xref: /linux/kernel/sched/core.c (revision b81a677400755cf24c971d1342c4c53d81744d82)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 #  include <linux/entry-common.h>
71 # endif
72 #endif
73 
74 #include <uapi/linux/sched/types.h>
75 
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #undef CREATE_TRACE_POINTS
84 
85 #include "sched.h"
86 #include "stats.h"
87 #include "autogroup.h"
88 
89 #include "autogroup.h"
90 #include "pelt.h"
91 #include "smp.h"
92 #include "stats.h"
93 
94 #include "../workqueue_internal.h"
95 #include "../../io_uring/io-wq.h"
96 #include "../smpboot.h"
97 
98 /*
99  * Export tracepoints that act as a bare tracehook (ie: have no trace event
100  * associated with them) to allow external modules to probe them.
101  */
102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
113 
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 
116 #ifdef CONFIG_SCHED_DEBUG
117 /*
118  * Debugging: various feature bits
119  *
120  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
121  * sysctl_sched_features, defined in sched.h, to allow constants propagation
122  * at compile time and compiler optimization based on features default.
123  */
124 #define SCHED_FEAT(name, enabled)	\
125 	(1UL << __SCHED_FEAT_##name) * enabled |
126 const_debug unsigned int sysctl_sched_features =
127 #include "features.h"
128 	0;
129 #undef SCHED_FEAT
130 
131 /*
132  * Print a warning if need_resched is set for the given duration (if
133  * LATENCY_WARN is enabled).
134  *
135  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
136  * per boot.
137  */
138 __read_mostly int sysctl_resched_latency_warn_ms = 100;
139 __read_mostly int sysctl_resched_latency_warn_once = 1;
140 #endif /* CONFIG_SCHED_DEBUG */
141 
142 /*
143  * Number of tasks to iterate in a single balance run.
144  * Limited because this is done with IRQs disabled.
145  */
146 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
147 
148 __read_mostly int scheduler_running;
149 
150 #ifdef CONFIG_SCHED_CORE
151 
152 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
153 
154 /* kernel prio, less is more */
155 static inline int __task_prio(struct task_struct *p)
156 {
157 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
158 		return -2;
159 
160 	if (rt_prio(p->prio)) /* includes deadline */
161 		return p->prio; /* [-1, 99] */
162 
163 	if (p->sched_class == &idle_sched_class)
164 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
165 
166 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
167 }
168 
169 /*
170  * l(a,b)
171  * le(a,b) := !l(b,a)
172  * g(a,b)  := l(b,a)
173  * ge(a,b) := !l(a,b)
174  */
175 
176 /* real prio, less is less */
177 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
178 {
179 
180 	int pa = __task_prio(a), pb = __task_prio(b);
181 
182 	if (-pa < -pb)
183 		return true;
184 
185 	if (-pb < -pa)
186 		return false;
187 
188 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
189 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
190 
191 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
192 		return cfs_prio_less(a, b, in_fi);
193 
194 	return false;
195 }
196 
197 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
198 {
199 	if (a->core_cookie < b->core_cookie)
200 		return true;
201 
202 	if (a->core_cookie > b->core_cookie)
203 		return false;
204 
205 	/* flip prio, so high prio is leftmost */
206 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
207 		return true;
208 
209 	return false;
210 }
211 
212 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
213 
214 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
215 {
216 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
217 }
218 
219 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
220 {
221 	const struct task_struct *p = __node_2_sc(node);
222 	unsigned long cookie = (unsigned long)key;
223 
224 	if (cookie < p->core_cookie)
225 		return -1;
226 
227 	if (cookie > p->core_cookie)
228 		return 1;
229 
230 	return 0;
231 }
232 
233 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
234 {
235 	rq->core->core_task_seq++;
236 
237 	if (!p->core_cookie)
238 		return;
239 
240 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
241 }
242 
243 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
244 {
245 	rq->core->core_task_seq++;
246 
247 	if (sched_core_enqueued(p)) {
248 		rb_erase(&p->core_node, &rq->core_tree);
249 		RB_CLEAR_NODE(&p->core_node);
250 	}
251 
252 	/*
253 	 * Migrating the last task off the cpu, with the cpu in forced idle
254 	 * state. Reschedule to create an accounting edge for forced idle,
255 	 * and re-examine whether the core is still in forced idle state.
256 	 */
257 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
258 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
259 		resched_curr(rq);
260 }
261 
262 /*
263  * Find left-most (aka, highest priority) task matching @cookie.
264  */
265 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
266 {
267 	struct rb_node *node;
268 
269 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
270 	/*
271 	 * The idle task always matches any cookie!
272 	 */
273 	if (!node)
274 		return idle_sched_class.pick_task(rq);
275 
276 	return __node_2_sc(node);
277 }
278 
279 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
280 {
281 	struct rb_node *node = &p->core_node;
282 
283 	node = rb_next(node);
284 	if (!node)
285 		return NULL;
286 
287 	p = container_of(node, struct task_struct, core_node);
288 	if (p->core_cookie != cookie)
289 		return NULL;
290 
291 	return p;
292 }
293 
294 /*
295  * Magic required such that:
296  *
297  *	raw_spin_rq_lock(rq);
298  *	...
299  *	raw_spin_rq_unlock(rq);
300  *
301  * ends up locking and unlocking the _same_ lock, and all CPUs
302  * always agree on what rq has what lock.
303  *
304  * XXX entirely possible to selectively enable cores, don't bother for now.
305  */
306 
307 static DEFINE_MUTEX(sched_core_mutex);
308 static atomic_t sched_core_count;
309 static struct cpumask sched_core_mask;
310 
311 static void sched_core_lock(int cpu, unsigned long *flags)
312 {
313 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
314 	int t, i = 0;
315 
316 	local_irq_save(*flags);
317 	for_each_cpu(t, smt_mask)
318 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
319 }
320 
321 static void sched_core_unlock(int cpu, unsigned long *flags)
322 {
323 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
324 	int t;
325 
326 	for_each_cpu(t, smt_mask)
327 		raw_spin_unlock(&cpu_rq(t)->__lock);
328 	local_irq_restore(*flags);
329 }
330 
331 static void __sched_core_flip(bool enabled)
332 {
333 	unsigned long flags;
334 	int cpu, t;
335 
336 	cpus_read_lock();
337 
338 	/*
339 	 * Toggle the online cores, one by one.
340 	 */
341 	cpumask_copy(&sched_core_mask, cpu_online_mask);
342 	for_each_cpu(cpu, &sched_core_mask) {
343 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
344 
345 		sched_core_lock(cpu, &flags);
346 
347 		for_each_cpu(t, smt_mask)
348 			cpu_rq(t)->core_enabled = enabled;
349 
350 		cpu_rq(cpu)->core->core_forceidle_start = 0;
351 
352 		sched_core_unlock(cpu, &flags);
353 
354 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
355 	}
356 
357 	/*
358 	 * Toggle the offline CPUs.
359 	 */
360 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
361 		cpu_rq(cpu)->core_enabled = enabled;
362 
363 	cpus_read_unlock();
364 }
365 
366 static void sched_core_assert_empty(void)
367 {
368 	int cpu;
369 
370 	for_each_possible_cpu(cpu)
371 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
372 }
373 
374 static void __sched_core_enable(void)
375 {
376 	static_branch_enable(&__sched_core_enabled);
377 	/*
378 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
379 	 * and future ones will observe !sched_core_disabled().
380 	 */
381 	synchronize_rcu();
382 	__sched_core_flip(true);
383 	sched_core_assert_empty();
384 }
385 
386 static void __sched_core_disable(void)
387 {
388 	sched_core_assert_empty();
389 	__sched_core_flip(false);
390 	static_branch_disable(&__sched_core_enabled);
391 }
392 
393 void sched_core_get(void)
394 {
395 	if (atomic_inc_not_zero(&sched_core_count))
396 		return;
397 
398 	mutex_lock(&sched_core_mutex);
399 	if (!atomic_read(&sched_core_count))
400 		__sched_core_enable();
401 
402 	smp_mb__before_atomic();
403 	atomic_inc(&sched_core_count);
404 	mutex_unlock(&sched_core_mutex);
405 }
406 
407 static void __sched_core_put(struct work_struct *work)
408 {
409 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
410 		__sched_core_disable();
411 		mutex_unlock(&sched_core_mutex);
412 	}
413 }
414 
415 void sched_core_put(void)
416 {
417 	static DECLARE_WORK(_work, __sched_core_put);
418 
419 	/*
420 	 * "There can be only one"
421 	 *
422 	 * Either this is the last one, or we don't actually need to do any
423 	 * 'work'. If it is the last *again*, we rely on
424 	 * WORK_STRUCT_PENDING_BIT.
425 	 */
426 	if (!atomic_add_unless(&sched_core_count, -1, 1))
427 		schedule_work(&_work);
428 }
429 
430 #else /* !CONFIG_SCHED_CORE */
431 
432 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
433 static inline void
434 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
435 
436 #endif /* CONFIG_SCHED_CORE */
437 
438 /*
439  * Serialization rules:
440  *
441  * Lock order:
442  *
443  *   p->pi_lock
444  *     rq->lock
445  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
446  *
447  *  rq1->lock
448  *    rq2->lock  where: rq1 < rq2
449  *
450  * Regular state:
451  *
452  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
453  * local CPU's rq->lock, it optionally removes the task from the runqueue and
454  * always looks at the local rq data structures to find the most eligible task
455  * to run next.
456  *
457  * Task enqueue is also under rq->lock, possibly taken from another CPU.
458  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
459  * the local CPU to avoid bouncing the runqueue state around [ see
460  * ttwu_queue_wakelist() ]
461  *
462  * Task wakeup, specifically wakeups that involve migration, are horribly
463  * complicated to avoid having to take two rq->locks.
464  *
465  * Special state:
466  *
467  * System-calls and anything external will use task_rq_lock() which acquires
468  * both p->pi_lock and rq->lock. As a consequence the state they change is
469  * stable while holding either lock:
470  *
471  *  - sched_setaffinity()/
472  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
473  *  - set_user_nice():		p->se.load, p->*prio
474  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
475  *				p->se.load, p->rt_priority,
476  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
477  *  - sched_setnuma():		p->numa_preferred_nid
478  *  - sched_move_task():	p->sched_task_group
479  *  - uclamp_update_active()	p->uclamp*
480  *
481  * p->state <- TASK_*:
482  *
483  *   is changed locklessly using set_current_state(), __set_current_state() or
484  *   set_special_state(), see their respective comments, or by
485  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
486  *   concurrent self.
487  *
488  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
489  *
490  *   is set by activate_task() and cleared by deactivate_task(), under
491  *   rq->lock. Non-zero indicates the task is runnable, the special
492  *   ON_RQ_MIGRATING state is used for migration without holding both
493  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
494  *
495  * p->on_cpu <- { 0, 1 }:
496  *
497  *   is set by prepare_task() and cleared by finish_task() such that it will be
498  *   set before p is scheduled-in and cleared after p is scheduled-out, both
499  *   under rq->lock. Non-zero indicates the task is running on its CPU.
500  *
501  *   [ The astute reader will observe that it is possible for two tasks on one
502  *     CPU to have ->on_cpu = 1 at the same time. ]
503  *
504  * task_cpu(p): is changed by set_task_cpu(), the rules are:
505  *
506  *  - Don't call set_task_cpu() on a blocked task:
507  *
508  *    We don't care what CPU we're not running on, this simplifies hotplug,
509  *    the CPU assignment of blocked tasks isn't required to be valid.
510  *
511  *  - for try_to_wake_up(), called under p->pi_lock:
512  *
513  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
514  *
515  *  - for migration called under rq->lock:
516  *    [ see task_on_rq_migrating() in task_rq_lock() ]
517  *
518  *    o move_queued_task()
519  *    o detach_task()
520  *
521  *  - for migration called under double_rq_lock():
522  *
523  *    o __migrate_swap_task()
524  *    o push_rt_task() / pull_rt_task()
525  *    o push_dl_task() / pull_dl_task()
526  *    o dl_task_offline_migration()
527  *
528  */
529 
530 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
531 {
532 	raw_spinlock_t *lock;
533 
534 	/* Matches synchronize_rcu() in __sched_core_enable() */
535 	preempt_disable();
536 	if (sched_core_disabled()) {
537 		raw_spin_lock_nested(&rq->__lock, subclass);
538 		/* preempt_count *MUST* be > 1 */
539 		preempt_enable_no_resched();
540 		return;
541 	}
542 
543 	for (;;) {
544 		lock = __rq_lockp(rq);
545 		raw_spin_lock_nested(lock, subclass);
546 		if (likely(lock == __rq_lockp(rq))) {
547 			/* preempt_count *MUST* be > 1 */
548 			preempt_enable_no_resched();
549 			return;
550 		}
551 		raw_spin_unlock(lock);
552 	}
553 }
554 
555 bool raw_spin_rq_trylock(struct rq *rq)
556 {
557 	raw_spinlock_t *lock;
558 	bool ret;
559 
560 	/* Matches synchronize_rcu() in __sched_core_enable() */
561 	preempt_disable();
562 	if (sched_core_disabled()) {
563 		ret = raw_spin_trylock(&rq->__lock);
564 		preempt_enable();
565 		return ret;
566 	}
567 
568 	for (;;) {
569 		lock = __rq_lockp(rq);
570 		ret = raw_spin_trylock(lock);
571 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
572 			preempt_enable();
573 			return ret;
574 		}
575 		raw_spin_unlock(lock);
576 	}
577 }
578 
579 void raw_spin_rq_unlock(struct rq *rq)
580 {
581 	raw_spin_unlock(rq_lockp(rq));
582 }
583 
584 #ifdef CONFIG_SMP
585 /*
586  * double_rq_lock - safely lock two runqueues
587  */
588 void double_rq_lock(struct rq *rq1, struct rq *rq2)
589 {
590 	lockdep_assert_irqs_disabled();
591 
592 	if (rq_order_less(rq2, rq1))
593 		swap(rq1, rq2);
594 
595 	raw_spin_rq_lock(rq1);
596 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
597 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
598 
599 	double_rq_clock_clear_update(rq1, rq2);
600 }
601 #endif
602 
603 /*
604  * __task_rq_lock - lock the rq @p resides on.
605  */
606 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
607 	__acquires(rq->lock)
608 {
609 	struct rq *rq;
610 
611 	lockdep_assert_held(&p->pi_lock);
612 
613 	for (;;) {
614 		rq = task_rq(p);
615 		raw_spin_rq_lock(rq);
616 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
617 			rq_pin_lock(rq, rf);
618 			return rq;
619 		}
620 		raw_spin_rq_unlock(rq);
621 
622 		while (unlikely(task_on_rq_migrating(p)))
623 			cpu_relax();
624 	}
625 }
626 
627 /*
628  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
629  */
630 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
631 	__acquires(p->pi_lock)
632 	__acquires(rq->lock)
633 {
634 	struct rq *rq;
635 
636 	for (;;) {
637 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
638 		rq = task_rq(p);
639 		raw_spin_rq_lock(rq);
640 		/*
641 		 *	move_queued_task()		task_rq_lock()
642 		 *
643 		 *	ACQUIRE (rq->lock)
644 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
645 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
646 		 *	[S] ->cpu = new_cpu		[L] task_rq()
647 		 *					[L] ->on_rq
648 		 *	RELEASE (rq->lock)
649 		 *
650 		 * If we observe the old CPU in task_rq_lock(), the acquire of
651 		 * the old rq->lock will fully serialize against the stores.
652 		 *
653 		 * If we observe the new CPU in task_rq_lock(), the address
654 		 * dependency headed by '[L] rq = task_rq()' and the acquire
655 		 * will pair with the WMB to ensure we then also see migrating.
656 		 */
657 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
658 			rq_pin_lock(rq, rf);
659 			return rq;
660 		}
661 		raw_spin_rq_unlock(rq);
662 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
663 
664 		while (unlikely(task_on_rq_migrating(p)))
665 			cpu_relax();
666 	}
667 }
668 
669 /*
670  * RQ-clock updating methods:
671  */
672 
673 static void update_rq_clock_task(struct rq *rq, s64 delta)
674 {
675 /*
676  * In theory, the compile should just see 0 here, and optimize out the call
677  * to sched_rt_avg_update. But I don't trust it...
678  */
679 	s64 __maybe_unused steal = 0, irq_delta = 0;
680 
681 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
682 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
683 
684 	/*
685 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
686 	 * this case when a previous update_rq_clock() happened inside a
687 	 * {soft,}irq region.
688 	 *
689 	 * When this happens, we stop ->clock_task and only update the
690 	 * prev_irq_time stamp to account for the part that fit, so that a next
691 	 * update will consume the rest. This ensures ->clock_task is
692 	 * monotonic.
693 	 *
694 	 * It does however cause some slight miss-attribution of {soft,}irq
695 	 * time, a more accurate solution would be to update the irq_time using
696 	 * the current rq->clock timestamp, except that would require using
697 	 * atomic ops.
698 	 */
699 	if (irq_delta > delta)
700 		irq_delta = delta;
701 
702 	rq->prev_irq_time += irq_delta;
703 	delta -= irq_delta;
704 #endif
705 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
706 	if (static_key_false((&paravirt_steal_rq_enabled))) {
707 		steal = paravirt_steal_clock(cpu_of(rq));
708 		steal -= rq->prev_steal_time_rq;
709 
710 		if (unlikely(steal > delta))
711 			steal = delta;
712 
713 		rq->prev_steal_time_rq += steal;
714 		delta -= steal;
715 	}
716 #endif
717 
718 	rq->clock_task += delta;
719 
720 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
721 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
722 		update_irq_load_avg(rq, irq_delta + steal);
723 #endif
724 	update_rq_clock_pelt(rq, delta);
725 }
726 
727 void update_rq_clock(struct rq *rq)
728 {
729 	s64 delta;
730 
731 	lockdep_assert_rq_held(rq);
732 
733 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
734 		return;
735 
736 #ifdef CONFIG_SCHED_DEBUG
737 	if (sched_feat(WARN_DOUBLE_CLOCK))
738 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
739 	rq->clock_update_flags |= RQCF_UPDATED;
740 #endif
741 
742 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
743 	if (delta < 0)
744 		return;
745 	rq->clock += delta;
746 	update_rq_clock_task(rq, delta);
747 }
748 
749 #ifdef CONFIG_SCHED_HRTICK
750 /*
751  * Use HR-timers to deliver accurate preemption points.
752  */
753 
754 static void hrtick_clear(struct rq *rq)
755 {
756 	if (hrtimer_active(&rq->hrtick_timer))
757 		hrtimer_cancel(&rq->hrtick_timer);
758 }
759 
760 /*
761  * High-resolution timer tick.
762  * Runs from hardirq context with interrupts disabled.
763  */
764 static enum hrtimer_restart hrtick(struct hrtimer *timer)
765 {
766 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
767 	struct rq_flags rf;
768 
769 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
770 
771 	rq_lock(rq, &rf);
772 	update_rq_clock(rq);
773 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
774 	rq_unlock(rq, &rf);
775 
776 	return HRTIMER_NORESTART;
777 }
778 
779 #ifdef CONFIG_SMP
780 
781 static void __hrtick_restart(struct rq *rq)
782 {
783 	struct hrtimer *timer = &rq->hrtick_timer;
784 	ktime_t time = rq->hrtick_time;
785 
786 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
787 }
788 
789 /*
790  * called from hardirq (IPI) context
791  */
792 static void __hrtick_start(void *arg)
793 {
794 	struct rq *rq = arg;
795 	struct rq_flags rf;
796 
797 	rq_lock(rq, &rf);
798 	__hrtick_restart(rq);
799 	rq_unlock(rq, &rf);
800 }
801 
802 /*
803  * Called to set the hrtick timer state.
804  *
805  * called with rq->lock held and irqs disabled
806  */
807 void hrtick_start(struct rq *rq, u64 delay)
808 {
809 	struct hrtimer *timer = &rq->hrtick_timer;
810 	s64 delta;
811 
812 	/*
813 	 * Don't schedule slices shorter than 10000ns, that just
814 	 * doesn't make sense and can cause timer DoS.
815 	 */
816 	delta = max_t(s64, delay, 10000LL);
817 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
818 
819 	if (rq == this_rq())
820 		__hrtick_restart(rq);
821 	else
822 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
823 }
824 
825 #else
826 /*
827  * Called to set the hrtick timer state.
828  *
829  * called with rq->lock held and irqs disabled
830  */
831 void hrtick_start(struct rq *rq, u64 delay)
832 {
833 	/*
834 	 * Don't schedule slices shorter than 10000ns, that just
835 	 * doesn't make sense. Rely on vruntime for fairness.
836 	 */
837 	delay = max_t(u64, delay, 10000LL);
838 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
839 		      HRTIMER_MODE_REL_PINNED_HARD);
840 }
841 
842 #endif /* CONFIG_SMP */
843 
844 static void hrtick_rq_init(struct rq *rq)
845 {
846 #ifdef CONFIG_SMP
847 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
848 #endif
849 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
850 	rq->hrtick_timer.function = hrtick;
851 }
852 #else	/* CONFIG_SCHED_HRTICK */
853 static inline void hrtick_clear(struct rq *rq)
854 {
855 }
856 
857 static inline void hrtick_rq_init(struct rq *rq)
858 {
859 }
860 #endif	/* CONFIG_SCHED_HRTICK */
861 
862 /*
863  * cmpxchg based fetch_or, macro so it works for different integer types
864  */
865 #define fetch_or(ptr, mask)						\
866 	({								\
867 		typeof(ptr) _ptr = (ptr);				\
868 		typeof(mask) _mask = (mask);				\
869 		typeof(*_ptr) _val = *_ptr;				\
870 									\
871 		do {							\
872 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
873 	_val;								\
874 })
875 
876 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
877 /*
878  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
879  * this avoids any races wrt polling state changes and thereby avoids
880  * spurious IPIs.
881  */
882 static inline bool set_nr_and_not_polling(struct task_struct *p)
883 {
884 	struct thread_info *ti = task_thread_info(p);
885 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
886 }
887 
888 /*
889  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
890  *
891  * If this returns true, then the idle task promises to call
892  * sched_ttwu_pending() and reschedule soon.
893  */
894 static bool set_nr_if_polling(struct task_struct *p)
895 {
896 	struct thread_info *ti = task_thread_info(p);
897 	typeof(ti->flags) val = READ_ONCE(ti->flags);
898 
899 	for (;;) {
900 		if (!(val & _TIF_POLLING_NRFLAG))
901 			return false;
902 		if (val & _TIF_NEED_RESCHED)
903 			return true;
904 		if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
905 			break;
906 	}
907 	return true;
908 }
909 
910 #else
911 static inline bool set_nr_and_not_polling(struct task_struct *p)
912 {
913 	set_tsk_need_resched(p);
914 	return true;
915 }
916 
917 #ifdef CONFIG_SMP
918 static inline bool set_nr_if_polling(struct task_struct *p)
919 {
920 	return false;
921 }
922 #endif
923 #endif
924 
925 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
926 {
927 	struct wake_q_node *node = &task->wake_q;
928 
929 	/*
930 	 * Atomically grab the task, if ->wake_q is !nil already it means
931 	 * it's already queued (either by us or someone else) and will get the
932 	 * wakeup due to that.
933 	 *
934 	 * In order to ensure that a pending wakeup will observe our pending
935 	 * state, even in the failed case, an explicit smp_mb() must be used.
936 	 */
937 	smp_mb__before_atomic();
938 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
939 		return false;
940 
941 	/*
942 	 * The head is context local, there can be no concurrency.
943 	 */
944 	*head->lastp = node;
945 	head->lastp = &node->next;
946 	return true;
947 }
948 
949 /**
950  * wake_q_add() - queue a wakeup for 'later' waking.
951  * @head: the wake_q_head to add @task to
952  * @task: the task to queue for 'later' wakeup
953  *
954  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
955  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
956  * instantly.
957  *
958  * This function must be used as-if it were wake_up_process(); IOW the task
959  * must be ready to be woken at this location.
960  */
961 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
962 {
963 	if (__wake_q_add(head, task))
964 		get_task_struct(task);
965 }
966 
967 /**
968  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
969  * @head: the wake_q_head to add @task to
970  * @task: the task to queue for 'later' wakeup
971  *
972  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
973  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
974  * instantly.
975  *
976  * This function must be used as-if it were wake_up_process(); IOW the task
977  * must be ready to be woken at this location.
978  *
979  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
980  * that already hold reference to @task can call the 'safe' version and trust
981  * wake_q to do the right thing depending whether or not the @task is already
982  * queued for wakeup.
983  */
984 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
985 {
986 	if (!__wake_q_add(head, task))
987 		put_task_struct(task);
988 }
989 
990 void wake_up_q(struct wake_q_head *head)
991 {
992 	struct wake_q_node *node = head->first;
993 
994 	while (node != WAKE_Q_TAIL) {
995 		struct task_struct *task;
996 
997 		task = container_of(node, struct task_struct, wake_q);
998 		/* Task can safely be re-inserted now: */
999 		node = node->next;
1000 		task->wake_q.next = NULL;
1001 
1002 		/*
1003 		 * wake_up_process() executes a full barrier, which pairs with
1004 		 * the queueing in wake_q_add() so as not to miss wakeups.
1005 		 */
1006 		wake_up_process(task);
1007 		put_task_struct(task);
1008 	}
1009 }
1010 
1011 /*
1012  * resched_curr - mark rq's current task 'to be rescheduled now'.
1013  *
1014  * On UP this means the setting of the need_resched flag, on SMP it
1015  * might also involve a cross-CPU call to trigger the scheduler on
1016  * the target CPU.
1017  */
1018 void resched_curr(struct rq *rq)
1019 {
1020 	struct task_struct *curr = rq->curr;
1021 	int cpu;
1022 
1023 	lockdep_assert_rq_held(rq);
1024 
1025 	if (test_tsk_need_resched(curr))
1026 		return;
1027 
1028 	cpu = cpu_of(rq);
1029 
1030 	if (cpu == smp_processor_id()) {
1031 		set_tsk_need_resched(curr);
1032 		set_preempt_need_resched();
1033 		return;
1034 	}
1035 
1036 	if (set_nr_and_not_polling(curr))
1037 		smp_send_reschedule(cpu);
1038 	else
1039 		trace_sched_wake_idle_without_ipi(cpu);
1040 }
1041 
1042 void resched_cpu(int cpu)
1043 {
1044 	struct rq *rq = cpu_rq(cpu);
1045 	unsigned long flags;
1046 
1047 	raw_spin_rq_lock_irqsave(rq, flags);
1048 	if (cpu_online(cpu) || cpu == smp_processor_id())
1049 		resched_curr(rq);
1050 	raw_spin_rq_unlock_irqrestore(rq, flags);
1051 }
1052 
1053 #ifdef CONFIG_SMP
1054 #ifdef CONFIG_NO_HZ_COMMON
1055 /*
1056  * In the semi idle case, use the nearest busy CPU for migrating timers
1057  * from an idle CPU.  This is good for power-savings.
1058  *
1059  * We don't do similar optimization for completely idle system, as
1060  * selecting an idle CPU will add more delays to the timers than intended
1061  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1062  */
1063 int get_nohz_timer_target(void)
1064 {
1065 	int i, cpu = smp_processor_id(), default_cpu = -1;
1066 	struct sched_domain *sd;
1067 	const struct cpumask *hk_mask;
1068 
1069 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1070 		if (!idle_cpu(cpu))
1071 			return cpu;
1072 		default_cpu = cpu;
1073 	}
1074 
1075 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1076 
1077 	rcu_read_lock();
1078 	for_each_domain(cpu, sd) {
1079 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1080 			if (cpu == i)
1081 				continue;
1082 
1083 			if (!idle_cpu(i)) {
1084 				cpu = i;
1085 				goto unlock;
1086 			}
1087 		}
1088 	}
1089 
1090 	if (default_cpu == -1)
1091 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1092 	cpu = default_cpu;
1093 unlock:
1094 	rcu_read_unlock();
1095 	return cpu;
1096 }
1097 
1098 /*
1099  * When add_timer_on() enqueues a timer into the timer wheel of an
1100  * idle CPU then this timer might expire before the next timer event
1101  * which is scheduled to wake up that CPU. In case of a completely
1102  * idle system the next event might even be infinite time into the
1103  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1104  * leaves the inner idle loop so the newly added timer is taken into
1105  * account when the CPU goes back to idle and evaluates the timer
1106  * wheel for the next timer event.
1107  */
1108 static void wake_up_idle_cpu(int cpu)
1109 {
1110 	struct rq *rq = cpu_rq(cpu);
1111 
1112 	if (cpu == smp_processor_id())
1113 		return;
1114 
1115 	if (set_nr_and_not_polling(rq->idle))
1116 		smp_send_reschedule(cpu);
1117 	else
1118 		trace_sched_wake_idle_without_ipi(cpu);
1119 }
1120 
1121 static bool wake_up_full_nohz_cpu(int cpu)
1122 {
1123 	/*
1124 	 * We just need the target to call irq_exit() and re-evaluate
1125 	 * the next tick. The nohz full kick at least implies that.
1126 	 * If needed we can still optimize that later with an
1127 	 * empty IRQ.
1128 	 */
1129 	if (cpu_is_offline(cpu))
1130 		return true;  /* Don't try to wake offline CPUs. */
1131 	if (tick_nohz_full_cpu(cpu)) {
1132 		if (cpu != smp_processor_id() ||
1133 		    tick_nohz_tick_stopped())
1134 			tick_nohz_full_kick_cpu(cpu);
1135 		return true;
1136 	}
1137 
1138 	return false;
1139 }
1140 
1141 /*
1142  * Wake up the specified CPU.  If the CPU is going offline, it is the
1143  * caller's responsibility to deal with the lost wakeup, for example,
1144  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1145  */
1146 void wake_up_nohz_cpu(int cpu)
1147 {
1148 	if (!wake_up_full_nohz_cpu(cpu))
1149 		wake_up_idle_cpu(cpu);
1150 }
1151 
1152 static void nohz_csd_func(void *info)
1153 {
1154 	struct rq *rq = info;
1155 	int cpu = cpu_of(rq);
1156 	unsigned int flags;
1157 
1158 	/*
1159 	 * Release the rq::nohz_csd.
1160 	 */
1161 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1162 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1163 
1164 	rq->idle_balance = idle_cpu(cpu);
1165 	if (rq->idle_balance && !need_resched()) {
1166 		rq->nohz_idle_balance = flags;
1167 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1168 	}
1169 }
1170 
1171 #endif /* CONFIG_NO_HZ_COMMON */
1172 
1173 #ifdef CONFIG_NO_HZ_FULL
1174 bool sched_can_stop_tick(struct rq *rq)
1175 {
1176 	int fifo_nr_running;
1177 
1178 	/* Deadline tasks, even if single, need the tick */
1179 	if (rq->dl.dl_nr_running)
1180 		return false;
1181 
1182 	/*
1183 	 * If there are more than one RR tasks, we need the tick to affect the
1184 	 * actual RR behaviour.
1185 	 */
1186 	if (rq->rt.rr_nr_running) {
1187 		if (rq->rt.rr_nr_running == 1)
1188 			return true;
1189 		else
1190 			return false;
1191 	}
1192 
1193 	/*
1194 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1195 	 * forced preemption between FIFO tasks.
1196 	 */
1197 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1198 	if (fifo_nr_running)
1199 		return true;
1200 
1201 	/*
1202 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1203 	 * if there's more than one we need the tick for involuntary
1204 	 * preemption.
1205 	 */
1206 	if (rq->nr_running > 1)
1207 		return false;
1208 
1209 	return true;
1210 }
1211 #endif /* CONFIG_NO_HZ_FULL */
1212 #endif /* CONFIG_SMP */
1213 
1214 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1215 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1216 /*
1217  * Iterate task_group tree rooted at *from, calling @down when first entering a
1218  * node and @up when leaving it for the final time.
1219  *
1220  * Caller must hold rcu_lock or sufficient equivalent.
1221  */
1222 int walk_tg_tree_from(struct task_group *from,
1223 			     tg_visitor down, tg_visitor up, void *data)
1224 {
1225 	struct task_group *parent, *child;
1226 	int ret;
1227 
1228 	parent = from;
1229 
1230 down:
1231 	ret = (*down)(parent, data);
1232 	if (ret)
1233 		goto out;
1234 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1235 		parent = child;
1236 		goto down;
1237 
1238 up:
1239 		continue;
1240 	}
1241 	ret = (*up)(parent, data);
1242 	if (ret || parent == from)
1243 		goto out;
1244 
1245 	child = parent;
1246 	parent = parent->parent;
1247 	if (parent)
1248 		goto up;
1249 out:
1250 	return ret;
1251 }
1252 
1253 int tg_nop(struct task_group *tg, void *data)
1254 {
1255 	return 0;
1256 }
1257 #endif
1258 
1259 static void set_load_weight(struct task_struct *p, bool update_load)
1260 {
1261 	int prio = p->static_prio - MAX_RT_PRIO;
1262 	struct load_weight *load = &p->se.load;
1263 
1264 	/*
1265 	 * SCHED_IDLE tasks get minimal weight:
1266 	 */
1267 	if (task_has_idle_policy(p)) {
1268 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1269 		load->inv_weight = WMULT_IDLEPRIO;
1270 		return;
1271 	}
1272 
1273 	/*
1274 	 * SCHED_OTHER tasks have to update their load when changing their
1275 	 * weight
1276 	 */
1277 	if (update_load && p->sched_class == &fair_sched_class) {
1278 		reweight_task(p, prio);
1279 	} else {
1280 		load->weight = scale_load(sched_prio_to_weight[prio]);
1281 		load->inv_weight = sched_prio_to_wmult[prio];
1282 	}
1283 }
1284 
1285 #ifdef CONFIG_UCLAMP_TASK
1286 /*
1287  * Serializes updates of utilization clamp values
1288  *
1289  * The (slow-path) user-space triggers utilization clamp value updates which
1290  * can require updates on (fast-path) scheduler's data structures used to
1291  * support enqueue/dequeue operations.
1292  * While the per-CPU rq lock protects fast-path update operations, user-space
1293  * requests are serialized using a mutex to reduce the risk of conflicting
1294  * updates or API abuses.
1295  */
1296 static DEFINE_MUTEX(uclamp_mutex);
1297 
1298 /* Max allowed minimum utilization */
1299 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1300 
1301 /* Max allowed maximum utilization */
1302 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1303 
1304 /*
1305  * By default RT tasks run at the maximum performance point/capacity of the
1306  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1307  * SCHED_CAPACITY_SCALE.
1308  *
1309  * This knob allows admins to change the default behavior when uclamp is being
1310  * used. In battery powered devices, particularly, running at the maximum
1311  * capacity and frequency will increase energy consumption and shorten the
1312  * battery life.
1313  *
1314  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1315  *
1316  * This knob will not override the system default sched_util_clamp_min defined
1317  * above.
1318  */
1319 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1320 
1321 /* All clamps are required to be less or equal than these values */
1322 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1323 
1324 /*
1325  * This static key is used to reduce the uclamp overhead in the fast path. It
1326  * primarily disables the call to uclamp_rq_{inc, dec}() in
1327  * enqueue/dequeue_task().
1328  *
1329  * This allows users to continue to enable uclamp in their kernel config with
1330  * minimum uclamp overhead in the fast path.
1331  *
1332  * As soon as userspace modifies any of the uclamp knobs, the static key is
1333  * enabled, since we have an actual users that make use of uclamp
1334  * functionality.
1335  *
1336  * The knobs that would enable this static key are:
1337  *
1338  *   * A task modifying its uclamp value with sched_setattr().
1339  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1340  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1341  */
1342 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1343 
1344 /* Integer rounded range for each bucket */
1345 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1346 
1347 #define for_each_clamp_id(clamp_id) \
1348 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1349 
1350 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1351 {
1352 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1353 }
1354 
1355 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1356 {
1357 	if (clamp_id == UCLAMP_MIN)
1358 		return 0;
1359 	return SCHED_CAPACITY_SCALE;
1360 }
1361 
1362 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1363 				 unsigned int value, bool user_defined)
1364 {
1365 	uc_se->value = value;
1366 	uc_se->bucket_id = uclamp_bucket_id(value);
1367 	uc_se->user_defined = user_defined;
1368 }
1369 
1370 static inline unsigned int
1371 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1372 		  unsigned int clamp_value)
1373 {
1374 	/*
1375 	 * Avoid blocked utilization pushing up the frequency when we go
1376 	 * idle (which drops the max-clamp) by retaining the last known
1377 	 * max-clamp.
1378 	 */
1379 	if (clamp_id == UCLAMP_MAX) {
1380 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1381 		return clamp_value;
1382 	}
1383 
1384 	return uclamp_none(UCLAMP_MIN);
1385 }
1386 
1387 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1388 				     unsigned int clamp_value)
1389 {
1390 	/* Reset max-clamp retention only on idle exit */
1391 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1392 		return;
1393 
1394 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1395 }
1396 
1397 static inline
1398 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1399 				   unsigned int clamp_value)
1400 {
1401 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1402 	int bucket_id = UCLAMP_BUCKETS - 1;
1403 
1404 	/*
1405 	 * Since both min and max clamps are max aggregated, find the
1406 	 * top most bucket with tasks in.
1407 	 */
1408 	for ( ; bucket_id >= 0; bucket_id--) {
1409 		if (!bucket[bucket_id].tasks)
1410 			continue;
1411 		return bucket[bucket_id].value;
1412 	}
1413 
1414 	/* No tasks -- default clamp values */
1415 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1416 }
1417 
1418 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1419 {
1420 	unsigned int default_util_min;
1421 	struct uclamp_se *uc_se;
1422 
1423 	lockdep_assert_held(&p->pi_lock);
1424 
1425 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1426 
1427 	/* Only sync if user didn't override the default */
1428 	if (uc_se->user_defined)
1429 		return;
1430 
1431 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1432 	uclamp_se_set(uc_se, default_util_min, false);
1433 }
1434 
1435 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1436 {
1437 	struct rq_flags rf;
1438 	struct rq *rq;
1439 
1440 	if (!rt_task(p))
1441 		return;
1442 
1443 	/* Protect updates to p->uclamp_* */
1444 	rq = task_rq_lock(p, &rf);
1445 	__uclamp_update_util_min_rt_default(p);
1446 	task_rq_unlock(rq, p, &rf);
1447 }
1448 
1449 static inline struct uclamp_se
1450 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1451 {
1452 	/* Copy by value as we could modify it */
1453 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1454 #ifdef CONFIG_UCLAMP_TASK_GROUP
1455 	unsigned int tg_min, tg_max, value;
1456 
1457 	/*
1458 	 * Tasks in autogroups or root task group will be
1459 	 * restricted by system defaults.
1460 	 */
1461 	if (task_group_is_autogroup(task_group(p)))
1462 		return uc_req;
1463 	if (task_group(p) == &root_task_group)
1464 		return uc_req;
1465 
1466 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1467 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1468 	value = uc_req.value;
1469 	value = clamp(value, tg_min, tg_max);
1470 	uclamp_se_set(&uc_req, value, false);
1471 #endif
1472 
1473 	return uc_req;
1474 }
1475 
1476 /*
1477  * The effective clamp bucket index of a task depends on, by increasing
1478  * priority:
1479  * - the task specific clamp value, when explicitly requested from userspace
1480  * - the task group effective clamp value, for tasks not either in the root
1481  *   group or in an autogroup
1482  * - the system default clamp value, defined by the sysadmin
1483  */
1484 static inline struct uclamp_se
1485 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1486 {
1487 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1488 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1489 
1490 	/* System default restrictions always apply */
1491 	if (unlikely(uc_req.value > uc_max.value))
1492 		return uc_max;
1493 
1494 	return uc_req;
1495 }
1496 
1497 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1498 {
1499 	struct uclamp_se uc_eff;
1500 
1501 	/* Task currently refcounted: use back-annotated (effective) value */
1502 	if (p->uclamp[clamp_id].active)
1503 		return (unsigned long)p->uclamp[clamp_id].value;
1504 
1505 	uc_eff = uclamp_eff_get(p, clamp_id);
1506 
1507 	return (unsigned long)uc_eff.value;
1508 }
1509 
1510 /*
1511  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1512  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1513  * updates the rq's clamp value if required.
1514  *
1515  * Tasks can have a task-specific value requested from user-space, track
1516  * within each bucket the maximum value for tasks refcounted in it.
1517  * This "local max aggregation" allows to track the exact "requested" value
1518  * for each bucket when all its RUNNABLE tasks require the same clamp.
1519  */
1520 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1521 				    enum uclamp_id clamp_id)
1522 {
1523 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1524 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1525 	struct uclamp_bucket *bucket;
1526 
1527 	lockdep_assert_rq_held(rq);
1528 
1529 	/* Update task effective clamp */
1530 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1531 
1532 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1533 	bucket->tasks++;
1534 	uc_se->active = true;
1535 
1536 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1537 
1538 	/*
1539 	 * Local max aggregation: rq buckets always track the max
1540 	 * "requested" clamp value of its RUNNABLE tasks.
1541 	 */
1542 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1543 		bucket->value = uc_se->value;
1544 
1545 	if (uc_se->value > READ_ONCE(uc_rq->value))
1546 		WRITE_ONCE(uc_rq->value, uc_se->value);
1547 }
1548 
1549 /*
1550  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1551  * is released. If this is the last task reference counting the rq's max
1552  * active clamp value, then the rq's clamp value is updated.
1553  *
1554  * Both refcounted tasks and rq's cached clamp values are expected to be
1555  * always valid. If it's detected they are not, as defensive programming,
1556  * enforce the expected state and warn.
1557  */
1558 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1559 				    enum uclamp_id clamp_id)
1560 {
1561 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1562 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1563 	struct uclamp_bucket *bucket;
1564 	unsigned int bkt_clamp;
1565 	unsigned int rq_clamp;
1566 
1567 	lockdep_assert_rq_held(rq);
1568 
1569 	/*
1570 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1571 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1572 	 *
1573 	 * In this case the uc_se->active flag should be false since no uclamp
1574 	 * accounting was performed at enqueue time and we can just return
1575 	 * here.
1576 	 *
1577 	 * Need to be careful of the following enqueue/dequeue ordering
1578 	 * problem too
1579 	 *
1580 	 *	enqueue(taskA)
1581 	 *	// sched_uclamp_used gets enabled
1582 	 *	enqueue(taskB)
1583 	 *	dequeue(taskA)
1584 	 *	// Must not decrement bucket->tasks here
1585 	 *	dequeue(taskB)
1586 	 *
1587 	 * where we could end up with stale data in uc_se and
1588 	 * bucket[uc_se->bucket_id].
1589 	 *
1590 	 * The following check here eliminates the possibility of such race.
1591 	 */
1592 	if (unlikely(!uc_se->active))
1593 		return;
1594 
1595 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1596 
1597 	SCHED_WARN_ON(!bucket->tasks);
1598 	if (likely(bucket->tasks))
1599 		bucket->tasks--;
1600 
1601 	uc_se->active = false;
1602 
1603 	/*
1604 	 * Keep "local max aggregation" simple and accept to (possibly)
1605 	 * overboost some RUNNABLE tasks in the same bucket.
1606 	 * The rq clamp bucket value is reset to its base value whenever
1607 	 * there are no more RUNNABLE tasks refcounting it.
1608 	 */
1609 	if (likely(bucket->tasks))
1610 		return;
1611 
1612 	rq_clamp = READ_ONCE(uc_rq->value);
1613 	/*
1614 	 * Defensive programming: this should never happen. If it happens,
1615 	 * e.g. due to future modification, warn and fixup the expected value.
1616 	 */
1617 	SCHED_WARN_ON(bucket->value > rq_clamp);
1618 	if (bucket->value >= rq_clamp) {
1619 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1620 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1621 	}
1622 }
1623 
1624 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1625 {
1626 	enum uclamp_id clamp_id;
1627 
1628 	/*
1629 	 * Avoid any overhead until uclamp is actually used by the userspace.
1630 	 *
1631 	 * The condition is constructed such that a NOP is generated when
1632 	 * sched_uclamp_used is disabled.
1633 	 */
1634 	if (!static_branch_unlikely(&sched_uclamp_used))
1635 		return;
1636 
1637 	if (unlikely(!p->sched_class->uclamp_enabled))
1638 		return;
1639 
1640 	for_each_clamp_id(clamp_id)
1641 		uclamp_rq_inc_id(rq, p, clamp_id);
1642 
1643 	/* Reset clamp idle holding when there is one RUNNABLE task */
1644 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1645 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1646 }
1647 
1648 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1649 {
1650 	enum uclamp_id clamp_id;
1651 
1652 	/*
1653 	 * Avoid any overhead until uclamp is actually used by the userspace.
1654 	 *
1655 	 * The condition is constructed such that a NOP is generated when
1656 	 * sched_uclamp_used is disabled.
1657 	 */
1658 	if (!static_branch_unlikely(&sched_uclamp_used))
1659 		return;
1660 
1661 	if (unlikely(!p->sched_class->uclamp_enabled))
1662 		return;
1663 
1664 	for_each_clamp_id(clamp_id)
1665 		uclamp_rq_dec_id(rq, p, clamp_id);
1666 }
1667 
1668 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1669 				      enum uclamp_id clamp_id)
1670 {
1671 	if (!p->uclamp[clamp_id].active)
1672 		return;
1673 
1674 	uclamp_rq_dec_id(rq, p, clamp_id);
1675 	uclamp_rq_inc_id(rq, p, clamp_id);
1676 
1677 	/*
1678 	 * Make sure to clear the idle flag if we've transiently reached 0
1679 	 * active tasks on rq.
1680 	 */
1681 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1682 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1683 }
1684 
1685 static inline void
1686 uclamp_update_active(struct task_struct *p)
1687 {
1688 	enum uclamp_id clamp_id;
1689 	struct rq_flags rf;
1690 	struct rq *rq;
1691 
1692 	/*
1693 	 * Lock the task and the rq where the task is (or was) queued.
1694 	 *
1695 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1696 	 * price to pay to safely serialize util_{min,max} updates with
1697 	 * enqueues, dequeues and migration operations.
1698 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1699 	 */
1700 	rq = task_rq_lock(p, &rf);
1701 
1702 	/*
1703 	 * Setting the clamp bucket is serialized by task_rq_lock().
1704 	 * If the task is not yet RUNNABLE and its task_struct is not
1705 	 * affecting a valid clamp bucket, the next time it's enqueued,
1706 	 * it will already see the updated clamp bucket value.
1707 	 */
1708 	for_each_clamp_id(clamp_id)
1709 		uclamp_rq_reinc_id(rq, p, clamp_id);
1710 
1711 	task_rq_unlock(rq, p, &rf);
1712 }
1713 
1714 #ifdef CONFIG_UCLAMP_TASK_GROUP
1715 static inline void
1716 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1717 {
1718 	struct css_task_iter it;
1719 	struct task_struct *p;
1720 
1721 	css_task_iter_start(css, 0, &it);
1722 	while ((p = css_task_iter_next(&it)))
1723 		uclamp_update_active(p);
1724 	css_task_iter_end(&it);
1725 }
1726 
1727 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1728 #endif
1729 
1730 #ifdef CONFIG_SYSCTL
1731 #ifdef CONFIG_UCLAMP_TASK
1732 #ifdef CONFIG_UCLAMP_TASK_GROUP
1733 static void uclamp_update_root_tg(void)
1734 {
1735 	struct task_group *tg = &root_task_group;
1736 
1737 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1738 		      sysctl_sched_uclamp_util_min, false);
1739 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1740 		      sysctl_sched_uclamp_util_max, false);
1741 
1742 	rcu_read_lock();
1743 	cpu_util_update_eff(&root_task_group.css);
1744 	rcu_read_unlock();
1745 }
1746 #else
1747 static void uclamp_update_root_tg(void) { }
1748 #endif
1749 
1750 static void uclamp_sync_util_min_rt_default(void)
1751 {
1752 	struct task_struct *g, *p;
1753 
1754 	/*
1755 	 * copy_process()			sysctl_uclamp
1756 	 *					  uclamp_min_rt = X;
1757 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1758 	 *   // link thread			  smp_mb__after_spinlock()
1759 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1760 	 *   sched_post_fork()			  for_each_process_thread()
1761 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1762 	 *
1763 	 * Ensures that either sched_post_fork() will observe the new
1764 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1765 	 * task.
1766 	 */
1767 	read_lock(&tasklist_lock);
1768 	smp_mb__after_spinlock();
1769 	read_unlock(&tasklist_lock);
1770 
1771 	rcu_read_lock();
1772 	for_each_process_thread(g, p)
1773 		uclamp_update_util_min_rt_default(p);
1774 	rcu_read_unlock();
1775 }
1776 
1777 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1778 				void *buffer, size_t *lenp, loff_t *ppos)
1779 {
1780 	bool update_root_tg = false;
1781 	int old_min, old_max, old_min_rt;
1782 	int result;
1783 
1784 	mutex_lock(&uclamp_mutex);
1785 	old_min = sysctl_sched_uclamp_util_min;
1786 	old_max = sysctl_sched_uclamp_util_max;
1787 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1788 
1789 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1790 	if (result)
1791 		goto undo;
1792 	if (!write)
1793 		goto done;
1794 
1795 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1796 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1797 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1798 
1799 		result = -EINVAL;
1800 		goto undo;
1801 	}
1802 
1803 	if (old_min != sysctl_sched_uclamp_util_min) {
1804 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1805 			      sysctl_sched_uclamp_util_min, false);
1806 		update_root_tg = true;
1807 	}
1808 	if (old_max != sysctl_sched_uclamp_util_max) {
1809 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1810 			      sysctl_sched_uclamp_util_max, false);
1811 		update_root_tg = true;
1812 	}
1813 
1814 	if (update_root_tg) {
1815 		static_branch_enable(&sched_uclamp_used);
1816 		uclamp_update_root_tg();
1817 	}
1818 
1819 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1820 		static_branch_enable(&sched_uclamp_used);
1821 		uclamp_sync_util_min_rt_default();
1822 	}
1823 
1824 	/*
1825 	 * We update all RUNNABLE tasks only when task groups are in use.
1826 	 * Otherwise, keep it simple and do just a lazy update at each next
1827 	 * task enqueue time.
1828 	 */
1829 
1830 	goto done;
1831 
1832 undo:
1833 	sysctl_sched_uclamp_util_min = old_min;
1834 	sysctl_sched_uclamp_util_max = old_max;
1835 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1836 done:
1837 	mutex_unlock(&uclamp_mutex);
1838 
1839 	return result;
1840 }
1841 #endif
1842 #endif
1843 
1844 static int uclamp_validate(struct task_struct *p,
1845 			   const struct sched_attr *attr)
1846 {
1847 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1848 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1849 
1850 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1851 		util_min = attr->sched_util_min;
1852 
1853 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1854 			return -EINVAL;
1855 	}
1856 
1857 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1858 		util_max = attr->sched_util_max;
1859 
1860 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1861 			return -EINVAL;
1862 	}
1863 
1864 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1865 		return -EINVAL;
1866 
1867 	/*
1868 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1869 	 *
1870 	 * We need to do that here, because enabling static branches is a
1871 	 * blocking operation which obviously cannot be done while holding
1872 	 * scheduler locks.
1873 	 */
1874 	static_branch_enable(&sched_uclamp_used);
1875 
1876 	return 0;
1877 }
1878 
1879 static bool uclamp_reset(const struct sched_attr *attr,
1880 			 enum uclamp_id clamp_id,
1881 			 struct uclamp_se *uc_se)
1882 {
1883 	/* Reset on sched class change for a non user-defined clamp value. */
1884 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1885 	    !uc_se->user_defined)
1886 		return true;
1887 
1888 	/* Reset on sched_util_{min,max} == -1. */
1889 	if (clamp_id == UCLAMP_MIN &&
1890 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1891 	    attr->sched_util_min == -1) {
1892 		return true;
1893 	}
1894 
1895 	if (clamp_id == UCLAMP_MAX &&
1896 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1897 	    attr->sched_util_max == -1) {
1898 		return true;
1899 	}
1900 
1901 	return false;
1902 }
1903 
1904 static void __setscheduler_uclamp(struct task_struct *p,
1905 				  const struct sched_attr *attr)
1906 {
1907 	enum uclamp_id clamp_id;
1908 
1909 	for_each_clamp_id(clamp_id) {
1910 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1911 		unsigned int value;
1912 
1913 		if (!uclamp_reset(attr, clamp_id, uc_se))
1914 			continue;
1915 
1916 		/*
1917 		 * RT by default have a 100% boost value that could be modified
1918 		 * at runtime.
1919 		 */
1920 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1921 			value = sysctl_sched_uclamp_util_min_rt_default;
1922 		else
1923 			value = uclamp_none(clamp_id);
1924 
1925 		uclamp_se_set(uc_se, value, false);
1926 
1927 	}
1928 
1929 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1930 		return;
1931 
1932 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1933 	    attr->sched_util_min != -1) {
1934 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1935 			      attr->sched_util_min, true);
1936 	}
1937 
1938 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1939 	    attr->sched_util_max != -1) {
1940 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1941 			      attr->sched_util_max, true);
1942 	}
1943 }
1944 
1945 static void uclamp_fork(struct task_struct *p)
1946 {
1947 	enum uclamp_id clamp_id;
1948 
1949 	/*
1950 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1951 	 * as the task is still at its early fork stages.
1952 	 */
1953 	for_each_clamp_id(clamp_id)
1954 		p->uclamp[clamp_id].active = false;
1955 
1956 	if (likely(!p->sched_reset_on_fork))
1957 		return;
1958 
1959 	for_each_clamp_id(clamp_id) {
1960 		uclamp_se_set(&p->uclamp_req[clamp_id],
1961 			      uclamp_none(clamp_id), false);
1962 	}
1963 }
1964 
1965 static void uclamp_post_fork(struct task_struct *p)
1966 {
1967 	uclamp_update_util_min_rt_default(p);
1968 }
1969 
1970 static void __init init_uclamp_rq(struct rq *rq)
1971 {
1972 	enum uclamp_id clamp_id;
1973 	struct uclamp_rq *uc_rq = rq->uclamp;
1974 
1975 	for_each_clamp_id(clamp_id) {
1976 		uc_rq[clamp_id] = (struct uclamp_rq) {
1977 			.value = uclamp_none(clamp_id)
1978 		};
1979 	}
1980 
1981 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1982 }
1983 
1984 static void __init init_uclamp(void)
1985 {
1986 	struct uclamp_se uc_max = {};
1987 	enum uclamp_id clamp_id;
1988 	int cpu;
1989 
1990 	for_each_possible_cpu(cpu)
1991 		init_uclamp_rq(cpu_rq(cpu));
1992 
1993 	for_each_clamp_id(clamp_id) {
1994 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1995 			      uclamp_none(clamp_id), false);
1996 	}
1997 
1998 	/* System defaults allow max clamp values for both indexes */
1999 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2000 	for_each_clamp_id(clamp_id) {
2001 		uclamp_default[clamp_id] = uc_max;
2002 #ifdef CONFIG_UCLAMP_TASK_GROUP
2003 		root_task_group.uclamp_req[clamp_id] = uc_max;
2004 		root_task_group.uclamp[clamp_id] = uc_max;
2005 #endif
2006 	}
2007 }
2008 
2009 #else /* CONFIG_UCLAMP_TASK */
2010 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2011 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2012 static inline int uclamp_validate(struct task_struct *p,
2013 				  const struct sched_attr *attr)
2014 {
2015 	return -EOPNOTSUPP;
2016 }
2017 static void __setscheduler_uclamp(struct task_struct *p,
2018 				  const struct sched_attr *attr) { }
2019 static inline void uclamp_fork(struct task_struct *p) { }
2020 static inline void uclamp_post_fork(struct task_struct *p) { }
2021 static inline void init_uclamp(void) { }
2022 #endif /* CONFIG_UCLAMP_TASK */
2023 
2024 bool sched_task_on_rq(struct task_struct *p)
2025 {
2026 	return task_on_rq_queued(p);
2027 }
2028 
2029 unsigned long get_wchan(struct task_struct *p)
2030 {
2031 	unsigned long ip = 0;
2032 	unsigned int state;
2033 
2034 	if (!p || p == current)
2035 		return 0;
2036 
2037 	/* Only get wchan if task is blocked and we can keep it that way. */
2038 	raw_spin_lock_irq(&p->pi_lock);
2039 	state = READ_ONCE(p->__state);
2040 	smp_rmb(); /* see try_to_wake_up() */
2041 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2042 		ip = __get_wchan(p);
2043 	raw_spin_unlock_irq(&p->pi_lock);
2044 
2045 	return ip;
2046 }
2047 
2048 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2049 {
2050 	if (!(flags & ENQUEUE_NOCLOCK))
2051 		update_rq_clock(rq);
2052 
2053 	if (!(flags & ENQUEUE_RESTORE)) {
2054 		sched_info_enqueue(rq, p);
2055 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
2056 	}
2057 
2058 	uclamp_rq_inc(rq, p);
2059 	p->sched_class->enqueue_task(rq, p, flags);
2060 
2061 	if (sched_core_enabled(rq))
2062 		sched_core_enqueue(rq, p);
2063 }
2064 
2065 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2066 {
2067 	if (sched_core_enabled(rq))
2068 		sched_core_dequeue(rq, p, flags);
2069 
2070 	if (!(flags & DEQUEUE_NOCLOCK))
2071 		update_rq_clock(rq);
2072 
2073 	if (!(flags & DEQUEUE_SAVE)) {
2074 		sched_info_dequeue(rq, p);
2075 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2076 	}
2077 
2078 	uclamp_rq_dec(rq, p);
2079 	p->sched_class->dequeue_task(rq, p, flags);
2080 }
2081 
2082 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2083 {
2084 	enqueue_task(rq, p, flags);
2085 
2086 	p->on_rq = TASK_ON_RQ_QUEUED;
2087 }
2088 
2089 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2090 {
2091 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2092 
2093 	dequeue_task(rq, p, flags);
2094 }
2095 
2096 static inline int __normal_prio(int policy, int rt_prio, int nice)
2097 {
2098 	int prio;
2099 
2100 	if (dl_policy(policy))
2101 		prio = MAX_DL_PRIO - 1;
2102 	else if (rt_policy(policy))
2103 		prio = MAX_RT_PRIO - 1 - rt_prio;
2104 	else
2105 		prio = NICE_TO_PRIO(nice);
2106 
2107 	return prio;
2108 }
2109 
2110 /*
2111  * Calculate the expected normal priority: i.e. priority
2112  * without taking RT-inheritance into account. Might be
2113  * boosted by interactivity modifiers. Changes upon fork,
2114  * setprio syscalls, and whenever the interactivity
2115  * estimator recalculates.
2116  */
2117 static inline int normal_prio(struct task_struct *p)
2118 {
2119 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2120 }
2121 
2122 /*
2123  * Calculate the current priority, i.e. the priority
2124  * taken into account by the scheduler. This value might
2125  * be boosted by RT tasks, or might be boosted by
2126  * interactivity modifiers. Will be RT if the task got
2127  * RT-boosted. If not then it returns p->normal_prio.
2128  */
2129 static int effective_prio(struct task_struct *p)
2130 {
2131 	p->normal_prio = normal_prio(p);
2132 	/*
2133 	 * If we are RT tasks or we were boosted to RT priority,
2134 	 * keep the priority unchanged. Otherwise, update priority
2135 	 * to the normal priority:
2136 	 */
2137 	if (!rt_prio(p->prio))
2138 		return p->normal_prio;
2139 	return p->prio;
2140 }
2141 
2142 /**
2143  * task_curr - is this task currently executing on a CPU?
2144  * @p: the task in question.
2145  *
2146  * Return: 1 if the task is currently executing. 0 otherwise.
2147  */
2148 inline int task_curr(const struct task_struct *p)
2149 {
2150 	return cpu_curr(task_cpu(p)) == p;
2151 }
2152 
2153 /*
2154  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2155  * use the balance_callback list if you want balancing.
2156  *
2157  * this means any call to check_class_changed() must be followed by a call to
2158  * balance_callback().
2159  */
2160 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2161 				       const struct sched_class *prev_class,
2162 				       int oldprio)
2163 {
2164 	if (prev_class != p->sched_class) {
2165 		if (prev_class->switched_from)
2166 			prev_class->switched_from(rq, p);
2167 
2168 		p->sched_class->switched_to(rq, p);
2169 	} else if (oldprio != p->prio || dl_task(p))
2170 		p->sched_class->prio_changed(rq, p, oldprio);
2171 }
2172 
2173 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2174 {
2175 	if (p->sched_class == rq->curr->sched_class)
2176 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2177 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2178 		resched_curr(rq);
2179 
2180 	/*
2181 	 * A queue event has occurred, and we're going to schedule.  In
2182 	 * this case, we can save a useless back to back clock update.
2183 	 */
2184 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2185 		rq_clock_skip_update(rq);
2186 }
2187 
2188 #ifdef CONFIG_SMP
2189 
2190 static void
2191 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2192 
2193 static int __set_cpus_allowed_ptr(struct task_struct *p,
2194 				  const struct cpumask *new_mask,
2195 				  u32 flags);
2196 
2197 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2198 {
2199 	if (likely(!p->migration_disabled))
2200 		return;
2201 
2202 	if (p->cpus_ptr != &p->cpus_mask)
2203 		return;
2204 
2205 	/*
2206 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2207 	 */
2208 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2209 }
2210 
2211 void migrate_disable(void)
2212 {
2213 	struct task_struct *p = current;
2214 
2215 	if (p->migration_disabled) {
2216 		p->migration_disabled++;
2217 		return;
2218 	}
2219 
2220 	preempt_disable();
2221 	this_rq()->nr_pinned++;
2222 	p->migration_disabled = 1;
2223 	preempt_enable();
2224 }
2225 EXPORT_SYMBOL_GPL(migrate_disable);
2226 
2227 void migrate_enable(void)
2228 {
2229 	struct task_struct *p = current;
2230 
2231 	if (p->migration_disabled > 1) {
2232 		p->migration_disabled--;
2233 		return;
2234 	}
2235 
2236 	if (WARN_ON_ONCE(!p->migration_disabled))
2237 		return;
2238 
2239 	/*
2240 	 * Ensure stop_task runs either before or after this, and that
2241 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2242 	 */
2243 	preempt_disable();
2244 	if (p->cpus_ptr != &p->cpus_mask)
2245 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2246 	/*
2247 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2248 	 * regular cpus_mask, otherwise things that race (eg.
2249 	 * select_fallback_rq) get confused.
2250 	 */
2251 	barrier();
2252 	p->migration_disabled = 0;
2253 	this_rq()->nr_pinned--;
2254 	preempt_enable();
2255 }
2256 EXPORT_SYMBOL_GPL(migrate_enable);
2257 
2258 static inline bool rq_has_pinned_tasks(struct rq *rq)
2259 {
2260 	return rq->nr_pinned;
2261 }
2262 
2263 /*
2264  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2265  * __set_cpus_allowed_ptr() and select_fallback_rq().
2266  */
2267 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2268 {
2269 	/* When not in the task's cpumask, no point in looking further. */
2270 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2271 		return false;
2272 
2273 	/* migrate_disabled() must be allowed to finish. */
2274 	if (is_migration_disabled(p))
2275 		return cpu_online(cpu);
2276 
2277 	/* Non kernel threads are not allowed during either online or offline. */
2278 	if (!(p->flags & PF_KTHREAD))
2279 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2280 
2281 	/* KTHREAD_IS_PER_CPU is always allowed. */
2282 	if (kthread_is_per_cpu(p))
2283 		return cpu_online(cpu);
2284 
2285 	/* Regular kernel threads don't get to stay during offline. */
2286 	if (cpu_dying(cpu))
2287 		return false;
2288 
2289 	/* But are allowed during online. */
2290 	return cpu_online(cpu);
2291 }
2292 
2293 /*
2294  * This is how migration works:
2295  *
2296  * 1) we invoke migration_cpu_stop() on the target CPU using
2297  *    stop_one_cpu().
2298  * 2) stopper starts to run (implicitly forcing the migrated thread
2299  *    off the CPU)
2300  * 3) it checks whether the migrated task is still in the wrong runqueue.
2301  * 4) if it's in the wrong runqueue then the migration thread removes
2302  *    it and puts it into the right queue.
2303  * 5) stopper completes and stop_one_cpu() returns and the migration
2304  *    is done.
2305  */
2306 
2307 /*
2308  * move_queued_task - move a queued task to new rq.
2309  *
2310  * Returns (locked) new rq. Old rq's lock is released.
2311  */
2312 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2313 				   struct task_struct *p, int new_cpu)
2314 {
2315 	lockdep_assert_rq_held(rq);
2316 
2317 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2318 	set_task_cpu(p, new_cpu);
2319 	rq_unlock(rq, rf);
2320 
2321 	rq = cpu_rq(new_cpu);
2322 
2323 	rq_lock(rq, rf);
2324 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2325 	activate_task(rq, p, 0);
2326 	check_preempt_curr(rq, p, 0);
2327 
2328 	return rq;
2329 }
2330 
2331 struct migration_arg {
2332 	struct task_struct		*task;
2333 	int				dest_cpu;
2334 	struct set_affinity_pending	*pending;
2335 };
2336 
2337 /*
2338  * @refs: number of wait_for_completion()
2339  * @stop_pending: is @stop_work in use
2340  */
2341 struct set_affinity_pending {
2342 	refcount_t		refs;
2343 	unsigned int		stop_pending;
2344 	struct completion	done;
2345 	struct cpu_stop_work	stop_work;
2346 	struct migration_arg	arg;
2347 };
2348 
2349 /*
2350  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2351  * this because either it can't run here any more (set_cpus_allowed()
2352  * away from this CPU, or CPU going down), or because we're
2353  * attempting to rebalance this task on exec (sched_exec).
2354  *
2355  * So we race with normal scheduler movements, but that's OK, as long
2356  * as the task is no longer on this CPU.
2357  */
2358 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2359 				 struct task_struct *p, int dest_cpu)
2360 {
2361 	/* Affinity changed (again). */
2362 	if (!is_cpu_allowed(p, dest_cpu))
2363 		return rq;
2364 
2365 	update_rq_clock(rq);
2366 	rq = move_queued_task(rq, rf, p, dest_cpu);
2367 
2368 	return rq;
2369 }
2370 
2371 /*
2372  * migration_cpu_stop - this will be executed by a highprio stopper thread
2373  * and performs thread migration by bumping thread off CPU then
2374  * 'pushing' onto another runqueue.
2375  */
2376 static int migration_cpu_stop(void *data)
2377 {
2378 	struct migration_arg *arg = data;
2379 	struct set_affinity_pending *pending = arg->pending;
2380 	struct task_struct *p = arg->task;
2381 	struct rq *rq = this_rq();
2382 	bool complete = false;
2383 	struct rq_flags rf;
2384 
2385 	/*
2386 	 * The original target CPU might have gone down and we might
2387 	 * be on another CPU but it doesn't matter.
2388 	 */
2389 	local_irq_save(rf.flags);
2390 	/*
2391 	 * We need to explicitly wake pending tasks before running
2392 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2393 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2394 	 */
2395 	flush_smp_call_function_queue();
2396 
2397 	raw_spin_lock(&p->pi_lock);
2398 	rq_lock(rq, &rf);
2399 
2400 	/*
2401 	 * If we were passed a pending, then ->stop_pending was set, thus
2402 	 * p->migration_pending must have remained stable.
2403 	 */
2404 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2405 
2406 	/*
2407 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2408 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2409 	 * we're holding p->pi_lock.
2410 	 */
2411 	if (task_rq(p) == rq) {
2412 		if (is_migration_disabled(p))
2413 			goto out;
2414 
2415 		if (pending) {
2416 			p->migration_pending = NULL;
2417 			complete = true;
2418 
2419 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2420 				goto out;
2421 		}
2422 
2423 		if (task_on_rq_queued(p))
2424 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2425 		else
2426 			p->wake_cpu = arg->dest_cpu;
2427 
2428 		/*
2429 		 * XXX __migrate_task() can fail, at which point we might end
2430 		 * up running on a dodgy CPU, AFAICT this can only happen
2431 		 * during CPU hotplug, at which point we'll get pushed out
2432 		 * anyway, so it's probably not a big deal.
2433 		 */
2434 
2435 	} else if (pending) {
2436 		/*
2437 		 * This happens when we get migrated between migrate_enable()'s
2438 		 * preempt_enable() and scheduling the stopper task. At that
2439 		 * point we're a regular task again and not current anymore.
2440 		 *
2441 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2442 		 * more likely.
2443 		 */
2444 
2445 		/*
2446 		 * The task moved before the stopper got to run. We're holding
2447 		 * ->pi_lock, so the allowed mask is stable - if it got
2448 		 * somewhere allowed, we're done.
2449 		 */
2450 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2451 			p->migration_pending = NULL;
2452 			complete = true;
2453 			goto out;
2454 		}
2455 
2456 		/*
2457 		 * When migrate_enable() hits a rq mis-match we can't reliably
2458 		 * determine is_migration_disabled() and so have to chase after
2459 		 * it.
2460 		 */
2461 		WARN_ON_ONCE(!pending->stop_pending);
2462 		task_rq_unlock(rq, p, &rf);
2463 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2464 				    &pending->arg, &pending->stop_work);
2465 		return 0;
2466 	}
2467 out:
2468 	if (pending)
2469 		pending->stop_pending = false;
2470 	task_rq_unlock(rq, p, &rf);
2471 
2472 	if (complete)
2473 		complete_all(&pending->done);
2474 
2475 	return 0;
2476 }
2477 
2478 int push_cpu_stop(void *arg)
2479 {
2480 	struct rq *lowest_rq = NULL, *rq = this_rq();
2481 	struct task_struct *p = arg;
2482 
2483 	raw_spin_lock_irq(&p->pi_lock);
2484 	raw_spin_rq_lock(rq);
2485 
2486 	if (task_rq(p) != rq)
2487 		goto out_unlock;
2488 
2489 	if (is_migration_disabled(p)) {
2490 		p->migration_flags |= MDF_PUSH;
2491 		goto out_unlock;
2492 	}
2493 
2494 	p->migration_flags &= ~MDF_PUSH;
2495 
2496 	if (p->sched_class->find_lock_rq)
2497 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2498 
2499 	if (!lowest_rq)
2500 		goto out_unlock;
2501 
2502 	// XXX validate p is still the highest prio task
2503 	if (task_rq(p) == rq) {
2504 		deactivate_task(rq, p, 0);
2505 		set_task_cpu(p, lowest_rq->cpu);
2506 		activate_task(lowest_rq, p, 0);
2507 		resched_curr(lowest_rq);
2508 	}
2509 
2510 	double_unlock_balance(rq, lowest_rq);
2511 
2512 out_unlock:
2513 	rq->push_busy = false;
2514 	raw_spin_rq_unlock(rq);
2515 	raw_spin_unlock_irq(&p->pi_lock);
2516 
2517 	put_task_struct(p);
2518 	return 0;
2519 }
2520 
2521 /*
2522  * sched_class::set_cpus_allowed must do the below, but is not required to
2523  * actually call this function.
2524  */
2525 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2526 {
2527 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2528 		p->cpus_ptr = new_mask;
2529 		return;
2530 	}
2531 
2532 	cpumask_copy(&p->cpus_mask, new_mask);
2533 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2534 }
2535 
2536 static void
2537 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2538 {
2539 	struct rq *rq = task_rq(p);
2540 	bool queued, running;
2541 
2542 	/*
2543 	 * This here violates the locking rules for affinity, since we're only
2544 	 * supposed to change these variables while holding both rq->lock and
2545 	 * p->pi_lock.
2546 	 *
2547 	 * HOWEVER, it magically works, because ttwu() is the only code that
2548 	 * accesses these variables under p->pi_lock and only does so after
2549 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2550 	 * before finish_task().
2551 	 *
2552 	 * XXX do further audits, this smells like something putrid.
2553 	 */
2554 	if (flags & SCA_MIGRATE_DISABLE)
2555 		SCHED_WARN_ON(!p->on_cpu);
2556 	else
2557 		lockdep_assert_held(&p->pi_lock);
2558 
2559 	queued = task_on_rq_queued(p);
2560 	running = task_current(rq, p);
2561 
2562 	if (queued) {
2563 		/*
2564 		 * Because __kthread_bind() calls this on blocked tasks without
2565 		 * holding rq->lock.
2566 		 */
2567 		lockdep_assert_rq_held(rq);
2568 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2569 	}
2570 	if (running)
2571 		put_prev_task(rq, p);
2572 
2573 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2574 
2575 	if (queued)
2576 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2577 	if (running)
2578 		set_next_task(rq, p);
2579 }
2580 
2581 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2582 {
2583 	__do_set_cpus_allowed(p, new_mask, 0);
2584 }
2585 
2586 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2587 		      int node)
2588 {
2589 	if (!src->user_cpus_ptr)
2590 		return 0;
2591 
2592 	dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2593 	if (!dst->user_cpus_ptr)
2594 		return -ENOMEM;
2595 
2596 	cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2597 	return 0;
2598 }
2599 
2600 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2601 {
2602 	struct cpumask *user_mask = NULL;
2603 
2604 	swap(p->user_cpus_ptr, user_mask);
2605 
2606 	return user_mask;
2607 }
2608 
2609 void release_user_cpus_ptr(struct task_struct *p)
2610 {
2611 	kfree(clear_user_cpus_ptr(p));
2612 }
2613 
2614 /*
2615  * This function is wildly self concurrent; here be dragons.
2616  *
2617  *
2618  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2619  * designated task is enqueued on an allowed CPU. If that task is currently
2620  * running, we have to kick it out using the CPU stopper.
2621  *
2622  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2623  * Consider:
2624  *
2625  *     Initial conditions: P0->cpus_mask = [0, 1]
2626  *
2627  *     P0@CPU0                  P1
2628  *
2629  *     migrate_disable();
2630  *     <preempted>
2631  *                              set_cpus_allowed_ptr(P0, [1]);
2632  *
2633  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2634  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2635  * This means we need the following scheme:
2636  *
2637  *     P0@CPU0                  P1
2638  *
2639  *     migrate_disable();
2640  *     <preempted>
2641  *                              set_cpus_allowed_ptr(P0, [1]);
2642  *                                <blocks>
2643  *     <resumes>
2644  *     migrate_enable();
2645  *       __set_cpus_allowed_ptr();
2646  *       <wakes local stopper>
2647  *                         `--> <woken on migration completion>
2648  *
2649  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2650  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2651  * task p are serialized by p->pi_lock, which we can leverage: the one that
2652  * should come into effect at the end of the Migrate-Disable region is the last
2653  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2654  * but we still need to properly signal those waiting tasks at the appropriate
2655  * moment.
2656  *
2657  * This is implemented using struct set_affinity_pending. The first
2658  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2659  * setup an instance of that struct and install it on the targeted task_struct.
2660  * Any and all further callers will reuse that instance. Those then wait for
2661  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2662  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2663  *
2664  *
2665  * (1) In the cases covered above. There is one more where the completion is
2666  * signaled within affine_move_task() itself: when a subsequent affinity request
2667  * occurs after the stopper bailed out due to the targeted task still being
2668  * Migrate-Disable. Consider:
2669  *
2670  *     Initial conditions: P0->cpus_mask = [0, 1]
2671  *
2672  *     CPU0		  P1				P2
2673  *     <P0>
2674  *       migrate_disable();
2675  *       <preempted>
2676  *                        set_cpus_allowed_ptr(P0, [1]);
2677  *                          <blocks>
2678  *     <migration/0>
2679  *       migration_cpu_stop()
2680  *         is_migration_disabled()
2681  *           <bails>
2682  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2683  *                                                         <signal completion>
2684  *                          <awakes>
2685  *
2686  * Note that the above is safe vs a concurrent migrate_enable(), as any
2687  * pending affinity completion is preceded by an uninstallation of
2688  * p->migration_pending done with p->pi_lock held.
2689  */
2690 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2691 			    int dest_cpu, unsigned int flags)
2692 {
2693 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2694 	bool stop_pending, complete = false;
2695 
2696 	/* Can the task run on the task's current CPU? If so, we're done */
2697 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2698 		struct task_struct *push_task = NULL;
2699 
2700 		if ((flags & SCA_MIGRATE_ENABLE) &&
2701 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2702 			rq->push_busy = true;
2703 			push_task = get_task_struct(p);
2704 		}
2705 
2706 		/*
2707 		 * If there are pending waiters, but no pending stop_work,
2708 		 * then complete now.
2709 		 */
2710 		pending = p->migration_pending;
2711 		if (pending && !pending->stop_pending) {
2712 			p->migration_pending = NULL;
2713 			complete = true;
2714 		}
2715 
2716 		task_rq_unlock(rq, p, rf);
2717 
2718 		if (push_task) {
2719 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2720 					    p, &rq->push_work);
2721 		}
2722 
2723 		if (complete)
2724 			complete_all(&pending->done);
2725 
2726 		return 0;
2727 	}
2728 
2729 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2730 		/* serialized by p->pi_lock */
2731 		if (!p->migration_pending) {
2732 			/* Install the request */
2733 			refcount_set(&my_pending.refs, 1);
2734 			init_completion(&my_pending.done);
2735 			my_pending.arg = (struct migration_arg) {
2736 				.task = p,
2737 				.dest_cpu = dest_cpu,
2738 				.pending = &my_pending,
2739 			};
2740 
2741 			p->migration_pending = &my_pending;
2742 		} else {
2743 			pending = p->migration_pending;
2744 			refcount_inc(&pending->refs);
2745 			/*
2746 			 * Affinity has changed, but we've already installed a
2747 			 * pending. migration_cpu_stop() *must* see this, else
2748 			 * we risk a completion of the pending despite having a
2749 			 * task on a disallowed CPU.
2750 			 *
2751 			 * Serialized by p->pi_lock, so this is safe.
2752 			 */
2753 			pending->arg.dest_cpu = dest_cpu;
2754 		}
2755 	}
2756 	pending = p->migration_pending;
2757 	/*
2758 	 * - !MIGRATE_ENABLE:
2759 	 *   we'll have installed a pending if there wasn't one already.
2760 	 *
2761 	 * - MIGRATE_ENABLE:
2762 	 *   we're here because the current CPU isn't matching anymore,
2763 	 *   the only way that can happen is because of a concurrent
2764 	 *   set_cpus_allowed_ptr() call, which should then still be
2765 	 *   pending completion.
2766 	 *
2767 	 * Either way, we really should have a @pending here.
2768 	 */
2769 	if (WARN_ON_ONCE(!pending)) {
2770 		task_rq_unlock(rq, p, rf);
2771 		return -EINVAL;
2772 	}
2773 
2774 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2775 		/*
2776 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2777 		 * anything else we cannot do is_migration_disabled(), punt
2778 		 * and have the stopper function handle it all race-free.
2779 		 */
2780 		stop_pending = pending->stop_pending;
2781 		if (!stop_pending)
2782 			pending->stop_pending = true;
2783 
2784 		if (flags & SCA_MIGRATE_ENABLE)
2785 			p->migration_flags &= ~MDF_PUSH;
2786 
2787 		task_rq_unlock(rq, p, rf);
2788 
2789 		if (!stop_pending) {
2790 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2791 					    &pending->arg, &pending->stop_work);
2792 		}
2793 
2794 		if (flags & SCA_MIGRATE_ENABLE)
2795 			return 0;
2796 	} else {
2797 
2798 		if (!is_migration_disabled(p)) {
2799 			if (task_on_rq_queued(p))
2800 				rq = move_queued_task(rq, rf, p, dest_cpu);
2801 
2802 			if (!pending->stop_pending) {
2803 				p->migration_pending = NULL;
2804 				complete = true;
2805 			}
2806 		}
2807 		task_rq_unlock(rq, p, rf);
2808 
2809 		if (complete)
2810 			complete_all(&pending->done);
2811 	}
2812 
2813 	wait_for_completion(&pending->done);
2814 
2815 	if (refcount_dec_and_test(&pending->refs))
2816 		wake_up_var(&pending->refs); /* No UaF, just an address */
2817 
2818 	/*
2819 	 * Block the original owner of &pending until all subsequent callers
2820 	 * have seen the completion and decremented the refcount
2821 	 */
2822 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2823 
2824 	/* ARGH */
2825 	WARN_ON_ONCE(my_pending.stop_pending);
2826 
2827 	return 0;
2828 }
2829 
2830 /*
2831  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2832  */
2833 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2834 					 const struct cpumask *new_mask,
2835 					 u32 flags,
2836 					 struct rq *rq,
2837 					 struct rq_flags *rf)
2838 	__releases(rq->lock)
2839 	__releases(p->pi_lock)
2840 {
2841 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2842 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2843 	bool kthread = p->flags & PF_KTHREAD;
2844 	struct cpumask *user_mask = NULL;
2845 	unsigned int dest_cpu;
2846 	int ret = 0;
2847 
2848 	update_rq_clock(rq);
2849 
2850 	if (kthread || is_migration_disabled(p)) {
2851 		/*
2852 		 * Kernel threads are allowed on online && !active CPUs,
2853 		 * however, during cpu-hot-unplug, even these might get pushed
2854 		 * away if not KTHREAD_IS_PER_CPU.
2855 		 *
2856 		 * Specifically, migration_disabled() tasks must not fail the
2857 		 * cpumask_any_and_distribute() pick below, esp. so on
2858 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2859 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2860 		 */
2861 		cpu_valid_mask = cpu_online_mask;
2862 	}
2863 
2864 	if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
2865 		ret = -EINVAL;
2866 		goto out;
2867 	}
2868 
2869 	/*
2870 	 * Must re-check here, to close a race against __kthread_bind(),
2871 	 * sched_setaffinity() is not guaranteed to observe the flag.
2872 	 */
2873 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2874 		ret = -EINVAL;
2875 		goto out;
2876 	}
2877 
2878 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2879 		if (cpumask_equal(&p->cpus_mask, new_mask))
2880 			goto out;
2881 
2882 		if (WARN_ON_ONCE(p == current &&
2883 				 is_migration_disabled(p) &&
2884 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2885 			ret = -EBUSY;
2886 			goto out;
2887 		}
2888 	}
2889 
2890 	/*
2891 	 * Picking a ~random cpu helps in cases where we are changing affinity
2892 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2893 	 * immediately required to distribute the tasks within their new mask.
2894 	 */
2895 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2896 	if (dest_cpu >= nr_cpu_ids) {
2897 		ret = -EINVAL;
2898 		goto out;
2899 	}
2900 
2901 	__do_set_cpus_allowed(p, new_mask, flags);
2902 
2903 	if (flags & SCA_USER)
2904 		user_mask = clear_user_cpus_ptr(p);
2905 
2906 	ret = affine_move_task(rq, p, rf, dest_cpu, flags);
2907 
2908 	kfree(user_mask);
2909 
2910 	return ret;
2911 
2912 out:
2913 	task_rq_unlock(rq, p, rf);
2914 
2915 	return ret;
2916 }
2917 
2918 /*
2919  * Change a given task's CPU affinity. Migrate the thread to a
2920  * proper CPU and schedule it away if the CPU it's executing on
2921  * is removed from the allowed bitmask.
2922  *
2923  * NOTE: the caller must have a valid reference to the task, the
2924  * task must not exit() & deallocate itself prematurely. The
2925  * call is not atomic; no spinlocks may be held.
2926  */
2927 static int __set_cpus_allowed_ptr(struct task_struct *p,
2928 				  const struct cpumask *new_mask, u32 flags)
2929 {
2930 	struct rq_flags rf;
2931 	struct rq *rq;
2932 
2933 	rq = task_rq_lock(p, &rf);
2934 	return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
2935 }
2936 
2937 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2938 {
2939 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2940 }
2941 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2942 
2943 /*
2944  * Change a given task's CPU affinity to the intersection of its current
2945  * affinity mask and @subset_mask, writing the resulting mask to @new_mask
2946  * and pointing @p->user_cpus_ptr to a copy of the old mask.
2947  * If the resulting mask is empty, leave the affinity unchanged and return
2948  * -EINVAL.
2949  */
2950 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2951 				     struct cpumask *new_mask,
2952 				     const struct cpumask *subset_mask)
2953 {
2954 	struct cpumask *user_mask = NULL;
2955 	struct rq_flags rf;
2956 	struct rq *rq;
2957 	int err;
2958 
2959 	if (!p->user_cpus_ptr) {
2960 		user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
2961 		if (!user_mask)
2962 			return -ENOMEM;
2963 	}
2964 
2965 	rq = task_rq_lock(p, &rf);
2966 
2967 	/*
2968 	 * Forcefully restricting the affinity of a deadline task is
2969 	 * likely to cause problems, so fail and noisily override the
2970 	 * mask entirely.
2971 	 */
2972 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
2973 		err = -EPERM;
2974 		goto err_unlock;
2975 	}
2976 
2977 	if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
2978 		err = -EINVAL;
2979 		goto err_unlock;
2980 	}
2981 
2982 	/*
2983 	 * We're about to butcher the task affinity, so keep track of what
2984 	 * the user asked for in case we're able to restore it later on.
2985 	 */
2986 	if (user_mask) {
2987 		cpumask_copy(user_mask, p->cpus_ptr);
2988 		p->user_cpus_ptr = user_mask;
2989 	}
2990 
2991 	return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
2992 
2993 err_unlock:
2994 	task_rq_unlock(rq, p, &rf);
2995 	kfree(user_mask);
2996 	return err;
2997 }
2998 
2999 /*
3000  * Restrict the CPU affinity of task @p so that it is a subset of
3001  * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
3002  * old affinity mask. If the resulting mask is empty, we warn and walk
3003  * up the cpuset hierarchy until we find a suitable mask.
3004  */
3005 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3006 {
3007 	cpumask_var_t new_mask;
3008 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3009 
3010 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3011 
3012 	/*
3013 	 * __migrate_task() can fail silently in the face of concurrent
3014 	 * offlining of the chosen destination CPU, so take the hotplug
3015 	 * lock to ensure that the migration succeeds.
3016 	 */
3017 	cpus_read_lock();
3018 	if (!cpumask_available(new_mask))
3019 		goto out_set_mask;
3020 
3021 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3022 		goto out_free_mask;
3023 
3024 	/*
3025 	 * We failed to find a valid subset of the affinity mask for the
3026 	 * task, so override it based on its cpuset hierarchy.
3027 	 */
3028 	cpuset_cpus_allowed(p, new_mask);
3029 	override_mask = new_mask;
3030 
3031 out_set_mask:
3032 	if (printk_ratelimit()) {
3033 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3034 				task_pid_nr(p), p->comm,
3035 				cpumask_pr_args(override_mask));
3036 	}
3037 
3038 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3039 out_free_mask:
3040 	cpus_read_unlock();
3041 	free_cpumask_var(new_mask);
3042 }
3043 
3044 static int
3045 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
3046 
3047 /*
3048  * Restore the affinity of a task @p which was previously restricted by a
3049  * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
3050  * @p->user_cpus_ptr.
3051  *
3052  * It is the caller's responsibility to serialise this with any calls to
3053  * force_compatible_cpus_allowed_ptr(@p).
3054  */
3055 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3056 {
3057 	struct cpumask *user_mask = p->user_cpus_ptr;
3058 	unsigned long flags;
3059 
3060 	/*
3061 	 * Try to restore the old affinity mask. If this fails, then
3062 	 * we free the mask explicitly to avoid it being inherited across
3063 	 * a subsequent fork().
3064 	 */
3065 	if (!user_mask || !__sched_setaffinity(p, user_mask))
3066 		return;
3067 
3068 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3069 	user_mask = clear_user_cpus_ptr(p);
3070 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3071 
3072 	kfree(user_mask);
3073 }
3074 
3075 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3076 {
3077 #ifdef CONFIG_SCHED_DEBUG
3078 	unsigned int state = READ_ONCE(p->__state);
3079 
3080 	/*
3081 	 * We should never call set_task_cpu() on a blocked task,
3082 	 * ttwu() will sort out the placement.
3083 	 */
3084 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3085 
3086 	/*
3087 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3088 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3089 	 * time relying on p->on_rq.
3090 	 */
3091 	WARN_ON_ONCE(state == TASK_RUNNING &&
3092 		     p->sched_class == &fair_sched_class &&
3093 		     (p->on_rq && !task_on_rq_migrating(p)));
3094 
3095 #ifdef CONFIG_LOCKDEP
3096 	/*
3097 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3098 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3099 	 *
3100 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3101 	 * see task_group().
3102 	 *
3103 	 * Furthermore, all task_rq users should acquire both locks, see
3104 	 * task_rq_lock().
3105 	 */
3106 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3107 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3108 #endif
3109 	/*
3110 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3111 	 */
3112 	WARN_ON_ONCE(!cpu_online(new_cpu));
3113 
3114 	WARN_ON_ONCE(is_migration_disabled(p));
3115 #endif
3116 
3117 	trace_sched_migrate_task(p, new_cpu);
3118 
3119 	if (task_cpu(p) != new_cpu) {
3120 		if (p->sched_class->migrate_task_rq)
3121 			p->sched_class->migrate_task_rq(p, new_cpu);
3122 		p->se.nr_migrations++;
3123 		rseq_migrate(p);
3124 		perf_event_task_migrate(p);
3125 	}
3126 
3127 	__set_task_cpu(p, new_cpu);
3128 }
3129 
3130 #ifdef CONFIG_NUMA_BALANCING
3131 static void __migrate_swap_task(struct task_struct *p, int cpu)
3132 {
3133 	if (task_on_rq_queued(p)) {
3134 		struct rq *src_rq, *dst_rq;
3135 		struct rq_flags srf, drf;
3136 
3137 		src_rq = task_rq(p);
3138 		dst_rq = cpu_rq(cpu);
3139 
3140 		rq_pin_lock(src_rq, &srf);
3141 		rq_pin_lock(dst_rq, &drf);
3142 
3143 		deactivate_task(src_rq, p, 0);
3144 		set_task_cpu(p, cpu);
3145 		activate_task(dst_rq, p, 0);
3146 		check_preempt_curr(dst_rq, p, 0);
3147 
3148 		rq_unpin_lock(dst_rq, &drf);
3149 		rq_unpin_lock(src_rq, &srf);
3150 
3151 	} else {
3152 		/*
3153 		 * Task isn't running anymore; make it appear like we migrated
3154 		 * it before it went to sleep. This means on wakeup we make the
3155 		 * previous CPU our target instead of where it really is.
3156 		 */
3157 		p->wake_cpu = cpu;
3158 	}
3159 }
3160 
3161 struct migration_swap_arg {
3162 	struct task_struct *src_task, *dst_task;
3163 	int src_cpu, dst_cpu;
3164 };
3165 
3166 static int migrate_swap_stop(void *data)
3167 {
3168 	struct migration_swap_arg *arg = data;
3169 	struct rq *src_rq, *dst_rq;
3170 	int ret = -EAGAIN;
3171 
3172 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3173 		return -EAGAIN;
3174 
3175 	src_rq = cpu_rq(arg->src_cpu);
3176 	dst_rq = cpu_rq(arg->dst_cpu);
3177 
3178 	double_raw_lock(&arg->src_task->pi_lock,
3179 			&arg->dst_task->pi_lock);
3180 	double_rq_lock(src_rq, dst_rq);
3181 
3182 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3183 		goto unlock;
3184 
3185 	if (task_cpu(arg->src_task) != arg->src_cpu)
3186 		goto unlock;
3187 
3188 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3189 		goto unlock;
3190 
3191 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3192 		goto unlock;
3193 
3194 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3195 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3196 
3197 	ret = 0;
3198 
3199 unlock:
3200 	double_rq_unlock(src_rq, dst_rq);
3201 	raw_spin_unlock(&arg->dst_task->pi_lock);
3202 	raw_spin_unlock(&arg->src_task->pi_lock);
3203 
3204 	return ret;
3205 }
3206 
3207 /*
3208  * Cross migrate two tasks
3209  */
3210 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3211 		int target_cpu, int curr_cpu)
3212 {
3213 	struct migration_swap_arg arg;
3214 	int ret = -EINVAL;
3215 
3216 	arg = (struct migration_swap_arg){
3217 		.src_task = cur,
3218 		.src_cpu = curr_cpu,
3219 		.dst_task = p,
3220 		.dst_cpu = target_cpu,
3221 	};
3222 
3223 	if (arg.src_cpu == arg.dst_cpu)
3224 		goto out;
3225 
3226 	/*
3227 	 * These three tests are all lockless; this is OK since all of them
3228 	 * will be re-checked with proper locks held further down the line.
3229 	 */
3230 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3231 		goto out;
3232 
3233 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3234 		goto out;
3235 
3236 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3237 		goto out;
3238 
3239 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3240 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3241 
3242 out:
3243 	return ret;
3244 }
3245 #endif /* CONFIG_NUMA_BALANCING */
3246 
3247 /*
3248  * wait_task_inactive - wait for a thread to unschedule.
3249  *
3250  * Wait for the thread to block in any of the states set in @match_state.
3251  * If it changes, i.e. @p might have woken up, then return zero.  When we
3252  * succeed in waiting for @p to be off its CPU, we return a positive number
3253  * (its total switch count).  If a second call a short while later returns the
3254  * same number, the caller can be sure that @p has remained unscheduled the
3255  * whole time.
3256  *
3257  * The caller must ensure that the task *will* unschedule sometime soon,
3258  * else this function might spin for a *long* time. This function can't
3259  * be called with interrupts off, or it may introduce deadlock with
3260  * smp_call_function() if an IPI is sent by the same process we are
3261  * waiting to become inactive.
3262  */
3263 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3264 {
3265 	int running, queued;
3266 	struct rq_flags rf;
3267 	unsigned long ncsw;
3268 	struct rq *rq;
3269 
3270 	for (;;) {
3271 		/*
3272 		 * We do the initial early heuristics without holding
3273 		 * any task-queue locks at all. We'll only try to get
3274 		 * the runqueue lock when things look like they will
3275 		 * work out!
3276 		 */
3277 		rq = task_rq(p);
3278 
3279 		/*
3280 		 * If the task is actively running on another CPU
3281 		 * still, just relax and busy-wait without holding
3282 		 * any locks.
3283 		 *
3284 		 * NOTE! Since we don't hold any locks, it's not
3285 		 * even sure that "rq" stays as the right runqueue!
3286 		 * But we don't care, since "task_on_cpu()" will
3287 		 * return false if the runqueue has changed and p
3288 		 * is actually now running somewhere else!
3289 		 */
3290 		while (task_on_cpu(rq, p)) {
3291 			if (!(READ_ONCE(p->__state) & match_state))
3292 				return 0;
3293 			cpu_relax();
3294 		}
3295 
3296 		/*
3297 		 * Ok, time to look more closely! We need the rq
3298 		 * lock now, to be *sure*. If we're wrong, we'll
3299 		 * just go back and repeat.
3300 		 */
3301 		rq = task_rq_lock(p, &rf);
3302 		trace_sched_wait_task(p);
3303 		running = task_on_cpu(rq, p);
3304 		queued = task_on_rq_queued(p);
3305 		ncsw = 0;
3306 		if (READ_ONCE(p->__state) & match_state)
3307 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3308 		task_rq_unlock(rq, p, &rf);
3309 
3310 		/*
3311 		 * If it changed from the expected state, bail out now.
3312 		 */
3313 		if (unlikely(!ncsw))
3314 			break;
3315 
3316 		/*
3317 		 * Was it really running after all now that we
3318 		 * checked with the proper locks actually held?
3319 		 *
3320 		 * Oops. Go back and try again..
3321 		 */
3322 		if (unlikely(running)) {
3323 			cpu_relax();
3324 			continue;
3325 		}
3326 
3327 		/*
3328 		 * It's not enough that it's not actively running,
3329 		 * it must be off the runqueue _entirely_, and not
3330 		 * preempted!
3331 		 *
3332 		 * So if it was still runnable (but just not actively
3333 		 * running right now), it's preempted, and we should
3334 		 * yield - it could be a while.
3335 		 */
3336 		if (unlikely(queued)) {
3337 			ktime_t to = NSEC_PER_SEC / HZ;
3338 
3339 			set_current_state(TASK_UNINTERRUPTIBLE);
3340 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3341 			continue;
3342 		}
3343 
3344 		/*
3345 		 * Ahh, all good. It wasn't running, and it wasn't
3346 		 * runnable, which means that it will never become
3347 		 * running in the future either. We're all done!
3348 		 */
3349 		break;
3350 	}
3351 
3352 	return ncsw;
3353 }
3354 
3355 /***
3356  * kick_process - kick a running thread to enter/exit the kernel
3357  * @p: the to-be-kicked thread
3358  *
3359  * Cause a process which is running on another CPU to enter
3360  * kernel-mode, without any delay. (to get signals handled.)
3361  *
3362  * NOTE: this function doesn't have to take the runqueue lock,
3363  * because all it wants to ensure is that the remote task enters
3364  * the kernel. If the IPI races and the task has been migrated
3365  * to another CPU then no harm is done and the purpose has been
3366  * achieved as well.
3367  */
3368 void kick_process(struct task_struct *p)
3369 {
3370 	int cpu;
3371 
3372 	preempt_disable();
3373 	cpu = task_cpu(p);
3374 	if ((cpu != smp_processor_id()) && task_curr(p))
3375 		smp_send_reschedule(cpu);
3376 	preempt_enable();
3377 }
3378 EXPORT_SYMBOL_GPL(kick_process);
3379 
3380 /*
3381  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3382  *
3383  * A few notes on cpu_active vs cpu_online:
3384  *
3385  *  - cpu_active must be a subset of cpu_online
3386  *
3387  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3388  *    see __set_cpus_allowed_ptr(). At this point the newly online
3389  *    CPU isn't yet part of the sched domains, and balancing will not
3390  *    see it.
3391  *
3392  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3393  *    avoid the load balancer to place new tasks on the to be removed
3394  *    CPU. Existing tasks will remain running there and will be taken
3395  *    off.
3396  *
3397  * This means that fallback selection must not select !active CPUs.
3398  * And can assume that any active CPU must be online. Conversely
3399  * select_task_rq() below may allow selection of !active CPUs in order
3400  * to satisfy the above rules.
3401  */
3402 static int select_fallback_rq(int cpu, struct task_struct *p)
3403 {
3404 	int nid = cpu_to_node(cpu);
3405 	const struct cpumask *nodemask = NULL;
3406 	enum { cpuset, possible, fail } state = cpuset;
3407 	int dest_cpu;
3408 
3409 	/*
3410 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3411 	 * will return -1. There is no CPU on the node, and we should
3412 	 * select the CPU on the other node.
3413 	 */
3414 	if (nid != -1) {
3415 		nodemask = cpumask_of_node(nid);
3416 
3417 		/* Look for allowed, online CPU in same node. */
3418 		for_each_cpu(dest_cpu, nodemask) {
3419 			if (is_cpu_allowed(p, dest_cpu))
3420 				return dest_cpu;
3421 		}
3422 	}
3423 
3424 	for (;;) {
3425 		/* Any allowed, online CPU? */
3426 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3427 			if (!is_cpu_allowed(p, dest_cpu))
3428 				continue;
3429 
3430 			goto out;
3431 		}
3432 
3433 		/* No more Mr. Nice Guy. */
3434 		switch (state) {
3435 		case cpuset:
3436 			if (cpuset_cpus_allowed_fallback(p)) {
3437 				state = possible;
3438 				break;
3439 			}
3440 			fallthrough;
3441 		case possible:
3442 			/*
3443 			 * XXX When called from select_task_rq() we only
3444 			 * hold p->pi_lock and again violate locking order.
3445 			 *
3446 			 * More yuck to audit.
3447 			 */
3448 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3449 			state = fail;
3450 			break;
3451 		case fail:
3452 			BUG();
3453 			break;
3454 		}
3455 	}
3456 
3457 out:
3458 	if (state != cpuset) {
3459 		/*
3460 		 * Don't tell them about moving exiting tasks or
3461 		 * kernel threads (both mm NULL), since they never
3462 		 * leave kernel.
3463 		 */
3464 		if (p->mm && printk_ratelimit()) {
3465 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3466 					task_pid_nr(p), p->comm, cpu);
3467 		}
3468 	}
3469 
3470 	return dest_cpu;
3471 }
3472 
3473 /*
3474  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3475  */
3476 static inline
3477 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3478 {
3479 	lockdep_assert_held(&p->pi_lock);
3480 
3481 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3482 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3483 	else
3484 		cpu = cpumask_any(p->cpus_ptr);
3485 
3486 	/*
3487 	 * In order not to call set_task_cpu() on a blocking task we need
3488 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3489 	 * CPU.
3490 	 *
3491 	 * Since this is common to all placement strategies, this lives here.
3492 	 *
3493 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3494 	 *   not worry about this generic constraint ]
3495 	 */
3496 	if (unlikely(!is_cpu_allowed(p, cpu)))
3497 		cpu = select_fallback_rq(task_cpu(p), p);
3498 
3499 	return cpu;
3500 }
3501 
3502 void sched_set_stop_task(int cpu, struct task_struct *stop)
3503 {
3504 	static struct lock_class_key stop_pi_lock;
3505 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3506 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3507 
3508 	if (stop) {
3509 		/*
3510 		 * Make it appear like a SCHED_FIFO task, its something
3511 		 * userspace knows about and won't get confused about.
3512 		 *
3513 		 * Also, it will make PI more or less work without too
3514 		 * much confusion -- but then, stop work should not
3515 		 * rely on PI working anyway.
3516 		 */
3517 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3518 
3519 		stop->sched_class = &stop_sched_class;
3520 
3521 		/*
3522 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3523 		 * adjust the effective priority of a task. As a result,
3524 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3525 		 * which can then trigger wakeups of the stop thread to push
3526 		 * around the current task.
3527 		 *
3528 		 * The stop task itself will never be part of the PI-chain, it
3529 		 * never blocks, therefore that ->pi_lock recursion is safe.
3530 		 * Tell lockdep about this by placing the stop->pi_lock in its
3531 		 * own class.
3532 		 */
3533 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3534 	}
3535 
3536 	cpu_rq(cpu)->stop = stop;
3537 
3538 	if (old_stop) {
3539 		/*
3540 		 * Reset it back to a normal scheduling class so that
3541 		 * it can die in pieces.
3542 		 */
3543 		old_stop->sched_class = &rt_sched_class;
3544 	}
3545 }
3546 
3547 #else /* CONFIG_SMP */
3548 
3549 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3550 					 const struct cpumask *new_mask,
3551 					 u32 flags)
3552 {
3553 	return set_cpus_allowed_ptr(p, new_mask);
3554 }
3555 
3556 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3557 
3558 static inline bool rq_has_pinned_tasks(struct rq *rq)
3559 {
3560 	return false;
3561 }
3562 
3563 #endif /* !CONFIG_SMP */
3564 
3565 static void
3566 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3567 {
3568 	struct rq *rq;
3569 
3570 	if (!schedstat_enabled())
3571 		return;
3572 
3573 	rq = this_rq();
3574 
3575 #ifdef CONFIG_SMP
3576 	if (cpu == rq->cpu) {
3577 		__schedstat_inc(rq->ttwu_local);
3578 		__schedstat_inc(p->stats.nr_wakeups_local);
3579 	} else {
3580 		struct sched_domain *sd;
3581 
3582 		__schedstat_inc(p->stats.nr_wakeups_remote);
3583 		rcu_read_lock();
3584 		for_each_domain(rq->cpu, sd) {
3585 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3586 				__schedstat_inc(sd->ttwu_wake_remote);
3587 				break;
3588 			}
3589 		}
3590 		rcu_read_unlock();
3591 	}
3592 
3593 	if (wake_flags & WF_MIGRATED)
3594 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3595 #endif /* CONFIG_SMP */
3596 
3597 	__schedstat_inc(rq->ttwu_count);
3598 	__schedstat_inc(p->stats.nr_wakeups);
3599 
3600 	if (wake_flags & WF_SYNC)
3601 		__schedstat_inc(p->stats.nr_wakeups_sync);
3602 }
3603 
3604 /*
3605  * Mark the task runnable and perform wakeup-preemption.
3606  */
3607 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3608 			   struct rq_flags *rf)
3609 {
3610 	check_preempt_curr(rq, p, wake_flags);
3611 	WRITE_ONCE(p->__state, TASK_RUNNING);
3612 	trace_sched_wakeup(p);
3613 
3614 #ifdef CONFIG_SMP
3615 	if (p->sched_class->task_woken) {
3616 		/*
3617 		 * Our task @p is fully woken up and running; so it's safe to
3618 		 * drop the rq->lock, hereafter rq is only used for statistics.
3619 		 */
3620 		rq_unpin_lock(rq, rf);
3621 		p->sched_class->task_woken(rq, p);
3622 		rq_repin_lock(rq, rf);
3623 	}
3624 
3625 	if (rq->idle_stamp) {
3626 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3627 		u64 max = 2*rq->max_idle_balance_cost;
3628 
3629 		update_avg(&rq->avg_idle, delta);
3630 
3631 		if (rq->avg_idle > max)
3632 			rq->avg_idle = max;
3633 
3634 		rq->wake_stamp = jiffies;
3635 		rq->wake_avg_idle = rq->avg_idle / 2;
3636 
3637 		rq->idle_stamp = 0;
3638 	}
3639 #endif
3640 }
3641 
3642 static void
3643 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3644 		 struct rq_flags *rf)
3645 {
3646 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3647 
3648 	lockdep_assert_rq_held(rq);
3649 
3650 	if (p->sched_contributes_to_load)
3651 		rq->nr_uninterruptible--;
3652 
3653 #ifdef CONFIG_SMP
3654 	if (wake_flags & WF_MIGRATED)
3655 		en_flags |= ENQUEUE_MIGRATED;
3656 	else
3657 #endif
3658 	if (p->in_iowait) {
3659 		delayacct_blkio_end(p);
3660 		atomic_dec(&task_rq(p)->nr_iowait);
3661 	}
3662 
3663 	activate_task(rq, p, en_flags);
3664 	ttwu_do_wakeup(rq, p, wake_flags, rf);
3665 }
3666 
3667 /*
3668  * Consider @p being inside a wait loop:
3669  *
3670  *   for (;;) {
3671  *      set_current_state(TASK_UNINTERRUPTIBLE);
3672  *
3673  *      if (CONDITION)
3674  *         break;
3675  *
3676  *      schedule();
3677  *   }
3678  *   __set_current_state(TASK_RUNNING);
3679  *
3680  * between set_current_state() and schedule(). In this case @p is still
3681  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3682  * an atomic manner.
3683  *
3684  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3685  * then schedule() must still happen and p->state can be changed to
3686  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3687  * need to do a full wakeup with enqueue.
3688  *
3689  * Returns: %true when the wakeup is done,
3690  *          %false otherwise.
3691  */
3692 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3693 {
3694 	struct rq_flags rf;
3695 	struct rq *rq;
3696 	int ret = 0;
3697 
3698 	rq = __task_rq_lock(p, &rf);
3699 	if (task_on_rq_queued(p)) {
3700 		/* check_preempt_curr() may use rq clock */
3701 		update_rq_clock(rq);
3702 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3703 		ret = 1;
3704 	}
3705 	__task_rq_unlock(rq, &rf);
3706 
3707 	return ret;
3708 }
3709 
3710 #ifdef CONFIG_SMP
3711 void sched_ttwu_pending(void *arg)
3712 {
3713 	struct llist_node *llist = arg;
3714 	struct rq *rq = this_rq();
3715 	struct task_struct *p, *t;
3716 	struct rq_flags rf;
3717 
3718 	if (!llist)
3719 		return;
3720 
3721 	/*
3722 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3723 	 * Races such that false-negatives are possible, since they
3724 	 * are shorter lived that false-positives would be.
3725 	 */
3726 	WRITE_ONCE(rq->ttwu_pending, 0);
3727 
3728 	rq_lock_irqsave(rq, &rf);
3729 	update_rq_clock(rq);
3730 
3731 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3732 		if (WARN_ON_ONCE(p->on_cpu))
3733 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3734 
3735 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3736 			set_task_cpu(p, cpu_of(rq));
3737 
3738 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3739 	}
3740 
3741 	rq_unlock_irqrestore(rq, &rf);
3742 }
3743 
3744 void send_call_function_single_ipi(int cpu)
3745 {
3746 	struct rq *rq = cpu_rq(cpu);
3747 
3748 	if (!set_nr_if_polling(rq->idle))
3749 		arch_send_call_function_single_ipi(cpu);
3750 	else
3751 		trace_sched_wake_idle_without_ipi(cpu);
3752 }
3753 
3754 /*
3755  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3756  * necessary. The wakee CPU on receipt of the IPI will queue the task
3757  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3758  * of the wakeup instead of the waker.
3759  */
3760 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3761 {
3762 	struct rq *rq = cpu_rq(cpu);
3763 
3764 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3765 
3766 	WRITE_ONCE(rq->ttwu_pending, 1);
3767 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3768 }
3769 
3770 void wake_up_if_idle(int cpu)
3771 {
3772 	struct rq *rq = cpu_rq(cpu);
3773 	struct rq_flags rf;
3774 
3775 	rcu_read_lock();
3776 
3777 	if (!is_idle_task(rcu_dereference(rq->curr)))
3778 		goto out;
3779 
3780 	rq_lock_irqsave(rq, &rf);
3781 	if (is_idle_task(rq->curr))
3782 		resched_curr(rq);
3783 	/* Else CPU is not idle, do nothing here: */
3784 	rq_unlock_irqrestore(rq, &rf);
3785 
3786 out:
3787 	rcu_read_unlock();
3788 }
3789 
3790 bool cpus_share_cache(int this_cpu, int that_cpu)
3791 {
3792 	if (this_cpu == that_cpu)
3793 		return true;
3794 
3795 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3796 }
3797 
3798 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3799 {
3800 	/*
3801 	 * Do not complicate things with the async wake_list while the CPU is
3802 	 * in hotplug state.
3803 	 */
3804 	if (!cpu_active(cpu))
3805 		return false;
3806 
3807 	/* Ensure the task will still be allowed to run on the CPU. */
3808 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3809 		return false;
3810 
3811 	/*
3812 	 * If the CPU does not share cache, then queue the task on the
3813 	 * remote rqs wakelist to avoid accessing remote data.
3814 	 */
3815 	if (!cpus_share_cache(smp_processor_id(), cpu))
3816 		return true;
3817 
3818 	if (cpu == smp_processor_id())
3819 		return false;
3820 
3821 	/*
3822 	 * If the wakee cpu is idle, or the task is descheduling and the
3823 	 * only running task on the CPU, then use the wakelist to offload
3824 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3825 	 * the current CPU is likely busy. nr_running is checked to
3826 	 * avoid unnecessary task stacking.
3827 	 *
3828 	 * Note that we can only get here with (wakee) p->on_rq=0,
3829 	 * p->on_cpu can be whatever, we've done the dequeue, so
3830 	 * the wakee has been accounted out of ->nr_running.
3831 	 */
3832 	if (!cpu_rq(cpu)->nr_running)
3833 		return true;
3834 
3835 	return false;
3836 }
3837 
3838 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3839 {
3840 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3841 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3842 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3843 		return true;
3844 	}
3845 
3846 	return false;
3847 }
3848 
3849 #else /* !CONFIG_SMP */
3850 
3851 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3852 {
3853 	return false;
3854 }
3855 
3856 #endif /* CONFIG_SMP */
3857 
3858 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3859 {
3860 	struct rq *rq = cpu_rq(cpu);
3861 	struct rq_flags rf;
3862 
3863 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3864 		return;
3865 
3866 	rq_lock(rq, &rf);
3867 	update_rq_clock(rq);
3868 	ttwu_do_activate(rq, p, wake_flags, &rf);
3869 	rq_unlock(rq, &rf);
3870 }
3871 
3872 /*
3873  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3874  *
3875  * The caller holds p::pi_lock if p != current or has preemption
3876  * disabled when p == current.
3877  *
3878  * The rules of PREEMPT_RT saved_state:
3879  *
3880  *   The related locking code always holds p::pi_lock when updating
3881  *   p::saved_state, which means the code is fully serialized in both cases.
3882  *
3883  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3884  *   bits set. This allows to distinguish all wakeup scenarios.
3885  */
3886 static __always_inline
3887 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3888 {
3889 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3890 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3891 			     state != TASK_RTLOCK_WAIT);
3892 	}
3893 
3894 	if (READ_ONCE(p->__state) & state) {
3895 		*success = 1;
3896 		return true;
3897 	}
3898 
3899 #ifdef CONFIG_PREEMPT_RT
3900 	/*
3901 	 * Saved state preserves the task state across blocking on
3902 	 * an RT lock.  If the state matches, set p::saved_state to
3903 	 * TASK_RUNNING, but do not wake the task because it waits
3904 	 * for a lock wakeup. Also indicate success because from
3905 	 * the regular waker's point of view this has succeeded.
3906 	 *
3907 	 * After acquiring the lock the task will restore p::__state
3908 	 * from p::saved_state which ensures that the regular
3909 	 * wakeup is not lost. The restore will also set
3910 	 * p::saved_state to TASK_RUNNING so any further tests will
3911 	 * not result in false positives vs. @success
3912 	 */
3913 	if (p->saved_state & state) {
3914 		p->saved_state = TASK_RUNNING;
3915 		*success = 1;
3916 	}
3917 #endif
3918 	return false;
3919 }
3920 
3921 /*
3922  * Notes on Program-Order guarantees on SMP systems.
3923  *
3924  *  MIGRATION
3925  *
3926  * The basic program-order guarantee on SMP systems is that when a task [t]
3927  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3928  * execution on its new CPU [c1].
3929  *
3930  * For migration (of runnable tasks) this is provided by the following means:
3931  *
3932  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3933  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3934  *     rq(c1)->lock (if not at the same time, then in that order).
3935  *  C) LOCK of the rq(c1)->lock scheduling in task
3936  *
3937  * Release/acquire chaining guarantees that B happens after A and C after B.
3938  * Note: the CPU doing B need not be c0 or c1
3939  *
3940  * Example:
3941  *
3942  *   CPU0            CPU1            CPU2
3943  *
3944  *   LOCK rq(0)->lock
3945  *   sched-out X
3946  *   sched-in Y
3947  *   UNLOCK rq(0)->lock
3948  *
3949  *                                   LOCK rq(0)->lock // orders against CPU0
3950  *                                   dequeue X
3951  *                                   UNLOCK rq(0)->lock
3952  *
3953  *                                   LOCK rq(1)->lock
3954  *                                   enqueue X
3955  *                                   UNLOCK rq(1)->lock
3956  *
3957  *                   LOCK rq(1)->lock // orders against CPU2
3958  *                   sched-out Z
3959  *                   sched-in X
3960  *                   UNLOCK rq(1)->lock
3961  *
3962  *
3963  *  BLOCKING -- aka. SLEEP + WAKEUP
3964  *
3965  * For blocking we (obviously) need to provide the same guarantee as for
3966  * migration. However the means are completely different as there is no lock
3967  * chain to provide order. Instead we do:
3968  *
3969  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3970  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3971  *
3972  * Example:
3973  *
3974  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3975  *
3976  *   LOCK rq(0)->lock LOCK X->pi_lock
3977  *   dequeue X
3978  *   sched-out X
3979  *   smp_store_release(X->on_cpu, 0);
3980  *
3981  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3982  *                    X->state = WAKING
3983  *                    set_task_cpu(X,2)
3984  *
3985  *                    LOCK rq(2)->lock
3986  *                    enqueue X
3987  *                    X->state = RUNNING
3988  *                    UNLOCK rq(2)->lock
3989  *
3990  *                                          LOCK rq(2)->lock // orders against CPU1
3991  *                                          sched-out Z
3992  *                                          sched-in X
3993  *                                          UNLOCK rq(2)->lock
3994  *
3995  *                    UNLOCK X->pi_lock
3996  *   UNLOCK rq(0)->lock
3997  *
3998  *
3999  * However, for wakeups there is a second guarantee we must provide, namely we
4000  * must ensure that CONDITION=1 done by the caller can not be reordered with
4001  * accesses to the task state; see try_to_wake_up() and set_current_state().
4002  */
4003 
4004 /**
4005  * try_to_wake_up - wake up a thread
4006  * @p: the thread to be awakened
4007  * @state: the mask of task states that can be woken
4008  * @wake_flags: wake modifier flags (WF_*)
4009  *
4010  * Conceptually does:
4011  *
4012  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4013  *
4014  * If the task was not queued/runnable, also place it back on a runqueue.
4015  *
4016  * This function is atomic against schedule() which would dequeue the task.
4017  *
4018  * It issues a full memory barrier before accessing @p->state, see the comment
4019  * with set_current_state().
4020  *
4021  * Uses p->pi_lock to serialize against concurrent wake-ups.
4022  *
4023  * Relies on p->pi_lock stabilizing:
4024  *  - p->sched_class
4025  *  - p->cpus_ptr
4026  *  - p->sched_task_group
4027  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4028  *
4029  * Tries really hard to only take one task_rq(p)->lock for performance.
4030  * Takes rq->lock in:
4031  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4032  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4033  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4034  *
4035  * As a consequence we race really badly with just about everything. See the
4036  * many memory barriers and their comments for details.
4037  *
4038  * Return: %true if @p->state changes (an actual wakeup was done),
4039  *	   %false otherwise.
4040  */
4041 static int
4042 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4043 {
4044 	unsigned long flags;
4045 	int cpu, success = 0;
4046 
4047 	preempt_disable();
4048 	if (p == current) {
4049 		/*
4050 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4051 		 * == smp_processor_id()'. Together this means we can special
4052 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4053 		 * without taking any locks.
4054 		 *
4055 		 * In particular:
4056 		 *  - we rely on Program-Order guarantees for all the ordering,
4057 		 *  - we're serialized against set_special_state() by virtue of
4058 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4059 		 */
4060 		if (!ttwu_state_match(p, state, &success))
4061 			goto out;
4062 
4063 		trace_sched_waking(p);
4064 		WRITE_ONCE(p->__state, TASK_RUNNING);
4065 		trace_sched_wakeup(p);
4066 		goto out;
4067 	}
4068 
4069 	/*
4070 	 * If we are going to wake up a thread waiting for CONDITION we
4071 	 * need to ensure that CONDITION=1 done by the caller can not be
4072 	 * reordered with p->state check below. This pairs with smp_store_mb()
4073 	 * in set_current_state() that the waiting thread does.
4074 	 */
4075 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4076 	smp_mb__after_spinlock();
4077 	if (!ttwu_state_match(p, state, &success))
4078 		goto unlock;
4079 
4080 	trace_sched_waking(p);
4081 
4082 	/*
4083 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4084 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4085 	 * in smp_cond_load_acquire() below.
4086 	 *
4087 	 * sched_ttwu_pending()			try_to_wake_up()
4088 	 *   STORE p->on_rq = 1			  LOAD p->state
4089 	 *   UNLOCK rq->lock
4090 	 *
4091 	 * __schedule() (switch to task 'p')
4092 	 *   LOCK rq->lock			  smp_rmb();
4093 	 *   smp_mb__after_spinlock();
4094 	 *   UNLOCK rq->lock
4095 	 *
4096 	 * [task p]
4097 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4098 	 *
4099 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4100 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4101 	 *
4102 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4103 	 */
4104 	smp_rmb();
4105 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4106 		goto unlock;
4107 
4108 #ifdef CONFIG_SMP
4109 	/*
4110 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4111 	 * possible to, falsely, observe p->on_cpu == 0.
4112 	 *
4113 	 * One must be running (->on_cpu == 1) in order to remove oneself
4114 	 * from the runqueue.
4115 	 *
4116 	 * __schedule() (switch to task 'p')	try_to_wake_up()
4117 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4118 	 *   UNLOCK rq->lock
4119 	 *
4120 	 * __schedule() (put 'p' to sleep)
4121 	 *   LOCK rq->lock			  smp_rmb();
4122 	 *   smp_mb__after_spinlock();
4123 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4124 	 *
4125 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4126 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4127 	 *
4128 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4129 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
4130 	 * care about it's own p->state. See the comment in __schedule().
4131 	 */
4132 	smp_acquire__after_ctrl_dep();
4133 
4134 	/*
4135 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4136 	 * == 0), which means we need to do an enqueue, change p->state to
4137 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4138 	 * enqueue, such as ttwu_queue_wakelist().
4139 	 */
4140 	WRITE_ONCE(p->__state, TASK_WAKING);
4141 
4142 	/*
4143 	 * If the owning (remote) CPU is still in the middle of schedule() with
4144 	 * this task as prev, considering queueing p on the remote CPUs wake_list
4145 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
4146 	 * let the waker make forward progress. This is safe because IRQs are
4147 	 * disabled and the IPI will deliver after on_cpu is cleared.
4148 	 *
4149 	 * Ensure we load task_cpu(p) after p->on_cpu:
4150 	 *
4151 	 * set_task_cpu(p, cpu);
4152 	 *   STORE p->cpu = @cpu
4153 	 * __schedule() (switch to task 'p')
4154 	 *   LOCK rq->lock
4155 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4156 	 *   STORE p->on_cpu = 1		LOAD p->cpu
4157 	 *
4158 	 * to ensure we observe the correct CPU on which the task is currently
4159 	 * scheduling.
4160 	 */
4161 	if (smp_load_acquire(&p->on_cpu) &&
4162 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4163 		goto unlock;
4164 
4165 	/*
4166 	 * If the owning (remote) CPU is still in the middle of schedule() with
4167 	 * this task as prev, wait until it's done referencing the task.
4168 	 *
4169 	 * Pairs with the smp_store_release() in finish_task().
4170 	 *
4171 	 * This ensures that tasks getting woken will be fully ordered against
4172 	 * their previous state and preserve Program Order.
4173 	 */
4174 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4175 
4176 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4177 	if (task_cpu(p) != cpu) {
4178 		if (p->in_iowait) {
4179 			delayacct_blkio_end(p);
4180 			atomic_dec(&task_rq(p)->nr_iowait);
4181 		}
4182 
4183 		wake_flags |= WF_MIGRATED;
4184 		psi_ttwu_dequeue(p);
4185 		set_task_cpu(p, cpu);
4186 	}
4187 #else
4188 	cpu = task_cpu(p);
4189 #endif /* CONFIG_SMP */
4190 
4191 	ttwu_queue(p, cpu, wake_flags);
4192 unlock:
4193 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4194 out:
4195 	if (success)
4196 		ttwu_stat(p, task_cpu(p), wake_flags);
4197 	preempt_enable();
4198 
4199 	return success;
4200 }
4201 
4202 /**
4203  * task_call_func - Invoke a function on task in fixed state
4204  * @p: Process for which the function is to be invoked, can be @current.
4205  * @func: Function to invoke.
4206  * @arg: Argument to function.
4207  *
4208  * Fix the task in it's current state by avoiding wakeups and or rq operations
4209  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4210  * to work out what the state is, if required.  Given that @func can be invoked
4211  * with a runqueue lock held, it had better be quite lightweight.
4212  *
4213  * Returns:
4214  *   Whatever @func returns
4215  */
4216 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4217 {
4218 	struct rq *rq = NULL;
4219 	unsigned int state;
4220 	struct rq_flags rf;
4221 	int ret;
4222 
4223 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4224 
4225 	state = READ_ONCE(p->__state);
4226 
4227 	/*
4228 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4229 	 * possible to, falsely, observe p->on_rq == 0.
4230 	 *
4231 	 * See try_to_wake_up() for a longer comment.
4232 	 */
4233 	smp_rmb();
4234 
4235 	/*
4236 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4237 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4238 	 * locks at the end, see ttwu_queue_wakelist().
4239 	 */
4240 	if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq)
4241 		rq = __task_rq_lock(p, &rf);
4242 
4243 	/*
4244 	 * At this point the task is pinned; either:
4245 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4246 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4247 	 *  - queued, and we're holding off schedule	 (rq->lock)
4248 	 *  - running, and we're holding off de-schedule (rq->lock)
4249 	 *
4250 	 * The called function (@func) can use: task_curr(), p->on_rq and
4251 	 * p->__state to differentiate between these states.
4252 	 */
4253 	ret = func(p, arg);
4254 
4255 	if (rq)
4256 		rq_unlock(rq, &rf);
4257 
4258 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4259 	return ret;
4260 }
4261 
4262 /**
4263  * cpu_curr_snapshot - Return a snapshot of the currently running task
4264  * @cpu: The CPU on which to snapshot the task.
4265  *
4266  * Returns the task_struct pointer of the task "currently" running on
4267  * the specified CPU.  If the same task is running on that CPU throughout,
4268  * the return value will be a pointer to that task's task_struct structure.
4269  * If the CPU did any context switches even vaguely concurrently with the
4270  * execution of this function, the return value will be a pointer to the
4271  * task_struct structure of a randomly chosen task that was running on
4272  * that CPU somewhere around the time that this function was executing.
4273  *
4274  * If the specified CPU was offline, the return value is whatever it
4275  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4276  * task, but there is no guarantee.  Callers wishing a useful return
4277  * value must take some action to ensure that the specified CPU remains
4278  * online throughout.
4279  *
4280  * This function executes full memory barriers before and after fetching
4281  * the pointer, which permits the caller to confine this function's fetch
4282  * with respect to the caller's accesses to other shared variables.
4283  */
4284 struct task_struct *cpu_curr_snapshot(int cpu)
4285 {
4286 	struct task_struct *t;
4287 
4288 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4289 	t = rcu_dereference(cpu_curr(cpu));
4290 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4291 	return t;
4292 }
4293 
4294 /**
4295  * wake_up_process - Wake up a specific process
4296  * @p: The process to be woken up.
4297  *
4298  * Attempt to wake up the nominated process and move it to the set of runnable
4299  * processes.
4300  *
4301  * Return: 1 if the process was woken up, 0 if it was already running.
4302  *
4303  * This function executes a full memory barrier before accessing the task state.
4304  */
4305 int wake_up_process(struct task_struct *p)
4306 {
4307 	return try_to_wake_up(p, TASK_NORMAL, 0);
4308 }
4309 EXPORT_SYMBOL(wake_up_process);
4310 
4311 int wake_up_state(struct task_struct *p, unsigned int state)
4312 {
4313 	return try_to_wake_up(p, state, 0);
4314 }
4315 
4316 /*
4317  * Perform scheduler related setup for a newly forked process p.
4318  * p is forked by current.
4319  *
4320  * __sched_fork() is basic setup used by init_idle() too:
4321  */
4322 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4323 {
4324 	p->on_rq			= 0;
4325 
4326 	p->se.on_rq			= 0;
4327 	p->se.exec_start		= 0;
4328 	p->se.sum_exec_runtime		= 0;
4329 	p->se.prev_sum_exec_runtime	= 0;
4330 	p->se.nr_migrations		= 0;
4331 	p->se.vruntime			= 0;
4332 	INIT_LIST_HEAD(&p->se.group_node);
4333 
4334 #ifdef CONFIG_FAIR_GROUP_SCHED
4335 	p->se.cfs_rq			= NULL;
4336 #endif
4337 
4338 #ifdef CONFIG_SCHEDSTATS
4339 	/* Even if schedstat is disabled, there should not be garbage */
4340 	memset(&p->stats, 0, sizeof(p->stats));
4341 #endif
4342 
4343 	RB_CLEAR_NODE(&p->dl.rb_node);
4344 	init_dl_task_timer(&p->dl);
4345 	init_dl_inactive_task_timer(&p->dl);
4346 	__dl_clear_params(p);
4347 
4348 	INIT_LIST_HEAD(&p->rt.run_list);
4349 	p->rt.timeout		= 0;
4350 	p->rt.time_slice	= sched_rr_timeslice;
4351 	p->rt.on_rq		= 0;
4352 	p->rt.on_list		= 0;
4353 
4354 #ifdef CONFIG_PREEMPT_NOTIFIERS
4355 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4356 #endif
4357 
4358 #ifdef CONFIG_COMPACTION
4359 	p->capture_control = NULL;
4360 #endif
4361 	init_numa_balancing(clone_flags, p);
4362 #ifdef CONFIG_SMP
4363 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4364 	p->migration_pending = NULL;
4365 #endif
4366 }
4367 
4368 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4369 
4370 #ifdef CONFIG_NUMA_BALANCING
4371 
4372 int sysctl_numa_balancing_mode;
4373 
4374 static void __set_numabalancing_state(bool enabled)
4375 {
4376 	if (enabled)
4377 		static_branch_enable(&sched_numa_balancing);
4378 	else
4379 		static_branch_disable(&sched_numa_balancing);
4380 }
4381 
4382 void set_numabalancing_state(bool enabled)
4383 {
4384 	if (enabled)
4385 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4386 	else
4387 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4388 	__set_numabalancing_state(enabled);
4389 }
4390 
4391 #ifdef CONFIG_PROC_SYSCTL
4392 static void reset_memory_tiering(void)
4393 {
4394 	struct pglist_data *pgdat;
4395 
4396 	for_each_online_pgdat(pgdat) {
4397 		pgdat->nbp_threshold = 0;
4398 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4399 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4400 	}
4401 }
4402 
4403 int sysctl_numa_balancing(struct ctl_table *table, int write,
4404 			  void *buffer, size_t *lenp, loff_t *ppos)
4405 {
4406 	struct ctl_table t;
4407 	int err;
4408 	int state = sysctl_numa_balancing_mode;
4409 
4410 	if (write && !capable(CAP_SYS_ADMIN))
4411 		return -EPERM;
4412 
4413 	t = *table;
4414 	t.data = &state;
4415 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4416 	if (err < 0)
4417 		return err;
4418 	if (write) {
4419 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4420 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4421 			reset_memory_tiering();
4422 		sysctl_numa_balancing_mode = state;
4423 		__set_numabalancing_state(state);
4424 	}
4425 	return err;
4426 }
4427 #endif
4428 #endif
4429 
4430 #ifdef CONFIG_SCHEDSTATS
4431 
4432 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4433 
4434 static void set_schedstats(bool enabled)
4435 {
4436 	if (enabled)
4437 		static_branch_enable(&sched_schedstats);
4438 	else
4439 		static_branch_disable(&sched_schedstats);
4440 }
4441 
4442 void force_schedstat_enabled(void)
4443 {
4444 	if (!schedstat_enabled()) {
4445 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4446 		static_branch_enable(&sched_schedstats);
4447 	}
4448 }
4449 
4450 static int __init setup_schedstats(char *str)
4451 {
4452 	int ret = 0;
4453 	if (!str)
4454 		goto out;
4455 
4456 	if (!strcmp(str, "enable")) {
4457 		set_schedstats(true);
4458 		ret = 1;
4459 	} else if (!strcmp(str, "disable")) {
4460 		set_schedstats(false);
4461 		ret = 1;
4462 	}
4463 out:
4464 	if (!ret)
4465 		pr_warn("Unable to parse schedstats=\n");
4466 
4467 	return ret;
4468 }
4469 __setup("schedstats=", setup_schedstats);
4470 
4471 #ifdef CONFIG_PROC_SYSCTL
4472 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4473 		size_t *lenp, loff_t *ppos)
4474 {
4475 	struct ctl_table t;
4476 	int err;
4477 	int state = static_branch_likely(&sched_schedstats);
4478 
4479 	if (write && !capable(CAP_SYS_ADMIN))
4480 		return -EPERM;
4481 
4482 	t = *table;
4483 	t.data = &state;
4484 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4485 	if (err < 0)
4486 		return err;
4487 	if (write)
4488 		set_schedstats(state);
4489 	return err;
4490 }
4491 #endif /* CONFIG_PROC_SYSCTL */
4492 #endif /* CONFIG_SCHEDSTATS */
4493 
4494 #ifdef CONFIG_SYSCTL
4495 static struct ctl_table sched_core_sysctls[] = {
4496 #ifdef CONFIG_SCHEDSTATS
4497 	{
4498 		.procname       = "sched_schedstats",
4499 		.data           = NULL,
4500 		.maxlen         = sizeof(unsigned int),
4501 		.mode           = 0644,
4502 		.proc_handler   = sysctl_schedstats,
4503 		.extra1         = SYSCTL_ZERO,
4504 		.extra2         = SYSCTL_ONE,
4505 	},
4506 #endif /* CONFIG_SCHEDSTATS */
4507 #ifdef CONFIG_UCLAMP_TASK
4508 	{
4509 		.procname       = "sched_util_clamp_min",
4510 		.data           = &sysctl_sched_uclamp_util_min,
4511 		.maxlen         = sizeof(unsigned int),
4512 		.mode           = 0644,
4513 		.proc_handler   = sysctl_sched_uclamp_handler,
4514 	},
4515 	{
4516 		.procname       = "sched_util_clamp_max",
4517 		.data           = &sysctl_sched_uclamp_util_max,
4518 		.maxlen         = sizeof(unsigned int),
4519 		.mode           = 0644,
4520 		.proc_handler   = sysctl_sched_uclamp_handler,
4521 	},
4522 	{
4523 		.procname       = "sched_util_clamp_min_rt_default",
4524 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4525 		.maxlen         = sizeof(unsigned int),
4526 		.mode           = 0644,
4527 		.proc_handler   = sysctl_sched_uclamp_handler,
4528 	},
4529 #endif /* CONFIG_UCLAMP_TASK */
4530 	{}
4531 };
4532 static int __init sched_core_sysctl_init(void)
4533 {
4534 	register_sysctl_init("kernel", sched_core_sysctls);
4535 	return 0;
4536 }
4537 late_initcall(sched_core_sysctl_init);
4538 #endif /* CONFIG_SYSCTL */
4539 
4540 /*
4541  * fork()/clone()-time setup:
4542  */
4543 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4544 {
4545 	__sched_fork(clone_flags, p);
4546 	/*
4547 	 * We mark the process as NEW here. This guarantees that
4548 	 * nobody will actually run it, and a signal or other external
4549 	 * event cannot wake it up and insert it on the runqueue either.
4550 	 */
4551 	p->__state = TASK_NEW;
4552 
4553 	/*
4554 	 * Make sure we do not leak PI boosting priority to the child.
4555 	 */
4556 	p->prio = current->normal_prio;
4557 
4558 	uclamp_fork(p);
4559 
4560 	/*
4561 	 * Revert to default priority/policy on fork if requested.
4562 	 */
4563 	if (unlikely(p->sched_reset_on_fork)) {
4564 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4565 			p->policy = SCHED_NORMAL;
4566 			p->static_prio = NICE_TO_PRIO(0);
4567 			p->rt_priority = 0;
4568 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4569 			p->static_prio = NICE_TO_PRIO(0);
4570 
4571 		p->prio = p->normal_prio = p->static_prio;
4572 		set_load_weight(p, false);
4573 
4574 		/*
4575 		 * We don't need the reset flag anymore after the fork. It has
4576 		 * fulfilled its duty:
4577 		 */
4578 		p->sched_reset_on_fork = 0;
4579 	}
4580 
4581 	if (dl_prio(p->prio))
4582 		return -EAGAIN;
4583 	else if (rt_prio(p->prio))
4584 		p->sched_class = &rt_sched_class;
4585 	else
4586 		p->sched_class = &fair_sched_class;
4587 
4588 	init_entity_runnable_average(&p->se);
4589 
4590 
4591 #ifdef CONFIG_SCHED_INFO
4592 	if (likely(sched_info_on()))
4593 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4594 #endif
4595 #if defined(CONFIG_SMP)
4596 	p->on_cpu = 0;
4597 #endif
4598 	init_task_preempt_count(p);
4599 #ifdef CONFIG_SMP
4600 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4601 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4602 #endif
4603 	return 0;
4604 }
4605 
4606 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4607 {
4608 	unsigned long flags;
4609 
4610 	/*
4611 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4612 	 * required yet, but lockdep gets upset if rules are violated.
4613 	 */
4614 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4615 #ifdef CONFIG_CGROUP_SCHED
4616 	if (1) {
4617 		struct task_group *tg;
4618 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4619 				  struct task_group, css);
4620 		tg = autogroup_task_group(p, tg);
4621 		p->sched_task_group = tg;
4622 	}
4623 #endif
4624 	rseq_migrate(p);
4625 	/*
4626 	 * We're setting the CPU for the first time, we don't migrate,
4627 	 * so use __set_task_cpu().
4628 	 */
4629 	__set_task_cpu(p, smp_processor_id());
4630 	if (p->sched_class->task_fork)
4631 		p->sched_class->task_fork(p);
4632 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4633 }
4634 
4635 void sched_post_fork(struct task_struct *p)
4636 {
4637 	uclamp_post_fork(p);
4638 }
4639 
4640 unsigned long to_ratio(u64 period, u64 runtime)
4641 {
4642 	if (runtime == RUNTIME_INF)
4643 		return BW_UNIT;
4644 
4645 	/*
4646 	 * Doing this here saves a lot of checks in all
4647 	 * the calling paths, and returning zero seems
4648 	 * safe for them anyway.
4649 	 */
4650 	if (period == 0)
4651 		return 0;
4652 
4653 	return div64_u64(runtime << BW_SHIFT, period);
4654 }
4655 
4656 /*
4657  * wake_up_new_task - wake up a newly created task for the first time.
4658  *
4659  * This function will do some initial scheduler statistics housekeeping
4660  * that must be done for every newly created context, then puts the task
4661  * on the runqueue and wakes it.
4662  */
4663 void wake_up_new_task(struct task_struct *p)
4664 {
4665 	struct rq_flags rf;
4666 	struct rq *rq;
4667 
4668 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4669 	WRITE_ONCE(p->__state, TASK_RUNNING);
4670 #ifdef CONFIG_SMP
4671 	/*
4672 	 * Fork balancing, do it here and not earlier because:
4673 	 *  - cpus_ptr can change in the fork path
4674 	 *  - any previously selected CPU might disappear through hotplug
4675 	 *
4676 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4677 	 * as we're not fully set-up yet.
4678 	 */
4679 	p->recent_used_cpu = task_cpu(p);
4680 	rseq_migrate(p);
4681 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4682 #endif
4683 	rq = __task_rq_lock(p, &rf);
4684 	update_rq_clock(rq);
4685 	post_init_entity_util_avg(p);
4686 
4687 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4688 	trace_sched_wakeup_new(p);
4689 	check_preempt_curr(rq, p, WF_FORK);
4690 #ifdef CONFIG_SMP
4691 	if (p->sched_class->task_woken) {
4692 		/*
4693 		 * Nothing relies on rq->lock after this, so it's fine to
4694 		 * drop it.
4695 		 */
4696 		rq_unpin_lock(rq, &rf);
4697 		p->sched_class->task_woken(rq, p);
4698 		rq_repin_lock(rq, &rf);
4699 	}
4700 #endif
4701 	task_rq_unlock(rq, p, &rf);
4702 }
4703 
4704 #ifdef CONFIG_PREEMPT_NOTIFIERS
4705 
4706 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4707 
4708 void preempt_notifier_inc(void)
4709 {
4710 	static_branch_inc(&preempt_notifier_key);
4711 }
4712 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4713 
4714 void preempt_notifier_dec(void)
4715 {
4716 	static_branch_dec(&preempt_notifier_key);
4717 }
4718 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4719 
4720 /**
4721  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4722  * @notifier: notifier struct to register
4723  */
4724 void preempt_notifier_register(struct preempt_notifier *notifier)
4725 {
4726 	if (!static_branch_unlikely(&preempt_notifier_key))
4727 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4728 
4729 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4730 }
4731 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4732 
4733 /**
4734  * preempt_notifier_unregister - no longer interested in preemption notifications
4735  * @notifier: notifier struct to unregister
4736  *
4737  * This is *not* safe to call from within a preemption notifier.
4738  */
4739 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4740 {
4741 	hlist_del(&notifier->link);
4742 }
4743 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4744 
4745 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4746 {
4747 	struct preempt_notifier *notifier;
4748 
4749 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4750 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4751 }
4752 
4753 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4754 {
4755 	if (static_branch_unlikely(&preempt_notifier_key))
4756 		__fire_sched_in_preempt_notifiers(curr);
4757 }
4758 
4759 static void
4760 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4761 				   struct task_struct *next)
4762 {
4763 	struct preempt_notifier *notifier;
4764 
4765 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4766 		notifier->ops->sched_out(notifier, next);
4767 }
4768 
4769 static __always_inline void
4770 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4771 				 struct task_struct *next)
4772 {
4773 	if (static_branch_unlikely(&preempt_notifier_key))
4774 		__fire_sched_out_preempt_notifiers(curr, next);
4775 }
4776 
4777 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4778 
4779 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4780 {
4781 }
4782 
4783 static inline void
4784 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4785 				 struct task_struct *next)
4786 {
4787 }
4788 
4789 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4790 
4791 static inline void prepare_task(struct task_struct *next)
4792 {
4793 #ifdef CONFIG_SMP
4794 	/*
4795 	 * Claim the task as running, we do this before switching to it
4796 	 * such that any running task will have this set.
4797 	 *
4798 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4799 	 * its ordering comment.
4800 	 */
4801 	WRITE_ONCE(next->on_cpu, 1);
4802 #endif
4803 }
4804 
4805 static inline void finish_task(struct task_struct *prev)
4806 {
4807 #ifdef CONFIG_SMP
4808 	/*
4809 	 * This must be the very last reference to @prev from this CPU. After
4810 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4811 	 * must ensure this doesn't happen until the switch is completely
4812 	 * finished.
4813 	 *
4814 	 * In particular, the load of prev->state in finish_task_switch() must
4815 	 * happen before this.
4816 	 *
4817 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4818 	 */
4819 	smp_store_release(&prev->on_cpu, 0);
4820 #endif
4821 }
4822 
4823 #ifdef CONFIG_SMP
4824 
4825 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4826 {
4827 	void (*func)(struct rq *rq);
4828 	struct callback_head *next;
4829 
4830 	lockdep_assert_rq_held(rq);
4831 
4832 	while (head) {
4833 		func = (void (*)(struct rq *))head->func;
4834 		next = head->next;
4835 		head->next = NULL;
4836 		head = next;
4837 
4838 		func(rq);
4839 	}
4840 }
4841 
4842 static void balance_push(struct rq *rq);
4843 
4844 /*
4845  * balance_push_callback is a right abuse of the callback interface and plays
4846  * by significantly different rules.
4847  *
4848  * Where the normal balance_callback's purpose is to be ran in the same context
4849  * that queued it (only later, when it's safe to drop rq->lock again),
4850  * balance_push_callback is specifically targeted at __schedule().
4851  *
4852  * This abuse is tolerated because it places all the unlikely/odd cases behind
4853  * a single test, namely: rq->balance_callback == NULL.
4854  */
4855 struct callback_head balance_push_callback = {
4856 	.next = NULL,
4857 	.func = (void (*)(struct callback_head *))balance_push,
4858 };
4859 
4860 static inline struct callback_head *
4861 __splice_balance_callbacks(struct rq *rq, bool split)
4862 {
4863 	struct callback_head *head = rq->balance_callback;
4864 
4865 	if (likely(!head))
4866 		return NULL;
4867 
4868 	lockdep_assert_rq_held(rq);
4869 	/*
4870 	 * Must not take balance_push_callback off the list when
4871 	 * splice_balance_callbacks() and balance_callbacks() are not
4872 	 * in the same rq->lock section.
4873 	 *
4874 	 * In that case it would be possible for __schedule() to interleave
4875 	 * and observe the list empty.
4876 	 */
4877 	if (split && head == &balance_push_callback)
4878 		head = NULL;
4879 	else
4880 		rq->balance_callback = NULL;
4881 
4882 	return head;
4883 }
4884 
4885 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4886 {
4887 	return __splice_balance_callbacks(rq, true);
4888 }
4889 
4890 static void __balance_callbacks(struct rq *rq)
4891 {
4892 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
4893 }
4894 
4895 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4896 {
4897 	unsigned long flags;
4898 
4899 	if (unlikely(head)) {
4900 		raw_spin_rq_lock_irqsave(rq, flags);
4901 		do_balance_callbacks(rq, head);
4902 		raw_spin_rq_unlock_irqrestore(rq, flags);
4903 	}
4904 }
4905 
4906 #else
4907 
4908 static inline void __balance_callbacks(struct rq *rq)
4909 {
4910 }
4911 
4912 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4913 {
4914 	return NULL;
4915 }
4916 
4917 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4918 {
4919 }
4920 
4921 #endif
4922 
4923 static inline void
4924 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4925 {
4926 	/*
4927 	 * Since the runqueue lock will be released by the next
4928 	 * task (which is an invalid locking op but in the case
4929 	 * of the scheduler it's an obvious special-case), so we
4930 	 * do an early lockdep release here:
4931 	 */
4932 	rq_unpin_lock(rq, rf);
4933 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4934 #ifdef CONFIG_DEBUG_SPINLOCK
4935 	/* this is a valid case when another task releases the spinlock */
4936 	rq_lockp(rq)->owner = next;
4937 #endif
4938 }
4939 
4940 static inline void finish_lock_switch(struct rq *rq)
4941 {
4942 	/*
4943 	 * If we are tracking spinlock dependencies then we have to
4944 	 * fix up the runqueue lock - which gets 'carried over' from
4945 	 * prev into current:
4946 	 */
4947 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4948 	__balance_callbacks(rq);
4949 	raw_spin_rq_unlock_irq(rq);
4950 }
4951 
4952 /*
4953  * NOP if the arch has not defined these:
4954  */
4955 
4956 #ifndef prepare_arch_switch
4957 # define prepare_arch_switch(next)	do { } while (0)
4958 #endif
4959 
4960 #ifndef finish_arch_post_lock_switch
4961 # define finish_arch_post_lock_switch()	do { } while (0)
4962 #endif
4963 
4964 static inline void kmap_local_sched_out(void)
4965 {
4966 #ifdef CONFIG_KMAP_LOCAL
4967 	if (unlikely(current->kmap_ctrl.idx))
4968 		__kmap_local_sched_out();
4969 #endif
4970 }
4971 
4972 static inline void kmap_local_sched_in(void)
4973 {
4974 #ifdef CONFIG_KMAP_LOCAL
4975 	if (unlikely(current->kmap_ctrl.idx))
4976 		__kmap_local_sched_in();
4977 #endif
4978 }
4979 
4980 /**
4981  * prepare_task_switch - prepare to switch tasks
4982  * @rq: the runqueue preparing to switch
4983  * @prev: the current task that is being switched out
4984  * @next: the task we are going to switch to.
4985  *
4986  * This is called with the rq lock held and interrupts off. It must
4987  * be paired with a subsequent finish_task_switch after the context
4988  * switch.
4989  *
4990  * prepare_task_switch sets up locking and calls architecture specific
4991  * hooks.
4992  */
4993 static inline void
4994 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4995 		    struct task_struct *next)
4996 {
4997 	kcov_prepare_switch(prev);
4998 	sched_info_switch(rq, prev, next);
4999 	perf_event_task_sched_out(prev, next);
5000 	rseq_preempt(prev);
5001 	fire_sched_out_preempt_notifiers(prev, next);
5002 	kmap_local_sched_out();
5003 	prepare_task(next);
5004 	prepare_arch_switch(next);
5005 }
5006 
5007 /**
5008  * finish_task_switch - clean up after a task-switch
5009  * @prev: the thread we just switched away from.
5010  *
5011  * finish_task_switch must be called after the context switch, paired
5012  * with a prepare_task_switch call before the context switch.
5013  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5014  * and do any other architecture-specific cleanup actions.
5015  *
5016  * Note that we may have delayed dropping an mm in context_switch(). If
5017  * so, we finish that here outside of the runqueue lock. (Doing it
5018  * with the lock held can cause deadlocks; see schedule() for
5019  * details.)
5020  *
5021  * The context switch have flipped the stack from under us and restored the
5022  * local variables which were saved when this task called schedule() in the
5023  * past. prev == current is still correct but we need to recalculate this_rq
5024  * because prev may have moved to another CPU.
5025  */
5026 static struct rq *finish_task_switch(struct task_struct *prev)
5027 	__releases(rq->lock)
5028 {
5029 	struct rq *rq = this_rq();
5030 	struct mm_struct *mm = rq->prev_mm;
5031 	unsigned int prev_state;
5032 
5033 	/*
5034 	 * The previous task will have left us with a preempt_count of 2
5035 	 * because it left us after:
5036 	 *
5037 	 *	schedule()
5038 	 *	  preempt_disable();			// 1
5039 	 *	  __schedule()
5040 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5041 	 *
5042 	 * Also, see FORK_PREEMPT_COUNT.
5043 	 */
5044 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5045 		      "corrupted preempt_count: %s/%d/0x%x\n",
5046 		      current->comm, current->pid, preempt_count()))
5047 		preempt_count_set(FORK_PREEMPT_COUNT);
5048 
5049 	rq->prev_mm = NULL;
5050 
5051 	/*
5052 	 * A task struct has one reference for the use as "current".
5053 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5054 	 * schedule one last time. The schedule call will never return, and
5055 	 * the scheduled task must drop that reference.
5056 	 *
5057 	 * We must observe prev->state before clearing prev->on_cpu (in
5058 	 * finish_task), otherwise a concurrent wakeup can get prev
5059 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5060 	 * transition, resulting in a double drop.
5061 	 */
5062 	prev_state = READ_ONCE(prev->__state);
5063 	vtime_task_switch(prev);
5064 	perf_event_task_sched_in(prev, current);
5065 	finish_task(prev);
5066 	tick_nohz_task_switch();
5067 	finish_lock_switch(rq);
5068 	finish_arch_post_lock_switch();
5069 	kcov_finish_switch(current);
5070 	/*
5071 	 * kmap_local_sched_out() is invoked with rq::lock held and
5072 	 * interrupts disabled. There is no requirement for that, but the
5073 	 * sched out code does not have an interrupt enabled section.
5074 	 * Restoring the maps on sched in does not require interrupts being
5075 	 * disabled either.
5076 	 */
5077 	kmap_local_sched_in();
5078 
5079 	fire_sched_in_preempt_notifiers(current);
5080 	/*
5081 	 * When switching through a kernel thread, the loop in
5082 	 * membarrier_{private,global}_expedited() may have observed that
5083 	 * kernel thread and not issued an IPI. It is therefore possible to
5084 	 * schedule between user->kernel->user threads without passing though
5085 	 * switch_mm(). Membarrier requires a barrier after storing to
5086 	 * rq->curr, before returning to userspace, so provide them here:
5087 	 *
5088 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5089 	 *   provided by mmdrop(),
5090 	 * - a sync_core for SYNC_CORE.
5091 	 */
5092 	if (mm) {
5093 		membarrier_mm_sync_core_before_usermode(mm);
5094 		mmdrop_sched(mm);
5095 	}
5096 	if (unlikely(prev_state == TASK_DEAD)) {
5097 		if (prev->sched_class->task_dead)
5098 			prev->sched_class->task_dead(prev);
5099 
5100 		/* Task is done with its stack. */
5101 		put_task_stack(prev);
5102 
5103 		put_task_struct_rcu_user(prev);
5104 	}
5105 
5106 	return rq;
5107 }
5108 
5109 /**
5110  * schedule_tail - first thing a freshly forked thread must call.
5111  * @prev: the thread we just switched away from.
5112  */
5113 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5114 	__releases(rq->lock)
5115 {
5116 	/*
5117 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5118 	 * finish_task_switch() for details.
5119 	 *
5120 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5121 	 * and the preempt_enable() will end up enabling preemption (on
5122 	 * PREEMPT_COUNT kernels).
5123 	 */
5124 
5125 	finish_task_switch(prev);
5126 	preempt_enable();
5127 
5128 	if (current->set_child_tid)
5129 		put_user(task_pid_vnr(current), current->set_child_tid);
5130 
5131 	calculate_sigpending();
5132 }
5133 
5134 /*
5135  * context_switch - switch to the new MM and the new thread's register state.
5136  */
5137 static __always_inline struct rq *
5138 context_switch(struct rq *rq, struct task_struct *prev,
5139 	       struct task_struct *next, struct rq_flags *rf)
5140 {
5141 	prepare_task_switch(rq, prev, next);
5142 
5143 	/*
5144 	 * For paravirt, this is coupled with an exit in switch_to to
5145 	 * combine the page table reload and the switch backend into
5146 	 * one hypercall.
5147 	 */
5148 	arch_start_context_switch(prev);
5149 
5150 	/*
5151 	 * kernel -> kernel   lazy + transfer active
5152 	 *   user -> kernel   lazy + mmgrab() active
5153 	 *
5154 	 * kernel ->   user   switch + mmdrop() active
5155 	 *   user ->   user   switch
5156 	 */
5157 	if (!next->mm) {                                // to kernel
5158 		enter_lazy_tlb(prev->active_mm, next);
5159 
5160 		next->active_mm = prev->active_mm;
5161 		if (prev->mm)                           // from user
5162 			mmgrab(prev->active_mm);
5163 		else
5164 			prev->active_mm = NULL;
5165 	} else {                                        // to user
5166 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5167 		/*
5168 		 * sys_membarrier() requires an smp_mb() between setting
5169 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5170 		 *
5171 		 * The below provides this either through switch_mm(), or in
5172 		 * case 'prev->active_mm == next->mm' through
5173 		 * finish_task_switch()'s mmdrop().
5174 		 */
5175 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5176 		lru_gen_use_mm(next->mm);
5177 
5178 		if (!prev->mm) {                        // from kernel
5179 			/* will mmdrop() in finish_task_switch(). */
5180 			rq->prev_mm = prev->active_mm;
5181 			prev->active_mm = NULL;
5182 		}
5183 	}
5184 
5185 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5186 
5187 	prepare_lock_switch(rq, next, rf);
5188 
5189 	/* Here we just switch the register state and the stack. */
5190 	switch_to(prev, next, prev);
5191 	barrier();
5192 
5193 	return finish_task_switch(prev);
5194 }
5195 
5196 /*
5197  * nr_running and nr_context_switches:
5198  *
5199  * externally visible scheduler statistics: current number of runnable
5200  * threads, total number of context switches performed since bootup.
5201  */
5202 unsigned int nr_running(void)
5203 {
5204 	unsigned int i, sum = 0;
5205 
5206 	for_each_online_cpu(i)
5207 		sum += cpu_rq(i)->nr_running;
5208 
5209 	return sum;
5210 }
5211 
5212 /*
5213  * Check if only the current task is running on the CPU.
5214  *
5215  * Caution: this function does not check that the caller has disabled
5216  * preemption, thus the result might have a time-of-check-to-time-of-use
5217  * race.  The caller is responsible to use it correctly, for example:
5218  *
5219  * - from a non-preemptible section (of course)
5220  *
5221  * - from a thread that is bound to a single CPU
5222  *
5223  * - in a loop with very short iterations (e.g. a polling loop)
5224  */
5225 bool single_task_running(void)
5226 {
5227 	return raw_rq()->nr_running == 1;
5228 }
5229 EXPORT_SYMBOL(single_task_running);
5230 
5231 unsigned long long nr_context_switches(void)
5232 {
5233 	int i;
5234 	unsigned long long sum = 0;
5235 
5236 	for_each_possible_cpu(i)
5237 		sum += cpu_rq(i)->nr_switches;
5238 
5239 	return sum;
5240 }
5241 
5242 /*
5243  * Consumers of these two interfaces, like for example the cpuidle menu
5244  * governor, are using nonsensical data. Preferring shallow idle state selection
5245  * for a CPU that has IO-wait which might not even end up running the task when
5246  * it does become runnable.
5247  */
5248 
5249 unsigned int nr_iowait_cpu(int cpu)
5250 {
5251 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5252 }
5253 
5254 /*
5255  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5256  *
5257  * The idea behind IO-wait account is to account the idle time that we could
5258  * have spend running if it were not for IO. That is, if we were to improve the
5259  * storage performance, we'd have a proportional reduction in IO-wait time.
5260  *
5261  * This all works nicely on UP, where, when a task blocks on IO, we account
5262  * idle time as IO-wait, because if the storage were faster, it could've been
5263  * running and we'd not be idle.
5264  *
5265  * This has been extended to SMP, by doing the same for each CPU. This however
5266  * is broken.
5267  *
5268  * Imagine for instance the case where two tasks block on one CPU, only the one
5269  * CPU will have IO-wait accounted, while the other has regular idle. Even
5270  * though, if the storage were faster, both could've ran at the same time,
5271  * utilising both CPUs.
5272  *
5273  * This means, that when looking globally, the current IO-wait accounting on
5274  * SMP is a lower bound, by reason of under accounting.
5275  *
5276  * Worse, since the numbers are provided per CPU, they are sometimes
5277  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5278  * associated with any one particular CPU, it can wake to another CPU than it
5279  * blocked on. This means the per CPU IO-wait number is meaningless.
5280  *
5281  * Task CPU affinities can make all that even more 'interesting'.
5282  */
5283 
5284 unsigned int nr_iowait(void)
5285 {
5286 	unsigned int i, sum = 0;
5287 
5288 	for_each_possible_cpu(i)
5289 		sum += nr_iowait_cpu(i);
5290 
5291 	return sum;
5292 }
5293 
5294 #ifdef CONFIG_SMP
5295 
5296 /*
5297  * sched_exec - execve() is a valuable balancing opportunity, because at
5298  * this point the task has the smallest effective memory and cache footprint.
5299  */
5300 void sched_exec(void)
5301 {
5302 	struct task_struct *p = current;
5303 	unsigned long flags;
5304 	int dest_cpu;
5305 
5306 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5307 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5308 	if (dest_cpu == smp_processor_id())
5309 		goto unlock;
5310 
5311 	if (likely(cpu_active(dest_cpu))) {
5312 		struct migration_arg arg = { p, dest_cpu };
5313 
5314 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5315 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5316 		return;
5317 	}
5318 unlock:
5319 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5320 }
5321 
5322 #endif
5323 
5324 DEFINE_PER_CPU(struct kernel_stat, kstat);
5325 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5326 
5327 EXPORT_PER_CPU_SYMBOL(kstat);
5328 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5329 
5330 /*
5331  * The function fair_sched_class.update_curr accesses the struct curr
5332  * and its field curr->exec_start; when called from task_sched_runtime(),
5333  * we observe a high rate of cache misses in practice.
5334  * Prefetching this data results in improved performance.
5335  */
5336 static inline void prefetch_curr_exec_start(struct task_struct *p)
5337 {
5338 #ifdef CONFIG_FAIR_GROUP_SCHED
5339 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5340 #else
5341 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5342 #endif
5343 	prefetch(curr);
5344 	prefetch(&curr->exec_start);
5345 }
5346 
5347 /*
5348  * Return accounted runtime for the task.
5349  * In case the task is currently running, return the runtime plus current's
5350  * pending runtime that have not been accounted yet.
5351  */
5352 unsigned long long task_sched_runtime(struct task_struct *p)
5353 {
5354 	struct rq_flags rf;
5355 	struct rq *rq;
5356 	u64 ns;
5357 
5358 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5359 	/*
5360 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5361 	 * So we have a optimization chance when the task's delta_exec is 0.
5362 	 * Reading ->on_cpu is racy, but this is ok.
5363 	 *
5364 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5365 	 * If we race with it entering CPU, unaccounted time is 0. This is
5366 	 * indistinguishable from the read occurring a few cycles earlier.
5367 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5368 	 * been accounted, so we're correct here as well.
5369 	 */
5370 	if (!p->on_cpu || !task_on_rq_queued(p))
5371 		return p->se.sum_exec_runtime;
5372 #endif
5373 
5374 	rq = task_rq_lock(p, &rf);
5375 	/*
5376 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5377 	 * project cycles that may never be accounted to this
5378 	 * thread, breaking clock_gettime().
5379 	 */
5380 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5381 		prefetch_curr_exec_start(p);
5382 		update_rq_clock(rq);
5383 		p->sched_class->update_curr(rq);
5384 	}
5385 	ns = p->se.sum_exec_runtime;
5386 	task_rq_unlock(rq, p, &rf);
5387 
5388 	return ns;
5389 }
5390 
5391 #ifdef CONFIG_SCHED_DEBUG
5392 static u64 cpu_resched_latency(struct rq *rq)
5393 {
5394 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5395 	u64 resched_latency, now = rq_clock(rq);
5396 	static bool warned_once;
5397 
5398 	if (sysctl_resched_latency_warn_once && warned_once)
5399 		return 0;
5400 
5401 	if (!need_resched() || !latency_warn_ms)
5402 		return 0;
5403 
5404 	if (system_state == SYSTEM_BOOTING)
5405 		return 0;
5406 
5407 	if (!rq->last_seen_need_resched_ns) {
5408 		rq->last_seen_need_resched_ns = now;
5409 		rq->ticks_without_resched = 0;
5410 		return 0;
5411 	}
5412 
5413 	rq->ticks_without_resched++;
5414 	resched_latency = now - rq->last_seen_need_resched_ns;
5415 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5416 		return 0;
5417 
5418 	warned_once = true;
5419 
5420 	return resched_latency;
5421 }
5422 
5423 static int __init setup_resched_latency_warn_ms(char *str)
5424 {
5425 	long val;
5426 
5427 	if ((kstrtol(str, 0, &val))) {
5428 		pr_warn("Unable to set resched_latency_warn_ms\n");
5429 		return 1;
5430 	}
5431 
5432 	sysctl_resched_latency_warn_ms = val;
5433 	return 1;
5434 }
5435 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5436 #else
5437 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5438 #endif /* CONFIG_SCHED_DEBUG */
5439 
5440 /*
5441  * This function gets called by the timer code, with HZ frequency.
5442  * We call it with interrupts disabled.
5443  */
5444 void scheduler_tick(void)
5445 {
5446 	int cpu = smp_processor_id();
5447 	struct rq *rq = cpu_rq(cpu);
5448 	struct task_struct *curr = rq->curr;
5449 	struct rq_flags rf;
5450 	unsigned long thermal_pressure;
5451 	u64 resched_latency;
5452 
5453 	arch_scale_freq_tick();
5454 	sched_clock_tick();
5455 
5456 	rq_lock(rq, &rf);
5457 
5458 	update_rq_clock(rq);
5459 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5460 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5461 	curr->sched_class->task_tick(rq, curr, 0);
5462 	if (sched_feat(LATENCY_WARN))
5463 		resched_latency = cpu_resched_latency(rq);
5464 	calc_global_load_tick(rq);
5465 	sched_core_tick(rq);
5466 
5467 	rq_unlock(rq, &rf);
5468 
5469 	if (sched_feat(LATENCY_WARN) && resched_latency)
5470 		resched_latency_warn(cpu, resched_latency);
5471 
5472 	perf_event_task_tick();
5473 
5474 #ifdef CONFIG_SMP
5475 	rq->idle_balance = idle_cpu(cpu);
5476 	trigger_load_balance(rq);
5477 #endif
5478 }
5479 
5480 #ifdef CONFIG_NO_HZ_FULL
5481 
5482 struct tick_work {
5483 	int			cpu;
5484 	atomic_t		state;
5485 	struct delayed_work	work;
5486 };
5487 /* Values for ->state, see diagram below. */
5488 #define TICK_SCHED_REMOTE_OFFLINE	0
5489 #define TICK_SCHED_REMOTE_OFFLINING	1
5490 #define TICK_SCHED_REMOTE_RUNNING	2
5491 
5492 /*
5493  * State diagram for ->state:
5494  *
5495  *
5496  *          TICK_SCHED_REMOTE_OFFLINE
5497  *                    |   ^
5498  *                    |   |
5499  *                    |   | sched_tick_remote()
5500  *                    |   |
5501  *                    |   |
5502  *                    +--TICK_SCHED_REMOTE_OFFLINING
5503  *                    |   ^
5504  *                    |   |
5505  * sched_tick_start() |   | sched_tick_stop()
5506  *                    |   |
5507  *                    V   |
5508  *          TICK_SCHED_REMOTE_RUNNING
5509  *
5510  *
5511  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5512  * and sched_tick_start() are happy to leave the state in RUNNING.
5513  */
5514 
5515 static struct tick_work __percpu *tick_work_cpu;
5516 
5517 static void sched_tick_remote(struct work_struct *work)
5518 {
5519 	struct delayed_work *dwork = to_delayed_work(work);
5520 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5521 	int cpu = twork->cpu;
5522 	struct rq *rq = cpu_rq(cpu);
5523 	struct task_struct *curr;
5524 	struct rq_flags rf;
5525 	u64 delta;
5526 	int os;
5527 
5528 	/*
5529 	 * Handle the tick only if it appears the remote CPU is running in full
5530 	 * dynticks mode. The check is racy by nature, but missing a tick or
5531 	 * having one too much is no big deal because the scheduler tick updates
5532 	 * statistics and checks timeslices in a time-independent way, regardless
5533 	 * of when exactly it is running.
5534 	 */
5535 	if (!tick_nohz_tick_stopped_cpu(cpu))
5536 		goto out_requeue;
5537 
5538 	rq_lock_irq(rq, &rf);
5539 	curr = rq->curr;
5540 	if (cpu_is_offline(cpu))
5541 		goto out_unlock;
5542 
5543 	update_rq_clock(rq);
5544 
5545 	if (!is_idle_task(curr)) {
5546 		/*
5547 		 * Make sure the next tick runs within a reasonable
5548 		 * amount of time.
5549 		 */
5550 		delta = rq_clock_task(rq) - curr->se.exec_start;
5551 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5552 	}
5553 	curr->sched_class->task_tick(rq, curr, 0);
5554 
5555 	calc_load_nohz_remote(rq);
5556 out_unlock:
5557 	rq_unlock_irq(rq, &rf);
5558 out_requeue:
5559 
5560 	/*
5561 	 * Run the remote tick once per second (1Hz). This arbitrary
5562 	 * frequency is large enough to avoid overload but short enough
5563 	 * to keep scheduler internal stats reasonably up to date.  But
5564 	 * first update state to reflect hotplug activity if required.
5565 	 */
5566 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5567 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5568 	if (os == TICK_SCHED_REMOTE_RUNNING)
5569 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5570 }
5571 
5572 static void sched_tick_start(int cpu)
5573 {
5574 	int os;
5575 	struct tick_work *twork;
5576 
5577 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5578 		return;
5579 
5580 	WARN_ON_ONCE(!tick_work_cpu);
5581 
5582 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5583 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5584 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5585 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5586 		twork->cpu = cpu;
5587 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5588 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5589 	}
5590 }
5591 
5592 #ifdef CONFIG_HOTPLUG_CPU
5593 static void sched_tick_stop(int cpu)
5594 {
5595 	struct tick_work *twork;
5596 	int os;
5597 
5598 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5599 		return;
5600 
5601 	WARN_ON_ONCE(!tick_work_cpu);
5602 
5603 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5604 	/* There cannot be competing actions, but don't rely on stop-machine. */
5605 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5606 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5607 	/* Don't cancel, as this would mess up the state machine. */
5608 }
5609 #endif /* CONFIG_HOTPLUG_CPU */
5610 
5611 int __init sched_tick_offload_init(void)
5612 {
5613 	tick_work_cpu = alloc_percpu(struct tick_work);
5614 	BUG_ON(!tick_work_cpu);
5615 	return 0;
5616 }
5617 
5618 #else /* !CONFIG_NO_HZ_FULL */
5619 static inline void sched_tick_start(int cpu) { }
5620 static inline void sched_tick_stop(int cpu) { }
5621 #endif
5622 
5623 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5624 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5625 /*
5626  * If the value passed in is equal to the current preempt count
5627  * then we just disabled preemption. Start timing the latency.
5628  */
5629 static inline void preempt_latency_start(int val)
5630 {
5631 	if (preempt_count() == val) {
5632 		unsigned long ip = get_lock_parent_ip();
5633 #ifdef CONFIG_DEBUG_PREEMPT
5634 		current->preempt_disable_ip = ip;
5635 #endif
5636 		trace_preempt_off(CALLER_ADDR0, ip);
5637 	}
5638 }
5639 
5640 void preempt_count_add(int val)
5641 {
5642 #ifdef CONFIG_DEBUG_PREEMPT
5643 	/*
5644 	 * Underflow?
5645 	 */
5646 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5647 		return;
5648 #endif
5649 	__preempt_count_add(val);
5650 #ifdef CONFIG_DEBUG_PREEMPT
5651 	/*
5652 	 * Spinlock count overflowing soon?
5653 	 */
5654 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5655 				PREEMPT_MASK - 10);
5656 #endif
5657 	preempt_latency_start(val);
5658 }
5659 EXPORT_SYMBOL(preempt_count_add);
5660 NOKPROBE_SYMBOL(preempt_count_add);
5661 
5662 /*
5663  * If the value passed in equals to the current preempt count
5664  * then we just enabled preemption. Stop timing the latency.
5665  */
5666 static inline void preempt_latency_stop(int val)
5667 {
5668 	if (preempt_count() == val)
5669 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5670 }
5671 
5672 void preempt_count_sub(int val)
5673 {
5674 #ifdef CONFIG_DEBUG_PREEMPT
5675 	/*
5676 	 * Underflow?
5677 	 */
5678 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5679 		return;
5680 	/*
5681 	 * Is the spinlock portion underflowing?
5682 	 */
5683 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5684 			!(preempt_count() & PREEMPT_MASK)))
5685 		return;
5686 #endif
5687 
5688 	preempt_latency_stop(val);
5689 	__preempt_count_sub(val);
5690 }
5691 EXPORT_SYMBOL(preempt_count_sub);
5692 NOKPROBE_SYMBOL(preempt_count_sub);
5693 
5694 #else
5695 static inline void preempt_latency_start(int val) { }
5696 static inline void preempt_latency_stop(int val) { }
5697 #endif
5698 
5699 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5700 {
5701 #ifdef CONFIG_DEBUG_PREEMPT
5702 	return p->preempt_disable_ip;
5703 #else
5704 	return 0;
5705 #endif
5706 }
5707 
5708 /*
5709  * Print scheduling while atomic bug:
5710  */
5711 static noinline void __schedule_bug(struct task_struct *prev)
5712 {
5713 	/* Save this before calling printk(), since that will clobber it */
5714 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5715 
5716 	if (oops_in_progress)
5717 		return;
5718 
5719 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5720 		prev->comm, prev->pid, preempt_count());
5721 
5722 	debug_show_held_locks(prev);
5723 	print_modules();
5724 	if (irqs_disabled())
5725 		print_irqtrace_events(prev);
5726 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5727 	    && in_atomic_preempt_off()) {
5728 		pr_err("Preemption disabled at:");
5729 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5730 	}
5731 	if (panic_on_warn)
5732 		panic("scheduling while atomic\n");
5733 
5734 	dump_stack();
5735 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5736 }
5737 
5738 /*
5739  * Various schedule()-time debugging checks and statistics:
5740  */
5741 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5742 {
5743 #ifdef CONFIG_SCHED_STACK_END_CHECK
5744 	if (task_stack_end_corrupted(prev))
5745 		panic("corrupted stack end detected inside scheduler\n");
5746 
5747 	if (task_scs_end_corrupted(prev))
5748 		panic("corrupted shadow stack detected inside scheduler\n");
5749 #endif
5750 
5751 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5752 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5753 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5754 			prev->comm, prev->pid, prev->non_block_count);
5755 		dump_stack();
5756 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5757 	}
5758 #endif
5759 
5760 	if (unlikely(in_atomic_preempt_off())) {
5761 		__schedule_bug(prev);
5762 		preempt_count_set(PREEMPT_DISABLED);
5763 	}
5764 	rcu_sleep_check();
5765 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5766 
5767 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5768 
5769 	schedstat_inc(this_rq()->sched_count);
5770 }
5771 
5772 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5773 				  struct rq_flags *rf)
5774 {
5775 #ifdef CONFIG_SMP
5776 	const struct sched_class *class;
5777 	/*
5778 	 * We must do the balancing pass before put_prev_task(), such
5779 	 * that when we release the rq->lock the task is in the same
5780 	 * state as before we took rq->lock.
5781 	 *
5782 	 * We can terminate the balance pass as soon as we know there is
5783 	 * a runnable task of @class priority or higher.
5784 	 */
5785 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5786 		if (class->balance(rq, prev, rf))
5787 			break;
5788 	}
5789 #endif
5790 
5791 	put_prev_task(rq, prev);
5792 }
5793 
5794 /*
5795  * Pick up the highest-prio task:
5796  */
5797 static inline struct task_struct *
5798 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5799 {
5800 	const struct sched_class *class;
5801 	struct task_struct *p;
5802 
5803 	/*
5804 	 * Optimization: we know that if all tasks are in the fair class we can
5805 	 * call that function directly, but only if the @prev task wasn't of a
5806 	 * higher scheduling class, because otherwise those lose the
5807 	 * opportunity to pull in more work from other CPUs.
5808 	 */
5809 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5810 		   rq->nr_running == rq->cfs.h_nr_running)) {
5811 
5812 		p = pick_next_task_fair(rq, prev, rf);
5813 		if (unlikely(p == RETRY_TASK))
5814 			goto restart;
5815 
5816 		/* Assume the next prioritized class is idle_sched_class */
5817 		if (!p) {
5818 			put_prev_task(rq, prev);
5819 			p = pick_next_task_idle(rq);
5820 		}
5821 
5822 		return p;
5823 	}
5824 
5825 restart:
5826 	put_prev_task_balance(rq, prev, rf);
5827 
5828 	for_each_class(class) {
5829 		p = class->pick_next_task(rq);
5830 		if (p)
5831 			return p;
5832 	}
5833 
5834 	BUG(); /* The idle class should always have a runnable task. */
5835 }
5836 
5837 #ifdef CONFIG_SCHED_CORE
5838 static inline bool is_task_rq_idle(struct task_struct *t)
5839 {
5840 	return (task_rq(t)->idle == t);
5841 }
5842 
5843 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5844 {
5845 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5846 }
5847 
5848 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5849 {
5850 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5851 		return true;
5852 
5853 	return a->core_cookie == b->core_cookie;
5854 }
5855 
5856 static inline struct task_struct *pick_task(struct rq *rq)
5857 {
5858 	const struct sched_class *class;
5859 	struct task_struct *p;
5860 
5861 	for_each_class(class) {
5862 		p = class->pick_task(rq);
5863 		if (p)
5864 			return p;
5865 	}
5866 
5867 	BUG(); /* The idle class should always have a runnable task. */
5868 }
5869 
5870 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5871 
5872 static void queue_core_balance(struct rq *rq);
5873 
5874 static struct task_struct *
5875 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5876 {
5877 	struct task_struct *next, *p, *max = NULL;
5878 	const struct cpumask *smt_mask;
5879 	bool fi_before = false;
5880 	bool core_clock_updated = (rq == rq->core);
5881 	unsigned long cookie;
5882 	int i, cpu, occ = 0;
5883 	struct rq *rq_i;
5884 	bool need_sync;
5885 
5886 	if (!sched_core_enabled(rq))
5887 		return __pick_next_task(rq, prev, rf);
5888 
5889 	cpu = cpu_of(rq);
5890 
5891 	/* Stopper task is switching into idle, no need core-wide selection. */
5892 	if (cpu_is_offline(cpu)) {
5893 		/*
5894 		 * Reset core_pick so that we don't enter the fastpath when
5895 		 * coming online. core_pick would already be migrated to
5896 		 * another cpu during offline.
5897 		 */
5898 		rq->core_pick = NULL;
5899 		return __pick_next_task(rq, prev, rf);
5900 	}
5901 
5902 	/*
5903 	 * If there were no {en,de}queues since we picked (IOW, the task
5904 	 * pointers are all still valid), and we haven't scheduled the last
5905 	 * pick yet, do so now.
5906 	 *
5907 	 * rq->core_pick can be NULL if no selection was made for a CPU because
5908 	 * it was either offline or went offline during a sibling's core-wide
5909 	 * selection. In this case, do a core-wide selection.
5910 	 */
5911 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5912 	    rq->core->core_pick_seq != rq->core_sched_seq &&
5913 	    rq->core_pick) {
5914 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5915 
5916 		next = rq->core_pick;
5917 		if (next != prev) {
5918 			put_prev_task(rq, prev);
5919 			set_next_task(rq, next);
5920 		}
5921 
5922 		rq->core_pick = NULL;
5923 		goto out;
5924 	}
5925 
5926 	put_prev_task_balance(rq, prev, rf);
5927 
5928 	smt_mask = cpu_smt_mask(cpu);
5929 	need_sync = !!rq->core->core_cookie;
5930 
5931 	/* reset state */
5932 	rq->core->core_cookie = 0UL;
5933 	if (rq->core->core_forceidle_count) {
5934 		if (!core_clock_updated) {
5935 			update_rq_clock(rq->core);
5936 			core_clock_updated = true;
5937 		}
5938 		sched_core_account_forceidle(rq);
5939 		/* reset after accounting force idle */
5940 		rq->core->core_forceidle_start = 0;
5941 		rq->core->core_forceidle_count = 0;
5942 		rq->core->core_forceidle_occupation = 0;
5943 		need_sync = true;
5944 		fi_before = true;
5945 	}
5946 
5947 	/*
5948 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5949 	 *
5950 	 * @task_seq guards the task state ({en,de}queues)
5951 	 * @pick_seq is the @task_seq we did a selection on
5952 	 * @sched_seq is the @pick_seq we scheduled
5953 	 *
5954 	 * However, preemptions can cause multiple picks on the same task set.
5955 	 * 'Fix' this by also increasing @task_seq for every pick.
5956 	 */
5957 	rq->core->core_task_seq++;
5958 
5959 	/*
5960 	 * Optimize for common case where this CPU has no cookies
5961 	 * and there are no cookied tasks running on siblings.
5962 	 */
5963 	if (!need_sync) {
5964 		next = pick_task(rq);
5965 		if (!next->core_cookie) {
5966 			rq->core_pick = NULL;
5967 			/*
5968 			 * For robustness, update the min_vruntime_fi for
5969 			 * unconstrained picks as well.
5970 			 */
5971 			WARN_ON_ONCE(fi_before);
5972 			task_vruntime_update(rq, next, false);
5973 			goto out_set_next;
5974 		}
5975 	}
5976 
5977 	/*
5978 	 * For each thread: do the regular task pick and find the max prio task
5979 	 * amongst them.
5980 	 *
5981 	 * Tie-break prio towards the current CPU
5982 	 */
5983 	for_each_cpu_wrap(i, smt_mask, cpu) {
5984 		rq_i = cpu_rq(i);
5985 
5986 		/*
5987 		 * Current cpu always has its clock updated on entrance to
5988 		 * pick_next_task(). If the current cpu is not the core,
5989 		 * the core may also have been updated above.
5990 		 */
5991 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
5992 			update_rq_clock(rq_i);
5993 
5994 		p = rq_i->core_pick = pick_task(rq_i);
5995 		if (!max || prio_less(max, p, fi_before))
5996 			max = p;
5997 	}
5998 
5999 	cookie = rq->core->core_cookie = max->core_cookie;
6000 
6001 	/*
6002 	 * For each thread: try and find a runnable task that matches @max or
6003 	 * force idle.
6004 	 */
6005 	for_each_cpu(i, smt_mask) {
6006 		rq_i = cpu_rq(i);
6007 		p = rq_i->core_pick;
6008 
6009 		if (!cookie_equals(p, cookie)) {
6010 			p = NULL;
6011 			if (cookie)
6012 				p = sched_core_find(rq_i, cookie);
6013 			if (!p)
6014 				p = idle_sched_class.pick_task(rq_i);
6015 		}
6016 
6017 		rq_i->core_pick = p;
6018 
6019 		if (p == rq_i->idle) {
6020 			if (rq_i->nr_running) {
6021 				rq->core->core_forceidle_count++;
6022 				if (!fi_before)
6023 					rq->core->core_forceidle_seq++;
6024 			}
6025 		} else {
6026 			occ++;
6027 		}
6028 	}
6029 
6030 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6031 		rq->core->core_forceidle_start = rq_clock(rq->core);
6032 		rq->core->core_forceidle_occupation = occ;
6033 	}
6034 
6035 	rq->core->core_pick_seq = rq->core->core_task_seq;
6036 	next = rq->core_pick;
6037 	rq->core_sched_seq = rq->core->core_pick_seq;
6038 
6039 	/* Something should have been selected for current CPU */
6040 	WARN_ON_ONCE(!next);
6041 
6042 	/*
6043 	 * Reschedule siblings
6044 	 *
6045 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6046 	 * sending an IPI (below) ensures the sibling will no longer be running
6047 	 * their task. This ensures there is no inter-sibling overlap between
6048 	 * non-matching user state.
6049 	 */
6050 	for_each_cpu(i, smt_mask) {
6051 		rq_i = cpu_rq(i);
6052 
6053 		/*
6054 		 * An online sibling might have gone offline before a task
6055 		 * could be picked for it, or it might be offline but later
6056 		 * happen to come online, but its too late and nothing was
6057 		 * picked for it.  That's Ok - it will pick tasks for itself,
6058 		 * so ignore it.
6059 		 */
6060 		if (!rq_i->core_pick)
6061 			continue;
6062 
6063 		/*
6064 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6065 		 * fi_before     fi      update?
6066 		 *  0            0       1
6067 		 *  0            1       1
6068 		 *  1            0       1
6069 		 *  1            1       0
6070 		 */
6071 		if (!(fi_before && rq->core->core_forceidle_count))
6072 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6073 
6074 		rq_i->core_pick->core_occupation = occ;
6075 
6076 		if (i == cpu) {
6077 			rq_i->core_pick = NULL;
6078 			continue;
6079 		}
6080 
6081 		/* Did we break L1TF mitigation requirements? */
6082 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6083 
6084 		if (rq_i->curr == rq_i->core_pick) {
6085 			rq_i->core_pick = NULL;
6086 			continue;
6087 		}
6088 
6089 		resched_curr(rq_i);
6090 	}
6091 
6092 out_set_next:
6093 	set_next_task(rq, next);
6094 out:
6095 	if (rq->core->core_forceidle_count && next == rq->idle)
6096 		queue_core_balance(rq);
6097 
6098 	return next;
6099 }
6100 
6101 static bool try_steal_cookie(int this, int that)
6102 {
6103 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6104 	struct task_struct *p;
6105 	unsigned long cookie;
6106 	bool success = false;
6107 
6108 	local_irq_disable();
6109 	double_rq_lock(dst, src);
6110 
6111 	cookie = dst->core->core_cookie;
6112 	if (!cookie)
6113 		goto unlock;
6114 
6115 	if (dst->curr != dst->idle)
6116 		goto unlock;
6117 
6118 	p = sched_core_find(src, cookie);
6119 	if (p == src->idle)
6120 		goto unlock;
6121 
6122 	do {
6123 		if (p == src->core_pick || p == src->curr)
6124 			goto next;
6125 
6126 		if (!is_cpu_allowed(p, this))
6127 			goto next;
6128 
6129 		if (p->core_occupation > dst->idle->core_occupation)
6130 			goto next;
6131 
6132 		deactivate_task(src, p, 0);
6133 		set_task_cpu(p, this);
6134 		activate_task(dst, p, 0);
6135 
6136 		resched_curr(dst);
6137 
6138 		success = true;
6139 		break;
6140 
6141 next:
6142 		p = sched_core_next(p, cookie);
6143 	} while (p);
6144 
6145 unlock:
6146 	double_rq_unlock(dst, src);
6147 	local_irq_enable();
6148 
6149 	return success;
6150 }
6151 
6152 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6153 {
6154 	int i;
6155 
6156 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
6157 		if (i == cpu)
6158 			continue;
6159 
6160 		if (need_resched())
6161 			break;
6162 
6163 		if (try_steal_cookie(cpu, i))
6164 			return true;
6165 	}
6166 
6167 	return false;
6168 }
6169 
6170 static void sched_core_balance(struct rq *rq)
6171 {
6172 	struct sched_domain *sd;
6173 	int cpu = cpu_of(rq);
6174 
6175 	preempt_disable();
6176 	rcu_read_lock();
6177 	raw_spin_rq_unlock_irq(rq);
6178 	for_each_domain(cpu, sd) {
6179 		if (need_resched())
6180 			break;
6181 
6182 		if (steal_cookie_task(cpu, sd))
6183 			break;
6184 	}
6185 	raw_spin_rq_lock_irq(rq);
6186 	rcu_read_unlock();
6187 	preempt_enable();
6188 }
6189 
6190 static DEFINE_PER_CPU(struct callback_head, core_balance_head);
6191 
6192 static void queue_core_balance(struct rq *rq)
6193 {
6194 	if (!sched_core_enabled(rq))
6195 		return;
6196 
6197 	if (!rq->core->core_cookie)
6198 		return;
6199 
6200 	if (!rq->nr_running) /* not forced idle */
6201 		return;
6202 
6203 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6204 }
6205 
6206 static void sched_core_cpu_starting(unsigned int cpu)
6207 {
6208 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6209 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6210 	unsigned long flags;
6211 	int t;
6212 
6213 	sched_core_lock(cpu, &flags);
6214 
6215 	WARN_ON_ONCE(rq->core != rq);
6216 
6217 	/* if we're the first, we'll be our own leader */
6218 	if (cpumask_weight(smt_mask) == 1)
6219 		goto unlock;
6220 
6221 	/* find the leader */
6222 	for_each_cpu(t, smt_mask) {
6223 		if (t == cpu)
6224 			continue;
6225 		rq = cpu_rq(t);
6226 		if (rq->core == rq) {
6227 			core_rq = rq;
6228 			break;
6229 		}
6230 	}
6231 
6232 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6233 		goto unlock;
6234 
6235 	/* install and validate core_rq */
6236 	for_each_cpu(t, smt_mask) {
6237 		rq = cpu_rq(t);
6238 
6239 		if (t == cpu)
6240 			rq->core = core_rq;
6241 
6242 		WARN_ON_ONCE(rq->core != core_rq);
6243 	}
6244 
6245 unlock:
6246 	sched_core_unlock(cpu, &flags);
6247 }
6248 
6249 static void sched_core_cpu_deactivate(unsigned int cpu)
6250 {
6251 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6252 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6253 	unsigned long flags;
6254 	int t;
6255 
6256 	sched_core_lock(cpu, &flags);
6257 
6258 	/* if we're the last man standing, nothing to do */
6259 	if (cpumask_weight(smt_mask) == 1) {
6260 		WARN_ON_ONCE(rq->core != rq);
6261 		goto unlock;
6262 	}
6263 
6264 	/* if we're not the leader, nothing to do */
6265 	if (rq->core != rq)
6266 		goto unlock;
6267 
6268 	/* find a new leader */
6269 	for_each_cpu(t, smt_mask) {
6270 		if (t == cpu)
6271 			continue;
6272 		core_rq = cpu_rq(t);
6273 		break;
6274 	}
6275 
6276 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6277 		goto unlock;
6278 
6279 	/* copy the shared state to the new leader */
6280 	core_rq->core_task_seq             = rq->core_task_seq;
6281 	core_rq->core_pick_seq             = rq->core_pick_seq;
6282 	core_rq->core_cookie               = rq->core_cookie;
6283 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6284 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6285 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6286 
6287 	/*
6288 	 * Accounting edge for forced idle is handled in pick_next_task().
6289 	 * Don't need another one here, since the hotplug thread shouldn't
6290 	 * have a cookie.
6291 	 */
6292 	core_rq->core_forceidle_start = 0;
6293 
6294 	/* install new leader */
6295 	for_each_cpu(t, smt_mask) {
6296 		rq = cpu_rq(t);
6297 		rq->core = core_rq;
6298 	}
6299 
6300 unlock:
6301 	sched_core_unlock(cpu, &flags);
6302 }
6303 
6304 static inline void sched_core_cpu_dying(unsigned int cpu)
6305 {
6306 	struct rq *rq = cpu_rq(cpu);
6307 
6308 	if (rq->core != rq)
6309 		rq->core = rq;
6310 }
6311 
6312 #else /* !CONFIG_SCHED_CORE */
6313 
6314 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6315 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6316 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6317 
6318 static struct task_struct *
6319 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6320 {
6321 	return __pick_next_task(rq, prev, rf);
6322 }
6323 
6324 #endif /* CONFIG_SCHED_CORE */
6325 
6326 /*
6327  * Constants for the sched_mode argument of __schedule().
6328  *
6329  * The mode argument allows RT enabled kernels to differentiate a
6330  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6331  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6332  * optimize the AND operation out and just check for zero.
6333  */
6334 #define SM_NONE			0x0
6335 #define SM_PREEMPT		0x1
6336 #define SM_RTLOCK_WAIT		0x2
6337 
6338 #ifndef CONFIG_PREEMPT_RT
6339 # define SM_MASK_PREEMPT	(~0U)
6340 #else
6341 # define SM_MASK_PREEMPT	SM_PREEMPT
6342 #endif
6343 
6344 /*
6345  * __schedule() is the main scheduler function.
6346  *
6347  * The main means of driving the scheduler and thus entering this function are:
6348  *
6349  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6350  *
6351  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6352  *      paths. For example, see arch/x86/entry_64.S.
6353  *
6354  *      To drive preemption between tasks, the scheduler sets the flag in timer
6355  *      interrupt handler scheduler_tick().
6356  *
6357  *   3. Wakeups don't really cause entry into schedule(). They add a
6358  *      task to the run-queue and that's it.
6359  *
6360  *      Now, if the new task added to the run-queue preempts the current
6361  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6362  *      called on the nearest possible occasion:
6363  *
6364  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6365  *
6366  *         - in syscall or exception context, at the next outmost
6367  *           preempt_enable(). (this might be as soon as the wake_up()'s
6368  *           spin_unlock()!)
6369  *
6370  *         - in IRQ context, return from interrupt-handler to
6371  *           preemptible context
6372  *
6373  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6374  *         then at the next:
6375  *
6376  *          - cond_resched() call
6377  *          - explicit schedule() call
6378  *          - return from syscall or exception to user-space
6379  *          - return from interrupt-handler to user-space
6380  *
6381  * WARNING: must be called with preemption disabled!
6382  */
6383 static void __sched notrace __schedule(unsigned int sched_mode)
6384 {
6385 	struct task_struct *prev, *next;
6386 	unsigned long *switch_count;
6387 	unsigned long prev_state;
6388 	struct rq_flags rf;
6389 	struct rq *rq;
6390 	int cpu;
6391 
6392 	cpu = smp_processor_id();
6393 	rq = cpu_rq(cpu);
6394 	prev = rq->curr;
6395 
6396 	schedule_debug(prev, !!sched_mode);
6397 
6398 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6399 		hrtick_clear(rq);
6400 
6401 	local_irq_disable();
6402 	rcu_note_context_switch(!!sched_mode);
6403 
6404 	/*
6405 	 * Make sure that signal_pending_state()->signal_pending() below
6406 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6407 	 * done by the caller to avoid the race with signal_wake_up():
6408 	 *
6409 	 * __set_current_state(@state)		signal_wake_up()
6410 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6411 	 *					  wake_up_state(p, state)
6412 	 *   LOCK rq->lock			    LOCK p->pi_state
6413 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6414 	 *     if (signal_pending_state())	    if (p->state & @state)
6415 	 *
6416 	 * Also, the membarrier system call requires a full memory barrier
6417 	 * after coming from user-space, before storing to rq->curr.
6418 	 */
6419 	rq_lock(rq, &rf);
6420 	smp_mb__after_spinlock();
6421 
6422 	/* Promote REQ to ACT */
6423 	rq->clock_update_flags <<= 1;
6424 	update_rq_clock(rq);
6425 
6426 	switch_count = &prev->nivcsw;
6427 
6428 	/*
6429 	 * We must load prev->state once (task_struct::state is volatile), such
6430 	 * that we form a control dependency vs deactivate_task() below.
6431 	 */
6432 	prev_state = READ_ONCE(prev->__state);
6433 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6434 		if (signal_pending_state(prev_state, prev)) {
6435 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6436 		} else {
6437 			prev->sched_contributes_to_load =
6438 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6439 				!(prev_state & TASK_NOLOAD) &&
6440 				!(prev_state & TASK_FROZEN);
6441 
6442 			if (prev->sched_contributes_to_load)
6443 				rq->nr_uninterruptible++;
6444 
6445 			/*
6446 			 * __schedule()			ttwu()
6447 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6448 			 *   if (prev_state)		    goto out;
6449 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6450 			 *				  p->state = TASK_WAKING
6451 			 *
6452 			 * Where __schedule() and ttwu() have matching control dependencies.
6453 			 *
6454 			 * After this, schedule() must not care about p->state any more.
6455 			 */
6456 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6457 
6458 			if (prev->in_iowait) {
6459 				atomic_inc(&rq->nr_iowait);
6460 				delayacct_blkio_start();
6461 			}
6462 		}
6463 		switch_count = &prev->nvcsw;
6464 	}
6465 
6466 	next = pick_next_task(rq, prev, &rf);
6467 	clear_tsk_need_resched(prev);
6468 	clear_preempt_need_resched();
6469 #ifdef CONFIG_SCHED_DEBUG
6470 	rq->last_seen_need_resched_ns = 0;
6471 #endif
6472 
6473 	if (likely(prev != next)) {
6474 		rq->nr_switches++;
6475 		/*
6476 		 * RCU users of rcu_dereference(rq->curr) may not see
6477 		 * changes to task_struct made by pick_next_task().
6478 		 */
6479 		RCU_INIT_POINTER(rq->curr, next);
6480 		/*
6481 		 * The membarrier system call requires each architecture
6482 		 * to have a full memory barrier after updating
6483 		 * rq->curr, before returning to user-space.
6484 		 *
6485 		 * Here are the schemes providing that barrier on the
6486 		 * various architectures:
6487 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6488 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6489 		 * - finish_lock_switch() for weakly-ordered
6490 		 *   architectures where spin_unlock is a full barrier,
6491 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6492 		 *   is a RELEASE barrier),
6493 		 */
6494 		++*switch_count;
6495 
6496 		migrate_disable_switch(rq, prev);
6497 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6498 
6499 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6500 
6501 		/* Also unlocks the rq: */
6502 		rq = context_switch(rq, prev, next, &rf);
6503 	} else {
6504 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6505 
6506 		rq_unpin_lock(rq, &rf);
6507 		__balance_callbacks(rq);
6508 		raw_spin_rq_unlock_irq(rq);
6509 	}
6510 }
6511 
6512 void __noreturn do_task_dead(void)
6513 {
6514 	/* Causes final put_task_struct in finish_task_switch(): */
6515 	set_special_state(TASK_DEAD);
6516 
6517 	/* Tell freezer to ignore us: */
6518 	current->flags |= PF_NOFREEZE;
6519 
6520 	__schedule(SM_NONE);
6521 	BUG();
6522 
6523 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6524 	for (;;)
6525 		cpu_relax();
6526 }
6527 
6528 static inline void sched_submit_work(struct task_struct *tsk)
6529 {
6530 	unsigned int task_flags;
6531 
6532 	if (task_is_running(tsk))
6533 		return;
6534 
6535 	task_flags = tsk->flags;
6536 	/*
6537 	 * If a worker goes to sleep, notify and ask workqueue whether it
6538 	 * wants to wake up a task to maintain concurrency.
6539 	 */
6540 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6541 		if (task_flags & PF_WQ_WORKER)
6542 			wq_worker_sleeping(tsk);
6543 		else
6544 			io_wq_worker_sleeping(tsk);
6545 	}
6546 
6547 	/*
6548 	 * spinlock and rwlock must not flush block requests.  This will
6549 	 * deadlock if the callback attempts to acquire a lock which is
6550 	 * already acquired.
6551 	 */
6552 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6553 
6554 	/*
6555 	 * If we are going to sleep and we have plugged IO queued,
6556 	 * make sure to submit it to avoid deadlocks.
6557 	 */
6558 	blk_flush_plug(tsk->plug, true);
6559 }
6560 
6561 static void sched_update_worker(struct task_struct *tsk)
6562 {
6563 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6564 		if (tsk->flags & PF_WQ_WORKER)
6565 			wq_worker_running(tsk);
6566 		else
6567 			io_wq_worker_running(tsk);
6568 	}
6569 }
6570 
6571 asmlinkage __visible void __sched schedule(void)
6572 {
6573 	struct task_struct *tsk = current;
6574 
6575 	sched_submit_work(tsk);
6576 	do {
6577 		preempt_disable();
6578 		__schedule(SM_NONE);
6579 		sched_preempt_enable_no_resched();
6580 	} while (need_resched());
6581 	sched_update_worker(tsk);
6582 }
6583 EXPORT_SYMBOL(schedule);
6584 
6585 /*
6586  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6587  * state (have scheduled out non-voluntarily) by making sure that all
6588  * tasks have either left the run queue or have gone into user space.
6589  * As idle tasks do not do either, they must not ever be preempted
6590  * (schedule out non-voluntarily).
6591  *
6592  * schedule_idle() is similar to schedule_preempt_disable() except that it
6593  * never enables preemption because it does not call sched_submit_work().
6594  */
6595 void __sched schedule_idle(void)
6596 {
6597 	/*
6598 	 * As this skips calling sched_submit_work(), which the idle task does
6599 	 * regardless because that function is a nop when the task is in a
6600 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6601 	 * current task can be in any other state. Note, idle is always in the
6602 	 * TASK_RUNNING state.
6603 	 */
6604 	WARN_ON_ONCE(current->__state);
6605 	do {
6606 		__schedule(SM_NONE);
6607 	} while (need_resched());
6608 }
6609 
6610 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6611 asmlinkage __visible void __sched schedule_user(void)
6612 {
6613 	/*
6614 	 * If we come here after a random call to set_need_resched(),
6615 	 * or we have been woken up remotely but the IPI has not yet arrived,
6616 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6617 	 * we find a better solution.
6618 	 *
6619 	 * NB: There are buggy callers of this function.  Ideally we
6620 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6621 	 * too frequently to make sense yet.
6622 	 */
6623 	enum ctx_state prev_state = exception_enter();
6624 	schedule();
6625 	exception_exit(prev_state);
6626 }
6627 #endif
6628 
6629 /**
6630  * schedule_preempt_disabled - called with preemption disabled
6631  *
6632  * Returns with preemption disabled. Note: preempt_count must be 1
6633  */
6634 void __sched schedule_preempt_disabled(void)
6635 {
6636 	sched_preempt_enable_no_resched();
6637 	schedule();
6638 	preempt_disable();
6639 }
6640 
6641 #ifdef CONFIG_PREEMPT_RT
6642 void __sched notrace schedule_rtlock(void)
6643 {
6644 	do {
6645 		preempt_disable();
6646 		__schedule(SM_RTLOCK_WAIT);
6647 		sched_preempt_enable_no_resched();
6648 	} while (need_resched());
6649 }
6650 NOKPROBE_SYMBOL(schedule_rtlock);
6651 #endif
6652 
6653 static void __sched notrace preempt_schedule_common(void)
6654 {
6655 	do {
6656 		/*
6657 		 * Because the function tracer can trace preempt_count_sub()
6658 		 * and it also uses preempt_enable/disable_notrace(), if
6659 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6660 		 * by the function tracer will call this function again and
6661 		 * cause infinite recursion.
6662 		 *
6663 		 * Preemption must be disabled here before the function
6664 		 * tracer can trace. Break up preempt_disable() into two
6665 		 * calls. One to disable preemption without fear of being
6666 		 * traced. The other to still record the preemption latency,
6667 		 * which can also be traced by the function tracer.
6668 		 */
6669 		preempt_disable_notrace();
6670 		preempt_latency_start(1);
6671 		__schedule(SM_PREEMPT);
6672 		preempt_latency_stop(1);
6673 		preempt_enable_no_resched_notrace();
6674 
6675 		/*
6676 		 * Check again in case we missed a preemption opportunity
6677 		 * between schedule and now.
6678 		 */
6679 	} while (need_resched());
6680 }
6681 
6682 #ifdef CONFIG_PREEMPTION
6683 /*
6684  * This is the entry point to schedule() from in-kernel preemption
6685  * off of preempt_enable.
6686  */
6687 asmlinkage __visible void __sched notrace preempt_schedule(void)
6688 {
6689 	/*
6690 	 * If there is a non-zero preempt_count or interrupts are disabled,
6691 	 * we do not want to preempt the current task. Just return..
6692 	 */
6693 	if (likely(!preemptible()))
6694 		return;
6695 	preempt_schedule_common();
6696 }
6697 NOKPROBE_SYMBOL(preempt_schedule);
6698 EXPORT_SYMBOL(preempt_schedule);
6699 
6700 #ifdef CONFIG_PREEMPT_DYNAMIC
6701 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6702 #ifndef preempt_schedule_dynamic_enabled
6703 #define preempt_schedule_dynamic_enabled	preempt_schedule
6704 #define preempt_schedule_dynamic_disabled	NULL
6705 #endif
6706 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6707 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6708 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6709 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6710 void __sched notrace dynamic_preempt_schedule(void)
6711 {
6712 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6713 		return;
6714 	preempt_schedule();
6715 }
6716 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6717 EXPORT_SYMBOL(dynamic_preempt_schedule);
6718 #endif
6719 #endif
6720 
6721 /**
6722  * preempt_schedule_notrace - preempt_schedule called by tracing
6723  *
6724  * The tracing infrastructure uses preempt_enable_notrace to prevent
6725  * recursion and tracing preempt enabling caused by the tracing
6726  * infrastructure itself. But as tracing can happen in areas coming
6727  * from userspace or just about to enter userspace, a preempt enable
6728  * can occur before user_exit() is called. This will cause the scheduler
6729  * to be called when the system is still in usermode.
6730  *
6731  * To prevent this, the preempt_enable_notrace will use this function
6732  * instead of preempt_schedule() to exit user context if needed before
6733  * calling the scheduler.
6734  */
6735 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6736 {
6737 	enum ctx_state prev_ctx;
6738 
6739 	if (likely(!preemptible()))
6740 		return;
6741 
6742 	do {
6743 		/*
6744 		 * Because the function tracer can trace preempt_count_sub()
6745 		 * and it also uses preempt_enable/disable_notrace(), if
6746 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6747 		 * by the function tracer will call this function again and
6748 		 * cause infinite recursion.
6749 		 *
6750 		 * Preemption must be disabled here before the function
6751 		 * tracer can trace. Break up preempt_disable() into two
6752 		 * calls. One to disable preemption without fear of being
6753 		 * traced. The other to still record the preemption latency,
6754 		 * which can also be traced by the function tracer.
6755 		 */
6756 		preempt_disable_notrace();
6757 		preempt_latency_start(1);
6758 		/*
6759 		 * Needs preempt disabled in case user_exit() is traced
6760 		 * and the tracer calls preempt_enable_notrace() causing
6761 		 * an infinite recursion.
6762 		 */
6763 		prev_ctx = exception_enter();
6764 		__schedule(SM_PREEMPT);
6765 		exception_exit(prev_ctx);
6766 
6767 		preempt_latency_stop(1);
6768 		preempt_enable_no_resched_notrace();
6769 	} while (need_resched());
6770 }
6771 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6772 
6773 #ifdef CONFIG_PREEMPT_DYNAMIC
6774 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6775 #ifndef preempt_schedule_notrace_dynamic_enabled
6776 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6777 #define preempt_schedule_notrace_dynamic_disabled	NULL
6778 #endif
6779 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6780 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6781 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6782 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6783 void __sched notrace dynamic_preempt_schedule_notrace(void)
6784 {
6785 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6786 		return;
6787 	preempt_schedule_notrace();
6788 }
6789 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6790 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6791 #endif
6792 #endif
6793 
6794 #endif /* CONFIG_PREEMPTION */
6795 
6796 /*
6797  * This is the entry point to schedule() from kernel preemption
6798  * off of irq context.
6799  * Note, that this is called and return with irqs disabled. This will
6800  * protect us against recursive calling from irq.
6801  */
6802 asmlinkage __visible void __sched preempt_schedule_irq(void)
6803 {
6804 	enum ctx_state prev_state;
6805 
6806 	/* Catch callers which need to be fixed */
6807 	BUG_ON(preempt_count() || !irqs_disabled());
6808 
6809 	prev_state = exception_enter();
6810 
6811 	do {
6812 		preempt_disable();
6813 		local_irq_enable();
6814 		__schedule(SM_PREEMPT);
6815 		local_irq_disable();
6816 		sched_preempt_enable_no_resched();
6817 	} while (need_resched());
6818 
6819 	exception_exit(prev_state);
6820 }
6821 
6822 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6823 			  void *key)
6824 {
6825 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6826 	return try_to_wake_up(curr->private, mode, wake_flags);
6827 }
6828 EXPORT_SYMBOL(default_wake_function);
6829 
6830 static void __setscheduler_prio(struct task_struct *p, int prio)
6831 {
6832 	if (dl_prio(prio))
6833 		p->sched_class = &dl_sched_class;
6834 	else if (rt_prio(prio))
6835 		p->sched_class = &rt_sched_class;
6836 	else
6837 		p->sched_class = &fair_sched_class;
6838 
6839 	p->prio = prio;
6840 }
6841 
6842 #ifdef CONFIG_RT_MUTEXES
6843 
6844 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6845 {
6846 	if (pi_task)
6847 		prio = min(prio, pi_task->prio);
6848 
6849 	return prio;
6850 }
6851 
6852 static inline int rt_effective_prio(struct task_struct *p, int prio)
6853 {
6854 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
6855 
6856 	return __rt_effective_prio(pi_task, prio);
6857 }
6858 
6859 /*
6860  * rt_mutex_setprio - set the current priority of a task
6861  * @p: task to boost
6862  * @pi_task: donor task
6863  *
6864  * This function changes the 'effective' priority of a task. It does
6865  * not touch ->normal_prio like __setscheduler().
6866  *
6867  * Used by the rt_mutex code to implement priority inheritance
6868  * logic. Call site only calls if the priority of the task changed.
6869  */
6870 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6871 {
6872 	int prio, oldprio, queued, running, queue_flag =
6873 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6874 	const struct sched_class *prev_class;
6875 	struct rq_flags rf;
6876 	struct rq *rq;
6877 
6878 	/* XXX used to be waiter->prio, not waiter->task->prio */
6879 	prio = __rt_effective_prio(pi_task, p->normal_prio);
6880 
6881 	/*
6882 	 * If nothing changed; bail early.
6883 	 */
6884 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6885 		return;
6886 
6887 	rq = __task_rq_lock(p, &rf);
6888 	update_rq_clock(rq);
6889 	/*
6890 	 * Set under pi_lock && rq->lock, such that the value can be used under
6891 	 * either lock.
6892 	 *
6893 	 * Note that there is loads of tricky to make this pointer cache work
6894 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6895 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
6896 	 * task is allowed to run again (and can exit). This ensures the pointer
6897 	 * points to a blocked task -- which guarantees the task is present.
6898 	 */
6899 	p->pi_top_task = pi_task;
6900 
6901 	/*
6902 	 * For FIFO/RR we only need to set prio, if that matches we're done.
6903 	 */
6904 	if (prio == p->prio && !dl_prio(prio))
6905 		goto out_unlock;
6906 
6907 	/*
6908 	 * Idle task boosting is a nono in general. There is one
6909 	 * exception, when PREEMPT_RT and NOHZ is active:
6910 	 *
6911 	 * The idle task calls get_next_timer_interrupt() and holds
6912 	 * the timer wheel base->lock on the CPU and another CPU wants
6913 	 * to access the timer (probably to cancel it). We can safely
6914 	 * ignore the boosting request, as the idle CPU runs this code
6915 	 * with interrupts disabled and will complete the lock
6916 	 * protected section without being interrupted. So there is no
6917 	 * real need to boost.
6918 	 */
6919 	if (unlikely(p == rq->idle)) {
6920 		WARN_ON(p != rq->curr);
6921 		WARN_ON(p->pi_blocked_on);
6922 		goto out_unlock;
6923 	}
6924 
6925 	trace_sched_pi_setprio(p, pi_task);
6926 	oldprio = p->prio;
6927 
6928 	if (oldprio == prio)
6929 		queue_flag &= ~DEQUEUE_MOVE;
6930 
6931 	prev_class = p->sched_class;
6932 	queued = task_on_rq_queued(p);
6933 	running = task_current(rq, p);
6934 	if (queued)
6935 		dequeue_task(rq, p, queue_flag);
6936 	if (running)
6937 		put_prev_task(rq, p);
6938 
6939 	/*
6940 	 * Boosting condition are:
6941 	 * 1. -rt task is running and holds mutex A
6942 	 *      --> -dl task blocks on mutex A
6943 	 *
6944 	 * 2. -dl task is running and holds mutex A
6945 	 *      --> -dl task blocks on mutex A and could preempt the
6946 	 *          running task
6947 	 */
6948 	if (dl_prio(prio)) {
6949 		if (!dl_prio(p->normal_prio) ||
6950 		    (pi_task && dl_prio(pi_task->prio) &&
6951 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
6952 			p->dl.pi_se = pi_task->dl.pi_se;
6953 			queue_flag |= ENQUEUE_REPLENISH;
6954 		} else {
6955 			p->dl.pi_se = &p->dl;
6956 		}
6957 	} else if (rt_prio(prio)) {
6958 		if (dl_prio(oldprio))
6959 			p->dl.pi_se = &p->dl;
6960 		if (oldprio < prio)
6961 			queue_flag |= ENQUEUE_HEAD;
6962 	} else {
6963 		if (dl_prio(oldprio))
6964 			p->dl.pi_se = &p->dl;
6965 		if (rt_prio(oldprio))
6966 			p->rt.timeout = 0;
6967 	}
6968 
6969 	__setscheduler_prio(p, prio);
6970 
6971 	if (queued)
6972 		enqueue_task(rq, p, queue_flag);
6973 	if (running)
6974 		set_next_task(rq, p);
6975 
6976 	check_class_changed(rq, p, prev_class, oldprio);
6977 out_unlock:
6978 	/* Avoid rq from going away on us: */
6979 	preempt_disable();
6980 
6981 	rq_unpin_lock(rq, &rf);
6982 	__balance_callbacks(rq);
6983 	raw_spin_rq_unlock(rq);
6984 
6985 	preempt_enable();
6986 }
6987 #else
6988 static inline int rt_effective_prio(struct task_struct *p, int prio)
6989 {
6990 	return prio;
6991 }
6992 #endif
6993 
6994 void set_user_nice(struct task_struct *p, long nice)
6995 {
6996 	bool queued, running;
6997 	int old_prio;
6998 	struct rq_flags rf;
6999 	struct rq *rq;
7000 
7001 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7002 		return;
7003 	/*
7004 	 * We have to be careful, if called from sys_setpriority(),
7005 	 * the task might be in the middle of scheduling on another CPU.
7006 	 */
7007 	rq = task_rq_lock(p, &rf);
7008 	update_rq_clock(rq);
7009 
7010 	/*
7011 	 * The RT priorities are set via sched_setscheduler(), but we still
7012 	 * allow the 'normal' nice value to be set - but as expected
7013 	 * it won't have any effect on scheduling until the task is
7014 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7015 	 */
7016 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7017 		p->static_prio = NICE_TO_PRIO(nice);
7018 		goto out_unlock;
7019 	}
7020 	queued = task_on_rq_queued(p);
7021 	running = task_current(rq, p);
7022 	if (queued)
7023 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7024 	if (running)
7025 		put_prev_task(rq, p);
7026 
7027 	p->static_prio = NICE_TO_PRIO(nice);
7028 	set_load_weight(p, true);
7029 	old_prio = p->prio;
7030 	p->prio = effective_prio(p);
7031 
7032 	if (queued)
7033 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7034 	if (running)
7035 		set_next_task(rq, p);
7036 
7037 	/*
7038 	 * If the task increased its priority or is running and
7039 	 * lowered its priority, then reschedule its CPU:
7040 	 */
7041 	p->sched_class->prio_changed(rq, p, old_prio);
7042 
7043 out_unlock:
7044 	task_rq_unlock(rq, p, &rf);
7045 }
7046 EXPORT_SYMBOL(set_user_nice);
7047 
7048 /*
7049  * is_nice_reduction - check if nice value is an actual reduction
7050  *
7051  * Similar to can_nice() but does not perform a capability check.
7052  *
7053  * @p: task
7054  * @nice: nice value
7055  */
7056 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7057 {
7058 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7059 	int nice_rlim = nice_to_rlimit(nice);
7060 
7061 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7062 }
7063 
7064 /*
7065  * can_nice - check if a task can reduce its nice value
7066  * @p: task
7067  * @nice: nice value
7068  */
7069 int can_nice(const struct task_struct *p, const int nice)
7070 {
7071 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7072 }
7073 
7074 #ifdef __ARCH_WANT_SYS_NICE
7075 
7076 /*
7077  * sys_nice - change the priority of the current process.
7078  * @increment: priority increment
7079  *
7080  * sys_setpriority is a more generic, but much slower function that
7081  * does similar things.
7082  */
7083 SYSCALL_DEFINE1(nice, int, increment)
7084 {
7085 	long nice, retval;
7086 
7087 	/*
7088 	 * Setpriority might change our priority at the same moment.
7089 	 * We don't have to worry. Conceptually one call occurs first
7090 	 * and we have a single winner.
7091 	 */
7092 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7093 	nice = task_nice(current) + increment;
7094 
7095 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7096 	if (increment < 0 && !can_nice(current, nice))
7097 		return -EPERM;
7098 
7099 	retval = security_task_setnice(current, nice);
7100 	if (retval)
7101 		return retval;
7102 
7103 	set_user_nice(current, nice);
7104 	return 0;
7105 }
7106 
7107 #endif
7108 
7109 /**
7110  * task_prio - return the priority value of a given task.
7111  * @p: the task in question.
7112  *
7113  * Return: The priority value as seen by users in /proc.
7114  *
7115  * sched policy         return value   kernel prio    user prio/nice
7116  *
7117  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7118  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7119  * deadline                     -101             -1           0
7120  */
7121 int task_prio(const struct task_struct *p)
7122 {
7123 	return p->prio - MAX_RT_PRIO;
7124 }
7125 
7126 /**
7127  * idle_cpu - is a given CPU idle currently?
7128  * @cpu: the processor in question.
7129  *
7130  * Return: 1 if the CPU is currently idle. 0 otherwise.
7131  */
7132 int idle_cpu(int cpu)
7133 {
7134 	struct rq *rq = cpu_rq(cpu);
7135 
7136 	if (rq->curr != rq->idle)
7137 		return 0;
7138 
7139 	if (rq->nr_running)
7140 		return 0;
7141 
7142 #ifdef CONFIG_SMP
7143 	if (rq->ttwu_pending)
7144 		return 0;
7145 #endif
7146 
7147 	return 1;
7148 }
7149 
7150 /**
7151  * available_idle_cpu - is a given CPU idle for enqueuing work.
7152  * @cpu: the CPU in question.
7153  *
7154  * Return: 1 if the CPU is currently idle. 0 otherwise.
7155  */
7156 int available_idle_cpu(int cpu)
7157 {
7158 	if (!idle_cpu(cpu))
7159 		return 0;
7160 
7161 	if (vcpu_is_preempted(cpu))
7162 		return 0;
7163 
7164 	return 1;
7165 }
7166 
7167 /**
7168  * idle_task - return the idle task for a given CPU.
7169  * @cpu: the processor in question.
7170  *
7171  * Return: The idle task for the CPU @cpu.
7172  */
7173 struct task_struct *idle_task(int cpu)
7174 {
7175 	return cpu_rq(cpu)->idle;
7176 }
7177 
7178 #ifdef CONFIG_SMP
7179 /*
7180  * This function computes an effective utilization for the given CPU, to be
7181  * used for frequency selection given the linear relation: f = u * f_max.
7182  *
7183  * The scheduler tracks the following metrics:
7184  *
7185  *   cpu_util_{cfs,rt,dl,irq}()
7186  *   cpu_bw_dl()
7187  *
7188  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7189  * synchronized windows and are thus directly comparable.
7190  *
7191  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7192  * which excludes things like IRQ and steal-time. These latter are then accrued
7193  * in the irq utilization.
7194  *
7195  * The DL bandwidth number otoh is not a measured metric but a value computed
7196  * based on the task model parameters and gives the minimal utilization
7197  * required to meet deadlines.
7198  */
7199 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7200 				 enum cpu_util_type type,
7201 				 struct task_struct *p)
7202 {
7203 	unsigned long dl_util, util, irq, max;
7204 	struct rq *rq = cpu_rq(cpu);
7205 
7206 	max = arch_scale_cpu_capacity(cpu);
7207 
7208 	if (!uclamp_is_used() &&
7209 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7210 		return max;
7211 	}
7212 
7213 	/*
7214 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7215 	 * because of inaccuracies in how we track these -- see
7216 	 * update_irq_load_avg().
7217 	 */
7218 	irq = cpu_util_irq(rq);
7219 	if (unlikely(irq >= max))
7220 		return max;
7221 
7222 	/*
7223 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7224 	 * CFS tasks and we use the same metric to track the effective
7225 	 * utilization (PELT windows are synchronized) we can directly add them
7226 	 * to obtain the CPU's actual utilization.
7227 	 *
7228 	 * CFS and RT utilization can be boosted or capped, depending on
7229 	 * utilization clamp constraints requested by currently RUNNABLE
7230 	 * tasks.
7231 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7232 	 * frequency will be gracefully reduced with the utilization decay.
7233 	 */
7234 	util = util_cfs + cpu_util_rt(rq);
7235 	if (type == FREQUENCY_UTIL)
7236 		util = uclamp_rq_util_with(rq, util, p);
7237 
7238 	dl_util = cpu_util_dl(rq);
7239 
7240 	/*
7241 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7242 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7243 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7244 	 * that we select f_max when there is no idle time.
7245 	 *
7246 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7247 	 * saturation when we should -- something for later.
7248 	 */
7249 	if (util + dl_util >= max)
7250 		return max;
7251 
7252 	/*
7253 	 * OTOH, for energy computation we need the estimated running time, so
7254 	 * include util_dl and ignore dl_bw.
7255 	 */
7256 	if (type == ENERGY_UTIL)
7257 		util += dl_util;
7258 
7259 	/*
7260 	 * There is still idle time; further improve the number by using the
7261 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7262 	 * need to scale the task numbers:
7263 	 *
7264 	 *              max - irq
7265 	 *   U' = irq + --------- * U
7266 	 *                 max
7267 	 */
7268 	util = scale_irq_capacity(util, irq, max);
7269 	util += irq;
7270 
7271 	/*
7272 	 * Bandwidth required by DEADLINE must always be granted while, for
7273 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7274 	 * to gracefully reduce the frequency when no tasks show up for longer
7275 	 * periods of time.
7276 	 *
7277 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7278 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7279 	 * an interface. So, we only do the latter for now.
7280 	 */
7281 	if (type == FREQUENCY_UTIL)
7282 		util += cpu_bw_dl(rq);
7283 
7284 	return min(max, util);
7285 }
7286 
7287 unsigned long sched_cpu_util(int cpu)
7288 {
7289 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7290 }
7291 #endif /* CONFIG_SMP */
7292 
7293 /**
7294  * find_process_by_pid - find a process with a matching PID value.
7295  * @pid: the pid in question.
7296  *
7297  * The task of @pid, if found. %NULL otherwise.
7298  */
7299 static struct task_struct *find_process_by_pid(pid_t pid)
7300 {
7301 	return pid ? find_task_by_vpid(pid) : current;
7302 }
7303 
7304 /*
7305  * sched_setparam() passes in -1 for its policy, to let the functions
7306  * it calls know not to change it.
7307  */
7308 #define SETPARAM_POLICY	-1
7309 
7310 static void __setscheduler_params(struct task_struct *p,
7311 		const struct sched_attr *attr)
7312 {
7313 	int policy = attr->sched_policy;
7314 
7315 	if (policy == SETPARAM_POLICY)
7316 		policy = p->policy;
7317 
7318 	p->policy = policy;
7319 
7320 	if (dl_policy(policy))
7321 		__setparam_dl(p, attr);
7322 	else if (fair_policy(policy))
7323 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7324 
7325 	/*
7326 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7327 	 * !rt_policy. Always setting this ensures that things like
7328 	 * getparam()/getattr() don't report silly values for !rt tasks.
7329 	 */
7330 	p->rt_priority = attr->sched_priority;
7331 	p->normal_prio = normal_prio(p);
7332 	set_load_weight(p, true);
7333 }
7334 
7335 /*
7336  * Check the target process has a UID that matches the current process's:
7337  */
7338 static bool check_same_owner(struct task_struct *p)
7339 {
7340 	const struct cred *cred = current_cred(), *pcred;
7341 	bool match;
7342 
7343 	rcu_read_lock();
7344 	pcred = __task_cred(p);
7345 	match = (uid_eq(cred->euid, pcred->euid) ||
7346 		 uid_eq(cred->euid, pcred->uid));
7347 	rcu_read_unlock();
7348 	return match;
7349 }
7350 
7351 /*
7352  * Allow unprivileged RT tasks to decrease priority.
7353  * Only issue a capable test if needed and only once to avoid an audit
7354  * event on permitted non-privileged operations:
7355  */
7356 static int user_check_sched_setscheduler(struct task_struct *p,
7357 					 const struct sched_attr *attr,
7358 					 int policy, int reset_on_fork)
7359 {
7360 	if (fair_policy(policy)) {
7361 		if (attr->sched_nice < task_nice(p) &&
7362 		    !is_nice_reduction(p, attr->sched_nice))
7363 			goto req_priv;
7364 	}
7365 
7366 	if (rt_policy(policy)) {
7367 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7368 
7369 		/* Can't set/change the rt policy: */
7370 		if (policy != p->policy && !rlim_rtprio)
7371 			goto req_priv;
7372 
7373 		/* Can't increase priority: */
7374 		if (attr->sched_priority > p->rt_priority &&
7375 		    attr->sched_priority > rlim_rtprio)
7376 			goto req_priv;
7377 	}
7378 
7379 	/*
7380 	 * Can't set/change SCHED_DEADLINE policy at all for now
7381 	 * (safest behavior); in the future we would like to allow
7382 	 * unprivileged DL tasks to increase their relative deadline
7383 	 * or reduce their runtime (both ways reducing utilization)
7384 	 */
7385 	if (dl_policy(policy))
7386 		goto req_priv;
7387 
7388 	/*
7389 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7390 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7391 	 */
7392 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7393 		if (!is_nice_reduction(p, task_nice(p)))
7394 			goto req_priv;
7395 	}
7396 
7397 	/* Can't change other user's priorities: */
7398 	if (!check_same_owner(p))
7399 		goto req_priv;
7400 
7401 	/* Normal users shall not reset the sched_reset_on_fork flag: */
7402 	if (p->sched_reset_on_fork && !reset_on_fork)
7403 		goto req_priv;
7404 
7405 	return 0;
7406 
7407 req_priv:
7408 	if (!capable(CAP_SYS_NICE))
7409 		return -EPERM;
7410 
7411 	return 0;
7412 }
7413 
7414 static int __sched_setscheduler(struct task_struct *p,
7415 				const struct sched_attr *attr,
7416 				bool user, bool pi)
7417 {
7418 	int oldpolicy = -1, policy = attr->sched_policy;
7419 	int retval, oldprio, newprio, queued, running;
7420 	const struct sched_class *prev_class;
7421 	struct callback_head *head;
7422 	struct rq_flags rf;
7423 	int reset_on_fork;
7424 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7425 	struct rq *rq;
7426 
7427 	/* The pi code expects interrupts enabled */
7428 	BUG_ON(pi && in_interrupt());
7429 recheck:
7430 	/* Double check policy once rq lock held: */
7431 	if (policy < 0) {
7432 		reset_on_fork = p->sched_reset_on_fork;
7433 		policy = oldpolicy = p->policy;
7434 	} else {
7435 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7436 
7437 		if (!valid_policy(policy))
7438 			return -EINVAL;
7439 	}
7440 
7441 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7442 		return -EINVAL;
7443 
7444 	/*
7445 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7446 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7447 	 * SCHED_BATCH and SCHED_IDLE is 0.
7448 	 */
7449 	if (attr->sched_priority > MAX_RT_PRIO-1)
7450 		return -EINVAL;
7451 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7452 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7453 		return -EINVAL;
7454 
7455 	if (user) {
7456 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7457 		if (retval)
7458 			return retval;
7459 
7460 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7461 			return -EINVAL;
7462 
7463 		retval = security_task_setscheduler(p);
7464 		if (retval)
7465 			return retval;
7466 	}
7467 
7468 	/* Update task specific "requested" clamps */
7469 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7470 		retval = uclamp_validate(p, attr);
7471 		if (retval)
7472 			return retval;
7473 	}
7474 
7475 	if (pi)
7476 		cpuset_read_lock();
7477 
7478 	/*
7479 	 * Make sure no PI-waiters arrive (or leave) while we are
7480 	 * changing the priority of the task:
7481 	 *
7482 	 * To be able to change p->policy safely, the appropriate
7483 	 * runqueue lock must be held.
7484 	 */
7485 	rq = task_rq_lock(p, &rf);
7486 	update_rq_clock(rq);
7487 
7488 	/*
7489 	 * Changing the policy of the stop threads its a very bad idea:
7490 	 */
7491 	if (p == rq->stop) {
7492 		retval = -EINVAL;
7493 		goto unlock;
7494 	}
7495 
7496 	/*
7497 	 * If not changing anything there's no need to proceed further,
7498 	 * but store a possible modification of reset_on_fork.
7499 	 */
7500 	if (unlikely(policy == p->policy)) {
7501 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7502 			goto change;
7503 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7504 			goto change;
7505 		if (dl_policy(policy) && dl_param_changed(p, attr))
7506 			goto change;
7507 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7508 			goto change;
7509 
7510 		p->sched_reset_on_fork = reset_on_fork;
7511 		retval = 0;
7512 		goto unlock;
7513 	}
7514 change:
7515 
7516 	if (user) {
7517 #ifdef CONFIG_RT_GROUP_SCHED
7518 		/*
7519 		 * Do not allow realtime tasks into groups that have no runtime
7520 		 * assigned.
7521 		 */
7522 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7523 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7524 				!task_group_is_autogroup(task_group(p))) {
7525 			retval = -EPERM;
7526 			goto unlock;
7527 		}
7528 #endif
7529 #ifdef CONFIG_SMP
7530 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7531 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7532 			cpumask_t *span = rq->rd->span;
7533 
7534 			/*
7535 			 * Don't allow tasks with an affinity mask smaller than
7536 			 * the entire root_domain to become SCHED_DEADLINE. We
7537 			 * will also fail if there's no bandwidth available.
7538 			 */
7539 			if (!cpumask_subset(span, p->cpus_ptr) ||
7540 			    rq->rd->dl_bw.bw == 0) {
7541 				retval = -EPERM;
7542 				goto unlock;
7543 			}
7544 		}
7545 #endif
7546 	}
7547 
7548 	/* Re-check policy now with rq lock held: */
7549 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7550 		policy = oldpolicy = -1;
7551 		task_rq_unlock(rq, p, &rf);
7552 		if (pi)
7553 			cpuset_read_unlock();
7554 		goto recheck;
7555 	}
7556 
7557 	/*
7558 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7559 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7560 	 * is available.
7561 	 */
7562 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7563 		retval = -EBUSY;
7564 		goto unlock;
7565 	}
7566 
7567 	p->sched_reset_on_fork = reset_on_fork;
7568 	oldprio = p->prio;
7569 
7570 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7571 	if (pi) {
7572 		/*
7573 		 * Take priority boosted tasks into account. If the new
7574 		 * effective priority is unchanged, we just store the new
7575 		 * normal parameters and do not touch the scheduler class and
7576 		 * the runqueue. This will be done when the task deboost
7577 		 * itself.
7578 		 */
7579 		newprio = rt_effective_prio(p, newprio);
7580 		if (newprio == oldprio)
7581 			queue_flags &= ~DEQUEUE_MOVE;
7582 	}
7583 
7584 	queued = task_on_rq_queued(p);
7585 	running = task_current(rq, p);
7586 	if (queued)
7587 		dequeue_task(rq, p, queue_flags);
7588 	if (running)
7589 		put_prev_task(rq, p);
7590 
7591 	prev_class = p->sched_class;
7592 
7593 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7594 		__setscheduler_params(p, attr);
7595 		__setscheduler_prio(p, newprio);
7596 	}
7597 	__setscheduler_uclamp(p, attr);
7598 
7599 	if (queued) {
7600 		/*
7601 		 * We enqueue to tail when the priority of a task is
7602 		 * increased (user space view).
7603 		 */
7604 		if (oldprio < p->prio)
7605 			queue_flags |= ENQUEUE_HEAD;
7606 
7607 		enqueue_task(rq, p, queue_flags);
7608 	}
7609 	if (running)
7610 		set_next_task(rq, p);
7611 
7612 	check_class_changed(rq, p, prev_class, oldprio);
7613 
7614 	/* Avoid rq from going away on us: */
7615 	preempt_disable();
7616 	head = splice_balance_callbacks(rq);
7617 	task_rq_unlock(rq, p, &rf);
7618 
7619 	if (pi) {
7620 		cpuset_read_unlock();
7621 		rt_mutex_adjust_pi(p);
7622 	}
7623 
7624 	/* Run balance callbacks after we've adjusted the PI chain: */
7625 	balance_callbacks(rq, head);
7626 	preempt_enable();
7627 
7628 	return 0;
7629 
7630 unlock:
7631 	task_rq_unlock(rq, p, &rf);
7632 	if (pi)
7633 		cpuset_read_unlock();
7634 	return retval;
7635 }
7636 
7637 static int _sched_setscheduler(struct task_struct *p, int policy,
7638 			       const struct sched_param *param, bool check)
7639 {
7640 	struct sched_attr attr = {
7641 		.sched_policy   = policy,
7642 		.sched_priority = param->sched_priority,
7643 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7644 	};
7645 
7646 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7647 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7648 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7649 		policy &= ~SCHED_RESET_ON_FORK;
7650 		attr.sched_policy = policy;
7651 	}
7652 
7653 	return __sched_setscheduler(p, &attr, check, true);
7654 }
7655 /**
7656  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7657  * @p: the task in question.
7658  * @policy: new policy.
7659  * @param: structure containing the new RT priority.
7660  *
7661  * Use sched_set_fifo(), read its comment.
7662  *
7663  * Return: 0 on success. An error code otherwise.
7664  *
7665  * NOTE that the task may be already dead.
7666  */
7667 int sched_setscheduler(struct task_struct *p, int policy,
7668 		       const struct sched_param *param)
7669 {
7670 	return _sched_setscheduler(p, policy, param, true);
7671 }
7672 
7673 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7674 {
7675 	return __sched_setscheduler(p, attr, true, true);
7676 }
7677 
7678 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7679 {
7680 	return __sched_setscheduler(p, attr, false, true);
7681 }
7682 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7683 
7684 /**
7685  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7686  * @p: the task in question.
7687  * @policy: new policy.
7688  * @param: structure containing the new RT priority.
7689  *
7690  * Just like sched_setscheduler, only don't bother checking if the
7691  * current context has permission.  For example, this is needed in
7692  * stop_machine(): we create temporary high priority worker threads,
7693  * but our caller might not have that capability.
7694  *
7695  * Return: 0 on success. An error code otherwise.
7696  */
7697 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7698 			       const struct sched_param *param)
7699 {
7700 	return _sched_setscheduler(p, policy, param, false);
7701 }
7702 
7703 /*
7704  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7705  * incapable of resource management, which is the one thing an OS really should
7706  * be doing.
7707  *
7708  * This is of course the reason it is limited to privileged users only.
7709  *
7710  * Worse still; it is fundamentally impossible to compose static priority
7711  * workloads. You cannot take two correctly working static prio workloads
7712  * and smash them together and still expect them to work.
7713  *
7714  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7715  *
7716  *   MAX_RT_PRIO / 2
7717  *
7718  * The administrator _MUST_ configure the system, the kernel simply doesn't
7719  * know enough information to make a sensible choice.
7720  */
7721 void sched_set_fifo(struct task_struct *p)
7722 {
7723 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7724 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7725 }
7726 EXPORT_SYMBOL_GPL(sched_set_fifo);
7727 
7728 /*
7729  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7730  */
7731 void sched_set_fifo_low(struct task_struct *p)
7732 {
7733 	struct sched_param sp = { .sched_priority = 1 };
7734 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7735 }
7736 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7737 
7738 void sched_set_normal(struct task_struct *p, int nice)
7739 {
7740 	struct sched_attr attr = {
7741 		.sched_policy = SCHED_NORMAL,
7742 		.sched_nice = nice,
7743 	};
7744 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7745 }
7746 EXPORT_SYMBOL_GPL(sched_set_normal);
7747 
7748 static int
7749 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7750 {
7751 	struct sched_param lparam;
7752 	struct task_struct *p;
7753 	int retval;
7754 
7755 	if (!param || pid < 0)
7756 		return -EINVAL;
7757 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7758 		return -EFAULT;
7759 
7760 	rcu_read_lock();
7761 	retval = -ESRCH;
7762 	p = find_process_by_pid(pid);
7763 	if (likely(p))
7764 		get_task_struct(p);
7765 	rcu_read_unlock();
7766 
7767 	if (likely(p)) {
7768 		retval = sched_setscheduler(p, policy, &lparam);
7769 		put_task_struct(p);
7770 	}
7771 
7772 	return retval;
7773 }
7774 
7775 /*
7776  * Mimics kernel/events/core.c perf_copy_attr().
7777  */
7778 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7779 {
7780 	u32 size;
7781 	int ret;
7782 
7783 	/* Zero the full structure, so that a short copy will be nice: */
7784 	memset(attr, 0, sizeof(*attr));
7785 
7786 	ret = get_user(size, &uattr->size);
7787 	if (ret)
7788 		return ret;
7789 
7790 	/* ABI compatibility quirk: */
7791 	if (!size)
7792 		size = SCHED_ATTR_SIZE_VER0;
7793 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7794 		goto err_size;
7795 
7796 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7797 	if (ret) {
7798 		if (ret == -E2BIG)
7799 			goto err_size;
7800 		return ret;
7801 	}
7802 
7803 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7804 	    size < SCHED_ATTR_SIZE_VER1)
7805 		return -EINVAL;
7806 
7807 	/*
7808 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
7809 	 * to be strict and return an error on out-of-bounds values?
7810 	 */
7811 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7812 
7813 	return 0;
7814 
7815 err_size:
7816 	put_user(sizeof(*attr), &uattr->size);
7817 	return -E2BIG;
7818 }
7819 
7820 static void get_params(struct task_struct *p, struct sched_attr *attr)
7821 {
7822 	if (task_has_dl_policy(p))
7823 		__getparam_dl(p, attr);
7824 	else if (task_has_rt_policy(p))
7825 		attr->sched_priority = p->rt_priority;
7826 	else
7827 		attr->sched_nice = task_nice(p);
7828 }
7829 
7830 /**
7831  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7832  * @pid: the pid in question.
7833  * @policy: new policy.
7834  * @param: structure containing the new RT priority.
7835  *
7836  * Return: 0 on success. An error code otherwise.
7837  */
7838 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7839 {
7840 	if (policy < 0)
7841 		return -EINVAL;
7842 
7843 	return do_sched_setscheduler(pid, policy, param);
7844 }
7845 
7846 /**
7847  * sys_sched_setparam - set/change the RT priority of a thread
7848  * @pid: the pid in question.
7849  * @param: structure containing the new RT priority.
7850  *
7851  * Return: 0 on success. An error code otherwise.
7852  */
7853 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7854 {
7855 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7856 }
7857 
7858 /**
7859  * sys_sched_setattr - same as above, but with extended sched_attr
7860  * @pid: the pid in question.
7861  * @uattr: structure containing the extended parameters.
7862  * @flags: for future extension.
7863  */
7864 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7865 			       unsigned int, flags)
7866 {
7867 	struct sched_attr attr;
7868 	struct task_struct *p;
7869 	int retval;
7870 
7871 	if (!uattr || pid < 0 || flags)
7872 		return -EINVAL;
7873 
7874 	retval = sched_copy_attr(uattr, &attr);
7875 	if (retval)
7876 		return retval;
7877 
7878 	if ((int)attr.sched_policy < 0)
7879 		return -EINVAL;
7880 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7881 		attr.sched_policy = SETPARAM_POLICY;
7882 
7883 	rcu_read_lock();
7884 	retval = -ESRCH;
7885 	p = find_process_by_pid(pid);
7886 	if (likely(p))
7887 		get_task_struct(p);
7888 	rcu_read_unlock();
7889 
7890 	if (likely(p)) {
7891 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7892 			get_params(p, &attr);
7893 		retval = sched_setattr(p, &attr);
7894 		put_task_struct(p);
7895 	}
7896 
7897 	return retval;
7898 }
7899 
7900 /**
7901  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7902  * @pid: the pid in question.
7903  *
7904  * Return: On success, the policy of the thread. Otherwise, a negative error
7905  * code.
7906  */
7907 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7908 {
7909 	struct task_struct *p;
7910 	int retval;
7911 
7912 	if (pid < 0)
7913 		return -EINVAL;
7914 
7915 	retval = -ESRCH;
7916 	rcu_read_lock();
7917 	p = find_process_by_pid(pid);
7918 	if (p) {
7919 		retval = security_task_getscheduler(p);
7920 		if (!retval)
7921 			retval = p->policy
7922 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7923 	}
7924 	rcu_read_unlock();
7925 	return retval;
7926 }
7927 
7928 /**
7929  * sys_sched_getparam - get the RT priority of a thread
7930  * @pid: the pid in question.
7931  * @param: structure containing the RT priority.
7932  *
7933  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7934  * code.
7935  */
7936 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7937 {
7938 	struct sched_param lp = { .sched_priority = 0 };
7939 	struct task_struct *p;
7940 	int retval;
7941 
7942 	if (!param || pid < 0)
7943 		return -EINVAL;
7944 
7945 	rcu_read_lock();
7946 	p = find_process_by_pid(pid);
7947 	retval = -ESRCH;
7948 	if (!p)
7949 		goto out_unlock;
7950 
7951 	retval = security_task_getscheduler(p);
7952 	if (retval)
7953 		goto out_unlock;
7954 
7955 	if (task_has_rt_policy(p))
7956 		lp.sched_priority = p->rt_priority;
7957 	rcu_read_unlock();
7958 
7959 	/*
7960 	 * This one might sleep, we cannot do it with a spinlock held ...
7961 	 */
7962 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7963 
7964 	return retval;
7965 
7966 out_unlock:
7967 	rcu_read_unlock();
7968 	return retval;
7969 }
7970 
7971 /*
7972  * Copy the kernel size attribute structure (which might be larger
7973  * than what user-space knows about) to user-space.
7974  *
7975  * Note that all cases are valid: user-space buffer can be larger or
7976  * smaller than the kernel-space buffer. The usual case is that both
7977  * have the same size.
7978  */
7979 static int
7980 sched_attr_copy_to_user(struct sched_attr __user *uattr,
7981 			struct sched_attr *kattr,
7982 			unsigned int usize)
7983 {
7984 	unsigned int ksize = sizeof(*kattr);
7985 
7986 	if (!access_ok(uattr, usize))
7987 		return -EFAULT;
7988 
7989 	/*
7990 	 * sched_getattr() ABI forwards and backwards compatibility:
7991 	 *
7992 	 * If usize == ksize then we just copy everything to user-space and all is good.
7993 	 *
7994 	 * If usize < ksize then we only copy as much as user-space has space for,
7995 	 * this keeps ABI compatibility as well. We skip the rest.
7996 	 *
7997 	 * If usize > ksize then user-space is using a newer version of the ABI,
7998 	 * which part the kernel doesn't know about. Just ignore it - tooling can
7999 	 * detect the kernel's knowledge of attributes from the attr->size value
8000 	 * which is set to ksize in this case.
8001 	 */
8002 	kattr->size = min(usize, ksize);
8003 
8004 	if (copy_to_user(uattr, kattr, kattr->size))
8005 		return -EFAULT;
8006 
8007 	return 0;
8008 }
8009 
8010 /**
8011  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8012  * @pid: the pid in question.
8013  * @uattr: structure containing the extended parameters.
8014  * @usize: sizeof(attr) for fwd/bwd comp.
8015  * @flags: for future extension.
8016  */
8017 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8018 		unsigned int, usize, unsigned int, flags)
8019 {
8020 	struct sched_attr kattr = { };
8021 	struct task_struct *p;
8022 	int retval;
8023 
8024 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8025 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8026 		return -EINVAL;
8027 
8028 	rcu_read_lock();
8029 	p = find_process_by_pid(pid);
8030 	retval = -ESRCH;
8031 	if (!p)
8032 		goto out_unlock;
8033 
8034 	retval = security_task_getscheduler(p);
8035 	if (retval)
8036 		goto out_unlock;
8037 
8038 	kattr.sched_policy = p->policy;
8039 	if (p->sched_reset_on_fork)
8040 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8041 	get_params(p, &kattr);
8042 	kattr.sched_flags &= SCHED_FLAG_ALL;
8043 
8044 #ifdef CONFIG_UCLAMP_TASK
8045 	/*
8046 	 * This could race with another potential updater, but this is fine
8047 	 * because it'll correctly read the old or the new value. We don't need
8048 	 * to guarantee who wins the race as long as it doesn't return garbage.
8049 	 */
8050 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8051 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8052 #endif
8053 
8054 	rcu_read_unlock();
8055 
8056 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8057 
8058 out_unlock:
8059 	rcu_read_unlock();
8060 	return retval;
8061 }
8062 
8063 #ifdef CONFIG_SMP
8064 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8065 {
8066 	int ret = 0;
8067 
8068 	/*
8069 	 * If the task isn't a deadline task or admission control is
8070 	 * disabled then we don't care about affinity changes.
8071 	 */
8072 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8073 		return 0;
8074 
8075 	/*
8076 	 * Since bandwidth control happens on root_domain basis,
8077 	 * if admission test is enabled, we only admit -deadline
8078 	 * tasks allowed to run on all the CPUs in the task's
8079 	 * root_domain.
8080 	 */
8081 	rcu_read_lock();
8082 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8083 		ret = -EBUSY;
8084 	rcu_read_unlock();
8085 	return ret;
8086 }
8087 #endif
8088 
8089 static int
8090 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
8091 {
8092 	int retval;
8093 	cpumask_var_t cpus_allowed, new_mask;
8094 
8095 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8096 		return -ENOMEM;
8097 
8098 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8099 		retval = -ENOMEM;
8100 		goto out_free_cpus_allowed;
8101 	}
8102 
8103 	cpuset_cpus_allowed(p, cpus_allowed);
8104 	cpumask_and(new_mask, mask, cpus_allowed);
8105 
8106 	retval = dl_task_check_affinity(p, new_mask);
8107 	if (retval)
8108 		goto out_free_new_mask;
8109 again:
8110 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
8111 	if (retval)
8112 		goto out_free_new_mask;
8113 
8114 	cpuset_cpus_allowed(p, cpus_allowed);
8115 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8116 		/*
8117 		 * We must have raced with a concurrent cpuset update.
8118 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8119 		 */
8120 		cpumask_copy(new_mask, cpus_allowed);
8121 		goto again;
8122 	}
8123 
8124 out_free_new_mask:
8125 	free_cpumask_var(new_mask);
8126 out_free_cpus_allowed:
8127 	free_cpumask_var(cpus_allowed);
8128 	return retval;
8129 }
8130 
8131 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8132 {
8133 	struct task_struct *p;
8134 	int retval;
8135 
8136 	rcu_read_lock();
8137 
8138 	p = find_process_by_pid(pid);
8139 	if (!p) {
8140 		rcu_read_unlock();
8141 		return -ESRCH;
8142 	}
8143 
8144 	/* Prevent p going away */
8145 	get_task_struct(p);
8146 	rcu_read_unlock();
8147 
8148 	if (p->flags & PF_NO_SETAFFINITY) {
8149 		retval = -EINVAL;
8150 		goto out_put_task;
8151 	}
8152 
8153 	if (!check_same_owner(p)) {
8154 		rcu_read_lock();
8155 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8156 			rcu_read_unlock();
8157 			retval = -EPERM;
8158 			goto out_put_task;
8159 		}
8160 		rcu_read_unlock();
8161 	}
8162 
8163 	retval = security_task_setscheduler(p);
8164 	if (retval)
8165 		goto out_put_task;
8166 
8167 	retval = __sched_setaffinity(p, in_mask);
8168 out_put_task:
8169 	put_task_struct(p);
8170 	return retval;
8171 }
8172 
8173 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8174 			     struct cpumask *new_mask)
8175 {
8176 	if (len < cpumask_size())
8177 		cpumask_clear(new_mask);
8178 	else if (len > cpumask_size())
8179 		len = cpumask_size();
8180 
8181 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8182 }
8183 
8184 /**
8185  * sys_sched_setaffinity - set the CPU affinity of a process
8186  * @pid: pid of the process
8187  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8188  * @user_mask_ptr: user-space pointer to the new CPU mask
8189  *
8190  * Return: 0 on success. An error code otherwise.
8191  */
8192 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8193 		unsigned long __user *, user_mask_ptr)
8194 {
8195 	cpumask_var_t new_mask;
8196 	int retval;
8197 
8198 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8199 		return -ENOMEM;
8200 
8201 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8202 	if (retval == 0)
8203 		retval = sched_setaffinity(pid, new_mask);
8204 	free_cpumask_var(new_mask);
8205 	return retval;
8206 }
8207 
8208 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8209 {
8210 	struct task_struct *p;
8211 	unsigned long flags;
8212 	int retval;
8213 
8214 	rcu_read_lock();
8215 
8216 	retval = -ESRCH;
8217 	p = find_process_by_pid(pid);
8218 	if (!p)
8219 		goto out_unlock;
8220 
8221 	retval = security_task_getscheduler(p);
8222 	if (retval)
8223 		goto out_unlock;
8224 
8225 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8226 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8227 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8228 
8229 out_unlock:
8230 	rcu_read_unlock();
8231 
8232 	return retval;
8233 }
8234 
8235 /**
8236  * sys_sched_getaffinity - get the CPU affinity of a process
8237  * @pid: pid of the process
8238  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8239  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8240  *
8241  * Return: size of CPU mask copied to user_mask_ptr on success. An
8242  * error code otherwise.
8243  */
8244 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8245 		unsigned long __user *, user_mask_ptr)
8246 {
8247 	int ret;
8248 	cpumask_var_t mask;
8249 
8250 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8251 		return -EINVAL;
8252 	if (len & (sizeof(unsigned long)-1))
8253 		return -EINVAL;
8254 
8255 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8256 		return -ENOMEM;
8257 
8258 	ret = sched_getaffinity(pid, mask);
8259 	if (ret == 0) {
8260 		unsigned int retlen = min(len, cpumask_size());
8261 
8262 		if (copy_to_user(user_mask_ptr, mask, retlen))
8263 			ret = -EFAULT;
8264 		else
8265 			ret = retlen;
8266 	}
8267 	free_cpumask_var(mask);
8268 
8269 	return ret;
8270 }
8271 
8272 static void do_sched_yield(void)
8273 {
8274 	struct rq_flags rf;
8275 	struct rq *rq;
8276 
8277 	rq = this_rq_lock_irq(&rf);
8278 
8279 	schedstat_inc(rq->yld_count);
8280 	current->sched_class->yield_task(rq);
8281 
8282 	preempt_disable();
8283 	rq_unlock_irq(rq, &rf);
8284 	sched_preempt_enable_no_resched();
8285 
8286 	schedule();
8287 }
8288 
8289 /**
8290  * sys_sched_yield - yield the current processor to other threads.
8291  *
8292  * This function yields the current CPU to other tasks. If there are no
8293  * other threads running on this CPU then this function will return.
8294  *
8295  * Return: 0.
8296  */
8297 SYSCALL_DEFINE0(sched_yield)
8298 {
8299 	do_sched_yield();
8300 	return 0;
8301 }
8302 
8303 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8304 int __sched __cond_resched(void)
8305 {
8306 	if (should_resched(0)) {
8307 		preempt_schedule_common();
8308 		return 1;
8309 	}
8310 	/*
8311 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8312 	 * whether the current CPU is in an RCU read-side critical section,
8313 	 * so the tick can report quiescent states even for CPUs looping
8314 	 * in kernel context.  In contrast, in non-preemptible kernels,
8315 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8316 	 * processes executing in kernel context might never report an
8317 	 * RCU quiescent state.  Therefore, the following code causes
8318 	 * cond_resched() to report a quiescent state, but only when RCU
8319 	 * is in urgent need of one.
8320 	 */
8321 #ifndef CONFIG_PREEMPT_RCU
8322 	rcu_all_qs();
8323 #endif
8324 	return 0;
8325 }
8326 EXPORT_SYMBOL(__cond_resched);
8327 #endif
8328 
8329 #ifdef CONFIG_PREEMPT_DYNAMIC
8330 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8331 #define cond_resched_dynamic_enabled	__cond_resched
8332 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8333 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8334 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8335 
8336 #define might_resched_dynamic_enabled	__cond_resched
8337 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8338 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8339 EXPORT_STATIC_CALL_TRAMP(might_resched);
8340 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8341 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8342 int __sched dynamic_cond_resched(void)
8343 {
8344 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8345 		return 0;
8346 	return __cond_resched();
8347 }
8348 EXPORT_SYMBOL(dynamic_cond_resched);
8349 
8350 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8351 int __sched dynamic_might_resched(void)
8352 {
8353 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8354 		return 0;
8355 	return __cond_resched();
8356 }
8357 EXPORT_SYMBOL(dynamic_might_resched);
8358 #endif
8359 #endif
8360 
8361 /*
8362  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8363  * call schedule, and on return reacquire the lock.
8364  *
8365  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8366  * operations here to prevent schedule() from being called twice (once via
8367  * spin_unlock(), once by hand).
8368  */
8369 int __cond_resched_lock(spinlock_t *lock)
8370 {
8371 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8372 	int ret = 0;
8373 
8374 	lockdep_assert_held(lock);
8375 
8376 	if (spin_needbreak(lock) || resched) {
8377 		spin_unlock(lock);
8378 		if (!_cond_resched())
8379 			cpu_relax();
8380 		ret = 1;
8381 		spin_lock(lock);
8382 	}
8383 	return ret;
8384 }
8385 EXPORT_SYMBOL(__cond_resched_lock);
8386 
8387 int __cond_resched_rwlock_read(rwlock_t *lock)
8388 {
8389 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8390 	int ret = 0;
8391 
8392 	lockdep_assert_held_read(lock);
8393 
8394 	if (rwlock_needbreak(lock) || resched) {
8395 		read_unlock(lock);
8396 		if (!_cond_resched())
8397 			cpu_relax();
8398 		ret = 1;
8399 		read_lock(lock);
8400 	}
8401 	return ret;
8402 }
8403 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8404 
8405 int __cond_resched_rwlock_write(rwlock_t *lock)
8406 {
8407 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8408 	int ret = 0;
8409 
8410 	lockdep_assert_held_write(lock);
8411 
8412 	if (rwlock_needbreak(lock) || resched) {
8413 		write_unlock(lock);
8414 		if (!_cond_resched())
8415 			cpu_relax();
8416 		ret = 1;
8417 		write_lock(lock);
8418 	}
8419 	return ret;
8420 }
8421 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8422 
8423 #ifdef CONFIG_PREEMPT_DYNAMIC
8424 
8425 #ifdef CONFIG_GENERIC_ENTRY
8426 #include <linux/entry-common.h>
8427 #endif
8428 
8429 /*
8430  * SC:cond_resched
8431  * SC:might_resched
8432  * SC:preempt_schedule
8433  * SC:preempt_schedule_notrace
8434  * SC:irqentry_exit_cond_resched
8435  *
8436  *
8437  * NONE:
8438  *   cond_resched               <- __cond_resched
8439  *   might_resched              <- RET0
8440  *   preempt_schedule           <- NOP
8441  *   preempt_schedule_notrace   <- NOP
8442  *   irqentry_exit_cond_resched <- NOP
8443  *
8444  * VOLUNTARY:
8445  *   cond_resched               <- __cond_resched
8446  *   might_resched              <- __cond_resched
8447  *   preempt_schedule           <- NOP
8448  *   preempt_schedule_notrace   <- NOP
8449  *   irqentry_exit_cond_resched <- NOP
8450  *
8451  * FULL:
8452  *   cond_resched               <- RET0
8453  *   might_resched              <- RET0
8454  *   preempt_schedule           <- preempt_schedule
8455  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8456  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8457  */
8458 
8459 enum {
8460 	preempt_dynamic_undefined = -1,
8461 	preempt_dynamic_none,
8462 	preempt_dynamic_voluntary,
8463 	preempt_dynamic_full,
8464 };
8465 
8466 int preempt_dynamic_mode = preempt_dynamic_undefined;
8467 
8468 int sched_dynamic_mode(const char *str)
8469 {
8470 	if (!strcmp(str, "none"))
8471 		return preempt_dynamic_none;
8472 
8473 	if (!strcmp(str, "voluntary"))
8474 		return preempt_dynamic_voluntary;
8475 
8476 	if (!strcmp(str, "full"))
8477 		return preempt_dynamic_full;
8478 
8479 	return -EINVAL;
8480 }
8481 
8482 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8483 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8484 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8485 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8486 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8487 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8488 #else
8489 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8490 #endif
8491 
8492 void sched_dynamic_update(int mode)
8493 {
8494 	/*
8495 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8496 	 * the ZERO state, which is invalid.
8497 	 */
8498 	preempt_dynamic_enable(cond_resched);
8499 	preempt_dynamic_enable(might_resched);
8500 	preempt_dynamic_enable(preempt_schedule);
8501 	preempt_dynamic_enable(preempt_schedule_notrace);
8502 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8503 
8504 	switch (mode) {
8505 	case preempt_dynamic_none:
8506 		preempt_dynamic_enable(cond_resched);
8507 		preempt_dynamic_disable(might_resched);
8508 		preempt_dynamic_disable(preempt_schedule);
8509 		preempt_dynamic_disable(preempt_schedule_notrace);
8510 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8511 		pr_info("Dynamic Preempt: none\n");
8512 		break;
8513 
8514 	case preempt_dynamic_voluntary:
8515 		preempt_dynamic_enable(cond_resched);
8516 		preempt_dynamic_enable(might_resched);
8517 		preempt_dynamic_disable(preempt_schedule);
8518 		preempt_dynamic_disable(preempt_schedule_notrace);
8519 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8520 		pr_info("Dynamic Preempt: voluntary\n");
8521 		break;
8522 
8523 	case preempt_dynamic_full:
8524 		preempt_dynamic_disable(cond_resched);
8525 		preempt_dynamic_disable(might_resched);
8526 		preempt_dynamic_enable(preempt_schedule);
8527 		preempt_dynamic_enable(preempt_schedule_notrace);
8528 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8529 		pr_info("Dynamic Preempt: full\n");
8530 		break;
8531 	}
8532 
8533 	preempt_dynamic_mode = mode;
8534 }
8535 
8536 static int __init setup_preempt_mode(char *str)
8537 {
8538 	int mode = sched_dynamic_mode(str);
8539 	if (mode < 0) {
8540 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8541 		return 0;
8542 	}
8543 
8544 	sched_dynamic_update(mode);
8545 	return 1;
8546 }
8547 __setup("preempt=", setup_preempt_mode);
8548 
8549 static void __init preempt_dynamic_init(void)
8550 {
8551 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8552 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8553 			sched_dynamic_update(preempt_dynamic_none);
8554 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8555 			sched_dynamic_update(preempt_dynamic_voluntary);
8556 		} else {
8557 			/* Default static call setting, nothing to do */
8558 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8559 			preempt_dynamic_mode = preempt_dynamic_full;
8560 			pr_info("Dynamic Preempt: full\n");
8561 		}
8562 	}
8563 }
8564 
8565 #define PREEMPT_MODEL_ACCESSOR(mode) \
8566 	bool preempt_model_##mode(void)						 \
8567 	{									 \
8568 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8569 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8570 	}									 \
8571 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8572 
8573 PREEMPT_MODEL_ACCESSOR(none);
8574 PREEMPT_MODEL_ACCESSOR(voluntary);
8575 PREEMPT_MODEL_ACCESSOR(full);
8576 
8577 #else /* !CONFIG_PREEMPT_DYNAMIC */
8578 
8579 static inline void preempt_dynamic_init(void) { }
8580 
8581 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8582 
8583 /**
8584  * yield - yield the current processor to other threads.
8585  *
8586  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8587  *
8588  * The scheduler is at all times free to pick the calling task as the most
8589  * eligible task to run, if removing the yield() call from your code breaks
8590  * it, it's already broken.
8591  *
8592  * Typical broken usage is:
8593  *
8594  * while (!event)
8595  *	yield();
8596  *
8597  * where one assumes that yield() will let 'the other' process run that will
8598  * make event true. If the current task is a SCHED_FIFO task that will never
8599  * happen. Never use yield() as a progress guarantee!!
8600  *
8601  * If you want to use yield() to wait for something, use wait_event().
8602  * If you want to use yield() to be 'nice' for others, use cond_resched().
8603  * If you still want to use yield(), do not!
8604  */
8605 void __sched yield(void)
8606 {
8607 	set_current_state(TASK_RUNNING);
8608 	do_sched_yield();
8609 }
8610 EXPORT_SYMBOL(yield);
8611 
8612 /**
8613  * yield_to - yield the current processor to another thread in
8614  * your thread group, or accelerate that thread toward the
8615  * processor it's on.
8616  * @p: target task
8617  * @preempt: whether task preemption is allowed or not
8618  *
8619  * It's the caller's job to ensure that the target task struct
8620  * can't go away on us before we can do any checks.
8621  *
8622  * Return:
8623  *	true (>0) if we indeed boosted the target task.
8624  *	false (0) if we failed to boost the target.
8625  *	-ESRCH if there's no task to yield to.
8626  */
8627 int __sched yield_to(struct task_struct *p, bool preempt)
8628 {
8629 	struct task_struct *curr = current;
8630 	struct rq *rq, *p_rq;
8631 	unsigned long flags;
8632 	int yielded = 0;
8633 
8634 	local_irq_save(flags);
8635 	rq = this_rq();
8636 
8637 again:
8638 	p_rq = task_rq(p);
8639 	/*
8640 	 * If we're the only runnable task on the rq and target rq also
8641 	 * has only one task, there's absolutely no point in yielding.
8642 	 */
8643 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8644 		yielded = -ESRCH;
8645 		goto out_irq;
8646 	}
8647 
8648 	double_rq_lock(rq, p_rq);
8649 	if (task_rq(p) != p_rq) {
8650 		double_rq_unlock(rq, p_rq);
8651 		goto again;
8652 	}
8653 
8654 	if (!curr->sched_class->yield_to_task)
8655 		goto out_unlock;
8656 
8657 	if (curr->sched_class != p->sched_class)
8658 		goto out_unlock;
8659 
8660 	if (task_on_cpu(p_rq, p) || !task_is_running(p))
8661 		goto out_unlock;
8662 
8663 	yielded = curr->sched_class->yield_to_task(rq, p);
8664 	if (yielded) {
8665 		schedstat_inc(rq->yld_count);
8666 		/*
8667 		 * Make p's CPU reschedule; pick_next_entity takes care of
8668 		 * fairness.
8669 		 */
8670 		if (preempt && rq != p_rq)
8671 			resched_curr(p_rq);
8672 	}
8673 
8674 out_unlock:
8675 	double_rq_unlock(rq, p_rq);
8676 out_irq:
8677 	local_irq_restore(flags);
8678 
8679 	if (yielded > 0)
8680 		schedule();
8681 
8682 	return yielded;
8683 }
8684 EXPORT_SYMBOL_GPL(yield_to);
8685 
8686 int io_schedule_prepare(void)
8687 {
8688 	int old_iowait = current->in_iowait;
8689 
8690 	current->in_iowait = 1;
8691 	blk_flush_plug(current->plug, true);
8692 	return old_iowait;
8693 }
8694 
8695 void io_schedule_finish(int token)
8696 {
8697 	current->in_iowait = token;
8698 }
8699 
8700 /*
8701  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8702  * that process accounting knows that this is a task in IO wait state.
8703  */
8704 long __sched io_schedule_timeout(long timeout)
8705 {
8706 	int token;
8707 	long ret;
8708 
8709 	token = io_schedule_prepare();
8710 	ret = schedule_timeout(timeout);
8711 	io_schedule_finish(token);
8712 
8713 	return ret;
8714 }
8715 EXPORT_SYMBOL(io_schedule_timeout);
8716 
8717 void __sched io_schedule(void)
8718 {
8719 	int token;
8720 
8721 	token = io_schedule_prepare();
8722 	schedule();
8723 	io_schedule_finish(token);
8724 }
8725 EXPORT_SYMBOL(io_schedule);
8726 
8727 /**
8728  * sys_sched_get_priority_max - return maximum RT priority.
8729  * @policy: scheduling class.
8730  *
8731  * Return: On success, this syscall returns the maximum
8732  * rt_priority that can be used by a given scheduling class.
8733  * On failure, a negative error code is returned.
8734  */
8735 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8736 {
8737 	int ret = -EINVAL;
8738 
8739 	switch (policy) {
8740 	case SCHED_FIFO:
8741 	case SCHED_RR:
8742 		ret = MAX_RT_PRIO-1;
8743 		break;
8744 	case SCHED_DEADLINE:
8745 	case SCHED_NORMAL:
8746 	case SCHED_BATCH:
8747 	case SCHED_IDLE:
8748 		ret = 0;
8749 		break;
8750 	}
8751 	return ret;
8752 }
8753 
8754 /**
8755  * sys_sched_get_priority_min - return minimum RT priority.
8756  * @policy: scheduling class.
8757  *
8758  * Return: On success, this syscall returns the minimum
8759  * rt_priority that can be used by a given scheduling class.
8760  * On failure, a negative error code is returned.
8761  */
8762 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8763 {
8764 	int ret = -EINVAL;
8765 
8766 	switch (policy) {
8767 	case SCHED_FIFO:
8768 	case SCHED_RR:
8769 		ret = 1;
8770 		break;
8771 	case SCHED_DEADLINE:
8772 	case SCHED_NORMAL:
8773 	case SCHED_BATCH:
8774 	case SCHED_IDLE:
8775 		ret = 0;
8776 	}
8777 	return ret;
8778 }
8779 
8780 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8781 {
8782 	struct task_struct *p;
8783 	unsigned int time_slice;
8784 	struct rq_flags rf;
8785 	struct rq *rq;
8786 	int retval;
8787 
8788 	if (pid < 0)
8789 		return -EINVAL;
8790 
8791 	retval = -ESRCH;
8792 	rcu_read_lock();
8793 	p = find_process_by_pid(pid);
8794 	if (!p)
8795 		goto out_unlock;
8796 
8797 	retval = security_task_getscheduler(p);
8798 	if (retval)
8799 		goto out_unlock;
8800 
8801 	rq = task_rq_lock(p, &rf);
8802 	time_slice = 0;
8803 	if (p->sched_class->get_rr_interval)
8804 		time_slice = p->sched_class->get_rr_interval(rq, p);
8805 	task_rq_unlock(rq, p, &rf);
8806 
8807 	rcu_read_unlock();
8808 	jiffies_to_timespec64(time_slice, t);
8809 	return 0;
8810 
8811 out_unlock:
8812 	rcu_read_unlock();
8813 	return retval;
8814 }
8815 
8816 /**
8817  * sys_sched_rr_get_interval - return the default timeslice of a process.
8818  * @pid: pid of the process.
8819  * @interval: userspace pointer to the timeslice value.
8820  *
8821  * this syscall writes the default timeslice value of a given process
8822  * into the user-space timespec buffer. A value of '0' means infinity.
8823  *
8824  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8825  * an error code.
8826  */
8827 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8828 		struct __kernel_timespec __user *, interval)
8829 {
8830 	struct timespec64 t;
8831 	int retval = sched_rr_get_interval(pid, &t);
8832 
8833 	if (retval == 0)
8834 		retval = put_timespec64(&t, interval);
8835 
8836 	return retval;
8837 }
8838 
8839 #ifdef CONFIG_COMPAT_32BIT_TIME
8840 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8841 		struct old_timespec32 __user *, interval)
8842 {
8843 	struct timespec64 t;
8844 	int retval = sched_rr_get_interval(pid, &t);
8845 
8846 	if (retval == 0)
8847 		retval = put_old_timespec32(&t, interval);
8848 	return retval;
8849 }
8850 #endif
8851 
8852 void sched_show_task(struct task_struct *p)
8853 {
8854 	unsigned long free = 0;
8855 	int ppid;
8856 
8857 	if (!try_get_task_stack(p))
8858 		return;
8859 
8860 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8861 
8862 	if (task_is_running(p))
8863 		pr_cont("  running task    ");
8864 #ifdef CONFIG_DEBUG_STACK_USAGE
8865 	free = stack_not_used(p);
8866 #endif
8867 	ppid = 0;
8868 	rcu_read_lock();
8869 	if (pid_alive(p))
8870 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
8871 	rcu_read_unlock();
8872 	pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
8873 		free, task_pid_nr(p), ppid,
8874 		read_task_thread_flags(p));
8875 
8876 	print_worker_info(KERN_INFO, p);
8877 	print_stop_info(KERN_INFO, p);
8878 	show_stack(p, NULL, KERN_INFO);
8879 	put_task_stack(p);
8880 }
8881 EXPORT_SYMBOL_GPL(sched_show_task);
8882 
8883 static inline bool
8884 state_filter_match(unsigned long state_filter, struct task_struct *p)
8885 {
8886 	unsigned int state = READ_ONCE(p->__state);
8887 
8888 	/* no filter, everything matches */
8889 	if (!state_filter)
8890 		return true;
8891 
8892 	/* filter, but doesn't match */
8893 	if (!(state & state_filter))
8894 		return false;
8895 
8896 	/*
8897 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8898 	 * TASK_KILLABLE).
8899 	 */
8900 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
8901 		return false;
8902 
8903 	return true;
8904 }
8905 
8906 
8907 void show_state_filter(unsigned int state_filter)
8908 {
8909 	struct task_struct *g, *p;
8910 
8911 	rcu_read_lock();
8912 	for_each_process_thread(g, p) {
8913 		/*
8914 		 * reset the NMI-timeout, listing all files on a slow
8915 		 * console might take a lot of time:
8916 		 * Also, reset softlockup watchdogs on all CPUs, because
8917 		 * another CPU might be blocked waiting for us to process
8918 		 * an IPI.
8919 		 */
8920 		touch_nmi_watchdog();
8921 		touch_all_softlockup_watchdogs();
8922 		if (state_filter_match(state_filter, p))
8923 			sched_show_task(p);
8924 	}
8925 
8926 #ifdef CONFIG_SCHED_DEBUG
8927 	if (!state_filter)
8928 		sysrq_sched_debug_show();
8929 #endif
8930 	rcu_read_unlock();
8931 	/*
8932 	 * Only show locks if all tasks are dumped:
8933 	 */
8934 	if (!state_filter)
8935 		debug_show_all_locks();
8936 }
8937 
8938 /**
8939  * init_idle - set up an idle thread for a given CPU
8940  * @idle: task in question
8941  * @cpu: CPU the idle task belongs to
8942  *
8943  * NOTE: this function does not set the idle thread's NEED_RESCHED
8944  * flag, to make booting more robust.
8945  */
8946 void __init init_idle(struct task_struct *idle, int cpu)
8947 {
8948 	struct rq *rq = cpu_rq(cpu);
8949 	unsigned long flags;
8950 
8951 	__sched_fork(0, idle);
8952 
8953 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
8954 	raw_spin_rq_lock(rq);
8955 
8956 	idle->__state = TASK_RUNNING;
8957 	idle->se.exec_start = sched_clock();
8958 	/*
8959 	 * PF_KTHREAD should already be set at this point; regardless, make it
8960 	 * look like a proper per-CPU kthread.
8961 	 */
8962 	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8963 	kthread_set_per_cpu(idle, cpu);
8964 
8965 #ifdef CONFIG_SMP
8966 	/*
8967 	 * It's possible that init_idle() gets called multiple times on a task,
8968 	 * in that case do_set_cpus_allowed() will not do the right thing.
8969 	 *
8970 	 * And since this is boot we can forgo the serialization.
8971 	 */
8972 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8973 #endif
8974 	/*
8975 	 * We're having a chicken and egg problem, even though we are
8976 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
8977 	 * lockdep check in task_group() will fail.
8978 	 *
8979 	 * Similar case to sched_fork(). / Alternatively we could
8980 	 * use task_rq_lock() here and obtain the other rq->lock.
8981 	 *
8982 	 * Silence PROVE_RCU
8983 	 */
8984 	rcu_read_lock();
8985 	__set_task_cpu(idle, cpu);
8986 	rcu_read_unlock();
8987 
8988 	rq->idle = idle;
8989 	rcu_assign_pointer(rq->curr, idle);
8990 	idle->on_rq = TASK_ON_RQ_QUEUED;
8991 #ifdef CONFIG_SMP
8992 	idle->on_cpu = 1;
8993 #endif
8994 	raw_spin_rq_unlock(rq);
8995 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8996 
8997 	/* Set the preempt count _outside_ the spinlocks! */
8998 	init_idle_preempt_count(idle, cpu);
8999 
9000 	/*
9001 	 * The idle tasks have their own, simple scheduling class:
9002 	 */
9003 	idle->sched_class = &idle_sched_class;
9004 	ftrace_graph_init_idle_task(idle, cpu);
9005 	vtime_init_idle(idle, cpu);
9006 #ifdef CONFIG_SMP
9007 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9008 #endif
9009 }
9010 
9011 #ifdef CONFIG_SMP
9012 
9013 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9014 			      const struct cpumask *trial)
9015 {
9016 	int ret = 1;
9017 
9018 	if (cpumask_empty(cur))
9019 		return ret;
9020 
9021 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9022 
9023 	return ret;
9024 }
9025 
9026 int task_can_attach(struct task_struct *p,
9027 		    const struct cpumask *cs_effective_cpus)
9028 {
9029 	int ret = 0;
9030 
9031 	/*
9032 	 * Kthreads which disallow setaffinity shouldn't be moved
9033 	 * to a new cpuset; we don't want to change their CPU
9034 	 * affinity and isolating such threads by their set of
9035 	 * allowed nodes is unnecessary.  Thus, cpusets are not
9036 	 * applicable for such threads.  This prevents checking for
9037 	 * success of set_cpus_allowed_ptr() on all attached tasks
9038 	 * before cpus_mask may be changed.
9039 	 */
9040 	if (p->flags & PF_NO_SETAFFINITY) {
9041 		ret = -EINVAL;
9042 		goto out;
9043 	}
9044 
9045 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
9046 					      cs_effective_cpus)) {
9047 		int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus);
9048 
9049 		if (unlikely(cpu >= nr_cpu_ids))
9050 			return -EINVAL;
9051 		ret = dl_cpu_busy(cpu, p);
9052 	}
9053 
9054 out:
9055 	return ret;
9056 }
9057 
9058 bool sched_smp_initialized __read_mostly;
9059 
9060 #ifdef CONFIG_NUMA_BALANCING
9061 /* Migrate current task p to target_cpu */
9062 int migrate_task_to(struct task_struct *p, int target_cpu)
9063 {
9064 	struct migration_arg arg = { p, target_cpu };
9065 	int curr_cpu = task_cpu(p);
9066 
9067 	if (curr_cpu == target_cpu)
9068 		return 0;
9069 
9070 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9071 		return -EINVAL;
9072 
9073 	/* TODO: This is not properly updating schedstats */
9074 
9075 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9076 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9077 }
9078 
9079 /*
9080  * Requeue a task on a given node and accurately track the number of NUMA
9081  * tasks on the runqueues
9082  */
9083 void sched_setnuma(struct task_struct *p, int nid)
9084 {
9085 	bool queued, running;
9086 	struct rq_flags rf;
9087 	struct rq *rq;
9088 
9089 	rq = task_rq_lock(p, &rf);
9090 	queued = task_on_rq_queued(p);
9091 	running = task_current(rq, p);
9092 
9093 	if (queued)
9094 		dequeue_task(rq, p, DEQUEUE_SAVE);
9095 	if (running)
9096 		put_prev_task(rq, p);
9097 
9098 	p->numa_preferred_nid = nid;
9099 
9100 	if (queued)
9101 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9102 	if (running)
9103 		set_next_task(rq, p);
9104 	task_rq_unlock(rq, p, &rf);
9105 }
9106 #endif /* CONFIG_NUMA_BALANCING */
9107 
9108 #ifdef CONFIG_HOTPLUG_CPU
9109 /*
9110  * Ensure that the idle task is using init_mm right before its CPU goes
9111  * offline.
9112  */
9113 void idle_task_exit(void)
9114 {
9115 	struct mm_struct *mm = current->active_mm;
9116 
9117 	BUG_ON(cpu_online(smp_processor_id()));
9118 	BUG_ON(current != this_rq()->idle);
9119 
9120 	if (mm != &init_mm) {
9121 		switch_mm(mm, &init_mm, current);
9122 		finish_arch_post_lock_switch();
9123 	}
9124 
9125 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9126 }
9127 
9128 static int __balance_push_cpu_stop(void *arg)
9129 {
9130 	struct task_struct *p = arg;
9131 	struct rq *rq = this_rq();
9132 	struct rq_flags rf;
9133 	int cpu;
9134 
9135 	raw_spin_lock_irq(&p->pi_lock);
9136 	rq_lock(rq, &rf);
9137 
9138 	update_rq_clock(rq);
9139 
9140 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9141 		cpu = select_fallback_rq(rq->cpu, p);
9142 		rq = __migrate_task(rq, &rf, p, cpu);
9143 	}
9144 
9145 	rq_unlock(rq, &rf);
9146 	raw_spin_unlock_irq(&p->pi_lock);
9147 
9148 	put_task_struct(p);
9149 
9150 	return 0;
9151 }
9152 
9153 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9154 
9155 /*
9156  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9157  *
9158  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9159  * effective when the hotplug motion is down.
9160  */
9161 static void balance_push(struct rq *rq)
9162 {
9163 	struct task_struct *push_task = rq->curr;
9164 
9165 	lockdep_assert_rq_held(rq);
9166 
9167 	/*
9168 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9169 	 */
9170 	rq->balance_callback = &balance_push_callback;
9171 
9172 	/*
9173 	 * Only active while going offline and when invoked on the outgoing
9174 	 * CPU.
9175 	 */
9176 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9177 		return;
9178 
9179 	/*
9180 	 * Both the cpu-hotplug and stop task are in this case and are
9181 	 * required to complete the hotplug process.
9182 	 */
9183 	if (kthread_is_per_cpu(push_task) ||
9184 	    is_migration_disabled(push_task)) {
9185 
9186 		/*
9187 		 * If this is the idle task on the outgoing CPU try to wake
9188 		 * up the hotplug control thread which might wait for the
9189 		 * last task to vanish. The rcuwait_active() check is
9190 		 * accurate here because the waiter is pinned on this CPU
9191 		 * and can't obviously be running in parallel.
9192 		 *
9193 		 * On RT kernels this also has to check whether there are
9194 		 * pinned and scheduled out tasks on the runqueue. They
9195 		 * need to leave the migrate disabled section first.
9196 		 */
9197 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9198 		    rcuwait_active(&rq->hotplug_wait)) {
9199 			raw_spin_rq_unlock(rq);
9200 			rcuwait_wake_up(&rq->hotplug_wait);
9201 			raw_spin_rq_lock(rq);
9202 		}
9203 		return;
9204 	}
9205 
9206 	get_task_struct(push_task);
9207 	/*
9208 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9209 	 * Both preemption and IRQs are still disabled.
9210 	 */
9211 	raw_spin_rq_unlock(rq);
9212 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9213 			    this_cpu_ptr(&push_work));
9214 	/*
9215 	 * At this point need_resched() is true and we'll take the loop in
9216 	 * schedule(). The next pick is obviously going to be the stop task
9217 	 * which kthread_is_per_cpu() and will push this task away.
9218 	 */
9219 	raw_spin_rq_lock(rq);
9220 }
9221 
9222 static void balance_push_set(int cpu, bool on)
9223 {
9224 	struct rq *rq = cpu_rq(cpu);
9225 	struct rq_flags rf;
9226 
9227 	rq_lock_irqsave(rq, &rf);
9228 	if (on) {
9229 		WARN_ON_ONCE(rq->balance_callback);
9230 		rq->balance_callback = &balance_push_callback;
9231 	} else if (rq->balance_callback == &balance_push_callback) {
9232 		rq->balance_callback = NULL;
9233 	}
9234 	rq_unlock_irqrestore(rq, &rf);
9235 }
9236 
9237 /*
9238  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9239  * inactive. All tasks which are not per CPU kernel threads are either
9240  * pushed off this CPU now via balance_push() or placed on a different CPU
9241  * during wakeup. Wait until the CPU is quiescent.
9242  */
9243 static void balance_hotplug_wait(void)
9244 {
9245 	struct rq *rq = this_rq();
9246 
9247 	rcuwait_wait_event(&rq->hotplug_wait,
9248 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9249 			   TASK_UNINTERRUPTIBLE);
9250 }
9251 
9252 #else
9253 
9254 static inline void balance_push(struct rq *rq)
9255 {
9256 }
9257 
9258 static inline void balance_push_set(int cpu, bool on)
9259 {
9260 }
9261 
9262 static inline void balance_hotplug_wait(void)
9263 {
9264 }
9265 
9266 #endif /* CONFIG_HOTPLUG_CPU */
9267 
9268 void set_rq_online(struct rq *rq)
9269 {
9270 	if (!rq->online) {
9271 		const struct sched_class *class;
9272 
9273 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9274 		rq->online = 1;
9275 
9276 		for_each_class(class) {
9277 			if (class->rq_online)
9278 				class->rq_online(rq);
9279 		}
9280 	}
9281 }
9282 
9283 void set_rq_offline(struct rq *rq)
9284 {
9285 	if (rq->online) {
9286 		const struct sched_class *class;
9287 
9288 		for_each_class(class) {
9289 			if (class->rq_offline)
9290 				class->rq_offline(rq);
9291 		}
9292 
9293 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9294 		rq->online = 0;
9295 	}
9296 }
9297 
9298 /*
9299  * used to mark begin/end of suspend/resume:
9300  */
9301 static int num_cpus_frozen;
9302 
9303 /*
9304  * Update cpusets according to cpu_active mask.  If cpusets are
9305  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9306  * around partition_sched_domains().
9307  *
9308  * If we come here as part of a suspend/resume, don't touch cpusets because we
9309  * want to restore it back to its original state upon resume anyway.
9310  */
9311 static void cpuset_cpu_active(void)
9312 {
9313 	if (cpuhp_tasks_frozen) {
9314 		/*
9315 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9316 		 * resume sequence. As long as this is not the last online
9317 		 * operation in the resume sequence, just build a single sched
9318 		 * domain, ignoring cpusets.
9319 		 */
9320 		partition_sched_domains(1, NULL, NULL);
9321 		if (--num_cpus_frozen)
9322 			return;
9323 		/*
9324 		 * This is the last CPU online operation. So fall through and
9325 		 * restore the original sched domains by considering the
9326 		 * cpuset configurations.
9327 		 */
9328 		cpuset_force_rebuild();
9329 	}
9330 	cpuset_update_active_cpus();
9331 }
9332 
9333 static int cpuset_cpu_inactive(unsigned int cpu)
9334 {
9335 	if (!cpuhp_tasks_frozen) {
9336 		int ret = dl_cpu_busy(cpu, NULL);
9337 
9338 		if (ret)
9339 			return ret;
9340 		cpuset_update_active_cpus();
9341 	} else {
9342 		num_cpus_frozen++;
9343 		partition_sched_domains(1, NULL, NULL);
9344 	}
9345 	return 0;
9346 }
9347 
9348 int sched_cpu_activate(unsigned int cpu)
9349 {
9350 	struct rq *rq = cpu_rq(cpu);
9351 	struct rq_flags rf;
9352 
9353 	/*
9354 	 * Clear the balance_push callback and prepare to schedule
9355 	 * regular tasks.
9356 	 */
9357 	balance_push_set(cpu, false);
9358 
9359 #ifdef CONFIG_SCHED_SMT
9360 	/*
9361 	 * When going up, increment the number of cores with SMT present.
9362 	 */
9363 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9364 		static_branch_inc_cpuslocked(&sched_smt_present);
9365 #endif
9366 	set_cpu_active(cpu, true);
9367 
9368 	if (sched_smp_initialized) {
9369 		sched_update_numa(cpu, true);
9370 		sched_domains_numa_masks_set(cpu);
9371 		cpuset_cpu_active();
9372 	}
9373 
9374 	/*
9375 	 * Put the rq online, if not already. This happens:
9376 	 *
9377 	 * 1) In the early boot process, because we build the real domains
9378 	 *    after all CPUs have been brought up.
9379 	 *
9380 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9381 	 *    domains.
9382 	 */
9383 	rq_lock_irqsave(rq, &rf);
9384 	if (rq->rd) {
9385 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9386 		set_rq_online(rq);
9387 	}
9388 	rq_unlock_irqrestore(rq, &rf);
9389 
9390 	return 0;
9391 }
9392 
9393 int sched_cpu_deactivate(unsigned int cpu)
9394 {
9395 	struct rq *rq = cpu_rq(cpu);
9396 	struct rq_flags rf;
9397 	int ret;
9398 
9399 	/*
9400 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9401 	 * load balancing when not active
9402 	 */
9403 	nohz_balance_exit_idle(rq);
9404 
9405 	set_cpu_active(cpu, false);
9406 
9407 	/*
9408 	 * From this point forward, this CPU will refuse to run any task that
9409 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9410 	 * push those tasks away until this gets cleared, see
9411 	 * sched_cpu_dying().
9412 	 */
9413 	balance_push_set(cpu, true);
9414 
9415 	/*
9416 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9417 	 * preempt-disabled and RCU users of this state to go away such that
9418 	 * all new such users will observe it.
9419 	 *
9420 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9421 	 * ttwu_queue_cond() and is_cpu_allowed().
9422 	 *
9423 	 * Do sync before park smpboot threads to take care the rcu boost case.
9424 	 */
9425 	synchronize_rcu();
9426 
9427 	rq_lock_irqsave(rq, &rf);
9428 	if (rq->rd) {
9429 		update_rq_clock(rq);
9430 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9431 		set_rq_offline(rq);
9432 	}
9433 	rq_unlock_irqrestore(rq, &rf);
9434 
9435 #ifdef CONFIG_SCHED_SMT
9436 	/*
9437 	 * When going down, decrement the number of cores with SMT present.
9438 	 */
9439 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9440 		static_branch_dec_cpuslocked(&sched_smt_present);
9441 
9442 	sched_core_cpu_deactivate(cpu);
9443 #endif
9444 
9445 	if (!sched_smp_initialized)
9446 		return 0;
9447 
9448 	sched_update_numa(cpu, false);
9449 	ret = cpuset_cpu_inactive(cpu);
9450 	if (ret) {
9451 		balance_push_set(cpu, false);
9452 		set_cpu_active(cpu, true);
9453 		sched_update_numa(cpu, true);
9454 		return ret;
9455 	}
9456 	sched_domains_numa_masks_clear(cpu);
9457 	return 0;
9458 }
9459 
9460 static void sched_rq_cpu_starting(unsigned int cpu)
9461 {
9462 	struct rq *rq = cpu_rq(cpu);
9463 
9464 	rq->calc_load_update = calc_load_update;
9465 	update_max_interval();
9466 }
9467 
9468 int sched_cpu_starting(unsigned int cpu)
9469 {
9470 	sched_core_cpu_starting(cpu);
9471 	sched_rq_cpu_starting(cpu);
9472 	sched_tick_start(cpu);
9473 	return 0;
9474 }
9475 
9476 #ifdef CONFIG_HOTPLUG_CPU
9477 
9478 /*
9479  * Invoked immediately before the stopper thread is invoked to bring the
9480  * CPU down completely. At this point all per CPU kthreads except the
9481  * hotplug thread (current) and the stopper thread (inactive) have been
9482  * either parked or have been unbound from the outgoing CPU. Ensure that
9483  * any of those which might be on the way out are gone.
9484  *
9485  * If after this point a bound task is being woken on this CPU then the
9486  * responsible hotplug callback has failed to do it's job.
9487  * sched_cpu_dying() will catch it with the appropriate fireworks.
9488  */
9489 int sched_cpu_wait_empty(unsigned int cpu)
9490 {
9491 	balance_hotplug_wait();
9492 	return 0;
9493 }
9494 
9495 /*
9496  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9497  * might have. Called from the CPU stopper task after ensuring that the
9498  * stopper is the last running task on the CPU, so nr_active count is
9499  * stable. We need to take the teardown thread which is calling this into
9500  * account, so we hand in adjust = 1 to the load calculation.
9501  *
9502  * Also see the comment "Global load-average calculations".
9503  */
9504 static void calc_load_migrate(struct rq *rq)
9505 {
9506 	long delta = calc_load_fold_active(rq, 1);
9507 
9508 	if (delta)
9509 		atomic_long_add(delta, &calc_load_tasks);
9510 }
9511 
9512 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9513 {
9514 	struct task_struct *g, *p;
9515 	int cpu = cpu_of(rq);
9516 
9517 	lockdep_assert_rq_held(rq);
9518 
9519 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9520 	for_each_process_thread(g, p) {
9521 		if (task_cpu(p) != cpu)
9522 			continue;
9523 
9524 		if (!task_on_rq_queued(p))
9525 			continue;
9526 
9527 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9528 	}
9529 }
9530 
9531 int sched_cpu_dying(unsigned int cpu)
9532 {
9533 	struct rq *rq = cpu_rq(cpu);
9534 	struct rq_flags rf;
9535 
9536 	/* Handle pending wakeups and then migrate everything off */
9537 	sched_tick_stop(cpu);
9538 
9539 	rq_lock_irqsave(rq, &rf);
9540 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9541 		WARN(true, "Dying CPU not properly vacated!");
9542 		dump_rq_tasks(rq, KERN_WARNING);
9543 	}
9544 	rq_unlock_irqrestore(rq, &rf);
9545 
9546 	calc_load_migrate(rq);
9547 	update_max_interval();
9548 	hrtick_clear(rq);
9549 	sched_core_cpu_dying(cpu);
9550 	return 0;
9551 }
9552 #endif
9553 
9554 void __init sched_init_smp(void)
9555 {
9556 	sched_init_numa(NUMA_NO_NODE);
9557 
9558 	/*
9559 	 * There's no userspace yet to cause hotplug operations; hence all the
9560 	 * CPU masks are stable and all blatant races in the below code cannot
9561 	 * happen.
9562 	 */
9563 	mutex_lock(&sched_domains_mutex);
9564 	sched_init_domains(cpu_active_mask);
9565 	mutex_unlock(&sched_domains_mutex);
9566 
9567 	/* Move init over to a non-isolated CPU */
9568 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9569 		BUG();
9570 	current->flags &= ~PF_NO_SETAFFINITY;
9571 	sched_init_granularity();
9572 
9573 	init_sched_rt_class();
9574 	init_sched_dl_class();
9575 
9576 	sched_smp_initialized = true;
9577 }
9578 
9579 static int __init migration_init(void)
9580 {
9581 	sched_cpu_starting(smp_processor_id());
9582 	return 0;
9583 }
9584 early_initcall(migration_init);
9585 
9586 #else
9587 void __init sched_init_smp(void)
9588 {
9589 	sched_init_granularity();
9590 }
9591 #endif /* CONFIG_SMP */
9592 
9593 int in_sched_functions(unsigned long addr)
9594 {
9595 	return in_lock_functions(addr) ||
9596 		(addr >= (unsigned long)__sched_text_start
9597 		&& addr < (unsigned long)__sched_text_end);
9598 }
9599 
9600 #ifdef CONFIG_CGROUP_SCHED
9601 /*
9602  * Default task group.
9603  * Every task in system belongs to this group at bootup.
9604  */
9605 struct task_group root_task_group;
9606 LIST_HEAD(task_groups);
9607 
9608 /* Cacheline aligned slab cache for task_group */
9609 static struct kmem_cache *task_group_cache __read_mostly;
9610 #endif
9611 
9612 void __init sched_init(void)
9613 {
9614 	unsigned long ptr = 0;
9615 	int i;
9616 
9617 	/* Make sure the linker didn't screw up */
9618 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9619 	       &fair_sched_class != &rt_sched_class + 1 ||
9620 	       &rt_sched_class   != &dl_sched_class + 1);
9621 #ifdef CONFIG_SMP
9622 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9623 #endif
9624 
9625 	wait_bit_init();
9626 
9627 #ifdef CONFIG_FAIR_GROUP_SCHED
9628 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9629 #endif
9630 #ifdef CONFIG_RT_GROUP_SCHED
9631 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9632 #endif
9633 	if (ptr) {
9634 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9635 
9636 #ifdef CONFIG_FAIR_GROUP_SCHED
9637 		root_task_group.se = (struct sched_entity **)ptr;
9638 		ptr += nr_cpu_ids * sizeof(void **);
9639 
9640 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9641 		ptr += nr_cpu_ids * sizeof(void **);
9642 
9643 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9644 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9645 #endif /* CONFIG_FAIR_GROUP_SCHED */
9646 #ifdef CONFIG_RT_GROUP_SCHED
9647 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9648 		ptr += nr_cpu_ids * sizeof(void **);
9649 
9650 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9651 		ptr += nr_cpu_ids * sizeof(void **);
9652 
9653 #endif /* CONFIG_RT_GROUP_SCHED */
9654 	}
9655 
9656 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9657 
9658 #ifdef CONFIG_SMP
9659 	init_defrootdomain();
9660 #endif
9661 
9662 #ifdef CONFIG_RT_GROUP_SCHED
9663 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9664 			global_rt_period(), global_rt_runtime());
9665 #endif /* CONFIG_RT_GROUP_SCHED */
9666 
9667 #ifdef CONFIG_CGROUP_SCHED
9668 	task_group_cache = KMEM_CACHE(task_group, 0);
9669 
9670 	list_add(&root_task_group.list, &task_groups);
9671 	INIT_LIST_HEAD(&root_task_group.children);
9672 	INIT_LIST_HEAD(&root_task_group.siblings);
9673 	autogroup_init(&init_task);
9674 #endif /* CONFIG_CGROUP_SCHED */
9675 
9676 	for_each_possible_cpu(i) {
9677 		struct rq *rq;
9678 
9679 		rq = cpu_rq(i);
9680 		raw_spin_lock_init(&rq->__lock);
9681 		rq->nr_running = 0;
9682 		rq->calc_load_active = 0;
9683 		rq->calc_load_update = jiffies + LOAD_FREQ;
9684 		init_cfs_rq(&rq->cfs);
9685 		init_rt_rq(&rq->rt);
9686 		init_dl_rq(&rq->dl);
9687 #ifdef CONFIG_FAIR_GROUP_SCHED
9688 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9689 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9690 		/*
9691 		 * How much CPU bandwidth does root_task_group get?
9692 		 *
9693 		 * In case of task-groups formed thr' the cgroup filesystem, it
9694 		 * gets 100% of the CPU resources in the system. This overall
9695 		 * system CPU resource is divided among the tasks of
9696 		 * root_task_group and its child task-groups in a fair manner,
9697 		 * based on each entity's (task or task-group's) weight
9698 		 * (se->load.weight).
9699 		 *
9700 		 * In other words, if root_task_group has 10 tasks of weight
9701 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9702 		 * then A0's share of the CPU resource is:
9703 		 *
9704 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9705 		 *
9706 		 * We achieve this by letting root_task_group's tasks sit
9707 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9708 		 */
9709 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9710 #endif /* CONFIG_FAIR_GROUP_SCHED */
9711 
9712 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9713 #ifdef CONFIG_RT_GROUP_SCHED
9714 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9715 #endif
9716 #ifdef CONFIG_SMP
9717 		rq->sd = NULL;
9718 		rq->rd = NULL;
9719 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9720 		rq->balance_callback = &balance_push_callback;
9721 		rq->active_balance = 0;
9722 		rq->next_balance = jiffies;
9723 		rq->push_cpu = 0;
9724 		rq->cpu = i;
9725 		rq->online = 0;
9726 		rq->idle_stamp = 0;
9727 		rq->avg_idle = 2*sysctl_sched_migration_cost;
9728 		rq->wake_stamp = jiffies;
9729 		rq->wake_avg_idle = rq->avg_idle;
9730 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9731 
9732 		INIT_LIST_HEAD(&rq->cfs_tasks);
9733 
9734 		rq_attach_root(rq, &def_root_domain);
9735 #ifdef CONFIG_NO_HZ_COMMON
9736 		rq->last_blocked_load_update_tick = jiffies;
9737 		atomic_set(&rq->nohz_flags, 0);
9738 
9739 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9740 #endif
9741 #ifdef CONFIG_HOTPLUG_CPU
9742 		rcuwait_init(&rq->hotplug_wait);
9743 #endif
9744 #endif /* CONFIG_SMP */
9745 		hrtick_rq_init(rq);
9746 		atomic_set(&rq->nr_iowait, 0);
9747 
9748 #ifdef CONFIG_SCHED_CORE
9749 		rq->core = rq;
9750 		rq->core_pick = NULL;
9751 		rq->core_enabled = 0;
9752 		rq->core_tree = RB_ROOT;
9753 		rq->core_forceidle_count = 0;
9754 		rq->core_forceidle_occupation = 0;
9755 		rq->core_forceidle_start = 0;
9756 
9757 		rq->core_cookie = 0UL;
9758 #endif
9759 	}
9760 
9761 	set_load_weight(&init_task, false);
9762 
9763 	/*
9764 	 * The boot idle thread does lazy MMU switching as well:
9765 	 */
9766 	mmgrab(&init_mm);
9767 	enter_lazy_tlb(&init_mm, current);
9768 
9769 	/*
9770 	 * The idle task doesn't need the kthread struct to function, but it
9771 	 * is dressed up as a per-CPU kthread and thus needs to play the part
9772 	 * if we want to avoid special-casing it in code that deals with per-CPU
9773 	 * kthreads.
9774 	 */
9775 	WARN_ON(!set_kthread_struct(current));
9776 
9777 	/*
9778 	 * Make us the idle thread. Technically, schedule() should not be
9779 	 * called from this thread, however somewhere below it might be,
9780 	 * but because we are the idle thread, we just pick up running again
9781 	 * when this runqueue becomes "idle".
9782 	 */
9783 	init_idle(current, smp_processor_id());
9784 
9785 	calc_load_update = jiffies + LOAD_FREQ;
9786 
9787 #ifdef CONFIG_SMP
9788 	idle_thread_set_boot_cpu();
9789 	balance_push_set(smp_processor_id(), false);
9790 #endif
9791 	init_sched_fair_class();
9792 
9793 	psi_init();
9794 
9795 	init_uclamp();
9796 
9797 	preempt_dynamic_init();
9798 
9799 	scheduler_running = 1;
9800 }
9801 
9802 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9803 
9804 void __might_sleep(const char *file, int line)
9805 {
9806 	unsigned int state = get_current_state();
9807 	/*
9808 	 * Blocking primitives will set (and therefore destroy) current->state,
9809 	 * since we will exit with TASK_RUNNING make sure we enter with it,
9810 	 * otherwise we will destroy state.
9811 	 */
9812 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9813 			"do not call blocking ops when !TASK_RUNNING; "
9814 			"state=%x set at [<%p>] %pS\n", state,
9815 			(void *)current->task_state_change,
9816 			(void *)current->task_state_change);
9817 
9818 	__might_resched(file, line, 0);
9819 }
9820 EXPORT_SYMBOL(__might_sleep);
9821 
9822 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
9823 {
9824 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
9825 		return;
9826 
9827 	if (preempt_count() == preempt_offset)
9828 		return;
9829 
9830 	pr_err("Preemption disabled at:");
9831 	print_ip_sym(KERN_ERR, ip);
9832 }
9833 
9834 static inline bool resched_offsets_ok(unsigned int offsets)
9835 {
9836 	unsigned int nested = preempt_count();
9837 
9838 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
9839 
9840 	return nested == offsets;
9841 }
9842 
9843 void __might_resched(const char *file, int line, unsigned int offsets)
9844 {
9845 	/* Ratelimiting timestamp: */
9846 	static unsigned long prev_jiffy;
9847 
9848 	unsigned long preempt_disable_ip;
9849 
9850 	/* WARN_ON_ONCE() by default, no rate limit required: */
9851 	rcu_sleep_check();
9852 
9853 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
9854 	     !is_idle_task(current) && !current->non_block_count) ||
9855 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9856 	    oops_in_progress)
9857 		return;
9858 
9859 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9860 		return;
9861 	prev_jiffy = jiffies;
9862 
9863 	/* Save this before calling printk(), since that will clobber it: */
9864 	preempt_disable_ip = get_preempt_disable_ip(current);
9865 
9866 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9867 	       file, line);
9868 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9869 	       in_atomic(), irqs_disabled(), current->non_block_count,
9870 	       current->pid, current->comm);
9871 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
9872 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
9873 
9874 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
9875 		pr_err("RCU nest depth: %d, expected: %u\n",
9876 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
9877 	}
9878 
9879 	if (task_stack_end_corrupted(current))
9880 		pr_emerg("Thread overran stack, or stack corrupted\n");
9881 
9882 	debug_show_held_locks(current);
9883 	if (irqs_disabled())
9884 		print_irqtrace_events(current);
9885 
9886 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
9887 				 preempt_disable_ip);
9888 
9889 	dump_stack();
9890 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9891 }
9892 EXPORT_SYMBOL(__might_resched);
9893 
9894 void __cant_sleep(const char *file, int line, int preempt_offset)
9895 {
9896 	static unsigned long prev_jiffy;
9897 
9898 	if (irqs_disabled())
9899 		return;
9900 
9901 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9902 		return;
9903 
9904 	if (preempt_count() > preempt_offset)
9905 		return;
9906 
9907 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9908 		return;
9909 	prev_jiffy = jiffies;
9910 
9911 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9912 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9913 			in_atomic(), irqs_disabled(),
9914 			current->pid, current->comm);
9915 
9916 	debug_show_held_locks(current);
9917 	dump_stack();
9918 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9919 }
9920 EXPORT_SYMBOL_GPL(__cant_sleep);
9921 
9922 #ifdef CONFIG_SMP
9923 void __cant_migrate(const char *file, int line)
9924 {
9925 	static unsigned long prev_jiffy;
9926 
9927 	if (irqs_disabled())
9928 		return;
9929 
9930 	if (is_migration_disabled(current))
9931 		return;
9932 
9933 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9934 		return;
9935 
9936 	if (preempt_count() > 0)
9937 		return;
9938 
9939 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9940 		return;
9941 	prev_jiffy = jiffies;
9942 
9943 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9944 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9945 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
9946 	       current->pid, current->comm);
9947 
9948 	debug_show_held_locks(current);
9949 	dump_stack();
9950 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9951 }
9952 EXPORT_SYMBOL_GPL(__cant_migrate);
9953 #endif
9954 #endif
9955 
9956 #ifdef CONFIG_MAGIC_SYSRQ
9957 void normalize_rt_tasks(void)
9958 {
9959 	struct task_struct *g, *p;
9960 	struct sched_attr attr = {
9961 		.sched_policy = SCHED_NORMAL,
9962 	};
9963 
9964 	read_lock(&tasklist_lock);
9965 	for_each_process_thread(g, p) {
9966 		/*
9967 		 * Only normalize user tasks:
9968 		 */
9969 		if (p->flags & PF_KTHREAD)
9970 			continue;
9971 
9972 		p->se.exec_start = 0;
9973 		schedstat_set(p->stats.wait_start,  0);
9974 		schedstat_set(p->stats.sleep_start, 0);
9975 		schedstat_set(p->stats.block_start, 0);
9976 
9977 		if (!dl_task(p) && !rt_task(p)) {
9978 			/*
9979 			 * Renice negative nice level userspace
9980 			 * tasks back to 0:
9981 			 */
9982 			if (task_nice(p) < 0)
9983 				set_user_nice(p, 0);
9984 			continue;
9985 		}
9986 
9987 		__sched_setscheduler(p, &attr, false, false);
9988 	}
9989 	read_unlock(&tasklist_lock);
9990 }
9991 
9992 #endif /* CONFIG_MAGIC_SYSRQ */
9993 
9994 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
9995 /*
9996  * These functions are only useful for the IA64 MCA handling, or kdb.
9997  *
9998  * They can only be called when the whole system has been
9999  * stopped - every CPU needs to be quiescent, and no scheduling
10000  * activity can take place. Using them for anything else would
10001  * be a serious bug, and as a result, they aren't even visible
10002  * under any other configuration.
10003  */
10004 
10005 /**
10006  * curr_task - return the current task for a given CPU.
10007  * @cpu: the processor in question.
10008  *
10009  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10010  *
10011  * Return: The current task for @cpu.
10012  */
10013 struct task_struct *curr_task(int cpu)
10014 {
10015 	return cpu_curr(cpu);
10016 }
10017 
10018 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10019 
10020 #ifdef CONFIG_IA64
10021 /**
10022  * ia64_set_curr_task - set the current task for a given CPU.
10023  * @cpu: the processor in question.
10024  * @p: the task pointer to set.
10025  *
10026  * Description: This function must only be used when non-maskable interrupts
10027  * are serviced on a separate stack. It allows the architecture to switch the
10028  * notion of the current task on a CPU in a non-blocking manner. This function
10029  * must be called with all CPU's synchronized, and interrupts disabled, the
10030  * and caller must save the original value of the current task (see
10031  * curr_task() above) and restore that value before reenabling interrupts and
10032  * re-starting the system.
10033  *
10034  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10035  */
10036 void ia64_set_curr_task(int cpu, struct task_struct *p)
10037 {
10038 	cpu_curr(cpu) = p;
10039 }
10040 
10041 #endif
10042 
10043 #ifdef CONFIG_CGROUP_SCHED
10044 /* task_group_lock serializes the addition/removal of task groups */
10045 static DEFINE_SPINLOCK(task_group_lock);
10046 
10047 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10048 					    struct task_group *parent)
10049 {
10050 #ifdef CONFIG_UCLAMP_TASK_GROUP
10051 	enum uclamp_id clamp_id;
10052 
10053 	for_each_clamp_id(clamp_id) {
10054 		uclamp_se_set(&tg->uclamp_req[clamp_id],
10055 			      uclamp_none(clamp_id), false);
10056 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10057 	}
10058 #endif
10059 }
10060 
10061 static void sched_free_group(struct task_group *tg)
10062 {
10063 	free_fair_sched_group(tg);
10064 	free_rt_sched_group(tg);
10065 	autogroup_free(tg);
10066 	kmem_cache_free(task_group_cache, tg);
10067 }
10068 
10069 static void sched_free_group_rcu(struct rcu_head *rcu)
10070 {
10071 	sched_free_group(container_of(rcu, struct task_group, rcu));
10072 }
10073 
10074 static void sched_unregister_group(struct task_group *tg)
10075 {
10076 	unregister_fair_sched_group(tg);
10077 	unregister_rt_sched_group(tg);
10078 	/*
10079 	 * We have to wait for yet another RCU grace period to expire, as
10080 	 * print_cfs_stats() might run concurrently.
10081 	 */
10082 	call_rcu(&tg->rcu, sched_free_group_rcu);
10083 }
10084 
10085 /* allocate runqueue etc for a new task group */
10086 struct task_group *sched_create_group(struct task_group *parent)
10087 {
10088 	struct task_group *tg;
10089 
10090 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10091 	if (!tg)
10092 		return ERR_PTR(-ENOMEM);
10093 
10094 	if (!alloc_fair_sched_group(tg, parent))
10095 		goto err;
10096 
10097 	if (!alloc_rt_sched_group(tg, parent))
10098 		goto err;
10099 
10100 	alloc_uclamp_sched_group(tg, parent);
10101 
10102 	return tg;
10103 
10104 err:
10105 	sched_free_group(tg);
10106 	return ERR_PTR(-ENOMEM);
10107 }
10108 
10109 void sched_online_group(struct task_group *tg, struct task_group *parent)
10110 {
10111 	unsigned long flags;
10112 
10113 	spin_lock_irqsave(&task_group_lock, flags);
10114 	list_add_rcu(&tg->list, &task_groups);
10115 
10116 	/* Root should already exist: */
10117 	WARN_ON(!parent);
10118 
10119 	tg->parent = parent;
10120 	INIT_LIST_HEAD(&tg->children);
10121 	list_add_rcu(&tg->siblings, &parent->children);
10122 	spin_unlock_irqrestore(&task_group_lock, flags);
10123 
10124 	online_fair_sched_group(tg);
10125 }
10126 
10127 /* rcu callback to free various structures associated with a task group */
10128 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10129 {
10130 	/* Now it should be safe to free those cfs_rqs: */
10131 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10132 }
10133 
10134 void sched_destroy_group(struct task_group *tg)
10135 {
10136 	/* Wait for possible concurrent references to cfs_rqs complete: */
10137 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10138 }
10139 
10140 void sched_release_group(struct task_group *tg)
10141 {
10142 	unsigned long flags;
10143 
10144 	/*
10145 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10146 	 * sched_cfs_period_timer()).
10147 	 *
10148 	 * For this to be effective, we have to wait for all pending users of
10149 	 * this task group to leave their RCU critical section to ensure no new
10150 	 * user will see our dying task group any more. Specifically ensure
10151 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10152 	 *
10153 	 * We therefore defer calling unregister_fair_sched_group() to
10154 	 * sched_unregister_group() which is guarantied to get called only after the
10155 	 * current RCU grace period has expired.
10156 	 */
10157 	spin_lock_irqsave(&task_group_lock, flags);
10158 	list_del_rcu(&tg->list);
10159 	list_del_rcu(&tg->siblings);
10160 	spin_unlock_irqrestore(&task_group_lock, flags);
10161 }
10162 
10163 static void sched_change_group(struct task_struct *tsk)
10164 {
10165 	struct task_group *tg;
10166 
10167 	/*
10168 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10169 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10170 	 * to prevent lockdep warnings.
10171 	 */
10172 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10173 			  struct task_group, css);
10174 	tg = autogroup_task_group(tsk, tg);
10175 	tsk->sched_task_group = tg;
10176 
10177 #ifdef CONFIG_FAIR_GROUP_SCHED
10178 	if (tsk->sched_class->task_change_group)
10179 		tsk->sched_class->task_change_group(tsk);
10180 	else
10181 #endif
10182 		set_task_rq(tsk, task_cpu(tsk));
10183 }
10184 
10185 /*
10186  * Change task's runqueue when it moves between groups.
10187  *
10188  * The caller of this function should have put the task in its new group by
10189  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10190  * its new group.
10191  */
10192 void sched_move_task(struct task_struct *tsk)
10193 {
10194 	int queued, running, queue_flags =
10195 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10196 	struct rq_flags rf;
10197 	struct rq *rq;
10198 
10199 	rq = task_rq_lock(tsk, &rf);
10200 	update_rq_clock(rq);
10201 
10202 	running = task_current(rq, tsk);
10203 	queued = task_on_rq_queued(tsk);
10204 
10205 	if (queued)
10206 		dequeue_task(rq, tsk, queue_flags);
10207 	if (running)
10208 		put_prev_task(rq, tsk);
10209 
10210 	sched_change_group(tsk);
10211 
10212 	if (queued)
10213 		enqueue_task(rq, tsk, queue_flags);
10214 	if (running) {
10215 		set_next_task(rq, tsk);
10216 		/*
10217 		 * After changing group, the running task may have joined a
10218 		 * throttled one but it's still the running task. Trigger a
10219 		 * resched to make sure that task can still run.
10220 		 */
10221 		resched_curr(rq);
10222 	}
10223 
10224 	task_rq_unlock(rq, tsk, &rf);
10225 }
10226 
10227 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10228 {
10229 	return css ? container_of(css, struct task_group, css) : NULL;
10230 }
10231 
10232 static struct cgroup_subsys_state *
10233 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10234 {
10235 	struct task_group *parent = css_tg(parent_css);
10236 	struct task_group *tg;
10237 
10238 	if (!parent) {
10239 		/* This is early initialization for the top cgroup */
10240 		return &root_task_group.css;
10241 	}
10242 
10243 	tg = sched_create_group(parent);
10244 	if (IS_ERR(tg))
10245 		return ERR_PTR(-ENOMEM);
10246 
10247 	return &tg->css;
10248 }
10249 
10250 /* Expose task group only after completing cgroup initialization */
10251 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10252 {
10253 	struct task_group *tg = css_tg(css);
10254 	struct task_group *parent = css_tg(css->parent);
10255 
10256 	if (parent)
10257 		sched_online_group(tg, parent);
10258 
10259 #ifdef CONFIG_UCLAMP_TASK_GROUP
10260 	/* Propagate the effective uclamp value for the new group */
10261 	mutex_lock(&uclamp_mutex);
10262 	rcu_read_lock();
10263 	cpu_util_update_eff(css);
10264 	rcu_read_unlock();
10265 	mutex_unlock(&uclamp_mutex);
10266 #endif
10267 
10268 	return 0;
10269 }
10270 
10271 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10272 {
10273 	struct task_group *tg = css_tg(css);
10274 
10275 	sched_release_group(tg);
10276 }
10277 
10278 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10279 {
10280 	struct task_group *tg = css_tg(css);
10281 
10282 	/*
10283 	 * Relies on the RCU grace period between css_released() and this.
10284 	 */
10285 	sched_unregister_group(tg);
10286 }
10287 
10288 #ifdef CONFIG_RT_GROUP_SCHED
10289 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10290 {
10291 	struct task_struct *task;
10292 	struct cgroup_subsys_state *css;
10293 
10294 	cgroup_taskset_for_each(task, css, tset) {
10295 		if (!sched_rt_can_attach(css_tg(css), task))
10296 			return -EINVAL;
10297 	}
10298 	return 0;
10299 }
10300 #endif
10301 
10302 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10303 {
10304 	struct task_struct *task;
10305 	struct cgroup_subsys_state *css;
10306 
10307 	cgroup_taskset_for_each(task, css, tset)
10308 		sched_move_task(task);
10309 }
10310 
10311 #ifdef CONFIG_UCLAMP_TASK_GROUP
10312 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10313 {
10314 	struct cgroup_subsys_state *top_css = css;
10315 	struct uclamp_se *uc_parent = NULL;
10316 	struct uclamp_se *uc_se = NULL;
10317 	unsigned int eff[UCLAMP_CNT];
10318 	enum uclamp_id clamp_id;
10319 	unsigned int clamps;
10320 
10321 	lockdep_assert_held(&uclamp_mutex);
10322 	SCHED_WARN_ON(!rcu_read_lock_held());
10323 
10324 	css_for_each_descendant_pre(css, top_css) {
10325 		uc_parent = css_tg(css)->parent
10326 			? css_tg(css)->parent->uclamp : NULL;
10327 
10328 		for_each_clamp_id(clamp_id) {
10329 			/* Assume effective clamps matches requested clamps */
10330 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10331 			/* Cap effective clamps with parent's effective clamps */
10332 			if (uc_parent &&
10333 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10334 				eff[clamp_id] = uc_parent[clamp_id].value;
10335 			}
10336 		}
10337 		/* Ensure protection is always capped by limit */
10338 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10339 
10340 		/* Propagate most restrictive effective clamps */
10341 		clamps = 0x0;
10342 		uc_se = css_tg(css)->uclamp;
10343 		for_each_clamp_id(clamp_id) {
10344 			if (eff[clamp_id] == uc_se[clamp_id].value)
10345 				continue;
10346 			uc_se[clamp_id].value = eff[clamp_id];
10347 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10348 			clamps |= (0x1 << clamp_id);
10349 		}
10350 		if (!clamps) {
10351 			css = css_rightmost_descendant(css);
10352 			continue;
10353 		}
10354 
10355 		/* Immediately update descendants RUNNABLE tasks */
10356 		uclamp_update_active_tasks(css);
10357 	}
10358 }
10359 
10360 /*
10361  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10362  * C expression. Since there is no way to convert a macro argument (N) into a
10363  * character constant, use two levels of macros.
10364  */
10365 #define _POW10(exp) ((unsigned int)1e##exp)
10366 #define POW10(exp) _POW10(exp)
10367 
10368 struct uclamp_request {
10369 #define UCLAMP_PERCENT_SHIFT	2
10370 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10371 	s64 percent;
10372 	u64 util;
10373 	int ret;
10374 };
10375 
10376 static inline struct uclamp_request
10377 capacity_from_percent(char *buf)
10378 {
10379 	struct uclamp_request req = {
10380 		.percent = UCLAMP_PERCENT_SCALE,
10381 		.util = SCHED_CAPACITY_SCALE,
10382 		.ret = 0,
10383 	};
10384 
10385 	buf = strim(buf);
10386 	if (strcmp(buf, "max")) {
10387 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10388 					     &req.percent);
10389 		if (req.ret)
10390 			return req;
10391 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10392 			req.ret = -ERANGE;
10393 			return req;
10394 		}
10395 
10396 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10397 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10398 	}
10399 
10400 	return req;
10401 }
10402 
10403 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10404 				size_t nbytes, loff_t off,
10405 				enum uclamp_id clamp_id)
10406 {
10407 	struct uclamp_request req;
10408 	struct task_group *tg;
10409 
10410 	req = capacity_from_percent(buf);
10411 	if (req.ret)
10412 		return req.ret;
10413 
10414 	static_branch_enable(&sched_uclamp_used);
10415 
10416 	mutex_lock(&uclamp_mutex);
10417 	rcu_read_lock();
10418 
10419 	tg = css_tg(of_css(of));
10420 	if (tg->uclamp_req[clamp_id].value != req.util)
10421 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10422 
10423 	/*
10424 	 * Because of not recoverable conversion rounding we keep track of the
10425 	 * exact requested value
10426 	 */
10427 	tg->uclamp_pct[clamp_id] = req.percent;
10428 
10429 	/* Update effective clamps to track the most restrictive value */
10430 	cpu_util_update_eff(of_css(of));
10431 
10432 	rcu_read_unlock();
10433 	mutex_unlock(&uclamp_mutex);
10434 
10435 	return nbytes;
10436 }
10437 
10438 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10439 				    char *buf, size_t nbytes,
10440 				    loff_t off)
10441 {
10442 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10443 }
10444 
10445 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10446 				    char *buf, size_t nbytes,
10447 				    loff_t off)
10448 {
10449 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10450 }
10451 
10452 static inline void cpu_uclamp_print(struct seq_file *sf,
10453 				    enum uclamp_id clamp_id)
10454 {
10455 	struct task_group *tg;
10456 	u64 util_clamp;
10457 	u64 percent;
10458 	u32 rem;
10459 
10460 	rcu_read_lock();
10461 	tg = css_tg(seq_css(sf));
10462 	util_clamp = tg->uclamp_req[clamp_id].value;
10463 	rcu_read_unlock();
10464 
10465 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10466 		seq_puts(sf, "max\n");
10467 		return;
10468 	}
10469 
10470 	percent = tg->uclamp_pct[clamp_id];
10471 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10472 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10473 }
10474 
10475 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10476 {
10477 	cpu_uclamp_print(sf, UCLAMP_MIN);
10478 	return 0;
10479 }
10480 
10481 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10482 {
10483 	cpu_uclamp_print(sf, UCLAMP_MAX);
10484 	return 0;
10485 }
10486 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10487 
10488 #ifdef CONFIG_FAIR_GROUP_SCHED
10489 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10490 				struct cftype *cftype, u64 shareval)
10491 {
10492 	if (shareval > scale_load_down(ULONG_MAX))
10493 		shareval = MAX_SHARES;
10494 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10495 }
10496 
10497 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10498 			       struct cftype *cft)
10499 {
10500 	struct task_group *tg = css_tg(css);
10501 
10502 	return (u64) scale_load_down(tg->shares);
10503 }
10504 
10505 #ifdef CONFIG_CFS_BANDWIDTH
10506 static DEFINE_MUTEX(cfs_constraints_mutex);
10507 
10508 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10509 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10510 /* More than 203 days if BW_SHIFT equals 20. */
10511 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10512 
10513 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10514 
10515 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10516 				u64 burst)
10517 {
10518 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10519 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10520 
10521 	if (tg == &root_task_group)
10522 		return -EINVAL;
10523 
10524 	/*
10525 	 * Ensure we have at some amount of bandwidth every period.  This is
10526 	 * to prevent reaching a state of large arrears when throttled via
10527 	 * entity_tick() resulting in prolonged exit starvation.
10528 	 */
10529 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10530 		return -EINVAL;
10531 
10532 	/*
10533 	 * Likewise, bound things on the other side by preventing insane quota
10534 	 * periods.  This also allows us to normalize in computing quota
10535 	 * feasibility.
10536 	 */
10537 	if (period > max_cfs_quota_period)
10538 		return -EINVAL;
10539 
10540 	/*
10541 	 * Bound quota to defend quota against overflow during bandwidth shift.
10542 	 */
10543 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10544 		return -EINVAL;
10545 
10546 	if (quota != RUNTIME_INF && (burst > quota ||
10547 				     burst + quota > max_cfs_runtime))
10548 		return -EINVAL;
10549 
10550 	/*
10551 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10552 	 * unthrottle_offline_cfs_rqs().
10553 	 */
10554 	cpus_read_lock();
10555 	mutex_lock(&cfs_constraints_mutex);
10556 	ret = __cfs_schedulable(tg, period, quota);
10557 	if (ret)
10558 		goto out_unlock;
10559 
10560 	runtime_enabled = quota != RUNTIME_INF;
10561 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10562 	/*
10563 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10564 	 * before making related changes, and on->off must occur afterwards
10565 	 */
10566 	if (runtime_enabled && !runtime_was_enabled)
10567 		cfs_bandwidth_usage_inc();
10568 	raw_spin_lock_irq(&cfs_b->lock);
10569 	cfs_b->period = ns_to_ktime(period);
10570 	cfs_b->quota = quota;
10571 	cfs_b->burst = burst;
10572 
10573 	__refill_cfs_bandwidth_runtime(cfs_b);
10574 
10575 	/* Restart the period timer (if active) to handle new period expiry: */
10576 	if (runtime_enabled)
10577 		start_cfs_bandwidth(cfs_b);
10578 
10579 	raw_spin_unlock_irq(&cfs_b->lock);
10580 
10581 	for_each_online_cpu(i) {
10582 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10583 		struct rq *rq = cfs_rq->rq;
10584 		struct rq_flags rf;
10585 
10586 		rq_lock_irq(rq, &rf);
10587 		cfs_rq->runtime_enabled = runtime_enabled;
10588 		cfs_rq->runtime_remaining = 0;
10589 
10590 		if (cfs_rq->throttled)
10591 			unthrottle_cfs_rq(cfs_rq);
10592 		rq_unlock_irq(rq, &rf);
10593 	}
10594 	if (runtime_was_enabled && !runtime_enabled)
10595 		cfs_bandwidth_usage_dec();
10596 out_unlock:
10597 	mutex_unlock(&cfs_constraints_mutex);
10598 	cpus_read_unlock();
10599 
10600 	return ret;
10601 }
10602 
10603 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10604 {
10605 	u64 quota, period, burst;
10606 
10607 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10608 	burst = tg->cfs_bandwidth.burst;
10609 	if (cfs_quota_us < 0)
10610 		quota = RUNTIME_INF;
10611 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10612 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10613 	else
10614 		return -EINVAL;
10615 
10616 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10617 }
10618 
10619 static long tg_get_cfs_quota(struct task_group *tg)
10620 {
10621 	u64 quota_us;
10622 
10623 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10624 		return -1;
10625 
10626 	quota_us = tg->cfs_bandwidth.quota;
10627 	do_div(quota_us, NSEC_PER_USEC);
10628 
10629 	return quota_us;
10630 }
10631 
10632 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10633 {
10634 	u64 quota, period, burst;
10635 
10636 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10637 		return -EINVAL;
10638 
10639 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10640 	quota = tg->cfs_bandwidth.quota;
10641 	burst = tg->cfs_bandwidth.burst;
10642 
10643 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10644 }
10645 
10646 static long tg_get_cfs_period(struct task_group *tg)
10647 {
10648 	u64 cfs_period_us;
10649 
10650 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10651 	do_div(cfs_period_us, NSEC_PER_USEC);
10652 
10653 	return cfs_period_us;
10654 }
10655 
10656 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10657 {
10658 	u64 quota, period, burst;
10659 
10660 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10661 		return -EINVAL;
10662 
10663 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10664 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10665 	quota = tg->cfs_bandwidth.quota;
10666 
10667 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10668 }
10669 
10670 static long tg_get_cfs_burst(struct task_group *tg)
10671 {
10672 	u64 burst_us;
10673 
10674 	burst_us = tg->cfs_bandwidth.burst;
10675 	do_div(burst_us, NSEC_PER_USEC);
10676 
10677 	return burst_us;
10678 }
10679 
10680 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10681 				  struct cftype *cft)
10682 {
10683 	return tg_get_cfs_quota(css_tg(css));
10684 }
10685 
10686 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10687 				   struct cftype *cftype, s64 cfs_quota_us)
10688 {
10689 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10690 }
10691 
10692 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10693 				   struct cftype *cft)
10694 {
10695 	return tg_get_cfs_period(css_tg(css));
10696 }
10697 
10698 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10699 				    struct cftype *cftype, u64 cfs_period_us)
10700 {
10701 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10702 }
10703 
10704 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10705 				  struct cftype *cft)
10706 {
10707 	return tg_get_cfs_burst(css_tg(css));
10708 }
10709 
10710 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10711 				   struct cftype *cftype, u64 cfs_burst_us)
10712 {
10713 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10714 }
10715 
10716 struct cfs_schedulable_data {
10717 	struct task_group *tg;
10718 	u64 period, quota;
10719 };
10720 
10721 /*
10722  * normalize group quota/period to be quota/max_period
10723  * note: units are usecs
10724  */
10725 static u64 normalize_cfs_quota(struct task_group *tg,
10726 			       struct cfs_schedulable_data *d)
10727 {
10728 	u64 quota, period;
10729 
10730 	if (tg == d->tg) {
10731 		period = d->period;
10732 		quota = d->quota;
10733 	} else {
10734 		period = tg_get_cfs_period(tg);
10735 		quota = tg_get_cfs_quota(tg);
10736 	}
10737 
10738 	/* note: these should typically be equivalent */
10739 	if (quota == RUNTIME_INF || quota == -1)
10740 		return RUNTIME_INF;
10741 
10742 	return to_ratio(period, quota);
10743 }
10744 
10745 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10746 {
10747 	struct cfs_schedulable_data *d = data;
10748 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10749 	s64 quota = 0, parent_quota = -1;
10750 
10751 	if (!tg->parent) {
10752 		quota = RUNTIME_INF;
10753 	} else {
10754 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10755 
10756 		quota = normalize_cfs_quota(tg, d);
10757 		parent_quota = parent_b->hierarchical_quota;
10758 
10759 		/*
10760 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10761 		 * always take the min.  On cgroup1, only inherit when no
10762 		 * limit is set:
10763 		 */
10764 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10765 			quota = min(quota, parent_quota);
10766 		} else {
10767 			if (quota == RUNTIME_INF)
10768 				quota = parent_quota;
10769 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10770 				return -EINVAL;
10771 		}
10772 	}
10773 	cfs_b->hierarchical_quota = quota;
10774 
10775 	return 0;
10776 }
10777 
10778 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10779 {
10780 	int ret;
10781 	struct cfs_schedulable_data data = {
10782 		.tg = tg,
10783 		.period = period,
10784 		.quota = quota,
10785 	};
10786 
10787 	if (quota != RUNTIME_INF) {
10788 		do_div(data.period, NSEC_PER_USEC);
10789 		do_div(data.quota, NSEC_PER_USEC);
10790 	}
10791 
10792 	rcu_read_lock();
10793 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10794 	rcu_read_unlock();
10795 
10796 	return ret;
10797 }
10798 
10799 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10800 {
10801 	struct task_group *tg = css_tg(seq_css(sf));
10802 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10803 
10804 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10805 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10806 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10807 
10808 	if (schedstat_enabled() && tg != &root_task_group) {
10809 		struct sched_statistics *stats;
10810 		u64 ws = 0;
10811 		int i;
10812 
10813 		for_each_possible_cpu(i) {
10814 			stats = __schedstats_from_se(tg->se[i]);
10815 			ws += schedstat_val(stats->wait_sum);
10816 		}
10817 
10818 		seq_printf(sf, "wait_sum %llu\n", ws);
10819 	}
10820 
10821 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10822 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10823 
10824 	return 0;
10825 }
10826 #endif /* CONFIG_CFS_BANDWIDTH */
10827 #endif /* CONFIG_FAIR_GROUP_SCHED */
10828 
10829 #ifdef CONFIG_RT_GROUP_SCHED
10830 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10831 				struct cftype *cft, s64 val)
10832 {
10833 	return sched_group_set_rt_runtime(css_tg(css), val);
10834 }
10835 
10836 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10837 			       struct cftype *cft)
10838 {
10839 	return sched_group_rt_runtime(css_tg(css));
10840 }
10841 
10842 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10843 				    struct cftype *cftype, u64 rt_period_us)
10844 {
10845 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
10846 }
10847 
10848 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10849 				   struct cftype *cft)
10850 {
10851 	return sched_group_rt_period(css_tg(css));
10852 }
10853 #endif /* CONFIG_RT_GROUP_SCHED */
10854 
10855 #ifdef CONFIG_FAIR_GROUP_SCHED
10856 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10857 			       struct cftype *cft)
10858 {
10859 	return css_tg(css)->idle;
10860 }
10861 
10862 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10863 				struct cftype *cft, s64 idle)
10864 {
10865 	return sched_group_set_idle(css_tg(css), idle);
10866 }
10867 #endif
10868 
10869 static struct cftype cpu_legacy_files[] = {
10870 #ifdef CONFIG_FAIR_GROUP_SCHED
10871 	{
10872 		.name = "shares",
10873 		.read_u64 = cpu_shares_read_u64,
10874 		.write_u64 = cpu_shares_write_u64,
10875 	},
10876 	{
10877 		.name = "idle",
10878 		.read_s64 = cpu_idle_read_s64,
10879 		.write_s64 = cpu_idle_write_s64,
10880 	},
10881 #endif
10882 #ifdef CONFIG_CFS_BANDWIDTH
10883 	{
10884 		.name = "cfs_quota_us",
10885 		.read_s64 = cpu_cfs_quota_read_s64,
10886 		.write_s64 = cpu_cfs_quota_write_s64,
10887 	},
10888 	{
10889 		.name = "cfs_period_us",
10890 		.read_u64 = cpu_cfs_period_read_u64,
10891 		.write_u64 = cpu_cfs_period_write_u64,
10892 	},
10893 	{
10894 		.name = "cfs_burst_us",
10895 		.read_u64 = cpu_cfs_burst_read_u64,
10896 		.write_u64 = cpu_cfs_burst_write_u64,
10897 	},
10898 	{
10899 		.name = "stat",
10900 		.seq_show = cpu_cfs_stat_show,
10901 	},
10902 #endif
10903 #ifdef CONFIG_RT_GROUP_SCHED
10904 	{
10905 		.name = "rt_runtime_us",
10906 		.read_s64 = cpu_rt_runtime_read,
10907 		.write_s64 = cpu_rt_runtime_write,
10908 	},
10909 	{
10910 		.name = "rt_period_us",
10911 		.read_u64 = cpu_rt_period_read_uint,
10912 		.write_u64 = cpu_rt_period_write_uint,
10913 	},
10914 #endif
10915 #ifdef CONFIG_UCLAMP_TASK_GROUP
10916 	{
10917 		.name = "uclamp.min",
10918 		.flags = CFTYPE_NOT_ON_ROOT,
10919 		.seq_show = cpu_uclamp_min_show,
10920 		.write = cpu_uclamp_min_write,
10921 	},
10922 	{
10923 		.name = "uclamp.max",
10924 		.flags = CFTYPE_NOT_ON_ROOT,
10925 		.seq_show = cpu_uclamp_max_show,
10926 		.write = cpu_uclamp_max_write,
10927 	},
10928 #endif
10929 	{ }	/* Terminate */
10930 };
10931 
10932 static int cpu_extra_stat_show(struct seq_file *sf,
10933 			       struct cgroup_subsys_state *css)
10934 {
10935 #ifdef CONFIG_CFS_BANDWIDTH
10936 	{
10937 		struct task_group *tg = css_tg(css);
10938 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10939 		u64 throttled_usec, burst_usec;
10940 
10941 		throttled_usec = cfs_b->throttled_time;
10942 		do_div(throttled_usec, NSEC_PER_USEC);
10943 		burst_usec = cfs_b->burst_time;
10944 		do_div(burst_usec, NSEC_PER_USEC);
10945 
10946 		seq_printf(sf, "nr_periods %d\n"
10947 			   "nr_throttled %d\n"
10948 			   "throttled_usec %llu\n"
10949 			   "nr_bursts %d\n"
10950 			   "burst_usec %llu\n",
10951 			   cfs_b->nr_periods, cfs_b->nr_throttled,
10952 			   throttled_usec, cfs_b->nr_burst, burst_usec);
10953 	}
10954 #endif
10955 	return 0;
10956 }
10957 
10958 #ifdef CONFIG_FAIR_GROUP_SCHED
10959 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10960 			       struct cftype *cft)
10961 {
10962 	struct task_group *tg = css_tg(css);
10963 	u64 weight = scale_load_down(tg->shares);
10964 
10965 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10966 }
10967 
10968 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10969 				struct cftype *cft, u64 weight)
10970 {
10971 	/*
10972 	 * cgroup weight knobs should use the common MIN, DFL and MAX
10973 	 * values which are 1, 100 and 10000 respectively.  While it loses
10974 	 * a bit of range on both ends, it maps pretty well onto the shares
10975 	 * value used by scheduler and the round-trip conversions preserve
10976 	 * the original value over the entire range.
10977 	 */
10978 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10979 		return -ERANGE;
10980 
10981 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10982 
10983 	return sched_group_set_shares(css_tg(css), scale_load(weight));
10984 }
10985 
10986 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10987 				    struct cftype *cft)
10988 {
10989 	unsigned long weight = scale_load_down(css_tg(css)->shares);
10990 	int last_delta = INT_MAX;
10991 	int prio, delta;
10992 
10993 	/* find the closest nice value to the current weight */
10994 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10995 		delta = abs(sched_prio_to_weight[prio] - weight);
10996 		if (delta >= last_delta)
10997 			break;
10998 		last_delta = delta;
10999 	}
11000 
11001 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11002 }
11003 
11004 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11005 				     struct cftype *cft, s64 nice)
11006 {
11007 	unsigned long weight;
11008 	int idx;
11009 
11010 	if (nice < MIN_NICE || nice > MAX_NICE)
11011 		return -ERANGE;
11012 
11013 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11014 	idx = array_index_nospec(idx, 40);
11015 	weight = sched_prio_to_weight[idx];
11016 
11017 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11018 }
11019 #endif
11020 
11021 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11022 						  long period, long quota)
11023 {
11024 	if (quota < 0)
11025 		seq_puts(sf, "max");
11026 	else
11027 		seq_printf(sf, "%ld", quota);
11028 
11029 	seq_printf(sf, " %ld\n", period);
11030 }
11031 
11032 /* caller should put the current value in *@periodp before calling */
11033 static int __maybe_unused cpu_period_quota_parse(char *buf,
11034 						 u64 *periodp, u64 *quotap)
11035 {
11036 	char tok[21];	/* U64_MAX */
11037 
11038 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11039 		return -EINVAL;
11040 
11041 	*periodp *= NSEC_PER_USEC;
11042 
11043 	if (sscanf(tok, "%llu", quotap))
11044 		*quotap *= NSEC_PER_USEC;
11045 	else if (!strcmp(tok, "max"))
11046 		*quotap = RUNTIME_INF;
11047 	else
11048 		return -EINVAL;
11049 
11050 	return 0;
11051 }
11052 
11053 #ifdef CONFIG_CFS_BANDWIDTH
11054 static int cpu_max_show(struct seq_file *sf, void *v)
11055 {
11056 	struct task_group *tg = css_tg(seq_css(sf));
11057 
11058 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11059 	return 0;
11060 }
11061 
11062 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11063 			     char *buf, size_t nbytes, loff_t off)
11064 {
11065 	struct task_group *tg = css_tg(of_css(of));
11066 	u64 period = tg_get_cfs_period(tg);
11067 	u64 burst = tg_get_cfs_burst(tg);
11068 	u64 quota;
11069 	int ret;
11070 
11071 	ret = cpu_period_quota_parse(buf, &period, &quota);
11072 	if (!ret)
11073 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11074 	return ret ?: nbytes;
11075 }
11076 #endif
11077 
11078 static struct cftype cpu_files[] = {
11079 #ifdef CONFIG_FAIR_GROUP_SCHED
11080 	{
11081 		.name = "weight",
11082 		.flags = CFTYPE_NOT_ON_ROOT,
11083 		.read_u64 = cpu_weight_read_u64,
11084 		.write_u64 = cpu_weight_write_u64,
11085 	},
11086 	{
11087 		.name = "weight.nice",
11088 		.flags = CFTYPE_NOT_ON_ROOT,
11089 		.read_s64 = cpu_weight_nice_read_s64,
11090 		.write_s64 = cpu_weight_nice_write_s64,
11091 	},
11092 	{
11093 		.name = "idle",
11094 		.flags = CFTYPE_NOT_ON_ROOT,
11095 		.read_s64 = cpu_idle_read_s64,
11096 		.write_s64 = cpu_idle_write_s64,
11097 	},
11098 #endif
11099 #ifdef CONFIG_CFS_BANDWIDTH
11100 	{
11101 		.name = "max",
11102 		.flags = CFTYPE_NOT_ON_ROOT,
11103 		.seq_show = cpu_max_show,
11104 		.write = cpu_max_write,
11105 	},
11106 	{
11107 		.name = "max.burst",
11108 		.flags = CFTYPE_NOT_ON_ROOT,
11109 		.read_u64 = cpu_cfs_burst_read_u64,
11110 		.write_u64 = cpu_cfs_burst_write_u64,
11111 	},
11112 #endif
11113 #ifdef CONFIG_UCLAMP_TASK_GROUP
11114 	{
11115 		.name = "uclamp.min",
11116 		.flags = CFTYPE_NOT_ON_ROOT,
11117 		.seq_show = cpu_uclamp_min_show,
11118 		.write = cpu_uclamp_min_write,
11119 	},
11120 	{
11121 		.name = "uclamp.max",
11122 		.flags = CFTYPE_NOT_ON_ROOT,
11123 		.seq_show = cpu_uclamp_max_show,
11124 		.write = cpu_uclamp_max_write,
11125 	},
11126 #endif
11127 	{ }	/* terminate */
11128 };
11129 
11130 struct cgroup_subsys cpu_cgrp_subsys = {
11131 	.css_alloc	= cpu_cgroup_css_alloc,
11132 	.css_online	= cpu_cgroup_css_online,
11133 	.css_released	= cpu_cgroup_css_released,
11134 	.css_free	= cpu_cgroup_css_free,
11135 	.css_extra_stat_show = cpu_extra_stat_show,
11136 #ifdef CONFIG_RT_GROUP_SCHED
11137 	.can_attach	= cpu_cgroup_can_attach,
11138 #endif
11139 	.attach		= cpu_cgroup_attach,
11140 	.legacy_cftypes	= cpu_legacy_files,
11141 	.dfl_cftypes	= cpu_files,
11142 	.early_init	= true,
11143 	.threaded	= true,
11144 };
11145 
11146 #endif	/* CONFIG_CGROUP_SCHED */
11147 
11148 void dump_cpu_task(int cpu)
11149 {
11150 	if (cpu == smp_processor_id() && in_hardirq()) {
11151 		struct pt_regs *regs;
11152 
11153 		regs = get_irq_regs();
11154 		if (regs) {
11155 			show_regs(regs);
11156 			return;
11157 		}
11158 	}
11159 
11160 	if (trigger_single_cpu_backtrace(cpu))
11161 		return;
11162 
11163 	pr_info("Task dump for CPU %d:\n", cpu);
11164 	sched_show_task(cpu_curr(cpu));
11165 }
11166 
11167 /*
11168  * Nice levels are multiplicative, with a gentle 10% change for every
11169  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11170  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11171  * that remained on nice 0.
11172  *
11173  * The "10% effect" is relative and cumulative: from _any_ nice level,
11174  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11175  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11176  * If a task goes up by ~10% and another task goes down by ~10% then
11177  * the relative distance between them is ~25%.)
11178  */
11179 const int sched_prio_to_weight[40] = {
11180  /* -20 */     88761,     71755,     56483,     46273,     36291,
11181  /* -15 */     29154,     23254,     18705,     14949,     11916,
11182  /* -10 */      9548,      7620,      6100,      4904,      3906,
11183  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11184  /*   0 */      1024,       820,       655,       526,       423,
11185  /*   5 */       335,       272,       215,       172,       137,
11186  /*  10 */       110,        87,        70,        56,        45,
11187  /*  15 */        36,        29,        23,        18,        15,
11188 };
11189 
11190 /*
11191  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11192  *
11193  * In cases where the weight does not change often, we can use the
11194  * precalculated inverse to speed up arithmetics by turning divisions
11195  * into multiplications:
11196  */
11197 const u32 sched_prio_to_wmult[40] = {
11198  /* -20 */     48388,     59856,     76040,     92818,    118348,
11199  /* -15 */    147320,    184698,    229616,    287308,    360437,
11200  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11201  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11202  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11203  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11204  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11205  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11206 };
11207 
11208 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11209 {
11210         trace_sched_update_nr_running_tp(rq, count);
11211 }
11212