1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include <linux/highmem.h> 10 #include <linux/hrtimer_api.h> 11 #include <linux/ktime_api.h> 12 #include <linux/sched/signal.h> 13 #include <linux/syscalls_api.h> 14 #include <linux/debug_locks.h> 15 #include <linux/prefetch.h> 16 #include <linux/capability.h> 17 #include <linux/pgtable_api.h> 18 #include <linux/wait_bit.h> 19 #include <linux/jiffies.h> 20 #include <linux/spinlock_api.h> 21 #include <linux/cpumask_api.h> 22 #include <linux/lockdep_api.h> 23 #include <linux/hardirq.h> 24 #include <linux/softirq.h> 25 #include <linux/refcount_api.h> 26 #include <linux/topology.h> 27 #include <linux/sched/clock.h> 28 #include <linux/sched/cond_resched.h> 29 #include <linux/sched/cputime.h> 30 #include <linux/sched/debug.h> 31 #include <linux/sched/hotplug.h> 32 #include <linux/sched/init.h> 33 #include <linux/sched/isolation.h> 34 #include <linux/sched/loadavg.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/nohz.h> 37 #include <linux/sched/rseq_api.h> 38 #include <linux/sched/rt.h> 39 40 #include <linux/blkdev.h> 41 #include <linux/context_tracking.h> 42 #include <linux/cpuset.h> 43 #include <linux/delayacct.h> 44 #include <linux/init_task.h> 45 #include <linux/interrupt.h> 46 #include <linux/ioprio.h> 47 #include <linux/kallsyms.h> 48 #include <linux/kcov.h> 49 #include <linux/kprobes.h> 50 #include <linux/llist_api.h> 51 #include <linux/mmu_context.h> 52 #include <linux/mmzone.h> 53 #include <linux/mutex_api.h> 54 #include <linux/nmi.h> 55 #include <linux/nospec.h> 56 #include <linux/perf_event_api.h> 57 #include <linux/profile.h> 58 #include <linux/psi.h> 59 #include <linux/rcuwait_api.h> 60 #include <linux/sched/wake_q.h> 61 #include <linux/scs.h> 62 #include <linux/slab.h> 63 #include <linux/syscalls.h> 64 #include <linux/vtime.h> 65 #include <linux/wait_api.h> 66 #include <linux/workqueue_api.h> 67 68 #ifdef CONFIG_PREEMPT_DYNAMIC 69 # ifdef CONFIG_GENERIC_ENTRY 70 # include <linux/entry-common.h> 71 # endif 72 #endif 73 74 #include <uapi/linux/sched/types.h> 75 76 #include <asm/irq_regs.h> 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 80 #define CREATE_TRACE_POINTS 81 #include <linux/sched/rseq_api.h> 82 #include <trace/events/sched.h> 83 #undef CREATE_TRACE_POINTS 84 85 #include "sched.h" 86 #include "stats.h" 87 #include "autogroup.h" 88 89 #include "autogroup.h" 90 #include "pelt.h" 91 #include "smp.h" 92 #include "stats.h" 93 94 #include "../workqueue_internal.h" 95 #include "../../io_uring/io-wq.h" 96 #include "../smpboot.h" 97 98 /* 99 * Export tracepoints that act as a bare tracehook (ie: have no trace event 100 * associated with them) to allow external modules to probe them. 101 */ 102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 113 114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 115 116 #ifdef CONFIG_SCHED_DEBUG 117 /* 118 * Debugging: various feature bits 119 * 120 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 121 * sysctl_sched_features, defined in sched.h, to allow constants propagation 122 * at compile time and compiler optimization based on features default. 123 */ 124 #define SCHED_FEAT(name, enabled) \ 125 (1UL << __SCHED_FEAT_##name) * enabled | 126 const_debug unsigned int sysctl_sched_features = 127 #include "features.h" 128 0; 129 #undef SCHED_FEAT 130 131 /* 132 * Print a warning if need_resched is set for the given duration (if 133 * LATENCY_WARN is enabled). 134 * 135 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 136 * per boot. 137 */ 138 __read_mostly int sysctl_resched_latency_warn_ms = 100; 139 __read_mostly int sysctl_resched_latency_warn_once = 1; 140 #endif /* CONFIG_SCHED_DEBUG */ 141 142 /* 143 * Number of tasks to iterate in a single balance run. 144 * Limited because this is done with IRQs disabled. 145 */ 146 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 147 148 __read_mostly int scheduler_running; 149 150 #ifdef CONFIG_SCHED_CORE 151 152 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 153 154 /* kernel prio, less is more */ 155 static inline int __task_prio(struct task_struct *p) 156 { 157 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 158 return -2; 159 160 if (rt_prio(p->prio)) /* includes deadline */ 161 return p->prio; /* [-1, 99] */ 162 163 if (p->sched_class == &idle_sched_class) 164 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 165 166 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 167 } 168 169 /* 170 * l(a,b) 171 * le(a,b) := !l(b,a) 172 * g(a,b) := l(b,a) 173 * ge(a,b) := !l(a,b) 174 */ 175 176 /* real prio, less is less */ 177 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 178 { 179 180 int pa = __task_prio(a), pb = __task_prio(b); 181 182 if (-pa < -pb) 183 return true; 184 185 if (-pb < -pa) 186 return false; 187 188 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 189 return !dl_time_before(a->dl.deadline, b->dl.deadline); 190 191 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 192 return cfs_prio_less(a, b, in_fi); 193 194 return false; 195 } 196 197 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b) 198 { 199 if (a->core_cookie < b->core_cookie) 200 return true; 201 202 if (a->core_cookie > b->core_cookie) 203 return false; 204 205 /* flip prio, so high prio is leftmost */ 206 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 207 return true; 208 209 return false; 210 } 211 212 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 213 214 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 215 { 216 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 217 } 218 219 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 220 { 221 const struct task_struct *p = __node_2_sc(node); 222 unsigned long cookie = (unsigned long)key; 223 224 if (cookie < p->core_cookie) 225 return -1; 226 227 if (cookie > p->core_cookie) 228 return 1; 229 230 return 0; 231 } 232 233 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 234 { 235 rq->core->core_task_seq++; 236 237 if (!p->core_cookie) 238 return; 239 240 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 241 } 242 243 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 244 { 245 rq->core->core_task_seq++; 246 247 if (sched_core_enqueued(p)) { 248 rb_erase(&p->core_node, &rq->core_tree); 249 RB_CLEAR_NODE(&p->core_node); 250 } 251 252 /* 253 * Migrating the last task off the cpu, with the cpu in forced idle 254 * state. Reschedule to create an accounting edge for forced idle, 255 * and re-examine whether the core is still in forced idle state. 256 */ 257 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 258 rq->core->core_forceidle_count && rq->curr == rq->idle) 259 resched_curr(rq); 260 } 261 262 /* 263 * Find left-most (aka, highest priority) task matching @cookie. 264 */ 265 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 266 { 267 struct rb_node *node; 268 269 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 270 /* 271 * The idle task always matches any cookie! 272 */ 273 if (!node) 274 return idle_sched_class.pick_task(rq); 275 276 return __node_2_sc(node); 277 } 278 279 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 280 { 281 struct rb_node *node = &p->core_node; 282 283 node = rb_next(node); 284 if (!node) 285 return NULL; 286 287 p = container_of(node, struct task_struct, core_node); 288 if (p->core_cookie != cookie) 289 return NULL; 290 291 return p; 292 } 293 294 /* 295 * Magic required such that: 296 * 297 * raw_spin_rq_lock(rq); 298 * ... 299 * raw_spin_rq_unlock(rq); 300 * 301 * ends up locking and unlocking the _same_ lock, and all CPUs 302 * always agree on what rq has what lock. 303 * 304 * XXX entirely possible to selectively enable cores, don't bother for now. 305 */ 306 307 static DEFINE_MUTEX(sched_core_mutex); 308 static atomic_t sched_core_count; 309 static struct cpumask sched_core_mask; 310 311 static void sched_core_lock(int cpu, unsigned long *flags) 312 { 313 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 314 int t, i = 0; 315 316 local_irq_save(*flags); 317 for_each_cpu(t, smt_mask) 318 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 319 } 320 321 static void sched_core_unlock(int cpu, unsigned long *flags) 322 { 323 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 324 int t; 325 326 for_each_cpu(t, smt_mask) 327 raw_spin_unlock(&cpu_rq(t)->__lock); 328 local_irq_restore(*flags); 329 } 330 331 static void __sched_core_flip(bool enabled) 332 { 333 unsigned long flags; 334 int cpu, t; 335 336 cpus_read_lock(); 337 338 /* 339 * Toggle the online cores, one by one. 340 */ 341 cpumask_copy(&sched_core_mask, cpu_online_mask); 342 for_each_cpu(cpu, &sched_core_mask) { 343 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 344 345 sched_core_lock(cpu, &flags); 346 347 for_each_cpu(t, smt_mask) 348 cpu_rq(t)->core_enabled = enabled; 349 350 cpu_rq(cpu)->core->core_forceidle_start = 0; 351 352 sched_core_unlock(cpu, &flags); 353 354 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 355 } 356 357 /* 358 * Toggle the offline CPUs. 359 */ 360 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 361 cpu_rq(cpu)->core_enabled = enabled; 362 363 cpus_read_unlock(); 364 } 365 366 static void sched_core_assert_empty(void) 367 { 368 int cpu; 369 370 for_each_possible_cpu(cpu) 371 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 372 } 373 374 static void __sched_core_enable(void) 375 { 376 static_branch_enable(&__sched_core_enabled); 377 /* 378 * Ensure all previous instances of raw_spin_rq_*lock() have finished 379 * and future ones will observe !sched_core_disabled(). 380 */ 381 synchronize_rcu(); 382 __sched_core_flip(true); 383 sched_core_assert_empty(); 384 } 385 386 static void __sched_core_disable(void) 387 { 388 sched_core_assert_empty(); 389 __sched_core_flip(false); 390 static_branch_disable(&__sched_core_enabled); 391 } 392 393 void sched_core_get(void) 394 { 395 if (atomic_inc_not_zero(&sched_core_count)) 396 return; 397 398 mutex_lock(&sched_core_mutex); 399 if (!atomic_read(&sched_core_count)) 400 __sched_core_enable(); 401 402 smp_mb__before_atomic(); 403 atomic_inc(&sched_core_count); 404 mutex_unlock(&sched_core_mutex); 405 } 406 407 static void __sched_core_put(struct work_struct *work) 408 { 409 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 410 __sched_core_disable(); 411 mutex_unlock(&sched_core_mutex); 412 } 413 } 414 415 void sched_core_put(void) 416 { 417 static DECLARE_WORK(_work, __sched_core_put); 418 419 /* 420 * "There can be only one" 421 * 422 * Either this is the last one, or we don't actually need to do any 423 * 'work'. If it is the last *again*, we rely on 424 * WORK_STRUCT_PENDING_BIT. 425 */ 426 if (!atomic_add_unless(&sched_core_count, -1, 1)) 427 schedule_work(&_work); 428 } 429 430 #else /* !CONFIG_SCHED_CORE */ 431 432 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 433 static inline void 434 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 435 436 #endif /* CONFIG_SCHED_CORE */ 437 438 /* 439 * Serialization rules: 440 * 441 * Lock order: 442 * 443 * p->pi_lock 444 * rq->lock 445 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 446 * 447 * rq1->lock 448 * rq2->lock where: rq1 < rq2 449 * 450 * Regular state: 451 * 452 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 453 * local CPU's rq->lock, it optionally removes the task from the runqueue and 454 * always looks at the local rq data structures to find the most eligible task 455 * to run next. 456 * 457 * Task enqueue is also under rq->lock, possibly taken from another CPU. 458 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 459 * the local CPU to avoid bouncing the runqueue state around [ see 460 * ttwu_queue_wakelist() ] 461 * 462 * Task wakeup, specifically wakeups that involve migration, are horribly 463 * complicated to avoid having to take two rq->locks. 464 * 465 * Special state: 466 * 467 * System-calls and anything external will use task_rq_lock() which acquires 468 * both p->pi_lock and rq->lock. As a consequence the state they change is 469 * stable while holding either lock: 470 * 471 * - sched_setaffinity()/ 472 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 473 * - set_user_nice(): p->se.load, p->*prio 474 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 475 * p->se.load, p->rt_priority, 476 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 477 * - sched_setnuma(): p->numa_preferred_nid 478 * - sched_move_task(): p->sched_task_group 479 * - uclamp_update_active() p->uclamp* 480 * 481 * p->state <- TASK_*: 482 * 483 * is changed locklessly using set_current_state(), __set_current_state() or 484 * set_special_state(), see their respective comments, or by 485 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 486 * concurrent self. 487 * 488 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 489 * 490 * is set by activate_task() and cleared by deactivate_task(), under 491 * rq->lock. Non-zero indicates the task is runnable, the special 492 * ON_RQ_MIGRATING state is used for migration without holding both 493 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 494 * 495 * p->on_cpu <- { 0, 1 }: 496 * 497 * is set by prepare_task() and cleared by finish_task() such that it will be 498 * set before p is scheduled-in and cleared after p is scheduled-out, both 499 * under rq->lock. Non-zero indicates the task is running on its CPU. 500 * 501 * [ The astute reader will observe that it is possible for two tasks on one 502 * CPU to have ->on_cpu = 1 at the same time. ] 503 * 504 * task_cpu(p): is changed by set_task_cpu(), the rules are: 505 * 506 * - Don't call set_task_cpu() on a blocked task: 507 * 508 * We don't care what CPU we're not running on, this simplifies hotplug, 509 * the CPU assignment of blocked tasks isn't required to be valid. 510 * 511 * - for try_to_wake_up(), called under p->pi_lock: 512 * 513 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 514 * 515 * - for migration called under rq->lock: 516 * [ see task_on_rq_migrating() in task_rq_lock() ] 517 * 518 * o move_queued_task() 519 * o detach_task() 520 * 521 * - for migration called under double_rq_lock(): 522 * 523 * o __migrate_swap_task() 524 * o push_rt_task() / pull_rt_task() 525 * o push_dl_task() / pull_dl_task() 526 * o dl_task_offline_migration() 527 * 528 */ 529 530 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 531 { 532 raw_spinlock_t *lock; 533 534 /* Matches synchronize_rcu() in __sched_core_enable() */ 535 preempt_disable(); 536 if (sched_core_disabled()) { 537 raw_spin_lock_nested(&rq->__lock, subclass); 538 /* preempt_count *MUST* be > 1 */ 539 preempt_enable_no_resched(); 540 return; 541 } 542 543 for (;;) { 544 lock = __rq_lockp(rq); 545 raw_spin_lock_nested(lock, subclass); 546 if (likely(lock == __rq_lockp(rq))) { 547 /* preempt_count *MUST* be > 1 */ 548 preempt_enable_no_resched(); 549 return; 550 } 551 raw_spin_unlock(lock); 552 } 553 } 554 555 bool raw_spin_rq_trylock(struct rq *rq) 556 { 557 raw_spinlock_t *lock; 558 bool ret; 559 560 /* Matches synchronize_rcu() in __sched_core_enable() */ 561 preempt_disable(); 562 if (sched_core_disabled()) { 563 ret = raw_spin_trylock(&rq->__lock); 564 preempt_enable(); 565 return ret; 566 } 567 568 for (;;) { 569 lock = __rq_lockp(rq); 570 ret = raw_spin_trylock(lock); 571 if (!ret || (likely(lock == __rq_lockp(rq)))) { 572 preempt_enable(); 573 return ret; 574 } 575 raw_spin_unlock(lock); 576 } 577 } 578 579 void raw_spin_rq_unlock(struct rq *rq) 580 { 581 raw_spin_unlock(rq_lockp(rq)); 582 } 583 584 #ifdef CONFIG_SMP 585 /* 586 * double_rq_lock - safely lock two runqueues 587 */ 588 void double_rq_lock(struct rq *rq1, struct rq *rq2) 589 { 590 lockdep_assert_irqs_disabled(); 591 592 if (rq_order_less(rq2, rq1)) 593 swap(rq1, rq2); 594 595 raw_spin_rq_lock(rq1); 596 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 597 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 598 599 double_rq_clock_clear_update(rq1, rq2); 600 } 601 #endif 602 603 /* 604 * __task_rq_lock - lock the rq @p resides on. 605 */ 606 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 607 __acquires(rq->lock) 608 { 609 struct rq *rq; 610 611 lockdep_assert_held(&p->pi_lock); 612 613 for (;;) { 614 rq = task_rq(p); 615 raw_spin_rq_lock(rq); 616 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 617 rq_pin_lock(rq, rf); 618 return rq; 619 } 620 raw_spin_rq_unlock(rq); 621 622 while (unlikely(task_on_rq_migrating(p))) 623 cpu_relax(); 624 } 625 } 626 627 /* 628 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 629 */ 630 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 631 __acquires(p->pi_lock) 632 __acquires(rq->lock) 633 { 634 struct rq *rq; 635 636 for (;;) { 637 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 638 rq = task_rq(p); 639 raw_spin_rq_lock(rq); 640 /* 641 * move_queued_task() task_rq_lock() 642 * 643 * ACQUIRE (rq->lock) 644 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 645 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 646 * [S] ->cpu = new_cpu [L] task_rq() 647 * [L] ->on_rq 648 * RELEASE (rq->lock) 649 * 650 * If we observe the old CPU in task_rq_lock(), the acquire of 651 * the old rq->lock will fully serialize against the stores. 652 * 653 * If we observe the new CPU in task_rq_lock(), the address 654 * dependency headed by '[L] rq = task_rq()' and the acquire 655 * will pair with the WMB to ensure we then also see migrating. 656 */ 657 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 658 rq_pin_lock(rq, rf); 659 return rq; 660 } 661 raw_spin_rq_unlock(rq); 662 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 663 664 while (unlikely(task_on_rq_migrating(p))) 665 cpu_relax(); 666 } 667 } 668 669 /* 670 * RQ-clock updating methods: 671 */ 672 673 static void update_rq_clock_task(struct rq *rq, s64 delta) 674 { 675 /* 676 * In theory, the compile should just see 0 here, and optimize out the call 677 * to sched_rt_avg_update. But I don't trust it... 678 */ 679 s64 __maybe_unused steal = 0, irq_delta = 0; 680 681 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 682 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 683 684 /* 685 * Since irq_time is only updated on {soft,}irq_exit, we might run into 686 * this case when a previous update_rq_clock() happened inside a 687 * {soft,}irq region. 688 * 689 * When this happens, we stop ->clock_task and only update the 690 * prev_irq_time stamp to account for the part that fit, so that a next 691 * update will consume the rest. This ensures ->clock_task is 692 * monotonic. 693 * 694 * It does however cause some slight miss-attribution of {soft,}irq 695 * time, a more accurate solution would be to update the irq_time using 696 * the current rq->clock timestamp, except that would require using 697 * atomic ops. 698 */ 699 if (irq_delta > delta) 700 irq_delta = delta; 701 702 rq->prev_irq_time += irq_delta; 703 delta -= irq_delta; 704 #endif 705 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 706 if (static_key_false((¶virt_steal_rq_enabled))) { 707 steal = paravirt_steal_clock(cpu_of(rq)); 708 steal -= rq->prev_steal_time_rq; 709 710 if (unlikely(steal > delta)) 711 steal = delta; 712 713 rq->prev_steal_time_rq += steal; 714 delta -= steal; 715 } 716 #endif 717 718 rq->clock_task += delta; 719 720 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 721 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 722 update_irq_load_avg(rq, irq_delta + steal); 723 #endif 724 update_rq_clock_pelt(rq, delta); 725 } 726 727 void update_rq_clock(struct rq *rq) 728 { 729 s64 delta; 730 731 lockdep_assert_rq_held(rq); 732 733 if (rq->clock_update_flags & RQCF_ACT_SKIP) 734 return; 735 736 #ifdef CONFIG_SCHED_DEBUG 737 if (sched_feat(WARN_DOUBLE_CLOCK)) 738 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 739 rq->clock_update_flags |= RQCF_UPDATED; 740 #endif 741 742 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 743 if (delta < 0) 744 return; 745 rq->clock += delta; 746 update_rq_clock_task(rq, delta); 747 } 748 749 #ifdef CONFIG_SCHED_HRTICK 750 /* 751 * Use HR-timers to deliver accurate preemption points. 752 */ 753 754 static void hrtick_clear(struct rq *rq) 755 { 756 if (hrtimer_active(&rq->hrtick_timer)) 757 hrtimer_cancel(&rq->hrtick_timer); 758 } 759 760 /* 761 * High-resolution timer tick. 762 * Runs from hardirq context with interrupts disabled. 763 */ 764 static enum hrtimer_restart hrtick(struct hrtimer *timer) 765 { 766 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 767 struct rq_flags rf; 768 769 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 770 771 rq_lock(rq, &rf); 772 update_rq_clock(rq); 773 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 774 rq_unlock(rq, &rf); 775 776 return HRTIMER_NORESTART; 777 } 778 779 #ifdef CONFIG_SMP 780 781 static void __hrtick_restart(struct rq *rq) 782 { 783 struct hrtimer *timer = &rq->hrtick_timer; 784 ktime_t time = rq->hrtick_time; 785 786 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 787 } 788 789 /* 790 * called from hardirq (IPI) context 791 */ 792 static void __hrtick_start(void *arg) 793 { 794 struct rq *rq = arg; 795 struct rq_flags rf; 796 797 rq_lock(rq, &rf); 798 __hrtick_restart(rq); 799 rq_unlock(rq, &rf); 800 } 801 802 /* 803 * Called to set the hrtick timer state. 804 * 805 * called with rq->lock held and irqs disabled 806 */ 807 void hrtick_start(struct rq *rq, u64 delay) 808 { 809 struct hrtimer *timer = &rq->hrtick_timer; 810 s64 delta; 811 812 /* 813 * Don't schedule slices shorter than 10000ns, that just 814 * doesn't make sense and can cause timer DoS. 815 */ 816 delta = max_t(s64, delay, 10000LL); 817 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 818 819 if (rq == this_rq()) 820 __hrtick_restart(rq); 821 else 822 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 823 } 824 825 #else 826 /* 827 * Called to set the hrtick timer state. 828 * 829 * called with rq->lock held and irqs disabled 830 */ 831 void hrtick_start(struct rq *rq, u64 delay) 832 { 833 /* 834 * Don't schedule slices shorter than 10000ns, that just 835 * doesn't make sense. Rely on vruntime for fairness. 836 */ 837 delay = max_t(u64, delay, 10000LL); 838 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 839 HRTIMER_MODE_REL_PINNED_HARD); 840 } 841 842 #endif /* CONFIG_SMP */ 843 844 static void hrtick_rq_init(struct rq *rq) 845 { 846 #ifdef CONFIG_SMP 847 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 848 #endif 849 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 850 rq->hrtick_timer.function = hrtick; 851 } 852 #else /* CONFIG_SCHED_HRTICK */ 853 static inline void hrtick_clear(struct rq *rq) 854 { 855 } 856 857 static inline void hrtick_rq_init(struct rq *rq) 858 { 859 } 860 #endif /* CONFIG_SCHED_HRTICK */ 861 862 /* 863 * cmpxchg based fetch_or, macro so it works for different integer types 864 */ 865 #define fetch_or(ptr, mask) \ 866 ({ \ 867 typeof(ptr) _ptr = (ptr); \ 868 typeof(mask) _mask = (mask); \ 869 typeof(*_ptr) _val = *_ptr; \ 870 \ 871 do { \ 872 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 873 _val; \ 874 }) 875 876 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 877 /* 878 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 879 * this avoids any races wrt polling state changes and thereby avoids 880 * spurious IPIs. 881 */ 882 static inline bool set_nr_and_not_polling(struct task_struct *p) 883 { 884 struct thread_info *ti = task_thread_info(p); 885 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 886 } 887 888 /* 889 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 890 * 891 * If this returns true, then the idle task promises to call 892 * sched_ttwu_pending() and reschedule soon. 893 */ 894 static bool set_nr_if_polling(struct task_struct *p) 895 { 896 struct thread_info *ti = task_thread_info(p); 897 typeof(ti->flags) val = READ_ONCE(ti->flags); 898 899 for (;;) { 900 if (!(val & _TIF_POLLING_NRFLAG)) 901 return false; 902 if (val & _TIF_NEED_RESCHED) 903 return true; 904 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)) 905 break; 906 } 907 return true; 908 } 909 910 #else 911 static inline bool set_nr_and_not_polling(struct task_struct *p) 912 { 913 set_tsk_need_resched(p); 914 return true; 915 } 916 917 #ifdef CONFIG_SMP 918 static inline bool set_nr_if_polling(struct task_struct *p) 919 { 920 return false; 921 } 922 #endif 923 #endif 924 925 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 926 { 927 struct wake_q_node *node = &task->wake_q; 928 929 /* 930 * Atomically grab the task, if ->wake_q is !nil already it means 931 * it's already queued (either by us or someone else) and will get the 932 * wakeup due to that. 933 * 934 * In order to ensure that a pending wakeup will observe our pending 935 * state, even in the failed case, an explicit smp_mb() must be used. 936 */ 937 smp_mb__before_atomic(); 938 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 939 return false; 940 941 /* 942 * The head is context local, there can be no concurrency. 943 */ 944 *head->lastp = node; 945 head->lastp = &node->next; 946 return true; 947 } 948 949 /** 950 * wake_q_add() - queue a wakeup for 'later' waking. 951 * @head: the wake_q_head to add @task to 952 * @task: the task to queue for 'later' wakeup 953 * 954 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 955 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 956 * instantly. 957 * 958 * This function must be used as-if it were wake_up_process(); IOW the task 959 * must be ready to be woken at this location. 960 */ 961 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 962 { 963 if (__wake_q_add(head, task)) 964 get_task_struct(task); 965 } 966 967 /** 968 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 969 * @head: the wake_q_head to add @task to 970 * @task: the task to queue for 'later' wakeup 971 * 972 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 973 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 974 * instantly. 975 * 976 * This function must be used as-if it were wake_up_process(); IOW the task 977 * must be ready to be woken at this location. 978 * 979 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 980 * that already hold reference to @task can call the 'safe' version and trust 981 * wake_q to do the right thing depending whether or not the @task is already 982 * queued for wakeup. 983 */ 984 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 985 { 986 if (!__wake_q_add(head, task)) 987 put_task_struct(task); 988 } 989 990 void wake_up_q(struct wake_q_head *head) 991 { 992 struct wake_q_node *node = head->first; 993 994 while (node != WAKE_Q_TAIL) { 995 struct task_struct *task; 996 997 task = container_of(node, struct task_struct, wake_q); 998 /* Task can safely be re-inserted now: */ 999 node = node->next; 1000 task->wake_q.next = NULL; 1001 1002 /* 1003 * wake_up_process() executes a full barrier, which pairs with 1004 * the queueing in wake_q_add() so as not to miss wakeups. 1005 */ 1006 wake_up_process(task); 1007 put_task_struct(task); 1008 } 1009 } 1010 1011 /* 1012 * resched_curr - mark rq's current task 'to be rescheduled now'. 1013 * 1014 * On UP this means the setting of the need_resched flag, on SMP it 1015 * might also involve a cross-CPU call to trigger the scheduler on 1016 * the target CPU. 1017 */ 1018 void resched_curr(struct rq *rq) 1019 { 1020 struct task_struct *curr = rq->curr; 1021 int cpu; 1022 1023 lockdep_assert_rq_held(rq); 1024 1025 if (test_tsk_need_resched(curr)) 1026 return; 1027 1028 cpu = cpu_of(rq); 1029 1030 if (cpu == smp_processor_id()) { 1031 set_tsk_need_resched(curr); 1032 set_preempt_need_resched(); 1033 return; 1034 } 1035 1036 if (set_nr_and_not_polling(curr)) 1037 smp_send_reschedule(cpu); 1038 else 1039 trace_sched_wake_idle_without_ipi(cpu); 1040 } 1041 1042 void resched_cpu(int cpu) 1043 { 1044 struct rq *rq = cpu_rq(cpu); 1045 unsigned long flags; 1046 1047 raw_spin_rq_lock_irqsave(rq, flags); 1048 if (cpu_online(cpu) || cpu == smp_processor_id()) 1049 resched_curr(rq); 1050 raw_spin_rq_unlock_irqrestore(rq, flags); 1051 } 1052 1053 #ifdef CONFIG_SMP 1054 #ifdef CONFIG_NO_HZ_COMMON 1055 /* 1056 * In the semi idle case, use the nearest busy CPU for migrating timers 1057 * from an idle CPU. This is good for power-savings. 1058 * 1059 * We don't do similar optimization for completely idle system, as 1060 * selecting an idle CPU will add more delays to the timers than intended 1061 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 1062 */ 1063 int get_nohz_timer_target(void) 1064 { 1065 int i, cpu = smp_processor_id(), default_cpu = -1; 1066 struct sched_domain *sd; 1067 const struct cpumask *hk_mask; 1068 1069 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1070 if (!idle_cpu(cpu)) 1071 return cpu; 1072 default_cpu = cpu; 1073 } 1074 1075 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1076 1077 rcu_read_lock(); 1078 for_each_domain(cpu, sd) { 1079 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1080 if (cpu == i) 1081 continue; 1082 1083 if (!idle_cpu(i)) { 1084 cpu = i; 1085 goto unlock; 1086 } 1087 } 1088 } 1089 1090 if (default_cpu == -1) 1091 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1092 cpu = default_cpu; 1093 unlock: 1094 rcu_read_unlock(); 1095 return cpu; 1096 } 1097 1098 /* 1099 * When add_timer_on() enqueues a timer into the timer wheel of an 1100 * idle CPU then this timer might expire before the next timer event 1101 * which is scheduled to wake up that CPU. In case of a completely 1102 * idle system the next event might even be infinite time into the 1103 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1104 * leaves the inner idle loop so the newly added timer is taken into 1105 * account when the CPU goes back to idle and evaluates the timer 1106 * wheel for the next timer event. 1107 */ 1108 static void wake_up_idle_cpu(int cpu) 1109 { 1110 struct rq *rq = cpu_rq(cpu); 1111 1112 if (cpu == smp_processor_id()) 1113 return; 1114 1115 if (set_nr_and_not_polling(rq->idle)) 1116 smp_send_reschedule(cpu); 1117 else 1118 trace_sched_wake_idle_without_ipi(cpu); 1119 } 1120 1121 static bool wake_up_full_nohz_cpu(int cpu) 1122 { 1123 /* 1124 * We just need the target to call irq_exit() and re-evaluate 1125 * the next tick. The nohz full kick at least implies that. 1126 * If needed we can still optimize that later with an 1127 * empty IRQ. 1128 */ 1129 if (cpu_is_offline(cpu)) 1130 return true; /* Don't try to wake offline CPUs. */ 1131 if (tick_nohz_full_cpu(cpu)) { 1132 if (cpu != smp_processor_id() || 1133 tick_nohz_tick_stopped()) 1134 tick_nohz_full_kick_cpu(cpu); 1135 return true; 1136 } 1137 1138 return false; 1139 } 1140 1141 /* 1142 * Wake up the specified CPU. If the CPU is going offline, it is the 1143 * caller's responsibility to deal with the lost wakeup, for example, 1144 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1145 */ 1146 void wake_up_nohz_cpu(int cpu) 1147 { 1148 if (!wake_up_full_nohz_cpu(cpu)) 1149 wake_up_idle_cpu(cpu); 1150 } 1151 1152 static void nohz_csd_func(void *info) 1153 { 1154 struct rq *rq = info; 1155 int cpu = cpu_of(rq); 1156 unsigned int flags; 1157 1158 /* 1159 * Release the rq::nohz_csd. 1160 */ 1161 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1162 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1163 1164 rq->idle_balance = idle_cpu(cpu); 1165 if (rq->idle_balance && !need_resched()) { 1166 rq->nohz_idle_balance = flags; 1167 raise_softirq_irqoff(SCHED_SOFTIRQ); 1168 } 1169 } 1170 1171 #endif /* CONFIG_NO_HZ_COMMON */ 1172 1173 #ifdef CONFIG_NO_HZ_FULL 1174 bool sched_can_stop_tick(struct rq *rq) 1175 { 1176 int fifo_nr_running; 1177 1178 /* Deadline tasks, even if single, need the tick */ 1179 if (rq->dl.dl_nr_running) 1180 return false; 1181 1182 /* 1183 * If there are more than one RR tasks, we need the tick to affect the 1184 * actual RR behaviour. 1185 */ 1186 if (rq->rt.rr_nr_running) { 1187 if (rq->rt.rr_nr_running == 1) 1188 return true; 1189 else 1190 return false; 1191 } 1192 1193 /* 1194 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1195 * forced preemption between FIFO tasks. 1196 */ 1197 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1198 if (fifo_nr_running) 1199 return true; 1200 1201 /* 1202 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1203 * if there's more than one we need the tick for involuntary 1204 * preemption. 1205 */ 1206 if (rq->nr_running > 1) 1207 return false; 1208 1209 return true; 1210 } 1211 #endif /* CONFIG_NO_HZ_FULL */ 1212 #endif /* CONFIG_SMP */ 1213 1214 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1215 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1216 /* 1217 * Iterate task_group tree rooted at *from, calling @down when first entering a 1218 * node and @up when leaving it for the final time. 1219 * 1220 * Caller must hold rcu_lock or sufficient equivalent. 1221 */ 1222 int walk_tg_tree_from(struct task_group *from, 1223 tg_visitor down, tg_visitor up, void *data) 1224 { 1225 struct task_group *parent, *child; 1226 int ret; 1227 1228 parent = from; 1229 1230 down: 1231 ret = (*down)(parent, data); 1232 if (ret) 1233 goto out; 1234 list_for_each_entry_rcu(child, &parent->children, siblings) { 1235 parent = child; 1236 goto down; 1237 1238 up: 1239 continue; 1240 } 1241 ret = (*up)(parent, data); 1242 if (ret || parent == from) 1243 goto out; 1244 1245 child = parent; 1246 parent = parent->parent; 1247 if (parent) 1248 goto up; 1249 out: 1250 return ret; 1251 } 1252 1253 int tg_nop(struct task_group *tg, void *data) 1254 { 1255 return 0; 1256 } 1257 #endif 1258 1259 static void set_load_weight(struct task_struct *p, bool update_load) 1260 { 1261 int prio = p->static_prio - MAX_RT_PRIO; 1262 struct load_weight *load = &p->se.load; 1263 1264 /* 1265 * SCHED_IDLE tasks get minimal weight: 1266 */ 1267 if (task_has_idle_policy(p)) { 1268 load->weight = scale_load(WEIGHT_IDLEPRIO); 1269 load->inv_weight = WMULT_IDLEPRIO; 1270 return; 1271 } 1272 1273 /* 1274 * SCHED_OTHER tasks have to update their load when changing their 1275 * weight 1276 */ 1277 if (update_load && p->sched_class == &fair_sched_class) { 1278 reweight_task(p, prio); 1279 } else { 1280 load->weight = scale_load(sched_prio_to_weight[prio]); 1281 load->inv_weight = sched_prio_to_wmult[prio]; 1282 } 1283 } 1284 1285 #ifdef CONFIG_UCLAMP_TASK 1286 /* 1287 * Serializes updates of utilization clamp values 1288 * 1289 * The (slow-path) user-space triggers utilization clamp value updates which 1290 * can require updates on (fast-path) scheduler's data structures used to 1291 * support enqueue/dequeue operations. 1292 * While the per-CPU rq lock protects fast-path update operations, user-space 1293 * requests are serialized using a mutex to reduce the risk of conflicting 1294 * updates or API abuses. 1295 */ 1296 static DEFINE_MUTEX(uclamp_mutex); 1297 1298 /* Max allowed minimum utilization */ 1299 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1300 1301 /* Max allowed maximum utilization */ 1302 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1303 1304 /* 1305 * By default RT tasks run at the maximum performance point/capacity of the 1306 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1307 * SCHED_CAPACITY_SCALE. 1308 * 1309 * This knob allows admins to change the default behavior when uclamp is being 1310 * used. In battery powered devices, particularly, running at the maximum 1311 * capacity and frequency will increase energy consumption and shorten the 1312 * battery life. 1313 * 1314 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1315 * 1316 * This knob will not override the system default sched_util_clamp_min defined 1317 * above. 1318 */ 1319 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1320 1321 /* All clamps are required to be less or equal than these values */ 1322 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1323 1324 /* 1325 * This static key is used to reduce the uclamp overhead in the fast path. It 1326 * primarily disables the call to uclamp_rq_{inc, dec}() in 1327 * enqueue/dequeue_task(). 1328 * 1329 * This allows users to continue to enable uclamp in their kernel config with 1330 * minimum uclamp overhead in the fast path. 1331 * 1332 * As soon as userspace modifies any of the uclamp knobs, the static key is 1333 * enabled, since we have an actual users that make use of uclamp 1334 * functionality. 1335 * 1336 * The knobs that would enable this static key are: 1337 * 1338 * * A task modifying its uclamp value with sched_setattr(). 1339 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1340 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1341 */ 1342 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1343 1344 /* Integer rounded range for each bucket */ 1345 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 1346 1347 #define for_each_clamp_id(clamp_id) \ 1348 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 1349 1350 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 1351 { 1352 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 1353 } 1354 1355 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 1356 { 1357 if (clamp_id == UCLAMP_MIN) 1358 return 0; 1359 return SCHED_CAPACITY_SCALE; 1360 } 1361 1362 static inline void uclamp_se_set(struct uclamp_se *uc_se, 1363 unsigned int value, bool user_defined) 1364 { 1365 uc_se->value = value; 1366 uc_se->bucket_id = uclamp_bucket_id(value); 1367 uc_se->user_defined = user_defined; 1368 } 1369 1370 static inline unsigned int 1371 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1372 unsigned int clamp_value) 1373 { 1374 /* 1375 * Avoid blocked utilization pushing up the frequency when we go 1376 * idle (which drops the max-clamp) by retaining the last known 1377 * max-clamp. 1378 */ 1379 if (clamp_id == UCLAMP_MAX) { 1380 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1381 return clamp_value; 1382 } 1383 1384 return uclamp_none(UCLAMP_MIN); 1385 } 1386 1387 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1388 unsigned int clamp_value) 1389 { 1390 /* Reset max-clamp retention only on idle exit */ 1391 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1392 return; 1393 1394 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 1395 } 1396 1397 static inline 1398 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1399 unsigned int clamp_value) 1400 { 1401 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1402 int bucket_id = UCLAMP_BUCKETS - 1; 1403 1404 /* 1405 * Since both min and max clamps are max aggregated, find the 1406 * top most bucket with tasks in. 1407 */ 1408 for ( ; bucket_id >= 0; bucket_id--) { 1409 if (!bucket[bucket_id].tasks) 1410 continue; 1411 return bucket[bucket_id].value; 1412 } 1413 1414 /* No tasks -- default clamp values */ 1415 return uclamp_idle_value(rq, clamp_id, clamp_value); 1416 } 1417 1418 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1419 { 1420 unsigned int default_util_min; 1421 struct uclamp_se *uc_se; 1422 1423 lockdep_assert_held(&p->pi_lock); 1424 1425 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1426 1427 /* Only sync if user didn't override the default */ 1428 if (uc_se->user_defined) 1429 return; 1430 1431 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1432 uclamp_se_set(uc_se, default_util_min, false); 1433 } 1434 1435 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1436 { 1437 struct rq_flags rf; 1438 struct rq *rq; 1439 1440 if (!rt_task(p)) 1441 return; 1442 1443 /* Protect updates to p->uclamp_* */ 1444 rq = task_rq_lock(p, &rf); 1445 __uclamp_update_util_min_rt_default(p); 1446 task_rq_unlock(rq, p, &rf); 1447 } 1448 1449 static inline struct uclamp_se 1450 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1451 { 1452 /* Copy by value as we could modify it */ 1453 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1454 #ifdef CONFIG_UCLAMP_TASK_GROUP 1455 unsigned int tg_min, tg_max, value; 1456 1457 /* 1458 * Tasks in autogroups or root task group will be 1459 * restricted by system defaults. 1460 */ 1461 if (task_group_is_autogroup(task_group(p))) 1462 return uc_req; 1463 if (task_group(p) == &root_task_group) 1464 return uc_req; 1465 1466 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1467 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1468 value = uc_req.value; 1469 value = clamp(value, tg_min, tg_max); 1470 uclamp_se_set(&uc_req, value, false); 1471 #endif 1472 1473 return uc_req; 1474 } 1475 1476 /* 1477 * The effective clamp bucket index of a task depends on, by increasing 1478 * priority: 1479 * - the task specific clamp value, when explicitly requested from userspace 1480 * - the task group effective clamp value, for tasks not either in the root 1481 * group or in an autogroup 1482 * - the system default clamp value, defined by the sysadmin 1483 */ 1484 static inline struct uclamp_se 1485 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1486 { 1487 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1488 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1489 1490 /* System default restrictions always apply */ 1491 if (unlikely(uc_req.value > uc_max.value)) 1492 return uc_max; 1493 1494 return uc_req; 1495 } 1496 1497 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1498 { 1499 struct uclamp_se uc_eff; 1500 1501 /* Task currently refcounted: use back-annotated (effective) value */ 1502 if (p->uclamp[clamp_id].active) 1503 return (unsigned long)p->uclamp[clamp_id].value; 1504 1505 uc_eff = uclamp_eff_get(p, clamp_id); 1506 1507 return (unsigned long)uc_eff.value; 1508 } 1509 1510 /* 1511 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1512 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1513 * updates the rq's clamp value if required. 1514 * 1515 * Tasks can have a task-specific value requested from user-space, track 1516 * within each bucket the maximum value for tasks refcounted in it. 1517 * This "local max aggregation" allows to track the exact "requested" value 1518 * for each bucket when all its RUNNABLE tasks require the same clamp. 1519 */ 1520 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1521 enum uclamp_id clamp_id) 1522 { 1523 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1524 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1525 struct uclamp_bucket *bucket; 1526 1527 lockdep_assert_rq_held(rq); 1528 1529 /* Update task effective clamp */ 1530 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1531 1532 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1533 bucket->tasks++; 1534 uc_se->active = true; 1535 1536 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1537 1538 /* 1539 * Local max aggregation: rq buckets always track the max 1540 * "requested" clamp value of its RUNNABLE tasks. 1541 */ 1542 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1543 bucket->value = uc_se->value; 1544 1545 if (uc_se->value > READ_ONCE(uc_rq->value)) 1546 WRITE_ONCE(uc_rq->value, uc_se->value); 1547 } 1548 1549 /* 1550 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1551 * is released. If this is the last task reference counting the rq's max 1552 * active clamp value, then the rq's clamp value is updated. 1553 * 1554 * Both refcounted tasks and rq's cached clamp values are expected to be 1555 * always valid. If it's detected they are not, as defensive programming, 1556 * enforce the expected state and warn. 1557 */ 1558 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1559 enum uclamp_id clamp_id) 1560 { 1561 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1562 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1563 struct uclamp_bucket *bucket; 1564 unsigned int bkt_clamp; 1565 unsigned int rq_clamp; 1566 1567 lockdep_assert_rq_held(rq); 1568 1569 /* 1570 * If sched_uclamp_used was enabled after task @p was enqueued, 1571 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1572 * 1573 * In this case the uc_se->active flag should be false since no uclamp 1574 * accounting was performed at enqueue time and we can just return 1575 * here. 1576 * 1577 * Need to be careful of the following enqueue/dequeue ordering 1578 * problem too 1579 * 1580 * enqueue(taskA) 1581 * // sched_uclamp_used gets enabled 1582 * enqueue(taskB) 1583 * dequeue(taskA) 1584 * // Must not decrement bucket->tasks here 1585 * dequeue(taskB) 1586 * 1587 * where we could end up with stale data in uc_se and 1588 * bucket[uc_se->bucket_id]. 1589 * 1590 * The following check here eliminates the possibility of such race. 1591 */ 1592 if (unlikely(!uc_se->active)) 1593 return; 1594 1595 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1596 1597 SCHED_WARN_ON(!bucket->tasks); 1598 if (likely(bucket->tasks)) 1599 bucket->tasks--; 1600 1601 uc_se->active = false; 1602 1603 /* 1604 * Keep "local max aggregation" simple and accept to (possibly) 1605 * overboost some RUNNABLE tasks in the same bucket. 1606 * The rq clamp bucket value is reset to its base value whenever 1607 * there are no more RUNNABLE tasks refcounting it. 1608 */ 1609 if (likely(bucket->tasks)) 1610 return; 1611 1612 rq_clamp = READ_ONCE(uc_rq->value); 1613 /* 1614 * Defensive programming: this should never happen. If it happens, 1615 * e.g. due to future modification, warn and fixup the expected value. 1616 */ 1617 SCHED_WARN_ON(bucket->value > rq_clamp); 1618 if (bucket->value >= rq_clamp) { 1619 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1620 WRITE_ONCE(uc_rq->value, bkt_clamp); 1621 } 1622 } 1623 1624 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1625 { 1626 enum uclamp_id clamp_id; 1627 1628 /* 1629 * Avoid any overhead until uclamp is actually used by the userspace. 1630 * 1631 * The condition is constructed such that a NOP is generated when 1632 * sched_uclamp_used is disabled. 1633 */ 1634 if (!static_branch_unlikely(&sched_uclamp_used)) 1635 return; 1636 1637 if (unlikely(!p->sched_class->uclamp_enabled)) 1638 return; 1639 1640 for_each_clamp_id(clamp_id) 1641 uclamp_rq_inc_id(rq, p, clamp_id); 1642 1643 /* Reset clamp idle holding when there is one RUNNABLE task */ 1644 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1645 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1646 } 1647 1648 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1649 { 1650 enum uclamp_id clamp_id; 1651 1652 /* 1653 * Avoid any overhead until uclamp is actually used by the userspace. 1654 * 1655 * The condition is constructed such that a NOP is generated when 1656 * sched_uclamp_used is disabled. 1657 */ 1658 if (!static_branch_unlikely(&sched_uclamp_used)) 1659 return; 1660 1661 if (unlikely(!p->sched_class->uclamp_enabled)) 1662 return; 1663 1664 for_each_clamp_id(clamp_id) 1665 uclamp_rq_dec_id(rq, p, clamp_id); 1666 } 1667 1668 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1669 enum uclamp_id clamp_id) 1670 { 1671 if (!p->uclamp[clamp_id].active) 1672 return; 1673 1674 uclamp_rq_dec_id(rq, p, clamp_id); 1675 uclamp_rq_inc_id(rq, p, clamp_id); 1676 1677 /* 1678 * Make sure to clear the idle flag if we've transiently reached 0 1679 * active tasks on rq. 1680 */ 1681 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1682 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1683 } 1684 1685 static inline void 1686 uclamp_update_active(struct task_struct *p) 1687 { 1688 enum uclamp_id clamp_id; 1689 struct rq_flags rf; 1690 struct rq *rq; 1691 1692 /* 1693 * Lock the task and the rq where the task is (or was) queued. 1694 * 1695 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1696 * price to pay to safely serialize util_{min,max} updates with 1697 * enqueues, dequeues and migration operations. 1698 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1699 */ 1700 rq = task_rq_lock(p, &rf); 1701 1702 /* 1703 * Setting the clamp bucket is serialized by task_rq_lock(). 1704 * If the task is not yet RUNNABLE and its task_struct is not 1705 * affecting a valid clamp bucket, the next time it's enqueued, 1706 * it will already see the updated clamp bucket value. 1707 */ 1708 for_each_clamp_id(clamp_id) 1709 uclamp_rq_reinc_id(rq, p, clamp_id); 1710 1711 task_rq_unlock(rq, p, &rf); 1712 } 1713 1714 #ifdef CONFIG_UCLAMP_TASK_GROUP 1715 static inline void 1716 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1717 { 1718 struct css_task_iter it; 1719 struct task_struct *p; 1720 1721 css_task_iter_start(css, 0, &it); 1722 while ((p = css_task_iter_next(&it))) 1723 uclamp_update_active(p); 1724 css_task_iter_end(&it); 1725 } 1726 1727 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1728 #endif 1729 1730 #ifdef CONFIG_SYSCTL 1731 #ifdef CONFIG_UCLAMP_TASK 1732 #ifdef CONFIG_UCLAMP_TASK_GROUP 1733 static void uclamp_update_root_tg(void) 1734 { 1735 struct task_group *tg = &root_task_group; 1736 1737 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1738 sysctl_sched_uclamp_util_min, false); 1739 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1740 sysctl_sched_uclamp_util_max, false); 1741 1742 rcu_read_lock(); 1743 cpu_util_update_eff(&root_task_group.css); 1744 rcu_read_unlock(); 1745 } 1746 #else 1747 static void uclamp_update_root_tg(void) { } 1748 #endif 1749 1750 static void uclamp_sync_util_min_rt_default(void) 1751 { 1752 struct task_struct *g, *p; 1753 1754 /* 1755 * copy_process() sysctl_uclamp 1756 * uclamp_min_rt = X; 1757 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1758 * // link thread smp_mb__after_spinlock() 1759 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1760 * sched_post_fork() for_each_process_thread() 1761 * __uclamp_sync_rt() __uclamp_sync_rt() 1762 * 1763 * Ensures that either sched_post_fork() will observe the new 1764 * uclamp_min_rt or for_each_process_thread() will observe the new 1765 * task. 1766 */ 1767 read_lock(&tasklist_lock); 1768 smp_mb__after_spinlock(); 1769 read_unlock(&tasklist_lock); 1770 1771 rcu_read_lock(); 1772 for_each_process_thread(g, p) 1773 uclamp_update_util_min_rt_default(p); 1774 rcu_read_unlock(); 1775 } 1776 1777 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1778 void *buffer, size_t *lenp, loff_t *ppos) 1779 { 1780 bool update_root_tg = false; 1781 int old_min, old_max, old_min_rt; 1782 int result; 1783 1784 mutex_lock(&uclamp_mutex); 1785 old_min = sysctl_sched_uclamp_util_min; 1786 old_max = sysctl_sched_uclamp_util_max; 1787 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1788 1789 result = proc_dointvec(table, write, buffer, lenp, ppos); 1790 if (result) 1791 goto undo; 1792 if (!write) 1793 goto done; 1794 1795 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1796 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1797 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1798 1799 result = -EINVAL; 1800 goto undo; 1801 } 1802 1803 if (old_min != sysctl_sched_uclamp_util_min) { 1804 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1805 sysctl_sched_uclamp_util_min, false); 1806 update_root_tg = true; 1807 } 1808 if (old_max != sysctl_sched_uclamp_util_max) { 1809 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1810 sysctl_sched_uclamp_util_max, false); 1811 update_root_tg = true; 1812 } 1813 1814 if (update_root_tg) { 1815 static_branch_enable(&sched_uclamp_used); 1816 uclamp_update_root_tg(); 1817 } 1818 1819 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1820 static_branch_enable(&sched_uclamp_used); 1821 uclamp_sync_util_min_rt_default(); 1822 } 1823 1824 /* 1825 * We update all RUNNABLE tasks only when task groups are in use. 1826 * Otherwise, keep it simple and do just a lazy update at each next 1827 * task enqueue time. 1828 */ 1829 1830 goto done; 1831 1832 undo: 1833 sysctl_sched_uclamp_util_min = old_min; 1834 sysctl_sched_uclamp_util_max = old_max; 1835 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1836 done: 1837 mutex_unlock(&uclamp_mutex); 1838 1839 return result; 1840 } 1841 #endif 1842 #endif 1843 1844 static int uclamp_validate(struct task_struct *p, 1845 const struct sched_attr *attr) 1846 { 1847 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1848 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1849 1850 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1851 util_min = attr->sched_util_min; 1852 1853 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1854 return -EINVAL; 1855 } 1856 1857 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1858 util_max = attr->sched_util_max; 1859 1860 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1861 return -EINVAL; 1862 } 1863 1864 if (util_min != -1 && util_max != -1 && util_min > util_max) 1865 return -EINVAL; 1866 1867 /* 1868 * We have valid uclamp attributes; make sure uclamp is enabled. 1869 * 1870 * We need to do that here, because enabling static branches is a 1871 * blocking operation which obviously cannot be done while holding 1872 * scheduler locks. 1873 */ 1874 static_branch_enable(&sched_uclamp_used); 1875 1876 return 0; 1877 } 1878 1879 static bool uclamp_reset(const struct sched_attr *attr, 1880 enum uclamp_id clamp_id, 1881 struct uclamp_se *uc_se) 1882 { 1883 /* Reset on sched class change for a non user-defined clamp value. */ 1884 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1885 !uc_se->user_defined) 1886 return true; 1887 1888 /* Reset on sched_util_{min,max} == -1. */ 1889 if (clamp_id == UCLAMP_MIN && 1890 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1891 attr->sched_util_min == -1) { 1892 return true; 1893 } 1894 1895 if (clamp_id == UCLAMP_MAX && 1896 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1897 attr->sched_util_max == -1) { 1898 return true; 1899 } 1900 1901 return false; 1902 } 1903 1904 static void __setscheduler_uclamp(struct task_struct *p, 1905 const struct sched_attr *attr) 1906 { 1907 enum uclamp_id clamp_id; 1908 1909 for_each_clamp_id(clamp_id) { 1910 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1911 unsigned int value; 1912 1913 if (!uclamp_reset(attr, clamp_id, uc_se)) 1914 continue; 1915 1916 /* 1917 * RT by default have a 100% boost value that could be modified 1918 * at runtime. 1919 */ 1920 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1921 value = sysctl_sched_uclamp_util_min_rt_default; 1922 else 1923 value = uclamp_none(clamp_id); 1924 1925 uclamp_se_set(uc_se, value, false); 1926 1927 } 1928 1929 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1930 return; 1931 1932 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1933 attr->sched_util_min != -1) { 1934 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1935 attr->sched_util_min, true); 1936 } 1937 1938 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1939 attr->sched_util_max != -1) { 1940 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1941 attr->sched_util_max, true); 1942 } 1943 } 1944 1945 static void uclamp_fork(struct task_struct *p) 1946 { 1947 enum uclamp_id clamp_id; 1948 1949 /* 1950 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1951 * as the task is still at its early fork stages. 1952 */ 1953 for_each_clamp_id(clamp_id) 1954 p->uclamp[clamp_id].active = false; 1955 1956 if (likely(!p->sched_reset_on_fork)) 1957 return; 1958 1959 for_each_clamp_id(clamp_id) { 1960 uclamp_se_set(&p->uclamp_req[clamp_id], 1961 uclamp_none(clamp_id), false); 1962 } 1963 } 1964 1965 static void uclamp_post_fork(struct task_struct *p) 1966 { 1967 uclamp_update_util_min_rt_default(p); 1968 } 1969 1970 static void __init init_uclamp_rq(struct rq *rq) 1971 { 1972 enum uclamp_id clamp_id; 1973 struct uclamp_rq *uc_rq = rq->uclamp; 1974 1975 for_each_clamp_id(clamp_id) { 1976 uc_rq[clamp_id] = (struct uclamp_rq) { 1977 .value = uclamp_none(clamp_id) 1978 }; 1979 } 1980 1981 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 1982 } 1983 1984 static void __init init_uclamp(void) 1985 { 1986 struct uclamp_se uc_max = {}; 1987 enum uclamp_id clamp_id; 1988 int cpu; 1989 1990 for_each_possible_cpu(cpu) 1991 init_uclamp_rq(cpu_rq(cpu)); 1992 1993 for_each_clamp_id(clamp_id) { 1994 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1995 uclamp_none(clamp_id), false); 1996 } 1997 1998 /* System defaults allow max clamp values for both indexes */ 1999 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2000 for_each_clamp_id(clamp_id) { 2001 uclamp_default[clamp_id] = uc_max; 2002 #ifdef CONFIG_UCLAMP_TASK_GROUP 2003 root_task_group.uclamp_req[clamp_id] = uc_max; 2004 root_task_group.uclamp[clamp_id] = uc_max; 2005 #endif 2006 } 2007 } 2008 2009 #else /* CONFIG_UCLAMP_TASK */ 2010 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 2011 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2012 static inline int uclamp_validate(struct task_struct *p, 2013 const struct sched_attr *attr) 2014 { 2015 return -EOPNOTSUPP; 2016 } 2017 static void __setscheduler_uclamp(struct task_struct *p, 2018 const struct sched_attr *attr) { } 2019 static inline void uclamp_fork(struct task_struct *p) { } 2020 static inline void uclamp_post_fork(struct task_struct *p) { } 2021 static inline void init_uclamp(void) { } 2022 #endif /* CONFIG_UCLAMP_TASK */ 2023 2024 bool sched_task_on_rq(struct task_struct *p) 2025 { 2026 return task_on_rq_queued(p); 2027 } 2028 2029 unsigned long get_wchan(struct task_struct *p) 2030 { 2031 unsigned long ip = 0; 2032 unsigned int state; 2033 2034 if (!p || p == current) 2035 return 0; 2036 2037 /* Only get wchan if task is blocked and we can keep it that way. */ 2038 raw_spin_lock_irq(&p->pi_lock); 2039 state = READ_ONCE(p->__state); 2040 smp_rmb(); /* see try_to_wake_up() */ 2041 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2042 ip = __get_wchan(p); 2043 raw_spin_unlock_irq(&p->pi_lock); 2044 2045 return ip; 2046 } 2047 2048 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2049 { 2050 if (!(flags & ENQUEUE_NOCLOCK)) 2051 update_rq_clock(rq); 2052 2053 if (!(flags & ENQUEUE_RESTORE)) { 2054 sched_info_enqueue(rq, p); 2055 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 2056 } 2057 2058 uclamp_rq_inc(rq, p); 2059 p->sched_class->enqueue_task(rq, p, flags); 2060 2061 if (sched_core_enabled(rq)) 2062 sched_core_enqueue(rq, p); 2063 } 2064 2065 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2066 { 2067 if (sched_core_enabled(rq)) 2068 sched_core_dequeue(rq, p, flags); 2069 2070 if (!(flags & DEQUEUE_NOCLOCK)) 2071 update_rq_clock(rq); 2072 2073 if (!(flags & DEQUEUE_SAVE)) { 2074 sched_info_dequeue(rq, p); 2075 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2076 } 2077 2078 uclamp_rq_dec(rq, p); 2079 p->sched_class->dequeue_task(rq, p, flags); 2080 } 2081 2082 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2083 { 2084 enqueue_task(rq, p, flags); 2085 2086 p->on_rq = TASK_ON_RQ_QUEUED; 2087 } 2088 2089 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2090 { 2091 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 2092 2093 dequeue_task(rq, p, flags); 2094 } 2095 2096 static inline int __normal_prio(int policy, int rt_prio, int nice) 2097 { 2098 int prio; 2099 2100 if (dl_policy(policy)) 2101 prio = MAX_DL_PRIO - 1; 2102 else if (rt_policy(policy)) 2103 prio = MAX_RT_PRIO - 1 - rt_prio; 2104 else 2105 prio = NICE_TO_PRIO(nice); 2106 2107 return prio; 2108 } 2109 2110 /* 2111 * Calculate the expected normal priority: i.e. priority 2112 * without taking RT-inheritance into account. Might be 2113 * boosted by interactivity modifiers. Changes upon fork, 2114 * setprio syscalls, and whenever the interactivity 2115 * estimator recalculates. 2116 */ 2117 static inline int normal_prio(struct task_struct *p) 2118 { 2119 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); 2120 } 2121 2122 /* 2123 * Calculate the current priority, i.e. the priority 2124 * taken into account by the scheduler. This value might 2125 * be boosted by RT tasks, or might be boosted by 2126 * interactivity modifiers. Will be RT if the task got 2127 * RT-boosted. If not then it returns p->normal_prio. 2128 */ 2129 static int effective_prio(struct task_struct *p) 2130 { 2131 p->normal_prio = normal_prio(p); 2132 /* 2133 * If we are RT tasks or we were boosted to RT priority, 2134 * keep the priority unchanged. Otherwise, update priority 2135 * to the normal priority: 2136 */ 2137 if (!rt_prio(p->prio)) 2138 return p->normal_prio; 2139 return p->prio; 2140 } 2141 2142 /** 2143 * task_curr - is this task currently executing on a CPU? 2144 * @p: the task in question. 2145 * 2146 * Return: 1 if the task is currently executing. 0 otherwise. 2147 */ 2148 inline int task_curr(const struct task_struct *p) 2149 { 2150 return cpu_curr(task_cpu(p)) == p; 2151 } 2152 2153 /* 2154 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2155 * use the balance_callback list if you want balancing. 2156 * 2157 * this means any call to check_class_changed() must be followed by a call to 2158 * balance_callback(). 2159 */ 2160 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 2161 const struct sched_class *prev_class, 2162 int oldprio) 2163 { 2164 if (prev_class != p->sched_class) { 2165 if (prev_class->switched_from) 2166 prev_class->switched_from(rq, p); 2167 2168 p->sched_class->switched_to(rq, p); 2169 } else if (oldprio != p->prio || dl_task(p)) 2170 p->sched_class->prio_changed(rq, p, oldprio); 2171 } 2172 2173 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 2174 { 2175 if (p->sched_class == rq->curr->sched_class) 2176 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 2177 else if (sched_class_above(p->sched_class, rq->curr->sched_class)) 2178 resched_curr(rq); 2179 2180 /* 2181 * A queue event has occurred, and we're going to schedule. In 2182 * this case, we can save a useless back to back clock update. 2183 */ 2184 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2185 rq_clock_skip_update(rq); 2186 } 2187 2188 #ifdef CONFIG_SMP 2189 2190 static void 2191 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 2192 2193 static int __set_cpus_allowed_ptr(struct task_struct *p, 2194 const struct cpumask *new_mask, 2195 u32 flags); 2196 2197 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2198 { 2199 if (likely(!p->migration_disabled)) 2200 return; 2201 2202 if (p->cpus_ptr != &p->cpus_mask) 2203 return; 2204 2205 /* 2206 * Violates locking rules! see comment in __do_set_cpus_allowed(). 2207 */ 2208 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE); 2209 } 2210 2211 void migrate_disable(void) 2212 { 2213 struct task_struct *p = current; 2214 2215 if (p->migration_disabled) { 2216 p->migration_disabled++; 2217 return; 2218 } 2219 2220 preempt_disable(); 2221 this_rq()->nr_pinned++; 2222 p->migration_disabled = 1; 2223 preempt_enable(); 2224 } 2225 EXPORT_SYMBOL_GPL(migrate_disable); 2226 2227 void migrate_enable(void) 2228 { 2229 struct task_struct *p = current; 2230 2231 if (p->migration_disabled > 1) { 2232 p->migration_disabled--; 2233 return; 2234 } 2235 2236 if (WARN_ON_ONCE(!p->migration_disabled)) 2237 return; 2238 2239 /* 2240 * Ensure stop_task runs either before or after this, and that 2241 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2242 */ 2243 preempt_disable(); 2244 if (p->cpus_ptr != &p->cpus_mask) 2245 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE); 2246 /* 2247 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2248 * regular cpus_mask, otherwise things that race (eg. 2249 * select_fallback_rq) get confused. 2250 */ 2251 barrier(); 2252 p->migration_disabled = 0; 2253 this_rq()->nr_pinned--; 2254 preempt_enable(); 2255 } 2256 EXPORT_SYMBOL_GPL(migrate_enable); 2257 2258 static inline bool rq_has_pinned_tasks(struct rq *rq) 2259 { 2260 return rq->nr_pinned; 2261 } 2262 2263 /* 2264 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2265 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2266 */ 2267 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2268 { 2269 /* When not in the task's cpumask, no point in looking further. */ 2270 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2271 return false; 2272 2273 /* migrate_disabled() must be allowed to finish. */ 2274 if (is_migration_disabled(p)) 2275 return cpu_online(cpu); 2276 2277 /* Non kernel threads are not allowed during either online or offline. */ 2278 if (!(p->flags & PF_KTHREAD)) 2279 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2280 2281 /* KTHREAD_IS_PER_CPU is always allowed. */ 2282 if (kthread_is_per_cpu(p)) 2283 return cpu_online(cpu); 2284 2285 /* Regular kernel threads don't get to stay during offline. */ 2286 if (cpu_dying(cpu)) 2287 return false; 2288 2289 /* But are allowed during online. */ 2290 return cpu_online(cpu); 2291 } 2292 2293 /* 2294 * This is how migration works: 2295 * 2296 * 1) we invoke migration_cpu_stop() on the target CPU using 2297 * stop_one_cpu(). 2298 * 2) stopper starts to run (implicitly forcing the migrated thread 2299 * off the CPU) 2300 * 3) it checks whether the migrated task is still in the wrong runqueue. 2301 * 4) if it's in the wrong runqueue then the migration thread removes 2302 * it and puts it into the right queue. 2303 * 5) stopper completes and stop_one_cpu() returns and the migration 2304 * is done. 2305 */ 2306 2307 /* 2308 * move_queued_task - move a queued task to new rq. 2309 * 2310 * Returns (locked) new rq. Old rq's lock is released. 2311 */ 2312 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2313 struct task_struct *p, int new_cpu) 2314 { 2315 lockdep_assert_rq_held(rq); 2316 2317 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2318 set_task_cpu(p, new_cpu); 2319 rq_unlock(rq, rf); 2320 2321 rq = cpu_rq(new_cpu); 2322 2323 rq_lock(rq, rf); 2324 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2325 activate_task(rq, p, 0); 2326 check_preempt_curr(rq, p, 0); 2327 2328 return rq; 2329 } 2330 2331 struct migration_arg { 2332 struct task_struct *task; 2333 int dest_cpu; 2334 struct set_affinity_pending *pending; 2335 }; 2336 2337 /* 2338 * @refs: number of wait_for_completion() 2339 * @stop_pending: is @stop_work in use 2340 */ 2341 struct set_affinity_pending { 2342 refcount_t refs; 2343 unsigned int stop_pending; 2344 struct completion done; 2345 struct cpu_stop_work stop_work; 2346 struct migration_arg arg; 2347 }; 2348 2349 /* 2350 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2351 * this because either it can't run here any more (set_cpus_allowed() 2352 * away from this CPU, or CPU going down), or because we're 2353 * attempting to rebalance this task on exec (sched_exec). 2354 * 2355 * So we race with normal scheduler movements, but that's OK, as long 2356 * as the task is no longer on this CPU. 2357 */ 2358 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2359 struct task_struct *p, int dest_cpu) 2360 { 2361 /* Affinity changed (again). */ 2362 if (!is_cpu_allowed(p, dest_cpu)) 2363 return rq; 2364 2365 update_rq_clock(rq); 2366 rq = move_queued_task(rq, rf, p, dest_cpu); 2367 2368 return rq; 2369 } 2370 2371 /* 2372 * migration_cpu_stop - this will be executed by a highprio stopper thread 2373 * and performs thread migration by bumping thread off CPU then 2374 * 'pushing' onto another runqueue. 2375 */ 2376 static int migration_cpu_stop(void *data) 2377 { 2378 struct migration_arg *arg = data; 2379 struct set_affinity_pending *pending = arg->pending; 2380 struct task_struct *p = arg->task; 2381 struct rq *rq = this_rq(); 2382 bool complete = false; 2383 struct rq_flags rf; 2384 2385 /* 2386 * The original target CPU might have gone down and we might 2387 * be on another CPU but it doesn't matter. 2388 */ 2389 local_irq_save(rf.flags); 2390 /* 2391 * We need to explicitly wake pending tasks before running 2392 * __migrate_task() such that we will not miss enforcing cpus_ptr 2393 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2394 */ 2395 flush_smp_call_function_queue(); 2396 2397 raw_spin_lock(&p->pi_lock); 2398 rq_lock(rq, &rf); 2399 2400 /* 2401 * If we were passed a pending, then ->stop_pending was set, thus 2402 * p->migration_pending must have remained stable. 2403 */ 2404 WARN_ON_ONCE(pending && pending != p->migration_pending); 2405 2406 /* 2407 * If task_rq(p) != rq, it cannot be migrated here, because we're 2408 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2409 * we're holding p->pi_lock. 2410 */ 2411 if (task_rq(p) == rq) { 2412 if (is_migration_disabled(p)) 2413 goto out; 2414 2415 if (pending) { 2416 p->migration_pending = NULL; 2417 complete = true; 2418 2419 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2420 goto out; 2421 } 2422 2423 if (task_on_rq_queued(p)) 2424 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2425 else 2426 p->wake_cpu = arg->dest_cpu; 2427 2428 /* 2429 * XXX __migrate_task() can fail, at which point we might end 2430 * up running on a dodgy CPU, AFAICT this can only happen 2431 * during CPU hotplug, at which point we'll get pushed out 2432 * anyway, so it's probably not a big deal. 2433 */ 2434 2435 } else if (pending) { 2436 /* 2437 * This happens when we get migrated between migrate_enable()'s 2438 * preempt_enable() and scheduling the stopper task. At that 2439 * point we're a regular task again and not current anymore. 2440 * 2441 * A !PREEMPT kernel has a giant hole here, which makes it far 2442 * more likely. 2443 */ 2444 2445 /* 2446 * The task moved before the stopper got to run. We're holding 2447 * ->pi_lock, so the allowed mask is stable - if it got 2448 * somewhere allowed, we're done. 2449 */ 2450 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2451 p->migration_pending = NULL; 2452 complete = true; 2453 goto out; 2454 } 2455 2456 /* 2457 * When migrate_enable() hits a rq mis-match we can't reliably 2458 * determine is_migration_disabled() and so have to chase after 2459 * it. 2460 */ 2461 WARN_ON_ONCE(!pending->stop_pending); 2462 task_rq_unlock(rq, p, &rf); 2463 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2464 &pending->arg, &pending->stop_work); 2465 return 0; 2466 } 2467 out: 2468 if (pending) 2469 pending->stop_pending = false; 2470 task_rq_unlock(rq, p, &rf); 2471 2472 if (complete) 2473 complete_all(&pending->done); 2474 2475 return 0; 2476 } 2477 2478 int push_cpu_stop(void *arg) 2479 { 2480 struct rq *lowest_rq = NULL, *rq = this_rq(); 2481 struct task_struct *p = arg; 2482 2483 raw_spin_lock_irq(&p->pi_lock); 2484 raw_spin_rq_lock(rq); 2485 2486 if (task_rq(p) != rq) 2487 goto out_unlock; 2488 2489 if (is_migration_disabled(p)) { 2490 p->migration_flags |= MDF_PUSH; 2491 goto out_unlock; 2492 } 2493 2494 p->migration_flags &= ~MDF_PUSH; 2495 2496 if (p->sched_class->find_lock_rq) 2497 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2498 2499 if (!lowest_rq) 2500 goto out_unlock; 2501 2502 // XXX validate p is still the highest prio task 2503 if (task_rq(p) == rq) { 2504 deactivate_task(rq, p, 0); 2505 set_task_cpu(p, lowest_rq->cpu); 2506 activate_task(lowest_rq, p, 0); 2507 resched_curr(lowest_rq); 2508 } 2509 2510 double_unlock_balance(rq, lowest_rq); 2511 2512 out_unlock: 2513 rq->push_busy = false; 2514 raw_spin_rq_unlock(rq); 2515 raw_spin_unlock_irq(&p->pi_lock); 2516 2517 put_task_struct(p); 2518 return 0; 2519 } 2520 2521 /* 2522 * sched_class::set_cpus_allowed must do the below, but is not required to 2523 * actually call this function. 2524 */ 2525 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2526 { 2527 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2528 p->cpus_ptr = new_mask; 2529 return; 2530 } 2531 2532 cpumask_copy(&p->cpus_mask, new_mask); 2533 p->nr_cpus_allowed = cpumask_weight(new_mask); 2534 } 2535 2536 static void 2537 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2538 { 2539 struct rq *rq = task_rq(p); 2540 bool queued, running; 2541 2542 /* 2543 * This here violates the locking rules for affinity, since we're only 2544 * supposed to change these variables while holding both rq->lock and 2545 * p->pi_lock. 2546 * 2547 * HOWEVER, it magically works, because ttwu() is the only code that 2548 * accesses these variables under p->pi_lock and only does so after 2549 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2550 * before finish_task(). 2551 * 2552 * XXX do further audits, this smells like something putrid. 2553 */ 2554 if (flags & SCA_MIGRATE_DISABLE) 2555 SCHED_WARN_ON(!p->on_cpu); 2556 else 2557 lockdep_assert_held(&p->pi_lock); 2558 2559 queued = task_on_rq_queued(p); 2560 running = task_current(rq, p); 2561 2562 if (queued) { 2563 /* 2564 * Because __kthread_bind() calls this on blocked tasks without 2565 * holding rq->lock. 2566 */ 2567 lockdep_assert_rq_held(rq); 2568 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2569 } 2570 if (running) 2571 put_prev_task(rq, p); 2572 2573 p->sched_class->set_cpus_allowed(p, new_mask, flags); 2574 2575 if (queued) 2576 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2577 if (running) 2578 set_next_task(rq, p); 2579 } 2580 2581 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2582 { 2583 __do_set_cpus_allowed(p, new_mask, 0); 2584 } 2585 2586 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2587 int node) 2588 { 2589 if (!src->user_cpus_ptr) 2590 return 0; 2591 2592 dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node); 2593 if (!dst->user_cpus_ptr) 2594 return -ENOMEM; 2595 2596 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2597 return 0; 2598 } 2599 2600 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2601 { 2602 struct cpumask *user_mask = NULL; 2603 2604 swap(p->user_cpus_ptr, user_mask); 2605 2606 return user_mask; 2607 } 2608 2609 void release_user_cpus_ptr(struct task_struct *p) 2610 { 2611 kfree(clear_user_cpus_ptr(p)); 2612 } 2613 2614 /* 2615 * This function is wildly self concurrent; here be dragons. 2616 * 2617 * 2618 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2619 * designated task is enqueued on an allowed CPU. If that task is currently 2620 * running, we have to kick it out using the CPU stopper. 2621 * 2622 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2623 * Consider: 2624 * 2625 * Initial conditions: P0->cpus_mask = [0, 1] 2626 * 2627 * P0@CPU0 P1 2628 * 2629 * migrate_disable(); 2630 * <preempted> 2631 * set_cpus_allowed_ptr(P0, [1]); 2632 * 2633 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2634 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2635 * This means we need the following scheme: 2636 * 2637 * P0@CPU0 P1 2638 * 2639 * migrate_disable(); 2640 * <preempted> 2641 * set_cpus_allowed_ptr(P0, [1]); 2642 * <blocks> 2643 * <resumes> 2644 * migrate_enable(); 2645 * __set_cpus_allowed_ptr(); 2646 * <wakes local stopper> 2647 * `--> <woken on migration completion> 2648 * 2649 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2650 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2651 * task p are serialized by p->pi_lock, which we can leverage: the one that 2652 * should come into effect at the end of the Migrate-Disable region is the last 2653 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2654 * but we still need to properly signal those waiting tasks at the appropriate 2655 * moment. 2656 * 2657 * This is implemented using struct set_affinity_pending. The first 2658 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2659 * setup an instance of that struct and install it on the targeted task_struct. 2660 * Any and all further callers will reuse that instance. Those then wait for 2661 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2662 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2663 * 2664 * 2665 * (1) In the cases covered above. There is one more where the completion is 2666 * signaled within affine_move_task() itself: when a subsequent affinity request 2667 * occurs after the stopper bailed out due to the targeted task still being 2668 * Migrate-Disable. Consider: 2669 * 2670 * Initial conditions: P0->cpus_mask = [0, 1] 2671 * 2672 * CPU0 P1 P2 2673 * <P0> 2674 * migrate_disable(); 2675 * <preempted> 2676 * set_cpus_allowed_ptr(P0, [1]); 2677 * <blocks> 2678 * <migration/0> 2679 * migration_cpu_stop() 2680 * is_migration_disabled() 2681 * <bails> 2682 * set_cpus_allowed_ptr(P0, [0, 1]); 2683 * <signal completion> 2684 * <awakes> 2685 * 2686 * Note that the above is safe vs a concurrent migrate_enable(), as any 2687 * pending affinity completion is preceded by an uninstallation of 2688 * p->migration_pending done with p->pi_lock held. 2689 */ 2690 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2691 int dest_cpu, unsigned int flags) 2692 { 2693 struct set_affinity_pending my_pending = { }, *pending = NULL; 2694 bool stop_pending, complete = false; 2695 2696 /* Can the task run on the task's current CPU? If so, we're done */ 2697 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2698 struct task_struct *push_task = NULL; 2699 2700 if ((flags & SCA_MIGRATE_ENABLE) && 2701 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2702 rq->push_busy = true; 2703 push_task = get_task_struct(p); 2704 } 2705 2706 /* 2707 * If there are pending waiters, but no pending stop_work, 2708 * then complete now. 2709 */ 2710 pending = p->migration_pending; 2711 if (pending && !pending->stop_pending) { 2712 p->migration_pending = NULL; 2713 complete = true; 2714 } 2715 2716 task_rq_unlock(rq, p, rf); 2717 2718 if (push_task) { 2719 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2720 p, &rq->push_work); 2721 } 2722 2723 if (complete) 2724 complete_all(&pending->done); 2725 2726 return 0; 2727 } 2728 2729 if (!(flags & SCA_MIGRATE_ENABLE)) { 2730 /* serialized by p->pi_lock */ 2731 if (!p->migration_pending) { 2732 /* Install the request */ 2733 refcount_set(&my_pending.refs, 1); 2734 init_completion(&my_pending.done); 2735 my_pending.arg = (struct migration_arg) { 2736 .task = p, 2737 .dest_cpu = dest_cpu, 2738 .pending = &my_pending, 2739 }; 2740 2741 p->migration_pending = &my_pending; 2742 } else { 2743 pending = p->migration_pending; 2744 refcount_inc(&pending->refs); 2745 /* 2746 * Affinity has changed, but we've already installed a 2747 * pending. migration_cpu_stop() *must* see this, else 2748 * we risk a completion of the pending despite having a 2749 * task on a disallowed CPU. 2750 * 2751 * Serialized by p->pi_lock, so this is safe. 2752 */ 2753 pending->arg.dest_cpu = dest_cpu; 2754 } 2755 } 2756 pending = p->migration_pending; 2757 /* 2758 * - !MIGRATE_ENABLE: 2759 * we'll have installed a pending if there wasn't one already. 2760 * 2761 * - MIGRATE_ENABLE: 2762 * we're here because the current CPU isn't matching anymore, 2763 * the only way that can happen is because of a concurrent 2764 * set_cpus_allowed_ptr() call, which should then still be 2765 * pending completion. 2766 * 2767 * Either way, we really should have a @pending here. 2768 */ 2769 if (WARN_ON_ONCE(!pending)) { 2770 task_rq_unlock(rq, p, rf); 2771 return -EINVAL; 2772 } 2773 2774 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2775 /* 2776 * MIGRATE_ENABLE gets here because 'p == current', but for 2777 * anything else we cannot do is_migration_disabled(), punt 2778 * and have the stopper function handle it all race-free. 2779 */ 2780 stop_pending = pending->stop_pending; 2781 if (!stop_pending) 2782 pending->stop_pending = true; 2783 2784 if (flags & SCA_MIGRATE_ENABLE) 2785 p->migration_flags &= ~MDF_PUSH; 2786 2787 task_rq_unlock(rq, p, rf); 2788 2789 if (!stop_pending) { 2790 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2791 &pending->arg, &pending->stop_work); 2792 } 2793 2794 if (flags & SCA_MIGRATE_ENABLE) 2795 return 0; 2796 } else { 2797 2798 if (!is_migration_disabled(p)) { 2799 if (task_on_rq_queued(p)) 2800 rq = move_queued_task(rq, rf, p, dest_cpu); 2801 2802 if (!pending->stop_pending) { 2803 p->migration_pending = NULL; 2804 complete = true; 2805 } 2806 } 2807 task_rq_unlock(rq, p, rf); 2808 2809 if (complete) 2810 complete_all(&pending->done); 2811 } 2812 2813 wait_for_completion(&pending->done); 2814 2815 if (refcount_dec_and_test(&pending->refs)) 2816 wake_up_var(&pending->refs); /* No UaF, just an address */ 2817 2818 /* 2819 * Block the original owner of &pending until all subsequent callers 2820 * have seen the completion and decremented the refcount 2821 */ 2822 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2823 2824 /* ARGH */ 2825 WARN_ON_ONCE(my_pending.stop_pending); 2826 2827 return 0; 2828 } 2829 2830 /* 2831 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2832 */ 2833 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2834 const struct cpumask *new_mask, 2835 u32 flags, 2836 struct rq *rq, 2837 struct rq_flags *rf) 2838 __releases(rq->lock) 2839 __releases(p->pi_lock) 2840 { 2841 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2842 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2843 bool kthread = p->flags & PF_KTHREAD; 2844 struct cpumask *user_mask = NULL; 2845 unsigned int dest_cpu; 2846 int ret = 0; 2847 2848 update_rq_clock(rq); 2849 2850 if (kthread || is_migration_disabled(p)) { 2851 /* 2852 * Kernel threads are allowed on online && !active CPUs, 2853 * however, during cpu-hot-unplug, even these might get pushed 2854 * away if not KTHREAD_IS_PER_CPU. 2855 * 2856 * Specifically, migration_disabled() tasks must not fail the 2857 * cpumask_any_and_distribute() pick below, esp. so on 2858 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2859 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2860 */ 2861 cpu_valid_mask = cpu_online_mask; 2862 } 2863 2864 if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) { 2865 ret = -EINVAL; 2866 goto out; 2867 } 2868 2869 /* 2870 * Must re-check here, to close a race against __kthread_bind(), 2871 * sched_setaffinity() is not guaranteed to observe the flag. 2872 */ 2873 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2874 ret = -EINVAL; 2875 goto out; 2876 } 2877 2878 if (!(flags & SCA_MIGRATE_ENABLE)) { 2879 if (cpumask_equal(&p->cpus_mask, new_mask)) 2880 goto out; 2881 2882 if (WARN_ON_ONCE(p == current && 2883 is_migration_disabled(p) && 2884 !cpumask_test_cpu(task_cpu(p), new_mask))) { 2885 ret = -EBUSY; 2886 goto out; 2887 } 2888 } 2889 2890 /* 2891 * Picking a ~random cpu helps in cases where we are changing affinity 2892 * for groups of tasks (ie. cpuset), so that load balancing is not 2893 * immediately required to distribute the tasks within their new mask. 2894 */ 2895 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 2896 if (dest_cpu >= nr_cpu_ids) { 2897 ret = -EINVAL; 2898 goto out; 2899 } 2900 2901 __do_set_cpus_allowed(p, new_mask, flags); 2902 2903 if (flags & SCA_USER) 2904 user_mask = clear_user_cpus_ptr(p); 2905 2906 ret = affine_move_task(rq, p, rf, dest_cpu, flags); 2907 2908 kfree(user_mask); 2909 2910 return ret; 2911 2912 out: 2913 task_rq_unlock(rq, p, rf); 2914 2915 return ret; 2916 } 2917 2918 /* 2919 * Change a given task's CPU affinity. Migrate the thread to a 2920 * proper CPU and schedule it away if the CPU it's executing on 2921 * is removed from the allowed bitmask. 2922 * 2923 * NOTE: the caller must have a valid reference to the task, the 2924 * task must not exit() & deallocate itself prematurely. The 2925 * call is not atomic; no spinlocks may be held. 2926 */ 2927 static int __set_cpus_allowed_ptr(struct task_struct *p, 2928 const struct cpumask *new_mask, u32 flags) 2929 { 2930 struct rq_flags rf; 2931 struct rq *rq; 2932 2933 rq = task_rq_lock(p, &rf); 2934 return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf); 2935 } 2936 2937 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 2938 { 2939 return __set_cpus_allowed_ptr(p, new_mask, 0); 2940 } 2941 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 2942 2943 /* 2944 * Change a given task's CPU affinity to the intersection of its current 2945 * affinity mask and @subset_mask, writing the resulting mask to @new_mask 2946 * and pointing @p->user_cpus_ptr to a copy of the old mask. 2947 * If the resulting mask is empty, leave the affinity unchanged and return 2948 * -EINVAL. 2949 */ 2950 static int restrict_cpus_allowed_ptr(struct task_struct *p, 2951 struct cpumask *new_mask, 2952 const struct cpumask *subset_mask) 2953 { 2954 struct cpumask *user_mask = NULL; 2955 struct rq_flags rf; 2956 struct rq *rq; 2957 int err; 2958 2959 if (!p->user_cpus_ptr) { 2960 user_mask = kmalloc(cpumask_size(), GFP_KERNEL); 2961 if (!user_mask) 2962 return -ENOMEM; 2963 } 2964 2965 rq = task_rq_lock(p, &rf); 2966 2967 /* 2968 * Forcefully restricting the affinity of a deadline task is 2969 * likely to cause problems, so fail and noisily override the 2970 * mask entirely. 2971 */ 2972 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 2973 err = -EPERM; 2974 goto err_unlock; 2975 } 2976 2977 if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) { 2978 err = -EINVAL; 2979 goto err_unlock; 2980 } 2981 2982 /* 2983 * We're about to butcher the task affinity, so keep track of what 2984 * the user asked for in case we're able to restore it later on. 2985 */ 2986 if (user_mask) { 2987 cpumask_copy(user_mask, p->cpus_ptr); 2988 p->user_cpus_ptr = user_mask; 2989 } 2990 2991 return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf); 2992 2993 err_unlock: 2994 task_rq_unlock(rq, p, &rf); 2995 kfree(user_mask); 2996 return err; 2997 } 2998 2999 /* 3000 * Restrict the CPU affinity of task @p so that it is a subset of 3001 * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the 3002 * old affinity mask. If the resulting mask is empty, we warn and walk 3003 * up the cpuset hierarchy until we find a suitable mask. 3004 */ 3005 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3006 { 3007 cpumask_var_t new_mask; 3008 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3009 3010 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3011 3012 /* 3013 * __migrate_task() can fail silently in the face of concurrent 3014 * offlining of the chosen destination CPU, so take the hotplug 3015 * lock to ensure that the migration succeeds. 3016 */ 3017 cpus_read_lock(); 3018 if (!cpumask_available(new_mask)) 3019 goto out_set_mask; 3020 3021 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3022 goto out_free_mask; 3023 3024 /* 3025 * We failed to find a valid subset of the affinity mask for the 3026 * task, so override it based on its cpuset hierarchy. 3027 */ 3028 cpuset_cpus_allowed(p, new_mask); 3029 override_mask = new_mask; 3030 3031 out_set_mask: 3032 if (printk_ratelimit()) { 3033 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3034 task_pid_nr(p), p->comm, 3035 cpumask_pr_args(override_mask)); 3036 } 3037 3038 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3039 out_free_mask: 3040 cpus_read_unlock(); 3041 free_cpumask_var(new_mask); 3042 } 3043 3044 static int 3045 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask); 3046 3047 /* 3048 * Restore the affinity of a task @p which was previously restricted by a 3049 * call to force_compatible_cpus_allowed_ptr(). This will clear (and free) 3050 * @p->user_cpus_ptr. 3051 * 3052 * It is the caller's responsibility to serialise this with any calls to 3053 * force_compatible_cpus_allowed_ptr(@p). 3054 */ 3055 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3056 { 3057 struct cpumask *user_mask = p->user_cpus_ptr; 3058 unsigned long flags; 3059 3060 /* 3061 * Try to restore the old affinity mask. If this fails, then 3062 * we free the mask explicitly to avoid it being inherited across 3063 * a subsequent fork(). 3064 */ 3065 if (!user_mask || !__sched_setaffinity(p, user_mask)) 3066 return; 3067 3068 raw_spin_lock_irqsave(&p->pi_lock, flags); 3069 user_mask = clear_user_cpus_ptr(p); 3070 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3071 3072 kfree(user_mask); 3073 } 3074 3075 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3076 { 3077 #ifdef CONFIG_SCHED_DEBUG 3078 unsigned int state = READ_ONCE(p->__state); 3079 3080 /* 3081 * We should never call set_task_cpu() on a blocked task, 3082 * ttwu() will sort out the placement. 3083 */ 3084 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3085 3086 /* 3087 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3088 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3089 * time relying on p->on_rq. 3090 */ 3091 WARN_ON_ONCE(state == TASK_RUNNING && 3092 p->sched_class == &fair_sched_class && 3093 (p->on_rq && !task_on_rq_migrating(p))); 3094 3095 #ifdef CONFIG_LOCKDEP 3096 /* 3097 * The caller should hold either p->pi_lock or rq->lock, when changing 3098 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3099 * 3100 * sched_move_task() holds both and thus holding either pins the cgroup, 3101 * see task_group(). 3102 * 3103 * Furthermore, all task_rq users should acquire both locks, see 3104 * task_rq_lock(). 3105 */ 3106 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3107 lockdep_is_held(__rq_lockp(task_rq(p))))); 3108 #endif 3109 /* 3110 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3111 */ 3112 WARN_ON_ONCE(!cpu_online(new_cpu)); 3113 3114 WARN_ON_ONCE(is_migration_disabled(p)); 3115 #endif 3116 3117 trace_sched_migrate_task(p, new_cpu); 3118 3119 if (task_cpu(p) != new_cpu) { 3120 if (p->sched_class->migrate_task_rq) 3121 p->sched_class->migrate_task_rq(p, new_cpu); 3122 p->se.nr_migrations++; 3123 rseq_migrate(p); 3124 perf_event_task_migrate(p); 3125 } 3126 3127 __set_task_cpu(p, new_cpu); 3128 } 3129 3130 #ifdef CONFIG_NUMA_BALANCING 3131 static void __migrate_swap_task(struct task_struct *p, int cpu) 3132 { 3133 if (task_on_rq_queued(p)) { 3134 struct rq *src_rq, *dst_rq; 3135 struct rq_flags srf, drf; 3136 3137 src_rq = task_rq(p); 3138 dst_rq = cpu_rq(cpu); 3139 3140 rq_pin_lock(src_rq, &srf); 3141 rq_pin_lock(dst_rq, &drf); 3142 3143 deactivate_task(src_rq, p, 0); 3144 set_task_cpu(p, cpu); 3145 activate_task(dst_rq, p, 0); 3146 check_preempt_curr(dst_rq, p, 0); 3147 3148 rq_unpin_lock(dst_rq, &drf); 3149 rq_unpin_lock(src_rq, &srf); 3150 3151 } else { 3152 /* 3153 * Task isn't running anymore; make it appear like we migrated 3154 * it before it went to sleep. This means on wakeup we make the 3155 * previous CPU our target instead of where it really is. 3156 */ 3157 p->wake_cpu = cpu; 3158 } 3159 } 3160 3161 struct migration_swap_arg { 3162 struct task_struct *src_task, *dst_task; 3163 int src_cpu, dst_cpu; 3164 }; 3165 3166 static int migrate_swap_stop(void *data) 3167 { 3168 struct migration_swap_arg *arg = data; 3169 struct rq *src_rq, *dst_rq; 3170 int ret = -EAGAIN; 3171 3172 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3173 return -EAGAIN; 3174 3175 src_rq = cpu_rq(arg->src_cpu); 3176 dst_rq = cpu_rq(arg->dst_cpu); 3177 3178 double_raw_lock(&arg->src_task->pi_lock, 3179 &arg->dst_task->pi_lock); 3180 double_rq_lock(src_rq, dst_rq); 3181 3182 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3183 goto unlock; 3184 3185 if (task_cpu(arg->src_task) != arg->src_cpu) 3186 goto unlock; 3187 3188 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3189 goto unlock; 3190 3191 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3192 goto unlock; 3193 3194 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3195 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3196 3197 ret = 0; 3198 3199 unlock: 3200 double_rq_unlock(src_rq, dst_rq); 3201 raw_spin_unlock(&arg->dst_task->pi_lock); 3202 raw_spin_unlock(&arg->src_task->pi_lock); 3203 3204 return ret; 3205 } 3206 3207 /* 3208 * Cross migrate two tasks 3209 */ 3210 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3211 int target_cpu, int curr_cpu) 3212 { 3213 struct migration_swap_arg arg; 3214 int ret = -EINVAL; 3215 3216 arg = (struct migration_swap_arg){ 3217 .src_task = cur, 3218 .src_cpu = curr_cpu, 3219 .dst_task = p, 3220 .dst_cpu = target_cpu, 3221 }; 3222 3223 if (arg.src_cpu == arg.dst_cpu) 3224 goto out; 3225 3226 /* 3227 * These three tests are all lockless; this is OK since all of them 3228 * will be re-checked with proper locks held further down the line. 3229 */ 3230 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3231 goto out; 3232 3233 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3234 goto out; 3235 3236 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3237 goto out; 3238 3239 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3240 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3241 3242 out: 3243 return ret; 3244 } 3245 #endif /* CONFIG_NUMA_BALANCING */ 3246 3247 /* 3248 * wait_task_inactive - wait for a thread to unschedule. 3249 * 3250 * Wait for the thread to block in any of the states set in @match_state. 3251 * If it changes, i.e. @p might have woken up, then return zero. When we 3252 * succeed in waiting for @p to be off its CPU, we return a positive number 3253 * (its total switch count). If a second call a short while later returns the 3254 * same number, the caller can be sure that @p has remained unscheduled the 3255 * whole time. 3256 * 3257 * The caller must ensure that the task *will* unschedule sometime soon, 3258 * else this function might spin for a *long* time. This function can't 3259 * be called with interrupts off, or it may introduce deadlock with 3260 * smp_call_function() if an IPI is sent by the same process we are 3261 * waiting to become inactive. 3262 */ 3263 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 3264 { 3265 int running, queued; 3266 struct rq_flags rf; 3267 unsigned long ncsw; 3268 struct rq *rq; 3269 3270 for (;;) { 3271 /* 3272 * We do the initial early heuristics without holding 3273 * any task-queue locks at all. We'll only try to get 3274 * the runqueue lock when things look like they will 3275 * work out! 3276 */ 3277 rq = task_rq(p); 3278 3279 /* 3280 * If the task is actively running on another CPU 3281 * still, just relax and busy-wait without holding 3282 * any locks. 3283 * 3284 * NOTE! Since we don't hold any locks, it's not 3285 * even sure that "rq" stays as the right runqueue! 3286 * But we don't care, since "task_on_cpu()" will 3287 * return false if the runqueue has changed and p 3288 * is actually now running somewhere else! 3289 */ 3290 while (task_on_cpu(rq, p)) { 3291 if (!(READ_ONCE(p->__state) & match_state)) 3292 return 0; 3293 cpu_relax(); 3294 } 3295 3296 /* 3297 * Ok, time to look more closely! We need the rq 3298 * lock now, to be *sure*. If we're wrong, we'll 3299 * just go back and repeat. 3300 */ 3301 rq = task_rq_lock(p, &rf); 3302 trace_sched_wait_task(p); 3303 running = task_on_cpu(rq, p); 3304 queued = task_on_rq_queued(p); 3305 ncsw = 0; 3306 if (READ_ONCE(p->__state) & match_state) 3307 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 3308 task_rq_unlock(rq, p, &rf); 3309 3310 /* 3311 * If it changed from the expected state, bail out now. 3312 */ 3313 if (unlikely(!ncsw)) 3314 break; 3315 3316 /* 3317 * Was it really running after all now that we 3318 * checked with the proper locks actually held? 3319 * 3320 * Oops. Go back and try again.. 3321 */ 3322 if (unlikely(running)) { 3323 cpu_relax(); 3324 continue; 3325 } 3326 3327 /* 3328 * It's not enough that it's not actively running, 3329 * it must be off the runqueue _entirely_, and not 3330 * preempted! 3331 * 3332 * So if it was still runnable (but just not actively 3333 * running right now), it's preempted, and we should 3334 * yield - it could be a while. 3335 */ 3336 if (unlikely(queued)) { 3337 ktime_t to = NSEC_PER_SEC / HZ; 3338 3339 set_current_state(TASK_UNINTERRUPTIBLE); 3340 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 3341 continue; 3342 } 3343 3344 /* 3345 * Ahh, all good. It wasn't running, and it wasn't 3346 * runnable, which means that it will never become 3347 * running in the future either. We're all done! 3348 */ 3349 break; 3350 } 3351 3352 return ncsw; 3353 } 3354 3355 /*** 3356 * kick_process - kick a running thread to enter/exit the kernel 3357 * @p: the to-be-kicked thread 3358 * 3359 * Cause a process which is running on another CPU to enter 3360 * kernel-mode, without any delay. (to get signals handled.) 3361 * 3362 * NOTE: this function doesn't have to take the runqueue lock, 3363 * because all it wants to ensure is that the remote task enters 3364 * the kernel. If the IPI races and the task has been migrated 3365 * to another CPU then no harm is done and the purpose has been 3366 * achieved as well. 3367 */ 3368 void kick_process(struct task_struct *p) 3369 { 3370 int cpu; 3371 3372 preempt_disable(); 3373 cpu = task_cpu(p); 3374 if ((cpu != smp_processor_id()) && task_curr(p)) 3375 smp_send_reschedule(cpu); 3376 preempt_enable(); 3377 } 3378 EXPORT_SYMBOL_GPL(kick_process); 3379 3380 /* 3381 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3382 * 3383 * A few notes on cpu_active vs cpu_online: 3384 * 3385 * - cpu_active must be a subset of cpu_online 3386 * 3387 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3388 * see __set_cpus_allowed_ptr(). At this point the newly online 3389 * CPU isn't yet part of the sched domains, and balancing will not 3390 * see it. 3391 * 3392 * - on CPU-down we clear cpu_active() to mask the sched domains and 3393 * avoid the load balancer to place new tasks on the to be removed 3394 * CPU. Existing tasks will remain running there and will be taken 3395 * off. 3396 * 3397 * This means that fallback selection must not select !active CPUs. 3398 * And can assume that any active CPU must be online. Conversely 3399 * select_task_rq() below may allow selection of !active CPUs in order 3400 * to satisfy the above rules. 3401 */ 3402 static int select_fallback_rq(int cpu, struct task_struct *p) 3403 { 3404 int nid = cpu_to_node(cpu); 3405 const struct cpumask *nodemask = NULL; 3406 enum { cpuset, possible, fail } state = cpuset; 3407 int dest_cpu; 3408 3409 /* 3410 * If the node that the CPU is on has been offlined, cpu_to_node() 3411 * will return -1. There is no CPU on the node, and we should 3412 * select the CPU on the other node. 3413 */ 3414 if (nid != -1) { 3415 nodemask = cpumask_of_node(nid); 3416 3417 /* Look for allowed, online CPU in same node. */ 3418 for_each_cpu(dest_cpu, nodemask) { 3419 if (is_cpu_allowed(p, dest_cpu)) 3420 return dest_cpu; 3421 } 3422 } 3423 3424 for (;;) { 3425 /* Any allowed, online CPU? */ 3426 for_each_cpu(dest_cpu, p->cpus_ptr) { 3427 if (!is_cpu_allowed(p, dest_cpu)) 3428 continue; 3429 3430 goto out; 3431 } 3432 3433 /* No more Mr. Nice Guy. */ 3434 switch (state) { 3435 case cpuset: 3436 if (cpuset_cpus_allowed_fallback(p)) { 3437 state = possible; 3438 break; 3439 } 3440 fallthrough; 3441 case possible: 3442 /* 3443 * XXX When called from select_task_rq() we only 3444 * hold p->pi_lock and again violate locking order. 3445 * 3446 * More yuck to audit. 3447 */ 3448 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3449 state = fail; 3450 break; 3451 case fail: 3452 BUG(); 3453 break; 3454 } 3455 } 3456 3457 out: 3458 if (state != cpuset) { 3459 /* 3460 * Don't tell them about moving exiting tasks or 3461 * kernel threads (both mm NULL), since they never 3462 * leave kernel. 3463 */ 3464 if (p->mm && printk_ratelimit()) { 3465 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3466 task_pid_nr(p), p->comm, cpu); 3467 } 3468 } 3469 3470 return dest_cpu; 3471 } 3472 3473 /* 3474 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3475 */ 3476 static inline 3477 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3478 { 3479 lockdep_assert_held(&p->pi_lock); 3480 3481 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3482 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3483 else 3484 cpu = cpumask_any(p->cpus_ptr); 3485 3486 /* 3487 * In order not to call set_task_cpu() on a blocking task we need 3488 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3489 * CPU. 3490 * 3491 * Since this is common to all placement strategies, this lives here. 3492 * 3493 * [ this allows ->select_task() to simply return task_cpu(p) and 3494 * not worry about this generic constraint ] 3495 */ 3496 if (unlikely(!is_cpu_allowed(p, cpu))) 3497 cpu = select_fallback_rq(task_cpu(p), p); 3498 3499 return cpu; 3500 } 3501 3502 void sched_set_stop_task(int cpu, struct task_struct *stop) 3503 { 3504 static struct lock_class_key stop_pi_lock; 3505 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3506 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3507 3508 if (stop) { 3509 /* 3510 * Make it appear like a SCHED_FIFO task, its something 3511 * userspace knows about and won't get confused about. 3512 * 3513 * Also, it will make PI more or less work without too 3514 * much confusion -- but then, stop work should not 3515 * rely on PI working anyway. 3516 */ 3517 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3518 3519 stop->sched_class = &stop_sched_class; 3520 3521 /* 3522 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3523 * adjust the effective priority of a task. As a result, 3524 * rt_mutex_setprio() can trigger (RT) balancing operations, 3525 * which can then trigger wakeups of the stop thread to push 3526 * around the current task. 3527 * 3528 * The stop task itself will never be part of the PI-chain, it 3529 * never blocks, therefore that ->pi_lock recursion is safe. 3530 * Tell lockdep about this by placing the stop->pi_lock in its 3531 * own class. 3532 */ 3533 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3534 } 3535 3536 cpu_rq(cpu)->stop = stop; 3537 3538 if (old_stop) { 3539 /* 3540 * Reset it back to a normal scheduling class so that 3541 * it can die in pieces. 3542 */ 3543 old_stop->sched_class = &rt_sched_class; 3544 } 3545 } 3546 3547 #else /* CONFIG_SMP */ 3548 3549 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 3550 const struct cpumask *new_mask, 3551 u32 flags) 3552 { 3553 return set_cpus_allowed_ptr(p, new_mask); 3554 } 3555 3556 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3557 3558 static inline bool rq_has_pinned_tasks(struct rq *rq) 3559 { 3560 return false; 3561 } 3562 3563 #endif /* !CONFIG_SMP */ 3564 3565 static void 3566 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3567 { 3568 struct rq *rq; 3569 3570 if (!schedstat_enabled()) 3571 return; 3572 3573 rq = this_rq(); 3574 3575 #ifdef CONFIG_SMP 3576 if (cpu == rq->cpu) { 3577 __schedstat_inc(rq->ttwu_local); 3578 __schedstat_inc(p->stats.nr_wakeups_local); 3579 } else { 3580 struct sched_domain *sd; 3581 3582 __schedstat_inc(p->stats.nr_wakeups_remote); 3583 rcu_read_lock(); 3584 for_each_domain(rq->cpu, sd) { 3585 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3586 __schedstat_inc(sd->ttwu_wake_remote); 3587 break; 3588 } 3589 } 3590 rcu_read_unlock(); 3591 } 3592 3593 if (wake_flags & WF_MIGRATED) 3594 __schedstat_inc(p->stats.nr_wakeups_migrate); 3595 #endif /* CONFIG_SMP */ 3596 3597 __schedstat_inc(rq->ttwu_count); 3598 __schedstat_inc(p->stats.nr_wakeups); 3599 3600 if (wake_flags & WF_SYNC) 3601 __schedstat_inc(p->stats.nr_wakeups_sync); 3602 } 3603 3604 /* 3605 * Mark the task runnable and perform wakeup-preemption. 3606 */ 3607 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 3608 struct rq_flags *rf) 3609 { 3610 check_preempt_curr(rq, p, wake_flags); 3611 WRITE_ONCE(p->__state, TASK_RUNNING); 3612 trace_sched_wakeup(p); 3613 3614 #ifdef CONFIG_SMP 3615 if (p->sched_class->task_woken) { 3616 /* 3617 * Our task @p is fully woken up and running; so it's safe to 3618 * drop the rq->lock, hereafter rq is only used for statistics. 3619 */ 3620 rq_unpin_lock(rq, rf); 3621 p->sched_class->task_woken(rq, p); 3622 rq_repin_lock(rq, rf); 3623 } 3624 3625 if (rq->idle_stamp) { 3626 u64 delta = rq_clock(rq) - rq->idle_stamp; 3627 u64 max = 2*rq->max_idle_balance_cost; 3628 3629 update_avg(&rq->avg_idle, delta); 3630 3631 if (rq->avg_idle > max) 3632 rq->avg_idle = max; 3633 3634 rq->wake_stamp = jiffies; 3635 rq->wake_avg_idle = rq->avg_idle / 2; 3636 3637 rq->idle_stamp = 0; 3638 } 3639 #endif 3640 } 3641 3642 static void 3643 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3644 struct rq_flags *rf) 3645 { 3646 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3647 3648 lockdep_assert_rq_held(rq); 3649 3650 if (p->sched_contributes_to_load) 3651 rq->nr_uninterruptible--; 3652 3653 #ifdef CONFIG_SMP 3654 if (wake_flags & WF_MIGRATED) 3655 en_flags |= ENQUEUE_MIGRATED; 3656 else 3657 #endif 3658 if (p->in_iowait) { 3659 delayacct_blkio_end(p); 3660 atomic_dec(&task_rq(p)->nr_iowait); 3661 } 3662 3663 activate_task(rq, p, en_flags); 3664 ttwu_do_wakeup(rq, p, wake_flags, rf); 3665 } 3666 3667 /* 3668 * Consider @p being inside a wait loop: 3669 * 3670 * for (;;) { 3671 * set_current_state(TASK_UNINTERRUPTIBLE); 3672 * 3673 * if (CONDITION) 3674 * break; 3675 * 3676 * schedule(); 3677 * } 3678 * __set_current_state(TASK_RUNNING); 3679 * 3680 * between set_current_state() and schedule(). In this case @p is still 3681 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3682 * an atomic manner. 3683 * 3684 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3685 * then schedule() must still happen and p->state can be changed to 3686 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3687 * need to do a full wakeup with enqueue. 3688 * 3689 * Returns: %true when the wakeup is done, 3690 * %false otherwise. 3691 */ 3692 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3693 { 3694 struct rq_flags rf; 3695 struct rq *rq; 3696 int ret = 0; 3697 3698 rq = __task_rq_lock(p, &rf); 3699 if (task_on_rq_queued(p)) { 3700 /* check_preempt_curr() may use rq clock */ 3701 update_rq_clock(rq); 3702 ttwu_do_wakeup(rq, p, wake_flags, &rf); 3703 ret = 1; 3704 } 3705 __task_rq_unlock(rq, &rf); 3706 3707 return ret; 3708 } 3709 3710 #ifdef CONFIG_SMP 3711 void sched_ttwu_pending(void *arg) 3712 { 3713 struct llist_node *llist = arg; 3714 struct rq *rq = this_rq(); 3715 struct task_struct *p, *t; 3716 struct rq_flags rf; 3717 3718 if (!llist) 3719 return; 3720 3721 /* 3722 * rq::ttwu_pending racy indication of out-standing wakeups. 3723 * Races such that false-negatives are possible, since they 3724 * are shorter lived that false-positives would be. 3725 */ 3726 WRITE_ONCE(rq->ttwu_pending, 0); 3727 3728 rq_lock_irqsave(rq, &rf); 3729 update_rq_clock(rq); 3730 3731 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3732 if (WARN_ON_ONCE(p->on_cpu)) 3733 smp_cond_load_acquire(&p->on_cpu, !VAL); 3734 3735 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3736 set_task_cpu(p, cpu_of(rq)); 3737 3738 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3739 } 3740 3741 rq_unlock_irqrestore(rq, &rf); 3742 } 3743 3744 void send_call_function_single_ipi(int cpu) 3745 { 3746 struct rq *rq = cpu_rq(cpu); 3747 3748 if (!set_nr_if_polling(rq->idle)) 3749 arch_send_call_function_single_ipi(cpu); 3750 else 3751 trace_sched_wake_idle_without_ipi(cpu); 3752 } 3753 3754 /* 3755 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3756 * necessary. The wakee CPU on receipt of the IPI will queue the task 3757 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3758 * of the wakeup instead of the waker. 3759 */ 3760 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3761 { 3762 struct rq *rq = cpu_rq(cpu); 3763 3764 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3765 3766 WRITE_ONCE(rq->ttwu_pending, 1); 3767 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3768 } 3769 3770 void wake_up_if_idle(int cpu) 3771 { 3772 struct rq *rq = cpu_rq(cpu); 3773 struct rq_flags rf; 3774 3775 rcu_read_lock(); 3776 3777 if (!is_idle_task(rcu_dereference(rq->curr))) 3778 goto out; 3779 3780 rq_lock_irqsave(rq, &rf); 3781 if (is_idle_task(rq->curr)) 3782 resched_curr(rq); 3783 /* Else CPU is not idle, do nothing here: */ 3784 rq_unlock_irqrestore(rq, &rf); 3785 3786 out: 3787 rcu_read_unlock(); 3788 } 3789 3790 bool cpus_share_cache(int this_cpu, int that_cpu) 3791 { 3792 if (this_cpu == that_cpu) 3793 return true; 3794 3795 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3796 } 3797 3798 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3799 { 3800 /* 3801 * Do not complicate things with the async wake_list while the CPU is 3802 * in hotplug state. 3803 */ 3804 if (!cpu_active(cpu)) 3805 return false; 3806 3807 /* Ensure the task will still be allowed to run on the CPU. */ 3808 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3809 return false; 3810 3811 /* 3812 * If the CPU does not share cache, then queue the task on the 3813 * remote rqs wakelist to avoid accessing remote data. 3814 */ 3815 if (!cpus_share_cache(smp_processor_id(), cpu)) 3816 return true; 3817 3818 if (cpu == smp_processor_id()) 3819 return false; 3820 3821 /* 3822 * If the wakee cpu is idle, or the task is descheduling and the 3823 * only running task on the CPU, then use the wakelist to offload 3824 * the task activation to the idle (or soon-to-be-idle) CPU as 3825 * the current CPU is likely busy. nr_running is checked to 3826 * avoid unnecessary task stacking. 3827 * 3828 * Note that we can only get here with (wakee) p->on_rq=0, 3829 * p->on_cpu can be whatever, we've done the dequeue, so 3830 * the wakee has been accounted out of ->nr_running. 3831 */ 3832 if (!cpu_rq(cpu)->nr_running) 3833 return true; 3834 3835 return false; 3836 } 3837 3838 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3839 { 3840 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3841 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3842 __ttwu_queue_wakelist(p, cpu, wake_flags); 3843 return true; 3844 } 3845 3846 return false; 3847 } 3848 3849 #else /* !CONFIG_SMP */ 3850 3851 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3852 { 3853 return false; 3854 } 3855 3856 #endif /* CONFIG_SMP */ 3857 3858 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3859 { 3860 struct rq *rq = cpu_rq(cpu); 3861 struct rq_flags rf; 3862 3863 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3864 return; 3865 3866 rq_lock(rq, &rf); 3867 update_rq_clock(rq); 3868 ttwu_do_activate(rq, p, wake_flags, &rf); 3869 rq_unlock(rq, &rf); 3870 } 3871 3872 /* 3873 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3874 * 3875 * The caller holds p::pi_lock if p != current or has preemption 3876 * disabled when p == current. 3877 * 3878 * The rules of PREEMPT_RT saved_state: 3879 * 3880 * The related locking code always holds p::pi_lock when updating 3881 * p::saved_state, which means the code is fully serialized in both cases. 3882 * 3883 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other 3884 * bits set. This allows to distinguish all wakeup scenarios. 3885 */ 3886 static __always_inline 3887 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3888 { 3889 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3890 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3891 state != TASK_RTLOCK_WAIT); 3892 } 3893 3894 if (READ_ONCE(p->__state) & state) { 3895 *success = 1; 3896 return true; 3897 } 3898 3899 #ifdef CONFIG_PREEMPT_RT 3900 /* 3901 * Saved state preserves the task state across blocking on 3902 * an RT lock. If the state matches, set p::saved_state to 3903 * TASK_RUNNING, but do not wake the task because it waits 3904 * for a lock wakeup. Also indicate success because from 3905 * the regular waker's point of view this has succeeded. 3906 * 3907 * After acquiring the lock the task will restore p::__state 3908 * from p::saved_state which ensures that the regular 3909 * wakeup is not lost. The restore will also set 3910 * p::saved_state to TASK_RUNNING so any further tests will 3911 * not result in false positives vs. @success 3912 */ 3913 if (p->saved_state & state) { 3914 p->saved_state = TASK_RUNNING; 3915 *success = 1; 3916 } 3917 #endif 3918 return false; 3919 } 3920 3921 /* 3922 * Notes on Program-Order guarantees on SMP systems. 3923 * 3924 * MIGRATION 3925 * 3926 * The basic program-order guarantee on SMP systems is that when a task [t] 3927 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3928 * execution on its new CPU [c1]. 3929 * 3930 * For migration (of runnable tasks) this is provided by the following means: 3931 * 3932 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3933 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3934 * rq(c1)->lock (if not at the same time, then in that order). 3935 * C) LOCK of the rq(c1)->lock scheduling in task 3936 * 3937 * Release/acquire chaining guarantees that B happens after A and C after B. 3938 * Note: the CPU doing B need not be c0 or c1 3939 * 3940 * Example: 3941 * 3942 * CPU0 CPU1 CPU2 3943 * 3944 * LOCK rq(0)->lock 3945 * sched-out X 3946 * sched-in Y 3947 * UNLOCK rq(0)->lock 3948 * 3949 * LOCK rq(0)->lock // orders against CPU0 3950 * dequeue X 3951 * UNLOCK rq(0)->lock 3952 * 3953 * LOCK rq(1)->lock 3954 * enqueue X 3955 * UNLOCK rq(1)->lock 3956 * 3957 * LOCK rq(1)->lock // orders against CPU2 3958 * sched-out Z 3959 * sched-in X 3960 * UNLOCK rq(1)->lock 3961 * 3962 * 3963 * BLOCKING -- aka. SLEEP + WAKEUP 3964 * 3965 * For blocking we (obviously) need to provide the same guarantee as for 3966 * migration. However the means are completely different as there is no lock 3967 * chain to provide order. Instead we do: 3968 * 3969 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3970 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3971 * 3972 * Example: 3973 * 3974 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 3975 * 3976 * LOCK rq(0)->lock LOCK X->pi_lock 3977 * dequeue X 3978 * sched-out X 3979 * smp_store_release(X->on_cpu, 0); 3980 * 3981 * smp_cond_load_acquire(&X->on_cpu, !VAL); 3982 * X->state = WAKING 3983 * set_task_cpu(X,2) 3984 * 3985 * LOCK rq(2)->lock 3986 * enqueue X 3987 * X->state = RUNNING 3988 * UNLOCK rq(2)->lock 3989 * 3990 * LOCK rq(2)->lock // orders against CPU1 3991 * sched-out Z 3992 * sched-in X 3993 * UNLOCK rq(2)->lock 3994 * 3995 * UNLOCK X->pi_lock 3996 * UNLOCK rq(0)->lock 3997 * 3998 * 3999 * However, for wakeups there is a second guarantee we must provide, namely we 4000 * must ensure that CONDITION=1 done by the caller can not be reordered with 4001 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4002 */ 4003 4004 /** 4005 * try_to_wake_up - wake up a thread 4006 * @p: the thread to be awakened 4007 * @state: the mask of task states that can be woken 4008 * @wake_flags: wake modifier flags (WF_*) 4009 * 4010 * Conceptually does: 4011 * 4012 * If (@state & @p->state) @p->state = TASK_RUNNING. 4013 * 4014 * If the task was not queued/runnable, also place it back on a runqueue. 4015 * 4016 * This function is atomic against schedule() which would dequeue the task. 4017 * 4018 * It issues a full memory barrier before accessing @p->state, see the comment 4019 * with set_current_state(). 4020 * 4021 * Uses p->pi_lock to serialize against concurrent wake-ups. 4022 * 4023 * Relies on p->pi_lock stabilizing: 4024 * - p->sched_class 4025 * - p->cpus_ptr 4026 * - p->sched_task_group 4027 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4028 * 4029 * Tries really hard to only take one task_rq(p)->lock for performance. 4030 * Takes rq->lock in: 4031 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4032 * - ttwu_queue() -- new rq, for enqueue of the task; 4033 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4034 * 4035 * As a consequence we race really badly with just about everything. See the 4036 * many memory barriers and their comments for details. 4037 * 4038 * Return: %true if @p->state changes (an actual wakeup was done), 4039 * %false otherwise. 4040 */ 4041 static int 4042 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4043 { 4044 unsigned long flags; 4045 int cpu, success = 0; 4046 4047 preempt_disable(); 4048 if (p == current) { 4049 /* 4050 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4051 * == smp_processor_id()'. Together this means we can special 4052 * case the whole 'p->on_rq && ttwu_runnable()' case below 4053 * without taking any locks. 4054 * 4055 * In particular: 4056 * - we rely on Program-Order guarantees for all the ordering, 4057 * - we're serialized against set_special_state() by virtue of 4058 * it disabling IRQs (this allows not taking ->pi_lock). 4059 */ 4060 if (!ttwu_state_match(p, state, &success)) 4061 goto out; 4062 4063 trace_sched_waking(p); 4064 WRITE_ONCE(p->__state, TASK_RUNNING); 4065 trace_sched_wakeup(p); 4066 goto out; 4067 } 4068 4069 /* 4070 * If we are going to wake up a thread waiting for CONDITION we 4071 * need to ensure that CONDITION=1 done by the caller can not be 4072 * reordered with p->state check below. This pairs with smp_store_mb() 4073 * in set_current_state() that the waiting thread does. 4074 */ 4075 raw_spin_lock_irqsave(&p->pi_lock, flags); 4076 smp_mb__after_spinlock(); 4077 if (!ttwu_state_match(p, state, &success)) 4078 goto unlock; 4079 4080 trace_sched_waking(p); 4081 4082 /* 4083 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4084 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4085 * in smp_cond_load_acquire() below. 4086 * 4087 * sched_ttwu_pending() try_to_wake_up() 4088 * STORE p->on_rq = 1 LOAD p->state 4089 * UNLOCK rq->lock 4090 * 4091 * __schedule() (switch to task 'p') 4092 * LOCK rq->lock smp_rmb(); 4093 * smp_mb__after_spinlock(); 4094 * UNLOCK rq->lock 4095 * 4096 * [task p] 4097 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4098 * 4099 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4100 * __schedule(). See the comment for smp_mb__after_spinlock(). 4101 * 4102 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 4103 */ 4104 smp_rmb(); 4105 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4106 goto unlock; 4107 4108 #ifdef CONFIG_SMP 4109 /* 4110 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4111 * possible to, falsely, observe p->on_cpu == 0. 4112 * 4113 * One must be running (->on_cpu == 1) in order to remove oneself 4114 * from the runqueue. 4115 * 4116 * __schedule() (switch to task 'p') try_to_wake_up() 4117 * STORE p->on_cpu = 1 LOAD p->on_rq 4118 * UNLOCK rq->lock 4119 * 4120 * __schedule() (put 'p' to sleep) 4121 * LOCK rq->lock smp_rmb(); 4122 * smp_mb__after_spinlock(); 4123 * STORE p->on_rq = 0 LOAD p->on_cpu 4124 * 4125 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4126 * __schedule(). See the comment for smp_mb__after_spinlock(). 4127 * 4128 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4129 * schedule()'s deactivate_task() has 'happened' and p will no longer 4130 * care about it's own p->state. See the comment in __schedule(). 4131 */ 4132 smp_acquire__after_ctrl_dep(); 4133 4134 /* 4135 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4136 * == 0), which means we need to do an enqueue, change p->state to 4137 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4138 * enqueue, such as ttwu_queue_wakelist(). 4139 */ 4140 WRITE_ONCE(p->__state, TASK_WAKING); 4141 4142 /* 4143 * If the owning (remote) CPU is still in the middle of schedule() with 4144 * this task as prev, considering queueing p on the remote CPUs wake_list 4145 * which potentially sends an IPI instead of spinning on p->on_cpu to 4146 * let the waker make forward progress. This is safe because IRQs are 4147 * disabled and the IPI will deliver after on_cpu is cleared. 4148 * 4149 * Ensure we load task_cpu(p) after p->on_cpu: 4150 * 4151 * set_task_cpu(p, cpu); 4152 * STORE p->cpu = @cpu 4153 * __schedule() (switch to task 'p') 4154 * LOCK rq->lock 4155 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4156 * STORE p->on_cpu = 1 LOAD p->cpu 4157 * 4158 * to ensure we observe the correct CPU on which the task is currently 4159 * scheduling. 4160 */ 4161 if (smp_load_acquire(&p->on_cpu) && 4162 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4163 goto unlock; 4164 4165 /* 4166 * If the owning (remote) CPU is still in the middle of schedule() with 4167 * this task as prev, wait until it's done referencing the task. 4168 * 4169 * Pairs with the smp_store_release() in finish_task(). 4170 * 4171 * This ensures that tasks getting woken will be fully ordered against 4172 * their previous state and preserve Program Order. 4173 */ 4174 smp_cond_load_acquire(&p->on_cpu, !VAL); 4175 4176 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4177 if (task_cpu(p) != cpu) { 4178 if (p->in_iowait) { 4179 delayacct_blkio_end(p); 4180 atomic_dec(&task_rq(p)->nr_iowait); 4181 } 4182 4183 wake_flags |= WF_MIGRATED; 4184 psi_ttwu_dequeue(p); 4185 set_task_cpu(p, cpu); 4186 } 4187 #else 4188 cpu = task_cpu(p); 4189 #endif /* CONFIG_SMP */ 4190 4191 ttwu_queue(p, cpu, wake_flags); 4192 unlock: 4193 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4194 out: 4195 if (success) 4196 ttwu_stat(p, task_cpu(p), wake_flags); 4197 preempt_enable(); 4198 4199 return success; 4200 } 4201 4202 /** 4203 * task_call_func - Invoke a function on task in fixed state 4204 * @p: Process for which the function is to be invoked, can be @current. 4205 * @func: Function to invoke. 4206 * @arg: Argument to function. 4207 * 4208 * Fix the task in it's current state by avoiding wakeups and or rq operations 4209 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4210 * to work out what the state is, if required. Given that @func can be invoked 4211 * with a runqueue lock held, it had better be quite lightweight. 4212 * 4213 * Returns: 4214 * Whatever @func returns 4215 */ 4216 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4217 { 4218 struct rq *rq = NULL; 4219 unsigned int state; 4220 struct rq_flags rf; 4221 int ret; 4222 4223 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4224 4225 state = READ_ONCE(p->__state); 4226 4227 /* 4228 * Ensure we load p->on_rq after p->__state, otherwise it would be 4229 * possible to, falsely, observe p->on_rq == 0. 4230 * 4231 * See try_to_wake_up() for a longer comment. 4232 */ 4233 smp_rmb(); 4234 4235 /* 4236 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4237 * the task is blocked. Make sure to check @state since ttwu() can drop 4238 * locks at the end, see ttwu_queue_wakelist(). 4239 */ 4240 if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq) 4241 rq = __task_rq_lock(p, &rf); 4242 4243 /* 4244 * At this point the task is pinned; either: 4245 * - blocked and we're holding off wakeups (pi->lock) 4246 * - woken, and we're holding off enqueue (rq->lock) 4247 * - queued, and we're holding off schedule (rq->lock) 4248 * - running, and we're holding off de-schedule (rq->lock) 4249 * 4250 * The called function (@func) can use: task_curr(), p->on_rq and 4251 * p->__state to differentiate between these states. 4252 */ 4253 ret = func(p, arg); 4254 4255 if (rq) 4256 rq_unlock(rq, &rf); 4257 4258 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4259 return ret; 4260 } 4261 4262 /** 4263 * cpu_curr_snapshot - Return a snapshot of the currently running task 4264 * @cpu: The CPU on which to snapshot the task. 4265 * 4266 * Returns the task_struct pointer of the task "currently" running on 4267 * the specified CPU. If the same task is running on that CPU throughout, 4268 * the return value will be a pointer to that task's task_struct structure. 4269 * If the CPU did any context switches even vaguely concurrently with the 4270 * execution of this function, the return value will be a pointer to the 4271 * task_struct structure of a randomly chosen task that was running on 4272 * that CPU somewhere around the time that this function was executing. 4273 * 4274 * If the specified CPU was offline, the return value is whatever it 4275 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4276 * task, but there is no guarantee. Callers wishing a useful return 4277 * value must take some action to ensure that the specified CPU remains 4278 * online throughout. 4279 * 4280 * This function executes full memory barriers before and after fetching 4281 * the pointer, which permits the caller to confine this function's fetch 4282 * with respect to the caller's accesses to other shared variables. 4283 */ 4284 struct task_struct *cpu_curr_snapshot(int cpu) 4285 { 4286 struct task_struct *t; 4287 4288 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4289 t = rcu_dereference(cpu_curr(cpu)); 4290 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4291 return t; 4292 } 4293 4294 /** 4295 * wake_up_process - Wake up a specific process 4296 * @p: The process to be woken up. 4297 * 4298 * Attempt to wake up the nominated process and move it to the set of runnable 4299 * processes. 4300 * 4301 * Return: 1 if the process was woken up, 0 if it was already running. 4302 * 4303 * This function executes a full memory barrier before accessing the task state. 4304 */ 4305 int wake_up_process(struct task_struct *p) 4306 { 4307 return try_to_wake_up(p, TASK_NORMAL, 0); 4308 } 4309 EXPORT_SYMBOL(wake_up_process); 4310 4311 int wake_up_state(struct task_struct *p, unsigned int state) 4312 { 4313 return try_to_wake_up(p, state, 0); 4314 } 4315 4316 /* 4317 * Perform scheduler related setup for a newly forked process p. 4318 * p is forked by current. 4319 * 4320 * __sched_fork() is basic setup used by init_idle() too: 4321 */ 4322 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4323 { 4324 p->on_rq = 0; 4325 4326 p->se.on_rq = 0; 4327 p->se.exec_start = 0; 4328 p->se.sum_exec_runtime = 0; 4329 p->se.prev_sum_exec_runtime = 0; 4330 p->se.nr_migrations = 0; 4331 p->se.vruntime = 0; 4332 INIT_LIST_HEAD(&p->se.group_node); 4333 4334 #ifdef CONFIG_FAIR_GROUP_SCHED 4335 p->se.cfs_rq = NULL; 4336 #endif 4337 4338 #ifdef CONFIG_SCHEDSTATS 4339 /* Even if schedstat is disabled, there should not be garbage */ 4340 memset(&p->stats, 0, sizeof(p->stats)); 4341 #endif 4342 4343 RB_CLEAR_NODE(&p->dl.rb_node); 4344 init_dl_task_timer(&p->dl); 4345 init_dl_inactive_task_timer(&p->dl); 4346 __dl_clear_params(p); 4347 4348 INIT_LIST_HEAD(&p->rt.run_list); 4349 p->rt.timeout = 0; 4350 p->rt.time_slice = sched_rr_timeslice; 4351 p->rt.on_rq = 0; 4352 p->rt.on_list = 0; 4353 4354 #ifdef CONFIG_PREEMPT_NOTIFIERS 4355 INIT_HLIST_HEAD(&p->preempt_notifiers); 4356 #endif 4357 4358 #ifdef CONFIG_COMPACTION 4359 p->capture_control = NULL; 4360 #endif 4361 init_numa_balancing(clone_flags, p); 4362 #ifdef CONFIG_SMP 4363 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4364 p->migration_pending = NULL; 4365 #endif 4366 } 4367 4368 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4369 4370 #ifdef CONFIG_NUMA_BALANCING 4371 4372 int sysctl_numa_balancing_mode; 4373 4374 static void __set_numabalancing_state(bool enabled) 4375 { 4376 if (enabled) 4377 static_branch_enable(&sched_numa_balancing); 4378 else 4379 static_branch_disable(&sched_numa_balancing); 4380 } 4381 4382 void set_numabalancing_state(bool enabled) 4383 { 4384 if (enabled) 4385 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4386 else 4387 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4388 __set_numabalancing_state(enabled); 4389 } 4390 4391 #ifdef CONFIG_PROC_SYSCTL 4392 static void reset_memory_tiering(void) 4393 { 4394 struct pglist_data *pgdat; 4395 4396 for_each_online_pgdat(pgdat) { 4397 pgdat->nbp_threshold = 0; 4398 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4399 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4400 } 4401 } 4402 4403 int sysctl_numa_balancing(struct ctl_table *table, int write, 4404 void *buffer, size_t *lenp, loff_t *ppos) 4405 { 4406 struct ctl_table t; 4407 int err; 4408 int state = sysctl_numa_balancing_mode; 4409 4410 if (write && !capable(CAP_SYS_ADMIN)) 4411 return -EPERM; 4412 4413 t = *table; 4414 t.data = &state; 4415 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4416 if (err < 0) 4417 return err; 4418 if (write) { 4419 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4420 (state & NUMA_BALANCING_MEMORY_TIERING)) 4421 reset_memory_tiering(); 4422 sysctl_numa_balancing_mode = state; 4423 __set_numabalancing_state(state); 4424 } 4425 return err; 4426 } 4427 #endif 4428 #endif 4429 4430 #ifdef CONFIG_SCHEDSTATS 4431 4432 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4433 4434 static void set_schedstats(bool enabled) 4435 { 4436 if (enabled) 4437 static_branch_enable(&sched_schedstats); 4438 else 4439 static_branch_disable(&sched_schedstats); 4440 } 4441 4442 void force_schedstat_enabled(void) 4443 { 4444 if (!schedstat_enabled()) { 4445 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4446 static_branch_enable(&sched_schedstats); 4447 } 4448 } 4449 4450 static int __init setup_schedstats(char *str) 4451 { 4452 int ret = 0; 4453 if (!str) 4454 goto out; 4455 4456 if (!strcmp(str, "enable")) { 4457 set_schedstats(true); 4458 ret = 1; 4459 } else if (!strcmp(str, "disable")) { 4460 set_schedstats(false); 4461 ret = 1; 4462 } 4463 out: 4464 if (!ret) 4465 pr_warn("Unable to parse schedstats=\n"); 4466 4467 return ret; 4468 } 4469 __setup("schedstats=", setup_schedstats); 4470 4471 #ifdef CONFIG_PROC_SYSCTL 4472 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4473 size_t *lenp, loff_t *ppos) 4474 { 4475 struct ctl_table t; 4476 int err; 4477 int state = static_branch_likely(&sched_schedstats); 4478 4479 if (write && !capable(CAP_SYS_ADMIN)) 4480 return -EPERM; 4481 4482 t = *table; 4483 t.data = &state; 4484 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4485 if (err < 0) 4486 return err; 4487 if (write) 4488 set_schedstats(state); 4489 return err; 4490 } 4491 #endif /* CONFIG_PROC_SYSCTL */ 4492 #endif /* CONFIG_SCHEDSTATS */ 4493 4494 #ifdef CONFIG_SYSCTL 4495 static struct ctl_table sched_core_sysctls[] = { 4496 #ifdef CONFIG_SCHEDSTATS 4497 { 4498 .procname = "sched_schedstats", 4499 .data = NULL, 4500 .maxlen = sizeof(unsigned int), 4501 .mode = 0644, 4502 .proc_handler = sysctl_schedstats, 4503 .extra1 = SYSCTL_ZERO, 4504 .extra2 = SYSCTL_ONE, 4505 }, 4506 #endif /* CONFIG_SCHEDSTATS */ 4507 #ifdef CONFIG_UCLAMP_TASK 4508 { 4509 .procname = "sched_util_clamp_min", 4510 .data = &sysctl_sched_uclamp_util_min, 4511 .maxlen = sizeof(unsigned int), 4512 .mode = 0644, 4513 .proc_handler = sysctl_sched_uclamp_handler, 4514 }, 4515 { 4516 .procname = "sched_util_clamp_max", 4517 .data = &sysctl_sched_uclamp_util_max, 4518 .maxlen = sizeof(unsigned int), 4519 .mode = 0644, 4520 .proc_handler = sysctl_sched_uclamp_handler, 4521 }, 4522 { 4523 .procname = "sched_util_clamp_min_rt_default", 4524 .data = &sysctl_sched_uclamp_util_min_rt_default, 4525 .maxlen = sizeof(unsigned int), 4526 .mode = 0644, 4527 .proc_handler = sysctl_sched_uclamp_handler, 4528 }, 4529 #endif /* CONFIG_UCLAMP_TASK */ 4530 {} 4531 }; 4532 static int __init sched_core_sysctl_init(void) 4533 { 4534 register_sysctl_init("kernel", sched_core_sysctls); 4535 return 0; 4536 } 4537 late_initcall(sched_core_sysctl_init); 4538 #endif /* CONFIG_SYSCTL */ 4539 4540 /* 4541 * fork()/clone()-time setup: 4542 */ 4543 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4544 { 4545 __sched_fork(clone_flags, p); 4546 /* 4547 * We mark the process as NEW here. This guarantees that 4548 * nobody will actually run it, and a signal or other external 4549 * event cannot wake it up and insert it on the runqueue either. 4550 */ 4551 p->__state = TASK_NEW; 4552 4553 /* 4554 * Make sure we do not leak PI boosting priority to the child. 4555 */ 4556 p->prio = current->normal_prio; 4557 4558 uclamp_fork(p); 4559 4560 /* 4561 * Revert to default priority/policy on fork if requested. 4562 */ 4563 if (unlikely(p->sched_reset_on_fork)) { 4564 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4565 p->policy = SCHED_NORMAL; 4566 p->static_prio = NICE_TO_PRIO(0); 4567 p->rt_priority = 0; 4568 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4569 p->static_prio = NICE_TO_PRIO(0); 4570 4571 p->prio = p->normal_prio = p->static_prio; 4572 set_load_weight(p, false); 4573 4574 /* 4575 * We don't need the reset flag anymore after the fork. It has 4576 * fulfilled its duty: 4577 */ 4578 p->sched_reset_on_fork = 0; 4579 } 4580 4581 if (dl_prio(p->prio)) 4582 return -EAGAIN; 4583 else if (rt_prio(p->prio)) 4584 p->sched_class = &rt_sched_class; 4585 else 4586 p->sched_class = &fair_sched_class; 4587 4588 init_entity_runnable_average(&p->se); 4589 4590 4591 #ifdef CONFIG_SCHED_INFO 4592 if (likely(sched_info_on())) 4593 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4594 #endif 4595 #if defined(CONFIG_SMP) 4596 p->on_cpu = 0; 4597 #endif 4598 init_task_preempt_count(p); 4599 #ifdef CONFIG_SMP 4600 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4601 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4602 #endif 4603 return 0; 4604 } 4605 4606 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4607 { 4608 unsigned long flags; 4609 4610 /* 4611 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4612 * required yet, but lockdep gets upset if rules are violated. 4613 */ 4614 raw_spin_lock_irqsave(&p->pi_lock, flags); 4615 #ifdef CONFIG_CGROUP_SCHED 4616 if (1) { 4617 struct task_group *tg; 4618 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4619 struct task_group, css); 4620 tg = autogroup_task_group(p, tg); 4621 p->sched_task_group = tg; 4622 } 4623 #endif 4624 rseq_migrate(p); 4625 /* 4626 * We're setting the CPU for the first time, we don't migrate, 4627 * so use __set_task_cpu(). 4628 */ 4629 __set_task_cpu(p, smp_processor_id()); 4630 if (p->sched_class->task_fork) 4631 p->sched_class->task_fork(p); 4632 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4633 } 4634 4635 void sched_post_fork(struct task_struct *p) 4636 { 4637 uclamp_post_fork(p); 4638 } 4639 4640 unsigned long to_ratio(u64 period, u64 runtime) 4641 { 4642 if (runtime == RUNTIME_INF) 4643 return BW_UNIT; 4644 4645 /* 4646 * Doing this here saves a lot of checks in all 4647 * the calling paths, and returning zero seems 4648 * safe for them anyway. 4649 */ 4650 if (period == 0) 4651 return 0; 4652 4653 return div64_u64(runtime << BW_SHIFT, period); 4654 } 4655 4656 /* 4657 * wake_up_new_task - wake up a newly created task for the first time. 4658 * 4659 * This function will do some initial scheduler statistics housekeeping 4660 * that must be done for every newly created context, then puts the task 4661 * on the runqueue and wakes it. 4662 */ 4663 void wake_up_new_task(struct task_struct *p) 4664 { 4665 struct rq_flags rf; 4666 struct rq *rq; 4667 4668 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4669 WRITE_ONCE(p->__state, TASK_RUNNING); 4670 #ifdef CONFIG_SMP 4671 /* 4672 * Fork balancing, do it here and not earlier because: 4673 * - cpus_ptr can change in the fork path 4674 * - any previously selected CPU might disappear through hotplug 4675 * 4676 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4677 * as we're not fully set-up yet. 4678 */ 4679 p->recent_used_cpu = task_cpu(p); 4680 rseq_migrate(p); 4681 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4682 #endif 4683 rq = __task_rq_lock(p, &rf); 4684 update_rq_clock(rq); 4685 post_init_entity_util_avg(p); 4686 4687 activate_task(rq, p, ENQUEUE_NOCLOCK); 4688 trace_sched_wakeup_new(p); 4689 check_preempt_curr(rq, p, WF_FORK); 4690 #ifdef CONFIG_SMP 4691 if (p->sched_class->task_woken) { 4692 /* 4693 * Nothing relies on rq->lock after this, so it's fine to 4694 * drop it. 4695 */ 4696 rq_unpin_lock(rq, &rf); 4697 p->sched_class->task_woken(rq, p); 4698 rq_repin_lock(rq, &rf); 4699 } 4700 #endif 4701 task_rq_unlock(rq, p, &rf); 4702 } 4703 4704 #ifdef CONFIG_PREEMPT_NOTIFIERS 4705 4706 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4707 4708 void preempt_notifier_inc(void) 4709 { 4710 static_branch_inc(&preempt_notifier_key); 4711 } 4712 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4713 4714 void preempt_notifier_dec(void) 4715 { 4716 static_branch_dec(&preempt_notifier_key); 4717 } 4718 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4719 4720 /** 4721 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4722 * @notifier: notifier struct to register 4723 */ 4724 void preempt_notifier_register(struct preempt_notifier *notifier) 4725 { 4726 if (!static_branch_unlikely(&preempt_notifier_key)) 4727 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4728 4729 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4730 } 4731 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4732 4733 /** 4734 * preempt_notifier_unregister - no longer interested in preemption notifications 4735 * @notifier: notifier struct to unregister 4736 * 4737 * This is *not* safe to call from within a preemption notifier. 4738 */ 4739 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4740 { 4741 hlist_del(¬ifier->link); 4742 } 4743 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4744 4745 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4746 { 4747 struct preempt_notifier *notifier; 4748 4749 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4750 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4751 } 4752 4753 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4754 { 4755 if (static_branch_unlikely(&preempt_notifier_key)) 4756 __fire_sched_in_preempt_notifiers(curr); 4757 } 4758 4759 static void 4760 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4761 struct task_struct *next) 4762 { 4763 struct preempt_notifier *notifier; 4764 4765 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4766 notifier->ops->sched_out(notifier, next); 4767 } 4768 4769 static __always_inline void 4770 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4771 struct task_struct *next) 4772 { 4773 if (static_branch_unlikely(&preempt_notifier_key)) 4774 __fire_sched_out_preempt_notifiers(curr, next); 4775 } 4776 4777 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4778 4779 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4780 { 4781 } 4782 4783 static inline void 4784 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4785 struct task_struct *next) 4786 { 4787 } 4788 4789 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4790 4791 static inline void prepare_task(struct task_struct *next) 4792 { 4793 #ifdef CONFIG_SMP 4794 /* 4795 * Claim the task as running, we do this before switching to it 4796 * such that any running task will have this set. 4797 * 4798 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4799 * its ordering comment. 4800 */ 4801 WRITE_ONCE(next->on_cpu, 1); 4802 #endif 4803 } 4804 4805 static inline void finish_task(struct task_struct *prev) 4806 { 4807 #ifdef CONFIG_SMP 4808 /* 4809 * This must be the very last reference to @prev from this CPU. After 4810 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4811 * must ensure this doesn't happen until the switch is completely 4812 * finished. 4813 * 4814 * In particular, the load of prev->state in finish_task_switch() must 4815 * happen before this. 4816 * 4817 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4818 */ 4819 smp_store_release(&prev->on_cpu, 0); 4820 #endif 4821 } 4822 4823 #ifdef CONFIG_SMP 4824 4825 static void do_balance_callbacks(struct rq *rq, struct callback_head *head) 4826 { 4827 void (*func)(struct rq *rq); 4828 struct callback_head *next; 4829 4830 lockdep_assert_rq_held(rq); 4831 4832 while (head) { 4833 func = (void (*)(struct rq *))head->func; 4834 next = head->next; 4835 head->next = NULL; 4836 head = next; 4837 4838 func(rq); 4839 } 4840 } 4841 4842 static void balance_push(struct rq *rq); 4843 4844 /* 4845 * balance_push_callback is a right abuse of the callback interface and plays 4846 * by significantly different rules. 4847 * 4848 * Where the normal balance_callback's purpose is to be ran in the same context 4849 * that queued it (only later, when it's safe to drop rq->lock again), 4850 * balance_push_callback is specifically targeted at __schedule(). 4851 * 4852 * This abuse is tolerated because it places all the unlikely/odd cases behind 4853 * a single test, namely: rq->balance_callback == NULL. 4854 */ 4855 struct callback_head balance_push_callback = { 4856 .next = NULL, 4857 .func = (void (*)(struct callback_head *))balance_push, 4858 }; 4859 4860 static inline struct callback_head * 4861 __splice_balance_callbacks(struct rq *rq, bool split) 4862 { 4863 struct callback_head *head = rq->balance_callback; 4864 4865 if (likely(!head)) 4866 return NULL; 4867 4868 lockdep_assert_rq_held(rq); 4869 /* 4870 * Must not take balance_push_callback off the list when 4871 * splice_balance_callbacks() and balance_callbacks() are not 4872 * in the same rq->lock section. 4873 * 4874 * In that case it would be possible for __schedule() to interleave 4875 * and observe the list empty. 4876 */ 4877 if (split && head == &balance_push_callback) 4878 head = NULL; 4879 else 4880 rq->balance_callback = NULL; 4881 4882 return head; 4883 } 4884 4885 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4886 { 4887 return __splice_balance_callbacks(rq, true); 4888 } 4889 4890 static void __balance_callbacks(struct rq *rq) 4891 { 4892 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 4893 } 4894 4895 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4896 { 4897 unsigned long flags; 4898 4899 if (unlikely(head)) { 4900 raw_spin_rq_lock_irqsave(rq, flags); 4901 do_balance_callbacks(rq, head); 4902 raw_spin_rq_unlock_irqrestore(rq, flags); 4903 } 4904 } 4905 4906 #else 4907 4908 static inline void __balance_callbacks(struct rq *rq) 4909 { 4910 } 4911 4912 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4913 { 4914 return NULL; 4915 } 4916 4917 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4918 { 4919 } 4920 4921 #endif 4922 4923 static inline void 4924 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4925 { 4926 /* 4927 * Since the runqueue lock will be released by the next 4928 * task (which is an invalid locking op but in the case 4929 * of the scheduler it's an obvious special-case), so we 4930 * do an early lockdep release here: 4931 */ 4932 rq_unpin_lock(rq, rf); 4933 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 4934 #ifdef CONFIG_DEBUG_SPINLOCK 4935 /* this is a valid case when another task releases the spinlock */ 4936 rq_lockp(rq)->owner = next; 4937 #endif 4938 } 4939 4940 static inline void finish_lock_switch(struct rq *rq) 4941 { 4942 /* 4943 * If we are tracking spinlock dependencies then we have to 4944 * fix up the runqueue lock - which gets 'carried over' from 4945 * prev into current: 4946 */ 4947 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 4948 __balance_callbacks(rq); 4949 raw_spin_rq_unlock_irq(rq); 4950 } 4951 4952 /* 4953 * NOP if the arch has not defined these: 4954 */ 4955 4956 #ifndef prepare_arch_switch 4957 # define prepare_arch_switch(next) do { } while (0) 4958 #endif 4959 4960 #ifndef finish_arch_post_lock_switch 4961 # define finish_arch_post_lock_switch() do { } while (0) 4962 #endif 4963 4964 static inline void kmap_local_sched_out(void) 4965 { 4966 #ifdef CONFIG_KMAP_LOCAL 4967 if (unlikely(current->kmap_ctrl.idx)) 4968 __kmap_local_sched_out(); 4969 #endif 4970 } 4971 4972 static inline void kmap_local_sched_in(void) 4973 { 4974 #ifdef CONFIG_KMAP_LOCAL 4975 if (unlikely(current->kmap_ctrl.idx)) 4976 __kmap_local_sched_in(); 4977 #endif 4978 } 4979 4980 /** 4981 * prepare_task_switch - prepare to switch tasks 4982 * @rq: the runqueue preparing to switch 4983 * @prev: the current task that is being switched out 4984 * @next: the task we are going to switch to. 4985 * 4986 * This is called with the rq lock held and interrupts off. It must 4987 * be paired with a subsequent finish_task_switch after the context 4988 * switch. 4989 * 4990 * prepare_task_switch sets up locking and calls architecture specific 4991 * hooks. 4992 */ 4993 static inline void 4994 prepare_task_switch(struct rq *rq, struct task_struct *prev, 4995 struct task_struct *next) 4996 { 4997 kcov_prepare_switch(prev); 4998 sched_info_switch(rq, prev, next); 4999 perf_event_task_sched_out(prev, next); 5000 rseq_preempt(prev); 5001 fire_sched_out_preempt_notifiers(prev, next); 5002 kmap_local_sched_out(); 5003 prepare_task(next); 5004 prepare_arch_switch(next); 5005 } 5006 5007 /** 5008 * finish_task_switch - clean up after a task-switch 5009 * @prev: the thread we just switched away from. 5010 * 5011 * finish_task_switch must be called after the context switch, paired 5012 * with a prepare_task_switch call before the context switch. 5013 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5014 * and do any other architecture-specific cleanup actions. 5015 * 5016 * Note that we may have delayed dropping an mm in context_switch(). If 5017 * so, we finish that here outside of the runqueue lock. (Doing it 5018 * with the lock held can cause deadlocks; see schedule() for 5019 * details.) 5020 * 5021 * The context switch have flipped the stack from under us and restored the 5022 * local variables which were saved when this task called schedule() in the 5023 * past. prev == current is still correct but we need to recalculate this_rq 5024 * because prev may have moved to another CPU. 5025 */ 5026 static struct rq *finish_task_switch(struct task_struct *prev) 5027 __releases(rq->lock) 5028 { 5029 struct rq *rq = this_rq(); 5030 struct mm_struct *mm = rq->prev_mm; 5031 unsigned int prev_state; 5032 5033 /* 5034 * The previous task will have left us with a preempt_count of 2 5035 * because it left us after: 5036 * 5037 * schedule() 5038 * preempt_disable(); // 1 5039 * __schedule() 5040 * raw_spin_lock_irq(&rq->lock) // 2 5041 * 5042 * Also, see FORK_PREEMPT_COUNT. 5043 */ 5044 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5045 "corrupted preempt_count: %s/%d/0x%x\n", 5046 current->comm, current->pid, preempt_count())) 5047 preempt_count_set(FORK_PREEMPT_COUNT); 5048 5049 rq->prev_mm = NULL; 5050 5051 /* 5052 * A task struct has one reference for the use as "current". 5053 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5054 * schedule one last time. The schedule call will never return, and 5055 * the scheduled task must drop that reference. 5056 * 5057 * We must observe prev->state before clearing prev->on_cpu (in 5058 * finish_task), otherwise a concurrent wakeup can get prev 5059 * running on another CPU and we could rave with its RUNNING -> DEAD 5060 * transition, resulting in a double drop. 5061 */ 5062 prev_state = READ_ONCE(prev->__state); 5063 vtime_task_switch(prev); 5064 perf_event_task_sched_in(prev, current); 5065 finish_task(prev); 5066 tick_nohz_task_switch(); 5067 finish_lock_switch(rq); 5068 finish_arch_post_lock_switch(); 5069 kcov_finish_switch(current); 5070 /* 5071 * kmap_local_sched_out() is invoked with rq::lock held and 5072 * interrupts disabled. There is no requirement for that, but the 5073 * sched out code does not have an interrupt enabled section. 5074 * Restoring the maps on sched in does not require interrupts being 5075 * disabled either. 5076 */ 5077 kmap_local_sched_in(); 5078 5079 fire_sched_in_preempt_notifiers(current); 5080 /* 5081 * When switching through a kernel thread, the loop in 5082 * membarrier_{private,global}_expedited() may have observed that 5083 * kernel thread and not issued an IPI. It is therefore possible to 5084 * schedule between user->kernel->user threads without passing though 5085 * switch_mm(). Membarrier requires a barrier after storing to 5086 * rq->curr, before returning to userspace, so provide them here: 5087 * 5088 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5089 * provided by mmdrop(), 5090 * - a sync_core for SYNC_CORE. 5091 */ 5092 if (mm) { 5093 membarrier_mm_sync_core_before_usermode(mm); 5094 mmdrop_sched(mm); 5095 } 5096 if (unlikely(prev_state == TASK_DEAD)) { 5097 if (prev->sched_class->task_dead) 5098 prev->sched_class->task_dead(prev); 5099 5100 /* Task is done with its stack. */ 5101 put_task_stack(prev); 5102 5103 put_task_struct_rcu_user(prev); 5104 } 5105 5106 return rq; 5107 } 5108 5109 /** 5110 * schedule_tail - first thing a freshly forked thread must call. 5111 * @prev: the thread we just switched away from. 5112 */ 5113 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5114 __releases(rq->lock) 5115 { 5116 /* 5117 * New tasks start with FORK_PREEMPT_COUNT, see there and 5118 * finish_task_switch() for details. 5119 * 5120 * finish_task_switch() will drop rq->lock() and lower preempt_count 5121 * and the preempt_enable() will end up enabling preemption (on 5122 * PREEMPT_COUNT kernels). 5123 */ 5124 5125 finish_task_switch(prev); 5126 preempt_enable(); 5127 5128 if (current->set_child_tid) 5129 put_user(task_pid_vnr(current), current->set_child_tid); 5130 5131 calculate_sigpending(); 5132 } 5133 5134 /* 5135 * context_switch - switch to the new MM and the new thread's register state. 5136 */ 5137 static __always_inline struct rq * 5138 context_switch(struct rq *rq, struct task_struct *prev, 5139 struct task_struct *next, struct rq_flags *rf) 5140 { 5141 prepare_task_switch(rq, prev, next); 5142 5143 /* 5144 * For paravirt, this is coupled with an exit in switch_to to 5145 * combine the page table reload and the switch backend into 5146 * one hypercall. 5147 */ 5148 arch_start_context_switch(prev); 5149 5150 /* 5151 * kernel -> kernel lazy + transfer active 5152 * user -> kernel lazy + mmgrab() active 5153 * 5154 * kernel -> user switch + mmdrop() active 5155 * user -> user switch 5156 */ 5157 if (!next->mm) { // to kernel 5158 enter_lazy_tlb(prev->active_mm, next); 5159 5160 next->active_mm = prev->active_mm; 5161 if (prev->mm) // from user 5162 mmgrab(prev->active_mm); 5163 else 5164 prev->active_mm = NULL; 5165 } else { // to user 5166 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5167 /* 5168 * sys_membarrier() requires an smp_mb() between setting 5169 * rq->curr / membarrier_switch_mm() and returning to userspace. 5170 * 5171 * The below provides this either through switch_mm(), or in 5172 * case 'prev->active_mm == next->mm' through 5173 * finish_task_switch()'s mmdrop(). 5174 */ 5175 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5176 lru_gen_use_mm(next->mm); 5177 5178 if (!prev->mm) { // from kernel 5179 /* will mmdrop() in finish_task_switch(). */ 5180 rq->prev_mm = prev->active_mm; 5181 prev->active_mm = NULL; 5182 } 5183 } 5184 5185 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 5186 5187 prepare_lock_switch(rq, next, rf); 5188 5189 /* Here we just switch the register state and the stack. */ 5190 switch_to(prev, next, prev); 5191 barrier(); 5192 5193 return finish_task_switch(prev); 5194 } 5195 5196 /* 5197 * nr_running and nr_context_switches: 5198 * 5199 * externally visible scheduler statistics: current number of runnable 5200 * threads, total number of context switches performed since bootup. 5201 */ 5202 unsigned int nr_running(void) 5203 { 5204 unsigned int i, sum = 0; 5205 5206 for_each_online_cpu(i) 5207 sum += cpu_rq(i)->nr_running; 5208 5209 return sum; 5210 } 5211 5212 /* 5213 * Check if only the current task is running on the CPU. 5214 * 5215 * Caution: this function does not check that the caller has disabled 5216 * preemption, thus the result might have a time-of-check-to-time-of-use 5217 * race. The caller is responsible to use it correctly, for example: 5218 * 5219 * - from a non-preemptible section (of course) 5220 * 5221 * - from a thread that is bound to a single CPU 5222 * 5223 * - in a loop with very short iterations (e.g. a polling loop) 5224 */ 5225 bool single_task_running(void) 5226 { 5227 return raw_rq()->nr_running == 1; 5228 } 5229 EXPORT_SYMBOL(single_task_running); 5230 5231 unsigned long long nr_context_switches(void) 5232 { 5233 int i; 5234 unsigned long long sum = 0; 5235 5236 for_each_possible_cpu(i) 5237 sum += cpu_rq(i)->nr_switches; 5238 5239 return sum; 5240 } 5241 5242 /* 5243 * Consumers of these two interfaces, like for example the cpuidle menu 5244 * governor, are using nonsensical data. Preferring shallow idle state selection 5245 * for a CPU that has IO-wait which might not even end up running the task when 5246 * it does become runnable. 5247 */ 5248 5249 unsigned int nr_iowait_cpu(int cpu) 5250 { 5251 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5252 } 5253 5254 /* 5255 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5256 * 5257 * The idea behind IO-wait account is to account the idle time that we could 5258 * have spend running if it were not for IO. That is, if we were to improve the 5259 * storage performance, we'd have a proportional reduction in IO-wait time. 5260 * 5261 * This all works nicely on UP, where, when a task blocks on IO, we account 5262 * idle time as IO-wait, because if the storage were faster, it could've been 5263 * running and we'd not be idle. 5264 * 5265 * This has been extended to SMP, by doing the same for each CPU. This however 5266 * is broken. 5267 * 5268 * Imagine for instance the case where two tasks block on one CPU, only the one 5269 * CPU will have IO-wait accounted, while the other has regular idle. Even 5270 * though, if the storage were faster, both could've ran at the same time, 5271 * utilising both CPUs. 5272 * 5273 * This means, that when looking globally, the current IO-wait accounting on 5274 * SMP is a lower bound, by reason of under accounting. 5275 * 5276 * Worse, since the numbers are provided per CPU, they are sometimes 5277 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5278 * associated with any one particular CPU, it can wake to another CPU than it 5279 * blocked on. This means the per CPU IO-wait number is meaningless. 5280 * 5281 * Task CPU affinities can make all that even more 'interesting'. 5282 */ 5283 5284 unsigned int nr_iowait(void) 5285 { 5286 unsigned int i, sum = 0; 5287 5288 for_each_possible_cpu(i) 5289 sum += nr_iowait_cpu(i); 5290 5291 return sum; 5292 } 5293 5294 #ifdef CONFIG_SMP 5295 5296 /* 5297 * sched_exec - execve() is a valuable balancing opportunity, because at 5298 * this point the task has the smallest effective memory and cache footprint. 5299 */ 5300 void sched_exec(void) 5301 { 5302 struct task_struct *p = current; 5303 unsigned long flags; 5304 int dest_cpu; 5305 5306 raw_spin_lock_irqsave(&p->pi_lock, flags); 5307 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5308 if (dest_cpu == smp_processor_id()) 5309 goto unlock; 5310 5311 if (likely(cpu_active(dest_cpu))) { 5312 struct migration_arg arg = { p, dest_cpu }; 5313 5314 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5315 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5316 return; 5317 } 5318 unlock: 5319 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5320 } 5321 5322 #endif 5323 5324 DEFINE_PER_CPU(struct kernel_stat, kstat); 5325 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5326 5327 EXPORT_PER_CPU_SYMBOL(kstat); 5328 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5329 5330 /* 5331 * The function fair_sched_class.update_curr accesses the struct curr 5332 * and its field curr->exec_start; when called from task_sched_runtime(), 5333 * we observe a high rate of cache misses in practice. 5334 * Prefetching this data results in improved performance. 5335 */ 5336 static inline void prefetch_curr_exec_start(struct task_struct *p) 5337 { 5338 #ifdef CONFIG_FAIR_GROUP_SCHED 5339 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 5340 #else 5341 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 5342 #endif 5343 prefetch(curr); 5344 prefetch(&curr->exec_start); 5345 } 5346 5347 /* 5348 * Return accounted runtime for the task. 5349 * In case the task is currently running, return the runtime plus current's 5350 * pending runtime that have not been accounted yet. 5351 */ 5352 unsigned long long task_sched_runtime(struct task_struct *p) 5353 { 5354 struct rq_flags rf; 5355 struct rq *rq; 5356 u64 ns; 5357 5358 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5359 /* 5360 * 64-bit doesn't need locks to atomically read a 64-bit value. 5361 * So we have a optimization chance when the task's delta_exec is 0. 5362 * Reading ->on_cpu is racy, but this is ok. 5363 * 5364 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5365 * If we race with it entering CPU, unaccounted time is 0. This is 5366 * indistinguishable from the read occurring a few cycles earlier. 5367 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5368 * been accounted, so we're correct here as well. 5369 */ 5370 if (!p->on_cpu || !task_on_rq_queued(p)) 5371 return p->se.sum_exec_runtime; 5372 #endif 5373 5374 rq = task_rq_lock(p, &rf); 5375 /* 5376 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5377 * project cycles that may never be accounted to this 5378 * thread, breaking clock_gettime(). 5379 */ 5380 if (task_current(rq, p) && task_on_rq_queued(p)) { 5381 prefetch_curr_exec_start(p); 5382 update_rq_clock(rq); 5383 p->sched_class->update_curr(rq); 5384 } 5385 ns = p->se.sum_exec_runtime; 5386 task_rq_unlock(rq, p, &rf); 5387 5388 return ns; 5389 } 5390 5391 #ifdef CONFIG_SCHED_DEBUG 5392 static u64 cpu_resched_latency(struct rq *rq) 5393 { 5394 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5395 u64 resched_latency, now = rq_clock(rq); 5396 static bool warned_once; 5397 5398 if (sysctl_resched_latency_warn_once && warned_once) 5399 return 0; 5400 5401 if (!need_resched() || !latency_warn_ms) 5402 return 0; 5403 5404 if (system_state == SYSTEM_BOOTING) 5405 return 0; 5406 5407 if (!rq->last_seen_need_resched_ns) { 5408 rq->last_seen_need_resched_ns = now; 5409 rq->ticks_without_resched = 0; 5410 return 0; 5411 } 5412 5413 rq->ticks_without_resched++; 5414 resched_latency = now - rq->last_seen_need_resched_ns; 5415 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5416 return 0; 5417 5418 warned_once = true; 5419 5420 return resched_latency; 5421 } 5422 5423 static int __init setup_resched_latency_warn_ms(char *str) 5424 { 5425 long val; 5426 5427 if ((kstrtol(str, 0, &val))) { 5428 pr_warn("Unable to set resched_latency_warn_ms\n"); 5429 return 1; 5430 } 5431 5432 sysctl_resched_latency_warn_ms = val; 5433 return 1; 5434 } 5435 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5436 #else 5437 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5438 #endif /* CONFIG_SCHED_DEBUG */ 5439 5440 /* 5441 * This function gets called by the timer code, with HZ frequency. 5442 * We call it with interrupts disabled. 5443 */ 5444 void scheduler_tick(void) 5445 { 5446 int cpu = smp_processor_id(); 5447 struct rq *rq = cpu_rq(cpu); 5448 struct task_struct *curr = rq->curr; 5449 struct rq_flags rf; 5450 unsigned long thermal_pressure; 5451 u64 resched_latency; 5452 5453 arch_scale_freq_tick(); 5454 sched_clock_tick(); 5455 5456 rq_lock(rq, &rf); 5457 5458 update_rq_clock(rq); 5459 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 5460 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 5461 curr->sched_class->task_tick(rq, curr, 0); 5462 if (sched_feat(LATENCY_WARN)) 5463 resched_latency = cpu_resched_latency(rq); 5464 calc_global_load_tick(rq); 5465 sched_core_tick(rq); 5466 5467 rq_unlock(rq, &rf); 5468 5469 if (sched_feat(LATENCY_WARN) && resched_latency) 5470 resched_latency_warn(cpu, resched_latency); 5471 5472 perf_event_task_tick(); 5473 5474 #ifdef CONFIG_SMP 5475 rq->idle_balance = idle_cpu(cpu); 5476 trigger_load_balance(rq); 5477 #endif 5478 } 5479 5480 #ifdef CONFIG_NO_HZ_FULL 5481 5482 struct tick_work { 5483 int cpu; 5484 atomic_t state; 5485 struct delayed_work work; 5486 }; 5487 /* Values for ->state, see diagram below. */ 5488 #define TICK_SCHED_REMOTE_OFFLINE 0 5489 #define TICK_SCHED_REMOTE_OFFLINING 1 5490 #define TICK_SCHED_REMOTE_RUNNING 2 5491 5492 /* 5493 * State diagram for ->state: 5494 * 5495 * 5496 * TICK_SCHED_REMOTE_OFFLINE 5497 * | ^ 5498 * | | 5499 * | | sched_tick_remote() 5500 * | | 5501 * | | 5502 * +--TICK_SCHED_REMOTE_OFFLINING 5503 * | ^ 5504 * | | 5505 * sched_tick_start() | | sched_tick_stop() 5506 * | | 5507 * V | 5508 * TICK_SCHED_REMOTE_RUNNING 5509 * 5510 * 5511 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5512 * and sched_tick_start() are happy to leave the state in RUNNING. 5513 */ 5514 5515 static struct tick_work __percpu *tick_work_cpu; 5516 5517 static void sched_tick_remote(struct work_struct *work) 5518 { 5519 struct delayed_work *dwork = to_delayed_work(work); 5520 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5521 int cpu = twork->cpu; 5522 struct rq *rq = cpu_rq(cpu); 5523 struct task_struct *curr; 5524 struct rq_flags rf; 5525 u64 delta; 5526 int os; 5527 5528 /* 5529 * Handle the tick only if it appears the remote CPU is running in full 5530 * dynticks mode. The check is racy by nature, but missing a tick or 5531 * having one too much is no big deal because the scheduler tick updates 5532 * statistics and checks timeslices in a time-independent way, regardless 5533 * of when exactly it is running. 5534 */ 5535 if (!tick_nohz_tick_stopped_cpu(cpu)) 5536 goto out_requeue; 5537 5538 rq_lock_irq(rq, &rf); 5539 curr = rq->curr; 5540 if (cpu_is_offline(cpu)) 5541 goto out_unlock; 5542 5543 update_rq_clock(rq); 5544 5545 if (!is_idle_task(curr)) { 5546 /* 5547 * Make sure the next tick runs within a reasonable 5548 * amount of time. 5549 */ 5550 delta = rq_clock_task(rq) - curr->se.exec_start; 5551 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5552 } 5553 curr->sched_class->task_tick(rq, curr, 0); 5554 5555 calc_load_nohz_remote(rq); 5556 out_unlock: 5557 rq_unlock_irq(rq, &rf); 5558 out_requeue: 5559 5560 /* 5561 * Run the remote tick once per second (1Hz). This arbitrary 5562 * frequency is large enough to avoid overload but short enough 5563 * to keep scheduler internal stats reasonably up to date. But 5564 * first update state to reflect hotplug activity if required. 5565 */ 5566 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5567 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5568 if (os == TICK_SCHED_REMOTE_RUNNING) 5569 queue_delayed_work(system_unbound_wq, dwork, HZ); 5570 } 5571 5572 static void sched_tick_start(int cpu) 5573 { 5574 int os; 5575 struct tick_work *twork; 5576 5577 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5578 return; 5579 5580 WARN_ON_ONCE(!tick_work_cpu); 5581 5582 twork = per_cpu_ptr(tick_work_cpu, cpu); 5583 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5584 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5585 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5586 twork->cpu = cpu; 5587 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5588 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5589 } 5590 } 5591 5592 #ifdef CONFIG_HOTPLUG_CPU 5593 static void sched_tick_stop(int cpu) 5594 { 5595 struct tick_work *twork; 5596 int os; 5597 5598 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5599 return; 5600 5601 WARN_ON_ONCE(!tick_work_cpu); 5602 5603 twork = per_cpu_ptr(tick_work_cpu, cpu); 5604 /* There cannot be competing actions, but don't rely on stop-machine. */ 5605 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5606 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5607 /* Don't cancel, as this would mess up the state machine. */ 5608 } 5609 #endif /* CONFIG_HOTPLUG_CPU */ 5610 5611 int __init sched_tick_offload_init(void) 5612 { 5613 tick_work_cpu = alloc_percpu(struct tick_work); 5614 BUG_ON(!tick_work_cpu); 5615 return 0; 5616 } 5617 5618 #else /* !CONFIG_NO_HZ_FULL */ 5619 static inline void sched_tick_start(int cpu) { } 5620 static inline void sched_tick_stop(int cpu) { } 5621 #endif 5622 5623 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5624 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5625 /* 5626 * If the value passed in is equal to the current preempt count 5627 * then we just disabled preemption. Start timing the latency. 5628 */ 5629 static inline void preempt_latency_start(int val) 5630 { 5631 if (preempt_count() == val) { 5632 unsigned long ip = get_lock_parent_ip(); 5633 #ifdef CONFIG_DEBUG_PREEMPT 5634 current->preempt_disable_ip = ip; 5635 #endif 5636 trace_preempt_off(CALLER_ADDR0, ip); 5637 } 5638 } 5639 5640 void preempt_count_add(int val) 5641 { 5642 #ifdef CONFIG_DEBUG_PREEMPT 5643 /* 5644 * Underflow? 5645 */ 5646 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5647 return; 5648 #endif 5649 __preempt_count_add(val); 5650 #ifdef CONFIG_DEBUG_PREEMPT 5651 /* 5652 * Spinlock count overflowing soon? 5653 */ 5654 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5655 PREEMPT_MASK - 10); 5656 #endif 5657 preempt_latency_start(val); 5658 } 5659 EXPORT_SYMBOL(preempt_count_add); 5660 NOKPROBE_SYMBOL(preempt_count_add); 5661 5662 /* 5663 * If the value passed in equals to the current preempt count 5664 * then we just enabled preemption. Stop timing the latency. 5665 */ 5666 static inline void preempt_latency_stop(int val) 5667 { 5668 if (preempt_count() == val) 5669 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5670 } 5671 5672 void preempt_count_sub(int val) 5673 { 5674 #ifdef CONFIG_DEBUG_PREEMPT 5675 /* 5676 * Underflow? 5677 */ 5678 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5679 return; 5680 /* 5681 * Is the spinlock portion underflowing? 5682 */ 5683 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5684 !(preempt_count() & PREEMPT_MASK))) 5685 return; 5686 #endif 5687 5688 preempt_latency_stop(val); 5689 __preempt_count_sub(val); 5690 } 5691 EXPORT_SYMBOL(preempt_count_sub); 5692 NOKPROBE_SYMBOL(preempt_count_sub); 5693 5694 #else 5695 static inline void preempt_latency_start(int val) { } 5696 static inline void preempt_latency_stop(int val) { } 5697 #endif 5698 5699 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5700 { 5701 #ifdef CONFIG_DEBUG_PREEMPT 5702 return p->preempt_disable_ip; 5703 #else 5704 return 0; 5705 #endif 5706 } 5707 5708 /* 5709 * Print scheduling while atomic bug: 5710 */ 5711 static noinline void __schedule_bug(struct task_struct *prev) 5712 { 5713 /* Save this before calling printk(), since that will clobber it */ 5714 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5715 5716 if (oops_in_progress) 5717 return; 5718 5719 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5720 prev->comm, prev->pid, preempt_count()); 5721 5722 debug_show_held_locks(prev); 5723 print_modules(); 5724 if (irqs_disabled()) 5725 print_irqtrace_events(prev); 5726 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 5727 && in_atomic_preempt_off()) { 5728 pr_err("Preemption disabled at:"); 5729 print_ip_sym(KERN_ERR, preempt_disable_ip); 5730 } 5731 if (panic_on_warn) 5732 panic("scheduling while atomic\n"); 5733 5734 dump_stack(); 5735 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5736 } 5737 5738 /* 5739 * Various schedule()-time debugging checks and statistics: 5740 */ 5741 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5742 { 5743 #ifdef CONFIG_SCHED_STACK_END_CHECK 5744 if (task_stack_end_corrupted(prev)) 5745 panic("corrupted stack end detected inside scheduler\n"); 5746 5747 if (task_scs_end_corrupted(prev)) 5748 panic("corrupted shadow stack detected inside scheduler\n"); 5749 #endif 5750 5751 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5752 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5753 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5754 prev->comm, prev->pid, prev->non_block_count); 5755 dump_stack(); 5756 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5757 } 5758 #endif 5759 5760 if (unlikely(in_atomic_preempt_off())) { 5761 __schedule_bug(prev); 5762 preempt_count_set(PREEMPT_DISABLED); 5763 } 5764 rcu_sleep_check(); 5765 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5766 5767 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5768 5769 schedstat_inc(this_rq()->sched_count); 5770 } 5771 5772 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5773 struct rq_flags *rf) 5774 { 5775 #ifdef CONFIG_SMP 5776 const struct sched_class *class; 5777 /* 5778 * We must do the balancing pass before put_prev_task(), such 5779 * that when we release the rq->lock the task is in the same 5780 * state as before we took rq->lock. 5781 * 5782 * We can terminate the balance pass as soon as we know there is 5783 * a runnable task of @class priority or higher. 5784 */ 5785 for_class_range(class, prev->sched_class, &idle_sched_class) { 5786 if (class->balance(rq, prev, rf)) 5787 break; 5788 } 5789 #endif 5790 5791 put_prev_task(rq, prev); 5792 } 5793 5794 /* 5795 * Pick up the highest-prio task: 5796 */ 5797 static inline struct task_struct * 5798 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5799 { 5800 const struct sched_class *class; 5801 struct task_struct *p; 5802 5803 /* 5804 * Optimization: we know that if all tasks are in the fair class we can 5805 * call that function directly, but only if the @prev task wasn't of a 5806 * higher scheduling class, because otherwise those lose the 5807 * opportunity to pull in more work from other CPUs. 5808 */ 5809 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5810 rq->nr_running == rq->cfs.h_nr_running)) { 5811 5812 p = pick_next_task_fair(rq, prev, rf); 5813 if (unlikely(p == RETRY_TASK)) 5814 goto restart; 5815 5816 /* Assume the next prioritized class is idle_sched_class */ 5817 if (!p) { 5818 put_prev_task(rq, prev); 5819 p = pick_next_task_idle(rq); 5820 } 5821 5822 return p; 5823 } 5824 5825 restart: 5826 put_prev_task_balance(rq, prev, rf); 5827 5828 for_each_class(class) { 5829 p = class->pick_next_task(rq); 5830 if (p) 5831 return p; 5832 } 5833 5834 BUG(); /* The idle class should always have a runnable task. */ 5835 } 5836 5837 #ifdef CONFIG_SCHED_CORE 5838 static inline bool is_task_rq_idle(struct task_struct *t) 5839 { 5840 return (task_rq(t)->idle == t); 5841 } 5842 5843 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5844 { 5845 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5846 } 5847 5848 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5849 { 5850 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5851 return true; 5852 5853 return a->core_cookie == b->core_cookie; 5854 } 5855 5856 static inline struct task_struct *pick_task(struct rq *rq) 5857 { 5858 const struct sched_class *class; 5859 struct task_struct *p; 5860 5861 for_each_class(class) { 5862 p = class->pick_task(rq); 5863 if (p) 5864 return p; 5865 } 5866 5867 BUG(); /* The idle class should always have a runnable task. */ 5868 } 5869 5870 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5871 5872 static void queue_core_balance(struct rq *rq); 5873 5874 static struct task_struct * 5875 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5876 { 5877 struct task_struct *next, *p, *max = NULL; 5878 const struct cpumask *smt_mask; 5879 bool fi_before = false; 5880 bool core_clock_updated = (rq == rq->core); 5881 unsigned long cookie; 5882 int i, cpu, occ = 0; 5883 struct rq *rq_i; 5884 bool need_sync; 5885 5886 if (!sched_core_enabled(rq)) 5887 return __pick_next_task(rq, prev, rf); 5888 5889 cpu = cpu_of(rq); 5890 5891 /* Stopper task is switching into idle, no need core-wide selection. */ 5892 if (cpu_is_offline(cpu)) { 5893 /* 5894 * Reset core_pick so that we don't enter the fastpath when 5895 * coming online. core_pick would already be migrated to 5896 * another cpu during offline. 5897 */ 5898 rq->core_pick = NULL; 5899 return __pick_next_task(rq, prev, rf); 5900 } 5901 5902 /* 5903 * If there were no {en,de}queues since we picked (IOW, the task 5904 * pointers are all still valid), and we haven't scheduled the last 5905 * pick yet, do so now. 5906 * 5907 * rq->core_pick can be NULL if no selection was made for a CPU because 5908 * it was either offline or went offline during a sibling's core-wide 5909 * selection. In this case, do a core-wide selection. 5910 */ 5911 if (rq->core->core_pick_seq == rq->core->core_task_seq && 5912 rq->core->core_pick_seq != rq->core_sched_seq && 5913 rq->core_pick) { 5914 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 5915 5916 next = rq->core_pick; 5917 if (next != prev) { 5918 put_prev_task(rq, prev); 5919 set_next_task(rq, next); 5920 } 5921 5922 rq->core_pick = NULL; 5923 goto out; 5924 } 5925 5926 put_prev_task_balance(rq, prev, rf); 5927 5928 smt_mask = cpu_smt_mask(cpu); 5929 need_sync = !!rq->core->core_cookie; 5930 5931 /* reset state */ 5932 rq->core->core_cookie = 0UL; 5933 if (rq->core->core_forceidle_count) { 5934 if (!core_clock_updated) { 5935 update_rq_clock(rq->core); 5936 core_clock_updated = true; 5937 } 5938 sched_core_account_forceidle(rq); 5939 /* reset after accounting force idle */ 5940 rq->core->core_forceidle_start = 0; 5941 rq->core->core_forceidle_count = 0; 5942 rq->core->core_forceidle_occupation = 0; 5943 need_sync = true; 5944 fi_before = true; 5945 } 5946 5947 /* 5948 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 5949 * 5950 * @task_seq guards the task state ({en,de}queues) 5951 * @pick_seq is the @task_seq we did a selection on 5952 * @sched_seq is the @pick_seq we scheduled 5953 * 5954 * However, preemptions can cause multiple picks on the same task set. 5955 * 'Fix' this by also increasing @task_seq for every pick. 5956 */ 5957 rq->core->core_task_seq++; 5958 5959 /* 5960 * Optimize for common case where this CPU has no cookies 5961 * and there are no cookied tasks running on siblings. 5962 */ 5963 if (!need_sync) { 5964 next = pick_task(rq); 5965 if (!next->core_cookie) { 5966 rq->core_pick = NULL; 5967 /* 5968 * For robustness, update the min_vruntime_fi for 5969 * unconstrained picks as well. 5970 */ 5971 WARN_ON_ONCE(fi_before); 5972 task_vruntime_update(rq, next, false); 5973 goto out_set_next; 5974 } 5975 } 5976 5977 /* 5978 * For each thread: do the regular task pick and find the max prio task 5979 * amongst them. 5980 * 5981 * Tie-break prio towards the current CPU 5982 */ 5983 for_each_cpu_wrap(i, smt_mask, cpu) { 5984 rq_i = cpu_rq(i); 5985 5986 /* 5987 * Current cpu always has its clock updated on entrance to 5988 * pick_next_task(). If the current cpu is not the core, 5989 * the core may also have been updated above. 5990 */ 5991 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 5992 update_rq_clock(rq_i); 5993 5994 p = rq_i->core_pick = pick_task(rq_i); 5995 if (!max || prio_less(max, p, fi_before)) 5996 max = p; 5997 } 5998 5999 cookie = rq->core->core_cookie = max->core_cookie; 6000 6001 /* 6002 * For each thread: try and find a runnable task that matches @max or 6003 * force idle. 6004 */ 6005 for_each_cpu(i, smt_mask) { 6006 rq_i = cpu_rq(i); 6007 p = rq_i->core_pick; 6008 6009 if (!cookie_equals(p, cookie)) { 6010 p = NULL; 6011 if (cookie) 6012 p = sched_core_find(rq_i, cookie); 6013 if (!p) 6014 p = idle_sched_class.pick_task(rq_i); 6015 } 6016 6017 rq_i->core_pick = p; 6018 6019 if (p == rq_i->idle) { 6020 if (rq_i->nr_running) { 6021 rq->core->core_forceidle_count++; 6022 if (!fi_before) 6023 rq->core->core_forceidle_seq++; 6024 } 6025 } else { 6026 occ++; 6027 } 6028 } 6029 6030 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6031 rq->core->core_forceidle_start = rq_clock(rq->core); 6032 rq->core->core_forceidle_occupation = occ; 6033 } 6034 6035 rq->core->core_pick_seq = rq->core->core_task_seq; 6036 next = rq->core_pick; 6037 rq->core_sched_seq = rq->core->core_pick_seq; 6038 6039 /* Something should have been selected for current CPU */ 6040 WARN_ON_ONCE(!next); 6041 6042 /* 6043 * Reschedule siblings 6044 * 6045 * NOTE: L1TF -- at this point we're no longer running the old task and 6046 * sending an IPI (below) ensures the sibling will no longer be running 6047 * their task. This ensures there is no inter-sibling overlap between 6048 * non-matching user state. 6049 */ 6050 for_each_cpu(i, smt_mask) { 6051 rq_i = cpu_rq(i); 6052 6053 /* 6054 * An online sibling might have gone offline before a task 6055 * could be picked for it, or it might be offline but later 6056 * happen to come online, but its too late and nothing was 6057 * picked for it. That's Ok - it will pick tasks for itself, 6058 * so ignore it. 6059 */ 6060 if (!rq_i->core_pick) 6061 continue; 6062 6063 /* 6064 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6065 * fi_before fi update? 6066 * 0 0 1 6067 * 0 1 1 6068 * 1 0 1 6069 * 1 1 0 6070 */ 6071 if (!(fi_before && rq->core->core_forceidle_count)) 6072 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6073 6074 rq_i->core_pick->core_occupation = occ; 6075 6076 if (i == cpu) { 6077 rq_i->core_pick = NULL; 6078 continue; 6079 } 6080 6081 /* Did we break L1TF mitigation requirements? */ 6082 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6083 6084 if (rq_i->curr == rq_i->core_pick) { 6085 rq_i->core_pick = NULL; 6086 continue; 6087 } 6088 6089 resched_curr(rq_i); 6090 } 6091 6092 out_set_next: 6093 set_next_task(rq, next); 6094 out: 6095 if (rq->core->core_forceidle_count && next == rq->idle) 6096 queue_core_balance(rq); 6097 6098 return next; 6099 } 6100 6101 static bool try_steal_cookie(int this, int that) 6102 { 6103 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6104 struct task_struct *p; 6105 unsigned long cookie; 6106 bool success = false; 6107 6108 local_irq_disable(); 6109 double_rq_lock(dst, src); 6110 6111 cookie = dst->core->core_cookie; 6112 if (!cookie) 6113 goto unlock; 6114 6115 if (dst->curr != dst->idle) 6116 goto unlock; 6117 6118 p = sched_core_find(src, cookie); 6119 if (p == src->idle) 6120 goto unlock; 6121 6122 do { 6123 if (p == src->core_pick || p == src->curr) 6124 goto next; 6125 6126 if (!is_cpu_allowed(p, this)) 6127 goto next; 6128 6129 if (p->core_occupation > dst->idle->core_occupation) 6130 goto next; 6131 6132 deactivate_task(src, p, 0); 6133 set_task_cpu(p, this); 6134 activate_task(dst, p, 0); 6135 6136 resched_curr(dst); 6137 6138 success = true; 6139 break; 6140 6141 next: 6142 p = sched_core_next(p, cookie); 6143 } while (p); 6144 6145 unlock: 6146 double_rq_unlock(dst, src); 6147 local_irq_enable(); 6148 6149 return success; 6150 } 6151 6152 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6153 { 6154 int i; 6155 6156 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) { 6157 if (i == cpu) 6158 continue; 6159 6160 if (need_resched()) 6161 break; 6162 6163 if (try_steal_cookie(cpu, i)) 6164 return true; 6165 } 6166 6167 return false; 6168 } 6169 6170 static void sched_core_balance(struct rq *rq) 6171 { 6172 struct sched_domain *sd; 6173 int cpu = cpu_of(rq); 6174 6175 preempt_disable(); 6176 rcu_read_lock(); 6177 raw_spin_rq_unlock_irq(rq); 6178 for_each_domain(cpu, sd) { 6179 if (need_resched()) 6180 break; 6181 6182 if (steal_cookie_task(cpu, sd)) 6183 break; 6184 } 6185 raw_spin_rq_lock_irq(rq); 6186 rcu_read_unlock(); 6187 preempt_enable(); 6188 } 6189 6190 static DEFINE_PER_CPU(struct callback_head, core_balance_head); 6191 6192 static void queue_core_balance(struct rq *rq) 6193 { 6194 if (!sched_core_enabled(rq)) 6195 return; 6196 6197 if (!rq->core->core_cookie) 6198 return; 6199 6200 if (!rq->nr_running) /* not forced idle */ 6201 return; 6202 6203 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6204 } 6205 6206 static void sched_core_cpu_starting(unsigned int cpu) 6207 { 6208 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6209 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6210 unsigned long flags; 6211 int t; 6212 6213 sched_core_lock(cpu, &flags); 6214 6215 WARN_ON_ONCE(rq->core != rq); 6216 6217 /* if we're the first, we'll be our own leader */ 6218 if (cpumask_weight(smt_mask) == 1) 6219 goto unlock; 6220 6221 /* find the leader */ 6222 for_each_cpu(t, smt_mask) { 6223 if (t == cpu) 6224 continue; 6225 rq = cpu_rq(t); 6226 if (rq->core == rq) { 6227 core_rq = rq; 6228 break; 6229 } 6230 } 6231 6232 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6233 goto unlock; 6234 6235 /* install and validate core_rq */ 6236 for_each_cpu(t, smt_mask) { 6237 rq = cpu_rq(t); 6238 6239 if (t == cpu) 6240 rq->core = core_rq; 6241 6242 WARN_ON_ONCE(rq->core != core_rq); 6243 } 6244 6245 unlock: 6246 sched_core_unlock(cpu, &flags); 6247 } 6248 6249 static void sched_core_cpu_deactivate(unsigned int cpu) 6250 { 6251 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6252 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6253 unsigned long flags; 6254 int t; 6255 6256 sched_core_lock(cpu, &flags); 6257 6258 /* if we're the last man standing, nothing to do */ 6259 if (cpumask_weight(smt_mask) == 1) { 6260 WARN_ON_ONCE(rq->core != rq); 6261 goto unlock; 6262 } 6263 6264 /* if we're not the leader, nothing to do */ 6265 if (rq->core != rq) 6266 goto unlock; 6267 6268 /* find a new leader */ 6269 for_each_cpu(t, smt_mask) { 6270 if (t == cpu) 6271 continue; 6272 core_rq = cpu_rq(t); 6273 break; 6274 } 6275 6276 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6277 goto unlock; 6278 6279 /* copy the shared state to the new leader */ 6280 core_rq->core_task_seq = rq->core_task_seq; 6281 core_rq->core_pick_seq = rq->core_pick_seq; 6282 core_rq->core_cookie = rq->core_cookie; 6283 core_rq->core_forceidle_count = rq->core_forceidle_count; 6284 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6285 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6286 6287 /* 6288 * Accounting edge for forced idle is handled in pick_next_task(). 6289 * Don't need another one here, since the hotplug thread shouldn't 6290 * have a cookie. 6291 */ 6292 core_rq->core_forceidle_start = 0; 6293 6294 /* install new leader */ 6295 for_each_cpu(t, smt_mask) { 6296 rq = cpu_rq(t); 6297 rq->core = core_rq; 6298 } 6299 6300 unlock: 6301 sched_core_unlock(cpu, &flags); 6302 } 6303 6304 static inline void sched_core_cpu_dying(unsigned int cpu) 6305 { 6306 struct rq *rq = cpu_rq(cpu); 6307 6308 if (rq->core != rq) 6309 rq->core = rq; 6310 } 6311 6312 #else /* !CONFIG_SCHED_CORE */ 6313 6314 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6315 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6316 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6317 6318 static struct task_struct * 6319 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6320 { 6321 return __pick_next_task(rq, prev, rf); 6322 } 6323 6324 #endif /* CONFIG_SCHED_CORE */ 6325 6326 /* 6327 * Constants for the sched_mode argument of __schedule(). 6328 * 6329 * The mode argument allows RT enabled kernels to differentiate a 6330 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6331 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6332 * optimize the AND operation out and just check for zero. 6333 */ 6334 #define SM_NONE 0x0 6335 #define SM_PREEMPT 0x1 6336 #define SM_RTLOCK_WAIT 0x2 6337 6338 #ifndef CONFIG_PREEMPT_RT 6339 # define SM_MASK_PREEMPT (~0U) 6340 #else 6341 # define SM_MASK_PREEMPT SM_PREEMPT 6342 #endif 6343 6344 /* 6345 * __schedule() is the main scheduler function. 6346 * 6347 * The main means of driving the scheduler and thus entering this function are: 6348 * 6349 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6350 * 6351 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6352 * paths. For example, see arch/x86/entry_64.S. 6353 * 6354 * To drive preemption between tasks, the scheduler sets the flag in timer 6355 * interrupt handler scheduler_tick(). 6356 * 6357 * 3. Wakeups don't really cause entry into schedule(). They add a 6358 * task to the run-queue and that's it. 6359 * 6360 * Now, if the new task added to the run-queue preempts the current 6361 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6362 * called on the nearest possible occasion: 6363 * 6364 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6365 * 6366 * - in syscall or exception context, at the next outmost 6367 * preempt_enable(). (this might be as soon as the wake_up()'s 6368 * spin_unlock()!) 6369 * 6370 * - in IRQ context, return from interrupt-handler to 6371 * preemptible context 6372 * 6373 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6374 * then at the next: 6375 * 6376 * - cond_resched() call 6377 * - explicit schedule() call 6378 * - return from syscall or exception to user-space 6379 * - return from interrupt-handler to user-space 6380 * 6381 * WARNING: must be called with preemption disabled! 6382 */ 6383 static void __sched notrace __schedule(unsigned int sched_mode) 6384 { 6385 struct task_struct *prev, *next; 6386 unsigned long *switch_count; 6387 unsigned long prev_state; 6388 struct rq_flags rf; 6389 struct rq *rq; 6390 int cpu; 6391 6392 cpu = smp_processor_id(); 6393 rq = cpu_rq(cpu); 6394 prev = rq->curr; 6395 6396 schedule_debug(prev, !!sched_mode); 6397 6398 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6399 hrtick_clear(rq); 6400 6401 local_irq_disable(); 6402 rcu_note_context_switch(!!sched_mode); 6403 6404 /* 6405 * Make sure that signal_pending_state()->signal_pending() below 6406 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6407 * done by the caller to avoid the race with signal_wake_up(): 6408 * 6409 * __set_current_state(@state) signal_wake_up() 6410 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6411 * wake_up_state(p, state) 6412 * LOCK rq->lock LOCK p->pi_state 6413 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6414 * if (signal_pending_state()) if (p->state & @state) 6415 * 6416 * Also, the membarrier system call requires a full memory barrier 6417 * after coming from user-space, before storing to rq->curr. 6418 */ 6419 rq_lock(rq, &rf); 6420 smp_mb__after_spinlock(); 6421 6422 /* Promote REQ to ACT */ 6423 rq->clock_update_flags <<= 1; 6424 update_rq_clock(rq); 6425 6426 switch_count = &prev->nivcsw; 6427 6428 /* 6429 * We must load prev->state once (task_struct::state is volatile), such 6430 * that we form a control dependency vs deactivate_task() below. 6431 */ 6432 prev_state = READ_ONCE(prev->__state); 6433 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6434 if (signal_pending_state(prev_state, prev)) { 6435 WRITE_ONCE(prev->__state, TASK_RUNNING); 6436 } else { 6437 prev->sched_contributes_to_load = 6438 (prev_state & TASK_UNINTERRUPTIBLE) && 6439 !(prev_state & TASK_NOLOAD) && 6440 !(prev_state & TASK_FROZEN); 6441 6442 if (prev->sched_contributes_to_load) 6443 rq->nr_uninterruptible++; 6444 6445 /* 6446 * __schedule() ttwu() 6447 * prev_state = prev->state; if (p->on_rq && ...) 6448 * if (prev_state) goto out; 6449 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6450 * p->state = TASK_WAKING 6451 * 6452 * Where __schedule() and ttwu() have matching control dependencies. 6453 * 6454 * After this, schedule() must not care about p->state any more. 6455 */ 6456 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6457 6458 if (prev->in_iowait) { 6459 atomic_inc(&rq->nr_iowait); 6460 delayacct_blkio_start(); 6461 } 6462 } 6463 switch_count = &prev->nvcsw; 6464 } 6465 6466 next = pick_next_task(rq, prev, &rf); 6467 clear_tsk_need_resched(prev); 6468 clear_preempt_need_resched(); 6469 #ifdef CONFIG_SCHED_DEBUG 6470 rq->last_seen_need_resched_ns = 0; 6471 #endif 6472 6473 if (likely(prev != next)) { 6474 rq->nr_switches++; 6475 /* 6476 * RCU users of rcu_dereference(rq->curr) may not see 6477 * changes to task_struct made by pick_next_task(). 6478 */ 6479 RCU_INIT_POINTER(rq->curr, next); 6480 /* 6481 * The membarrier system call requires each architecture 6482 * to have a full memory barrier after updating 6483 * rq->curr, before returning to user-space. 6484 * 6485 * Here are the schemes providing that barrier on the 6486 * various architectures: 6487 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 6488 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 6489 * - finish_lock_switch() for weakly-ordered 6490 * architectures where spin_unlock is a full barrier, 6491 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6492 * is a RELEASE barrier), 6493 */ 6494 ++*switch_count; 6495 6496 migrate_disable_switch(rq, prev); 6497 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6498 6499 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); 6500 6501 /* Also unlocks the rq: */ 6502 rq = context_switch(rq, prev, next, &rf); 6503 } else { 6504 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 6505 6506 rq_unpin_lock(rq, &rf); 6507 __balance_callbacks(rq); 6508 raw_spin_rq_unlock_irq(rq); 6509 } 6510 } 6511 6512 void __noreturn do_task_dead(void) 6513 { 6514 /* Causes final put_task_struct in finish_task_switch(): */ 6515 set_special_state(TASK_DEAD); 6516 6517 /* Tell freezer to ignore us: */ 6518 current->flags |= PF_NOFREEZE; 6519 6520 __schedule(SM_NONE); 6521 BUG(); 6522 6523 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6524 for (;;) 6525 cpu_relax(); 6526 } 6527 6528 static inline void sched_submit_work(struct task_struct *tsk) 6529 { 6530 unsigned int task_flags; 6531 6532 if (task_is_running(tsk)) 6533 return; 6534 6535 task_flags = tsk->flags; 6536 /* 6537 * If a worker goes to sleep, notify and ask workqueue whether it 6538 * wants to wake up a task to maintain concurrency. 6539 */ 6540 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6541 if (task_flags & PF_WQ_WORKER) 6542 wq_worker_sleeping(tsk); 6543 else 6544 io_wq_worker_sleeping(tsk); 6545 } 6546 6547 /* 6548 * spinlock and rwlock must not flush block requests. This will 6549 * deadlock if the callback attempts to acquire a lock which is 6550 * already acquired. 6551 */ 6552 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6553 6554 /* 6555 * If we are going to sleep and we have plugged IO queued, 6556 * make sure to submit it to avoid deadlocks. 6557 */ 6558 blk_flush_plug(tsk->plug, true); 6559 } 6560 6561 static void sched_update_worker(struct task_struct *tsk) 6562 { 6563 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6564 if (tsk->flags & PF_WQ_WORKER) 6565 wq_worker_running(tsk); 6566 else 6567 io_wq_worker_running(tsk); 6568 } 6569 } 6570 6571 asmlinkage __visible void __sched schedule(void) 6572 { 6573 struct task_struct *tsk = current; 6574 6575 sched_submit_work(tsk); 6576 do { 6577 preempt_disable(); 6578 __schedule(SM_NONE); 6579 sched_preempt_enable_no_resched(); 6580 } while (need_resched()); 6581 sched_update_worker(tsk); 6582 } 6583 EXPORT_SYMBOL(schedule); 6584 6585 /* 6586 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6587 * state (have scheduled out non-voluntarily) by making sure that all 6588 * tasks have either left the run queue or have gone into user space. 6589 * As idle tasks do not do either, they must not ever be preempted 6590 * (schedule out non-voluntarily). 6591 * 6592 * schedule_idle() is similar to schedule_preempt_disable() except that it 6593 * never enables preemption because it does not call sched_submit_work(). 6594 */ 6595 void __sched schedule_idle(void) 6596 { 6597 /* 6598 * As this skips calling sched_submit_work(), which the idle task does 6599 * regardless because that function is a nop when the task is in a 6600 * TASK_RUNNING state, make sure this isn't used someplace that the 6601 * current task can be in any other state. Note, idle is always in the 6602 * TASK_RUNNING state. 6603 */ 6604 WARN_ON_ONCE(current->__state); 6605 do { 6606 __schedule(SM_NONE); 6607 } while (need_resched()); 6608 } 6609 6610 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6611 asmlinkage __visible void __sched schedule_user(void) 6612 { 6613 /* 6614 * If we come here after a random call to set_need_resched(), 6615 * or we have been woken up remotely but the IPI has not yet arrived, 6616 * we haven't yet exited the RCU idle mode. Do it here manually until 6617 * we find a better solution. 6618 * 6619 * NB: There are buggy callers of this function. Ideally we 6620 * should warn if prev_state != CONTEXT_USER, but that will trigger 6621 * too frequently to make sense yet. 6622 */ 6623 enum ctx_state prev_state = exception_enter(); 6624 schedule(); 6625 exception_exit(prev_state); 6626 } 6627 #endif 6628 6629 /** 6630 * schedule_preempt_disabled - called with preemption disabled 6631 * 6632 * Returns with preemption disabled. Note: preempt_count must be 1 6633 */ 6634 void __sched schedule_preempt_disabled(void) 6635 { 6636 sched_preempt_enable_no_resched(); 6637 schedule(); 6638 preempt_disable(); 6639 } 6640 6641 #ifdef CONFIG_PREEMPT_RT 6642 void __sched notrace schedule_rtlock(void) 6643 { 6644 do { 6645 preempt_disable(); 6646 __schedule(SM_RTLOCK_WAIT); 6647 sched_preempt_enable_no_resched(); 6648 } while (need_resched()); 6649 } 6650 NOKPROBE_SYMBOL(schedule_rtlock); 6651 #endif 6652 6653 static void __sched notrace preempt_schedule_common(void) 6654 { 6655 do { 6656 /* 6657 * Because the function tracer can trace preempt_count_sub() 6658 * and it also uses preempt_enable/disable_notrace(), if 6659 * NEED_RESCHED is set, the preempt_enable_notrace() called 6660 * by the function tracer will call this function again and 6661 * cause infinite recursion. 6662 * 6663 * Preemption must be disabled here before the function 6664 * tracer can trace. Break up preempt_disable() into two 6665 * calls. One to disable preemption without fear of being 6666 * traced. The other to still record the preemption latency, 6667 * which can also be traced by the function tracer. 6668 */ 6669 preempt_disable_notrace(); 6670 preempt_latency_start(1); 6671 __schedule(SM_PREEMPT); 6672 preempt_latency_stop(1); 6673 preempt_enable_no_resched_notrace(); 6674 6675 /* 6676 * Check again in case we missed a preemption opportunity 6677 * between schedule and now. 6678 */ 6679 } while (need_resched()); 6680 } 6681 6682 #ifdef CONFIG_PREEMPTION 6683 /* 6684 * This is the entry point to schedule() from in-kernel preemption 6685 * off of preempt_enable. 6686 */ 6687 asmlinkage __visible void __sched notrace preempt_schedule(void) 6688 { 6689 /* 6690 * If there is a non-zero preempt_count or interrupts are disabled, 6691 * we do not want to preempt the current task. Just return.. 6692 */ 6693 if (likely(!preemptible())) 6694 return; 6695 preempt_schedule_common(); 6696 } 6697 NOKPROBE_SYMBOL(preempt_schedule); 6698 EXPORT_SYMBOL(preempt_schedule); 6699 6700 #ifdef CONFIG_PREEMPT_DYNAMIC 6701 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6702 #ifndef preempt_schedule_dynamic_enabled 6703 #define preempt_schedule_dynamic_enabled preempt_schedule 6704 #define preempt_schedule_dynamic_disabled NULL 6705 #endif 6706 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6707 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6708 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6709 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6710 void __sched notrace dynamic_preempt_schedule(void) 6711 { 6712 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6713 return; 6714 preempt_schedule(); 6715 } 6716 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6717 EXPORT_SYMBOL(dynamic_preempt_schedule); 6718 #endif 6719 #endif 6720 6721 /** 6722 * preempt_schedule_notrace - preempt_schedule called by tracing 6723 * 6724 * The tracing infrastructure uses preempt_enable_notrace to prevent 6725 * recursion and tracing preempt enabling caused by the tracing 6726 * infrastructure itself. But as tracing can happen in areas coming 6727 * from userspace or just about to enter userspace, a preempt enable 6728 * can occur before user_exit() is called. This will cause the scheduler 6729 * to be called when the system is still in usermode. 6730 * 6731 * To prevent this, the preempt_enable_notrace will use this function 6732 * instead of preempt_schedule() to exit user context if needed before 6733 * calling the scheduler. 6734 */ 6735 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6736 { 6737 enum ctx_state prev_ctx; 6738 6739 if (likely(!preemptible())) 6740 return; 6741 6742 do { 6743 /* 6744 * Because the function tracer can trace preempt_count_sub() 6745 * and it also uses preempt_enable/disable_notrace(), if 6746 * NEED_RESCHED is set, the preempt_enable_notrace() called 6747 * by the function tracer will call this function again and 6748 * cause infinite recursion. 6749 * 6750 * Preemption must be disabled here before the function 6751 * tracer can trace. Break up preempt_disable() into two 6752 * calls. One to disable preemption without fear of being 6753 * traced. The other to still record the preemption latency, 6754 * which can also be traced by the function tracer. 6755 */ 6756 preempt_disable_notrace(); 6757 preempt_latency_start(1); 6758 /* 6759 * Needs preempt disabled in case user_exit() is traced 6760 * and the tracer calls preempt_enable_notrace() causing 6761 * an infinite recursion. 6762 */ 6763 prev_ctx = exception_enter(); 6764 __schedule(SM_PREEMPT); 6765 exception_exit(prev_ctx); 6766 6767 preempt_latency_stop(1); 6768 preempt_enable_no_resched_notrace(); 6769 } while (need_resched()); 6770 } 6771 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6772 6773 #ifdef CONFIG_PREEMPT_DYNAMIC 6774 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6775 #ifndef preempt_schedule_notrace_dynamic_enabled 6776 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6777 #define preempt_schedule_notrace_dynamic_disabled NULL 6778 #endif 6779 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6780 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6781 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6782 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6783 void __sched notrace dynamic_preempt_schedule_notrace(void) 6784 { 6785 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6786 return; 6787 preempt_schedule_notrace(); 6788 } 6789 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6790 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6791 #endif 6792 #endif 6793 6794 #endif /* CONFIG_PREEMPTION */ 6795 6796 /* 6797 * This is the entry point to schedule() from kernel preemption 6798 * off of irq context. 6799 * Note, that this is called and return with irqs disabled. This will 6800 * protect us against recursive calling from irq. 6801 */ 6802 asmlinkage __visible void __sched preempt_schedule_irq(void) 6803 { 6804 enum ctx_state prev_state; 6805 6806 /* Catch callers which need to be fixed */ 6807 BUG_ON(preempt_count() || !irqs_disabled()); 6808 6809 prev_state = exception_enter(); 6810 6811 do { 6812 preempt_disable(); 6813 local_irq_enable(); 6814 __schedule(SM_PREEMPT); 6815 local_irq_disable(); 6816 sched_preempt_enable_no_resched(); 6817 } while (need_resched()); 6818 6819 exception_exit(prev_state); 6820 } 6821 6822 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6823 void *key) 6824 { 6825 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 6826 return try_to_wake_up(curr->private, mode, wake_flags); 6827 } 6828 EXPORT_SYMBOL(default_wake_function); 6829 6830 static void __setscheduler_prio(struct task_struct *p, int prio) 6831 { 6832 if (dl_prio(prio)) 6833 p->sched_class = &dl_sched_class; 6834 else if (rt_prio(prio)) 6835 p->sched_class = &rt_sched_class; 6836 else 6837 p->sched_class = &fair_sched_class; 6838 6839 p->prio = prio; 6840 } 6841 6842 #ifdef CONFIG_RT_MUTEXES 6843 6844 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 6845 { 6846 if (pi_task) 6847 prio = min(prio, pi_task->prio); 6848 6849 return prio; 6850 } 6851 6852 static inline int rt_effective_prio(struct task_struct *p, int prio) 6853 { 6854 struct task_struct *pi_task = rt_mutex_get_top_task(p); 6855 6856 return __rt_effective_prio(pi_task, prio); 6857 } 6858 6859 /* 6860 * rt_mutex_setprio - set the current priority of a task 6861 * @p: task to boost 6862 * @pi_task: donor task 6863 * 6864 * This function changes the 'effective' priority of a task. It does 6865 * not touch ->normal_prio like __setscheduler(). 6866 * 6867 * Used by the rt_mutex code to implement priority inheritance 6868 * logic. Call site only calls if the priority of the task changed. 6869 */ 6870 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 6871 { 6872 int prio, oldprio, queued, running, queue_flag = 6873 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6874 const struct sched_class *prev_class; 6875 struct rq_flags rf; 6876 struct rq *rq; 6877 6878 /* XXX used to be waiter->prio, not waiter->task->prio */ 6879 prio = __rt_effective_prio(pi_task, p->normal_prio); 6880 6881 /* 6882 * If nothing changed; bail early. 6883 */ 6884 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 6885 return; 6886 6887 rq = __task_rq_lock(p, &rf); 6888 update_rq_clock(rq); 6889 /* 6890 * Set under pi_lock && rq->lock, such that the value can be used under 6891 * either lock. 6892 * 6893 * Note that there is loads of tricky to make this pointer cache work 6894 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 6895 * ensure a task is de-boosted (pi_task is set to NULL) before the 6896 * task is allowed to run again (and can exit). This ensures the pointer 6897 * points to a blocked task -- which guarantees the task is present. 6898 */ 6899 p->pi_top_task = pi_task; 6900 6901 /* 6902 * For FIFO/RR we only need to set prio, if that matches we're done. 6903 */ 6904 if (prio == p->prio && !dl_prio(prio)) 6905 goto out_unlock; 6906 6907 /* 6908 * Idle task boosting is a nono in general. There is one 6909 * exception, when PREEMPT_RT and NOHZ is active: 6910 * 6911 * The idle task calls get_next_timer_interrupt() and holds 6912 * the timer wheel base->lock on the CPU and another CPU wants 6913 * to access the timer (probably to cancel it). We can safely 6914 * ignore the boosting request, as the idle CPU runs this code 6915 * with interrupts disabled and will complete the lock 6916 * protected section without being interrupted. So there is no 6917 * real need to boost. 6918 */ 6919 if (unlikely(p == rq->idle)) { 6920 WARN_ON(p != rq->curr); 6921 WARN_ON(p->pi_blocked_on); 6922 goto out_unlock; 6923 } 6924 6925 trace_sched_pi_setprio(p, pi_task); 6926 oldprio = p->prio; 6927 6928 if (oldprio == prio) 6929 queue_flag &= ~DEQUEUE_MOVE; 6930 6931 prev_class = p->sched_class; 6932 queued = task_on_rq_queued(p); 6933 running = task_current(rq, p); 6934 if (queued) 6935 dequeue_task(rq, p, queue_flag); 6936 if (running) 6937 put_prev_task(rq, p); 6938 6939 /* 6940 * Boosting condition are: 6941 * 1. -rt task is running and holds mutex A 6942 * --> -dl task blocks on mutex A 6943 * 6944 * 2. -dl task is running and holds mutex A 6945 * --> -dl task blocks on mutex A and could preempt the 6946 * running task 6947 */ 6948 if (dl_prio(prio)) { 6949 if (!dl_prio(p->normal_prio) || 6950 (pi_task && dl_prio(pi_task->prio) && 6951 dl_entity_preempt(&pi_task->dl, &p->dl))) { 6952 p->dl.pi_se = pi_task->dl.pi_se; 6953 queue_flag |= ENQUEUE_REPLENISH; 6954 } else { 6955 p->dl.pi_se = &p->dl; 6956 } 6957 } else if (rt_prio(prio)) { 6958 if (dl_prio(oldprio)) 6959 p->dl.pi_se = &p->dl; 6960 if (oldprio < prio) 6961 queue_flag |= ENQUEUE_HEAD; 6962 } else { 6963 if (dl_prio(oldprio)) 6964 p->dl.pi_se = &p->dl; 6965 if (rt_prio(oldprio)) 6966 p->rt.timeout = 0; 6967 } 6968 6969 __setscheduler_prio(p, prio); 6970 6971 if (queued) 6972 enqueue_task(rq, p, queue_flag); 6973 if (running) 6974 set_next_task(rq, p); 6975 6976 check_class_changed(rq, p, prev_class, oldprio); 6977 out_unlock: 6978 /* Avoid rq from going away on us: */ 6979 preempt_disable(); 6980 6981 rq_unpin_lock(rq, &rf); 6982 __balance_callbacks(rq); 6983 raw_spin_rq_unlock(rq); 6984 6985 preempt_enable(); 6986 } 6987 #else 6988 static inline int rt_effective_prio(struct task_struct *p, int prio) 6989 { 6990 return prio; 6991 } 6992 #endif 6993 6994 void set_user_nice(struct task_struct *p, long nice) 6995 { 6996 bool queued, running; 6997 int old_prio; 6998 struct rq_flags rf; 6999 struct rq *rq; 7000 7001 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 7002 return; 7003 /* 7004 * We have to be careful, if called from sys_setpriority(), 7005 * the task might be in the middle of scheduling on another CPU. 7006 */ 7007 rq = task_rq_lock(p, &rf); 7008 update_rq_clock(rq); 7009 7010 /* 7011 * The RT priorities are set via sched_setscheduler(), but we still 7012 * allow the 'normal' nice value to be set - but as expected 7013 * it won't have any effect on scheduling until the task is 7014 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 7015 */ 7016 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 7017 p->static_prio = NICE_TO_PRIO(nice); 7018 goto out_unlock; 7019 } 7020 queued = task_on_rq_queued(p); 7021 running = task_current(rq, p); 7022 if (queued) 7023 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 7024 if (running) 7025 put_prev_task(rq, p); 7026 7027 p->static_prio = NICE_TO_PRIO(nice); 7028 set_load_weight(p, true); 7029 old_prio = p->prio; 7030 p->prio = effective_prio(p); 7031 7032 if (queued) 7033 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7034 if (running) 7035 set_next_task(rq, p); 7036 7037 /* 7038 * If the task increased its priority or is running and 7039 * lowered its priority, then reschedule its CPU: 7040 */ 7041 p->sched_class->prio_changed(rq, p, old_prio); 7042 7043 out_unlock: 7044 task_rq_unlock(rq, p, &rf); 7045 } 7046 EXPORT_SYMBOL(set_user_nice); 7047 7048 /* 7049 * is_nice_reduction - check if nice value is an actual reduction 7050 * 7051 * Similar to can_nice() but does not perform a capability check. 7052 * 7053 * @p: task 7054 * @nice: nice value 7055 */ 7056 static bool is_nice_reduction(const struct task_struct *p, const int nice) 7057 { 7058 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 7059 int nice_rlim = nice_to_rlimit(nice); 7060 7061 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); 7062 } 7063 7064 /* 7065 * can_nice - check if a task can reduce its nice value 7066 * @p: task 7067 * @nice: nice value 7068 */ 7069 int can_nice(const struct task_struct *p, const int nice) 7070 { 7071 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); 7072 } 7073 7074 #ifdef __ARCH_WANT_SYS_NICE 7075 7076 /* 7077 * sys_nice - change the priority of the current process. 7078 * @increment: priority increment 7079 * 7080 * sys_setpriority is a more generic, but much slower function that 7081 * does similar things. 7082 */ 7083 SYSCALL_DEFINE1(nice, int, increment) 7084 { 7085 long nice, retval; 7086 7087 /* 7088 * Setpriority might change our priority at the same moment. 7089 * We don't have to worry. Conceptually one call occurs first 7090 * and we have a single winner. 7091 */ 7092 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 7093 nice = task_nice(current) + increment; 7094 7095 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 7096 if (increment < 0 && !can_nice(current, nice)) 7097 return -EPERM; 7098 7099 retval = security_task_setnice(current, nice); 7100 if (retval) 7101 return retval; 7102 7103 set_user_nice(current, nice); 7104 return 0; 7105 } 7106 7107 #endif 7108 7109 /** 7110 * task_prio - return the priority value of a given task. 7111 * @p: the task in question. 7112 * 7113 * Return: The priority value as seen by users in /proc. 7114 * 7115 * sched policy return value kernel prio user prio/nice 7116 * 7117 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 7118 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 7119 * deadline -101 -1 0 7120 */ 7121 int task_prio(const struct task_struct *p) 7122 { 7123 return p->prio - MAX_RT_PRIO; 7124 } 7125 7126 /** 7127 * idle_cpu - is a given CPU idle currently? 7128 * @cpu: the processor in question. 7129 * 7130 * Return: 1 if the CPU is currently idle. 0 otherwise. 7131 */ 7132 int idle_cpu(int cpu) 7133 { 7134 struct rq *rq = cpu_rq(cpu); 7135 7136 if (rq->curr != rq->idle) 7137 return 0; 7138 7139 if (rq->nr_running) 7140 return 0; 7141 7142 #ifdef CONFIG_SMP 7143 if (rq->ttwu_pending) 7144 return 0; 7145 #endif 7146 7147 return 1; 7148 } 7149 7150 /** 7151 * available_idle_cpu - is a given CPU idle for enqueuing work. 7152 * @cpu: the CPU in question. 7153 * 7154 * Return: 1 if the CPU is currently idle. 0 otherwise. 7155 */ 7156 int available_idle_cpu(int cpu) 7157 { 7158 if (!idle_cpu(cpu)) 7159 return 0; 7160 7161 if (vcpu_is_preempted(cpu)) 7162 return 0; 7163 7164 return 1; 7165 } 7166 7167 /** 7168 * idle_task - return the idle task for a given CPU. 7169 * @cpu: the processor in question. 7170 * 7171 * Return: The idle task for the CPU @cpu. 7172 */ 7173 struct task_struct *idle_task(int cpu) 7174 { 7175 return cpu_rq(cpu)->idle; 7176 } 7177 7178 #ifdef CONFIG_SMP 7179 /* 7180 * This function computes an effective utilization for the given CPU, to be 7181 * used for frequency selection given the linear relation: f = u * f_max. 7182 * 7183 * The scheduler tracks the following metrics: 7184 * 7185 * cpu_util_{cfs,rt,dl,irq}() 7186 * cpu_bw_dl() 7187 * 7188 * Where the cfs,rt and dl util numbers are tracked with the same metric and 7189 * synchronized windows and are thus directly comparable. 7190 * 7191 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 7192 * which excludes things like IRQ and steal-time. These latter are then accrued 7193 * in the irq utilization. 7194 * 7195 * The DL bandwidth number otoh is not a measured metric but a value computed 7196 * based on the task model parameters and gives the minimal utilization 7197 * required to meet deadlines. 7198 */ 7199 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 7200 enum cpu_util_type type, 7201 struct task_struct *p) 7202 { 7203 unsigned long dl_util, util, irq, max; 7204 struct rq *rq = cpu_rq(cpu); 7205 7206 max = arch_scale_cpu_capacity(cpu); 7207 7208 if (!uclamp_is_used() && 7209 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 7210 return max; 7211 } 7212 7213 /* 7214 * Early check to see if IRQ/steal time saturates the CPU, can be 7215 * because of inaccuracies in how we track these -- see 7216 * update_irq_load_avg(). 7217 */ 7218 irq = cpu_util_irq(rq); 7219 if (unlikely(irq >= max)) 7220 return max; 7221 7222 /* 7223 * Because the time spend on RT/DL tasks is visible as 'lost' time to 7224 * CFS tasks and we use the same metric to track the effective 7225 * utilization (PELT windows are synchronized) we can directly add them 7226 * to obtain the CPU's actual utilization. 7227 * 7228 * CFS and RT utilization can be boosted or capped, depending on 7229 * utilization clamp constraints requested by currently RUNNABLE 7230 * tasks. 7231 * When there are no CFS RUNNABLE tasks, clamps are released and 7232 * frequency will be gracefully reduced with the utilization decay. 7233 */ 7234 util = util_cfs + cpu_util_rt(rq); 7235 if (type == FREQUENCY_UTIL) 7236 util = uclamp_rq_util_with(rq, util, p); 7237 7238 dl_util = cpu_util_dl(rq); 7239 7240 /* 7241 * For frequency selection we do not make cpu_util_dl() a permanent part 7242 * of this sum because we want to use cpu_bw_dl() later on, but we need 7243 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 7244 * that we select f_max when there is no idle time. 7245 * 7246 * NOTE: numerical errors or stop class might cause us to not quite hit 7247 * saturation when we should -- something for later. 7248 */ 7249 if (util + dl_util >= max) 7250 return max; 7251 7252 /* 7253 * OTOH, for energy computation we need the estimated running time, so 7254 * include util_dl and ignore dl_bw. 7255 */ 7256 if (type == ENERGY_UTIL) 7257 util += dl_util; 7258 7259 /* 7260 * There is still idle time; further improve the number by using the 7261 * irq metric. Because IRQ/steal time is hidden from the task clock we 7262 * need to scale the task numbers: 7263 * 7264 * max - irq 7265 * U' = irq + --------- * U 7266 * max 7267 */ 7268 util = scale_irq_capacity(util, irq, max); 7269 util += irq; 7270 7271 /* 7272 * Bandwidth required by DEADLINE must always be granted while, for 7273 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 7274 * to gracefully reduce the frequency when no tasks show up for longer 7275 * periods of time. 7276 * 7277 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 7278 * bw_dl as requested freq. However, cpufreq is not yet ready for such 7279 * an interface. So, we only do the latter for now. 7280 */ 7281 if (type == FREQUENCY_UTIL) 7282 util += cpu_bw_dl(rq); 7283 7284 return min(max, util); 7285 } 7286 7287 unsigned long sched_cpu_util(int cpu) 7288 { 7289 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL); 7290 } 7291 #endif /* CONFIG_SMP */ 7292 7293 /** 7294 * find_process_by_pid - find a process with a matching PID value. 7295 * @pid: the pid in question. 7296 * 7297 * The task of @pid, if found. %NULL otherwise. 7298 */ 7299 static struct task_struct *find_process_by_pid(pid_t pid) 7300 { 7301 return pid ? find_task_by_vpid(pid) : current; 7302 } 7303 7304 /* 7305 * sched_setparam() passes in -1 for its policy, to let the functions 7306 * it calls know not to change it. 7307 */ 7308 #define SETPARAM_POLICY -1 7309 7310 static void __setscheduler_params(struct task_struct *p, 7311 const struct sched_attr *attr) 7312 { 7313 int policy = attr->sched_policy; 7314 7315 if (policy == SETPARAM_POLICY) 7316 policy = p->policy; 7317 7318 p->policy = policy; 7319 7320 if (dl_policy(policy)) 7321 __setparam_dl(p, attr); 7322 else if (fair_policy(policy)) 7323 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 7324 7325 /* 7326 * __sched_setscheduler() ensures attr->sched_priority == 0 when 7327 * !rt_policy. Always setting this ensures that things like 7328 * getparam()/getattr() don't report silly values for !rt tasks. 7329 */ 7330 p->rt_priority = attr->sched_priority; 7331 p->normal_prio = normal_prio(p); 7332 set_load_weight(p, true); 7333 } 7334 7335 /* 7336 * Check the target process has a UID that matches the current process's: 7337 */ 7338 static bool check_same_owner(struct task_struct *p) 7339 { 7340 const struct cred *cred = current_cred(), *pcred; 7341 bool match; 7342 7343 rcu_read_lock(); 7344 pcred = __task_cred(p); 7345 match = (uid_eq(cred->euid, pcred->euid) || 7346 uid_eq(cred->euid, pcred->uid)); 7347 rcu_read_unlock(); 7348 return match; 7349 } 7350 7351 /* 7352 * Allow unprivileged RT tasks to decrease priority. 7353 * Only issue a capable test if needed and only once to avoid an audit 7354 * event on permitted non-privileged operations: 7355 */ 7356 static int user_check_sched_setscheduler(struct task_struct *p, 7357 const struct sched_attr *attr, 7358 int policy, int reset_on_fork) 7359 { 7360 if (fair_policy(policy)) { 7361 if (attr->sched_nice < task_nice(p) && 7362 !is_nice_reduction(p, attr->sched_nice)) 7363 goto req_priv; 7364 } 7365 7366 if (rt_policy(policy)) { 7367 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); 7368 7369 /* Can't set/change the rt policy: */ 7370 if (policy != p->policy && !rlim_rtprio) 7371 goto req_priv; 7372 7373 /* Can't increase priority: */ 7374 if (attr->sched_priority > p->rt_priority && 7375 attr->sched_priority > rlim_rtprio) 7376 goto req_priv; 7377 } 7378 7379 /* 7380 * Can't set/change SCHED_DEADLINE policy at all for now 7381 * (safest behavior); in the future we would like to allow 7382 * unprivileged DL tasks to increase their relative deadline 7383 * or reduce their runtime (both ways reducing utilization) 7384 */ 7385 if (dl_policy(policy)) 7386 goto req_priv; 7387 7388 /* 7389 * Treat SCHED_IDLE as nice 20. Only allow a switch to 7390 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 7391 */ 7392 if (task_has_idle_policy(p) && !idle_policy(policy)) { 7393 if (!is_nice_reduction(p, task_nice(p))) 7394 goto req_priv; 7395 } 7396 7397 /* Can't change other user's priorities: */ 7398 if (!check_same_owner(p)) 7399 goto req_priv; 7400 7401 /* Normal users shall not reset the sched_reset_on_fork flag: */ 7402 if (p->sched_reset_on_fork && !reset_on_fork) 7403 goto req_priv; 7404 7405 return 0; 7406 7407 req_priv: 7408 if (!capable(CAP_SYS_NICE)) 7409 return -EPERM; 7410 7411 return 0; 7412 } 7413 7414 static int __sched_setscheduler(struct task_struct *p, 7415 const struct sched_attr *attr, 7416 bool user, bool pi) 7417 { 7418 int oldpolicy = -1, policy = attr->sched_policy; 7419 int retval, oldprio, newprio, queued, running; 7420 const struct sched_class *prev_class; 7421 struct callback_head *head; 7422 struct rq_flags rf; 7423 int reset_on_fork; 7424 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7425 struct rq *rq; 7426 7427 /* The pi code expects interrupts enabled */ 7428 BUG_ON(pi && in_interrupt()); 7429 recheck: 7430 /* Double check policy once rq lock held: */ 7431 if (policy < 0) { 7432 reset_on_fork = p->sched_reset_on_fork; 7433 policy = oldpolicy = p->policy; 7434 } else { 7435 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 7436 7437 if (!valid_policy(policy)) 7438 return -EINVAL; 7439 } 7440 7441 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 7442 return -EINVAL; 7443 7444 /* 7445 * Valid priorities for SCHED_FIFO and SCHED_RR are 7446 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 7447 * SCHED_BATCH and SCHED_IDLE is 0. 7448 */ 7449 if (attr->sched_priority > MAX_RT_PRIO-1) 7450 return -EINVAL; 7451 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 7452 (rt_policy(policy) != (attr->sched_priority != 0))) 7453 return -EINVAL; 7454 7455 if (user) { 7456 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); 7457 if (retval) 7458 return retval; 7459 7460 if (attr->sched_flags & SCHED_FLAG_SUGOV) 7461 return -EINVAL; 7462 7463 retval = security_task_setscheduler(p); 7464 if (retval) 7465 return retval; 7466 } 7467 7468 /* Update task specific "requested" clamps */ 7469 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 7470 retval = uclamp_validate(p, attr); 7471 if (retval) 7472 return retval; 7473 } 7474 7475 if (pi) 7476 cpuset_read_lock(); 7477 7478 /* 7479 * Make sure no PI-waiters arrive (or leave) while we are 7480 * changing the priority of the task: 7481 * 7482 * To be able to change p->policy safely, the appropriate 7483 * runqueue lock must be held. 7484 */ 7485 rq = task_rq_lock(p, &rf); 7486 update_rq_clock(rq); 7487 7488 /* 7489 * Changing the policy of the stop threads its a very bad idea: 7490 */ 7491 if (p == rq->stop) { 7492 retval = -EINVAL; 7493 goto unlock; 7494 } 7495 7496 /* 7497 * If not changing anything there's no need to proceed further, 7498 * but store a possible modification of reset_on_fork. 7499 */ 7500 if (unlikely(policy == p->policy)) { 7501 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 7502 goto change; 7503 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 7504 goto change; 7505 if (dl_policy(policy) && dl_param_changed(p, attr)) 7506 goto change; 7507 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 7508 goto change; 7509 7510 p->sched_reset_on_fork = reset_on_fork; 7511 retval = 0; 7512 goto unlock; 7513 } 7514 change: 7515 7516 if (user) { 7517 #ifdef CONFIG_RT_GROUP_SCHED 7518 /* 7519 * Do not allow realtime tasks into groups that have no runtime 7520 * assigned. 7521 */ 7522 if (rt_bandwidth_enabled() && rt_policy(policy) && 7523 task_group(p)->rt_bandwidth.rt_runtime == 0 && 7524 !task_group_is_autogroup(task_group(p))) { 7525 retval = -EPERM; 7526 goto unlock; 7527 } 7528 #endif 7529 #ifdef CONFIG_SMP 7530 if (dl_bandwidth_enabled() && dl_policy(policy) && 7531 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 7532 cpumask_t *span = rq->rd->span; 7533 7534 /* 7535 * Don't allow tasks with an affinity mask smaller than 7536 * the entire root_domain to become SCHED_DEADLINE. We 7537 * will also fail if there's no bandwidth available. 7538 */ 7539 if (!cpumask_subset(span, p->cpus_ptr) || 7540 rq->rd->dl_bw.bw == 0) { 7541 retval = -EPERM; 7542 goto unlock; 7543 } 7544 } 7545 #endif 7546 } 7547 7548 /* Re-check policy now with rq lock held: */ 7549 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 7550 policy = oldpolicy = -1; 7551 task_rq_unlock(rq, p, &rf); 7552 if (pi) 7553 cpuset_read_unlock(); 7554 goto recheck; 7555 } 7556 7557 /* 7558 * If setscheduling to SCHED_DEADLINE (or changing the parameters 7559 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 7560 * is available. 7561 */ 7562 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 7563 retval = -EBUSY; 7564 goto unlock; 7565 } 7566 7567 p->sched_reset_on_fork = reset_on_fork; 7568 oldprio = p->prio; 7569 7570 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); 7571 if (pi) { 7572 /* 7573 * Take priority boosted tasks into account. If the new 7574 * effective priority is unchanged, we just store the new 7575 * normal parameters and do not touch the scheduler class and 7576 * the runqueue. This will be done when the task deboost 7577 * itself. 7578 */ 7579 newprio = rt_effective_prio(p, newprio); 7580 if (newprio == oldprio) 7581 queue_flags &= ~DEQUEUE_MOVE; 7582 } 7583 7584 queued = task_on_rq_queued(p); 7585 running = task_current(rq, p); 7586 if (queued) 7587 dequeue_task(rq, p, queue_flags); 7588 if (running) 7589 put_prev_task(rq, p); 7590 7591 prev_class = p->sched_class; 7592 7593 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { 7594 __setscheduler_params(p, attr); 7595 __setscheduler_prio(p, newprio); 7596 } 7597 __setscheduler_uclamp(p, attr); 7598 7599 if (queued) { 7600 /* 7601 * We enqueue to tail when the priority of a task is 7602 * increased (user space view). 7603 */ 7604 if (oldprio < p->prio) 7605 queue_flags |= ENQUEUE_HEAD; 7606 7607 enqueue_task(rq, p, queue_flags); 7608 } 7609 if (running) 7610 set_next_task(rq, p); 7611 7612 check_class_changed(rq, p, prev_class, oldprio); 7613 7614 /* Avoid rq from going away on us: */ 7615 preempt_disable(); 7616 head = splice_balance_callbacks(rq); 7617 task_rq_unlock(rq, p, &rf); 7618 7619 if (pi) { 7620 cpuset_read_unlock(); 7621 rt_mutex_adjust_pi(p); 7622 } 7623 7624 /* Run balance callbacks after we've adjusted the PI chain: */ 7625 balance_callbacks(rq, head); 7626 preempt_enable(); 7627 7628 return 0; 7629 7630 unlock: 7631 task_rq_unlock(rq, p, &rf); 7632 if (pi) 7633 cpuset_read_unlock(); 7634 return retval; 7635 } 7636 7637 static int _sched_setscheduler(struct task_struct *p, int policy, 7638 const struct sched_param *param, bool check) 7639 { 7640 struct sched_attr attr = { 7641 .sched_policy = policy, 7642 .sched_priority = param->sched_priority, 7643 .sched_nice = PRIO_TO_NICE(p->static_prio), 7644 }; 7645 7646 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 7647 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 7648 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7649 policy &= ~SCHED_RESET_ON_FORK; 7650 attr.sched_policy = policy; 7651 } 7652 7653 return __sched_setscheduler(p, &attr, check, true); 7654 } 7655 /** 7656 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 7657 * @p: the task in question. 7658 * @policy: new policy. 7659 * @param: structure containing the new RT priority. 7660 * 7661 * Use sched_set_fifo(), read its comment. 7662 * 7663 * Return: 0 on success. An error code otherwise. 7664 * 7665 * NOTE that the task may be already dead. 7666 */ 7667 int sched_setscheduler(struct task_struct *p, int policy, 7668 const struct sched_param *param) 7669 { 7670 return _sched_setscheduler(p, policy, param, true); 7671 } 7672 7673 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 7674 { 7675 return __sched_setscheduler(p, attr, true, true); 7676 } 7677 7678 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 7679 { 7680 return __sched_setscheduler(p, attr, false, true); 7681 } 7682 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 7683 7684 /** 7685 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 7686 * @p: the task in question. 7687 * @policy: new policy. 7688 * @param: structure containing the new RT priority. 7689 * 7690 * Just like sched_setscheduler, only don't bother checking if the 7691 * current context has permission. For example, this is needed in 7692 * stop_machine(): we create temporary high priority worker threads, 7693 * but our caller might not have that capability. 7694 * 7695 * Return: 0 on success. An error code otherwise. 7696 */ 7697 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 7698 const struct sched_param *param) 7699 { 7700 return _sched_setscheduler(p, policy, param, false); 7701 } 7702 7703 /* 7704 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 7705 * incapable of resource management, which is the one thing an OS really should 7706 * be doing. 7707 * 7708 * This is of course the reason it is limited to privileged users only. 7709 * 7710 * Worse still; it is fundamentally impossible to compose static priority 7711 * workloads. You cannot take two correctly working static prio workloads 7712 * and smash them together and still expect them to work. 7713 * 7714 * For this reason 'all' FIFO tasks the kernel creates are basically at: 7715 * 7716 * MAX_RT_PRIO / 2 7717 * 7718 * The administrator _MUST_ configure the system, the kernel simply doesn't 7719 * know enough information to make a sensible choice. 7720 */ 7721 void sched_set_fifo(struct task_struct *p) 7722 { 7723 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 7724 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7725 } 7726 EXPORT_SYMBOL_GPL(sched_set_fifo); 7727 7728 /* 7729 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 7730 */ 7731 void sched_set_fifo_low(struct task_struct *p) 7732 { 7733 struct sched_param sp = { .sched_priority = 1 }; 7734 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7735 } 7736 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 7737 7738 void sched_set_normal(struct task_struct *p, int nice) 7739 { 7740 struct sched_attr attr = { 7741 .sched_policy = SCHED_NORMAL, 7742 .sched_nice = nice, 7743 }; 7744 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 7745 } 7746 EXPORT_SYMBOL_GPL(sched_set_normal); 7747 7748 static int 7749 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 7750 { 7751 struct sched_param lparam; 7752 struct task_struct *p; 7753 int retval; 7754 7755 if (!param || pid < 0) 7756 return -EINVAL; 7757 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 7758 return -EFAULT; 7759 7760 rcu_read_lock(); 7761 retval = -ESRCH; 7762 p = find_process_by_pid(pid); 7763 if (likely(p)) 7764 get_task_struct(p); 7765 rcu_read_unlock(); 7766 7767 if (likely(p)) { 7768 retval = sched_setscheduler(p, policy, &lparam); 7769 put_task_struct(p); 7770 } 7771 7772 return retval; 7773 } 7774 7775 /* 7776 * Mimics kernel/events/core.c perf_copy_attr(). 7777 */ 7778 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 7779 { 7780 u32 size; 7781 int ret; 7782 7783 /* Zero the full structure, so that a short copy will be nice: */ 7784 memset(attr, 0, sizeof(*attr)); 7785 7786 ret = get_user(size, &uattr->size); 7787 if (ret) 7788 return ret; 7789 7790 /* ABI compatibility quirk: */ 7791 if (!size) 7792 size = SCHED_ATTR_SIZE_VER0; 7793 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 7794 goto err_size; 7795 7796 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 7797 if (ret) { 7798 if (ret == -E2BIG) 7799 goto err_size; 7800 return ret; 7801 } 7802 7803 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 7804 size < SCHED_ATTR_SIZE_VER1) 7805 return -EINVAL; 7806 7807 /* 7808 * XXX: Do we want to be lenient like existing syscalls; or do we want 7809 * to be strict and return an error on out-of-bounds values? 7810 */ 7811 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 7812 7813 return 0; 7814 7815 err_size: 7816 put_user(sizeof(*attr), &uattr->size); 7817 return -E2BIG; 7818 } 7819 7820 static void get_params(struct task_struct *p, struct sched_attr *attr) 7821 { 7822 if (task_has_dl_policy(p)) 7823 __getparam_dl(p, attr); 7824 else if (task_has_rt_policy(p)) 7825 attr->sched_priority = p->rt_priority; 7826 else 7827 attr->sched_nice = task_nice(p); 7828 } 7829 7830 /** 7831 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 7832 * @pid: the pid in question. 7833 * @policy: new policy. 7834 * @param: structure containing the new RT priority. 7835 * 7836 * Return: 0 on success. An error code otherwise. 7837 */ 7838 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 7839 { 7840 if (policy < 0) 7841 return -EINVAL; 7842 7843 return do_sched_setscheduler(pid, policy, param); 7844 } 7845 7846 /** 7847 * sys_sched_setparam - set/change the RT priority of a thread 7848 * @pid: the pid in question. 7849 * @param: structure containing the new RT priority. 7850 * 7851 * Return: 0 on success. An error code otherwise. 7852 */ 7853 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 7854 { 7855 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 7856 } 7857 7858 /** 7859 * sys_sched_setattr - same as above, but with extended sched_attr 7860 * @pid: the pid in question. 7861 * @uattr: structure containing the extended parameters. 7862 * @flags: for future extension. 7863 */ 7864 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 7865 unsigned int, flags) 7866 { 7867 struct sched_attr attr; 7868 struct task_struct *p; 7869 int retval; 7870 7871 if (!uattr || pid < 0 || flags) 7872 return -EINVAL; 7873 7874 retval = sched_copy_attr(uattr, &attr); 7875 if (retval) 7876 return retval; 7877 7878 if ((int)attr.sched_policy < 0) 7879 return -EINVAL; 7880 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 7881 attr.sched_policy = SETPARAM_POLICY; 7882 7883 rcu_read_lock(); 7884 retval = -ESRCH; 7885 p = find_process_by_pid(pid); 7886 if (likely(p)) 7887 get_task_struct(p); 7888 rcu_read_unlock(); 7889 7890 if (likely(p)) { 7891 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) 7892 get_params(p, &attr); 7893 retval = sched_setattr(p, &attr); 7894 put_task_struct(p); 7895 } 7896 7897 return retval; 7898 } 7899 7900 /** 7901 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 7902 * @pid: the pid in question. 7903 * 7904 * Return: On success, the policy of the thread. Otherwise, a negative error 7905 * code. 7906 */ 7907 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 7908 { 7909 struct task_struct *p; 7910 int retval; 7911 7912 if (pid < 0) 7913 return -EINVAL; 7914 7915 retval = -ESRCH; 7916 rcu_read_lock(); 7917 p = find_process_by_pid(pid); 7918 if (p) { 7919 retval = security_task_getscheduler(p); 7920 if (!retval) 7921 retval = p->policy 7922 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 7923 } 7924 rcu_read_unlock(); 7925 return retval; 7926 } 7927 7928 /** 7929 * sys_sched_getparam - get the RT priority of a thread 7930 * @pid: the pid in question. 7931 * @param: structure containing the RT priority. 7932 * 7933 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 7934 * code. 7935 */ 7936 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 7937 { 7938 struct sched_param lp = { .sched_priority = 0 }; 7939 struct task_struct *p; 7940 int retval; 7941 7942 if (!param || pid < 0) 7943 return -EINVAL; 7944 7945 rcu_read_lock(); 7946 p = find_process_by_pid(pid); 7947 retval = -ESRCH; 7948 if (!p) 7949 goto out_unlock; 7950 7951 retval = security_task_getscheduler(p); 7952 if (retval) 7953 goto out_unlock; 7954 7955 if (task_has_rt_policy(p)) 7956 lp.sched_priority = p->rt_priority; 7957 rcu_read_unlock(); 7958 7959 /* 7960 * This one might sleep, we cannot do it with a spinlock held ... 7961 */ 7962 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 7963 7964 return retval; 7965 7966 out_unlock: 7967 rcu_read_unlock(); 7968 return retval; 7969 } 7970 7971 /* 7972 * Copy the kernel size attribute structure (which might be larger 7973 * than what user-space knows about) to user-space. 7974 * 7975 * Note that all cases are valid: user-space buffer can be larger or 7976 * smaller than the kernel-space buffer. The usual case is that both 7977 * have the same size. 7978 */ 7979 static int 7980 sched_attr_copy_to_user(struct sched_attr __user *uattr, 7981 struct sched_attr *kattr, 7982 unsigned int usize) 7983 { 7984 unsigned int ksize = sizeof(*kattr); 7985 7986 if (!access_ok(uattr, usize)) 7987 return -EFAULT; 7988 7989 /* 7990 * sched_getattr() ABI forwards and backwards compatibility: 7991 * 7992 * If usize == ksize then we just copy everything to user-space and all is good. 7993 * 7994 * If usize < ksize then we only copy as much as user-space has space for, 7995 * this keeps ABI compatibility as well. We skip the rest. 7996 * 7997 * If usize > ksize then user-space is using a newer version of the ABI, 7998 * which part the kernel doesn't know about. Just ignore it - tooling can 7999 * detect the kernel's knowledge of attributes from the attr->size value 8000 * which is set to ksize in this case. 8001 */ 8002 kattr->size = min(usize, ksize); 8003 8004 if (copy_to_user(uattr, kattr, kattr->size)) 8005 return -EFAULT; 8006 8007 return 0; 8008 } 8009 8010 /** 8011 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 8012 * @pid: the pid in question. 8013 * @uattr: structure containing the extended parameters. 8014 * @usize: sizeof(attr) for fwd/bwd comp. 8015 * @flags: for future extension. 8016 */ 8017 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 8018 unsigned int, usize, unsigned int, flags) 8019 { 8020 struct sched_attr kattr = { }; 8021 struct task_struct *p; 8022 int retval; 8023 8024 if (!uattr || pid < 0 || usize > PAGE_SIZE || 8025 usize < SCHED_ATTR_SIZE_VER0 || flags) 8026 return -EINVAL; 8027 8028 rcu_read_lock(); 8029 p = find_process_by_pid(pid); 8030 retval = -ESRCH; 8031 if (!p) 8032 goto out_unlock; 8033 8034 retval = security_task_getscheduler(p); 8035 if (retval) 8036 goto out_unlock; 8037 8038 kattr.sched_policy = p->policy; 8039 if (p->sched_reset_on_fork) 8040 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 8041 get_params(p, &kattr); 8042 kattr.sched_flags &= SCHED_FLAG_ALL; 8043 8044 #ifdef CONFIG_UCLAMP_TASK 8045 /* 8046 * This could race with another potential updater, but this is fine 8047 * because it'll correctly read the old or the new value. We don't need 8048 * to guarantee who wins the race as long as it doesn't return garbage. 8049 */ 8050 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 8051 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 8052 #endif 8053 8054 rcu_read_unlock(); 8055 8056 return sched_attr_copy_to_user(uattr, &kattr, usize); 8057 8058 out_unlock: 8059 rcu_read_unlock(); 8060 return retval; 8061 } 8062 8063 #ifdef CONFIG_SMP 8064 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 8065 { 8066 int ret = 0; 8067 8068 /* 8069 * If the task isn't a deadline task or admission control is 8070 * disabled then we don't care about affinity changes. 8071 */ 8072 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) 8073 return 0; 8074 8075 /* 8076 * Since bandwidth control happens on root_domain basis, 8077 * if admission test is enabled, we only admit -deadline 8078 * tasks allowed to run on all the CPUs in the task's 8079 * root_domain. 8080 */ 8081 rcu_read_lock(); 8082 if (!cpumask_subset(task_rq(p)->rd->span, mask)) 8083 ret = -EBUSY; 8084 rcu_read_unlock(); 8085 return ret; 8086 } 8087 #endif 8088 8089 static int 8090 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask) 8091 { 8092 int retval; 8093 cpumask_var_t cpus_allowed, new_mask; 8094 8095 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) 8096 return -ENOMEM; 8097 8098 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 8099 retval = -ENOMEM; 8100 goto out_free_cpus_allowed; 8101 } 8102 8103 cpuset_cpus_allowed(p, cpus_allowed); 8104 cpumask_and(new_mask, mask, cpus_allowed); 8105 8106 retval = dl_task_check_affinity(p, new_mask); 8107 if (retval) 8108 goto out_free_new_mask; 8109 again: 8110 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER); 8111 if (retval) 8112 goto out_free_new_mask; 8113 8114 cpuset_cpus_allowed(p, cpus_allowed); 8115 if (!cpumask_subset(new_mask, cpus_allowed)) { 8116 /* 8117 * We must have raced with a concurrent cpuset update. 8118 * Just reset the cpumask to the cpuset's cpus_allowed. 8119 */ 8120 cpumask_copy(new_mask, cpus_allowed); 8121 goto again; 8122 } 8123 8124 out_free_new_mask: 8125 free_cpumask_var(new_mask); 8126 out_free_cpus_allowed: 8127 free_cpumask_var(cpus_allowed); 8128 return retval; 8129 } 8130 8131 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 8132 { 8133 struct task_struct *p; 8134 int retval; 8135 8136 rcu_read_lock(); 8137 8138 p = find_process_by_pid(pid); 8139 if (!p) { 8140 rcu_read_unlock(); 8141 return -ESRCH; 8142 } 8143 8144 /* Prevent p going away */ 8145 get_task_struct(p); 8146 rcu_read_unlock(); 8147 8148 if (p->flags & PF_NO_SETAFFINITY) { 8149 retval = -EINVAL; 8150 goto out_put_task; 8151 } 8152 8153 if (!check_same_owner(p)) { 8154 rcu_read_lock(); 8155 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 8156 rcu_read_unlock(); 8157 retval = -EPERM; 8158 goto out_put_task; 8159 } 8160 rcu_read_unlock(); 8161 } 8162 8163 retval = security_task_setscheduler(p); 8164 if (retval) 8165 goto out_put_task; 8166 8167 retval = __sched_setaffinity(p, in_mask); 8168 out_put_task: 8169 put_task_struct(p); 8170 return retval; 8171 } 8172 8173 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 8174 struct cpumask *new_mask) 8175 { 8176 if (len < cpumask_size()) 8177 cpumask_clear(new_mask); 8178 else if (len > cpumask_size()) 8179 len = cpumask_size(); 8180 8181 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 8182 } 8183 8184 /** 8185 * sys_sched_setaffinity - set the CPU affinity of a process 8186 * @pid: pid of the process 8187 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8188 * @user_mask_ptr: user-space pointer to the new CPU mask 8189 * 8190 * Return: 0 on success. An error code otherwise. 8191 */ 8192 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 8193 unsigned long __user *, user_mask_ptr) 8194 { 8195 cpumask_var_t new_mask; 8196 int retval; 8197 8198 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 8199 return -ENOMEM; 8200 8201 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 8202 if (retval == 0) 8203 retval = sched_setaffinity(pid, new_mask); 8204 free_cpumask_var(new_mask); 8205 return retval; 8206 } 8207 8208 long sched_getaffinity(pid_t pid, struct cpumask *mask) 8209 { 8210 struct task_struct *p; 8211 unsigned long flags; 8212 int retval; 8213 8214 rcu_read_lock(); 8215 8216 retval = -ESRCH; 8217 p = find_process_by_pid(pid); 8218 if (!p) 8219 goto out_unlock; 8220 8221 retval = security_task_getscheduler(p); 8222 if (retval) 8223 goto out_unlock; 8224 8225 raw_spin_lock_irqsave(&p->pi_lock, flags); 8226 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 8227 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 8228 8229 out_unlock: 8230 rcu_read_unlock(); 8231 8232 return retval; 8233 } 8234 8235 /** 8236 * sys_sched_getaffinity - get the CPU affinity of a process 8237 * @pid: pid of the process 8238 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8239 * @user_mask_ptr: user-space pointer to hold the current CPU mask 8240 * 8241 * Return: size of CPU mask copied to user_mask_ptr on success. An 8242 * error code otherwise. 8243 */ 8244 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 8245 unsigned long __user *, user_mask_ptr) 8246 { 8247 int ret; 8248 cpumask_var_t mask; 8249 8250 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 8251 return -EINVAL; 8252 if (len & (sizeof(unsigned long)-1)) 8253 return -EINVAL; 8254 8255 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 8256 return -ENOMEM; 8257 8258 ret = sched_getaffinity(pid, mask); 8259 if (ret == 0) { 8260 unsigned int retlen = min(len, cpumask_size()); 8261 8262 if (copy_to_user(user_mask_ptr, mask, retlen)) 8263 ret = -EFAULT; 8264 else 8265 ret = retlen; 8266 } 8267 free_cpumask_var(mask); 8268 8269 return ret; 8270 } 8271 8272 static void do_sched_yield(void) 8273 { 8274 struct rq_flags rf; 8275 struct rq *rq; 8276 8277 rq = this_rq_lock_irq(&rf); 8278 8279 schedstat_inc(rq->yld_count); 8280 current->sched_class->yield_task(rq); 8281 8282 preempt_disable(); 8283 rq_unlock_irq(rq, &rf); 8284 sched_preempt_enable_no_resched(); 8285 8286 schedule(); 8287 } 8288 8289 /** 8290 * sys_sched_yield - yield the current processor to other threads. 8291 * 8292 * This function yields the current CPU to other tasks. If there are no 8293 * other threads running on this CPU then this function will return. 8294 * 8295 * Return: 0. 8296 */ 8297 SYSCALL_DEFINE0(sched_yield) 8298 { 8299 do_sched_yield(); 8300 return 0; 8301 } 8302 8303 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 8304 int __sched __cond_resched(void) 8305 { 8306 if (should_resched(0)) { 8307 preempt_schedule_common(); 8308 return 1; 8309 } 8310 /* 8311 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 8312 * whether the current CPU is in an RCU read-side critical section, 8313 * so the tick can report quiescent states even for CPUs looping 8314 * in kernel context. In contrast, in non-preemptible kernels, 8315 * RCU readers leave no in-memory hints, which means that CPU-bound 8316 * processes executing in kernel context might never report an 8317 * RCU quiescent state. Therefore, the following code causes 8318 * cond_resched() to report a quiescent state, but only when RCU 8319 * is in urgent need of one. 8320 */ 8321 #ifndef CONFIG_PREEMPT_RCU 8322 rcu_all_qs(); 8323 #endif 8324 return 0; 8325 } 8326 EXPORT_SYMBOL(__cond_resched); 8327 #endif 8328 8329 #ifdef CONFIG_PREEMPT_DYNAMIC 8330 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8331 #define cond_resched_dynamic_enabled __cond_resched 8332 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 8333 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 8334 EXPORT_STATIC_CALL_TRAMP(cond_resched); 8335 8336 #define might_resched_dynamic_enabled __cond_resched 8337 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 8338 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 8339 EXPORT_STATIC_CALL_TRAMP(might_resched); 8340 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8341 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 8342 int __sched dynamic_cond_resched(void) 8343 { 8344 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 8345 return 0; 8346 return __cond_resched(); 8347 } 8348 EXPORT_SYMBOL(dynamic_cond_resched); 8349 8350 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 8351 int __sched dynamic_might_resched(void) 8352 { 8353 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 8354 return 0; 8355 return __cond_resched(); 8356 } 8357 EXPORT_SYMBOL(dynamic_might_resched); 8358 #endif 8359 #endif 8360 8361 /* 8362 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 8363 * call schedule, and on return reacquire the lock. 8364 * 8365 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 8366 * operations here to prevent schedule() from being called twice (once via 8367 * spin_unlock(), once by hand). 8368 */ 8369 int __cond_resched_lock(spinlock_t *lock) 8370 { 8371 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8372 int ret = 0; 8373 8374 lockdep_assert_held(lock); 8375 8376 if (spin_needbreak(lock) || resched) { 8377 spin_unlock(lock); 8378 if (!_cond_resched()) 8379 cpu_relax(); 8380 ret = 1; 8381 spin_lock(lock); 8382 } 8383 return ret; 8384 } 8385 EXPORT_SYMBOL(__cond_resched_lock); 8386 8387 int __cond_resched_rwlock_read(rwlock_t *lock) 8388 { 8389 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8390 int ret = 0; 8391 8392 lockdep_assert_held_read(lock); 8393 8394 if (rwlock_needbreak(lock) || resched) { 8395 read_unlock(lock); 8396 if (!_cond_resched()) 8397 cpu_relax(); 8398 ret = 1; 8399 read_lock(lock); 8400 } 8401 return ret; 8402 } 8403 EXPORT_SYMBOL(__cond_resched_rwlock_read); 8404 8405 int __cond_resched_rwlock_write(rwlock_t *lock) 8406 { 8407 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8408 int ret = 0; 8409 8410 lockdep_assert_held_write(lock); 8411 8412 if (rwlock_needbreak(lock) || resched) { 8413 write_unlock(lock); 8414 if (!_cond_resched()) 8415 cpu_relax(); 8416 ret = 1; 8417 write_lock(lock); 8418 } 8419 return ret; 8420 } 8421 EXPORT_SYMBOL(__cond_resched_rwlock_write); 8422 8423 #ifdef CONFIG_PREEMPT_DYNAMIC 8424 8425 #ifdef CONFIG_GENERIC_ENTRY 8426 #include <linux/entry-common.h> 8427 #endif 8428 8429 /* 8430 * SC:cond_resched 8431 * SC:might_resched 8432 * SC:preempt_schedule 8433 * SC:preempt_schedule_notrace 8434 * SC:irqentry_exit_cond_resched 8435 * 8436 * 8437 * NONE: 8438 * cond_resched <- __cond_resched 8439 * might_resched <- RET0 8440 * preempt_schedule <- NOP 8441 * preempt_schedule_notrace <- NOP 8442 * irqentry_exit_cond_resched <- NOP 8443 * 8444 * VOLUNTARY: 8445 * cond_resched <- __cond_resched 8446 * might_resched <- __cond_resched 8447 * preempt_schedule <- NOP 8448 * preempt_schedule_notrace <- NOP 8449 * irqentry_exit_cond_resched <- NOP 8450 * 8451 * FULL: 8452 * cond_resched <- RET0 8453 * might_resched <- RET0 8454 * preempt_schedule <- preempt_schedule 8455 * preempt_schedule_notrace <- preempt_schedule_notrace 8456 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 8457 */ 8458 8459 enum { 8460 preempt_dynamic_undefined = -1, 8461 preempt_dynamic_none, 8462 preempt_dynamic_voluntary, 8463 preempt_dynamic_full, 8464 }; 8465 8466 int preempt_dynamic_mode = preempt_dynamic_undefined; 8467 8468 int sched_dynamic_mode(const char *str) 8469 { 8470 if (!strcmp(str, "none")) 8471 return preempt_dynamic_none; 8472 8473 if (!strcmp(str, "voluntary")) 8474 return preempt_dynamic_voluntary; 8475 8476 if (!strcmp(str, "full")) 8477 return preempt_dynamic_full; 8478 8479 return -EINVAL; 8480 } 8481 8482 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8483 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 8484 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 8485 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8486 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) 8487 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) 8488 #else 8489 #error "Unsupported PREEMPT_DYNAMIC mechanism" 8490 #endif 8491 8492 void sched_dynamic_update(int mode) 8493 { 8494 /* 8495 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 8496 * the ZERO state, which is invalid. 8497 */ 8498 preempt_dynamic_enable(cond_resched); 8499 preempt_dynamic_enable(might_resched); 8500 preempt_dynamic_enable(preempt_schedule); 8501 preempt_dynamic_enable(preempt_schedule_notrace); 8502 preempt_dynamic_enable(irqentry_exit_cond_resched); 8503 8504 switch (mode) { 8505 case preempt_dynamic_none: 8506 preempt_dynamic_enable(cond_resched); 8507 preempt_dynamic_disable(might_resched); 8508 preempt_dynamic_disable(preempt_schedule); 8509 preempt_dynamic_disable(preempt_schedule_notrace); 8510 preempt_dynamic_disable(irqentry_exit_cond_resched); 8511 pr_info("Dynamic Preempt: none\n"); 8512 break; 8513 8514 case preempt_dynamic_voluntary: 8515 preempt_dynamic_enable(cond_resched); 8516 preempt_dynamic_enable(might_resched); 8517 preempt_dynamic_disable(preempt_schedule); 8518 preempt_dynamic_disable(preempt_schedule_notrace); 8519 preempt_dynamic_disable(irqentry_exit_cond_resched); 8520 pr_info("Dynamic Preempt: voluntary\n"); 8521 break; 8522 8523 case preempt_dynamic_full: 8524 preempt_dynamic_disable(cond_resched); 8525 preempt_dynamic_disable(might_resched); 8526 preempt_dynamic_enable(preempt_schedule); 8527 preempt_dynamic_enable(preempt_schedule_notrace); 8528 preempt_dynamic_enable(irqentry_exit_cond_resched); 8529 pr_info("Dynamic Preempt: full\n"); 8530 break; 8531 } 8532 8533 preempt_dynamic_mode = mode; 8534 } 8535 8536 static int __init setup_preempt_mode(char *str) 8537 { 8538 int mode = sched_dynamic_mode(str); 8539 if (mode < 0) { 8540 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 8541 return 0; 8542 } 8543 8544 sched_dynamic_update(mode); 8545 return 1; 8546 } 8547 __setup("preempt=", setup_preempt_mode); 8548 8549 static void __init preempt_dynamic_init(void) 8550 { 8551 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 8552 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 8553 sched_dynamic_update(preempt_dynamic_none); 8554 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 8555 sched_dynamic_update(preempt_dynamic_voluntary); 8556 } else { 8557 /* Default static call setting, nothing to do */ 8558 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 8559 preempt_dynamic_mode = preempt_dynamic_full; 8560 pr_info("Dynamic Preempt: full\n"); 8561 } 8562 } 8563 } 8564 8565 #define PREEMPT_MODEL_ACCESSOR(mode) \ 8566 bool preempt_model_##mode(void) \ 8567 { \ 8568 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 8569 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 8570 } \ 8571 EXPORT_SYMBOL_GPL(preempt_model_##mode) 8572 8573 PREEMPT_MODEL_ACCESSOR(none); 8574 PREEMPT_MODEL_ACCESSOR(voluntary); 8575 PREEMPT_MODEL_ACCESSOR(full); 8576 8577 #else /* !CONFIG_PREEMPT_DYNAMIC */ 8578 8579 static inline void preempt_dynamic_init(void) { } 8580 8581 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */ 8582 8583 /** 8584 * yield - yield the current processor to other threads. 8585 * 8586 * Do not ever use this function, there's a 99% chance you're doing it wrong. 8587 * 8588 * The scheduler is at all times free to pick the calling task as the most 8589 * eligible task to run, if removing the yield() call from your code breaks 8590 * it, it's already broken. 8591 * 8592 * Typical broken usage is: 8593 * 8594 * while (!event) 8595 * yield(); 8596 * 8597 * where one assumes that yield() will let 'the other' process run that will 8598 * make event true. If the current task is a SCHED_FIFO task that will never 8599 * happen. Never use yield() as a progress guarantee!! 8600 * 8601 * If you want to use yield() to wait for something, use wait_event(). 8602 * If you want to use yield() to be 'nice' for others, use cond_resched(). 8603 * If you still want to use yield(), do not! 8604 */ 8605 void __sched yield(void) 8606 { 8607 set_current_state(TASK_RUNNING); 8608 do_sched_yield(); 8609 } 8610 EXPORT_SYMBOL(yield); 8611 8612 /** 8613 * yield_to - yield the current processor to another thread in 8614 * your thread group, or accelerate that thread toward the 8615 * processor it's on. 8616 * @p: target task 8617 * @preempt: whether task preemption is allowed or not 8618 * 8619 * It's the caller's job to ensure that the target task struct 8620 * can't go away on us before we can do any checks. 8621 * 8622 * Return: 8623 * true (>0) if we indeed boosted the target task. 8624 * false (0) if we failed to boost the target. 8625 * -ESRCH if there's no task to yield to. 8626 */ 8627 int __sched yield_to(struct task_struct *p, bool preempt) 8628 { 8629 struct task_struct *curr = current; 8630 struct rq *rq, *p_rq; 8631 unsigned long flags; 8632 int yielded = 0; 8633 8634 local_irq_save(flags); 8635 rq = this_rq(); 8636 8637 again: 8638 p_rq = task_rq(p); 8639 /* 8640 * If we're the only runnable task on the rq and target rq also 8641 * has only one task, there's absolutely no point in yielding. 8642 */ 8643 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 8644 yielded = -ESRCH; 8645 goto out_irq; 8646 } 8647 8648 double_rq_lock(rq, p_rq); 8649 if (task_rq(p) != p_rq) { 8650 double_rq_unlock(rq, p_rq); 8651 goto again; 8652 } 8653 8654 if (!curr->sched_class->yield_to_task) 8655 goto out_unlock; 8656 8657 if (curr->sched_class != p->sched_class) 8658 goto out_unlock; 8659 8660 if (task_on_cpu(p_rq, p) || !task_is_running(p)) 8661 goto out_unlock; 8662 8663 yielded = curr->sched_class->yield_to_task(rq, p); 8664 if (yielded) { 8665 schedstat_inc(rq->yld_count); 8666 /* 8667 * Make p's CPU reschedule; pick_next_entity takes care of 8668 * fairness. 8669 */ 8670 if (preempt && rq != p_rq) 8671 resched_curr(p_rq); 8672 } 8673 8674 out_unlock: 8675 double_rq_unlock(rq, p_rq); 8676 out_irq: 8677 local_irq_restore(flags); 8678 8679 if (yielded > 0) 8680 schedule(); 8681 8682 return yielded; 8683 } 8684 EXPORT_SYMBOL_GPL(yield_to); 8685 8686 int io_schedule_prepare(void) 8687 { 8688 int old_iowait = current->in_iowait; 8689 8690 current->in_iowait = 1; 8691 blk_flush_plug(current->plug, true); 8692 return old_iowait; 8693 } 8694 8695 void io_schedule_finish(int token) 8696 { 8697 current->in_iowait = token; 8698 } 8699 8700 /* 8701 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 8702 * that process accounting knows that this is a task in IO wait state. 8703 */ 8704 long __sched io_schedule_timeout(long timeout) 8705 { 8706 int token; 8707 long ret; 8708 8709 token = io_schedule_prepare(); 8710 ret = schedule_timeout(timeout); 8711 io_schedule_finish(token); 8712 8713 return ret; 8714 } 8715 EXPORT_SYMBOL(io_schedule_timeout); 8716 8717 void __sched io_schedule(void) 8718 { 8719 int token; 8720 8721 token = io_schedule_prepare(); 8722 schedule(); 8723 io_schedule_finish(token); 8724 } 8725 EXPORT_SYMBOL(io_schedule); 8726 8727 /** 8728 * sys_sched_get_priority_max - return maximum RT priority. 8729 * @policy: scheduling class. 8730 * 8731 * Return: On success, this syscall returns the maximum 8732 * rt_priority that can be used by a given scheduling class. 8733 * On failure, a negative error code is returned. 8734 */ 8735 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 8736 { 8737 int ret = -EINVAL; 8738 8739 switch (policy) { 8740 case SCHED_FIFO: 8741 case SCHED_RR: 8742 ret = MAX_RT_PRIO-1; 8743 break; 8744 case SCHED_DEADLINE: 8745 case SCHED_NORMAL: 8746 case SCHED_BATCH: 8747 case SCHED_IDLE: 8748 ret = 0; 8749 break; 8750 } 8751 return ret; 8752 } 8753 8754 /** 8755 * sys_sched_get_priority_min - return minimum RT priority. 8756 * @policy: scheduling class. 8757 * 8758 * Return: On success, this syscall returns the minimum 8759 * rt_priority that can be used by a given scheduling class. 8760 * On failure, a negative error code is returned. 8761 */ 8762 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 8763 { 8764 int ret = -EINVAL; 8765 8766 switch (policy) { 8767 case SCHED_FIFO: 8768 case SCHED_RR: 8769 ret = 1; 8770 break; 8771 case SCHED_DEADLINE: 8772 case SCHED_NORMAL: 8773 case SCHED_BATCH: 8774 case SCHED_IDLE: 8775 ret = 0; 8776 } 8777 return ret; 8778 } 8779 8780 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 8781 { 8782 struct task_struct *p; 8783 unsigned int time_slice; 8784 struct rq_flags rf; 8785 struct rq *rq; 8786 int retval; 8787 8788 if (pid < 0) 8789 return -EINVAL; 8790 8791 retval = -ESRCH; 8792 rcu_read_lock(); 8793 p = find_process_by_pid(pid); 8794 if (!p) 8795 goto out_unlock; 8796 8797 retval = security_task_getscheduler(p); 8798 if (retval) 8799 goto out_unlock; 8800 8801 rq = task_rq_lock(p, &rf); 8802 time_slice = 0; 8803 if (p->sched_class->get_rr_interval) 8804 time_slice = p->sched_class->get_rr_interval(rq, p); 8805 task_rq_unlock(rq, p, &rf); 8806 8807 rcu_read_unlock(); 8808 jiffies_to_timespec64(time_slice, t); 8809 return 0; 8810 8811 out_unlock: 8812 rcu_read_unlock(); 8813 return retval; 8814 } 8815 8816 /** 8817 * sys_sched_rr_get_interval - return the default timeslice of a process. 8818 * @pid: pid of the process. 8819 * @interval: userspace pointer to the timeslice value. 8820 * 8821 * this syscall writes the default timeslice value of a given process 8822 * into the user-space timespec buffer. A value of '0' means infinity. 8823 * 8824 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 8825 * an error code. 8826 */ 8827 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 8828 struct __kernel_timespec __user *, interval) 8829 { 8830 struct timespec64 t; 8831 int retval = sched_rr_get_interval(pid, &t); 8832 8833 if (retval == 0) 8834 retval = put_timespec64(&t, interval); 8835 8836 return retval; 8837 } 8838 8839 #ifdef CONFIG_COMPAT_32BIT_TIME 8840 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 8841 struct old_timespec32 __user *, interval) 8842 { 8843 struct timespec64 t; 8844 int retval = sched_rr_get_interval(pid, &t); 8845 8846 if (retval == 0) 8847 retval = put_old_timespec32(&t, interval); 8848 return retval; 8849 } 8850 #endif 8851 8852 void sched_show_task(struct task_struct *p) 8853 { 8854 unsigned long free = 0; 8855 int ppid; 8856 8857 if (!try_get_task_stack(p)) 8858 return; 8859 8860 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 8861 8862 if (task_is_running(p)) 8863 pr_cont(" running task "); 8864 #ifdef CONFIG_DEBUG_STACK_USAGE 8865 free = stack_not_used(p); 8866 #endif 8867 ppid = 0; 8868 rcu_read_lock(); 8869 if (pid_alive(p)) 8870 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 8871 rcu_read_unlock(); 8872 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n", 8873 free, task_pid_nr(p), ppid, 8874 read_task_thread_flags(p)); 8875 8876 print_worker_info(KERN_INFO, p); 8877 print_stop_info(KERN_INFO, p); 8878 show_stack(p, NULL, KERN_INFO); 8879 put_task_stack(p); 8880 } 8881 EXPORT_SYMBOL_GPL(sched_show_task); 8882 8883 static inline bool 8884 state_filter_match(unsigned long state_filter, struct task_struct *p) 8885 { 8886 unsigned int state = READ_ONCE(p->__state); 8887 8888 /* no filter, everything matches */ 8889 if (!state_filter) 8890 return true; 8891 8892 /* filter, but doesn't match */ 8893 if (!(state & state_filter)) 8894 return false; 8895 8896 /* 8897 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 8898 * TASK_KILLABLE). 8899 */ 8900 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 8901 return false; 8902 8903 return true; 8904 } 8905 8906 8907 void show_state_filter(unsigned int state_filter) 8908 { 8909 struct task_struct *g, *p; 8910 8911 rcu_read_lock(); 8912 for_each_process_thread(g, p) { 8913 /* 8914 * reset the NMI-timeout, listing all files on a slow 8915 * console might take a lot of time: 8916 * Also, reset softlockup watchdogs on all CPUs, because 8917 * another CPU might be blocked waiting for us to process 8918 * an IPI. 8919 */ 8920 touch_nmi_watchdog(); 8921 touch_all_softlockup_watchdogs(); 8922 if (state_filter_match(state_filter, p)) 8923 sched_show_task(p); 8924 } 8925 8926 #ifdef CONFIG_SCHED_DEBUG 8927 if (!state_filter) 8928 sysrq_sched_debug_show(); 8929 #endif 8930 rcu_read_unlock(); 8931 /* 8932 * Only show locks if all tasks are dumped: 8933 */ 8934 if (!state_filter) 8935 debug_show_all_locks(); 8936 } 8937 8938 /** 8939 * init_idle - set up an idle thread for a given CPU 8940 * @idle: task in question 8941 * @cpu: CPU the idle task belongs to 8942 * 8943 * NOTE: this function does not set the idle thread's NEED_RESCHED 8944 * flag, to make booting more robust. 8945 */ 8946 void __init init_idle(struct task_struct *idle, int cpu) 8947 { 8948 struct rq *rq = cpu_rq(cpu); 8949 unsigned long flags; 8950 8951 __sched_fork(0, idle); 8952 8953 raw_spin_lock_irqsave(&idle->pi_lock, flags); 8954 raw_spin_rq_lock(rq); 8955 8956 idle->__state = TASK_RUNNING; 8957 idle->se.exec_start = sched_clock(); 8958 /* 8959 * PF_KTHREAD should already be set at this point; regardless, make it 8960 * look like a proper per-CPU kthread. 8961 */ 8962 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY; 8963 kthread_set_per_cpu(idle, cpu); 8964 8965 #ifdef CONFIG_SMP 8966 /* 8967 * It's possible that init_idle() gets called multiple times on a task, 8968 * in that case do_set_cpus_allowed() will not do the right thing. 8969 * 8970 * And since this is boot we can forgo the serialization. 8971 */ 8972 set_cpus_allowed_common(idle, cpumask_of(cpu), 0); 8973 #endif 8974 /* 8975 * We're having a chicken and egg problem, even though we are 8976 * holding rq->lock, the CPU isn't yet set to this CPU so the 8977 * lockdep check in task_group() will fail. 8978 * 8979 * Similar case to sched_fork(). / Alternatively we could 8980 * use task_rq_lock() here and obtain the other rq->lock. 8981 * 8982 * Silence PROVE_RCU 8983 */ 8984 rcu_read_lock(); 8985 __set_task_cpu(idle, cpu); 8986 rcu_read_unlock(); 8987 8988 rq->idle = idle; 8989 rcu_assign_pointer(rq->curr, idle); 8990 idle->on_rq = TASK_ON_RQ_QUEUED; 8991 #ifdef CONFIG_SMP 8992 idle->on_cpu = 1; 8993 #endif 8994 raw_spin_rq_unlock(rq); 8995 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 8996 8997 /* Set the preempt count _outside_ the spinlocks! */ 8998 init_idle_preempt_count(idle, cpu); 8999 9000 /* 9001 * The idle tasks have their own, simple scheduling class: 9002 */ 9003 idle->sched_class = &idle_sched_class; 9004 ftrace_graph_init_idle_task(idle, cpu); 9005 vtime_init_idle(idle, cpu); 9006 #ifdef CONFIG_SMP 9007 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 9008 #endif 9009 } 9010 9011 #ifdef CONFIG_SMP 9012 9013 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 9014 const struct cpumask *trial) 9015 { 9016 int ret = 1; 9017 9018 if (cpumask_empty(cur)) 9019 return ret; 9020 9021 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 9022 9023 return ret; 9024 } 9025 9026 int task_can_attach(struct task_struct *p, 9027 const struct cpumask *cs_effective_cpus) 9028 { 9029 int ret = 0; 9030 9031 /* 9032 * Kthreads which disallow setaffinity shouldn't be moved 9033 * to a new cpuset; we don't want to change their CPU 9034 * affinity and isolating such threads by their set of 9035 * allowed nodes is unnecessary. Thus, cpusets are not 9036 * applicable for such threads. This prevents checking for 9037 * success of set_cpus_allowed_ptr() on all attached tasks 9038 * before cpus_mask may be changed. 9039 */ 9040 if (p->flags & PF_NO_SETAFFINITY) { 9041 ret = -EINVAL; 9042 goto out; 9043 } 9044 9045 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 9046 cs_effective_cpus)) { 9047 int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus); 9048 9049 if (unlikely(cpu >= nr_cpu_ids)) 9050 return -EINVAL; 9051 ret = dl_cpu_busy(cpu, p); 9052 } 9053 9054 out: 9055 return ret; 9056 } 9057 9058 bool sched_smp_initialized __read_mostly; 9059 9060 #ifdef CONFIG_NUMA_BALANCING 9061 /* Migrate current task p to target_cpu */ 9062 int migrate_task_to(struct task_struct *p, int target_cpu) 9063 { 9064 struct migration_arg arg = { p, target_cpu }; 9065 int curr_cpu = task_cpu(p); 9066 9067 if (curr_cpu == target_cpu) 9068 return 0; 9069 9070 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 9071 return -EINVAL; 9072 9073 /* TODO: This is not properly updating schedstats */ 9074 9075 trace_sched_move_numa(p, curr_cpu, target_cpu); 9076 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 9077 } 9078 9079 /* 9080 * Requeue a task on a given node and accurately track the number of NUMA 9081 * tasks on the runqueues 9082 */ 9083 void sched_setnuma(struct task_struct *p, int nid) 9084 { 9085 bool queued, running; 9086 struct rq_flags rf; 9087 struct rq *rq; 9088 9089 rq = task_rq_lock(p, &rf); 9090 queued = task_on_rq_queued(p); 9091 running = task_current(rq, p); 9092 9093 if (queued) 9094 dequeue_task(rq, p, DEQUEUE_SAVE); 9095 if (running) 9096 put_prev_task(rq, p); 9097 9098 p->numa_preferred_nid = nid; 9099 9100 if (queued) 9101 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 9102 if (running) 9103 set_next_task(rq, p); 9104 task_rq_unlock(rq, p, &rf); 9105 } 9106 #endif /* CONFIG_NUMA_BALANCING */ 9107 9108 #ifdef CONFIG_HOTPLUG_CPU 9109 /* 9110 * Ensure that the idle task is using init_mm right before its CPU goes 9111 * offline. 9112 */ 9113 void idle_task_exit(void) 9114 { 9115 struct mm_struct *mm = current->active_mm; 9116 9117 BUG_ON(cpu_online(smp_processor_id())); 9118 BUG_ON(current != this_rq()->idle); 9119 9120 if (mm != &init_mm) { 9121 switch_mm(mm, &init_mm, current); 9122 finish_arch_post_lock_switch(); 9123 } 9124 9125 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 9126 } 9127 9128 static int __balance_push_cpu_stop(void *arg) 9129 { 9130 struct task_struct *p = arg; 9131 struct rq *rq = this_rq(); 9132 struct rq_flags rf; 9133 int cpu; 9134 9135 raw_spin_lock_irq(&p->pi_lock); 9136 rq_lock(rq, &rf); 9137 9138 update_rq_clock(rq); 9139 9140 if (task_rq(p) == rq && task_on_rq_queued(p)) { 9141 cpu = select_fallback_rq(rq->cpu, p); 9142 rq = __migrate_task(rq, &rf, p, cpu); 9143 } 9144 9145 rq_unlock(rq, &rf); 9146 raw_spin_unlock_irq(&p->pi_lock); 9147 9148 put_task_struct(p); 9149 9150 return 0; 9151 } 9152 9153 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 9154 9155 /* 9156 * Ensure we only run per-cpu kthreads once the CPU goes !active. 9157 * 9158 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 9159 * effective when the hotplug motion is down. 9160 */ 9161 static void balance_push(struct rq *rq) 9162 { 9163 struct task_struct *push_task = rq->curr; 9164 9165 lockdep_assert_rq_held(rq); 9166 9167 /* 9168 * Ensure the thing is persistent until balance_push_set(.on = false); 9169 */ 9170 rq->balance_callback = &balance_push_callback; 9171 9172 /* 9173 * Only active while going offline and when invoked on the outgoing 9174 * CPU. 9175 */ 9176 if (!cpu_dying(rq->cpu) || rq != this_rq()) 9177 return; 9178 9179 /* 9180 * Both the cpu-hotplug and stop task are in this case and are 9181 * required to complete the hotplug process. 9182 */ 9183 if (kthread_is_per_cpu(push_task) || 9184 is_migration_disabled(push_task)) { 9185 9186 /* 9187 * If this is the idle task on the outgoing CPU try to wake 9188 * up the hotplug control thread which might wait for the 9189 * last task to vanish. The rcuwait_active() check is 9190 * accurate here because the waiter is pinned on this CPU 9191 * and can't obviously be running in parallel. 9192 * 9193 * On RT kernels this also has to check whether there are 9194 * pinned and scheduled out tasks on the runqueue. They 9195 * need to leave the migrate disabled section first. 9196 */ 9197 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 9198 rcuwait_active(&rq->hotplug_wait)) { 9199 raw_spin_rq_unlock(rq); 9200 rcuwait_wake_up(&rq->hotplug_wait); 9201 raw_spin_rq_lock(rq); 9202 } 9203 return; 9204 } 9205 9206 get_task_struct(push_task); 9207 /* 9208 * Temporarily drop rq->lock such that we can wake-up the stop task. 9209 * Both preemption and IRQs are still disabled. 9210 */ 9211 raw_spin_rq_unlock(rq); 9212 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 9213 this_cpu_ptr(&push_work)); 9214 /* 9215 * At this point need_resched() is true and we'll take the loop in 9216 * schedule(). The next pick is obviously going to be the stop task 9217 * which kthread_is_per_cpu() and will push this task away. 9218 */ 9219 raw_spin_rq_lock(rq); 9220 } 9221 9222 static void balance_push_set(int cpu, bool on) 9223 { 9224 struct rq *rq = cpu_rq(cpu); 9225 struct rq_flags rf; 9226 9227 rq_lock_irqsave(rq, &rf); 9228 if (on) { 9229 WARN_ON_ONCE(rq->balance_callback); 9230 rq->balance_callback = &balance_push_callback; 9231 } else if (rq->balance_callback == &balance_push_callback) { 9232 rq->balance_callback = NULL; 9233 } 9234 rq_unlock_irqrestore(rq, &rf); 9235 } 9236 9237 /* 9238 * Invoked from a CPUs hotplug control thread after the CPU has been marked 9239 * inactive. All tasks which are not per CPU kernel threads are either 9240 * pushed off this CPU now via balance_push() or placed on a different CPU 9241 * during wakeup. Wait until the CPU is quiescent. 9242 */ 9243 static void balance_hotplug_wait(void) 9244 { 9245 struct rq *rq = this_rq(); 9246 9247 rcuwait_wait_event(&rq->hotplug_wait, 9248 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 9249 TASK_UNINTERRUPTIBLE); 9250 } 9251 9252 #else 9253 9254 static inline void balance_push(struct rq *rq) 9255 { 9256 } 9257 9258 static inline void balance_push_set(int cpu, bool on) 9259 { 9260 } 9261 9262 static inline void balance_hotplug_wait(void) 9263 { 9264 } 9265 9266 #endif /* CONFIG_HOTPLUG_CPU */ 9267 9268 void set_rq_online(struct rq *rq) 9269 { 9270 if (!rq->online) { 9271 const struct sched_class *class; 9272 9273 cpumask_set_cpu(rq->cpu, rq->rd->online); 9274 rq->online = 1; 9275 9276 for_each_class(class) { 9277 if (class->rq_online) 9278 class->rq_online(rq); 9279 } 9280 } 9281 } 9282 9283 void set_rq_offline(struct rq *rq) 9284 { 9285 if (rq->online) { 9286 const struct sched_class *class; 9287 9288 for_each_class(class) { 9289 if (class->rq_offline) 9290 class->rq_offline(rq); 9291 } 9292 9293 cpumask_clear_cpu(rq->cpu, rq->rd->online); 9294 rq->online = 0; 9295 } 9296 } 9297 9298 /* 9299 * used to mark begin/end of suspend/resume: 9300 */ 9301 static int num_cpus_frozen; 9302 9303 /* 9304 * Update cpusets according to cpu_active mask. If cpusets are 9305 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 9306 * around partition_sched_domains(). 9307 * 9308 * If we come here as part of a suspend/resume, don't touch cpusets because we 9309 * want to restore it back to its original state upon resume anyway. 9310 */ 9311 static void cpuset_cpu_active(void) 9312 { 9313 if (cpuhp_tasks_frozen) { 9314 /* 9315 * num_cpus_frozen tracks how many CPUs are involved in suspend 9316 * resume sequence. As long as this is not the last online 9317 * operation in the resume sequence, just build a single sched 9318 * domain, ignoring cpusets. 9319 */ 9320 partition_sched_domains(1, NULL, NULL); 9321 if (--num_cpus_frozen) 9322 return; 9323 /* 9324 * This is the last CPU online operation. So fall through and 9325 * restore the original sched domains by considering the 9326 * cpuset configurations. 9327 */ 9328 cpuset_force_rebuild(); 9329 } 9330 cpuset_update_active_cpus(); 9331 } 9332 9333 static int cpuset_cpu_inactive(unsigned int cpu) 9334 { 9335 if (!cpuhp_tasks_frozen) { 9336 int ret = dl_cpu_busy(cpu, NULL); 9337 9338 if (ret) 9339 return ret; 9340 cpuset_update_active_cpus(); 9341 } else { 9342 num_cpus_frozen++; 9343 partition_sched_domains(1, NULL, NULL); 9344 } 9345 return 0; 9346 } 9347 9348 int sched_cpu_activate(unsigned int cpu) 9349 { 9350 struct rq *rq = cpu_rq(cpu); 9351 struct rq_flags rf; 9352 9353 /* 9354 * Clear the balance_push callback and prepare to schedule 9355 * regular tasks. 9356 */ 9357 balance_push_set(cpu, false); 9358 9359 #ifdef CONFIG_SCHED_SMT 9360 /* 9361 * When going up, increment the number of cores with SMT present. 9362 */ 9363 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9364 static_branch_inc_cpuslocked(&sched_smt_present); 9365 #endif 9366 set_cpu_active(cpu, true); 9367 9368 if (sched_smp_initialized) { 9369 sched_update_numa(cpu, true); 9370 sched_domains_numa_masks_set(cpu); 9371 cpuset_cpu_active(); 9372 } 9373 9374 /* 9375 * Put the rq online, if not already. This happens: 9376 * 9377 * 1) In the early boot process, because we build the real domains 9378 * after all CPUs have been brought up. 9379 * 9380 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 9381 * domains. 9382 */ 9383 rq_lock_irqsave(rq, &rf); 9384 if (rq->rd) { 9385 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9386 set_rq_online(rq); 9387 } 9388 rq_unlock_irqrestore(rq, &rf); 9389 9390 return 0; 9391 } 9392 9393 int sched_cpu_deactivate(unsigned int cpu) 9394 { 9395 struct rq *rq = cpu_rq(cpu); 9396 struct rq_flags rf; 9397 int ret; 9398 9399 /* 9400 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 9401 * load balancing when not active 9402 */ 9403 nohz_balance_exit_idle(rq); 9404 9405 set_cpu_active(cpu, false); 9406 9407 /* 9408 * From this point forward, this CPU will refuse to run any task that 9409 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 9410 * push those tasks away until this gets cleared, see 9411 * sched_cpu_dying(). 9412 */ 9413 balance_push_set(cpu, true); 9414 9415 /* 9416 * We've cleared cpu_active_mask / set balance_push, wait for all 9417 * preempt-disabled and RCU users of this state to go away such that 9418 * all new such users will observe it. 9419 * 9420 * Specifically, we rely on ttwu to no longer target this CPU, see 9421 * ttwu_queue_cond() and is_cpu_allowed(). 9422 * 9423 * Do sync before park smpboot threads to take care the rcu boost case. 9424 */ 9425 synchronize_rcu(); 9426 9427 rq_lock_irqsave(rq, &rf); 9428 if (rq->rd) { 9429 update_rq_clock(rq); 9430 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9431 set_rq_offline(rq); 9432 } 9433 rq_unlock_irqrestore(rq, &rf); 9434 9435 #ifdef CONFIG_SCHED_SMT 9436 /* 9437 * When going down, decrement the number of cores with SMT present. 9438 */ 9439 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9440 static_branch_dec_cpuslocked(&sched_smt_present); 9441 9442 sched_core_cpu_deactivate(cpu); 9443 #endif 9444 9445 if (!sched_smp_initialized) 9446 return 0; 9447 9448 sched_update_numa(cpu, false); 9449 ret = cpuset_cpu_inactive(cpu); 9450 if (ret) { 9451 balance_push_set(cpu, false); 9452 set_cpu_active(cpu, true); 9453 sched_update_numa(cpu, true); 9454 return ret; 9455 } 9456 sched_domains_numa_masks_clear(cpu); 9457 return 0; 9458 } 9459 9460 static void sched_rq_cpu_starting(unsigned int cpu) 9461 { 9462 struct rq *rq = cpu_rq(cpu); 9463 9464 rq->calc_load_update = calc_load_update; 9465 update_max_interval(); 9466 } 9467 9468 int sched_cpu_starting(unsigned int cpu) 9469 { 9470 sched_core_cpu_starting(cpu); 9471 sched_rq_cpu_starting(cpu); 9472 sched_tick_start(cpu); 9473 return 0; 9474 } 9475 9476 #ifdef CONFIG_HOTPLUG_CPU 9477 9478 /* 9479 * Invoked immediately before the stopper thread is invoked to bring the 9480 * CPU down completely. At this point all per CPU kthreads except the 9481 * hotplug thread (current) and the stopper thread (inactive) have been 9482 * either parked or have been unbound from the outgoing CPU. Ensure that 9483 * any of those which might be on the way out are gone. 9484 * 9485 * If after this point a bound task is being woken on this CPU then the 9486 * responsible hotplug callback has failed to do it's job. 9487 * sched_cpu_dying() will catch it with the appropriate fireworks. 9488 */ 9489 int sched_cpu_wait_empty(unsigned int cpu) 9490 { 9491 balance_hotplug_wait(); 9492 return 0; 9493 } 9494 9495 /* 9496 * Since this CPU is going 'away' for a while, fold any nr_active delta we 9497 * might have. Called from the CPU stopper task after ensuring that the 9498 * stopper is the last running task on the CPU, so nr_active count is 9499 * stable. We need to take the teardown thread which is calling this into 9500 * account, so we hand in adjust = 1 to the load calculation. 9501 * 9502 * Also see the comment "Global load-average calculations". 9503 */ 9504 static void calc_load_migrate(struct rq *rq) 9505 { 9506 long delta = calc_load_fold_active(rq, 1); 9507 9508 if (delta) 9509 atomic_long_add(delta, &calc_load_tasks); 9510 } 9511 9512 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 9513 { 9514 struct task_struct *g, *p; 9515 int cpu = cpu_of(rq); 9516 9517 lockdep_assert_rq_held(rq); 9518 9519 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 9520 for_each_process_thread(g, p) { 9521 if (task_cpu(p) != cpu) 9522 continue; 9523 9524 if (!task_on_rq_queued(p)) 9525 continue; 9526 9527 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 9528 } 9529 } 9530 9531 int sched_cpu_dying(unsigned int cpu) 9532 { 9533 struct rq *rq = cpu_rq(cpu); 9534 struct rq_flags rf; 9535 9536 /* Handle pending wakeups and then migrate everything off */ 9537 sched_tick_stop(cpu); 9538 9539 rq_lock_irqsave(rq, &rf); 9540 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 9541 WARN(true, "Dying CPU not properly vacated!"); 9542 dump_rq_tasks(rq, KERN_WARNING); 9543 } 9544 rq_unlock_irqrestore(rq, &rf); 9545 9546 calc_load_migrate(rq); 9547 update_max_interval(); 9548 hrtick_clear(rq); 9549 sched_core_cpu_dying(cpu); 9550 return 0; 9551 } 9552 #endif 9553 9554 void __init sched_init_smp(void) 9555 { 9556 sched_init_numa(NUMA_NO_NODE); 9557 9558 /* 9559 * There's no userspace yet to cause hotplug operations; hence all the 9560 * CPU masks are stable and all blatant races in the below code cannot 9561 * happen. 9562 */ 9563 mutex_lock(&sched_domains_mutex); 9564 sched_init_domains(cpu_active_mask); 9565 mutex_unlock(&sched_domains_mutex); 9566 9567 /* Move init over to a non-isolated CPU */ 9568 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 9569 BUG(); 9570 current->flags &= ~PF_NO_SETAFFINITY; 9571 sched_init_granularity(); 9572 9573 init_sched_rt_class(); 9574 init_sched_dl_class(); 9575 9576 sched_smp_initialized = true; 9577 } 9578 9579 static int __init migration_init(void) 9580 { 9581 sched_cpu_starting(smp_processor_id()); 9582 return 0; 9583 } 9584 early_initcall(migration_init); 9585 9586 #else 9587 void __init sched_init_smp(void) 9588 { 9589 sched_init_granularity(); 9590 } 9591 #endif /* CONFIG_SMP */ 9592 9593 int in_sched_functions(unsigned long addr) 9594 { 9595 return in_lock_functions(addr) || 9596 (addr >= (unsigned long)__sched_text_start 9597 && addr < (unsigned long)__sched_text_end); 9598 } 9599 9600 #ifdef CONFIG_CGROUP_SCHED 9601 /* 9602 * Default task group. 9603 * Every task in system belongs to this group at bootup. 9604 */ 9605 struct task_group root_task_group; 9606 LIST_HEAD(task_groups); 9607 9608 /* Cacheline aligned slab cache for task_group */ 9609 static struct kmem_cache *task_group_cache __read_mostly; 9610 #endif 9611 9612 void __init sched_init(void) 9613 { 9614 unsigned long ptr = 0; 9615 int i; 9616 9617 /* Make sure the linker didn't screw up */ 9618 BUG_ON(&idle_sched_class != &fair_sched_class + 1 || 9619 &fair_sched_class != &rt_sched_class + 1 || 9620 &rt_sched_class != &dl_sched_class + 1); 9621 #ifdef CONFIG_SMP 9622 BUG_ON(&dl_sched_class != &stop_sched_class + 1); 9623 #endif 9624 9625 wait_bit_init(); 9626 9627 #ifdef CONFIG_FAIR_GROUP_SCHED 9628 ptr += 2 * nr_cpu_ids * sizeof(void **); 9629 #endif 9630 #ifdef CONFIG_RT_GROUP_SCHED 9631 ptr += 2 * nr_cpu_ids * sizeof(void **); 9632 #endif 9633 if (ptr) { 9634 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 9635 9636 #ifdef CONFIG_FAIR_GROUP_SCHED 9637 root_task_group.se = (struct sched_entity **)ptr; 9638 ptr += nr_cpu_ids * sizeof(void **); 9639 9640 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 9641 ptr += nr_cpu_ids * sizeof(void **); 9642 9643 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 9644 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 9645 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9646 #ifdef CONFIG_RT_GROUP_SCHED 9647 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 9648 ptr += nr_cpu_ids * sizeof(void **); 9649 9650 root_task_group.rt_rq = (struct rt_rq **)ptr; 9651 ptr += nr_cpu_ids * sizeof(void **); 9652 9653 #endif /* CONFIG_RT_GROUP_SCHED */ 9654 } 9655 9656 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 9657 9658 #ifdef CONFIG_SMP 9659 init_defrootdomain(); 9660 #endif 9661 9662 #ifdef CONFIG_RT_GROUP_SCHED 9663 init_rt_bandwidth(&root_task_group.rt_bandwidth, 9664 global_rt_period(), global_rt_runtime()); 9665 #endif /* CONFIG_RT_GROUP_SCHED */ 9666 9667 #ifdef CONFIG_CGROUP_SCHED 9668 task_group_cache = KMEM_CACHE(task_group, 0); 9669 9670 list_add(&root_task_group.list, &task_groups); 9671 INIT_LIST_HEAD(&root_task_group.children); 9672 INIT_LIST_HEAD(&root_task_group.siblings); 9673 autogroup_init(&init_task); 9674 #endif /* CONFIG_CGROUP_SCHED */ 9675 9676 for_each_possible_cpu(i) { 9677 struct rq *rq; 9678 9679 rq = cpu_rq(i); 9680 raw_spin_lock_init(&rq->__lock); 9681 rq->nr_running = 0; 9682 rq->calc_load_active = 0; 9683 rq->calc_load_update = jiffies + LOAD_FREQ; 9684 init_cfs_rq(&rq->cfs); 9685 init_rt_rq(&rq->rt); 9686 init_dl_rq(&rq->dl); 9687 #ifdef CONFIG_FAIR_GROUP_SCHED 9688 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 9689 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 9690 /* 9691 * How much CPU bandwidth does root_task_group get? 9692 * 9693 * In case of task-groups formed thr' the cgroup filesystem, it 9694 * gets 100% of the CPU resources in the system. This overall 9695 * system CPU resource is divided among the tasks of 9696 * root_task_group and its child task-groups in a fair manner, 9697 * based on each entity's (task or task-group's) weight 9698 * (se->load.weight). 9699 * 9700 * In other words, if root_task_group has 10 tasks of weight 9701 * 1024) and two child groups A0 and A1 (of weight 1024 each), 9702 * then A0's share of the CPU resource is: 9703 * 9704 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 9705 * 9706 * We achieve this by letting root_task_group's tasks sit 9707 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 9708 */ 9709 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 9710 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9711 9712 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 9713 #ifdef CONFIG_RT_GROUP_SCHED 9714 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 9715 #endif 9716 #ifdef CONFIG_SMP 9717 rq->sd = NULL; 9718 rq->rd = NULL; 9719 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 9720 rq->balance_callback = &balance_push_callback; 9721 rq->active_balance = 0; 9722 rq->next_balance = jiffies; 9723 rq->push_cpu = 0; 9724 rq->cpu = i; 9725 rq->online = 0; 9726 rq->idle_stamp = 0; 9727 rq->avg_idle = 2*sysctl_sched_migration_cost; 9728 rq->wake_stamp = jiffies; 9729 rq->wake_avg_idle = rq->avg_idle; 9730 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 9731 9732 INIT_LIST_HEAD(&rq->cfs_tasks); 9733 9734 rq_attach_root(rq, &def_root_domain); 9735 #ifdef CONFIG_NO_HZ_COMMON 9736 rq->last_blocked_load_update_tick = jiffies; 9737 atomic_set(&rq->nohz_flags, 0); 9738 9739 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 9740 #endif 9741 #ifdef CONFIG_HOTPLUG_CPU 9742 rcuwait_init(&rq->hotplug_wait); 9743 #endif 9744 #endif /* CONFIG_SMP */ 9745 hrtick_rq_init(rq); 9746 atomic_set(&rq->nr_iowait, 0); 9747 9748 #ifdef CONFIG_SCHED_CORE 9749 rq->core = rq; 9750 rq->core_pick = NULL; 9751 rq->core_enabled = 0; 9752 rq->core_tree = RB_ROOT; 9753 rq->core_forceidle_count = 0; 9754 rq->core_forceidle_occupation = 0; 9755 rq->core_forceidle_start = 0; 9756 9757 rq->core_cookie = 0UL; 9758 #endif 9759 } 9760 9761 set_load_weight(&init_task, false); 9762 9763 /* 9764 * The boot idle thread does lazy MMU switching as well: 9765 */ 9766 mmgrab(&init_mm); 9767 enter_lazy_tlb(&init_mm, current); 9768 9769 /* 9770 * The idle task doesn't need the kthread struct to function, but it 9771 * is dressed up as a per-CPU kthread and thus needs to play the part 9772 * if we want to avoid special-casing it in code that deals with per-CPU 9773 * kthreads. 9774 */ 9775 WARN_ON(!set_kthread_struct(current)); 9776 9777 /* 9778 * Make us the idle thread. Technically, schedule() should not be 9779 * called from this thread, however somewhere below it might be, 9780 * but because we are the idle thread, we just pick up running again 9781 * when this runqueue becomes "idle". 9782 */ 9783 init_idle(current, smp_processor_id()); 9784 9785 calc_load_update = jiffies + LOAD_FREQ; 9786 9787 #ifdef CONFIG_SMP 9788 idle_thread_set_boot_cpu(); 9789 balance_push_set(smp_processor_id(), false); 9790 #endif 9791 init_sched_fair_class(); 9792 9793 psi_init(); 9794 9795 init_uclamp(); 9796 9797 preempt_dynamic_init(); 9798 9799 scheduler_running = 1; 9800 } 9801 9802 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 9803 9804 void __might_sleep(const char *file, int line) 9805 { 9806 unsigned int state = get_current_state(); 9807 /* 9808 * Blocking primitives will set (and therefore destroy) current->state, 9809 * since we will exit with TASK_RUNNING make sure we enter with it, 9810 * otherwise we will destroy state. 9811 */ 9812 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 9813 "do not call blocking ops when !TASK_RUNNING; " 9814 "state=%x set at [<%p>] %pS\n", state, 9815 (void *)current->task_state_change, 9816 (void *)current->task_state_change); 9817 9818 __might_resched(file, line, 0); 9819 } 9820 EXPORT_SYMBOL(__might_sleep); 9821 9822 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 9823 { 9824 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 9825 return; 9826 9827 if (preempt_count() == preempt_offset) 9828 return; 9829 9830 pr_err("Preemption disabled at:"); 9831 print_ip_sym(KERN_ERR, ip); 9832 } 9833 9834 static inline bool resched_offsets_ok(unsigned int offsets) 9835 { 9836 unsigned int nested = preempt_count(); 9837 9838 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 9839 9840 return nested == offsets; 9841 } 9842 9843 void __might_resched(const char *file, int line, unsigned int offsets) 9844 { 9845 /* Ratelimiting timestamp: */ 9846 static unsigned long prev_jiffy; 9847 9848 unsigned long preempt_disable_ip; 9849 9850 /* WARN_ON_ONCE() by default, no rate limit required: */ 9851 rcu_sleep_check(); 9852 9853 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 9854 !is_idle_task(current) && !current->non_block_count) || 9855 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 9856 oops_in_progress) 9857 return; 9858 9859 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9860 return; 9861 prev_jiffy = jiffies; 9862 9863 /* Save this before calling printk(), since that will clobber it: */ 9864 preempt_disable_ip = get_preempt_disable_ip(current); 9865 9866 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 9867 file, line); 9868 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 9869 in_atomic(), irqs_disabled(), current->non_block_count, 9870 current->pid, current->comm); 9871 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 9872 offsets & MIGHT_RESCHED_PREEMPT_MASK); 9873 9874 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 9875 pr_err("RCU nest depth: %d, expected: %u\n", 9876 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 9877 } 9878 9879 if (task_stack_end_corrupted(current)) 9880 pr_emerg("Thread overran stack, or stack corrupted\n"); 9881 9882 debug_show_held_locks(current); 9883 if (irqs_disabled()) 9884 print_irqtrace_events(current); 9885 9886 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 9887 preempt_disable_ip); 9888 9889 dump_stack(); 9890 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9891 } 9892 EXPORT_SYMBOL(__might_resched); 9893 9894 void __cant_sleep(const char *file, int line, int preempt_offset) 9895 { 9896 static unsigned long prev_jiffy; 9897 9898 if (irqs_disabled()) 9899 return; 9900 9901 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9902 return; 9903 9904 if (preempt_count() > preempt_offset) 9905 return; 9906 9907 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9908 return; 9909 prev_jiffy = jiffies; 9910 9911 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 9912 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 9913 in_atomic(), irqs_disabled(), 9914 current->pid, current->comm); 9915 9916 debug_show_held_locks(current); 9917 dump_stack(); 9918 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9919 } 9920 EXPORT_SYMBOL_GPL(__cant_sleep); 9921 9922 #ifdef CONFIG_SMP 9923 void __cant_migrate(const char *file, int line) 9924 { 9925 static unsigned long prev_jiffy; 9926 9927 if (irqs_disabled()) 9928 return; 9929 9930 if (is_migration_disabled(current)) 9931 return; 9932 9933 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9934 return; 9935 9936 if (preempt_count() > 0) 9937 return; 9938 9939 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9940 return; 9941 prev_jiffy = jiffies; 9942 9943 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 9944 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 9945 in_atomic(), irqs_disabled(), is_migration_disabled(current), 9946 current->pid, current->comm); 9947 9948 debug_show_held_locks(current); 9949 dump_stack(); 9950 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9951 } 9952 EXPORT_SYMBOL_GPL(__cant_migrate); 9953 #endif 9954 #endif 9955 9956 #ifdef CONFIG_MAGIC_SYSRQ 9957 void normalize_rt_tasks(void) 9958 { 9959 struct task_struct *g, *p; 9960 struct sched_attr attr = { 9961 .sched_policy = SCHED_NORMAL, 9962 }; 9963 9964 read_lock(&tasklist_lock); 9965 for_each_process_thread(g, p) { 9966 /* 9967 * Only normalize user tasks: 9968 */ 9969 if (p->flags & PF_KTHREAD) 9970 continue; 9971 9972 p->se.exec_start = 0; 9973 schedstat_set(p->stats.wait_start, 0); 9974 schedstat_set(p->stats.sleep_start, 0); 9975 schedstat_set(p->stats.block_start, 0); 9976 9977 if (!dl_task(p) && !rt_task(p)) { 9978 /* 9979 * Renice negative nice level userspace 9980 * tasks back to 0: 9981 */ 9982 if (task_nice(p) < 0) 9983 set_user_nice(p, 0); 9984 continue; 9985 } 9986 9987 __sched_setscheduler(p, &attr, false, false); 9988 } 9989 read_unlock(&tasklist_lock); 9990 } 9991 9992 #endif /* CONFIG_MAGIC_SYSRQ */ 9993 9994 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 9995 /* 9996 * These functions are only useful for the IA64 MCA handling, or kdb. 9997 * 9998 * They can only be called when the whole system has been 9999 * stopped - every CPU needs to be quiescent, and no scheduling 10000 * activity can take place. Using them for anything else would 10001 * be a serious bug, and as a result, they aren't even visible 10002 * under any other configuration. 10003 */ 10004 10005 /** 10006 * curr_task - return the current task for a given CPU. 10007 * @cpu: the processor in question. 10008 * 10009 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10010 * 10011 * Return: The current task for @cpu. 10012 */ 10013 struct task_struct *curr_task(int cpu) 10014 { 10015 return cpu_curr(cpu); 10016 } 10017 10018 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 10019 10020 #ifdef CONFIG_IA64 10021 /** 10022 * ia64_set_curr_task - set the current task for a given CPU. 10023 * @cpu: the processor in question. 10024 * @p: the task pointer to set. 10025 * 10026 * Description: This function must only be used when non-maskable interrupts 10027 * are serviced on a separate stack. It allows the architecture to switch the 10028 * notion of the current task on a CPU in a non-blocking manner. This function 10029 * must be called with all CPU's synchronized, and interrupts disabled, the 10030 * and caller must save the original value of the current task (see 10031 * curr_task() above) and restore that value before reenabling interrupts and 10032 * re-starting the system. 10033 * 10034 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10035 */ 10036 void ia64_set_curr_task(int cpu, struct task_struct *p) 10037 { 10038 cpu_curr(cpu) = p; 10039 } 10040 10041 #endif 10042 10043 #ifdef CONFIG_CGROUP_SCHED 10044 /* task_group_lock serializes the addition/removal of task groups */ 10045 static DEFINE_SPINLOCK(task_group_lock); 10046 10047 static inline void alloc_uclamp_sched_group(struct task_group *tg, 10048 struct task_group *parent) 10049 { 10050 #ifdef CONFIG_UCLAMP_TASK_GROUP 10051 enum uclamp_id clamp_id; 10052 10053 for_each_clamp_id(clamp_id) { 10054 uclamp_se_set(&tg->uclamp_req[clamp_id], 10055 uclamp_none(clamp_id), false); 10056 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 10057 } 10058 #endif 10059 } 10060 10061 static void sched_free_group(struct task_group *tg) 10062 { 10063 free_fair_sched_group(tg); 10064 free_rt_sched_group(tg); 10065 autogroup_free(tg); 10066 kmem_cache_free(task_group_cache, tg); 10067 } 10068 10069 static void sched_free_group_rcu(struct rcu_head *rcu) 10070 { 10071 sched_free_group(container_of(rcu, struct task_group, rcu)); 10072 } 10073 10074 static void sched_unregister_group(struct task_group *tg) 10075 { 10076 unregister_fair_sched_group(tg); 10077 unregister_rt_sched_group(tg); 10078 /* 10079 * We have to wait for yet another RCU grace period to expire, as 10080 * print_cfs_stats() might run concurrently. 10081 */ 10082 call_rcu(&tg->rcu, sched_free_group_rcu); 10083 } 10084 10085 /* allocate runqueue etc for a new task group */ 10086 struct task_group *sched_create_group(struct task_group *parent) 10087 { 10088 struct task_group *tg; 10089 10090 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 10091 if (!tg) 10092 return ERR_PTR(-ENOMEM); 10093 10094 if (!alloc_fair_sched_group(tg, parent)) 10095 goto err; 10096 10097 if (!alloc_rt_sched_group(tg, parent)) 10098 goto err; 10099 10100 alloc_uclamp_sched_group(tg, parent); 10101 10102 return tg; 10103 10104 err: 10105 sched_free_group(tg); 10106 return ERR_PTR(-ENOMEM); 10107 } 10108 10109 void sched_online_group(struct task_group *tg, struct task_group *parent) 10110 { 10111 unsigned long flags; 10112 10113 spin_lock_irqsave(&task_group_lock, flags); 10114 list_add_rcu(&tg->list, &task_groups); 10115 10116 /* Root should already exist: */ 10117 WARN_ON(!parent); 10118 10119 tg->parent = parent; 10120 INIT_LIST_HEAD(&tg->children); 10121 list_add_rcu(&tg->siblings, &parent->children); 10122 spin_unlock_irqrestore(&task_group_lock, flags); 10123 10124 online_fair_sched_group(tg); 10125 } 10126 10127 /* rcu callback to free various structures associated with a task group */ 10128 static void sched_unregister_group_rcu(struct rcu_head *rhp) 10129 { 10130 /* Now it should be safe to free those cfs_rqs: */ 10131 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 10132 } 10133 10134 void sched_destroy_group(struct task_group *tg) 10135 { 10136 /* Wait for possible concurrent references to cfs_rqs complete: */ 10137 call_rcu(&tg->rcu, sched_unregister_group_rcu); 10138 } 10139 10140 void sched_release_group(struct task_group *tg) 10141 { 10142 unsigned long flags; 10143 10144 /* 10145 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 10146 * sched_cfs_period_timer()). 10147 * 10148 * For this to be effective, we have to wait for all pending users of 10149 * this task group to leave their RCU critical section to ensure no new 10150 * user will see our dying task group any more. Specifically ensure 10151 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 10152 * 10153 * We therefore defer calling unregister_fair_sched_group() to 10154 * sched_unregister_group() which is guarantied to get called only after the 10155 * current RCU grace period has expired. 10156 */ 10157 spin_lock_irqsave(&task_group_lock, flags); 10158 list_del_rcu(&tg->list); 10159 list_del_rcu(&tg->siblings); 10160 spin_unlock_irqrestore(&task_group_lock, flags); 10161 } 10162 10163 static void sched_change_group(struct task_struct *tsk) 10164 { 10165 struct task_group *tg; 10166 10167 /* 10168 * All callers are synchronized by task_rq_lock(); we do not use RCU 10169 * which is pointless here. Thus, we pass "true" to task_css_check() 10170 * to prevent lockdep warnings. 10171 */ 10172 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 10173 struct task_group, css); 10174 tg = autogroup_task_group(tsk, tg); 10175 tsk->sched_task_group = tg; 10176 10177 #ifdef CONFIG_FAIR_GROUP_SCHED 10178 if (tsk->sched_class->task_change_group) 10179 tsk->sched_class->task_change_group(tsk); 10180 else 10181 #endif 10182 set_task_rq(tsk, task_cpu(tsk)); 10183 } 10184 10185 /* 10186 * Change task's runqueue when it moves between groups. 10187 * 10188 * The caller of this function should have put the task in its new group by 10189 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 10190 * its new group. 10191 */ 10192 void sched_move_task(struct task_struct *tsk) 10193 { 10194 int queued, running, queue_flags = 10195 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 10196 struct rq_flags rf; 10197 struct rq *rq; 10198 10199 rq = task_rq_lock(tsk, &rf); 10200 update_rq_clock(rq); 10201 10202 running = task_current(rq, tsk); 10203 queued = task_on_rq_queued(tsk); 10204 10205 if (queued) 10206 dequeue_task(rq, tsk, queue_flags); 10207 if (running) 10208 put_prev_task(rq, tsk); 10209 10210 sched_change_group(tsk); 10211 10212 if (queued) 10213 enqueue_task(rq, tsk, queue_flags); 10214 if (running) { 10215 set_next_task(rq, tsk); 10216 /* 10217 * After changing group, the running task may have joined a 10218 * throttled one but it's still the running task. Trigger a 10219 * resched to make sure that task can still run. 10220 */ 10221 resched_curr(rq); 10222 } 10223 10224 task_rq_unlock(rq, tsk, &rf); 10225 } 10226 10227 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 10228 { 10229 return css ? container_of(css, struct task_group, css) : NULL; 10230 } 10231 10232 static struct cgroup_subsys_state * 10233 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10234 { 10235 struct task_group *parent = css_tg(parent_css); 10236 struct task_group *tg; 10237 10238 if (!parent) { 10239 /* This is early initialization for the top cgroup */ 10240 return &root_task_group.css; 10241 } 10242 10243 tg = sched_create_group(parent); 10244 if (IS_ERR(tg)) 10245 return ERR_PTR(-ENOMEM); 10246 10247 return &tg->css; 10248 } 10249 10250 /* Expose task group only after completing cgroup initialization */ 10251 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 10252 { 10253 struct task_group *tg = css_tg(css); 10254 struct task_group *parent = css_tg(css->parent); 10255 10256 if (parent) 10257 sched_online_group(tg, parent); 10258 10259 #ifdef CONFIG_UCLAMP_TASK_GROUP 10260 /* Propagate the effective uclamp value for the new group */ 10261 mutex_lock(&uclamp_mutex); 10262 rcu_read_lock(); 10263 cpu_util_update_eff(css); 10264 rcu_read_unlock(); 10265 mutex_unlock(&uclamp_mutex); 10266 #endif 10267 10268 return 0; 10269 } 10270 10271 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 10272 { 10273 struct task_group *tg = css_tg(css); 10274 10275 sched_release_group(tg); 10276 } 10277 10278 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 10279 { 10280 struct task_group *tg = css_tg(css); 10281 10282 /* 10283 * Relies on the RCU grace period between css_released() and this. 10284 */ 10285 sched_unregister_group(tg); 10286 } 10287 10288 #ifdef CONFIG_RT_GROUP_SCHED 10289 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 10290 { 10291 struct task_struct *task; 10292 struct cgroup_subsys_state *css; 10293 10294 cgroup_taskset_for_each(task, css, tset) { 10295 if (!sched_rt_can_attach(css_tg(css), task)) 10296 return -EINVAL; 10297 } 10298 return 0; 10299 } 10300 #endif 10301 10302 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 10303 { 10304 struct task_struct *task; 10305 struct cgroup_subsys_state *css; 10306 10307 cgroup_taskset_for_each(task, css, tset) 10308 sched_move_task(task); 10309 } 10310 10311 #ifdef CONFIG_UCLAMP_TASK_GROUP 10312 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 10313 { 10314 struct cgroup_subsys_state *top_css = css; 10315 struct uclamp_se *uc_parent = NULL; 10316 struct uclamp_se *uc_se = NULL; 10317 unsigned int eff[UCLAMP_CNT]; 10318 enum uclamp_id clamp_id; 10319 unsigned int clamps; 10320 10321 lockdep_assert_held(&uclamp_mutex); 10322 SCHED_WARN_ON(!rcu_read_lock_held()); 10323 10324 css_for_each_descendant_pre(css, top_css) { 10325 uc_parent = css_tg(css)->parent 10326 ? css_tg(css)->parent->uclamp : NULL; 10327 10328 for_each_clamp_id(clamp_id) { 10329 /* Assume effective clamps matches requested clamps */ 10330 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 10331 /* Cap effective clamps with parent's effective clamps */ 10332 if (uc_parent && 10333 eff[clamp_id] > uc_parent[clamp_id].value) { 10334 eff[clamp_id] = uc_parent[clamp_id].value; 10335 } 10336 } 10337 /* Ensure protection is always capped by limit */ 10338 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 10339 10340 /* Propagate most restrictive effective clamps */ 10341 clamps = 0x0; 10342 uc_se = css_tg(css)->uclamp; 10343 for_each_clamp_id(clamp_id) { 10344 if (eff[clamp_id] == uc_se[clamp_id].value) 10345 continue; 10346 uc_se[clamp_id].value = eff[clamp_id]; 10347 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 10348 clamps |= (0x1 << clamp_id); 10349 } 10350 if (!clamps) { 10351 css = css_rightmost_descendant(css); 10352 continue; 10353 } 10354 10355 /* Immediately update descendants RUNNABLE tasks */ 10356 uclamp_update_active_tasks(css); 10357 } 10358 } 10359 10360 /* 10361 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 10362 * C expression. Since there is no way to convert a macro argument (N) into a 10363 * character constant, use two levels of macros. 10364 */ 10365 #define _POW10(exp) ((unsigned int)1e##exp) 10366 #define POW10(exp) _POW10(exp) 10367 10368 struct uclamp_request { 10369 #define UCLAMP_PERCENT_SHIFT 2 10370 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 10371 s64 percent; 10372 u64 util; 10373 int ret; 10374 }; 10375 10376 static inline struct uclamp_request 10377 capacity_from_percent(char *buf) 10378 { 10379 struct uclamp_request req = { 10380 .percent = UCLAMP_PERCENT_SCALE, 10381 .util = SCHED_CAPACITY_SCALE, 10382 .ret = 0, 10383 }; 10384 10385 buf = strim(buf); 10386 if (strcmp(buf, "max")) { 10387 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 10388 &req.percent); 10389 if (req.ret) 10390 return req; 10391 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 10392 req.ret = -ERANGE; 10393 return req; 10394 } 10395 10396 req.util = req.percent << SCHED_CAPACITY_SHIFT; 10397 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 10398 } 10399 10400 return req; 10401 } 10402 10403 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 10404 size_t nbytes, loff_t off, 10405 enum uclamp_id clamp_id) 10406 { 10407 struct uclamp_request req; 10408 struct task_group *tg; 10409 10410 req = capacity_from_percent(buf); 10411 if (req.ret) 10412 return req.ret; 10413 10414 static_branch_enable(&sched_uclamp_used); 10415 10416 mutex_lock(&uclamp_mutex); 10417 rcu_read_lock(); 10418 10419 tg = css_tg(of_css(of)); 10420 if (tg->uclamp_req[clamp_id].value != req.util) 10421 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 10422 10423 /* 10424 * Because of not recoverable conversion rounding we keep track of the 10425 * exact requested value 10426 */ 10427 tg->uclamp_pct[clamp_id] = req.percent; 10428 10429 /* Update effective clamps to track the most restrictive value */ 10430 cpu_util_update_eff(of_css(of)); 10431 10432 rcu_read_unlock(); 10433 mutex_unlock(&uclamp_mutex); 10434 10435 return nbytes; 10436 } 10437 10438 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 10439 char *buf, size_t nbytes, 10440 loff_t off) 10441 { 10442 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 10443 } 10444 10445 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 10446 char *buf, size_t nbytes, 10447 loff_t off) 10448 { 10449 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 10450 } 10451 10452 static inline void cpu_uclamp_print(struct seq_file *sf, 10453 enum uclamp_id clamp_id) 10454 { 10455 struct task_group *tg; 10456 u64 util_clamp; 10457 u64 percent; 10458 u32 rem; 10459 10460 rcu_read_lock(); 10461 tg = css_tg(seq_css(sf)); 10462 util_clamp = tg->uclamp_req[clamp_id].value; 10463 rcu_read_unlock(); 10464 10465 if (util_clamp == SCHED_CAPACITY_SCALE) { 10466 seq_puts(sf, "max\n"); 10467 return; 10468 } 10469 10470 percent = tg->uclamp_pct[clamp_id]; 10471 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 10472 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 10473 } 10474 10475 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 10476 { 10477 cpu_uclamp_print(sf, UCLAMP_MIN); 10478 return 0; 10479 } 10480 10481 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 10482 { 10483 cpu_uclamp_print(sf, UCLAMP_MAX); 10484 return 0; 10485 } 10486 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10487 10488 #ifdef CONFIG_FAIR_GROUP_SCHED 10489 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 10490 struct cftype *cftype, u64 shareval) 10491 { 10492 if (shareval > scale_load_down(ULONG_MAX)) 10493 shareval = MAX_SHARES; 10494 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 10495 } 10496 10497 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 10498 struct cftype *cft) 10499 { 10500 struct task_group *tg = css_tg(css); 10501 10502 return (u64) scale_load_down(tg->shares); 10503 } 10504 10505 #ifdef CONFIG_CFS_BANDWIDTH 10506 static DEFINE_MUTEX(cfs_constraints_mutex); 10507 10508 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 10509 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 10510 /* More than 203 days if BW_SHIFT equals 20. */ 10511 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 10512 10513 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 10514 10515 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 10516 u64 burst) 10517 { 10518 int i, ret = 0, runtime_enabled, runtime_was_enabled; 10519 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10520 10521 if (tg == &root_task_group) 10522 return -EINVAL; 10523 10524 /* 10525 * Ensure we have at some amount of bandwidth every period. This is 10526 * to prevent reaching a state of large arrears when throttled via 10527 * entity_tick() resulting in prolonged exit starvation. 10528 */ 10529 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 10530 return -EINVAL; 10531 10532 /* 10533 * Likewise, bound things on the other side by preventing insane quota 10534 * periods. This also allows us to normalize in computing quota 10535 * feasibility. 10536 */ 10537 if (period > max_cfs_quota_period) 10538 return -EINVAL; 10539 10540 /* 10541 * Bound quota to defend quota against overflow during bandwidth shift. 10542 */ 10543 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 10544 return -EINVAL; 10545 10546 if (quota != RUNTIME_INF && (burst > quota || 10547 burst + quota > max_cfs_runtime)) 10548 return -EINVAL; 10549 10550 /* 10551 * Prevent race between setting of cfs_rq->runtime_enabled and 10552 * unthrottle_offline_cfs_rqs(). 10553 */ 10554 cpus_read_lock(); 10555 mutex_lock(&cfs_constraints_mutex); 10556 ret = __cfs_schedulable(tg, period, quota); 10557 if (ret) 10558 goto out_unlock; 10559 10560 runtime_enabled = quota != RUNTIME_INF; 10561 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 10562 /* 10563 * If we need to toggle cfs_bandwidth_used, off->on must occur 10564 * before making related changes, and on->off must occur afterwards 10565 */ 10566 if (runtime_enabled && !runtime_was_enabled) 10567 cfs_bandwidth_usage_inc(); 10568 raw_spin_lock_irq(&cfs_b->lock); 10569 cfs_b->period = ns_to_ktime(period); 10570 cfs_b->quota = quota; 10571 cfs_b->burst = burst; 10572 10573 __refill_cfs_bandwidth_runtime(cfs_b); 10574 10575 /* Restart the period timer (if active) to handle new period expiry: */ 10576 if (runtime_enabled) 10577 start_cfs_bandwidth(cfs_b); 10578 10579 raw_spin_unlock_irq(&cfs_b->lock); 10580 10581 for_each_online_cpu(i) { 10582 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 10583 struct rq *rq = cfs_rq->rq; 10584 struct rq_flags rf; 10585 10586 rq_lock_irq(rq, &rf); 10587 cfs_rq->runtime_enabled = runtime_enabled; 10588 cfs_rq->runtime_remaining = 0; 10589 10590 if (cfs_rq->throttled) 10591 unthrottle_cfs_rq(cfs_rq); 10592 rq_unlock_irq(rq, &rf); 10593 } 10594 if (runtime_was_enabled && !runtime_enabled) 10595 cfs_bandwidth_usage_dec(); 10596 out_unlock: 10597 mutex_unlock(&cfs_constraints_mutex); 10598 cpus_read_unlock(); 10599 10600 return ret; 10601 } 10602 10603 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 10604 { 10605 u64 quota, period, burst; 10606 10607 period = ktime_to_ns(tg->cfs_bandwidth.period); 10608 burst = tg->cfs_bandwidth.burst; 10609 if (cfs_quota_us < 0) 10610 quota = RUNTIME_INF; 10611 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 10612 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 10613 else 10614 return -EINVAL; 10615 10616 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10617 } 10618 10619 static long tg_get_cfs_quota(struct task_group *tg) 10620 { 10621 u64 quota_us; 10622 10623 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 10624 return -1; 10625 10626 quota_us = tg->cfs_bandwidth.quota; 10627 do_div(quota_us, NSEC_PER_USEC); 10628 10629 return quota_us; 10630 } 10631 10632 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 10633 { 10634 u64 quota, period, burst; 10635 10636 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 10637 return -EINVAL; 10638 10639 period = (u64)cfs_period_us * NSEC_PER_USEC; 10640 quota = tg->cfs_bandwidth.quota; 10641 burst = tg->cfs_bandwidth.burst; 10642 10643 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10644 } 10645 10646 static long tg_get_cfs_period(struct task_group *tg) 10647 { 10648 u64 cfs_period_us; 10649 10650 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 10651 do_div(cfs_period_us, NSEC_PER_USEC); 10652 10653 return cfs_period_us; 10654 } 10655 10656 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 10657 { 10658 u64 quota, period, burst; 10659 10660 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 10661 return -EINVAL; 10662 10663 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 10664 period = ktime_to_ns(tg->cfs_bandwidth.period); 10665 quota = tg->cfs_bandwidth.quota; 10666 10667 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10668 } 10669 10670 static long tg_get_cfs_burst(struct task_group *tg) 10671 { 10672 u64 burst_us; 10673 10674 burst_us = tg->cfs_bandwidth.burst; 10675 do_div(burst_us, NSEC_PER_USEC); 10676 10677 return burst_us; 10678 } 10679 10680 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 10681 struct cftype *cft) 10682 { 10683 return tg_get_cfs_quota(css_tg(css)); 10684 } 10685 10686 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 10687 struct cftype *cftype, s64 cfs_quota_us) 10688 { 10689 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 10690 } 10691 10692 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 10693 struct cftype *cft) 10694 { 10695 return tg_get_cfs_period(css_tg(css)); 10696 } 10697 10698 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 10699 struct cftype *cftype, u64 cfs_period_us) 10700 { 10701 return tg_set_cfs_period(css_tg(css), cfs_period_us); 10702 } 10703 10704 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 10705 struct cftype *cft) 10706 { 10707 return tg_get_cfs_burst(css_tg(css)); 10708 } 10709 10710 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 10711 struct cftype *cftype, u64 cfs_burst_us) 10712 { 10713 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 10714 } 10715 10716 struct cfs_schedulable_data { 10717 struct task_group *tg; 10718 u64 period, quota; 10719 }; 10720 10721 /* 10722 * normalize group quota/period to be quota/max_period 10723 * note: units are usecs 10724 */ 10725 static u64 normalize_cfs_quota(struct task_group *tg, 10726 struct cfs_schedulable_data *d) 10727 { 10728 u64 quota, period; 10729 10730 if (tg == d->tg) { 10731 period = d->period; 10732 quota = d->quota; 10733 } else { 10734 period = tg_get_cfs_period(tg); 10735 quota = tg_get_cfs_quota(tg); 10736 } 10737 10738 /* note: these should typically be equivalent */ 10739 if (quota == RUNTIME_INF || quota == -1) 10740 return RUNTIME_INF; 10741 10742 return to_ratio(period, quota); 10743 } 10744 10745 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 10746 { 10747 struct cfs_schedulable_data *d = data; 10748 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10749 s64 quota = 0, parent_quota = -1; 10750 10751 if (!tg->parent) { 10752 quota = RUNTIME_INF; 10753 } else { 10754 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 10755 10756 quota = normalize_cfs_quota(tg, d); 10757 parent_quota = parent_b->hierarchical_quota; 10758 10759 /* 10760 * Ensure max(child_quota) <= parent_quota. On cgroup2, 10761 * always take the min. On cgroup1, only inherit when no 10762 * limit is set: 10763 */ 10764 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 10765 quota = min(quota, parent_quota); 10766 } else { 10767 if (quota == RUNTIME_INF) 10768 quota = parent_quota; 10769 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 10770 return -EINVAL; 10771 } 10772 } 10773 cfs_b->hierarchical_quota = quota; 10774 10775 return 0; 10776 } 10777 10778 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 10779 { 10780 int ret; 10781 struct cfs_schedulable_data data = { 10782 .tg = tg, 10783 .period = period, 10784 .quota = quota, 10785 }; 10786 10787 if (quota != RUNTIME_INF) { 10788 do_div(data.period, NSEC_PER_USEC); 10789 do_div(data.quota, NSEC_PER_USEC); 10790 } 10791 10792 rcu_read_lock(); 10793 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 10794 rcu_read_unlock(); 10795 10796 return ret; 10797 } 10798 10799 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 10800 { 10801 struct task_group *tg = css_tg(seq_css(sf)); 10802 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10803 10804 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 10805 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 10806 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 10807 10808 if (schedstat_enabled() && tg != &root_task_group) { 10809 struct sched_statistics *stats; 10810 u64 ws = 0; 10811 int i; 10812 10813 for_each_possible_cpu(i) { 10814 stats = __schedstats_from_se(tg->se[i]); 10815 ws += schedstat_val(stats->wait_sum); 10816 } 10817 10818 seq_printf(sf, "wait_sum %llu\n", ws); 10819 } 10820 10821 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 10822 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 10823 10824 return 0; 10825 } 10826 #endif /* CONFIG_CFS_BANDWIDTH */ 10827 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10828 10829 #ifdef CONFIG_RT_GROUP_SCHED 10830 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 10831 struct cftype *cft, s64 val) 10832 { 10833 return sched_group_set_rt_runtime(css_tg(css), val); 10834 } 10835 10836 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 10837 struct cftype *cft) 10838 { 10839 return sched_group_rt_runtime(css_tg(css)); 10840 } 10841 10842 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 10843 struct cftype *cftype, u64 rt_period_us) 10844 { 10845 return sched_group_set_rt_period(css_tg(css), rt_period_us); 10846 } 10847 10848 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 10849 struct cftype *cft) 10850 { 10851 return sched_group_rt_period(css_tg(css)); 10852 } 10853 #endif /* CONFIG_RT_GROUP_SCHED */ 10854 10855 #ifdef CONFIG_FAIR_GROUP_SCHED 10856 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 10857 struct cftype *cft) 10858 { 10859 return css_tg(css)->idle; 10860 } 10861 10862 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 10863 struct cftype *cft, s64 idle) 10864 { 10865 return sched_group_set_idle(css_tg(css), idle); 10866 } 10867 #endif 10868 10869 static struct cftype cpu_legacy_files[] = { 10870 #ifdef CONFIG_FAIR_GROUP_SCHED 10871 { 10872 .name = "shares", 10873 .read_u64 = cpu_shares_read_u64, 10874 .write_u64 = cpu_shares_write_u64, 10875 }, 10876 { 10877 .name = "idle", 10878 .read_s64 = cpu_idle_read_s64, 10879 .write_s64 = cpu_idle_write_s64, 10880 }, 10881 #endif 10882 #ifdef CONFIG_CFS_BANDWIDTH 10883 { 10884 .name = "cfs_quota_us", 10885 .read_s64 = cpu_cfs_quota_read_s64, 10886 .write_s64 = cpu_cfs_quota_write_s64, 10887 }, 10888 { 10889 .name = "cfs_period_us", 10890 .read_u64 = cpu_cfs_period_read_u64, 10891 .write_u64 = cpu_cfs_period_write_u64, 10892 }, 10893 { 10894 .name = "cfs_burst_us", 10895 .read_u64 = cpu_cfs_burst_read_u64, 10896 .write_u64 = cpu_cfs_burst_write_u64, 10897 }, 10898 { 10899 .name = "stat", 10900 .seq_show = cpu_cfs_stat_show, 10901 }, 10902 #endif 10903 #ifdef CONFIG_RT_GROUP_SCHED 10904 { 10905 .name = "rt_runtime_us", 10906 .read_s64 = cpu_rt_runtime_read, 10907 .write_s64 = cpu_rt_runtime_write, 10908 }, 10909 { 10910 .name = "rt_period_us", 10911 .read_u64 = cpu_rt_period_read_uint, 10912 .write_u64 = cpu_rt_period_write_uint, 10913 }, 10914 #endif 10915 #ifdef CONFIG_UCLAMP_TASK_GROUP 10916 { 10917 .name = "uclamp.min", 10918 .flags = CFTYPE_NOT_ON_ROOT, 10919 .seq_show = cpu_uclamp_min_show, 10920 .write = cpu_uclamp_min_write, 10921 }, 10922 { 10923 .name = "uclamp.max", 10924 .flags = CFTYPE_NOT_ON_ROOT, 10925 .seq_show = cpu_uclamp_max_show, 10926 .write = cpu_uclamp_max_write, 10927 }, 10928 #endif 10929 { } /* Terminate */ 10930 }; 10931 10932 static int cpu_extra_stat_show(struct seq_file *sf, 10933 struct cgroup_subsys_state *css) 10934 { 10935 #ifdef CONFIG_CFS_BANDWIDTH 10936 { 10937 struct task_group *tg = css_tg(css); 10938 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10939 u64 throttled_usec, burst_usec; 10940 10941 throttled_usec = cfs_b->throttled_time; 10942 do_div(throttled_usec, NSEC_PER_USEC); 10943 burst_usec = cfs_b->burst_time; 10944 do_div(burst_usec, NSEC_PER_USEC); 10945 10946 seq_printf(sf, "nr_periods %d\n" 10947 "nr_throttled %d\n" 10948 "throttled_usec %llu\n" 10949 "nr_bursts %d\n" 10950 "burst_usec %llu\n", 10951 cfs_b->nr_periods, cfs_b->nr_throttled, 10952 throttled_usec, cfs_b->nr_burst, burst_usec); 10953 } 10954 #endif 10955 return 0; 10956 } 10957 10958 #ifdef CONFIG_FAIR_GROUP_SCHED 10959 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 10960 struct cftype *cft) 10961 { 10962 struct task_group *tg = css_tg(css); 10963 u64 weight = scale_load_down(tg->shares); 10964 10965 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 10966 } 10967 10968 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 10969 struct cftype *cft, u64 weight) 10970 { 10971 /* 10972 * cgroup weight knobs should use the common MIN, DFL and MAX 10973 * values which are 1, 100 and 10000 respectively. While it loses 10974 * a bit of range on both ends, it maps pretty well onto the shares 10975 * value used by scheduler and the round-trip conversions preserve 10976 * the original value over the entire range. 10977 */ 10978 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 10979 return -ERANGE; 10980 10981 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 10982 10983 return sched_group_set_shares(css_tg(css), scale_load(weight)); 10984 } 10985 10986 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 10987 struct cftype *cft) 10988 { 10989 unsigned long weight = scale_load_down(css_tg(css)->shares); 10990 int last_delta = INT_MAX; 10991 int prio, delta; 10992 10993 /* find the closest nice value to the current weight */ 10994 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 10995 delta = abs(sched_prio_to_weight[prio] - weight); 10996 if (delta >= last_delta) 10997 break; 10998 last_delta = delta; 10999 } 11000 11001 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 11002 } 11003 11004 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 11005 struct cftype *cft, s64 nice) 11006 { 11007 unsigned long weight; 11008 int idx; 11009 11010 if (nice < MIN_NICE || nice > MAX_NICE) 11011 return -ERANGE; 11012 11013 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 11014 idx = array_index_nospec(idx, 40); 11015 weight = sched_prio_to_weight[idx]; 11016 11017 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11018 } 11019 #endif 11020 11021 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 11022 long period, long quota) 11023 { 11024 if (quota < 0) 11025 seq_puts(sf, "max"); 11026 else 11027 seq_printf(sf, "%ld", quota); 11028 11029 seq_printf(sf, " %ld\n", period); 11030 } 11031 11032 /* caller should put the current value in *@periodp before calling */ 11033 static int __maybe_unused cpu_period_quota_parse(char *buf, 11034 u64 *periodp, u64 *quotap) 11035 { 11036 char tok[21]; /* U64_MAX */ 11037 11038 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 11039 return -EINVAL; 11040 11041 *periodp *= NSEC_PER_USEC; 11042 11043 if (sscanf(tok, "%llu", quotap)) 11044 *quotap *= NSEC_PER_USEC; 11045 else if (!strcmp(tok, "max")) 11046 *quotap = RUNTIME_INF; 11047 else 11048 return -EINVAL; 11049 11050 return 0; 11051 } 11052 11053 #ifdef CONFIG_CFS_BANDWIDTH 11054 static int cpu_max_show(struct seq_file *sf, void *v) 11055 { 11056 struct task_group *tg = css_tg(seq_css(sf)); 11057 11058 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 11059 return 0; 11060 } 11061 11062 static ssize_t cpu_max_write(struct kernfs_open_file *of, 11063 char *buf, size_t nbytes, loff_t off) 11064 { 11065 struct task_group *tg = css_tg(of_css(of)); 11066 u64 period = tg_get_cfs_period(tg); 11067 u64 burst = tg_get_cfs_burst(tg); 11068 u64 quota; 11069 int ret; 11070 11071 ret = cpu_period_quota_parse(buf, &period, "a); 11072 if (!ret) 11073 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 11074 return ret ?: nbytes; 11075 } 11076 #endif 11077 11078 static struct cftype cpu_files[] = { 11079 #ifdef CONFIG_FAIR_GROUP_SCHED 11080 { 11081 .name = "weight", 11082 .flags = CFTYPE_NOT_ON_ROOT, 11083 .read_u64 = cpu_weight_read_u64, 11084 .write_u64 = cpu_weight_write_u64, 11085 }, 11086 { 11087 .name = "weight.nice", 11088 .flags = CFTYPE_NOT_ON_ROOT, 11089 .read_s64 = cpu_weight_nice_read_s64, 11090 .write_s64 = cpu_weight_nice_write_s64, 11091 }, 11092 { 11093 .name = "idle", 11094 .flags = CFTYPE_NOT_ON_ROOT, 11095 .read_s64 = cpu_idle_read_s64, 11096 .write_s64 = cpu_idle_write_s64, 11097 }, 11098 #endif 11099 #ifdef CONFIG_CFS_BANDWIDTH 11100 { 11101 .name = "max", 11102 .flags = CFTYPE_NOT_ON_ROOT, 11103 .seq_show = cpu_max_show, 11104 .write = cpu_max_write, 11105 }, 11106 { 11107 .name = "max.burst", 11108 .flags = CFTYPE_NOT_ON_ROOT, 11109 .read_u64 = cpu_cfs_burst_read_u64, 11110 .write_u64 = cpu_cfs_burst_write_u64, 11111 }, 11112 #endif 11113 #ifdef CONFIG_UCLAMP_TASK_GROUP 11114 { 11115 .name = "uclamp.min", 11116 .flags = CFTYPE_NOT_ON_ROOT, 11117 .seq_show = cpu_uclamp_min_show, 11118 .write = cpu_uclamp_min_write, 11119 }, 11120 { 11121 .name = "uclamp.max", 11122 .flags = CFTYPE_NOT_ON_ROOT, 11123 .seq_show = cpu_uclamp_max_show, 11124 .write = cpu_uclamp_max_write, 11125 }, 11126 #endif 11127 { } /* terminate */ 11128 }; 11129 11130 struct cgroup_subsys cpu_cgrp_subsys = { 11131 .css_alloc = cpu_cgroup_css_alloc, 11132 .css_online = cpu_cgroup_css_online, 11133 .css_released = cpu_cgroup_css_released, 11134 .css_free = cpu_cgroup_css_free, 11135 .css_extra_stat_show = cpu_extra_stat_show, 11136 #ifdef CONFIG_RT_GROUP_SCHED 11137 .can_attach = cpu_cgroup_can_attach, 11138 #endif 11139 .attach = cpu_cgroup_attach, 11140 .legacy_cftypes = cpu_legacy_files, 11141 .dfl_cftypes = cpu_files, 11142 .early_init = true, 11143 .threaded = true, 11144 }; 11145 11146 #endif /* CONFIG_CGROUP_SCHED */ 11147 11148 void dump_cpu_task(int cpu) 11149 { 11150 if (cpu == smp_processor_id() && in_hardirq()) { 11151 struct pt_regs *regs; 11152 11153 regs = get_irq_regs(); 11154 if (regs) { 11155 show_regs(regs); 11156 return; 11157 } 11158 } 11159 11160 if (trigger_single_cpu_backtrace(cpu)) 11161 return; 11162 11163 pr_info("Task dump for CPU %d:\n", cpu); 11164 sched_show_task(cpu_curr(cpu)); 11165 } 11166 11167 /* 11168 * Nice levels are multiplicative, with a gentle 10% change for every 11169 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 11170 * nice 1, it will get ~10% less CPU time than another CPU-bound task 11171 * that remained on nice 0. 11172 * 11173 * The "10% effect" is relative and cumulative: from _any_ nice level, 11174 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 11175 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 11176 * If a task goes up by ~10% and another task goes down by ~10% then 11177 * the relative distance between them is ~25%.) 11178 */ 11179 const int sched_prio_to_weight[40] = { 11180 /* -20 */ 88761, 71755, 56483, 46273, 36291, 11181 /* -15 */ 29154, 23254, 18705, 14949, 11916, 11182 /* -10 */ 9548, 7620, 6100, 4904, 3906, 11183 /* -5 */ 3121, 2501, 1991, 1586, 1277, 11184 /* 0 */ 1024, 820, 655, 526, 423, 11185 /* 5 */ 335, 272, 215, 172, 137, 11186 /* 10 */ 110, 87, 70, 56, 45, 11187 /* 15 */ 36, 29, 23, 18, 15, 11188 }; 11189 11190 /* 11191 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 11192 * 11193 * In cases where the weight does not change often, we can use the 11194 * precalculated inverse to speed up arithmetics by turning divisions 11195 * into multiplications: 11196 */ 11197 const u32 sched_prio_to_wmult[40] = { 11198 /* -20 */ 48388, 59856, 76040, 92818, 118348, 11199 /* -15 */ 147320, 184698, 229616, 287308, 360437, 11200 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 11201 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 11202 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 11203 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 11204 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 11205 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 11206 }; 11207 11208 void call_trace_sched_update_nr_running(struct rq *rq, int count) 11209 { 11210 trace_sched_update_nr_running_tp(rq, count); 11211 } 11212