1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 #include <asm/irq_regs.h> 80 #include <asm/mutex.h> 81 #ifdef CONFIG_PARAVIRT 82 #include <asm/paravirt.h> 83 #endif 84 85 #include "sched.h" 86 #include "../workqueue_sched.h" 87 #include "../smpboot.h" 88 89 #define CREATE_TRACE_POINTS 90 #include <trace/events/sched.h> 91 92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 93 { 94 unsigned long delta; 95 ktime_t soft, hard, now; 96 97 for (;;) { 98 if (hrtimer_active(period_timer)) 99 break; 100 101 now = hrtimer_cb_get_time(period_timer); 102 hrtimer_forward(period_timer, now, period); 103 104 soft = hrtimer_get_softexpires(period_timer); 105 hard = hrtimer_get_expires(period_timer); 106 delta = ktime_to_ns(ktime_sub(hard, soft)); 107 __hrtimer_start_range_ns(period_timer, soft, delta, 108 HRTIMER_MODE_ABS_PINNED, 0); 109 } 110 } 111 112 DEFINE_MUTEX(sched_domains_mutex); 113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 114 115 static void update_rq_clock_task(struct rq *rq, s64 delta); 116 117 void update_rq_clock(struct rq *rq) 118 { 119 s64 delta; 120 121 if (rq->skip_clock_update > 0) 122 return; 123 124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 125 rq->clock += delta; 126 update_rq_clock_task(rq, delta); 127 } 128 129 /* 130 * Debugging: various feature bits 131 */ 132 133 #define SCHED_FEAT(name, enabled) \ 134 (1UL << __SCHED_FEAT_##name) * enabled | 135 136 const_debug unsigned int sysctl_sched_features = 137 #include "features.h" 138 0; 139 140 #undef SCHED_FEAT 141 142 #ifdef CONFIG_SCHED_DEBUG 143 #define SCHED_FEAT(name, enabled) \ 144 #name , 145 146 static const char * const sched_feat_names[] = { 147 #include "features.h" 148 }; 149 150 #undef SCHED_FEAT 151 152 static int sched_feat_show(struct seq_file *m, void *v) 153 { 154 int i; 155 156 for (i = 0; i < __SCHED_FEAT_NR; i++) { 157 if (!(sysctl_sched_features & (1UL << i))) 158 seq_puts(m, "NO_"); 159 seq_printf(m, "%s ", sched_feat_names[i]); 160 } 161 seq_puts(m, "\n"); 162 163 return 0; 164 } 165 166 #ifdef HAVE_JUMP_LABEL 167 168 #define jump_label_key__true STATIC_KEY_INIT_TRUE 169 #define jump_label_key__false STATIC_KEY_INIT_FALSE 170 171 #define SCHED_FEAT(name, enabled) \ 172 jump_label_key__##enabled , 173 174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 175 #include "features.h" 176 }; 177 178 #undef SCHED_FEAT 179 180 static void sched_feat_disable(int i) 181 { 182 if (static_key_enabled(&sched_feat_keys[i])) 183 static_key_slow_dec(&sched_feat_keys[i]); 184 } 185 186 static void sched_feat_enable(int i) 187 { 188 if (!static_key_enabled(&sched_feat_keys[i])) 189 static_key_slow_inc(&sched_feat_keys[i]); 190 } 191 #else 192 static void sched_feat_disable(int i) { }; 193 static void sched_feat_enable(int i) { }; 194 #endif /* HAVE_JUMP_LABEL */ 195 196 static int sched_feat_set(char *cmp) 197 { 198 int i; 199 int neg = 0; 200 201 if (strncmp(cmp, "NO_", 3) == 0) { 202 neg = 1; 203 cmp += 3; 204 } 205 206 for (i = 0; i < __SCHED_FEAT_NR; i++) { 207 if (strcmp(cmp, sched_feat_names[i]) == 0) { 208 if (neg) { 209 sysctl_sched_features &= ~(1UL << i); 210 sched_feat_disable(i); 211 } else { 212 sysctl_sched_features |= (1UL << i); 213 sched_feat_enable(i); 214 } 215 break; 216 } 217 } 218 219 return i; 220 } 221 222 static ssize_t 223 sched_feat_write(struct file *filp, const char __user *ubuf, 224 size_t cnt, loff_t *ppos) 225 { 226 char buf[64]; 227 char *cmp; 228 int i; 229 230 if (cnt > 63) 231 cnt = 63; 232 233 if (copy_from_user(&buf, ubuf, cnt)) 234 return -EFAULT; 235 236 buf[cnt] = 0; 237 cmp = strstrip(buf); 238 239 i = sched_feat_set(cmp); 240 if (i == __SCHED_FEAT_NR) 241 return -EINVAL; 242 243 *ppos += cnt; 244 245 return cnt; 246 } 247 248 static int sched_feat_open(struct inode *inode, struct file *filp) 249 { 250 return single_open(filp, sched_feat_show, NULL); 251 } 252 253 static const struct file_operations sched_feat_fops = { 254 .open = sched_feat_open, 255 .write = sched_feat_write, 256 .read = seq_read, 257 .llseek = seq_lseek, 258 .release = single_release, 259 }; 260 261 static __init int sched_init_debug(void) 262 { 263 debugfs_create_file("sched_features", 0644, NULL, NULL, 264 &sched_feat_fops); 265 266 return 0; 267 } 268 late_initcall(sched_init_debug); 269 #endif /* CONFIG_SCHED_DEBUG */ 270 271 /* 272 * Number of tasks to iterate in a single balance run. 273 * Limited because this is done with IRQs disabled. 274 */ 275 const_debug unsigned int sysctl_sched_nr_migrate = 32; 276 277 /* 278 * period over which we average the RT time consumption, measured 279 * in ms. 280 * 281 * default: 1s 282 */ 283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 284 285 /* 286 * period over which we measure -rt task cpu usage in us. 287 * default: 1s 288 */ 289 unsigned int sysctl_sched_rt_period = 1000000; 290 291 __read_mostly int scheduler_running; 292 293 /* 294 * part of the period that we allow rt tasks to run in us. 295 * default: 0.95s 296 */ 297 int sysctl_sched_rt_runtime = 950000; 298 299 300 301 /* 302 * __task_rq_lock - lock the rq @p resides on. 303 */ 304 static inline struct rq *__task_rq_lock(struct task_struct *p) 305 __acquires(rq->lock) 306 { 307 struct rq *rq; 308 309 lockdep_assert_held(&p->pi_lock); 310 311 for (;;) { 312 rq = task_rq(p); 313 raw_spin_lock(&rq->lock); 314 if (likely(rq == task_rq(p))) 315 return rq; 316 raw_spin_unlock(&rq->lock); 317 } 318 } 319 320 /* 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 322 */ 323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 324 __acquires(p->pi_lock) 325 __acquires(rq->lock) 326 { 327 struct rq *rq; 328 329 for (;;) { 330 raw_spin_lock_irqsave(&p->pi_lock, *flags); 331 rq = task_rq(p); 332 raw_spin_lock(&rq->lock); 333 if (likely(rq == task_rq(p))) 334 return rq; 335 raw_spin_unlock(&rq->lock); 336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 337 } 338 } 339 340 static void __task_rq_unlock(struct rq *rq) 341 __releases(rq->lock) 342 { 343 raw_spin_unlock(&rq->lock); 344 } 345 346 static inline void 347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 348 __releases(rq->lock) 349 __releases(p->pi_lock) 350 { 351 raw_spin_unlock(&rq->lock); 352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 353 } 354 355 /* 356 * this_rq_lock - lock this runqueue and disable interrupts. 357 */ 358 static struct rq *this_rq_lock(void) 359 __acquires(rq->lock) 360 { 361 struct rq *rq; 362 363 local_irq_disable(); 364 rq = this_rq(); 365 raw_spin_lock(&rq->lock); 366 367 return rq; 368 } 369 370 #ifdef CONFIG_SCHED_HRTICK 371 /* 372 * Use HR-timers to deliver accurate preemption points. 373 * 374 * Its all a bit involved since we cannot program an hrt while holding the 375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a 376 * reschedule event. 377 * 378 * When we get rescheduled we reprogram the hrtick_timer outside of the 379 * rq->lock. 380 */ 381 382 static void hrtick_clear(struct rq *rq) 383 { 384 if (hrtimer_active(&rq->hrtick_timer)) 385 hrtimer_cancel(&rq->hrtick_timer); 386 } 387 388 /* 389 * High-resolution timer tick. 390 * Runs from hardirq context with interrupts disabled. 391 */ 392 static enum hrtimer_restart hrtick(struct hrtimer *timer) 393 { 394 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 395 396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 397 398 raw_spin_lock(&rq->lock); 399 update_rq_clock(rq); 400 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 401 raw_spin_unlock(&rq->lock); 402 403 return HRTIMER_NORESTART; 404 } 405 406 #ifdef CONFIG_SMP 407 /* 408 * called from hardirq (IPI) context 409 */ 410 static void __hrtick_start(void *arg) 411 { 412 struct rq *rq = arg; 413 414 raw_spin_lock(&rq->lock); 415 hrtimer_restart(&rq->hrtick_timer); 416 rq->hrtick_csd_pending = 0; 417 raw_spin_unlock(&rq->lock); 418 } 419 420 /* 421 * Called to set the hrtick timer state. 422 * 423 * called with rq->lock held and irqs disabled 424 */ 425 void hrtick_start(struct rq *rq, u64 delay) 426 { 427 struct hrtimer *timer = &rq->hrtick_timer; 428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 429 430 hrtimer_set_expires(timer, time); 431 432 if (rq == this_rq()) { 433 hrtimer_restart(timer); 434 } else if (!rq->hrtick_csd_pending) { 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); 436 rq->hrtick_csd_pending = 1; 437 } 438 } 439 440 static int 441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 442 { 443 int cpu = (int)(long)hcpu; 444 445 switch (action) { 446 case CPU_UP_CANCELED: 447 case CPU_UP_CANCELED_FROZEN: 448 case CPU_DOWN_PREPARE: 449 case CPU_DOWN_PREPARE_FROZEN: 450 case CPU_DEAD: 451 case CPU_DEAD_FROZEN: 452 hrtick_clear(cpu_rq(cpu)); 453 return NOTIFY_OK; 454 } 455 456 return NOTIFY_DONE; 457 } 458 459 static __init void init_hrtick(void) 460 { 461 hotcpu_notifier(hotplug_hrtick, 0); 462 } 463 #else 464 /* 465 * Called to set the hrtick timer state. 466 * 467 * called with rq->lock held and irqs disabled 468 */ 469 void hrtick_start(struct rq *rq, u64 delay) 470 { 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 472 HRTIMER_MODE_REL_PINNED, 0); 473 } 474 475 static inline void init_hrtick(void) 476 { 477 } 478 #endif /* CONFIG_SMP */ 479 480 static void init_rq_hrtick(struct rq *rq) 481 { 482 #ifdef CONFIG_SMP 483 rq->hrtick_csd_pending = 0; 484 485 rq->hrtick_csd.flags = 0; 486 rq->hrtick_csd.func = __hrtick_start; 487 rq->hrtick_csd.info = rq; 488 #endif 489 490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 491 rq->hrtick_timer.function = hrtick; 492 } 493 #else /* CONFIG_SCHED_HRTICK */ 494 static inline void hrtick_clear(struct rq *rq) 495 { 496 } 497 498 static inline void init_rq_hrtick(struct rq *rq) 499 { 500 } 501 502 static inline void init_hrtick(void) 503 { 504 } 505 #endif /* CONFIG_SCHED_HRTICK */ 506 507 /* 508 * resched_task - mark a task 'to be rescheduled now'. 509 * 510 * On UP this means the setting of the need_resched flag, on SMP it 511 * might also involve a cross-CPU call to trigger the scheduler on 512 * the target CPU. 513 */ 514 #ifdef CONFIG_SMP 515 516 #ifndef tsk_is_polling 517 #define tsk_is_polling(t) 0 518 #endif 519 520 void resched_task(struct task_struct *p) 521 { 522 int cpu; 523 524 assert_raw_spin_locked(&task_rq(p)->lock); 525 526 if (test_tsk_need_resched(p)) 527 return; 528 529 set_tsk_need_resched(p); 530 531 cpu = task_cpu(p); 532 if (cpu == smp_processor_id()) 533 return; 534 535 /* NEED_RESCHED must be visible before we test polling */ 536 smp_mb(); 537 if (!tsk_is_polling(p)) 538 smp_send_reschedule(cpu); 539 } 540 541 void resched_cpu(int cpu) 542 { 543 struct rq *rq = cpu_rq(cpu); 544 unsigned long flags; 545 546 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 547 return; 548 resched_task(cpu_curr(cpu)); 549 raw_spin_unlock_irqrestore(&rq->lock, flags); 550 } 551 552 #ifdef CONFIG_NO_HZ 553 /* 554 * In the semi idle case, use the nearest busy cpu for migrating timers 555 * from an idle cpu. This is good for power-savings. 556 * 557 * We don't do similar optimization for completely idle system, as 558 * selecting an idle cpu will add more delays to the timers than intended 559 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 560 */ 561 int get_nohz_timer_target(void) 562 { 563 int cpu = smp_processor_id(); 564 int i; 565 struct sched_domain *sd; 566 567 rcu_read_lock(); 568 for_each_domain(cpu, sd) { 569 for_each_cpu(i, sched_domain_span(sd)) { 570 if (!idle_cpu(i)) { 571 cpu = i; 572 goto unlock; 573 } 574 } 575 } 576 unlock: 577 rcu_read_unlock(); 578 return cpu; 579 } 580 /* 581 * When add_timer_on() enqueues a timer into the timer wheel of an 582 * idle CPU then this timer might expire before the next timer event 583 * which is scheduled to wake up that CPU. In case of a completely 584 * idle system the next event might even be infinite time into the 585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 586 * leaves the inner idle loop so the newly added timer is taken into 587 * account when the CPU goes back to idle and evaluates the timer 588 * wheel for the next timer event. 589 */ 590 void wake_up_idle_cpu(int cpu) 591 { 592 struct rq *rq = cpu_rq(cpu); 593 594 if (cpu == smp_processor_id()) 595 return; 596 597 /* 598 * This is safe, as this function is called with the timer 599 * wheel base lock of (cpu) held. When the CPU is on the way 600 * to idle and has not yet set rq->curr to idle then it will 601 * be serialized on the timer wheel base lock and take the new 602 * timer into account automatically. 603 */ 604 if (rq->curr != rq->idle) 605 return; 606 607 /* 608 * We can set TIF_RESCHED on the idle task of the other CPU 609 * lockless. The worst case is that the other CPU runs the 610 * idle task through an additional NOOP schedule() 611 */ 612 set_tsk_need_resched(rq->idle); 613 614 /* NEED_RESCHED must be visible before we test polling */ 615 smp_mb(); 616 if (!tsk_is_polling(rq->idle)) 617 smp_send_reschedule(cpu); 618 } 619 620 static inline bool got_nohz_idle_kick(void) 621 { 622 int cpu = smp_processor_id(); 623 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 624 } 625 626 #else /* CONFIG_NO_HZ */ 627 628 static inline bool got_nohz_idle_kick(void) 629 { 630 return false; 631 } 632 633 #endif /* CONFIG_NO_HZ */ 634 635 void sched_avg_update(struct rq *rq) 636 { 637 s64 period = sched_avg_period(); 638 639 while ((s64)(rq->clock - rq->age_stamp) > period) { 640 /* 641 * Inline assembly required to prevent the compiler 642 * optimising this loop into a divmod call. 643 * See __iter_div_u64_rem() for another example of this. 644 */ 645 asm("" : "+rm" (rq->age_stamp)); 646 rq->age_stamp += period; 647 rq->rt_avg /= 2; 648 } 649 } 650 651 #else /* !CONFIG_SMP */ 652 void resched_task(struct task_struct *p) 653 { 654 assert_raw_spin_locked(&task_rq(p)->lock); 655 set_tsk_need_resched(p); 656 } 657 #endif /* CONFIG_SMP */ 658 659 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 660 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 661 /* 662 * Iterate task_group tree rooted at *from, calling @down when first entering a 663 * node and @up when leaving it for the final time. 664 * 665 * Caller must hold rcu_lock or sufficient equivalent. 666 */ 667 int walk_tg_tree_from(struct task_group *from, 668 tg_visitor down, tg_visitor up, void *data) 669 { 670 struct task_group *parent, *child; 671 int ret; 672 673 parent = from; 674 675 down: 676 ret = (*down)(parent, data); 677 if (ret) 678 goto out; 679 list_for_each_entry_rcu(child, &parent->children, siblings) { 680 parent = child; 681 goto down; 682 683 up: 684 continue; 685 } 686 ret = (*up)(parent, data); 687 if (ret || parent == from) 688 goto out; 689 690 child = parent; 691 parent = parent->parent; 692 if (parent) 693 goto up; 694 out: 695 return ret; 696 } 697 698 int tg_nop(struct task_group *tg, void *data) 699 { 700 return 0; 701 } 702 #endif 703 704 static void set_load_weight(struct task_struct *p) 705 { 706 int prio = p->static_prio - MAX_RT_PRIO; 707 struct load_weight *load = &p->se.load; 708 709 /* 710 * SCHED_IDLE tasks get minimal weight: 711 */ 712 if (p->policy == SCHED_IDLE) { 713 load->weight = scale_load(WEIGHT_IDLEPRIO); 714 load->inv_weight = WMULT_IDLEPRIO; 715 return; 716 } 717 718 load->weight = scale_load(prio_to_weight[prio]); 719 load->inv_weight = prio_to_wmult[prio]; 720 } 721 722 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 723 { 724 update_rq_clock(rq); 725 sched_info_queued(p); 726 p->sched_class->enqueue_task(rq, p, flags); 727 } 728 729 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 730 { 731 update_rq_clock(rq); 732 sched_info_dequeued(p); 733 p->sched_class->dequeue_task(rq, p, flags); 734 } 735 736 void activate_task(struct rq *rq, struct task_struct *p, int flags) 737 { 738 if (task_contributes_to_load(p)) 739 rq->nr_uninterruptible--; 740 741 enqueue_task(rq, p, flags); 742 } 743 744 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 745 { 746 if (task_contributes_to_load(p)) 747 rq->nr_uninterruptible++; 748 749 dequeue_task(rq, p, flags); 750 } 751 752 static void update_rq_clock_task(struct rq *rq, s64 delta) 753 { 754 /* 755 * In theory, the compile should just see 0 here, and optimize out the call 756 * to sched_rt_avg_update. But I don't trust it... 757 */ 758 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 759 s64 steal = 0, irq_delta = 0; 760 #endif 761 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 762 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 763 764 /* 765 * Since irq_time is only updated on {soft,}irq_exit, we might run into 766 * this case when a previous update_rq_clock() happened inside a 767 * {soft,}irq region. 768 * 769 * When this happens, we stop ->clock_task and only update the 770 * prev_irq_time stamp to account for the part that fit, so that a next 771 * update will consume the rest. This ensures ->clock_task is 772 * monotonic. 773 * 774 * It does however cause some slight miss-attribution of {soft,}irq 775 * time, a more accurate solution would be to update the irq_time using 776 * the current rq->clock timestamp, except that would require using 777 * atomic ops. 778 */ 779 if (irq_delta > delta) 780 irq_delta = delta; 781 782 rq->prev_irq_time += irq_delta; 783 delta -= irq_delta; 784 #endif 785 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 786 if (static_key_false((¶virt_steal_rq_enabled))) { 787 u64 st; 788 789 steal = paravirt_steal_clock(cpu_of(rq)); 790 steal -= rq->prev_steal_time_rq; 791 792 if (unlikely(steal > delta)) 793 steal = delta; 794 795 st = steal_ticks(steal); 796 steal = st * TICK_NSEC; 797 798 rq->prev_steal_time_rq += steal; 799 800 delta -= steal; 801 } 802 #endif 803 804 rq->clock_task += delta; 805 806 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 807 if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) 808 sched_rt_avg_update(rq, irq_delta + steal); 809 #endif 810 } 811 812 void sched_set_stop_task(int cpu, struct task_struct *stop) 813 { 814 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 815 struct task_struct *old_stop = cpu_rq(cpu)->stop; 816 817 if (stop) { 818 /* 819 * Make it appear like a SCHED_FIFO task, its something 820 * userspace knows about and won't get confused about. 821 * 822 * Also, it will make PI more or less work without too 823 * much confusion -- but then, stop work should not 824 * rely on PI working anyway. 825 */ 826 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 827 828 stop->sched_class = &stop_sched_class; 829 } 830 831 cpu_rq(cpu)->stop = stop; 832 833 if (old_stop) { 834 /* 835 * Reset it back to a normal scheduling class so that 836 * it can die in pieces. 837 */ 838 old_stop->sched_class = &rt_sched_class; 839 } 840 } 841 842 /* 843 * __normal_prio - return the priority that is based on the static prio 844 */ 845 static inline int __normal_prio(struct task_struct *p) 846 { 847 return p->static_prio; 848 } 849 850 /* 851 * Calculate the expected normal priority: i.e. priority 852 * without taking RT-inheritance into account. Might be 853 * boosted by interactivity modifiers. Changes upon fork, 854 * setprio syscalls, and whenever the interactivity 855 * estimator recalculates. 856 */ 857 static inline int normal_prio(struct task_struct *p) 858 { 859 int prio; 860 861 if (task_has_rt_policy(p)) 862 prio = MAX_RT_PRIO-1 - p->rt_priority; 863 else 864 prio = __normal_prio(p); 865 return prio; 866 } 867 868 /* 869 * Calculate the current priority, i.e. the priority 870 * taken into account by the scheduler. This value might 871 * be boosted by RT tasks, or might be boosted by 872 * interactivity modifiers. Will be RT if the task got 873 * RT-boosted. If not then it returns p->normal_prio. 874 */ 875 static int effective_prio(struct task_struct *p) 876 { 877 p->normal_prio = normal_prio(p); 878 /* 879 * If we are RT tasks or we were boosted to RT priority, 880 * keep the priority unchanged. Otherwise, update priority 881 * to the normal priority: 882 */ 883 if (!rt_prio(p->prio)) 884 return p->normal_prio; 885 return p->prio; 886 } 887 888 /** 889 * task_curr - is this task currently executing on a CPU? 890 * @p: the task in question. 891 */ 892 inline int task_curr(const struct task_struct *p) 893 { 894 return cpu_curr(task_cpu(p)) == p; 895 } 896 897 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 898 const struct sched_class *prev_class, 899 int oldprio) 900 { 901 if (prev_class != p->sched_class) { 902 if (prev_class->switched_from) 903 prev_class->switched_from(rq, p); 904 p->sched_class->switched_to(rq, p); 905 } else if (oldprio != p->prio) 906 p->sched_class->prio_changed(rq, p, oldprio); 907 } 908 909 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 910 { 911 const struct sched_class *class; 912 913 if (p->sched_class == rq->curr->sched_class) { 914 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 915 } else { 916 for_each_class(class) { 917 if (class == rq->curr->sched_class) 918 break; 919 if (class == p->sched_class) { 920 resched_task(rq->curr); 921 break; 922 } 923 } 924 } 925 926 /* 927 * A queue event has occurred, and we're going to schedule. In 928 * this case, we can save a useless back to back clock update. 929 */ 930 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 931 rq->skip_clock_update = 1; 932 } 933 934 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier); 935 936 void register_task_migration_notifier(struct notifier_block *n) 937 { 938 atomic_notifier_chain_register(&task_migration_notifier, n); 939 } 940 941 #ifdef CONFIG_SMP 942 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 943 { 944 #ifdef CONFIG_SCHED_DEBUG 945 /* 946 * We should never call set_task_cpu() on a blocked task, 947 * ttwu() will sort out the placement. 948 */ 949 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 950 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); 951 952 #ifdef CONFIG_LOCKDEP 953 /* 954 * The caller should hold either p->pi_lock or rq->lock, when changing 955 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 956 * 957 * sched_move_task() holds both and thus holding either pins the cgroup, 958 * see task_group(). 959 * 960 * Furthermore, all task_rq users should acquire both locks, see 961 * task_rq_lock(). 962 */ 963 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 964 lockdep_is_held(&task_rq(p)->lock))); 965 #endif 966 #endif 967 968 trace_sched_migrate_task(p, new_cpu); 969 970 if (task_cpu(p) != new_cpu) { 971 struct task_migration_notifier tmn; 972 973 if (p->sched_class->migrate_task_rq) 974 p->sched_class->migrate_task_rq(p, new_cpu); 975 p->se.nr_migrations++; 976 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 977 978 tmn.task = p; 979 tmn.from_cpu = task_cpu(p); 980 tmn.to_cpu = new_cpu; 981 982 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn); 983 } 984 985 __set_task_cpu(p, new_cpu); 986 } 987 988 struct migration_arg { 989 struct task_struct *task; 990 int dest_cpu; 991 }; 992 993 static int migration_cpu_stop(void *data); 994 995 /* 996 * wait_task_inactive - wait for a thread to unschedule. 997 * 998 * If @match_state is nonzero, it's the @p->state value just checked and 999 * not expected to change. If it changes, i.e. @p might have woken up, 1000 * then return zero. When we succeed in waiting for @p to be off its CPU, 1001 * we return a positive number (its total switch count). If a second call 1002 * a short while later returns the same number, the caller can be sure that 1003 * @p has remained unscheduled the whole time. 1004 * 1005 * The caller must ensure that the task *will* unschedule sometime soon, 1006 * else this function might spin for a *long* time. This function can't 1007 * be called with interrupts off, or it may introduce deadlock with 1008 * smp_call_function() if an IPI is sent by the same process we are 1009 * waiting to become inactive. 1010 */ 1011 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1012 { 1013 unsigned long flags; 1014 int running, on_rq; 1015 unsigned long ncsw; 1016 struct rq *rq; 1017 1018 for (;;) { 1019 /* 1020 * We do the initial early heuristics without holding 1021 * any task-queue locks at all. We'll only try to get 1022 * the runqueue lock when things look like they will 1023 * work out! 1024 */ 1025 rq = task_rq(p); 1026 1027 /* 1028 * If the task is actively running on another CPU 1029 * still, just relax and busy-wait without holding 1030 * any locks. 1031 * 1032 * NOTE! Since we don't hold any locks, it's not 1033 * even sure that "rq" stays as the right runqueue! 1034 * But we don't care, since "task_running()" will 1035 * return false if the runqueue has changed and p 1036 * is actually now running somewhere else! 1037 */ 1038 while (task_running(rq, p)) { 1039 if (match_state && unlikely(p->state != match_state)) 1040 return 0; 1041 cpu_relax(); 1042 } 1043 1044 /* 1045 * Ok, time to look more closely! We need the rq 1046 * lock now, to be *sure*. If we're wrong, we'll 1047 * just go back and repeat. 1048 */ 1049 rq = task_rq_lock(p, &flags); 1050 trace_sched_wait_task(p); 1051 running = task_running(rq, p); 1052 on_rq = p->on_rq; 1053 ncsw = 0; 1054 if (!match_state || p->state == match_state) 1055 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1056 task_rq_unlock(rq, p, &flags); 1057 1058 /* 1059 * If it changed from the expected state, bail out now. 1060 */ 1061 if (unlikely(!ncsw)) 1062 break; 1063 1064 /* 1065 * Was it really running after all now that we 1066 * checked with the proper locks actually held? 1067 * 1068 * Oops. Go back and try again.. 1069 */ 1070 if (unlikely(running)) { 1071 cpu_relax(); 1072 continue; 1073 } 1074 1075 /* 1076 * It's not enough that it's not actively running, 1077 * it must be off the runqueue _entirely_, and not 1078 * preempted! 1079 * 1080 * So if it was still runnable (but just not actively 1081 * running right now), it's preempted, and we should 1082 * yield - it could be a while. 1083 */ 1084 if (unlikely(on_rq)) { 1085 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1086 1087 set_current_state(TASK_UNINTERRUPTIBLE); 1088 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1089 continue; 1090 } 1091 1092 /* 1093 * Ahh, all good. It wasn't running, and it wasn't 1094 * runnable, which means that it will never become 1095 * running in the future either. We're all done! 1096 */ 1097 break; 1098 } 1099 1100 return ncsw; 1101 } 1102 1103 /*** 1104 * kick_process - kick a running thread to enter/exit the kernel 1105 * @p: the to-be-kicked thread 1106 * 1107 * Cause a process which is running on another CPU to enter 1108 * kernel-mode, without any delay. (to get signals handled.) 1109 * 1110 * NOTE: this function doesn't have to take the runqueue lock, 1111 * because all it wants to ensure is that the remote task enters 1112 * the kernel. If the IPI races and the task has been migrated 1113 * to another CPU then no harm is done and the purpose has been 1114 * achieved as well. 1115 */ 1116 void kick_process(struct task_struct *p) 1117 { 1118 int cpu; 1119 1120 preempt_disable(); 1121 cpu = task_cpu(p); 1122 if ((cpu != smp_processor_id()) && task_curr(p)) 1123 smp_send_reschedule(cpu); 1124 preempt_enable(); 1125 } 1126 EXPORT_SYMBOL_GPL(kick_process); 1127 #endif /* CONFIG_SMP */ 1128 1129 #ifdef CONFIG_SMP 1130 /* 1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1132 */ 1133 static int select_fallback_rq(int cpu, struct task_struct *p) 1134 { 1135 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); 1136 enum { cpuset, possible, fail } state = cpuset; 1137 int dest_cpu; 1138 1139 /* Look for allowed, online CPU in same node. */ 1140 for_each_cpu(dest_cpu, nodemask) { 1141 if (!cpu_online(dest_cpu)) 1142 continue; 1143 if (!cpu_active(dest_cpu)) 1144 continue; 1145 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1146 return dest_cpu; 1147 } 1148 1149 for (;;) { 1150 /* Any allowed, online CPU? */ 1151 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1152 if (!cpu_online(dest_cpu)) 1153 continue; 1154 if (!cpu_active(dest_cpu)) 1155 continue; 1156 goto out; 1157 } 1158 1159 switch (state) { 1160 case cpuset: 1161 /* No more Mr. Nice Guy. */ 1162 cpuset_cpus_allowed_fallback(p); 1163 state = possible; 1164 break; 1165 1166 case possible: 1167 do_set_cpus_allowed(p, cpu_possible_mask); 1168 state = fail; 1169 break; 1170 1171 case fail: 1172 BUG(); 1173 break; 1174 } 1175 } 1176 1177 out: 1178 if (state != cpuset) { 1179 /* 1180 * Don't tell them about moving exiting tasks or 1181 * kernel threads (both mm NULL), since they never 1182 * leave kernel. 1183 */ 1184 if (p->mm && printk_ratelimit()) { 1185 printk_sched("process %d (%s) no longer affine to cpu%d\n", 1186 task_pid_nr(p), p->comm, cpu); 1187 } 1188 } 1189 1190 return dest_cpu; 1191 } 1192 1193 /* 1194 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1195 */ 1196 static inline 1197 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) 1198 { 1199 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); 1200 1201 /* 1202 * In order not to call set_task_cpu() on a blocking task we need 1203 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1204 * cpu. 1205 * 1206 * Since this is common to all placement strategies, this lives here. 1207 * 1208 * [ this allows ->select_task() to simply return task_cpu(p) and 1209 * not worry about this generic constraint ] 1210 */ 1211 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1212 !cpu_online(cpu))) 1213 cpu = select_fallback_rq(task_cpu(p), p); 1214 1215 return cpu; 1216 } 1217 1218 static void update_avg(u64 *avg, u64 sample) 1219 { 1220 s64 diff = sample - *avg; 1221 *avg += diff >> 3; 1222 } 1223 #endif 1224 1225 static void 1226 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1227 { 1228 #ifdef CONFIG_SCHEDSTATS 1229 struct rq *rq = this_rq(); 1230 1231 #ifdef CONFIG_SMP 1232 int this_cpu = smp_processor_id(); 1233 1234 if (cpu == this_cpu) { 1235 schedstat_inc(rq, ttwu_local); 1236 schedstat_inc(p, se.statistics.nr_wakeups_local); 1237 } else { 1238 struct sched_domain *sd; 1239 1240 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1241 rcu_read_lock(); 1242 for_each_domain(this_cpu, sd) { 1243 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1244 schedstat_inc(sd, ttwu_wake_remote); 1245 break; 1246 } 1247 } 1248 rcu_read_unlock(); 1249 } 1250 1251 if (wake_flags & WF_MIGRATED) 1252 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1253 1254 #endif /* CONFIG_SMP */ 1255 1256 schedstat_inc(rq, ttwu_count); 1257 schedstat_inc(p, se.statistics.nr_wakeups); 1258 1259 if (wake_flags & WF_SYNC) 1260 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1261 1262 #endif /* CONFIG_SCHEDSTATS */ 1263 } 1264 1265 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1266 { 1267 activate_task(rq, p, en_flags); 1268 p->on_rq = 1; 1269 1270 /* if a worker is waking up, notify workqueue */ 1271 if (p->flags & PF_WQ_WORKER) 1272 wq_worker_waking_up(p, cpu_of(rq)); 1273 } 1274 1275 /* 1276 * Mark the task runnable and perform wakeup-preemption. 1277 */ 1278 static void 1279 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1280 { 1281 trace_sched_wakeup(p, true); 1282 check_preempt_curr(rq, p, wake_flags); 1283 1284 p->state = TASK_RUNNING; 1285 #ifdef CONFIG_SMP 1286 if (p->sched_class->task_woken) 1287 p->sched_class->task_woken(rq, p); 1288 1289 if (rq->idle_stamp) { 1290 u64 delta = rq->clock - rq->idle_stamp; 1291 u64 max = 2*sysctl_sched_migration_cost; 1292 1293 if (delta > max) 1294 rq->avg_idle = max; 1295 else 1296 update_avg(&rq->avg_idle, delta); 1297 rq->idle_stamp = 0; 1298 } 1299 #endif 1300 } 1301 1302 static void 1303 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1304 { 1305 #ifdef CONFIG_SMP 1306 if (p->sched_contributes_to_load) 1307 rq->nr_uninterruptible--; 1308 #endif 1309 1310 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1311 ttwu_do_wakeup(rq, p, wake_flags); 1312 } 1313 1314 /* 1315 * Called in case the task @p isn't fully descheduled from its runqueue, 1316 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1317 * since all we need to do is flip p->state to TASK_RUNNING, since 1318 * the task is still ->on_rq. 1319 */ 1320 static int ttwu_remote(struct task_struct *p, int wake_flags) 1321 { 1322 struct rq *rq; 1323 int ret = 0; 1324 1325 rq = __task_rq_lock(p); 1326 if (p->on_rq) { 1327 ttwu_do_wakeup(rq, p, wake_flags); 1328 ret = 1; 1329 } 1330 __task_rq_unlock(rq); 1331 1332 return ret; 1333 } 1334 1335 #ifdef CONFIG_SMP 1336 static void sched_ttwu_pending(void) 1337 { 1338 struct rq *rq = this_rq(); 1339 struct llist_node *llist = llist_del_all(&rq->wake_list); 1340 struct task_struct *p; 1341 1342 raw_spin_lock(&rq->lock); 1343 1344 while (llist) { 1345 p = llist_entry(llist, struct task_struct, wake_entry); 1346 llist = llist_next(llist); 1347 ttwu_do_activate(rq, p, 0); 1348 } 1349 1350 raw_spin_unlock(&rq->lock); 1351 } 1352 1353 void scheduler_ipi(void) 1354 { 1355 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1356 return; 1357 1358 /* 1359 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1360 * traditionally all their work was done from the interrupt return 1361 * path. Now that we actually do some work, we need to make sure 1362 * we do call them. 1363 * 1364 * Some archs already do call them, luckily irq_enter/exit nest 1365 * properly. 1366 * 1367 * Arguably we should visit all archs and update all handlers, 1368 * however a fair share of IPIs are still resched only so this would 1369 * somewhat pessimize the simple resched case. 1370 */ 1371 irq_enter(); 1372 sched_ttwu_pending(); 1373 1374 /* 1375 * Check if someone kicked us for doing the nohz idle load balance. 1376 */ 1377 if (unlikely(got_nohz_idle_kick() && !need_resched())) { 1378 this_rq()->idle_balance = 1; 1379 raise_softirq_irqoff(SCHED_SOFTIRQ); 1380 } 1381 irq_exit(); 1382 } 1383 1384 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1385 { 1386 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) 1387 smp_send_reschedule(cpu); 1388 } 1389 1390 bool cpus_share_cache(int this_cpu, int that_cpu) 1391 { 1392 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1393 } 1394 #endif /* CONFIG_SMP */ 1395 1396 static void ttwu_queue(struct task_struct *p, int cpu) 1397 { 1398 struct rq *rq = cpu_rq(cpu); 1399 1400 #if defined(CONFIG_SMP) 1401 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1402 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1403 ttwu_queue_remote(p, cpu); 1404 return; 1405 } 1406 #endif 1407 1408 raw_spin_lock(&rq->lock); 1409 ttwu_do_activate(rq, p, 0); 1410 raw_spin_unlock(&rq->lock); 1411 } 1412 1413 /** 1414 * try_to_wake_up - wake up a thread 1415 * @p: the thread to be awakened 1416 * @state: the mask of task states that can be woken 1417 * @wake_flags: wake modifier flags (WF_*) 1418 * 1419 * Put it on the run-queue if it's not already there. The "current" 1420 * thread is always on the run-queue (except when the actual 1421 * re-schedule is in progress), and as such you're allowed to do 1422 * the simpler "current->state = TASK_RUNNING" to mark yourself 1423 * runnable without the overhead of this. 1424 * 1425 * Returns %true if @p was woken up, %false if it was already running 1426 * or @state didn't match @p's state. 1427 */ 1428 static int 1429 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1430 { 1431 unsigned long flags; 1432 int cpu, success = 0; 1433 1434 smp_wmb(); 1435 raw_spin_lock_irqsave(&p->pi_lock, flags); 1436 if (!(p->state & state)) 1437 goto out; 1438 1439 success = 1; /* we're going to change ->state */ 1440 cpu = task_cpu(p); 1441 1442 if (p->on_rq && ttwu_remote(p, wake_flags)) 1443 goto stat; 1444 1445 #ifdef CONFIG_SMP 1446 /* 1447 * If the owning (remote) cpu is still in the middle of schedule() with 1448 * this task as prev, wait until its done referencing the task. 1449 */ 1450 while (p->on_cpu) 1451 cpu_relax(); 1452 /* 1453 * Pairs with the smp_wmb() in finish_lock_switch(). 1454 */ 1455 smp_rmb(); 1456 1457 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1458 p->state = TASK_WAKING; 1459 1460 if (p->sched_class->task_waking) 1461 p->sched_class->task_waking(p); 1462 1463 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); 1464 if (task_cpu(p) != cpu) { 1465 wake_flags |= WF_MIGRATED; 1466 set_task_cpu(p, cpu); 1467 } 1468 #endif /* CONFIG_SMP */ 1469 1470 ttwu_queue(p, cpu); 1471 stat: 1472 ttwu_stat(p, cpu, wake_flags); 1473 out: 1474 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1475 1476 return success; 1477 } 1478 1479 /** 1480 * try_to_wake_up_local - try to wake up a local task with rq lock held 1481 * @p: the thread to be awakened 1482 * 1483 * Put @p on the run-queue if it's not already there. The caller must 1484 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1485 * the current task. 1486 */ 1487 static void try_to_wake_up_local(struct task_struct *p) 1488 { 1489 struct rq *rq = task_rq(p); 1490 1491 BUG_ON(rq != this_rq()); 1492 BUG_ON(p == current); 1493 lockdep_assert_held(&rq->lock); 1494 1495 if (!raw_spin_trylock(&p->pi_lock)) { 1496 raw_spin_unlock(&rq->lock); 1497 raw_spin_lock(&p->pi_lock); 1498 raw_spin_lock(&rq->lock); 1499 } 1500 1501 if (!(p->state & TASK_NORMAL)) 1502 goto out; 1503 1504 if (!p->on_rq) 1505 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1506 1507 ttwu_do_wakeup(rq, p, 0); 1508 ttwu_stat(p, smp_processor_id(), 0); 1509 out: 1510 raw_spin_unlock(&p->pi_lock); 1511 } 1512 1513 /** 1514 * wake_up_process - Wake up a specific process 1515 * @p: The process to be woken up. 1516 * 1517 * Attempt to wake up the nominated process and move it to the set of runnable 1518 * processes. Returns 1 if the process was woken up, 0 if it was already 1519 * running. 1520 * 1521 * It may be assumed that this function implies a write memory barrier before 1522 * changing the task state if and only if any tasks are woken up. 1523 */ 1524 int wake_up_process(struct task_struct *p) 1525 { 1526 return try_to_wake_up(p, TASK_ALL, 0); 1527 } 1528 EXPORT_SYMBOL(wake_up_process); 1529 1530 int wake_up_state(struct task_struct *p, unsigned int state) 1531 { 1532 return try_to_wake_up(p, state, 0); 1533 } 1534 1535 /* 1536 * Perform scheduler related setup for a newly forked process p. 1537 * p is forked by current. 1538 * 1539 * __sched_fork() is basic setup used by init_idle() too: 1540 */ 1541 static void __sched_fork(struct task_struct *p) 1542 { 1543 p->on_rq = 0; 1544 1545 p->se.on_rq = 0; 1546 p->se.exec_start = 0; 1547 p->se.sum_exec_runtime = 0; 1548 p->se.prev_sum_exec_runtime = 0; 1549 p->se.nr_migrations = 0; 1550 p->se.vruntime = 0; 1551 INIT_LIST_HEAD(&p->se.group_node); 1552 1553 /* 1554 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be 1555 * removed when useful for applications beyond shares distribution (e.g. 1556 * load-balance). 1557 */ 1558 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED) 1559 p->se.avg.runnable_avg_period = 0; 1560 p->se.avg.runnable_avg_sum = 0; 1561 #endif 1562 #ifdef CONFIG_SCHEDSTATS 1563 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1564 #endif 1565 1566 INIT_LIST_HEAD(&p->rt.run_list); 1567 1568 #ifdef CONFIG_PREEMPT_NOTIFIERS 1569 INIT_HLIST_HEAD(&p->preempt_notifiers); 1570 #endif 1571 1572 #ifdef CONFIG_NUMA_BALANCING 1573 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1574 p->mm->numa_next_scan = jiffies; 1575 p->mm->numa_next_reset = jiffies; 1576 p->mm->numa_scan_seq = 0; 1577 } 1578 1579 p->node_stamp = 0ULL; 1580 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1581 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0; 1582 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1583 p->numa_work.next = &p->numa_work; 1584 #endif /* CONFIG_NUMA_BALANCING */ 1585 } 1586 1587 #ifdef CONFIG_NUMA_BALANCING 1588 #ifdef CONFIG_SCHED_DEBUG 1589 void set_numabalancing_state(bool enabled) 1590 { 1591 if (enabled) 1592 sched_feat_set("NUMA"); 1593 else 1594 sched_feat_set("NO_NUMA"); 1595 } 1596 #else 1597 __read_mostly bool numabalancing_enabled; 1598 1599 void set_numabalancing_state(bool enabled) 1600 { 1601 numabalancing_enabled = enabled; 1602 } 1603 #endif /* CONFIG_SCHED_DEBUG */ 1604 #endif /* CONFIG_NUMA_BALANCING */ 1605 1606 /* 1607 * fork()/clone()-time setup: 1608 */ 1609 void sched_fork(struct task_struct *p) 1610 { 1611 unsigned long flags; 1612 int cpu = get_cpu(); 1613 1614 __sched_fork(p); 1615 /* 1616 * We mark the process as running here. This guarantees that 1617 * nobody will actually run it, and a signal or other external 1618 * event cannot wake it up and insert it on the runqueue either. 1619 */ 1620 p->state = TASK_RUNNING; 1621 1622 /* 1623 * Make sure we do not leak PI boosting priority to the child. 1624 */ 1625 p->prio = current->normal_prio; 1626 1627 /* 1628 * Revert to default priority/policy on fork if requested. 1629 */ 1630 if (unlikely(p->sched_reset_on_fork)) { 1631 if (task_has_rt_policy(p)) { 1632 p->policy = SCHED_NORMAL; 1633 p->static_prio = NICE_TO_PRIO(0); 1634 p->rt_priority = 0; 1635 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1636 p->static_prio = NICE_TO_PRIO(0); 1637 1638 p->prio = p->normal_prio = __normal_prio(p); 1639 set_load_weight(p); 1640 1641 /* 1642 * We don't need the reset flag anymore after the fork. It has 1643 * fulfilled its duty: 1644 */ 1645 p->sched_reset_on_fork = 0; 1646 } 1647 1648 if (!rt_prio(p->prio)) 1649 p->sched_class = &fair_sched_class; 1650 1651 if (p->sched_class->task_fork) 1652 p->sched_class->task_fork(p); 1653 1654 /* 1655 * The child is not yet in the pid-hash so no cgroup attach races, 1656 * and the cgroup is pinned to this child due to cgroup_fork() 1657 * is ran before sched_fork(). 1658 * 1659 * Silence PROVE_RCU. 1660 */ 1661 raw_spin_lock_irqsave(&p->pi_lock, flags); 1662 set_task_cpu(p, cpu); 1663 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1664 1665 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1666 if (likely(sched_info_on())) 1667 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1668 #endif 1669 #if defined(CONFIG_SMP) 1670 p->on_cpu = 0; 1671 #endif 1672 #ifdef CONFIG_PREEMPT_COUNT 1673 /* Want to start with kernel preemption disabled. */ 1674 task_thread_info(p)->preempt_count = 1; 1675 #endif 1676 #ifdef CONFIG_SMP 1677 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1678 #endif 1679 1680 put_cpu(); 1681 } 1682 1683 /* 1684 * wake_up_new_task - wake up a newly created task for the first time. 1685 * 1686 * This function will do some initial scheduler statistics housekeeping 1687 * that must be done for every newly created context, then puts the task 1688 * on the runqueue and wakes it. 1689 */ 1690 void wake_up_new_task(struct task_struct *p) 1691 { 1692 unsigned long flags; 1693 struct rq *rq; 1694 1695 raw_spin_lock_irqsave(&p->pi_lock, flags); 1696 #ifdef CONFIG_SMP 1697 /* 1698 * Fork balancing, do it here and not earlier because: 1699 * - cpus_allowed can change in the fork path 1700 * - any previously selected cpu might disappear through hotplug 1701 */ 1702 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0)); 1703 #endif 1704 1705 rq = __task_rq_lock(p); 1706 activate_task(rq, p, 0); 1707 p->on_rq = 1; 1708 trace_sched_wakeup_new(p, true); 1709 check_preempt_curr(rq, p, WF_FORK); 1710 #ifdef CONFIG_SMP 1711 if (p->sched_class->task_woken) 1712 p->sched_class->task_woken(rq, p); 1713 #endif 1714 task_rq_unlock(rq, p, &flags); 1715 } 1716 1717 #ifdef CONFIG_PREEMPT_NOTIFIERS 1718 1719 /** 1720 * preempt_notifier_register - tell me when current is being preempted & rescheduled 1721 * @notifier: notifier struct to register 1722 */ 1723 void preempt_notifier_register(struct preempt_notifier *notifier) 1724 { 1725 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 1726 } 1727 EXPORT_SYMBOL_GPL(preempt_notifier_register); 1728 1729 /** 1730 * preempt_notifier_unregister - no longer interested in preemption notifications 1731 * @notifier: notifier struct to unregister 1732 * 1733 * This is safe to call from within a preemption notifier. 1734 */ 1735 void preempt_notifier_unregister(struct preempt_notifier *notifier) 1736 { 1737 hlist_del(¬ifier->link); 1738 } 1739 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 1740 1741 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1742 { 1743 struct preempt_notifier *notifier; 1744 struct hlist_node *node; 1745 1746 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 1747 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 1748 } 1749 1750 static void 1751 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1752 struct task_struct *next) 1753 { 1754 struct preempt_notifier *notifier; 1755 struct hlist_node *node; 1756 1757 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 1758 notifier->ops->sched_out(notifier, next); 1759 } 1760 1761 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 1762 1763 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1764 { 1765 } 1766 1767 static void 1768 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1769 struct task_struct *next) 1770 { 1771 } 1772 1773 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 1774 1775 /** 1776 * prepare_task_switch - prepare to switch tasks 1777 * @rq: the runqueue preparing to switch 1778 * @prev: the current task that is being switched out 1779 * @next: the task we are going to switch to. 1780 * 1781 * This is called with the rq lock held and interrupts off. It must 1782 * be paired with a subsequent finish_task_switch after the context 1783 * switch. 1784 * 1785 * prepare_task_switch sets up locking and calls architecture specific 1786 * hooks. 1787 */ 1788 static inline void 1789 prepare_task_switch(struct rq *rq, struct task_struct *prev, 1790 struct task_struct *next) 1791 { 1792 trace_sched_switch(prev, next); 1793 sched_info_switch(prev, next); 1794 perf_event_task_sched_out(prev, next); 1795 fire_sched_out_preempt_notifiers(prev, next); 1796 prepare_lock_switch(rq, next); 1797 prepare_arch_switch(next); 1798 } 1799 1800 /** 1801 * finish_task_switch - clean up after a task-switch 1802 * @rq: runqueue associated with task-switch 1803 * @prev: the thread we just switched away from. 1804 * 1805 * finish_task_switch must be called after the context switch, paired 1806 * with a prepare_task_switch call before the context switch. 1807 * finish_task_switch will reconcile locking set up by prepare_task_switch, 1808 * and do any other architecture-specific cleanup actions. 1809 * 1810 * Note that we may have delayed dropping an mm in context_switch(). If 1811 * so, we finish that here outside of the runqueue lock. (Doing it 1812 * with the lock held can cause deadlocks; see schedule() for 1813 * details.) 1814 */ 1815 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 1816 __releases(rq->lock) 1817 { 1818 struct mm_struct *mm = rq->prev_mm; 1819 long prev_state; 1820 1821 rq->prev_mm = NULL; 1822 1823 /* 1824 * A task struct has one reference for the use as "current". 1825 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 1826 * schedule one last time. The schedule call will never return, and 1827 * the scheduled task must drop that reference. 1828 * The test for TASK_DEAD must occur while the runqueue locks are 1829 * still held, otherwise prev could be scheduled on another cpu, die 1830 * there before we look at prev->state, and then the reference would 1831 * be dropped twice. 1832 * Manfred Spraul <manfred@colorfullife.com> 1833 */ 1834 prev_state = prev->state; 1835 vtime_task_switch(prev); 1836 finish_arch_switch(prev); 1837 perf_event_task_sched_in(prev, current); 1838 finish_lock_switch(rq, prev); 1839 finish_arch_post_lock_switch(); 1840 1841 fire_sched_in_preempt_notifiers(current); 1842 if (mm) 1843 mmdrop(mm); 1844 if (unlikely(prev_state == TASK_DEAD)) { 1845 /* 1846 * Remove function-return probe instances associated with this 1847 * task and put them back on the free list. 1848 */ 1849 kprobe_flush_task(prev); 1850 put_task_struct(prev); 1851 } 1852 } 1853 1854 #ifdef CONFIG_SMP 1855 1856 /* assumes rq->lock is held */ 1857 static inline void pre_schedule(struct rq *rq, struct task_struct *prev) 1858 { 1859 if (prev->sched_class->pre_schedule) 1860 prev->sched_class->pre_schedule(rq, prev); 1861 } 1862 1863 /* rq->lock is NOT held, but preemption is disabled */ 1864 static inline void post_schedule(struct rq *rq) 1865 { 1866 if (rq->post_schedule) { 1867 unsigned long flags; 1868 1869 raw_spin_lock_irqsave(&rq->lock, flags); 1870 if (rq->curr->sched_class->post_schedule) 1871 rq->curr->sched_class->post_schedule(rq); 1872 raw_spin_unlock_irqrestore(&rq->lock, flags); 1873 1874 rq->post_schedule = 0; 1875 } 1876 } 1877 1878 #else 1879 1880 static inline void pre_schedule(struct rq *rq, struct task_struct *p) 1881 { 1882 } 1883 1884 static inline void post_schedule(struct rq *rq) 1885 { 1886 } 1887 1888 #endif 1889 1890 /** 1891 * schedule_tail - first thing a freshly forked thread must call. 1892 * @prev: the thread we just switched away from. 1893 */ 1894 asmlinkage void schedule_tail(struct task_struct *prev) 1895 __releases(rq->lock) 1896 { 1897 struct rq *rq = this_rq(); 1898 1899 finish_task_switch(rq, prev); 1900 1901 /* 1902 * FIXME: do we need to worry about rq being invalidated by the 1903 * task_switch? 1904 */ 1905 post_schedule(rq); 1906 1907 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 1908 /* In this case, finish_task_switch does not reenable preemption */ 1909 preempt_enable(); 1910 #endif 1911 if (current->set_child_tid) 1912 put_user(task_pid_vnr(current), current->set_child_tid); 1913 } 1914 1915 /* 1916 * context_switch - switch to the new MM and the new 1917 * thread's register state. 1918 */ 1919 static inline void 1920 context_switch(struct rq *rq, struct task_struct *prev, 1921 struct task_struct *next) 1922 { 1923 struct mm_struct *mm, *oldmm; 1924 1925 prepare_task_switch(rq, prev, next); 1926 1927 mm = next->mm; 1928 oldmm = prev->active_mm; 1929 /* 1930 * For paravirt, this is coupled with an exit in switch_to to 1931 * combine the page table reload and the switch backend into 1932 * one hypercall. 1933 */ 1934 arch_start_context_switch(prev); 1935 1936 if (!mm) { 1937 next->active_mm = oldmm; 1938 atomic_inc(&oldmm->mm_count); 1939 enter_lazy_tlb(oldmm, next); 1940 } else 1941 switch_mm(oldmm, mm, next); 1942 1943 if (!prev->mm) { 1944 prev->active_mm = NULL; 1945 rq->prev_mm = oldmm; 1946 } 1947 /* 1948 * Since the runqueue lock will be released by the next 1949 * task (which is an invalid locking op but in the case 1950 * of the scheduler it's an obvious special-case), so we 1951 * do an early lockdep release here: 1952 */ 1953 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 1954 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 1955 #endif 1956 1957 context_tracking_task_switch(prev, next); 1958 /* Here we just switch the register state and the stack. */ 1959 switch_to(prev, next, prev); 1960 1961 barrier(); 1962 /* 1963 * this_rq must be evaluated again because prev may have moved 1964 * CPUs since it called schedule(), thus the 'rq' on its stack 1965 * frame will be invalid. 1966 */ 1967 finish_task_switch(this_rq(), prev); 1968 } 1969 1970 /* 1971 * nr_running, nr_uninterruptible and nr_context_switches: 1972 * 1973 * externally visible scheduler statistics: current number of runnable 1974 * threads, current number of uninterruptible-sleeping threads, total 1975 * number of context switches performed since bootup. 1976 */ 1977 unsigned long nr_running(void) 1978 { 1979 unsigned long i, sum = 0; 1980 1981 for_each_online_cpu(i) 1982 sum += cpu_rq(i)->nr_running; 1983 1984 return sum; 1985 } 1986 1987 unsigned long nr_uninterruptible(void) 1988 { 1989 unsigned long i, sum = 0; 1990 1991 for_each_possible_cpu(i) 1992 sum += cpu_rq(i)->nr_uninterruptible; 1993 1994 /* 1995 * Since we read the counters lockless, it might be slightly 1996 * inaccurate. Do not allow it to go below zero though: 1997 */ 1998 if (unlikely((long)sum < 0)) 1999 sum = 0; 2000 2001 return sum; 2002 } 2003 2004 unsigned long long nr_context_switches(void) 2005 { 2006 int i; 2007 unsigned long long sum = 0; 2008 2009 for_each_possible_cpu(i) 2010 sum += cpu_rq(i)->nr_switches; 2011 2012 return sum; 2013 } 2014 2015 unsigned long nr_iowait(void) 2016 { 2017 unsigned long i, sum = 0; 2018 2019 for_each_possible_cpu(i) 2020 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2021 2022 return sum; 2023 } 2024 2025 unsigned long nr_iowait_cpu(int cpu) 2026 { 2027 struct rq *this = cpu_rq(cpu); 2028 return atomic_read(&this->nr_iowait); 2029 } 2030 2031 unsigned long this_cpu_load(void) 2032 { 2033 struct rq *this = this_rq(); 2034 return this->cpu_load[0]; 2035 } 2036 2037 2038 /* 2039 * Global load-average calculations 2040 * 2041 * We take a distributed and async approach to calculating the global load-avg 2042 * in order to minimize overhead. 2043 * 2044 * The global load average is an exponentially decaying average of nr_running + 2045 * nr_uninterruptible. 2046 * 2047 * Once every LOAD_FREQ: 2048 * 2049 * nr_active = 0; 2050 * for_each_possible_cpu(cpu) 2051 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible; 2052 * 2053 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n) 2054 * 2055 * Due to a number of reasons the above turns in the mess below: 2056 * 2057 * - for_each_possible_cpu() is prohibitively expensive on machines with 2058 * serious number of cpus, therefore we need to take a distributed approach 2059 * to calculating nr_active. 2060 * 2061 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0 2062 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) } 2063 * 2064 * So assuming nr_active := 0 when we start out -- true per definition, we 2065 * can simply take per-cpu deltas and fold those into a global accumulate 2066 * to obtain the same result. See calc_load_fold_active(). 2067 * 2068 * Furthermore, in order to avoid synchronizing all per-cpu delta folding 2069 * across the machine, we assume 10 ticks is sufficient time for every 2070 * cpu to have completed this task. 2071 * 2072 * This places an upper-bound on the IRQ-off latency of the machine. Then 2073 * again, being late doesn't loose the delta, just wrecks the sample. 2074 * 2075 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because 2076 * this would add another cross-cpu cacheline miss and atomic operation 2077 * to the wakeup path. Instead we increment on whatever cpu the task ran 2078 * when it went into uninterruptible state and decrement on whatever cpu 2079 * did the wakeup. This means that only the sum of nr_uninterruptible over 2080 * all cpus yields the correct result. 2081 * 2082 * This covers the NO_HZ=n code, for extra head-aches, see the comment below. 2083 */ 2084 2085 /* Variables and functions for calc_load */ 2086 static atomic_long_t calc_load_tasks; 2087 static unsigned long calc_load_update; 2088 unsigned long avenrun[3]; 2089 EXPORT_SYMBOL(avenrun); /* should be removed */ 2090 2091 /** 2092 * get_avenrun - get the load average array 2093 * @loads: pointer to dest load array 2094 * @offset: offset to add 2095 * @shift: shift count to shift the result left 2096 * 2097 * These values are estimates at best, so no need for locking. 2098 */ 2099 void get_avenrun(unsigned long *loads, unsigned long offset, int shift) 2100 { 2101 loads[0] = (avenrun[0] + offset) << shift; 2102 loads[1] = (avenrun[1] + offset) << shift; 2103 loads[2] = (avenrun[2] + offset) << shift; 2104 } 2105 2106 static long calc_load_fold_active(struct rq *this_rq) 2107 { 2108 long nr_active, delta = 0; 2109 2110 nr_active = this_rq->nr_running; 2111 nr_active += (long) this_rq->nr_uninterruptible; 2112 2113 if (nr_active != this_rq->calc_load_active) { 2114 delta = nr_active - this_rq->calc_load_active; 2115 this_rq->calc_load_active = nr_active; 2116 } 2117 2118 return delta; 2119 } 2120 2121 /* 2122 * a1 = a0 * e + a * (1 - e) 2123 */ 2124 static unsigned long 2125 calc_load(unsigned long load, unsigned long exp, unsigned long active) 2126 { 2127 load *= exp; 2128 load += active * (FIXED_1 - exp); 2129 load += 1UL << (FSHIFT - 1); 2130 return load >> FSHIFT; 2131 } 2132 2133 #ifdef CONFIG_NO_HZ 2134 /* 2135 * Handle NO_HZ for the global load-average. 2136 * 2137 * Since the above described distributed algorithm to compute the global 2138 * load-average relies on per-cpu sampling from the tick, it is affected by 2139 * NO_HZ. 2140 * 2141 * The basic idea is to fold the nr_active delta into a global idle-delta upon 2142 * entering NO_HZ state such that we can include this as an 'extra' cpu delta 2143 * when we read the global state. 2144 * 2145 * Obviously reality has to ruin such a delightfully simple scheme: 2146 * 2147 * - When we go NO_HZ idle during the window, we can negate our sample 2148 * contribution, causing under-accounting. 2149 * 2150 * We avoid this by keeping two idle-delta counters and flipping them 2151 * when the window starts, thus separating old and new NO_HZ load. 2152 * 2153 * The only trick is the slight shift in index flip for read vs write. 2154 * 2155 * 0s 5s 10s 15s 2156 * +10 +10 +10 +10 2157 * |-|-----------|-|-----------|-|-----------|-| 2158 * r:0 0 1 1 0 0 1 1 0 2159 * w:0 1 1 0 0 1 1 0 0 2160 * 2161 * This ensures we'll fold the old idle contribution in this window while 2162 * accumlating the new one. 2163 * 2164 * - When we wake up from NO_HZ idle during the window, we push up our 2165 * contribution, since we effectively move our sample point to a known 2166 * busy state. 2167 * 2168 * This is solved by pushing the window forward, and thus skipping the 2169 * sample, for this cpu (effectively using the idle-delta for this cpu which 2170 * was in effect at the time the window opened). This also solves the issue 2171 * of having to deal with a cpu having been in NOHZ idle for multiple 2172 * LOAD_FREQ intervals. 2173 * 2174 * When making the ILB scale, we should try to pull this in as well. 2175 */ 2176 static atomic_long_t calc_load_idle[2]; 2177 static int calc_load_idx; 2178 2179 static inline int calc_load_write_idx(void) 2180 { 2181 int idx = calc_load_idx; 2182 2183 /* 2184 * See calc_global_nohz(), if we observe the new index, we also 2185 * need to observe the new update time. 2186 */ 2187 smp_rmb(); 2188 2189 /* 2190 * If the folding window started, make sure we start writing in the 2191 * next idle-delta. 2192 */ 2193 if (!time_before(jiffies, calc_load_update)) 2194 idx++; 2195 2196 return idx & 1; 2197 } 2198 2199 static inline int calc_load_read_idx(void) 2200 { 2201 return calc_load_idx & 1; 2202 } 2203 2204 void calc_load_enter_idle(void) 2205 { 2206 struct rq *this_rq = this_rq(); 2207 long delta; 2208 2209 /* 2210 * We're going into NOHZ mode, if there's any pending delta, fold it 2211 * into the pending idle delta. 2212 */ 2213 delta = calc_load_fold_active(this_rq); 2214 if (delta) { 2215 int idx = calc_load_write_idx(); 2216 atomic_long_add(delta, &calc_load_idle[idx]); 2217 } 2218 } 2219 2220 void calc_load_exit_idle(void) 2221 { 2222 struct rq *this_rq = this_rq(); 2223 2224 /* 2225 * If we're still before the sample window, we're done. 2226 */ 2227 if (time_before(jiffies, this_rq->calc_load_update)) 2228 return; 2229 2230 /* 2231 * We woke inside or after the sample window, this means we're already 2232 * accounted through the nohz accounting, so skip the entire deal and 2233 * sync up for the next window. 2234 */ 2235 this_rq->calc_load_update = calc_load_update; 2236 if (time_before(jiffies, this_rq->calc_load_update + 10)) 2237 this_rq->calc_load_update += LOAD_FREQ; 2238 } 2239 2240 static long calc_load_fold_idle(void) 2241 { 2242 int idx = calc_load_read_idx(); 2243 long delta = 0; 2244 2245 if (atomic_long_read(&calc_load_idle[idx])) 2246 delta = atomic_long_xchg(&calc_load_idle[idx], 0); 2247 2248 return delta; 2249 } 2250 2251 /** 2252 * fixed_power_int - compute: x^n, in O(log n) time 2253 * 2254 * @x: base of the power 2255 * @frac_bits: fractional bits of @x 2256 * @n: power to raise @x to. 2257 * 2258 * By exploiting the relation between the definition of the natural power 2259 * function: x^n := x*x*...*x (x multiplied by itself for n times), and 2260 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, 2261 * (where: n_i \elem {0, 1}, the binary vector representing n), 2262 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is 2263 * of course trivially computable in O(log_2 n), the length of our binary 2264 * vector. 2265 */ 2266 static unsigned long 2267 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) 2268 { 2269 unsigned long result = 1UL << frac_bits; 2270 2271 if (n) for (;;) { 2272 if (n & 1) { 2273 result *= x; 2274 result += 1UL << (frac_bits - 1); 2275 result >>= frac_bits; 2276 } 2277 n >>= 1; 2278 if (!n) 2279 break; 2280 x *= x; 2281 x += 1UL << (frac_bits - 1); 2282 x >>= frac_bits; 2283 } 2284 2285 return result; 2286 } 2287 2288 /* 2289 * a1 = a0 * e + a * (1 - e) 2290 * 2291 * a2 = a1 * e + a * (1 - e) 2292 * = (a0 * e + a * (1 - e)) * e + a * (1 - e) 2293 * = a0 * e^2 + a * (1 - e) * (1 + e) 2294 * 2295 * a3 = a2 * e + a * (1 - e) 2296 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) 2297 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) 2298 * 2299 * ... 2300 * 2301 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] 2302 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) 2303 * = a0 * e^n + a * (1 - e^n) 2304 * 2305 * [1] application of the geometric series: 2306 * 2307 * n 1 - x^(n+1) 2308 * S_n := \Sum x^i = ------------- 2309 * i=0 1 - x 2310 */ 2311 static unsigned long 2312 calc_load_n(unsigned long load, unsigned long exp, 2313 unsigned long active, unsigned int n) 2314 { 2315 2316 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); 2317 } 2318 2319 /* 2320 * NO_HZ can leave us missing all per-cpu ticks calling 2321 * calc_load_account_active(), but since an idle CPU folds its delta into 2322 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold 2323 * in the pending idle delta if our idle period crossed a load cycle boundary. 2324 * 2325 * Once we've updated the global active value, we need to apply the exponential 2326 * weights adjusted to the number of cycles missed. 2327 */ 2328 static void calc_global_nohz(void) 2329 { 2330 long delta, active, n; 2331 2332 if (!time_before(jiffies, calc_load_update + 10)) { 2333 /* 2334 * Catch-up, fold however many we are behind still 2335 */ 2336 delta = jiffies - calc_load_update - 10; 2337 n = 1 + (delta / LOAD_FREQ); 2338 2339 active = atomic_long_read(&calc_load_tasks); 2340 active = active > 0 ? active * FIXED_1 : 0; 2341 2342 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); 2343 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); 2344 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); 2345 2346 calc_load_update += n * LOAD_FREQ; 2347 } 2348 2349 /* 2350 * Flip the idle index... 2351 * 2352 * Make sure we first write the new time then flip the index, so that 2353 * calc_load_write_idx() will see the new time when it reads the new 2354 * index, this avoids a double flip messing things up. 2355 */ 2356 smp_wmb(); 2357 calc_load_idx++; 2358 } 2359 #else /* !CONFIG_NO_HZ */ 2360 2361 static inline long calc_load_fold_idle(void) { return 0; } 2362 static inline void calc_global_nohz(void) { } 2363 2364 #endif /* CONFIG_NO_HZ */ 2365 2366 /* 2367 * calc_load - update the avenrun load estimates 10 ticks after the 2368 * CPUs have updated calc_load_tasks. 2369 */ 2370 void calc_global_load(unsigned long ticks) 2371 { 2372 long active, delta; 2373 2374 if (time_before(jiffies, calc_load_update + 10)) 2375 return; 2376 2377 /* 2378 * Fold the 'old' idle-delta to include all NO_HZ cpus. 2379 */ 2380 delta = calc_load_fold_idle(); 2381 if (delta) 2382 atomic_long_add(delta, &calc_load_tasks); 2383 2384 active = atomic_long_read(&calc_load_tasks); 2385 active = active > 0 ? active * FIXED_1 : 0; 2386 2387 avenrun[0] = calc_load(avenrun[0], EXP_1, active); 2388 avenrun[1] = calc_load(avenrun[1], EXP_5, active); 2389 avenrun[2] = calc_load(avenrun[2], EXP_15, active); 2390 2391 calc_load_update += LOAD_FREQ; 2392 2393 /* 2394 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk. 2395 */ 2396 calc_global_nohz(); 2397 } 2398 2399 /* 2400 * Called from update_cpu_load() to periodically update this CPU's 2401 * active count. 2402 */ 2403 static void calc_load_account_active(struct rq *this_rq) 2404 { 2405 long delta; 2406 2407 if (time_before(jiffies, this_rq->calc_load_update)) 2408 return; 2409 2410 delta = calc_load_fold_active(this_rq); 2411 if (delta) 2412 atomic_long_add(delta, &calc_load_tasks); 2413 2414 this_rq->calc_load_update += LOAD_FREQ; 2415 } 2416 2417 /* 2418 * End of global load-average stuff 2419 */ 2420 2421 /* 2422 * The exact cpuload at various idx values, calculated at every tick would be 2423 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load 2424 * 2425 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called 2426 * on nth tick when cpu may be busy, then we have: 2427 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2428 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load 2429 * 2430 * decay_load_missed() below does efficient calculation of 2431 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2432 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load 2433 * 2434 * The calculation is approximated on a 128 point scale. 2435 * degrade_zero_ticks is the number of ticks after which load at any 2436 * particular idx is approximated to be zero. 2437 * degrade_factor is a precomputed table, a row for each load idx. 2438 * Each column corresponds to degradation factor for a power of two ticks, 2439 * based on 128 point scale. 2440 * Example: 2441 * row 2, col 3 (=12) says that the degradation at load idx 2 after 2442 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). 2443 * 2444 * With this power of 2 load factors, we can degrade the load n times 2445 * by looking at 1 bits in n and doing as many mult/shift instead of 2446 * n mult/shifts needed by the exact degradation. 2447 */ 2448 #define DEGRADE_SHIFT 7 2449 static const unsigned char 2450 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 2451 static const unsigned char 2452 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 2453 {0, 0, 0, 0, 0, 0, 0, 0}, 2454 {64, 32, 8, 0, 0, 0, 0, 0}, 2455 {96, 72, 40, 12, 1, 0, 0}, 2456 {112, 98, 75, 43, 15, 1, 0}, 2457 {120, 112, 98, 76, 45, 16, 2} }; 2458 2459 /* 2460 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 2461 * would be when CPU is idle and so we just decay the old load without 2462 * adding any new load. 2463 */ 2464 static unsigned long 2465 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 2466 { 2467 int j = 0; 2468 2469 if (!missed_updates) 2470 return load; 2471 2472 if (missed_updates >= degrade_zero_ticks[idx]) 2473 return 0; 2474 2475 if (idx == 1) 2476 return load >> missed_updates; 2477 2478 while (missed_updates) { 2479 if (missed_updates % 2) 2480 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 2481 2482 missed_updates >>= 1; 2483 j++; 2484 } 2485 return load; 2486 } 2487 2488 /* 2489 * Update rq->cpu_load[] statistics. This function is usually called every 2490 * scheduler tick (TICK_NSEC). With tickless idle this will not be called 2491 * every tick. We fix it up based on jiffies. 2492 */ 2493 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load, 2494 unsigned long pending_updates) 2495 { 2496 int i, scale; 2497 2498 this_rq->nr_load_updates++; 2499 2500 /* Update our load: */ 2501 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 2502 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 2503 unsigned long old_load, new_load; 2504 2505 /* scale is effectively 1 << i now, and >> i divides by scale */ 2506 2507 old_load = this_rq->cpu_load[i]; 2508 old_load = decay_load_missed(old_load, pending_updates - 1, i); 2509 new_load = this_load; 2510 /* 2511 * Round up the averaging division if load is increasing. This 2512 * prevents us from getting stuck on 9 if the load is 10, for 2513 * example. 2514 */ 2515 if (new_load > old_load) 2516 new_load += scale - 1; 2517 2518 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 2519 } 2520 2521 sched_avg_update(this_rq); 2522 } 2523 2524 #ifdef CONFIG_NO_HZ 2525 /* 2526 * There is no sane way to deal with nohz on smp when using jiffies because the 2527 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 2528 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 2529 * 2530 * Therefore we cannot use the delta approach from the regular tick since that 2531 * would seriously skew the load calculation. However we'll make do for those 2532 * updates happening while idle (nohz_idle_balance) or coming out of idle 2533 * (tick_nohz_idle_exit). 2534 * 2535 * This means we might still be one tick off for nohz periods. 2536 */ 2537 2538 /* 2539 * Called from nohz_idle_balance() to update the load ratings before doing the 2540 * idle balance. 2541 */ 2542 void update_idle_cpu_load(struct rq *this_rq) 2543 { 2544 unsigned long curr_jiffies = ACCESS_ONCE(jiffies); 2545 unsigned long load = this_rq->load.weight; 2546 unsigned long pending_updates; 2547 2548 /* 2549 * bail if there's load or we're actually up-to-date. 2550 */ 2551 if (load || curr_jiffies == this_rq->last_load_update_tick) 2552 return; 2553 2554 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2555 this_rq->last_load_update_tick = curr_jiffies; 2556 2557 __update_cpu_load(this_rq, load, pending_updates); 2558 } 2559 2560 /* 2561 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed. 2562 */ 2563 void update_cpu_load_nohz(void) 2564 { 2565 struct rq *this_rq = this_rq(); 2566 unsigned long curr_jiffies = ACCESS_ONCE(jiffies); 2567 unsigned long pending_updates; 2568 2569 if (curr_jiffies == this_rq->last_load_update_tick) 2570 return; 2571 2572 raw_spin_lock(&this_rq->lock); 2573 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2574 if (pending_updates) { 2575 this_rq->last_load_update_tick = curr_jiffies; 2576 /* 2577 * We were idle, this means load 0, the current load might be 2578 * !0 due to remote wakeups and the sort. 2579 */ 2580 __update_cpu_load(this_rq, 0, pending_updates); 2581 } 2582 raw_spin_unlock(&this_rq->lock); 2583 } 2584 #endif /* CONFIG_NO_HZ */ 2585 2586 /* 2587 * Called from scheduler_tick() 2588 */ 2589 static void update_cpu_load_active(struct rq *this_rq) 2590 { 2591 /* 2592 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz(). 2593 */ 2594 this_rq->last_load_update_tick = jiffies; 2595 __update_cpu_load(this_rq, this_rq->load.weight, 1); 2596 2597 calc_load_account_active(this_rq); 2598 } 2599 2600 #ifdef CONFIG_SMP 2601 2602 /* 2603 * sched_exec - execve() is a valuable balancing opportunity, because at 2604 * this point the task has the smallest effective memory and cache footprint. 2605 */ 2606 void sched_exec(void) 2607 { 2608 struct task_struct *p = current; 2609 unsigned long flags; 2610 int dest_cpu; 2611 2612 raw_spin_lock_irqsave(&p->pi_lock, flags); 2613 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0); 2614 if (dest_cpu == smp_processor_id()) 2615 goto unlock; 2616 2617 if (likely(cpu_active(dest_cpu))) { 2618 struct migration_arg arg = { p, dest_cpu }; 2619 2620 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2621 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2622 return; 2623 } 2624 unlock: 2625 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2626 } 2627 2628 #endif 2629 2630 DEFINE_PER_CPU(struct kernel_stat, kstat); 2631 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2632 2633 EXPORT_PER_CPU_SYMBOL(kstat); 2634 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2635 2636 /* 2637 * Return any ns on the sched_clock that have not yet been accounted in 2638 * @p in case that task is currently running. 2639 * 2640 * Called with task_rq_lock() held on @rq. 2641 */ 2642 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2643 { 2644 u64 ns = 0; 2645 2646 if (task_current(rq, p)) { 2647 update_rq_clock(rq); 2648 ns = rq->clock_task - p->se.exec_start; 2649 if ((s64)ns < 0) 2650 ns = 0; 2651 } 2652 2653 return ns; 2654 } 2655 2656 unsigned long long task_delta_exec(struct task_struct *p) 2657 { 2658 unsigned long flags; 2659 struct rq *rq; 2660 u64 ns = 0; 2661 2662 rq = task_rq_lock(p, &flags); 2663 ns = do_task_delta_exec(p, rq); 2664 task_rq_unlock(rq, p, &flags); 2665 2666 return ns; 2667 } 2668 2669 /* 2670 * Return accounted runtime for the task. 2671 * In case the task is currently running, return the runtime plus current's 2672 * pending runtime that have not been accounted yet. 2673 */ 2674 unsigned long long task_sched_runtime(struct task_struct *p) 2675 { 2676 unsigned long flags; 2677 struct rq *rq; 2678 u64 ns = 0; 2679 2680 rq = task_rq_lock(p, &flags); 2681 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2682 task_rq_unlock(rq, p, &flags); 2683 2684 return ns; 2685 } 2686 2687 /* 2688 * This function gets called by the timer code, with HZ frequency. 2689 * We call it with interrupts disabled. 2690 */ 2691 void scheduler_tick(void) 2692 { 2693 int cpu = smp_processor_id(); 2694 struct rq *rq = cpu_rq(cpu); 2695 struct task_struct *curr = rq->curr; 2696 2697 sched_clock_tick(); 2698 2699 raw_spin_lock(&rq->lock); 2700 update_rq_clock(rq); 2701 update_cpu_load_active(rq); 2702 curr->sched_class->task_tick(rq, curr, 0); 2703 raw_spin_unlock(&rq->lock); 2704 2705 perf_event_task_tick(); 2706 2707 #ifdef CONFIG_SMP 2708 rq->idle_balance = idle_cpu(cpu); 2709 trigger_load_balance(rq, cpu); 2710 #endif 2711 } 2712 2713 notrace unsigned long get_parent_ip(unsigned long addr) 2714 { 2715 if (in_lock_functions(addr)) { 2716 addr = CALLER_ADDR2; 2717 if (in_lock_functions(addr)) 2718 addr = CALLER_ADDR3; 2719 } 2720 return addr; 2721 } 2722 2723 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2724 defined(CONFIG_PREEMPT_TRACER)) 2725 2726 void __kprobes add_preempt_count(int val) 2727 { 2728 #ifdef CONFIG_DEBUG_PREEMPT 2729 /* 2730 * Underflow? 2731 */ 2732 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2733 return; 2734 #endif 2735 preempt_count() += val; 2736 #ifdef CONFIG_DEBUG_PREEMPT 2737 /* 2738 * Spinlock count overflowing soon? 2739 */ 2740 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2741 PREEMPT_MASK - 10); 2742 #endif 2743 if (preempt_count() == val) 2744 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2745 } 2746 EXPORT_SYMBOL(add_preempt_count); 2747 2748 void __kprobes sub_preempt_count(int val) 2749 { 2750 #ifdef CONFIG_DEBUG_PREEMPT 2751 /* 2752 * Underflow? 2753 */ 2754 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2755 return; 2756 /* 2757 * Is the spinlock portion underflowing? 2758 */ 2759 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2760 !(preempt_count() & PREEMPT_MASK))) 2761 return; 2762 #endif 2763 2764 if (preempt_count() == val) 2765 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2766 preempt_count() -= val; 2767 } 2768 EXPORT_SYMBOL(sub_preempt_count); 2769 2770 #endif 2771 2772 /* 2773 * Print scheduling while atomic bug: 2774 */ 2775 static noinline void __schedule_bug(struct task_struct *prev) 2776 { 2777 if (oops_in_progress) 2778 return; 2779 2780 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2781 prev->comm, prev->pid, preempt_count()); 2782 2783 debug_show_held_locks(prev); 2784 print_modules(); 2785 if (irqs_disabled()) 2786 print_irqtrace_events(prev); 2787 dump_stack(); 2788 add_taint(TAINT_WARN); 2789 } 2790 2791 /* 2792 * Various schedule()-time debugging checks and statistics: 2793 */ 2794 static inline void schedule_debug(struct task_struct *prev) 2795 { 2796 /* 2797 * Test if we are atomic. Since do_exit() needs to call into 2798 * schedule() atomically, we ignore that path for now. 2799 * Otherwise, whine if we are scheduling when we should not be. 2800 */ 2801 if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) 2802 __schedule_bug(prev); 2803 rcu_sleep_check(); 2804 2805 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2806 2807 schedstat_inc(this_rq(), sched_count); 2808 } 2809 2810 static void put_prev_task(struct rq *rq, struct task_struct *prev) 2811 { 2812 if (prev->on_rq || rq->skip_clock_update < 0) 2813 update_rq_clock(rq); 2814 prev->sched_class->put_prev_task(rq, prev); 2815 } 2816 2817 /* 2818 * Pick up the highest-prio task: 2819 */ 2820 static inline struct task_struct * 2821 pick_next_task(struct rq *rq) 2822 { 2823 const struct sched_class *class; 2824 struct task_struct *p; 2825 2826 /* 2827 * Optimization: we know that if all tasks are in 2828 * the fair class we can call that function directly: 2829 */ 2830 if (likely(rq->nr_running == rq->cfs.h_nr_running)) { 2831 p = fair_sched_class.pick_next_task(rq); 2832 if (likely(p)) 2833 return p; 2834 } 2835 2836 for_each_class(class) { 2837 p = class->pick_next_task(rq); 2838 if (p) 2839 return p; 2840 } 2841 2842 BUG(); /* the idle class will always have a runnable task */ 2843 } 2844 2845 /* 2846 * __schedule() is the main scheduler function. 2847 * 2848 * The main means of driving the scheduler and thus entering this function are: 2849 * 2850 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2851 * 2852 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2853 * paths. For example, see arch/x86/entry_64.S. 2854 * 2855 * To drive preemption between tasks, the scheduler sets the flag in timer 2856 * interrupt handler scheduler_tick(). 2857 * 2858 * 3. Wakeups don't really cause entry into schedule(). They add a 2859 * task to the run-queue and that's it. 2860 * 2861 * Now, if the new task added to the run-queue preempts the current 2862 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2863 * called on the nearest possible occasion: 2864 * 2865 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2866 * 2867 * - in syscall or exception context, at the next outmost 2868 * preempt_enable(). (this might be as soon as the wake_up()'s 2869 * spin_unlock()!) 2870 * 2871 * - in IRQ context, return from interrupt-handler to 2872 * preemptible context 2873 * 2874 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2875 * then at the next: 2876 * 2877 * - cond_resched() call 2878 * - explicit schedule() call 2879 * - return from syscall or exception to user-space 2880 * - return from interrupt-handler to user-space 2881 */ 2882 static void __sched __schedule(void) 2883 { 2884 struct task_struct *prev, *next; 2885 unsigned long *switch_count; 2886 struct rq *rq; 2887 int cpu; 2888 2889 need_resched: 2890 preempt_disable(); 2891 cpu = smp_processor_id(); 2892 rq = cpu_rq(cpu); 2893 rcu_note_context_switch(cpu); 2894 prev = rq->curr; 2895 2896 schedule_debug(prev); 2897 2898 if (sched_feat(HRTICK)) 2899 hrtick_clear(rq); 2900 2901 raw_spin_lock_irq(&rq->lock); 2902 2903 switch_count = &prev->nivcsw; 2904 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2905 if (unlikely(signal_pending_state(prev->state, prev))) { 2906 prev->state = TASK_RUNNING; 2907 } else { 2908 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2909 prev->on_rq = 0; 2910 2911 /* 2912 * If a worker went to sleep, notify and ask workqueue 2913 * whether it wants to wake up a task to maintain 2914 * concurrency. 2915 */ 2916 if (prev->flags & PF_WQ_WORKER) { 2917 struct task_struct *to_wakeup; 2918 2919 to_wakeup = wq_worker_sleeping(prev, cpu); 2920 if (to_wakeup) 2921 try_to_wake_up_local(to_wakeup); 2922 } 2923 } 2924 switch_count = &prev->nvcsw; 2925 } 2926 2927 pre_schedule(rq, prev); 2928 2929 if (unlikely(!rq->nr_running)) 2930 idle_balance(cpu, rq); 2931 2932 put_prev_task(rq, prev); 2933 next = pick_next_task(rq); 2934 clear_tsk_need_resched(prev); 2935 rq->skip_clock_update = 0; 2936 2937 if (likely(prev != next)) { 2938 rq->nr_switches++; 2939 rq->curr = next; 2940 ++*switch_count; 2941 2942 context_switch(rq, prev, next); /* unlocks the rq */ 2943 /* 2944 * The context switch have flipped the stack from under us 2945 * and restored the local variables which were saved when 2946 * this task called schedule() in the past. prev == current 2947 * is still correct, but it can be moved to another cpu/rq. 2948 */ 2949 cpu = smp_processor_id(); 2950 rq = cpu_rq(cpu); 2951 } else 2952 raw_spin_unlock_irq(&rq->lock); 2953 2954 post_schedule(rq); 2955 2956 sched_preempt_enable_no_resched(); 2957 if (need_resched()) 2958 goto need_resched; 2959 } 2960 2961 static inline void sched_submit_work(struct task_struct *tsk) 2962 { 2963 if (!tsk->state || tsk_is_pi_blocked(tsk)) 2964 return; 2965 /* 2966 * If we are going to sleep and we have plugged IO queued, 2967 * make sure to submit it to avoid deadlocks. 2968 */ 2969 if (blk_needs_flush_plug(tsk)) 2970 blk_schedule_flush_plug(tsk); 2971 } 2972 2973 asmlinkage void __sched schedule(void) 2974 { 2975 struct task_struct *tsk = current; 2976 2977 sched_submit_work(tsk); 2978 __schedule(); 2979 } 2980 EXPORT_SYMBOL(schedule); 2981 2982 #ifdef CONFIG_CONTEXT_TRACKING 2983 asmlinkage void __sched schedule_user(void) 2984 { 2985 /* 2986 * If we come here after a random call to set_need_resched(), 2987 * or we have been woken up remotely but the IPI has not yet arrived, 2988 * we haven't yet exited the RCU idle mode. Do it here manually until 2989 * we find a better solution. 2990 */ 2991 user_exit(); 2992 schedule(); 2993 user_enter(); 2994 } 2995 #endif 2996 2997 /** 2998 * schedule_preempt_disabled - called with preemption disabled 2999 * 3000 * Returns with preemption disabled. Note: preempt_count must be 1 3001 */ 3002 void __sched schedule_preempt_disabled(void) 3003 { 3004 sched_preempt_enable_no_resched(); 3005 schedule(); 3006 preempt_disable(); 3007 } 3008 3009 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 3010 3011 static inline bool owner_running(struct mutex *lock, struct task_struct *owner) 3012 { 3013 if (lock->owner != owner) 3014 return false; 3015 3016 /* 3017 * Ensure we emit the owner->on_cpu, dereference _after_ checking 3018 * lock->owner still matches owner, if that fails, owner might 3019 * point to free()d memory, if it still matches, the rcu_read_lock() 3020 * ensures the memory stays valid. 3021 */ 3022 barrier(); 3023 3024 return owner->on_cpu; 3025 } 3026 3027 /* 3028 * Look out! "owner" is an entirely speculative pointer 3029 * access and not reliable. 3030 */ 3031 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) 3032 { 3033 if (!sched_feat(OWNER_SPIN)) 3034 return 0; 3035 3036 rcu_read_lock(); 3037 while (owner_running(lock, owner)) { 3038 if (need_resched()) 3039 break; 3040 3041 arch_mutex_cpu_relax(); 3042 } 3043 rcu_read_unlock(); 3044 3045 /* 3046 * We break out the loop above on need_resched() and when the 3047 * owner changed, which is a sign for heavy contention. Return 3048 * success only when lock->owner is NULL. 3049 */ 3050 return lock->owner == NULL; 3051 } 3052 #endif 3053 3054 #ifdef CONFIG_PREEMPT 3055 /* 3056 * this is the entry point to schedule() from in-kernel preemption 3057 * off of preempt_enable. Kernel preemptions off return from interrupt 3058 * occur there and call schedule directly. 3059 */ 3060 asmlinkage void __sched notrace preempt_schedule(void) 3061 { 3062 struct thread_info *ti = current_thread_info(); 3063 3064 /* 3065 * If there is a non-zero preempt_count or interrupts are disabled, 3066 * we do not want to preempt the current task. Just return.. 3067 */ 3068 if (likely(ti->preempt_count || irqs_disabled())) 3069 return; 3070 3071 do { 3072 add_preempt_count_notrace(PREEMPT_ACTIVE); 3073 __schedule(); 3074 sub_preempt_count_notrace(PREEMPT_ACTIVE); 3075 3076 /* 3077 * Check again in case we missed a preemption opportunity 3078 * between schedule and now. 3079 */ 3080 barrier(); 3081 } while (need_resched()); 3082 } 3083 EXPORT_SYMBOL(preempt_schedule); 3084 3085 /* 3086 * this is the entry point to schedule() from kernel preemption 3087 * off of irq context. 3088 * Note, that this is called and return with irqs disabled. This will 3089 * protect us against recursive calling from irq. 3090 */ 3091 asmlinkage void __sched preempt_schedule_irq(void) 3092 { 3093 struct thread_info *ti = current_thread_info(); 3094 3095 /* Catch callers which need to be fixed */ 3096 BUG_ON(ti->preempt_count || !irqs_disabled()); 3097 3098 user_exit(); 3099 do { 3100 add_preempt_count(PREEMPT_ACTIVE); 3101 local_irq_enable(); 3102 __schedule(); 3103 local_irq_disable(); 3104 sub_preempt_count(PREEMPT_ACTIVE); 3105 3106 /* 3107 * Check again in case we missed a preemption opportunity 3108 * between schedule and now. 3109 */ 3110 barrier(); 3111 } while (need_resched()); 3112 } 3113 3114 #endif /* CONFIG_PREEMPT */ 3115 3116 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3117 void *key) 3118 { 3119 return try_to_wake_up(curr->private, mode, wake_flags); 3120 } 3121 EXPORT_SYMBOL(default_wake_function); 3122 3123 /* 3124 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 3125 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 3126 * number) then we wake all the non-exclusive tasks and one exclusive task. 3127 * 3128 * There are circumstances in which we can try to wake a task which has already 3129 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 3130 * zero in this (rare) case, and we handle it by continuing to scan the queue. 3131 */ 3132 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, 3133 int nr_exclusive, int wake_flags, void *key) 3134 { 3135 wait_queue_t *curr, *next; 3136 3137 list_for_each_entry_safe(curr, next, &q->task_list, task_list) { 3138 unsigned flags = curr->flags; 3139 3140 if (curr->func(curr, mode, wake_flags, key) && 3141 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 3142 break; 3143 } 3144 } 3145 3146 /** 3147 * __wake_up - wake up threads blocked on a waitqueue. 3148 * @q: the waitqueue 3149 * @mode: which threads 3150 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3151 * @key: is directly passed to the wakeup function 3152 * 3153 * It may be assumed that this function implies a write memory barrier before 3154 * changing the task state if and only if any tasks are woken up. 3155 */ 3156 void __wake_up(wait_queue_head_t *q, unsigned int mode, 3157 int nr_exclusive, void *key) 3158 { 3159 unsigned long flags; 3160 3161 spin_lock_irqsave(&q->lock, flags); 3162 __wake_up_common(q, mode, nr_exclusive, 0, key); 3163 spin_unlock_irqrestore(&q->lock, flags); 3164 } 3165 EXPORT_SYMBOL(__wake_up); 3166 3167 /* 3168 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 3169 */ 3170 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) 3171 { 3172 __wake_up_common(q, mode, nr, 0, NULL); 3173 } 3174 EXPORT_SYMBOL_GPL(__wake_up_locked); 3175 3176 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) 3177 { 3178 __wake_up_common(q, mode, 1, 0, key); 3179 } 3180 EXPORT_SYMBOL_GPL(__wake_up_locked_key); 3181 3182 /** 3183 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 3184 * @q: the waitqueue 3185 * @mode: which threads 3186 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3187 * @key: opaque value to be passed to wakeup targets 3188 * 3189 * The sync wakeup differs that the waker knows that it will schedule 3190 * away soon, so while the target thread will be woken up, it will not 3191 * be migrated to another CPU - ie. the two threads are 'synchronized' 3192 * with each other. This can prevent needless bouncing between CPUs. 3193 * 3194 * On UP it can prevent extra preemption. 3195 * 3196 * It may be assumed that this function implies a write memory barrier before 3197 * changing the task state if and only if any tasks are woken up. 3198 */ 3199 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, 3200 int nr_exclusive, void *key) 3201 { 3202 unsigned long flags; 3203 int wake_flags = WF_SYNC; 3204 3205 if (unlikely(!q)) 3206 return; 3207 3208 if (unlikely(!nr_exclusive)) 3209 wake_flags = 0; 3210 3211 spin_lock_irqsave(&q->lock, flags); 3212 __wake_up_common(q, mode, nr_exclusive, wake_flags, key); 3213 spin_unlock_irqrestore(&q->lock, flags); 3214 } 3215 EXPORT_SYMBOL_GPL(__wake_up_sync_key); 3216 3217 /* 3218 * __wake_up_sync - see __wake_up_sync_key() 3219 */ 3220 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) 3221 { 3222 __wake_up_sync_key(q, mode, nr_exclusive, NULL); 3223 } 3224 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 3225 3226 /** 3227 * complete: - signals a single thread waiting on this completion 3228 * @x: holds the state of this particular completion 3229 * 3230 * This will wake up a single thread waiting on this completion. Threads will be 3231 * awakened in the same order in which they were queued. 3232 * 3233 * See also complete_all(), wait_for_completion() and related routines. 3234 * 3235 * It may be assumed that this function implies a write memory barrier before 3236 * changing the task state if and only if any tasks are woken up. 3237 */ 3238 void complete(struct completion *x) 3239 { 3240 unsigned long flags; 3241 3242 spin_lock_irqsave(&x->wait.lock, flags); 3243 x->done++; 3244 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); 3245 spin_unlock_irqrestore(&x->wait.lock, flags); 3246 } 3247 EXPORT_SYMBOL(complete); 3248 3249 /** 3250 * complete_all: - signals all threads waiting on this completion 3251 * @x: holds the state of this particular completion 3252 * 3253 * This will wake up all threads waiting on this particular completion event. 3254 * 3255 * It may be assumed that this function implies a write memory barrier before 3256 * changing the task state if and only if any tasks are woken up. 3257 */ 3258 void complete_all(struct completion *x) 3259 { 3260 unsigned long flags; 3261 3262 spin_lock_irqsave(&x->wait.lock, flags); 3263 x->done += UINT_MAX/2; 3264 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); 3265 spin_unlock_irqrestore(&x->wait.lock, flags); 3266 } 3267 EXPORT_SYMBOL(complete_all); 3268 3269 static inline long __sched 3270 do_wait_for_common(struct completion *x, long timeout, int state) 3271 { 3272 if (!x->done) { 3273 DECLARE_WAITQUEUE(wait, current); 3274 3275 __add_wait_queue_tail_exclusive(&x->wait, &wait); 3276 do { 3277 if (signal_pending_state(state, current)) { 3278 timeout = -ERESTARTSYS; 3279 break; 3280 } 3281 __set_current_state(state); 3282 spin_unlock_irq(&x->wait.lock); 3283 timeout = schedule_timeout(timeout); 3284 spin_lock_irq(&x->wait.lock); 3285 } while (!x->done && timeout); 3286 __remove_wait_queue(&x->wait, &wait); 3287 if (!x->done) 3288 return timeout; 3289 } 3290 x->done--; 3291 return timeout ?: 1; 3292 } 3293 3294 static long __sched 3295 wait_for_common(struct completion *x, long timeout, int state) 3296 { 3297 might_sleep(); 3298 3299 spin_lock_irq(&x->wait.lock); 3300 timeout = do_wait_for_common(x, timeout, state); 3301 spin_unlock_irq(&x->wait.lock); 3302 return timeout; 3303 } 3304 3305 /** 3306 * wait_for_completion: - waits for completion of a task 3307 * @x: holds the state of this particular completion 3308 * 3309 * This waits to be signaled for completion of a specific task. It is NOT 3310 * interruptible and there is no timeout. 3311 * 3312 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout 3313 * and interrupt capability. Also see complete(). 3314 */ 3315 void __sched wait_for_completion(struct completion *x) 3316 { 3317 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 3318 } 3319 EXPORT_SYMBOL(wait_for_completion); 3320 3321 /** 3322 * wait_for_completion_timeout: - waits for completion of a task (w/timeout) 3323 * @x: holds the state of this particular completion 3324 * @timeout: timeout value in jiffies 3325 * 3326 * This waits for either a completion of a specific task to be signaled or for a 3327 * specified timeout to expire. The timeout is in jiffies. It is not 3328 * interruptible. 3329 * 3330 * The return value is 0 if timed out, and positive (at least 1, or number of 3331 * jiffies left till timeout) if completed. 3332 */ 3333 unsigned long __sched 3334 wait_for_completion_timeout(struct completion *x, unsigned long timeout) 3335 { 3336 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); 3337 } 3338 EXPORT_SYMBOL(wait_for_completion_timeout); 3339 3340 /** 3341 * wait_for_completion_interruptible: - waits for completion of a task (w/intr) 3342 * @x: holds the state of this particular completion 3343 * 3344 * This waits for completion of a specific task to be signaled. It is 3345 * interruptible. 3346 * 3347 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3348 */ 3349 int __sched wait_for_completion_interruptible(struct completion *x) 3350 { 3351 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); 3352 if (t == -ERESTARTSYS) 3353 return t; 3354 return 0; 3355 } 3356 EXPORT_SYMBOL(wait_for_completion_interruptible); 3357 3358 /** 3359 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) 3360 * @x: holds the state of this particular completion 3361 * @timeout: timeout value in jiffies 3362 * 3363 * This waits for either a completion of a specific task to be signaled or for a 3364 * specified timeout to expire. It is interruptible. The timeout is in jiffies. 3365 * 3366 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3367 * positive (at least 1, or number of jiffies left till timeout) if completed. 3368 */ 3369 long __sched 3370 wait_for_completion_interruptible_timeout(struct completion *x, 3371 unsigned long timeout) 3372 { 3373 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); 3374 } 3375 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); 3376 3377 /** 3378 * wait_for_completion_killable: - waits for completion of a task (killable) 3379 * @x: holds the state of this particular completion 3380 * 3381 * This waits to be signaled for completion of a specific task. It can be 3382 * interrupted by a kill signal. 3383 * 3384 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3385 */ 3386 int __sched wait_for_completion_killable(struct completion *x) 3387 { 3388 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); 3389 if (t == -ERESTARTSYS) 3390 return t; 3391 return 0; 3392 } 3393 EXPORT_SYMBOL(wait_for_completion_killable); 3394 3395 /** 3396 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) 3397 * @x: holds the state of this particular completion 3398 * @timeout: timeout value in jiffies 3399 * 3400 * This waits for either a completion of a specific task to be 3401 * signaled or for a specified timeout to expire. It can be 3402 * interrupted by a kill signal. The timeout is in jiffies. 3403 * 3404 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3405 * positive (at least 1, or number of jiffies left till timeout) if completed. 3406 */ 3407 long __sched 3408 wait_for_completion_killable_timeout(struct completion *x, 3409 unsigned long timeout) 3410 { 3411 return wait_for_common(x, timeout, TASK_KILLABLE); 3412 } 3413 EXPORT_SYMBOL(wait_for_completion_killable_timeout); 3414 3415 /** 3416 * try_wait_for_completion - try to decrement a completion without blocking 3417 * @x: completion structure 3418 * 3419 * Returns: 0 if a decrement cannot be done without blocking 3420 * 1 if a decrement succeeded. 3421 * 3422 * If a completion is being used as a counting completion, 3423 * attempt to decrement the counter without blocking. This 3424 * enables us to avoid waiting if the resource the completion 3425 * is protecting is not available. 3426 */ 3427 bool try_wait_for_completion(struct completion *x) 3428 { 3429 unsigned long flags; 3430 int ret = 1; 3431 3432 spin_lock_irqsave(&x->wait.lock, flags); 3433 if (!x->done) 3434 ret = 0; 3435 else 3436 x->done--; 3437 spin_unlock_irqrestore(&x->wait.lock, flags); 3438 return ret; 3439 } 3440 EXPORT_SYMBOL(try_wait_for_completion); 3441 3442 /** 3443 * completion_done - Test to see if a completion has any waiters 3444 * @x: completion structure 3445 * 3446 * Returns: 0 if there are waiters (wait_for_completion() in progress) 3447 * 1 if there are no waiters. 3448 * 3449 */ 3450 bool completion_done(struct completion *x) 3451 { 3452 unsigned long flags; 3453 int ret = 1; 3454 3455 spin_lock_irqsave(&x->wait.lock, flags); 3456 if (!x->done) 3457 ret = 0; 3458 spin_unlock_irqrestore(&x->wait.lock, flags); 3459 return ret; 3460 } 3461 EXPORT_SYMBOL(completion_done); 3462 3463 static long __sched 3464 sleep_on_common(wait_queue_head_t *q, int state, long timeout) 3465 { 3466 unsigned long flags; 3467 wait_queue_t wait; 3468 3469 init_waitqueue_entry(&wait, current); 3470 3471 __set_current_state(state); 3472 3473 spin_lock_irqsave(&q->lock, flags); 3474 __add_wait_queue(q, &wait); 3475 spin_unlock(&q->lock); 3476 timeout = schedule_timeout(timeout); 3477 spin_lock_irq(&q->lock); 3478 __remove_wait_queue(q, &wait); 3479 spin_unlock_irqrestore(&q->lock, flags); 3480 3481 return timeout; 3482 } 3483 3484 void __sched interruptible_sleep_on(wait_queue_head_t *q) 3485 { 3486 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3487 } 3488 EXPORT_SYMBOL(interruptible_sleep_on); 3489 3490 long __sched 3491 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) 3492 { 3493 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); 3494 } 3495 EXPORT_SYMBOL(interruptible_sleep_on_timeout); 3496 3497 void __sched sleep_on(wait_queue_head_t *q) 3498 { 3499 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3500 } 3501 EXPORT_SYMBOL(sleep_on); 3502 3503 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) 3504 { 3505 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); 3506 } 3507 EXPORT_SYMBOL(sleep_on_timeout); 3508 3509 #ifdef CONFIG_RT_MUTEXES 3510 3511 /* 3512 * rt_mutex_setprio - set the current priority of a task 3513 * @p: task 3514 * @prio: prio value (kernel-internal form) 3515 * 3516 * This function changes the 'effective' priority of a task. It does 3517 * not touch ->normal_prio like __setscheduler(). 3518 * 3519 * Used by the rt_mutex code to implement priority inheritance logic. 3520 */ 3521 void rt_mutex_setprio(struct task_struct *p, int prio) 3522 { 3523 int oldprio, on_rq, running; 3524 struct rq *rq; 3525 const struct sched_class *prev_class; 3526 3527 BUG_ON(prio < 0 || prio > MAX_PRIO); 3528 3529 rq = __task_rq_lock(p); 3530 3531 /* 3532 * Idle task boosting is a nono in general. There is one 3533 * exception, when PREEMPT_RT and NOHZ is active: 3534 * 3535 * The idle task calls get_next_timer_interrupt() and holds 3536 * the timer wheel base->lock on the CPU and another CPU wants 3537 * to access the timer (probably to cancel it). We can safely 3538 * ignore the boosting request, as the idle CPU runs this code 3539 * with interrupts disabled and will complete the lock 3540 * protected section without being interrupted. So there is no 3541 * real need to boost. 3542 */ 3543 if (unlikely(p == rq->idle)) { 3544 WARN_ON(p != rq->curr); 3545 WARN_ON(p->pi_blocked_on); 3546 goto out_unlock; 3547 } 3548 3549 trace_sched_pi_setprio(p, prio); 3550 oldprio = p->prio; 3551 prev_class = p->sched_class; 3552 on_rq = p->on_rq; 3553 running = task_current(rq, p); 3554 if (on_rq) 3555 dequeue_task(rq, p, 0); 3556 if (running) 3557 p->sched_class->put_prev_task(rq, p); 3558 3559 if (rt_prio(prio)) 3560 p->sched_class = &rt_sched_class; 3561 else 3562 p->sched_class = &fair_sched_class; 3563 3564 p->prio = prio; 3565 3566 if (running) 3567 p->sched_class->set_curr_task(rq); 3568 if (on_rq) 3569 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); 3570 3571 check_class_changed(rq, p, prev_class, oldprio); 3572 out_unlock: 3573 __task_rq_unlock(rq); 3574 } 3575 #endif 3576 void set_user_nice(struct task_struct *p, long nice) 3577 { 3578 int old_prio, delta, on_rq; 3579 unsigned long flags; 3580 struct rq *rq; 3581 3582 if (TASK_NICE(p) == nice || nice < -20 || nice > 19) 3583 return; 3584 /* 3585 * We have to be careful, if called from sys_setpriority(), 3586 * the task might be in the middle of scheduling on another CPU. 3587 */ 3588 rq = task_rq_lock(p, &flags); 3589 /* 3590 * The RT priorities are set via sched_setscheduler(), but we still 3591 * allow the 'normal' nice value to be set - but as expected 3592 * it wont have any effect on scheduling until the task is 3593 * SCHED_FIFO/SCHED_RR: 3594 */ 3595 if (task_has_rt_policy(p)) { 3596 p->static_prio = NICE_TO_PRIO(nice); 3597 goto out_unlock; 3598 } 3599 on_rq = p->on_rq; 3600 if (on_rq) 3601 dequeue_task(rq, p, 0); 3602 3603 p->static_prio = NICE_TO_PRIO(nice); 3604 set_load_weight(p); 3605 old_prio = p->prio; 3606 p->prio = effective_prio(p); 3607 delta = p->prio - old_prio; 3608 3609 if (on_rq) { 3610 enqueue_task(rq, p, 0); 3611 /* 3612 * If the task increased its priority or is running and 3613 * lowered its priority, then reschedule its CPU: 3614 */ 3615 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3616 resched_task(rq->curr); 3617 } 3618 out_unlock: 3619 task_rq_unlock(rq, p, &flags); 3620 } 3621 EXPORT_SYMBOL(set_user_nice); 3622 3623 /* 3624 * can_nice - check if a task can reduce its nice value 3625 * @p: task 3626 * @nice: nice value 3627 */ 3628 int can_nice(const struct task_struct *p, const int nice) 3629 { 3630 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3631 int nice_rlim = 20 - nice; 3632 3633 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3634 capable(CAP_SYS_NICE)); 3635 } 3636 3637 #ifdef __ARCH_WANT_SYS_NICE 3638 3639 /* 3640 * sys_nice - change the priority of the current process. 3641 * @increment: priority increment 3642 * 3643 * sys_setpriority is a more generic, but much slower function that 3644 * does similar things. 3645 */ 3646 SYSCALL_DEFINE1(nice, int, increment) 3647 { 3648 long nice, retval; 3649 3650 /* 3651 * Setpriority might change our priority at the same moment. 3652 * We don't have to worry. Conceptually one call occurs first 3653 * and we have a single winner. 3654 */ 3655 if (increment < -40) 3656 increment = -40; 3657 if (increment > 40) 3658 increment = 40; 3659 3660 nice = TASK_NICE(current) + increment; 3661 if (nice < -20) 3662 nice = -20; 3663 if (nice > 19) 3664 nice = 19; 3665 3666 if (increment < 0 && !can_nice(current, nice)) 3667 return -EPERM; 3668 3669 retval = security_task_setnice(current, nice); 3670 if (retval) 3671 return retval; 3672 3673 set_user_nice(current, nice); 3674 return 0; 3675 } 3676 3677 #endif 3678 3679 /** 3680 * task_prio - return the priority value of a given task. 3681 * @p: the task in question. 3682 * 3683 * This is the priority value as seen by users in /proc. 3684 * RT tasks are offset by -200. Normal tasks are centered 3685 * around 0, value goes from -16 to +15. 3686 */ 3687 int task_prio(const struct task_struct *p) 3688 { 3689 return p->prio - MAX_RT_PRIO; 3690 } 3691 3692 /** 3693 * task_nice - return the nice value of a given task. 3694 * @p: the task in question. 3695 */ 3696 int task_nice(const struct task_struct *p) 3697 { 3698 return TASK_NICE(p); 3699 } 3700 EXPORT_SYMBOL(task_nice); 3701 3702 /** 3703 * idle_cpu - is a given cpu idle currently? 3704 * @cpu: the processor in question. 3705 */ 3706 int idle_cpu(int cpu) 3707 { 3708 struct rq *rq = cpu_rq(cpu); 3709 3710 if (rq->curr != rq->idle) 3711 return 0; 3712 3713 if (rq->nr_running) 3714 return 0; 3715 3716 #ifdef CONFIG_SMP 3717 if (!llist_empty(&rq->wake_list)) 3718 return 0; 3719 #endif 3720 3721 return 1; 3722 } 3723 3724 /** 3725 * idle_task - return the idle task for a given cpu. 3726 * @cpu: the processor in question. 3727 */ 3728 struct task_struct *idle_task(int cpu) 3729 { 3730 return cpu_rq(cpu)->idle; 3731 } 3732 3733 /** 3734 * find_process_by_pid - find a process with a matching PID value. 3735 * @pid: the pid in question. 3736 */ 3737 static struct task_struct *find_process_by_pid(pid_t pid) 3738 { 3739 return pid ? find_task_by_vpid(pid) : current; 3740 } 3741 3742 /* Actually do priority change: must hold rq lock. */ 3743 static void 3744 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) 3745 { 3746 p->policy = policy; 3747 p->rt_priority = prio; 3748 p->normal_prio = normal_prio(p); 3749 /* we are holding p->pi_lock already */ 3750 p->prio = rt_mutex_getprio(p); 3751 if (rt_prio(p->prio)) 3752 p->sched_class = &rt_sched_class; 3753 else 3754 p->sched_class = &fair_sched_class; 3755 set_load_weight(p); 3756 } 3757 3758 /* 3759 * check the target process has a UID that matches the current process's 3760 */ 3761 static bool check_same_owner(struct task_struct *p) 3762 { 3763 const struct cred *cred = current_cred(), *pcred; 3764 bool match; 3765 3766 rcu_read_lock(); 3767 pcred = __task_cred(p); 3768 match = (uid_eq(cred->euid, pcred->euid) || 3769 uid_eq(cred->euid, pcred->uid)); 3770 rcu_read_unlock(); 3771 return match; 3772 } 3773 3774 static int __sched_setscheduler(struct task_struct *p, int policy, 3775 const struct sched_param *param, bool user) 3776 { 3777 int retval, oldprio, oldpolicy = -1, on_rq, running; 3778 unsigned long flags; 3779 const struct sched_class *prev_class; 3780 struct rq *rq; 3781 int reset_on_fork; 3782 3783 /* may grab non-irq protected spin_locks */ 3784 BUG_ON(in_interrupt()); 3785 recheck: 3786 /* double check policy once rq lock held */ 3787 if (policy < 0) { 3788 reset_on_fork = p->sched_reset_on_fork; 3789 policy = oldpolicy = p->policy; 3790 } else { 3791 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); 3792 policy &= ~SCHED_RESET_ON_FORK; 3793 3794 if (policy != SCHED_FIFO && policy != SCHED_RR && 3795 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3796 policy != SCHED_IDLE) 3797 return -EINVAL; 3798 } 3799 3800 /* 3801 * Valid priorities for SCHED_FIFO and SCHED_RR are 3802 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3803 * SCHED_BATCH and SCHED_IDLE is 0. 3804 */ 3805 if (param->sched_priority < 0 || 3806 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || 3807 (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) 3808 return -EINVAL; 3809 if (rt_policy(policy) != (param->sched_priority != 0)) 3810 return -EINVAL; 3811 3812 /* 3813 * Allow unprivileged RT tasks to decrease priority: 3814 */ 3815 if (user && !capable(CAP_SYS_NICE)) { 3816 if (rt_policy(policy)) { 3817 unsigned long rlim_rtprio = 3818 task_rlimit(p, RLIMIT_RTPRIO); 3819 3820 /* can't set/change the rt policy */ 3821 if (policy != p->policy && !rlim_rtprio) 3822 return -EPERM; 3823 3824 /* can't increase priority */ 3825 if (param->sched_priority > p->rt_priority && 3826 param->sched_priority > rlim_rtprio) 3827 return -EPERM; 3828 } 3829 3830 /* 3831 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3832 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3833 */ 3834 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3835 if (!can_nice(p, TASK_NICE(p))) 3836 return -EPERM; 3837 } 3838 3839 /* can't change other user's priorities */ 3840 if (!check_same_owner(p)) 3841 return -EPERM; 3842 3843 /* Normal users shall not reset the sched_reset_on_fork flag */ 3844 if (p->sched_reset_on_fork && !reset_on_fork) 3845 return -EPERM; 3846 } 3847 3848 if (user) { 3849 retval = security_task_setscheduler(p); 3850 if (retval) 3851 return retval; 3852 } 3853 3854 /* 3855 * make sure no PI-waiters arrive (or leave) while we are 3856 * changing the priority of the task: 3857 * 3858 * To be able to change p->policy safely, the appropriate 3859 * runqueue lock must be held. 3860 */ 3861 rq = task_rq_lock(p, &flags); 3862 3863 /* 3864 * Changing the policy of the stop threads its a very bad idea 3865 */ 3866 if (p == rq->stop) { 3867 task_rq_unlock(rq, p, &flags); 3868 return -EINVAL; 3869 } 3870 3871 /* 3872 * If not changing anything there's no need to proceed further: 3873 */ 3874 if (unlikely(policy == p->policy && (!rt_policy(policy) || 3875 param->sched_priority == p->rt_priority))) { 3876 task_rq_unlock(rq, p, &flags); 3877 return 0; 3878 } 3879 3880 #ifdef CONFIG_RT_GROUP_SCHED 3881 if (user) { 3882 /* 3883 * Do not allow realtime tasks into groups that have no runtime 3884 * assigned. 3885 */ 3886 if (rt_bandwidth_enabled() && rt_policy(policy) && 3887 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3888 !task_group_is_autogroup(task_group(p))) { 3889 task_rq_unlock(rq, p, &flags); 3890 return -EPERM; 3891 } 3892 } 3893 #endif 3894 3895 /* recheck policy now with rq lock held */ 3896 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3897 policy = oldpolicy = -1; 3898 task_rq_unlock(rq, p, &flags); 3899 goto recheck; 3900 } 3901 on_rq = p->on_rq; 3902 running = task_current(rq, p); 3903 if (on_rq) 3904 dequeue_task(rq, p, 0); 3905 if (running) 3906 p->sched_class->put_prev_task(rq, p); 3907 3908 p->sched_reset_on_fork = reset_on_fork; 3909 3910 oldprio = p->prio; 3911 prev_class = p->sched_class; 3912 __setscheduler(rq, p, policy, param->sched_priority); 3913 3914 if (running) 3915 p->sched_class->set_curr_task(rq); 3916 if (on_rq) 3917 enqueue_task(rq, p, 0); 3918 3919 check_class_changed(rq, p, prev_class, oldprio); 3920 task_rq_unlock(rq, p, &flags); 3921 3922 rt_mutex_adjust_pi(p); 3923 3924 return 0; 3925 } 3926 3927 /** 3928 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3929 * @p: the task in question. 3930 * @policy: new policy. 3931 * @param: structure containing the new RT priority. 3932 * 3933 * NOTE that the task may be already dead. 3934 */ 3935 int sched_setscheduler(struct task_struct *p, int policy, 3936 const struct sched_param *param) 3937 { 3938 return __sched_setscheduler(p, policy, param, true); 3939 } 3940 EXPORT_SYMBOL_GPL(sched_setscheduler); 3941 3942 /** 3943 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3944 * @p: the task in question. 3945 * @policy: new policy. 3946 * @param: structure containing the new RT priority. 3947 * 3948 * Just like sched_setscheduler, only don't bother checking if the 3949 * current context has permission. For example, this is needed in 3950 * stop_machine(): we create temporary high priority worker threads, 3951 * but our caller might not have that capability. 3952 */ 3953 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 3954 const struct sched_param *param) 3955 { 3956 return __sched_setscheduler(p, policy, param, false); 3957 } 3958 3959 static int 3960 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 3961 { 3962 struct sched_param lparam; 3963 struct task_struct *p; 3964 int retval; 3965 3966 if (!param || pid < 0) 3967 return -EINVAL; 3968 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 3969 return -EFAULT; 3970 3971 rcu_read_lock(); 3972 retval = -ESRCH; 3973 p = find_process_by_pid(pid); 3974 if (p != NULL) 3975 retval = sched_setscheduler(p, policy, &lparam); 3976 rcu_read_unlock(); 3977 3978 return retval; 3979 } 3980 3981 /** 3982 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 3983 * @pid: the pid in question. 3984 * @policy: new policy. 3985 * @param: structure containing the new RT priority. 3986 */ 3987 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 3988 struct sched_param __user *, param) 3989 { 3990 /* negative values for policy are not valid */ 3991 if (policy < 0) 3992 return -EINVAL; 3993 3994 return do_sched_setscheduler(pid, policy, param); 3995 } 3996 3997 /** 3998 * sys_sched_setparam - set/change the RT priority of a thread 3999 * @pid: the pid in question. 4000 * @param: structure containing the new RT priority. 4001 */ 4002 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4003 { 4004 return do_sched_setscheduler(pid, -1, param); 4005 } 4006 4007 /** 4008 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4009 * @pid: the pid in question. 4010 */ 4011 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4012 { 4013 struct task_struct *p; 4014 int retval; 4015 4016 if (pid < 0) 4017 return -EINVAL; 4018 4019 retval = -ESRCH; 4020 rcu_read_lock(); 4021 p = find_process_by_pid(pid); 4022 if (p) { 4023 retval = security_task_getscheduler(p); 4024 if (!retval) 4025 retval = p->policy 4026 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4027 } 4028 rcu_read_unlock(); 4029 return retval; 4030 } 4031 4032 /** 4033 * sys_sched_getparam - get the RT priority of a thread 4034 * @pid: the pid in question. 4035 * @param: structure containing the RT priority. 4036 */ 4037 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4038 { 4039 struct sched_param lp; 4040 struct task_struct *p; 4041 int retval; 4042 4043 if (!param || pid < 0) 4044 return -EINVAL; 4045 4046 rcu_read_lock(); 4047 p = find_process_by_pid(pid); 4048 retval = -ESRCH; 4049 if (!p) 4050 goto out_unlock; 4051 4052 retval = security_task_getscheduler(p); 4053 if (retval) 4054 goto out_unlock; 4055 4056 lp.sched_priority = p->rt_priority; 4057 rcu_read_unlock(); 4058 4059 /* 4060 * This one might sleep, we cannot do it with a spinlock held ... 4061 */ 4062 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4063 4064 return retval; 4065 4066 out_unlock: 4067 rcu_read_unlock(); 4068 return retval; 4069 } 4070 4071 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4072 { 4073 cpumask_var_t cpus_allowed, new_mask; 4074 struct task_struct *p; 4075 int retval; 4076 4077 get_online_cpus(); 4078 rcu_read_lock(); 4079 4080 p = find_process_by_pid(pid); 4081 if (!p) { 4082 rcu_read_unlock(); 4083 put_online_cpus(); 4084 return -ESRCH; 4085 } 4086 4087 /* Prevent p going away */ 4088 get_task_struct(p); 4089 rcu_read_unlock(); 4090 4091 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4092 retval = -ENOMEM; 4093 goto out_put_task; 4094 } 4095 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4096 retval = -ENOMEM; 4097 goto out_free_cpus_allowed; 4098 } 4099 retval = -EPERM; 4100 if (!check_same_owner(p)) { 4101 rcu_read_lock(); 4102 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4103 rcu_read_unlock(); 4104 goto out_unlock; 4105 } 4106 rcu_read_unlock(); 4107 } 4108 4109 retval = security_task_setscheduler(p); 4110 if (retval) 4111 goto out_unlock; 4112 4113 cpuset_cpus_allowed(p, cpus_allowed); 4114 cpumask_and(new_mask, in_mask, cpus_allowed); 4115 again: 4116 retval = set_cpus_allowed_ptr(p, new_mask); 4117 4118 if (!retval) { 4119 cpuset_cpus_allowed(p, cpus_allowed); 4120 if (!cpumask_subset(new_mask, cpus_allowed)) { 4121 /* 4122 * We must have raced with a concurrent cpuset 4123 * update. Just reset the cpus_allowed to the 4124 * cpuset's cpus_allowed 4125 */ 4126 cpumask_copy(new_mask, cpus_allowed); 4127 goto again; 4128 } 4129 } 4130 out_unlock: 4131 free_cpumask_var(new_mask); 4132 out_free_cpus_allowed: 4133 free_cpumask_var(cpus_allowed); 4134 out_put_task: 4135 put_task_struct(p); 4136 put_online_cpus(); 4137 return retval; 4138 } 4139 4140 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4141 struct cpumask *new_mask) 4142 { 4143 if (len < cpumask_size()) 4144 cpumask_clear(new_mask); 4145 else if (len > cpumask_size()) 4146 len = cpumask_size(); 4147 4148 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4149 } 4150 4151 /** 4152 * sys_sched_setaffinity - set the cpu affinity of a process 4153 * @pid: pid of the process 4154 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4155 * @user_mask_ptr: user-space pointer to the new cpu mask 4156 */ 4157 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4158 unsigned long __user *, user_mask_ptr) 4159 { 4160 cpumask_var_t new_mask; 4161 int retval; 4162 4163 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4164 return -ENOMEM; 4165 4166 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4167 if (retval == 0) 4168 retval = sched_setaffinity(pid, new_mask); 4169 free_cpumask_var(new_mask); 4170 return retval; 4171 } 4172 4173 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4174 { 4175 struct task_struct *p; 4176 unsigned long flags; 4177 int retval; 4178 4179 get_online_cpus(); 4180 rcu_read_lock(); 4181 4182 retval = -ESRCH; 4183 p = find_process_by_pid(pid); 4184 if (!p) 4185 goto out_unlock; 4186 4187 retval = security_task_getscheduler(p); 4188 if (retval) 4189 goto out_unlock; 4190 4191 raw_spin_lock_irqsave(&p->pi_lock, flags); 4192 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); 4193 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4194 4195 out_unlock: 4196 rcu_read_unlock(); 4197 put_online_cpus(); 4198 4199 return retval; 4200 } 4201 4202 /** 4203 * sys_sched_getaffinity - get the cpu affinity of a process 4204 * @pid: pid of the process 4205 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4206 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4207 */ 4208 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4209 unsigned long __user *, user_mask_ptr) 4210 { 4211 int ret; 4212 cpumask_var_t mask; 4213 4214 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4215 return -EINVAL; 4216 if (len & (sizeof(unsigned long)-1)) 4217 return -EINVAL; 4218 4219 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4220 return -ENOMEM; 4221 4222 ret = sched_getaffinity(pid, mask); 4223 if (ret == 0) { 4224 size_t retlen = min_t(size_t, len, cpumask_size()); 4225 4226 if (copy_to_user(user_mask_ptr, mask, retlen)) 4227 ret = -EFAULT; 4228 else 4229 ret = retlen; 4230 } 4231 free_cpumask_var(mask); 4232 4233 return ret; 4234 } 4235 4236 /** 4237 * sys_sched_yield - yield the current processor to other threads. 4238 * 4239 * This function yields the current CPU to other tasks. If there are no 4240 * other threads running on this CPU then this function will return. 4241 */ 4242 SYSCALL_DEFINE0(sched_yield) 4243 { 4244 struct rq *rq = this_rq_lock(); 4245 4246 schedstat_inc(rq, yld_count); 4247 current->sched_class->yield_task(rq); 4248 4249 /* 4250 * Since we are going to call schedule() anyway, there's 4251 * no need to preempt or enable interrupts: 4252 */ 4253 __release(rq->lock); 4254 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4255 do_raw_spin_unlock(&rq->lock); 4256 sched_preempt_enable_no_resched(); 4257 4258 schedule(); 4259 4260 return 0; 4261 } 4262 4263 static inline int should_resched(void) 4264 { 4265 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); 4266 } 4267 4268 static void __cond_resched(void) 4269 { 4270 add_preempt_count(PREEMPT_ACTIVE); 4271 __schedule(); 4272 sub_preempt_count(PREEMPT_ACTIVE); 4273 } 4274 4275 int __sched _cond_resched(void) 4276 { 4277 if (should_resched()) { 4278 __cond_resched(); 4279 return 1; 4280 } 4281 return 0; 4282 } 4283 EXPORT_SYMBOL(_cond_resched); 4284 4285 /* 4286 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4287 * call schedule, and on return reacquire the lock. 4288 * 4289 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4290 * operations here to prevent schedule() from being called twice (once via 4291 * spin_unlock(), once by hand). 4292 */ 4293 int __cond_resched_lock(spinlock_t *lock) 4294 { 4295 int resched = should_resched(); 4296 int ret = 0; 4297 4298 lockdep_assert_held(lock); 4299 4300 if (spin_needbreak(lock) || resched) { 4301 spin_unlock(lock); 4302 if (resched) 4303 __cond_resched(); 4304 else 4305 cpu_relax(); 4306 ret = 1; 4307 spin_lock(lock); 4308 } 4309 return ret; 4310 } 4311 EXPORT_SYMBOL(__cond_resched_lock); 4312 4313 int __sched __cond_resched_softirq(void) 4314 { 4315 BUG_ON(!in_softirq()); 4316 4317 if (should_resched()) { 4318 local_bh_enable(); 4319 __cond_resched(); 4320 local_bh_disable(); 4321 return 1; 4322 } 4323 return 0; 4324 } 4325 EXPORT_SYMBOL(__cond_resched_softirq); 4326 4327 /** 4328 * yield - yield the current processor to other threads. 4329 * 4330 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4331 * 4332 * The scheduler is at all times free to pick the calling task as the most 4333 * eligible task to run, if removing the yield() call from your code breaks 4334 * it, its already broken. 4335 * 4336 * Typical broken usage is: 4337 * 4338 * while (!event) 4339 * yield(); 4340 * 4341 * where one assumes that yield() will let 'the other' process run that will 4342 * make event true. If the current task is a SCHED_FIFO task that will never 4343 * happen. Never use yield() as a progress guarantee!! 4344 * 4345 * If you want to use yield() to wait for something, use wait_event(). 4346 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4347 * If you still want to use yield(), do not! 4348 */ 4349 void __sched yield(void) 4350 { 4351 set_current_state(TASK_RUNNING); 4352 sys_sched_yield(); 4353 } 4354 EXPORT_SYMBOL(yield); 4355 4356 /** 4357 * yield_to - yield the current processor to another thread in 4358 * your thread group, or accelerate that thread toward the 4359 * processor it's on. 4360 * @p: target task 4361 * @preempt: whether task preemption is allowed or not 4362 * 4363 * It's the caller's job to ensure that the target task struct 4364 * can't go away on us before we can do any checks. 4365 * 4366 * Returns true if we indeed boosted the target task. 4367 */ 4368 bool __sched yield_to(struct task_struct *p, bool preempt) 4369 { 4370 struct task_struct *curr = current; 4371 struct rq *rq, *p_rq; 4372 unsigned long flags; 4373 bool yielded = 0; 4374 4375 local_irq_save(flags); 4376 rq = this_rq(); 4377 4378 again: 4379 p_rq = task_rq(p); 4380 double_rq_lock(rq, p_rq); 4381 while (task_rq(p) != p_rq) { 4382 double_rq_unlock(rq, p_rq); 4383 goto again; 4384 } 4385 4386 if (!curr->sched_class->yield_to_task) 4387 goto out; 4388 4389 if (curr->sched_class != p->sched_class) 4390 goto out; 4391 4392 if (task_running(p_rq, p) || p->state) 4393 goto out; 4394 4395 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4396 if (yielded) { 4397 schedstat_inc(rq, yld_count); 4398 /* 4399 * Make p's CPU reschedule; pick_next_entity takes care of 4400 * fairness. 4401 */ 4402 if (preempt && rq != p_rq) 4403 resched_task(p_rq->curr); 4404 } 4405 4406 out: 4407 double_rq_unlock(rq, p_rq); 4408 local_irq_restore(flags); 4409 4410 if (yielded) 4411 schedule(); 4412 4413 return yielded; 4414 } 4415 EXPORT_SYMBOL_GPL(yield_to); 4416 4417 /* 4418 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4419 * that process accounting knows that this is a task in IO wait state. 4420 */ 4421 void __sched io_schedule(void) 4422 { 4423 struct rq *rq = raw_rq(); 4424 4425 delayacct_blkio_start(); 4426 atomic_inc(&rq->nr_iowait); 4427 blk_flush_plug(current); 4428 current->in_iowait = 1; 4429 schedule(); 4430 current->in_iowait = 0; 4431 atomic_dec(&rq->nr_iowait); 4432 delayacct_blkio_end(); 4433 } 4434 EXPORT_SYMBOL(io_schedule); 4435 4436 long __sched io_schedule_timeout(long timeout) 4437 { 4438 struct rq *rq = raw_rq(); 4439 long ret; 4440 4441 delayacct_blkio_start(); 4442 atomic_inc(&rq->nr_iowait); 4443 blk_flush_plug(current); 4444 current->in_iowait = 1; 4445 ret = schedule_timeout(timeout); 4446 current->in_iowait = 0; 4447 atomic_dec(&rq->nr_iowait); 4448 delayacct_blkio_end(); 4449 return ret; 4450 } 4451 4452 /** 4453 * sys_sched_get_priority_max - return maximum RT priority. 4454 * @policy: scheduling class. 4455 * 4456 * this syscall returns the maximum rt_priority that can be used 4457 * by a given scheduling class. 4458 */ 4459 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4460 { 4461 int ret = -EINVAL; 4462 4463 switch (policy) { 4464 case SCHED_FIFO: 4465 case SCHED_RR: 4466 ret = MAX_USER_RT_PRIO-1; 4467 break; 4468 case SCHED_NORMAL: 4469 case SCHED_BATCH: 4470 case SCHED_IDLE: 4471 ret = 0; 4472 break; 4473 } 4474 return ret; 4475 } 4476 4477 /** 4478 * sys_sched_get_priority_min - return minimum RT priority. 4479 * @policy: scheduling class. 4480 * 4481 * this syscall returns the minimum rt_priority that can be used 4482 * by a given scheduling class. 4483 */ 4484 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4485 { 4486 int ret = -EINVAL; 4487 4488 switch (policy) { 4489 case SCHED_FIFO: 4490 case SCHED_RR: 4491 ret = 1; 4492 break; 4493 case SCHED_NORMAL: 4494 case SCHED_BATCH: 4495 case SCHED_IDLE: 4496 ret = 0; 4497 } 4498 return ret; 4499 } 4500 4501 /** 4502 * sys_sched_rr_get_interval - return the default timeslice of a process. 4503 * @pid: pid of the process. 4504 * @interval: userspace pointer to the timeslice value. 4505 * 4506 * this syscall writes the default timeslice value of a given process 4507 * into the user-space timespec buffer. A value of '0' means infinity. 4508 */ 4509 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4510 struct timespec __user *, interval) 4511 { 4512 struct task_struct *p; 4513 unsigned int time_slice; 4514 unsigned long flags; 4515 struct rq *rq; 4516 int retval; 4517 struct timespec t; 4518 4519 if (pid < 0) 4520 return -EINVAL; 4521 4522 retval = -ESRCH; 4523 rcu_read_lock(); 4524 p = find_process_by_pid(pid); 4525 if (!p) 4526 goto out_unlock; 4527 4528 retval = security_task_getscheduler(p); 4529 if (retval) 4530 goto out_unlock; 4531 4532 rq = task_rq_lock(p, &flags); 4533 time_slice = p->sched_class->get_rr_interval(rq, p); 4534 task_rq_unlock(rq, p, &flags); 4535 4536 rcu_read_unlock(); 4537 jiffies_to_timespec(time_slice, &t); 4538 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4539 return retval; 4540 4541 out_unlock: 4542 rcu_read_unlock(); 4543 return retval; 4544 } 4545 4546 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4547 4548 void sched_show_task(struct task_struct *p) 4549 { 4550 unsigned long free = 0; 4551 int ppid; 4552 unsigned state; 4553 4554 state = p->state ? __ffs(p->state) + 1 : 0; 4555 printk(KERN_INFO "%-15.15s %c", p->comm, 4556 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4557 #if BITS_PER_LONG == 32 4558 if (state == TASK_RUNNING) 4559 printk(KERN_CONT " running "); 4560 else 4561 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4562 #else 4563 if (state == TASK_RUNNING) 4564 printk(KERN_CONT " running task "); 4565 else 4566 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4567 #endif 4568 #ifdef CONFIG_DEBUG_STACK_USAGE 4569 free = stack_not_used(p); 4570 #endif 4571 rcu_read_lock(); 4572 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4573 rcu_read_unlock(); 4574 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4575 task_pid_nr(p), ppid, 4576 (unsigned long)task_thread_info(p)->flags); 4577 4578 show_stack(p, NULL); 4579 } 4580 4581 void show_state_filter(unsigned long state_filter) 4582 { 4583 struct task_struct *g, *p; 4584 4585 #if BITS_PER_LONG == 32 4586 printk(KERN_INFO 4587 " task PC stack pid father\n"); 4588 #else 4589 printk(KERN_INFO 4590 " task PC stack pid father\n"); 4591 #endif 4592 rcu_read_lock(); 4593 do_each_thread(g, p) { 4594 /* 4595 * reset the NMI-timeout, listing all files on a slow 4596 * console might take a lot of time: 4597 */ 4598 touch_nmi_watchdog(); 4599 if (!state_filter || (p->state & state_filter)) 4600 sched_show_task(p); 4601 } while_each_thread(g, p); 4602 4603 touch_all_softlockup_watchdogs(); 4604 4605 #ifdef CONFIG_SCHED_DEBUG 4606 sysrq_sched_debug_show(); 4607 #endif 4608 rcu_read_unlock(); 4609 /* 4610 * Only show locks if all tasks are dumped: 4611 */ 4612 if (!state_filter) 4613 debug_show_all_locks(); 4614 } 4615 4616 void __cpuinit init_idle_bootup_task(struct task_struct *idle) 4617 { 4618 idle->sched_class = &idle_sched_class; 4619 } 4620 4621 /** 4622 * init_idle - set up an idle thread for a given CPU 4623 * @idle: task in question 4624 * @cpu: cpu the idle task belongs to 4625 * 4626 * NOTE: this function does not set the idle thread's NEED_RESCHED 4627 * flag, to make booting more robust. 4628 */ 4629 void __cpuinit init_idle(struct task_struct *idle, int cpu) 4630 { 4631 struct rq *rq = cpu_rq(cpu); 4632 unsigned long flags; 4633 4634 raw_spin_lock_irqsave(&rq->lock, flags); 4635 4636 __sched_fork(idle); 4637 idle->state = TASK_RUNNING; 4638 idle->se.exec_start = sched_clock(); 4639 4640 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4641 /* 4642 * We're having a chicken and egg problem, even though we are 4643 * holding rq->lock, the cpu isn't yet set to this cpu so the 4644 * lockdep check in task_group() will fail. 4645 * 4646 * Similar case to sched_fork(). / Alternatively we could 4647 * use task_rq_lock() here and obtain the other rq->lock. 4648 * 4649 * Silence PROVE_RCU 4650 */ 4651 rcu_read_lock(); 4652 __set_task_cpu(idle, cpu); 4653 rcu_read_unlock(); 4654 4655 rq->curr = rq->idle = idle; 4656 #if defined(CONFIG_SMP) 4657 idle->on_cpu = 1; 4658 #endif 4659 raw_spin_unlock_irqrestore(&rq->lock, flags); 4660 4661 /* Set the preempt count _outside_ the spinlocks! */ 4662 task_thread_info(idle)->preempt_count = 0; 4663 4664 /* 4665 * The idle tasks have their own, simple scheduling class: 4666 */ 4667 idle->sched_class = &idle_sched_class; 4668 ftrace_graph_init_idle_task(idle, cpu); 4669 #if defined(CONFIG_SMP) 4670 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4671 #endif 4672 } 4673 4674 #ifdef CONFIG_SMP 4675 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4676 { 4677 if (p->sched_class && p->sched_class->set_cpus_allowed) 4678 p->sched_class->set_cpus_allowed(p, new_mask); 4679 4680 cpumask_copy(&p->cpus_allowed, new_mask); 4681 p->nr_cpus_allowed = cpumask_weight(new_mask); 4682 } 4683 4684 /* 4685 * This is how migration works: 4686 * 4687 * 1) we invoke migration_cpu_stop() on the target CPU using 4688 * stop_one_cpu(). 4689 * 2) stopper starts to run (implicitly forcing the migrated thread 4690 * off the CPU) 4691 * 3) it checks whether the migrated task is still in the wrong runqueue. 4692 * 4) if it's in the wrong runqueue then the migration thread removes 4693 * it and puts it into the right queue. 4694 * 5) stopper completes and stop_one_cpu() returns and the migration 4695 * is done. 4696 */ 4697 4698 /* 4699 * Change a given task's CPU affinity. Migrate the thread to a 4700 * proper CPU and schedule it away if the CPU it's executing on 4701 * is removed from the allowed bitmask. 4702 * 4703 * NOTE: the caller must have a valid reference to the task, the 4704 * task must not exit() & deallocate itself prematurely. The 4705 * call is not atomic; no spinlocks may be held. 4706 */ 4707 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4708 { 4709 unsigned long flags; 4710 struct rq *rq; 4711 unsigned int dest_cpu; 4712 int ret = 0; 4713 4714 rq = task_rq_lock(p, &flags); 4715 4716 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4717 goto out; 4718 4719 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4720 ret = -EINVAL; 4721 goto out; 4722 } 4723 4724 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) { 4725 ret = -EINVAL; 4726 goto out; 4727 } 4728 4729 do_set_cpus_allowed(p, new_mask); 4730 4731 /* Can the task run on the task's current CPU? If so, we're done */ 4732 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4733 goto out; 4734 4735 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4736 if (p->on_rq) { 4737 struct migration_arg arg = { p, dest_cpu }; 4738 /* Need help from migration thread: drop lock and wait. */ 4739 task_rq_unlock(rq, p, &flags); 4740 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4741 tlb_migrate_finish(p->mm); 4742 return 0; 4743 } 4744 out: 4745 task_rq_unlock(rq, p, &flags); 4746 4747 return ret; 4748 } 4749 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4750 4751 /* 4752 * Move (not current) task off this cpu, onto dest cpu. We're doing 4753 * this because either it can't run here any more (set_cpus_allowed() 4754 * away from this CPU, or CPU going down), or because we're 4755 * attempting to rebalance this task on exec (sched_exec). 4756 * 4757 * So we race with normal scheduler movements, but that's OK, as long 4758 * as the task is no longer on this CPU. 4759 * 4760 * Returns non-zero if task was successfully migrated. 4761 */ 4762 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4763 { 4764 struct rq *rq_dest, *rq_src; 4765 int ret = 0; 4766 4767 if (unlikely(!cpu_active(dest_cpu))) 4768 return ret; 4769 4770 rq_src = cpu_rq(src_cpu); 4771 rq_dest = cpu_rq(dest_cpu); 4772 4773 raw_spin_lock(&p->pi_lock); 4774 double_rq_lock(rq_src, rq_dest); 4775 /* Already moved. */ 4776 if (task_cpu(p) != src_cpu) 4777 goto done; 4778 /* Affinity changed (again). */ 4779 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4780 goto fail; 4781 4782 /* 4783 * If we're not on a rq, the next wake-up will ensure we're 4784 * placed properly. 4785 */ 4786 if (p->on_rq) { 4787 dequeue_task(rq_src, p, 0); 4788 set_task_cpu(p, dest_cpu); 4789 enqueue_task(rq_dest, p, 0); 4790 check_preempt_curr(rq_dest, p, 0); 4791 } 4792 done: 4793 ret = 1; 4794 fail: 4795 double_rq_unlock(rq_src, rq_dest); 4796 raw_spin_unlock(&p->pi_lock); 4797 return ret; 4798 } 4799 4800 /* 4801 * migration_cpu_stop - this will be executed by a highprio stopper thread 4802 * and performs thread migration by bumping thread off CPU then 4803 * 'pushing' onto another runqueue. 4804 */ 4805 static int migration_cpu_stop(void *data) 4806 { 4807 struct migration_arg *arg = data; 4808 4809 /* 4810 * The original target cpu might have gone down and we might 4811 * be on another cpu but it doesn't matter. 4812 */ 4813 local_irq_disable(); 4814 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4815 local_irq_enable(); 4816 return 0; 4817 } 4818 4819 #ifdef CONFIG_HOTPLUG_CPU 4820 4821 /* 4822 * Ensures that the idle task is using init_mm right before its cpu goes 4823 * offline. 4824 */ 4825 void idle_task_exit(void) 4826 { 4827 struct mm_struct *mm = current->active_mm; 4828 4829 BUG_ON(cpu_online(smp_processor_id())); 4830 4831 if (mm != &init_mm) 4832 switch_mm(mm, &init_mm, current); 4833 mmdrop(mm); 4834 } 4835 4836 /* 4837 * Since this CPU is going 'away' for a while, fold any nr_active delta 4838 * we might have. Assumes we're called after migrate_tasks() so that the 4839 * nr_active count is stable. 4840 * 4841 * Also see the comment "Global load-average calculations". 4842 */ 4843 static void calc_load_migrate(struct rq *rq) 4844 { 4845 long delta = calc_load_fold_active(rq); 4846 if (delta) 4847 atomic_long_add(delta, &calc_load_tasks); 4848 } 4849 4850 /* 4851 * Migrate all tasks from the rq, sleeping tasks will be migrated by 4852 * try_to_wake_up()->select_task_rq(). 4853 * 4854 * Called with rq->lock held even though we'er in stop_machine() and 4855 * there's no concurrency possible, we hold the required locks anyway 4856 * because of lock validation efforts. 4857 */ 4858 static void migrate_tasks(unsigned int dead_cpu) 4859 { 4860 struct rq *rq = cpu_rq(dead_cpu); 4861 struct task_struct *next, *stop = rq->stop; 4862 int dest_cpu; 4863 4864 /* 4865 * Fudge the rq selection such that the below task selection loop 4866 * doesn't get stuck on the currently eligible stop task. 4867 * 4868 * We're currently inside stop_machine() and the rq is either stuck 4869 * in the stop_machine_cpu_stop() loop, or we're executing this code, 4870 * either way we should never end up calling schedule() until we're 4871 * done here. 4872 */ 4873 rq->stop = NULL; 4874 4875 for ( ; ; ) { 4876 /* 4877 * There's this thread running, bail when that's the only 4878 * remaining thread. 4879 */ 4880 if (rq->nr_running == 1) 4881 break; 4882 4883 next = pick_next_task(rq); 4884 BUG_ON(!next); 4885 next->sched_class->put_prev_task(rq, next); 4886 4887 /* Find suitable destination for @next, with force if needed. */ 4888 dest_cpu = select_fallback_rq(dead_cpu, next); 4889 raw_spin_unlock(&rq->lock); 4890 4891 __migrate_task(next, dead_cpu, dest_cpu); 4892 4893 raw_spin_lock(&rq->lock); 4894 } 4895 4896 rq->stop = stop; 4897 } 4898 4899 #endif /* CONFIG_HOTPLUG_CPU */ 4900 4901 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 4902 4903 static struct ctl_table sd_ctl_dir[] = { 4904 { 4905 .procname = "sched_domain", 4906 .mode = 0555, 4907 }, 4908 {} 4909 }; 4910 4911 static struct ctl_table sd_ctl_root[] = { 4912 { 4913 .procname = "kernel", 4914 .mode = 0555, 4915 .child = sd_ctl_dir, 4916 }, 4917 {} 4918 }; 4919 4920 static struct ctl_table *sd_alloc_ctl_entry(int n) 4921 { 4922 struct ctl_table *entry = 4923 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 4924 4925 return entry; 4926 } 4927 4928 static void sd_free_ctl_entry(struct ctl_table **tablep) 4929 { 4930 struct ctl_table *entry; 4931 4932 /* 4933 * In the intermediate directories, both the child directory and 4934 * procname are dynamically allocated and could fail but the mode 4935 * will always be set. In the lowest directory the names are 4936 * static strings and all have proc handlers. 4937 */ 4938 for (entry = *tablep; entry->mode; entry++) { 4939 if (entry->child) 4940 sd_free_ctl_entry(&entry->child); 4941 if (entry->proc_handler == NULL) 4942 kfree(entry->procname); 4943 } 4944 4945 kfree(*tablep); 4946 *tablep = NULL; 4947 } 4948 4949 static int min_load_idx = 0; 4950 static int max_load_idx = CPU_LOAD_IDX_MAX; 4951 4952 static void 4953 set_table_entry(struct ctl_table *entry, 4954 const char *procname, void *data, int maxlen, 4955 umode_t mode, proc_handler *proc_handler, 4956 bool load_idx) 4957 { 4958 entry->procname = procname; 4959 entry->data = data; 4960 entry->maxlen = maxlen; 4961 entry->mode = mode; 4962 entry->proc_handler = proc_handler; 4963 4964 if (load_idx) { 4965 entry->extra1 = &min_load_idx; 4966 entry->extra2 = &max_load_idx; 4967 } 4968 } 4969 4970 static struct ctl_table * 4971 sd_alloc_ctl_domain_table(struct sched_domain *sd) 4972 { 4973 struct ctl_table *table = sd_alloc_ctl_entry(13); 4974 4975 if (table == NULL) 4976 return NULL; 4977 4978 set_table_entry(&table[0], "min_interval", &sd->min_interval, 4979 sizeof(long), 0644, proc_doulongvec_minmax, false); 4980 set_table_entry(&table[1], "max_interval", &sd->max_interval, 4981 sizeof(long), 0644, proc_doulongvec_minmax, false); 4982 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 4983 sizeof(int), 0644, proc_dointvec_minmax, true); 4984 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 4985 sizeof(int), 0644, proc_dointvec_minmax, true); 4986 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 4987 sizeof(int), 0644, proc_dointvec_minmax, true); 4988 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 4989 sizeof(int), 0644, proc_dointvec_minmax, true); 4990 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 4991 sizeof(int), 0644, proc_dointvec_minmax, true); 4992 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 4993 sizeof(int), 0644, proc_dointvec_minmax, false); 4994 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 4995 sizeof(int), 0644, proc_dointvec_minmax, false); 4996 set_table_entry(&table[9], "cache_nice_tries", 4997 &sd->cache_nice_tries, 4998 sizeof(int), 0644, proc_dointvec_minmax, false); 4999 set_table_entry(&table[10], "flags", &sd->flags, 5000 sizeof(int), 0644, proc_dointvec_minmax, false); 5001 set_table_entry(&table[11], "name", sd->name, 5002 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 5003 /* &table[12] is terminator */ 5004 5005 return table; 5006 } 5007 5008 static ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5009 { 5010 struct ctl_table *entry, *table; 5011 struct sched_domain *sd; 5012 int domain_num = 0, i; 5013 char buf[32]; 5014 5015 for_each_domain(cpu, sd) 5016 domain_num++; 5017 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5018 if (table == NULL) 5019 return NULL; 5020 5021 i = 0; 5022 for_each_domain(cpu, sd) { 5023 snprintf(buf, 32, "domain%d", i); 5024 entry->procname = kstrdup(buf, GFP_KERNEL); 5025 entry->mode = 0555; 5026 entry->child = sd_alloc_ctl_domain_table(sd); 5027 entry++; 5028 i++; 5029 } 5030 return table; 5031 } 5032 5033 static struct ctl_table_header *sd_sysctl_header; 5034 static void register_sched_domain_sysctl(void) 5035 { 5036 int i, cpu_num = num_possible_cpus(); 5037 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5038 char buf[32]; 5039 5040 WARN_ON(sd_ctl_dir[0].child); 5041 sd_ctl_dir[0].child = entry; 5042 5043 if (entry == NULL) 5044 return; 5045 5046 for_each_possible_cpu(i) { 5047 snprintf(buf, 32, "cpu%d", i); 5048 entry->procname = kstrdup(buf, GFP_KERNEL); 5049 entry->mode = 0555; 5050 entry->child = sd_alloc_ctl_cpu_table(i); 5051 entry++; 5052 } 5053 5054 WARN_ON(sd_sysctl_header); 5055 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5056 } 5057 5058 /* may be called multiple times per register */ 5059 static void unregister_sched_domain_sysctl(void) 5060 { 5061 if (sd_sysctl_header) 5062 unregister_sysctl_table(sd_sysctl_header); 5063 sd_sysctl_header = NULL; 5064 if (sd_ctl_dir[0].child) 5065 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5066 } 5067 #else 5068 static void register_sched_domain_sysctl(void) 5069 { 5070 } 5071 static void unregister_sched_domain_sysctl(void) 5072 { 5073 } 5074 #endif 5075 5076 static void set_rq_online(struct rq *rq) 5077 { 5078 if (!rq->online) { 5079 const struct sched_class *class; 5080 5081 cpumask_set_cpu(rq->cpu, rq->rd->online); 5082 rq->online = 1; 5083 5084 for_each_class(class) { 5085 if (class->rq_online) 5086 class->rq_online(rq); 5087 } 5088 } 5089 } 5090 5091 static void set_rq_offline(struct rq *rq) 5092 { 5093 if (rq->online) { 5094 const struct sched_class *class; 5095 5096 for_each_class(class) { 5097 if (class->rq_offline) 5098 class->rq_offline(rq); 5099 } 5100 5101 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5102 rq->online = 0; 5103 } 5104 } 5105 5106 /* 5107 * migration_call - callback that gets triggered when a CPU is added. 5108 * Here we can start up the necessary migration thread for the new CPU. 5109 */ 5110 static int __cpuinit 5111 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5112 { 5113 int cpu = (long)hcpu; 5114 unsigned long flags; 5115 struct rq *rq = cpu_rq(cpu); 5116 5117 switch (action & ~CPU_TASKS_FROZEN) { 5118 5119 case CPU_UP_PREPARE: 5120 rq->calc_load_update = calc_load_update; 5121 break; 5122 5123 case CPU_ONLINE: 5124 /* Update our root-domain */ 5125 raw_spin_lock_irqsave(&rq->lock, flags); 5126 if (rq->rd) { 5127 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5128 5129 set_rq_online(rq); 5130 } 5131 raw_spin_unlock_irqrestore(&rq->lock, flags); 5132 break; 5133 5134 #ifdef CONFIG_HOTPLUG_CPU 5135 case CPU_DYING: 5136 sched_ttwu_pending(); 5137 /* Update our root-domain */ 5138 raw_spin_lock_irqsave(&rq->lock, flags); 5139 if (rq->rd) { 5140 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5141 set_rq_offline(rq); 5142 } 5143 migrate_tasks(cpu); 5144 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5145 raw_spin_unlock_irqrestore(&rq->lock, flags); 5146 break; 5147 5148 case CPU_DEAD: 5149 calc_load_migrate(rq); 5150 break; 5151 #endif 5152 } 5153 5154 update_max_interval(); 5155 5156 return NOTIFY_OK; 5157 } 5158 5159 /* 5160 * Register at high priority so that task migration (migrate_all_tasks) 5161 * happens before everything else. This has to be lower priority than 5162 * the notifier in the perf_event subsystem, though. 5163 */ 5164 static struct notifier_block __cpuinitdata migration_notifier = { 5165 .notifier_call = migration_call, 5166 .priority = CPU_PRI_MIGRATION, 5167 }; 5168 5169 static int __cpuinit sched_cpu_active(struct notifier_block *nfb, 5170 unsigned long action, void *hcpu) 5171 { 5172 switch (action & ~CPU_TASKS_FROZEN) { 5173 case CPU_STARTING: 5174 case CPU_DOWN_FAILED: 5175 set_cpu_active((long)hcpu, true); 5176 return NOTIFY_OK; 5177 default: 5178 return NOTIFY_DONE; 5179 } 5180 } 5181 5182 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, 5183 unsigned long action, void *hcpu) 5184 { 5185 switch (action & ~CPU_TASKS_FROZEN) { 5186 case CPU_DOWN_PREPARE: 5187 set_cpu_active((long)hcpu, false); 5188 return NOTIFY_OK; 5189 default: 5190 return NOTIFY_DONE; 5191 } 5192 } 5193 5194 static int __init migration_init(void) 5195 { 5196 void *cpu = (void *)(long)smp_processor_id(); 5197 int err; 5198 5199 /* Initialize migration for the boot CPU */ 5200 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5201 BUG_ON(err == NOTIFY_BAD); 5202 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5203 register_cpu_notifier(&migration_notifier); 5204 5205 /* Register cpu active notifiers */ 5206 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5207 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5208 5209 return 0; 5210 } 5211 early_initcall(migration_init); 5212 #endif 5213 5214 #ifdef CONFIG_SMP 5215 5216 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5217 5218 #ifdef CONFIG_SCHED_DEBUG 5219 5220 static __read_mostly int sched_debug_enabled; 5221 5222 static int __init sched_debug_setup(char *str) 5223 { 5224 sched_debug_enabled = 1; 5225 5226 return 0; 5227 } 5228 early_param("sched_debug", sched_debug_setup); 5229 5230 static inline bool sched_debug(void) 5231 { 5232 return sched_debug_enabled; 5233 } 5234 5235 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5236 struct cpumask *groupmask) 5237 { 5238 struct sched_group *group = sd->groups; 5239 char str[256]; 5240 5241 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5242 cpumask_clear(groupmask); 5243 5244 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5245 5246 if (!(sd->flags & SD_LOAD_BALANCE)) { 5247 printk("does not load-balance\n"); 5248 if (sd->parent) 5249 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5250 " has parent"); 5251 return -1; 5252 } 5253 5254 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5255 5256 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5257 printk(KERN_ERR "ERROR: domain->span does not contain " 5258 "CPU%d\n", cpu); 5259 } 5260 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5261 printk(KERN_ERR "ERROR: domain->groups does not contain" 5262 " CPU%d\n", cpu); 5263 } 5264 5265 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5266 do { 5267 if (!group) { 5268 printk("\n"); 5269 printk(KERN_ERR "ERROR: group is NULL\n"); 5270 break; 5271 } 5272 5273 /* 5274 * Even though we initialize ->power to something semi-sane, 5275 * we leave power_orig unset. This allows us to detect if 5276 * domain iteration is still funny without causing /0 traps. 5277 */ 5278 if (!group->sgp->power_orig) { 5279 printk(KERN_CONT "\n"); 5280 printk(KERN_ERR "ERROR: domain->cpu_power not " 5281 "set\n"); 5282 break; 5283 } 5284 5285 if (!cpumask_weight(sched_group_cpus(group))) { 5286 printk(KERN_CONT "\n"); 5287 printk(KERN_ERR "ERROR: empty group\n"); 5288 break; 5289 } 5290 5291 if (!(sd->flags & SD_OVERLAP) && 5292 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5293 printk(KERN_CONT "\n"); 5294 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5295 break; 5296 } 5297 5298 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5299 5300 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5301 5302 printk(KERN_CONT " %s", str); 5303 if (group->sgp->power != SCHED_POWER_SCALE) { 5304 printk(KERN_CONT " (cpu_power = %d)", 5305 group->sgp->power); 5306 } 5307 5308 group = group->next; 5309 } while (group != sd->groups); 5310 printk(KERN_CONT "\n"); 5311 5312 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5313 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5314 5315 if (sd->parent && 5316 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5317 printk(KERN_ERR "ERROR: parent span is not a superset " 5318 "of domain->span\n"); 5319 return 0; 5320 } 5321 5322 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5323 { 5324 int level = 0; 5325 5326 if (!sched_debug_enabled) 5327 return; 5328 5329 if (!sd) { 5330 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5331 return; 5332 } 5333 5334 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5335 5336 for (;;) { 5337 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5338 break; 5339 level++; 5340 sd = sd->parent; 5341 if (!sd) 5342 break; 5343 } 5344 } 5345 #else /* !CONFIG_SCHED_DEBUG */ 5346 # define sched_domain_debug(sd, cpu) do { } while (0) 5347 static inline bool sched_debug(void) 5348 { 5349 return false; 5350 } 5351 #endif /* CONFIG_SCHED_DEBUG */ 5352 5353 static int sd_degenerate(struct sched_domain *sd) 5354 { 5355 if (cpumask_weight(sched_domain_span(sd)) == 1) 5356 return 1; 5357 5358 /* Following flags need at least 2 groups */ 5359 if (sd->flags & (SD_LOAD_BALANCE | 5360 SD_BALANCE_NEWIDLE | 5361 SD_BALANCE_FORK | 5362 SD_BALANCE_EXEC | 5363 SD_SHARE_CPUPOWER | 5364 SD_SHARE_PKG_RESOURCES)) { 5365 if (sd->groups != sd->groups->next) 5366 return 0; 5367 } 5368 5369 /* Following flags don't use groups */ 5370 if (sd->flags & (SD_WAKE_AFFINE)) 5371 return 0; 5372 5373 return 1; 5374 } 5375 5376 static int 5377 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5378 { 5379 unsigned long cflags = sd->flags, pflags = parent->flags; 5380 5381 if (sd_degenerate(parent)) 5382 return 1; 5383 5384 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5385 return 0; 5386 5387 /* Flags needing groups don't count if only 1 group in parent */ 5388 if (parent->groups == parent->groups->next) { 5389 pflags &= ~(SD_LOAD_BALANCE | 5390 SD_BALANCE_NEWIDLE | 5391 SD_BALANCE_FORK | 5392 SD_BALANCE_EXEC | 5393 SD_SHARE_CPUPOWER | 5394 SD_SHARE_PKG_RESOURCES); 5395 if (nr_node_ids == 1) 5396 pflags &= ~SD_SERIALIZE; 5397 } 5398 if (~cflags & pflags) 5399 return 0; 5400 5401 return 1; 5402 } 5403 5404 static void free_rootdomain(struct rcu_head *rcu) 5405 { 5406 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5407 5408 cpupri_cleanup(&rd->cpupri); 5409 free_cpumask_var(rd->rto_mask); 5410 free_cpumask_var(rd->online); 5411 free_cpumask_var(rd->span); 5412 kfree(rd); 5413 } 5414 5415 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5416 { 5417 struct root_domain *old_rd = NULL; 5418 unsigned long flags; 5419 5420 raw_spin_lock_irqsave(&rq->lock, flags); 5421 5422 if (rq->rd) { 5423 old_rd = rq->rd; 5424 5425 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5426 set_rq_offline(rq); 5427 5428 cpumask_clear_cpu(rq->cpu, old_rd->span); 5429 5430 /* 5431 * If we dont want to free the old_rt yet then 5432 * set old_rd to NULL to skip the freeing later 5433 * in this function: 5434 */ 5435 if (!atomic_dec_and_test(&old_rd->refcount)) 5436 old_rd = NULL; 5437 } 5438 5439 atomic_inc(&rd->refcount); 5440 rq->rd = rd; 5441 5442 cpumask_set_cpu(rq->cpu, rd->span); 5443 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5444 set_rq_online(rq); 5445 5446 raw_spin_unlock_irqrestore(&rq->lock, flags); 5447 5448 if (old_rd) 5449 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5450 } 5451 5452 static int init_rootdomain(struct root_domain *rd) 5453 { 5454 memset(rd, 0, sizeof(*rd)); 5455 5456 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5457 goto out; 5458 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5459 goto free_span; 5460 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5461 goto free_online; 5462 5463 if (cpupri_init(&rd->cpupri) != 0) 5464 goto free_rto_mask; 5465 return 0; 5466 5467 free_rto_mask: 5468 free_cpumask_var(rd->rto_mask); 5469 free_online: 5470 free_cpumask_var(rd->online); 5471 free_span: 5472 free_cpumask_var(rd->span); 5473 out: 5474 return -ENOMEM; 5475 } 5476 5477 /* 5478 * By default the system creates a single root-domain with all cpus as 5479 * members (mimicking the global state we have today). 5480 */ 5481 struct root_domain def_root_domain; 5482 5483 static void init_defrootdomain(void) 5484 { 5485 init_rootdomain(&def_root_domain); 5486 5487 atomic_set(&def_root_domain.refcount, 1); 5488 } 5489 5490 static struct root_domain *alloc_rootdomain(void) 5491 { 5492 struct root_domain *rd; 5493 5494 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5495 if (!rd) 5496 return NULL; 5497 5498 if (init_rootdomain(rd) != 0) { 5499 kfree(rd); 5500 return NULL; 5501 } 5502 5503 return rd; 5504 } 5505 5506 static void free_sched_groups(struct sched_group *sg, int free_sgp) 5507 { 5508 struct sched_group *tmp, *first; 5509 5510 if (!sg) 5511 return; 5512 5513 first = sg; 5514 do { 5515 tmp = sg->next; 5516 5517 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) 5518 kfree(sg->sgp); 5519 5520 kfree(sg); 5521 sg = tmp; 5522 } while (sg != first); 5523 } 5524 5525 static void free_sched_domain(struct rcu_head *rcu) 5526 { 5527 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5528 5529 /* 5530 * If its an overlapping domain it has private groups, iterate and 5531 * nuke them all. 5532 */ 5533 if (sd->flags & SD_OVERLAP) { 5534 free_sched_groups(sd->groups, 1); 5535 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5536 kfree(sd->groups->sgp); 5537 kfree(sd->groups); 5538 } 5539 kfree(sd); 5540 } 5541 5542 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5543 { 5544 call_rcu(&sd->rcu, free_sched_domain); 5545 } 5546 5547 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5548 { 5549 for (; sd; sd = sd->parent) 5550 destroy_sched_domain(sd, cpu); 5551 } 5552 5553 /* 5554 * Keep a special pointer to the highest sched_domain that has 5555 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5556 * allows us to avoid some pointer chasing select_idle_sibling(). 5557 * 5558 * Also keep a unique ID per domain (we use the first cpu number in 5559 * the cpumask of the domain), this allows us to quickly tell if 5560 * two cpus are in the same cache domain, see cpus_share_cache(). 5561 */ 5562 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5563 DEFINE_PER_CPU(int, sd_llc_id); 5564 5565 static void update_top_cache_domain(int cpu) 5566 { 5567 struct sched_domain *sd; 5568 int id = cpu; 5569 5570 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5571 if (sd) 5572 id = cpumask_first(sched_domain_span(sd)); 5573 5574 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5575 per_cpu(sd_llc_id, cpu) = id; 5576 } 5577 5578 /* 5579 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5580 * hold the hotplug lock. 5581 */ 5582 static void 5583 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5584 { 5585 struct rq *rq = cpu_rq(cpu); 5586 struct sched_domain *tmp; 5587 5588 /* Remove the sched domains which do not contribute to scheduling. */ 5589 for (tmp = sd; tmp; ) { 5590 struct sched_domain *parent = tmp->parent; 5591 if (!parent) 5592 break; 5593 5594 if (sd_parent_degenerate(tmp, parent)) { 5595 tmp->parent = parent->parent; 5596 if (parent->parent) 5597 parent->parent->child = tmp; 5598 destroy_sched_domain(parent, cpu); 5599 } else 5600 tmp = tmp->parent; 5601 } 5602 5603 if (sd && sd_degenerate(sd)) { 5604 tmp = sd; 5605 sd = sd->parent; 5606 destroy_sched_domain(tmp, cpu); 5607 if (sd) 5608 sd->child = NULL; 5609 } 5610 5611 sched_domain_debug(sd, cpu); 5612 5613 rq_attach_root(rq, rd); 5614 tmp = rq->sd; 5615 rcu_assign_pointer(rq->sd, sd); 5616 destroy_sched_domains(tmp, cpu); 5617 5618 update_top_cache_domain(cpu); 5619 } 5620 5621 /* cpus with isolated domains */ 5622 static cpumask_var_t cpu_isolated_map; 5623 5624 /* Setup the mask of cpus configured for isolated domains */ 5625 static int __init isolated_cpu_setup(char *str) 5626 { 5627 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5628 cpulist_parse(str, cpu_isolated_map); 5629 return 1; 5630 } 5631 5632 __setup("isolcpus=", isolated_cpu_setup); 5633 5634 static const struct cpumask *cpu_cpu_mask(int cpu) 5635 { 5636 return cpumask_of_node(cpu_to_node(cpu)); 5637 } 5638 5639 struct sd_data { 5640 struct sched_domain **__percpu sd; 5641 struct sched_group **__percpu sg; 5642 struct sched_group_power **__percpu sgp; 5643 }; 5644 5645 struct s_data { 5646 struct sched_domain ** __percpu sd; 5647 struct root_domain *rd; 5648 }; 5649 5650 enum s_alloc { 5651 sa_rootdomain, 5652 sa_sd, 5653 sa_sd_storage, 5654 sa_none, 5655 }; 5656 5657 struct sched_domain_topology_level; 5658 5659 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); 5660 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 5661 5662 #define SDTL_OVERLAP 0x01 5663 5664 struct sched_domain_topology_level { 5665 sched_domain_init_f init; 5666 sched_domain_mask_f mask; 5667 int flags; 5668 int numa_level; 5669 struct sd_data data; 5670 }; 5671 5672 /* 5673 * Build an iteration mask that can exclude certain CPUs from the upwards 5674 * domain traversal. 5675 * 5676 * Asymmetric node setups can result in situations where the domain tree is of 5677 * unequal depth, make sure to skip domains that already cover the entire 5678 * range. 5679 * 5680 * In that case build_sched_domains() will have terminated the iteration early 5681 * and our sibling sd spans will be empty. Domains should always include the 5682 * cpu they're built on, so check that. 5683 * 5684 */ 5685 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5686 { 5687 const struct cpumask *span = sched_domain_span(sd); 5688 struct sd_data *sdd = sd->private; 5689 struct sched_domain *sibling; 5690 int i; 5691 5692 for_each_cpu(i, span) { 5693 sibling = *per_cpu_ptr(sdd->sd, i); 5694 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5695 continue; 5696 5697 cpumask_set_cpu(i, sched_group_mask(sg)); 5698 } 5699 } 5700 5701 /* 5702 * Return the canonical balance cpu for this group, this is the first cpu 5703 * of this group that's also in the iteration mask. 5704 */ 5705 int group_balance_cpu(struct sched_group *sg) 5706 { 5707 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5708 } 5709 5710 static int 5711 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5712 { 5713 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5714 const struct cpumask *span = sched_domain_span(sd); 5715 struct cpumask *covered = sched_domains_tmpmask; 5716 struct sd_data *sdd = sd->private; 5717 struct sched_domain *child; 5718 int i; 5719 5720 cpumask_clear(covered); 5721 5722 for_each_cpu(i, span) { 5723 struct cpumask *sg_span; 5724 5725 if (cpumask_test_cpu(i, covered)) 5726 continue; 5727 5728 child = *per_cpu_ptr(sdd->sd, i); 5729 5730 /* See the comment near build_group_mask(). */ 5731 if (!cpumask_test_cpu(i, sched_domain_span(child))) 5732 continue; 5733 5734 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5735 GFP_KERNEL, cpu_to_node(cpu)); 5736 5737 if (!sg) 5738 goto fail; 5739 5740 sg_span = sched_group_cpus(sg); 5741 if (child->child) { 5742 child = child->child; 5743 cpumask_copy(sg_span, sched_domain_span(child)); 5744 } else 5745 cpumask_set_cpu(i, sg_span); 5746 5747 cpumask_or(covered, covered, sg_span); 5748 5749 sg->sgp = *per_cpu_ptr(sdd->sgp, i); 5750 if (atomic_inc_return(&sg->sgp->ref) == 1) 5751 build_group_mask(sd, sg); 5752 5753 /* 5754 * Initialize sgp->power such that even if we mess up the 5755 * domains and no possible iteration will get us here, we won't 5756 * die on a /0 trap. 5757 */ 5758 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span); 5759 5760 /* 5761 * Make sure the first group of this domain contains the 5762 * canonical balance cpu. Otherwise the sched_domain iteration 5763 * breaks. See update_sg_lb_stats(). 5764 */ 5765 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 5766 group_balance_cpu(sg) == cpu) 5767 groups = sg; 5768 5769 if (!first) 5770 first = sg; 5771 if (last) 5772 last->next = sg; 5773 last = sg; 5774 last->next = first; 5775 } 5776 sd->groups = groups; 5777 5778 return 0; 5779 5780 fail: 5781 free_sched_groups(first, 0); 5782 5783 return -ENOMEM; 5784 } 5785 5786 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 5787 { 5788 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 5789 struct sched_domain *child = sd->child; 5790 5791 if (child) 5792 cpu = cpumask_first(sched_domain_span(child)); 5793 5794 if (sg) { 5795 *sg = *per_cpu_ptr(sdd->sg, cpu); 5796 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); 5797 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ 5798 } 5799 5800 return cpu; 5801 } 5802 5803 /* 5804 * build_sched_groups will build a circular linked list of the groups 5805 * covered by the given span, and will set each group's ->cpumask correctly, 5806 * and ->cpu_power to 0. 5807 * 5808 * Assumes the sched_domain tree is fully constructed 5809 */ 5810 static int 5811 build_sched_groups(struct sched_domain *sd, int cpu) 5812 { 5813 struct sched_group *first = NULL, *last = NULL; 5814 struct sd_data *sdd = sd->private; 5815 const struct cpumask *span = sched_domain_span(sd); 5816 struct cpumask *covered; 5817 int i; 5818 5819 get_group(cpu, sdd, &sd->groups); 5820 atomic_inc(&sd->groups->ref); 5821 5822 if (cpu != cpumask_first(sched_domain_span(sd))) 5823 return 0; 5824 5825 lockdep_assert_held(&sched_domains_mutex); 5826 covered = sched_domains_tmpmask; 5827 5828 cpumask_clear(covered); 5829 5830 for_each_cpu(i, span) { 5831 struct sched_group *sg; 5832 int group = get_group(i, sdd, &sg); 5833 int j; 5834 5835 if (cpumask_test_cpu(i, covered)) 5836 continue; 5837 5838 cpumask_clear(sched_group_cpus(sg)); 5839 sg->sgp->power = 0; 5840 cpumask_setall(sched_group_mask(sg)); 5841 5842 for_each_cpu(j, span) { 5843 if (get_group(j, sdd, NULL) != group) 5844 continue; 5845 5846 cpumask_set_cpu(j, covered); 5847 cpumask_set_cpu(j, sched_group_cpus(sg)); 5848 } 5849 5850 if (!first) 5851 first = sg; 5852 if (last) 5853 last->next = sg; 5854 last = sg; 5855 } 5856 last->next = first; 5857 5858 return 0; 5859 } 5860 5861 /* 5862 * Initialize sched groups cpu_power. 5863 * 5864 * cpu_power indicates the capacity of sched group, which is used while 5865 * distributing the load between different sched groups in a sched domain. 5866 * Typically cpu_power for all the groups in a sched domain will be same unless 5867 * there are asymmetries in the topology. If there are asymmetries, group 5868 * having more cpu_power will pickup more load compared to the group having 5869 * less cpu_power. 5870 */ 5871 static void init_sched_groups_power(int cpu, struct sched_domain *sd) 5872 { 5873 struct sched_group *sg = sd->groups; 5874 5875 WARN_ON(!sd || !sg); 5876 5877 do { 5878 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 5879 sg = sg->next; 5880 } while (sg != sd->groups); 5881 5882 if (cpu != group_balance_cpu(sg)) 5883 return; 5884 5885 update_group_power(sd, cpu); 5886 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); 5887 } 5888 5889 int __weak arch_sd_sibling_asym_packing(void) 5890 { 5891 return 0*SD_ASYM_PACKING; 5892 } 5893 5894 /* 5895 * Initializers for schedule domains 5896 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 5897 */ 5898 5899 #ifdef CONFIG_SCHED_DEBUG 5900 # define SD_INIT_NAME(sd, type) sd->name = #type 5901 #else 5902 # define SD_INIT_NAME(sd, type) do { } while (0) 5903 #endif 5904 5905 #define SD_INIT_FUNC(type) \ 5906 static noinline struct sched_domain * \ 5907 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ 5908 { \ 5909 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ 5910 *sd = SD_##type##_INIT; \ 5911 SD_INIT_NAME(sd, type); \ 5912 sd->private = &tl->data; \ 5913 return sd; \ 5914 } 5915 5916 SD_INIT_FUNC(CPU) 5917 #ifdef CONFIG_SCHED_SMT 5918 SD_INIT_FUNC(SIBLING) 5919 #endif 5920 #ifdef CONFIG_SCHED_MC 5921 SD_INIT_FUNC(MC) 5922 #endif 5923 #ifdef CONFIG_SCHED_BOOK 5924 SD_INIT_FUNC(BOOK) 5925 #endif 5926 5927 static int default_relax_domain_level = -1; 5928 int sched_domain_level_max; 5929 5930 static int __init setup_relax_domain_level(char *str) 5931 { 5932 if (kstrtoint(str, 0, &default_relax_domain_level)) 5933 pr_warn("Unable to set relax_domain_level\n"); 5934 5935 return 1; 5936 } 5937 __setup("relax_domain_level=", setup_relax_domain_level); 5938 5939 static void set_domain_attribute(struct sched_domain *sd, 5940 struct sched_domain_attr *attr) 5941 { 5942 int request; 5943 5944 if (!attr || attr->relax_domain_level < 0) { 5945 if (default_relax_domain_level < 0) 5946 return; 5947 else 5948 request = default_relax_domain_level; 5949 } else 5950 request = attr->relax_domain_level; 5951 if (request < sd->level) { 5952 /* turn off idle balance on this domain */ 5953 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5954 } else { 5955 /* turn on idle balance on this domain */ 5956 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5957 } 5958 } 5959 5960 static void __sdt_free(const struct cpumask *cpu_map); 5961 static int __sdt_alloc(const struct cpumask *cpu_map); 5962 5963 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 5964 const struct cpumask *cpu_map) 5965 { 5966 switch (what) { 5967 case sa_rootdomain: 5968 if (!atomic_read(&d->rd->refcount)) 5969 free_rootdomain(&d->rd->rcu); /* fall through */ 5970 case sa_sd: 5971 free_percpu(d->sd); /* fall through */ 5972 case sa_sd_storage: 5973 __sdt_free(cpu_map); /* fall through */ 5974 case sa_none: 5975 break; 5976 } 5977 } 5978 5979 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 5980 const struct cpumask *cpu_map) 5981 { 5982 memset(d, 0, sizeof(*d)); 5983 5984 if (__sdt_alloc(cpu_map)) 5985 return sa_sd_storage; 5986 d->sd = alloc_percpu(struct sched_domain *); 5987 if (!d->sd) 5988 return sa_sd_storage; 5989 d->rd = alloc_rootdomain(); 5990 if (!d->rd) 5991 return sa_sd; 5992 return sa_rootdomain; 5993 } 5994 5995 /* 5996 * NULL the sd_data elements we've used to build the sched_domain and 5997 * sched_group structure so that the subsequent __free_domain_allocs() 5998 * will not free the data we're using. 5999 */ 6000 static void claim_allocations(int cpu, struct sched_domain *sd) 6001 { 6002 struct sd_data *sdd = sd->private; 6003 6004 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6005 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6006 6007 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6008 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6009 6010 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) 6011 *per_cpu_ptr(sdd->sgp, cpu) = NULL; 6012 } 6013 6014 #ifdef CONFIG_SCHED_SMT 6015 static const struct cpumask *cpu_smt_mask(int cpu) 6016 { 6017 return topology_thread_cpumask(cpu); 6018 } 6019 #endif 6020 6021 /* 6022 * Topology list, bottom-up. 6023 */ 6024 static struct sched_domain_topology_level default_topology[] = { 6025 #ifdef CONFIG_SCHED_SMT 6026 { sd_init_SIBLING, cpu_smt_mask, }, 6027 #endif 6028 #ifdef CONFIG_SCHED_MC 6029 { sd_init_MC, cpu_coregroup_mask, }, 6030 #endif 6031 #ifdef CONFIG_SCHED_BOOK 6032 { sd_init_BOOK, cpu_book_mask, }, 6033 #endif 6034 { sd_init_CPU, cpu_cpu_mask, }, 6035 { NULL, }, 6036 }; 6037 6038 static struct sched_domain_topology_level *sched_domain_topology = default_topology; 6039 6040 #ifdef CONFIG_NUMA 6041 6042 static int sched_domains_numa_levels; 6043 static int *sched_domains_numa_distance; 6044 static struct cpumask ***sched_domains_numa_masks; 6045 static int sched_domains_curr_level; 6046 6047 static inline int sd_local_flags(int level) 6048 { 6049 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE) 6050 return 0; 6051 6052 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE; 6053 } 6054 6055 static struct sched_domain * 6056 sd_numa_init(struct sched_domain_topology_level *tl, int cpu) 6057 { 6058 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6059 int level = tl->numa_level; 6060 int sd_weight = cpumask_weight( 6061 sched_domains_numa_masks[level][cpu_to_node(cpu)]); 6062 6063 *sd = (struct sched_domain){ 6064 .min_interval = sd_weight, 6065 .max_interval = 2*sd_weight, 6066 .busy_factor = 32, 6067 .imbalance_pct = 125, 6068 .cache_nice_tries = 2, 6069 .busy_idx = 3, 6070 .idle_idx = 2, 6071 .newidle_idx = 0, 6072 .wake_idx = 0, 6073 .forkexec_idx = 0, 6074 6075 .flags = 1*SD_LOAD_BALANCE 6076 | 1*SD_BALANCE_NEWIDLE 6077 | 0*SD_BALANCE_EXEC 6078 | 0*SD_BALANCE_FORK 6079 | 0*SD_BALANCE_WAKE 6080 | 0*SD_WAKE_AFFINE 6081 | 0*SD_SHARE_CPUPOWER 6082 | 0*SD_SHARE_PKG_RESOURCES 6083 | 1*SD_SERIALIZE 6084 | 0*SD_PREFER_SIBLING 6085 | sd_local_flags(level) 6086 , 6087 .last_balance = jiffies, 6088 .balance_interval = sd_weight, 6089 }; 6090 SD_INIT_NAME(sd, NUMA); 6091 sd->private = &tl->data; 6092 6093 /* 6094 * Ugly hack to pass state to sd_numa_mask()... 6095 */ 6096 sched_domains_curr_level = tl->numa_level; 6097 6098 return sd; 6099 } 6100 6101 static const struct cpumask *sd_numa_mask(int cpu) 6102 { 6103 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6104 } 6105 6106 static void sched_numa_warn(const char *str) 6107 { 6108 static int done = false; 6109 int i,j; 6110 6111 if (done) 6112 return; 6113 6114 done = true; 6115 6116 printk(KERN_WARNING "ERROR: %s\n\n", str); 6117 6118 for (i = 0; i < nr_node_ids; i++) { 6119 printk(KERN_WARNING " "); 6120 for (j = 0; j < nr_node_ids; j++) 6121 printk(KERN_CONT "%02d ", node_distance(i,j)); 6122 printk(KERN_CONT "\n"); 6123 } 6124 printk(KERN_WARNING "\n"); 6125 } 6126 6127 static bool find_numa_distance(int distance) 6128 { 6129 int i; 6130 6131 if (distance == node_distance(0, 0)) 6132 return true; 6133 6134 for (i = 0; i < sched_domains_numa_levels; i++) { 6135 if (sched_domains_numa_distance[i] == distance) 6136 return true; 6137 } 6138 6139 return false; 6140 } 6141 6142 static void sched_init_numa(void) 6143 { 6144 int next_distance, curr_distance = node_distance(0, 0); 6145 struct sched_domain_topology_level *tl; 6146 int level = 0; 6147 int i, j, k; 6148 6149 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6150 if (!sched_domains_numa_distance) 6151 return; 6152 6153 /* 6154 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6155 * unique distances in the node_distance() table. 6156 * 6157 * Assumes node_distance(0,j) includes all distances in 6158 * node_distance(i,j) in order to avoid cubic time. 6159 */ 6160 next_distance = curr_distance; 6161 for (i = 0; i < nr_node_ids; i++) { 6162 for (j = 0; j < nr_node_ids; j++) { 6163 for (k = 0; k < nr_node_ids; k++) { 6164 int distance = node_distance(i, k); 6165 6166 if (distance > curr_distance && 6167 (distance < next_distance || 6168 next_distance == curr_distance)) 6169 next_distance = distance; 6170 6171 /* 6172 * While not a strong assumption it would be nice to know 6173 * about cases where if node A is connected to B, B is not 6174 * equally connected to A. 6175 */ 6176 if (sched_debug() && node_distance(k, i) != distance) 6177 sched_numa_warn("Node-distance not symmetric"); 6178 6179 if (sched_debug() && i && !find_numa_distance(distance)) 6180 sched_numa_warn("Node-0 not representative"); 6181 } 6182 if (next_distance != curr_distance) { 6183 sched_domains_numa_distance[level++] = next_distance; 6184 sched_domains_numa_levels = level; 6185 curr_distance = next_distance; 6186 } else break; 6187 } 6188 6189 /* 6190 * In case of sched_debug() we verify the above assumption. 6191 */ 6192 if (!sched_debug()) 6193 break; 6194 } 6195 /* 6196 * 'level' contains the number of unique distances, excluding the 6197 * identity distance node_distance(i,i). 6198 * 6199 * The sched_domains_nume_distance[] array includes the actual distance 6200 * numbers. 6201 */ 6202 6203 /* 6204 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6205 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6206 * the array will contain less then 'level' members. This could be 6207 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6208 * in other functions. 6209 * 6210 * We reset it to 'level' at the end of this function. 6211 */ 6212 sched_domains_numa_levels = 0; 6213 6214 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6215 if (!sched_domains_numa_masks) 6216 return; 6217 6218 /* 6219 * Now for each level, construct a mask per node which contains all 6220 * cpus of nodes that are that many hops away from us. 6221 */ 6222 for (i = 0; i < level; i++) { 6223 sched_domains_numa_masks[i] = 6224 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6225 if (!sched_domains_numa_masks[i]) 6226 return; 6227 6228 for (j = 0; j < nr_node_ids; j++) { 6229 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6230 if (!mask) 6231 return; 6232 6233 sched_domains_numa_masks[i][j] = mask; 6234 6235 for (k = 0; k < nr_node_ids; k++) { 6236 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6237 continue; 6238 6239 cpumask_or(mask, mask, cpumask_of_node(k)); 6240 } 6241 } 6242 } 6243 6244 tl = kzalloc((ARRAY_SIZE(default_topology) + level) * 6245 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6246 if (!tl) 6247 return; 6248 6249 /* 6250 * Copy the default topology bits.. 6251 */ 6252 for (i = 0; default_topology[i].init; i++) 6253 tl[i] = default_topology[i]; 6254 6255 /* 6256 * .. and append 'j' levels of NUMA goodness. 6257 */ 6258 for (j = 0; j < level; i++, j++) { 6259 tl[i] = (struct sched_domain_topology_level){ 6260 .init = sd_numa_init, 6261 .mask = sd_numa_mask, 6262 .flags = SDTL_OVERLAP, 6263 .numa_level = j, 6264 }; 6265 } 6266 6267 sched_domain_topology = tl; 6268 6269 sched_domains_numa_levels = level; 6270 } 6271 6272 static void sched_domains_numa_masks_set(int cpu) 6273 { 6274 int i, j; 6275 int node = cpu_to_node(cpu); 6276 6277 for (i = 0; i < sched_domains_numa_levels; i++) { 6278 for (j = 0; j < nr_node_ids; j++) { 6279 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6280 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6281 } 6282 } 6283 } 6284 6285 static void sched_domains_numa_masks_clear(int cpu) 6286 { 6287 int i, j; 6288 for (i = 0; i < sched_domains_numa_levels; i++) { 6289 for (j = 0; j < nr_node_ids; j++) 6290 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6291 } 6292 } 6293 6294 /* 6295 * Update sched_domains_numa_masks[level][node] array when new cpus 6296 * are onlined. 6297 */ 6298 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6299 unsigned long action, 6300 void *hcpu) 6301 { 6302 int cpu = (long)hcpu; 6303 6304 switch (action & ~CPU_TASKS_FROZEN) { 6305 case CPU_ONLINE: 6306 sched_domains_numa_masks_set(cpu); 6307 break; 6308 6309 case CPU_DEAD: 6310 sched_domains_numa_masks_clear(cpu); 6311 break; 6312 6313 default: 6314 return NOTIFY_DONE; 6315 } 6316 6317 return NOTIFY_OK; 6318 } 6319 #else 6320 static inline void sched_init_numa(void) 6321 { 6322 } 6323 6324 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6325 unsigned long action, 6326 void *hcpu) 6327 { 6328 return 0; 6329 } 6330 #endif /* CONFIG_NUMA */ 6331 6332 static int __sdt_alloc(const struct cpumask *cpu_map) 6333 { 6334 struct sched_domain_topology_level *tl; 6335 int j; 6336 6337 for (tl = sched_domain_topology; tl->init; tl++) { 6338 struct sd_data *sdd = &tl->data; 6339 6340 sdd->sd = alloc_percpu(struct sched_domain *); 6341 if (!sdd->sd) 6342 return -ENOMEM; 6343 6344 sdd->sg = alloc_percpu(struct sched_group *); 6345 if (!sdd->sg) 6346 return -ENOMEM; 6347 6348 sdd->sgp = alloc_percpu(struct sched_group_power *); 6349 if (!sdd->sgp) 6350 return -ENOMEM; 6351 6352 for_each_cpu(j, cpu_map) { 6353 struct sched_domain *sd; 6354 struct sched_group *sg; 6355 struct sched_group_power *sgp; 6356 6357 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6358 GFP_KERNEL, cpu_to_node(j)); 6359 if (!sd) 6360 return -ENOMEM; 6361 6362 *per_cpu_ptr(sdd->sd, j) = sd; 6363 6364 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6365 GFP_KERNEL, cpu_to_node(j)); 6366 if (!sg) 6367 return -ENOMEM; 6368 6369 sg->next = sg; 6370 6371 *per_cpu_ptr(sdd->sg, j) = sg; 6372 6373 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(), 6374 GFP_KERNEL, cpu_to_node(j)); 6375 if (!sgp) 6376 return -ENOMEM; 6377 6378 *per_cpu_ptr(sdd->sgp, j) = sgp; 6379 } 6380 } 6381 6382 return 0; 6383 } 6384 6385 static void __sdt_free(const struct cpumask *cpu_map) 6386 { 6387 struct sched_domain_topology_level *tl; 6388 int j; 6389 6390 for (tl = sched_domain_topology; tl->init; tl++) { 6391 struct sd_data *sdd = &tl->data; 6392 6393 for_each_cpu(j, cpu_map) { 6394 struct sched_domain *sd; 6395 6396 if (sdd->sd) { 6397 sd = *per_cpu_ptr(sdd->sd, j); 6398 if (sd && (sd->flags & SD_OVERLAP)) 6399 free_sched_groups(sd->groups, 0); 6400 kfree(*per_cpu_ptr(sdd->sd, j)); 6401 } 6402 6403 if (sdd->sg) 6404 kfree(*per_cpu_ptr(sdd->sg, j)); 6405 if (sdd->sgp) 6406 kfree(*per_cpu_ptr(sdd->sgp, j)); 6407 } 6408 free_percpu(sdd->sd); 6409 sdd->sd = NULL; 6410 free_percpu(sdd->sg); 6411 sdd->sg = NULL; 6412 free_percpu(sdd->sgp); 6413 sdd->sgp = NULL; 6414 } 6415 } 6416 6417 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6418 struct s_data *d, const struct cpumask *cpu_map, 6419 struct sched_domain_attr *attr, struct sched_domain *child, 6420 int cpu) 6421 { 6422 struct sched_domain *sd = tl->init(tl, cpu); 6423 if (!sd) 6424 return child; 6425 6426 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6427 if (child) { 6428 sd->level = child->level + 1; 6429 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6430 child->parent = sd; 6431 } 6432 sd->child = child; 6433 set_domain_attribute(sd, attr); 6434 6435 return sd; 6436 } 6437 6438 /* 6439 * Build sched domains for a given set of cpus and attach the sched domains 6440 * to the individual cpus 6441 */ 6442 static int build_sched_domains(const struct cpumask *cpu_map, 6443 struct sched_domain_attr *attr) 6444 { 6445 enum s_alloc alloc_state = sa_none; 6446 struct sched_domain *sd; 6447 struct s_data d; 6448 int i, ret = -ENOMEM; 6449 6450 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6451 if (alloc_state != sa_rootdomain) 6452 goto error; 6453 6454 /* Set up domains for cpus specified by the cpu_map. */ 6455 for_each_cpu(i, cpu_map) { 6456 struct sched_domain_topology_level *tl; 6457 6458 sd = NULL; 6459 for (tl = sched_domain_topology; tl->init; tl++) { 6460 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); 6461 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6462 sd->flags |= SD_OVERLAP; 6463 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6464 break; 6465 } 6466 6467 while (sd->child) 6468 sd = sd->child; 6469 6470 *per_cpu_ptr(d.sd, i) = sd; 6471 } 6472 6473 /* Build the groups for the domains */ 6474 for_each_cpu(i, cpu_map) { 6475 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6476 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6477 if (sd->flags & SD_OVERLAP) { 6478 if (build_overlap_sched_groups(sd, i)) 6479 goto error; 6480 } else { 6481 if (build_sched_groups(sd, i)) 6482 goto error; 6483 } 6484 } 6485 } 6486 6487 /* Calculate CPU power for physical packages and nodes */ 6488 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6489 if (!cpumask_test_cpu(i, cpu_map)) 6490 continue; 6491 6492 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6493 claim_allocations(i, sd); 6494 init_sched_groups_power(i, sd); 6495 } 6496 } 6497 6498 /* Attach the domains */ 6499 rcu_read_lock(); 6500 for_each_cpu(i, cpu_map) { 6501 sd = *per_cpu_ptr(d.sd, i); 6502 cpu_attach_domain(sd, d.rd, i); 6503 } 6504 rcu_read_unlock(); 6505 6506 ret = 0; 6507 error: 6508 __free_domain_allocs(&d, alloc_state, cpu_map); 6509 return ret; 6510 } 6511 6512 static cpumask_var_t *doms_cur; /* current sched domains */ 6513 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6514 static struct sched_domain_attr *dattr_cur; 6515 /* attribues of custom domains in 'doms_cur' */ 6516 6517 /* 6518 * Special case: If a kmalloc of a doms_cur partition (array of 6519 * cpumask) fails, then fallback to a single sched domain, 6520 * as determined by the single cpumask fallback_doms. 6521 */ 6522 static cpumask_var_t fallback_doms; 6523 6524 /* 6525 * arch_update_cpu_topology lets virtualized architectures update the 6526 * cpu core maps. It is supposed to return 1 if the topology changed 6527 * or 0 if it stayed the same. 6528 */ 6529 int __attribute__((weak)) arch_update_cpu_topology(void) 6530 { 6531 return 0; 6532 } 6533 6534 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6535 { 6536 int i; 6537 cpumask_var_t *doms; 6538 6539 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6540 if (!doms) 6541 return NULL; 6542 for (i = 0; i < ndoms; i++) { 6543 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6544 free_sched_domains(doms, i); 6545 return NULL; 6546 } 6547 } 6548 return doms; 6549 } 6550 6551 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6552 { 6553 unsigned int i; 6554 for (i = 0; i < ndoms; i++) 6555 free_cpumask_var(doms[i]); 6556 kfree(doms); 6557 } 6558 6559 /* 6560 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6561 * For now this just excludes isolated cpus, but could be used to 6562 * exclude other special cases in the future. 6563 */ 6564 static int init_sched_domains(const struct cpumask *cpu_map) 6565 { 6566 int err; 6567 6568 arch_update_cpu_topology(); 6569 ndoms_cur = 1; 6570 doms_cur = alloc_sched_domains(ndoms_cur); 6571 if (!doms_cur) 6572 doms_cur = &fallback_doms; 6573 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6574 err = build_sched_domains(doms_cur[0], NULL); 6575 register_sched_domain_sysctl(); 6576 6577 return err; 6578 } 6579 6580 /* 6581 * Detach sched domains from a group of cpus specified in cpu_map 6582 * These cpus will now be attached to the NULL domain 6583 */ 6584 static void detach_destroy_domains(const struct cpumask *cpu_map) 6585 { 6586 int i; 6587 6588 rcu_read_lock(); 6589 for_each_cpu(i, cpu_map) 6590 cpu_attach_domain(NULL, &def_root_domain, i); 6591 rcu_read_unlock(); 6592 } 6593 6594 /* handle null as "default" */ 6595 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6596 struct sched_domain_attr *new, int idx_new) 6597 { 6598 struct sched_domain_attr tmp; 6599 6600 /* fast path */ 6601 if (!new && !cur) 6602 return 1; 6603 6604 tmp = SD_ATTR_INIT; 6605 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6606 new ? (new + idx_new) : &tmp, 6607 sizeof(struct sched_domain_attr)); 6608 } 6609 6610 /* 6611 * Partition sched domains as specified by the 'ndoms_new' 6612 * cpumasks in the array doms_new[] of cpumasks. This compares 6613 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6614 * It destroys each deleted domain and builds each new domain. 6615 * 6616 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6617 * The masks don't intersect (don't overlap.) We should setup one 6618 * sched domain for each mask. CPUs not in any of the cpumasks will 6619 * not be load balanced. If the same cpumask appears both in the 6620 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6621 * it as it is. 6622 * 6623 * The passed in 'doms_new' should be allocated using 6624 * alloc_sched_domains. This routine takes ownership of it and will 6625 * free_sched_domains it when done with it. If the caller failed the 6626 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6627 * and partition_sched_domains() will fallback to the single partition 6628 * 'fallback_doms', it also forces the domains to be rebuilt. 6629 * 6630 * If doms_new == NULL it will be replaced with cpu_online_mask. 6631 * ndoms_new == 0 is a special case for destroying existing domains, 6632 * and it will not create the default domain. 6633 * 6634 * Call with hotplug lock held 6635 */ 6636 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6637 struct sched_domain_attr *dattr_new) 6638 { 6639 int i, j, n; 6640 int new_topology; 6641 6642 mutex_lock(&sched_domains_mutex); 6643 6644 /* always unregister in case we don't destroy any domains */ 6645 unregister_sched_domain_sysctl(); 6646 6647 /* Let architecture update cpu core mappings. */ 6648 new_topology = arch_update_cpu_topology(); 6649 6650 n = doms_new ? ndoms_new : 0; 6651 6652 /* Destroy deleted domains */ 6653 for (i = 0; i < ndoms_cur; i++) { 6654 for (j = 0; j < n && !new_topology; j++) { 6655 if (cpumask_equal(doms_cur[i], doms_new[j]) 6656 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6657 goto match1; 6658 } 6659 /* no match - a current sched domain not in new doms_new[] */ 6660 detach_destroy_domains(doms_cur[i]); 6661 match1: 6662 ; 6663 } 6664 6665 if (doms_new == NULL) { 6666 ndoms_cur = 0; 6667 doms_new = &fallback_doms; 6668 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6669 WARN_ON_ONCE(dattr_new); 6670 } 6671 6672 /* Build new domains */ 6673 for (i = 0; i < ndoms_new; i++) { 6674 for (j = 0; j < ndoms_cur && !new_topology; j++) { 6675 if (cpumask_equal(doms_new[i], doms_cur[j]) 6676 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6677 goto match2; 6678 } 6679 /* no match - add a new doms_new */ 6680 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6681 match2: 6682 ; 6683 } 6684 6685 /* Remember the new sched domains */ 6686 if (doms_cur != &fallback_doms) 6687 free_sched_domains(doms_cur, ndoms_cur); 6688 kfree(dattr_cur); /* kfree(NULL) is safe */ 6689 doms_cur = doms_new; 6690 dattr_cur = dattr_new; 6691 ndoms_cur = ndoms_new; 6692 6693 register_sched_domain_sysctl(); 6694 6695 mutex_unlock(&sched_domains_mutex); 6696 } 6697 6698 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 6699 6700 /* 6701 * Update cpusets according to cpu_active mask. If cpusets are 6702 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6703 * around partition_sched_domains(). 6704 * 6705 * If we come here as part of a suspend/resume, don't touch cpusets because we 6706 * want to restore it back to its original state upon resume anyway. 6707 */ 6708 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6709 void *hcpu) 6710 { 6711 switch (action) { 6712 case CPU_ONLINE_FROZEN: 6713 case CPU_DOWN_FAILED_FROZEN: 6714 6715 /* 6716 * num_cpus_frozen tracks how many CPUs are involved in suspend 6717 * resume sequence. As long as this is not the last online 6718 * operation in the resume sequence, just build a single sched 6719 * domain, ignoring cpusets. 6720 */ 6721 num_cpus_frozen--; 6722 if (likely(num_cpus_frozen)) { 6723 partition_sched_domains(1, NULL, NULL); 6724 break; 6725 } 6726 6727 /* 6728 * This is the last CPU online operation. So fall through and 6729 * restore the original sched domains by considering the 6730 * cpuset configurations. 6731 */ 6732 6733 case CPU_ONLINE: 6734 case CPU_DOWN_FAILED: 6735 cpuset_update_active_cpus(true); 6736 break; 6737 default: 6738 return NOTIFY_DONE; 6739 } 6740 return NOTIFY_OK; 6741 } 6742 6743 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6744 void *hcpu) 6745 { 6746 switch (action) { 6747 case CPU_DOWN_PREPARE: 6748 cpuset_update_active_cpus(false); 6749 break; 6750 case CPU_DOWN_PREPARE_FROZEN: 6751 num_cpus_frozen++; 6752 partition_sched_domains(1, NULL, NULL); 6753 break; 6754 default: 6755 return NOTIFY_DONE; 6756 } 6757 return NOTIFY_OK; 6758 } 6759 6760 void __init sched_init_smp(void) 6761 { 6762 cpumask_var_t non_isolated_cpus; 6763 6764 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6765 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6766 6767 sched_init_numa(); 6768 6769 get_online_cpus(); 6770 mutex_lock(&sched_domains_mutex); 6771 init_sched_domains(cpu_active_mask); 6772 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6773 if (cpumask_empty(non_isolated_cpus)) 6774 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6775 mutex_unlock(&sched_domains_mutex); 6776 put_online_cpus(); 6777 6778 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 6779 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6780 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6781 6782 /* RT runtime code needs to handle some hotplug events */ 6783 hotcpu_notifier(update_runtime, 0); 6784 6785 init_hrtick(); 6786 6787 /* Move init over to a non-isolated CPU */ 6788 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6789 BUG(); 6790 sched_init_granularity(); 6791 free_cpumask_var(non_isolated_cpus); 6792 6793 init_sched_rt_class(); 6794 } 6795 #else 6796 void __init sched_init_smp(void) 6797 { 6798 sched_init_granularity(); 6799 } 6800 #endif /* CONFIG_SMP */ 6801 6802 const_debug unsigned int sysctl_timer_migration = 1; 6803 6804 int in_sched_functions(unsigned long addr) 6805 { 6806 return in_lock_functions(addr) || 6807 (addr >= (unsigned long)__sched_text_start 6808 && addr < (unsigned long)__sched_text_end); 6809 } 6810 6811 #ifdef CONFIG_CGROUP_SCHED 6812 struct task_group root_task_group; 6813 LIST_HEAD(task_groups); 6814 #endif 6815 6816 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask); 6817 6818 void __init sched_init(void) 6819 { 6820 int i, j; 6821 unsigned long alloc_size = 0, ptr; 6822 6823 #ifdef CONFIG_FAIR_GROUP_SCHED 6824 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6825 #endif 6826 #ifdef CONFIG_RT_GROUP_SCHED 6827 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6828 #endif 6829 #ifdef CONFIG_CPUMASK_OFFSTACK 6830 alloc_size += num_possible_cpus() * cpumask_size(); 6831 #endif 6832 if (alloc_size) { 6833 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6834 6835 #ifdef CONFIG_FAIR_GROUP_SCHED 6836 root_task_group.se = (struct sched_entity **)ptr; 6837 ptr += nr_cpu_ids * sizeof(void **); 6838 6839 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6840 ptr += nr_cpu_ids * sizeof(void **); 6841 6842 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6843 #ifdef CONFIG_RT_GROUP_SCHED 6844 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6845 ptr += nr_cpu_ids * sizeof(void **); 6846 6847 root_task_group.rt_rq = (struct rt_rq **)ptr; 6848 ptr += nr_cpu_ids * sizeof(void **); 6849 6850 #endif /* CONFIG_RT_GROUP_SCHED */ 6851 #ifdef CONFIG_CPUMASK_OFFSTACK 6852 for_each_possible_cpu(i) { 6853 per_cpu(load_balance_tmpmask, i) = (void *)ptr; 6854 ptr += cpumask_size(); 6855 } 6856 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6857 } 6858 6859 #ifdef CONFIG_SMP 6860 init_defrootdomain(); 6861 #endif 6862 6863 init_rt_bandwidth(&def_rt_bandwidth, 6864 global_rt_period(), global_rt_runtime()); 6865 6866 #ifdef CONFIG_RT_GROUP_SCHED 6867 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6868 global_rt_period(), global_rt_runtime()); 6869 #endif /* CONFIG_RT_GROUP_SCHED */ 6870 6871 #ifdef CONFIG_CGROUP_SCHED 6872 list_add(&root_task_group.list, &task_groups); 6873 INIT_LIST_HEAD(&root_task_group.children); 6874 INIT_LIST_HEAD(&root_task_group.siblings); 6875 autogroup_init(&init_task); 6876 6877 #endif /* CONFIG_CGROUP_SCHED */ 6878 6879 #ifdef CONFIG_CGROUP_CPUACCT 6880 root_cpuacct.cpustat = &kernel_cpustat; 6881 root_cpuacct.cpuusage = alloc_percpu(u64); 6882 /* Too early, not expected to fail */ 6883 BUG_ON(!root_cpuacct.cpuusage); 6884 #endif 6885 for_each_possible_cpu(i) { 6886 struct rq *rq; 6887 6888 rq = cpu_rq(i); 6889 raw_spin_lock_init(&rq->lock); 6890 rq->nr_running = 0; 6891 rq->calc_load_active = 0; 6892 rq->calc_load_update = jiffies + LOAD_FREQ; 6893 init_cfs_rq(&rq->cfs); 6894 init_rt_rq(&rq->rt, rq); 6895 #ifdef CONFIG_FAIR_GROUP_SCHED 6896 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6897 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6898 /* 6899 * How much cpu bandwidth does root_task_group get? 6900 * 6901 * In case of task-groups formed thr' the cgroup filesystem, it 6902 * gets 100% of the cpu resources in the system. This overall 6903 * system cpu resource is divided among the tasks of 6904 * root_task_group and its child task-groups in a fair manner, 6905 * based on each entity's (task or task-group's) weight 6906 * (se->load.weight). 6907 * 6908 * In other words, if root_task_group has 10 tasks of weight 6909 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6910 * then A0's share of the cpu resource is: 6911 * 6912 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6913 * 6914 * We achieve this by letting root_task_group's tasks sit 6915 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6916 */ 6917 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6918 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6919 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6920 6921 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6922 #ifdef CONFIG_RT_GROUP_SCHED 6923 INIT_LIST_HEAD(&rq->leaf_rt_rq_list); 6924 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6925 #endif 6926 6927 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6928 rq->cpu_load[j] = 0; 6929 6930 rq->last_load_update_tick = jiffies; 6931 6932 #ifdef CONFIG_SMP 6933 rq->sd = NULL; 6934 rq->rd = NULL; 6935 rq->cpu_power = SCHED_POWER_SCALE; 6936 rq->post_schedule = 0; 6937 rq->active_balance = 0; 6938 rq->next_balance = jiffies; 6939 rq->push_cpu = 0; 6940 rq->cpu = i; 6941 rq->online = 0; 6942 rq->idle_stamp = 0; 6943 rq->avg_idle = 2*sysctl_sched_migration_cost; 6944 6945 INIT_LIST_HEAD(&rq->cfs_tasks); 6946 6947 rq_attach_root(rq, &def_root_domain); 6948 #ifdef CONFIG_NO_HZ 6949 rq->nohz_flags = 0; 6950 #endif 6951 #endif 6952 init_rq_hrtick(rq); 6953 atomic_set(&rq->nr_iowait, 0); 6954 } 6955 6956 set_load_weight(&init_task); 6957 6958 #ifdef CONFIG_PREEMPT_NOTIFIERS 6959 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 6960 #endif 6961 6962 #ifdef CONFIG_RT_MUTEXES 6963 plist_head_init(&init_task.pi_waiters); 6964 #endif 6965 6966 /* 6967 * The boot idle thread does lazy MMU switching as well: 6968 */ 6969 atomic_inc(&init_mm.mm_count); 6970 enter_lazy_tlb(&init_mm, current); 6971 6972 /* 6973 * Make us the idle thread. Technically, schedule() should not be 6974 * called from this thread, however somewhere below it might be, 6975 * but because we are the idle thread, we just pick up running again 6976 * when this runqueue becomes "idle". 6977 */ 6978 init_idle(current, smp_processor_id()); 6979 6980 calc_load_update = jiffies + LOAD_FREQ; 6981 6982 /* 6983 * During early bootup we pretend to be a normal task: 6984 */ 6985 current->sched_class = &fair_sched_class; 6986 6987 #ifdef CONFIG_SMP 6988 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 6989 /* May be allocated at isolcpus cmdline parse time */ 6990 if (cpu_isolated_map == NULL) 6991 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 6992 idle_thread_set_boot_cpu(); 6993 #endif 6994 init_sched_fair_class(); 6995 6996 scheduler_running = 1; 6997 } 6998 6999 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7000 static inline int preempt_count_equals(int preempt_offset) 7001 { 7002 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7003 7004 return (nested == preempt_offset); 7005 } 7006 7007 void __might_sleep(const char *file, int line, int preempt_offset) 7008 { 7009 static unsigned long prev_jiffy; /* ratelimiting */ 7010 7011 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7012 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || 7013 system_state != SYSTEM_RUNNING || oops_in_progress) 7014 return; 7015 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7016 return; 7017 prev_jiffy = jiffies; 7018 7019 printk(KERN_ERR 7020 "BUG: sleeping function called from invalid context at %s:%d\n", 7021 file, line); 7022 printk(KERN_ERR 7023 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7024 in_atomic(), irqs_disabled(), 7025 current->pid, current->comm); 7026 7027 debug_show_held_locks(current); 7028 if (irqs_disabled()) 7029 print_irqtrace_events(current); 7030 dump_stack(); 7031 } 7032 EXPORT_SYMBOL(__might_sleep); 7033 #endif 7034 7035 #ifdef CONFIG_MAGIC_SYSRQ 7036 static void normalize_task(struct rq *rq, struct task_struct *p) 7037 { 7038 const struct sched_class *prev_class = p->sched_class; 7039 int old_prio = p->prio; 7040 int on_rq; 7041 7042 on_rq = p->on_rq; 7043 if (on_rq) 7044 dequeue_task(rq, p, 0); 7045 __setscheduler(rq, p, SCHED_NORMAL, 0); 7046 if (on_rq) { 7047 enqueue_task(rq, p, 0); 7048 resched_task(rq->curr); 7049 } 7050 7051 check_class_changed(rq, p, prev_class, old_prio); 7052 } 7053 7054 void normalize_rt_tasks(void) 7055 { 7056 struct task_struct *g, *p; 7057 unsigned long flags; 7058 struct rq *rq; 7059 7060 read_lock_irqsave(&tasklist_lock, flags); 7061 do_each_thread(g, p) { 7062 /* 7063 * Only normalize user tasks: 7064 */ 7065 if (!p->mm) 7066 continue; 7067 7068 p->se.exec_start = 0; 7069 #ifdef CONFIG_SCHEDSTATS 7070 p->se.statistics.wait_start = 0; 7071 p->se.statistics.sleep_start = 0; 7072 p->se.statistics.block_start = 0; 7073 #endif 7074 7075 if (!rt_task(p)) { 7076 /* 7077 * Renice negative nice level userspace 7078 * tasks back to 0: 7079 */ 7080 if (TASK_NICE(p) < 0 && p->mm) 7081 set_user_nice(p, 0); 7082 continue; 7083 } 7084 7085 raw_spin_lock(&p->pi_lock); 7086 rq = __task_rq_lock(p); 7087 7088 normalize_task(rq, p); 7089 7090 __task_rq_unlock(rq); 7091 raw_spin_unlock(&p->pi_lock); 7092 } while_each_thread(g, p); 7093 7094 read_unlock_irqrestore(&tasklist_lock, flags); 7095 } 7096 7097 #endif /* CONFIG_MAGIC_SYSRQ */ 7098 7099 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7100 /* 7101 * These functions are only useful for the IA64 MCA handling, or kdb. 7102 * 7103 * They can only be called when the whole system has been 7104 * stopped - every CPU needs to be quiescent, and no scheduling 7105 * activity can take place. Using them for anything else would 7106 * be a serious bug, and as a result, they aren't even visible 7107 * under any other configuration. 7108 */ 7109 7110 /** 7111 * curr_task - return the current task for a given cpu. 7112 * @cpu: the processor in question. 7113 * 7114 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7115 */ 7116 struct task_struct *curr_task(int cpu) 7117 { 7118 return cpu_curr(cpu); 7119 } 7120 7121 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7122 7123 #ifdef CONFIG_IA64 7124 /** 7125 * set_curr_task - set the current task for a given cpu. 7126 * @cpu: the processor in question. 7127 * @p: the task pointer to set. 7128 * 7129 * Description: This function must only be used when non-maskable interrupts 7130 * are serviced on a separate stack. It allows the architecture to switch the 7131 * notion of the current task on a cpu in a non-blocking manner. This function 7132 * must be called with all CPU's synchronized, and interrupts disabled, the 7133 * and caller must save the original value of the current task (see 7134 * curr_task() above) and restore that value before reenabling interrupts and 7135 * re-starting the system. 7136 * 7137 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7138 */ 7139 void set_curr_task(int cpu, struct task_struct *p) 7140 { 7141 cpu_curr(cpu) = p; 7142 } 7143 7144 #endif 7145 7146 #ifdef CONFIG_CGROUP_SCHED 7147 /* task_group_lock serializes the addition/removal of task groups */ 7148 static DEFINE_SPINLOCK(task_group_lock); 7149 7150 static void free_sched_group(struct task_group *tg) 7151 { 7152 free_fair_sched_group(tg); 7153 free_rt_sched_group(tg); 7154 autogroup_free(tg); 7155 kfree(tg); 7156 } 7157 7158 /* allocate runqueue etc for a new task group */ 7159 struct task_group *sched_create_group(struct task_group *parent) 7160 { 7161 struct task_group *tg; 7162 unsigned long flags; 7163 7164 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7165 if (!tg) 7166 return ERR_PTR(-ENOMEM); 7167 7168 if (!alloc_fair_sched_group(tg, parent)) 7169 goto err; 7170 7171 if (!alloc_rt_sched_group(tg, parent)) 7172 goto err; 7173 7174 spin_lock_irqsave(&task_group_lock, flags); 7175 list_add_rcu(&tg->list, &task_groups); 7176 7177 WARN_ON(!parent); /* root should already exist */ 7178 7179 tg->parent = parent; 7180 INIT_LIST_HEAD(&tg->children); 7181 list_add_rcu(&tg->siblings, &parent->children); 7182 spin_unlock_irqrestore(&task_group_lock, flags); 7183 7184 return tg; 7185 7186 err: 7187 free_sched_group(tg); 7188 return ERR_PTR(-ENOMEM); 7189 } 7190 7191 /* rcu callback to free various structures associated with a task group */ 7192 static void free_sched_group_rcu(struct rcu_head *rhp) 7193 { 7194 /* now it should be safe to free those cfs_rqs */ 7195 free_sched_group(container_of(rhp, struct task_group, rcu)); 7196 } 7197 7198 /* Destroy runqueue etc associated with a task group */ 7199 void sched_destroy_group(struct task_group *tg) 7200 { 7201 unsigned long flags; 7202 int i; 7203 7204 /* end participation in shares distribution */ 7205 for_each_possible_cpu(i) 7206 unregister_fair_sched_group(tg, i); 7207 7208 spin_lock_irqsave(&task_group_lock, flags); 7209 list_del_rcu(&tg->list); 7210 list_del_rcu(&tg->siblings); 7211 spin_unlock_irqrestore(&task_group_lock, flags); 7212 7213 /* wait for possible concurrent references to cfs_rqs complete */ 7214 call_rcu(&tg->rcu, free_sched_group_rcu); 7215 } 7216 7217 /* change task's runqueue when it moves between groups. 7218 * The caller of this function should have put the task in its new group 7219 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7220 * reflect its new group. 7221 */ 7222 void sched_move_task(struct task_struct *tsk) 7223 { 7224 struct task_group *tg; 7225 int on_rq, running; 7226 unsigned long flags; 7227 struct rq *rq; 7228 7229 rq = task_rq_lock(tsk, &flags); 7230 7231 running = task_current(rq, tsk); 7232 on_rq = tsk->on_rq; 7233 7234 if (on_rq) 7235 dequeue_task(rq, tsk, 0); 7236 if (unlikely(running)) 7237 tsk->sched_class->put_prev_task(rq, tsk); 7238 7239 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id, 7240 lockdep_is_held(&tsk->sighand->siglock)), 7241 struct task_group, css); 7242 tg = autogroup_task_group(tsk, tg); 7243 tsk->sched_task_group = tg; 7244 7245 #ifdef CONFIG_FAIR_GROUP_SCHED 7246 if (tsk->sched_class->task_move_group) 7247 tsk->sched_class->task_move_group(tsk, on_rq); 7248 else 7249 #endif 7250 set_task_rq(tsk, task_cpu(tsk)); 7251 7252 if (unlikely(running)) 7253 tsk->sched_class->set_curr_task(rq); 7254 if (on_rq) 7255 enqueue_task(rq, tsk, 0); 7256 7257 task_rq_unlock(rq, tsk, &flags); 7258 } 7259 #endif /* CONFIG_CGROUP_SCHED */ 7260 7261 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) 7262 static unsigned long to_ratio(u64 period, u64 runtime) 7263 { 7264 if (runtime == RUNTIME_INF) 7265 return 1ULL << 20; 7266 7267 return div64_u64(runtime << 20, period); 7268 } 7269 #endif 7270 7271 #ifdef CONFIG_RT_GROUP_SCHED 7272 /* 7273 * Ensure that the real time constraints are schedulable. 7274 */ 7275 static DEFINE_MUTEX(rt_constraints_mutex); 7276 7277 /* Must be called with tasklist_lock held */ 7278 static inline int tg_has_rt_tasks(struct task_group *tg) 7279 { 7280 struct task_struct *g, *p; 7281 7282 do_each_thread(g, p) { 7283 if (rt_task(p) && task_rq(p)->rt.tg == tg) 7284 return 1; 7285 } while_each_thread(g, p); 7286 7287 return 0; 7288 } 7289 7290 struct rt_schedulable_data { 7291 struct task_group *tg; 7292 u64 rt_period; 7293 u64 rt_runtime; 7294 }; 7295 7296 static int tg_rt_schedulable(struct task_group *tg, void *data) 7297 { 7298 struct rt_schedulable_data *d = data; 7299 struct task_group *child; 7300 unsigned long total, sum = 0; 7301 u64 period, runtime; 7302 7303 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7304 runtime = tg->rt_bandwidth.rt_runtime; 7305 7306 if (tg == d->tg) { 7307 period = d->rt_period; 7308 runtime = d->rt_runtime; 7309 } 7310 7311 /* 7312 * Cannot have more runtime than the period. 7313 */ 7314 if (runtime > period && runtime != RUNTIME_INF) 7315 return -EINVAL; 7316 7317 /* 7318 * Ensure we don't starve existing RT tasks. 7319 */ 7320 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7321 return -EBUSY; 7322 7323 total = to_ratio(period, runtime); 7324 7325 /* 7326 * Nobody can have more than the global setting allows. 7327 */ 7328 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7329 return -EINVAL; 7330 7331 /* 7332 * The sum of our children's runtime should not exceed our own. 7333 */ 7334 list_for_each_entry_rcu(child, &tg->children, siblings) { 7335 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7336 runtime = child->rt_bandwidth.rt_runtime; 7337 7338 if (child == d->tg) { 7339 period = d->rt_period; 7340 runtime = d->rt_runtime; 7341 } 7342 7343 sum += to_ratio(period, runtime); 7344 } 7345 7346 if (sum > total) 7347 return -EINVAL; 7348 7349 return 0; 7350 } 7351 7352 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7353 { 7354 int ret; 7355 7356 struct rt_schedulable_data data = { 7357 .tg = tg, 7358 .rt_period = period, 7359 .rt_runtime = runtime, 7360 }; 7361 7362 rcu_read_lock(); 7363 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7364 rcu_read_unlock(); 7365 7366 return ret; 7367 } 7368 7369 static int tg_set_rt_bandwidth(struct task_group *tg, 7370 u64 rt_period, u64 rt_runtime) 7371 { 7372 int i, err = 0; 7373 7374 mutex_lock(&rt_constraints_mutex); 7375 read_lock(&tasklist_lock); 7376 err = __rt_schedulable(tg, rt_period, rt_runtime); 7377 if (err) 7378 goto unlock; 7379 7380 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7381 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7382 tg->rt_bandwidth.rt_runtime = rt_runtime; 7383 7384 for_each_possible_cpu(i) { 7385 struct rt_rq *rt_rq = tg->rt_rq[i]; 7386 7387 raw_spin_lock(&rt_rq->rt_runtime_lock); 7388 rt_rq->rt_runtime = rt_runtime; 7389 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7390 } 7391 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7392 unlock: 7393 read_unlock(&tasklist_lock); 7394 mutex_unlock(&rt_constraints_mutex); 7395 7396 return err; 7397 } 7398 7399 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7400 { 7401 u64 rt_runtime, rt_period; 7402 7403 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7404 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7405 if (rt_runtime_us < 0) 7406 rt_runtime = RUNTIME_INF; 7407 7408 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7409 } 7410 7411 long sched_group_rt_runtime(struct task_group *tg) 7412 { 7413 u64 rt_runtime_us; 7414 7415 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7416 return -1; 7417 7418 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7419 do_div(rt_runtime_us, NSEC_PER_USEC); 7420 return rt_runtime_us; 7421 } 7422 7423 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7424 { 7425 u64 rt_runtime, rt_period; 7426 7427 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7428 rt_runtime = tg->rt_bandwidth.rt_runtime; 7429 7430 if (rt_period == 0) 7431 return -EINVAL; 7432 7433 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7434 } 7435 7436 long sched_group_rt_period(struct task_group *tg) 7437 { 7438 u64 rt_period_us; 7439 7440 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7441 do_div(rt_period_us, NSEC_PER_USEC); 7442 return rt_period_us; 7443 } 7444 7445 static int sched_rt_global_constraints(void) 7446 { 7447 u64 runtime, period; 7448 int ret = 0; 7449 7450 if (sysctl_sched_rt_period <= 0) 7451 return -EINVAL; 7452 7453 runtime = global_rt_runtime(); 7454 period = global_rt_period(); 7455 7456 /* 7457 * Sanity check on the sysctl variables. 7458 */ 7459 if (runtime > period && runtime != RUNTIME_INF) 7460 return -EINVAL; 7461 7462 mutex_lock(&rt_constraints_mutex); 7463 read_lock(&tasklist_lock); 7464 ret = __rt_schedulable(NULL, 0, 0); 7465 read_unlock(&tasklist_lock); 7466 mutex_unlock(&rt_constraints_mutex); 7467 7468 return ret; 7469 } 7470 7471 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7472 { 7473 /* Don't accept realtime tasks when there is no way for them to run */ 7474 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7475 return 0; 7476 7477 return 1; 7478 } 7479 7480 #else /* !CONFIG_RT_GROUP_SCHED */ 7481 static int sched_rt_global_constraints(void) 7482 { 7483 unsigned long flags; 7484 int i; 7485 7486 if (sysctl_sched_rt_period <= 0) 7487 return -EINVAL; 7488 7489 /* 7490 * There's always some RT tasks in the root group 7491 * -- migration, kstopmachine etc.. 7492 */ 7493 if (sysctl_sched_rt_runtime == 0) 7494 return -EBUSY; 7495 7496 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7497 for_each_possible_cpu(i) { 7498 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7499 7500 raw_spin_lock(&rt_rq->rt_runtime_lock); 7501 rt_rq->rt_runtime = global_rt_runtime(); 7502 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7503 } 7504 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7505 7506 return 0; 7507 } 7508 #endif /* CONFIG_RT_GROUP_SCHED */ 7509 7510 int sched_rt_handler(struct ctl_table *table, int write, 7511 void __user *buffer, size_t *lenp, 7512 loff_t *ppos) 7513 { 7514 int ret; 7515 int old_period, old_runtime; 7516 static DEFINE_MUTEX(mutex); 7517 7518 mutex_lock(&mutex); 7519 old_period = sysctl_sched_rt_period; 7520 old_runtime = sysctl_sched_rt_runtime; 7521 7522 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7523 7524 if (!ret && write) { 7525 ret = sched_rt_global_constraints(); 7526 if (ret) { 7527 sysctl_sched_rt_period = old_period; 7528 sysctl_sched_rt_runtime = old_runtime; 7529 } else { 7530 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7531 def_rt_bandwidth.rt_period = 7532 ns_to_ktime(global_rt_period()); 7533 } 7534 } 7535 mutex_unlock(&mutex); 7536 7537 return ret; 7538 } 7539 7540 #ifdef CONFIG_CGROUP_SCHED 7541 7542 /* return corresponding task_group object of a cgroup */ 7543 static inline struct task_group *cgroup_tg(struct cgroup *cgrp) 7544 { 7545 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), 7546 struct task_group, css); 7547 } 7548 7549 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp) 7550 { 7551 struct task_group *tg, *parent; 7552 7553 if (!cgrp->parent) { 7554 /* This is early initialization for the top cgroup */ 7555 return &root_task_group.css; 7556 } 7557 7558 parent = cgroup_tg(cgrp->parent); 7559 tg = sched_create_group(parent); 7560 if (IS_ERR(tg)) 7561 return ERR_PTR(-ENOMEM); 7562 7563 return &tg->css; 7564 } 7565 7566 static void cpu_cgroup_css_free(struct cgroup *cgrp) 7567 { 7568 struct task_group *tg = cgroup_tg(cgrp); 7569 7570 sched_destroy_group(tg); 7571 } 7572 7573 static int cpu_cgroup_can_attach(struct cgroup *cgrp, 7574 struct cgroup_taskset *tset) 7575 { 7576 struct task_struct *task; 7577 7578 cgroup_taskset_for_each(task, cgrp, tset) { 7579 #ifdef CONFIG_RT_GROUP_SCHED 7580 if (!sched_rt_can_attach(cgroup_tg(cgrp), task)) 7581 return -EINVAL; 7582 #else 7583 /* We don't support RT-tasks being in separate groups */ 7584 if (task->sched_class != &fair_sched_class) 7585 return -EINVAL; 7586 #endif 7587 } 7588 return 0; 7589 } 7590 7591 static void cpu_cgroup_attach(struct cgroup *cgrp, 7592 struct cgroup_taskset *tset) 7593 { 7594 struct task_struct *task; 7595 7596 cgroup_taskset_for_each(task, cgrp, tset) 7597 sched_move_task(task); 7598 } 7599 7600 static void 7601 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, 7602 struct task_struct *task) 7603 { 7604 /* 7605 * cgroup_exit() is called in the copy_process() failure path. 7606 * Ignore this case since the task hasn't ran yet, this avoids 7607 * trying to poke a half freed task state from generic code. 7608 */ 7609 if (!(task->flags & PF_EXITING)) 7610 return; 7611 7612 sched_move_task(task); 7613 } 7614 7615 #ifdef CONFIG_FAIR_GROUP_SCHED 7616 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7617 u64 shareval) 7618 { 7619 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval)); 7620 } 7621 7622 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) 7623 { 7624 struct task_group *tg = cgroup_tg(cgrp); 7625 7626 return (u64) scale_load_down(tg->shares); 7627 } 7628 7629 #ifdef CONFIG_CFS_BANDWIDTH 7630 static DEFINE_MUTEX(cfs_constraints_mutex); 7631 7632 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7633 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7634 7635 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7636 7637 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7638 { 7639 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7640 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7641 7642 if (tg == &root_task_group) 7643 return -EINVAL; 7644 7645 /* 7646 * Ensure we have at some amount of bandwidth every period. This is 7647 * to prevent reaching a state of large arrears when throttled via 7648 * entity_tick() resulting in prolonged exit starvation. 7649 */ 7650 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7651 return -EINVAL; 7652 7653 /* 7654 * Likewise, bound things on the otherside by preventing insane quota 7655 * periods. This also allows us to normalize in computing quota 7656 * feasibility. 7657 */ 7658 if (period > max_cfs_quota_period) 7659 return -EINVAL; 7660 7661 mutex_lock(&cfs_constraints_mutex); 7662 ret = __cfs_schedulable(tg, period, quota); 7663 if (ret) 7664 goto out_unlock; 7665 7666 runtime_enabled = quota != RUNTIME_INF; 7667 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7668 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled); 7669 raw_spin_lock_irq(&cfs_b->lock); 7670 cfs_b->period = ns_to_ktime(period); 7671 cfs_b->quota = quota; 7672 7673 __refill_cfs_bandwidth_runtime(cfs_b); 7674 /* restart the period timer (if active) to handle new period expiry */ 7675 if (runtime_enabled && cfs_b->timer_active) { 7676 /* force a reprogram */ 7677 cfs_b->timer_active = 0; 7678 __start_cfs_bandwidth(cfs_b); 7679 } 7680 raw_spin_unlock_irq(&cfs_b->lock); 7681 7682 for_each_possible_cpu(i) { 7683 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7684 struct rq *rq = cfs_rq->rq; 7685 7686 raw_spin_lock_irq(&rq->lock); 7687 cfs_rq->runtime_enabled = runtime_enabled; 7688 cfs_rq->runtime_remaining = 0; 7689 7690 if (cfs_rq->throttled) 7691 unthrottle_cfs_rq(cfs_rq); 7692 raw_spin_unlock_irq(&rq->lock); 7693 } 7694 out_unlock: 7695 mutex_unlock(&cfs_constraints_mutex); 7696 7697 return ret; 7698 } 7699 7700 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7701 { 7702 u64 quota, period; 7703 7704 period = ktime_to_ns(tg->cfs_bandwidth.period); 7705 if (cfs_quota_us < 0) 7706 quota = RUNTIME_INF; 7707 else 7708 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7709 7710 return tg_set_cfs_bandwidth(tg, period, quota); 7711 } 7712 7713 long tg_get_cfs_quota(struct task_group *tg) 7714 { 7715 u64 quota_us; 7716 7717 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7718 return -1; 7719 7720 quota_us = tg->cfs_bandwidth.quota; 7721 do_div(quota_us, NSEC_PER_USEC); 7722 7723 return quota_us; 7724 } 7725 7726 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7727 { 7728 u64 quota, period; 7729 7730 period = (u64)cfs_period_us * NSEC_PER_USEC; 7731 quota = tg->cfs_bandwidth.quota; 7732 7733 return tg_set_cfs_bandwidth(tg, period, quota); 7734 } 7735 7736 long tg_get_cfs_period(struct task_group *tg) 7737 { 7738 u64 cfs_period_us; 7739 7740 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7741 do_div(cfs_period_us, NSEC_PER_USEC); 7742 7743 return cfs_period_us; 7744 } 7745 7746 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft) 7747 { 7748 return tg_get_cfs_quota(cgroup_tg(cgrp)); 7749 } 7750 7751 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype, 7752 s64 cfs_quota_us) 7753 { 7754 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us); 7755 } 7756 7757 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft) 7758 { 7759 return tg_get_cfs_period(cgroup_tg(cgrp)); 7760 } 7761 7762 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7763 u64 cfs_period_us) 7764 { 7765 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us); 7766 } 7767 7768 struct cfs_schedulable_data { 7769 struct task_group *tg; 7770 u64 period, quota; 7771 }; 7772 7773 /* 7774 * normalize group quota/period to be quota/max_period 7775 * note: units are usecs 7776 */ 7777 static u64 normalize_cfs_quota(struct task_group *tg, 7778 struct cfs_schedulable_data *d) 7779 { 7780 u64 quota, period; 7781 7782 if (tg == d->tg) { 7783 period = d->period; 7784 quota = d->quota; 7785 } else { 7786 period = tg_get_cfs_period(tg); 7787 quota = tg_get_cfs_quota(tg); 7788 } 7789 7790 /* note: these should typically be equivalent */ 7791 if (quota == RUNTIME_INF || quota == -1) 7792 return RUNTIME_INF; 7793 7794 return to_ratio(period, quota); 7795 } 7796 7797 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7798 { 7799 struct cfs_schedulable_data *d = data; 7800 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7801 s64 quota = 0, parent_quota = -1; 7802 7803 if (!tg->parent) { 7804 quota = RUNTIME_INF; 7805 } else { 7806 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7807 7808 quota = normalize_cfs_quota(tg, d); 7809 parent_quota = parent_b->hierarchal_quota; 7810 7811 /* 7812 * ensure max(child_quota) <= parent_quota, inherit when no 7813 * limit is set 7814 */ 7815 if (quota == RUNTIME_INF) 7816 quota = parent_quota; 7817 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7818 return -EINVAL; 7819 } 7820 cfs_b->hierarchal_quota = quota; 7821 7822 return 0; 7823 } 7824 7825 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7826 { 7827 int ret; 7828 struct cfs_schedulable_data data = { 7829 .tg = tg, 7830 .period = period, 7831 .quota = quota, 7832 }; 7833 7834 if (quota != RUNTIME_INF) { 7835 do_div(data.period, NSEC_PER_USEC); 7836 do_div(data.quota, NSEC_PER_USEC); 7837 } 7838 7839 rcu_read_lock(); 7840 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7841 rcu_read_unlock(); 7842 7843 return ret; 7844 } 7845 7846 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft, 7847 struct cgroup_map_cb *cb) 7848 { 7849 struct task_group *tg = cgroup_tg(cgrp); 7850 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7851 7852 cb->fill(cb, "nr_periods", cfs_b->nr_periods); 7853 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); 7854 cb->fill(cb, "throttled_time", cfs_b->throttled_time); 7855 7856 return 0; 7857 } 7858 #endif /* CONFIG_CFS_BANDWIDTH */ 7859 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7860 7861 #ifdef CONFIG_RT_GROUP_SCHED 7862 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, 7863 s64 val) 7864 { 7865 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); 7866 } 7867 7868 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) 7869 { 7870 return sched_group_rt_runtime(cgroup_tg(cgrp)); 7871 } 7872 7873 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, 7874 u64 rt_period_us) 7875 { 7876 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); 7877 } 7878 7879 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) 7880 { 7881 return sched_group_rt_period(cgroup_tg(cgrp)); 7882 } 7883 #endif /* CONFIG_RT_GROUP_SCHED */ 7884 7885 static struct cftype cpu_files[] = { 7886 #ifdef CONFIG_FAIR_GROUP_SCHED 7887 { 7888 .name = "shares", 7889 .read_u64 = cpu_shares_read_u64, 7890 .write_u64 = cpu_shares_write_u64, 7891 }, 7892 #endif 7893 #ifdef CONFIG_CFS_BANDWIDTH 7894 { 7895 .name = "cfs_quota_us", 7896 .read_s64 = cpu_cfs_quota_read_s64, 7897 .write_s64 = cpu_cfs_quota_write_s64, 7898 }, 7899 { 7900 .name = "cfs_period_us", 7901 .read_u64 = cpu_cfs_period_read_u64, 7902 .write_u64 = cpu_cfs_period_write_u64, 7903 }, 7904 { 7905 .name = "stat", 7906 .read_map = cpu_stats_show, 7907 }, 7908 #endif 7909 #ifdef CONFIG_RT_GROUP_SCHED 7910 { 7911 .name = "rt_runtime_us", 7912 .read_s64 = cpu_rt_runtime_read, 7913 .write_s64 = cpu_rt_runtime_write, 7914 }, 7915 { 7916 .name = "rt_period_us", 7917 .read_u64 = cpu_rt_period_read_uint, 7918 .write_u64 = cpu_rt_period_write_uint, 7919 }, 7920 #endif 7921 { } /* terminate */ 7922 }; 7923 7924 struct cgroup_subsys cpu_cgroup_subsys = { 7925 .name = "cpu", 7926 .css_alloc = cpu_cgroup_css_alloc, 7927 .css_free = cpu_cgroup_css_free, 7928 .can_attach = cpu_cgroup_can_attach, 7929 .attach = cpu_cgroup_attach, 7930 .exit = cpu_cgroup_exit, 7931 .subsys_id = cpu_cgroup_subsys_id, 7932 .base_cftypes = cpu_files, 7933 .early_init = 1, 7934 }; 7935 7936 #endif /* CONFIG_CGROUP_SCHED */ 7937 7938 #ifdef CONFIG_CGROUP_CPUACCT 7939 7940 /* 7941 * CPU accounting code for task groups. 7942 * 7943 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh 7944 * (balbir@in.ibm.com). 7945 */ 7946 7947 struct cpuacct root_cpuacct; 7948 7949 /* create a new cpu accounting group */ 7950 static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp) 7951 { 7952 struct cpuacct *ca; 7953 7954 if (!cgrp->parent) 7955 return &root_cpuacct.css; 7956 7957 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 7958 if (!ca) 7959 goto out; 7960 7961 ca->cpuusage = alloc_percpu(u64); 7962 if (!ca->cpuusage) 7963 goto out_free_ca; 7964 7965 ca->cpustat = alloc_percpu(struct kernel_cpustat); 7966 if (!ca->cpustat) 7967 goto out_free_cpuusage; 7968 7969 return &ca->css; 7970 7971 out_free_cpuusage: 7972 free_percpu(ca->cpuusage); 7973 out_free_ca: 7974 kfree(ca); 7975 out: 7976 return ERR_PTR(-ENOMEM); 7977 } 7978 7979 /* destroy an existing cpu accounting group */ 7980 static void cpuacct_css_free(struct cgroup *cgrp) 7981 { 7982 struct cpuacct *ca = cgroup_ca(cgrp); 7983 7984 free_percpu(ca->cpustat); 7985 free_percpu(ca->cpuusage); 7986 kfree(ca); 7987 } 7988 7989 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) 7990 { 7991 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 7992 u64 data; 7993 7994 #ifndef CONFIG_64BIT 7995 /* 7996 * Take rq->lock to make 64-bit read safe on 32-bit platforms. 7997 */ 7998 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 7999 data = *cpuusage; 8000 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 8001 #else 8002 data = *cpuusage; 8003 #endif 8004 8005 return data; 8006 } 8007 8008 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) 8009 { 8010 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8011 8012 #ifndef CONFIG_64BIT 8013 /* 8014 * Take rq->lock to make 64-bit write safe on 32-bit platforms. 8015 */ 8016 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 8017 *cpuusage = val; 8018 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 8019 #else 8020 *cpuusage = val; 8021 #endif 8022 } 8023 8024 /* return total cpu usage (in nanoseconds) of a group */ 8025 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) 8026 { 8027 struct cpuacct *ca = cgroup_ca(cgrp); 8028 u64 totalcpuusage = 0; 8029 int i; 8030 8031 for_each_present_cpu(i) 8032 totalcpuusage += cpuacct_cpuusage_read(ca, i); 8033 8034 return totalcpuusage; 8035 } 8036 8037 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, 8038 u64 reset) 8039 { 8040 struct cpuacct *ca = cgroup_ca(cgrp); 8041 int err = 0; 8042 int i; 8043 8044 if (reset) { 8045 err = -EINVAL; 8046 goto out; 8047 } 8048 8049 for_each_present_cpu(i) 8050 cpuacct_cpuusage_write(ca, i, 0); 8051 8052 out: 8053 return err; 8054 } 8055 8056 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, 8057 struct seq_file *m) 8058 { 8059 struct cpuacct *ca = cgroup_ca(cgroup); 8060 u64 percpu; 8061 int i; 8062 8063 for_each_present_cpu(i) { 8064 percpu = cpuacct_cpuusage_read(ca, i); 8065 seq_printf(m, "%llu ", (unsigned long long) percpu); 8066 } 8067 seq_printf(m, "\n"); 8068 return 0; 8069 } 8070 8071 static const char *cpuacct_stat_desc[] = { 8072 [CPUACCT_STAT_USER] = "user", 8073 [CPUACCT_STAT_SYSTEM] = "system", 8074 }; 8075 8076 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, 8077 struct cgroup_map_cb *cb) 8078 { 8079 struct cpuacct *ca = cgroup_ca(cgrp); 8080 int cpu; 8081 s64 val = 0; 8082 8083 for_each_online_cpu(cpu) { 8084 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8085 val += kcpustat->cpustat[CPUTIME_USER]; 8086 val += kcpustat->cpustat[CPUTIME_NICE]; 8087 } 8088 val = cputime64_to_clock_t(val); 8089 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val); 8090 8091 val = 0; 8092 for_each_online_cpu(cpu) { 8093 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8094 val += kcpustat->cpustat[CPUTIME_SYSTEM]; 8095 val += kcpustat->cpustat[CPUTIME_IRQ]; 8096 val += kcpustat->cpustat[CPUTIME_SOFTIRQ]; 8097 } 8098 8099 val = cputime64_to_clock_t(val); 8100 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val); 8101 8102 return 0; 8103 } 8104 8105 static struct cftype files[] = { 8106 { 8107 .name = "usage", 8108 .read_u64 = cpuusage_read, 8109 .write_u64 = cpuusage_write, 8110 }, 8111 { 8112 .name = "usage_percpu", 8113 .read_seq_string = cpuacct_percpu_seq_read, 8114 }, 8115 { 8116 .name = "stat", 8117 .read_map = cpuacct_stats_show, 8118 }, 8119 { } /* terminate */ 8120 }; 8121 8122 /* 8123 * charge this task's execution time to its accounting group. 8124 * 8125 * called with rq->lock held. 8126 */ 8127 void cpuacct_charge(struct task_struct *tsk, u64 cputime) 8128 { 8129 struct cpuacct *ca; 8130 int cpu; 8131 8132 if (unlikely(!cpuacct_subsys.active)) 8133 return; 8134 8135 cpu = task_cpu(tsk); 8136 8137 rcu_read_lock(); 8138 8139 ca = task_ca(tsk); 8140 8141 for (; ca; ca = parent_ca(ca)) { 8142 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8143 *cpuusage += cputime; 8144 } 8145 8146 rcu_read_unlock(); 8147 } 8148 8149 struct cgroup_subsys cpuacct_subsys = { 8150 .name = "cpuacct", 8151 .css_alloc = cpuacct_css_alloc, 8152 .css_free = cpuacct_css_free, 8153 .subsys_id = cpuacct_subsys_id, 8154 .base_cftypes = files, 8155 }; 8156 #endif /* CONFIG_CGROUP_CPUACCT */ 8157 8158 void dump_cpu_task(int cpu) 8159 { 8160 pr_info("Task dump for CPU %d:\n", cpu); 8161 sched_show_task(cpu_curr(cpu)); 8162 } 8163