xref: /linux/kernel/sched/core.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84 
85 #include "sched.h"
86 #include "../workqueue_sched.h"
87 #include "../smpboot.h"
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91 
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 	unsigned long delta;
95 	ktime_t soft, hard, now;
96 
97 	for (;;) {
98 		if (hrtimer_active(period_timer))
99 			break;
100 
101 		now = hrtimer_cb_get_time(period_timer);
102 		hrtimer_forward(period_timer, now, period);
103 
104 		soft = hrtimer_get_softexpires(period_timer);
105 		hard = hrtimer_get_expires(period_timer);
106 		delta = ktime_to_ns(ktime_sub(hard, soft));
107 		__hrtimer_start_range_ns(period_timer, soft, delta,
108 					 HRTIMER_MODE_ABS_PINNED, 0);
109 	}
110 }
111 
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114 
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116 
117 void update_rq_clock(struct rq *rq)
118 {
119 	s64 delta;
120 
121 	if (rq->skip_clock_update > 0)
122 		return;
123 
124 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 	rq->clock += delta;
126 	update_rq_clock_task(rq, delta);
127 }
128 
129 /*
130  * Debugging: various feature bits
131  */
132 
133 #define SCHED_FEAT(name, enabled)	\
134 	(1UL << __SCHED_FEAT_##name) * enabled |
135 
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 	0;
139 
140 #undef SCHED_FEAT
141 
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled)	\
144 	#name ,
145 
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149 
150 #undef SCHED_FEAT
151 
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 	int i;
155 
156 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 		if (!(sysctl_sched_features & (1UL << i)))
158 			seq_puts(m, "NO_");
159 		seq_printf(m, "%s ", sched_feat_names[i]);
160 	}
161 	seq_puts(m, "\n");
162 
163 	return 0;
164 }
165 
166 #ifdef HAVE_JUMP_LABEL
167 
168 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170 
171 #define SCHED_FEAT(name, enabled)	\
172 	jump_label_key__##enabled ,
173 
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177 
178 #undef SCHED_FEAT
179 
180 static void sched_feat_disable(int i)
181 {
182 	if (static_key_enabled(&sched_feat_keys[i]))
183 		static_key_slow_dec(&sched_feat_keys[i]);
184 }
185 
186 static void sched_feat_enable(int i)
187 {
188 	if (!static_key_enabled(&sched_feat_keys[i]))
189 		static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195 
196 static int sched_feat_set(char *cmp)
197 {
198 	int i;
199 	int neg = 0;
200 
201 	if (strncmp(cmp, "NO_", 3) == 0) {
202 		neg = 1;
203 		cmp += 3;
204 	}
205 
206 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 			if (neg) {
209 				sysctl_sched_features &= ~(1UL << i);
210 				sched_feat_disable(i);
211 			} else {
212 				sysctl_sched_features |= (1UL << i);
213 				sched_feat_enable(i);
214 			}
215 			break;
216 		}
217 	}
218 
219 	return i;
220 }
221 
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 		size_t cnt, loff_t *ppos)
225 {
226 	char buf[64];
227 	char *cmp;
228 	int i;
229 
230 	if (cnt > 63)
231 		cnt = 63;
232 
233 	if (copy_from_user(&buf, ubuf, cnt))
234 		return -EFAULT;
235 
236 	buf[cnt] = 0;
237 	cmp = strstrip(buf);
238 
239 	i = sched_feat_set(cmp);
240 	if (i == __SCHED_FEAT_NR)
241 		return -EINVAL;
242 
243 	*ppos += cnt;
244 
245 	return cnt;
246 }
247 
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 	return single_open(filp, sched_feat_show, NULL);
251 }
252 
253 static const struct file_operations sched_feat_fops = {
254 	.open		= sched_feat_open,
255 	.write		= sched_feat_write,
256 	.read		= seq_read,
257 	.llseek		= seq_lseek,
258 	.release	= single_release,
259 };
260 
261 static __init int sched_init_debug(void)
262 {
263 	debugfs_create_file("sched_features", 0644, NULL, NULL,
264 			&sched_feat_fops);
265 
266 	return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270 
271 /*
272  * Number of tasks to iterate in a single balance run.
273  * Limited because this is done with IRQs disabled.
274  */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276 
277 /*
278  * period over which we average the RT time consumption, measured
279  * in ms.
280  *
281  * default: 1s
282  */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284 
285 /*
286  * period over which we measure -rt task cpu usage in us.
287  * default: 1s
288  */
289 unsigned int sysctl_sched_rt_period = 1000000;
290 
291 __read_mostly int scheduler_running;
292 
293 /*
294  * part of the period that we allow rt tasks to run in us.
295  * default: 0.95s
296  */
297 int sysctl_sched_rt_runtime = 950000;
298 
299 
300 
301 /*
302  * __task_rq_lock - lock the rq @p resides on.
303  */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 	__acquires(rq->lock)
306 {
307 	struct rq *rq;
308 
309 	lockdep_assert_held(&p->pi_lock);
310 
311 	for (;;) {
312 		rq = task_rq(p);
313 		raw_spin_lock(&rq->lock);
314 		if (likely(rq == task_rq(p)))
315 			return rq;
316 		raw_spin_unlock(&rq->lock);
317 	}
318 }
319 
320 /*
321  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322  */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 	__acquires(p->pi_lock)
325 	__acquires(rq->lock)
326 {
327 	struct rq *rq;
328 
329 	for (;;) {
330 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 		rq = task_rq(p);
332 		raw_spin_lock(&rq->lock);
333 		if (likely(rq == task_rq(p)))
334 			return rq;
335 		raw_spin_unlock(&rq->lock);
336 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 	}
338 }
339 
340 static void __task_rq_unlock(struct rq *rq)
341 	__releases(rq->lock)
342 {
343 	raw_spin_unlock(&rq->lock);
344 }
345 
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 	__releases(rq->lock)
349 	__releases(p->pi_lock)
350 {
351 	raw_spin_unlock(&rq->lock);
352 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354 
355 /*
356  * this_rq_lock - lock this runqueue and disable interrupts.
357  */
358 static struct rq *this_rq_lock(void)
359 	__acquires(rq->lock)
360 {
361 	struct rq *rq;
362 
363 	local_irq_disable();
364 	rq = this_rq();
365 	raw_spin_lock(&rq->lock);
366 
367 	return rq;
368 }
369 
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372  * Use HR-timers to deliver accurate preemption points.
373  *
374  * Its all a bit involved since we cannot program an hrt while holding the
375  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376  * reschedule event.
377  *
378  * When we get rescheduled we reprogram the hrtick_timer outside of the
379  * rq->lock.
380  */
381 
382 static void hrtick_clear(struct rq *rq)
383 {
384 	if (hrtimer_active(&rq->hrtick_timer))
385 		hrtimer_cancel(&rq->hrtick_timer);
386 }
387 
388 /*
389  * High-resolution timer tick.
390  * Runs from hardirq context with interrupts disabled.
391  */
392 static enum hrtimer_restart hrtick(struct hrtimer *timer)
393 {
394 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395 
396 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397 
398 	raw_spin_lock(&rq->lock);
399 	update_rq_clock(rq);
400 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401 	raw_spin_unlock(&rq->lock);
402 
403 	return HRTIMER_NORESTART;
404 }
405 
406 #ifdef CONFIG_SMP
407 /*
408  * called from hardirq (IPI) context
409  */
410 static void __hrtick_start(void *arg)
411 {
412 	struct rq *rq = arg;
413 
414 	raw_spin_lock(&rq->lock);
415 	hrtimer_restart(&rq->hrtick_timer);
416 	rq->hrtick_csd_pending = 0;
417 	raw_spin_unlock(&rq->lock);
418 }
419 
420 /*
421  * Called to set the hrtick timer state.
422  *
423  * called with rq->lock held and irqs disabled
424  */
425 void hrtick_start(struct rq *rq, u64 delay)
426 {
427 	struct hrtimer *timer = &rq->hrtick_timer;
428 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429 
430 	hrtimer_set_expires(timer, time);
431 
432 	if (rq == this_rq()) {
433 		hrtimer_restart(timer);
434 	} else if (!rq->hrtick_csd_pending) {
435 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 		rq->hrtick_csd_pending = 1;
437 	}
438 }
439 
440 static int
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442 {
443 	int cpu = (int)(long)hcpu;
444 
445 	switch (action) {
446 	case CPU_UP_CANCELED:
447 	case CPU_UP_CANCELED_FROZEN:
448 	case CPU_DOWN_PREPARE:
449 	case CPU_DOWN_PREPARE_FROZEN:
450 	case CPU_DEAD:
451 	case CPU_DEAD_FROZEN:
452 		hrtick_clear(cpu_rq(cpu));
453 		return NOTIFY_OK;
454 	}
455 
456 	return NOTIFY_DONE;
457 }
458 
459 static __init void init_hrtick(void)
460 {
461 	hotcpu_notifier(hotplug_hrtick, 0);
462 }
463 #else
464 /*
465  * Called to set the hrtick timer state.
466  *
467  * called with rq->lock held and irqs disabled
468  */
469 void hrtick_start(struct rq *rq, u64 delay)
470 {
471 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 			HRTIMER_MODE_REL_PINNED, 0);
473 }
474 
475 static inline void init_hrtick(void)
476 {
477 }
478 #endif /* CONFIG_SMP */
479 
480 static void init_rq_hrtick(struct rq *rq)
481 {
482 #ifdef CONFIG_SMP
483 	rq->hrtick_csd_pending = 0;
484 
485 	rq->hrtick_csd.flags = 0;
486 	rq->hrtick_csd.func = __hrtick_start;
487 	rq->hrtick_csd.info = rq;
488 #endif
489 
490 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 	rq->hrtick_timer.function = hrtick;
492 }
493 #else	/* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
495 {
496 }
497 
498 static inline void init_rq_hrtick(struct rq *rq)
499 {
500 }
501 
502 static inline void init_hrtick(void)
503 {
504 }
505 #endif	/* CONFIG_SCHED_HRTICK */
506 
507 /*
508  * resched_task - mark a task 'to be rescheduled now'.
509  *
510  * On UP this means the setting of the need_resched flag, on SMP it
511  * might also involve a cross-CPU call to trigger the scheduler on
512  * the target CPU.
513  */
514 #ifdef CONFIG_SMP
515 
516 #ifndef tsk_is_polling
517 #define tsk_is_polling(t) 0
518 #endif
519 
520 void resched_task(struct task_struct *p)
521 {
522 	int cpu;
523 
524 	assert_raw_spin_locked(&task_rq(p)->lock);
525 
526 	if (test_tsk_need_resched(p))
527 		return;
528 
529 	set_tsk_need_resched(p);
530 
531 	cpu = task_cpu(p);
532 	if (cpu == smp_processor_id())
533 		return;
534 
535 	/* NEED_RESCHED must be visible before we test polling */
536 	smp_mb();
537 	if (!tsk_is_polling(p))
538 		smp_send_reschedule(cpu);
539 }
540 
541 void resched_cpu(int cpu)
542 {
543 	struct rq *rq = cpu_rq(cpu);
544 	unsigned long flags;
545 
546 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
547 		return;
548 	resched_task(cpu_curr(cpu));
549 	raw_spin_unlock_irqrestore(&rq->lock, flags);
550 }
551 
552 #ifdef CONFIG_NO_HZ
553 /*
554  * In the semi idle case, use the nearest busy cpu for migrating timers
555  * from an idle cpu.  This is good for power-savings.
556  *
557  * We don't do similar optimization for completely idle system, as
558  * selecting an idle cpu will add more delays to the timers than intended
559  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560  */
561 int get_nohz_timer_target(void)
562 {
563 	int cpu = smp_processor_id();
564 	int i;
565 	struct sched_domain *sd;
566 
567 	rcu_read_lock();
568 	for_each_domain(cpu, sd) {
569 		for_each_cpu(i, sched_domain_span(sd)) {
570 			if (!idle_cpu(i)) {
571 				cpu = i;
572 				goto unlock;
573 			}
574 		}
575 	}
576 unlock:
577 	rcu_read_unlock();
578 	return cpu;
579 }
580 /*
581  * When add_timer_on() enqueues a timer into the timer wheel of an
582  * idle CPU then this timer might expire before the next timer event
583  * which is scheduled to wake up that CPU. In case of a completely
584  * idle system the next event might even be infinite time into the
585  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586  * leaves the inner idle loop so the newly added timer is taken into
587  * account when the CPU goes back to idle and evaluates the timer
588  * wheel for the next timer event.
589  */
590 void wake_up_idle_cpu(int cpu)
591 {
592 	struct rq *rq = cpu_rq(cpu);
593 
594 	if (cpu == smp_processor_id())
595 		return;
596 
597 	/*
598 	 * This is safe, as this function is called with the timer
599 	 * wheel base lock of (cpu) held. When the CPU is on the way
600 	 * to idle and has not yet set rq->curr to idle then it will
601 	 * be serialized on the timer wheel base lock and take the new
602 	 * timer into account automatically.
603 	 */
604 	if (rq->curr != rq->idle)
605 		return;
606 
607 	/*
608 	 * We can set TIF_RESCHED on the idle task of the other CPU
609 	 * lockless. The worst case is that the other CPU runs the
610 	 * idle task through an additional NOOP schedule()
611 	 */
612 	set_tsk_need_resched(rq->idle);
613 
614 	/* NEED_RESCHED must be visible before we test polling */
615 	smp_mb();
616 	if (!tsk_is_polling(rq->idle))
617 		smp_send_reschedule(cpu);
618 }
619 
620 static inline bool got_nohz_idle_kick(void)
621 {
622 	int cpu = smp_processor_id();
623 	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
624 }
625 
626 #else /* CONFIG_NO_HZ */
627 
628 static inline bool got_nohz_idle_kick(void)
629 {
630 	return false;
631 }
632 
633 #endif /* CONFIG_NO_HZ */
634 
635 void sched_avg_update(struct rq *rq)
636 {
637 	s64 period = sched_avg_period();
638 
639 	while ((s64)(rq->clock - rq->age_stamp) > period) {
640 		/*
641 		 * Inline assembly required to prevent the compiler
642 		 * optimising this loop into a divmod call.
643 		 * See __iter_div_u64_rem() for another example of this.
644 		 */
645 		asm("" : "+rm" (rq->age_stamp));
646 		rq->age_stamp += period;
647 		rq->rt_avg /= 2;
648 	}
649 }
650 
651 #else /* !CONFIG_SMP */
652 void resched_task(struct task_struct *p)
653 {
654 	assert_raw_spin_locked(&task_rq(p)->lock);
655 	set_tsk_need_resched(p);
656 }
657 #endif /* CONFIG_SMP */
658 
659 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
661 /*
662  * Iterate task_group tree rooted at *from, calling @down when first entering a
663  * node and @up when leaving it for the final time.
664  *
665  * Caller must hold rcu_lock or sufficient equivalent.
666  */
667 int walk_tg_tree_from(struct task_group *from,
668 			     tg_visitor down, tg_visitor up, void *data)
669 {
670 	struct task_group *parent, *child;
671 	int ret;
672 
673 	parent = from;
674 
675 down:
676 	ret = (*down)(parent, data);
677 	if (ret)
678 		goto out;
679 	list_for_each_entry_rcu(child, &parent->children, siblings) {
680 		parent = child;
681 		goto down;
682 
683 up:
684 		continue;
685 	}
686 	ret = (*up)(parent, data);
687 	if (ret || parent == from)
688 		goto out;
689 
690 	child = parent;
691 	parent = parent->parent;
692 	if (parent)
693 		goto up;
694 out:
695 	return ret;
696 }
697 
698 int tg_nop(struct task_group *tg, void *data)
699 {
700 	return 0;
701 }
702 #endif
703 
704 static void set_load_weight(struct task_struct *p)
705 {
706 	int prio = p->static_prio - MAX_RT_PRIO;
707 	struct load_weight *load = &p->se.load;
708 
709 	/*
710 	 * SCHED_IDLE tasks get minimal weight:
711 	 */
712 	if (p->policy == SCHED_IDLE) {
713 		load->weight = scale_load(WEIGHT_IDLEPRIO);
714 		load->inv_weight = WMULT_IDLEPRIO;
715 		return;
716 	}
717 
718 	load->weight = scale_load(prio_to_weight[prio]);
719 	load->inv_weight = prio_to_wmult[prio];
720 }
721 
722 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
723 {
724 	update_rq_clock(rq);
725 	sched_info_queued(p);
726 	p->sched_class->enqueue_task(rq, p, flags);
727 }
728 
729 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
730 {
731 	update_rq_clock(rq);
732 	sched_info_dequeued(p);
733 	p->sched_class->dequeue_task(rq, p, flags);
734 }
735 
736 void activate_task(struct rq *rq, struct task_struct *p, int flags)
737 {
738 	if (task_contributes_to_load(p))
739 		rq->nr_uninterruptible--;
740 
741 	enqueue_task(rq, p, flags);
742 }
743 
744 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
745 {
746 	if (task_contributes_to_load(p))
747 		rq->nr_uninterruptible++;
748 
749 	dequeue_task(rq, p, flags);
750 }
751 
752 static void update_rq_clock_task(struct rq *rq, s64 delta)
753 {
754 /*
755  * In theory, the compile should just see 0 here, and optimize out the call
756  * to sched_rt_avg_update. But I don't trust it...
757  */
758 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759 	s64 steal = 0, irq_delta = 0;
760 #endif
761 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
762 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
763 
764 	/*
765 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766 	 * this case when a previous update_rq_clock() happened inside a
767 	 * {soft,}irq region.
768 	 *
769 	 * When this happens, we stop ->clock_task and only update the
770 	 * prev_irq_time stamp to account for the part that fit, so that a next
771 	 * update will consume the rest. This ensures ->clock_task is
772 	 * monotonic.
773 	 *
774 	 * It does however cause some slight miss-attribution of {soft,}irq
775 	 * time, a more accurate solution would be to update the irq_time using
776 	 * the current rq->clock timestamp, except that would require using
777 	 * atomic ops.
778 	 */
779 	if (irq_delta > delta)
780 		irq_delta = delta;
781 
782 	rq->prev_irq_time += irq_delta;
783 	delta -= irq_delta;
784 #endif
785 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
786 	if (static_key_false((&paravirt_steal_rq_enabled))) {
787 		u64 st;
788 
789 		steal = paravirt_steal_clock(cpu_of(rq));
790 		steal -= rq->prev_steal_time_rq;
791 
792 		if (unlikely(steal > delta))
793 			steal = delta;
794 
795 		st = steal_ticks(steal);
796 		steal = st * TICK_NSEC;
797 
798 		rq->prev_steal_time_rq += steal;
799 
800 		delta -= steal;
801 	}
802 #endif
803 
804 	rq->clock_task += delta;
805 
806 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808 		sched_rt_avg_update(rq, irq_delta + steal);
809 #endif
810 }
811 
812 void sched_set_stop_task(int cpu, struct task_struct *stop)
813 {
814 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
816 
817 	if (stop) {
818 		/*
819 		 * Make it appear like a SCHED_FIFO task, its something
820 		 * userspace knows about and won't get confused about.
821 		 *
822 		 * Also, it will make PI more or less work without too
823 		 * much confusion -- but then, stop work should not
824 		 * rely on PI working anyway.
825 		 */
826 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
827 
828 		stop->sched_class = &stop_sched_class;
829 	}
830 
831 	cpu_rq(cpu)->stop = stop;
832 
833 	if (old_stop) {
834 		/*
835 		 * Reset it back to a normal scheduling class so that
836 		 * it can die in pieces.
837 		 */
838 		old_stop->sched_class = &rt_sched_class;
839 	}
840 }
841 
842 /*
843  * __normal_prio - return the priority that is based on the static prio
844  */
845 static inline int __normal_prio(struct task_struct *p)
846 {
847 	return p->static_prio;
848 }
849 
850 /*
851  * Calculate the expected normal priority: i.e. priority
852  * without taking RT-inheritance into account. Might be
853  * boosted by interactivity modifiers. Changes upon fork,
854  * setprio syscalls, and whenever the interactivity
855  * estimator recalculates.
856  */
857 static inline int normal_prio(struct task_struct *p)
858 {
859 	int prio;
860 
861 	if (task_has_rt_policy(p))
862 		prio = MAX_RT_PRIO-1 - p->rt_priority;
863 	else
864 		prio = __normal_prio(p);
865 	return prio;
866 }
867 
868 /*
869  * Calculate the current priority, i.e. the priority
870  * taken into account by the scheduler. This value might
871  * be boosted by RT tasks, or might be boosted by
872  * interactivity modifiers. Will be RT if the task got
873  * RT-boosted. If not then it returns p->normal_prio.
874  */
875 static int effective_prio(struct task_struct *p)
876 {
877 	p->normal_prio = normal_prio(p);
878 	/*
879 	 * If we are RT tasks or we were boosted to RT priority,
880 	 * keep the priority unchanged. Otherwise, update priority
881 	 * to the normal priority:
882 	 */
883 	if (!rt_prio(p->prio))
884 		return p->normal_prio;
885 	return p->prio;
886 }
887 
888 /**
889  * task_curr - is this task currently executing on a CPU?
890  * @p: the task in question.
891  */
892 inline int task_curr(const struct task_struct *p)
893 {
894 	return cpu_curr(task_cpu(p)) == p;
895 }
896 
897 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898 				       const struct sched_class *prev_class,
899 				       int oldprio)
900 {
901 	if (prev_class != p->sched_class) {
902 		if (prev_class->switched_from)
903 			prev_class->switched_from(rq, p);
904 		p->sched_class->switched_to(rq, p);
905 	} else if (oldprio != p->prio)
906 		p->sched_class->prio_changed(rq, p, oldprio);
907 }
908 
909 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
910 {
911 	const struct sched_class *class;
912 
913 	if (p->sched_class == rq->curr->sched_class) {
914 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
915 	} else {
916 		for_each_class(class) {
917 			if (class == rq->curr->sched_class)
918 				break;
919 			if (class == p->sched_class) {
920 				resched_task(rq->curr);
921 				break;
922 			}
923 		}
924 	}
925 
926 	/*
927 	 * A queue event has occurred, and we're going to schedule.  In
928 	 * this case, we can save a useless back to back clock update.
929 	 */
930 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
931 		rq->skip_clock_update = 1;
932 }
933 
934 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
935 
936 void register_task_migration_notifier(struct notifier_block *n)
937 {
938 	atomic_notifier_chain_register(&task_migration_notifier, n);
939 }
940 
941 #ifdef CONFIG_SMP
942 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
943 {
944 #ifdef CONFIG_SCHED_DEBUG
945 	/*
946 	 * We should never call set_task_cpu() on a blocked task,
947 	 * ttwu() will sort out the placement.
948 	 */
949 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
951 
952 #ifdef CONFIG_LOCKDEP
953 	/*
954 	 * The caller should hold either p->pi_lock or rq->lock, when changing
955 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
956 	 *
957 	 * sched_move_task() holds both and thus holding either pins the cgroup,
958 	 * see task_group().
959 	 *
960 	 * Furthermore, all task_rq users should acquire both locks, see
961 	 * task_rq_lock().
962 	 */
963 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964 				      lockdep_is_held(&task_rq(p)->lock)));
965 #endif
966 #endif
967 
968 	trace_sched_migrate_task(p, new_cpu);
969 
970 	if (task_cpu(p) != new_cpu) {
971 		struct task_migration_notifier tmn;
972 
973 		if (p->sched_class->migrate_task_rq)
974 			p->sched_class->migrate_task_rq(p, new_cpu);
975 		p->se.nr_migrations++;
976 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
977 
978 		tmn.task = p;
979 		tmn.from_cpu = task_cpu(p);
980 		tmn.to_cpu = new_cpu;
981 
982 		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
983 	}
984 
985 	__set_task_cpu(p, new_cpu);
986 }
987 
988 struct migration_arg {
989 	struct task_struct *task;
990 	int dest_cpu;
991 };
992 
993 static int migration_cpu_stop(void *data);
994 
995 /*
996  * wait_task_inactive - wait for a thread to unschedule.
997  *
998  * If @match_state is nonzero, it's the @p->state value just checked and
999  * not expected to change.  If it changes, i.e. @p might have woken up,
1000  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1001  * we return a positive number (its total switch count).  If a second call
1002  * a short while later returns the same number, the caller can be sure that
1003  * @p has remained unscheduled the whole time.
1004  *
1005  * The caller must ensure that the task *will* unschedule sometime soon,
1006  * else this function might spin for a *long* time. This function can't
1007  * be called with interrupts off, or it may introduce deadlock with
1008  * smp_call_function() if an IPI is sent by the same process we are
1009  * waiting to become inactive.
1010  */
1011 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1012 {
1013 	unsigned long flags;
1014 	int running, on_rq;
1015 	unsigned long ncsw;
1016 	struct rq *rq;
1017 
1018 	for (;;) {
1019 		/*
1020 		 * We do the initial early heuristics without holding
1021 		 * any task-queue locks at all. We'll only try to get
1022 		 * the runqueue lock when things look like they will
1023 		 * work out!
1024 		 */
1025 		rq = task_rq(p);
1026 
1027 		/*
1028 		 * If the task is actively running on another CPU
1029 		 * still, just relax and busy-wait without holding
1030 		 * any locks.
1031 		 *
1032 		 * NOTE! Since we don't hold any locks, it's not
1033 		 * even sure that "rq" stays as the right runqueue!
1034 		 * But we don't care, since "task_running()" will
1035 		 * return false if the runqueue has changed and p
1036 		 * is actually now running somewhere else!
1037 		 */
1038 		while (task_running(rq, p)) {
1039 			if (match_state && unlikely(p->state != match_state))
1040 				return 0;
1041 			cpu_relax();
1042 		}
1043 
1044 		/*
1045 		 * Ok, time to look more closely! We need the rq
1046 		 * lock now, to be *sure*. If we're wrong, we'll
1047 		 * just go back and repeat.
1048 		 */
1049 		rq = task_rq_lock(p, &flags);
1050 		trace_sched_wait_task(p);
1051 		running = task_running(rq, p);
1052 		on_rq = p->on_rq;
1053 		ncsw = 0;
1054 		if (!match_state || p->state == match_state)
1055 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1056 		task_rq_unlock(rq, p, &flags);
1057 
1058 		/*
1059 		 * If it changed from the expected state, bail out now.
1060 		 */
1061 		if (unlikely(!ncsw))
1062 			break;
1063 
1064 		/*
1065 		 * Was it really running after all now that we
1066 		 * checked with the proper locks actually held?
1067 		 *
1068 		 * Oops. Go back and try again..
1069 		 */
1070 		if (unlikely(running)) {
1071 			cpu_relax();
1072 			continue;
1073 		}
1074 
1075 		/*
1076 		 * It's not enough that it's not actively running,
1077 		 * it must be off the runqueue _entirely_, and not
1078 		 * preempted!
1079 		 *
1080 		 * So if it was still runnable (but just not actively
1081 		 * running right now), it's preempted, and we should
1082 		 * yield - it could be a while.
1083 		 */
1084 		if (unlikely(on_rq)) {
1085 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1086 
1087 			set_current_state(TASK_UNINTERRUPTIBLE);
1088 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1089 			continue;
1090 		}
1091 
1092 		/*
1093 		 * Ahh, all good. It wasn't running, and it wasn't
1094 		 * runnable, which means that it will never become
1095 		 * running in the future either. We're all done!
1096 		 */
1097 		break;
1098 	}
1099 
1100 	return ncsw;
1101 }
1102 
1103 /***
1104  * kick_process - kick a running thread to enter/exit the kernel
1105  * @p: the to-be-kicked thread
1106  *
1107  * Cause a process which is running on another CPU to enter
1108  * kernel-mode, without any delay. (to get signals handled.)
1109  *
1110  * NOTE: this function doesn't have to take the runqueue lock,
1111  * because all it wants to ensure is that the remote task enters
1112  * the kernel. If the IPI races and the task has been migrated
1113  * to another CPU then no harm is done and the purpose has been
1114  * achieved as well.
1115  */
1116 void kick_process(struct task_struct *p)
1117 {
1118 	int cpu;
1119 
1120 	preempt_disable();
1121 	cpu = task_cpu(p);
1122 	if ((cpu != smp_processor_id()) && task_curr(p))
1123 		smp_send_reschedule(cpu);
1124 	preempt_enable();
1125 }
1126 EXPORT_SYMBOL_GPL(kick_process);
1127 #endif /* CONFIG_SMP */
1128 
1129 #ifdef CONFIG_SMP
1130 /*
1131  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1132  */
1133 static int select_fallback_rq(int cpu, struct task_struct *p)
1134 {
1135 	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1136 	enum { cpuset, possible, fail } state = cpuset;
1137 	int dest_cpu;
1138 
1139 	/* Look for allowed, online CPU in same node. */
1140 	for_each_cpu(dest_cpu, nodemask) {
1141 		if (!cpu_online(dest_cpu))
1142 			continue;
1143 		if (!cpu_active(dest_cpu))
1144 			continue;
1145 		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1146 			return dest_cpu;
1147 	}
1148 
1149 	for (;;) {
1150 		/* Any allowed, online CPU? */
1151 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1152 			if (!cpu_online(dest_cpu))
1153 				continue;
1154 			if (!cpu_active(dest_cpu))
1155 				continue;
1156 			goto out;
1157 		}
1158 
1159 		switch (state) {
1160 		case cpuset:
1161 			/* No more Mr. Nice Guy. */
1162 			cpuset_cpus_allowed_fallback(p);
1163 			state = possible;
1164 			break;
1165 
1166 		case possible:
1167 			do_set_cpus_allowed(p, cpu_possible_mask);
1168 			state = fail;
1169 			break;
1170 
1171 		case fail:
1172 			BUG();
1173 			break;
1174 		}
1175 	}
1176 
1177 out:
1178 	if (state != cpuset) {
1179 		/*
1180 		 * Don't tell them about moving exiting tasks or
1181 		 * kernel threads (both mm NULL), since they never
1182 		 * leave kernel.
1183 		 */
1184 		if (p->mm && printk_ratelimit()) {
1185 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1186 					task_pid_nr(p), p->comm, cpu);
1187 		}
1188 	}
1189 
1190 	return dest_cpu;
1191 }
1192 
1193 /*
1194  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1195  */
1196 static inline
1197 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1198 {
1199 	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1200 
1201 	/*
1202 	 * In order not to call set_task_cpu() on a blocking task we need
1203 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1204 	 * cpu.
1205 	 *
1206 	 * Since this is common to all placement strategies, this lives here.
1207 	 *
1208 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1209 	 *   not worry about this generic constraint ]
1210 	 */
1211 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1212 		     !cpu_online(cpu)))
1213 		cpu = select_fallback_rq(task_cpu(p), p);
1214 
1215 	return cpu;
1216 }
1217 
1218 static void update_avg(u64 *avg, u64 sample)
1219 {
1220 	s64 diff = sample - *avg;
1221 	*avg += diff >> 3;
1222 }
1223 #endif
1224 
1225 static void
1226 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1227 {
1228 #ifdef CONFIG_SCHEDSTATS
1229 	struct rq *rq = this_rq();
1230 
1231 #ifdef CONFIG_SMP
1232 	int this_cpu = smp_processor_id();
1233 
1234 	if (cpu == this_cpu) {
1235 		schedstat_inc(rq, ttwu_local);
1236 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1237 	} else {
1238 		struct sched_domain *sd;
1239 
1240 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1241 		rcu_read_lock();
1242 		for_each_domain(this_cpu, sd) {
1243 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1244 				schedstat_inc(sd, ttwu_wake_remote);
1245 				break;
1246 			}
1247 		}
1248 		rcu_read_unlock();
1249 	}
1250 
1251 	if (wake_flags & WF_MIGRATED)
1252 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1253 
1254 #endif /* CONFIG_SMP */
1255 
1256 	schedstat_inc(rq, ttwu_count);
1257 	schedstat_inc(p, se.statistics.nr_wakeups);
1258 
1259 	if (wake_flags & WF_SYNC)
1260 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1261 
1262 #endif /* CONFIG_SCHEDSTATS */
1263 }
1264 
1265 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1266 {
1267 	activate_task(rq, p, en_flags);
1268 	p->on_rq = 1;
1269 
1270 	/* if a worker is waking up, notify workqueue */
1271 	if (p->flags & PF_WQ_WORKER)
1272 		wq_worker_waking_up(p, cpu_of(rq));
1273 }
1274 
1275 /*
1276  * Mark the task runnable and perform wakeup-preemption.
1277  */
1278 static void
1279 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1280 {
1281 	trace_sched_wakeup(p, true);
1282 	check_preempt_curr(rq, p, wake_flags);
1283 
1284 	p->state = TASK_RUNNING;
1285 #ifdef CONFIG_SMP
1286 	if (p->sched_class->task_woken)
1287 		p->sched_class->task_woken(rq, p);
1288 
1289 	if (rq->idle_stamp) {
1290 		u64 delta = rq->clock - rq->idle_stamp;
1291 		u64 max = 2*sysctl_sched_migration_cost;
1292 
1293 		if (delta > max)
1294 			rq->avg_idle = max;
1295 		else
1296 			update_avg(&rq->avg_idle, delta);
1297 		rq->idle_stamp = 0;
1298 	}
1299 #endif
1300 }
1301 
1302 static void
1303 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1304 {
1305 #ifdef CONFIG_SMP
1306 	if (p->sched_contributes_to_load)
1307 		rq->nr_uninterruptible--;
1308 #endif
1309 
1310 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1311 	ttwu_do_wakeup(rq, p, wake_flags);
1312 }
1313 
1314 /*
1315  * Called in case the task @p isn't fully descheduled from its runqueue,
1316  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1317  * since all we need to do is flip p->state to TASK_RUNNING, since
1318  * the task is still ->on_rq.
1319  */
1320 static int ttwu_remote(struct task_struct *p, int wake_flags)
1321 {
1322 	struct rq *rq;
1323 	int ret = 0;
1324 
1325 	rq = __task_rq_lock(p);
1326 	if (p->on_rq) {
1327 		ttwu_do_wakeup(rq, p, wake_flags);
1328 		ret = 1;
1329 	}
1330 	__task_rq_unlock(rq);
1331 
1332 	return ret;
1333 }
1334 
1335 #ifdef CONFIG_SMP
1336 static void sched_ttwu_pending(void)
1337 {
1338 	struct rq *rq = this_rq();
1339 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1340 	struct task_struct *p;
1341 
1342 	raw_spin_lock(&rq->lock);
1343 
1344 	while (llist) {
1345 		p = llist_entry(llist, struct task_struct, wake_entry);
1346 		llist = llist_next(llist);
1347 		ttwu_do_activate(rq, p, 0);
1348 	}
1349 
1350 	raw_spin_unlock(&rq->lock);
1351 }
1352 
1353 void scheduler_ipi(void)
1354 {
1355 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1356 		return;
1357 
1358 	/*
1359 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1360 	 * traditionally all their work was done from the interrupt return
1361 	 * path. Now that we actually do some work, we need to make sure
1362 	 * we do call them.
1363 	 *
1364 	 * Some archs already do call them, luckily irq_enter/exit nest
1365 	 * properly.
1366 	 *
1367 	 * Arguably we should visit all archs and update all handlers,
1368 	 * however a fair share of IPIs are still resched only so this would
1369 	 * somewhat pessimize the simple resched case.
1370 	 */
1371 	irq_enter();
1372 	sched_ttwu_pending();
1373 
1374 	/*
1375 	 * Check if someone kicked us for doing the nohz idle load balance.
1376 	 */
1377 	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1378 		this_rq()->idle_balance = 1;
1379 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1380 	}
1381 	irq_exit();
1382 }
1383 
1384 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1385 {
1386 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1387 		smp_send_reschedule(cpu);
1388 }
1389 
1390 bool cpus_share_cache(int this_cpu, int that_cpu)
1391 {
1392 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1393 }
1394 #endif /* CONFIG_SMP */
1395 
1396 static void ttwu_queue(struct task_struct *p, int cpu)
1397 {
1398 	struct rq *rq = cpu_rq(cpu);
1399 
1400 #if defined(CONFIG_SMP)
1401 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1402 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1403 		ttwu_queue_remote(p, cpu);
1404 		return;
1405 	}
1406 #endif
1407 
1408 	raw_spin_lock(&rq->lock);
1409 	ttwu_do_activate(rq, p, 0);
1410 	raw_spin_unlock(&rq->lock);
1411 }
1412 
1413 /**
1414  * try_to_wake_up - wake up a thread
1415  * @p: the thread to be awakened
1416  * @state: the mask of task states that can be woken
1417  * @wake_flags: wake modifier flags (WF_*)
1418  *
1419  * Put it on the run-queue if it's not already there. The "current"
1420  * thread is always on the run-queue (except when the actual
1421  * re-schedule is in progress), and as such you're allowed to do
1422  * the simpler "current->state = TASK_RUNNING" to mark yourself
1423  * runnable without the overhead of this.
1424  *
1425  * Returns %true if @p was woken up, %false if it was already running
1426  * or @state didn't match @p's state.
1427  */
1428 static int
1429 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1430 {
1431 	unsigned long flags;
1432 	int cpu, success = 0;
1433 
1434 	smp_wmb();
1435 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1436 	if (!(p->state & state))
1437 		goto out;
1438 
1439 	success = 1; /* we're going to change ->state */
1440 	cpu = task_cpu(p);
1441 
1442 	if (p->on_rq && ttwu_remote(p, wake_flags))
1443 		goto stat;
1444 
1445 #ifdef CONFIG_SMP
1446 	/*
1447 	 * If the owning (remote) cpu is still in the middle of schedule() with
1448 	 * this task as prev, wait until its done referencing the task.
1449 	 */
1450 	while (p->on_cpu)
1451 		cpu_relax();
1452 	/*
1453 	 * Pairs with the smp_wmb() in finish_lock_switch().
1454 	 */
1455 	smp_rmb();
1456 
1457 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1458 	p->state = TASK_WAKING;
1459 
1460 	if (p->sched_class->task_waking)
1461 		p->sched_class->task_waking(p);
1462 
1463 	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1464 	if (task_cpu(p) != cpu) {
1465 		wake_flags |= WF_MIGRATED;
1466 		set_task_cpu(p, cpu);
1467 	}
1468 #endif /* CONFIG_SMP */
1469 
1470 	ttwu_queue(p, cpu);
1471 stat:
1472 	ttwu_stat(p, cpu, wake_flags);
1473 out:
1474 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1475 
1476 	return success;
1477 }
1478 
1479 /**
1480  * try_to_wake_up_local - try to wake up a local task with rq lock held
1481  * @p: the thread to be awakened
1482  *
1483  * Put @p on the run-queue if it's not already there. The caller must
1484  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1485  * the current task.
1486  */
1487 static void try_to_wake_up_local(struct task_struct *p)
1488 {
1489 	struct rq *rq = task_rq(p);
1490 
1491 	BUG_ON(rq != this_rq());
1492 	BUG_ON(p == current);
1493 	lockdep_assert_held(&rq->lock);
1494 
1495 	if (!raw_spin_trylock(&p->pi_lock)) {
1496 		raw_spin_unlock(&rq->lock);
1497 		raw_spin_lock(&p->pi_lock);
1498 		raw_spin_lock(&rq->lock);
1499 	}
1500 
1501 	if (!(p->state & TASK_NORMAL))
1502 		goto out;
1503 
1504 	if (!p->on_rq)
1505 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1506 
1507 	ttwu_do_wakeup(rq, p, 0);
1508 	ttwu_stat(p, smp_processor_id(), 0);
1509 out:
1510 	raw_spin_unlock(&p->pi_lock);
1511 }
1512 
1513 /**
1514  * wake_up_process - Wake up a specific process
1515  * @p: The process to be woken up.
1516  *
1517  * Attempt to wake up the nominated process and move it to the set of runnable
1518  * processes.  Returns 1 if the process was woken up, 0 if it was already
1519  * running.
1520  *
1521  * It may be assumed that this function implies a write memory barrier before
1522  * changing the task state if and only if any tasks are woken up.
1523  */
1524 int wake_up_process(struct task_struct *p)
1525 {
1526 	return try_to_wake_up(p, TASK_ALL, 0);
1527 }
1528 EXPORT_SYMBOL(wake_up_process);
1529 
1530 int wake_up_state(struct task_struct *p, unsigned int state)
1531 {
1532 	return try_to_wake_up(p, state, 0);
1533 }
1534 
1535 /*
1536  * Perform scheduler related setup for a newly forked process p.
1537  * p is forked by current.
1538  *
1539  * __sched_fork() is basic setup used by init_idle() too:
1540  */
1541 static void __sched_fork(struct task_struct *p)
1542 {
1543 	p->on_rq			= 0;
1544 
1545 	p->se.on_rq			= 0;
1546 	p->se.exec_start		= 0;
1547 	p->se.sum_exec_runtime		= 0;
1548 	p->se.prev_sum_exec_runtime	= 0;
1549 	p->se.nr_migrations		= 0;
1550 	p->se.vruntime			= 0;
1551 	INIT_LIST_HEAD(&p->se.group_node);
1552 
1553 /*
1554  * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1555  * removed when useful for applications beyond shares distribution (e.g.
1556  * load-balance).
1557  */
1558 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1559 	p->se.avg.runnable_avg_period = 0;
1560 	p->se.avg.runnable_avg_sum = 0;
1561 #endif
1562 #ifdef CONFIG_SCHEDSTATS
1563 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1564 #endif
1565 
1566 	INIT_LIST_HEAD(&p->rt.run_list);
1567 
1568 #ifdef CONFIG_PREEMPT_NOTIFIERS
1569 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1570 #endif
1571 
1572 #ifdef CONFIG_NUMA_BALANCING
1573 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1574 		p->mm->numa_next_scan = jiffies;
1575 		p->mm->numa_next_reset = jiffies;
1576 		p->mm->numa_scan_seq = 0;
1577 	}
1578 
1579 	p->node_stamp = 0ULL;
1580 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1581 	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1582 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1583 	p->numa_work.next = &p->numa_work;
1584 #endif /* CONFIG_NUMA_BALANCING */
1585 }
1586 
1587 #ifdef CONFIG_NUMA_BALANCING
1588 #ifdef CONFIG_SCHED_DEBUG
1589 void set_numabalancing_state(bool enabled)
1590 {
1591 	if (enabled)
1592 		sched_feat_set("NUMA");
1593 	else
1594 		sched_feat_set("NO_NUMA");
1595 }
1596 #else
1597 __read_mostly bool numabalancing_enabled;
1598 
1599 void set_numabalancing_state(bool enabled)
1600 {
1601 	numabalancing_enabled = enabled;
1602 }
1603 #endif /* CONFIG_SCHED_DEBUG */
1604 #endif /* CONFIG_NUMA_BALANCING */
1605 
1606 /*
1607  * fork()/clone()-time setup:
1608  */
1609 void sched_fork(struct task_struct *p)
1610 {
1611 	unsigned long flags;
1612 	int cpu = get_cpu();
1613 
1614 	__sched_fork(p);
1615 	/*
1616 	 * We mark the process as running here. This guarantees that
1617 	 * nobody will actually run it, and a signal or other external
1618 	 * event cannot wake it up and insert it on the runqueue either.
1619 	 */
1620 	p->state = TASK_RUNNING;
1621 
1622 	/*
1623 	 * Make sure we do not leak PI boosting priority to the child.
1624 	 */
1625 	p->prio = current->normal_prio;
1626 
1627 	/*
1628 	 * Revert to default priority/policy on fork if requested.
1629 	 */
1630 	if (unlikely(p->sched_reset_on_fork)) {
1631 		if (task_has_rt_policy(p)) {
1632 			p->policy = SCHED_NORMAL;
1633 			p->static_prio = NICE_TO_PRIO(0);
1634 			p->rt_priority = 0;
1635 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1636 			p->static_prio = NICE_TO_PRIO(0);
1637 
1638 		p->prio = p->normal_prio = __normal_prio(p);
1639 		set_load_weight(p);
1640 
1641 		/*
1642 		 * We don't need the reset flag anymore after the fork. It has
1643 		 * fulfilled its duty:
1644 		 */
1645 		p->sched_reset_on_fork = 0;
1646 	}
1647 
1648 	if (!rt_prio(p->prio))
1649 		p->sched_class = &fair_sched_class;
1650 
1651 	if (p->sched_class->task_fork)
1652 		p->sched_class->task_fork(p);
1653 
1654 	/*
1655 	 * The child is not yet in the pid-hash so no cgroup attach races,
1656 	 * and the cgroup is pinned to this child due to cgroup_fork()
1657 	 * is ran before sched_fork().
1658 	 *
1659 	 * Silence PROVE_RCU.
1660 	 */
1661 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1662 	set_task_cpu(p, cpu);
1663 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1664 
1665 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1666 	if (likely(sched_info_on()))
1667 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1668 #endif
1669 #if defined(CONFIG_SMP)
1670 	p->on_cpu = 0;
1671 #endif
1672 #ifdef CONFIG_PREEMPT_COUNT
1673 	/* Want to start with kernel preemption disabled. */
1674 	task_thread_info(p)->preempt_count = 1;
1675 #endif
1676 #ifdef CONFIG_SMP
1677 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1678 #endif
1679 
1680 	put_cpu();
1681 }
1682 
1683 /*
1684  * wake_up_new_task - wake up a newly created task for the first time.
1685  *
1686  * This function will do some initial scheduler statistics housekeeping
1687  * that must be done for every newly created context, then puts the task
1688  * on the runqueue and wakes it.
1689  */
1690 void wake_up_new_task(struct task_struct *p)
1691 {
1692 	unsigned long flags;
1693 	struct rq *rq;
1694 
1695 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1696 #ifdef CONFIG_SMP
1697 	/*
1698 	 * Fork balancing, do it here and not earlier because:
1699 	 *  - cpus_allowed can change in the fork path
1700 	 *  - any previously selected cpu might disappear through hotplug
1701 	 */
1702 	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1703 #endif
1704 
1705 	rq = __task_rq_lock(p);
1706 	activate_task(rq, p, 0);
1707 	p->on_rq = 1;
1708 	trace_sched_wakeup_new(p, true);
1709 	check_preempt_curr(rq, p, WF_FORK);
1710 #ifdef CONFIG_SMP
1711 	if (p->sched_class->task_woken)
1712 		p->sched_class->task_woken(rq, p);
1713 #endif
1714 	task_rq_unlock(rq, p, &flags);
1715 }
1716 
1717 #ifdef CONFIG_PREEMPT_NOTIFIERS
1718 
1719 /**
1720  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1721  * @notifier: notifier struct to register
1722  */
1723 void preempt_notifier_register(struct preempt_notifier *notifier)
1724 {
1725 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1726 }
1727 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1728 
1729 /**
1730  * preempt_notifier_unregister - no longer interested in preemption notifications
1731  * @notifier: notifier struct to unregister
1732  *
1733  * This is safe to call from within a preemption notifier.
1734  */
1735 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1736 {
1737 	hlist_del(&notifier->link);
1738 }
1739 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1740 
1741 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1742 {
1743 	struct preempt_notifier *notifier;
1744 	struct hlist_node *node;
1745 
1746 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1747 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1748 }
1749 
1750 static void
1751 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1752 				 struct task_struct *next)
1753 {
1754 	struct preempt_notifier *notifier;
1755 	struct hlist_node *node;
1756 
1757 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1758 		notifier->ops->sched_out(notifier, next);
1759 }
1760 
1761 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1762 
1763 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1764 {
1765 }
1766 
1767 static void
1768 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1769 				 struct task_struct *next)
1770 {
1771 }
1772 
1773 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1774 
1775 /**
1776  * prepare_task_switch - prepare to switch tasks
1777  * @rq: the runqueue preparing to switch
1778  * @prev: the current task that is being switched out
1779  * @next: the task we are going to switch to.
1780  *
1781  * This is called with the rq lock held and interrupts off. It must
1782  * be paired with a subsequent finish_task_switch after the context
1783  * switch.
1784  *
1785  * prepare_task_switch sets up locking and calls architecture specific
1786  * hooks.
1787  */
1788 static inline void
1789 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1790 		    struct task_struct *next)
1791 {
1792 	trace_sched_switch(prev, next);
1793 	sched_info_switch(prev, next);
1794 	perf_event_task_sched_out(prev, next);
1795 	fire_sched_out_preempt_notifiers(prev, next);
1796 	prepare_lock_switch(rq, next);
1797 	prepare_arch_switch(next);
1798 }
1799 
1800 /**
1801  * finish_task_switch - clean up after a task-switch
1802  * @rq: runqueue associated with task-switch
1803  * @prev: the thread we just switched away from.
1804  *
1805  * finish_task_switch must be called after the context switch, paired
1806  * with a prepare_task_switch call before the context switch.
1807  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1808  * and do any other architecture-specific cleanup actions.
1809  *
1810  * Note that we may have delayed dropping an mm in context_switch(). If
1811  * so, we finish that here outside of the runqueue lock. (Doing it
1812  * with the lock held can cause deadlocks; see schedule() for
1813  * details.)
1814  */
1815 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1816 	__releases(rq->lock)
1817 {
1818 	struct mm_struct *mm = rq->prev_mm;
1819 	long prev_state;
1820 
1821 	rq->prev_mm = NULL;
1822 
1823 	/*
1824 	 * A task struct has one reference for the use as "current".
1825 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1826 	 * schedule one last time. The schedule call will never return, and
1827 	 * the scheduled task must drop that reference.
1828 	 * The test for TASK_DEAD must occur while the runqueue locks are
1829 	 * still held, otherwise prev could be scheduled on another cpu, die
1830 	 * there before we look at prev->state, and then the reference would
1831 	 * be dropped twice.
1832 	 *		Manfred Spraul <manfred@colorfullife.com>
1833 	 */
1834 	prev_state = prev->state;
1835 	vtime_task_switch(prev);
1836 	finish_arch_switch(prev);
1837 	perf_event_task_sched_in(prev, current);
1838 	finish_lock_switch(rq, prev);
1839 	finish_arch_post_lock_switch();
1840 
1841 	fire_sched_in_preempt_notifiers(current);
1842 	if (mm)
1843 		mmdrop(mm);
1844 	if (unlikely(prev_state == TASK_DEAD)) {
1845 		/*
1846 		 * Remove function-return probe instances associated with this
1847 		 * task and put them back on the free list.
1848 		 */
1849 		kprobe_flush_task(prev);
1850 		put_task_struct(prev);
1851 	}
1852 }
1853 
1854 #ifdef CONFIG_SMP
1855 
1856 /* assumes rq->lock is held */
1857 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1858 {
1859 	if (prev->sched_class->pre_schedule)
1860 		prev->sched_class->pre_schedule(rq, prev);
1861 }
1862 
1863 /* rq->lock is NOT held, but preemption is disabled */
1864 static inline void post_schedule(struct rq *rq)
1865 {
1866 	if (rq->post_schedule) {
1867 		unsigned long flags;
1868 
1869 		raw_spin_lock_irqsave(&rq->lock, flags);
1870 		if (rq->curr->sched_class->post_schedule)
1871 			rq->curr->sched_class->post_schedule(rq);
1872 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1873 
1874 		rq->post_schedule = 0;
1875 	}
1876 }
1877 
1878 #else
1879 
1880 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1881 {
1882 }
1883 
1884 static inline void post_schedule(struct rq *rq)
1885 {
1886 }
1887 
1888 #endif
1889 
1890 /**
1891  * schedule_tail - first thing a freshly forked thread must call.
1892  * @prev: the thread we just switched away from.
1893  */
1894 asmlinkage void schedule_tail(struct task_struct *prev)
1895 	__releases(rq->lock)
1896 {
1897 	struct rq *rq = this_rq();
1898 
1899 	finish_task_switch(rq, prev);
1900 
1901 	/*
1902 	 * FIXME: do we need to worry about rq being invalidated by the
1903 	 * task_switch?
1904 	 */
1905 	post_schedule(rq);
1906 
1907 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1908 	/* In this case, finish_task_switch does not reenable preemption */
1909 	preempt_enable();
1910 #endif
1911 	if (current->set_child_tid)
1912 		put_user(task_pid_vnr(current), current->set_child_tid);
1913 }
1914 
1915 /*
1916  * context_switch - switch to the new MM and the new
1917  * thread's register state.
1918  */
1919 static inline void
1920 context_switch(struct rq *rq, struct task_struct *prev,
1921 	       struct task_struct *next)
1922 {
1923 	struct mm_struct *mm, *oldmm;
1924 
1925 	prepare_task_switch(rq, prev, next);
1926 
1927 	mm = next->mm;
1928 	oldmm = prev->active_mm;
1929 	/*
1930 	 * For paravirt, this is coupled with an exit in switch_to to
1931 	 * combine the page table reload and the switch backend into
1932 	 * one hypercall.
1933 	 */
1934 	arch_start_context_switch(prev);
1935 
1936 	if (!mm) {
1937 		next->active_mm = oldmm;
1938 		atomic_inc(&oldmm->mm_count);
1939 		enter_lazy_tlb(oldmm, next);
1940 	} else
1941 		switch_mm(oldmm, mm, next);
1942 
1943 	if (!prev->mm) {
1944 		prev->active_mm = NULL;
1945 		rq->prev_mm = oldmm;
1946 	}
1947 	/*
1948 	 * Since the runqueue lock will be released by the next
1949 	 * task (which is an invalid locking op but in the case
1950 	 * of the scheduler it's an obvious special-case), so we
1951 	 * do an early lockdep release here:
1952 	 */
1953 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1954 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1955 #endif
1956 
1957 	context_tracking_task_switch(prev, next);
1958 	/* Here we just switch the register state and the stack. */
1959 	switch_to(prev, next, prev);
1960 
1961 	barrier();
1962 	/*
1963 	 * this_rq must be evaluated again because prev may have moved
1964 	 * CPUs since it called schedule(), thus the 'rq' on its stack
1965 	 * frame will be invalid.
1966 	 */
1967 	finish_task_switch(this_rq(), prev);
1968 }
1969 
1970 /*
1971  * nr_running, nr_uninterruptible and nr_context_switches:
1972  *
1973  * externally visible scheduler statistics: current number of runnable
1974  * threads, current number of uninterruptible-sleeping threads, total
1975  * number of context switches performed since bootup.
1976  */
1977 unsigned long nr_running(void)
1978 {
1979 	unsigned long i, sum = 0;
1980 
1981 	for_each_online_cpu(i)
1982 		sum += cpu_rq(i)->nr_running;
1983 
1984 	return sum;
1985 }
1986 
1987 unsigned long nr_uninterruptible(void)
1988 {
1989 	unsigned long i, sum = 0;
1990 
1991 	for_each_possible_cpu(i)
1992 		sum += cpu_rq(i)->nr_uninterruptible;
1993 
1994 	/*
1995 	 * Since we read the counters lockless, it might be slightly
1996 	 * inaccurate. Do not allow it to go below zero though:
1997 	 */
1998 	if (unlikely((long)sum < 0))
1999 		sum = 0;
2000 
2001 	return sum;
2002 }
2003 
2004 unsigned long long nr_context_switches(void)
2005 {
2006 	int i;
2007 	unsigned long long sum = 0;
2008 
2009 	for_each_possible_cpu(i)
2010 		sum += cpu_rq(i)->nr_switches;
2011 
2012 	return sum;
2013 }
2014 
2015 unsigned long nr_iowait(void)
2016 {
2017 	unsigned long i, sum = 0;
2018 
2019 	for_each_possible_cpu(i)
2020 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2021 
2022 	return sum;
2023 }
2024 
2025 unsigned long nr_iowait_cpu(int cpu)
2026 {
2027 	struct rq *this = cpu_rq(cpu);
2028 	return atomic_read(&this->nr_iowait);
2029 }
2030 
2031 unsigned long this_cpu_load(void)
2032 {
2033 	struct rq *this = this_rq();
2034 	return this->cpu_load[0];
2035 }
2036 
2037 
2038 /*
2039  * Global load-average calculations
2040  *
2041  * We take a distributed and async approach to calculating the global load-avg
2042  * in order to minimize overhead.
2043  *
2044  * The global load average is an exponentially decaying average of nr_running +
2045  * nr_uninterruptible.
2046  *
2047  * Once every LOAD_FREQ:
2048  *
2049  *   nr_active = 0;
2050  *   for_each_possible_cpu(cpu)
2051  *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2052  *
2053  *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2054  *
2055  * Due to a number of reasons the above turns in the mess below:
2056  *
2057  *  - for_each_possible_cpu() is prohibitively expensive on machines with
2058  *    serious number of cpus, therefore we need to take a distributed approach
2059  *    to calculating nr_active.
2060  *
2061  *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2062  *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2063  *
2064  *    So assuming nr_active := 0 when we start out -- true per definition, we
2065  *    can simply take per-cpu deltas and fold those into a global accumulate
2066  *    to obtain the same result. See calc_load_fold_active().
2067  *
2068  *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2069  *    across the machine, we assume 10 ticks is sufficient time for every
2070  *    cpu to have completed this task.
2071  *
2072  *    This places an upper-bound on the IRQ-off latency of the machine. Then
2073  *    again, being late doesn't loose the delta, just wrecks the sample.
2074  *
2075  *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2076  *    this would add another cross-cpu cacheline miss and atomic operation
2077  *    to the wakeup path. Instead we increment on whatever cpu the task ran
2078  *    when it went into uninterruptible state and decrement on whatever cpu
2079  *    did the wakeup. This means that only the sum of nr_uninterruptible over
2080  *    all cpus yields the correct result.
2081  *
2082  *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2083  */
2084 
2085 /* Variables and functions for calc_load */
2086 static atomic_long_t calc_load_tasks;
2087 static unsigned long calc_load_update;
2088 unsigned long avenrun[3];
2089 EXPORT_SYMBOL(avenrun); /* should be removed */
2090 
2091 /**
2092  * get_avenrun - get the load average array
2093  * @loads:	pointer to dest load array
2094  * @offset:	offset to add
2095  * @shift:	shift count to shift the result left
2096  *
2097  * These values are estimates at best, so no need for locking.
2098  */
2099 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2100 {
2101 	loads[0] = (avenrun[0] + offset) << shift;
2102 	loads[1] = (avenrun[1] + offset) << shift;
2103 	loads[2] = (avenrun[2] + offset) << shift;
2104 }
2105 
2106 static long calc_load_fold_active(struct rq *this_rq)
2107 {
2108 	long nr_active, delta = 0;
2109 
2110 	nr_active = this_rq->nr_running;
2111 	nr_active += (long) this_rq->nr_uninterruptible;
2112 
2113 	if (nr_active != this_rq->calc_load_active) {
2114 		delta = nr_active - this_rq->calc_load_active;
2115 		this_rq->calc_load_active = nr_active;
2116 	}
2117 
2118 	return delta;
2119 }
2120 
2121 /*
2122  * a1 = a0 * e + a * (1 - e)
2123  */
2124 static unsigned long
2125 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2126 {
2127 	load *= exp;
2128 	load += active * (FIXED_1 - exp);
2129 	load += 1UL << (FSHIFT - 1);
2130 	return load >> FSHIFT;
2131 }
2132 
2133 #ifdef CONFIG_NO_HZ
2134 /*
2135  * Handle NO_HZ for the global load-average.
2136  *
2137  * Since the above described distributed algorithm to compute the global
2138  * load-average relies on per-cpu sampling from the tick, it is affected by
2139  * NO_HZ.
2140  *
2141  * The basic idea is to fold the nr_active delta into a global idle-delta upon
2142  * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2143  * when we read the global state.
2144  *
2145  * Obviously reality has to ruin such a delightfully simple scheme:
2146  *
2147  *  - When we go NO_HZ idle during the window, we can negate our sample
2148  *    contribution, causing under-accounting.
2149  *
2150  *    We avoid this by keeping two idle-delta counters and flipping them
2151  *    when the window starts, thus separating old and new NO_HZ load.
2152  *
2153  *    The only trick is the slight shift in index flip for read vs write.
2154  *
2155  *        0s            5s            10s           15s
2156  *          +10           +10           +10           +10
2157  *        |-|-----------|-|-----------|-|-----------|-|
2158  *    r:0 0 1           1 0           0 1           1 0
2159  *    w:0 1 1           0 0           1 1           0 0
2160  *
2161  *    This ensures we'll fold the old idle contribution in this window while
2162  *    accumlating the new one.
2163  *
2164  *  - When we wake up from NO_HZ idle during the window, we push up our
2165  *    contribution, since we effectively move our sample point to a known
2166  *    busy state.
2167  *
2168  *    This is solved by pushing the window forward, and thus skipping the
2169  *    sample, for this cpu (effectively using the idle-delta for this cpu which
2170  *    was in effect at the time the window opened). This also solves the issue
2171  *    of having to deal with a cpu having been in NOHZ idle for multiple
2172  *    LOAD_FREQ intervals.
2173  *
2174  * When making the ILB scale, we should try to pull this in as well.
2175  */
2176 static atomic_long_t calc_load_idle[2];
2177 static int calc_load_idx;
2178 
2179 static inline int calc_load_write_idx(void)
2180 {
2181 	int idx = calc_load_idx;
2182 
2183 	/*
2184 	 * See calc_global_nohz(), if we observe the new index, we also
2185 	 * need to observe the new update time.
2186 	 */
2187 	smp_rmb();
2188 
2189 	/*
2190 	 * If the folding window started, make sure we start writing in the
2191 	 * next idle-delta.
2192 	 */
2193 	if (!time_before(jiffies, calc_load_update))
2194 		idx++;
2195 
2196 	return idx & 1;
2197 }
2198 
2199 static inline int calc_load_read_idx(void)
2200 {
2201 	return calc_load_idx & 1;
2202 }
2203 
2204 void calc_load_enter_idle(void)
2205 {
2206 	struct rq *this_rq = this_rq();
2207 	long delta;
2208 
2209 	/*
2210 	 * We're going into NOHZ mode, if there's any pending delta, fold it
2211 	 * into the pending idle delta.
2212 	 */
2213 	delta = calc_load_fold_active(this_rq);
2214 	if (delta) {
2215 		int idx = calc_load_write_idx();
2216 		atomic_long_add(delta, &calc_load_idle[idx]);
2217 	}
2218 }
2219 
2220 void calc_load_exit_idle(void)
2221 {
2222 	struct rq *this_rq = this_rq();
2223 
2224 	/*
2225 	 * If we're still before the sample window, we're done.
2226 	 */
2227 	if (time_before(jiffies, this_rq->calc_load_update))
2228 		return;
2229 
2230 	/*
2231 	 * We woke inside or after the sample window, this means we're already
2232 	 * accounted through the nohz accounting, so skip the entire deal and
2233 	 * sync up for the next window.
2234 	 */
2235 	this_rq->calc_load_update = calc_load_update;
2236 	if (time_before(jiffies, this_rq->calc_load_update + 10))
2237 		this_rq->calc_load_update += LOAD_FREQ;
2238 }
2239 
2240 static long calc_load_fold_idle(void)
2241 {
2242 	int idx = calc_load_read_idx();
2243 	long delta = 0;
2244 
2245 	if (atomic_long_read(&calc_load_idle[idx]))
2246 		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2247 
2248 	return delta;
2249 }
2250 
2251 /**
2252  * fixed_power_int - compute: x^n, in O(log n) time
2253  *
2254  * @x:         base of the power
2255  * @frac_bits: fractional bits of @x
2256  * @n:         power to raise @x to.
2257  *
2258  * By exploiting the relation between the definition of the natural power
2259  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2260  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2261  * (where: n_i \elem {0, 1}, the binary vector representing n),
2262  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2263  * of course trivially computable in O(log_2 n), the length of our binary
2264  * vector.
2265  */
2266 static unsigned long
2267 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2268 {
2269 	unsigned long result = 1UL << frac_bits;
2270 
2271 	if (n) for (;;) {
2272 		if (n & 1) {
2273 			result *= x;
2274 			result += 1UL << (frac_bits - 1);
2275 			result >>= frac_bits;
2276 		}
2277 		n >>= 1;
2278 		if (!n)
2279 			break;
2280 		x *= x;
2281 		x += 1UL << (frac_bits - 1);
2282 		x >>= frac_bits;
2283 	}
2284 
2285 	return result;
2286 }
2287 
2288 /*
2289  * a1 = a0 * e + a * (1 - e)
2290  *
2291  * a2 = a1 * e + a * (1 - e)
2292  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2293  *    = a0 * e^2 + a * (1 - e) * (1 + e)
2294  *
2295  * a3 = a2 * e + a * (1 - e)
2296  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2297  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2298  *
2299  *  ...
2300  *
2301  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2302  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2303  *    = a0 * e^n + a * (1 - e^n)
2304  *
2305  * [1] application of the geometric series:
2306  *
2307  *              n         1 - x^(n+1)
2308  *     S_n := \Sum x^i = -------------
2309  *             i=0          1 - x
2310  */
2311 static unsigned long
2312 calc_load_n(unsigned long load, unsigned long exp,
2313 	    unsigned long active, unsigned int n)
2314 {
2315 
2316 	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2317 }
2318 
2319 /*
2320  * NO_HZ can leave us missing all per-cpu ticks calling
2321  * calc_load_account_active(), but since an idle CPU folds its delta into
2322  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2323  * in the pending idle delta if our idle period crossed a load cycle boundary.
2324  *
2325  * Once we've updated the global active value, we need to apply the exponential
2326  * weights adjusted to the number of cycles missed.
2327  */
2328 static void calc_global_nohz(void)
2329 {
2330 	long delta, active, n;
2331 
2332 	if (!time_before(jiffies, calc_load_update + 10)) {
2333 		/*
2334 		 * Catch-up, fold however many we are behind still
2335 		 */
2336 		delta = jiffies - calc_load_update - 10;
2337 		n = 1 + (delta / LOAD_FREQ);
2338 
2339 		active = atomic_long_read(&calc_load_tasks);
2340 		active = active > 0 ? active * FIXED_1 : 0;
2341 
2342 		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2343 		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2344 		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2345 
2346 		calc_load_update += n * LOAD_FREQ;
2347 	}
2348 
2349 	/*
2350 	 * Flip the idle index...
2351 	 *
2352 	 * Make sure we first write the new time then flip the index, so that
2353 	 * calc_load_write_idx() will see the new time when it reads the new
2354 	 * index, this avoids a double flip messing things up.
2355 	 */
2356 	smp_wmb();
2357 	calc_load_idx++;
2358 }
2359 #else /* !CONFIG_NO_HZ */
2360 
2361 static inline long calc_load_fold_idle(void) { return 0; }
2362 static inline void calc_global_nohz(void) { }
2363 
2364 #endif /* CONFIG_NO_HZ */
2365 
2366 /*
2367  * calc_load - update the avenrun load estimates 10 ticks after the
2368  * CPUs have updated calc_load_tasks.
2369  */
2370 void calc_global_load(unsigned long ticks)
2371 {
2372 	long active, delta;
2373 
2374 	if (time_before(jiffies, calc_load_update + 10))
2375 		return;
2376 
2377 	/*
2378 	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2379 	 */
2380 	delta = calc_load_fold_idle();
2381 	if (delta)
2382 		atomic_long_add(delta, &calc_load_tasks);
2383 
2384 	active = atomic_long_read(&calc_load_tasks);
2385 	active = active > 0 ? active * FIXED_1 : 0;
2386 
2387 	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2388 	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2389 	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2390 
2391 	calc_load_update += LOAD_FREQ;
2392 
2393 	/*
2394 	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2395 	 */
2396 	calc_global_nohz();
2397 }
2398 
2399 /*
2400  * Called from update_cpu_load() to periodically update this CPU's
2401  * active count.
2402  */
2403 static void calc_load_account_active(struct rq *this_rq)
2404 {
2405 	long delta;
2406 
2407 	if (time_before(jiffies, this_rq->calc_load_update))
2408 		return;
2409 
2410 	delta  = calc_load_fold_active(this_rq);
2411 	if (delta)
2412 		atomic_long_add(delta, &calc_load_tasks);
2413 
2414 	this_rq->calc_load_update += LOAD_FREQ;
2415 }
2416 
2417 /*
2418  * End of global load-average stuff
2419  */
2420 
2421 /*
2422  * The exact cpuload at various idx values, calculated at every tick would be
2423  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2424  *
2425  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2426  * on nth tick when cpu may be busy, then we have:
2427  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2428  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2429  *
2430  * decay_load_missed() below does efficient calculation of
2431  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2432  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2433  *
2434  * The calculation is approximated on a 128 point scale.
2435  * degrade_zero_ticks is the number of ticks after which load at any
2436  * particular idx is approximated to be zero.
2437  * degrade_factor is a precomputed table, a row for each load idx.
2438  * Each column corresponds to degradation factor for a power of two ticks,
2439  * based on 128 point scale.
2440  * Example:
2441  * row 2, col 3 (=12) says that the degradation at load idx 2 after
2442  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2443  *
2444  * With this power of 2 load factors, we can degrade the load n times
2445  * by looking at 1 bits in n and doing as many mult/shift instead of
2446  * n mult/shifts needed by the exact degradation.
2447  */
2448 #define DEGRADE_SHIFT		7
2449 static const unsigned char
2450 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2451 static const unsigned char
2452 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2453 					{0, 0, 0, 0, 0, 0, 0, 0},
2454 					{64, 32, 8, 0, 0, 0, 0, 0},
2455 					{96, 72, 40, 12, 1, 0, 0},
2456 					{112, 98, 75, 43, 15, 1, 0},
2457 					{120, 112, 98, 76, 45, 16, 2} };
2458 
2459 /*
2460  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2461  * would be when CPU is idle and so we just decay the old load without
2462  * adding any new load.
2463  */
2464 static unsigned long
2465 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2466 {
2467 	int j = 0;
2468 
2469 	if (!missed_updates)
2470 		return load;
2471 
2472 	if (missed_updates >= degrade_zero_ticks[idx])
2473 		return 0;
2474 
2475 	if (idx == 1)
2476 		return load >> missed_updates;
2477 
2478 	while (missed_updates) {
2479 		if (missed_updates % 2)
2480 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2481 
2482 		missed_updates >>= 1;
2483 		j++;
2484 	}
2485 	return load;
2486 }
2487 
2488 /*
2489  * Update rq->cpu_load[] statistics. This function is usually called every
2490  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2491  * every tick. We fix it up based on jiffies.
2492  */
2493 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2494 			      unsigned long pending_updates)
2495 {
2496 	int i, scale;
2497 
2498 	this_rq->nr_load_updates++;
2499 
2500 	/* Update our load: */
2501 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2502 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2503 		unsigned long old_load, new_load;
2504 
2505 		/* scale is effectively 1 << i now, and >> i divides by scale */
2506 
2507 		old_load = this_rq->cpu_load[i];
2508 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2509 		new_load = this_load;
2510 		/*
2511 		 * Round up the averaging division if load is increasing. This
2512 		 * prevents us from getting stuck on 9 if the load is 10, for
2513 		 * example.
2514 		 */
2515 		if (new_load > old_load)
2516 			new_load += scale - 1;
2517 
2518 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2519 	}
2520 
2521 	sched_avg_update(this_rq);
2522 }
2523 
2524 #ifdef CONFIG_NO_HZ
2525 /*
2526  * There is no sane way to deal with nohz on smp when using jiffies because the
2527  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2528  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2529  *
2530  * Therefore we cannot use the delta approach from the regular tick since that
2531  * would seriously skew the load calculation. However we'll make do for those
2532  * updates happening while idle (nohz_idle_balance) or coming out of idle
2533  * (tick_nohz_idle_exit).
2534  *
2535  * This means we might still be one tick off for nohz periods.
2536  */
2537 
2538 /*
2539  * Called from nohz_idle_balance() to update the load ratings before doing the
2540  * idle balance.
2541  */
2542 void update_idle_cpu_load(struct rq *this_rq)
2543 {
2544 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2545 	unsigned long load = this_rq->load.weight;
2546 	unsigned long pending_updates;
2547 
2548 	/*
2549 	 * bail if there's load or we're actually up-to-date.
2550 	 */
2551 	if (load || curr_jiffies == this_rq->last_load_update_tick)
2552 		return;
2553 
2554 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2555 	this_rq->last_load_update_tick = curr_jiffies;
2556 
2557 	__update_cpu_load(this_rq, load, pending_updates);
2558 }
2559 
2560 /*
2561  * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2562  */
2563 void update_cpu_load_nohz(void)
2564 {
2565 	struct rq *this_rq = this_rq();
2566 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2567 	unsigned long pending_updates;
2568 
2569 	if (curr_jiffies == this_rq->last_load_update_tick)
2570 		return;
2571 
2572 	raw_spin_lock(&this_rq->lock);
2573 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2574 	if (pending_updates) {
2575 		this_rq->last_load_update_tick = curr_jiffies;
2576 		/*
2577 		 * We were idle, this means load 0, the current load might be
2578 		 * !0 due to remote wakeups and the sort.
2579 		 */
2580 		__update_cpu_load(this_rq, 0, pending_updates);
2581 	}
2582 	raw_spin_unlock(&this_rq->lock);
2583 }
2584 #endif /* CONFIG_NO_HZ */
2585 
2586 /*
2587  * Called from scheduler_tick()
2588  */
2589 static void update_cpu_load_active(struct rq *this_rq)
2590 {
2591 	/*
2592 	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2593 	 */
2594 	this_rq->last_load_update_tick = jiffies;
2595 	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2596 
2597 	calc_load_account_active(this_rq);
2598 }
2599 
2600 #ifdef CONFIG_SMP
2601 
2602 /*
2603  * sched_exec - execve() is a valuable balancing opportunity, because at
2604  * this point the task has the smallest effective memory and cache footprint.
2605  */
2606 void sched_exec(void)
2607 {
2608 	struct task_struct *p = current;
2609 	unsigned long flags;
2610 	int dest_cpu;
2611 
2612 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2613 	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2614 	if (dest_cpu == smp_processor_id())
2615 		goto unlock;
2616 
2617 	if (likely(cpu_active(dest_cpu))) {
2618 		struct migration_arg arg = { p, dest_cpu };
2619 
2620 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2621 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2622 		return;
2623 	}
2624 unlock:
2625 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2626 }
2627 
2628 #endif
2629 
2630 DEFINE_PER_CPU(struct kernel_stat, kstat);
2631 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2632 
2633 EXPORT_PER_CPU_SYMBOL(kstat);
2634 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2635 
2636 /*
2637  * Return any ns on the sched_clock that have not yet been accounted in
2638  * @p in case that task is currently running.
2639  *
2640  * Called with task_rq_lock() held on @rq.
2641  */
2642 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2643 {
2644 	u64 ns = 0;
2645 
2646 	if (task_current(rq, p)) {
2647 		update_rq_clock(rq);
2648 		ns = rq->clock_task - p->se.exec_start;
2649 		if ((s64)ns < 0)
2650 			ns = 0;
2651 	}
2652 
2653 	return ns;
2654 }
2655 
2656 unsigned long long task_delta_exec(struct task_struct *p)
2657 {
2658 	unsigned long flags;
2659 	struct rq *rq;
2660 	u64 ns = 0;
2661 
2662 	rq = task_rq_lock(p, &flags);
2663 	ns = do_task_delta_exec(p, rq);
2664 	task_rq_unlock(rq, p, &flags);
2665 
2666 	return ns;
2667 }
2668 
2669 /*
2670  * Return accounted runtime for the task.
2671  * In case the task is currently running, return the runtime plus current's
2672  * pending runtime that have not been accounted yet.
2673  */
2674 unsigned long long task_sched_runtime(struct task_struct *p)
2675 {
2676 	unsigned long flags;
2677 	struct rq *rq;
2678 	u64 ns = 0;
2679 
2680 	rq = task_rq_lock(p, &flags);
2681 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2682 	task_rq_unlock(rq, p, &flags);
2683 
2684 	return ns;
2685 }
2686 
2687 /*
2688  * This function gets called by the timer code, with HZ frequency.
2689  * We call it with interrupts disabled.
2690  */
2691 void scheduler_tick(void)
2692 {
2693 	int cpu = smp_processor_id();
2694 	struct rq *rq = cpu_rq(cpu);
2695 	struct task_struct *curr = rq->curr;
2696 
2697 	sched_clock_tick();
2698 
2699 	raw_spin_lock(&rq->lock);
2700 	update_rq_clock(rq);
2701 	update_cpu_load_active(rq);
2702 	curr->sched_class->task_tick(rq, curr, 0);
2703 	raw_spin_unlock(&rq->lock);
2704 
2705 	perf_event_task_tick();
2706 
2707 #ifdef CONFIG_SMP
2708 	rq->idle_balance = idle_cpu(cpu);
2709 	trigger_load_balance(rq, cpu);
2710 #endif
2711 }
2712 
2713 notrace unsigned long get_parent_ip(unsigned long addr)
2714 {
2715 	if (in_lock_functions(addr)) {
2716 		addr = CALLER_ADDR2;
2717 		if (in_lock_functions(addr))
2718 			addr = CALLER_ADDR3;
2719 	}
2720 	return addr;
2721 }
2722 
2723 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2724 				defined(CONFIG_PREEMPT_TRACER))
2725 
2726 void __kprobes add_preempt_count(int val)
2727 {
2728 #ifdef CONFIG_DEBUG_PREEMPT
2729 	/*
2730 	 * Underflow?
2731 	 */
2732 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2733 		return;
2734 #endif
2735 	preempt_count() += val;
2736 #ifdef CONFIG_DEBUG_PREEMPT
2737 	/*
2738 	 * Spinlock count overflowing soon?
2739 	 */
2740 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2741 				PREEMPT_MASK - 10);
2742 #endif
2743 	if (preempt_count() == val)
2744 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2745 }
2746 EXPORT_SYMBOL(add_preempt_count);
2747 
2748 void __kprobes sub_preempt_count(int val)
2749 {
2750 #ifdef CONFIG_DEBUG_PREEMPT
2751 	/*
2752 	 * Underflow?
2753 	 */
2754 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2755 		return;
2756 	/*
2757 	 * Is the spinlock portion underflowing?
2758 	 */
2759 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2760 			!(preempt_count() & PREEMPT_MASK)))
2761 		return;
2762 #endif
2763 
2764 	if (preempt_count() == val)
2765 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2766 	preempt_count() -= val;
2767 }
2768 EXPORT_SYMBOL(sub_preempt_count);
2769 
2770 #endif
2771 
2772 /*
2773  * Print scheduling while atomic bug:
2774  */
2775 static noinline void __schedule_bug(struct task_struct *prev)
2776 {
2777 	if (oops_in_progress)
2778 		return;
2779 
2780 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2781 		prev->comm, prev->pid, preempt_count());
2782 
2783 	debug_show_held_locks(prev);
2784 	print_modules();
2785 	if (irqs_disabled())
2786 		print_irqtrace_events(prev);
2787 	dump_stack();
2788 	add_taint(TAINT_WARN);
2789 }
2790 
2791 /*
2792  * Various schedule()-time debugging checks and statistics:
2793  */
2794 static inline void schedule_debug(struct task_struct *prev)
2795 {
2796 	/*
2797 	 * Test if we are atomic. Since do_exit() needs to call into
2798 	 * schedule() atomically, we ignore that path for now.
2799 	 * Otherwise, whine if we are scheduling when we should not be.
2800 	 */
2801 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2802 		__schedule_bug(prev);
2803 	rcu_sleep_check();
2804 
2805 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2806 
2807 	schedstat_inc(this_rq(), sched_count);
2808 }
2809 
2810 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2811 {
2812 	if (prev->on_rq || rq->skip_clock_update < 0)
2813 		update_rq_clock(rq);
2814 	prev->sched_class->put_prev_task(rq, prev);
2815 }
2816 
2817 /*
2818  * Pick up the highest-prio task:
2819  */
2820 static inline struct task_struct *
2821 pick_next_task(struct rq *rq)
2822 {
2823 	const struct sched_class *class;
2824 	struct task_struct *p;
2825 
2826 	/*
2827 	 * Optimization: we know that if all tasks are in
2828 	 * the fair class we can call that function directly:
2829 	 */
2830 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2831 		p = fair_sched_class.pick_next_task(rq);
2832 		if (likely(p))
2833 			return p;
2834 	}
2835 
2836 	for_each_class(class) {
2837 		p = class->pick_next_task(rq);
2838 		if (p)
2839 			return p;
2840 	}
2841 
2842 	BUG(); /* the idle class will always have a runnable task */
2843 }
2844 
2845 /*
2846  * __schedule() is the main scheduler function.
2847  *
2848  * The main means of driving the scheduler and thus entering this function are:
2849  *
2850  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2851  *
2852  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2853  *      paths. For example, see arch/x86/entry_64.S.
2854  *
2855  *      To drive preemption between tasks, the scheduler sets the flag in timer
2856  *      interrupt handler scheduler_tick().
2857  *
2858  *   3. Wakeups don't really cause entry into schedule(). They add a
2859  *      task to the run-queue and that's it.
2860  *
2861  *      Now, if the new task added to the run-queue preempts the current
2862  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2863  *      called on the nearest possible occasion:
2864  *
2865  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2866  *
2867  *         - in syscall or exception context, at the next outmost
2868  *           preempt_enable(). (this might be as soon as the wake_up()'s
2869  *           spin_unlock()!)
2870  *
2871  *         - in IRQ context, return from interrupt-handler to
2872  *           preemptible context
2873  *
2874  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2875  *         then at the next:
2876  *
2877  *          - cond_resched() call
2878  *          - explicit schedule() call
2879  *          - return from syscall or exception to user-space
2880  *          - return from interrupt-handler to user-space
2881  */
2882 static void __sched __schedule(void)
2883 {
2884 	struct task_struct *prev, *next;
2885 	unsigned long *switch_count;
2886 	struct rq *rq;
2887 	int cpu;
2888 
2889 need_resched:
2890 	preempt_disable();
2891 	cpu = smp_processor_id();
2892 	rq = cpu_rq(cpu);
2893 	rcu_note_context_switch(cpu);
2894 	prev = rq->curr;
2895 
2896 	schedule_debug(prev);
2897 
2898 	if (sched_feat(HRTICK))
2899 		hrtick_clear(rq);
2900 
2901 	raw_spin_lock_irq(&rq->lock);
2902 
2903 	switch_count = &prev->nivcsw;
2904 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2905 		if (unlikely(signal_pending_state(prev->state, prev))) {
2906 			prev->state = TASK_RUNNING;
2907 		} else {
2908 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2909 			prev->on_rq = 0;
2910 
2911 			/*
2912 			 * If a worker went to sleep, notify and ask workqueue
2913 			 * whether it wants to wake up a task to maintain
2914 			 * concurrency.
2915 			 */
2916 			if (prev->flags & PF_WQ_WORKER) {
2917 				struct task_struct *to_wakeup;
2918 
2919 				to_wakeup = wq_worker_sleeping(prev, cpu);
2920 				if (to_wakeup)
2921 					try_to_wake_up_local(to_wakeup);
2922 			}
2923 		}
2924 		switch_count = &prev->nvcsw;
2925 	}
2926 
2927 	pre_schedule(rq, prev);
2928 
2929 	if (unlikely(!rq->nr_running))
2930 		idle_balance(cpu, rq);
2931 
2932 	put_prev_task(rq, prev);
2933 	next = pick_next_task(rq);
2934 	clear_tsk_need_resched(prev);
2935 	rq->skip_clock_update = 0;
2936 
2937 	if (likely(prev != next)) {
2938 		rq->nr_switches++;
2939 		rq->curr = next;
2940 		++*switch_count;
2941 
2942 		context_switch(rq, prev, next); /* unlocks the rq */
2943 		/*
2944 		 * The context switch have flipped the stack from under us
2945 		 * and restored the local variables which were saved when
2946 		 * this task called schedule() in the past. prev == current
2947 		 * is still correct, but it can be moved to another cpu/rq.
2948 		 */
2949 		cpu = smp_processor_id();
2950 		rq = cpu_rq(cpu);
2951 	} else
2952 		raw_spin_unlock_irq(&rq->lock);
2953 
2954 	post_schedule(rq);
2955 
2956 	sched_preempt_enable_no_resched();
2957 	if (need_resched())
2958 		goto need_resched;
2959 }
2960 
2961 static inline void sched_submit_work(struct task_struct *tsk)
2962 {
2963 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2964 		return;
2965 	/*
2966 	 * If we are going to sleep and we have plugged IO queued,
2967 	 * make sure to submit it to avoid deadlocks.
2968 	 */
2969 	if (blk_needs_flush_plug(tsk))
2970 		blk_schedule_flush_plug(tsk);
2971 }
2972 
2973 asmlinkage void __sched schedule(void)
2974 {
2975 	struct task_struct *tsk = current;
2976 
2977 	sched_submit_work(tsk);
2978 	__schedule();
2979 }
2980 EXPORT_SYMBOL(schedule);
2981 
2982 #ifdef CONFIG_CONTEXT_TRACKING
2983 asmlinkage void __sched schedule_user(void)
2984 {
2985 	/*
2986 	 * If we come here after a random call to set_need_resched(),
2987 	 * or we have been woken up remotely but the IPI has not yet arrived,
2988 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2989 	 * we find a better solution.
2990 	 */
2991 	user_exit();
2992 	schedule();
2993 	user_enter();
2994 }
2995 #endif
2996 
2997 /**
2998  * schedule_preempt_disabled - called with preemption disabled
2999  *
3000  * Returns with preemption disabled. Note: preempt_count must be 1
3001  */
3002 void __sched schedule_preempt_disabled(void)
3003 {
3004 	sched_preempt_enable_no_resched();
3005 	schedule();
3006 	preempt_disable();
3007 }
3008 
3009 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3010 
3011 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3012 {
3013 	if (lock->owner != owner)
3014 		return false;
3015 
3016 	/*
3017 	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3018 	 * lock->owner still matches owner, if that fails, owner might
3019 	 * point to free()d memory, if it still matches, the rcu_read_lock()
3020 	 * ensures the memory stays valid.
3021 	 */
3022 	barrier();
3023 
3024 	return owner->on_cpu;
3025 }
3026 
3027 /*
3028  * Look out! "owner" is an entirely speculative pointer
3029  * access and not reliable.
3030  */
3031 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3032 {
3033 	if (!sched_feat(OWNER_SPIN))
3034 		return 0;
3035 
3036 	rcu_read_lock();
3037 	while (owner_running(lock, owner)) {
3038 		if (need_resched())
3039 			break;
3040 
3041 		arch_mutex_cpu_relax();
3042 	}
3043 	rcu_read_unlock();
3044 
3045 	/*
3046 	 * We break out the loop above on need_resched() and when the
3047 	 * owner changed, which is a sign for heavy contention. Return
3048 	 * success only when lock->owner is NULL.
3049 	 */
3050 	return lock->owner == NULL;
3051 }
3052 #endif
3053 
3054 #ifdef CONFIG_PREEMPT
3055 /*
3056  * this is the entry point to schedule() from in-kernel preemption
3057  * off of preempt_enable. Kernel preemptions off return from interrupt
3058  * occur there and call schedule directly.
3059  */
3060 asmlinkage void __sched notrace preempt_schedule(void)
3061 {
3062 	struct thread_info *ti = current_thread_info();
3063 
3064 	/*
3065 	 * If there is a non-zero preempt_count or interrupts are disabled,
3066 	 * we do not want to preempt the current task. Just return..
3067 	 */
3068 	if (likely(ti->preempt_count || irqs_disabled()))
3069 		return;
3070 
3071 	do {
3072 		add_preempt_count_notrace(PREEMPT_ACTIVE);
3073 		__schedule();
3074 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3075 
3076 		/*
3077 		 * Check again in case we missed a preemption opportunity
3078 		 * between schedule and now.
3079 		 */
3080 		barrier();
3081 	} while (need_resched());
3082 }
3083 EXPORT_SYMBOL(preempt_schedule);
3084 
3085 /*
3086  * this is the entry point to schedule() from kernel preemption
3087  * off of irq context.
3088  * Note, that this is called and return with irqs disabled. This will
3089  * protect us against recursive calling from irq.
3090  */
3091 asmlinkage void __sched preempt_schedule_irq(void)
3092 {
3093 	struct thread_info *ti = current_thread_info();
3094 
3095 	/* Catch callers which need to be fixed */
3096 	BUG_ON(ti->preempt_count || !irqs_disabled());
3097 
3098 	user_exit();
3099 	do {
3100 		add_preempt_count(PREEMPT_ACTIVE);
3101 		local_irq_enable();
3102 		__schedule();
3103 		local_irq_disable();
3104 		sub_preempt_count(PREEMPT_ACTIVE);
3105 
3106 		/*
3107 		 * Check again in case we missed a preemption opportunity
3108 		 * between schedule and now.
3109 		 */
3110 		barrier();
3111 	} while (need_resched());
3112 }
3113 
3114 #endif /* CONFIG_PREEMPT */
3115 
3116 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3117 			  void *key)
3118 {
3119 	return try_to_wake_up(curr->private, mode, wake_flags);
3120 }
3121 EXPORT_SYMBOL(default_wake_function);
3122 
3123 /*
3124  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3125  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3126  * number) then we wake all the non-exclusive tasks and one exclusive task.
3127  *
3128  * There are circumstances in which we can try to wake a task which has already
3129  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3130  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3131  */
3132 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3133 			int nr_exclusive, int wake_flags, void *key)
3134 {
3135 	wait_queue_t *curr, *next;
3136 
3137 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3138 		unsigned flags = curr->flags;
3139 
3140 		if (curr->func(curr, mode, wake_flags, key) &&
3141 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3142 			break;
3143 	}
3144 }
3145 
3146 /**
3147  * __wake_up - wake up threads blocked on a waitqueue.
3148  * @q: the waitqueue
3149  * @mode: which threads
3150  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3151  * @key: is directly passed to the wakeup function
3152  *
3153  * It may be assumed that this function implies a write memory barrier before
3154  * changing the task state if and only if any tasks are woken up.
3155  */
3156 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3157 			int nr_exclusive, void *key)
3158 {
3159 	unsigned long flags;
3160 
3161 	spin_lock_irqsave(&q->lock, flags);
3162 	__wake_up_common(q, mode, nr_exclusive, 0, key);
3163 	spin_unlock_irqrestore(&q->lock, flags);
3164 }
3165 EXPORT_SYMBOL(__wake_up);
3166 
3167 /*
3168  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3169  */
3170 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3171 {
3172 	__wake_up_common(q, mode, nr, 0, NULL);
3173 }
3174 EXPORT_SYMBOL_GPL(__wake_up_locked);
3175 
3176 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3177 {
3178 	__wake_up_common(q, mode, 1, 0, key);
3179 }
3180 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3181 
3182 /**
3183  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3184  * @q: the waitqueue
3185  * @mode: which threads
3186  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3187  * @key: opaque value to be passed to wakeup targets
3188  *
3189  * The sync wakeup differs that the waker knows that it will schedule
3190  * away soon, so while the target thread will be woken up, it will not
3191  * be migrated to another CPU - ie. the two threads are 'synchronized'
3192  * with each other. This can prevent needless bouncing between CPUs.
3193  *
3194  * On UP it can prevent extra preemption.
3195  *
3196  * It may be assumed that this function implies a write memory barrier before
3197  * changing the task state if and only if any tasks are woken up.
3198  */
3199 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3200 			int nr_exclusive, void *key)
3201 {
3202 	unsigned long flags;
3203 	int wake_flags = WF_SYNC;
3204 
3205 	if (unlikely(!q))
3206 		return;
3207 
3208 	if (unlikely(!nr_exclusive))
3209 		wake_flags = 0;
3210 
3211 	spin_lock_irqsave(&q->lock, flags);
3212 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3213 	spin_unlock_irqrestore(&q->lock, flags);
3214 }
3215 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3216 
3217 /*
3218  * __wake_up_sync - see __wake_up_sync_key()
3219  */
3220 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3221 {
3222 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3223 }
3224 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3225 
3226 /**
3227  * complete: - signals a single thread waiting on this completion
3228  * @x:  holds the state of this particular completion
3229  *
3230  * This will wake up a single thread waiting on this completion. Threads will be
3231  * awakened in the same order in which they were queued.
3232  *
3233  * See also complete_all(), wait_for_completion() and related routines.
3234  *
3235  * It may be assumed that this function implies a write memory barrier before
3236  * changing the task state if and only if any tasks are woken up.
3237  */
3238 void complete(struct completion *x)
3239 {
3240 	unsigned long flags;
3241 
3242 	spin_lock_irqsave(&x->wait.lock, flags);
3243 	x->done++;
3244 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3245 	spin_unlock_irqrestore(&x->wait.lock, flags);
3246 }
3247 EXPORT_SYMBOL(complete);
3248 
3249 /**
3250  * complete_all: - signals all threads waiting on this completion
3251  * @x:  holds the state of this particular completion
3252  *
3253  * This will wake up all threads waiting on this particular completion event.
3254  *
3255  * It may be assumed that this function implies a write memory barrier before
3256  * changing the task state if and only if any tasks are woken up.
3257  */
3258 void complete_all(struct completion *x)
3259 {
3260 	unsigned long flags;
3261 
3262 	spin_lock_irqsave(&x->wait.lock, flags);
3263 	x->done += UINT_MAX/2;
3264 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3265 	spin_unlock_irqrestore(&x->wait.lock, flags);
3266 }
3267 EXPORT_SYMBOL(complete_all);
3268 
3269 static inline long __sched
3270 do_wait_for_common(struct completion *x, long timeout, int state)
3271 {
3272 	if (!x->done) {
3273 		DECLARE_WAITQUEUE(wait, current);
3274 
3275 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3276 		do {
3277 			if (signal_pending_state(state, current)) {
3278 				timeout = -ERESTARTSYS;
3279 				break;
3280 			}
3281 			__set_current_state(state);
3282 			spin_unlock_irq(&x->wait.lock);
3283 			timeout = schedule_timeout(timeout);
3284 			spin_lock_irq(&x->wait.lock);
3285 		} while (!x->done && timeout);
3286 		__remove_wait_queue(&x->wait, &wait);
3287 		if (!x->done)
3288 			return timeout;
3289 	}
3290 	x->done--;
3291 	return timeout ?: 1;
3292 }
3293 
3294 static long __sched
3295 wait_for_common(struct completion *x, long timeout, int state)
3296 {
3297 	might_sleep();
3298 
3299 	spin_lock_irq(&x->wait.lock);
3300 	timeout = do_wait_for_common(x, timeout, state);
3301 	spin_unlock_irq(&x->wait.lock);
3302 	return timeout;
3303 }
3304 
3305 /**
3306  * wait_for_completion: - waits for completion of a task
3307  * @x:  holds the state of this particular completion
3308  *
3309  * This waits to be signaled for completion of a specific task. It is NOT
3310  * interruptible and there is no timeout.
3311  *
3312  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3313  * and interrupt capability. Also see complete().
3314  */
3315 void __sched wait_for_completion(struct completion *x)
3316 {
3317 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3318 }
3319 EXPORT_SYMBOL(wait_for_completion);
3320 
3321 /**
3322  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3323  * @x:  holds the state of this particular completion
3324  * @timeout:  timeout value in jiffies
3325  *
3326  * This waits for either a completion of a specific task to be signaled or for a
3327  * specified timeout to expire. The timeout is in jiffies. It is not
3328  * interruptible.
3329  *
3330  * The return value is 0 if timed out, and positive (at least 1, or number of
3331  * jiffies left till timeout) if completed.
3332  */
3333 unsigned long __sched
3334 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3335 {
3336 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3337 }
3338 EXPORT_SYMBOL(wait_for_completion_timeout);
3339 
3340 /**
3341  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3342  * @x:  holds the state of this particular completion
3343  *
3344  * This waits for completion of a specific task to be signaled. It is
3345  * interruptible.
3346  *
3347  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3348  */
3349 int __sched wait_for_completion_interruptible(struct completion *x)
3350 {
3351 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3352 	if (t == -ERESTARTSYS)
3353 		return t;
3354 	return 0;
3355 }
3356 EXPORT_SYMBOL(wait_for_completion_interruptible);
3357 
3358 /**
3359  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3360  * @x:  holds the state of this particular completion
3361  * @timeout:  timeout value in jiffies
3362  *
3363  * This waits for either a completion of a specific task to be signaled or for a
3364  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3365  *
3366  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3367  * positive (at least 1, or number of jiffies left till timeout) if completed.
3368  */
3369 long __sched
3370 wait_for_completion_interruptible_timeout(struct completion *x,
3371 					  unsigned long timeout)
3372 {
3373 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3374 }
3375 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3376 
3377 /**
3378  * wait_for_completion_killable: - waits for completion of a task (killable)
3379  * @x:  holds the state of this particular completion
3380  *
3381  * This waits to be signaled for completion of a specific task. It can be
3382  * interrupted by a kill signal.
3383  *
3384  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3385  */
3386 int __sched wait_for_completion_killable(struct completion *x)
3387 {
3388 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3389 	if (t == -ERESTARTSYS)
3390 		return t;
3391 	return 0;
3392 }
3393 EXPORT_SYMBOL(wait_for_completion_killable);
3394 
3395 /**
3396  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3397  * @x:  holds the state of this particular completion
3398  * @timeout:  timeout value in jiffies
3399  *
3400  * This waits for either a completion of a specific task to be
3401  * signaled or for a specified timeout to expire. It can be
3402  * interrupted by a kill signal. The timeout is in jiffies.
3403  *
3404  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3405  * positive (at least 1, or number of jiffies left till timeout) if completed.
3406  */
3407 long __sched
3408 wait_for_completion_killable_timeout(struct completion *x,
3409 				     unsigned long timeout)
3410 {
3411 	return wait_for_common(x, timeout, TASK_KILLABLE);
3412 }
3413 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3414 
3415 /**
3416  *	try_wait_for_completion - try to decrement a completion without blocking
3417  *	@x:	completion structure
3418  *
3419  *	Returns: 0 if a decrement cannot be done without blocking
3420  *		 1 if a decrement succeeded.
3421  *
3422  *	If a completion is being used as a counting completion,
3423  *	attempt to decrement the counter without blocking. This
3424  *	enables us to avoid waiting if the resource the completion
3425  *	is protecting is not available.
3426  */
3427 bool try_wait_for_completion(struct completion *x)
3428 {
3429 	unsigned long flags;
3430 	int ret = 1;
3431 
3432 	spin_lock_irqsave(&x->wait.lock, flags);
3433 	if (!x->done)
3434 		ret = 0;
3435 	else
3436 		x->done--;
3437 	spin_unlock_irqrestore(&x->wait.lock, flags);
3438 	return ret;
3439 }
3440 EXPORT_SYMBOL(try_wait_for_completion);
3441 
3442 /**
3443  *	completion_done - Test to see if a completion has any waiters
3444  *	@x:	completion structure
3445  *
3446  *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3447  *		 1 if there are no waiters.
3448  *
3449  */
3450 bool completion_done(struct completion *x)
3451 {
3452 	unsigned long flags;
3453 	int ret = 1;
3454 
3455 	spin_lock_irqsave(&x->wait.lock, flags);
3456 	if (!x->done)
3457 		ret = 0;
3458 	spin_unlock_irqrestore(&x->wait.lock, flags);
3459 	return ret;
3460 }
3461 EXPORT_SYMBOL(completion_done);
3462 
3463 static long __sched
3464 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3465 {
3466 	unsigned long flags;
3467 	wait_queue_t wait;
3468 
3469 	init_waitqueue_entry(&wait, current);
3470 
3471 	__set_current_state(state);
3472 
3473 	spin_lock_irqsave(&q->lock, flags);
3474 	__add_wait_queue(q, &wait);
3475 	spin_unlock(&q->lock);
3476 	timeout = schedule_timeout(timeout);
3477 	spin_lock_irq(&q->lock);
3478 	__remove_wait_queue(q, &wait);
3479 	spin_unlock_irqrestore(&q->lock, flags);
3480 
3481 	return timeout;
3482 }
3483 
3484 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3485 {
3486 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3487 }
3488 EXPORT_SYMBOL(interruptible_sleep_on);
3489 
3490 long __sched
3491 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3492 {
3493 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3494 }
3495 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3496 
3497 void __sched sleep_on(wait_queue_head_t *q)
3498 {
3499 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3500 }
3501 EXPORT_SYMBOL(sleep_on);
3502 
3503 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3504 {
3505 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3506 }
3507 EXPORT_SYMBOL(sleep_on_timeout);
3508 
3509 #ifdef CONFIG_RT_MUTEXES
3510 
3511 /*
3512  * rt_mutex_setprio - set the current priority of a task
3513  * @p: task
3514  * @prio: prio value (kernel-internal form)
3515  *
3516  * This function changes the 'effective' priority of a task. It does
3517  * not touch ->normal_prio like __setscheduler().
3518  *
3519  * Used by the rt_mutex code to implement priority inheritance logic.
3520  */
3521 void rt_mutex_setprio(struct task_struct *p, int prio)
3522 {
3523 	int oldprio, on_rq, running;
3524 	struct rq *rq;
3525 	const struct sched_class *prev_class;
3526 
3527 	BUG_ON(prio < 0 || prio > MAX_PRIO);
3528 
3529 	rq = __task_rq_lock(p);
3530 
3531 	/*
3532 	 * Idle task boosting is a nono in general. There is one
3533 	 * exception, when PREEMPT_RT and NOHZ is active:
3534 	 *
3535 	 * The idle task calls get_next_timer_interrupt() and holds
3536 	 * the timer wheel base->lock on the CPU and another CPU wants
3537 	 * to access the timer (probably to cancel it). We can safely
3538 	 * ignore the boosting request, as the idle CPU runs this code
3539 	 * with interrupts disabled and will complete the lock
3540 	 * protected section without being interrupted. So there is no
3541 	 * real need to boost.
3542 	 */
3543 	if (unlikely(p == rq->idle)) {
3544 		WARN_ON(p != rq->curr);
3545 		WARN_ON(p->pi_blocked_on);
3546 		goto out_unlock;
3547 	}
3548 
3549 	trace_sched_pi_setprio(p, prio);
3550 	oldprio = p->prio;
3551 	prev_class = p->sched_class;
3552 	on_rq = p->on_rq;
3553 	running = task_current(rq, p);
3554 	if (on_rq)
3555 		dequeue_task(rq, p, 0);
3556 	if (running)
3557 		p->sched_class->put_prev_task(rq, p);
3558 
3559 	if (rt_prio(prio))
3560 		p->sched_class = &rt_sched_class;
3561 	else
3562 		p->sched_class = &fair_sched_class;
3563 
3564 	p->prio = prio;
3565 
3566 	if (running)
3567 		p->sched_class->set_curr_task(rq);
3568 	if (on_rq)
3569 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3570 
3571 	check_class_changed(rq, p, prev_class, oldprio);
3572 out_unlock:
3573 	__task_rq_unlock(rq);
3574 }
3575 #endif
3576 void set_user_nice(struct task_struct *p, long nice)
3577 {
3578 	int old_prio, delta, on_rq;
3579 	unsigned long flags;
3580 	struct rq *rq;
3581 
3582 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3583 		return;
3584 	/*
3585 	 * We have to be careful, if called from sys_setpriority(),
3586 	 * the task might be in the middle of scheduling on another CPU.
3587 	 */
3588 	rq = task_rq_lock(p, &flags);
3589 	/*
3590 	 * The RT priorities are set via sched_setscheduler(), but we still
3591 	 * allow the 'normal' nice value to be set - but as expected
3592 	 * it wont have any effect on scheduling until the task is
3593 	 * SCHED_FIFO/SCHED_RR:
3594 	 */
3595 	if (task_has_rt_policy(p)) {
3596 		p->static_prio = NICE_TO_PRIO(nice);
3597 		goto out_unlock;
3598 	}
3599 	on_rq = p->on_rq;
3600 	if (on_rq)
3601 		dequeue_task(rq, p, 0);
3602 
3603 	p->static_prio = NICE_TO_PRIO(nice);
3604 	set_load_weight(p);
3605 	old_prio = p->prio;
3606 	p->prio = effective_prio(p);
3607 	delta = p->prio - old_prio;
3608 
3609 	if (on_rq) {
3610 		enqueue_task(rq, p, 0);
3611 		/*
3612 		 * If the task increased its priority or is running and
3613 		 * lowered its priority, then reschedule its CPU:
3614 		 */
3615 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3616 			resched_task(rq->curr);
3617 	}
3618 out_unlock:
3619 	task_rq_unlock(rq, p, &flags);
3620 }
3621 EXPORT_SYMBOL(set_user_nice);
3622 
3623 /*
3624  * can_nice - check if a task can reduce its nice value
3625  * @p: task
3626  * @nice: nice value
3627  */
3628 int can_nice(const struct task_struct *p, const int nice)
3629 {
3630 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3631 	int nice_rlim = 20 - nice;
3632 
3633 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3634 		capable(CAP_SYS_NICE));
3635 }
3636 
3637 #ifdef __ARCH_WANT_SYS_NICE
3638 
3639 /*
3640  * sys_nice - change the priority of the current process.
3641  * @increment: priority increment
3642  *
3643  * sys_setpriority is a more generic, but much slower function that
3644  * does similar things.
3645  */
3646 SYSCALL_DEFINE1(nice, int, increment)
3647 {
3648 	long nice, retval;
3649 
3650 	/*
3651 	 * Setpriority might change our priority at the same moment.
3652 	 * We don't have to worry. Conceptually one call occurs first
3653 	 * and we have a single winner.
3654 	 */
3655 	if (increment < -40)
3656 		increment = -40;
3657 	if (increment > 40)
3658 		increment = 40;
3659 
3660 	nice = TASK_NICE(current) + increment;
3661 	if (nice < -20)
3662 		nice = -20;
3663 	if (nice > 19)
3664 		nice = 19;
3665 
3666 	if (increment < 0 && !can_nice(current, nice))
3667 		return -EPERM;
3668 
3669 	retval = security_task_setnice(current, nice);
3670 	if (retval)
3671 		return retval;
3672 
3673 	set_user_nice(current, nice);
3674 	return 0;
3675 }
3676 
3677 #endif
3678 
3679 /**
3680  * task_prio - return the priority value of a given task.
3681  * @p: the task in question.
3682  *
3683  * This is the priority value as seen by users in /proc.
3684  * RT tasks are offset by -200. Normal tasks are centered
3685  * around 0, value goes from -16 to +15.
3686  */
3687 int task_prio(const struct task_struct *p)
3688 {
3689 	return p->prio - MAX_RT_PRIO;
3690 }
3691 
3692 /**
3693  * task_nice - return the nice value of a given task.
3694  * @p: the task in question.
3695  */
3696 int task_nice(const struct task_struct *p)
3697 {
3698 	return TASK_NICE(p);
3699 }
3700 EXPORT_SYMBOL(task_nice);
3701 
3702 /**
3703  * idle_cpu - is a given cpu idle currently?
3704  * @cpu: the processor in question.
3705  */
3706 int idle_cpu(int cpu)
3707 {
3708 	struct rq *rq = cpu_rq(cpu);
3709 
3710 	if (rq->curr != rq->idle)
3711 		return 0;
3712 
3713 	if (rq->nr_running)
3714 		return 0;
3715 
3716 #ifdef CONFIG_SMP
3717 	if (!llist_empty(&rq->wake_list))
3718 		return 0;
3719 #endif
3720 
3721 	return 1;
3722 }
3723 
3724 /**
3725  * idle_task - return the idle task for a given cpu.
3726  * @cpu: the processor in question.
3727  */
3728 struct task_struct *idle_task(int cpu)
3729 {
3730 	return cpu_rq(cpu)->idle;
3731 }
3732 
3733 /**
3734  * find_process_by_pid - find a process with a matching PID value.
3735  * @pid: the pid in question.
3736  */
3737 static struct task_struct *find_process_by_pid(pid_t pid)
3738 {
3739 	return pid ? find_task_by_vpid(pid) : current;
3740 }
3741 
3742 /* Actually do priority change: must hold rq lock. */
3743 static void
3744 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3745 {
3746 	p->policy = policy;
3747 	p->rt_priority = prio;
3748 	p->normal_prio = normal_prio(p);
3749 	/* we are holding p->pi_lock already */
3750 	p->prio = rt_mutex_getprio(p);
3751 	if (rt_prio(p->prio))
3752 		p->sched_class = &rt_sched_class;
3753 	else
3754 		p->sched_class = &fair_sched_class;
3755 	set_load_weight(p);
3756 }
3757 
3758 /*
3759  * check the target process has a UID that matches the current process's
3760  */
3761 static bool check_same_owner(struct task_struct *p)
3762 {
3763 	const struct cred *cred = current_cred(), *pcred;
3764 	bool match;
3765 
3766 	rcu_read_lock();
3767 	pcred = __task_cred(p);
3768 	match = (uid_eq(cred->euid, pcred->euid) ||
3769 		 uid_eq(cred->euid, pcred->uid));
3770 	rcu_read_unlock();
3771 	return match;
3772 }
3773 
3774 static int __sched_setscheduler(struct task_struct *p, int policy,
3775 				const struct sched_param *param, bool user)
3776 {
3777 	int retval, oldprio, oldpolicy = -1, on_rq, running;
3778 	unsigned long flags;
3779 	const struct sched_class *prev_class;
3780 	struct rq *rq;
3781 	int reset_on_fork;
3782 
3783 	/* may grab non-irq protected spin_locks */
3784 	BUG_ON(in_interrupt());
3785 recheck:
3786 	/* double check policy once rq lock held */
3787 	if (policy < 0) {
3788 		reset_on_fork = p->sched_reset_on_fork;
3789 		policy = oldpolicy = p->policy;
3790 	} else {
3791 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3792 		policy &= ~SCHED_RESET_ON_FORK;
3793 
3794 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3795 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3796 				policy != SCHED_IDLE)
3797 			return -EINVAL;
3798 	}
3799 
3800 	/*
3801 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3802 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3803 	 * SCHED_BATCH and SCHED_IDLE is 0.
3804 	 */
3805 	if (param->sched_priority < 0 ||
3806 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3807 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3808 		return -EINVAL;
3809 	if (rt_policy(policy) != (param->sched_priority != 0))
3810 		return -EINVAL;
3811 
3812 	/*
3813 	 * Allow unprivileged RT tasks to decrease priority:
3814 	 */
3815 	if (user && !capable(CAP_SYS_NICE)) {
3816 		if (rt_policy(policy)) {
3817 			unsigned long rlim_rtprio =
3818 					task_rlimit(p, RLIMIT_RTPRIO);
3819 
3820 			/* can't set/change the rt policy */
3821 			if (policy != p->policy && !rlim_rtprio)
3822 				return -EPERM;
3823 
3824 			/* can't increase priority */
3825 			if (param->sched_priority > p->rt_priority &&
3826 			    param->sched_priority > rlim_rtprio)
3827 				return -EPERM;
3828 		}
3829 
3830 		/*
3831 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3832 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3833 		 */
3834 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3835 			if (!can_nice(p, TASK_NICE(p)))
3836 				return -EPERM;
3837 		}
3838 
3839 		/* can't change other user's priorities */
3840 		if (!check_same_owner(p))
3841 			return -EPERM;
3842 
3843 		/* Normal users shall not reset the sched_reset_on_fork flag */
3844 		if (p->sched_reset_on_fork && !reset_on_fork)
3845 			return -EPERM;
3846 	}
3847 
3848 	if (user) {
3849 		retval = security_task_setscheduler(p);
3850 		if (retval)
3851 			return retval;
3852 	}
3853 
3854 	/*
3855 	 * make sure no PI-waiters arrive (or leave) while we are
3856 	 * changing the priority of the task:
3857 	 *
3858 	 * To be able to change p->policy safely, the appropriate
3859 	 * runqueue lock must be held.
3860 	 */
3861 	rq = task_rq_lock(p, &flags);
3862 
3863 	/*
3864 	 * Changing the policy of the stop threads its a very bad idea
3865 	 */
3866 	if (p == rq->stop) {
3867 		task_rq_unlock(rq, p, &flags);
3868 		return -EINVAL;
3869 	}
3870 
3871 	/*
3872 	 * If not changing anything there's no need to proceed further:
3873 	 */
3874 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3875 			param->sched_priority == p->rt_priority))) {
3876 		task_rq_unlock(rq, p, &flags);
3877 		return 0;
3878 	}
3879 
3880 #ifdef CONFIG_RT_GROUP_SCHED
3881 	if (user) {
3882 		/*
3883 		 * Do not allow realtime tasks into groups that have no runtime
3884 		 * assigned.
3885 		 */
3886 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3887 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3888 				!task_group_is_autogroup(task_group(p))) {
3889 			task_rq_unlock(rq, p, &flags);
3890 			return -EPERM;
3891 		}
3892 	}
3893 #endif
3894 
3895 	/* recheck policy now with rq lock held */
3896 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3897 		policy = oldpolicy = -1;
3898 		task_rq_unlock(rq, p, &flags);
3899 		goto recheck;
3900 	}
3901 	on_rq = p->on_rq;
3902 	running = task_current(rq, p);
3903 	if (on_rq)
3904 		dequeue_task(rq, p, 0);
3905 	if (running)
3906 		p->sched_class->put_prev_task(rq, p);
3907 
3908 	p->sched_reset_on_fork = reset_on_fork;
3909 
3910 	oldprio = p->prio;
3911 	prev_class = p->sched_class;
3912 	__setscheduler(rq, p, policy, param->sched_priority);
3913 
3914 	if (running)
3915 		p->sched_class->set_curr_task(rq);
3916 	if (on_rq)
3917 		enqueue_task(rq, p, 0);
3918 
3919 	check_class_changed(rq, p, prev_class, oldprio);
3920 	task_rq_unlock(rq, p, &flags);
3921 
3922 	rt_mutex_adjust_pi(p);
3923 
3924 	return 0;
3925 }
3926 
3927 /**
3928  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3929  * @p: the task in question.
3930  * @policy: new policy.
3931  * @param: structure containing the new RT priority.
3932  *
3933  * NOTE that the task may be already dead.
3934  */
3935 int sched_setscheduler(struct task_struct *p, int policy,
3936 		       const struct sched_param *param)
3937 {
3938 	return __sched_setscheduler(p, policy, param, true);
3939 }
3940 EXPORT_SYMBOL_GPL(sched_setscheduler);
3941 
3942 /**
3943  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3944  * @p: the task in question.
3945  * @policy: new policy.
3946  * @param: structure containing the new RT priority.
3947  *
3948  * Just like sched_setscheduler, only don't bother checking if the
3949  * current context has permission.  For example, this is needed in
3950  * stop_machine(): we create temporary high priority worker threads,
3951  * but our caller might not have that capability.
3952  */
3953 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3954 			       const struct sched_param *param)
3955 {
3956 	return __sched_setscheduler(p, policy, param, false);
3957 }
3958 
3959 static int
3960 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3961 {
3962 	struct sched_param lparam;
3963 	struct task_struct *p;
3964 	int retval;
3965 
3966 	if (!param || pid < 0)
3967 		return -EINVAL;
3968 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3969 		return -EFAULT;
3970 
3971 	rcu_read_lock();
3972 	retval = -ESRCH;
3973 	p = find_process_by_pid(pid);
3974 	if (p != NULL)
3975 		retval = sched_setscheduler(p, policy, &lparam);
3976 	rcu_read_unlock();
3977 
3978 	return retval;
3979 }
3980 
3981 /**
3982  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3983  * @pid: the pid in question.
3984  * @policy: new policy.
3985  * @param: structure containing the new RT priority.
3986  */
3987 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3988 		struct sched_param __user *, param)
3989 {
3990 	/* negative values for policy are not valid */
3991 	if (policy < 0)
3992 		return -EINVAL;
3993 
3994 	return do_sched_setscheduler(pid, policy, param);
3995 }
3996 
3997 /**
3998  * sys_sched_setparam - set/change the RT priority of a thread
3999  * @pid: the pid in question.
4000  * @param: structure containing the new RT priority.
4001  */
4002 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4003 {
4004 	return do_sched_setscheduler(pid, -1, param);
4005 }
4006 
4007 /**
4008  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4009  * @pid: the pid in question.
4010  */
4011 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4012 {
4013 	struct task_struct *p;
4014 	int retval;
4015 
4016 	if (pid < 0)
4017 		return -EINVAL;
4018 
4019 	retval = -ESRCH;
4020 	rcu_read_lock();
4021 	p = find_process_by_pid(pid);
4022 	if (p) {
4023 		retval = security_task_getscheduler(p);
4024 		if (!retval)
4025 			retval = p->policy
4026 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4027 	}
4028 	rcu_read_unlock();
4029 	return retval;
4030 }
4031 
4032 /**
4033  * sys_sched_getparam - get the RT priority of a thread
4034  * @pid: the pid in question.
4035  * @param: structure containing the RT priority.
4036  */
4037 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4038 {
4039 	struct sched_param lp;
4040 	struct task_struct *p;
4041 	int retval;
4042 
4043 	if (!param || pid < 0)
4044 		return -EINVAL;
4045 
4046 	rcu_read_lock();
4047 	p = find_process_by_pid(pid);
4048 	retval = -ESRCH;
4049 	if (!p)
4050 		goto out_unlock;
4051 
4052 	retval = security_task_getscheduler(p);
4053 	if (retval)
4054 		goto out_unlock;
4055 
4056 	lp.sched_priority = p->rt_priority;
4057 	rcu_read_unlock();
4058 
4059 	/*
4060 	 * This one might sleep, we cannot do it with a spinlock held ...
4061 	 */
4062 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4063 
4064 	return retval;
4065 
4066 out_unlock:
4067 	rcu_read_unlock();
4068 	return retval;
4069 }
4070 
4071 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4072 {
4073 	cpumask_var_t cpus_allowed, new_mask;
4074 	struct task_struct *p;
4075 	int retval;
4076 
4077 	get_online_cpus();
4078 	rcu_read_lock();
4079 
4080 	p = find_process_by_pid(pid);
4081 	if (!p) {
4082 		rcu_read_unlock();
4083 		put_online_cpus();
4084 		return -ESRCH;
4085 	}
4086 
4087 	/* Prevent p going away */
4088 	get_task_struct(p);
4089 	rcu_read_unlock();
4090 
4091 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4092 		retval = -ENOMEM;
4093 		goto out_put_task;
4094 	}
4095 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4096 		retval = -ENOMEM;
4097 		goto out_free_cpus_allowed;
4098 	}
4099 	retval = -EPERM;
4100 	if (!check_same_owner(p)) {
4101 		rcu_read_lock();
4102 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4103 			rcu_read_unlock();
4104 			goto out_unlock;
4105 		}
4106 		rcu_read_unlock();
4107 	}
4108 
4109 	retval = security_task_setscheduler(p);
4110 	if (retval)
4111 		goto out_unlock;
4112 
4113 	cpuset_cpus_allowed(p, cpus_allowed);
4114 	cpumask_and(new_mask, in_mask, cpus_allowed);
4115 again:
4116 	retval = set_cpus_allowed_ptr(p, new_mask);
4117 
4118 	if (!retval) {
4119 		cpuset_cpus_allowed(p, cpus_allowed);
4120 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4121 			/*
4122 			 * We must have raced with a concurrent cpuset
4123 			 * update. Just reset the cpus_allowed to the
4124 			 * cpuset's cpus_allowed
4125 			 */
4126 			cpumask_copy(new_mask, cpus_allowed);
4127 			goto again;
4128 		}
4129 	}
4130 out_unlock:
4131 	free_cpumask_var(new_mask);
4132 out_free_cpus_allowed:
4133 	free_cpumask_var(cpus_allowed);
4134 out_put_task:
4135 	put_task_struct(p);
4136 	put_online_cpus();
4137 	return retval;
4138 }
4139 
4140 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4141 			     struct cpumask *new_mask)
4142 {
4143 	if (len < cpumask_size())
4144 		cpumask_clear(new_mask);
4145 	else if (len > cpumask_size())
4146 		len = cpumask_size();
4147 
4148 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4149 }
4150 
4151 /**
4152  * sys_sched_setaffinity - set the cpu affinity of a process
4153  * @pid: pid of the process
4154  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4155  * @user_mask_ptr: user-space pointer to the new cpu mask
4156  */
4157 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4158 		unsigned long __user *, user_mask_ptr)
4159 {
4160 	cpumask_var_t new_mask;
4161 	int retval;
4162 
4163 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4164 		return -ENOMEM;
4165 
4166 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4167 	if (retval == 0)
4168 		retval = sched_setaffinity(pid, new_mask);
4169 	free_cpumask_var(new_mask);
4170 	return retval;
4171 }
4172 
4173 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4174 {
4175 	struct task_struct *p;
4176 	unsigned long flags;
4177 	int retval;
4178 
4179 	get_online_cpus();
4180 	rcu_read_lock();
4181 
4182 	retval = -ESRCH;
4183 	p = find_process_by_pid(pid);
4184 	if (!p)
4185 		goto out_unlock;
4186 
4187 	retval = security_task_getscheduler(p);
4188 	if (retval)
4189 		goto out_unlock;
4190 
4191 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4192 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4193 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4194 
4195 out_unlock:
4196 	rcu_read_unlock();
4197 	put_online_cpus();
4198 
4199 	return retval;
4200 }
4201 
4202 /**
4203  * sys_sched_getaffinity - get the cpu affinity of a process
4204  * @pid: pid of the process
4205  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4206  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4207  */
4208 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4209 		unsigned long __user *, user_mask_ptr)
4210 {
4211 	int ret;
4212 	cpumask_var_t mask;
4213 
4214 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4215 		return -EINVAL;
4216 	if (len & (sizeof(unsigned long)-1))
4217 		return -EINVAL;
4218 
4219 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4220 		return -ENOMEM;
4221 
4222 	ret = sched_getaffinity(pid, mask);
4223 	if (ret == 0) {
4224 		size_t retlen = min_t(size_t, len, cpumask_size());
4225 
4226 		if (copy_to_user(user_mask_ptr, mask, retlen))
4227 			ret = -EFAULT;
4228 		else
4229 			ret = retlen;
4230 	}
4231 	free_cpumask_var(mask);
4232 
4233 	return ret;
4234 }
4235 
4236 /**
4237  * sys_sched_yield - yield the current processor to other threads.
4238  *
4239  * This function yields the current CPU to other tasks. If there are no
4240  * other threads running on this CPU then this function will return.
4241  */
4242 SYSCALL_DEFINE0(sched_yield)
4243 {
4244 	struct rq *rq = this_rq_lock();
4245 
4246 	schedstat_inc(rq, yld_count);
4247 	current->sched_class->yield_task(rq);
4248 
4249 	/*
4250 	 * Since we are going to call schedule() anyway, there's
4251 	 * no need to preempt or enable interrupts:
4252 	 */
4253 	__release(rq->lock);
4254 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4255 	do_raw_spin_unlock(&rq->lock);
4256 	sched_preempt_enable_no_resched();
4257 
4258 	schedule();
4259 
4260 	return 0;
4261 }
4262 
4263 static inline int should_resched(void)
4264 {
4265 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4266 }
4267 
4268 static void __cond_resched(void)
4269 {
4270 	add_preempt_count(PREEMPT_ACTIVE);
4271 	__schedule();
4272 	sub_preempt_count(PREEMPT_ACTIVE);
4273 }
4274 
4275 int __sched _cond_resched(void)
4276 {
4277 	if (should_resched()) {
4278 		__cond_resched();
4279 		return 1;
4280 	}
4281 	return 0;
4282 }
4283 EXPORT_SYMBOL(_cond_resched);
4284 
4285 /*
4286  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4287  * call schedule, and on return reacquire the lock.
4288  *
4289  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4290  * operations here to prevent schedule() from being called twice (once via
4291  * spin_unlock(), once by hand).
4292  */
4293 int __cond_resched_lock(spinlock_t *lock)
4294 {
4295 	int resched = should_resched();
4296 	int ret = 0;
4297 
4298 	lockdep_assert_held(lock);
4299 
4300 	if (spin_needbreak(lock) || resched) {
4301 		spin_unlock(lock);
4302 		if (resched)
4303 			__cond_resched();
4304 		else
4305 			cpu_relax();
4306 		ret = 1;
4307 		spin_lock(lock);
4308 	}
4309 	return ret;
4310 }
4311 EXPORT_SYMBOL(__cond_resched_lock);
4312 
4313 int __sched __cond_resched_softirq(void)
4314 {
4315 	BUG_ON(!in_softirq());
4316 
4317 	if (should_resched()) {
4318 		local_bh_enable();
4319 		__cond_resched();
4320 		local_bh_disable();
4321 		return 1;
4322 	}
4323 	return 0;
4324 }
4325 EXPORT_SYMBOL(__cond_resched_softirq);
4326 
4327 /**
4328  * yield - yield the current processor to other threads.
4329  *
4330  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4331  *
4332  * The scheduler is at all times free to pick the calling task as the most
4333  * eligible task to run, if removing the yield() call from your code breaks
4334  * it, its already broken.
4335  *
4336  * Typical broken usage is:
4337  *
4338  * while (!event)
4339  * 	yield();
4340  *
4341  * where one assumes that yield() will let 'the other' process run that will
4342  * make event true. If the current task is a SCHED_FIFO task that will never
4343  * happen. Never use yield() as a progress guarantee!!
4344  *
4345  * If you want to use yield() to wait for something, use wait_event().
4346  * If you want to use yield() to be 'nice' for others, use cond_resched().
4347  * If you still want to use yield(), do not!
4348  */
4349 void __sched yield(void)
4350 {
4351 	set_current_state(TASK_RUNNING);
4352 	sys_sched_yield();
4353 }
4354 EXPORT_SYMBOL(yield);
4355 
4356 /**
4357  * yield_to - yield the current processor to another thread in
4358  * your thread group, or accelerate that thread toward the
4359  * processor it's on.
4360  * @p: target task
4361  * @preempt: whether task preemption is allowed or not
4362  *
4363  * It's the caller's job to ensure that the target task struct
4364  * can't go away on us before we can do any checks.
4365  *
4366  * Returns true if we indeed boosted the target task.
4367  */
4368 bool __sched yield_to(struct task_struct *p, bool preempt)
4369 {
4370 	struct task_struct *curr = current;
4371 	struct rq *rq, *p_rq;
4372 	unsigned long flags;
4373 	bool yielded = 0;
4374 
4375 	local_irq_save(flags);
4376 	rq = this_rq();
4377 
4378 again:
4379 	p_rq = task_rq(p);
4380 	double_rq_lock(rq, p_rq);
4381 	while (task_rq(p) != p_rq) {
4382 		double_rq_unlock(rq, p_rq);
4383 		goto again;
4384 	}
4385 
4386 	if (!curr->sched_class->yield_to_task)
4387 		goto out;
4388 
4389 	if (curr->sched_class != p->sched_class)
4390 		goto out;
4391 
4392 	if (task_running(p_rq, p) || p->state)
4393 		goto out;
4394 
4395 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4396 	if (yielded) {
4397 		schedstat_inc(rq, yld_count);
4398 		/*
4399 		 * Make p's CPU reschedule; pick_next_entity takes care of
4400 		 * fairness.
4401 		 */
4402 		if (preempt && rq != p_rq)
4403 			resched_task(p_rq->curr);
4404 	}
4405 
4406 out:
4407 	double_rq_unlock(rq, p_rq);
4408 	local_irq_restore(flags);
4409 
4410 	if (yielded)
4411 		schedule();
4412 
4413 	return yielded;
4414 }
4415 EXPORT_SYMBOL_GPL(yield_to);
4416 
4417 /*
4418  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4419  * that process accounting knows that this is a task in IO wait state.
4420  */
4421 void __sched io_schedule(void)
4422 {
4423 	struct rq *rq = raw_rq();
4424 
4425 	delayacct_blkio_start();
4426 	atomic_inc(&rq->nr_iowait);
4427 	blk_flush_plug(current);
4428 	current->in_iowait = 1;
4429 	schedule();
4430 	current->in_iowait = 0;
4431 	atomic_dec(&rq->nr_iowait);
4432 	delayacct_blkio_end();
4433 }
4434 EXPORT_SYMBOL(io_schedule);
4435 
4436 long __sched io_schedule_timeout(long timeout)
4437 {
4438 	struct rq *rq = raw_rq();
4439 	long ret;
4440 
4441 	delayacct_blkio_start();
4442 	atomic_inc(&rq->nr_iowait);
4443 	blk_flush_plug(current);
4444 	current->in_iowait = 1;
4445 	ret = schedule_timeout(timeout);
4446 	current->in_iowait = 0;
4447 	atomic_dec(&rq->nr_iowait);
4448 	delayacct_blkio_end();
4449 	return ret;
4450 }
4451 
4452 /**
4453  * sys_sched_get_priority_max - return maximum RT priority.
4454  * @policy: scheduling class.
4455  *
4456  * this syscall returns the maximum rt_priority that can be used
4457  * by a given scheduling class.
4458  */
4459 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4460 {
4461 	int ret = -EINVAL;
4462 
4463 	switch (policy) {
4464 	case SCHED_FIFO:
4465 	case SCHED_RR:
4466 		ret = MAX_USER_RT_PRIO-1;
4467 		break;
4468 	case SCHED_NORMAL:
4469 	case SCHED_BATCH:
4470 	case SCHED_IDLE:
4471 		ret = 0;
4472 		break;
4473 	}
4474 	return ret;
4475 }
4476 
4477 /**
4478  * sys_sched_get_priority_min - return minimum RT priority.
4479  * @policy: scheduling class.
4480  *
4481  * this syscall returns the minimum rt_priority that can be used
4482  * by a given scheduling class.
4483  */
4484 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4485 {
4486 	int ret = -EINVAL;
4487 
4488 	switch (policy) {
4489 	case SCHED_FIFO:
4490 	case SCHED_RR:
4491 		ret = 1;
4492 		break;
4493 	case SCHED_NORMAL:
4494 	case SCHED_BATCH:
4495 	case SCHED_IDLE:
4496 		ret = 0;
4497 	}
4498 	return ret;
4499 }
4500 
4501 /**
4502  * sys_sched_rr_get_interval - return the default timeslice of a process.
4503  * @pid: pid of the process.
4504  * @interval: userspace pointer to the timeslice value.
4505  *
4506  * this syscall writes the default timeslice value of a given process
4507  * into the user-space timespec buffer. A value of '0' means infinity.
4508  */
4509 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4510 		struct timespec __user *, interval)
4511 {
4512 	struct task_struct *p;
4513 	unsigned int time_slice;
4514 	unsigned long flags;
4515 	struct rq *rq;
4516 	int retval;
4517 	struct timespec t;
4518 
4519 	if (pid < 0)
4520 		return -EINVAL;
4521 
4522 	retval = -ESRCH;
4523 	rcu_read_lock();
4524 	p = find_process_by_pid(pid);
4525 	if (!p)
4526 		goto out_unlock;
4527 
4528 	retval = security_task_getscheduler(p);
4529 	if (retval)
4530 		goto out_unlock;
4531 
4532 	rq = task_rq_lock(p, &flags);
4533 	time_slice = p->sched_class->get_rr_interval(rq, p);
4534 	task_rq_unlock(rq, p, &flags);
4535 
4536 	rcu_read_unlock();
4537 	jiffies_to_timespec(time_slice, &t);
4538 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4539 	return retval;
4540 
4541 out_unlock:
4542 	rcu_read_unlock();
4543 	return retval;
4544 }
4545 
4546 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4547 
4548 void sched_show_task(struct task_struct *p)
4549 {
4550 	unsigned long free = 0;
4551 	int ppid;
4552 	unsigned state;
4553 
4554 	state = p->state ? __ffs(p->state) + 1 : 0;
4555 	printk(KERN_INFO "%-15.15s %c", p->comm,
4556 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4557 #if BITS_PER_LONG == 32
4558 	if (state == TASK_RUNNING)
4559 		printk(KERN_CONT " running  ");
4560 	else
4561 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4562 #else
4563 	if (state == TASK_RUNNING)
4564 		printk(KERN_CONT "  running task    ");
4565 	else
4566 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4567 #endif
4568 #ifdef CONFIG_DEBUG_STACK_USAGE
4569 	free = stack_not_used(p);
4570 #endif
4571 	rcu_read_lock();
4572 	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4573 	rcu_read_unlock();
4574 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4575 		task_pid_nr(p), ppid,
4576 		(unsigned long)task_thread_info(p)->flags);
4577 
4578 	show_stack(p, NULL);
4579 }
4580 
4581 void show_state_filter(unsigned long state_filter)
4582 {
4583 	struct task_struct *g, *p;
4584 
4585 #if BITS_PER_LONG == 32
4586 	printk(KERN_INFO
4587 		"  task                PC stack   pid father\n");
4588 #else
4589 	printk(KERN_INFO
4590 		"  task                        PC stack   pid father\n");
4591 #endif
4592 	rcu_read_lock();
4593 	do_each_thread(g, p) {
4594 		/*
4595 		 * reset the NMI-timeout, listing all files on a slow
4596 		 * console might take a lot of time:
4597 		 */
4598 		touch_nmi_watchdog();
4599 		if (!state_filter || (p->state & state_filter))
4600 			sched_show_task(p);
4601 	} while_each_thread(g, p);
4602 
4603 	touch_all_softlockup_watchdogs();
4604 
4605 #ifdef CONFIG_SCHED_DEBUG
4606 	sysrq_sched_debug_show();
4607 #endif
4608 	rcu_read_unlock();
4609 	/*
4610 	 * Only show locks if all tasks are dumped:
4611 	 */
4612 	if (!state_filter)
4613 		debug_show_all_locks();
4614 }
4615 
4616 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4617 {
4618 	idle->sched_class = &idle_sched_class;
4619 }
4620 
4621 /**
4622  * init_idle - set up an idle thread for a given CPU
4623  * @idle: task in question
4624  * @cpu: cpu the idle task belongs to
4625  *
4626  * NOTE: this function does not set the idle thread's NEED_RESCHED
4627  * flag, to make booting more robust.
4628  */
4629 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4630 {
4631 	struct rq *rq = cpu_rq(cpu);
4632 	unsigned long flags;
4633 
4634 	raw_spin_lock_irqsave(&rq->lock, flags);
4635 
4636 	__sched_fork(idle);
4637 	idle->state = TASK_RUNNING;
4638 	idle->se.exec_start = sched_clock();
4639 
4640 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4641 	/*
4642 	 * We're having a chicken and egg problem, even though we are
4643 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4644 	 * lockdep check in task_group() will fail.
4645 	 *
4646 	 * Similar case to sched_fork(). / Alternatively we could
4647 	 * use task_rq_lock() here and obtain the other rq->lock.
4648 	 *
4649 	 * Silence PROVE_RCU
4650 	 */
4651 	rcu_read_lock();
4652 	__set_task_cpu(idle, cpu);
4653 	rcu_read_unlock();
4654 
4655 	rq->curr = rq->idle = idle;
4656 #if defined(CONFIG_SMP)
4657 	idle->on_cpu = 1;
4658 #endif
4659 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4660 
4661 	/* Set the preempt count _outside_ the spinlocks! */
4662 	task_thread_info(idle)->preempt_count = 0;
4663 
4664 	/*
4665 	 * The idle tasks have their own, simple scheduling class:
4666 	 */
4667 	idle->sched_class = &idle_sched_class;
4668 	ftrace_graph_init_idle_task(idle, cpu);
4669 #if defined(CONFIG_SMP)
4670 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4671 #endif
4672 }
4673 
4674 #ifdef CONFIG_SMP
4675 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4676 {
4677 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4678 		p->sched_class->set_cpus_allowed(p, new_mask);
4679 
4680 	cpumask_copy(&p->cpus_allowed, new_mask);
4681 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4682 }
4683 
4684 /*
4685  * This is how migration works:
4686  *
4687  * 1) we invoke migration_cpu_stop() on the target CPU using
4688  *    stop_one_cpu().
4689  * 2) stopper starts to run (implicitly forcing the migrated thread
4690  *    off the CPU)
4691  * 3) it checks whether the migrated task is still in the wrong runqueue.
4692  * 4) if it's in the wrong runqueue then the migration thread removes
4693  *    it and puts it into the right queue.
4694  * 5) stopper completes and stop_one_cpu() returns and the migration
4695  *    is done.
4696  */
4697 
4698 /*
4699  * Change a given task's CPU affinity. Migrate the thread to a
4700  * proper CPU and schedule it away if the CPU it's executing on
4701  * is removed from the allowed bitmask.
4702  *
4703  * NOTE: the caller must have a valid reference to the task, the
4704  * task must not exit() & deallocate itself prematurely. The
4705  * call is not atomic; no spinlocks may be held.
4706  */
4707 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4708 {
4709 	unsigned long flags;
4710 	struct rq *rq;
4711 	unsigned int dest_cpu;
4712 	int ret = 0;
4713 
4714 	rq = task_rq_lock(p, &flags);
4715 
4716 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4717 		goto out;
4718 
4719 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4720 		ret = -EINVAL;
4721 		goto out;
4722 	}
4723 
4724 	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4725 		ret = -EINVAL;
4726 		goto out;
4727 	}
4728 
4729 	do_set_cpus_allowed(p, new_mask);
4730 
4731 	/* Can the task run on the task's current CPU? If so, we're done */
4732 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4733 		goto out;
4734 
4735 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4736 	if (p->on_rq) {
4737 		struct migration_arg arg = { p, dest_cpu };
4738 		/* Need help from migration thread: drop lock and wait. */
4739 		task_rq_unlock(rq, p, &flags);
4740 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4741 		tlb_migrate_finish(p->mm);
4742 		return 0;
4743 	}
4744 out:
4745 	task_rq_unlock(rq, p, &flags);
4746 
4747 	return ret;
4748 }
4749 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4750 
4751 /*
4752  * Move (not current) task off this cpu, onto dest cpu. We're doing
4753  * this because either it can't run here any more (set_cpus_allowed()
4754  * away from this CPU, or CPU going down), or because we're
4755  * attempting to rebalance this task on exec (sched_exec).
4756  *
4757  * So we race with normal scheduler movements, but that's OK, as long
4758  * as the task is no longer on this CPU.
4759  *
4760  * Returns non-zero if task was successfully migrated.
4761  */
4762 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4763 {
4764 	struct rq *rq_dest, *rq_src;
4765 	int ret = 0;
4766 
4767 	if (unlikely(!cpu_active(dest_cpu)))
4768 		return ret;
4769 
4770 	rq_src = cpu_rq(src_cpu);
4771 	rq_dest = cpu_rq(dest_cpu);
4772 
4773 	raw_spin_lock(&p->pi_lock);
4774 	double_rq_lock(rq_src, rq_dest);
4775 	/* Already moved. */
4776 	if (task_cpu(p) != src_cpu)
4777 		goto done;
4778 	/* Affinity changed (again). */
4779 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4780 		goto fail;
4781 
4782 	/*
4783 	 * If we're not on a rq, the next wake-up will ensure we're
4784 	 * placed properly.
4785 	 */
4786 	if (p->on_rq) {
4787 		dequeue_task(rq_src, p, 0);
4788 		set_task_cpu(p, dest_cpu);
4789 		enqueue_task(rq_dest, p, 0);
4790 		check_preempt_curr(rq_dest, p, 0);
4791 	}
4792 done:
4793 	ret = 1;
4794 fail:
4795 	double_rq_unlock(rq_src, rq_dest);
4796 	raw_spin_unlock(&p->pi_lock);
4797 	return ret;
4798 }
4799 
4800 /*
4801  * migration_cpu_stop - this will be executed by a highprio stopper thread
4802  * and performs thread migration by bumping thread off CPU then
4803  * 'pushing' onto another runqueue.
4804  */
4805 static int migration_cpu_stop(void *data)
4806 {
4807 	struct migration_arg *arg = data;
4808 
4809 	/*
4810 	 * The original target cpu might have gone down and we might
4811 	 * be on another cpu but it doesn't matter.
4812 	 */
4813 	local_irq_disable();
4814 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4815 	local_irq_enable();
4816 	return 0;
4817 }
4818 
4819 #ifdef CONFIG_HOTPLUG_CPU
4820 
4821 /*
4822  * Ensures that the idle task is using init_mm right before its cpu goes
4823  * offline.
4824  */
4825 void idle_task_exit(void)
4826 {
4827 	struct mm_struct *mm = current->active_mm;
4828 
4829 	BUG_ON(cpu_online(smp_processor_id()));
4830 
4831 	if (mm != &init_mm)
4832 		switch_mm(mm, &init_mm, current);
4833 	mmdrop(mm);
4834 }
4835 
4836 /*
4837  * Since this CPU is going 'away' for a while, fold any nr_active delta
4838  * we might have. Assumes we're called after migrate_tasks() so that the
4839  * nr_active count is stable.
4840  *
4841  * Also see the comment "Global load-average calculations".
4842  */
4843 static void calc_load_migrate(struct rq *rq)
4844 {
4845 	long delta = calc_load_fold_active(rq);
4846 	if (delta)
4847 		atomic_long_add(delta, &calc_load_tasks);
4848 }
4849 
4850 /*
4851  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4852  * try_to_wake_up()->select_task_rq().
4853  *
4854  * Called with rq->lock held even though we'er in stop_machine() and
4855  * there's no concurrency possible, we hold the required locks anyway
4856  * because of lock validation efforts.
4857  */
4858 static void migrate_tasks(unsigned int dead_cpu)
4859 {
4860 	struct rq *rq = cpu_rq(dead_cpu);
4861 	struct task_struct *next, *stop = rq->stop;
4862 	int dest_cpu;
4863 
4864 	/*
4865 	 * Fudge the rq selection such that the below task selection loop
4866 	 * doesn't get stuck on the currently eligible stop task.
4867 	 *
4868 	 * We're currently inside stop_machine() and the rq is either stuck
4869 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4870 	 * either way we should never end up calling schedule() until we're
4871 	 * done here.
4872 	 */
4873 	rq->stop = NULL;
4874 
4875 	for ( ; ; ) {
4876 		/*
4877 		 * There's this thread running, bail when that's the only
4878 		 * remaining thread.
4879 		 */
4880 		if (rq->nr_running == 1)
4881 			break;
4882 
4883 		next = pick_next_task(rq);
4884 		BUG_ON(!next);
4885 		next->sched_class->put_prev_task(rq, next);
4886 
4887 		/* Find suitable destination for @next, with force if needed. */
4888 		dest_cpu = select_fallback_rq(dead_cpu, next);
4889 		raw_spin_unlock(&rq->lock);
4890 
4891 		__migrate_task(next, dead_cpu, dest_cpu);
4892 
4893 		raw_spin_lock(&rq->lock);
4894 	}
4895 
4896 	rq->stop = stop;
4897 }
4898 
4899 #endif /* CONFIG_HOTPLUG_CPU */
4900 
4901 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4902 
4903 static struct ctl_table sd_ctl_dir[] = {
4904 	{
4905 		.procname	= "sched_domain",
4906 		.mode		= 0555,
4907 	},
4908 	{}
4909 };
4910 
4911 static struct ctl_table sd_ctl_root[] = {
4912 	{
4913 		.procname	= "kernel",
4914 		.mode		= 0555,
4915 		.child		= sd_ctl_dir,
4916 	},
4917 	{}
4918 };
4919 
4920 static struct ctl_table *sd_alloc_ctl_entry(int n)
4921 {
4922 	struct ctl_table *entry =
4923 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4924 
4925 	return entry;
4926 }
4927 
4928 static void sd_free_ctl_entry(struct ctl_table **tablep)
4929 {
4930 	struct ctl_table *entry;
4931 
4932 	/*
4933 	 * In the intermediate directories, both the child directory and
4934 	 * procname are dynamically allocated and could fail but the mode
4935 	 * will always be set. In the lowest directory the names are
4936 	 * static strings and all have proc handlers.
4937 	 */
4938 	for (entry = *tablep; entry->mode; entry++) {
4939 		if (entry->child)
4940 			sd_free_ctl_entry(&entry->child);
4941 		if (entry->proc_handler == NULL)
4942 			kfree(entry->procname);
4943 	}
4944 
4945 	kfree(*tablep);
4946 	*tablep = NULL;
4947 }
4948 
4949 static int min_load_idx = 0;
4950 static int max_load_idx = CPU_LOAD_IDX_MAX;
4951 
4952 static void
4953 set_table_entry(struct ctl_table *entry,
4954 		const char *procname, void *data, int maxlen,
4955 		umode_t mode, proc_handler *proc_handler,
4956 		bool load_idx)
4957 {
4958 	entry->procname = procname;
4959 	entry->data = data;
4960 	entry->maxlen = maxlen;
4961 	entry->mode = mode;
4962 	entry->proc_handler = proc_handler;
4963 
4964 	if (load_idx) {
4965 		entry->extra1 = &min_load_idx;
4966 		entry->extra2 = &max_load_idx;
4967 	}
4968 }
4969 
4970 static struct ctl_table *
4971 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4972 {
4973 	struct ctl_table *table = sd_alloc_ctl_entry(13);
4974 
4975 	if (table == NULL)
4976 		return NULL;
4977 
4978 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4979 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4980 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4981 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4982 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4983 		sizeof(int), 0644, proc_dointvec_minmax, true);
4984 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4985 		sizeof(int), 0644, proc_dointvec_minmax, true);
4986 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4987 		sizeof(int), 0644, proc_dointvec_minmax, true);
4988 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4989 		sizeof(int), 0644, proc_dointvec_minmax, true);
4990 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4991 		sizeof(int), 0644, proc_dointvec_minmax, true);
4992 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4993 		sizeof(int), 0644, proc_dointvec_minmax, false);
4994 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4995 		sizeof(int), 0644, proc_dointvec_minmax, false);
4996 	set_table_entry(&table[9], "cache_nice_tries",
4997 		&sd->cache_nice_tries,
4998 		sizeof(int), 0644, proc_dointvec_minmax, false);
4999 	set_table_entry(&table[10], "flags", &sd->flags,
5000 		sizeof(int), 0644, proc_dointvec_minmax, false);
5001 	set_table_entry(&table[11], "name", sd->name,
5002 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5003 	/* &table[12] is terminator */
5004 
5005 	return table;
5006 }
5007 
5008 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5009 {
5010 	struct ctl_table *entry, *table;
5011 	struct sched_domain *sd;
5012 	int domain_num = 0, i;
5013 	char buf[32];
5014 
5015 	for_each_domain(cpu, sd)
5016 		domain_num++;
5017 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5018 	if (table == NULL)
5019 		return NULL;
5020 
5021 	i = 0;
5022 	for_each_domain(cpu, sd) {
5023 		snprintf(buf, 32, "domain%d", i);
5024 		entry->procname = kstrdup(buf, GFP_KERNEL);
5025 		entry->mode = 0555;
5026 		entry->child = sd_alloc_ctl_domain_table(sd);
5027 		entry++;
5028 		i++;
5029 	}
5030 	return table;
5031 }
5032 
5033 static struct ctl_table_header *sd_sysctl_header;
5034 static void register_sched_domain_sysctl(void)
5035 {
5036 	int i, cpu_num = num_possible_cpus();
5037 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5038 	char buf[32];
5039 
5040 	WARN_ON(sd_ctl_dir[0].child);
5041 	sd_ctl_dir[0].child = entry;
5042 
5043 	if (entry == NULL)
5044 		return;
5045 
5046 	for_each_possible_cpu(i) {
5047 		snprintf(buf, 32, "cpu%d", i);
5048 		entry->procname = kstrdup(buf, GFP_KERNEL);
5049 		entry->mode = 0555;
5050 		entry->child = sd_alloc_ctl_cpu_table(i);
5051 		entry++;
5052 	}
5053 
5054 	WARN_ON(sd_sysctl_header);
5055 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5056 }
5057 
5058 /* may be called multiple times per register */
5059 static void unregister_sched_domain_sysctl(void)
5060 {
5061 	if (sd_sysctl_header)
5062 		unregister_sysctl_table(sd_sysctl_header);
5063 	sd_sysctl_header = NULL;
5064 	if (sd_ctl_dir[0].child)
5065 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5066 }
5067 #else
5068 static void register_sched_domain_sysctl(void)
5069 {
5070 }
5071 static void unregister_sched_domain_sysctl(void)
5072 {
5073 }
5074 #endif
5075 
5076 static void set_rq_online(struct rq *rq)
5077 {
5078 	if (!rq->online) {
5079 		const struct sched_class *class;
5080 
5081 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5082 		rq->online = 1;
5083 
5084 		for_each_class(class) {
5085 			if (class->rq_online)
5086 				class->rq_online(rq);
5087 		}
5088 	}
5089 }
5090 
5091 static void set_rq_offline(struct rq *rq)
5092 {
5093 	if (rq->online) {
5094 		const struct sched_class *class;
5095 
5096 		for_each_class(class) {
5097 			if (class->rq_offline)
5098 				class->rq_offline(rq);
5099 		}
5100 
5101 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5102 		rq->online = 0;
5103 	}
5104 }
5105 
5106 /*
5107  * migration_call - callback that gets triggered when a CPU is added.
5108  * Here we can start up the necessary migration thread for the new CPU.
5109  */
5110 static int __cpuinit
5111 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5112 {
5113 	int cpu = (long)hcpu;
5114 	unsigned long flags;
5115 	struct rq *rq = cpu_rq(cpu);
5116 
5117 	switch (action & ~CPU_TASKS_FROZEN) {
5118 
5119 	case CPU_UP_PREPARE:
5120 		rq->calc_load_update = calc_load_update;
5121 		break;
5122 
5123 	case CPU_ONLINE:
5124 		/* Update our root-domain */
5125 		raw_spin_lock_irqsave(&rq->lock, flags);
5126 		if (rq->rd) {
5127 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5128 
5129 			set_rq_online(rq);
5130 		}
5131 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5132 		break;
5133 
5134 #ifdef CONFIG_HOTPLUG_CPU
5135 	case CPU_DYING:
5136 		sched_ttwu_pending();
5137 		/* Update our root-domain */
5138 		raw_spin_lock_irqsave(&rq->lock, flags);
5139 		if (rq->rd) {
5140 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5141 			set_rq_offline(rq);
5142 		}
5143 		migrate_tasks(cpu);
5144 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5145 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5146 		break;
5147 
5148 	case CPU_DEAD:
5149 		calc_load_migrate(rq);
5150 		break;
5151 #endif
5152 	}
5153 
5154 	update_max_interval();
5155 
5156 	return NOTIFY_OK;
5157 }
5158 
5159 /*
5160  * Register at high priority so that task migration (migrate_all_tasks)
5161  * happens before everything else.  This has to be lower priority than
5162  * the notifier in the perf_event subsystem, though.
5163  */
5164 static struct notifier_block __cpuinitdata migration_notifier = {
5165 	.notifier_call = migration_call,
5166 	.priority = CPU_PRI_MIGRATION,
5167 };
5168 
5169 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5170 				      unsigned long action, void *hcpu)
5171 {
5172 	switch (action & ~CPU_TASKS_FROZEN) {
5173 	case CPU_STARTING:
5174 	case CPU_DOWN_FAILED:
5175 		set_cpu_active((long)hcpu, true);
5176 		return NOTIFY_OK;
5177 	default:
5178 		return NOTIFY_DONE;
5179 	}
5180 }
5181 
5182 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5183 					unsigned long action, void *hcpu)
5184 {
5185 	switch (action & ~CPU_TASKS_FROZEN) {
5186 	case CPU_DOWN_PREPARE:
5187 		set_cpu_active((long)hcpu, false);
5188 		return NOTIFY_OK;
5189 	default:
5190 		return NOTIFY_DONE;
5191 	}
5192 }
5193 
5194 static int __init migration_init(void)
5195 {
5196 	void *cpu = (void *)(long)smp_processor_id();
5197 	int err;
5198 
5199 	/* Initialize migration for the boot CPU */
5200 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5201 	BUG_ON(err == NOTIFY_BAD);
5202 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5203 	register_cpu_notifier(&migration_notifier);
5204 
5205 	/* Register cpu active notifiers */
5206 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5207 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5208 
5209 	return 0;
5210 }
5211 early_initcall(migration_init);
5212 #endif
5213 
5214 #ifdef CONFIG_SMP
5215 
5216 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5217 
5218 #ifdef CONFIG_SCHED_DEBUG
5219 
5220 static __read_mostly int sched_debug_enabled;
5221 
5222 static int __init sched_debug_setup(char *str)
5223 {
5224 	sched_debug_enabled = 1;
5225 
5226 	return 0;
5227 }
5228 early_param("sched_debug", sched_debug_setup);
5229 
5230 static inline bool sched_debug(void)
5231 {
5232 	return sched_debug_enabled;
5233 }
5234 
5235 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5236 				  struct cpumask *groupmask)
5237 {
5238 	struct sched_group *group = sd->groups;
5239 	char str[256];
5240 
5241 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5242 	cpumask_clear(groupmask);
5243 
5244 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5245 
5246 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5247 		printk("does not load-balance\n");
5248 		if (sd->parent)
5249 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5250 					" has parent");
5251 		return -1;
5252 	}
5253 
5254 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5255 
5256 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5257 		printk(KERN_ERR "ERROR: domain->span does not contain "
5258 				"CPU%d\n", cpu);
5259 	}
5260 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5261 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5262 				" CPU%d\n", cpu);
5263 	}
5264 
5265 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5266 	do {
5267 		if (!group) {
5268 			printk("\n");
5269 			printk(KERN_ERR "ERROR: group is NULL\n");
5270 			break;
5271 		}
5272 
5273 		/*
5274 		 * Even though we initialize ->power to something semi-sane,
5275 		 * we leave power_orig unset. This allows us to detect if
5276 		 * domain iteration is still funny without causing /0 traps.
5277 		 */
5278 		if (!group->sgp->power_orig) {
5279 			printk(KERN_CONT "\n");
5280 			printk(KERN_ERR "ERROR: domain->cpu_power not "
5281 					"set\n");
5282 			break;
5283 		}
5284 
5285 		if (!cpumask_weight(sched_group_cpus(group))) {
5286 			printk(KERN_CONT "\n");
5287 			printk(KERN_ERR "ERROR: empty group\n");
5288 			break;
5289 		}
5290 
5291 		if (!(sd->flags & SD_OVERLAP) &&
5292 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5293 			printk(KERN_CONT "\n");
5294 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5295 			break;
5296 		}
5297 
5298 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5299 
5300 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5301 
5302 		printk(KERN_CONT " %s", str);
5303 		if (group->sgp->power != SCHED_POWER_SCALE) {
5304 			printk(KERN_CONT " (cpu_power = %d)",
5305 				group->sgp->power);
5306 		}
5307 
5308 		group = group->next;
5309 	} while (group != sd->groups);
5310 	printk(KERN_CONT "\n");
5311 
5312 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5313 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5314 
5315 	if (sd->parent &&
5316 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5317 		printk(KERN_ERR "ERROR: parent span is not a superset "
5318 			"of domain->span\n");
5319 	return 0;
5320 }
5321 
5322 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5323 {
5324 	int level = 0;
5325 
5326 	if (!sched_debug_enabled)
5327 		return;
5328 
5329 	if (!sd) {
5330 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5331 		return;
5332 	}
5333 
5334 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5335 
5336 	for (;;) {
5337 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5338 			break;
5339 		level++;
5340 		sd = sd->parent;
5341 		if (!sd)
5342 			break;
5343 	}
5344 }
5345 #else /* !CONFIG_SCHED_DEBUG */
5346 # define sched_domain_debug(sd, cpu) do { } while (0)
5347 static inline bool sched_debug(void)
5348 {
5349 	return false;
5350 }
5351 #endif /* CONFIG_SCHED_DEBUG */
5352 
5353 static int sd_degenerate(struct sched_domain *sd)
5354 {
5355 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5356 		return 1;
5357 
5358 	/* Following flags need at least 2 groups */
5359 	if (sd->flags & (SD_LOAD_BALANCE |
5360 			 SD_BALANCE_NEWIDLE |
5361 			 SD_BALANCE_FORK |
5362 			 SD_BALANCE_EXEC |
5363 			 SD_SHARE_CPUPOWER |
5364 			 SD_SHARE_PKG_RESOURCES)) {
5365 		if (sd->groups != sd->groups->next)
5366 			return 0;
5367 	}
5368 
5369 	/* Following flags don't use groups */
5370 	if (sd->flags & (SD_WAKE_AFFINE))
5371 		return 0;
5372 
5373 	return 1;
5374 }
5375 
5376 static int
5377 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5378 {
5379 	unsigned long cflags = sd->flags, pflags = parent->flags;
5380 
5381 	if (sd_degenerate(parent))
5382 		return 1;
5383 
5384 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5385 		return 0;
5386 
5387 	/* Flags needing groups don't count if only 1 group in parent */
5388 	if (parent->groups == parent->groups->next) {
5389 		pflags &= ~(SD_LOAD_BALANCE |
5390 				SD_BALANCE_NEWIDLE |
5391 				SD_BALANCE_FORK |
5392 				SD_BALANCE_EXEC |
5393 				SD_SHARE_CPUPOWER |
5394 				SD_SHARE_PKG_RESOURCES);
5395 		if (nr_node_ids == 1)
5396 			pflags &= ~SD_SERIALIZE;
5397 	}
5398 	if (~cflags & pflags)
5399 		return 0;
5400 
5401 	return 1;
5402 }
5403 
5404 static void free_rootdomain(struct rcu_head *rcu)
5405 {
5406 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5407 
5408 	cpupri_cleanup(&rd->cpupri);
5409 	free_cpumask_var(rd->rto_mask);
5410 	free_cpumask_var(rd->online);
5411 	free_cpumask_var(rd->span);
5412 	kfree(rd);
5413 }
5414 
5415 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5416 {
5417 	struct root_domain *old_rd = NULL;
5418 	unsigned long flags;
5419 
5420 	raw_spin_lock_irqsave(&rq->lock, flags);
5421 
5422 	if (rq->rd) {
5423 		old_rd = rq->rd;
5424 
5425 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5426 			set_rq_offline(rq);
5427 
5428 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5429 
5430 		/*
5431 		 * If we dont want to free the old_rt yet then
5432 		 * set old_rd to NULL to skip the freeing later
5433 		 * in this function:
5434 		 */
5435 		if (!atomic_dec_and_test(&old_rd->refcount))
5436 			old_rd = NULL;
5437 	}
5438 
5439 	atomic_inc(&rd->refcount);
5440 	rq->rd = rd;
5441 
5442 	cpumask_set_cpu(rq->cpu, rd->span);
5443 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5444 		set_rq_online(rq);
5445 
5446 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5447 
5448 	if (old_rd)
5449 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5450 }
5451 
5452 static int init_rootdomain(struct root_domain *rd)
5453 {
5454 	memset(rd, 0, sizeof(*rd));
5455 
5456 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5457 		goto out;
5458 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5459 		goto free_span;
5460 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5461 		goto free_online;
5462 
5463 	if (cpupri_init(&rd->cpupri) != 0)
5464 		goto free_rto_mask;
5465 	return 0;
5466 
5467 free_rto_mask:
5468 	free_cpumask_var(rd->rto_mask);
5469 free_online:
5470 	free_cpumask_var(rd->online);
5471 free_span:
5472 	free_cpumask_var(rd->span);
5473 out:
5474 	return -ENOMEM;
5475 }
5476 
5477 /*
5478  * By default the system creates a single root-domain with all cpus as
5479  * members (mimicking the global state we have today).
5480  */
5481 struct root_domain def_root_domain;
5482 
5483 static void init_defrootdomain(void)
5484 {
5485 	init_rootdomain(&def_root_domain);
5486 
5487 	atomic_set(&def_root_domain.refcount, 1);
5488 }
5489 
5490 static struct root_domain *alloc_rootdomain(void)
5491 {
5492 	struct root_domain *rd;
5493 
5494 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5495 	if (!rd)
5496 		return NULL;
5497 
5498 	if (init_rootdomain(rd) != 0) {
5499 		kfree(rd);
5500 		return NULL;
5501 	}
5502 
5503 	return rd;
5504 }
5505 
5506 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5507 {
5508 	struct sched_group *tmp, *first;
5509 
5510 	if (!sg)
5511 		return;
5512 
5513 	first = sg;
5514 	do {
5515 		tmp = sg->next;
5516 
5517 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5518 			kfree(sg->sgp);
5519 
5520 		kfree(sg);
5521 		sg = tmp;
5522 	} while (sg != first);
5523 }
5524 
5525 static void free_sched_domain(struct rcu_head *rcu)
5526 {
5527 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5528 
5529 	/*
5530 	 * If its an overlapping domain it has private groups, iterate and
5531 	 * nuke them all.
5532 	 */
5533 	if (sd->flags & SD_OVERLAP) {
5534 		free_sched_groups(sd->groups, 1);
5535 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5536 		kfree(sd->groups->sgp);
5537 		kfree(sd->groups);
5538 	}
5539 	kfree(sd);
5540 }
5541 
5542 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5543 {
5544 	call_rcu(&sd->rcu, free_sched_domain);
5545 }
5546 
5547 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5548 {
5549 	for (; sd; sd = sd->parent)
5550 		destroy_sched_domain(sd, cpu);
5551 }
5552 
5553 /*
5554  * Keep a special pointer to the highest sched_domain that has
5555  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5556  * allows us to avoid some pointer chasing select_idle_sibling().
5557  *
5558  * Also keep a unique ID per domain (we use the first cpu number in
5559  * the cpumask of the domain), this allows us to quickly tell if
5560  * two cpus are in the same cache domain, see cpus_share_cache().
5561  */
5562 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5563 DEFINE_PER_CPU(int, sd_llc_id);
5564 
5565 static void update_top_cache_domain(int cpu)
5566 {
5567 	struct sched_domain *sd;
5568 	int id = cpu;
5569 
5570 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5571 	if (sd)
5572 		id = cpumask_first(sched_domain_span(sd));
5573 
5574 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5575 	per_cpu(sd_llc_id, cpu) = id;
5576 }
5577 
5578 /*
5579  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5580  * hold the hotplug lock.
5581  */
5582 static void
5583 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5584 {
5585 	struct rq *rq = cpu_rq(cpu);
5586 	struct sched_domain *tmp;
5587 
5588 	/* Remove the sched domains which do not contribute to scheduling. */
5589 	for (tmp = sd; tmp; ) {
5590 		struct sched_domain *parent = tmp->parent;
5591 		if (!parent)
5592 			break;
5593 
5594 		if (sd_parent_degenerate(tmp, parent)) {
5595 			tmp->parent = parent->parent;
5596 			if (parent->parent)
5597 				parent->parent->child = tmp;
5598 			destroy_sched_domain(parent, cpu);
5599 		} else
5600 			tmp = tmp->parent;
5601 	}
5602 
5603 	if (sd && sd_degenerate(sd)) {
5604 		tmp = sd;
5605 		sd = sd->parent;
5606 		destroy_sched_domain(tmp, cpu);
5607 		if (sd)
5608 			sd->child = NULL;
5609 	}
5610 
5611 	sched_domain_debug(sd, cpu);
5612 
5613 	rq_attach_root(rq, rd);
5614 	tmp = rq->sd;
5615 	rcu_assign_pointer(rq->sd, sd);
5616 	destroy_sched_domains(tmp, cpu);
5617 
5618 	update_top_cache_domain(cpu);
5619 }
5620 
5621 /* cpus with isolated domains */
5622 static cpumask_var_t cpu_isolated_map;
5623 
5624 /* Setup the mask of cpus configured for isolated domains */
5625 static int __init isolated_cpu_setup(char *str)
5626 {
5627 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5628 	cpulist_parse(str, cpu_isolated_map);
5629 	return 1;
5630 }
5631 
5632 __setup("isolcpus=", isolated_cpu_setup);
5633 
5634 static const struct cpumask *cpu_cpu_mask(int cpu)
5635 {
5636 	return cpumask_of_node(cpu_to_node(cpu));
5637 }
5638 
5639 struct sd_data {
5640 	struct sched_domain **__percpu sd;
5641 	struct sched_group **__percpu sg;
5642 	struct sched_group_power **__percpu sgp;
5643 };
5644 
5645 struct s_data {
5646 	struct sched_domain ** __percpu sd;
5647 	struct root_domain	*rd;
5648 };
5649 
5650 enum s_alloc {
5651 	sa_rootdomain,
5652 	sa_sd,
5653 	sa_sd_storage,
5654 	sa_none,
5655 };
5656 
5657 struct sched_domain_topology_level;
5658 
5659 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5660 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5661 
5662 #define SDTL_OVERLAP	0x01
5663 
5664 struct sched_domain_topology_level {
5665 	sched_domain_init_f init;
5666 	sched_domain_mask_f mask;
5667 	int		    flags;
5668 	int		    numa_level;
5669 	struct sd_data      data;
5670 };
5671 
5672 /*
5673  * Build an iteration mask that can exclude certain CPUs from the upwards
5674  * domain traversal.
5675  *
5676  * Asymmetric node setups can result in situations where the domain tree is of
5677  * unequal depth, make sure to skip domains that already cover the entire
5678  * range.
5679  *
5680  * In that case build_sched_domains() will have terminated the iteration early
5681  * and our sibling sd spans will be empty. Domains should always include the
5682  * cpu they're built on, so check that.
5683  *
5684  */
5685 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5686 {
5687 	const struct cpumask *span = sched_domain_span(sd);
5688 	struct sd_data *sdd = sd->private;
5689 	struct sched_domain *sibling;
5690 	int i;
5691 
5692 	for_each_cpu(i, span) {
5693 		sibling = *per_cpu_ptr(sdd->sd, i);
5694 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5695 			continue;
5696 
5697 		cpumask_set_cpu(i, sched_group_mask(sg));
5698 	}
5699 }
5700 
5701 /*
5702  * Return the canonical balance cpu for this group, this is the first cpu
5703  * of this group that's also in the iteration mask.
5704  */
5705 int group_balance_cpu(struct sched_group *sg)
5706 {
5707 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5708 }
5709 
5710 static int
5711 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5712 {
5713 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5714 	const struct cpumask *span = sched_domain_span(sd);
5715 	struct cpumask *covered = sched_domains_tmpmask;
5716 	struct sd_data *sdd = sd->private;
5717 	struct sched_domain *child;
5718 	int i;
5719 
5720 	cpumask_clear(covered);
5721 
5722 	for_each_cpu(i, span) {
5723 		struct cpumask *sg_span;
5724 
5725 		if (cpumask_test_cpu(i, covered))
5726 			continue;
5727 
5728 		child = *per_cpu_ptr(sdd->sd, i);
5729 
5730 		/* See the comment near build_group_mask(). */
5731 		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5732 			continue;
5733 
5734 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5735 				GFP_KERNEL, cpu_to_node(cpu));
5736 
5737 		if (!sg)
5738 			goto fail;
5739 
5740 		sg_span = sched_group_cpus(sg);
5741 		if (child->child) {
5742 			child = child->child;
5743 			cpumask_copy(sg_span, sched_domain_span(child));
5744 		} else
5745 			cpumask_set_cpu(i, sg_span);
5746 
5747 		cpumask_or(covered, covered, sg_span);
5748 
5749 		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5750 		if (atomic_inc_return(&sg->sgp->ref) == 1)
5751 			build_group_mask(sd, sg);
5752 
5753 		/*
5754 		 * Initialize sgp->power such that even if we mess up the
5755 		 * domains and no possible iteration will get us here, we won't
5756 		 * die on a /0 trap.
5757 		 */
5758 		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5759 
5760 		/*
5761 		 * Make sure the first group of this domain contains the
5762 		 * canonical balance cpu. Otherwise the sched_domain iteration
5763 		 * breaks. See update_sg_lb_stats().
5764 		 */
5765 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5766 		    group_balance_cpu(sg) == cpu)
5767 			groups = sg;
5768 
5769 		if (!first)
5770 			first = sg;
5771 		if (last)
5772 			last->next = sg;
5773 		last = sg;
5774 		last->next = first;
5775 	}
5776 	sd->groups = groups;
5777 
5778 	return 0;
5779 
5780 fail:
5781 	free_sched_groups(first, 0);
5782 
5783 	return -ENOMEM;
5784 }
5785 
5786 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5787 {
5788 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5789 	struct sched_domain *child = sd->child;
5790 
5791 	if (child)
5792 		cpu = cpumask_first(sched_domain_span(child));
5793 
5794 	if (sg) {
5795 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5796 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5797 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5798 	}
5799 
5800 	return cpu;
5801 }
5802 
5803 /*
5804  * build_sched_groups will build a circular linked list of the groups
5805  * covered by the given span, and will set each group's ->cpumask correctly,
5806  * and ->cpu_power to 0.
5807  *
5808  * Assumes the sched_domain tree is fully constructed
5809  */
5810 static int
5811 build_sched_groups(struct sched_domain *sd, int cpu)
5812 {
5813 	struct sched_group *first = NULL, *last = NULL;
5814 	struct sd_data *sdd = sd->private;
5815 	const struct cpumask *span = sched_domain_span(sd);
5816 	struct cpumask *covered;
5817 	int i;
5818 
5819 	get_group(cpu, sdd, &sd->groups);
5820 	atomic_inc(&sd->groups->ref);
5821 
5822 	if (cpu != cpumask_first(sched_domain_span(sd)))
5823 		return 0;
5824 
5825 	lockdep_assert_held(&sched_domains_mutex);
5826 	covered = sched_domains_tmpmask;
5827 
5828 	cpumask_clear(covered);
5829 
5830 	for_each_cpu(i, span) {
5831 		struct sched_group *sg;
5832 		int group = get_group(i, sdd, &sg);
5833 		int j;
5834 
5835 		if (cpumask_test_cpu(i, covered))
5836 			continue;
5837 
5838 		cpumask_clear(sched_group_cpus(sg));
5839 		sg->sgp->power = 0;
5840 		cpumask_setall(sched_group_mask(sg));
5841 
5842 		for_each_cpu(j, span) {
5843 			if (get_group(j, sdd, NULL) != group)
5844 				continue;
5845 
5846 			cpumask_set_cpu(j, covered);
5847 			cpumask_set_cpu(j, sched_group_cpus(sg));
5848 		}
5849 
5850 		if (!first)
5851 			first = sg;
5852 		if (last)
5853 			last->next = sg;
5854 		last = sg;
5855 	}
5856 	last->next = first;
5857 
5858 	return 0;
5859 }
5860 
5861 /*
5862  * Initialize sched groups cpu_power.
5863  *
5864  * cpu_power indicates the capacity of sched group, which is used while
5865  * distributing the load between different sched groups in a sched domain.
5866  * Typically cpu_power for all the groups in a sched domain will be same unless
5867  * there are asymmetries in the topology. If there are asymmetries, group
5868  * having more cpu_power will pickup more load compared to the group having
5869  * less cpu_power.
5870  */
5871 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5872 {
5873 	struct sched_group *sg = sd->groups;
5874 
5875 	WARN_ON(!sd || !sg);
5876 
5877 	do {
5878 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5879 		sg = sg->next;
5880 	} while (sg != sd->groups);
5881 
5882 	if (cpu != group_balance_cpu(sg))
5883 		return;
5884 
5885 	update_group_power(sd, cpu);
5886 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5887 }
5888 
5889 int __weak arch_sd_sibling_asym_packing(void)
5890 {
5891        return 0*SD_ASYM_PACKING;
5892 }
5893 
5894 /*
5895  * Initializers for schedule domains
5896  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5897  */
5898 
5899 #ifdef CONFIG_SCHED_DEBUG
5900 # define SD_INIT_NAME(sd, type)		sd->name = #type
5901 #else
5902 # define SD_INIT_NAME(sd, type)		do { } while (0)
5903 #endif
5904 
5905 #define SD_INIT_FUNC(type)						\
5906 static noinline struct sched_domain *					\
5907 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5908 {									\
5909 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5910 	*sd = SD_##type##_INIT;						\
5911 	SD_INIT_NAME(sd, type);						\
5912 	sd->private = &tl->data;					\
5913 	return sd;							\
5914 }
5915 
5916 SD_INIT_FUNC(CPU)
5917 #ifdef CONFIG_SCHED_SMT
5918  SD_INIT_FUNC(SIBLING)
5919 #endif
5920 #ifdef CONFIG_SCHED_MC
5921  SD_INIT_FUNC(MC)
5922 #endif
5923 #ifdef CONFIG_SCHED_BOOK
5924  SD_INIT_FUNC(BOOK)
5925 #endif
5926 
5927 static int default_relax_domain_level = -1;
5928 int sched_domain_level_max;
5929 
5930 static int __init setup_relax_domain_level(char *str)
5931 {
5932 	if (kstrtoint(str, 0, &default_relax_domain_level))
5933 		pr_warn("Unable to set relax_domain_level\n");
5934 
5935 	return 1;
5936 }
5937 __setup("relax_domain_level=", setup_relax_domain_level);
5938 
5939 static void set_domain_attribute(struct sched_domain *sd,
5940 				 struct sched_domain_attr *attr)
5941 {
5942 	int request;
5943 
5944 	if (!attr || attr->relax_domain_level < 0) {
5945 		if (default_relax_domain_level < 0)
5946 			return;
5947 		else
5948 			request = default_relax_domain_level;
5949 	} else
5950 		request = attr->relax_domain_level;
5951 	if (request < sd->level) {
5952 		/* turn off idle balance on this domain */
5953 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5954 	} else {
5955 		/* turn on idle balance on this domain */
5956 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5957 	}
5958 }
5959 
5960 static void __sdt_free(const struct cpumask *cpu_map);
5961 static int __sdt_alloc(const struct cpumask *cpu_map);
5962 
5963 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5964 				 const struct cpumask *cpu_map)
5965 {
5966 	switch (what) {
5967 	case sa_rootdomain:
5968 		if (!atomic_read(&d->rd->refcount))
5969 			free_rootdomain(&d->rd->rcu); /* fall through */
5970 	case sa_sd:
5971 		free_percpu(d->sd); /* fall through */
5972 	case sa_sd_storage:
5973 		__sdt_free(cpu_map); /* fall through */
5974 	case sa_none:
5975 		break;
5976 	}
5977 }
5978 
5979 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5980 						   const struct cpumask *cpu_map)
5981 {
5982 	memset(d, 0, sizeof(*d));
5983 
5984 	if (__sdt_alloc(cpu_map))
5985 		return sa_sd_storage;
5986 	d->sd = alloc_percpu(struct sched_domain *);
5987 	if (!d->sd)
5988 		return sa_sd_storage;
5989 	d->rd = alloc_rootdomain();
5990 	if (!d->rd)
5991 		return sa_sd;
5992 	return sa_rootdomain;
5993 }
5994 
5995 /*
5996  * NULL the sd_data elements we've used to build the sched_domain and
5997  * sched_group structure so that the subsequent __free_domain_allocs()
5998  * will not free the data we're using.
5999  */
6000 static void claim_allocations(int cpu, struct sched_domain *sd)
6001 {
6002 	struct sd_data *sdd = sd->private;
6003 
6004 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6005 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6006 
6007 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6008 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6009 
6010 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6011 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6012 }
6013 
6014 #ifdef CONFIG_SCHED_SMT
6015 static const struct cpumask *cpu_smt_mask(int cpu)
6016 {
6017 	return topology_thread_cpumask(cpu);
6018 }
6019 #endif
6020 
6021 /*
6022  * Topology list, bottom-up.
6023  */
6024 static struct sched_domain_topology_level default_topology[] = {
6025 #ifdef CONFIG_SCHED_SMT
6026 	{ sd_init_SIBLING, cpu_smt_mask, },
6027 #endif
6028 #ifdef CONFIG_SCHED_MC
6029 	{ sd_init_MC, cpu_coregroup_mask, },
6030 #endif
6031 #ifdef CONFIG_SCHED_BOOK
6032 	{ sd_init_BOOK, cpu_book_mask, },
6033 #endif
6034 	{ sd_init_CPU, cpu_cpu_mask, },
6035 	{ NULL, },
6036 };
6037 
6038 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6039 
6040 #ifdef CONFIG_NUMA
6041 
6042 static int sched_domains_numa_levels;
6043 static int *sched_domains_numa_distance;
6044 static struct cpumask ***sched_domains_numa_masks;
6045 static int sched_domains_curr_level;
6046 
6047 static inline int sd_local_flags(int level)
6048 {
6049 	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6050 		return 0;
6051 
6052 	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6053 }
6054 
6055 static struct sched_domain *
6056 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6057 {
6058 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6059 	int level = tl->numa_level;
6060 	int sd_weight = cpumask_weight(
6061 			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6062 
6063 	*sd = (struct sched_domain){
6064 		.min_interval		= sd_weight,
6065 		.max_interval		= 2*sd_weight,
6066 		.busy_factor		= 32,
6067 		.imbalance_pct		= 125,
6068 		.cache_nice_tries	= 2,
6069 		.busy_idx		= 3,
6070 		.idle_idx		= 2,
6071 		.newidle_idx		= 0,
6072 		.wake_idx		= 0,
6073 		.forkexec_idx		= 0,
6074 
6075 		.flags			= 1*SD_LOAD_BALANCE
6076 					| 1*SD_BALANCE_NEWIDLE
6077 					| 0*SD_BALANCE_EXEC
6078 					| 0*SD_BALANCE_FORK
6079 					| 0*SD_BALANCE_WAKE
6080 					| 0*SD_WAKE_AFFINE
6081 					| 0*SD_SHARE_CPUPOWER
6082 					| 0*SD_SHARE_PKG_RESOURCES
6083 					| 1*SD_SERIALIZE
6084 					| 0*SD_PREFER_SIBLING
6085 					| sd_local_flags(level)
6086 					,
6087 		.last_balance		= jiffies,
6088 		.balance_interval	= sd_weight,
6089 	};
6090 	SD_INIT_NAME(sd, NUMA);
6091 	sd->private = &tl->data;
6092 
6093 	/*
6094 	 * Ugly hack to pass state to sd_numa_mask()...
6095 	 */
6096 	sched_domains_curr_level = tl->numa_level;
6097 
6098 	return sd;
6099 }
6100 
6101 static const struct cpumask *sd_numa_mask(int cpu)
6102 {
6103 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6104 }
6105 
6106 static void sched_numa_warn(const char *str)
6107 {
6108 	static int done = false;
6109 	int i,j;
6110 
6111 	if (done)
6112 		return;
6113 
6114 	done = true;
6115 
6116 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6117 
6118 	for (i = 0; i < nr_node_ids; i++) {
6119 		printk(KERN_WARNING "  ");
6120 		for (j = 0; j < nr_node_ids; j++)
6121 			printk(KERN_CONT "%02d ", node_distance(i,j));
6122 		printk(KERN_CONT "\n");
6123 	}
6124 	printk(KERN_WARNING "\n");
6125 }
6126 
6127 static bool find_numa_distance(int distance)
6128 {
6129 	int i;
6130 
6131 	if (distance == node_distance(0, 0))
6132 		return true;
6133 
6134 	for (i = 0; i < sched_domains_numa_levels; i++) {
6135 		if (sched_domains_numa_distance[i] == distance)
6136 			return true;
6137 	}
6138 
6139 	return false;
6140 }
6141 
6142 static void sched_init_numa(void)
6143 {
6144 	int next_distance, curr_distance = node_distance(0, 0);
6145 	struct sched_domain_topology_level *tl;
6146 	int level = 0;
6147 	int i, j, k;
6148 
6149 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6150 	if (!sched_domains_numa_distance)
6151 		return;
6152 
6153 	/*
6154 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6155 	 * unique distances in the node_distance() table.
6156 	 *
6157 	 * Assumes node_distance(0,j) includes all distances in
6158 	 * node_distance(i,j) in order to avoid cubic time.
6159 	 */
6160 	next_distance = curr_distance;
6161 	for (i = 0; i < nr_node_ids; i++) {
6162 		for (j = 0; j < nr_node_ids; j++) {
6163 			for (k = 0; k < nr_node_ids; k++) {
6164 				int distance = node_distance(i, k);
6165 
6166 				if (distance > curr_distance &&
6167 				    (distance < next_distance ||
6168 				     next_distance == curr_distance))
6169 					next_distance = distance;
6170 
6171 				/*
6172 				 * While not a strong assumption it would be nice to know
6173 				 * about cases where if node A is connected to B, B is not
6174 				 * equally connected to A.
6175 				 */
6176 				if (sched_debug() && node_distance(k, i) != distance)
6177 					sched_numa_warn("Node-distance not symmetric");
6178 
6179 				if (sched_debug() && i && !find_numa_distance(distance))
6180 					sched_numa_warn("Node-0 not representative");
6181 			}
6182 			if (next_distance != curr_distance) {
6183 				sched_domains_numa_distance[level++] = next_distance;
6184 				sched_domains_numa_levels = level;
6185 				curr_distance = next_distance;
6186 			} else break;
6187 		}
6188 
6189 		/*
6190 		 * In case of sched_debug() we verify the above assumption.
6191 		 */
6192 		if (!sched_debug())
6193 			break;
6194 	}
6195 	/*
6196 	 * 'level' contains the number of unique distances, excluding the
6197 	 * identity distance node_distance(i,i).
6198 	 *
6199 	 * The sched_domains_nume_distance[] array includes the actual distance
6200 	 * numbers.
6201 	 */
6202 
6203 	/*
6204 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6205 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6206 	 * the array will contain less then 'level' members. This could be
6207 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6208 	 * in other functions.
6209 	 *
6210 	 * We reset it to 'level' at the end of this function.
6211 	 */
6212 	sched_domains_numa_levels = 0;
6213 
6214 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6215 	if (!sched_domains_numa_masks)
6216 		return;
6217 
6218 	/*
6219 	 * Now for each level, construct a mask per node which contains all
6220 	 * cpus of nodes that are that many hops away from us.
6221 	 */
6222 	for (i = 0; i < level; i++) {
6223 		sched_domains_numa_masks[i] =
6224 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6225 		if (!sched_domains_numa_masks[i])
6226 			return;
6227 
6228 		for (j = 0; j < nr_node_ids; j++) {
6229 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6230 			if (!mask)
6231 				return;
6232 
6233 			sched_domains_numa_masks[i][j] = mask;
6234 
6235 			for (k = 0; k < nr_node_ids; k++) {
6236 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6237 					continue;
6238 
6239 				cpumask_or(mask, mask, cpumask_of_node(k));
6240 			}
6241 		}
6242 	}
6243 
6244 	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6245 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6246 	if (!tl)
6247 		return;
6248 
6249 	/*
6250 	 * Copy the default topology bits..
6251 	 */
6252 	for (i = 0; default_topology[i].init; i++)
6253 		tl[i] = default_topology[i];
6254 
6255 	/*
6256 	 * .. and append 'j' levels of NUMA goodness.
6257 	 */
6258 	for (j = 0; j < level; i++, j++) {
6259 		tl[i] = (struct sched_domain_topology_level){
6260 			.init = sd_numa_init,
6261 			.mask = sd_numa_mask,
6262 			.flags = SDTL_OVERLAP,
6263 			.numa_level = j,
6264 		};
6265 	}
6266 
6267 	sched_domain_topology = tl;
6268 
6269 	sched_domains_numa_levels = level;
6270 }
6271 
6272 static void sched_domains_numa_masks_set(int cpu)
6273 {
6274 	int i, j;
6275 	int node = cpu_to_node(cpu);
6276 
6277 	for (i = 0; i < sched_domains_numa_levels; i++) {
6278 		for (j = 0; j < nr_node_ids; j++) {
6279 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6280 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6281 		}
6282 	}
6283 }
6284 
6285 static void sched_domains_numa_masks_clear(int cpu)
6286 {
6287 	int i, j;
6288 	for (i = 0; i < sched_domains_numa_levels; i++) {
6289 		for (j = 0; j < nr_node_ids; j++)
6290 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6291 	}
6292 }
6293 
6294 /*
6295  * Update sched_domains_numa_masks[level][node] array when new cpus
6296  * are onlined.
6297  */
6298 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6299 					   unsigned long action,
6300 					   void *hcpu)
6301 {
6302 	int cpu = (long)hcpu;
6303 
6304 	switch (action & ~CPU_TASKS_FROZEN) {
6305 	case CPU_ONLINE:
6306 		sched_domains_numa_masks_set(cpu);
6307 		break;
6308 
6309 	case CPU_DEAD:
6310 		sched_domains_numa_masks_clear(cpu);
6311 		break;
6312 
6313 	default:
6314 		return NOTIFY_DONE;
6315 	}
6316 
6317 	return NOTIFY_OK;
6318 }
6319 #else
6320 static inline void sched_init_numa(void)
6321 {
6322 }
6323 
6324 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6325 					   unsigned long action,
6326 					   void *hcpu)
6327 {
6328 	return 0;
6329 }
6330 #endif /* CONFIG_NUMA */
6331 
6332 static int __sdt_alloc(const struct cpumask *cpu_map)
6333 {
6334 	struct sched_domain_topology_level *tl;
6335 	int j;
6336 
6337 	for (tl = sched_domain_topology; tl->init; tl++) {
6338 		struct sd_data *sdd = &tl->data;
6339 
6340 		sdd->sd = alloc_percpu(struct sched_domain *);
6341 		if (!sdd->sd)
6342 			return -ENOMEM;
6343 
6344 		sdd->sg = alloc_percpu(struct sched_group *);
6345 		if (!sdd->sg)
6346 			return -ENOMEM;
6347 
6348 		sdd->sgp = alloc_percpu(struct sched_group_power *);
6349 		if (!sdd->sgp)
6350 			return -ENOMEM;
6351 
6352 		for_each_cpu(j, cpu_map) {
6353 			struct sched_domain *sd;
6354 			struct sched_group *sg;
6355 			struct sched_group_power *sgp;
6356 
6357 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6358 					GFP_KERNEL, cpu_to_node(j));
6359 			if (!sd)
6360 				return -ENOMEM;
6361 
6362 			*per_cpu_ptr(sdd->sd, j) = sd;
6363 
6364 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6365 					GFP_KERNEL, cpu_to_node(j));
6366 			if (!sg)
6367 				return -ENOMEM;
6368 
6369 			sg->next = sg;
6370 
6371 			*per_cpu_ptr(sdd->sg, j) = sg;
6372 
6373 			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6374 					GFP_KERNEL, cpu_to_node(j));
6375 			if (!sgp)
6376 				return -ENOMEM;
6377 
6378 			*per_cpu_ptr(sdd->sgp, j) = sgp;
6379 		}
6380 	}
6381 
6382 	return 0;
6383 }
6384 
6385 static void __sdt_free(const struct cpumask *cpu_map)
6386 {
6387 	struct sched_domain_topology_level *tl;
6388 	int j;
6389 
6390 	for (tl = sched_domain_topology; tl->init; tl++) {
6391 		struct sd_data *sdd = &tl->data;
6392 
6393 		for_each_cpu(j, cpu_map) {
6394 			struct sched_domain *sd;
6395 
6396 			if (sdd->sd) {
6397 				sd = *per_cpu_ptr(sdd->sd, j);
6398 				if (sd && (sd->flags & SD_OVERLAP))
6399 					free_sched_groups(sd->groups, 0);
6400 				kfree(*per_cpu_ptr(sdd->sd, j));
6401 			}
6402 
6403 			if (sdd->sg)
6404 				kfree(*per_cpu_ptr(sdd->sg, j));
6405 			if (sdd->sgp)
6406 				kfree(*per_cpu_ptr(sdd->sgp, j));
6407 		}
6408 		free_percpu(sdd->sd);
6409 		sdd->sd = NULL;
6410 		free_percpu(sdd->sg);
6411 		sdd->sg = NULL;
6412 		free_percpu(sdd->sgp);
6413 		sdd->sgp = NULL;
6414 	}
6415 }
6416 
6417 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6418 		struct s_data *d, const struct cpumask *cpu_map,
6419 		struct sched_domain_attr *attr, struct sched_domain *child,
6420 		int cpu)
6421 {
6422 	struct sched_domain *sd = tl->init(tl, cpu);
6423 	if (!sd)
6424 		return child;
6425 
6426 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6427 	if (child) {
6428 		sd->level = child->level + 1;
6429 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6430 		child->parent = sd;
6431 	}
6432 	sd->child = child;
6433 	set_domain_attribute(sd, attr);
6434 
6435 	return sd;
6436 }
6437 
6438 /*
6439  * Build sched domains for a given set of cpus and attach the sched domains
6440  * to the individual cpus
6441  */
6442 static int build_sched_domains(const struct cpumask *cpu_map,
6443 			       struct sched_domain_attr *attr)
6444 {
6445 	enum s_alloc alloc_state = sa_none;
6446 	struct sched_domain *sd;
6447 	struct s_data d;
6448 	int i, ret = -ENOMEM;
6449 
6450 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6451 	if (alloc_state != sa_rootdomain)
6452 		goto error;
6453 
6454 	/* Set up domains for cpus specified by the cpu_map. */
6455 	for_each_cpu(i, cpu_map) {
6456 		struct sched_domain_topology_level *tl;
6457 
6458 		sd = NULL;
6459 		for (tl = sched_domain_topology; tl->init; tl++) {
6460 			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6461 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6462 				sd->flags |= SD_OVERLAP;
6463 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6464 				break;
6465 		}
6466 
6467 		while (sd->child)
6468 			sd = sd->child;
6469 
6470 		*per_cpu_ptr(d.sd, i) = sd;
6471 	}
6472 
6473 	/* Build the groups for the domains */
6474 	for_each_cpu(i, cpu_map) {
6475 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6476 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6477 			if (sd->flags & SD_OVERLAP) {
6478 				if (build_overlap_sched_groups(sd, i))
6479 					goto error;
6480 			} else {
6481 				if (build_sched_groups(sd, i))
6482 					goto error;
6483 			}
6484 		}
6485 	}
6486 
6487 	/* Calculate CPU power for physical packages and nodes */
6488 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6489 		if (!cpumask_test_cpu(i, cpu_map))
6490 			continue;
6491 
6492 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6493 			claim_allocations(i, sd);
6494 			init_sched_groups_power(i, sd);
6495 		}
6496 	}
6497 
6498 	/* Attach the domains */
6499 	rcu_read_lock();
6500 	for_each_cpu(i, cpu_map) {
6501 		sd = *per_cpu_ptr(d.sd, i);
6502 		cpu_attach_domain(sd, d.rd, i);
6503 	}
6504 	rcu_read_unlock();
6505 
6506 	ret = 0;
6507 error:
6508 	__free_domain_allocs(&d, alloc_state, cpu_map);
6509 	return ret;
6510 }
6511 
6512 static cpumask_var_t *doms_cur;	/* current sched domains */
6513 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6514 static struct sched_domain_attr *dattr_cur;
6515 				/* attribues of custom domains in 'doms_cur' */
6516 
6517 /*
6518  * Special case: If a kmalloc of a doms_cur partition (array of
6519  * cpumask) fails, then fallback to a single sched domain,
6520  * as determined by the single cpumask fallback_doms.
6521  */
6522 static cpumask_var_t fallback_doms;
6523 
6524 /*
6525  * arch_update_cpu_topology lets virtualized architectures update the
6526  * cpu core maps. It is supposed to return 1 if the topology changed
6527  * or 0 if it stayed the same.
6528  */
6529 int __attribute__((weak)) arch_update_cpu_topology(void)
6530 {
6531 	return 0;
6532 }
6533 
6534 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6535 {
6536 	int i;
6537 	cpumask_var_t *doms;
6538 
6539 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6540 	if (!doms)
6541 		return NULL;
6542 	for (i = 0; i < ndoms; i++) {
6543 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6544 			free_sched_domains(doms, i);
6545 			return NULL;
6546 		}
6547 	}
6548 	return doms;
6549 }
6550 
6551 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6552 {
6553 	unsigned int i;
6554 	for (i = 0; i < ndoms; i++)
6555 		free_cpumask_var(doms[i]);
6556 	kfree(doms);
6557 }
6558 
6559 /*
6560  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6561  * For now this just excludes isolated cpus, but could be used to
6562  * exclude other special cases in the future.
6563  */
6564 static int init_sched_domains(const struct cpumask *cpu_map)
6565 {
6566 	int err;
6567 
6568 	arch_update_cpu_topology();
6569 	ndoms_cur = 1;
6570 	doms_cur = alloc_sched_domains(ndoms_cur);
6571 	if (!doms_cur)
6572 		doms_cur = &fallback_doms;
6573 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6574 	err = build_sched_domains(doms_cur[0], NULL);
6575 	register_sched_domain_sysctl();
6576 
6577 	return err;
6578 }
6579 
6580 /*
6581  * Detach sched domains from a group of cpus specified in cpu_map
6582  * These cpus will now be attached to the NULL domain
6583  */
6584 static void detach_destroy_domains(const struct cpumask *cpu_map)
6585 {
6586 	int i;
6587 
6588 	rcu_read_lock();
6589 	for_each_cpu(i, cpu_map)
6590 		cpu_attach_domain(NULL, &def_root_domain, i);
6591 	rcu_read_unlock();
6592 }
6593 
6594 /* handle null as "default" */
6595 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6596 			struct sched_domain_attr *new, int idx_new)
6597 {
6598 	struct sched_domain_attr tmp;
6599 
6600 	/* fast path */
6601 	if (!new && !cur)
6602 		return 1;
6603 
6604 	tmp = SD_ATTR_INIT;
6605 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6606 			new ? (new + idx_new) : &tmp,
6607 			sizeof(struct sched_domain_attr));
6608 }
6609 
6610 /*
6611  * Partition sched domains as specified by the 'ndoms_new'
6612  * cpumasks in the array doms_new[] of cpumasks. This compares
6613  * doms_new[] to the current sched domain partitioning, doms_cur[].
6614  * It destroys each deleted domain and builds each new domain.
6615  *
6616  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6617  * The masks don't intersect (don't overlap.) We should setup one
6618  * sched domain for each mask. CPUs not in any of the cpumasks will
6619  * not be load balanced. If the same cpumask appears both in the
6620  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6621  * it as it is.
6622  *
6623  * The passed in 'doms_new' should be allocated using
6624  * alloc_sched_domains.  This routine takes ownership of it and will
6625  * free_sched_domains it when done with it. If the caller failed the
6626  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6627  * and partition_sched_domains() will fallback to the single partition
6628  * 'fallback_doms', it also forces the domains to be rebuilt.
6629  *
6630  * If doms_new == NULL it will be replaced with cpu_online_mask.
6631  * ndoms_new == 0 is a special case for destroying existing domains,
6632  * and it will not create the default domain.
6633  *
6634  * Call with hotplug lock held
6635  */
6636 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6637 			     struct sched_domain_attr *dattr_new)
6638 {
6639 	int i, j, n;
6640 	int new_topology;
6641 
6642 	mutex_lock(&sched_domains_mutex);
6643 
6644 	/* always unregister in case we don't destroy any domains */
6645 	unregister_sched_domain_sysctl();
6646 
6647 	/* Let architecture update cpu core mappings. */
6648 	new_topology = arch_update_cpu_topology();
6649 
6650 	n = doms_new ? ndoms_new : 0;
6651 
6652 	/* Destroy deleted domains */
6653 	for (i = 0; i < ndoms_cur; i++) {
6654 		for (j = 0; j < n && !new_topology; j++) {
6655 			if (cpumask_equal(doms_cur[i], doms_new[j])
6656 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6657 				goto match1;
6658 		}
6659 		/* no match - a current sched domain not in new doms_new[] */
6660 		detach_destroy_domains(doms_cur[i]);
6661 match1:
6662 		;
6663 	}
6664 
6665 	if (doms_new == NULL) {
6666 		ndoms_cur = 0;
6667 		doms_new = &fallback_doms;
6668 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6669 		WARN_ON_ONCE(dattr_new);
6670 	}
6671 
6672 	/* Build new domains */
6673 	for (i = 0; i < ndoms_new; i++) {
6674 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6675 			if (cpumask_equal(doms_new[i], doms_cur[j])
6676 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6677 				goto match2;
6678 		}
6679 		/* no match - add a new doms_new */
6680 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6681 match2:
6682 		;
6683 	}
6684 
6685 	/* Remember the new sched domains */
6686 	if (doms_cur != &fallback_doms)
6687 		free_sched_domains(doms_cur, ndoms_cur);
6688 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6689 	doms_cur = doms_new;
6690 	dattr_cur = dattr_new;
6691 	ndoms_cur = ndoms_new;
6692 
6693 	register_sched_domain_sysctl();
6694 
6695 	mutex_unlock(&sched_domains_mutex);
6696 }
6697 
6698 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6699 
6700 /*
6701  * Update cpusets according to cpu_active mask.  If cpusets are
6702  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6703  * around partition_sched_domains().
6704  *
6705  * If we come here as part of a suspend/resume, don't touch cpusets because we
6706  * want to restore it back to its original state upon resume anyway.
6707  */
6708 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6709 			     void *hcpu)
6710 {
6711 	switch (action) {
6712 	case CPU_ONLINE_FROZEN:
6713 	case CPU_DOWN_FAILED_FROZEN:
6714 
6715 		/*
6716 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6717 		 * resume sequence. As long as this is not the last online
6718 		 * operation in the resume sequence, just build a single sched
6719 		 * domain, ignoring cpusets.
6720 		 */
6721 		num_cpus_frozen--;
6722 		if (likely(num_cpus_frozen)) {
6723 			partition_sched_domains(1, NULL, NULL);
6724 			break;
6725 		}
6726 
6727 		/*
6728 		 * This is the last CPU online operation. So fall through and
6729 		 * restore the original sched domains by considering the
6730 		 * cpuset configurations.
6731 		 */
6732 
6733 	case CPU_ONLINE:
6734 	case CPU_DOWN_FAILED:
6735 		cpuset_update_active_cpus(true);
6736 		break;
6737 	default:
6738 		return NOTIFY_DONE;
6739 	}
6740 	return NOTIFY_OK;
6741 }
6742 
6743 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6744 			       void *hcpu)
6745 {
6746 	switch (action) {
6747 	case CPU_DOWN_PREPARE:
6748 		cpuset_update_active_cpus(false);
6749 		break;
6750 	case CPU_DOWN_PREPARE_FROZEN:
6751 		num_cpus_frozen++;
6752 		partition_sched_domains(1, NULL, NULL);
6753 		break;
6754 	default:
6755 		return NOTIFY_DONE;
6756 	}
6757 	return NOTIFY_OK;
6758 }
6759 
6760 void __init sched_init_smp(void)
6761 {
6762 	cpumask_var_t non_isolated_cpus;
6763 
6764 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6765 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6766 
6767 	sched_init_numa();
6768 
6769 	get_online_cpus();
6770 	mutex_lock(&sched_domains_mutex);
6771 	init_sched_domains(cpu_active_mask);
6772 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6773 	if (cpumask_empty(non_isolated_cpus))
6774 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6775 	mutex_unlock(&sched_domains_mutex);
6776 	put_online_cpus();
6777 
6778 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6779 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6780 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6781 
6782 	/* RT runtime code needs to handle some hotplug events */
6783 	hotcpu_notifier(update_runtime, 0);
6784 
6785 	init_hrtick();
6786 
6787 	/* Move init over to a non-isolated CPU */
6788 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6789 		BUG();
6790 	sched_init_granularity();
6791 	free_cpumask_var(non_isolated_cpus);
6792 
6793 	init_sched_rt_class();
6794 }
6795 #else
6796 void __init sched_init_smp(void)
6797 {
6798 	sched_init_granularity();
6799 }
6800 #endif /* CONFIG_SMP */
6801 
6802 const_debug unsigned int sysctl_timer_migration = 1;
6803 
6804 int in_sched_functions(unsigned long addr)
6805 {
6806 	return in_lock_functions(addr) ||
6807 		(addr >= (unsigned long)__sched_text_start
6808 		&& addr < (unsigned long)__sched_text_end);
6809 }
6810 
6811 #ifdef CONFIG_CGROUP_SCHED
6812 struct task_group root_task_group;
6813 LIST_HEAD(task_groups);
6814 #endif
6815 
6816 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6817 
6818 void __init sched_init(void)
6819 {
6820 	int i, j;
6821 	unsigned long alloc_size = 0, ptr;
6822 
6823 #ifdef CONFIG_FAIR_GROUP_SCHED
6824 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6825 #endif
6826 #ifdef CONFIG_RT_GROUP_SCHED
6827 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6828 #endif
6829 #ifdef CONFIG_CPUMASK_OFFSTACK
6830 	alloc_size += num_possible_cpus() * cpumask_size();
6831 #endif
6832 	if (alloc_size) {
6833 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6834 
6835 #ifdef CONFIG_FAIR_GROUP_SCHED
6836 		root_task_group.se = (struct sched_entity **)ptr;
6837 		ptr += nr_cpu_ids * sizeof(void **);
6838 
6839 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6840 		ptr += nr_cpu_ids * sizeof(void **);
6841 
6842 #endif /* CONFIG_FAIR_GROUP_SCHED */
6843 #ifdef CONFIG_RT_GROUP_SCHED
6844 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6845 		ptr += nr_cpu_ids * sizeof(void **);
6846 
6847 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6848 		ptr += nr_cpu_ids * sizeof(void **);
6849 
6850 #endif /* CONFIG_RT_GROUP_SCHED */
6851 #ifdef CONFIG_CPUMASK_OFFSTACK
6852 		for_each_possible_cpu(i) {
6853 			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6854 			ptr += cpumask_size();
6855 		}
6856 #endif /* CONFIG_CPUMASK_OFFSTACK */
6857 	}
6858 
6859 #ifdef CONFIG_SMP
6860 	init_defrootdomain();
6861 #endif
6862 
6863 	init_rt_bandwidth(&def_rt_bandwidth,
6864 			global_rt_period(), global_rt_runtime());
6865 
6866 #ifdef CONFIG_RT_GROUP_SCHED
6867 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6868 			global_rt_period(), global_rt_runtime());
6869 #endif /* CONFIG_RT_GROUP_SCHED */
6870 
6871 #ifdef CONFIG_CGROUP_SCHED
6872 	list_add(&root_task_group.list, &task_groups);
6873 	INIT_LIST_HEAD(&root_task_group.children);
6874 	INIT_LIST_HEAD(&root_task_group.siblings);
6875 	autogroup_init(&init_task);
6876 
6877 #endif /* CONFIG_CGROUP_SCHED */
6878 
6879 #ifdef CONFIG_CGROUP_CPUACCT
6880 	root_cpuacct.cpustat = &kernel_cpustat;
6881 	root_cpuacct.cpuusage = alloc_percpu(u64);
6882 	/* Too early, not expected to fail */
6883 	BUG_ON(!root_cpuacct.cpuusage);
6884 #endif
6885 	for_each_possible_cpu(i) {
6886 		struct rq *rq;
6887 
6888 		rq = cpu_rq(i);
6889 		raw_spin_lock_init(&rq->lock);
6890 		rq->nr_running = 0;
6891 		rq->calc_load_active = 0;
6892 		rq->calc_load_update = jiffies + LOAD_FREQ;
6893 		init_cfs_rq(&rq->cfs);
6894 		init_rt_rq(&rq->rt, rq);
6895 #ifdef CONFIG_FAIR_GROUP_SCHED
6896 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6897 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6898 		/*
6899 		 * How much cpu bandwidth does root_task_group get?
6900 		 *
6901 		 * In case of task-groups formed thr' the cgroup filesystem, it
6902 		 * gets 100% of the cpu resources in the system. This overall
6903 		 * system cpu resource is divided among the tasks of
6904 		 * root_task_group and its child task-groups in a fair manner,
6905 		 * based on each entity's (task or task-group's) weight
6906 		 * (se->load.weight).
6907 		 *
6908 		 * In other words, if root_task_group has 10 tasks of weight
6909 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6910 		 * then A0's share of the cpu resource is:
6911 		 *
6912 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6913 		 *
6914 		 * We achieve this by letting root_task_group's tasks sit
6915 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6916 		 */
6917 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6918 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6919 #endif /* CONFIG_FAIR_GROUP_SCHED */
6920 
6921 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6922 #ifdef CONFIG_RT_GROUP_SCHED
6923 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6924 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6925 #endif
6926 
6927 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6928 			rq->cpu_load[j] = 0;
6929 
6930 		rq->last_load_update_tick = jiffies;
6931 
6932 #ifdef CONFIG_SMP
6933 		rq->sd = NULL;
6934 		rq->rd = NULL;
6935 		rq->cpu_power = SCHED_POWER_SCALE;
6936 		rq->post_schedule = 0;
6937 		rq->active_balance = 0;
6938 		rq->next_balance = jiffies;
6939 		rq->push_cpu = 0;
6940 		rq->cpu = i;
6941 		rq->online = 0;
6942 		rq->idle_stamp = 0;
6943 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6944 
6945 		INIT_LIST_HEAD(&rq->cfs_tasks);
6946 
6947 		rq_attach_root(rq, &def_root_domain);
6948 #ifdef CONFIG_NO_HZ
6949 		rq->nohz_flags = 0;
6950 #endif
6951 #endif
6952 		init_rq_hrtick(rq);
6953 		atomic_set(&rq->nr_iowait, 0);
6954 	}
6955 
6956 	set_load_weight(&init_task);
6957 
6958 #ifdef CONFIG_PREEMPT_NOTIFIERS
6959 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6960 #endif
6961 
6962 #ifdef CONFIG_RT_MUTEXES
6963 	plist_head_init(&init_task.pi_waiters);
6964 #endif
6965 
6966 	/*
6967 	 * The boot idle thread does lazy MMU switching as well:
6968 	 */
6969 	atomic_inc(&init_mm.mm_count);
6970 	enter_lazy_tlb(&init_mm, current);
6971 
6972 	/*
6973 	 * Make us the idle thread. Technically, schedule() should not be
6974 	 * called from this thread, however somewhere below it might be,
6975 	 * but because we are the idle thread, we just pick up running again
6976 	 * when this runqueue becomes "idle".
6977 	 */
6978 	init_idle(current, smp_processor_id());
6979 
6980 	calc_load_update = jiffies + LOAD_FREQ;
6981 
6982 	/*
6983 	 * During early bootup we pretend to be a normal task:
6984 	 */
6985 	current->sched_class = &fair_sched_class;
6986 
6987 #ifdef CONFIG_SMP
6988 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6989 	/* May be allocated at isolcpus cmdline parse time */
6990 	if (cpu_isolated_map == NULL)
6991 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6992 	idle_thread_set_boot_cpu();
6993 #endif
6994 	init_sched_fair_class();
6995 
6996 	scheduler_running = 1;
6997 }
6998 
6999 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7000 static inline int preempt_count_equals(int preempt_offset)
7001 {
7002 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7003 
7004 	return (nested == preempt_offset);
7005 }
7006 
7007 void __might_sleep(const char *file, int line, int preempt_offset)
7008 {
7009 	static unsigned long prev_jiffy;	/* ratelimiting */
7010 
7011 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7012 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7013 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7014 		return;
7015 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7016 		return;
7017 	prev_jiffy = jiffies;
7018 
7019 	printk(KERN_ERR
7020 		"BUG: sleeping function called from invalid context at %s:%d\n",
7021 			file, line);
7022 	printk(KERN_ERR
7023 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7024 			in_atomic(), irqs_disabled(),
7025 			current->pid, current->comm);
7026 
7027 	debug_show_held_locks(current);
7028 	if (irqs_disabled())
7029 		print_irqtrace_events(current);
7030 	dump_stack();
7031 }
7032 EXPORT_SYMBOL(__might_sleep);
7033 #endif
7034 
7035 #ifdef CONFIG_MAGIC_SYSRQ
7036 static void normalize_task(struct rq *rq, struct task_struct *p)
7037 {
7038 	const struct sched_class *prev_class = p->sched_class;
7039 	int old_prio = p->prio;
7040 	int on_rq;
7041 
7042 	on_rq = p->on_rq;
7043 	if (on_rq)
7044 		dequeue_task(rq, p, 0);
7045 	__setscheduler(rq, p, SCHED_NORMAL, 0);
7046 	if (on_rq) {
7047 		enqueue_task(rq, p, 0);
7048 		resched_task(rq->curr);
7049 	}
7050 
7051 	check_class_changed(rq, p, prev_class, old_prio);
7052 }
7053 
7054 void normalize_rt_tasks(void)
7055 {
7056 	struct task_struct *g, *p;
7057 	unsigned long flags;
7058 	struct rq *rq;
7059 
7060 	read_lock_irqsave(&tasklist_lock, flags);
7061 	do_each_thread(g, p) {
7062 		/*
7063 		 * Only normalize user tasks:
7064 		 */
7065 		if (!p->mm)
7066 			continue;
7067 
7068 		p->se.exec_start		= 0;
7069 #ifdef CONFIG_SCHEDSTATS
7070 		p->se.statistics.wait_start	= 0;
7071 		p->se.statistics.sleep_start	= 0;
7072 		p->se.statistics.block_start	= 0;
7073 #endif
7074 
7075 		if (!rt_task(p)) {
7076 			/*
7077 			 * Renice negative nice level userspace
7078 			 * tasks back to 0:
7079 			 */
7080 			if (TASK_NICE(p) < 0 && p->mm)
7081 				set_user_nice(p, 0);
7082 			continue;
7083 		}
7084 
7085 		raw_spin_lock(&p->pi_lock);
7086 		rq = __task_rq_lock(p);
7087 
7088 		normalize_task(rq, p);
7089 
7090 		__task_rq_unlock(rq);
7091 		raw_spin_unlock(&p->pi_lock);
7092 	} while_each_thread(g, p);
7093 
7094 	read_unlock_irqrestore(&tasklist_lock, flags);
7095 }
7096 
7097 #endif /* CONFIG_MAGIC_SYSRQ */
7098 
7099 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7100 /*
7101  * These functions are only useful for the IA64 MCA handling, or kdb.
7102  *
7103  * They can only be called when the whole system has been
7104  * stopped - every CPU needs to be quiescent, and no scheduling
7105  * activity can take place. Using them for anything else would
7106  * be a serious bug, and as a result, they aren't even visible
7107  * under any other configuration.
7108  */
7109 
7110 /**
7111  * curr_task - return the current task for a given cpu.
7112  * @cpu: the processor in question.
7113  *
7114  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7115  */
7116 struct task_struct *curr_task(int cpu)
7117 {
7118 	return cpu_curr(cpu);
7119 }
7120 
7121 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7122 
7123 #ifdef CONFIG_IA64
7124 /**
7125  * set_curr_task - set the current task for a given cpu.
7126  * @cpu: the processor in question.
7127  * @p: the task pointer to set.
7128  *
7129  * Description: This function must only be used when non-maskable interrupts
7130  * are serviced on a separate stack. It allows the architecture to switch the
7131  * notion of the current task on a cpu in a non-blocking manner. This function
7132  * must be called with all CPU's synchronized, and interrupts disabled, the
7133  * and caller must save the original value of the current task (see
7134  * curr_task() above) and restore that value before reenabling interrupts and
7135  * re-starting the system.
7136  *
7137  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7138  */
7139 void set_curr_task(int cpu, struct task_struct *p)
7140 {
7141 	cpu_curr(cpu) = p;
7142 }
7143 
7144 #endif
7145 
7146 #ifdef CONFIG_CGROUP_SCHED
7147 /* task_group_lock serializes the addition/removal of task groups */
7148 static DEFINE_SPINLOCK(task_group_lock);
7149 
7150 static void free_sched_group(struct task_group *tg)
7151 {
7152 	free_fair_sched_group(tg);
7153 	free_rt_sched_group(tg);
7154 	autogroup_free(tg);
7155 	kfree(tg);
7156 }
7157 
7158 /* allocate runqueue etc for a new task group */
7159 struct task_group *sched_create_group(struct task_group *parent)
7160 {
7161 	struct task_group *tg;
7162 	unsigned long flags;
7163 
7164 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7165 	if (!tg)
7166 		return ERR_PTR(-ENOMEM);
7167 
7168 	if (!alloc_fair_sched_group(tg, parent))
7169 		goto err;
7170 
7171 	if (!alloc_rt_sched_group(tg, parent))
7172 		goto err;
7173 
7174 	spin_lock_irqsave(&task_group_lock, flags);
7175 	list_add_rcu(&tg->list, &task_groups);
7176 
7177 	WARN_ON(!parent); /* root should already exist */
7178 
7179 	tg->parent = parent;
7180 	INIT_LIST_HEAD(&tg->children);
7181 	list_add_rcu(&tg->siblings, &parent->children);
7182 	spin_unlock_irqrestore(&task_group_lock, flags);
7183 
7184 	return tg;
7185 
7186 err:
7187 	free_sched_group(tg);
7188 	return ERR_PTR(-ENOMEM);
7189 }
7190 
7191 /* rcu callback to free various structures associated with a task group */
7192 static void free_sched_group_rcu(struct rcu_head *rhp)
7193 {
7194 	/* now it should be safe to free those cfs_rqs */
7195 	free_sched_group(container_of(rhp, struct task_group, rcu));
7196 }
7197 
7198 /* Destroy runqueue etc associated with a task group */
7199 void sched_destroy_group(struct task_group *tg)
7200 {
7201 	unsigned long flags;
7202 	int i;
7203 
7204 	/* end participation in shares distribution */
7205 	for_each_possible_cpu(i)
7206 		unregister_fair_sched_group(tg, i);
7207 
7208 	spin_lock_irqsave(&task_group_lock, flags);
7209 	list_del_rcu(&tg->list);
7210 	list_del_rcu(&tg->siblings);
7211 	spin_unlock_irqrestore(&task_group_lock, flags);
7212 
7213 	/* wait for possible concurrent references to cfs_rqs complete */
7214 	call_rcu(&tg->rcu, free_sched_group_rcu);
7215 }
7216 
7217 /* change task's runqueue when it moves between groups.
7218  *	The caller of this function should have put the task in its new group
7219  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7220  *	reflect its new group.
7221  */
7222 void sched_move_task(struct task_struct *tsk)
7223 {
7224 	struct task_group *tg;
7225 	int on_rq, running;
7226 	unsigned long flags;
7227 	struct rq *rq;
7228 
7229 	rq = task_rq_lock(tsk, &flags);
7230 
7231 	running = task_current(rq, tsk);
7232 	on_rq = tsk->on_rq;
7233 
7234 	if (on_rq)
7235 		dequeue_task(rq, tsk, 0);
7236 	if (unlikely(running))
7237 		tsk->sched_class->put_prev_task(rq, tsk);
7238 
7239 	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7240 				lockdep_is_held(&tsk->sighand->siglock)),
7241 			  struct task_group, css);
7242 	tg = autogroup_task_group(tsk, tg);
7243 	tsk->sched_task_group = tg;
7244 
7245 #ifdef CONFIG_FAIR_GROUP_SCHED
7246 	if (tsk->sched_class->task_move_group)
7247 		tsk->sched_class->task_move_group(tsk, on_rq);
7248 	else
7249 #endif
7250 		set_task_rq(tsk, task_cpu(tsk));
7251 
7252 	if (unlikely(running))
7253 		tsk->sched_class->set_curr_task(rq);
7254 	if (on_rq)
7255 		enqueue_task(rq, tsk, 0);
7256 
7257 	task_rq_unlock(rq, tsk, &flags);
7258 }
7259 #endif /* CONFIG_CGROUP_SCHED */
7260 
7261 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7262 static unsigned long to_ratio(u64 period, u64 runtime)
7263 {
7264 	if (runtime == RUNTIME_INF)
7265 		return 1ULL << 20;
7266 
7267 	return div64_u64(runtime << 20, period);
7268 }
7269 #endif
7270 
7271 #ifdef CONFIG_RT_GROUP_SCHED
7272 /*
7273  * Ensure that the real time constraints are schedulable.
7274  */
7275 static DEFINE_MUTEX(rt_constraints_mutex);
7276 
7277 /* Must be called with tasklist_lock held */
7278 static inline int tg_has_rt_tasks(struct task_group *tg)
7279 {
7280 	struct task_struct *g, *p;
7281 
7282 	do_each_thread(g, p) {
7283 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7284 			return 1;
7285 	} while_each_thread(g, p);
7286 
7287 	return 0;
7288 }
7289 
7290 struct rt_schedulable_data {
7291 	struct task_group *tg;
7292 	u64 rt_period;
7293 	u64 rt_runtime;
7294 };
7295 
7296 static int tg_rt_schedulable(struct task_group *tg, void *data)
7297 {
7298 	struct rt_schedulable_data *d = data;
7299 	struct task_group *child;
7300 	unsigned long total, sum = 0;
7301 	u64 period, runtime;
7302 
7303 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7304 	runtime = tg->rt_bandwidth.rt_runtime;
7305 
7306 	if (tg == d->tg) {
7307 		period = d->rt_period;
7308 		runtime = d->rt_runtime;
7309 	}
7310 
7311 	/*
7312 	 * Cannot have more runtime than the period.
7313 	 */
7314 	if (runtime > period && runtime != RUNTIME_INF)
7315 		return -EINVAL;
7316 
7317 	/*
7318 	 * Ensure we don't starve existing RT tasks.
7319 	 */
7320 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7321 		return -EBUSY;
7322 
7323 	total = to_ratio(period, runtime);
7324 
7325 	/*
7326 	 * Nobody can have more than the global setting allows.
7327 	 */
7328 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7329 		return -EINVAL;
7330 
7331 	/*
7332 	 * The sum of our children's runtime should not exceed our own.
7333 	 */
7334 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7335 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7336 		runtime = child->rt_bandwidth.rt_runtime;
7337 
7338 		if (child == d->tg) {
7339 			period = d->rt_period;
7340 			runtime = d->rt_runtime;
7341 		}
7342 
7343 		sum += to_ratio(period, runtime);
7344 	}
7345 
7346 	if (sum > total)
7347 		return -EINVAL;
7348 
7349 	return 0;
7350 }
7351 
7352 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7353 {
7354 	int ret;
7355 
7356 	struct rt_schedulable_data data = {
7357 		.tg = tg,
7358 		.rt_period = period,
7359 		.rt_runtime = runtime,
7360 	};
7361 
7362 	rcu_read_lock();
7363 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7364 	rcu_read_unlock();
7365 
7366 	return ret;
7367 }
7368 
7369 static int tg_set_rt_bandwidth(struct task_group *tg,
7370 		u64 rt_period, u64 rt_runtime)
7371 {
7372 	int i, err = 0;
7373 
7374 	mutex_lock(&rt_constraints_mutex);
7375 	read_lock(&tasklist_lock);
7376 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7377 	if (err)
7378 		goto unlock;
7379 
7380 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7381 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7382 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7383 
7384 	for_each_possible_cpu(i) {
7385 		struct rt_rq *rt_rq = tg->rt_rq[i];
7386 
7387 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7388 		rt_rq->rt_runtime = rt_runtime;
7389 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7390 	}
7391 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7392 unlock:
7393 	read_unlock(&tasklist_lock);
7394 	mutex_unlock(&rt_constraints_mutex);
7395 
7396 	return err;
7397 }
7398 
7399 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7400 {
7401 	u64 rt_runtime, rt_period;
7402 
7403 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7404 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7405 	if (rt_runtime_us < 0)
7406 		rt_runtime = RUNTIME_INF;
7407 
7408 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7409 }
7410 
7411 long sched_group_rt_runtime(struct task_group *tg)
7412 {
7413 	u64 rt_runtime_us;
7414 
7415 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7416 		return -1;
7417 
7418 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7419 	do_div(rt_runtime_us, NSEC_PER_USEC);
7420 	return rt_runtime_us;
7421 }
7422 
7423 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7424 {
7425 	u64 rt_runtime, rt_period;
7426 
7427 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7428 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7429 
7430 	if (rt_period == 0)
7431 		return -EINVAL;
7432 
7433 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7434 }
7435 
7436 long sched_group_rt_period(struct task_group *tg)
7437 {
7438 	u64 rt_period_us;
7439 
7440 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7441 	do_div(rt_period_us, NSEC_PER_USEC);
7442 	return rt_period_us;
7443 }
7444 
7445 static int sched_rt_global_constraints(void)
7446 {
7447 	u64 runtime, period;
7448 	int ret = 0;
7449 
7450 	if (sysctl_sched_rt_period <= 0)
7451 		return -EINVAL;
7452 
7453 	runtime = global_rt_runtime();
7454 	period = global_rt_period();
7455 
7456 	/*
7457 	 * Sanity check on the sysctl variables.
7458 	 */
7459 	if (runtime > period && runtime != RUNTIME_INF)
7460 		return -EINVAL;
7461 
7462 	mutex_lock(&rt_constraints_mutex);
7463 	read_lock(&tasklist_lock);
7464 	ret = __rt_schedulable(NULL, 0, 0);
7465 	read_unlock(&tasklist_lock);
7466 	mutex_unlock(&rt_constraints_mutex);
7467 
7468 	return ret;
7469 }
7470 
7471 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7472 {
7473 	/* Don't accept realtime tasks when there is no way for them to run */
7474 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7475 		return 0;
7476 
7477 	return 1;
7478 }
7479 
7480 #else /* !CONFIG_RT_GROUP_SCHED */
7481 static int sched_rt_global_constraints(void)
7482 {
7483 	unsigned long flags;
7484 	int i;
7485 
7486 	if (sysctl_sched_rt_period <= 0)
7487 		return -EINVAL;
7488 
7489 	/*
7490 	 * There's always some RT tasks in the root group
7491 	 * -- migration, kstopmachine etc..
7492 	 */
7493 	if (sysctl_sched_rt_runtime == 0)
7494 		return -EBUSY;
7495 
7496 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7497 	for_each_possible_cpu(i) {
7498 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7499 
7500 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7501 		rt_rq->rt_runtime = global_rt_runtime();
7502 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7503 	}
7504 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7505 
7506 	return 0;
7507 }
7508 #endif /* CONFIG_RT_GROUP_SCHED */
7509 
7510 int sched_rt_handler(struct ctl_table *table, int write,
7511 		void __user *buffer, size_t *lenp,
7512 		loff_t *ppos)
7513 {
7514 	int ret;
7515 	int old_period, old_runtime;
7516 	static DEFINE_MUTEX(mutex);
7517 
7518 	mutex_lock(&mutex);
7519 	old_period = sysctl_sched_rt_period;
7520 	old_runtime = sysctl_sched_rt_runtime;
7521 
7522 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7523 
7524 	if (!ret && write) {
7525 		ret = sched_rt_global_constraints();
7526 		if (ret) {
7527 			sysctl_sched_rt_period = old_period;
7528 			sysctl_sched_rt_runtime = old_runtime;
7529 		} else {
7530 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7531 			def_rt_bandwidth.rt_period =
7532 				ns_to_ktime(global_rt_period());
7533 		}
7534 	}
7535 	mutex_unlock(&mutex);
7536 
7537 	return ret;
7538 }
7539 
7540 #ifdef CONFIG_CGROUP_SCHED
7541 
7542 /* return corresponding task_group object of a cgroup */
7543 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7544 {
7545 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7546 			    struct task_group, css);
7547 }
7548 
7549 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7550 {
7551 	struct task_group *tg, *parent;
7552 
7553 	if (!cgrp->parent) {
7554 		/* This is early initialization for the top cgroup */
7555 		return &root_task_group.css;
7556 	}
7557 
7558 	parent = cgroup_tg(cgrp->parent);
7559 	tg = sched_create_group(parent);
7560 	if (IS_ERR(tg))
7561 		return ERR_PTR(-ENOMEM);
7562 
7563 	return &tg->css;
7564 }
7565 
7566 static void cpu_cgroup_css_free(struct cgroup *cgrp)
7567 {
7568 	struct task_group *tg = cgroup_tg(cgrp);
7569 
7570 	sched_destroy_group(tg);
7571 }
7572 
7573 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7574 				 struct cgroup_taskset *tset)
7575 {
7576 	struct task_struct *task;
7577 
7578 	cgroup_taskset_for_each(task, cgrp, tset) {
7579 #ifdef CONFIG_RT_GROUP_SCHED
7580 		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7581 			return -EINVAL;
7582 #else
7583 		/* We don't support RT-tasks being in separate groups */
7584 		if (task->sched_class != &fair_sched_class)
7585 			return -EINVAL;
7586 #endif
7587 	}
7588 	return 0;
7589 }
7590 
7591 static void cpu_cgroup_attach(struct cgroup *cgrp,
7592 			      struct cgroup_taskset *tset)
7593 {
7594 	struct task_struct *task;
7595 
7596 	cgroup_taskset_for_each(task, cgrp, tset)
7597 		sched_move_task(task);
7598 }
7599 
7600 static void
7601 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7602 		struct task_struct *task)
7603 {
7604 	/*
7605 	 * cgroup_exit() is called in the copy_process() failure path.
7606 	 * Ignore this case since the task hasn't ran yet, this avoids
7607 	 * trying to poke a half freed task state from generic code.
7608 	 */
7609 	if (!(task->flags & PF_EXITING))
7610 		return;
7611 
7612 	sched_move_task(task);
7613 }
7614 
7615 #ifdef CONFIG_FAIR_GROUP_SCHED
7616 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7617 				u64 shareval)
7618 {
7619 	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7620 }
7621 
7622 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7623 {
7624 	struct task_group *tg = cgroup_tg(cgrp);
7625 
7626 	return (u64) scale_load_down(tg->shares);
7627 }
7628 
7629 #ifdef CONFIG_CFS_BANDWIDTH
7630 static DEFINE_MUTEX(cfs_constraints_mutex);
7631 
7632 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7633 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7634 
7635 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7636 
7637 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7638 {
7639 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7640 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7641 
7642 	if (tg == &root_task_group)
7643 		return -EINVAL;
7644 
7645 	/*
7646 	 * Ensure we have at some amount of bandwidth every period.  This is
7647 	 * to prevent reaching a state of large arrears when throttled via
7648 	 * entity_tick() resulting in prolonged exit starvation.
7649 	 */
7650 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7651 		return -EINVAL;
7652 
7653 	/*
7654 	 * Likewise, bound things on the otherside by preventing insane quota
7655 	 * periods.  This also allows us to normalize in computing quota
7656 	 * feasibility.
7657 	 */
7658 	if (period > max_cfs_quota_period)
7659 		return -EINVAL;
7660 
7661 	mutex_lock(&cfs_constraints_mutex);
7662 	ret = __cfs_schedulable(tg, period, quota);
7663 	if (ret)
7664 		goto out_unlock;
7665 
7666 	runtime_enabled = quota != RUNTIME_INF;
7667 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7668 	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7669 	raw_spin_lock_irq(&cfs_b->lock);
7670 	cfs_b->period = ns_to_ktime(period);
7671 	cfs_b->quota = quota;
7672 
7673 	__refill_cfs_bandwidth_runtime(cfs_b);
7674 	/* restart the period timer (if active) to handle new period expiry */
7675 	if (runtime_enabled && cfs_b->timer_active) {
7676 		/* force a reprogram */
7677 		cfs_b->timer_active = 0;
7678 		__start_cfs_bandwidth(cfs_b);
7679 	}
7680 	raw_spin_unlock_irq(&cfs_b->lock);
7681 
7682 	for_each_possible_cpu(i) {
7683 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7684 		struct rq *rq = cfs_rq->rq;
7685 
7686 		raw_spin_lock_irq(&rq->lock);
7687 		cfs_rq->runtime_enabled = runtime_enabled;
7688 		cfs_rq->runtime_remaining = 0;
7689 
7690 		if (cfs_rq->throttled)
7691 			unthrottle_cfs_rq(cfs_rq);
7692 		raw_spin_unlock_irq(&rq->lock);
7693 	}
7694 out_unlock:
7695 	mutex_unlock(&cfs_constraints_mutex);
7696 
7697 	return ret;
7698 }
7699 
7700 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7701 {
7702 	u64 quota, period;
7703 
7704 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7705 	if (cfs_quota_us < 0)
7706 		quota = RUNTIME_INF;
7707 	else
7708 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7709 
7710 	return tg_set_cfs_bandwidth(tg, period, quota);
7711 }
7712 
7713 long tg_get_cfs_quota(struct task_group *tg)
7714 {
7715 	u64 quota_us;
7716 
7717 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7718 		return -1;
7719 
7720 	quota_us = tg->cfs_bandwidth.quota;
7721 	do_div(quota_us, NSEC_PER_USEC);
7722 
7723 	return quota_us;
7724 }
7725 
7726 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7727 {
7728 	u64 quota, period;
7729 
7730 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7731 	quota = tg->cfs_bandwidth.quota;
7732 
7733 	return tg_set_cfs_bandwidth(tg, period, quota);
7734 }
7735 
7736 long tg_get_cfs_period(struct task_group *tg)
7737 {
7738 	u64 cfs_period_us;
7739 
7740 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7741 	do_div(cfs_period_us, NSEC_PER_USEC);
7742 
7743 	return cfs_period_us;
7744 }
7745 
7746 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7747 {
7748 	return tg_get_cfs_quota(cgroup_tg(cgrp));
7749 }
7750 
7751 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7752 				s64 cfs_quota_us)
7753 {
7754 	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7755 }
7756 
7757 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7758 {
7759 	return tg_get_cfs_period(cgroup_tg(cgrp));
7760 }
7761 
7762 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7763 				u64 cfs_period_us)
7764 {
7765 	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7766 }
7767 
7768 struct cfs_schedulable_data {
7769 	struct task_group *tg;
7770 	u64 period, quota;
7771 };
7772 
7773 /*
7774  * normalize group quota/period to be quota/max_period
7775  * note: units are usecs
7776  */
7777 static u64 normalize_cfs_quota(struct task_group *tg,
7778 			       struct cfs_schedulable_data *d)
7779 {
7780 	u64 quota, period;
7781 
7782 	if (tg == d->tg) {
7783 		period = d->period;
7784 		quota = d->quota;
7785 	} else {
7786 		period = tg_get_cfs_period(tg);
7787 		quota = tg_get_cfs_quota(tg);
7788 	}
7789 
7790 	/* note: these should typically be equivalent */
7791 	if (quota == RUNTIME_INF || quota == -1)
7792 		return RUNTIME_INF;
7793 
7794 	return to_ratio(period, quota);
7795 }
7796 
7797 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7798 {
7799 	struct cfs_schedulable_data *d = data;
7800 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7801 	s64 quota = 0, parent_quota = -1;
7802 
7803 	if (!tg->parent) {
7804 		quota = RUNTIME_INF;
7805 	} else {
7806 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7807 
7808 		quota = normalize_cfs_quota(tg, d);
7809 		parent_quota = parent_b->hierarchal_quota;
7810 
7811 		/*
7812 		 * ensure max(child_quota) <= parent_quota, inherit when no
7813 		 * limit is set
7814 		 */
7815 		if (quota == RUNTIME_INF)
7816 			quota = parent_quota;
7817 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7818 			return -EINVAL;
7819 	}
7820 	cfs_b->hierarchal_quota = quota;
7821 
7822 	return 0;
7823 }
7824 
7825 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7826 {
7827 	int ret;
7828 	struct cfs_schedulable_data data = {
7829 		.tg = tg,
7830 		.period = period,
7831 		.quota = quota,
7832 	};
7833 
7834 	if (quota != RUNTIME_INF) {
7835 		do_div(data.period, NSEC_PER_USEC);
7836 		do_div(data.quota, NSEC_PER_USEC);
7837 	}
7838 
7839 	rcu_read_lock();
7840 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7841 	rcu_read_unlock();
7842 
7843 	return ret;
7844 }
7845 
7846 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7847 		struct cgroup_map_cb *cb)
7848 {
7849 	struct task_group *tg = cgroup_tg(cgrp);
7850 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7851 
7852 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7853 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7854 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7855 
7856 	return 0;
7857 }
7858 #endif /* CONFIG_CFS_BANDWIDTH */
7859 #endif /* CONFIG_FAIR_GROUP_SCHED */
7860 
7861 #ifdef CONFIG_RT_GROUP_SCHED
7862 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7863 				s64 val)
7864 {
7865 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7866 }
7867 
7868 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7869 {
7870 	return sched_group_rt_runtime(cgroup_tg(cgrp));
7871 }
7872 
7873 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7874 		u64 rt_period_us)
7875 {
7876 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7877 }
7878 
7879 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7880 {
7881 	return sched_group_rt_period(cgroup_tg(cgrp));
7882 }
7883 #endif /* CONFIG_RT_GROUP_SCHED */
7884 
7885 static struct cftype cpu_files[] = {
7886 #ifdef CONFIG_FAIR_GROUP_SCHED
7887 	{
7888 		.name = "shares",
7889 		.read_u64 = cpu_shares_read_u64,
7890 		.write_u64 = cpu_shares_write_u64,
7891 	},
7892 #endif
7893 #ifdef CONFIG_CFS_BANDWIDTH
7894 	{
7895 		.name = "cfs_quota_us",
7896 		.read_s64 = cpu_cfs_quota_read_s64,
7897 		.write_s64 = cpu_cfs_quota_write_s64,
7898 	},
7899 	{
7900 		.name = "cfs_period_us",
7901 		.read_u64 = cpu_cfs_period_read_u64,
7902 		.write_u64 = cpu_cfs_period_write_u64,
7903 	},
7904 	{
7905 		.name = "stat",
7906 		.read_map = cpu_stats_show,
7907 	},
7908 #endif
7909 #ifdef CONFIG_RT_GROUP_SCHED
7910 	{
7911 		.name = "rt_runtime_us",
7912 		.read_s64 = cpu_rt_runtime_read,
7913 		.write_s64 = cpu_rt_runtime_write,
7914 	},
7915 	{
7916 		.name = "rt_period_us",
7917 		.read_u64 = cpu_rt_period_read_uint,
7918 		.write_u64 = cpu_rt_period_write_uint,
7919 	},
7920 #endif
7921 	{ }	/* terminate */
7922 };
7923 
7924 struct cgroup_subsys cpu_cgroup_subsys = {
7925 	.name		= "cpu",
7926 	.css_alloc	= cpu_cgroup_css_alloc,
7927 	.css_free	= cpu_cgroup_css_free,
7928 	.can_attach	= cpu_cgroup_can_attach,
7929 	.attach		= cpu_cgroup_attach,
7930 	.exit		= cpu_cgroup_exit,
7931 	.subsys_id	= cpu_cgroup_subsys_id,
7932 	.base_cftypes	= cpu_files,
7933 	.early_init	= 1,
7934 };
7935 
7936 #endif	/* CONFIG_CGROUP_SCHED */
7937 
7938 #ifdef CONFIG_CGROUP_CPUACCT
7939 
7940 /*
7941  * CPU accounting code for task groups.
7942  *
7943  * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7944  * (balbir@in.ibm.com).
7945  */
7946 
7947 struct cpuacct root_cpuacct;
7948 
7949 /* create a new cpu accounting group */
7950 static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
7951 {
7952 	struct cpuacct *ca;
7953 
7954 	if (!cgrp->parent)
7955 		return &root_cpuacct.css;
7956 
7957 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7958 	if (!ca)
7959 		goto out;
7960 
7961 	ca->cpuusage = alloc_percpu(u64);
7962 	if (!ca->cpuusage)
7963 		goto out_free_ca;
7964 
7965 	ca->cpustat = alloc_percpu(struct kernel_cpustat);
7966 	if (!ca->cpustat)
7967 		goto out_free_cpuusage;
7968 
7969 	return &ca->css;
7970 
7971 out_free_cpuusage:
7972 	free_percpu(ca->cpuusage);
7973 out_free_ca:
7974 	kfree(ca);
7975 out:
7976 	return ERR_PTR(-ENOMEM);
7977 }
7978 
7979 /* destroy an existing cpu accounting group */
7980 static void cpuacct_css_free(struct cgroup *cgrp)
7981 {
7982 	struct cpuacct *ca = cgroup_ca(cgrp);
7983 
7984 	free_percpu(ca->cpustat);
7985 	free_percpu(ca->cpuusage);
7986 	kfree(ca);
7987 }
7988 
7989 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7990 {
7991 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7992 	u64 data;
7993 
7994 #ifndef CONFIG_64BIT
7995 	/*
7996 	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7997 	 */
7998 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7999 	data = *cpuusage;
8000 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8001 #else
8002 	data = *cpuusage;
8003 #endif
8004 
8005 	return data;
8006 }
8007 
8008 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8009 {
8010 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8011 
8012 #ifndef CONFIG_64BIT
8013 	/*
8014 	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8015 	 */
8016 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8017 	*cpuusage = val;
8018 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8019 #else
8020 	*cpuusage = val;
8021 #endif
8022 }
8023 
8024 /* return total cpu usage (in nanoseconds) of a group */
8025 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8026 {
8027 	struct cpuacct *ca = cgroup_ca(cgrp);
8028 	u64 totalcpuusage = 0;
8029 	int i;
8030 
8031 	for_each_present_cpu(i)
8032 		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8033 
8034 	return totalcpuusage;
8035 }
8036 
8037 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8038 								u64 reset)
8039 {
8040 	struct cpuacct *ca = cgroup_ca(cgrp);
8041 	int err = 0;
8042 	int i;
8043 
8044 	if (reset) {
8045 		err = -EINVAL;
8046 		goto out;
8047 	}
8048 
8049 	for_each_present_cpu(i)
8050 		cpuacct_cpuusage_write(ca, i, 0);
8051 
8052 out:
8053 	return err;
8054 }
8055 
8056 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8057 				   struct seq_file *m)
8058 {
8059 	struct cpuacct *ca = cgroup_ca(cgroup);
8060 	u64 percpu;
8061 	int i;
8062 
8063 	for_each_present_cpu(i) {
8064 		percpu = cpuacct_cpuusage_read(ca, i);
8065 		seq_printf(m, "%llu ", (unsigned long long) percpu);
8066 	}
8067 	seq_printf(m, "\n");
8068 	return 0;
8069 }
8070 
8071 static const char *cpuacct_stat_desc[] = {
8072 	[CPUACCT_STAT_USER] = "user",
8073 	[CPUACCT_STAT_SYSTEM] = "system",
8074 };
8075 
8076 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8077 			      struct cgroup_map_cb *cb)
8078 {
8079 	struct cpuacct *ca = cgroup_ca(cgrp);
8080 	int cpu;
8081 	s64 val = 0;
8082 
8083 	for_each_online_cpu(cpu) {
8084 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8085 		val += kcpustat->cpustat[CPUTIME_USER];
8086 		val += kcpustat->cpustat[CPUTIME_NICE];
8087 	}
8088 	val = cputime64_to_clock_t(val);
8089 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8090 
8091 	val = 0;
8092 	for_each_online_cpu(cpu) {
8093 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8094 		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8095 		val += kcpustat->cpustat[CPUTIME_IRQ];
8096 		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8097 	}
8098 
8099 	val = cputime64_to_clock_t(val);
8100 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8101 
8102 	return 0;
8103 }
8104 
8105 static struct cftype files[] = {
8106 	{
8107 		.name = "usage",
8108 		.read_u64 = cpuusage_read,
8109 		.write_u64 = cpuusage_write,
8110 	},
8111 	{
8112 		.name = "usage_percpu",
8113 		.read_seq_string = cpuacct_percpu_seq_read,
8114 	},
8115 	{
8116 		.name = "stat",
8117 		.read_map = cpuacct_stats_show,
8118 	},
8119 	{ }	/* terminate */
8120 };
8121 
8122 /*
8123  * charge this task's execution time to its accounting group.
8124  *
8125  * called with rq->lock held.
8126  */
8127 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8128 {
8129 	struct cpuacct *ca;
8130 	int cpu;
8131 
8132 	if (unlikely(!cpuacct_subsys.active))
8133 		return;
8134 
8135 	cpu = task_cpu(tsk);
8136 
8137 	rcu_read_lock();
8138 
8139 	ca = task_ca(tsk);
8140 
8141 	for (; ca; ca = parent_ca(ca)) {
8142 		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8143 		*cpuusage += cputime;
8144 	}
8145 
8146 	rcu_read_unlock();
8147 }
8148 
8149 struct cgroup_subsys cpuacct_subsys = {
8150 	.name = "cpuacct",
8151 	.css_alloc = cpuacct_css_alloc,
8152 	.css_free = cpuacct_css_free,
8153 	.subsys_id = cpuacct_subsys_id,
8154 	.base_cftypes = files,
8155 };
8156 #endif	/* CONFIG_CGROUP_CPUACCT */
8157 
8158 void dump_cpu_task(int cpu)
8159 {
8160 	pr_info("Task dump for CPU %d:\n", cpu);
8161 	sched_show_task(cpu_curr(cpu));
8162 }
8163