xref: /linux/kernel/sched/core.c (revision c1aac62f36c1e37ee81c9e09ee9ee733eef05dcb)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Core kernel scheduler code and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  */
8 #include <linux/sched.h>
9 #include <linux/cpuset.h>
10 #include <linux/delayacct.h>
11 #include <linux/init_task.h>
12 #include <linux/context_tracking.h>
13 
14 #include <linux/blkdev.h>
15 #include <linux/kprobes.h>
16 #include <linux/mmu_context.h>
17 #include <linux/module.h>
18 #include <linux/nmi.h>
19 #include <linux/prefetch.h>
20 #include <linux/profile.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 
24 #include <asm/switch_to.h>
25 #include <asm/tlb.h>
26 #ifdef CONFIG_PARAVIRT
27 #include <asm/paravirt.h>
28 #endif
29 
30 #include "sched.h"
31 #include "../workqueue_internal.h"
32 #include "../smpboot.h"
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/sched.h>
36 
37 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
38 
39 /*
40  * Debugging: various feature bits
41  */
42 
43 #define SCHED_FEAT(name, enabled)	\
44 	(1UL << __SCHED_FEAT_##name) * enabled |
45 
46 const_debug unsigned int sysctl_sched_features =
47 #include "features.h"
48 	0;
49 
50 #undef SCHED_FEAT
51 
52 /*
53  * Number of tasks to iterate in a single balance run.
54  * Limited because this is done with IRQs disabled.
55  */
56 const_debug unsigned int sysctl_sched_nr_migrate = 32;
57 
58 /*
59  * period over which we average the RT time consumption, measured
60  * in ms.
61  *
62  * default: 1s
63  */
64 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
65 
66 /*
67  * period over which we measure -rt task CPU usage in us.
68  * default: 1s
69  */
70 unsigned int sysctl_sched_rt_period = 1000000;
71 
72 __read_mostly int scheduler_running;
73 
74 /*
75  * part of the period that we allow rt tasks to run in us.
76  * default: 0.95s
77  */
78 int sysctl_sched_rt_runtime = 950000;
79 
80 /* CPUs with isolated domains */
81 cpumask_var_t cpu_isolated_map;
82 
83 /*
84  * this_rq_lock - lock this runqueue and disable interrupts.
85  */
86 static struct rq *this_rq_lock(void)
87 	__acquires(rq->lock)
88 {
89 	struct rq *rq;
90 
91 	local_irq_disable();
92 	rq = this_rq();
93 	raw_spin_lock(&rq->lock);
94 
95 	return rq;
96 }
97 
98 /*
99  * __task_rq_lock - lock the rq @p resides on.
100  */
101 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
102 	__acquires(rq->lock)
103 {
104 	struct rq *rq;
105 
106 	lockdep_assert_held(&p->pi_lock);
107 
108 	for (;;) {
109 		rq = task_rq(p);
110 		raw_spin_lock(&rq->lock);
111 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
112 			rq_pin_lock(rq, rf);
113 			return rq;
114 		}
115 		raw_spin_unlock(&rq->lock);
116 
117 		while (unlikely(task_on_rq_migrating(p)))
118 			cpu_relax();
119 	}
120 }
121 
122 /*
123  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
124  */
125 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
126 	__acquires(p->pi_lock)
127 	__acquires(rq->lock)
128 {
129 	struct rq *rq;
130 
131 	for (;;) {
132 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
133 		rq = task_rq(p);
134 		raw_spin_lock(&rq->lock);
135 		/*
136 		 *	move_queued_task()		task_rq_lock()
137 		 *
138 		 *	ACQUIRE (rq->lock)
139 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
140 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
141 		 *	[S] ->cpu = new_cpu		[L] task_rq()
142 		 *					[L] ->on_rq
143 		 *	RELEASE (rq->lock)
144 		 *
145 		 * If we observe the old cpu in task_rq_lock, the acquire of
146 		 * the old rq->lock will fully serialize against the stores.
147 		 *
148 		 * If we observe the new CPU in task_rq_lock, the acquire will
149 		 * pair with the WMB to ensure we must then also see migrating.
150 		 */
151 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
152 			rq_pin_lock(rq, rf);
153 			return rq;
154 		}
155 		raw_spin_unlock(&rq->lock);
156 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
157 
158 		while (unlikely(task_on_rq_migrating(p)))
159 			cpu_relax();
160 	}
161 }
162 
163 /*
164  * RQ-clock updating methods:
165  */
166 
167 static void update_rq_clock_task(struct rq *rq, s64 delta)
168 {
169 /*
170  * In theory, the compile should just see 0 here, and optimize out the call
171  * to sched_rt_avg_update. But I don't trust it...
172  */
173 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
174 	s64 steal = 0, irq_delta = 0;
175 #endif
176 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
177 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
178 
179 	/*
180 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
181 	 * this case when a previous update_rq_clock() happened inside a
182 	 * {soft,}irq region.
183 	 *
184 	 * When this happens, we stop ->clock_task and only update the
185 	 * prev_irq_time stamp to account for the part that fit, so that a next
186 	 * update will consume the rest. This ensures ->clock_task is
187 	 * monotonic.
188 	 *
189 	 * It does however cause some slight miss-attribution of {soft,}irq
190 	 * time, a more accurate solution would be to update the irq_time using
191 	 * the current rq->clock timestamp, except that would require using
192 	 * atomic ops.
193 	 */
194 	if (irq_delta > delta)
195 		irq_delta = delta;
196 
197 	rq->prev_irq_time += irq_delta;
198 	delta -= irq_delta;
199 #endif
200 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
201 	if (static_key_false((&paravirt_steal_rq_enabled))) {
202 		steal = paravirt_steal_clock(cpu_of(rq));
203 		steal -= rq->prev_steal_time_rq;
204 
205 		if (unlikely(steal > delta))
206 			steal = delta;
207 
208 		rq->prev_steal_time_rq += steal;
209 		delta -= steal;
210 	}
211 #endif
212 
213 	rq->clock_task += delta;
214 
215 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
216 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
217 		sched_rt_avg_update(rq, irq_delta + steal);
218 #endif
219 }
220 
221 void update_rq_clock(struct rq *rq)
222 {
223 	s64 delta;
224 
225 	lockdep_assert_held(&rq->lock);
226 
227 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
228 		return;
229 
230 #ifdef CONFIG_SCHED_DEBUG
231 	rq->clock_update_flags |= RQCF_UPDATED;
232 #endif
233 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
234 	if (delta < 0)
235 		return;
236 	rq->clock += delta;
237 	update_rq_clock_task(rq, delta);
238 }
239 
240 
241 #ifdef CONFIG_SCHED_HRTICK
242 /*
243  * Use HR-timers to deliver accurate preemption points.
244  */
245 
246 static void hrtick_clear(struct rq *rq)
247 {
248 	if (hrtimer_active(&rq->hrtick_timer))
249 		hrtimer_cancel(&rq->hrtick_timer);
250 }
251 
252 /*
253  * High-resolution timer tick.
254  * Runs from hardirq context with interrupts disabled.
255  */
256 static enum hrtimer_restart hrtick(struct hrtimer *timer)
257 {
258 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
259 
260 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
261 
262 	raw_spin_lock(&rq->lock);
263 	update_rq_clock(rq);
264 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
265 	raw_spin_unlock(&rq->lock);
266 
267 	return HRTIMER_NORESTART;
268 }
269 
270 #ifdef CONFIG_SMP
271 
272 static void __hrtick_restart(struct rq *rq)
273 {
274 	struct hrtimer *timer = &rq->hrtick_timer;
275 
276 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
277 }
278 
279 /*
280  * called from hardirq (IPI) context
281  */
282 static void __hrtick_start(void *arg)
283 {
284 	struct rq *rq = arg;
285 
286 	raw_spin_lock(&rq->lock);
287 	__hrtick_restart(rq);
288 	rq->hrtick_csd_pending = 0;
289 	raw_spin_unlock(&rq->lock);
290 }
291 
292 /*
293  * Called to set the hrtick timer state.
294  *
295  * called with rq->lock held and irqs disabled
296  */
297 void hrtick_start(struct rq *rq, u64 delay)
298 {
299 	struct hrtimer *timer = &rq->hrtick_timer;
300 	ktime_t time;
301 	s64 delta;
302 
303 	/*
304 	 * Don't schedule slices shorter than 10000ns, that just
305 	 * doesn't make sense and can cause timer DoS.
306 	 */
307 	delta = max_t(s64, delay, 10000LL);
308 	time = ktime_add_ns(timer->base->get_time(), delta);
309 
310 	hrtimer_set_expires(timer, time);
311 
312 	if (rq == this_rq()) {
313 		__hrtick_restart(rq);
314 	} else if (!rq->hrtick_csd_pending) {
315 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
316 		rq->hrtick_csd_pending = 1;
317 	}
318 }
319 
320 #else
321 /*
322  * Called to set the hrtick timer state.
323  *
324  * called with rq->lock held and irqs disabled
325  */
326 void hrtick_start(struct rq *rq, u64 delay)
327 {
328 	/*
329 	 * Don't schedule slices shorter than 10000ns, that just
330 	 * doesn't make sense. Rely on vruntime for fairness.
331 	 */
332 	delay = max_t(u64, delay, 10000LL);
333 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
334 		      HRTIMER_MODE_REL_PINNED);
335 }
336 #endif /* CONFIG_SMP */
337 
338 static void init_rq_hrtick(struct rq *rq)
339 {
340 #ifdef CONFIG_SMP
341 	rq->hrtick_csd_pending = 0;
342 
343 	rq->hrtick_csd.flags = 0;
344 	rq->hrtick_csd.func = __hrtick_start;
345 	rq->hrtick_csd.info = rq;
346 #endif
347 
348 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
349 	rq->hrtick_timer.function = hrtick;
350 }
351 #else	/* CONFIG_SCHED_HRTICK */
352 static inline void hrtick_clear(struct rq *rq)
353 {
354 }
355 
356 static inline void init_rq_hrtick(struct rq *rq)
357 {
358 }
359 #endif	/* CONFIG_SCHED_HRTICK */
360 
361 /*
362  * cmpxchg based fetch_or, macro so it works for different integer types
363  */
364 #define fetch_or(ptr, mask)						\
365 	({								\
366 		typeof(ptr) _ptr = (ptr);				\
367 		typeof(mask) _mask = (mask);				\
368 		typeof(*_ptr) _old, _val = *_ptr;			\
369 									\
370 		for (;;) {						\
371 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
372 			if (_old == _val)				\
373 				break;					\
374 			_val = _old;					\
375 		}							\
376 	_old;								\
377 })
378 
379 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
380 /*
381  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
382  * this avoids any races wrt polling state changes and thereby avoids
383  * spurious IPIs.
384  */
385 static bool set_nr_and_not_polling(struct task_struct *p)
386 {
387 	struct thread_info *ti = task_thread_info(p);
388 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
389 }
390 
391 /*
392  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
393  *
394  * If this returns true, then the idle task promises to call
395  * sched_ttwu_pending() and reschedule soon.
396  */
397 static bool set_nr_if_polling(struct task_struct *p)
398 {
399 	struct thread_info *ti = task_thread_info(p);
400 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
401 
402 	for (;;) {
403 		if (!(val & _TIF_POLLING_NRFLAG))
404 			return false;
405 		if (val & _TIF_NEED_RESCHED)
406 			return true;
407 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
408 		if (old == val)
409 			break;
410 		val = old;
411 	}
412 	return true;
413 }
414 
415 #else
416 static bool set_nr_and_not_polling(struct task_struct *p)
417 {
418 	set_tsk_need_resched(p);
419 	return true;
420 }
421 
422 #ifdef CONFIG_SMP
423 static bool set_nr_if_polling(struct task_struct *p)
424 {
425 	return false;
426 }
427 #endif
428 #endif
429 
430 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
431 {
432 	struct wake_q_node *node = &task->wake_q;
433 
434 	/*
435 	 * Atomically grab the task, if ->wake_q is !nil already it means
436 	 * its already queued (either by us or someone else) and will get the
437 	 * wakeup due to that.
438 	 *
439 	 * This cmpxchg() implies a full barrier, which pairs with the write
440 	 * barrier implied by the wakeup in wake_up_q().
441 	 */
442 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
443 		return;
444 
445 	get_task_struct(task);
446 
447 	/*
448 	 * The head is context local, there can be no concurrency.
449 	 */
450 	*head->lastp = node;
451 	head->lastp = &node->next;
452 }
453 
454 void wake_up_q(struct wake_q_head *head)
455 {
456 	struct wake_q_node *node = head->first;
457 
458 	while (node != WAKE_Q_TAIL) {
459 		struct task_struct *task;
460 
461 		task = container_of(node, struct task_struct, wake_q);
462 		BUG_ON(!task);
463 		/* Task can safely be re-inserted now: */
464 		node = node->next;
465 		task->wake_q.next = NULL;
466 
467 		/*
468 		 * wake_up_process() implies a wmb() to pair with the queueing
469 		 * in wake_q_add() so as not to miss wakeups.
470 		 */
471 		wake_up_process(task);
472 		put_task_struct(task);
473 	}
474 }
475 
476 /*
477  * resched_curr - mark rq's current task 'to be rescheduled now'.
478  *
479  * On UP this means the setting of the need_resched flag, on SMP it
480  * might also involve a cross-CPU call to trigger the scheduler on
481  * the target CPU.
482  */
483 void resched_curr(struct rq *rq)
484 {
485 	struct task_struct *curr = rq->curr;
486 	int cpu;
487 
488 	lockdep_assert_held(&rq->lock);
489 
490 	if (test_tsk_need_resched(curr))
491 		return;
492 
493 	cpu = cpu_of(rq);
494 
495 	if (cpu == smp_processor_id()) {
496 		set_tsk_need_resched(curr);
497 		set_preempt_need_resched();
498 		return;
499 	}
500 
501 	if (set_nr_and_not_polling(curr))
502 		smp_send_reschedule(cpu);
503 	else
504 		trace_sched_wake_idle_without_ipi(cpu);
505 }
506 
507 void resched_cpu(int cpu)
508 {
509 	struct rq *rq = cpu_rq(cpu);
510 	unsigned long flags;
511 
512 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
513 		return;
514 	resched_curr(rq);
515 	raw_spin_unlock_irqrestore(&rq->lock, flags);
516 }
517 
518 #ifdef CONFIG_SMP
519 #ifdef CONFIG_NO_HZ_COMMON
520 /*
521  * In the semi idle case, use the nearest busy CPU for migrating timers
522  * from an idle CPU.  This is good for power-savings.
523  *
524  * We don't do similar optimization for completely idle system, as
525  * selecting an idle CPU will add more delays to the timers than intended
526  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
527  */
528 int get_nohz_timer_target(void)
529 {
530 	int i, cpu = smp_processor_id();
531 	struct sched_domain *sd;
532 
533 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
534 		return cpu;
535 
536 	rcu_read_lock();
537 	for_each_domain(cpu, sd) {
538 		for_each_cpu(i, sched_domain_span(sd)) {
539 			if (cpu == i)
540 				continue;
541 
542 			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
543 				cpu = i;
544 				goto unlock;
545 			}
546 		}
547 	}
548 
549 	if (!is_housekeeping_cpu(cpu))
550 		cpu = housekeeping_any_cpu();
551 unlock:
552 	rcu_read_unlock();
553 	return cpu;
554 }
555 
556 /*
557  * When add_timer_on() enqueues a timer into the timer wheel of an
558  * idle CPU then this timer might expire before the next timer event
559  * which is scheduled to wake up that CPU. In case of a completely
560  * idle system the next event might even be infinite time into the
561  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
562  * leaves the inner idle loop so the newly added timer is taken into
563  * account when the CPU goes back to idle and evaluates the timer
564  * wheel for the next timer event.
565  */
566 static void wake_up_idle_cpu(int cpu)
567 {
568 	struct rq *rq = cpu_rq(cpu);
569 
570 	if (cpu == smp_processor_id())
571 		return;
572 
573 	if (set_nr_and_not_polling(rq->idle))
574 		smp_send_reschedule(cpu);
575 	else
576 		trace_sched_wake_idle_without_ipi(cpu);
577 }
578 
579 static bool wake_up_full_nohz_cpu(int cpu)
580 {
581 	/*
582 	 * We just need the target to call irq_exit() and re-evaluate
583 	 * the next tick. The nohz full kick at least implies that.
584 	 * If needed we can still optimize that later with an
585 	 * empty IRQ.
586 	 */
587 	if (cpu_is_offline(cpu))
588 		return true;  /* Don't try to wake offline CPUs. */
589 	if (tick_nohz_full_cpu(cpu)) {
590 		if (cpu != smp_processor_id() ||
591 		    tick_nohz_tick_stopped())
592 			tick_nohz_full_kick_cpu(cpu);
593 		return true;
594 	}
595 
596 	return false;
597 }
598 
599 /*
600  * Wake up the specified CPU.  If the CPU is going offline, it is the
601  * caller's responsibility to deal with the lost wakeup, for example,
602  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
603  */
604 void wake_up_nohz_cpu(int cpu)
605 {
606 	if (!wake_up_full_nohz_cpu(cpu))
607 		wake_up_idle_cpu(cpu);
608 }
609 
610 static inline bool got_nohz_idle_kick(void)
611 {
612 	int cpu = smp_processor_id();
613 
614 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
615 		return false;
616 
617 	if (idle_cpu(cpu) && !need_resched())
618 		return true;
619 
620 	/*
621 	 * We can't run Idle Load Balance on this CPU for this time so we
622 	 * cancel it and clear NOHZ_BALANCE_KICK
623 	 */
624 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
625 	return false;
626 }
627 
628 #else /* CONFIG_NO_HZ_COMMON */
629 
630 static inline bool got_nohz_idle_kick(void)
631 {
632 	return false;
633 }
634 
635 #endif /* CONFIG_NO_HZ_COMMON */
636 
637 #ifdef CONFIG_NO_HZ_FULL
638 bool sched_can_stop_tick(struct rq *rq)
639 {
640 	int fifo_nr_running;
641 
642 	/* Deadline tasks, even if single, need the tick */
643 	if (rq->dl.dl_nr_running)
644 		return false;
645 
646 	/*
647 	 * If there are more than one RR tasks, we need the tick to effect the
648 	 * actual RR behaviour.
649 	 */
650 	if (rq->rt.rr_nr_running) {
651 		if (rq->rt.rr_nr_running == 1)
652 			return true;
653 		else
654 			return false;
655 	}
656 
657 	/*
658 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
659 	 * forced preemption between FIFO tasks.
660 	 */
661 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
662 	if (fifo_nr_running)
663 		return true;
664 
665 	/*
666 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
667 	 * if there's more than one we need the tick for involuntary
668 	 * preemption.
669 	 */
670 	if (rq->nr_running > 1)
671 		return false;
672 
673 	return true;
674 }
675 #endif /* CONFIG_NO_HZ_FULL */
676 
677 void sched_avg_update(struct rq *rq)
678 {
679 	s64 period = sched_avg_period();
680 
681 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
682 		/*
683 		 * Inline assembly required to prevent the compiler
684 		 * optimising this loop into a divmod call.
685 		 * See __iter_div_u64_rem() for another example of this.
686 		 */
687 		asm("" : "+rm" (rq->age_stamp));
688 		rq->age_stamp += period;
689 		rq->rt_avg /= 2;
690 	}
691 }
692 
693 #endif /* CONFIG_SMP */
694 
695 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
696 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
697 /*
698  * Iterate task_group tree rooted at *from, calling @down when first entering a
699  * node and @up when leaving it for the final time.
700  *
701  * Caller must hold rcu_lock or sufficient equivalent.
702  */
703 int walk_tg_tree_from(struct task_group *from,
704 			     tg_visitor down, tg_visitor up, void *data)
705 {
706 	struct task_group *parent, *child;
707 	int ret;
708 
709 	parent = from;
710 
711 down:
712 	ret = (*down)(parent, data);
713 	if (ret)
714 		goto out;
715 	list_for_each_entry_rcu(child, &parent->children, siblings) {
716 		parent = child;
717 		goto down;
718 
719 up:
720 		continue;
721 	}
722 	ret = (*up)(parent, data);
723 	if (ret || parent == from)
724 		goto out;
725 
726 	child = parent;
727 	parent = parent->parent;
728 	if (parent)
729 		goto up;
730 out:
731 	return ret;
732 }
733 
734 int tg_nop(struct task_group *tg, void *data)
735 {
736 	return 0;
737 }
738 #endif
739 
740 static void set_load_weight(struct task_struct *p)
741 {
742 	int prio = p->static_prio - MAX_RT_PRIO;
743 	struct load_weight *load = &p->se.load;
744 
745 	/*
746 	 * SCHED_IDLE tasks get minimal weight:
747 	 */
748 	if (idle_policy(p->policy)) {
749 		load->weight = scale_load(WEIGHT_IDLEPRIO);
750 		load->inv_weight = WMULT_IDLEPRIO;
751 		return;
752 	}
753 
754 	load->weight = scale_load(sched_prio_to_weight[prio]);
755 	load->inv_weight = sched_prio_to_wmult[prio];
756 }
757 
758 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
759 {
760 	update_rq_clock(rq);
761 	if (!(flags & ENQUEUE_RESTORE))
762 		sched_info_queued(rq, p);
763 	p->sched_class->enqueue_task(rq, p, flags);
764 }
765 
766 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
767 {
768 	update_rq_clock(rq);
769 	if (!(flags & DEQUEUE_SAVE))
770 		sched_info_dequeued(rq, p);
771 	p->sched_class->dequeue_task(rq, p, flags);
772 }
773 
774 void activate_task(struct rq *rq, struct task_struct *p, int flags)
775 {
776 	if (task_contributes_to_load(p))
777 		rq->nr_uninterruptible--;
778 
779 	enqueue_task(rq, p, flags);
780 }
781 
782 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
783 {
784 	if (task_contributes_to_load(p))
785 		rq->nr_uninterruptible++;
786 
787 	dequeue_task(rq, p, flags);
788 }
789 
790 void sched_set_stop_task(int cpu, struct task_struct *stop)
791 {
792 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
793 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
794 
795 	if (stop) {
796 		/*
797 		 * Make it appear like a SCHED_FIFO task, its something
798 		 * userspace knows about and won't get confused about.
799 		 *
800 		 * Also, it will make PI more or less work without too
801 		 * much confusion -- but then, stop work should not
802 		 * rely on PI working anyway.
803 		 */
804 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
805 
806 		stop->sched_class = &stop_sched_class;
807 	}
808 
809 	cpu_rq(cpu)->stop = stop;
810 
811 	if (old_stop) {
812 		/*
813 		 * Reset it back to a normal scheduling class so that
814 		 * it can die in pieces.
815 		 */
816 		old_stop->sched_class = &rt_sched_class;
817 	}
818 }
819 
820 /*
821  * __normal_prio - return the priority that is based on the static prio
822  */
823 static inline int __normal_prio(struct task_struct *p)
824 {
825 	return p->static_prio;
826 }
827 
828 /*
829  * Calculate the expected normal priority: i.e. priority
830  * without taking RT-inheritance into account. Might be
831  * boosted by interactivity modifiers. Changes upon fork,
832  * setprio syscalls, and whenever the interactivity
833  * estimator recalculates.
834  */
835 static inline int normal_prio(struct task_struct *p)
836 {
837 	int prio;
838 
839 	if (task_has_dl_policy(p))
840 		prio = MAX_DL_PRIO-1;
841 	else if (task_has_rt_policy(p))
842 		prio = MAX_RT_PRIO-1 - p->rt_priority;
843 	else
844 		prio = __normal_prio(p);
845 	return prio;
846 }
847 
848 /*
849  * Calculate the current priority, i.e. the priority
850  * taken into account by the scheduler. This value might
851  * be boosted by RT tasks, or might be boosted by
852  * interactivity modifiers. Will be RT if the task got
853  * RT-boosted. If not then it returns p->normal_prio.
854  */
855 static int effective_prio(struct task_struct *p)
856 {
857 	p->normal_prio = normal_prio(p);
858 	/*
859 	 * If we are RT tasks or we were boosted to RT priority,
860 	 * keep the priority unchanged. Otherwise, update priority
861 	 * to the normal priority:
862 	 */
863 	if (!rt_prio(p->prio))
864 		return p->normal_prio;
865 	return p->prio;
866 }
867 
868 /**
869  * task_curr - is this task currently executing on a CPU?
870  * @p: the task in question.
871  *
872  * Return: 1 if the task is currently executing. 0 otherwise.
873  */
874 inline int task_curr(const struct task_struct *p)
875 {
876 	return cpu_curr(task_cpu(p)) == p;
877 }
878 
879 /*
880  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
881  * use the balance_callback list if you want balancing.
882  *
883  * this means any call to check_class_changed() must be followed by a call to
884  * balance_callback().
885  */
886 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
887 				       const struct sched_class *prev_class,
888 				       int oldprio)
889 {
890 	if (prev_class != p->sched_class) {
891 		if (prev_class->switched_from)
892 			prev_class->switched_from(rq, p);
893 
894 		p->sched_class->switched_to(rq, p);
895 	} else if (oldprio != p->prio || dl_task(p))
896 		p->sched_class->prio_changed(rq, p, oldprio);
897 }
898 
899 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
900 {
901 	const struct sched_class *class;
902 
903 	if (p->sched_class == rq->curr->sched_class) {
904 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
905 	} else {
906 		for_each_class(class) {
907 			if (class == rq->curr->sched_class)
908 				break;
909 			if (class == p->sched_class) {
910 				resched_curr(rq);
911 				break;
912 			}
913 		}
914 	}
915 
916 	/*
917 	 * A queue event has occurred, and we're going to schedule.  In
918 	 * this case, we can save a useless back to back clock update.
919 	 */
920 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
921 		rq_clock_skip_update(rq, true);
922 }
923 
924 #ifdef CONFIG_SMP
925 /*
926  * This is how migration works:
927  *
928  * 1) we invoke migration_cpu_stop() on the target CPU using
929  *    stop_one_cpu().
930  * 2) stopper starts to run (implicitly forcing the migrated thread
931  *    off the CPU)
932  * 3) it checks whether the migrated task is still in the wrong runqueue.
933  * 4) if it's in the wrong runqueue then the migration thread removes
934  *    it and puts it into the right queue.
935  * 5) stopper completes and stop_one_cpu() returns and the migration
936  *    is done.
937  */
938 
939 /*
940  * move_queued_task - move a queued task to new rq.
941  *
942  * Returns (locked) new rq. Old rq's lock is released.
943  */
944 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
945 {
946 	lockdep_assert_held(&rq->lock);
947 
948 	p->on_rq = TASK_ON_RQ_MIGRATING;
949 	dequeue_task(rq, p, 0);
950 	set_task_cpu(p, new_cpu);
951 	raw_spin_unlock(&rq->lock);
952 
953 	rq = cpu_rq(new_cpu);
954 
955 	raw_spin_lock(&rq->lock);
956 	BUG_ON(task_cpu(p) != new_cpu);
957 	enqueue_task(rq, p, 0);
958 	p->on_rq = TASK_ON_RQ_QUEUED;
959 	check_preempt_curr(rq, p, 0);
960 
961 	return rq;
962 }
963 
964 struct migration_arg {
965 	struct task_struct *task;
966 	int dest_cpu;
967 };
968 
969 /*
970  * Move (not current) task off this CPU, onto the destination CPU. We're doing
971  * this because either it can't run here any more (set_cpus_allowed()
972  * away from this CPU, or CPU going down), or because we're
973  * attempting to rebalance this task on exec (sched_exec).
974  *
975  * So we race with normal scheduler movements, but that's OK, as long
976  * as the task is no longer on this CPU.
977  */
978 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
979 {
980 	if (unlikely(!cpu_active(dest_cpu)))
981 		return rq;
982 
983 	/* Affinity changed (again). */
984 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
985 		return rq;
986 
987 	rq = move_queued_task(rq, p, dest_cpu);
988 
989 	return rq;
990 }
991 
992 /*
993  * migration_cpu_stop - this will be executed by a highprio stopper thread
994  * and performs thread migration by bumping thread off CPU then
995  * 'pushing' onto another runqueue.
996  */
997 static int migration_cpu_stop(void *data)
998 {
999 	struct migration_arg *arg = data;
1000 	struct task_struct *p = arg->task;
1001 	struct rq *rq = this_rq();
1002 
1003 	/*
1004 	 * The original target CPU might have gone down and we might
1005 	 * be on another CPU but it doesn't matter.
1006 	 */
1007 	local_irq_disable();
1008 	/*
1009 	 * We need to explicitly wake pending tasks before running
1010 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1011 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1012 	 */
1013 	sched_ttwu_pending();
1014 
1015 	raw_spin_lock(&p->pi_lock);
1016 	raw_spin_lock(&rq->lock);
1017 	/*
1018 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1019 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1020 	 * we're holding p->pi_lock.
1021 	 */
1022 	if (task_rq(p) == rq) {
1023 		if (task_on_rq_queued(p))
1024 			rq = __migrate_task(rq, p, arg->dest_cpu);
1025 		else
1026 			p->wake_cpu = arg->dest_cpu;
1027 	}
1028 	raw_spin_unlock(&rq->lock);
1029 	raw_spin_unlock(&p->pi_lock);
1030 
1031 	local_irq_enable();
1032 	return 0;
1033 }
1034 
1035 /*
1036  * sched_class::set_cpus_allowed must do the below, but is not required to
1037  * actually call this function.
1038  */
1039 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1040 {
1041 	cpumask_copy(&p->cpus_allowed, new_mask);
1042 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1043 }
1044 
1045 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1046 {
1047 	struct rq *rq = task_rq(p);
1048 	bool queued, running;
1049 
1050 	lockdep_assert_held(&p->pi_lock);
1051 
1052 	queued = task_on_rq_queued(p);
1053 	running = task_current(rq, p);
1054 
1055 	if (queued) {
1056 		/*
1057 		 * Because __kthread_bind() calls this on blocked tasks without
1058 		 * holding rq->lock.
1059 		 */
1060 		lockdep_assert_held(&rq->lock);
1061 		dequeue_task(rq, p, DEQUEUE_SAVE);
1062 	}
1063 	if (running)
1064 		put_prev_task(rq, p);
1065 
1066 	p->sched_class->set_cpus_allowed(p, new_mask);
1067 
1068 	if (queued)
1069 		enqueue_task(rq, p, ENQUEUE_RESTORE);
1070 	if (running)
1071 		set_curr_task(rq, p);
1072 }
1073 
1074 /*
1075  * Change a given task's CPU affinity. Migrate the thread to a
1076  * proper CPU and schedule it away if the CPU it's executing on
1077  * is removed from the allowed bitmask.
1078  *
1079  * NOTE: the caller must have a valid reference to the task, the
1080  * task must not exit() & deallocate itself prematurely. The
1081  * call is not atomic; no spinlocks may be held.
1082  */
1083 static int __set_cpus_allowed_ptr(struct task_struct *p,
1084 				  const struct cpumask *new_mask, bool check)
1085 {
1086 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1087 	unsigned int dest_cpu;
1088 	struct rq_flags rf;
1089 	struct rq *rq;
1090 	int ret = 0;
1091 
1092 	rq = task_rq_lock(p, &rf);
1093 
1094 	if (p->flags & PF_KTHREAD) {
1095 		/*
1096 		 * Kernel threads are allowed on online && !active CPUs
1097 		 */
1098 		cpu_valid_mask = cpu_online_mask;
1099 	}
1100 
1101 	/*
1102 	 * Must re-check here, to close a race against __kthread_bind(),
1103 	 * sched_setaffinity() is not guaranteed to observe the flag.
1104 	 */
1105 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1106 		ret = -EINVAL;
1107 		goto out;
1108 	}
1109 
1110 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1111 		goto out;
1112 
1113 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1114 		ret = -EINVAL;
1115 		goto out;
1116 	}
1117 
1118 	do_set_cpus_allowed(p, new_mask);
1119 
1120 	if (p->flags & PF_KTHREAD) {
1121 		/*
1122 		 * For kernel threads that do indeed end up on online &&
1123 		 * !active we want to ensure they are strict per-CPU threads.
1124 		 */
1125 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1126 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1127 			p->nr_cpus_allowed != 1);
1128 	}
1129 
1130 	/* Can the task run on the task's current CPU? If so, we're done */
1131 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1132 		goto out;
1133 
1134 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1135 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1136 		struct migration_arg arg = { p, dest_cpu };
1137 		/* Need help from migration thread: drop lock and wait. */
1138 		task_rq_unlock(rq, p, &rf);
1139 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1140 		tlb_migrate_finish(p->mm);
1141 		return 0;
1142 	} else if (task_on_rq_queued(p)) {
1143 		/*
1144 		 * OK, since we're going to drop the lock immediately
1145 		 * afterwards anyway.
1146 		 */
1147 		rq_unpin_lock(rq, &rf);
1148 		rq = move_queued_task(rq, p, dest_cpu);
1149 		rq_repin_lock(rq, &rf);
1150 	}
1151 out:
1152 	task_rq_unlock(rq, p, &rf);
1153 
1154 	return ret;
1155 }
1156 
1157 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1158 {
1159 	return __set_cpus_allowed_ptr(p, new_mask, false);
1160 }
1161 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1162 
1163 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1164 {
1165 #ifdef CONFIG_SCHED_DEBUG
1166 	/*
1167 	 * We should never call set_task_cpu() on a blocked task,
1168 	 * ttwu() will sort out the placement.
1169 	 */
1170 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1171 			!p->on_rq);
1172 
1173 	/*
1174 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1175 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1176 	 * time relying on p->on_rq.
1177 	 */
1178 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1179 		     p->sched_class == &fair_sched_class &&
1180 		     (p->on_rq && !task_on_rq_migrating(p)));
1181 
1182 #ifdef CONFIG_LOCKDEP
1183 	/*
1184 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1185 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1186 	 *
1187 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1188 	 * see task_group().
1189 	 *
1190 	 * Furthermore, all task_rq users should acquire both locks, see
1191 	 * task_rq_lock().
1192 	 */
1193 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1194 				      lockdep_is_held(&task_rq(p)->lock)));
1195 #endif
1196 #endif
1197 
1198 	trace_sched_migrate_task(p, new_cpu);
1199 
1200 	if (task_cpu(p) != new_cpu) {
1201 		if (p->sched_class->migrate_task_rq)
1202 			p->sched_class->migrate_task_rq(p);
1203 		p->se.nr_migrations++;
1204 		perf_event_task_migrate(p);
1205 	}
1206 
1207 	__set_task_cpu(p, new_cpu);
1208 }
1209 
1210 static void __migrate_swap_task(struct task_struct *p, int cpu)
1211 {
1212 	if (task_on_rq_queued(p)) {
1213 		struct rq *src_rq, *dst_rq;
1214 
1215 		src_rq = task_rq(p);
1216 		dst_rq = cpu_rq(cpu);
1217 
1218 		p->on_rq = TASK_ON_RQ_MIGRATING;
1219 		deactivate_task(src_rq, p, 0);
1220 		set_task_cpu(p, cpu);
1221 		activate_task(dst_rq, p, 0);
1222 		p->on_rq = TASK_ON_RQ_QUEUED;
1223 		check_preempt_curr(dst_rq, p, 0);
1224 	} else {
1225 		/*
1226 		 * Task isn't running anymore; make it appear like we migrated
1227 		 * it before it went to sleep. This means on wakeup we make the
1228 		 * previous CPU our target instead of where it really is.
1229 		 */
1230 		p->wake_cpu = cpu;
1231 	}
1232 }
1233 
1234 struct migration_swap_arg {
1235 	struct task_struct *src_task, *dst_task;
1236 	int src_cpu, dst_cpu;
1237 };
1238 
1239 static int migrate_swap_stop(void *data)
1240 {
1241 	struct migration_swap_arg *arg = data;
1242 	struct rq *src_rq, *dst_rq;
1243 	int ret = -EAGAIN;
1244 
1245 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1246 		return -EAGAIN;
1247 
1248 	src_rq = cpu_rq(arg->src_cpu);
1249 	dst_rq = cpu_rq(arg->dst_cpu);
1250 
1251 	double_raw_lock(&arg->src_task->pi_lock,
1252 			&arg->dst_task->pi_lock);
1253 	double_rq_lock(src_rq, dst_rq);
1254 
1255 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1256 		goto unlock;
1257 
1258 	if (task_cpu(arg->src_task) != arg->src_cpu)
1259 		goto unlock;
1260 
1261 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1262 		goto unlock;
1263 
1264 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1265 		goto unlock;
1266 
1267 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1268 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1269 
1270 	ret = 0;
1271 
1272 unlock:
1273 	double_rq_unlock(src_rq, dst_rq);
1274 	raw_spin_unlock(&arg->dst_task->pi_lock);
1275 	raw_spin_unlock(&arg->src_task->pi_lock);
1276 
1277 	return ret;
1278 }
1279 
1280 /*
1281  * Cross migrate two tasks
1282  */
1283 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1284 {
1285 	struct migration_swap_arg arg;
1286 	int ret = -EINVAL;
1287 
1288 	arg = (struct migration_swap_arg){
1289 		.src_task = cur,
1290 		.src_cpu = task_cpu(cur),
1291 		.dst_task = p,
1292 		.dst_cpu = task_cpu(p),
1293 	};
1294 
1295 	if (arg.src_cpu == arg.dst_cpu)
1296 		goto out;
1297 
1298 	/*
1299 	 * These three tests are all lockless; this is OK since all of them
1300 	 * will be re-checked with proper locks held further down the line.
1301 	 */
1302 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1303 		goto out;
1304 
1305 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1306 		goto out;
1307 
1308 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1309 		goto out;
1310 
1311 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1312 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1313 
1314 out:
1315 	return ret;
1316 }
1317 
1318 /*
1319  * wait_task_inactive - wait for a thread to unschedule.
1320  *
1321  * If @match_state is nonzero, it's the @p->state value just checked and
1322  * not expected to change.  If it changes, i.e. @p might have woken up,
1323  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1324  * we return a positive number (its total switch count).  If a second call
1325  * a short while later returns the same number, the caller can be sure that
1326  * @p has remained unscheduled the whole time.
1327  *
1328  * The caller must ensure that the task *will* unschedule sometime soon,
1329  * else this function might spin for a *long* time. This function can't
1330  * be called with interrupts off, or it may introduce deadlock with
1331  * smp_call_function() if an IPI is sent by the same process we are
1332  * waiting to become inactive.
1333  */
1334 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1335 {
1336 	int running, queued;
1337 	struct rq_flags rf;
1338 	unsigned long ncsw;
1339 	struct rq *rq;
1340 
1341 	for (;;) {
1342 		/*
1343 		 * We do the initial early heuristics without holding
1344 		 * any task-queue locks at all. We'll only try to get
1345 		 * the runqueue lock when things look like they will
1346 		 * work out!
1347 		 */
1348 		rq = task_rq(p);
1349 
1350 		/*
1351 		 * If the task is actively running on another CPU
1352 		 * still, just relax and busy-wait without holding
1353 		 * any locks.
1354 		 *
1355 		 * NOTE! Since we don't hold any locks, it's not
1356 		 * even sure that "rq" stays as the right runqueue!
1357 		 * But we don't care, since "task_running()" will
1358 		 * return false if the runqueue has changed and p
1359 		 * is actually now running somewhere else!
1360 		 */
1361 		while (task_running(rq, p)) {
1362 			if (match_state && unlikely(p->state != match_state))
1363 				return 0;
1364 			cpu_relax();
1365 		}
1366 
1367 		/*
1368 		 * Ok, time to look more closely! We need the rq
1369 		 * lock now, to be *sure*. If we're wrong, we'll
1370 		 * just go back and repeat.
1371 		 */
1372 		rq = task_rq_lock(p, &rf);
1373 		trace_sched_wait_task(p);
1374 		running = task_running(rq, p);
1375 		queued = task_on_rq_queued(p);
1376 		ncsw = 0;
1377 		if (!match_state || p->state == match_state)
1378 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1379 		task_rq_unlock(rq, p, &rf);
1380 
1381 		/*
1382 		 * If it changed from the expected state, bail out now.
1383 		 */
1384 		if (unlikely(!ncsw))
1385 			break;
1386 
1387 		/*
1388 		 * Was it really running after all now that we
1389 		 * checked with the proper locks actually held?
1390 		 *
1391 		 * Oops. Go back and try again..
1392 		 */
1393 		if (unlikely(running)) {
1394 			cpu_relax();
1395 			continue;
1396 		}
1397 
1398 		/*
1399 		 * It's not enough that it's not actively running,
1400 		 * it must be off the runqueue _entirely_, and not
1401 		 * preempted!
1402 		 *
1403 		 * So if it was still runnable (but just not actively
1404 		 * running right now), it's preempted, and we should
1405 		 * yield - it could be a while.
1406 		 */
1407 		if (unlikely(queued)) {
1408 			ktime_t to = NSEC_PER_SEC / HZ;
1409 
1410 			set_current_state(TASK_UNINTERRUPTIBLE);
1411 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1412 			continue;
1413 		}
1414 
1415 		/*
1416 		 * Ahh, all good. It wasn't running, and it wasn't
1417 		 * runnable, which means that it will never become
1418 		 * running in the future either. We're all done!
1419 		 */
1420 		break;
1421 	}
1422 
1423 	return ncsw;
1424 }
1425 
1426 /***
1427  * kick_process - kick a running thread to enter/exit the kernel
1428  * @p: the to-be-kicked thread
1429  *
1430  * Cause a process which is running on another CPU to enter
1431  * kernel-mode, without any delay. (to get signals handled.)
1432  *
1433  * NOTE: this function doesn't have to take the runqueue lock,
1434  * because all it wants to ensure is that the remote task enters
1435  * the kernel. If the IPI races and the task has been migrated
1436  * to another CPU then no harm is done and the purpose has been
1437  * achieved as well.
1438  */
1439 void kick_process(struct task_struct *p)
1440 {
1441 	int cpu;
1442 
1443 	preempt_disable();
1444 	cpu = task_cpu(p);
1445 	if ((cpu != smp_processor_id()) && task_curr(p))
1446 		smp_send_reschedule(cpu);
1447 	preempt_enable();
1448 }
1449 EXPORT_SYMBOL_GPL(kick_process);
1450 
1451 /*
1452  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1453  *
1454  * A few notes on cpu_active vs cpu_online:
1455  *
1456  *  - cpu_active must be a subset of cpu_online
1457  *
1458  *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1459  *    see __set_cpus_allowed_ptr(). At this point the newly online
1460  *    CPU isn't yet part of the sched domains, and balancing will not
1461  *    see it.
1462  *
1463  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1464  *    avoid the load balancer to place new tasks on the to be removed
1465  *    CPU. Existing tasks will remain running there and will be taken
1466  *    off.
1467  *
1468  * This means that fallback selection must not select !active CPUs.
1469  * And can assume that any active CPU must be online. Conversely
1470  * select_task_rq() below may allow selection of !active CPUs in order
1471  * to satisfy the above rules.
1472  */
1473 static int select_fallback_rq(int cpu, struct task_struct *p)
1474 {
1475 	int nid = cpu_to_node(cpu);
1476 	const struct cpumask *nodemask = NULL;
1477 	enum { cpuset, possible, fail } state = cpuset;
1478 	int dest_cpu;
1479 
1480 	/*
1481 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1482 	 * will return -1. There is no CPU on the node, and we should
1483 	 * select the CPU on the other node.
1484 	 */
1485 	if (nid != -1) {
1486 		nodemask = cpumask_of_node(nid);
1487 
1488 		/* Look for allowed, online CPU in same node. */
1489 		for_each_cpu(dest_cpu, nodemask) {
1490 			if (!cpu_active(dest_cpu))
1491 				continue;
1492 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1493 				return dest_cpu;
1494 		}
1495 	}
1496 
1497 	for (;;) {
1498 		/* Any allowed, online CPU? */
1499 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1500 			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1501 				continue;
1502 			if (!cpu_online(dest_cpu))
1503 				continue;
1504 			goto out;
1505 		}
1506 
1507 		/* No more Mr. Nice Guy. */
1508 		switch (state) {
1509 		case cpuset:
1510 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1511 				cpuset_cpus_allowed_fallback(p);
1512 				state = possible;
1513 				break;
1514 			}
1515 			/* Fall-through */
1516 		case possible:
1517 			do_set_cpus_allowed(p, cpu_possible_mask);
1518 			state = fail;
1519 			break;
1520 
1521 		case fail:
1522 			BUG();
1523 			break;
1524 		}
1525 	}
1526 
1527 out:
1528 	if (state != cpuset) {
1529 		/*
1530 		 * Don't tell them about moving exiting tasks or
1531 		 * kernel threads (both mm NULL), since they never
1532 		 * leave kernel.
1533 		 */
1534 		if (p->mm && printk_ratelimit()) {
1535 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1536 					task_pid_nr(p), p->comm, cpu);
1537 		}
1538 	}
1539 
1540 	return dest_cpu;
1541 }
1542 
1543 /*
1544  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1545  */
1546 static inline
1547 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1548 {
1549 	lockdep_assert_held(&p->pi_lock);
1550 
1551 	if (tsk_nr_cpus_allowed(p) > 1)
1552 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1553 	else
1554 		cpu = cpumask_any(tsk_cpus_allowed(p));
1555 
1556 	/*
1557 	 * In order not to call set_task_cpu() on a blocking task we need
1558 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1559 	 * CPU.
1560 	 *
1561 	 * Since this is common to all placement strategies, this lives here.
1562 	 *
1563 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1564 	 *   not worry about this generic constraint ]
1565 	 */
1566 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1567 		     !cpu_online(cpu)))
1568 		cpu = select_fallback_rq(task_cpu(p), p);
1569 
1570 	return cpu;
1571 }
1572 
1573 static void update_avg(u64 *avg, u64 sample)
1574 {
1575 	s64 diff = sample - *avg;
1576 	*avg += diff >> 3;
1577 }
1578 
1579 #else
1580 
1581 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1582 					 const struct cpumask *new_mask, bool check)
1583 {
1584 	return set_cpus_allowed_ptr(p, new_mask);
1585 }
1586 
1587 #endif /* CONFIG_SMP */
1588 
1589 static void
1590 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1591 {
1592 	struct rq *rq;
1593 
1594 	if (!schedstat_enabled())
1595 		return;
1596 
1597 	rq = this_rq();
1598 
1599 #ifdef CONFIG_SMP
1600 	if (cpu == rq->cpu) {
1601 		schedstat_inc(rq->ttwu_local);
1602 		schedstat_inc(p->se.statistics.nr_wakeups_local);
1603 	} else {
1604 		struct sched_domain *sd;
1605 
1606 		schedstat_inc(p->se.statistics.nr_wakeups_remote);
1607 		rcu_read_lock();
1608 		for_each_domain(rq->cpu, sd) {
1609 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1610 				schedstat_inc(sd->ttwu_wake_remote);
1611 				break;
1612 			}
1613 		}
1614 		rcu_read_unlock();
1615 	}
1616 
1617 	if (wake_flags & WF_MIGRATED)
1618 		schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1619 #endif /* CONFIG_SMP */
1620 
1621 	schedstat_inc(rq->ttwu_count);
1622 	schedstat_inc(p->se.statistics.nr_wakeups);
1623 
1624 	if (wake_flags & WF_SYNC)
1625 		schedstat_inc(p->se.statistics.nr_wakeups_sync);
1626 }
1627 
1628 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1629 {
1630 	activate_task(rq, p, en_flags);
1631 	p->on_rq = TASK_ON_RQ_QUEUED;
1632 
1633 	/* If a worker is waking up, notify the workqueue: */
1634 	if (p->flags & PF_WQ_WORKER)
1635 		wq_worker_waking_up(p, cpu_of(rq));
1636 }
1637 
1638 /*
1639  * Mark the task runnable and perform wakeup-preemption.
1640  */
1641 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1642 			   struct rq_flags *rf)
1643 {
1644 	check_preempt_curr(rq, p, wake_flags);
1645 	p->state = TASK_RUNNING;
1646 	trace_sched_wakeup(p);
1647 
1648 #ifdef CONFIG_SMP
1649 	if (p->sched_class->task_woken) {
1650 		/*
1651 		 * Our task @p is fully woken up and running; so its safe to
1652 		 * drop the rq->lock, hereafter rq is only used for statistics.
1653 		 */
1654 		rq_unpin_lock(rq, rf);
1655 		p->sched_class->task_woken(rq, p);
1656 		rq_repin_lock(rq, rf);
1657 	}
1658 
1659 	if (rq->idle_stamp) {
1660 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1661 		u64 max = 2*rq->max_idle_balance_cost;
1662 
1663 		update_avg(&rq->avg_idle, delta);
1664 
1665 		if (rq->avg_idle > max)
1666 			rq->avg_idle = max;
1667 
1668 		rq->idle_stamp = 0;
1669 	}
1670 #endif
1671 }
1672 
1673 static void
1674 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1675 		 struct rq_flags *rf)
1676 {
1677 	int en_flags = ENQUEUE_WAKEUP;
1678 
1679 	lockdep_assert_held(&rq->lock);
1680 
1681 #ifdef CONFIG_SMP
1682 	if (p->sched_contributes_to_load)
1683 		rq->nr_uninterruptible--;
1684 
1685 	if (wake_flags & WF_MIGRATED)
1686 		en_flags |= ENQUEUE_MIGRATED;
1687 #endif
1688 
1689 	ttwu_activate(rq, p, en_flags);
1690 	ttwu_do_wakeup(rq, p, wake_flags, rf);
1691 }
1692 
1693 /*
1694  * Called in case the task @p isn't fully descheduled from its runqueue,
1695  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1696  * since all we need to do is flip p->state to TASK_RUNNING, since
1697  * the task is still ->on_rq.
1698  */
1699 static int ttwu_remote(struct task_struct *p, int wake_flags)
1700 {
1701 	struct rq_flags rf;
1702 	struct rq *rq;
1703 	int ret = 0;
1704 
1705 	rq = __task_rq_lock(p, &rf);
1706 	if (task_on_rq_queued(p)) {
1707 		/* check_preempt_curr() may use rq clock */
1708 		update_rq_clock(rq);
1709 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1710 		ret = 1;
1711 	}
1712 	__task_rq_unlock(rq, &rf);
1713 
1714 	return ret;
1715 }
1716 
1717 #ifdef CONFIG_SMP
1718 void sched_ttwu_pending(void)
1719 {
1720 	struct rq *rq = this_rq();
1721 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1722 	struct task_struct *p;
1723 	unsigned long flags;
1724 	struct rq_flags rf;
1725 
1726 	if (!llist)
1727 		return;
1728 
1729 	raw_spin_lock_irqsave(&rq->lock, flags);
1730 	rq_pin_lock(rq, &rf);
1731 
1732 	while (llist) {
1733 		int wake_flags = 0;
1734 
1735 		p = llist_entry(llist, struct task_struct, wake_entry);
1736 		llist = llist_next(llist);
1737 
1738 		if (p->sched_remote_wakeup)
1739 			wake_flags = WF_MIGRATED;
1740 
1741 		ttwu_do_activate(rq, p, wake_flags, &rf);
1742 	}
1743 
1744 	rq_unpin_lock(rq, &rf);
1745 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1746 }
1747 
1748 void scheduler_ipi(void)
1749 {
1750 	/*
1751 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1752 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1753 	 * this IPI.
1754 	 */
1755 	preempt_fold_need_resched();
1756 
1757 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1758 		return;
1759 
1760 	/*
1761 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1762 	 * traditionally all their work was done from the interrupt return
1763 	 * path. Now that we actually do some work, we need to make sure
1764 	 * we do call them.
1765 	 *
1766 	 * Some archs already do call them, luckily irq_enter/exit nest
1767 	 * properly.
1768 	 *
1769 	 * Arguably we should visit all archs and update all handlers,
1770 	 * however a fair share of IPIs are still resched only so this would
1771 	 * somewhat pessimize the simple resched case.
1772 	 */
1773 	irq_enter();
1774 	sched_ttwu_pending();
1775 
1776 	/*
1777 	 * Check if someone kicked us for doing the nohz idle load balance.
1778 	 */
1779 	if (unlikely(got_nohz_idle_kick())) {
1780 		this_rq()->idle_balance = 1;
1781 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1782 	}
1783 	irq_exit();
1784 }
1785 
1786 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1787 {
1788 	struct rq *rq = cpu_rq(cpu);
1789 
1790 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1791 
1792 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1793 		if (!set_nr_if_polling(rq->idle))
1794 			smp_send_reschedule(cpu);
1795 		else
1796 			trace_sched_wake_idle_without_ipi(cpu);
1797 	}
1798 }
1799 
1800 void wake_up_if_idle(int cpu)
1801 {
1802 	struct rq *rq = cpu_rq(cpu);
1803 	unsigned long flags;
1804 
1805 	rcu_read_lock();
1806 
1807 	if (!is_idle_task(rcu_dereference(rq->curr)))
1808 		goto out;
1809 
1810 	if (set_nr_if_polling(rq->idle)) {
1811 		trace_sched_wake_idle_without_ipi(cpu);
1812 	} else {
1813 		raw_spin_lock_irqsave(&rq->lock, flags);
1814 		if (is_idle_task(rq->curr))
1815 			smp_send_reschedule(cpu);
1816 		/* Else CPU is not idle, do nothing here: */
1817 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1818 	}
1819 
1820 out:
1821 	rcu_read_unlock();
1822 }
1823 
1824 bool cpus_share_cache(int this_cpu, int that_cpu)
1825 {
1826 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1827 }
1828 #endif /* CONFIG_SMP */
1829 
1830 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1831 {
1832 	struct rq *rq = cpu_rq(cpu);
1833 	struct rq_flags rf;
1834 
1835 #if defined(CONFIG_SMP)
1836 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1837 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1838 		ttwu_queue_remote(p, cpu, wake_flags);
1839 		return;
1840 	}
1841 #endif
1842 
1843 	raw_spin_lock(&rq->lock);
1844 	rq_pin_lock(rq, &rf);
1845 	ttwu_do_activate(rq, p, wake_flags, &rf);
1846 	rq_unpin_lock(rq, &rf);
1847 	raw_spin_unlock(&rq->lock);
1848 }
1849 
1850 /*
1851  * Notes on Program-Order guarantees on SMP systems.
1852  *
1853  *  MIGRATION
1854  *
1855  * The basic program-order guarantee on SMP systems is that when a task [t]
1856  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1857  * execution on its new CPU [c1].
1858  *
1859  * For migration (of runnable tasks) this is provided by the following means:
1860  *
1861  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1862  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1863  *     rq(c1)->lock (if not at the same time, then in that order).
1864  *  C) LOCK of the rq(c1)->lock scheduling in task
1865  *
1866  * Transitivity guarantees that B happens after A and C after B.
1867  * Note: we only require RCpc transitivity.
1868  * Note: the CPU doing B need not be c0 or c1
1869  *
1870  * Example:
1871  *
1872  *   CPU0            CPU1            CPU2
1873  *
1874  *   LOCK rq(0)->lock
1875  *   sched-out X
1876  *   sched-in Y
1877  *   UNLOCK rq(0)->lock
1878  *
1879  *                                   LOCK rq(0)->lock // orders against CPU0
1880  *                                   dequeue X
1881  *                                   UNLOCK rq(0)->lock
1882  *
1883  *                                   LOCK rq(1)->lock
1884  *                                   enqueue X
1885  *                                   UNLOCK rq(1)->lock
1886  *
1887  *                   LOCK rq(1)->lock // orders against CPU2
1888  *                   sched-out Z
1889  *                   sched-in X
1890  *                   UNLOCK rq(1)->lock
1891  *
1892  *
1893  *  BLOCKING -- aka. SLEEP + WAKEUP
1894  *
1895  * For blocking we (obviously) need to provide the same guarantee as for
1896  * migration. However the means are completely different as there is no lock
1897  * chain to provide order. Instead we do:
1898  *
1899  *   1) smp_store_release(X->on_cpu, 0)
1900  *   2) smp_cond_load_acquire(!X->on_cpu)
1901  *
1902  * Example:
1903  *
1904  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1905  *
1906  *   LOCK rq(0)->lock LOCK X->pi_lock
1907  *   dequeue X
1908  *   sched-out X
1909  *   smp_store_release(X->on_cpu, 0);
1910  *
1911  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1912  *                    X->state = WAKING
1913  *                    set_task_cpu(X,2)
1914  *
1915  *                    LOCK rq(2)->lock
1916  *                    enqueue X
1917  *                    X->state = RUNNING
1918  *                    UNLOCK rq(2)->lock
1919  *
1920  *                                          LOCK rq(2)->lock // orders against CPU1
1921  *                                          sched-out Z
1922  *                                          sched-in X
1923  *                                          UNLOCK rq(2)->lock
1924  *
1925  *                    UNLOCK X->pi_lock
1926  *   UNLOCK rq(0)->lock
1927  *
1928  *
1929  * However; for wakeups there is a second guarantee we must provide, namely we
1930  * must observe the state that lead to our wakeup. That is, not only must our
1931  * task observe its own prior state, it must also observe the stores prior to
1932  * its wakeup.
1933  *
1934  * This means that any means of doing remote wakeups must order the CPU doing
1935  * the wakeup against the CPU the task is going to end up running on. This,
1936  * however, is already required for the regular Program-Order guarantee above,
1937  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1938  *
1939  */
1940 
1941 /**
1942  * try_to_wake_up - wake up a thread
1943  * @p: the thread to be awakened
1944  * @state: the mask of task states that can be woken
1945  * @wake_flags: wake modifier flags (WF_*)
1946  *
1947  * If (@state & @p->state) @p->state = TASK_RUNNING.
1948  *
1949  * If the task was not queued/runnable, also place it back on a runqueue.
1950  *
1951  * Atomic against schedule() which would dequeue a task, also see
1952  * set_current_state().
1953  *
1954  * Return: %true if @p->state changes (an actual wakeup was done),
1955  *	   %false otherwise.
1956  */
1957 static int
1958 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1959 {
1960 	unsigned long flags;
1961 	int cpu, success = 0;
1962 
1963 	/*
1964 	 * If we are going to wake up a thread waiting for CONDITION we
1965 	 * need to ensure that CONDITION=1 done by the caller can not be
1966 	 * reordered with p->state check below. This pairs with mb() in
1967 	 * set_current_state() the waiting thread does.
1968 	 */
1969 	smp_mb__before_spinlock();
1970 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1971 	if (!(p->state & state))
1972 		goto out;
1973 
1974 	trace_sched_waking(p);
1975 
1976 	/* We're going to change ->state: */
1977 	success = 1;
1978 	cpu = task_cpu(p);
1979 
1980 	/*
1981 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1982 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1983 	 * in smp_cond_load_acquire() below.
1984 	 *
1985 	 * sched_ttwu_pending()                 try_to_wake_up()
1986 	 *   [S] p->on_rq = 1;                  [L] P->state
1987 	 *       UNLOCK rq->lock  -----.
1988 	 *                              \
1989 	 *				 +---   RMB
1990 	 * schedule()                   /
1991 	 *       LOCK rq->lock    -----'
1992 	 *       UNLOCK rq->lock
1993 	 *
1994 	 * [task p]
1995 	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
1996 	 *
1997 	 * Pairs with the UNLOCK+LOCK on rq->lock from the
1998 	 * last wakeup of our task and the schedule that got our task
1999 	 * current.
2000 	 */
2001 	smp_rmb();
2002 	if (p->on_rq && ttwu_remote(p, wake_flags))
2003 		goto stat;
2004 
2005 #ifdef CONFIG_SMP
2006 	/*
2007 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2008 	 * possible to, falsely, observe p->on_cpu == 0.
2009 	 *
2010 	 * One must be running (->on_cpu == 1) in order to remove oneself
2011 	 * from the runqueue.
2012 	 *
2013 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2014 	 *      UNLOCK rq->lock
2015 	 *			RMB
2016 	 *      LOCK   rq->lock
2017 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2018 	 *
2019 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2020 	 * from the consecutive calls to schedule(); the first switching to our
2021 	 * task, the second putting it to sleep.
2022 	 */
2023 	smp_rmb();
2024 
2025 	/*
2026 	 * If the owning (remote) CPU is still in the middle of schedule() with
2027 	 * this task as prev, wait until its done referencing the task.
2028 	 *
2029 	 * Pairs with the smp_store_release() in finish_lock_switch().
2030 	 *
2031 	 * This ensures that tasks getting woken will be fully ordered against
2032 	 * their previous state and preserve Program Order.
2033 	 */
2034 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2035 
2036 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2037 	p->state = TASK_WAKING;
2038 
2039 	if (p->in_iowait) {
2040 		delayacct_blkio_end();
2041 		atomic_dec(&task_rq(p)->nr_iowait);
2042 	}
2043 
2044 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2045 	if (task_cpu(p) != cpu) {
2046 		wake_flags |= WF_MIGRATED;
2047 		set_task_cpu(p, cpu);
2048 	}
2049 
2050 #else /* CONFIG_SMP */
2051 
2052 	if (p->in_iowait) {
2053 		delayacct_blkio_end();
2054 		atomic_dec(&task_rq(p)->nr_iowait);
2055 	}
2056 
2057 #endif /* CONFIG_SMP */
2058 
2059 	ttwu_queue(p, cpu, wake_flags);
2060 stat:
2061 	ttwu_stat(p, cpu, wake_flags);
2062 out:
2063 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2064 
2065 	return success;
2066 }
2067 
2068 /**
2069  * try_to_wake_up_local - try to wake up a local task with rq lock held
2070  * @p: the thread to be awakened
2071  * @cookie: context's cookie for pinning
2072  *
2073  * Put @p on the run-queue if it's not already there. The caller must
2074  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2075  * the current task.
2076  */
2077 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2078 {
2079 	struct rq *rq = task_rq(p);
2080 
2081 	if (WARN_ON_ONCE(rq != this_rq()) ||
2082 	    WARN_ON_ONCE(p == current))
2083 		return;
2084 
2085 	lockdep_assert_held(&rq->lock);
2086 
2087 	if (!raw_spin_trylock(&p->pi_lock)) {
2088 		/*
2089 		 * This is OK, because current is on_cpu, which avoids it being
2090 		 * picked for load-balance and preemption/IRQs are still
2091 		 * disabled avoiding further scheduler activity on it and we've
2092 		 * not yet picked a replacement task.
2093 		 */
2094 		rq_unpin_lock(rq, rf);
2095 		raw_spin_unlock(&rq->lock);
2096 		raw_spin_lock(&p->pi_lock);
2097 		raw_spin_lock(&rq->lock);
2098 		rq_repin_lock(rq, rf);
2099 	}
2100 
2101 	if (!(p->state & TASK_NORMAL))
2102 		goto out;
2103 
2104 	trace_sched_waking(p);
2105 
2106 	if (!task_on_rq_queued(p)) {
2107 		if (p->in_iowait) {
2108 			delayacct_blkio_end();
2109 			atomic_dec(&rq->nr_iowait);
2110 		}
2111 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2112 	}
2113 
2114 	ttwu_do_wakeup(rq, p, 0, rf);
2115 	ttwu_stat(p, smp_processor_id(), 0);
2116 out:
2117 	raw_spin_unlock(&p->pi_lock);
2118 }
2119 
2120 /**
2121  * wake_up_process - Wake up a specific process
2122  * @p: The process to be woken up.
2123  *
2124  * Attempt to wake up the nominated process and move it to the set of runnable
2125  * processes.
2126  *
2127  * Return: 1 if the process was woken up, 0 if it was already running.
2128  *
2129  * It may be assumed that this function implies a write memory barrier before
2130  * changing the task state if and only if any tasks are woken up.
2131  */
2132 int wake_up_process(struct task_struct *p)
2133 {
2134 	return try_to_wake_up(p, TASK_NORMAL, 0);
2135 }
2136 EXPORT_SYMBOL(wake_up_process);
2137 
2138 int wake_up_state(struct task_struct *p, unsigned int state)
2139 {
2140 	return try_to_wake_up(p, state, 0);
2141 }
2142 
2143 /*
2144  * This function clears the sched_dl_entity static params.
2145  */
2146 void __dl_clear_params(struct task_struct *p)
2147 {
2148 	struct sched_dl_entity *dl_se = &p->dl;
2149 
2150 	dl_se->dl_runtime = 0;
2151 	dl_se->dl_deadline = 0;
2152 	dl_se->dl_period = 0;
2153 	dl_se->flags = 0;
2154 	dl_se->dl_bw = 0;
2155 
2156 	dl_se->dl_throttled = 0;
2157 	dl_se->dl_yielded = 0;
2158 }
2159 
2160 /*
2161  * Perform scheduler related setup for a newly forked process p.
2162  * p is forked by current.
2163  *
2164  * __sched_fork() is basic setup used by init_idle() too:
2165  */
2166 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2167 {
2168 	p->on_rq			= 0;
2169 
2170 	p->se.on_rq			= 0;
2171 	p->se.exec_start		= 0;
2172 	p->se.sum_exec_runtime		= 0;
2173 	p->se.prev_sum_exec_runtime	= 0;
2174 	p->se.nr_migrations		= 0;
2175 	p->se.vruntime			= 0;
2176 	INIT_LIST_HEAD(&p->se.group_node);
2177 
2178 #ifdef CONFIG_FAIR_GROUP_SCHED
2179 	p->se.cfs_rq			= NULL;
2180 #endif
2181 
2182 #ifdef CONFIG_SCHEDSTATS
2183 	/* Even if schedstat is disabled, there should not be garbage */
2184 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2185 #endif
2186 
2187 	RB_CLEAR_NODE(&p->dl.rb_node);
2188 	init_dl_task_timer(&p->dl);
2189 	__dl_clear_params(p);
2190 
2191 	INIT_LIST_HEAD(&p->rt.run_list);
2192 	p->rt.timeout		= 0;
2193 	p->rt.time_slice	= sched_rr_timeslice;
2194 	p->rt.on_rq		= 0;
2195 	p->rt.on_list		= 0;
2196 
2197 #ifdef CONFIG_PREEMPT_NOTIFIERS
2198 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2199 #endif
2200 
2201 #ifdef CONFIG_NUMA_BALANCING
2202 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2203 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2204 		p->mm->numa_scan_seq = 0;
2205 	}
2206 
2207 	if (clone_flags & CLONE_VM)
2208 		p->numa_preferred_nid = current->numa_preferred_nid;
2209 	else
2210 		p->numa_preferred_nid = -1;
2211 
2212 	p->node_stamp = 0ULL;
2213 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2214 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2215 	p->numa_work.next = &p->numa_work;
2216 	p->numa_faults = NULL;
2217 	p->last_task_numa_placement = 0;
2218 	p->last_sum_exec_runtime = 0;
2219 
2220 	p->numa_group = NULL;
2221 #endif /* CONFIG_NUMA_BALANCING */
2222 }
2223 
2224 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2225 
2226 #ifdef CONFIG_NUMA_BALANCING
2227 
2228 void set_numabalancing_state(bool enabled)
2229 {
2230 	if (enabled)
2231 		static_branch_enable(&sched_numa_balancing);
2232 	else
2233 		static_branch_disable(&sched_numa_balancing);
2234 }
2235 
2236 #ifdef CONFIG_PROC_SYSCTL
2237 int sysctl_numa_balancing(struct ctl_table *table, int write,
2238 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2239 {
2240 	struct ctl_table t;
2241 	int err;
2242 	int state = static_branch_likely(&sched_numa_balancing);
2243 
2244 	if (write && !capable(CAP_SYS_ADMIN))
2245 		return -EPERM;
2246 
2247 	t = *table;
2248 	t.data = &state;
2249 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2250 	if (err < 0)
2251 		return err;
2252 	if (write)
2253 		set_numabalancing_state(state);
2254 	return err;
2255 }
2256 #endif
2257 #endif
2258 
2259 #ifdef CONFIG_SCHEDSTATS
2260 
2261 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2262 static bool __initdata __sched_schedstats = false;
2263 
2264 static void set_schedstats(bool enabled)
2265 {
2266 	if (enabled)
2267 		static_branch_enable(&sched_schedstats);
2268 	else
2269 		static_branch_disable(&sched_schedstats);
2270 }
2271 
2272 void force_schedstat_enabled(void)
2273 {
2274 	if (!schedstat_enabled()) {
2275 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2276 		static_branch_enable(&sched_schedstats);
2277 	}
2278 }
2279 
2280 static int __init setup_schedstats(char *str)
2281 {
2282 	int ret = 0;
2283 	if (!str)
2284 		goto out;
2285 
2286 	/*
2287 	 * This code is called before jump labels have been set up, so we can't
2288 	 * change the static branch directly just yet.  Instead set a temporary
2289 	 * variable so init_schedstats() can do it later.
2290 	 */
2291 	if (!strcmp(str, "enable")) {
2292 		__sched_schedstats = true;
2293 		ret = 1;
2294 	} else if (!strcmp(str, "disable")) {
2295 		__sched_schedstats = false;
2296 		ret = 1;
2297 	}
2298 out:
2299 	if (!ret)
2300 		pr_warn("Unable to parse schedstats=\n");
2301 
2302 	return ret;
2303 }
2304 __setup("schedstats=", setup_schedstats);
2305 
2306 static void __init init_schedstats(void)
2307 {
2308 	set_schedstats(__sched_schedstats);
2309 }
2310 
2311 #ifdef CONFIG_PROC_SYSCTL
2312 int sysctl_schedstats(struct ctl_table *table, int write,
2313 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2314 {
2315 	struct ctl_table t;
2316 	int err;
2317 	int state = static_branch_likely(&sched_schedstats);
2318 
2319 	if (write && !capable(CAP_SYS_ADMIN))
2320 		return -EPERM;
2321 
2322 	t = *table;
2323 	t.data = &state;
2324 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2325 	if (err < 0)
2326 		return err;
2327 	if (write)
2328 		set_schedstats(state);
2329 	return err;
2330 }
2331 #endif /* CONFIG_PROC_SYSCTL */
2332 #else  /* !CONFIG_SCHEDSTATS */
2333 static inline void init_schedstats(void) {}
2334 #endif /* CONFIG_SCHEDSTATS */
2335 
2336 /*
2337  * fork()/clone()-time setup:
2338  */
2339 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2340 {
2341 	unsigned long flags;
2342 	int cpu = get_cpu();
2343 
2344 	__sched_fork(clone_flags, p);
2345 	/*
2346 	 * We mark the process as NEW here. This guarantees that
2347 	 * nobody will actually run it, and a signal or other external
2348 	 * event cannot wake it up and insert it on the runqueue either.
2349 	 */
2350 	p->state = TASK_NEW;
2351 
2352 	/*
2353 	 * Make sure we do not leak PI boosting priority to the child.
2354 	 */
2355 	p->prio = current->normal_prio;
2356 
2357 	/*
2358 	 * Revert to default priority/policy on fork if requested.
2359 	 */
2360 	if (unlikely(p->sched_reset_on_fork)) {
2361 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2362 			p->policy = SCHED_NORMAL;
2363 			p->static_prio = NICE_TO_PRIO(0);
2364 			p->rt_priority = 0;
2365 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2366 			p->static_prio = NICE_TO_PRIO(0);
2367 
2368 		p->prio = p->normal_prio = __normal_prio(p);
2369 		set_load_weight(p);
2370 
2371 		/*
2372 		 * We don't need the reset flag anymore after the fork. It has
2373 		 * fulfilled its duty:
2374 		 */
2375 		p->sched_reset_on_fork = 0;
2376 	}
2377 
2378 	if (dl_prio(p->prio)) {
2379 		put_cpu();
2380 		return -EAGAIN;
2381 	} else if (rt_prio(p->prio)) {
2382 		p->sched_class = &rt_sched_class;
2383 	} else {
2384 		p->sched_class = &fair_sched_class;
2385 	}
2386 
2387 	init_entity_runnable_average(&p->se);
2388 
2389 	/*
2390 	 * The child is not yet in the pid-hash so no cgroup attach races,
2391 	 * and the cgroup is pinned to this child due to cgroup_fork()
2392 	 * is ran before sched_fork().
2393 	 *
2394 	 * Silence PROVE_RCU.
2395 	 */
2396 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2397 	/*
2398 	 * We're setting the CPU for the first time, we don't migrate,
2399 	 * so use __set_task_cpu().
2400 	 */
2401 	__set_task_cpu(p, cpu);
2402 	if (p->sched_class->task_fork)
2403 		p->sched_class->task_fork(p);
2404 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2405 
2406 #ifdef CONFIG_SCHED_INFO
2407 	if (likely(sched_info_on()))
2408 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2409 #endif
2410 #if defined(CONFIG_SMP)
2411 	p->on_cpu = 0;
2412 #endif
2413 	init_task_preempt_count(p);
2414 #ifdef CONFIG_SMP
2415 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2416 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2417 #endif
2418 
2419 	put_cpu();
2420 	return 0;
2421 }
2422 
2423 unsigned long to_ratio(u64 period, u64 runtime)
2424 {
2425 	if (runtime == RUNTIME_INF)
2426 		return 1ULL << 20;
2427 
2428 	/*
2429 	 * Doing this here saves a lot of checks in all
2430 	 * the calling paths, and returning zero seems
2431 	 * safe for them anyway.
2432 	 */
2433 	if (period == 0)
2434 		return 0;
2435 
2436 	return div64_u64(runtime << 20, period);
2437 }
2438 
2439 #ifdef CONFIG_SMP
2440 inline struct dl_bw *dl_bw_of(int i)
2441 {
2442 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2443 			 "sched RCU must be held");
2444 	return &cpu_rq(i)->rd->dl_bw;
2445 }
2446 
2447 static inline int dl_bw_cpus(int i)
2448 {
2449 	struct root_domain *rd = cpu_rq(i)->rd;
2450 	int cpus = 0;
2451 
2452 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2453 			 "sched RCU must be held");
2454 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2455 		cpus++;
2456 
2457 	return cpus;
2458 }
2459 #else
2460 inline struct dl_bw *dl_bw_of(int i)
2461 {
2462 	return &cpu_rq(i)->dl.dl_bw;
2463 }
2464 
2465 static inline int dl_bw_cpus(int i)
2466 {
2467 	return 1;
2468 }
2469 #endif
2470 
2471 /*
2472  * We must be sure that accepting a new task (or allowing changing the
2473  * parameters of an existing one) is consistent with the bandwidth
2474  * constraints. If yes, this function also accordingly updates the currently
2475  * allocated bandwidth to reflect the new situation.
2476  *
2477  * This function is called while holding p's rq->lock.
2478  *
2479  * XXX we should delay bw change until the task's 0-lag point, see
2480  * __setparam_dl().
2481  */
2482 static int dl_overflow(struct task_struct *p, int policy,
2483 		       const struct sched_attr *attr)
2484 {
2485 
2486 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2487 	u64 period = attr->sched_period ?: attr->sched_deadline;
2488 	u64 runtime = attr->sched_runtime;
2489 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2490 	int cpus, err = -1;
2491 
2492 	/* !deadline task may carry old deadline bandwidth */
2493 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2494 		return 0;
2495 
2496 	/*
2497 	 * Either if a task, enters, leave, or stays -deadline but changes
2498 	 * its parameters, we may need to update accordingly the total
2499 	 * allocated bandwidth of the container.
2500 	 */
2501 	raw_spin_lock(&dl_b->lock);
2502 	cpus = dl_bw_cpus(task_cpu(p));
2503 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2504 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2505 		__dl_add(dl_b, new_bw);
2506 		err = 0;
2507 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2508 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2509 		__dl_clear(dl_b, p->dl.dl_bw);
2510 		__dl_add(dl_b, new_bw);
2511 		err = 0;
2512 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2513 		__dl_clear(dl_b, p->dl.dl_bw);
2514 		err = 0;
2515 	}
2516 	raw_spin_unlock(&dl_b->lock);
2517 
2518 	return err;
2519 }
2520 
2521 extern void init_dl_bw(struct dl_bw *dl_b);
2522 
2523 /*
2524  * wake_up_new_task - wake up a newly created task for the first time.
2525  *
2526  * This function will do some initial scheduler statistics housekeeping
2527  * that must be done for every newly created context, then puts the task
2528  * on the runqueue and wakes it.
2529  */
2530 void wake_up_new_task(struct task_struct *p)
2531 {
2532 	struct rq_flags rf;
2533 	struct rq *rq;
2534 
2535 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2536 	p->state = TASK_RUNNING;
2537 #ifdef CONFIG_SMP
2538 	/*
2539 	 * Fork balancing, do it here and not earlier because:
2540 	 *  - cpus_allowed can change in the fork path
2541 	 *  - any previously selected CPU might disappear through hotplug
2542 	 *
2543 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2544 	 * as we're not fully set-up yet.
2545 	 */
2546 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2547 #endif
2548 	rq = __task_rq_lock(p, &rf);
2549 	update_rq_clock(rq);
2550 	post_init_entity_util_avg(&p->se);
2551 
2552 	activate_task(rq, p, 0);
2553 	p->on_rq = TASK_ON_RQ_QUEUED;
2554 	trace_sched_wakeup_new(p);
2555 	check_preempt_curr(rq, p, WF_FORK);
2556 #ifdef CONFIG_SMP
2557 	if (p->sched_class->task_woken) {
2558 		/*
2559 		 * Nothing relies on rq->lock after this, so its fine to
2560 		 * drop it.
2561 		 */
2562 		rq_unpin_lock(rq, &rf);
2563 		p->sched_class->task_woken(rq, p);
2564 		rq_repin_lock(rq, &rf);
2565 	}
2566 #endif
2567 	task_rq_unlock(rq, p, &rf);
2568 }
2569 
2570 #ifdef CONFIG_PREEMPT_NOTIFIERS
2571 
2572 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2573 
2574 void preempt_notifier_inc(void)
2575 {
2576 	static_key_slow_inc(&preempt_notifier_key);
2577 }
2578 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2579 
2580 void preempt_notifier_dec(void)
2581 {
2582 	static_key_slow_dec(&preempt_notifier_key);
2583 }
2584 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2585 
2586 /**
2587  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2588  * @notifier: notifier struct to register
2589  */
2590 void preempt_notifier_register(struct preempt_notifier *notifier)
2591 {
2592 	if (!static_key_false(&preempt_notifier_key))
2593 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2594 
2595 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2596 }
2597 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2598 
2599 /**
2600  * preempt_notifier_unregister - no longer interested in preemption notifications
2601  * @notifier: notifier struct to unregister
2602  *
2603  * This is *not* safe to call from within a preemption notifier.
2604  */
2605 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2606 {
2607 	hlist_del(&notifier->link);
2608 }
2609 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2610 
2611 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2612 {
2613 	struct preempt_notifier *notifier;
2614 
2615 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2616 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2617 }
2618 
2619 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2620 {
2621 	if (static_key_false(&preempt_notifier_key))
2622 		__fire_sched_in_preempt_notifiers(curr);
2623 }
2624 
2625 static void
2626 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2627 				   struct task_struct *next)
2628 {
2629 	struct preempt_notifier *notifier;
2630 
2631 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2632 		notifier->ops->sched_out(notifier, next);
2633 }
2634 
2635 static __always_inline void
2636 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2637 				 struct task_struct *next)
2638 {
2639 	if (static_key_false(&preempt_notifier_key))
2640 		__fire_sched_out_preempt_notifiers(curr, next);
2641 }
2642 
2643 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2644 
2645 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2646 {
2647 }
2648 
2649 static inline void
2650 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2651 				 struct task_struct *next)
2652 {
2653 }
2654 
2655 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2656 
2657 /**
2658  * prepare_task_switch - prepare to switch tasks
2659  * @rq: the runqueue preparing to switch
2660  * @prev: the current task that is being switched out
2661  * @next: the task we are going to switch to.
2662  *
2663  * This is called with the rq lock held and interrupts off. It must
2664  * be paired with a subsequent finish_task_switch after the context
2665  * switch.
2666  *
2667  * prepare_task_switch sets up locking and calls architecture specific
2668  * hooks.
2669  */
2670 static inline void
2671 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2672 		    struct task_struct *next)
2673 {
2674 	sched_info_switch(rq, prev, next);
2675 	perf_event_task_sched_out(prev, next);
2676 	fire_sched_out_preempt_notifiers(prev, next);
2677 	prepare_lock_switch(rq, next);
2678 	prepare_arch_switch(next);
2679 }
2680 
2681 /**
2682  * finish_task_switch - clean up after a task-switch
2683  * @prev: the thread we just switched away from.
2684  *
2685  * finish_task_switch must be called after the context switch, paired
2686  * with a prepare_task_switch call before the context switch.
2687  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2688  * and do any other architecture-specific cleanup actions.
2689  *
2690  * Note that we may have delayed dropping an mm in context_switch(). If
2691  * so, we finish that here outside of the runqueue lock. (Doing it
2692  * with the lock held can cause deadlocks; see schedule() for
2693  * details.)
2694  *
2695  * The context switch have flipped the stack from under us and restored the
2696  * local variables which were saved when this task called schedule() in the
2697  * past. prev == current is still correct but we need to recalculate this_rq
2698  * because prev may have moved to another CPU.
2699  */
2700 static struct rq *finish_task_switch(struct task_struct *prev)
2701 	__releases(rq->lock)
2702 {
2703 	struct rq *rq = this_rq();
2704 	struct mm_struct *mm = rq->prev_mm;
2705 	long prev_state;
2706 
2707 	/*
2708 	 * The previous task will have left us with a preempt_count of 2
2709 	 * because it left us after:
2710 	 *
2711 	 *	schedule()
2712 	 *	  preempt_disable();			// 1
2713 	 *	  __schedule()
2714 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2715 	 *
2716 	 * Also, see FORK_PREEMPT_COUNT.
2717 	 */
2718 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2719 		      "corrupted preempt_count: %s/%d/0x%x\n",
2720 		      current->comm, current->pid, preempt_count()))
2721 		preempt_count_set(FORK_PREEMPT_COUNT);
2722 
2723 	rq->prev_mm = NULL;
2724 
2725 	/*
2726 	 * A task struct has one reference for the use as "current".
2727 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2728 	 * schedule one last time. The schedule call will never return, and
2729 	 * the scheduled task must drop that reference.
2730 	 *
2731 	 * We must observe prev->state before clearing prev->on_cpu (in
2732 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2733 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2734 	 * transition, resulting in a double drop.
2735 	 */
2736 	prev_state = prev->state;
2737 	vtime_task_switch(prev);
2738 	perf_event_task_sched_in(prev, current);
2739 	finish_lock_switch(rq, prev);
2740 	finish_arch_post_lock_switch();
2741 
2742 	fire_sched_in_preempt_notifiers(current);
2743 	if (mm)
2744 		mmdrop(mm);
2745 	if (unlikely(prev_state == TASK_DEAD)) {
2746 		if (prev->sched_class->task_dead)
2747 			prev->sched_class->task_dead(prev);
2748 
2749 		/*
2750 		 * Remove function-return probe instances associated with this
2751 		 * task and put them back on the free list.
2752 		 */
2753 		kprobe_flush_task(prev);
2754 
2755 		/* Task is done with its stack. */
2756 		put_task_stack(prev);
2757 
2758 		put_task_struct(prev);
2759 	}
2760 
2761 	tick_nohz_task_switch();
2762 	return rq;
2763 }
2764 
2765 #ifdef CONFIG_SMP
2766 
2767 /* rq->lock is NOT held, but preemption is disabled */
2768 static void __balance_callback(struct rq *rq)
2769 {
2770 	struct callback_head *head, *next;
2771 	void (*func)(struct rq *rq);
2772 	unsigned long flags;
2773 
2774 	raw_spin_lock_irqsave(&rq->lock, flags);
2775 	head = rq->balance_callback;
2776 	rq->balance_callback = NULL;
2777 	while (head) {
2778 		func = (void (*)(struct rq *))head->func;
2779 		next = head->next;
2780 		head->next = NULL;
2781 		head = next;
2782 
2783 		func(rq);
2784 	}
2785 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2786 }
2787 
2788 static inline void balance_callback(struct rq *rq)
2789 {
2790 	if (unlikely(rq->balance_callback))
2791 		__balance_callback(rq);
2792 }
2793 
2794 #else
2795 
2796 static inline void balance_callback(struct rq *rq)
2797 {
2798 }
2799 
2800 #endif
2801 
2802 /**
2803  * schedule_tail - first thing a freshly forked thread must call.
2804  * @prev: the thread we just switched away from.
2805  */
2806 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2807 	__releases(rq->lock)
2808 {
2809 	struct rq *rq;
2810 
2811 	/*
2812 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2813 	 * finish_task_switch() for details.
2814 	 *
2815 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2816 	 * and the preempt_enable() will end up enabling preemption (on
2817 	 * PREEMPT_COUNT kernels).
2818 	 */
2819 
2820 	rq = finish_task_switch(prev);
2821 	balance_callback(rq);
2822 	preempt_enable();
2823 
2824 	if (current->set_child_tid)
2825 		put_user(task_pid_vnr(current), current->set_child_tid);
2826 }
2827 
2828 /*
2829  * context_switch - switch to the new MM and the new thread's register state.
2830  */
2831 static __always_inline struct rq *
2832 context_switch(struct rq *rq, struct task_struct *prev,
2833 	       struct task_struct *next, struct rq_flags *rf)
2834 {
2835 	struct mm_struct *mm, *oldmm;
2836 
2837 	prepare_task_switch(rq, prev, next);
2838 
2839 	mm = next->mm;
2840 	oldmm = prev->active_mm;
2841 	/*
2842 	 * For paravirt, this is coupled with an exit in switch_to to
2843 	 * combine the page table reload and the switch backend into
2844 	 * one hypercall.
2845 	 */
2846 	arch_start_context_switch(prev);
2847 
2848 	if (!mm) {
2849 		next->active_mm = oldmm;
2850 		atomic_inc(&oldmm->mm_count);
2851 		enter_lazy_tlb(oldmm, next);
2852 	} else
2853 		switch_mm_irqs_off(oldmm, mm, next);
2854 
2855 	if (!prev->mm) {
2856 		prev->active_mm = NULL;
2857 		rq->prev_mm = oldmm;
2858 	}
2859 
2860 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2861 
2862 	/*
2863 	 * Since the runqueue lock will be released by the next
2864 	 * task (which is an invalid locking op but in the case
2865 	 * of the scheduler it's an obvious special-case), so we
2866 	 * do an early lockdep release here:
2867 	 */
2868 	rq_unpin_lock(rq, rf);
2869 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2870 
2871 	/* Here we just switch the register state and the stack. */
2872 	switch_to(prev, next, prev);
2873 	barrier();
2874 
2875 	return finish_task_switch(prev);
2876 }
2877 
2878 /*
2879  * nr_running and nr_context_switches:
2880  *
2881  * externally visible scheduler statistics: current number of runnable
2882  * threads, total number of context switches performed since bootup.
2883  */
2884 unsigned long nr_running(void)
2885 {
2886 	unsigned long i, sum = 0;
2887 
2888 	for_each_online_cpu(i)
2889 		sum += cpu_rq(i)->nr_running;
2890 
2891 	return sum;
2892 }
2893 
2894 /*
2895  * Check if only the current task is running on the CPU.
2896  *
2897  * Caution: this function does not check that the caller has disabled
2898  * preemption, thus the result might have a time-of-check-to-time-of-use
2899  * race.  The caller is responsible to use it correctly, for example:
2900  *
2901  * - from a non-preemptable section (of course)
2902  *
2903  * - from a thread that is bound to a single CPU
2904  *
2905  * - in a loop with very short iterations (e.g. a polling loop)
2906  */
2907 bool single_task_running(void)
2908 {
2909 	return raw_rq()->nr_running == 1;
2910 }
2911 EXPORT_SYMBOL(single_task_running);
2912 
2913 unsigned long long nr_context_switches(void)
2914 {
2915 	int i;
2916 	unsigned long long sum = 0;
2917 
2918 	for_each_possible_cpu(i)
2919 		sum += cpu_rq(i)->nr_switches;
2920 
2921 	return sum;
2922 }
2923 
2924 /*
2925  * IO-wait accounting, and how its mostly bollocks (on SMP).
2926  *
2927  * The idea behind IO-wait account is to account the idle time that we could
2928  * have spend running if it were not for IO. That is, if we were to improve the
2929  * storage performance, we'd have a proportional reduction in IO-wait time.
2930  *
2931  * This all works nicely on UP, where, when a task blocks on IO, we account
2932  * idle time as IO-wait, because if the storage were faster, it could've been
2933  * running and we'd not be idle.
2934  *
2935  * This has been extended to SMP, by doing the same for each CPU. This however
2936  * is broken.
2937  *
2938  * Imagine for instance the case where two tasks block on one CPU, only the one
2939  * CPU will have IO-wait accounted, while the other has regular idle. Even
2940  * though, if the storage were faster, both could've ran at the same time,
2941  * utilising both CPUs.
2942  *
2943  * This means, that when looking globally, the current IO-wait accounting on
2944  * SMP is a lower bound, by reason of under accounting.
2945  *
2946  * Worse, since the numbers are provided per CPU, they are sometimes
2947  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2948  * associated with any one particular CPU, it can wake to another CPU than it
2949  * blocked on. This means the per CPU IO-wait number is meaningless.
2950  *
2951  * Task CPU affinities can make all that even more 'interesting'.
2952  */
2953 
2954 unsigned long nr_iowait(void)
2955 {
2956 	unsigned long i, sum = 0;
2957 
2958 	for_each_possible_cpu(i)
2959 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2960 
2961 	return sum;
2962 }
2963 
2964 /*
2965  * Consumers of these two interfaces, like for example the cpufreq menu
2966  * governor are using nonsensical data. Boosting frequency for a CPU that has
2967  * IO-wait which might not even end up running the task when it does become
2968  * runnable.
2969  */
2970 
2971 unsigned long nr_iowait_cpu(int cpu)
2972 {
2973 	struct rq *this = cpu_rq(cpu);
2974 	return atomic_read(&this->nr_iowait);
2975 }
2976 
2977 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2978 {
2979 	struct rq *rq = this_rq();
2980 	*nr_waiters = atomic_read(&rq->nr_iowait);
2981 	*load = rq->load.weight;
2982 }
2983 
2984 #ifdef CONFIG_SMP
2985 
2986 /*
2987  * sched_exec - execve() is a valuable balancing opportunity, because at
2988  * this point the task has the smallest effective memory and cache footprint.
2989  */
2990 void sched_exec(void)
2991 {
2992 	struct task_struct *p = current;
2993 	unsigned long flags;
2994 	int dest_cpu;
2995 
2996 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2997 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2998 	if (dest_cpu == smp_processor_id())
2999 		goto unlock;
3000 
3001 	if (likely(cpu_active(dest_cpu))) {
3002 		struct migration_arg arg = { p, dest_cpu };
3003 
3004 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3005 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3006 		return;
3007 	}
3008 unlock:
3009 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3010 }
3011 
3012 #endif
3013 
3014 DEFINE_PER_CPU(struct kernel_stat, kstat);
3015 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3016 
3017 EXPORT_PER_CPU_SYMBOL(kstat);
3018 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3019 
3020 /*
3021  * The function fair_sched_class.update_curr accesses the struct curr
3022  * and its field curr->exec_start; when called from task_sched_runtime(),
3023  * we observe a high rate of cache misses in practice.
3024  * Prefetching this data results in improved performance.
3025  */
3026 static inline void prefetch_curr_exec_start(struct task_struct *p)
3027 {
3028 #ifdef CONFIG_FAIR_GROUP_SCHED
3029 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3030 #else
3031 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3032 #endif
3033 	prefetch(curr);
3034 	prefetch(&curr->exec_start);
3035 }
3036 
3037 /*
3038  * Return accounted runtime for the task.
3039  * In case the task is currently running, return the runtime plus current's
3040  * pending runtime that have not been accounted yet.
3041  */
3042 unsigned long long task_sched_runtime(struct task_struct *p)
3043 {
3044 	struct rq_flags rf;
3045 	struct rq *rq;
3046 	u64 ns;
3047 
3048 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3049 	/*
3050 	 * 64-bit doesn't need locks to atomically read a 64bit value.
3051 	 * So we have a optimization chance when the task's delta_exec is 0.
3052 	 * Reading ->on_cpu is racy, but this is ok.
3053 	 *
3054 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3055 	 * If we race with it entering CPU, unaccounted time is 0. This is
3056 	 * indistinguishable from the read occurring a few cycles earlier.
3057 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3058 	 * been accounted, so we're correct here as well.
3059 	 */
3060 	if (!p->on_cpu || !task_on_rq_queued(p))
3061 		return p->se.sum_exec_runtime;
3062 #endif
3063 
3064 	rq = task_rq_lock(p, &rf);
3065 	/*
3066 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3067 	 * project cycles that may never be accounted to this
3068 	 * thread, breaking clock_gettime().
3069 	 */
3070 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3071 		prefetch_curr_exec_start(p);
3072 		update_rq_clock(rq);
3073 		p->sched_class->update_curr(rq);
3074 	}
3075 	ns = p->se.sum_exec_runtime;
3076 	task_rq_unlock(rq, p, &rf);
3077 
3078 	return ns;
3079 }
3080 
3081 /*
3082  * This function gets called by the timer code, with HZ frequency.
3083  * We call it with interrupts disabled.
3084  */
3085 void scheduler_tick(void)
3086 {
3087 	int cpu = smp_processor_id();
3088 	struct rq *rq = cpu_rq(cpu);
3089 	struct task_struct *curr = rq->curr;
3090 
3091 	sched_clock_tick();
3092 
3093 	raw_spin_lock(&rq->lock);
3094 	update_rq_clock(rq);
3095 	curr->sched_class->task_tick(rq, curr, 0);
3096 	cpu_load_update_active(rq);
3097 	calc_global_load_tick(rq);
3098 	raw_spin_unlock(&rq->lock);
3099 
3100 	perf_event_task_tick();
3101 
3102 #ifdef CONFIG_SMP
3103 	rq->idle_balance = idle_cpu(cpu);
3104 	trigger_load_balance(rq);
3105 #endif
3106 	rq_last_tick_reset(rq);
3107 }
3108 
3109 #ifdef CONFIG_NO_HZ_FULL
3110 /**
3111  * scheduler_tick_max_deferment
3112  *
3113  * Keep at least one tick per second when a single
3114  * active task is running because the scheduler doesn't
3115  * yet completely support full dynticks environment.
3116  *
3117  * This makes sure that uptime, CFS vruntime, load
3118  * balancing, etc... continue to move forward, even
3119  * with a very low granularity.
3120  *
3121  * Return: Maximum deferment in nanoseconds.
3122  */
3123 u64 scheduler_tick_max_deferment(void)
3124 {
3125 	struct rq *rq = this_rq();
3126 	unsigned long next, now = READ_ONCE(jiffies);
3127 
3128 	next = rq->last_sched_tick + HZ;
3129 
3130 	if (time_before_eq(next, now))
3131 		return 0;
3132 
3133 	return jiffies_to_nsecs(next - now);
3134 }
3135 #endif
3136 
3137 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3138 				defined(CONFIG_PREEMPT_TRACER))
3139 /*
3140  * If the value passed in is equal to the current preempt count
3141  * then we just disabled preemption. Start timing the latency.
3142  */
3143 static inline void preempt_latency_start(int val)
3144 {
3145 	if (preempt_count() == val) {
3146 		unsigned long ip = get_lock_parent_ip();
3147 #ifdef CONFIG_DEBUG_PREEMPT
3148 		current->preempt_disable_ip = ip;
3149 #endif
3150 		trace_preempt_off(CALLER_ADDR0, ip);
3151 	}
3152 }
3153 
3154 void preempt_count_add(int val)
3155 {
3156 #ifdef CONFIG_DEBUG_PREEMPT
3157 	/*
3158 	 * Underflow?
3159 	 */
3160 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3161 		return;
3162 #endif
3163 	__preempt_count_add(val);
3164 #ifdef CONFIG_DEBUG_PREEMPT
3165 	/*
3166 	 * Spinlock count overflowing soon?
3167 	 */
3168 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3169 				PREEMPT_MASK - 10);
3170 #endif
3171 	preempt_latency_start(val);
3172 }
3173 EXPORT_SYMBOL(preempt_count_add);
3174 NOKPROBE_SYMBOL(preempt_count_add);
3175 
3176 /*
3177  * If the value passed in equals to the current preempt count
3178  * then we just enabled preemption. Stop timing the latency.
3179  */
3180 static inline void preempt_latency_stop(int val)
3181 {
3182 	if (preempt_count() == val)
3183 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3184 }
3185 
3186 void preempt_count_sub(int val)
3187 {
3188 #ifdef CONFIG_DEBUG_PREEMPT
3189 	/*
3190 	 * Underflow?
3191 	 */
3192 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3193 		return;
3194 	/*
3195 	 * Is the spinlock portion underflowing?
3196 	 */
3197 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3198 			!(preempt_count() & PREEMPT_MASK)))
3199 		return;
3200 #endif
3201 
3202 	preempt_latency_stop(val);
3203 	__preempt_count_sub(val);
3204 }
3205 EXPORT_SYMBOL(preempt_count_sub);
3206 NOKPROBE_SYMBOL(preempt_count_sub);
3207 
3208 #else
3209 static inline void preempt_latency_start(int val) { }
3210 static inline void preempt_latency_stop(int val) { }
3211 #endif
3212 
3213 /*
3214  * Print scheduling while atomic bug:
3215  */
3216 static noinline void __schedule_bug(struct task_struct *prev)
3217 {
3218 	/* Save this before calling printk(), since that will clobber it */
3219 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3220 
3221 	if (oops_in_progress)
3222 		return;
3223 
3224 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3225 		prev->comm, prev->pid, preempt_count());
3226 
3227 	debug_show_held_locks(prev);
3228 	print_modules();
3229 	if (irqs_disabled())
3230 		print_irqtrace_events(prev);
3231 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3232 	    && in_atomic_preempt_off()) {
3233 		pr_err("Preemption disabled at:");
3234 		print_ip_sym(preempt_disable_ip);
3235 		pr_cont("\n");
3236 	}
3237 	if (panic_on_warn)
3238 		panic("scheduling while atomic\n");
3239 
3240 	dump_stack();
3241 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3242 }
3243 
3244 /*
3245  * Various schedule()-time debugging checks and statistics:
3246  */
3247 static inline void schedule_debug(struct task_struct *prev)
3248 {
3249 #ifdef CONFIG_SCHED_STACK_END_CHECK
3250 	if (task_stack_end_corrupted(prev))
3251 		panic("corrupted stack end detected inside scheduler\n");
3252 #endif
3253 
3254 	if (unlikely(in_atomic_preempt_off())) {
3255 		__schedule_bug(prev);
3256 		preempt_count_set(PREEMPT_DISABLED);
3257 	}
3258 	rcu_sleep_check();
3259 
3260 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3261 
3262 	schedstat_inc(this_rq()->sched_count);
3263 }
3264 
3265 /*
3266  * Pick up the highest-prio task:
3267  */
3268 static inline struct task_struct *
3269 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3270 {
3271 	const struct sched_class *class;
3272 	struct task_struct *p;
3273 
3274 	/*
3275 	 * Optimization: we know that if all tasks are in
3276 	 * the fair class we can call that function directly:
3277 	 */
3278 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3279 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3280 		if (unlikely(p == RETRY_TASK))
3281 			goto again;
3282 
3283 		/* Assumes fair_sched_class->next == idle_sched_class */
3284 		if (unlikely(!p))
3285 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3286 
3287 		return p;
3288 	}
3289 
3290 again:
3291 	for_each_class(class) {
3292 		p = class->pick_next_task(rq, prev, rf);
3293 		if (p) {
3294 			if (unlikely(p == RETRY_TASK))
3295 				goto again;
3296 			return p;
3297 		}
3298 	}
3299 
3300 	/* The idle class should always have a runnable task: */
3301 	BUG();
3302 }
3303 
3304 /*
3305  * __schedule() is the main scheduler function.
3306  *
3307  * The main means of driving the scheduler and thus entering this function are:
3308  *
3309  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3310  *
3311  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3312  *      paths. For example, see arch/x86/entry_64.S.
3313  *
3314  *      To drive preemption between tasks, the scheduler sets the flag in timer
3315  *      interrupt handler scheduler_tick().
3316  *
3317  *   3. Wakeups don't really cause entry into schedule(). They add a
3318  *      task to the run-queue and that's it.
3319  *
3320  *      Now, if the new task added to the run-queue preempts the current
3321  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3322  *      called on the nearest possible occasion:
3323  *
3324  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3325  *
3326  *         - in syscall or exception context, at the next outmost
3327  *           preempt_enable(). (this might be as soon as the wake_up()'s
3328  *           spin_unlock()!)
3329  *
3330  *         - in IRQ context, return from interrupt-handler to
3331  *           preemptible context
3332  *
3333  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3334  *         then at the next:
3335  *
3336  *          - cond_resched() call
3337  *          - explicit schedule() call
3338  *          - return from syscall or exception to user-space
3339  *          - return from interrupt-handler to user-space
3340  *
3341  * WARNING: must be called with preemption disabled!
3342  */
3343 static void __sched notrace __schedule(bool preempt)
3344 {
3345 	struct task_struct *prev, *next;
3346 	unsigned long *switch_count;
3347 	struct rq_flags rf;
3348 	struct rq *rq;
3349 	int cpu;
3350 
3351 	cpu = smp_processor_id();
3352 	rq = cpu_rq(cpu);
3353 	prev = rq->curr;
3354 
3355 	schedule_debug(prev);
3356 
3357 	if (sched_feat(HRTICK))
3358 		hrtick_clear(rq);
3359 
3360 	local_irq_disable();
3361 	rcu_note_context_switch();
3362 
3363 	/*
3364 	 * Make sure that signal_pending_state()->signal_pending() below
3365 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3366 	 * done by the caller to avoid the race with signal_wake_up().
3367 	 */
3368 	smp_mb__before_spinlock();
3369 	raw_spin_lock(&rq->lock);
3370 	rq_pin_lock(rq, &rf);
3371 
3372 	/* Promote REQ to ACT */
3373 	rq->clock_update_flags <<= 1;
3374 
3375 	switch_count = &prev->nivcsw;
3376 	if (!preempt && prev->state) {
3377 		if (unlikely(signal_pending_state(prev->state, prev))) {
3378 			prev->state = TASK_RUNNING;
3379 		} else {
3380 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3381 			prev->on_rq = 0;
3382 
3383 			if (prev->in_iowait) {
3384 				atomic_inc(&rq->nr_iowait);
3385 				delayacct_blkio_start();
3386 			}
3387 
3388 			/*
3389 			 * If a worker went to sleep, notify and ask workqueue
3390 			 * whether it wants to wake up a task to maintain
3391 			 * concurrency.
3392 			 */
3393 			if (prev->flags & PF_WQ_WORKER) {
3394 				struct task_struct *to_wakeup;
3395 
3396 				to_wakeup = wq_worker_sleeping(prev);
3397 				if (to_wakeup)
3398 					try_to_wake_up_local(to_wakeup, &rf);
3399 			}
3400 		}
3401 		switch_count = &prev->nvcsw;
3402 	}
3403 
3404 	if (task_on_rq_queued(prev))
3405 		update_rq_clock(rq);
3406 
3407 	next = pick_next_task(rq, prev, &rf);
3408 	clear_tsk_need_resched(prev);
3409 	clear_preempt_need_resched();
3410 
3411 	if (likely(prev != next)) {
3412 		rq->nr_switches++;
3413 		rq->curr = next;
3414 		++*switch_count;
3415 
3416 		trace_sched_switch(preempt, prev, next);
3417 
3418 		/* Also unlocks the rq: */
3419 		rq = context_switch(rq, prev, next, &rf);
3420 	} else {
3421 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3422 		rq_unpin_lock(rq, &rf);
3423 		raw_spin_unlock_irq(&rq->lock);
3424 	}
3425 
3426 	balance_callback(rq);
3427 }
3428 
3429 void __noreturn do_task_dead(void)
3430 {
3431 	/*
3432 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3433 	 * when the following two conditions become true.
3434 	 *   - There is race condition of mmap_sem (It is acquired by
3435 	 *     exit_mm()), and
3436 	 *   - SMI occurs before setting TASK_RUNINNG.
3437 	 *     (or hypervisor of virtual machine switches to other guest)
3438 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3439 	 *
3440 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
3441 	 * is held by try_to_wake_up()
3442 	 */
3443 	smp_mb();
3444 	raw_spin_unlock_wait(&current->pi_lock);
3445 
3446 	/* Causes final put_task_struct in finish_task_switch(): */
3447 	__set_current_state(TASK_DEAD);
3448 
3449 	/* Tell freezer to ignore us: */
3450 	current->flags |= PF_NOFREEZE;
3451 
3452 	__schedule(false);
3453 	BUG();
3454 
3455 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3456 	for (;;)
3457 		cpu_relax();
3458 }
3459 
3460 static inline void sched_submit_work(struct task_struct *tsk)
3461 {
3462 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3463 		return;
3464 	/*
3465 	 * If we are going to sleep and we have plugged IO queued,
3466 	 * make sure to submit it to avoid deadlocks.
3467 	 */
3468 	if (blk_needs_flush_plug(tsk))
3469 		blk_schedule_flush_plug(tsk);
3470 }
3471 
3472 asmlinkage __visible void __sched schedule(void)
3473 {
3474 	struct task_struct *tsk = current;
3475 
3476 	sched_submit_work(tsk);
3477 	do {
3478 		preempt_disable();
3479 		__schedule(false);
3480 		sched_preempt_enable_no_resched();
3481 	} while (need_resched());
3482 }
3483 EXPORT_SYMBOL(schedule);
3484 
3485 #ifdef CONFIG_CONTEXT_TRACKING
3486 asmlinkage __visible void __sched schedule_user(void)
3487 {
3488 	/*
3489 	 * If we come here after a random call to set_need_resched(),
3490 	 * or we have been woken up remotely but the IPI has not yet arrived,
3491 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3492 	 * we find a better solution.
3493 	 *
3494 	 * NB: There are buggy callers of this function.  Ideally we
3495 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3496 	 * too frequently to make sense yet.
3497 	 */
3498 	enum ctx_state prev_state = exception_enter();
3499 	schedule();
3500 	exception_exit(prev_state);
3501 }
3502 #endif
3503 
3504 /**
3505  * schedule_preempt_disabled - called with preemption disabled
3506  *
3507  * Returns with preemption disabled. Note: preempt_count must be 1
3508  */
3509 void __sched schedule_preempt_disabled(void)
3510 {
3511 	sched_preempt_enable_no_resched();
3512 	schedule();
3513 	preempt_disable();
3514 }
3515 
3516 static void __sched notrace preempt_schedule_common(void)
3517 {
3518 	do {
3519 		/*
3520 		 * Because the function tracer can trace preempt_count_sub()
3521 		 * and it also uses preempt_enable/disable_notrace(), if
3522 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3523 		 * by the function tracer will call this function again and
3524 		 * cause infinite recursion.
3525 		 *
3526 		 * Preemption must be disabled here before the function
3527 		 * tracer can trace. Break up preempt_disable() into two
3528 		 * calls. One to disable preemption without fear of being
3529 		 * traced. The other to still record the preemption latency,
3530 		 * which can also be traced by the function tracer.
3531 		 */
3532 		preempt_disable_notrace();
3533 		preempt_latency_start(1);
3534 		__schedule(true);
3535 		preempt_latency_stop(1);
3536 		preempt_enable_no_resched_notrace();
3537 
3538 		/*
3539 		 * Check again in case we missed a preemption opportunity
3540 		 * between schedule and now.
3541 		 */
3542 	} while (need_resched());
3543 }
3544 
3545 #ifdef CONFIG_PREEMPT
3546 /*
3547  * this is the entry point to schedule() from in-kernel preemption
3548  * off of preempt_enable. Kernel preemptions off return from interrupt
3549  * occur there and call schedule directly.
3550  */
3551 asmlinkage __visible void __sched notrace preempt_schedule(void)
3552 {
3553 	/*
3554 	 * If there is a non-zero preempt_count or interrupts are disabled,
3555 	 * we do not want to preempt the current task. Just return..
3556 	 */
3557 	if (likely(!preemptible()))
3558 		return;
3559 
3560 	preempt_schedule_common();
3561 }
3562 NOKPROBE_SYMBOL(preempt_schedule);
3563 EXPORT_SYMBOL(preempt_schedule);
3564 
3565 /**
3566  * preempt_schedule_notrace - preempt_schedule called by tracing
3567  *
3568  * The tracing infrastructure uses preempt_enable_notrace to prevent
3569  * recursion and tracing preempt enabling caused by the tracing
3570  * infrastructure itself. But as tracing can happen in areas coming
3571  * from userspace or just about to enter userspace, a preempt enable
3572  * can occur before user_exit() is called. This will cause the scheduler
3573  * to be called when the system is still in usermode.
3574  *
3575  * To prevent this, the preempt_enable_notrace will use this function
3576  * instead of preempt_schedule() to exit user context if needed before
3577  * calling the scheduler.
3578  */
3579 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3580 {
3581 	enum ctx_state prev_ctx;
3582 
3583 	if (likely(!preemptible()))
3584 		return;
3585 
3586 	do {
3587 		/*
3588 		 * Because the function tracer can trace preempt_count_sub()
3589 		 * and it also uses preempt_enable/disable_notrace(), if
3590 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3591 		 * by the function tracer will call this function again and
3592 		 * cause infinite recursion.
3593 		 *
3594 		 * Preemption must be disabled here before the function
3595 		 * tracer can trace. Break up preempt_disable() into two
3596 		 * calls. One to disable preemption without fear of being
3597 		 * traced. The other to still record the preemption latency,
3598 		 * which can also be traced by the function tracer.
3599 		 */
3600 		preempt_disable_notrace();
3601 		preempt_latency_start(1);
3602 		/*
3603 		 * Needs preempt disabled in case user_exit() is traced
3604 		 * and the tracer calls preempt_enable_notrace() causing
3605 		 * an infinite recursion.
3606 		 */
3607 		prev_ctx = exception_enter();
3608 		__schedule(true);
3609 		exception_exit(prev_ctx);
3610 
3611 		preempt_latency_stop(1);
3612 		preempt_enable_no_resched_notrace();
3613 	} while (need_resched());
3614 }
3615 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3616 
3617 #endif /* CONFIG_PREEMPT */
3618 
3619 /*
3620  * this is the entry point to schedule() from kernel preemption
3621  * off of irq context.
3622  * Note, that this is called and return with irqs disabled. This will
3623  * protect us against recursive calling from irq.
3624  */
3625 asmlinkage __visible void __sched preempt_schedule_irq(void)
3626 {
3627 	enum ctx_state prev_state;
3628 
3629 	/* Catch callers which need to be fixed */
3630 	BUG_ON(preempt_count() || !irqs_disabled());
3631 
3632 	prev_state = exception_enter();
3633 
3634 	do {
3635 		preempt_disable();
3636 		local_irq_enable();
3637 		__schedule(true);
3638 		local_irq_disable();
3639 		sched_preempt_enable_no_resched();
3640 	} while (need_resched());
3641 
3642 	exception_exit(prev_state);
3643 }
3644 
3645 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3646 			  void *key)
3647 {
3648 	return try_to_wake_up(curr->private, mode, wake_flags);
3649 }
3650 EXPORT_SYMBOL(default_wake_function);
3651 
3652 #ifdef CONFIG_RT_MUTEXES
3653 
3654 /*
3655  * rt_mutex_setprio - set the current priority of a task
3656  * @p: task
3657  * @prio: prio value (kernel-internal form)
3658  *
3659  * This function changes the 'effective' priority of a task. It does
3660  * not touch ->normal_prio like __setscheduler().
3661  *
3662  * Used by the rt_mutex code to implement priority inheritance
3663  * logic. Call site only calls if the priority of the task changed.
3664  */
3665 void rt_mutex_setprio(struct task_struct *p, int prio)
3666 {
3667 	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3668 	const struct sched_class *prev_class;
3669 	struct rq_flags rf;
3670 	struct rq *rq;
3671 
3672 	BUG_ON(prio > MAX_PRIO);
3673 
3674 	rq = __task_rq_lock(p, &rf);
3675 	update_rq_clock(rq);
3676 
3677 	/*
3678 	 * Idle task boosting is a nono in general. There is one
3679 	 * exception, when PREEMPT_RT and NOHZ is active:
3680 	 *
3681 	 * The idle task calls get_next_timer_interrupt() and holds
3682 	 * the timer wheel base->lock on the CPU and another CPU wants
3683 	 * to access the timer (probably to cancel it). We can safely
3684 	 * ignore the boosting request, as the idle CPU runs this code
3685 	 * with interrupts disabled and will complete the lock
3686 	 * protected section without being interrupted. So there is no
3687 	 * real need to boost.
3688 	 */
3689 	if (unlikely(p == rq->idle)) {
3690 		WARN_ON(p != rq->curr);
3691 		WARN_ON(p->pi_blocked_on);
3692 		goto out_unlock;
3693 	}
3694 
3695 	trace_sched_pi_setprio(p, prio);
3696 	oldprio = p->prio;
3697 
3698 	if (oldprio == prio)
3699 		queue_flag &= ~DEQUEUE_MOVE;
3700 
3701 	prev_class = p->sched_class;
3702 	queued = task_on_rq_queued(p);
3703 	running = task_current(rq, p);
3704 	if (queued)
3705 		dequeue_task(rq, p, queue_flag);
3706 	if (running)
3707 		put_prev_task(rq, p);
3708 
3709 	/*
3710 	 * Boosting condition are:
3711 	 * 1. -rt task is running and holds mutex A
3712 	 *      --> -dl task blocks on mutex A
3713 	 *
3714 	 * 2. -dl task is running and holds mutex A
3715 	 *      --> -dl task blocks on mutex A and could preempt the
3716 	 *          running task
3717 	 */
3718 	if (dl_prio(prio)) {
3719 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3720 		if (!dl_prio(p->normal_prio) ||
3721 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3722 			p->dl.dl_boosted = 1;
3723 			queue_flag |= ENQUEUE_REPLENISH;
3724 		} else
3725 			p->dl.dl_boosted = 0;
3726 		p->sched_class = &dl_sched_class;
3727 	} else if (rt_prio(prio)) {
3728 		if (dl_prio(oldprio))
3729 			p->dl.dl_boosted = 0;
3730 		if (oldprio < prio)
3731 			queue_flag |= ENQUEUE_HEAD;
3732 		p->sched_class = &rt_sched_class;
3733 	} else {
3734 		if (dl_prio(oldprio))
3735 			p->dl.dl_boosted = 0;
3736 		if (rt_prio(oldprio))
3737 			p->rt.timeout = 0;
3738 		p->sched_class = &fair_sched_class;
3739 	}
3740 
3741 	p->prio = prio;
3742 
3743 	if (queued)
3744 		enqueue_task(rq, p, queue_flag);
3745 	if (running)
3746 		set_curr_task(rq, p);
3747 
3748 	check_class_changed(rq, p, prev_class, oldprio);
3749 out_unlock:
3750 	/* Avoid rq from going away on us: */
3751 	preempt_disable();
3752 	__task_rq_unlock(rq, &rf);
3753 
3754 	balance_callback(rq);
3755 	preempt_enable();
3756 }
3757 #endif
3758 
3759 void set_user_nice(struct task_struct *p, long nice)
3760 {
3761 	bool queued, running;
3762 	int old_prio, delta;
3763 	struct rq_flags rf;
3764 	struct rq *rq;
3765 
3766 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3767 		return;
3768 	/*
3769 	 * We have to be careful, if called from sys_setpriority(),
3770 	 * the task might be in the middle of scheduling on another CPU.
3771 	 */
3772 	rq = task_rq_lock(p, &rf);
3773 	update_rq_clock(rq);
3774 
3775 	/*
3776 	 * The RT priorities are set via sched_setscheduler(), but we still
3777 	 * allow the 'normal' nice value to be set - but as expected
3778 	 * it wont have any effect on scheduling until the task is
3779 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3780 	 */
3781 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3782 		p->static_prio = NICE_TO_PRIO(nice);
3783 		goto out_unlock;
3784 	}
3785 	queued = task_on_rq_queued(p);
3786 	running = task_current(rq, p);
3787 	if (queued)
3788 		dequeue_task(rq, p, DEQUEUE_SAVE);
3789 	if (running)
3790 		put_prev_task(rq, p);
3791 
3792 	p->static_prio = NICE_TO_PRIO(nice);
3793 	set_load_weight(p);
3794 	old_prio = p->prio;
3795 	p->prio = effective_prio(p);
3796 	delta = p->prio - old_prio;
3797 
3798 	if (queued) {
3799 		enqueue_task(rq, p, ENQUEUE_RESTORE);
3800 		/*
3801 		 * If the task increased its priority or is running and
3802 		 * lowered its priority, then reschedule its CPU:
3803 		 */
3804 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3805 			resched_curr(rq);
3806 	}
3807 	if (running)
3808 		set_curr_task(rq, p);
3809 out_unlock:
3810 	task_rq_unlock(rq, p, &rf);
3811 }
3812 EXPORT_SYMBOL(set_user_nice);
3813 
3814 /*
3815  * can_nice - check if a task can reduce its nice value
3816  * @p: task
3817  * @nice: nice value
3818  */
3819 int can_nice(const struct task_struct *p, const int nice)
3820 {
3821 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3822 	int nice_rlim = nice_to_rlimit(nice);
3823 
3824 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3825 		capable(CAP_SYS_NICE));
3826 }
3827 
3828 #ifdef __ARCH_WANT_SYS_NICE
3829 
3830 /*
3831  * sys_nice - change the priority of the current process.
3832  * @increment: priority increment
3833  *
3834  * sys_setpriority is a more generic, but much slower function that
3835  * does similar things.
3836  */
3837 SYSCALL_DEFINE1(nice, int, increment)
3838 {
3839 	long nice, retval;
3840 
3841 	/*
3842 	 * Setpriority might change our priority at the same moment.
3843 	 * We don't have to worry. Conceptually one call occurs first
3844 	 * and we have a single winner.
3845 	 */
3846 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3847 	nice = task_nice(current) + increment;
3848 
3849 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3850 	if (increment < 0 && !can_nice(current, nice))
3851 		return -EPERM;
3852 
3853 	retval = security_task_setnice(current, nice);
3854 	if (retval)
3855 		return retval;
3856 
3857 	set_user_nice(current, nice);
3858 	return 0;
3859 }
3860 
3861 #endif
3862 
3863 /**
3864  * task_prio - return the priority value of a given task.
3865  * @p: the task in question.
3866  *
3867  * Return: The priority value as seen by users in /proc.
3868  * RT tasks are offset by -200. Normal tasks are centered
3869  * around 0, value goes from -16 to +15.
3870  */
3871 int task_prio(const struct task_struct *p)
3872 {
3873 	return p->prio - MAX_RT_PRIO;
3874 }
3875 
3876 /**
3877  * idle_cpu - is a given CPU idle currently?
3878  * @cpu: the processor in question.
3879  *
3880  * Return: 1 if the CPU is currently idle. 0 otherwise.
3881  */
3882 int idle_cpu(int cpu)
3883 {
3884 	struct rq *rq = cpu_rq(cpu);
3885 
3886 	if (rq->curr != rq->idle)
3887 		return 0;
3888 
3889 	if (rq->nr_running)
3890 		return 0;
3891 
3892 #ifdef CONFIG_SMP
3893 	if (!llist_empty(&rq->wake_list))
3894 		return 0;
3895 #endif
3896 
3897 	return 1;
3898 }
3899 
3900 /**
3901  * idle_task - return the idle task for a given CPU.
3902  * @cpu: the processor in question.
3903  *
3904  * Return: The idle task for the CPU @cpu.
3905  */
3906 struct task_struct *idle_task(int cpu)
3907 {
3908 	return cpu_rq(cpu)->idle;
3909 }
3910 
3911 /**
3912  * find_process_by_pid - find a process with a matching PID value.
3913  * @pid: the pid in question.
3914  *
3915  * The task of @pid, if found. %NULL otherwise.
3916  */
3917 static struct task_struct *find_process_by_pid(pid_t pid)
3918 {
3919 	return pid ? find_task_by_vpid(pid) : current;
3920 }
3921 
3922 /*
3923  * This function initializes the sched_dl_entity of a newly becoming
3924  * SCHED_DEADLINE task.
3925  *
3926  * Only the static values are considered here, the actual runtime and the
3927  * absolute deadline will be properly calculated when the task is enqueued
3928  * for the first time with its new policy.
3929  */
3930 static void
3931 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3932 {
3933 	struct sched_dl_entity *dl_se = &p->dl;
3934 
3935 	dl_se->dl_runtime = attr->sched_runtime;
3936 	dl_se->dl_deadline = attr->sched_deadline;
3937 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3938 	dl_se->flags = attr->sched_flags;
3939 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3940 
3941 	/*
3942 	 * Changing the parameters of a task is 'tricky' and we're not doing
3943 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3944 	 *
3945 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3946 	 * point. This would include retaining the task_struct until that time
3947 	 * and change dl_overflow() to not immediately decrement the current
3948 	 * amount.
3949 	 *
3950 	 * Instead we retain the current runtime/deadline and let the new
3951 	 * parameters take effect after the current reservation period lapses.
3952 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3953 	 * before the current scheduling deadline.
3954 	 *
3955 	 * We can still have temporary overloads because we do not delay the
3956 	 * change in bandwidth until that time; so admission control is
3957 	 * not on the safe side. It does however guarantee tasks will never
3958 	 * consume more than promised.
3959 	 */
3960 }
3961 
3962 /*
3963  * sched_setparam() passes in -1 for its policy, to let the functions
3964  * it calls know not to change it.
3965  */
3966 #define SETPARAM_POLICY	-1
3967 
3968 static void __setscheduler_params(struct task_struct *p,
3969 		const struct sched_attr *attr)
3970 {
3971 	int policy = attr->sched_policy;
3972 
3973 	if (policy == SETPARAM_POLICY)
3974 		policy = p->policy;
3975 
3976 	p->policy = policy;
3977 
3978 	if (dl_policy(policy))
3979 		__setparam_dl(p, attr);
3980 	else if (fair_policy(policy))
3981 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3982 
3983 	/*
3984 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3985 	 * !rt_policy. Always setting this ensures that things like
3986 	 * getparam()/getattr() don't report silly values for !rt tasks.
3987 	 */
3988 	p->rt_priority = attr->sched_priority;
3989 	p->normal_prio = normal_prio(p);
3990 	set_load_weight(p);
3991 }
3992 
3993 /* Actually do priority change: must hold pi & rq lock. */
3994 static void __setscheduler(struct rq *rq, struct task_struct *p,
3995 			   const struct sched_attr *attr, bool keep_boost)
3996 {
3997 	__setscheduler_params(p, attr);
3998 
3999 	/*
4000 	 * Keep a potential priority boosting if called from
4001 	 * sched_setscheduler().
4002 	 */
4003 	if (keep_boost)
4004 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
4005 	else
4006 		p->prio = normal_prio(p);
4007 
4008 	if (dl_prio(p->prio))
4009 		p->sched_class = &dl_sched_class;
4010 	else if (rt_prio(p->prio))
4011 		p->sched_class = &rt_sched_class;
4012 	else
4013 		p->sched_class = &fair_sched_class;
4014 }
4015 
4016 static void
4017 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
4018 {
4019 	struct sched_dl_entity *dl_se = &p->dl;
4020 
4021 	attr->sched_priority = p->rt_priority;
4022 	attr->sched_runtime = dl_se->dl_runtime;
4023 	attr->sched_deadline = dl_se->dl_deadline;
4024 	attr->sched_period = dl_se->dl_period;
4025 	attr->sched_flags = dl_se->flags;
4026 }
4027 
4028 /*
4029  * This function validates the new parameters of a -deadline task.
4030  * We ask for the deadline not being zero, and greater or equal
4031  * than the runtime, as well as the period of being zero or
4032  * greater than deadline. Furthermore, we have to be sure that
4033  * user parameters are above the internal resolution of 1us (we
4034  * check sched_runtime only since it is always the smaller one) and
4035  * below 2^63 ns (we have to check both sched_deadline and
4036  * sched_period, as the latter can be zero).
4037  */
4038 static bool
4039 __checkparam_dl(const struct sched_attr *attr)
4040 {
4041 	/* deadline != 0 */
4042 	if (attr->sched_deadline == 0)
4043 		return false;
4044 
4045 	/*
4046 	 * Since we truncate DL_SCALE bits, make sure we're at least
4047 	 * that big.
4048 	 */
4049 	if (attr->sched_runtime < (1ULL << DL_SCALE))
4050 		return false;
4051 
4052 	/*
4053 	 * Since we use the MSB for wrap-around and sign issues, make
4054 	 * sure it's not set (mind that period can be equal to zero).
4055 	 */
4056 	if (attr->sched_deadline & (1ULL << 63) ||
4057 	    attr->sched_period & (1ULL << 63))
4058 		return false;
4059 
4060 	/* runtime <= deadline <= period (if period != 0) */
4061 	if ((attr->sched_period != 0 &&
4062 	     attr->sched_period < attr->sched_deadline) ||
4063 	    attr->sched_deadline < attr->sched_runtime)
4064 		return false;
4065 
4066 	return true;
4067 }
4068 
4069 /*
4070  * Check the target process has a UID that matches the current process's:
4071  */
4072 static bool check_same_owner(struct task_struct *p)
4073 {
4074 	const struct cred *cred = current_cred(), *pcred;
4075 	bool match;
4076 
4077 	rcu_read_lock();
4078 	pcred = __task_cred(p);
4079 	match = (uid_eq(cred->euid, pcred->euid) ||
4080 		 uid_eq(cred->euid, pcred->uid));
4081 	rcu_read_unlock();
4082 	return match;
4083 }
4084 
4085 static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
4086 {
4087 	struct sched_dl_entity *dl_se = &p->dl;
4088 
4089 	if (dl_se->dl_runtime != attr->sched_runtime ||
4090 		dl_se->dl_deadline != attr->sched_deadline ||
4091 		dl_se->dl_period != attr->sched_period ||
4092 		dl_se->flags != attr->sched_flags)
4093 		return true;
4094 
4095 	return false;
4096 }
4097 
4098 static int __sched_setscheduler(struct task_struct *p,
4099 				const struct sched_attr *attr,
4100 				bool user, bool pi)
4101 {
4102 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4103 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4104 	int retval, oldprio, oldpolicy = -1, queued, running;
4105 	int new_effective_prio, policy = attr->sched_policy;
4106 	const struct sched_class *prev_class;
4107 	struct rq_flags rf;
4108 	int reset_on_fork;
4109 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4110 	struct rq *rq;
4111 
4112 	/* May grab non-irq protected spin_locks: */
4113 	BUG_ON(in_interrupt());
4114 recheck:
4115 	/* Double check policy once rq lock held: */
4116 	if (policy < 0) {
4117 		reset_on_fork = p->sched_reset_on_fork;
4118 		policy = oldpolicy = p->policy;
4119 	} else {
4120 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4121 
4122 		if (!valid_policy(policy))
4123 			return -EINVAL;
4124 	}
4125 
4126 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4127 		return -EINVAL;
4128 
4129 	/*
4130 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4131 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4132 	 * SCHED_BATCH and SCHED_IDLE is 0.
4133 	 */
4134 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4135 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4136 		return -EINVAL;
4137 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4138 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4139 		return -EINVAL;
4140 
4141 	/*
4142 	 * Allow unprivileged RT tasks to decrease priority:
4143 	 */
4144 	if (user && !capable(CAP_SYS_NICE)) {
4145 		if (fair_policy(policy)) {
4146 			if (attr->sched_nice < task_nice(p) &&
4147 			    !can_nice(p, attr->sched_nice))
4148 				return -EPERM;
4149 		}
4150 
4151 		if (rt_policy(policy)) {
4152 			unsigned long rlim_rtprio =
4153 					task_rlimit(p, RLIMIT_RTPRIO);
4154 
4155 			/* Can't set/change the rt policy: */
4156 			if (policy != p->policy && !rlim_rtprio)
4157 				return -EPERM;
4158 
4159 			/* Can't increase priority: */
4160 			if (attr->sched_priority > p->rt_priority &&
4161 			    attr->sched_priority > rlim_rtprio)
4162 				return -EPERM;
4163 		}
4164 
4165 		 /*
4166 		  * Can't set/change SCHED_DEADLINE policy at all for now
4167 		  * (safest behavior); in the future we would like to allow
4168 		  * unprivileged DL tasks to increase their relative deadline
4169 		  * or reduce their runtime (both ways reducing utilization)
4170 		  */
4171 		if (dl_policy(policy))
4172 			return -EPERM;
4173 
4174 		/*
4175 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4176 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4177 		 */
4178 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4179 			if (!can_nice(p, task_nice(p)))
4180 				return -EPERM;
4181 		}
4182 
4183 		/* Can't change other user's priorities: */
4184 		if (!check_same_owner(p))
4185 			return -EPERM;
4186 
4187 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4188 		if (p->sched_reset_on_fork && !reset_on_fork)
4189 			return -EPERM;
4190 	}
4191 
4192 	if (user) {
4193 		retval = security_task_setscheduler(p);
4194 		if (retval)
4195 			return retval;
4196 	}
4197 
4198 	/*
4199 	 * Make sure no PI-waiters arrive (or leave) while we are
4200 	 * changing the priority of the task:
4201 	 *
4202 	 * To be able to change p->policy safely, the appropriate
4203 	 * runqueue lock must be held.
4204 	 */
4205 	rq = task_rq_lock(p, &rf);
4206 	update_rq_clock(rq);
4207 
4208 	/*
4209 	 * Changing the policy of the stop threads its a very bad idea:
4210 	 */
4211 	if (p == rq->stop) {
4212 		task_rq_unlock(rq, p, &rf);
4213 		return -EINVAL;
4214 	}
4215 
4216 	/*
4217 	 * If not changing anything there's no need to proceed further,
4218 	 * but store a possible modification of reset_on_fork.
4219 	 */
4220 	if (unlikely(policy == p->policy)) {
4221 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4222 			goto change;
4223 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4224 			goto change;
4225 		if (dl_policy(policy) && dl_param_changed(p, attr))
4226 			goto change;
4227 
4228 		p->sched_reset_on_fork = reset_on_fork;
4229 		task_rq_unlock(rq, p, &rf);
4230 		return 0;
4231 	}
4232 change:
4233 
4234 	if (user) {
4235 #ifdef CONFIG_RT_GROUP_SCHED
4236 		/*
4237 		 * Do not allow realtime tasks into groups that have no runtime
4238 		 * assigned.
4239 		 */
4240 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4241 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4242 				!task_group_is_autogroup(task_group(p))) {
4243 			task_rq_unlock(rq, p, &rf);
4244 			return -EPERM;
4245 		}
4246 #endif
4247 #ifdef CONFIG_SMP
4248 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
4249 			cpumask_t *span = rq->rd->span;
4250 
4251 			/*
4252 			 * Don't allow tasks with an affinity mask smaller than
4253 			 * the entire root_domain to become SCHED_DEADLINE. We
4254 			 * will also fail if there's no bandwidth available.
4255 			 */
4256 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4257 			    rq->rd->dl_bw.bw == 0) {
4258 				task_rq_unlock(rq, p, &rf);
4259 				return -EPERM;
4260 			}
4261 		}
4262 #endif
4263 	}
4264 
4265 	/* Re-check policy now with rq lock held: */
4266 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4267 		policy = oldpolicy = -1;
4268 		task_rq_unlock(rq, p, &rf);
4269 		goto recheck;
4270 	}
4271 
4272 	/*
4273 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4274 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4275 	 * is available.
4276 	 */
4277 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4278 		task_rq_unlock(rq, p, &rf);
4279 		return -EBUSY;
4280 	}
4281 
4282 	p->sched_reset_on_fork = reset_on_fork;
4283 	oldprio = p->prio;
4284 
4285 	if (pi) {
4286 		/*
4287 		 * Take priority boosted tasks into account. If the new
4288 		 * effective priority is unchanged, we just store the new
4289 		 * normal parameters and do not touch the scheduler class and
4290 		 * the runqueue. This will be done when the task deboost
4291 		 * itself.
4292 		 */
4293 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4294 		if (new_effective_prio == oldprio)
4295 			queue_flags &= ~DEQUEUE_MOVE;
4296 	}
4297 
4298 	queued = task_on_rq_queued(p);
4299 	running = task_current(rq, p);
4300 	if (queued)
4301 		dequeue_task(rq, p, queue_flags);
4302 	if (running)
4303 		put_prev_task(rq, p);
4304 
4305 	prev_class = p->sched_class;
4306 	__setscheduler(rq, p, attr, pi);
4307 
4308 	if (queued) {
4309 		/*
4310 		 * We enqueue to tail when the priority of a task is
4311 		 * increased (user space view).
4312 		 */
4313 		if (oldprio < p->prio)
4314 			queue_flags |= ENQUEUE_HEAD;
4315 
4316 		enqueue_task(rq, p, queue_flags);
4317 	}
4318 	if (running)
4319 		set_curr_task(rq, p);
4320 
4321 	check_class_changed(rq, p, prev_class, oldprio);
4322 
4323 	/* Avoid rq from going away on us: */
4324 	preempt_disable();
4325 	task_rq_unlock(rq, p, &rf);
4326 
4327 	if (pi)
4328 		rt_mutex_adjust_pi(p);
4329 
4330 	/* Run balance callbacks after we've adjusted the PI chain: */
4331 	balance_callback(rq);
4332 	preempt_enable();
4333 
4334 	return 0;
4335 }
4336 
4337 static int _sched_setscheduler(struct task_struct *p, int policy,
4338 			       const struct sched_param *param, bool check)
4339 {
4340 	struct sched_attr attr = {
4341 		.sched_policy   = policy,
4342 		.sched_priority = param->sched_priority,
4343 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4344 	};
4345 
4346 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4347 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4348 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4349 		policy &= ~SCHED_RESET_ON_FORK;
4350 		attr.sched_policy = policy;
4351 	}
4352 
4353 	return __sched_setscheduler(p, &attr, check, true);
4354 }
4355 /**
4356  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4357  * @p: the task in question.
4358  * @policy: new policy.
4359  * @param: structure containing the new RT priority.
4360  *
4361  * Return: 0 on success. An error code otherwise.
4362  *
4363  * NOTE that the task may be already dead.
4364  */
4365 int sched_setscheduler(struct task_struct *p, int policy,
4366 		       const struct sched_param *param)
4367 {
4368 	return _sched_setscheduler(p, policy, param, true);
4369 }
4370 EXPORT_SYMBOL_GPL(sched_setscheduler);
4371 
4372 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4373 {
4374 	return __sched_setscheduler(p, attr, true, true);
4375 }
4376 EXPORT_SYMBOL_GPL(sched_setattr);
4377 
4378 /**
4379  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4380  * @p: the task in question.
4381  * @policy: new policy.
4382  * @param: structure containing the new RT priority.
4383  *
4384  * Just like sched_setscheduler, only don't bother checking if the
4385  * current context has permission.  For example, this is needed in
4386  * stop_machine(): we create temporary high priority worker threads,
4387  * but our caller might not have that capability.
4388  *
4389  * Return: 0 on success. An error code otherwise.
4390  */
4391 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4392 			       const struct sched_param *param)
4393 {
4394 	return _sched_setscheduler(p, policy, param, false);
4395 }
4396 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4397 
4398 static int
4399 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4400 {
4401 	struct sched_param lparam;
4402 	struct task_struct *p;
4403 	int retval;
4404 
4405 	if (!param || pid < 0)
4406 		return -EINVAL;
4407 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4408 		return -EFAULT;
4409 
4410 	rcu_read_lock();
4411 	retval = -ESRCH;
4412 	p = find_process_by_pid(pid);
4413 	if (p != NULL)
4414 		retval = sched_setscheduler(p, policy, &lparam);
4415 	rcu_read_unlock();
4416 
4417 	return retval;
4418 }
4419 
4420 /*
4421  * Mimics kernel/events/core.c perf_copy_attr().
4422  */
4423 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4424 {
4425 	u32 size;
4426 	int ret;
4427 
4428 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4429 		return -EFAULT;
4430 
4431 	/* Zero the full structure, so that a short copy will be nice: */
4432 	memset(attr, 0, sizeof(*attr));
4433 
4434 	ret = get_user(size, &uattr->size);
4435 	if (ret)
4436 		return ret;
4437 
4438 	/* Bail out on silly large: */
4439 	if (size > PAGE_SIZE)
4440 		goto err_size;
4441 
4442 	/* ABI compatibility quirk: */
4443 	if (!size)
4444 		size = SCHED_ATTR_SIZE_VER0;
4445 
4446 	if (size < SCHED_ATTR_SIZE_VER0)
4447 		goto err_size;
4448 
4449 	/*
4450 	 * If we're handed a bigger struct than we know of,
4451 	 * ensure all the unknown bits are 0 - i.e. new
4452 	 * user-space does not rely on any kernel feature
4453 	 * extensions we dont know about yet.
4454 	 */
4455 	if (size > sizeof(*attr)) {
4456 		unsigned char __user *addr;
4457 		unsigned char __user *end;
4458 		unsigned char val;
4459 
4460 		addr = (void __user *)uattr + sizeof(*attr);
4461 		end  = (void __user *)uattr + size;
4462 
4463 		for (; addr < end; addr++) {
4464 			ret = get_user(val, addr);
4465 			if (ret)
4466 				return ret;
4467 			if (val)
4468 				goto err_size;
4469 		}
4470 		size = sizeof(*attr);
4471 	}
4472 
4473 	ret = copy_from_user(attr, uattr, size);
4474 	if (ret)
4475 		return -EFAULT;
4476 
4477 	/*
4478 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4479 	 * to be strict and return an error on out-of-bounds values?
4480 	 */
4481 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4482 
4483 	return 0;
4484 
4485 err_size:
4486 	put_user(sizeof(*attr), &uattr->size);
4487 	return -E2BIG;
4488 }
4489 
4490 /**
4491  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4492  * @pid: the pid in question.
4493  * @policy: new policy.
4494  * @param: structure containing the new RT priority.
4495  *
4496  * Return: 0 on success. An error code otherwise.
4497  */
4498 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4499 {
4500 	if (policy < 0)
4501 		return -EINVAL;
4502 
4503 	return do_sched_setscheduler(pid, policy, param);
4504 }
4505 
4506 /**
4507  * sys_sched_setparam - set/change the RT priority of a thread
4508  * @pid: the pid in question.
4509  * @param: structure containing the new RT priority.
4510  *
4511  * Return: 0 on success. An error code otherwise.
4512  */
4513 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4514 {
4515 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4516 }
4517 
4518 /**
4519  * sys_sched_setattr - same as above, but with extended sched_attr
4520  * @pid: the pid in question.
4521  * @uattr: structure containing the extended parameters.
4522  * @flags: for future extension.
4523  */
4524 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4525 			       unsigned int, flags)
4526 {
4527 	struct sched_attr attr;
4528 	struct task_struct *p;
4529 	int retval;
4530 
4531 	if (!uattr || pid < 0 || flags)
4532 		return -EINVAL;
4533 
4534 	retval = sched_copy_attr(uattr, &attr);
4535 	if (retval)
4536 		return retval;
4537 
4538 	if ((int)attr.sched_policy < 0)
4539 		return -EINVAL;
4540 
4541 	rcu_read_lock();
4542 	retval = -ESRCH;
4543 	p = find_process_by_pid(pid);
4544 	if (p != NULL)
4545 		retval = sched_setattr(p, &attr);
4546 	rcu_read_unlock();
4547 
4548 	return retval;
4549 }
4550 
4551 /**
4552  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4553  * @pid: the pid in question.
4554  *
4555  * Return: On success, the policy of the thread. Otherwise, a negative error
4556  * code.
4557  */
4558 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4559 {
4560 	struct task_struct *p;
4561 	int retval;
4562 
4563 	if (pid < 0)
4564 		return -EINVAL;
4565 
4566 	retval = -ESRCH;
4567 	rcu_read_lock();
4568 	p = find_process_by_pid(pid);
4569 	if (p) {
4570 		retval = security_task_getscheduler(p);
4571 		if (!retval)
4572 			retval = p->policy
4573 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4574 	}
4575 	rcu_read_unlock();
4576 	return retval;
4577 }
4578 
4579 /**
4580  * sys_sched_getparam - get the RT priority of a thread
4581  * @pid: the pid in question.
4582  * @param: structure containing the RT priority.
4583  *
4584  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4585  * code.
4586  */
4587 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4588 {
4589 	struct sched_param lp = { .sched_priority = 0 };
4590 	struct task_struct *p;
4591 	int retval;
4592 
4593 	if (!param || pid < 0)
4594 		return -EINVAL;
4595 
4596 	rcu_read_lock();
4597 	p = find_process_by_pid(pid);
4598 	retval = -ESRCH;
4599 	if (!p)
4600 		goto out_unlock;
4601 
4602 	retval = security_task_getscheduler(p);
4603 	if (retval)
4604 		goto out_unlock;
4605 
4606 	if (task_has_rt_policy(p))
4607 		lp.sched_priority = p->rt_priority;
4608 	rcu_read_unlock();
4609 
4610 	/*
4611 	 * This one might sleep, we cannot do it with a spinlock held ...
4612 	 */
4613 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4614 
4615 	return retval;
4616 
4617 out_unlock:
4618 	rcu_read_unlock();
4619 	return retval;
4620 }
4621 
4622 static int sched_read_attr(struct sched_attr __user *uattr,
4623 			   struct sched_attr *attr,
4624 			   unsigned int usize)
4625 {
4626 	int ret;
4627 
4628 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4629 		return -EFAULT;
4630 
4631 	/*
4632 	 * If we're handed a smaller struct than we know of,
4633 	 * ensure all the unknown bits are 0 - i.e. old
4634 	 * user-space does not get uncomplete information.
4635 	 */
4636 	if (usize < sizeof(*attr)) {
4637 		unsigned char *addr;
4638 		unsigned char *end;
4639 
4640 		addr = (void *)attr + usize;
4641 		end  = (void *)attr + sizeof(*attr);
4642 
4643 		for (; addr < end; addr++) {
4644 			if (*addr)
4645 				return -EFBIG;
4646 		}
4647 
4648 		attr->size = usize;
4649 	}
4650 
4651 	ret = copy_to_user(uattr, attr, attr->size);
4652 	if (ret)
4653 		return -EFAULT;
4654 
4655 	return 0;
4656 }
4657 
4658 /**
4659  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4660  * @pid: the pid in question.
4661  * @uattr: structure containing the extended parameters.
4662  * @size: sizeof(attr) for fwd/bwd comp.
4663  * @flags: for future extension.
4664  */
4665 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4666 		unsigned int, size, unsigned int, flags)
4667 {
4668 	struct sched_attr attr = {
4669 		.size = sizeof(struct sched_attr),
4670 	};
4671 	struct task_struct *p;
4672 	int retval;
4673 
4674 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4675 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4676 		return -EINVAL;
4677 
4678 	rcu_read_lock();
4679 	p = find_process_by_pid(pid);
4680 	retval = -ESRCH;
4681 	if (!p)
4682 		goto out_unlock;
4683 
4684 	retval = security_task_getscheduler(p);
4685 	if (retval)
4686 		goto out_unlock;
4687 
4688 	attr.sched_policy = p->policy;
4689 	if (p->sched_reset_on_fork)
4690 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4691 	if (task_has_dl_policy(p))
4692 		__getparam_dl(p, &attr);
4693 	else if (task_has_rt_policy(p))
4694 		attr.sched_priority = p->rt_priority;
4695 	else
4696 		attr.sched_nice = task_nice(p);
4697 
4698 	rcu_read_unlock();
4699 
4700 	retval = sched_read_attr(uattr, &attr, size);
4701 	return retval;
4702 
4703 out_unlock:
4704 	rcu_read_unlock();
4705 	return retval;
4706 }
4707 
4708 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4709 {
4710 	cpumask_var_t cpus_allowed, new_mask;
4711 	struct task_struct *p;
4712 	int retval;
4713 
4714 	rcu_read_lock();
4715 
4716 	p = find_process_by_pid(pid);
4717 	if (!p) {
4718 		rcu_read_unlock();
4719 		return -ESRCH;
4720 	}
4721 
4722 	/* Prevent p going away */
4723 	get_task_struct(p);
4724 	rcu_read_unlock();
4725 
4726 	if (p->flags & PF_NO_SETAFFINITY) {
4727 		retval = -EINVAL;
4728 		goto out_put_task;
4729 	}
4730 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4731 		retval = -ENOMEM;
4732 		goto out_put_task;
4733 	}
4734 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4735 		retval = -ENOMEM;
4736 		goto out_free_cpus_allowed;
4737 	}
4738 	retval = -EPERM;
4739 	if (!check_same_owner(p)) {
4740 		rcu_read_lock();
4741 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4742 			rcu_read_unlock();
4743 			goto out_free_new_mask;
4744 		}
4745 		rcu_read_unlock();
4746 	}
4747 
4748 	retval = security_task_setscheduler(p);
4749 	if (retval)
4750 		goto out_free_new_mask;
4751 
4752 
4753 	cpuset_cpus_allowed(p, cpus_allowed);
4754 	cpumask_and(new_mask, in_mask, cpus_allowed);
4755 
4756 	/*
4757 	 * Since bandwidth control happens on root_domain basis,
4758 	 * if admission test is enabled, we only admit -deadline
4759 	 * tasks allowed to run on all the CPUs in the task's
4760 	 * root_domain.
4761 	 */
4762 #ifdef CONFIG_SMP
4763 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4764 		rcu_read_lock();
4765 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4766 			retval = -EBUSY;
4767 			rcu_read_unlock();
4768 			goto out_free_new_mask;
4769 		}
4770 		rcu_read_unlock();
4771 	}
4772 #endif
4773 again:
4774 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4775 
4776 	if (!retval) {
4777 		cpuset_cpus_allowed(p, cpus_allowed);
4778 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4779 			/*
4780 			 * We must have raced with a concurrent cpuset
4781 			 * update. Just reset the cpus_allowed to the
4782 			 * cpuset's cpus_allowed
4783 			 */
4784 			cpumask_copy(new_mask, cpus_allowed);
4785 			goto again;
4786 		}
4787 	}
4788 out_free_new_mask:
4789 	free_cpumask_var(new_mask);
4790 out_free_cpus_allowed:
4791 	free_cpumask_var(cpus_allowed);
4792 out_put_task:
4793 	put_task_struct(p);
4794 	return retval;
4795 }
4796 
4797 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4798 			     struct cpumask *new_mask)
4799 {
4800 	if (len < cpumask_size())
4801 		cpumask_clear(new_mask);
4802 	else if (len > cpumask_size())
4803 		len = cpumask_size();
4804 
4805 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4806 }
4807 
4808 /**
4809  * sys_sched_setaffinity - set the CPU affinity of a process
4810  * @pid: pid of the process
4811  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4812  * @user_mask_ptr: user-space pointer to the new CPU mask
4813  *
4814  * Return: 0 on success. An error code otherwise.
4815  */
4816 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4817 		unsigned long __user *, user_mask_ptr)
4818 {
4819 	cpumask_var_t new_mask;
4820 	int retval;
4821 
4822 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4823 		return -ENOMEM;
4824 
4825 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4826 	if (retval == 0)
4827 		retval = sched_setaffinity(pid, new_mask);
4828 	free_cpumask_var(new_mask);
4829 	return retval;
4830 }
4831 
4832 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4833 {
4834 	struct task_struct *p;
4835 	unsigned long flags;
4836 	int retval;
4837 
4838 	rcu_read_lock();
4839 
4840 	retval = -ESRCH;
4841 	p = find_process_by_pid(pid);
4842 	if (!p)
4843 		goto out_unlock;
4844 
4845 	retval = security_task_getscheduler(p);
4846 	if (retval)
4847 		goto out_unlock;
4848 
4849 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4850 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4851 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4852 
4853 out_unlock:
4854 	rcu_read_unlock();
4855 
4856 	return retval;
4857 }
4858 
4859 /**
4860  * sys_sched_getaffinity - get the CPU affinity of a process
4861  * @pid: pid of the process
4862  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4863  * @user_mask_ptr: user-space pointer to hold the current CPU mask
4864  *
4865  * Return: size of CPU mask copied to user_mask_ptr on success. An
4866  * error code otherwise.
4867  */
4868 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4869 		unsigned long __user *, user_mask_ptr)
4870 {
4871 	int ret;
4872 	cpumask_var_t mask;
4873 
4874 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4875 		return -EINVAL;
4876 	if (len & (sizeof(unsigned long)-1))
4877 		return -EINVAL;
4878 
4879 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4880 		return -ENOMEM;
4881 
4882 	ret = sched_getaffinity(pid, mask);
4883 	if (ret == 0) {
4884 		size_t retlen = min_t(size_t, len, cpumask_size());
4885 
4886 		if (copy_to_user(user_mask_ptr, mask, retlen))
4887 			ret = -EFAULT;
4888 		else
4889 			ret = retlen;
4890 	}
4891 	free_cpumask_var(mask);
4892 
4893 	return ret;
4894 }
4895 
4896 /**
4897  * sys_sched_yield - yield the current processor to other threads.
4898  *
4899  * This function yields the current CPU to other tasks. If there are no
4900  * other threads running on this CPU then this function will return.
4901  *
4902  * Return: 0.
4903  */
4904 SYSCALL_DEFINE0(sched_yield)
4905 {
4906 	struct rq *rq = this_rq_lock();
4907 
4908 	schedstat_inc(rq->yld_count);
4909 	current->sched_class->yield_task(rq);
4910 
4911 	/*
4912 	 * Since we are going to call schedule() anyway, there's
4913 	 * no need to preempt or enable interrupts:
4914 	 */
4915 	__release(rq->lock);
4916 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4917 	do_raw_spin_unlock(&rq->lock);
4918 	sched_preempt_enable_no_resched();
4919 
4920 	schedule();
4921 
4922 	return 0;
4923 }
4924 
4925 #ifndef CONFIG_PREEMPT
4926 int __sched _cond_resched(void)
4927 {
4928 	if (should_resched(0)) {
4929 		preempt_schedule_common();
4930 		return 1;
4931 	}
4932 	return 0;
4933 }
4934 EXPORT_SYMBOL(_cond_resched);
4935 #endif
4936 
4937 /*
4938  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4939  * call schedule, and on return reacquire the lock.
4940  *
4941  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4942  * operations here to prevent schedule() from being called twice (once via
4943  * spin_unlock(), once by hand).
4944  */
4945 int __cond_resched_lock(spinlock_t *lock)
4946 {
4947 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4948 	int ret = 0;
4949 
4950 	lockdep_assert_held(lock);
4951 
4952 	if (spin_needbreak(lock) || resched) {
4953 		spin_unlock(lock);
4954 		if (resched)
4955 			preempt_schedule_common();
4956 		else
4957 			cpu_relax();
4958 		ret = 1;
4959 		spin_lock(lock);
4960 	}
4961 	return ret;
4962 }
4963 EXPORT_SYMBOL(__cond_resched_lock);
4964 
4965 int __sched __cond_resched_softirq(void)
4966 {
4967 	BUG_ON(!in_softirq());
4968 
4969 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4970 		local_bh_enable();
4971 		preempt_schedule_common();
4972 		local_bh_disable();
4973 		return 1;
4974 	}
4975 	return 0;
4976 }
4977 EXPORT_SYMBOL(__cond_resched_softirq);
4978 
4979 /**
4980  * yield - yield the current processor to other threads.
4981  *
4982  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4983  *
4984  * The scheduler is at all times free to pick the calling task as the most
4985  * eligible task to run, if removing the yield() call from your code breaks
4986  * it, its already broken.
4987  *
4988  * Typical broken usage is:
4989  *
4990  * while (!event)
4991  *	yield();
4992  *
4993  * where one assumes that yield() will let 'the other' process run that will
4994  * make event true. If the current task is a SCHED_FIFO task that will never
4995  * happen. Never use yield() as a progress guarantee!!
4996  *
4997  * If you want to use yield() to wait for something, use wait_event().
4998  * If you want to use yield() to be 'nice' for others, use cond_resched().
4999  * If you still want to use yield(), do not!
5000  */
5001 void __sched yield(void)
5002 {
5003 	set_current_state(TASK_RUNNING);
5004 	sys_sched_yield();
5005 }
5006 EXPORT_SYMBOL(yield);
5007 
5008 /**
5009  * yield_to - yield the current processor to another thread in
5010  * your thread group, or accelerate that thread toward the
5011  * processor it's on.
5012  * @p: target task
5013  * @preempt: whether task preemption is allowed or not
5014  *
5015  * It's the caller's job to ensure that the target task struct
5016  * can't go away on us before we can do any checks.
5017  *
5018  * Return:
5019  *	true (>0) if we indeed boosted the target task.
5020  *	false (0) if we failed to boost the target.
5021  *	-ESRCH if there's no task to yield to.
5022  */
5023 int __sched yield_to(struct task_struct *p, bool preempt)
5024 {
5025 	struct task_struct *curr = current;
5026 	struct rq *rq, *p_rq;
5027 	unsigned long flags;
5028 	int yielded = 0;
5029 
5030 	local_irq_save(flags);
5031 	rq = this_rq();
5032 
5033 again:
5034 	p_rq = task_rq(p);
5035 	/*
5036 	 * If we're the only runnable task on the rq and target rq also
5037 	 * has only one task, there's absolutely no point in yielding.
5038 	 */
5039 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5040 		yielded = -ESRCH;
5041 		goto out_irq;
5042 	}
5043 
5044 	double_rq_lock(rq, p_rq);
5045 	if (task_rq(p) != p_rq) {
5046 		double_rq_unlock(rq, p_rq);
5047 		goto again;
5048 	}
5049 
5050 	if (!curr->sched_class->yield_to_task)
5051 		goto out_unlock;
5052 
5053 	if (curr->sched_class != p->sched_class)
5054 		goto out_unlock;
5055 
5056 	if (task_running(p_rq, p) || p->state)
5057 		goto out_unlock;
5058 
5059 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5060 	if (yielded) {
5061 		schedstat_inc(rq->yld_count);
5062 		/*
5063 		 * Make p's CPU reschedule; pick_next_entity takes care of
5064 		 * fairness.
5065 		 */
5066 		if (preempt && rq != p_rq)
5067 			resched_curr(p_rq);
5068 	}
5069 
5070 out_unlock:
5071 	double_rq_unlock(rq, p_rq);
5072 out_irq:
5073 	local_irq_restore(flags);
5074 
5075 	if (yielded > 0)
5076 		schedule();
5077 
5078 	return yielded;
5079 }
5080 EXPORT_SYMBOL_GPL(yield_to);
5081 
5082 int io_schedule_prepare(void)
5083 {
5084 	int old_iowait = current->in_iowait;
5085 
5086 	current->in_iowait = 1;
5087 	blk_schedule_flush_plug(current);
5088 
5089 	return old_iowait;
5090 }
5091 
5092 void io_schedule_finish(int token)
5093 {
5094 	current->in_iowait = token;
5095 }
5096 
5097 /*
5098  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5099  * that process accounting knows that this is a task in IO wait state.
5100  */
5101 long __sched io_schedule_timeout(long timeout)
5102 {
5103 	int token;
5104 	long ret;
5105 
5106 	token = io_schedule_prepare();
5107 	ret = schedule_timeout(timeout);
5108 	io_schedule_finish(token);
5109 
5110 	return ret;
5111 }
5112 EXPORT_SYMBOL(io_schedule_timeout);
5113 
5114 void io_schedule(void)
5115 {
5116 	int token;
5117 
5118 	token = io_schedule_prepare();
5119 	schedule();
5120 	io_schedule_finish(token);
5121 }
5122 EXPORT_SYMBOL(io_schedule);
5123 
5124 /**
5125  * sys_sched_get_priority_max - return maximum RT priority.
5126  * @policy: scheduling class.
5127  *
5128  * Return: On success, this syscall returns the maximum
5129  * rt_priority that can be used by a given scheduling class.
5130  * On failure, a negative error code is returned.
5131  */
5132 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5133 {
5134 	int ret = -EINVAL;
5135 
5136 	switch (policy) {
5137 	case SCHED_FIFO:
5138 	case SCHED_RR:
5139 		ret = MAX_USER_RT_PRIO-1;
5140 		break;
5141 	case SCHED_DEADLINE:
5142 	case SCHED_NORMAL:
5143 	case SCHED_BATCH:
5144 	case SCHED_IDLE:
5145 		ret = 0;
5146 		break;
5147 	}
5148 	return ret;
5149 }
5150 
5151 /**
5152  * sys_sched_get_priority_min - return minimum RT priority.
5153  * @policy: scheduling class.
5154  *
5155  * Return: On success, this syscall returns the minimum
5156  * rt_priority that can be used by a given scheduling class.
5157  * On failure, a negative error code is returned.
5158  */
5159 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5160 {
5161 	int ret = -EINVAL;
5162 
5163 	switch (policy) {
5164 	case SCHED_FIFO:
5165 	case SCHED_RR:
5166 		ret = 1;
5167 		break;
5168 	case SCHED_DEADLINE:
5169 	case SCHED_NORMAL:
5170 	case SCHED_BATCH:
5171 	case SCHED_IDLE:
5172 		ret = 0;
5173 	}
5174 	return ret;
5175 }
5176 
5177 /**
5178  * sys_sched_rr_get_interval - return the default timeslice of a process.
5179  * @pid: pid of the process.
5180  * @interval: userspace pointer to the timeslice value.
5181  *
5182  * this syscall writes the default timeslice value of a given process
5183  * into the user-space timespec buffer. A value of '0' means infinity.
5184  *
5185  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5186  * an error code.
5187  */
5188 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5189 		struct timespec __user *, interval)
5190 {
5191 	struct task_struct *p;
5192 	unsigned int time_slice;
5193 	struct rq_flags rf;
5194 	struct timespec t;
5195 	struct rq *rq;
5196 	int retval;
5197 
5198 	if (pid < 0)
5199 		return -EINVAL;
5200 
5201 	retval = -ESRCH;
5202 	rcu_read_lock();
5203 	p = find_process_by_pid(pid);
5204 	if (!p)
5205 		goto out_unlock;
5206 
5207 	retval = security_task_getscheduler(p);
5208 	if (retval)
5209 		goto out_unlock;
5210 
5211 	rq = task_rq_lock(p, &rf);
5212 	time_slice = 0;
5213 	if (p->sched_class->get_rr_interval)
5214 		time_slice = p->sched_class->get_rr_interval(rq, p);
5215 	task_rq_unlock(rq, p, &rf);
5216 
5217 	rcu_read_unlock();
5218 	jiffies_to_timespec(time_slice, &t);
5219 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5220 	return retval;
5221 
5222 out_unlock:
5223 	rcu_read_unlock();
5224 	return retval;
5225 }
5226 
5227 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5228 
5229 void sched_show_task(struct task_struct *p)
5230 {
5231 	unsigned long free = 0;
5232 	int ppid;
5233 	unsigned long state = p->state;
5234 
5235 	if (!try_get_task_stack(p))
5236 		return;
5237 	if (state)
5238 		state = __ffs(state) + 1;
5239 	printk(KERN_INFO "%-15.15s %c", p->comm,
5240 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5241 	if (state == TASK_RUNNING)
5242 		printk(KERN_CONT "  running task    ");
5243 #ifdef CONFIG_DEBUG_STACK_USAGE
5244 	free = stack_not_used(p);
5245 #endif
5246 	ppid = 0;
5247 	rcu_read_lock();
5248 	if (pid_alive(p))
5249 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5250 	rcu_read_unlock();
5251 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5252 		task_pid_nr(p), ppid,
5253 		(unsigned long)task_thread_info(p)->flags);
5254 
5255 	print_worker_info(KERN_INFO, p);
5256 	show_stack(p, NULL);
5257 	put_task_stack(p);
5258 }
5259 
5260 void show_state_filter(unsigned long state_filter)
5261 {
5262 	struct task_struct *g, *p;
5263 
5264 #if BITS_PER_LONG == 32
5265 	printk(KERN_INFO
5266 		"  task                PC stack   pid father\n");
5267 #else
5268 	printk(KERN_INFO
5269 		"  task                        PC stack   pid father\n");
5270 #endif
5271 	rcu_read_lock();
5272 	for_each_process_thread(g, p) {
5273 		/*
5274 		 * reset the NMI-timeout, listing all files on a slow
5275 		 * console might take a lot of time:
5276 		 * Also, reset softlockup watchdogs on all CPUs, because
5277 		 * another CPU might be blocked waiting for us to process
5278 		 * an IPI.
5279 		 */
5280 		touch_nmi_watchdog();
5281 		touch_all_softlockup_watchdogs();
5282 		if (!state_filter || (p->state & state_filter))
5283 			sched_show_task(p);
5284 	}
5285 
5286 #ifdef CONFIG_SCHED_DEBUG
5287 	if (!state_filter)
5288 		sysrq_sched_debug_show();
5289 #endif
5290 	rcu_read_unlock();
5291 	/*
5292 	 * Only show locks if all tasks are dumped:
5293 	 */
5294 	if (!state_filter)
5295 		debug_show_all_locks();
5296 }
5297 
5298 void init_idle_bootup_task(struct task_struct *idle)
5299 {
5300 	idle->sched_class = &idle_sched_class;
5301 }
5302 
5303 /**
5304  * init_idle - set up an idle thread for a given CPU
5305  * @idle: task in question
5306  * @cpu: CPU the idle task belongs to
5307  *
5308  * NOTE: this function does not set the idle thread's NEED_RESCHED
5309  * flag, to make booting more robust.
5310  */
5311 void init_idle(struct task_struct *idle, int cpu)
5312 {
5313 	struct rq *rq = cpu_rq(cpu);
5314 	unsigned long flags;
5315 
5316 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5317 	raw_spin_lock(&rq->lock);
5318 
5319 	__sched_fork(0, idle);
5320 	idle->state = TASK_RUNNING;
5321 	idle->se.exec_start = sched_clock();
5322 	idle->flags |= PF_IDLE;
5323 
5324 	kasan_unpoison_task_stack(idle);
5325 
5326 #ifdef CONFIG_SMP
5327 	/*
5328 	 * Its possible that init_idle() gets called multiple times on a task,
5329 	 * in that case do_set_cpus_allowed() will not do the right thing.
5330 	 *
5331 	 * And since this is boot we can forgo the serialization.
5332 	 */
5333 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5334 #endif
5335 	/*
5336 	 * We're having a chicken and egg problem, even though we are
5337 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5338 	 * lockdep check in task_group() will fail.
5339 	 *
5340 	 * Similar case to sched_fork(). / Alternatively we could
5341 	 * use task_rq_lock() here and obtain the other rq->lock.
5342 	 *
5343 	 * Silence PROVE_RCU
5344 	 */
5345 	rcu_read_lock();
5346 	__set_task_cpu(idle, cpu);
5347 	rcu_read_unlock();
5348 
5349 	rq->curr = rq->idle = idle;
5350 	idle->on_rq = TASK_ON_RQ_QUEUED;
5351 #ifdef CONFIG_SMP
5352 	idle->on_cpu = 1;
5353 #endif
5354 	raw_spin_unlock(&rq->lock);
5355 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5356 
5357 	/* Set the preempt count _outside_ the spinlocks! */
5358 	init_idle_preempt_count(idle, cpu);
5359 
5360 	/*
5361 	 * The idle tasks have their own, simple scheduling class:
5362 	 */
5363 	idle->sched_class = &idle_sched_class;
5364 	ftrace_graph_init_idle_task(idle, cpu);
5365 	vtime_init_idle(idle, cpu);
5366 #ifdef CONFIG_SMP
5367 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5368 #endif
5369 }
5370 
5371 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5372 			      const struct cpumask *trial)
5373 {
5374 	int ret = 1, trial_cpus;
5375 	struct dl_bw *cur_dl_b;
5376 	unsigned long flags;
5377 
5378 	if (!cpumask_weight(cur))
5379 		return ret;
5380 
5381 	rcu_read_lock_sched();
5382 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5383 	trial_cpus = cpumask_weight(trial);
5384 
5385 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5386 	if (cur_dl_b->bw != -1 &&
5387 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5388 		ret = 0;
5389 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5390 	rcu_read_unlock_sched();
5391 
5392 	return ret;
5393 }
5394 
5395 int task_can_attach(struct task_struct *p,
5396 		    const struct cpumask *cs_cpus_allowed)
5397 {
5398 	int ret = 0;
5399 
5400 	/*
5401 	 * Kthreads which disallow setaffinity shouldn't be moved
5402 	 * to a new cpuset; we don't want to change their CPU
5403 	 * affinity and isolating such threads by their set of
5404 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5405 	 * applicable for such threads.  This prevents checking for
5406 	 * success of set_cpus_allowed_ptr() on all attached tasks
5407 	 * before cpus_allowed may be changed.
5408 	 */
5409 	if (p->flags & PF_NO_SETAFFINITY) {
5410 		ret = -EINVAL;
5411 		goto out;
5412 	}
5413 
5414 #ifdef CONFIG_SMP
5415 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5416 					      cs_cpus_allowed)) {
5417 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5418 							cs_cpus_allowed);
5419 		struct dl_bw *dl_b;
5420 		bool overflow;
5421 		int cpus;
5422 		unsigned long flags;
5423 
5424 		rcu_read_lock_sched();
5425 		dl_b = dl_bw_of(dest_cpu);
5426 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5427 		cpus = dl_bw_cpus(dest_cpu);
5428 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5429 		if (overflow)
5430 			ret = -EBUSY;
5431 		else {
5432 			/*
5433 			 * We reserve space for this task in the destination
5434 			 * root_domain, as we can't fail after this point.
5435 			 * We will free resources in the source root_domain
5436 			 * later on (see set_cpus_allowed_dl()).
5437 			 */
5438 			__dl_add(dl_b, p->dl.dl_bw);
5439 		}
5440 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5441 		rcu_read_unlock_sched();
5442 
5443 	}
5444 #endif
5445 out:
5446 	return ret;
5447 }
5448 
5449 #ifdef CONFIG_SMP
5450 
5451 bool sched_smp_initialized __read_mostly;
5452 
5453 #ifdef CONFIG_NUMA_BALANCING
5454 /* Migrate current task p to target_cpu */
5455 int migrate_task_to(struct task_struct *p, int target_cpu)
5456 {
5457 	struct migration_arg arg = { p, target_cpu };
5458 	int curr_cpu = task_cpu(p);
5459 
5460 	if (curr_cpu == target_cpu)
5461 		return 0;
5462 
5463 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5464 		return -EINVAL;
5465 
5466 	/* TODO: This is not properly updating schedstats */
5467 
5468 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5469 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5470 }
5471 
5472 /*
5473  * Requeue a task on a given node and accurately track the number of NUMA
5474  * tasks on the runqueues
5475  */
5476 void sched_setnuma(struct task_struct *p, int nid)
5477 {
5478 	bool queued, running;
5479 	struct rq_flags rf;
5480 	struct rq *rq;
5481 
5482 	rq = task_rq_lock(p, &rf);
5483 	queued = task_on_rq_queued(p);
5484 	running = task_current(rq, p);
5485 
5486 	if (queued)
5487 		dequeue_task(rq, p, DEQUEUE_SAVE);
5488 	if (running)
5489 		put_prev_task(rq, p);
5490 
5491 	p->numa_preferred_nid = nid;
5492 
5493 	if (queued)
5494 		enqueue_task(rq, p, ENQUEUE_RESTORE);
5495 	if (running)
5496 		set_curr_task(rq, p);
5497 	task_rq_unlock(rq, p, &rf);
5498 }
5499 #endif /* CONFIG_NUMA_BALANCING */
5500 
5501 #ifdef CONFIG_HOTPLUG_CPU
5502 /*
5503  * Ensure that the idle task is using init_mm right before its CPU goes
5504  * offline.
5505  */
5506 void idle_task_exit(void)
5507 {
5508 	struct mm_struct *mm = current->active_mm;
5509 
5510 	BUG_ON(cpu_online(smp_processor_id()));
5511 
5512 	if (mm != &init_mm) {
5513 		switch_mm_irqs_off(mm, &init_mm, current);
5514 		finish_arch_post_lock_switch();
5515 	}
5516 	mmdrop(mm);
5517 }
5518 
5519 /*
5520  * Since this CPU is going 'away' for a while, fold any nr_active delta
5521  * we might have. Assumes we're called after migrate_tasks() so that the
5522  * nr_active count is stable. We need to take the teardown thread which
5523  * is calling this into account, so we hand in adjust = 1 to the load
5524  * calculation.
5525  *
5526  * Also see the comment "Global load-average calculations".
5527  */
5528 static void calc_load_migrate(struct rq *rq)
5529 {
5530 	long delta = calc_load_fold_active(rq, 1);
5531 	if (delta)
5532 		atomic_long_add(delta, &calc_load_tasks);
5533 }
5534 
5535 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5536 {
5537 }
5538 
5539 static const struct sched_class fake_sched_class = {
5540 	.put_prev_task = put_prev_task_fake,
5541 };
5542 
5543 static struct task_struct fake_task = {
5544 	/*
5545 	 * Avoid pull_{rt,dl}_task()
5546 	 */
5547 	.prio = MAX_PRIO + 1,
5548 	.sched_class = &fake_sched_class,
5549 };
5550 
5551 /*
5552  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5553  * try_to_wake_up()->select_task_rq().
5554  *
5555  * Called with rq->lock held even though we'er in stop_machine() and
5556  * there's no concurrency possible, we hold the required locks anyway
5557  * because of lock validation efforts.
5558  */
5559 static void migrate_tasks(struct rq *dead_rq)
5560 {
5561 	struct rq *rq = dead_rq;
5562 	struct task_struct *next, *stop = rq->stop;
5563 	struct rq_flags rf, old_rf;
5564 	int dest_cpu;
5565 
5566 	/*
5567 	 * Fudge the rq selection such that the below task selection loop
5568 	 * doesn't get stuck on the currently eligible stop task.
5569 	 *
5570 	 * We're currently inside stop_machine() and the rq is either stuck
5571 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5572 	 * either way we should never end up calling schedule() until we're
5573 	 * done here.
5574 	 */
5575 	rq->stop = NULL;
5576 
5577 	/*
5578 	 * put_prev_task() and pick_next_task() sched
5579 	 * class method both need to have an up-to-date
5580 	 * value of rq->clock[_task]
5581 	 */
5582 	update_rq_clock(rq);
5583 
5584 	for (;;) {
5585 		/*
5586 		 * There's this thread running, bail when that's the only
5587 		 * remaining thread:
5588 		 */
5589 		if (rq->nr_running == 1)
5590 			break;
5591 
5592 		/*
5593 		 * pick_next_task() assumes pinned rq->lock:
5594 		 */
5595 		rq_pin_lock(rq, &rf);
5596 		next = pick_next_task(rq, &fake_task, &rf);
5597 		BUG_ON(!next);
5598 		next->sched_class->put_prev_task(rq, next);
5599 
5600 		/*
5601 		 * Rules for changing task_struct::cpus_allowed are holding
5602 		 * both pi_lock and rq->lock, such that holding either
5603 		 * stabilizes the mask.
5604 		 *
5605 		 * Drop rq->lock is not quite as disastrous as it usually is
5606 		 * because !cpu_active at this point, which means load-balance
5607 		 * will not interfere. Also, stop-machine.
5608 		 */
5609 		rq_unpin_lock(rq, &rf);
5610 		raw_spin_unlock(&rq->lock);
5611 		raw_spin_lock(&next->pi_lock);
5612 		raw_spin_lock(&rq->lock);
5613 
5614 		/*
5615 		 * Since we're inside stop-machine, _nothing_ should have
5616 		 * changed the task, WARN if weird stuff happened, because in
5617 		 * that case the above rq->lock drop is a fail too.
5618 		 */
5619 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5620 			raw_spin_unlock(&next->pi_lock);
5621 			continue;
5622 		}
5623 
5624 		/*
5625 		 * __migrate_task() may return with a different
5626 		 * rq->lock held and a new cookie in 'rf', but we need
5627 		 * to preserve rf::clock_update_flags for 'dead_rq'.
5628 		 */
5629 		old_rf = rf;
5630 
5631 		/* Find suitable destination for @next, with force if needed. */
5632 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5633 
5634 		rq = __migrate_task(rq, next, dest_cpu);
5635 		if (rq != dead_rq) {
5636 			raw_spin_unlock(&rq->lock);
5637 			rq = dead_rq;
5638 			raw_spin_lock(&rq->lock);
5639 			rf = old_rf;
5640 		}
5641 		raw_spin_unlock(&next->pi_lock);
5642 	}
5643 
5644 	rq->stop = stop;
5645 }
5646 #endif /* CONFIG_HOTPLUG_CPU */
5647 
5648 void set_rq_online(struct rq *rq)
5649 {
5650 	if (!rq->online) {
5651 		const struct sched_class *class;
5652 
5653 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5654 		rq->online = 1;
5655 
5656 		for_each_class(class) {
5657 			if (class->rq_online)
5658 				class->rq_online(rq);
5659 		}
5660 	}
5661 }
5662 
5663 void set_rq_offline(struct rq *rq)
5664 {
5665 	if (rq->online) {
5666 		const struct sched_class *class;
5667 
5668 		for_each_class(class) {
5669 			if (class->rq_offline)
5670 				class->rq_offline(rq);
5671 		}
5672 
5673 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5674 		rq->online = 0;
5675 	}
5676 }
5677 
5678 static void set_cpu_rq_start_time(unsigned int cpu)
5679 {
5680 	struct rq *rq = cpu_rq(cpu);
5681 
5682 	rq->age_stamp = sched_clock_cpu(cpu);
5683 }
5684 
5685 /*
5686  * used to mark begin/end of suspend/resume:
5687  */
5688 static int num_cpus_frozen;
5689 
5690 /*
5691  * Update cpusets according to cpu_active mask.  If cpusets are
5692  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5693  * around partition_sched_domains().
5694  *
5695  * If we come here as part of a suspend/resume, don't touch cpusets because we
5696  * want to restore it back to its original state upon resume anyway.
5697  */
5698 static void cpuset_cpu_active(void)
5699 {
5700 	if (cpuhp_tasks_frozen) {
5701 		/*
5702 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
5703 		 * resume sequence. As long as this is not the last online
5704 		 * operation in the resume sequence, just build a single sched
5705 		 * domain, ignoring cpusets.
5706 		 */
5707 		num_cpus_frozen--;
5708 		if (likely(num_cpus_frozen)) {
5709 			partition_sched_domains(1, NULL, NULL);
5710 			return;
5711 		}
5712 		/*
5713 		 * This is the last CPU online operation. So fall through and
5714 		 * restore the original sched domains by considering the
5715 		 * cpuset configurations.
5716 		 */
5717 	}
5718 	cpuset_update_active_cpus(true);
5719 }
5720 
5721 static int cpuset_cpu_inactive(unsigned int cpu)
5722 {
5723 	unsigned long flags;
5724 	struct dl_bw *dl_b;
5725 	bool overflow;
5726 	int cpus;
5727 
5728 	if (!cpuhp_tasks_frozen) {
5729 		rcu_read_lock_sched();
5730 		dl_b = dl_bw_of(cpu);
5731 
5732 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5733 		cpus = dl_bw_cpus(cpu);
5734 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
5735 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5736 
5737 		rcu_read_unlock_sched();
5738 
5739 		if (overflow)
5740 			return -EBUSY;
5741 		cpuset_update_active_cpus(false);
5742 	} else {
5743 		num_cpus_frozen++;
5744 		partition_sched_domains(1, NULL, NULL);
5745 	}
5746 	return 0;
5747 }
5748 
5749 int sched_cpu_activate(unsigned int cpu)
5750 {
5751 	struct rq *rq = cpu_rq(cpu);
5752 	unsigned long flags;
5753 
5754 	set_cpu_active(cpu, true);
5755 
5756 	if (sched_smp_initialized) {
5757 		sched_domains_numa_masks_set(cpu);
5758 		cpuset_cpu_active();
5759 	}
5760 
5761 	/*
5762 	 * Put the rq online, if not already. This happens:
5763 	 *
5764 	 * 1) In the early boot process, because we build the real domains
5765 	 *    after all CPUs have been brought up.
5766 	 *
5767 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5768 	 *    domains.
5769 	 */
5770 	raw_spin_lock_irqsave(&rq->lock, flags);
5771 	if (rq->rd) {
5772 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5773 		set_rq_online(rq);
5774 	}
5775 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5776 
5777 	update_max_interval();
5778 
5779 	return 0;
5780 }
5781 
5782 int sched_cpu_deactivate(unsigned int cpu)
5783 {
5784 	int ret;
5785 
5786 	set_cpu_active(cpu, false);
5787 	/*
5788 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5789 	 * users of this state to go away such that all new such users will
5790 	 * observe it.
5791 	 *
5792 	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
5793 	 * not imply sync_sched(), so wait for both.
5794 	 *
5795 	 * Do sync before park smpboot threads to take care the rcu boost case.
5796 	 */
5797 	if (IS_ENABLED(CONFIG_PREEMPT))
5798 		synchronize_rcu_mult(call_rcu, call_rcu_sched);
5799 	else
5800 		synchronize_rcu();
5801 
5802 	if (!sched_smp_initialized)
5803 		return 0;
5804 
5805 	ret = cpuset_cpu_inactive(cpu);
5806 	if (ret) {
5807 		set_cpu_active(cpu, true);
5808 		return ret;
5809 	}
5810 	sched_domains_numa_masks_clear(cpu);
5811 	return 0;
5812 }
5813 
5814 static void sched_rq_cpu_starting(unsigned int cpu)
5815 {
5816 	struct rq *rq = cpu_rq(cpu);
5817 
5818 	rq->calc_load_update = calc_load_update;
5819 	update_max_interval();
5820 }
5821 
5822 int sched_cpu_starting(unsigned int cpu)
5823 {
5824 	set_cpu_rq_start_time(cpu);
5825 	sched_rq_cpu_starting(cpu);
5826 	return 0;
5827 }
5828 
5829 #ifdef CONFIG_HOTPLUG_CPU
5830 int sched_cpu_dying(unsigned int cpu)
5831 {
5832 	struct rq *rq = cpu_rq(cpu);
5833 	unsigned long flags;
5834 
5835 	/* Handle pending wakeups and then migrate everything off */
5836 	sched_ttwu_pending();
5837 	raw_spin_lock_irqsave(&rq->lock, flags);
5838 	if (rq->rd) {
5839 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5840 		set_rq_offline(rq);
5841 	}
5842 	migrate_tasks(rq);
5843 	BUG_ON(rq->nr_running != 1);
5844 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5845 	calc_load_migrate(rq);
5846 	update_max_interval();
5847 	nohz_balance_exit_idle(cpu);
5848 	hrtick_clear(rq);
5849 	return 0;
5850 }
5851 #endif
5852 
5853 #ifdef CONFIG_SCHED_SMT
5854 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5855 
5856 static void sched_init_smt(void)
5857 {
5858 	/*
5859 	 * We've enumerated all CPUs and will assume that if any CPU
5860 	 * has SMT siblings, CPU0 will too.
5861 	 */
5862 	if (cpumask_weight(cpu_smt_mask(0)) > 1)
5863 		static_branch_enable(&sched_smt_present);
5864 }
5865 #else
5866 static inline void sched_init_smt(void) { }
5867 #endif
5868 
5869 void __init sched_init_smp(void)
5870 {
5871 	cpumask_var_t non_isolated_cpus;
5872 
5873 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5874 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5875 
5876 	sched_init_numa();
5877 
5878 	/*
5879 	 * There's no userspace yet to cause hotplug operations; hence all the
5880 	 * CPU masks are stable and all blatant races in the below code cannot
5881 	 * happen.
5882 	 */
5883 	mutex_lock(&sched_domains_mutex);
5884 	init_sched_domains(cpu_active_mask);
5885 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
5886 	if (cpumask_empty(non_isolated_cpus))
5887 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
5888 	mutex_unlock(&sched_domains_mutex);
5889 
5890 	/* Move init over to a non-isolated CPU */
5891 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5892 		BUG();
5893 	sched_init_granularity();
5894 	free_cpumask_var(non_isolated_cpus);
5895 
5896 	init_sched_rt_class();
5897 	init_sched_dl_class();
5898 
5899 	sched_init_smt();
5900 	sched_clock_init_late();
5901 
5902 	sched_smp_initialized = true;
5903 }
5904 
5905 static int __init migration_init(void)
5906 {
5907 	sched_rq_cpu_starting(smp_processor_id());
5908 	return 0;
5909 }
5910 early_initcall(migration_init);
5911 
5912 #else
5913 void __init sched_init_smp(void)
5914 {
5915 	sched_init_granularity();
5916 	sched_clock_init_late();
5917 }
5918 #endif /* CONFIG_SMP */
5919 
5920 int in_sched_functions(unsigned long addr)
5921 {
5922 	return in_lock_functions(addr) ||
5923 		(addr >= (unsigned long)__sched_text_start
5924 		&& addr < (unsigned long)__sched_text_end);
5925 }
5926 
5927 #ifdef CONFIG_CGROUP_SCHED
5928 /*
5929  * Default task group.
5930  * Every task in system belongs to this group at bootup.
5931  */
5932 struct task_group root_task_group;
5933 LIST_HEAD(task_groups);
5934 
5935 /* Cacheline aligned slab cache for task_group */
5936 static struct kmem_cache *task_group_cache __read_mostly;
5937 #endif
5938 
5939 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5940 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5941 
5942 #define WAIT_TABLE_BITS 8
5943 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
5944 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
5945 
5946 wait_queue_head_t *bit_waitqueue(void *word, int bit)
5947 {
5948 	const int shift = BITS_PER_LONG == 32 ? 5 : 6;
5949 	unsigned long val = (unsigned long)word << shift | bit;
5950 
5951 	return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
5952 }
5953 EXPORT_SYMBOL(bit_waitqueue);
5954 
5955 void __init sched_init(void)
5956 {
5957 	int i, j;
5958 	unsigned long alloc_size = 0, ptr;
5959 
5960 	sched_clock_init();
5961 
5962 	for (i = 0; i < WAIT_TABLE_SIZE; i++)
5963 		init_waitqueue_head(bit_wait_table + i);
5964 
5965 #ifdef CONFIG_FAIR_GROUP_SCHED
5966 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5967 #endif
5968 #ifdef CONFIG_RT_GROUP_SCHED
5969 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5970 #endif
5971 	if (alloc_size) {
5972 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5973 
5974 #ifdef CONFIG_FAIR_GROUP_SCHED
5975 		root_task_group.se = (struct sched_entity **)ptr;
5976 		ptr += nr_cpu_ids * sizeof(void **);
5977 
5978 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5979 		ptr += nr_cpu_ids * sizeof(void **);
5980 
5981 #endif /* CONFIG_FAIR_GROUP_SCHED */
5982 #ifdef CONFIG_RT_GROUP_SCHED
5983 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5984 		ptr += nr_cpu_ids * sizeof(void **);
5985 
5986 		root_task_group.rt_rq = (struct rt_rq **)ptr;
5987 		ptr += nr_cpu_ids * sizeof(void **);
5988 
5989 #endif /* CONFIG_RT_GROUP_SCHED */
5990 	}
5991 #ifdef CONFIG_CPUMASK_OFFSTACK
5992 	for_each_possible_cpu(i) {
5993 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5994 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5995 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5996 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5997 	}
5998 #endif /* CONFIG_CPUMASK_OFFSTACK */
5999 
6000 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6001 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6002 
6003 #ifdef CONFIG_SMP
6004 	init_defrootdomain();
6005 #endif
6006 
6007 #ifdef CONFIG_RT_GROUP_SCHED
6008 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6009 			global_rt_period(), global_rt_runtime());
6010 #endif /* CONFIG_RT_GROUP_SCHED */
6011 
6012 #ifdef CONFIG_CGROUP_SCHED
6013 	task_group_cache = KMEM_CACHE(task_group, 0);
6014 
6015 	list_add(&root_task_group.list, &task_groups);
6016 	INIT_LIST_HEAD(&root_task_group.children);
6017 	INIT_LIST_HEAD(&root_task_group.siblings);
6018 	autogroup_init(&init_task);
6019 #endif /* CONFIG_CGROUP_SCHED */
6020 
6021 	for_each_possible_cpu(i) {
6022 		struct rq *rq;
6023 
6024 		rq = cpu_rq(i);
6025 		raw_spin_lock_init(&rq->lock);
6026 		rq->nr_running = 0;
6027 		rq->calc_load_active = 0;
6028 		rq->calc_load_update = jiffies + LOAD_FREQ;
6029 		init_cfs_rq(&rq->cfs);
6030 		init_rt_rq(&rq->rt);
6031 		init_dl_rq(&rq->dl);
6032 #ifdef CONFIG_FAIR_GROUP_SCHED
6033 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6034 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6035 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6036 		/*
6037 		 * How much CPU bandwidth does root_task_group get?
6038 		 *
6039 		 * In case of task-groups formed thr' the cgroup filesystem, it
6040 		 * gets 100% of the CPU resources in the system. This overall
6041 		 * system CPU resource is divided among the tasks of
6042 		 * root_task_group and its child task-groups in a fair manner,
6043 		 * based on each entity's (task or task-group's) weight
6044 		 * (se->load.weight).
6045 		 *
6046 		 * In other words, if root_task_group has 10 tasks of weight
6047 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6048 		 * then A0's share of the CPU resource is:
6049 		 *
6050 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6051 		 *
6052 		 * We achieve this by letting root_task_group's tasks sit
6053 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6054 		 */
6055 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6056 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6057 #endif /* CONFIG_FAIR_GROUP_SCHED */
6058 
6059 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6060 #ifdef CONFIG_RT_GROUP_SCHED
6061 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6062 #endif
6063 
6064 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6065 			rq->cpu_load[j] = 0;
6066 
6067 #ifdef CONFIG_SMP
6068 		rq->sd = NULL;
6069 		rq->rd = NULL;
6070 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6071 		rq->balance_callback = NULL;
6072 		rq->active_balance = 0;
6073 		rq->next_balance = jiffies;
6074 		rq->push_cpu = 0;
6075 		rq->cpu = i;
6076 		rq->online = 0;
6077 		rq->idle_stamp = 0;
6078 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6079 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6080 
6081 		INIT_LIST_HEAD(&rq->cfs_tasks);
6082 
6083 		rq_attach_root(rq, &def_root_domain);
6084 #ifdef CONFIG_NO_HZ_COMMON
6085 		rq->last_load_update_tick = jiffies;
6086 		rq->nohz_flags = 0;
6087 #endif
6088 #ifdef CONFIG_NO_HZ_FULL
6089 		rq->last_sched_tick = 0;
6090 #endif
6091 #endif /* CONFIG_SMP */
6092 		init_rq_hrtick(rq);
6093 		atomic_set(&rq->nr_iowait, 0);
6094 	}
6095 
6096 	set_load_weight(&init_task);
6097 
6098 	/*
6099 	 * The boot idle thread does lazy MMU switching as well:
6100 	 */
6101 	atomic_inc(&init_mm.mm_count);
6102 	enter_lazy_tlb(&init_mm, current);
6103 
6104 	/*
6105 	 * Make us the idle thread. Technically, schedule() should not be
6106 	 * called from this thread, however somewhere below it might be,
6107 	 * but because we are the idle thread, we just pick up running again
6108 	 * when this runqueue becomes "idle".
6109 	 */
6110 	init_idle(current, smp_processor_id());
6111 
6112 	calc_load_update = jiffies + LOAD_FREQ;
6113 
6114 #ifdef CONFIG_SMP
6115 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6116 	/* May be allocated at isolcpus cmdline parse time */
6117 	if (cpu_isolated_map == NULL)
6118 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6119 	idle_thread_set_boot_cpu();
6120 	set_cpu_rq_start_time(smp_processor_id());
6121 #endif
6122 	init_sched_fair_class();
6123 
6124 	init_schedstats();
6125 
6126 	scheduler_running = 1;
6127 }
6128 
6129 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6130 static inline int preempt_count_equals(int preempt_offset)
6131 {
6132 	int nested = preempt_count() + rcu_preempt_depth();
6133 
6134 	return (nested == preempt_offset);
6135 }
6136 
6137 void __might_sleep(const char *file, int line, int preempt_offset)
6138 {
6139 	/*
6140 	 * Blocking primitives will set (and therefore destroy) current->state,
6141 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6142 	 * otherwise we will destroy state.
6143 	 */
6144 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6145 			"do not call blocking ops when !TASK_RUNNING; "
6146 			"state=%lx set at [<%p>] %pS\n",
6147 			current->state,
6148 			(void *)current->task_state_change,
6149 			(void *)current->task_state_change);
6150 
6151 	___might_sleep(file, line, preempt_offset);
6152 }
6153 EXPORT_SYMBOL(__might_sleep);
6154 
6155 void ___might_sleep(const char *file, int line, int preempt_offset)
6156 {
6157 	/* Ratelimiting timestamp: */
6158 	static unsigned long prev_jiffy;
6159 
6160 	unsigned long preempt_disable_ip;
6161 
6162 	/* WARN_ON_ONCE() by default, no rate limit required: */
6163 	rcu_sleep_check();
6164 
6165 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6166 	     !is_idle_task(current)) ||
6167 	    system_state != SYSTEM_RUNNING || oops_in_progress)
6168 		return;
6169 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6170 		return;
6171 	prev_jiffy = jiffies;
6172 
6173 	/* Save this before calling printk(), since that will clobber it: */
6174 	preempt_disable_ip = get_preempt_disable_ip(current);
6175 
6176 	printk(KERN_ERR
6177 		"BUG: sleeping function called from invalid context at %s:%d\n",
6178 			file, line);
6179 	printk(KERN_ERR
6180 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6181 			in_atomic(), irqs_disabled(),
6182 			current->pid, current->comm);
6183 
6184 	if (task_stack_end_corrupted(current))
6185 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6186 
6187 	debug_show_held_locks(current);
6188 	if (irqs_disabled())
6189 		print_irqtrace_events(current);
6190 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6191 	    && !preempt_count_equals(preempt_offset)) {
6192 		pr_err("Preemption disabled at:");
6193 		print_ip_sym(preempt_disable_ip);
6194 		pr_cont("\n");
6195 	}
6196 	dump_stack();
6197 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6198 }
6199 EXPORT_SYMBOL(___might_sleep);
6200 #endif
6201 
6202 #ifdef CONFIG_MAGIC_SYSRQ
6203 void normalize_rt_tasks(void)
6204 {
6205 	struct task_struct *g, *p;
6206 	struct sched_attr attr = {
6207 		.sched_policy = SCHED_NORMAL,
6208 	};
6209 
6210 	read_lock(&tasklist_lock);
6211 	for_each_process_thread(g, p) {
6212 		/*
6213 		 * Only normalize user tasks:
6214 		 */
6215 		if (p->flags & PF_KTHREAD)
6216 			continue;
6217 
6218 		p->se.exec_start = 0;
6219 		schedstat_set(p->se.statistics.wait_start,  0);
6220 		schedstat_set(p->se.statistics.sleep_start, 0);
6221 		schedstat_set(p->se.statistics.block_start, 0);
6222 
6223 		if (!dl_task(p) && !rt_task(p)) {
6224 			/*
6225 			 * Renice negative nice level userspace
6226 			 * tasks back to 0:
6227 			 */
6228 			if (task_nice(p) < 0)
6229 				set_user_nice(p, 0);
6230 			continue;
6231 		}
6232 
6233 		__sched_setscheduler(p, &attr, false, false);
6234 	}
6235 	read_unlock(&tasklist_lock);
6236 }
6237 
6238 #endif /* CONFIG_MAGIC_SYSRQ */
6239 
6240 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6241 /*
6242  * These functions are only useful for the IA64 MCA handling, or kdb.
6243  *
6244  * They can only be called when the whole system has been
6245  * stopped - every CPU needs to be quiescent, and no scheduling
6246  * activity can take place. Using them for anything else would
6247  * be a serious bug, and as a result, they aren't even visible
6248  * under any other configuration.
6249  */
6250 
6251 /**
6252  * curr_task - return the current task for a given CPU.
6253  * @cpu: the processor in question.
6254  *
6255  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6256  *
6257  * Return: The current task for @cpu.
6258  */
6259 struct task_struct *curr_task(int cpu)
6260 {
6261 	return cpu_curr(cpu);
6262 }
6263 
6264 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6265 
6266 #ifdef CONFIG_IA64
6267 /**
6268  * set_curr_task - set the current task for a given CPU.
6269  * @cpu: the processor in question.
6270  * @p: the task pointer to set.
6271  *
6272  * Description: This function must only be used when non-maskable interrupts
6273  * are serviced on a separate stack. It allows the architecture to switch the
6274  * notion of the current task on a CPU in a non-blocking manner. This function
6275  * must be called with all CPU's synchronized, and interrupts disabled, the
6276  * and caller must save the original value of the current task (see
6277  * curr_task() above) and restore that value before reenabling interrupts and
6278  * re-starting the system.
6279  *
6280  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6281  */
6282 void ia64_set_curr_task(int cpu, struct task_struct *p)
6283 {
6284 	cpu_curr(cpu) = p;
6285 }
6286 
6287 #endif
6288 
6289 #ifdef CONFIG_CGROUP_SCHED
6290 /* task_group_lock serializes the addition/removal of task groups */
6291 static DEFINE_SPINLOCK(task_group_lock);
6292 
6293 static void sched_free_group(struct task_group *tg)
6294 {
6295 	free_fair_sched_group(tg);
6296 	free_rt_sched_group(tg);
6297 	autogroup_free(tg);
6298 	kmem_cache_free(task_group_cache, tg);
6299 }
6300 
6301 /* allocate runqueue etc for a new task group */
6302 struct task_group *sched_create_group(struct task_group *parent)
6303 {
6304 	struct task_group *tg;
6305 
6306 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6307 	if (!tg)
6308 		return ERR_PTR(-ENOMEM);
6309 
6310 	if (!alloc_fair_sched_group(tg, parent))
6311 		goto err;
6312 
6313 	if (!alloc_rt_sched_group(tg, parent))
6314 		goto err;
6315 
6316 	return tg;
6317 
6318 err:
6319 	sched_free_group(tg);
6320 	return ERR_PTR(-ENOMEM);
6321 }
6322 
6323 void sched_online_group(struct task_group *tg, struct task_group *parent)
6324 {
6325 	unsigned long flags;
6326 
6327 	spin_lock_irqsave(&task_group_lock, flags);
6328 	list_add_rcu(&tg->list, &task_groups);
6329 
6330 	/* Root should already exist: */
6331 	WARN_ON(!parent);
6332 
6333 	tg->parent = parent;
6334 	INIT_LIST_HEAD(&tg->children);
6335 	list_add_rcu(&tg->siblings, &parent->children);
6336 	spin_unlock_irqrestore(&task_group_lock, flags);
6337 
6338 	online_fair_sched_group(tg);
6339 }
6340 
6341 /* rcu callback to free various structures associated with a task group */
6342 static void sched_free_group_rcu(struct rcu_head *rhp)
6343 {
6344 	/* Now it should be safe to free those cfs_rqs: */
6345 	sched_free_group(container_of(rhp, struct task_group, rcu));
6346 }
6347 
6348 void sched_destroy_group(struct task_group *tg)
6349 {
6350 	/* Wait for possible concurrent references to cfs_rqs complete: */
6351 	call_rcu(&tg->rcu, sched_free_group_rcu);
6352 }
6353 
6354 void sched_offline_group(struct task_group *tg)
6355 {
6356 	unsigned long flags;
6357 
6358 	/* End participation in shares distribution: */
6359 	unregister_fair_sched_group(tg);
6360 
6361 	spin_lock_irqsave(&task_group_lock, flags);
6362 	list_del_rcu(&tg->list);
6363 	list_del_rcu(&tg->siblings);
6364 	spin_unlock_irqrestore(&task_group_lock, flags);
6365 }
6366 
6367 static void sched_change_group(struct task_struct *tsk, int type)
6368 {
6369 	struct task_group *tg;
6370 
6371 	/*
6372 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6373 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6374 	 * to prevent lockdep warnings.
6375 	 */
6376 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6377 			  struct task_group, css);
6378 	tg = autogroup_task_group(tsk, tg);
6379 	tsk->sched_task_group = tg;
6380 
6381 #ifdef CONFIG_FAIR_GROUP_SCHED
6382 	if (tsk->sched_class->task_change_group)
6383 		tsk->sched_class->task_change_group(tsk, type);
6384 	else
6385 #endif
6386 		set_task_rq(tsk, task_cpu(tsk));
6387 }
6388 
6389 /*
6390  * Change task's runqueue when it moves between groups.
6391  *
6392  * The caller of this function should have put the task in its new group by
6393  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6394  * its new group.
6395  */
6396 void sched_move_task(struct task_struct *tsk)
6397 {
6398 	int queued, running;
6399 	struct rq_flags rf;
6400 	struct rq *rq;
6401 
6402 	rq = task_rq_lock(tsk, &rf);
6403 	update_rq_clock(rq);
6404 
6405 	running = task_current(rq, tsk);
6406 	queued = task_on_rq_queued(tsk);
6407 
6408 	if (queued)
6409 		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
6410 	if (running)
6411 		put_prev_task(rq, tsk);
6412 
6413 	sched_change_group(tsk, TASK_MOVE_GROUP);
6414 
6415 	if (queued)
6416 		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
6417 	if (running)
6418 		set_curr_task(rq, tsk);
6419 
6420 	task_rq_unlock(rq, tsk, &rf);
6421 }
6422 #endif /* CONFIG_CGROUP_SCHED */
6423 
6424 #ifdef CONFIG_RT_GROUP_SCHED
6425 /*
6426  * Ensure that the real time constraints are schedulable.
6427  */
6428 static DEFINE_MUTEX(rt_constraints_mutex);
6429 
6430 /* Must be called with tasklist_lock held */
6431 static inline int tg_has_rt_tasks(struct task_group *tg)
6432 {
6433 	struct task_struct *g, *p;
6434 
6435 	/*
6436 	 * Autogroups do not have RT tasks; see autogroup_create().
6437 	 */
6438 	if (task_group_is_autogroup(tg))
6439 		return 0;
6440 
6441 	for_each_process_thread(g, p) {
6442 		if (rt_task(p) && task_group(p) == tg)
6443 			return 1;
6444 	}
6445 
6446 	return 0;
6447 }
6448 
6449 struct rt_schedulable_data {
6450 	struct task_group *tg;
6451 	u64 rt_period;
6452 	u64 rt_runtime;
6453 };
6454 
6455 static int tg_rt_schedulable(struct task_group *tg, void *data)
6456 {
6457 	struct rt_schedulable_data *d = data;
6458 	struct task_group *child;
6459 	unsigned long total, sum = 0;
6460 	u64 period, runtime;
6461 
6462 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6463 	runtime = tg->rt_bandwidth.rt_runtime;
6464 
6465 	if (tg == d->tg) {
6466 		period = d->rt_period;
6467 		runtime = d->rt_runtime;
6468 	}
6469 
6470 	/*
6471 	 * Cannot have more runtime than the period.
6472 	 */
6473 	if (runtime > period && runtime != RUNTIME_INF)
6474 		return -EINVAL;
6475 
6476 	/*
6477 	 * Ensure we don't starve existing RT tasks.
6478 	 */
6479 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6480 		return -EBUSY;
6481 
6482 	total = to_ratio(period, runtime);
6483 
6484 	/*
6485 	 * Nobody can have more than the global setting allows.
6486 	 */
6487 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6488 		return -EINVAL;
6489 
6490 	/*
6491 	 * The sum of our children's runtime should not exceed our own.
6492 	 */
6493 	list_for_each_entry_rcu(child, &tg->children, siblings) {
6494 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
6495 		runtime = child->rt_bandwidth.rt_runtime;
6496 
6497 		if (child == d->tg) {
6498 			period = d->rt_period;
6499 			runtime = d->rt_runtime;
6500 		}
6501 
6502 		sum += to_ratio(period, runtime);
6503 	}
6504 
6505 	if (sum > total)
6506 		return -EINVAL;
6507 
6508 	return 0;
6509 }
6510 
6511 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6512 {
6513 	int ret;
6514 
6515 	struct rt_schedulable_data data = {
6516 		.tg = tg,
6517 		.rt_period = period,
6518 		.rt_runtime = runtime,
6519 	};
6520 
6521 	rcu_read_lock();
6522 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6523 	rcu_read_unlock();
6524 
6525 	return ret;
6526 }
6527 
6528 static int tg_set_rt_bandwidth(struct task_group *tg,
6529 		u64 rt_period, u64 rt_runtime)
6530 {
6531 	int i, err = 0;
6532 
6533 	/*
6534 	 * Disallowing the root group RT runtime is BAD, it would disallow the
6535 	 * kernel creating (and or operating) RT threads.
6536 	 */
6537 	if (tg == &root_task_group && rt_runtime == 0)
6538 		return -EINVAL;
6539 
6540 	/* No period doesn't make any sense. */
6541 	if (rt_period == 0)
6542 		return -EINVAL;
6543 
6544 	mutex_lock(&rt_constraints_mutex);
6545 	read_lock(&tasklist_lock);
6546 	err = __rt_schedulable(tg, rt_period, rt_runtime);
6547 	if (err)
6548 		goto unlock;
6549 
6550 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6551 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6552 	tg->rt_bandwidth.rt_runtime = rt_runtime;
6553 
6554 	for_each_possible_cpu(i) {
6555 		struct rt_rq *rt_rq = tg->rt_rq[i];
6556 
6557 		raw_spin_lock(&rt_rq->rt_runtime_lock);
6558 		rt_rq->rt_runtime = rt_runtime;
6559 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6560 	}
6561 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6562 unlock:
6563 	read_unlock(&tasklist_lock);
6564 	mutex_unlock(&rt_constraints_mutex);
6565 
6566 	return err;
6567 }
6568 
6569 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6570 {
6571 	u64 rt_runtime, rt_period;
6572 
6573 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6574 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6575 	if (rt_runtime_us < 0)
6576 		rt_runtime = RUNTIME_INF;
6577 
6578 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6579 }
6580 
6581 static long sched_group_rt_runtime(struct task_group *tg)
6582 {
6583 	u64 rt_runtime_us;
6584 
6585 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6586 		return -1;
6587 
6588 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6589 	do_div(rt_runtime_us, NSEC_PER_USEC);
6590 	return rt_runtime_us;
6591 }
6592 
6593 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
6594 {
6595 	u64 rt_runtime, rt_period;
6596 
6597 	rt_period = rt_period_us * NSEC_PER_USEC;
6598 	rt_runtime = tg->rt_bandwidth.rt_runtime;
6599 
6600 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6601 }
6602 
6603 static long sched_group_rt_period(struct task_group *tg)
6604 {
6605 	u64 rt_period_us;
6606 
6607 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6608 	do_div(rt_period_us, NSEC_PER_USEC);
6609 	return rt_period_us;
6610 }
6611 #endif /* CONFIG_RT_GROUP_SCHED */
6612 
6613 #ifdef CONFIG_RT_GROUP_SCHED
6614 static int sched_rt_global_constraints(void)
6615 {
6616 	int ret = 0;
6617 
6618 	mutex_lock(&rt_constraints_mutex);
6619 	read_lock(&tasklist_lock);
6620 	ret = __rt_schedulable(NULL, 0, 0);
6621 	read_unlock(&tasklist_lock);
6622 	mutex_unlock(&rt_constraints_mutex);
6623 
6624 	return ret;
6625 }
6626 
6627 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6628 {
6629 	/* Don't accept realtime tasks when there is no way for them to run */
6630 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6631 		return 0;
6632 
6633 	return 1;
6634 }
6635 
6636 #else /* !CONFIG_RT_GROUP_SCHED */
6637 static int sched_rt_global_constraints(void)
6638 {
6639 	unsigned long flags;
6640 	int i;
6641 
6642 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
6643 	for_each_possible_cpu(i) {
6644 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
6645 
6646 		raw_spin_lock(&rt_rq->rt_runtime_lock);
6647 		rt_rq->rt_runtime = global_rt_runtime();
6648 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6649 	}
6650 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
6651 
6652 	return 0;
6653 }
6654 #endif /* CONFIG_RT_GROUP_SCHED */
6655 
6656 static int sched_dl_global_validate(void)
6657 {
6658 	u64 runtime = global_rt_runtime();
6659 	u64 period = global_rt_period();
6660 	u64 new_bw = to_ratio(period, runtime);
6661 	struct dl_bw *dl_b;
6662 	int cpu, ret = 0;
6663 	unsigned long flags;
6664 
6665 	/*
6666 	 * Here we want to check the bandwidth not being set to some
6667 	 * value smaller than the currently allocated bandwidth in
6668 	 * any of the root_domains.
6669 	 *
6670 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
6671 	 * cycling on root_domains... Discussion on different/better
6672 	 * solutions is welcome!
6673 	 */
6674 	for_each_possible_cpu(cpu) {
6675 		rcu_read_lock_sched();
6676 		dl_b = dl_bw_of(cpu);
6677 
6678 		raw_spin_lock_irqsave(&dl_b->lock, flags);
6679 		if (new_bw < dl_b->total_bw)
6680 			ret = -EBUSY;
6681 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
6682 
6683 		rcu_read_unlock_sched();
6684 
6685 		if (ret)
6686 			break;
6687 	}
6688 
6689 	return ret;
6690 }
6691 
6692 static void sched_dl_do_global(void)
6693 {
6694 	u64 new_bw = -1;
6695 	struct dl_bw *dl_b;
6696 	int cpu;
6697 	unsigned long flags;
6698 
6699 	def_dl_bandwidth.dl_period = global_rt_period();
6700 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
6701 
6702 	if (global_rt_runtime() != RUNTIME_INF)
6703 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
6704 
6705 	/*
6706 	 * FIXME: As above...
6707 	 */
6708 	for_each_possible_cpu(cpu) {
6709 		rcu_read_lock_sched();
6710 		dl_b = dl_bw_of(cpu);
6711 
6712 		raw_spin_lock_irqsave(&dl_b->lock, flags);
6713 		dl_b->bw = new_bw;
6714 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
6715 
6716 		rcu_read_unlock_sched();
6717 	}
6718 }
6719 
6720 static int sched_rt_global_validate(void)
6721 {
6722 	if (sysctl_sched_rt_period <= 0)
6723 		return -EINVAL;
6724 
6725 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
6726 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
6727 		return -EINVAL;
6728 
6729 	return 0;
6730 }
6731 
6732 static void sched_rt_do_global(void)
6733 {
6734 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
6735 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
6736 }
6737 
6738 int sched_rt_handler(struct ctl_table *table, int write,
6739 		void __user *buffer, size_t *lenp,
6740 		loff_t *ppos)
6741 {
6742 	int old_period, old_runtime;
6743 	static DEFINE_MUTEX(mutex);
6744 	int ret;
6745 
6746 	mutex_lock(&mutex);
6747 	old_period = sysctl_sched_rt_period;
6748 	old_runtime = sysctl_sched_rt_runtime;
6749 
6750 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
6751 
6752 	if (!ret && write) {
6753 		ret = sched_rt_global_validate();
6754 		if (ret)
6755 			goto undo;
6756 
6757 		ret = sched_dl_global_validate();
6758 		if (ret)
6759 			goto undo;
6760 
6761 		ret = sched_rt_global_constraints();
6762 		if (ret)
6763 			goto undo;
6764 
6765 		sched_rt_do_global();
6766 		sched_dl_do_global();
6767 	}
6768 	if (0) {
6769 undo:
6770 		sysctl_sched_rt_period = old_period;
6771 		sysctl_sched_rt_runtime = old_runtime;
6772 	}
6773 	mutex_unlock(&mutex);
6774 
6775 	return ret;
6776 }
6777 
6778 int sched_rr_handler(struct ctl_table *table, int write,
6779 		void __user *buffer, size_t *lenp,
6780 		loff_t *ppos)
6781 {
6782 	int ret;
6783 	static DEFINE_MUTEX(mutex);
6784 
6785 	mutex_lock(&mutex);
6786 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
6787 	/*
6788 	 * Make sure that internally we keep jiffies.
6789 	 * Also, writing zero resets the timeslice to default:
6790 	 */
6791 	if (!ret && write) {
6792 		sched_rr_timeslice =
6793 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
6794 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
6795 	}
6796 	mutex_unlock(&mutex);
6797 	return ret;
6798 }
6799 
6800 #ifdef CONFIG_CGROUP_SCHED
6801 
6802 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6803 {
6804 	return css ? container_of(css, struct task_group, css) : NULL;
6805 }
6806 
6807 static struct cgroup_subsys_state *
6808 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6809 {
6810 	struct task_group *parent = css_tg(parent_css);
6811 	struct task_group *tg;
6812 
6813 	if (!parent) {
6814 		/* This is early initialization for the top cgroup */
6815 		return &root_task_group.css;
6816 	}
6817 
6818 	tg = sched_create_group(parent);
6819 	if (IS_ERR(tg))
6820 		return ERR_PTR(-ENOMEM);
6821 
6822 	sched_online_group(tg, parent);
6823 
6824 	return &tg->css;
6825 }
6826 
6827 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6828 {
6829 	struct task_group *tg = css_tg(css);
6830 
6831 	sched_offline_group(tg);
6832 }
6833 
6834 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6835 {
6836 	struct task_group *tg = css_tg(css);
6837 
6838 	/*
6839 	 * Relies on the RCU grace period between css_released() and this.
6840 	 */
6841 	sched_free_group(tg);
6842 }
6843 
6844 /*
6845  * This is called before wake_up_new_task(), therefore we really only
6846  * have to set its group bits, all the other stuff does not apply.
6847  */
6848 static void cpu_cgroup_fork(struct task_struct *task)
6849 {
6850 	struct rq_flags rf;
6851 	struct rq *rq;
6852 
6853 	rq = task_rq_lock(task, &rf);
6854 
6855 	update_rq_clock(rq);
6856 	sched_change_group(task, TASK_SET_GROUP);
6857 
6858 	task_rq_unlock(rq, task, &rf);
6859 }
6860 
6861 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6862 {
6863 	struct task_struct *task;
6864 	struct cgroup_subsys_state *css;
6865 	int ret = 0;
6866 
6867 	cgroup_taskset_for_each(task, css, tset) {
6868 #ifdef CONFIG_RT_GROUP_SCHED
6869 		if (!sched_rt_can_attach(css_tg(css), task))
6870 			return -EINVAL;
6871 #else
6872 		/* We don't support RT-tasks being in separate groups */
6873 		if (task->sched_class != &fair_sched_class)
6874 			return -EINVAL;
6875 #endif
6876 		/*
6877 		 * Serialize against wake_up_new_task() such that if its
6878 		 * running, we're sure to observe its full state.
6879 		 */
6880 		raw_spin_lock_irq(&task->pi_lock);
6881 		/*
6882 		 * Avoid calling sched_move_task() before wake_up_new_task()
6883 		 * has happened. This would lead to problems with PELT, due to
6884 		 * move wanting to detach+attach while we're not attached yet.
6885 		 */
6886 		if (task->state == TASK_NEW)
6887 			ret = -EINVAL;
6888 		raw_spin_unlock_irq(&task->pi_lock);
6889 
6890 		if (ret)
6891 			break;
6892 	}
6893 	return ret;
6894 }
6895 
6896 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6897 {
6898 	struct task_struct *task;
6899 	struct cgroup_subsys_state *css;
6900 
6901 	cgroup_taskset_for_each(task, css, tset)
6902 		sched_move_task(task);
6903 }
6904 
6905 #ifdef CONFIG_FAIR_GROUP_SCHED
6906 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6907 				struct cftype *cftype, u64 shareval)
6908 {
6909 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6910 }
6911 
6912 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6913 			       struct cftype *cft)
6914 {
6915 	struct task_group *tg = css_tg(css);
6916 
6917 	return (u64) scale_load_down(tg->shares);
6918 }
6919 
6920 #ifdef CONFIG_CFS_BANDWIDTH
6921 static DEFINE_MUTEX(cfs_constraints_mutex);
6922 
6923 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6924 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6925 
6926 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6927 
6928 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6929 {
6930 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6931 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6932 
6933 	if (tg == &root_task_group)
6934 		return -EINVAL;
6935 
6936 	/*
6937 	 * Ensure we have at some amount of bandwidth every period.  This is
6938 	 * to prevent reaching a state of large arrears when throttled via
6939 	 * entity_tick() resulting in prolonged exit starvation.
6940 	 */
6941 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6942 		return -EINVAL;
6943 
6944 	/*
6945 	 * Likewise, bound things on the otherside by preventing insane quota
6946 	 * periods.  This also allows us to normalize in computing quota
6947 	 * feasibility.
6948 	 */
6949 	if (period > max_cfs_quota_period)
6950 		return -EINVAL;
6951 
6952 	/*
6953 	 * Prevent race between setting of cfs_rq->runtime_enabled and
6954 	 * unthrottle_offline_cfs_rqs().
6955 	 */
6956 	get_online_cpus();
6957 	mutex_lock(&cfs_constraints_mutex);
6958 	ret = __cfs_schedulable(tg, period, quota);
6959 	if (ret)
6960 		goto out_unlock;
6961 
6962 	runtime_enabled = quota != RUNTIME_INF;
6963 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6964 	/*
6965 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
6966 	 * before making related changes, and on->off must occur afterwards
6967 	 */
6968 	if (runtime_enabled && !runtime_was_enabled)
6969 		cfs_bandwidth_usage_inc();
6970 	raw_spin_lock_irq(&cfs_b->lock);
6971 	cfs_b->period = ns_to_ktime(period);
6972 	cfs_b->quota = quota;
6973 
6974 	__refill_cfs_bandwidth_runtime(cfs_b);
6975 
6976 	/* Restart the period timer (if active) to handle new period expiry: */
6977 	if (runtime_enabled)
6978 		start_cfs_bandwidth(cfs_b);
6979 
6980 	raw_spin_unlock_irq(&cfs_b->lock);
6981 
6982 	for_each_online_cpu(i) {
6983 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6984 		struct rq *rq = cfs_rq->rq;
6985 
6986 		raw_spin_lock_irq(&rq->lock);
6987 		cfs_rq->runtime_enabled = runtime_enabled;
6988 		cfs_rq->runtime_remaining = 0;
6989 
6990 		if (cfs_rq->throttled)
6991 			unthrottle_cfs_rq(cfs_rq);
6992 		raw_spin_unlock_irq(&rq->lock);
6993 	}
6994 	if (runtime_was_enabled && !runtime_enabled)
6995 		cfs_bandwidth_usage_dec();
6996 out_unlock:
6997 	mutex_unlock(&cfs_constraints_mutex);
6998 	put_online_cpus();
6999 
7000 	return ret;
7001 }
7002 
7003 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7004 {
7005 	u64 quota, period;
7006 
7007 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7008 	if (cfs_quota_us < 0)
7009 		quota = RUNTIME_INF;
7010 	else
7011 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7012 
7013 	return tg_set_cfs_bandwidth(tg, period, quota);
7014 }
7015 
7016 long tg_get_cfs_quota(struct task_group *tg)
7017 {
7018 	u64 quota_us;
7019 
7020 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7021 		return -1;
7022 
7023 	quota_us = tg->cfs_bandwidth.quota;
7024 	do_div(quota_us, NSEC_PER_USEC);
7025 
7026 	return quota_us;
7027 }
7028 
7029 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7030 {
7031 	u64 quota, period;
7032 
7033 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7034 	quota = tg->cfs_bandwidth.quota;
7035 
7036 	return tg_set_cfs_bandwidth(tg, period, quota);
7037 }
7038 
7039 long tg_get_cfs_period(struct task_group *tg)
7040 {
7041 	u64 cfs_period_us;
7042 
7043 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7044 	do_div(cfs_period_us, NSEC_PER_USEC);
7045 
7046 	return cfs_period_us;
7047 }
7048 
7049 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7050 				  struct cftype *cft)
7051 {
7052 	return tg_get_cfs_quota(css_tg(css));
7053 }
7054 
7055 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7056 				   struct cftype *cftype, s64 cfs_quota_us)
7057 {
7058 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7059 }
7060 
7061 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7062 				   struct cftype *cft)
7063 {
7064 	return tg_get_cfs_period(css_tg(css));
7065 }
7066 
7067 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7068 				    struct cftype *cftype, u64 cfs_period_us)
7069 {
7070 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7071 }
7072 
7073 struct cfs_schedulable_data {
7074 	struct task_group *tg;
7075 	u64 period, quota;
7076 };
7077 
7078 /*
7079  * normalize group quota/period to be quota/max_period
7080  * note: units are usecs
7081  */
7082 static u64 normalize_cfs_quota(struct task_group *tg,
7083 			       struct cfs_schedulable_data *d)
7084 {
7085 	u64 quota, period;
7086 
7087 	if (tg == d->tg) {
7088 		period = d->period;
7089 		quota = d->quota;
7090 	} else {
7091 		period = tg_get_cfs_period(tg);
7092 		quota = tg_get_cfs_quota(tg);
7093 	}
7094 
7095 	/* note: these should typically be equivalent */
7096 	if (quota == RUNTIME_INF || quota == -1)
7097 		return RUNTIME_INF;
7098 
7099 	return to_ratio(period, quota);
7100 }
7101 
7102 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7103 {
7104 	struct cfs_schedulable_data *d = data;
7105 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7106 	s64 quota = 0, parent_quota = -1;
7107 
7108 	if (!tg->parent) {
7109 		quota = RUNTIME_INF;
7110 	} else {
7111 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7112 
7113 		quota = normalize_cfs_quota(tg, d);
7114 		parent_quota = parent_b->hierarchical_quota;
7115 
7116 		/*
7117 		 * Ensure max(child_quota) <= parent_quota, inherit when no
7118 		 * limit is set:
7119 		 */
7120 		if (quota == RUNTIME_INF)
7121 			quota = parent_quota;
7122 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7123 			return -EINVAL;
7124 	}
7125 	cfs_b->hierarchical_quota = quota;
7126 
7127 	return 0;
7128 }
7129 
7130 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7131 {
7132 	int ret;
7133 	struct cfs_schedulable_data data = {
7134 		.tg = tg,
7135 		.period = period,
7136 		.quota = quota,
7137 	};
7138 
7139 	if (quota != RUNTIME_INF) {
7140 		do_div(data.period, NSEC_PER_USEC);
7141 		do_div(data.quota, NSEC_PER_USEC);
7142 	}
7143 
7144 	rcu_read_lock();
7145 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7146 	rcu_read_unlock();
7147 
7148 	return ret;
7149 }
7150 
7151 static int cpu_stats_show(struct seq_file *sf, void *v)
7152 {
7153 	struct task_group *tg = css_tg(seq_css(sf));
7154 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7155 
7156 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7157 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7158 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7159 
7160 	return 0;
7161 }
7162 #endif /* CONFIG_CFS_BANDWIDTH */
7163 #endif /* CONFIG_FAIR_GROUP_SCHED */
7164 
7165 #ifdef CONFIG_RT_GROUP_SCHED
7166 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7167 				struct cftype *cft, s64 val)
7168 {
7169 	return sched_group_set_rt_runtime(css_tg(css), val);
7170 }
7171 
7172 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7173 			       struct cftype *cft)
7174 {
7175 	return sched_group_rt_runtime(css_tg(css));
7176 }
7177 
7178 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7179 				    struct cftype *cftype, u64 rt_period_us)
7180 {
7181 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7182 }
7183 
7184 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7185 				   struct cftype *cft)
7186 {
7187 	return sched_group_rt_period(css_tg(css));
7188 }
7189 #endif /* CONFIG_RT_GROUP_SCHED */
7190 
7191 static struct cftype cpu_files[] = {
7192 #ifdef CONFIG_FAIR_GROUP_SCHED
7193 	{
7194 		.name = "shares",
7195 		.read_u64 = cpu_shares_read_u64,
7196 		.write_u64 = cpu_shares_write_u64,
7197 	},
7198 #endif
7199 #ifdef CONFIG_CFS_BANDWIDTH
7200 	{
7201 		.name = "cfs_quota_us",
7202 		.read_s64 = cpu_cfs_quota_read_s64,
7203 		.write_s64 = cpu_cfs_quota_write_s64,
7204 	},
7205 	{
7206 		.name = "cfs_period_us",
7207 		.read_u64 = cpu_cfs_period_read_u64,
7208 		.write_u64 = cpu_cfs_period_write_u64,
7209 	},
7210 	{
7211 		.name = "stat",
7212 		.seq_show = cpu_stats_show,
7213 	},
7214 #endif
7215 #ifdef CONFIG_RT_GROUP_SCHED
7216 	{
7217 		.name = "rt_runtime_us",
7218 		.read_s64 = cpu_rt_runtime_read,
7219 		.write_s64 = cpu_rt_runtime_write,
7220 	},
7221 	{
7222 		.name = "rt_period_us",
7223 		.read_u64 = cpu_rt_period_read_uint,
7224 		.write_u64 = cpu_rt_period_write_uint,
7225 	},
7226 #endif
7227 	{ }	/* Terminate */
7228 };
7229 
7230 struct cgroup_subsys cpu_cgrp_subsys = {
7231 	.css_alloc	= cpu_cgroup_css_alloc,
7232 	.css_released	= cpu_cgroup_css_released,
7233 	.css_free	= cpu_cgroup_css_free,
7234 	.fork		= cpu_cgroup_fork,
7235 	.can_attach	= cpu_cgroup_can_attach,
7236 	.attach		= cpu_cgroup_attach,
7237 	.legacy_cftypes	= cpu_files,
7238 	.early_init	= true,
7239 };
7240 
7241 #endif	/* CONFIG_CGROUP_SCHED */
7242 
7243 void dump_cpu_task(int cpu)
7244 {
7245 	pr_info("Task dump for CPU %d:\n", cpu);
7246 	sched_show_task(cpu_curr(cpu));
7247 }
7248 
7249 /*
7250  * Nice levels are multiplicative, with a gentle 10% change for every
7251  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7252  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7253  * that remained on nice 0.
7254  *
7255  * The "10% effect" is relative and cumulative: from _any_ nice level,
7256  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7257  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7258  * If a task goes up by ~10% and another task goes down by ~10% then
7259  * the relative distance between them is ~25%.)
7260  */
7261 const int sched_prio_to_weight[40] = {
7262  /* -20 */     88761,     71755,     56483,     46273,     36291,
7263  /* -15 */     29154,     23254,     18705,     14949,     11916,
7264  /* -10 */      9548,      7620,      6100,      4904,      3906,
7265  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7266  /*   0 */      1024,       820,       655,       526,       423,
7267  /*   5 */       335,       272,       215,       172,       137,
7268  /*  10 */       110,        87,        70,        56,        45,
7269  /*  15 */        36,        29,        23,        18,        15,
7270 };
7271 
7272 /*
7273  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7274  *
7275  * In cases where the weight does not change often, we can use the
7276  * precalculated inverse to speed up arithmetics by turning divisions
7277  * into multiplications:
7278  */
7279 const u32 sched_prio_to_wmult[40] = {
7280  /* -20 */     48388,     59856,     76040,     92818,    118348,
7281  /* -15 */    147320,    184698,    229616,    287308,    360437,
7282  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7283  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7284  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7285  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7286  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7287  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7288 };
7289