xref: /linux/kernel/sched/core.c (revision b1d29ba82cf2bc784f4c963ddd6a2cf29e229b33)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Core kernel scheduler code and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  */
8 #include "sched.h"
9 
10 #include <linux/nospec.h>
11 
12 #include <linux/kcov.h>
13 
14 #include <asm/switch_to.h>
15 #include <asm/tlb.h>
16 
17 #include "../workqueue_internal.h"
18 #include "../smpboot.h"
19 
20 #include "pelt.h"
21 
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/sched.h>
24 
25 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
26 
27 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
28 /*
29  * Debugging: various feature bits
30  *
31  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
32  * sysctl_sched_features, defined in sched.h, to allow constants propagation
33  * at compile time and compiler optimization based on features default.
34  */
35 #define SCHED_FEAT(name, enabled)	\
36 	(1UL << __SCHED_FEAT_##name) * enabled |
37 const_debug unsigned int sysctl_sched_features =
38 #include "features.h"
39 	0;
40 #undef SCHED_FEAT
41 #endif
42 
43 /*
44  * Number of tasks to iterate in a single balance run.
45  * Limited because this is done with IRQs disabled.
46  */
47 const_debug unsigned int sysctl_sched_nr_migrate = 32;
48 
49 /*
50  * period over which we measure -rt task CPU usage in us.
51  * default: 1s
52  */
53 unsigned int sysctl_sched_rt_period = 1000000;
54 
55 __read_mostly int scheduler_running;
56 
57 /*
58  * part of the period that we allow rt tasks to run in us.
59  * default: 0.95s
60  */
61 int sysctl_sched_rt_runtime = 950000;
62 
63 /*
64  * __task_rq_lock - lock the rq @p resides on.
65  */
66 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
67 	__acquires(rq->lock)
68 {
69 	struct rq *rq;
70 
71 	lockdep_assert_held(&p->pi_lock);
72 
73 	for (;;) {
74 		rq = task_rq(p);
75 		raw_spin_lock(&rq->lock);
76 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
77 			rq_pin_lock(rq, rf);
78 			return rq;
79 		}
80 		raw_spin_unlock(&rq->lock);
81 
82 		while (unlikely(task_on_rq_migrating(p)))
83 			cpu_relax();
84 	}
85 }
86 
87 /*
88  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
89  */
90 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
91 	__acquires(p->pi_lock)
92 	__acquires(rq->lock)
93 {
94 	struct rq *rq;
95 
96 	for (;;) {
97 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
98 		rq = task_rq(p);
99 		raw_spin_lock(&rq->lock);
100 		/*
101 		 *	move_queued_task()		task_rq_lock()
102 		 *
103 		 *	ACQUIRE (rq->lock)
104 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
105 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
106 		 *	[S] ->cpu = new_cpu		[L] task_rq()
107 		 *					[L] ->on_rq
108 		 *	RELEASE (rq->lock)
109 		 *
110 		 * If we observe the old CPU in task_rq_lock, the acquire of
111 		 * the old rq->lock will fully serialize against the stores.
112 		 *
113 		 * If we observe the new CPU in task_rq_lock, the acquire will
114 		 * pair with the WMB to ensure we must then also see migrating.
115 		 */
116 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
117 			rq_pin_lock(rq, rf);
118 			return rq;
119 		}
120 		raw_spin_unlock(&rq->lock);
121 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
122 
123 		while (unlikely(task_on_rq_migrating(p)))
124 			cpu_relax();
125 	}
126 }
127 
128 /*
129  * RQ-clock updating methods:
130  */
131 
132 static void update_rq_clock_task(struct rq *rq, s64 delta)
133 {
134 /*
135  * In theory, the compile should just see 0 here, and optimize out the call
136  * to sched_rt_avg_update. But I don't trust it...
137  */
138 	s64 __maybe_unused steal = 0, irq_delta = 0;
139 
140 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
141 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
142 
143 	/*
144 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
145 	 * this case when a previous update_rq_clock() happened inside a
146 	 * {soft,}irq region.
147 	 *
148 	 * When this happens, we stop ->clock_task and only update the
149 	 * prev_irq_time stamp to account for the part that fit, so that a next
150 	 * update will consume the rest. This ensures ->clock_task is
151 	 * monotonic.
152 	 *
153 	 * It does however cause some slight miss-attribution of {soft,}irq
154 	 * time, a more accurate solution would be to update the irq_time using
155 	 * the current rq->clock timestamp, except that would require using
156 	 * atomic ops.
157 	 */
158 	if (irq_delta > delta)
159 		irq_delta = delta;
160 
161 	rq->prev_irq_time += irq_delta;
162 	delta -= irq_delta;
163 #endif
164 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
165 	if (static_key_false((&paravirt_steal_rq_enabled))) {
166 		steal = paravirt_steal_clock(cpu_of(rq));
167 		steal -= rq->prev_steal_time_rq;
168 
169 		if (unlikely(steal > delta))
170 			steal = delta;
171 
172 		rq->prev_steal_time_rq += steal;
173 		delta -= steal;
174 	}
175 #endif
176 
177 	rq->clock_task += delta;
178 
179 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
180 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
181 		update_irq_load_avg(rq, irq_delta + steal);
182 #endif
183 }
184 
185 void update_rq_clock(struct rq *rq)
186 {
187 	s64 delta;
188 
189 	lockdep_assert_held(&rq->lock);
190 
191 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
192 		return;
193 
194 #ifdef CONFIG_SCHED_DEBUG
195 	if (sched_feat(WARN_DOUBLE_CLOCK))
196 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
197 	rq->clock_update_flags |= RQCF_UPDATED;
198 #endif
199 
200 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
201 	if (delta < 0)
202 		return;
203 	rq->clock += delta;
204 	update_rq_clock_task(rq, delta);
205 }
206 
207 
208 #ifdef CONFIG_SCHED_HRTICK
209 /*
210  * Use HR-timers to deliver accurate preemption points.
211  */
212 
213 static void hrtick_clear(struct rq *rq)
214 {
215 	if (hrtimer_active(&rq->hrtick_timer))
216 		hrtimer_cancel(&rq->hrtick_timer);
217 }
218 
219 /*
220  * High-resolution timer tick.
221  * Runs from hardirq context with interrupts disabled.
222  */
223 static enum hrtimer_restart hrtick(struct hrtimer *timer)
224 {
225 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
226 	struct rq_flags rf;
227 
228 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
229 
230 	rq_lock(rq, &rf);
231 	update_rq_clock(rq);
232 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
233 	rq_unlock(rq, &rf);
234 
235 	return HRTIMER_NORESTART;
236 }
237 
238 #ifdef CONFIG_SMP
239 
240 static void __hrtick_restart(struct rq *rq)
241 {
242 	struct hrtimer *timer = &rq->hrtick_timer;
243 
244 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
245 }
246 
247 /*
248  * called from hardirq (IPI) context
249  */
250 static void __hrtick_start(void *arg)
251 {
252 	struct rq *rq = arg;
253 	struct rq_flags rf;
254 
255 	rq_lock(rq, &rf);
256 	__hrtick_restart(rq);
257 	rq->hrtick_csd_pending = 0;
258 	rq_unlock(rq, &rf);
259 }
260 
261 /*
262  * Called to set the hrtick timer state.
263  *
264  * called with rq->lock held and irqs disabled
265  */
266 void hrtick_start(struct rq *rq, u64 delay)
267 {
268 	struct hrtimer *timer = &rq->hrtick_timer;
269 	ktime_t time;
270 	s64 delta;
271 
272 	/*
273 	 * Don't schedule slices shorter than 10000ns, that just
274 	 * doesn't make sense and can cause timer DoS.
275 	 */
276 	delta = max_t(s64, delay, 10000LL);
277 	time = ktime_add_ns(timer->base->get_time(), delta);
278 
279 	hrtimer_set_expires(timer, time);
280 
281 	if (rq == this_rq()) {
282 		__hrtick_restart(rq);
283 	} else if (!rq->hrtick_csd_pending) {
284 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
285 		rq->hrtick_csd_pending = 1;
286 	}
287 }
288 
289 #else
290 /*
291  * Called to set the hrtick timer state.
292  *
293  * called with rq->lock held and irqs disabled
294  */
295 void hrtick_start(struct rq *rq, u64 delay)
296 {
297 	/*
298 	 * Don't schedule slices shorter than 10000ns, that just
299 	 * doesn't make sense. Rely on vruntime for fairness.
300 	 */
301 	delay = max_t(u64, delay, 10000LL);
302 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
303 		      HRTIMER_MODE_REL_PINNED);
304 }
305 #endif /* CONFIG_SMP */
306 
307 static void hrtick_rq_init(struct rq *rq)
308 {
309 #ifdef CONFIG_SMP
310 	rq->hrtick_csd_pending = 0;
311 
312 	rq->hrtick_csd.flags = 0;
313 	rq->hrtick_csd.func = __hrtick_start;
314 	rq->hrtick_csd.info = rq;
315 #endif
316 
317 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
318 	rq->hrtick_timer.function = hrtick;
319 }
320 #else	/* CONFIG_SCHED_HRTICK */
321 static inline void hrtick_clear(struct rq *rq)
322 {
323 }
324 
325 static inline void hrtick_rq_init(struct rq *rq)
326 {
327 }
328 #endif	/* CONFIG_SCHED_HRTICK */
329 
330 /*
331  * cmpxchg based fetch_or, macro so it works for different integer types
332  */
333 #define fetch_or(ptr, mask)						\
334 	({								\
335 		typeof(ptr) _ptr = (ptr);				\
336 		typeof(mask) _mask = (mask);				\
337 		typeof(*_ptr) _old, _val = *_ptr;			\
338 									\
339 		for (;;) {						\
340 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
341 			if (_old == _val)				\
342 				break;					\
343 			_val = _old;					\
344 		}							\
345 	_old;								\
346 })
347 
348 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
349 /*
350  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
351  * this avoids any races wrt polling state changes and thereby avoids
352  * spurious IPIs.
353  */
354 static bool set_nr_and_not_polling(struct task_struct *p)
355 {
356 	struct thread_info *ti = task_thread_info(p);
357 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
358 }
359 
360 /*
361  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
362  *
363  * If this returns true, then the idle task promises to call
364  * sched_ttwu_pending() and reschedule soon.
365  */
366 static bool set_nr_if_polling(struct task_struct *p)
367 {
368 	struct thread_info *ti = task_thread_info(p);
369 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
370 
371 	for (;;) {
372 		if (!(val & _TIF_POLLING_NRFLAG))
373 			return false;
374 		if (val & _TIF_NEED_RESCHED)
375 			return true;
376 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
377 		if (old == val)
378 			break;
379 		val = old;
380 	}
381 	return true;
382 }
383 
384 #else
385 static bool set_nr_and_not_polling(struct task_struct *p)
386 {
387 	set_tsk_need_resched(p);
388 	return true;
389 }
390 
391 #ifdef CONFIG_SMP
392 static bool set_nr_if_polling(struct task_struct *p)
393 {
394 	return false;
395 }
396 #endif
397 #endif
398 
399 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
400 {
401 	struct wake_q_node *node = &task->wake_q;
402 
403 	/*
404 	 * Atomically grab the task, if ->wake_q is !nil already it means
405 	 * its already queued (either by us or someone else) and will get the
406 	 * wakeup due to that.
407 	 *
408 	 * This cmpxchg() executes a full barrier, which pairs with the full
409 	 * barrier executed by the wakeup in wake_up_q().
410 	 */
411 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
412 		return;
413 
414 	get_task_struct(task);
415 
416 	/*
417 	 * The head is context local, there can be no concurrency.
418 	 */
419 	*head->lastp = node;
420 	head->lastp = &node->next;
421 }
422 
423 void wake_up_q(struct wake_q_head *head)
424 {
425 	struct wake_q_node *node = head->first;
426 
427 	while (node != WAKE_Q_TAIL) {
428 		struct task_struct *task;
429 
430 		task = container_of(node, struct task_struct, wake_q);
431 		BUG_ON(!task);
432 		/* Task can safely be re-inserted now: */
433 		node = node->next;
434 		task->wake_q.next = NULL;
435 
436 		/*
437 		 * wake_up_process() executes a full barrier, which pairs with
438 		 * the queueing in wake_q_add() so as not to miss wakeups.
439 		 */
440 		wake_up_process(task);
441 		put_task_struct(task);
442 	}
443 }
444 
445 /*
446  * resched_curr - mark rq's current task 'to be rescheduled now'.
447  *
448  * On UP this means the setting of the need_resched flag, on SMP it
449  * might also involve a cross-CPU call to trigger the scheduler on
450  * the target CPU.
451  */
452 void resched_curr(struct rq *rq)
453 {
454 	struct task_struct *curr = rq->curr;
455 	int cpu;
456 
457 	lockdep_assert_held(&rq->lock);
458 
459 	if (test_tsk_need_resched(curr))
460 		return;
461 
462 	cpu = cpu_of(rq);
463 
464 	if (cpu == smp_processor_id()) {
465 		set_tsk_need_resched(curr);
466 		set_preempt_need_resched();
467 		return;
468 	}
469 
470 	if (set_nr_and_not_polling(curr))
471 		smp_send_reschedule(cpu);
472 	else
473 		trace_sched_wake_idle_without_ipi(cpu);
474 }
475 
476 void resched_cpu(int cpu)
477 {
478 	struct rq *rq = cpu_rq(cpu);
479 	unsigned long flags;
480 
481 	raw_spin_lock_irqsave(&rq->lock, flags);
482 	if (cpu_online(cpu) || cpu == smp_processor_id())
483 		resched_curr(rq);
484 	raw_spin_unlock_irqrestore(&rq->lock, flags);
485 }
486 
487 #ifdef CONFIG_SMP
488 #ifdef CONFIG_NO_HZ_COMMON
489 /*
490  * In the semi idle case, use the nearest busy CPU for migrating timers
491  * from an idle CPU.  This is good for power-savings.
492  *
493  * We don't do similar optimization for completely idle system, as
494  * selecting an idle CPU will add more delays to the timers than intended
495  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
496  */
497 int get_nohz_timer_target(void)
498 {
499 	int i, cpu = smp_processor_id();
500 	struct sched_domain *sd;
501 
502 	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
503 		return cpu;
504 
505 	rcu_read_lock();
506 	for_each_domain(cpu, sd) {
507 		for_each_cpu(i, sched_domain_span(sd)) {
508 			if (cpu == i)
509 				continue;
510 
511 			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
512 				cpu = i;
513 				goto unlock;
514 			}
515 		}
516 	}
517 
518 	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
519 		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
520 unlock:
521 	rcu_read_unlock();
522 	return cpu;
523 }
524 
525 /*
526  * When add_timer_on() enqueues a timer into the timer wheel of an
527  * idle CPU then this timer might expire before the next timer event
528  * which is scheduled to wake up that CPU. In case of a completely
529  * idle system the next event might even be infinite time into the
530  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
531  * leaves the inner idle loop so the newly added timer is taken into
532  * account when the CPU goes back to idle and evaluates the timer
533  * wheel for the next timer event.
534  */
535 static void wake_up_idle_cpu(int cpu)
536 {
537 	struct rq *rq = cpu_rq(cpu);
538 
539 	if (cpu == smp_processor_id())
540 		return;
541 
542 	if (set_nr_and_not_polling(rq->idle))
543 		smp_send_reschedule(cpu);
544 	else
545 		trace_sched_wake_idle_without_ipi(cpu);
546 }
547 
548 static bool wake_up_full_nohz_cpu(int cpu)
549 {
550 	/*
551 	 * We just need the target to call irq_exit() and re-evaluate
552 	 * the next tick. The nohz full kick at least implies that.
553 	 * If needed we can still optimize that later with an
554 	 * empty IRQ.
555 	 */
556 	if (cpu_is_offline(cpu))
557 		return true;  /* Don't try to wake offline CPUs. */
558 	if (tick_nohz_full_cpu(cpu)) {
559 		if (cpu != smp_processor_id() ||
560 		    tick_nohz_tick_stopped())
561 			tick_nohz_full_kick_cpu(cpu);
562 		return true;
563 	}
564 
565 	return false;
566 }
567 
568 /*
569  * Wake up the specified CPU.  If the CPU is going offline, it is the
570  * caller's responsibility to deal with the lost wakeup, for example,
571  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
572  */
573 void wake_up_nohz_cpu(int cpu)
574 {
575 	if (!wake_up_full_nohz_cpu(cpu))
576 		wake_up_idle_cpu(cpu);
577 }
578 
579 static inline bool got_nohz_idle_kick(void)
580 {
581 	int cpu = smp_processor_id();
582 
583 	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
584 		return false;
585 
586 	if (idle_cpu(cpu) && !need_resched())
587 		return true;
588 
589 	/*
590 	 * We can't run Idle Load Balance on this CPU for this time so we
591 	 * cancel it and clear NOHZ_BALANCE_KICK
592 	 */
593 	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
594 	return false;
595 }
596 
597 #else /* CONFIG_NO_HZ_COMMON */
598 
599 static inline bool got_nohz_idle_kick(void)
600 {
601 	return false;
602 }
603 
604 #endif /* CONFIG_NO_HZ_COMMON */
605 
606 #ifdef CONFIG_NO_HZ_FULL
607 bool sched_can_stop_tick(struct rq *rq)
608 {
609 	int fifo_nr_running;
610 
611 	/* Deadline tasks, even if single, need the tick */
612 	if (rq->dl.dl_nr_running)
613 		return false;
614 
615 	/*
616 	 * If there are more than one RR tasks, we need the tick to effect the
617 	 * actual RR behaviour.
618 	 */
619 	if (rq->rt.rr_nr_running) {
620 		if (rq->rt.rr_nr_running == 1)
621 			return true;
622 		else
623 			return false;
624 	}
625 
626 	/*
627 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
628 	 * forced preemption between FIFO tasks.
629 	 */
630 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
631 	if (fifo_nr_running)
632 		return true;
633 
634 	/*
635 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
636 	 * if there's more than one we need the tick for involuntary
637 	 * preemption.
638 	 */
639 	if (rq->nr_running > 1)
640 		return false;
641 
642 	return true;
643 }
644 #endif /* CONFIG_NO_HZ_FULL */
645 #endif /* CONFIG_SMP */
646 
647 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
648 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
649 /*
650  * Iterate task_group tree rooted at *from, calling @down when first entering a
651  * node and @up when leaving it for the final time.
652  *
653  * Caller must hold rcu_lock or sufficient equivalent.
654  */
655 int walk_tg_tree_from(struct task_group *from,
656 			     tg_visitor down, tg_visitor up, void *data)
657 {
658 	struct task_group *parent, *child;
659 	int ret;
660 
661 	parent = from;
662 
663 down:
664 	ret = (*down)(parent, data);
665 	if (ret)
666 		goto out;
667 	list_for_each_entry_rcu(child, &parent->children, siblings) {
668 		parent = child;
669 		goto down;
670 
671 up:
672 		continue;
673 	}
674 	ret = (*up)(parent, data);
675 	if (ret || parent == from)
676 		goto out;
677 
678 	child = parent;
679 	parent = parent->parent;
680 	if (parent)
681 		goto up;
682 out:
683 	return ret;
684 }
685 
686 int tg_nop(struct task_group *tg, void *data)
687 {
688 	return 0;
689 }
690 #endif
691 
692 static void set_load_weight(struct task_struct *p, bool update_load)
693 {
694 	int prio = p->static_prio - MAX_RT_PRIO;
695 	struct load_weight *load = &p->se.load;
696 
697 	/*
698 	 * SCHED_IDLE tasks get minimal weight:
699 	 */
700 	if (idle_policy(p->policy)) {
701 		load->weight = scale_load(WEIGHT_IDLEPRIO);
702 		load->inv_weight = WMULT_IDLEPRIO;
703 		p->se.runnable_weight = load->weight;
704 		return;
705 	}
706 
707 	/*
708 	 * SCHED_OTHER tasks have to update their load when changing their
709 	 * weight
710 	 */
711 	if (update_load && p->sched_class == &fair_sched_class) {
712 		reweight_task(p, prio);
713 	} else {
714 		load->weight = scale_load(sched_prio_to_weight[prio]);
715 		load->inv_weight = sched_prio_to_wmult[prio];
716 		p->se.runnable_weight = load->weight;
717 	}
718 }
719 
720 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
721 {
722 	if (!(flags & ENQUEUE_NOCLOCK))
723 		update_rq_clock(rq);
724 
725 	if (!(flags & ENQUEUE_RESTORE))
726 		sched_info_queued(rq, p);
727 
728 	p->sched_class->enqueue_task(rq, p, flags);
729 }
730 
731 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
732 {
733 	if (!(flags & DEQUEUE_NOCLOCK))
734 		update_rq_clock(rq);
735 
736 	if (!(flags & DEQUEUE_SAVE))
737 		sched_info_dequeued(rq, p);
738 
739 	p->sched_class->dequeue_task(rq, p, flags);
740 }
741 
742 void activate_task(struct rq *rq, struct task_struct *p, int flags)
743 {
744 	if (task_contributes_to_load(p))
745 		rq->nr_uninterruptible--;
746 
747 	enqueue_task(rq, p, flags);
748 }
749 
750 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
751 {
752 	if (task_contributes_to_load(p))
753 		rq->nr_uninterruptible++;
754 
755 	dequeue_task(rq, p, flags);
756 }
757 
758 /*
759  * __normal_prio - return the priority that is based on the static prio
760  */
761 static inline int __normal_prio(struct task_struct *p)
762 {
763 	return p->static_prio;
764 }
765 
766 /*
767  * Calculate the expected normal priority: i.e. priority
768  * without taking RT-inheritance into account. Might be
769  * boosted by interactivity modifiers. Changes upon fork,
770  * setprio syscalls, and whenever the interactivity
771  * estimator recalculates.
772  */
773 static inline int normal_prio(struct task_struct *p)
774 {
775 	int prio;
776 
777 	if (task_has_dl_policy(p))
778 		prio = MAX_DL_PRIO-1;
779 	else if (task_has_rt_policy(p))
780 		prio = MAX_RT_PRIO-1 - p->rt_priority;
781 	else
782 		prio = __normal_prio(p);
783 	return prio;
784 }
785 
786 /*
787  * Calculate the current priority, i.e. the priority
788  * taken into account by the scheduler. This value might
789  * be boosted by RT tasks, or might be boosted by
790  * interactivity modifiers. Will be RT if the task got
791  * RT-boosted. If not then it returns p->normal_prio.
792  */
793 static int effective_prio(struct task_struct *p)
794 {
795 	p->normal_prio = normal_prio(p);
796 	/*
797 	 * If we are RT tasks or we were boosted to RT priority,
798 	 * keep the priority unchanged. Otherwise, update priority
799 	 * to the normal priority:
800 	 */
801 	if (!rt_prio(p->prio))
802 		return p->normal_prio;
803 	return p->prio;
804 }
805 
806 /**
807  * task_curr - is this task currently executing on a CPU?
808  * @p: the task in question.
809  *
810  * Return: 1 if the task is currently executing. 0 otherwise.
811  */
812 inline int task_curr(const struct task_struct *p)
813 {
814 	return cpu_curr(task_cpu(p)) == p;
815 }
816 
817 /*
818  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
819  * use the balance_callback list if you want balancing.
820  *
821  * this means any call to check_class_changed() must be followed by a call to
822  * balance_callback().
823  */
824 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
825 				       const struct sched_class *prev_class,
826 				       int oldprio)
827 {
828 	if (prev_class != p->sched_class) {
829 		if (prev_class->switched_from)
830 			prev_class->switched_from(rq, p);
831 
832 		p->sched_class->switched_to(rq, p);
833 	} else if (oldprio != p->prio || dl_task(p))
834 		p->sched_class->prio_changed(rq, p, oldprio);
835 }
836 
837 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
838 {
839 	const struct sched_class *class;
840 
841 	if (p->sched_class == rq->curr->sched_class) {
842 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
843 	} else {
844 		for_each_class(class) {
845 			if (class == rq->curr->sched_class)
846 				break;
847 			if (class == p->sched_class) {
848 				resched_curr(rq);
849 				break;
850 			}
851 		}
852 	}
853 
854 	/*
855 	 * A queue event has occurred, and we're going to schedule.  In
856 	 * this case, we can save a useless back to back clock update.
857 	 */
858 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
859 		rq_clock_skip_update(rq);
860 }
861 
862 #ifdef CONFIG_SMP
863 
864 static inline bool is_per_cpu_kthread(struct task_struct *p)
865 {
866 	if (!(p->flags & PF_KTHREAD))
867 		return false;
868 
869 	if (p->nr_cpus_allowed != 1)
870 		return false;
871 
872 	return true;
873 }
874 
875 /*
876  * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
877  * __set_cpus_allowed_ptr() and select_fallback_rq().
878  */
879 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
880 {
881 	if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
882 		return false;
883 
884 	if (is_per_cpu_kthread(p))
885 		return cpu_online(cpu);
886 
887 	return cpu_active(cpu);
888 }
889 
890 /*
891  * This is how migration works:
892  *
893  * 1) we invoke migration_cpu_stop() on the target CPU using
894  *    stop_one_cpu().
895  * 2) stopper starts to run (implicitly forcing the migrated thread
896  *    off the CPU)
897  * 3) it checks whether the migrated task is still in the wrong runqueue.
898  * 4) if it's in the wrong runqueue then the migration thread removes
899  *    it and puts it into the right queue.
900  * 5) stopper completes and stop_one_cpu() returns and the migration
901  *    is done.
902  */
903 
904 /*
905  * move_queued_task - move a queued task to new rq.
906  *
907  * Returns (locked) new rq. Old rq's lock is released.
908  */
909 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
910 				   struct task_struct *p, int new_cpu)
911 {
912 	lockdep_assert_held(&rq->lock);
913 
914 	p->on_rq = TASK_ON_RQ_MIGRATING;
915 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
916 	set_task_cpu(p, new_cpu);
917 	rq_unlock(rq, rf);
918 
919 	rq = cpu_rq(new_cpu);
920 
921 	rq_lock(rq, rf);
922 	BUG_ON(task_cpu(p) != new_cpu);
923 	enqueue_task(rq, p, 0);
924 	p->on_rq = TASK_ON_RQ_QUEUED;
925 	check_preempt_curr(rq, p, 0);
926 
927 	return rq;
928 }
929 
930 struct migration_arg {
931 	struct task_struct *task;
932 	int dest_cpu;
933 };
934 
935 /*
936  * Move (not current) task off this CPU, onto the destination CPU. We're doing
937  * this because either it can't run here any more (set_cpus_allowed()
938  * away from this CPU, or CPU going down), or because we're
939  * attempting to rebalance this task on exec (sched_exec).
940  *
941  * So we race with normal scheduler movements, but that's OK, as long
942  * as the task is no longer on this CPU.
943  */
944 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
945 				 struct task_struct *p, int dest_cpu)
946 {
947 	/* Affinity changed (again). */
948 	if (!is_cpu_allowed(p, dest_cpu))
949 		return rq;
950 
951 	update_rq_clock(rq);
952 	rq = move_queued_task(rq, rf, p, dest_cpu);
953 
954 	return rq;
955 }
956 
957 /*
958  * migration_cpu_stop - this will be executed by a highprio stopper thread
959  * and performs thread migration by bumping thread off CPU then
960  * 'pushing' onto another runqueue.
961  */
962 static int migration_cpu_stop(void *data)
963 {
964 	struct migration_arg *arg = data;
965 	struct task_struct *p = arg->task;
966 	struct rq *rq = this_rq();
967 	struct rq_flags rf;
968 
969 	/*
970 	 * The original target CPU might have gone down and we might
971 	 * be on another CPU but it doesn't matter.
972 	 */
973 	local_irq_disable();
974 	/*
975 	 * We need to explicitly wake pending tasks before running
976 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
977 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
978 	 */
979 	sched_ttwu_pending();
980 
981 	raw_spin_lock(&p->pi_lock);
982 	rq_lock(rq, &rf);
983 	/*
984 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
985 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
986 	 * we're holding p->pi_lock.
987 	 */
988 	if (task_rq(p) == rq) {
989 		if (task_on_rq_queued(p))
990 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
991 		else
992 			p->wake_cpu = arg->dest_cpu;
993 	}
994 	rq_unlock(rq, &rf);
995 	raw_spin_unlock(&p->pi_lock);
996 
997 	local_irq_enable();
998 	return 0;
999 }
1000 
1001 /*
1002  * sched_class::set_cpus_allowed must do the below, but is not required to
1003  * actually call this function.
1004  */
1005 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1006 {
1007 	cpumask_copy(&p->cpus_allowed, new_mask);
1008 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1009 }
1010 
1011 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1012 {
1013 	struct rq *rq = task_rq(p);
1014 	bool queued, running;
1015 
1016 	lockdep_assert_held(&p->pi_lock);
1017 
1018 	queued = task_on_rq_queued(p);
1019 	running = task_current(rq, p);
1020 
1021 	if (queued) {
1022 		/*
1023 		 * Because __kthread_bind() calls this on blocked tasks without
1024 		 * holding rq->lock.
1025 		 */
1026 		lockdep_assert_held(&rq->lock);
1027 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1028 	}
1029 	if (running)
1030 		put_prev_task(rq, p);
1031 
1032 	p->sched_class->set_cpus_allowed(p, new_mask);
1033 
1034 	if (queued)
1035 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1036 	if (running)
1037 		set_curr_task(rq, p);
1038 }
1039 
1040 /*
1041  * Change a given task's CPU affinity. Migrate the thread to a
1042  * proper CPU and schedule it away if the CPU it's executing on
1043  * is removed from the allowed bitmask.
1044  *
1045  * NOTE: the caller must have a valid reference to the task, the
1046  * task must not exit() & deallocate itself prematurely. The
1047  * call is not atomic; no spinlocks may be held.
1048  */
1049 static int __set_cpus_allowed_ptr(struct task_struct *p,
1050 				  const struct cpumask *new_mask, bool check)
1051 {
1052 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1053 	unsigned int dest_cpu;
1054 	struct rq_flags rf;
1055 	struct rq *rq;
1056 	int ret = 0;
1057 
1058 	rq = task_rq_lock(p, &rf);
1059 	update_rq_clock(rq);
1060 
1061 	if (p->flags & PF_KTHREAD) {
1062 		/*
1063 		 * Kernel threads are allowed on online && !active CPUs
1064 		 */
1065 		cpu_valid_mask = cpu_online_mask;
1066 	}
1067 
1068 	/*
1069 	 * Must re-check here, to close a race against __kthread_bind(),
1070 	 * sched_setaffinity() is not guaranteed to observe the flag.
1071 	 */
1072 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1073 		ret = -EINVAL;
1074 		goto out;
1075 	}
1076 
1077 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1078 		goto out;
1079 
1080 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1081 		ret = -EINVAL;
1082 		goto out;
1083 	}
1084 
1085 	do_set_cpus_allowed(p, new_mask);
1086 
1087 	if (p->flags & PF_KTHREAD) {
1088 		/*
1089 		 * For kernel threads that do indeed end up on online &&
1090 		 * !active we want to ensure they are strict per-CPU threads.
1091 		 */
1092 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1093 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1094 			p->nr_cpus_allowed != 1);
1095 	}
1096 
1097 	/* Can the task run on the task's current CPU? If so, we're done */
1098 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1099 		goto out;
1100 
1101 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1102 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1103 		struct migration_arg arg = { p, dest_cpu };
1104 		/* Need help from migration thread: drop lock and wait. */
1105 		task_rq_unlock(rq, p, &rf);
1106 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1107 		tlb_migrate_finish(p->mm);
1108 		return 0;
1109 	} else if (task_on_rq_queued(p)) {
1110 		/*
1111 		 * OK, since we're going to drop the lock immediately
1112 		 * afterwards anyway.
1113 		 */
1114 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1115 	}
1116 out:
1117 	task_rq_unlock(rq, p, &rf);
1118 
1119 	return ret;
1120 }
1121 
1122 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1123 {
1124 	return __set_cpus_allowed_ptr(p, new_mask, false);
1125 }
1126 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1127 
1128 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1129 {
1130 #ifdef CONFIG_SCHED_DEBUG
1131 	/*
1132 	 * We should never call set_task_cpu() on a blocked task,
1133 	 * ttwu() will sort out the placement.
1134 	 */
1135 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1136 			!p->on_rq);
1137 
1138 	/*
1139 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1140 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1141 	 * time relying on p->on_rq.
1142 	 */
1143 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1144 		     p->sched_class == &fair_sched_class &&
1145 		     (p->on_rq && !task_on_rq_migrating(p)));
1146 
1147 #ifdef CONFIG_LOCKDEP
1148 	/*
1149 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1150 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1151 	 *
1152 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1153 	 * see task_group().
1154 	 *
1155 	 * Furthermore, all task_rq users should acquire both locks, see
1156 	 * task_rq_lock().
1157 	 */
1158 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1159 				      lockdep_is_held(&task_rq(p)->lock)));
1160 #endif
1161 	/*
1162 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1163 	 */
1164 	WARN_ON_ONCE(!cpu_online(new_cpu));
1165 #endif
1166 
1167 	trace_sched_migrate_task(p, new_cpu);
1168 
1169 	if (task_cpu(p) != new_cpu) {
1170 		if (p->sched_class->migrate_task_rq)
1171 			p->sched_class->migrate_task_rq(p, new_cpu);
1172 		p->se.nr_migrations++;
1173 		rseq_migrate(p);
1174 		perf_event_task_migrate(p);
1175 	}
1176 
1177 	__set_task_cpu(p, new_cpu);
1178 }
1179 
1180 #ifdef CONFIG_NUMA_BALANCING
1181 static void __migrate_swap_task(struct task_struct *p, int cpu)
1182 {
1183 	if (task_on_rq_queued(p)) {
1184 		struct rq *src_rq, *dst_rq;
1185 		struct rq_flags srf, drf;
1186 
1187 		src_rq = task_rq(p);
1188 		dst_rq = cpu_rq(cpu);
1189 
1190 		rq_pin_lock(src_rq, &srf);
1191 		rq_pin_lock(dst_rq, &drf);
1192 
1193 		p->on_rq = TASK_ON_RQ_MIGRATING;
1194 		deactivate_task(src_rq, p, 0);
1195 		set_task_cpu(p, cpu);
1196 		activate_task(dst_rq, p, 0);
1197 		p->on_rq = TASK_ON_RQ_QUEUED;
1198 		check_preempt_curr(dst_rq, p, 0);
1199 
1200 		rq_unpin_lock(dst_rq, &drf);
1201 		rq_unpin_lock(src_rq, &srf);
1202 
1203 	} else {
1204 		/*
1205 		 * Task isn't running anymore; make it appear like we migrated
1206 		 * it before it went to sleep. This means on wakeup we make the
1207 		 * previous CPU our target instead of where it really is.
1208 		 */
1209 		p->wake_cpu = cpu;
1210 	}
1211 }
1212 
1213 struct migration_swap_arg {
1214 	struct task_struct *src_task, *dst_task;
1215 	int src_cpu, dst_cpu;
1216 };
1217 
1218 static int migrate_swap_stop(void *data)
1219 {
1220 	struct migration_swap_arg *arg = data;
1221 	struct rq *src_rq, *dst_rq;
1222 	int ret = -EAGAIN;
1223 
1224 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1225 		return -EAGAIN;
1226 
1227 	src_rq = cpu_rq(arg->src_cpu);
1228 	dst_rq = cpu_rq(arg->dst_cpu);
1229 
1230 	double_raw_lock(&arg->src_task->pi_lock,
1231 			&arg->dst_task->pi_lock);
1232 	double_rq_lock(src_rq, dst_rq);
1233 
1234 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1235 		goto unlock;
1236 
1237 	if (task_cpu(arg->src_task) != arg->src_cpu)
1238 		goto unlock;
1239 
1240 	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1241 		goto unlock;
1242 
1243 	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1244 		goto unlock;
1245 
1246 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1247 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1248 
1249 	ret = 0;
1250 
1251 unlock:
1252 	double_rq_unlock(src_rq, dst_rq);
1253 	raw_spin_unlock(&arg->dst_task->pi_lock);
1254 	raw_spin_unlock(&arg->src_task->pi_lock);
1255 
1256 	return ret;
1257 }
1258 
1259 /*
1260  * Cross migrate two tasks
1261  */
1262 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1263 		int target_cpu, int curr_cpu)
1264 {
1265 	struct migration_swap_arg arg;
1266 	int ret = -EINVAL;
1267 
1268 	arg = (struct migration_swap_arg){
1269 		.src_task = cur,
1270 		.src_cpu = curr_cpu,
1271 		.dst_task = p,
1272 		.dst_cpu = target_cpu,
1273 	};
1274 
1275 	if (arg.src_cpu == arg.dst_cpu)
1276 		goto out;
1277 
1278 	/*
1279 	 * These three tests are all lockless; this is OK since all of them
1280 	 * will be re-checked with proper locks held further down the line.
1281 	 */
1282 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1283 		goto out;
1284 
1285 	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1286 		goto out;
1287 
1288 	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1289 		goto out;
1290 
1291 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1292 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1293 
1294 out:
1295 	return ret;
1296 }
1297 #endif /* CONFIG_NUMA_BALANCING */
1298 
1299 /*
1300  * wait_task_inactive - wait for a thread to unschedule.
1301  *
1302  * If @match_state is nonzero, it's the @p->state value just checked and
1303  * not expected to change.  If it changes, i.e. @p might have woken up,
1304  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1305  * we return a positive number (its total switch count).  If a second call
1306  * a short while later returns the same number, the caller can be sure that
1307  * @p has remained unscheduled the whole time.
1308  *
1309  * The caller must ensure that the task *will* unschedule sometime soon,
1310  * else this function might spin for a *long* time. This function can't
1311  * be called with interrupts off, or it may introduce deadlock with
1312  * smp_call_function() if an IPI is sent by the same process we are
1313  * waiting to become inactive.
1314  */
1315 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1316 {
1317 	int running, queued;
1318 	struct rq_flags rf;
1319 	unsigned long ncsw;
1320 	struct rq *rq;
1321 
1322 	for (;;) {
1323 		/*
1324 		 * We do the initial early heuristics without holding
1325 		 * any task-queue locks at all. We'll only try to get
1326 		 * the runqueue lock when things look like they will
1327 		 * work out!
1328 		 */
1329 		rq = task_rq(p);
1330 
1331 		/*
1332 		 * If the task is actively running on another CPU
1333 		 * still, just relax and busy-wait without holding
1334 		 * any locks.
1335 		 *
1336 		 * NOTE! Since we don't hold any locks, it's not
1337 		 * even sure that "rq" stays as the right runqueue!
1338 		 * But we don't care, since "task_running()" will
1339 		 * return false if the runqueue has changed and p
1340 		 * is actually now running somewhere else!
1341 		 */
1342 		while (task_running(rq, p)) {
1343 			if (match_state && unlikely(p->state != match_state))
1344 				return 0;
1345 			cpu_relax();
1346 		}
1347 
1348 		/*
1349 		 * Ok, time to look more closely! We need the rq
1350 		 * lock now, to be *sure*. If we're wrong, we'll
1351 		 * just go back and repeat.
1352 		 */
1353 		rq = task_rq_lock(p, &rf);
1354 		trace_sched_wait_task(p);
1355 		running = task_running(rq, p);
1356 		queued = task_on_rq_queued(p);
1357 		ncsw = 0;
1358 		if (!match_state || p->state == match_state)
1359 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1360 		task_rq_unlock(rq, p, &rf);
1361 
1362 		/*
1363 		 * If it changed from the expected state, bail out now.
1364 		 */
1365 		if (unlikely(!ncsw))
1366 			break;
1367 
1368 		/*
1369 		 * Was it really running after all now that we
1370 		 * checked with the proper locks actually held?
1371 		 *
1372 		 * Oops. Go back and try again..
1373 		 */
1374 		if (unlikely(running)) {
1375 			cpu_relax();
1376 			continue;
1377 		}
1378 
1379 		/*
1380 		 * It's not enough that it's not actively running,
1381 		 * it must be off the runqueue _entirely_, and not
1382 		 * preempted!
1383 		 *
1384 		 * So if it was still runnable (but just not actively
1385 		 * running right now), it's preempted, and we should
1386 		 * yield - it could be a while.
1387 		 */
1388 		if (unlikely(queued)) {
1389 			ktime_t to = NSEC_PER_SEC / HZ;
1390 
1391 			set_current_state(TASK_UNINTERRUPTIBLE);
1392 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1393 			continue;
1394 		}
1395 
1396 		/*
1397 		 * Ahh, all good. It wasn't running, and it wasn't
1398 		 * runnable, which means that it will never become
1399 		 * running in the future either. We're all done!
1400 		 */
1401 		break;
1402 	}
1403 
1404 	return ncsw;
1405 }
1406 
1407 /***
1408  * kick_process - kick a running thread to enter/exit the kernel
1409  * @p: the to-be-kicked thread
1410  *
1411  * Cause a process which is running on another CPU to enter
1412  * kernel-mode, without any delay. (to get signals handled.)
1413  *
1414  * NOTE: this function doesn't have to take the runqueue lock,
1415  * because all it wants to ensure is that the remote task enters
1416  * the kernel. If the IPI races and the task has been migrated
1417  * to another CPU then no harm is done and the purpose has been
1418  * achieved as well.
1419  */
1420 void kick_process(struct task_struct *p)
1421 {
1422 	int cpu;
1423 
1424 	preempt_disable();
1425 	cpu = task_cpu(p);
1426 	if ((cpu != smp_processor_id()) && task_curr(p))
1427 		smp_send_reschedule(cpu);
1428 	preempt_enable();
1429 }
1430 EXPORT_SYMBOL_GPL(kick_process);
1431 
1432 /*
1433  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1434  *
1435  * A few notes on cpu_active vs cpu_online:
1436  *
1437  *  - cpu_active must be a subset of cpu_online
1438  *
1439  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1440  *    see __set_cpus_allowed_ptr(). At this point the newly online
1441  *    CPU isn't yet part of the sched domains, and balancing will not
1442  *    see it.
1443  *
1444  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1445  *    avoid the load balancer to place new tasks on the to be removed
1446  *    CPU. Existing tasks will remain running there and will be taken
1447  *    off.
1448  *
1449  * This means that fallback selection must not select !active CPUs.
1450  * And can assume that any active CPU must be online. Conversely
1451  * select_task_rq() below may allow selection of !active CPUs in order
1452  * to satisfy the above rules.
1453  */
1454 static int select_fallback_rq(int cpu, struct task_struct *p)
1455 {
1456 	int nid = cpu_to_node(cpu);
1457 	const struct cpumask *nodemask = NULL;
1458 	enum { cpuset, possible, fail } state = cpuset;
1459 	int dest_cpu;
1460 
1461 	/*
1462 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1463 	 * will return -1. There is no CPU on the node, and we should
1464 	 * select the CPU on the other node.
1465 	 */
1466 	if (nid != -1) {
1467 		nodemask = cpumask_of_node(nid);
1468 
1469 		/* Look for allowed, online CPU in same node. */
1470 		for_each_cpu(dest_cpu, nodemask) {
1471 			if (!cpu_active(dest_cpu))
1472 				continue;
1473 			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1474 				return dest_cpu;
1475 		}
1476 	}
1477 
1478 	for (;;) {
1479 		/* Any allowed, online CPU? */
1480 		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1481 			if (!is_cpu_allowed(p, dest_cpu))
1482 				continue;
1483 
1484 			goto out;
1485 		}
1486 
1487 		/* No more Mr. Nice Guy. */
1488 		switch (state) {
1489 		case cpuset:
1490 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1491 				cpuset_cpus_allowed_fallback(p);
1492 				state = possible;
1493 				break;
1494 			}
1495 			/* Fall-through */
1496 		case possible:
1497 			do_set_cpus_allowed(p, cpu_possible_mask);
1498 			state = fail;
1499 			break;
1500 
1501 		case fail:
1502 			BUG();
1503 			break;
1504 		}
1505 	}
1506 
1507 out:
1508 	if (state != cpuset) {
1509 		/*
1510 		 * Don't tell them about moving exiting tasks or
1511 		 * kernel threads (both mm NULL), since they never
1512 		 * leave kernel.
1513 		 */
1514 		if (p->mm && printk_ratelimit()) {
1515 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1516 					task_pid_nr(p), p->comm, cpu);
1517 		}
1518 	}
1519 
1520 	return dest_cpu;
1521 }
1522 
1523 /*
1524  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1525  */
1526 static inline
1527 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1528 {
1529 	lockdep_assert_held(&p->pi_lock);
1530 
1531 	if (p->nr_cpus_allowed > 1)
1532 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1533 	else
1534 		cpu = cpumask_any(&p->cpus_allowed);
1535 
1536 	/*
1537 	 * In order not to call set_task_cpu() on a blocking task we need
1538 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1539 	 * CPU.
1540 	 *
1541 	 * Since this is common to all placement strategies, this lives here.
1542 	 *
1543 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1544 	 *   not worry about this generic constraint ]
1545 	 */
1546 	if (unlikely(!is_cpu_allowed(p, cpu)))
1547 		cpu = select_fallback_rq(task_cpu(p), p);
1548 
1549 	return cpu;
1550 }
1551 
1552 static void update_avg(u64 *avg, u64 sample)
1553 {
1554 	s64 diff = sample - *avg;
1555 	*avg += diff >> 3;
1556 }
1557 
1558 void sched_set_stop_task(int cpu, struct task_struct *stop)
1559 {
1560 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1561 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
1562 
1563 	if (stop) {
1564 		/*
1565 		 * Make it appear like a SCHED_FIFO task, its something
1566 		 * userspace knows about and won't get confused about.
1567 		 *
1568 		 * Also, it will make PI more or less work without too
1569 		 * much confusion -- but then, stop work should not
1570 		 * rely on PI working anyway.
1571 		 */
1572 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1573 
1574 		stop->sched_class = &stop_sched_class;
1575 	}
1576 
1577 	cpu_rq(cpu)->stop = stop;
1578 
1579 	if (old_stop) {
1580 		/*
1581 		 * Reset it back to a normal scheduling class so that
1582 		 * it can die in pieces.
1583 		 */
1584 		old_stop->sched_class = &rt_sched_class;
1585 	}
1586 }
1587 
1588 #else
1589 
1590 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1591 					 const struct cpumask *new_mask, bool check)
1592 {
1593 	return set_cpus_allowed_ptr(p, new_mask);
1594 }
1595 
1596 #endif /* CONFIG_SMP */
1597 
1598 static void
1599 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1600 {
1601 	struct rq *rq;
1602 
1603 	if (!schedstat_enabled())
1604 		return;
1605 
1606 	rq = this_rq();
1607 
1608 #ifdef CONFIG_SMP
1609 	if (cpu == rq->cpu) {
1610 		__schedstat_inc(rq->ttwu_local);
1611 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
1612 	} else {
1613 		struct sched_domain *sd;
1614 
1615 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
1616 		rcu_read_lock();
1617 		for_each_domain(rq->cpu, sd) {
1618 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1619 				__schedstat_inc(sd->ttwu_wake_remote);
1620 				break;
1621 			}
1622 		}
1623 		rcu_read_unlock();
1624 	}
1625 
1626 	if (wake_flags & WF_MIGRATED)
1627 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1628 #endif /* CONFIG_SMP */
1629 
1630 	__schedstat_inc(rq->ttwu_count);
1631 	__schedstat_inc(p->se.statistics.nr_wakeups);
1632 
1633 	if (wake_flags & WF_SYNC)
1634 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
1635 }
1636 
1637 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1638 {
1639 	activate_task(rq, p, en_flags);
1640 	p->on_rq = TASK_ON_RQ_QUEUED;
1641 
1642 	/* If a worker is waking up, notify the workqueue: */
1643 	if (p->flags & PF_WQ_WORKER)
1644 		wq_worker_waking_up(p, cpu_of(rq));
1645 }
1646 
1647 /*
1648  * Mark the task runnable and perform wakeup-preemption.
1649  */
1650 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1651 			   struct rq_flags *rf)
1652 {
1653 	check_preempt_curr(rq, p, wake_flags);
1654 	p->state = TASK_RUNNING;
1655 	trace_sched_wakeup(p);
1656 
1657 #ifdef CONFIG_SMP
1658 	if (p->sched_class->task_woken) {
1659 		/*
1660 		 * Our task @p is fully woken up and running; so its safe to
1661 		 * drop the rq->lock, hereafter rq is only used for statistics.
1662 		 */
1663 		rq_unpin_lock(rq, rf);
1664 		p->sched_class->task_woken(rq, p);
1665 		rq_repin_lock(rq, rf);
1666 	}
1667 
1668 	if (rq->idle_stamp) {
1669 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1670 		u64 max = 2*rq->max_idle_balance_cost;
1671 
1672 		update_avg(&rq->avg_idle, delta);
1673 
1674 		if (rq->avg_idle > max)
1675 			rq->avg_idle = max;
1676 
1677 		rq->idle_stamp = 0;
1678 	}
1679 #endif
1680 }
1681 
1682 static void
1683 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1684 		 struct rq_flags *rf)
1685 {
1686 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1687 
1688 	lockdep_assert_held(&rq->lock);
1689 
1690 #ifdef CONFIG_SMP
1691 	if (p->sched_contributes_to_load)
1692 		rq->nr_uninterruptible--;
1693 
1694 	if (wake_flags & WF_MIGRATED)
1695 		en_flags |= ENQUEUE_MIGRATED;
1696 #endif
1697 
1698 	ttwu_activate(rq, p, en_flags);
1699 	ttwu_do_wakeup(rq, p, wake_flags, rf);
1700 }
1701 
1702 /*
1703  * Called in case the task @p isn't fully descheduled from its runqueue,
1704  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1705  * since all we need to do is flip p->state to TASK_RUNNING, since
1706  * the task is still ->on_rq.
1707  */
1708 static int ttwu_remote(struct task_struct *p, int wake_flags)
1709 {
1710 	struct rq_flags rf;
1711 	struct rq *rq;
1712 	int ret = 0;
1713 
1714 	rq = __task_rq_lock(p, &rf);
1715 	if (task_on_rq_queued(p)) {
1716 		/* check_preempt_curr() may use rq clock */
1717 		update_rq_clock(rq);
1718 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1719 		ret = 1;
1720 	}
1721 	__task_rq_unlock(rq, &rf);
1722 
1723 	return ret;
1724 }
1725 
1726 #ifdef CONFIG_SMP
1727 void sched_ttwu_pending(void)
1728 {
1729 	struct rq *rq = this_rq();
1730 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1731 	struct task_struct *p, *t;
1732 	struct rq_flags rf;
1733 
1734 	if (!llist)
1735 		return;
1736 
1737 	rq_lock_irqsave(rq, &rf);
1738 	update_rq_clock(rq);
1739 
1740 	llist_for_each_entry_safe(p, t, llist, wake_entry)
1741 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1742 
1743 	rq_unlock_irqrestore(rq, &rf);
1744 }
1745 
1746 void scheduler_ipi(void)
1747 {
1748 	/*
1749 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1750 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1751 	 * this IPI.
1752 	 */
1753 	preempt_fold_need_resched();
1754 
1755 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1756 		return;
1757 
1758 	/*
1759 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1760 	 * traditionally all their work was done from the interrupt return
1761 	 * path. Now that we actually do some work, we need to make sure
1762 	 * we do call them.
1763 	 *
1764 	 * Some archs already do call them, luckily irq_enter/exit nest
1765 	 * properly.
1766 	 *
1767 	 * Arguably we should visit all archs and update all handlers,
1768 	 * however a fair share of IPIs are still resched only so this would
1769 	 * somewhat pessimize the simple resched case.
1770 	 */
1771 	irq_enter();
1772 	sched_ttwu_pending();
1773 
1774 	/*
1775 	 * Check if someone kicked us for doing the nohz idle load balance.
1776 	 */
1777 	if (unlikely(got_nohz_idle_kick())) {
1778 		this_rq()->idle_balance = 1;
1779 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1780 	}
1781 	irq_exit();
1782 }
1783 
1784 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1785 {
1786 	struct rq *rq = cpu_rq(cpu);
1787 
1788 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1789 
1790 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1791 		if (!set_nr_if_polling(rq->idle))
1792 			smp_send_reschedule(cpu);
1793 		else
1794 			trace_sched_wake_idle_without_ipi(cpu);
1795 	}
1796 }
1797 
1798 void wake_up_if_idle(int cpu)
1799 {
1800 	struct rq *rq = cpu_rq(cpu);
1801 	struct rq_flags rf;
1802 
1803 	rcu_read_lock();
1804 
1805 	if (!is_idle_task(rcu_dereference(rq->curr)))
1806 		goto out;
1807 
1808 	if (set_nr_if_polling(rq->idle)) {
1809 		trace_sched_wake_idle_without_ipi(cpu);
1810 	} else {
1811 		rq_lock_irqsave(rq, &rf);
1812 		if (is_idle_task(rq->curr))
1813 			smp_send_reschedule(cpu);
1814 		/* Else CPU is not idle, do nothing here: */
1815 		rq_unlock_irqrestore(rq, &rf);
1816 	}
1817 
1818 out:
1819 	rcu_read_unlock();
1820 }
1821 
1822 bool cpus_share_cache(int this_cpu, int that_cpu)
1823 {
1824 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1825 }
1826 #endif /* CONFIG_SMP */
1827 
1828 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1829 {
1830 	struct rq *rq = cpu_rq(cpu);
1831 	struct rq_flags rf;
1832 
1833 #if defined(CONFIG_SMP)
1834 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1835 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1836 		ttwu_queue_remote(p, cpu, wake_flags);
1837 		return;
1838 	}
1839 #endif
1840 
1841 	rq_lock(rq, &rf);
1842 	update_rq_clock(rq);
1843 	ttwu_do_activate(rq, p, wake_flags, &rf);
1844 	rq_unlock(rq, &rf);
1845 }
1846 
1847 /*
1848  * Notes on Program-Order guarantees on SMP systems.
1849  *
1850  *  MIGRATION
1851  *
1852  * The basic program-order guarantee on SMP systems is that when a task [t]
1853  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1854  * execution on its new CPU [c1].
1855  *
1856  * For migration (of runnable tasks) this is provided by the following means:
1857  *
1858  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1859  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1860  *     rq(c1)->lock (if not at the same time, then in that order).
1861  *  C) LOCK of the rq(c1)->lock scheduling in task
1862  *
1863  * Release/acquire chaining guarantees that B happens after A and C after B.
1864  * Note: the CPU doing B need not be c0 or c1
1865  *
1866  * Example:
1867  *
1868  *   CPU0            CPU1            CPU2
1869  *
1870  *   LOCK rq(0)->lock
1871  *   sched-out X
1872  *   sched-in Y
1873  *   UNLOCK rq(0)->lock
1874  *
1875  *                                   LOCK rq(0)->lock // orders against CPU0
1876  *                                   dequeue X
1877  *                                   UNLOCK rq(0)->lock
1878  *
1879  *                                   LOCK rq(1)->lock
1880  *                                   enqueue X
1881  *                                   UNLOCK rq(1)->lock
1882  *
1883  *                   LOCK rq(1)->lock // orders against CPU2
1884  *                   sched-out Z
1885  *                   sched-in X
1886  *                   UNLOCK rq(1)->lock
1887  *
1888  *
1889  *  BLOCKING -- aka. SLEEP + WAKEUP
1890  *
1891  * For blocking we (obviously) need to provide the same guarantee as for
1892  * migration. However the means are completely different as there is no lock
1893  * chain to provide order. Instead we do:
1894  *
1895  *   1) smp_store_release(X->on_cpu, 0)
1896  *   2) smp_cond_load_acquire(!X->on_cpu)
1897  *
1898  * Example:
1899  *
1900  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1901  *
1902  *   LOCK rq(0)->lock LOCK X->pi_lock
1903  *   dequeue X
1904  *   sched-out X
1905  *   smp_store_release(X->on_cpu, 0);
1906  *
1907  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1908  *                    X->state = WAKING
1909  *                    set_task_cpu(X,2)
1910  *
1911  *                    LOCK rq(2)->lock
1912  *                    enqueue X
1913  *                    X->state = RUNNING
1914  *                    UNLOCK rq(2)->lock
1915  *
1916  *                                          LOCK rq(2)->lock // orders against CPU1
1917  *                                          sched-out Z
1918  *                                          sched-in X
1919  *                                          UNLOCK rq(2)->lock
1920  *
1921  *                    UNLOCK X->pi_lock
1922  *   UNLOCK rq(0)->lock
1923  *
1924  *
1925  * However, for wakeups there is a second guarantee we must provide, namely we
1926  * must ensure that CONDITION=1 done by the caller can not be reordered with
1927  * accesses to the task state; see try_to_wake_up() and set_current_state().
1928  */
1929 
1930 /**
1931  * try_to_wake_up - wake up a thread
1932  * @p: the thread to be awakened
1933  * @state: the mask of task states that can be woken
1934  * @wake_flags: wake modifier flags (WF_*)
1935  *
1936  * If (@state & @p->state) @p->state = TASK_RUNNING.
1937  *
1938  * If the task was not queued/runnable, also place it back on a runqueue.
1939  *
1940  * Atomic against schedule() which would dequeue a task, also see
1941  * set_current_state().
1942  *
1943  * This function executes a full memory barrier before accessing the task
1944  * state; see set_current_state().
1945  *
1946  * Return: %true if @p->state changes (an actual wakeup was done),
1947  *	   %false otherwise.
1948  */
1949 static int
1950 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1951 {
1952 	unsigned long flags;
1953 	int cpu, success = 0;
1954 
1955 	/*
1956 	 * If we are going to wake up a thread waiting for CONDITION we
1957 	 * need to ensure that CONDITION=1 done by the caller can not be
1958 	 * reordered with p->state check below. This pairs with mb() in
1959 	 * set_current_state() the waiting thread does.
1960 	 */
1961 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1962 	smp_mb__after_spinlock();
1963 	if (!(p->state & state))
1964 		goto out;
1965 
1966 	trace_sched_waking(p);
1967 
1968 	/* We're going to change ->state: */
1969 	success = 1;
1970 	cpu = task_cpu(p);
1971 
1972 	/*
1973 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1974 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1975 	 * in smp_cond_load_acquire() below.
1976 	 *
1977 	 * sched_ttwu_pending()			try_to_wake_up()
1978 	 *   STORE p->on_rq = 1			  LOAD p->state
1979 	 *   UNLOCK rq->lock
1980 	 *
1981 	 * __schedule() (switch to task 'p')
1982 	 *   LOCK rq->lock			  smp_rmb();
1983 	 *   smp_mb__after_spinlock();
1984 	 *   UNLOCK rq->lock
1985 	 *
1986 	 * [task p]
1987 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
1988 	 *
1989 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
1990 	 * __schedule().  See the comment for smp_mb__after_spinlock().
1991 	 */
1992 	smp_rmb();
1993 	if (p->on_rq && ttwu_remote(p, wake_flags))
1994 		goto stat;
1995 
1996 #ifdef CONFIG_SMP
1997 	/*
1998 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1999 	 * possible to, falsely, observe p->on_cpu == 0.
2000 	 *
2001 	 * One must be running (->on_cpu == 1) in order to remove oneself
2002 	 * from the runqueue.
2003 	 *
2004 	 * __schedule() (switch to task 'p')	try_to_wake_up()
2005 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2006 	 *   UNLOCK rq->lock
2007 	 *
2008 	 * __schedule() (put 'p' to sleep)
2009 	 *   LOCK rq->lock			  smp_rmb();
2010 	 *   smp_mb__after_spinlock();
2011 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2012 	 *
2013 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2014 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2015 	 */
2016 	smp_rmb();
2017 
2018 	/*
2019 	 * If the owning (remote) CPU is still in the middle of schedule() with
2020 	 * this task as prev, wait until its done referencing the task.
2021 	 *
2022 	 * Pairs with the smp_store_release() in finish_task().
2023 	 *
2024 	 * This ensures that tasks getting woken will be fully ordered against
2025 	 * their previous state and preserve Program Order.
2026 	 */
2027 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2028 
2029 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2030 	p->state = TASK_WAKING;
2031 
2032 	if (p->in_iowait) {
2033 		delayacct_blkio_end(p);
2034 		atomic_dec(&task_rq(p)->nr_iowait);
2035 	}
2036 
2037 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2038 	if (task_cpu(p) != cpu) {
2039 		wake_flags |= WF_MIGRATED;
2040 		set_task_cpu(p, cpu);
2041 	}
2042 
2043 #else /* CONFIG_SMP */
2044 
2045 	if (p->in_iowait) {
2046 		delayacct_blkio_end(p);
2047 		atomic_dec(&task_rq(p)->nr_iowait);
2048 	}
2049 
2050 #endif /* CONFIG_SMP */
2051 
2052 	ttwu_queue(p, cpu, wake_flags);
2053 stat:
2054 	ttwu_stat(p, cpu, wake_flags);
2055 out:
2056 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2057 
2058 	return success;
2059 }
2060 
2061 /**
2062  * try_to_wake_up_local - try to wake up a local task with rq lock held
2063  * @p: the thread to be awakened
2064  * @rf: request-queue flags for pinning
2065  *
2066  * Put @p on the run-queue if it's not already there. The caller must
2067  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2068  * the current task.
2069  */
2070 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2071 {
2072 	struct rq *rq = task_rq(p);
2073 
2074 	if (WARN_ON_ONCE(rq != this_rq()) ||
2075 	    WARN_ON_ONCE(p == current))
2076 		return;
2077 
2078 	lockdep_assert_held(&rq->lock);
2079 
2080 	if (!raw_spin_trylock(&p->pi_lock)) {
2081 		/*
2082 		 * This is OK, because current is on_cpu, which avoids it being
2083 		 * picked for load-balance and preemption/IRQs are still
2084 		 * disabled avoiding further scheduler activity on it and we've
2085 		 * not yet picked a replacement task.
2086 		 */
2087 		rq_unlock(rq, rf);
2088 		raw_spin_lock(&p->pi_lock);
2089 		rq_relock(rq, rf);
2090 	}
2091 
2092 	if (!(p->state & TASK_NORMAL))
2093 		goto out;
2094 
2095 	trace_sched_waking(p);
2096 
2097 	if (!task_on_rq_queued(p)) {
2098 		if (p->in_iowait) {
2099 			delayacct_blkio_end(p);
2100 			atomic_dec(&rq->nr_iowait);
2101 		}
2102 		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2103 	}
2104 
2105 	ttwu_do_wakeup(rq, p, 0, rf);
2106 	ttwu_stat(p, smp_processor_id(), 0);
2107 out:
2108 	raw_spin_unlock(&p->pi_lock);
2109 }
2110 
2111 /**
2112  * wake_up_process - Wake up a specific process
2113  * @p: The process to be woken up.
2114  *
2115  * Attempt to wake up the nominated process and move it to the set of runnable
2116  * processes.
2117  *
2118  * Return: 1 if the process was woken up, 0 if it was already running.
2119  *
2120  * This function executes a full memory barrier before accessing the task state.
2121  */
2122 int wake_up_process(struct task_struct *p)
2123 {
2124 	return try_to_wake_up(p, TASK_NORMAL, 0);
2125 }
2126 EXPORT_SYMBOL(wake_up_process);
2127 
2128 int wake_up_state(struct task_struct *p, unsigned int state)
2129 {
2130 	return try_to_wake_up(p, state, 0);
2131 }
2132 
2133 /*
2134  * Perform scheduler related setup for a newly forked process p.
2135  * p is forked by current.
2136  *
2137  * __sched_fork() is basic setup used by init_idle() too:
2138  */
2139 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2140 {
2141 	p->on_rq			= 0;
2142 
2143 	p->se.on_rq			= 0;
2144 	p->se.exec_start		= 0;
2145 	p->se.sum_exec_runtime		= 0;
2146 	p->se.prev_sum_exec_runtime	= 0;
2147 	p->se.nr_migrations		= 0;
2148 	p->se.vruntime			= 0;
2149 	INIT_LIST_HEAD(&p->se.group_node);
2150 
2151 #ifdef CONFIG_FAIR_GROUP_SCHED
2152 	p->se.cfs_rq			= NULL;
2153 #endif
2154 
2155 #ifdef CONFIG_SCHEDSTATS
2156 	/* Even if schedstat is disabled, there should not be garbage */
2157 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2158 #endif
2159 
2160 	RB_CLEAR_NODE(&p->dl.rb_node);
2161 	init_dl_task_timer(&p->dl);
2162 	init_dl_inactive_task_timer(&p->dl);
2163 	__dl_clear_params(p);
2164 
2165 	INIT_LIST_HEAD(&p->rt.run_list);
2166 	p->rt.timeout		= 0;
2167 	p->rt.time_slice	= sched_rr_timeslice;
2168 	p->rt.on_rq		= 0;
2169 	p->rt.on_list		= 0;
2170 
2171 #ifdef CONFIG_PREEMPT_NOTIFIERS
2172 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2173 #endif
2174 
2175 	init_numa_balancing(clone_flags, p);
2176 }
2177 
2178 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2179 
2180 #ifdef CONFIG_NUMA_BALANCING
2181 
2182 void set_numabalancing_state(bool enabled)
2183 {
2184 	if (enabled)
2185 		static_branch_enable(&sched_numa_balancing);
2186 	else
2187 		static_branch_disable(&sched_numa_balancing);
2188 }
2189 
2190 #ifdef CONFIG_PROC_SYSCTL
2191 int sysctl_numa_balancing(struct ctl_table *table, int write,
2192 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2193 {
2194 	struct ctl_table t;
2195 	int err;
2196 	int state = static_branch_likely(&sched_numa_balancing);
2197 
2198 	if (write && !capable(CAP_SYS_ADMIN))
2199 		return -EPERM;
2200 
2201 	t = *table;
2202 	t.data = &state;
2203 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2204 	if (err < 0)
2205 		return err;
2206 	if (write)
2207 		set_numabalancing_state(state);
2208 	return err;
2209 }
2210 #endif
2211 #endif
2212 
2213 #ifdef CONFIG_SCHEDSTATS
2214 
2215 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2216 static bool __initdata __sched_schedstats = false;
2217 
2218 static void set_schedstats(bool enabled)
2219 {
2220 	if (enabled)
2221 		static_branch_enable(&sched_schedstats);
2222 	else
2223 		static_branch_disable(&sched_schedstats);
2224 }
2225 
2226 void force_schedstat_enabled(void)
2227 {
2228 	if (!schedstat_enabled()) {
2229 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2230 		static_branch_enable(&sched_schedstats);
2231 	}
2232 }
2233 
2234 static int __init setup_schedstats(char *str)
2235 {
2236 	int ret = 0;
2237 	if (!str)
2238 		goto out;
2239 
2240 	/*
2241 	 * This code is called before jump labels have been set up, so we can't
2242 	 * change the static branch directly just yet.  Instead set a temporary
2243 	 * variable so init_schedstats() can do it later.
2244 	 */
2245 	if (!strcmp(str, "enable")) {
2246 		__sched_schedstats = true;
2247 		ret = 1;
2248 	} else if (!strcmp(str, "disable")) {
2249 		__sched_schedstats = false;
2250 		ret = 1;
2251 	}
2252 out:
2253 	if (!ret)
2254 		pr_warn("Unable to parse schedstats=\n");
2255 
2256 	return ret;
2257 }
2258 __setup("schedstats=", setup_schedstats);
2259 
2260 static void __init init_schedstats(void)
2261 {
2262 	set_schedstats(__sched_schedstats);
2263 }
2264 
2265 #ifdef CONFIG_PROC_SYSCTL
2266 int sysctl_schedstats(struct ctl_table *table, int write,
2267 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2268 {
2269 	struct ctl_table t;
2270 	int err;
2271 	int state = static_branch_likely(&sched_schedstats);
2272 
2273 	if (write && !capable(CAP_SYS_ADMIN))
2274 		return -EPERM;
2275 
2276 	t = *table;
2277 	t.data = &state;
2278 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2279 	if (err < 0)
2280 		return err;
2281 	if (write)
2282 		set_schedstats(state);
2283 	return err;
2284 }
2285 #endif /* CONFIG_PROC_SYSCTL */
2286 #else  /* !CONFIG_SCHEDSTATS */
2287 static inline void init_schedstats(void) {}
2288 #endif /* CONFIG_SCHEDSTATS */
2289 
2290 /*
2291  * fork()/clone()-time setup:
2292  */
2293 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2294 {
2295 	unsigned long flags;
2296 
2297 	__sched_fork(clone_flags, p);
2298 	/*
2299 	 * We mark the process as NEW here. This guarantees that
2300 	 * nobody will actually run it, and a signal or other external
2301 	 * event cannot wake it up and insert it on the runqueue either.
2302 	 */
2303 	p->state = TASK_NEW;
2304 
2305 	/*
2306 	 * Make sure we do not leak PI boosting priority to the child.
2307 	 */
2308 	p->prio = current->normal_prio;
2309 
2310 	/*
2311 	 * Revert to default priority/policy on fork if requested.
2312 	 */
2313 	if (unlikely(p->sched_reset_on_fork)) {
2314 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2315 			p->policy = SCHED_NORMAL;
2316 			p->static_prio = NICE_TO_PRIO(0);
2317 			p->rt_priority = 0;
2318 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2319 			p->static_prio = NICE_TO_PRIO(0);
2320 
2321 		p->prio = p->normal_prio = __normal_prio(p);
2322 		set_load_weight(p, false);
2323 
2324 		/*
2325 		 * We don't need the reset flag anymore after the fork. It has
2326 		 * fulfilled its duty:
2327 		 */
2328 		p->sched_reset_on_fork = 0;
2329 	}
2330 
2331 	if (dl_prio(p->prio))
2332 		return -EAGAIN;
2333 	else if (rt_prio(p->prio))
2334 		p->sched_class = &rt_sched_class;
2335 	else
2336 		p->sched_class = &fair_sched_class;
2337 
2338 	init_entity_runnable_average(&p->se);
2339 
2340 	/*
2341 	 * The child is not yet in the pid-hash so no cgroup attach races,
2342 	 * and the cgroup is pinned to this child due to cgroup_fork()
2343 	 * is ran before sched_fork().
2344 	 *
2345 	 * Silence PROVE_RCU.
2346 	 */
2347 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2348 	/*
2349 	 * We're setting the CPU for the first time, we don't migrate,
2350 	 * so use __set_task_cpu().
2351 	 */
2352 	__set_task_cpu(p, smp_processor_id());
2353 	if (p->sched_class->task_fork)
2354 		p->sched_class->task_fork(p);
2355 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2356 
2357 #ifdef CONFIG_SCHED_INFO
2358 	if (likely(sched_info_on()))
2359 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2360 #endif
2361 #if defined(CONFIG_SMP)
2362 	p->on_cpu = 0;
2363 #endif
2364 	init_task_preempt_count(p);
2365 #ifdef CONFIG_SMP
2366 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2367 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2368 #endif
2369 	return 0;
2370 }
2371 
2372 unsigned long to_ratio(u64 period, u64 runtime)
2373 {
2374 	if (runtime == RUNTIME_INF)
2375 		return BW_UNIT;
2376 
2377 	/*
2378 	 * Doing this here saves a lot of checks in all
2379 	 * the calling paths, and returning zero seems
2380 	 * safe for them anyway.
2381 	 */
2382 	if (period == 0)
2383 		return 0;
2384 
2385 	return div64_u64(runtime << BW_SHIFT, period);
2386 }
2387 
2388 /*
2389  * wake_up_new_task - wake up a newly created task for the first time.
2390  *
2391  * This function will do some initial scheduler statistics housekeeping
2392  * that must be done for every newly created context, then puts the task
2393  * on the runqueue and wakes it.
2394  */
2395 void wake_up_new_task(struct task_struct *p)
2396 {
2397 	struct rq_flags rf;
2398 	struct rq *rq;
2399 
2400 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2401 	p->state = TASK_RUNNING;
2402 #ifdef CONFIG_SMP
2403 	/*
2404 	 * Fork balancing, do it here and not earlier because:
2405 	 *  - cpus_allowed can change in the fork path
2406 	 *  - any previously selected CPU might disappear through hotplug
2407 	 *
2408 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2409 	 * as we're not fully set-up yet.
2410 	 */
2411 	p->recent_used_cpu = task_cpu(p);
2412 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2413 #endif
2414 	rq = __task_rq_lock(p, &rf);
2415 	update_rq_clock(rq);
2416 	post_init_entity_util_avg(&p->se);
2417 
2418 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2419 	p->on_rq = TASK_ON_RQ_QUEUED;
2420 	trace_sched_wakeup_new(p);
2421 	check_preempt_curr(rq, p, WF_FORK);
2422 #ifdef CONFIG_SMP
2423 	if (p->sched_class->task_woken) {
2424 		/*
2425 		 * Nothing relies on rq->lock after this, so its fine to
2426 		 * drop it.
2427 		 */
2428 		rq_unpin_lock(rq, &rf);
2429 		p->sched_class->task_woken(rq, p);
2430 		rq_repin_lock(rq, &rf);
2431 	}
2432 #endif
2433 	task_rq_unlock(rq, p, &rf);
2434 }
2435 
2436 #ifdef CONFIG_PREEMPT_NOTIFIERS
2437 
2438 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2439 
2440 void preempt_notifier_inc(void)
2441 {
2442 	static_branch_inc(&preempt_notifier_key);
2443 }
2444 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2445 
2446 void preempt_notifier_dec(void)
2447 {
2448 	static_branch_dec(&preempt_notifier_key);
2449 }
2450 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2451 
2452 /**
2453  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2454  * @notifier: notifier struct to register
2455  */
2456 void preempt_notifier_register(struct preempt_notifier *notifier)
2457 {
2458 	if (!static_branch_unlikely(&preempt_notifier_key))
2459 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2460 
2461 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2462 }
2463 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2464 
2465 /**
2466  * preempt_notifier_unregister - no longer interested in preemption notifications
2467  * @notifier: notifier struct to unregister
2468  *
2469  * This is *not* safe to call from within a preemption notifier.
2470  */
2471 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2472 {
2473 	hlist_del(&notifier->link);
2474 }
2475 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2476 
2477 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2478 {
2479 	struct preempt_notifier *notifier;
2480 
2481 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2482 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2483 }
2484 
2485 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2486 {
2487 	if (static_branch_unlikely(&preempt_notifier_key))
2488 		__fire_sched_in_preempt_notifiers(curr);
2489 }
2490 
2491 static void
2492 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2493 				   struct task_struct *next)
2494 {
2495 	struct preempt_notifier *notifier;
2496 
2497 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2498 		notifier->ops->sched_out(notifier, next);
2499 }
2500 
2501 static __always_inline void
2502 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2503 				 struct task_struct *next)
2504 {
2505 	if (static_branch_unlikely(&preempt_notifier_key))
2506 		__fire_sched_out_preempt_notifiers(curr, next);
2507 }
2508 
2509 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2510 
2511 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2512 {
2513 }
2514 
2515 static inline void
2516 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2517 				 struct task_struct *next)
2518 {
2519 }
2520 
2521 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2522 
2523 static inline void prepare_task(struct task_struct *next)
2524 {
2525 #ifdef CONFIG_SMP
2526 	/*
2527 	 * Claim the task as running, we do this before switching to it
2528 	 * such that any running task will have this set.
2529 	 */
2530 	next->on_cpu = 1;
2531 #endif
2532 }
2533 
2534 static inline void finish_task(struct task_struct *prev)
2535 {
2536 #ifdef CONFIG_SMP
2537 	/*
2538 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2539 	 * We must ensure this doesn't happen until the switch is completely
2540 	 * finished.
2541 	 *
2542 	 * In particular, the load of prev->state in finish_task_switch() must
2543 	 * happen before this.
2544 	 *
2545 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2546 	 */
2547 	smp_store_release(&prev->on_cpu, 0);
2548 #endif
2549 }
2550 
2551 static inline void
2552 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2553 {
2554 	/*
2555 	 * Since the runqueue lock will be released by the next
2556 	 * task (which is an invalid locking op but in the case
2557 	 * of the scheduler it's an obvious special-case), so we
2558 	 * do an early lockdep release here:
2559 	 */
2560 	rq_unpin_lock(rq, rf);
2561 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2562 #ifdef CONFIG_DEBUG_SPINLOCK
2563 	/* this is a valid case when another task releases the spinlock */
2564 	rq->lock.owner = next;
2565 #endif
2566 }
2567 
2568 static inline void finish_lock_switch(struct rq *rq)
2569 {
2570 	/*
2571 	 * If we are tracking spinlock dependencies then we have to
2572 	 * fix up the runqueue lock - which gets 'carried over' from
2573 	 * prev into current:
2574 	 */
2575 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2576 	raw_spin_unlock_irq(&rq->lock);
2577 }
2578 
2579 /*
2580  * NOP if the arch has not defined these:
2581  */
2582 
2583 #ifndef prepare_arch_switch
2584 # define prepare_arch_switch(next)	do { } while (0)
2585 #endif
2586 
2587 #ifndef finish_arch_post_lock_switch
2588 # define finish_arch_post_lock_switch()	do { } while (0)
2589 #endif
2590 
2591 /**
2592  * prepare_task_switch - prepare to switch tasks
2593  * @rq: the runqueue preparing to switch
2594  * @prev: the current task that is being switched out
2595  * @next: the task we are going to switch to.
2596  *
2597  * This is called with the rq lock held and interrupts off. It must
2598  * be paired with a subsequent finish_task_switch after the context
2599  * switch.
2600  *
2601  * prepare_task_switch sets up locking and calls architecture specific
2602  * hooks.
2603  */
2604 static inline void
2605 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2606 		    struct task_struct *next)
2607 {
2608 	kcov_prepare_switch(prev);
2609 	sched_info_switch(rq, prev, next);
2610 	perf_event_task_sched_out(prev, next);
2611 	rseq_preempt(prev);
2612 	fire_sched_out_preempt_notifiers(prev, next);
2613 	prepare_task(next);
2614 	prepare_arch_switch(next);
2615 }
2616 
2617 /**
2618  * finish_task_switch - clean up after a task-switch
2619  * @prev: the thread we just switched away from.
2620  *
2621  * finish_task_switch must be called after the context switch, paired
2622  * with a prepare_task_switch call before the context switch.
2623  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2624  * and do any other architecture-specific cleanup actions.
2625  *
2626  * Note that we may have delayed dropping an mm in context_switch(). If
2627  * so, we finish that here outside of the runqueue lock. (Doing it
2628  * with the lock held can cause deadlocks; see schedule() for
2629  * details.)
2630  *
2631  * The context switch have flipped the stack from under us and restored the
2632  * local variables which were saved when this task called schedule() in the
2633  * past. prev == current is still correct but we need to recalculate this_rq
2634  * because prev may have moved to another CPU.
2635  */
2636 static struct rq *finish_task_switch(struct task_struct *prev)
2637 	__releases(rq->lock)
2638 {
2639 	struct rq *rq = this_rq();
2640 	struct mm_struct *mm = rq->prev_mm;
2641 	long prev_state;
2642 
2643 	/*
2644 	 * The previous task will have left us with a preempt_count of 2
2645 	 * because it left us after:
2646 	 *
2647 	 *	schedule()
2648 	 *	  preempt_disable();			// 1
2649 	 *	  __schedule()
2650 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2651 	 *
2652 	 * Also, see FORK_PREEMPT_COUNT.
2653 	 */
2654 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2655 		      "corrupted preempt_count: %s/%d/0x%x\n",
2656 		      current->comm, current->pid, preempt_count()))
2657 		preempt_count_set(FORK_PREEMPT_COUNT);
2658 
2659 	rq->prev_mm = NULL;
2660 
2661 	/*
2662 	 * A task struct has one reference for the use as "current".
2663 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2664 	 * schedule one last time. The schedule call will never return, and
2665 	 * the scheduled task must drop that reference.
2666 	 *
2667 	 * We must observe prev->state before clearing prev->on_cpu (in
2668 	 * finish_task), otherwise a concurrent wakeup can get prev
2669 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2670 	 * transition, resulting in a double drop.
2671 	 */
2672 	prev_state = prev->state;
2673 	vtime_task_switch(prev);
2674 	perf_event_task_sched_in(prev, current);
2675 	finish_task(prev);
2676 	finish_lock_switch(rq);
2677 	finish_arch_post_lock_switch();
2678 	kcov_finish_switch(current);
2679 
2680 	fire_sched_in_preempt_notifiers(current);
2681 	/*
2682 	 * When switching through a kernel thread, the loop in
2683 	 * membarrier_{private,global}_expedited() may have observed that
2684 	 * kernel thread and not issued an IPI. It is therefore possible to
2685 	 * schedule between user->kernel->user threads without passing though
2686 	 * switch_mm(). Membarrier requires a barrier after storing to
2687 	 * rq->curr, before returning to userspace, so provide them here:
2688 	 *
2689 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2690 	 *   provided by mmdrop(),
2691 	 * - a sync_core for SYNC_CORE.
2692 	 */
2693 	if (mm) {
2694 		membarrier_mm_sync_core_before_usermode(mm);
2695 		mmdrop(mm);
2696 	}
2697 	if (unlikely(prev_state == TASK_DEAD)) {
2698 		if (prev->sched_class->task_dead)
2699 			prev->sched_class->task_dead(prev);
2700 
2701 		/*
2702 		 * Remove function-return probe instances associated with this
2703 		 * task and put them back on the free list.
2704 		 */
2705 		kprobe_flush_task(prev);
2706 
2707 		/* Task is done with its stack. */
2708 		put_task_stack(prev);
2709 
2710 		put_task_struct(prev);
2711 	}
2712 
2713 	tick_nohz_task_switch();
2714 	return rq;
2715 }
2716 
2717 #ifdef CONFIG_SMP
2718 
2719 /* rq->lock is NOT held, but preemption is disabled */
2720 static void __balance_callback(struct rq *rq)
2721 {
2722 	struct callback_head *head, *next;
2723 	void (*func)(struct rq *rq);
2724 	unsigned long flags;
2725 
2726 	raw_spin_lock_irqsave(&rq->lock, flags);
2727 	head = rq->balance_callback;
2728 	rq->balance_callback = NULL;
2729 	while (head) {
2730 		func = (void (*)(struct rq *))head->func;
2731 		next = head->next;
2732 		head->next = NULL;
2733 		head = next;
2734 
2735 		func(rq);
2736 	}
2737 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2738 }
2739 
2740 static inline void balance_callback(struct rq *rq)
2741 {
2742 	if (unlikely(rq->balance_callback))
2743 		__balance_callback(rq);
2744 }
2745 
2746 #else
2747 
2748 static inline void balance_callback(struct rq *rq)
2749 {
2750 }
2751 
2752 #endif
2753 
2754 /**
2755  * schedule_tail - first thing a freshly forked thread must call.
2756  * @prev: the thread we just switched away from.
2757  */
2758 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2759 	__releases(rq->lock)
2760 {
2761 	struct rq *rq;
2762 
2763 	/*
2764 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2765 	 * finish_task_switch() for details.
2766 	 *
2767 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2768 	 * and the preempt_enable() will end up enabling preemption (on
2769 	 * PREEMPT_COUNT kernels).
2770 	 */
2771 
2772 	rq = finish_task_switch(prev);
2773 	balance_callback(rq);
2774 	preempt_enable();
2775 
2776 	if (current->set_child_tid)
2777 		put_user(task_pid_vnr(current), current->set_child_tid);
2778 
2779 	calculate_sigpending();
2780 }
2781 
2782 /*
2783  * context_switch - switch to the new MM and the new thread's register state.
2784  */
2785 static __always_inline struct rq *
2786 context_switch(struct rq *rq, struct task_struct *prev,
2787 	       struct task_struct *next, struct rq_flags *rf)
2788 {
2789 	struct mm_struct *mm, *oldmm;
2790 
2791 	prepare_task_switch(rq, prev, next);
2792 
2793 	mm = next->mm;
2794 	oldmm = prev->active_mm;
2795 	/*
2796 	 * For paravirt, this is coupled with an exit in switch_to to
2797 	 * combine the page table reload and the switch backend into
2798 	 * one hypercall.
2799 	 */
2800 	arch_start_context_switch(prev);
2801 
2802 	/*
2803 	 * If mm is non-NULL, we pass through switch_mm(). If mm is
2804 	 * NULL, we will pass through mmdrop() in finish_task_switch().
2805 	 * Both of these contain the full memory barrier required by
2806 	 * membarrier after storing to rq->curr, before returning to
2807 	 * user-space.
2808 	 */
2809 	if (!mm) {
2810 		next->active_mm = oldmm;
2811 		mmgrab(oldmm);
2812 		enter_lazy_tlb(oldmm, next);
2813 	} else
2814 		switch_mm_irqs_off(oldmm, mm, next);
2815 
2816 	if (!prev->mm) {
2817 		prev->active_mm = NULL;
2818 		rq->prev_mm = oldmm;
2819 	}
2820 
2821 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2822 
2823 	prepare_lock_switch(rq, next, rf);
2824 
2825 	/* Here we just switch the register state and the stack. */
2826 	switch_to(prev, next, prev);
2827 	barrier();
2828 
2829 	return finish_task_switch(prev);
2830 }
2831 
2832 /*
2833  * nr_running and nr_context_switches:
2834  *
2835  * externally visible scheduler statistics: current number of runnable
2836  * threads, total number of context switches performed since bootup.
2837  */
2838 unsigned long nr_running(void)
2839 {
2840 	unsigned long i, sum = 0;
2841 
2842 	for_each_online_cpu(i)
2843 		sum += cpu_rq(i)->nr_running;
2844 
2845 	return sum;
2846 }
2847 
2848 /*
2849  * Check if only the current task is running on the CPU.
2850  *
2851  * Caution: this function does not check that the caller has disabled
2852  * preemption, thus the result might have a time-of-check-to-time-of-use
2853  * race.  The caller is responsible to use it correctly, for example:
2854  *
2855  * - from a non-preemptable section (of course)
2856  *
2857  * - from a thread that is bound to a single CPU
2858  *
2859  * - in a loop with very short iterations (e.g. a polling loop)
2860  */
2861 bool single_task_running(void)
2862 {
2863 	return raw_rq()->nr_running == 1;
2864 }
2865 EXPORT_SYMBOL(single_task_running);
2866 
2867 unsigned long long nr_context_switches(void)
2868 {
2869 	int i;
2870 	unsigned long long sum = 0;
2871 
2872 	for_each_possible_cpu(i)
2873 		sum += cpu_rq(i)->nr_switches;
2874 
2875 	return sum;
2876 }
2877 
2878 /*
2879  * IO-wait accounting, and how its mostly bollocks (on SMP).
2880  *
2881  * The idea behind IO-wait account is to account the idle time that we could
2882  * have spend running if it were not for IO. That is, if we were to improve the
2883  * storage performance, we'd have a proportional reduction in IO-wait time.
2884  *
2885  * This all works nicely on UP, where, when a task blocks on IO, we account
2886  * idle time as IO-wait, because if the storage were faster, it could've been
2887  * running and we'd not be idle.
2888  *
2889  * This has been extended to SMP, by doing the same for each CPU. This however
2890  * is broken.
2891  *
2892  * Imagine for instance the case where two tasks block on one CPU, only the one
2893  * CPU will have IO-wait accounted, while the other has regular idle. Even
2894  * though, if the storage were faster, both could've ran at the same time,
2895  * utilising both CPUs.
2896  *
2897  * This means, that when looking globally, the current IO-wait accounting on
2898  * SMP is a lower bound, by reason of under accounting.
2899  *
2900  * Worse, since the numbers are provided per CPU, they are sometimes
2901  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2902  * associated with any one particular CPU, it can wake to another CPU than it
2903  * blocked on. This means the per CPU IO-wait number is meaningless.
2904  *
2905  * Task CPU affinities can make all that even more 'interesting'.
2906  */
2907 
2908 unsigned long nr_iowait(void)
2909 {
2910 	unsigned long i, sum = 0;
2911 
2912 	for_each_possible_cpu(i)
2913 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2914 
2915 	return sum;
2916 }
2917 
2918 /*
2919  * Consumers of these two interfaces, like for example the cpuidle menu
2920  * governor, are using nonsensical data. Preferring shallow idle state selection
2921  * for a CPU that has IO-wait which might not even end up running the task when
2922  * it does become runnable.
2923  */
2924 
2925 unsigned long nr_iowait_cpu(int cpu)
2926 {
2927 	struct rq *this = cpu_rq(cpu);
2928 	return atomic_read(&this->nr_iowait);
2929 }
2930 
2931 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2932 {
2933 	struct rq *rq = this_rq();
2934 	*nr_waiters = atomic_read(&rq->nr_iowait);
2935 	*load = rq->load.weight;
2936 }
2937 
2938 #ifdef CONFIG_SMP
2939 
2940 /*
2941  * sched_exec - execve() is a valuable balancing opportunity, because at
2942  * this point the task has the smallest effective memory and cache footprint.
2943  */
2944 void sched_exec(void)
2945 {
2946 	struct task_struct *p = current;
2947 	unsigned long flags;
2948 	int dest_cpu;
2949 
2950 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2951 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2952 	if (dest_cpu == smp_processor_id())
2953 		goto unlock;
2954 
2955 	if (likely(cpu_active(dest_cpu))) {
2956 		struct migration_arg arg = { p, dest_cpu };
2957 
2958 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2959 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2960 		return;
2961 	}
2962 unlock:
2963 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2964 }
2965 
2966 #endif
2967 
2968 DEFINE_PER_CPU(struct kernel_stat, kstat);
2969 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2970 
2971 EXPORT_PER_CPU_SYMBOL(kstat);
2972 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2973 
2974 /*
2975  * The function fair_sched_class.update_curr accesses the struct curr
2976  * and its field curr->exec_start; when called from task_sched_runtime(),
2977  * we observe a high rate of cache misses in practice.
2978  * Prefetching this data results in improved performance.
2979  */
2980 static inline void prefetch_curr_exec_start(struct task_struct *p)
2981 {
2982 #ifdef CONFIG_FAIR_GROUP_SCHED
2983 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2984 #else
2985 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2986 #endif
2987 	prefetch(curr);
2988 	prefetch(&curr->exec_start);
2989 }
2990 
2991 /*
2992  * Return accounted runtime for the task.
2993  * In case the task is currently running, return the runtime plus current's
2994  * pending runtime that have not been accounted yet.
2995  */
2996 unsigned long long task_sched_runtime(struct task_struct *p)
2997 {
2998 	struct rq_flags rf;
2999 	struct rq *rq;
3000 	u64 ns;
3001 
3002 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3003 	/*
3004 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3005 	 * So we have a optimization chance when the task's delta_exec is 0.
3006 	 * Reading ->on_cpu is racy, but this is ok.
3007 	 *
3008 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3009 	 * If we race with it entering CPU, unaccounted time is 0. This is
3010 	 * indistinguishable from the read occurring a few cycles earlier.
3011 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3012 	 * been accounted, so we're correct here as well.
3013 	 */
3014 	if (!p->on_cpu || !task_on_rq_queued(p))
3015 		return p->se.sum_exec_runtime;
3016 #endif
3017 
3018 	rq = task_rq_lock(p, &rf);
3019 	/*
3020 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3021 	 * project cycles that may never be accounted to this
3022 	 * thread, breaking clock_gettime().
3023 	 */
3024 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3025 		prefetch_curr_exec_start(p);
3026 		update_rq_clock(rq);
3027 		p->sched_class->update_curr(rq);
3028 	}
3029 	ns = p->se.sum_exec_runtime;
3030 	task_rq_unlock(rq, p, &rf);
3031 
3032 	return ns;
3033 }
3034 
3035 /*
3036  * This function gets called by the timer code, with HZ frequency.
3037  * We call it with interrupts disabled.
3038  */
3039 void scheduler_tick(void)
3040 {
3041 	int cpu = smp_processor_id();
3042 	struct rq *rq = cpu_rq(cpu);
3043 	struct task_struct *curr = rq->curr;
3044 	struct rq_flags rf;
3045 
3046 	sched_clock_tick();
3047 
3048 	rq_lock(rq, &rf);
3049 
3050 	update_rq_clock(rq);
3051 	curr->sched_class->task_tick(rq, curr, 0);
3052 	cpu_load_update_active(rq);
3053 	calc_global_load_tick(rq);
3054 
3055 	rq_unlock(rq, &rf);
3056 
3057 	perf_event_task_tick();
3058 
3059 #ifdef CONFIG_SMP
3060 	rq->idle_balance = idle_cpu(cpu);
3061 	trigger_load_balance(rq);
3062 #endif
3063 }
3064 
3065 #ifdef CONFIG_NO_HZ_FULL
3066 
3067 struct tick_work {
3068 	int			cpu;
3069 	struct delayed_work	work;
3070 };
3071 
3072 static struct tick_work __percpu *tick_work_cpu;
3073 
3074 static void sched_tick_remote(struct work_struct *work)
3075 {
3076 	struct delayed_work *dwork = to_delayed_work(work);
3077 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3078 	int cpu = twork->cpu;
3079 	struct rq *rq = cpu_rq(cpu);
3080 	struct task_struct *curr;
3081 	struct rq_flags rf;
3082 	u64 delta;
3083 
3084 	/*
3085 	 * Handle the tick only if it appears the remote CPU is running in full
3086 	 * dynticks mode. The check is racy by nature, but missing a tick or
3087 	 * having one too much is no big deal because the scheduler tick updates
3088 	 * statistics and checks timeslices in a time-independent way, regardless
3089 	 * of when exactly it is running.
3090 	 */
3091 	if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3092 		goto out_requeue;
3093 
3094 	rq_lock_irq(rq, &rf);
3095 	curr = rq->curr;
3096 	if (is_idle_task(curr))
3097 		goto out_unlock;
3098 
3099 	update_rq_clock(rq);
3100 	delta = rq_clock_task(rq) - curr->se.exec_start;
3101 
3102 	/*
3103 	 * Make sure the next tick runs within a reasonable
3104 	 * amount of time.
3105 	 */
3106 	WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3107 	curr->sched_class->task_tick(rq, curr, 0);
3108 
3109 out_unlock:
3110 	rq_unlock_irq(rq, &rf);
3111 
3112 out_requeue:
3113 	/*
3114 	 * Run the remote tick once per second (1Hz). This arbitrary
3115 	 * frequency is large enough to avoid overload but short enough
3116 	 * to keep scheduler internal stats reasonably up to date.
3117 	 */
3118 	queue_delayed_work(system_unbound_wq, dwork, HZ);
3119 }
3120 
3121 static void sched_tick_start(int cpu)
3122 {
3123 	struct tick_work *twork;
3124 
3125 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3126 		return;
3127 
3128 	WARN_ON_ONCE(!tick_work_cpu);
3129 
3130 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3131 	twork->cpu = cpu;
3132 	INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3133 	queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3134 }
3135 
3136 #ifdef CONFIG_HOTPLUG_CPU
3137 static void sched_tick_stop(int cpu)
3138 {
3139 	struct tick_work *twork;
3140 
3141 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3142 		return;
3143 
3144 	WARN_ON_ONCE(!tick_work_cpu);
3145 
3146 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3147 	cancel_delayed_work_sync(&twork->work);
3148 }
3149 #endif /* CONFIG_HOTPLUG_CPU */
3150 
3151 int __init sched_tick_offload_init(void)
3152 {
3153 	tick_work_cpu = alloc_percpu(struct tick_work);
3154 	BUG_ON(!tick_work_cpu);
3155 
3156 	return 0;
3157 }
3158 
3159 #else /* !CONFIG_NO_HZ_FULL */
3160 static inline void sched_tick_start(int cpu) { }
3161 static inline void sched_tick_stop(int cpu) { }
3162 #endif
3163 
3164 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3165 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3166 /*
3167  * If the value passed in is equal to the current preempt count
3168  * then we just disabled preemption. Start timing the latency.
3169  */
3170 static inline void preempt_latency_start(int val)
3171 {
3172 	if (preempt_count() == val) {
3173 		unsigned long ip = get_lock_parent_ip();
3174 #ifdef CONFIG_DEBUG_PREEMPT
3175 		current->preempt_disable_ip = ip;
3176 #endif
3177 		trace_preempt_off(CALLER_ADDR0, ip);
3178 	}
3179 }
3180 
3181 void preempt_count_add(int val)
3182 {
3183 #ifdef CONFIG_DEBUG_PREEMPT
3184 	/*
3185 	 * Underflow?
3186 	 */
3187 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3188 		return;
3189 #endif
3190 	__preempt_count_add(val);
3191 #ifdef CONFIG_DEBUG_PREEMPT
3192 	/*
3193 	 * Spinlock count overflowing soon?
3194 	 */
3195 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3196 				PREEMPT_MASK - 10);
3197 #endif
3198 	preempt_latency_start(val);
3199 }
3200 EXPORT_SYMBOL(preempt_count_add);
3201 NOKPROBE_SYMBOL(preempt_count_add);
3202 
3203 /*
3204  * If the value passed in equals to the current preempt count
3205  * then we just enabled preemption. Stop timing the latency.
3206  */
3207 static inline void preempt_latency_stop(int val)
3208 {
3209 	if (preempt_count() == val)
3210 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3211 }
3212 
3213 void preempt_count_sub(int val)
3214 {
3215 #ifdef CONFIG_DEBUG_PREEMPT
3216 	/*
3217 	 * Underflow?
3218 	 */
3219 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3220 		return;
3221 	/*
3222 	 * Is the spinlock portion underflowing?
3223 	 */
3224 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3225 			!(preempt_count() & PREEMPT_MASK)))
3226 		return;
3227 #endif
3228 
3229 	preempt_latency_stop(val);
3230 	__preempt_count_sub(val);
3231 }
3232 EXPORT_SYMBOL(preempt_count_sub);
3233 NOKPROBE_SYMBOL(preempt_count_sub);
3234 
3235 #else
3236 static inline void preempt_latency_start(int val) { }
3237 static inline void preempt_latency_stop(int val) { }
3238 #endif
3239 
3240 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3241 {
3242 #ifdef CONFIG_DEBUG_PREEMPT
3243 	return p->preempt_disable_ip;
3244 #else
3245 	return 0;
3246 #endif
3247 }
3248 
3249 /*
3250  * Print scheduling while atomic bug:
3251  */
3252 static noinline void __schedule_bug(struct task_struct *prev)
3253 {
3254 	/* Save this before calling printk(), since that will clobber it */
3255 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3256 
3257 	if (oops_in_progress)
3258 		return;
3259 
3260 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3261 		prev->comm, prev->pid, preempt_count());
3262 
3263 	debug_show_held_locks(prev);
3264 	print_modules();
3265 	if (irqs_disabled())
3266 		print_irqtrace_events(prev);
3267 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3268 	    && in_atomic_preempt_off()) {
3269 		pr_err("Preemption disabled at:");
3270 		print_ip_sym(preempt_disable_ip);
3271 		pr_cont("\n");
3272 	}
3273 	if (panic_on_warn)
3274 		panic("scheduling while atomic\n");
3275 
3276 	dump_stack();
3277 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3278 }
3279 
3280 /*
3281  * Various schedule()-time debugging checks and statistics:
3282  */
3283 static inline void schedule_debug(struct task_struct *prev)
3284 {
3285 #ifdef CONFIG_SCHED_STACK_END_CHECK
3286 	if (task_stack_end_corrupted(prev))
3287 		panic("corrupted stack end detected inside scheduler\n");
3288 #endif
3289 
3290 	if (unlikely(in_atomic_preempt_off())) {
3291 		__schedule_bug(prev);
3292 		preempt_count_set(PREEMPT_DISABLED);
3293 	}
3294 	rcu_sleep_check();
3295 
3296 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3297 
3298 	schedstat_inc(this_rq()->sched_count);
3299 }
3300 
3301 /*
3302  * Pick up the highest-prio task:
3303  */
3304 static inline struct task_struct *
3305 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3306 {
3307 	const struct sched_class *class;
3308 	struct task_struct *p;
3309 
3310 	/*
3311 	 * Optimization: we know that if all tasks are in the fair class we can
3312 	 * call that function directly, but only if the @prev task wasn't of a
3313 	 * higher scheduling class, because otherwise those loose the
3314 	 * opportunity to pull in more work from other CPUs.
3315 	 */
3316 	if (likely((prev->sched_class == &idle_sched_class ||
3317 		    prev->sched_class == &fair_sched_class) &&
3318 		   rq->nr_running == rq->cfs.h_nr_running)) {
3319 
3320 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3321 		if (unlikely(p == RETRY_TASK))
3322 			goto again;
3323 
3324 		/* Assumes fair_sched_class->next == idle_sched_class */
3325 		if (unlikely(!p))
3326 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3327 
3328 		return p;
3329 	}
3330 
3331 again:
3332 	for_each_class(class) {
3333 		p = class->pick_next_task(rq, prev, rf);
3334 		if (p) {
3335 			if (unlikely(p == RETRY_TASK))
3336 				goto again;
3337 			return p;
3338 		}
3339 	}
3340 
3341 	/* The idle class should always have a runnable task: */
3342 	BUG();
3343 }
3344 
3345 /*
3346  * __schedule() is the main scheduler function.
3347  *
3348  * The main means of driving the scheduler and thus entering this function are:
3349  *
3350  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3351  *
3352  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3353  *      paths. For example, see arch/x86/entry_64.S.
3354  *
3355  *      To drive preemption between tasks, the scheduler sets the flag in timer
3356  *      interrupt handler scheduler_tick().
3357  *
3358  *   3. Wakeups don't really cause entry into schedule(). They add a
3359  *      task to the run-queue and that's it.
3360  *
3361  *      Now, if the new task added to the run-queue preempts the current
3362  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3363  *      called on the nearest possible occasion:
3364  *
3365  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3366  *
3367  *         - in syscall or exception context, at the next outmost
3368  *           preempt_enable(). (this might be as soon as the wake_up()'s
3369  *           spin_unlock()!)
3370  *
3371  *         - in IRQ context, return from interrupt-handler to
3372  *           preemptible context
3373  *
3374  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3375  *         then at the next:
3376  *
3377  *          - cond_resched() call
3378  *          - explicit schedule() call
3379  *          - return from syscall or exception to user-space
3380  *          - return from interrupt-handler to user-space
3381  *
3382  * WARNING: must be called with preemption disabled!
3383  */
3384 static void __sched notrace __schedule(bool preempt)
3385 {
3386 	struct task_struct *prev, *next;
3387 	unsigned long *switch_count;
3388 	struct rq_flags rf;
3389 	struct rq *rq;
3390 	int cpu;
3391 
3392 	cpu = smp_processor_id();
3393 	rq = cpu_rq(cpu);
3394 	prev = rq->curr;
3395 
3396 	schedule_debug(prev);
3397 
3398 	if (sched_feat(HRTICK))
3399 		hrtick_clear(rq);
3400 
3401 	local_irq_disable();
3402 	rcu_note_context_switch(preempt);
3403 
3404 	/*
3405 	 * Make sure that signal_pending_state()->signal_pending() below
3406 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3407 	 * done by the caller to avoid the race with signal_wake_up().
3408 	 *
3409 	 * The membarrier system call requires a full memory barrier
3410 	 * after coming from user-space, before storing to rq->curr.
3411 	 */
3412 	rq_lock(rq, &rf);
3413 	smp_mb__after_spinlock();
3414 
3415 	/* Promote REQ to ACT */
3416 	rq->clock_update_flags <<= 1;
3417 	update_rq_clock(rq);
3418 
3419 	switch_count = &prev->nivcsw;
3420 	if (!preempt && prev->state) {
3421 		if (unlikely(signal_pending_state(prev->state, prev))) {
3422 			prev->state = TASK_RUNNING;
3423 		} else {
3424 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3425 			prev->on_rq = 0;
3426 
3427 			if (prev->in_iowait) {
3428 				atomic_inc(&rq->nr_iowait);
3429 				delayacct_blkio_start();
3430 			}
3431 
3432 			/*
3433 			 * If a worker went to sleep, notify and ask workqueue
3434 			 * whether it wants to wake up a task to maintain
3435 			 * concurrency.
3436 			 */
3437 			if (prev->flags & PF_WQ_WORKER) {
3438 				struct task_struct *to_wakeup;
3439 
3440 				to_wakeup = wq_worker_sleeping(prev);
3441 				if (to_wakeup)
3442 					try_to_wake_up_local(to_wakeup, &rf);
3443 			}
3444 		}
3445 		switch_count = &prev->nvcsw;
3446 	}
3447 
3448 	next = pick_next_task(rq, prev, &rf);
3449 	clear_tsk_need_resched(prev);
3450 	clear_preempt_need_resched();
3451 
3452 	if (likely(prev != next)) {
3453 		rq->nr_switches++;
3454 		rq->curr = next;
3455 		/*
3456 		 * The membarrier system call requires each architecture
3457 		 * to have a full memory barrier after updating
3458 		 * rq->curr, before returning to user-space.
3459 		 *
3460 		 * Here are the schemes providing that barrier on the
3461 		 * various architectures:
3462 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3463 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3464 		 * - finish_lock_switch() for weakly-ordered
3465 		 *   architectures where spin_unlock is a full barrier,
3466 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3467 		 *   is a RELEASE barrier),
3468 		 */
3469 		++*switch_count;
3470 
3471 		trace_sched_switch(preempt, prev, next);
3472 
3473 		/* Also unlocks the rq: */
3474 		rq = context_switch(rq, prev, next, &rf);
3475 	} else {
3476 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3477 		rq_unlock_irq(rq, &rf);
3478 	}
3479 
3480 	balance_callback(rq);
3481 }
3482 
3483 void __noreturn do_task_dead(void)
3484 {
3485 	/* Causes final put_task_struct in finish_task_switch(): */
3486 	set_special_state(TASK_DEAD);
3487 
3488 	/* Tell freezer to ignore us: */
3489 	current->flags |= PF_NOFREEZE;
3490 
3491 	__schedule(false);
3492 	BUG();
3493 
3494 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3495 	for (;;)
3496 		cpu_relax();
3497 }
3498 
3499 static inline void sched_submit_work(struct task_struct *tsk)
3500 {
3501 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3502 		return;
3503 	/*
3504 	 * If we are going to sleep and we have plugged IO queued,
3505 	 * make sure to submit it to avoid deadlocks.
3506 	 */
3507 	if (blk_needs_flush_plug(tsk))
3508 		blk_schedule_flush_plug(tsk);
3509 }
3510 
3511 asmlinkage __visible void __sched schedule(void)
3512 {
3513 	struct task_struct *tsk = current;
3514 
3515 	sched_submit_work(tsk);
3516 	do {
3517 		preempt_disable();
3518 		__schedule(false);
3519 		sched_preempt_enable_no_resched();
3520 	} while (need_resched());
3521 }
3522 EXPORT_SYMBOL(schedule);
3523 
3524 /*
3525  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3526  * state (have scheduled out non-voluntarily) by making sure that all
3527  * tasks have either left the run queue or have gone into user space.
3528  * As idle tasks do not do either, they must not ever be preempted
3529  * (schedule out non-voluntarily).
3530  *
3531  * schedule_idle() is similar to schedule_preempt_disable() except that it
3532  * never enables preemption because it does not call sched_submit_work().
3533  */
3534 void __sched schedule_idle(void)
3535 {
3536 	/*
3537 	 * As this skips calling sched_submit_work(), which the idle task does
3538 	 * regardless because that function is a nop when the task is in a
3539 	 * TASK_RUNNING state, make sure this isn't used someplace that the
3540 	 * current task can be in any other state. Note, idle is always in the
3541 	 * TASK_RUNNING state.
3542 	 */
3543 	WARN_ON_ONCE(current->state);
3544 	do {
3545 		__schedule(false);
3546 	} while (need_resched());
3547 }
3548 
3549 #ifdef CONFIG_CONTEXT_TRACKING
3550 asmlinkage __visible void __sched schedule_user(void)
3551 {
3552 	/*
3553 	 * If we come here after a random call to set_need_resched(),
3554 	 * or we have been woken up remotely but the IPI has not yet arrived,
3555 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3556 	 * we find a better solution.
3557 	 *
3558 	 * NB: There are buggy callers of this function.  Ideally we
3559 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3560 	 * too frequently to make sense yet.
3561 	 */
3562 	enum ctx_state prev_state = exception_enter();
3563 	schedule();
3564 	exception_exit(prev_state);
3565 }
3566 #endif
3567 
3568 /**
3569  * schedule_preempt_disabled - called with preemption disabled
3570  *
3571  * Returns with preemption disabled. Note: preempt_count must be 1
3572  */
3573 void __sched schedule_preempt_disabled(void)
3574 {
3575 	sched_preempt_enable_no_resched();
3576 	schedule();
3577 	preempt_disable();
3578 }
3579 
3580 static void __sched notrace preempt_schedule_common(void)
3581 {
3582 	do {
3583 		/*
3584 		 * Because the function tracer can trace preempt_count_sub()
3585 		 * and it also uses preempt_enable/disable_notrace(), if
3586 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3587 		 * by the function tracer will call this function again and
3588 		 * cause infinite recursion.
3589 		 *
3590 		 * Preemption must be disabled here before the function
3591 		 * tracer can trace. Break up preempt_disable() into two
3592 		 * calls. One to disable preemption without fear of being
3593 		 * traced. The other to still record the preemption latency,
3594 		 * which can also be traced by the function tracer.
3595 		 */
3596 		preempt_disable_notrace();
3597 		preempt_latency_start(1);
3598 		__schedule(true);
3599 		preempt_latency_stop(1);
3600 		preempt_enable_no_resched_notrace();
3601 
3602 		/*
3603 		 * Check again in case we missed a preemption opportunity
3604 		 * between schedule and now.
3605 		 */
3606 	} while (need_resched());
3607 }
3608 
3609 #ifdef CONFIG_PREEMPT
3610 /*
3611  * this is the entry point to schedule() from in-kernel preemption
3612  * off of preempt_enable. Kernel preemptions off return from interrupt
3613  * occur there and call schedule directly.
3614  */
3615 asmlinkage __visible void __sched notrace preempt_schedule(void)
3616 {
3617 	/*
3618 	 * If there is a non-zero preempt_count or interrupts are disabled,
3619 	 * we do not want to preempt the current task. Just return..
3620 	 */
3621 	if (likely(!preemptible()))
3622 		return;
3623 
3624 	preempt_schedule_common();
3625 }
3626 NOKPROBE_SYMBOL(preempt_schedule);
3627 EXPORT_SYMBOL(preempt_schedule);
3628 
3629 /**
3630  * preempt_schedule_notrace - preempt_schedule called by tracing
3631  *
3632  * The tracing infrastructure uses preempt_enable_notrace to prevent
3633  * recursion and tracing preempt enabling caused by the tracing
3634  * infrastructure itself. But as tracing can happen in areas coming
3635  * from userspace or just about to enter userspace, a preempt enable
3636  * can occur before user_exit() is called. This will cause the scheduler
3637  * to be called when the system is still in usermode.
3638  *
3639  * To prevent this, the preempt_enable_notrace will use this function
3640  * instead of preempt_schedule() to exit user context if needed before
3641  * calling the scheduler.
3642  */
3643 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3644 {
3645 	enum ctx_state prev_ctx;
3646 
3647 	if (likely(!preemptible()))
3648 		return;
3649 
3650 	do {
3651 		/*
3652 		 * Because the function tracer can trace preempt_count_sub()
3653 		 * and it also uses preempt_enable/disable_notrace(), if
3654 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3655 		 * by the function tracer will call this function again and
3656 		 * cause infinite recursion.
3657 		 *
3658 		 * Preemption must be disabled here before the function
3659 		 * tracer can trace. Break up preempt_disable() into two
3660 		 * calls. One to disable preemption without fear of being
3661 		 * traced. The other to still record the preemption latency,
3662 		 * which can also be traced by the function tracer.
3663 		 */
3664 		preempt_disable_notrace();
3665 		preempt_latency_start(1);
3666 		/*
3667 		 * Needs preempt disabled in case user_exit() is traced
3668 		 * and the tracer calls preempt_enable_notrace() causing
3669 		 * an infinite recursion.
3670 		 */
3671 		prev_ctx = exception_enter();
3672 		__schedule(true);
3673 		exception_exit(prev_ctx);
3674 
3675 		preempt_latency_stop(1);
3676 		preempt_enable_no_resched_notrace();
3677 	} while (need_resched());
3678 }
3679 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3680 
3681 #endif /* CONFIG_PREEMPT */
3682 
3683 /*
3684  * this is the entry point to schedule() from kernel preemption
3685  * off of irq context.
3686  * Note, that this is called and return with irqs disabled. This will
3687  * protect us against recursive calling from irq.
3688  */
3689 asmlinkage __visible void __sched preempt_schedule_irq(void)
3690 {
3691 	enum ctx_state prev_state;
3692 
3693 	/* Catch callers which need to be fixed */
3694 	BUG_ON(preempt_count() || !irqs_disabled());
3695 
3696 	prev_state = exception_enter();
3697 
3698 	do {
3699 		preempt_disable();
3700 		local_irq_enable();
3701 		__schedule(true);
3702 		local_irq_disable();
3703 		sched_preempt_enable_no_resched();
3704 	} while (need_resched());
3705 
3706 	exception_exit(prev_state);
3707 }
3708 
3709 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3710 			  void *key)
3711 {
3712 	return try_to_wake_up(curr->private, mode, wake_flags);
3713 }
3714 EXPORT_SYMBOL(default_wake_function);
3715 
3716 #ifdef CONFIG_RT_MUTEXES
3717 
3718 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3719 {
3720 	if (pi_task)
3721 		prio = min(prio, pi_task->prio);
3722 
3723 	return prio;
3724 }
3725 
3726 static inline int rt_effective_prio(struct task_struct *p, int prio)
3727 {
3728 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3729 
3730 	return __rt_effective_prio(pi_task, prio);
3731 }
3732 
3733 /*
3734  * rt_mutex_setprio - set the current priority of a task
3735  * @p: task to boost
3736  * @pi_task: donor task
3737  *
3738  * This function changes the 'effective' priority of a task. It does
3739  * not touch ->normal_prio like __setscheduler().
3740  *
3741  * Used by the rt_mutex code to implement priority inheritance
3742  * logic. Call site only calls if the priority of the task changed.
3743  */
3744 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3745 {
3746 	int prio, oldprio, queued, running, queue_flag =
3747 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3748 	const struct sched_class *prev_class;
3749 	struct rq_flags rf;
3750 	struct rq *rq;
3751 
3752 	/* XXX used to be waiter->prio, not waiter->task->prio */
3753 	prio = __rt_effective_prio(pi_task, p->normal_prio);
3754 
3755 	/*
3756 	 * If nothing changed; bail early.
3757 	 */
3758 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3759 		return;
3760 
3761 	rq = __task_rq_lock(p, &rf);
3762 	update_rq_clock(rq);
3763 	/*
3764 	 * Set under pi_lock && rq->lock, such that the value can be used under
3765 	 * either lock.
3766 	 *
3767 	 * Note that there is loads of tricky to make this pointer cache work
3768 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3769 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
3770 	 * task is allowed to run again (and can exit). This ensures the pointer
3771 	 * points to a blocked task -- which guaratees the task is present.
3772 	 */
3773 	p->pi_top_task = pi_task;
3774 
3775 	/*
3776 	 * For FIFO/RR we only need to set prio, if that matches we're done.
3777 	 */
3778 	if (prio == p->prio && !dl_prio(prio))
3779 		goto out_unlock;
3780 
3781 	/*
3782 	 * Idle task boosting is a nono in general. There is one
3783 	 * exception, when PREEMPT_RT and NOHZ is active:
3784 	 *
3785 	 * The idle task calls get_next_timer_interrupt() and holds
3786 	 * the timer wheel base->lock on the CPU and another CPU wants
3787 	 * to access the timer (probably to cancel it). We can safely
3788 	 * ignore the boosting request, as the idle CPU runs this code
3789 	 * with interrupts disabled and will complete the lock
3790 	 * protected section without being interrupted. So there is no
3791 	 * real need to boost.
3792 	 */
3793 	if (unlikely(p == rq->idle)) {
3794 		WARN_ON(p != rq->curr);
3795 		WARN_ON(p->pi_blocked_on);
3796 		goto out_unlock;
3797 	}
3798 
3799 	trace_sched_pi_setprio(p, pi_task);
3800 	oldprio = p->prio;
3801 
3802 	if (oldprio == prio)
3803 		queue_flag &= ~DEQUEUE_MOVE;
3804 
3805 	prev_class = p->sched_class;
3806 	queued = task_on_rq_queued(p);
3807 	running = task_current(rq, p);
3808 	if (queued)
3809 		dequeue_task(rq, p, queue_flag);
3810 	if (running)
3811 		put_prev_task(rq, p);
3812 
3813 	/*
3814 	 * Boosting condition are:
3815 	 * 1. -rt task is running and holds mutex A
3816 	 *      --> -dl task blocks on mutex A
3817 	 *
3818 	 * 2. -dl task is running and holds mutex A
3819 	 *      --> -dl task blocks on mutex A and could preempt the
3820 	 *          running task
3821 	 */
3822 	if (dl_prio(prio)) {
3823 		if (!dl_prio(p->normal_prio) ||
3824 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3825 			p->dl.dl_boosted = 1;
3826 			queue_flag |= ENQUEUE_REPLENISH;
3827 		} else
3828 			p->dl.dl_boosted = 0;
3829 		p->sched_class = &dl_sched_class;
3830 	} else if (rt_prio(prio)) {
3831 		if (dl_prio(oldprio))
3832 			p->dl.dl_boosted = 0;
3833 		if (oldprio < prio)
3834 			queue_flag |= ENQUEUE_HEAD;
3835 		p->sched_class = &rt_sched_class;
3836 	} else {
3837 		if (dl_prio(oldprio))
3838 			p->dl.dl_boosted = 0;
3839 		if (rt_prio(oldprio))
3840 			p->rt.timeout = 0;
3841 		p->sched_class = &fair_sched_class;
3842 	}
3843 
3844 	p->prio = prio;
3845 
3846 	if (queued)
3847 		enqueue_task(rq, p, queue_flag);
3848 	if (running)
3849 		set_curr_task(rq, p);
3850 
3851 	check_class_changed(rq, p, prev_class, oldprio);
3852 out_unlock:
3853 	/* Avoid rq from going away on us: */
3854 	preempt_disable();
3855 	__task_rq_unlock(rq, &rf);
3856 
3857 	balance_callback(rq);
3858 	preempt_enable();
3859 }
3860 #else
3861 static inline int rt_effective_prio(struct task_struct *p, int prio)
3862 {
3863 	return prio;
3864 }
3865 #endif
3866 
3867 void set_user_nice(struct task_struct *p, long nice)
3868 {
3869 	bool queued, running;
3870 	int old_prio, delta;
3871 	struct rq_flags rf;
3872 	struct rq *rq;
3873 
3874 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3875 		return;
3876 	/*
3877 	 * We have to be careful, if called from sys_setpriority(),
3878 	 * the task might be in the middle of scheduling on another CPU.
3879 	 */
3880 	rq = task_rq_lock(p, &rf);
3881 	update_rq_clock(rq);
3882 
3883 	/*
3884 	 * The RT priorities are set via sched_setscheduler(), but we still
3885 	 * allow the 'normal' nice value to be set - but as expected
3886 	 * it wont have any effect on scheduling until the task is
3887 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3888 	 */
3889 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3890 		p->static_prio = NICE_TO_PRIO(nice);
3891 		goto out_unlock;
3892 	}
3893 	queued = task_on_rq_queued(p);
3894 	running = task_current(rq, p);
3895 	if (queued)
3896 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3897 	if (running)
3898 		put_prev_task(rq, p);
3899 
3900 	p->static_prio = NICE_TO_PRIO(nice);
3901 	set_load_weight(p, true);
3902 	old_prio = p->prio;
3903 	p->prio = effective_prio(p);
3904 	delta = p->prio - old_prio;
3905 
3906 	if (queued) {
3907 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3908 		/*
3909 		 * If the task increased its priority or is running and
3910 		 * lowered its priority, then reschedule its CPU:
3911 		 */
3912 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3913 			resched_curr(rq);
3914 	}
3915 	if (running)
3916 		set_curr_task(rq, p);
3917 out_unlock:
3918 	task_rq_unlock(rq, p, &rf);
3919 }
3920 EXPORT_SYMBOL(set_user_nice);
3921 
3922 /*
3923  * can_nice - check if a task can reduce its nice value
3924  * @p: task
3925  * @nice: nice value
3926  */
3927 int can_nice(const struct task_struct *p, const int nice)
3928 {
3929 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3930 	int nice_rlim = nice_to_rlimit(nice);
3931 
3932 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3933 		capable(CAP_SYS_NICE));
3934 }
3935 
3936 #ifdef __ARCH_WANT_SYS_NICE
3937 
3938 /*
3939  * sys_nice - change the priority of the current process.
3940  * @increment: priority increment
3941  *
3942  * sys_setpriority is a more generic, but much slower function that
3943  * does similar things.
3944  */
3945 SYSCALL_DEFINE1(nice, int, increment)
3946 {
3947 	long nice, retval;
3948 
3949 	/*
3950 	 * Setpriority might change our priority at the same moment.
3951 	 * We don't have to worry. Conceptually one call occurs first
3952 	 * and we have a single winner.
3953 	 */
3954 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3955 	nice = task_nice(current) + increment;
3956 
3957 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3958 	if (increment < 0 && !can_nice(current, nice))
3959 		return -EPERM;
3960 
3961 	retval = security_task_setnice(current, nice);
3962 	if (retval)
3963 		return retval;
3964 
3965 	set_user_nice(current, nice);
3966 	return 0;
3967 }
3968 
3969 #endif
3970 
3971 /**
3972  * task_prio - return the priority value of a given task.
3973  * @p: the task in question.
3974  *
3975  * Return: The priority value as seen by users in /proc.
3976  * RT tasks are offset by -200. Normal tasks are centered
3977  * around 0, value goes from -16 to +15.
3978  */
3979 int task_prio(const struct task_struct *p)
3980 {
3981 	return p->prio - MAX_RT_PRIO;
3982 }
3983 
3984 /**
3985  * idle_cpu - is a given CPU idle currently?
3986  * @cpu: the processor in question.
3987  *
3988  * Return: 1 if the CPU is currently idle. 0 otherwise.
3989  */
3990 int idle_cpu(int cpu)
3991 {
3992 	struct rq *rq = cpu_rq(cpu);
3993 
3994 	if (rq->curr != rq->idle)
3995 		return 0;
3996 
3997 	if (rq->nr_running)
3998 		return 0;
3999 
4000 #ifdef CONFIG_SMP
4001 	if (!llist_empty(&rq->wake_list))
4002 		return 0;
4003 #endif
4004 
4005 	return 1;
4006 }
4007 
4008 /**
4009  * available_idle_cpu - is a given CPU idle for enqueuing work.
4010  * @cpu: the CPU in question.
4011  *
4012  * Return: 1 if the CPU is currently idle. 0 otherwise.
4013  */
4014 int available_idle_cpu(int cpu)
4015 {
4016 	if (!idle_cpu(cpu))
4017 		return 0;
4018 
4019 	if (vcpu_is_preempted(cpu))
4020 		return 0;
4021 
4022 	return 1;
4023 }
4024 
4025 /**
4026  * idle_task - return the idle task for a given CPU.
4027  * @cpu: the processor in question.
4028  *
4029  * Return: The idle task for the CPU @cpu.
4030  */
4031 struct task_struct *idle_task(int cpu)
4032 {
4033 	return cpu_rq(cpu)->idle;
4034 }
4035 
4036 /**
4037  * find_process_by_pid - find a process with a matching PID value.
4038  * @pid: the pid in question.
4039  *
4040  * The task of @pid, if found. %NULL otherwise.
4041  */
4042 static struct task_struct *find_process_by_pid(pid_t pid)
4043 {
4044 	return pid ? find_task_by_vpid(pid) : current;
4045 }
4046 
4047 /*
4048  * sched_setparam() passes in -1 for its policy, to let the functions
4049  * it calls know not to change it.
4050  */
4051 #define SETPARAM_POLICY	-1
4052 
4053 static void __setscheduler_params(struct task_struct *p,
4054 		const struct sched_attr *attr)
4055 {
4056 	int policy = attr->sched_policy;
4057 
4058 	if (policy == SETPARAM_POLICY)
4059 		policy = p->policy;
4060 
4061 	p->policy = policy;
4062 
4063 	if (dl_policy(policy))
4064 		__setparam_dl(p, attr);
4065 	else if (fair_policy(policy))
4066 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4067 
4068 	/*
4069 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4070 	 * !rt_policy. Always setting this ensures that things like
4071 	 * getparam()/getattr() don't report silly values for !rt tasks.
4072 	 */
4073 	p->rt_priority = attr->sched_priority;
4074 	p->normal_prio = normal_prio(p);
4075 	set_load_weight(p, true);
4076 }
4077 
4078 /* Actually do priority change: must hold pi & rq lock. */
4079 static void __setscheduler(struct rq *rq, struct task_struct *p,
4080 			   const struct sched_attr *attr, bool keep_boost)
4081 {
4082 	__setscheduler_params(p, attr);
4083 
4084 	/*
4085 	 * Keep a potential priority boosting if called from
4086 	 * sched_setscheduler().
4087 	 */
4088 	p->prio = normal_prio(p);
4089 	if (keep_boost)
4090 		p->prio = rt_effective_prio(p, p->prio);
4091 
4092 	if (dl_prio(p->prio))
4093 		p->sched_class = &dl_sched_class;
4094 	else if (rt_prio(p->prio))
4095 		p->sched_class = &rt_sched_class;
4096 	else
4097 		p->sched_class = &fair_sched_class;
4098 }
4099 
4100 /*
4101  * Check the target process has a UID that matches the current process's:
4102  */
4103 static bool check_same_owner(struct task_struct *p)
4104 {
4105 	const struct cred *cred = current_cred(), *pcred;
4106 	bool match;
4107 
4108 	rcu_read_lock();
4109 	pcred = __task_cred(p);
4110 	match = (uid_eq(cred->euid, pcred->euid) ||
4111 		 uid_eq(cred->euid, pcred->uid));
4112 	rcu_read_unlock();
4113 	return match;
4114 }
4115 
4116 static int __sched_setscheduler(struct task_struct *p,
4117 				const struct sched_attr *attr,
4118 				bool user, bool pi)
4119 {
4120 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4121 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4122 	int retval, oldprio, oldpolicy = -1, queued, running;
4123 	int new_effective_prio, policy = attr->sched_policy;
4124 	const struct sched_class *prev_class;
4125 	struct rq_flags rf;
4126 	int reset_on_fork;
4127 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4128 	struct rq *rq;
4129 
4130 	/* The pi code expects interrupts enabled */
4131 	BUG_ON(pi && in_interrupt());
4132 recheck:
4133 	/* Double check policy once rq lock held: */
4134 	if (policy < 0) {
4135 		reset_on_fork = p->sched_reset_on_fork;
4136 		policy = oldpolicy = p->policy;
4137 	} else {
4138 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4139 
4140 		if (!valid_policy(policy))
4141 			return -EINVAL;
4142 	}
4143 
4144 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4145 		return -EINVAL;
4146 
4147 	/*
4148 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4149 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4150 	 * SCHED_BATCH and SCHED_IDLE is 0.
4151 	 */
4152 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4153 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4154 		return -EINVAL;
4155 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4156 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4157 		return -EINVAL;
4158 
4159 	/*
4160 	 * Allow unprivileged RT tasks to decrease priority:
4161 	 */
4162 	if (user && !capable(CAP_SYS_NICE)) {
4163 		if (fair_policy(policy)) {
4164 			if (attr->sched_nice < task_nice(p) &&
4165 			    !can_nice(p, attr->sched_nice))
4166 				return -EPERM;
4167 		}
4168 
4169 		if (rt_policy(policy)) {
4170 			unsigned long rlim_rtprio =
4171 					task_rlimit(p, RLIMIT_RTPRIO);
4172 
4173 			/* Can't set/change the rt policy: */
4174 			if (policy != p->policy && !rlim_rtprio)
4175 				return -EPERM;
4176 
4177 			/* Can't increase priority: */
4178 			if (attr->sched_priority > p->rt_priority &&
4179 			    attr->sched_priority > rlim_rtprio)
4180 				return -EPERM;
4181 		}
4182 
4183 		 /*
4184 		  * Can't set/change SCHED_DEADLINE policy at all for now
4185 		  * (safest behavior); in the future we would like to allow
4186 		  * unprivileged DL tasks to increase their relative deadline
4187 		  * or reduce their runtime (both ways reducing utilization)
4188 		  */
4189 		if (dl_policy(policy))
4190 			return -EPERM;
4191 
4192 		/*
4193 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4194 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4195 		 */
4196 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4197 			if (!can_nice(p, task_nice(p)))
4198 				return -EPERM;
4199 		}
4200 
4201 		/* Can't change other user's priorities: */
4202 		if (!check_same_owner(p))
4203 			return -EPERM;
4204 
4205 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4206 		if (p->sched_reset_on_fork && !reset_on_fork)
4207 			return -EPERM;
4208 	}
4209 
4210 	if (user) {
4211 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4212 			return -EINVAL;
4213 
4214 		retval = security_task_setscheduler(p);
4215 		if (retval)
4216 			return retval;
4217 	}
4218 
4219 	/*
4220 	 * Make sure no PI-waiters arrive (or leave) while we are
4221 	 * changing the priority of the task:
4222 	 *
4223 	 * To be able to change p->policy safely, the appropriate
4224 	 * runqueue lock must be held.
4225 	 */
4226 	rq = task_rq_lock(p, &rf);
4227 	update_rq_clock(rq);
4228 
4229 	/*
4230 	 * Changing the policy of the stop threads its a very bad idea:
4231 	 */
4232 	if (p == rq->stop) {
4233 		task_rq_unlock(rq, p, &rf);
4234 		return -EINVAL;
4235 	}
4236 
4237 	/*
4238 	 * If not changing anything there's no need to proceed further,
4239 	 * but store a possible modification of reset_on_fork.
4240 	 */
4241 	if (unlikely(policy == p->policy)) {
4242 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4243 			goto change;
4244 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4245 			goto change;
4246 		if (dl_policy(policy) && dl_param_changed(p, attr))
4247 			goto change;
4248 
4249 		p->sched_reset_on_fork = reset_on_fork;
4250 		task_rq_unlock(rq, p, &rf);
4251 		return 0;
4252 	}
4253 change:
4254 
4255 	if (user) {
4256 #ifdef CONFIG_RT_GROUP_SCHED
4257 		/*
4258 		 * Do not allow realtime tasks into groups that have no runtime
4259 		 * assigned.
4260 		 */
4261 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4262 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4263 				!task_group_is_autogroup(task_group(p))) {
4264 			task_rq_unlock(rq, p, &rf);
4265 			return -EPERM;
4266 		}
4267 #endif
4268 #ifdef CONFIG_SMP
4269 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4270 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4271 			cpumask_t *span = rq->rd->span;
4272 
4273 			/*
4274 			 * Don't allow tasks with an affinity mask smaller than
4275 			 * the entire root_domain to become SCHED_DEADLINE. We
4276 			 * will also fail if there's no bandwidth available.
4277 			 */
4278 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4279 			    rq->rd->dl_bw.bw == 0) {
4280 				task_rq_unlock(rq, p, &rf);
4281 				return -EPERM;
4282 			}
4283 		}
4284 #endif
4285 	}
4286 
4287 	/* Re-check policy now with rq lock held: */
4288 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4289 		policy = oldpolicy = -1;
4290 		task_rq_unlock(rq, p, &rf);
4291 		goto recheck;
4292 	}
4293 
4294 	/*
4295 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4296 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4297 	 * is available.
4298 	 */
4299 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4300 		task_rq_unlock(rq, p, &rf);
4301 		return -EBUSY;
4302 	}
4303 
4304 	p->sched_reset_on_fork = reset_on_fork;
4305 	oldprio = p->prio;
4306 
4307 	if (pi) {
4308 		/*
4309 		 * Take priority boosted tasks into account. If the new
4310 		 * effective priority is unchanged, we just store the new
4311 		 * normal parameters and do not touch the scheduler class and
4312 		 * the runqueue. This will be done when the task deboost
4313 		 * itself.
4314 		 */
4315 		new_effective_prio = rt_effective_prio(p, newprio);
4316 		if (new_effective_prio == oldprio)
4317 			queue_flags &= ~DEQUEUE_MOVE;
4318 	}
4319 
4320 	queued = task_on_rq_queued(p);
4321 	running = task_current(rq, p);
4322 	if (queued)
4323 		dequeue_task(rq, p, queue_flags);
4324 	if (running)
4325 		put_prev_task(rq, p);
4326 
4327 	prev_class = p->sched_class;
4328 	__setscheduler(rq, p, attr, pi);
4329 
4330 	if (queued) {
4331 		/*
4332 		 * We enqueue to tail when the priority of a task is
4333 		 * increased (user space view).
4334 		 */
4335 		if (oldprio < p->prio)
4336 			queue_flags |= ENQUEUE_HEAD;
4337 
4338 		enqueue_task(rq, p, queue_flags);
4339 	}
4340 	if (running)
4341 		set_curr_task(rq, p);
4342 
4343 	check_class_changed(rq, p, prev_class, oldprio);
4344 
4345 	/* Avoid rq from going away on us: */
4346 	preempt_disable();
4347 	task_rq_unlock(rq, p, &rf);
4348 
4349 	if (pi)
4350 		rt_mutex_adjust_pi(p);
4351 
4352 	/* Run balance callbacks after we've adjusted the PI chain: */
4353 	balance_callback(rq);
4354 	preempt_enable();
4355 
4356 	return 0;
4357 }
4358 
4359 static int _sched_setscheduler(struct task_struct *p, int policy,
4360 			       const struct sched_param *param, bool check)
4361 {
4362 	struct sched_attr attr = {
4363 		.sched_policy   = policy,
4364 		.sched_priority = param->sched_priority,
4365 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4366 	};
4367 
4368 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4369 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4370 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4371 		policy &= ~SCHED_RESET_ON_FORK;
4372 		attr.sched_policy = policy;
4373 	}
4374 
4375 	return __sched_setscheduler(p, &attr, check, true);
4376 }
4377 /**
4378  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4379  * @p: the task in question.
4380  * @policy: new policy.
4381  * @param: structure containing the new RT priority.
4382  *
4383  * Return: 0 on success. An error code otherwise.
4384  *
4385  * NOTE that the task may be already dead.
4386  */
4387 int sched_setscheduler(struct task_struct *p, int policy,
4388 		       const struct sched_param *param)
4389 {
4390 	return _sched_setscheduler(p, policy, param, true);
4391 }
4392 EXPORT_SYMBOL_GPL(sched_setscheduler);
4393 
4394 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4395 {
4396 	return __sched_setscheduler(p, attr, true, true);
4397 }
4398 EXPORT_SYMBOL_GPL(sched_setattr);
4399 
4400 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4401 {
4402 	return __sched_setscheduler(p, attr, false, true);
4403 }
4404 
4405 /**
4406  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4407  * @p: the task in question.
4408  * @policy: new policy.
4409  * @param: structure containing the new RT priority.
4410  *
4411  * Just like sched_setscheduler, only don't bother checking if the
4412  * current context has permission.  For example, this is needed in
4413  * stop_machine(): we create temporary high priority worker threads,
4414  * but our caller might not have that capability.
4415  *
4416  * Return: 0 on success. An error code otherwise.
4417  */
4418 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4419 			       const struct sched_param *param)
4420 {
4421 	return _sched_setscheduler(p, policy, param, false);
4422 }
4423 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4424 
4425 static int
4426 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4427 {
4428 	struct sched_param lparam;
4429 	struct task_struct *p;
4430 	int retval;
4431 
4432 	if (!param || pid < 0)
4433 		return -EINVAL;
4434 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4435 		return -EFAULT;
4436 
4437 	rcu_read_lock();
4438 	retval = -ESRCH;
4439 	p = find_process_by_pid(pid);
4440 	if (p != NULL)
4441 		retval = sched_setscheduler(p, policy, &lparam);
4442 	rcu_read_unlock();
4443 
4444 	return retval;
4445 }
4446 
4447 /*
4448  * Mimics kernel/events/core.c perf_copy_attr().
4449  */
4450 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4451 {
4452 	u32 size;
4453 	int ret;
4454 
4455 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4456 		return -EFAULT;
4457 
4458 	/* Zero the full structure, so that a short copy will be nice: */
4459 	memset(attr, 0, sizeof(*attr));
4460 
4461 	ret = get_user(size, &uattr->size);
4462 	if (ret)
4463 		return ret;
4464 
4465 	/* Bail out on silly large: */
4466 	if (size > PAGE_SIZE)
4467 		goto err_size;
4468 
4469 	/* ABI compatibility quirk: */
4470 	if (!size)
4471 		size = SCHED_ATTR_SIZE_VER0;
4472 
4473 	if (size < SCHED_ATTR_SIZE_VER0)
4474 		goto err_size;
4475 
4476 	/*
4477 	 * If we're handed a bigger struct than we know of,
4478 	 * ensure all the unknown bits are 0 - i.e. new
4479 	 * user-space does not rely on any kernel feature
4480 	 * extensions we dont know about yet.
4481 	 */
4482 	if (size > sizeof(*attr)) {
4483 		unsigned char __user *addr;
4484 		unsigned char __user *end;
4485 		unsigned char val;
4486 
4487 		addr = (void __user *)uattr + sizeof(*attr);
4488 		end  = (void __user *)uattr + size;
4489 
4490 		for (; addr < end; addr++) {
4491 			ret = get_user(val, addr);
4492 			if (ret)
4493 				return ret;
4494 			if (val)
4495 				goto err_size;
4496 		}
4497 		size = sizeof(*attr);
4498 	}
4499 
4500 	ret = copy_from_user(attr, uattr, size);
4501 	if (ret)
4502 		return -EFAULT;
4503 
4504 	/*
4505 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4506 	 * to be strict and return an error on out-of-bounds values?
4507 	 */
4508 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4509 
4510 	return 0;
4511 
4512 err_size:
4513 	put_user(sizeof(*attr), &uattr->size);
4514 	return -E2BIG;
4515 }
4516 
4517 /**
4518  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4519  * @pid: the pid in question.
4520  * @policy: new policy.
4521  * @param: structure containing the new RT priority.
4522  *
4523  * Return: 0 on success. An error code otherwise.
4524  */
4525 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4526 {
4527 	if (policy < 0)
4528 		return -EINVAL;
4529 
4530 	return do_sched_setscheduler(pid, policy, param);
4531 }
4532 
4533 /**
4534  * sys_sched_setparam - set/change the RT priority of a thread
4535  * @pid: the pid in question.
4536  * @param: structure containing the new RT priority.
4537  *
4538  * Return: 0 on success. An error code otherwise.
4539  */
4540 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4541 {
4542 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4543 }
4544 
4545 /**
4546  * sys_sched_setattr - same as above, but with extended sched_attr
4547  * @pid: the pid in question.
4548  * @uattr: structure containing the extended parameters.
4549  * @flags: for future extension.
4550  */
4551 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4552 			       unsigned int, flags)
4553 {
4554 	struct sched_attr attr;
4555 	struct task_struct *p;
4556 	int retval;
4557 
4558 	if (!uattr || pid < 0 || flags)
4559 		return -EINVAL;
4560 
4561 	retval = sched_copy_attr(uattr, &attr);
4562 	if (retval)
4563 		return retval;
4564 
4565 	if ((int)attr.sched_policy < 0)
4566 		return -EINVAL;
4567 
4568 	rcu_read_lock();
4569 	retval = -ESRCH;
4570 	p = find_process_by_pid(pid);
4571 	if (p != NULL)
4572 		retval = sched_setattr(p, &attr);
4573 	rcu_read_unlock();
4574 
4575 	return retval;
4576 }
4577 
4578 /**
4579  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4580  * @pid: the pid in question.
4581  *
4582  * Return: On success, the policy of the thread. Otherwise, a negative error
4583  * code.
4584  */
4585 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4586 {
4587 	struct task_struct *p;
4588 	int retval;
4589 
4590 	if (pid < 0)
4591 		return -EINVAL;
4592 
4593 	retval = -ESRCH;
4594 	rcu_read_lock();
4595 	p = find_process_by_pid(pid);
4596 	if (p) {
4597 		retval = security_task_getscheduler(p);
4598 		if (!retval)
4599 			retval = p->policy
4600 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4601 	}
4602 	rcu_read_unlock();
4603 	return retval;
4604 }
4605 
4606 /**
4607  * sys_sched_getparam - get the RT priority of a thread
4608  * @pid: the pid in question.
4609  * @param: structure containing the RT priority.
4610  *
4611  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4612  * code.
4613  */
4614 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4615 {
4616 	struct sched_param lp = { .sched_priority = 0 };
4617 	struct task_struct *p;
4618 	int retval;
4619 
4620 	if (!param || pid < 0)
4621 		return -EINVAL;
4622 
4623 	rcu_read_lock();
4624 	p = find_process_by_pid(pid);
4625 	retval = -ESRCH;
4626 	if (!p)
4627 		goto out_unlock;
4628 
4629 	retval = security_task_getscheduler(p);
4630 	if (retval)
4631 		goto out_unlock;
4632 
4633 	if (task_has_rt_policy(p))
4634 		lp.sched_priority = p->rt_priority;
4635 	rcu_read_unlock();
4636 
4637 	/*
4638 	 * This one might sleep, we cannot do it with a spinlock held ...
4639 	 */
4640 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4641 
4642 	return retval;
4643 
4644 out_unlock:
4645 	rcu_read_unlock();
4646 	return retval;
4647 }
4648 
4649 static int sched_read_attr(struct sched_attr __user *uattr,
4650 			   struct sched_attr *attr,
4651 			   unsigned int usize)
4652 {
4653 	int ret;
4654 
4655 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4656 		return -EFAULT;
4657 
4658 	/*
4659 	 * If we're handed a smaller struct than we know of,
4660 	 * ensure all the unknown bits are 0 - i.e. old
4661 	 * user-space does not get uncomplete information.
4662 	 */
4663 	if (usize < sizeof(*attr)) {
4664 		unsigned char *addr;
4665 		unsigned char *end;
4666 
4667 		addr = (void *)attr + usize;
4668 		end  = (void *)attr + sizeof(*attr);
4669 
4670 		for (; addr < end; addr++) {
4671 			if (*addr)
4672 				return -EFBIG;
4673 		}
4674 
4675 		attr->size = usize;
4676 	}
4677 
4678 	ret = copy_to_user(uattr, attr, attr->size);
4679 	if (ret)
4680 		return -EFAULT;
4681 
4682 	return 0;
4683 }
4684 
4685 /**
4686  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4687  * @pid: the pid in question.
4688  * @uattr: structure containing the extended parameters.
4689  * @size: sizeof(attr) for fwd/bwd comp.
4690  * @flags: for future extension.
4691  */
4692 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4693 		unsigned int, size, unsigned int, flags)
4694 {
4695 	struct sched_attr attr = {
4696 		.size = sizeof(struct sched_attr),
4697 	};
4698 	struct task_struct *p;
4699 	int retval;
4700 
4701 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4702 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4703 		return -EINVAL;
4704 
4705 	rcu_read_lock();
4706 	p = find_process_by_pid(pid);
4707 	retval = -ESRCH;
4708 	if (!p)
4709 		goto out_unlock;
4710 
4711 	retval = security_task_getscheduler(p);
4712 	if (retval)
4713 		goto out_unlock;
4714 
4715 	attr.sched_policy = p->policy;
4716 	if (p->sched_reset_on_fork)
4717 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4718 	if (task_has_dl_policy(p))
4719 		__getparam_dl(p, &attr);
4720 	else if (task_has_rt_policy(p))
4721 		attr.sched_priority = p->rt_priority;
4722 	else
4723 		attr.sched_nice = task_nice(p);
4724 
4725 	rcu_read_unlock();
4726 
4727 	retval = sched_read_attr(uattr, &attr, size);
4728 	return retval;
4729 
4730 out_unlock:
4731 	rcu_read_unlock();
4732 	return retval;
4733 }
4734 
4735 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4736 {
4737 	cpumask_var_t cpus_allowed, new_mask;
4738 	struct task_struct *p;
4739 	int retval;
4740 
4741 	rcu_read_lock();
4742 
4743 	p = find_process_by_pid(pid);
4744 	if (!p) {
4745 		rcu_read_unlock();
4746 		return -ESRCH;
4747 	}
4748 
4749 	/* Prevent p going away */
4750 	get_task_struct(p);
4751 	rcu_read_unlock();
4752 
4753 	if (p->flags & PF_NO_SETAFFINITY) {
4754 		retval = -EINVAL;
4755 		goto out_put_task;
4756 	}
4757 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4758 		retval = -ENOMEM;
4759 		goto out_put_task;
4760 	}
4761 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4762 		retval = -ENOMEM;
4763 		goto out_free_cpus_allowed;
4764 	}
4765 	retval = -EPERM;
4766 	if (!check_same_owner(p)) {
4767 		rcu_read_lock();
4768 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4769 			rcu_read_unlock();
4770 			goto out_free_new_mask;
4771 		}
4772 		rcu_read_unlock();
4773 	}
4774 
4775 	retval = security_task_setscheduler(p);
4776 	if (retval)
4777 		goto out_free_new_mask;
4778 
4779 
4780 	cpuset_cpus_allowed(p, cpus_allowed);
4781 	cpumask_and(new_mask, in_mask, cpus_allowed);
4782 
4783 	/*
4784 	 * Since bandwidth control happens on root_domain basis,
4785 	 * if admission test is enabled, we only admit -deadline
4786 	 * tasks allowed to run on all the CPUs in the task's
4787 	 * root_domain.
4788 	 */
4789 #ifdef CONFIG_SMP
4790 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4791 		rcu_read_lock();
4792 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4793 			retval = -EBUSY;
4794 			rcu_read_unlock();
4795 			goto out_free_new_mask;
4796 		}
4797 		rcu_read_unlock();
4798 	}
4799 #endif
4800 again:
4801 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4802 
4803 	if (!retval) {
4804 		cpuset_cpus_allowed(p, cpus_allowed);
4805 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4806 			/*
4807 			 * We must have raced with a concurrent cpuset
4808 			 * update. Just reset the cpus_allowed to the
4809 			 * cpuset's cpus_allowed
4810 			 */
4811 			cpumask_copy(new_mask, cpus_allowed);
4812 			goto again;
4813 		}
4814 	}
4815 out_free_new_mask:
4816 	free_cpumask_var(new_mask);
4817 out_free_cpus_allowed:
4818 	free_cpumask_var(cpus_allowed);
4819 out_put_task:
4820 	put_task_struct(p);
4821 	return retval;
4822 }
4823 
4824 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4825 			     struct cpumask *new_mask)
4826 {
4827 	if (len < cpumask_size())
4828 		cpumask_clear(new_mask);
4829 	else if (len > cpumask_size())
4830 		len = cpumask_size();
4831 
4832 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4833 }
4834 
4835 /**
4836  * sys_sched_setaffinity - set the CPU affinity of a process
4837  * @pid: pid of the process
4838  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4839  * @user_mask_ptr: user-space pointer to the new CPU mask
4840  *
4841  * Return: 0 on success. An error code otherwise.
4842  */
4843 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4844 		unsigned long __user *, user_mask_ptr)
4845 {
4846 	cpumask_var_t new_mask;
4847 	int retval;
4848 
4849 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4850 		return -ENOMEM;
4851 
4852 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4853 	if (retval == 0)
4854 		retval = sched_setaffinity(pid, new_mask);
4855 	free_cpumask_var(new_mask);
4856 	return retval;
4857 }
4858 
4859 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4860 {
4861 	struct task_struct *p;
4862 	unsigned long flags;
4863 	int retval;
4864 
4865 	rcu_read_lock();
4866 
4867 	retval = -ESRCH;
4868 	p = find_process_by_pid(pid);
4869 	if (!p)
4870 		goto out_unlock;
4871 
4872 	retval = security_task_getscheduler(p);
4873 	if (retval)
4874 		goto out_unlock;
4875 
4876 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4877 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4878 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4879 
4880 out_unlock:
4881 	rcu_read_unlock();
4882 
4883 	return retval;
4884 }
4885 
4886 /**
4887  * sys_sched_getaffinity - get the CPU affinity of a process
4888  * @pid: pid of the process
4889  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4890  * @user_mask_ptr: user-space pointer to hold the current CPU mask
4891  *
4892  * Return: size of CPU mask copied to user_mask_ptr on success. An
4893  * error code otherwise.
4894  */
4895 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4896 		unsigned long __user *, user_mask_ptr)
4897 {
4898 	int ret;
4899 	cpumask_var_t mask;
4900 
4901 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4902 		return -EINVAL;
4903 	if (len & (sizeof(unsigned long)-1))
4904 		return -EINVAL;
4905 
4906 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4907 		return -ENOMEM;
4908 
4909 	ret = sched_getaffinity(pid, mask);
4910 	if (ret == 0) {
4911 		unsigned int retlen = min(len, cpumask_size());
4912 
4913 		if (copy_to_user(user_mask_ptr, mask, retlen))
4914 			ret = -EFAULT;
4915 		else
4916 			ret = retlen;
4917 	}
4918 	free_cpumask_var(mask);
4919 
4920 	return ret;
4921 }
4922 
4923 /**
4924  * sys_sched_yield - yield the current processor to other threads.
4925  *
4926  * This function yields the current CPU to other tasks. If there are no
4927  * other threads running on this CPU then this function will return.
4928  *
4929  * Return: 0.
4930  */
4931 static void do_sched_yield(void)
4932 {
4933 	struct rq_flags rf;
4934 	struct rq *rq;
4935 
4936 	local_irq_disable();
4937 	rq = this_rq();
4938 	rq_lock(rq, &rf);
4939 
4940 	schedstat_inc(rq->yld_count);
4941 	current->sched_class->yield_task(rq);
4942 
4943 	/*
4944 	 * Since we are going to call schedule() anyway, there's
4945 	 * no need to preempt or enable interrupts:
4946 	 */
4947 	preempt_disable();
4948 	rq_unlock(rq, &rf);
4949 	sched_preempt_enable_no_resched();
4950 
4951 	schedule();
4952 }
4953 
4954 SYSCALL_DEFINE0(sched_yield)
4955 {
4956 	do_sched_yield();
4957 	return 0;
4958 }
4959 
4960 #ifndef CONFIG_PREEMPT
4961 int __sched _cond_resched(void)
4962 {
4963 	if (should_resched(0)) {
4964 		preempt_schedule_common();
4965 		return 1;
4966 	}
4967 	rcu_all_qs();
4968 	return 0;
4969 }
4970 EXPORT_SYMBOL(_cond_resched);
4971 #endif
4972 
4973 /*
4974  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4975  * call schedule, and on return reacquire the lock.
4976  *
4977  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4978  * operations here to prevent schedule() from being called twice (once via
4979  * spin_unlock(), once by hand).
4980  */
4981 int __cond_resched_lock(spinlock_t *lock)
4982 {
4983 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4984 	int ret = 0;
4985 
4986 	lockdep_assert_held(lock);
4987 
4988 	if (spin_needbreak(lock) || resched) {
4989 		spin_unlock(lock);
4990 		if (resched)
4991 			preempt_schedule_common();
4992 		else
4993 			cpu_relax();
4994 		ret = 1;
4995 		spin_lock(lock);
4996 	}
4997 	return ret;
4998 }
4999 EXPORT_SYMBOL(__cond_resched_lock);
5000 
5001 /**
5002  * yield - yield the current processor to other threads.
5003  *
5004  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5005  *
5006  * The scheduler is at all times free to pick the calling task as the most
5007  * eligible task to run, if removing the yield() call from your code breaks
5008  * it, its already broken.
5009  *
5010  * Typical broken usage is:
5011  *
5012  * while (!event)
5013  *	yield();
5014  *
5015  * where one assumes that yield() will let 'the other' process run that will
5016  * make event true. If the current task is a SCHED_FIFO task that will never
5017  * happen. Never use yield() as a progress guarantee!!
5018  *
5019  * If you want to use yield() to wait for something, use wait_event().
5020  * If you want to use yield() to be 'nice' for others, use cond_resched().
5021  * If you still want to use yield(), do not!
5022  */
5023 void __sched yield(void)
5024 {
5025 	set_current_state(TASK_RUNNING);
5026 	do_sched_yield();
5027 }
5028 EXPORT_SYMBOL(yield);
5029 
5030 /**
5031  * yield_to - yield the current processor to another thread in
5032  * your thread group, or accelerate that thread toward the
5033  * processor it's on.
5034  * @p: target task
5035  * @preempt: whether task preemption is allowed or not
5036  *
5037  * It's the caller's job to ensure that the target task struct
5038  * can't go away on us before we can do any checks.
5039  *
5040  * Return:
5041  *	true (>0) if we indeed boosted the target task.
5042  *	false (0) if we failed to boost the target.
5043  *	-ESRCH if there's no task to yield to.
5044  */
5045 int __sched yield_to(struct task_struct *p, bool preempt)
5046 {
5047 	struct task_struct *curr = current;
5048 	struct rq *rq, *p_rq;
5049 	unsigned long flags;
5050 	int yielded = 0;
5051 
5052 	local_irq_save(flags);
5053 	rq = this_rq();
5054 
5055 again:
5056 	p_rq = task_rq(p);
5057 	/*
5058 	 * If we're the only runnable task on the rq and target rq also
5059 	 * has only one task, there's absolutely no point in yielding.
5060 	 */
5061 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5062 		yielded = -ESRCH;
5063 		goto out_irq;
5064 	}
5065 
5066 	double_rq_lock(rq, p_rq);
5067 	if (task_rq(p) != p_rq) {
5068 		double_rq_unlock(rq, p_rq);
5069 		goto again;
5070 	}
5071 
5072 	if (!curr->sched_class->yield_to_task)
5073 		goto out_unlock;
5074 
5075 	if (curr->sched_class != p->sched_class)
5076 		goto out_unlock;
5077 
5078 	if (task_running(p_rq, p) || p->state)
5079 		goto out_unlock;
5080 
5081 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5082 	if (yielded) {
5083 		schedstat_inc(rq->yld_count);
5084 		/*
5085 		 * Make p's CPU reschedule; pick_next_entity takes care of
5086 		 * fairness.
5087 		 */
5088 		if (preempt && rq != p_rq)
5089 			resched_curr(p_rq);
5090 	}
5091 
5092 out_unlock:
5093 	double_rq_unlock(rq, p_rq);
5094 out_irq:
5095 	local_irq_restore(flags);
5096 
5097 	if (yielded > 0)
5098 		schedule();
5099 
5100 	return yielded;
5101 }
5102 EXPORT_SYMBOL_GPL(yield_to);
5103 
5104 int io_schedule_prepare(void)
5105 {
5106 	int old_iowait = current->in_iowait;
5107 
5108 	current->in_iowait = 1;
5109 	blk_schedule_flush_plug(current);
5110 
5111 	return old_iowait;
5112 }
5113 
5114 void io_schedule_finish(int token)
5115 {
5116 	current->in_iowait = token;
5117 }
5118 
5119 /*
5120  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5121  * that process accounting knows that this is a task in IO wait state.
5122  */
5123 long __sched io_schedule_timeout(long timeout)
5124 {
5125 	int token;
5126 	long ret;
5127 
5128 	token = io_schedule_prepare();
5129 	ret = schedule_timeout(timeout);
5130 	io_schedule_finish(token);
5131 
5132 	return ret;
5133 }
5134 EXPORT_SYMBOL(io_schedule_timeout);
5135 
5136 void io_schedule(void)
5137 {
5138 	int token;
5139 
5140 	token = io_schedule_prepare();
5141 	schedule();
5142 	io_schedule_finish(token);
5143 }
5144 EXPORT_SYMBOL(io_schedule);
5145 
5146 /**
5147  * sys_sched_get_priority_max - return maximum RT priority.
5148  * @policy: scheduling class.
5149  *
5150  * Return: On success, this syscall returns the maximum
5151  * rt_priority that can be used by a given scheduling class.
5152  * On failure, a negative error code is returned.
5153  */
5154 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5155 {
5156 	int ret = -EINVAL;
5157 
5158 	switch (policy) {
5159 	case SCHED_FIFO:
5160 	case SCHED_RR:
5161 		ret = MAX_USER_RT_PRIO-1;
5162 		break;
5163 	case SCHED_DEADLINE:
5164 	case SCHED_NORMAL:
5165 	case SCHED_BATCH:
5166 	case SCHED_IDLE:
5167 		ret = 0;
5168 		break;
5169 	}
5170 	return ret;
5171 }
5172 
5173 /**
5174  * sys_sched_get_priority_min - return minimum RT priority.
5175  * @policy: scheduling class.
5176  *
5177  * Return: On success, this syscall returns the minimum
5178  * rt_priority that can be used by a given scheduling class.
5179  * On failure, a negative error code is returned.
5180  */
5181 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5182 {
5183 	int ret = -EINVAL;
5184 
5185 	switch (policy) {
5186 	case SCHED_FIFO:
5187 	case SCHED_RR:
5188 		ret = 1;
5189 		break;
5190 	case SCHED_DEADLINE:
5191 	case SCHED_NORMAL:
5192 	case SCHED_BATCH:
5193 	case SCHED_IDLE:
5194 		ret = 0;
5195 	}
5196 	return ret;
5197 }
5198 
5199 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5200 {
5201 	struct task_struct *p;
5202 	unsigned int time_slice;
5203 	struct rq_flags rf;
5204 	struct rq *rq;
5205 	int retval;
5206 
5207 	if (pid < 0)
5208 		return -EINVAL;
5209 
5210 	retval = -ESRCH;
5211 	rcu_read_lock();
5212 	p = find_process_by_pid(pid);
5213 	if (!p)
5214 		goto out_unlock;
5215 
5216 	retval = security_task_getscheduler(p);
5217 	if (retval)
5218 		goto out_unlock;
5219 
5220 	rq = task_rq_lock(p, &rf);
5221 	time_slice = 0;
5222 	if (p->sched_class->get_rr_interval)
5223 		time_slice = p->sched_class->get_rr_interval(rq, p);
5224 	task_rq_unlock(rq, p, &rf);
5225 
5226 	rcu_read_unlock();
5227 	jiffies_to_timespec64(time_slice, t);
5228 	return 0;
5229 
5230 out_unlock:
5231 	rcu_read_unlock();
5232 	return retval;
5233 }
5234 
5235 /**
5236  * sys_sched_rr_get_interval - return the default timeslice of a process.
5237  * @pid: pid of the process.
5238  * @interval: userspace pointer to the timeslice value.
5239  *
5240  * this syscall writes the default timeslice value of a given process
5241  * into the user-space timespec buffer. A value of '0' means infinity.
5242  *
5243  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5244  * an error code.
5245  */
5246 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5247 		struct __kernel_timespec __user *, interval)
5248 {
5249 	struct timespec64 t;
5250 	int retval = sched_rr_get_interval(pid, &t);
5251 
5252 	if (retval == 0)
5253 		retval = put_timespec64(&t, interval);
5254 
5255 	return retval;
5256 }
5257 
5258 #ifdef CONFIG_COMPAT_32BIT_TIME
5259 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5260 		       compat_pid_t, pid,
5261 		       struct old_timespec32 __user *, interval)
5262 {
5263 	struct timespec64 t;
5264 	int retval = sched_rr_get_interval(pid, &t);
5265 
5266 	if (retval == 0)
5267 		retval = put_old_timespec32(&t, interval);
5268 	return retval;
5269 }
5270 #endif
5271 
5272 void sched_show_task(struct task_struct *p)
5273 {
5274 	unsigned long free = 0;
5275 	int ppid;
5276 
5277 	if (!try_get_task_stack(p))
5278 		return;
5279 
5280 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5281 
5282 	if (p->state == TASK_RUNNING)
5283 		printk(KERN_CONT "  running task    ");
5284 #ifdef CONFIG_DEBUG_STACK_USAGE
5285 	free = stack_not_used(p);
5286 #endif
5287 	ppid = 0;
5288 	rcu_read_lock();
5289 	if (pid_alive(p))
5290 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5291 	rcu_read_unlock();
5292 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5293 		task_pid_nr(p), ppid,
5294 		(unsigned long)task_thread_info(p)->flags);
5295 
5296 	print_worker_info(KERN_INFO, p);
5297 	show_stack(p, NULL);
5298 	put_task_stack(p);
5299 }
5300 EXPORT_SYMBOL_GPL(sched_show_task);
5301 
5302 static inline bool
5303 state_filter_match(unsigned long state_filter, struct task_struct *p)
5304 {
5305 	/* no filter, everything matches */
5306 	if (!state_filter)
5307 		return true;
5308 
5309 	/* filter, but doesn't match */
5310 	if (!(p->state & state_filter))
5311 		return false;
5312 
5313 	/*
5314 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5315 	 * TASK_KILLABLE).
5316 	 */
5317 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5318 		return false;
5319 
5320 	return true;
5321 }
5322 
5323 
5324 void show_state_filter(unsigned long state_filter)
5325 {
5326 	struct task_struct *g, *p;
5327 
5328 #if BITS_PER_LONG == 32
5329 	printk(KERN_INFO
5330 		"  task                PC stack   pid father\n");
5331 #else
5332 	printk(KERN_INFO
5333 		"  task                        PC stack   pid father\n");
5334 #endif
5335 	rcu_read_lock();
5336 	for_each_process_thread(g, p) {
5337 		/*
5338 		 * reset the NMI-timeout, listing all files on a slow
5339 		 * console might take a lot of time:
5340 		 * Also, reset softlockup watchdogs on all CPUs, because
5341 		 * another CPU might be blocked waiting for us to process
5342 		 * an IPI.
5343 		 */
5344 		touch_nmi_watchdog();
5345 		touch_all_softlockup_watchdogs();
5346 		if (state_filter_match(state_filter, p))
5347 			sched_show_task(p);
5348 	}
5349 
5350 #ifdef CONFIG_SCHED_DEBUG
5351 	if (!state_filter)
5352 		sysrq_sched_debug_show();
5353 #endif
5354 	rcu_read_unlock();
5355 	/*
5356 	 * Only show locks if all tasks are dumped:
5357 	 */
5358 	if (!state_filter)
5359 		debug_show_all_locks();
5360 }
5361 
5362 /**
5363  * init_idle - set up an idle thread for a given CPU
5364  * @idle: task in question
5365  * @cpu: CPU the idle task belongs to
5366  *
5367  * NOTE: this function does not set the idle thread's NEED_RESCHED
5368  * flag, to make booting more robust.
5369  */
5370 void init_idle(struct task_struct *idle, int cpu)
5371 {
5372 	struct rq *rq = cpu_rq(cpu);
5373 	unsigned long flags;
5374 
5375 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5376 	raw_spin_lock(&rq->lock);
5377 
5378 	__sched_fork(0, idle);
5379 	idle->state = TASK_RUNNING;
5380 	idle->se.exec_start = sched_clock();
5381 	idle->flags |= PF_IDLE;
5382 
5383 	kasan_unpoison_task_stack(idle);
5384 
5385 #ifdef CONFIG_SMP
5386 	/*
5387 	 * Its possible that init_idle() gets called multiple times on a task,
5388 	 * in that case do_set_cpus_allowed() will not do the right thing.
5389 	 *
5390 	 * And since this is boot we can forgo the serialization.
5391 	 */
5392 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5393 #endif
5394 	/*
5395 	 * We're having a chicken and egg problem, even though we are
5396 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5397 	 * lockdep check in task_group() will fail.
5398 	 *
5399 	 * Similar case to sched_fork(). / Alternatively we could
5400 	 * use task_rq_lock() here and obtain the other rq->lock.
5401 	 *
5402 	 * Silence PROVE_RCU
5403 	 */
5404 	rcu_read_lock();
5405 	__set_task_cpu(idle, cpu);
5406 	rcu_read_unlock();
5407 
5408 	rq->curr = rq->idle = idle;
5409 	idle->on_rq = TASK_ON_RQ_QUEUED;
5410 #ifdef CONFIG_SMP
5411 	idle->on_cpu = 1;
5412 #endif
5413 	raw_spin_unlock(&rq->lock);
5414 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5415 
5416 	/* Set the preempt count _outside_ the spinlocks! */
5417 	init_idle_preempt_count(idle, cpu);
5418 
5419 	/*
5420 	 * The idle tasks have their own, simple scheduling class:
5421 	 */
5422 	idle->sched_class = &idle_sched_class;
5423 	ftrace_graph_init_idle_task(idle, cpu);
5424 	vtime_init_idle(idle, cpu);
5425 #ifdef CONFIG_SMP
5426 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5427 #endif
5428 }
5429 
5430 #ifdef CONFIG_SMP
5431 
5432 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5433 			      const struct cpumask *trial)
5434 {
5435 	int ret = 1;
5436 
5437 	if (!cpumask_weight(cur))
5438 		return ret;
5439 
5440 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5441 
5442 	return ret;
5443 }
5444 
5445 int task_can_attach(struct task_struct *p,
5446 		    const struct cpumask *cs_cpus_allowed)
5447 {
5448 	int ret = 0;
5449 
5450 	/*
5451 	 * Kthreads which disallow setaffinity shouldn't be moved
5452 	 * to a new cpuset; we don't want to change their CPU
5453 	 * affinity and isolating such threads by their set of
5454 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5455 	 * applicable for such threads.  This prevents checking for
5456 	 * success of set_cpus_allowed_ptr() on all attached tasks
5457 	 * before cpus_allowed may be changed.
5458 	 */
5459 	if (p->flags & PF_NO_SETAFFINITY) {
5460 		ret = -EINVAL;
5461 		goto out;
5462 	}
5463 
5464 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5465 					      cs_cpus_allowed))
5466 		ret = dl_task_can_attach(p, cs_cpus_allowed);
5467 
5468 out:
5469 	return ret;
5470 }
5471 
5472 bool sched_smp_initialized __read_mostly;
5473 
5474 #ifdef CONFIG_NUMA_BALANCING
5475 /* Migrate current task p to target_cpu */
5476 int migrate_task_to(struct task_struct *p, int target_cpu)
5477 {
5478 	struct migration_arg arg = { p, target_cpu };
5479 	int curr_cpu = task_cpu(p);
5480 
5481 	if (curr_cpu == target_cpu)
5482 		return 0;
5483 
5484 	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5485 		return -EINVAL;
5486 
5487 	/* TODO: This is not properly updating schedstats */
5488 
5489 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5490 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5491 }
5492 
5493 /*
5494  * Requeue a task on a given node and accurately track the number of NUMA
5495  * tasks on the runqueues
5496  */
5497 void sched_setnuma(struct task_struct *p, int nid)
5498 {
5499 	bool queued, running;
5500 	struct rq_flags rf;
5501 	struct rq *rq;
5502 
5503 	rq = task_rq_lock(p, &rf);
5504 	queued = task_on_rq_queued(p);
5505 	running = task_current(rq, p);
5506 
5507 	if (queued)
5508 		dequeue_task(rq, p, DEQUEUE_SAVE);
5509 	if (running)
5510 		put_prev_task(rq, p);
5511 
5512 	p->numa_preferred_nid = nid;
5513 
5514 	if (queued)
5515 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5516 	if (running)
5517 		set_curr_task(rq, p);
5518 	task_rq_unlock(rq, p, &rf);
5519 }
5520 #endif /* CONFIG_NUMA_BALANCING */
5521 
5522 #ifdef CONFIG_HOTPLUG_CPU
5523 /*
5524  * Ensure that the idle task is using init_mm right before its CPU goes
5525  * offline.
5526  */
5527 void idle_task_exit(void)
5528 {
5529 	struct mm_struct *mm = current->active_mm;
5530 
5531 	BUG_ON(cpu_online(smp_processor_id()));
5532 
5533 	if (mm != &init_mm) {
5534 		switch_mm(mm, &init_mm, current);
5535 		current->active_mm = &init_mm;
5536 		finish_arch_post_lock_switch();
5537 	}
5538 	mmdrop(mm);
5539 }
5540 
5541 /*
5542  * Since this CPU is going 'away' for a while, fold any nr_active delta
5543  * we might have. Assumes we're called after migrate_tasks() so that the
5544  * nr_active count is stable. We need to take the teardown thread which
5545  * is calling this into account, so we hand in adjust = 1 to the load
5546  * calculation.
5547  *
5548  * Also see the comment "Global load-average calculations".
5549  */
5550 static void calc_load_migrate(struct rq *rq)
5551 {
5552 	long delta = calc_load_fold_active(rq, 1);
5553 	if (delta)
5554 		atomic_long_add(delta, &calc_load_tasks);
5555 }
5556 
5557 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5558 {
5559 }
5560 
5561 static const struct sched_class fake_sched_class = {
5562 	.put_prev_task = put_prev_task_fake,
5563 };
5564 
5565 static struct task_struct fake_task = {
5566 	/*
5567 	 * Avoid pull_{rt,dl}_task()
5568 	 */
5569 	.prio = MAX_PRIO + 1,
5570 	.sched_class = &fake_sched_class,
5571 };
5572 
5573 /*
5574  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5575  * try_to_wake_up()->select_task_rq().
5576  *
5577  * Called with rq->lock held even though we'er in stop_machine() and
5578  * there's no concurrency possible, we hold the required locks anyway
5579  * because of lock validation efforts.
5580  */
5581 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5582 {
5583 	struct rq *rq = dead_rq;
5584 	struct task_struct *next, *stop = rq->stop;
5585 	struct rq_flags orf = *rf;
5586 	int dest_cpu;
5587 
5588 	/*
5589 	 * Fudge the rq selection such that the below task selection loop
5590 	 * doesn't get stuck on the currently eligible stop task.
5591 	 *
5592 	 * We're currently inside stop_machine() and the rq is either stuck
5593 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5594 	 * either way we should never end up calling schedule() until we're
5595 	 * done here.
5596 	 */
5597 	rq->stop = NULL;
5598 
5599 	/*
5600 	 * put_prev_task() and pick_next_task() sched
5601 	 * class method both need to have an up-to-date
5602 	 * value of rq->clock[_task]
5603 	 */
5604 	update_rq_clock(rq);
5605 
5606 	for (;;) {
5607 		/*
5608 		 * There's this thread running, bail when that's the only
5609 		 * remaining thread:
5610 		 */
5611 		if (rq->nr_running == 1)
5612 			break;
5613 
5614 		/*
5615 		 * pick_next_task() assumes pinned rq->lock:
5616 		 */
5617 		next = pick_next_task(rq, &fake_task, rf);
5618 		BUG_ON(!next);
5619 		put_prev_task(rq, next);
5620 
5621 		/*
5622 		 * Rules for changing task_struct::cpus_allowed are holding
5623 		 * both pi_lock and rq->lock, such that holding either
5624 		 * stabilizes the mask.
5625 		 *
5626 		 * Drop rq->lock is not quite as disastrous as it usually is
5627 		 * because !cpu_active at this point, which means load-balance
5628 		 * will not interfere. Also, stop-machine.
5629 		 */
5630 		rq_unlock(rq, rf);
5631 		raw_spin_lock(&next->pi_lock);
5632 		rq_relock(rq, rf);
5633 
5634 		/*
5635 		 * Since we're inside stop-machine, _nothing_ should have
5636 		 * changed the task, WARN if weird stuff happened, because in
5637 		 * that case the above rq->lock drop is a fail too.
5638 		 */
5639 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5640 			raw_spin_unlock(&next->pi_lock);
5641 			continue;
5642 		}
5643 
5644 		/* Find suitable destination for @next, with force if needed. */
5645 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5646 		rq = __migrate_task(rq, rf, next, dest_cpu);
5647 		if (rq != dead_rq) {
5648 			rq_unlock(rq, rf);
5649 			rq = dead_rq;
5650 			*rf = orf;
5651 			rq_relock(rq, rf);
5652 		}
5653 		raw_spin_unlock(&next->pi_lock);
5654 	}
5655 
5656 	rq->stop = stop;
5657 }
5658 #endif /* CONFIG_HOTPLUG_CPU */
5659 
5660 void set_rq_online(struct rq *rq)
5661 {
5662 	if (!rq->online) {
5663 		const struct sched_class *class;
5664 
5665 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5666 		rq->online = 1;
5667 
5668 		for_each_class(class) {
5669 			if (class->rq_online)
5670 				class->rq_online(rq);
5671 		}
5672 	}
5673 }
5674 
5675 void set_rq_offline(struct rq *rq)
5676 {
5677 	if (rq->online) {
5678 		const struct sched_class *class;
5679 
5680 		for_each_class(class) {
5681 			if (class->rq_offline)
5682 				class->rq_offline(rq);
5683 		}
5684 
5685 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5686 		rq->online = 0;
5687 	}
5688 }
5689 
5690 /*
5691  * used to mark begin/end of suspend/resume:
5692  */
5693 static int num_cpus_frozen;
5694 
5695 /*
5696  * Update cpusets according to cpu_active mask.  If cpusets are
5697  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5698  * around partition_sched_domains().
5699  *
5700  * If we come here as part of a suspend/resume, don't touch cpusets because we
5701  * want to restore it back to its original state upon resume anyway.
5702  */
5703 static void cpuset_cpu_active(void)
5704 {
5705 	if (cpuhp_tasks_frozen) {
5706 		/*
5707 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
5708 		 * resume sequence. As long as this is not the last online
5709 		 * operation in the resume sequence, just build a single sched
5710 		 * domain, ignoring cpusets.
5711 		 */
5712 		partition_sched_domains(1, NULL, NULL);
5713 		if (--num_cpus_frozen)
5714 			return;
5715 		/*
5716 		 * This is the last CPU online operation. So fall through and
5717 		 * restore the original sched domains by considering the
5718 		 * cpuset configurations.
5719 		 */
5720 		cpuset_force_rebuild();
5721 	}
5722 	cpuset_update_active_cpus();
5723 }
5724 
5725 static int cpuset_cpu_inactive(unsigned int cpu)
5726 {
5727 	if (!cpuhp_tasks_frozen) {
5728 		if (dl_cpu_busy(cpu))
5729 			return -EBUSY;
5730 		cpuset_update_active_cpus();
5731 	} else {
5732 		num_cpus_frozen++;
5733 		partition_sched_domains(1, NULL, NULL);
5734 	}
5735 	return 0;
5736 }
5737 
5738 int sched_cpu_activate(unsigned int cpu)
5739 {
5740 	struct rq *rq = cpu_rq(cpu);
5741 	struct rq_flags rf;
5742 
5743 #ifdef CONFIG_SCHED_SMT
5744 	/*
5745 	 * The sched_smt_present static key needs to be evaluated on every
5746 	 * hotplug event because at boot time SMT might be disabled when
5747 	 * the number of booted CPUs is limited.
5748 	 *
5749 	 * If then later a sibling gets hotplugged, then the key would stay
5750 	 * off and SMT scheduling would never be functional.
5751 	 */
5752 	if (cpumask_weight(cpu_smt_mask(cpu)) > 1)
5753 		static_branch_enable_cpuslocked(&sched_smt_present);
5754 #endif
5755 	set_cpu_active(cpu, true);
5756 
5757 	if (sched_smp_initialized) {
5758 		sched_domains_numa_masks_set(cpu);
5759 		cpuset_cpu_active();
5760 	}
5761 
5762 	/*
5763 	 * Put the rq online, if not already. This happens:
5764 	 *
5765 	 * 1) In the early boot process, because we build the real domains
5766 	 *    after all CPUs have been brought up.
5767 	 *
5768 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5769 	 *    domains.
5770 	 */
5771 	rq_lock_irqsave(rq, &rf);
5772 	if (rq->rd) {
5773 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5774 		set_rq_online(rq);
5775 	}
5776 	rq_unlock_irqrestore(rq, &rf);
5777 
5778 	update_max_interval();
5779 
5780 	return 0;
5781 }
5782 
5783 int sched_cpu_deactivate(unsigned int cpu)
5784 {
5785 	int ret;
5786 
5787 	set_cpu_active(cpu, false);
5788 	/*
5789 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5790 	 * users of this state to go away such that all new such users will
5791 	 * observe it.
5792 	 *
5793 	 * Do sync before park smpboot threads to take care the rcu boost case.
5794 	 */
5795 	synchronize_rcu_mult(call_rcu, call_rcu_sched);
5796 
5797 	if (!sched_smp_initialized)
5798 		return 0;
5799 
5800 	ret = cpuset_cpu_inactive(cpu);
5801 	if (ret) {
5802 		set_cpu_active(cpu, true);
5803 		return ret;
5804 	}
5805 	sched_domains_numa_masks_clear(cpu);
5806 	return 0;
5807 }
5808 
5809 static void sched_rq_cpu_starting(unsigned int cpu)
5810 {
5811 	struct rq *rq = cpu_rq(cpu);
5812 
5813 	rq->calc_load_update = calc_load_update;
5814 	update_max_interval();
5815 }
5816 
5817 int sched_cpu_starting(unsigned int cpu)
5818 {
5819 	sched_rq_cpu_starting(cpu);
5820 	sched_tick_start(cpu);
5821 	return 0;
5822 }
5823 
5824 #ifdef CONFIG_HOTPLUG_CPU
5825 int sched_cpu_dying(unsigned int cpu)
5826 {
5827 	struct rq *rq = cpu_rq(cpu);
5828 	struct rq_flags rf;
5829 
5830 	/* Handle pending wakeups and then migrate everything off */
5831 	sched_ttwu_pending();
5832 	sched_tick_stop(cpu);
5833 
5834 	rq_lock_irqsave(rq, &rf);
5835 	if (rq->rd) {
5836 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5837 		set_rq_offline(rq);
5838 	}
5839 	migrate_tasks(rq, &rf);
5840 	BUG_ON(rq->nr_running != 1);
5841 	rq_unlock_irqrestore(rq, &rf);
5842 
5843 	calc_load_migrate(rq);
5844 	update_max_interval();
5845 	nohz_balance_exit_idle(rq);
5846 	hrtick_clear(rq);
5847 	return 0;
5848 }
5849 #endif
5850 
5851 void __init sched_init_smp(void)
5852 {
5853 	sched_init_numa();
5854 
5855 	/*
5856 	 * There's no userspace yet to cause hotplug operations; hence all the
5857 	 * CPU masks are stable and all blatant races in the below code cannot
5858 	 * happen.
5859 	 */
5860 	mutex_lock(&sched_domains_mutex);
5861 	sched_init_domains(cpu_active_mask);
5862 	mutex_unlock(&sched_domains_mutex);
5863 
5864 	/* Move init over to a non-isolated CPU */
5865 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5866 		BUG();
5867 	sched_init_granularity();
5868 
5869 	init_sched_rt_class();
5870 	init_sched_dl_class();
5871 
5872 	sched_smp_initialized = true;
5873 }
5874 
5875 static int __init migration_init(void)
5876 {
5877 	sched_rq_cpu_starting(smp_processor_id());
5878 	return 0;
5879 }
5880 early_initcall(migration_init);
5881 
5882 #else
5883 void __init sched_init_smp(void)
5884 {
5885 	sched_init_granularity();
5886 }
5887 #endif /* CONFIG_SMP */
5888 
5889 int in_sched_functions(unsigned long addr)
5890 {
5891 	return in_lock_functions(addr) ||
5892 		(addr >= (unsigned long)__sched_text_start
5893 		&& addr < (unsigned long)__sched_text_end);
5894 }
5895 
5896 #ifdef CONFIG_CGROUP_SCHED
5897 /*
5898  * Default task group.
5899  * Every task in system belongs to this group at bootup.
5900  */
5901 struct task_group root_task_group;
5902 LIST_HEAD(task_groups);
5903 
5904 /* Cacheline aligned slab cache for task_group */
5905 static struct kmem_cache *task_group_cache __read_mostly;
5906 #endif
5907 
5908 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5909 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5910 
5911 void __init sched_init(void)
5912 {
5913 	int i, j;
5914 	unsigned long alloc_size = 0, ptr;
5915 
5916 	wait_bit_init();
5917 
5918 #ifdef CONFIG_FAIR_GROUP_SCHED
5919 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5920 #endif
5921 #ifdef CONFIG_RT_GROUP_SCHED
5922 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5923 #endif
5924 	if (alloc_size) {
5925 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5926 
5927 #ifdef CONFIG_FAIR_GROUP_SCHED
5928 		root_task_group.se = (struct sched_entity **)ptr;
5929 		ptr += nr_cpu_ids * sizeof(void **);
5930 
5931 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5932 		ptr += nr_cpu_ids * sizeof(void **);
5933 
5934 #endif /* CONFIG_FAIR_GROUP_SCHED */
5935 #ifdef CONFIG_RT_GROUP_SCHED
5936 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5937 		ptr += nr_cpu_ids * sizeof(void **);
5938 
5939 		root_task_group.rt_rq = (struct rt_rq **)ptr;
5940 		ptr += nr_cpu_ids * sizeof(void **);
5941 
5942 #endif /* CONFIG_RT_GROUP_SCHED */
5943 	}
5944 #ifdef CONFIG_CPUMASK_OFFSTACK
5945 	for_each_possible_cpu(i) {
5946 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5947 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5948 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5949 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5950 	}
5951 #endif /* CONFIG_CPUMASK_OFFSTACK */
5952 
5953 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5954 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5955 
5956 #ifdef CONFIG_SMP
5957 	init_defrootdomain();
5958 #endif
5959 
5960 #ifdef CONFIG_RT_GROUP_SCHED
5961 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
5962 			global_rt_period(), global_rt_runtime());
5963 #endif /* CONFIG_RT_GROUP_SCHED */
5964 
5965 #ifdef CONFIG_CGROUP_SCHED
5966 	task_group_cache = KMEM_CACHE(task_group, 0);
5967 
5968 	list_add(&root_task_group.list, &task_groups);
5969 	INIT_LIST_HEAD(&root_task_group.children);
5970 	INIT_LIST_HEAD(&root_task_group.siblings);
5971 	autogroup_init(&init_task);
5972 #endif /* CONFIG_CGROUP_SCHED */
5973 
5974 	for_each_possible_cpu(i) {
5975 		struct rq *rq;
5976 
5977 		rq = cpu_rq(i);
5978 		raw_spin_lock_init(&rq->lock);
5979 		rq->nr_running = 0;
5980 		rq->calc_load_active = 0;
5981 		rq->calc_load_update = jiffies + LOAD_FREQ;
5982 		init_cfs_rq(&rq->cfs);
5983 		init_rt_rq(&rq->rt);
5984 		init_dl_rq(&rq->dl);
5985 #ifdef CONFIG_FAIR_GROUP_SCHED
5986 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
5987 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5988 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
5989 		/*
5990 		 * How much CPU bandwidth does root_task_group get?
5991 		 *
5992 		 * In case of task-groups formed thr' the cgroup filesystem, it
5993 		 * gets 100% of the CPU resources in the system. This overall
5994 		 * system CPU resource is divided among the tasks of
5995 		 * root_task_group and its child task-groups in a fair manner,
5996 		 * based on each entity's (task or task-group's) weight
5997 		 * (se->load.weight).
5998 		 *
5999 		 * In other words, if root_task_group has 10 tasks of weight
6000 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6001 		 * then A0's share of the CPU resource is:
6002 		 *
6003 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6004 		 *
6005 		 * We achieve this by letting root_task_group's tasks sit
6006 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6007 		 */
6008 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6009 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6010 #endif /* CONFIG_FAIR_GROUP_SCHED */
6011 
6012 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6013 #ifdef CONFIG_RT_GROUP_SCHED
6014 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6015 #endif
6016 
6017 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6018 			rq->cpu_load[j] = 0;
6019 
6020 #ifdef CONFIG_SMP
6021 		rq->sd = NULL;
6022 		rq->rd = NULL;
6023 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6024 		rq->balance_callback = NULL;
6025 		rq->active_balance = 0;
6026 		rq->next_balance = jiffies;
6027 		rq->push_cpu = 0;
6028 		rq->cpu = i;
6029 		rq->online = 0;
6030 		rq->idle_stamp = 0;
6031 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6032 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6033 
6034 		INIT_LIST_HEAD(&rq->cfs_tasks);
6035 
6036 		rq_attach_root(rq, &def_root_domain);
6037 #ifdef CONFIG_NO_HZ_COMMON
6038 		rq->last_load_update_tick = jiffies;
6039 		rq->last_blocked_load_update_tick = jiffies;
6040 		atomic_set(&rq->nohz_flags, 0);
6041 #endif
6042 #endif /* CONFIG_SMP */
6043 		hrtick_rq_init(rq);
6044 		atomic_set(&rq->nr_iowait, 0);
6045 	}
6046 
6047 	set_load_weight(&init_task, false);
6048 
6049 	/*
6050 	 * The boot idle thread does lazy MMU switching as well:
6051 	 */
6052 	mmgrab(&init_mm);
6053 	enter_lazy_tlb(&init_mm, current);
6054 
6055 	/*
6056 	 * Make us the idle thread. Technically, schedule() should not be
6057 	 * called from this thread, however somewhere below it might be,
6058 	 * but because we are the idle thread, we just pick up running again
6059 	 * when this runqueue becomes "idle".
6060 	 */
6061 	init_idle(current, smp_processor_id());
6062 
6063 	calc_load_update = jiffies + LOAD_FREQ;
6064 
6065 #ifdef CONFIG_SMP
6066 	idle_thread_set_boot_cpu();
6067 #endif
6068 	init_sched_fair_class();
6069 
6070 	init_schedstats();
6071 
6072 	scheduler_running = 1;
6073 }
6074 
6075 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6076 static inline int preempt_count_equals(int preempt_offset)
6077 {
6078 	int nested = preempt_count() + rcu_preempt_depth();
6079 
6080 	return (nested == preempt_offset);
6081 }
6082 
6083 void __might_sleep(const char *file, int line, int preempt_offset)
6084 {
6085 	/*
6086 	 * Blocking primitives will set (and therefore destroy) current->state,
6087 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6088 	 * otherwise we will destroy state.
6089 	 */
6090 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6091 			"do not call blocking ops when !TASK_RUNNING; "
6092 			"state=%lx set at [<%p>] %pS\n",
6093 			current->state,
6094 			(void *)current->task_state_change,
6095 			(void *)current->task_state_change);
6096 
6097 	___might_sleep(file, line, preempt_offset);
6098 }
6099 EXPORT_SYMBOL(__might_sleep);
6100 
6101 void ___might_sleep(const char *file, int line, int preempt_offset)
6102 {
6103 	/* Ratelimiting timestamp: */
6104 	static unsigned long prev_jiffy;
6105 
6106 	unsigned long preempt_disable_ip;
6107 
6108 	/* WARN_ON_ONCE() by default, no rate limit required: */
6109 	rcu_sleep_check();
6110 
6111 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6112 	     !is_idle_task(current)) ||
6113 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6114 	    oops_in_progress)
6115 		return;
6116 
6117 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6118 		return;
6119 	prev_jiffy = jiffies;
6120 
6121 	/* Save this before calling printk(), since that will clobber it: */
6122 	preempt_disable_ip = get_preempt_disable_ip(current);
6123 
6124 	printk(KERN_ERR
6125 		"BUG: sleeping function called from invalid context at %s:%d\n",
6126 			file, line);
6127 	printk(KERN_ERR
6128 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6129 			in_atomic(), irqs_disabled(),
6130 			current->pid, current->comm);
6131 
6132 	if (task_stack_end_corrupted(current))
6133 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6134 
6135 	debug_show_held_locks(current);
6136 	if (irqs_disabled())
6137 		print_irqtrace_events(current);
6138 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6139 	    && !preempt_count_equals(preempt_offset)) {
6140 		pr_err("Preemption disabled at:");
6141 		print_ip_sym(preempt_disable_ip);
6142 		pr_cont("\n");
6143 	}
6144 	dump_stack();
6145 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6146 }
6147 EXPORT_SYMBOL(___might_sleep);
6148 #endif
6149 
6150 #ifdef CONFIG_MAGIC_SYSRQ
6151 void normalize_rt_tasks(void)
6152 {
6153 	struct task_struct *g, *p;
6154 	struct sched_attr attr = {
6155 		.sched_policy = SCHED_NORMAL,
6156 	};
6157 
6158 	read_lock(&tasklist_lock);
6159 	for_each_process_thread(g, p) {
6160 		/*
6161 		 * Only normalize user tasks:
6162 		 */
6163 		if (p->flags & PF_KTHREAD)
6164 			continue;
6165 
6166 		p->se.exec_start = 0;
6167 		schedstat_set(p->se.statistics.wait_start,  0);
6168 		schedstat_set(p->se.statistics.sleep_start, 0);
6169 		schedstat_set(p->se.statistics.block_start, 0);
6170 
6171 		if (!dl_task(p) && !rt_task(p)) {
6172 			/*
6173 			 * Renice negative nice level userspace
6174 			 * tasks back to 0:
6175 			 */
6176 			if (task_nice(p) < 0)
6177 				set_user_nice(p, 0);
6178 			continue;
6179 		}
6180 
6181 		__sched_setscheduler(p, &attr, false, false);
6182 	}
6183 	read_unlock(&tasklist_lock);
6184 }
6185 
6186 #endif /* CONFIG_MAGIC_SYSRQ */
6187 
6188 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6189 /*
6190  * These functions are only useful for the IA64 MCA handling, or kdb.
6191  *
6192  * They can only be called when the whole system has been
6193  * stopped - every CPU needs to be quiescent, and no scheduling
6194  * activity can take place. Using them for anything else would
6195  * be a serious bug, and as a result, they aren't even visible
6196  * under any other configuration.
6197  */
6198 
6199 /**
6200  * curr_task - return the current task for a given CPU.
6201  * @cpu: the processor in question.
6202  *
6203  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6204  *
6205  * Return: The current task for @cpu.
6206  */
6207 struct task_struct *curr_task(int cpu)
6208 {
6209 	return cpu_curr(cpu);
6210 }
6211 
6212 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6213 
6214 #ifdef CONFIG_IA64
6215 /**
6216  * set_curr_task - set the current task for a given CPU.
6217  * @cpu: the processor in question.
6218  * @p: the task pointer to set.
6219  *
6220  * Description: This function must only be used when non-maskable interrupts
6221  * are serviced on a separate stack. It allows the architecture to switch the
6222  * notion of the current task on a CPU in a non-blocking manner. This function
6223  * must be called with all CPU's synchronized, and interrupts disabled, the
6224  * and caller must save the original value of the current task (see
6225  * curr_task() above) and restore that value before reenabling interrupts and
6226  * re-starting the system.
6227  *
6228  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6229  */
6230 void ia64_set_curr_task(int cpu, struct task_struct *p)
6231 {
6232 	cpu_curr(cpu) = p;
6233 }
6234 
6235 #endif
6236 
6237 #ifdef CONFIG_CGROUP_SCHED
6238 /* task_group_lock serializes the addition/removal of task groups */
6239 static DEFINE_SPINLOCK(task_group_lock);
6240 
6241 static void sched_free_group(struct task_group *tg)
6242 {
6243 	free_fair_sched_group(tg);
6244 	free_rt_sched_group(tg);
6245 	autogroup_free(tg);
6246 	kmem_cache_free(task_group_cache, tg);
6247 }
6248 
6249 /* allocate runqueue etc for a new task group */
6250 struct task_group *sched_create_group(struct task_group *parent)
6251 {
6252 	struct task_group *tg;
6253 
6254 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6255 	if (!tg)
6256 		return ERR_PTR(-ENOMEM);
6257 
6258 	if (!alloc_fair_sched_group(tg, parent))
6259 		goto err;
6260 
6261 	if (!alloc_rt_sched_group(tg, parent))
6262 		goto err;
6263 
6264 	return tg;
6265 
6266 err:
6267 	sched_free_group(tg);
6268 	return ERR_PTR(-ENOMEM);
6269 }
6270 
6271 void sched_online_group(struct task_group *tg, struct task_group *parent)
6272 {
6273 	unsigned long flags;
6274 
6275 	spin_lock_irqsave(&task_group_lock, flags);
6276 	list_add_rcu(&tg->list, &task_groups);
6277 
6278 	/* Root should already exist: */
6279 	WARN_ON(!parent);
6280 
6281 	tg->parent = parent;
6282 	INIT_LIST_HEAD(&tg->children);
6283 	list_add_rcu(&tg->siblings, &parent->children);
6284 	spin_unlock_irqrestore(&task_group_lock, flags);
6285 
6286 	online_fair_sched_group(tg);
6287 }
6288 
6289 /* rcu callback to free various structures associated with a task group */
6290 static void sched_free_group_rcu(struct rcu_head *rhp)
6291 {
6292 	/* Now it should be safe to free those cfs_rqs: */
6293 	sched_free_group(container_of(rhp, struct task_group, rcu));
6294 }
6295 
6296 void sched_destroy_group(struct task_group *tg)
6297 {
6298 	/* Wait for possible concurrent references to cfs_rqs complete: */
6299 	call_rcu(&tg->rcu, sched_free_group_rcu);
6300 }
6301 
6302 void sched_offline_group(struct task_group *tg)
6303 {
6304 	unsigned long flags;
6305 
6306 	/* End participation in shares distribution: */
6307 	unregister_fair_sched_group(tg);
6308 
6309 	spin_lock_irqsave(&task_group_lock, flags);
6310 	list_del_rcu(&tg->list);
6311 	list_del_rcu(&tg->siblings);
6312 	spin_unlock_irqrestore(&task_group_lock, flags);
6313 }
6314 
6315 static void sched_change_group(struct task_struct *tsk, int type)
6316 {
6317 	struct task_group *tg;
6318 
6319 	/*
6320 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6321 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6322 	 * to prevent lockdep warnings.
6323 	 */
6324 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6325 			  struct task_group, css);
6326 	tg = autogroup_task_group(tsk, tg);
6327 	tsk->sched_task_group = tg;
6328 
6329 #ifdef CONFIG_FAIR_GROUP_SCHED
6330 	if (tsk->sched_class->task_change_group)
6331 		tsk->sched_class->task_change_group(tsk, type);
6332 	else
6333 #endif
6334 		set_task_rq(tsk, task_cpu(tsk));
6335 }
6336 
6337 /*
6338  * Change task's runqueue when it moves between groups.
6339  *
6340  * The caller of this function should have put the task in its new group by
6341  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6342  * its new group.
6343  */
6344 void sched_move_task(struct task_struct *tsk)
6345 {
6346 	int queued, running, queue_flags =
6347 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6348 	struct rq_flags rf;
6349 	struct rq *rq;
6350 
6351 	rq = task_rq_lock(tsk, &rf);
6352 	update_rq_clock(rq);
6353 
6354 	running = task_current(rq, tsk);
6355 	queued = task_on_rq_queued(tsk);
6356 
6357 	if (queued)
6358 		dequeue_task(rq, tsk, queue_flags);
6359 	if (running)
6360 		put_prev_task(rq, tsk);
6361 
6362 	sched_change_group(tsk, TASK_MOVE_GROUP);
6363 
6364 	if (queued)
6365 		enqueue_task(rq, tsk, queue_flags);
6366 	if (running)
6367 		set_curr_task(rq, tsk);
6368 
6369 	task_rq_unlock(rq, tsk, &rf);
6370 }
6371 
6372 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6373 {
6374 	return css ? container_of(css, struct task_group, css) : NULL;
6375 }
6376 
6377 static struct cgroup_subsys_state *
6378 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6379 {
6380 	struct task_group *parent = css_tg(parent_css);
6381 	struct task_group *tg;
6382 
6383 	if (!parent) {
6384 		/* This is early initialization for the top cgroup */
6385 		return &root_task_group.css;
6386 	}
6387 
6388 	tg = sched_create_group(parent);
6389 	if (IS_ERR(tg))
6390 		return ERR_PTR(-ENOMEM);
6391 
6392 	return &tg->css;
6393 }
6394 
6395 /* Expose task group only after completing cgroup initialization */
6396 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6397 {
6398 	struct task_group *tg = css_tg(css);
6399 	struct task_group *parent = css_tg(css->parent);
6400 
6401 	if (parent)
6402 		sched_online_group(tg, parent);
6403 	return 0;
6404 }
6405 
6406 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6407 {
6408 	struct task_group *tg = css_tg(css);
6409 
6410 	sched_offline_group(tg);
6411 }
6412 
6413 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6414 {
6415 	struct task_group *tg = css_tg(css);
6416 
6417 	/*
6418 	 * Relies on the RCU grace period between css_released() and this.
6419 	 */
6420 	sched_free_group(tg);
6421 }
6422 
6423 /*
6424  * This is called before wake_up_new_task(), therefore we really only
6425  * have to set its group bits, all the other stuff does not apply.
6426  */
6427 static void cpu_cgroup_fork(struct task_struct *task)
6428 {
6429 	struct rq_flags rf;
6430 	struct rq *rq;
6431 
6432 	rq = task_rq_lock(task, &rf);
6433 
6434 	update_rq_clock(rq);
6435 	sched_change_group(task, TASK_SET_GROUP);
6436 
6437 	task_rq_unlock(rq, task, &rf);
6438 }
6439 
6440 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6441 {
6442 	struct task_struct *task;
6443 	struct cgroup_subsys_state *css;
6444 	int ret = 0;
6445 
6446 	cgroup_taskset_for_each(task, css, tset) {
6447 #ifdef CONFIG_RT_GROUP_SCHED
6448 		if (!sched_rt_can_attach(css_tg(css), task))
6449 			return -EINVAL;
6450 #else
6451 		/* We don't support RT-tasks being in separate groups */
6452 		if (task->sched_class != &fair_sched_class)
6453 			return -EINVAL;
6454 #endif
6455 		/*
6456 		 * Serialize against wake_up_new_task() such that if its
6457 		 * running, we're sure to observe its full state.
6458 		 */
6459 		raw_spin_lock_irq(&task->pi_lock);
6460 		/*
6461 		 * Avoid calling sched_move_task() before wake_up_new_task()
6462 		 * has happened. This would lead to problems with PELT, due to
6463 		 * move wanting to detach+attach while we're not attached yet.
6464 		 */
6465 		if (task->state == TASK_NEW)
6466 			ret = -EINVAL;
6467 		raw_spin_unlock_irq(&task->pi_lock);
6468 
6469 		if (ret)
6470 			break;
6471 	}
6472 	return ret;
6473 }
6474 
6475 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6476 {
6477 	struct task_struct *task;
6478 	struct cgroup_subsys_state *css;
6479 
6480 	cgroup_taskset_for_each(task, css, tset)
6481 		sched_move_task(task);
6482 }
6483 
6484 #ifdef CONFIG_FAIR_GROUP_SCHED
6485 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6486 				struct cftype *cftype, u64 shareval)
6487 {
6488 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6489 }
6490 
6491 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6492 			       struct cftype *cft)
6493 {
6494 	struct task_group *tg = css_tg(css);
6495 
6496 	return (u64) scale_load_down(tg->shares);
6497 }
6498 
6499 #ifdef CONFIG_CFS_BANDWIDTH
6500 static DEFINE_MUTEX(cfs_constraints_mutex);
6501 
6502 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6503 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6504 
6505 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6506 
6507 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6508 {
6509 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6510 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6511 
6512 	if (tg == &root_task_group)
6513 		return -EINVAL;
6514 
6515 	/*
6516 	 * Ensure we have at some amount of bandwidth every period.  This is
6517 	 * to prevent reaching a state of large arrears when throttled via
6518 	 * entity_tick() resulting in prolonged exit starvation.
6519 	 */
6520 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6521 		return -EINVAL;
6522 
6523 	/*
6524 	 * Likewise, bound things on the otherside by preventing insane quota
6525 	 * periods.  This also allows us to normalize in computing quota
6526 	 * feasibility.
6527 	 */
6528 	if (period > max_cfs_quota_period)
6529 		return -EINVAL;
6530 
6531 	/*
6532 	 * Prevent race between setting of cfs_rq->runtime_enabled and
6533 	 * unthrottle_offline_cfs_rqs().
6534 	 */
6535 	get_online_cpus();
6536 	mutex_lock(&cfs_constraints_mutex);
6537 	ret = __cfs_schedulable(tg, period, quota);
6538 	if (ret)
6539 		goto out_unlock;
6540 
6541 	runtime_enabled = quota != RUNTIME_INF;
6542 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6543 	/*
6544 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
6545 	 * before making related changes, and on->off must occur afterwards
6546 	 */
6547 	if (runtime_enabled && !runtime_was_enabled)
6548 		cfs_bandwidth_usage_inc();
6549 	raw_spin_lock_irq(&cfs_b->lock);
6550 	cfs_b->period = ns_to_ktime(period);
6551 	cfs_b->quota = quota;
6552 
6553 	__refill_cfs_bandwidth_runtime(cfs_b);
6554 
6555 	/* Restart the period timer (if active) to handle new period expiry: */
6556 	if (runtime_enabled)
6557 		start_cfs_bandwidth(cfs_b);
6558 
6559 	raw_spin_unlock_irq(&cfs_b->lock);
6560 
6561 	for_each_online_cpu(i) {
6562 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6563 		struct rq *rq = cfs_rq->rq;
6564 		struct rq_flags rf;
6565 
6566 		rq_lock_irq(rq, &rf);
6567 		cfs_rq->runtime_enabled = runtime_enabled;
6568 		cfs_rq->runtime_remaining = 0;
6569 
6570 		if (cfs_rq->throttled)
6571 			unthrottle_cfs_rq(cfs_rq);
6572 		rq_unlock_irq(rq, &rf);
6573 	}
6574 	if (runtime_was_enabled && !runtime_enabled)
6575 		cfs_bandwidth_usage_dec();
6576 out_unlock:
6577 	mutex_unlock(&cfs_constraints_mutex);
6578 	put_online_cpus();
6579 
6580 	return ret;
6581 }
6582 
6583 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6584 {
6585 	u64 quota, period;
6586 
6587 	period = ktime_to_ns(tg->cfs_bandwidth.period);
6588 	if (cfs_quota_us < 0)
6589 		quota = RUNTIME_INF;
6590 	else
6591 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6592 
6593 	return tg_set_cfs_bandwidth(tg, period, quota);
6594 }
6595 
6596 long tg_get_cfs_quota(struct task_group *tg)
6597 {
6598 	u64 quota_us;
6599 
6600 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6601 		return -1;
6602 
6603 	quota_us = tg->cfs_bandwidth.quota;
6604 	do_div(quota_us, NSEC_PER_USEC);
6605 
6606 	return quota_us;
6607 }
6608 
6609 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6610 {
6611 	u64 quota, period;
6612 
6613 	period = (u64)cfs_period_us * NSEC_PER_USEC;
6614 	quota = tg->cfs_bandwidth.quota;
6615 
6616 	return tg_set_cfs_bandwidth(tg, period, quota);
6617 }
6618 
6619 long tg_get_cfs_period(struct task_group *tg)
6620 {
6621 	u64 cfs_period_us;
6622 
6623 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6624 	do_div(cfs_period_us, NSEC_PER_USEC);
6625 
6626 	return cfs_period_us;
6627 }
6628 
6629 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6630 				  struct cftype *cft)
6631 {
6632 	return tg_get_cfs_quota(css_tg(css));
6633 }
6634 
6635 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6636 				   struct cftype *cftype, s64 cfs_quota_us)
6637 {
6638 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6639 }
6640 
6641 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6642 				   struct cftype *cft)
6643 {
6644 	return tg_get_cfs_period(css_tg(css));
6645 }
6646 
6647 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6648 				    struct cftype *cftype, u64 cfs_period_us)
6649 {
6650 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6651 }
6652 
6653 struct cfs_schedulable_data {
6654 	struct task_group *tg;
6655 	u64 period, quota;
6656 };
6657 
6658 /*
6659  * normalize group quota/period to be quota/max_period
6660  * note: units are usecs
6661  */
6662 static u64 normalize_cfs_quota(struct task_group *tg,
6663 			       struct cfs_schedulable_data *d)
6664 {
6665 	u64 quota, period;
6666 
6667 	if (tg == d->tg) {
6668 		period = d->period;
6669 		quota = d->quota;
6670 	} else {
6671 		period = tg_get_cfs_period(tg);
6672 		quota = tg_get_cfs_quota(tg);
6673 	}
6674 
6675 	/* note: these should typically be equivalent */
6676 	if (quota == RUNTIME_INF || quota == -1)
6677 		return RUNTIME_INF;
6678 
6679 	return to_ratio(period, quota);
6680 }
6681 
6682 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6683 {
6684 	struct cfs_schedulable_data *d = data;
6685 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6686 	s64 quota = 0, parent_quota = -1;
6687 
6688 	if (!tg->parent) {
6689 		quota = RUNTIME_INF;
6690 	} else {
6691 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6692 
6693 		quota = normalize_cfs_quota(tg, d);
6694 		parent_quota = parent_b->hierarchical_quota;
6695 
6696 		/*
6697 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
6698 		 * always take the min.  On cgroup1, only inherit when no
6699 		 * limit is set:
6700 		 */
6701 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6702 			quota = min(quota, parent_quota);
6703 		} else {
6704 			if (quota == RUNTIME_INF)
6705 				quota = parent_quota;
6706 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6707 				return -EINVAL;
6708 		}
6709 	}
6710 	cfs_b->hierarchical_quota = quota;
6711 
6712 	return 0;
6713 }
6714 
6715 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6716 {
6717 	int ret;
6718 	struct cfs_schedulable_data data = {
6719 		.tg = tg,
6720 		.period = period,
6721 		.quota = quota,
6722 	};
6723 
6724 	if (quota != RUNTIME_INF) {
6725 		do_div(data.period, NSEC_PER_USEC);
6726 		do_div(data.quota, NSEC_PER_USEC);
6727 	}
6728 
6729 	rcu_read_lock();
6730 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6731 	rcu_read_unlock();
6732 
6733 	return ret;
6734 }
6735 
6736 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6737 {
6738 	struct task_group *tg = css_tg(seq_css(sf));
6739 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6740 
6741 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6742 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6743 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6744 
6745 	if (schedstat_enabled() && tg != &root_task_group) {
6746 		u64 ws = 0;
6747 		int i;
6748 
6749 		for_each_possible_cpu(i)
6750 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
6751 
6752 		seq_printf(sf, "wait_sum %llu\n", ws);
6753 	}
6754 
6755 	return 0;
6756 }
6757 #endif /* CONFIG_CFS_BANDWIDTH */
6758 #endif /* CONFIG_FAIR_GROUP_SCHED */
6759 
6760 #ifdef CONFIG_RT_GROUP_SCHED
6761 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6762 				struct cftype *cft, s64 val)
6763 {
6764 	return sched_group_set_rt_runtime(css_tg(css), val);
6765 }
6766 
6767 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6768 			       struct cftype *cft)
6769 {
6770 	return sched_group_rt_runtime(css_tg(css));
6771 }
6772 
6773 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6774 				    struct cftype *cftype, u64 rt_period_us)
6775 {
6776 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6777 }
6778 
6779 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6780 				   struct cftype *cft)
6781 {
6782 	return sched_group_rt_period(css_tg(css));
6783 }
6784 #endif /* CONFIG_RT_GROUP_SCHED */
6785 
6786 static struct cftype cpu_legacy_files[] = {
6787 #ifdef CONFIG_FAIR_GROUP_SCHED
6788 	{
6789 		.name = "shares",
6790 		.read_u64 = cpu_shares_read_u64,
6791 		.write_u64 = cpu_shares_write_u64,
6792 	},
6793 #endif
6794 #ifdef CONFIG_CFS_BANDWIDTH
6795 	{
6796 		.name = "cfs_quota_us",
6797 		.read_s64 = cpu_cfs_quota_read_s64,
6798 		.write_s64 = cpu_cfs_quota_write_s64,
6799 	},
6800 	{
6801 		.name = "cfs_period_us",
6802 		.read_u64 = cpu_cfs_period_read_u64,
6803 		.write_u64 = cpu_cfs_period_write_u64,
6804 	},
6805 	{
6806 		.name = "stat",
6807 		.seq_show = cpu_cfs_stat_show,
6808 	},
6809 #endif
6810 #ifdef CONFIG_RT_GROUP_SCHED
6811 	{
6812 		.name = "rt_runtime_us",
6813 		.read_s64 = cpu_rt_runtime_read,
6814 		.write_s64 = cpu_rt_runtime_write,
6815 	},
6816 	{
6817 		.name = "rt_period_us",
6818 		.read_u64 = cpu_rt_period_read_uint,
6819 		.write_u64 = cpu_rt_period_write_uint,
6820 	},
6821 #endif
6822 	{ }	/* Terminate */
6823 };
6824 
6825 static int cpu_extra_stat_show(struct seq_file *sf,
6826 			       struct cgroup_subsys_state *css)
6827 {
6828 #ifdef CONFIG_CFS_BANDWIDTH
6829 	{
6830 		struct task_group *tg = css_tg(css);
6831 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6832 		u64 throttled_usec;
6833 
6834 		throttled_usec = cfs_b->throttled_time;
6835 		do_div(throttled_usec, NSEC_PER_USEC);
6836 
6837 		seq_printf(sf, "nr_periods %d\n"
6838 			   "nr_throttled %d\n"
6839 			   "throttled_usec %llu\n",
6840 			   cfs_b->nr_periods, cfs_b->nr_throttled,
6841 			   throttled_usec);
6842 	}
6843 #endif
6844 	return 0;
6845 }
6846 
6847 #ifdef CONFIG_FAIR_GROUP_SCHED
6848 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6849 			       struct cftype *cft)
6850 {
6851 	struct task_group *tg = css_tg(css);
6852 	u64 weight = scale_load_down(tg->shares);
6853 
6854 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6855 }
6856 
6857 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6858 				struct cftype *cft, u64 weight)
6859 {
6860 	/*
6861 	 * cgroup weight knobs should use the common MIN, DFL and MAX
6862 	 * values which are 1, 100 and 10000 respectively.  While it loses
6863 	 * a bit of range on both ends, it maps pretty well onto the shares
6864 	 * value used by scheduler and the round-trip conversions preserve
6865 	 * the original value over the entire range.
6866 	 */
6867 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6868 		return -ERANGE;
6869 
6870 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6871 
6872 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6873 }
6874 
6875 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6876 				    struct cftype *cft)
6877 {
6878 	unsigned long weight = scale_load_down(css_tg(css)->shares);
6879 	int last_delta = INT_MAX;
6880 	int prio, delta;
6881 
6882 	/* find the closest nice value to the current weight */
6883 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6884 		delta = abs(sched_prio_to_weight[prio] - weight);
6885 		if (delta >= last_delta)
6886 			break;
6887 		last_delta = delta;
6888 	}
6889 
6890 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6891 }
6892 
6893 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6894 				     struct cftype *cft, s64 nice)
6895 {
6896 	unsigned long weight;
6897 	int idx;
6898 
6899 	if (nice < MIN_NICE || nice > MAX_NICE)
6900 		return -ERANGE;
6901 
6902 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6903 	idx = array_index_nospec(idx, 40);
6904 	weight = sched_prio_to_weight[idx];
6905 
6906 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6907 }
6908 #endif
6909 
6910 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6911 						  long period, long quota)
6912 {
6913 	if (quota < 0)
6914 		seq_puts(sf, "max");
6915 	else
6916 		seq_printf(sf, "%ld", quota);
6917 
6918 	seq_printf(sf, " %ld\n", period);
6919 }
6920 
6921 /* caller should put the current value in *@periodp before calling */
6922 static int __maybe_unused cpu_period_quota_parse(char *buf,
6923 						 u64 *periodp, u64 *quotap)
6924 {
6925 	char tok[21];	/* U64_MAX */
6926 
6927 	if (!sscanf(buf, "%s %llu", tok, periodp))
6928 		return -EINVAL;
6929 
6930 	*periodp *= NSEC_PER_USEC;
6931 
6932 	if (sscanf(tok, "%llu", quotap))
6933 		*quotap *= NSEC_PER_USEC;
6934 	else if (!strcmp(tok, "max"))
6935 		*quotap = RUNTIME_INF;
6936 	else
6937 		return -EINVAL;
6938 
6939 	return 0;
6940 }
6941 
6942 #ifdef CONFIG_CFS_BANDWIDTH
6943 static int cpu_max_show(struct seq_file *sf, void *v)
6944 {
6945 	struct task_group *tg = css_tg(seq_css(sf));
6946 
6947 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6948 	return 0;
6949 }
6950 
6951 static ssize_t cpu_max_write(struct kernfs_open_file *of,
6952 			     char *buf, size_t nbytes, loff_t off)
6953 {
6954 	struct task_group *tg = css_tg(of_css(of));
6955 	u64 period = tg_get_cfs_period(tg);
6956 	u64 quota;
6957 	int ret;
6958 
6959 	ret = cpu_period_quota_parse(buf, &period, &quota);
6960 	if (!ret)
6961 		ret = tg_set_cfs_bandwidth(tg, period, quota);
6962 	return ret ?: nbytes;
6963 }
6964 #endif
6965 
6966 static struct cftype cpu_files[] = {
6967 #ifdef CONFIG_FAIR_GROUP_SCHED
6968 	{
6969 		.name = "weight",
6970 		.flags = CFTYPE_NOT_ON_ROOT,
6971 		.read_u64 = cpu_weight_read_u64,
6972 		.write_u64 = cpu_weight_write_u64,
6973 	},
6974 	{
6975 		.name = "weight.nice",
6976 		.flags = CFTYPE_NOT_ON_ROOT,
6977 		.read_s64 = cpu_weight_nice_read_s64,
6978 		.write_s64 = cpu_weight_nice_write_s64,
6979 	},
6980 #endif
6981 #ifdef CONFIG_CFS_BANDWIDTH
6982 	{
6983 		.name = "max",
6984 		.flags = CFTYPE_NOT_ON_ROOT,
6985 		.seq_show = cpu_max_show,
6986 		.write = cpu_max_write,
6987 	},
6988 #endif
6989 	{ }	/* terminate */
6990 };
6991 
6992 struct cgroup_subsys cpu_cgrp_subsys = {
6993 	.css_alloc	= cpu_cgroup_css_alloc,
6994 	.css_online	= cpu_cgroup_css_online,
6995 	.css_released	= cpu_cgroup_css_released,
6996 	.css_free	= cpu_cgroup_css_free,
6997 	.css_extra_stat_show = cpu_extra_stat_show,
6998 	.fork		= cpu_cgroup_fork,
6999 	.can_attach	= cpu_cgroup_can_attach,
7000 	.attach		= cpu_cgroup_attach,
7001 	.legacy_cftypes	= cpu_legacy_files,
7002 	.dfl_cftypes	= cpu_files,
7003 	.early_init	= true,
7004 	.threaded	= true,
7005 };
7006 
7007 #endif	/* CONFIG_CGROUP_SCHED */
7008 
7009 void dump_cpu_task(int cpu)
7010 {
7011 	pr_info("Task dump for CPU %d:\n", cpu);
7012 	sched_show_task(cpu_curr(cpu));
7013 }
7014 
7015 /*
7016  * Nice levels are multiplicative, with a gentle 10% change for every
7017  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7018  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7019  * that remained on nice 0.
7020  *
7021  * The "10% effect" is relative and cumulative: from _any_ nice level,
7022  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7023  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7024  * If a task goes up by ~10% and another task goes down by ~10% then
7025  * the relative distance between them is ~25%.)
7026  */
7027 const int sched_prio_to_weight[40] = {
7028  /* -20 */     88761,     71755,     56483,     46273,     36291,
7029  /* -15 */     29154,     23254,     18705,     14949,     11916,
7030  /* -10 */      9548,      7620,      6100,      4904,      3906,
7031  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7032  /*   0 */      1024,       820,       655,       526,       423,
7033  /*   5 */       335,       272,       215,       172,       137,
7034  /*  10 */       110,        87,        70,        56,        45,
7035  /*  15 */        36,        29,        23,        18,        15,
7036 };
7037 
7038 /*
7039  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7040  *
7041  * In cases where the weight does not change often, we can use the
7042  * precalculated inverse to speed up arithmetics by turning divisions
7043  * into multiplications:
7044  */
7045 const u32 sched_prio_to_wmult[40] = {
7046  /* -20 */     48388,     59856,     76040,     92818,    118348,
7047  /* -15 */    147320,    184698,    229616,    287308,    360437,
7048  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7049  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7050  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7051  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7052  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7053  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7054 };
7055 
7056 #undef CREATE_TRACE_POINTS
7057