1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel CPU scheduler code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #include <linux/highmem.h> 11 #include <linux/hrtimer_api.h> 12 #include <linux/ktime_api.h> 13 #include <linux/sched/signal.h> 14 #include <linux/syscalls_api.h> 15 #include <linux/debug_locks.h> 16 #include <linux/prefetch.h> 17 #include <linux/capability.h> 18 #include <linux/pgtable_api.h> 19 #include <linux/wait_bit.h> 20 #include <linux/jiffies.h> 21 #include <linux/spinlock_api.h> 22 #include <linux/cpumask_api.h> 23 #include <linux/lockdep_api.h> 24 #include <linux/hardirq.h> 25 #include <linux/softirq.h> 26 #include <linux/refcount_api.h> 27 #include <linux/topology.h> 28 #include <linux/sched/clock.h> 29 #include <linux/sched/cond_resched.h> 30 #include <linux/sched/cputime.h> 31 #include <linux/sched/debug.h> 32 #include <linux/sched/hotplug.h> 33 #include <linux/sched/init.h> 34 #include <linux/sched/isolation.h> 35 #include <linux/sched/loadavg.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/nohz.h> 38 #include <linux/sched/rseq_api.h> 39 #include <linux/sched/rt.h> 40 41 #include <linux/blkdev.h> 42 #include <linux/context_tracking.h> 43 #include <linux/cpuset.h> 44 #include <linux/delayacct.h> 45 #include <linux/init_task.h> 46 #include <linux/interrupt.h> 47 #include <linux/ioprio.h> 48 #include <linux/kallsyms.h> 49 #include <linux/kcov.h> 50 #include <linux/kprobes.h> 51 #include <linux/llist_api.h> 52 #include <linux/mmu_context.h> 53 #include <linux/mmzone.h> 54 #include <linux/mutex_api.h> 55 #include <linux/nmi.h> 56 #include <linux/nospec.h> 57 #include <linux/perf_event_api.h> 58 #include <linux/profile.h> 59 #include <linux/psi.h> 60 #include <linux/rcuwait_api.h> 61 #include <linux/rseq.h> 62 #include <linux/sched/wake_q.h> 63 #include <linux/scs.h> 64 #include <linux/slab.h> 65 #include <linux/syscalls.h> 66 #include <linux/vtime.h> 67 #include <linux/wait_api.h> 68 #include <linux/workqueue_api.h> 69 70 #ifdef CONFIG_PREEMPT_DYNAMIC 71 # ifdef CONFIG_GENERIC_ENTRY 72 # include <linux/entry-common.h> 73 # endif 74 #endif 75 76 #include <uapi/linux/sched/types.h> 77 78 #include <asm/irq_regs.h> 79 #include <asm/switch_to.h> 80 #include <asm/tlb.h> 81 82 #define CREATE_TRACE_POINTS 83 #include <linux/sched/rseq_api.h> 84 #include <trace/events/sched.h> 85 #include <trace/events/ipi.h> 86 #undef CREATE_TRACE_POINTS 87 88 #include "sched.h" 89 #include "stats.h" 90 91 #include "autogroup.h" 92 #include "pelt.h" 93 #include "smp.h" 94 #include "stats.h" 95 96 #include "../workqueue_internal.h" 97 #include "../../io_uring/io-wq.h" 98 #include "../smpboot.h" 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 102 103 /* 104 * Export tracepoints that act as a bare tracehook (ie: have no trace event 105 * associated with them) to allow external modules to probe them. 106 */ 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 119 120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 121 122 #ifdef CONFIG_SCHED_DEBUG 123 /* 124 * Debugging: various feature bits 125 * 126 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 127 * sysctl_sched_features, defined in sched.h, to allow constants propagation 128 * at compile time and compiler optimization based on features default. 129 */ 130 #define SCHED_FEAT(name, enabled) \ 131 (1UL << __SCHED_FEAT_##name) * enabled | 132 const_debug unsigned int sysctl_sched_features = 133 #include "features.h" 134 0; 135 #undef SCHED_FEAT 136 137 /* 138 * Print a warning if need_resched is set for the given duration (if 139 * LATENCY_WARN is enabled). 140 * 141 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 142 * per boot. 143 */ 144 __read_mostly int sysctl_resched_latency_warn_ms = 100; 145 __read_mostly int sysctl_resched_latency_warn_once = 1; 146 #endif /* CONFIG_SCHED_DEBUG */ 147 148 /* 149 * Number of tasks to iterate in a single balance run. 150 * Limited because this is done with IRQs disabled. 151 */ 152 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 153 154 __read_mostly int scheduler_running; 155 156 #ifdef CONFIG_SCHED_CORE 157 158 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 159 160 /* kernel prio, less is more */ 161 static inline int __task_prio(const struct task_struct *p) 162 { 163 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 164 return -2; 165 166 if (p->dl_server) 167 return -1; /* deadline */ 168 169 if (rt_or_dl_prio(p->prio)) 170 return p->prio; /* [-1, 99] */ 171 172 if (p->sched_class == &idle_sched_class) 173 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 174 175 if (task_on_scx(p)) 176 return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ 177 178 return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ 179 } 180 181 /* 182 * l(a,b) 183 * le(a,b) := !l(b,a) 184 * g(a,b) := l(b,a) 185 * ge(a,b) := !l(a,b) 186 */ 187 188 /* real prio, less is less */ 189 static inline bool prio_less(const struct task_struct *a, 190 const struct task_struct *b, bool in_fi) 191 { 192 193 int pa = __task_prio(a), pb = __task_prio(b); 194 195 if (-pa < -pb) 196 return true; 197 198 if (-pb < -pa) 199 return false; 200 201 if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */ 202 const struct sched_dl_entity *a_dl, *b_dl; 203 204 a_dl = &a->dl; 205 /* 206 * Since,'a' and 'b' can be CFS tasks served by DL server, 207 * __task_prio() can return -1 (for DL) even for those. In that 208 * case, get to the dl_server's DL entity. 209 */ 210 if (a->dl_server) 211 a_dl = a->dl_server; 212 213 b_dl = &b->dl; 214 if (b->dl_server) 215 b_dl = b->dl_server; 216 217 return !dl_time_before(a_dl->deadline, b_dl->deadline); 218 } 219 220 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 221 return cfs_prio_less(a, b, in_fi); 222 223 #ifdef CONFIG_SCHED_CLASS_EXT 224 if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */ 225 return scx_prio_less(a, b, in_fi); 226 #endif 227 228 return false; 229 } 230 231 static inline bool __sched_core_less(const struct task_struct *a, 232 const struct task_struct *b) 233 { 234 if (a->core_cookie < b->core_cookie) 235 return true; 236 237 if (a->core_cookie > b->core_cookie) 238 return false; 239 240 /* flip prio, so high prio is leftmost */ 241 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 242 return true; 243 244 return false; 245 } 246 247 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 248 249 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 250 { 251 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 252 } 253 254 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 255 { 256 const struct task_struct *p = __node_2_sc(node); 257 unsigned long cookie = (unsigned long)key; 258 259 if (cookie < p->core_cookie) 260 return -1; 261 262 if (cookie > p->core_cookie) 263 return 1; 264 265 return 0; 266 } 267 268 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 269 { 270 if (p->se.sched_delayed) 271 return; 272 273 rq->core->core_task_seq++; 274 275 if (!p->core_cookie) 276 return; 277 278 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 279 } 280 281 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 282 { 283 if (p->se.sched_delayed) 284 return; 285 286 rq->core->core_task_seq++; 287 288 if (sched_core_enqueued(p)) { 289 rb_erase(&p->core_node, &rq->core_tree); 290 RB_CLEAR_NODE(&p->core_node); 291 } 292 293 /* 294 * Migrating the last task off the cpu, with the cpu in forced idle 295 * state. Reschedule to create an accounting edge for forced idle, 296 * and re-examine whether the core is still in forced idle state. 297 */ 298 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 299 rq->core->core_forceidle_count && rq->curr == rq->idle) 300 resched_curr(rq); 301 } 302 303 static int sched_task_is_throttled(struct task_struct *p, int cpu) 304 { 305 if (p->sched_class->task_is_throttled) 306 return p->sched_class->task_is_throttled(p, cpu); 307 308 return 0; 309 } 310 311 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 312 { 313 struct rb_node *node = &p->core_node; 314 int cpu = task_cpu(p); 315 316 do { 317 node = rb_next(node); 318 if (!node) 319 return NULL; 320 321 p = __node_2_sc(node); 322 if (p->core_cookie != cookie) 323 return NULL; 324 325 } while (sched_task_is_throttled(p, cpu)); 326 327 return p; 328 } 329 330 /* 331 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 332 * If no suitable task is found, NULL will be returned. 333 */ 334 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 335 { 336 struct task_struct *p; 337 struct rb_node *node; 338 339 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 340 if (!node) 341 return NULL; 342 343 p = __node_2_sc(node); 344 if (!sched_task_is_throttled(p, rq->cpu)) 345 return p; 346 347 return sched_core_next(p, cookie); 348 } 349 350 /* 351 * Magic required such that: 352 * 353 * raw_spin_rq_lock(rq); 354 * ... 355 * raw_spin_rq_unlock(rq); 356 * 357 * ends up locking and unlocking the _same_ lock, and all CPUs 358 * always agree on what rq has what lock. 359 * 360 * XXX entirely possible to selectively enable cores, don't bother for now. 361 */ 362 363 static DEFINE_MUTEX(sched_core_mutex); 364 static atomic_t sched_core_count; 365 static struct cpumask sched_core_mask; 366 367 static void sched_core_lock(int cpu, unsigned long *flags) 368 { 369 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 370 int t, i = 0; 371 372 local_irq_save(*flags); 373 for_each_cpu(t, smt_mask) 374 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 375 } 376 377 static void sched_core_unlock(int cpu, unsigned long *flags) 378 { 379 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 380 int t; 381 382 for_each_cpu(t, smt_mask) 383 raw_spin_unlock(&cpu_rq(t)->__lock); 384 local_irq_restore(*flags); 385 } 386 387 static void __sched_core_flip(bool enabled) 388 { 389 unsigned long flags; 390 int cpu, t; 391 392 cpus_read_lock(); 393 394 /* 395 * Toggle the online cores, one by one. 396 */ 397 cpumask_copy(&sched_core_mask, cpu_online_mask); 398 for_each_cpu(cpu, &sched_core_mask) { 399 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 400 401 sched_core_lock(cpu, &flags); 402 403 for_each_cpu(t, smt_mask) 404 cpu_rq(t)->core_enabled = enabled; 405 406 cpu_rq(cpu)->core->core_forceidle_start = 0; 407 408 sched_core_unlock(cpu, &flags); 409 410 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 411 } 412 413 /* 414 * Toggle the offline CPUs. 415 */ 416 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 417 cpu_rq(cpu)->core_enabled = enabled; 418 419 cpus_read_unlock(); 420 } 421 422 static void sched_core_assert_empty(void) 423 { 424 int cpu; 425 426 for_each_possible_cpu(cpu) 427 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 428 } 429 430 static void __sched_core_enable(void) 431 { 432 static_branch_enable(&__sched_core_enabled); 433 /* 434 * Ensure all previous instances of raw_spin_rq_*lock() have finished 435 * and future ones will observe !sched_core_disabled(). 436 */ 437 synchronize_rcu(); 438 __sched_core_flip(true); 439 sched_core_assert_empty(); 440 } 441 442 static void __sched_core_disable(void) 443 { 444 sched_core_assert_empty(); 445 __sched_core_flip(false); 446 static_branch_disable(&__sched_core_enabled); 447 } 448 449 void sched_core_get(void) 450 { 451 if (atomic_inc_not_zero(&sched_core_count)) 452 return; 453 454 mutex_lock(&sched_core_mutex); 455 if (!atomic_read(&sched_core_count)) 456 __sched_core_enable(); 457 458 smp_mb__before_atomic(); 459 atomic_inc(&sched_core_count); 460 mutex_unlock(&sched_core_mutex); 461 } 462 463 static void __sched_core_put(struct work_struct *work) 464 { 465 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 466 __sched_core_disable(); 467 mutex_unlock(&sched_core_mutex); 468 } 469 } 470 471 void sched_core_put(void) 472 { 473 static DECLARE_WORK(_work, __sched_core_put); 474 475 /* 476 * "There can be only one" 477 * 478 * Either this is the last one, or we don't actually need to do any 479 * 'work'. If it is the last *again*, we rely on 480 * WORK_STRUCT_PENDING_BIT. 481 */ 482 if (!atomic_add_unless(&sched_core_count, -1, 1)) 483 schedule_work(&_work); 484 } 485 486 #else /* !CONFIG_SCHED_CORE */ 487 488 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 489 static inline void 490 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 491 492 #endif /* CONFIG_SCHED_CORE */ 493 494 /* 495 * Serialization rules: 496 * 497 * Lock order: 498 * 499 * p->pi_lock 500 * rq->lock 501 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 502 * 503 * rq1->lock 504 * rq2->lock where: rq1 < rq2 505 * 506 * Regular state: 507 * 508 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 509 * local CPU's rq->lock, it optionally removes the task from the runqueue and 510 * always looks at the local rq data structures to find the most eligible task 511 * to run next. 512 * 513 * Task enqueue is also under rq->lock, possibly taken from another CPU. 514 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 515 * the local CPU to avoid bouncing the runqueue state around [ see 516 * ttwu_queue_wakelist() ] 517 * 518 * Task wakeup, specifically wakeups that involve migration, are horribly 519 * complicated to avoid having to take two rq->locks. 520 * 521 * Special state: 522 * 523 * System-calls and anything external will use task_rq_lock() which acquires 524 * both p->pi_lock and rq->lock. As a consequence the state they change is 525 * stable while holding either lock: 526 * 527 * - sched_setaffinity()/ 528 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 529 * - set_user_nice(): p->se.load, p->*prio 530 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 531 * p->se.load, p->rt_priority, 532 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 533 * - sched_setnuma(): p->numa_preferred_nid 534 * - sched_move_task(): p->sched_task_group 535 * - uclamp_update_active() p->uclamp* 536 * 537 * p->state <- TASK_*: 538 * 539 * is changed locklessly using set_current_state(), __set_current_state() or 540 * set_special_state(), see their respective comments, or by 541 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 542 * concurrent self. 543 * 544 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 545 * 546 * is set by activate_task() and cleared by deactivate_task(), under 547 * rq->lock. Non-zero indicates the task is runnable, the special 548 * ON_RQ_MIGRATING state is used for migration without holding both 549 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 550 * 551 * Additionally it is possible to be ->on_rq but still be considered not 552 * runnable when p->se.sched_delayed is true. These tasks are on the runqueue 553 * but will be dequeued as soon as they get picked again. See the 554 * task_is_runnable() helper. 555 * 556 * p->on_cpu <- { 0, 1 }: 557 * 558 * is set by prepare_task() and cleared by finish_task() such that it will be 559 * set before p is scheduled-in and cleared after p is scheduled-out, both 560 * under rq->lock. Non-zero indicates the task is running on its CPU. 561 * 562 * [ The astute reader will observe that it is possible for two tasks on one 563 * CPU to have ->on_cpu = 1 at the same time. ] 564 * 565 * task_cpu(p): is changed by set_task_cpu(), the rules are: 566 * 567 * - Don't call set_task_cpu() on a blocked task: 568 * 569 * We don't care what CPU we're not running on, this simplifies hotplug, 570 * the CPU assignment of blocked tasks isn't required to be valid. 571 * 572 * - for try_to_wake_up(), called under p->pi_lock: 573 * 574 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 575 * 576 * - for migration called under rq->lock: 577 * [ see task_on_rq_migrating() in task_rq_lock() ] 578 * 579 * o move_queued_task() 580 * o detach_task() 581 * 582 * - for migration called under double_rq_lock(): 583 * 584 * o __migrate_swap_task() 585 * o push_rt_task() / pull_rt_task() 586 * o push_dl_task() / pull_dl_task() 587 * o dl_task_offline_migration() 588 * 589 */ 590 591 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 592 { 593 raw_spinlock_t *lock; 594 595 /* Matches synchronize_rcu() in __sched_core_enable() */ 596 preempt_disable(); 597 if (sched_core_disabled()) { 598 raw_spin_lock_nested(&rq->__lock, subclass); 599 /* preempt_count *MUST* be > 1 */ 600 preempt_enable_no_resched(); 601 return; 602 } 603 604 for (;;) { 605 lock = __rq_lockp(rq); 606 raw_spin_lock_nested(lock, subclass); 607 if (likely(lock == __rq_lockp(rq))) { 608 /* preempt_count *MUST* be > 1 */ 609 preempt_enable_no_resched(); 610 return; 611 } 612 raw_spin_unlock(lock); 613 } 614 } 615 616 bool raw_spin_rq_trylock(struct rq *rq) 617 { 618 raw_spinlock_t *lock; 619 bool ret; 620 621 /* Matches synchronize_rcu() in __sched_core_enable() */ 622 preempt_disable(); 623 if (sched_core_disabled()) { 624 ret = raw_spin_trylock(&rq->__lock); 625 preempt_enable(); 626 return ret; 627 } 628 629 for (;;) { 630 lock = __rq_lockp(rq); 631 ret = raw_spin_trylock(lock); 632 if (!ret || (likely(lock == __rq_lockp(rq)))) { 633 preempt_enable(); 634 return ret; 635 } 636 raw_spin_unlock(lock); 637 } 638 } 639 640 void raw_spin_rq_unlock(struct rq *rq) 641 { 642 raw_spin_unlock(rq_lockp(rq)); 643 } 644 645 #ifdef CONFIG_SMP 646 /* 647 * double_rq_lock - safely lock two runqueues 648 */ 649 void double_rq_lock(struct rq *rq1, struct rq *rq2) 650 { 651 lockdep_assert_irqs_disabled(); 652 653 if (rq_order_less(rq2, rq1)) 654 swap(rq1, rq2); 655 656 raw_spin_rq_lock(rq1); 657 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 658 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 659 660 double_rq_clock_clear_update(rq1, rq2); 661 } 662 #endif 663 664 /* 665 * __task_rq_lock - lock the rq @p resides on. 666 */ 667 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 668 __acquires(rq->lock) 669 { 670 struct rq *rq; 671 672 lockdep_assert_held(&p->pi_lock); 673 674 for (;;) { 675 rq = task_rq(p); 676 raw_spin_rq_lock(rq); 677 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 678 rq_pin_lock(rq, rf); 679 return rq; 680 } 681 raw_spin_rq_unlock(rq); 682 683 while (unlikely(task_on_rq_migrating(p))) 684 cpu_relax(); 685 } 686 } 687 688 /* 689 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 690 */ 691 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 692 __acquires(p->pi_lock) 693 __acquires(rq->lock) 694 { 695 struct rq *rq; 696 697 for (;;) { 698 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 699 rq = task_rq(p); 700 raw_spin_rq_lock(rq); 701 /* 702 * move_queued_task() task_rq_lock() 703 * 704 * ACQUIRE (rq->lock) 705 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 706 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 707 * [S] ->cpu = new_cpu [L] task_rq() 708 * [L] ->on_rq 709 * RELEASE (rq->lock) 710 * 711 * If we observe the old CPU in task_rq_lock(), the acquire of 712 * the old rq->lock will fully serialize against the stores. 713 * 714 * If we observe the new CPU in task_rq_lock(), the address 715 * dependency headed by '[L] rq = task_rq()' and the acquire 716 * will pair with the WMB to ensure we then also see migrating. 717 */ 718 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 719 rq_pin_lock(rq, rf); 720 return rq; 721 } 722 raw_spin_rq_unlock(rq); 723 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 724 725 while (unlikely(task_on_rq_migrating(p))) 726 cpu_relax(); 727 } 728 } 729 730 /* 731 * RQ-clock updating methods: 732 */ 733 734 static void update_rq_clock_task(struct rq *rq, s64 delta) 735 { 736 /* 737 * In theory, the compile should just see 0 here, and optimize out the call 738 * to sched_rt_avg_update. But I don't trust it... 739 */ 740 s64 __maybe_unused steal = 0, irq_delta = 0; 741 742 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 743 if (irqtime_enabled()) { 744 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 745 746 /* 747 * Since irq_time is only updated on {soft,}irq_exit, we might run into 748 * this case when a previous update_rq_clock() happened inside a 749 * {soft,}IRQ region. 750 * 751 * When this happens, we stop ->clock_task and only update the 752 * prev_irq_time stamp to account for the part that fit, so that a next 753 * update will consume the rest. This ensures ->clock_task is 754 * monotonic. 755 * 756 * It does however cause some slight miss-attribution of {soft,}IRQ 757 * time, a more accurate solution would be to update the irq_time using 758 * the current rq->clock timestamp, except that would require using 759 * atomic ops. 760 */ 761 if (irq_delta > delta) 762 irq_delta = delta; 763 764 rq->prev_irq_time += irq_delta; 765 delta -= irq_delta; 766 delayacct_irq(rq->curr, irq_delta); 767 } 768 #endif 769 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 770 if (static_key_false((¶virt_steal_rq_enabled))) { 771 u64 prev_steal; 772 773 steal = prev_steal = paravirt_steal_clock(cpu_of(rq)); 774 steal -= rq->prev_steal_time_rq; 775 776 if (unlikely(steal > delta)) 777 steal = delta; 778 779 rq->prev_steal_time_rq = prev_steal; 780 delta -= steal; 781 } 782 #endif 783 784 rq->clock_task += delta; 785 786 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 787 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 788 update_irq_load_avg(rq, irq_delta + steal); 789 #endif 790 update_rq_clock_pelt(rq, delta); 791 } 792 793 void update_rq_clock(struct rq *rq) 794 { 795 s64 delta; 796 u64 clock; 797 798 lockdep_assert_rq_held(rq); 799 800 if (rq->clock_update_flags & RQCF_ACT_SKIP) 801 return; 802 803 #ifdef CONFIG_SCHED_DEBUG 804 if (sched_feat(WARN_DOUBLE_CLOCK)) 805 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 806 rq->clock_update_flags |= RQCF_UPDATED; 807 #endif 808 clock = sched_clock_cpu(cpu_of(rq)); 809 scx_rq_clock_update(rq, clock); 810 811 delta = clock - rq->clock; 812 if (delta < 0) 813 return; 814 rq->clock += delta; 815 816 update_rq_clock_task(rq, delta); 817 } 818 819 #ifdef CONFIG_SCHED_HRTICK 820 /* 821 * Use HR-timers to deliver accurate preemption points. 822 */ 823 824 static void hrtick_clear(struct rq *rq) 825 { 826 if (hrtimer_active(&rq->hrtick_timer)) 827 hrtimer_cancel(&rq->hrtick_timer); 828 } 829 830 /* 831 * High-resolution timer tick. 832 * Runs from hardirq context with interrupts disabled. 833 */ 834 static enum hrtimer_restart hrtick(struct hrtimer *timer) 835 { 836 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 837 struct rq_flags rf; 838 839 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 840 841 rq_lock(rq, &rf); 842 update_rq_clock(rq); 843 rq->donor->sched_class->task_tick(rq, rq->curr, 1); 844 rq_unlock(rq, &rf); 845 846 return HRTIMER_NORESTART; 847 } 848 849 #ifdef CONFIG_SMP 850 851 static void __hrtick_restart(struct rq *rq) 852 { 853 struct hrtimer *timer = &rq->hrtick_timer; 854 ktime_t time = rq->hrtick_time; 855 856 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 857 } 858 859 /* 860 * called from hardirq (IPI) context 861 */ 862 static void __hrtick_start(void *arg) 863 { 864 struct rq *rq = arg; 865 struct rq_flags rf; 866 867 rq_lock(rq, &rf); 868 __hrtick_restart(rq); 869 rq_unlock(rq, &rf); 870 } 871 872 /* 873 * Called to set the hrtick timer state. 874 * 875 * called with rq->lock held and IRQs disabled 876 */ 877 void hrtick_start(struct rq *rq, u64 delay) 878 { 879 struct hrtimer *timer = &rq->hrtick_timer; 880 s64 delta; 881 882 /* 883 * Don't schedule slices shorter than 10000ns, that just 884 * doesn't make sense and can cause timer DoS. 885 */ 886 delta = max_t(s64, delay, 10000LL); 887 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 888 889 if (rq == this_rq()) 890 __hrtick_restart(rq); 891 else 892 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 893 } 894 895 #else 896 /* 897 * Called to set the hrtick timer state. 898 * 899 * called with rq->lock held and IRQs disabled 900 */ 901 void hrtick_start(struct rq *rq, u64 delay) 902 { 903 /* 904 * Don't schedule slices shorter than 10000ns, that just 905 * doesn't make sense. Rely on vruntime for fairness. 906 */ 907 delay = max_t(u64, delay, 10000LL); 908 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 909 HRTIMER_MODE_REL_PINNED_HARD); 910 } 911 912 #endif /* CONFIG_SMP */ 913 914 static void hrtick_rq_init(struct rq *rq) 915 { 916 #ifdef CONFIG_SMP 917 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 918 #endif 919 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 920 rq->hrtick_timer.function = hrtick; 921 } 922 #else /* CONFIG_SCHED_HRTICK */ 923 static inline void hrtick_clear(struct rq *rq) 924 { 925 } 926 927 static inline void hrtick_rq_init(struct rq *rq) 928 { 929 } 930 #endif /* CONFIG_SCHED_HRTICK */ 931 932 /* 933 * try_cmpxchg based fetch_or() macro so it works for different integer types: 934 */ 935 #define fetch_or(ptr, mask) \ 936 ({ \ 937 typeof(ptr) _ptr = (ptr); \ 938 typeof(mask) _mask = (mask); \ 939 typeof(*_ptr) _val = *_ptr; \ 940 \ 941 do { \ 942 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 943 _val; \ 944 }) 945 946 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 947 /* 948 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 949 * this avoids any races wrt polling state changes and thereby avoids 950 * spurious IPIs. 951 */ 952 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 953 { 954 return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG); 955 } 956 957 /* 958 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 959 * 960 * If this returns true, then the idle task promises to call 961 * sched_ttwu_pending() and reschedule soon. 962 */ 963 static bool set_nr_if_polling(struct task_struct *p) 964 { 965 struct thread_info *ti = task_thread_info(p); 966 typeof(ti->flags) val = READ_ONCE(ti->flags); 967 968 do { 969 if (!(val & _TIF_POLLING_NRFLAG)) 970 return false; 971 if (val & _TIF_NEED_RESCHED) 972 return true; 973 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 974 975 return true; 976 } 977 978 #else 979 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 980 { 981 set_ti_thread_flag(ti, tif); 982 return true; 983 } 984 985 #ifdef CONFIG_SMP 986 static inline bool set_nr_if_polling(struct task_struct *p) 987 { 988 return false; 989 } 990 #endif 991 #endif 992 993 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 994 { 995 struct wake_q_node *node = &task->wake_q; 996 997 /* 998 * Atomically grab the task, if ->wake_q is !nil already it means 999 * it's already queued (either by us or someone else) and will get the 1000 * wakeup due to that. 1001 * 1002 * In order to ensure that a pending wakeup will observe our pending 1003 * state, even in the failed case, an explicit smp_mb() must be used. 1004 */ 1005 smp_mb__before_atomic(); 1006 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 1007 return false; 1008 1009 /* 1010 * The head is context local, there can be no concurrency. 1011 */ 1012 *head->lastp = node; 1013 head->lastp = &node->next; 1014 return true; 1015 } 1016 1017 /** 1018 * wake_q_add() - queue a wakeup for 'later' waking. 1019 * @head: the wake_q_head to add @task to 1020 * @task: the task to queue for 'later' wakeup 1021 * 1022 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1023 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1024 * instantly. 1025 * 1026 * This function must be used as-if it were wake_up_process(); IOW the task 1027 * must be ready to be woken at this location. 1028 */ 1029 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 1030 { 1031 if (__wake_q_add(head, task)) 1032 get_task_struct(task); 1033 } 1034 1035 /** 1036 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 1037 * @head: the wake_q_head to add @task to 1038 * @task: the task to queue for 'later' wakeup 1039 * 1040 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1041 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1042 * instantly. 1043 * 1044 * This function must be used as-if it were wake_up_process(); IOW the task 1045 * must be ready to be woken at this location. 1046 * 1047 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1048 * that already hold reference to @task can call the 'safe' version and trust 1049 * wake_q to do the right thing depending whether or not the @task is already 1050 * queued for wakeup. 1051 */ 1052 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1053 { 1054 if (!__wake_q_add(head, task)) 1055 put_task_struct(task); 1056 } 1057 1058 void wake_up_q(struct wake_q_head *head) 1059 { 1060 struct wake_q_node *node = head->first; 1061 1062 while (node != WAKE_Q_TAIL) { 1063 struct task_struct *task; 1064 1065 task = container_of(node, struct task_struct, wake_q); 1066 node = node->next; 1067 /* pairs with cmpxchg_relaxed() in __wake_q_add() */ 1068 WRITE_ONCE(task->wake_q.next, NULL); 1069 /* Task can safely be re-inserted now. */ 1070 1071 /* 1072 * wake_up_process() executes a full barrier, which pairs with 1073 * the queueing in wake_q_add() so as not to miss wakeups. 1074 */ 1075 wake_up_process(task); 1076 put_task_struct(task); 1077 } 1078 } 1079 1080 /* 1081 * resched_curr - mark rq's current task 'to be rescheduled now'. 1082 * 1083 * On UP this means the setting of the need_resched flag, on SMP it 1084 * might also involve a cross-CPU call to trigger the scheduler on 1085 * the target CPU. 1086 */ 1087 static void __resched_curr(struct rq *rq, int tif) 1088 { 1089 struct task_struct *curr = rq->curr; 1090 struct thread_info *cti = task_thread_info(curr); 1091 int cpu; 1092 1093 lockdep_assert_rq_held(rq); 1094 1095 /* 1096 * Always immediately preempt the idle task; no point in delaying doing 1097 * actual work. 1098 */ 1099 if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY) 1100 tif = TIF_NEED_RESCHED; 1101 1102 if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED)) 1103 return; 1104 1105 cpu = cpu_of(rq); 1106 1107 if (cpu == smp_processor_id()) { 1108 set_ti_thread_flag(cti, tif); 1109 if (tif == TIF_NEED_RESCHED) 1110 set_preempt_need_resched(); 1111 return; 1112 } 1113 1114 if (set_nr_and_not_polling(cti, tif)) { 1115 if (tif == TIF_NEED_RESCHED) 1116 smp_send_reschedule(cpu); 1117 } else { 1118 trace_sched_wake_idle_without_ipi(cpu); 1119 } 1120 } 1121 1122 void resched_curr(struct rq *rq) 1123 { 1124 __resched_curr(rq, TIF_NEED_RESCHED); 1125 } 1126 1127 #ifdef CONFIG_PREEMPT_DYNAMIC 1128 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy); 1129 static __always_inline bool dynamic_preempt_lazy(void) 1130 { 1131 return static_branch_unlikely(&sk_dynamic_preempt_lazy); 1132 } 1133 #else 1134 static __always_inline bool dynamic_preempt_lazy(void) 1135 { 1136 return IS_ENABLED(CONFIG_PREEMPT_LAZY); 1137 } 1138 #endif 1139 1140 static __always_inline int get_lazy_tif_bit(void) 1141 { 1142 if (dynamic_preempt_lazy()) 1143 return TIF_NEED_RESCHED_LAZY; 1144 1145 return TIF_NEED_RESCHED; 1146 } 1147 1148 void resched_curr_lazy(struct rq *rq) 1149 { 1150 __resched_curr(rq, get_lazy_tif_bit()); 1151 } 1152 1153 void resched_cpu(int cpu) 1154 { 1155 struct rq *rq = cpu_rq(cpu); 1156 unsigned long flags; 1157 1158 raw_spin_rq_lock_irqsave(rq, flags); 1159 if (cpu_online(cpu) || cpu == smp_processor_id()) 1160 resched_curr(rq); 1161 raw_spin_rq_unlock_irqrestore(rq, flags); 1162 } 1163 1164 #ifdef CONFIG_SMP 1165 #ifdef CONFIG_NO_HZ_COMMON 1166 /* 1167 * In the semi idle case, use the nearest busy CPU for migrating timers 1168 * from an idle CPU. This is good for power-savings. 1169 * 1170 * We don't do similar optimization for completely idle system, as 1171 * selecting an idle CPU will add more delays to the timers than intended 1172 * (as that CPU's timer base may not be up to date wrt jiffies etc). 1173 */ 1174 int get_nohz_timer_target(void) 1175 { 1176 int i, cpu = smp_processor_id(), default_cpu = -1; 1177 struct sched_domain *sd; 1178 const struct cpumask *hk_mask; 1179 1180 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) { 1181 if (!idle_cpu(cpu)) 1182 return cpu; 1183 default_cpu = cpu; 1184 } 1185 1186 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 1187 1188 guard(rcu)(); 1189 1190 for_each_domain(cpu, sd) { 1191 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1192 if (cpu == i) 1193 continue; 1194 1195 if (!idle_cpu(i)) 1196 return i; 1197 } 1198 } 1199 1200 if (default_cpu == -1) 1201 default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE); 1202 1203 return default_cpu; 1204 } 1205 1206 /* 1207 * When add_timer_on() enqueues a timer into the timer wheel of an 1208 * idle CPU then this timer might expire before the next timer event 1209 * which is scheduled to wake up that CPU. In case of a completely 1210 * idle system the next event might even be infinite time into the 1211 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1212 * leaves the inner idle loop so the newly added timer is taken into 1213 * account when the CPU goes back to idle and evaluates the timer 1214 * wheel for the next timer event. 1215 */ 1216 static void wake_up_idle_cpu(int cpu) 1217 { 1218 struct rq *rq = cpu_rq(cpu); 1219 1220 if (cpu == smp_processor_id()) 1221 return; 1222 1223 /* 1224 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling 1225 * part of the idle loop. This forces an exit from the idle loop 1226 * and a round trip to schedule(). Now this could be optimized 1227 * because a simple new idle loop iteration is enough to 1228 * re-evaluate the next tick. Provided some re-ordering of tick 1229 * nohz functions that would need to follow TIF_NR_POLLING 1230 * clearing: 1231 * 1232 * - On most architectures, a simple fetch_or on ti::flags with a 1233 * "0" value would be enough to know if an IPI needs to be sent. 1234 * 1235 * - x86 needs to perform a last need_resched() check between 1236 * monitor and mwait which doesn't take timers into account. 1237 * There a dedicated TIF_TIMER flag would be required to 1238 * fetch_or here and be checked along with TIF_NEED_RESCHED 1239 * before mwait(). 1240 * 1241 * However, remote timer enqueue is not such a frequent event 1242 * and testing of the above solutions didn't appear to report 1243 * much benefits. 1244 */ 1245 if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED)) 1246 smp_send_reschedule(cpu); 1247 else 1248 trace_sched_wake_idle_without_ipi(cpu); 1249 } 1250 1251 static bool wake_up_full_nohz_cpu(int cpu) 1252 { 1253 /* 1254 * We just need the target to call irq_exit() and re-evaluate 1255 * the next tick. The nohz full kick at least implies that. 1256 * If needed we can still optimize that later with an 1257 * empty IRQ. 1258 */ 1259 if (cpu_is_offline(cpu)) 1260 return true; /* Don't try to wake offline CPUs. */ 1261 if (tick_nohz_full_cpu(cpu)) { 1262 if (cpu != smp_processor_id() || 1263 tick_nohz_tick_stopped()) 1264 tick_nohz_full_kick_cpu(cpu); 1265 return true; 1266 } 1267 1268 return false; 1269 } 1270 1271 /* 1272 * Wake up the specified CPU. If the CPU is going offline, it is the 1273 * caller's responsibility to deal with the lost wakeup, for example, 1274 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1275 */ 1276 void wake_up_nohz_cpu(int cpu) 1277 { 1278 if (!wake_up_full_nohz_cpu(cpu)) 1279 wake_up_idle_cpu(cpu); 1280 } 1281 1282 static void nohz_csd_func(void *info) 1283 { 1284 struct rq *rq = info; 1285 int cpu = cpu_of(rq); 1286 unsigned int flags; 1287 1288 /* 1289 * Release the rq::nohz_csd. 1290 */ 1291 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1292 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1293 1294 rq->idle_balance = idle_cpu(cpu); 1295 if (rq->idle_balance) { 1296 rq->nohz_idle_balance = flags; 1297 __raise_softirq_irqoff(SCHED_SOFTIRQ); 1298 } 1299 } 1300 1301 #endif /* CONFIG_NO_HZ_COMMON */ 1302 1303 #ifdef CONFIG_NO_HZ_FULL 1304 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1305 { 1306 if (rq->nr_running != 1) 1307 return false; 1308 1309 if (p->sched_class != &fair_sched_class) 1310 return false; 1311 1312 if (!task_on_rq_queued(p)) 1313 return false; 1314 1315 return true; 1316 } 1317 1318 bool sched_can_stop_tick(struct rq *rq) 1319 { 1320 int fifo_nr_running; 1321 1322 /* Deadline tasks, even if single, need the tick */ 1323 if (rq->dl.dl_nr_running) 1324 return false; 1325 1326 /* 1327 * If there are more than one RR tasks, we need the tick to affect the 1328 * actual RR behaviour. 1329 */ 1330 if (rq->rt.rr_nr_running) { 1331 if (rq->rt.rr_nr_running == 1) 1332 return true; 1333 else 1334 return false; 1335 } 1336 1337 /* 1338 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1339 * forced preemption between FIFO tasks. 1340 */ 1341 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1342 if (fifo_nr_running) 1343 return true; 1344 1345 /* 1346 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks 1347 * left. For CFS, if there's more than one we need the tick for 1348 * involuntary preemption. For SCX, ask. 1349 */ 1350 if (scx_enabled() && !scx_can_stop_tick(rq)) 1351 return false; 1352 1353 if (rq->cfs.h_nr_queued > 1) 1354 return false; 1355 1356 /* 1357 * If there is one task and it has CFS runtime bandwidth constraints 1358 * and it's on the cpu now we don't want to stop the tick. 1359 * This check prevents clearing the bit if a newly enqueued task here is 1360 * dequeued by migrating while the constrained task continues to run. 1361 * E.g. going from 2->1 without going through pick_next_task(). 1362 */ 1363 if (__need_bw_check(rq, rq->curr)) { 1364 if (cfs_task_bw_constrained(rq->curr)) 1365 return false; 1366 } 1367 1368 return true; 1369 } 1370 #endif /* CONFIG_NO_HZ_FULL */ 1371 #endif /* CONFIG_SMP */ 1372 1373 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1374 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1375 /* 1376 * Iterate task_group tree rooted at *from, calling @down when first entering a 1377 * node and @up when leaving it for the final time. 1378 * 1379 * Caller must hold rcu_lock or sufficient equivalent. 1380 */ 1381 int walk_tg_tree_from(struct task_group *from, 1382 tg_visitor down, tg_visitor up, void *data) 1383 { 1384 struct task_group *parent, *child; 1385 int ret; 1386 1387 parent = from; 1388 1389 down: 1390 ret = (*down)(parent, data); 1391 if (ret) 1392 goto out; 1393 list_for_each_entry_rcu(child, &parent->children, siblings) { 1394 parent = child; 1395 goto down; 1396 1397 up: 1398 continue; 1399 } 1400 ret = (*up)(parent, data); 1401 if (ret || parent == from) 1402 goto out; 1403 1404 child = parent; 1405 parent = parent->parent; 1406 if (parent) 1407 goto up; 1408 out: 1409 return ret; 1410 } 1411 1412 int tg_nop(struct task_group *tg, void *data) 1413 { 1414 return 0; 1415 } 1416 #endif 1417 1418 void set_load_weight(struct task_struct *p, bool update_load) 1419 { 1420 int prio = p->static_prio - MAX_RT_PRIO; 1421 struct load_weight lw; 1422 1423 if (task_has_idle_policy(p)) { 1424 lw.weight = scale_load(WEIGHT_IDLEPRIO); 1425 lw.inv_weight = WMULT_IDLEPRIO; 1426 } else { 1427 lw.weight = scale_load(sched_prio_to_weight[prio]); 1428 lw.inv_weight = sched_prio_to_wmult[prio]; 1429 } 1430 1431 /* 1432 * SCHED_OTHER tasks have to update their load when changing their 1433 * weight 1434 */ 1435 if (update_load && p->sched_class->reweight_task) 1436 p->sched_class->reweight_task(task_rq(p), p, &lw); 1437 else 1438 p->se.load = lw; 1439 } 1440 1441 #ifdef CONFIG_UCLAMP_TASK 1442 /* 1443 * Serializes updates of utilization clamp values 1444 * 1445 * The (slow-path) user-space triggers utilization clamp value updates which 1446 * can require updates on (fast-path) scheduler's data structures used to 1447 * support enqueue/dequeue operations. 1448 * While the per-CPU rq lock protects fast-path update operations, user-space 1449 * requests are serialized using a mutex to reduce the risk of conflicting 1450 * updates or API abuses. 1451 */ 1452 static __maybe_unused DEFINE_MUTEX(uclamp_mutex); 1453 1454 /* Max allowed minimum utilization */ 1455 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1456 1457 /* Max allowed maximum utilization */ 1458 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1459 1460 /* 1461 * By default RT tasks run at the maximum performance point/capacity of the 1462 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1463 * SCHED_CAPACITY_SCALE. 1464 * 1465 * This knob allows admins to change the default behavior when uclamp is being 1466 * used. In battery powered devices, particularly, running at the maximum 1467 * capacity and frequency will increase energy consumption and shorten the 1468 * battery life. 1469 * 1470 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1471 * 1472 * This knob will not override the system default sched_util_clamp_min defined 1473 * above. 1474 */ 1475 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1476 1477 /* All clamps are required to be less or equal than these values */ 1478 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1479 1480 /* 1481 * This static key is used to reduce the uclamp overhead in the fast path. It 1482 * primarily disables the call to uclamp_rq_{inc, dec}() in 1483 * enqueue/dequeue_task(). 1484 * 1485 * This allows users to continue to enable uclamp in their kernel config with 1486 * minimum uclamp overhead in the fast path. 1487 * 1488 * As soon as userspace modifies any of the uclamp knobs, the static key is 1489 * enabled, since we have an actual users that make use of uclamp 1490 * functionality. 1491 * 1492 * The knobs that would enable this static key are: 1493 * 1494 * * A task modifying its uclamp value with sched_setattr(). 1495 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1496 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1497 */ 1498 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1499 1500 static inline unsigned int 1501 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1502 unsigned int clamp_value) 1503 { 1504 /* 1505 * Avoid blocked utilization pushing up the frequency when we go 1506 * idle (which drops the max-clamp) by retaining the last known 1507 * max-clamp. 1508 */ 1509 if (clamp_id == UCLAMP_MAX) { 1510 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1511 return clamp_value; 1512 } 1513 1514 return uclamp_none(UCLAMP_MIN); 1515 } 1516 1517 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1518 unsigned int clamp_value) 1519 { 1520 /* Reset max-clamp retention only on idle exit */ 1521 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1522 return; 1523 1524 uclamp_rq_set(rq, clamp_id, clamp_value); 1525 } 1526 1527 static inline 1528 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1529 unsigned int clamp_value) 1530 { 1531 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1532 int bucket_id = UCLAMP_BUCKETS - 1; 1533 1534 /* 1535 * Since both min and max clamps are max aggregated, find the 1536 * top most bucket with tasks in. 1537 */ 1538 for ( ; bucket_id >= 0; bucket_id--) { 1539 if (!bucket[bucket_id].tasks) 1540 continue; 1541 return bucket[bucket_id].value; 1542 } 1543 1544 /* No tasks -- default clamp values */ 1545 return uclamp_idle_value(rq, clamp_id, clamp_value); 1546 } 1547 1548 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1549 { 1550 unsigned int default_util_min; 1551 struct uclamp_se *uc_se; 1552 1553 lockdep_assert_held(&p->pi_lock); 1554 1555 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1556 1557 /* Only sync if user didn't override the default */ 1558 if (uc_se->user_defined) 1559 return; 1560 1561 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1562 uclamp_se_set(uc_se, default_util_min, false); 1563 } 1564 1565 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1566 { 1567 if (!rt_task(p)) 1568 return; 1569 1570 /* Protect updates to p->uclamp_* */ 1571 guard(task_rq_lock)(p); 1572 __uclamp_update_util_min_rt_default(p); 1573 } 1574 1575 static inline struct uclamp_se 1576 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1577 { 1578 /* Copy by value as we could modify it */ 1579 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1580 #ifdef CONFIG_UCLAMP_TASK_GROUP 1581 unsigned int tg_min, tg_max, value; 1582 1583 /* 1584 * Tasks in autogroups or root task group will be 1585 * restricted by system defaults. 1586 */ 1587 if (task_group_is_autogroup(task_group(p))) 1588 return uc_req; 1589 if (task_group(p) == &root_task_group) 1590 return uc_req; 1591 1592 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1593 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1594 value = uc_req.value; 1595 value = clamp(value, tg_min, tg_max); 1596 uclamp_se_set(&uc_req, value, false); 1597 #endif 1598 1599 return uc_req; 1600 } 1601 1602 /* 1603 * The effective clamp bucket index of a task depends on, by increasing 1604 * priority: 1605 * - the task specific clamp value, when explicitly requested from userspace 1606 * - the task group effective clamp value, for tasks not either in the root 1607 * group or in an autogroup 1608 * - the system default clamp value, defined by the sysadmin 1609 */ 1610 static inline struct uclamp_se 1611 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1612 { 1613 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1614 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1615 1616 /* System default restrictions always apply */ 1617 if (unlikely(uc_req.value > uc_max.value)) 1618 return uc_max; 1619 1620 return uc_req; 1621 } 1622 1623 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1624 { 1625 struct uclamp_se uc_eff; 1626 1627 /* Task currently refcounted: use back-annotated (effective) value */ 1628 if (p->uclamp[clamp_id].active) 1629 return (unsigned long)p->uclamp[clamp_id].value; 1630 1631 uc_eff = uclamp_eff_get(p, clamp_id); 1632 1633 return (unsigned long)uc_eff.value; 1634 } 1635 1636 /* 1637 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1638 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1639 * updates the rq's clamp value if required. 1640 * 1641 * Tasks can have a task-specific value requested from user-space, track 1642 * within each bucket the maximum value for tasks refcounted in it. 1643 * This "local max aggregation" allows to track the exact "requested" value 1644 * for each bucket when all its RUNNABLE tasks require the same clamp. 1645 */ 1646 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1647 enum uclamp_id clamp_id) 1648 { 1649 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1650 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1651 struct uclamp_bucket *bucket; 1652 1653 lockdep_assert_rq_held(rq); 1654 1655 /* Update task effective clamp */ 1656 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1657 1658 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1659 bucket->tasks++; 1660 uc_se->active = true; 1661 1662 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1663 1664 /* 1665 * Local max aggregation: rq buckets always track the max 1666 * "requested" clamp value of its RUNNABLE tasks. 1667 */ 1668 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1669 bucket->value = uc_se->value; 1670 1671 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1672 uclamp_rq_set(rq, clamp_id, uc_se->value); 1673 } 1674 1675 /* 1676 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1677 * is released. If this is the last task reference counting the rq's max 1678 * active clamp value, then the rq's clamp value is updated. 1679 * 1680 * Both refcounted tasks and rq's cached clamp values are expected to be 1681 * always valid. If it's detected they are not, as defensive programming, 1682 * enforce the expected state and warn. 1683 */ 1684 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1685 enum uclamp_id clamp_id) 1686 { 1687 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1688 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1689 struct uclamp_bucket *bucket; 1690 unsigned int bkt_clamp; 1691 unsigned int rq_clamp; 1692 1693 lockdep_assert_rq_held(rq); 1694 1695 /* 1696 * If sched_uclamp_used was enabled after task @p was enqueued, 1697 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1698 * 1699 * In this case the uc_se->active flag should be false since no uclamp 1700 * accounting was performed at enqueue time and we can just return 1701 * here. 1702 * 1703 * Need to be careful of the following enqueue/dequeue ordering 1704 * problem too 1705 * 1706 * enqueue(taskA) 1707 * // sched_uclamp_used gets enabled 1708 * enqueue(taskB) 1709 * dequeue(taskA) 1710 * // Must not decrement bucket->tasks here 1711 * dequeue(taskB) 1712 * 1713 * where we could end up with stale data in uc_se and 1714 * bucket[uc_se->bucket_id]. 1715 * 1716 * The following check here eliminates the possibility of such race. 1717 */ 1718 if (unlikely(!uc_se->active)) 1719 return; 1720 1721 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1722 1723 SCHED_WARN_ON(!bucket->tasks); 1724 if (likely(bucket->tasks)) 1725 bucket->tasks--; 1726 1727 uc_se->active = false; 1728 1729 /* 1730 * Keep "local max aggregation" simple and accept to (possibly) 1731 * overboost some RUNNABLE tasks in the same bucket. 1732 * The rq clamp bucket value is reset to its base value whenever 1733 * there are no more RUNNABLE tasks refcounting it. 1734 */ 1735 if (likely(bucket->tasks)) 1736 return; 1737 1738 rq_clamp = uclamp_rq_get(rq, clamp_id); 1739 /* 1740 * Defensive programming: this should never happen. If it happens, 1741 * e.g. due to future modification, warn and fix up the expected value. 1742 */ 1743 SCHED_WARN_ON(bucket->value > rq_clamp); 1744 if (bucket->value >= rq_clamp) { 1745 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1746 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1747 } 1748 } 1749 1750 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1751 { 1752 enum uclamp_id clamp_id; 1753 1754 /* 1755 * Avoid any overhead until uclamp is actually used by the userspace. 1756 * 1757 * The condition is constructed such that a NOP is generated when 1758 * sched_uclamp_used is disabled. 1759 */ 1760 if (!static_branch_unlikely(&sched_uclamp_used)) 1761 return; 1762 1763 if (unlikely(!p->sched_class->uclamp_enabled)) 1764 return; 1765 1766 if (p->se.sched_delayed) 1767 return; 1768 1769 for_each_clamp_id(clamp_id) 1770 uclamp_rq_inc_id(rq, p, clamp_id); 1771 1772 /* Reset clamp idle holding when there is one RUNNABLE task */ 1773 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1774 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1775 } 1776 1777 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1778 { 1779 enum uclamp_id clamp_id; 1780 1781 /* 1782 * Avoid any overhead until uclamp is actually used by the userspace. 1783 * 1784 * The condition is constructed such that a NOP is generated when 1785 * sched_uclamp_used is disabled. 1786 */ 1787 if (!static_branch_unlikely(&sched_uclamp_used)) 1788 return; 1789 1790 if (unlikely(!p->sched_class->uclamp_enabled)) 1791 return; 1792 1793 if (p->se.sched_delayed) 1794 return; 1795 1796 for_each_clamp_id(clamp_id) 1797 uclamp_rq_dec_id(rq, p, clamp_id); 1798 } 1799 1800 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1801 enum uclamp_id clamp_id) 1802 { 1803 if (!p->uclamp[clamp_id].active) 1804 return; 1805 1806 uclamp_rq_dec_id(rq, p, clamp_id); 1807 uclamp_rq_inc_id(rq, p, clamp_id); 1808 1809 /* 1810 * Make sure to clear the idle flag if we've transiently reached 0 1811 * active tasks on rq. 1812 */ 1813 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1814 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1815 } 1816 1817 static inline void 1818 uclamp_update_active(struct task_struct *p) 1819 { 1820 enum uclamp_id clamp_id; 1821 struct rq_flags rf; 1822 struct rq *rq; 1823 1824 /* 1825 * Lock the task and the rq where the task is (or was) queued. 1826 * 1827 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1828 * price to pay to safely serialize util_{min,max} updates with 1829 * enqueues, dequeues and migration operations. 1830 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1831 */ 1832 rq = task_rq_lock(p, &rf); 1833 1834 /* 1835 * Setting the clamp bucket is serialized by task_rq_lock(). 1836 * If the task is not yet RUNNABLE and its task_struct is not 1837 * affecting a valid clamp bucket, the next time it's enqueued, 1838 * it will already see the updated clamp bucket value. 1839 */ 1840 for_each_clamp_id(clamp_id) 1841 uclamp_rq_reinc_id(rq, p, clamp_id); 1842 1843 task_rq_unlock(rq, p, &rf); 1844 } 1845 1846 #ifdef CONFIG_UCLAMP_TASK_GROUP 1847 static inline void 1848 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1849 { 1850 struct css_task_iter it; 1851 struct task_struct *p; 1852 1853 css_task_iter_start(css, 0, &it); 1854 while ((p = css_task_iter_next(&it))) 1855 uclamp_update_active(p); 1856 css_task_iter_end(&it); 1857 } 1858 1859 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1860 #endif 1861 1862 #ifdef CONFIG_SYSCTL 1863 #ifdef CONFIG_UCLAMP_TASK_GROUP 1864 static void uclamp_update_root_tg(void) 1865 { 1866 struct task_group *tg = &root_task_group; 1867 1868 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1869 sysctl_sched_uclamp_util_min, false); 1870 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1871 sysctl_sched_uclamp_util_max, false); 1872 1873 guard(rcu)(); 1874 cpu_util_update_eff(&root_task_group.css); 1875 } 1876 #else 1877 static void uclamp_update_root_tg(void) { } 1878 #endif 1879 1880 static void uclamp_sync_util_min_rt_default(void) 1881 { 1882 struct task_struct *g, *p; 1883 1884 /* 1885 * copy_process() sysctl_uclamp 1886 * uclamp_min_rt = X; 1887 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1888 * // link thread smp_mb__after_spinlock() 1889 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1890 * sched_post_fork() for_each_process_thread() 1891 * __uclamp_sync_rt() __uclamp_sync_rt() 1892 * 1893 * Ensures that either sched_post_fork() will observe the new 1894 * uclamp_min_rt or for_each_process_thread() will observe the new 1895 * task. 1896 */ 1897 read_lock(&tasklist_lock); 1898 smp_mb__after_spinlock(); 1899 read_unlock(&tasklist_lock); 1900 1901 guard(rcu)(); 1902 for_each_process_thread(g, p) 1903 uclamp_update_util_min_rt_default(p); 1904 } 1905 1906 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write, 1907 void *buffer, size_t *lenp, loff_t *ppos) 1908 { 1909 bool update_root_tg = false; 1910 int old_min, old_max, old_min_rt; 1911 int result; 1912 1913 guard(mutex)(&uclamp_mutex); 1914 1915 old_min = sysctl_sched_uclamp_util_min; 1916 old_max = sysctl_sched_uclamp_util_max; 1917 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1918 1919 result = proc_dointvec(table, write, buffer, lenp, ppos); 1920 if (result) 1921 goto undo; 1922 if (!write) 1923 return 0; 1924 1925 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1926 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1927 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1928 1929 result = -EINVAL; 1930 goto undo; 1931 } 1932 1933 if (old_min != sysctl_sched_uclamp_util_min) { 1934 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1935 sysctl_sched_uclamp_util_min, false); 1936 update_root_tg = true; 1937 } 1938 if (old_max != sysctl_sched_uclamp_util_max) { 1939 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1940 sysctl_sched_uclamp_util_max, false); 1941 update_root_tg = true; 1942 } 1943 1944 if (update_root_tg) { 1945 static_branch_enable(&sched_uclamp_used); 1946 uclamp_update_root_tg(); 1947 } 1948 1949 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1950 static_branch_enable(&sched_uclamp_used); 1951 uclamp_sync_util_min_rt_default(); 1952 } 1953 1954 /* 1955 * We update all RUNNABLE tasks only when task groups are in use. 1956 * Otherwise, keep it simple and do just a lazy update at each next 1957 * task enqueue time. 1958 */ 1959 return 0; 1960 1961 undo: 1962 sysctl_sched_uclamp_util_min = old_min; 1963 sysctl_sched_uclamp_util_max = old_max; 1964 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1965 return result; 1966 } 1967 #endif 1968 1969 static void uclamp_fork(struct task_struct *p) 1970 { 1971 enum uclamp_id clamp_id; 1972 1973 /* 1974 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1975 * as the task is still at its early fork stages. 1976 */ 1977 for_each_clamp_id(clamp_id) 1978 p->uclamp[clamp_id].active = false; 1979 1980 if (likely(!p->sched_reset_on_fork)) 1981 return; 1982 1983 for_each_clamp_id(clamp_id) { 1984 uclamp_se_set(&p->uclamp_req[clamp_id], 1985 uclamp_none(clamp_id), false); 1986 } 1987 } 1988 1989 static void uclamp_post_fork(struct task_struct *p) 1990 { 1991 uclamp_update_util_min_rt_default(p); 1992 } 1993 1994 static void __init init_uclamp_rq(struct rq *rq) 1995 { 1996 enum uclamp_id clamp_id; 1997 struct uclamp_rq *uc_rq = rq->uclamp; 1998 1999 for_each_clamp_id(clamp_id) { 2000 uc_rq[clamp_id] = (struct uclamp_rq) { 2001 .value = uclamp_none(clamp_id) 2002 }; 2003 } 2004 2005 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 2006 } 2007 2008 static void __init init_uclamp(void) 2009 { 2010 struct uclamp_se uc_max = {}; 2011 enum uclamp_id clamp_id; 2012 int cpu; 2013 2014 for_each_possible_cpu(cpu) 2015 init_uclamp_rq(cpu_rq(cpu)); 2016 2017 for_each_clamp_id(clamp_id) { 2018 uclamp_se_set(&init_task.uclamp_req[clamp_id], 2019 uclamp_none(clamp_id), false); 2020 } 2021 2022 /* System defaults allow max clamp values for both indexes */ 2023 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2024 for_each_clamp_id(clamp_id) { 2025 uclamp_default[clamp_id] = uc_max; 2026 #ifdef CONFIG_UCLAMP_TASK_GROUP 2027 root_task_group.uclamp_req[clamp_id] = uc_max; 2028 root_task_group.uclamp[clamp_id] = uc_max; 2029 #endif 2030 } 2031 } 2032 2033 #else /* !CONFIG_UCLAMP_TASK */ 2034 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 2035 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2036 static inline void uclamp_fork(struct task_struct *p) { } 2037 static inline void uclamp_post_fork(struct task_struct *p) { } 2038 static inline void init_uclamp(void) { } 2039 #endif /* CONFIG_UCLAMP_TASK */ 2040 2041 bool sched_task_on_rq(struct task_struct *p) 2042 { 2043 return task_on_rq_queued(p); 2044 } 2045 2046 unsigned long get_wchan(struct task_struct *p) 2047 { 2048 unsigned long ip = 0; 2049 unsigned int state; 2050 2051 if (!p || p == current) 2052 return 0; 2053 2054 /* Only get wchan if task is blocked and we can keep it that way. */ 2055 raw_spin_lock_irq(&p->pi_lock); 2056 state = READ_ONCE(p->__state); 2057 smp_rmb(); /* see try_to_wake_up() */ 2058 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2059 ip = __get_wchan(p); 2060 raw_spin_unlock_irq(&p->pi_lock); 2061 2062 return ip; 2063 } 2064 2065 void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2066 { 2067 if (!(flags & ENQUEUE_NOCLOCK)) 2068 update_rq_clock(rq); 2069 2070 p->sched_class->enqueue_task(rq, p, flags); 2071 /* 2072 * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear 2073 * ->sched_delayed. 2074 */ 2075 uclamp_rq_inc(rq, p); 2076 2077 psi_enqueue(p, flags); 2078 2079 if (!(flags & ENQUEUE_RESTORE)) 2080 sched_info_enqueue(rq, p); 2081 2082 if (sched_core_enabled(rq)) 2083 sched_core_enqueue(rq, p); 2084 } 2085 2086 /* 2087 * Must only return false when DEQUEUE_SLEEP. 2088 */ 2089 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2090 { 2091 if (sched_core_enabled(rq)) 2092 sched_core_dequeue(rq, p, flags); 2093 2094 if (!(flags & DEQUEUE_NOCLOCK)) 2095 update_rq_clock(rq); 2096 2097 if (!(flags & DEQUEUE_SAVE)) 2098 sched_info_dequeue(rq, p); 2099 2100 psi_dequeue(p, flags); 2101 2102 /* 2103 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail' 2104 * and mark the task ->sched_delayed. 2105 */ 2106 uclamp_rq_dec(rq, p); 2107 return p->sched_class->dequeue_task(rq, p, flags); 2108 } 2109 2110 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2111 { 2112 if (task_on_rq_migrating(p)) 2113 flags |= ENQUEUE_MIGRATED; 2114 if (flags & ENQUEUE_MIGRATED) 2115 sched_mm_cid_migrate_to(rq, p); 2116 2117 enqueue_task(rq, p, flags); 2118 2119 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); 2120 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2121 } 2122 2123 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2124 { 2125 SCHED_WARN_ON(flags & DEQUEUE_SLEEP); 2126 2127 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 2128 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2129 2130 /* 2131 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before* 2132 * dequeue_task() and cleared *after* enqueue_task(). 2133 */ 2134 2135 dequeue_task(rq, p, flags); 2136 } 2137 2138 static void block_task(struct rq *rq, struct task_struct *p, int flags) 2139 { 2140 if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags)) 2141 __block_task(rq, p); 2142 } 2143 2144 /** 2145 * task_curr - is this task currently executing on a CPU? 2146 * @p: the task in question. 2147 * 2148 * Return: 1 if the task is currently executing. 0 otherwise. 2149 */ 2150 inline int task_curr(const struct task_struct *p) 2151 { 2152 return cpu_curr(task_cpu(p)) == p; 2153 } 2154 2155 /* 2156 * ->switching_to() is called with the pi_lock and rq_lock held and must not 2157 * mess with locking. 2158 */ 2159 void check_class_changing(struct rq *rq, struct task_struct *p, 2160 const struct sched_class *prev_class) 2161 { 2162 if (prev_class != p->sched_class && p->sched_class->switching_to) 2163 p->sched_class->switching_to(rq, p); 2164 } 2165 2166 /* 2167 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2168 * use the balance_callback list if you want balancing. 2169 * 2170 * this means any call to check_class_changed() must be followed by a call to 2171 * balance_callback(). 2172 */ 2173 void check_class_changed(struct rq *rq, struct task_struct *p, 2174 const struct sched_class *prev_class, 2175 int oldprio) 2176 { 2177 if (prev_class != p->sched_class) { 2178 if (prev_class->switched_from) 2179 prev_class->switched_from(rq, p); 2180 2181 p->sched_class->switched_to(rq, p); 2182 } else if (oldprio != p->prio || dl_task(p)) 2183 p->sched_class->prio_changed(rq, p, oldprio); 2184 } 2185 2186 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2187 { 2188 struct task_struct *donor = rq->donor; 2189 2190 if (p->sched_class == donor->sched_class) 2191 donor->sched_class->wakeup_preempt(rq, p, flags); 2192 else if (sched_class_above(p->sched_class, donor->sched_class)) 2193 resched_curr(rq); 2194 2195 /* 2196 * A queue event has occurred, and we're going to schedule. In 2197 * this case, we can save a useless back to back clock update. 2198 */ 2199 if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr)) 2200 rq_clock_skip_update(rq); 2201 } 2202 2203 static __always_inline 2204 int __task_state_match(struct task_struct *p, unsigned int state) 2205 { 2206 if (READ_ONCE(p->__state) & state) 2207 return 1; 2208 2209 if (READ_ONCE(p->saved_state) & state) 2210 return -1; 2211 2212 return 0; 2213 } 2214 2215 static __always_inline 2216 int task_state_match(struct task_struct *p, unsigned int state) 2217 { 2218 /* 2219 * Serialize against current_save_and_set_rtlock_wait_state(), 2220 * current_restore_rtlock_saved_state(), and __refrigerator(). 2221 */ 2222 guard(raw_spinlock_irq)(&p->pi_lock); 2223 return __task_state_match(p, state); 2224 } 2225 2226 /* 2227 * wait_task_inactive - wait for a thread to unschedule. 2228 * 2229 * Wait for the thread to block in any of the states set in @match_state. 2230 * If it changes, i.e. @p might have woken up, then return zero. When we 2231 * succeed in waiting for @p to be off its CPU, we return a positive number 2232 * (its total switch count). If a second call a short while later returns the 2233 * same number, the caller can be sure that @p has remained unscheduled the 2234 * whole time. 2235 * 2236 * The caller must ensure that the task *will* unschedule sometime soon, 2237 * else this function might spin for a *long* time. This function can't 2238 * be called with interrupts off, or it may introduce deadlock with 2239 * smp_call_function() if an IPI is sent by the same process we are 2240 * waiting to become inactive. 2241 */ 2242 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2243 { 2244 int running, queued, match; 2245 struct rq_flags rf; 2246 unsigned long ncsw; 2247 struct rq *rq; 2248 2249 for (;;) { 2250 /* 2251 * We do the initial early heuristics without holding 2252 * any task-queue locks at all. We'll only try to get 2253 * the runqueue lock when things look like they will 2254 * work out! 2255 */ 2256 rq = task_rq(p); 2257 2258 /* 2259 * If the task is actively running on another CPU 2260 * still, just relax and busy-wait without holding 2261 * any locks. 2262 * 2263 * NOTE! Since we don't hold any locks, it's not 2264 * even sure that "rq" stays as the right runqueue! 2265 * But we don't care, since "task_on_cpu()" will 2266 * return false if the runqueue has changed and p 2267 * is actually now running somewhere else! 2268 */ 2269 while (task_on_cpu(rq, p)) { 2270 if (!task_state_match(p, match_state)) 2271 return 0; 2272 cpu_relax(); 2273 } 2274 2275 /* 2276 * Ok, time to look more closely! We need the rq 2277 * lock now, to be *sure*. If we're wrong, we'll 2278 * just go back and repeat. 2279 */ 2280 rq = task_rq_lock(p, &rf); 2281 trace_sched_wait_task(p); 2282 running = task_on_cpu(rq, p); 2283 queued = task_on_rq_queued(p); 2284 ncsw = 0; 2285 if ((match = __task_state_match(p, match_state))) { 2286 /* 2287 * When matching on p->saved_state, consider this task 2288 * still queued so it will wait. 2289 */ 2290 if (match < 0) 2291 queued = 1; 2292 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2293 } 2294 task_rq_unlock(rq, p, &rf); 2295 2296 /* 2297 * If it changed from the expected state, bail out now. 2298 */ 2299 if (unlikely(!ncsw)) 2300 break; 2301 2302 /* 2303 * Was it really running after all now that we 2304 * checked with the proper locks actually held? 2305 * 2306 * Oops. Go back and try again.. 2307 */ 2308 if (unlikely(running)) { 2309 cpu_relax(); 2310 continue; 2311 } 2312 2313 /* 2314 * It's not enough that it's not actively running, 2315 * it must be off the runqueue _entirely_, and not 2316 * preempted! 2317 * 2318 * So if it was still runnable (but just not actively 2319 * running right now), it's preempted, and we should 2320 * yield - it could be a while. 2321 */ 2322 if (unlikely(queued)) { 2323 ktime_t to = NSEC_PER_SEC / HZ; 2324 2325 set_current_state(TASK_UNINTERRUPTIBLE); 2326 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2327 continue; 2328 } 2329 2330 /* 2331 * Ahh, all good. It wasn't running, and it wasn't 2332 * runnable, which means that it will never become 2333 * running in the future either. We're all done! 2334 */ 2335 break; 2336 } 2337 2338 return ncsw; 2339 } 2340 2341 #ifdef CONFIG_SMP 2342 2343 static void 2344 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2345 2346 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2347 { 2348 struct affinity_context ac = { 2349 .new_mask = cpumask_of(rq->cpu), 2350 .flags = SCA_MIGRATE_DISABLE, 2351 }; 2352 2353 if (likely(!p->migration_disabled)) 2354 return; 2355 2356 if (p->cpus_ptr != &p->cpus_mask) 2357 return; 2358 2359 /* 2360 * Violates locking rules! See comment in __do_set_cpus_allowed(). 2361 */ 2362 __do_set_cpus_allowed(p, &ac); 2363 } 2364 2365 void migrate_disable(void) 2366 { 2367 struct task_struct *p = current; 2368 2369 if (p->migration_disabled) { 2370 #ifdef CONFIG_DEBUG_PREEMPT 2371 /* 2372 *Warn about overflow half-way through the range. 2373 */ 2374 WARN_ON_ONCE((s16)p->migration_disabled < 0); 2375 #endif 2376 p->migration_disabled++; 2377 return; 2378 } 2379 2380 guard(preempt)(); 2381 this_rq()->nr_pinned++; 2382 p->migration_disabled = 1; 2383 } 2384 EXPORT_SYMBOL_GPL(migrate_disable); 2385 2386 void migrate_enable(void) 2387 { 2388 struct task_struct *p = current; 2389 struct affinity_context ac = { 2390 .new_mask = &p->cpus_mask, 2391 .flags = SCA_MIGRATE_ENABLE, 2392 }; 2393 2394 #ifdef CONFIG_DEBUG_PREEMPT 2395 /* 2396 * Check both overflow from migrate_disable() and superfluous 2397 * migrate_enable(). 2398 */ 2399 if (WARN_ON_ONCE((s16)p->migration_disabled <= 0)) 2400 return; 2401 #endif 2402 2403 if (p->migration_disabled > 1) { 2404 p->migration_disabled--; 2405 return; 2406 } 2407 2408 /* 2409 * Ensure stop_task runs either before or after this, and that 2410 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2411 */ 2412 guard(preempt)(); 2413 if (p->cpus_ptr != &p->cpus_mask) 2414 __set_cpus_allowed_ptr(p, &ac); 2415 /* 2416 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2417 * regular cpus_mask, otherwise things that race (eg. 2418 * select_fallback_rq) get confused. 2419 */ 2420 barrier(); 2421 p->migration_disabled = 0; 2422 this_rq()->nr_pinned--; 2423 } 2424 EXPORT_SYMBOL_GPL(migrate_enable); 2425 2426 static inline bool rq_has_pinned_tasks(struct rq *rq) 2427 { 2428 return rq->nr_pinned; 2429 } 2430 2431 /* 2432 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2433 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2434 */ 2435 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2436 { 2437 /* When not in the task's cpumask, no point in looking further. */ 2438 if (!task_allowed_on_cpu(p, cpu)) 2439 return false; 2440 2441 /* migrate_disabled() must be allowed to finish. */ 2442 if (is_migration_disabled(p)) 2443 return cpu_online(cpu); 2444 2445 /* Non kernel threads are not allowed during either online or offline. */ 2446 if (!(p->flags & PF_KTHREAD)) 2447 return cpu_active(cpu); 2448 2449 /* KTHREAD_IS_PER_CPU is always allowed. */ 2450 if (kthread_is_per_cpu(p)) 2451 return cpu_online(cpu); 2452 2453 /* Regular kernel threads don't get to stay during offline. */ 2454 if (cpu_dying(cpu)) 2455 return false; 2456 2457 /* But are allowed during online. */ 2458 return cpu_online(cpu); 2459 } 2460 2461 /* 2462 * This is how migration works: 2463 * 2464 * 1) we invoke migration_cpu_stop() on the target CPU using 2465 * stop_one_cpu(). 2466 * 2) stopper starts to run (implicitly forcing the migrated thread 2467 * off the CPU) 2468 * 3) it checks whether the migrated task is still in the wrong runqueue. 2469 * 4) if it's in the wrong runqueue then the migration thread removes 2470 * it and puts it into the right queue. 2471 * 5) stopper completes and stop_one_cpu() returns and the migration 2472 * is done. 2473 */ 2474 2475 /* 2476 * move_queued_task - move a queued task to new rq. 2477 * 2478 * Returns (locked) new rq. Old rq's lock is released. 2479 */ 2480 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2481 struct task_struct *p, int new_cpu) 2482 { 2483 lockdep_assert_rq_held(rq); 2484 2485 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2486 set_task_cpu(p, new_cpu); 2487 rq_unlock(rq, rf); 2488 2489 rq = cpu_rq(new_cpu); 2490 2491 rq_lock(rq, rf); 2492 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2493 activate_task(rq, p, 0); 2494 wakeup_preempt(rq, p, 0); 2495 2496 return rq; 2497 } 2498 2499 struct migration_arg { 2500 struct task_struct *task; 2501 int dest_cpu; 2502 struct set_affinity_pending *pending; 2503 }; 2504 2505 /* 2506 * @refs: number of wait_for_completion() 2507 * @stop_pending: is @stop_work in use 2508 */ 2509 struct set_affinity_pending { 2510 refcount_t refs; 2511 unsigned int stop_pending; 2512 struct completion done; 2513 struct cpu_stop_work stop_work; 2514 struct migration_arg arg; 2515 }; 2516 2517 /* 2518 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2519 * this because either it can't run here any more (set_cpus_allowed() 2520 * away from this CPU, or CPU going down), or because we're 2521 * attempting to rebalance this task on exec (sched_exec). 2522 * 2523 * So we race with normal scheduler movements, but that's OK, as long 2524 * as the task is no longer on this CPU. 2525 */ 2526 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2527 struct task_struct *p, int dest_cpu) 2528 { 2529 /* Affinity changed (again). */ 2530 if (!is_cpu_allowed(p, dest_cpu)) 2531 return rq; 2532 2533 rq = move_queued_task(rq, rf, p, dest_cpu); 2534 2535 return rq; 2536 } 2537 2538 /* 2539 * migration_cpu_stop - this will be executed by a high-prio stopper thread 2540 * and performs thread migration by bumping thread off CPU then 2541 * 'pushing' onto another runqueue. 2542 */ 2543 static int migration_cpu_stop(void *data) 2544 { 2545 struct migration_arg *arg = data; 2546 struct set_affinity_pending *pending = arg->pending; 2547 struct task_struct *p = arg->task; 2548 struct rq *rq = this_rq(); 2549 bool complete = false; 2550 struct rq_flags rf; 2551 2552 /* 2553 * The original target CPU might have gone down and we might 2554 * be on another CPU but it doesn't matter. 2555 */ 2556 local_irq_save(rf.flags); 2557 /* 2558 * We need to explicitly wake pending tasks before running 2559 * __migrate_task() such that we will not miss enforcing cpus_ptr 2560 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2561 */ 2562 flush_smp_call_function_queue(); 2563 2564 raw_spin_lock(&p->pi_lock); 2565 rq_lock(rq, &rf); 2566 2567 /* 2568 * If we were passed a pending, then ->stop_pending was set, thus 2569 * p->migration_pending must have remained stable. 2570 */ 2571 WARN_ON_ONCE(pending && pending != p->migration_pending); 2572 2573 /* 2574 * If task_rq(p) != rq, it cannot be migrated here, because we're 2575 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2576 * we're holding p->pi_lock. 2577 */ 2578 if (task_rq(p) == rq) { 2579 if (is_migration_disabled(p)) 2580 goto out; 2581 2582 if (pending) { 2583 p->migration_pending = NULL; 2584 complete = true; 2585 2586 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2587 goto out; 2588 } 2589 2590 if (task_on_rq_queued(p)) { 2591 update_rq_clock(rq); 2592 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2593 } else { 2594 p->wake_cpu = arg->dest_cpu; 2595 } 2596 2597 /* 2598 * XXX __migrate_task() can fail, at which point we might end 2599 * up running on a dodgy CPU, AFAICT this can only happen 2600 * during CPU hotplug, at which point we'll get pushed out 2601 * anyway, so it's probably not a big deal. 2602 */ 2603 2604 } else if (pending) { 2605 /* 2606 * This happens when we get migrated between migrate_enable()'s 2607 * preempt_enable() and scheduling the stopper task. At that 2608 * point we're a regular task again and not current anymore. 2609 * 2610 * A !PREEMPT kernel has a giant hole here, which makes it far 2611 * more likely. 2612 */ 2613 2614 /* 2615 * The task moved before the stopper got to run. We're holding 2616 * ->pi_lock, so the allowed mask is stable - if it got 2617 * somewhere allowed, we're done. 2618 */ 2619 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2620 p->migration_pending = NULL; 2621 complete = true; 2622 goto out; 2623 } 2624 2625 /* 2626 * When migrate_enable() hits a rq mis-match we can't reliably 2627 * determine is_migration_disabled() and so have to chase after 2628 * it. 2629 */ 2630 WARN_ON_ONCE(!pending->stop_pending); 2631 preempt_disable(); 2632 task_rq_unlock(rq, p, &rf); 2633 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2634 &pending->arg, &pending->stop_work); 2635 preempt_enable(); 2636 return 0; 2637 } 2638 out: 2639 if (pending) 2640 pending->stop_pending = false; 2641 task_rq_unlock(rq, p, &rf); 2642 2643 if (complete) 2644 complete_all(&pending->done); 2645 2646 return 0; 2647 } 2648 2649 int push_cpu_stop(void *arg) 2650 { 2651 struct rq *lowest_rq = NULL, *rq = this_rq(); 2652 struct task_struct *p = arg; 2653 2654 raw_spin_lock_irq(&p->pi_lock); 2655 raw_spin_rq_lock(rq); 2656 2657 if (task_rq(p) != rq) 2658 goto out_unlock; 2659 2660 if (is_migration_disabled(p)) { 2661 p->migration_flags |= MDF_PUSH; 2662 goto out_unlock; 2663 } 2664 2665 p->migration_flags &= ~MDF_PUSH; 2666 2667 if (p->sched_class->find_lock_rq) 2668 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2669 2670 if (!lowest_rq) 2671 goto out_unlock; 2672 2673 // XXX validate p is still the highest prio task 2674 if (task_rq(p) == rq) { 2675 move_queued_task_locked(rq, lowest_rq, p); 2676 resched_curr(lowest_rq); 2677 } 2678 2679 double_unlock_balance(rq, lowest_rq); 2680 2681 out_unlock: 2682 rq->push_busy = false; 2683 raw_spin_rq_unlock(rq); 2684 raw_spin_unlock_irq(&p->pi_lock); 2685 2686 put_task_struct(p); 2687 return 0; 2688 } 2689 2690 /* 2691 * sched_class::set_cpus_allowed must do the below, but is not required to 2692 * actually call this function. 2693 */ 2694 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2695 { 2696 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2697 p->cpus_ptr = ctx->new_mask; 2698 return; 2699 } 2700 2701 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2702 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2703 2704 /* 2705 * Swap in a new user_cpus_ptr if SCA_USER flag set 2706 */ 2707 if (ctx->flags & SCA_USER) 2708 swap(p->user_cpus_ptr, ctx->user_mask); 2709 } 2710 2711 static void 2712 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2713 { 2714 struct rq *rq = task_rq(p); 2715 bool queued, running; 2716 2717 /* 2718 * This here violates the locking rules for affinity, since we're only 2719 * supposed to change these variables while holding both rq->lock and 2720 * p->pi_lock. 2721 * 2722 * HOWEVER, it magically works, because ttwu() is the only code that 2723 * accesses these variables under p->pi_lock and only does so after 2724 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2725 * before finish_task(). 2726 * 2727 * XXX do further audits, this smells like something putrid. 2728 */ 2729 if (ctx->flags & SCA_MIGRATE_DISABLE) 2730 SCHED_WARN_ON(!p->on_cpu); 2731 else 2732 lockdep_assert_held(&p->pi_lock); 2733 2734 queued = task_on_rq_queued(p); 2735 running = task_current_donor(rq, p); 2736 2737 if (queued) { 2738 /* 2739 * Because __kthread_bind() calls this on blocked tasks without 2740 * holding rq->lock. 2741 */ 2742 lockdep_assert_rq_held(rq); 2743 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2744 } 2745 if (running) 2746 put_prev_task(rq, p); 2747 2748 p->sched_class->set_cpus_allowed(p, ctx); 2749 mm_set_cpus_allowed(p->mm, ctx->new_mask); 2750 2751 if (queued) 2752 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2753 if (running) 2754 set_next_task(rq, p); 2755 } 2756 2757 /* 2758 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2759 * affinity (if any) should be destroyed too. 2760 */ 2761 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2762 { 2763 struct affinity_context ac = { 2764 .new_mask = new_mask, 2765 .user_mask = NULL, 2766 .flags = SCA_USER, /* clear the user requested mask */ 2767 }; 2768 union cpumask_rcuhead { 2769 cpumask_t cpumask; 2770 struct rcu_head rcu; 2771 }; 2772 2773 __do_set_cpus_allowed(p, &ac); 2774 2775 /* 2776 * Because this is called with p->pi_lock held, it is not possible 2777 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2778 * kfree_rcu(). 2779 */ 2780 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2781 } 2782 2783 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2784 int node) 2785 { 2786 cpumask_t *user_mask; 2787 unsigned long flags; 2788 2789 /* 2790 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2791 * may differ by now due to racing. 2792 */ 2793 dst->user_cpus_ptr = NULL; 2794 2795 /* 2796 * This check is racy and losing the race is a valid situation. 2797 * It is not worth the extra overhead of taking the pi_lock on 2798 * every fork/clone. 2799 */ 2800 if (data_race(!src->user_cpus_ptr)) 2801 return 0; 2802 2803 user_mask = alloc_user_cpus_ptr(node); 2804 if (!user_mask) 2805 return -ENOMEM; 2806 2807 /* 2808 * Use pi_lock to protect content of user_cpus_ptr 2809 * 2810 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2811 * do_set_cpus_allowed(). 2812 */ 2813 raw_spin_lock_irqsave(&src->pi_lock, flags); 2814 if (src->user_cpus_ptr) { 2815 swap(dst->user_cpus_ptr, user_mask); 2816 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2817 } 2818 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2819 2820 if (unlikely(user_mask)) 2821 kfree(user_mask); 2822 2823 return 0; 2824 } 2825 2826 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2827 { 2828 struct cpumask *user_mask = NULL; 2829 2830 swap(p->user_cpus_ptr, user_mask); 2831 2832 return user_mask; 2833 } 2834 2835 void release_user_cpus_ptr(struct task_struct *p) 2836 { 2837 kfree(clear_user_cpus_ptr(p)); 2838 } 2839 2840 /* 2841 * This function is wildly self concurrent; here be dragons. 2842 * 2843 * 2844 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2845 * designated task is enqueued on an allowed CPU. If that task is currently 2846 * running, we have to kick it out using the CPU stopper. 2847 * 2848 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2849 * Consider: 2850 * 2851 * Initial conditions: P0->cpus_mask = [0, 1] 2852 * 2853 * P0@CPU0 P1 2854 * 2855 * migrate_disable(); 2856 * <preempted> 2857 * set_cpus_allowed_ptr(P0, [1]); 2858 * 2859 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2860 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2861 * This means we need the following scheme: 2862 * 2863 * P0@CPU0 P1 2864 * 2865 * migrate_disable(); 2866 * <preempted> 2867 * set_cpus_allowed_ptr(P0, [1]); 2868 * <blocks> 2869 * <resumes> 2870 * migrate_enable(); 2871 * __set_cpus_allowed_ptr(); 2872 * <wakes local stopper> 2873 * `--> <woken on migration completion> 2874 * 2875 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2876 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2877 * task p are serialized by p->pi_lock, which we can leverage: the one that 2878 * should come into effect at the end of the Migrate-Disable region is the last 2879 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2880 * but we still need to properly signal those waiting tasks at the appropriate 2881 * moment. 2882 * 2883 * This is implemented using struct set_affinity_pending. The first 2884 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2885 * setup an instance of that struct and install it on the targeted task_struct. 2886 * Any and all further callers will reuse that instance. Those then wait for 2887 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2888 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2889 * 2890 * 2891 * (1) In the cases covered above. There is one more where the completion is 2892 * signaled within affine_move_task() itself: when a subsequent affinity request 2893 * occurs after the stopper bailed out due to the targeted task still being 2894 * Migrate-Disable. Consider: 2895 * 2896 * Initial conditions: P0->cpus_mask = [0, 1] 2897 * 2898 * CPU0 P1 P2 2899 * <P0> 2900 * migrate_disable(); 2901 * <preempted> 2902 * set_cpus_allowed_ptr(P0, [1]); 2903 * <blocks> 2904 * <migration/0> 2905 * migration_cpu_stop() 2906 * is_migration_disabled() 2907 * <bails> 2908 * set_cpus_allowed_ptr(P0, [0, 1]); 2909 * <signal completion> 2910 * <awakes> 2911 * 2912 * Note that the above is safe vs a concurrent migrate_enable(), as any 2913 * pending affinity completion is preceded by an uninstallation of 2914 * p->migration_pending done with p->pi_lock held. 2915 */ 2916 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2917 int dest_cpu, unsigned int flags) 2918 __releases(rq->lock) 2919 __releases(p->pi_lock) 2920 { 2921 struct set_affinity_pending my_pending = { }, *pending = NULL; 2922 bool stop_pending, complete = false; 2923 2924 /* Can the task run on the task's current CPU? If so, we're done */ 2925 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2926 struct task_struct *push_task = NULL; 2927 2928 if ((flags & SCA_MIGRATE_ENABLE) && 2929 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2930 rq->push_busy = true; 2931 push_task = get_task_struct(p); 2932 } 2933 2934 /* 2935 * If there are pending waiters, but no pending stop_work, 2936 * then complete now. 2937 */ 2938 pending = p->migration_pending; 2939 if (pending && !pending->stop_pending) { 2940 p->migration_pending = NULL; 2941 complete = true; 2942 } 2943 2944 preempt_disable(); 2945 task_rq_unlock(rq, p, rf); 2946 if (push_task) { 2947 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2948 p, &rq->push_work); 2949 } 2950 preempt_enable(); 2951 2952 if (complete) 2953 complete_all(&pending->done); 2954 2955 return 0; 2956 } 2957 2958 if (!(flags & SCA_MIGRATE_ENABLE)) { 2959 /* serialized by p->pi_lock */ 2960 if (!p->migration_pending) { 2961 /* Install the request */ 2962 refcount_set(&my_pending.refs, 1); 2963 init_completion(&my_pending.done); 2964 my_pending.arg = (struct migration_arg) { 2965 .task = p, 2966 .dest_cpu = dest_cpu, 2967 .pending = &my_pending, 2968 }; 2969 2970 p->migration_pending = &my_pending; 2971 } else { 2972 pending = p->migration_pending; 2973 refcount_inc(&pending->refs); 2974 /* 2975 * Affinity has changed, but we've already installed a 2976 * pending. migration_cpu_stop() *must* see this, else 2977 * we risk a completion of the pending despite having a 2978 * task on a disallowed CPU. 2979 * 2980 * Serialized by p->pi_lock, so this is safe. 2981 */ 2982 pending->arg.dest_cpu = dest_cpu; 2983 } 2984 } 2985 pending = p->migration_pending; 2986 /* 2987 * - !MIGRATE_ENABLE: 2988 * we'll have installed a pending if there wasn't one already. 2989 * 2990 * - MIGRATE_ENABLE: 2991 * we're here because the current CPU isn't matching anymore, 2992 * the only way that can happen is because of a concurrent 2993 * set_cpus_allowed_ptr() call, which should then still be 2994 * pending completion. 2995 * 2996 * Either way, we really should have a @pending here. 2997 */ 2998 if (WARN_ON_ONCE(!pending)) { 2999 task_rq_unlock(rq, p, rf); 3000 return -EINVAL; 3001 } 3002 3003 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 3004 /* 3005 * MIGRATE_ENABLE gets here because 'p == current', but for 3006 * anything else we cannot do is_migration_disabled(), punt 3007 * and have the stopper function handle it all race-free. 3008 */ 3009 stop_pending = pending->stop_pending; 3010 if (!stop_pending) 3011 pending->stop_pending = true; 3012 3013 if (flags & SCA_MIGRATE_ENABLE) 3014 p->migration_flags &= ~MDF_PUSH; 3015 3016 preempt_disable(); 3017 task_rq_unlock(rq, p, rf); 3018 if (!stop_pending) { 3019 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 3020 &pending->arg, &pending->stop_work); 3021 } 3022 preempt_enable(); 3023 3024 if (flags & SCA_MIGRATE_ENABLE) 3025 return 0; 3026 } else { 3027 3028 if (!is_migration_disabled(p)) { 3029 if (task_on_rq_queued(p)) 3030 rq = move_queued_task(rq, rf, p, dest_cpu); 3031 3032 if (!pending->stop_pending) { 3033 p->migration_pending = NULL; 3034 complete = true; 3035 } 3036 } 3037 task_rq_unlock(rq, p, rf); 3038 3039 if (complete) 3040 complete_all(&pending->done); 3041 } 3042 3043 wait_for_completion(&pending->done); 3044 3045 if (refcount_dec_and_test(&pending->refs)) 3046 wake_up_var(&pending->refs); /* No UaF, just an address */ 3047 3048 /* 3049 * Block the original owner of &pending until all subsequent callers 3050 * have seen the completion and decremented the refcount 3051 */ 3052 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 3053 3054 /* ARGH */ 3055 WARN_ON_ONCE(my_pending.stop_pending); 3056 3057 return 0; 3058 } 3059 3060 /* 3061 * Called with both p->pi_lock and rq->lock held; drops both before returning. 3062 */ 3063 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 3064 struct affinity_context *ctx, 3065 struct rq *rq, 3066 struct rq_flags *rf) 3067 __releases(rq->lock) 3068 __releases(p->pi_lock) 3069 { 3070 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 3071 const struct cpumask *cpu_valid_mask = cpu_active_mask; 3072 bool kthread = p->flags & PF_KTHREAD; 3073 unsigned int dest_cpu; 3074 int ret = 0; 3075 3076 update_rq_clock(rq); 3077 3078 if (kthread || is_migration_disabled(p)) { 3079 /* 3080 * Kernel threads are allowed on online && !active CPUs, 3081 * however, during cpu-hot-unplug, even these might get pushed 3082 * away if not KTHREAD_IS_PER_CPU. 3083 * 3084 * Specifically, migration_disabled() tasks must not fail the 3085 * cpumask_any_and_distribute() pick below, esp. so on 3086 * SCA_MIGRATE_ENABLE, otherwise we'll not call 3087 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 3088 */ 3089 cpu_valid_mask = cpu_online_mask; 3090 } 3091 3092 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 3093 ret = -EINVAL; 3094 goto out; 3095 } 3096 3097 /* 3098 * Must re-check here, to close a race against __kthread_bind(), 3099 * sched_setaffinity() is not guaranteed to observe the flag. 3100 */ 3101 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 3102 ret = -EINVAL; 3103 goto out; 3104 } 3105 3106 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 3107 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 3108 if (ctx->flags & SCA_USER) 3109 swap(p->user_cpus_ptr, ctx->user_mask); 3110 goto out; 3111 } 3112 3113 if (WARN_ON_ONCE(p == current && 3114 is_migration_disabled(p) && 3115 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 3116 ret = -EBUSY; 3117 goto out; 3118 } 3119 } 3120 3121 /* 3122 * Picking a ~random cpu helps in cases where we are changing affinity 3123 * for groups of tasks (ie. cpuset), so that load balancing is not 3124 * immediately required to distribute the tasks within their new mask. 3125 */ 3126 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 3127 if (dest_cpu >= nr_cpu_ids) { 3128 ret = -EINVAL; 3129 goto out; 3130 } 3131 3132 __do_set_cpus_allowed(p, ctx); 3133 3134 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3135 3136 out: 3137 task_rq_unlock(rq, p, rf); 3138 3139 return ret; 3140 } 3141 3142 /* 3143 * Change a given task's CPU affinity. Migrate the thread to a 3144 * proper CPU and schedule it away if the CPU it's executing on 3145 * is removed from the allowed bitmask. 3146 * 3147 * NOTE: the caller must have a valid reference to the task, the 3148 * task must not exit() & deallocate itself prematurely. The 3149 * call is not atomic; no spinlocks may be held. 3150 */ 3151 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) 3152 { 3153 struct rq_flags rf; 3154 struct rq *rq; 3155 3156 rq = task_rq_lock(p, &rf); 3157 /* 3158 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3159 * flags are set. 3160 */ 3161 if (p->user_cpus_ptr && 3162 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3163 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3164 ctx->new_mask = rq->scratch_mask; 3165 3166 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3167 } 3168 3169 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3170 { 3171 struct affinity_context ac = { 3172 .new_mask = new_mask, 3173 .flags = 0, 3174 }; 3175 3176 return __set_cpus_allowed_ptr(p, &ac); 3177 } 3178 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3179 3180 /* 3181 * Change a given task's CPU affinity to the intersection of its current 3182 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3183 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3184 * affinity or use cpu_online_mask instead. 3185 * 3186 * If the resulting mask is empty, leave the affinity unchanged and return 3187 * -EINVAL. 3188 */ 3189 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3190 struct cpumask *new_mask, 3191 const struct cpumask *subset_mask) 3192 { 3193 struct affinity_context ac = { 3194 .new_mask = new_mask, 3195 .flags = 0, 3196 }; 3197 struct rq_flags rf; 3198 struct rq *rq; 3199 int err; 3200 3201 rq = task_rq_lock(p, &rf); 3202 3203 /* 3204 * Forcefully restricting the affinity of a deadline task is 3205 * likely to cause problems, so fail and noisily override the 3206 * mask entirely. 3207 */ 3208 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3209 err = -EPERM; 3210 goto err_unlock; 3211 } 3212 3213 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3214 err = -EINVAL; 3215 goto err_unlock; 3216 } 3217 3218 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3219 3220 err_unlock: 3221 task_rq_unlock(rq, p, &rf); 3222 return err; 3223 } 3224 3225 /* 3226 * Restrict the CPU affinity of task @p so that it is a subset of 3227 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3228 * old affinity mask. If the resulting mask is empty, we warn and walk 3229 * up the cpuset hierarchy until we find a suitable mask. 3230 */ 3231 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3232 { 3233 cpumask_var_t new_mask; 3234 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3235 3236 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3237 3238 /* 3239 * __migrate_task() can fail silently in the face of concurrent 3240 * offlining of the chosen destination CPU, so take the hotplug 3241 * lock to ensure that the migration succeeds. 3242 */ 3243 cpus_read_lock(); 3244 if (!cpumask_available(new_mask)) 3245 goto out_set_mask; 3246 3247 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3248 goto out_free_mask; 3249 3250 /* 3251 * We failed to find a valid subset of the affinity mask for the 3252 * task, so override it based on its cpuset hierarchy. 3253 */ 3254 cpuset_cpus_allowed(p, new_mask); 3255 override_mask = new_mask; 3256 3257 out_set_mask: 3258 if (printk_ratelimit()) { 3259 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3260 task_pid_nr(p), p->comm, 3261 cpumask_pr_args(override_mask)); 3262 } 3263 3264 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3265 out_free_mask: 3266 cpus_read_unlock(); 3267 free_cpumask_var(new_mask); 3268 } 3269 3270 /* 3271 * Restore the affinity of a task @p which was previously restricted by a 3272 * call to force_compatible_cpus_allowed_ptr(). 3273 * 3274 * It is the caller's responsibility to serialise this with any calls to 3275 * force_compatible_cpus_allowed_ptr(@p). 3276 */ 3277 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3278 { 3279 struct affinity_context ac = { 3280 .new_mask = task_user_cpus(p), 3281 .flags = 0, 3282 }; 3283 int ret; 3284 3285 /* 3286 * Try to restore the old affinity mask with __sched_setaffinity(). 3287 * Cpuset masking will be done there too. 3288 */ 3289 ret = __sched_setaffinity(p, &ac); 3290 WARN_ON_ONCE(ret); 3291 } 3292 3293 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3294 { 3295 #ifdef CONFIG_SCHED_DEBUG 3296 unsigned int state = READ_ONCE(p->__state); 3297 3298 /* 3299 * We should never call set_task_cpu() on a blocked task, 3300 * ttwu() will sort out the placement. 3301 */ 3302 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3303 3304 /* 3305 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3306 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3307 * time relying on p->on_rq. 3308 */ 3309 WARN_ON_ONCE(state == TASK_RUNNING && 3310 p->sched_class == &fair_sched_class && 3311 (p->on_rq && !task_on_rq_migrating(p))); 3312 3313 #ifdef CONFIG_LOCKDEP 3314 /* 3315 * The caller should hold either p->pi_lock or rq->lock, when changing 3316 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3317 * 3318 * sched_move_task() holds both and thus holding either pins the cgroup, 3319 * see task_group(). 3320 * 3321 * Furthermore, all task_rq users should acquire both locks, see 3322 * task_rq_lock(). 3323 */ 3324 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3325 lockdep_is_held(__rq_lockp(task_rq(p))))); 3326 #endif 3327 /* 3328 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3329 */ 3330 WARN_ON_ONCE(!cpu_online(new_cpu)); 3331 3332 WARN_ON_ONCE(is_migration_disabled(p)); 3333 #endif 3334 3335 trace_sched_migrate_task(p, new_cpu); 3336 3337 if (task_cpu(p) != new_cpu) { 3338 if (p->sched_class->migrate_task_rq) 3339 p->sched_class->migrate_task_rq(p, new_cpu); 3340 p->se.nr_migrations++; 3341 rseq_migrate(p); 3342 sched_mm_cid_migrate_from(p); 3343 perf_event_task_migrate(p); 3344 } 3345 3346 __set_task_cpu(p, new_cpu); 3347 } 3348 3349 #ifdef CONFIG_NUMA_BALANCING 3350 static void __migrate_swap_task(struct task_struct *p, int cpu) 3351 { 3352 if (task_on_rq_queued(p)) { 3353 struct rq *src_rq, *dst_rq; 3354 struct rq_flags srf, drf; 3355 3356 src_rq = task_rq(p); 3357 dst_rq = cpu_rq(cpu); 3358 3359 rq_pin_lock(src_rq, &srf); 3360 rq_pin_lock(dst_rq, &drf); 3361 3362 move_queued_task_locked(src_rq, dst_rq, p); 3363 wakeup_preempt(dst_rq, p, 0); 3364 3365 rq_unpin_lock(dst_rq, &drf); 3366 rq_unpin_lock(src_rq, &srf); 3367 3368 } else { 3369 /* 3370 * Task isn't running anymore; make it appear like we migrated 3371 * it before it went to sleep. This means on wakeup we make the 3372 * previous CPU our target instead of where it really is. 3373 */ 3374 p->wake_cpu = cpu; 3375 } 3376 } 3377 3378 struct migration_swap_arg { 3379 struct task_struct *src_task, *dst_task; 3380 int src_cpu, dst_cpu; 3381 }; 3382 3383 static int migrate_swap_stop(void *data) 3384 { 3385 struct migration_swap_arg *arg = data; 3386 struct rq *src_rq, *dst_rq; 3387 3388 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3389 return -EAGAIN; 3390 3391 src_rq = cpu_rq(arg->src_cpu); 3392 dst_rq = cpu_rq(arg->dst_cpu); 3393 3394 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3395 guard(double_rq_lock)(src_rq, dst_rq); 3396 3397 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3398 return -EAGAIN; 3399 3400 if (task_cpu(arg->src_task) != arg->src_cpu) 3401 return -EAGAIN; 3402 3403 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3404 return -EAGAIN; 3405 3406 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3407 return -EAGAIN; 3408 3409 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3410 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3411 3412 return 0; 3413 } 3414 3415 /* 3416 * Cross migrate two tasks 3417 */ 3418 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3419 int target_cpu, int curr_cpu) 3420 { 3421 struct migration_swap_arg arg; 3422 int ret = -EINVAL; 3423 3424 arg = (struct migration_swap_arg){ 3425 .src_task = cur, 3426 .src_cpu = curr_cpu, 3427 .dst_task = p, 3428 .dst_cpu = target_cpu, 3429 }; 3430 3431 if (arg.src_cpu == arg.dst_cpu) 3432 goto out; 3433 3434 /* 3435 * These three tests are all lockless; this is OK since all of them 3436 * will be re-checked with proper locks held further down the line. 3437 */ 3438 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3439 goto out; 3440 3441 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3442 goto out; 3443 3444 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3445 goto out; 3446 3447 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3448 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3449 3450 out: 3451 return ret; 3452 } 3453 #endif /* CONFIG_NUMA_BALANCING */ 3454 3455 /*** 3456 * kick_process - kick a running thread to enter/exit the kernel 3457 * @p: the to-be-kicked thread 3458 * 3459 * Cause a process which is running on another CPU to enter 3460 * kernel-mode, without any delay. (to get signals handled.) 3461 * 3462 * NOTE: this function doesn't have to take the runqueue lock, 3463 * because all it wants to ensure is that the remote task enters 3464 * the kernel. If the IPI races and the task has been migrated 3465 * to another CPU then no harm is done and the purpose has been 3466 * achieved as well. 3467 */ 3468 void kick_process(struct task_struct *p) 3469 { 3470 guard(preempt)(); 3471 int cpu = task_cpu(p); 3472 3473 if ((cpu != smp_processor_id()) && task_curr(p)) 3474 smp_send_reschedule(cpu); 3475 } 3476 EXPORT_SYMBOL_GPL(kick_process); 3477 3478 /* 3479 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3480 * 3481 * A few notes on cpu_active vs cpu_online: 3482 * 3483 * - cpu_active must be a subset of cpu_online 3484 * 3485 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3486 * see __set_cpus_allowed_ptr(). At this point the newly online 3487 * CPU isn't yet part of the sched domains, and balancing will not 3488 * see it. 3489 * 3490 * - on CPU-down we clear cpu_active() to mask the sched domains and 3491 * avoid the load balancer to place new tasks on the to be removed 3492 * CPU. Existing tasks will remain running there and will be taken 3493 * off. 3494 * 3495 * This means that fallback selection must not select !active CPUs. 3496 * And can assume that any active CPU must be online. Conversely 3497 * select_task_rq() below may allow selection of !active CPUs in order 3498 * to satisfy the above rules. 3499 */ 3500 static int select_fallback_rq(int cpu, struct task_struct *p) 3501 { 3502 int nid = cpu_to_node(cpu); 3503 const struct cpumask *nodemask = NULL; 3504 enum { cpuset, possible, fail } state = cpuset; 3505 int dest_cpu; 3506 3507 /* 3508 * If the node that the CPU is on has been offlined, cpu_to_node() 3509 * will return -1. There is no CPU on the node, and we should 3510 * select the CPU on the other node. 3511 */ 3512 if (nid != -1) { 3513 nodemask = cpumask_of_node(nid); 3514 3515 /* Look for allowed, online CPU in same node. */ 3516 for_each_cpu(dest_cpu, nodemask) { 3517 if (is_cpu_allowed(p, dest_cpu)) 3518 return dest_cpu; 3519 } 3520 } 3521 3522 for (;;) { 3523 /* Any allowed, online CPU? */ 3524 for_each_cpu(dest_cpu, p->cpus_ptr) { 3525 if (!is_cpu_allowed(p, dest_cpu)) 3526 continue; 3527 3528 goto out; 3529 } 3530 3531 /* No more Mr. Nice Guy. */ 3532 switch (state) { 3533 case cpuset: 3534 if (cpuset_cpus_allowed_fallback(p)) { 3535 state = possible; 3536 break; 3537 } 3538 fallthrough; 3539 case possible: 3540 /* 3541 * XXX When called from select_task_rq() we only 3542 * hold p->pi_lock and again violate locking order. 3543 * 3544 * More yuck to audit. 3545 */ 3546 do_set_cpus_allowed(p, task_cpu_fallback_mask(p)); 3547 state = fail; 3548 break; 3549 case fail: 3550 BUG(); 3551 break; 3552 } 3553 } 3554 3555 out: 3556 if (state != cpuset) { 3557 /* 3558 * Don't tell them about moving exiting tasks or 3559 * kernel threads (both mm NULL), since they never 3560 * leave kernel. 3561 */ 3562 if (p->mm && printk_ratelimit()) { 3563 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3564 task_pid_nr(p), p->comm, cpu); 3565 } 3566 } 3567 3568 return dest_cpu; 3569 } 3570 3571 /* 3572 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3573 */ 3574 static inline 3575 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags) 3576 { 3577 lockdep_assert_held(&p->pi_lock); 3578 3579 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) { 3580 cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags); 3581 *wake_flags |= WF_RQ_SELECTED; 3582 } else { 3583 cpu = cpumask_any(p->cpus_ptr); 3584 } 3585 3586 /* 3587 * In order not to call set_task_cpu() on a blocking task we need 3588 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3589 * CPU. 3590 * 3591 * Since this is common to all placement strategies, this lives here. 3592 * 3593 * [ this allows ->select_task() to simply return task_cpu(p) and 3594 * not worry about this generic constraint ] 3595 */ 3596 if (unlikely(!is_cpu_allowed(p, cpu))) 3597 cpu = select_fallback_rq(task_cpu(p), p); 3598 3599 return cpu; 3600 } 3601 3602 void sched_set_stop_task(int cpu, struct task_struct *stop) 3603 { 3604 static struct lock_class_key stop_pi_lock; 3605 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3606 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3607 3608 if (stop) { 3609 /* 3610 * Make it appear like a SCHED_FIFO task, its something 3611 * userspace knows about and won't get confused about. 3612 * 3613 * Also, it will make PI more or less work without too 3614 * much confusion -- but then, stop work should not 3615 * rely on PI working anyway. 3616 */ 3617 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3618 3619 stop->sched_class = &stop_sched_class; 3620 3621 /* 3622 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3623 * adjust the effective priority of a task. As a result, 3624 * rt_mutex_setprio() can trigger (RT) balancing operations, 3625 * which can then trigger wakeups of the stop thread to push 3626 * around the current task. 3627 * 3628 * The stop task itself will never be part of the PI-chain, it 3629 * never blocks, therefore that ->pi_lock recursion is safe. 3630 * Tell lockdep about this by placing the stop->pi_lock in its 3631 * own class. 3632 */ 3633 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3634 } 3635 3636 cpu_rq(cpu)->stop = stop; 3637 3638 if (old_stop) { 3639 /* 3640 * Reset it back to a normal scheduling class so that 3641 * it can die in pieces. 3642 */ 3643 old_stop->sched_class = &rt_sched_class; 3644 } 3645 } 3646 3647 #else /* CONFIG_SMP */ 3648 3649 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3650 3651 static inline bool rq_has_pinned_tasks(struct rq *rq) 3652 { 3653 return false; 3654 } 3655 3656 #endif /* !CONFIG_SMP */ 3657 3658 static void 3659 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3660 { 3661 struct rq *rq; 3662 3663 if (!schedstat_enabled()) 3664 return; 3665 3666 rq = this_rq(); 3667 3668 #ifdef CONFIG_SMP 3669 if (cpu == rq->cpu) { 3670 __schedstat_inc(rq->ttwu_local); 3671 __schedstat_inc(p->stats.nr_wakeups_local); 3672 } else { 3673 struct sched_domain *sd; 3674 3675 __schedstat_inc(p->stats.nr_wakeups_remote); 3676 3677 guard(rcu)(); 3678 for_each_domain(rq->cpu, sd) { 3679 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3680 __schedstat_inc(sd->ttwu_wake_remote); 3681 break; 3682 } 3683 } 3684 } 3685 3686 if (wake_flags & WF_MIGRATED) 3687 __schedstat_inc(p->stats.nr_wakeups_migrate); 3688 #endif /* CONFIG_SMP */ 3689 3690 __schedstat_inc(rq->ttwu_count); 3691 __schedstat_inc(p->stats.nr_wakeups); 3692 3693 if (wake_flags & WF_SYNC) 3694 __schedstat_inc(p->stats.nr_wakeups_sync); 3695 } 3696 3697 /* 3698 * Mark the task runnable. 3699 */ 3700 static inline void ttwu_do_wakeup(struct task_struct *p) 3701 { 3702 WRITE_ONCE(p->__state, TASK_RUNNING); 3703 trace_sched_wakeup(p); 3704 } 3705 3706 static void 3707 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3708 struct rq_flags *rf) 3709 { 3710 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3711 3712 lockdep_assert_rq_held(rq); 3713 3714 if (p->sched_contributes_to_load) 3715 rq->nr_uninterruptible--; 3716 3717 #ifdef CONFIG_SMP 3718 if (wake_flags & WF_RQ_SELECTED) 3719 en_flags |= ENQUEUE_RQ_SELECTED; 3720 if (wake_flags & WF_MIGRATED) 3721 en_flags |= ENQUEUE_MIGRATED; 3722 else 3723 #endif 3724 if (p->in_iowait) { 3725 delayacct_blkio_end(p); 3726 atomic_dec(&task_rq(p)->nr_iowait); 3727 } 3728 3729 activate_task(rq, p, en_flags); 3730 wakeup_preempt(rq, p, wake_flags); 3731 3732 ttwu_do_wakeup(p); 3733 3734 #ifdef CONFIG_SMP 3735 if (p->sched_class->task_woken) { 3736 /* 3737 * Our task @p is fully woken up and running; so it's safe to 3738 * drop the rq->lock, hereafter rq is only used for statistics. 3739 */ 3740 rq_unpin_lock(rq, rf); 3741 p->sched_class->task_woken(rq, p); 3742 rq_repin_lock(rq, rf); 3743 } 3744 3745 if (rq->idle_stamp) { 3746 u64 delta = rq_clock(rq) - rq->idle_stamp; 3747 u64 max = 2*rq->max_idle_balance_cost; 3748 3749 update_avg(&rq->avg_idle, delta); 3750 3751 if (rq->avg_idle > max) 3752 rq->avg_idle = max; 3753 3754 rq->idle_stamp = 0; 3755 } 3756 #endif 3757 } 3758 3759 /* 3760 * Consider @p being inside a wait loop: 3761 * 3762 * for (;;) { 3763 * set_current_state(TASK_UNINTERRUPTIBLE); 3764 * 3765 * if (CONDITION) 3766 * break; 3767 * 3768 * schedule(); 3769 * } 3770 * __set_current_state(TASK_RUNNING); 3771 * 3772 * between set_current_state() and schedule(). In this case @p is still 3773 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3774 * an atomic manner. 3775 * 3776 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3777 * then schedule() must still happen and p->state can be changed to 3778 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3779 * need to do a full wakeup with enqueue. 3780 * 3781 * Returns: %true when the wakeup is done, 3782 * %false otherwise. 3783 */ 3784 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3785 { 3786 struct rq_flags rf; 3787 struct rq *rq; 3788 int ret = 0; 3789 3790 rq = __task_rq_lock(p, &rf); 3791 if (task_on_rq_queued(p)) { 3792 update_rq_clock(rq); 3793 if (p->se.sched_delayed) 3794 enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED); 3795 if (!task_on_cpu(rq, p)) { 3796 /* 3797 * When on_rq && !on_cpu the task is preempted, see if 3798 * it should preempt the task that is current now. 3799 */ 3800 wakeup_preempt(rq, p, wake_flags); 3801 } 3802 ttwu_do_wakeup(p); 3803 ret = 1; 3804 } 3805 __task_rq_unlock(rq, &rf); 3806 3807 return ret; 3808 } 3809 3810 #ifdef CONFIG_SMP 3811 void sched_ttwu_pending(void *arg) 3812 { 3813 struct llist_node *llist = arg; 3814 struct rq *rq = this_rq(); 3815 struct task_struct *p, *t; 3816 struct rq_flags rf; 3817 3818 if (!llist) 3819 return; 3820 3821 rq_lock_irqsave(rq, &rf); 3822 update_rq_clock(rq); 3823 3824 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3825 if (WARN_ON_ONCE(p->on_cpu)) 3826 smp_cond_load_acquire(&p->on_cpu, !VAL); 3827 3828 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3829 set_task_cpu(p, cpu_of(rq)); 3830 3831 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3832 } 3833 3834 /* 3835 * Must be after enqueueing at least once task such that 3836 * idle_cpu() does not observe a false-negative -- if it does, 3837 * it is possible for select_idle_siblings() to stack a number 3838 * of tasks on this CPU during that window. 3839 * 3840 * It is OK to clear ttwu_pending when another task pending. 3841 * We will receive IPI after local IRQ enabled and then enqueue it. 3842 * Since now nr_running > 0, idle_cpu() will always get correct result. 3843 */ 3844 WRITE_ONCE(rq->ttwu_pending, 0); 3845 rq_unlock_irqrestore(rq, &rf); 3846 } 3847 3848 /* 3849 * Prepare the scene for sending an IPI for a remote smp_call 3850 * 3851 * Returns true if the caller can proceed with sending the IPI. 3852 * Returns false otherwise. 3853 */ 3854 bool call_function_single_prep_ipi(int cpu) 3855 { 3856 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3857 trace_sched_wake_idle_without_ipi(cpu); 3858 return false; 3859 } 3860 3861 return true; 3862 } 3863 3864 /* 3865 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3866 * necessary. The wakee CPU on receipt of the IPI will queue the task 3867 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3868 * of the wakeup instead of the waker. 3869 */ 3870 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3871 { 3872 struct rq *rq = cpu_rq(cpu); 3873 3874 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3875 3876 WRITE_ONCE(rq->ttwu_pending, 1); 3877 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3878 } 3879 3880 void wake_up_if_idle(int cpu) 3881 { 3882 struct rq *rq = cpu_rq(cpu); 3883 3884 guard(rcu)(); 3885 if (is_idle_task(rcu_dereference(rq->curr))) { 3886 guard(rq_lock_irqsave)(rq); 3887 if (is_idle_task(rq->curr)) 3888 resched_curr(rq); 3889 } 3890 } 3891 3892 bool cpus_equal_capacity(int this_cpu, int that_cpu) 3893 { 3894 if (!sched_asym_cpucap_active()) 3895 return true; 3896 3897 if (this_cpu == that_cpu) 3898 return true; 3899 3900 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); 3901 } 3902 3903 bool cpus_share_cache(int this_cpu, int that_cpu) 3904 { 3905 if (this_cpu == that_cpu) 3906 return true; 3907 3908 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3909 } 3910 3911 /* 3912 * Whether CPUs are share cache resources, which means LLC on non-cluster 3913 * machines and LLC tag or L2 on machines with clusters. 3914 */ 3915 bool cpus_share_resources(int this_cpu, int that_cpu) 3916 { 3917 if (this_cpu == that_cpu) 3918 return true; 3919 3920 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3921 } 3922 3923 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3924 { 3925 /* 3926 * The BPF scheduler may depend on select_task_rq() being invoked during 3927 * wakeups. In addition, @p may end up executing on a different CPU 3928 * regardless of what happens in the wakeup path making the ttwu_queue 3929 * optimization less meaningful. Skip if on SCX. 3930 */ 3931 if (task_on_scx(p)) 3932 return false; 3933 3934 /* 3935 * Do not complicate things with the async wake_list while the CPU is 3936 * in hotplug state. 3937 */ 3938 if (!cpu_active(cpu)) 3939 return false; 3940 3941 /* Ensure the task will still be allowed to run on the CPU. */ 3942 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3943 return false; 3944 3945 /* 3946 * If the CPU does not share cache, then queue the task on the 3947 * remote rqs wakelist to avoid accessing remote data. 3948 */ 3949 if (!cpus_share_cache(smp_processor_id(), cpu)) 3950 return true; 3951 3952 if (cpu == smp_processor_id()) 3953 return false; 3954 3955 /* 3956 * If the wakee cpu is idle, or the task is descheduling and the 3957 * only running task on the CPU, then use the wakelist to offload 3958 * the task activation to the idle (or soon-to-be-idle) CPU as 3959 * the current CPU is likely busy. nr_running is checked to 3960 * avoid unnecessary task stacking. 3961 * 3962 * Note that we can only get here with (wakee) p->on_rq=0, 3963 * p->on_cpu can be whatever, we've done the dequeue, so 3964 * the wakee has been accounted out of ->nr_running. 3965 */ 3966 if (!cpu_rq(cpu)->nr_running) 3967 return true; 3968 3969 return false; 3970 } 3971 3972 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3973 { 3974 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3975 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3976 __ttwu_queue_wakelist(p, cpu, wake_flags); 3977 return true; 3978 } 3979 3980 return false; 3981 } 3982 3983 #else /* !CONFIG_SMP */ 3984 3985 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3986 { 3987 return false; 3988 } 3989 3990 #endif /* CONFIG_SMP */ 3991 3992 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3993 { 3994 struct rq *rq = cpu_rq(cpu); 3995 struct rq_flags rf; 3996 3997 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3998 return; 3999 4000 rq_lock(rq, &rf); 4001 update_rq_clock(rq); 4002 ttwu_do_activate(rq, p, wake_flags, &rf); 4003 rq_unlock(rq, &rf); 4004 } 4005 4006 /* 4007 * Invoked from try_to_wake_up() to check whether the task can be woken up. 4008 * 4009 * The caller holds p::pi_lock if p != current or has preemption 4010 * disabled when p == current. 4011 * 4012 * The rules of saved_state: 4013 * 4014 * The related locking code always holds p::pi_lock when updating 4015 * p::saved_state, which means the code is fully serialized in both cases. 4016 * 4017 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 4018 * No other bits set. This allows to distinguish all wakeup scenarios. 4019 * 4020 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 4021 * allows us to prevent early wakeup of tasks before they can be run on 4022 * asymmetric ISA architectures (eg ARMv9). 4023 */ 4024 static __always_inline 4025 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 4026 { 4027 int match; 4028 4029 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 4030 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 4031 state != TASK_RTLOCK_WAIT); 4032 } 4033 4034 *success = !!(match = __task_state_match(p, state)); 4035 4036 /* 4037 * Saved state preserves the task state across blocking on 4038 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 4039 * set p::saved_state to TASK_RUNNING, but do not wake the task 4040 * because it waits for a lock wakeup or __thaw_task(). Also 4041 * indicate success because from the regular waker's point of 4042 * view this has succeeded. 4043 * 4044 * After acquiring the lock the task will restore p::__state 4045 * from p::saved_state which ensures that the regular 4046 * wakeup is not lost. The restore will also set 4047 * p::saved_state to TASK_RUNNING so any further tests will 4048 * not result in false positives vs. @success 4049 */ 4050 if (match < 0) 4051 p->saved_state = TASK_RUNNING; 4052 4053 return match > 0; 4054 } 4055 4056 /* 4057 * Notes on Program-Order guarantees on SMP systems. 4058 * 4059 * MIGRATION 4060 * 4061 * The basic program-order guarantee on SMP systems is that when a task [t] 4062 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 4063 * execution on its new CPU [c1]. 4064 * 4065 * For migration (of runnable tasks) this is provided by the following means: 4066 * 4067 * A) UNLOCK of the rq(c0)->lock scheduling out task t 4068 * B) migration for t is required to synchronize *both* rq(c0)->lock and 4069 * rq(c1)->lock (if not at the same time, then in that order). 4070 * C) LOCK of the rq(c1)->lock scheduling in task 4071 * 4072 * Release/acquire chaining guarantees that B happens after A and C after B. 4073 * Note: the CPU doing B need not be c0 or c1 4074 * 4075 * Example: 4076 * 4077 * CPU0 CPU1 CPU2 4078 * 4079 * LOCK rq(0)->lock 4080 * sched-out X 4081 * sched-in Y 4082 * UNLOCK rq(0)->lock 4083 * 4084 * LOCK rq(0)->lock // orders against CPU0 4085 * dequeue X 4086 * UNLOCK rq(0)->lock 4087 * 4088 * LOCK rq(1)->lock 4089 * enqueue X 4090 * UNLOCK rq(1)->lock 4091 * 4092 * LOCK rq(1)->lock // orders against CPU2 4093 * sched-out Z 4094 * sched-in X 4095 * UNLOCK rq(1)->lock 4096 * 4097 * 4098 * BLOCKING -- aka. SLEEP + WAKEUP 4099 * 4100 * For blocking we (obviously) need to provide the same guarantee as for 4101 * migration. However the means are completely different as there is no lock 4102 * chain to provide order. Instead we do: 4103 * 4104 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 4105 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 4106 * 4107 * Example: 4108 * 4109 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4110 * 4111 * LOCK rq(0)->lock LOCK X->pi_lock 4112 * dequeue X 4113 * sched-out X 4114 * smp_store_release(X->on_cpu, 0); 4115 * 4116 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4117 * X->state = WAKING 4118 * set_task_cpu(X,2) 4119 * 4120 * LOCK rq(2)->lock 4121 * enqueue X 4122 * X->state = RUNNING 4123 * UNLOCK rq(2)->lock 4124 * 4125 * LOCK rq(2)->lock // orders against CPU1 4126 * sched-out Z 4127 * sched-in X 4128 * UNLOCK rq(2)->lock 4129 * 4130 * UNLOCK X->pi_lock 4131 * UNLOCK rq(0)->lock 4132 * 4133 * 4134 * However, for wakeups there is a second guarantee we must provide, namely we 4135 * must ensure that CONDITION=1 done by the caller can not be reordered with 4136 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4137 */ 4138 4139 /** 4140 * try_to_wake_up - wake up a thread 4141 * @p: the thread to be awakened 4142 * @state: the mask of task states that can be woken 4143 * @wake_flags: wake modifier flags (WF_*) 4144 * 4145 * Conceptually does: 4146 * 4147 * If (@state & @p->state) @p->state = TASK_RUNNING. 4148 * 4149 * If the task was not queued/runnable, also place it back on a runqueue. 4150 * 4151 * This function is atomic against schedule() which would dequeue the task. 4152 * 4153 * It issues a full memory barrier before accessing @p->state, see the comment 4154 * with set_current_state(). 4155 * 4156 * Uses p->pi_lock to serialize against concurrent wake-ups. 4157 * 4158 * Relies on p->pi_lock stabilizing: 4159 * - p->sched_class 4160 * - p->cpus_ptr 4161 * - p->sched_task_group 4162 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4163 * 4164 * Tries really hard to only take one task_rq(p)->lock for performance. 4165 * Takes rq->lock in: 4166 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4167 * - ttwu_queue() -- new rq, for enqueue of the task; 4168 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4169 * 4170 * As a consequence we race really badly with just about everything. See the 4171 * many memory barriers and their comments for details. 4172 * 4173 * Return: %true if @p->state changes (an actual wakeup was done), 4174 * %false otherwise. 4175 */ 4176 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4177 { 4178 guard(preempt)(); 4179 int cpu, success = 0; 4180 4181 wake_flags |= WF_TTWU; 4182 4183 if (p == current) { 4184 /* 4185 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4186 * == smp_processor_id()'. Together this means we can special 4187 * case the whole 'p->on_rq && ttwu_runnable()' case below 4188 * without taking any locks. 4189 * 4190 * Specifically, given current runs ttwu() we must be before 4191 * schedule()'s block_task(), as such this must not observe 4192 * sched_delayed. 4193 * 4194 * In particular: 4195 * - we rely on Program-Order guarantees for all the ordering, 4196 * - we're serialized against set_special_state() by virtue of 4197 * it disabling IRQs (this allows not taking ->pi_lock). 4198 */ 4199 SCHED_WARN_ON(p->se.sched_delayed); 4200 if (!ttwu_state_match(p, state, &success)) 4201 goto out; 4202 4203 trace_sched_waking(p); 4204 ttwu_do_wakeup(p); 4205 goto out; 4206 } 4207 4208 /* 4209 * If we are going to wake up a thread waiting for CONDITION we 4210 * need to ensure that CONDITION=1 done by the caller can not be 4211 * reordered with p->state check below. This pairs with smp_store_mb() 4212 * in set_current_state() that the waiting thread does. 4213 */ 4214 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4215 smp_mb__after_spinlock(); 4216 if (!ttwu_state_match(p, state, &success)) 4217 break; 4218 4219 trace_sched_waking(p); 4220 4221 /* 4222 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4223 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4224 * in smp_cond_load_acquire() below. 4225 * 4226 * sched_ttwu_pending() try_to_wake_up() 4227 * STORE p->on_rq = 1 LOAD p->state 4228 * UNLOCK rq->lock 4229 * 4230 * __schedule() (switch to task 'p') 4231 * LOCK rq->lock smp_rmb(); 4232 * smp_mb__after_spinlock(); 4233 * UNLOCK rq->lock 4234 * 4235 * [task p] 4236 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4237 * 4238 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4239 * __schedule(). See the comment for smp_mb__after_spinlock(). 4240 * 4241 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4242 */ 4243 smp_rmb(); 4244 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4245 break; 4246 4247 #ifdef CONFIG_SMP 4248 /* 4249 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4250 * possible to, falsely, observe p->on_cpu == 0. 4251 * 4252 * One must be running (->on_cpu == 1) in order to remove oneself 4253 * from the runqueue. 4254 * 4255 * __schedule() (switch to task 'p') try_to_wake_up() 4256 * STORE p->on_cpu = 1 LOAD p->on_rq 4257 * UNLOCK rq->lock 4258 * 4259 * __schedule() (put 'p' to sleep) 4260 * LOCK rq->lock smp_rmb(); 4261 * smp_mb__after_spinlock(); 4262 * STORE p->on_rq = 0 LOAD p->on_cpu 4263 * 4264 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4265 * __schedule(). See the comment for smp_mb__after_spinlock(). 4266 * 4267 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4268 * schedule()'s deactivate_task() has 'happened' and p will no longer 4269 * care about it's own p->state. See the comment in __schedule(). 4270 */ 4271 smp_acquire__after_ctrl_dep(); 4272 4273 /* 4274 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4275 * == 0), which means we need to do an enqueue, change p->state to 4276 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4277 * enqueue, such as ttwu_queue_wakelist(). 4278 */ 4279 WRITE_ONCE(p->__state, TASK_WAKING); 4280 4281 /* 4282 * If the owning (remote) CPU is still in the middle of schedule() with 4283 * this task as prev, considering queueing p on the remote CPUs wake_list 4284 * which potentially sends an IPI instead of spinning on p->on_cpu to 4285 * let the waker make forward progress. This is safe because IRQs are 4286 * disabled and the IPI will deliver after on_cpu is cleared. 4287 * 4288 * Ensure we load task_cpu(p) after p->on_cpu: 4289 * 4290 * set_task_cpu(p, cpu); 4291 * STORE p->cpu = @cpu 4292 * __schedule() (switch to task 'p') 4293 * LOCK rq->lock 4294 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4295 * STORE p->on_cpu = 1 LOAD p->cpu 4296 * 4297 * to ensure we observe the correct CPU on which the task is currently 4298 * scheduling. 4299 */ 4300 if (smp_load_acquire(&p->on_cpu) && 4301 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4302 break; 4303 4304 /* 4305 * If the owning (remote) CPU is still in the middle of schedule() with 4306 * this task as prev, wait until it's done referencing the task. 4307 * 4308 * Pairs with the smp_store_release() in finish_task(). 4309 * 4310 * This ensures that tasks getting woken will be fully ordered against 4311 * their previous state and preserve Program Order. 4312 */ 4313 smp_cond_load_acquire(&p->on_cpu, !VAL); 4314 4315 cpu = select_task_rq(p, p->wake_cpu, &wake_flags); 4316 if (task_cpu(p) != cpu) { 4317 if (p->in_iowait) { 4318 delayacct_blkio_end(p); 4319 atomic_dec(&task_rq(p)->nr_iowait); 4320 } 4321 4322 wake_flags |= WF_MIGRATED; 4323 psi_ttwu_dequeue(p); 4324 set_task_cpu(p, cpu); 4325 } 4326 #else 4327 cpu = task_cpu(p); 4328 #endif /* CONFIG_SMP */ 4329 4330 ttwu_queue(p, cpu, wake_flags); 4331 } 4332 out: 4333 if (success) 4334 ttwu_stat(p, task_cpu(p), wake_flags); 4335 4336 return success; 4337 } 4338 4339 static bool __task_needs_rq_lock(struct task_struct *p) 4340 { 4341 unsigned int state = READ_ONCE(p->__state); 4342 4343 /* 4344 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4345 * the task is blocked. Make sure to check @state since ttwu() can drop 4346 * locks at the end, see ttwu_queue_wakelist(). 4347 */ 4348 if (state == TASK_RUNNING || state == TASK_WAKING) 4349 return true; 4350 4351 /* 4352 * Ensure we load p->on_rq after p->__state, otherwise it would be 4353 * possible to, falsely, observe p->on_rq == 0. 4354 * 4355 * See try_to_wake_up() for a longer comment. 4356 */ 4357 smp_rmb(); 4358 if (p->on_rq) 4359 return true; 4360 4361 #ifdef CONFIG_SMP 4362 /* 4363 * Ensure the task has finished __schedule() and will not be referenced 4364 * anymore. Again, see try_to_wake_up() for a longer comment. 4365 */ 4366 smp_rmb(); 4367 smp_cond_load_acquire(&p->on_cpu, !VAL); 4368 #endif 4369 4370 return false; 4371 } 4372 4373 /** 4374 * task_call_func - Invoke a function on task in fixed state 4375 * @p: Process for which the function is to be invoked, can be @current. 4376 * @func: Function to invoke. 4377 * @arg: Argument to function. 4378 * 4379 * Fix the task in it's current state by avoiding wakeups and or rq operations 4380 * and call @func(@arg) on it. This function can use task_is_runnable() and 4381 * task_curr() to work out what the state is, if required. Given that @func 4382 * can be invoked with a runqueue lock held, it had better be quite 4383 * lightweight. 4384 * 4385 * Returns: 4386 * Whatever @func returns 4387 */ 4388 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4389 { 4390 struct rq *rq = NULL; 4391 struct rq_flags rf; 4392 int ret; 4393 4394 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4395 4396 if (__task_needs_rq_lock(p)) 4397 rq = __task_rq_lock(p, &rf); 4398 4399 /* 4400 * At this point the task is pinned; either: 4401 * - blocked and we're holding off wakeups (pi->lock) 4402 * - woken, and we're holding off enqueue (rq->lock) 4403 * - queued, and we're holding off schedule (rq->lock) 4404 * - running, and we're holding off de-schedule (rq->lock) 4405 * 4406 * The called function (@func) can use: task_curr(), p->on_rq and 4407 * p->__state to differentiate between these states. 4408 */ 4409 ret = func(p, arg); 4410 4411 if (rq) 4412 rq_unlock(rq, &rf); 4413 4414 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4415 return ret; 4416 } 4417 4418 /** 4419 * cpu_curr_snapshot - Return a snapshot of the currently running task 4420 * @cpu: The CPU on which to snapshot the task. 4421 * 4422 * Returns the task_struct pointer of the task "currently" running on 4423 * the specified CPU. 4424 * 4425 * If the specified CPU was offline, the return value is whatever it 4426 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4427 * task, but there is no guarantee. Callers wishing a useful return 4428 * value must take some action to ensure that the specified CPU remains 4429 * online throughout. 4430 * 4431 * This function executes full memory barriers before and after fetching 4432 * the pointer, which permits the caller to confine this function's fetch 4433 * with respect to the caller's accesses to other shared variables. 4434 */ 4435 struct task_struct *cpu_curr_snapshot(int cpu) 4436 { 4437 struct rq *rq = cpu_rq(cpu); 4438 struct task_struct *t; 4439 struct rq_flags rf; 4440 4441 rq_lock_irqsave(rq, &rf); 4442 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */ 4443 t = rcu_dereference(cpu_curr(cpu)); 4444 rq_unlock_irqrestore(rq, &rf); 4445 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4446 4447 return t; 4448 } 4449 4450 /** 4451 * wake_up_process - Wake up a specific process 4452 * @p: The process to be woken up. 4453 * 4454 * Attempt to wake up the nominated process and move it to the set of runnable 4455 * processes. 4456 * 4457 * Return: 1 if the process was woken up, 0 if it was already running. 4458 * 4459 * This function executes a full memory barrier before accessing the task state. 4460 */ 4461 int wake_up_process(struct task_struct *p) 4462 { 4463 return try_to_wake_up(p, TASK_NORMAL, 0); 4464 } 4465 EXPORT_SYMBOL(wake_up_process); 4466 4467 int wake_up_state(struct task_struct *p, unsigned int state) 4468 { 4469 return try_to_wake_up(p, state, 0); 4470 } 4471 4472 /* 4473 * Perform scheduler related setup for a newly forked process p. 4474 * p is forked by current. 4475 * 4476 * __sched_fork() is basic setup which is also used by sched_init() to 4477 * initialize the boot CPU's idle task. 4478 */ 4479 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4480 { 4481 p->on_rq = 0; 4482 4483 p->se.on_rq = 0; 4484 p->se.exec_start = 0; 4485 p->se.sum_exec_runtime = 0; 4486 p->se.prev_sum_exec_runtime = 0; 4487 p->se.nr_migrations = 0; 4488 p->se.vruntime = 0; 4489 p->se.vlag = 0; 4490 INIT_LIST_HEAD(&p->se.group_node); 4491 4492 /* A delayed task cannot be in clone(). */ 4493 SCHED_WARN_ON(p->se.sched_delayed); 4494 4495 #ifdef CONFIG_FAIR_GROUP_SCHED 4496 p->se.cfs_rq = NULL; 4497 #endif 4498 4499 #ifdef CONFIG_SCHEDSTATS 4500 /* Even if schedstat is disabled, there should not be garbage */ 4501 memset(&p->stats, 0, sizeof(p->stats)); 4502 #endif 4503 4504 init_dl_entity(&p->dl); 4505 4506 INIT_LIST_HEAD(&p->rt.run_list); 4507 p->rt.timeout = 0; 4508 p->rt.time_slice = sched_rr_timeslice; 4509 p->rt.on_rq = 0; 4510 p->rt.on_list = 0; 4511 4512 #ifdef CONFIG_SCHED_CLASS_EXT 4513 init_scx_entity(&p->scx); 4514 #endif 4515 4516 #ifdef CONFIG_PREEMPT_NOTIFIERS 4517 INIT_HLIST_HEAD(&p->preempt_notifiers); 4518 #endif 4519 4520 #ifdef CONFIG_COMPACTION 4521 p->capture_control = NULL; 4522 #endif 4523 init_numa_balancing(clone_flags, p); 4524 #ifdef CONFIG_SMP 4525 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4526 p->migration_pending = NULL; 4527 #endif 4528 init_sched_mm_cid(p); 4529 } 4530 4531 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4532 4533 #ifdef CONFIG_NUMA_BALANCING 4534 4535 int sysctl_numa_balancing_mode; 4536 4537 static void __set_numabalancing_state(bool enabled) 4538 { 4539 if (enabled) 4540 static_branch_enable(&sched_numa_balancing); 4541 else 4542 static_branch_disable(&sched_numa_balancing); 4543 } 4544 4545 void set_numabalancing_state(bool enabled) 4546 { 4547 if (enabled) 4548 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4549 else 4550 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4551 __set_numabalancing_state(enabled); 4552 } 4553 4554 #ifdef CONFIG_PROC_SYSCTL 4555 static void reset_memory_tiering(void) 4556 { 4557 struct pglist_data *pgdat; 4558 4559 for_each_online_pgdat(pgdat) { 4560 pgdat->nbp_threshold = 0; 4561 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4562 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4563 } 4564 } 4565 4566 static int sysctl_numa_balancing(const struct ctl_table *table, int write, 4567 void *buffer, size_t *lenp, loff_t *ppos) 4568 { 4569 struct ctl_table t; 4570 int err; 4571 int state = sysctl_numa_balancing_mode; 4572 4573 if (write && !capable(CAP_SYS_ADMIN)) 4574 return -EPERM; 4575 4576 t = *table; 4577 t.data = &state; 4578 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4579 if (err < 0) 4580 return err; 4581 if (write) { 4582 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4583 (state & NUMA_BALANCING_MEMORY_TIERING)) 4584 reset_memory_tiering(); 4585 sysctl_numa_balancing_mode = state; 4586 __set_numabalancing_state(state); 4587 } 4588 return err; 4589 } 4590 #endif 4591 #endif 4592 4593 #ifdef CONFIG_SCHEDSTATS 4594 4595 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4596 4597 static void set_schedstats(bool enabled) 4598 { 4599 if (enabled) 4600 static_branch_enable(&sched_schedstats); 4601 else 4602 static_branch_disable(&sched_schedstats); 4603 } 4604 4605 void force_schedstat_enabled(void) 4606 { 4607 if (!schedstat_enabled()) { 4608 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4609 static_branch_enable(&sched_schedstats); 4610 } 4611 } 4612 4613 static int __init setup_schedstats(char *str) 4614 { 4615 int ret = 0; 4616 if (!str) 4617 goto out; 4618 4619 if (!strcmp(str, "enable")) { 4620 set_schedstats(true); 4621 ret = 1; 4622 } else if (!strcmp(str, "disable")) { 4623 set_schedstats(false); 4624 ret = 1; 4625 } 4626 out: 4627 if (!ret) 4628 pr_warn("Unable to parse schedstats=\n"); 4629 4630 return ret; 4631 } 4632 __setup("schedstats=", setup_schedstats); 4633 4634 #ifdef CONFIG_PROC_SYSCTL 4635 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer, 4636 size_t *lenp, loff_t *ppos) 4637 { 4638 struct ctl_table t; 4639 int err; 4640 int state = static_branch_likely(&sched_schedstats); 4641 4642 if (write && !capable(CAP_SYS_ADMIN)) 4643 return -EPERM; 4644 4645 t = *table; 4646 t.data = &state; 4647 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4648 if (err < 0) 4649 return err; 4650 if (write) 4651 set_schedstats(state); 4652 return err; 4653 } 4654 #endif /* CONFIG_PROC_SYSCTL */ 4655 #endif /* CONFIG_SCHEDSTATS */ 4656 4657 #ifdef CONFIG_SYSCTL 4658 static const struct ctl_table sched_core_sysctls[] = { 4659 #ifdef CONFIG_SCHEDSTATS 4660 { 4661 .procname = "sched_schedstats", 4662 .data = NULL, 4663 .maxlen = sizeof(unsigned int), 4664 .mode = 0644, 4665 .proc_handler = sysctl_schedstats, 4666 .extra1 = SYSCTL_ZERO, 4667 .extra2 = SYSCTL_ONE, 4668 }, 4669 #endif /* CONFIG_SCHEDSTATS */ 4670 #ifdef CONFIG_UCLAMP_TASK 4671 { 4672 .procname = "sched_util_clamp_min", 4673 .data = &sysctl_sched_uclamp_util_min, 4674 .maxlen = sizeof(unsigned int), 4675 .mode = 0644, 4676 .proc_handler = sysctl_sched_uclamp_handler, 4677 }, 4678 { 4679 .procname = "sched_util_clamp_max", 4680 .data = &sysctl_sched_uclamp_util_max, 4681 .maxlen = sizeof(unsigned int), 4682 .mode = 0644, 4683 .proc_handler = sysctl_sched_uclamp_handler, 4684 }, 4685 { 4686 .procname = "sched_util_clamp_min_rt_default", 4687 .data = &sysctl_sched_uclamp_util_min_rt_default, 4688 .maxlen = sizeof(unsigned int), 4689 .mode = 0644, 4690 .proc_handler = sysctl_sched_uclamp_handler, 4691 }, 4692 #endif /* CONFIG_UCLAMP_TASK */ 4693 #ifdef CONFIG_NUMA_BALANCING 4694 { 4695 .procname = "numa_balancing", 4696 .data = NULL, /* filled in by handler */ 4697 .maxlen = sizeof(unsigned int), 4698 .mode = 0644, 4699 .proc_handler = sysctl_numa_balancing, 4700 .extra1 = SYSCTL_ZERO, 4701 .extra2 = SYSCTL_FOUR, 4702 }, 4703 #endif /* CONFIG_NUMA_BALANCING */ 4704 }; 4705 static int __init sched_core_sysctl_init(void) 4706 { 4707 register_sysctl_init("kernel", sched_core_sysctls); 4708 return 0; 4709 } 4710 late_initcall(sched_core_sysctl_init); 4711 #endif /* CONFIG_SYSCTL */ 4712 4713 /* 4714 * fork()/clone()-time setup: 4715 */ 4716 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4717 { 4718 __sched_fork(clone_flags, p); 4719 /* 4720 * We mark the process as NEW here. This guarantees that 4721 * nobody will actually run it, and a signal or other external 4722 * event cannot wake it up and insert it on the runqueue either. 4723 */ 4724 p->__state = TASK_NEW; 4725 4726 /* 4727 * Make sure we do not leak PI boosting priority to the child. 4728 */ 4729 p->prio = current->normal_prio; 4730 4731 uclamp_fork(p); 4732 4733 /* 4734 * Revert to default priority/policy on fork if requested. 4735 */ 4736 if (unlikely(p->sched_reset_on_fork)) { 4737 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4738 p->policy = SCHED_NORMAL; 4739 p->static_prio = NICE_TO_PRIO(0); 4740 p->rt_priority = 0; 4741 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4742 p->static_prio = NICE_TO_PRIO(0); 4743 4744 p->prio = p->normal_prio = p->static_prio; 4745 set_load_weight(p, false); 4746 p->se.custom_slice = 0; 4747 p->se.slice = sysctl_sched_base_slice; 4748 4749 /* 4750 * We don't need the reset flag anymore after the fork. It has 4751 * fulfilled its duty: 4752 */ 4753 p->sched_reset_on_fork = 0; 4754 } 4755 4756 if (dl_prio(p->prio)) 4757 return -EAGAIN; 4758 4759 scx_pre_fork(p); 4760 4761 if (rt_prio(p->prio)) { 4762 p->sched_class = &rt_sched_class; 4763 #ifdef CONFIG_SCHED_CLASS_EXT 4764 } else if (task_should_scx(p->policy)) { 4765 p->sched_class = &ext_sched_class; 4766 #endif 4767 } else { 4768 p->sched_class = &fair_sched_class; 4769 } 4770 4771 init_entity_runnable_average(&p->se); 4772 4773 4774 #ifdef CONFIG_SCHED_INFO 4775 if (likely(sched_info_on())) 4776 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4777 #endif 4778 #if defined(CONFIG_SMP) 4779 p->on_cpu = 0; 4780 #endif 4781 init_task_preempt_count(p); 4782 #ifdef CONFIG_SMP 4783 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4784 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4785 #endif 4786 return 0; 4787 } 4788 4789 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4790 { 4791 unsigned long flags; 4792 4793 /* 4794 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4795 * required yet, but lockdep gets upset if rules are violated. 4796 */ 4797 raw_spin_lock_irqsave(&p->pi_lock, flags); 4798 #ifdef CONFIG_CGROUP_SCHED 4799 if (1) { 4800 struct task_group *tg; 4801 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4802 struct task_group, css); 4803 tg = autogroup_task_group(p, tg); 4804 p->sched_task_group = tg; 4805 } 4806 #endif 4807 rseq_migrate(p); 4808 /* 4809 * We're setting the CPU for the first time, we don't migrate, 4810 * so use __set_task_cpu(). 4811 */ 4812 __set_task_cpu(p, smp_processor_id()); 4813 if (p->sched_class->task_fork) 4814 p->sched_class->task_fork(p); 4815 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4816 4817 return scx_fork(p); 4818 } 4819 4820 void sched_cancel_fork(struct task_struct *p) 4821 { 4822 scx_cancel_fork(p); 4823 } 4824 4825 void sched_post_fork(struct task_struct *p) 4826 { 4827 uclamp_post_fork(p); 4828 scx_post_fork(p); 4829 } 4830 4831 unsigned long to_ratio(u64 period, u64 runtime) 4832 { 4833 if (runtime == RUNTIME_INF) 4834 return BW_UNIT; 4835 4836 /* 4837 * Doing this here saves a lot of checks in all 4838 * the calling paths, and returning zero seems 4839 * safe for them anyway. 4840 */ 4841 if (period == 0) 4842 return 0; 4843 4844 return div64_u64(runtime << BW_SHIFT, period); 4845 } 4846 4847 /* 4848 * wake_up_new_task - wake up a newly created task for the first time. 4849 * 4850 * This function will do some initial scheduler statistics housekeeping 4851 * that must be done for every newly created context, then puts the task 4852 * on the runqueue and wakes it. 4853 */ 4854 void wake_up_new_task(struct task_struct *p) 4855 { 4856 struct rq_flags rf; 4857 struct rq *rq; 4858 int wake_flags = WF_FORK; 4859 4860 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4861 WRITE_ONCE(p->__state, TASK_RUNNING); 4862 #ifdef CONFIG_SMP 4863 /* 4864 * Fork balancing, do it here and not earlier because: 4865 * - cpus_ptr can change in the fork path 4866 * - any previously selected CPU might disappear through hotplug 4867 * 4868 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4869 * as we're not fully set-up yet. 4870 */ 4871 p->recent_used_cpu = task_cpu(p); 4872 rseq_migrate(p); 4873 __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags)); 4874 #endif 4875 rq = __task_rq_lock(p, &rf); 4876 update_rq_clock(rq); 4877 post_init_entity_util_avg(p); 4878 4879 activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL); 4880 trace_sched_wakeup_new(p); 4881 wakeup_preempt(rq, p, wake_flags); 4882 #ifdef CONFIG_SMP 4883 if (p->sched_class->task_woken) { 4884 /* 4885 * Nothing relies on rq->lock after this, so it's fine to 4886 * drop it. 4887 */ 4888 rq_unpin_lock(rq, &rf); 4889 p->sched_class->task_woken(rq, p); 4890 rq_repin_lock(rq, &rf); 4891 } 4892 #endif 4893 task_rq_unlock(rq, p, &rf); 4894 } 4895 4896 #ifdef CONFIG_PREEMPT_NOTIFIERS 4897 4898 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4899 4900 void preempt_notifier_inc(void) 4901 { 4902 static_branch_inc(&preempt_notifier_key); 4903 } 4904 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4905 4906 void preempt_notifier_dec(void) 4907 { 4908 static_branch_dec(&preempt_notifier_key); 4909 } 4910 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4911 4912 /** 4913 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4914 * @notifier: notifier struct to register 4915 */ 4916 void preempt_notifier_register(struct preempt_notifier *notifier) 4917 { 4918 if (!static_branch_unlikely(&preempt_notifier_key)) 4919 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4920 4921 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4922 } 4923 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4924 4925 /** 4926 * preempt_notifier_unregister - no longer interested in preemption notifications 4927 * @notifier: notifier struct to unregister 4928 * 4929 * This is *not* safe to call from within a preemption notifier. 4930 */ 4931 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4932 { 4933 hlist_del(¬ifier->link); 4934 } 4935 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4936 4937 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4938 { 4939 struct preempt_notifier *notifier; 4940 4941 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4942 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4943 } 4944 4945 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4946 { 4947 if (static_branch_unlikely(&preempt_notifier_key)) 4948 __fire_sched_in_preempt_notifiers(curr); 4949 } 4950 4951 static void 4952 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4953 struct task_struct *next) 4954 { 4955 struct preempt_notifier *notifier; 4956 4957 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4958 notifier->ops->sched_out(notifier, next); 4959 } 4960 4961 static __always_inline void 4962 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4963 struct task_struct *next) 4964 { 4965 if (static_branch_unlikely(&preempt_notifier_key)) 4966 __fire_sched_out_preempt_notifiers(curr, next); 4967 } 4968 4969 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4970 4971 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4972 { 4973 } 4974 4975 static inline void 4976 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4977 struct task_struct *next) 4978 { 4979 } 4980 4981 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4982 4983 static inline void prepare_task(struct task_struct *next) 4984 { 4985 #ifdef CONFIG_SMP 4986 /* 4987 * Claim the task as running, we do this before switching to it 4988 * such that any running task will have this set. 4989 * 4990 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4991 * its ordering comment. 4992 */ 4993 WRITE_ONCE(next->on_cpu, 1); 4994 #endif 4995 } 4996 4997 static inline void finish_task(struct task_struct *prev) 4998 { 4999 #ifdef CONFIG_SMP 5000 /* 5001 * This must be the very last reference to @prev from this CPU. After 5002 * p->on_cpu is cleared, the task can be moved to a different CPU. We 5003 * must ensure this doesn't happen until the switch is completely 5004 * finished. 5005 * 5006 * In particular, the load of prev->state in finish_task_switch() must 5007 * happen before this. 5008 * 5009 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 5010 */ 5011 smp_store_release(&prev->on_cpu, 0); 5012 #endif 5013 } 5014 5015 #ifdef CONFIG_SMP 5016 5017 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 5018 { 5019 void (*func)(struct rq *rq); 5020 struct balance_callback *next; 5021 5022 lockdep_assert_rq_held(rq); 5023 5024 while (head) { 5025 func = (void (*)(struct rq *))head->func; 5026 next = head->next; 5027 head->next = NULL; 5028 head = next; 5029 5030 func(rq); 5031 } 5032 } 5033 5034 static void balance_push(struct rq *rq); 5035 5036 /* 5037 * balance_push_callback is a right abuse of the callback interface and plays 5038 * by significantly different rules. 5039 * 5040 * Where the normal balance_callback's purpose is to be ran in the same context 5041 * that queued it (only later, when it's safe to drop rq->lock again), 5042 * balance_push_callback is specifically targeted at __schedule(). 5043 * 5044 * This abuse is tolerated because it places all the unlikely/odd cases behind 5045 * a single test, namely: rq->balance_callback == NULL. 5046 */ 5047 struct balance_callback balance_push_callback = { 5048 .next = NULL, 5049 .func = balance_push, 5050 }; 5051 5052 static inline struct balance_callback * 5053 __splice_balance_callbacks(struct rq *rq, bool split) 5054 { 5055 struct balance_callback *head = rq->balance_callback; 5056 5057 if (likely(!head)) 5058 return NULL; 5059 5060 lockdep_assert_rq_held(rq); 5061 /* 5062 * Must not take balance_push_callback off the list when 5063 * splice_balance_callbacks() and balance_callbacks() are not 5064 * in the same rq->lock section. 5065 * 5066 * In that case it would be possible for __schedule() to interleave 5067 * and observe the list empty. 5068 */ 5069 if (split && head == &balance_push_callback) 5070 head = NULL; 5071 else 5072 rq->balance_callback = NULL; 5073 5074 return head; 5075 } 5076 5077 struct balance_callback *splice_balance_callbacks(struct rq *rq) 5078 { 5079 return __splice_balance_callbacks(rq, true); 5080 } 5081 5082 static void __balance_callbacks(struct rq *rq) 5083 { 5084 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 5085 } 5086 5087 void balance_callbacks(struct rq *rq, struct balance_callback *head) 5088 { 5089 unsigned long flags; 5090 5091 if (unlikely(head)) { 5092 raw_spin_rq_lock_irqsave(rq, flags); 5093 do_balance_callbacks(rq, head); 5094 raw_spin_rq_unlock_irqrestore(rq, flags); 5095 } 5096 } 5097 5098 #else 5099 5100 static inline void __balance_callbacks(struct rq *rq) 5101 { 5102 } 5103 5104 #endif 5105 5106 static inline void 5107 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 5108 { 5109 /* 5110 * Since the runqueue lock will be released by the next 5111 * task (which is an invalid locking op but in the case 5112 * of the scheduler it's an obvious special-case), so we 5113 * do an early lockdep release here: 5114 */ 5115 rq_unpin_lock(rq, rf); 5116 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 5117 #ifdef CONFIG_DEBUG_SPINLOCK 5118 /* this is a valid case when another task releases the spinlock */ 5119 rq_lockp(rq)->owner = next; 5120 #endif 5121 } 5122 5123 static inline void finish_lock_switch(struct rq *rq) 5124 { 5125 /* 5126 * If we are tracking spinlock dependencies then we have to 5127 * fix up the runqueue lock - which gets 'carried over' from 5128 * prev into current: 5129 */ 5130 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5131 __balance_callbacks(rq); 5132 raw_spin_rq_unlock_irq(rq); 5133 } 5134 5135 /* 5136 * NOP if the arch has not defined these: 5137 */ 5138 5139 #ifndef prepare_arch_switch 5140 # define prepare_arch_switch(next) do { } while (0) 5141 #endif 5142 5143 #ifndef finish_arch_post_lock_switch 5144 # define finish_arch_post_lock_switch() do { } while (0) 5145 #endif 5146 5147 static inline void kmap_local_sched_out(void) 5148 { 5149 #ifdef CONFIG_KMAP_LOCAL 5150 if (unlikely(current->kmap_ctrl.idx)) 5151 __kmap_local_sched_out(); 5152 #endif 5153 } 5154 5155 static inline void kmap_local_sched_in(void) 5156 { 5157 #ifdef CONFIG_KMAP_LOCAL 5158 if (unlikely(current->kmap_ctrl.idx)) 5159 __kmap_local_sched_in(); 5160 #endif 5161 } 5162 5163 /** 5164 * prepare_task_switch - prepare to switch tasks 5165 * @rq: the runqueue preparing to switch 5166 * @prev: the current task that is being switched out 5167 * @next: the task we are going to switch to. 5168 * 5169 * This is called with the rq lock held and interrupts off. It must 5170 * be paired with a subsequent finish_task_switch after the context 5171 * switch. 5172 * 5173 * prepare_task_switch sets up locking and calls architecture specific 5174 * hooks. 5175 */ 5176 static inline void 5177 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5178 struct task_struct *next) 5179 { 5180 kcov_prepare_switch(prev); 5181 sched_info_switch(rq, prev, next); 5182 perf_event_task_sched_out(prev, next); 5183 rseq_preempt(prev); 5184 fire_sched_out_preempt_notifiers(prev, next); 5185 kmap_local_sched_out(); 5186 prepare_task(next); 5187 prepare_arch_switch(next); 5188 } 5189 5190 /** 5191 * finish_task_switch - clean up after a task-switch 5192 * @prev: the thread we just switched away from. 5193 * 5194 * finish_task_switch must be called after the context switch, paired 5195 * with a prepare_task_switch call before the context switch. 5196 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5197 * and do any other architecture-specific cleanup actions. 5198 * 5199 * Note that we may have delayed dropping an mm in context_switch(). If 5200 * so, we finish that here outside of the runqueue lock. (Doing it 5201 * with the lock held can cause deadlocks; see schedule() for 5202 * details.) 5203 * 5204 * The context switch have flipped the stack from under us and restored the 5205 * local variables which were saved when this task called schedule() in the 5206 * past. 'prev == current' is still correct but we need to recalculate this_rq 5207 * because prev may have moved to another CPU. 5208 */ 5209 static struct rq *finish_task_switch(struct task_struct *prev) 5210 __releases(rq->lock) 5211 { 5212 struct rq *rq = this_rq(); 5213 struct mm_struct *mm = rq->prev_mm; 5214 unsigned int prev_state; 5215 5216 /* 5217 * The previous task will have left us with a preempt_count of 2 5218 * because it left us after: 5219 * 5220 * schedule() 5221 * preempt_disable(); // 1 5222 * __schedule() 5223 * raw_spin_lock_irq(&rq->lock) // 2 5224 * 5225 * Also, see FORK_PREEMPT_COUNT. 5226 */ 5227 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5228 "corrupted preempt_count: %s/%d/0x%x\n", 5229 current->comm, current->pid, preempt_count())) 5230 preempt_count_set(FORK_PREEMPT_COUNT); 5231 5232 rq->prev_mm = NULL; 5233 5234 /* 5235 * A task struct has one reference for the use as "current". 5236 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5237 * schedule one last time. The schedule call will never return, and 5238 * the scheduled task must drop that reference. 5239 * 5240 * We must observe prev->state before clearing prev->on_cpu (in 5241 * finish_task), otherwise a concurrent wakeup can get prev 5242 * running on another CPU and we could rave with its RUNNING -> DEAD 5243 * transition, resulting in a double drop. 5244 */ 5245 prev_state = READ_ONCE(prev->__state); 5246 vtime_task_switch(prev); 5247 perf_event_task_sched_in(prev, current); 5248 finish_task(prev); 5249 tick_nohz_task_switch(); 5250 finish_lock_switch(rq); 5251 finish_arch_post_lock_switch(); 5252 kcov_finish_switch(current); 5253 /* 5254 * kmap_local_sched_out() is invoked with rq::lock held and 5255 * interrupts disabled. There is no requirement for that, but the 5256 * sched out code does not have an interrupt enabled section. 5257 * Restoring the maps on sched in does not require interrupts being 5258 * disabled either. 5259 */ 5260 kmap_local_sched_in(); 5261 5262 fire_sched_in_preempt_notifiers(current); 5263 /* 5264 * When switching through a kernel thread, the loop in 5265 * membarrier_{private,global}_expedited() may have observed that 5266 * kernel thread and not issued an IPI. It is therefore possible to 5267 * schedule between user->kernel->user threads without passing though 5268 * switch_mm(). Membarrier requires a barrier after storing to 5269 * rq->curr, before returning to userspace, so provide them here: 5270 * 5271 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5272 * provided by mmdrop_lazy_tlb(), 5273 * - a sync_core for SYNC_CORE. 5274 */ 5275 if (mm) { 5276 membarrier_mm_sync_core_before_usermode(mm); 5277 mmdrop_lazy_tlb_sched(mm); 5278 } 5279 5280 if (unlikely(prev_state == TASK_DEAD)) { 5281 if (prev->sched_class->task_dead) 5282 prev->sched_class->task_dead(prev); 5283 5284 /* Task is done with its stack. */ 5285 put_task_stack(prev); 5286 5287 put_task_struct_rcu_user(prev); 5288 } 5289 5290 return rq; 5291 } 5292 5293 /** 5294 * schedule_tail - first thing a freshly forked thread must call. 5295 * @prev: the thread we just switched away from. 5296 */ 5297 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5298 __releases(rq->lock) 5299 { 5300 /* 5301 * New tasks start with FORK_PREEMPT_COUNT, see there and 5302 * finish_task_switch() for details. 5303 * 5304 * finish_task_switch() will drop rq->lock() and lower preempt_count 5305 * and the preempt_enable() will end up enabling preemption (on 5306 * PREEMPT_COUNT kernels). 5307 */ 5308 5309 finish_task_switch(prev); 5310 preempt_enable(); 5311 5312 if (current->set_child_tid) 5313 put_user(task_pid_vnr(current), current->set_child_tid); 5314 5315 calculate_sigpending(); 5316 } 5317 5318 /* 5319 * context_switch - switch to the new MM and the new thread's register state. 5320 */ 5321 static __always_inline struct rq * 5322 context_switch(struct rq *rq, struct task_struct *prev, 5323 struct task_struct *next, struct rq_flags *rf) 5324 { 5325 prepare_task_switch(rq, prev, next); 5326 5327 /* 5328 * For paravirt, this is coupled with an exit in switch_to to 5329 * combine the page table reload and the switch backend into 5330 * one hypercall. 5331 */ 5332 arch_start_context_switch(prev); 5333 5334 /* 5335 * kernel -> kernel lazy + transfer active 5336 * user -> kernel lazy + mmgrab_lazy_tlb() active 5337 * 5338 * kernel -> user switch + mmdrop_lazy_tlb() active 5339 * user -> user switch 5340 * 5341 * switch_mm_cid() needs to be updated if the barriers provided 5342 * by context_switch() are modified. 5343 */ 5344 if (!next->mm) { // to kernel 5345 enter_lazy_tlb(prev->active_mm, next); 5346 5347 next->active_mm = prev->active_mm; 5348 if (prev->mm) // from user 5349 mmgrab_lazy_tlb(prev->active_mm); 5350 else 5351 prev->active_mm = NULL; 5352 } else { // to user 5353 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5354 /* 5355 * sys_membarrier() requires an smp_mb() between setting 5356 * rq->curr / membarrier_switch_mm() and returning to userspace. 5357 * 5358 * The below provides this either through switch_mm(), or in 5359 * case 'prev->active_mm == next->mm' through 5360 * finish_task_switch()'s mmdrop(). 5361 */ 5362 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5363 lru_gen_use_mm(next->mm); 5364 5365 if (!prev->mm) { // from kernel 5366 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5367 rq->prev_mm = prev->active_mm; 5368 prev->active_mm = NULL; 5369 } 5370 } 5371 5372 /* switch_mm_cid() requires the memory barriers above. */ 5373 switch_mm_cid(rq, prev, next); 5374 5375 prepare_lock_switch(rq, next, rf); 5376 5377 /* Here we just switch the register state and the stack. */ 5378 switch_to(prev, next, prev); 5379 barrier(); 5380 5381 return finish_task_switch(prev); 5382 } 5383 5384 /* 5385 * nr_running and nr_context_switches: 5386 * 5387 * externally visible scheduler statistics: current number of runnable 5388 * threads, total number of context switches performed since bootup. 5389 */ 5390 unsigned int nr_running(void) 5391 { 5392 unsigned int i, sum = 0; 5393 5394 for_each_online_cpu(i) 5395 sum += cpu_rq(i)->nr_running; 5396 5397 return sum; 5398 } 5399 5400 /* 5401 * Check if only the current task is running on the CPU. 5402 * 5403 * Caution: this function does not check that the caller has disabled 5404 * preemption, thus the result might have a time-of-check-to-time-of-use 5405 * race. The caller is responsible to use it correctly, for example: 5406 * 5407 * - from a non-preemptible section (of course) 5408 * 5409 * - from a thread that is bound to a single CPU 5410 * 5411 * - in a loop with very short iterations (e.g. a polling loop) 5412 */ 5413 bool single_task_running(void) 5414 { 5415 return raw_rq()->nr_running == 1; 5416 } 5417 EXPORT_SYMBOL(single_task_running); 5418 5419 unsigned long long nr_context_switches_cpu(int cpu) 5420 { 5421 return cpu_rq(cpu)->nr_switches; 5422 } 5423 5424 unsigned long long nr_context_switches(void) 5425 { 5426 int i; 5427 unsigned long long sum = 0; 5428 5429 for_each_possible_cpu(i) 5430 sum += cpu_rq(i)->nr_switches; 5431 5432 return sum; 5433 } 5434 5435 /* 5436 * Consumers of these two interfaces, like for example the cpuidle menu 5437 * governor, are using nonsensical data. Preferring shallow idle state selection 5438 * for a CPU that has IO-wait which might not even end up running the task when 5439 * it does become runnable. 5440 */ 5441 5442 unsigned int nr_iowait_cpu(int cpu) 5443 { 5444 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5445 } 5446 5447 /* 5448 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5449 * 5450 * The idea behind IO-wait account is to account the idle time that we could 5451 * have spend running if it were not for IO. That is, if we were to improve the 5452 * storage performance, we'd have a proportional reduction in IO-wait time. 5453 * 5454 * This all works nicely on UP, where, when a task blocks on IO, we account 5455 * idle time as IO-wait, because if the storage were faster, it could've been 5456 * running and we'd not be idle. 5457 * 5458 * This has been extended to SMP, by doing the same for each CPU. This however 5459 * is broken. 5460 * 5461 * Imagine for instance the case where two tasks block on one CPU, only the one 5462 * CPU will have IO-wait accounted, while the other has regular idle. Even 5463 * though, if the storage were faster, both could've ran at the same time, 5464 * utilising both CPUs. 5465 * 5466 * This means, that when looking globally, the current IO-wait accounting on 5467 * SMP is a lower bound, by reason of under accounting. 5468 * 5469 * Worse, since the numbers are provided per CPU, they are sometimes 5470 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5471 * associated with any one particular CPU, it can wake to another CPU than it 5472 * blocked on. This means the per CPU IO-wait number is meaningless. 5473 * 5474 * Task CPU affinities can make all that even more 'interesting'. 5475 */ 5476 5477 unsigned int nr_iowait(void) 5478 { 5479 unsigned int i, sum = 0; 5480 5481 for_each_possible_cpu(i) 5482 sum += nr_iowait_cpu(i); 5483 5484 return sum; 5485 } 5486 5487 #ifdef CONFIG_SMP 5488 5489 /* 5490 * sched_exec - execve() is a valuable balancing opportunity, because at 5491 * this point the task has the smallest effective memory and cache footprint. 5492 */ 5493 void sched_exec(void) 5494 { 5495 struct task_struct *p = current; 5496 struct migration_arg arg; 5497 int dest_cpu; 5498 5499 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5500 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5501 if (dest_cpu == smp_processor_id()) 5502 return; 5503 5504 if (unlikely(!cpu_active(dest_cpu))) 5505 return; 5506 5507 arg = (struct migration_arg){ p, dest_cpu }; 5508 } 5509 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5510 } 5511 5512 #endif 5513 5514 DEFINE_PER_CPU(struct kernel_stat, kstat); 5515 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5516 5517 EXPORT_PER_CPU_SYMBOL(kstat); 5518 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5519 5520 /* 5521 * The function fair_sched_class.update_curr accesses the struct curr 5522 * and its field curr->exec_start; when called from task_sched_runtime(), 5523 * we observe a high rate of cache misses in practice. 5524 * Prefetching this data results in improved performance. 5525 */ 5526 static inline void prefetch_curr_exec_start(struct task_struct *p) 5527 { 5528 #ifdef CONFIG_FAIR_GROUP_SCHED 5529 struct sched_entity *curr = p->se.cfs_rq->curr; 5530 #else 5531 struct sched_entity *curr = task_rq(p)->cfs.curr; 5532 #endif 5533 prefetch(curr); 5534 prefetch(&curr->exec_start); 5535 } 5536 5537 /* 5538 * Return accounted runtime for the task. 5539 * In case the task is currently running, return the runtime plus current's 5540 * pending runtime that have not been accounted yet. 5541 */ 5542 unsigned long long task_sched_runtime(struct task_struct *p) 5543 { 5544 struct rq_flags rf; 5545 struct rq *rq; 5546 u64 ns; 5547 5548 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5549 /* 5550 * 64-bit doesn't need locks to atomically read a 64-bit value. 5551 * So we have a optimization chance when the task's delta_exec is 0. 5552 * Reading ->on_cpu is racy, but this is OK. 5553 * 5554 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5555 * If we race with it entering CPU, unaccounted time is 0. This is 5556 * indistinguishable from the read occurring a few cycles earlier. 5557 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5558 * been accounted, so we're correct here as well. 5559 */ 5560 if (!p->on_cpu || !task_on_rq_queued(p)) 5561 return p->se.sum_exec_runtime; 5562 #endif 5563 5564 rq = task_rq_lock(p, &rf); 5565 /* 5566 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5567 * project cycles that may never be accounted to this 5568 * thread, breaking clock_gettime(). 5569 */ 5570 if (task_current_donor(rq, p) && task_on_rq_queued(p)) { 5571 prefetch_curr_exec_start(p); 5572 update_rq_clock(rq); 5573 p->sched_class->update_curr(rq); 5574 } 5575 ns = p->se.sum_exec_runtime; 5576 task_rq_unlock(rq, p, &rf); 5577 5578 return ns; 5579 } 5580 5581 #ifdef CONFIG_SCHED_DEBUG 5582 static u64 cpu_resched_latency(struct rq *rq) 5583 { 5584 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5585 u64 resched_latency, now = rq_clock(rq); 5586 static bool warned_once; 5587 5588 if (sysctl_resched_latency_warn_once && warned_once) 5589 return 0; 5590 5591 if (!need_resched() || !latency_warn_ms) 5592 return 0; 5593 5594 if (system_state == SYSTEM_BOOTING) 5595 return 0; 5596 5597 if (!rq->last_seen_need_resched_ns) { 5598 rq->last_seen_need_resched_ns = now; 5599 rq->ticks_without_resched = 0; 5600 return 0; 5601 } 5602 5603 rq->ticks_without_resched++; 5604 resched_latency = now - rq->last_seen_need_resched_ns; 5605 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5606 return 0; 5607 5608 warned_once = true; 5609 5610 return resched_latency; 5611 } 5612 5613 static int __init setup_resched_latency_warn_ms(char *str) 5614 { 5615 long val; 5616 5617 if ((kstrtol(str, 0, &val))) { 5618 pr_warn("Unable to set resched_latency_warn_ms\n"); 5619 return 1; 5620 } 5621 5622 sysctl_resched_latency_warn_ms = val; 5623 return 1; 5624 } 5625 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5626 #else 5627 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5628 #endif /* CONFIG_SCHED_DEBUG */ 5629 5630 /* 5631 * This function gets called by the timer code, with HZ frequency. 5632 * We call it with interrupts disabled. 5633 */ 5634 void sched_tick(void) 5635 { 5636 int cpu = smp_processor_id(); 5637 struct rq *rq = cpu_rq(cpu); 5638 /* accounting goes to the donor task */ 5639 struct task_struct *donor; 5640 struct rq_flags rf; 5641 unsigned long hw_pressure; 5642 u64 resched_latency; 5643 5644 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5645 arch_scale_freq_tick(); 5646 5647 sched_clock_tick(); 5648 5649 rq_lock(rq, &rf); 5650 donor = rq->donor; 5651 5652 psi_account_irqtime(rq, donor, NULL); 5653 5654 update_rq_clock(rq); 5655 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 5656 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); 5657 5658 if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY)) 5659 resched_curr(rq); 5660 5661 donor->sched_class->task_tick(rq, donor, 0); 5662 if (sched_feat(LATENCY_WARN)) 5663 resched_latency = cpu_resched_latency(rq); 5664 calc_global_load_tick(rq); 5665 sched_core_tick(rq); 5666 task_tick_mm_cid(rq, donor); 5667 scx_tick(rq); 5668 5669 rq_unlock(rq, &rf); 5670 5671 if (sched_feat(LATENCY_WARN) && resched_latency) 5672 resched_latency_warn(cpu, resched_latency); 5673 5674 perf_event_task_tick(); 5675 5676 if (donor->flags & PF_WQ_WORKER) 5677 wq_worker_tick(donor); 5678 5679 #ifdef CONFIG_SMP 5680 if (!scx_switched_all()) { 5681 rq->idle_balance = idle_cpu(cpu); 5682 sched_balance_trigger(rq); 5683 } 5684 #endif 5685 } 5686 5687 #ifdef CONFIG_NO_HZ_FULL 5688 5689 struct tick_work { 5690 int cpu; 5691 atomic_t state; 5692 struct delayed_work work; 5693 }; 5694 /* Values for ->state, see diagram below. */ 5695 #define TICK_SCHED_REMOTE_OFFLINE 0 5696 #define TICK_SCHED_REMOTE_OFFLINING 1 5697 #define TICK_SCHED_REMOTE_RUNNING 2 5698 5699 /* 5700 * State diagram for ->state: 5701 * 5702 * 5703 * TICK_SCHED_REMOTE_OFFLINE 5704 * | ^ 5705 * | | 5706 * | | sched_tick_remote() 5707 * | | 5708 * | | 5709 * +--TICK_SCHED_REMOTE_OFFLINING 5710 * | ^ 5711 * | | 5712 * sched_tick_start() | | sched_tick_stop() 5713 * | | 5714 * V | 5715 * TICK_SCHED_REMOTE_RUNNING 5716 * 5717 * 5718 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5719 * and sched_tick_start() are happy to leave the state in RUNNING. 5720 */ 5721 5722 static struct tick_work __percpu *tick_work_cpu; 5723 5724 static void sched_tick_remote(struct work_struct *work) 5725 { 5726 struct delayed_work *dwork = to_delayed_work(work); 5727 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5728 int cpu = twork->cpu; 5729 struct rq *rq = cpu_rq(cpu); 5730 int os; 5731 5732 /* 5733 * Handle the tick only if it appears the remote CPU is running in full 5734 * dynticks mode. The check is racy by nature, but missing a tick or 5735 * having one too much is no big deal because the scheduler tick updates 5736 * statistics and checks timeslices in a time-independent way, regardless 5737 * of when exactly it is running. 5738 */ 5739 if (tick_nohz_tick_stopped_cpu(cpu)) { 5740 guard(rq_lock_irq)(rq); 5741 struct task_struct *curr = rq->curr; 5742 5743 if (cpu_online(cpu)) { 5744 /* 5745 * Since this is a remote tick for full dynticks mode, 5746 * we are always sure that there is no proxy (only a 5747 * single task is running). 5748 */ 5749 SCHED_WARN_ON(rq->curr != rq->donor); 5750 update_rq_clock(rq); 5751 5752 if (!is_idle_task(curr)) { 5753 /* 5754 * Make sure the next tick runs within a 5755 * reasonable amount of time. 5756 */ 5757 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5758 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5759 } 5760 curr->sched_class->task_tick(rq, curr, 0); 5761 5762 calc_load_nohz_remote(rq); 5763 } 5764 } 5765 5766 /* 5767 * Run the remote tick once per second (1Hz). This arbitrary 5768 * frequency is large enough to avoid overload but short enough 5769 * to keep scheduler internal stats reasonably up to date. But 5770 * first update state to reflect hotplug activity if required. 5771 */ 5772 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5773 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5774 if (os == TICK_SCHED_REMOTE_RUNNING) 5775 queue_delayed_work(system_unbound_wq, dwork, HZ); 5776 } 5777 5778 static void sched_tick_start(int cpu) 5779 { 5780 int os; 5781 struct tick_work *twork; 5782 5783 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5784 return; 5785 5786 WARN_ON_ONCE(!tick_work_cpu); 5787 5788 twork = per_cpu_ptr(tick_work_cpu, cpu); 5789 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5790 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5791 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5792 twork->cpu = cpu; 5793 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5794 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5795 } 5796 } 5797 5798 #ifdef CONFIG_HOTPLUG_CPU 5799 static void sched_tick_stop(int cpu) 5800 { 5801 struct tick_work *twork; 5802 int os; 5803 5804 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5805 return; 5806 5807 WARN_ON_ONCE(!tick_work_cpu); 5808 5809 twork = per_cpu_ptr(tick_work_cpu, cpu); 5810 /* There cannot be competing actions, but don't rely on stop-machine. */ 5811 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5812 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5813 /* Don't cancel, as this would mess up the state machine. */ 5814 } 5815 #endif /* CONFIG_HOTPLUG_CPU */ 5816 5817 int __init sched_tick_offload_init(void) 5818 { 5819 tick_work_cpu = alloc_percpu(struct tick_work); 5820 BUG_ON(!tick_work_cpu); 5821 return 0; 5822 } 5823 5824 #else /* !CONFIG_NO_HZ_FULL */ 5825 static inline void sched_tick_start(int cpu) { } 5826 static inline void sched_tick_stop(int cpu) { } 5827 #endif 5828 5829 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5830 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5831 /* 5832 * If the value passed in is equal to the current preempt count 5833 * then we just disabled preemption. Start timing the latency. 5834 */ 5835 static inline void preempt_latency_start(int val) 5836 { 5837 if (preempt_count() == val) { 5838 unsigned long ip = get_lock_parent_ip(); 5839 #ifdef CONFIG_DEBUG_PREEMPT 5840 current->preempt_disable_ip = ip; 5841 #endif 5842 trace_preempt_off(CALLER_ADDR0, ip); 5843 } 5844 } 5845 5846 void preempt_count_add(int val) 5847 { 5848 #ifdef CONFIG_DEBUG_PREEMPT 5849 /* 5850 * Underflow? 5851 */ 5852 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5853 return; 5854 #endif 5855 __preempt_count_add(val); 5856 #ifdef CONFIG_DEBUG_PREEMPT 5857 /* 5858 * Spinlock count overflowing soon? 5859 */ 5860 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5861 PREEMPT_MASK - 10); 5862 #endif 5863 preempt_latency_start(val); 5864 } 5865 EXPORT_SYMBOL(preempt_count_add); 5866 NOKPROBE_SYMBOL(preempt_count_add); 5867 5868 /* 5869 * If the value passed in equals to the current preempt count 5870 * then we just enabled preemption. Stop timing the latency. 5871 */ 5872 static inline void preempt_latency_stop(int val) 5873 { 5874 if (preempt_count() == val) 5875 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5876 } 5877 5878 void preempt_count_sub(int val) 5879 { 5880 #ifdef CONFIG_DEBUG_PREEMPT 5881 /* 5882 * Underflow? 5883 */ 5884 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5885 return; 5886 /* 5887 * Is the spinlock portion underflowing? 5888 */ 5889 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5890 !(preempt_count() & PREEMPT_MASK))) 5891 return; 5892 #endif 5893 5894 preempt_latency_stop(val); 5895 __preempt_count_sub(val); 5896 } 5897 EXPORT_SYMBOL(preempt_count_sub); 5898 NOKPROBE_SYMBOL(preempt_count_sub); 5899 5900 #else 5901 static inline void preempt_latency_start(int val) { } 5902 static inline void preempt_latency_stop(int val) { } 5903 #endif 5904 5905 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5906 { 5907 #ifdef CONFIG_DEBUG_PREEMPT 5908 return p->preempt_disable_ip; 5909 #else 5910 return 0; 5911 #endif 5912 } 5913 5914 /* 5915 * Print scheduling while atomic bug: 5916 */ 5917 static noinline void __schedule_bug(struct task_struct *prev) 5918 { 5919 /* Save this before calling printk(), since that will clobber it */ 5920 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5921 5922 if (oops_in_progress) 5923 return; 5924 5925 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5926 prev->comm, prev->pid, preempt_count()); 5927 5928 debug_show_held_locks(prev); 5929 print_modules(); 5930 if (irqs_disabled()) 5931 print_irqtrace_events(prev); 5932 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5933 pr_err("Preemption disabled at:"); 5934 print_ip_sym(KERN_ERR, preempt_disable_ip); 5935 } 5936 check_panic_on_warn("scheduling while atomic"); 5937 5938 dump_stack(); 5939 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5940 } 5941 5942 /* 5943 * Various schedule()-time debugging checks and statistics: 5944 */ 5945 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5946 { 5947 #ifdef CONFIG_SCHED_STACK_END_CHECK 5948 if (task_stack_end_corrupted(prev)) 5949 panic("corrupted stack end detected inside scheduler\n"); 5950 5951 if (task_scs_end_corrupted(prev)) 5952 panic("corrupted shadow stack detected inside scheduler\n"); 5953 #endif 5954 5955 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5956 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5957 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5958 prev->comm, prev->pid, prev->non_block_count); 5959 dump_stack(); 5960 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5961 } 5962 #endif 5963 5964 if (unlikely(in_atomic_preempt_off())) { 5965 __schedule_bug(prev); 5966 preempt_count_set(PREEMPT_DISABLED); 5967 } 5968 rcu_sleep_check(); 5969 SCHED_WARN_ON(ct_state() == CT_STATE_USER); 5970 5971 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5972 5973 schedstat_inc(this_rq()->sched_count); 5974 } 5975 5976 static void prev_balance(struct rq *rq, struct task_struct *prev, 5977 struct rq_flags *rf) 5978 { 5979 const struct sched_class *start_class = prev->sched_class; 5980 const struct sched_class *class; 5981 5982 #ifdef CONFIG_SCHED_CLASS_EXT 5983 /* 5984 * SCX requires a balance() call before every pick_task() including when 5985 * waking up from SCHED_IDLE. If @start_class is below SCX, start from 5986 * SCX instead. Also, set a flag to detect missing balance() call. 5987 */ 5988 if (scx_enabled()) { 5989 rq->scx.flags |= SCX_RQ_BAL_PENDING; 5990 if (sched_class_above(&ext_sched_class, start_class)) 5991 start_class = &ext_sched_class; 5992 } 5993 #endif 5994 5995 /* 5996 * We must do the balancing pass before put_prev_task(), such 5997 * that when we release the rq->lock the task is in the same 5998 * state as before we took rq->lock. 5999 * 6000 * We can terminate the balance pass as soon as we know there is 6001 * a runnable task of @class priority or higher. 6002 */ 6003 for_active_class_range(class, start_class, &idle_sched_class) { 6004 if (class->balance && class->balance(rq, prev, rf)) 6005 break; 6006 } 6007 } 6008 6009 /* 6010 * Pick up the highest-prio task: 6011 */ 6012 static inline struct task_struct * 6013 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6014 { 6015 const struct sched_class *class; 6016 struct task_struct *p; 6017 6018 rq->dl_server = NULL; 6019 6020 if (scx_enabled()) 6021 goto restart; 6022 6023 /* 6024 * Optimization: we know that if all tasks are in the fair class we can 6025 * call that function directly, but only if the @prev task wasn't of a 6026 * higher scheduling class, because otherwise those lose the 6027 * opportunity to pull in more work from other CPUs. 6028 */ 6029 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 6030 rq->nr_running == rq->cfs.h_nr_queued)) { 6031 6032 p = pick_next_task_fair(rq, prev, rf); 6033 if (unlikely(p == RETRY_TASK)) 6034 goto restart; 6035 6036 /* Assume the next prioritized class is idle_sched_class */ 6037 if (!p) { 6038 p = pick_task_idle(rq); 6039 put_prev_set_next_task(rq, prev, p); 6040 } 6041 6042 return p; 6043 } 6044 6045 restart: 6046 prev_balance(rq, prev, rf); 6047 6048 for_each_active_class(class) { 6049 if (class->pick_next_task) { 6050 p = class->pick_next_task(rq, prev); 6051 if (p) 6052 return p; 6053 } else { 6054 p = class->pick_task(rq); 6055 if (p) { 6056 put_prev_set_next_task(rq, prev, p); 6057 return p; 6058 } 6059 } 6060 } 6061 6062 BUG(); /* The idle class should always have a runnable task. */ 6063 } 6064 6065 #ifdef CONFIG_SCHED_CORE 6066 static inline bool is_task_rq_idle(struct task_struct *t) 6067 { 6068 return (task_rq(t)->idle == t); 6069 } 6070 6071 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 6072 { 6073 return is_task_rq_idle(a) || (a->core_cookie == cookie); 6074 } 6075 6076 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 6077 { 6078 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 6079 return true; 6080 6081 return a->core_cookie == b->core_cookie; 6082 } 6083 6084 static inline struct task_struct *pick_task(struct rq *rq) 6085 { 6086 const struct sched_class *class; 6087 struct task_struct *p; 6088 6089 rq->dl_server = NULL; 6090 6091 for_each_active_class(class) { 6092 p = class->pick_task(rq); 6093 if (p) 6094 return p; 6095 } 6096 6097 BUG(); /* The idle class should always have a runnable task. */ 6098 } 6099 6100 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 6101 6102 static void queue_core_balance(struct rq *rq); 6103 6104 static struct task_struct * 6105 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6106 { 6107 struct task_struct *next, *p, *max = NULL; 6108 const struct cpumask *smt_mask; 6109 bool fi_before = false; 6110 bool core_clock_updated = (rq == rq->core); 6111 unsigned long cookie; 6112 int i, cpu, occ = 0; 6113 struct rq *rq_i; 6114 bool need_sync; 6115 6116 if (!sched_core_enabled(rq)) 6117 return __pick_next_task(rq, prev, rf); 6118 6119 cpu = cpu_of(rq); 6120 6121 /* Stopper task is switching into idle, no need core-wide selection. */ 6122 if (cpu_is_offline(cpu)) { 6123 /* 6124 * Reset core_pick so that we don't enter the fastpath when 6125 * coming online. core_pick would already be migrated to 6126 * another cpu during offline. 6127 */ 6128 rq->core_pick = NULL; 6129 rq->core_dl_server = NULL; 6130 return __pick_next_task(rq, prev, rf); 6131 } 6132 6133 /* 6134 * If there were no {en,de}queues since we picked (IOW, the task 6135 * pointers are all still valid), and we haven't scheduled the last 6136 * pick yet, do so now. 6137 * 6138 * rq->core_pick can be NULL if no selection was made for a CPU because 6139 * it was either offline or went offline during a sibling's core-wide 6140 * selection. In this case, do a core-wide selection. 6141 */ 6142 if (rq->core->core_pick_seq == rq->core->core_task_seq && 6143 rq->core->core_pick_seq != rq->core_sched_seq && 6144 rq->core_pick) { 6145 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6146 6147 next = rq->core_pick; 6148 rq->dl_server = rq->core_dl_server; 6149 rq->core_pick = NULL; 6150 rq->core_dl_server = NULL; 6151 goto out_set_next; 6152 } 6153 6154 prev_balance(rq, prev, rf); 6155 6156 smt_mask = cpu_smt_mask(cpu); 6157 need_sync = !!rq->core->core_cookie; 6158 6159 /* reset state */ 6160 rq->core->core_cookie = 0UL; 6161 if (rq->core->core_forceidle_count) { 6162 if (!core_clock_updated) { 6163 update_rq_clock(rq->core); 6164 core_clock_updated = true; 6165 } 6166 sched_core_account_forceidle(rq); 6167 /* reset after accounting force idle */ 6168 rq->core->core_forceidle_start = 0; 6169 rq->core->core_forceidle_count = 0; 6170 rq->core->core_forceidle_occupation = 0; 6171 need_sync = true; 6172 fi_before = true; 6173 } 6174 6175 /* 6176 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6177 * 6178 * @task_seq guards the task state ({en,de}queues) 6179 * @pick_seq is the @task_seq we did a selection on 6180 * @sched_seq is the @pick_seq we scheduled 6181 * 6182 * However, preemptions can cause multiple picks on the same task set. 6183 * 'Fix' this by also increasing @task_seq for every pick. 6184 */ 6185 rq->core->core_task_seq++; 6186 6187 /* 6188 * Optimize for common case where this CPU has no cookies 6189 * and there are no cookied tasks running on siblings. 6190 */ 6191 if (!need_sync) { 6192 next = pick_task(rq); 6193 if (!next->core_cookie) { 6194 rq->core_pick = NULL; 6195 rq->core_dl_server = NULL; 6196 /* 6197 * For robustness, update the min_vruntime_fi for 6198 * unconstrained picks as well. 6199 */ 6200 WARN_ON_ONCE(fi_before); 6201 task_vruntime_update(rq, next, false); 6202 goto out_set_next; 6203 } 6204 } 6205 6206 /* 6207 * For each thread: do the regular task pick and find the max prio task 6208 * amongst them. 6209 * 6210 * Tie-break prio towards the current CPU 6211 */ 6212 for_each_cpu_wrap(i, smt_mask, cpu) { 6213 rq_i = cpu_rq(i); 6214 6215 /* 6216 * Current cpu always has its clock updated on entrance to 6217 * pick_next_task(). If the current cpu is not the core, 6218 * the core may also have been updated above. 6219 */ 6220 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6221 update_rq_clock(rq_i); 6222 6223 rq_i->core_pick = p = pick_task(rq_i); 6224 rq_i->core_dl_server = rq_i->dl_server; 6225 6226 if (!max || prio_less(max, p, fi_before)) 6227 max = p; 6228 } 6229 6230 cookie = rq->core->core_cookie = max->core_cookie; 6231 6232 /* 6233 * For each thread: try and find a runnable task that matches @max or 6234 * force idle. 6235 */ 6236 for_each_cpu(i, smt_mask) { 6237 rq_i = cpu_rq(i); 6238 p = rq_i->core_pick; 6239 6240 if (!cookie_equals(p, cookie)) { 6241 p = NULL; 6242 if (cookie) 6243 p = sched_core_find(rq_i, cookie); 6244 if (!p) 6245 p = idle_sched_class.pick_task(rq_i); 6246 } 6247 6248 rq_i->core_pick = p; 6249 rq_i->core_dl_server = NULL; 6250 6251 if (p == rq_i->idle) { 6252 if (rq_i->nr_running) { 6253 rq->core->core_forceidle_count++; 6254 if (!fi_before) 6255 rq->core->core_forceidle_seq++; 6256 } 6257 } else { 6258 occ++; 6259 } 6260 } 6261 6262 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6263 rq->core->core_forceidle_start = rq_clock(rq->core); 6264 rq->core->core_forceidle_occupation = occ; 6265 } 6266 6267 rq->core->core_pick_seq = rq->core->core_task_seq; 6268 next = rq->core_pick; 6269 rq->core_sched_seq = rq->core->core_pick_seq; 6270 6271 /* Something should have been selected for current CPU */ 6272 WARN_ON_ONCE(!next); 6273 6274 /* 6275 * Reschedule siblings 6276 * 6277 * NOTE: L1TF -- at this point we're no longer running the old task and 6278 * sending an IPI (below) ensures the sibling will no longer be running 6279 * their task. This ensures there is no inter-sibling overlap between 6280 * non-matching user state. 6281 */ 6282 for_each_cpu(i, smt_mask) { 6283 rq_i = cpu_rq(i); 6284 6285 /* 6286 * An online sibling might have gone offline before a task 6287 * could be picked for it, or it might be offline but later 6288 * happen to come online, but its too late and nothing was 6289 * picked for it. That's Ok - it will pick tasks for itself, 6290 * so ignore it. 6291 */ 6292 if (!rq_i->core_pick) 6293 continue; 6294 6295 /* 6296 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6297 * fi_before fi update? 6298 * 0 0 1 6299 * 0 1 1 6300 * 1 0 1 6301 * 1 1 0 6302 */ 6303 if (!(fi_before && rq->core->core_forceidle_count)) 6304 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6305 6306 rq_i->core_pick->core_occupation = occ; 6307 6308 if (i == cpu) { 6309 rq_i->core_pick = NULL; 6310 rq_i->core_dl_server = NULL; 6311 continue; 6312 } 6313 6314 /* Did we break L1TF mitigation requirements? */ 6315 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6316 6317 if (rq_i->curr == rq_i->core_pick) { 6318 rq_i->core_pick = NULL; 6319 rq_i->core_dl_server = NULL; 6320 continue; 6321 } 6322 6323 resched_curr(rq_i); 6324 } 6325 6326 out_set_next: 6327 put_prev_set_next_task(rq, prev, next); 6328 if (rq->core->core_forceidle_count && next == rq->idle) 6329 queue_core_balance(rq); 6330 6331 return next; 6332 } 6333 6334 static bool try_steal_cookie(int this, int that) 6335 { 6336 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6337 struct task_struct *p; 6338 unsigned long cookie; 6339 bool success = false; 6340 6341 guard(irq)(); 6342 guard(double_rq_lock)(dst, src); 6343 6344 cookie = dst->core->core_cookie; 6345 if (!cookie) 6346 return false; 6347 6348 if (dst->curr != dst->idle) 6349 return false; 6350 6351 p = sched_core_find(src, cookie); 6352 if (!p) 6353 return false; 6354 6355 do { 6356 if (p == src->core_pick || p == src->curr) 6357 goto next; 6358 6359 if (!is_cpu_allowed(p, this)) 6360 goto next; 6361 6362 if (p->core_occupation > dst->idle->core_occupation) 6363 goto next; 6364 /* 6365 * sched_core_find() and sched_core_next() will ensure 6366 * that task @p is not throttled now, we also need to 6367 * check whether the runqueue of the destination CPU is 6368 * being throttled. 6369 */ 6370 if (sched_task_is_throttled(p, this)) 6371 goto next; 6372 6373 move_queued_task_locked(src, dst, p); 6374 resched_curr(dst); 6375 6376 success = true; 6377 break; 6378 6379 next: 6380 p = sched_core_next(p, cookie); 6381 } while (p); 6382 6383 return success; 6384 } 6385 6386 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6387 { 6388 int i; 6389 6390 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6391 if (i == cpu) 6392 continue; 6393 6394 if (need_resched()) 6395 break; 6396 6397 if (try_steal_cookie(cpu, i)) 6398 return true; 6399 } 6400 6401 return false; 6402 } 6403 6404 static void sched_core_balance(struct rq *rq) 6405 { 6406 struct sched_domain *sd; 6407 int cpu = cpu_of(rq); 6408 6409 guard(preempt)(); 6410 guard(rcu)(); 6411 6412 raw_spin_rq_unlock_irq(rq); 6413 for_each_domain(cpu, sd) { 6414 if (need_resched()) 6415 break; 6416 6417 if (steal_cookie_task(cpu, sd)) 6418 break; 6419 } 6420 raw_spin_rq_lock_irq(rq); 6421 } 6422 6423 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6424 6425 static void queue_core_balance(struct rq *rq) 6426 { 6427 if (!sched_core_enabled(rq)) 6428 return; 6429 6430 if (!rq->core->core_cookie) 6431 return; 6432 6433 if (!rq->nr_running) /* not forced idle */ 6434 return; 6435 6436 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6437 } 6438 6439 DEFINE_LOCK_GUARD_1(core_lock, int, 6440 sched_core_lock(*_T->lock, &_T->flags), 6441 sched_core_unlock(*_T->lock, &_T->flags), 6442 unsigned long flags) 6443 6444 static void sched_core_cpu_starting(unsigned int cpu) 6445 { 6446 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6447 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6448 int t; 6449 6450 guard(core_lock)(&cpu); 6451 6452 WARN_ON_ONCE(rq->core != rq); 6453 6454 /* if we're the first, we'll be our own leader */ 6455 if (cpumask_weight(smt_mask) == 1) 6456 return; 6457 6458 /* find the leader */ 6459 for_each_cpu(t, smt_mask) { 6460 if (t == cpu) 6461 continue; 6462 rq = cpu_rq(t); 6463 if (rq->core == rq) { 6464 core_rq = rq; 6465 break; 6466 } 6467 } 6468 6469 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6470 return; 6471 6472 /* install and validate core_rq */ 6473 for_each_cpu(t, smt_mask) { 6474 rq = cpu_rq(t); 6475 6476 if (t == cpu) 6477 rq->core = core_rq; 6478 6479 WARN_ON_ONCE(rq->core != core_rq); 6480 } 6481 } 6482 6483 static void sched_core_cpu_deactivate(unsigned int cpu) 6484 { 6485 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6486 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6487 int t; 6488 6489 guard(core_lock)(&cpu); 6490 6491 /* if we're the last man standing, nothing to do */ 6492 if (cpumask_weight(smt_mask) == 1) { 6493 WARN_ON_ONCE(rq->core != rq); 6494 return; 6495 } 6496 6497 /* if we're not the leader, nothing to do */ 6498 if (rq->core != rq) 6499 return; 6500 6501 /* find a new leader */ 6502 for_each_cpu(t, smt_mask) { 6503 if (t == cpu) 6504 continue; 6505 core_rq = cpu_rq(t); 6506 break; 6507 } 6508 6509 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6510 return; 6511 6512 /* copy the shared state to the new leader */ 6513 core_rq->core_task_seq = rq->core_task_seq; 6514 core_rq->core_pick_seq = rq->core_pick_seq; 6515 core_rq->core_cookie = rq->core_cookie; 6516 core_rq->core_forceidle_count = rq->core_forceidle_count; 6517 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6518 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6519 6520 /* 6521 * Accounting edge for forced idle is handled in pick_next_task(). 6522 * Don't need another one here, since the hotplug thread shouldn't 6523 * have a cookie. 6524 */ 6525 core_rq->core_forceidle_start = 0; 6526 6527 /* install new leader */ 6528 for_each_cpu(t, smt_mask) { 6529 rq = cpu_rq(t); 6530 rq->core = core_rq; 6531 } 6532 } 6533 6534 static inline void sched_core_cpu_dying(unsigned int cpu) 6535 { 6536 struct rq *rq = cpu_rq(cpu); 6537 6538 if (rq->core != rq) 6539 rq->core = rq; 6540 } 6541 6542 #else /* !CONFIG_SCHED_CORE */ 6543 6544 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6545 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6546 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6547 6548 static struct task_struct * 6549 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6550 { 6551 return __pick_next_task(rq, prev, rf); 6552 } 6553 6554 #endif /* CONFIG_SCHED_CORE */ 6555 6556 /* 6557 * Constants for the sched_mode argument of __schedule(). 6558 * 6559 * The mode argument allows RT enabled kernels to differentiate a 6560 * preemption from blocking on an 'sleeping' spin/rwlock. 6561 */ 6562 #define SM_IDLE (-1) 6563 #define SM_NONE 0 6564 #define SM_PREEMPT 1 6565 #define SM_RTLOCK_WAIT 2 6566 6567 /* 6568 * Helper function for __schedule() 6569 * 6570 * If a task does not have signals pending, deactivate it 6571 * Otherwise marks the task's __state as RUNNING 6572 */ 6573 static bool try_to_block_task(struct rq *rq, struct task_struct *p, 6574 unsigned long task_state) 6575 { 6576 int flags = DEQUEUE_NOCLOCK; 6577 6578 if (signal_pending_state(task_state, p)) { 6579 WRITE_ONCE(p->__state, TASK_RUNNING); 6580 return false; 6581 } 6582 6583 p->sched_contributes_to_load = 6584 (task_state & TASK_UNINTERRUPTIBLE) && 6585 !(task_state & TASK_NOLOAD) && 6586 !(task_state & TASK_FROZEN); 6587 6588 if (unlikely(is_special_task_state(task_state))) 6589 flags |= DEQUEUE_SPECIAL; 6590 6591 /* 6592 * __schedule() ttwu() 6593 * prev_state = prev->state; if (p->on_rq && ...) 6594 * if (prev_state) goto out; 6595 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6596 * p->state = TASK_WAKING 6597 * 6598 * Where __schedule() and ttwu() have matching control dependencies. 6599 * 6600 * After this, schedule() must not care about p->state any more. 6601 */ 6602 block_task(rq, p, flags); 6603 return true; 6604 } 6605 6606 /* 6607 * __schedule() is the main scheduler function. 6608 * 6609 * The main means of driving the scheduler and thus entering this function are: 6610 * 6611 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6612 * 6613 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6614 * paths. For example, see arch/x86/entry_64.S. 6615 * 6616 * To drive preemption between tasks, the scheduler sets the flag in timer 6617 * interrupt handler sched_tick(). 6618 * 6619 * 3. Wakeups don't really cause entry into schedule(). They add a 6620 * task to the run-queue and that's it. 6621 * 6622 * Now, if the new task added to the run-queue preempts the current 6623 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6624 * called on the nearest possible occasion: 6625 * 6626 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6627 * 6628 * - in syscall or exception context, at the next outmost 6629 * preempt_enable(). (this might be as soon as the wake_up()'s 6630 * spin_unlock()!) 6631 * 6632 * - in IRQ context, return from interrupt-handler to 6633 * preemptible context 6634 * 6635 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6636 * then at the next: 6637 * 6638 * - cond_resched() call 6639 * - explicit schedule() call 6640 * - return from syscall or exception to user-space 6641 * - return from interrupt-handler to user-space 6642 * 6643 * WARNING: must be called with preemption disabled! 6644 */ 6645 static void __sched notrace __schedule(int sched_mode) 6646 { 6647 struct task_struct *prev, *next; 6648 /* 6649 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted 6650 * as a preemption by schedule_debug() and RCU. 6651 */ 6652 bool preempt = sched_mode > SM_NONE; 6653 unsigned long *switch_count; 6654 unsigned long prev_state; 6655 struct rq_flags rf; 6656 struct rq *rq; 6657 int cpu; 6658 6659 cpu = smp_processor_id(); 6660 rq = cpu_rq(cpu); 6661 prev = rq->curr; 6662 6663 schedule_debug(prev, preempt); 6664 6665 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6666 hrtick_clear(rq); 6667 6668 local_irq_disable(); 6669 rcu_note_context_switch(preempt); 6670 6671 /* 6672 * Make sure that signal_pending_state()->signal_pending() below 6673 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6674 * done by the caller to avoid the race with signal_wake_up(): 6675 * 6676 * __set_current_state(@state) signal_wake_up() 6677 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6678 * wake_up_state(p, state) 6679 * LOCK rq->lock LOCK p->pi_state 6680 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6681 * if (signal_pending_state()) if (p->state & @state) 6682 * 6683 * Also, the membarrier system call requires a full memory barrier 6684 * after coming from user-space, before storing to rq->curr; this 6685 * barrier matches a full barrier in the proximity of the membarrier 6686 * system call exit. 6687 */ 6688 rq_lock(rq, &rf); 6689 smp_mb__after_spinlock(); 6690 6691 /* Promote REQ to ACT */ 6692 rq->clock_update_flags <<= 1; 6693 update_rq_clock(rq); 6694 rq->clock_update_flags = RQCF_UPDATED; 6695 6696 switch_count = &prev->nivcsw; 6697 6698 /* Task state changes only considers SM_PREEMPT as preemption */ 6699 preempt = sched_mode == SM_PREEMPT; 6700 6701 /* 6702 * We must load prev->state once (task_struct::state is volatile), such 6703 * that we form a control dependency vs deactivate_task() below. 6704 */ 6705 prev_state = READ_ONCE(prev->__state); 6706 if (sched_mode == SM_IDLE) { 6707 /* SCX must consult the BPF scheduler to tell if rq is empty */ 6708 if (!rq->nr_running && !scx_enabled()) { 6709 next = prev; 6710 goto picked; 6711 } 6712 } else if (!preempt && prev_state) { 6713 try_to_block_task(rq, prev, prev_state); 6714 switch_count = &prev->nvcsw; 6715 } 6716 6717 next = pick_next_task(rq, prev, &rf); 6718 rq_set_donor(rq, next); 6719 picked: 6720 clear_tsk_need_resched(prev); 6721 clear_preempt_need_resched(); 6722 #ifdef CONFIG_SCHED_DEBUG 6723 rq->last_seen_need_resched_ns = 0; 6724 #endif 6725 6726 if (likely(prev != next)) { 6727 rq->nr_switches++; 6728 /* 6729 * RCU users of rcu_dereference(rq->curr) may not see 6730 * changes to task_struct made by pick_next_task(). 6731 */ 6732 RCU_INIT_POINTER(rq->curr, next); 6733 /* 6734 * The membarrier system call requires each architecture 6735 * to have a full memory barrier after updating 6736 * rq->curr, before returning to user-space. 6737 * 6738 * Here are the schemes providing that barrier on the 6739 * various architectures: 6740 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, 6741 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() 6742 * on PowerPC and on RISC-V. 6743 * - finish_lock_switch() for weakly-ordered 6744 * architectures where spin_unlock is a full barrier, 6745 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6746 * is a RELEASE barrier), 6747 * 6748 * The barrier matches a full barrier in the proximity of 6749 * the membarrier system call entry. 6750 * 6751 * On RISC-V, this barrier pairing is also needed for the 6752 * SYNC_CORE command when switching between processes, cf. 6753 * the inline comments in membarrier_arch_switch_mm(). 6754 */ 6755 ++*switch_count; 6756 6757 migrate_disable_switch(rq, prev); 6758 psi_account_irqtime(rq, prev, next); 6759 psi_sched_switch(prev, next, !task_on_rq_queued(prev) || 6760 prev->se.sched_delayed); 6761 6762 trace_sched_switch(preempt, prev, next, prev_state); 6763 6764 /* Also unlocks the rq: */ 6765 rq = context_switch(rq, prev, next, &rf); 6766 } else { 6767 rq_unpin_lock(rq, &rf); 6768 __balance_callbacks(rq); 6769 raw_spin_rq_unlock_irq(rq); 6770 } 6771 } 6772 6773 void __noreturn do_task_dead(void) 6774 { 6775 /* Causes final put_task_struct in finish_task_switch(): */ 6776 set_special_state(TASK_DEAD); 6777 6778 /* Tell freezer to ignore us: */ 6779 current->flags |= PF_NOFREEZE; 6780 6781 __schedule(SM_NONE); 6782 BUG(); 6783 6784 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6785 for (;;) 6786 cpu_relax(); 6787 } 6788 6789 static inline void sched_submit_work(struct task_struct *tsk) 6790 { 6791 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6792 unsigned int task_flags; 6793 6794 /* 6795 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6796 * will use a blocking primitive -- which would lead to recursion. 6797 */ 6798 lock_map_acquire_try(&sched_map); 6799 6800 task_flags = tsk->flags; 6801 /* 6802 * If a worker goes to sleep, notify and ask workqueue whether it 6803 * wants to wake up a task to maintain concurrency. 6804 */ 6805 if (task_flags & PF_WQ_WORKER) 6806 wq_worker_sleeping(tsk); 6807 else if (task_flags & PF_IO_WORKER) 6808 io_wq_worker_sleeping(tsk); 6809 6810 /* 6811 * spinlock and rwlock must not flush block requests. This will 6812 * deadlock if the callback attempts to acquire a lock which is 6813 * already acquired. 6814 */ 6815 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6816 6817 /* 6818 * If we are going to sleep and we have plugged IO queued, 6819 * make sure to submit it to avoid deadlocks. 6820 */ 6821 blk_flush_plug(tsk->plug, true); 6822 6823 lock_map_release(&sched_map); 6824 } 6825 6826 static void sched_update_worker(struct task_struct *tsk) 6827 { 6828 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { 6829 if (tsk->flags & PF_BLOCK_TS) 6830 blk_plug_invalidate_ts(tsk); 6831 if (tsk->flags & PF_WQ_WORKER) 6832 wq_worker_running(tsk); 6833 else if (tsk->flags & PF_IO_WORKER) 6834 io_wq_worker_running(tsk); 6835 } 6836 } 6837 6838 static __always_inline void __schedule_loop(int sched_mode) 6839 { 6840 do { 6841 preempt_disable(); 6842 __schedule(sched_mode); 6843 sched_preempt_enable_no_resched(); 6844 } while (need_resched()); 6845 } 6846 6847 asmlinkage __visible void __sched schedule(void) 6848 { 6849 struct task_struct *tsk = current; 6850 6851 #ifdef CONFIG_RT_MUTEXES 6852 lockdep_assert(!tsk->sched_rt_mutex); 6853 #endif 6854 6855 if (!task_is_running(tsk)) 6856 sched_submit_work(tsk); 6857 __schedule_loop(SM_NONE); 6858 sched_update_worker(tsk); 6859 } 6860 EXPORT_SYMBOL(schedule); 6861 6862 /* 6863 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6864 * state (have scheduled out non-voluntarily) by making sure that all 6865 * tasks have either left the run queue or have gone into user space. 6866 * As idle tasks do not do either, they must not ever be preempted 6867 * (schedule out non-voluntarily). 6868 * 6869 * schedule_idle() is similar to schedule_preempt_disable() except that it 6870 * never enables preemption because it does not call sched_submit_work(). 6871 */ 6872 void __sched schedule_idle(void) 6873 { 6874 /* 6875 * As this skips calling sched_submit_work(), which the idle task does 6876 * regardless because that function is a NOP when the task is in a 6877 * TASK_RUNNING state, make sure this isn't used someplace that the 6878 * current task can be in any other state. Note, idle is always in the 6879 * TASK_RUNNING state. 6880 */ 6881 WARN_ON_ONCE(current->__state); 6882 do { 6883 __schedule(SM_IDLE); 6884 } while (need_resched()); 6885 } 6886 6887 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6888 asmlinkage __visible void __sched schedule_user(void) 6889 { 6890 /* 6891 * If we come here after a random call to set_need_resched(), 6892 * or we have been woken up remotely but the IPI has not yet arrived, 6893 * we haven't yet exited the RCU idle mode. Do it here manually until 6894 * we find a better solution. 6895 * 6896 * NB: There are buggy callers of this function. Ideally we 6897 * should warn if prev_state != CT_STATE_USER, but that will trigger 6898 * too frequently to make sense yet. 6899 */ 6900 enum ctx_state prev_state = exception_enter(); 6901 schedule(); 6902 exception_exit(prev_state); 6903 } 6904 #endif 6905 6906 /** 6907 * schedule_preempt_disabled - called with preemption disabled 6908 * 6909 * Returns with preemption disabled. Note: preempt_count must be 1 6910 */ 6911 void __sched schedule_preempt_disabled(void) 6912 { 6913 sched_preempt_enable_no_resched(); 6914 schedule(); 6915 preempt_disable(); 6916 } 6917 6918 #ifdef CONFIG_PREEMPT_RT 6919 void __sched notrace schedule_rtlock(void) 6920 { 6921 __schedule_loop(SM_RTLOCK_WAIT); 6922 } 6923 NOKPROBE_SYMBOL(schedule_rtlock); 6924 #endif 6925 6926 static void __sched notrace preempt_schedule_common(void) 6927 { 6928 do { 6929 /* 6930 * Because the function tracer can trace preempt_count_sub() 6931 * and it also uses preempt_enable/disable_notrace(), if 6932 * NEED_RESCHED is set, the preempt_enable_notrace() called 6933 * by the function tracer will call this function again and 6934 * cause infinite recursion. 6935 * 6936 * Preemption must be disabled here before the function 6937 * tracer can trace. Break up preempt_disable() into two 6938 * calls. One to disable preemption without fear of being 6939 * traced. The other to still record the preemption latency, 6940 * which can also be traced by the function tracer. 6941 */ 6942 preempt_disable_notrace(); 6943 preempt_latency_start(1); 6944 __schedule(SM_PREEMPT); 6945 preempt_latency_stop(1); 6946 preempt_enable_no_resched_notrace(); 6947 6948 /* 6949 * Check again in case we missed a preemption opportunity 6950 * between schedule and now. 6951 */ 6952 } while (need_resched()); 6953 } 6954 6955 #ifdef CONFIG_PREEMPTION 6956 /* 6957 * This is the entry point to schedule() from in-kernel preemption 6958 * off of preempt_enable. 6959 */ 6960 asmlinkage __visible void __sched notrace preempt_schedule(void) 6961 { 6962 /* 6963 * If there is a non-zero preempt_count or interrupts are disabled, 6964 * we do not want to preempt the current task. Just return.. 6965 */ 6966 if (likely(!preemptible())) 6967 return; 6968 preempt_schedule_common(); 6969 } 6970 NOKPROBE_SYMBOL(preempt_schedule); 6971 EXPORT_SYMBOL(preempt_schedule); 6972 6973 #ifdef CONFIG_PREEMPT_DYNAMIC 6974 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6975 #ifndef preempt_schedule_dynamic_enabled 6976 #define preempt_schedule_dynamic_enabled preempt_schedule 6977 #define preempt_schedule_dynamic_disabled NULL 6978 #endif 6979 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6980 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6981 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6982 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6983 void __sched notrace dynamic_preempt_schedule(void) 6984 { 6985 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6986 return; 6987 preempt_schedule(); 6988 } 6989 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6990 EXPORT_SYMBOL(dynamic_preempt_schedule); 6991 #endif 6992 #endif 6993 6994 /** 6995 * preempt_schedule_notrace - preempt_schedule called by tracing 6996 * 6997 * The tracing infrastructure uses preempt_enable_notrace to prevent 6998 * recursion and tracing preempt enabling caused by the tracing 6999 * infrastructure itself. But as tracing can happen in areas coming 7000 * from userspace or just about to enter userspace, a preempt enable 7001 * can occur before user_exit() is called. This will cause the scheduler 7002 * to be called when the system is still in usermode. 7003 * 7004 * To prevent this, the preempt_enable_notrace will use this function 7005 * instead of preempt_schedule() to exit user context if needed before 7006 * calling the scheduler. 7007 */ 7008 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 7009 { 7010 enum ctx_state prev_ctx; 7011 7012 if (likely(!preemptible())) 7013 return; 7014 7015 do { 7016 /* 7017 * Because the function tracer can trace preempt_count_sub() 7018 * and it also uses preempt_enable/disable_notrace(), if 7019 * NEED_RESCHED is set, the preempt_enable_notrace() called 7020 * by the function tracer will call this function again and 7021 * cause infinite recursion. 7022 * 7023 * Preemption must be disabled here before the function 7024 * tracer can trace. Break up preempt_disable() into two 7025 * calls. One to disable preemption without fear of being 7026 * traced. The other to still record the preemption latency, 7027 * which can also be traced by the function tracer. 7028 */ 7029 preempt_disable_notrace(); 7030 preempt_latency_start(1); 7031 /* 7032 * Needs preempt disabled in case user_exit() is traced 7033 * and the tracer calls preempt_enable_notrace() causing 7034 * an infinite recursion. 7035 */ 7036 prev_ctx = exception_enter(); 7037 __schedule(SM_PREEMPT); 7038 exception_exit(prev_ctx); 7039 7040 preempt_latency_stop(1); 7041 preempt_enable_no_resched_notrace(); 7042 } while (need_resched()); 7043 } 7044 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 7045 7046 #ifdef CONFIG_PREEMPT_DYNAMIC 7047 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7048 #ifndef preempt_schedule_notrace_dynamic_enabled 7049 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 7050 #define preempt_schedule_notrace_dynamic_disabled NULL 7051 #endif 7052 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 7053 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 7054 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7055 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 7056 void __sched notrace dynamic_preempt_schedule_notrace(void) 7057 { 7058 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 7059 return; 7060 preempt_schedule_notrace(); 7061 } 7062 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 7063 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 7064 #endif 7065 #endif 7066 7067 #endif /* CONFIG_PREEMPTION */ 7068 7069 /* 7070 * This is the entry point to schedule() from kernel preemption 7071 * off of IRQ context. 7072 * Note, that this is called and return with IRQs disabled. This will 7073 * protect us against recursive calling from IRQ contexts. 7074 */ 7075 asmlinkage __visible void __sched preempt_schedule_irq(void) 7076 { 7077 enum ctx_state prev_state; 7078 7079 /* Catch callers which need to be fixed */ 7080 BUG_ON(preempt_count() || !irqs_disabled()); 7081 7082 prev_state = exception_enter(); 7083 7084 do { 7085 preempt_disable(); 7086 local_irq_enable(); 7087 __schedule(SM_PREEMPT); 7088 local_irq_disable(); 7089 sched_preempt_enable_no_resched(); 7090 } while (need_resched()); 7091 7092 exception_exit(prev_state); 7093 } 7094 7095 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 7096 void *key) 7097 { 7098 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 7099 return try_to_wake_up(curr->private, mode, wake_flags); 7100 } 7101 EXPORT_SYMBOL(default_wake_function); 7102 7103 const struct sched_class *__setscheduler_class(int policy, int prio) 7104 { 7105 if (dl_prio(prio)) 7106 return &dl_sched_class; 7107 7108 if (rt_prio(prio)) 7109 return &rt_sched_class; 7110 7111 #ifdef CONFIG_SCHED_CLASS_EXT 7112 if (task_should_scx(policy)) 7113 return &ext_sched_class; 7114 #endif 7115 7116 return &fair_sched_class; 7117 } 7118 7119 #ifdef CONFIG_RT_MUTEXES 7120 7121 /* 7122 * Would be more useful with typeof()/auto_type but they don't mix with 7123 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 7124 * name such that if someone were to implement this function we get to compare 7125 * notes. 7126 */ 7127 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 7128 7129 void rt_mutex_pre_schedule(void) 7130 { 7131 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 7132 sched_submit_work(current); 7133 } 7134 7135 void rt_mutex_schedule(void) 7136 { 7137 lockdep_assert(current->sched_rt_mutex); 7138 __schedule_loop(SM_NONE); 7139 } 7140 7141 void rt_mutex_post_schedule(void) 7142 { 7143 sched_update_worker(current); 7144 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 7145 } 7146 7147 /* 7148 * rt_mutex_setprio - set the current priority of a task 7149 * @p: task to boost 7150 * @pi_task: donor task 7151 * 7152 * This function changes the 'effective' priority of a task. It does 7153 * not touch ->normal_prio like __setscheduler(). 7154 * 7155 * Used by the rt_mutex code to implement priority inheritance 7156 * logic. Call site only calls if the priority of the task changed. 7157 */ 7158 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 7159 { 7160 int prio, oldprio, queued, running, queue_flag = 7161 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7162 const struct sched_class *prev_class, *next_class; 7163 struct rq_flags rf; 7164 struct rq *rq; 7165 7166 /* XXX used to be waiter->prio, not waiter->task->prio */ 7167 prio = __rt_effective_prio(pi_task, p->normal_prio); 7168 7169 /* 7170 * If nothing changed; bail early. 7171 */ 7172 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7173 return; 7174 7175 rq = __task_rq_lock(p, &rf); 7176 update_rq_clock(rq); 7177 /* 7178 * Set under pi_lock && rq->lock, such that the value can be used under 7179 * either lock. 7180 * 7181 * Note that there is loads of tricky to make this pointer cache work 7182 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7183 * ensure a task is de-boosted (pi_task is set to NULL) before the 7184 * task is allowed to run again (and can exit). This ensures the pointer 7185 * points to a blocked task -- which guarantees the task is present. 7186 */ 7187 p->pi_top_task = pi_task; 7188 7189 /* 7190 * For FIFO/RR we only need to set prio, if that matches we're done. 7191 */ 7192 if (prio == p->prio && !dl_prio(prio)) 7193 goto out_unlock; 7194 7195 /* 7196 * Idle task boosting is a no-no in general. There is one 7197 * exception, when PREEMPT_RT and NOHZ is active: 7198 * 7199 * The idle task calls get_next_timer_interrupt() and holds 7200 * the timer wheel base->lock on the CPU and another CPU wants 7201 * to access the timer (probably to cancel it). We can safely 7202 * ignore the boosting request, as the idle CPU runs this code 7203 * with interrupts disabled and will complete the lock 7204 * protected section without being interrupted. So there is no 7205 * real need to boost. 7206 */ 7207 if (unlikely(p == rq->idle)) { 7208 WARN_ON(p != rq->curr); 7209 WARN_ON(p->pi_blocked_on); 7210 goto out_unlock; 7211 } 7212 7213 trace_sched_pi_setprio(p, pi_task); 7214 oldprio = p->prio; 7215 7216 if (oldprio == prio) 7217 queue_flag &= ~DEQUEUE_MOVE; 7218 7219 prev_class = p->sched_class; 7220 next_class = __setscheduler_class(p->policy, prio); 7221 7222 if (prev_class != next_class && p->se.sched_delayed) 7223 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK); 7224 7225 queued = task_on_rq_queued(p); 7226 running = task_current_donor(rq, p); 7227 if (queued) 7228 dequeue_task(rq, p, queue_flag); 7229 if (running) 7230 put_prev_task(rq, p); 7231 7232 /* 7233 * Boosting condition are: 7234 * 1. -rt task is running and holds mutex A 7235 * --> -dl task blocks on mutex A 7236 * 7237 * 2. -dl task is running and holds mutex A 7238 * --> -dl task blocks on mutex A and could preempt the 7239 * running task 7240 */ 7241 if (dl_prio(prio)) { 7242 if (!dl_prio(p->normal_prio) || 7243 (pi_task && dl_prio(pi_task->prio) && 7244 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7245 p->dl.pi_se = pi_task->dl.pi_se; 7246 queue_flag |= ENQUEUE_REPLENISH; 7247 } else { 7248 p->dl.pi_se = &p->dl; 7249 } 7250 } else if (rt_prio(prio)) { 7251 if (dl_prio(oldprio)) 7252 p->dl.pi_se = &p->dl; 7253 if (oldprio < prio) 7254 queue_flag |= ENQUEUE_HEAD; 7255 } else { 7256 if (dl_prio(oldprio)) 7257 p->dl.pi_se = &p->dl; 7258 if (rt_prio(oldprio)) 7259 p->rt.timeout = 0; 7260 } 7261 7262 p->sched_class = next_class; 7263 p->prio = prio; 7264 7265 check_class_changing(rq, p, prev_class); 7266 7267 if (queued) 7268 enqueue_task(rq, p, queue_flag); 7269 if (running) 7270 set_next_task(rq, p); 7271 7272 check_class_changed(rq, p, prev_class, oldprio); 7273 out_unlock: 7274 /* Avoid rq from going away on us: */ 7275 preempt_disable(); 7276 7277 rq_unpin_lock(rq, &rf); 7278 __balance_callbacks(rq); 7279 raw_spin_rq_unlock(rq); 7280 7281 preempt_enable(); 7282 } 7283 #endif 7284 7285 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7286 int __sched __cond_resched(void) 7287 { 7288 if (should_resched(0) && !irqs_disabled()) { 7289 preempt_schedule_common(); 7290 return 1; 7291 } 7292 /* 7293 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 7294 * whether the current CPU is in an RCU read-side critical section, 7295 * so the tick can report quiescent states even for CPUs looping 7296 * in kernel context. In contrast, in non-preemptible kernels, 7297 * RCU readers leave no in-memory hints, which means that CPU-bound 7298 * processes executing in kernel context might never report an 7299 * RCU quiescent state. Therefore, the following code causes 7300 * cond_resched() to report a quiescent state, but only when RCU 7301 * is in urgent need of one. 7302 */ 7303 #ifndef CONFIG_PREEMPT_RCU 7304 rcu_all_qs(); 7305 #endif 7306 return 0; 7307 } 7308 EXPORT_SYMBOL(__cond_resched); 7309 #endif 7310 7311 #ifdef CONFIG_PREEMPT_DYNAMIC 7312 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7313 #define cond_resched_dynamic_enabled __cond_resched 7314 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 7315 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7316 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7317 7318 #define might_resched_dynamic_enabled __cond_resched 7319 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 7320 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7321 EXPORT_STATIC_CALL_TRAMP(might_resched); 7322 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7323 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 7324 int __sched dynamic_cond_resched(void) 7325 { 7326 klp_sched_try_switch(); 7327 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 7328 return 0; 7329 return __cond_resched(); 7330 } 7331 EXPORT_SYMBOL(dynamic_cond_resched); 7332 7333 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 7334 int __sched dynamic_might_resched(void) 7335 { 7336 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 7337 return 0; 7338 return __cond_resched(); 7339 } 7340 EXPORT_SYMBOL(dynamic_might_resched); 7341 #endif 7342 #endif 7343 7344 /* 7345 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7346 * call schedule, and on return reacquire the lock. 7347 * 7348 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7349 * operations here to prevent schedule() from being called twice (once via 7350 * spin_unlock(), once by hand). 7351 */ 7352 int __cond_resched_lock(spinlock_t *lock) 7353 { 7354 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7355 int ret = 0; 7356 7357 lockdep_assert_held(lock); 7358 7359 if (spin_needbreak(lock) || resched) { 7360 spin_unlock(lock); 7361 if (!_cond_resched()) 7362 cpu_relax(); 7363 ret = 1; 7364 spin_lock(lock); 7365 } 7366 return ret; 7367 } 7368 EXPORT_SYMBOL(__cond_resched_lock); 7369 7370 int __cond_resched_rwlock_read(rwlock_t *lock) 7371 { 7372 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7373 int ret = 0; 7374 7375 lockdep_assert_held_read(lock); 7376 7377 if (rwlock_needbreak(lock) || resched) { 7378 read_unlock(lock); 7379 if (!_cond_resched()) 7380 cpu_relax(); 7381 ret = 1; 7382 read_lock(lock); 7383 } 7384 return ret; 7385 } 7386 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7387 7388 int __cond_resched_rwlock_write(rwlock_t *lock) 7389 { 7390 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7391 int ret = 0; 7392 7393 lockdep_assert_held_write(lock); 7394 7395 if (rwlock_needbreak(lock) || resched) { 7396 write_unlock(lock); 7397 if (!_cond_resched()) 7398 cpu_relax(); 7399 ret = 1; 7400 write_lock(lock); 7401 } 7402 return ret; 7403 } 7404 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7405 7406 #ifdef CONFIG_PREEMPT_DYNAMIC 7407 7408 #ifdef CONFIG_GENERIC_ENTRY 7409 #include <linux/entry-common.h> 7410 #endif 7411 7412 /* 7413 * SC:cond_resched 7414 * SC:might_resched 7415 * SC:preempt_schedule 7416 * SC:preempt_schedule_notrace 7417 * SC:irqentry_exit_cond_resched 7418 * 7419 * 7420 * NONE: 7421 * cond_resched <- __cond_resched 7422 * might_resched <- RET0 7423 * preempt_schedule <- NOP 7424 * preempt_schedule_notrace <- NOP 7425 * irqentry_exit_cond_resched <- NOP 7426 * dynamic_preempt_lazy <- false 7427 * 7428 * VOLUNTARY: 7429 * cond_resched <- __cond_resched 7430 * might_resched <- __cond_resched 7431 * preempt_schedule <- NOP 7432 * preempt_schedule_notrace <- NOP 7433 * irqentry_exit_cond_resched <- NOP 7434 * dynamic_preempt_lazy <- false 7435 * 7436 * FULL: 7437 * cond_resched <- RET0 7438 * might_resched <- RET0 7439 * preempt_schedule <- preempt_schedule 7440 * preempt_schedule_notrace <- preempt_schedule_notrace 7441 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7442 * dynamic_preempt_lazy <- false 7443 * 7444 * LAZY: 7445 * cond_resched <- RET0 7446 * might_resched <- RET0 7447 * preempt_schedule <- preempt_schedule 7448 * preempt_schedule_notrace <- preempt_schedule_notrace 7449 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7450 * dynamic_preempt_lazy <- true 7451 */ 7452 7453 enum { 7454 preempt_dynamic_undefined = -1, 7455 preempt_dynamic_none, 7456 preempt_dynamic_voluntary, 7457 preempt_dynamic_full, 7458 preempt_dynamic_lazy, 7459 }; 7460 7461 int preempt_dynamic_mode = preempt_dynamic_undefined; 7462 7463 int sched_dynamic_mode(const char *str) 7464 { 7465 #ifndef CONFIG_PREEMPT_RT 7466 if (!strcmp(str, "none")) 7467 return preempt_dynamic_none; 7468 7469 if (!strcmp(str, "voluntary")) 7470 return preempt_dynamic_voluntary; 7471 #endif 7472 7473 if (!strcmp(str, "full")) 7474 return preempt_dynamic_full; 7475 7476 #ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY 7477 if (!strcmp(str, "lazy")) 7478 return preempt_dynamic_lazy; 7479 #endif 7480 7481 return -EINVAL; 7482 } 7483 7484 #define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key) 7485 #define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key) 7486 7487 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7488 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 7489 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 7490 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7491 #define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f) 7492 #define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f) 7493 #else 7494 #error "Unsupported PREEMPT_DYNAMIC mechanism" 7495 #endif 7496 7497 static DEFINE_MUTEX(sched_dynamic_mutex); 7498 static bool klp_override; 7499 7500 static void __sched_dynamic_update(int mode) 7501 { 7502 /* 7503 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 7504 * the ZERO state, which is invalid. 7505 */ 7506 if (!klp_override) 7507 preempt_dynamic_enable(cond_resched); 7508 preempt_dynamic_enable(might_resched); 7509 preempt_dynamic_enable(preempt_schedule); 7510 preempt_dynamic_enable(preempt_schedule_notrace); 7511 preempt_dynamic_enable(irqentry_exit_cond_resched); 7512 preempt_dynamic_key_disable(preempt_lazy); 7513 7514 switch (mode) { 7515 case preempt_dynamic_none: 7516 if (!klp_override) 7517 preempt_dynamic_enable(cond_resched); 7518 preempt_dynamic_disable(might_resched); 7519 preempt_dynamic_disable(preempt_schedule); 7520 preempt_dynamic_disable(preempt_schedule_notrace); 7521 preempt_dynamic_disable(irqentry_exit_cond_resched); 7522 preempt_dynamic_key_disable(preempt_lazy); 7523 if (mode != preempt_dynamic_mode) 7524 pr_info("Dynamic Preempt: none\n"); 7525 break; 7526 7527 case preempt_dynamic_voluntary: 7528 if (!klp_override) 7529 preempt_dynamic_enable(cond_resched); 7530 preempt_dynamic_enable(might_resched); 7531 preempt_dynamic_disable(preempt_schedule); 7532 preempt_dynamic_disable(preempt_schedule_notrace); 7533 preempt_dynamic_disable(irqentry_exit_cond_resched); 7534 preempt_dynamic_key_disable(preempt_lazy); 7535 if (mode != preempt_dynamic_mode) 7536 pr_info("Dynamic Preempt: voluntary\n"); 7537 break; 7538 7539 case preempt_dynamic_full: 7540 if (!klp_override) 7541 preempt_dynamic_disable(cond_resched); 7542 preempt_dynamic_disable(might_resched); 7543 preempt_dynamic_enable(preempt_schedule); 7544 preempt_dynamic_enable(preempt_schedule_notrace); 7545 preempt_dynamic_enable(irqentry_exit_cond_resched); 7546 preempt_dynamic_key_disable(preempt_lazy); 7547 if (mode != preempt_dynamic_mode) 7548 pr_info("Dynamic Preempt: full\n"); 7549 break; 7550 7551 case preempt_dynamic_lazy: 7552 if (!klp_override) 7553 preempt_dynamic_disable(cond_resched); 7554 preempt_dynamic_disable(might_resched); 7555 preempt_dynamic_enable(preempt_schedule); 7556 preempt_dynamic_enable(preempt_schedule_notrace); 7557 preempt_dynamic_enable(irqentry_exit_cond_resched); 7558 preempt_dynamic_key_enable(preempt_lazy); 7559 if (mode != preempt_dynamic_mode) 7560 pr_info("Dynamic Preempt: lazy\n"); 7561 break; 7562 } 7563 7564 preempt_dynamic_mode = mode; 7565 } 7566 7567 void sched_dynamic_update(int mode) 7568 { 7569 mutex_lock(&sched_dynamic_mutex); 7570 __sched_dynamic_update(mode); 7571 mutex_unlock(&sched_dynamic_mutex); 7572 } 7573 7574 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7575 7576 static int klp_cond_resched(void) 7577 { 7578 __klp_sched_try_switch(); 7579 return __cond_resched(); 7580 } 7581 7582 void sched_dynamic_klp_enable(void) 7583 { 7584 mutex_lock(&sched_dynamic_mutex); 7585 7586 klp_override = true; 7587 static_call_update(cond_resched, klp_cond_resched); 7588 7589 mutex_unlock(&sched_dynamic_mutex); 7590 } 7591 7592 void sched_dynamic_klp_disable(void) 7593 { 7594 mutex_lock(&sched_dynamic_mutex); 7595 7596 klp_override = false; 7597 __sched_dynamic_update(preempt_dynamic_mode); 7598 7599 mutex_unlock(&sched_dynamic_mutex); 7600 } 7601 7602 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ 7603 7604 static int __init setup_preempt_mode(char *str) 7605 { 7606 int mode = sched_dynamic_mode(str); 7607 if (mode < 0) { 7608 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 7609 return 0; 7610 } 7611 7612 sched_dynamic_update(mode); 7613 return 1; 7614 } 7615 __setup("preempt=", setup_preempt_mode); 7616 7617 static void __init preempt_dynamic_init(void) 7618 { 7619 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 7620 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 7621 sched_dynamic_update(preempt_dynamic_none); 7622 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 7623 sched_dynamic_update(preempt_dynamic_voluntary); 7624 } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7625 sched_dynamic_update(preempt_dynamic_lazy); 7626 } else { 7627 /* Default static call setting, nothing to do */ 7628 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 7629 preempt_dynamic_mode = preempt_dynamic_full; 7630 pr_info("Dynamic Preempt: full\n"); 7631 } 7632 } 7633 } 7634 7635 #define PREEMPT_MODEL_ACCESSOR(mode) \ 7636 bool preempt_model_##mode(void) \ 7637 { \ 7638 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 7639 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 7640 } \ 7641 EXPORT_SYMBOL_GPL(preempt_model_##mode) 7642 7643 PREEMPT_MODEL_ACCESSOR(none); 7644 PREEMPT_MODEL_ACCESSOR(voluntary); 7645 PREEMPT_MODEL_ACCESSOR(full); 7646 PREEMPT_MODEL_ACCESSOR(lazy); 7647 7648 #else /* !CONFIG_PREEMPT_DYNAMIC: */ 7649 7650 static inline void preempt_dynamic_init(void) { } 7651 7652 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7653 7654 int io_schedule_prepare(void) 7655 { 7656 int old_iowait = current->in_iowait; 7657 7658 current->in_iowait = 1; 7659 blk_flush_plug(current->plug, true); 7660 return old_iowait; 7661 } 7662 7663 void io_schedule_finish(int token) 7664 { 7665 current->in_iowait = token; 7666 } 7667 7668 /* 7669 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7670 * that process accounting knows that this is a task in IO wait state. 7671 */ 7672 long __sched io_schedule_timeout(long timeout) 7673 { 7674 int token; 7675 long ret; 7676 7677 token = io_schedule_prepare(); 7678 ret = schedule_timeout(timeout); 7679 io_schedule_finish(token); 7680 7681 return ret; 7682 } 7683 EXPORT_SYMBOL(io_schedule_timeout); 7684 7685 void __sched io_schedule(void) 7686 { 7687 int token; 7688 7689 token = io_schedule_prepare(); 7690 schedule(); 7691 io_schedule_finish(token); 7692 } 7693 EXPORT_SYMBOL(io_schedule); 7694 7695 void sched_show_task(struct task_struct *p) 7696 { 7697 unsigned long free; 7698 int ppid; 7699 7700 if (!try_get_task_stack(p)) 7701 return; 7702 7703 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7704 7705 if (task_is_running(p)) 7706 pr_cont(" running task "); 7707 free = stack_not_used(p); 7708 ppid = 0; 7709 rcu_read_lock(); 7710 if (pid_alive(p)) 7711 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7712 rcu_read_unlock(); 7713 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n", 7714 free, task_pid_nr(p), task_tgid_nr(p), 7715 ppid, p->flags, read_task_thread_flags(p)); 7716 7717 print_worker_info(KERN_INFO, p); 7718 print_stop_info(KERN_INFO, p); 7719 print_scx_info(KERN_INFO, p); 7720 show_stack(p, NULL, KERN_INFO); 7721 put_task_stack(p); 7722 } 7723 EXPORT_SYMBOL_GPL(sched_show_task); 7724 7725 static inline bool 7726 state_filter_match(unsigned long state_filter, struct task_struct *p) 7727 { 7728 unsigned int state = READ_ONCE(p->__state); 7729 7730 /* no filter, everything matches */ 7731 if (!state_filter) 7732 return true; 7733 7734 /* filter, but doesn't match */ 7735 if (!(state & state_filter)) 7736 return false; 7737 7738 /* 7739 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7740 * TASK_KILLABLE). 7741 */ 7742 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 7743 return false; 7744 7745 return true; 7746 } 7747 7748 7749 void show_state_filter(unsigned int state_filter) 7750 { 7751 struct task_struct *g, *p; 7752 7753 rcu_read_lock(); 7754 for_each_process_thread(g, p) { 7755 /* 7756 * reset the NMI-timeout, listing all files on a slow 7757 * console might take a lot of time: 7758 * Also, reset softlockup watchdogs on all CPUs, because 7759 * another CPU might be blocked waiting for us to process 7760 * an IPI. 7761 */ 7762 touch_nmi_watchdog(); 7763 touch_all_softlockup_watchdogs(); 7764 if (state_filter_match(state_filter, p)) 7765 sched_show_task(p); 7766 } 7767 7768 #ifdef CONFIG_SCHED_DEBUG 7769 if (!state_filter) 7770 sysrq_sched_debug_show(); 7771 #endif 7772 rcu_read_unlock(); 7773 /* 7774 * Only show locks if all tasks are dumped: 7775 */ 7776 if (!state_filter) 7777 debug_show_all_locks(); 7778 } 7779 7780 /** 7781 * init_idle - set up an idle thread for a given CPU 7782 * @idle: task in question 7783 * @cpu: CPU the idle task belongs to 7784 * 7785 * NOTE: this function does not set the idle thread's NEED_RESCHED 7786 * flag, to make booting more robust. 7787 */ 7788 void __init init_idle(struct task_struct *idle, int cpu) 7789 { 7790 #ifdef CONFIG_SMP 7791 struct affinity_context ac = (struct affinity_context) { 7792 .new_mask = cpumask_of(cpu), 7793 .flags = 0, 7794 }; 7795 #endif 7796 struct rq *rq = cpu_rq(cpu); 7797 unsigned long flags; 7798 7799 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7800 raw_spin_rq_lock(rq); 7801 7802 idle->__state = TASK_RUNNING; 7803 idle->se.exec_start = sched_clock(); 7804 /* 7805 * PF_KTHREAD should already be set at this point; regardless, make it 7806 * look like a proper per-CPU kthread. 7807 */ 7808 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 7809 kthread_set_per_cpu(idle, cpu); 7810 7811 #ifdef CONFIG_SMP 7812 /* 7813 * No validation and serialization required at boot time and for 7814 * setting up the idle tasks of not yet online CPUs. 7815 */ 7816 set_cpus_allowed_common(idle, &ac); 7817 #endif 7818 /* 7819 * We're having a chicken and egg problem, even though we are 7820 * holding rq->lock, the CPU isn't yet set to this CPU so the 7821 * lockdep check in task_group() will fail. 7822 * 7823 * Similar case to sched_fork(). / Alternatively we could 7824 * use task_rq_lock() here and obtain the other rq->lock. 7825 * 7826 * Silence PROVE_RCU 7827 */ 7828 rcu_read_lock(); 7829 __set_task_cpu(idle, cpu); 7830 rcu_read_unlock(); 7831 7832 rq->idle = idle; 7833 rq_set_donor(rq, idle); 7834 rcu_assign_pointer(rq->curr, idle); 7835 idle->on_rq = TASK_ON_RQ_QUEUED; 7836 #ifdef CONFIG_SMP 7837 idle->on_cpu = 1; 7838 #endif 7839 raw_spin_rq_unlock(rq); 7840 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7841 7842 /* Set the preempt count _outside_ the spinlocks! */ 7843 init_idle_preempt_count(idle, cpu); 7844 7845 /* 7846 * The idle tasks have their own, simple scheduling class: 7847 */ 7848 idle->sched_class = &idle_sched_class; 7849 ftrace_graph_init_idle_task(idle, cpu); 7850 vtime_init_idle(idle, cpu); 7851 #ifdef CONFIG_SMP 7852 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7853 #endif 7854 } 7855 7856 #ifdef CONFIG_SMP 7857 7858 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7859 const struct cpumask *trial) 7860 { 7861 int ret = 1; 7862 7863 if (cpumask_empty(cur)) 7864 return ret; 7865 7866 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7867 7868 return ret; 7869 } 7870 7871 int task_can_attach(struct task_struct *p) 7872 { 7873 int ret = 0; 7874 7875 /* 7876 * Kthreads which disallow setaffinity shouldn't be moved 7877 * to a new cpuset; we don't want to change their CPU 7878 * affinity and isolating such threads by their set of 7879 * allowed nodes is unnecessary. Thus, cpusets are not 7880 * applicable for such threads. This prevents checking for 7881 * success of set_cpus_allowed_ptr() on all attached tasks 7882 * before cpus_mask may be changed. 7883 */ 7884 if (p->flags & PF_NO_SETAFFINITY) 7885 ret = -EINVAL; 7886 7887 return ret; 7888 } 7889 7890 bool sched_smp_initialized __read_mostly; 7891 7892 #ifdef CONFIG_NUMA_BALANCING 7893 /* Migrate current task p to target_cpu */ 7894 int migrate_task_to(struct task_struct *p, int target_cpu) 7895 { 7896 struct migration_arg arg = { p, target_cpu }; 7897 int curr_cpu = task_cpu(p); 7898 7899 if (curr_cpu == target_cpu) 7900 return 0; 7901 7902 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7903 return -EINVAL; 7904 7905 /* TODO: This is not properly updating schedstats */ 7906 7907 trace_sched_move_numa(p, curr_cpu, target_cpu); 7908 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7909 } 7910 7911 /* 7912 * Requeue a task on a given node and accurately track the number of NUMA 7913 * tasks on the runqueues 7914 */ 7915 void sched_setnuma(struct task_struct *p, int nid) 7916 { 7917 bool queued, running; 7918 struct rq_flags rf; 7919 struct rq *rq; 7920 7921 rq = task_rq_lock(p, &rf); 7922 queued = task_on_rq_queued(p); 7923 running = task_current_donor(rq, p); 7924 7925 if (queued) 7926 dequeue_task(rq, p, DEQUEUE_SAVE); 7927 if (running) 7928 put_prev_task(rq, p); 7929 7930 p->numa_preferred_nid = nid; 7931 7932 if (queued) 7933 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7934 if (running) 7935 set_next_task(rq, p); 7936 task_rq_unlock(rq, p, &rf); 7937 } 7938 #endif /* CONFIG_NUMA_BALANCING */ 7939 7940 #ifdef CONFIG_HOTPLUG_CPU 7941 /* 7942 * Invoked on the outgoing CPU in context of the CPU hotplug thread 7943 * after ensuring that there are no user space tasks left on the CPU. 7944 * 7945 * If there is a lazy mm in use on the hotplug thread, drop it and 7946 * switch to init_mm. 7947 * 7948 * The reference count on init_mm is dropped in finish_cpu(). 7949 */ 7950 static void sched_force_init_mm(void) 7951 { 7952 struct mm_struct *mm = current->active_mm; 7953 7954 if (mm != &init_mm) { 7955 mmgrab_lazy_tlb(&init_mm); 7956 local_irq_disable(); 7957 current->active_mm = &init_mm; 7958 switch_mm_irqs_off(mm, &init_mm, current); 7959 local_irq_enable(); 7960 finish_arch_post_lock_switch(); 7961 mmdrop_lazy_tlb(mm); 7962 } 7963 7964 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 7965 } 7966 7967 static int __balance_push_cpu_stop(void *arg) 7968 { 7969 struct task_struct *p = arg; 7970 struct rq *rq = this_rq(); 7971 struct rq_flags rf; 7972 int cpu; 7973 7974 raw_spin_lock_irq(&p->pi_lock); 7975 rq_lock(rq, &rf); 7976 7977 update_rq_clock(rq); 7978 7979 if (task_rq(p) == rq && task_on_rq_queued(p)) { 7980 cpu = select_fallback_rq(rq->cpu, p); 7981 rq = __migrate_task(rq, &rf, p, cpu); 7982 } 7983 7984 rq_unlock(rq, &rf); 7985 raw_spin_unlock_irq(&p->pi_lock); 7986 7987 put_task_struct(p); 7988 7989 return 0; 7990 } 7991 7992 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 7993 7994 /* 7995 * Ensure we only run per-cpu kthreads once the CPU goes !active. 7996 * 7997 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 7998 * effective when the hotplug motion is down. 7999 */ 8000 static void balance_push(struct rq *rq) 8001 { 8002 struct task_struct *push_task = rq->curr; 8003 8004 lockdep_assert_rq_held(rq); 8005 8006 /* 8007 * Ensure the thing is persistent until balance_push_set(.on = false); 8008 */ 8009 rq->balance_callback = &balance_push_callback; 8010 8011 /* 8012 * Only active while going offline and when invoked on the outgoing 8013 * CPU. 8014 */ 8015 if (!cpu_dying(rq->cpu) || rq != this_rq()) 8016 return; 8017 8018 /* 8019 * Both the cpu-hotplug and stop task are in this case and are 8020 * required to complete the hotplug process. 8021 */ 8022 if (kthread_is_per_cpu(push_task) || 8023 is_migration_disabled(push_task)) { 8024 8025 /* 8026 * If this is the idle task on the outgoing CPU try to wake 8027 * up the hotplug control thread which might wait for the 8028 * last task to vanish. The rcuwait_active() check is 8029 * accurate here because the waiter is pinned on this CPU 8030 * and can't obviously be running in parallel. 8031 * 8032 * On RT kernels this also has to check whether there are 8033 * pinned and scheduled out tasks on the runqueue. They 8034 * need to leave the migrate disabled section first. 8035 */ 8036 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 8037 rcuwait_active(&rq->hotplug_wait)) { 8038 raw_spin_rq_unlock(rq); 8039 rcuwait_wake_up(&rq->hotplug_wait); 8040 raw_spin_rq_lock(rq); 8041 } 8042 return; 8043 } 8044 8045 get_task_struct(push_task); 8046 /* 8047 * Temporarily drop rq->lock such that we can wake-up the stop task. 8048 * Both preemption and IRQs are still disabled. 8049 */ 8050 preempt_disable(); 8051 raw_spin_rq_unlock(rq); 8052 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 8053 this_cpu_ptr(&push_work)); 8054 preempt_enable(); 8055 /* 8056 * At this point need_resched() is true and we'll take the loop in 8057 * schedule(). The next pick is obviously going to be the stop task 8058 * which kthread_is_per_cpu() and will push this task away. 8059 */ 8060 raw_spin_rq_lock(rq); 8061 } 8062 8063 static void balance_push_set(int cpu, bool on) 8064 { 8065 struct rq *rq = cpu_rq(cpu); 8066 struct rq_flags rf; 8067 8068 rq_lock_irqsave(rq, &rf); 8069 if (on) { 8070 WARN_ON_ONCE(rq->balance_callback); 8071 rq->balance_callback = &balance_push_callback; 8072 } else if (rq->balance_callback == &balance_push_callback) { 8073 rq->balance_callback = NULL; 8074 } 8075 rq_unlock_irqrestore(rq, &rf); 8076 } 8077 8078 /* 8079 * Invoked from a CPUs hotplug control thread after the CPU has been marked 8080 * inactive. All tasks which are not per CPU kernel threads are either 8081 * pushed off this CPU now via balance_push() or placed on a different CPU 8082 * during wakeup. Wait until the CPU is quiescent. 8083 */ 8084 static void balance_hotplug_wait(void) 8085 { 8086 struct rq *rq = this_rq(); 8087 8088 rcuwait_wait_event(&rq->hotplug_wait, 8089 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 8090 TASK_UNINTERRUPTIBLE); 8091 } 8092 8093 #else 8094 8095 static inline void balance_push(struct rq *rq) 8096 { 8097 } 8098 8099 static inline void balance_push_set(int cpu, bool on) 8100 { 8101 } 8102 8103 static inline void balance_hotplug_wait(void) 8104 { 8105 } 8106 8107 #endif /* CONFIG_HOTPLUG_CPU */ 8108 8109 void set_rq_online(struct rq *rq) 8110 { 8111 if (!rq->online) { 8112 const struct sched_class *class; 8113 8114 cpumask_set_cpu(rq->cpu, rq->rd->online); 8115 rq->online = 1; 8116 8117 for_each_class(class) { 8118 if (class->rq_online) 8119 class->rq_online(rq); 8120 } 8121 } 8122 } 8123 8124 void set_rq_offline(struct rq *rq) 8125 { 8126 if (rq->online) { 8127 const struct sched_class *class; 8128 8129 update_rq_clock(rq); 8130 for_each_class(class) { 8131 if (class->rq_offline) 8132 class->rq_offline(rq); 8133 } 8134 8135 cpumask_clear_cpu(rq->cpu, rq->rd->online); 8136 rq->online = 0; 8137 } 8138 } 8139 8140 static inline void sched_set_rq_online(struct rq *rq, int cpu) 8141 { 8142 struct rq_flags rf; 8143 8144 rq_lock_irqsave(rq, &rf); 8145 if (rq->rd) { 8146 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8147 set_rq_online(rq); 8148 } 8149 rq_unlock_irqrestore(rq, &rf); 8150 } 8151 8152 static inline void sched_set_rq_offline(struct rq *rq, int cpu) 8153 { 8154 struct rq_flags rf; 8155 8156 rq_lock_irqsave(rq, &rf); 8157 if (rq->rd) { 8158 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8159 set_rq_offline(rq); 8160 } 8161 rq_unlock_irqrestore(rq, &rf); 8162 } 8163 8164 /* 8165 * used to mark begin/end of suspend/resume: 8166 */ 8167 static int num_cpus_frozen; 8168 8169 /* 8170 * Update cpusets according to cpu_active mask. If cpusets are 8171 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 8172 * around partition_sched_domains(). 8173 * 8174 * If we come here as part of a suspend/resume, don't touch cpusets because we 8175 * want to restore it back to its original state upon resume anyway. 8176 */ 8177 static void cpuset_cpu_active(void) 8178 { 8179 if (cpuhp_tasks_frozen) { 8180 /* 8181 * num_cpus_frozen tracks how many CPUs are involved in suspend 8182 * resume sequence. As long as this is not the last online 8183 * operation in the resume sequence, just build a single sched 8184 * domain, ignoring cpusets. 8185 */ 8186 partition_sched_domains(1, NULL, NULL); 8187 if (--num_cpus_frozen) 8188 return; 8189 /* 8190 * This is the last CPU online operation. So fall through and 8191 * restore the original sched domains by considering the 8192 * cpuset configurations. 8193 */ 8194 cpuset_force_rebuild(); 8195 } 8196 cpuset_update_active_cpus(); 8197 } 8198 8199 static void cpuset_cpu_inactive(unsigned int cpu) 8200 { 8201 if (!cpuhp_tasks_frozen) { 8202 cpuset_update_active_cpus(); 8203 } else { 8204 num_cpus_frozen++; 8205 partition_sched_domains(1, NULL, NULL); 8206 } 8207 } 8208 8209 static inline void sched_smt_present_inc(int cpu) 8210 { 8211 #ifdef CONFIG_SCHED_SMT 8212 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8213 static_branch_inc_cpuslocked(&sched_smt_present); 8214 #endif 8215 } 8216 8217 static inline void sched_smt_present_dec(int cpu) 8218 { 8219 #ifdef CONFIG_SCHED_SMT 8220 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8221 static_branch_dec_cpuslocked(&sched_smt_present); 8222 #endif 8223 } 8224 8225 int sched_cpu_activate(unsigned int cpu) 8226 { 8227 struct rq *rq = cpu_rq(cpu); 8228 8229 /* 8230 * Clear the balance_push callback and prepare to schedule 8231 * regular tasks. 8232 */ 8233 balance_push_set(cpu, false); 8234 8235 /* 8236 * When going up, increment the number of cores with SMT present. 8237 */ 8238 sched_smt_present_inc(cpu); 8239 set_cpu_active(cpu, true); 8240 8241 if (sched_smp_initialized) { 8242 sched_update_numa(cpu, true); 8243 sched_domains_numa_masks_set(cpu); 8244 cpuset_cpu_active(); 8245 } 8246 8247 scx_rq_activate(rq); 8248 8249 /* 8250 * Put the rq online, if not already. This happens: 8251 * 8252 * 1) In the early boot process, because we build the real domains 8253 * after all CPUs have been brought up. 8254 * 8255 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 8256 * domains. 8257 */ 8258 sched_set_rq_online(rq, cpu); 8259 8260 return 0; 8261 } 8262 8263 int sched_cpu_deactivate(unsigned int cpu) 8264 { 8265 struct rq *rq = cpu_rq(cpu); 8266 int ret; 8267 8268 ret = dl_bw_deactivate(cpu); 8269 8270 if (ret) 8271 return ret; 8272 8273 /* 8274 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 8275 * load balancing when not active 8276 */ 8277 nohz_balance_exit_idle(rq); 8278 8279 set_cpu_active(cpu, false); 8280 8281 /* 8282 * From this point forward, this CPU will refuse to run any task that 8283 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8284 * push those tasks away until this gets cleared, see 8285 * sched_cpu_dying(). 8286 */ 8287 balance_push_set(cpu, true); 8288 8289 /* 8290 * We've cleared cpu_active_mask / set balance_push, wait for all 8291 * preempt-disabled and RCU users of this state to go away such that 8292 * all new such users will observe it. 8293 * 8294 * Specifically, we rely on ttwu to no longer target this CPU, see 8295 * ttwu_queue_cond() and is_cpu_allowed(). 8296 * 8297 * Do sync before park smpboot threads to take care the RCU boost case. 8298 */ 8299 synchronize_rcu(); 8300 8301 sched_set_rq_offline(rq, cpu); 8302 8303 scx_rq_deactivate(rq); 8304 8305 /* 8306 * When going down, decrement the number of cores with SMT present. 8307 */ 8308 sched_smt_present_dec(cpu); 8309 8310 #ifdef CONFIG_SCHED_SMT 8311 sched_core_cpu_deactivate(cpu); 8312 #endif 8313 8314 if (!sched_smp_initialized) 8315 return 0; 8316 8317 sched_update_numa(cpu, false); 8318 cpuset_cpu_inactive(cpu); 8319 sched_domains_numa_masks_clear(cpu); 8320 return 0; 8321 } 8322 8323 static void sched_rq_cpu_starting(unsigned int cpu) 8324 { 8325 struct rq *rq = cpu_rq(cpu); 8326 8327 rq->calc_load_update = calc_load_update; 8328 update_max_interval(); 8329 } 8330 8331 int sched_cpu_starting(unsigned int cpu) 8332 { 8333 sched_core_cpu_starting(cpu); 8334 sched_rq_cpu_starting(cpu); 8335 sched_tick_start(cpu); 8336 return 0; 8337 } 8338 8339 #ifdef CONFIG_HOTPLUG_CPU 8340 8341 /* 8342 * Invoked immediately before the stopper thread is invoked to bring the 8343 * CPU down completely. At this point all per CPU kthreads except the 8344 * hotplug thread (current) and the stopper thread (inactive) have been 8345 * either parked or have been unbound from the outgoing CPU. Ensure that 8346 * any of those which might be on the way out are gone. 8347 * 8348 * If after this point a bound task is being woken on this CPU then the 8349 * responsible hotplug callback has failed to do it's job. 8350 * sched_cpu_dying() will catch it with the appropriate fireworks. 8351 */ 8352 int sched_cpu_wait_empty(unsigned int cpu) 8353 { 8354 balance_hotplug_wait(); 8355 sched_force_init_mm(); 8356 return 0; 8357 } 8358 8359 /* 8360 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8361 * might have. Called from the CPU stopper task after ensuring that the 8362 * stopper is the last running task on the CPU, so nr_active count is 8363 * stable. We need to take the tear-down thread which is calling this into 8364 * account, so we hand in adjust = 1 to the load calculation. 8365 * 8366 * Also see the comment "Global load-average calculations". 8367 */ 8368 static void calc_load_migrate(struct rq *rq) 8369 { 8370 long delta = calc_load_fold_active(rq, 1); 8371 8372 if (delta) 8373 atomic_long_add(delta, &calc_load_tasks); 8374 } 8375 8376 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8377 { 8378 struct task_struct *g, *p; 8379 int cpu = cpu_of(rq); 8380 8381 lockdep_assert_rq_held(rq); 8382 8383 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8384 for_each_process_thread(g, p) { 8385 if (task_cpu(p) != cpu) 8386 continue; 8387 8388 if (!task_on_rq_queued(p)) 8389 continue; 8390 8391 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8392 } 8393 } 8394 8395 int sched_cpu_dying(unsigned int cpu) 8396 { 8397 struct rq *rq = cpu_rq(cpu); 8398 struct rq_flags rf; 8399 8400 /* Handle pending wakeups and then migrate everything off */ 8401 sched_tick_stop(cpu); 8402 8403 rq_lock_irqsave(rq, &rf); 8404 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8405 WARN(true, "Dying CPU not properly vacated!"); 8406 dump_rq_tasks(rq, KERN_WARNING); 8407 } 8408 rq_unlock_irqrestore(rq, &rf); 8409 8410 calc_load_migrate(rq); 8411 update_max_interval(); 8412 hrtick_clear(rq); 8413 sched_core_cpu_dying(cpu); 8414 return 0; 8415 } 8416 #endif 8417 8418 void __init sched_init_smp(void) 8419 { 8420 sched_init_numa(NUMA_NO_NODE); 8421 8422 /* 8423 * There's no userspace yet to cause hotplug operations; hence all the 8424 * CPU masks are stable and all blatant races in the below code cannot 8425 * happen. 8426 */ 8427 mutex_lock(&sched_domains_mutex); 8428 sched_init_domains(cpu_active_mask); 8429 mutex_unlock(&sched_domains_mutex); 8430 8431 /* Move init over to a non-isolated CPU */ 8432 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 8433 BUG(); 8434 current->flags &= ~PF_NO_SETAFFINITY; 8435 sched_init_granularity(); 8436 8437 init_sched_rt_class(); 8438 init_sched_dl_class(); 8439 8440 sched_smp_initialized = true; 8441 } 8442 8443 static int __init migration_init(void) 8444 { 8445 sched_cpu_starting(smp_processor_id()); 8446 return 0; 8447 } 8448 early_initcall(migration_init); 8449 8450 #else 8451 void __init sched_init_smp(void) 8452 { 8453 sched_init_granularity(); 8454 } 8455 #endif /* CONFIG_SMP */ 8456 8457 int in_sched_functions(unsigned long addr) 8458 { 8459 return in_lock_functions(addr) || 8460 (addr >= (unsigned long)__sched_text_start 8461 && addr < (unsigned long)__sched_text_end); 8462 } 8463 8464 #ifdef CONFIG_CGROUP_SCHED 8465 /* 8466 * Default task group. 8467 * Every task in system belongs to this group at bootup. 8468 */ 8469 struct task_group root_task_group; 8470 LIST_HEAD(task_groups); 8471 8472 /* Cacheline aligned slab cache for task_group */ 8473 static struct kmem_cache *task_group_cache __ro_after_init; 8474 #endif 8475 8476 void __init sched_init(void) 8477 { 8478 unsigned long ptr = 0; 8479 int i; 8480 8481 /* Make sure the linker didn't screw up */ 8482 #ifdef CONFIG_SMP 8483 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); 8484 #endif 8485 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); 8486 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); 8487 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); 8488 #ifdef CONFIG_SCHED_CLASS_EXT 8489 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); 8490 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); 8491 #endif 8492 8493 wait_bit_init(); 8494 8495 #ifdef CONFIG_FAIR_GROUP_SCHED 8496 ptr += 2 * nr_cpu_ids * sizeof(void **); 8497 #endif 8498 #ifdef CONFIG_RT_GROUP_SCHED 8499 ptr += 2 * nr_cpu_ids * sizeof(void **); 8500 #endif 8501 if (ptr) { 8502 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8503 8504 #ifdef CONFIG_FAIR_GROUP_SCHED 8505 root_task_group.se = (struct sched_entity **)ptr; 8506 ptr += nr_cpu_ids * sizeof(void **); 8507 8508 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8509 ptr += nr_cpu_ids * sizeof(void **); 8510 8511 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8512 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 8513 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8514 #ifdef CONFIG_EXT_GROUP_SCHED 8515 root_task_group.scx_weight = CGROUP_WEIGHT_DFL; 8516 #endif /* CONFIG_EXT_GROUP_SCHED */ 8517 #ifdef CONFIG_RT_GROUP_SCHED 8518 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8519 ptr += nr_cpu_ids * sizeof(void **); 8520 8521 root_task_group.rt_rq = (struct rt_rq **)ptr; 8522 ptr += nr_cpu_ids * sizeof(void **); 8523 8524 #endif /* CONFIG_RT_GROUP_SCHED */ 8525 } 8526 8527 #ifdef CONFIG_SMP 8528 init_defrootdomain(); 8529 #endif 8530 8531 #ifdef CONFIG_RT_GROUP_SCHED 8532 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8533 global_rt_period(), global_rt_runtime()); 8534 #endif /* CONFIG_RT_GROUP_SCHED */ 8535 8536 #ifdef CONFIG_CGROUP_SCHED 8537 task_group_cache = KMEM_CACHE(task_group, 0); 8538 8539 list_add(&root_task_group.list, &task_groups); 8540 INIT_LIST_HEAD(&root_task_group.children); 8541 INIT_LIST_HEAD(&root_task_group.siblings); 8542 autogroup_init(&init_task); 8543 #endif /* CONFIG_CGROUP_SCHED */ 8544 8545 for_each_possible_cpu(i) { 8546 struct rq *rq; 8547 8548 rq = cpu_rq(i); 8549 raw_spin_lock_init(&rq->__lock); 8550 rq->nr_running = 0; 8551 rq->calc_load_active = 0; 8552 rq->calc_load_update = jiffies + LOAD_FREQ; 8553 init_cfs_rq(&rq->cfs); 8554 init_rt_rq(&rq->rt); 8555 init_dl_rq(&rq->dl); 8556 #ifdef CONFIG_FAIR_GROUP_SCHED 8557 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8558 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8559 /* 8560 * How much CPU bandwidth does root_task_group get? 8561 * 8562 * In case of task-groups formed through the cgroup filesystem, it 8563 * gets 100% of the CPU resources in the system. This overall 8564 * system CPU resource is divided among the tasks of 8565 * root_task_group and its child task-groups in a fair manner, 8566 * based on each entity's (task or task-group's) weight 8567 * (se->load.weight). 8568 * 8569 * In other words, if root_task_group has 10 tasks of weight 8570 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8571 * then A0's share of the CPU resource is: 8572 * 8573 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8574 * 8575 * We achieve this by letting root_task_group's tasks sit 8576 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8577 */ 8578 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8579 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8580 8581 #ifdef CONFIG_RT_GROUP_SCHED 8582 /* 8583 * This is required for init cpu because rt.c:__enable_runtime() 8584 * starts working after scheduler_running, which is not the case 8585 * yet. 8586 */ 8587 rq->rt.rt_runtime = global_rt_runtime(); 8588 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8589 #endif 8590 #ifdef CONFIG_SMP 8591 rq->sd = NULL; 8592 rq->rd = NULL; 8593 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 8594 rq->balance_callback = &balance_push_callback; 8595 rq->active_balance = 0; 8596 rq->next_balance = jiffies; 8597 rq->push_cpu = 0; 8598 rq->cpu = i; 8599 rq->online = 0; 8600 rq->idle_stamp = 0; 8601 rq->avg_idle = 2*sysctl_sched_migration_cost; 8602 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8603 8604 INIT_LIST_HEAD(&rq->cfs_tasks); 8605 8606 rq_attach_root(rq, &def_root_domain); 8607 #ifdef CONFIG_NO_HZ_COMMON 8608 rq->last_blocked_load_update_tick = jiffies; 8609 atomic_set(&rq->nohz_flags, 0); 8610 8611 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8612 #endif 8613 #ifdef CONFIG_HOTPLUG_CPU 8614 rcuwait_init(&rq->hotplug_wait); 8615 #endif 8616 #endif /* CONFIG_SMP */ 8617 hrtick_rq_init(rq); 8618 atomic_set(&rq->nr_iowait, 0); 8619 fair_server_init(rq); 8620 8621 #ifdef CONFIG_SCHED_CORE 8622 rq->core = rq; 8623 rq->core_pick = NULL; 8624 rq->core_dl_server = NULL; 8625 rq->core_enabled = 0; 8626 rq->core_tree = RB_ROOT; 8627 rq->core_forceidle_count = 0; 8628 rq->core_forceidle_occupation = 0; 8629 rq->core_forceidle_start = 0; 8630 8631 rq->core_cookie = 0UL; 8632 #endif 8633 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 8634 } 8635 8636 set_load_weight(&init_task, false); 8637 init_task.se.slice = sysctl_sched_base_slice, 8638 8639 /* 8640 * The boot idle thread does lazy MMU switching as well: 8641 */ 8642 mmgrab_lazy_tlb(&init_mm); 8643 enter_lazy_tlb(&init_mm, current); 8644 8645 /* 8646 * The idle task doesn't need the kthread struct to function, but it 8647 * is dressed up as a per-CPU kthread and thus needs to play the part 8648 * if we want to avoid special-casing it in code that deals with per-CPU 8649 * kthreads. 8650 */ 8651 WARN_ON(!set_kthread_struct(current)); 8652 8653 /* 8654 * Make us the idle thread. Technically, schedule() should not be 8655 * called from this thread, however somewhere below it might be, 8656 * but because we are the idle thread, we just pick up running again 8657 * when this runqueue becomes "idle". 8658 */ 8659 __sched_fork(0, current); 8660 init_idle(current, smp_processor_id()); 8661 8662 calc_load_update = jiffies + LOAD_FREQ; 8663 8664 #ifdef CONFIG_SMP 8665 idle_thread_set_boot_cpu(); 8666 balance_push_set(smp_processor_id(), false); 8667 #endif 8668 init_sched_fair_class(); 8669 init_sched_ext_class(); 8670 8671 psi_init(); 8672 8673 init_uclamp(); 8674 8675 preempt_dynamic_init(); 8676 8677 scheduler_running = 1; 8678 } 8679 8680 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8681 8682 void __might_sleep(const char *file, int line) 8683 { 8684 unsigned int state = get_current_state(); 8685 /* 8686 * Blocking primitives will set (and therefore destroy) current->state, 8687 * since we will exit with TASK_RUNNING make sure we enter with it, 8688 * otherwise we will destroy state. 8689 */ 8690 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 8691 "do not call blocking ops when !TASK_RUNNING; " 8692 "state=%x set at [<%p>] %pS\n", state, 8693 (void *)current->task_state_change, 8694 (void *)current->task_state_change); 8695 8696 __might_resched(file, line, 0); 8697 } 8698 EXPORT_SYMBOL(__might_sleep); 8699 8700 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 8701 { 8702 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 8703 return; 8704 8705 if (preempt_count() == preempt_offset) 8706 return; 8707 8708 pr_err("Preemption disabled at:"); 8709 print_ip_sym(KERN_ERR, ip); 8710 } 8711 8712 static inline bool resched_offsets_ok(unsigned int offsets) 8713 { 8714 unsigned int nested = preempt_count(); 8715 8716 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 8717 8718 return nested == offsets; 8719 } 8720 8721 void __might_resched(const char *file, int line, unsigned int offsets) 8722 { 8723 /* Ratelimiting timestamp: */ 8724 static unsigned long prev_jiffy; 8725 8726 unsigned long preempt_disable_ip; 8727 8728 /* WARN_ON_ONCE() by default, no rate limit required: */ 8729 rcu_sleep_check(); 8730 8731 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 8732 !is_idle_task(current) && !current->non_block_count) || 8733 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8734 oops_in_progress) 8735 return; 8736 8737 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8738 return; 8739 prev_jiffy = jiffies; 8740 8741 /* Save this before calling printk(), since that will clobber it: */ 8742 preempt_disable_ip = get_preempt_disable_ip(current); 8743 8744 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 8745 file, line); 8746 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8747 in_atomic(), irqs_disabled(), current->non_block_count, 8748 current->pid, current->comm); 8749 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 8750 offsets & MIGHT_RESCHED_PREEMPT_MASK); 8751 8752 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 8753 pr_err("RCU nest depth: %d, expected: %u\n", 8754 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 8755 } 8756 8757 if (task_stack_end_corrupted(current)) 8758 pr_emerg("Thread overran stack, or stack corrupted\n"); 8759 8760 debug_show_held_locks(current); 8761 if (irqs_disabled()) 8762 print_irqtrace_events(current); 8763 8764 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 8765 preempt_disable_ip); 8766 8767 dump_stack(); 8768 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8769 } 8770 EXPORT_SYMBOL(__might_resched); 8771 8772 void __cant_sleep(const char *file, int line, int preempt_offset) 8773 { 8774 static unsigned long prev_jiffy; 8775 8776 if (irqs_disabled()) 8777 return; 8778 8779 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8780 return; 8781 8782 if (preempt_count() > preempt_offset) 8783 return; 8784 8785 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8786 return; 8787 prev_jiffy = jiffies; 8788 8789 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8790 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8791 in_atomic(), irqs_disabled(), 8792 current->pid, current->comm); 8793 8794 debug_show_held_locks(current); 8795 dump_stack(); 8796 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8797 } 8798 EXPORT_SYMBOL_GPL(__cant_sleep); 8799 8800 #ifdef CONFIG_SMP 8801 void __cant_migrate(const char *file, int line) 8802 { 8803 static unsigned long prev_jiffy; 8804 8805 if (irqs_disabled()) 8806 return; 8807 8808 if (is_migration_disabled(current)) 8809 return; 8810 8811 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8812 return; 8813 8814 if (preempt_count() > 0) 8815 return; 8816 8817 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8818 return; 8819 prev_jiffy = jiffies; 8820 8821 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8822 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8823 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8824 current->pid, current->comm); 8825 8826 debug_show_held_locks(current); 8827 dump_stack(); 8828 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8829 } 8830 EXPORT_SYMBOL_GPL(__cant_migrate); 8831 #endif 8832 #endif 8833 8834 #ifdef CONFIG_MAGIC_SYSRQ 8835 void normalize_rt_tasks(void) 8836 { 8837 struct task_struct *g, *p; 8838 struct sched_attr attr = { 8839 .sched_policy = SCHED_NORMAL, 8840 }; 8841 8842 read_lock(&tasklist_lock); 8843 for_each_process_thread(g, p) { 8844 /* 8845 * Only normalize user tasks: 8846 */ 8847 if (p->flags & PF_KTHREAD) 8848 continue; 8849 8850 p->se.exec_start = 0; 8851 schedstat_set(p->stats.wait_start, 0); 8852 schedstat_set(p->stats.sleep_start, 0); 8853 schedstat_set(p->stats.block_start, 0); 8854 8855 if (!rt_or_dl_task(p)) { 8856 /* 8857 * Renice negative nice level userspace 8858 * tasks back to 0: 8859 */ 8860 if (task_nice(p) < 0) 8861 set_user_nice(p, 0); 8862 continue; 8863 } 8864 8865 __sched_setscheduler(p, &attr, false, false); 8866 } 8867 read_unlock(&tasklist_lock); 8868 } 8869 8870 #endif /* CONFIG_MAGIC_SYSRQ */ 8871 8872 #if defined(CONFIG_KGDB_KDB) 8873 /* 8874 * These functions are only useful for KDB. 8875 * 8876 * They can only be called when the whole system has been 8877 * stopped - every CPU needs to be quiescent, and no scheduling 8878 * activity can take place. Using them for anything else would 8879 * be a serious bug, and as a result, they aren't even visible 8880 * under any other configuration. 8881 */ 8882 8883 /** 8884 * curr_task - return the current task for a given CPU. 8885 * @cpu: the processor in question. 8886 * 8887 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8888 * 8889 * Return: The current task for @cpu. 8890 */ 8891 struct task_struct *curr_task(int cpu) 8892 { 8893 return cpu_curr(cpu); 8894 } 8895 8896 #endif /* defined(CONFIG_KGDB_KDB) */ 8897 8898 #ifdef CONFIG_CGROUP_SCHED 8899 /* task_group_lock serializes the addition/removal of task groups */ 8900 static DEFINE_SPINLOCK(task_group_lock); 8901 8902 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8903 struct task_group *parent) 8904 { 8905 #ifdef CONFIG_UCLAMP_TASK_GROUP 8906 enum uclamp_id clamp_id; 8907 8908 for_each_clamp_id(clamp_id) { 8909 uclamp_se_set(&tg->uclamp_req[clamp_id], 8910 uclamp_none(clamp_id), false); 8911 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8912 } 8913 #endif 8914 } 8915 8916 static void sched_free_group(struct task_group *tg) 8917 { 8918 free_fair_sched_group(tg); 8919 free_rt_sched_group(tg); 8920 autogroup_free(tg); 8921 kmem_cache_free(task_group_cache, tg); 8922 } 8923 8924 static void sched_free_group_rcu(struct rcu_head *rcu) 8925 { 8926 sched_free_group(container_of(rcu, struct task_group, rcu)); 8927 } 8928 8929 static void sched_unregister_group(struct task_group *tg) 8930 { 8931 unregister_fair_sched_group(tg); 8932 unregister_rt_sched_group(tg); 8933 /* 8934 * We have to wait for yet another RCU grace period to expire, as 8935 * print_cfs_stats() might run concurrently. 8936 */ 8937 call_rcu(&tg->rcu, sched_free_group_rcu); 8938 } 8939 8940 /* allocate runqueue etc for a new task group */ 8941 struct task_group *sched_create_group(struct task_group *parent) 8942 { 8943 struct task_group *tg; 8944 8945 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 8946 if (!tg) 8947 return ERR_PTR(-ENOMEM); 8948 8949 if (!alloc_fair_sched_group(tg, parent)) 8950 goto err; 8951 8952 if (!alloc_rt_sched_group(tg, parent)) 8953 goto err; 8954 8955 scx_group_set_weight(tg, CGROUP_WEIGHT_DFL); 8956 alloc_uclamp_sched_group(tg, parent); 8957 8958 return tg; 8959 8960 err: 8961 sched_free_group(tg); 8962 return ERR_PTR(-ENOMEM); 8963 } 8964 8965 void sched_online_group(struct task_group *tg, struct task_group *parent) 8966 { 8967 unsigned long flags; 8968 8969 spin_lock_irqsave(&task_group_lock, flags); 8970 list_add_rcu(&tg->list, &task_groups); 8971 8972 /* Root should already exist: */ 8973 WARN_ON(!parent); 8974 8975 tg->parent = parent; 8976 INIT_LIST_HEAD(&tg->children); 8977 list_add_rcu(&tg->siblings, &parent->children); 8978 spin_unlock_irqrestore(&task_group_lock, flags); 8979 8980 online_fair_sched_group(tg); 8981 } 8982 8983 /* RCU callback to free various structures associated with a task group */ 8984 static void sched_unregister_group_rcu(struct rcu_head *rhp) 8985 { 8986 /* Now it should be safe to free those cfs_rqs: */ 8987 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 8988 } 8989 8990 void sched_destroy_group(struct task_group *tg) 8991 { 8992 /* Wait for possible concurrent references to cfs_rqs complete: */ 8993 call_rcu(&tg->rcu, sched_unregister_group_rcu); 8994 } 8995 8996 void sched_release_group(struct task_group *tg) 8997 { 8998 unsigned long flags; 8999 9000 /* 9001 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 9002 * sched_cfs_period_timer()). 9003 * 9004 * For this to be effective, we have to wait for all pending users of 9005 * this task group to leave their RCU critical section to ensure no new 9006 * user will see our dying task group any more. Specifically ensure 9007 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 9008 * 9009 * We therefore defer calling unregister_fair_sched_group() to 9010 * sched_unregister_group() which is guarantied to get called only after the 9011 * current RCU grace period has expired. 9012 */ 9013 spin_lock_irqsave(&task_group_lock, flags); 9014 list_del_rcu(&tg->list); 9015 list_del_rcu(&tg->siblings); 9016 spin_unlock_irqrestore(&task_group_lock, flags); 9017 } 9018 9019 static struct task_group *sched_get_task_group(struct task_struct *tsk) 9020 { 9021 struct task_group *tg; 9022 9023 /* 9024 * All callers are synchronized by task_rq_lock(); we do not use RCU 9025 * which is pointless here. Thus, we pass "true" to task_css_check() 9026 * to prevent lockdep warnings. 9027 */ 9028 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 9029 struct task_group, css); 9030 tg = autogroup_task_group(tsk, tg); 9031 9032 return tg; 9033 } 9034 9035 static void sched_change_group(struct task_struct *tsk, struct task_group *group) 9036 { 9037 tsk->sched_task_group = group; 9038 9039 #ifdef CONFIG_FAIR_GROUP_SCHED 9040 if (tsk->sched_class->task_change_group) 9041 tsk->sched_class->task_change_group(tsk); 9042 else 9043 #endif 9044 set_task_rq(tsk, task_cpu(tsk)); 9045 } 9046 9047 /* 9048 * Change task's runqueue when it moves between groups. 9049 * 9050 * The caller of this function should have put the task in its new group by 9051 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 9052 * its new group. 9053 */ 9054 void sched_move_task(struct task_struct *tsk, bool for_autogroup) 9055 { 9056 int queued, running, queue_flags = 9057 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 9058 struct task_group *group; 9059 struct rq *rq; 9060 9061 CLASS(task_rq_lock, rq_guard)(tsk); 9062 rq = rq_guard.rq; 9063 9064 /* 9065 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous 9066 * group changes. 9067 */ 9068 group = sched_get_task_group(tsk); 9069 if (group == tsk->sched_task_group) 9070 return; 9071 9072 update_rq_clock(rq); 9073 9074 running = task_current_donor(rq, tsk); 9075 queued = task_on_rq_queued(tsk); 9076 9077 if (queued) 9078 dequeue_task(rq, tsk, queue_flags); 9079 if (running) 9080 put_prev_task(rq, tsk); 9081 9082 sched_change_group(tsk, group); 9083 if (!for_autogroup) 9084 scx_cgroup_move_task(tsk); 9085 9086 if (queued) 9087 enqueue_task(rq, tsk, queue_flags); 9088 if (running) { 9089 set_next_task(rq, tsk); 9090 /* 9091 * After changing group, the running task may have joined a 9092 * throttled one but it's still the running task. Trigger a 9093 * resched to make sure that task can still run. 9094 */ 9095 resched_curr(rq); 9096 } 9097 } 9098 9099 static struct cgroup_subsys_state * 9100 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9101 { 9102 struct task_group *parent = css_tg(parent_css); 9103 struct task_group *tg; 9104 9105 if (!parent) { 9106 /* This is early initialization for the top cgroup */ 9107 return &root_task_group.css; 9108 } 9109 9110 tg = sched_create_group(parent); 9111 if (IS_ERR(tg)) 9112 return ERR_PTR(-ENOMEM); 9113 9114 return &tg->css; 9115 } 9116 9117 /* Expose task group only after completing cgroup initialization */ 9118 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 9119 { 9120 struct task_group *tg = css_tg(css); 9121 struct task_group *parent = css_tg(css->parent); 9122 int ret; 9123 9124 ret = scx_tg_online(tg); 9125 if (ret) 9126 return ret; 9127 9128 if (parent) 9129 sched_online_group(tg, parent); 9130 9131 #ifdef CONFIG_UCLAMP_TASK_GROUP 9132 /* Propagate the effective uclamp value for the new group */ 9133 guard(mutex)(&uclamp_mutex); 9134 guard(rcu)(); 9135 cpu_util_update_eff(css); 9136 #endif 9137 9138 return 0; 9139 } 9140 9141 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 9142 { 9143 struct task_group *tg = css_tg(css); 9144 9145 scx_tg_offline(tg); 9146 } 9147 9148 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 9149 { 9150 struct task_group *tg = css_tg(css); 9151 9152 sched_release_group(tg); 9153 } 9154 9155 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 9156 { 9157 struct task_group *tg = css_tg(css); 9158 9159 /* 9160 * Relies on the RCU grace period between css_released() and this. 9161 */ 9162 sched_unregister_group(tg); 9163 } 9164 9165 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 9166 { 9167 #ifdef CONFIG_RT_GROUP_SCHED 9168 struct task_struct *task; 9169 struct cgroup_subsys_state *css; 9170 9171 cgroup_taskset_for_each(task, css, tset) { 9172 if (!sched_rt_can_attach(css_tg(css), task)) 9173 return -EINVAL; 9174 } 9175 #endif 9176 return scx_cgroup_can_attach(tset); 9177 } 9178 9179 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 9180 { 9181 struct task_struct *task; 9182 struct cgroup_subsys_state *css; 9183 9184 cgroup_taskset_for_each(task, css, tset) 9185 sched_move_task(task, false); 9186 9187 scx_cgroup_finish_attach(); 9188 } 9189 9190 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset) 9191 { 9192 scx_cgroup_cancel_attach(tset); 9193 } 9194 9195 #ifdef CONFIG_UCLAMP_TASK_GROUP 9196 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 9197 { 9198 struct cgroup_subsys_state *top_css = css; 9199 struct uclamp_se *uc_parent = NULL; 9200 struct uclamp_se *uc_se = NULL; 9201 unsigned int eff[UCLAMP_CNT]; 9202 enum uclamp_id clamp_id; 9203 unsigned int clamps; 9204 9205 lockdep_assert_held(&uclamp_mutex); 9206 SCHED_WARN_ON(!rcu_read_lock_held()); 9207 9208 css_for_each_descendant_pre(css, top_css) { 9209 uc_parent = css_tg(css)->parent 9210 ? css_tg(css)->parent->uclamp : NULL; 9211 9212 for_each_clamp_id(clamp_id) { 9213 /* Assume effective clamps matches requested clamps */ 9214 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 9215 /* Cap effective clamps with parent's effective clamps */ 9216 if (uc_parent && 9217 eff[clamp_id] > uc_parent[clamp_id].value) { 9218 eff[clamp_id] = uc_parent[clamp_id].value; 9219 } 9220 } 9221 /* Ensure protection is always capped by limit */ 9222 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 9223 9224 /* Propagate most restrictive effective clamps */ 9225 clamps = 0x0; 9226 uc_se = css_tg(css)->uclamp; 9227 for_each_clamp_id(clamp_id) { 9228 if (eff[clamp_id] == uc_se[clamp_id].value) 9229 continue; 9230 uc_se[clamp_id].value = eff[clamp_id]; 9231 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 9232 clamps |= (0x1 << clamp_id); 9233 } 9234 if (!clamps) { 9235 css = css_rightmost_descendant(css); 9236 continue; 9237 } 9238 9239 /* Immediately update descendants RUNNABLE tasks */ 9240 uclamp_update_active_tasks(css); 9241 } 9242 } 9243 9244 /* 9245 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 9246 * C expression. Since there is no way to convert a macro argument (N) into a 9247 * character constant, use two levels of macros. 9248 */ 9249 #define _POW10(exp) ((unsigned int)1e##exp) 9250 #define POW10(exp) _POW10(exp) 9251 9252 struct uclamp_request { 9253 #define UCLAMP_PERCENT_SHIFT 2 9254 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 9255 s64 percent; 9256 u64 util; 9257 int ret; 9258 }; 9259 9260 static inline struct uclamp_request 9261 capacity_from_percent(char *buf) 9262 { 9263 struct uclamp_request req = { 9264 .percent = UCLAMP_PERCENT_SCALE, 9265 .util = SCHED_CAPACITY_SCALE, 9266 .ret = 0, 9267 }; 9268 9269 buf = strim(buf); 9270 if (strcmp(buf, "max")) { 9271 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 9272 &req.percent); 9273 if (req.ret) 9274 return req; 9275 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 9276 req.ret = -ERANGE; 9277 return req; 9278 } 9279 9280 req.util = req.percent << SCHED_CAPACITY_SHIFT; 9281 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 9282 } 9283 9284 return req; 9285 } 9286 9287 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 9288 size_t nbytes, loff_t off, 9289 enum uclamp_id clamp_id) 9290 { 9291 struct uclamp_request req; 9292 struct task_group *tg; 9293 9294 req = capacity_from_percent(buf); 9295 if (req.ret) 9296 return req.ret; 9297 9298 static_branch_enable(&sched_uclamp_used); 9299 9300 guard(mutex)(&uclamp_mutex); 9301 guard(rcu)(); 9302 9303 tg = css_tg(of_css(of)); 9304 if (tg->uclamp_req[clamp_id].value != req.util) 9305 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 9306 9307 /* 9308 * Because of not recoverable conversion rounding we keep track of the 9309 * exact requested value 9310 */ 9311 tg->uclamp_pct[clamp_id] = req.percent; 9312 9313 /* Update effective clamps to track the most restrictive value */ 9314 cpu_util_update_eff(of_css(of)); 9315 9316 return nbytes; 9317 } 9318 9319 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9320 char *buf, size_t nbytes, 9321 loff_t off) 9322 { 9323 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9324 } 9325 9326 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9327 char *buf, size_t nbytes, 9328 loff_t off) 9329 { 9330 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9331 } 9332 9333 static inline void cpu_uclamp_print(struct seq_file *sf, 9334 enum uclamp_id clamp_id) 9335 { 9336 struct task_group *tg; 9337 u64 util_clamp; 9338 u64 percent; 9339 u32 rem; 9340 9341 scoped_guard (rcu) { 9342 tg = css_tg(seq_css(sf)); 9343 util_clamp = tg->uclamp_req[clamp_id].value; 9344 } 9345 9346 if (util_clamp == SCHED_CAPACITY_SCALE) { 9347 seq_puts(sf, "max\n"); 9348 return; 9349 } 9350 9351 percent = tg->uclamp_pct[clamp_id]; 9352 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9353 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9354 } 9355 9356 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9357 { 9358 cpu_uclamp_print(sf, UCLAMP_MIN); 9359 return 0; 9360 } 9361 9362 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9363 { 9364 cpu_uclamp_print(sf, UCLAMP_MAX); 9365 return 0; 9366 } 9367 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9368 9369 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9370 static unsigned long tg_weight(struct task_group *tg) 9371 { 9372 #ifdef CONFIG_FAIR_GROUP_SCHED 9373 return scale_load_down(tg->shares); 9374 #else 9375 return sched_weight_from_cgroup(tg->scx_weight); 9376 #endif 9377 } 9378 9379 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9380 struct cftype *cftype, u64 shareval) 9381 { 9382 int ret; 9383 9384 if (shareval > scale_load_down(ULONG_MAX)) 9385 shareval = MAX_SHARES; 9386 ret = sched_group_set_shares(css_tg(css), scale_load(shareval)); 9387 if (!ret) 9388 scx_group_set_weight(css_tg(css), 9389 sched_weight_to_cgroup(shareval)); 9390 return ret; 9391 } 9392 9393 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9394 struct cftype *cft) 9395 { 9396 return tg_weight(css_tg(css)); 9397 } 9398 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9399 9400 #ifdef CONFIG_CFS_BANDWIDTH 9401 static DEFINE_MUTEX(cfs_constraints_mutex); 9402 9403 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 9404 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 9405 /* More than 203 days if BW_SHIFT equals 20. */ 9406 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 9407 9408 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9409 9410 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 9411 u64 burst) 9412 { 9413 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9414 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9415 9416 if (tg == &root_task_group) 9417 return -EINVAL; 9418 9419 /* 9420 * Ensure we have at some amount of bandwidth every period. This is 9421 * to prevent reaching a state of large arrears when throttled via 9422 * entity_tick() resulting in prolonged exit starvation. 9423 */ 9424 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 9425 return -EINVAL; 9426 9427 /* 9428 * Likewise, bound things on the other side by preventing insane quota 9429 * periods. This also allows us to normalize in computing quota 9430 * feasibility. 9431 */ 9432 if (period > max_cfs_quota_period) 9433 return -EINVAL; 9434 9435 /* 9436 * Bound quota to defend quota against overflow during bandwidth shift. 9437 */ 9438 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 9439 return -EINVAL; 9440 9441 if (quota != RUNTIME_INF && (burst > quota || 9442 burst + quota > max_cfs_runtime)) 9443 return -EINVAL; 9444 9445 /* 9446 * Prevent race between setting of cfs_rq->runtime_enabled and 9447 * unthrottle_offline_cfs_rqs(). 9448 */ 9449 guard(cpus_read_lock)(); 9450 guard(mutex)(&cfs_constraints_mutex); 9451 9452 ret = __cfs_schedulable(tg, period, quota); 9453 if (ret) 9454 return ret; 9455 9456 runtime_enabled = quota != RUNTIME_INF; 9457 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9458 /* 9459 * If we need to toggle cfs_bandwidth_used, off->on must occur 9460 * before making related changes, and on->off must occur afterwards 9461 */ 9462 if (runtime_enabled && !runtime_was_enabled) 9463 cfs_bandwidth_usage_inc(); 9464 9465 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 9466 cfs_b->period = ns_to_ktime(period); 9467 cfs_b->quota = quota; 9468 cfs_b->burst = burst; 9469 9470 __refill_cfs_bandwidth_runtime(cfs_b); 9471 9472 /* 9473 * Restart the period timer (if active) to handle new 9474 * period expiry: 9475 */ 9476 if (runtime_enabled) 9477 start_cfs_bandwidth(cfs_b); 9478 } 9479 9480 for_each_online_cpu(i) { 9481 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9482 struct rq *rq = cfs_rq->rq; 9483 9484 guard(rq_lock_irq)(rq); 9485 cfs_rq->runtime_enabled = runtime_enabled; 9486 cfs_rq->runtime_remaining = 0; 9487 9488 if (cfs_rq->throttled) 9489 unthrottle_cfs_rq(cfs_rq); 9490 } 9491 9492 if (runtime_was_enabled && !runtime_enabled) 9493 cfs_bandwidth_usage_dec(); 9494 9495 return 0; 9496 } 9497 9498 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 9499 { 9500 u64 quota, period, burst; 9501 9502 period = ktime_to_ns(tg->cfs_bandwidth.period); 9503 burst = tg->cfs_bandwidth.burst; 9504 if (cfs_quota_us < 0) 9505 quota = RUNTIME_INF; 9506 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 9507 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 9508 else 9509 return -EINVAL; 9510 9511 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9512 } 9513 9514 static long tg_get_cfs_quota(struct task_group *tg) 9515 { 9516 u64 quota_us; 9517 9518 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9519 return -1; 9520 9521 quota_us = tg->cfs_bandwidth.quota; 9522 do_div(quota_us, NSEC_PER_USEC); 9523 9524 return quota_us; 9525 } 9526 9527 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 9528 { 9529 u64 quota, period, burst; 9530 9531 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 9532 return -EINVAL; 9533 9534 period = (u64)cfs_period_us * NSEC_PER_USEC; 9535 quota = tg->cfs_bandwidth.quota; 9536 burst = tg->cfs_bandwidth.burst; 9537 9538 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9539 } 9540 9541 static long tg_get_cfs_period(struct task_group *tg) 9542 { 9543 u64 cfs_period_us; 9544 9545 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9546 do_div(cfs_period_us, NSEC_PER_USEC); 9547 9548 return cfs_period_us; 9549 } 9550 9551 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 9552 { 9553 u64 quota, period, burst; 9554 9555 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 9556 return -EINVAL; 9557 9558 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 9559 period = ktime_to_ns(tg->cfs_bandwidth.period); 9560 quota = tg->cfs_bandwidth.quota; 9561 9562 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9563 } 9564 9565 static long tg_get_cfs_burst(struct task_group *tg) 9566 { 9567 u64 burst_us; 9568 9569 burst_us = tg->cfs_bandwidth.burst; 9570 do_div(burst_us, NSEC_PER_USEC); 9571 9572 return burst_us; 9573 } 9574 9575 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 9576 struct cftype *cft) 9577 { 9578 return tg_get_cfs_quota(css_tg(css)); 9579 } 9580 9581 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 9582 struct cftype *cftype, s64 cfs_quota_us) 9583 { 9584 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 9585 } 9586 9587 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 9588 struct cftype *cft) 9589 { 9590 return tg_get_cfs_period(css_tg(css)); 9591 } 9592 9593 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 9594 struct cftype *cftype, u64 cfs_period_us) 9595 { 9596 return tg_set_cfs_period(css_tg(css), cfs_period_us); 9597 } 9598 9599 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 9600 struct cftype *cft) 9601 { 9602 return tg_get_cfs_burst(css_tg(css)); 9603 } 9604 9605 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 9606 struct cftype *cftype, u64 cfs_burst_us) 9607 { 9608 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 9609 } 9610 9611 struct cfs_schedulable_data { 9612 struct task_group *tg; 9613 u64 period, quota; 9614 }; 9615 9616 /* 9617 * normalize group quota/period to be quota/max_period 9618 * note: units are usecs 9619 */ 9620 static u64 normalize_cfs_quota(struct task_group *tg, 9621 struct cfs_schedulable_data *d) 9622 { 9623 u64 quota, period; 9624 9625 if (tg == d->tg) { 9626 period = d->period; 9627 quota = d->quota; 9628 } else { 9629 period = tg_get_cfs_period(tg); 9630 quota = tg_get_cfs_quota(tg); 9631 } 9632 9633 /* note: these should typically be equivalent */ 9634 if (quota == RUNTIME_INF || quota == -1) 9635 return RUNTIME_INF; 9636 9637 return to_ratio(period, quota); 9638 } 9639 9640 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9641 { 9642 struct cfs_schedulable_data *d = data; 9643 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9644 s64 quota = 0, parent_quota = -1; 9645 9646 if (!tg->parent) { 9647 quota = RUNTIME_INF; 9648 } else { 9649 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9650 9651 quota = normalize_cfs_quota(tg, d); 9652 parent_quota = parent_b->hierarchical_quota; 9653 9654 /* 9655 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9656 * always take the non-RUNTIME_INF min. On cgroup1, only 9657 * inherit when no limit is set. In both cases this is used 9658 * by the scheduler to determine if a given CFS task has a 9659 * bandwidth constraint at some higher level. 9660 */ 9661 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9662 if (quota == RUNTIME_INF) 9663 quota = parent_quota; 9664 else if (parent_quota != RUNTIME_INF) 9665 quota = min(quota, parent_quota); 9666 } else { 9667 if (quota == RUNTIME_INF) 9668 quota = parent_quota; 9669 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9670 return -EINVAL; 9671 } 9672 } 9673 cfs_b->hierarchical_quota = quota; 9674 9675 return 0; 9676 } 9677 9678 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9679 { 9680 struct cfs_schedulable_data data = { 9681 .tg = tg, 9682 .period = period, 9683 .quota = quota, 9684 }; 9685 9686 if (quota != RUNTIME_INF) { 9687 do_div(data.period, NSEC_PER_USEC); 9688 do_div(data.quota, NSEC_PER_USEC); 9689 } 9690 9691 guard(rcu)(); 9692 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9693 } 9694 9695 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9696 { 9697 struct task_group *tg = css_tg(seq_css(sf)); 9698 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9699 9700 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9701 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9702 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9703 9704 if (schedstat_enabled() && tg != &root_task_group) { 9705 struct sched_statistics *stats; 9706 u64 ws = 0; 9707 int i; 9708 9709 for_each_possible_cpu(i) { 9710 stats = __schedstats_from_se(tg->se[i]); 9711 ws += schedstat_val(stats->wait_sum); 9712 } 9713 9714 seq_printf(sf, "wait_sum %llu\n", ws); 9715 } 9716 9717 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 9718 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 9719 9720 return 0; 9721 } 9722 9723 static u64 throttled_time_self(struct task_group *tg) 9724 { 9725 int i; 9726 u64 total = 0; 9727 9728 for_each_possible_cpu(i) { 9729 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 9730 } 9731 9732 return total; 9733 } 9734 9735 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 9736 { 9737 struct task_group *tg = css_tg(seq_css(sf)); 9738 9739 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 9740 9741 return 0; 9742 } 9743 #endif /* CONFIG_CFS_BANDWIDTH */ 9744 9745 #ifdef CONFIG_RT_GROUP_SCHED 9746 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9747 struct cftype *cft, s64 val) 9748 { 9749 return sched_group_set_rt_runtime(css_tg(css), val); 9750 } 9751 9752 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9753 struct cftype *cft) 9754 { 9755 return sched_group_rt_runtime(css_tg(css)); 9756 } 9757 9758 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9759 struct cftype *cftype, u64 rt_period_us) 9760 { 9761 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9762 } 9763 9764 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9765 struct cftype *cft) 9766 { 9767 return sched_group_rt_period(css_tg(css)); 9768 } 9769 #endif /* CONFIG_RT_GROUP_SCHED */ 9770 9771 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9772 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 9773 struct cftype *cft) 9774 { 9775 return css_tg(css)->idle; 9776 } 9777 9778 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 9779 struct cftype *cft, s64 idle) 9780 { 9781 int ret; 9782 9783 ret = sched_group_set_idle(css_tg(css), idle); 9784 if (!ret) 9785 scx_group_set_idle(css_tg(css), idle); 9786 return ret; 9787 } 9788 #endif 9789 9790 static struct cftype cpu_legacy_files[] = { 9791 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9792 { 9793 .name = "shares", 9794 .read_u64 = cpu_shares_read_u64, 9795 .write_u64 = cpu_shares_write_u64, 9796 }, 9797 { 9798 .name = "idle", 9799 .read_s64 = cpu_idle_read_s64, 9800 .write_s64 = cpu_idle_write_s64, 9801 }, 9802 #endif 9803 #ifdef CONFIG_CFS_BANDWIDTH 9804 { 9805 .name = "cfs_quota_us", 9806 .read_s64 = cpu_cfs_quota_read_s64, 9807 .write_s64 = cpu_cfs_quota_write_s64, 9808 }, 9809 { 9810 .name = "cfs_period_us", 9811 .read_u64 = cpu_cfs_period_read_u64, 9812 .write_u64 = cpu_cfs_period_write_u64, 9813 }, 9814 { 9815 .name = "cfs_burst_us", 9816 .read_u64 = cpu_cfs_burst_read_u64, 9817 .write_u64 = cpu_cfs_burst_write_u64, 9818 }, 9819 { 9820 .name = "stat", 9821 .seq_show = cpu_cfs_stat_show, 9822 }, 9823 { 9824 .name = "stat.local", 9825 .seq_show = cpu_cfs_local_stat_show, 9826 }, 9827 #endif 9828 #ifdef CONFIG_RT_GROUP_SCHED 9829 { 9830 .name = "rt_runtime_us", 9831 .read_s64 = cpu_rt_runtime_read, 9832 .write_s64 = cpu_rt_runtime_write, 9833 }, 9834 { 9835 .name = "rt_period_us", 9836 .read_u64 = cpu_rt_period_read_uint, 9837 .write_u64 = cpu_rt_period_write_uint, 9838 }, 9839 #endif 9840 #ifdef CONFIG_UCLAMP_TASK_GROUP 9841 { 9842 .name = "uclamp.min", 9843 .flags = CFTYPE_NOT_ON_ROOT, 9844 .seq_show = cpu_uclamp_min_show, 9845 .write = cpu_uclamp_min_write, 9846 }, 9847 { 9848 .name = "uclamp.max", 9849 .flags = CFTYPE_NOT_ON_ROOT, 9850 .seq_show = cpu_uclamp_max_show, 9851 .write = cpu_uclamp_max_write, 9852 }, 9853 #endif 9854 { } /* Terminate */ 9855 }; 9856 9857 static int cpu_extra_stat_show(struct seq_file *sf, 9858 struct cgroup_subsys_state *css) 9859 { 9860 #ifdef CONFIG_CFS_BANDWIDTH 9861 { 9862 struct task_group *tg = css_tg(css); 9863 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9864 u64 throttled_usec, burst_usec; 9865 9866 throttled_usec = cfs_b->throttled_time; 9867 do_div(throttled_usec, NSEC_PER_USEC); 9868 burst_usec = cfs_b->burst_time; 9869 do_div(burst_usec, NSEC_PER_USEC); 9870 9871 seq_printf(sf, "nr_periods %d\n" 9872 "nr_throttled %d\n" 9873 "throttled_usec %llu\n" 9874 "nr_bursts %d\n" 9875 "burst_usec %llu\n", 9876 cfs_b->nr_periods, cfs_b->nr_throttled, 9877 throttled_usec, cfs_b->nr_burst, burst_usec); 9878 } 9879 #endif 9880 return 0; 9881 } 9882 9883 static int cpu_local_stat_show(struct seq_file *sf, 9884 struct cgroup_subsys_state *css) 9885 { 9886 #ifdef CONFIG_CFS_BANDWIDTH 9887 { 9888 struct task_group *tg = css_tg(css); 9889 u64 throttled_self_usec; 9890 9891 throttled_self_usec = throttled_time_self(tg); 9892 do_div(throttled_self_usec, NSEC_PER_USEC); 9893 9894 seq_printf(sf, "throttled_usec %llu\n", 9895 throttled_self_usec); 9896 } 9897 #endif 9898 return 0; 9899 } 9900 9901 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9902 9903 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 9904 struct cftype *cft) 9905 { 9906 return sched_weight_to_cgroup(tg_weight(css_tg(css))); 9907 } 9908 9909 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 9910 struct cftype *cft, u64 cgrp_weight) 9911 { 9912 unsigned long weight; 9913 int ret; 9914 9915 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) 9916 return -ERANGE; 9917 9918 weight = sched_weight_from_cgroup(cgrp_weight); 9919 9920 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 9921 if (!ret) 9922 scx_group_set_weight(css_tg(css), cgrp_weight); 9923 return ret; 9924 } 9925 9926 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 9927 struct cftype *cft) 9928 { 9929 unsigned long weight = tg_weight(css_tg(css)); 9930 int last_delta = INT_MAX; 9931 int prio, delta; 9932 9933 /* find the closest nice value to the current weight */ 9934 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 9935 delta = abs(sched_prio_to_weight[prio] - weight); 9936 if (delta >= last_delta) 9937 break; 9938 last_delta = delta; 9939 } 9940 9941 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 9942 } 9943 9944 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 9945 struct cftype *cft, s64 nice) 9946 { 9947 unsigned long weight; 9948 int idx, ret; 9949 9950 if (nice < MIN_NICE || nice > MAX_NICE) 9951 return -ERANGE; 9952 9953 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 9954 idx = array_index_nospec(idx, 40); 9955 weight = sched_prio_to_weight[idx]; 9956 9957 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 9958 if (!ret) 9959 scx_group_set_weight(css_tg(css), 9960 sched_weight_to_cgroup(weight)); 9961 return ret; 9962 } 9963 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9964 9965 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 9966 long period, long quota) 9967 { 9968 if (quota < 0) 9969 seq_puts(sf, "max"); 9970 else 9971 seq_printf(sf, "%ld", quota); 9972 9973 seq_printf(sf, " %ld\n", period); 9974 } 9975 9976 /* caller should put the current value in *@periodp before calling */ 9977 static int __maybe_unused cpu_period_quota_parse(char *buf, 9978 u64 *periodp, u64 *quotap) 9979 { 9980 char tok[21]; /* U64_MAX */ 9981 9982 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 9983 return -EINVAL; 9984 9985 *periodp *= NSEC_PER_USEC; 9986 9987 if (sscanf(tok, "%llu", quotap)) 9988 *quotap *= NSEC_PER_USEC; 9989 else if (!strcmp(tok, "max")) 9990 *quotap = RUNTIME_INF; 9991 else 9992 return -EINVAL; 9993 9994 return 0; 9995 } 9996 9997 #ifdef CONFIG_CFS_BANDWIDTH 9998 static int cpu_max_show(struct seq_file *sf, void *v) 9999 { 10000 struct task_group *tg = css_tg(seq_css(sf)); 10001 10002 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 10003 return 0; 10004 } 10005 10006 static ssize_t cpu_max_write(struct kernfs_open_file *of, 10007 char *buf, size_t nbytes, loff_t off) 10008 { 10009 struct task_group *tg = css_tg(of_css(of)); 10010 u64 period = tg_get_cfs_period(tg); 10011 u64 burst = tg->cfs_bandwidth.burst; 10012 u64 quota; 10013 int ret; 10014 10015 ret = cpu_period_quota_parse(buf, &period, "a); 10016 if (!ret) 10017 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 10018 return ret ?: nbytes; 10019 } 10020 #endif 10021 10022 static struct cftype cpu_files[] = { 10023 #ifdef CONFIG_GROUP_SCHED_WEIGHT 10024 { 10025 .name = "weight", 10026 .flags = CFTYPE_NOT_ON_ROOT, 10027 .read_u64 = cpu_weight_read_u64, 10028 .write_u64 = cpu_weight_write_u64, 10029 }, 10030 { 10031 .name = "weight.nice", 10032 .flags = CFTYPE_NOT_ON_ROOT, 10033 .read_s64 = cpu_weight_nice_read_s64, 10034 .write_s64 = cpu_weight_nice_write_s64, 10035 }, 10036 { 10037 .name = "idle", 10038 .flags = CFTYPE_NOT_ON_ROOT, 10039 .read_s64 = cpu_idle_read_s64, 10040 .write_s64 = cpu_idle_write_s64, 10041 }, 10042 #endif 10043 #ifdef CONFIG_CFS_BANDWIDTH 10044 { 10045 .name = "max", 10046 .flags = CFTYPE_NOT_ON_ROOT, 10047 .seq_show = cpu_max_show, 10048 .write = cpu_max_write, 10049 }, 10050 { 10051 .name = "max.burst", 10052 .flags = CFTYPE_NOT_ON_ROOT, 10053 .read_u64 = cpu_cfs_burst_read_u64, 10054 .write_u64 = cpu_cfs_burst_write_u64, 10055 }, 10056 #endif 10057 #ifdef CONFIG_UCLAMP_TASK_GROUP 10058 { 10059 .name = "uclamp.min", 10060 .flags = CFTYPE_NOT_ON_ROOT, 10061 .seq_show = cpu_uclamp_min_show, 10062 .write = cpu_uclamp_min_write, 10063 }, 10064 { 10065 .name = "uclamp.max", 10066 .flags = CFTYPE_NOT_ON_ROOT, 10067 .seq_show = cpu_uclamp_max_show, 10068 .write = cpu_uclamp_max_write, 10069 }, 10070 #endif 10071 { } /* terminate */ 10072 }; 10073 10074 struct cgroup_subsys cpu_cgrp_subsys = { 10075 .css_alloc = cpu_cgroup_css_alloc, 10076 .css_online = cpu_cgroup_css_online, 10077 .css_offline = cpu_cgroup_css_offline, 10078 .css_released = cpu_cgroup_css_released, 10079 .css_free = cpu_cgroup_css_free, 10080 .css_extra_stat_show = cpu_extra_stat_show, 10081 .css_local_stat_show = cpu_local_stat_show, 10082 .can_attach = cpu_cgroup_can_attach, 10083 .attach = cpu_cgroup_attach, 10084 .cancel_attach = cpu_cgroup_cancel_attach, 10085 .legacy_cftypes = cpu_legacy_files, 10086 .dfl_cftypes = cpu_files, 10087 .early_init = true, 10088 .threaded = true, 10089 }; 10090 10091 #endif /* CONFIG_CGROUP_SCHED */ 10092 10093 void dump_cpu_task(int cpu) 10094 { 10095 if (in_hardirq() && cpu == smp_processor_id()) { 10096 struct pt_regs *regs; 10097 10098 regs = get_irq_regs(); 10099 if (regs) { 10100 show_regs(regs); 10101 return; 10102 } 10103 } 10104 10105 if (trigger_single_cpu_backtrace(cpu)) 10106 return; 10107 10108 pr_info("Task dump for CPU %d:\n", cpu); 10109 sched_show_task(cpu_curr(cpu)); 10110 } 10111 10112 /* 10113 * Nice levels are multiplicative, with a gentle 10% change for every 10114 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 10115 * nice 1, it will get ~10% less CPU time than another CPU-bound task 10116 * that remained on nice 0. 10117 * 10118 * The "10% effect" is relative and cumulative: from _any_ nice level, 10119 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 10120 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 10121 * If a task goes up by ~10% and another task goes down by ~10% then 10122 * the relative distance between them is ~25%.) 10123 */ 10124 const int sched_prio_to_weight[40] = { 10125 /* -20 */ 88761, 71755, 56483, 46273, 36291, 10126 /* -15 */ 29154, 23254, 18705, 14949, 11916, 10127 /* -10 */ 9548, 7620, 6100, 4904, 3906, 10128 /* -5 */ 3121, 2501, 1991, 1586, 1277, 10129 /* 0 */ 1024, 820, 655, 526, 423, 10130 /* 5 */ 335, 272, 215, 172, 137, 10131 /* 10 */ 110, 87, 70, 56, 45, 10132 /* 15 */ 36, 29, 23, 18, 15, 10133 }; 10134 10135 /* 10136 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. 10137 * 10138 * In cases where the weight does not change often, we can use the 10139 * pre-calculated inverse to speed up arithmetics by turning divisions 10140 * into multiplications: 10141 */ 10142 const u32 sched_prio_to_wmult[40] = { 10143 /* -20 */ 48388, 59856, 76040, 92818, 118348, 10144 /* -15 */ 147320, 184698, 229616, 287308, 360437, 10145 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 10146 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 10147 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 10148 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 10149 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 10150 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 10151 }; 10152 10153 void call_trace_sched_update_nr_running(struct rq *rq, int count) 10154 { 10155 trace_sched_update_nr_running_tp(rq, count); 10156 } 10157 10158 #ifdef CONFIG_SCHED_MM_CID 10159 10160 /* 10161 * @cid_lock: Guarantee forward-progress of cid allocation. 10162 * 10163 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock 10164 * is only used when contention is detected by the lock-free allocation so 10165 * forward progress can be guaranteed. 10166 */ 10167 DEFINE_RAW_SPINLOCK(cid_lock); 10168 10169 /* 10170 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. 10171 * 10172 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is 10173 * detected, it is set to 1 to ensure that all newly coming allocations are 10174 * serialized by @cid_lock until the allocation which detected contention 10175 * completes and sets @use_cid_lock back to 0. This guarantees forward progress 10176 * of a cid allocation. 10177 */ 10178 int use_cid_lock; 10179 10180 /* 10181 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid 10182 * concurrently with respect to the execution of the source runqueue context 10183 * switch. 10184 * 10185 * There is one basic properties we want to guarantee here: 10186 * 10187 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively 10188 * used by a task. That would lead to concurrent allocation of the cid and 10189 * userspace corruption. 10190 * 10191 * Provide this guarantee by introducing a Dekker memory ordering to guarantee 10192 * that a pair of loads observe at least one of a pair of stores, which can be 10193 * shown as: 10194 * 10195 * X = Y = 0 10196 * 10197 * w[X]=1 w[Y]=1 10198 * MB MB 10199 * r[Y]=y r[X]=x 10200 * 10201 * Which guarantees that x==0 && y==0 is impossible. But rather than using 10202 * values 0 and 1, this algorithm cares about specific state transitions of the 10203 * runqueue current task (as updated by the scheduler context switch), and the 10204 * per-mm/cpu cid value. 10205 * 10206 * Let's introduce task (Y) which has task->mm == mm and task (N) which has 10207 * task->mm != mm for the rest of the discussion. There are two scheduler state 10208 * transitions on context switch we care about: 10209 * 10210 * (TSA) Store to rq->curr with transition from (N) to (Y) 10211 * 10212 * (TSB) Store to rq->curr with transition from (Y) to (N) 10213 * 10214 * On the remote-clear side, there is one transition we care about: 10215 * 10216 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag 10217 * 10218 * There is also a transition to UNSET state which can be performed from all 10219 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which 10220 * guarantees that only a single thread will succeed: 10221 * 10222 * (TMB) cmpxchg to *pcpu_cid to mark UNSET 10223 * 10224 * Just to be clear, what we do _not_ want to happen is a transition to UNSET 10225 * when a thread is actively using the cid (property (1)). 10226 * 10227 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. 10228 * 10229 * Scenario A) (TSA)+(TMA) (from next task perspective) 10230 * 10231 * CPU0 CPU1 10232 * 10233 * Context switch CS-1 Remote-clear 10234 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) 10235 * (implied barrier after cmpxchg) 10236 * - switch_mm_cid() 10237 * - memory barrier (see switch_mm_cid() 10238 * comment explaining how this barrier 10239 * is combined with other scheduler 10240 * barriers) 10241 * - mm_cid_get (next) 10242 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) 10243 * 10244 * This Dekker ensures that either task (Y) is observed by the 10245 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are 10246 * observed. 10247 * 10248 * If task (Y) store is observed by rcu_dereference(), it means that there is 10249 * still an active task on the cpu. Remote-clear will therefore not transition 10250 * to UNSET, which fulfills property (1). 10251 * 10252 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), 10253 * it will move its state to UNSET, which clears the percpu cid perhaps 10254 * uselessly (which is not an issue for correctness). Because task (Y) is not 10255 * observed, CPU1 can move ahead to set the state to UNSET. Because moving 10256 * state to UNSET is done with a cmpxchg expecting that the old state has the 10257 * LAZY flag set, only one thread will successfully UNSET. 10258 * 10259 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 10260 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and 10261 * CPU1 will observe task (Y) and do nothing more, which is fine. 10262 * 10263 * What we are effectively preventing with this Dekker is a scenario where 10264 * neither LAZY flag nor store (Y) are observed, which would fail property (1) 10265 * because this would UNSET a cid which is actively used. 10266 */ 10267 10268 void sched_mm_cid_migrate_from(struct task_struct *t) 10269 { 10270 t->migrate_from_cpu = task_cpu(t); 10271 } 10272 10273 static 10274 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, 10275 struct task_struct *t, 10276 struct mm_cid *src_pcpu_cid) 10277 { 10278 struct mm_struct *mm = t->mm; 10279 struct task_struct *src_task; 10280 int src_cid, last_mm_cid; 10281 10282 if (!mm) 10283 return -1; 10284 10285 last_mm_cid = t->last_mm_cid; 10286 /* 10287 * If the migrated task has no last cid, or if the current 10288 * task on src rq uses the cid, it means the source cid does not need 10289 * to be moved to the destination cpu. 10290 */ 10291 if (last_mm_cid == -1) 10292 return -1; 10293 src_cid = READ_ONCE(src_pcpu_cid->cid); 10294 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) 10295 return -1; 10296 10297 /* 10298 * If we observe an active task using the mm on this rq, it means we 10299 * are not the last task to be migrated from this cpu for this mm, so 10300 * there is no need to move src_cid to the destination cpu. 10301 */ 10302 guard(rcu)(); 10303 src_task = rcu_dereference(src_rq->curr); 10304 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10305 t->last_mm_cid = -1; 10306 return -1; 10307 } 10308 10309 return src_cid; 10310 } 10311 10312 static 10313 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, 10314 struct task_struct *t, 10315 struct mm_cid *src_pcpu_cid, 10316 int src_cid) 10317 { 10318 struct task_struct *src_task; 10319 struct mm_struct *mm = t->mm; 10320 int lazy_cid; 10321 10322 if (src_cid == -1) 10323 return -1; 10324 10325 /* 10326 * Attempt to clear the source cpu cid to move it to the destination 10327 * cpu. 10328 */ 10329 lazy_cid = mm_cid_set_lazy_put(src_cid); 10330 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) 10331 return -1; 10332 10333 /* 10334 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10335 * rq->curr->mm matches the scheduler barrier in context_switch() 10336 * between store to rq->curr and load of prev and next task's 10337 * per-mm/cpu cid. 10338 * 10339 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10340 * rq->curr->mm_cid_active matches the barrier in 10341 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10342 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10343 * load of per-mm/cpu cid. 10344 */ 10345 10346 /* 10347 * If we observe an active task using the mm on this rq after setting 10348 * the lazy-put flag, this task will be responsible for transitioning 10349 * from lazy-put flag set to MM_CID_UNSET. 10350 */ 10351 scoped_guard (rcu) { 10352 src_task = rcu_dereference(src_rq->curr); 10353 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10354 /* 10355 * We observed an active task for this mm, there is therefore 10356 * no point in moving this cid to the destination cpu. 10357 */ 10358 t->last_mm_cid = -1; 10359 return -1; 10360 } 10361 } 10362 10363 /* 10364 * The src_cid is unused, so it can be unset. 10365 */ 10366 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10367 return -1; 10368 WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET); 10369 return src_cid; 10370 } 10371 10372 /* 10373 * Migration to dst cpu. Called with dst_rq lock held. 10374 * Interrupts are disabled, which keeps the window of cid ownership without the 10375 * source rq lock held small. 10376 */ 10377 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) 10378 { 10379 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; 10380 struct mm_struct *mm = t->mm; 10381 int src_cid, src_cpu; 10382 bool dst_cid_is_set; 10383 struct rq *src_rq; 10384 10385 lockdep_assert_rq_held(dst_rq); 10386 10387 if (!mm) 10388 return; 10389 src_cpu = t->migrate_from_cpu; 10390 if (src_cpu == -1) { 10391 t->last_mm_cid = -1; 10392 return; 10393 } 10394 /* 10395 * Move the src cid if the dst cid is unset. This keeps id 10396 * allocation closest to 0 in cases where few threads migrate around 10397 * many CPUs. 10398 * 10399 * If destination cid or recent cid is already set, we may have 10400 * to just clear the src cid to ensure compactness in frequent 10401 * migrations scenarios. 10402 * 10403 * It is not useful to clear the src cid when the number of threads is 10404 * greater or equal to the number of allowed CPUs, because user-space 10405 * can expect that the number of allowed cids can reach the number of 10406 * allowed CPUs. 10407 */ 10408 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); 10409 dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) || 10410 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid)); 10411 if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed)) 10412 return; 10413 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); 10414 src_rq = cpu_rq(src_cpu); 10415 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); 10416 if (src_cid == -1) 10417 return; 10418 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, 10419 src_cid); 10420 if (src_cid == -1) 10421 return; 10422 if (dst_cid_is_set) { 10423 __mm_cid_put(mm, src_cid); 10424 return; 10425 } 10426 /* Move src_cid to dst cpu. */ 10427 mm_cid_snapshot_time(dst_rq, mm); 10428 WRITE_ONCE(dst_pcpu_cid->cid, src_cid); 10429 WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid); 10430 } 10431 10432 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, 10433 int cpu) 10434 { 10435 struct rq *rq = cpu_rq(cpu); 10436 struct task_struct *t; 10437 int cid, lazy_cid; 10438 10439 cid = READ_ONCE(pcpu_cid->cid); 10440 if (!mm_cid_is_valid(cid)) 10441 return; 10442 10443 /* 10444 * Clear the cpu cid if it is set to keep cid allocation compact. If 10445 * there happens to be other tasks left on the source cpu using this 10446 * mm, the next task using this mm will reallocate its cid on context 10447 * switch. 10448 */ 10449 lazy_cid = mm_cid_set_lazy_put(cid); 10450 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) 10451 return; 10452 10453 /* 10454 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10455 * rq->curr->mm matches the scheduler barrier in context_switch() 10456 * between store to rq->curr and load of prev and next task's 10457 * per-mm/cpu cid. 10458 * 10459 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10460 * rq->curr->mm_cid_active matches the barrier in 10461 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10462 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10463 * load of per-mm/cpu cid. 10464 */ 10465 10466 /* 10467 * If we observe an active task using the mm on this rq after setting 10468 * the lazy-put flag, that task will be responsible for transitioning 10469 * from lazy-put flag set to MM_CID_UNSET. 10470 */ 10471 scoped_guard (rcu) { 10472 t = rcu_dereference(rq->curr); 10473 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) 10474 return; 10475 } 10476 10477 /* 10478 * The cid is unused, so it can be unset. 10479 * Disable interrupts to keep the window of cid ownership without rq 10480 * lock small. 10481 */ 10482 scoped_guard (irqsave) { 10483 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10484 __mm_cid_put(mm, cid); 10485 } 10486 } 10487 10488 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) 10489 { 10490 struct rq *rq = cpu_rq(cpu); 10491 struct mm_cid *pcpu_cid; 10492 struct task_struct *curr; 10493 u64 rq_clock; 10494 10495 /* 10496 * rq->clock load is racy on 32-bit but one spurious clear once in a 10497 * while is irrelevant. 10498 */ 10499 rq_clock = READ_ONCE(rq->clock); 10500 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10501 10502 /* 10503 * In order to take care of infrequently scheduled tasks, bump the time 10504 * snapshot associated with this cid if an active task using the mm is 10505 * observed on this rq. 10506 */ 10507 scoped_guard (rcu) { 10508 curr = rcu_dereference(rq->curr); 10509 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { 10510 WRITE_ONCE(pcpu_cid->time, rq_clock); 10511 return; 10512 } 10513 } 10514 10515 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) 10516 return; 10517 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10518 } 10519 10520 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, 10521 int weight) 10522 { 10523 struct mm_cid *pcpu_cid; 10524 int cid; 10525 10526 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10527 cid = READ_ONCE(pcpu_cid->cid); 10528 if (!mm_cid_is_valid(cid) || cid < weight) 10529 return; 10530 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10531 } 10532 10533 static void task_mm_cid_work(struct callback_head *work) 10534 { 10535 unsigned long now = jiffies, old_scan, next_scan; 10536 struct task_struct *t = current; 10537 struct cpumask *cidmask; 10538 struct mm_struct *mm; 10539 int weight, cpu; 10540 10541 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work)); 10542 10543 work->next = work; /* Prevent double-add */ 10544 if (t->flags & PF_EXITING) 10545 return; 10546 mm = t->mm; 10547 if (!mm) 10548 return; 10549 old_scan = READ_ONCE(mm->mm_cid_next_scan); 10550 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10551 if (!old_scan) { 10552 unsigned long res; 10553 10554 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); 10555 if (res != old_scan) 10556 old_scan = res; 10557 else 10558 old_scan = next_scan; 10559 } 10560 if (time_before(now, old_scan)) 10561 return; 10562 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) 10563 return; 10564 cidmask = mm_cidmask(mm); 10565 /* Clear cids that were not recently used. */ 10566 for_each_possible_cpu(cpu) 10567 sched_mm_cid_remote_clear_old(mm, cpu); 10568 weight = cpumask_weight(cidmask); 10569 /* 10570 * Clear cids that are greater or equal to the cidmask weight to 10571 * recompact it. 10572 */ 10573 for_each_possible_cpu(cpu) 10574 sched_mm_cid_remote_clear_weight(mm, cpu, weight); 10575 } 10576 10577 void init_sched_mm_cid(struct task_struct *t) 10578 { 10579 struct mm_struct *mm = t->mm; 10580 int mm_users = 0; 10581 10582 if (mm) { 10583 mm_users = atomic_read(&mm->mm_users); 10584 if (mm_users == 1) 10585 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10586 } 10587 t->cid_work.next = &t->cid_work; /* Protect against double add */ 10588 init_task_work(&t->cid_work, task_mm_cid_work); 10589 } 10590 10591 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) 10592 { 10593 struct callback_head *work = &curr->cid_work; 10594 unsigned long now = jiffies; 10595 10596 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || 10597 work->next != work) 10598 return; 10599 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) 10600 return; 10601 10602 /* No page allocation under rq lock */ 10603 task_work_add(curr, work, TWA_RESUME); 10604 } 10605 10606 void sched_mm_cid_exit_signals(struct task_struct *t) 10607 { 10608 struct mm_struct *mm = t->mm; 10609 struct rq *rq; 10610 10611 if (!mm) 10612 return; 10613 10614 preempt_disable(); 10615 rq = this_rq(); 10616 guard(rq_lock_irqsave)(rq); 10617 preempt_enable_no_resched(); /* holding spinlock */ 10618 WRITE_ONCE(t->mm_cid_active, 0); 10619 /* 10620 * Store t->mm_cid_active before loading per-mm/cpu cid. 10621 * Matches barrier in sched_mm_cid_remote_clear_old(). 10622 */ 10623 smp_mb(); 10624 mm_cid_put(mm); 10625 t->last_mm_cid = t->mm_cid = -1; 10626 } 10627 10628 void sched_mm_cid_before_execve(struct task_struct *t) 10629 { 10630 struct mm_struct *mm = t->mm; 10631 struct rq *rq; 10632 10633 if (!mm) 10634 return; 10635 10636 preempt_disable(); 10637 rq = this_rq(); 10638 guard(rq_lock_irqsave)(rq); 10639 preempt_enable_no_resched(); /* holding spinlock */ 10640 WRITE_ONCE(t->mm_cid_active, 0); 10641 /* 10642 * Store t->mm_cid_active before loading per-mm/cpu cid. 10643 * Matches barrier in sched_mm_cid_remote_clear_old(). 10644 */ 10645 smp_mb(); 10646 mm_cid_put(mm); 10647 t->last_mm_cid = t->mm_cid = -1; 10648 } 10649 10650 void sched_mm_cid_after_execve(struct task_struct *t) 10651 { 10652 struct mm_struct *mm = t->mm; 10653 struct rq *rq; 10654 10655 if (!mm) 10656 return; 10657 10658 preempt_disable(); 10659 rq = this_rq(); 10660 scoped_guard (rq_lock_irqsave, rq) { 10661 preempt_enable_no_resched(); /* holding spinlock */ 10662 WRITE_ONCE(t->mm_cid_active, 1); 10663 /* 10664 * Store t->mm_cid_active before loading per-mm/cpu cid. 10665 * Matches barrier in sched_mm_cid_remote_clear_old(). 10666 */ 10667 smp_mb(); 10668 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm); 10669 } 10670 rseq_set_notify_resume(t); 10671 } 10672 10673 void sched_mm_cid_fork(struct task_struct *t) 10674 { 10675 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 10676 t->mm_cid_active = 1; 10677 } 10678 #endif 10679 10680 #ifdef CONFIG_SCHED_CLASS_EXT 10681 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 10682 struct sched_enq_and_set_ctx *ctx) 10683 { 10684 struct rq *rq = task_rq(p); 10685 10686 lockdep_assert_rq_held(rq); 10687 10688 *ctx = (struct sched_enq_and_set_ctx){ 10689 .p = p, 10690 .queue_flags = queue_flags, 10691 .queued = task_on_rq_queued(p), 10692 .running = task_current(rq, p), 10693 }; 10694 10695 update_rq_clock(rq); 10696 if (ctx->queued) 10697 dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK); 10698 if (ctx->running) 10699 put_prev_task(rq, p); 10700 } 10701 10702 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx) 10703 { 10704 struct rq *rq = task_rq(ctx->p); 10705 10706 lockdep_assert_rq_held(rq); 10707 10708 if (ctx->queued) 10709 enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK); 10710 if (ctx->running) 10711 set_next_task(rq, ctx->p); 10712 } 10713 #endif /* CONFIG_SCHED_CLASS_EXT */ 10714