1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 #include <asm/irq_regs.h> 80 #include <asm/mutex.h> 81 #ifdef CONFIG_PARAVIRT 82 #include <asm/paravirt.h> 83 #endif 84 85 #include "sched.h" 86 #include "../workqueue_internal.h" 87 #include "../smpboot.h" 88 89 #define CREATE_TRACE_POINTS 90 #include <trace/events/sched.h> 91 92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 93 { 94 unsigned long delta; 95 ktime_t soft, hard, now; 96 97 for (;;) { 98 if (hrtimer_active(period_timer)) 99 break; 100 101 now = hrtimer_cb_get_time(period_timer); 102 hrtimer_forward(period_timer, now, period); 103 104 soft = hrtimer_get_softexpires(period_timer); 105 hard = hrtimer_get_expires(period_timer); 106 delta = ktime_to_ns(ktime_sub(hard, soft)); 107 __hrtimer_start_range_ns(period_timer, soft, delta, 108 HRTIMER_MODE_ABS_PINNED, 0); 109 } 110 } 111 112 DEFINE_MUTEX(sched_domains_mutex); 113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 114 115 static void update_rq_clock_task(struct rq *rq, s64 delta); 116 117 void update_rq_clock(struct rq *rq) 118 { 119 s64 delta; 120 121 if (rq->skip_clock_update > 0) 122 return; 123 124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 125 rq->clock += delta; 126 update_rq_clock_task(rq, delta); 127 } 128 129 /* 130 * Debugging: various feature bits 131 */ 132 133 #define SCHED_FEAT(name, enabled) \ 134 (1UL << __SCHED_FEAT_##name) * enabled | 135 136 const_debug unsigned int sysctl_sched_features = 137 #include "features.h" 138 0; 139 140 #undef SCHED_FEAT 141 142 #ifdef CONFIG_SCHED_DEBUG 143 #define SCHED_FEAT(name, enabled) \ 144 #name , 145 146 static const char * const sched_feat_names[] = { 147 #include "features.h" 148 }; 149 150 #undef SCHED_FEAT 151 152 static int sched_feat_show(struct seq_file *m, void *v) 153 { 154 int i; 155 156 for (i = 0; i < __SCHED_FEAT_NR; i++) { 157 if (!(sysctl_sched_features & (1UL << i))) 158 seq_puts(m, "NO_"); 159 seq_printf(m, "%s ", sched_feat_names[i]); 160 } 161 seq_puts(m, "\n"); 162 163 return 0; 164 } 165 166 #ifdef HAVE_JUMP_LABEL 167 168 #define jump_label_key__true STATIC_KEY_INIT_TRUE 169 #define jump_label_key__false STATIC_KEY_INIT_FALSE 170 171 #define SCHED_FEAT(name, enabled) \ 172 jump_label_key__##enabled , 173 174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 175 #include "features.h" 176 }; 177 178 #undef SCHED_FEAT 179 180 static void sched_feat_disable(int i) 181 { 182 if (static_key_enabled(&sched_feat_keys[i])) 183 static_key_slow_dec(&sched_feat_keys[i]); 184 } 185 186 static void sched_feat_enable(int i) 187 { 188 if (!static_key_enabled(&sched_feat_keys[i])) 189 static_key_slow_inc(&sched_feat_keys[i]); 190 } 191 #else 192 static void sched_feat_disable(int i) { }; 193 static void sched_feat_enable(int i) { }; 194 #endif /* HAVE_JUMP_LABEL */ 195 196 static int sched_feat_set(char *cmp) 197 { 198 int i; 199 int neg = 0; 200 201 if (strncmp(cmp, "NO_", 3) == 0) { 202 neg = 1; 203 cmp += 3; 204 } 205 206 for (i = 0; i < __SCHED_FEAT_NR; i++) { 207 if (strcmp(cmp, sched_feat_names[i]) == 0) { 208 if (neg) { 209 sysctl_sched_features &= ~(1UL << i); 210 sched_feat_disable(i); 211 } else { 212 sysctl_sched_features |= (1UL << i); 213 sched_feat_enable(i); 214 } 215 break; 216 } 217 } 218 219 return i; 220 } 221 222 static ssize_t 223 sched_feat_write(struct file *filp, const char __user *ubuf, 224 size_t cnt, loff_t *ppos) 225 { 226 char buf[64]; 227 char *cmp; 228 int i; 229 230 if (cnt > 63) 231 cnt = 63; 232 233 if (copy_from_user(&buf, ubuf, cnt)) 234 return -EFAULT; 235 236 buf[cnt] = 0; 237 cmp = strstrip(buf); 238 239 i = sched_feat_set(cmp); 240 if (i == __SCHED_FEAT_NR) 241 return -EINVAL; 242 243 *ppos += cnt; 244 245 return cnt; 246 } 247 248 static int sched_feat_open(struct inode *inode, struct file *filp) 249 { 250 return single_open(filp, sched_feat_show, NULL); 251 } 252 253 static const struct file_operations sched_feat_fops = { 254 .open = sched_feat_open, 255 .write = sched_feat_write, 256 .read = seq_read, 257 .llseek = seq_lseek, 258 .release = single_release, 259 }; 260 261 static __init int sched_init_debug(void) 262 { 263 debugfs_create_file("sched_features", 0644, NULL, NULL, 264 &sched_feat_fops); 265 266 return 0; 267 } 268 late_initcall(sched_init_debug); 269 #endif /* CONFIG_SCHED_DEBUG */ 270 271 /* 272 * Number of tasks to iterate in a single balance run. 273 * Limited because this is done with IRQs disabled. 274 */ 275 const_debug unsigned int sysctl_sched_nr_migrate = 32; 276 277 /* 278 * period over which we average the RT time consumption, measured 279 * in ms. 280 * 281 * default: 1s 282 */ 283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 284 285 /* 286 * period over which we measure -rt task cpu usage in us. 287 * default: 1s 288 */ 289 unsigned int sysctl_sched_rt_period = 1000000; 290 291 __read_mostly int scheduler_running; 292 293 /* 294 * part of the period that we allow rt tasks to run in us. 295 * default: 0.95s 296 */ 297 int sysctl_sched_rt_runtime = 950000; 298 299 300 301 /* 302 * __task_rq_lock - lock the rq @p resides on. 303 */ 304 static inline struct rq *__task_rq_lock(struct task_struct *p) 305 __acquires(rq->lock) 306 { 307 struct rq *rq; 308 309 lockdep_assert_held(&p->pi_lock); 310 311 for (;;) { 312 rq = task_rq(p); 313 raw_spin_lock(&rq->lock); 314 if (likely(rq == task_rq(p))) 315 return rq; 316 raw_spin_unlock(&rq->lock); 317 } 318 } 319 320 /* 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 322 */ 323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 324 __acquires(p->pi_lock) 325 __acquires(rq->lock) 326 { 327 struct rq *rq; 328 329 for (;;) { 330 raw_spin_lock_irqsave(&p->pi_lock, *flags); 331 rq = task_rq(p); 332 raw_spin_lock(&rq->lock); 333 if (likely(rq == task_rq(p))) 334 return rq; 335 raw_spin_unlock(&rq->lock); 336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 337 } 338 } 339 340 static void __task_rq_unlock(struct rq *rq) 341 __releases(rq->lock) 342 { 343 raw_spin_unlock(&rq->lock); 344 } 345 346 static inline void 347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 348 __releases(rq->lock) 349 __releases(p->pi_lock) 350 { 351 raw_spin_unlock(&rq->lock); 352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 353 } 354 355 /* 356 * this_rq_lock - lock this runqueue and disable interrupts. 357 */ 358 static struct rq *this_rq_lock(void) 359 __acquires(rq->lock) 360 { 361 struct rq *rq; 362 363 local_irq_disable(); 364 rq = this_rq(); 365 raw_spin_lock(&rq->lock); 366 367 return rq; 368 } 369 370 #ifdef CONFIG_SCHED_HRTICK 371 /* 372 * Use HR-timers to deliver accurate preemption points. 373 * 374 * Its all a bit involved since we cannot program an hrt while holding the 375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a 376 * reschedule event. 377 * 378 * When we get rescheduled we reprogram the hrtick_timer outside of the 379 * rq->lock. 380 */ 381 382 static void hrtick_clear(struct rq *rq) 383 { 384 if (hrtimer_active(&rq->hrtick_timer)) 385 hrtimer_cancel(&rq->hrtick_timer); 386 } 387 388 /* 389 * High-resolution timer tick. 390 * Runs from hardirq context with interrupts disabled. 391 */ 392 static enum hrtimer_restart hrtick(struct hrtimer *timer) 393 { 394 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 395 396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 397 398 raw_spin_lock(&rq->lock); 399 update_rq_clock(rq); 400 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 401 raw_spin_unlock(&rq->lock); 402 403 return HRTIMER_NORESTART; 404 } 405 406 #ifdef CONFIG_SMP 407 /* 408 * called from hardirq (IPI) context 409 */ 410 static void __hrtick_start(void *arg) 411 { 412 struct rq *rq = arg; 413 414 raw_spin_lock(&rq->lock); 415 hrtimer_restart(&rq->hrtick_timer); 416 rq->hrtick_csd_pending = 0; 417 raw_spin_unlock(&rq->lock); 418 } 419 420 /* 421 * Called to set the hrtick timer state. 422 * 423 * called with rq->lock held and irqs disabled 424 */ 425 void hrtick_start(struct rq *rq, u64 delay) 426 { 427 struct hrtimer *timer = &rq->hrtick_timer; 428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 429 430 hrtimer_set_expires(timer, time); 431 432 if (rq == this_rq()) { 433 hrtimer_restart(timer); 434 } else if (!rq->hrtick_csd_pending) { 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); 436 rq->hrtick_csd_pending = 1; 437 } 438 } 439 440 static int 441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 442 { 443 int cpu = (int)(long)hcpu; 444 445 switch (action) { 446 case CPU_UP_CANCELED: 447 case CPU_UP_CANCELED_FROZEN: 448 case CPU_DOWN_PREPARE: 449 case CPU_DOWN_PREPARE_FROZEN: 450 case CPU_DEAD: 451 case CPU_DEAD_FROZEN: 452 hrtick_clear(cpu_rq(cpu)); 453 return NOTIFY_OK; 454 } 455 456 return NOTIFY_DONE; 457 } 458 459 static __init void init_hrtick(void) 460 { 461 hotcpu_notifier(hotplug_hrtick, 0); 462 } 463 #else 464 /* 465 * Called to set the hrtick timer state. 466 * 467 * called with rq->lock held and irqs disabled 468 */ 469 void hrtick_start(struct rq *rq, u64 delay) 470 { 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 472 HRTIMER_MODE_REL_PINNED, 0); 473 } 474 475 static inline void init_hrtick(void) 476 { 477 } 478 #endif /* CONFIG_SMP */ 479 480 static void init_rq_hrtick(struct rq *rq) 481 { 482 #ifdef CONFIG_SMP 483 rq->hrtick_csd_pending = 0; 484 485 rq->hrtick_csd.flags = 0; 486 rq->hrtick_csd.func = __hrtick_start; 487 rq->hrtick_csd.info = rq; 488 #endif 489 490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 491 rq->hrtick_timer.function = hrtick; 492 } 493 #else /* CONFIG_SCHED_HRTICK */ 494 static inline void hrtick_clear(struct rq *rq) 495 { 496 } 497 498 static inline void init_rq_hrtick(struct rq *rq) 499 { 500 } 501 502 static inline void init_hrtick(void) 503 { 504 } 505 #endif /* CONFIG_SCHED_HRTICK */ 506 507 /* 508 * resched_task - mark a task 'to be rescheduled now'. 509 * 510 * On UP this means the setting of the need_resched flag, on SMP it 511 * might also involve a cross-CPU call to trigger the scheduler on 512 * the target CPU. 513 */ 514 #ifdef CONFIG_SMP 515 void resched_task(struct task_struct *p) 516 { 517 int cpu; 518 519 assert_raw_spin_locked(&task_rq(p)->lock); 520 521 if (test_tsk_need_resched(p)) 522 return; 523 524 set_tsk_need_resched(p); 525 526 cpu = task_cpu(p); 527 if (cpu == smp_processor_id()) 528 return; 529 530 /* NEED_RESCHED must be visible before we test polling */ 531 smp_mb(); 532 if (!tsk_is_polling(p)) 533 smp_send_reschedule(cpu); 534 } 535 536 void resched_cpu(int cpu) 537 { 538 struct rq *rq = cpu_rq(cpu); 539 unsigned long flags; 540 541 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 542 return; 543 resched_task(cpu_curr(cpu)); 544 raw_spin_unlock_irqrestore(&rq->lock, flags); 545 } 546 547 #ifdef CONFIG_NO_HZ 548 /* 549 * In the semi idle case, use the nearest busy cpu for migrating timers 550 * from an idle cpu. This is good for power-savings. 551 * 552 * We don't do similar optimization for completely idle system, as 553 * selecting an idle cpu will add more delays to the timers than intended 554 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 555 */ 556 int get_nohz_timer_target(void) 557 { 558 int cpu = smp_processor_id(); 559 int i; 560 struct sched_domain *sd; 561 562 rcu_read_lock(); 563 for_each_domain(cpu, sd) { 564 for_each_cpu(i, sched_domain_span(sd)) { 565 if (!idle_cpu(i)) { 566 cpu = i; 567 goto unlock; 568 } 569 } 570 } 571 unlock: 572 rcu_read_unlock(); 573 return cpu; 574 } 575 /* 576 * When add_timer_on() enqueues a timer into the timer wheel of an 577 * idle CPU then this timer might expire before the next timer event 578 * which is scheduled to wake up that CPU. In case of a completely 579 * idle system the next event might even be infinite time into the 580 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 581 * leaves the inner idle loop so the newly added timer is taken into 582 * account when the CPU goes back to idle and evaluates the timer 583 * wheel for the next timer event. 584 */ 585 void wake_up_idle_cpu(int cpu) 586 { 587 struct rq *rq = cpu_rq(cpu); 588 589 if (cpu == smp_processor_id()) 590 return; 591 592 /* 593 * This is safe, as this function is called with the timer 594 * wheel base lock of (cpu) held. When the CPU is on the way 595 * to idle and has not yet set rq->curr to idle then it will 596 * be serialized on the timer wheel base lock and take the new 597 * timer into account automatically. 598 */ 599 if (rq->curr != rq->idle) 600 return; 601 602 /* 603 * We can set TIF_RESCHED on the idle task of the other CPU 604 * lockless. The worst case is that the other CPU runs the 605 * idle task through an additional NOOP schedule() 606 */ 607 set_tsk_need_resched(rq->idle); 608 609 /* NEED_RESCHED must be visible before we test polling */ 610 smp_mb(); 611 if (!tsk_is_polling(rq->idle)) 612 smp_send_reschedule(cpu); 613 } 614 615 static inline bool got_nohz_idle_kick(void) 616 { 617 int cpu = smp_processor_id(); 618 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 619 } 620 621 #else /* CONFIG_NO_HZ */ 622 623 static inline bool got_nohz_idle_kick(void) 624 { 625 return false; 626 } 627 628 #endif /* CONFIG_NO_HZ */ 629 630 void sched_avg_update(struct rq *rq) 631 { 632 s64 period = sched_avg_period(); 633 634 while ((s64)(rq->clock - rq->age_stamp) > period) { 635 /* 636 * Inline assembly required to prevent the compiler 637 * optimising this loop into a divmod call. 638 * See __iter_div_u64_rem() for another example of this. 639 */ 640 asm("" : "+rm" (rq->age_stamp)); 641 rq->age_stamp += period; 642 rq->rt_avg /= 2; 643 } 644 } 645 646 #else /* !CONFIG_SMP */ 647 void resched_task(struct task_struct *p) 648 { 649 assert_raw_spin_locked(&task_rq(p)->lock); 650 set_tsk_need_resched(p); 651 } 652 #endif /* CONFIG_SMP */ 653 654 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 655 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 656 /* 657 * Iterate task_group tree rooted at *from, calling @down when first entering a 658 * node and @up when leaving it for the final time. 659 * 660 * Caller must hold rcu_lock or sufficient equivalent. 661 */ 662 int walk_tg_tree_from(struct task_group *from, 663 tg_visitor down, tg_visitor up, void *data) 664 { 665 struct task_group *parent, *child; 666 int ret; 667 668 parent = from; 669 670 down: 671 ret = (*down)(parent, data); 672 if (ret) 673 goto out; 674 list_for_each_entry_rcu(child, &parent->children, siblings) { 675 parent = child; 676 goto down; 677 678 up: 679 continue; 680 } 681 ret = (*up)(parent, data); 682 if (ret || parent == from) 683 goto out; 684 685 child = parent; 686 parent = parent->parent; 687 if (parent) 688 goto up; 689 out: 690 return ret; 691 } 692 693 int tg_nop(struct task_group *tg, void *data) 694 { 695 return 0; 696 } 697 #endif 698 699 static void set_load_weight(struct task_struct *p) 700 { 701 int prio = p->static_prio - MAX_RT_PRIO; 702 struct load_weight *load = &p->se.load; 703 704 /* 705 * SCHED_IDLE tasks get minimal weight: 706 */ 707 if (p->policy == SCHED_IDLE) { 708 load->weight = scale_load(WEIGHT_IDLEPRIO); 709 load->inv_weight = WMULT_IDLEPRIO; 710 return; 711 } 712 713 load->weight = scale_load(prio_to_weight[prio]); 714 load->inv_weight = prio_to_wmult[prio]; 715 } 716 717 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 718 { 719 update_rq_clock(rq); 720 sched_info_queued(p); 721 p->sched_class->enqueue_task(rq, p, flags); 722 } 723 724 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 725 { 726 update_rq_clock(rq); 727 sched_info_dequeued(p); 728 p->sched_class->dequeue_task(rq, p, flags); 729 } 730 731 void activate_task(struct rq *rq, struct task_struct *p, int flags) 732 { 733 if (task_contributes_to_load(p)) 734 rq->nr_uninterruptible--; 735 736 enqueue_task(rq, p, flags); 737 } 738 739 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 740 { 741 if (task_contributes_to_load(p)) 742 rq->nr_uninterruptible++; 743 744 dequeue_task(rq, p, flags); 745 } 746 747 static void update_rq_clock_task(struct rq *rq, s64 delta) 748 { 749 /* 750 * In theory, the compile should just see 0 here, and optimize out the call 751 * to sched_rt_avg_update. But I don't trust it... 752 */ 753 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 754 s64 steal = 0, irq_delta = 0; 755 #endif 756 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 757 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 758 759 /* 760 * Since irq_time is only updated on {soft,}irq_exit, we might run into 761 * this case when a previous update_rq_clock() happened inside a 762 * {soft,}irq region. 763 * 764 * When this happens, we stop ->clock_task and only update the 765 * prev_irq_time stamp to account for the part that fit, so that a next 766 * update will consume the rest. This ensures ->clock_task is 767 * monotonic. 768 * 769 * It does however cause some slight miss-attribution of {soft,}irq 770 * time, a more accurate solution would be to update the irq_time using 771 * the current rq->clock timestamp, except that would require using 772 * atomic ops. 773 */ 774 if (irq_delta > delta) 775 irq_delta = delta; 776 777 rq->prev_irq_time += irq_delta; 778 delta -= irq_delta; 779 #endif 780 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 781 if (static_key_false((¶virt_steal_rq_enabled))) { 782 u64 st; 783 784 steal = paravirt_steal_clock(cpu_of(rq)); 785 steal -= rq->prev_steal_time_rq; 786 787 if (unlikely(steal > delta)) 788 steal = delta; 789 790 st = steal_ticks(steal); 791 steal = st * TICK_NSEC; 792 793 rq->prev_steal_time_rq += steal; 794 795 delta -= steal; 796 } 797 #endif 798 799 rq->clock_task += delta; 800 801 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 802 if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) 803 sched_rt_avg_update(rq, irq_delta + steal); 804 #endif 805 } 806 807 void sched_set_stop_task(int cpu, struct task_struct *stop) 808 { 809 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 810 struct task_struct *old_stop = cpu_rq(cpu)->stop; 811 812 if (stop) { 813 /* 814 * Make it appear like a SCHED_FIFO task, its something 815 * userspace knows about and won't get confused about. 816 * 817 * Also, it will make PI more or less work without too 818 * much confusion -- but then, stop work should not 819 * rely on PI working anyway. 820 */ 821 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 822 823 stop->sched_class = &stop_sched_class; 824 } 825 826 cpu_rq(cpu)->stop = stop; 827 828 if (old_stop) { 829 /* 830 * Reset it back to a normal scheduling class so that 831 * it can die in pieces. 832 */ 833 old_stop->sched_class = &rt_sched_class; 834 } 835 } 836 837 /* 838 * __normal_prio - return the priority that is based on the static prio 839 */ 840 static inline int __normal_prio(struct task_struct *p) 841 { 842 return p->static_prio; 843 } 844 845 /* 846 * Calculate the expected normal priority: i.e. priority 847 * without taking RT-inheritance into account. Might be 848 * boosted by interactivity modifiers. Changes upon fork, 849 * setprio syscalls, and whenever the interactivity 850 * estimator recalculates. 851 */ 852 static inline int normal_prio(struct task_struct *p) 853 { 854 int prio; 855 856 if (task_has_rt_policy(p)) 857 prio = MAX_RT_PRIO-1 - p->rt_priority; 858 else 859 prio = __normal_prio(p); 860 return prio; 861 } 862 863 /* 864 * Calculate the current priority, i.e. the priority 865 * taken into account by the scheduler. This value might 866 * be boosted by RT tasks, or might be boosted by 867 * interactivity modifiers. Will be RT if the task got 868 * RT-boosted. If not then it returns p->normal_prio. 869 */ 870 static int effective_prio(struct task_struct *p) 871 { 872 p->normal_prio = normal_prio(p); 873 /* 874 * If we are RT tasks or we were boosted to RT priority, 875 * keep the priority unchanged. Otherwise, update priority 876 * to the normal priority: 877 */ 878 if (!rt_prio(p->prio)) 879 return p->normal_prio; 880 return p->prio; 881 } 882 883 /** 884 * task_curr - is this task currently executing on a CPU? 885 * @p: the task in question. 886 */ 887 inline int task_curr(const struct task_struct *p) 888 { 889 return cpu_curr(task_cpu(p)) == p; 890 } 891 892 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 893 const struct sched_class *prev_class, 894 int oldprio) 895 { 896 if (prev_class != p->sched_class) { 897 if (prev_class->switched_from) 898 prev_class->switched_from(rq, p); 899 p->sched_class->switched_to(rq, p); 900 } else if (oldprio != p->prio) 901 p->sched_class->prio_changed(rq, p, oldprio); 902 } 903 904 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 905 { 906 const struct sched_class *class; 907 908 if (p->sched_class == rq->curr->sched_class) { 909 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 910 } else { 911 for_each_class(class) { 912 if (class == rq->curr->sched_class) 913 break; 914 if (class == p->sched_class) { 915 resched_task(rq->curr); 916 break; 917 } 918 } 919 } 920 921 /* 922 * A queue event has occurred, and we're going to schedule. In 923 * this case, we can save a useless back to back clock update. 924 */ 925 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 926 rq->skip_clock_update = 1; 927 } 928 929 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier); 930 931 void register_task_migration_notifier(struct notifier_block *n) 932 { 933 atomic_notifier_chain_register(&task_migration_notifier, n); 934 } 935 936 #ifdef CONFIG_SMP 937 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 938 { 939 #ifdef CONFIG_SCHED_DEBUG 940 /* 941 * We should never call set_task_cpu() on a blocked task, 942 * ttwu() will sort out the placement. 943 */ 944 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 945 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); 946 947 #ifdef CONFIG_LOCKDEP 948 /* 949 * The caller should hold either p->pi_lock or rq->lock, when changing 950 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 951 * 952 * sched_move_task() holds both and thus holding either pins the cgroup, 953 * see task_group(). 954 * 955 * Furthermore, all task_rq users should acquire both locks, see 956 * task_rq_lock(). 957 */ 958 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 959 lockdep_is_held(&task_rq(p)->lock))); 960 #endif 961 #endif 962 963 trace_sched_migrate_task(p, new_cpu); 964 965 if (task_cpu(p) != new_cpu) { 966 struct task_migration_notifier tmn; 967 968 if (p->sched_class->migrate_task_rq) 969 p->sched_class->migrate_task_rq(p, new_cpu); 970 p->se.nr_migrations++; 971 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 972 973 tmn.task = p; 974 tmn.from_cpu = task_cpu(p); 975 tmn.to_cpu = new_cpu; 976 977 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn); 978 } 979 980 __set_task_cpu(p, new_cpu); 981 } 982 983 struct migration_arg { 984 struct task_struct *task; 985 int dest_cpu; 986 }; 987 988 static int migration_cpu_stop(void *data); 989 990 /* 991 * wait_task_inactive - wait for a thread to unschedule. 992 * 993 * If @match_state is nonzero, it's the @p->state value just checked and 994 * not expected to change. If it changes, i.e. @p might have woken up, 995 * then return zero. When we succeed in waiting for @p to be off its CPU, 996 * we return a positive number (its total switch count). If a second call 997 * a short while later returns the same number, the caller can be sure that 998 * @p has remained unscheduled the whole time. 999 * 1000 * The caller must ensure that the task *will* unschedule sometime soon, 1001 * else this function might spin for a *long* time. This function can't 1002 * be called with interrupts off, or it may introduce deadlock with 1003 * smp_call_function() if an IPI is sent by the same process we are 1004 * waiting to become inactive. 1005 */ 1006 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1007 { 1008 unsigned long flags; 1009 int running, on_rq; 1010 unsigned long ncsw; 1011 struct rq *rq; 1012 1013 for (;;) { 1014 /* 1015 * We do the initial early heuristics without holding 1016 * any task-queue locks at all. We'll only try to get 1017 * the runqueue lock when things look like they will 1018 * work out! 1019 */ 1020 rq = task_rq(p); 1021 1022 /* 1023 * If the task is actively running on another CPU 1024 * still, just relax and busy-wait without holding 1025 * any locks. 1026 * 1027 * NOTE! Since we don't hold any locks, it's not 1028 * even sure that "rq" stays as the right runqueue! 1029 * But we don't care, since "task_running()" will 1030 * return false if the runqueue has changed and p 1031 * is actually now running somewhere else! 1032 */ 1033 while (task_running(rq, p)) { 1034 if (match_state && unlikely(p->state != match_state)) 1035 return 0; 1036 cpu_relax(); 1037 } 1038 1039 /* 1040 * Ok, time to look more closely! We need the rq 1041 * lock now, to be *sure*. If we're wrong, we'll 1042 * just go back and repeat. 1043 */ 1044 rq = task_rq_lock(p, &flags); 1045 trace_sched_wait_task(p); 1046 running = task_running(rq, p); 1047 on_rq = p->on_rq; 1048 ncsw = 0; 1049 if (!match_state || p->state == match_state) 1050 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1051 task_rq_unlock(rq, p, &flags); 1052 1053 /* 1054 * If it changed from the expected state, bail out now. 1055 */ 1056 if (unlikely(!ncsw)) 1057 break; 1058 1059 /* 1060 * Was it really running after all now that we 1061 * checked with the proper locks actually held? 1062 * 1063 * Oops. Go back and try again.. 1064 */ 1065 if (unlikely(running)) { 1066 cpu_relax(); 1067 continue; 1068 } 1069 1070 /* 1071 * It's not enough that it's not actively running, 1072 * it must be off the runqueue _entirely_, and not 1073 * preempted! 1074 * 1075 * So if it was still runnable (but just not actively 1076 * running right now), it's preempted, and we should 1077 * yield - it could be a while. 1078 */ 1079 if (unlikely(on_rq)) { 1080 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1081 1082 set_current_state(TASK_UNINTERRUPTIBLE); 1083 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1084 continue; 1085 } 1086 1087 /* 1088 * Ahh, all good. It wasn't running, and it wasn't 1089 * runnable, which means that it will never become 1090 * running in the future either. We're all done! 1091 */ 1092 break; 1093 } 1094 1095 return ncsw; 1096 } 1097 1098 /*** 1099 * kick_process - kick a running thread to enter/exit the kernel 1100 * @p: the to-be-kicked thread 1101 * 1102 * Cause a process which is running on another CPU to enter 1103 * kernel-mode, without any delay. (to get signals handled.) 1104 * 1105 * NOTE: this function doesn't have to take the runqueue lock, 1106 * because all it wants to ensure is that the remote task enters 1107 * the kernel. If the IPI races and the task has been migrated 1108 * to another CPU then no harm is done and the purpose has been 1109 * achieved as well. 1110 */ 1111 void kick_process(struct task_struct *p) 1112 { 1113 int cpu; 1114 1115 preempt_disable(); 1116 cpu = task_cpu(p); 1117 if ((cpu != smp_processor_id()) && task_curr(p)) 1118 smp_send_reschedule(cpu); 1119 preempt_enable(); 1120 } 1121 EXPORT_SYMBOL_GPL(kick_process); 1122 #endif /* CONFIG_SMP */ 1123 1124 #ifdef CONFIG_SMP 1125 /* 1126 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1127 */ 1128 static int select_fallback_rq(int cpu, struct task_struct *p) 1129 { 1130 int nid = cpu_to_node(cpu); 1131 const struct cpumask *nodemask = NULL; 1132 enum { cpuset, possible, fail } state = cpuset; 1133 int dest_cpu; 1134 1135 /* 1136 * If the node that the cpu is on has been offlined, cpu_to_node() 1137 * will return -1. There is no cpu on the node, and we should 1138 * select the cpu on the other node. 1139 */ 1140 if (nid != -1) { 1141 nodemask = cpumask_of_node(nid); 1142 1143 /* Look for allowed, online CPU in same node. */ 1144 for_each_cpu(dest_cpu, nodemask) { 1145 if (!cpu_online(dest_cpu)) 1146 continue; 1147 if (!cpu_active(dest_cpu)) 1148 continue; 1149 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1150 return dest_cpu; 1151 } 1152 } 1153 1154 for (;;) { 1155 /* Any allowed, online CPU? */ 1156 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1157 if (!cpu_online(dest_cpu)) 1158 continue; 1159 if (!cpu_active(dest_cpu)) 1160 continue; 1161 goto out; 1162 } 1163 1164 switch (state) { 1165 case cpuset: 1166 /* No more Mr. Nice Guy. */ 1167 cpuset_cpus_allowed_fallback(p); 1168 state = possible; 1169 break; 1170 1171 case possible: 1172 do_set_cpus_allowed(p, cpu_possible_mask); 1173 state = fail; 1174 break; 1175 1176 case fail: 1177 BUG(); 1178 break; 1179 } 1180 } 1181 1182 out: 1183 if (state != cpuset) { 1184 /* 1185 * Don't tell them about moving exiting tasks or 1186 * kernel threads (both mm NULL), since they never 1187 * leave kernel. 1188 */ 1189 if (p->mm && printk_ratelimit()) { 1190 printk_sched("process %d (%s) no longer affine to cpu%d\n", 1191 task_pid_nr(p), p->comm, cpu); 1192 } 1193 } 1194 1195 return dest_cpu; 1196 } 1197 1198 /* 1199 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1200 */ 1201 static inline 1202 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) 1203 { 1204 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); 1205 1206 /* 1207 * In order not to call set_task_cpu() on a blocking task we need 1208 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1209 * cpu. 1210 * 1211 * Since this is common to all placement strategies, this lives here. 1212 * 1213 * [ this allows ->select_task() to simply return task_cpu(p) and 1214 * not worry about this generic constraint ] 1215 */ 1216 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1217 !cpu_online(cpu))) 1218 cpu = select_fallback_rq(task_cpu(p), p); 1219 1220 return cpu; 1221 } 1222 1223 static void update_avg(u64 *avg, u64 sample) 1224 { 1225 s64 diff = sample - *avg; 1226 *avg += diff >> 3; 1227 } 1228 #endif 1229 1230 static void 1231 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1232 { 1233 #ifdef CONFIG_SCHEDSTATS 1234 struct rq *rq = this_rq(); 1235 1236 #ifdef CONFIG_SMP 1237 int this_cpu = smp_processor_id(); 1238 1239 if (cpu == this_cpu) { 1240 schedstat_inc(rq, ttwu_local); 1241 schedstat_inc(p, se.statistics.nr_wakeups_local); 1242 } else { 1243 struct sched_domain *sd; 1244 1245 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1246 rcu_read_lock(); 1247 for_each_domain(this_cpu, sd) { 1248 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1249 schedstat_inc(sd, ttwu_wake_remote); 1250 break; 1251 } 1252 } 1253 rcu_read_unlock(); 1254 } 1255 1256 if (wake_flags & WF_MIGRATED) 1257 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1258 1259 #endif /* CONFIG_SMP */ 1260 1261 schedstat_inc(rq, ttwu_count); 1262 schedstat_inc(p, se.statistics.nr_wakeups); 1263 1264 if (wake_flags & WF_SYNC) 1265 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1266 1267 #endif /* CONFIG_SCHEDSTATS */ 1268 } 1269 1270 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1271 { 1272 activate_task(rq, p, en_flags); 1273 p->on_rq = 1; 1274 1275 /* if a worker is waking up, notify workqueue */ 1276 if (p->flags & PF_WQ_WORKER) 1277 wq_worker_waking_up(p, cpu_of(rq)); 1278 } 1279 1280 /* 1281 * Mark the task runnable and perform wakeup-preemption. 1282 */ 1283 static void 1284 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1285 { 1286 check_preempt_curr(rq, p, wake_flags); 1287 trace_sched_wakeup(p, true); 1288 1289 p->state = TASK_RUNNING; 1290 #ifdef CONFIG_SMP 1291 if (p->sched_class->task_woken) 1292 p->sched_class->task_woken(rq, p); 1293 1294 if (rq->idle_stamp) { 1295 u64 delta = rq->clock - rq->idle_stamp; 1296 u64 max = 2*sysctl_sched_migration_cost; 1297 1298 if (delta > max) 1299 rq->avg_idle = max; 1300 else 1301 update_avg(&rq->avg_idle, delta); 1302 rq->idle_stamp = 0; 1303 } 1304 #endif 1305 } 1306 1307 static void 1308 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1309 { 1310 #ifdef CONFIG_SMP 1311 if (p->sched_contributes_to_load) 1312 rq->nr_uninterruptible--; 1313 #endif 1314 1315 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1316 ttwu_do_wakeup(rq, p, wake_flags); 1317 } 1318 1319 /* 1320 * Called in case the task @p isn't fully descheduled from its runqueue, 1321 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1322 * since all we need to do is flip p->state to TASK_RUNNING, since 1323 * the task is still ->on_rq. 1324 */ 1325 static int ttwu_remote(struct task_struct *p, int wake_flags) 1326 { 1327 struct rq *rq; 1328 int ret = 0; 1329 1330 rq = __task_rq_lock(p); 1331 if (p->on_rq) { 1332 ttwu_do_wakeup(rq, p, wake_flags); 1333 ret = 1; 1334 } 1335 __task_rq_unlock(rq); 1336 1337 return ret; 1338 } 1339 1340 #ifdef CONFIG_SMP 1341 static void sched_ttwu_pending(void) 1342 { 1343 struct rq *rq = this_rq(); 1344 struct llist_node *llist = llist_del_all(&rq->wake_list); 1345 struct task_struct *p; 1346 1347 raw_spin_lock(&rq->lock); 1348 1349 while (llist) { 1350 p = llist_entry(llist, struct task_struct, wake_entry); 1351 llist = llist_next(llist); 1352 ttwu_do_activate(rq, p, 0); 1353 } 1354 1355 raw_spin_unlock(&rq->lock); 1356 } 1357 1358 void scheduler_ipi(void) 1359 { 1360 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1361 return; 1362 1363 /* 1364 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1365 * traditionally all their work was done from the interrupt return 1366 * path. Now that we actually do some work, we need to make sure 1367 * we do call them. 1368 * 1369 * Some archs already do call them, luckily irq_enter/exit nest 1370 * properly. 1371 * 1372 * Arguably we should visit all archs and update all handlers, 1373 * however a fair share of IPIs are still resched only so this would 1374 * somewhat pessimize the simple resched case. 1375 */ 1376 irq_enter(); 1377 sched_ttwu_pending(); 1378 1379 /* 1380 * Check if someone kicked us for doing the nohz idle load balance. 1381 */ 1382 if (unlikely(got_nohz_idle_kick() && !need_resched())) { 1383 this_rq()->idle_balance = 1; 1384 raise_softirq_irqoff(SCHED_SOFTIRQ); 1385 } 1386 irq_exit(); 1387 } 1388 1389 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1390 { 1391 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) 1392 smp_send_reschedule(cpu); 1393 } 1394 1395 bool cpus_share_cache(int this_cpu, int that_cpu) 1396 { 1397 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1398 } 1399 #endif /* CONFIG_SMP */ 1400 1401 static void ttwu_queue(struct task_struct *p, int cpu) 1402 { 1403 struct rq *rq = cpu_rq(cpu); 1404 1405 #if defined(CONFIG_SMP) 1406 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1407 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1408 ttwu_queue_remote(p, cpu); 1409 return; 1410 } 1411 #endif 1412 1413 raw_spin_lock(&rq->lock); 1414 ttwu_do_activate(rq, p, 0); 1415 raw_spin_unlock(&rq->lock); 1416 } 1417 1418 /** 1419 * try_to_wake_up - wake up a thread 1420 * @p: the thread to be awakened 1421 * @state: the mask of task states that can be woken 1422 * @wake_flags: wake modifier flags (WF_*) 1423 * 1424 * Put it on the run-queue if it's not already there. The "current" 1425 * thread is always on the run-queue (except when the actual 1426 * re-schedule is in progress), and as such you're allowed to do 1427 * the simpler "current->state = TASK_RUNNING" to mark yourself 1428 * runnable without the overhead of this. 1429 * 1430 * Returns %true if @p was woken up, %false if it was already running 1431 * or @state didn't match @p's state. 1432 */ 1433 static int 1434 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1435 { 1436 unsigned long flags; 1437 int cpu, success = 0; 1438 1439 smp_wmb(); 1440 raw_spin_lock_irqsave(&p->pi_lock, flags); 1441 if (!(p->state & state)) 1442 goto out; 1443 1444 success = 1; /* we're going to change ->state */ 1445 cpu = task_cpu(p); 1446 1447 if (p->on_rq && ttwu_remote(p, wake_flags)) 1448 goto stat; 1449 1450 #ifdef CONFIG_SMP 1451 /* 1452 * If the owning (remote) cpu is still in the middle of schedule() with 1453 * this task as prev, wait until its done referencing the task. 1454 */ 1455 while (p->on_cpu) 1456 cpu_relax(); 1457 /* 1458 * Pairs with the smp_wmb() in finish_lock_switch(). 1459 */ 1460 smp_rmb(); 1461 1462 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1463 p->state = TASK_WAKING; 1464 1465 if (p->sched_class->task_waking) 1466 p->sched_class->task_waking(p); 1467 1468 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); 1469 if (task_cpu(p) != cpu) { 1470 wake_flags |= WF_MIGRATED; 1471 set_task_cpu(p, cpu); 1472 } 1473 #endif /* CONFIG_SMP */ 1474 1475 ttwu_queue(p, cpu); 1476 stat: 1477 ttwu_stat(p, cpu, wake_flags); 1478 out: 1479 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1480 1481 return success; 1482 } 1483 1484 /** 1485 * try_to_wake_up_local - try to wake up a local task with rq lock held 1486 * @p: the thread to be awakened 1487 * 1488 * Put @p on the run-queue if it's not already there. The caller must 1489 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1490 * the current task. 1491 */ 1492 static void try_to_wake_up_local(struct task_struct *p) 1493 { 1494 struct rq *rq = task_rq(p); 1495 1496 if (WARN_ON_ONCE(rq != this_rq()) || 1497 WARN_ON_ONCE(p == current)) 1498 return; 1499 1500 lockdep_assert_held(&rq->lock); 1501 1502 if (!raw_spin_trylock(&p->pi_lock)) { 1503 raw_spin_unlock(&rq->lock); 1504 raw_spin_lock(&p->pi_lock); 1505 raw_spin_lock(&rq->lock); 1506 } 1507 1508 if (!(p->state & TASK_NORMAL)) 1509 goto out; 1510 1511 if (!p->on_rq) 1512 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1513 1514 ttwu_do_wakeup(rq, p, 0); 1515 ttwu_stat(p, smp_processor_id(), 0); 1516 out: 1517 raw_spin_unlock(&p->pi_lock); 1518 } 1519 1520 /** 1521 * wake_up_process - Wake up a specific process 1522 * @p: The process to be woken up. 1523 * 1524 * Attempt to wake up the nominated process and move it to the set of runnable 1525 * processes. Returns 1 if the process was woken up, 0 if it was already 1526 * running. 1527 * 1528 * It may be assumed that this function implies a write memory barrier before 1529 * changing the task state if and only if any tasks are woken up. 1530 */ 1531 int wake_up_process(struct task_struct *p) 1532 { 1533 WARN_ON(task_is_stopped_or_traced(p)); 1534 return try_to_wake_up(p, TASK_NORMAL, 0); 1535 } 1536 EXPORT_SYMBOL(wake_up_process); 1537 1538 int wake_up_state(struct task_struct *p, unsigned int state) 1539 { 1540 return try_to_wake_up(p, state, 0); 1541 } 1542 1543 /* 1544 * Perform scheduler related setup for a newly forked process p. 1545 * p is forked by current. 1546 * 1547 * __sched_fork() is basic setup used by init_idle() too: 1548 */ 1549 static void __sched_fork(struct task_struct *p) 1550 { 1551 p->on_rq = 0; 1552 1553 p->se.on_rq = 0; 1554 p->se.exec_start = 0; 1555 p->se.sum_exec_runtime = 0; 1556 p->se.prev_sum_exec_runtime = 0; 1557 p->se.nr_migrations = 0; 1558 p->se.vruntime = 0; 1559 INIT_LIST_HEAD(&p->se.group_node); 1560 1561 /* 1562 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be 1563 * removed when useful for applications beyond shares distribution (e.g. 1564 * load-balance). 1565 */ 1566 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED) 1567 p->se.avg.runnable_avg_period = 0; 1568 p->se.avg.runnable_avg_sum = 0; 1569 #endif 1570 #ifdef CONFIG_SCHEDSTATS 1571 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1572 #endif 1573 1574 INIT_LIST_HEAD(&p->rt.run_list); 1575 1576 #ifdef CONFIG_PREEMPT_NOTIFIERS 1577 INIT_HLIST_HEAD(&p->preempt_notifiers); 1578 #endif 1579 1580 #ifdef CONFIG_NUMA_BALANCING 1581 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1582 p->mm->numa_next_scan = jiffies; 1583 p->mm->numa_next_reset = jiffies; 1584 p->mm->numa_scan_seq = 0; 1585 } 1586 1587 p->node_stamp = 0ULL; 1588 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1589 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0; 1590 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1591 p->numa_work.next = &p->numa_work; 1592 #endif /* CONFIG_NUMA_BALANCING */ 1593 } 1594 1595 #ifdef CONFIG_NUMA_BALANCING 1596 #ifdef CONFIG_SCHED_DEBUG 1597 void set_numabalancing_state(bool enabled) 1598 { 1599 if (enabled) 1600 sched_feat_set("NUMA"); 1601 else 1602 sched_feat_set("NO_NUMA"); 1603 } 1604 #else 1605 __read_mostly bool numabalancing_enabled; 1606 1607 void set_numabalancing_state(bool enabled) 1608 { 1609 numabalancing_enabled = enabled; 1610 } 1611 #endif /* CONFIG_SCHED_DEBUG */ 1612 #endif /* CONFIG_NUMA_BALANCING */ 1613 1614 /* 1615 * fork()/clone()-time setup: 1616 */ 1617 void sched_fork(struct task_struct *p) 1618 { 1619 unsigned long flags; 1620 int cpu = get_cpu(); 1621 1622 __sched_fork(p); 1623 /* 1624 * We mark the process as running here. This guarantees that 1625 * nobody will actually run it, and a signal or other external 1626 * event cannot wake it up and insert it on the runqueue either. 1627 */ 1628 p->state = TASK_RUNNING; 1629 1630 /* 1631 * Make sure we do not leak PI boosting priority to the child. 1632 */ 1633 p->prio = current->normal_prio; 1634 1635 /* 1636 * Revert to default priority/policy on fork if requested. 1637 */ 1638 if (unlikely(p->sched_reset_on_fork)) { 1639 if (task_has_rt_policy(p)) { 1640 p->policy = SCHED_NORMAL; 1641 p->static_prio = NICE_TO_PRIO(0); 1642 p->rt_priority = 0; 1643 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1644 p->static_prio = NICE_TO_PRIO(0); 1645 1646 p->prio = p->normal_prio = __normal_prio(p); 1647 set_load_weight(p); 1648 1649 /* 1650 * We don't need the reset flag anymore after the fork. It has 1651 * fulfilled its duty: 1652 */ 1653 p->sched_reset_on_fork = 0; 1654 } 1655 1656 if (!rt_prio(p->prio)) 1657 p->sched_class = &fair_sched_class; 1658 1659 if (p->sched_class->task_fork) 1660 p->sched_class->task_fork(p); 1661 1662 /* 1663 * The child is not yet in the pid-hash so no cgroup attach races, 1664 * and the cgroup is pinned to this child due to cgroup_fork() 1665 * is ran before sched_fork(). 1666 * 1667 * Silence PROVE_RCU. 1668 */ 1669 raw_spin_lock_irqsave(&p->pi_lock, flags); 1670 set_task_cpu(p, cpu); 1671 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1672 1673 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1674 if (likely(sched_info_on())) 1675 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1676 #endif 1677 #if defined(CONFIG_SMP) 1678 p->on_cpu = 0; 1679 #endif 1680 #ifdef CONFIG_PREEMPT_COUNT 1681 /* Want to start with kernel preemption disabled. */ 1682 task_thread_info(p)->preempt_count = 1; 1683 #endif 1684 #ifdef CONFIG_SMP 1685 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1686 #endif 1687 1688 put_cpu(); 1689 } 1690 1691 /* 1692 * wake_up_new_task - wake up a newly created task for the first time. 1693 * 1694 * This function will do some initial scheduler statistics housekeeping 1695 * that must be done for every newly created context, then puts the task 1696 * on the runqueue and wakes it. 1697 */ 1698 void wake_up_new_task(struct task_struct *p) 1699 { 1700 unsigned long flags; 1701 struct rq *rq; 1702 1703 raw_spin_lock_irqsave(&p->pi_lock, flags); 1704 #ifdef CONFIG_SMP 1705 /* 1706 * Fork balancing, do it here and not earlier because: 1707 * - cpus_allowed can change in the fork path 1708 * - any previously selected cpu might disappear through hotplug 1709 */ 1710 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0)); 1711 #endif 1712 1713 rq = __task_rq_lock(p); 1714 activate_task(rq, p, 0); 1715 p->on_rq = 1; 1716 trace_sched_wakeup_new(p, true); 1717 check_preempt_curr(rq, p, WF_FORK); 1718 #ifdef CONFIG_SMP 1719 if (p->sched_class->task_woken) 1720 p->sched_class->task_woken(rq, p); 1721 #endif 1722 task_rq_unlock(rq, p, &flags); 1723 } 1724 1725 #ifdef CONFIG_PREEMPT_NOTIFIERS 1726 1727 /** 1728 * preempt_notifier_register - tell me when current is being preempted & rescheduled 1729 * @notifier: notifier struct to register 1730 */ 1731 void preempt_notifier_register(struct preempt_notifier *notifier) 1732 { 1733 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 1734 } 1735 EXPORT_SYMBOL_GPL(preempt_notifier_register); 1736 1737 /** 1738 * preempt_notifier_unregister - no longer interested in preemption notifications 1739 * @notifier: notifier struct to unregister 1740 * 1741 * This is safe to call from within a preemption notifier. 1742 */ 1743 void preempt_notifier_unregister(struct preempt_notifier *notifier) 1744 { 1745 hlist_del(¬ifier->link); 1746 } 1747 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 1748 1749 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1750 { 1751 struct preempt_notifier *notifier; 1752 1753 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 1754 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 1755 } 1756 1757 static void 1758 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1759 struct task_struct *next) 1760 { 1761 struct preempt_notifier *notifier; 1762 1763 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 1764 notifier->ops->sched_out(notifier, next); 1765 } 1766 1767 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 1768 1769 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1770 { 1771 } 1772 1773 static void 1774 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1775 struct task_struct *next) 1776 { 1777 } 1778 1779 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 1780 1781 /** 1782 * prepare_task_switch - prepare to switch tasks 1783 * @rq: the runqueue preparing to switch 1784 * @prev: the current task that is being switched out 1785 * @next: the task we are going to switch to. 1786 * 1787 * This is called with the rq lock held and interrupts off. It must 1788 * be paired with a subsequent finish_task_switch after the context 1789 * switch. 1790 * 1791 * prepare_task_switch sets up locking and calls architecture specific 1792 * hooks. 1793 */ 1794 static inline void 1795 prepare_task_switch(struct rq *rq, struct task_struct *prev, 1796 struct task_struct *next) 1797 { 1798 trace_sched_switch(prev, next); 1799 sched_info_switch(prev, next); 1800 perf_event_task_sched_out(prev, next); 1801 fire_sched_out_preempt_notifiers(prev, next); 1802 prepare_lock_switch(rq, next); 1803 prepare_arch_switch(next); 1804 } 1805 1806 /** 1807 * finish_task_switch - clean up after a task-switch 1808 * @rq: runqueue associated with task-switch 1809 * @prev: the thread we just switched away from. 1810 * 1811 * finish_task_switch must be called after the context switch, paired 1812 * with a prepare_task_switch call before the context switch. 1813 * finish_task_switch will reconcile locking set up by prepare_task_switch, 1814 * and do any other architecture-specific cleanup actions. 1815 * 1816 * Note that we may have delayed dropping an mm in context_switch(). If 1817 * so, we finish that here outside of the runqueue lock. (Doing it 1818 * with the lock held can cause deadlocks; see schedule() for 1819 * details.) 1820 */ 1821 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 1822 __releases(rq->lock) 1823 { 1824 struct mm_struct *mm = rq->prev_mm; 1825 long prev_state; 1826 1827 rq->prev_mm = NULL; 1828 1829 /* 1830 * A task struct has one reference for the use as "current". 1831 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 1832 * schedule one last time. The schedule call will never return, and 1833 * the scheduled task must drop that reference. 1834 * The test for TASK_DEAD must occur while the runqueue locks are 1835 * still held, otherwise prev could be scheduled on another cpu, die 1836 * there before we look at prev->state, and then the reference would 1837 * be dropped twice. 1838 * Manfred Spraul <manfred@colorfullife.com> 1839 */ 1840 prev_state = prev->state; 1841 vtime_task_switch(prev); 1842 finish_arch_switch(prev); 1843 perf_event_task_sched_in(prev, current); 1844 finish_lock_switch(rq, prev); 1845 finish_arch_post_lock_switch(); 1846 1847 fire_sched_in_preempt_notifiers(current); 1848 if (mm) 1849 mmdrop(mm); 1850 if (unlikely(prev_state == TASK_DEAD)) { 1851 /* 1852 * Remove function-return probe instances associated with this 1853 * task and put them back on the free list. 1854 */ 1855 kprobe_flush_task(prev); 1856 put_task_struct(prev); 1857 } 1858 } 1859 1860 #ifdef CONFIG_SMP 1861 1862 /* assumes rq->lock is held */ 1863 static inline void pre_schedule(struct rq *rq, struct task_struct *prev) 1864 { 1865 if (prev->sched_class->pre_schedule) 1866 prev->sched_class->pre_schedule(rq, prev); 1867 } 1868 1869 /* rq->lock is NOT held, but preemption is disabled */ 1870 static inline void post_schedule(struct rq *rq) 1871 { 1872 if (rq->post_schedule) { 1873 unsigned long flags; 1874 1875 raw_spin_lock_irqsave(&rq->lock, flags); 1876 if (rq->curr->sched_class->post_schedule) 1877 rq->curr->sched_class->post_schedule(rq); 1878 raw_spin_unlock_irqrestore(&rq->lock, flags); 1879 1880 rq->post_schedule = 0; 1881 } 1882 } 1883 1884 #else 1885 1886 static inline void pre_schedule(struct rq *rq, struct task_struct *p) 1887 { 1888 } 1889 1890 static inline void post_schedule(struct rq *rq) 1891 { 1892 } 1893 1894 #endif 1895 1896 /** 1897 * schedule_tail - first thing a freshly forked thread must call. 1898 * @prev: the thread we just switched away from. 1899 */ 1900 asmlinkage void schedule_tail(struct task_struct *prev) 1901 __releases(rq->lock) 1902 { 1903 struct rq *rq = this_rq(); 1904 1905 finish_task_switch(rq, prev); 1906 1907 /* 1908 * FIXME: do we need to worry about rq being invalidated by the 1909 * task_switch? 1910 */ 1911 post_schedule(rq); 1912 1913 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 1914 /* In this case, finish_task_switch does not reenable preemption */ 1915 preempt_enable(); 1916 #endif 1917 if (current->set_child_tid) 1918 put_user(task_pid_vnr(current), current->set_child_tid); 1919 } 1920 1921 /* 1922 * context_switch - switch to the new MM and the new 1923 * thread's register state. 1924 */ 1925 static inline void 1926 context_switch(struct rq *rq, struct task_struct *prev, 1927 struct task_struct *next) 1928 { 1929 struct mm_struct *mm, *oldmm; 1930 1931 prepare_task_switch(rq, prev, next); 1932 1933 mm = next->mm; 1934 oldmm = prev->active_mm; 1935 /* 1936 * For paravirt, this is coupled with an exit in switch_to to 1937 * combine the page table reload and the switch backend into 1938 * one hypercall. 1939 */ 1940 arch_start_context_switch(prev); 1941 1942 if (!mm) { 1943 next->active_mm = oldmm; 1944 atomic_inc(&oldmm->mm_count); 1945 enter_lazy_tlb(oldmm, next); 1946 } else 1947 switch_mm(oldmm, mm, next); 1948 1949 if (!prev->mm) { 1950 prev->active_mm = NULL; 1951 rq->prev_mm = oldmm; 1952 } 1953 /* 1954 * Since the runqueue lock will be released by the next 1955 * task (which is an invalid locking op but in the case 1956 * of the scheduler it's an obvious special-case), so we 1957 * do an early lockdep release here: 1958 */ 1959 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 1960 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 1961 #endif 1962 1963 context_tracking_task_switch(prev, next); 1964 /* Here we just switch the register state and the stack. */ 1965 switch_to(prev, next, prev); 1966 1967 barrier(); 1968 /* 1969 * this_rq must be evaluated again because prev may have moved 1970 * CPUs since it called schedule(), thus the 'rq' on its stack 1971 * frame will be invalid. 1972 */ 1973 finish_task_switch(this_rq(), prev); 1974 } 1975 1976 /* 1977 * nr_running and nr_context_switches: 1978 * 1979 * externally visible scheduler statistics: current number of runnable 1980 * threads, total number of context switches performed since bootup. 1981 */ 1982 unsigned long nr_running(void) 1983 { 1984 unsigned long i, sum = 0; 1985 1986 for_each_online_cpu(i) 1987 sum += cpu_rq(i)->nr_running; 1988 1989 return sum; 1990 } 1991 1992 unsigned long long nr_context_switches(void) 1993 { 1994 int i; 1995 unsigned long long sum = 0; 1996 1997 for_each_possible_cpu(i) 1998 sum += cpu_rq(i)->nr_switches; 1999 2000 return sum; 2001 } 2002 2003 unsigned long nr_iowait(void) 2004 { 2005 unsigned long i, sum = 0; 2006 2007 for_each_possible_cpu(i) 2008 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2009 2010 return sum; 2011 } 2012 2013 unsigned long nr_iowait_cpu(int cpu) 2014 { 2015 struct rq *this = cpu_rq(cpu); 2016 return atomic_read(&this->nr_iowait); 2017 } 2018 2019 unsigned long this_cpu_load(void) 2020 { 2021 struct rq *this = this_rq(); 2022 return this->cpu_load[0]; 2023 } 2024 2025 2026 /* 2027 * Global load-average calculations 2028 * 2029 * We take a distributed and async approach to calculating the global load-avg 2030 * in order to minimize overhead. 2031 * 2032 * The global load average is an exponentially decaying average of nr_running + 2033 * nr_uninterruptible. 2034 * 2035 * Once every LOAD_FREQ: 2036 * 2037 * nr_active = 0; 2038 * for_each_possible_cpu(cpu) 2039 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible; 2040 * 2041 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n) 2042 * 2043 * Due to a number of reasons the above turns in the mess below: 2044 * 2045 * - for_each_possible_cpu() is prohibitively expensive on machines with 2046 * serious number of cpus, therefore we need to take a distributed approach 2047 * to calculating nr_active. 2048 * 2049 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0 2050 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) } 2051 * 2052 * So assuming nr_active := 0 when we start out -- true per definition, we 2053 * can simply take per-cpu deltas and fold those into a global accumulate 2054 * to obtain the same result. See calc_load_fold_active(). 2055 * 2056 * Furthermore, in order to avoid synchronizing all per-cpu delta folding 2057 * across the machine, we assume 10 ticks is sufficient time for every 2058 * cpu to have completed this task. 2059 * 2060 * This places an upper-bound on the IRQ-off latency of the machine. Then 2061 * again, being late doesn't loose the delta, just wrecks the sample. 2062 * 2063 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because 2064 * this would add another cross-cpu cacheline miss and atomic operation 2065 * to the wakeup path. Instead we increment on whatever cpu the task ran 2066 * when it went into uninterruptible state and decrement on whatever cpu 2067 * did the wakeup. This means that only the sum of nr_uninterruptible over 2068 * all cpus yields the correct result. 2069 * 2070 * This covers the NO_HZ=n code, for extra head-aches, see the comment below. 2071 */ 2072 2073 /* Variables and functions for calc_load */ 2074 static atomic_long_t calc_load_tasks; 2075 static unsigned long calc_load_update; 2076 unsigned long avenrun[3]; 2077 EXPORT_SYMBOL(avenrun); /* should be removed */ 2078 2079 /** 2080 * get_avenrun - get the load average array 2081 * @loads: pointer to dest load array 2082 * @offset: offset to add 2083 * @shift: shift count to shift the result left 2084 * 2085 * These values are estimates at best, so no need for locking. 2086 */ 2087 void get_avenrun(unsigned long *loads, unsigned long offset, int shift) 2088 { 2089 loads[0] = (avenrun[0] + offset) << shift; 2090 loads[1] = (avenrun[1] + offset) << shift; 2091 loads[2] = (avenrun[2] + offset) << shift; 2092 } 2093 2094 static long calc_load_fold_active(struct rq *this_rq) 2095 { 2096 long nr_active, delta = 0; 2097 2098 nr_active = this_rq->nr_running; 2099 nr_active += (long) this_rq->nr_uninterruptible; 2100 2101 if (nr_active != this_rq->calc_load_active) { 2102 delta = nr_active - this_rq->calc_load_active; 2103 this_rq->calc_load_active = nr_active; 2104 } 2105 2106 return delta; 2107 } 2108 2109 /* 2110 * a1 = a0 * e + a * (1 - e) 2111 */ 2112 static unsigned long 2113 calc_load(unsigned long load, unsigned long exp, unsigned long active) 2114 { 2115 load *= exp; 2116 load += active * (FIXED_1 - exp); 2117 load += 1UL << (FSHIFT - 1); 2118 return load >> FSHIFT; 2119 } 2120 2121 #ifdef CONFIG_NO_HZ 2122 /* 2123 * Handle NO_HZ for the global load-average. 2124 * 2125 * Since the above described distributed algorithm to compute the global 2126 * load-average relies on per-cpu sampling from the tick, it is affected by 2127 * NO_HZ. 2128 * 2129 * The basic idea is to fold the nr_active delta into a global idle-delta upon 2130 * entering NO_HZ state such that we can include this as an 'extra' cpu delta 2131 * when we read the global state. 2132 * 2133 * Obviously reality has to ruin such a delightfully simple scheme: 2134 * 2135 * - When we go NO_HZ idle during the window, we can negate our sample 2136 * contribution, causing under-accounting. 2137 * 2138 * We avoid this by keeping two idle-delta counters and flipping them 2139 * when the window starts, thus separating old and new NO_HZ load. 2140 * 2141 * The only trick is the slight shift in index flip for read vs write. 2142 * 2143 * 0s 5s 10s 15s 2144 * +10 +10 +10 +10 2145 * |-|-----------|-|-----------|-|-----------|-| 2146 * r:0 0 1 1 0 0 1 1 0 2147 * w:0 1 1 0 0 1 1 0 0 2148 * 2149 * This ensures we'll fold the old idle contribution in this window while 2150 * accumlating the new one. 2151 * 2152 * - When we wake up from NO_HZ idle during the window, we push up our 2153 * contribution, since we effectively move our sample point to a known 2154 * busy state. 2155 * 2156 * This is solved by pushing the window forward, and thus skipping the 2157 * sample, for this cpu (effectively using the idle-delta for this cpu which 2158 * was in effect at the time the window opened). This also solves the issue 2159 * of having to deal with a cpu having been in NOHZ idle for multiple 2160 * LOAD_FREQ intervals. 2161 * 2162 * When making the ILB scale, we should try to pull this in as well. 2163 */ 2164 static atomic_long_t calc_load_idle[2]; 2165 static int calc_load_idx; 2166 2167 static inline int calc_load_write_idx(void) 2168 { 2169 int idx = calc_load_idx; 2170 2171 /* 2172 * See calc_global_nohz(), if we observe the new index, we also 2173 * need to observe the new update time. 2174 */ 2175 smp_rmb(); 2176 2177 /* 2178 * If the folding window started, make sure we start writing in the 2179 * next idle-delta. 2180 */ 2181 if (!time_before(jiffies, calc_load_update)) 2182 idx++; 2183 2184 return idx & 1; 2185 } 2186 2187 static inline int calc_load_read_idx(void) 2188 { 2189 return calc_load_idx & 1; 2190 } 2191 2192 void calc_load_enter_idle(void) 2193 { 2194 struct rq *this_rq = this_rq(); 2195 long delta; 2196 2197 /* 2198 * We're going into NOHZ mode, if there's any pending delta, fold it 2199 * into the pending idle delta. 2200 */ 2201 delta = calc_load_fold_active(this_rq); 2202 if (delta) { 2203 int idx = calc_load_write_idx(); 2204 atomic_long_add(delta, &calc_load_idle[idx]); 2205 } 2206 } 2207 2208 void calc_load_exit_idle(void) 2209 { 2210 struct rq *this_rq = this_rq(); 2211 2212 /* 2213 * If we're still before the sample window, we're done. 2214 */ 2215 if (time_before(jiffies, this_rq->calc_load_update)) 2216 return; 2217 2218 /* 2219 * We woke inside or after the sample window, this means we're already 2220 * accounted through the nohz accounting, so skip the entire deal and 2221 * sync up for the next window. 2222 */ 2223 this_rq->calc_load_update = calc_load_update; 2224 if (time_before(jiffies, this_rq->calc_load_update + 10)) 2225 this_rq->calc_load_update += LOAD_FREQ; 2226 } 2227 2228 static long calc_load_fold_idle(void) 2229 { 2230 int idx = calc_load_read_idx(); 2231 long delta = 0; 2232 2233 if (atomic_long_read(&calc_load_idle[idx])) 2234 delta = atomic_long_xchg(&calc_load_idle[idx], 0); 2235 2236 return delta; 2237 } 2238 2239 /** 2240 * fixed_power_int - compute: x^n, in O(log n) time 2241 * 2242 * @x: base of the power 2243 * @frac_bits: fractional bits of @x 2244 * @n: power to raise @x to. 2245 * 2246 * By exploiting the relation between the definition of the natural power 2247 * function: x^n := x*x*...*x (x multiplied by itself for n times), and 2248 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, 2249 * (where: n_i \elem {0, 1}, the binary vector representing n), 2250 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is 2251 * of course trivially computable in O(log_2 n), the length of our binary 2252 * vector. 2253 */ 2254 static unsigned long 2255 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) 2256 { 2257 unsigned long result = 1UL << frac_bits; 2258 2259 if (n) for (;;) { 2260 if (n & 1) { 2261 result *= x; 2262 result += 1UL << (frac_bits - 1); 2263 result >>= frac_bits; 2264 } 2265 n >>= 1; 2266 if (!n) 2267 break; 2268 x *= x; 2269 x += 1UL << (frac_bits - 1); 2270 x >>= frac_bits; 2271 } 2272 2273 return result; 2274 } 2275 2276 /* 2277 * a1 = a0 * e + a * (1 - e) 2278 * 2279 * a2 = a1 * e + a * (1 - e) 2280 * = (a0 * e + a * (1 - e)) * e + a * (1 - e) 2281 * = a0 * e^2 + a * (1 - e) * (1 + e) 2282 * 2283 * a3 = a2 * e + a * (1 - e) 2284 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) 2285 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) 2286 * 2287 * ... 2288 * 2289 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] 2290 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) 2291 * = a0 * e^n + a * (1 - e^n) 2292 * 2293 * [1] application of the geometric series: 2294 * 2295 * n 1 - x^(n+1) 2296 * S_n := \Sum x^i = ------------- 2297 * i=0 1 - x 2298 */ 2299 static unsigned long 2300 calc_load_n(unsigned long load, unsigned long exp, 2301 unsigned long active, unsigned int n) 2302 { 2303 2304 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); 2305 } 2306 2307 /* 2308 * NO_HZ can leave us missing all per-cpu ticks calling 2309 * calc_load_account_active(), but since an idle CPU folds its delta into 2310 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold 2311 * in the pending idle delta if our idle period crossed a load cycle boundary. 2312 * 2313 * Once we've updated the global active value, we need to apply the exponential 2314 * weights adjusted to the number of cycles missed. 2315 */ 2316 static void calc_global_nohz(void) 2317 { 2318 long delta, active, n; 2319 2320 if (!time_before(jiffies, calc_load_update + 10)) { 2321 /* 2322 * Catch-up, fold however many we are behind still 2323 */ 2324 delta = jiffies - calc_load_update - 10; 2325 n = 1 + (delta / LOAD_FREQ); 2326 2327 active = atomic_long_read(&calc_load_tasks); 2328 active = active > 0 ? active * FIXED_1 : 0; 2329 2330 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); 2331 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); 2332 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); 2333 2334 calc_load_update += n * LOAD_FREQ; 2335 } 2336 2337 /* 2338 * Flip the idle index... 2339 * 2340 * Make sure we first write the new time then flip the index, so that 2341 * calc_load_write_idx() will see the new time when it reads the new 2342 * index, this avoids a double flip messing things up. 2343 */ 2344 smp_wmb(); 2345 calc_load_idx++; 2346 } 2347 #else /* !CONFIG_NO_HZ */ 2348 2349 static inline long calc_load_fold_idle(void) { return 0; } 2350 static inline void calc_global_nohz(void) { } 2351 2352 #endif /* CONFIG_NO_HZ */ 2353 2354 /* 2355 * calc_load - update the avenrun load estimates 10 ticks after the 2356 * CPUs have updated calc_load_tasks. 2357 */ 2358 void calc_global_load(unsigned long ticks) 2359 { 2360 long active, delta; 2361 2362 if (time_before(jiffies, calc_load_update + 10)) 2363 return; 2364 2365 /* 2366 * Fold the 'old' idle-delta to include all NO_HZ cpus. 2367 */ 2368 delta = calc_load_fold_idle(); 2369 if (delta) 2370 atomic_long_add(delta, &calc_load_tasks); 2371 2372 active = atomic_long_read(&calc_load_tasks); 2373 active = active > 0 ? active * FIXED_1 : 0; 2374 2375 avenrun[0] = calc_load(avenrun[0], EXP_1, active); 2376 avenrun[1] = calc_load(avenrun[1], EXP_5, active); 2377 avenrun[2] = calc_load(avenrun[2], EXP_15, active); 2378 2379 calc_load_update += LOAD_FREQ; 2380 2381 /* 2382 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk. 2383 */ 2384 calc_global_nohz(); 2385 } 2386 2387 /* 2388 * Called from update_cpu_load() to periodically update this CPU's 2389 * active count. 2390 */ 2391 static void calc_load_account_active(struct rq *this_rq) 2392 { 2393 long delta; 2394 2395 if (time_before(jiffies, this_rq->calc_load_update)) 2396 return; 2397 2398 delta = calc_load_fold_active(this_rq); 2399 if (delta) 2400 atomic_long_add(delta, &calc_load_tasks); 2401 2402 this_rq->calc_load_update += LOAD_FREQ; 2403 } 2404 2405 /* 2406 * End of global load-average stuff 2407 */ 2408 2409 /* 2410 * The exact cpuload at various idx values, calculated at every tick would be 2411 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load 2412 * 2413 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called 2414 * on nth tick when cpu may be busy, then we have: 2415 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2416 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load 2417 * 2418 * decay_load_missed() below does efficient calculation of 2419 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2420 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load 2421 * 2422 * The calculation is approximated on a 128 point scale. 2423 * degrade_zero_ticks is the number of ticks after which load at any 2424 * particular idx is approximated to be zero. 2425 * degrade_factor is a precomputed table, a row for each load idx. 2426 * Each column corresponds to degradation factor for a power of two ticks, 2427 * based on 128 point scale. 2428 * Example: 2429 * row 2, col 3 (=12) says that the degradation at load idx 2 after 2430 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). 2431 * 2432 * With this power of 2 load factors, we can degrade the load n times 2433 * by looking at 1 bits in n and doing as many mult/shift instead of 2434 * n mult/shifts needed by the exact degradation. 2435 */ 2436 #define DEGRADE_SHIFT 7 2437 static const unsigned char 2438 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 2439 static const unsigned char 2440 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 2441 {0, 0, 0, 0, 0, 0, 0, 0}, 2442 {64, 32, 8, 0, 0, 0, 0, 0}, 2443 {96, 72, 40, 12, 1, 0, 0}, 2444 {112, 98, 75, 43, 15, 1, 0}, 2445 {120, 112, 98, 76, 45, 16, 2} }; 2446 2447 /* 2448 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 2449 * would be when CPU is idle and so we just decay the old load without 2450 * adding any new load. 2451 */ 2452 static unsigned long 2453 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 2454 { 2455 int j = 0; 2456 2457 if (!missed_updates) 2458 return load; 2459 2460 if (missed_updates >= degrade_zero_ticks[idx]) 2461 return 0; 2462 2463 if (idx == 1) 2464 return load >> missed_updates; 2465 2466 while (missed_updates) { 2467 if (missed_updates % 2) 2468 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 2469 2470 missed_updates >>= 1; 2471 j++; 2472 } 2473 return load; 2474 } 2475 2476 /* 2477 * Update rq->cpu_load[] statistics. This function is usually called every 2478 * scheduler tick (TICK_NSEC). With tickless idle this will not be called 2479 * every tick. We fix it up based on jiffies. 2480 */ 2481 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load, 2482 unsigned long pending_updates) 2483 { 2484 int i, scale; 2485 2486 this_rq->nr_load_updates++; 2487 2488 /* Update our load: */ 2489 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 2490 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 2491 unsigned long old_load, new_load; 2492 2493 /* scale is effectively 1 << i now, and >> i divides by scale */ 2494 2495 old_load = this_rq->cpu_load[i]; 2496 old_load = decay_load_missed(old_load, pending_updates - 1, i); 2497 new_load = this_load; 2498 /* 2499 * Round up the averaging division if load is increasing. This 2500 * prevents us from getting stuck on 9 if the load is 10, for 2501 * example. 2502 */ 2503 if (new_load > old_load) 2504 new_load += scale - 1; 2505 2506 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 2507 } 2508 2509 sched_avg_update(this_rq); 2510 } 2511 2512 #ifdef CONFIG_NO_HZ 2513 /* 2514 * There is no sane way to deal with nohz on smp when using jiffies because the 2515 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 2516 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 2517 * 2518 * Therefore we cannot use the delta approach from the regular tick since that 2519 * would seriously skew the load calculation. However we'll make do for those 2520 * updates happening while idle (nohz_idle_balance) or coming out of idle 2521 * (tick_nohz_idle_exit). 2522 * 2523 * This means we might still be one tick off for nohz periods. 2524 */ 2525 2526 /* 2527 * Called from nohz_idle_balance() to update the load ratings before doing the 2528 * idle balance. 2529 */ 2530 void update_idle_cpu_load(struct rq *this_rq) 2531 { 2532 unsigned long curr_jiffies = ACCESS_ONCE(jiffies); 2533 unsigned long load = this_rq->load.weight; 2534 unsigned long pending_updates; 2535 2536 /* 2537 * bail if there's load or we're actually up-to-date. 2538 */ 2539 if (load || curr_jiffies == this_rq->last_load_update_tick) 2540 return; 2541 2542 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2543 this_rq->last_load_update_tick = curr_jiffies; 2544 2545 __update_cpu_load(this_rq, load, pending_updates); 2546 } 2547 2548 /* 2549 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed. 2550 */ 2551 void update_cpu_load_nohz(void) 2552 { 2553 struct rq *this_rq = this_rq(); 2554 unsigned long curr_jiffies = ACCESS_ONCE(jiffies); 2555 unsigned long pending_updates; 2556 2557 if (curr_jiffies == this_rq->last_load_update_tick) 2558 return; 2559 2560 raw_spin_lock(&this_rq->lock); 2561 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2562 if (pending_updates) { 2563 this_rq->last_load_update_tick = curr_jiffies; 2564 /* 2565 * We were idle, this means load 0, the current load might be 2566 * !0 due to remote wakeups and the sort. 2567 */ 2568 __update_cpu_load(this_rq, 0, pending_updates); 2569 } 2570 raw_spin_unlock(&this_rq->lock); 2571 } 2572 #endif /* CONFIG_NO_HZ */ 2573 2574 /* 2575 * Called from scheduler_tick() 2576 */ 2577 static void update_cpu_load_active(struct rq *this_rq) 2578 { 2579 /* 2580 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz(). 2581 */ 2582 this_rq->last_load_update_tick = jiffies; 2583 __update_cpu_load(this_rq, this_rq->load.weight, 1); 2584 2585 calc_load_account_active(this_rq); 2586 } 2587 2588 #ifdef CONFIG_SMP 2589 2590 /* 2591 * sched_exec - execve() is a valuable balancing opportunity, because at 2592 * this point the task has the smallest effective memory and cache footprint. 2593 */ 2594 void sched_exec(void) 2595 { 2596 struct task_struct *p = current; 2597 unsigned long flags; 2598 int dest_cpu; 2599 2600 raw_spin_lock_irqsave(&p->pi_lock, flags); 2601 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0); 2602 if (dest_cpu == smp_processor_id()) 2603 goto unlock; 2604 2605 if (likely(cpu_active(dest_cpu))) { 2606 struct migration_arg arg = { p, dest_cpu }; 2607 2608 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2609 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2610 return; 2611 } 2612 unlock: 2613 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2614 } 2615 2616 #endif 2617 2618 DEFINE_PER_CPU(struct kernel_stat, kstat); 2619 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2620 2621 EXPORT_PER_CPU_SYMBOL(kstat); 2622 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2623 2624 /* 2625 * Return any ns on the sched_clock that have not yet been accounted in 2626 * @p in case that task is currently running. 2627 * 2628 * Called with task_rq_lock() held on @rq. 2629 */ 2630 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2631 { 2632 u64 ns = 0; 2633 2634 if (task_current(rq, p)) { 2635 update_rq_clock(rq); 2636 ns = rq->clock_task - p->se.exec_start; 2637 if ((s64)ns < 0) 2638 ns = 0; 2639 } 2640 2641 return ns; 2642 } 2643 2644 unsigned long long task_delta_exec(struct task_struct *p) 2645 { 2646 unsigned long flags; 2647 struct rq *rq; 2648 u64 ns = 0; 2649 2650 rq = task_rq_lock(p, &flags); 2651 ns = do_task_delta_exec(p, rq); 2652 task_rq_unlock(rq, p, &flags); 2653 2654 return ns; 2655 } 2656 2657 /* 2658 * Return accounted runtime for the task. 2659 * In case the task is currently running, return the runtime plus current's 2660 * pending runtime that have not been accounted yet. 2661 */ 2662 unsigned long long task_sched_runtime(struct task_struct *p) 2663 { 2664 unsigned long flags; 2665 struct rq *rq; 2666 u64 ns = 0; 2667 2668 rq = task_rq_lock(p, &flags); 2669 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2670 task_rq_unlock(rq, p, &flags); 2671 2672 return ns; 2673 } 2674 2675 /* 2676 * This function gets called by the timer code, with HZ frequency. 2677 * We call it with interrupts disabled. 2678 */ 2679 void scheduler_tick(void) 2680 { 2681 int cpu = smp_processor_id(); 2682 struct rq *rq = cpu_rq(cpu); 2683 struct task_struct *curr = rq->curr; 2684 2685 sched_clock_tick(); 2686 2687 raw_spin_lock(&rq->lock); 2688 update_rq_clock(rq); 2689 update_cpu_load_active(rq); 2690 curr->sched_class->task_tick(rq, curr, 0); 2691 raw_spin_unlock(&rq->lock); 2692 2693 perf_event_task_tick(); 2694 2695 #ifdef CONFIG_SMP 2696 rq->idle_balance = idle_cpu(cpu); 2697 trigger_load_balance(rq, cpu); 2698 #endif 2699 } 2700 2701 notrace unsigned long get_parent_ip(unsigned long addr) 2702 { 2703 if (in_lock_functions(addr)) { 2704 addr = CALLER_ADDR2; 2705 if (in_lock_functions(addr)) 2706 addr = CALLER_ADDR3; 2707 } 2708 return addr; 2709 } 2710 2711 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2712 defined(CONFIG_PREEMPT_TRACER)) 2713 2714 void __kprobes add_preempt_count(int val) 2715 { 2716 #ifdef CONFIG_DEBUG_PREEMPT 2717 /* 2718 * Underflow? 2719 */ 2720 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2721 return; 2722 #endif 2723 preempt_count() += val; 2724 #ifdef CONFIG_DEBUG_PREEMPT 2725 /* 2726 * Spinlock count overflowing soon? 2727 */ 2728 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2729 PREEMPT_MASK - 10); 2730 #endif 2731 if (preempt_count() == val) 2732 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2733 } 2734 EXPORT_SYMBOL(add_preempt_count); 2735 2736 void __kprobes sub_preempt_count(int val) 2737 { 2738 #ifdef CONFIG_DEBUG_PREEMPT 2739 /* 2740 * Underflow? 2741 */ 2742 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2743 return; 2744 /* 2745 * Is the spinlock portion underflowing? 2746 */ 2747 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2748 !(preempt_count() & PREEMPT_MASK))) 2749 return; 2750 #endif 2751 2752 if (preempt_count() == val) 2753 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2754 preempt_count() -= val; 2755 } 2756 EXPORT_SYMBOL(sub_preempt_count); 2757 2758 #endif 2759 2760 /* 2761 * Print scheduling while atomic bug: 2762 */ 2763 static noinline void __schedule_bug(struct task_struct *prev) 2764 { 2765 if (oops_in_progress) 2766 return; 2767 2768 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2769 prev->comm, prev->pid, preempt_count()); 2770 2771 debug_show_held_locks(prev); 2772 print_modules(); 2773 if (irqs_disabled()) 2774 print_irqtrace_events(prev); 2775 dump_stack(); 2776 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2777 } 2778 2779 /* 2780 * Various schedule()-time debugging checks and statistics: 2781 */ 2782 static inline void schedule_debug(struct task_struct *prev) 2783 { 2784 /* 2785 * Test if we are atomic. Since do_exit() needs to call into 2786 * schedule() atomically, we ignore that path for now. 2787 * Otherwise, whine if we are scheduling when we should not be. 2788 */ 2789 if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) 2790 __schedule_bug(prev); 2791 rcu_sleep_check(); 2792 2793 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2794 2795 schedstat_inc(this_rq(), sched_count); 2796 } 2797 2798 static void put_prev_task(struct rq *rq, struct task_struct *prev) 2799 { 2800 if (prev->on_rq || rq->skip_clock_update < 0) 2801 update_rq_clock(rq); 2802 prev->sched_class->put_prev_task(rq, prev); 2803 } 2804 2805 /* 2806 * Pick up the highest-prio task: 2807 */ 2808 static inline struct task_struct * 2809 pick_next_task(struct rq *rq) 2810 { 2811 const struct sched_class *class; 2812 struct task_struct *p; 2813 2814 /* 2815 * Optimization: we know that if all tasks are in 2816 * the fair class we can call that function directly: 2817 */ 2818 if (likely(rq->nr_running == rq->cfs.h_nr_running)) { 2819 p = fair_sched_class.pick_next_task(rq); 2820 if (likely(p)) 2821 return p; 2822 } 2823 2824 for_each_class(class) { 2825 p = class->pick_next_task(rq); 2826 if (p) 2827 return p; 2828 } 2829 2830 BUG(); /* the idle class will always have a runnable task */ 2831 } 2832 2833 /* 2834 * __schedule() is the main scheduler function. 2835 * 2836 * The main means of driving the scheduler and thus entering this function are: 2837 * 2838 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2839 * 2840 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2841 * paths. For example, see arch/x86/entry_64.S. 2842 * 2843 * To drive preemption between tasks, the scheduler sets the flag in timer 2844 * interrupt handler scheduler_tick(). 2845 * 2846 * 3. Wakeups don't really cause entry into schedule(). They add a 2847 * task to the run-queue and that's it. 2848 * 2849 * Now, if the new task added to the run-queue preempts the current 2850 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2851 * called on the nearest possible occasion: 2852 * 2853 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2854 * 2855 * - in syscall or exception context, at the next outmost 2856 * preempt_enable(). (this might be as soon as the wake_up()'s 2857 * spin_unlock()!) 2858 * 2859 * - in IRQ context, return from interrupt-handler to 2860 * preemptible context 2861 * 2862 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2863 * then at the next: 2864 * 2865 * - cond_resched() call 2866 * - explicit schedule() call 2867 * - return from syscall or exception to user-space 2868 * - return from interrupt-handler to user-space 2869 */ 2870 static void __sched __schedule(void) 2871 { 2872 struct task_struct *prev, *next; 2873 unsigned long *switch_count; 2874 struct rq *rq; 2875 int cpu; 2876 2877 need_resched: 2878 preempt_disable(); 2879 cpu = smp_processor_id(); 2880 rq = cpu_rq(cpu); 2881 rcu_note_context_switch(cpu); 2882 prev = rq->curr; 2883 2884 schedule_debug(prev); 2885 2886 if (sched_feat(HRTICK)) 2887 hrtick_clear(rq); 2888 2889 raw_spin_lock_irq(&rq->lock); 2890 2891 switch_count = &prev->nivcsw; 2892 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2893 if (unlikely(signal_pending_state(prev->state, prev))) { 2894 prev->state = TASK_RUNNING; 2895 } else { 2896 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2897 prev->on_rq = 0; 2898 2899 /* 2900 * If a worker went to sleep, notify and ask workqueue 2901 * whether it wants to wake up a task to maintain 2902 * concurrency. 2903 */ 2904 if (prev->flags & PF_WQ_WORKER) { 2905 struct task_struct *to_wakeup; 2906 2907 to_wakeup = wq_worker_sleeping(prev, cpu); 2908 if (to_wakeup) 2909 try_to_wake_up_local(to_wakeup); 2910 } 2911 } 2912 switch_count = &prev->nvcsw; 2913 } 2914 2915 pre_schedule(rq, prev); 2916 2917 if (unlikely(!rq->nr_running)) 2918 idle_balance(cpu, rq); 2919 2920 put_prev_task(rq, prev); 2921 next = pick_next_task(rq); 2922 clear_tsk_need_resched(prev); 2923 rq->skip_clock_update = 0; 2924 2925 if (likely(prev != next)) { 2926 rq->nr_switches++; 2927 rq->curr = next; 2928 ++*switch_count; 2929 2930 context_switch(rq, prev, next); /* unlocks the rq */ 2931 /* 2932 * The context switch have flipped the stack from under us 2933 * and restored the local variables which were saved when 2934 * this task called schedule() in the past. prev == current 2935 * is still correct, but it can be moved to another cpu/rq. 2936 */ 2937 cpu = smp_processor_id(); 2938 rq = cpu_rq(cpu); 2939 } else 2940 raw_spin_unlock_irq(&rq->lock); 2941 2942 post_schedule(rq); 2943 2944 sched_preempt_enable_no_resched(); 2945 if (need_resched()) 2946 goto need_resched; 2947 } 2948 2949 static inline void sched_submit_work(struct task_struct *tsk) 2950 { 2951 if (!tsk->state || tsk_is_pi_blocked(tsk)) 2952 return; 2953 /* 2954 * If we are going to sleep and we have plugged IO queued, 2955 * make sure to submit it to avoid deadlocks. 2956 */ 2957 if (blk_needs_flush_plug(tsk)) 2958 blk_schedule_flush_plug(tsk); 2959 } 2960 2961 asmlinkage void __sched schedule(void) 2962 { 2963 struct task_struct *tsk = current; 2964 2965 sched_submit_work(tsk); 2966 __schedule(); 2967 } 2968 EXPORT_SYMBOL(schedule); 2969 2970 #ifdef CONFIG_CONTEXT_TRACKING 2971 asmlinkage void __sched schedule_user(void) 2972 { 2973 /* 2974 * If we come here after a random call to set_need_resched(), 2975 * or we have been woken up remotely but the IPI has not yet arrived, 2976 * we haven't yet exited the RCU idle mode. Do it here manually until 2977 * we find a better solution. 2978 */ 2979 user_exit(); 2980 schedule(); 2981 user_enter(); 2982 } 2983 #endif 2984 2985 /** 2986 * schedule_preempt_disabled - called with preemption disabled 2987 * 2988 * Returns with preemption disabled. Note: preempt_count must be 1 2989 */ 2990 void __sched schedule_preempt_disabled(void) 2991 { 2992 sched_preempt_enable_no_resched(); 2993 schedule(); 2994 preempt_disable(); 2995 } 2996 2997 #ifdef CONFIG_PREEMPT 2998 /* 2999 * this is the entry point to schedule() from in-kernel preemption 3000 * off of preempt_enable. Kernel preemptions off return from interrupt 3001 * occur there and call schedule directly. 3002 */ 3003 asmlinkage void __sched notrace preempt_schedule(void) 3004 { 3005 struct thread_info *ti = current_thread_info(); 3006 3007 /* 3008 * If there is a non-zero preempt_count or interrupts are disabled, 3009 * we do not want to preempt the current task. Just return.. 3010 */ 3011 if (likely(ti->preempt_count || irqs_disabled())) 3012 return; 3013 3014 do { 3015 add_preempt_count_notrace(PREEMPT_ACTIVE); 3016 __schedule(); 3017 sub_preempt_count_notrace(PREEMPT_ACTIVE); 3018 3019 /* 3020 * Check again in case we missed a preemption opportunity 3021 * between schedule and now. 3022 */ 3023 barrier(); 3024 } while (need_resched()); 3025 } 3026 EXPORT_SYMBOL(preempt_schedule); 3027 3028 /* 3029 * this is the entry point to schedule() from kernel preemption 3030 * off of irq context. 3031 * Note, that this is called and return with irqs disabled. This will 3032 * protect us against recursive calling from irq. 3033 */ 3034 asmlinkage void __sched preempt_schedule_irq(void) 3035 { 3036 struct thread_info *ti = current_thread_info(); 3037 enum ctx_state prev_state; 3038 3039 /* Catch callers which need to be fixed */ 3040 BUG_ON(ti->preempt_count || !irqs_disabled()); 3041 3042 prev_state = exception_enter(); 3043 3044 do { 3045 add_preempt_count(PREEMPT_ACTIVE); 3046 local_irq_enable(); 3047 __schedule(); 3048 local_irq_disable(); 3049 sub_preempt_count(PREEMPT_ACTIVE); 3050 3051 /* 3052 * Check again in case we missed a preemption opportunity 3053 * between schedule and now. 3054 */ 3055 barrier(); 3056 } while (need_resched()); 3057 3058 exception_exit(prev_state); 3059 } 3060 3061 #endif /* CONFIG_PREEMPT */ 3062 3063 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3064 void *key) 3065 { 3066 return try_to_wake_up(curr->private, mode, wake_flags); 3067 } 3068 EXPORT_SYMBOL(default_wake_function); 3069 3070 /* 3071 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 3072 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 3073 * number) then we wake all the non-exclusive tasks and one exclusive task. 3074 * 3075 * There are circumstances in which we can try to wake a task which has already 3076 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 3077 * zero in this (rare) case, and we handle it by continuing to scan the queue. 3078 */ 3079 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, 3080 int nr_exclusive, int wake_flags, void *key) 3081 { 3082 wait_queue_t *curr, *next; 3083 3084 list_for_each_entry_safe(curr, next, &q->task_list, task_list) { 3085 unsigned flags = curr->flags; 3086 3087 if (curr->func(curr, mode, wake_flags, key) && 3088 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 3089 break; 3090 } 3091 } 3092 3093 /** 3094 * __wake_up - wake up threads blocked on a waitqueue. 3095 * @q: the waitqueue 3096 * @mode: which threads 3097 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3098 * @key: is directly passed to the wakeup function 3099 * 3100 * It may be assumed that this function implies a write memory barrier before 3101 * changing the task state if and only if any tasks are woken up. 3102 */ 3103 void __wake_up(wait_queue_head_t *q, unsigned int mode, 3104 int nr_exclusive, void *key) 3105 { 3106 unsigned long flags; 3107 3108 spin_lock_irqsave(&q->lock, flags); 3109 __wake_up_common(q, mode, nr_exclusive, 0, key); 3110 spin_unlock_irqrestore(&q->lock, flags); 3111 } 3112 EXPORT_SYMBOL(__wake_up); 3113 3114 /* 3115 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 3116 */ 3117 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) 3118 { 3119 __wake_up_common(q, mode, nr, 0, NULL); 3120 } 3121 EXPORT_SYMBOL_GPL(__wake_up_locked); 3122 3123 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) 3124 { 3125 __wake_up_common(q, mode, 1, 0, key); 3126 } 3127 EXPORT_SYMBOL_GPL(__wake_up_locked_key); 3128 3129 /** 3130 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 3131 * @q: the waitqueue 3132 * @mode: which threads 3133 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3134 * @key: opaque value to be passed to wakeup targets 3135 * 3136 * The sync wakeup differs that the waker knows that it will schedule 3137 * away soon, so while the target thread will be woken up, it will not 3138 * be migrated to another CPU - ie. the two threads are 'synchronized' 3139 * with each other. This can prevent needless bouncing between CPUs. 3140 * 3141 * On UP it can prevent extra preemption. 3142 * 3143 * It may be assumed that this function implies a write memory barrier before 3144 * changing the task state if and only if any tasks are woken up. 3145 */ 3146 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, 3147 int nr_exclusive, void *key) 3148 { 3149 unsigned long flags; 3150 int wake_flags = WF_SYNC; 3151 3152 if (unlikely(!q)) 3153 return; 3154 3155 if (unlikely(!nr_exclusive)) 3156 wake_flags = 0; 3157 3158 spin_lock_irqsave(&q->lock, flags); 3159 __wake_up_common(q, mode, nr_exclusive, wake_flags, key); 3160 spin_unlock_irqrestore(&q->lock, flags); 3161 } 3162 EXPORT_SYMBOL_GPL(__wake_up_sync_key); 3163 3164 /* 3165 * __wake_up_sync - see __wake_up_sync_key() 3166 */ 3167 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) 3168 { 3169 __wake_up_sync_key(q, mode, nr_exclusive, NULL); 3170 } 3171 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 3172 3173 /** 3174 * complete: - signals a single thread waiting on this completion 3175 * @x: holds the state of this particular completion 3176 * 3177 * This will wake up a single thread waiting on this completion. Threads will be 3178 * awakened in the same order in which they were queued. 3179 * 3180 * See also complete_all(), wait_for_completion() and related routines. 3181 * 3182 * It may be assumed that this function implies a write memory barrier before 3183 * changing the task state if and only if any tasks are woken up. 3184 */ 3185 void complete(struct completion *x) 3186 { 3187 unsigned long flags; 3188 3189 spin_lock_irqsave(&x->wait.lock, flags); 3190 x->done++; 3191 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); 3192 spin_unlock_irqrestore(&x->wait.lock, flags); 3193 } 3194 EXPORT_SYMBOL(complete); 3195 3196 /** 3197 * complete_all: - signals all threads waiting on this completion 3198 * @x: holds the state of this particular completion 3199 * 3200 * This will wake up all threads waiting on this particular completion event. 3201 * 3202 * It may be assumed that this function implies a write memory barrier before 3203 * changing the task state if and only if any tasks are woken up. 3204 */ 3205 void complete_all(struct completion *x) 3206 { 3207 unsigned long flags; 3208 3209 spin_lock_irqsave(&x->wait.lock, flags); 3210 x->done += UINT_MAX/2; 3211 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); 3212 spin_unlock_irqrestore(&x->wait.lock, flags); 3213 } 3214 EXPORT_SYMBOL(complete_all); 3215 3216 static inline long __sched 3217 do_wait_for_common(struct completion *x, 3218 long (*action)(long), long timeout, int state) 3219 { 3220 if (!x->done) { 3221 DECLARE_WAITQUEUE(wait, current); 3222 3223 __add_wait_queue_tail_exclusive(&x->wait, &wait); 3224 do { 3225 if (signal_pending_state(state, current)) { 3226 timeout = -ERESTARTSYS; 3227 break; 3228 } 3229 __set_current_state(state); 3230 spin_unlock_irq(&x->wait.lock); 3231 timeout = action(timeout); 3232 spin_lock_irq(&x->wait.lock); 3233 } while (!x->done && timeout); 3234 __remove_wait_queue(&x->wait, &wait); 3235 if (!x->done) 3236 return timeout; 3237 } 3238 x->done--; 3239 return timeout ?: 1; 3240 } 3241 3242 static inline long __sched 3243 __wait_for_common(struct completion *x, 3244 long (*action)(long), long timeout, int state) 3245 { 3246 might_sleep(); 3247 3248 spin_lock_irq(&x->wait.lock); 3249 timeout = do_wait_for_common(x, action, timeout, state); 3250 spin_unlock_irq(&x->wait.lock); 3251 return timeout; 3252 } 3253 3254 static long __sched 3255 wait_for_common(struct completion *x, long timeout, int state) 3256 { 3257 return __wait_for_common(x, schedule_timeout, timeout, state); 3258 } 3259 3260 static long __sched 3261 wait_for_common_io(struct completion *x, long timeout, int state) 3262 { 3263 return __wait_for_common(x, io_schedule_timeout, timeout, state); 3264 } 3265 3266 /** 3267 * wait_for_completion: - waits for completion of a task 3268 * @x: holds the state of this particular completion 3269 * 3270 * This waits to be signaled for completion of a specific task. It is NOT 3271 * interruptible and there is no timeout. 3272 * 3273 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout 3274 * and interrupt capability. Also see complete(). 3275 */ 3276 void __sched wait_for_completion(struct completion *x) 3277 { 3278 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 3279 } 3280 EXPORT_SYMBOL(wait_for_completion); 3281 3282 /** 3283 * wait_for_completion_timeout: - waits for completion of a task (w/timeout) 3284 * @x: holds the state of this particular completion 3285 * @timeout: timeout value in jiffies 3286 * 3287 * This waits for either a completion of a specific task to be signaled or for a 3288 * specified timeout to expire. The timeout is in jiffies. It is not 3289 * interruptible. 3290 * 3291 * The return value is 0 if timed out, and positive (at least 1, or number of 3292 * jiffies left till timeout) if completed. 3293 */ 3294 unsigned long __sched 3295 wait_for_completion_timeout(struct completion *x, unsigned long timeout) 3296 { 3297 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); 3298 } 3299 EXPORT_SYMBOL(wait_for_completion_timeout); 3300 3301 /** 3302 * wait_for_completion_io: - waits for completion of a task 3303 * @x: holds the state of this particular completion 3304 * 3305 * This waits to be signaled for completion of a specific task. It is NOT 3306 * interruptible and there is no timeout. The caller is accounted as waiting 3307 * for IO. 3308 */ 3309 void __sched wait_for_completion_io(struct completion *x) 3310 { 3311 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 3312 } 3313 EXPORT_SYMBOL(wait_for_completion_io); 3314 3315 /** 3316 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout) 3317 * @x: holds the state of this particular completion 3318 * @timeout: timeout value in jiffies 3319 * 3320 * This waits for either a completion of a specific task to be signaled or for a 3321 * specified timeout to expire. The timeout is in jiffies. It is not 3322 * interruptible. The caller is accounted as waiting for IO. 3323 * 3324 * The return value is 0 if timed out, and positive (at least 1, or number of 3325 * jiffies left till timeout) if completed. 3326 */ 3327 unsigned long __sched 3328 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout) 3329 { 3330 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE); 3331 } 3332 EXPORT_SYMBOL(wait_for_completion_io_timeout); 3333 3334 /** 3335 * wait_for_completion_interruptible: - waits for completion of a task (w/intr) 3336 * @x: holds the state of this particular completion 3337 * 3338 * This waits for completion of a specific task to be signaled. It is 3339 * interruptible. 3340 * 3341 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3342 */ 3343 int __sched wait_for_completion_interruptible(struct completion *x) 3344 { 3345 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); 3346 if (t == -ERESTARTSYS) 3347 return t; 3348 return 0; 3349 } 3350 EXPORT_SYMBOL(wait_for_completion_interruptible); 3351 3352 /** 3353 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) 3354 * @x: holds the state of this particular completion 3355 * @timeout: timeout value in jiffies 3356 * 3357 * This waits for either a completion of a specific task to be signaled or for a 3358 * specified timeout to expire. It is interruptible. The timeout is in jiffies. 3359 * 3360 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3361 * positive (at least 1, or number of jiffies left till timeout) if completed. 3362 */ 3363 long __sched 3364 wait_for_completion_interruptible_timeout(struct completion *x, 3365 unsigned long timeout) 3366 { 3367 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); 3368 } 3369 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); 3370 3371 /** 3372 * wait_for_completion_killable: - waits for completion of a task (killable) 3373 * @x: holds the state of this particular completion 3374 * 3375 * This waits to be signaled for completion of a specific task. It can be 3376 * interrupted by a kill signal. 3377 * 3378 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3379 */ 3380 int __sched wait_for_completion_killable(struct completion *x) 3381 { 3382 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); 3383 if (t == -ERESTARTSYS) 3384 return t; 3385 return 0; 3386 } 3387 EXPORT_SYMBOL(wait_for_completion_killable); 3388 3389 /** 3390 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) 3391 * @x: holds the state of this particular completion 3392 * @timeout: timeout value in jiffies 3393 * 3394 * This waits for either a completion of a specific task to be 3395 * signaled or for a specified timeout to expire. It can be 3396 * interrupted by a kill signal. The timeout is in jiffies. 3397 * 3398 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3399 * positive (at least 1, or number of jiffies left till timeout) if completed. 3400 */ 3401 long __sched 3402 wait_for_completion_killable_timeout(struct completion *x, 3403 unsigned long timeout) 3404 { 3405 return wait_for_common(x, timeout, TASK_KILLABLE); 3406 } 3407 EXPORT_SYMBOL(wait_for_completion_killable_timeout); 3408 3409 /** 3410 * try_wait_for_completion - try to decrement a completion without blocking 3411 * @x: completion structure 3412 * 3413 * Returns: 0 if a decrement cannot be done without blocking 3414 * 1 if a decrement succeeded. 3415 * 3416 * If a completion is being used as a counting completion, 3417 * attempt to decrement the counter without blocking. This 3418 * enables us to avoid waiting if the resource the completion 3419 * is protecting is not available. 3420 */ 3421 bool try_wait_for_completion(struct completion *x) 3422 { 3423 unsigned long flags; 3424 int ret = 1; 3425 3426 spin_lock_irqsave(&x->wait.lock, flags); 3427 if (!x->done) 3428 ret = 0; 3429 else 3430 x->done--; 3431 spin_unlock_irqrestore(&x->wait.lock, flags); 3432 return ret; 3433 } 3434 EXPORT_SYMBOL(try_wait_for_completion); 3435 3436 /** 3437 * completion_done - Test to see if a completion has any waiters 3438 * @x: completion structure 3439 * 3440 * Returns: 0 if there are waiters (wait_for_completion() in progress) 3441 * 1 if there are no waiters. 3442 * 3443 */ 3444 bool completion_done(struct completion *x) 3445 { 3446 unsigned long flags; 3447 int ret = 1; 3448 3449 spin_lock_irqsave(&x->wait.lock, flags); 3450 if (!x->done) 3451 ret = 0; 3452 spin_unlock_irqrestore(&x->wait.lock, flags); 3453 return ret; 3454 } 3455 EXPORT_SYMBOL(completion_done); 3456 3457 static long __sched 3458 sleep_on_common(wait_queue_head_t *q, int state, long timeout) 3459 { 3460 unsigned long flags; 3461 wait_queue_t wait; 3462 3463 init_waitqueue_entry(&wait, current); 3464 3465 __set_current_state(state); 3466 3467 spin_lock_irqsave(&q->lock, flags); 3468 __add_wait_queue(q, &wait); 3469 spin_unlock(&q->lock); 3470 timeout = schedule_timeout(timeout); 3471 spin_lock_irq(&q->lock); 3472 __remove_wait_queue(q, &wait); 3473 spin_unlock_irqrestore(&q->lock, flags); 3474 3475 return timeout; 3476 } 3477 3478 void __sched interruptible_sleep_on(wait_queue_head_t *q) 3479 { 3480 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3481 } 3482 EXPORT_SYMBOL(interruptible_sleep_on); 3483 3484 long __sched 3485 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) 3486 { 3487 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); 3488 } 3489 EXPORT_SYMBOL(interruptible_sleep_on_timeout); 3490 3491 void __sched sleep_on(wait_queue_head_t *q) 3492 { 3493 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3494 } 3495 EXPORT_SYMBOL(sleep_on); 3496 3497 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) 3498 { 3499 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); 3500 } 3501 EXPORT_SYMBOL(sleep_on_timeout); 3502 3503 #ifdef CONFIG_RT_MUTEXES 3504 3505 /* 3506 * rt_mutex_setprio - set the current priority of a task 3507 * @p: task 3508 * @prio: prio value (kernel-internal form) 3509 * 3510 * This function changes the 'effective' priority of a task. It does 3511 * not touch ->normal_prio like __setscheduler(). 3512 * 3513 * Used by the rt_mutex code to implement priority inheritance logic. 3514 */ 3515 void rt_mutex_setprio(struct task_struct *p, int prio) 3516 { 3517 int oldprio, on_rq, running; 3518 struct rq *rq; 3519 const struct sched_class *prev_class; 3520 3521 BUG_ON(prio < 0 || prio > MAX_PRIO); 3522 3523 rq = __task_rq_lock(p); 3524 3525 /* 3526 * Idle task boosting is a nono in general. There is one 3527 * exception, when PREEMPT_RT and NOHZ is active: 3528 * 3529 * The idle task calls get_next_timer_interrupt() and holds 3530 * the timer wheel base->lock on the CPU and another CPU wants 3531 * to access the timer (probably to cancel it). We can safely 3532 * ignore the boosting request, as the idle CPU runs this code 3533 * with interrupts disabled and will complete the lock 3534 * protected section without being interrupted. So there is no 3535 * real need to boost. 3536 */ 3537 if (unlikely(p == rq->idle)) { 3538 WARN_ON(p != rq->curr); 3539 WARN_ON(p->pi_blocked_on); 3540 goto out_unlock; 3541 } 3542 3543 trace_sched_pi_setprio(p, prio); 3544 oldprio = p->prio; 3545 prev_class = p->sched_class; 3546 on_rq = p->on_rq; 3547 running = task_current(rq, p); 3548 if (on_rq) 3549 dequeue_task(rq, p, 0); 3550 if (running) 3551 p->sched_class->put_prev_task(rq, p); 3552 3553 if (rt_prio(prio)) 3554 p->sched_class = &rt_sched_class; 3555 else 3556 p->sched_class = &fair_sched_class; 3557 3558 p->prio = prio; 3559 3560 if (running) 3561 p->sched_class->set_curr_task(rq); 3562 if (on_rq) 3563 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); 3564 3565 check_class_changed(rq, p, prev_class, oldprio); 3566 out_unlock: 3567 __task_rq_unlock(rq); 3568 } 3569 #endif 3570 void set_user_nice(struct task_struct *p, long nice) 3571 { 3572 int old_prio, delta, on_rq; 3573 unsigned long flags; 3574 struct rq *rq; 3575 3576 if (TASK_NICE(p) == nice || nice < -20 || nice > 19) 3577 return; 3578 /* 3579 * We have to be careful, if called from sys_setpriority(), 3580 * the task might be in the middle of scheduling on another CPU. 3581 */ 3582 rq = task_rq_lock(p, &flags); 3583 /* 3584 * The RT priorities are set via sched_setscheduler(), but we still 3585 * allow the 'normal' nice value to be set - but as expected 3586 * it wont have any effect on scheduling until the task is 3587 * SCHED_FIFO/SCHED_RR: 3588 */ 3589 if (task_has_rt_policy(p)) { 3590 p->static_prio = NICE_TO_PRIO(nice); 3591 goto out_unlock; 3592 } 3593 on_rq = p->on_rq; 3594 if (on_rq) 3595 dequeue_task(rq, p, 0); 3596 3597 p->static_prio = NICE_TO_PRIO(nice); 3598 set_load_weight(p); 3599 old_prio = p->prio; 3600 p->prio = effective_prio(p); 3601 delta = p->prio - old_prio; 3602 3603 if (on_rq) { 3604 enqueue_task(rq, p, 0); 3605 /* 3606 * If the task increased its priority or is running and 3607 * lowered its priority, then reschedule its CPU: 3608 */ 3609 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3610 resched_task(rq->curr); 3611 } 3612 out_unlock: 3613 task_rq_unlock(rq, p, &flags); 3614 } 3615 EXPORT_SYMBOL(set_user_nice); 3616 3617 /* 3618 * can_nice - check if a task can reduce its nice value 3619 * @p: task 3620 * @nice: nice value 3621 */ 3622 int can_nice(const struct task_struct *p, const int nice) 3623 { 3624 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3625 int nice_rlim = 20 - nice; 3626 3627 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3628 capable(CAP_SYS_NICE)); 3629 } 3630 3631 #ifdef __ARCH_WANT_SYS_NICE 3632 3633 /* 3634 * sys_nice - change the priority of the current process. 3635 * @increment: priority increment 3636 * 3637 * sys_setpriority is a more generic, but much slower function that 3638 * does similar things. 3639 */ 3640 SYSCALL_DEFINE1(nice, int, increment) 3641 { 3642 long nice, retval; 3643 3644 /* 3645 * Setpriority might change our priority at the same moment. 3646 * We don't have to worry. Conceptually one call occurs first 3647 * and we have a single winner. 3648 */ 3649 if (increment < -40) 3650 increment = -40; 3651 if (increment > 40) 3652 increment = 40; 3653 3654 nice = TASK_NICE(current) + increment; 3655 if (nice < -20) 3656 nice = -20; 3657 if (nice > 19) 3658 nice = 19; 3659 3660 if (increment < 0 && !can_nice(current, nice)) 3661 return -EPERM; 3662 3663 retval = security_task_setnice(current, nice); 3664 if (retval) 3665 return retval; 3666 3667 set_user_nice(current, nice); 3668 return 0; 3669 } 3670 3671 #endif 3672 3673 /** 3674 * task_prio - return the priority value of a given task. 3675 * @p: the task in question. 3676 * 3677 * This is the priority value as seen by users in /proc. 3678 * RT tasks are offset by -200. Normal tasks are centered 3679 * around 0, value goes from -16 to +15. 3680 */ 3681 int task_prio(const struct task_struct *p) 3682 { 3683 return p->prio - MAX_RT_PRIO; 3684 } 3685 3686 /** 3687 * task_nice - return the nice value of a given task. 3688 * @p: the task in question. 3689 */ 3690 int task_nice(const struct task_struct *p) 3691 { 3692 return TASK_NICE(p); 3693 } 3694 EXPORT_SYMBOL(task_nice); 3695 3696 /** 3697 * idle_cpu - is a given cpu idle currently? 3698 * @cpu: the processor in question. 3699 */ 3700 int idle_cpu(int cpu) 3701 { 3702 struct rq *rq = cpu_rq(cpu); 3703 3704 if (rq->curr != rq->idle) 3705 return 0; 3706 3707 if (rq->nr_running) 3708 return 0; 3709 3710 #ifdef CONFIG_SMP 3711 if (!llist_empty(&rq->wake_list)) 3712 return 0; 3713 #endif 3714 3715 return 1; 3716 } 3717 3718 /** 3719 * idle_task - return the idle task for a given cpu. 3720 * @cpu: the processor in question. 3721 */ 3722 struct task_struct *idle_task(int cpu) 3723 { 3724 return cpu_rq(cpu)->idle; 3725 } 3726 3727 /** 3728 * find_process_by_pid - find a process with a matching PID value. 3729 * @pid: the pid in question. 3730 */ 3731 static struct task_struct *find_process_by_pid(pid_t pid) 3732 { 3733 return pid ? find_task_by_vpid(pid) : current; 3734 } 3735 3736 /* Actually do priority change: must hold rq lock. */ 3737 static void 3738 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) 3739 { 3740 p->policy = policy; 3741 p->rt_priority = prio; 3742 p->normal_prio = normal_prio(p); 3743 /* we are holding p->pi_lock already */ 3744 p->prio = rt_mutex_getprio(p); 3745 if (rt_prio(p->prio)) 3746 p->sched_class = &rt_sched_class; 3747 else 3748 p->sched_class = &fair_sched_class; 3749 set_load_weight(p); 3750 } 3751 3752 /* 3753 * check the target process has a UID that matches the current process's 3754 */ 3755 static bool check_same_owner(struct task_struct *p) 3756 { 3757 const struct cred *cred = current_cred(), *pcred; 3758 bool match; 3759 3760 rcu_read_lock(); 3761 pcred = __task_cred(p); 3762 match = (uid_eq(cred->euid, pcred->euid) || 3763 uid_eq(cred->euid, pcred->uid)); 3764 rcu_read_unlock(); 3765 return match; 3766 } 3767 3768 static int __sched_setscheduler(struct task_struct *p, int policy, 3769 const struct sched_param *param, bool user) 3770 { 3771 int retval, oldprio, oldpolicy = -1, on_rq, running; 3772 unsigned long flags; 3773 const struct sched_class *prev_class; 3774 struct rq *rq; 3775 int reset_on_fork; 3776 3777 /* may grab non-irq protected spin_locks */ 3778 BUG_ON(in_interrupt()); 3779 recheck: 3780 /* double check policy once rq lock held */ 3781 if (policy < 0) { 3782 reset_on_fork = p->sched_reset_on_fork; 3783 policy = oldpolicy = p->policy; 3784 } else { 3785 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); 3786 policy &= ~SCHED_RESET_ON_FORK; 3787 3788 if (policy != SCHED_FIFO && policy != SCHED_RR && 3789 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3790 policy != SCHED_IDLE) 3791 return -EINVAL; 3792 } 3793 3794 /* 3795 * Valid priorities for SCHED_FIFO and SCHED_RR are 3796 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3797 * SCHED_BATCH and SCHED_IDLE is 0. 3798 */ 3799 if (param->sched_priority < 0 || 3800 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || 3801 (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) 3802 return -EINVAL; 3803 if (rt_policy(policy) != (param->sched_priority != 0)) 3804 return -EINVAL; 3805 3806 /* 3807 * Allow unprivileged RT tasks to decrease priority: 3808 */ 3809 if (user && !capable(CAP_SYS_NICE)) { 3810 if (rt_policy(policy)) { 3811 unsigned long rlim_rtprio = 3812 task_rlimit(p, RLIMIT_RTPRIO); 3813 3814 /* can't set/change the rt policy */ 3815 if (policy != p->policy && !rlim_rtprio) 3816 return -EPERM; 3817 3818 /* can't increase priority */ 3819 if (param->sched_priority > p->rt_priority && 3820 param->sched_priority > rlim_rtprio) 3821 return -EPERM; 3822 } 3823 3824 /* 3825 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3826 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3827 */ 3828 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3829 if (!can_nice(p, TASK_NICE(p))) 3830 return -EPERM; 3831 } 3832 3833 /* can't change other user's priorities */ 3834 if (!check_same_owner(p)) 3835 return -EPERM; 3836 3837 /* Normal users shall not reset the sched_reset_on_fork flag */ 3838 if (p->sched_reset_on_fork && !reset_on_fork) 3839 return -EPERM; 3840 } 3841 3842 if (user) { 3843 retval = security_task_setscheduler(p); 3844 if (retval) 3845 return retval; 3846 } 3847 3848 /* 3849 * make sure no PI-waiters arrive (or leave) while we are 3850 * changing the priority of the task: 3851 * 3852 * To be able to change p->policy safely, the appropriate 3853 * runqueue lock must be held. 3854 */ 3855 rq = task_rq_lock(p, &flags); 3856 3857 /* 3858 * Changing the policy of the stop threads its a very bad idea 3859 */ 3860 if (p == rq->stop) { 3861 task_rq_unlock(rq, p, &flags); 3862 return -EINVAL; 3863 } 3864 3865 /* 3866 * If not changing anything there's no need to proceed further: 3867 */ 3868 if (unlikely(policy == p->policy && (!rt_policy(policy) || 3869 param->sched_priority == p->rt_priority))) { 3870 task_rq_unlock(rq, p, &flags); 3871 return 0; 3872 } 3873 3874 #ifdef CONFIG_RT_GROUP_SCHED 3875 if (user) { 3876 /* 3877 * Do not allow realtime tasks into groups that have no runtime 3878 * assigned. 3879 */ 3880 if (rt_bandwidth_enabled() && rt_policy(policy) && 3881 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3882 !task_group_is_autogroup(task_group(p))) { 3883 task_rq_unlock(rq, p, &flags); 3884 return -EPERM; 3885 } 3886 } 3887 #endif 3888 3889 /* recheck policy now with rq lock held */ 3890 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3891 policy = oldpolicy = -1; 3892 task_rq_unlock(rq, p, &flags); 3893 goto recheck; 3894 } 3895 on_rq = p->on_rq; 3896 running = task_current(rq, p); 3897 if (on_rq) 3898 dequeue_task(rq, p, 0); 3899 if (running) 3900 p->sched_class->put_prev_task(rq, p); 3901 3902 p->sched_reset_on_fork = reset_on_fork; 3903 3904 oldprio = p->prio; 3905 prev_class = p->sched_class; 3906 __setscheduler(rq, p, policy, param->sched_priority); 3907 3908 if (running) 3909 p->sched_class->set_curr_task(rq); 3910 if (on_rq) 3911 enqueue_task(rq, p, 0); 3912 3913 check_class_changed(rq, p, prev_class, oldprio); 3914 task_rq_unlock(rq, p, &flags); 3915 3916 rt_mutex_adjust_pi(p); 3917 3918 return 0; 3919 } 3920 3921 /** 3922 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3923 * @p: the task in question. 3924 * @policy: new policy. 3925 * @param: structure containing the new RT priority. 3926 * 3927 * NOTE that the task may be already dead. 3928 */ 3929 int sched_setscheduler(struct task_struct *p, int policy, 3930 const struct sched_param *param) 3931 { 3932 return __sched_setscheduler(p, policy, param, true); 3933 } 3934 EXPORT_SYMBOL_GPL(sched_setscheduler); 3935 3936 /** 3937 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3938 * @p: the task in question. 3939 * @policy: new policy. 3940 * @param: structure containing the new RT priority. 3941 * 3942 * Just like sched_setscheduler, only don't bother checking if the 3943 * current context has permission. For example, this is needed in 3944 * stop_machine(): we create temporary high priority worker threads, 3945 * but our caller might not have that capability. 3946 */ 3947 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 3948 const struct sched_param *param) 3949 { 3950 return __sched_setscheduler(p, policy, param, false); 3951 } 3952 3953 static int 3954 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 3955 { 3956 struct sched_param lparam; 3957 struct task_struct *p; 3958 int retval; 3959 3960 if (!param || pid < 0) 3961 return -EINVAL; 3962 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 3963 return -EFAULT; 3964 3965 rcu_read_lock(); 3966 retval = -ESRCH; 3967 p = find_process_by_pid(pid); 3968 if (p != NULL) 3969 retval = sched_setscheduler(p, policy, &lparam); 3970 rcu_read_unlock(); 3971 3972 return retval; 3973 } 3974 3975 /** 3976 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 3977 * @pid: the pid in question. 3978 * @policy: new policy. 3979 * @param: structure containing the new RT priority. 3980 */ 3981 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 3982 struct sched_param __user *, param) 3983 { 3984 /* negative values for policy are not valid */ 3985 if (policy < 0) 3986 return -EINVAL; 3987 3988 return do_sched_setscheduler(pid, policy, param); 3989 } 3990 3991 /** 3992 * sys_sched_setparam - set/change the RT priority of a thread 3993 * @pid: the pid in question. 3994 * @param: structure containing the new RT priority. 3995 */ 3996 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 3997 { 3998 return do_sched_setscheduler(pid, -1, param); 3999 } 4000 4001 /** 4002 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4003 * @pid: the pid in question. 4004 */ 4005 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4006 { 4007 struct task_struct *p; 4008 int retval; 4009 4010 if (pid < 0) 4011 return -EINVAL; 4012 4013 retval = -ESRCH; 4014 rcu_read_lock(); 4015 p = find_process_by_pid(pid); 4016 if (p) { 4017 retval = security_task_getscheduler(p); 4018 if (!retval) 4019 retval = p->policy 4020 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4021 } 4022 rcu_read_unlock(); 4023 return retval; 4024 } 4025 4026 /** 4027 * sys_sched_getparam - get the RT priority of a thread 4028 * @pid: the pid in question. 4029 * @param: structure containing the RT priority. 4030 */ 4031 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4032 { 4033 struct sched_param lp; 4034 struct task_struct *p; 4035 int retval; 4036 4037 if (!param || pid < 0) 4038 return -EINVAL; 4039 4040 rcu_read_lock(); 4041 p = find_process_by_pid(pid); 4042 retval = -ESRCH; 4043 if (!p) 4044 goto out_unlock; 4045 4046 retval = security_task_getscheduler(p); 4047 if (retval) 4048 goto out_unlock; 4049 4050 lp.sched_priority = p->rt_priority; 4051 rcu_read_unlock(); 4052 4053 /* 4054 * This one might sleep, we cannot do it with a spinlock held ... 4055 */ 4056 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4057 4058 return retval; 4059 4060 out_unlock: 4061 rcu_read_unlock(); 4062 return retval; 4063 } 4064 4065 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4066 { 4067 cpumask_var_t cpus_allowed, new_mask; 4068 struct task_struct *p; 4069 int retval; 4070 4071 get_online_cpus(); 4072 rcu_read_lock(); 4073 4074 p = find_process_by_pid(pid); 4075 if (!p) { 4076 rcu_read_unlock(); 4077 put_online_cpus(); 4078 return -ESRCH; 4079 } 4080 4081 /* Prevent p going away */ 4082 get_task_struct(p); 4083 rcu_read_unlock(); 4084 4085 if (p->flags & PF_NO_SETAFFINITY) { 4086 retval = -EINVAL; 4087 goto out_put_task; 4088 } 4089 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4090 retval = -ENOMEM; 4091 goto out_put_task; 4092 } 4093 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4094 retval = -ENOMEM; 4095 goto out_free_cpus_allowed; 4096 } 4097 retval = -EPERM; 4098 if (!check_same_owner(p)) { 4099 rcu_read_lock(); 4100 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4101 rcu_read_unlock(); 4102 goto out_unlock; 4103 } 4104 rcu_read_unlock(); 4105 } 4106 4107 retval = security_task_setscheduler(p); 4108 if (retval) 4109 goto out_unlock; 4110 4111 cpuset_cpus_allowed(p, cpus_allowed); 4112 cpumask_and(new_mask, in_mask, cpus_allowed); 4113 again: 4114 retval = set_cpus_allowed_ptr(p, new_mask); 4115 4116 if (!retval) { 4117 cpuset_cpus_allowed(p, cpus_allowed); 4118 if (!cpumask_subset(new_mask, cpus_allowed)) { 4119 /* 4120 * We must have raced with a concurrent cpuset 4121 * update. Just reset the cpus_allowed to the 4122 * cpuset's cpus_allowed 4123 */ 4124 cpumask_copy(new_mask, cpus_allowed); 4125 goto again; 4126 } 4127 } 4128 out_unlock: 4129 free_cpumask_var(new_mask); 4130 out_free_cpus_allowed: 4131 free_cpumask_var(cpus_allowed); 4132 out_put_task: 4133 put_task_struct(p); 4134 put_online_cpus(); 4135 return retval; 4136 } 4137 4138 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4139 struct cpumask *new_mask) 4140 { 4141 if (len < cpumask_size()) 4142 cpumask_clear(new_mask); 4143 else if (len > cpumask_size()) 4144 len = cpumask_size(); 4145 4146 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4147 } 4148 4149 /** 4150 * sys_sched_setaffinity - set the cpu affinity of a process 4151 * @pid: pid of the process 4152 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4153 * @user_mask_ptr: user-space pointer to the new cpu mask 4154 */ 4155 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4156 unsigned long __user *, user_mask_ptr) 4157 { 4158 cpumask_var_t new_mask; 4159 int retval; 4160 4161 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4162 return -ENOMEM; 4163 4164 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4165 if (retval == 0) 4166 retval = sched_setaffinity(pid, new_mask); 4167 free_cpumask_var(new_mask); 4168 return retval; 4169 } 4170 4171 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4172 { 4173 struct task_struct *p; 4174 unsigned long flags; 4175 int retval; 4176 4177 get_online_cpus(); 4178 rcu_read_lock(); 4179 4180 retval = -ESRCH; 4181 p = find_process_by_pid(pid); 4182 if (!p) 4183 goto out_unlock; 4184 4185 retval = security_task_getscheduler(p); 4186 if (retval) 4187 goto out_unlock; 4188 4189 raw_spin_lock_irqsave(&p->pi_lock, flags); 4190 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); 4191 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4192 4193 out_unlock: 4194 rcu_read_unlock(); 4195 put_online_cpus(); 4196 4197 return retval; 4198 } 4199 4200 /** 4201 * sys_sched_getaffinity - get the cpu affinity of a process 4202 * @pid: pid of the process 4203 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4204 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4205 */ 4206 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4207 unsigned long __user *, user_mask_ptr) 4208 { 4209 int ret; 4210 cpumask_var_t mask; 4211 4212 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4213 return -EINVAL; 4214 if (len & (sizeof(unsigned long)-1)) 4215 return -EINVAL; 4216 4217 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4218 return -ENOMEM; 4219 4220 ret = sched_getaffinity(pid, mask); 4221 if (ret == 0) { 4222 size_t retlen = min_t(size_t, len, cpumask_size()); 4223 4224 if (copy_to_user(user_mask_ptr, mask, retlen)) 4225 ret = -EFAULT; 4226 else 4227 ret = retlen; 4228 } 4229 free_cpumask_var(mask); 4230 4231 return ret; 4232 } 4233 4234 /** 4235 * sys_sched_yield - yield the current processor to other threads. 4236 * 4237 * This function yields the current CPU to other tasks. If there are no 4238 * other threads running on this CPU then this function will return. 4239 */ 4240 SYSCALL_DEFINE0(sched_yield) 4241 { 4242 struct rq *rq = this_rq_lock(); 4243 4244 schedstat_inc(rq, yld_count); 4245 current->sched_class->yield_task(rq); 4246 4247 /* 4248 * Since we are going to call schedule() anyway, there's 4249 * no need to preempt or enable interrupts: 4250 */ 4251 __release(rq->lock); 4252 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4253 do_raw_spin_unlock(&rq->lock); 4254 sched_preempt_enable_no_resched(); 4255 4256 schedule(); 4257 4258 return 0; 4259 } 4260 4261 static inline int should_resched(void) 4262 { 4263 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); 4264 } 4265 4266 static void __cond_resched(void) 4267 { 4268 add_preempt_count(PREEMPT_ACTIVE); 4269 __schedule(); 4270 sub_preempt_count(PREEMPT_ACTIVE); 4271 } 4272 4273 int __sched _cond_resched(void) 4274 { 4275 if (should_resched()) { 4276 __cond_resched(); 4277 return 1; 4278 } 4279 return 0; 4280 } 4281 EXPORT_SYMBOL(_cond_resched); 4282 4283 /* 4284 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4285 * call schedule, and on return reacquire the lock. 4286 * 4287 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4288 * operations here to prevent schedule() from being called twice (once via 4289 * spin_unlock(), once by hand). 4290 */ 4291 int __cond_resched_lock(spinlock_t *lock) 4292 { 4293 int resched = should_resched(); 4294 int ret = 0; 4295 4296 lockdep_assert_held(lock); 4297 4298 if (spin_needbreak(lock) || resched) { 4299 spin_unlock(lock); 4300 if (resched) 4301 __cond_resched(); 4302 else 4303 cpu_relax(); 4304 ret = 1; 4305 spin_lock(lock); 4306 } 4307 return ret; 4308 } 4309 EXPORT_SYMBOL(__cond_resched_lock); 4310 4311 int __sched __cond_resched_softirq(void) 4312 { 4313 BUG_ON(!in_softirq()); 4314 4315 if (should_resched()) { 4316 local_bh_enable(); 4317 __cond_resched(); 4318 local_bh_disable(); 4319 return 1; 4320 } 4321 return 0; 4322 } 4323 EXPORT_SYMBOL(__cond_resched_softirq); 4324 4325 /** 4326 * yield - yield the current processor to other threads. 4327 * 4328 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4329 * 4330 * The scheduler is at all times free to pick the calling task as the most 4331 * eligible task to run, if removing the yield() call from your code breaks 4332 * it, its already broken. 4333 * 4334 * Typical broken usage is: 4335 * 4336 * while (!event) 4337 * yield(); 4338 * 4339 * where one assumes that yield() will let 'the other' process run that will 4340 * make event true. If the current task is a SCHED_FIFO task that will never 4341 * happen. Never use yield() as a progress guarantee!! 4342 * 4343 * If you want to use yield() to wait for something, use wait_event(). 4344 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4345 * If you still want to use yield(), do not! 4346 */ 4347 void __sched yield(void) 4348 { 4349 set_current_state(TASK_RUNNING); 4350 sys_sched_yield(); 4351 } 4352 EXPORT_SYMBOL(yield); 4353 4354 /** 4355 * yield_to - yield the current processor to another thread in 4356 * your thread group, or accelerate that thread toward the 4357 * processor it's on. 4358 * @p: target task 4359 * @preempt: whether task preemption is allowed or not 4360 * 4361 * It's the caller's job to ensure that the target task struct 4362 * can't go away on us before we can do any checks. 4363 * 4364 * Returns: 4365 * true (>0) if we indeed boosted the target task. 4366 * false (0) if we failed to boost the target. 4367 * -ESRCH if there's no task to yield to. 4368 */ 4369 bool __sched yield_to(struct task_struct *p, bool preempt) 4370 { 4371 struct task_struct *curr = current; 4372 struct rq *rq, *p_rq; 4373 unsigned long flags; 4374 int yielded = 0; 4375 4376 local_irq_save(flags); 4377 rq = this_rq(); 4378 4379 again: 4380 p_rq = task_rq(p); 4381 /* 4382 * If we're the only runnable task on the rq and target rq also 4383 * has only one task, there's absolutely no point in yielding. 4384 */ 4385 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4386 yielded = -ESRCH; 4387 goto out_irq; 4388 } 4389 4390 double_rq_lock(rq, p_rq); 4391 while (task_rq(p) != p_rq) { 4392 double_rq_unlock(rq, p_rq); 4393 goto again; 4394 } 4395 4396 if (!curr->sched_class->yield_to_task) 4397 goto out_unlock; 4398 4399 if (curr->sched_class != p->sched_class) 4400 goto out_unlock; 4401 4402 if (task_running(p_rq, p) || p->state) 4403 goto out_unlock; 4404 4405 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4406 if (yielded) { 4407 schedstat_inc(rq, yld_count); 4408 /* 4409 * Make p's CPU reschedule; pick_next_entity takes care of 4410 * fairness. 4411 */ 4412 if (preempt && rq != p_rq) 4413 resched_task(p_rq->curr); 4414 } 4415 4416 out_unlock: 4417 double_rq_unlock(rq, p_rq); 4418 out_irq: 4419 local_irq_restore(flags); 4420 4421 if (yielded > 0) 4422 schedule(); 4423 4424 return yielded; 4425 } 4426 EXPORT_SYMBOL_GPL(yield_to); 4427 4428 /* 4429 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4430 * that process accounting knows that this is a task in IO wait state. 4431 */ 4432 void __sched io_schedule(void) 4433 { 4434 struct rq *rq = raw_rq(); 4435 4436 delayacct_blkio_start(); 4437 atomic_inc(&rq->nr_iowait); 4438 blk_flush_plug(current); 4439 current->in_iowait = 1; 4440 schedule(); 4441 current->in_iowait = 0; 4442 atomic_dec(&rq->nr_iowait); 4443 delayacct_blkio_end(); 4444 } 4445 EXPORT_SYMBOL(io_schedule); 4446 4447 long __sched io_schedule_timeout(long timeout) 4448 { 4449 struct rq *rq = raw_rq(); 4450 long ret; 4451 4452 delayacct_blkio_start(); 4453 atomic_inc(&rq->nr_iowait); 4454 blk_flush_plug(current); 4455 current->in_iowait = 1; 4456 ret = schedule_timeout(timeout); 4457 current->in_iowait = 0; 4458 atomic_dec(&rq->nr_iowait); 4459 delayacct_blkio_end(); 4460 return ret; 4461 } 4462 4463 /** 4464 * sys_sched_get_priority_max - return maximum RT priority. 4465 * @policy: scheduling class. 4466 * 4467 * this syscall returns the maximum rt_priority that can be used 4468 * by a given scheduling class. 4469 */ 4470 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4471 { 4472 int ret = -EINVAL; 4473 4474 switch (policy) { 4475 case SCHED_FIFO: 4476 case SCHED_RR: 4477 ret = MAX_USER_RT_PRIO-1; 4478 break; 4479 case SCHED_NORMAL: 4480 case SCHED_BATCH: 4481 case SCHED_IDLE: 4482 ret = 0; 4483 break; 4484 } 4485 return ret; 4486 } 4487 4488 /** 4489 * sys_sched_get_priority_min - return minimum RT priority. 4490 * @policy: scheduling class. 4491 * 4492 * this syscall returns the minimum rt_priority that can be used 4493 * by a given scheduling class. 4494 */ 4495 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4496 { 4497 int ret = -EINVAL; 4498 4499 switch (policy) { 4500 case SCHED_FIFO: 4501 case SCHED_RR: 4502 ret = 1; 4503 break; 4504 case SCHED_NORMAL: 4505 case SCHED_BATCH: 4506 case SCHED_IDLE: 4507 ret = 0; 4508 } 4509 return ret; 4510 } 4511 4512 /** 4513 * sys_sched_rr_get_interval - return the default timeslice of a process. 4514 * @pid: pid of the process. 4515 * @interval: userspace pointer to the timeslice value. 4516 * 4517 * this syscall writes the default timeslice value of a given process 4518 * into the user-space timespec buffer. A value of '0' means infinity. 4519 */ 4520 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4521 struct timespec __user *, interval) 4522 { 4523 struct task_struct *p; 4524 unsigned int time_slice; 4525 unsigned long flags; 4526 struct rq *rq; 4527 int retval; 4528 struct timespec t; 4529 4530 if (pid < 0) 4531 return -EINVAL; 4532 4533 retval = -ESRCH; 4534 rcu_read_lock(); 4535 p = find_process_by_pid(pid); 4536 if (!p) 4537 goto out_unlock; 4538 4539 retval = security_task_getscheduler(p); 4540 if (retval) 4541 goto out_unlock; 4542 4543 rq = task_rq_lock(p, &flags); 4544 time_slice = p->sched_class->get_rr_interval(rq, p); 4545 task_rq_unlock(rq, p, &flags); 4546 4547 rcu_read_unlock(); 4548 jiffies_to_timespec(time_slice, &t); 4549 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4550 return retval; 4551 4552 out_unlock: 4553 rcu_read_unlock(); 4554 return retval; 4555 } 4556 4557 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4558 4559 void sched_show_task(struct task_struct *p) 4560 { 4561 unsigned long free = 0; 4562 int ppid; 4563 unsigned state; 4564 4565 state = p->state ? __ffs(p->state) + 1 : 0; 4566 printk(KERN_INFO "%-15.15s %c", p->comm, 4567 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4568 #if BITS_PER_LONG == 32 4569 if (state == TASK_RUNNING) 4570 printk(KERN_CONT " running "); 4571 else 4572 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4573 #else 4574 if (state == TASK_RUNNING) 4575 printk(KERN_CONT " running task "); 4576 else 4577 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4578 #endif 4579 #ifdef CONFIG_DEBUG_STACK_USAGE 4580 free = stack_not_used(p); 4581 #endif 4582 rcu_read_lock(); 4583 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4584 rcu_read_unlock(); 4585 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4586 task_pid_nr(p), ppid, 4587 (unsigned long)task_thread_info(p)->flags); 4588 4589 print_worker_info(KERN_INFO, p); 4590 show_stack(p, NULL); 4591 } 4592 4593 void show_state_filter(unsigned long state_filter) 4594 { 4595 struct task_struct *g, *p; 4596 4597 #if BITS_PER_LONG == 32 4598 printk(KERN_INFO 4599 " task PC stack pid father\n"); 4600 #else 4601 printk(KERN_INFO 4602 " task PC stack pid father\n"); 4603 #endif 4604 rcu_read_lock(); 4605 do_each_thread(g, p) { 4606 /* 4607 * reset the NMI-timeout, listing all files on a slow 4608 * console might take a lot of time: 4609 */ 4610 touch_nmi_watchdog(); 4611 if (!state_filter || (p->state & state_filter)) 4612 sched_show_task(p); 4613 } while_each_thread(g, p); 4614 4615 touch_all_softlockup_watchdogs(); 4616 4617 #ifdef CONFIG_SCHED_DEBUG 4618 sysrq_sched_debug_show(); 4619 #endif 4620 rcu_read_unlock(); 4621 /* 4622 * Only show locks if all tasks are dumped: 4623 */ 4624 if (!state_filter) 4625 debug_show_all_locks(); 4626 } 4627 4628 void __cpuinit init_idle_bootup_task(struct task_struct *idle) 4629 { 4630 idle->sched_class = &idle_sched_class; 4631 } 4632 4633 /** 4634 * init_idle - set up an idle thread for a given CPU 4635 * @idle: task in question 4636 * @cpu: cpu the idle task belongs to 4637 * 4638 * NOTE: this function does not set the idle thread's NEED_RESCHED 4639 * flag, to make booting more robust. 4640 */ 4641 void __cpuinit init_idle(struct task_struct *idle, int cpu) 4642 { 4643 struct rq *rq = cpu_rq(cpu); 4644 unsigned long flags; 4645 4646 raw_spin_lock_irqsave(&rq->lock, flags); 4647 4648 __sched_fork(idle); 4649 idle->state = TASK_RUNNING; 4650 idle->se.exec_start = sched_clock(); 4651 4652 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4653 /* 4654 * We're having a chicken and egg problem, even though we are 4655 * holding rq->lock, the cpu isn't yet set to this cpu so the 4656 * lockdep check in task_group() will fail. 4657 * 4658 * Similar case to sched_fork(). / Alternatively we could 4659 * use task_rq_lock() here and obtain the other rq->lock. 4660 * 4661 * Silence PROVE_RCU 4662 */ 4663 rcu_read_lock(); 4664 __set_task_cpu(idle, cpu); 4665 rcu_read_unlock(); 4666 4667 rq->curr = rq->idle = idle; 4668 #if defined(CONFIG_SMP) 4669 idle->on_cpu = 1; 4670 #endif 4671 raw_spin_unlock_irqrestore(&rq->lock, flags); 4672 4673 /* Set the preempt count _outside_ the spinlocks! */ 4674 task_thread_info(idle)->preempt_count = 0; 4675 4676 /* 4677 * The idle tasks have their own, simple scheduling class: 4678 */ 4679 idle->sched_class = &idle_sched_class; 4680 ftrace_graph_init_idle_task(idle, cpu); 4681 vtime_init_idle(idle); 4682 #if defined(CONFIG_SMP) 4683 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4684 #endif 4685 } 4686 4687 #ifdef CONFIG_SMP 4688 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4689 { 4690 if (p->sched_class && p->sched_class->set_cpus_allowed) 4691 p->sched_class->set_cpus_allowed(p, new_mask); 4692 4693 cpumask_copy(&p->cpus_allowed, new_mask); 4694 p->nr_cpus_allowed = cpumask_weight(new_mask); 4695 } 4696 4697 /* 4698 * This is how migration works: 4699 * 4700 * 1) we invoke migration_cpu_stop() on the target CPU using 4701 * stop_one_cpu(). 4702 * 2) stopper starts to run (implicitly forcing the migrated thread 4703 * off the CPU) 4704 * 3) it checks whether the migrated task is still in the wrong runqueue. 4705 * 4) if it's in the wrong runqueue then the migration thread removes 4706 * it and puts it into the right queue. 4707 * 5) stopper completes and stop_one_cpu() returns and the migration 4708 * is done. 4709 */ 4710 4711 /* 4712 * Change a given task's CPU affinity. Migrate the thread to a 4713 * proper CPU and schedule it away if the CPU it's executing on 4714 * is removed from the allowed bitmask. 4715 * 4716 * NOTE: the caller must have a valid reference to the task, the 4717 * task must not exit() & deallocate itself prematurely. The 4718 * call is not atomic; no spinlocks may be held. 4719 */ 4720 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4721 { 4722 unsigned long flags; 4723 struct rq *rq; 4724 unsigned int dest_cpu; 4725 int ret = 0; 4726 4727 rq = task_rq_lock(p, &flags); 4728 4729 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4730 goto out; 4731 4732 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4733 ret = -EINVAL; 4734 goto out; 4735 } 4736 4737 do_set_cpus_allowed(p, new_mask); 4738 4739 /* Can the task run on the task's current CPU? If so, we're done */ 4740 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4741 goto out; 4742 4743 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4744 if (p->on_rq) { 4745 struct migration_arg arg = { p, dest_cpu }; 4746 /* Need help from migration thread: drop lock and wait. */ 4747 task_rq_unlock(rq, p, &flags); 4748 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4749 tlb_migrate_finish(p->mm); 4750 return 0; 4751 } 4752 out: 4753 task_rq_unlock(rq, p, &flags); 4754 4755 return ret; 4756 } 4757 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4758 4759 /* 4760 * Move (not current) task off this cpu, onto dest cpu. We're doing 4761 * this because either it can't run here any more (set_cpus_allowed() 4762 * away from this CPU, or CPU going down), or because we're 4763 * attempting to rebalance this task on exec (sched_exec). 4764 * 4765 * So we race with normal scheduler movements, but that's OK, as long 4766 * as the task is no longer on this CPU. 4767 * 4768 * Returns non-zero if task was successfully migrated. 4769 */ 4770 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4771 { 4772 struct rq *rq_dest, *rq_src; 4773 int ret = 0; 4774 4775 if (unlikely(!cpu_active(dest_cpu))) 4776 return ret; 4777 4778 rq_src = cpu_rq(src_cpu); 4779 rq_dest = cpu_rq(dest_cpu); 4780 4781 raw_spin_lock(&p->pi_lock); 4782 double_rq_lock(rq_src, rq_dest); 4783 /* Already moved. */ 4784 if (task_cpu(p) != src_cpu) 4785 goto done; 4786 /* Affinity changed (again). */ 4787 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4788 goto fail; 4789 4790 /* 4791 * If we're not on a rq, the next wake-up will ensure we're 4792 * placed properly. 4793 */ 4794 if (p->on_rq) { 4795 dequeue_task(rq_src, p, 0); 4796 set_task_cpu(p, dest_cpu); 4797 enqueue_task(rq_dest, p, 0); 4798 check_preempt_curr(rq_dest, p, 0); 4799 } 4800 done: 4801 ret = 1; 4802 fail: 4803 double_rq_unlock(rq_src, rq_dest); 4804 raw_spin_unlock(&p->pi_lock); 4805 return ret; 4806 } 4807 4808 /* 4809 * migration_cpu_stop - this will be executed by a highprio stopper thread 4810 * and performs thread migration by bumping thread off CPU then 4811 * 'pushing' onto another runqueue. 4812 */ 4813 static int migration_cpu_stop(void *data) 4814 { 4815 struct migration_arg *arg = data; 4816 4817 /* 4818 * The original target cpu might have gone down and we might 4819 * be on another cpu but it doesn't matter. 4820 */ 4821 local_irq_disable(); 4822 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4823 local_irq_enable(); 4824 return 0; 4825 } 4826 4827 #ifdef CONFIG_HOTPLUG_CPU 4828 4829 /* 4830 * Ensures that the idle task is using init_mm right before its cpu goes 4831 * offline. 4832 */ 4833 void idle_task_exit(void) 4834 { 4835 struct mm_struct *mm = current->active_mm; 4836 4837 BUG_ON(cpu_online(smp_processor_id())); 4838 4839 if (mm != &init_mm) 4840 switch_mm(mm, &init_mm, current); 4841 mmdrop(mm); 4842 } 4843 4844 /* 4845 * Since this CPU is going 'away' for a while, fold any nr_active delta 4846 * we might have. Assumes we're called after migrate_tasks() so that the 4847 * nr_active count is stable. 4848 * 4849 * Also see the comment "Global load-average calculations". 4850 */ 4851 static void calc_load_migrate(struct rq *rq) 4852 { 4853 long delta = calc_load_fold_active(rq); 4854 if (delta) 4855 atomic_long_add(delta, &calc_load_tasks); 4856 } 4857 4858 /* 4859 * Migrate all tasks from the rq, sleeping tasks will be migrated by 4860 * try_to_wake_up()->select_task_rq(). 4861 * 4862 * Called with rq->lock held even though we'er in stop_machine() and 4863 * there's no concurrency possible, we hold the required locks anyway 4864 * because of lock validation efforts. 4865 */ 4866 static void migrate_tasks(unsigned int dead_cpu) 4867 { 4868 struct rq *rq = cpu_rq(dead_cpu); 4869 struct task_struct *next, *stop = rq->stop; 4870 int dest_cpu; 4871 4872 /* 4873 * Fudge the rq selection such that the below task selection loop 4874 * doesn't get stuck on the currently eligible stop task. 4875 * 4876 * We're currently inside stop_machine() and the rq is either stuck 4877 * in the stop_machine_cpu_stop() loop, or we're executing this code, 4878 * either way we should never end up calling schedule() until we're 4879 * done here. 4880 */ 4881 rq->stop = NULL; 4882 4883 for ( ; ; ) { 4884 /* 4885 * There's this thread running, bail when that's the only 4886 * remaining thread. 4887 */ 4888 if (rq->nr_running == 1) 4889 break; 4890 4891 next = pick_next_task(rq); 4892 BUG_ON(!next); 4893 next->sched_class->put_prev_task(rq, next); 4894 4895 /* Find suitable destination for @next, with force if needed. */ 4896 dest_cpu = select_fallback_rq(dead_cpu, next); 4897 raw_spin_unlock(&rq->lock); 4898 4899 __migrate_task(next, dead_cpu, dest_cpu); 4900 4901 raw_spin_lock(&rq->lock); 4902 } 4903 4904 rq->stop = stop; 4905 } 4906 4907 #endif /* CONFIG_HOTPLUG_CPU */ 4908 4909 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 4910 4911 static struct ctl_table sd_ctl_dir[] = { 4912 { 4913 .procname = "sched_domain", 4914 .mode = 0555, 4915 }, 4916 {} 4917 }; 4918 4919 static struct ctl_table sd_ctl_root[] = { 4920 { 4921 .procname = "kernel", 4922 .mode = 0555, 4923 .child = sd_ctl_dir, 4924 }, 4925 {} 4926 }; 4927 4928 static struct ctl_table *sd_alloc_ctl_entry(int n) 4929 { 4930 struct ctl_table *entry = 4931 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 4932 4933 return entry; 4934 } 4935 4936 static void sd_free_ctl_entry(struct ctl_table **tablep) 4937 { 4938 struct ctl_table *entry; 4939 4940 /* 4941 * In the intermediate directories, both the child directory and 4942 * procname are dynamically allocated and could fail but the mode 4943 * will always be set. In the lowest directory the names are 4944 * static strings and all have proc handlers. 4945 */ 4946 for (entry = *tablep; entry->mode; entry++) { 4947 if (entry->child) 4948 sd_free_ctl_entry(&entry->child); 4949 if (entry->proc_handler == NULL) 4950 kfree(entry->procname); 4951 } 4952 4953 kfree(*tablep); 4954 *tablep = NULL; 4955 } 4956 4957 static int min_load_idx = 0; 4958 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 4959 4960 static void 4961 set_table_entry(struct ctl_table *entry, 4962 const char *procname, void *data, int maxlen, 4963 umode_t mode, proc_handler *proc_handler, 4964 bool load_idx) 4965 { 4966 entry->procname = procname; 4967 entry->data = data; 4968 entry->maxlen = maxlen; 4969 entry->mode = mode; 4970 entry->proc_handler = proc_handler; 4971 4972 if (load_idx) { 4973 entry->extra1 = &min_load_idx; 4974 entry->extra2 = &max_load_idx; 4975 } 4976 } 4977 4978 static struct ctl_table * 4979 sd_alloc_ctl_domain_table(struct sched_domain *sd) 4980 { 4981 struct ctl_table *table = sd_alloc_ctl_entry(13); 4982 4983 if (table == NULL) 4984 return NULL; 4985 4986 set_table_entry(&table[0], "min_interval", &sd->min_interval, 4987 sizeof(long), 0644, proc_doulongvec_minmax, false); 4988 set_table_entry(&table[1], "max_interval", &sd->max_interval, 4989 sizeof(long), 0644, proc_doulongvec_minmax, false); 4990 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 4991 sizeof(int), 0644, proc_dointvec_minmax, true); 4992 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 4993 sizeof(int), 0644, proc_dointvec_minmax, true); 4994 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 4995 sizeof(int), 0644, proc_dointvec_minmax, true); 4996 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 4997 sizeof(int), 0644, proc_dointvec_minmax, true); 4998 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 4999 sizeof(int), 0644, proc_dointvec_minmax, true); 5000 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5001 sizeof(int), 0644, proc_dointvec_minmax, false); 5002 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5003 sizeof(int), 0644, proc_dointvec_minmax, false); 5004 set_table_entry(&table[9], "cache_nice_tries", 5005 &sd->cache_nice_tries, 5006 sizeof(int), 0644, proc_dointvec_minmax, false); 5007 set_table_entry(&table[10], "flags", &sd->flags, 5008 sizeof(int), 0644, proc_dointvec_minmax, false); 5009 set_table_entry(&table[11], "name", sd->name, 5010 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 5011 /* &table[12] is terminator */ 5012 5013 return table; 5014 } 5015 5016 static ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5017 { 5018 struct ctl_table *entry, *table; 5019 struct sched_domain *sd; 5020 int domain_num = 0, i; 5021 char buf[32]; 5022 5023 for_each_domain(cpu, sd) 5024 domain_num++; 5025 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5026 if (table == NULL) 5027 return NULL; 5028 5029 i = 0; 5030 for_each_domain(cpu, sd) { 5031 snprintf(buf, 32, "domain%d", i); 5032 entry->procname = kstrdup(buf, GFP_KERNEL); 5033 entry->mode = 0555; 5034 entry->child = sd_alloc_ctl_domain_table(sd); 5035 entry++; 5036 i++; 5037 } 5038 return table; 5039 } 5040 5041 static struct ctl_table_header *sd_sysctl_header; 5042 static void register_sched_domain_sysctl(void) 5043 { 5044 int i, cpu_num = num_possible_cpus(); 5045 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5046 char buf[32]; 5047 5048 WARN_ON(sd_ctl_dir[0].child); 5049 sd_ctl_dir[0].child = entry; 5050 5051 if (entry == NULL) 5052 return; 5053 5054 for_each_possible_cpu(i) { 5055 snprintf(buf, 32, "cpu%d", i); 5056 entry->procname = kstrdup(buf, GFP_KERNEL); 5057 entry->mode = 0555; 5058 entry->child = sd_alloc_ctl_cpu_table(i); 5059 entry++; 5060 } 5061 5062 WARN_ON(sd_sysctl_header); 5063 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5064 } 5065 5066 /* may be called multiple times per register */ 5067 static void unregister_sched_domain_sysctl(void) 5068 { 5069 if (sd_sysctl_header) 5070 unregister_sysctl_table(sd_sysctl_header); 5071 sd_sysctl_header = NULL; 5072 if (sd_ctl_dir[0].child) 5073 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5074 } 5075 #else 5076 static void register_sched_domain_sysctl(void) 5077 { 5078 } 5079 static void unregister_sched_domain_sysctl(void) 5080 { 5081 } 5082 #endif 5083 5084 static void set_rq_online(struct rq *rq) 5085 { 5086 if (!rq->online) { 5087 const struct sched_class *class; 5088 5089 cpumask_set_cpu(rq->cpu, rq->rd->online); 5090 rq->online = 1; 5091 5092 for_each_class(class) { 5093 if (class->rq_online) 5094 class->rq_online(rq); 5095 } 5096 } 5097 } 5098 5099 static void set_rq_offline(struct rq *rq) 5100 { 5101 if (rq->online) { 5102 const struct sched_class *class; 5103 5104 for_each_class(class) { 5105 if (class->rq_offline) 5106 class->rq_offline(rq); 5107 } 5108 5109 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5110 rq->online = 0; 5111 } 5112 } 5113 5114 /* 5115 * migration_call - callback that gets triggered when a CPU is added. 5116 * Here we can start up the necessary migration thread for the new CPU. 5117 */ 5118 static int __cpuinit 5119 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5120 { 5121 int cpu = (long)hcpu; 5122 unsigned long flags; 5123 struct rq *rq = cpu_rq(cpu); 5124 5125 switch (action & ~CPU_TASKS_FROZEN) { 5126 5127 case CPU_UP_PREPARE: 5128 rq->calc_load_update = calc_load_update; 5129 break; 5130 5131 case CPU_ONLINE: 5132 /* Update our root-domain */ 5133 raw_spin_lock_irqsave(&rq->lock, flags); 5134 if (rq->rd) { 5135 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5136 5137 set_rq_online(rq); 5138 } 5139 raw_spin_unlock_irqrestore(&rq->lock, flags); 5140 break; 5141 5142 #ifdef CONFIG_HOTPLUG_CPU 5143 case CPU_DYING: 5144 sched_ttwu_pending(); 5145 /* Update our root-domain */ 5146 raw_spin_lock_irqsave(&rq->lock, flags); 5147 if (rq->rd) { 5148 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5149 set_rq_offline(rq); 5150 } 5151 migrate_tasks(cpu); 5152 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5153 raw_spin_unlock_irqrestore(&rq->lock, flags); 5154 break; 5155 5156 case CPU_DEAD: 5157 calc_load_migrate(rq); 5158 break; 5159 #endif 5160 } 5161 5162 update_max_interval(); 5163 5164 return NOTIFY_OK; 5165 } 5166 5167 /* 5168 * Register at high priority so that task migration (migrate_all_tasks) 5169 * happens before everything else. This has to be lower priority than 5170 * the notifier in the perf_event subsystem, though. 5171 */ 5172 static struct notifier_block __cpuinitdata migration_notifier = { 5173 .notifier_call = migration_call, 5174 .priority = CPU_PRI_MIGRATION, 5175 }; 5176 5177 static int __cpuinit sched_cpu_active(struct notifier_block *nfb, 5178 unsigned long action, void *hcpu) 5179 { 5180 switch (action & ~CPU_TASKS_FROZEN) { 5181 case CPU_STARTING: 5182 case CPU_DOWN_FAILED: 5183 set_cpu_active((long)hcpu, true); 5184 return NOTIFY_OK; 5185 default: 5186 return NOTIFY_DONE; 5187 } 5188 } 5189 5190 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, 5191 unsigned long action, void *hcpu) 5192 { 5193 switch (action & ~CPU_TASKS_FROZEN) { 5194 case CPU_DOWN_PREPARE: 5195 set_cpu_active((long)hcpu, false); 5196 return NOTIFY_OK; 5197 default: 5198 return NOTIFY_DONE; 5199 } 5200 } 5201 5202 static int __init migration_init(void) 5203 { 5204 void *cpu = (void *)(long)smp_processor_id(); 5205 int err; 5206 5207 /* Initialize migration for the boot CPU */ 5208 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5209 BUG_ON(err == NOTIFY_BAD); 5210 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5211 register_cpu_notifier(&migration_notifier); 5212 5213 /* Register cpu active notifiers */ 5214 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5215 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5216 5217 return 0; 5218 } 5219 early_initcall(migration_init); 5220 #endif 5221 5222 #ifdef CONFIG_SMP 5223 5224 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5225 5226 #ifdef CONFIG_SCHED_DEBUG 5227 5228 static __read_mostly int sched_debug_enabled; 5229 5230 static int __init sched_debug_setup(char *str) 5231 { 5232 sched_debug_enabled = 1; 5233 5234 return 0; 5235 } 5236 early_param("sched_debug", sched_debug_setup); 5237 5238 static inline bool sched_debug(void) 5239 { 5240 return sched_debug_enabled; 5241 } 5242 5243 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5244 struct cpumask *groupmask) 5245 { 5246 struct sched_group *group = sd->groups; 5247 char str[256]; 5248 5249 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5250 cpumask_clear(groupmask); 5251 5252 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5253 5254 if (!(sd->flags & SD_LOAD_BALANCE)) { 5255 printk("does not load-balance\n"); 5256 if (sd->parent) 5257 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5258 " has parent"); 5259 return -1; 5260 } 5261 5262 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5263 5264 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5265 printk(KERN_ERR "ERROR: domain->span does not contain " 5266 "CPU%d\n", cpu); 5267 } 5268 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5269 printk(KERN_ERR "ERROR: domain->groups does not contain" 5270 " CPU%d\n", cpu); 5271 } 5272 5273 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5274 do { 5275 if (!group) { 5276 printk("\n"); 5277 printk(KERN_ERR "ERROR: group is NULL\n"); 5278 break; 5279 } 5280 5281 /* 5282 * Even though we initialize ->power to something semi-sane, 5283 * we leave power_orig unset. This allows us to detect if 5284 * domain iteration is still funny without causing /0 traps. 5285 */ 5286 if (!group->sgp->power_orig) { 5287 printk(KERN_CONT "\n"); 5288 printk(KERN_ERR "ERROR: domain->cpu_power not " 5289 "set\n"); 5290 break; 5291 } 5292 5293 if (!cpumask_weight(sched_group_cpus(group))) { 5294 printk(KERN_CONT "\n"); 5295 printk(KERN_ERR "ERROR: empty group\n"); 5296 break; 5297 } 5298 5299 if (!(sd->flags & SD_OVERLAP) && 5300 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5301 printk(KERN_CONT "\n"); 5302 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5303 break; 5304 } 5305 5306 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5307 5308 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5309 5310 printk(KERN_CONT " %s", str); 5311 if (group->sgp->power != SCHED_POWER_SCALE) { 5312 printk(KERN_CONT " (cpu_power = %d)", 5313 group->sgp->power); 5314 } 5315 5316 group = group->next; 5317 } while (group != sd->groups); 5318 printk(KERN_CONT "\n"); 5319 5320 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5321 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5322 5323 if (sd->parent && 5324 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5325 printk(KERN_ERR "ERROR: parent span is not a superset " 5326 "of domain->span\n"); 5327 return 0; 5328 } 5329 5330 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5331 { 5332 int level = 0; 5333 5334 if (!sched_debug_enabled) 5335 return; 5336 5337 if (!sd) { 5338 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5339 return; 5340 } 5341 5342 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5343 5344 for (;;) { 5345 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5346 break; 5347 level++; 5348 sd = sd->parent; 5349 if (!sd) 5350 break; 5351 } 5352 } 5353 #else /* !CONFIG_SCHED_DEBUG */ 5354 # define sched_domain_debug(sd, cpu) do { } while (0) 5355 static inline bool sched_debug(void) 5356 { 5357 return false; 5358 } 5359 #endif /* CONFIG_SCHED_DEBUG */ 5360 5361 static int sd_degenerate(struct sched_domain *sd) 5362 { 5363 if (cpumask_weight(sched_domain_span(sd)) == 1) 5364 return 1; 5365 5366 /* Following flags need at least 2 groups */ 5367 if (sd->flags & (SD_LOAD_BALANCE | 5368 SD_BALANCE_NEWIDLE | 5369 SD_BALANCE_FORK | 5370 SD_BALANCE_EXEC | 5371 SD_SHARE_CPUPOWER | 5372 SD_SHARE_PKG_RESOURCES)) { 5373 if (sd->groups != sd->groups->next) 5374 return 0; 5375 } 5376 5377 /* Following flags don't use groups */ 5378 if (sd->flags & (SD_WAKE_AFFINE)) 5379 return 0; 5380 5381 return 1; 5382 } 5383 5384 static int 5385 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5386 { 5387 unsigned long cflags = sd->flags, pflags = parent->flags; 5388 5389 if (sd_degenerate(parent)) 5390 return 1; 5391 5392 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5393 return 0; 5394 5395 /* Flags needing groups don't count if only 1 group in parent */ 5396 if (parent->groups == parent->groups->next) { 5397 pflags &= ~(SD_LOAD_BALANCE | 5398 SD_BALANCE_NEWIDLE | 5399 SD_BALANCE_FORK | 5400 SD_BALANCE_EXEC | 5401 SD_SHARE_CPUPOWER | 5402 SD_SHARE_PKG_RESOURCES); 5403 if (nr_node_ids == 1) 5404 pflags &= ~SD_SERIALIZE; 5405 } 5406 if (~cflags & pflags) 5407 return 0; 5408 5409 return 1; 5410 } 5411 5412 static void free_rootdomain(struct rcu_head *rcu) 5413 { 5414 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5415 5416 cpupri_cleanup(&rd->cpupri); 5417 free_cpumask_var(rd->rto_mask); 5418 free_cpumask_var(rd->online); 5419 free_cpumask_var(rd->span); 5420 kfree(rd); 5421 } 5422 5423 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5424 { 5425 struct root_domain *old_rd = NULL; 5426 unsigned long flags; 5427 5428 raw_spin_lock_irqsave(&rq->lock, flags); 5429 5430 if (rq->rd) { 5431 old_rd = rq->rd; 5432 5433 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5434 set_rq_offline(rq); 5435 5436 cpumask_clear_cpu(rq->cpu, old_rd->span); 5437 5438 /* 5439 * If we dont want to free the old_rt yet then 5440 * set old_rd to NULL to skip the freeing later 5441 * in this function: 5442 */ 5443 if (!atomic_dec_and_test(&old_rd->refcount)) 5444 old_rd = NULL; 5445 } 5446 5447 atomic_inc(&rd->refcount); 5448 rq->rd = rd; 5449 5450 cpumask_set_cpu(rq->cpu, rd->span); 5451 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5452 set_rq_online(rq); 5453 5454 raw_spin_unlock_irqrestore(&rq->lock, flags); 5455 5456 if (old_rd) 5457 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5458 } 5459 5460 static int init_rootdomain(struct root_domain *rd) 5461 { 5462 memset(rd, 0, sizeof(*rd)); 5463 5464 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5465 goto out; 5466 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5467 goto free_span; 5468 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5469 goto free_online; 5470 5471 if (cpupri_init(&rd->cpupri) != 0) 5472 goto free_rto_mask; 5473 return 0; 5474 5475 free_rto_mask: 5476 free_cpumask_var(rd->rto_mask); 5477 free_online: 5478 free_cpumask_var(rd->online); 5479 free_span: 5480 free_cpumask_var(rd->span); 5481 out: 5482 return -ENOMEM; 5483 } 5484 5485 /* 5486 * By default the system creates a single root-domain with all cpus as 5487 * members (mimicking the global state we have today). 5488 */ 5489 struct root_domain def_root_domain; 5490 5491 static void init_defrootdomain(void) 5492 { 5493 init_rootdomain(&def_root_domain); 5494 5495 atomic_set(&def_root_domain.refcount, 1); 5496 } 5497 5498 static struct root_domain *alloc_rootdomain(void) 5499 { 5500 struct root_domain *rd; 5501 5502 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5503 if (!rd) 5504 return NULL; 5505 5506 if (init_rootdomain(rd) != 0) { 5507 kfree(rd); 5508 return NULL; 5509 } 5510 5511 return rd; 5512 } 5513 5514 static void free_sched_groups(struct sched_group *sg, int free_sgp) 5515 { 5516 struct sched_group *tmp, *first; 5517 5518 if (!sg) 5519 return; 5520 5521 first = sg; 5522 do { 5523 tmp = sg->next; 5524 5525 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) 5526 kfree(sg->sgp); 5527 5528 kfree(sg); 5529 sg = tmp; 5530 } while (sg != first); 5531 } 5532 5533 static void free_sched_domain(struct rcu_head *rcu) 5534 { 5535 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5536 5537 /* 5538 * If its an overlapping domain it has private groups, iterate and 5539 * nuke them all. 5540 */ 5541 if (sd->flags & SD_OVERLAP) { 5542 free_sched_groups(sd->groups, 1); 5543 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5544 kfree(sd->groups->sgp); 5545 kfree(sd->groups); 5546 } 5547 kfree(sd); 5548 } 5549 5550 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5551 { 5552 call_rcu(&sd->rcu, free_sched_domain); 5553 } 5554 5555 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5556 { 5557 for (; sd; sd = sd->parent) 5558 destroy_sched_domain(sd, cpu); 5559 } 5560 5561 /* 5562 * Keep a special pointer to the highest sched_domain that has 5563 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5564 * allows us to avoid some pointer chasing select_idle_sibling(). 5565 * 5566 * Also keep a unique ID per domain (we use the first cpu number in 5567 * the cpumask of the domain), this allows us to quickly tell if 5568 * two cpus are in the same cache domain, see cpus_share_cache(). 5569 */ 5570 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5571 DEFINE_PER_CPU(int, sd_llc_id); 5572 5573 static void update_top_cache_domain(int cpu) 5574 { 5575 struct sched_domain *sd; 5576 int id = cpu; 5577 5578 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5579 if (sd) 5580 id = cpumask_first(sched_domain_span(sd)); 5581 5582 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5583 per_cpu(sd_llc_id, cpu) = id; 5584 } 5585 5586 /* 5587 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5588 * hold the hotplug lock. 5589 */ 5590 static void 5591 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5592 { 5593 struct rq *rq = cpu_rq(cpu); 5594 struct sched_domain *tmp; 5595 5596 /* Remove the sched domains which do not contribute to scheduling. */ 5597 for (tmp = sd; tmp; ) { 5598 struct sched_domain *parent = tmp->parent; 5599 if (!parent) 5600 break; 5601 5602 if (sd_parent_degenerate(tmp, parent)) { 5603 tmp->parent = parent->parent; 5604 if (parent->parent) 5605 parent->parent->child = tmp; 5606 destroy_sched_domain(parent, cpu); 5607 } else 5608 tmp = tmp->parent; 5609 } 5610 5611 if (sd && sd_degenerate(sd)) { 5612 tmp = sd; 5613 sd = sd->parent; 5614 destroy_sched_domain(tmp, cpu); 5615 if (sd) 5616 sd->child = NULL; 5617 } 5618 5619 sched_domain_debug(sd, cpu); 5620 5621 rq_attach_root(rq, rd); 5622 tmp = rq->sd; 5623 rcu_assign_pointer(rq->sd, sd); 5624 destroy_sched_domains(tmp, cpu); 5625 5626 update_top_cache_domain(cpu); 5627 } 5628 5629 /* cpus with isolated domains */ 5630 static cpumask_var_t cpu_isolated_map; 5631 5632 /* Setup the mask of cpus configured for isolated domains */ 5633 static int __init isolated_cpu_setup(char *str) 5634 { 5635 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5636 cpulist_parse(str, cpu_isolated_map); 5637 return 1; 5638 } 5639 5640 __setup("isolcpus=", isolated_cpu_setup); 5641 5642 static const struct cpumask *cpu_cpu_mask(int cpu) 5643 { 5644 return cpumask_of_node(cpu_to_node(cpu)); 5645 } 5646 5647 struct sd_data { 5648 struct sched_domain **__percpu sd; 5649 struct sched_group **__percpu sg; 5650 struct sched_group_power **__percpu sgp; 5651 }; 5652 5653 struct s_data { 5654 struct sched_domain ** __percpu sd; 5655 struct root_domain *rd; 5656 }; 5657 5658 enum s_alloc { 5659 sa_rootdomain, 5660 sa_sd, 5661 sa_sd_storage, 5662 sa_none, 5663 }; 5664 5665 struct sched_domain_topology_level; 5666 5667 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); 5668 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 5669 5670 #define SDTL_OVERLAP 0x01 5671 5672 struct sched_domain_topology_level { 5673 sched_domain_init_f init; 5674 sched_domain_mask_f mask; 5675 int flags; 5676 int numa_level; 5677 struct sd_data data; 5678 }; 5679 5680 /* 5681 * Build an iteration mask that can exclude certain CPUs from the upwards 5682 * domain traversal. 5683 * 5684 * Asymmetric node setups can result in situations where the domain tree is of 5685 * unequal depth, make sure to skip domains that already cover the entire 5686 * range. 5687 * 5688 * In that case build_sched_domains() will have terminated the iteration early 5689 * and our sibling sd spans will be empty. Domains should always include the 5690 * cpu they're built on, so check that. 5691 * 5692 */ 5693 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5694 { 5695 const struct cpumask *span = sched_domain_span(sd); 5696 struct sd_data *sdd = sd->private; 5697 struct sched_domain *sibling; 5698 int i; 5699 5700 for_each_cpu(i, span) { 5701 sibling = *per_cpu_ptr(sdd->sd, i); 5702 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5703 continue; 5704 5705 cpumask_set_cpu(i, sched_group_mask(sg)); 5706 } 5707 } 5708 5709 /* 5710 * Return the canonical balance cpu for this group, this is the first cpu 5711 * of this group that's also in the iteration mask. 5712 */ 5713 int group_balance_cpu(struct sched_group *sg) 5714 { 5715 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5716 } 5717 5718 static int 5719 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5720 { 5721 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5722 const struct cpumask *span = sched_domain_span(sd); 5723 struct cpumask *covered = sched_domains_tmpmask; 5724 struct sd_data *sdd = sd->private; 5725 struct sched_domain *child; 5726 int i; 5727 5728 cpumask_clear(covered); 5729 5730 for_each_cpu(i, span) { 5731 struct cpumask *sg_span; 5732 5733 if (cpumask_test_cpu(i, covered)) 5734 continue; 5735 5736 child = *per_cpu_ptr(sdd->sd, i); 5737 5738 /* See the comment near build_group_mask(). */ 5739 if (!cpumask_test_cpu(i, sched_domain_span(child))) 5740 continue; 5741 5742 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5743 GFP_KERNEL, cpu_to_node(cpu)); 5744 5745 if (!sg) 5746 goto fail; 5747 5748 sg_span = sched_group_cpus(sg); 5749 if (child->child) { 5750 child = child->child; 5751 cpumask_copy(sg_span, sched_domain_span(child)); 5752 } else 5753 cpumask_set_cpu(i, sg_span); 5754 5755 cpumask_or(covered, covered, sg_span); 5756 5757 sg->sgp = *per_cpu_ptr(sdd->sgp, i); 5758 if (atomic_inc_return(&sg->sgp->ref) == 1) 5759 build_group_mask(sd, sg); 5760 5761 /* 5762 * Initialize sgp->power such that even if we mess up the 5763 * domains and no possible iteration will get us here, we won't 5764 * die on a /0 trap. 5765 */ 5766 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span); 5767 5768 /* 5769 * Make sure the first group of this domain contains the 5770 * canonical balance cpu. Otherwise the sched_domain iteration 5771 * breaks. See update_sg_lb_stats(). 5772 */ 5773 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 5774 group_balance_cpu(sg) == cpu) 5775 groups = sg; 5776 5777 if (!first) 5778 first = sg; 5779 if (last) 5780 last->next = sg; 5781 last = sg; 5782 last->next = first; 5783 } 5784 sd->groups = groups; 5785 5786 return 0; 5787 5788 fail: 5789 free_sched_groups(first, 0); 5790 5791 return -ENOMEM; 5792 } 5793 5794 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 5795 { 5796 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 5797 struct sched_domain *child = sd->child; 5798 5799 if (child) 5800 cpu = cpumask_first(sched_domain_span(child)); 5801 5802 if (sg) { 5803 *sg = *per_cpu_ptr(sdd->sg, cpu); 5804 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); 5805 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ 5806 } 5807 5808 return cpu; 5809 } 5810 5811 /* 5812 * build_sched_groups will build a circular linked list of the groups 5813 * covered by the given span, and will set each group's ->cpumask correctly, 5814 * and ->cpu_power to 0. 5815 * 5816 * Assumes the sched_domain tree is fully constructed 5817 */ 5818 static int 5819 build_sched_groups(struct sched_domain *sd, int cpu) 5820 { 5821 struct sched_group *first = NULL, *last = NULL; 5822 struct sd_data *sdd = sd->private; 5823 const struct cpumask *span = sched_domain_span(sd); 5824 struct cpumask *covered; 5825 int i; 5826 5827 get_group(cpu, sdd, &sd->groups); 5828 atomic_inc(&sd->groups->ref); 5829 5830 if (cpu != cpumask_first(sched_domain_span(sd))) 5831 return 0; 5832 5833 lockdep_assert_held(&sched_domains_mutex); 5834 covered = sched_domains_tmpmask; 5835 5836 cpumask_clear(covered); 5837 5838 for_each_cpu(i, span) { 5839 struct sched_group *sg; 5840 int group = get_group(i, sdd, &sg); 5841 int j; 5842 5843 if (cpumask_test_cpu(i, covered)) 5844 continue; 5845 5846 cpumask_clear(sched_group_cpus(sg)); 5847 sg->sgp->power = 0; 5848 cpumask_setall(sched_group_mask(sg)); 5849 5850 for_each_cpu(j, span) { 5851 if (get_group(j, sdd, NULL) != group) 5852 continue; 5853 5854 cpumask_set_cpu(j, covered); 5855 cpumask_set_cpu(j, sched_group_cpus(sg)); 5856 } 5857 5858 if (!first) 5859 first = sg; 5860 if (last) 5861 last->next = sg; 5862 last = sg; 5863 } 5864 last->next = first; 5865 5866 return 0; 5867 } 5868 5869 /* 5870 * Initialize sched groups cpu_power. 5871 * 5872 * cpu_power indicates the capacity of sched group, which is used while 5873 * distributing the load between different sched groups in a sched domain. 5874 * Typically cpu_power for all the groups in a sched domain will be same unless 5875 * there are asymmetries in the topology. If there are asymmetries, group 5876 * having more cpu_power will pickup more load compared to the group having 5877 * less cpu_power. 5878 */ 5879 static void init_sched_groups_power(int cpu, struct sched_domain *sd) 5880 { 5881 struct sched_group *sg = sd->groups; 5882 5883 WARN_ON(!sd || !sg); 5884 5885 do { 5886 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 5887 sg = sg->next; 5888 } while (sg != sd->groups); 5889 5890 if (cpu != group_balance_cpu(sg)) 5891 return; 5892 5893 update_group_power(sd, cpu); 5894 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); 5895 } 5896 5897 int __weak arch_sd_sibling_asym_packing(void) 5898 { 5899 return 0*SD_ASYM_PACKING; 5900 } 5901 5902 /* 5903 * Initializers for schedule domains 5904 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 5905 */ 5906 5907 #ifdef CONFIG_SCHED_DEBUG 5908 # define SD_INIT_NAME(sd, type) sd->name = #type 5909 #else 5910 # define SD_INIT_NAME(sd, type) do { } while (0) 5911 #endif 5912 5913 #define SD_INIT_FUNC(type) \ 5914 static noinline struct sched_domain * \ 5915 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ 5916 { \ 5917 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ 5918 *sd = SD_##type##_INIT; \ 5919 SD_INIT_NAME(sd, type); \ 5920 sd->private = &tl->data; \ 5921 return sd; \ 5922 } 5923 5924 SD_INIT_FUNC(CPU) 5925 #ifdef CONFIG_SCHED_SMT 5926 SD_INIT_FUNC(SIBLING) 5927 #endif 5928 #ifdef CONFIG_SCHED_MC 5929 SD_INIT_FUNC(MC) 5930 #endif 5931 #ifdef CONFIG_SCHED_BOOK 5932 SD_INIT_FUNC(BOOK) 5933 #endif 5934 5935 static int default_relax_domain_level = -1; 5936 int sched_domain_level_max; 5937 5938 static int __init setup_relax_domain_level(char *str) 5939 { 5940 if (kstrtoint(str, 0, &default_relax_domain_level)) 5941 pr_warn("Unable to set relax_domain_level\n"); 5942 5943 return 1; 5944 } 5945 __setup("relax_domain_level=", setup_relax_domain_level); 5946 5947 static void set_domain_attribute(struct sched_domain *sd, 5948 struct sched_domain_attr *attr) 5949 { 5950 int request; 5951 5952 if (!attr || attr->relax_domain_level < 0) { 5953 if (default_relax_domain_level < 0) 5954 return; 5955 else 5956 request = default_relax_domain_level; 5957 } else 5958 request = attr->relax_domain_level; 5959 if (request < sd->level) { 5960 /* turn off idle balance on this domain */ 5961 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5962 } else { 5963 /* turn on idle balance on this domain */ 5964 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5965 } 5966 } 5967 5968 static void __sdt_free(const struct cpumask *cpu_map); 5969 static int __sdt_alloc(const struct cpumask *cpu_map); 5970 5971 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 5972 const struct cpumask *cpu_map) 5973 { 5974 switch (what) { 5975 case sa_rootdomain: 5976 if (!atomic_read(&d->rd->refcount)) 5977 free_rootdomain(&d->rd->rcu); /* fall through */ 5978 case sa_sd: 5979 free_percpu(d->sd); /* fall through */ 5980 case sa_sd_storage: 5981 __sdt_free(cpu_map); /* fall through */ 5982 case sa_none: 5983 break; 5984 } 5985 } 5986 5987 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 5988 const struct cpumask *cpu_map) 5989 { 5990 memset(d, 0, sizeof(*d)); 5991 5992 if (__sdt_alloc(cpu_map)) 5993 return sa_sd_storage; 5994 d->sd = alloc_percpu(struct sched_domain *); 5995 if (!d->sd) 5996 return sa_sd_storage; 5997 d->rd = alloc_rootdomain(); 5998 if (!d->rd) 5999 return sa_sd; 6000 return sa_rootdomain; 6001 } 6002 6003 /* 6004 * NULL the sd_data elements we've used to build the sched_domain and 6005 * sched_group structure so that the subsequent __free_domain_allocs() 6006 * will not free the data we're using. 6007 */ 6008 static void claim_allocations(int cpu, struct sched_domain *sd) 6009 { 6010 struct sd_data *sdd = sd->private; 6011 6012 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6013 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6014 6015 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6016 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6017 6018 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) 6019 *per_cpu_ptr(sdd->sgp, cpu) = NULL; 6020 } 6021 6022 #ifdef CONFIG_SCHED_SMT 6023 static const struct cpumask *cpu_smt_mask(int cpu) 6024 { 6025 return topology_thread_cpumask(cpu); 6026 } 6027 #endif 6028 6029 /* 6030 * Topology list, bottom-up. 6031 */ 6032 static struct sched_domain_topology_level default_topology[] = { 6033 #ifdef CONFIG_SCHED_SMT 6034 { sd_init_SIBLING, cpu_smt_mask, }, 6035 #endif 6036 #ifdef CONFIG_SCHED_MC 6037 { sd_init_MC, cpu_coregroup_mask, }, 6038 #endif 6039 #ifdef CONFIG_SCHED_BOOK 6040 { sd_init_BOOK, cpu_book_mask, }, 6041 #endif 6042 { sd_init_CPU, cpu_cpu_mask, }, 6043 { NULL, }, 6044 }; 6045 6046 static struct sched_domain_topology_level *sched_domain_topology = default_topology; 6047 6048 #ifdef CONFIG_NUMA 6049 6050 static int sched_domains_numa_levels; 6051 static int *sched_domains_numa_distance; 6052 static struct cpumask ***sched_domains_numa_masks; 6053 static int sched_domains_curr_level; 6054 6055 static inline int sd_local_flags(int level) 6056 { 6057 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE) 6058 return 0; 6059 6060 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE; 6061 } 6062 6063 static struct sched_domain * 6064 sd_numa_init(struct sched_domain_topology_level *tl, int cpu) 6065 { 6066 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6067 int level = tl->numa_level; 6068 int sd_weight = cpumask_weight( 6069 sched_domains_numa_masks[level][cpu_to_node(cpu)]); 6070 6071 *sd = (struct sched_domain){ 6072 .min_interval = sd_weight, 6073 .max_interval = 2*sd_weight, 6074 .busy_factor = 32, 6075 .imbalance_pct = 125, 6076 .cache_nice_tries = 2, 6077 .busy_idx = 3, 6078 .idle_idx = 2, 6079 .newidle_idx = 0, 6080 .wake_idx = 0, 6081 .forkexec_idx = 0, 6082 6083 .flags = 1*SD_LOAD_BALANCE 6084 | 1*SD_BALANCE_NEWIDLE 6085 | 0*SD_BALANCE_EXEC 6086 | 0*SD_BALANCE_FORK 6087 | 0*SD_BALANCE_WAKE 6088 | 0*SD_WAKE_AFFINE 6089 | 0*SD_SHARE_CPUPOWER 6090 | 0*SD_SHARE_PKG_RESOURCES 6091 | 1*SD_SERIALIZE 6092 | 0*SD_PREFER_SIBLING 6093 | sd_local_flags(level) 6094 , 6095 .last_balance = jiffies, 6096 .balance_interval = sd_weight, 6097 }; 6098 SD_INIT_NAME(sd, NUMA); 6099 sd->private = &tl->data; 6100 6101 /* 6102 * Ugly hack to pass state to sd_numa_mask()... 6103 */ 6104 sched_domains_curr_level = tl->numa_level; 6105 6106 return sd; 6107 } 6108 6109 static const struct cpumask *sd_numa_mask(int cpu) 6110 { 6111 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6112 } 6113 6114 static void sched_numa_warn(const char *str) 6115 { 6116 static int done = false; 6117 int i,j; 6118 6119 if (done) 6120 return; 6121 6122 done = true; 6123 6124 printk(KERN_WARNING "ERROR: %s\n\n", str); 6125 6126 for (i = 0; i < nr_node_ids; i++) { 6127 printk(KERN_WARNING " "); 6128 for (j = 0; j < nr_node_ids; j++) 6129 printk(KERN_CONT "%02d ", node_distance(i,j)); 6130 printk(KERN_CONT "\n"); 6131 } 6132 printk(KERN_WARNING "\n"); 6133 } 6134 6135 static bool find_numa_distance(int distance) 6136 { 6137 int i; 6138 6139 if (distance == node_distance(0, 0)) 6140 return true; 6141 6142 for (i = 0; i < sched_domains_numa_levels; i++) { 6143 if (sched_domains_numa_distance[i] == distance) 6144 return true; 6145 } 6146 6147 return false; 6148 } 6149 6150 static void sched_init_numa(void) 6151 { 6152 int next_distance, curr_distance = node_distance(0, 0); 6153 struct sched_domain_topology_level *tl; 6154 int level = 0; 6155 int i, j, k; 6156 6157 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6158 if (!sched_domains_numa_distance) 6159 return; 6160 6161 /* 6162 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6163 * unique distances in the node_distance() table. 6164 * 6165 * Assumes node_distance(0,j) includes all distances in 6166 * node_distance(i,j) in order to avoid cubic time. 6167 */ 6168 next_distance = curr_distance; 6169 for (i = 0; i < nr_node_ids; i++) { 6170 for (j = 0; j < nr_node_ids; j++) { 6171 for (k = 0; k < nr_node_ids; k++) { 6172 int distance = node_distance(i, k); 6173 6174 if (distance > curr_distance && 6175 (distance < next_distance || 6176 next_distance == curr_distance)) 6177 next_distance = distance; 6178 6179 /* 6180 * While not a strong assumption it would be nice to know 6181 * about cases where if node A is connected to B, B is not 6182 * equally connected to A. 6183 */ 6184 if (sched_debug() && node_distance(k, i) != distance) 6185 sched_numa_warn("Node-distance not symmetric"); 6186 6187 if (sched_debug() && i && !find_numa_distance(distance)) 6188 sched_numa_warn("Node-0 not representative"); 6189 } 6190 if (next_distance != curr_distance) { 6191 sched_domains_numa_distance[level++] = next_distance; 6192 sched_domains_numa_levels = level; 6193 curr_distance = next_distance; 6194 } else break; 6195 } 6196 6197 /* 6198 * In case of sched_debug() we verify the above assumption. 6199 */ 6200 if (!sched_debug()) 6201 break; 6202 } 6203 /* 6204 * 'level' contains the number of unique distances, excluding the 6205 * identity distance node_distance(i,i). 6206 * 6207 * The sched_domains_numa_distance[] array includes the actual distance 6208 * numbers. 6209 */ 6210 6211 /* 6212 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6213 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6214 * the array will contain less then 'level' members. This could be 6215 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6216 * in other functions. 6217 * 6218 * We reset it to 'level' at the end of this function. 6219 */ 6220 sched_domains_numa_levels = 0; 6221 6222 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6223 if (!sched_domains_numa_masks) 6224 return; 6225 6226 /* 6227 * Now for each level, construct a mask per node which contains all 6228 * cpus of nodes that are that many hops away from us. 6229 */ 6230 for (i = 0; i < level; i++) { 6231 sched_domains_numa_masks[i] = 6232 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6233 if (!sched_domains_numa_masks[i]) 6234 return; 6235 6236 for (j = 0; j < nr_node_ids; j++) { 6237 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6238 if (!mask) 6239 return; 6240 6241 sched_domains_numa_masks[i][j] = mask; 6242 6243 for (k = 0; k < nr_node_ids; k++) { 6244 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6245 continue; 6246 6247 cpumask_or(mask, mask, cpumask_of_node(k)); 6248 } 6249 } 6250 } 6251 6252 tl = kzalloc((ARRAY_SIZE(default_topology) + level) * 6253 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6254 if (!tl) 6255 return; 6256 6257 /* 6258 * Copy the default topology bits.. 6259 */ 6260 for (i = 0; default_topology[i].init; i++) 6261 tl[i] = default_topology[i]; 6262 6263 /* 6264 * .. and append 'j' levels of NUMA goodness. 6265 */ 6266 for (j = 0; j < level; i++, j++) { 6267 tl[i] = (struct sched_domain_topology_level){ 6268 .init = sd_numa_init, 6269 .mask = sd_numa_mask, 6270 .flags = SDTL_OVERLAP, 6271 .numa_level = j, 6272 }; 6273 } 6274 6275 sched_domain_topology = tl; 6276 6277 sched_domains_numa_levels = level; 6278 } 6279 6280 static void sched_domains_numa_masks_set(int cpu) 6281 { 6282 int i, j; 6283 int node = cpu_to_node(cpu); 6284 6285 for (i = 0; i < sched_domains_numa_levels; i++) { 6286 for (j = 0; j < nr_node_ids; j++) { 6287 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6288 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6289 } 6290 } 6291 } 6292 6293 static void sched_domains_numa_masks_clear(int cpu) 6294 { 6295 int i, j; 6296 for (i = 0; i < sched_domains_numa_levels; i++) { 6297 for (j = 0; j < nr_node_ids; j++) 6298 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6299 } 6300 } 6301 6302 /* 6303 * Update sched_domains_numa_masks[level][node] array when new cpus 6304 * are onlined. 6305 */ 6306 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6307 unsigned long action, 6308 void *hcpu) 6309 { 6310 int cpu = (long)hcpu; 6311 6312 switch (action & ~CPU_TASKS_FROZEN) { 6313 case CPU_ONLINE: 6314 sched_domains_numa_masks_set(cpu); 6315 break; 6316 6317 case CPU_DEAD: 6318 sched_domains_numa_masks_clear(cpu); 6319 break; 6320 6321 default: 6322 return NOTIFY_DONE; 6323 } 6324 6325 return NOTIFY_OK; 6326 } 6327 #else 6328 static inline void sched_init_numa(void) 6329 { 6330 } 6331 6332 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6333 unsigned long action, 6334 void *hcpu) 6335 { 6336 return 0; 6337 } 6338 #endif /* CONFIG_NUMA */ 6339 6340 static int __sdt_alloc(const struct cpumask *cpu_map) 6341 { 6342 struct sched_domain_topology_level *tl; 6343 int j; 6344 6345 for (tl = sched_domain_topology; tl->init; tl++) { 6346 struct sd_data *sdd = &tl->data; 6347 6348 sdd->sd = alloc_percpu(struct sched_domain *); 6349 if (!sdd->sd) 6350 return -ENOMEM; 6351 6352 sdd->sg = alloc_percpu(struct sched_group *); 6353 if (!sdd->sg) 6354 return -ENOMEM; 6355 6356 sdd->sgp = alloc_percpu(struct sched_group_power *); 6357 if (!sdd->sgp) 6358 return -ENOMEM; 6359 6360 for_each_cpu(j, cpu_map) { 6361 struct sched_domain *sd; 6362 struct sched_group *sg; 6363 struct sched_group_power *sgp; 6364 6365 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6366 GFP_KERNEL, cpu_to_node(j)); 6367 if (!sd) 6368 return -ENOMEM; 6369 6370 *per_cpu_ptr(sdd->sd, j) = sd; 6371 6372 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6373 GFP_KERNEL, cpu_to_node(j)); 6374 if (!sg) 6375 return -ENOMEM; 6376 6377 sg->next = sg; 6378 6379 *per_cpu_ptr(sdd->sg, j) = sg; 6380 6381 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(), 6382 GFP_KERNEL, cpu_to_node(j)); 6383 if (!sgp) 6384 return -ENOMEM; 6385 6386 *per_cpu_ptr(sdd->sgp, j) = sgp; 6387 } 6388 } 6389 6390 return 0; 6391 } 6392 6393 static void __sdt_free(const struct cpumask *cpu_map) 6394 { 6395 struct sched_domain_topology_level *tl; 6396 int j; 6397 6398 for (tl = sched_domain_topology; tl->init; tl++) { 6399 struct sd_data *sdd = &tl->data; 6400 6401 for_each_cpu(j, cpu_map) { 6402 struct sched_domain *sd; 6403 6404 if (sdd->sd) { 6405 sd = *per_cpu_ptr(sdd->sd, j); 6406 if (sd && (sd->flags & SD_OVERLAP)) 6407 free_sched_groups(sd->groups, 0); 6408 kfree(*per_cpu_ptr(sdd->sd, j)); 6409 } 6410 6411 if (sdd->sg) 6412 kfree(*per_cpu_ptr(sdd->sg, j)); 6413 if (sdd->sgp) 6414 kfree(*per_cpu_ptr(sdd->sgp, j)); 6415 } 6416 free_percpu(sdd->sd); 6417 sdd->sd = NULL; 6418 free_percpu(sdd->sg); 6419 sdd->sg = NULL; 6420 free_percpu(sdd->sgp); 6421 sdd->sgp = NULL; 6422 } 6423 } 6424 6425 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6426 struct s_data *d, const struct cpumask *cpu_map, 6427 struct sched_domain_attr *attr, struct sched_domain *child, 6428 int cpu) 6429 { 6430 struct sched_domain *sd = tl->init(tl, cpu); 6431 if (!sd) 6432 return child; 6433 6434 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6435 if (child) { 6436 sd->level = child->level + 1; 6437 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6438 child->parent = sd; 6439 } 6440 sd->child = child; 6441 set_domain_attribute(sd, attr); 6442 6443 return sd; 6444 } 6445 6446 /* 6447 * Build sched domains for a given set of cpus and attach the sched domains 6448 * to the individual cpus 6449 */ 6450 static int build_sched_domains(const struct cpumask *cpu_map, 6451 struct sched_domain_attr *attr) 6452 { 6453 enum s_alloc alloc_state = sa_none; 6454 struct sched_domain *sd; 6455 struct s_data d; 6456 int i, ret = -ENOMEM; 6457 6458 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6459 if (alloc_state != sa_rootdomain) 6460 goto error; 6461 6462 /* Set up domains for cpus specified by the cpu_map. */ 6463 for_each_cpu(i, cpu_map) { 6464 struct sched_domain_topology_level *tl; 6465 6466 sd = NULL; 6467 for (tl = sched_domain_topology; tl->init; tl++) { 6468 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); 6469 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6470 sd->flags |= SD_OVERLAP; 6471 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6472 break; 6473 } 6474 6475 while (sd->child) 6476 sd = sd->child; 6477 6478 *per_cpu_ptr(d.sd, i) = sd; 6479 } 6480 6481 /* Build the groups for the domains */ 6482 for_each_cpu(i, cpu_map) { 6483 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6484 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6485 if (sd->flags & SD_OVERLAP) { 6486 if (build_overlap_sched_groups(sd, i)) 6487 goto error; 6488 } else { 6489 if (build_sched_groups(sd, i)) 6490 goto error; 6491 } 6492 } 6493 } 6494 6495 /* Calculate CPU power for physical packages and nodes */ 6496 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6497 if (!cpumask_test_cpu(i, cpu_map)) 6498 continue; 6499 6500 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6501 claim_allocations(i, sd); 6502 init_sched_groups_power(i, sd); 6503 } 6504 } 6505 6506 /* Attach the domains */ 6507 rcu_read_lock(); 6508 for_each_cpu(i, cpu_map) { 6509 sd = *per_cpu_ptr(d.sd, i); 6510 cpu_attach_domain(sd, d.rd, i); 6511 } 6512 rcu_read_unlock(); 6513 6514 ret = 0; 6515 error: 6516 __free_domain_allocs(&d, alloc_state, cpu_map); 6517 return ret; 6518 } 6519 6520 static cpumask_var_t *doms_cur; /* current sched domains */ 6521 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6522 static struct sched_domain_attr *dattr_cur; 6523 /* attribues of custom domains in 'doms_cur' */ 6524 6525 /* 6526 * Special case: If a kmalloc of a doms_cur partition (array of 6527 * cpumask) fails, then fallback to a single sched domain, 6528 * as determined by the single cpumask fallback_doms. 6529 */ 6530 static cpumask_var_t fallback_doms; 6531 6532 /* 6533 * arch_update_cpu_topology lets virtualized architectures update the 6534 * cpu core maps. It is supposed to return 1 if the topology changed 6535 * or 0 if it stayed the same. 6536 */ 6537 int __attribute__((weak)) arch_update_cpu_topology(void) 6538 { 6539 return 0; 6540 } 6541 6542 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6543 { 6544 int i; 6545 cpumask_var_t *doms; 6546 6547 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6548 if (!doms) 6549 return NULL; 6550 for (i = 0; i < ndoms; i++) { 6551 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6552 free_sched_domains(doms, i); 6553 return NULL; 6554 } 6555 } 6556 return doms; 6557 } 6558 6559 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6560 { 6561 unsigned int i; 6562 for (i = 0; i < ndoms; i++) 6563 free_cpumask_var(doms[i]); 6564 kfree(doms); 6565 } 6566 6567 /* 6568 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6569 * For now this just excludes isolated cpus, but could be used to 6570 * exclude other special cases in the future. 6571 */ 6572 static int init_sched_domains(const struct cpumask *cpu_map) 6573 { 6574 int err; 6575 6576 arch_update_cpu_topology(); 6577 ndoms_cur = 1; 6578 doms_cur = alloc_sched_domains(ndoms_cur); 6579 if (!doms_cur) 6580 doms_cur = &fallback_doms; 6581 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6582 err = build_sched_domains(doms_cur[0], NULL); 6583 register_sched_domain_sysctl(); 6584 6585 return err; 6586 } 6587 6588 /* 6589 * Detach sched domains from a group of cpus specified in cpu_map 6590 * These cpus will now be attached to the NULL domain 6591 */ 6592 static void detach_destroy_domains(const struct cpumask *cpu_map) 6593 { 6594 int i; 6595 6596 rcu_read_lock(); 6597 for_each_cpu(i, cpu_map) 6598 cpu_attach_domain(NULL, &def_root_domain, i); 6599 rcu_read_unlock(); 6600 } 6601 6602 /* handle null as "default" */ 6603 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6604 struct sched_domain_attr *new, int idx_new) 6605 { 6606 struct sched_domain_attr tmp; 6607 6608 /* fast path */ 6609 if (!new && !cur) 6610 return 1; 6611 6612 tmp = SD_ATTR_INIT; 6613 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6614 new ? (new + idx_new) : &tmp, 6615 sizeof(struct sched_domain_attr)); 6616 } 6617 6618 /* 6619 * Partition sched domains as specified by the 'ndoms_new' 6620 * cpumasks in the array doms_new[] of cpumasks. This compares 6621 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6622 * It destroys each deleted domain and builds each new domain. 6623 * 6624 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6625 * The masks don't intersect (don't overlap.) We should setup one 6626 * sched domain for each mask. CPUs not in any of the cpumasks will 6627 * not be load balanced. If the same cpumask appears both in the 6628 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6629 * it as it is. 6630 * 6631 * The passed in 'doms_new' should be allocated using 6632 * alloc_sched_domains. This routine takes ownership of it and will 6633 * free_sched_domains it when done with it. If the caller failed the 6634 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6635 * and partition_sched_domains() will fallback to the single partition 6636 * 'fallback_doms', it also forces the domains to be rebuilt. 6637 * 6638 * If doms_new == NULL it will be replaced with cpu_online_mask. 6639 * ndoms_new == 0 is a special case for destroying existing domains, 6640 * and it will not create the default domain. 6641 * 6642 * Call with hotplug lock held 6643 */ 6644 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6645 struct sched_domain_attr *dattr_new) 6646 { 6647 int i, j, n; 6648 int new_topology; 6649 6650 mutex_lock(&sched_domains_mutex); 6651 6652 /* always unregister in case we don't destroy any domains */ 6653 unregister_sched_domain_sysctl(); 6654 6655 /* Let architecture update cpu core mappings. */ 6656 new_topology = arch_update_cpu_topology(); 6657 6658 n = doms_new ? ndoms_new : 0; 6659 6660 /* Destroy deleted domains */ 6661 for (i = 0; i < ndoms_cur; i++) { 6662 for (j = 0; j < n && !new_topology; j++) { 6663 if (cpumask_equal(doms_cur[i], doms_new[j]) 6664 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6665 goto match1; 6666 } 6667 /* no match - a current sched domain not in new doms_new[] */ 6668 detach_destroy_domains(doms_cur[i]); 6669 match1: 6670 ; 6671 } 6672 6673 if (doms_new == NULL) { 6674 ndoms_cur = 0; 6675 doms_new = &fallback_doms; 6676 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6677 WARN_ON_ONCE(dattr_new); 6678 } 6679 6680 /* Build new domains */ 6681 for (i = 0; i < ndoms_new; i++) { 6682 for (j = 0; j < ndoms_cur && !new_topology; j++) { 6683 if (cpumask_equal(doms_new[i], doms_cur[j]) 6684 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6685 goto match2; 6686 } 6687 /* no match - add a new doms_new */ 6688 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6689 match2: 6690 ; 6691 } 6692 6693 /* Remember the new sched domains */ 6694 if (doms_cur != &fallback_doms) 6695 free_sched_domains(doms_cur, ndoms_cur); 6696 kfree(dattr_cur); /* kfree(NULL) is safe */ 6697 doms_cur = doms_new; 6698 dattr_cur = dattr_new; 6699 ndoms_cur = ndoms_new; 6700 6701 register_sched_domain_sysctl(); 6702 6703 mutex_unlock(&sched_domains_mutex); 6704 } 6705 6706 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 6707 6708 /* 6709 * Update cpusets according to cpu_active mask. If cpusets are 6710 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6711 * around partition_sched_domains(). 6712 * 6713 * If we come here as part of a suspend/resume, don't touch cpusets because we 6714 * want to restore it back to its original state upon resume anyway. 6715 */ 6716 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6717 void *hcpu) 6718 { 6719 switch (action) { 6720 case CPU_ONLINE_FROZEN: 6721 case CPU_DOWN_FAILED_FROZEN: 6722 6723 /* 6724 * num_cpus_frozen tracks how many CPUs are involved in suspend 6725 * resume sequence. As long as this is not the last online 6726 * operation in the resume sequence, just build a single sched 6727 * domain, ignoring cpusets. 6728 */ 6729 num_cpus_frozen--; 6730 if (likely(num_cpus_frozen)) { 6731 partition_sched_domains(1, NULL, NULL); 6732 break; 6733 } 6734 6735 /* 6736 * This is the last CPU online operation. So fall through and 6737 * restore the original sched domains by considering the 6738 * cpuset configurations. 6739 */ 6740 6741 case CPU_ONLINE: 6742 case CPU_DOWN_FAILED: 6743 cpuset_update_active_cpus(true); 6744 break; 6745 default: 6746 return NOTIFY_DONE; 6747 } 6748 return NOTIFY_OK; 6749 } 6750 6751 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6752 void *hcpu) 6753 { 6754 switch (action) { 6755 case CPU_DOWN_PREPARE: 6756 cpuset_update_active_cpus(false); 6757 break; 6758 case CPU_DOWN_PREPARE_FROZEN: 6759 num_cpus_frozen++; 6760 partition_sched_domains(1, NULL, NULL); 6761 break; 6762 default: 6763 return NOTIFY_DONE; 6764 } 6765 return NOTIFY_OK; 6766 } 6767 6768 void __init sched_init_smp(void) 6769 { 6770 cpumask_var_t non_isolated_cpus; 6771 6772 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6773 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6774 6775 sched_init_numa(); 6776 6777 get_online_cpus(); 6778 mutex_lock(&sched_domains_mutex); 6779 init_sched_domains(cpu_active_mask); 6780 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6781 if (cpumask_empty(non_isolated_cpus)) 6782 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6783 mutex_unlock(&sched_domains_mutex); 6784 put_online_cpus(); 6785 6786 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 6787 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6788 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6789 6790 /* RT runtime code needs to handle some hotplug events */ 6791 hotcpu_notifier(update_runtime, 0); 6792 6793 init_hrtick(); 6794 6795 /* Move init over to a non-isolated CPU */ 6796 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6797 BUG(); 6798 sched_init_granularity(); 6799 free_cpumask_var(non_isolated_cpus); 6800 6801 init_sched_rt_class(); 6802 } 6803 #else 6804 void __init sched_init_smp(void) 6805 { 6806 sched_init_granularity(); 6807 } 6808 #endif /* CONFIG_SMP */ 6809 6810 const_debug unsigned int sysctl_timer_migration = 1; 6811 6812 int in_sched_functions(unsigned long addr) 6813 { 6814 return in_lock_functions(addr) || 6815 (addr >= (unsigned long)__sched_text_start 6816 && addr < (unsigned long)__sched_text_end); 6817 } 6818 6819 #ifdef CONFIG_CGROUP_SCHED 6820 /* 6821 * Default task group. 6822 * Every task in system belongs to this group at bootup. 6823 */ 6824 struct task_group root_task_group; 6825 LIST_HEAD(task_groups); 6826 #endif 6827 6828 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6829 6830 void __init sched_init(void) 6831 { 6832 int i, j; 6833 unsigned long alloc_size = 0, ptr; 6834 6835 #ifdef CONFIG_FAIR_GROUP_SCHED 6836 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6837 #endif 6838 #ifdef CONFIG_RT_GROUP_SCHED 6839 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6840 #endif 6841 #ifdef CONFIG_CPUMASK_OFFSTACK 6842 alloc_size += num_possible_cpus() * cpumask_size(); 6843 #endif 6844 if (alloc_size) { 6845 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6846 6847 #ifdef CONFIG_FAIR_GROUP_SCHED 6848 root_task_group.se = (struct sched_entity **)ptr; 6849 ptr += nr_cpu_ids * sizeof(void **); 6850 6851 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6852 ptr += nr_cpu_ids * sizeof(void **); 6853 6854 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6855 #ifdef CONFIG_RT_GROUP_SCHED 6856 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6857 ptr += nr_cpu_ids * sizeof(void **); 6858 6859 root_task_group.rt_rq = (struct rt_rq **)ptr; 6860 ptr += nr_cpu_ids * sizeof(void **); 6861 6862 #endif /* CONFIG_RT_GROUP_SCHED */ 6863 #ifdef CONFIG_CPUMASK_OFFSTACK 6864 for_each_possible_cpu(i) { 6865 per_cpu(load_balance_mask, i) = (void *)ptr; 6866 ptr += cpumask_size(); 6867 } 6868 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6869 } 6870 6871 #ifdef CONFIG_SMP 6872 init_defrootdomain(); 6873 #endif 6874 6875 init_rt_bandwidth(&def_rt_bandwidth, 6876 global_rt_period(), global_rt_runtime()); 6877 6878 #ifdef CONFIG_RT_GROUP_SCHED 6879 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6880 global_rt_period(), global_rt_runtime()); 6881 #endif /* CONFIG_RT_GROUP_SCHED */ 6882 6883 #ifdef CONFIG_CGROUP_SCHED 6884 list_add(&root_task_group.list, &task_groups); 6885 INIT_LIST_HEAD(&root_task_group.children); 6886 INIT_LIST_HEAD(&root_task_group.siblings); 6887 autogroup_init(&init_task); 6888 6889 #endif /* CONFIG_CGROUP_SCHED */ 6890 6891 for_each_possible_cpu(i) { 6892 struct rq *rq; 6893 6894 rq = cpu_rq(i); 6895 raw_spin_lock_init(&rq->lock); 6896 rq->nr_running = 0; 6897 rq->calc_load_active = 0; 6898 rq->calc_load_update = jiffies + LOAD_FREQ; 6899 init_cfs_rq(&rq->cfs); 6900 init_rt_rq(&rq->rt, rq); 6901 #ifdef CONFIG_FAIR_GROUP_SCHED 6902 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6903 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6904 /* 6905 * How much cpu bandwidth does root_task_group get? 6906 * 6907 * In case of task-groups formed thr' the cgroup filesystem, it 6908 * gets 100% of the cpu resources in the system. This overall 6909 * system cpu resource is divided among the tasks of 6910 * root_task_group and its child task-groups in a fair manner, 6911 * based on each entity's (task or task-group's) weight 6912 * (se->load.weight). 6913 * 6914 * In other words, if root_task_group has 10 tasks of weight 6915 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6916 * then A0's share of the cpu resource is: 6917 * 6918 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6919 * 6920 * We achieve this by letting root_task_group's tasks sit 6921 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6922 */ 6923 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6924 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6925 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6926 6927 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6928 #ifdef CONFIG_RT_GROUP_SCHED 6929 INIT_LIST_HEAD(&rq->leaf_rt_rq_list); 6930 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6931 #endif 6932 6933 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6934 rq->cpu_load[j] = 0; 6935 6936 rq->last_load_update_tick = jiffies; 6937 6938 #ifdef CONFIG_SMP 6939 rq->sd = NULL; 6940 rq->rd = NULL; 6941 rq->cpu_power = SCHED_POWER_SCALE; 6942 rq->post_schedule = 0; 6943 rq->active_balance = 0; 6944 rq->next_balance = jiffies; 6945 rq->push_cpu = 0; 6946 rq->cpu = i; 6947 rq->online = 0; 6948 rq->idle_stamp = 0; 6949 rq->avg_idle = 2*sysctl_sched_migration_cost; 6950 6951 INIT_LIST_HEAD(&rq->cfs_tasks); 6952 6953 rq_attach_root(rq, &def_root_domain); 6954 #ifdef CONFIG_NO_HZ 6955 rq->nohz_flags = 0; 6956 #endif 6957 #endif 6958 init_rq_hrtick(rq); 6959 atomic_set(&rq->nr_iowait, 0); 6960 } 6961 6962 set_load_weight(&init_task); 6963 6964 #ifdef CONFIG_PREEMPT_NOTIFIERS 6965 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 6966 #endif 6967 6968 #ifdef CONFIG_RT_MUTEXES 6969 plist_head_init(&init_task.pi_waiters); 6970 #endif 6971 6972 /* 6973 * The boot idle thread does lazy MMU switching as well: 6974 */ 6975 atomic_inc(&init_mm.mm_count); 6976 enter_lazy_tlb(&init_mm, current); 6977 6978 /* 6979 * Make us the idle thread. Technically, schedule() should not be 6980 * called from this thread, however somewhere below it might be, 6981 * but because we are the idle thread, we just pick up running again 6982 * when this runqueue becomes "idle". 6983 */ 6984 init_idle(current, smp_processor_id()); 6985 6986 calc_load_update = jiffies + LOAD_FREQ; 6987 6988 /* 6989 * During early bootup we pretend to be a normal task: 6990 */ 6991 current->sched_class = &fair_sched_class; 6992 6993 #ifdef CONFIG_SMP 6994 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 6995 /* May be allocated at isolcpus cmdline parse time */ 6996 if (cpu_isolated_map == NULL) 6997 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 6998 idle_thread_set_boot_cpu(); 6999 #endif 7000 init_sched_fair_class(); 7001 7002 scheduler_running = 1; 7003 } 7004 7005 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7006 static inline int preempt_count_equals(int preempt_offset) 7007 { 7008 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7009 7010 return (nested == preempt_offset); 7011 } 7012 7013 void __might_sleep(const char *file, int line, int preempt_offset) 7014 { 7015 static unsigned long prev_jiffy; /* ratelimiting */ 7016 7017 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7018 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || 7019 system_state != SYSTEM_RUNNING || oops_in_progress) 7020 return; 7021 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7022 return; 7023 prev_jiffy = jiffies; 7024 7025 printk(KERN_ERR 7026 "BUG: sleeping function called from invalid context at %s:%d\n", 7027 file, line); 7028 printk(KERN_ERR 7029 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7030 in_atomic(), irqs_disabled(), 7031 current->pid, current->comm); 7032 7033 debug_show_held_locks(current); 7034 if (irqs_disabled()) 7035 print_irqtrace_events(current); 7036 dump_stack(); 7037 } 7038 EXPORT_SYMBOL(__might_sleep); 7039 #endif 7040 7041 #ifdef CONFIG_MAGIC_SYSRQ 7042 static void normalize_task(struct rq *rq, struct task_struct *p) 7043 { 7044 const struct sched_class *prev_class = p->sched_class; 7045 int old_prio = p->prio; 7046 int on_rq; 7047 7048 on_rq = p->on_rq; 7049 if (on_rq) 7050 dequeue_task(rq, p, 0); 7051 __setscheduler(rq, p, SCHED_NORMAL, 0); 7052 if (on_rq) { 7053 enqueue_task(rq, p, 0); 7054 resched_task(rq->curr); 7055 } 7056 7057 check_class_changed(rq, p, prev_class, old_prio); 7058 } 7059 7060 void normalize_rt_tasks(void) 7061 { 7062 struct task_struct *g, *p; 7063 unsigned long flags; 7064 struct rq *rq; 7065 7066 read_lock_irqsave(&tasklist_lock, flags); 7067 do_each_thread(g, p) { 7068 /* 7069 * Only normalize user tasks: 7070 */ 7071 if (!p->mm) 7072 continue; 7073 7074 p->se.exec_start = 0; 7075 #ifdef CONFIG_SCHEDSTATS 7076 p->se.statistics.wait_start = 0; 7077 p->se.statistics.sleep_start = 0; 7078 p->se.statistics.block_start = 0; 7079 #endif 7080 7081 if (!rt_task(p)) { 7082 /* 7083 * Renice negative nice level userspace 7084 * tasks back to 0: 7085 */ 7086 if (TASK_NICE(p) < 0 && p->mm) 7087 set_user_nice(p, 0); 7088 continue; 7089 } 7090 7091 raw_spin_lock(&p->pi_lock); 7092 rq = __task_rq_lock(p); 7093 7094 normalize_task(rq, p); 7095 7096 __task_rq_unlock(rq); 7097 raw_spin_unlock(&p->pi_lock); 7098 } while_each_thread(g, p); 7099 7100 read_unlock_irqrestore(&tasklist_lock, flags); 7101 } 7102 7103 #endif /* CONFIG_MAGIC_SYSRQ */ 7104 7105 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7106 /* 7107 * These functions are only useful for the IA64 MCA handling, or kdb. 7108 * 7109 * They can only be called when the whole system has been 7110 * stopped - every CPU needs to be quiescent, and no scheduling 7111 * activity can take place. Using them for anything else would 7112 * be a serious bug, and as a result, they aren't even visible 7113 * under any other configuration. 7114 */ 7115 7116 /** 7117 * curr_task - return the current task for a given cpu. 7118 * @cpu: the processor in question. 7119 * 7120 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7121 */ 7122 struct task_struct *curr_task(int cpu) 7123 { 7124 return cpu_curr(cpu); 7125 } 7126 7127 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7128 7129 #ifdef CONFIG_IA64 7130 /** 7131 * set_curr_task - set the current task for a given cpu. 7132 * @cpu: the processor in question. 7133 * @p: the task pointer to set. 7134 * 7135 * Description: This function must only be used when non-maskable interrupts 7136 * are serviced on a separate stack. It allows the architecture to switch the 7137 * notion of the current task on a cpu in a non-blocking manner. This function 7138 * must be called with all CPU's synchronized, and interrupts disabled, the 7139 * and caller must save the original value of the current task (see 7140 * curr_task() above) and restore that value before reenabling interrupts and 7141 * re-starting the system. 7142 * 7143 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7144 */ 7145 void set_curr_task(int cpu, struct task_struct *p) 7146 { 7147 cpu_curr(cpu) = p; 7148 } 7149 7150 #endif 7151 7152 #ifdef CONFIG_CGROUP_SCHED 7153 /* task_group_lock serializes the addition/removal of task groups */ 7154 static DEFINE_SPINLOCK(task_group_lock); 7155 7156 static void free_sched_group(struct task_group *tg) 7157 { 7158 free_fair_sched_group(tg); 7159 free_rt_sched_group(tg); 7160 autogroup_free(tg); 7161 kfree(tg); 7162 } 7163 7164 /* allocate runqueue etc for a new task group */ 7165 struct task_group *sched_create_group(struct task_group *parent) 7166 { 7167 struct task_group *tg; 7168 7169 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7170 if (!tg) 7171 return ERR_PTR(-ENOMEM); 7172 7173 if (!alloc_fair_sched_group(tg, parent)) 7174 goto err; 7175 7176 if (!alloc_rt_sched_group(tg, parent)) 7177 goto err; 7178 7179 return tg; 7180 7181 err: 7182 free_sched_group(tg); 7183 return ERR_PTR(-ENOMEM); 7184 } 7185 7186 void sched_online_group(struct task_group *tg, struct task_group *parent) 7187 { 7188 unsigned long flags; 7189 7190 spin_lock_irqsave(&task_group_lock, flags); 7191 list_add_rcu(&tg->list, &task_groups); 7192 7193 WARN_ON(!parent); /* root should already exist */ 7194 7195 tg->parent = parent; 7196 INIT_LIST_HEAD(&tg->children); 7197 list_add_rcu(&tg->siblings, &parent->children); 7198 spin_unlock_irqrestore(&task_group_lock, flags); 7199 } 7200 7201 /* rcu callback to free various structures associated with a task group */ 7202 static void free_sched_group_rcu(struct rcu_head *rhp) 7203 { 7204 /* now it should be safe to free those cfs_rqs */ 7205 free_sched_group(container_of(rhp, struct task_group, rcu)); 7206 } 7207 7208 /* Destroy runqueue etc associated with a task group */ 7209 void sched_destroy_group(struct task_group *tg) 7210 { 7211 /* wait for possible concurrent references to cfs_rqs complete */ 7212 call_rcu(&tg->rcu, free_sched_group_rcu); 7213 } 7214 7215 void sched_offline_group(struct task_group *tg) 7216 { 7217 unsigned long flags; 7218 int i; 7219 7220 /* end participation in shares distribution */ 7221 for_each_possible_cpu(i) 7222 unregister_fair_sched_group(tg, i); 7223 7224 spin_lock_irqsave(&task_group_lock, flags); 7225 list_del_rcu(&tg->list); 7226 list_del_rcu(&tg->siblings); 7227 spin_unlock_irqrestore(&task_group_lock, flags); 7228 } 7229 7230 /* change task's runqueue when it moves between groups. 7231 * The caller of this function should have put the task in its new group 7232 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7233 * reflect its new group. 7234 */ 7235 void sched_move_task(struct task_struct *tsk) 7236 { 7237 struct task_group *tg; 7238 int on_rq, running; 7239 unsigned long flags; 7240 struct rq *rq; 7241 7242 rq = task_rq_lock(tsk, &flags); 7243 7244 running = task_current(rq, tsk); 7245 on_rq = tsk->on_rq; 7246 7247 if (on_rq) 7248 dequeue_task(rq, tsk, 0); 7249 if (unlikely(running)) 7250 tsk->sched_class->put_prev_task(rq, tsk); 7251 7252 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id, 7253 lockdep_is_held(&tsk->sighand->siglock)), 7254 struct task_group, css); 7255 tg = autogroup_task_group(tsk, tg); 7256 tsk->sched_task_group = tg; 7257 7258 #ifdef CONFIG_FAIR_GROUP_SCHED 7259 if (tsk->sched_class->task_move_group) 7260 tsk->sched_class->task_move_group(tsk, on_rq); 7261 else 7262 #endif 7263 set_task_rq(tsk, task_cpu(tsk)); 7264 7265 if (unlikely(running)) 7266 tsk->sched_class->set_curr_task(rq); 7267 if (on_rq) 7268 enqueue_task(rq, tsk, 0); 7269 7270 task_rq_unlock(rq, tsk, &flags); 7271 } 7272 #endif /* CONFIG_CGROUP_SCHED */ 7273 7274 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) 7275 static unsigned long to_ratio(u64 period, u64 runtime) 7276 { 7277 if (runtime == RUNTIME_INF) 7278 return 1ULL << 20; 7279 7280 return div64_u64(runtime << 20, period); 7281 } 7282 #endif 7283 7284 #ifdef CONFIG_RT_GROUP_SCHED 7285 /* 7286 * Ensure that the real time constraints are schedulable. 7287 */ 7288 static DEFINE_MUTEX(rt_constraints_mutex); 7289 7290 /* Must be called with tasklist_lock held */ 7291 static inline int tg_has_rt_tasks(struct task_group *tg) 7292 { 7293 struct task_struct *g, *p; 7294 7295 do_each_thread(g, p) { 7296 if (rt_task(p) && task_rq(p)->rt.tg == tg) 7297 return 1; 7298 } while_each_thread(g, p); 7299 7300 return 0; 7301 } 7302 7303 struct rt_schedulable_data { 7304 struct task_group *tg; 7305 u64 rt_period; 7306 u64 rt_runtime; 7307 }; 7308 7309 static int tg_rt_schedulable(struct task_group *tg, void *data) 7310 { 7311 struct rt_schedulable_data *d = data; 7312 struct task_group *child; 7313 unsigned long total, sum = 0; 7314 u64 period, runtime; 7315 7316 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7317 runtime = tg->rt_bandwidth.rt_runtime; 7318 7319 if (tg == d->tg) { 7320 period = d->rt_period; 7321 runtime = d->rt_runtime; 7322 } 7323 7324 /* 7325 * Cannot have more runtime than the period. 7326 */ 7327 if (runtime > period && runtime != RUNTIME_INF) 7328 return -EINVAL; 7329 7330 /* 7331 * Ensure we don't starve existing RT tasks. 7332 */ 7333 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7334 return -EBUSY; 7335 7336 total = to_ratio(period, runtime); 7337 7338 /* 7339 * Nobody can have more than the global setting allows. 7340 */ 7341 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7342 return -EINVAL; 7343 7344 /* 7345 * The sum of our children's runtime should not exceed our own. 7346 */ 7347 list_for_each_entry_rcu(child, &tg->children, siblings) { 7348 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7349 runtime = child->rt_bandwidth.rt_runtime; 7350 7351 if (child == d->tg) { 7352 period = d->rt_period; 7353 runtime = d->rt_runtime; 7354 } 7355 7356 sum += to_ratio(period, runtime); 7357 } 7358 7359 if (sum > total) 7360 return -EINVAL; 7361 7362 return 0; 7363 } 7364 7365 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7366 { 7367 int ret; 7368 7369 struct rt_schedulable_data data = { 7370 .tg = tg, 7371 .rt_period = period, 7372 .rt_runtime = runtime, 7373 }; 7374 7375 rcu_read_lock(); 7376 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7377 rcu_read_unlock(); 7378 7379 return ret; 7380 } 7381 7382 static int tg_set_rt_bandwidth(struct task_group *tg, 7383 u64 rt_period, u64 rt_runtime) 7384 { 7385 int i, err = 0; 7386 7387 mutex_lock(&rt_constraints_mutex); 7388 read_lock(&tasklist_lock); 7389 err = __rt_schedulable(tg, rt_period, rt_runtime); 7390 if (err) 7391 goto unlock; 7392 7393 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7394 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7395 tg->rt_bandwidth.rt_runtime = rt_runtime; 7396 7397 for_each_possible_cpu(i) { 7398 struct rt_rq *rt_rq = tg->rt_rq[i]; 7399 7400 raw_spin_lock(&rt_rq->rt_runtime_lock); 7401 rt_rq->rt_runtime = rt_runtime; 7402 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7403 } 7404 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7405 unlock: 7406 read_unlock(&tasklist_lock); 7407 mutex_unlock(&rt_constraints_mutex); 7408 7409 return err; 7410 } 7411 7412 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7413 { 7414 u64 rt_runtime, rt_period; 7415 7416 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7417 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7418 if (rt_runtime_us < 0) 7419 rt_runtime = RUNTIME_INF; 7420 7421 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7422 } 7423 7424 static long sched_group_rt_runtime(struct task_group *tg) 7425 { 7426 u64 rt_runtime_us; 7427 7428 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7429 return -1; 7430 7431 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7432 do_div(rt_runtime_us, NSEC_PER_USEC); 7433 return rt_runtime_us; 7434 } 7435 7436 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7437 { 7438 u64 rt_runtime, rt_period; 7439 7440 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7441 rt_runtime = tg->rt_bandwidth.rt_runtime; 7442 7443 if (rt_period == 0) 7444 return -EINVAL; 7445 7446 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7447 } 7448 7449 static long sched_group_rt_period(struct task_group *tg) 7450 { 7451 u64 rt_period_us; 7452 7453 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7454 do_div(rt_period_us, NSEC_PER_USEC); 7455 return rt_period_us; 7456 } 7457 7458 static int sched_rt_global_constraints(void) 7459 { 7460 u64 runtime, period; 7461 int ret = 0; 7462 7463 if (sysctl_sched_rt_period <= 0) 7464 return -EINVAL; 7465 7466 runtime = global_rt_runtime(); 7467 period = global_rt_period(); 7468 7469 /* 7470 * Sanity check on the sysctl variables. 7471 */ 7472 if (runtime > period && runtime != RUNTIME_INF) 7473 return -EINVAL; 7474 7475 mutex_lock(&rt_constraints_mutex); 7476 read_lock(&tasklist_lock); 7477 ret = __rt_schedulable(NULL, 0, 0); 7478 read_unlock(&tasklist_lock); 7479 mutex_unlock(&rt_constraints_mutex); 7480 7481 return ret; 7482 } 7483 7484 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7485 { 7486 /* Don't accept realtime tasks when there is no way for them to run */ 7487 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7488 return 0; 7489 7490 return 1; 7491 } 7492 7493 #else /* !CONFIG_RT_GROUP_SCHED */ 7494 static int sched_rt_global_constraints(void) 7495 { 7496 unsigned long flags; 7497 int i; 7498 7499 if (sysctl_sched_rt_period <= 0) 7500 return -EINVAL; 7501 7502 /* 7503 * There's always some RT tasks in the root group 7504 * -- migration, kstopmachine etc.. 7505 */ 7506 if (sysctl_sched_rt_runtime == 0) 7507 return -EBUSY; 7508 7509 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7510 for_each_possible_cpu(i) { 7511 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7512 7513 raw_spin_lock(&rt_rq->rt_runtime_lock); 7514 rt_rq->rt_runtime = global_rt_runtime(); 7515 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7516 } 7517 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7518 7519 return 0; 7520 } 7521 #endif /* CONFIG_RT_GROUP_SCHED */ 7522 7523 int sched_rr_handler(struct ctl_table *table, int write, 7524 void __user *buffer, size_t *lenp, 7525 loff_t *ppos) 7526 { 7527 int ret; 7528 static DEFINE_MUTEX(mutex); 7529 7530 mutex_lock(&mutex); 7531 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7532 /* make sure that internally we keep jiffies */ 7533 /* also, writing zero resets timeslice to default */ 7534 if (!ret && write) { 7535 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 7536 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 7537 } 7538 mutex_unlock(&mutex); 7539 return ret; 7540 } 7541 7542 int sched_rt_handler(struct ctl_table *table, int write, 7543 void __user *buffer, size_t *lenp, 7544 loff_t *ppos) 7545 { 7546 int ret; 7547 int old_period, old_runtime; 7548 static DEFINE_MUTEX(mutex); 7549 7550 mutex_lock(&mutex); 7551 old_period = sysctl_sched_rt_period; 7552 old_runtime = sysctl_sched_rt_runtime; 7553 7554 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7555 7556 if (!ret && write) { 7557 ret = sched_rt_global_constraints(); 7558 if (ret) { 7559 sysctl_sched_rt_period = old_period; 7560 sysctl_sched_rt_runtime = old_runtime; 7561 } else { 7562 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7563 def_rt_bandwidth.rt_period = 7564 ns_to_ktime(global_rt_period()); 7565 } 7566 } 7567 mutex_unlock(&mutex); 7568 7569 return ret; 7570 } 7571 7572 #ifdef CONFIG_CGROUP_SCHED 7573 7574 /* return corresponding task_group object of a cgroup */ 7575 static inline struct task_group *cgroup_tg(struct cgroup *cgrp) 7576 { 7577 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), 7578 struct task_group, css); 7579 } 7580 7581 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp) 7582 { 7583 struct task_group *tg, *parent; 7584 7585 if (!cgrp->parent) { 7586 /* This is early initialization for the top cgroup */ 7587 return &root_task_group.css; 7588 } 7589 7590 parent = cgroup_tg(cgrp->parent); 7591 tg = sched_create_group(parent); 7592 if (IS_ERR(tg)) 7593 return ERR_PTR(-ENOMEM); 7594 7595 return &tg->css; 7596 } 7597 7598 static int cpu_cgroup_css_online(struct cgroup *cgrp) 7599 { 7600 struct task_group *tg = cgroup_tg(cgrp); 7601 struct task_group *parent; 7602 7603 if (!cgrp->parent) 7604 return 0; 7605 7606 parent = cgroup_tg(cgrp->parent); 7607 sched_online_group(tg, parent); 7608 return 0; 7609 } 7610 7611 static void cpu_cgroup_css_free(struct cgroup *cgrp) 7612 { 7613 struct task_group *tg = cgroup_tg(cgrp); 7614 7615 sched_destroy_group(tg); 7616 } 7617 7618 static void cpu_cgroup_css_offline(struct cgroup *cgrp) 7619 { 7620 struct task_group *tg = cgroup_tg(cgrp); 7621 7622 sched_offline_group(tg); 7623 } 7624 7625 static int cpu_cgroup_can_attach(struct cgroup *cgrp, 7626 struct cgroup_taskset *tset) 7627 { 7628 struct task_struct *task; 7629 7630 cgroup_taskset_for_each(task, cgrp, tset) { 7631 #ifdef CONFIG_RT_GROUP_SCHED 7632 if (!sched_rt_can_attach(cgroup_tg(cgrp), task)) 7633 return -EINVAL; 7634 #else 7635 /* We don't support RT-tasks being in separate groups */ 7636 if (task->sched_class != &fair_sched_class) 7637 return -EINVAL; 7638 #endif 7639 } 7640 return 0; 7641 } 7642 7643 static void cpu_cgroup_attach(struct cgroup *cgrp, 7644 struct cgroup_taskset *tset) 7645 { 7646 struct task_struct *task; 7647 7648 cgroup_taskset_for_each(task, cgrp, tset) 7649 sched_move_task(task); 7650 } 7651 7652 static void 7653 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, 7654 struct task_struct *task) 7655 { 7656 /* 7657 * cgroup_exit() is called in the copy_process() failure path. 7658 * Ignore this case since the task hasn't ran yet, this avoids 7659 * trying to poke a half freed task state from generic code. 7660 */ 7661 if (!(task->flags & PF_EXITING)) 7662 return; 7663 7664 sched_move_task(task); 7665 } 7666 7667 #ifdef CONFIG_FAIR_GROUP_SCHED 7668 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7669 u64 shareval) 7670 { 7671 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval)); 7672 } 7673 7674 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) 7675 { 7676 struct task_group *tg = cgroup_tg(cgrp); 7677 7678 return (u64) scale_load_down(tg->shares); 7679 } 7680 7681 #ifdef CONFIG_CFS_BANDWIDTH 7682 static DEFINE_MUTEX(cfs_constraints_mutex); 7683 7684 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7685 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7686 7687 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7688 7689 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7690 { 7691 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7692 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7693 7694 if (tg == &root_task_group) 7695 return -EINVAL; 7696 7697 /* 7698 * Ensure we have at some amount of bandwidth every period. This is 7699 * to prevent reaching a state of large arrears when throttled via 7700 * entity_tick() resulting in prolonged exit starvation. 7701 */ 7702 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7703 return -EINVAL; 7704 7705 /* 7706 * Likewise, bound things on the otherside by preventing insane quota 7707 * periods. This also allows us to normalize in computing quota 7708 * feasibility. 7709 */ 7710 if (period > max_cfs_quota_period) 7711 return -EINVAL; 7712 7713 mutex_lock(&cfs_constraints_mutex); 7714 ret = __cfs_schedulable(tg, period, quota); 7715 if (ret) 7716 goto out_unlock; 7717 7718 runtime_enabled = quota != RUNTIME_INF; 7719 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7720 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled); 7721 raw_spin_lock_irq(&cfs_b->lock); 7722 cfs_b->period = ns_to_ktime(period); 7723 cfs_b->quota = quota; 7724 7725 __refill_cfs_bandwidth_runtime(cfs_b); 7726 /* restart the period timer (if active) to handle new period expiry */ 7727 if (runtime_enabled && cfs_b->timer_active) { 7728 /* force a reprogram */ 7729 cfs_b->timer_active = 0; 7730 __start_cfs_bandwidth(cfs_b); 7731 } 7732 raw_spin_unlock_irq(&cfs_b->lock); 7733 7734 for_each_possible_cpu(i) { 7735 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7736 struct rq *rq = cfs_rq->rq; 7737 7738 raw_spin_lock_irq(&rq->lock); 7739 cfs_rq->runtime_enabled = runtime_enabled; 7740 cfs_rq->runtime_remaining = 0; 7741 7742 if (cfs_rq->throttled) 7743 unthrottle_cfs_rq(cfs_rq); 7744 raw_spin_unlock_irq(&rq->lock); 7745 } 7746 out_unlock: 7747 mutex_unlock(&cfs_constraints_mutex); 7748 7749 return ret; 7750 } 7751 7752 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7753 { 7754 u64 quota, period; 7755 7756 period = ktime_to_ns(tg->cfs_bandwidth.period); 7757 if (cfs_quota_us < 0) 7758 quota = RUNTIME_INF; 7759 else 7760 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7761 7762 return tg_set_cfs_bandwidth(tg, period, quota); 7763 } 7764 7765 long tg_get_cfs_quota(struct task_group *tg) 7766 { 7767 u64 quota_us; 7768 7769 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7770 return -1; 7771 7772 quota_us = tg->cfs_bandwidth.quota; 7773 do_div(quota_us, NSEC_PER_USEC); 7774 7775 return quota_us; 7776 } 7777 7778 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7779 { 7780 u64 quota, period; 7781 7782 period = (u64)cfs_period_us * NSEC_PER_USEC; 7783 quota = tg->cfs_bandwidth.quota; 7784 7785 return tg_set_cfs_bandwidth(tg, period, quota); 7786 } 7787 7788 long tg_get_cfs_period(struct task_group *tg) 7789 { 7790 u64 cfs_period_us; 7791 7792 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7793 do_div(cfs_period_us, NSEC_PER_USEC); 7794 7795 return cfs_period_us; 7796 } 7797 7798 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft) 7799 { 7800 return tg_get_cfs_quota(cgroup_tg(cgrp)); 7801 } 7802 7803 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype, 7804 s64 cfs_quota_us) 7805 { 7806 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us); 7807 } 7808 7809 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft) 7810 { 7811 return tg_get_cfs_period(cgroup_tg(cgrp)); 7812 } 7813 7814 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7815 u64 cfs_period_us) 7816 { 7817 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us); 7818 } 7819 7820 struct cfs_schedulable_data { 7821 struct task_group *tg; 7822 u64 period, quota; 7823 }; 7824 7825 /* 7826 * normalize group quota/period to be quota/max_period 7827 * note: units are usecs 7828 */ 7829 static u64 normalize_cfs_quota(struct task_group *tg, 7830 struct cfs_schedulable_data *d) 7831 { 7832 u64 quota, period; 7833 7834 if (tg == d->tg) { 7835 period = d->period; 7836 quota = d->quota; 7837 } else { 7838 period = tg_get_cfs_period(tg); 7839 quota = tg_get_cfs_quota(tg); 7840 } 7841 7842 /* note: these should typically be equivalent */ 7843 if (quota == RUNTIME_INF || quota == -1) 7844 return RUNTIME_INF; 7845 7846 return to_ratio(period, quota); 7847 } 7848 7849 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7850 { 7851 struct cfs_schedulable_data *d = data; 7852 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7853 s64 quota = 0, parent_quota = -1; 7854 7855 if (!tg->parent) { 7856 quota = RUNTIME_INF; 7857 } else { 7858 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7859 7860 quota = normalize_cfs_quota(tg, d); 7861 parent_quota = parent_b->hierarchal_quota; 7862 7863 /* 7864 * ensure max(child_quota) <= parent_quota, inherit when no 7865 * limit is set 7866 */ 7867 if (quota == RUNTIME_INF) 7868 quota = parent_quota; 7869 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7870 return -EINVAL; 7871 } 7872 cfs_b->hierarchal_quota = quota; 7873 7874 return 0; 7875 } 7876 7877 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7878 { 7879 int ret; 7880 struct cfs_schedulable_data data = { 7881 .tg = tg, 7882 .period = period, 7883 .quota = quota, 7884 }; 7885 7886 if (quota != RUNTIME_INF) { 7887 do_div(data.period, NSEC_PER_USEC); 7888 do_div(data.quota, NSEC_PER_USEC); 7889 } 7890 7891 rcu_read_lock(); 7892 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7893 rcu_read_unlock(); 7894 7895 return ret; 7896 } 7897 7898 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft, 7899 struct cgroup_map_cb *cb) 7900 { 7901 struct task_group *tg = cgroup_tg(cgrp); 7902 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7903 7904 cb->fill(cb, "nr_periods", cfs_b->nr_periods); 7905 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); 7906 cb->fill(cb, "throttled_time", cfs_b->throttled_time); 7907 7908 return 0; 7909 } 7910 #endif /* CONFIG_CFS_BANDWIDTH */ 7911 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7912 7913 #ifdef CONFIG_RT_GROUP_SCHED 7914 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, 7915 s64 val) 7916 { 7917 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); 7918 } 7919 7920 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) 7921 { 7922 return sched_group_rt_runtime(cgroup_tg(cgrp)); 7923 } 7924 7925 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, 7926 u64 rt_period_us) 7927 { 7928 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); 7929 } 7930 7931 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) 7932 { 7933 return sched_group_rt_period(cgroup_tg(cgrp)); 7934 } 7935 #endif /* CONFIG_RT_GROUP_SCHED */ 7936 7937 static struct cftype cpu_files[] = { 7938 #ifdef CONFIG_FAIR_GROUP_SCHED 7939 { 7940 .name = "shares", 7941 .read_u64 = cpu_shares_read_u64, 7942 .write_u64 = cpu_shares_write_u64, 7943 }, 7944 #endif 7945 #ifdef CONFIG_CFS_BANDWIDTH 7946 { 7947 .name = "cfs_quota_us", 7948 .read_s64 = cpu_cfs_quota_read_s64, 7949 .write_s64 = cpu_cfs_quota_write_s64, 7950 }, 7951 { 7952 .name = "cfs_period_us", 7953 .read_u64 = cpu_cfs_period_read_u64, 7954 .write_u64 = cpu_cfs_period_write_u64, 7955 }, 7956 { 7957 .name = "stat", 7958 .read_map = cpu_stats_show, 7959 }, 7960 #endif 7961 #ifdef CONFIG_RT_GROUP_SCHED 7962 { 7963 .name = "rt_runtime_us", 7964 .read_s64 = cpu_rt_runtime_read, 7965 .write_s64 = cpu_rt_runtime_write, 7966 }, 7967 { 7968 .name = "rt_period_us", 7969 .read_u64 = cpu_rt_period_read_uint, 7970 .write_u64 = cpu_rt_period_write_uint, 7971 }, 7972 #endif 7973 { } /* terminate */ 7974 }; 7975 7976 struct cgroup_subsys cpu_cgroup_subsys = { 7977 .name = "cpu", 7978 .css_alloc = cpu_cgroup_css_alloc, 7979 .css_free = cpu_cgroup_css_free, 7980 .css_online = cpu_cgroup_css_online, 7981 .css_offline = cpu_cgroup_css_offline, 7982 .can_attach = cpu_cgroup_can_attach, 7983 .attach = cpu_cgroup_attach, 7984 .exit = cpu_cgroup_exit, 7985 .subsys_id = cpu_cgroup_subsys_id, 7986 .base_cftypes = cpu_files, 7987 .early_init = 1, 7988 }; 7989 7990 #endif /* CONFIG_CGROUP_SCHED */ 7991 7992 void dump_cpu_task(int cpu) 7993 { 7994 pr_info("Task dump for CPU %d:\n", cpu); 7995 sched_show_task(cpu_curr(cpu)); 7996 } 7997