1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel CPU scheduler code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #include <linux/highmem.h> 11 #include <linux/hrtimer_api.h> 12 #include <linux/ktime_api.h> 13 #include <linux/sched/signal.h> 14 #include <linux/syscalls_api.h> 15 #include <linux/debug_locks.h> 16 #include <linux/prefetch.h> 17 #include <linux/capability.h> 18 #include <linux/pgtable_api.h> 19 #include <linux/wait_bit.h> 20 #include <linux/jiffies.h> 21 #include <linux/spinlock_api.h> 22 #include <linux/cpumask_api.h> 23 #include <linux/lockdep_api.h> 24 #include <linux/hardirq.h> 25 #include <linux/softirq.h> 26 #include <linux/refcount_api.h> 27 #include <linux/topology.h> 28 #include <linux/sched/clock.h> 29 #include <linux/sched/cond_resched.h> 30 #include <linux/sched/cputime.h> 31 #include <linux/sched/debug.h> 32 #include <linux/sched/hotplug.h> 33 #include <linux/sched/init.h> 34 #include <linux/sched/isolation.h> 35 #include <linux/sched/loadavg.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/nohz.h> 38 #include <linux/sched/rseq_api.h> 39 #include <linux/sched/rt.h> 40 41 #include <linux/blkdev.h> 42 #include <linux/context_tracking.h> 43 #include <linux/cpuset.h> 44 #include <linux/delayacct.h> 45 #include <linux/init_task.h> 46 #include <linux/interrupt.h> 47 #include <linux/ioprio.h> 48 #include <linux/kallsyms.h> 49 #include <linux/kcov.h> 50 #include <linux/kprobes.h> 51 #include <linux/llist_api.h> 52 #include <linux/mmu_context.h> 53 #include <linux/mmzone.h> 54 #include <linux/mutex_api.h> 55 #include <linux/nmi.h> 56 #include <linux/nospec.h> 57 #include <linux/perf_event_api.h> 58 #include <linux/profile.h> 59 #include <linux/psi.h> 60 #include <linux/rcuwait_api.h> 61 #include <linux/rseq.h> 62 #include <linux/sched/wake_q.h> 63 #include <linux/scs.h> 64 #include <linux/slab.h> 65 #include <linux/syscalls.h> 66 #include <linux/vtime.h> 67 #include <linux/wait_api.h> 68 #include <linux/workqueue_api.h> 69 70 #ifdef CONFIG_PREEMPT_DYNAMIC 71 # ifdef CONFIG_GENERIC_ENTRY 72 # include <linux/entry-common.h> 73 # endif 74 #endif 75 76 #include <uapi/linux/sched/types.h> 77 78 #include <asm/irq_regs.h> 79 #include <asm/switch_to.h> 80 #include <asm/tlb.h> 81 82 #define CREATE_TRACE_POINTS 83 #include <linux/sched/rseq_api.h> 84 #include <trace/events/sched.h> 85 #include <trace/events/ipi.h> 86 #undef CREATE_TRACE_POINTS 87 88 #include "sched.h" 89 #include "stats.h" 90 91 #include "autogroup.h" 92 #include "pelt.h" 93 #include "smp.h" 94 #include "stats.h" 95 96 #include "../workqueue_internal.h" 97 #include "../../io_uring/io-wq.h" 98 #include "../smpboot.h" 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 102 103 /* 104 * Export tracepoints that act as a bare tracehook (ie: have no trace event 105 * associated with them) to allow external modules to probe them. 106 */ 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 119 120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 121 122 #ifdef CONFIG_SCHED_DEBUG 123 /* 124 * Debugging: various feature bits 125 * 126 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 127 * sysctl_sched_features, defined in sched.h, to allow constants propagation 128 * at compile time and compiler optimization based on features default. 129 */ 130 #define SCHED_FEAT(name, enabled) \ 131 (1UL << __SCHED_FEAT_##name) * enabled | 132 const_debug unsigned int sysctl_sched_features = 133 #include "features.h" 134 0; 135 #undef SCHED_FEAT 136 137 /* 138 * Print a warning if need_resched is set for the given duration (if 139 * LATENCY_WARN is enabled). 140 * 141 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 142 * per boot. 143 */ 144 __read_mostly int sysctl_resched_latency_warn_ms = 100; 145 __read_mostly int sysctl_resched_latency_warn_once = 1; 146 #endif /* CONFIG_SCHED_DEBUG */ 147 148 /* 149 * Number of tasks to iterate in a single balance run. 150 * Limited because this is done with IRQs disabled. 151 */ 152 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 153 154 __read_mostly int scheduler_running; 155 156 #ifdef CONFIG_SCHED_CORE 157 158 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 159 160 /* kernel prio, less is more */ 161 static inline int __task_prio(const struct task_struct *p) 162 { 163 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 164 return -2; 165 166 if (rt_prio(p->prio)) /* includes deadline */ 167 return p->prio; /* [-1, 99] */ 168 169 if (p->sched_class == &idle_sched_class) 170 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 171 172 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 173 } 174 175 /* 176 * l(a,b) 177 * le(a,b) := !l(b,a) 178 * g(a,b) := l(b,a) 179 * ge(a,b) := !l(a,b) 180 */ 181 182 /* real prio, less is less */ 183 static inline bool prio_less(const struct task_struct *a, 184 const struct task_struct *b, bool in_fi) 185 { 186 187 int pa = __task_prio(a), pb = __task_prio(b); 188 189 if (-pa < -pb) 190 return true; 191 192 if (-pb < -pa) 193 return false; 194 195 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 196 return !dl_time_before(a->dl.deadline, b->dl.deadline); 197 198 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 199 return cfs_prio_less(a, b, in_fi); 200 201 return false; 202 } 203 204 static inline bool __sched_core_less(const struct task_struct *a, 205 const struct task_struct *b) 206 { 207 if (a->core_cookie < b->core_cookie) 208 return true; 209 210 if (a->core_cookie > b->core_cookie) 211 return false; 212 213 /* flip prio, so high prio is leftmost */ 214 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 215 return true; 216 217 return false; 218 } 219 220 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 221 222 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 223 { 224 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 225 } 226 227 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 228 { 229 const struct task_struct *p = __node_2_sc(node); 230 unsigned long cookie = (unsigned long)key; 231 232 if (cookie < p->core_cookie) 233 return -1; 234 235 if (cookie > p->core_cookie) 236 return 1; 237 238 return 0; 239 } 240 241 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 242 { 243 rq->core->core_task_seq++; 244 245 if (!p->core_cookie) 246 return; 247 248 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 249 } 250 251 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 252 { 253 rq->core->core_task_seq++; 254 255 if (sched_core_enqueued(p)) { 256 rb_erase(&p->core_node, &rq->core_tree); 257 RB_CLEAR_NODE(&p->core_node); 258 } 259 260 /* 261 * Migrating the last task off the cpu, with the cpu in forced idle 262 * state. Reschedule to create an accounting edge for forced idle, 263 * and re-examine whether the core is still in forced idle state. 264 */ 265 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 266 rq->core->core_forceidle_count && rq->curr == rq->idle) 267 resched_curr(rq); 268 } 269 270 static int sched_task_is_throttled(struct task_struct *p, int cpu) 271 { 272 if (p->sched_class->task_is_throttled) 273 return p->sched_class->task_is_throttled(p, cpu); 274 275 return 0; 276 } 277 278 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 279 { 280 struct rb_node *node = &p->core_node; 281 int cpu = task_cpu(p); 282 283 do { 284 node = rb_next(node); 285 if (!node) 286 return NULL; 287 288 p = __node_2_sc(node); 289 if (p->core_cookie != cookie) 290 return NULL; 291 292 } while (sched_task_is_throttled(p, cpu)); 293 294 return p; 295 } 296 297 /* 298 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 299 * If no suitable task is found, NULL will be returned. 300 */ 301 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 302 { 303 struct task_struct *p; 304 struct rb_node *node; 305 306 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 307 if (!node) 308 return NULL; 309 310 p = __node_2_sc(node); 311 if (!sched_task_is_throttled(p, rq->cpu)) 312 return p; 313 314 return sched_core_next(p, cookie); 315 } 316 317 /* 318 * Magic required such that: 319 * 320 * raw_spin_rq_lock(rq); 321 * ... 322 * raw_spin_rq_unlock(rq); 323 * 324 * ends up locking and unlocking the _same_ lock, and all CPUs 325 * always agree on what rq has what lock. 326 * 327 * XXX entirely possible to selectively enable cores, don't bother for now. 328 */ 329 330 static DEFINE_MUTEX(sched_core_mutex); 331 static atomic_t sched_core_count; 332 static struct cpumask sched_core_mask; 333 334 static void sched_core_lock(int cpu, unsigned long *flags) 335 { 336 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 337 int t, i = 0; 338 339 local_irq_save(*flags); 340 for_each_cpu(t, smt_mask) 341 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 342 } 343 344 static void sched_core_unlock(int cpu, unsigned long *flags) 345 { 346 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 347 int t; 348 349 for_each_cpu(t, smt_mask) 350 raw_spin_unlock(&cpu_rq(t)->__lock); 351 local_irq_restore(*flags); 352 } 353 354 static void __sched_core_flip(bool enabled) 355 { 356 unsigned long flags; 357 int cpu, t; 358 359 cpus_read_lock(); 360 361 /* 362 * Toggle the online cores, one by one. 363 */ 364 cpumask_copy(&sched_core_mask, cpu_online_mask); 365 for_each_cpu(cpu, &sched_core_mask) { 366 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 367 368 sched_core_lock(cpu, &flags); 369 370 for_each_cpu(t, smt_mask) 371 cpu_rq(t)->core_enabled = enabled; 372 373 cpu_rq(cpu)->core->core_forceidle_start = 0; 374 375 sched_core_unlock(cpu, &flags); 376 377 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 378 } 379 380 /* 381 * Toggle the offline CPUs. 382 */ 383 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 384 cpu_rq(cpu)->core_enabled = enabled; 385 386 cpus_read_unlock(); 387 } 388 389 static void sched_core_assert_empty(void) 390 { 391 int cpu; 392 393 for_each_possible_cpu(cpu) 394 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 395 } 396 397 static void __sched_core_enable(void) 398 { 399 static_branch_enable(&__sched_core_enabled); 400 /* 401 * Ensure all previous instances of raw_spin_rq_*lock() have finished 402 * and future ones will observe !sched_core_disabled(). 403 */ 404 synchronize_rcu(); 405 __sched_core_flip(true); 406 sched_core_assert_empty(); 407 } 408 409 static void __sched_core_disable(void) 410 { 411 sched_core_assert_empty(); 412 __sched_core_flip(false); 413 static_branch_disable(&__sched_core_enabled); 414 } 415 416 void sched_core_get(void) 417 { 418 if (atomic_inc_not_zero(&sched_core_count)) 419 return; 420 421 mutex_lock(&sched_core_mutex); 422 if (!atomic_read(&sched_core_count)) 423 __sched_core_enable(); 424 425 smp_mb__before_atomic(); 426 atomic_inc(&sched_core_count); 427 mutex_unlock(&sched_core_mutex); 428 } 429 430 static void __sched_core_put(struct work_struct *work) 431 { 432 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 433 __sched_core_disable(); 434 mutex_unlock(&sched_core_mutex); 435 } 436 } 437 438 void sched_core_put(void) 439 { 440 static DECLARE_WORK(_work, __sched_core_put); 441 442 /* 443 * "There can be only one" 444 * 445 * Either this is the last one, or we don't actually need to do any 446 * 'work'. If it is the last *again*, we rely on 447 * WORK_STRUCT_PENDING_BIT. 448 */ 449 if (!atomic_add_unless(&sched_core_count, -1, 1)) 450 schedule_work(&_work); 451 } 452 453 #else /* !CONFIG_SCHED_CORE */ 454 455 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 456 static inline void 457 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 458 459 #endif /* CONFIG_SCHED_CORE */ 460 461 /* 462 * Serialization rules: 463 * 464 * Lock order: 465 * 466 * p->pi_lock 467 * rq->lock 468 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 469 * 470 * rq1->lock 471 * rq2->lock where: rq1 < rq2 472 * 473 * Regular state: 474 * 475 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 476 * local CPU's rq->lock, it optionally removes the task from the runqueue and 477 * always looks at the local rq data structures to find the most eligible task 478 * to run next. 479 * 480 * Task enqueue is also under rq->lock, possibly taken from another CPU. 481 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 482 * the local CPU to avoid bouncing the runqueue state around [ see 483 * ttwu_queue_wakelist() ] 484 * 485 * Task wakeup, specifically wakeups that involve migration, are horribly 486 * complicated to avoid having to take two rq->locks. 487 * 488 * Special state: 489 * 490 * System-calls and anything external will use task_rq_lock() which acquires 491 * both p->pi_lock and rq->lock. As a consequence the state they change is 492 * stable while holding either lock: 493 * 494 * - sched_setaffinity()/ 495 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 496 * - set_user_nice(): p->se.load, p->*prio 497 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 498 * p->se.load, p->rt_priority, 499 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 500 * - sched_setnuma(): p->numa_preferred_nid 501 * - sched_move_task(): p->sched_task_group 502 * - uclamp_update_active() p->uclamp* 503 * 504 * p->state <- TASK_*: 505 * 506 * is changed locklessly using set_current_state(), __set_current_state() or 507 * set_special_state(), see their respective comments, or by 508 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 509 * concurrent self. 510 * 511 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 512 * 513 * is set by activate_task() and cleared by deactivate_task(), under 514 * rq->lock. Non-zero indicates the task is runnable, the special 515 * ON_RQ_MIGRATING state is used for migration without holding both 516 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 517 * 518 * p->on_cpu <- { 0, 1 }: 519 * 520 * is set by prepare_task() and cleared by finish_task() such that it will be 521 * set before p is scheduled-in and cleared after p is scheduled-out, both 522 * under rq->lock. Non-zero indicates the task is running on its CPU. 523 * 524 * [ The astute reader will observe that it is possible for two tasks on one 525 * CPU to have ->on_cpu = 1 at the same time. ] 526 * 527 * task_cpu(p): is changed by set_task_cpu(), the rules are: 528 * 529 * - Don't call set_task_cpu() on a blocked task: 530 * 531 * We don't care what CPU we're not running on, this simplifies hotplug, 532 * the CPU assignment of blocked tasks isn't required to be valid. 533 * 534 * - for try_to_wake_up(), called under p->pi_lock: 535 * 536 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 537 * 538 * - for migration called under rq->lock: 539 * [ see task_on_rq_migrating() in task_rq_lock() ] 540 * 541 * o move_queued_task() 542 * o detach_task() 543 * 544 * - for migration called under double_rq_lock(): 545 * 546 * o __migrate_swap_task() 547 * o push_rt_task() / pull_rt_task() 548 * o push_dl_task() / pull_dl_task() 549 * o dl_task_offline_migration() 550 * 551 */ 552 553 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 554 { 555 raw_spinlock_t *lock; 556 557 /* Matches synchronize_rcu() in __sched_core_enable() */ 558 preempt_disable(); 559 if (sched_core_disabled()) { 560 raw_spin_lock_nested(&rq->__lock, subclass); 561 /* preempt_count *MUST* be > 1 */ 562 preempt_enable_no_resched(); 563 return; 564 } 565 566 for (;;) { 567 lock = __rq_lockp(rq); 568 raw_spin_lock_nested(lock, subclass); 569 if (likely(lock == __rq_lockp(rq))) { 570 /* preempt_count *MUST* be > 1 */ 571 preempt_enable_no_resched(); 572 return; 573 } 574 raw_spin_unlock(lock); 575 } 576 } 577 578 bool raw_spin_rq_trylock(struct rq *rq) 579 { 580 raw_spinlock_t *lock; 581 bool ret; 582 583 /* Matches synchronize_rcu() in __sched_core_enable() */ 584 preempt_disable(); 585 if (sched_core_disabled()) { 586 ret = raw_spin_trylock(&rq->__lock); 587 preempt_enable(); 588 return ret; 589 } 590 591 for (;;) { 592 lock = __rq_lockp(rq); 593 ret = raw_spin_trylock(lock); 594 if (!ret || (likely(lock == __rq_lockp(rq)))) { 595 preempt_enable(); 596 return ret; 597 } 598 raw_spin_unlock(lock); 599 } 600 } 601 602 void raw_spin_rq_unlock(struct rq *rq) 603 { 604 raw_spin_unlock(rq_lockp(rq)); 605 } 606 607 #ifdef CONFIG_SMP 608 /* 609 * double_rq_lock - safely lock two runqueues 610 */ 611 void double_rq_lock(struct rq *rq1, struct rq *rq2) 612 { 613 lockdep_assert_irqs_disabled(); 614 615 if (rq_order_less(rq2, rq1)) 616 swap(rq1, rq2); 617 618 raw_spin_rq_lock(rq1); 619 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 620 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 621 622 double_rq_clock_clear_update(rq1, rq2); 623 } 624 #endif 625 626 /* 627 * __task_rq_lock - lock the rq @p resides on. 628 */ 629 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 630 __acquires(rq->lock) 631 { 632 struct rq *rq; 633 634 lockdep_assert_held(&p->pi_lock); 635 636 for (;;) { 637 rq = task_rq(p); 638 raw_spin_rq_lock(rq); 639 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 640 rq_pin_lock(rq, rf); 641 return rq; 642 } 643 raw_spin_rq_unlock(rq); 644 645 while (unlikely(task_on_rq_migrating(p))) 646 cpu_relax(); 647 } 648 } 649 650 /* 651 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 652 */ 653 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 654 __acquires(p->pi_lock) 655 __acquires(rq->lock) 656 { 657 struct rq *rq; 658 659 for (;;) { 660 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 661 rq = task_rq(p); 662 raw_spin_rq_lock(rq); 663 /* 664 * move_queued_task() task_rq_lock() 665 * 666 * ACQUIRE (rq->lock) 667 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 668 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 669 * [S] ->cpu = new_cpu [L] task_rq() 670 * [L] ->on_rq 671 * RELEASE (rq->lock) 672 * 673 * If we observe the old CPU in task_rq_lock(), the acquire of 674 * the old rq->lock will fully serialize against the stores. 675 * 676 * If we observe the new CPU in task_rq_lock(), the address 677 * dependency headed by '[L] rq = task_rq()' and the acquire 678 * will pair with the WMB to ensure we then also see migrating. 679 */ 680 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 681 rq_pin_lock(rq, rf); 682 return rq; 683 } 684 raw_spin_rq_unlock(rq); 685 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 686 687 while (unlikely(task_on_rq_migrating(p))) 688 cpu_relax(); 689 } 690 } 691 692 /* 693 * RQ-clock updating methods: 694 */ 695 696 static void update_rq_clock_task(struct rq *rq, s64 delta) 697 { 698 /* 699 * In theory, the compile should just see 0 here, and optimize out the call 700 * to sched_rt_avg_update. But I don't trust it... 701 */ 702 s64 __maybe_unused steal = 0, irq_delta = 0; 703 704 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 705 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 706 707 /* 708 * Since irq_time is only updated on {soft,}irq_exit, we might run into 709 * this case when a previous update_rq_clock() happened inside a 710 * {soft,}IRQ region. 711 * 712 * When this happens, we stop ->clock_task and only update the 713 * prev_irq_time stamp to account for the part that fit, so that a next 714 * update will consume the rest. This ensures ->clock_task is 715 * monotonic. 716 * 717 * It does however cause some slight miss-attribution of {soft,}IRQ 718 * time, a more accurate solution would be to update the irq_time using 719 * the current rq->clock timestamp, except that would require using 720 * atomic ops. 721 */ 722 if (irq_delta > delta) 723 irq_delta = delta; 724 725 rq->prev_irq_time += irq_delta; 726 delta -= irq_delta; 727 delayacct_irq(rq->curr, irq_delta); 728 #endif 729 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 730 if (static_key_false((¶virt_steal_rq_enabled))) { 731 steal = paravirt_steal_clock(cpu_of(rq)); 732 steal -= rq->prev_steal_time_rq; 733 734 if (unlikely(steal > delta)) 735 steal = delta; 736 737 rq->prev_steal_time_rq += steal; 738 delta -= steal; 739 } 740 #endif 741 742 rq->clock_task += delta; 743 744 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 745 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 746 update_irq_load_avg(rq, irq_delta + steal); 747 #endif 748 update_rq_clock_pelt(rq, delta); 749 } 750 751 void update_rq_clock(struct rq *rq) 752 { 753 s64 delta; 754 755 lockdep_assert_rq_held(rq); 756 757 if (rq->clock_update_flags & RQCF_ACT_SKIP) 758 return; 759 760 #ifdef CONFIG_SCHED_DEBUG 761 if (sched_feat(WARN_DOUBLE_CLOCK)) 762 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 763 rq->clock_update_flags |= RQCF_UPDATED; 764 #endif 765 766 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 767 if (delta < 0) 768 return; 769 rq->clock += delta; 770 update_rq_clock_task(rq, delta); 771 } 772 773 #ifdef CONFIG_SCHED_HRTICK 774 /* 775 * Use HR-timers to deliver accurate preemption points. 776 */ 777 778 static void hrtick_clear(struct rq *rq) 779 { 780 if (hrtimer_active(&rq->hrtick_timer)) 781 hrtimer_cancel(&rq->hrtick_timer); 782 } 783 784 /* 785 * High-resolution timer tick. 786 * Runs from hardirq context with interrupts disabled. 787 */ 788 static enum hrtimer_restart hrtick(struct hrtimer *timer) 789 { 790 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 791 struct rq_flags rf; 792 793 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 794 795 rq_lock(rq, &rf); 796 update_rq_clock(rq); 797 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 798 rq_unlock(rq, &rf); 799 800 return HRTIMER_NORESTART; 801 } 802 803 #ifdef CONFIG_SMP 804 805 static void __hrtick_restart(struct rq *rq) 806 { 807 struct hrtimer *timer = &rq->hrtick_timer; 808 ktime_t time = rq->hrtick_time; 809 810 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 811 } 812 813 /* 814 * called from hardirq (IPI) context 815 */ 816 static void __hrtick_start(void *arg) 817 { 818 struct rq *rq = arg; 819 struct rq_flags rf; 820 821 rq_lock(rq, &rf); 822 __hrtick_restart(rq); 823 rq_unlock(rq, &rf); 824 } 825 826 /* 827 * Called to set the hrtick timer state. 828 * 829 * called with rq->lock held and IRQs disabled 830 */ 831 void hrtick_start(struct rq *rq, u64 delay) 832 { 833 struct hrtimer *timer = &rq->hrtick_timer; 834 s64 delta; 835 836 /* 837 * Don't schedule slices shorter than 10000ns, that just 838 * doesn't make sense and can cause timer DoS. 839 */ 840 delta = max_t(s64, delay, 10000LL); 841 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 842 843 if (rq == this_rq()) 844 __hrtick_restart(rq); 845 else 846 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 847 } 848 849 #else 850 /* 851 * Called to set the hrtick timer state. 852 * 853 * called with rq->lock held and IRQs disabled 854 */ 855 void hrtick_start(struct rq *rq, u64 delay) 856 { 857 /* 858 * Don't schedule slices shorter than 10000ns, that just 859 * doesn't make sense. Rely on vruntime for fairness. 860 */ 861 delay = max_t(u64, delay, 10000LL); 862 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 863 HRTIMER_MODE_REL_PINNED_HARD); 864 } 865 866 #endif /* CONFIG_SMP */ 867 868 static void hrtick_rq_init(struct rq *rq) 869 { 870 #ifdef CONFIG_SMP 871 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 872 #endif 873 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 874 rq->hrtick_timer.function = hrtick; 875 } 876 #else /* CONFIG_SCHED_HRTICK */ 877 static inline void hrtick_clear(struct rq *rq) 878 { 879 } 880 881 static inline void hrtick_rq_init(struct rq *rq) 882 { 883 } 884 #endif /* CONFIG_SCHED_HRTICK */ 885 886 /* 887 * try_cmpxchg based fetch_or() macro so it works for different integer types: 888 */ 889 #define fetch_or(ptr, mask) \ 890 ({ \ 891 typeof(ptr) _ptr = (ptr); \ 892 typeof(mask) _mask = (mask); \ 893 typeof(*_ptr) _val = *_ptr; \ 894 \ 895 do { \ 896 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 897 _val; \ 898 }) 899 900 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 901 /* 902 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 903 * this avoids any races wrt polling state changes and thereby avoids 904 * spurious IPIs. 905 */ 906 static inline bool set_nr_and_not_polling(struct task_struct *p) 907 { 908 struct thread_info *ti = task_thread_info(p); 909 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 910 } 911 912 /* 913 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 914 * 915 * If this returns true, then the idle task promises to call 916 * sched_ttwu_pending() and reschedule soon. 917 */ 918 static bool set_nr_if_polling(struct task_struct *p) 919 { 920 struct thread_info *ti = task_thread_info(p); 921 typeof(ti->flags) val = READ_ONCE(ti->flags); 922 923 do { 924 if (!(val & _TIF_POLLING_NRFLAG)) 925 return false; 926 if (val & _TIF_NEED_RESCHED) 927 return true; 928 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 929 930 return true; 931 } 932 933 #else 934 static inline bool set_nr_and_not_polling(struct task_struct *p) 935 { 936 set_tsk_need_resched(p); 937 return true; 938 } 939 940 #ifdef CONFIG_SMP 941 static inline bool set_nr_if_polling(struct task_struct *p) 942 { 943 return false; 944 } 945 #endif 946 #endif 947 948 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 949 { 950 struct wake_q_node *node = &task->wake_q; 951 952 /* 953 * Atomically grab the task, if ->wake_q is !nil already it means 954 * it's already queued (either by us or someone else) and will get the 955 * wakeup due to that. 956 * 957 * In order to ensure that a pending wakeup will observe our pending 958 * state, even in the failed case, an explicit smp_mb() must be used. 959 */ 960 smp_mb__before_atomic(); 961 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 962 return false; 963 964 /* 965 * The head is context local, there can be no concurrency. 966 */ 967 *head->lastp = node; 968 head->lastp = &node->next; 969 return true; 970 } 971 972 /** 973 * wake_q_add() - queue a wakeup for 'later' waking. 974 * @head: the wake_q_head to add @task to 975 * @task: the task to queue for 'later' wakeup 976 * 977 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 978 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 979 * instantly. 980 * 981 * This function must be used as-if it were wake_up_process(); IOW the task 982 * must be ready to be woken at this location. 983 */ 984 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 985 { 986 if (__wake_q_add(head, task)) 987 get_task_struct(task); 988 } 989 990 /** 991 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 992 * @head: the wake_q_head to add @task to 993 * @task: the task to queue for 'later' wakeup 994 * 995 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 996 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 997 * instantly. 998 * 999 * This function must be used as-if it were wake_up_process(); IOW the task 1000 * must be ready to be woken at this location. 1001 * 1002 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1003 * that already hold reference to @task can call the 'safe' version and trust 1004 * wake_q to do the right thing depending whether or not the @task is already 1005 * queued for wakeup. 1006 */ 1007 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1008 { 1009 if (!__wake_q_add(head, task)) 1010 put_task_struct(task); 1011 } 1012 1013 void wake_up_q(struct wake_q_head *head) 1014 { 1015 struct wake_q_node *node = head->first; 1016 1017 while (node != WAKE_Q_TAIL) { 1018 struct task_struct *task; 1019 1020 task = container_of(node, struct task_struct, wake_q); 1021 /* Task can safely be re-inserted now: */ 1022 node = node->next; 1023 task->wake_q.next = NULL; 1024 1025 /* 1026 * wake_up_process() executes a full barrier, which pairs with 1027 * the queueing in wake_q_add() so as not to miss wakeups. 1028 */ 1029 wake_up_process(task); 1030 put_task_struct(task); 1031 } 1032 } 1033 1034 /* 1035 * resched_curr - mark rq's current task 'to be rescheduled now'. 1036 * 1037 * On UP this means the setting of the need_resched flag, on SMP it 1038 * might also involve a cross-CPU call to trigger the scheduler on 1039 * the target CPU. 1040 */ 1041 void resched_curr(struct rq *rq) 1042 { 1043 struct task_struct *curr = rq->curr; 1044 int cpu; 1045 1046 lockdep_assert_rq_held(rq); 1047 1048 if (test_tsk_need_resched(curr)) 1049 return; 1050 1051 cpu = cpu_of(rq); 1052 1053 if (cpu == smp_processor_id()) { 1054 set_tsk_need_resched(curr); 1055 set_preempt_need_resched(); 1056 return; 1057 } 1058 1059 if (set_nr_and_not_polling(curr)) 1060 smp_send_reschedule(cpu); 1061 else 1062 trace_sched_wake_idle_without_ipi(cpu); 1063 } 1064 1065 void resched_cpu(int cpu) 1066 { 1067 struct rq *rq = cpu_rq(cpu); 1068 unsigned long flags; 1069 1070 raw_spin_rq_lock_irqsave(rq, flags); 1071 if (cpu_online(cpu) || cpu == smp_processor_id()) 1072 resched_curr(rq); 1073 raw_spin_rq_unlock_irqrestore(rq, flags); 1074 } 1075 1076 #ifdef CONFIG_SMP 1077 #ifdef CONFIG_NO_HZ_COMMON 1078 /* 1079 * In the semi idle case, use the nearest busy CPU for migrating timers 1080 * from an idle CPU. This is good for power-savings. 1081 * 1082 * We don't do similar optimization for completely idle system, as 1083 * selecting an idle CPU will add more delays to the timers than intended 1084 * (as that CPU's timer base may not be up to date wrt jiffies etc). 1085 */ 1086 int get_nohz_timer_target(void) 1087 { 1088 int i, cpu = smp_processor_id(), default_cpu = -1; 1089 struct sched_domain *sd; 1090 const struct cpumask *hk_mask; 1091 1092 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1093 if (!idle_cpu(cpu)) 1094 return cpu; 1095 default_cpu = cpu; 1096 } 1097 1098 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1099 1100 guard(rcu)(); 1101 1102 for_each_domain(cpu, sd) { 1103 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1104 if (cpu == i) 1105 continue; 1106 1107 if (!idle_cpu(i)) 1108 return i; 1109 } 1110 } 1111 1112 if (default_cpu == -1) 1113 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1114 1115 return default_cpu; 1116 } 1117 1118 /* 1119 * When add_timer_on() enqueues a timer into the timer wheel of an 1120 * idle CPU then this timer might expire before the next timer event 1121 * which is scheduled to wake up that CPU. In case of a completely 1122 * idle system the next event might even be infinite time into the 1123 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1124 * leaves the inner idle loop so the newly added timer is taken into 1125 * account when the CPU goes back to idle and evaluates the timer 1126 * wheel for the next timer event. 1127 */ 1128 static void wake_up_idle_cpu(int cpu) 1129 { 1130 struct rq *rq = cpu_rq(cpu); 1131 1132 if (cpu == smp_processor_id()) 1133 return; 1134 1135 /* 1136 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling 1137 * part of the idle loop. This forces an exit from the idle loop 1138 * and a round trip to schedule(). Now this could be optimized 1139 * because a simple new idle loop iteration is enough to 1140 * re-evaluate the next tick. Provided some re-ordering of tick 1141 * nohz functions that would need to follow TIF_NR_POLLING 1142 * clearing: 1143 * 1144 * - On most architectures, a simple fetch_or on ti::flags with a 1145 * "0" value would be enough to know if an IPI needs to be sent. 1146 * 1147 * - x86 needs to perform a last need_resched() check between 1148 * monitor and mwait which doesn't take timers into account. 1149 * There a dedicated TIF_TIMER flag would be required to 1150 * fetch_or here and be checked along with TIF_NEED_RESCHED 1151 * before mwait(). 1152 * 1153 * However, remote timer enqueue is not such a frequent event 1154 * and testing of the above solutions didn't appear to report 1155 * much benefits. 1156 */ 1157 if (set_nr_and_not_polling(rq->idle)) 1158 smp_send_reschedule(cpu); 1159 else 1160 trace_sched_wake_idle_without_ipi(cpu); 1161 } 1162 1163 static bool wake_up_full_nohz_cpu(int cpu) 1164 { 1165 /* 1166 * We just need the target to call irq_exit() and re-evaluate 1167 * the next tick. The nohz full kick at least implies that. 1168 * If needed we can still optimize that later with an 1169 * empty IRQ. 1170 */ 1171 if (cpu_is_offline(cpu)) 1172 return true; /* Don't try to wake offline CPUs. */ 1173 if (tick_nohz_full_cpu(cpu)) { 1174 if (cpu != smp_processor_id() || 1175 tick_nohz_tick_stopped()) 1176 tick_nohz_full_kick_cpu(cpu); 1177 return true; 1178 } 1179 1180 return false; 1181 } 1182 1183 /* 1184 * Wake up the specified CPU. If the CPU is going offline, it is the 1185 * caller's responsibility to deal with the lost wakeup, for example, 1186 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1187 */ 1188 void wake_up_nohz_cpu(int cpu) 1189 { 1190 if (!wake_up_full_nohz_cpu(cpu)) 1191 wake_up_idle_cpu(cpu); 1192 } 1193 1194 static void nohz_csd_func(void *info) 1195 { 1196 struct rq *rq = info; 1197 int cpu = cpu_of(rq); 1198 unsigned int flags; 1199 1200 /* 1201 * Release the rq::nohz_csd. 1202 */ 1203 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1204 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1205 1206 rq->idle_balance = idle_cpu(cpu); 1207 if (rq->idle_balance && !need_resched()) { 1208 rq->nohz_idle_balance = flags; 1209 raise_softirq_irqoff(SCHED_SOFTIRQ); 1210 } 1211 } 1212 1213 #endif /* CONFIG_NO_HZ_COMMON */ 1214 1215 #ifdef CONFIG_NO_HZ_FULL 1216 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1217 { 1218 if (rq->nr_running != 1) 1219 return false; 1220 1221 if (p->sched_class != &fair_sched_class) 1222 return false; 1223 1224 if (!task_on_rq_queued(p)) 1225 return false; 1226 1227 return true; 1228 } 1229 1230 bool sched_can_stop_tick(struct rq *rq) 1231 { 1232 int fifo_nr_running; 1233 1234 /* Deadline tasks, even if single, need the tick */ 1235 if (rq->dl.dl_nr_running) 1236 return false; 1237 1238 /* 1239 * If there are more than one RR tasks, we need the tick to affect the 1240 * actual RR behaviour. 1241 */ 1242 if (rq->rt.rr_nr_running) { 1243 if (rq->rt.rr_nr_running == 1) 1244 return true; 1245 else 1246 return false; 1247 } 1248 1249 /* 1250 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1251 * forced preemption between FIFO tasks. 1252 */ 1253 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1254 if (fifo_nr_running) 1255 return true; 1256 1257 /* 1258 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1259 * if there's more than one we need the tick for involuntary 1260 * preemption. 1261 */ 1262 if (rq->nr_running > 1) 1263 return false; 1264 1265 /* 1266 * If there is one task and it has CFS runtime bandwidth constraints 1267 * and it's on the cpu now we don't want to stop the tick. 1268 * This check prevents clearing the bit if a newly enqueued task here is 1269 * dequeued by migrating while the constrained task continues to run. 1270 * E.g. going from 2->1 without going through pick_next_task(). 1271 */ 1272 if (__need_bw_check(rq, rq->curr)) { 1273 if (cfs_task_bw_constrained(rq->curr)) 1274 return false; 1275 } 1276 1277 return true; 1278 } 1279 #endif /* CONFIG_NO_HZ_FULL */ 1280 #endif /* CONFIG_SMP */ 1281 1282 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1283 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1284 /* 1285 * Iterate task_group tree rooted at *from, calling @down when first entering a 1286 * node and @up when leaving it for the final time. 1287 * 1288 * Caller must hold rcu_lock or sufficient equivalent. 1289 */ 1290 int walk_tg_tree_from(struct task_group *from, 1291 tg_visitor down, tg_visitor up, void *data) 1292 { 1293 struct task_group *parent, *child; 1294 int ret; 1295 1296 parent = from; 1297 1298 down: 1299 ret = (*down)(parent, data); 1300 if (ret) 1301 goto out; 1302 list_for_each_entry_rcu(child, &parent->children, siblings) { 1303 parent = child; 1304 goto down; 1305 1306 up: 1307 continue; 1308 } 1309 ret = (*up)(parent, data); 1310 if (ret || parent == from) 1311 goto out; 1312 1313 child = parent; 1314 parent = parent->parent; 1315 if (parent) 1316 goto up; 1317 out: 1318 return ret; 1319 } 1320 1321 int tg_nop(struct task_group *tg, void *data) 1322 { 1323 return 0; 1324 } 1325 #endif 1326 1327 void set_load_weight(struct task_struct *p, bool update_load) 1328 { 1329 int prio = p->static_prio - MAX_RT_PRIO; 1330 struct load_weight lw; 1331 1332 if (task_has_idle_policy(p)) { 1333 lw.weight = scale_load(WEIGHT_IDLEPRIO); 1334 lw.inv_weight = WMULT_IDLEPRIO; 1335 } else { 1336 lw.weight = scale_load(sched_prio_to_weight[prio]); 1337 lw.inv_weight = sched_prio_to_wmult[prio]; 1338 } 1339 1340 /* 1341 * SCHED_OTHER tasks have to update their load when changing their 1342 * weight 1343 */ 1344 if (update_load && p->sched_class == &fair_sched_class) 1345 reweight_task(p, &lw); 1346 else 1347 p->se.load = lw; 1348 } 1349 1350 #ifdef CONFIG_UCLAMP_TASK 1351 /* 1352 * Serializes updates of utilization clamp values 1353 * 1354 * The (slow-path) user-space triggers utilization clamp value updates which 1355 * can require updates on (fast-path) scheduler's data structures used to 1356 * support enqueue/dequeue operations. 1357 * While the per-CPU rq lock protects fast-path update operations, user-space 1358 * requests are serialized using a mutex to reduce the risk of conflicting 1359 * updates or API abuses. 1360 */ 1361 static DEFINE_MUTEX(uclamp_mutex); 1362 1363 /* Max allowed minimum utilization */ 1364 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1365 1366 /* Max allowed maximum utilization */ 1367 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1368 1369 /* 1370 * By default RT tasks run at the maximum performance point/capacity of the 1371 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1372 * SCHED_CAPACITY_SCALE. 1373 * 1374 * This knob allows admins to change the default behavior when uclamp is being 1375 * used. In battery powered devices, particularly, running at the maximum 1376 * capacity and frequency will increase energy consumption and shorten the 1377 * battery life. 1378 * 1379 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1380 * 1381 * This knob will not override the system default sched_util_clamp_min defined 1382 * above. 1383 */ 1384 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1385 1386 /* All clamps are required to be less or equal than these values */ 1387 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1388 1389 /* 1390 * This static key is used to reduce the uclamp overhead in the fast path. It 1391 * primarily disables the call to uclamp_rq_{inc, dec}() in 1392 * enqueue/dequeue_task(). 1393 * 1394 * This allows users to continue to enable uclamp in their kernel config with 1395 * minimum uclamp overhead in the fast path. 1396 * 1397 * As soon as userspace modifies any of the uclamp knobs, the static key is 1398 * enabled, since we have an actual users that make use of uclamp 1399 * functionality. 1400 * 1401 * The knobs that would enable this static key are: 1402 * 1403 * * A task modifying its uclamp value with sched_setattr(). 1404 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1405 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1406 */ 1407 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1408 1409 static inline unsigned int 1410 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1411 unsigned int clamp_value) 1412 { 1413 /* 1414 * Avoid blocked utilization pushing up the frequency when we go 1415 * idle (which drops the max-clamp) by retaining the last known 1416 * max-clamp. 1417 */ 1418 if (clamp_id == UCLAMP_MAX) { 1419 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1420 return clamp_value; 1421 } 1422 1423 return uclamp_none(UCLAMP_MIN); 1424 } 1425 1426 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1427 unsigned int clamp_value) 1428 { 1429 /* Reset max-clamp retention only on idle exit */ 1430 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1431 return; 1432 1433 uclamp_rq_set(rq, clamp_id, clamp_value); 1434 } 1435 1436 static inline 1437 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1438 unsigned int clamp_value) 1439 { 1440 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1441 int bucket_id = UCLAMP_BUCKETS - 1; 1442 1443 /* 1444 * Since both min and max clamps are max aggregated, find the 1445 * top most bucket with tasks in. 1446 */ 1447 for ( ; bucket_id >= 0; bucket_id--) { 1448 if (!bucket[bucket_id].tasks) 1449 continue; 1450 return bucket[bucket_id].value; 1451 } 1452 1453 /* No tasks -- default clamp values */ 1454 return uclamp_idle_value(rq, clamp_id, clamp_value); 1455 } 1456 1457 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1458 { 1459 unsigned int default_util_min; 1460 struct uclamp_se *uc_se; 1461 1462 lockdep_assert_held(&p->pi_lock); 1463 1464 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1465 1466 /* Only sync if user didn't override the default */ 1467 if (uc_se->user_defined) 1468 return; 1469 1470 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1471 uclamp_se_set(uc_se, default_util_min, false); 1472 } 1473 1474 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1475 { 1476 if (!rt_task(p)) 1477 return; 1478 1479 /* Protect updates to p->uclamp_* */ 1480 guard(task_rq_lock)(p); 1481 __uclamp_update_util_min_rt_default(p); 1482 } 1483 1484 static inline struct uclamp_se 1485 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1486 { 1487 /* Copy by value as we could modify it */ 1488 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1489 #ifdef CONFIG_UCLAMP_TASK_GROUP 1490 unsigned int tg_min, tg_max, value; 1491 1492 /* 1493 * Tasks in autogroups or root task group will be 1494 * restricted by system defaults. 1495 */ 1496 if (task_group_is_autogroup(task_group(p))) 1497 return uc_req; 1498 if (task_group(p) == &root_task_group) 1499 return uc_req; 1500 1501 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1502 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1503 value = uc_req.value; 1504 value = clamp(value, tg_min, tg_max); 1505 uclamp_se_set(&uc_req, value, false); 1506 #endif 1507 1508 return uc_req; 1509 } 1510 1511 /* 1512 * The effective clamp bucket index of a task depends on, by increasing 1513 * priority: 1514 * - the task specific clamp value, when explicitly requested from userspace 1515 * - the task group effective clamp value, for tasks not either in the root 1516 * group or in an autogroup 1517 * - the system default clamp value, defined by the sysadmin 1518 */ 1519 static inline struct uclamp_se 1520 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1521 { 1522 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1523 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1524 1525 /* System default restrictions always apply */ 1526 if (unlikely(uc_req.value > uc_max.value)) 1527 return uc_max; 1528 1529 return uc_req; 1530 } 1531 1532 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1533 { 1534 struct uclamp_se uc_eff; 1535 1536 /* Task currently refcounted: use back-annotated (effective) value */ 1537 if (p->uclamp[clamp_id].active) 1538 return (unsigned long)p->uclamp[clamp_id].value; 1539 1540 uc_eff = uclamp_eff_get(p, clamp_id); 1541 1542 return (unsigned long)uc_eff.value; 1543 } 1544 1545 /* 1546 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1547 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1548 * updates the rq's clamp value if required. 1549 * 1550 * Tasks can have a task-specific value requested from user-space, track 1551 * within each bucket the maximum value for tasks refcounted in it. 1552 * This "local max aggregation" allows to track the exact "requested" value 1553 * for each bucket when all its RUNNABLE tasks require the same clamp. 1554 */ 1555 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1556 enum uclamp_id clamp_id) 1557 { 1558 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1559 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1560 struct uclamp_bucket *bucket; 1561 1562 lockdep_assert_rq_held(rq); 1563 1564 /* Update task effective clamp */ 1565 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1566 1567 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1568 bucket->tasks++; 1569 uc_se->active = true; 1570 1571 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1572 1573 /* 1574 * Local max aggregation: rq buckets always track the max 1575 * "requested" clamp value of its RUNNABLE tasks. 1576 */ 1577 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1578 bucket->value = uc_se->value; 1579 1580 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1581 uclamp_rq_set(rq, clamp_id, uc_se->value); 1582 } 1583 1584 /* 1585 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1586 * is released. If this is the last task reference counting the rq's max 1587 * active clamp value, then the rq's clamp value is updated. 1588 * 1589 * Both refcounted tasks and rq's cached clamp values are expected to be 1590 * always valid. If it's detected they are not, as defensive programming, 1591 * enforce the expected state and warn. 1592 */ 1593 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1594 enum uclamp_id clamp_id) 1595 { 1596 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1597 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1598 struct uclamp_bucket *bucket; 1599 unsigned int bkt_clamp; 1600 unsigned int rq_clamp; 1601 1602 lockdep_assert_rq_held(rq); 1603 1604 /* 1605 * If sched_uclamp_used was enabled after task @p was enqueued, 1606 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1607 * 1608 * In this case the uc_se->active flag should be false since no uclamp 1609 * accounting was performed at enqueue time and we can just return 1610 * here. 1611 * 1612 * Need to be careful of the following enqueue/dequeue ordering 1613 * problem too 1614 * 1615 * enqueue(taskA) 1616 * // sched_uclamp_used gets enabled 1617 * enqueue(taskB) 1618 * dequeue(taskA) 1619 * // Must not decrement bucket->tasks here 1620 * dequeue(taskB) 1621 * 1622 * where we could end up with stale data in uc_se and 1623 * bucket[uc_se->bucket_id]. 1624 * 1625 * The following check here eliminates the possibility of such race. 1626 */ 1627 if (unlikely(!uc_se->active)) 1628 return; 1629 1630 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1631 1632 SCHED_WARN_ON(!bucket->tasks); 1633 if (likely(bucket->tasks)) 1634 bucket->tasks--; 1635 1636 uc_se->active = false; 1637 1638 /* 1639 * Keep "local max aggregation" simple and accept to (possibly) 1640 * overboost some RUNNABLE tasks in the same bucket. 1641 * The rq clamp bucket value is reset to its base value whenever 1642 * there are no more RUNNABLE tasks refcounting it. 1643 */ 1644 if (likely(bucket->tasks)) 1645 return; 1646 1647 rq_clamp = uclamp_rq_get(rq, clamp_id); 1648 /* 1649 * Defensive programming: this should never happen. If it happens, 1650 * e.g. due to future modification, warn and fix up the expected value. 1651 */ 1652 SCHED_WARN_ON(bucket->value > rq_clamp); 1653 if (bucket->value >= rq_clamp) { 1654 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1655 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1656 } 1657 } 1658 1659 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1660 { 1661 enum uclamp_id clamp_id; 1662 1663 /* 1664 * Avoid any overhead until uclamp is actually used by the userspace. 1665 * 1666 * The condition is constructed such that a NOP is generated when 1667 * sched_uclamp_used is disabled. 1668 */ 1669 if (!static_branch_unlikely(&sched_uclamp_used)) 1670 return; 1671 1672 if (unlikely(!p->sched_class->uclamp_enabled)) 1673 return; 1674 1675 for_each_clamp_id(clamp_id) 1676 uclamp_rq_inc_id(rq, p, clamp_id); 1677 1678 /* Reset clamp idle holding when there is one RUNNABLE task */ 1679 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1680 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1681 } 1682 1683 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1684 { 1685 enum uclamp_id clamp_id; 1686 1687 /* 1688 * Avoid any overhead until uclamp is actually used by the userspace. 1689 * 1690 * The condition is constructed such that a NOP is generated when 1691 * sched_uclamp_used is disabled. 1692 */ 1693 if (!static_branch_unlikely(&sched_uclamp_used)) 1694 return; 1695 1696 if (unlikely(!p->sched_class->uclamp_enabled)) 1697 return; 1698 1699 for_each_clamp_id(clamp_id) 1700 uclamp_rq_dec_id(rq, p, clamp_id); 1701 } 1702 1703 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1704 enum uclamp_id clamp_id) 1705 { 1706 if (!p->uclamp[clamp_id].active) 1707 return; 1708 1709 uclamp_rq_dec_id(rq, p, clamp_id); 1710 uclamp_rq_inc_id(rq, p, clamp_id); 1711 1712 /* 1713 * Make sure to clear the idle flag if we've transiently reached 0 1714 * active tasks on rq. 1715 */ 1716 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1717 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1718 } 1719 1720 static inline void 1721 uclamp_update_active(struct task_struct *p) 1722 { 1723 enum uclamp_id clamp_id; 1724 struct rq_flags rf; 1725 struct rq *rq; 1726 1727 /* 1728 * Lock the task and the rq where the task is (or was) queued. 1729 * 1730 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1731 * price to pay to safely serialize util_{min,max} updates with 1732 * enqueues, dequeues and migration operations. 1733 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1734 */ 1735 rq = task_rq_lock(p, &rf); 1736 1737 /* 1738 * Setting the clamp bucket is serialized by task_rq_lock(). 1739 * If the task is not yet RUNNABLE and its task_struct is not 1740 * affecting a valid clamp bucket, the next time it's enqueued, 1741 * it will already see the updated clamp bucket value. 1742 */ 1743 for_each_clamp_id(clamp_id) 1744 uclamp_rq_reinc_id(rq, p, clamp_id); 1745 1746 task_rq_unlock(rq, p, &rf); 1747 } 1748 1749 #ifdef CONFIG_UCLAMP_TASK_GROUP 1750 static inline void 1751 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1752 { 1753 struct css_task_iter it; 1754 struct task_struct *p; 1755 1756 css_task_iter_start(css, 0, &it); 1757 while ((p = css_task_iter_next(&it))) 1758 uclamp_update_active(p); 1759 css_task_iter_end(&it); 1760 } 1761 1762 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1763 #endif 1764 1765 #ifdef CONFIG_SYSCTL 1766 #ifdef CONFIG_UCLAMP_TASK_GROUP 1767 static void uclamp_update_root_tg(void) 1768 { 1769 struct task_group *tg = &root_task_group; 1770 1771 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1772 sysctl_sched_uclamp_util_min, false); 1773 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1774 sysctl_sched_uclamp_util_max, false); 1775 1776 guard(rcu)(); 1777 cpu_util_update_eff(&root_task_group.css); 1778 } 1779 #else 1780 static void uclamp_update_root_tg(void) { } 1781 #endif 1782 1783 static void uclamp_sync_util_min_rt_default(void) 1784 { 1785 struct task_struct *g, *p; 1786 1787 /* 1788 * copy_process() sysctl_uclamp 1789 * uclamp_min_rt = X; 1790 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1791 * // link thread smp_mb__after_spinlock() 1792 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1793 * sched_post_fork() for_each_process_thread() 1794 * __uclamp_sync_rt() __uclamp_sync_rt() 1795 * 1796 * Ensures that either sched_post_fork() will observe the new 1797 * uclamp_min_rt or for_each_process_thread() will observe the new 1798 * task. 1799 */ 1800 read_lock(&tasklist_lock); 1801 smp_mb__after_spinlock(); 1802 read_unlock(&tasklist_lock); 1803 1804 guard(rcu)(); 1805 for_each_process_thread(g, p) 1806 uclamp_update_util_min_rt_default(p); 1807 } 1808 1809 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write, 1810 void *buffer, size_t *lenp, loff_t *ppos) 1811 { 1812 bool update_root_tg = false; 1813 int old_min, old_max, old_min_rt; 1814 int result; 1815 1816 guard(mutex)(&uclamp_mutex); 1817 1818 old_min = sysctl_sched_uclamp_util_min; 1819 old_max = sysctl_sched_uclamp_util_max; 1820 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1821 1822 result = proc_dointvec(table, write, buffer, lenp, ppos); 1823 if (result) 1824 goto undo; 1825 if (!write) 1826 return 0; 1827 1828 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1829 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1830 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1831 1832 result = -EINVAL; 1833 goto undo; 1834 } 1835 1836 if (old_min != sysctl_sched_uclamp_util_min) { 1837 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1838 sysctl_sched_uclamp_util_min, false); 1839 update_root_tg = true; 1840 } 1841 if (old_max != sysctl_sched_uclamp_util_max) { 1842 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1843 sysctl_sched_uclamp_util_max, false); 1844 update_root_tg = true; 1845 } 1846 1847 if (update_root_tg) { 1848 static_branch_enable(&sched_uclamp_used); 1849 uclamp_update_root_tg(); 1850 } 1851 1852 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1853 static_branch_enable(&sched_uclamp_used); 1854 uclamp_sync_util_min_rt_default(); 1855 } 1856 1857 /* 1858 * We update all RUNNABLE tasks only when task groups are in use. 1859 * Otherwise, keep it simple and do just a lazy update at each next 1860 * task enqueue time. 1861 */ 1862 return 0; 1863 1864 undo: 1865 sysctl_sched_uclamp_util_min = old_min; 1866 sysctl_sched_uclamp_util_max = old_max; 1867 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1868 return result; 1869 } 1870 #endif 1871 1872 static void uclamp_fork(struct task_struct *p) 1873 { 1874 enum uclamp_id clamp_id; 1875 1876 /* 1877 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1878 * as the task is still at its early fork stages. 1879 */ 1880 for_each_clamp_id(clamp_id) 1881 p->uclamp[clamp_id].active = false; 1882 1883 if (likely(!p->sched_reset_on_fork)) 1884 return; 1885 1886 for_each_clamp_id(clamp_id) { 1887 uclamp_se_set(&p->uclamp_req[clamp_id], 1888 uclamp_none(clamp_id), false); 1889 } 1890 } 1891 1892 static void uclamp_post_fork(struct task_struct *p) 1893 { 1894 uclamp_update_util_min_rt_default(p); 1895 } 1896 1897 static void __init init_uclamp_rq(struct rq *rq) 1898 { 1899 enum uclamp_id clamp_id; 1900 struct uclamp_rq *uc_rq = rq->uclamp; 1901 1902 for_each_clamp_id(clamp_id) { 1903 uc_rq[clamp_id] = (struct uclamp_rq) { 1904 .value = uclamp_none(clamp_id) 1905 }; 1906 } 1907 1908 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 1909 } 1910 1911 static void __init init_uclamp(void) 1912 { 1913 struct uclamp_se uc_max = {}; 1914 enum uclamp_id clamp_id; 1915 int cpu; 1916 1917 for_each_possible_cpu(cpu) 1918 init_uclamp_rq(cpu_rq(cpu)); 1919 1920 for_each_clamp_id(clamp_id) { 1921 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1922 uclamp_none(clamp_id), false); 1923 } 1924 1925 /* System defaults allow max clamp values for both indexes */ 1926 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1927 for_each_clamp_id(clamp_id) { 1928 uclamp_default[clamp_id] = uc_max; 1929 #ifdef CONFIG_UCLAMP_TASK_GROUP 1930 root_task_group.uclamp_req[clamp_id] = uc_max; 1931 root_task_group.uclamp[clamp_id] = uc_max; 1932 #endif 1933 } 1934 } 1935 1936 #else /* !CONFIG_UCLAMP_TASK */ 1937 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1938 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1939 static inline void uclamp_fork(struct task_struct *p) { } 1940 static inline void uclamp_post_fork(struct task_struct *p) { } 1941 static inline void init_uclamp(void) { } 1942 #endif /* CONFIG_UCLAMP_TASK */ 1943 1944 bool sched_task_on_rq(struct task_struct *p) 1945 { 1946 return task_on_rq_queued(p); 1947 } 1948 1949 unsigned long get_wchan(struct task_struct *p) 1950 { 1951 unsigned long ip = 0; 1952 unsigned int state; 1953 1954 if (!p || p == current) 1955 return 0; 1956 1957 /* Only get wchan if task is blocked and we can keep it that way. */ 1958 raw_spin_lock_irq(&p->pi_lock); 1959 state = READ_ONCE(p->__state); 1960 smp_rmb(); /* see try_to_wake_up() */ 1961 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 1962 ip = __get_wchan(p); 1963 raw_spin_unlock_irq(&p->pi_lock); 1964 1965 return ip; 1966 } 1967 1968 void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1969 { 1970 if (!(flags & ENQUEUE_NOCLOCK)) 1971 update_rq_clock(rq); 1972 1973 if (!(flags & ENQUEUE_RESTORE)) { 1974 sched_info_enqueue(rq, p); 1975 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED)); 1976 } 1977 1978 uclamp_rq_inc(rq, p); 1979 p->sched_class->enqueue_task(rq, p, flags); 1980 1981 if (sched_core_enabled(rq)) 1982 sched_core_enqueue(rq, p); 1983 } 1984 1985 void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1986 { 1987 if (sched_core_enabled(rq)) 1988 sched_core_dequeue(rq, p, flags); 1989 1990 if (!(flags & DEQUEUE_NOCLOCK)) 1991 update_rq_clock(rq); 1992 1993 if (!(flags & DEQUEUE_SAVE)) { 1994 sched_info_dequeue(rq, p); 1995 psi_dequeue(p, flags & DEQUEUE_SLEEP); 1996 } 1997 1998 uclamp_rq_dec(rq, p); 1999 p->sched_class->dequeue_task(rq, p, flags); 2000 } 2001 2002 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2003 { 2004 if (task_on_rq_migrating(p)) 2005 flags |= ENQUEUE_MIGRATED; 2006 if (flags & ENQUEUE_MIGRATED) 2007 sched_mm_cid_migrate_to(rq, p); 2008 2009 enqueue_task(rq, p, flags); 2010 2011 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); 2012 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2013 } 2014 2015 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2016 { 2017 WRITE_ONCE(p->on_rq, (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING); 2018 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2019 2020 dequeue_task(rq, p, flags); 2021 } 2022 2023 /** 2024 * task_curr - is this task currently executing on a CPU? 2025 * @p: the task in question. 2026 * 2027 * Return: 1 if the task is currently executing. 0 otherwise. 2028 */ 2029 inline int task_curr(const struct task_struct *p) 2030 { 2031 return cpu_curr(task_cpu(p)) == p; 2032 } 2033 2034 /* 2035 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2036 * use the balance_callback list if you want balancing. 2037 * 2038 * this means any call to check_class_changed() must be followed by a call to 2039 * balance_callback(). 2040 */ 2041 void check_class_changed(struct rq *rq, struct task_struct *p, 2042 const struct sched_class *prev_class, 2043 int oldprio) 2044 { 2045 if (prev_class != p->sched_class) { 2046 if (prev_class->switched_from) 2047 prev_class->switched_from(rq, p); 2048 2049 p->sched_class->switched_to(rq, p); 2050 } else if (oldprio != p->prio || dl_task(p)) 2051 p->sched_class->prio_changed(rq, p, oldprio); 2052 } 2053 2054 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2055 { 2056 if (p->sched_class == rq->curr->sched_class) 2057 rq->curr->sched_class->wakeup_preempt(rq, p, flags); 2058 else if (sched_class_above(p->sched_class, rq->curr->sched_class)) 2059 resched_curr(rq); 2060 2061 /* 2062 * A queue event has occurred, and we're going to schedule. In 2063 * this case, we can save a useless back to back clock update. 2064 */ 2065 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2066 rq_clock_skip_update(rq); 2067 } 2068 2069 static __always_inline 2070 int __task_state_match(struct task_struct *p, unsigned int state) 2071 { 2072 if (READ_ONCE(p->__state) & state) 2073 return 1; 2074 2075 if (READ_ONCE(p->saved_state) & state) 2076 return -1; 2077 2078 return 0; 2079 } 2080 2081 static __always_inline 2082 int task_state_match(struct task_struct *p, unsigned int state) 2083 { 2084 /* 2085 * Serialize against current_save_and_set_rtlock_wait_state(), 2086 * current_restore_rtlock_saved_state(), and __refrigerator(). 2087 */ 2088 guard(raw_spinlock_irq)(&p->pi_lock); 2089 return __task_state_match(p, state); 2090 } 2091 2092 /* 2093 * wait_task_inactive - wait for a thread to unschedule. 2094 * 2095 * Wait for the thread to block in any of the states set in @match_state. 2096 * If it changes, i.e. @p might have woken up, then return zero. When we 2097 * succeed in waiting for @p to be off its CPU, we return a positive number 2098 * (its total switch count). If a second call a short while later returns the 2099 * same number, the caller can be sure that @p has remained unscheduled the 2100 * whole time. 2101 * 2102 * The caller must ensure that the task *will* unschedule sometime soon, 2103 * else this function might spin for a *long* time. This function can't 2104 * be called with interrupts off, or it may introduce deadlock with 2105 * smp_call_function() if an IPI is sent by the same process we are 2106 * waiting to become inactive. 2107 */ 2108 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2109 { 2110 int running, queued, match; 2111 struct rq_flags rf; 2112 unsigned long ncsw; 2113 struct rq *rq; 2114 2115 for (;;) { 2116 /* 2117 * We do the initial early heuristics without holding 2118 * any task-queue locks at all. We'll only try to get 2119 * the runqueue lock when things look like they will 2120 * work out! 2121 */ 2122 rq = task_rq(p); 2123 2124 /* 2125 * If the task is actively running on another CPU 2126 * still, just relax and busy-wait without holding 2127 * any locks. 2128 * 2129 * NOTE! Since we don't hold any locks, it's not 2130 * even sure that "rq" stays as the right runqueue! 2131 * But we don't care, since "task_on_cpu()" will 2132 * return false if the runqueue has changed and p 2133 * is actually now running somewhere else! 2134 */ 2135 while (task_on_cpu(rq, p)) { 2136 if (!task_state_match(p, match_state)) 2137 return 0; 2138 cpu_relax(); 2139 } 2140 2141 /* 2142 * Ok, time to look more closely! We need the rq 2143 * lock now, to be *sure*. If we're wrong, we'll 2144 * just go back and repeat. 2145 */ 2146 rq = task_rq_lock(p, &rf); 2147 trace_sched_wait_task(p); 2148 running = task_on_cpu(rq, p); 2149 queued = task_on_rq_queued(p); 2150 ncsw = 0; 2151 if ((match = __task_state_match(p, match_state))) { 2152 /* 2153 * When matching on p->saved_state, consider this task 2154 * still queued so it will wait. 2155 */ 2156 if (match < 0) 2157 queued = 1; 2158 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2159 } 2160 task_rq_unlock(rq, p, &rf); 2161 2162 /* 2163 * If it changed from the expected state, bail out now. 2164 */ 2165 if (unlikely(!ncsw)) 2166 break; 2167 2168 /* 2169 * Was it really running after all now that we 2170 * checked with the proper locks actually held? 2171 * 2172 * Oops. Go back and try again.. 2173 */ 2174 if (unlikely(running)) { 2175 cpu_relax(); 2176 continue; 2177 } 2178 2179 /* 2180 * It's not enough that it's not actively running, 2181 * it must be off the runqueue _entirely_, and not 2182 * preempted! 2183 * 2184 * So if it was still runnable (but just not actively 2185 * running right now), it's preempted, and we should 2186 * yield - it could be a while. 2187 */ 2188 if (unlikely(queued)) { 2189 ktime_t to = NSEC_PER_SEC / HZ; 2190 2191 set_current_state(TASK_UNINTERRUPTIBLE); 2192 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2193 continue; 2194 } 2195 2196 /* 2197 * Ahh, all good. It wasn't running, and it wasn't 2198 * runnable, which means that it will never become 2199 * running in the future either. We're all done! 2200 */ 2201 break; 2202 } 2203 2204 return ncsw; 2205 } 2206 2207 #ifdef CONFIG_SMP 2208 2209 static void 2210 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2211 2212 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2213 { 2214 struct affinity_context ac = { 2215 .new_mask = cpumask_of(rq->cpu), 2216 .flags = SCA_MIGRATE_DISABLE, 2217 }; 2218 2219 if (likely(!p->migration_disabled)) 2220 return; 2221 2222 if (p->cpus_ptr != &p->cpus_mask) 2223 return; 2224 2225 /* 2226 * Violates locking rules! See comment in __do_set_cpus_allowed(). 2227 */ 2228 __do_set_cpus_allowed(p, &ac); 2229 } 2230 2231 void migrate_disable(void) 2232 { 2233 struct task_struct *p = current; 2234 2235 if (p->migration_disabled) { 2236 #ifdef CONFIG_DEBUG_PREEMPT 2237 /* 2238 *Warn about overflow half-way through the range. 2239 */ 2240 WARN_ON_ONCE((s16)p->migration_disabled < 0); 2241 #endif 2242 p->migration_disabled++; 2243 return; 2244 } 2245 2246 guard(preempt)(); 2247 this_rq()->nr_pinned++; 2248 p->migration_disabled = 1; 2249 } 2250 EXPORT_SYMBOL_GPL(migrate_disable); 2251 2252 void migrate_enable(void) 2253 { 2254 struct task_struct *p = current; 2255 struct affinity_context ac = { 2256 .new_mask = &p->cpus_mask, 2257 .flags = SCA_MIGRATE_ENABLE, 2258 }; 2259 2260 #ifdef CONFIG_DEBUG_PREEMPT 2261 /* 2262 * Check both overflow from migrate_disable() and superfluous 2263 * migrate_enable(). 2264 */ 2265 if (WARN_ON_ONCE((s16)p->migration_disabled <= 0)) 2266 return; 2267 #endif 2268 2269 if (p->migration_disabled > 1) { 2270 p->migration_disabled--; 2271 return; 2272 } 2273 2274 /* 2275 * Ensure stop_task runs either before or after this, and that 2276 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2277 */ 2278 guard(preempt)(); 2279 if (p->cpus_ptr != &p->cpus_mask) 2280 __set_cpus_allowed_ptr(p, &ac); 2281 /* 2282 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2283 * regular cpus_mask, otherwise things that race (eg. 2284 * select_fallback_rq) get confused. 2285 */ 2286 barrier(); 2287 p->migration_disabled = 0; 2288 this_rq()->nr_pinned--; 2289 } 2290 EXPORT_SYMBOL_GPL(migrate_enable); 2291 2292 static inline bool rq_has_pinned_tasks(struct rq *rq) 2293 { 2294 return rq->nr_pinned; 2295 } 2296 2297 /* 2298 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2299 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2300 */ 2301 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2302 { 2303 /* When not in the task's cpumask, no point in looking further. */ 2304 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2305 return false; 2306 2307 /* migrate_disabled() must be allowed to finish. */ 2308 if (is_migration_disabled(p)) 2309 return cpu_online(cpu); 2310 2311 /* Non kernel threads are not allowed during either online or offline. */ 2312 if (!(p->flags & PF_KTHREAD)) 2313 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2314 2315 /* KTHREAD_IS_PER_CPU is always allowed. */ 2316 if (kthread_is_per_cpu(p)) 2317 return cpu_online(cpu); 2318 2319 /* Regular kernel threads don't get to stay during offline. */ 2320 if (cpu_dying(cpu)) 2321 return false; 2322 2323 /* But are allowed during online. */ 2324 return cpu_online(cpu); 2325 } 2326 2327 /* 2328 * This is how migration works: 2329 * 2330 * 1) we invoke migration_cpu_stop() on the target CPU using 2331 * stop_one_cpu(). 2332 * 2) stopper starts to run (implicitly forcing the migrated thread 2333 * off the CPU) 2334 * 3) it checks whether the migrated task is still in the wrong runqueue. 2335 * 4) if it's in the wrong runqueue then the migration thread removes 2336 * it and puts it into the right queue. 2337 * 5) stopper completes and stop_one_cpu() returns and the migration 2338 * is done. 2339 */ 2340 2341 /* 2342 * move_queued_task - move a queued task to new rq. 2343 * 2344 * Returns (locked) new rq. Old rq's lock is released. 2345 */ 2346 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2347 struct task_struct *p, int new_cpu) 2348 { 2349 lockdep_assert_rq_held(rq); 2350 2351 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2352 set_task_cpu(p, new_cpu); 2353 rq_unlock(rq, rf); 2354 2355 rq = cpu_rq(new_cpu); 2356 2357 rq_lock(rq, rf); 2358 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2359 activate_task(rq, p, 0); 2360 wakeup_preempt(rq, p, 0); 2361 2362 return rq; 2363 } 2364 2365 struct migration_arg { 2366 struct task_struct *task; 2367 int dest_cpu; 2368 struct set_affinity_pending *pending; 2369 }; 2370 2371 /* 2372 * @refs: number of wait_for_completion() 2373 * @stop_pending: is @stop_work in use 2374 */ 2375 struct set_affinity_pending { 2376 refcount_t refs; 2377 unsigned int stop_pending; 2378 struct completion done; 2379 struct cpu_stop_work stop_work; 2380 struct migration_arg arg; 2381 }; 2382 2383 /* 2384 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2385 * this because either it can't run here any more (set_cpus_allowed() 2386 * away from this CPU, or CPU going down), or because we're 2387 * attempting to rebalance this task on exec (sched_exec). 2388 * 2389 * So we race with normal scheduler movements, but that's OK, as long 2390 * as the task is no longer on this CPU. 2391 */ 2392 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2393 struct task_struct *p, int dest_cpu) 2394 { 2395 /* Affinity changed (again). */ 2396 if (!is_cpu_allowed(p, dest_cpu)) 2397 return rq; 2398 2399 rq = move_queued_task(rq, rf, p, dest_cpu); 2400 2401 return rq; 2402 } 2403 2404 /* 2405 * migration_cpu_stop - this will be executed by a high-prio stopper thread 2406 * and performs thread migration by bumping thread off CPU then 2407 * 'pushing' onto another runqueue. 2408 */ 2409 static int migration_cpu_stop(void *data) 2410 { 2411 struct migration_arg *arg = data; 2412 struct set_affinity_pending *pending = arg->pending; 2413 struct task_struct *p = arg->task; 2414 struct rq *rq = this_rq(); 2415 bool complete = false; 2416 struct rq_flags rf; 2417 2418 /* 2419 * The original target CPU might have gone down and we might 2420 * be on another CPU but it doesn't matter. 2421 */ 2422 local_irq_save(rf.flags); 2423 /* 2424 * We need to explicitly wake pending tasks before running 2425 * __migrate_task() such that we will not miss enforcing cpus_ptr 2426 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2427 */ 2428 flush_smp_call_function_queue(); 2429 2430 raw_spin_lock(&p->pi_lock); 2431 rq_lock(rq, &rf); 2432 2433 /* 2434 * If we were passed a pending, then ->stop_pending was set, thus 2435 * p->migration_pending must have remained stable. 2436 */ 2437 WARN_ON_ONCE(pending && pending != p->migration_pending); 2438 2439 /* 2440 * If task_rq(p) != rq, it cannot be migrated here, because we're 2441 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2442 * we're holding p->pi_lock. 2443 */ 2444 if (task_rq(p) == rq) { 2445 if (is_migration_disabled(p)) 2446 goto out; 2447 2448 if (pending) { 2449 p->migration_pending = NULL; 2450 complete = true; 2451 2452 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2453 goto out; 2454 } 2455 2456 if (task_on_rq_queued(p)) { 2457 update_rq_clock(rq); 2458 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2459 } else { 2460 p->wake_cpu = arg->dest_cpu; 2461 } 2462 2463 /* 2464 * XXX __migrate_task() can fail, at which point we might end 2465 * up running on a dodgy CPU, AFAICT this can only happen 2466 * during CPU hotplug, at which point we'll get pushed out 2467 * anyway, so it's probably not a big deal. 2468 */ 2469 2470 } else if (pending) { 2471 /* 2472 * This happens when we get migrated between migrate_enable()'s 2473 * preempt_enable() and scheduling the stopper task. At that 2474 * point we're a regular task again and not current anymore. 2475 * 2476 * A !PREEMPT kernel has a giant hole here, which makes it far 2477 * more likely. 2478 */ 2479 2480 /* 2481 * The task moved before the stopper got to run. We're holding 2482 * ->pi_lock, so the allowed mask is stable - if it got 2483 * somewhere allowed, we're done. 2484 */ 2485 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2486 p->migration_pending = NULL; 2487 complete = true; 2488 goto out; 2489 } 2490 2491 /* 2492 * When migrate_enable() hits a rq mis-match we can't reliably 2493 * determine is_migration_disabled() and so have to chase after 2494 * it. 2495 */ 2496 WARN_ON_ONCE(!pending->stop_pending); 2497 preempt_disable(); 2498 task_rq_unlock(rq, p, &rf); 2499 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2500 &pending->arg, &pending->stop_work); 2501 preempt_enable(); 2502 return 0; 2503 } 2504 out: 2505 if (pending) 2506 pending->stop_pending = false; 2507 task_rq_unlock(rq, p, &rf); 2508 2509 if (complete) 2510 complete_all(&pending->done); 2511 2512 return 0; 2513 } 2514 2515 int push_cpu_stop(void *arg) 2516 { 2517 struct rq *lowest_rq = NULL, *rq = this_rq(); 2518 struct task_struct *p = arg; 2519 2520 raw_spin_lock_irq(&p->pi_lock); 2521 raw_spin_rq_lock(rq); 2522 2523 if (task_rq(p) != rq) 2524 goto out_unlock; 2525 2526 if (is_migration_disabled(p)) { 2527 p->migration_flags |= MDF_PUSH; 2528 goto out_unlock; 2529 } 2530 2531 p->migration_flags &= ~MDF_PUSH; 2532 2533 if (p->sched_class->find_lock_rq) 2534 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2535 2536 if (!lowest_rq) 2537 goto out_unlock; 2538 2539 // XXX validate p is still the highest prio task 2540 if (task_rq(p) == rq) { 2541 deactivate_task(rq, p, 0); 2542 set_task_cpu(p, lowest_rq->cpu); 2543 activate_task(lowest_rq, p, 0); 2544 resched_curr(lowest_rq); 2545 } 2546 2547 double_unlock_balance(rq, lowest_rq); 2548 2549 out_unlock: 2550 rq->push_busy = false; 2551 raw_spin_rq_unlock(rq); 2552 raw_spin_unlock_irq(&p->pi_lock); 2553 2554 put_task_struct(p); 2555 return 0; 2556 } 2557 2558 /* 2559 * sched_class::set_cpus_allowed must do the below, but is not required to 2560 * actually call this function. 2561 */ 2562 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2563 { 2564 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2565 p->cpus_ptr = ctx->new_mask; 2566 return; 2567 } 2568 2569 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2570 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2571 2572 /* 2573 * Swap in a new user_cpus_ptr if SCA_USER flag set 2574 */ 2575 if (ctx->flags & SCA_USER) 2576 swap(p->user_cpus_ptr, ctx->user_mask); 2577 } 2578 2579 static void 2580 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2581 { 2582 struct rq *rq = task_rq(p); 2583 bool queued, running; 2584 2585 /* 2586 * This here violates the locking rules for affinity, since we're only 2587 * supposed to change these variables while holding both rq->lock and 2588 * p->pi_lock. 2589 * 2590 * HOWEVER, it magically works, because ttwu() is the only code that 2591 * accesses these variables under p->pi_lock and only does so after 2592 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2593 * before finish_task(). 2594 * 2595 * XXX do further audits, this smells like something putrid. 2596 */ 2597 if (ctx->flags & SCA_MIGRATE_DISABLE) 2598 SCHED_WARN_ON(!p->on_cpu); 2599 else 2600 lockdep_assert_held(&p->pi_lock); 2601 2602 queued = task_on_rq_queued(p); 2603 running = task_current(rq, p); 2604 2605 if (queued) { 2606 /* 2607 * Because __kthread_bind() calls this on blocked tasks without 2608 * holding rq->lock. 2609 */ 2610 lockdep_assert_rq_held(rq); 2611 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2612 } 2613 if (running) 2614 put_prev_task(rq, p); 2615 2616 p->sched_class->set_cpus_allowed(p, ctx); 2617 2618 if (queued) 2619 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2620 if (running) 2621 set_next_task(rq, p); 2622 } 2623 2624 /* 2625 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2626 * affinity (if any) should be destroyed too. 2627 */ 2628 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2629 { 2630 struct affinity_context ac = { 2631 .new_mask = new_mask, 2632 .user_mask = NULL, 2633 .flags = SCA_USER, /* clear the user requested mask */ 2634 }; 2635 union cpumask_rcuhead { 2636 cpumask_t cpumask; 2637 struct rcu_head rcu; 2638 }; 2639 2640 __do_set_cpus_allowed(p, &ac); 2641 2642 /* 2643 * Because this is called with p->pi_lock held, it is not possible 2644 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2645 * kfree_rcu(). 2646 */ 2647 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2648 } 2649 2650 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2651 int node) 2652 { 2653 cpumask_t *user_mask; 2654 unsigned long flags; 2655 2656 /* 2657 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2658 * may differ by now due to racing. 2659 */ 2660 dst->user_cpus_ptr = NULL; 2661 2662 /* 2663 * This check is racy and losing the race is a valid situation. 2664 * It is not worth the extra overhead of taking the pi_lock on 2665 * every fork/clone. 2666 */ 2667 if (data_race(!src->user_cpus_ptr)) 2668 return 0; 2669 2670 user_mask = alloc_user_cpus_ptr(node); 2671 if (!user_mask) 2672 return -ENOMEM; 2673 2674 /* 2675 * Use pi_lock to protect content of user_cpus_ptr 2676 * 2677 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2678 * do_set_cpus_allowed(). 2679 */ 2680 raw_spin_lock_irqsave(&src->pi_lock, flags); 2681 if (src->user_cpus_ptr) { 2682 swap(dst->user_cpus_ptr, user_mask); 2683 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2684 } 2685 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2686 2687 if (unlikely(user_mask)) 2688 kfree(user_mask); 2689 2690 return 0; 2691 } 2692 2693 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2694 { 2695 struct cpumask *user_mask = NULL; 2696 2697 swap(p->user_cpus_ptr, user_mask); 2698 2699 return user_mask; 2700 } 2701 2702 void release_user_cpus_ptr(struct task_struct *p) 2703 { 2704 kfree(clear_user_cpus_ptr(p)); 2705 } 2706 2707 /* 2708 * This function is wildly self concurrent; here be dragons. 2709 * 2710 * 2711 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2712 * designated task is enqueued on an allowed CPU. If that task is currently 2713 * running, we have to kick it out using the CPU stopper. 2714 * 2715 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2716 * Consider: 2717 * 2718 * Initial conditions: P0->cpus_mask = [0, 1] 2719 * 2720 * P0@CPU0 P1 2721 * 2722 * migrate_disable(); 2723 * <preempted> 2724 * set_cpus_allowed_ptr(P0, [1]); 2725 * 2726 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2727 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2728 * This means we need the following scheme: 2729 * 2730 * P0@CPU0 P1 2731 * 2732 * migrate_disable(); 2733 * <preempted> 2734 * set_cpus_allowed_ptr(P0, [1]); 2735 * <blocks> 2736 * <resumes> 2737 * migrate_enable(); 2738 * __set_cpus_allowed_ptr(); 2739 * <wakes local stopper> 2740 * `--> <woken on migration completion> 2741 * 2742 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2743 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2744 * task p are serialized by p->pi_lock, which we can leverage: the one that 2745 * should come into effect at the end of the Migrate-Disable region is the last 2746 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2747 * but we still need to properly signal those waiting tasks at the appropriate 2748 * moment. 2749 * 2750 * This is implemented using struct set_affinity_pending. The first 2751 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2752 * setup an instance of that struct and install it on the targeted task_struct. 2753 * Any and all further callers will reuse that instance. Those then wait for 2754 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2755 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2756 * 2757 * 2758 * (1) In the cases covered above. There is one more where the completion is 2759 * signaled within affine_move_task() itself: when a subsequent affinity request 2760 * occurs after the stopper bailed out due to the targeted task still being 2761 * Migrate-Disable. Consider: 2762 * 2763 * Initial conditions: P0->cpus_mask = [0, 1] 2764 * 2765 * CPU0 P1 P2 2766 * <P0> 2767 * migrate_disable(); 2768 * <preempted> 2769 * set_cpus_allowed_ptr(P0, [1]); 2770 * <blocks> 2771 * <migration/0> 2772 * migration_cpu_stop() 2773 * is_migration_disabled() 2774 * <bails> 2775 * set_cpus_allowed_ptr(P0, [0, 1]); 2776 * <signal completion> 2777 * <awakes> 2778 * 2779 * Note that the above is safe vs a concurrent migrate_enable(), as any 2780 * pending affinity completion is preceded by an uninstallation of 2781 * p->migration_pending done with p->pi_lock held. 2782 */ 2783 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2784 int dest_cpu, unsigned int flags) 2785 __releases(rq->lock) 2786 __releases(p->pi_lock) 2787 { 2788 struct set_affinity_pending my_pending = { }, *pending = NULL; 2789 bool stop_pending, complete = false; 2790 2791 /* Can the task run on the task's current CPU? If so, we're done */ 2792 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2793 struct task_struct *push_task = NULL; 2794 2795 if ((flags & SCA_MIGRATE_ENABLE) && 2796 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2797 rq->push_busy = true; 2798 push_task = get_task_struct(p); 2799 } 2800 2801 /* 2802 * If there are pending waiters, but no pending stop_work, 2803 * then complete now. 2804 */ 2805 pending = p->migration_pending; 2806 if (pending && !pending->stop_pending) { 2807 p->migration_pending = NULL; 2808 complete = true; 2809 } 2810 2811 preempt_disable(); 2812 task_rq_unlock(rq, p, rf); 2813 if (push_task) { 2814 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2815 p, &rq->push_work); 2816 } 2817 preempt_enable(); 2818 2819 if (complete) 2820 complete_all(&pending->done); 2821 2822 return 0; 2823 } 2824 2825 if (!(flags & SCA_MIGRATE_ENABLE)) { 2826 /* serialized by p->pi_lock */ 2827 if (!p->migration_pending) { 2828 /* Install the request */ 2829 refcount_set(&my_pending.refs, 1); 2830 init_completion(&my_pending.done); 2831 my_pending.arg = (struct migration_arg) { 2832 .task = p, 2833 .dest_cpu = dest_cpu, 2834 .pending = &my_pending, 2835 }; 2836 2837 p->migration_pending = &my_pending; 2838 } else { 2839 pending = p->migration_pending; 2840 refcount_inc(&pending->refs); 2841 /* 2842 * Affinity has changed, but we've already installed a 2843 * pending. migration_cpu_stop() *must* see this, else 2844 * we risk a completion of the pending despite having a 2845 * task on a disallowed CPU. 2846 * 2847 * Serialized by p->pi_lock, so this is safe. 2848 */ 2849 pending->arg.dest_cpu = dest_cpu; 2850 } 2851 } 2852 pending = p->migration_pending; 2853 /* 2854 * - !MIGRATE_ENABLE: 2855 * we'll have installed a pending if there wasn't one already. 2856 * 2857 * - MIGRATE_ENABLE: 2858 * we're here because the current CPU isn't matching anymore, 2859 * the only way that can happen is because of a concurrent 2860 * set_cpus_allowed_ptr() call, which should then still be 2861 * pending completion. 2862 * 2863 * Either way, we really should have a @pending here. 2864 */ 2865 if (WARN_ON_ONCE(!pending)) { 2866 task_rq_unlock(rq, p, rf); 2867 return -EINVAL; 2868 } 2869 2870 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2871 /* 2872 * MIGRATE_ENABLE gets here because 'p == current', but for 2873 * anything else we cannot do is_migration_disabled(), punt 2874 * and have the stopper function handle it all race-free. 2875 */ 2876 stop_pending = pending->stop_pending; 2877 if (!stop_pending) 2878 pending->stop_pending = true; 2879 2880 if (flags & SCA_MIGRATE_ENABLE) 2881 p->migration_flags &= ~MDF_PUSH; 2882 2883 preempt_disable(); 2884 task_rq_unlock(rq, p, rf); 2885 if (!stop_pending) { 2886 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2887 &pending->arg, &pending->stop_work); 2888 } 2889 preempt_enable(); 2890 2891 if (flags & SCA_MIGRATE_ENABLE) 2892 return 0; 2893 } else { 2894 2895 if (!is_migration_disabled(p)) { 2896 if (task_on_rq_queued(p)) 2897 rq = move_queued_task(rq, rf, p, dest_cpu); 2898 2899 if (!pending->stop_pending) { 2900 p->migration_pending = NULL; 2901 complete = true; 2902 } 2903 } 2904 task_rq_unlock(rq, p, rf); 2905 2906 if (complete) 2907 complete_all(&pending->done); 2908 } 2909 2910 wait_for_completion(&pending->done); 2911 2912 if (refcount_dec_and_test(&pending->refs)) 2913 wake_up_var(&pending->refs); /* No UaF, just an address */ 2914 2915 /* 2916 * Block the original owner of &pending until all subsequent callers 2917 * have seen the completion and decremented the refcount 2918 */ 2919 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2920 2921 /* ARGH */ 2922 WARN_ON_ONCE(my_pending.stop_pending); 2923 2924 return 0; 2925 } 2926 2927 /* 2928 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2929 */ 2930 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2931 struct affinity_context *ctx, 2932 struct rq *rq, 2933 struct rq_flags *rf) 2934 __releases(rq->lock) 2935 __releases(p->pi_lock) 2936 { 2937 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2938 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2939 bool kthread = p->flags & PF_KTHREAD; 2940 unsigned int dest_cpu; 2941 int ret = 0; 2942 2943 update_rq_clock(rq); 2944 2945 if (kthread || is_migration_disabled(p)) { 2946 /* 2947 * Kernel threads are allowed on online && !active CPUs, 2948 * however, during cpu-hot-unplug, even these might get pushed 2949 * away if not KTHREAD_IS_PER_CPU. 2950 * 2951 * Specifically, migration_disabled() tasks must not fail the 2952 * cpumask_any_and_distribute() pick below, esp. so on 2953 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2954 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2955 */ 2956 cpu_valid_mask = cpu_online_mask; 2957 } 2958 2959 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 2960 ret = -EINVAL; 2961 goto out; 2962 } 2963 2964 /* 2965 * Must re-check here, to close a race against __kthread_bind(), 2966 * sched_setaffinity() is not guaranteed to observe the flag. 2967 */ 2968 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2969 ret = -EINVAL; 2970 goto out; 2971 } 2972 2973 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 2974 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 2975 if (ctx->flags & SCA_USER) 2976 swap(p->user_cpus_ptr, ctx->user_mask); 2977 goto out; 2978 } 2979 2980 if (WARN_ON_ONCE(p == current && 2981 is_migration_disabled(p) && 2982 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 2983 ret = -EBUSY; 2984 goto out; 2985 } 2986 } 2987 2988 /* 2989 * Picking a ~random cpu helps in cases where we are changing affinity 2990 * for groups of tasks (ie. cpuset), so that load balancing is not 2991 * immediately required to distribute the tasks within their new mask. 2992 */ 2993 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 2994 if (dest_cpu >= nr_cpu_ids) { 2995 ret = -EINVAL; 2996 goto out; 2997 } 2998 2999 __do_set_cpus_allowed(p, ctx); 3000 3001 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3002 3003 out: 3004 task_rq_unlock(rq, p, rf); 3005 3006 return ret; 3007 } 3008 3009 /* 3010 * Change a given task's CPU affinity. Migrate the thread to a 3011 * proper CPU and schedule it away if the CPU it's executing on 3012 * is removed from the allowed bitmask. 3013 * 3014 * NOTE: the caller must have a valid reference to the task, the 3015 * task must not exit() & deallocate itself prematurely. The 3016 * call is not atomic; no spinlocks may be held. 3017 */ 3018 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) 3019 { 3020 struct rq_flags rf; 3021 struct rq *rq; 3022 3023 rq = task_rq_lock(p, &rf); 3024 /* 3025 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3026 * flags are set. 3027 */ 3028 if (p->user_cpus_ptr && 3029 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3030 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3031 ctx->new_mask = rq->scratch_mask; 3032 3033 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3034 } 3035 3036 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3037 { 3038 struct affinity_context ac = { 3039 .new_mask = new_mask, 3040 .flags = 0, 3041 }; 3042 3043 return __set_cpus_allowed_ptr(p, &ac); 3044 } 3045 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3046 3047 /* 3048 * Change a given task's CPU affinity to the intersection of its current 3049 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3050 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3051 * affinity or use cpu_online_mask instead. 3052 * 3053 * If the resulting mask is empty, leave the affinity unchanged and return 3054 * -EINVAL. 3055 */ 3056 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3057 struct cpumask *new_mask, 3058 const struct cpumask *subset_mask) 3059 { 3060 struct affinity_context ac = { 3061 .new_mask = new_mask, 3062 .flags = 0, 3063 }; 3064 struct rq_flags rf; 3065 struct rq *rq; 3066 int err; 3067 3068 rq = task_rq_lock(p, &rf); 3069 3070 /* 3071 * Forcefully restricting the affinity of a deadline task is 3072 * likely to cause problems, so fail and noisily override the 3073 * mask entirely. 3074 */ 3075 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3076 err = -EPERM; 3077 goto err_unlock; 3078 } 3079 3080 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3081 err = -EINVAL; 3082 goto err_unlock; 3083 } 3084 3085 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3086 3087 err_unlock: 3088 task_rq_unlock(rq, p, &rf); 3089 return err; 3090 } 3091 3092 /* 3093 * Restrict the CPU affinity of task @p so that it is a subset of 3094 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3095 * old affinity mask. If the resulting mask is empty, we warn and walk 3096 * up the cpuset hierarchy until we find a suitable mask. 3097 */ 3098 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3099 { 3100 cpumask_var_t new_mask; 3101 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3102 3103 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3104 3105 /* 3106 * __migrate_task() can fail silently in the face of concurrent 3107 * offlining of the chosen destination CPU, so take the hotplug 3108 * lock to ensure that the migration succeeds. 3109 */ 3110 cpus_read_lock(); 3111 if (!cpumask_available(new_mask)) 3112 goto out_set_mask; 3113 3114 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3115 goto out_free_mask; 3116 3117 /* 3118 * We failed to find a valid subset of the affinity mask for the 3119 * task, so override it based on its cpuset hierarchy. 3120 */ 3121 cpuset_cpus_allowed(p, new_mask); 3122 override_mask = new_mask; 3123 3124 out_set_mask: 3125 if (printk_ratelimit()) { 3126 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3127 task_pid_nr(p), p->comm, 3128 cpumask_pr_args(override_mask)); 3129 } 3130 3131 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3132 out_free_mask: 3133 cpus_read_unlock(); 3134 free_cpumask_var(new_mask); 3135 } 3136 3137 /* 3138 * Restore the affinity of a task @p which was previously restricted by a 3139 * call to force_compatible_cpus_allowed_ptr(). 3140 * 3141 * It is the caller's responsibility to serialise this with any calls to 3142 * force_compatible_cpus_allowed_ptr(@p). 3143 */ 3144 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3145 { 3146 struct affinity_context ac = { 3147 .new_mask = task_user_cpus(p), 3148 .flags = 0, 3149 }; 3150 int ret; 3151 3152 /* 3153 * Try to restore the old affinity mask with __sched_setaffinity(). 3154 * Cpuset masking will be done there too. 3155 */ 3156 ret = __sched_setaffinity(p, &ac); 3157 WARN_ON_ONCE(ret); 3158 } 3159 3160 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3161 { 3162 #ifdef CONFIG_SCHED_DEBUG 3163 unsigned int state = READ_ONCE(p->__state); 3164 3165 /* 3166 * We should never call set_task_cpu() on a blocked task, 3167 * ttwu() will sort out the placement. 3168 */ 3169 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3170 3171 /* 3172 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3173 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3174 * time relying on p->on_rq. 3175 */ 3176 WARN_ON_ONCE(state == TASK_RUNNING && 3177 p->sched_class == &fair_sched_class && 3178 (p->on_rq && !task_on_rq_migrating(p))); 3179 3180 #ifdef CONFIG_LOCKDEP 3181 /* 3182 * The caller should hold either p->pi_lock or rq->lock, when changing 3183 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3184 * 3185 * sched_move_task() holds both and thus holding either pins the cgroup, 3186 * see task_group(). 3187 * 3188 * Furthermore, all task_rq users should acquire both locks, see 3189 * task_rq_lock(). 3190 */ 3191 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3192 lockdep_is_held(__rq_lockp(task_rq(p))))); 3193 #endif 3194 /* 3195 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3196 */ 3197 WARN_ON_ONCE(!cpu_online(new_cpu)); 3198 3199 WARN_ON_ONCE(is_migration_disabled(p)); 3200 #endif 3201 3202 trace_sched_migrate_task(p, new_cpu); 3203 3204 if (task_cpu(p) != new_cpu) { 3205 if (p->sched_class->migrate_task_rq) 3206 p->sched_class->migrate_task_rq(p, new_cpu); 3207 p->se.nr_migrations++; 3208 rseq_migrate(p); 3209 sched_mm_cid_migrate_from(p); 3210 perf_event_task_migrate(p); 3211 } 3212 3213 __set_task_cpu(p, new_cpu); 3214 } 3215 3216 #ifdef CONFIG_NUMA_BALANCING 3217 static void __migrate_swap_task(struct task_struct *p, int cpu) 3218 { 3219 if (task_on_rq_queued(p)) { 3220 struct rq *src_rq, *dst_rq; 3221 struct rq_flags srf, drf; 3222 3223 src_rq = task_rq(p); 3224 dst_rq = cpu_rq(cpu); 3225 3226 rq_pin_lock(src_rq, &srf); 3227 rq_pin_lock(dst_rq, &drf); 3228 3229 deactivate_task(src_rq, p, 0); 3230 set_task_cpu(p, cpu); 3231 activate_task(dst_rq, p, 0); 3232 wakeup_preempt(dst_rq, p, 0); 3233 3234 rq_unpin_lock(dst_rq, &drf); 3235 rq_unpin_lock(src_rq, &srf); 3236 3237 } else { 3238 /* 3239 * Task isn't running anymore; make it appear like we migrated 3240 * it before it went to sleep. This means on wakeup we make the 3241 * previous CPU our target instead of where it really is. 3242 */ 3243 p->wake_cpu = cpu; 3244 } 3245 } 3246 3247 struct migration_swap_arg { 3248 struct task_struct *src_task, *dst_task; 3249 int src_cpu, dst_cpu; 3250 }; 3251 3252 static int migrate_swap_stop(void *data) 3253 { 3254 struct migration_swap_arg *arg = data; 3255 struct rq *src_rq, *dst_rq; 3256 3257 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3258 return -EAGAIN; 3259 3260 src_rq = cpu_rq(arg->src_cpu); 3261 dst_rq = cpu_rq(arg->dst_cpu); 3262 3263 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3264 guard(double_rq_lock)(src_rq, dst_rq); 3265 3266 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3267 return -EAGAIN; 3268 3269 if (task_cpu(arg->src_task) != arg->src_cpu) 3270 return -EAGAIN; 3271 3272 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3273 return -EAGAIN; 3274 3275 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3276 return -EAGAIN; 3277 3278 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3279 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3280 3281 return 0; 3282 } 3283 3284 /* 3285 * Cross migrate two tasks 3286 */ 3287 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3288 int target_cpu, int curr_cpu) 3289 { 3290 struct migration_swap_arg arg; 3291 int ret = -EINVAL; 3292 3293 arg = (struct migration_swap_arg){ 3294 .src_task = cur, 3295 .src_cpu = curr_cpu, 3296 .dst_task = p, 3297 .dst_cpu = target_cpu, 3298 }; 3299 3300 if (arg.src_cpu == arg.dst_cpu) 3301 goto out; 3302 3303 /* 3304 * These three tests are all lockless; this is OK since all of them 3305 * will be re-checked with proper locks held further down the line. 3306 */ 3307 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3308 goto out; 3309 3310 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3311 goto out; 3312 3313 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3314 goto out; 3315 3316 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3317 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3318 3319 out: 3320 return ret; 3321 } 3322 #endif /* CONFIG_NUMA_BALANCING */ 3323 3324 /*** 3325 * kick_process - kick a running thread to enter/exit the kernel 3326 * @p: the to-be-kicked thread 3327 * 3328 * Cause a process which is running on another CPU to enter 3329 * kernel-mode, without any delay. (to get signals handled.) 3330 * 3331 * NOTE: this function doesn't have to take the runqueue lock, 3332 * because all it wants to ensure is that the remote task enters 3333 * the kernel. If the IPI races and the task has been migrated 3334 * to another CPU then no harm is done and the purpose has been 3335 * achieved as well. 3336 */ 3337 void kick_process(struct task_struct *p) 3338 { 3339 guard(preempt)(); 3340 int cpu = task_cpu(p); 3341 3342 if ((cpu != smp_processor_id()) && task_curr(p)) 3343 smp_send_reschedule(cpu); 3344 } 3345 EXPORT_SYMBOL_GPL(kick_process); 3346 3347 /* 3348 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3349 * 3350 * A few notes on cpu_active vs cpu_online: 3351 * 3352 * - cpu_active must be a subset of cpu_online 3353 * 3354 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3355 * see __set_cpus_allowed_ptr(). At this point the newly online 3356 * CPU isn't yet part of the sched domains, and balancing will not 3357 * see it. 3358 * 3359 * - on CPU-down we clear cpu_active() to mask the sched domains and 3360 * avoid the load balancer to place new tasks on the to be removed 3361 * CPU. Existing tasks will remain running there and will be taken 3362 * off. 3363 * 3364 * This means that fallback selection must not select !active CPUs. 3365 * And can assume that any active CPU must be online. Conversely 3366 * select_task_rq() below may allow selection of !active CPUs in order 3367 * to satisfy the above rules. 3368 */ 3369 static int select_fallback_rq(int cpu, struct task_struct *p) 3370 { 3371 int nid = cpu_to_node(cpu); 3372 const struct cpumask *nodemask = NULL; 3373 enum { cpuset, possible, fail } state = cpuset; 3374 int dest_cpu; 3375 3376 /* 3377 * If the node that the CPU is on has been offlined, cpu_to_node() 3378 * will return -1. There is no CPU on the node, and we should 3379 * select the CPU on the other node. 3380 */ 3381 if (nid != -1) { 3382 nodemask = cpumask_of_node(nid); 3383 3384 /* Look for allowed, online CPU in same node. */ 3385 for_each_cpu(dest_cpu, nodemask) { 3386 if (is_cpu_allowed(p, dest_cpu)) 3387 return dest_cpu; 3388 } 3389 } 3390 3391 for (;;) { 3392 /* Any allowed, online CPU? */ 3393 for_each_cpu(dest_cpu, p->cpus_ptr) { 3394 if (!is_cpu_allowed(p, dest_cpu)) 3395 continue; 3396 3397 goto out; 3398 } 3399 3400 /* No more Mr. Nice Guy. */ 3401 switch (state) { 3402 case cpuset: 3403 if (cpuset_cpus_allowed_fallback(p)) { 3404 state = possible; 3405 break; 3406 } 3407 fallthrough; 3408 case possible: 3409 /* 3410 * XXX When called from select_task_rq() we only 3411 * hold p->pi_lock and again violate locking order. 3412 * 3413 * More yuck to audit. 3414 */ 3415 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3416 state = fail; 3417 break; 3418 case fail: 3419 BUG(); 3420 break; 3421 } 3422 } 3423 3424 out: 3425 if (state != cpuset) { 3426 /* 3427 * Don't tell them about moving exiting tasks or 3428 * kernel threads (both mm NULL), since they never 3429 * leave kernel. 3430 */ 3431 if (p->mm && printk_ratelimit()) { 3432 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3433 task_pid_nr(p), p->comm, cpu); 3434 } 3435 } 3436 3437 return dest_cpu; 3438 } 3439 3440 /* 3441 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3442 */ 3443 static inline 3444 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3445 { 3446 lockdep_assert_held(&p->pi_lock); 3447 3448 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3449 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3450 else 3451 cpu = cpumask_any(p->cpus_ptr); 3452 3453 /* 3454 * In order not to call set_task_cpu() on a blocking task we need 3455 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3456 * CPU. 3457 * 3458 * Since this is common to all placement strategies, this lives here. 3459 * 3460 * [ this allows ->select_task() to simply return task_cpu(p) and 3461 * not worry about this generic constraint ] 3462 */ 3463 if (unlikely(!is_cpu_allowed(p, cpu))) 3464 cpu = select_fallback_rq(task_cpu(p), p); 3465 3466 return cpu; 3467 } 3468 3469 void sched_set_stop_task(int cpu, struct task_struct *stop) 3470 { 3471 static struct lock_class_key stop_pi_lock; 3472 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3473 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3474 3475 if (stop) { 3476 /* 3477 * Make it appear like a SCHED_FIFO task, its something 3478 * userspace knows about and won't get confused about. 3479 * 3480 * Also, it will make PI more or less work without too 3481 * much confusion -- but then, stop work should not 3482 * rely on PI working anyway. 3483 */ 3484 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3485 3486 stop->sched_class = &stop_sched_class; 3487 3488 /* 3489 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3490 * adjust the effective priority of a task. As a result, 3491 * rt_mutex_setprio() can trigger (RT) balancing operations, 3492 * which can then trigger wakeups of the stop thread to push 3493 * around the current task. 3494 * 3495 * The stop task itself will never be part of the PI-chain, it 3496 * never blocks, therefore that ->pi_lock recursion is safe. 3497 * Tell lockdep about this by placing the stop->pi_lock in its 3498 * own class. 3499 */ 3500 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3501 } 3502 3503 cpu_rq(cpu)->stop = stop; 3504 3505 if (old_stop) { 3506 /* 3507 * Reset it back to a normal scheduling class so that 3508 * it can die in pieces. 3509 */ 3510 old_stop->sched_class = &rt_sched_class; 3511 } 3512 } 3513 3514 #else /* CONFIG_SMP */ 3515 3516 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3517 3518 static inline bool rq_has_pinned_tasks(struct rq *rq) 3519 { 3520 return false; 3521 } 3522 3523 #endif /* !CONFIG_SMP */ 3524 3525 static void 3526 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3527 { 3528 struct rq *rq; 3529 3530 if (!schedstat_enabled()) 3531 return; 3532 3533 rq = this_rq(); 3534 3535 #ifdef CONFIG_SMP 3536 if (cpu == rq->cpu) { 3537 __schedstat_inc(rq->ttwu_local); 3538 __schedstat_inc(p->stats.nr_wakeups_local); 3539 } else { 3540 struct sched_domain *sd; 3541 3542 __schedstat_inc(p->stats.nr_wakeups_remote); 3543 3544 guard(rcu)(); 3545 for_each_domain(rq->cpu, sd) { 3546 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3547 __schedstat_inc(sd->ttwu_wake_remote); 3548 break; 3549 } 3550 } 3551 } 3552 3553 if (wake_flags & WF_MIGRATED) 3554 __schedstat_inc(p->stats.nr_wakeups_migrate); 3555 #endif /* CONFIG_SMP */ 3556 3557 __schedstat_inc(rq->ttwu_count); 3558 __schedstat_inc(p->stats.nr_wakeups); 3559 3560 if (wake_flags & WF_SYNC) 3561 __schedstat_inc(p->stats.nr_wakeups_sync); 3562 } 3563 3564 /* 3565 * Mark the task runnable. 3566 */ 3567 static inline void ttwu_do_wakeup(struct task_struct *p) 3568 { 3569 WRITE_ONCE(p->__state, TASK_RUNNING); 3570 trace_sched_wakeup(p); 3571 } 3572 3573 static void 3574 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3575 struct rq_flags *rf) 3576 { 3577 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3578 3579 lockdep_assert_rq_held(rq); 3580 3581 if (p->sched_contributes_to_load) 3582 rq->nr_uninterruptible--; 3583 3584 #ifdef CONFIG_SMP 3585 if (wake_flags & WF_MIGRATED) 3586 en_flags |= ENQUEUE_MIGRATED; 3587 else 3588 #endif 3589 if (p->in_iowait) { 3590 delayacct_blkio_end(p); 3591 atomic_dec(&task_rq(p)->nr_iowait); 3592 } 3593 3594 activate_task(rq, p, en_flags); 3595 wakeup_preempt(rq, p, wake_flags); 3596 3597 ttwu_do_wakeup(p); 3598 3599 #ifdef CONFIG_SMP 3600 if (p->sched_class->task_woken) { 3601 /* 3602 * Our task @p is fully woken up and running; so it's safe to 3603 * drop the rq->lock, hereafter rq is only used for statistics. 3604 */ 3605 rq_unpin_lock(rq, rf); 3606 p->sched_class->task_woken(rq, p); 3607 rq_repin_lock(rq, rf); 3608 } 3609 3610 if (rq->idle_stamp) { 3611 u64 delta = rq_clock(rq) - rq->idle_stamp; 3612 u64 max = 2*rq->max_idle_balance_cost; 3613 3614 update_avg(&rq->avg_idle, delta); 3615 3616 if (rq->avg_idle > max) 3617 rq->avg_idle = max; 3618 3619 rq->idle_stamp = 0; 3620 } 3621 #endif 3622 3623 p->dl_server = NULL; 3624 } 3625 3626 /* 3627 * Consider @p being inside a wait loop: 3628 * 3629 * for (;;) { 3630 * set_current_state(TASK_UNINTERRUPTIBLE); 3631 * 3632 * if (CONDITION) 3633 * break; 3634 * 3635 * schedule(); 3636 * } 3637 * __set_current_state(TASK_RUNNING); 3638 * 3639 * between set_current_state() and schedule(). In this case @p is still 3640 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3641 * an atomic manner. 3642 * 3643 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3644 * then schedule() must still happen and p->state can be changed to 3645 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3646 * need to do a full wakeup with enqueue. 3647 * 3648 * Returns: %true when the wakeup is done, 3649 * %false otherwise. 3650 */ 3651 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3652 { 3653 struct rq_flags rf; 3654 struct rq *rq; 3655 int ret = 0; 3656 3657 rq = __task_rq_lock(p, &rf); 3658 if (task_on_rq_queued(p)) { 3659 if (!task_on_cpu(rq, p)) { 3660 /* 3661 * When on_rq && !on_cpu the task is preempted, see if 3662 * it should preempt the task that is current now. 3663 */ 3664 update_rq_clock(rq); 3665 wakeup_preempt(rq, p, wake_flags); 3666 } 3667 ttwu_do_wakeup(p); 3668 ret = 1; 3669 } 3670 __task_rq_unlock(rq, &rf); 3671 3672 return ret; 3673 } 3674 3675 #ifdef CONFIG_SMP 3676 void sched_ttwu_pending(void *arg) 3677 { 3678 struct llist_node *llist = arg; 3679 struct rq *rq = this_rq(); 3680 struct task_struct *p, *t; 3681 struct rq_flags rf; 3682 3683 if (!llist) 3684 return; 3685 3686 rq_lock_irqsave(rq, &rf); 3687 update_rq_clock(rq); 3688 3689 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3690 if (WARN_ON_ONCE(p->on_cpu)) 3691 smp_cond_load_acquire(&p->on_cpu, !VAL); 3692 3693 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3694 set_task_cpu(p, cpu_of(rq)); 3695 3696 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3697 } 3698 3699 /* 3700 * Must be after enqueueing at least once task such that 3701 * idle_cpu() does not observe a false-negative -- if it does, 3702 * it is possible for select_idle_siblings() to stack a number 3703 * of tasks on this CPU during that window. 3704 * 3705 * It is OK to clear ttwu_pending when another task pending. 3706 * We will receive IPI after local IRQ enabled and then enqueue it. 3707 * Since now nr_running > 0, idle_cpu() will always get correct result. 3708 */ 3709 WRITE_ONCE(rq->ttwu_pending, 0); 3710 rq_unlock_irqrestore(rq, &rf); 3711 } 3712 3713 /* 3714 * Prepare the scene for sending an IPI for a remote smp_call 3715 * 3716 * Returns true if the caller can proceed with sending the IPI. 3717 * Returns false otherwise. 3718 */ 3719 bool call_function_single_prep_ipi(int cpu) 3720 { 3721 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3722 trace_sched_wake_idle_without_ipi(cpu); 3723 return false; 3724 } 3725 3726 return true; 3727 } 3728 3729 /* 3730 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3731 * necessary. The wakee CPU on receipt of the IPI will queue the task 3732 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3733 * of the wakeup instead of the waker. 3734 */ 3735 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3736 { 3737 struct rq *rq = cpu_rq(cpu); 3738 3739 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3740 3741 WRITE_ONCE(rq->ttwu_pending, 1); 3742 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3743 } 3744 3745 void wake_up_if_idle(int cpu) 3746 { 3747 struct rq *rq = cpu_rq(cpu); 3748 3749 guard(rcu)(); 3750 if (is_idle_task(rcu_dereference(rq->curr))) { 3751 guard(rq_lock_irqsave)(rq); 3752 if (is_idle_task(rq->curr)) 3753 resched_curr(rq); 3754 } 3755 } 3756 3757 bool cpus_equal_capacity(int this_cpu, int that_cpu) 3758 { 3759 if (!sched_asym_cpucap_active()) 3760 return true; 3761 3762 if (this_cpu == that_cpu) 3763 return true; 3764 3765 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); 3766 } 3767 3768 bool cpus_share_cache(int this_cpu, int that_cpu) 3769 { 3770 if (this_cpu == that_cpu) 3771 return true; 3772 3773 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3774 } 3775 3776 /* 3777 * Whether CPUs are share cache resources, which means LLC on non-cluster 3778 * machines and LLC tag or L2 on machines with clusters. 3779 */ 3780 bool cpus_share_resources(int this_cpu, int that_cpu) 3781 { 3782 if (this_cpu == that_cpu) 3783 return true; 3784 3785 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3786 } 3787 3788 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3789 { 3790 /* 3791 * Do not complicate things with the async wake_list while the CPU is 3792 * in hotplug state. 3793 */ 3794 if (!cpu_active(cpu)) 3795 return false; 3796 3797 /* Ensure the task will still be allowed to run on the CPU. */ 3798 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3799 return false; 3800 3801 /* 3802 * If the CPU does not share cache, then queue the task on the 3803 * remote rqs wakelist to avoid accessing remote data. 3804 */ 3805 if (!cpus_share_cache(smp_processor_id(), cpu)) 3806 return true; 3807 3808 if (cpu == smp_processor_id()) 3809 return false; 3810 3811 /* 3812 * If the wakee cpu is idle, or the task is descheduling and the 3813 * only running task on the CPU, then use the wakelist to offload 3814 * the task activation to the idle (or soon-to-be-idle) CPU as 3815 * the current CPU is likely busy. nr_running is checked to 3816 * avoid unnecessary task stacking. 3817 * 3818 * Note that we can only get here with (wakee) p->on_rq=0, 3819 * p->on_cpu can be whatever, we've done the dequeue, so 3820 * the wakee has been accounted out of ->nr_running. 3821 */ 3822 if (!cpu_rq(cpu)->nr_running) 3823 return true; 3824 3825 return false; 3826 } 3827 3828 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3829 { 3830 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3831 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3832 __ttwu_queue_wakelist(p, cpu, wake_flags); 3833 return true; 3834 } 3835 3836 return false; 3837 } 3838 3839 #else /* !CONFIG_SMP */ 3840 3841 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3842 { 3843 return false; 3844 } 3845 3846 #endif /* CONFIG_SMP */ 3847 3848 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3849 { 3850 struct rq *rq = cpu_rq(cpu); 3851 struct rq_flags rf; 3852 3853 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3854 return; 3855 3856 rq_lock(rq, &rf); 3857 update_rq_clock(rq); 3858 ttwu_do_activate(rq, p, wake_flags, &rf); 3859 rq_unlock(rq, &rf); 3860 } 3861 3862 /* 3863 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3864 * 3865 * The caller holds p::pi_lock if p != current or has preemption 3866 * disabled when p == current. 3867 * 3868 * The rules of saved_state: 3869 * 3870 * The related locking code always holds p::pi_lock when updating 3871 * p::saved_state, which means the code is fully serialized in both cases. 3872 * 3873 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 3874 * No other bits set. This allows to distinguish all wakeup scenarios. 3875 * 3876 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 3877 * allows us to prevent early wakeup of tasks before they can be run on 3878 * asymmetric ISA architectures (eg ARMv9). 3879 */ 3880 static __always_inline 3881 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3882 { 3883 int match; 3884 3885 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3886 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3887 state != TASK_RTLOCK_WAIT); 3888 } 3889 3890 *success = !!(match = __task_state_match(p, state)); 3891 3892 /* 3893 * Saved state preserves the task state across blocking on 3894 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 3895 * set p::saved_state to TASK_RUNNING, but do not wake the task 3896 * because it waits for a lock wakeup or __thaw_task(). Also 3897 * indicate success because from the regular waker's point of 3898 * view this has succeeded. 3899 * 3900 * After acquiring the lock the task will restore p::__state 3901 * from p::saved_state which ensures that the regular 3902 * wakeup is not lost. The restore will also set 3903 * p::saved_state to TASK_RUNNING so any further tests will 3904 * not result in false positives vs. @success 3905 */ 3906 if (match < 0) 3907 p->saved_state = TASK_RUNNING; 3908 3909 return match > 0; 3910 } 3911 3912 /* 3913 * Notes on Program-Order guarantees on SMP systems. 3914 * 3915 * MIGRATION 3916 * 3917 * The basic program-order guarantee on SMP systems is that when a task [t] 3918 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3919 * execution on its new CPU [c1]. 3920 * 3921 * For migration (of runnable tasks) this is provided by the following means: 3922 * 3923 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3924 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3925 * rq(c1)->lock (if not at the same time, then in that order). 3926 * C) LOCK of the rq(c1)->lock scheduling in task 3927 * 3928 * Release/acquire chaining guarantees that B happens after A and C after B. 3929 * Note: the CPU doing B need not be c0 or c1 3930 * 3931 * Example: 3932 * 3933 * CPU0 CPU1 CPU2 3934 * 3935 * LOCK rq(0)->lock 3936 * sched-out X 3937 * sched-in Y 3938 * UNLOCK rq(0)->lock 3939 * 3940 * LOCK rq(0)->lock // orders against CPU0 3941 * dequeue X 3942 * UNLOCK rq(0)->lock 3943 * 3944 * LOCK rq(1)->lock 3945 * enqueue X 3946 * UNLOCK rq(1)->lock 3947 * 3948 * LOCK rq(1)->lock // orders against CPU2 3949 * sched-out Z 3950 * sched-in X 3951 * UNLOCK rq(1)->lock 3952 * 3953 * 3954 * BLOCKING -- aka. SLEEP + WAKEUP 3955 * 3956 * For blocking we (obviously) need to provide the same guarantee as for 3957 * migration. However the means are completely different as there is no lock 3958 * chain to provide order. Instead we do: 3959 * 3960 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3961 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3962 * 3963 * Example: 3964 * 3965 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 3966 * 3967 * LOCK rq(0)->lock LOCK X->pi_lock 3968 * dequeue X 3969 * sched-out X 3970 * smp_store_release(X->on_cpu, 0); 3971 * 3972 * smp_cond_load_acquire(&X->on_cpu, !VAL); 3973 * X->state = WAKING 3974 * set_task_cpu(X,2) 3975 * 3976 * LOCK rq(2)->lock 3977 * enqueue X 3978 * X->state = RUNNING 3979 * UNLOCK rq(2)->lock 3980 * 3981 * LOCK rq(2)->lock // orders against CPU1 3982 * sched-out Z 3983 * sched-in X 3984 * UNLOCK rq(2)->lock 3985 * 3986 * UNLOCK X->pi_lock 3987 * UNLOCK rq(0)->lock 3988 * 3989 * 3990 * However, for wakeups there is a second guarantee we must provide, namely we 3991 * must ensure that CONDITION=1 done by the caller can not be reordered with 3992 * accesses to the task state; see try_to_wake_up() and set_current_state(). 3993 */ 3994 3995 /** 3996 * try_to_wake_up - wake up a thread 3997 * @p: the thread to be awakened 3998 * @state: the mask of task states that can be woken 3999 * @wake_flags: wake modifier flags (WF_*) 4000 * 4001 * Conceptually does: 4002 * 4003 * If (@state & @p->state) @p->state = TASK_RUNNING. 4004 * 4005 * If the task was not queued/runnable, also place it back on a runqueue. 4006 * 4007 * This function is atomic against schedule() which would dequeue the task. 4008 * 4009 * It issues a full memory barrier before accessing @p->state, see the comment 4010 * with set_current_state(). 4011 * 4012 * Uses p->pi_lock to serialize against concurrent wake-ups. 4013 * 4014 * Relies on p->pi_lock stabilizing: 4015 * - p->sched_class 4016 * - p->cpus_ptr 4017 * - p->sched_task_group 4018 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4019 * 4020 * Tries really hard to only take one task_rq(p)->lock for performance. 4021 * Takes rq->lock in: 4022 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4023 * - ttwu_queue() -- new rq, for enqueue of the task; 4024 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4025 * 4026 * As a consequence we race really badly with just about everything. See the 4027 * many memory barriers and their comments for details. 4028 * 4029 * Return: %true if @p->state changes (an actual wakeup was done), 4030 * %false otherwise. 4031 */ 4032 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4033 { 4034 guard(preempt)(); 4035 int cpu, success = 0; 4036 4037 if (p == current) { 4038 /* 4039 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4040 * == smp_processor_id()'. Together this means we can special 4041 * case the whole 'p->on_rq && ttwu_runnable()' case below 4042 * without taking any locks. 4043 * 4044 * In particular: 4045 * - we rely on Program-Order guarantees for all the ordering, 4046 * - we're serialized against set_special_state() by virtue of 4047 * it disabling IRQs (this allows not taking ->pi_lock). 4048 */ 4049 if (!ttwu_state_match(p, state, &success)) 4050 goto out; 4051 4052 trace_sched_waking(p); 4053 ttwu_do_wakeup(p); 4054 goto out; 4055 } 4056 4057 /* 4058 * If we are going to wake up a thread waiting for CONDITION we 4059 * need to ensure that CONDITION=1 done by the caller can not be 4060 * reordered with p->state check below. This pairs with smp_store_mb() 4061 * in set_current_state() that the waiting thread does. 4062 */ 4063 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4064 smp_mb__after_spinlock(); 4065 if (!ttwu_state_match(p, state, &success)) 4066 break; 4067 4068 trace_sched_waking(p); 4069 4070 /* 4071 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4072 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4073 * in smp_cond_load_acquire() below. 4074 * 4075 * sched_ttwu_pending() try_to_wake_up() 4076 * STORE p->on_rq = 1 LOAD p->state 4077 * UNLOCK rq->lock 4078 * 4079 * __schedule() (switch to task 'p') 4080 * LOCK rq->lock smp_rmb(); 4081 * smp_mb__after_spinlock(); 4082 * UNLOCK rq->lock 4083 * 4084 * [task p] 4085 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4086 * 4087 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4088 * __schedule(). See the comment for smp_mb__after_spinlock(). 4089 * 4090 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4091 */ 4092 smp_rmb(); 4093 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4094 break; 4095 4096 #ifdef CONFIG_SMP 4097 /* 4098 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4099 * possible to, falsely, observe p->on_cpu == 0. 4100 * 4101 * One must be running (->on_cpu == 1) in order to remove oneself 4102 * from the runqueue. 4103 * 4104 * __schedule() (switch to task 'p') try_to_wake_up() 4105 * STORE p->on_cpu = 1 LOAD p->on_rq 4106 * UNLOCK rq->lock 4107 * 4108 * __schedule() (put 'p' to sleep) 4109 * LOCK rq->lock smp_rmb(); 4110 * smp_mb__after_spinlock(); 4111 * STORE p->on_rq = 0 LOAD p->on_cpu 4112 * 4113 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4114 * __schedule(). See the comment for smp_mb__after_spinlock(). 4115 * 4116 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4117 * schedule()'s deactivate_task() has 'happened' and p will no longer 4118 * care about it's own p->state. See the comment in __schedule(). 4119 */ 4120 smp_acquire__after_ctrl_dep(); 4121 4122 /* 4123 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4124 * == 0), which means we need to do an enqueue, change p->state to 4125 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4126 * enqueue, such as ttwu_queue_wakelist(). 4127 */ 4128 WRITE_ONCE(p->__state, TASK_WAKING); 4129 4130 /* 4131 * If the owning (remote) CPU is still in the middle of schedule() with 4132 * this task as prev, considering queueing p on the remote CPUs wake_list 4133 * which potentially sends an IPI instead of spinning on p->on_cpu to 4134 * let the waker make forward progress. This is safe because IRQs are 4135 * disabled and the IPI will deliver after on_cpu is cleared. 4136 * 4137 * Ensure we load task_cpu(p) after p->on_cpu: 4138 * 4139 * set_task_cpu(p, cpu); 4140 * STORE p->cpu = @cpu 4141 * __schedule() (switch to task 'p') 4142 * LOCK rq->lock 4143 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4144 * STORE p->on_cpu = 1 LOAD p->cpu 4145 * 4146 * to ensure we observe the correct CPU on which the task is currently 4147 * scheduling. 4148 */ 4149 if (smp_load_acquire(&p->on_cpu) && 4150 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4151 break; 4152 4153 /* 4154 * If the owning (remote) CPU is still in the middle of schedule() with 4155 * this task as prev, wait until it's done referencing the task. 4156 * 4157 * Pairs with the smp_store_release() in finish_task(). 4158 * 4159 * This ensures that tasks getting woken will be fully ordered against 4160 * their previous state and preserve Program Order. 4161 */ 4162 smp_cond_load_acquire(&p->on_cpu, !VAL); 4163 4164 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4165 if (task_cpu(p) != cpu) { 4166 if (p->in_iowait) { 4167 delayacct_blkio_end(p); 4168 atomic_dec(&task_rq(p)->nr_iowait); 4169 } 4170 4171 wake_flags |= WF_MIGRATED; 4172 psi_ttwu_dequeue(p); 4173 set_task_cpu(p, cpu); 4174 } 4175 #else 4176 cpu = task_cpu(p); 4177 #endif /* CONFIG_SMP */ 4178 4179 ttwu_queue(p, cpu, wake_flags); 4180 } 4181 out: 4182 if (success) 4183 ttwu_stat(p, task_cpu(p), wake_flags); 4184 4185 return success; 4186 } 4187 4188 static bool __task_needs_rq_lock(struct task_struct *p) 4189 { 4190 unsigned int state = READ_ONCE(p->__state); 4191 4192 /* 4193 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4194 * the task is blocked. Make sure to check @state since ttwu() can drop 4195 * locks at the end, see ttwu_queue_wakelist(). 4196 */ 4197 if (state == TASK_RUNNING || state == TASK_WAKING) 4198 return true; 4199 4200 /* 4201 * Ensure we load p->on_rq after p->__state, otherwise it would be 4202 * possible to, falsely, observe p->on_rq == 0. 4203 * 4204 * See try_to_wake_up() for a longer comment. 4205 */ 4206 smp_rmb(); 4207 if (p->on_rq) 4208 return true; 4209 4210 #ifdef CONFIG_SMP 4211 /* 4212 * Ensure the task has finished __schedule() and will not be referenced 4213 * anymore. Again, see try_to_wake_up() for a longer comment. 4214 */ 4215 smp_rmb(); 4216 smp_cond_load_acquire(&p->on_cpu, !VAL); 4217 #endif 4218 4219 return false; 4220 } 4221 4222 /** 4223 * task_call_func - Invoke a function on task in fixed state 4224 * @p: Process for which the function is to be invoked, can be @current. 4225 * @func: Function to invoke. 4226 * @arg: Argument to function. 4227 * 4228 * Fix the task in it's current state by avoiding wakeups and or rq operations 4229 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4230 * to work out what the state is, if required. Given that @func can be invoked 4231 * with a runqueue lock held, it had better be quite lightweight. 4232 * 4233 * Returns: 4234 * Whatever @func returns 4235 */ 4236 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4237 { 4238 struct rq *rq = NULL; 4239 struct rq_flags rf; 4240 int ret; 4241 4242 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4243 4244 if (__task_needs_rq_lock(p)) 4245 rq = __task_rq_lock(p, &rf); 4246 4247 /* 4248 * At this point the task is pinned; either: 4249 * - blocked and we're holding off wakeups (pi->lock) 4250 * - woken, and we're holding off enqueue (rq->lock) 4251 * - queued, and we're holding off schedule (rq->lock) 4252 * - running, and we're holding off de-schedule (rq->lock) 4253 * 4254 * The called function (@func) can use: task_curr(), p->on_rq and 4255 * p->__state to differentiate between these states. 4256 */ 4257 ret = func(p, arg); 4258 4259 if (rq) 4260 rq_unlock(rq, &rf); 4261 4262 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4263 return ret; 4264 } 4265 4266 /** 4267 * cpu_curr_snapshot - Return a snapshot of the currently running task 4268 * @cpu: The CPU on which to snapshot the task. 4269 * 4270 * Returns the task_struct pointer of the task "currently" running on 4271 * the specified CPU. 4272 * 4273 * If the specified CPU was offline, the return value is whatever it 4274 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4275 * task, but there is no guarantee. Callers wishing a useful return 4276 * value must take some action to ensure that the specified CPU remains 4277 * online throughout. 4278 * 4279 * This function executes full memory barriers before and after fetching 4280 * the pointer, which permits the caller to confine this function's fetch 4281 * with respect to the caller's accesses to other shared variables. 4282 */ 4283 struct task_struct *cpu_curr_snapshot(int cpu) 4284 { 4285 struct rq *rq = cpu_rq(cpu); 4286 struct task_struct *t; 4287 struct rq_flags rf; 4288 4289 rq_lock_irqsave(rq, &rf); 4290 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */ 4291 t = rcu_dereference(cpu_curr(cpu)); 4292 rq_unlock_irqrestore(rq, &rf); 4293 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4294 4295 return t; 4296 } 4297 4298 /** 4299 * wake_up_process - Wake up a specific process 4300 * @p: The process to be woken up. 4301 * 4302 * Attempt to wake up the nominated process and move it to the set of runnable 4303 * processes. 4304 * 4305 * Return: 1 if the process was woken up, 0 if it was already running. 4306 * 4307 * This function executes a full memory barrier before accessing the task state. 4308 */ 4309 int wake_up_process(struct task_struct *p) 4310 { 4311 return try_to_wake_up(p, TASK_NORMAL, 0); 4312 } 4313 EXPORT_SYMBOL(wake_up_process); 4314 4315 int wake_up_state(struct task_struct *p, unsigned int state) 4316 { 4317 return try_to_wake_up(p, state, 0); 4318 } 4319 4320 /* 4321 * Perform scheduler related setup for a newly forked process p. 4322 * p is forked by current. 4323 * 4324 * __sched_fork() is basic setup used by init_idle() too: 4325 */ 4326 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4327 { 4328 p->on_rq = 0; 4329 4330 p->se.on_rq = 0; 4331 p->se.exec_start = 0; 4332 p->se.sum_exec_runtime = 0; 4333 p->se.prev_sum_exec_runtime = 0; 4334 p->se.nr_migrations = 0; 4335 p->se.vruntime = 0; 4336 p->se.vlag = 0; 4337 p->se.slice = sysctl_sched_base_slice; 4338 INIT_LIST_HEAD(&p->se.group_node); 4339 4340 #ifdef CONFIG_FAIR_GROUP_SCHED 4341 p->se.cfs_rq = NULL; 4342 #endif 4343 4344 #ifdef CONFIG_SCHEDSTATS 4345 /* Even if schedstat is disabled, there should not be garbage */ 4346 memset(&p->stats, 0, sizeof(p->stats)); 4347 #endif 4348 4349 init_dl_entity(&p->dl); 4350 4351 INIT_LIST_HEAD(&p->rt.run_list); 4352 p->rt.timeout = 0; 4353 p->rt.time_slice = sched_rr_timeslice; 4354 p->rt.on_rq = 0; 4355 p->rt.on_list = 0; 4356 4357 #ifdef CONFIG_PREEMPT_NOTIFIERS 4358 INIT_HLIST_HEAD(&p->preempt_notifiers); 4359 #endif 4360 4361 #ifdef CONFIG_COMPACTION 4362 p->capture_control = NULL; 4363 #endif 4364 init_numa_balancing(clone_flags, p); 4365 #ifdef CONFIG_SMP 4366 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4367 p->migration_pending = NULL; 4368 #endif 4369 init_sched_mm_cid(p); 4370 } 4371 4372 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4373 4374 #ifdef CONFIG_NUMA_BALANCING 4375 4376 int sysctl_numa_balancing_mode; 4377 4378 static void __set_numabalancing_state(bool enabled) 4379 { 4380 if (enabled) 4381 static_branch_enable(&sched_numa_balancing); 4382 else 4383 static_branch_disable(&sched_numa_balancing); 4384 } 4385 4386 void set_numabalancing_state(bool enabled) 4387 { 4388 if (enabled) 4389 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4390 else 4391 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4392 __set_numabalancing_state(enabled); 4393 } 4394 4395 #ifdef CONFIG_PROC_SYSCTL 4396 static void reset_memory_tiering(void) 4397 { 4398 struct pglist_data *pgdat; 4399 4400 for_each_online_pgdat(pgdat) { 4401 pgdat->nbp_threshold = 0; 4402 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4403 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4404 } 4405 } 4406 4407 static int sysctl_numa_balancing(const struct ctl_table *table, int write, 4408 void *buffer, size_t *lenp, loff_t *ppos) 4409 { 4410 struct ctl_table t; 4411 int err; 4412 int state = sysctl_numa_balancing_mode; 4413 4414 if (write && !capable(CAP_SYS_ADMIN)) 4415 return -EPERM; 4416 4417 t = *table; 4418 t.data = &state; 4419 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4420 if (err < 0) 4421 return err; 4422 if (write) { 4423 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4424 (state & NUMA_BALANCING_MEMORY_TIERING)) 4425 reset_memory_tiering(); 4426 sysctl_numa_balancing_mode = state; 4427 __set_numabalancing_state(state); 4428 } 4429 return err; 4430 } 4431 #endif 4432 #endif 4433 4434 #ifdef CONFIG_SCHEDSTATS 4435 4436 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4437 4438 static void set_schedstats(bool enabled) 4439 { 4440 if (enabled) 4441 static_branch_enable(&sched_schedstats); 4442 else 4443 static_branch_disable(&sched_schedstats); 4444 } 4445 4446 void force_schedstat_enabled(void) 4447 { 4448 if (!schedstat_enabled()) { 4449 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4450 static_branch_enable(&sched_schedstats); 4451 } 4452 } 4453 4454 static int __init setup_schedstats(char *str) 4455 { 4456 int ret = 0; 4457 if (!str) 4458 goto out; 4459 4460 if (!strcmp(str, "enable")) { 4461 set_schedstats(true); 4462 ret = 1; 4463 } else if (!strcmp(str, "disable")) { 4464 set_schedstats(false); 4465 ret = 1; 4466 } 4467 out: 4468 if (!ret) 4469 pr_warn("Unable to parse schedstats=\n"); 4470 4471 return ret; 4472 } 4473 __setup("schedstats=", setup_schedstats); 4474 4475 #ifdef CONFIG_PROC_SYSCTL 4476 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer, 4477 size_t *lenp, loff_t *ppos) 4478 { 4479 struct ctl_table t; 4480 int err; 4481 int state = static_branch_likely(&sched_schedstats); 4482 4483 if (write && !capable(CAP_SYS_ADMIN)) 4484 return -EPERM; 4485 4486 t = *table; 4487 t.data = &state; 4488 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4489 if (err < 0) 4490 return err; 4491 if (write) 4492 set_schedstats(state); 4493 return err; 4494 } 4495 #endif /* CONFIG_PROC_SYSCTL */ 4496 #endif /* CONFIG_SCHEDSTATS */ 4497 4498 #ifdef CONFIG_SYSCTL 4499 static struct ctl_table sched_core_sysctls[] = { 4500 #ifdef CONFIG_SCHEDSTATS 4501 { 4502 .procname = "sched_schedstats", 4503 .data = NULL, 4504 .maxlen = sizeof(unsigned int), 4505 .mode = 0644, 4506 .proc_handler = sysctl_schedstats, 4507 .extra1 = SYSCTL_ZERO, 4508 .extra2 = SYSCTL_ONE, 4509 }, 4510 #endif /* CONFIG_SCHEDSTATS */ 4511 #ifdef CONFIG_UCLAMP_TASK 4512 { 4513 .procname = "sched_util_clamp_min", 4514 .data = &sysctl_sched_uclamp_util_min, 4515 .maxlen = sizeof(unsigned int), 4516 .mode = 0644, 4517 .proc_handler = sysctl_sched_uclamp_handler, 4518 }, 4519 { 4520 .procname = "sched_util_clamp_max", 4521 .data = &sysctl_sched_uclamp_util_max, 4522 .maxlen = sizeof(unsigned int), 4523 .mode = 0644, 4524 .proc_handler = sysctl_sched_uclamp_handler, 4525 }, 4526 { 4527 .procname = "sched_util_clamp_min_rt_default", 4528 .data = &sysctl_sched_uclamp_util_min_rt_default, 4529 .maxlen = sizeof(unsigned int), 4530 .mode = 0644, 4531 .proc_handler = sysctl_sched_uclamp_handler, 4532 }, 4533 #endif /* CONFIG_UCLAMP_TASK */ 4534 #ifdef CONFIG_NUMA_BALANCING 4535 { 4536 .procname = "numa_balancing", 4537 .data = NULL, /* filled in by handler */ 4538 .maxlen = sizeof(unsigned int), 4539 .mode = 0644, 4540 .proc_handler = sysctl_numa_balancing, 4541 .extra1 = SYSCTL_ZERO, 4542 .extra2 = SYSCTL_FOUR, 4543 }, 4544 #endif /* CONFIG_NUMA_BALANCING */ 4545 }; 4546 static int __init sched_core_sysctl_init(void) 4547 { 4548 register_sysctl_init("kernel", sched_core_sysctls); 4549 return 0; 4550 } 4551 late_initcall(sched_core_sysctl_init); 4552 #endif /* CONFIG_SYSCTL */ 4553 4554 /* 4555 * fork()/clone()-time setup: 4556 */ 4557 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4558 { 4559 __sched_fork(clone_flags, p); 4560 /* 4561 * We mark the process as NEW here. This guarantees that 4562 * nobody will actually run it, and a signal or other external 4563 * event cannot wake it up and insert it on the runqueue either. 4564 */ 4565 p->__state = TASK_NEW; 4566 4567 /* 4568 * Make sure we do not leak PI boosting priority to the child. 4569 */ 4570 p->prio = current->normal_prio; 4571 4572 uclamp_fork(p); 4573 4574 /* 4575 * Revert to default priority/policy on fork if requested. 4576 */ 4577 if (unlikely(p->sched_reset_on_fork)) { 4578 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4579 p->policy = SCHED_NORMAL; 4580 p->static_prio = NICE_TO_PRIO(0); 4581 p->rt_priority = 0; 4582 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4583 p->static_prio = NICE_TO_PRIO(0); 4584 4585 p->prio = p->normal_prio = p->static_prio; 4586 set_load_weight(p, false); 4587 4588 /* 4589 * We don't need the reset flag anymore after the fork. It has 4590 * fulfilled its duty: 4591 */ 4592 p->sched_reset_on_fork = 0; 4593 } 4594 4595 if (dl_prio(p->prio)) 4596 return -EAGAIN; 4597 else if (rt_prio(p->prio)) 4598 p->sched_class = &rt_sched_class; 4599 else 4600 p->sched_class = &fair_sched_class; 4601 4602 init_entity_runnable_average(&p->se); 4603 4604 4605 #ifdef CONFIG_SCHED_INFO 4606 if (likely(sched_info_on())) 4607 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4608 #endif 4609 #if defined(CONFIG_SMP) 4610 p->on_cpu = 0; 4611 #endif 4612 init_task_preempt_count(p); 4613 #ifdef CONFIG_SMP 4614 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4615 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4616 #endif 4617 return 0; 4618 } 4619 4620 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4621 { 4622 unsigned long flags; 4623 4624 /* 4625 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4626 * required yet, but lockdep gets upset if rules are violated. 4627 */ 4628 raw_spin_lock_irqsave(&p->pi_lock, flags); 4629 #ifdef CONFIG_CGROUP_SCHED 4630 if (1) { 4631 struct task_group *tg; 4632 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4633 struct task_group, css); 4634 tg = autogroup_task_group(p, tg); 4635 p->sched_task_group = tg; 4636 } 4637 #endif 4638 rseq_migrate(p); 4639 /* 4640 * We're setting the CPU for the first time, we don't migrate, 4641 * so use __set_task_cpu(). 4642 */ 4643 __set_task_cpu(p, smp_processor_id()); 4644 if (p->sched_class->task_fork) 4645 p->sched_class->task_fork(p); 4646 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4647 } 4648 4649 void sched_post_fork(struct task_struct *p) 4650 { 4651 uclamp_post_fork(p); 4652 } 4653 4654 unsigned long to_ratio(u64 period, u64 runtime) 4655 { 4656 if (runtime == RUNTIME_INF) 4657 return BW_UNIT; 4658 4659 /* 4660 * Doing this here saves a lot of checks in all 4661 * the calling paths, and returning zero seems 4662 * safe for them anyway. 4663 */ 4664 if (period == 0) 4665 return 0; 4666 4667 return div64_u64(runtime << BW_SHIFT, period); 4668 } 4669 4670 /* 4671 * wake_up_new_task - wake up a newly created task for the first time. 4672 * 4673 * This function will do some initial scheduler statistics housekeeping 4674 * that must be done for every newly created context, then puts the task 4675 * on the runqueue and wakes it. 4676 */ 4677 void wake_up_new_task(struct task_struct *p) 4678 { 4679 struct rq_flags rf; 4680 struct rq *rq; 4681 4682 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4683 WRITE_ONCE(p->__state, TASK_RUNNING); 4684 #ifdef CONFIG_SMP 4685 /* 4686 * Fork balancing, do it here and not earlier because: 4687 * - cpus_ptr can change in the fork path 4688 * - any previously selected CPU might disappear through hotplug 4689 * 4690 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4691 * as we're not fully set-up yet. 4692 */ 4693 p->recent_used_cpu = task_cpu(p); 4694 rseq_migrate(p); 4695 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4696 #endif 4697 rq = __task_rq_lock(p, &rf); 4698 update_rq_clock(rq); 4699 post_init_entity_util_avg(p); 4700 4701 activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL); 4702 trace_sched_wakeup_new(p); 4703 wakeup_preempt(rq, p, WF_FORK); 4704 #ifdef CONFIG_SMP 4705 if (p->sched_class->task_woken) { 4706 /* 4707 * Nothing relies on rq->lock after this, so it's fine to 4708 * drop it. 4709 */ 4710 rq_unpin_lock(rq, &rf); 4711 p->sched_class->task_woken(rq, p); 4712 rq_repin_lock(rq, &rf); 4713 } 4714 #endif 4715 task_rq_unlock(rq, p, &rf); 4716 } 4717 4718 #ifdef CONFIG_PREEMPT_NOTIFIERS 4719 4720 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4721 4722 void preempt_notifier_inc(void) 4723 { 4724 static_branch_inc(&preempt_notifier_key); 4725 } 4726 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4727 4728 void preempt_notifier_dec(void) 4729 { 4730 static_branch_dec(&preempt_notifier_key); 4731 } 4732 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4733 4734 /** 4735 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4736 * @notifier: notifier struct to register 4737 */ 4738 void preempt_notifier_register(struct preempt_notifier *notifier) 4739 { 4740 if (!static_branch_unlikely(&preempt_notifier_key)) 4741 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4742 4743 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4744 } 4745 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4746 4747 /** 4748 * preempt_notifier_unregister - no longer interested in preemption notifications 4749 * @notifier: notifier struct to unregister 4750 * 4751 * This is *not* safe to call from within a preemption notifier. 4752 */ 4753 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4754 { 4755 hlist_del(¬ifier->link); 4756 } 4757 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4758 4759 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4760 { 4761 struct preempt_notifier *notifier; 4762 4763 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4764 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4765 } 4766 4767 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4768 { 4769 if (static_branch_unlikely(&preempt_notifier_key)) 4770 __fire_sched_in_preempt_notifiers(curr); 4771 } 4772 4773 static void 4774 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4775 struct task_struct *next) 4776 { 4777 struct preempt_notifier *notifier; 4778 4779 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4780 notifier->ops->sched_out(notifier, next); 4781 } 4782 4783 static __always_inline void 4784 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4785 struct task_struct *next) 4786 { 4787 if (static_branch_unlikely(&preempt_notifier_key)) 4788 __fire_sched_out_preempt_notifiers(curr, next); 4789 } 4790 4791 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4792 4793 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4794 { 4795 } 4796 4797 static inline void 4798 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4799 struct task_struct *next) 4800 { 4801 } 4802 4803 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4804 4805 static inline void prepare_task(struct task_struct *next) 4806 { 4807 #ifdef CONFIG_SMP 4808 /* 4809 * Claim the task as running, we do this before switching to it 4810 * such that any running task will have this set. 4811 * 4812 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4813 * its ordering comment. 4814 */ 4815 WRITE_ONCE(next->on_cpu, 1); 4816 #endif 4817 } 4818 4819 static inline void finish_task(struct task_struct *prev) 4820 { 4821 #ifdef CONFIG_SMP 4822 /* 4823 * This must be the very last reference to @prev from this CPU. After 4824 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4825 * must ensure this doesn't happen until the switch is completely 4826 * finished. 4827 * 4828 * In particular, the load of prev->state in finish_task_switch() must 4829 * happen before this. 4830 * 4831 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4832 */ 4833 smp_store_release(&prev->on_cpu, 0); 4834 #endif 4835 } 4836 4837 #ifdef CONFIG_SMP 4838 4839 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 4840 { 4841 void (*func)(struct rq *rq); 4842 struct balance_callback *next; 4843 4844 lockdep_assert_rq_held(rq); 4845 4846 while (head) { 4847 func = (void (*)(struct rq *))head->func; 4848 next = head->next; 4849 head->next = NULL; 4850 head = next; 4851 4852 func(rq); 4853 } 4854 } 4855 4856 static void balance_push(struct rq *rq); 4857 4858 /* 4859 * balance_push_callback is a right abuse of the callback interface and plays 4860 * by significantly different rules. 4861 * 4862 * Where the normal balance_callback's purpose is to be ran in the same context 4863 * that queued it (only later, when it's safe to drop rq->lock again), 4864 * balance_push_callback is specifically targeted at __schedule(). 4865 * 4866 * This abuse is tolerated because it places all the unlikely/odd cases behind 4867 * a single test, namely: rq->balance_callback == NULL. 4868 */ 4869 struct balance_callback balance_push_callback = { 4870 .next = NULL, 4871 .func = balance_push, 4872 }; 4873 4874 static inline struct balance_callback * 4875 __splice_balance_callbacks(struct rq *rq, bool split) 4876 { 4877 struct balance_callback *head = rq->balance_callback; 4878 4879 if (likely(!head)) 4880 return NULL; 4881 4882 lockdep_assert_rq_held(rq); 4883 /* 4884 * Must not take balance_push_callback off the list when 4885 * splice_balance_callbacks() and balance_callbacks() are not 4886 * in the same rq->lock section. 4887 * 4888 * In that case it would be possible for __schedule() to interleave 4889 * and observe the list empty. 4890 */ 4891 if (split && head == &balance_push_callback) 4892 head = NULL; 4893 else 4894 rq->balance_callback = NULL; 4895 4896 return head; 4897 } 4898 4899 struct balance_callback *splice_balance_callbacks(struct rq *rq) 4900 { 4901 return __splice_balance_callbacks(rq, true); 4902 } 4903 4904 static void __balance_callbacks(struct rq *rq) 4905 { 4906 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 4907 } 4908 4909 void balance_callbacks(struct rq *rq, struct balance_callback *head) 4910 { 4911 unsigned long flags; 4912 4913 if (unlikely(head)) { 4914 raw_spin_rq_lock_irqsave(rq, flags); 4915 do_balance_callbacks(rq, head); 4916 raw_spin_rq_unlock_irqrestore(rq, flags); 4917 } 4918 } 4919 4920 #else 4921 4922 static inline void __balance_callbacks(struct rq *rq) 4923 { 4924 } 4925 4926 #endif 4927 4928 static inline void 4929 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4930 { 4931 /* 4932 * Since the runqueue lock will be released by the next 4933 * task (which is an invalid locking op but in the case 4934 * of the scheduler it's an obvious special-case), so we 4935 * do an early lockdep release here: 4936 */ 4937 rq_unpin_lock(rq, rf); 4938 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 4939 #ifdef CONFIG_DEBUG_SPINLOCK 4940 /* this is a valid case when another task releases the spinlock */ 4941 rq_lockp(rq)->owner = next; 4942 #endif 4943 } 4944 4945 static inline void finish_lock_switch(struct rq *rq) 4946 { 4947 /* 4948 * If we are tracking spinlock dependencies then we have to 4949 * fix up the runqueue lock - which gets 'carried over' from 4950 * prev into current: 4951 */ 4952 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 4953 __balance_callbacks(rq); 4954 raw_spin_rq_unlock_irq(rq); 4955 } 4956 4957 /* 4958 * NOP if the arch has not defined these: 4959 */ 4960 4961 #ifndef prepare_arch_switch 4962 # define prepare_arch_switch(next) do { } while (0) 4963 #endif 4964 4965 #ifndef finish_arch_post_lock_switch 4966 # define finish_arch_post_lock_switch() do { } while (0) 4967 #endif 4968 4969 static inline void kmap_local_sched_out(void) 4970 { 4971 #ifdef CONFIG_KMAP_LOCAL 4972 if (unlikely(current->kmap_ctrl.idx)) 4973 __kmap_local_sched_out(); 4974 #endif 4975 } 4976 4977 static inline void kmap_local_sched_in(void) 4978 { 4979 #ifdef CONFIG_KMAP_LOCAL 4980 if (unlikely(current->kmap_ctrl.idx)) 4981 __kmap_local_sched_in(); 4982 #endif 4983 } 4984 4985 /** 4986 * prepare_task_switch - prepare to switch tasks 4987 * @rq: the runqueue preparing to switch 4988 * @prev: the current task that is being switched out 4989 * @next: the task we are going to switch to. 4990 * 4991 * This is called with the rq lock held and interrupts off. It must 4992 * be paired with a subsequent finish_task_switch after the context 4993 * switch. 4994 * 4995 * prepare_task_switch sets up locking and calls architecture specific 4996 * hooks. 4997 */ 4998 static inline void 4999 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5000 struct task_struct *next) 5001 { 5002 kcov_prepare_switch(prev); 5003 sched_info_switch(rq, prev, next); 5004 perf_event_task_sched_out(prev, next); 5005 rseq_preempt(prev); 5006 fire_sched_out_preempt_notifiers(prev, next); 5007 kmap_local_sched_out(); 5008 prepare_task(next); 5009 prepare_arch_switch(next); 5010 } 5011 5012 /** 5013 * finish_task_switch - clean up after a task-switch 5014 * @prev: the thread we just switched away from. 5015 * 5016 * finish_task_switch must be called after the context switch, paired 5017 * with a prepare_task_switch call before the context switch. 5018 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5019 * and do any other architecture-specific cleanup actions. 5020 * 5021 * Note that we may have delayed dropping an mm in context_switch(). If 5022 * so, we finish that here outside of the runqueue lock. (Doing it 5023 * with the lock held can cause deadlocks; see schedule() for 5024 * details.) 5025 * 5026 * The context switch have flipped the stack from under us and restored the 5027 * local variables which were saved when this task called schedule() in the 5028 * past. 'prev == current' is still correct but we need to recalculate this_rq 5029 * because prev may have moved to another CPU. 5030 */ 5031 static struct rq *finish_task_switch(struct task_struct *prev) 5032 __releases(rq->lock) 5033 { 5034 struct rq *rq = this_rq(); 5035 struct mm_struct *mm = rq->prev_mm; 5036 unsigned int prev_state; 5037 5038 /* 5039 * The previous task will have left us with a preempt_count of 2 5040 * because it left us after: 5041 * 5042 * schedule() 5043 * preempt_disable(); // 1 5044 * __schedule() 5045 * raw_spin_lock_irq(&rq->lock) // 2 5046 * 5047 * Also, see FORK_PREEMPT_COUNT. 5048 */ 5049 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5050 "corrupted preempt_count: %s/%d/0x%x\n", 5051 current->comm, current->pid, preempt_count())) 5052 preempt_count_set(FORK_PREEMPT_COUNT); 5053 5054 rq->prev_mm = NULL; 5055 5056 /* 5057 * A task struct has one reference for the use as "current". 5058 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5059 * schedule one last time. The schedule call will never return, and 5060 * the scheduled task must drop that reference. 5061 * 5062 * We must observe prev->state before clearing prev->on_cpu (in 5063 * finish_task), otherwise a concurrent wakeup can get prev 5064 * running on another CPU and we could rave with its RUNNING -> DEAD 5065 * transition, resulting in a double drop. 5066 */ 5067 prev_state = READ_ONCE(prev->__state); 5068 vtime_task_switch(prev); 5069 perf_event_task_sched_in(prev, current); 5070 finish_task(prev); 5071 tick_nohz_task_switch(); 5072 finish_lock_switch(rq); 5073 finish_arch_post_lock_switch(); 5074 kcov_finish_switch(current); 5075 /* 5076 * kmap_local_sched_out() is invoked with rq::lock held and 5077 * interrupts disabled. There is no requirement for that, but the 5078 * sched out code does not have an interrupt enabled section. 5079 * Restoring the maps on sched in does not require interrupts being 5080 * disabled either. 5081 */ 5082 kmap_local_sched_in(); 5083 5084 fire_sched_in_preempt_notifiers(current); 5085 /* 5086 * When switching through a kernel thread, the loop in 5087 * membarrier_{private,global}_expedited() may have observed that 5088 * kernel thread and not issued an IPI. It is therefore possible to 5089 * schedule between user->kernel->user threads without passing though 5090 * switch_mm(). Membarrier requires a barrier after storing to 5091 * rq->curr, before returning to userspace, so provide them here: 5092 * 5093 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5094 * provided by mmdrop_lazy_tlb(), 5095 * - a sync_core for SYNC_CORE. 5096 */ 5097 if (mm) { 5098 membarrier_mm_sync_core_before_usermode(mm); 5099 mmdrop_lazy_tlb_sched(mm); 5100 } 5101 5102 if (unlikely(prev_state == TASK_DEAD)) { 5103 if (prev->sched_class->task_dead) 5104 prev->sched_class->task_dead(prev); 5105 5106 /* Task is done with its stack. */ 5107 put_task_stack(prev); 5108 5109 put_task_struct_rcu_user(prev); 5110 } 5111 5112 return rq; 5113 } 5114 5115 /** 5116 * schedule_tail - first thing a freshly forked thread must call. 5117 * @prev: the thread we just switched away from. 5118 */ 5119 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5120 __releases(rq->lock) 5121 { 5122 /* 5123 * New tasks start with FORK_PREEMPT_COUNT, see there and 5124 * finish_task_switch() for details. 5125 * 5126 * finish_task_switch() will drop rq->lock() and lower preempt_count 5127 * and the preempt_enable() will end up enabling preemption (on 5128 * PREEMPT_COUNT kernels). 5129 */ 5130 5131 finish_task_switch(prev); 5132 preempt_enable(); 5133 5134 if (current->set_child_tid) 5135 put_user(task_pid_vnr(current), current->set_child_tid); 5136 5137 calculate_sigpending(); 5138 } 5139 5140 /* 5141 * context_switch - switch to the new MM and the new thread's register state. 5142 */ 5143 static __always_inline struct rq * 5144 context_switch(struct rq *rq, struct task_struct *prev, 5145 struct task_struct *next, struct rq_flags *rf) 5146 { 5147 prepare_task_switch(rq, prev, next); 5148 5149 /* 5150 * For paravirt, this is coupled with an exit in switch_to to 5151 * combine the page table reload and the switch backend into 5152 * one hypercall. 5153 */ 5154 arch_start_context_switch(prev); 5155 5156 /* 5157 * kernel -> kernel lazy + transfer active 5158 * user -> kernel lazy + mmgrab_lazy_tlb() active 5159 * 5160 * kernel -> user switch + mmdrop_lazy_tlb() active 5161 * user -> user switch 5162 * 5163 * switch_mm_cid() needs to be updated if the barriers provided 5164 * by context_switch() are modified. 5165 */ 5166 if (!next->mm) { // to kernel 5167 enter_lazy_tlb(prev->active_mm, next); 5168 5169 next->active_mm = prev->active_mm; 5170 if (prev->mm) // from user 5171 mmgrab_lazy_tlb(prev->active_mm); 5172 else 5173 prev->active_mm = NULL; 5174 } else { // to user 5175 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5176 /* 5177 * sys_membarrier() requires an smp_mb() between setting 5178 * rq->curr / membarrier_switch_mm() and returning to userspace. 5179 * 5180 * The below provides this either through switch_mm(), or in 5181 * case 'prev->active_mm == next->mm' through 5182 * finish_task_switch()'s mmdrop(). 5183 */ 5184 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5185 lru_gen_use_mm(next->mm); 5186 5187 if (!prev->mm) { // from kernel 5188 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5189 rq->prev_mm = prev->active_mm; 5190 prev->active_mm = NULL; 5191 } 5192 } 5193 5194 /* switch_mm_cid() requires the memory barriers above. */ 5195 switch_mm_cid(rq, prev, next); 5196 5197 prepare_lock_switch(rq, next, rf); 5198 5199 /* Here we just switch the register state and the stack. */ 5200 switch_to(prev, next, prev); 5201 barrier(); 5202 5203 return finish_task_switch(prev); 5204 } 5205 5206 /* 5207 * nr_running and nr_context_switches: 5208 * 5209 * externally visible scheduler statistics: current number of runnable 5210 * threads, total number of context switches performed since bootup. 5211 */ 5212 unsigned int nr_running(void) 5213 { 5214 unsigned int i, sum = 0; 5215 5216 for_each_online_cpu(i) 5217 sum += cpu_rq(i)->nr_running; 5218 5219 return sum; 5220 } 5221 5222 /* 5223 * Check if only the current task is running on the CPU. 5224 * 5225 * Caution: this function does not check that the caller has disabled 5226 * preemption, thus the result might have a time-of-check-to-time-of-use 5227 * race. The caller is responsible to use it correctly, for example: 5228 * 5229 * - from a non-preemptible section (of course) 5230 * 5231 * - from a thread that is bound to a single CPU 5232 * 5233 * - in a loop with very short iterations (e.g. a polling loop) 5234 */ 5235 bool single_task_running(void) 5236 { 5237 return raw_rq()->nr_running == 1; 5238 } 5239 EXPORT_SYMBOL(single_task_running); 5240 5241 unsigned long long nr_context_switches_cpu(int cpu) 5242 { 5243 return cpu_rq(cpu)->nr_switches; 5244 } 5245 5246 unsigned long long nr_context_switches(void) 5247 { 5248 int i; 5249 unsigned long long sum = 0; 5250 5251 for_each_possible_cpu(i) 5252 sum += cpu_rq(i)->nr_switches; 5253 5254 return sum; 5255 } 5256 5257 /* 5258 * Consumers of these two interfaces, like for example the cpuidle menu 5259 * governor, are using nonsensical data. Preferring shallow idle state selection 5260 * for a CPU that has IO-wait which might not even end up running the task when 5261 * it does become runnable. 5262 */ 5263 5264 unsigned int nr_iowait_cpu(int cpu) 5265 { 5266 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5267 } 5268 5269 /* 5270 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5271 * 5272 * The idea behind IO-wait account is to account the idle time that we could 5273 * have spend running if it were not for IO. That is, if we were to improve the 5274 * storage performance, we'd have a proportional reduction in IO-wait time. 5275 * 5276 * This all works nicely on UP, where, when a task blocks on IO, we account 5277 * idle time as IO-wait, because if the storage were faster, it could've been 5278 * running and we'd not be idle. 5279 * 5280 * This has been extended to SMP, by doing the same for each CPU. This however 5281 * is broken. 5282 * 5283 * Imagine for instance the case where two tasks block on one CPU, only the one 5284 * CPU will have IO-wait accounted, while the other has regular idle. Even 5285 * though, if the storage were faster, both could've ran at the same time, 5286 * utilising both CPUs. 5287 * 5288 * This means, that when looking globally, the current IO-wait accounting on 5289 * SMP is a lower bound, by reason of under accounting. 5290 * 5291 * Worse, since the numbers are provided per CPU, they are sometimes 5292 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5293 * associated with any one particular CPU, it can wake to another CPU than it 5294 * blocked on. This means the per CPU IO-wait number is meaningless. 5295 * 5296 * Task CPU affinities can make all that even more 'interesting'. 5297 */ 5298 5299 unsigned int nr_iowait(void) 5300 { 5301 unsigned int i, sum = 0; 5302 5303 for_each_possible_cpu(i) 5304 sum += nr_iowait_cpu(i); 5305 5306 return sum; 5307 } 5308 5309 #ifdef CONFIG_SMP 5310 5311 /* 5312 * sched_exec - execve() is a valuable balancing opportunity, because at 5313 * this point the task has the smallest effective memory and cache footprint. 5314 */ 5315 void sched_exec(void) 5316 { 5317 struct task_struct *p = current; 5318 struct migration_arg arg; 5319 int dest_cpu; 5320 5321 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5322 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5323 if (dest_cpu == smp_processor_id()) 5324 return; 5325 5326 if (unlikely(!cpu_active(dest_cpu))) 5327 return; 5328 5329 arg = (struct migration_arg){ p, dest_cpu }; 5330 } 5331 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5332 } 5333 5334 #endif 5335 5336 DEFINE_PER_CPU(struct kernel_stat, kstat); 5337 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5338 5339 EXPORT_PER_CPU_SYMBOL(kstat); 5340 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5341 5342 /* 5343 * The function fair_sched_class.update_curr accesses the struct curr 5344 * and its field curr->exec_start; when called from task_sched_runtime(), 5345 * we observe a high rate of cache misses in practice. 5346 * Prefetching this data results in improved performance. 5347 */ 5348 static inline void prefetch_curr_exec_start(struct task_struct *p) 5349 { 5350 #ifdef CONFIG_FAIR_GROUP_SCHED 5351 struct sched_entity *curr = p->se.cfs_rq->curr; 5352 #else 5353 struct sched_entity *curr = task_rq(p)->cfs.curr; 5354 #endif 5355 prefetch(curr); 5356 prefetch(&curr->exec_start); 5357 } 5358 5359 /* 5360 * Return accounted runtime for the task. 5361 * In case the task is currently running, return the runtime plus current's 5362 * pending runtime that have not been accounted yet. 5363 */ 5364 unsigned long long task_sched_runtime(struct task_struct *p) 5365 { 5366 struct rq_flags rf; 5367 struct rq *rq; 5368 u64 ns; 5369 5370 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5371 /* 5372 * 64-bit doesn't need locks to atomically read a 64-bit value. 5373 * So we have a optimization chance when the task's delta_exec is 0. 5374 * Reading ->on_cpu is racy, but this is OK. 5375 * 5376 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5377 * If we race with it entering CPU, unaccounted time is 0. This is 5378 * indistinguishable from the read occurring a few cycles earlier. 5379 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5380 * been accounted, so we're correct here as well. 5381 */ 5382 if (!p->on_cpu || !task_on_rq_queued(p)) 5383 return p->se.sum_exec_runtime; 5384 #endif 5385 5386 rq = task_rq_lock(p, &rf); 5387 /* 5388 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5389 * project cycles that may never be accounted to this 5390 * thread, breaking clock_gettime(). 5391 */ 5392 if (task_current(rq, p) && task_on_rq_queued(p)) { 5393 prefetch_curr_exec_start(p); 5394 update_rq_clock(rq); 5395 p->sched_class->update_curr(rq); 5396 } 5397 ns = p->se.sum_exec_runtime; 5398 task_rq_unlock(rq, p, &rf); 5399 5400 return ns; 5401 } 5402 5403 #ifdef CONFIG_SCHED_DEBUG 5404 static u64 cpu_resched_latency(struct rq *rq) 5405 { 5406 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5407 u64 resched_latency, now = rq_clock(rq); 5408 static bool warned_once; 5409 5410 if (sysctl_resched_latency_warn_once && warned_once) 5411 return 0; 5412 5413 if (!need_resched() || !latency_warn_ms) 5414 return 0; 5415 5416 if (system_state == SYSTEM_BOOTING) 5417 return 0; 5418 5419 if (!rq->last_seen_need_resched_ns) { 5420 rq->last_seen_need_resched_ns = now; 5421 rq->ticks_without_resched = 0; 5422 return 0; 5423 } 5424 5425 rq->ticks_without_resched++; 5426 resched_latency = now - rq->last_seen_need_resched_ns; 5427 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5428 return 0; 5429 5430 warned_once = true; 5431 5432 return resched_latency; 5433 } 5434 5435 static int __init setup_resched_latency_warn_ms(char *str) 5436 { 5437 long val; 5438 5439 if ((kstrtol(str, 0, &val))) { 5440 pr_warn("Unable to set resched_latency_warn_ms\n"); 5441 return 1; 5442 } 5443 5444 sysctl_resched_latency_warn_ms = val; 5445 return 1; 5446 } 5447 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5448 #else 5449 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5450 #endif /* CONFIG_SCHED_DEBUG */ 5451 5452 /* 5453 * This function gets called by the timer code, with HZ frequency. 5454 * We call it with interrupts disabled. 5455 */ 5456 void sched_tick(void) 5457 { 5458 int cpu = smp_processor_id(); 5459 struct rq *rq = cpu_rq(cpu); 5460 struct task_struct *curr; 5461 struct rq_flags rf; 5462 unsigned long hw_pressure; 5463 u64 resched_latency; 5464 5465 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5466 arch_scale_freq_tick(); 5467 5468 sched_clock_tick(); 5469 5470 rq_lock(rq, &rf); 5471 5472 curr = rq->curr; 5473 psi_account_irqtime(rq, curr, NULL); 5474 5475 update_rq_clock(rq); 5476 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 5477 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); 5478 curr->sched_class->task_tick(rq, curr, 0); 5479 if (sched_feat(LATENCY_WARN)) 5480 resched_latency = cpu_resched_latency(rq); 5481 calc_global_load_tick(rq); 5482 sched_core_tick(rq); 5483 task_tick_mm_cid(rq, curr); 5484 5485 rq_unlock(rq, &rf); 5486 5487 if (sched_feat(LATENCY_WARN) && resched_latency) 5488 resched_latency_warn(cpu, resched_latency); 5489 5490 perf_event_task_tick(); 5491 5492 if (curr->flags & PF_WQ_WORKER) 5493 wq_worker_tick(curr); 5494 5495 #ifdef CONFIG_SMP 5496 rq->idle_balance = idle_cpu(cpu); 5497 sched_balance_trigger(rq); 5498 #endif 5499 } 5500 5501 #ifdef CONFIG_NO_HZ_FULL 5502 5503 struct tick_work { 5504 int cpu; 5505 atomic_t state; 5506 struct delayed_work work; 5507 }; 5508 /* Values for ->state, see diagram below. */ 5509 #define TICK_SCHED_REMOTE_OFFLINE 0 5510 #define TICK_SCHED_REMOTE_OFFLINING 1 5511 #define TICK_SCHED_REMOTE_RUNNING 2 5512 5513 /* 5514 * State diagram for ->state: 5515 * 5516 * 5517 * TICK_SCHED_REMOTE_OFFLINE 5518 * | ^ 5519 * | | 5520 * | | sched_tick_remote() 5521 * | | 5522 * | | 5523 * +--TICK_SCHED_REMOTE_OFFLINING 5524 * | ^ 5525 * | | 5526 * sched_tick_start() | | sched_tick_stop() 5527 * | | 5528 * V | 5529 * TICK_SCHED_REMOTE_RUNNING 5530 * 5531 * 5532 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5533 * and sched_tick_start() are happy to leave the state in RUNNING. 5534 */ 5535 5536 static struct tick_work __percpu *tick_work_cpu; 5537 5538 static void sched_tick_remote(struct work_struct *work) 5539 { 5540 struct delayed_work *dwork = to_delayed_work(work); 5541 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5542 int cpu = twork->cpu; 5543 struct rq *rq = cpu_rq(cpu); 5544 int os; 5545 5546 /* 5547 * Handle the tick only if it appears the remote CPU is running in full 5548 * dynticks mode. The check is racy by nature, but missing a tick or 5549 * having one too much is no big deal because the scheduler tick updates 5550 * statistics and checks timeslices in a time-independent way, regardless 5551 * of when exactly it is running. 5552 */ 5553 if (tick_nohz_tick_stopped_cpu(cpu)) { 5554 guard(rq_lock_irq)(rq); 5555 struct task_struct *curr = rq->curr; 5556 5557 if (cpu_online(cpu)) { 5558 update_rq_clock(rq); 5559 5560 if (!is_idle_task(curr)) { 5561 /* 5562 * Make sure the next tick runs within a 5563 * reasonable amount of time. 5564 */ 5565 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5566 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5567 } 5568 curr->sched_class->task_tick(rq, curr, 0); 5569 5570 calc_load_nohz_remote(rq); 5571 } 5572 } 5573 5574 /* 5575 * Run the remote tick once per second (1Hz). This arbitrary 5576 * frequency is large enough to avoid overload but short enough 5577 * to keep scheduler internal stats reasonably up to date. But 5578 * first update state to reflect hotplug activity if required. 5579 */ 5580 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5581 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5582 if (os == TICK_SCHED_REMOTE_RUNNING) 5583 queue_delayed_work(system_unbound_wq, dwork, HZ); 5584 } 5585 5586 static void sched_tick_start(int cpu) 5587 { 5588 int os; 5589 struct tick_work *twork; 5590 5591 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5592 return; 5593 5594 WARN_ON_ONCE(!tick_work_cpu); 5595 5596 twork = per_cpu_ptr(tick_work_cpu, cpu); 5597 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5598 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5599 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5600 twork->cpu = cpu; 5601 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5602 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5603 } 5604 } 5605 5606 #ifdef CONFIG_HOTPLUG_CPU 5607 static void sched_tick_stop(int cpu) 5608 { 5609 struct tick_work *twork; 5610 int os; 5611 5612 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5613 return; 5614 5615 WARN_ON_ONCE(!tick_work_cpu); 5616 5617 twork = per_cpu_ptr(tick_work_cpu, cpu); 5618 /* There cannot be competing actions, but don't rely on stop-machine. */ 5619 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5620 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5621 /* Don't cancel, as this would mess up the state machine. */ 5622 } 5623 #endif /* CONFIG_HOTPLUG_CPU */ 5624 5625 int __init sched_tick_offload_init(void) 5626 { 5627 tick_work_cpu = alloc_percpu(struct tick_work); 5628 BUG_ON(!tick_work_cpu); 5629 return 0; 5630 } 5631 5632 #else /* !CONFIG_NO_HZ_FULL */ 5633 static inline void sched_tick_start(int cpu) { } 5634 static inline void sched_tick_stop(int cpu) { } 5635 #endif 5636 5637 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5638 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5639 /* 5640 * If the value passed in is equal to the current preempt count 5641 * then we just disabled preemption. Start timing the latency. 5642 */ 5643 static inline void preempt_latency_start(int val) 5644 { 5645 if (preempt_count() == val) { 5646 unsigned long ip = get_lock_parent_ip(); 5647 #ifdef CONFIG_DEBUG_PREEMPT 5648 current->preempt_disable_ip = ip; 5649 #endif 5650 trace_preempt_off(CALLER_ADDR0, ip); 5651 } 5652 } 5653 5654 void preempt_count_add(int val) 5655 { 5656 #ifdef CONFIG_DEBUG_PREEMPT 5657 /* 5658 * Underflow? 5659 */ 5660 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5661 return; 5662 #endif 5663 __preempt_count_add(val); 5664 #ifdef CONFIG_DEBUG_PREEMPT 5665 /* 5666 * Spinlock count overflowing soon? 5667 */ 5668 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5669 PREEMPT_MASK - 10); 5670 #endif 5671 preempt_latency_start(val); 5672 } 5673 EXPORT_SYMBOL(preempt_count_add); 5674 NOKPROBE_SYMBOL(preempt_count_add); 5675 5676 /* 5677 * If the value passed in equals to the current preempt count 5678 * then we just enabled preemption. Stop timing the latency. 5679 */ 5680 static inline void preempt_latency_stop(int val) 5681 { 5682 if (preempt_count() == val) 5683 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5684 } 5685 5686 void preempt_count_sub(int val) 5687 { 5688 #ifdef CONFIG_DEBUG_PREEMPT 5689 /* 5690 * Underflow? 5691 */ 5692 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5693 return; 5694 /* 5695 * Is the spinlock portion underflowing? 5696 */ 5697 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5698 !(preempt_count() & PREEMPT_MASK))) 5699 return; 5700 #endif 5701 5702 preempt_latency_stop(val); 5703 __preempt_count_sub(val); 5704 } 5705 EXPORT_SYMBOL(preempt_count_sub); 5706 NOKPROBE_SYMBOL(preempt_count_sub); 5707 5708 #else 5709 static inline void preempt_latency_start(int val) { } 5710 static inline void preempt_latency_stop(int val) { } 5711 #endif 5712 5713 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5714 { 5715 #ifdef CONFIG_DEBUG_PREEMPT 5716 return p->preempt_disable_ip; 5717 #else 5718 return 0; 5719 #endif 5720 } 5721 5722 /* 5723 * Print scheduling while atomic bug: 5724 */ 5725 static noinline void __schedule_bug(struct task_struct *prev) 5726 { 5727 /* Save this before calling printk(), since that will clobber it */ 5728 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5729 5730 if (oops_in_progress) 5731 return; 5732 5733 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5734 prev->comm, prev->pid, preempt_count()); 5735 5736 debug_show_held_locks(prev); 5737 print_modules(); 5738 if (irqs_disabled()) 5739 print_irqtrace_events(prev); 5740 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5741 pr_err("Preemption disabled at:"); 5742 print_ip_sym(KERN_ERR, preempt_disable_ip); 5743 } 5744 check_panic_on_warn("scheduling while atomic"); 5745 5746 dump_stack(); 5747 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5748 } 5749 5750 /* 5751 * Various schedule()-time debugging checks and statistics: 5752 */ 5753 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5754 { 5755 #ifdef CONFIG_SCHED_STACK_END_CHECK 5756 if (task_stack_end_corrupted(prev)) 5757 panic("corrupted stack end detected inside scheduler\n"); 5758 5759 if (task_scs_end_corrupted(prev)) 5760 panic("corrupted shadow stack detected inside scheduler\n"); 5761 #endif 5762 5763 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5764 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5765 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5766 prev->comm, prev->pid, prev->non_block_count); 5767 dump_stack(); 5768 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5769 } 5770 #endif 5771 5772 if (unlikely(in_atomic_preempt_off())) { 5773 __schedule_bug(prev); 5774 preempt_count_set(PREEMPT_DISABLED); 5775 } 5776 rcu_sleep_check(); 5777 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5778 5779 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5780 5781 schedstat_inc(this_rq()->sched_count); 5782 } 5783 5784 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5785 struct rq_flags *rf) 5786 { 5787 #ifdef CONFIG_SMP 5788 const struct sched_class *class; 5789 /* 5790 * We must do the balancing pass before put_prev_task(), such 5791 * that when we release the rq->lock the task is in the same 5792 * state as before we took rq->lock. 5793 * 5794 * We can terminate the balance pass as soon as we know there is 5795 * a runnable task of @class priority or higher. 5796 */ 5797 for_class_range(class, prev->sched_class, &idle_sched_class) { 5798 if (class->balance(rq, prev, rf)) 5799 break; 5800 } 5801 #endif 5802 5803 put_prev_task(rq, prev); 5804 5805 /* 5806 * We've updated @prev and no longer need the server link, clear it. 5807 * Must be done before ->pick_next_task() because that can (re)set 5808 * ->dl_server. 5809 */ 5810 if (prev->dl_server) 5811 prev->dl_server = NULL; 5812 } 5813 5814 /* 5815 * Pick up the highest-prio task: 5816 */ 5817 static inline struct task_struct * 5818 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5819 { 5820 const struct sched_class *class; 5821 struct task_struct *p; 5822 5823 /* 5824 * Optimization: we know that if all tasks are in the fair class we can 5825 * call that function directly, but only if the @prev task wasn't of a 5826 * higher scheduling class, because otherwise those lose the 5827 * opportunity to pull in more work from other CPUs. 5828 */ 5829 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5830 rq->nr_running == rq->cfs.h_nr_running)) { 5831 5832 p = pick_next_task_fair(rq, prev, rf); 5833 if (unlikely(p == RETRY_TASK)) 5834 goto restart; 5835 5836 /* Assume the next prioritized class is idle_sched_class */ 5837 if (!p) { 5838 put_prev_task(rq, prev); 5839 p = pick_next_task_idle(rq); 5840 } 5841 5842 /* 5843 * This is the fast path; it cannot be a DL server pick; 5844 * therefore even if @p == @prev, ->dl_server must be NULL. 5845 */ 5846 if (p->dl_server) 5847 p->dl_server = NULL; 5848 5849 return p; 5850 } 5851 5852 restart: 5853 put_prev_task_balance(rq, prev, rf); 5854 5855 for_each_class(class) { 5856 p = class->pick_next_task(rq); 5857 if (p) 5858 return p; 5859 } 5860 5861 BUG(); /* The idle class should always have a runnable task. */ 5862 } 5863 5864 #ifdef CONFIG_SCHED_CORE 5865 static inline bool is_task_rq_idle(struct task_struct *t) 5866 { 5867 return (task_rq(t)->idle == t); 5868 } 5869 5870 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5871 { 5872 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5873 } 5874 5875 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5876 { 5877 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5878 return true; 5879 5880 return a->core_cookie == b->core_cookie; 5881 } 5882 5883 static inline struct task_struct *pick_task(struct rq *rq) 5884 { 5885 const struct sched_class *class; 5886 struct task_struct *p; 5887 5888 for_each_class(class) { 5889 p = class->pick_task(rq); 5890 if (p) 5891 return p; 5892 } 5893 5894 BUG(); /* The idle class should always have a runnable task. */ 5895 } 5896 5897 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5898 5899 static void queue_core_balance(struct rq *rq); 5900 5901 static struct task_struct * 5902 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5903 { 5904 struct task_struct *next, *p, *max = NULL; 5905 const struct cpumask *smt_mask; 5906 bool fi_before = false; 5907 bool core_clock_updated = (rq == rq->core); 5908 unsigned long cookie; 5909 int i, cpu, occ = 0; 5910 struct rq *rq_i; 5911 bool need_sync; 5912 5913 if (!sched_core_enabled(rq)) 5914 return __pick_next_task(rq, prev, rf); 5915 5916 cpu = cpu_of(rq); 5917 5918 /* Stopper task is switching into idle, no need core-wide selection. */ 5919 if (cpu_is_offline(cpu)) { 5920 /* 5921 * Reset core_pick so that we don't enter the fastpath when 5922 * coming online. core_pick would already be migrated to 5923 * another cpu during offline. 5924 */ 5925 rq->core_pick = NULL; 5926 return __pick_next_task(rq, prev, rf); 5927 } 5928 5929 /* 5930 * If there were no {en,de}queues since we picked (IOW, the task 5931 * pointers are all still valid), and we haven't scheduled the last 5932 * pick yet, do so now. 5933 * 5934 * rq->core_pick can be NULL if no selection was made for a CPU because 5935 * it was either offline or went offline during a sibling's core-wide 5936 * selection. In this case, do a core-wide selection. 5937 */ 5938 if (rq->core->core_pick_seq == rq->core->core_task_seq && 5939 rq->core->core_pick_seq != rq->core_sched_seq && 5940 rq->core_pick) { 5941 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 5942 5943 next = rq->core_pick; 5944 if (next != prev) { 5945 put_prev_task(rq, prev); 5946 set_next_task(rq, next); 5947 } 5948 5949 rq->core_pick = NULL; 5950 goto out; 5951 } 5952 5953 put_prev_task_balance(rq, prev, rf); 5954 5955 smt_mask = cpu_smt_mask(cpu); 5956 need_sync = !!rq->core->core_cookie; 5957 5958 /* reset state */ 5959 rq->core->core_cookie = 0UL; 5960 if (rq->core->core_forceidle_count) { 5961 if (!core_clock_updated) { 5962 update_rq_clock(rq->core); 5963 core_clock_updated = true; 5964 } 5965 sched_core_account_forceidle(rq); 5966 /* reset after accounting force idle */ 5967 rq->core->core_forceidle_start = 0; 5968 rq->core->core_forceidle_count = 0; 5969 rq->core->core_forceidle_occupation = 0; 5970 need_sync = true; 5971 fi_before = true; 5972 } 5973 5974 /* 5975 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 5976 * 5977 * @task_seq guards the task state ({en,de}queues) 5978 * @pick_seq is the @task_seq we did a selection on 5979 * @sched_seq is the @pick_seq we scheduled 5980 * 5981 * However, preemptions can cause multiple picks on the same task set. 5982 * 'Fix' this by also increasing @task_seq for every pick. 5983 */ 5984 rq->core->core_task_seq++; 5985 5986 /* 5987 * Optimize for common case where this CPU has no cookies 5988 * and there are no cookied tasks running on siblings. 5989 */ 5990 if (!need_sync) { 5991 next = pick_task(rq); 5992 if (!next->core_cookie) { 5993 rq->core_pick = NULL; 5994 /* 5995 * For robustness, update the min_vruntime_fi for 5996 * unconstrained picks as well. 5997 */ 5998 WARN_ON_ONCE(fi_before); 5999 task_vruntime_update(rq, next, false); 6000 goto out_set_next; 6001 } 6002 } 6003 6004 /* 6005 * For each thread: do the regular task pick and find the max prio task 6006 * amongst them. 6007 * 6008 * Tie-break prio towards the current CPU 6009 */ 6010 for_each_cpu_wrap(i, smt_mask, cpu) { 6011 rq_i = cpu_rq(i); 6012 6013 /* 6014 * Current cpu always has its clock updated on entrance to 6015 * pick_next_task(). If the current cpu is not the core, 6016 * the core may also have been updated above. 6017 */ 6018 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6019 update_rq_clock(rq_i); 6020 6021 p = rq_i->core_pick = pick_task(rq_i); 6022 if (!max || prio_less(max, p, fi_before)) 6023 max = p; 6024 } 6025 6026 cookie = rq->core->core_cookie = max->core_cookie; 6027 6028 /* 6029 * For each thread: try and find a runnable task that matches @max or 6030 * force idle. 6031 */ 6032 for_each_cpu(i, smt_mask) { 6033 rq_i = cpu_rq(i); 6034 p = rq_i->core_pick; 6035 6036 if (!cookie_equals(p, cookie)) { 6037 p = NULL; 6038 if (cookie) 6039 p = sched_core_find(rq_i, cookie); 6040 if (!p) 6041 p = idle_sched_class.pick_task(rq_i); 6042 } 6043 6044 rq_i->core_pick = p; 6045 6046 if (p == rq_i->idle) { 6047 if (rq_i->nr_running) { 6048 rq->core->core_forceidle_count++; 6049 if (!fi_before) 6050 rq->core->core_forceidle_seq++; 6051 } 6052 } else { 6053 occ++; 6054 } 6055 } 6056 6057 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6058 rq->core->core_forceidle_start = rq_clock(rq->core); 6059 rq->core->core_forceidle_occupation = occ; 6060 } 6061 6062 rq->core->core_pick_seq = rq->core->core_task_seq; 6063 next = rq->core_pick; 6064 rq->core_sched_seq = rq->core->core_pick_seq; 6065 6066 /* Something should have been selected for current CPU */ 6067 WARN_ON_ONCE(!next); 6068 6069 /* 6070 * Reschedule siblings 6071 * 6072 * NOTE: L1TF -- at this point we're no longer running the old task and 6073 * sending an IPI (below) ensures the sibling will no longer be running 6074 * their task. This ensures there is no inter-sibling overlap between 6075 * non-matching user state. 6076 */ 6077 for_each_cpu(i, smt_mask) { 6078 rq_i = cpu_rq(i); 6079 6080 /* 6081 * An online sibling might have gone offline before a task 6082 * could be picked for it, or it might be offline but later 6083 * happen to come online, but its too late and nothing was 6084 * picked for it. That's Ok - it will pick tasks for itself, 6085 * so ignore it. 6086 */ 6087 if (!rq_i->core_pick) 6088 continue; 6089 6090 /* 6091 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6092 * fi_before fi update? 6093 * 0 0 1 6094 * 0 1 1 6095 * 1 0 1 6096 * 1 1 0 6097 */ 6098 if (!(fi_before && rq->core->core_forceidle_count)) 6099 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6100 6101 rq_i->core_pick->core_occupation = occ; 6102 6103 if (i == cpu) { 6104 rq_i->core_pick = NULL; 6105 continue; 6106 } 6107 6108 /* Did we break L1TF mitigation requirements? */ 6109 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6110 6111 if (rq_i->curr == rq_i->core_pick) { 6112 rq_i->core_pick = NULL; 6113 continue; 6114 } 6115 6116 resched_curr(rq_i); 6117 } 6118 6119 out_set_next: 6120 set_next_task(rq, next); 6121 out: 6122 if (rq->core->core_forceidle_count && next == rq->idle) 6123 queue_core_balance(rq); 6124 6125 return next; 6126 } 6127 6128 static bool try_steal_cookie(int this, int that) 6129 { 6130 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6131 struct task_struct *p; 6132 unsigned long cookie; 6133 bool success = false; 6134 6135 guard(irq)(); 6136 guard(double_rq_lock)(dst, src); 6137 6138 cookie = dst->core->core_cookie; 6139 if (!cookie) 6140 return false; 6141 6142 if (dst->curr != dst->idle) 6143 return false; 6144 6145 p = sched_core_find(src, cookie); 6146 if (!p) 6147 return false; 6148 6149 do { 6150 if (p == src->core_pick || p == src->curr) 6151 goto next; 6152 6153 if (!is_cpu_allowed(p, this)) 6154 goto next; 6155 6156 if (p->core_occupation > dst->idle->core_occupation) 6157 goto next; 6158 /* 6159 * sched_core_find() and sched_core_next() will ensure 6160 * that task @p is not throttled now, we also need to 6161 * check whether the runqueue of the destination CPU is 6162 * being throttled. 6163 */ 6164 if (sched_task_is_throttled(p, this)) 6165 goto next; 6166 6167 deactivate_task(src, p, 0); 6168 set_task_cpu(p, this); 6169 activate_task(dst, p, 0); 6170 6171 resched_curr(dst); 6172 6173 success = true; 6174 break; 6175 6176 next: 6177 p = sched_core_next(p, cookie); 6178 } while (p); 6179 6180 return success; 6181 } 6182 6183 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6184 { 6185 int i; 6186 6187 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6188 if (i == cpu) 6189 continue; 6190 6191 if (need_resched()) 6192 break; 6193 6194 if (try_steal_cookie(cpu, i)) 6195 return true; 6196 } 6197 6198 return false; 6199 } 6200 6201 static void sched_core_balance(struct rq *rq) 6202 { 6203 struct sched_domain *sd; 6204 int cpu = cpu_of(rq); 6205 6206 guard(preempt)(); 6207 guard(rcu)(); 6208 6209 raw_spin_rq_unlock_irq(rq); 6210 for_each_domain(cpu, sd) { 6211 if (need_resched()) 6212 break; 6213 6214 if (steal_cookie_task(cpu, sd)) 6215 break; 6216 } 6217 raw_spin_rq_lock_irq(rq); 6218 } 6219 6220 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6221 6222 static void queue_core_balance(struct rq *rq) 6223 { 6224 if (!sched_core_enabled(rq)) 6225 return; 6226 6227 if (!rq->core->core_cookie) 6228 return; 6229 6230 if (!rq->nr_running) /* not forced idle */ 6231 return; 6232 6233 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6234 } 6235 6236 DEFINE_LOCK_GUARD_1(core_lock, int, 6237 sched_core_lock(*_T->lock, &_T->flags), 6238 sched_core_unlock(*_T->lock, &_T->flags), 6239 unsigned long flags) 6240 6241 static void sched_core_cpu_starting(unsigned int cpu) 6242 { 6243 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6244 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6245 int t; 6246 6247 guard(core_lock)(&cpu); 6248 6249 WARN_ON_ONCE(rq->core != rq); 6250 6251 /* if we're the first, we'll be our own leader */ 6252 if (cpumask_weight(smt_mask) == 1) 6253 return; 6254 6255 /* find the leader */ 6256 for_each_cpu(t, smt_mask) { 6257 if (t == cpu) 6258 continue; 6259 rq = cpu_rq(t); 6260 if (rq->core == rq) { 6261 core_rq = rq; 6262 break; 6263 } 6264 } 6265 6266 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6267 return; 6268 6269 /* install and validate core_rq */ 6270 for_each_cpu(t, smt_mask) { 6271 rq = cpu_rq(t); 6272 6273 if (t == cpu) 6274 rq->core = core_rq; 6275 6276 WARN_ON_ONCE(rq->core != core_rq); 6277 } 6278 } 6279 6280 static void sched_core_cpu_deactivate(unsigned int cpu) 6281 { 6282 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6283 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6284 int t; 6285 6286 guard(core_lock)(&cpu); 6287 6288 /* if we're the last man standing, nothing to do */ 6289 if (cpumask_weight(smt_mask) == 1) { 6290 WARN_ON_ONCE(rq->core != rq); 6291 return; 6292 } 6293 6294 /* if we're not the leader, nothing to do */ 6295 if (rq->core != rq) 6296 return; 6297 6298 /* find a new leader */ 6299 for_each_cpu(t, smt_mask) { 6300 if (t == cpu) 6301 continue; 6302 core_rq = cpu_rq(t); 6303 break; 6304 } 6305 6306 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6307 return; 6308 6309 /* copy the shared state to the new leader */ 6310 core_rq->core_task_seq = rq->core_task_seq; 6311 core_rq->core_pick_seq = rq->core_pick_seq; 6312 core_rq->core_cookie = rq->core_cookie; 6313 core_rq->core_forceidle_count = rq->core_forceidle_count; 6314 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6315 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6316 6317 /* 6318 * Accounting edge for forced idle is handled in pick_next_task(). 6319 * Don't need another one here, since the hotplug thread shouldn't 6320 * have a cookie. 6321 */ 6322 core_rq->core_forceidle_start = 0; 6323 6324 /* install new leader */ 6325 for_each_cpu(t, smt_mask) { 6326 rq = cpu_rq(t); 6327 rq->core = core_rq; 6328 } 6329 } 6330 6331 static inline void sched_core_cpu_dying(unsigned int cpu) 6332 { 6333 struct rq *rq = cpu_rq(cpu); 6334 6335 if (rq->core != rq) 6336 rq->core = rq; 6337 } 6338 6339 #else /* !CONFIG_SCHED_CORE */ 6340 6341 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6342 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6343 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6344 6345 static struct task_struct * 6346 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6347 { 6348 return __pick_next_task(rq, prev, rf); 6349 } 6350 6351 #endif /* CONFIG_SCHED_CORE */ 6352 6353 /* 6354 * Constants for the sched_mode argument of __schedule(). 6355 * 6356 * The mode argument allows RT enabled kernels to differentiate a 6357 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6358 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6359 * optimize the AND operation out and just check for zero. 6360 */ 6361 #define SM_NONE 0x0 6362 #define SM_PREEMPT 0x1 6363 #define SM_RTLOCK_WAIT 0x2 6364 6365 #ifndef CONFIG_PREEMPT_RT 6366 # define SM_MASK_PREEMPT (~0U) 6367 #else 6368 # define SM_MASK_PREEMPT SM_PREEMPT 6369 #endif 6370 6371 /* 6372 * __schedule() is the main scheduler function. 6373 * 6374 * The main means of driving the scheduler and thus entering this function are: 6375 * 6376 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6377 * 6378 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6379 * paths. For example, see arch/x86/entry_64.S. 6380 * 6381 * To drive preemption between tasks, the scheduler sets the flag in timer 6382 * interrupt handler sched_tick(). 6383 * 6384 * 3. Wakeups don't really cause entry into schedule(). They add a 6385 * task to the run-queue and that's it. 6386 * 6387 * Now, if the new task added to the run-queue preempts the current 6388 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6389 * called on the nearest possible occasion: 6390 * 6391 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6392 * 6393 * - in syscall or exception context, at the next outmost 6394 * preempt_enable(). (this might be as soon as the wake_up()'s 6395 * spin_unlock()!) 6396 * 6397 * - in IRQ context, return from interrupt-handler to 6398 * preemptible context 6399 * 6400 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6401 * then at the next: 6402 * 6403 * - cond_resched() call 6404 * - explicit schedule() call 6405 * - return from syscall or exception to user-space 6406 * - return from interrupt-handler to user-space 6407 * 6408 * WARNING: must be called with preemption disabled! 6409 */ 6410 static void __sched notrace __schedule(unsigned int sched_mode) 6411 { 6412 struct task_struct *prev, *next; 6413 unsigned long *switch_count; 6414 unsigned long prev_state; 6415 struct rq_flags rf; 6416 struct rq *rq; 6417 int cpu; 6418 6419 cpu = smp_processor_id(); 6420 rq = cpu_rq(cpu); 6421 prev = rq->curr; 6422 6423 schedule_debug(prev, !!sched_mode); 6424 6425 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6426 hrtick_clear(rq); 6427 6428 local_irq_disable(); 6429 rcu_note_context_switch(!!sched_mode); 6430 6431 /* 6432 * Make sure that signal_pending_state()->signal_pending() below 6433 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6434 * done by the caller to avoid the race with signal_wake_up(): 6435 * 6436 * __set_current_state(@state) signal_wake_up() 6437 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6438 * wake_up_state(p, state) 6439 * LOCK rq->lock LOCK p->pi_state 6440 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6441 * if (signal_pending_state()) if (p->state & @state) 6442 * 6443 * Also, the membarrier system call requires a full memory barrier 6444 * after coming from user-space, before storing to rq->curr; this 6445 * barrier matches a full barrier in the proximity of the membarrier 6446 * system call exit. 6447 */ 6448 rq_lock(rq, &rf); 6449 smp_mb__after_spinlock(); 6450 6451 /* Promote REQ to ACT */ 6452 rq->clock_update_flags <<= 1; 6453 update_rq_clock(rq); 6454 rq->clock_update_flags = RQCF_UPDATED; 6455 6456 switch_count = &prev->nivcsw; 6457 6458 /* 6459 * We must load prev->state once (task_struct::state is volatile), such 6460 * that we form a control dependency vs deactivate_task() below. 6461 */ 6462 prev_state = READ_ONCE(prev->__state); 6463 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6464 if (signal_pending_state(prev_state, prev)) { 6465 WRITE_ONCE(prev->__state, TASK_RUNNING); 6466 } else { 6467 prev->sched_contributes_to_load = 6468 (prev_state & TASK_UNINTERRUPTIBLE) && 6469 !(prev_state & TASK_NOLOAD) && 6470 !(prev_state & TASK_FROZEN); 6471 6472 if (prev->sched_contributes_to_load) 6473 rq->nr_uninterruptible++; 6474 6475 /* 6476 * __schedule() ttwu() 6477 * prev_state = prev->state; if (p->on_rq && ...) 6478 * if (prev_state) goto out; 6479 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6480 * p->state = TASK_WAKING 6481 * 6482 * Where __schedule() and ttwu() have matching control dependencies. 6483 * 6484 * After this, schedule() must not care about p->state any more. 6485 */ 6486 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6487 6488 if (prev->in_iowait) { 6489 atomic_inc(&rq->nr_iowait); 6490 delayacct_blkio_start(); 6491 } 6492 } 6493 switch_count = &prev->nvcsw; 6494 } 6495 6496 next = pick_next_task(rq, prev, &rf); 6497 clear_tsk_need_resched(prev); 6498 clear_preempt_need_resched(); 6499 #ifdef CONFIG_SCHED_DEBUG 6500 rq->last_seen_need_resched_ns = 0; 6501 #endif 6502 6503 if (likely(prev != next)) { 6504 rq->nr_switches++; 6505 /* 6506 * RCU users of rcu_dereference(rq->curr) may not see 6507 * changes to task_struct made by pick_next_task(). 6508 */ 6509 RCU_INIT_POINTER(rq->curr, next); 6510 /* 6511 * The membarrier system call requires each architecture 6512 * to have a full memory barrier after updating 6513 * rq->curr, before returning to user-space. 6514 * 6515 * Here are the schemes providing that barrier on the 6516 * various architectures: 6517 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, 6518 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() 6519 * on PowerPC and on RISC-V. 6520 * - finish_lock_switch() for weakly-ordered 6521 * architectures where spin_unlock is a full barrier, 6522 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6523 * is a RELEASE barrier), 6524 * 6525 * The barrier matches a full barrier in the proximity of 6526 * the membarrier system call entry. 6527 * 6528 * On RISC-V, this barrier pairing is also needed for the 6529 * SYNC_CORE command when switching between processes, cf. 6530 * the inline comments in membarrier_arch_switch_mm(). 6531 */ 6532 ++*switch_count; 6533 6534 migrate_disable_switch(rq, prev); 6535 psi_account_irqtime(rq, prev, next); 6536 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6537 6538 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); 6539 6540 /* Also unlocks the rq: */ 6541 rq = context_switch(rq, prev, next, &rf); 6542 } else { 6543 rq_unpin_lock(rq, &rf); 6544 __balance_callbacks(rq); 6545 raw_spin_rq_unlock_irq(rq); 6546 } 6547 } 6548 6549 void __noreturn do_task_dead(void) 6550 { 6551 /* Causes final put_task_struct in finish_task_switch(): */ 6552 set_special_state(TASK_DEAD); 6553 6554 /* Tell freezer to ignore us: */ 6555 current->flags |= PF_NOFREEZE; 6556 6557 __schedule(SM_NONE); 6558 BUG(); 6559 6560 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6561 for (;;) 6562 cpu_relax(); 6563 } 6564 6565 static inline void sched_submit_work(struct task_struct *tsk) 6566 { 6567 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6568 unsigned int task_flags; 6569 6570 /* 6571 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6572 * will use a blocking primitive -- which would lead to recursion. 6573 */ 6574 lock_map_acquire_try(&sched_map); 6575 6576 task_flags = tsk->flags; 6577 /* 6578 * If a worker goes to sleep, notify and ask workqueue whether it 6579 * wants to wake up a task to maintain concurrency. 6580 */ 6581 if (task_flags & PF_WQ_WORKER) 6582 wq_worker_sleeping(tsk); 6583 else if (task_flags & PF_IO_WORKER) 6584 io_wq_worker_sleeping(tsk); 6585 6586 /* 6587 * spinlock and rwlock must not flush block requests. This will 6588 * deadlock if the callback attempts to acquire a lock which is 6589 * already acquired. 6590 */ 6591 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6592 6593 /* 6594 * If we are going to sleep and we have plugged IO queued, 6595 * make sure to submit it to avoid deadlocks. 6596 */ 6597 blk_flush_plug(tsk->plug, true); 6598 6599 lock_map_release(&sched_map); 6600 } 6601 6602 static void sched_update_worker(struct task_struct *tsk) 6603 { 6604 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { 6605 if (tsk->flags & PF_BLOCK_TS) 6606 blk_plug_invalidate_ts(tsk); 6607 if (tsk->flags & PF_WQ_WORKER) 6608 wq_worker_running(tsk); 6609 else if (tsk->flags & PF_IO_WORKER) 6610 io_wq_worker_running(tsk); 6611 } 6612 } 6613 6614 static __always_inline void __schedule_loop(unsigned int sched_mode) 6615 { 6616 do { 6617 preempt_disable(); 6618 __schedule(sched_mode); 6619 sched_preempt_enable_no_resched(); 6620 } while (need_resched()); 6621 } 6622 6623 asmlinkage __visible void __sched schedule(void) 6624 { 6625 struct task_struct *tsk = current; 6626 6627 #ifdef CONFIG_RT_MUTEXES 6628 lockdep_assert(!tsk->sched_rt_mutex); 6629 #endif 6630 6631 if (!task_is_running(tsk)) 6632 sched_submit_work(tsk); 6633 __schedule_loop(SM_NONE); 6634 sched_update_worker(tsk); 6635 } 6636 EXPORT_SYMBOL(schedule); 6637 6638 /* 6639 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6640 * state (have scheduled out non-voluntarily) by making sure that all 6641 * tasks have either left the run queue or have gone into user space. 6642 * As idle tasks do not do either, they must not ever be preempted 6643 * (schedule out non-voluntarily). 6644 * 6645 * schedule_idle() is similar to schedule_preempt_disable() except that it 6646 * never enables preemption because it does not call sched_submit_work(). 6647 */ 6648 void __sched schedule_idle(void) 6649 { 6650 /* 6651 * As this skips calling sched_submit_work(), which the idle task does 6652 * regardless because that function is a NOP when the task is in a 6653 * TASK_RUNNING state, make sure this isn't used someplace that the 6654 * current task can be in any other state. Note, idle is always in the 6655 * TASK_RUNNING state. 6656 */ 6657 WARN_ON_ONCE(current->__state); 6658 do { 6659 __schedule(SM_NONE); 6660 } while (need_resched()); 6661 } 6662 6663 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6664 asmlinkage __visible void __sched schedule_user(void) 6665 { 6666 /* 6667 * If we come here after a random call to set_need_resched(), 6668 * or we have been woken up remotely but the IPI has not yet arrived, 6669 * we haven't yet exited the RCU idle mode. Do it here manually until 6670 * we find a better solution. 6671 * 6672 * NB: There are buggy callers of this function. Ideally we 6673 * should warn if prev_state != CONTEXT_USER, but that will trigger 6674 * too frequently to make sense yet. 6675 */ 6676 enum ctx_state prev_state = exception_enter(); 6677 schedule(); 6678 exception_exit(prev_state); 6679 } 6680 #endif 6681 6682 /** 6683 * schedule_preempt_disabled - called with preemption disabled 6684 * 6685 * Returns with preemption disabled. Note: preempt_count must be 1 6686 */ 6687 void __sched schedule_preempt_disabled(void) 6688 { 6689 sched_preempt_enable_no_resched(); 6690 schedule(); 6691 preempt_disable(); 6692 } 6693 6694 #ifdef CONFIG_PREEMPT_RT 6695 void __sched notrace schedule_rtlock(void) 6696 { 6697 __schedule_loop(SM_RTLOCK_WAIT); 6698 } 6699 NOKPROBE_SYMBOL(schedule_rtlock); 6700 #endif 6701 6702 static void __sched notrace preempt_schedule_common(void) 6703 { 6704 do { 6705 /* 6706 * Because the function tracer can trace preempt_count_sub() 6707 * and it also uses preempt_enable/disable_notrace(), if 6708 * NEED_RESCHED is set, the preempt_enable_notrace() called 6709 * by the function tracer will call this function again and 6710 * cause infinite recursion. 6711 * 6712 * Preemption must be disabled here before the function 6713 * tracer can trace. Break up preempt_disable() into two 6714 * calls. One to disable preemption without fear of being 6715 * traced. The other to still record the preemption latency, 6716 * which can also be traced by the function tracer. 6717 */ 6718 preempt_disable_notrace(); 6719 preempt_latency_start(1); 6720 __schedule(SM_PREEMPT); 6721 preempt_latency_stop(1); 6722 preempt_enable_no_resched_notrace(); 6723 6724 /* 6725 * Check again in case we missed a preemption opportunity 6726 * between schedule and now. 6727 */ 6728 } while (need_resched()); 6729 } 6730 6731 #ifdef CONFIG_PREEMPTION 6732 /* 6733 * This is the entry point to schedule() from in-kernel preemption 6734 * off of preempt_enable. 6735 */ 6736 asmlinkage __visible void __sched notrace preempt_schedule(void) 6737 { 6738 /* 6739 * If there is a non-zero preempt_count or interrupts are disabled, 6740 * we do not want to preempt the current task. Just return.. 6741 */ 6742 if (likely(!preemptible())) 6743 return; 6744 preempt_schedule_common(); 6745 } 6746 NOKPROBE_SYMBOL(preempt_schedule); 6747 EXPORT_SYMBOL(preempt_schedule); 6748 6749 #ifdef CONFIG_PREEMPT_DYNAMIC 6750 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6751 #ifndef preempt_schedule_dynamic_enabled 6752 #define preempt_schedule_dynamic_enabled preempt_schedule 6753 #define preempt_schedule_dynamic_disabled NULL 6754 #endif 6755 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6756 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6757 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6758 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6759 void __sched notrace dynamic_preempt_schedule(void) 6760 { 6761 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6762 return; 6763 preempt_schedule(); 6764 } 6765 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6766 EXPORT_SYMBOL(dynamic_preempt_schedule); 6767 #endif 6768 #endif 6769 6770 /** 6771 * preempt_schedule_notrace - preempt_schedule called by tracing 6772 * 6773 * The tracing infrastructure uses preempt_enable_notrace to prevent 6774 * recursion and tracing preempt enabling caused by the tracing 6775 * infrastructure itself. But as tracing can happen in areas coming 6776 * from userspace or just about to enter userspace, a preempt enable 6777 * can occur before user_exit() is called. This will cause the scheduler 6778 * to be called when the system is still in usermode. 6779 * 6780 * To prevent this, the preempt_enable_notrace will use this function 6781 * instead of preempt_schedule() to exit user context if needed before 6782 * calling the scheduler. 6783 */ 6784 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6785 { 6786 enum ctx_state prev_ctx; 6787 6788 if (likely(!preemptible())) 6789 return; 6790 6791 do { 6792 /* 6793 * Because the function tracer can trace preempt_count_sub() 6794 * and it also uses preempt_enable/disable_notrace(), if 6795 * NEED_RESCHED is set, the preempt_enable_notrace() called 6796 * by the function tracer will call this function again and 6797 * cause infinite recursion. 6798 * 6799 * Preemption must be disabled here before the function 6800 * tracer can trace. Break up preempt_disable() into two 6801 * calls. One to disable preemption without fear of being 6802 * traced. The other to still record the preemption latency, 6803 * which can also be traced by the function tracer. 6804 */ 6805 preempt_disable_notrace(); 6806 preempt_latency_start(1); 6807 /* 6808 * Needs preempt disabled in case user_exit() is traced 6809 * and the tracer calls preempt_enable_notrace() causing 6810 * an infinite recursion. 6811 */ 6812 prev_ctx = exception_enter(); 6813 __schedule(SM_PREEMPT); 6814 exception_exit(prev_ctx); 6815 6816 preempt_latency_stop(1); 6817 preempt_enable_no_resched_notrace(); 6818 } while (need_resched()); 6819 } 6820 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6821 6822 #ifdef CONFIG_PREEMPT_DYNAMIC 6823 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6824 #ifndef preempt_schedule_notrace_dynamic_enabled 6825 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6826 #define preempt_schedule_notrace_dynamic_disabled NULL 6827 #endif 6828 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6829 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6830 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6831 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6832 void __sched notrace dynamic_preempt_schedule_notrace(void) 6833 { 6834 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6835 return; 6836 preempt_schedule_notrace(); 6837 } 6838 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6839 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6840 #endif 6841 #endif 6842 6843 #endif /* CONFIG_PREEMPTION */ 6844 6845 /* 6846 * This is the entry point to schedule() from kernel preemption 6847 * off of IRQ context. 6848 * Note, that this is called and return with IRQs disabled. This will 6849 * protect us against recursive calling from IRQ contexts. 6850 */ 6851 asmlinkage __visible void __sched preempt_schedule_irq(void) 6852 { 6853 enum ctx_state prev_state; 6854 6855 /* Catch callers which need to be fixed */ 6856 BUG_ON(preempt_count() || !irqs_disabled()); 6857 6858 prev_state = exception_enter(); 6859 6860 do { 6861 preempt_disable(); 6862 local_irq_enable(); 6863 __schedule(SM_PREEMPT); 6864 local_irq_disable(); 6865 sched_preempt_enable_no_resched(); 6866 } while (need_resched()); 6867 6868 exception_exit(prev_state); 6869 } 6870 6871 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6872 void *key) 6873 { 6874 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 6875 return try_to_wake_up(curr->private, mode, wake_flags); 6876 } 6877 EXPORT_SYMBOL(default_wake_function); 6878 6879 void __setscheduler_prio(struct task_struct *p, int prio) 6880 { 6881 if (dl_prio(prio)) 6882 p->sched_class = &dl_sched_class; 6883 else if (rt_prio(prio)) 6884 p->sched_class = &rt_sched_class; 6885 else 6886 p->sched_class = &fair_sched_class; 6887 6888 p->prio = prio; 6889 } 6890 6891 #ifdef CONFIG_RT_MUTEXES 6892 6893 /* 6894 * Would be more useful with typeof()/auto_type but they don't mix with 6895 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 6896 * name such that if someone were to implement this function we get to compare 6897 * notes. 6898 */ 6899 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 6900 6901 void rt_mutex_pre_schedule(void) 6902 { 6903 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 6904 sched_submit_work(current); 6905 } 6906 6907 void rt_mutex_schedule(void) 6908 { 6909 lockdep_assert(current->sched_rt_mutex); 6910 __schedule_loop(SM_NONE); 6911 } 6912 6913 void rt_mutex_post_schedule(void) 6914 { 6915 sched_update_worker(current); 6916 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 6917 } 6918 6919 /* 6920 * rt_mutex_setprio - set the current priority of a task 6921 * @p: task to boost 6922 * @pi_task: donor task 6923 * 6924 * This function changes the 'effective' priority of a task. It does 6925 * not touch ->normal_prio like __setscheduler(). 6926 * 6927 * Used by the rt_mutex code to implement priority inheritance 6928 * logic. Call site only calls if the priority of the task changed. 6929 */ 6930 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 6931 { 6932 int prio, oldprio, queued, running, queue_flag = 6933 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6934 const struct sched_class *prev_class; 6935 struct rq_flags rf; 6936 struct rq *rq; 6937 6938 /* XXX used to be waiter->prio, not waiter->task->prio */ 6939 prio = __rt_effective_prio(pi_task, p->normal_prio); 6940 6941 /* 6942 * If nothing changed; bail early. 6943 */ 6944 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 6945 return; 6946 6947 rq = __task_rq_lock(p, &rf); 6948 update_rq_clock(rq); 6949 /* 6950 * Set under pi_lock && rq->lock, such that the value can be used under 6951 * either lock. 6952 * 6953 * Note that there is loads of tricky to make this pointer cache work 6954 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 6955 * ensure a task is de-boosted (pi_task is set to NULL) before the 6956 * task is allowed to run again (and can exit). This ensures the pointer 6957 * points to a blocked task -- which guarantees the task is present. 6958 */ 6959 p->pi_top_task = pi_task; 6960 6961 /* 6962 * For FIFO/RR we only need to set prio, if that matches we're done. 6963 */ 6964 if (prio == p->prio && !dl_prio(prio)) 6965 goto out_unlock; 6966 6967 /* 6968 * Idle task boosting is a no-no in general. There is one 6969 * exception, when PREEMPT_RT and NOHZ is active: 6970 * 6971 * The idle task calls get_next_timer_interrupt() and holds 6972 * the timer wheel base->lock on the CPU and another CPU wants 6973 * to access the timer (probably to cancel it). We can safely 6974 * ignore the boosting request, as the idle CPU runs this code 6975 * with interrupts disabled and will complete the lock 6976 * protected section without being interrupted. So there is no 6977 * real need to boost. 6978 */ 6979 if (unlikely(p == rq->idle)) { 6980 WARN_ON(p != rq->curr); 6981 WARN_ON(p->pi_blocked_on); 6982 goto out_unlock; 6983 } 6984 6985 trace_sched_pi_setprio(p, pi_task); 6986 oldprio = p->prio; 6987 6988 if (oldprio == prio) 6989 queue_flag &= ~DEQUEUE_MOVE; 6990 6991 prev_class = p->sched_class; 6992 queued = task_on_rq_queued(p); 6993 running = task_current(rq, p); 6994 if (queued) 6995 dequeue_task(rq, p, queue_flag); 6996 if (running) 6997 put_prev_task(rq, p); 6998 6999 /* 7000 * Boosting condition are: 7001 * 1. -rt task is running and holds mutex A 7002 * --> -dl task blocks on mutex A 7003 * 7004 * 2. -dl task is running and holds mutex A 7005 * --> -dl task blocks on mutex A and could preempt the 7006 * running task 7007 */ 7008 if (dl_prio(prio)) { 7009 if (!dl_prio(p->normal_prio) || 7010 (pi_task && dl_prio(pi_task->prio) && 7011 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7012 p->dl.pi_se = pi_task->dl.pi_se; 7013 queue_flag |= ENQUEUE_REPLENISH; 7014 } else { 7015 p->dl.pi_se = &p->dl; 7016 } 7017 } else if (rt_prio(prio)) { 7018 if (dl_prio(oldprio)) 7019 p->dl.pi_se = &p->dl; 7020 if (oldprio < prio) 7021 queue_flag |= ENQUEUE_HEAD; 7022 } else { 7023 if (dl_prio(oldprio)) 7024 p->dl.pi_se = &p->dl; 7025 if (rt_prio(oldprio)) 7026 p->rt.timeout = 0; 7027 } 7028 7029 __setscheduler_prio(p, prio); 7030 7031 if (queued) 7032 enqueue_task(rq, p, queue_flag); 7033 if (running) 7034 set_next_task(rq, p); 7035 7036 check_class_changed(rq, p, prev_class, oldprio); 7037 out_unlock: 7038 /* Avoid rq from going away on us: */ 7039 preempt_disable(); 7040 7041 rq_unpin_lock(rq, &rf); 7042 __balance_callbacks(rq); 7043 raw_spin_rq_unlock(rq); 7044 7045 preempt_enable(); 7046 } 7047 #endif 7048 7049 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7050 int __sched __cond_resched(void) 7051 { 7052 if (should_resched(0)) { 7053 preempt_schedule_common(); 7054 return 1; 7055 } 7056 /* 7057 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 7058 * whether the current CPU is in an RCU read-side critical section, 7059 * so the tick can report quiescent states even for CPUs looping 7060 * in kernel context. In contrast, in non-preemptible kernels, 7061 * RCU readers leave no in-memory hints, which means that CPU-bound 7062 * processes executing in kernel context might never report an 7063 * RCU quiescent state. Therefore, the following code causes 7064 * cond_resched() to report a quiescent state, but only when RCU 7065 * is in urgent need of one. 7066 */ 7067 #ifndef CONFIG_PREEMPT_RCU 7068 rcu_all_qs(); 7069 #endif 7070 return 0; 7071 } 7072 EXPORT_SYMBOL(__cond_resched); 7073 #endif 7074 7075 #ifdef CONFIG_PREEMPT_DYNAMIC 7076 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7077 #define cond_resched_dynamic_enabled __cond_resched 7078 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 7079 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7080 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7081 7082 #define might_resched_dynamic_enabled __cond_resched 7083 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 7084 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7085 EXPORT_STATIC_CALL_TRAMP(might_resched); 7086 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7087 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 7088 int __sched dynamic_cond_resched(void) 7089 { 7090 klp_sched_try_switch(); 7091 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 7092 return 0; 7093 return __cond_resched(); 7094 } 7095 EXPORT_SYMBOL(dynamic_cond_resched); 7096 7097 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 7098 int __sched dynamic_might_resched(void) 7099 { 7100 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 7101 return 0; 7102 return __cond_resched(); 7103 } 7104 EXPORT_SYMBOL(dynamic_might_resched); 7105 #endif 7106 #endif 7107 7108 /* 7109 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7110 * call schedule, and on return reacquire the lock. 7111 * 7112 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7113 * operations here to prevent schedule() from being called twice (once via 7114 * spin_unlock(), once by hand). 7115 */ 7116 int __cond_resched_lock(spinlock_t *lock) 7117 { 7118 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7119 int ret = 0; 7120 7121 lockdep_assert_held(lock); 7122 7123 if (spin_needbreak(lock) || resched) { 7124 spin_unlock(lock); 7125 if (!_cond_resched()) 7126 cpu_relax(); 7127 ret = 1; 7128 spin_lock(lock); 7129 } 7130 return ret; 7131 } 7132 EXPORT_SYMBOL(__cond_resched_lock); 7133 7134 int __cond_resched_rwlock_read(rwlock_t *lock) 7135 { 7136 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7137 int ret = 0; 7138 7139 lockdep_assert_held_read(lock); 7140 7141 if (rwlock_needbreak(lock) || resched) { 7142 read_unlock(lock); 7143 if (!_cond_resched()) 7144 cpu_relax(); 7145 ret = 1; 7146 read_lock(lock); 7147 } 7148 return ret; 7149 } 7150 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7151 7152 int __cond_resched_rwlock_write(rwlock_t *lock) 7153 { 7154 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7155 int ret = 0; 7156 7157 lockdep_assert_held_write(lock); 7158 7159 if (rwlock_needbreak(lock) || resched) { 7160 write_unlock(lock); 7161 if (!_cond_resched()) 7162 cpu_relax(); 7163 ret = 1; 7164 write_lock(lock); 7165 } 7166 return ret; 7167 } 7168 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7169 7170 #ifdef CONFIG_PREEMPT_DYNAMIC 7171 7172 #ifdef CONFIG_GENERIC_ENTRY 7173 #include <linux/entry-common.h> 7174 #endif 7175 7176 /* 7177 * SC:cond_resched 7178 * SC:might_resched 7179 * SC:preempt_schedule 7180 * SC:preempt_schedule_notrace 7181 * SC:irqentry_exit_cond_resched 7182 * 7183 * 7184 * NONE: 7185 * cond_resched <- __cond_resched 7186 * might_resched <- RET0 7187 * preempt_schedule <- NOP 7188 * preempt_schedule_notrace <- NOP 7189 * irqentry_exit_cond_resched <- NOP 7190 * 7191 * VOLUNTARY: 7192 * cond_resched <- __cond_resched 7193 * might_resched <- __cond_resched 7194 * preempt_schedule <- NOP 7195 * preempt_schedule_notrace <- NOP 7196 * irqentry_exit_cond_resched <- NOP 7197 * 7198 * FULL: 7199 * cond_resched <- RET0 7200 * might_resched <- RET0 7201 * preempt_schedule <- preempt_schedule 7202 * preempt_schedule_notrace <- preempt_schedule_notrace 7203 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7204 */ 7205 7206 enum { 7207 preempt_dynamic_undefined = -1, 7208 preempt_dynamic_none, 7209 preempt_dynamic_voluntary, 7210 preempt_dynamic_full, 7211 }; 7212 7213 int preempt_dynamic_mode = preempt_dynamic_undefined; 7214 7215 int sched_dynamic_mode(const char *str) 7216 { 7217 if (!strcmp(str, "none")) 7218 return preempt_dynamic_none; 7219 7220 if (!strcmp(str, "voluntary")) 7221 return preempt_dynamic_voluntary; 7222 7223 if (!strcmp(str, "full")) 7224 return preempt_dynamic_full; 7225 7226 return -EINVAL; 7227 } 7228 7229 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7230 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 7231 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 7232 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7233 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) 7234 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) 7235 #else 7236 #error "Unsupported PREEMPT_DYNAMIC mechanism" 7237 #endif 7238 7239 static DEFINE_MUTEX(sched_dynamic_mutex); 7240 static bool klp_override; 7241 7242 static void __sched_dynamic_update(int mode) 7243 { 7244 /* 7245 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 7246 * the ZERO state, which is invalid. 7247 */ 7248 if (!klp_override) 7249 preempt_dynamic_enable(cond_resched); 7250 preempt_dynamic_enable(might_resched); 7251 preempt_dynamic_enable(preempt_schedule); 7252 preempt_dynamic_enable(preempt_schedule_notrace); 7253 preempt_dynamic_enable(irqentry_exit_cond_resched); 7254 7255 switch (mode) { 7256 case preempt_dynamic_none: 7257 if (!klp_override) 7258 preempt_dynamic_enable(cond_resched); 7259 preempt_dynamic_disable(might_resched); 7260 preempt_dynamic_disable(preempt_schedule); 7261 preempt_dynamic_disable(preempt_schedule_notrace); 7262 preempt_dynamic_disable(irqentry_exit_cond_resched); 7263 if (mode != preempt_dynamic_mode) 7264 pr_info("Dynamic Preempt: none\n"); 7265 break; 7266 7267 case preempt_dynamic_voluntary: 7268 if (!klp_override) 7269 preempt_dynamic_enable(cond_resched); 7270 preempt_dynamic_enable(might_resched); 7271 preempt_dynamic_disable(preempt_schedule); 7272 preempt_dynamic_disable(preempt_schedule_notrace); 7273 preempt_dynamic_disable(irqentry_exit_cond_resched); 7274 if (mode != preempt_dynamic_mode) 7275 pr_info("Dynamic Preempt: voluntary\n"); 7276 break; 7277 7278 case preempt_dynamic_full: 7279 if (!klp_override) 7280 preempt_dynamic_disable(cond_resched); 7281 preempt_dynamic_disable(might_resched); 7282 preempt_dynamic_enable(preempt_schedule); 7283 preempt_dynamic_enable(preempt_schedule_notrace); 7284 preempt_dynamic_enable(irqentry_exit_cond_resched); 7285 if (mode != preempt_dynamic_mode) 7286 pr_info("Dynamic Preempt: full\n"); 7287 break; 7288 } 7289 7290 preempt_dynamic_mode = mode; 7291 } 7292 7293 void sched_dynamic_update(int mode) 7294 { 7295 mutex_lock(&sched_dynamic_mutex); 7296 __sched_dynamic_update(mode); 7297 mutex_unlock(&sched_dynamic_mutex); 7298 } 7299 7300 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7301 7302 static int klp_cond_resched(void) 7303 { 7304 __klp_sched_try_switch(); 7305 return __cond_resched(); 7306 } 7307 7308 void sched_dynamic_klp_enable(void) 7309 { 7310 mutex_lock(&sched_dynamic_mutex); 7311 7312 klp_override = true; 7313 static_call_update(cond_resched, klp_cond_resched); 7314 7315 mutex_unlock(&sched_dynamic_mutex); 7316 } 7317 7318 void sched_dynamic_klp_disable(void) 7319 { 7320 mutex_lock(&sched_dynamic_mutex); 7321 7322 klp_override = false; 7323 __sched_dynamic_update(preempt_dynamic_mode); 7324 7325 mutex_unlock(&sched_dynamic_mutex); 7326 } 7327 7328 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ 7329 7330 static int __init setup_preempt_mode(char *str) 7331 { 7332 int mode = sched_dynamic_mode(str); 7333 if (mode < 0) { 7334 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 7335 return 0; 7336 } 7337 7338 sched_dynamic_update(mode); 7339 return 1; 7340 } 7341 __setup("preempt=", setup_preempt_mode); 7342 7343 static void __init preempt_dynamic_init(void) 7344 { 7345 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 7346 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 7347 sched_dynamic_update(preempt_dynamic_none); 7348 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 7349 sched_dynamic_update(preempt_dynamic_voluntary); 7350 } else { 7351 /* Default static call setting, nothing to do */ 7352 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 7353 preempt_dynamic_mode = preempt_dynamic_full; 7354 pr_info("Dynamic Preempt: full\n"); 7355 } 7356 } 7357 } 7358 7359 #define PREEMPT_MODEL_ACCESSOR(mode) \ 7360 bool preempt_model_##mode(void) \ 7361 { \ 7362 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 7363 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 7364 } \ 7365 EXPORT_SYMBOL_GPL(preempt_model_##mode) 7366 7367 PREEMPT_MODEL_ACCESSOR(none); 7368 PREEMPT_MODEL_ACCESSOR(voluntary); 7369 PREEMPT_MODEL_ACCESSOR(full); 7370 7371 #else /* !CONFIG_PREEMPT_DYNAMIC: */ 7372 7373 static inline void preempt_dynamic_init(void) { } 7374 7375 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7376 7377 int io_schedule_prepare(void) 7378 { 7379 int old_iowait = current->in_iowait; 7380 7381 current->in_iowait = 1; 7382 blk_flush_plug(current->plug, true); 7383 return old_iowait; 7384 } 7385 7386 void io_schedule_finish(int token) 7387 { 7388 current->in_iowait = token; 7389 } 7390 7391 /* 7392 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7393 * that process accounting knows that this is a task in IO wait state. 7394 */ 7395 long __sched io_schedule_timeout(long timeout) 7396 { 7397 int token; 7398 long ret; 7399 7400 token = io_schedule_prepare(); 7401 ret = schedule_timeout(timeout); 7402 io_schedule_finish(token); 7403 7404 return ret; 7405 } 7406 EXPORT_SYMBOL(io_schedule_timeout); 7407 7408 void __sched io_schedule(void) 7409 { 7410 int token; 7411 7412 token = io_schedule_prepare(); 7413 schedule(); 7414 io_schedule_finish(token); 7415 } 7416 EXPORT_SYMBOL(io_schedule); 7417 7418 void sched_show_task(struct task_struct *p) 7419 { 7420 unsigned long free = 0; 7421 int ppid; 7422 7423 if (!try_get_task_stack(p)) 7424 return; 7425 7426 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7427 7428 if (task_is_running(p)) 7429 pr_cont(" running task "); 7430 #ifdef CONFIG_DEBUG_STACK_USAGE 7431 free = stack_not_used(p); 7432 #endif 7433 ppid = 0; 7434 rcu_read_lock(); 7435 if (pid_alive(p)) 7436 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7437 rcu_read_unlock(); 7438 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n", 7439 free, task_pid_nr(p), task_tgid_nr(p), 7440 ppid, read_task_thread_flags(p)); 7441 7442 print_worker_info(KERN_INFO, p); 7443 print_stop_info(KERN_INFO, p); 7444 show_stack(p, NULL, KERN_INFO); 7445 put_task_stack(p); 7446 } 7447 EXPORT_SYMBOL_GPL(sched_show_task); 7448 7449 static inline bool 7450 state_filter_match(unsigned long state_filter, struct task_struct *p) 7451 { 7452 unsigned int state = READ_ONCE(p->__state); 7453 7454 /* no filter, everything matches */ 7455 if (!state_filter) 7456 return true; 7457 7458 /* filter, but doesn't match */ 7459 if (!(state & state_filter)) 7460 return false; 7461 7462 /* 7463 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7464 * TASK_KILLABLE). 7465 */ 7466 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 7467 return false; 7468 7469 return true; 7470 } 7471 7472 7473 void show_state_filter(unsigned int state_filter) 7474 { 7475 struct task_struct *g, *p; 7476 7477 rcu_read_lock(); 7478 for_each_process_thread(g, p) { 7479 /* 7480 * reset the NMI-timeout, listing all files on a slow 7481 * console might take a lot of time: 7482 * Also, reset softlockup watchdogs on all CPUs, because 7483 * another CPU might be blocked waiting for us to process 7484 * an IPI. 7485 */ 7486 touch_nmi_watchdog(); 7487 touch_all_softlockup_watchdogs(); 7488 if (state_filter_match(state_filter, p)) 7489 sched_show_task(p); 7490 } 7491 7492 #ifdef CONFIG_SCHED_DEBUG 7493 if (!state_filter) 7494 sysrq_sched_debug_show(); 7495 #endif 7496 rcu_read_unlock(); 7497 /* 7498 * Only show locks if all tasks are dumped: 7499 */ 7500 if (!state_filter) 7501 debug_show_all_locks(); 7502 } 7503 7504 /** 7505 * init_idle - set up an idle thread for a given CPU 7506 * @idle: task in question 7507 * @cpu: CPU the idle task belongs to 7508 * 7509 * NOTE: this function does not set the idle thread's NEED_RESCHED 7510 * flag, to make booting more robust. 7511 */ 7512 void __init init_idle(struct task_struct *idle, int cpu) 7513 { 7514 #ifdef CONFIG_SMP 7515 struct affinity_context ac = (struct affinity_context) { 7516 .new_mask = cpumask_of(cpu), 7517 .flags = 0, 7518 }; 7519 #endif 7520 struct rq *rq = cpu_rq(cpu); 7521 unsigned long flags; 7522 7523 __sched_fork(0, idle); 7524 7525 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7526 raw_spin_rq_lock(rq); 7527 7528 idle->__state = TASK_RUNNING; 7529 idle->se.exec_start = sched_clock(); 7530 /* 7531 * PF_KTHREAD should already be set at this point; regardless, make it 7532 * look like a proper per-CPU kthread. 7533 */ 7534 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 7535 kthread_set_per_cpu(idle, cpu); 7536 7537 #ifdef CONFIG_SMP 7538 /* 7539 * It's possible that init_idle() gets called multiple times on a task, 7540 * in that case do_set_cpus_allowed() will not do the right thing. 7541 * 7542 * And since this is boot we can forgo the serialization. 7543 */ 7544 set_cpus_allowed_common(idle, &ac); 7545 #endif 7546 /* 7547 * We're having a chicken and egg problem, even though we are 7548 * holding rq->lock, the CPU isn't yet set to this CPU so the 7549 * lockdep check in task_group() will fail. 7550 * 7551 * Similar case to sched_fork(). / Alternatively we could 7552 * use task_rq_lock() here and obtain the other rq->lock. 7553 * 7554 * Silence PROVE_RCU 7555 */ 7556 rcu_read_lock(); 7557 __set_task_cpu(idle, cpu); 7558 rcu_read_unlock(); 7559 7560 rq->idle = idle; 7561 rcu_assign_pointer(rq->curr, idle); 7562 idle->on_rq = TASK_ON_RQ_QUEUED; 7563 #ifdef CONFIG_SMP 7564 idle->on_cpu = 1; 7565 #endif 7566 raw_spin_rq_unlock(rq); 7567 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7568 7569 /* Set the preempt count _outside_ the spinlocks! */ 7570 init_idle_preempt_count(idle, cpu); 7571 7572 /* 7573 * The idle tasks have their own, simple scheduling class: 7574 */ 7575 idle->sched_class = &idle_sched_class; 7576 ftrace_graph_init_idle_task(idle, cpu); 7577 vtime_init_idle(idle, cpu); 7578 #ifdef CONFIG_SMP 7579 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7580 #endif 7581 } 7582 7583 #ifdef CONFIG_SMP 7584 7585 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7586 const struct cpumask *trial) 7587 { 7588 int ret = 1; 7589 7590 if (cpumask_empty(cur)) 7591 return ret; 7592 7593 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7594 7595 return ret; 7596 } 7597 7598 int task_can_attach(struct task_struct *p) 7599 { 7600 int ret = 0; 7601 7602 /* 7603 * Kthreads which disallow setaffinity shouldn't be moved 7604 * to a new cpuset; we don't want to change their CPU 7605 * affinity and isolating such threads by their set of 7606 * allowed nodes is unnecessary. Thus, cpusets are not 7607 * applicable for such threads. This prevents checking for 7608 * success of set_cpus_allowed_ptr() on all attached tasks 7609 * before cpus_mask may be changed. 7610 */ 7611 if (p->flags & PF_NO_SETAFFINITY) 7612 ret = -EINVAL; 7613 7614 return ret; 7615 } 7616 7617 bool sched_smp_initialized __read_mostly; 7618 7619 #ifdef CONFIG_NUMA_BALANCING 7620 /* Migrate current task p to target_cpu */ 7621 int migrate_task_to(struct task_struct *p, int target_cpu) 7622 { 7623 struct migration_arg arg = { p, target_cpu }; 7624 int curr_cpu = task_cpu(p); 7625 7626 if (curr_cpu == target_cpu) 7627 return 0; 7628 7629 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7630 return -EINVAL; 7631 7632 /* TODO: This is not properly updating schedstats */ 7633 7634 trace_sched_move_numa(p, curr_cpu, target_cpu); 7635 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7636 } 7637 7638 /* 7639 * Requeue a task on a given node and accurately track the number of NUMA 7640 * tasks on the runqueues 7641 */ 7642 void sched_setnuma(struct task_struct *p, int nid) 7643 { 7644 bool queued, running; 7645 struct rq_flags rf; 7646 struct rq *rq; 7647 7648 rq = task_rq_lock(p, &rf); 7649 queued = task_on_rq_queued(p); 7650 running = task_current(rq, p); 7651 7652 if (queued) 7653 dequeue_task(rq, p, DEQUEUE_SAVE); 7654 if (running) 7655 put_prev_task(rq, p); 7656 7657 p->numa_preferred_nid = nid; 7658 7659 if (queued) 7660 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7661 if (running) 7662 set_next_task(rq, p); 7663 task_rq_unlock(rq, p, &rf); 7664 } 7665 #endif /* CONFIG_NUMA_BALANCING */ 7666 7667 #ifdef CONFIG_HOTPLUG_CPU 7668 /* 7669 * Ensure that the idle task is using init_mm right before its CPU goes 7670 * offline. 7671 */ 7672 void idle_task_exit(void) 7673 { 7674 struct mm_struct *mm = current->active_mm; 7675 7676 BUG_ON(cpu_online(smp_processor_id())); 7677 BUG_ON(current != this_rq()->idle); 7678 7679 if (mm != &init_mm) { 7680 switch_mm(mm, &init_mm, current); 7681 finish_arch_post_lock_switch(); 7682 } 7683 7684 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 7685 } 7686 7687 static int __balance_push_cpu_stop(void *arg) 7688 { 7689 struct task_struct *p = arg; 7690 struct rq *rq = this_rq(); 7691 struct rq_flags rf; 7692 int cpu; 7693 7694 raw_spin_lock_irq(&p->pi_lock); 7695 rq_lock(rq, &rf); 7696 7697 update_rq_clock(rq); 7698 7699 if (task_rq(p) == rq && task_on_rq_queued(p)) { 7700 cpu = select_fallback_rq(rq->cpu, p); 7701 rq = __migrate_task(rq, &rf, p, cpu); 7702 } 7703 7704 rq_unlock(rq, &rf); 7705 raw_spin_unlock_irq(&p->pi_lock); 7706 7707 put_task_struct(p); 7708 7709 return 0; 7710 } 7711 7712 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 7713 7714 /* 7715 * Ensure we only run per-cpu kthreads once the CPU goes !active. 7716 * 7717 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 7718 * effective when the hotplug motion is down. 7719 */ 7720 static void balance_push(struct rq *rq) 7721 { 7722 struct task_struct *push_task = rq->curr; 7723 7724 lockdep_assert_rq_held(rq); 7725 7726 /* 7727 * Ensure the thing is persistent until balance_push_set(.on = false); 7728 */ 7729 rq->balance_callback = &balance_push_callback; 7730 7731 /* 7732 * Only active while going offline and when invoked on the outgoing 7733 * CPU. 7734 */ 7735 if (!cpu_dying(rq->cpu) || rq != this_rq()) 7736 return; 7737 7738 /* 7739 * Both the cpu-hotplug and stop task are in this case and are 7740 * required to complete the hotplug process. 7741 */ 7742 if (kthread_is_per_cpu(push_task) || 7743 is_migration_disabled(push_task)) { 7744 7745 /* 7746 * If this is the idle task on the outgoing CPU try to wake 7747 * up the hotplug control thread which might wait for the 7748 * last task to vanish. The rcuwait_active() check is 7749 * accurate here because the waiter is pinned on this CPU 7750 * and can't obviously be running in parallel. 7751 * 7752 * On RT kernels this also has to check whether there are 7753 * pinned and scheduled out tasks on the runqueue. They 7754 * need to leave the migrate disabled section first. 7755 */ 7756 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 7757 rcuwait_active(&rq->hotplug_wait)) { 7758 raw_spin_rq_unlock(rq); 7759 rcuwait_wake_up(&rq->hotplug_wait); 7760 raw_spin_rq_lock(rq); 7761 } 7762 return; 7763 } 7764 7765 get_task_struct(push_task); 7766 /* 7767 * Temporarily drop rq->lock such that we can wake-up the stop task. 7768 * Both preemption and IRQs are still disabled. 7769 */ 7770 preempt_disable(); 7771 raw_spin_rq_unlock(rq); 7772 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 7773 this_cpu_ptr(&push_work)); 7774 preempt_enable(); 7775 /* 7776 * At this point need_resched() is true and we'll take the loop in 7777 * schedule(). The next pick is obviously going to be the stop task 7778 * which kthread_is_per_cpu() and will push this task away. 7779 */ 7780 raw_spin_rq_lock(rq); 7781 } 7782 7783 static void balance_push_set(int cpu, bool on) 7784 { 7785 struct rq *rq = cpu_rq(cpu); 7786 struct rq_flags rf; 7787 7788 rq_lock_irqsave(rq, &rf); 7789 if (on) { 7790 WARN_ON_ONCE(rq->balance_callback); 7791 rq->balance_callback = &balance_push_callback; 7792 } else if (rq->balance_callback == &balance_push_callback) { 7793 rq->balance_callback = NULL; 7794 } 7795 rq_unlock_irqrestore(rq, &rf); 7796 } 7797 7798 /* 7799 * Invoked from a CPUs hotplug control thread after the CPU has been marked 7800 * inactive. All tasks which are not per CPU kernel threads are either 7801 * pushed off this CPU now via balance_push() or placed on a different CPU 7802 * during wakeup. Wait until the CPU is quiescent. 7803 */ 7804 static void balance_hotplug_wait(void) 7805 { 7806 struct rq *rq = this_rq(); 7807 7808 rcuwait_wait_event(&rq->hotplug_wait, 7809 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 7810 TASK_UNINTERRUPTIBLE); 7811 } 7812 7813 #else 7814 7815 static inline void balance_push(struct rq *rq) 7816 { 7817 } 7818 7819 static inline void balance_push_set(int cpu, bool on) 7820 { 7821 } 7822 7823 static inline void balance_hotplug_wait(void) 7824 { 7825 } 7826 7827 #endif /* CONFIG_HOTPLUG_CPU */ 7828 7829 void set_rq_online(struct rq *rq) 7830 { 7831 if (!rq->online) { 7832 const struct sched_class *class; 7833 7834 cpumask_set_cpu(rq->cpu, rq->rd->online); 7835 rq->online = 1; 7836 7837 for_each_class(class) { 7838 if (class->rq_online) 7839 class->rq_online(rq); 7840 } 7841 } 7842 } 7843 7844 void set_rq_offline(struct rq *rq) 7845 { 7846 if (rq->online) { 7847 const struct sched_class *class; 7848 7849 update_rq_clock(rq); 7850 for_each_class(class) { 7851 if (class->rq_offline) 7852 class->rq_offline(rq); 7853 } 7854 7855 cpumask_clear_cpu(rq->cpu, rq->rd->online); 7856 rq->online = 0; 7857 } 7858 } 7859 7860 static inline void sched_set_rq_online(struct rq *rq, int cpu) 7861 { 7862 struct rq_flags rf; 7863 7864 rq_lock_irqsave(rq, &rf); 7865 if (rq->rd) { 7866 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7867 set_rq_online(rq); 7868 } 7869 rq_unlock_irqrestore(rq, &rf); 7870 } 7871 7872 static inline void sched_set_rq_offline(struct rq *rq, int cpu) 7873 { 7874 struct rq_flags rf; 7875 7876 rq_lock_irqsave(rq, &rf); 7877 if (rq->rd) { 7878 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7879 set_rq_offline(rq); 7880 } 7881 rq_unlock_irqrestore(rq, &rf); 7882 } 7883 7884 /* 7885 * used to mark begin/end of suspend/resume: 7886 */ 7887 static int num_cpus_frozen; 7888 7889 /* 7890 * Update cpusets according to cpu_active mask. If cpusets are 7891 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7892 * around partition_sched_domains(). 7893 * 7894 * If we come here as part of a suspend/resume, don't touch cpusets because we 7895 * want to restore it back to its original state upon resume anyway. 7896 */ 7897 static void cpuset_cpu_active(void) 7898 { 7899 if (cpuhp_tasks_frozen) { 7900 /* 7901 * num_cpus_frozen tracks how many CPUs are involved in suspend 7902 * resume sequence. As long as this is not the last online 7903 * operation in the resume sequence, just build a single sched 7904 * domain, ignoring cpusets. 7905 */ 7906 partition_sched_domains(1, NULL, NULL); 7907 if (--num_cpus_frozen) 7908 return; 7909 /* 7910 * This is the last CPU online operation. So fall through and 7911 * restore the original sched domains by considering the 7912 * cpuset configurations. 7913 */ 7914 cpuset_force_rebuild(); 7915 } 7916 cpuset_update_active_cpus(); 7917 } 7918 7919 static int cpuset_cpu_inactive(unsigned int cpu) 7920 { 7921 if (!cpuhp_tasks_frozen) { 7922 int ret = dl_bw_check_overflow(cpu); 7923 7924 if (ret) 7925 return ret; 7926 cpuset_update_active_cpus(); 7927 } else { 7928 num_cpus_frozen++; 7929 partition_sched_domains(1, NULL, NULL); 7930 } 7931 return 0; 7932 } 7933 7934 static inline void sched_smt_present_inc(int cpu) 7935 { 7936 #ifdef CONFIG_SCHED_SMT 7937 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 7938 static_branch_inc_cpuslocked(&sched_smt_present); 7939 #endif 7940 } 7941 7942 static inline void sched_smt_present_dec(int cpu) 7943 { 7944 #ifdef CONFIG_SCHED_SMT 7945 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 7946 static_branch_dec_cpuslocked(&sched_smt_present); 7947 #endif 7948 } 7949 7950 int sched_cpu_activate(unsigned int cpu) 7951 { 7952 struct rq *rq = cpu_rq(cpu); 7953 7954 /* 7955 * Clear the balance_push callback and prepare to schedule 7956 * regular tasks. 7957 */ 7958 balance_push_set(cpu, false); 7959 7960 /* 7961 * When going up, increment the number of cores with SMT present. 7962 */ 7963 sched_smt_present_inc(cpu); 7964 set_cpu_active(cpu, true); 7965 7966 if (sched_smp_initialized) { 7967 sched_update_numa(cpu, true); 7968 sched_domains_numa_masks_set(cpu); 7969 cpuset_cpu_active(); 7970 } 7971 7972 /* 7973 * Put the rq online, if not already. This happens: 7974 * 7975 * 1) In the early boot process, because we build the real domains 7976 * after all CPUs have been brought up. 7977 * 7978 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 7979 * domains. 7980 */ 7981 sched_set_rq_online(rq, cpu); 7982 7983 return 0; 7984 } 7985 7986 int sched_cpu_deactivate(unsigned int cpu) 7987 { 7988 struct rq *rq = cpu_rq(cpu); 7989 int ret; 7990 7991 /* 7992 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 7993 * load balancing when not active 7994 */ 7995 nohz_balance_exit_idle(rq); 7996 7997 set_cpu_active(cpu, false); 7998 7999 /* 8000 * From this point forward, this CPU will refuse to run any task that 8001 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8002 * push those tasks away until this gets cleared, see 8003 * sched_cpu_dying(). 8004 */ 8005 balance_push_set(cpu, true); 8006 8007 /* 8008 * We've cleared cpu_active_mask / set balance_push, wait for all 8009 * preempt-disabled and RCU users of this state to go away such that 8010 * all new such users will observe it. 8011 * 8012 * Specifically, we rely on ttwu to no longer target this CPU, see 8013 * ttwu_queue_cond() and is_cpu_allowed(). 8014 * 8015 * Do sync before park smpboot threads to take care the RCU boost case. 8016 */ 8017 synchronize_rcu(); 8018 8019 sched_set_rq_offline(rq, cpu); 8020 8021 /* 8022 * When going down, decrement the number of cores with SMT present. 8023 */ 8024 sched_smt_present_dec(cpu); 8025 8026 #ifdef CONFIG_SCHED_SMT 8027 sched_core_cpu_deactivate(cpu); 8028 #endif 8029 8030 if (!sched_smp_initialized) 8031 return 0; 8032 8033 sched_update_numa(cpu, false); 8034 ret = cpuset_cpu_inactive(cpu); 8035 if (ret) { 8036 sched_smt_present_inc(cpu); 8037 sched_set_rq_online(rq, cpu); 8038 balance_push_set(cpu, false); 8039 set_cpu_active(cpu, true); 8040 sched_update_numa(cpu, true); 8041 return ret; 8042 } 8043 sched_domains_numa_masks_clear(cpu); 8044 return 0; 8045 } 8046 8047 static void sched_rq_cpu_starting(unsigned int cpu) 8048 { 8049 struct rq *rq = cpu_rq(cpu); 8050 8051 rq->calc_load_update = calc_load_update; 8052 update_max_interval(); 8053 } 8054 8055 int sched_cpu_starting(unsigned int cpu) 8056 { 8057 sched_core_cpu_starting(cpu); 8058 sched_rq_cpu_starting(cpu); 8059 sched_tick_start(cpu); 8060 return 0; 8061 } 8062 8063 #ifdef CONFIG_HOTPLUG_CPU 8064 8065 /* 8066 * Invoked immediately before the stopper thread is invoked to bring the 8067 * CPU down completely. At this point all per CPU kthreads except the 8068 * hotplug thread (current) and the stopper thread (inactive) have been 8069 * either parked or have been unbound from the outgoing CPU. Ensure that 8070 * any of those which might be on the way out are gone. 8071 * 8072 * If after this point a bound task is being woken on this CPU then the 8073 * responsible hotplug callback has failed to do it's job. 8074 * sched_cpu_dying() will catch it with the appropriate fireworks. 8075 */ 8076 int sched_cpu_wait_empty(unsigned int cpu) 8077 { 8078 balance_hotplug_wait(); 8079 return 0; 8080 } 8081 8082 /* 8083 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8084 * might have. Called from the CPU stopper task after ensuring that the 8085 * stopper is the last running task on the CPU, so nr_active count is 8086 * stable. We need to take the tear-down thread which is calling this into 8087 * account, so we hand in adjust = 1 to the load calculation. 8088 * 8089 * Also see the comment "Global load-average calculations". 8090 */ 8091 static void calc_load_migrate(struct rq *rq) 8092 { 8093 long delta = calc_load_fold_active(rq, 1); 8094 8095 if (delta) 8096 atomic_long_add(delta, &calc_load_tasks); 8097 } 8098 8099 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8100 { 8101 struct task_struct *g, *p; 8102 int cpu = cpu_of(rq); 8103 8104 lockdep_assert_rq_held(rq); 8105 8106 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8107 for_each_process_thread(g, p) { 8108 if (task_cpu(p) != cpu) 8109 continue; 8110 8111 if (!task_on_rq_queued(p)) 8112 continue; 8113 8114 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8115 } 8116 } 8117 8118 int sched_cpu_dying(unsigned int cpu) 8119 { 8120 struct rq *rq = cpu_rq(cpu); 8121 struct rq_flags rf; 8122 8123 /* Handle pending wakeups and then migrate everything off */ 8124 sched_tick_stop(cpu); 8125 8126 rq_lock_irqsave(rq, &rf); 8127 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8128 WARN(true, "Dying CPU not properly vacated!"); 8129 dump_rq_tasks(rq, KERN_WARNING); 8130 } 8131 rq_unlock_irqrestore(rq, &rf); 8132 8133 calc_load_migrate(rq); 8134 update_max_interval(); 8135 hrtick_clear(rq); 8136 sched_core_cpu_dying(cpu); 8137 return 0; 8138 } 8139 #endif 8140 8141 void __init sched_init_smp(void) 8142 { 8143 sched_init_numa(NUMA_NO_NODE); 8144 8145 /* 8146 * There's no userspace yet to cause hotplug operations; hence all the 8147 * CPU masks are stable and all blatant races in the below code cannot 8148 * happen. 8149 */ 8150 mutex_lock(&sched_domains_mutex); 8151 sched_init_domains(cpu_active_mask); 8152 mutex_unlock(&sched_domains_mutex); 8153 8154 /* Move init over to a non-isolated CPU */ 8155 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 8156 BUG(); 8157 current->flags &= ~PF_NO_SETAFFINITY; 8158 sched_init_granularity(); 8159 8160 init_sched_rt_class(); 8161 init_sched_dl_class(); 8162 8163 sched_smp_initialized = true; 8164 } 8165 8166 static int __init migration_init(void) 8167 { 8168 sched_cpu_starting(smp_processor_id()); 8169 return 0; 8170 } 8171 early_initcall(migration_init); 8172 8173 #else 8174 void __init sched_init_smp(void) 8175 { 8176 sched_init_granularity(); 8177 } 8178 #endif /* CONFIG_SMP */ 8179 8180 int in_sched_functions(unsigned long addr) 8181 { 8182 return in_lock_functions(addr) || 8183 (addr >= (unsigned long)__sched_text_start 8184 && addr < (unsigned long)__sched_text_end); 8185 } 8186 8187 #ifdef CONFIG_CGROUP_SCHED 8188 /* 8189 * Default task group. 8190 * Every task in system belongs to this group at bootup. 8191 */ 8192 struct task_group root_task_group; 8193 LIST_HEAD(task_groups); 8194 8195 /* Cacheline aligned slab cache for task_group */ 8196 static struct kmem_cache *task_group_cache __ro_after_init; 8197 #endif 8198 8199 void __init sched_init(void) 8200 { 8201 unsigned long ptr = 0; 8202 int i; 8203 8204 /* Make sure the linker didn't screw up */ 8205 BUG_ON(&idle_sched_class != &fair_sched_class + 1 || 8206 &fair_sched_class != &rt_sched_class + 1 || 8207 &rt_sched_class != &dl_sched_class + 1); 8208 #ifdef CONFIG_SMP 8209 BUG_ON(&dl_sched_class != &stop_sched_class + 1); 8210 #endif 8211 8212 wait_bit_init(); 8213 8214 #ifdef CONFIG_FAIR_GROUP_SCHED 8215 ptr += 2 * nr_cpu_ids * sizeof(void **); 8216 #endif 8217 #ifdef CONFIG_RT_GROUP_SCHED 8218 ptr += 2 * nr_cpu_ids * sizeof(void **); 8219 #endif 8220 if (ptr) { 8221 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8222 8223 #ifdef CONFIG_FAIR_GROUP_SCHED 8224 root_task_group.se = (struct sched_entity **)ptr; 8225 ptr += nr_cpu_ids * sizeof(void **); 8226 8227 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8228 ptr += nr_cpu_ids * sizeof(void **); 8229 8230 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8231 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 8232 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8233 #ifdef CONFIG_RT_GROUP_SCHED 8234 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8235 ptr += nr_cpu_ids * sizeof(void **); 8236 8237 root_task_group.rt_rq = (struct rt_rq **)ptr; 8238 ptr += nr_cpu_ids * sizeof(void **); 8239 8240 #endif /* CONFIG_RT_GROUP_SCHED */ 8241 } 8242 8243 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 8244 8245 #ifdef CONFIG_SMP 8246 init_defrootdomain(); 8247 #endif 8248 8249 #ifdef CONFIG_RT_GROUP_SCHED 8250 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8251 global_rt_period(), global_rt_runtime()); 8252 #endif /* CONFIG_RT_GROUP_SCHED */ 8253 8254 #ifdef CONFIG_CGROUP_SCHED 8255 task_group_cache = KMEM_CACHE(task_group, 0); 8256 8257 list_add(&root_task_group.list, &task_groups); 8258 INIT_LIST_HEAD(&root_task_group.children); 8259 INIT_LIST_HEAD(&root_task_group.siblings); 8260 autogroup_init(&init_task); 8261 #endif /* CONFIG_CGROUP_SCHED */ 8262 8263 for_each_possible_cpu(i) { 8264 struct rq *rq; 8265 8266 rq = cpu_rq(i); 8267 raw_spin_lock_init(&rq->__lock); 8268 rq->nr_running = 0; 8269 rq->calc_load_active = 0; 8270 rq->calc_load_update = jiffies + LOAD_FREQ; 8271 init_cfs_rq(&rq->cfs); 8272 init_rt_rq(&rq->rt); 8273 init_dl_rq(&rq->dl); 8274 #ifdef CONFIG_FAIR_GROUP_SCHED 8275 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8276 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8277 /* 8278 * How much CPU bandwidth does root_task_group get? 8279 * 8280 * In case of task-groups formed through the cgroup filesystem, it 8281 * gets 100% of the CPU resources in the system. This overall 8282 * system CPU resource is divided among the tasks of 8283 * root_task_group and its child task-groups in a fair manner, 8284 * based on each entity's (task or task-group's) weight 8285 * (se->load.weight). 8286 * 8287 * In other words, if root_task_group has 10 tasks of weight 8288 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8289 * then A0's share of the CPU resource is: 8290 * 8291 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8292 * 8293 * We achieve this by letting root_task_group's tasks sit 8294 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8295 */ 8296 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8297 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8298 8299 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 8300 #ifdef CONFIG_RT_GROUP_SCHED 8301 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8302 #endif 8303 #ifdef CONFIG_SMP 8304 rq->sd = NULL; 8305 rq->rd = NULL; 8306 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 8307 rq->balance_callback = &balance_push_callback; 8308 rq->active_balance = 0; 8309 rq->next_balance = jiffies; 8310 rq->push_cpu = 0; 8311 rq->cpu = i; 8312 rq->online = 0; 8313 rq->idle_stamp = 0; 8314 rq->avg_idle = 2*sysctl_sched_migration_cost; 8315 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8316 8317 INIT_LIST_HEAD(&rq->cfs_tasks); 8318 8319 rq_attach_root(rq, &def_root_domain); 8320 #ifdef CONFIG_NO_HZ_COMMON 8321 rq->last_blocked_load_update_tick = jiffies; 8322 atomic_set(&rq->nohz_flags, 0); 8323 8324 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8325 #endif 8326 #ifdef CONFIG_HOTPLUG_CPU 8327 rcuwait_init(&rq->hotplug_wait); 8328 #endif 8329 #endif /* CONFIG_SMP */ 8330 hrtick_rq_init(rq); 8331 atomic_set(&rq->nr_iowait, 0); 8332 8333 #ifdef CONFIG_SCHED_CORE 8334 rq->core = rq; 8335 rq->core_pick = NULL; 8336 rq->core_enabled = 0; 8337 rq->core_tree = RB_ROOT; 8338 rq->core_forceidle_count = 0; 8339 rq->core_forceidle_occupation = 0; 8340 rq->core_forceidle_start = 0; 8341 8342 rq->core_cookie = 0UL; 8343 #endif 8344 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 8345 } 8346 8347 set_load_weight(&init_task, false); 8348 8349 /* 8350 * The boot idle thread does lazy MMU switching as well: 8351 */ 8352 mmgrab_lazy_tlb(&init_mm); 8353 enter_lazy_tlb(&init_mm, current); 8354 8355 /* 8356 * The idle task doesn't need the kthread struct to function, but it 8357 * is dressed up as a per-CPU kthread and thus needs to play the part 8358 * if we want to avoid special-casing it in code that deals with per-CPU 8359 * kthreads. 8360 */ 8361 WARN_ON(!set_kthread_struct(current)); 8362 8363 /* 8364 * Make us the idle thread. Technically, schedule() should not be 8365 * called from this thread, however somewhere below it might be, 8366 * but because we are the idle thread, we just pick up running again 8367 * when this runqueue becomes "idle". 8368 */ 8369 init_idle(current, smp_processor_id()); 8370 8371 calc_load_update = jiffies + LOAD_FREQ; 8372 8373 #ifdef CONFIG_SMP 8374 idle_thread_set_boot_cpu(); 8375 balance_push_set(smp_processor_id(), false); 8376 #endif 8377 init_sched_fair_class(); 8378 8379 psi_init(); 8380 8381 init_uclamp(); 8382 8383 preempt_dynamic_init(); 8384 8385 scheduler_running = 1; 8386 } 8387 8388 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8389 8390 void __might_sleep(const char *file, int line) 8391 { 8392 unsigned int state = get_current_state(); 8393 /* 8394 * Blocking primitives will set (and therefore destroy) current->state, 8395 * since we will exit with TASK_RUNNING make sure we enter with it, 8396 * otherwise we will destroy state. 8397 */ 8398 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 8399 "do not call blocking ops when !TASK_RUNNING; " 8400 "state=%x set at [<%p>] %pS\n", state, 8401 (void *)current->task_state_change, 8402 (void *)current->task_state_change); 8403 8404 __might_resched(file, line, 0); 8405 } 8406 EXPORT_SYMBOL(__might_sleep); 8407 8408 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 8409 { 8410 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 8411 return; 8412 8413 if (preempt_count() == preempt_offset) 8414 return; 8415 8416 pr_err("Preemption disabled at:"); 8417 print_ip_sym(KERN_ERR, ip); 8418 } 8419 8420 static inline bool resched_offsets_ok(unsigned int offsets) 8421 { 8422 unsigned int nested = preempt_count(); 8423 8424 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 8425 8426 return nested == offsets; 8427 } 8428 8429 void __might_resched(const char *file, int line, unsigned int offsets) 8430 { 8431 /* Ratelimiting timestamp: */ 8432 static unsigned long prev_jiffy; 8433 8434 unsigned long preempt_disable_ip; 8435 8436 /* WARN_ON_ONCE() by default, no rate limit required: */ 8437 rcu_sleep_check(); 8438 8439 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 8440 !is_idle_task(current) && !current->non_block_count) || 8441 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8442 oops_in_progress) 8443 return; 8444 8445 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8446 return; 8447 prev_jiffy = jiffies; 8448 8449 /* Save this before calling printk(), since that will clobber it: */ 8450 preempt_disable_ip = get_preempt_disable_ip(current); 8451 8452 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 8453 file, line); 8454 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8455 in_atomic(), irqs_disabled(), current->non_block_count, 8456 current->pid, current->comm); 8457 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 8458 offsets & MIGHT_RESCHED_PREEMPT_MASK); 8459 8460 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 8461 pr_err("RCU nest depth: %d, expected: %u\n", 8462 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 8463 } 8464 8465 if (task_stack_end_corrupted(current)) 8466 pr_emerg("Thread overran stack, or stack corrupted\n"); 8467 8468 debug_show_held_locks(current); 8469 if (irqs_disabled()) 8470 print_irqtrace_events(current); 8471 8472 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 8473 preempt_disable_ip); 8474 8475 dump_stack(); 8476 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8477 } 8478 EXPORT_SYMBOL(__might_resched); 8479 8480 void __cant_sleep(const char *file, int line, int preempt_offset) 8481 { 8482 static unsigned long prev_jiffy; 8483 8484 if (irqs_disabled()) 8485 return; 8486 8487 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8488 return; 8489 8490 if (preempt_count() > preempt_offset) 8491 return; 8492 8493 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8494 return; 8495 prev_jiffy = jiffies; 8496 8497 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8498 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8499 in_atomic(), irqs_disabled(), 8500 current->pid, current->comm); 8501 8502 debug_show_held_locks(current); 8503 dump_stack(); 8504 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8505 } 8506 EXPORT_SYMBOL_GPL(__cant_sleep); 8507 8508 #ifdef CONFIG_SMP 8509 void __cant_migrate(const char *file, int line) 8510 { 8511 static unsigned long prev_jiffy; 8512 8513 if (irqs_disabled()) 8514 return; 8515 8516 if (is_migration_disabled(current)) 8517 return; 8518 8519 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8520 return; 8521 8522 if (preempt_count() > 0) 8523 return; 8524 8525 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8526 return; 8527 prev_jiffy = jiffies; 8528 8529 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8530 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8531 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8532 current->pid, current->comm); 8533 8534 debug_show_held_locks(current); 8535 dump_stack(); 8536 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8537 } 8538 EXPORT_SYMBOL_GPL(__cant_migrate); 8539 #endif 8540 #endif 8541 8542 #ifdef CONFIG_MAGIC_SYSRQ 8543 void normalize_rt_tasks(void) 8544 { 8545 struct task_struct *g, *p; 8546 struct sched_attr attr = { 8547 .sched_policy = SCHED_NORMAL, 8548 }; 8549 8550 read_lock(&tasklist_lock); 8551 for_each_process_thread(g, p) { 8552 /* 8553 * Only normalize user tasks: 8554 */ 8555 if (p->flags & PF_KTHREAD) 8556 continue; 8557 8558 p->se.exec_start = 0; 8559 schedstat_set(p->stats.wait_start, 0); 8560 schedstat_set(p->stats.sleep_start, 0); 8561 schedstat_set(p->stats.block_start, 0); 8562 8563 if (!dl_task(p) && !rt_task(p)) { 8564 /* 8565 * Renice negative nice level userspace 8566 * tasks back to 0: 8567 */ 8568 if (task_nice(p) < 0) 8569 set_user_nice(p, 0); 8570 continue; 8571 } 8572 8573 __sched_setscheduler(p, &attr, false, false); 8574 } 8575 read_unlock(&tasklist_lock); 8576 } 8577 8578 #endif /* CONFIG_MAGIC_SYSRQ */ 8579 8580 #if defined(CONFIG_KGDB_KDB) 8581 /* 8582 * These functions are only useful for KDB. 8583 * 8584 * They can only be called when the whole system has been 8585 * stopped - every CPU needs to be quiescent, and no scheduling 8586 * activity can take place. Using them for anything else would 8587 * be a serious bug, and as a result, they aren't even visible 8588 * under any other configuration. 8589 */ 8590 8591 /** 8592 * curr_task - return the current task for a given CPU. 8593 * @cpu: the processor in question. 8594 * 8595 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8596 * 8597 * Return: The current task for @cpu. 8598 */ 8599 struct task_struct *curr_task(int cpu) 8600 { 8601 return cpu_curr(cpu); 8602 } 8603 8604 #endif /* defined(CONFIG_KGDB_KDB) */ 8605 8606 #ifdef CONFIG_CGROUP_SCHED 8607 /* task_group_lock serializes the addition/removal of task groups */ 8608 static DEFINE_SPINLOCK(task_group_lock); 8609 8610 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8611 struct task_group *parent) 8612 { 8613 #ifdef CONFIG_UCLAMP_TASK_GROUP 8614 enum uclamp_id clamp_id; 8615 8616 for_each_clamp_id(clamp_id) { 8617 uclamp_se_set(&tg->uclamp_req[clamp_id], 8618 uclamp_none(clamp_id), false); 8619 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8620 } 8621 #endif 8622 } 8623 8624 static void sched_free_group(struct task_group *tg) 8625 { 8626 free_fair_sched_group(tg); 8627 free_rt_sched_group(tg); 8628 autogroup_free(tg); 8629 kmem_cache_free(task_group_cache, tg); 8630 } 8631 8632 static void sched_free_group_rcu(struct rcu_head *rcu) 8633 { 8634 sched_free_group(container_of(rcu, struct task_group, rcu)); 8635 } 8636 8637 static void sched_unregister_group(struct task_group *tg) 8638 { 8639 unregister_fair_sched_group(tg); 8640 unregister_rt_sched_group(tg); 8641 /* 8642 * We have to wait for yet another RCU grace period to expire, as 8643 * print_cfs_stats() might run concurrently. 8644 */ 8645 call_rcu(&tg->rcu, sched_free_group_rcu); 8646 } 8647 8648 /* allocate runqueue etc for a new task group */ 8649 struct task_group *sched_create_group(struct task_group *parent) 8650 { 8651 struct task_group *tg; 8652 8653 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 8654 if (!tg) 8655 return ERR_PTR(-ENOMEM); 8656 8657 if (!alloc_fair_sched_group(tg, parent)) 8658 goto err; 8659 8660 if (!alloc_rt_sched_group(tg, parent)) 8661 goto err; 8662 8663 alloc_uclamp_sched_group(tg, parent); 8664 8665 return tg; 8666 8667 err: 8668 sched_free_group(tg); 8669 return ERR_PTR(-ENOMEM); 8670 } 8671 8672 void sched_online_group(struct task_group *tg, struct task_group *parent) 8673 { 8674 unsigned long flags; 8675 8676 spin_lock_irqsave(&task_group_lock, flags); 8677 list_add_rcu(&tg->list, &task_groups); 8678 8679 /* Root should already exist: */ 8680 WARN_ON(!parent); 8681 8682 tg->parent = parent; 8683 INIT_LIST_HEAD(&tg->children); 8684 list_add_rcu(&tg->siblings, &parent->children); 8685 spin_unlock_irqrestore(&task_group_lock, flags); 8686 8687 online_fair_sched_group(tg); 8688 } 8689 8690 /* RCU callback to free various structures associated with a task group */ 8691 static void sched_unregister_group_rcu(struct rcu_head *rhp) 8692 { 8693 /* Now it should be safe to free those cfs_rqs: */ 8694 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 8695 } 8696 8697 void sched_destroy_group(struct task_group *tg) 8698 { 8699 /* Wait for possible concurrent references to cfs_rqs complete: */ 8700 call_rcu(&tg->rcu, sched_unregister_group_rcu); 8701 } 8702 8703 void sched_release_group(struct task_group *tg) 8704 { 8705 unsigned long flags; 8706 8707 /* 8708 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 8709 * sched_cfs_period_timer()). 8710 * 8711 * For this to be effective, we have to wait for all pending users of 8712 * this task group to leave their RCU critical section to ensure no new 8713 * user will see our dying task group any more. Specifically ensure 8714 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 8715 * 8716 * We therefore defer calling unregister_fair_sched_group() to 8717 * sched_unregister_group() which is guarantied to get called only after the 8718 * current RCU grace period has expired. 8719 */ 8720 spin_lock_irqsave(&task_group_lock, flags); 8721 list_del_rcu(&tg->list); 8722 list_del_rcu(&tg->siblings); 8723 spin_unlock_irqrestore(&task_group_lock, flags); 8724 } 8725 8726 static struct task_group *sched_get_task_group(struct task_struct *tsk) 8727 { 8728 struct task_group *tg; 8729 8730 /* 8731 * All callers are synchronized by task_rq_lock(); we do not use RCU 8732 * which is pointless here. Thus, we pass "true" to task_css_check() 8733 * to prevent lockdep warnings. 8734 */ 8735 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 8736 struct task_group, css); 8737 tg = autogroup_task_group(tsk, tg); 8738 8739 return tg; 8740 } 8741 8742 static void sched_change_group(struct task_struct *tsk, struct task_group *group) 8743 { 8744 tsk->sched_task_group = group; 8745 8746 #ifdef CONFIG_FAIR_GROUP_SCHED 8747 if (tsk->sched_class->task_change_group) 8748 tsk->sched_class->task_change_group(tsk); 8749 else 8750 #endif 8751 set_task_rq(tsk, task_cpu(tsk)); 8752 } 8753 8754 /* 8755 * Change task's runqueue when it moves between groups. 8756 * 8757 * The caller of this function should have put the task in its new group by 8758 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 8759 * its new group. 8760 */ 8761 void sched_move_task(struct task_struct *tsk) 8762 { 8763 int queued, running, queue_flags = 8764 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 8765 struct task_group *group; 8766 struct rq *rq; 8767 8768 CLASS(task_rq_lock, rq_guard)(tsk); 8769 rq = rq_guard.rq; 8770 8771 /* 8772 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous 8773 * group changes. 8774 */ 8775 group = sched_get_task_group(tsk); 8776 if (group == tsk->sched_task_group) 8777 return; 8778 8779 update_rq_clock(rq); 8780 8781 running = task_current(rq, tsk); 8782 queued = task_on_rq_queued(tsk); 8783 8784 if (queued) 8785 dequeue_task(rq, tsk, queue_flags); 8786 if (running) 8787 put_prev_task(rq, tsk); 8788 8789 sched_change_group(tsk, group); 8790 8791 if (queued) 8792 enqueue_task(rq, tsk, queue_flags); 8793 if (running) { 8794 set_next_task(rq, tsk); 8795 /* 8796 * After changing group, the running task may have joined a 8797 * throttled one but it's still the running task. Trigger a 8798 * resched to make sure that task can still run. 8799 */ 8800 resched_curr(rq); 8801 } 8802 } 8803 8804 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8805 { 8806 return css ? container_of(css, struct task_group, css) : NULL; 8807 } 8808 8809 static struct cgroup_subsys_state * 8810 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8811 { 8812 struct task_group *parent = css_tg(parent_css); 8813 struct task_group *tg; 8814 8815 if (!parent) { 8816 /* This is early initialization for the top cgroup */ 8817 return &root_task_group.css; 8818 } 8819 8820 tg = sched_create_group(parent); 8821 if (IS_ERR(tg)) 8822 return ERR_PTR(-ENOMEM); 8823 8824 return &tg->css; 8825 } 8826 8827 /* Expose task group only after completing cgroup initialization */ 8828 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 8829 { 8830 struct task_group *tg = css_tg(css); 8831 struct task_group *parent = css_tg(css->parent); 8832 8833 if (parent) 8834 sched_online_group(tg, parent); 8835 8836 #ifdef CONFIG_UCLAMP_TASK_GROUP 8837 /* Propagate the effective uclamp value for the new group */ 8838 guard(mutex)(&uclamp_mutex); 8839 guard(rcu)(); 8840 cpu_util_update_eff(css); 8841 #endif 8842 8843 return 0; 8844 } 8845 8846 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 8847 { 8848 struct task_group *tg = css_tg(css); 8849 8850 sched_release_group(tg); 8851 } 8852 8853 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8854 { 8855 struct task_group *tg = css_tg(css); 8856 8857 /* 8858 * Relies on the RCU grace period between css_released() and this. 8859 */ 8860 sched_unregister_group(tg); 8861 } 8862 8863 #ifdef CONFIG_RT_GROUP_SCHED 8864 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 8865 { 8866 struct task_struct *task; 8867 struct cgroup_subsys_state *css; 8868 8869 cgroup_taskset_for_each(task, css, tset) { 8870 if (!sched_rt_can_attach(css_tg(css), task)) 8871 return -EINVAL; 8872 } 8873 return 0; 8874 } 8875 #endif 8876 8877 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 8878 { 8879 struct task_struct *task; 8880 struct cgroup_subsys_state *css; 8881 8882 cgroup_taskset_for_each(task, css, tset) 8883 sched_move_task(task); 8884 } 8885 8886 #ifdef CONFIG_UCLAMP_TASK_GROUP 8887 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 8888 { 8889 struct cgroup_subsys_state *top_css = css; 8890 struct uclamp_se *uc_parent = NULL; 8891 struct uclamp_se *uc_se = NULL; 8892 unsigned int eff[UCLAMP_CNT]; 8893 enum uclamp_id clamp_id; 8894 unsigned int clamps; 8895 8896 lockdep_assert_held(&uclamp_mutex); 8897 SCHED_WARN_ON(!rcu_read_lock_held()); 8898 8899 css_for_each_descendant_pre(css, top_css) { 8900 uc_parent = css_tg(css)->parent 8901 ? css_tg(css)->parent->uclamp : NULL; 8902 8903 for_each_clamp_id(clamp_id) { 8904 /* Assume effective clamps matches requested clamps */ 8905 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 8906 /* Cap effective clamps with parent's effective clamps */ 8907 if (uc_parent && 8908 eff[clamp_id] > uc_parent[clamp_id].value) { 8909 eff[clamp_id] = uc_parent[clamp_id].value; 8910 } 8911 } 8912 /* Ensure protection is always capped by limit */ 8913 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 8914 8915 /* Propagate most restrictive effective clamps */ 8916 clamps = 0x0; 8917 uc_se = css_tg(css)->uclamp; 8918 for_each_clamp_id(clamp_id) { 8919 if (eff[clamp_id] == uc_se[clamp_id].value) 8920 continue; 8921 uc_se[clamp_id].value = eff[clamp_id]; 8922 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 8923 clamps |= (0x1 << clamp_id); 8924 } 8925 if (!clamps) { 8926 css = css_rightmost_descendant(css); 8927 continue; 8928 } 8929 8930 /* Immediately update descendants RUNNABLE tasks */ 8931 uclamp_update_active_tasks(css); 8932 } 8933 } 8934 8935 /* 8936 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 8937 * C expression. Since there is no way to convert a macro argument (N) into a 8938 * character constant, use two levels of macros. 8939 */ 8940 #define _POW10(exp) ((unsigned int)1e##exp) 8941 #define POW10(exp) _POW10(exp) 8942 8943 struct uclamp_request { 8944 #define UCLAMP_PERCENT_SHIFT 2 8945 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 8946 s64 percent; 8947 u64 util; 8948 int ret; 8949 }; 8950 8951 static inline struct uclamp_request 8952 capacity_from_percent(char *buf) 8953 { 8954 struct uclamp_request req = { 8955 .percent = UCLAMP_PERCENT_SCALE, 8956 .util = SCHED_CAPACITY_SCALE, 8957 .ret = 0, 8958 }; 8959 8960 buf = strim(buf); 8961 if (strcmp(buf, "max")) { 8962 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 8963 &req.percent); 8964 if (req.ret) 8965 return req; 8966 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 8967 req.ret = -ERANGE; 8968 return req; 8969 } 8970 8971 req.util = req.percent << SCHED_CAPACITY_SHIFT; 8972 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 8973 } 8974 8975 return req; 8976 } 8977 8978 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 8979 size_t nbytes, loff_t off, 8980 enum uclamp_id clamp_id) 8981 { 8982 struct uclamp_request req; 8983 struct task_group *tg; 8984 8985 req = capacity_from_percent(buf); 8986 if (req.ret) 8987 return req.ret; 8988 8989 static_branch_enable(&sched_uclamp_used); 8990 8991 guard(mutex)(&uclamp_mutex); 8992 guard(rcu)(); 8993 8994 tg = css_tg(of_css(of)); 8995 if (tg->uclamp_req[clamp_id].value != req.util) 8996 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 8997 8998 /* 8999 * Because of not recoverable conversion rounding we keep track of the 9000 * exact requested value 9001 */ 9002 tg->uclamp_pct[clamp_id] = req.percent; 9003 9004 /* Update effective clamps to track the most restrictive value */ 9005 cpu_util_update_eff(of_css(of)); 9006 9007 return nbytes; 9008 } 9009 9010 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9011 char *buf, size_t nbytes, 9012 loff_t off) 9013 { 9014 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9015 } 9016 9017 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9018 char *buf, size_t nbytes, 9019 loff_t off) 9020 { 9021 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9022 } 9023 9024 static inline void cpu_uclamp_print(struct seq_file *sf, 9025 enum uclamp_id clamp_id) 9026 { 9027 struct task_group *tg; 9028 u64 util_clamp; 9029 u64 percent; 9030 u32 rem; 9031 9032 scoped_guard (rcu) { 9033 tg = css_tg(seq_css(sf)); 9034 util_clamp = tg->uclamp_req[clamp_id].value; 9035 } 9036 9037 if (util_clamp == SCHED_CAPACITY_SCALE) { 9038 seq_puts(sf, "max\n"); 9039 return; 9040 } 9041 9042 percent = tg->uclamp_pct[clamp_id]; 9043 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9044 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9045 } 9046 9047 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9048 { 9049 cpu_uclamp_print(sf, UCLAMP_MIN); 9050 return 0; 9051 } 9052 9053 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9054 { 9055 cpu_uclamp_print(sf, UCLAMP_MAX); 9056 return 0; 9057 } 9058 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9059 9060 #ifdef CONFIG_FAIR_GROUP_SCHED 9061 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9062 struct cftype *cftype, u64 shareval) 9063 { 9064 if (shareval > scale_load_down(ULONG_MAX)) 9065 shareval = MAX_SHARES; 9066 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 9067 } 9068 9069 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9070 struct cftype *cft) 9071 { 9072 struct task_group *tg = css_tg(css); 9073 9074 return (u64) scale_load_down(tg->shares); 9075 } 9076 9077 #ifdef CONFIG_CFS_BANDWIDTH 9078 static DEFINE_MUTEX(cfs_constraints_mutex); 9079 9080 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 9081 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 9082 /* More than 203 days if BW_SHIFT equals 20. */ 9083 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 9084 9085 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9086 9087 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 9088 u64 burst) 9089 { 9090 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9091 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9092 9093 if (tg == &root_task_group) 9094 return -EINVAL; 9095 9096 /* 9097 * Ensure we have at some amount of bandwidth every period. This is 9098 * to prevent reaching a state of large arrears when throttled via 9099 * entity_tick() resulting in prolonged exit starvation. 9100 */ 9101 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 9102 return -EINVAL; 9103 9104 /* 9105 * Likewise, bound things on the other side by preventing insane quota 9106 * periods. This also allows us to normalize in computing quota 9107 * feasibility. 9108 */ 9109 if (period > max_cfs_quota_period) 9110 return -EINVAL; 9111 9112 /* 9113 * Bound quota to defend quota against overflow during bandwidth shift. 9114 */ 9115 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 9116 return -EINVAL; 9117 9118 if (quota != RUNTIME_INF && (burst > quota || 9119 burst + quota > max_cfs_runtime)) 9120 return -EINVAL; 9121 9122 /* 9123 * Prevent race between setting of cfs_rq->runtime_enabled and 9124 * unthrottle_offline_cfs_rqs(). 9125 */ 9126 guard(cpus_read_lock)(); 9127 guard(mutex)(&cfs_constraints_mutex); 9128 9129 ret = __cfs_schedulable(tg, period, quota); 9130 if (ret) 9131 return ret; 9132 9133 runtime_enabled = quota != RUNTIME_INF; 9134 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9135 /* 9136 * If we need to toggle cfs_bandwidth_used, off->on must occur 9137 * before making related changes, and on->off must occur afterwards 9138 */ 9139 if (runtime_enabled && !runtime_was_enabled) 9140 cfs_bandwidth_usage_inc(); 9141 9142 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 9143 cfs_b->period = ns_to_ktime(period); 9144 cfs_b->quota = quota; 9145 cfs_b->burst = burst; 9146 9147 __refill_cfs_bandwidth_runtime(cfs_b); 9148 9149 /* 9150 * Restart the period timer (if active) to handle new 9151 * period expiry: 9152 */ 9153 if (runtime_enabled) 9154 start_cfs_bandwidth(cfs_b); 9155 } 9156 9157 for_each_online_cpu(i) { 9158 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9159 struct rq *rq = cfs_rq->rq; 9160 9161 guard(rq_lock_irq)(rq); 9162 cfs_rq->runtime_enabled = runtime_enabled; 9163 cfs_rq->runtime_remaining = 0; 9164 9165 if (cfs_rq->throttled) 9166 unthrottle_cfs_rq(cfs_rq); 9167 } 9168 9169 if (runtime_was_enabled && !runtime_enabled) 9170 cfs_bandwidth_usage_dec(); 9171 9172 return 0; 9173 } 9174 9175 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 9176 { 9177 u64 quota, period, burst; 9178 9179 period = ktime_to_ns(tg->cfs_bandwidth.period); 9180 burst = tg->cfs_bandwidth.burst; 9181 if (cfs_quota_us < 0) 9182 quota = RUNTIME_INF; 9183 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 9184 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 9185 else 9186 return -EINVAL; 9187 9188 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9189 } 9190 9191 static long tg_get_cfs_quota(struct task_group *tg) 9192 { 9193 u64 quota_us; 9194 9195 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9196 return -1; 9197 9198 quota_us = tg->cfs_bandwidth.quota; 9199 do_div(quota_us, NSEC_PER_USEC); 9200 9201 return quota_us; 9202 } 9203 9204 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 9205 { 9206 u64 quota, period, burst; 9207 9208 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 9209 return -EINVAL; 9210 9211 period = (u64)cfs_period_us * NSEC_PER_USEC; 9212 quota = tg->cfs_bandwidth.quota; 9213 burst = tg->cfs_bandwidth.burst; 9214 9215 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9216 } 9217 9218 static long tg_get_cfs_period(struct task_group *tg) 9219 { 9220 u64 cfs_period_us; 9221 9222 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9223 do_div(cfs_period_us, NSEC_PER_USEC); 9224 9225 return cfs_period_us; 9226 } 9227 9228 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 9229 { 9230 u64 quota, period, burst; 9231 9232 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 9233 return -EINVAL; 9234 9235 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 9236 period = ktime_to_ns(tg->cfs_bandwidth.period); 9237 quota = tg->cfs_bandwidth.quota; 9238 9239 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9240 } 9241 9242 static long tg_get_cfs_burst(struct task_group *tg) 9243 { 9244 u64 burst_us; 9245 9246 burst_us = tg->cfs_bandwidth.burst; 9247 do_div(burst_us, NSEC_PER_USEC); 9248 9249 return burst_us; 9250 } 9251 9252 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 9253 struct cftype *cft) 9254 { 9255 return tg_get_cfs_quota(css_tg(css)); 9256 } 9257 9258 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 9259 struct cftype *cftype, s64 cfs_quota_us) 9260 { 9261 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 9262 } 9263 9264 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 9265 struct cftype *cft) 9266 { 9267 return tg_get_cfs_period(css_tg(css)); 9268 } 9269 9270 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 9271 struct cftype *cftype, u64 cfs_period_us) 9272 { 9273 return tg_set_cfs_period(css_tg(css), cfs_period_us); 9274 } 9275 9276 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 9277 struct cftype *cft) 9278 { 9279 return tg_get_cfs_burst(css_tg(css)); 9280 } 9281 9282 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 9283 struct cftype *cftype, u64 cfs_burst_us) 9284 { 9285 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 9286 } 9287 9288 struct cfs_schedulable_data { 9289 struct task_group *tg; 9290 u64 period, quota; 9291 }; 9292 9293 /* 9294 * normalize group quota/period to be quota/max_period 9295 * note: units are usecs 9296 */ 9297 static u64 normalize_cfs_quota(struct task_group *tg, 9298 struct cfs_schedulable_data *d) 9299 { 9300 u64 quota, period; 9301 9302 if (tg == d->tg) { 9303 period = d->period; 9304 quota = d->quota; 9305 } else { 9306 period = tg_get_cfs_period(tg); 9307 quota = tg_get_cfs_quota(tg); 9308 } 9309 9310 /* note: these should typically be equivalent */ 9311 if (quota == RUNTIME_INF || quota == -1) 9312 return RUNTIME_INF; 9313 9314 return to_ratio(period, quota); 9315 } 9316 9317 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9318 { 9319 struct cfs_schedulable_data *d = data; 9320 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9321 s64 quota = 0, parent_quota = -1; 9322 9323 if (!tg->parent) { 9324 quota = RUNTIME_INF; 9325 } else { 9326 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9327 9328 quota = normalize_cfs_quota(tg, d); 9329 parent_quota = parent_b->hierarchical_quota; 9330 9331 /* 9332 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9333 * always take the non-RUNTIME_INF min. On cgroup1, only 9334 * inherit when no limit is set. In both cases this is used 9335 * by the scheduler to determine if a given CFS task has a 9336 * bandwidth constraint at some higher level. 9337 */ 9338 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9339 if (quota == RUNTIME_INF) 9340 quota = parent_quota; 9341 else if (parent_quota != RUNTIME_INF) 9342 quota = min(quota, parent_quota); 9343 } else { 9344 if (quota == RUNTIME_INF) 9345 quota = parent_quota; 9346 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9347 return -EINVAL; 9348 } 9349 } 9350 cfs_b->hierarchical_quota = quota; 9351 9352 return 0; 9353 } 9354 9355 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9356 { 9357 struct cfs_schedulable_data data = { 9358 .tg = tg, 9359 .period = period, 9360 .quota = quota, 9361 }; 9362 9363 if (quota != RUNTIME_INF) { 9364 do_div(data.period, NSEC_PER_USEC); 9365 do_div(data.quota, NSEC_PER_USEC); 9366 } 9367 9368 guard(rcu)(); 9369 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9370 } 9371 9372 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9373 { 9374 struct task_group *tg = css_tg(seq_css(sf)); 9375 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9376 9377 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9378 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9379 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9380 9381 if (schedstat_enabled() && tg != &root_task_group) { 9382 struct sched_statistics *stats; 9383 u64 ws = 0; 9384 int i; 9385 9386 for_each_possible_cpu(i) { 9387 stats = __schedstats_from_se(tg->se[i]); 9388 ws += schedstat_val(stats->wait_sum); 9389 } 9390 9391 seq_printf(sf, "wait_sum %llu\n", ws); 9392 } 9393 9394 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 9395 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 9396 9397 return 0; 9398 } 9399 9400 static u64 throttled_time_self(struct task_group *tg) 9401 { 9402 int i; 9403 u64 total = 0; 9404 9405 for_each_possible_cpu(i) { 9406 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 9407 } 9408 9409 return total; 9410 } 9411 9412 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 9413 { 9414 struct task_group *tg = css_tg(seq_css(sf)); 9415 9416 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 9417 9418 return 0; 9419 } 9420 #endif /* CONFIG_CFS_BANDWIDTH */ 9421 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9422 9423 #ifdef CONFIG_RT_GROUP_SCHED 9424 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9425 struct cftype *cft, s64 val) 9426 { 9427 return sched_group_set_rt_runtime(css_tg(css), val); 9428 } 9429 9430 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9431 struct cftype *cft) 9432 { 9433 return sched_group_rt_runtime(css_tg(css)); 9434 } 9435 9436 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9437 struct cftype *cftype, u64 rt_period_us) 9438 { 9439 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9440 } 9441 9442 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9443 struct cftype *cft) 9444 { 9445 return sched_group_rt_period(css_tg(css)); 9446 } 9447 #endif /* CONFIG_RT_GROUP_SCHED */ 9448 9449 #ifdef CONFIG_FAIR_GROUP_SCHED 9450 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 9451 struct cftype *cft) 9452 { 9453 return css_tg(css)->idle; 9454 } 9455 9456 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 9457 struct cftype *cft, s64 idle) 9458 { 9459 return sched_group_set_idle(css_tg(css), idle); 9460 } 9461 #endif 9462 9463 static struct cftype cpu_legacy_files[] = { 9464 #ifdef CONFIG_FAIR_GROUP_SCHED 9465 { 9466 .name = "shares", 9467 .read_u64 = cpu_shares_read_u64, 9468 .write_u64 = cpu_shares_write_u64, 9469 }, 9470 { 9471 .name = "idle", 9472 .read_s64 = cpu_idle_read_s64, 9473 .write_s64 = cpu_idle_write_s64, 9474 }, 9475 #endif 9476 #ifdef CONFIG_CFS_BANDWIDTH 9477 { 9478 .name = "cfs_quota_us", 9479 .read_s64 = cpu_cfs_quota_read_s64, 9480 .write_s64 = cpu_cfs_quota_write_s64, 9481 }, 9482 { 9483 .name = "cfs_period_us", 9484 .read_u64 = cpu_cfs_period_read_u64, 9485 .write_u64 = cpu_cfs_period_write_u64, 9486 }, 9487 { 9488 .name = "cfs_burst_us", 9489 .read_u64 = cpu_cfs_burst_read_u64, 9490 .write_u64 = cpu_cfs_burst_write_u64, 9491 }, 9492 { 9493 .name = "stat", 9494 .seq_show = cpu_cfs_stat_show, 9495 }, 9496 { 9497 .name = "stat.local", 9498 .seq_show = cpu_cfs_local_stat_show, 9499 }, 9500 #endif 9501 #ifdef CONFIG_RT_GROUP_SCHED 9502 { 9503 .name = "rt_runtime_us", 9504 .read_s64 = cpu_rt_runtime_read, 9505 .write_s64 = cpu_rt_runtime_write, 9506 }, 9507 { 9508 .name = "rt_period_us", 9509 .read_u64 = cpu_rt_period_read_uint, 9510 .write_u64 = cpu_rt_period_write_uint, 9511 }, 9512 #endif 9513 #ifdef CONFIG_UCLAMP_TASK_GROUP 9514 { 9515 .name = "uclamp.min", 9516 .flags = CFTYPE_NOT_ON_ROOT, 9517 .seq_show = cpu_uclamp_min_show, 9518 .write = cpu_uclamp_min_write, 9519 }, 9520 { 9521 .name = "uclamp.max", 9522 .flags = CFTYPE_NOT_ON_ROOT, 9523 .seq_show = cpu_uclamp_max_show, 9524 .write = cpu_uclamp_max_write, 9525 }, 9526 #endif 9527 { } /* Terminate */ 9528 }; 9529 9530 static int cpu_extra_stat_show(struct seq_file *sf, 9531 struct cgroup_subsys_state *css) 9532 { 9533 #ifdef CONFIG_CFS_BANDWIDTH 9534 { 9535 struct task_group *tg = css_tg(css); 9536 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9537 u64 throttled_usec, burst_usec; 9538 9539 throttled_usec = cfs_b->throttled_time; 9540 do_div(throttled_usec, NSEC_PER_USEC); 9541 burst_usec = cfs_b->burst_time; 9542 do_div(burst_usec, NSEC_PER_USEC); 9543 9544 seq_printf(sf, "nr_periods %d\n" 9545 "nr_throttled %d\n" 9546 "throttled_usec %llu\n" 9547 "nr_bursts %d\n" 9548 "burst_usec %llu\n", 9549 cfs_b->nr_periods, cfs_b->nr_throttled, 9550 throttled_usec, cfs_b->nr_burst, burst_usec); 9551 } 9552 #endif 9553 return 0; 9554 } 9555 9556 static int cpu_local_stat_show(struct seq_file *sf, 9557 struct cgroup_subsys_state *css) 9558 { 9559 #ifdef CONFIG_CFS_BANDWIDTH 9560 { 9561 struct task_group *tg = css_tg(css); 9562 u64 throttled_self_usec; 9563 9564 throttled_self_usec = throttled_time_self(tg); 9565 do_div(throttled_self_usec, NSEC_PER_USEC); 9566 9567 seq_printf(sf, "throttled_usec %llu\n", 9568 throttled_self_usec); 9569 } 9570 #endif 9571 return 0; 9572 } 9573 9574 #ifdef CONFIG_FAIR_GROUP_SCHED 9575 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 9576 struct cftype *cft) 9577 { 9578 struct task_group *tg = css_tg(css); 9579 u64 weight = scale_load_down(tg->shares); 9580 9581 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 9582 } 9583 9584 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 9585 struct cftype *cft, u64 weight) 9586 { 9587 /* 9588 * cgroup weight knobs should use the common MIN, DFL and MAX 9589 * values which are 1, 100 and 10000 respectively. While it loses 9590 * a bit of range on both ends, it maps pretty well onto the shares 9591 * value used by scheduler and the round-trip conversions preserve 9592 * the original value over the entire range. 9593 */ 9594 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 9595 return -ERANGE; 9596 9597 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 9598 9599 return sched_group_set_shares(css_tg(css), scale_load(weight)); 9600 } 9601 9602 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 9603 struct cftype *cft) 9604 { 9605 unsigned long weight = scale_load_down(css_tg(css)->shares); 9606 int last_delta = INT_MAX; 9607 int prio, delta; 9608 9609 /* find the closest nice value to the current weight */ 9610 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 9611 delta = abs(sched_prio_to_weight[prio] - weight); 9612 if (delta >= last_delta) 9613 break; 9614 last_delta = delta; 9615 } 9616 9617 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 9618 } 9619 9620 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 9621 struct cftype *cft, s64 nice) 9622 { 9623 unsigned long weight; 9624 int idx; 9625 9626 if (nice < MIN_NICE || nice > MAX_NICE) 9627 return -ERANGE; 9628 9629 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 9630 idx = array_index_nospec(idx, 40); 9631 weight = sched_prio_to_weight[idx]; 9632 9633 return sched_group_set_shares(css_tg(css), scale_load(weight)); 9634 } 9635 #endif 9636 9637 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 9638 long period, long quota) 9639 { 9640 if (quota < 0) 9641 seq_puts(sf, "max"); 9642 else 9643 seq_printf(sf, "%ld", quota); 9644 9645 seq_printf(sf, " %ld\n", period); 9646 } 9647 9648 /* caller should put the current value in *@periodp before calling */ 9649 static int __maybe_unused cpu_period_quota_parse(char *buf, 9650 u64 *periodp, u64 *quotap) 9651 { 9652 char tok[21]; /* U64_MAX */ 9653 9654 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 9655 return -EINVAL; 9656 9657 *periodp *= NSEC_PER_USEC; 9658 9659 if (sscanf(tok, "%llu", quotap)) 9660 *quotap *= NSEC_PER_USEC; 9661 else if (!strcmp(tok, "max")) 9662 *quotap = RUNTIME_INF; 9663 else 9664 return -EINVAL; 9665 9666 return 0; 9667 } 9668 9669 #ifdef CONFIG_CFS_BANDWIDTH 9670 static int cpu_max_show(struct seq_file *sf, void *v) 9671 { 9672 struct task_group *tg = css_tg(seq_css(sf)); 9673 9674 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 9675 return 0; 9676 } 9677 9678 static ssize_t cpu_max_write(struct kernfs_open_file *of, 9679 char *buf, size_t nbytes, loff_t off) 9680 { 9681 struct task_group *tg = css_tg(of_css(of)); 9682 u64 period = tg_get_cfs_period(tg); 9683 u64 burst = tg->cfs_bandwidth.burst; 9684 u64 quota; 9685 int ret; 9686 9687 ret = cpu_period_quota_parse(buf, &period, "a); 9688 if (!ret) 9689 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 9690 return ret ?: nbytes; 9691 } 9692 #endif 9693 9694 static struct cftype cpu_files[] = { 9695 #ifdef CONFIG_FAIR_GROUP_SCHED 9696 { 9697 .name = "weight", 9698 .flags = CFTYPE_NOT_ON_ROOT, 9699 .read_u64 = cpu_weight_read_u64, 9700 .write_u64 = cpu_weight_write_u64, 9701 }, 9702 { 9703 .name = "weight.nice", 9704 .flags = CFTYPE_NOT_ON_ROOT, 9705 .read_s64 = cpu_weight_nice_read_s64, 9706 .write_s64 = cpu_weight_nice_write_s64, 9707 }, 9708 { 9709 .name = "idle", 9710 .flags = CFTYPE_NOT_ON_ROOT, 9711 .read_s64 = cpu_idle_read_s64, 9712 .write_s64 = cpu_idle_write_s64, 9713 }, 9714 #endif 9715 #ifdef CONFIG_CFS_BANDWIDTH 9716 { 9717 .name = "max", 9718 .flags = CFTYPE_NOT_ON_ROOT, 9719 .seq_show = cpu_max_show, 9720 .write = cpu_max_write, 9721 }, 9722 { 9723 .name = "max.burst", 9724 .flags = CFTYPE_NOT_ON_ROOT, 9725 .read_u64 = cpu_cfs_burst_read_u64, 9726 .write_u64 = cpu_cfs_burst_write_u64, 9727 }, 9728 #endif 9729 #ifdef CONFIG_UCLAMP_TASK_GROUP 9730 { 9731 .name = "uclamp.min", 9732 .flags = CFTYPE_NOT_ON_ROOT, 9733 .seq_show = cpu_uclamp_min_show, 9734 .write = cpu_uclamp_min_write, 9735 }, 9736 { 9737 .name = "uclamp.max", 9738 .flags = CFTYPE_NOT_ON_ROOT, 9739 .seq_show = cpu_uclamp_max_show, 9740 .write = cpu_uclamp_max_write, 9741 }, 9742 #endif 9743 { } /* terminate */ 9744 }; 9745 9746 struct cgroup_subsys cpu_cgrp_subsys = { 9747 .css_alloc = cpu_cgroup_css_alloc, 9748 .css_online = cpu_cgroup_css_online, 9749 .css_released = cpu_cgroup_css_released, 9750 .css_free = cpu_cgroup_css_free, 9751 .css_extra_stat_show = cpu_extra_stat_show, 9752 .css_local_stat_show = cpu_local_stat_show, 9753 #ifdef CONFIG_RT_GROUP_SCHED 9754 .can_attach = cpu_cgroup_can_attach, 9755 #endif 9756 .attach = cpu_cgroup_attach, 9757 .legacy_cftypes = cpu_legacy_files, 9758 .dfl_cftypes = cpu_files, 9759 .early_init = true, 9760 .threaded = true, 9761 }; 9762 9763 #endif /* CONFIG_CGROUP_SCHED */ 9764 9765 void dump_cpu_task(int cpu) 9766 { 9767 if (cpu == smp_processor_id() && in_hardirq()) { 9768 struct pt_regs *regs; 9769 9770 regs = get_irq_regs(); 9771 if (regs) { 9772 show_regs(regs); 9773 return; 9774 } 9775 } 9776 9777 if (trigger_single_cpu_backtrace(cpu)) 9778 return; 9779 9780 pr_info("Task dump for CPU %d:\n", cpu); 9781 sched_show_task(cpu_curr(cpu)); 9782 } 9783 9784 /* 9785 * Nice levels are multiplicative, with a gentle 10% change for every 9786 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 9787 * nice 1, it will get ~10% less CPU time than another CPU-bound task 9788 * that remained on nice 0. 9789 * 9790 * The "10% effect" is relative and cumulative: from _any_ nice level, 9791 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 9792 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 9793 * If a task goes up by ~10% and another task goes down by ~10% then 9794 * the relative distance between them is ~25%.) 9795 */ 9796 const int sched_prio_to_weight[40] = { 9797 /* -20 */ 88761, 71755, 56483, 46273, 36291, 9798 /* -15 */ 29154, 23254, 18705, 14949, 11916, 9799 /* -10 */ 9548, 7620, 6100, 4904, 3906, 9800 /* -5 */ 3121, 2501, 1991, 1586, 1277, 9801 /* 0 */ 1024, 820, 655, 526, 423, 9802 /* 5 */ 335, 272, 215, 172, 137, 9803 /* 10 */ 110, 87, 70, 56, 45, 9804 /* 15 */ 36, 29, 23, 18, 15, 9805 }; 9806 9807 /* 9808 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. 9809 * 9810 * In cases where the weight does not change often, we can use the 9811 * pre-calculated inverse to speed up arithmetics by turning divisions 9812 * into multiplications: 9813 */ 9814 const u32 sched_prio_to_wmult[40] = { 9815 /* -20 */ 48388, 59856, 76040, 92818, 118348, 9816 /* -15 */ 147320, 184698, 229616, 287308, 360437, 9817 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 9818 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 9819 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 9820 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 9821 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 9822 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 9823 }; 9824 9825 void call_trace_sched_update_nr_running(struct rq *rq, int count) 9826 { 9827 trace_sched_update_nr_running_tp(rq, count); 9828 } 9829 9830 #ifdef CONFIG_SCHED_MM_CID 9831 9832 /* 9833 * @cid_lock: Guarantee forward-progress of cid allocation. 9834 * 9835 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock 9836 * is only used when contention is detected by the lock-free allocation so 9837 * forward progress can be guaranteed. 9838 */ 9839 DEFINE_RAW_SPINLOCK(cid_lock); 9840 9841 /* 9842 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. 9843 * 9844 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is 9845 * detected, it is set to 1 to ensure that all newly coming allocations are 9846 * serialized by @cid_lock until the allocation which detected contention 9847 * completes and sets @use_cid_lock back to 0. This guarantees forward progress 9848 * of a cid allocation. 9849 */ 9850 int use_cid_lock; 9851 9852 /* 9853 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid 9854 * concurrently with respect to the execution of the source runqueue context 9855 * switch. 9856 * 9857 * There is one basic properties we want to guarantee here: 9858 * 9859 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively 9860 * used by a task. That would lead to concurrent allocation of the cid and 9861 * userspace corruption. 9862 * 9863 * Provide this guarantee by introducing a Dekker memory ordering to guarantee 9864 * that a pair of loads observe at least one of a pair of stores, which can be 9865 * shown as: 9866 * 9867 * X = Y = 0 9868 * 9869 * w[X]=1 w[Y]=1 9870 * MB MB 9871 * r[Y]=y r[X]=x 9872 * 9873 * Which guarantees that x==0 && y==0 is impossible. But rather than using 9874 * values 0 and 1, this algorithm cares about specific state transitions of the 9875 * runqueue current task (as updated by the scheduler context switch), and the 9876 * per-mm/cpu cid value. 9877 * 9878 * Let's introduce task (Y) which has task->mm == mm and task (N) which has 9879 * task->mm != mm for the rest of the discussion. There are two scheduler state 9880 * transitions on context switch we care about: 9881 * 9882 * (TSA) Store to rq->curr with transition from (N) to (Y) 9883 * 9884 * (TSB) Store to rq->curr with transition from (Y) to (N) 9885 * 9886 * On the remote-clear side, there is one transition we care about: 9887 * 9888 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag 9889 * 9890 * There is also a transition to UNSET state which can be performed from all 9891 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which 9892 * guarantees that only a single thread will succeed: 9893 * 9894 * (TMB) cmpxchg to *pcpu_cid to mark UNSET 9895 * 9896 * Just to be clear, what we do _not_ want to happen is a transition to UNSET 9897 * when a thread is actively using the cid (property (1)). 9898 * 9899 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. 9900 * 9901 * Scenario A) (TSA)+(TMA) (from next task perspective) 9902 * 9903 * CPU0 CPU1 9904 * 9905 * Context switch CS-1 Remote-clear 9906 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) 9907 * (implied barrier after cmpxchg) 9908 * - switch_mm_cid() 9909 * - memory barrier (see switch_mm_cid() 9910 * comment explaining how this barrier 9911 * is combined with other scheduler 9912 * barriers) 9913 * - mm_cid_get (next) 9914 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) 9915 * 9916 * This Dekker ensures that either task (Y) is observed by the 9917 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are 9918 * observed. 9919 * 9920 * If task (Y) store is observed by rcu_dereference(), it means that there is 9921 * still an active task on the cpu. Remote-clear will therefore not transition 9922 * to UNSET, which fulfills property (1). 9923 * 9924 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), 9925 * it will move its state to UNSET, which clears the percpu cid perhaps 9926 * uselessly (which is not an issue for correctness). Because task (Y) is not 9927 * observed, CPU1 can move ahead to set the state to UNSET. Because moving 9928 * state to UNSET is done with a cmpxchg expecting that the old state has the 9929 * LAZY flag set, only one thread will successfully UNSET. 9930 * 9931 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 9932 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and 9933 * CPU1 will observe task (Y) and do nothing more, which is fine. 9934 * 9935 * What we are effectively preventing with this Dekker is a scenario where 9936 * neither LAZY flag nor store (Y) are observed, which would fail property (1) 9937 * because this would UNSET a cid which is actively used. 9938 */ 9939 9940 void sched_mm_cid_migrate_from(struct task_struct *t) 9941 { 9942 t->migrate_from_cpu = task_cpu(t); 9943 } 9944 9945 static 9946 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, 9947 struct task_struct *t, 9948 struct mm_cid *src_pcpu_cid) 9949 { 9950 struct mm_struct *mm = t->mm; 9951 struct task_struct *src_task; 9952 int src_cid, last_mm_cid; 9953 9954 if (!mm) 9955 return -1; 9956 9957 last_mm_cid = t->last_mm_cid; 9958 /* 9959 * If the migrated task has no last cid, or if the current 9960 * task on src rq uses the cid, it means the source cid does not need 9961 * to be moved to the destination cpu. 9962 */ 9963 if (last_mm_cid == -1) 9964 return -1; 9965 src_cid = READ_ONCE(src_pcpu_cid->cid); 9966 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) 9967 return -1; 9968 9969 /* 9970 * If we observe an active task using the mm on this rq, it means we 9971 * are not the last task to be migrated from this cpu for this mm, so 9972 * there is no need to move src_cid to the destination cpu. 9973 */ 9974 guard(rcu)(); 9975 src_task = rcu_dereference(src_rq->curr); 9976 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 9977 t->last_mm_cid = -1; 9978 return -1; 9979 } 9980 9981 return src_cid; 9982 } 9983 9984 static 9985 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, 9986 struct task_struct *t, 9987 struct mm_cid *src_pcpu_cid, 9988 int src_cid) 9989 { 9990 struct task_struct *src_task; 9991 struct mm_struct *mm = t->mm; 9992 int lazy_cid; 9993 9994 if (src_cid == -1) 9995 return -1; 9996 9997 /* 9998 * Attempt to clear the source cpu cid to move it to the destination 9999 * cpu. 10000 */ 10001 lazy_cid = mm_cid_set_lazy_put(src_cid); 10002 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) 10003 return -1; 10004 10005 /* 10006 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10007 * rq->curr->mm matches the scheduler barrier in context_switch() 10008 * between store to rq->curr and load of prev and next task's 10009 * per-mm/cpu cid. 10010 * 10011 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10012 * rq->curr->mm_cid_active matches the barrier in 10013 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10014 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10015 * load of per-mm/cpu cid. 10016 */ 10017 10018 /* 10019 * If we observe an active task using the mm on this rq after setting 10020 * the lazy-put flag, this task will be responsible for transitioning 10021 * from lazy-put flag set to MM_CID_UNSET. 10022 */ 10023 scoped_guard (rcu) { 10024 src_task = rcu_dereference(src_rq->curr); 10025 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10026 /* 10027 * We observed an active task for this mm, there is therefore 10028 * no point in moving this cid to the destination cpu. 10029 */ 10030 t->last_mm_cid = -1; 10031 return -1; 10032 } 10033 } 10034 10035 /* 10036 * The src_cid is unused, so it can be unset. 10037 */ 10038 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10039 return -1; 10040 return src_cid; 10041 } 10042 10043 /* 10044 * Migration to dst cpu. Called with dst_rq lock held. 10045 * Interrupts are disabled, which keeps the window of cid ownership without the 10046 * source rq lock held small. 10047 */ 10048 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) 10049 { 10050 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; 10051 struct mm_struct *mm = t->mm; 10052 int src_cid, dst_cid, src_cpu; 10053 struct rq *src_rq; 10054 10055 lockdep_assert_rq_held(dst_rq); 10056 10057 if (!mm) 10058 return; 10059 src_cpu = t->migrate_from_cpu; 10060 if (src_cpu == -1) { 10061 t->last_mm_cid = -1; 10062 return; 10063 } 10064 /* 10065 * Move the src cid if the dst cid is unset. This keeps id 10066 * allocation closest to 0 in cases where few threads migrate around 10067 * many CPUs. 10068 * 10069 * If destination cid is already set, we may have to just clear 10070 * the src cid to ensure compactness in frequent migrations 10071 * scenarios. 10072 * 10073 * It is not useful to clear the src cid when the number of threads is 10074 * greater or equal to the number of allowed CPUs, because user-space 10075 * can expect that the number of allowed cids can reach the number of 10076 * allowed CPUs. 10077 */ 10078 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); 10079 dst_cid = READ_ONCE(dst_pcpu_cid->cid); 10080 if (!mm_cid_is_unset(dst_cid) && 10081 atomic_read(&mm->mm_users) >= t->nr_cpus_allowed) 10082 return; 10083 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); 10084 src_rq = cpu_rq(src_cpu); 10085 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); 10086 if (src_cid == -1) 10087 return; 10088 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, 10089 src_cid); 10090 if (src_cid == -1) 10091 return; 10092 if (!mm_cid_is_unset(dst_cid)) { 10093 __mm_cid_put(mm, src_cid); 10094 return; 10095 } 10096 /* Move src_cid to dst cpu. */ 10097 mm_cid_snapshot_time(dst_rq, mm); 10098 WRITE_ONCE(dst_pcpu_cid->cid, src_cid); 10099 } 10100 10101 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, 10102 int cpu) 10103 { 10104 struct rq *rq = cpu_rq(cpu); 10105 struct task_struct *t; 10106 int cid, lazy_cid; 10107 10108 cid = READ_ONCE(pcpu_cid->cid); 10109 if (!mm_cid_is_valid(cid)) 10110 return; 10111 10112 /* 10113 * Clear the cpu cid if it is set to keep cid allocation compact. If 10114 * there happens to be other tasks left on the source cpu using this 10115 * mm, the next task using this mm will reallocate its cid on context 10116 * switch. 10117 */ 10118 lazy_cid = mm_cid_set_lazy_put(cid); 10119 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) 10120 return; 10121 10122 /* 10123 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10124 * rq->curr->mm matches the scheduler barrier in context_switch() 10125 * between store to rq->curr and load of prev and next task's 10126 * per-mm/cpu cid. 10127 * 10128 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10129 * rq->curr->mm_cid_active matches the barrier in 10130 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10131 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10132 * load of per-mm/cpu cid. 10133 */ 10134 10135 /* 10136 * If we observe an active task using the mm on this rq after setting 10137 * the lazy-put flag, that task will be responsible for transitioning 10138 * from lazy-put flag set to MM_CID_UNSET. 10139 */ 10140 scoped_guard (rcu) { 10141 t = rcu_dereference(rq->curr); 10142 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) 10143 return; 10144 } 10145 10146 /* 10147 * The cid is unused, so it can be unset. 10148 * Disable interrupts to keep the window of cid ownership without rq 10149 * lock small. 10150 */ 10151 scoped_guard (irqsave) { 10152 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10153 __mm_cid_put(mm, cid); 10154 } 10155 } 10156 10157 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) 10158 { 10159 struct rq *rq = cpu_rq(cpu); 10160 struct mm_cid *pcpu_cid; 10161 struct task_struct *curr; 10162 u64 rq_clock; 10163 10164 /* 10165 * rq->clock load is racy on 32-bit but one spurious clear once in a 10166 * while is irrelevant. 10167 */ 10168 rq_clock = READ_ONCE(rq->clock); 10169 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10170 10171 /* 10172 * In order to take care of infrequently scheduled tasks, bump the time 10173 * snapshot associated with this cid if an active task using the mm is 10174 * observed on this rq. 10175 */ 10176 scoped_guard (rcu) { 10177 curr = rcu_dereference(rq->curr); 10178 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { 10179 WRITE_ONCE(pcpu_cid->time, rq_clock); 10180 return; 10181 } 10182 } 10183 10184 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) 10185 return; 10186 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10187 } 10188 10189 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, 10190 int weight) 10191 { 10192 struct mm_cid *pcpu_cid; 10193 int cid; 10194 10195 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10196 cid = READ_ONCE(pcpu_cid->cid); 10197 if (!mm_cid_is_valid(cid) || cid < weight) 10198 return; 10199 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10200 } 10201 10202 static void task_mm_cid_work(struct callback_head *work) 10203 { 10204 unsigned long now = jiffies, old_scan, next_scan; 10205 struct task_struct *t = current; 10206 struct cpumask *cidmask; 10207 struct mm_struct *mm; 10208 int weight, cpu; 10209 10210 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work)); 10211 10212 work->next = work; /* Prevent double-add */ 10213 if (t->flags & PF_EXITING) 10214 return; 10215 mm = t->mm; 10216 if (!mm) 10217 return; 10218 old_scan = READ_ONCE(mm->mm_cid_next_scan); 10219 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10220 if (!old_scan) { 10221 unsigned long res; 10222 10223 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); 10224 if (res != old_scan) 10225 old_scan = res; 10226 else 10227 old_scan = next_scan; 10228 } 10229 if (time_before(now, old_scan)) 10230 return; 10231 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) 10232 return; 10233 cidmask = mm_cidmask(mm); 10234 /* Clear cids that were not recently used. */ 10235 for_each_possible_cpu(cpu) 10236 sched_mm_cid_remote_clear_old(mm, cpu); 10237 weight = cpumask_weight(cidmask); 10238 /* 10239 * Clear cids that are greater or equal to the cidmask weight to 10240 * recompact it. 10241 */ 10242 for_each_possible_cpu(cpu) 10243 sched_mm_cid_remote_clear_weight(mm, cpu, weight); 10244 } 10245 10246 void init_sched_mm_cid(struct task_struct *t) 10247 { 10248 struct mm_struct *mm = t->mm; 10249 int mm_users = 0; 10250 10251 if (mm) { 10252 mm_users = atomic_read(&mm->mm_users); 10253 if (mm_users == 1) 10254 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10255 } 10256 t->cid_work.next = &t->cid_work; /* Protect against double add */ 10257 init_task_work(&t->cid_work, task_mm_cid_work); 10258 } 10259 10260 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) 10261 { 10262 struct callback_head *work = &curr->cid_work; 10263 unsigned long now = jiffies; 10264 10265 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || 10266 work->next != work) 10267 return; 10268 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) 10269 return; 10270 task_work_add(curr, work, TWA_RESUME); 10271 } 10272 10273 void sched_mm_cid_exit_signals(struct task_struct *t) 10274 { 10275 struct mm_struct *mm = t->mm; 10276 struct rq *rq; 10277 10278 if (!mm) 10279 return; 10280 10281 preempt_disable(); 10282 rq = this_rq(); 10283 guard(rq_lock_irqsave)(rq); 10284 preempt_enable_no_resched(); /* holding spinlock */ 10285 WRITE_ONCE(t->mm_cid_active, 0); 10286 /* 10287 * Store t->mm_cid_active before loading per-mm/cpu cid. 10288 * Matches barrier in sched_mm_cid_remote_clear_old(). 10289 */ 10290 smp_mb(); 10291 mm_cid_put(mm); 10292 t->last_mm_cid = t->mm_cid = -1; 10293 } 10294 10295 void sched_mm_cid_before_execve(struct task_struct *t) 10296 { 10297 struct mm_struct *mm = t->mm; 10298 struct rq *rq; 10299 10300 if (!mm) 10301 return; 10302 10303 preempt_disable(); 10304 rq = this_rq(); 10305 guard(rq_lock_irqsave)(rq); 10306 preempt_enable_no_resched(); /* holding spinlock */ 10307 WRITE_ONCE(t->mm_cid_active, 0); 10308 /* 10309 * Store t->mm_cid_active before loading per-mm/cpu cid. 10310 * Matches barrier in sched_mm_cid_remote_clear_old(). 10311 */ 10312 smp_mb(); 10313 mm_cid_put(mm); 10314 t->last_mm_cid = t->mm_cid = -1; 10315 } 10316 10317 void sched_mm_cid_after_execve(struct task_struct *t) 10318 { 10319 struct mm_struct *mm = t->mm; 10320 struct rq *rq; 10321 10322 if (!mm) 10323 return; 10324 10325 preempt_disable(); 10326 rq = this_rq(); 10327 scoped_guard (rq_lock_irqsave, rq) { 10328 preempt_enable_no_resched(); /* holding spinlock */ 10329 WRITE_ONCE(t->mm_cid_active, 1); 10330 /* 10331 * Store t->mm_cid_active before loading per-mm/cpu cid. 10332 * Matches barrier in sched_mm_cid_remote_clear_old(). 10333 */ 10334 smp_mb(); 10335 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm); 10336 } 10337 rseq_set_notify_resume(t); 10338 } 10339 10340 void sched_mm_cid_fork(struct task_struct *t) 10341 { 10342 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 10343 t->mm_cid_active = 1; 10344 } 10345 #endif 10346