irq_delta + steal); 182 #endif 183 } 184 185 void update_rq_clock(struct rq *rq) 186 { 187 s64 delta; 188 189 lockdep_assert_held(&rq->lock); 190 191 if (rq->clock_update_flags & RQCF_ACT_SKIP) 192 return; 193 194 #ifdef CONFIG_SCHED_DEBUG 195 if (sched_feat(WARN_DOUBLE_CLOCK)) 196 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 197 rq->clock_update_flags |= RQCF_UPDATED; 198 #endif 199 200 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 201 if (delta < 0) 202 return; 203 rq->clock += delta; 204 update_rq_clock_task(rq, delta); 205 } 206 207 208 #ifdef CONFIG_SCHED_HRTICK 209 /* 210 * Use HR-timers to deliver accurate preemption points. 211 */ 212 213 static void hrtick_clear(struct rq *rq) 214 { 215 if (hrtimer_active(&rq->hrtick_timer)) 216 hrtimer_cancel(&rq->hrtick_timer); 217 } 218 219 /* 220 * High-resolution timer tick. 221 * Runs from hardirq context with interrupts disabled. 222 */ 223 static enum hrtimer_restart hrtick(struct hrtimer *timer) 224 { 225 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 226 struct rq_flags rf; 227 228 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 229 230 rq_lock(rq, &rf); 231 update_rq_clock(rq); 232 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 233 rq_unlock(rq, &rf); 234 235 return HRTIMER_NORESTART; 236 } 237 238 #ifdef CONFIG_SMP 239 240 static void __hrtick_restart(struct rq *rq) 241 { 242 struct hrtimer *timer = &rq->hrtick_timer; 243 244 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 245 } 246 247 /* 248 * called from hardirq (IPI) context 249 */ 250 static void __hrtick_start(void *arg) 251 { 252 struct rq *rq = arg; 253 struct rq_flags rf; 254 255 rq_lock(rq, &rf); 256 __hrtick_restart(rq); 257 rq->hrtick_csd_pending = 0; 258 rq_unlock(rq, &rf); 259 } 260 261 /* 262 * Called to set the hrtick timer state. 263 * 264 * called with rq->lock held and irqs disabled 265 */ 266 void hrtick_start(struct rq *rq, u64 delay) 267 { 268 struct hrtimer *timer = &rq->hrtick_timer; 269 ktime_t time; 270 s64 delta; 271 272 /* 273 * Don't schedule slices shorter than 10000ns, that just 274 * doesn't make sense and can cause timer DoS. 275 */ 276 delta = max_t(s64, delay, 10000LL); 277 time = ktime_add_ns(timer->base->get_time(), delta); 278 279 hrtimer_set_expires(timer, time); 280 281 if (rq == this_rq()) { 282 __hrtick_restart(rq); 283 } else if (!rq->hrtick_csd_pending) { 284 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 285 rq->hrtick_csd_pending = 1; 286 } 287 } 288 289 #else 290 /* 291 * Called to set the hrtick timer state. 292 * 293 * called with rq->lock held and irqs disabled 294 */ 295 void hrtick_start(struct rq *rq, u64 delay) 296 { 297 /* 298 * Don't schedule slices shorter than 10000ns, that just 299 * doesn't make sense. Rely on vruntime for fairness. 300 */ 301 delay = max_t(u64, delay, 10000LL); 302 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 303 HRTIMER_MODE_REL_PINNED); 304 } 305 #endif /* CONFIG_SMP */ 306 307 static void hrtick_rq_init(struct rq *rq) 308 { 309 #ifdef CONFIG_SMP 310 rq->hrtick_csd_pending = 0; 311 312 rq->hrtick_csd.flags = 0; 313 rq->hrtick_csd.func = __hrtick_start; 314 rq->hrtick_csd.info = rq; 315 #endif 316 317 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 318 rq->hrtick_timer.function = hrtick; 319 } 320 #else /* CONFIG_SCHED_HRTICK */ 321 static inline void hrtick_clear(struct rq *rq) 322 { 323 } 324 325 static inline void hrtick_rq_init(struct rq *rq) 326 { 327 } 328 #endif /* CONFIG_SCHED_HRTICK */ 329 330 /* 331 * cmpxchg based fetch_or, macro so it works for different integer types 332 */ 333 #define fetch_or(ptr, mask) \ 334 ({ \ 335 typeof(ptr) _ptr = (ptr); \ 336 typeof(mask) _mask = (mask); \ 337 typeof(*_ptr) _old, _val = *_ptr; \ 338 \ 339 for (;;) { \ 340 _old = cmpxchg(_ptr, _val, _val | _mask); \ 341 if (_old == _val) \ 342 break; \ 343 _val = _old; \ 344 } \ 345 _old; \ 346 }) 347 348 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 349 /* 350 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 351 * this avoids any races wrt polling state changes and thereby avoids 352 * spurious IPIs. 353 */ 354 static bool set_nr_and_not_polling(struct task_struct *p) 355 { 356 struct thread_info *ti = task_thread_info(p); 357 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 358 } 359 360 /* 361 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 362 * 363 * If this returns true, then the idle task promises to call 364 * sched_ttwu_pending() and reschedule soon. 365 */ 366 static bool set_nr_if_polling(struct task_struct *p) 367 { 368 struct thread_info *ti = task_thread_info(p); 369 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 370 371 for (;;) { 372 if (!(val & _TIF_POLLING_NRFLAG)) 373 return false; 374 if (val & _TIF_NEED_RESCHED) 375 return true; 376 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 377 if (old == val) 378 break; 379 val = old; 380 } 381 return true; 382 } 383 384 #else 385 static bool set_nr_and_not_polling(struct task_struct *p) 386 { 387 set_tsk_need_resched(p); 388 return true; 389 } 390 391 #ifdef CONFIG_SMP 392 static bool set_nr_if_polling(struct task_struct *p) 393 { 394 return false; 395 } 396 #endif 397 #endif 398 399 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 400 { 401 struct wake_q_node *node = &task->wake_q; 402 403 /* 404 * Atomically grab the task, if ->wake_q is !nil already it means 405 * its already queued (either by us or someone else) and will get the 406 * wakeup due to that. 407 * 408 * This cmpxchg() executes a full barrier, which pairs with the full 409 * barrier executed by the wakeup in wake_up_q(). 410 */ 411 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 412 return; 413 414 get_task_struct(task); 415 416 /* 417 * The head is context local, there can be no concurrency. 418 */ 419 *head->lastp = node; 420 head->lastp = &node->next; 421 } 422 423 void wake_up_q(struct wake_q_head *head) 424 { 425 struct wake_q_node *node = head->first; 426 427 while (node != WAKE_Q_TAIL) { 428 struct task_struct *task; 429 430 task = container_of(node, struct task_struct, wake_q); 431 BUG_ON(!task); 432 /* Task can safely be re-inserted now: */ 433 node = node->next; 434 task->wake_q.next = NULL; 435 436 /* 437 * wake_up_process() executes a full barrier, which pairs with 438 * the queueing in wake_q_add() so as not to miss wakeups. 439 */ 440 wake_up_process(task); 441 put_task_struct(task); 442 } 443 } 444 445 /* 446 * resched_curr - mark rq's current task 'to be rescheduled now'. 447 * 448 * On UP this means the setting of the need_resched flag, on SMP it 449 * might also involve a cross-CPU call to trigger the scheduler on 450 * the target CPU. 451 */ 452 void resched_curr(struct rq *rq) 453 { 454 struct task_struct *curr = rq->curr; 455 int cpu; 456 457 lockdep_assert_held(&rq->lock); 458 459 if (test_tsk_need_resched(curr)) 460 return; 461 462 cpu = cpu_of(rq); 463 464 if (cpu == smp_processor_id()) { 465 set_tsk_need_resched(curr); 466 set_preempt_need_resched(); 467 return; 468 } 469 470 if (set_nr_and_not_polling(curr)) 471 smp_send_reschedule(cpu); 472 else 473 trace_sched_wake_idle_without_ipi(cpu); 474 } 475 476 void resched_cpu(int cpu) 477 { 478 struct rq *rq = cpu_rq(cpu); 479 unsigned long flags; 480 481 raw_spin_lock_irqsave(&rq->lock, flags); 482 if (cpu_online(cpu) || cpu == smp_processor_id()) 483 resched_curr(rq); 484 raw_spin_unlock_irqrestore(&rq->lock, flags); 485 } 486 487 #ifdef CONFIG_SMP 488 #ifdef CONFIG_NO_HZ_COMMON 489 /* 490 * In the semi idle case, use the nearest busy CPU for migrating timers 491 * from an idle CPU. This is good for power-savings. 492 * 493 * We don't do similar optimization for completely idle system, as 494 * selecting an idle CPU will add more delays to the timers than intended 495 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 496 */ 497 int get_nohz_timer_target(void) 498 { 499 int i, cpu = smp_processor_id(); 500 struct sched_domain *sd; 501 502 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER)) 503 return cpu; 504 505 rcu_read_lock(); 506 for_each_domain(cpu, sd) { 507 for_each_cpu(i, sched_domain_span(sd)) { 508 if (cpu == i) 509 continue; 510 511 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) { 512 cpu = i; 513 goto unlock; 514 } 515 } 516 } 517 518 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER)) 519 cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 520 unlock: 521 rcu_read_unlock(); 522 return cpu; 523 } 524 525 /* 526 * When add_timer_on() enqueues a timer into the timer wheel of an 527 * idle CPU then this timer might expire before the next timer event 528 * which is scheduled to wake up that CPU. In case of a completely 529 * idle system the next event might even be infinite time into the 530 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 531 * leaves the inner idle loop so the newly added timer is taken into 532 * account when the CPU goes back to idle and evaluates the timer 533 * wheel for the next timer event. 534 */ 535 static void wake_up_idle_cpu(int cpu) 536 { 537 struct rq *rq = cpu_rq(cpu); 538 539 if (cpu == smp_processor_id()) 540 return; 541 542 if (set_nr_and_not_polling(rq->idle)) 543 smp_send_reschedule(cpu); 544 else 545 trace_sched_wake_idle_without_ipi(cpu); 546 } 547 548 static bool wake_up_full_nohz_cpu(int cpu) 549 { 550 /* 551 * We just need the target to call irq_exit() and re-evaluate 552 * the next tick. The nohz full kick at least implies that. 553 * If needed we can still optimize that later with an 554 * empty IRQ. 555 */ 556 if (cpu_is_offline(cpu)) 557 return true; /* Don't try to wake offline CPUs. */ 558 if (tick_nohz_full_cpu(cpu)) { 559 if (cpu != smp_processor_id() || 560 tick_nohz_tick_stopped()) 561 tick_nohz_full_kick_cpu(cpu); 562 return true; 563 } 564 565 return false; 566 } 567 568 /* 569 * Wake up the specified CPU. If the CPU is going offline, it is the 570 * caller's responsibility to deal with the lost wakeup, for example, 571 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 572 */ 573 void wake_up_nohz_cpu(int cpu) 574 { 575 if (!wake_up_full_nohz_cpu(cpu)) 576 wake_up_idle_cpu(cpu); 577 } 578 579 static inline bool got_nohz_idle_kick(void) 580 { 581 int cpu = smp_processor_id(); 582 583 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK)) 584 return false; 585 586 if (idle_cpu(cpu) && !need_resched()) 587 return true; 588 589 /* 590 * We can't run Idle Load Balance on this CPU for this time so we 591 * cancel it and clear NOHZ_BALANCE_KICK 592 */ 593 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 594 return false; 595 } 596 597 #else /* CONFIG_NO_HZ_COMMON */ 598 599 static inline bool got_nohz_idle_kick(void) 600 { 601 return false; 602 } 603 604 #endif /* CONFIG_NO_HZ_COMMON */ 605 606 #ifdef CONFIG_NO_HZ_FULL 607 bool sched_can_stop_tick(struct rq *rq) 608 { 609 int fifo_nr_running; 610 611 /* Deadline tasks, even if single, need the tick */ 612 if (rq->dl.dl_nr_running) 613 return false; 614 615 /* 616 * If there are more than one RR tasks, we need the tick to effect the 617 * actual RR behaviour. 618 */ 619 if (rq->rt.rr_nr_running) { 620 if (rq->rt.rr_nr_running == 1) 621 return true; 622 else 623 return false; 624 } 625 626 /* 627 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 628 * forced preemption between FIFO tasks. 629 */ 630 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 631 if (fifo_nr_running) 632 return true; 633 634 /* 635 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 636 * if there's more than one we need the tick for involuntary 637 * preemption. 638 */ 639 if (rq->nr_running > 1) 640 return false; 641 642 return true; 643 } 644 #endif /* CONFIG_NO_HZ_FULL */ 645 #endif /* CONFIG_SMP */ 646 647 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 648 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 649 /* 650 * Iterate task_group tree rooted at *from, calling @down when first entering a 651 * node and @up when leaving it for the final time. 652 * 653 * Caller must hold rcu_lock or sufficient equivalent. 654 */ 655 int walk_tg_tree_from(struct task_group *from, 656 tg_visitor down, tg_visitor up, void *data) 657 { 658 struct task_group *parent, *child; 659 int ret; 660 661 parent = from; 662 663 down: 664 ret = (*down)(parent, data); 665 if (ret) 666 goto out; 667 list_for_each_entry_rcu(child, &parent->children, siblings) { 668 parent = child; 669 goto down; 670 671 up: 672 continue; 673 } 674 ret = (*up)(parent, data); 675 if (ret || parent == from) 676 goto out; 677 678 child = parent; 679 parent = parent->parent; 680 if (parent) 681 goto up; 682 out: 683 return ret; 684 } 685 686 int tg_nop(struct task_group *tg, void *data) 687 { 688 return 0; 689 } 690 #endif 691 692 static void set_load_weight(struct task_struct *p, bool update_load) 693 { 694 int prio = p->static_prio - MAX_RT_PRIO; 695 struct load_weight *load = &p->se.load; 696 697 /* 698 * SCHED_IDLE tasks get minimal weight: 699 */ 700 if (idle_policy(p->policy)) { 701 load->weight = scale_load(WEIGHT_IDLEPRIO); 702 load->inv_weight = WMULT_IDLEPRIO; 703 p->se.runnable_weight = load->weight; 704 return; 705 } 706 707 /* 708 * SCHED_OTHER tasks have to update their load when changing their 709 * weight 710 */ 711 if (update_load && p->sched_class == &fair_sched_class) { 712 reweight_task(p, prio); 713 } else { 714 load->weight = scale_load(sched_prio_to_weight[prio]); 715 load->inv_weight = sched_prio_to_wmult[prio]; 716 p->se.runnable_weight = load->weight; 717 } 718 } 719 720 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 721 { 722 if (!(flags & ENQUEUE_NOCLOCK)) 723 update_rq_clock(rq); 724 725 if (!(flags & ENQUEUE_RESTORE)) { 726 sched_info_queued(rq, p); 727 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 728 } 729 730 p->sched_class->enqueue_task(rq, p, flags); 731 } 732 733 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 734 { 735 if (!(flags & DEQUEUE_NOCLOCK)) 736 update_rq_clock(rq); 737 738 if (!(flags & DEQUEUE_SAVE)) { 739 sched_info_dequeued(rq, p); 740 psi_dequeue(p, flags & DEQUEUE_SLEEP); 741 } 742 743 p->sched_class->dequeue_task(rq, p, flags); 744 } 745 746 void activate_task(struct rq *rq, struct task_struct *p, int flags) 747 { 748 if (task_contributes_to_load(p)) 749 rq->nr_uninterruptible--; 750 751 enqueue_task(rq, p, flags); 752 } 753 754 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 755 { 756 if (task_contributes_to_load(p)) 757 rq->nr_uninterruptible++; 758 759 dequeue_task(rq, p, flags); 760 } 761 762 /* 763 * __normal_prio - return the priority that is based on the static prio 764 */ 765 static inline int __normal_prio(struct task_struct *p) 766 { 767 return p->static_prio; 768 } 769 770 /* 771 * Calculate the expected normal priority: i.e. priority 772 * without taking RT-inheritance into account. Might be 773 * boosted by interactivity modifiers. Changes upon fork, 774 * setprio syscalls, and whenever the interactivity 775 * estimator recalculates. 776 */ 777 static inline int normal_prio(struct task_struct *p) 778 { 779 int prio; 780 781 if (task_has_dl_policy(p)) 782 prio = MAX_DL_PRIO-1; 783 else if (task_has_rt_policy(p)) 784 prio = MAX_RT_PRIO-1 - p->rt_priority; 785 else 786 prio = __normal_prio(p); 787 return prio; 788 } 789 790 /* 791 * Calculate the current priority, i.e. the priority 792 * taken into account by the scheduler. This value might 793 * be boosted by RT tasks, or might be boosted by 794 * interactivity modifiers. Will be RT if the task got 795 * RT-boosted. If not then it returns p->normal_prio. 796 */ 797 static int effective_prio(struct task_struct *p) 798 { 799 p->normal_prio = normal_prio(p); 800 /* 801 * If we are RT tasks or we were boosted to RT priority, 802 * keep the priority unchanged. Otherwise, update priority 803 * to the normal priority: 804 */ 805 if (!rt_prio(p->prio)) 806 return p->normal_prio; 807 return p->prio; 808 } 809 810 /** 811 * task_curr - is this task currently executing on a CPU? 812 * @p: the task in question. 813 * 814 * Return: 1 if the task is currently executing. 0 otherwise. 815 */ 816 inline int task_curr(const struct task_struct *p) 817 { 818 return cpu_curr(task_cpu(p)) == p; 819 } 820 821 /* 822 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 823 * use the balance_callback list if you want balancing. 824 * 825 * this means any call to check_class_changed() must be followed by a call to 826 * balance_callback(). 827 */ 828 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 829 const struct sched_class *prev_class, 830 int oldprio) 831 { 832 if (prev_class != p->sched_class) { 833 if (prev_class->switched_from) 834 prev_class->switched_from(rq, p); 835 836 p->sched_class->switched_to(rq, p); 837 } else if (oldprio != p->prio || dl_task(p)) 838 p->sched_class->prio_changed(rq, p, oldprio); 839 } 840 841 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 842 { 843 const struct sched_class *class; 844 845 if (p->sched_class == rq->curr->sched_class) { 846 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 847 } else { 848 for_each_class(class) { 849 if (class == rq->curr->sched_class) 850 break; 851 if (class == p->sched_class) { 852 resched_curr(rq); 853 break; 854 } 855 } 856 } 857 858 /* 859 * A queue event has occurred, and we're going to schedule. In 860 * this case, we can save a useless back to back clock update. 861 */ 862 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 863 rq_clock_skip_update(rq); 864 } 865 866 #ifdef CONFIG_SMP 867 868 static inline bool is_per_cpu_kthread(struct task_struct *p) 869 { 870 if (!(p->flags & PF_KTHREAD)) 871 return false; 872 873 if (p->nr_cpus_allowed != 1) 874 return false; 875 876 return true; 877 } 878 879 /* 880 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see 881 * __set_cpus_allowed_ptr() and select_fallback_rq(). 882 */ 883 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 884 { 885 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 886 return false; 887 888 if (is_per_cpu_kthread(p)) 889 return cpu_online(cpu); 890 891 return cpu_active(cpu); 892 } 893 894 /* 895 * This is how migration works: 896 * 897 * 1) we invoke migration_cpu_stop() on the target CPU using 898 * stop_one_cpu(). 899 * 2) stopper starts to run (implicitly forcing the migrated thread 900 * off the CPU) 901 * 3) it checks whether the migrated task is still in the wrong runqueue. 902 * 4) if it's in the wrong runqueue then the migration thread removes 903 * it and puts it into the right queue. 904 * 5) stopper completes and stop_one_cpu() returns and the migration 905 * is done. 906 */ 907 908 /* 909 * move_queued_task - move a queued task to new rq. 910 * 911 * Returns (locked) new rq. Old rq's lock is released. 912 */ 913 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 914 struct task_struct *p, int new_cpu) 915 { 916 lockdep_assert_held(&rq->lock); 917 918 p->on_rq = TASK_ON_RQ_MIGRATING; 919 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 920 set_task_cpu(p, new_cpu); 921 rq_unlock(rq, rf); 922 923 rq = cpu_rq(new_cpu); 924 925 rq_lock(rq, rf); 926 BUG_ON(task_cpu(p) != new_cpu); 927 enqueue_task(rq, p, 0); 928 p->on_rq = TASK_ON_RQ_QUEUED; 929 check_preempt_curr(rq, p, 0); 930 931 return rq; 932 } 933 934 struct migration_arg { 935 struct task_struct *task; 936 int dest_cpu; 937 }; 938 939 /* 940 * Move (not current) task off this CPU, onto the destination CPU. We're doing 941 * this because either it can't run here any more (set_cpus_allowed() 942 * away from this CPU, or CPU going down), or because we're 943 * attempting to rebalance this task on exec (sched_exec). 944 * 945 * So we race with normal scheduler movements, but that's OK, as long 946 * as the task is no longer on this CPU. 947 */ 948 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 949 struct task_struct *p, int dest_cpu) 950 { 951 /* Affinity changed (again). */ 952 if (!is_cpu_allowed(p, dest_cpu)) 953 return rq; 954 955 update_rq_clock(rq); 956 rq = move_queued_task(rq, rf, p, dest_cpu); 957 958 return rq; 959 } 960 961 /* 962 * migration_cpu_stop - this will be executed by a highprio stopper thread 963 * and performs thread migration by bumping thread off CPU then 964 * 'pushing' onto another runqueue. 965 */ 966 static int migration_cpu_stop(void *data) 967 { 968 struct migration_arg *arg = data; 969 struct task_struct *p = arg->task; 970 struct rq *rq = this_rq(); 971 struct rq_flags rf; 972 973 /* 974 * The original target CPU might have gone down and we might 975 * be on another CPU but it doesn't matter. 976 */ 977 local_irq_disable(); 978 /* 979 * We need to explicitly wake pending tasks before running 980 * __migrate_task() such that we will not miss enforcing cpus_allowed 981 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 982 */ 983 sched_ttwu_pending(); 984 985 raw_spin_lock(&p->pi_lock); 986 rq_lock(rq, &rf); 987 /* 988 * If task_rq(p) != rq, it cannot be migrated here, because we're 989 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 990 * we're holding p->pi_lock. 991 */ 992 if (task_rq(p) == rq) { 993 if (task_on_rq_queued(p)) 994 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 995 else 996 p->wake_cpu = arg->dest_cpu; 997 } 998 rq_unlock(rq, &rf); 999 raw_spin_unlock(&p->pi_lock); 1000 1001 local_irq_enable(); 1002 return 0; 1003 } 1004 1005 /* 1006 * sched_class::set_cpus_allowed must do the below, but is not required to 1007 * actually call this function. 1008 */ 1009 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1010 { 1011 cpumask_copy(&p->cpus_allowed, new_mask); 1012 p->nr_cpus_allowed = cpumask_weight(new_mask); 1013 } 1014 1015 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1016 { 1017 struct rq *rq = task_rq(p); 1018 bool queued, running; 1019 1020 lockdep_assert_held(&p->pi_lock); 1021 1022 queued = task_on_rq_queued(p); 1023 running = task_current(rq, p); 1024 1025 if (queued) { 1026 /* 1027 * Because __kthread_bind() calls this on blocked tasks without 1028 * holding rq->lock. 1029 */ 1030 lockdep_assert_held(&rq->lock); 1031 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1032 } 1033 if (running) 1034 put_prev_task(rq, p); 1035 1036 p->sched_class->set_cpus_allowed(p, new_mask); 1037 1038 if (queued) 1039 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1040 if (running) 1041 set_curr_task(rq, p); 1042 } 1043 1044 /* 1045 * Change a given task's CPU affinity. Migrate the thread to a 1046 * proper CPU and schedule it away if the CPU it's executing on 1047 * is removed from the allowed bitmask. 1048 * 1049 * NOTE: the caller must have a valid reference to the task, the 1050 * task must not exit() & deallocate itself prematurely. The 1051 * call is not atomic; no spinlocks may be held. 1052 */ 1053 static int __set_cpus_allowed_ptr(struct task_struct *p, 1054 const struct cpumask *new_mask, bool check) 1055 { 1056 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1057 unsigned int dest_cpu; 1058 struct rq_flags rf; 1059 struct rq *rq; 1060 int ret = 0; 1061 1062 rq = task_rq_lock(p, &rf); 1063 update_rq_clock(rq); 1064 1065 if (p->flags & PF_KTHREAD) { 1066 /* 1067 * Kernel threads are allowed on online && !active CPUs 1068 */ 1069 cpu_valid_mask = cpu_online_mask; 1070 } 1071 1072 /* 1073 * Must re-check here, to close a race against __kthread_bind(), 1074 * sched_setaffinity() is not guaranteed to observe the flag. 1075 */ 1076 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1077 ret = -EINVAL; 1078 goto out; 1079 } 1080 1081 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1082 goto out; 1083 1084 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1085 ret = -EINVAL; 1086 goto out; 1087 } 1088 1089 do_set_cpus_allowed(p, new_mask); 1090 1091 if (p->flags & PF_KTHREAD) { 1092 /* 1093 * For kernel threads that do indeed end up on online && 1094 * !active we want to ensure they are strict per-CPU threads. 1095 */ 1096 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1097 !cpumask_intersects(new_mask, cpu_active_mask) && 1098 p->nr_cpus_allowed != 1); 1099 } 1100 1101 /* Can the task run on the task's current CPU? If so, we're done */ 1102 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1103 goto out; 1104 1105 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1106 if (task_running(rq, p) || p->state == TASK_WAKING) { 1107 struct migration_arg arg = { p, dest_cpu }; 1108 /* Need help from migration thread: drop lock and wait. */ 1109 task_rq_unlock(rq, p, &rf); 1110 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1111 tlb_migrate_finish(p->mm); 1112 return 0; 1113 } else if (task_on_rq_queued(p)) { 1114 /* 1115 * OK, since we're going to drop the lock immediately 1116 * afterwards anyway. 1117 */ 1118 rq = move_queued_task(rq, &rf, p, dest_cpu); 1119 } 1120 out: 1121 task_rq_unlock(rq, p, &rf); 1122 1123 return ret; 1124 } 1125 1126 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1127 { 1128 return __set_cpus_allowed_ptr(p, new_mask, false); 1129 } 1130 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1131 1132 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1133 { 1134 #ifdef CONFIG_SCHED_DEBUG 1135 /* 1136 * We should never call set_task_cpu() on a blocked task, 1137 * ttwu() will sort out the placement. 1138 */ 1139 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1140 !p->on_rq); 1141 1142 /* 1143 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1144 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1145 * time relying on p->on_rq. 1146 */ 1147 WARN_ON_ONCE(p->state == TASK_RUNNING && 1148 p->sched_class == &fair_sched_class && 1149 (p->on_rq && !task_on_rq_migrating(p))); 1150 1151 #ifdef CONFIG_LOCKDEP 1152 /* 1153 * The caller should hold either p->pi_lock or rq->lock, when changing 1154 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1155 * 1156 * sched_move_task() holds both and thus holding either pins the cgroup, 1157 * see task_group(). 1158 * 1159 * Furthermore, all task_rq users should acquire both locks, see 1160 * task_rq_lock(). 1161 */ 1162 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1163 lockdep_is_held(&task_rq(p)->lock))); 1164 #endif 1165 /* 1166 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1167 */ 1168 WARN_ON_ONCE(!cpu_online(new_cpu)); 1169 #endif 1170 1171 trace_sched_migrate_task(p, new_cpu); 1172 1173 if (task_cpu(p) != new_cpu) { 1174 if (p->sched_class->migrate_task_rq) 1175 p->sched_class->migrate_task_rq(p, new_cpu); 1176 p->se.nr_migrations++; 1177 rseq_migrate(p); 1178 perf_event_task_migrate(p); 1179 } 1180 1181 __set_task_cpu(p, new_cpu); 1182 } 1183 1184 #ifdef CONFIG_NUMA_BALANCING 1185 static void __migrate_swap_task(struct task_struct *p, int cpu) 1186 { 1187 if (task_on_rq_queued(p)) { 1188 struct rq *src_rq, *dst_rq; 1189 struct rq_flags srf, drf; 1190 1191 src_rq = task_rq(p); 1192 dst_rq = cpu_rq(cpu); 1193 1194 rq_pin_lock(src_rq, &srf); 1195 rq_pin_lock(dst_rq, &drf); 1196 1197 p->on_rq = TASK_ON_RQ_MIGRATING; 1198 deactivate_task(src_rq, p, 0); 1199 set_task_cpu(p, cpu); 1200 activate_task(dst_rq, p, 0); 1201 p->on_rq = TASK_ON_RQ_QUEUED; 1202 check_preempt_curr(dst_rq, p, 0); 1203 1204 rq_unpin_lock(dst_rq, &drf); 1205 rq_unpin_lock(src_rq, &srf); 1206 1207 } else { 1208 /* 1209 * Task isn't running anymore; make it appear like we migrated 1210 * it before it went to sleep. This means on wakeup we make the 1211 * previous CPU our target instead of where it really is. 1212 */ 1213 p->wake_cpu = cpu; 1214 } 1215 } 1216 1217 struct migration_swap_arg { 1218 struct task_struct *src_task, *dst_task; 1219 int src_cpu, dst_cpu; 1220 }; 1221 1222 static int migrate_swap_stop(void *data) 1223 { 1224 struct migration_swap_arg *arg = data; 1225 struct rq *src_rq, *dst_rq; 1226 int ret = -EAGAIN; 1227 1228 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1229 return -EAGAIN; 1230 1231 src_rq = cpu_rq(arg->src_cpu); 1232 dst_rq = cpu_rq(arg->dst_cpu); 1233 1234 double_raw_lock(&arg->src_task->pi_lock, 1235 &arg->dst_task->pi_lock); 1236 double_rq_lock(src_rq, dst_rq); 1237 1238 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1239 goto unlock; 1240 1241 if (task_cpu(arg->src_task) != arg->src_cpu) 1242 goto unlock; 1243 1244 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed)) 1245 goto unlock; 1246 1247 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed)) 1248 goto unlock; 1249 1250 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1251 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1252 1253 ret = 0; 1254 1255 unlock: 1256 double_rq_unlock(src_rq, dst_rq); 1257 raw_spin_unlock(&arg->dst_task->pi_lock); 1258 raw_spin_unlock(&arg->src_task->pi_lock); 1259 1260 return ret; 1261 } 1262 1263 /* 1264 * Cross migrate two tasks 1265 */ 1266 int migrate_swap(struct task_struct *cur, struct task_struct *p, 1267 int target_cpu, int curr_cpu) 1268 { 1269 struct migration_swap_arg arg; 1270 int ret = -EINVAL; 1271 1272 arg = (struct migration_swap_arg){ 1273 .src_task = cur, 1274 .src_cpu = curr_cpu, 1275 .dst_task = p, 1276 .dst_cpu = target_cpu, 1277 }; 1278 1279 if (arg.src_cpu == arg.dst_cpu) 1280 goto out; 1281 1282 /* 1283 * These three tests are all lockless; this is OK since all of them 1284 * will be re-checked with proper locks held further down the line. 1285 */ 1286 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1287 goto out; 1288 1289 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed)) 1290 goto out; 1291 1292 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed)) 1293 goto out; 1294 1295 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1296 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1297 1298 out: 1299 return ret; 1300 } 1301 #endif /* CONFIG_NUMA_BALANCING */ 1302 1303 /* 1304 * wait_task_inactive - wait for a thread to unschedule. 1305 * 1306 * If @match_state is nonzero, it's the @p->state value just checked and 1307 * not expected to change. If it changes, i.e. @p might have woken up, 1308 * then return zero. When we succeed in waiting for @p to be off its CPU, 1309 * we return a positive number (its total switch count). If a second call 1310 * a short while later returns the same number, the caller can be sure that 1311 * @p has remained unscheduled the whole time. 1312 * 1313 * The caller must ensure that the task *will* unschedule sometime soon, 1314 * else this function might spin for a *long* time. This function can't 1315 * be called with interrupts off, or it may introduce deadlock with 1316 * smp_call_function() if an IPI is sent by the same process we are 1317 * waiting to become inactive. 1318 */ 1319 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1320 { 1321 int running, queued; 1322 struct rq_flags rf; 1323 unsigned long ncsw; 1324 struct rq *rq; 1325 1326 for (;;) { 1327 /* 1328 * We do the initial early heuristics without holding 1329 * any task-queue locks at all. We'll only try to get 1330 * the runqueue lock when things look like they will 1331 * work out! 1332 */ 1333 rq = task_rq(p); 1334 1335 /* 1336 * If the task is actively running on another CPU 1337 * still, just relax and busy-wait without holding 1338 * any locks. 1339 * 1340 * NOTE! Since we don't hold any locks, it's not 1341 * even sure that "rq" stays as the right runqueue! 1342 * But we don't care, since "task_running()" will 1343 * return false if the runqueue has changed and p 1344 * is actually now running somewhere else! 1345 */ 1346 while (task_running(rq, p)) { 1347 if (match_state && unlikely(p->state != match_state)) 1348 return 0; 1349 cpu_relax(); 1350 } 1351 1352 /* 1353 * Ok, time to look more closely! We need the rq 1354 * lock now, to be *sure*. If we're wrong, we'll 1355 * just go back and repeat. 1356 */ 1357 rq = task_rq_lock(p, &rf); 1358 trace_sched_wait_task(p); 1359 running = task_running(rq, p); 1360 queued = task_on_rq_queued(p); 1361 ncsw = 0; 1362 if (!match_state || p->state == match_state) 1363 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1364 task_rq_unlock(rq, p, &rf); 1365 1366 /* 1367 * If it changed from the expected state, bail out now. 1368 */ 1369 if (unlikely(!ncsw)) 1370 break; 1371 1372 /* 1373 * Was it really running after all now that we 1374 * checked with the proper locks actually held? 1375 * 1376 * Oops. Go back and try again.. 1377 */ 1378 if (unlikely(running)) { 1379 cpu_relax(); 1380 continue; 1381 } 1382 1383 /* 1384 * It's not enough that it's not actively running, 1385 * it must be off the runqueue _entirely_, and not 1386 * preempted! 1387 * 1388 * So if it was still runnable (but just not actively 1389 * running right now), it's preempted, and we should 1390 * yield - it could be a while. 1391 */ 1392 if (unlikely(queued)) { 1393 ktime_t to = NSEC_PER_SEC / HZ; 1394 1395 set_current_state(TASK_UNINTERRUPTIBLE); 1396 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1397 continue; 1398 } 1399 1400 /* 1401 * Ahh, all good. It wasn't running, and it wasn't 1402 * runnable, which means that it will never become 1403 * running in the future either. We're all done! 1404 */ 1405 break; 1406 } 1407 1408 return ncsw; 1409 } 1410 1411 /*** 1412 * kick_process - kick a running thread to enter/exit the kernel 1413 * @p: the to-be-kicked thread 1414 * 1415 * Cause a process which is running on another CPU to enter 1416 * kernel-mode, without any delay. (to get signals handled.) 1417 * 1418 * NOTE: this function doesn't have to take the runqueue lock, 1419 * because all it wants to ensure is that the remote task enters 1420 * the kernel. If the IPI races and the task has been migrated 1421 * to another CPU then no harm is done and the purpose has been 1422 * achieved as well. 1423 */ 1424 void kick_process(struct task_struct *p) 1425 { 1426 int cpu; 1427 1428 preempt_disable(); 1429 cpu = task_cpu(p); 1430 if ((cpu != smp_processor_id()) && task_curr(p)) 1431 smp_send_reschedule(cpu); 1432 preempt_enable(); 1433 } 1434 EXPORT_SYMBOL_GPL(kick_process); 1435 1436 /* 1437 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1438 * 1439 * A few notes on cpu_active vs cpu_online: 1440 * 1441 * - cpu_active must be a subset of cpu_online 1442 * 1443 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 1444 * see __set_cpus_allowed_ptr(). At this point the newly online 1445 * CPU isn't yet part of the sched domains, and balancing will not 1446 * see it. 1447 * 1448 * - on CPU-down we clear cpu_active() to mask the sched domains and 1449 * avoid the load balancer to place new tasks on the to be removed 1450 * CPU. Existing tasks will remain running there and will be taken 1451 * off. 1452 * 1453 * This means that fallback selection must not select !active CPUs. 1454 * And can assume that any active CPU must be online. Conversely 1455 * select_task_rq() below may allow selection of !active CPUs in order 1456 * to satisfy the above rules. 1457 */ 1458 static int select_fallback_rq(int cpu, struct task_struct *p) 1459 { 1460 int nid = cpu_to_node(cpu); 1461 const struct cpumask *nodemask = NULL; 1462 enum { cpuset, possible, fail } state = cpuset; 1463 int dest_cpu; 1464 1465 /* 1466 * If the node that the CPU is on has been offlined, cpu_to_node() 1467 * will return -1. There is no CPU on the node, and we should 1468 * select the CPU on the other node. 1469 */ 1470 if (nid != -1) { 1471 nodemask = cpumask_of_node(nid); 1472 1473 /* Look for allowed, online CPU in same node. */ 1474 for_each_cpu(dest_cpu, nodemask) { 1475 if (!cpu_active(dest_cpu)) 1476 continue; 1477 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 1478 return dest_cpu; 1479 } 1480 } 1481 1482 for (;;) { 1483 /* Any allowed, online CPU? */ 1484 for_each_cpu(dest_cpu, &p->cpus_allowed) { 1485 if (!is_cpu_allowed(p, dest_cpu)) 1486 continue; 1487 1488 goto out; 1489 } 1490 1491 /* No more Mr. Nice Guy. */ 1492 switch (state) { 1493 case cpuset: 1494 if (IS_ENABLED(CONFIG_CPUSETS)) { 1495 cpuset_cpus_allowed_fallback(p); 1496 state = possible; 1497 break; 1498 } 1499 /* Fall-through */ 1500 case possible: 1501 do_set_cpus_allowed(p, cpu_possible_mask); 1502 state = fail; 1503 break; 1504 1505 case fail: 1506 BUG(); 1507 break; 1508 } 1509 } 1510 1511 out: 1512 if (state != cpuset) { 1513 /* 1514 * Don't tell them about moving exiting tasks or 1515 * kernel threads (both mm NULL), since they never 1516 * leave kernel. 1517 */ 1518 if (p->mm && printk_ratelimit()) { 1519 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1520 task_pid_nr(p), p->comm, cpu); 1521 } 1522 } 1523 1524 return dest_cpu; 1525 } 1526 1527 /* 1528 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1529 */ 1530 static inline 1531 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1532 { 1533 lockdep_assert_held(&p->pi_lock); 1534 1535 if (p->nr_cpus_allowed > 1) 1536 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1537 else 1538 cpu = cpumask_any(&p->cpus_allowed); 1539 1540 /* 1541 * In order not to call set_task_cpu() on a blocking task we need 1542 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1543 * CPU. 1544 * 1545 * Since this is common to all placement strategies, this lives here. 1546 * 1547 * [ this allows ->select_task() to simply return task_cpu(p) and 1548 * not worry about this generic constraint ] 1549 */ 1550 if (unlikely(!is_cpu_allowed(p, cpu))) 1551 cpu = select_fallback_rq(task_cpu(p), p); 1552 1553 return cpu; 1554 } 1555 1556 static void update_avg(u64 *avg, u64 sample) 1557 { 1558 s64 diff = sample - *avg; 1559 *avg += diff >> 3; 1560 } 1561 1562 void sched_set_stop_task(int cpu, struct task_struct *stop) 1563 { 1564 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1565 struct task_struct *old_stop = cpu_rq(cpu)->stop; 1566 1567 if (stop) { 1568 /* 1569 * Make it appear like a SCHED_FIFO task, its something 1570 * userspace knows about and won't get confused about. 1571 * 1572 * Also, it will make PI more or less work without too 1573 * much confusion -- but then, stop work should not 1574 * rely on PI working anyway. 1575 */ 1576 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 1577 1578 stop->sched_class = &stop_sched_class; 1579 } 1580 1581 cpu_rq(cpu)->stop = stop; 1582 1583 if (old_stop) { 1584 /* 1585 * Reset it back to a normal scheduling class so that 1586 * it can die in pieces. 1587 */ 1588 old_stop->sched_class = &rt_sched_class; 1589 } 1590 } 1591 1592 #else 1593 1594 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1595 const struct cpumask *new_mask, bool check) 1596 { 1597 return set_cpus_allowed_ptr(p, new_mask); 1598 } 1599 1600 #endif /* CONFIG_SMP */ 1601 1602 static void 1603 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1604 { 1605 struct rq *rq; 1606 1607 if (!schedstat_enabled()) 1608 return; 1609 1610 rq = this_rq(); 1611 1612 #ifdef CONFIG_SMP 1613 if (cpu == rq->cpu) { 1614 __schedstat_inc(rq->ttwu_local); 1615 __schedstat_inc(p->se.statistics.nr_wakeups_local); 1616 } else { 1617 struct sched_domain *sd; 1618 1619 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 1620 rcu_read_lock(); 1621 for_each_domain(rq->cpu, sd) { 1622 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1623 __schedstat_inc(sd->ttwu_wake_remote); 1624 break; 1625 } 1626 } 1627 rcu_read_unlock(); 1628 } 1629 1630 if (wake_flags & WF_MIGRATED) 1631 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1632 #endif /* CONFIG_SMP */ 1633 1634 __schedstat_inc(rq->ttwu_count); 1635 __schedstat_inc(p->se.statistics.nr_wakeups); 1636 1637 if (wake_flags & WF_SYNC) 1638 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 1639 } 1640 1641 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1642 { 1643 activate_task(rq, p, en_flags); 1644 p->on_rq = TASK_ON_RQ_QUEUED; 1645 1646 /* If a worker is waking up, notify the workqueue: */ 1647 if (p->flags & PF_WQ_WORKER) 1648 wq_worker_waking_up(p, cpu_of(rq)); 1649 } 1650 1651 /* 1652 * Mark the task runnable and perform wakeup-preemption. 1653 */ 1654 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1655 struct rq_flags *rf) 1656 { 1657 check_preempt_curr(rq, p, wake_flags); 1658 p->state = TASK_RUNNING; 1659 trace_sched_wakeup(p); 1660 1661 #ifdef CONFIG_SMP 1662 if (p->sched_class->task_woken) { 1663 /* 1664 * Our task @p is fully woken up and running; so its safe to 1665 * drop the rq->lock, hereafter rq is only used for statistics. 1666 */ 1667 rq_unpin_lock(rq, rf); 1668 p->sched_class->task_woken(rq, p); 1669 rq_repin_lock(rq, rf); 1670 } 1671 1672 if (rq->idle_stamp) { 1673 u64 delta = rq_clock(rq) - rq->idle_stamp; 1674 u64 max = 2*rq->max_idle_balance_cost; 1675 1676 update_avg(&rq->avg_idle, delta); 1677 1678 if (rq->avg_idle > max) 1679 rq->avg_idle = max; 1680 1681 rq->idle_stamp = 0; 1682 } 1683 #endif 1684 } 1685 1686 static void 1687 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1688 struct rq_flags *rf) 1689 { 1690 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 1691 1692 lockdep_assert_held(&rq->lock); 1693 1694 #ifdef CONFIG_SMP 1695 if (p->sched_contributes_to_load) 1696 rq->nr_uninterruptible--; 1697 1698 if (wake_flags & WF_MIGRATED) 1699 en_flags |= ENQUEUE_MIGRATED; 1700 #endif 1701 1702 ttwu_activate(rq, p, en_flags); 1703 ttwu_do_wakeup(rq, p, wake_flags, rf); 1704 } 1705 1706 /* 1707 * Called in case the task @p isn't fully descheduled from its runqueue, 1708 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1709 * since all we need to do is flip p->state to TASK_RUNNING, since 1710 * the task is still ->on_rq. 1711 */ 1712 static int ttwu_remote(struct task_struct *p, int wake_flags) 1713 { 1714 struct rq_flags rf; 1715 struct rq *rq; 1716 int ret = 0; 1717 1718 rq = __task_rq_lock(p, &rf); 1719 if (task_on_rq_queued(p)) { 1720 /* check_preempt_curr() may use rq clock */ 1721 update_rq_clock(rq); 1722 ttwu_do_wakeup(rq, p, wake_flags, &rf); 1723 ret = 1; 1724 } 1725 __task_rq_unlock(rq, &rf); 1726 1727 return ret; 1728 } 1729 1730 #ifdef CONFIG_SMP 1731 void sched_ttwu_pending(void) 1732 { 1733 struct rq *rq = this_rq(); 1734 struct llist_node *llist = llist_del_all(&rq->wake_list); 1735 struct task_struct *p, *t; 1736 struct rq_flags rf; 1737 1738 if (!llist) 1739 return; 1740 1741 rq_lock_irqsave(rq, &rf); 1742 update_rq_clock(rq); 1743 1744 llist_for_each_entry_safe(p, t, llist, wake_entry) 1745 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 1746 1747 rq_unlock_irqrestore(rq, &rf); 1748 } 1749 1750 void scheduler_ipi(void) 1751 { 1752 /* 1753 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1754 * TIF_NEED_RESCHED remotely (for the first time) will also send 1755 * this IPI. 1756 */ 1757 preempt_fold_need_resched(); 1758 1759 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1760 return; 1761 1762 /* 1763 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1764 * traditionally all their work was done from the interrupt return 1765 * path. Now that we actually do some work, we need to make sure 1766 * we do call them. 1767 * 1768 * Some archs already do call them, luckily irq_enter/exit nest 1769 * properly. 1770 * 1771 * Arguably we should visit all archs and update all handlers, 1772 * however a fair share of IPIs are still resched only so this would 1773 * somewhat pessimize the simple resched case. 1774 */ 1775 irq_enter(); 1776 sched_ttwu_pending(); 1777 1778 /* 1779 * Check if someone kicked us for doing the nohz idle load balance. 1780 */ 1781 if (unlikely(got_nohz_idle_kick())) { 1782 this_rq()->idle_balance = 1; 1783 raise_softirq_irqoff(SCHED_SOFTIRQ); 1784 } 1785 irq_exit(); 1786 } 1787 1788 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1789 { 1790 struct rq *rq = cpu_rq(cpu); 1791 1792 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1793 1794 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1795 if (!set_nr_if_polling(rq->idle)) 1796 smp_send_reschedule(cpu); 1797 else 1798 trace_sched_wake_idle_without_ipi(cpu); 1799 } 1800 } 1801 1802 void wake_up_if_idle(int cpu) 1803 { 1804 struct rq *rq = cpu_rq(cpu); 1805 struct rq_flags rf; 1806 1807 rcu_read_lock(); 1808 1809 if (!is_idle_task(rcu_dereference(rq->curr))) 1810 goto out; 1811 1812 if (set_nr_if_polling(rq->idle)) { 1813 trace_sched_wake_idle_without_ipi(cpu); 1814 } else { 1815 rq_lock_irqsave(rq, &rf); 1816 if (is_idle_task(rq->curr)) 1817 smp_send_reschedule(cpu); 1818 /* Else CPU is not idle, do nothing here: */ 1819 rq_unlock_irqrestore(rq, &rf); 1820 } 1821 1822 out: 1823 rcu_read_unlock(); 1824 } 1825 1826 bool cpus_share_cache(int this_cpu, int that_cpu) 1827 { 1828 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1829 } 1830 #endif /* CONFIG_SMP */ 1831 1832 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1833 { 1834 struct rq *rq = cpu_rq(cpu); 1835 struct rq_flags rf; 1836 1837 #if defined(CONFIG_SMP) 1838 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1839 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 1840 ttwu_queue_remote(p, cpu, wake_flags); 1841 return; 1842 } 1843 #endif 1844 1845 rq_lock(rq, &rf); 1846 update_rq_clock(rq); 1847 ttwu_do_activate(rq, p, wake_flags, &rf); 1848 rq_unlock(rq, &rf); 1849 } 1850 1851 /* 1852 * Notes on Program-Order guarantees on SMP systems. 1853 * 1854 * MIGRATION 1855 * 1856 * The basic program-order guarantee on SMP systems is that when a task [t] 1857 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 1858 * execution on its new CPU [c1]. 1859 * 1860 * For migration (of runnable tasks) this is provided by the following means: 1861 * 1862 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1863 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1864 * rq(c1)->lock (if not at the same time, then in that order). 1865 * C) LOCK of the rq(c1)->lock scheduling in task 1866 * 1867 * Release/acquire chaining guarantees that B happens after A and C after B. 1868 * Note: the CPU doing B need not be c0 or c1 1869 * 1870 * Example: 1871 * 1872 * CPU0 CPU1 CPU2 1873 * 1874 * LOCK rq(0)->lock 1875 * sched-out X 1876 * sched-in Y 1877 * UNLOCK rq(0)->lock 1878 * 1879 * LOCK rq(0)->lock // orders against CPU0 1880 * dequeue X 1881 * UNLOCK rq(0)->lock 1882 * 1883 * LOCK rq(1)->lock 1884 * enqueue X 1885 * UNLOCK rq(1)->lock 1886 * 1887 * LOCK rq(1)->lock // orders against CPU2 1888 * sched-out Z 1889 * sched-in X 1890 * UNLOCK rq(1)->lock 1891 * 1892 * 1893 * BLOCKING -- aka. SLEEP + WAKEUP 1894 * 1895 * For blocking we (obviously) need to provide the same guarantee as for 1896 * migration. However the means are completely different as there is no lock 1897 * chain to provide order. Instead we do: 1898 * 1899 * 1) smp_store_release(X->on_cpu, 0) 1900 * 2) smp_cond_load_acquire(!X->on_cpu) 1901 * 1902 * Example: 1903 * 1904 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1905 * 1906 * LOCK rq(0)->lock LOCK X->pi_lock 1907 * dequeue X 1908 * sched-out X 1909 * smp_store_release(X->on_cpu, 0); 1910 * 1911 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1912 * X->state = WAKING 1913 * set_task_cpu(X,2) 1914 * 1915 * LOCK rq(2)->lock 1916 * enqueue X 1917 * X->state = RUNNING 1918 * UNLOCK rq(2)->lock 1919 * 1920 * LOCK rq(2)->lock // orders against CPU1 1921 * sched-out Z 1922 * sched-in X 1923 * UNLOCK rq(2)->lock 1924 * 1925 * UNLOCK X->pi_lock 1926 * UNLOCK rq(0)->lock 1927 * 1928 * 1929 * However, for wakeups there is a second guarantee we must provide, namely we 1930 * must ensure that CONDITION=1 done by the caller can not be reordered with 1931 * accesses to the task state; see try_to_wake_up() and set_current_state(). 1932 */ 1933 1934 /** 1935 * try_to_wake_up - wake up a thread 1936 * @p: the thread to be awakened 1937 * @state: the mask of task states that can be woken 1938 * @wake_flags: wake modifier flags (WF_*) 1939 * 1940 * If (@state & @p->state) @p->state = TASK_RUNNING. 1941 * 1942 * If the task was not queued/runnable, also place it back on a runqueue. 1943 * 1944 * Atomic against schedule() which would dequeue a task, also see 1945 * set_current_state(). 1946 * 1947 * This function executes a full memory barrier before accessing the task 1948 * state; see set_current_state(). 1949 * 1950 * Return: %true if @p->state changes (an actual wakeup was done), 1951 * %false otherwise. 1952 */ 1953 static int 1954 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1955 { 1956 unsigned long flags; 1957 int cpu, success = 0; 1958 1959 /* 1960 * If we are going to wake up a thread waiting for CONDITION we 1961 * need to ensure that CONDITION=1 done by the caller can not be 1962 * reordered with p->state check below. This pairs with mb() in 1963 * set_current_state() the waiting thread does. 1964 */ 1965 raw_spin_lock_irqsave(&p->pi_lock, flags); 1966 smp_mb__after_spinlock(); 1967 if (!(p->state & state)) 1968 goto out; 1969 1970 trace_sched_waking(p); 1971 1972 /* We're going to change ->state: */ 1973 success = 1; 1974 cpu = task_cpu(p); 1975 1976 /* 1977 * Ensure we load p->on_rq _after_ p->state, otherwise it would 1978 * be possible to, falsely, observe p->on_rq == 0 and get stuck 1979 * in smp_cond_load_acquire() below. 1980 * 1981 * sched_ttwu_pending() try_to_wake_up() 1982 * STORE p->on_rq = 1 LOAD p->state 1983 * UNLOCK rq->lock 1984 * 1985 * __schedule() (switch to task 'p') 1986 * LOCK rq->lock smp_rmb(); 1987 * smp_mb__after_spinlock(); 1988 * UNLOCK rq->lock 1989 * 1990 * [task p] 1991 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 1992 * 1993 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 1994 * __schedule(). See the comment for smp_mb__after_spinlock(). 1995 */ 1996 smp_rmb(); 1997 if (p->on_rq && ttwu_remote(p, wake_flags)) 1998 goto stat; 1999 2000 #ifdef CONFIG_SMP 2001 /* 2002 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2003 * possible to, falsely, observe p->on_cpu == 0. 2004 * 2005 * One must be running (->on_cpu == 1) in order to remove oneself 2006 * from the runqueue. 2007 * 2008 * __schedule() (switch to task 'p') try_to_wake_up() 2009 * STORE p->on_cpu = 1 LOAD p->on_rq 2010 * UNLOCK rq->lock 2011 * 2012 * __schedule() (put 'p' to sleep) 2013 * LOCK rq->lock smp_rmb(); 2014 * smp_mb__after_spinlock(); 2015 * STORE p->on_rq = 0 LOAD p->on_cpu 2016 * 2017 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2018 * __schedule(). See the comment for smp_mb__after_spinlock(). 2019 */ 2020 smp_rmb(); 2021 2022 /* 2023 * If the owning (remote) CPU is still in the middle of schedule() with 2024 * this task as prev, wait until its done referencing the task. 2025 * 2026 * Pairs with the smp_store_release() in finish_task(). 2027 * 2028 * This ensures that tasks getting woken will be fully ordered against 2029 * their previous state and preserve Program Order. 2030 */ 2031 smp_cond_load_acquire(&p->on_cpu, !VAL); 2032 2033 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2034 p->state = TASK_WAKING; 2035 2036 if (p->in_iowait) { 2037 delayacct_blkio_end(p); 2038 atomic_dec(&task_rq(p)->nr_iowait); 2039 } 2040 2041 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2042 if (task_cpu(p) != cpu) { 2043 wake_flags |= WF_MIGRATED; 2044 psi_ttwu_dequeue(p); 2045 set_task_cpu(p, cpu); 2046 } 2047 2048 #else /* CONFIG_SMP */ 2049 2050 if (p->in_iowait) { 2051 delayacct_blkio_end(p); 2052 atomic_dec(&task_rq(p)->nr_iowait); 2053 } 2054 2055 #endif /* CONFIG_SMP */ 2056 2057 ttwu_queue(p, cpu, wake_flags); 2058 stat: 2059 ttwu_stat(p, cpu, wake_flags); 2060 out: 2061 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2062 2063 return success; 2064 } 2065 2066 /** 2067 * try_to_wake_up_local - try to wake up a local task with rq lock held 2068 * @p: the thread to be awakened 2069 * @rf: request-queue flags for pinning 2070 * 2071 * Put @p on the run-queue if it's not already there. The caller must 2072 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2073 * the current task. 2074 */ 2075 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf) 2076 { 2077 struct rq *rq = task_rq(p); 2078 2079 if (WARN_ON_ONCE(rq != this_rq()) || 2080 WARN_ON_ONCE(p == current)) 2081 return; 2082 2083 lockdep_assert_held(&rq->lock); 2084 2085 if (!raw_spin_trylock(&p->pi_lock)) { 2086 /* 2087 * This is OK, because current is on_cpu, which avoids it being 2088 * picked for load-balance and preemption/IRQs are still 2089 * disabled avoiding further scheduler activity on it and we've 2090 * not yet picked a replacement task. 2091 */ 2092 rq_unlock(rq, rf); 2093 raw_spin_lock(&p->pi_lock); 2094 rq_relock(rq, rf); 2095 } 2096 2097 if (!(p->state & TASK_NORMAL)) 2098 goto out; 2099 2100 trace_sched_waking(p); 2101 2102 if (!task_on_rq_queued(p)) { 2103 if (p->in_iowait) { 2104 delayacct_blkio_end(p); 2105 atomic_dec(&rq->nr_iowait); 2106 } 2107 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK); 2108 } 2109 2110 ttwu_do_wakeup(rq, p, 0, rf); 2111 ttwu_stat(p, smp_processor_id(), 0); 2112 out: 2113 raw_spin_unlock(&p->pi_lock); 2114 } 2115 2116 /** 2117 * wake_up_process - Wake up a specific process 2118 * @p: The process to be woken up. 2119 * 2120 * Attempt to wake up the nominated process and move it to the set of runnable 2121 * processes. 2122 * 2123 * Return: 1 if the process was woken up, 0 if it was already running. 2124 * 2125 * This function executes a full memory barrier before accessing the task state. 2126 */ 2127 int wake_up_process(struct task_struct *p) 2128 { 2129 return try_to_wake_up(p, TASK_NORMAL, 0); 2130 } 2131 EXPORT_SYMBOL(wake_up_process); 2132 2133 int wake_up_state(struct task_struct *p, unsigned int state) 2134 { 2135 return try_to_wake_up(p, state, 0); 2136 } 2137 2138 /* 2139 * Perform scheduler related setup for a newly forked process p. 2140 * p is forked by current. 2141 * 2142 * __sched_fork() is basic setup used by init_idle() too: 2143 */ 2144 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2145 { 2146 p->on_rq = 0; 2147 2148 p->se.on_rq = 0; 2149 p->se.exec_start = 0; 2150 p->se.sum_exec_runtime = 0; 2151 p->se.prev_sum_exec_runtime = 0; 2152 p->se.nr_migrations = 0; 2153 p->se.vruntime = 0; 2154 INIT_LIST_HEAD(&p->se.group_node); 2155 2156 #ifdef CONFIG_FAIR_GROUP_SCHED 2157 p->se.cfs_rq = NULL; 2158 #endif 2159 2160 #ifdef CONFIG_SCHEDSTATS 2161 /* Even if schedstat is disabled, there should not be garbage */ 2162 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2163 #endif 2164 2165 RB_CLEAR_NODE(&p->dl.rb_node); 2166 init_dl_task_timer(&p->dl); 2167 init_dl_inactive_task_timer(&p->dl); 2168 __dl_clear_params(p); 2169 2170 INIT_LIST_HEAD(&p->rt.run_list); 2171 p->rt.timeout = 0; 2172 p->rt.time_slice = sched_rr_timeslice; 2173 p->rt.on_rq = 0; 2174 p->rt.on_list = 0; 2175 2176 #ifdef CONFIG_PREEMPT_NOTIFIERS 2177 INIT_HLIST_HEAD(&p->preempt_notifiers); 2178 #endif 2179 2180 init_numa_balancing(clone_flags, p); 2181 } 2182 2183 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2184 2185 #ifdef CONFIG_NUMA_BALANCING 2186 2187 void set_numabalancing_state(bool enabled) 2188 { 2189 if (enabled) 2190 static_branch_enable(&sched_numa_balancing); 2191 else 2192 static_branch_disable(&sched_numa_balancing); 2193 } 2194 2195 #ifdef CONFIG_PROC_SYSCTL 2196 int sysctl_numa_balancing(struct ctl_table *table, int write, 2197 void __user *buffer, size_t *lenp, loff_t *ppos) 2198 { 2199 struct ctl_table t; 2200 int err; 2201 int state = static_branch_likely(&sched_numa_balancing); 2202 2203 if (write && !capable(CAP_SYS_ADMIN)) 2204 return -EPERM; 2205 2206 t = *table; 2207 t.data = &state; 2208 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2209 if (err < 0) 2210 return err; 2211 if (write) 2212 set_numabalancing_state(state); 2213 return err; 2214 } 2215 #endif 2216 #endif 2217 2218 #ifdef CONFIG_SCHEDSTATS 2219 2220 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2221 static bool __initdata __sched_schedstats = false; 2222 2223 static void set_schedstats(bool enabled) 2224 { 2225 if (enabled) 2226 static_branch_enable(&sched_schedstats); 2227 else 2228 static_branch_disable(&sched_schedstats); 2229 } 2230 2231 void force_schedstat_enabled(void) 2232 { 2233 if (!schedstat_enabled()) { 2234 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2235 static_branch_enable(&sched_schedstats); 2236 } 2237 } 2238 2239 static int __init setup_schedstats(char *str) 2240 { 2241 int ret = 0; 2242 if (!str) 2243 goto out; 2244 2245 /* 2246 * This code is called before jump labels have been set up, so we can't 2247 * change the static branch directly just yet. Instead set a temporary 2248 * variable so init_schedstats() can do it later. 2249 */ 2250 if (!strcmp(str, "enable")) { 2251 __sched_schedstats = true; 2252 ret = 1; 2253 } else if (!strcmp(str, "disable")) { 2254 __sched_schedstats = false; 2255 ret = 1; 2256 } 2257 out: 2258 if (!ret) 2259 pr_warn("Unable to parse schedstats=\n"); 2260 2261 return ret; 2262 } 2263 __setup("schedstats=", setup_schedstats); 2264 2265 static void __init init_schedstats(void) 2266 { 2267 set_schedstats(__sched_schedstats); 2268 } 2269 2270 #ifdef CONFIG_PROC_SYSCTL 2271 int sysctl_schedstats(struct ctl_table *table, int write, 2272 void __user *buffer, size_t *lenp, loff_t *ppos) 2273 { 2274 struct ctl_table t; 2275 int err; 2276 int state = static_branch_likely(&sched_schedstats); 2277 2278 if (write && !capable(CAP_SYS_ADMIN)) 2279 return -EPERM; 2280 2281 t = *table; 2282 t.data = &state; 2283 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2284 if (err < 0) 2285 return err; 2286 if (write) 2287 set_schedstats(state); 2288 return err; 2289 } 2290 #endif /* CONFIG_PROC_SYSCTL */ 2291 #else /* !CONFIG_SCHEDSTATS */ 2292 static inline void init_schedstats(void) {} 2293 #endif /* CONFIG_SCHEDSTATS */ 2294 2295 /* 2296 * fork()/clone()-time setup: 2297 */ 2298 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2299 { 2300 unsigned long flags; 2301 2302 __sched_fork(clone_flags, p); 2303 /* 2304 * We mark the process as NEW here. This guarantees that 2305 * nobody will actually run it, and a signal or other external 2306 * event cannot wake it up and insert it on the runqueue either. 2307 */ 2308 p->state = TASK_NEW; 2309 2310 /* 2311 * Make sure we do not leak PI boosting priority to the child. 2312 */ 2313 p->prio = current->normal_prio; 2314 2315 /* 2316 * Revert to default priority/policy on fork if requested. 2317 */ 2318 if (unlikely(p->sched_reset_on_fork)) { 2319 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2320 p->policy = SCHED_NORMAL; 2321 p->static_prio = NICE_TO_PRIO(0); 2322 p->rt_priority = 0; 2323 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2324 p->static_prio = NICE_TO_PRIO(0); 2325 2326 p->prio = p->normal_prio = __normal_prio(p); 2327 set_load_weight(p, false); 2328 2329 /* 2330 * We don't need the reset flag anymore after the fork. It has 2331 * fulfilled its duty: 2332 */ 2333 p->sched_reset_on_fork = 0; 2334 } 2335 2336 if (dl_prio(p->prio)) 2337 return -EAGAIN; 2338 else if (rt_prio(p->prio)) 2339 p->sched_class = &rt_sched_class; 2340 else 2341 p->sched_class = &fair_sched_class; 2342 2343 init_entity_runnable_average(&p->se); 2344 2345 /* 2346 * The child is not yet in the pid-hash so no cgroup attach races, 2347 * and the cgroup is pinned to this child due to cgroup_fork() 2348 * is ran before sched_fork(). 2349 * 2350 * Silence PROVE_RCU. 2351 */ 2352 raw_spin_lock_irqsave(&p->pi_lock, flags); 2353 /* 2354 * We're setting the CPU for the first time, we don't migrate, 2355 * so use __set_task_cpu(). 2356 */ 2357 __set_task_cpu(p, smp_processor_id()); 2358 if (p->sched_class->task_fork) 2359 p->sched_class->task_fork(p); 2360 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2361 2362 #ifdef CONFIG_SCHED_INFO 2363 if (likely(sched_info_on())) 2364 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2365 #endif 2366 #if defined(CONFIG_SMP) 2367 p->on_cpu = 0; 2368 #endif 2369 init_task_preempt_count(p); 2370 #ifdef CONFIG_SMP 2371 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2372 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2373 #endif 2374 return 0; 2375 } 2376 2377 unsigned long to_ratio(u64 period, u64 runtime) 2378 { 2379 if (runtime == RUNTIME_INF) 2380 return BW_UNIT; 2381 2382 /* 2383 * Doing this here saves a lot of checks in all 2384 * the calling paths, and returning zero seems 2385 * safe for them anyway. 2386 */ 2387 if (period == 0) 2388 return 0; 2389 2390 return div64_u64(runtime << BW_SHIFT, period); 2391 } 2392 2393 /* 2394 * wake_up_new_task - wake up a newly created task for the first time. 2395 * 2396 * This function will do some initial scheduler statistics housekeeping 2397 * that must be done for every newly created context, then puts the task 2398 * on the runqueue and wakes it. 2399 */ 2400 void wake_up_new_task(struct task_struct *p) 2401 { 2402 struct rq_flags rf; 2403 struct rq *rq; 2404 2405 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2406 p->state = TASK_RUNNING; 2407 #ifdef CONFIG_SMP 2408 /* 2409 * Fork balancing, do it here and not earlier because: 2410 * - cpus_allowed can change in the fork path 2411 * - any previously selected CPU might disappear through hotplug 2412 * 2413 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2414 * as we're not fully set-up yet. 2415 */ 2416 p->recent_used_cpu = task_cpu(p); 2417 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2418 #endif 2419 rq = __task_rq_lock(p, &rf); 2420 update_rq_clock(rq); 2421 post_init_entity_util_avg(&p->se); 2422 2423 activate_task(rq, p, ENQUEUE_NOCLOCK); 2424 p->on_rq = TASK_ON_RQ_QUEUED; 2425 trace_sched_wakeup_new(p); 2426 check_preempt_curr(rq, p, WF_FORK); 2427 #ifdef CONFIG_SMP 2428 if (p->sched_class->task_woken) { 2429 /* 2430 * Nothing relies on rq->lock after this, so its fine to 2431 * drop it. 2432 */ 2433 rq_unpin_lock(rq, &rf); 2434 p->sched_class->task_woken(rq, p); 2435 rq_repin_lock(rq, &rf); 2436 } 2437 #endif 2438 task_rq_unlock(rq, p, &rf); 2439 } 2440 2441 #ifdef CONFIG_PREEMPT_NOTIFIERS 2442 2443 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 2444 2445 void preempt_notifier_inc(void) 2446 { 2447 static_branch_inc(&preempt_notifier_key); 2448 } 2449 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2450 2451 void preempt_notifier_dec(void) 2452 { 2453 static_branch_dec(&preempt_notifier_key); 2454 } 2455 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2456 2457 /** 2458 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2459 * @notifier: notifier struct to register 2460 */ 2461 void preempt_notifier_register(struct preempt_notifier *notifier) 2462 { 2463 if (!static_branch_unlikely(&preempt_notifier_key)) 2464 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2465 2466 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2467 } 2468 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2469 2470 /** 2471 * preempt_notifier_unregister - no longer interested in preemption notifications 2472 * @notifier: notifier struct to unregister 2473 * 2474 * This is *not* safe to call from within a preemption notifier. 2475 */ 2476 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2477 { 2478 hlist_del(¬ifier->link); 2479 } 2480 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2481 2482 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2483 { 2484 struct preempt_notifier *notifier; 2485 2486 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2487 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2488 } 2489 2490 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2491 { 2492 if (static_branch_unlikely(&preempt_notifier_key)) 2493 __fire_sched_in_preempt_notifiers(curr); 2494 } 2495 2496 static void 2497 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2498 struct task_struct *next) 2499 { 2500 struct preempt_notifier *notifier; 2501 2502 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2503 notifier->ops->sched_out(notifier, next); 2504 } 2505 2506 static __always_inline void 2507 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2508 struct task_struct *next) 2509 { 2510 if (static_branch_unlikely(&preempt_notifier_key)) 2511 __fire_sched_out_preempt_notifiers(curr, next); 2512 } 2513 2514 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2515 2516 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2517 { 2518 } 2519 2520 static inline void 2521 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2522 struct task_struct *next) 2523 { 2524 } 2525 2526 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2527 2528 static inline void prepare_task(struct task_struct *next) 2529 { 2530 #ifdef CONFIG_SMP 2531 /* 2532 * Claim the task as running, we do this before switching to it 2533 * such that any running task will have this set. 2534 */ 2535 next->on_cpu = 1; 2536 #endif 2537 } 2538 2539 static inline void finish_task(struct task_struct *prev) 2540 { 2541 #ifdef CONFIG_SMP 2542 /* 2543 * After ->on_cpu is cleared, the task can be moved to a different CPU. 2544 * We must ensure this doesn't happen until the switch is completely 2545 * finished. 2546 * 2547 * In particular, the load of prev->state in finish_task_switch() must 2548 * happen before this. 2549 * 2550 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 2551 */ 2552 smp_store_release(&prev->on_cpu, 0); 2553 #endif 2554 } 2555 2556 static inline void 2557 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 2558 { 2559 /* 2560 * Since the runqueue lock will be released by the next 2561 * task (which is an invalid locking op but in the case 2562 * of the scheduler it's an obvious special-case), so we 2563 * do an early lockdep release here: 2564 */ 2565 rq_unpin_lock(rq, rf); 2566 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2567 #ifdef CONFIG_DEBUG_SPINLOCK 2568 /* this is a valid case when another task releases the spinlock */ 2569 rq->lock.owner = next; 2570 #endif 2571 } 2572 2573 static inline void finish_lock_switch(struct rq *rq) 2574 { 2575 /* 2576 * If we are tracking spinlock dependencies then we have to 2577 * fix up the runqueue lock - which gets 'carried over' from 2578 * prev into current: 2579 */ 2580 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 2581 raw_spin_unlock_irq(&rq->lock); 2582 } 2583 2584 /* 2585 * NOP if the arch has not defined these: 2586 */ 2587 2588 #ifndef prepare_arch_switch 2589 # define prepare_arch_switch(next) do { } while (0) 2590 #endif 2591 2592 #ifndef finish_arch_post_lock_switch 2593 # define finish_arch_post_lock_switch() do { } while (0) 2594 #endif 2595 2596 /** 2597 * prepare_task_switch - prepare to switch tasks 2598 * @rq: the runqueue preparing to switch 2599 * @prev: the current task that is being switched out 2600 * @next: the task we are going to switch to. 2601 * 2602 * This is called with the rq lock held and interrupts off. It must 2603 * be paired with a subsequent finish_task_switch after the context 2604 * switch. 2605 * 2606 * prepare_task_switch sets up locking and calls architecture specific 2607 * hooks. 2608 */ 2609 static inline void 2610 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2611 struct task_struct *next) 2612 { 2613 kcov_prepare_switch(prev); 2614 sched_info_switch(rq, prev, next); 2615 perf_event_task_sched_out(prev, next); 2616 rseq_preempt(prev); 2617 fire_sched_out_preempt_notifiers(prev, next); 2618 prepare_task(next); 2619 prepare_arch_switch(next); 2620 } 2621 2622 /** 2623 * finish_task_switch - clean up after a task-switch 2624 * @prev: the thread we just switched away from. 2625 * 2626 * finish_task_switch must be called after the context switch, paired 2627 * with a prepare_task_switch call before the context switch. 2628 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2629 * and do any other architecture-specific cleanup actions. 2630 * 2631 * Note that we may have delayed dropping an mm in context_switch(). If 2632 * so, we finish that here outside of the runqueue lock. (Doing it 2633 * with the lock held can cause deadlocks; see schedule() for 2634 * details.) 2635 * 2636 * The context switch have flipped the stack from under us and restored the 2637 * local variables which were saved when this task called schedule() in the 2638 * past. prev == current is still correct but we need to recalculate this_rq 2639 * because prev may have moved to another CPU. 2640 */ 2641 static struct rq *finish_task_switch(struct task_struct *prev) 2642 __releases(rq->lock) 2643 { 2644 struct rq *rq = this_rq(); 2645 struct mm_struct *mm = rq->prev_mm; 2646 long prev_state; 2647 2648 /* 2649 * The previous task will have left us with a preempt_count of 2 2650 * because it left us after: 2651 * 2652 * schedule() 2653 * preempt_disable(); // 1 2654 * __schedule() 2655 * raw_spin_lock_irq(&rq->lock) // 2 2656 * 2657 * Also, see FORK_PREEMPT_COUNT. 2658 */ 2659 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2660 "corrupted preempt_count: %s/%d/0x%x\n", 2661 current->comm, current->pid, preempt_count())) 2662 preempt_count_set(FORK_PREEMPT_COUNT); 2663 2664 rq->prev_mm = NULL; 2665 2666 /* 2667 * A task struct has one reference for the use as "current". 2668 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2669 * schedule one last time. The schedule call will never return, and 2670 * the scheduled task must drop that reference. 2671 * 2672 * We must observe prev->state before clearing prev->on_cpu (in 2673 * finish_task), otherwise a concurrent wakeup can get prev 2674 * running on another CPU and we could rave with its RUNNING -> DEAD 2675 * transition, resulting in a double drop. 2676 */ 2677 prev_state = prev->state; 2678 vtime_task_switch(prev); 2679 perf_event_task_sched_in(prev, current); 2680 finish_task(prev); 2681 finish_lock_switch(rq); 2682 finish_arch_post_lock_switch(); 2683 kcov_finish_switch(current); 2684 2685 fire_sched_in_preempt_notifiers(current); 2686 /* 2687 * When switching through a kernel thread, the loop in 2688 * membarrier_{private,global}_expedited() may have observed that 2689 * kernel thread and not issued an IPI. It is therefore possible to 2690 * schedule between user->kernel->user threads without passing though 2691 * switch_mm(). Membarrier requires a barrier after storing to 2692 * rq->curr, before returning to userspace, so provide them here: 2693 * 2694 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 2695 * provided by mmdrop(), 2696 * - a sync_core for SYNC_CORE. 2697 */ 2698 if (mm) { 2699 membarrier_mm_sync_core_before_usermode(mm); 2700 mmdrop(mm); 2701 } 2702 if (unlikely(prev_state == TASK_DEAD)) { 2703 if (prev->sched_class->task_dead) 2704 prev->sched_class->task_dead(prev); 2705 2706 /* 2707 * Remove function-return probe instances associated with this 2708 * task and put them back on the free list. 2709 */ 2710 kprobe_flush_task(prev); 2711 2712 /* Task is done with its stack. */ 2713 put_task_stack(prev); 2714 2715 put_task_struct(prev); 2716 } 2717 2718 tick_nohz_task_switch(); 2719 return rq; 2720 } 2721 2722 #ifdef CONFIG_SMP 2723 2724 /* rq->lock is NOT held, but preemption is disabled */ 2725 static void __balance_callback(struct rq *rq) 2726 { 2727 struct callback_head *head, *next; 2728 void (*func)(struct rq *rq); 2729 unsigned long flags; 2730 2731 raw_spin_lock_irqsave(&rq->lock, flags); 2732 head = rq->balance_callback; 2733 rq->balance_callback = NULL; 2734 while (head) { 2735 func = (void (*)(struct rq *))head->func; 2736 next = head->next; 2737 head->next = NULL; 2738 head = next; 2739 2740 func(rq); 2741 } 2742 raw_spin_unlock_irqrestore(&rq->lock, flags); 2743 } 2744 2745 static inline void balance_callback(struct rq *rq) 2746 { 2747 if (unlikely(rq->balance_callback)) 2748 __balance_callback(rq); 2749 } 2750 2751 #else 2752 2753 static inline void balance_callback(struct rq *rq) 2754 { 2755 } 2756 2757 #endif 2758 2759 /** 2760 * schedule_tail - first thing a freshly forked thread must call. 2761 * @prev: the thread we just switched away from. 2762 */ 2763 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2764 __releases(rq->lock) 2765 { 2766 struct rq *rq; 2767 2768 /* 2769 * New tasks start with FORK_PREEMPT_COUNT, see there and 2770 * finish_task_switch() for details. 2771 * 2772 * finish_task_switch() will drop rq->lock() and lower preempt_count 2773 * and the preempt_enable() will end up enabling preemption (on 2774 * PREEMPT_COUNT kernels). 2775 */ 2776 2777 rq = finish_task_switch(prev); 2778 balance_callback(rq); 2779 preempt_enable(); 2780 2781 if (current->set_child_tid) 2782 put_user(task_pid_vnr(current), current->set_child_tid); 2783 2784 calculate_sigpending(); 2785 } 2786 2787 /* 2788 * context_switch - switch to the new MM and the new thread's register state. 2789 */ 2790 static __always_inline struct rq * 2791 context_switch(struct rq *rq, struct task_struct *prev, 2792 struct task_struct *next, struct rq_flags *rf) 2793 { 2794 struct mm_struct *mm, *oldmm; 2795 2796 prepare_task_switch(rq, prev, next); 2797 2798 mm = next->mm; 2799 oldmm = prev->active_mm; 2800 /* 2801 * For paravirt, this is coupled with an exit in switch_to to 2802 * combine the page table reload and the switch backend into 2803 * one hypercall. 2804 */ 2805 arch_start_context_switch(prev); 2806 2807 /* 2808 * If mm is non-NULL, we pass through switch_mm(). If mm is 2809 * NULL, we will pass through mmdrop() in finish_task_switch(). 2810 * Both of these contain the full memory barrier required by 2811 * membarrier after storing to rq->curr, before returning to 2812 * user-space. 2813 */ 2814 if (!mm) { 2815 next->active_mm = oldmm; 2816 mmgrab(oldmm); 2817 enter_lazy_tlb(oldmm, next); 2818 } else 2819 switch_mm_irqs_off(oldmm, mm, next); 2820 2821 if (!prev->mm) { 2822 prev->active_mm = NULL; 2823 rq->prev_mm = oldmm; 2824 } 2825 2826 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 2827 2828 prepare_lock_switch(rq, next, rf); 2829 2830 /* Here we just switch the register state and the stack. */ 2831 switch_to(prev, next, prev); 2832 barrier(); 2833 2834 return finish_task_switch(prev); 2835 } 2836 2837 /* 2838 * nr_running and nr_context_switches: 2839 * 2840 * externally visible scheduler statistics: current number of runnable 2841 * threads, total number of context switches performed since bootup. 2842 */ 2843 unsigned long nr_running(void) 2844 { 2845 unsigned long i, sum = 0; 2846 2847 for_each_online_cpu(i) 2848 sum += cpu_rq(i)->nr_running; 2849 2850 return sum; 2851 } 2852 2853 /* 2854 * Check if only the current task is running on the CPU. 2855 * 2856 * Caution: this function does not check that the caller has disabled 2857 * preemption, thus the result might have a time-of-check-to-time-of-use 2858 * race. The caller is responsible to use it correctly, for example: 2859 * 2860 * - from a non-preemptable section (of course) 2861 * 2862 * - from a thread that is bound to a single CPU 2863 * 2864 * - in a loop with very short iterations (e.g. a polling loop) 2865 */ 2866 bool single_task_running(void) 2867 { 2868 return raw_rq()->nr_running == 1; 2869 } 2870 EXPORT_SYMBOL(single_task_running); 2871 2872 unsigned long long nr_context_switches(void) 2873 { 2874 int i; 2875 unsigned long long sum = 0; 2876 2877 for_each_possible_cpu(i) 2878 sum += cpu_rq(i)->nr_switches; 2879 2880 return sum; 2881 } 2882 2883 /* 2884 * IO-wait accounting, and how its mostly bollocks (on SMP). 2885 * 2886 * The idea behind IO-wait account is to account the idle time that we could 2887 * have spend running if it were not for IO. That is, if we were to improve the 2888 * storage performance, we'd have a proportional reduction in IO-wait time. 2889 * 2890 * This all works nicely on UP, where, when a task blocks on IO, we account 2891 * idle time as IO-wait, because if the storage were faster, it could've been 2892 * running and we'd not be idle. 2893 * 2894 * This has been extended to SMP, by doing the same for each CPU. This however 2895 * is broken. 2896 * 2897 * Imagine for instance the case where two tasks block on one CPU, only the one 2898 * CPU will have IO-wait accounted, while the other has regular idle. Even 2899 * though, if the storage were faster, both could've ran at the same time, 2900 * utilising both CPUs. 2901 * 2902 * This means, that when looking globally, the current IO-wait accounting on 2903 * SMP is a lower bound, by reason of under accounting. 2904 * 2905 * Worse, since the numbers are provided per CPU, they are sometimes 2906 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 2907 * associated with any one particular CPU, it can wake to another CPU than it 2908 * blocked on. This means the per CPU IO-wait number is meaningless. 2909 * 2910 * Task CPU affinities can make all that even more 'interesting'. 2911 */ 2912 2913 unsigned long nr_iowait(void) 2914 { 2915 unsigned long i, sum = 0; 2916 2917 for_each_possible_cpu(i) 2918 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2919 2920 return sum; 2921 } 2922 2923 /* 2924 * Consumers of these two interfaces, like for example the cpuidle menu 2925 * governor, are using nonsensical data. Preferring shallow idle state selection 2926 * for a CPU that has IO-wait which might not even end up running the task when 2927 * it does become runnable. 2928 */ 2929 2930 unsigned long nr_iowait_cpu(int cpu) 2931 { 2932 struct rq *this = cpu_rq(cpu); 2933 return atomic_read(&this->nr_iowait); 2934 } 2935 2936 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2937 { 2938 struct rq *rq = this_rq(); 2939 *nr_waiters = atomic_read(&rq->nr_iowait); 2940 *load = rq->load.weight; 2941 } 2942 2943 #ifdef CONFIG_SMP 2944 2945 /* 2946 * sched_exec - execve() is a valuable balancing opportunity, because at 2947 * this point the task has the smallest effective memory and cache footprint. 2948 */ 2949 void sched_exec(void) 2950 { 2951 struct task_struct *p = current; 2952 unsigned long flags; 2953 int dest_cpu; 2954 2955 raw_spin_lock_irqsave(&p->pi_lock, flags); 2956 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2957 if (dest_cpu == smp_processor_id()) 2958 goto unlock; 2959 2960 if (likely(cpu_active(dest_cpu))) { 2961 struct migration_arg arg = { p, dest_cpu }; 2962 2963 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2964 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2965 return; 2966 } 2967 unlock: 2968 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2969 } 2970 2971 #endif 2972 2973 DEFINE_PER_CPU(struct kernel_stat, kstat); 2974 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2975 2976 EXPORT_PER_CPU_SYMBOL(kstat); 2977 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2978 2979 /* 2980 * The function fair_sched_class.update_curr accesses the struct curr 2981 * and its field curr->exec_start; when called from task_sched_runtime(), 2982 * we observe a high rate of cache misses in practice. 2983 * Prefetching this data results in improved performance. 2984 */ 2985 static inline void prefetch_curr_exec_start(struct task_struct *p) 2986 { 2987 #ifdef CONFIG_FAIR_GROUP_SCHED 2988 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 2989 #else 2990 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 2991 #endif 2992 prefetch(curr); 2993 prefetch(&curr->exec_start); 2994 } 2995 2996 /* 2997 * Return accounted runtime for the task. 2998 * In case the task is currently running, return the runtime plus current's 2999 * pending runtime that have not been accounted yet. 3000 */ 3001 unsigned long long task_sched_runtime(struct task_struct *p) 3002 { 3003 struct rq_flags rf; 3004 struct rq *rq; 3005 u64 ns; 3006 3007 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3008 /* 3009 * 64-bit doesn't need locks to atomically read a 64-bit value. 3010 * So we have a optimization chance when the task's delta_exec is 0. 3011 * Reading ->on_cpu is racy, but this is ok. 3012 * 3013 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3014 * If we race with it entering CPU, unaccounted time is 0. This is 3015 * indistinguishable from the read occurring a few cycles earlier. 3016 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3017 * been accounted, so we're correct here as well. 3018 */ 3019 if (!p->on_cpu || !task_on_rq_queued(p)) 3020 return p->se.sum_exec_runtime; 3021 #endif 3022 3023 rq = task_rq_lock(p, &rf); 3024 /* 3025 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3026 * project cycles that may never be accounted to this 3027 * thread, breaking clock_gettime(). 3028 */ 3029 if (task_current(rq, p) && task_on_rq_queued(p)) { 3030 prefetch_curr_exec_start(p); 3031 update_rq_clock(rq); 3032 p->sched_class->update_curr(rq); 3033 } 3034 ns = p->se.sum_exec_runtime; 3035 task_rq_unlock(rq, p, &rf); 3036 3037 return ns; 3038 } 3039 3040 /* 3041 * This function gets called by the timer code, with HZ frequency. 3042 * We call it with interrupts disabled. 3043 */ 3044 void scheduler_tick(void) 3045 { 3046 int cpu = smp_processor_id(); 3047 struct rq *rq = cpu_rq(cpu); 3048 struct task_struct *curr = rq->curr; 3049 struct rq_flags rf; 3050 3051 sched_clock_tick(); 3052 3053 rq_lock(rq, &rf); 3054 3055 update_rq_clock(rq); 3056 curr->sched_class->task_tick(rq, curr, 0); 3057 cpu_load_update_active(rq); 3058 calc_global_load_tick(rq); 3059 psi_task_tick(rq); 3060 3061 rq_unlock(rq, &rf); 3062 3063 perf_event_task_tick(); 3064 3065 #ifdef CONFIG_SMP 3066 rq->idle_balance = idle_cpu(cpu); 3067 trigger_load_balance(rq); 3068 #endif 3069 } 3070 3071 #ifdef CONFIG_NO_HZ_FULL 3072 3073 struct tick_work { 3074 int cpu; 3075 struct delayed_work work; 3076 }; 3077 3078 static struct tick_work __percpu *tick_work_cpu; 3079 3080 static void sched_tick_remote(struct work_struct *work) 3081 { 3082 struct delayed_work *dwork = to_delayed_work(work); 3083 struct tick_work *twork = container_of(dwork, struct tick_work, work); 3084 int cpu = twork->cpu; 3085 struct rq *rq = cpu_rq(cpu); 3086 struct task_struct *curr; 3087 struct rq_flags rf; 3088 u64 delta; 3089 3090 /* 3091 * Handle the tick only if it appears the remote CPU is running in full 3092 * dynticks mode. The check is racy by nature, but missing a tick or 3093 * having one too much is no big deal because the scheduler tick updates 3094 * statistics and checks timeslices in a time-independent way, regardless 3095 * of when exactly it is running. 3096 */ 3097 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu)) 3098 goto out_requeue; 3099 3100 rq_lock_irq(rq, &rf); 3101 curr = rq->curr; 3102 if (is_idle_task(curr)) 3103 goto out_unlock; 3104 3105 update_rq_clock(rq); 3106 delta = rq_clock_task(rq) - curr->se.exec_start; 3107 3108 /* 3109 * Make sure the next tick runs within a reasonable 3110 * amount of time. 3111 */ 3112 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 3113 curr->sched_class->task_tick(rq, curr, 0); 3114 3115 out_unlock: 3116 rq_unlock_irq(rq, &rf); 3117 3118 out_requeue: 3119 /* 3120 * Run the remote tick once per second (1Hz). This arbitrary 3121 * frequency is large enough to avoid overload but short enough 3122 * to keep scheduler internal stats reasonably up to date. 3123 */ 3124 queue_delayed_work(system_unbound_wq, dwork, HZ); 3125 } 3126 3127 static void sched_tick_start(int cpu) 3128 { 3129 struct tick_work *twork; 3130 3131 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3132 return; 3133 3134 WARN_ON_ONCE(!tick_work_cpu); 3135 3136 twork = per_cpu_ptr(tick_work_cpu, cpu); 3137 twork->cpu = cpu; 3138 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 3139 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 3140 } 3141 3142 #ifdef CONFIG_HOTPLUG_CPU 3143 static void sched_tick_stop(int cpu) 3144 { 3145 struct tick_work *twork; 3146 3147 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3148 return; 3149 3150 WARN_ON_ONCE(!tick_work_cpu); 3151 3152 twork = per_cpu_ptr(tick_work_cpu, cpu); 3153 cancel_delayed_work_sync(&twork->work); 3154 } 3155 #endif /* CONFIG_HOTPLUG_CPU */ 3156 3157 int __init sched_tick_offload_init(void) 3158 { 3159 tick_work_cpu = alloc_percpu(struct tick_work); 3160 BUG_ON(!tick_work_cpu); 3161 3162 return 0; 3163 } 3164 3165 #else /* !CONFIG_NO_HZ_FULL */ 3166 static inline void sched_tick_start(int cpu) { } 3167 static inline void sched_tick_stop(int cpu) { } 3168 #endif 3169 3170 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3171 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 3172 /* 3173 * If the value passed in is equal to the current preempt count 3174 * then we just disabled preemption. Start timing the latency. 3175 */ 3176 static inline void preempt_latency_start(int val) 3177 { 3178 if (preempt_count() == val) { 3179 unsigned long ip = get_lock_parent_ip(); 3180 #ifdef CONFIG_DEBUG_PREEMPT 3181 current->preempt_disable_ip = ip; 3182 #endif 3183 trace_preempt_off(CALLER_ADDR0, ip); 3184 } 3185 } 3186 3187 void preempt_count_add(int val) 3188 { 3189 #ifdef CONFIG_DEBUG_PREEMPT 3190 /* 3191 * Underflow? 3192 */ 3193 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3194 return; 3195 #endif 3196 __preempt_count_add(val); 3197 #ifdef CONFIG_DEBUG_PREEMPT 3198 /* 3199 * Spinlock count overflowing soon? 3200 */ 3201 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3202 PREEMPT_MASK - 10); 3203 #endif 3204 preempt_latency_start(val); 3205 } 3206 EXPORT_SYMBOL(preempt_count_add); 3207 NOKPROBE_SYMBOL(preempt_count_add); 3208 3209 /* 3210 * If the value passed in equals to the current preempt count 3211 * then we just enabled preemption. Stop timing the latency. 3212 */ 3213 static inline void preempt_latency_stop(int val) 3214 { 3215 if (preempt_count() == val) 3216 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3217 } 3218 3219 void preempt_count_sub(int val) 3220 { 3221 #ifdef CONFIG_DEBUG_PREEMPT 3222 /* 3223 * Underflow? 3224 */ 3225 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3226 return; 3227 /* 3228 * Is the spinlock portion underflowing? 3229 */ 3230 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3231 !(preempt_count() & PREEMPT_MASK))) 3232 return; 3233 #endif 3234 3235 preempt_latency_stop(val); 3236 __preempt_count_sub(val); 3237 } 3238 EXPORT_SYMBOL(preempt_count_sub); 3239 NOKPROBE_SYMBOL(preempt_count_sub); 3240 3241 #else 3242 static inline void preempt_latency_start(int val) { } 3243 static inline void preempt_latency_stop(int val) { } 3244 #endif 3245 3246 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3247 { 3248 #ifdef CONFIG_DEBUG_PREEMPT 3249 return p->preempt_disable_ip; 3250 #else 3251 return 0; 3252 #endif 3253 } 3254 3255 /* 3256 * Print scheduling while atomic bug: 3257 */ 3258 static noinline void __schedule_bug(struct task_struct *prev) 3259 { 3260 /* Save this before calling printk(), since that will clobber it */ 3261 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3262 3263 if (oops_in_progress) 3264 return; 3265 3266 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3267 prev->comm, prev->pid, preempt_count()); 3268 3269 debug_show_held_locks(prev); 3270 print_modules(); 3271 if (irqs_disabled()) 3272 print_irqtrace_events(prev); 3273 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3274 && in_atomic_preempt_off()) { 3275 pr_err("Preemption disabled at:"); 3276 print_ip_sym(preempt_disable_ip); 3277 pr_cont("\n"); 3278 } 3279 if (panic_on_warn) 3280 panic("scheduling while atomic\n"); 3281 3282 dump_stack(); 3283 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3284 } 3285 3286 /* 3287 * Various schedule()-time debugging checks and statistics: 3288 */ 3289 static inline void schedule_debug(struct task_struct *prev) 3290 { 3291 #ifdef CONFIG_SCHED_STACK_END_CHECK 3292 if (task_stack_end_corrupted(prev)) 3293 panic("corrupted stack end detected inside scheduler\n"); 3294 #endif 3295 3296 if (unlikely(in_atomic_preempt_off())) { 3297 __schedule_bug(prev); 3298 preempt_count_set(PREEMPT_DISABLED); 3299 } 3300 rcu_sleep_check(); 3301 3302 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3303 3304 schedstat_inc(this_rq()->sched_count); 3305 } 3306 3307 /* 3308 * Pick up the highest-prio task: 3309 */ 3310 static inline struct task_struct * 3311 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3312 { 3313 const struct sched_class *class; 3314 struct task_struct *p; 3315 3316 /* 3317 * Optimization: we know that if all tasks are in the fair class we can 3318 * call that function directly, but only if the @prev task wasn't of a 3319 * higher scheduling class, because otherwise those loose the 3320 * opportunity to pull in more work from other CPUs. 3321 */ 3322 if (likely((prev->sched_class == &idle_sched_class || 3323 prev->sched_class == &fair_sched_class) && 3324 rq->nr_running == rq->cfs.h_nr_running)) { 3325 3326 p = fair_sched_class.pick_next_task(rq, prev, rf); 3327 if (unlikely(p == RETRY_TASK)) 3328 goto again; 3329 3330 /* Assumes fair_sched_class->next == idle_sched_class */ 3331 if (unlikely(!p)) 3332 p = idle_sched_class.pick_next_task(rq, prev, rf); 3333 3334 return p; 3335 } 3336 3337 again: 3338 for_each_class(class) { 3339 p = class->pick_next_task(rq, prev, rf); 3340 if (p) { 3341 if (unlikely(p == RETRY_TASK)) 3342 goto again; 3343 return p; 3344 } 3345 } 3346 3347 /* The idle class should always have a runnable task: */ 3348 BUG(); 3349 } 3350 3351 /* 3352 * __schedule() is the main scheduler function. 3353 * 3354 * The main means of driving the scheduler and thus entering this function are: 3355 * 3356 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3357 * 3358 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3359 * paths. For example, see arch/x86/entry_64.S. 3360 * 3361 * To drive preemption between tasks, the scheduler sets the flag in timer 3362 * interrupt handler scheduler_tick(). 3363 * 3364 * 3. Wakeups don't really cause entry into schedule(). They add a 3365 * task to the run-queue and that's it. 3366 * 3367 * Now, if the new task added to the run-queue preempts the current 3368 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3369 * called on the nearest possible occasion: 3370 * 3371 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3372 * 3373 * - in syscall or exception context, at the next outmost 3374 * preempt_enable(). (this might be as soon as the wake_up()'s 3375 * spin_unlock()!) 3376 * 3377 * - in IRQ context, return from interrupt-handler to 3378 * preemptible context 3379 * 3380 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3381 * then at the next: 3382 * 3383 * - cond_resched() call 3384 * - explicit schedule() call 3385 * - return from syscall or exception to user-space 3386 * - return from interrupt-handler to user-space 3387 * 3388 * WARNING: must be called with preemption disabled! 3389 */ 3390 static void __sched notrace __schedule(bool preempt) 3391 { 3392 struct task_struct *prev, *next; 3393 unsigned long *switch_count; 3394 struct rq_flags rf; 3395 struct rq *rq; 3396 int cpu; 3397 3398 cpu = smp_processor_id(); 3399 rq = cpu_rq(cpu); 3400 prev = rq->curr; 3401 3402 schedule_debug(prev); 3403 3404 if (sched_feat(HRTICK)) 3405 hrtick_clear(rq); 3406 3407 local_irq_disable(); 3408 rcu_note_context_switch(preempt); 3409 3410 /* 3411 * Make sure that signal_pending_state()->signal_pending() below 3412 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3413 * done by the caller to avoid the race with signal_wake_up(). 3414 * 3415 * The membarrier system call requires a full memory barrier 3416 * after coming from user-space, before storing to rq->curr. 3417 */ 3418 rq_lock(rq, &rf); 3419 smp_mb__after_spinlock(); 3420 3421 /* Promote REQ to ACT */ 3422 rq->clock_update_flags <<= 1; 3423 update_rq_clock(rq); 3424 3425 switch_count = &prev->nivcsw; 3426 if (!preempt && prev->state) { 3427 if (unlikely(signal_pending_state(prev->state, prev))) { 3428 prev->state = TASK_RUNNING; 3429 } else { 3430 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 3431 prev->on_rq = 0; 3432 3433 if (prev->in_iowait) { 3434 atomic_inc(&rq->nr_iowait); 3435 delayacct_blkio_start(); 3436 } 3437 3438 /* 3439 * If a worker went to sleep, notify and ask workqueue 3440 * whether it wants to wake up a task to maintain 3441 * concurrency. 3442 */ 3443 if (prev->flags & PF_WQ_WORKER) { 3444 struct task_struct *to_wakeup; 3445 3446 to_wakeup = wq_worker_sleeping(prev); 3447 if (to_wakeup) 3448 try_to_wake_up_local(to_wakeup, &rf); 3449 } 3450 } 3451 switch_count = &prev->nvcsw; 3452 } 3453 3454 next = pick_next_task(rq, prev, &rf); 3455 clear_tsk_need_resched(prev); 3456 clear_preempt_need_resched(); 3457 3458 if (likely(prev != next)) { 3459 rq->nr_switches++; 3460 rq->curr = next; 3461 /* 3462 * The membarrier system call requires each architecture 3463 * to have a full memory barrier after updating 3464 * rq->curr, before returning to user-space. 3465 * 3466 * Here are the schemes providing that barrier on the 3467 * various architectures: 3468 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 3469 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 3470 * - finish_lock_switch() for weakly-ordered 3471 * architectures where spin_unlock is a full barrier, 3472 * - switch_to() for arm64 (weakly-ordered, spin_unlock 3473 * is a RELEASE barrier), 3474 */ 3475 ++*switch_count; 3476 3477 trace_sched_switch(preempt, prev, next); 3478 3479 /* Also unlocks the rq: */ 3480 rq = context_switch(rq, prev, next, &rf); 3481 } else { 3482 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3483 rq_unlock_irq(rq, &rf); 3484 } 3485 3486 balance_callback(rq); 3487 } 3488 3489 void __noreturn do_task_dead(void) 3490 { 3491 /* Causes final put_task_struct in finish_task_switch(): */ 3492 set_special_state(TASK_DEAD); 3493 3494 /* Tell freezer to ignore us: */ 3495 current->flags |= PF_NOFREEZE; 3496 3497 __schedule(false); 3498 BUG(); 3499 3500 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 3501 for (;;) 3502 cpu_relax(); 3503 } 3504 3505 static inline void sched_submit_work(struct task_struct *tsk) 3506 { 3507 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3508 return; 3509 /* 3510 * If we are going to sleep and we have plugged IO queued, 3511 * make sure to submit it to avoid deadlocks. 3512 */ 3513 if (blk_needs_flush_plug(tsk)) 3514 blk_schedule_flush_plug(tsk); 3515 } 3516 3517 asmlinkage __visible void __sched schedule(void) 3518 { 3519 struct task_struct *tsk = current; 3520 3521 sched_submit_work(tsk); 3522 do { 3523 preempt_disable(); 3524 __schedule(false); 3525 sched_preempt_enable_no_resched(); 3526 } while (need_resched()); 3527 } 3528 EXPORT_SYMBOL(schedule); 3529 3530 /* 3531 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 3532 * state (have scheduled out non-voluntarily) by making sure that all 3533 * tasks have either left the run queue or have gone into user space. 3534 * As idle tasks do not do either, they must not ever be preempted 3535 * (schedule out non-voluntarily). 3536 * 3537 * schedule_idle() is similar to schedule_preempt_disable() except that it 3538 * never enables preemption because it does not call sched_submit_work(). 3539 */ 3540 void __sched schedule_idle(void) 3541 { 3542 /* 3543 * As this skips calling sched_submit_work(), which the idle task does 3544 * regardless because that function is a nop when the task is in a 3545 * TASK_RUNNING state, make sure this isn't used someplace that the 3546 * current task can be in any other state. Note, idle is always in the 3547 * TASK_RUNNING state. 3548 */ 3549 WARN_ON_ONCE(current->state); 3550 do { 3551 __schedule(false); 3552 } while (need_resched()); 3553 } 3554 3555 #ifdef CONFIG_CONTEXT_TRACKING 3556 asmlinkage __visible void __sched schedule_user(void) 3557 { 3558 /* 3559 * If we come here after a random call to set_need_resched(), 3560 * or we have been woken up remotely but the IPI has not yet arrived, 3561 * we haven't yet exited the RCU idle mode. Do it here manually until 3562 * we find a better solution. 3563 * 3564 * NB: There are buggy callers of this function. Ideally we 3565 * should warn if prev_state != CONTEXT_USER, but that will trigger 3566 * too frequently to make sense yet. 3567 */ 3568 enum ctx_state prev_state = exception_enter(); 3569 schedule(); 3570 exception_exit(prev_state); 3571 } 3572 #endif 3573 3574 /** 3575 * schedule_preempt_disabled - called with preemption disabled 3576 * 3577 * Returns with preemption disabled. Note: preempt_count must be 1 3578 */ 3579 void __sched schedule_preempt_disabled(void) 3580 { 3581 sched_preempt_enable_no_resched(); 3582 schedule(); 3583 preempt_disable(); 3584 } 3585 3586 static void __sched notrace preempt_schedule_common(void) 3587 { 3588 do { 3589 /* 3590 * Because the function tracer can trace preempt_count_sub() 3591 * and it also uses preempt_enable/disable_notrace(), if 3592 * NEED_RESCHED is set, the preempt_enable_notrace() called 3593 * by the function tracer will call this function again and 3594 * cause infinite recursion. 3595 * 3596 * Preemption must be disabled here before the function 3597 * tracer can trace. Break up preempt_disable() into two 3598 * calls. One to disable preemption without fear of being 3599 * traced. The other to still record the preemption latency, 3600 * which can also be traced by the function tracer. 3601 */ 3602 preempt_disable_notrace(); 3603 preempt_latency_start(1); 3604 __schedule(true); 3605 preempt_latency_stop(1); 3606 preempt_enable_no_resched_notrace(); 3607 3608 /* 3609 * Check again in case we missed a preemption opportunity 3610 * between schedule and now. 3611 */ 3612 } while (need_resched()); 3613 } 3614 3615 #ifdef CONFIG_PREEMPT 3616 /* 3617 * this is the entry point to schedule() from in-kernel preemption 3618 * off of preempt_enable. Kernel preemptions off return from interrupt 3619 * occur there and call schedule directly. 3620 */ 3621 asmlinkage __visible void __sched notrace preempt_schedule(void) 3622 { 3623 /* 3624 * If there is a non-zero preempt_count or interrupts are disabled, 3625 * we do not want to preempt the current task. Just return.. 3626 */ 3627 if (likely(!preemptible())) 3628 return; 3629 3630 preempt_schedule_common(); 3631 } 3632 NOKPROBE_SYMBOL(preempt_schedule); 3633 EXPORT_SYMBOL(preempt_schedule); 3634 3635 /** 3636 * preempt_schedule_notrace - preempt_schedule called by tracing 3637 * 3638 * The tracing infrastructure uses preempt_enable_notrace to prevent 3639 * recursion and tracing preempt enabling caused by the tracing 3640 * infrastructure itself. But as tracing can happen in areas coming 3641 * from userspace or just about to enter userspace, a preempt enable 3642 * can occur before user_exit() is called. This will cause the scheduler 3643 * to be called when the system is still in usermode. 3644 * 3645 * To prevent this, the preempt_enable_notrace will use this function 3646 * instead of preempt_schedule() to exit user context if needed before 3647 * calling the scheduler. 3648 */ 3649 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3650 { 3651 enum ctx_state prev_ctx; 3652 3653 if (likely(!preemptible())) 3654 return; 3655 3656 do { 3657 /* 3658 * Because the function tracer can trace preempt_count_sub() 3659 * and it also uses preempt_enable/disable_notrace(), if 3660 * NEED_RESCHED is set, the preempt_enable_notrace() called 3661 * by the function tracer will call this function again and 3662 * cause infinite recursion. 3663 * 3664 * Preemption must be disabled here before the function 3665 * tracer can trace. Break up preempt_disable() into two 3666 * calls. One to disable preemption without fear of being 3667 * traced. The other to still record the preemption latency, 3668 * which can also be traced by the function tracer. 3669 */ 3670 preempt_disable_notrace(); 3671 preempt_latency_start(1); 3672 /* 3673 * Needs preempt disabled in case user_exit() is traced 3674 * and the tracer calls preempt_enable_notrace() causing 3675 * an infinite recursion. 3676 */ 3677 prev_ctx = exception_enter(); 3678 __schedule(true); 3679 exception_exit(prev_ctx); 3680 3681 preempt_latency_stop(1); 3682 preempt_enable_no_resched_notrace(); 3683 } while (need_resched()); 3684 } 3685 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3686 3687 #endif /* CONFIG_PREEMPT */ 3688 3689 /* 3690 * this is the entry point to schedule() from kernel preemption 3691 * off of irq context. 3692 * Note, that this is called and return with irqs disabled. This will 3693 * protect us against recursive calling from irq. 3694 */ 3695 asmlinkage __visible void __sched preempt_schedule_irq(void) 3696 { 3697 enum ctx_state prev_state; 3698 3699 /* Catch callers which need to be fixed */ 3700 BUG_ON(preempt_count() || !irqs_disabled()); 3701 3702 prev_state = exception_enter(); 3703 3704 do { 3705 preempt_disable(); 3706 local_irq_enable(); 3707 __schedule(true); 3708 local_irq_disable(); 3709 sched_preempt_enable_no_resched(); 3710 } while (need_resched()); 3711 3712 exception_exit(prev_state); 3713 } 3714 3715 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 3716 void *key) 3717 { 3718 return try_to_wake_up(curr->private, mode, wake_flags); 3719 } 3720 EXPORT_SYMBOL(default_wake_function); 3721 3722 #ifdef CONFIG_RT_MUTEXES 3723 3724 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3725 { 3726 if (pi_task) 3727 prio = min(prio, pi_task->prio); 3728 3729 return prio; 3730 } 3731 3732 static inline int rt_effective_prio(struct task_struct *p, int prio) 3733 { 3734 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3735 3736 return __rt_effective_prio(pi_task, prio); 3737 } 3738 3739 /* 3740 * rt_mutex_setprio - set the current priority of a task 3741 * @p: task to boost 3742 * @pi_task: donor task 3743 * 3744 * This function changes the 'effective' priority of a task. It does 3745 * not touch ->normal_prio like __setscheduler(). 3746 * 3747 * Used by the rt_mutex code to implement priority inheritance 3748 * logic. Call site only calls if the priority of the task changed. 3749 */ 3750 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 3751 { 3752 int prio, oldprio, queued, running, queue_flag = 3753 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3754 const struct sched_class *prev_class; 3755 struct rq_flags rf; 3756 struct rq *rq; 3757 3758 /* XXX used to be waiter->prio, not waiter->task->prio */ 3759 prio = __rt_effective_prio(pi_task, p->normal_prio); 3760 3761 /* 3762 * If nothing changed; bail early. 3763 */ 3764 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 3765 return; 3766 3767 rq = __task_rq_lock(p, &rf); 3768 update_rq_clock(rq); 3769 /* 3770 * Set under pi_lock && rq->lock, such that the value can be used under 3771 * either lock. 3772 * 3773 * Note that there is loads of tricky to make this pointer cache work 3774 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 3775 * ensure a task is de-boosted (pi_task is set to NULL) before the 3776 * task is allowed to run again (and can exit). This ensures the pointer 3777 * points to a blocked task -- which guaratees the task is present. 3778 */ 3779 p->pi_top_task = pi_task; 3780 3781 /* 3782 * For FIFO/RR we only need to set prio, if that matches we're done. 3783 */ 3784 if (prio == p->prio && !dl_prio(prio)) 3785 goto out_unlock; 3786 3787 /* 3788 * Idle task boosting is a nono in general. There is one 3789 * exception, when PREEMPT_RT and NOHZ is active: 3790 * 3791 * The idle task calls get_next_timer_interrupt() and holds 3792 * the timer wheel base->lock on the CPU and another CPU wants 3793 * to access the timer (probably to cancel it). We can safely 3794 * ignore the boosting request, as the idle CPU runs this code 3795 * with interrupts disabled and will complete the lock 3796 * protected section without being interrupted. So there is no 3797 * real need to boost. 3798 */ 3799 if (unlikely(p == rq->idle)) { 3800 WARN_ON(p != rq->curr); 3801 WARN_ON(p->pi_blocked_on); 3802 goto out_unlock; 3803 } 3804 3805 trace_sched_pi_setprio(p, pi_task); 3806 oldprio = p->prio; 3807 3808 if (oldprio == prio) 3809 queue_flag &= ~DEQUEUE_MOVE; 3810 3811 prev_class = p->sched_class; 3812 queued = task_on_rq_queued(p); 3813 running = task_current(rq, p); 3814 if (queued) 3815 dequeue_task(rq, p, queue_flag); 3816 if (running) 3817 put_prev_task(rq, p); 3818 3819 /* 3820 * Boosting condition are: 3821 * 1. -rt task is running and holds mutex A 3822 * --> -dl task blocks on mutex A 3823 * 3824 * 2. -dl task is running and holds mutex A 3825 * --> -dl task blocks on mutex A and could preempt the 3826 * running task 3827 */ 3828 if (dl_prio(prio)) { 3829 if (!dl_prio(p->normal_prio) || 3830 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3831 p->dl.dl_boosted = 1; 3832 queue_flag |= ENQUEUE_REPLENISH; 3833 } else 3834 p->dl.dl_boosted = 0; 3835 p->sched_class = &dl_sched_class; 3836 } else if (rt_prio(prio)) { 3837 if (dl_prio(oldprio)) 3838 p->dl.dl_boosted = 0; 3839 if (oldprio < prio) 3840 queue_flag |= ENQUEUE_HEAD; 3841 p->sched_class = &rt_sched_class; 3842 } else { 3843 if (dl_prio(oldprio)) 3844 p->dl.dl_boosted = 0; 3845 if (rt_prio(oldprio)) 3846 p->rt.timeout = 0; 3847 p->sched_class = &fair_sched_class; 3848 } 3849 3850 p->prio = prio; 3851 3852 if (queued) 3853 enqueue_task(rq, p, queue_flag); 3854 if (running) 3855 set_curr_task(rq, p); 3856 3857 check_class_changed(rq, p, prev_class, oldprio); 3858 out_unlock: 3859 /* Avoid rq from going away on us: */ 3860 preempt_disable(); 3861 __task_rq_unlock(rq, &rf); 3862 3863 balance_callback(rq); 3864 preempt_enable(); 3865 } 3866 #else 3867 static inline int rt_effective_prio(struct task_struct *p, int prio) 3868 { 3869 return prio; 3870 } 3871 #endif 3872 3873 void set_user_nice(struct task_struct *p, long nice) 3874 { 3875 bool queued, running; 3876 int old_prio, delta; 3877 struct rq_flags rf; 3878 struct rq *rq; 3879 3880 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3881 return; 3882 /* 3883 * We have to be careful, if called from sys_setpriority(), 3884 * the task might be in the middle of scheduling on another CPU. 3885 */ 3886 rq = task_rq_lock(p, &rf); 3887 update_rq_clock(rq); 3888 3889 /* 3890 * The RT priorities are set via sched_setscheduler(), but we still 3891 * allow the 'normal' nice value to be set - but as expected 3892 * it wont have any effect on scheduling until the task is 3893 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3894 */ 3895 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3896 p->static_prio = NICE_TO_PRIO(nice); 3897 goto out_unlock; 3898 } 3899 queued = task_on_rq_queued(p); 3900 running = task_current(rq, p); 3901 if (queued) 3902 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 3903 if (running) 3904 put_prev_task(rq, p); 3905 3906 p->static_prio = NICE_TO_PRIO(nice); 3907 set_load_weight(p, true); 3908 old_prio = p->prio; 3909 p->prio = effective_prio(p); 3910 delta = p->prio - old_prio; 3911 3912 if (queued) { 3913 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 3914 /* 3915 * If the task increased its priority or is running and 3916 * lowered its priority, then reschedule its CPU: 3917 */ 3918 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3919 resched_curr(rq); 3920 } 3921 if (running) 3922 set_curr_task(rq, p); 3923 out_unlock: 3924 task_rq_unlock(rq, p, &rf); 3925 } 3926 EXPORT_SYMBOL(set_user_nice); 3927 3928 /* 3929 * can_nice - check if a task can reduce its nice value 3930 * @p: task 3931 * @nice: nice value 3932 */ 3933 int can_nice(const struct task_struct *p, const int nice) 3934 { 3935 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 3936 int nice_rlim = nice_to_rlimit(nice); 3937 3938 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3939 capable(CAP_SYS_NICE)); 3940 } 3941 3942 #ifdef __ARCH_WANT_SYS_NICE 3943 3944 /* 3945 * sys_nice - change the priority of the current process. 3946 * @increment: priority increment 3947 * 3948 * sys_setpriority is a more generic, but much slower function that 3949 * does similar things. 3950 */ 3951 SYSCALL_DEFINE1(nice, int, increment) 3952 { 3953 long nice, retval; 3954 3955 /* 3956 * Setpriority might change our priority at the same moment. 3957 * We don't have to worry. Conceptually one call occurs first 3958 * and we have a single winner. 3959 */ 3960 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3961 nice = task_nice(current) + increment; 3962 3963 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3964 if (increment < 0 && !can_nice(current, nice)) 3965 return -EPERM; 3966 3967 retval = security_task_setnice(current, nice); 3968 if (retval) 3969 return retval; 3970 3971 set_user_nice(current, nice); 3972 return 0; 3973 } 3974 3975 #endif 3976 3977 /** 3978 * task_prio - return the priority value of a given task. 3979 * @p: the task in question. 3980 * 3981 * Return: The priority value as seen by users in /proc. 3982 * RT tasks are offset by -200. Normal tasks are centered 3983 * around 0, value goes from -16 to +15. 3984 */ 3985 int task_prio(const struct task_struct *p) 3986 { 3987 return p->prio - MAX_RT_PRIO; 3988 } 3989 3990 /** 3991 * idle_cpu - is a given CPU idle currently? 3992 * @cpu: the processor in question. 3993 * 3994 * Return: 1 if the CPU is currently idle. 0 otherwise. 3995 */ 3996 int idle_cpu(int cpu) 3997 { 3998 struct rq *rq = cpu_rq(cpu); 3999 4000 if (rq->curr != rq->idle) 4001 return 0; 4002 4003 if (rq->nr_running) 4004 return 0; 4005 4006 #ifdef CONFIG_SMP 4007 if (!llist_empty(&rq->wake_list)) 4008 return 0; 4009 #endif 4010 4011 return 1; 4012 } 4013 4014 /** 4015 * available_idle_cpu - is a given CPU idle for enqueuing work. 4016 * @cpu: the CPU in question. 4017 * 4018 * Return: 1 if the CPU is currently idle. 0 otherwise. 4019 */ 4020 int available_idle_cpu(int cpu) 4021 { 4022 if (!idle_cpu(cpu)) 4023 return 0; 4024 4025 if (vcpu_is_preempted(cpu)) 4026 return 0; 4027 4028 return 1; 4029 } 4030 4031 /** 4032 * idle_task - return the idle task for a given CPU. 4033 * @cpu: the processor in question. 4034 * 4035 * Return: The idle task for the CPU @cpu. 4036 */ 4037 struct task_struct *idle_task(int cpu) 4038 { 4039 return cpu_rq(cpu)->idle; 4040 } 4041 4042 /** 4043 * find_process_by_pid - find a process with a matching PID value. 4044 * @pid: the pid in question. 4045 * 4046 * The task of @pid, if found. %NULL otherwise. 4047 */ 4048 static struct task_struct *find_process_by_pid(pid_t pid) 4049 { 4050 return pid ? find_task_by_vpid(pid) : current; 4051 } 4052 4053 /* 4054 * sched_setparam() passes in -1 for its policy, to let the functions 4055 * it calls know not to change it. 4056 */ 4057 #define SETPARAM_POLICY -1 4058 4059 static void __setscheduler_params(struct task_struct *p, 4060 const struct sched_attr *attr) 4061 { 4062 int policy = attr->sched_policy; 4063 4064 if (policy == SETPARAM_POLICY) 4065 policy = p->policy; 4066 4067 p->policy = policy; 4068 4069 if (dl_policy(policy)) 4070 __setparam_dl(p, attr); 4071 else if (fair_policy(policy)) 4072 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4073 4074 /* 4075 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4076 * !rt_policy. Always setting this ensures that things like 4077 * getparam()/getattr() don't report silly values for !rt tasks. 4078 */ 4079 p->rt_priority = attr->sched_priority; 4080 p->normal_prio = normal_prio(p); 4081 set_load_weight(p, true); 4082 } 4083 4084 /* Actually do priority change: must hold pi & rq lock. */ 4085 static void __setscheduler(struct rq *rq, struct task_struct *p, 4086 const struct sched_attr *attr, bool keep_boost) 4087 { 4088 __setscheduler_params(p, attr); 4089 4090 /* 4091 * Keep a potential priority boosting if called from 4092 * sched_setscheduler(). 4093 */ 4094 p->prio = normal_prio(p); 4095 if (keep_boost) 4096 p->prio = rt_effective_prio(p, p->prio); 4097 4098 if (dl_prio(p->prio)) 4099 p->sched_class = &dl_sched_class; 4100 else if (rt_prio(p->prio)) 4101 p->sched_class = &rt_sched_class; 4102 else 4103 p->sched_class = &fair_sched_class; 4104 } 4105 4106 /* 4107 * Check the target process has a UID that matches the current process's: 4108 */ 4109 static bool check_same_owner(struct task_struct *p) 4110 { 4111 const struct cred *cred = current_cred(), *pcred; 4112 bool match; 4113 4114 rcu_read_lock(); 4115 pcred = __task_cred(p); 4116 match = (uid_eq(cred->euid, pcred->euid) || 4117 uid_eq(cred->euid, pcred->uid)); 4118 rcu_read_unlock(); 4119 return match; 4120 } 4121 4122 static int __sched_setscheduler(struct task_struct *p, 4123 const struct sched_attr *attr, 4124 bool user, bool pi) 4125 { 4126 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4127 MAX_RT_PRIO - 1 - attr->sched_priority; 4128 int retval, oldprio, oldpolicy = -1, queued, running; 4129 int new_effective_prio, policy = attr->sched_policy; 4130 const struct sched_class *prev_class; 4131 struct rq_flags rf; 4132 int reset_on_fork; 4133 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4134 struct rq *rq; 4135 4136 /* The pi code expects interrupts enabled */ 4137 BUG_ON(pi && in_interrupt()); 4138 recheck: 4139 /* Double check policy once rq lock held: */ 4140 if (policy < 0) { 4141 reset_on_fork = p->sched_reset_on_fork; 4142 policy = oldpolicy = p->policy; 4143 } else { 4144 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4145 4146 if (!valid_policy(policy)) 4147 return -EINVAL; 4148 } 4149 4150 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4151 return -EINVAL; 4152 4153 /* 4154 * Valid priorities for SCHED_FIFO and SCHED_RR are 4155 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4156 * SCHED_BATCH and SCHED_IDLE is 0. 4157 */ 4158 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4159 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4160 return -EINVAL; 4161 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4162 (rt_policy(policy) != (attr->sched_priority != 0))) 4163 return -EINVAL; 4164 4165 /* 4166 * Allow unprivileged RT tasks to decrease priority: 4167 */ 4168 if (user && !capable(CAP_SYS_NICE)) { 4169 if (fair_policy(policy)) { 4170 if (attr->sched_nice < task_nice(p) && 4171 !can_nice(p, attr->sched_nice)) 4172 return -EPERM; 4173 } 4174 4175 if (rt_policy(policy)) { 4176 unsigned long rlim_rtprio = 4177 task_rlimit(p, RLIMIT_RTPRIO); 4178 4179 /* Can't set/change the rt policy: */ 4180 if (policy != p->policy && !rlim_rtprio) 4181 return -EPERM; 4182 4183 /* Can't increase priority: */ 4184 if (attr->sched_priority > p->rt_priority && 4185 attr->sched_priority > rlim_rtprio) 4186 return -EPERM; 4187 } 4188 4189 /* 4190 * Can't set/change SCHED_DEADLINE policy at all for now 4191 * (safest behavior); in the future we would like to allow 4192 * unprivileged DL tasks to increase their relative deadline 4193 * or reduce their runtime (both ways reducing utilization) 4194 */ 4195 if (dl_policy(policy)) 4196 return -EPERM; 4197 4198 /* 4199 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4200 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4201 */ 4202 if (idle_policy(p->policy) && !idle_policy(policy)) { 4203 if (!can_nice(p, task_nice(p))) 4204 return -EPERM; 4205 } 4206 4207 /* Can't change other user's priorities: */ 4208 if (!check_same_owner(p)) 4209 return -EPERM; 4210 4211 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4212 if (p->sched_reset_on_fork && !reset_on_fork) 4213 return -EPERM; 4214 } 4215 4216 if (user) { 4217 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4218 return -EINVAL; 4219 4220 retval = security_task_setscheduler(p); 4221 if (retval) 4222 return retval; 4223 } 4224 4225 /* 4226 * Make sure no PI-waiters arrive (or leave) while we are 4227 * changing the priority of the task: 4228 * 4229 * To be able to change p->policy safely, the appropriate 4230 * runqueue lock must be held. 4231 */ 4232 rq = task_rq_lock(p, &rf); 4233 update_rq_clock(rq); 4234 4235 /* 4236 * Changing the policy of the stop threads its a very bad idea: 4237 */ 4238 if (p == rq->stop) { 4239 task_rq_unlock(rq, p, &rf); 4240 return -EINVAL; 4241 } 4242 4243 /* 4244 * If not changing anything there's no need to proceed further, 4245 * but store a possible modification of reset_on_fork. 4246 */ 4247 if (unlikely(policy == p->policy)) { 4248 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4249 goto change; 4250 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4251 goto change; 4252 if (dl_policy(policy) && dl_param_changed(p, attr)) 4253 goto change; 4254 4255 p->sched_reset_on_fork = reset_on_fork; 4256 task_rq_unlock(rq, p, &rf); 4257 return 0; 4258 } 4259 change: 4260 4261 if (user) { 4262 #ifdef CONFIG_RT_GROUP_SCHED 4263 /* 4264 * Do not allow realtime tasks into groups that have no runtime 4265 * assigned. 4266 */ 4267 if (rt_bandwidth_enabled() && rt_policy(policy) && 4268 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4269 !task_group_is_autogroup(task_group(p))) { 4270 task_rq_unlock(rq, p, &rf); 4271 return -EPERM; 4272 } 4273 #endif 4274 #ifdef CONFIG_SMP 4275 if (dl_bandwidth_enabled() && dl_policy(policy) && 4276 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4277 cpumask_t *span = rq->rd->span; 4278 4279 /* 4280 * Don't allow tasks with an affinity mask smaller than 4281 * the entire root_domain to become SCHED_DEADLINE. We 4282 * will also fail if there's no bandwidth available. 4283 */ 4284 if (!cpumask_subset(span, &p->cpus_allowed) || 4285 rq->rd->dl_bw.bw == 0) { 4286 task_rq_unlock(rq, p, &rf); 4287 return -EPERM; 4288 } 4289 } 4290 #endif 4291 } 4292 4293 /* Re-check policy now with rq lock held: */ 4294 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4295 policy = oldpolicy = -1; 4296 task_rq_unlock(rq, p, &rf); 4297 goto recheck; 4298 } 4299 4300 /* 4301 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4302 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4303 * is available. 4304 */ 4305 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4306 task_rq_unlock(rq, p, &rf); 4307 return -EBUSY; 4308 } 4309 4310 p->sched_reset_on_fork = reset_on_fork; 4311 oldprio = p->prio; 4312 4313 if (pi) { 4314 /* 4315 * Take priority boosted tasks into account. If the new 4316 * effective priority is unchanged, we just store the new 4317 * normal parameters and do not touch the scheduler class and 4318 * the runqueue. This will be done when the task deboost 4319 * itself. 4320 */ 4321 new_effective_prio = rt_effective_prio(p, newprio); 4322 if (new_effective_prio == oldprio) 4323 queue_flags &= ~DEQUEUE_MOVE; 4324 } 4325 4326 queued = task_on_rq_queued(p); 4327 running = task_current(rq, p); 4328 if (queued) 4329 dequeue_task(rq, p, queue_flags); 4330 if (running) 4331 put_prev_task(rq, p); 4332 4333 prev_class = p->sched_class; 4334 __setscheduler(rq, p, attr, pi); 4335 4336 if (queued) { 4337 /* 4338 * We enqueue to tail when the priority of a task is 4339 * increased (user space view). 4340 */ 4341 if (oldprio < p->prio) 4342 queue_flags |= ENQUEUE_HEAD; 4343 4344 enqueue_task(rq, p, queue_flags); 4345 } 4346 if (running) 4347 set_curr_task(rq, p); 4348 4349 check_class_changed(rq, p, prev_class, oldprio); 4350 4351 /* Avoid rq from going away on us: */ 4352 preempt_disable(); 4353 task_rq_unlock(rq, p, &rf); 4354 4355 if (pi) 4356 rt_mutex_adjust_pi(p); 4357 4358 /* Run balance callbacks after we've adjusted the PI chain: */ 4359 balance_callback(rq); 4360 preempt_enable(); 4361 4362 return 0; 4363 } 4364 4365 static int _sched_setscheduler(struct task_struct *p, int policy, 4366 const struct sched_param *param, bool check) 4367 { 4368 struct sched_attr attr = { 4369 .sched_policy = policy, 4370 .sched_priority = param->sched_priority, 4371 .sched_nice = PRIO_TO_NICE(p->static_prio), 4372 }; 4373 4374 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4375 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4376 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4377 policy &= ~SCHED_RESET_ON_FORK; 4378 attr.sched_policy = policy; 4379 } 4380 4381 return __sched_setscheduler(p, &attr, check, true); 4382 } 4383 /** 4384 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4385 * @p: the task in question. 4386 * @policy: new policy. 4387 * @param: structure containing the new RT priority. 4388 * 4389 * Return: 0 on success. An error code otherwise. 4390 * 4391 * NOTE that the task may be already dead. 4392 */ 4393 int sched_setscheduler(struct task_struct *p, int policy, 4394 const struct sched_param *param) 4395 { 4396 return _sched_setscheduler(p, policy, param, true); 4397 } 4398 EXPORT_SYMBOL_GPL(sched_setscheduler); 4399 4400 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4401 { 4402 return __sched_setscheduler(p, attr, true, true); 4403 } 4404 EXPORT_SYMBOL_GPL(sched_setattr); 4405 4406 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 4407 { 4408 return __sched_setscheduler(p, attr, false, true); 4409 } 4410 4411 /** 4412 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4413 * @p: the task in question. 4414 * @policy: new policy. 4415 * @param: structure containing the new RT priority. 4416 * 4417 * Just like sched_setscheduler, only don't bother checking if the 4418 * current context has permission. For example, this is needed in 4419 * stop_machine(): we create temporary high priority worker threads, 4420 * but our caller might not have that capability. 4421 * 4422 * Return: 0 on success. An error code otherwise. 4423 */ 4424 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4425 const struct sched_param *param) 4426 { 4427 return _sched_setscheduler(p, policy, param, false); 4428 } 4429 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4430 4431 static int 4432 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4433 { 4434 struct sched_param lparam; 4435 struct task_struct *p; 4436 int retval; 4437 4438 if (!param || pid < 0) 4439 return -EINVAL; 4440 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4441 return -EFAULT; 4442 4443 rcu_read_lock(); 4444 retval = -ESRCH; 4445 p = find_process_by_pid(pid); 4446 if (p != NULL) 4447 retval = sched_setscheduler(p, policy, &lparam); 4448 rcu_read_unlock(); 4449 4450 return retval; 4451 } 4452 4453 /* 4454 * Mimics kernel/events/core.c perf_copy_attr(). 4455 */ 4456 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 4457 { 4458 u32 size; 4459 int ret; 4460 4461 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4462 return -EFAULT; 4463 4464 /* Zero the full structure, so that a short copy will be nice: */ 4465 memset(attr, 0, sizeof(*attr)); 4466 4467 ret = get_user(size, &uattr->size); 4468 if (ret) 4469 return ret; 4470 4471 /* Bail out on silly large: */ 4472 if (size > PAGE_SIZE) 4473 goto err_size; 4474 4475 /* ABI compatibility quirk: */ 4476 if (!size) 4477 size = SCHED_ATTR_SIZE_VER0; 4478 4479 if (size < SCHED_ATTR_SIZE_VER0) 4480 goto err_size; 4481 4482 /* 4483 * If we're handed a bigger struct than we know of, 4484 * ensure all the unknown bits are 0 - i.e. new 4485 * user-space does not rely on any kernel feature 4486 * extensions we dont know about yet. 4487 */ 4488 if (size > sizeof(*attr)) { 4489 unsigned char __user *addr; 4490 unsigned char __user *end; 4491 unsigned char val; 4492 4493 addr = (void __user *)uattr + sizeof(*attr); 4494 end = (void __user *)uattr + size; 4495 4496 for (; addr < end; addr++) { 4497 ret = get_user(val, addr); 4498 if (ret) 4499 return ret; 4500 if (val) 4501 goto err_size; 4502 } 4503 size = sizeof(*attr); 4504 } 4505 4506 ret = copy_from_user(attr, uattr, size); 4507 if (ret) 4508 return -EFAULT; 4509 4510 /* 4511 * XXX: Do we want to be lenient like existing syscalls; or do we want 4512 * to be strict and return an error on out-of-bounds values? 4513 */ 4514 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4515 4516 return 0; 4517 4518 err_size: 4519 put_user(sizeof(*attr), &uattr->size); 4520 return -E2BIG; 4521 } 4522 4523 /** 4524 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4525 * @pid: the pid in question. 4526 * @policy: new policy. 4527 * @param: structure containing the new RT priority. 4528 * 4529 * Return: 0 on success. An error code otherwise. 4530 */ 4531 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 4532 { 4533 if (policy < 0) 4534 return -EINVAL; 4535 4536 return do_sched_setscheduler(pid, policy, param); 4537 } 4538 4539 /** 4540 * sys_sched_setparam - set/change the RT priority of a thread 4541 * @pid: the pid in question. 4542 * @param: structure containing the new RT priority. 4543 * 4544 * Return: 0 on success. An error code otherwise. 4545 */ 4546 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4547 { 4548 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4549 } 4550 4551 /** 4552 * sys_sched_setattr - same as above, but with extended sched_attr 4553 * @pid: the pid in question. 4554 * @uattr: structure containing the extended parameters. 4555 * @flags: for future extension. 4556 */ 4557 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4558 unsigned int, flags) 4559 { 4560 struct sched_attr attr; 4561 struct task_struct *p; 4562 int retval; 4563 4564 if (!uattr || pid < 0 || flags) 4565 return -EINVAL; 4566 4567 retval = sched_copy_attr(uattr, &attr); 4568 if (retval) 4569 return retval; 4570 4571 if ((int)attr.sched_policy < 0) 4572 return -EINVAL; 4573 4574 rcu_read_lock(); 4575 retval = -ESRCH; 4576 p = find_process_by_pid(pid); 4577 if (p != NULL) 4578 retval = sched_setattr(p, &attr); 4579 rcu_read_unlock(); 4580 4581 return retval; 4582 } 4583 4584 /** 4585 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4586 * @pid: the pid in question. 4587 * 4588 * Return: On success, the policy of the thread. Otherwise, a negative error 4589 * code. 4590 */ 4591 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4592 { 4593 struct task_struct *p; 4594 int retval; 4595 4596 if (pid < 0) 4597 return -EINVAL; 4598 4599 retval = -ESRCH; 4600 rcu_read_lock(); 4601 p = find_process_by_pid(pid); 4602 if (p) { 4603 retval = security_task_getscheduler(p); 4604 if (!retval) 4605 retval = p->policy 4606 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4607 } 4608 rcu_read_unlock(); 4609 return retval; 4610 } 4611 4612 /** 4613 * sys_sched_getparam - get the RT priority of a thread 4614 * @pid: the pid in question. 4615 * @param: structure containing the RT priority. 4616 * 4617 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4618 * code. 4619 */ 4620 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4621 { 4622 struct sched_param lp = { .sched_priority = 0 }; 4623 struct task_struct *p; 4624 int retval; 4625 4626 if (!param || pid < 0) 4627 return -EINVAL; 4628 4629 rcu_read_lock(); 4630 p = find_process_by_pid(pid); 4631 retval = -ESRCH; 4632 if (!p) 4633 goto out_unlock; 4634 4635 retval = security_task_getscheduler(p); 4636 if (retval) 4637 goto out_unlock; 4638 4639 if (task_has_rt_policy(p)) 4640 lp.sched_priority = p->rt_priority; 4641 rcu_read_unlock(); 4642 4643 /* 4644 * This one might sleep, we cannot do it with a spinlock held ... 4645 */ 4646 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4647 4648 return retval; 4649 4650 out_unlock: 4651 rcu_read_unlock(); 4652 return retval; 4653 } 4654 4655 static int sched_read_attr(struct sched_attr __user *uattr, 4656 struct sched_attr *attr, 4657 unsigned int usize) 4658 { 4659 int ret; 4660 4661 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4662 return -EFAULT; 4663 4664 /* 4665 * If we're handed a smaller struct than we know of, 4666 * ensure all the unknown bits are 0 - i.e. old 4667 * user-space does not get uncomplete information. 4668 */ 4669 if (usize < sizeof(*attr)) { 4670 unsigned char *addr; 4671 unsigned char *end; 4672 4673 addr = (void *)attr + usize; 4674 end = (void *)attr + sizeof(*attr); 4675 4676 for (; addr < end; addr++) { 4677 if (*addr) 4678 return -EFBIG; 4679 } 4680 4681 attr->size = usize; 4682 } 4683 4684 ret = copy_to_user(uattr, attr, attr->size); 4685 if (ret) 4686 return -EFAULT; 4687 4688 return 0; 4689 } 4690 4691 /** 4692 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4693 * @pid: the pid in question. 4694 * @uattr: structure containing the extended parameters. 4695 * @size: sizeof(attr) for fwd/bwd comp. 4696 * @flags: for future extension. 4697 */ 4698 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4699 unsigned int, size, unsigned int, flags) 4700 { 4701 struct sched_attr attr = { 4702 .size = sizeof(struct sched_attr), 4703 }; 4704 struct task_struct *p; 4705 int retval; 4706 4707 if (!uattr || pid < 0 || size > PAGE_SIZE || 4708 size < SCHED_ATTR_SIZE_VER0 || flags) 4709 return -EINVAL; 4710 4711 rcu_read_lock(); 4712 p = find_process_by_pid(pid); 4713 retval = -ESRCH; 4714 if (!p) 4715 goto out_unlock; 4716 4717 retval = security_task_getscheduler(p); 4718 if (retval) 4719 goto out_unlock; 4720 4721 attr.sched_policy = p->policy; 4722 if (p->sched_reset_on_fork) 4723 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4724 if (task_has_dl_policy(p)) 4725 __getparam_dl(p, &attr); 4726 else if (task_has_rt_policy(p)) 4727 attr.sched_priority = p->rt_priority; 4728 else 4729 attr.sched_nice = task_nice(p); 4730 4731 rcu_read_unlock(); 4732 4733 retval = sched_read_attr(uattr, &attr, size); 4734 return retval; 4735 4736 out_unlock: 4737 rcu_read_unlock(); 4738 return retval; 4739 } 4740 4741 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4742 { 4743 cpumask_var_t cpus_allowed, new_mask; 4744 struct task_struct *p; 4745 int retval; 4746 4747 rcu_read_lock(); 4748 4749 p = find_process_by_pid(pid); 4750 if (!p) { 4751 rcu_read_unlock(); 4752 return -ESRCH; 4753 } 4754 4755 /* Prevent p going away */ 4756 get_task_struct(p); 4757 rcu_read_unlock(); 4758 4759 if (p->flags & PF_NO_SETAFFINITY) { 4760 retval = -EINVAL; 4761 goto out_put_task; 4762 } 4763 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4764 retval = -ENOMEM; 4765 goto out_put_task; 4766 } 4767 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4768 retval = -ENOMEM; 4769 goto out_free_cpus_allowed; 4770 } 4771 retval = -EPERM; 4772 if (!check_same_owner(p)) { 4773 rcu_read_lock(); 4774 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4775 rcu_read_unlock(); 4776 goto out_free_new_mask; 4777 } 4778 rcu_read_unlock(); 4779 } 4780 4781 retval = security_task_setscheduler(p); 4782 if (retval) 4783 goto out_free_new_mask; 4784 4785 4786 cpuset_cpus_allowed(p, cpus_allowed); 4787 cpumask_and(new_mask, in_mask, cpus_allowed); 4788 4789 /* 4790 * Since bandwidth control happens on root_domain basis, 4791 * if admission test is enabled, we only admit -deadline 4792 * tasks allowed to run on all the CPUs in the task's 4793 * root_domain. 4794 */ 4795 #ifdef CONFIG_SMP 4796 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4797 rcu_read_lock(); 4798 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4799 retval = -EBUSY; 4800 rcu_read_unlock(); 4801 goto out_free_new_mask; 4802 } 4803 rcu_read_unlock(); 4804 } 4805 #endif 4806 again: 4807 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4808 4809 if (!retval) { 4810 cpuset_cpus_allowed(p, cpus_allowed); 4811 if (!cpumask_subset(new_mask, cpus_allowed)) { 4812 /* 4813 * We must have raced with a concurrent cpuset 4814 * update. Just reset the cpus_allowed to the 4815 * cpuset's cpus_allowed 4816 */ 4817 cpumask_copy(new_mask, cpus_allowed); 4818 goto again; 4819 } 4820 } 4821 out_free_new_mask: 4822 free_cpumask_var(new_mask); 4823 out_free_cpus_allowed: 4824 free_cpumask_var(cpus_allowed); 4825 out_put_task: 4826 put_task_struct(p); 4827 return retval; 4828 } 4829 4830 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4831 struct cpumask *new_mask) 4832 { 4833 if (len < cpumask_size()) 4834 cpumask_clear(new_mask); 4835 else if (len > cpumask_size()) 4836 len = cpumask_size(); 4837 4838 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4839 } 4840 4841 /** 4842 * sys_sched_setaffinity - set the CPU affinity of a process 4843 * @pid: pid of the process 4844 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4845 * @user_mask_ptr: user-space pointer to the new CPU mask 4846 * 4847 * Return: 0 on success. An error code otherwise. 4848 */ 4849 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4850 unsigned long __user *, user_mask_ptr) 4851 { 4852 cpumask_var_t new_mask; 4853 int retval; 4854 4855 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4856 return -ENOMEM; 4857 4858 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4859 if (retval == 0) 4860 retval = sched_setaffinity(pid, new_mask); 4861 free_cpumask_var(new_mask); 4862 return retval; 4863 } 4864 4865 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4866 { 4867 struct task_struct *p; 4868 unsigned long flags; 4869 int retval; 4870 4871 rcu_read_lock(); 4872 4873 retval = -ESRCH; 4874 p = find_process_by_pid(pid); 4875 if (!p) 4876 goto out_unlock; 4877 4878 retval = security_task_getscheduler(p); 4879 if (retval) 4880 goto out_unlock; 4881 4882 raw_spin_lock_irqsave(&p->pi_lock, flags); 4883 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4884 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4885 4886 out_unlock: 4887 rcu_read_unlock(); 4888 4889 return retval; 4890 } 4891 4892 /** 4893 * sys_sched_getaffinity - get the CPU affinity of a process 4894 * @pid: pid of the process 4895 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4896 * @user_mask_ptr: user-space pointer to hold the current CPU mask 4897 * 4898 * Return: size of CPU mask copied to user_mask_ptr on success. An 4899 * error code otherwise. 4900 */ 4901 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4902 unsigned long __user *, user_mask_ptr) 4903 { 4904 int ret; 4905 cpumask_var_t mask; 4906 4907 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4908 return -EINVAL; 4909 if (len & (sizeof(unsigned long)-1)) 4910 return -EINVAL; 4911 4912 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4913 return -ENOMEM; 4914 4915 ret = sched_getaffinity(pid, mask); 4916 if (ret == 0) { 4917 unsigned int retlen = min(len, cpumask_size()); 4918 4919 if (copy_to_user(user_mask_ptr, mask, retlen)) 4920 ret = -EFAULT; 4921 else 4922 ret = retlen; 4923 } 4924 free_cpumask_var(mask); 4925 4926 return ret; 4927 } 4928 4929 /** 4930 * sys_sched_yield - yield the current processor to other threads. 4931 * 4932 * This function yields the current CPU to other tasks. If there are no 4933 * other threads running on this CPU then this function will return. 4934 * 4935 * Return: 0. 4936 */ 4937 static void do_sched_yield(void) 4938 { 4939 struct rq_flags rf; 4940 struct rq *rq; 4941 4942 rq = this_rq_lock_irq(&rf); 4943 4944 schedstat_inc(rq->yld_count); 4945 current->sched_class->yield_task(rq); 4946 4947 /* 4948 * Since we are going to call schedule() anyway, there's 4949 * no need to preempt or enable interrupts: 4950 */ 4951 preempt_disable(); 4952 rq_unlock(rq, &rf); 4953 sched_preempt_enable_no_resched(); 4954 4955 schedule(); 4956 } 4957 4958 SYSCALL_DEFINE0(sched_yield) 4959 { 4960 do_sched_yield(); 4961 return 0; 4962 } 4963 4964 #ifndef CONFIG_PREEMPT 4965 int __sched _cond_resched(void) 4966 { 4967 if (should_resched(0)) { 4968 preempt_schedule_common(); 4969 return 1; 4970 } 4971 rcu_all_qs(); 4972 return 0; 4973 } 4974 EXPORT_SYMBOL(_cond_resched); 4975 #endif 4976 4977 /* 4978 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4979 * call schedule, and on return reacquire the lock. 4980 * 4981 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4982 * operations here to prevent schedule() from being called twice (once via 4983 * spin_unlock(), once by hand). 4984 */ 4985 int __cond_resched_lock(spinlock_t *lock) 4986 { 4987 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4988 int ret = 0; 4989 4990 lockdep_assert_held(lock); 4991 4992 if (spin_needbreak(lock) || resched) { 4993 spin_unlock(lock); 4994 if (resched) 4995 preempt_schedule_common(); 4996 else 4997 cpu_relax(); 4998 ret = 1; 4999 spin_lock(lock); 5000 } 5001 return ret; 5002 } 5003 EXPORT_SYMBOL(__cond_resched_lock); 5004 5005 /** 5006 * yield - yield the current processor to other threads. 5007 * 5008 * Do not ever use this function, there's a 99% chance you're doing it wrong. 5009 * 5010 * The scheduler is at all times free to pick the calling task as the most 5011 * eligible task to run, if removing the yield() call from your code breaks 5012 * it, its already broken. 5013 * 5014 * Typical broken usage is: 5015 * 5016 * while (!event) 5017 * yield(); 5018 * 5019 * where one assumes that yield() will let 'the other' process run that will 5020 * make event true. If the current task is a SCHED_FIFO task that will never 5021 * happen. Never use yield() as a progress guarantee!! 5022 * 5023 * If you want to use yield() to wait for something, use wait_event(). 5024 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5025 * If you still want to use yield(), do not! 5026 */ 5027 void __sched yield(void) 5028 { 5029 set_current_state(TASK_RUNNING); 5030 do_sched_yield(); 5031 } 5032 EXPORT_SYMBOL(yield); 5033 5034 /** 5035 * yield_to - yield the current processor to another thread in 5036 * your thread group, or accelerate that thread toward the 5037 * processor it's on. 5038 * @p: target task 5039 * @preempt: whether task preemption is allowed or not 5040 * 5041 * It's the caller's job to ensure that the target task struct 5042 * can't go away on us before we can do any checks. 5043 * 5044 * Return: 5045 * true (>0) if we indeed boosted the target task. 5046 * false (0) if we failed to boost the target. 5047 * -ESRCH if there's no task to yield to. 5048 */ 5049 int __sched yield_to(struct task_struct *p, bool preempt) 5050 { 5051 struct task_struct *curr = current; 5052 struct rq *rq, *p_rq; 5053 unsigned long flags; 5054 int yielded = 0; 5055 5056 local_irq_save(flags); 5057 rq = this_rq(); 5058 5059 again: 5060 p_rq = task_rq(p); 5061 /* 5062 * If we're the only runnable task on the rq and target rq also 5063 * has only one task, there's absolutely no point in yielding. 5064 */ 5065 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5066 yielded = -ESRCH; 5067 goto out_irq; 5068 } 5069 5070 double_rq_lock(rq, p_rq); 5071 if (task_rq(p) != p_rq) { 5072 double_rq_unlock(rq, p_rq); 5073 goto again; 5074 } 5075 5076 if (!curr->sched_class->yield_to_task) 5077 goto out_unlock; 5078 5079 if (curr->sched_class != p->sched_class) 5080 goto out_unlock; 5081 5082 if (task_running(p_rq, p) || p->state) 5083 goto out_unlock; 5084 5085 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5086 if (yielded) { 5087 schedstat_inc(rq->yld_count); 5088 /* 5089 * Make p's CPU reschedule; pick_next_entity takes care of 5090 * fairness. 5091 */ 5092 if (preempt && rq != p_rq) 5093 resched_curr(p_rq); 5094 } 5095 5096 out_unlock: 5097 double_rq_unlock(rq, p_rq); 5098 out_irq: 5099 local_irq_restore(flags); 5100 5101 if (yielded > 0) 5102 schedule(); 5103 5104 return yielded; 5105 } 5106 EXPORT_SYMBOL_GPL(yield_to); 5107 5108 int io_schedule_prepare(void) 5109 { 5110 int old_iowait = current->in_iowait; 5111 5112 current->in_iowait = 1; 5113 blk_schedule_flush_plug(current); 5114 5115 return old_iowait; 5116 } 5117 5118 void io_schedule_finish(int token) 5119 { 5120 current->in_iowait = token; 5121 } 5122 5123 /* 5124 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5125 * that process accounting knows that this is a task in IO wait state. 5126 */ 5127 long __sched io_schedule_timeout(long timeout) 5128 { 5129 int token; 5130 long ret; 5131 5132 token = io_schedule_prepare(); 5133 ret = schedule_timeout(timeout); 5134 io_schedule_finish(token); 5135 5136 return ret; 5137 } 5138 EXPORT_SYMBOL(io_schedule_timeout); 5139 5140 void io_schedule(void) 5141 { 5142 int token; 5143 5144 token = io_schedule_prepare(); 5145 schedule(); 5146 io_schedule_finish(token); 5147 } 5148 EXPORT_SYMBOL(io_schedule); 5149 5150 /** 5151 * sys_sched_get_priority_max - return maximum RT priority. 5152 * @policy: scheduling class. 5153 * 5154 * Return: On success, this syscall returns the maximum 5155 * rt_priority that can be used by a given scheduling class. 5156 * On failure, a negative error code is returned. 5157 */ 5158 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5159 { 5160 int ret = -EINVAL; 5161 5162 switch (policy) { 5163 case SCHED_FIFO: 5164 case SCHED_RR: 5165 ret = MAX_USER_RT_PRIO-1; 5166 break; 5167 case SCHED_DEADLINE: 5168 case SCHED_NORMAL: 5169 case SCHED_BATCH: 5170 case SCHED_IDLE: 5171 ret = 0; 5172 break; 5173 } 5174 return ret; 5175 } 5176 5177 /** 5178 * sys_sched_get_priority_min - return minimum RT priority. 5179 * @policy: scheduling class. 5180 * 5181 * Return: On success, this syscall returns the minimum 5182 * rt_priority that can be used by a given scheduling class. 5183 * On failure, a negative error code is returned. 5184 */ 5185 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5186 { 5187 int ret = -EINVAL; 5188 5189 switch (policy) { 5190 case SCHED_FIFO: 5191 case SCHED_RR: 5192 ret = 1; 5193 break; 5194 case SCHED_DEADLINE: 5195 case SCHED_NORMAL: 5196 case SCHED_BATCH: 5197 case SCHED_IDLE: 5198 ret = 0; 5199 } 5200 return ret; 5201 } 5202 5203 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5204 { 5205 struct task_struct *p; 5206 unsigned int time_slice; 5207 struct rq_flags rf; 5208 struct rq *rq; 5209 int retval; 5210 5211 if (pid < 0) 5212 return -EINVAL; 5213 5214 retval = -ESRCH; 5215 rcu_read_lock(); 5216 p = find_process_by_pid(pid); 5217 if (!p) 5218 goto out_unlock; 5219 5220 retval = security_task_getscheduler(p); 5221 if (retval) 5222 goto out_unlock; 5223 5224 rq = task_rq_lock(p, &rf); 5225 time_slice = 0; 5226 if (p->sched_class->get_rr_interval) 5227 time_slice = p->sched_class->get_rr_interval(rq, p); 5228 task_rq_unlock(rq, p, &rf); 5229 5230 rcu_read_unlock(); 5231 jiffies_to_timespec64(time_slice, t); 5232 return 0; 5233 5234 out_unlock: 5235 rcu_read_unlock(); 5236 return retval; 5237 } 5238 5239 /** 5240 * sys_sched_rr_get_interval - return the default timeslice of a process. 5241 * @pid: pid of the process. 5242 * @interval: userspace pointer to the timeslice value. 5243 * 5244 * this syscall writes the default timeslice value of a given process 5245 * into the user-space timespec buffer. A value of '0' means infinity. 5246 * 5247 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5248 * an error code. 5249 */ 5250 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5251 struct __kernel_timespec __user *, interval) 5252 { 5253 struct timespec64 t; 5254 int retval = sched_rr_get_interval(pid, &t); 5255 5256 if (retval == 0) 5257 retval = put_timespec64(&t, interval); 5258 5259 return retval; 5260 } 5261 5262 #ifdef CONFIG_COMPAT_32BIT_TIME 5263 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval, 5264 compat_pid_t, pid, 5265 struct old_timespec32 __user *, interval) 5266 { 5267 struct timespec64 t; 5268 int retval = sched_rr_get_interval(pid, &t); 5269 5270 if (retval == 0) 5271 retval = put_old_timespec32(&t, interval); 5272 return retval; 5273 } 5274 #endif 5275 5276 void sched_show_task(struct task_struct *p) 5277 { 5278 unsigned long free = 0; 5279 int ppid; 5280 5281 if (!try_get_task_stack(p)) 5282 return; 5283 5284 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5285 5286 if (p->state == TASK_RUNNING) 5287 printk(KERN_CONT " running task "); 5288 #ifdef CONFIG_DEBUG_STACK_USAGE 5289 free = stack_not_used(p); 5290 #endif 5291 ppid = 0; 5292 rcu_read_lock(); 5293 if (pid_alive(p)) 5294 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5295 rcu_read_unlock(); 5296 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5297 task_pid_nr(p), ppid, 5298 (unsigned long)task_thread_info(p)->flags); 5299 5300 print_worker_info(KERN_INFO, p); 5301 show_stack(p, NULL); 5302 put_task_stack(p); 5303 } 5304 EXPORT_SYMBOL_GPL(sched_show_task); 5305 5306 static inline bool 5307 state_filter_match(unsigned long state_filter, struct task_struct *p) 5308 { 5309 /* no filter, everything matches */ 5310 if (!state_filter) 5311 return true; 5312 5313 /* filter, but doesn't match */ 5314 if (!(p->state & state_filter)) 5315 return false; 5316 5317 /* 5318 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5319 * TASK_KILLABLE). 5320 */ 5321 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5322 return false; 5323 5324 return true; 5325 } 5326 5327 5328 void show_state_filter(unsigned long state_filter) 5329 { 5330 struct task_struct *g, *p; 5331 5332 #if BITS_PER_LONG == 32 5333 printk(KERN_INFO 5334 " task PC stack pid father\n"); 5335 #else 5336 printk(KERN_INFO 5337 " task PC stack pid father\n"); 5338 #endif 5339 rcu_read_lock(); 5340 for_each_process_thread(g, p) { 5341 /* 5342 * reset the NMI-timeout, listing all files on a slow 5343 * console might take a lot of time: 5344 * Also, reset softlockup watchdogs on all CPUs, because 5345 * another CPU might be blocked waiting for us to process 5346 * an IPI. 5347 */ 5348 touch_nmi_watchdog(); 5349 touch_all_softlockup_watchdogs(); 5350 if (state_filter_match(state_filter, p)) 5351 sched_show_task(p); 5352 } 5353 5354 #ifdef CONFIG_SCHED_DEBUG 5355 if (!state_filter) 5356 sysrq_sched_debug_show(); 5357 #endif 5358 rcu_read_unlock(); 5359 /* 5360 * Only show locks if all tasks are dumped: 5361 */ 5362 if (!state_filter) 5363 debug_show_all_locks(); 5364 } 5365 5366 /** 5367 * init_idle - set up an idle thread for a given CPU 5368 * @idle: task in question 5369 * @cpu: CPU the idle task belongs to 5370 * 5371 * NOTE: this function does not set the idle thread's NEED_RESCHED 5372 * flag, to make booting more robust. 5373 */ 5374 void init_idle(struct task_struct *idle, int cpu) 5375 { 5376 struct rq *rq = cpu_rq(cpu); 5377 unsigned long flags; 5378 5379 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5380 raw_spin_lock(&rq->lock); 5381 5382 __sched_fork(0, idle); 5383 idle->state = TASK_RUNNING; 5384 idle->se.exec_start = sched_clock(); 5385 idle->flags |= PF_IDLE; 5386 5387 kasan_unpoison_task_stack(idle); 5388 5389 #ifdef CONFIG_SMP 5390 /* 5391 * Its possible that init_idle() gets called multiple times on a task, 5392 * in that case do_set_cpus_allowed() will not do the right thing. 5393 * 5394 * And since this is boot we can forgo the serialization. 5395 */ 5396 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5397 #endif 5398 /* 5399 * We're having a chicken and egg problem, even though we are 5400 * holding rq->lock, the CPU isn't yet set to this CPU so the 5401 * lockdep check in task_group() will fail. 5402 * 5403 * Similar case to sched_fork(). / Alternatively we could 5404 * use task_rq_lock() here and obtain the other rq->lock. 5405 * 5406 * Silence PROVE_RCU 5407 */ 5408 rcu_read_lock(); 5409 __set_task_cpu(idle, cpu); 5410 rcu_read_unlock(); 5411 5412 rq->curr = rq->idle = idle; 5413 idle->on_rq = TASK_ON_RQ_QUEUED; 5414 #ifdef CONFIG_SMP 5415 idle->on_cpu = 1; 5416 #endif 5417 raw_spin_unlock(&rq->lock); 5418 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5419 5420 /* Set the preempt count _outside_ the spinlocks! */ 5421 init_idle_preempt_count(idle, cpu); 5422 5423 /* 5424 * The idle tasks have their own, simple scheduling class: 5425 */ 5426 idle->sched_class = &idle_sched_class; 5427 ftrace_graph_init_idle_task(idle, cpu); 5428 vtime_init_idle(idle, cpu); 5429 #ifdef CONFIG_SMP 5430 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5431 #endif 5432 } 5433 5434 #ifdef CONFIG_SMP 5435 5436 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5437 const struct cpumask *trial) 5438 { 5439 int ret = 1; 5440 5441 if (!cpumask_weight(cur)) 5442 return ret; 5443 5444 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 5445 5446 return ret; 5447 } 5448 5449 int task_can_attach(struct task_struct *p, 5450 const struct cpumask *cs_cpus_allowed) 5451 { 5452 int ret = 0; 5453 5454 /* 5455 * Kthreads which disallow setaffinity shouldn't be moved 5456 * to a new cpuset; we don't want to change their CPU 5457 * affinity and isolating such threads by their set of 5458 * allowed nodes is unnecessary. Thus, cpusets are not 5459 * applicable for such threads. This prevents checking for 5460 * success of set_cpus_allowed_ptr() on all attached tasks 5461 * before cpus_allowed may be changed. 5462 */ 5463 if (p->flags & PF_NO_SETAFFINITY) { 5464 ret = -EINVAL; 5465 goto out; 5466 } 5467 5468 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5469 cs_cpus_allowed)) 5470 ret = dl_task_can_attach(p, cs_cpus_allowed); 5471 5472 out: 5473 return ret; 5474 } 5475 5476 bool sched_smp_initialized __read_mostly; 5477 5478 #ifdef CONFIG_NUMA_BALANCING 5479 /* Migrate current task p to target_cpu */ 5480 int migrate_task_to(struct task_struct *p, int target_cpu) 5481 { 5482 struct migration_arg arg = { p, target_cpu }; 5483 int curr_cpu = task_cpu(p); 5484 5485 if (curr_cpu == target_cpu) 5486 return 0; 5487 5488 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed)) 5489 return -EINVAL; 5490 5491 /* TODO: This is not properly updating schedstats */ 5492 5493 trace_sched_move_numa(p, curr_cpu, target_cpu); 5494 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5495 } 5496 5497 /* 5498 * Requeue a task on a given node and accurately track the number of NUMA 5499 * tasks on the runqueues 5500 */ 5501 void sched_setnuma(struct task_struct *p, int nid) 5502 { 5503 bool queued, running; 5504 struct rq_flags rf; 5505 struct rq *rq; 5506 5507 rq = task_rq_lock(p, &rf); 5508 queued = task_on_rq_queued(p); 5509 running = task_current(rq, p); 5510 5511 if (queued) 5512 dequeue_task(rq, p, DEQUEUE_SAVE); 5513 if (running) 5514 put_prev_task(rq, p); 5515 5516 p->numa_preferred_nid = nid; 5517 5518 if (queued) 5519 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5520 if (running) 5521 set_curr_task(rq, p); 5522 task_rq_unlock(rq, p, &rf); 5523 } 5524 #endif /* CONFIG_NUMA_BALANCING */ 5525 5526 #ifdef CONFIG_HOTPLUG_CPU 5527 /* 5528 * Ensure that the idle task is using init_mm right before its CPU goes 5529 * offline. 5530 */ 5531 void idle_task_exit(void) 5532 { 5533 struct mm_struct *mm = current->active_mm; 5534 5535 BUG_ON(cpu_online(smp_processor_id())); 5536 5537 if (mm != &init_mm) { 5538 switch_mm(mm, &init_mm, current); 5539 current->active_mm = &init_mm; 5540 finish_arch_post_lock_switch(); 5541 } 5542 mmdrop(mm); 5543 } 5544 5545 /* 5546 * Since this CPU is going 'away' for a while, fold any nr_active delta 5547 * we might have. Assumes we're called after migrate_tasks() so that the 5548 * nr_active count is stable. We need to take the teardown thread which 5549 * is calling this into account, so we hand in adjust = 1 to the load 5550 * calculation. 5551 * 5552 * Also see the comment "Global load-average calculations". 5553 */ 5554 static void calc_load_migrate(struct rq *rq) 5555 { 5556 long delta = calc_load_fold_active(rq, 1); 5557 if (delta) 5558 atomic_long_add(delta, &calc_load_tasks); 5559 } 5560 5561 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5562 { 5563 } 5564 5565 static const struct sched_class fake_sched_class = { 5566 .put_prev_task = put_prev_task_fake, 5567 }; 5568 5569 static struct task_struct fake_task = { 5570 /* 5571 * Avoid pull_{rt,dl}_task() 5572 */ 5573 .prio = MAX_PRIO + 1, 5574 .sched_class = &fake_sched_class, 5575 }; 5576 5577 /* 5578 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5579 * try_to_wake_up()->select_task_rq(). 5580 * 5581 * Called with rq->lock held even though we'er in stop_machine() and 5582 * there's no concurrency possible, we hold the required locks anyway 5583 * because of lock validation efforts. 5584 */ 5585 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 5586 { 5587 struct rq *rq = dead_rq; 5588 struct task_struct *next, *stop = rq->stop; 5589 struct rq_flags orf = *rf; 5590 int dest_cpu; 5591 5592 /* 5593 * Fudge the rq selection such that the below task selection loop 5594 * doesn't get stuck on the currently eligible stop task. 5595 * 5596 * We're currently inside stop_machine() and the rq is either stuck 5597 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5598 * either way we should never end up calling schedule() until we're 5599 * done here. 5600 */ 5601 rq->stop = NULL; 5602 5603 /* 5604 * put_prev_task() and pick_next_task() sched 5605 * class method both need to have an up-to-date 5606 * value of rq->clock[_task] 5607 */ 5608 update_rq_clock(rq); 5609 5610 for (;;) { 5611 /* 5612 * There's this thread running, bail when that's the only 5613 * remaining thread: 5614 */ 5615 if (rq->nr_running == 1) 5616 break; 5617 5618 /* 5619 * pick_next_task() assumes pinned rq->lock: 5620 */ 5621 next = pick_next_task(rq, &fake_task, rf); 5622 BUG_ON(!next); 5623 put_prev_task(rq, next); 5624 5625 /* 5626 * Rules for changing task_struct::cpus_allowed are holding 5627 * both pi_lock and rq->lock, such that holding either 5628 * stabilizes the mask. 5629 * 5630 * Drop rq->lock is not quite as disastrous as it usually is 5631 * because !cpu_active at this point, which means load-balance 5632 * will not interfere. Also, stop-machine. 5633 */ 5634 rq_unlock(rq, rf); 5635 raw_spin_lock(&next->pi_lock); 5636 rq_relock(rq, rf); 5637 5638 /* 5639 * Since we're inside stop-machine, _nothing_ should have 5640 * changed the task, WARN if weird stuff happened, because in 5641 * that case the above rq->lock drop is a fail too. 5642 */ 5643 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5644 raw_spin_unlock(&next->pi_lock); 5645 continue; 5646 } 5647 5648 /* Find suitable destination for @next, with force if needed. */ 5649 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5650 rq = __migrate_task(rq, rf, next, dest_cpu); 5651 if (rq != dead_rq) { 5652 rq_unlock(rq, rf); 5653 rq = dead_rq; 5654 *rf = orf; 5655 rq_relock(rq, rf); 5656 } 5657 raw_spin_unlock(&next->pi_lock); 5658 } 5659 5660 rq->stop = stop; 5661 } 5662 #endif /* CONFIG_HOTPLUG_CPU */ 5663 5664 void set_rq_online(struct rq *rq) 5665 { 5666 if (!rq->online) { 5667 const struct sched_class *class; 5668 5669 cpumask_set_cpu(rq->cpu, rq->rd->online); 5670 rq->online = 1; 5671 5672 for_each_class(class) { 5673 if (class->rq_online) 5674 class->rq_online(rq); 5675 } 5676 } 5677 } 5678 5679 void set_rq_offline(struct rq *rq) 5680 { 5681 if (rq->online) { 5682 const struct sched_class *class; 5683 5684 for_each_class(class) { 5685 if (class->rq_offline) 5686 class->rq_offline(rq); 5687 } 5688 5689 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5690 rq->online = 0; 5691 } 5692 } 5693 5694 /* 5695 * used to mark begin/end of suspend/resume: 5696 */ 5697 static int num_cpus_frozen; 5698 5699 /* 5700 * Update cpusets according to cpu_active mask. If cpusets are 5701 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 5702 * around partition_sched_domains(). 5703 * 5704 * If we come here as part of a suspend/resume, don't touch cpusets because we 5705 * want to restore it back to its original state upon resume anyway. 5706 */ 5707 static void cpuset_cpu_active(void) 5708 { 5709 if (cpuhp_tasks_frozen) { 5710 /* 5711 * num_cpus_frozen tracks how many CPUs are involved in suspend 5712 * resume sequence. As long as this is not the last online 5713 * operation in the resume sequence, just build a single sched 5714 * domain, ignoring cpusets. 5715 */ 5716 partition_sched_domains(1, NULL, NULL); 5717 if (--num_cpus_frozen) 5718 return; 5719 /* 5720 * This is the last CPU online operation. So fall through and 5721 * restore the original sched domains by considering the 5722 * cpuset configurations. 5723 */ 5724 cpuset_force_rebuild(); 5725 } 5726 cpuset_update_active_cpus(); 5727 } 5728 5729 static int cpuset_cpu_inactive(unsigned int cpu) 5730 { 5731 if (!cpuhp_tasks_frozen) { 5732 if (dl_cpu_busy(cpu)) 5733 return -EBUSY; 5734 cpuset_update_active_cpus(); 5735 } else { 5736 num_cpus_frozen++; 5737 partition_sched_domains(1, NULL, NULL); 5738 } 5739 return 0; 5740 } 5741 5742 int sched_cpu_activate(unsigned int cpu) 5743 { 5744 struct rq *rq = cpu_rq(cpu); 5745 struct rq_flags rf; 5746 5747 #ifdef CONFIG_SCHED_SMT 5748 /* 5749 * The sched_smt_present static key needs to be evaluated on every 5750 * hotplug event because at boot time SMT might be disabled when 5751 * the number of booted CPUs is limited. 5752 * 5753 * If then later a sibling gets hotplugged, then the key would stay 5754 * off and SMT scheduling would never be functional. 5755 */ 5756 if (cpumask_weight(cpu_smt_mask(cpu)) > 1) 5757 static_branch_enable_cpuslocked(&sched_smt_present); 5758 #endif 5759 set_cpu_active(cpu, true); 5760 5761 if (sched_smp_initialized) { 5762 sched_domains_numa_masks_set(cpu); 5763 cpuset_cpu_active(); 5764 } 5765 5766 /* 5767 * Put the rq online, if not already. This happens: 5768 * 5769 * 1) In the early boot process, because we build the real domains 5770 * after all CPUs have been brought up. 5771 * 5772 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 5773 * domains. 5774 */ 5775 rq_lock_irqsave(rq, &rf); 5776 if (rq->rd) { 5777 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5778 set_rq_online(rq); 5779 } 5780 rq_unlock_irqrestore(rq, &rf); 5781 5782 update_max_interval(); 5783 5784 return 0; 5785 } 5786 5787 int sched_cpu_deactivate(unsigned int cpu) 5788 { 5789 int ret; 5790 5791 set_cpu_active(cpu, false); 5792 /* 5793 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 5794 * users of this state to go away such that all new such users will 5795 * observe it. 5796 * 5797 * Do sync before park smpboot threads to take care the rcu boost case. 5798 */ 5799 synchronize_rcu_mult(call_rcu, call_rcu_sched); 5800 5801 if (!sched_smp_initialized) 5802 return 0; 5803 5804 ret = cpuset_cpu_inactive(cpu); 5805 if (ret) { 5806 set_cpu_active(cpu, true); 5807 return ret; 5808 } 5809 sched_domains_numa_masks_clear(cpu); 5810 return 0; 5811 } 5812 5813 static void sched_rq_cpu_starting(unsigned int cpu) 5814 { 5815 struct rq *rq = cpu_rq(cpu); 5816 5817 rq->calc_load_update = calc_load_update; 5818 update_max_interval(); 5819 } 5820 5821 int sched_cpu_starting(unsigned int cpu) 5822 { 5823 sched_rq_cpu_starting(cpu); 5824 sched_tick_start(cpu); 5825 return 0; 5826 } 5827 5828 #ifdef CONFIG_HOTPLUG_CPU 5829 int sched_cpu_dying(unsigned int cpu) 5830 { 5831 struct rq *rq = cpu_rq(cpu); 5832 struct rq_flags rf; 5833 5834 /* Handle pending wakeups and then migrate everything off */ 5835 sched_ttwu_pending(); 5836 sched_tick_stop(cpu); 5837 5838 rq_lock_irqsave(rq, &rf); 5839 if (rq->rd) { 5840 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5841 set_rq_offline(rq); 5842 } 5843 migrate_tasks(rq, &rf); 5844 BUG_ON(rq->nr_running != 1); 5845 rq_unlock_irqrestore(rq, &rf); 5846 5847 calc_load_migrate(rq); 5848 update_max_interval(); 5849 nohz_balance_exit_idle(rq); 5850 hrtick_clear(rq); 5851 return 0; 5852 } 5853 #endif 5854 5855 void __init sched_init_smp(void) 5856 { 5857 sched_init_numa(); 5858 5859 /* 5860 * There's no userspace yet to cause hotplug operations; hence all the 5861 * CPU masks are stable and all blatant races in the below code cannot 5862 * happen. 5863 */ 5864 mutex_lock(&sched_domains_mutex); 5865 sched_init_domains(cpu_active_mask); 5866 mutex_unlock(&sched_domains_mutex); 5867 5868 /* Move init over to a non-isolated CPU */ 5869 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 5870 BUG(); 5871 sched_init_granularity(); 5872 5873 init_sched_rt_class(); 5874 init_sched_dl_class(); 5875 5876 sched_smp_initialized = true; 5877 } 5878 5879 static int __init migration_init(void) 5880 { 5881 sched_rq_cpu_starting(smp_processor_id()); 5882 return 0; 5883 } 5884 early_initcall(migration_init); 5885 5886 #else 5887 void __init sched_init_smp(void) 5888 { 5889 sched_init_granularity(); 5890 } 5891 #endif /* CONFIG_SMP */ 5892 5893 int in_sched_functions(unsigned long addr) 5894 { 5895 return in_lock_functions(addr) || 5896 (addr >= (unsigned long)__sched_text_start 5897 && addr < (unsigned long)__sched_text_end); 5898 } 5899 5900 #ifdef CONFIG_CGROUP_SCHED 5901 /* 5902 * Default task group. 5903 * Every task in system belongs to this group at bootup. 5904 */ 5905 struct task_group root_task_group; 5906 LIST_HEAD(task_groups); 5907 5908 /* Cacheline aligned slab cache for task_group */ 5909 static struct kmem_cache *task_group_cache __read_mostly; 5910 #endif 5911 5912 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 5913 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 5914 5915 void __init sched_init(void) 5916 { 5917 int i, j; 5918 unsigned long alloc_size = 0, ptr; 5919 5920 wait_bit_init(); 5921 5922 #ifdef CONFIG_FAIR_GROUP_SCHED 5923 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5924 #endif 5925 #ifdef CONFIG_RT_GROUP_SCHED 5926 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5927 #endif 5928 if (alloc_size) { 5929 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 5930 5931 #ifdef CONFIG_FAIR_GROUP_SCHED 5932 root_task_group.se = (struct sched_entity **)ptr; 5933 ptr += nr_cpu_ids * sizeof(void **); 5934 5935 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 5936 ptr += nr_cpu_ids * sizeof(void **); 5937 5938 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5939 #ifdef CONFIG_RT_GROUP_SCHED 5940 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 5941 ptr += nr_cpu_ids * sizeof(void **); 5942 5943 root_task_group.rt_rq = (struct rt_rq **)ptr; 5944 ptr += nr_cpu_ids * sizeof(void **); 5945 5946 #endif /* CONFIG_RT_GROUP_SCHED */ 5947 } 5948 #ifdef CONFIG_CPUMASK_OFFSTACK 5949 for_each_possible_cpu(i) { 5950 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 5951 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5952 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 5953 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5954 } 5955 #endif /* CONFIG_CPUMASK_OFFSTACK */ 5956 5957 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 5958 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 5959 5960 #ifdef CONFIG_SMP 5961 init_defrootdomain(); 5962 #endif 5963 5964 #ifdef CONFIG_RT_GROUP_SCHED 5965 init_rt_bandwidth(&root_task_group.rt_bandwidth, 5966 global_rt_period(), global_rt_runtime()); 5967 #endif /* CONFIG_RT_GROUP_SCHED */ 5968 5969 #ifdef CONFIG_CGROUP_SCHED 5970 task_group_cache = KMEM_CACHE(task_group, 0); 5971 5972 list_add(&root_task_group.list, &task_groups); 5973 INIT_LIST_HEAD(&root_task_group.children); 5974 INIT_LIST_HEAD(&root_task_group.siblings); 5975 autogroup_init(&init_task); 5976 #endif /* CONFIG_CGROUP_SCHED */ 5977 5978 for_each_possible_cpu(i) { 5979 struct rq *rq; 5980 5981 rq = cpu_rq(i); 5982 raw_spin_lock_init(&rq->lock); 5983 rq->nr_running = 0; 5984 rq->calc_load_active = 0; 5985 rq->calc_load_update = jiffies + LOAD_FREQ; 5986 init_cfs_rq(&rq->cfs); 5987 init_rt_rq(&rq->rt); 5988 init_dl_rq(&rq->dl); 5989 #ifdef CONFIG_FAIR_GROUP_SCHED 5990 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 5991 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 5992 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 5993 /* 5994 * How much CPU bandwidth does root_task_group get? 5995 * 5996 * In case of task-groups formed thr' the cgroup filesystem, it 5997 * gets 100% of the CPU resources in the system. This overall 5998 * system CPU resource is divided among the tasks of 5999 * root_task_group and its child task-groups in a fair manner, 6000 * based on each entity's (task or task-group's) weight 6001 * (se->load.weight). 6002 * 6003 * In other words, if root_task_group has 10 tasks of weight 6004 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6005 * then A0's share of the CPU resource is: 6006 * 6007 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6008 * 6009 * We achieve this by letting root_task_group's tasks sit 6010 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6011 */ 6012 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6013 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6014 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6015 6016 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6017 #ifdef CONFIG_RT_GROUP_SCHED 6018 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6019 #endif 6020 6021 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6022 rq->cpu_load[j] = 0; 6023 6024 #ifdef CONFIG_SMP 6025 rq->sd = NULL; 6026 rq->rd = NULL; 6027 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6028 rq->balance_callback = NULL; 6029 rq->active_balance = 0; 6030 rq->next_balance = jiffies; 6031 rq->push_cpu = 0; 6032 rq->cpu = i; 6033 rq->online = 0; 6034 rq->idle_stamp = 0; 6035 rq->avg_idle = 2*sysctl_sched_migration_cost; 6036 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6037 6038 INIT_LIST_HEAD(&rq->cfs_tasks); 6039 6040 rq_attach_root(rq, &def_root_domain); 6041 #ifdef CONFIG_NO_HZ_COMMON 6042 rq->last_load_update_tick = jiffies; 6043 rq->last_blocked_load_update_tick = jiffies; 6044 atomic_set(&rq->nohz_flags, 0); 6045 #endif 6046 #endif /* CONFIG_SMP */ 6047 hrtick_rq_init(rq); 6048 atomic_set(&rq->nr_iowait, 0); 6049 } 6050 6051 set_load_weight(&init_task, false); 6052 6053 /* 6054 * The boot idle thread does lazy MMU switching as well: 6055 */ 6056 mmgrab(&init_mm); 6057 enter_lazy_tlb(&init_mm, current); 6058 6059 /* 6060 * Make us the idle thread. Technically, schedule() should not be 6061 * called from this thread, however somewhere below it might be, 6062 * but because we are the idle thread, we just pick up running again 6063 * when this runqueue becomes "idle". 6064 */ 6065 init_idle(current, smp_processor_id()); 6066 6067 calc_load_update = jiffies + LOAD_FREQ; 6068 6069 #ifdef CONFIG_SMP 6070 idle_thread_set_boot_cpu(); 6071 #endif 6072 init_sched_fair_class(); 6073 6074 init_schedstats(); 6075 6076 psi_init(); 6077 6078 scheduler_running = 1; 6079 } 6080 6081 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6082 static inline int preempt_count_equals(int preempt_offset) 6083 { 6084 int nested = preempt_count() + rcu_preempt_depth(); 6085 6086 return (nested == preempt_offset); 6087 } 6088 6089 void __might_sleep(const char *file, int line, int preempt_offset) 6090 { 6091 /* 6092 * Blocking primitives will set (and therefore destroy) current->state, 6093 * since we will exit with TASK_RUNNING make sure we enter with it, 6094 * otherwise we will destroy state. 6095 */ 6096 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6097 "do not call blocking ops when !TASK_RUNNING; " 6098 "state=%lx set at [<%p>] %pS\n", 6099 current->state, 6100 (void *)current->task_state_change, 6101 (void *)current->task_state_change); 6102 6103 ___might_sleep(file, line, preempt_offset); 6104 } 6105 EXPORT_SYMBOL(__might_sleep); 6106 6107 void ___might_sleep(const char *file, int line, int preempt_offset) 6108 { 6109 /* Ratelimiting timestamp: */ 6110 static unsigned long prev_jiffy; 6111 6112 unsigned long preempt_disable_ip; 6113 6114 /* WARN_ON_ONCE() by default, no rate limit required: */ 6115 rcu_sleep_check(); 6116 6117 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6118 !is_idle_task(current)) || 6119 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6120 oops_in_progress) 6121 return; 6122 6123 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6124 return; 6125 prev_jiffy = jiffies; 6126 6127 /* Save this before calling printk(), since that will clobber it: */ 6128 preempt_disable_ip = get_preempt_disable_ip(current); 6129 6130 printk(KERN_ERR 6131 "BUG: sleeping function called from invalid context at %s:%d\n", 6132 file, line); 6133 printk(KERN_ERR 6134 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6135 in_atomic(), irqs_disabled(), 6136 current->pid, current->comm); 6137 6138 if (task_stack_end_corrupted(current)) 6139 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6140 6141 debug_show_held_locks(current); 6142 if (irqs_disabled()) 6143 print_irqtrace_events(current); 6144 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6145 && !preempt_count_equals(preempt_offset)) { 6146 pr_err("Preemption disabled at:"); 6147 print_ip_sym(preempt_disable_ip); 6148 pr_cont("\n"); 6149 } 6150 dump_stack(); 6151 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6152 } 6153 EXPORT_SYMBOL(___might_sleep); 6154 #endif 6155 6156 #ifdef CONFIG_MAGIC_SYSRQ 6157 void normalize_rt_tasks(void) 6158 { 6159 struct task_struct *g, *p; 6160 struct sched_attr attr = { 6161 .sched_policy = SCHED_NORMAL, 6162 }; 6163 6164 read_lock(&tasklist_lock); 6165 for_each_process_thread(g, p) { 6166 /* 6167 * Only normalize user tasks: 6168 */ 6169 if (p->flags & PF_KTHREAD) 6170 continue; 6171 6172 p->se.exec_start = 0; 6173 schedstat_set(p->se.statistics.wait_start, 0); 6174 schedstat_set(p->se.statistics.sleep_start, 0); 6175 schedstat_set(p->se.statistics.block_start, 0); 6176 6177 if (!dl_task(p) && !rt_task(p)) { 6178 /* 6179 * Renice negative nice level userspace 6180 * tasks back to 0: 6181 */ 6182 if (task_nice(p) < 0) 6183 set_user_nice(p, 0); 6184 continue; 6185 } 6186 6187 __sched_setscheduler(p, &attr, false, false); 6188 } 6189 read_unlock(&tasklist_lock); 6190 } 6191 6192 #endif /* CONFIG_MAGIC_SYSRQ */ 6193 6194 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6195 /* 6196 * These functions are only useful for the IA64 MCA handling, or kdb. 6197 * 6198 * They can only be called when the whole system has been 6199 * stopped - every CPU needs to be quiescent, and no scheduling 6200 * activity can take place. Using them for anything else would 6201 * be a serious bug, and as a result, they aren't even visible 6202 * under any other configuration. 6203 */ 6204 6205 /** 6206 * curr_task - return the current task for a given CPU. 6207 * @cpu: the processor in question. 6208 * 6209 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6210 * 6211 * Return: The current task for @cpu. 6212 */ 6213 struct task_struct *curr_task(int cpu) 6214 { 6215 return cpu_curr(cpu); 6216 } 6217 6218 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6219 6220 #ifdef CONFIG_IA64 6221 /** 6222 * set_curr_task - set the current task for a given CPU. 6223 * @cpu: the processor in question. 6224 * @p: the task pointer to set. 6225 * 6226 * Description: This function must only be used when non-maskable interrupts 6227 * are serviced on a separate stack. It allows the architecture to switch the 6228 * notion of the current task on a CPU in a non-blocking manner. This function 6229 * must be called with all CPU's synchronized, and interrupts disabled, the 6230 * and caller must save the original value of the current task (see 6231 * curr_task() above) and restore that value before reenabling interrupts and 6232 * re-starting the system. 6233 * 6234 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6235 */ 6236 void ia64_set_curr_task(int cpu, struct task_struct *p) 6237 { 6238 cpu_curr(cpu) = p; 6239 } 6240 6241 #endif 6242 6243 #ifdef CONFIG_CGROUP_SCHED 6244 /* task_group_lock serializes the addition/removal of task groups */ 6245 static DEFINE_SPINLOCK(task_group_lock); 6246 6247 static void sched_free_group(struct task_group *tg) 6248 { 6249 free_fair_sched_group(tg); 6250 free_rt_sched_group(tg); 6251 autogroup_free(tg); 6252 kmem_cache_free(task_group_cache, tg); 6253 } 6254 6255 /* allocate runqueue etc for a new task group */ 6256 struct task_group *sched_create_group(struct task_group *parent) 6257 { 6258 struct task_group *tg; 6259 6260 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6261 if (!tg) 6262 return ERR_PTR(-ENOMEM); 6263 6264 if (!alloc_fair_sched_group(tg, parent)) 6265 goto err; 6266 6267 if (!alloc_rt_sched_group(tg, parent)) 6268 goto err; 6269 6270 return tg; 6271 6272 err: 6273 sched_free_group(tg); 6274 return ERR_PTR(-ENOMEM); 6275 } 6276 6277 void sched_online_group(struct task_group *tg, struct task_group *parent) 6278 { 6279 unsigned long flags; 6280 6281 spin_lock_irqsave(&task_group_lock, flags); 6282 list_add_rcu(&tg->list, &task_groups); 6283 6284 /* Root should already exist: */ 6285 WARN_ON(!parent); 6286 6287 tg->parent = parent; 6288 INIT_LIST_HEAD(&tg->children); 6289 list_add_rcu(&tg->siblings, &parent->children); 6290 spin_unlock_irqrestore(&task_group_lock, flags); 6291 6292 online_fair_sched_group(tg); 6293 } 6294 6295 /* rcu callback to free various structures associated with a task group */ 6296 static void sched_free_group_rcu(struct rcu_head *rhp) 6297 { 6298 /* Now it should be safe to free those cfs_rqs: */ 6299 sched_free_group(container_of(rhp, struct task_group, rcu)); 6300 } 6301 6302 void sched_destroy_group(struct task_group *tg) 6303 { 6304 /* Wait for possible concurrent references to cfs_rqs complete: */ 6305 call_rcu(&tg->rcu, sched_free_group_rcu); 6306 } 6307 6308 void sched_offline_group(struct task_group *tg) 6309 { 6310 unsigned long flags; 6311 6312 /* End participation in shares distribution: */ 6313 unregister_fair_sched_group(tg); 6314 6315 spin_lock_irqsave(&task_group_lock, flags); 6316 list_del_rcu(&tg->list); 6317 list_del_rcu(&tg->siblings); 6318 spin_unlock_irqrestore(&task_group_lock, flags); 6319 } 6320 6321 static void sched_change_group(struct task_struct *tsk, int type) 6322 { 6323 struct task_group *tg; 6324 6325 /* 6326 * All callers are synchronized by task_rq_lock(); we do not use RCU 6327 * which is pointless here. Thus, we pass "true" to task_css_check() 6328 * to prevent lockdep warnings. 6329 */ 6330 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 6331 struct task_group, css); 6332 tg = autogroup_task_group(tsk, tg); 6333 tsk->sched_task_group = tg; 6334 6335 #ifdef CONFIG_FAIR_GROUP_SCHED 6336 if (tsk->sched_class->task_change_group) 6337 tsk->sched_class->task_change_group(tsk, type); 6338 else 6339 #endif 6340 set_task_rq(tsk, task_cpu(tsk)); 6341 } 6342 6343 /* 6344 * Change task's runqueue when it moves between groups. 6345 * 6346 * The caller of this function should have put the task in its new group by 6347 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 6348 * its new group. 6349 */ 6350 void sched_move_task(struct task_struct *tsk) 6351 { 6352 int queued, running, queue_flags = 6353 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6354 struct rq_flags rf; 6355 struct rq *rq; 6356 6357 rq = task_rq_lock(tsk, &rf); 6358 update_rq_clock(rq); 6359 6360 running = task_current(rq, tsk); 6361 queued = task_on_rq_queued(tsk); 6362 6363 if (queued) 6364 dequeue_task(rq, tsk, queue_flags); 6365 if (running) 6366 put_prev_task(rq, tsk); 6367 6368 sched_change_group(tsk, TASK_MOVE_GROUP); 6369 6370 if (queued) 6371 enqueue_task(rq, tsk, queue_flags); 6372 if (running) 6373 set_curr_task(rq, tsk); 6374 6375 task_rq_unlock(rq, tsk, &rf); 6376 } 6377 6378 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6379 { 6380 return css ? container_of(css, struct task_group, css) : NULL; 6381 } 6382 6383 static struct cgroup_subsys_state * 6384 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6385 { 6386 struct task_group *parent = css_tg(parent_css); 6387 struct task_group *tg; 6388 6389 if (!parent) { 6390 /* This is early initialization for the top cgroup */ 6391 return &root_task_group.css; 6392 } 6393 6394 tg = sched_create_group(parent); 6395 if (IS_ERR(tg)) 6396 return ERR_PTR(-ENOMEM); 6397 6398 return &tg->css; 6399 } 6400 6401 /* Expose task group only after completing cgroup initialization */ 6402 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6403 { 6404 struct task_group *tg = css_tg(css); 6405 struct task_group *parent = css_tg(css->parent); 6406 6407 if (parent) 6408 sched_online_group(tg, parent); 6409 return 0; 6410 } 6411 6412 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 6413 { 6414 struct task_group *tg = css_tg(css); 6415 6416 sched_offline_group(tg); 6417 } 6418 6419 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6420 { 6421 struct task_group *tg = css_tg(css); 6422 6423 /* 6424 * Relies on the RCU grace period between css_released() and this. 6425 */ 6426 sched_free_group(tg); 6427 } 6428 6429 /* 6430 * This is called before wake_up_new_task(), therefore we really only 6431 * have to set its group bits, all the other stuff does not apply. 6432 */ 6433 static void cpu_cgroup_fork(struct task_struct *task) 6434 { 6435 struct rq_flags rf; 6436 struct rq *rq; 6437 6438 rq = task_rq_lock(task, &rf); 6439 6440 update_rq_clock(rq); 6441 sched_change_group(task, TASK_SET_GROUP); 6442 6443 task_rq_unlock(rq, task, &rf); 6444 } 6445 6446 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 6447 { 6448 struct task_struct *task; 6449 struct cgroup_subsys_state *css; 6450 int ret = 0; 6451 6452 cgroup_taskset_for_each(task, css, tset) { 6453 #ifdef CONFIG_RT_GROUP_SCHED 6454 if (!sched_rt_can_attach(css_tg(css), task)) 6455 return -EINVAL; 6456 #else 6457 /* We don't support RT-tasks being in separate groups */ 6458 if (task->sched_class != &fair_sched_class) 6459 return -EINVAL; 6460 #endif 6461 /* 6462 * Serialize against wake_up_new_task() such that if its 6463 * running, we're sure to observe its full state. 6464 */ 6465 raw_spin_lock_irq(&task->pi_lock); 6466 /* 6467 * Avoid calling sched_move_task() before wake_up_new_task() 6468 * has happened. This would lead to problems with PELT, due to 6469 * move wanting to detach+attach while we're not attached yet. 6470 */ 6471 if (task->state == TASK_NEW) 6472 ret = -EINVAL; 6473 raw_spin_unlock_irq(&task->pi_lock); 6474 6475 if (ret) 6476 break; 6477 } 6478 return ret; 6479 } 6480 6481 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 6482 { 6483 struct task_struct *task; 6484 struct cgroup_subsys_state *css; 6485 6486 cgroup_taskset_for_each(task, css, tset) 6487 sched_move_task(task); 6488 } 6489 6490 #ifdef CONFIG_FAIR_GROUP_SCHED 6491 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 6492 struct cftype *cftype, u64 shareval) 6493 { 6494 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 6495 } 6496 6497 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 6498 struct cftype *cft) 6499 { 6500 struct task_group *tg = css_tg(css); 6501 6502 return (u64) scale_load_down(tg->shares); 6503 } 6504 6505 #ifdef CONFIG_CFS_BANDWIDTH 6506 static DEFINE_MUTEX(cfs_constraints_mutex); 6507 6508 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 6509 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 6510 6511 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 6512 6513 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 6514 { 6515 int i, ret = 0, runtime_enabled, runtime_was_enabled; 6516 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6517 6518 if (tg == &root_task_group) 6519 return -EINVAL; 6520 6521 /* 6522 * Ensure we have at some amount of bandwidth every period. This is 6523 * to prevent reaching a state of large arrears when throttled via 6524 * entity_tick() resulting in prolonged exit starvation. 6525 */ 6526 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 6527 return -EINVAL; 6528 6529 /* 6530 * Likewise, bound things on the otherside by preventing insane quota 6531 * periods. This also allows us to normalize in computing quota 6532 * feasibility. 6533 */ 6534 if (period > max_cfs_quota_period) 6535 return -EINVAL; 6536 6537 /* 6538 * Prevent race between setting of cfs_rq->runtime_enabled and 6539 * unthrottle_offline_cfs_rqs(). 6540 */ 6541 get_online_cpus(); 6542 mutex_lock(&cfs_constraints_mutex); 6543 ret = __cfs_schedulable(tg, period, quota); 6544 if (ret) 6545 goto out_unlock; 6546 6547 runtime_enabled = quota != RUNTIME_INF; 6548 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 6549 /* 6550 * If we need to toggle cfs_bandwidth_used, off->on must occur 6551 * before making related changes, and on->off must occur afterwards 6552 */ 6553 if (runtime_enabled && !runtime_was_enabled) 6554 cfs_bandwidth_usage_inc(); 6555 raw_spin_lock_irq(&cfs_b->lock); 6556 cfs_b->period = ns_to_ktime(period); 6557 cfs_b->quota = quota; 6558 6559 __refill_cfs_bandwidth_runtime(cfs_b); 6560 6561 /* Restart the period timer (if active) to handle new period expiry: */ 6562 if (runtime_enabled) 6563 start_cfs_bandwidth(cfs_b); 6564 6565 raw_spin_unlock_irq(&cfs_b->lock); 6566 6567 for_each_online_cpu(i) { 6568 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 6569 struct rq *rq = cfs_rq->rq; 6570 struct rq_flags rf; 6571 6572 rq_lock_irq(rq, &rf); 6573 cfs_rq->runtime_enabled = runtime_enabled; 6574 cfs_rq->runtime_remaining = 0; 6575 6576 if (cfs_rq->throttled) 6577 unthrottle_cfs_rq(cfs_rq); 6578 rq_unlock_irq(rq, &rf); 6579 } 6580 if (runtime_was_enabled && !runtime_enabled) 6581 cfs_bandwidth_usage_dec(); 6582 out_unlock: 6583 mutex_unlock(&cfs_constraints_mutex); 6584 put_online_cpus(); 6585 6586 return ret; 6587 } 6588 6589 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 6590 { 6591 u64 quota, period; 6592 6593 period = ktime_to_ns(tg->cfs_bandwidth.period); 6594 if (cfs_quota_us < 0) 6595 quota = RUNTIME_INF; 6596 else 6597 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 6598 6599 return tg_set_cfs_bandwidth(tg, period, quota); 6600 } 6601 6602 long tg_get_cfs_quota(struct task_group *tg) 6603 { 6604 u64 quota_us; 6605 6606 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 6607 return -1; 6608 6609 quota_us = tg->cfs_bandwidth.quota; 6610 do_div(quota_us, NSEC_PER_USEC); 6611 6612 return quota_us; 6613 } 6614 6615 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 6616 { 6617 u64 quota, period; 6618 6619 period = (u64)cfs_period_us * NSEC_PER_USEC; 6620 quota = tg->cfs_bandwidth.quota; 6621 6622 return tg_set_cfs_bandwidth(tg, period, quota); 6623 } 6624 6625 long tg_get_cfs_period(struct task_group *tg) 6626 { 6627 u64 cfs_period_us; 6628 6629 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 6630 do_div(cfs_period_us, NSEC_PER_USEC); 6631 6632 return cfs_period_us; 6633 } 6634 6635 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 6636 struct cftype *cft) 6637 { 6638 return tg_get_cfs_quota(css_tg(css)); 6639 } 6640 6641 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 6642 struct cftype *cftype, s64 cfs_quota_us) 6643 { 6644 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 6645 } 6646 6647 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 6648 struct cftype *cft) 6649 { 6650 return tg_get_cfs_period(css_tg(css)); 6651 } 6652 6653 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 6654 struct cftype *cftype, u64 cfs_period_us) 6655 { 6656 return tg_set_cfs_period(css_tg(css), cfs_period_us); 6657 } 6658 6659 struct cfs_schedulable_data { 6660 struct task_group *tg; 6661 u64 period, quota; 6662 }; 6663 6664 /* 6665 * normalize group quota/period to be quota/max_period 6666 * note: units are usecs 6667 */ 6668 static u64 normalize_cfs_quota(struct task_group *tg, 6669 struct cfs_schedulable_data *d) 6670 { 6671 u64 quota, period; 6672 6673 if (tg == d->tg) { 6674 period = d->period; 6675 quota = d->quota; 6676 } else { 6677 period = tg_get_cfs_period(tg); 6678 quota = tg_get_cfs_quota(tg); 6679 } 6680 6681 /* note: these should typically be equivalent */ 6682 if (quota == RUNTIME_INF || quota == -1) 6683 return RUNTIME_INF; 6684 6685 return to_ratio(period, quota); 6686 } 6687 6688 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 6689 { 6690 struct cfs_schedulable_data *d = data; 6691 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6692 s64 quota = 0, parent_quota = -1; 6693 6694 if (!tg->parent) { 6695 quota = RUNTIME_INF; 6696 } else { 6697 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 6698 6699 quota = normalize_cfs_quota(tg, d); 6700 parent_quota = parent_b->hierarchical_quota; 6701 6702 /* 6703 * Ensure max(child_quota) <= parent_quota. On cgroup2, 6704 * always take the min. On cgroup1, only inherit when no 6705 * limit is set: 6706 */ 6707 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 6708 quota = min(quota, parent_quota); 6709 } else { 6710 if (quota == RUNTIME_INF) 6711 quota = parent_quota; 6712 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 6713 return -EINVAL; 6714 } 6715 } 6716 cfs_b->hierarchical_quota = quota; 6717 6718 return 0; 6719 } 6720 6721 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 6722 { 6723 int ret; 6724 struct cfs_schedulable_data data = { 6725 .tg = tg, 6726 .period = period, 6727 .quota = quota, 6728 }; 6729 6730 if (quota != RUNTIME_INF) { 6731 do_div(data.period, NSEC_PER_USEC); 6732 do_div(data.quota, NSEC_PER_USEC); 6733 } 6734 6735 rcu_read_lock(); 6736 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 6737 rcu_read_unlock(); 6738 6739 return ret; 6740 } 6741 6742 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 6743 { 6744 struct task_group *tg = css_tg(seq_css(sf)); 6745 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6746 6747 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 6748 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 6749 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 6750 6751 if (schedstat_enabled() && tg != &root_task_group) { 6752 u64 ws = 0; 6753 int i; 6754 6755 for_each_possible_cpu(i) 6756 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 6757 6758 seq_printf(sf, "wait_sum %llu\n", ws); 6759 } 6760 6761 return 0; 6762 } 6763 #endif /* CONFIG_CFS_BANDWIDTH */ 6764 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6765 6766 #ifdef CONFIG_RT_GROUP_SCHED 6767 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 6768 struct cftype *cft, s64 val) 6769 { 6770 return sched_group_set_rt_runtime(css_tg(css), val); 6771 } 6772 6773 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 6774 struct cftype *cft) 6775 { 6776 return sched_group_rt_runtime(css_tg(css)); 6777 } 6778 6779 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 6780 struct cftype *cftype, u64 rt_period_us) 6781 { 6782 return sched_group_set_rt_period(css_tg(css), rt_period_us); 6783 } 6784 6785 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 6786 struct cftype *cft) 6787 { 6788 return sched_group_rt_period(css_tg(css)); 6789 } 6790 #endif /* CONFIG_RT_GROUP_SCHED */ 6791 6792 static struct cftype cpu_legacy_files[] = { 6793 #ifdef CONFIG_FAIR_GROUP_SCHED 6794 { 6795 .name = "shares", 6796 .read_u64 = cpu_shares_read_u64, 6797 .write_u64 = cpu_shares_write_u64, 6798 }, 6799 #endif 6800 #ifdef CONFIG_CFS_BANDWIDTH 6801 { 6802 .name = "cfs_quota_us", 6803 .read_s64 = cpu_cfs_quota_read_s64, 6804 .write_s64 = cpu_cfs_quota_write_s64, 6805 }, 6806 { 6807 .name = "cfs_period_us", 6808 .read_u64 = cpu_cfs_period_read_u64, 6809 .write_u64 = cpu_cfs_period_write_u64, 6810 }, 6811 { 6812 .name = "stat", 6813 .seq_show = cpu_cfs_stat_show, 6814 }, 6815 #endif 6816 #ifdef CONFIG_RT_GROUP_SCHED 6817 { 6818 .name = "rt_runtime_us", 6819 .read_s64 = cpu_rt_runtime_read, 6820 .write_s64 = cpu_rt_runtime_write, 6821 }, 6822 { 6823 .name = "rt_period_us", 6824 .read_u64 = cpu_rt_period_read_uint, 6825 .write_u64 = cpu_rt_period_write_uint, 6826 }, 6827 #endif 6828 { } /* Terminate */ 6829 }; 6830 6831 static int cpu_extra_stat_show(struct seq_file *sf, 6832 struct cgroup_subsys_state *css) 6833 { 6834 #ifdef CONFIG_CFS_BANDWIDTH 6835 { 6836 struct task_group *tg = css_tg(css); 6837 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6838 u64 throttled_usec; 6839 6840 throttled_usec = cfs_b->throttled_time; 6841 do_div(throttled_usec, NSEC_PER_USEC); 6842 6843 seq_printf(sf, "nr_periods %d\n" 6844 "nr_throttled %d\n" 6845 "throttled_usec %llu\n", 6846 cfs_b->nr_periods, cfs_b->nr_throttled, 6847 throttled_usec); 6848 } 6849 #endif 6850 return 0; 6851 } 6852 6853 #ifdef CONFIG_FAIR_GROUP_SCHED 6854 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 6855 struct cftype *cft) 6856 { 6857 struct task_group *tg = css_tg(css); 6858 u64 weight = scale_load_down(tg->shares); 6859 6860 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 6861 } 6862 6863 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 6864 struct cftype *cft, u64 weight) 6865 { 6866 /* 6867 * cgroup weight knobs should use the common MIN, DFL and MAX 6868 * values which are 1, 100 and 10000 respectively. While it loses 6869 * a bit of range on both ends, it maps pretty well onto the shares 6870 * value used by scheduler and the round-trip conversions preserve 6871 * the original value over the entire range. 6872 */ 6873 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 6874 return -ERANGE; 6875 6876 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 6877 6878 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6879 } 6880 6881 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 6882 struct cftype *cft) 6883 { 6884 unsigned long weight = scale_load_down(css_tg(css)->shares); 6885 int last_delta = INT_MAX; 6886 int prio, delta; 6887 6888 /* find the closest nice value to the current weight */ 6889 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 6890 delta = abs(sched_prio_to_weight[prio] - weight); 6891 if (delta >= last_delta) 6892 break; 6893 last_delta = delta; 6894 } 6895 6896 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 6897 } 6898 6899 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 6900 struct cftype *cft, s64 nice) 6901 { 6902 unsigned long weight; 6903 int idx; 6904 6905 if (nice < MIN_NICE || nice > MAX_NICE) 6906 return -ERANGE; 6907 6908 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 6909 idx = array_index_nospec(idx, 40); 6910 weight = sched_prio_to_weight[idx]; 6911 6912 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6913 } 6914 #endif 6915 6916 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 6917 long period, long quota) 6918 { 6919 if (quota < 0) 6920 seq_puts(sf, "max"); 6921 else 6922 seq_printf(sf, "%ld", quota); 6923 6924 seq_printf(sf, " %ld\n", period); 6925 } 6926 6927 /* caller should put the current value in *@periodp before calling */ 6928 static int __maybe_unused cpu_period_quota_parse(char *buf, 6929 u64 *periodp, u64 *quotap) 6930 { 6931 char tok[21]; /* U64_MAX */ 6932 6933 if (!sscanf(buf, "%s %llu", tok, periodp)) 6934 return -EINVAL; 6935 6936 *periodp *= NSEC_PER_USEC; 6937 6938 if (sscanf(tok, "%llu", quotap)) 6939 *quotap *= NSEC_PER_USEC; 6940 else if (!strcmp(tok, "max")) 6941 *quotap = RUNTIME_INF; 6942 else 6943 return -EINVAL; 6944 6945 return 0; 6946 } 6947 6948 #ifdef CONFIG_CFS_BANDWIDTH 6949 static int cpu_max_show(struct seq_file *sf, void *v) 6950 { 6951 struct task_group *tg = css_tg(seq_css(sf)); 6952 6953 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 6954 return 0; 6955 } 6956 6957 static ssize_t cpu_max_write(struct kernfs_open_file *of, 6958 char *buf, size_t nbytes, loff_t off) 6959 { 6960 struct task_group *tg = css_tg(of_css(of)); 6961 u64 period = tg_get_cfs_period(tg); 6962 u64 quota; 6963 int ret; 6964 6965 ret = cpu_period_quota_parse(buf, &period, "a); 6966 if (!ret) 6967 ret = tg_set_cfs_bandwidth(tg, period, quota); 6968 return ret ?: nbytes; 6969 } 6970 #endif 6971 6972 static struct cftype cpu_files[] = { 6973 #ifdef CONFIG_FAIR_GROUP_SCHED 6974 { 6975 .name = "weight", 6976 .flags = CFTYPE_NOT_ON_ROOT, 6977 .read_u64 = cpu_weight_read_u64, 6978 .write_u64 = cpu_weight_write_u64, 6979 }, 6980 { 6981 .name = "weight.nice", 6982 .flags = CFTYPE_NOT_ON_ROOT, 6983 .read_s64 = cpu_weight_nice_read_s64, 6984 .write_s64 = cpu_weight_nice_write_s64, 6985 }, 6986 #endif 6987 #ifdef CONFIG_CFS_BANDWIDTH 6988 { 6989 .name = "max", 6990 .flags = CFTYPE_NOT_ON_ROOT, 6991 .seq_show = cpu_max_show, 6992 .write = cpu_max_write, 6993 }, 6994 #endif 6995 { } /* terminate */ 6996 }; 6997 6998 struct cgroup_subsys cpu_cgrp_subsys = { 6999 .css_alloc = cpu_cgroup_css_alloc, 7000 .css_online = cpu_cgroup_css_online, 7001 .css_released = cpu_cgroup_css_released, 7002 .css_free = cpu_cgroup_css_free, 7003 .css_extra_stat_show = cpu_extra_stat_show, 7004 .fork = cpu_cgroup_fork, 7005 .can_attach = cpu_cgroup_can_attach, 7006 .attach = cpu_cgroup_attach, 7007 .legacy_cftypes = cpu_legacy_files, 7008 .dfl_cftypes = cpu_files, 7009 .early_init = true, 7010 .threaded = true, 7011 }; 7012 7013 #endif /* CONFIG_CGROUP_SCHED */ 7014 7015 void dump_cpu_task(int cpu) 7016 { 7017 pr_info("Task dump for CPU %d:\n", cpu); 7018 sched_show_task(cpu_curr(cpu)); 7019 } 7020 7021 /* 7022 * Nice levels are multiplicative, with a gentle 10% change for every 7023 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7024 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7025 * that remained on nice 0. 7026 * 7027 * The "10% effect" is relative and cumulative: from _any_ nice level, 7028 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7029 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7030 * If a task goes up by ~10% and another task goes down by ~10% then 7031 * the relative distance between them is ~25%.) 7032 */ 7033 const int sched_prio_to_weight[40] = { 7034 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7035 /* -15 */ 29154, 23254, 18705, 14949, 11916, 7036 /* -10 */ 9548, 7620, 6100, 4904, 3906, 7037 /* -5 */ 3121, 2501, 1991, 1586, 1277, 7038 /* 0 */ 1024, 820, 655, 526, 423, 7039 /* 5 */ 335, 272, 215, 172, 137, 7040 /* 10 */ 110, 87, 70, 56, 45, 7041 /* 15 */ 36, 29, 23, 18, 15, 7042 }; 7043 7044 /* 7045 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7046 * 7047 * In cases where the weight does not change often, we can use the 7048 * precalculated inverse to speed up arithmetics by turning divisions 7049 * into multiplications: 7050 */ 7051 const u32 sched_prio_to_wmult[40] = { 7052 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7053 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7054 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7055 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7056 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7057 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7058 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7059 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7060 }; 7061 7062 #undef CREATE_TRACE_POINTS 7063