xref: /linux/kernel/sched/core.c (revision ae04f69de0bef93c7086cf2983dbc8e8fd624ebe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel CPU scheduler code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #include <linux/highmem.h>
11 #include <linux/hrtimer_api.h>
12 #include <linux/ktime_api.h>
13 #include <linux/sched/signal.h>
14 #include <linux/syscalls_api.h>
15 #include <linux/debug_locks.h>
16 #include <linux/prefetch.h>
17 #include <linux/capability.h>
18 #include <linux/pgtable_api.h>
19 #include <linux/wait_bit.h>
20 #include <linux/jiffies.h>
21 #include <linux/spinlock_api.h>
22 #include <linux/cpumask_api.h>
23 #include <linux/lockdep_api.h>
24 #include <linux/hardirq.h>
25 #include <linux/softirq.h>
26 #include <linux/refcount_api.h>
27 #include <linux/topology.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/cond_resched.h>
30 #include <linux/sched/cputime.h>
31 #include <linux/sched/debug.h>
32 #include <linux/sched/hotplug.h>
33 #include <linux/sched/init.h>
34 #include <linux/sched/isolation.h>
35 #include <linux/sched/loadavg.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/nohz.h>
38 #include <linux/sched/rseq_api.h>
39 #include <linux/sched/rt.h>
40 
41 #include <linux/blkdev.h>
42 #include <linux/context_tracking.h>
43 #include <linux/cpuset.h>
44 #include <linux/delayacct.h>
45 #include <linux/init_task.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioprio.h>
48 #include <linux/kallsyms.h>
49 #include <linux/kcov.h>
50 #include <linux/kprobes.h>
51 #include <linux/llist_api.h>
52 #include <linux/mmu_context.h>
53 #include <linux/mmzone.h>
54 #include <linux/mutex_api.h>
55 #include <linux/nmi.h>
56 #include <linux/nospec.h>
57 #include <linux/perf_event_api.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcuwait_api.h>
61 #include <linux/rseq.h>
62 #include <linux/sched/wake_q.h>
63 #include <linux/scs.h>
64 #include <linux/slab.h>
65 #include <linux/syscalls.h>
66 #include <linux/vtime.h>
67 #include <linux/wait_api.h>
68 #include <linux/workqueue_api.h>
69 
70 #ifdef CONFIG_PREEMPT_DYNAMIC
71 # ifdef CONFIG_GENERIC_ENTRY
72 #  include <linux/entry-common.h>
73 # endif
74 #endif
75 
76 #include <uapi/linux/sched/types.h>
77 
78 #include <asm/irq_regs.h>
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 
82 #define CREATE_TRACE_POINTS
83 #include <linux/sched/rseq_api.h>
84 #include <trace/events/sched.h>
85 #include <trace/events/ipi.h>
86 #undef CREATE_TRACE_POINTS
87 
88 #include "sched.h"
89 #include "stats.h"
90 
91 #include "autogroup.h"
92 #include "pelt.h"
93 #include "smp.h"
94 #include "stats.h"
95 
96 #include "../workqueue_internal.h"
97 #include "../../io_uring/io-wq.h"
98 #include "../smpboot.h"
99 
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
102 
103 /*
104  * Export tracepoints that act as a bare tracehook (ie: have no trace event
105  * associated with them) to allow external modules to probe them.
106  */
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
119 
120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
121 
122 #ifdef CONFIG_SCHED_DEBUG
123 /*
124  * Debugging: various feature bits
125  *
126  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
127  * sysctl_sched_features, defined in sched.h, to allow constants propagation
128  * at compile time and compiler optimization based on features default.
129  */
130 #define SCHED_FEAT(name, enabled)	\
131 	(1UL << __SCHED_FEAT_##name) * enabled |
132 const_debug unsigned int sysctl_sched_features =
133 #include "features.h"
134 	0;
135 #undef SCHED_FEAT
136 
137 /*
138  * Print a warning if need_resched is set for the given duration (if
139  * LATENCY_WARN is enabled).
140  *
141  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
142  * per boot.
143  */
144 __read_mostly int sysctl_resched_latency_warn_ms = 100;
145 __read_mostly int sysctl_resched_latency_warn_once = 1;
146 #endif /* CONFIG_SCHED_DEBUG */
147 
148 /*
149  * Number of tasks to iterate in a single balance run.
150  * Limited because this is done with IRQs disabled.
151  */
152 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
153 
154 __read_mostly int scheduler_running;
155 
156 #ifdef CONFIG_SCHED_CORE
157 
158 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
159 
160 /* kernel prio, less is more */
161 static inline int __task_prio(const struct task_struct *p)
162 {
163 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
164 		return -2;
165 
166 	if (p->dl_server)
167 		return -1; /* deadline */
168 
169 	if (rt_or_dl_prio(p->prio))
170 		return p->prio; /* [-1, 99] */
171 
172 	if (p->sched_class == &idle_sched_class)
173 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
174 
175 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
176 }
177 
178 /*
179  * l(a,b)
180  * le(a,b) := !l(b,a)
181  * g(a,b)  := l(b,a)
182  * ge(a,b) := !l(a,b)
183  */
184 
185 /* real prio, less is less */
186 static inline bool prio_less(const struct task_struct *a,
187 			     const struct task_struct *b, bool in_fi)
188 {
189 
190 	int pa = __task_prio(a), pb = __task_prio(b);
191 
192 	if (-pa < -pb)
193 		return true;
194 
195 	if (-pb < -pa)
196 		return false;
197 
198 	if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
199 		const struct sched_dl_entity *a_dl, *b_dl;
200 
201 		a_dl = &a->dl;
202 		/*
203 		 * Since,'a' and 'b' can be CFS tasks served by DL server,
204 		 * __task_prio() can return -1 (for DL) even for those. In that
205 		 * case, get to the dl_server's DL entity.
206 		 */
207 		if (a->dl_server)
208 			a_dl = a->dl_server;
209 
210 		b_dl = &b->dl;
211 		if (b->dl_server)
212 			b_dl = b->dl_server;
213 
214 		return !dl_time_before(a_dl->deadline, b_dl->deadline);
215 	}
216 
217 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
218 		return cfs_prio_less(a, b, in_fi);
219 
220 	return false;
221 }
222 
223 static inline bool __sched_core_less(const struct task_struct *a,
224 				     const struct task_struct *b)
225 {
226 	if (a->core_cookie < b->core_cookie)
227 		return true;
228 
229 	if (a->core_cookie > b->core_cookie)
230 		return false;
231 
232 	/* flip prio, so high prio is leftmost */
233 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
234 		return true;
235 
236 	return false;
237 }
238 
239 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
240 
241 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
242 {
243 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
244 }
245 
246 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
247 {
248 	const struct task_struct *p = __node_2_sc(node);
249 	unsigned long cookie = (unsigned long)key;
250 
251 	if (cookie < p->core_cookie)
252 		return -1;
253 
254 	if (cookie > p->core_cookie)
255 		return 1;
256 
257 	return 0;
258 }
259 
260 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
261 {
262 	rq->core->core_task_seq++;
263 
264 	if (!p->core_cookie)
265 		return;
266 
267 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
268 }
269 
270 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
271 {
272 	rq->core->core_task_seq++;
273 
274 	if (sched_core_enqueued(p)) {
275 		rb_erase(&p->core_node, &rq->core_tree);
276 		RB_CLEAR_NODE(&p->core_node);
277 	}
278 
279 	/*
280 	 * Migrating the last task off the cpu, with the cpu in forced idle
281 	 * state. Reschedule to create an accounting edge for forced idle,
282 	 * and re-examine whether the core is still in forced idle state.
283 	 */
284 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
285 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
286 		resched_curr(rq);
287 }
288 
289 static int sched_task_is_throttled(struct task_struct *p, int cpu)
290 {
291 	if (p->sched_class->task_is_throttled)
292 		return p->sched_class->task_is_throttled(p, cpu);
293 
294 	return 0;
295 }
296 
297 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
298 {
299 	struct rb_node *node = &p->core_node;
300 	int cpu = task_cpu(p);
301 
302 	do {
303 		node = rb_next(node);
304 		if (!node)
305 			return NULL;
306 
307 		p = __node_2_sc(node);
308 		if (p->core_cookie != cookie)
309 			return NULL;
310 
311 	} while (sched_task_is_throttled(p, cpu));
312 
313 	return p;
314 }
315 
316 /*
317  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
318  * If no suitable task is found, NULL will be returned.
319  */
320 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
321 {
322 	struct task_struct *p;
323 	struct rb_node *node;
324 
325 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
326 	if (!node)
327 		return NULL;
328 
329 	p = __node_2_sc(node);
330 	if (!sched_task_is_throttled(p, rq->cpu))
331 		return p;
332 
333 	return sched_core_next(p, cookie);
334 }
335 
336 /*
337  * Magic required such that:
338  *
339  *	raw_spin_rq_lock(rq);
340  *	...
341  *	raw_spin_rq_unlock(rq);
342  *
343  * ends up locking and unlocking the _same_ lock, and all CPUs
344  * always agree on what rq has what lock.
345  *
346  * XXX entirely possible to selectively enable cores, don't bother for now.
347  */
348 
349 static DEFINE_MUTEX(sched_core_mutex);
350 static atomic_t sched_core_count;
351 static struct cpumask sched_core_mask;
352 
353 static void sched_core_lock(int cpu, unsigned long *flags)
354 {
355 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
356 	int t, i = 0;
357 
358 	local_irq_save(*flags);
359 	for_each_cpu(t, smt_mask)
360 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
361 }
362 
363 static void sched_core_unlock(int cpu, unsigned long *flags)
364 {
365 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
366 	int t;
367 
368 	for_each_cpu(t, smt_mask)
369 		raw_spin_unlock(&cpu_rq(t)->__lock);
370 	local_irq_restore(*flags);
371 }
372 
373 static void __sched_core_flip(bool enabled)
374 {
375 	unsigned long flags;
376 	int cpu, t;
377 
378 	cpus_read_lock();
379 
380 	/*
381 	 * Toggle the online cores, one by one.
382 	 */
383 	cpumask_copy(&sched_core_mask, cpu_online_mask);
384 	for_each_cpu(cpu, &sched_core_mask) {
385 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
386 
387 		sched_core_lock(cpu, &flags);
388 
389 		for_each_cpu(t, smt_mask)
390 			cpu_rq(t)->core_enabled = enabled;
391 
392 		cpu_rq(cpu)->core->core_forceidle_start = 0;
393 
394 		sched_core_unlock(cpu, &flags);
395 
396 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
397 	}
398 
399 	/*
400 	 * Toggle the offline CPUs.
401 	 */
402 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
403 		cpu_rq(cpu)->core_enabled = enabled;
404 
405 	cpus_read_unlock();
406 }
407 
408 static void sched_core_assert_empty(void)
409 {
410 	int cpu;
411 
412 	for_each_possible_cpu(cpu)
413 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
414 }
415 
416 static void __sched_core_enable(void)
417 {
418 	static_branch_enable(&__sched_core_enabled);
419 	/*
420 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
421 	 * and future ones will observe !sched_core_disabled().
422 	 */
423 	synchronize_rcu();
424 	__sched_core_flip(true);
425 	sched_core_assert_empty();
426 }
427 
428 static void __sched_core_disable(void)
429 {
430 	sched_core_assert_empty();
431 	__sched_core_flip(false);
432 	static_branch_disable(&__sched_core_enabled);
433 }
434 
435 void sched_core_get(void)
436 {
437 	if (atomic_inc_not_zero(&sched_core_count))
438 		return;
439 
440 	mutex_lock(&sched_core_mutex);
441 	if (!atomic_read(&sched_core_count))
442 		__sched_core_enable();
443 
444 	smp_mb__before_atomic();
445 	atomic_inc(&sched_core_count);
446 	mutex_unlock(&sched_core_mutex);
447 }
448 
449 static void __sched_core_put(struct work_struct *work)
450 {
451 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
452 		__sched_core_disable();
453 		mutex_unlock(&sched_core_mutex);
454 	}
455 }
456 
457 void sched_core_put(void)
458 {
459 	static DECLARE_WORK(_work, __sched_core_put);
460 
461 	/*
462 	 * "There can be only one"
463 	 *
464 	 * Either this is the last one, or we don't actually need to do any
465 	 * 'work'. If it is the last *again*, we rely on
466 	 * WORK_STRUCT_PENDING_BIT.
467 	 */
468 	if (!atomic_add_unless(&sched_core_count, -1, 1))
469 		schedule_work(&_work);
470 }
471 
472 #else /* !CONFIG_SCHED_CORE */
473 
474 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
475 static inline void
476 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
477 
478 #endif /* CONFIG_SCHED_CORE */
479 
480 /*
481  * Serialization rules:
482  *
483  * Lock order:
484  *
485  *   p->pi_lock
486  *     rq->lock
487  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
488  *
489  *  rq1->lock
490  *    rq2->lock  where: rq1 < rq2
491  *
492  * Regular state:
493  *
494  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
495  * local CPU's rq->lock, it optionally removes the task from the runqueue and
496  * always looks at the local rq data structures to find the most eligible task
497  * to run next.
498  *
499  * Task enqueue is also under rq->lock, possibly taken from another CPU.
500  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
501  * the local CPU to avoid bouncing the runqueue state around [ see
502  * ttwu_queue_wakelist() ]
503  *
504  * Task wakeup, specifically wakeups that involve migration, are horribly
505  * complicated to avoid having to take two rq->locks.
506  *
507  * Special state:
508  *
509  * System-calls and anything external will use task_rq_lock() which acquires
510  * both p->pi_lock and rq->lock. As a consequence the state they change is
511  * stable while holding either lock:
512  *
513  *  - sched_setaffinity()/
514  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
515  *  - set_user_nice():		p->se.load, p->*prio
516  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
517  *				p->se.load, p->rt_priority,
518  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
519  *  - sched_setnuma():		p->numa_preferred_nid
520  *  - sched_move_task():	p->sched_task_group
521  *  - uclamp_update_active()	p->uclamp*
522  *
523  * p->state <- TASK_*:
524  *
525  *   is changed locklessly using set_current_state(), __set_current_state() or
526  *   set_special_state(), see their respective comments, or by
527  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
528  *   concurrent self.
529  *
530  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
531  *
532  *   is set by activate_task() and cleared by deactivate_task(), under
533  *   rq->lock. Non-zero indicates the task is runnable, the special
534  *   ON_RQ_MIGRATING state is used for migration without holding both
535  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
536  *
537  * p->on_cpu <- { 0, 1 }:
538  *
539  *   is set by prepare_task() and cleared by finish_task() such that it will be
540  *   set before p is scheduled-in and cleared after p is scheduled-out, both
541  *   under rq->lock. Non-zero indicates the task is running on its CPU.
542  *
543  *   [ The astute reader will observe that it is possible for two tasks on one
544  *     CPU to have ->on_cpu = 1 at the same time. ]
545  *
546  * task_cpu(p): is changed by set_task_cpu(), the rules are:
547  *
548  *  - Don't call set_task_cpu() on a blocked task:
549  *
550  *    We don't care what CPU we're not running on, this simplifies hotplug,
551  *    the CPU assignment of blocked tasks isn't required to be valid.
552  *
553  *  - for try_to_wake_up(), called under p->pi_lock:
554  *
555  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
556  *
557  *  - for migration called under rq->lock:
558  *    [ see task_on_rq_migrating() in task_rq_lock() ]
559  *
560  *    o move_queued_task()
561  *    o detach_task()
562  *
563  *  - for migration called under double_rq_lock():
564  *
565  *    o __migrate_swap_task()
566  *    o push_rt_task() / pull_rt_task()
567  *    o push_dl_task() / pull_dl_task()
568  *    o dl_task_offline_migration()
569  *
570  */
571 
572 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
573 {
574 	raw_spinlock_t *lock;
575 
576 	/* Matches synchronize_rcu() in __sched_core_enable() */
577 	preempt_disable();
578 	if (sched_core_disabled()) {
579 		raw_spin_lock_nested(&rq->__lock, subclass);
580 		/* preempt_count *MUST* be > 1 */
581 		preempt_enable_no_resched();
582 		return;
583 	}
584 
585 	for (;;) {
586 		lock = __rq_lockp(rq);
587 		raw_spin_lock_nested(lock, subclass);
588 		if (likely(lock == __rq_lockp(rq))) {
589 			/* preempt_count *MUST* be > 1 */
590 			preempt_enable_no_resched();
591 			return;
592 		}
593 		raw_spin_unlock(lock);
594 	}
595 }
596 
597 bool raw_spin_rq_trylock(struct rq *rq)
598 {
599 	raw_spinlock_t *lock;
600 	bool ret;
601 
602 	/* Matches synchronize_rcu() in __sched_core_enable() */
603 	preempt_disable();
604 	if (sched_core_disabled()) {
605 		ret = raw_spin_trylock(&rq->__lock);
606 		preempt_enable();
607 		return ret;
608 	}
609 
610 	for (;;) {
611 		lock = __rq_lockp(rq);
612 		ret = raw_spin_trylock(lock);
613 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
614 			preempt_enable();
615 			return ret;
616 		}
617 		raw_spin_unlock(lock);
618 	}
619 }
620 
621 void raw_spin_rq_unlock(struct rq *rq)
622 {
623 	raw_spin_unlock(rq_lockp(rq));
624 }
625 
626 #ifdef CONFIG_SMP
627 /*
628  * double_rq_lock - safely lock two runqueues
629  */
630 void double_rq_lock(struct rq *rq1, struct rq *rq2)
631 {
632 	lockdep_assert_irqs_disabled();
633 
634 	if (rq_order_less(rq2, rq1))
635 		swap(rq1, rq2);
636 
637 	raw_spin_rq_lock(rq1);
638 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
639 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
640 
641 	double_rq_clock_clear_update(rq1, rq2);
642 }
643 #endif
644 
645 /*
646  * __task_rq_lock - lock the rq @p resides on.
647  */
648 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
649 	__acquires(rq->lock)
650 {
651 	struct rq *rq;
652 
653 	lockdep_assert_held(&p->pi_lock);
654 
655 	for (;;) {
656 		rq = task_rq(p);
657 		raw_spin_rq_lock(rq);
658 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
659 			rq_pin_lock(rq, rf);
660 			return rq;
661 		}
662 		raw_spin_rq_unlock(rq);
663 
664 		while (unlikely(task_on_rq_migrating(p)))
665 			cpu_relax();
666 	}
667 }
668 
669 /*
670  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
671  */
672 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
673 	__acquires(p->pi_lock)
674 	__acquires(rq->lock)
675 {
676 	struct rq *rq;
677 
678 	for (;;) {
679 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
680 		rq = task_rq(p);
681 		raw_spin_rq_lock(rq);
682 		/*
683 		 *	move_queued_task()		task_rq_lock()
684 		 *
685 		 *	ACQUIRE (rq->lock)
686 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
687 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
688 		 *	[S] ->cpu = new_cpu		[L] task_rq()
689 		 *					[L] ->on_rq
690 		 *	RELEASE (rq->lock)
691 		 *
692 		 * If we observe the old CPU in task_rq_lock(), the acquire of
693 		 * the old rq->lock will fully serialize against the stores.
694 		 *
695 		 * If we observe the new CPU in task_rq_lock(), the address
696 		 * dependency headed by '[L] rq = task_rq()' and the acquire
697 		 * will pair with the WMB to ensure we then also see migrating.
698 		 */
699 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
700 			rq_pin_lock(rq, rf);
701 			return rq;
702 		}
703 		raw_spin_rq_unlock(rq);
704 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
705 
706 		while (unlikely(task_on_rq_migrating(p)))
707 			cpu_relax();
708 	}
709 }
710 
711 /*
712  * RQ-clock updating methods:
713  */
714 
715 static void update_rq_clock_task(struct rq *rq, s64 delta)
716 {
717 /*
718  * In theory, the compile should just see 0 here, and optimize out the call
719  * to sched_rt_avg_update. But I don't trust it...
720  */
721 	s64 __maybe_unused steal = 0, irq_delta = 0;
722 
723 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
724 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
725 
726 	/*
727 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
728 	 * this case when a previous update_rq_clock() happened inside a
729 	 * {soft,}IRQ region.
730 	 *
731 	 * When this happens, we stop ->clock_task and only update the
732 	 * prev_irq_time stamp to account for the part that fit, so that a next
733 	 * update will consume the rest. This ensures ->clock_task is
734 	 * monotonic.
735 	 *
736 	 * It does however cause some slight miss-attribution of {soft,}IRQ
737 	 * time, a more accurate solution would be to update the irq_time using
738 	 * the current rq->clock timestamp, except that would require using
739 	 * atomic ops.
740 	 */
741 	if (irq_delta > delta)
742 		irq_delta = delta;
743 
744 	rq->prev_irq_time += irq_delta;
745 	delta -= irq_delta;
746 	delayacct_irq(rq->curr, irq_delta);
747 #endif
748 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
749 	if (static_key_false((&paravirt_steal_rq_enabled))) {
750 		steal = paravirt_steal_clock(cpu_of(rq));
751 		steal -= rq->prev_steal_time_rq;
752 
753 		if (unlikely(steal > delta))
754 			steal = delta;
755 
756 		rq->prev_steal_time_rq += steal;
757 		delta -= steal;
758 	}
759 #endif
760 
761 	rq->clock_task += delta;
762 
763 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
764 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
765 		update_irq_load_avg(rq, irq_delta + steal);
766 #endif
767 	update_rq_clock_pelt(rq, delta);
768 }
769 
770 void update_rq_clock(struct rq *rq)
771 {
772 	s64 delta;
773 
774 	lockdep_assert_rq_held(rq);
775 
776 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
777 		return;
778 
779 #ifdef CONFIG_SCHED_DEBUG
780 	if (sched_feat(WARN_DOUBLE_CLOCK))
781 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
782 	rq->clock_update_flags |= RQCF_UPDATED;
783 #endif
784 
785 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
786 	if (delta < 0)
787 		return;
788 	rq->clock += delta;
789 	update_rq_clock_task(rq, delta);
790 }
791 
792 #ifdef CONFIG_SCHED_HRTICK
793 /*
794  * Use HR-timers to deliver accurate preemption points.
795  */
796 
797 static void hrtick_clear(struct rq *rq)
798 {
799 	if (hrtimer_active(&rq->hrtick_timer))
800 		hrtimer_cancel(&rq->hrtick_timer);
801 }
802 
803 /*
804  * High-resolution timer tick.
805  * Runs from hardirq context with interrupts disabled.
806  */
807 static enum hrtimer_restart hrtick(struct hrtimer *timer)
808 {
809 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
810 	struct rq_flags rf;
811 
812 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
813 
814 	rq_lock(rq, &rf);
815 	update_rq_clock(rq);
816 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
817 	rq_unlock(rq, &rf);
818 
819 	return HRTIMER_NORESTART;
820 }
821 
822 #ifdef CONFIG_SMP
823 
824 static void __hrtick_restart(struct rq *rq)
825 {
826 	struct hrtimer *timer = &rq->hrtick_timer;
827 	ktime_t time = rq->hrtick_time;
828 
829 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
830 }
831 
832 /*
833  * called from hardirq (IPI) context
834  */
835 static void __hrtick_start(void *arg)
836 {
837 	struct rq *rq = arg;
838 	struct rq_flags rf;
839 
840 	rq_lock(rq, &rf);
841 	__hrtick_restart(rq);
842 	rq_unlock(rq, &rf);
843 }
844 
845 /*
846  * Called to set the hrtick timer state.
847  *
848  * called with rq->lock held and IRQs disabled
849  */
850 void hrtick_start(struct rq *rq, u64 delay)
851 {
852 	struct hrtimer *timer = &rq->hrtick_timer;
853 	s64 delta;
854 
855 	/*
856 	 * Don't schedule slices shorter than 10000ns, that just
857 	 * doesn't make sense and can cause timer DoS.
858 	 */
859 	delta = max_t(s64, delay, 10000LL);
860 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
861 
862 	if (rq == this_rq())
863 		__hrtick_restart(rq);
864 	else
865 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
866 }
867 
868 #else
869 /*
870  * Called to set the hrtick timer state.
871  *
872  * called with rq->lock held and IRQs disabled
873  */
874 void hrtick_start(struct rq *rq, u64 delay)
875 {
876 	/*
877 	 * Don't schedule slices shorter than 10000ns, that just
878 	 * doesn't make sense. Rely on vruntime for fairness.
879 	 */
880 	delay = max_t(u64, delay, 10000LL);
881 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
882 		      HRTIMER_MODE_REL_PINNED_HARD);
883 }
884 
885 #endif /* CONFIG_SMP */
886 
887 static void hrtick_rq_init(struct rq *rq)
888 {
889 #ifdef CONFIG_SMP
890 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
891 #endif
892 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
893 	rq->hrtick_timer.function = hrtick;
894 }
895 #else	/* CONFIG_SCHED_HRTICK */
896 static inline void hrtick_clear(struct rq *rq)
897 {
898 }
899 
900 static inline void hrtick_rq_init(struct rq *rq)
901 {
902 }
903 #endif	/* CONFIG_SCHED_HRTICK */
904 
905 /*
906  * try_cmpxchg based fetch_or() macro so it works for different integer types:
907  */
908 #define fetch_or(ptr, mask)						\
909 	({								\
910 		typeof(ptr) _ptr = (ptr);				\
911 		typeof(mask) _mask = (mask);				\
912 		typeof(*_ptr) _val = *_ptr;				\
913 									\
914 		do {							\
915 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
916 	_val;								\
917 })
918 
919 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
920 /*
921  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
922  * this avoids any races wrt polling state changes and thereby avoids
923  * spurious IPIs.
924  */
925 static inline bool set_nr_and_not_polling(struct task_struct *p)
926 {
927 	struct thread_info *ti = task_thread_info(p);
928 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
929 }
930 
931 /*
932  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
933  *
934  * If this returns true, then the idle task promises to call
935  * sched_ttwu_pending() and reschedule soon.
936  */
937 static bool set_nr_if_polling(struct task_struct *p)
938 {
939 	struct thread_info *ti = task_thread_info(p);
940 	typeof(ti->flags) val = READ_ONCE(ti->flags);
941 
942 	do {
943 		if (!(val & _TIF_POLLING_NRFLAG))
944 			return false;
945 		if (val & _TIF_NEED_RESCHED)
946 			return true;
947 	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
948 
949 	return true;
950 }
951 
952 #else
953 static inline bool set_nr_and_not_polling(struct task_struct *p)
954 {
955 	set_tsk_need_resched(p);
956 	return true;
957 }
958 
959 #ifdef CONFIG_SMP
960 static inline bool set_nr_if_polling(struct task_struct *p)
961 {
962 	return false;
963 }
964 #endif
965 #endif
966 
967 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
968 {
969 	struct wake_q_node *node = &task->wake_q;
970 
971 	/*
972 	 * Atomically grab the task, if ->wake_q is !nil already it means
973 	 * it's already queued (either by us or someone else) and will get the
974 	 * wakeup due to that.
975 	 *
976 	 * In order to ensure that a pending wakeup will observe our pending
977 	 * state, even in the failed case, an explicit smp_mb() must be used.
978 	 */
979 	smp_mb__before_atomic();
980 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
981 		return false;
982 
983 	/*
984 	 * The head is context local, there can be no concurrency.
985 	 */
986 	*head->lastp = node;
987 	head->lastp = &node->next;
988 	return true;
989 }
990 
991 /**
992  * wake_q_add() - queue a wakeup for 'later' waking.
993  * @head: the wake_q_head to add @task to
994  * @task: the task to queue for 'later' wakeup
995  *
996  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
997  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
998  * instantly.
999  *
1000  * This function must be used as-if it were wake_up_process(); IOW the task
1001  * must be ready to be woken at this location.
1002  */
1003 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1004 {
1005 	if (__wake_q_add(head, task))
1006 		get_task_struct(task);
1007 }
1008 
1009 /**
1010  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1011  * @head: the wake_q_head to add @task to
1012  * @task: the task to queue for 'later' wakeup
1013  *
1014  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1015  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1016  * instantly.
1017  *
1018  * This function must be used as-if it were wake_up_process(); IOW the task
1019  * must be ready to be woken at this location.
1020  *
1021  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1022  * that already hold reference to @task can call the 'safe' version and trust
1023  * wake_q to do the right thing depending whether or not the @task is already
1024  * queued for wakeup.
1025  */
1026 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1027 {
1028 	if (!__wake_q_add(head, task))
1029 		put_task_struct(task);
1030 }
1031 
1032 void wake_up_q(struct wake_q_head *head)
1033 {
1034 	struct wake_q_node *node = head->first;
1035 
1036 	while (node != WAKE_Q_TAIL) {
1037 		struct task_struct *task;
1038 
1039 		task = container_of(node, struct task_struct, wake_q);
1040 		/* Task can safely be re-inserted now: */
1041 		node = node->next;
1042 		task->wake_q.next = NULL;
1043 
1044 		/*
1045 		 * wake_up_process() executes a full barrier, which pairs with
1046 		 * the queueing in wake_q_add() so as not to miss wakeups.
1047 		 */
1048 		wake_up_process(task);
1049 		put_task_struct(task);
1050 	}
1051 }
1052 
1053 /*
1054  * resched_curr - mark rq's current task 'to be rescheduled now'.
1055  *
1056  * On UP this means the setting of the need_resched flag, on SMP it
1057  * might also involve a cross-CPU call to trigger the scheduler on
1058  * the target CPU.
1059  */
1060 void resched_curr(struct rq *rq)
1061 {
1062 	struct task_struct *curr = rq->curr;
1063 	int cpu;
1064 
1065 	lockdep_assert_rq_held(rq);
1066 
1067 	if (test_tsk_need_resched(curr))
1068 		return;
1069 
1070 	cpu = cpu_of(rq);
1071 
1072 	if (cpu == smp_processor_id()) {
1073 		set_tsk_need_resched(curr);
1074 		set_preempt_need_resched();
1075 		return;
1076 	}
1077 
1078 	if (set_nr_and_not_polling(curr))
1079 		smp_send_reschedule(cpu);
1080 	else
1081 		trace_sched_wake_idle_without_ipi(cpu);
1082 }
1083 
1084 void resched_cpu(int cpu)
1085 {
1086 	struct rq *rq = cpu_rq(cpu);
1087 	unsigned long flags;
1088 
1089 	raw_spin_rq_lock_irqsave(rq, flags);
1090 	if (cpu_online(cpu) || cpu == smp_processor_id())
1091 		resched_curr(rq);
1092 	raw_spin_rq_unlock_irqrestore(rq, flags);
1093 }
1094 
1095 #ifdef CONFIG_SMP
1096 #ifdef CONFIG_NO_HZ_COMMON
1097 /*
1098  * In the semi idle case, use the nearest busy CPU for migrating timers
1099  * from an idle CPU.  This is good for power-savings.
1100  *
1101  * We don't do similar optimization for completely idle system, as
1102  * selecting an idle CPU will add more delays to the timers than intended
1103  * (as that CPU's timer base may not be up to date wrt jiffies etc).
1104  */
1105 int get_nohz_timer_target(void)
1106 {
1107 	int i, cpu = smp_processor_id(), default_cpu = -1;
1108 	struct sched_domain *sd;
1109 	const struct cpumask *hk_mask;
1110 
1111 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1112 		if (!idle_cpu(cpu))
1113 			return cpu;
1114 		default_cpu = cpu;
1115 	}
1116 
1117 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1118 
1119 	guard(rcu)();
1120 
1121 	for_each_domain(cpu, sd) {
1122 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1123 			if (cpu == i)
1124 				continue;
1125 
1126 			if (!idle_cpu(i))
1127 				return i;
1128 		}
1129 	}
1130 
1131 	if (default_cpu == -1)
1132 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1133 
1134 	return default_cpu;
1135 }
1136 
1137 /*
1138  * When add_timer_on() enqueues a timer into the timer wheel of an
1139  * idle CPU then this timer might expire before the next timer event
1140  * which is scheduled to wake up that CPU. In case of a completely
1141  * idle system the next event might even be infinite time into the
1142  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1143  * leaves the inner idle loop so the newly added timer is taken into
1144  * account when the CPU goes back to idle and evaluates the timer
1145  * wheel for the next timer event.
1146  */
1147 static void wake_up_idle_cpu(int cpu)
1148 {
1149 	struct rq *rq = cpu_rq(cpu);
1150 
1151 	if (cpu == smp_processor_id())
1152 		return;
1153 
1154 	/*
1155 	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1156 	 * part of the idle loop. This forces an exit from the idle loop
1157 	 * and a round trip to schedule(). Now this could be optimized
1158 	 * because a simple new idle loop iteration is enough to
1159 	 * re-evaluate the next tick. Provided some re-ordering of tick
1160 	 * nohz functions that would need to follow TIF_NR_POLLING
1161 	 * clearing:
1162 	 *
1163 	 * - On most architectures, a simple fetch_or on ti::flags with a
1164 	 *   "0" value would be enough to know if an IPI needs to be sent.
1165 	 *
1166 	 * - x86 needs to perform a last need_resched() check between
1167 	 *   monitor and mwait which doesn't take timers into account.
1168 	 *   There a dedicated TIF_TIMER flag would be required to
1169 	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1170 	 *   before mwait().
1171 	 *
1172 	 * However, remote timer enqueue is not such a frequent event
1173 	 * and testing of the above solutions didn't appear to report
1174 	 * much benefits.
1175 	 */
1176 	if (set_nr_and_not_polling(rq->idle))
1177 		smp_send_reschedule(cpu);
1178 	else
1179 		trace_sched_wake_idle_without_ipi(cpu);
1180 }
1181 
1182 static bool wake_up_full_nohz_cpu(int cpu)
1183 {
1184 	/*
1185 	 * We just need the target to call irq_exit() and re-evaluate
1186 	 * the next tick. The nohz full kick at least implies that.
1187 	 * If needed we can still optimize that later with an
1188 	 * empty IRQ.
1189 	 */
1190 	if (cpu_is_offline(cpu))
1191 		return true;  /* Don't try to wake offline CPUs. */
1192 	if (tick_nohz_full_cpu(cpu)) {
1193 		if (cpu != smp_processor_id() ||
1194 		    tick_nohz_tick_stopped())
1195 			tick_nohz_full_kick_cpu(cpu);
1196 		return true;
1197 	}
1198 
1199 	return false;
1200 }
1201 
1202 /*
1203  * Wake up the specified CPU.  If the CPU is going offline, it is the
1204  * caller's responsibility to deal with the lost wakeup, for example,
1205  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1206  */
1207 void wake_up_nohz_cpu(int cpu)
1208 {
1209 	if (!wake_up_full_nohz_cpu(cpu))
1210 		wake_up_idle_cpu(cpu);
1211 }
1212 
1213 static void nohz_csd_func(void *info)
1214 {
1215 	struct rq *rq = info;
1216 	int cpu = cpu_of(rq);
1217 	unsigned int flags;
1218 
1219 	/*
1220 	 * Release the rq::nohz_csd.
1221 	 */
1222 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1223 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1224 
1225 	rq->idle_balance = idle_cpu(cpu);
1226 	if (rq->idle_balance && !need_resched()) {
1227 		rq->nohz_idle_balance = flags;
1228 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1229 	}
1230 }
1231 
1232 #endif /* CONFIG_NO_HZ_COMMON */
1233 
1234 #ifdef CONFIG_NO_HZ_FULL
1235 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1236 {
1237 	if (rq->nr_running != 1)
1238 		return false;
1239 
1240 	if (p->sched_class != &fair_sched_class)
1241 		return false;
1242 
1243 	if (!task_on_rq_queued(p))
1244 		return false;
1245 
1246 	return true;
1247 }
1248 
1249 bool sched_can_stop_tick(struct rq *rq)
1250 {
1251 	int fifo_nr_running;
1252 
1253 	/* Deadline tasks, even if single, need the tick */
1254 	if (rq->dl.dl_nr_running)
1255 		return false;
1256 
1257 	/*
1258 	 * If there are more than one RR tasks, we need the tick to affect the
1259 	 * actual RR behaviour.
1260 	 */
1261 	if (rq->rt.rr_nr_running) {
1262 		if (rq->rt.rr_nr_running == 1)
1263 			return true;
1264 		else
1265 			return false;
1266 	}
1267 
1268 	/*
1269 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1270 	 * forced preemption between FIFO tasks.
1271 	 */
1272 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1273 	if (fifo_nr_running)
1274 		return true;
1275 
1276 	/*
1277 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1278 	 * if there's more than one we need the tick for involuntary
1279 	 * preemption.
1280 	 */
1281 	if (rq->nr_running > 1)
1282 		return false;
1283 
1284 	/*
1285 	 * If there is one task and it has CFS runtime bandwidth constraints
1286 	 * and it's on the cpu now we don't want to stop the tick.
1287 	 * This check prevents clearing the bit if a newly enqueued task here is
1288 	 * dequeued by migrating while the constrained task continues to run.
1289 	 * E.g. going from 2->1 without going through pick_next_task().
1290 	 */
1291 	if (__need_bw_check(rq, rq->curr)) {
1292 		if (cfs_task_bw_constrained(rq->curr))
1293 			return false;
1294 	}
1295 
1296 	return true;
1297 }
1298 #endif /* CONFIG_NO_HZ_FULL */
1299 #endif /* CONFIG_SMP */
1300 
1301 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1302 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1303 /*
1304  * Iterate task_group tree rooted at *from, calling @down when first entering a
1305  * node and @up when leaving it for the final time.
1306  *
1307  * Caller must hold rcu_lock or sufficient equivalent.
1308  */
1309 int walk_tg_tree_from(struct task_group *from,
1310 			     tg_visitor down, tg_visitor up, void *data)
1311 {
1312 	struct task_group *parent, *child;
1313 	int ret;
1314 
1315 	parent = from;
1316 
1317 down:
1318 	ret = (*down)(parent, data);
1319 	if (ret)
1320 		goto out;
1321 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1322 		parent = child;
1323 		goto down;
1324 
1325 up:
1326 		continue;
1327 	}
1328 	ret = (*up)(parent, data);
1329 	if (ret || parent == from)
1330 		goto out;
1331 
1332 	child = parent;
1333 	parent = parent->parent;
1334 	if (parent)
1335 		goto up;
1336 out:
1337 	return ret;
1338 }
1339 
1340 int tg_nop(struct task_group *tg, void *data)
1341 {
1342 	return 0;
1343 }
1344 #endif
1345 
1346 void set_load_weight(struct task_struct *p, bool update_load)
1347 {
1348 	int prio = p->static_prio - MAX_RT_PRIO;
1349 	struct load_weight lw;
1350 
1351 	if (task_has_idle_policy(p)) {
1352 		lw.weight = scale_load(WEIGHT_IDLEPRIO);
1353 		lw.inv_weight = WMULT_IDLEPRIO;
1354 	} else {
1355 		lw.weight = scale_load(sched_prio_to_weight[prio]);
1356 		lw.inv_weight = sched_prio_to_wmult[prio];
1357 	}
1358 
1359 	/*
1360 	 * SCHED_OTHER tasks have to update their load when changing their
1361 	 * weight
1362 	 */
1363 	if (update_load && p->sched_class == &fair_sched_class)
1364 		reweight_task(p, &lw);
1365 	else
1366 		p->se.load = lw;
1367 }
1368 
1369 #ifdef CONFIG_UCLAMP_TASK
1370 /*
1371  * Serializes updates of utilization clamp values
1372  *
1373  * The (slow-path) user-space triggers utilization clamp value updates which
1374  * can require updates on (fast-path) scheduler's data structures used to
1375  * support enqueue/dequeue operations.
1376  * While the per-CPU rq lock protects fast-path update operations, user-space
1377  * requests are serialized using a mutex to reduce the risk of conflicting
1378  * updates or API abuses.
1379  */
1380 static DEFINE_MUTEX(uclamp_mutex);
1381 
1382 /* Max allowed minimum utilization */
1383 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1384 
1385 /* Max allowed maximum utilization */
1386 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1387 
1388 /*
1389  * By default RT tasks run at the maximum performance point/capacity of the
1390  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1391  * SCHED_CAPACITY_SCALE.
1392  *
1393  * This knob allows admins to change the default behavior when uclamp is being
1394  * used. In battery powered devices, particularly, running at the maximum
1395  * capacity and frequency will increase energy consumption and shorten the
1396  * battery life.
1397  *
1398  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1399  *
1400  * This knob will not override the system default sched_util_clamp_min defined
1401  * above.
1402  */
1403 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1404 
1405 /* All clamps are required to be less or equal than these values */
1406 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1407 
1408 /*
1409  * This static key is used to reduce the uclamp overhead in the fast path. It
1410  * primarily disables the call to uclamp_rq_{inc, dec}() in
1411  * enqueue/dequeue_task().
1412  *
1413  * This allows users to continue to enable uclamp in their kernel config with
1414  * minimum uclamp overhead in the fast path.
1415  *
1416  * As soon as userspace modifies any of the uclamp knobs, the static key is
1417  * enabled, since we have an actual users that make use of uclamp
1418  * functionality.
1419  *
1420  * The knobs that would enable this static key are:
1421  *
1422  *   * A task modifying its uclamp value with sched_setattr().
1423  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1424  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1425  */
1426 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1427 
1428 static inline unsigned int
1429 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1430 		  unsigned int clamp_value)
1431 {
1432 	/*
1433 	 * Avoid blocked utilization pushing up the frequency when we go
1434 	 * idle (which drops the max-clamp) by retaining the last known
1435 	 * max-clamp.
1436 	 */
1437 	if (clamp_id == UCLAMP_MAX) {
1438 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1439 		return clamp_value;
1440 	}
1441 
1442 	return uclamp_none(UCLAMP_MIN);
1443 }
1444 
1445 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1446 				     unsigned int clamp_value)
1447 {
1448 	/* Reset max-clamp retention only on idle exit */
1449 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1450 		return;
1451 
1452 	uclamp_rq_set(rq, clamp_id, clamp_value);
1453 }
1454 
1455 static inline
1456 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1457 				   unsigned int clamp_value)
1458 {
1459 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1460 	int bucket_id = UCLAMP_BUCKETS - 1;
1461 
1462 	/*
1463 	 * Since both min and max clamps are max aggregated, find the
1464 	 * top most bucket with tasks in.
1465 	 */
1466 	for ( ; bucket_id >= 0; bucket_id--) {
1467 		if (!bucket[bucket_id].tasks)
1468 			continue;
1469 		return bucket[bucket_id].value;
1470 	}
1471 
1472 	/* No tasks -- default clamp values */
1473 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1474 }
1475 
1476 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1477 {
1478 	unsigned int default_util_min;
1479 	struct uclamp_se *uc_se;
1480 
1481 	lockdep_assert_held(&p->pi_lock);
1482 
1483 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1484 
1485 	/* Only sync if user didn't override the default */
1486 	if (uc_se->user_defined)
1487 		return;
1488 
1489 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1490 	uclamp_se_set(uc_se, default_util_min, false);
1491 }
1492 
1493 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1494 {
1495 	if (!rt_task(p))
1496 		return;
1497 
1498 	/* Protect updates to p->uclamp_* */
1499 	guard(task_rq_lock)(p);
1500 	__uclamp_update_util_min_rt_default(p);
1501 }
1502 
1503 static inline struct uclamp_se
1504 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1505 {
1506 	/* Copy by value as we could modify it */
1507 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1508 #ifdef CONFIG_UCLAMP_TASK_GROUP
1509 	unsigned int tg_min, tg_max, value;
1510 
1511 	/*
1512 	 * Tasks in autogroups or root task group will be
1513 	 * restricted by system defaults.
1514 	 */
1515 	if (task_group_is_autogroup(task_group(p)))
1516 		return uc_req;
1517 	if (task_group(p) == &root_task_group)
1518 		return uc_req;
1519 
1520 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1521 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1522 	value = uc_req.value;
1523 	value = clamp(value, tg_min, tg_max);
1524 	uclamp_se_set(&uc_req, value, false);
1525 #endif
1526 
1527 	return uc_req;
1528 }
1529 
1530 /*
1531  * The effective clamp bucket index of a task depends on, by increasing
1532  * priority:
1533  * - the task specific clamp value, when explicitly requested from userspace
1534  * - the task group effective clamp value, for tasks not either in the root
1535  *   group or in an autogroup
1536  * - the system default clamp value, defined by the sysadmin
1537  */
1538 static inline struct uclamp_se
1539 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1540 {
1541 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1542 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1543 
1544 	/* System default restrictions always apply */
1545 	if (unlikely(uc_req.value > uc_max.value))
1546 		return uc_max;
1547 
1548 	return uc_req;
1549 }
1550 
1551 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1552 {
1553 	struct uclamp_se uc_eff;
1554 
1555 	/* Task currently refcounted: use back-annotated (effective) value */
1556 	if (p->uclamp[clamp_id].active)
1557 		return (unsigned long)p->uclamp[clamp_id].value;
1558 
1559 	uc_eff = uclamp_eff_get(p, clamp_id);
1560 
1561 	return (unsigned long)uc_eff.value;
1562 }
1563 
1564 /*
1565  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1566  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1567  * updates the rq's clamp value if required.
1568  *
1569  * Tasks can have a task-specific value requested from user-space, track
1570  * within each bucket the maximum value for tasks refcounted in it.
1571  * This "local max aggregation" allows to track the exact "requested" value
1572  * for each bucket when all its RUNNABLE tasks require the same clamp.
1573  */
1574 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1575 				    enum uclamp_id clamp_id)
1576 {
1577 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1578 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1579 	struct uclamp_bucket *bucket;
1580 
1581 	lockdep_assert_rq_held(rq);
1582 
1583 	/* Update task effective clamp */
1584 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1585 
1586 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1587 	bucket->tasks++;
1588 	uc_se->active = true;
1589 
1590 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1591 
1592 	/*
1593 	 * Local max aggregation: rq buckets always track the max
1594 	 * "requested" clamp value of its RUNNABLE tasks.
1595 	 */
1596 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1597 		bucket->value = uc_se->value;
1598 
1599 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1600 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1601 }
1602 
1603 /*
1604  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1605  * is released. If this is the last task reference counting the rq's max
1606  * active clamp value, then the rq's clamp value is updated.
1607  *
1608  * Both refcounted tasks and rq's cached clamp values are expected to be
1609  * always valid. If it's detected they are not, as defensive programming,
1610  * enforce the expected state and warn.
1611  */
1612 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1613 				    enum uclamp_id clamp_id)
1614 {
1615 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1616 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1617 	struct uclamp_bucket *bucket;
1618 	unsigned int bkt_clamp;
1619 	unsigned int rq_clamp;
1620 
1621 	lockdep_assert_rq_held(rq);
1622 
1623 	/*
1624 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1625 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1626 	 *
1627 	 * In this case the uc_se->active flag should be false since no uclamp
1628 	 * accounting was performed at enqueue time and we can just return
1629 	 * here.
1630 	 *
1631 	 * Need to be careful of the following enqueue/dequeue ordering
1632 	 * problem too
1633 	 *
1634 	 *	enqueue(taskA)
1635 	 *	// sched_uclamp_used gets enabled
1636 	 *	enqueue(taskB)
1637 	 *	dequeue(taskA)
1638 	 *	// Must not decrement bucket->tasks here
1639 	 *	dequeue(taskB)
1640 	 *
1641 	 * where we could end up with stale data in uc_se and
1642 	 * bucket[uc_se->bucket_id].
1643 	 *
1644 	 * The following check here eliminates the possibility of such race.
1645 	 */
1646 	if (unlikely(!uc_se->active))
1647 		return;
1648 
1649 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1650 
1651 	SCHED_WARN_ON(!bucket->tasks);
1652 	if (likely(bucket->tasks))
1653 		bucket->tasks--;
1654 
1655 	uc_se->active = false;
1656 
1657 	/*
1658 	 * Keep "local max aggregation" simple and accept to (possibly)
1659 	 * overboost some RUNNABLE tasks in the same bucket.
1660 	 * The rq clamp bucket value is reset to its base value whenever
1661 	 * there are no more RUNNABLE tasks refcounting it.
1662 	 */
1663 	if (likely(bucket->tasks))
1664 		return;
1665 
1666 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1667 	/*
1668 	 * Defensive programming: this should never happen. If it happens,
1669 	 * e.g. due to future modification, warn and fix up the expected value.
1670 	 */
1671 	SCHED_WARN_ON(bucket->value > rq_clamp);
1672 	if (bucket->value >= rq_clamp) {
1673 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1674 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1675 	}
1676 }
1677 
1678 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1679 {
1680 	enum uclamp_id clamp_id;
1681 
1682 	/*
1683 	 * Avoid any overhead until uclamp is actually used by the userspace.
1684 	 *
1685 	 * The condition is constructed such that a NOP is generated when
1686 	 * sched_uclamp_used is disabled.
1687 	 */
1688 	if (!static_branch_unlikely(&sched_uclamp_used))
1689 		return;
1690 
1691 	if (unlikely(!p->sched_class->uclamp_enabled))
1692 		return;
1693 
1694 	for_each_clamp_id(clamp_id)
1695 		uclamp_rq_inc_id(rq, p, clamp_id);
1696 
1697 	/* Reset clamp idle holding when there is one RUNNABLE task */
1698 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1699 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1700 }
1701 
1702 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1703 {
1704 	enum uclamp_id clamp_id;
1705 
1706 	/*
1707 	 * Avoid any overhead until uclamp is actually used by the userspace.
1708 	 *
1709 	 * The condition is constructed such that a NOP is generated when
1710 	 * sched_uclamp_used is disabled.
1711 	 */
1712 	if (!static_branch_unlikely(&sched_uclamp_used))
1713 		return;
1714 
1715 	if (unlikely(!p->sched_class->uclamp_enabled))
1716 		return;
1717 
1718 	for_each_clamp_id(clamp_id)
1719 		uclamp_rq_dec_id(rq, p, clamp_id);
1720 }
1721 
1722 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1723 				      enum uclamp_id clamp_id)
1724 {
1725 	if (!p->uclamp[clamp_id].active)
1726 		return;
1727 
1728 	uclamp_rq_dec_id(rq, p, clamp_id);
1729 	uclamp_rq_inc_id(rq, p, clamp_id);
1730 
1731 	/*
1732 	 * Make sure to clear the idle flag if we've transiently reached 0
1733 	 * active tasks on rq.
1734 	 */
1735 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1736 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1737 }
1738 
1739 static inline void
1740 uclamp_update_active(struct task_struct *p)
1741 {
1742 	enum uclamp_id clamp_id;
1743 	struct rq_flags rf;
1744 	struct rq *rq;
1745 
1746 	/*
1747 	 * Lock the task and the rq where the task is (or was) queued.
1748 	 *
1749 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1750 	 * price to pay to safely serialize util_{min,max} updates with
1751 	 * enqueues, dequeues and migration operations.
1752 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1753 	 */
1754 	rq = task_rq_lock(p, &rf);
1755 
1756 	/*
1757 	 * Setting the clamp bucket is serialized by task_rq_lock().
1758 	 * If the task is not yet RUNNABLE and its task_struct is not
1759 	 * affecting a valid clamp bucket, the next time it's enqueued,
1760 	 * it will already see the updated clamp bucket value.
1761 	 */
1762 	for_each_clamp_id(clamp_id)
1763 		uclamp_rq_reinc_id(rq, p, clamp_id);
1764 
1765 	task_rq_unlock(rq, p, &rf);
1766 }
1767 
1768 #ifdef CONFIG_UCLAMP_TASK_GROUP
1769 static inline void
1770 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1771 {
1772 	struct css_task_iter it;
1773 	struct task_struct *p;
1774 
1775 	css_task_iter_start(css, 0, &it);
1776 	while ((p = css_task_iter_next(&it)))
1777 		uclamp_update_active(p);
1778 	css_task_iter_end(&it);
1779 }
1780 
1781 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1782 #endif
1783 
1784 #ifdef CONFIG_SYSCTL
1785 #ifdef CONFIG_UCLAMP_TASK_GROUP
1786 static void uclamp_update_root_tg(void)
1787 {
1788 	struct task_group *tg = &root_task_group;
1789 
1790 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1791 		      sysctl_sched_uclamp_util_min, false);
1792 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1793 		      sysctl_sched_uclamp_util_max, false);
1794 
1795 	guard(rcu)();
1796 	cpu_util_update_eff(&root_task_group.css);
1797 }
1798 #else
1799 static void uclamp_update_root_tg(void) { }
1800 #endif
1801 
1802 static void uclamp_sync_util_min_rt_default(void)
1803 {
1804 	struct task_struct *g, *p;
1805 
1806 	/*
1807 	 * copy_process()			sysctl_uclamp
1808 	 *					  uclamp_min_rt = X;
1809 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1810 	 *   // link thread			  smp_mb__after_spinlock()
1811 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1812 	 *   sched_post_fork()			  for_each_process_thread()
1813 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1814 	 *
1815 	 * Ensures that either sched_post_fork() will observe the new
1816 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1817 	 * task.
1818 	 */
1819 	read_lock(&tasklist_lock);
1820 	smp_mb__after_spinlock();
1821 	read_unlock(&tasklist_lock);
1822 
1823 	guard(rcu)();
1824 	for_each_process_thread(g, p)
1825 		uclamp_update_util_min_rt_default(p);
1826 }
1827 
1828 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1829 				void *buffer, size_t *lenp, loff_t *ppos)
1830 {
1831 	bool update_root_tg = false;
1832 	int old_min, old_max, old_min_rt;
1833 	int result;
1834 
1835 	guard(mutex)(&uclamp_mutex);
1836 
1837 	old_min = sysctl_sched_uclamp_util_min;
1838 	old_max = sysctl_sched_uclamp_util_max;
1839 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1840 
1841 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1842 	if (result)
1843 		goto undo;
1844 	if (!write)
1845 		return 0;
1846 
1847 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1848 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1849 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1850 
1851 		result = -EINVAL;
1852 		goto undo;
1853 	}
1854 
1855 	if (old_min != sysctl_sched_uclamp_util_min) {
1856 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1857 			      sysctl_sched_uclamp_util_min, false);
1858 		update_root_tg = true;
1859 	}
1860 	if (old_max != sysctl_sched_uclamp_util_max) {
1861 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1862 			      sysctl_sched_uclamp_util_max, false);
1863 		update_root_tg = true;
1864 	}
1865 
1866 	if (update_root_tg) {
1867 		static_branch_enable(&sched_uclamp_used);
1868 		uclamp_update_root_tg();
1869 	}
1870 
1871 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1872 		static_branch_enable(&sched_uclamp_used);
1873 		uclamp_sync_util_min_rt_default();
1874 	}
1875 
1876 	/*
1877 	 * We update all RUNNABLE tasks only when task groups are in use.
1878 	 * Otherwise, keep it simple and do just a lazy update at each next
1879 	 * task enqueue time.
1880 	 */
1881 	return 0;
1882 
1883 undo:
1884 	sysctl_sched_uclamp_util_min = old_min;
1885 	sysctl_sched_uclamp_util_max = old_max;
1886 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1887 	return result;
1888 }
1889 #endif
1890 
1891 static void uclamp_fork(struct task_struct *p)
1892 {
1893 	enum uclamp_id clamp_id;
1894 
1895 	/*
1896 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1897 	 * as the task is still at its early fork stages.
1898 	 */
1899 	for_each_clamp_id(clamp_id)
1900 		p->uclamp[clamp_id].active = false;
1901 
1902 	if (likely(!p->sched_reset_on_fork))
1903 		return;
1904 
1905 	for_each_clamp_id(clamp_id) {
1906 		uclamp_se_set(&p->uclamp_req[clamp_id],
1907 			      uclamp_none(clamp_id), false);
1908 	}
1909 }
1910 
1911 static void uclamp_post_fork(struct task_struct *p)
1912 {
1913 	uclamp_update_util_min_rt_default(p);
1914 }
1915 
1916 static void __init init_uclamp_rq(struct rq *rq)
1917 {
1918 	enum uclamp_id clamp_id;
1919 	struct uclamp_rq *uc_rq = rq->uclamp;
1920 
1921 	for_each_clamp_id(clamp_id) {
1922 		uc_rq[clamp_id] = (struct uclamp_rq) {
1923 			.value = uclamp_none(clamp_id)
1924 		};
1925 	}
1926 
1927 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1928 }
1929 
1930 static void __init init_uclamp(void)
1931 {
1932 	struct uclamp_se uc_max = {};
1933 	enum uclamp_id clamp_id;
1934 	int cpu;
1935 
1936 	for_each_possible_cpu(cpu)
1937 		init_uclamp_rq(cpu_rq(cpu));
1938 
1939 	for_each_clamp_id(clamp_id) {
1940 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1941 			      uclamp_none(clamp_id), false);
1942 	}
1943 
1944 	/* System defaults allow max clamp values for both indexes */
1945 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1946 	for_each_clamp_id(clamp_id) {
1947 		uclamp_default[clamp_id] = uc_max;
1948 #ifdef CONFIG_UCLAMP_TASK_GROUP
1949 		root_task_group.uclamp_req[clamp_id] = uc_max;
1950 		root_task_group.uclamp[clamp_id] = uc_max;
1951 #endif
1952 	}
1953 }
1954 
1955 #else /* !CONFIG_UCLAMP_TASK */
1956 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1957 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1958 static inline void uclamp_fork(struct task_struct *p) { }
1959 static inline void uclamp_post_fork(struct task_struct *p) { }
1960 static inline void init_uclamp(void) { }
1961 #endif /* CONFIG_UCLAMP_TASK */
1962 
1963 bool sched_task_on_rq(struct task_struct *p)
1964 {
1965 	return task_on_rq_queued(p);
1966 }
1967 
1968 unsigned long get_wchan(struct task_struct *p)
1969 {
1970 	unsigned long ip = 0;
1971 	unsigned int state;
1972 
1973 	if (!p || p == current)
1974 		return 0;
1975 
1976 	/* Only get wchan if task is blocked and we can keep it that way. */
1977 	raw_spin_lock_irq(&p->pi_lock);
1978 	state = READ_ONCE(p->__state);
1979 	smp_rmb(); /* see try_to_wake_up() */
1980 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
1981 		ip = __get_wchan(p);
1982 	raw_spin_unlock_irq(&p->pi_lock);
1983 
1984 	return ip;
1985 }
1986 
1987 void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1988 {
1989 	if (!(flags & ENQUEUE_NOCLOCK))
1990 		update_rq_clock(rq);
1991 
1992 	if (!(flags & ENQUEUE_RESTORE)) {
1993 		sched_info_enqueue(rq, p);
1994 		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
1995 	}
1996 
1997 	uclamp_rq_inc(rq, p);
1998 	p->sched_class->enqueue_task(rq, p, flags);
1999 
2000 	if (sched_core_enabled(rq))
2001 		sched_core_enqueue(rq, p);
2002 }
2003 
2004 void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2005 {
2006 	if (sched_core_enabled(rq))
2007 		sched_core_dequeue(rq, p, flags);
2008 
2009 	if (!(flags & DEQUEUE_NOCLOCK))
2010 		update_rq_clock(rq);
2011 
2012 	if (!(flags & DEQUEUE_SAVE)) {
2013 		sched_info_dequeue(rq, p);
2014 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2015 	}
2016 
2017 	uclamp_rq_dec(rq, p);
2018 	p->sched_class->dequeue_task(rq, p, flags);
2019 }
2020 
2021 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2022 {
2023 	if (task_on_rq_migrating(p))
2024 		flags |= ENQUEUE_MIGRATED;
2025 	if (flags & ENQUEUE_MIGRATED)
2026 		sched_mm_cid_migrate_to(rq, p);
2027 
2028 	enqueue_task(rq, p, flags);
2029 
2030 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2031 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2032 }
2033 
2034 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2035 {
2036 	WRITE_ONCE(p->on_rq, (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING);
2037 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2038 
2039 	dequeue_task(rq, p, flags);
2040 }
2041 
2042 /**
2043  * task_curr - is this task currently executing on a CPU?
2044  * @p: the task in question.
2045  *
2046  * Return: 1 if the task is currently executing. 0 otherwise.
2047  */
2048 inline int task_curr(const struct task_struct *p)
2049 {
2050 	return cpu_curr(task_cpu(p)) == p;
2051 }
2052 
2053 /*
2054  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2055  * use the balance_callback list if you want balancing.
2056  *
2057  * this means any call to check_class_changed() must be followed by a call to
2058  * balance_callback().
2059  */
2060 void check_class_changed(struct rq *rq, struct task_struct *p,
2061 			 const struct sched_class *prev_class,
2062 			 int oldprio)
2063 {
2064 	if (prev_class != p->sched_class) {
2065 		if (prev_class->switched_from)
2066 			prev_class->switched_from(rq, p);
2067 
2068 		p->sched_class->switched_to(rq, p);
2069 	} else if (oldprio != p->prio || dl_task(p))
2070 		p->sched_class->prio_changed(rq, p, oldprio);
2071 }
2072 
2073 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2074 {
2075 	if (p->sched_class == rq->curr->sched_class)
2076 		rq->curr->sched_class->wakeup_preempt(rq, p, flags);
2077 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2078 		resched_curr(rq);
2079 
2080 	/*
2081 	 * A queue event has occurred, and we're going to schedule.  In
2082 	 * this case, we can save a useless back to back clock update.
2083 	 */
2084 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2085 		rq_clock_skip_update(rq);
2086 }
2087 
2088 static __always_inline
2089 int __task_state_match(struct task_struct *p, unsigned int state)
2090 {
2091 	if (READ_ONCE(p->__state) & state)
2092 		return 1;
2093 
2094 	if (READ_ONCE(p->saved_state) & state)
2095 		return -1;
2096 
2097 	return 0;
2098 }
2099 
2100 static __always_inline
2101 int task_state_match(struct task_struct *p, unsigned int state)
2102 {
2103 	/*
2104 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2105 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2106 	 */
2107 	guard(raw_spinlock_irq)(&p->pi_lock);
2108 	return __task_state_match(p, state);
2109 }
2110 
2111 /*
2112  * wait_task_inactive - wait for a thread to unschedule.
2113  *
2114  * Wait for the thread to block in any of the states set in @match_state.
2115  * If it changes, i.e. @p might have woken up, then return zero.  When we
2116  * succeed in waiting for @p to be off its CPU, we return a positive number
2117  * (its total switch count).  If a second call a short while later returns the
2118  * same number, the caller can be sure that @p has remained unscheduled the
2119  * whole time.
2120  *
2121  * The caller must ensure that the task *will* unschedule sometime soon,
2122  * else this function might spin for a *long* time. This function can't
2123  * be called with interrupts off, or it may introduce deadlock with
2124  * smp_call_function() if an IPI is sent by the same process we are
2125  * waiting to become inactive.
2126  */
2127 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2128 {
2129 	int running, queued, match;
2130 	struct rq_flags rf;
2131 	unsigned long ncsw;
2132 	struct rq *rq;
2133 
2134 	for (;;) {
2135 		/*
2136 		 * We do the initial early heuristics without holding
2137 		 * any task-queue locks at all. We'll only try to get
2138 		 * the runqueue lock when things look like they will
2139 		 * work out!
2140 		 */
2141 		rq = task_rq(p);
2142 
2143 		/*
2144 		 * If the task is actively running on another CPU
2145 		 * still, just relax and busy-wait without holding
2146 		 * any locks.
2147 		 *
2148 		 * NOTE! Since we don't hold any locks, it's not
2149 		 * even sure that "rq" stays as the right runqueue!
2150 		 * But we don't care, since "task_on_cpu()" will
2151 		 * return false if the runqueue has changed and p
2152 		 * is actually now running somewhere else!
2153 		 */
2154 		while (task_on_cpu(rq, p)) {
2155 			if (!task_state_match(p, match_state))
2156 				return 0;
2157 			cpu_relax();
2158 		}
2159 
2160 		/*
2161 		 * Ok, time to look more closely! We need the rq
2162 		 * lock now, to be *sure*. If we're wrong, we'll
2163 		 * just go back and repeat.
2164 		 */
2165 		rq = task_rq_lock(p, &rf);
2166 		trace_sched_wait_task(p);
2167 		running = task_on_cpu(rq, p);
2168 		queued = task_on_rq_queued(p);
2169 		ncsw = 0;
2170 		if ((match = __task_state_match(p, match_state))) {
2171 			/*
2172 			 * When matching on p->saved_state, consider this task
2173 			 * still queued so it will wait.
2174 			 */
2175 			if (match < 0)
2176 				queued = 1;
2177 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2178 		}
2179 		task_rq_unlock(rq, p, &rf);
2180 
2181 		/*
2182 		 * If it changed from the expected state, bail out now.
2183 		 */
2184 		if (unlikely(!ncsw))
2185 			break;
2186 
2187 		/*
2188 		 * Was it really running after all now that we
2189 		 * checked with the proper locks actually held?
2190 		 *
2191 		 * Oops. Go back and try again..
2192 		 */
2193 		if (unlikely(running)) {
2194 			cpu_relax();
2195 			continue;
2196 		}
2197 
2198 		/*
2199 		 * It's not enough that it's not actively running,
2200 		 * it must be off the runqueue _entirely_, and not
2201 		 * preempted!
2202 		 *
2203 		 * So if it was still runnable (but just not actively
2204 		 * running right now), it's preempted, and we should
2205 		 * yield - it could be a while.
2206 		 */
2207 		if (unlikely(queued)) {
2208 			ktime_t to = NSEC_PER_SEC / HZ;
2209 
2210 			set_current_state(TASK_UNINTERRUPTIBLE);
2211 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2212 			continue;
2213 		}
2214 
2215 		/*
2216 		 * Ahh, all good. It wasn't running, and it wasn't
2217 		 * runnable, which means that it will never become
2218 		 * running in the future either. We're all done!
2219 		 */
2220 		break;
2221 	}
2222 
2223 	return ncsw;
2224 }
2225 
2226 #ifdef CONFIG_SMP
2227 
2228 static void
2229 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2230 
2231 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2232 {
2233 	struct affinity_context ac = {
2234 		.new_mask  = cpumask_of(rq->cpu),
2235 		.flags     = SCA_MIGRATE_DISABLE,
2236 	};
2237 
2238 	if (likely(!p->migration_disabled))
2239 		return;
2240 
2241 	if (p->cpus_ptr != &p->cpus_mask)
2242 		return;
2243 
2244 	/*
2245 	 * Violates locking rules! See comment in __do_set_cpus_allowed().
2246 	 */
2247 	__do_set_cpus_allowed(p, &ac);
2248 }
2249 
2250 void migrate_disable(void)
2251 {
2252 	struct task_struct *p = current;
2253 
2254 	if (p->migration_disabled) {
2255 #ifdef CONFIG_DEBUG_PREEMPT
2256 		/*
2257 		 *Warn about overflow half-way through the range.
2258 		 */
2259 		WARN_ON_ONCE((s16)p->migration_disabled < 0);
2260 #endif
2261 		p->migration_disabled++;
2262 		return;
2263 	}
2264 
2265 	guard(preempt)();
2266 	this_rq()->nr_pinned++;
2267 	p->migration_disabled = 1;
2268 }
2269 EXPORT_SYMBOL_GPL(migrate_disable);
2270 
2271 void migrate_enable(void)
2272 {
2273 	struct task_struct *p = current;
2274 	struct affinity_context ac = {
2275 		.new_mask  = &p->cpus_mask,
2276 		.flags     = SCA_MIGRATE_ENABLE,
2277 	};
2278 
2279 #ifdef CONFIG_DEBUG_PREEMPT
2280 	/*
2281 	 * Check both overflow from migrate_disable() and superfluous
2282 	 * migrate_enable().
2283 	 */
2284 	if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
2285 		return;
2286 #endif
2287 
2288 	if (p->migration_disabled > 1) {
2289 		p->migration_disabled--;
2290 		return;
2291 	}
2292 
2293 	/*
2294 	 * Ensure stop_task runs either before or after this, and that
2295 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2296 	 */
2297 	guard(preempt)();
2298 	if (p->cpus_ptr != &p->cpus_mask)
2299 		__set_cpus_allowed_ptr(p, &ac);
2300 	/*
2301 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2302 	 * regular cpus_mask, otherwise things that race (eg.
2303 	 * select_fallback_rq) get confused.
2304 	 */
2305 	barrier();
2306 	p->migration_disabled = 0;
2307 	this_rq()->nr_pinned--;
2308 }
2309 EXPORT_SYMBOL_GPL(migrate_enable);
2310 
2311 static inline bool rq_has_pinned_tasks(struct rq *rq)
2312 {
2313 	return rq->nr_pinned;
2314 }
2315 
2316 /*
2317  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2318  * __set_cpus_allowed_ptr() and select_fallback_rq().
2319  */
2320 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2321 {
2322 	/* When not in the task's cpumask, no point in looking further. */
2323 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2324 		return false;
2325 
2326 	/* migrate_disabled() must be allowed to finish. */
2327 	if (is_migration_disabled(p))
2328 		return cpu_online(cpu);
2329 
2330 	/* Non kernel threads are not allowed during either online or offline. */
2331 	if (!(p->flags & PF_KTHREAD))
2332 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2333 
2334 	/* KTHREAD_IS_PER_CPU is always allowed. */
2335 	if (kthread_is_per_cpu(p))
2336 		return cpu_online(cpu);
2337 
2338 	/* Regular kernel threads don't get to stay during offline. */
2339 	if (cpu_dying(cpu))
2340 		return false;
2341 
2342 	/* But are allowed during online. */
2343 	return cpu_online(cpu);
2344 }
2345 
2346 /*
2347  * This is how migration works:
2348  *
2349  * 1) we invoke migration_cpu_stop() on the target CPU using
2350  *    stop_one_cpu().
2351  * 2) stopper starts to run (implicitly forcing the migrated thread
2352  *    off the CPU)
2353  * 3) it checks whether the migrated task is still in the wrong runqueue.
2354  * 4) if it's in the wrong runqueue then the migration thread removes
2355  *    it and puts it into the right queue.
2356  * 5) stopper completes and stop_one_cpu() returns and the migration
2357  *    is done.
2358  */
2359 
2360 /*
2361  * move_queued_task - move a queued task to new rq.
2362  *
2363  * Returns (locked) new rq. Old rq's lock is released.
2364  */
2365 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2366 				   struct task_struct *p, int new_cpu)
2367 {
2368 	lockdep_assert_rq_held(rq);
2369 
2370 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2371 	set_task_cpu(p, new_cpu);
2372 	rq_unlock(rq, rf);
2373 
2374 	rq = cpu_rq(new_cpu);
2375 
2376 	rq_lock(rq, rf);
2377 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2378 	activate_task(rq, p, 0);
2379 	wakeup_preempt(rq, p, 0);
2380 
2381 	return rq;
2382 }
2383 
2384 struct migration_arg {
2385 	struct task_struct		*task;
2386 	int				dest_cpu;
2387 	struct set_affinity_pending	*pending;
2388 };
2389 
2390 /*
2391  * @refs: number of wait_for_completion()
2392  * @stop_pending: is @stop_work in use
2393  */
2394 struct set_affinity_pending {
2395 	refcount_t		refs;
2396 	unsigned int		stop_pending;
2397 	struct completion	done;
2398 	struct cpu_stop_work	stop_work;
2399 	struct migration_arg	arg;
2400 };
2401 
2402 /*
2403  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2404  * this because either it can't run here any more (set_cpus_allowed()
2405  * away from this CPU, or CPU going down), or because we're
2406  * attempting to rebalance this task on exec (sched_exec).
2407  *
2408  * So we race with normal scheduler movements, but that's OK, as long
2409  * as the task is no longer on this CPU.
2410  */
2411 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2412 				 struct task_struct *p, int dest_cpu)
2413 {
2414 	/* Affinity changed (again). */
2415 	if (!is_cpu_allowed(p, dest_cpu))
2416 		return rq;
2417 
2418 	rq = move_queued_task(rq, rf, p, dest_cpu);
2419 
2420 	return rq;
2421 }
2422 
2423 /*
2424  * migration_cpu_stop - this will be executed by a high-prio stopper thread
2425  * and performs thread migration by bumping thread off CPU then
2426  * 'pushing' onto another runqueue.
2427  */
2428 static int migration_cpu_stop(void *data)
2429 {
2430 	struct migration_arg *arg = data;
2431 	struct set_affinity_pending *pending = arg->pending;
2432 	struct task_struct *p = arg->task;
2433 	struct rq *rq = this_rq();
2434 	bool complete = false;
2435 	struct rq_flags rf;
2436 
2437 	/*
2438 	 * The original target CPU might have gone down and we might
2439 	 * be on another CPU but it doesn't matter.
2440 	 */
2441 	local_irq_save(rf.flags);
2442 	/*
2443 	 * We need to explicitly wake pending tasks before running
2444 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2445 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2446 	 */
2447 	flush_smp_call_function_queue();
2448 
2449 	raw_spin_lock(&p->pi_lock);
2450 	rq_lock(rq, &rf);
2451 
2452 	/*
2453 	 * If we were passed a pending, then ->stop_pending was set, thus
2454 	 * p->migration_pending must have remained stable.
2455 	 */
2456 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2457 
2458 	/*
2459 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2460 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2461 	 * we're holding p->pi_lock.
2462 	 */
2463 	if (task_rq(p) == rq) {
2464 		if (is_migration_disabled(p))
2465 			goto out;
2466 
2467 		if (pending) {
2468 			p->migration_pending = NULL;
2469 			complete = true;
2470 
2471 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2472 				goto out;
2473 		}
2474 
2475 		if (task_on_rq_queued(p)) {
2476 			update_rq_clock(rq);
2477 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2478 		} else {
2479 			p->wake_cpu = arg->dest_cpu;
2480 		}
2481 
2482 		/*
2483 		 * XXX __migrate_task() can fail, at which point we might end
2484 		 * up running on a dodgy CPU, AFAICT this can only happen
2485 		 * during CPU hotplug, at which point we'll get pushed out
2486 		 * anyway, so it's probably not a big deal.
2487 		 */
2488 
2489 	} else if (pending) {
2490 		/*
2491 		 * This happens when we get migrated between migrate_enable()'s
2492 		 * preempt_enable() and scheduling the stopper task. At that
2493 		 * point we're a regular task again and not current anymore.
2494 		 *
2495 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2496 		 * more likely.
2497 		 */
2498 
2499 		/*
2500 		 * The task moved before the stopper got to run. We're holding
2501 		 * ->pi_lock, so the allowed mask is stable - if it got
2502 		 * somewhere allowed, we're done.
2503 		 */
2504 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2505 			p->migration_pending = NULL;
2506 			complete = true;
2507 			goto out;
2508 		}
2509 
2510 		/*
2511 		 * When migrate_enable() hits a rq mis-match we can't reliably
2512 		 * determine is_migration_disabled() and so have to chase after
2513 		 * it.
2514 		 */
2515 		WARN_ON_ONCE(!pending->stop_pending);
2516 		preempt_disable();
2517 		task_rq_unlock(rq, p, &rf);
2518 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2519 				    &pending->arg, &pending->stop_work);
2520 		preempt_enable();
2521 		return 0;
2522 	}
2523 out:
2524 	if (pending)
2525 		pending->stop_pending = false;
2526 	task_rq_unlock(rq, p, &rf);
2527 
2528 	if (complete)
2529 		complete_all(&pending->done);
2530 
2531 	return 0;
2532 }
2533 
2534 int push_cpu_stop(void *arg)
2535 {
2536 	struct rq *lowest_rq = NULL, *rq = this_rq();
2537 	struct task_struct *p = arg;
2538 
2539 	raw_spin_lock_irq(&p->pi_lock);
2540 	raw_spin_rq_lock(rq);
2541 
2542 	if (task_rq(p) != rq)
2543 		goto out_unlock;
2544 
2545 	if (is_migration_disabled(p)) {
2546 		p->migration_flags |= MDF_PUSH;
2547 		goto out_unlock;
2548 	}
2549 
2550 	p->migration_flags &= ~MDF_PUSH;
2551 
2552 	if (p->sched_class->find_lock_rq)
2553 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2554 
2555 	if (!lowest_rq)
2556 		goto out_unlock;
2557 
2558 	// XXX validate p is still the highest prio task
2559 	if (task_rq(p) == rq) {
2560 		deactivate_task(rq, p, 0);
2561 		set_task_cpu(p, lowest_rq->cpu);
2562 		activate_task(lowest_rq, p, 0);
2563 		resched_curr(lowest_rq);
2564 	}
2565 
2566 	double_unlock_balance(rq, lowest_rq);
2567 
2568 out_unlock:
2569 	rq->push_busy = false;
2570 	raw_spin_rq_unlock(rq);
2571 	raw_spin_unlock_irq(&p->pi_lock);
2572 
2573 	put_task_struct(p);
2574 	return 0;
2575 }
2576 
2577 /*
2578  * sched_class::set_cpus_allowed must do the below, but is not required to
2579  * actually call this function.
2580  */
2581 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2582 {
2583 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2584 		p->cpus_ptr = ctx->new_mask;
2585 		return;
2586 	}
2587 
2588 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2589 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2590 
2591 	/*
2592 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2593 	 */
2594 	if (ctx->flags & SCA_USER)
2595 		swap(p->user_cpus_ptr, ctx->user_mask);
2596 }
2597 
2598 static void
2599 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2600 {
2601 	struct rq *rq = task_rq(p);
2602 	bool queued, running;
2603 
2604 	/*
2605 	 * This here violates the locking rules for affinity, since we're only
2606 	 * supposed to change these variables while holding both rq->lock and
2607 	 * p->pi_lock.
2608 	 *
2609 	 * HOWEVER, it magically works, because ttwu() is the only code that
2610 	 * accesses these variables under p->pi_lock and only does so after
2611 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2612 	 * before finish_task().
2613 	 *
2614 	 * XXX do further audits, this smells like something putrid.
2615 	 */
2616 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2617 		SCHED_WARN_ON(!p->on_cpu);
2618 	else
2619 		lockdep_assert_held(&p->pi_lock);
2620 
2621 	queued = task_on_rq_queued(p);
2622 	running = task_current(rq, p);
2623 
2624 	if (queued) {
2625 		/*
2626 		 * Because __kthread_bind() calls this on blocked tasks without
2627 		 * holding rq->lock.
2628 		 */
2629 		lockdep_assert_rq_held(rq);
2630 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2631 	}
2632 	if (running)
2633 		put_prev_task(rq, p);
2634 
2635 	p->sched_class->set_cpus_allowed(p, ctx);
2636 
2637 	if (queued)
2638 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2639 	if (running)
2640 		set_next_task(rq, p);
2641 }
2642 
2643 /*
2644  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2645  * affinity (if any) should be destroyed too.
2646  */
2647 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2648 {
2649 	struct affinity_context ac = {
2650 		.new_mask  = new_mask,
2651 		.user_mask = NULL,
2652 		.flags     = SCA_USER,	/* clear the user requested mask */
2653 	};
2654 	union cpumask_rcuhead {
2655 		cpumask_t cpumask;
2656 		struct rcu_head rcu;
2657 	};
2658 
2659 	__do_set_cpus_allowed(p, &ac);
2660 
2661 	/*
2662 	 * Because this is called with p->pi_lock held, it is not possible
2663 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2664 	 * kfree_rcu().
2665 	 */
2666 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2667 }
2668 
2669 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2670 		      int node)
2671 {
2672 	cpumask_t *user_mask;
2673 	unsigned long flags;
2674 
2675 	/*
2676 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2677 	 * may differ by now due to racing.
2678 	 */
2679 	dst->user_cpus_ptr = NULL;
2680 
2681 	/*
2682 	 * This check is racy and losing the race is a valid situation.
2683 	 * It is not worth the extra overhead of taking the pi_lock on
2684 	 * every fork/clone.
2685 	 */
2686 	if (data_race(!src->user_cpus_ptr))
2687 		return 0;
2688 
2689 	user_mask = alloc_user_cpus_ptr(node);
2690 	if (!user_mask)
2691 		return -ENOMEM;
2692 
2693 	/*
2694 	 * Use pi_lock to protect content of user_cpus_ptr
2695 	 *
2696 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2697 	 * do_set_cpus_allowed().
2698 	 */
2699 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2700 	if (src->user_cpus_ptr) {
2701 		swap(dst->user_cpus_ptr, user_mask);
2702 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2703 	}
2704 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2705 
2706 	if (unlikely(user_mask))
2707 		kfree(user_mask);
2708 
2709 	return 0;
2710 }
2711 
2712 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2713 {
2714 	struct cpumask *user_mask = NULL;
2715 
2716 	swap(p->user_cpus_ptr, user_mask);
2717 
2718 	return user_mask;
2719 }
2720 
2721 void release_user_cpus_ptr(struct task_struct *p)
2722 {
2723 	kfree(clear_user_cpus_ptr(p));
2724 }
2725 
2726 /*
2727  * This function is wildly self concurrent; here be dragons.
2728  *
2729  *
2730  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2731  * designated task is enqueued on an allowed CPU. If that task is currently
2732  * running, we have to kick it out using the CPU stopper.
2733  *
2734  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2735  * Consider:
2736  *
2737  *     Initial conditions: P0->cpus_mask = [0, 1]
2738  *
2739  *     P0@CPU0                  P1
2740  *
2741  *     migrate_disable();
2742  *     <preempted>
2743  *                              set_cpus_allowed_ptr(P0, [1]);
2744  *
2745  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2746  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2747  * This means we need the following scheme:
2748  *
2749  *     P0@CPU0                  P1
2750  *
2751  *     migrate_disable();
2752  *     <preempted>
2753  *                              set_cpus_allowed_ptr(P0, [1]);
2754  *                                <blocks>
2755  *     <resumes>
2756  *     migrate_enable();
2757  *       __set_cpus_allowed_ptr();
2758  *       <wakes local stopper>
2759  *                         `--> <woken on migration completion>
2760  *
2761  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2762  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2763  * task p are serialized by p->pi_lock, which we can leverage: the one that
2764  * should come into effect at the end of the Migrate-Disable region is the last
2765  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2766  * but we still need to properly signal those waiting tasks at the appropriate
2767  * moment.
2768  *
2769  * This is implemented using struct set_affinity_pending. The first
2770  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2771  * setup an instance of that struct and install it on the targeted task_struct.
2772  * Any and all further callers will reuse that instance. Those then wait for
2773  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2774  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2775  *
2776  *
2777  * (1) In the cases covered above. There is one more where the completion is
2778  * signaled within affine_move_task() itself: when a subsequent affinity request
2779  * occurs after the stopper bailed out due to the targeted task still being
2780  * Migrate-Disable. Consider:
2781  *
2782  *     Initial conditions: P0->cpus_mask = [0, 1]
2783  *
2784  *     CPU0		  P1				P2
2785  *     <P0>
2786  *       migrate_disable();
2787  *       <preempted>
2788  *                        set_cpus_allowed_ptr(P0, [1]);
2789  *                          <blocks>
2790  *     <migration/0>
2791  *       migration_cpu_stop()
2792  *         is_migration_disabled()
2793  *           <bails>
2794  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2795  *                                                         <signal completion>
2796  *                          <awakes>
2797  *
2798  * Note that the above is safe vs a concurrent migrate_enable(), as any
2799  * pending affinity completion is preceded by an uninstallation of
2800  * p->migration_pending done with p->pi_lock held.
2801  */
2802 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2803 			    int dest_cpu, unsigned int flags)
2804 	__releases(rq->lock)
2805 	__releases(p->pi_lock)
2806 {
2807 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2808 	bool stop_pending, complete = false;
2809 
2810 	/* Can the task run on the task's current CPU? If so, we're done */
2811 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2812 		struct task_struct *push_task = NULL;
2813 
2814 		if ((flags & SCA_MIGRATE_ENABLE) &&
2815 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2816 			rq->push_busy = true;
2817 			push_task = get_task_struct(p);
2818 		}
2819 
2820 		/*
2821 		 * If there are pending waiters, but no pending stop_work,
2822 		 * then complete now.
2823 		 */
2824 		pending = p->migration_pending;
2825 		if (pending && !pending->stop_pending) {
2826 			p->migration_pending = NULL;
2827 			complete = true;
2828 		}
2829 
2830 		preempt_disable();
2831 		task_rq_unlock(rq, p, rf);
2832 		if (push_task) {
2833 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2834 					    p, &rq->push_work);
2835 		}
2836 		preempt_enable();
2837 
2838 		if (complete)
2839 			complete_all(&pending->done);
2840 
2841 		return 0;
2842 	}
2843 
2844 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2845 		/* serialized by p->pi_lock */
2846 		if (!p->migration_pending) {
2847 			/* Install the request */
2848 			refcount_set(&my_pending.refs, 1);
2849 			init_completion(&my_pending.done);
2850 			my_pending.arg = (struct migration_arg) {
2851 				.task = p,
2852 				.dest_cpu = dest_cpu,
2853 				.pending = &my_pending,
2854 			};
2855 
2856 			p->migration_pending = &my_pending;
2857 		} else {
2858 			pending = p->migration_pending;
2859 			refcount_inc(&pending->refs);
2860 			/*
2861 			 * Affinity has changed, but we've already installed a
2862 			 * pending. migration_cpu_stop() *must* see this, else
2863 			 * we risk a completion of the pending despite having a
2864 			 * task on a disallowed CPU.
2865 			 *
2866 			 * Serialized by p->pi_lock, so this is safe.
2867 			 */
2868 			pending->arg.dest_cpu = dest_cpu;
2869 		}
2870 	}
2871 	pending = p->migration_pending;
2872 	/*
2873 	 * - !MIGRATE_ENABLE:
2874 	 *   we'll have installed a pending if there wasn't one already.
2875 	 *
2876 	 * - MIGRATE_ENABLE:
2877 	 *   we're here because the current CPU isn't matching anymore,
2878 	 *   the only way that can happen is because of a concurrent
2879 	 *   set_cpus_allowed_ptr() call, which should then still be
2880 	 *   pending completion.
2881 	 *
2882 	 * Either way, we really should have a @pending here.
2883 	 */
2884 	if (WARN_ON_ONCE(!pending)) {
2885 		task_rq_unlock(rq, p, rf);
2886 		return -EINVAL;
2887 	}
2888 
2889 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2890 		/*
2891 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2892 		 * anything else we cannot do is_migration_disabled(), punt
2893 		 * and have the stopper function handle it all race-free.
2894 		 */
2895 		stop_pending = pending->stop_pending;
2896 		if (!stop_pending)
2897 			pending->stop_pending = true;
2898 
2899 		if (flags & SCA_MIGRATE_ENABLE)
2900 			p->migration_flags &= ~MDF_PUSH;
2901 
2902 		preempt_disable();
2903 		task_rq_unlock(rq, p, rf);
2904 		if (!stop_pending) {
2905 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2906 					    &pending->arg, &pending->stop_work);
2907 		}
2908 		preempt_enable();
2909 
2910 		if (flags & SCA_MIGRATE_ENABLE)
2911 			return 0;
2912 	} else {
2913 
2914 		if (!is_migration_disabled(p)) {
2915 			if (task_on_rq_queued(p))
2916 				rq = move_queued_task(rq, rf, p, dest_cpu);
2917 
2918 			if (!pending->stop_pending) {
2919 				p->migration_pending = NULL;
2920 				complete = true;
2921 			}
2922 		}
2923 		task_rq_unlock(rq, p, rf);
2924 
2925 		if (complete)
2926 			complete_all(&pending->done);
2927 	}
2928 
2929 	wait_for_completion(&pending->done);
2930 
2931 	if (refcount_dec_and_test(&pending->refs))
2932 		wake_up_var(&pending->refs); /* No UaF, just an address */
2933 
2934 	/*
2935 	 * Block the original owner of &pending until all subsequent callers
2936 	 * have seen the completion and decremented the refcount
2937 	 */
2938 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2939 
2940 	/* ARGH */
2941 	WARN_ON_ONCE(my_pending.stop_pending);
2942 
2943 	return 0;
2944 }
2945 
2946 /*
2947  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2948  */
2949 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2950 					 struct affinity_context *ctx,
2951 					 struct rq *rq,
2952 					 struct rq_flags *rf)
2953 	__releases(rq->lock)
2954 	__releases(p->pi_lock)
2955 {
2956 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2957 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2958 	bool kthread = p->flags & PF_KTHREAD;
2959 	unsigned int dest_cpu;
2960 	int ret = 0;
2961 
2962 	update_rq_clock(rq);
2963 
2964 	if (kthread || is_migration_disabled(p)) {
2965 		/*
2966 		 * Kernel threads are allowed on online && !active CPUs,
2967 		 * however, during cpu-hot-unplug, even these might get pushed
2968 		 * away if not KTHREAD_IS_PER_CPU.
2969 		 *
2970 		 * Specifically, migration_disabled() tasks must not fail the
2971 		 * cpumask_any_and_distribute() pick below, esp. so on
2972 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2973 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2974 		 */
2975 		cpu_valid_mask = cpu_online_mask;
2976 	}
2977 
2978 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
2979 		ret = -EINVAL;
2980 		goto out;
2981 	}
2982 
2983 	/*
2984 	 * Must re-check here, to close a race against __kthread_bind(),
2985 	 * sched_setaffinity() is not guaranteed to observe the flag.
2986 	 */
2987 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2988 		ret = -EINVAL;
2989 		goto out;
2990 	}
2991 
2992 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
2993 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
2994 			if (ctx->flags & SCA_USER)
2995 				swap(p->user_cpus_ptr, ctx->user_mask);
2996 			goto out;
2997 		}
2998 
2999 		if (WARN_ON_ONCE(p == current &&
3000 				 is_migration_disabled(p) &&
3001 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3002 			ret = -EBUSY;
3003 			goto out;
3004 		}
3005 	}
3006 
3007 	/*
3008 	 * Picking a ~random cpu helps in cases where we are changing affinity
3009 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3010 	 * immediately required to distribute the tasks within their new mask.
3011 	 */
3012 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3013 	if (dest_cpu >= nr_cpu_ids) {
3014 		ret = -EINVAL;
3015 		goto out;
3016 	}
3017 
3018 	__do_set_cpus_allowed(p, ctx);
3019 
3020 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3021 
3022 out:
3023 	task_rq_unlock(rq, p, rf);
3024 
3025 	return ret;
3026 }
3027 
3028 /*
3029  * Change a given task's CPU affinity. Migrate the thread to a
3030  * proper CPU and schedule it away if the CPU it's executing on
3031  * is removed from the allowed bitmask.
3032  *
3033  * NOTE: the caller must have a valid reference to the task, the
3034  * task must not exit() & deallocate itself prematurely. The
3035  * call is not atomic; no spinlocks may be held.
3036  */
3037 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3038 {
3039 	struct rq_flags rf;
3040 	struct rq *rq;
3041 
3042 	rq = task_rq_lock(p, &rf);
3043 	/*
3044 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3045 	 * flags are set.
3046 	 */
3047 	if (p->user_cpus_ptr &&
3048 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3049 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3050 		ctx->new_mask = rq->scratch_mask;
3051 
3052 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3053 }
3054 
3055 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3056 {
3057 	struct affinity_context ac = {
3058 		.new_mask  = new_mask,
3059 		.flags     = 0,
3060 	};
3061 
3062 	return __set_cpus_allowed_ptr(p, &ac);
3063 }
3064 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3065 
3066 /*
3067  * Change a given task's CPU affinity to the intersection of its current
3068  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3069  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3070  * affinity or use cpu_online_mask instead.
3071  *
3072  * If the resulting mask is empty, leave the affinity unchanged and return
3073  * -EINVAL.
3074  */
3075 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3076 				     struct cpumask *new_mask,
3077 				     const struct cpumask *subset_mask)
3078 {
3079 	struct affinity_context ac = {
3080 		.new_mask  = new_mask,
3081 		.flags     = 0,
3082 	};
3083 	struct rq_flags rf;
3084 	struct rq *rq;
3085 	int err;
3086 
3087 	rq = task_rq_lock(p, &rf);
3088 
3089 	/*
3090 	 * Forcefully restricting the affinity of a deadline task is
3091 	 * likely to cause problems, so fail and noisily override the
3092 	 * mask entirely.
3093 	 */
3094 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3095 		err = -EPERM;
3096 		goto err_unlock;
3097 	}
3098 
3099 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3100 		err = -EINVAL;
3101 		goto err_unlock;
3102 	}
3103 
3104 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3105 
3106 err_unlock:
3107 	task_rq_unlock(rq, p, &rf);
3108 	return err;
3109 }
3110 
3111 /*
3112  * Restrict the CPU affinity of task @p so that it is a subset of
3113  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3114  * old affinity mask. If the resulting mask is empty, we warn and walk
3115  * up the cpuset hierarchy until we find a suitable mask.
3116  */
3117 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3118 {
3119 	cpumask_var_t new_mask;
3120 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3121 
3122 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3123 
3124 	/*
3125 	 * __migrate_task() can fail silently in the face of concurrent
3126 	 * offlining of the chosen destination CPU, so take the hotplug
3127 	 * lock to ensure that the migration succeeds.
3128 	 */
3129 	cpus_read_lock();
3130 	if (!cpumask_available(new_mask))
3131 		goto out_set_mask;
3132 
3133 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3134 		goto out_free_mask;
3135 
3136 	/*
3137 	 * We failed to find a valid subset of the affinity mask for the
3138 	 * task, so override it based on its cpuset hierarchy.
3139 	 */
3140 	cpuset_cpus_allowed(p, new_mask);
3141 	override_mask = new_mask;
3142 
3143 out_set_mask:
3144 	if (printk_ratelimit()) {
3145 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3146 				task_pid_nr(p), p->comm,
3147 				cpumask_pr_args(override_mask));
3148 	}
3149 
3150 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3151 out_free_mask:
3152 	cpus_read_unlock();
3153 	free_cpumask_var(new_mask);
3154 }
3155 
3156 /*
3157  * Restore the affinity of a task @p which was previously restricted by a
3158  * call to force_compatible_cpus_allowed_ptr().
3159  *
3160  * It is the caller's responsibility to serialise this with any calls to
3161  * force_compatible_cpus_allowed_ptr(@p).
3162  */
3163 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3164 {
3165 	struct affinity_context ac = {
3166 		.new_mask  = task_user_cpus(p),
3167 		.flags     = 0,
3168 	};
3169 	int ret;
3170 
3171 	/*
3172 	 * Try to restore the old affinity mask with __sched_setaffinity().
3173 	 * Cpuset masking will be done there too.
3174 	 */
3175 	ret = __sched_setaffinity(p, &ac);
3176 	WARN_ON_ONCE(ret);
3177 }
3178 
3179 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3180 {
3181 #ifdef CONFIG_SCHED_DEBUG
3182 	unsigned int state = READ_ONCE(p->__state);
3183 
3184 	/*
3185 	 * We should never call set_task_cpu() on a blocked task,
3186 	 * ttwu() will sort out the placement.
3187 	 */
3188 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3189 
3190 	/*
3191 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3192 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3193 	 * time relying on p->on_rq.
3194 	 */
3195 	WARN_ON_ONCE(state == TASK_RUNNING &&
3196 		     p->sched_class == &fair_sched_class &&
3197 		     (p->on_rq && !task_on_rq_migrating(p)));
3198 
3199 #ifdef CONFIG_LOCKDEP
3200 	/*
3201 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3202 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3203 	 *
3204 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3205 	 * see task_group().
3206 	 *
3207 	 * Furthermore, all task_rq users should acquire both locks, see
3208 	 * task_rq_lock().
3209 	 */
3210 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3211 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3212 #endif
3213 	/*
3214 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3215 	 */
3216 	WARN_ON_ONCE(!cpu_online(new_cpu));
3217 
3218 	WARN_ON_ONCE(is_migration_disabled(p));
3219 #endif
3220 
3221 	trace_sched_migrate_task(p, new_cpu);
3222 
3223 	if (task_cpu(p) != new_cpu) {
3224 		if (p->sched_class->migrate_task_rq)
3225 			p->sched_class->migrate_task_rq(p, new_cpu);
3226 		p->se.nr_migrations++;
3227 		rseq_migrate(p);
3228 		sched_mm_cid_migrate_from(p);
3229 		perf_event_task_migrate(p);
3230 	}
3231 
3232 	__set_task_cpu(p, new_cpu);
3233 }
3234 
3235 #ifdef CONFIG_NUMA_BALANCING
3236 static void __migrate_swap_task(struct task_struct *p, int cpu)
3237 {
3238 	if (task_on_rq_queued(p)) {
3239 		struct rq *src_rq, *dst_rq;
3240 		struct rq_flags srf, drf;
3241 
3242 		src_rq = task_rq(p);
3243 		dst_rq = cpu_rq(cpu);
3244 
3245 		rq_pin_lock(src_rq, &srf);
3246 		rq_pin_lock(dst_rq, &drf);
3247 
3248 		deactivate_task(src_rq, p, 0);
3249 		set_task_cpu(p, cpu);
3250 		activate_task(dst_rq, p, 0);
3251 		wakeup_preempt(dst_rq, p, 0);
3252 
3253 		rq_unpin_lock(dst_rq, &drf);
3254 		rq_unpin_lock(src_rq, &srf);
3255 
3256 	} else {
3257 		/*
3258 		 * Task isn't running anymore; make it appear like we migrated
3259 		 * it before it went to sleep. This means on wakeup we make the
3260 		 * previous CPU our target instead of where it really is.
3261 		 */
3262 		p->wake_cpu = cpu;
3263 	}
3264 }
3265 
3266 struct migration_swap_arg {
3267 	struct task_struct *src_task, *dst_task;
3268 	int src_cpu, dst_cpu;
3269 };
3270 
3271 static int migrate_swap_stop(void *data)
3272 {
3273 	struct migration_swap_arg *arg = data;
3274 	struct rq *src_rq, *dst_rq;
3275 
3276 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3277 		return -EAGAIN;
3278 
3279 	src_rq = cpu_rq(arg->src_cpu);
3280 	dst_rq = cpu_rq(arg->dst_cpu);
3281 
3282 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3283 	guard(double_rq_lock)(src_rq, dst_rq);
3284 
3285 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3286 		return -EAGAIN;
3287 
3288 	if (task_cpu(arg->src_task) != arg->src_cpu)
3289 		return -EAGAIN;
3290 
3291 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3292 		return -EAGAIN;
3293 
3294 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3295 		return -EAGAIN;
3296 
3297 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3298 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3299 
3300 	return 0;
3301 }
3302 
3303 /*
3304  * Cross migrate two tasks
3305  */
3306 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3307 		int target_cpu, int curr_cpu)
3308 {
3309 	struct migration_swap_arg arg;
3310 	int ret = -EINVAL;
3311 
3312 	arg = (struct migration_swap_arg){
3313 		.src_task = cur,
3314 		.src_cpu = curr_cpu,
3315 		.dst_task = p,
3316 		.dst_cpu = target_cpu,
3317 	};
3318 
3319 	if (arg.src_cpu == arg.dst_cpu)
3320 		goto out;
3321 
3322 	/*
3323 	 * These three tests are all lockless; this is OK since all of them
3324 	 * will be re-checked with proper locks held further down the line.
3325 	 */
3326 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3327 		goto out;
3328 
3329 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3330 		goto out;
3331 
3332 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3333 		goto out;
3334 
3335 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3336 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3337 
3338 out:
3339 	return ret;
3340 }
3341 #endif /* CONFIG_NUMA_BALANCING */
3342 
3343 /***
3344  * kick_process - kick a running thread to enter/exit the kernel
3345  * @p: the to-be-kicked thread
3346  *
3347  * Cause a process which is running on another CPU to enter
3348  * kernel-mode, without any delay. (to get signals handled.)
3349  *
3350  * NOTE: this function doesn't have to take the runqueue lock,
3351  * because all it wants to ensure is that the remote task enters
3352  * the kernel. If the IPI races and the task has been migrated
3353  * to another CPU then no harm is done and the purpose has been
3354  * achieved as well.
3355  */
3356 void kick_process(struct task_struct *p)
3357 {
3358 	guard(preempt)();
3359 	int cpu = task_cpu(p);
3360 
3361 	if ((cpu != smp_processor_id()) && task_curr(p))
3362 		smp_send_reschedule(cpu);
3363 }
3364 EXPORT_SYMBOL_GPL(kick_process);
3365 
3366 /*
3367  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3368  *
3369  * A few notes on cpu_active vs cpu_online:
3370  *
3371  *  - cpu_active must be a subset of cpu_online
3372  *
3373  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3374  *    see __set_cpus_allowed_ptr(). At this point the newly online
3375  *    CPU isn't yet part of the sched domains, and balancing will not
3376  *    see it.
3377  *
3378  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3379  *    avoid the load balancer to place new tasks on the to be removed
3380  *    CPU. Existing tasks will remain running there and will be taken
3381  *    off.
3382  *
3383  * This means that fallback selection must not select !active CPUs.
3384  * And can assume that any active CPU must be online. Conversely
3385  * select_task_rq() below may allow selection of !active CPUs in order
3386  * to satisfy the above rules.
3387  */
3388 static int select_fallback_rq(int cpu, struct task_struct *p)
3389 {
3390 	int nid = cpu_to_node(cpu);
3391 	const struct cpumask *nodemask = NULL;
3392 	enum { cpuset, possible, fail } state = cpuset;
3393 	int dest_cpu;
3394 
3395 	/*
3396 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3397 	 * will return -1. There is no CPU on the node, and we should
3398 	 * select the CPU on the other node.
3399 	 */
3400 	if (nid != -1) {
3401 		nodemask = cpumask_of_node(nid);
3402 
3403 		/* Look for allowed, online CPU in same node. */
3404 		for_each_cpu(dest_cpu, nodemask) {
3405 			if (is_cpu_allowed(p, dest_cpu))
3406 				return dest_cpu;
3407 		}
3408 	}
3409 
3410 	for (;;) {
3411 		/* Any allowed, online CPU? */
3412 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3413 			if (!is_cpu_allowed(p, dest_cpu))
3414 				continue;
3415 
3416 			goto out;
3417 		}
3418 
3419 		/* No more Mr. Nice Guy. */
3420 		switch (state) {
3421 		case cpuset:
3422 			if (cpuset_cpus_allowed_fallback(p)) {
3423 				state = possible;
3424 				break;
3425 			}
3426 			fallthrough;
3427 		case possible:
3428 			/*
3429 			 * XXX When called from select_task_rq() we only
3430 			 * hold p->pi_lock and again violate locking order.
3431 			 *
3432 			 * More yuck to audit.
3433 			 */
3434 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3435 			state = fail;
3436 			break;
3437 		case fail:
3438 			BUG();
3439 			break;
3440 		}
3441 	}
3442 
3443 out:
3444 	if (state != cpuset) {
3445 		/*
3446 		 * Don't tell them about moving exiting tasks or
3447 		 * kernel threads (both mm NULL), since they never
3448 		 * leave kernel.
3449 		 */
3450 		if (p->mm && printk_ratelimit()) {
3451 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3452 					task_pid_nr(p), p->comm, cpu);
3453 		}
3454 	}
3455 
3456 	return dest_cpu;
3457 }
3458 
3459 /*
3460  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3461  */
3462 static inline
3463 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3464 {
3465 	lockdep_assert_held(&p->pi_lock);
3466 
3467 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3468 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3469 	else
3470 		cpu = cpumask_any(p->cpus_ptr);
3471 
3472 	/*
3473 	 * In order not to call set_task_cpu() on a blocking task we need
3474 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3475 	 * CPU.
3476 	 *
3477 	 * Since this is common to all placement strategies, this lives here.
3478 	 *
3479 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3480 	 *   not worry about this generic constraint ]
3481 	 */
3482 	if (unlikely(!is_cpu_allowed(p, cpu)))
3483 		cpu = select_fallback_rq(task_cpu(p), p);
3484 
3485 	return cpu;
3486 }
3487 
3488 void sched_set_stop_task(int cpu, struct task_struct *stop)
3489 {
3490 	static struct lock_class_key stop_pi_lock;
3491 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3492 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3493 
3494 	if (stop) {
3495 		/*
3496 		 * Make it appear like a SCHED_FIFO task, its something
3497 		 * userspace knows about and won't get confused about.
3498 		 *
3499 		 * Also, it will make PI more or less work without too
3500 		 * much confusion -- but then, stop work should not
3501 		 * rely on PI working anyway.
3502 		 */
3503 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3504 
3505 		stop->sched_class = &stop_sched_class;
3506 
3507 		/*
3508 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3509 		 * adjust the effective priority of a task. As a result,
3510 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3511 		 * which can then trigger wakeups of the stop thread to push
3512 		 * around the current task.
3513 		 *
3514 		 * The stop task itself will never be part of the PI-chain, it
3515 		 * never blocks, therefore that ->pi_lock recursion is safe.
3516 		 * Tell lockdep about this by placing the stop->pi_lock in its
3517 		 * own class.
3518 		 */
3519 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3520 	}
3521 
3522 	cpu_rq(cpu)->stop = stop;
3523 
3524 	if (old_stop) {
3525 		/*
3526 		 * Reset it back to a normal scheduling class so that
3527 		 * it can die in pieces.
3528 		 */
3529 		old_stop->sched_class = &rt_sched_class;
3530 	}
3531 }
3532 
3533 #else /* CONFIG_SMP */
3534 
3535 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3536 
3537 static inline bool rq_has_pinned_tasks(struct rq *rq)
3538 {
3539 	return false;
3540 }
3541 
3542 #endif /* !CONFIG_SMP */
3543 
3544 static void
3545 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3546 {
3547 	struct rq *rq;
3548 
3549 	if (!schedstat_enabled())
3550 		return;
3551 
3552 	rq = this_rq();
3553 
3554 #ifdef CONFIG_SMP
3555 	if (cpu == rq->cpu) {
3556 		__schedstat_inc(rq->ttwu_local);
3557 		__schedstat_inc(p->stats.nr_wakeups_local);
3558 	} else {
3559 		struct sched_domain *sd;
3560 
3561 		__schedstat_inc(p->stats.nr_wakeups_remote);
3562 
3563 		guard(rcu)();
3564 		for_each_domain(rq->cpu, sd) {
3565 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3566 				__schedstat_inc(sd->ttwu_wake_remote);
3567 				break;
3568 			}
3569 		}
3570 	}
3571 
3572 	if (wake_flags & WF_MIGRATED)
3573 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3574 #endif /* CONFIG_SMP */
3575 
3576 	__schedstat_inc(rq->ttwu_count);
3577 	__schedstat_inc(p->stats.nr_wakeups);
3578 
3579 	if (wake_flags & WF_SYNC)
3580 		__schedstat_inc(p->stats.nr_wakeups_sync);
3581 }
3582 
3583 /*
3584  * Mark the task runnable.
3585  */
3586 static inline void ttwu_do_wakeup(struct task_struct *p)
3587 {
3588 	WRITE_ONCE(p->__state, TASK_RUNNING);
3589 	trace_sched_wakeup(p);
3590 }
3591 
3592 static void
3593 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3594 		 struct rq_flags *rf)
3595 {
3596 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3597 
3598 	lockdep_assert_rq_held(rq);
3599 
3600 	if (p->sched_contributes_to_load)
3601 		rq->nr_uninterruptible--;
3602 
3603 #ifdef CONFIG_SMP
3604 	if (wake_flags & WF_MIGRATED)
3605 		en_flags |= ENQUEUE_MIGRATED;
3606 	else
3607 #endif
3608 	if (p->in_iowait) {
3609 		delayacct_blkio_end(p);
3610 		atomic_dec(&task_rq(p)->nr_iowait);
3611 	}
3612 
3613 	activate_task(rq, p, en_flags);
3614 	wakeup_preempt(rq, p, wake_flags);
3615 
3616 	ttwu_do_wakeup(p);
3617 
3618 #ifdef CONFIG_SMP
3619 	if (p->sched_class->task_woken) {
3620 		/*
3621 		 * Our task @p is fully woken up and running; so it's safe to
3622 		 * drop the rq->lock, hereafter rq is only used for statistics.
3623 		 */
3624 		rq_unpin_lock(rq, rf);
3625 		p->sched_class->task_woken(rq, p);
3626 		rq_repin_lock(rq, rf);
3627 	}
3628 
3629 	if (rq->idle_stamp) {
3630 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3631 		u64 max = 2*rq->max_idle_balance_cost;
3632 
3633 		update_avg(&rq->avg_idle, delta);
3634 
3635 		if (rq->avg_idle > max)
3636 			rq->avg_idle = max;
3637 
3638 		rq->idle_stamp = 0;
3639 	}
3640 #endif
3641 
3642 	p->dl_server = NULL;
3643 }
3644 
3645 /*
3646  * Consider @p being inside a wait loop:
3647  *
3648  *   for (;;) {
3649  *      set_current_state(TASK_UNINTERRUPTIBLE);
3650  *
3651  *      if (CONDITION)
3652  *         break;
3653  *
3654  *      schedule();
3655  *   }
3656  *   __set_current_state(TASK_RUNNING);
3657  *
3658  * between set_current_state() and schedule(). In this case @p is still
3659  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3660  * an atomic manner.
3661  *
3662  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3663  * then schedule() must still happen and p->state can be changed to
3664  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3665  * need to do a full wakeup with enqueue.
3666  *
3667  * Returns: %true when the wakeup is done,
3668  *          %false otherwise.
3669  */
3670 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3671 {
3672 	struct rq_flags rf;
3673 	struct rq *rq;
3674 	int ret = 0;
3675 
3676 	rq = __task_rq_lock(p, &rf);
3677 	if (task_on_rq_queued(p)) {
3678 		if (!task_on_cpu(rq, p)) {
3679 			/*
3680 			 * When on_rq && !on_cpu the task is preempted, see if
3681 			 * it should preempt the task that is current now.
3682 			 */
3683 			update_rq_clock(rq);
3684 			wakeup_preempt(rq, p, wake_flags);
3685 		}
3686 		ttwu_do_wakeup(p);
3687 		ret = 1;
3688 	}
3689 	__task_rq_unlock(rq, &rf);
3690 
3691 	return ret;
3692 }
3693 
3694 #ifdef CONFIG_SMP
3695 void sched_ttwu_pending(void *arg)
3696 {
3697 	struct llist_node *llist = arg;
3698 	struct rq *rq = this_rq();
3699 	struct task_struct *p, *t;
3700 	struct rq_flags rf;
3701 
3702 	if (!llist)
3703 		return;
3704 
3705 	rq_lock_irqsave(rq, &rf);
3706 	update_rq_clock(rq);
3707 
3708 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3709 		if (WARN_ON_ONCE(p->on_cpu))
3710 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3711 
3712 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3713 			set_task_cpu(p, cpu_of(rq));
3714 
3715 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3716 	}
3717 
3718 	/*
3719 	 * Must be after enqueueing at least once task such that
3720 	 * idle_cpu() does not observe a false-negative -- if it does,
3721 	 * it is possible for select_idle_siblings() to stack a number
3722 	 * of tasks on this CPU during that window.
3723 	 *
3724 	 * It is OK to clear ttwu_pending when another task pending.
3725 	 * We will receive IPI after local IRQ enabled and then enqueue it.
3726 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3727 	 */
3728 	WRITE_ONCE(rq->ttwu_pending, 0);
3729 	rq_unlock_irqrestore(rq, &rf);
3730 }
3731 
3732 /*
3733  * Prepare the scene for sending an IPI for a remote smp_call
3734  *
3735  * Returns true if the caller can proceed with sending the IPI.
3736  * Returns false otherwise.
3737  */
3738 bool call_function_single_prep_ipi(int cpu)
3739 {
3740 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3741 		trace_sched_wake_idle_without_ipi(cpu);
3742 		return false;
3743 	}
3744 
3745 	return true;
3746 }
3747 
3748 /*
3749  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3750  * necessary. The wakee CPU on receipt of the IPI will queue the task
3751  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3752  * of the wakeup instead of the waker.
3753  */
3754 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3755 {
3756 	struct rq *rq = cpu_rq(cpu);
3757 
3758 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3759 
3760 	WRITE_ONCE(rq->ttwu_pending, 1);
3761 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3762 }
3763 
3764 void wake_up_if_idle(int cpu)
3765 {
3766 	struct rq *rq = cpu_rq(cpu);
3767 
3768 	guard(rcu)();
3769 	if (is_idle_task(rcu_dereference(rq->curr))) {
3770 		guard(rq_lock_irqsave)(rq);
3771 		if (is_idle_task(rq->curr))
3772 			resched_curr(rq);
3773 	}
3774 }
3775 
3776 bool cpus_equal_capacity(int this_cpu, int that_cpu)
3777 {
3778 	if (!sched_asym_cpucap_active())
3779 		return true;
3780 
3781 	if (this_cpu == that_cpu)
3782 		return true;
3783 
3784 	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3785 }
3786 
3787 bool cpus_share_cache(int this_cpu, int that_cpu)
3788 {
3789 	if (this_cpu == that_cpu)
3790 		return true;
3791 
3792 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3793 }
3794 
3795 /*
3796  * Whether CPUs are share cache resources, which means LLC on non-cluster
3797  * machines and LLC tag or L2 on machines with clusters.
3798  */
3799 bool cpus_share_resources(int this_cpu, int that_cpu)
3800 {
3801 	if (this_cpu == that_cpu)
3802 		return true;
3803 
3804 	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3805 }
3806 
3807 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3808 {
3809 	/*
3810 	 * Do not complicate things with the async wake_list while the CPU is
3811 	 * in hotplug state.
3812 	 */
3813 	if (!cpu_active(cpu))
3814 		return false;
3815 
3816 	/* Ensure the task will still be allowed to run on the CPU. */
3817 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3818 		return false;
3819 
3820 	/*
3821 	 * If the CPU does not share cache, then queue the task on the
3822 	 * remote rqs wakelist to avoid accessing remote data.
3823 	 */
3824 	if (!cpus_share_cache(smp_processor_id(), cpu))
3825 		return true;
3826 
3827 	if (cpu == smp_processor_id())
3828 		return false;
3829 
3830 	/*
3831 	 * If the wakee cpu is idle, or the task is descheduling and the
3832 	 * only running task on the CPU, then use the wakelist to offload
3833 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3834 	 * the current CPU is likely busy. nr_running is checked to
3835 	 * avoid unnecessary task stacking.
3836 	 *
3837 	 * Note that we can only get here with (wakee) p->on_rq=0,
3838 	 * p->on_cpu can be whatever, we've done the dequeue, so
3839 	 * the wakee has been accounted out of ->nr_running.
3840 	 */
3841 	if (!cpu_rq(cpu)->nr_running)
3842 		return true;
3843 
3844 	return false;
3845 }
3846 
3847 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3848 {
3849 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3850 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3851 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3852 		return true;
3853 	}
3854 
3855 	return false;
3856 }
3857 
3858 #else /* !CONFIG_SMP */
3859 
3860 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3861 {
3862 	return false;
3863 }
3864 
3865 #endif /* CONFIG_SMP */
3866 
3867 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3868 {
3869 	struct rq *rq = cpu_rq(cpu);
3870 	struct rq_flags rf;
3871 
3872 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3873 		return;
3874 
3875 	rq_lock(rq, &rf);
3876 	update_rq_clock(rq);
3877 	ttwu_do_activate(rq, p, wake_flags, &rf);
3878 	rq_unlock(rq, &rf);
3879 }
3880 
3881 /*
3882  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3883  *
3884  * The caller holds p::pi_lock if p != current or has preemption
3885  * disabled when p == current.
3886  *
3887  * The rules of saved_state:
3888  *
3889  *   The related locking code always holds p::pi_lock when updating
3890  *   p::saved_state, which means the code is fully serialized in both cases.
3891  *
3892  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
3893  *   No other bits set. This allows to distinguish all wakeup scenarios.
3894  *
3895  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
3896  *   allows us to prevent early wakeup of tasks before they can be run on
3897  *   asymmetric ISA architectures (eg ARMv9).
3898  */
3899 static __always_inline
3900 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3901 {
3902 	int match;
3903 
3904 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3905 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3906 			     state != TASK_RTLOCK_WAIT);
3907 	}
3908 
3909 	*success = !!(match = __task_state_match(p, state));
3910 
3911 	/*
3912 	 * Saved state preserves the task state across blocking on
3913 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
3914 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
3915 	 * because it waits for a lock wakeup or __thaw_task(). Also
3916 	 * indicate success because from the regular waker's point of
3917 	 * view this has succeeded.
3918 	 *
3919 	 * After acquiring the lock the task will restore p::__state
3920 	 * from p::saved_state which ensures that the regular
3921 	 * wakeup is not lost. The restore will also set
3922 	 * p::saved_state to TASK_RUNNING so any further tests will
3923 	 * not result in false positives vs. @success
3924 	 */
3925 	if (match < 0)
3926 		p->saved_state = TASK_RUNNING;
3927 
3928 	return match > 0;
3929 }
3930 
3931 /*
3932  * Notes on Program-Order guarantees on SMP systems.
3933  *
3934  *  MIGRATION
3935  *
3936  * The basic program-order guarantee on SMP systems is that when a task [t]
3937  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3938  * execution on its new CPU [c1].
3939  *
3940  * For migration (of runnable tasks) this is provided by the following means:
3941  *
3942  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3943  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3944  *     rq(c1)->lock (if not at the same time, then in that order).
3945  *  C) LOCK of the rq(c1)->lock scheduling in task
3946  *
3947  * Release/acquire chaining guarantees that B happens after A and C after B.
3948  * Note: the CPU doing B need not be c0 or c1
3949  *
3950  * Example:
3951  *
3952  *   CPU0            CPU1            CPU2
3953  *
3954  *   LOCK rq(0)->lock
3955  *   sched-out X
3956  *   sched-in Y
3957  *   UNLOCK rq(0)->lock
3958  *
3959  *                                   LOCK rq(0)->lock // orders against CPU0
3960  *                                   dequeue X
3961  *                                   UNLOCK rq(0)->lock
3962  *
3963  *                                   LOCK rq(1)->lock
3964  *                                   enqueue X
3965  *                                   UNLOCK rq(1)->lock
3966  *
3967  *                   LOCK rq(1)->lock // orders against CPU2
3968  *                   sched-out Z
3969  *                   sched-in X
3970  *                   UNLOCK rq(1)->lock
3971  *
3972  *
3973  *  BLOCKING -- aka. SLEEP + WAKEUP
3974  *
3975  * For blocking we (obviously) need to provide the same guarantee as for
3976  * migration. However the means are completely different as there is no lock
3977  * chain to provide order. Instead we do:
3978  *
3979  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3980  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3981  *
3982  * Example:
3983  *
3984  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3985  *
3986  *   LOCK rq(0)->lock LOCK X->pi_lock
3987  *   dequeue X
3988  *   sched-out X
3989  *   smp_store_release(X->on_cpu, 0);
3990  *
3991  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3992  *                    X->state = WAKING
3993  *                    set_task_cpu(X,2)
3994  *
3995  *                    LOCK rq(2)->lock
3996  *                    enqueue X
3997  *                    X->state = RUNNING
3998  *                    UNLOCK rq(2)->lock
3999  *
4000  *                                          LOCK rq(2)->lock // orders against CPU1
4001  *                                          sched-out Z
4002  *                                          sched-in X
4003  *                                          UNLOCK rq(2)->lock
4004  *
4005  *                    UNLOCK X->pi_lock
4006  *   UNLOCK rq(0)->lock
4007  *
4008  *
4009  * However, for wakeups there is a second guarantee we must provide, namely we
4010  * must ensure that CONDITION=1 done by the caller can not be reordered with
4011  * accesses to the task state; see try_to_wake_up() and set_current_state().
4012  */
4013 
4014 /**
4015  * try_to_wake_up - wake up a thread
4016  * @p: the thread to be awakened
4017  * @state: the mask of task states that can be woken
4018  * @wake_flags: wake modifier flags (WF_*)
4019  *
4020  * Conceptually does:
4021  *
4022  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4023  *
4024  * If the task was not queued/runnable, also place it back on a runqueue.
4025  *
4026  * This function is atomic against schedule() which would dequeue the task.
4027  *
4028  * It issues a full memory barrier before accessing @p->state, see the comment
4029  * with set_current_state().
4030  *
4031  * Uses p->pi_lock to serialize against concurrent wake-ups.
4032  *
4033  * Relies on p->pi_lock stabilizing:
4034  *  - p->sched_class
4035  *  - p->cpus_ptr
4036  *  - p->sched_task_group
4037  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4038  *
4039  * Tries really hard to only take one task_rq(p)->lock for performance.
4040  * Takes rq->lock in:
4041  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4042  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4043  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4044  *
4045  * As a consequence we race really badly with just about everything. See the
4046  * many memory barriers and their comments for details.
4047  *
4048  * Return: %true if @p->state changes (an actual wakeup was done),
4049  *	   %false otherwise.
4050  */
4051 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4052 {
4053 	guard(preempt)();
4054 	int cpu, success = 0;
4055 
4056 	if (p == current) {
4057 		/*
4058 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4059 		 * == smp_processor_id()'. Together this means we can special
4060 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4061 		 * without taking any locks.
4062 		 *
4063 		 * In particular:
4064 		 *  - we rely on Program-Order guarantees for all the ordering,
4065 		 *  - we're serialized against set_special_state() by virtue of
4066 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4067 		 */
4068 		if (!ttwu_state_match(p, state, &success))
4069 			goto out;
4070 
4071 		trace_sched_waking(p);
4072 		ttwu_do_wakeup(p);
4073 		goto out;
4074 	}
4075 
4076 	/*
4077 	 * If we are going to wake up a thread waiting for CONDITION we
4078 	 * need to ensure that CONDITION=1 done by the caller can not be
4079 	 * reordered with p->state check below. This pairs with smp_store_mb()
4080 	 * in set_current_state() that the waiting thread does.
4081 	 */
4082 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4083 		smp_mb__after_spinlock();
4084 		if (!ttwu_state_match(p, state, &success))
4085 			break;
4086 
4087 		trace_sched_waking(p);
4088 
4089 		/*
4090 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4091 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4092 		 * in smp_cond_load_acquire() below.
4093 		 *
4094 		 * sched_ttwu_pending()			try_to_wake_up()
4095 		 *   STORE p->on_rq = 1			  LOAD p->state
4096 		 *   UNLOCK rq->lock
4097 		 *
4098 		 * __schedule() (switch to task 'p')
4099 		 *   LOCK rq->lock			  smp_rmb();
4100 		 *   smp_mb__after_spinlock();
4101 		 *   UNLOCK rq->lock
4102 		 *
4103 		 * [task p]
4104 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4105 		 *
4106 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4107 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4108 		 *
4109 		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4110 		 */
4111 		smp_rmb();
4112 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4113 			break;
4114 
4115 #ifdef CONFIG_SMP
4116 		/*
4117 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4118 		 * possible to, falsely, observe p->on_cpu == 0.
4119 		 *
4120 		 * One must be running (->on_cpu == 1) in order to remove oneself
4121 		 * from the runqueue.
4122 		 *
4123 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4124 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4125 		 *   UNLOCK rq->lock
4126 		 *
4127 		 * __schedule() (put 'p' to sleep)
4128 		 *   LOCK rq->lock			  smp_rmb();
4129 		 *   smp_mb__after_spinlock();
4130 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4131 		 *
4132 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4133 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4134 		 *
4135 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4136 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4137 		 * care about it's own p->state. See the comment in __schedule().
4138 		 */
4139 		smp_acquire__after_ctrl_dep();
4140 
4141 		/*
4142 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4143 		 * == 0), which means we need to do an enqueue, change p->state to
4144 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4145 		 * enqueue, such as ttwu_queue_wakelist().
4146 		 */
4147 		WRITE_ONCE(p->__state, TASK_WAKING);
4148 
4149 		/*
4150 		 * If the owning (remote) CPU is still in the middle of schedule() with
4151 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4152 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4153 		 * let the waker make forward progress. This is safe because IRQs are
4154 		 * disabled and the IPI will deliver after on_cpu is cleared.
4155 		 *
4156 		 * Ensure we load task_cpu(p) after p->on_cpu:
4157 		 *
4158 		 * set_task_cpu(p, cpu);
4159 		 *   STORE p->cpu = @cpu
4160 		 * __schedule() (switch to task 'p')
4161 		 *   LOCK rq->lock
4162 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4163 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4164 		 *
4165 		 * to ensure we observe the correct CPU on which the task is currently
4166 		 * scheduling.
4167 		 */
4168 		if (smp_load_acquire(&p->on_cpu) &&
4169 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4170 			break;
4171 
4172 		/*
4173 		 * If the owning (remote) CPU is still in the middle of schedule() with
4174 		 * this task as prev, wait until it's done referencing the task.
4175 		 *
4176 		 * Pairs with the smp_store_release() in finish_task().
4177 		 *
4178 		 * This ensures that tasks getting woken will be fully ordered against
4179 		 * their previous state and preserve Program Order.
4180 		 */
4181 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4182 
4183 		cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4184 		if (task_cpu(p) != cpu) {
4185 			if (p->in_iowait) {
4186 				delayacct_blkio_end(p);
4187 				atomic_dec(&task_rq(p)->nr_iowait);
4188 			}
4189 
4190 			wake_flags |= WF_MIGRATED;
4191 			psi_ttwu_dequeue(p);
4192 			set_task_cpu(p, cpu);
4193 		}
4194 #else
4195 		cpu = task_cpu(p);
4196 #endif /* CONFIG_SMP */
4197 
4198 		ttwu_queue(p, cpu, wake_flags);
4199 	}
4200 out:
4201 	if (success)
4202 		ttwu_stat(p, task_cpu(p), wake_flags);
4203 
4204 	return success;
4205 }
4206 
4207 static bool __task_needs_rq_lock(struct task_struct *p)
4208 {
4209 	unsigned int state = READ_ONCE(p->__state);
4210 
4211 	/*
4212 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4213 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4214 	 * locks at the end, see ttwu_queue_wakelist().
4215 	 */
4216 	if (state == TASK_RUNNING || state == TASK_WAKING)
4217 		return true;
4218 
4219 	/*
4220 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4221 	 * possible to, falsely, observe p->on_rq == 0.
4222 	 *
4223 	 * See try_to_wake_up() for a longer comment.
4224 	 */
4225 	smp_rmb();
4226 	if (p->on_rq)
4227 		return true;
4228 
4229 #ifdef CONFIG_SMP
4230 	/*
4231 	 * Ensure the task has finished __schedule() and will not be referenced
4232 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4233 	 */
4234 	smp_rmb();
4235 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4236 #endif
4237 
4238 	return false;
4239 }
4240 
4241 /**
4242  * task_call_func - Invoke a function on task in fixed state
4243  * @p: Process for which the function is to be invoked, can be @current.
4244  * @func: Function to invoke.
4245  * @arg: Argument to function.
4246  *
4247  * Fix the task in it's current state by avoiding wakeups and or rq operations
4248  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4249  * to work out what the state is, if required.  Given that @func can be invoked
4250  * with a runqueue lock held, it had better be quite lightweight.
4251  *
4252  * Returns:
4253  *   Whatever @func returns
4254  */
4255 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4256 {
4257 	struct rq *rq = NULL;
4258 	struct rq_flags rf;
4259 	int ret;
4260 
4261 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4262 
4263 	if (__task_needs_rq_lock(p))
4264 		rq = __task_rq_lock(p, &rf);
4265 
4266 	/*
4267 	 * At this point the task is pinned; either:
4268 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4269 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4270 	 *  - queued, and we're holding off schedule	 (rq->lock)
4271 	 *  - running, and we're holding off de-schedule (rq->lock)
4272 	 *
4273 	 * The called function (@func) can use: task_curr(), p->on_rq and
4274 	 * p->__state to differentiate between these states.
4275 	 */
4276 	ret = func(p, arg);
4277 
4278 	if (rq)
4279 		rq_unlock(rq, &rf);
4280 
4281 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4282 	return ret;
4283 }
4284 
4285 /**
4286  * cpu_curr_snapshot - Return a snapshot of the currently running task
4287  * @cpu: The CPU on which to snapshot the task.
4288  *
4289  * Returns the task_struct pointer of the task "currently" running on
4290  * the specified CPU.
4291  *
4292  * If the specified CPU was offline, the return value is whatever it
4293  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4294  * task, but there is no guarantee.  Callers wishing a useful return
4295  * value must take some action to ensure that the specified CPU remains
4296  * online throughout.
4297  *
4298  * This function executes full memory barriers before and after fetching
4299  * the pointer, which permits the caller to confine this function's fetch
4300  * with respect to the caller's accesses to other shared variables.
4301  */
4302 struct task_struct *cpu_curr_snapshot(int cpu)
4303 {
4304 	struct rq *rq = cpu_rq(cpu);
4305 	struct task_struct *t;
4306 	struct rq_flags rf;
4307 
4308 	rq_lock_irqsave(rq, &rf);
4309 	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4310 	t = rcu_dereference(cpu_curr(cpu));
4311 	rq_unlock_irqrestore(rq, &rf);
4312 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4313 
4314 	return t;
4315 }
4316 
4317 /**
4318  * wake_up_process - Wake up a specific process
4319  * @p: The process to be woken up.
4320  *
4321  * Attempt to wake up the nominated process and move it to the set of runnable
4322  * processes.
4323  *
4324  * Return: 1 if the process was woken up, 0 if it was already running.
4325  *
4326  * This function executes a full memory barrier before accessing the task state.
4327  */
4328 int wake_up_process(struct task_struct *p)
4329 {
4330 	return try_to_wake_up(p, TASK_NORMAL, 0);
4331 }
4332 EXPORT_SYMBOL(wake_up_process);
4333 
4334 int wake_up_state(struct task_struct *p, unsigned int state)
4335 {
4336 	return try_to_wake_up(p, state, 0);
4337 }
4338 
4339 /*
4340  * Perform scheduler related setup for a newly forked process p.
4341  * p is forked by current.
4342  *
4343  * __sched_fork() is basic setup used by init_idle() too:
4344  */
4345 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4346 {
4347 	p->on_rq			= 0;
4348 
4349 	p->se.on_rq			= 0;
4350 	p->se.exec_start		= 0;
4351 	p->se.sum_exec_runtime		= 0;
4352 	p->se.prev_sum_exec_runtime	= 0;
4353 	p->se.nr_migrations		= 0;
4354 	p->se.vruntime			= 0;
4355 	p->se.vlag			= 0;
4356 	p->se.slice			= sysctl_sched_base_slice;
4357 	INIT_LIST_HEAD(&p->se.group_node);
4358 
4359 #ifdef CONFIG_FAIR_GROUP_SCHED
4360 	p->se.cfs_rq			= NULL;
4361 #endif
4362 
4363 #ifdef CONFIG_SCHEDSTATS
4364 	/* Even if schedstat is disabled, there should not be garbage */
4365 	memset(&p->stats, 0, sizeof(p->stats));
4366 #endif
4367 
4368 	init_dl_entity(&p->dl);
4369 
4370 	INIT_LIST_HEAD(&p->rt.run_list);
4371 	p->rt.timeout		= 0;
4372 	p->rt.time_slice	= sched_rr_timeslice;
4373 	p->rt.on_rq		= 0;
4374 	p->rt.on_list		= 0;
4375 
4376 #ifdef CONFIG_PREEMPT_NOTIFIERS
4377 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4378 #endif
4379 
4380 #ifdef CONFIG_COMPACTION
4381 	p->capture_control = NULL;
4382 #endif
4383 	init_numa_balancing(clone_flags, p);
4384 #ifdef CONFIG_SMP
4385 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4386 	p->migration_pending = NULL;
4387 #endif
4388 	init_sched_mm_cid(p);
4389 }
4390 
4391 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4392 
4393 #ifdef CONFIG_NUMA_BALANCING
4394 
4395 int sysctl_numa_balancing_mode;
4396 
4397 static void __set_numabalancing_state(bool enabled)
4398 {
4399 	if (enabled)
4400 		static_branch_enable(&sched_numa_balancing);
4401 	else
4402 		static_branch_disable(&sched_numa_balancing);
4403 }
4404 
4405 void set_numabalancing_state(bool enabled)
4406 {
4407 	if (enabled)
4408 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4409 	else
4410 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4411 	__set_numabalancing_state(enabled);
4412 }
4413 
4414 #ifdef CONFIG_PROC_SYSCTL
4415 static void reset_memory_tiering(void)
4416 {
4417 	struct pglist_data *pgdat;
4418 
4419 	for_each_online_pgdat(pgdat) {
4420 		pgdat->nbp_threshold = 0;
4421 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4422 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4423 	}
4424 }
4425 
4426 static int sysctl_numa_balancing(const struct ctl_table *table, int write,
4427 			  void *buffer, size_t *lenp, loff_t *ppos)
4428 {
4429 	struct ctl_table t;
4430 	int err;
4431 	int state = sysctl_numa_balancing_mode;
4432 
4433 	if (write && !capable(CAP_SYS_ADMIN))
4434 		return -EPERM;
4435 
4436 	t = *table;
4437 	t.data = &state;
4438 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4439 	if (err < 0)
4440 		return err;
4441 	if (write) {
4442 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4443 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4444 			reset_memory_tiering();
4445 		sysctl_numa_balancing_mode = state;
4446 		__set_numabalancing_state(state);
4447 	}
4448 	return err;
4449 }
4450 #endif
4451 #endif
4452 
4453 #ifdef CONFIG_SCHEDSTATS
4454 
4455 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4456 
4457 static void set_schedstats(bool enabled)
4458 {
4459 	if (enabled)
4460 		static_branch_enable(&sched_schedstats);
4461 	else
4462 		static_branch_disable(&sched_schedstats);
4463 }
4464 
4465 void force_schedstat_enabled(void)
4466 {
4467 	if (!schedstat_enabled()) {
4468 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4469 		static_branch_enable(&sched_schedstats);
4470 	}
4471 }
4472 
4473 static int __init setup_schedstats(char *str)
4474 {
4475 	int ret = 0;
4476 	if (!str)
4477 		goto out;
4478 
4479 	if (!strcmp(str, "enable")) {
4480 		set_schedstats(true);
4481 		ret = 1;
4482 	} else if (!strcmp(str, "disable")) {
4483 		set_schedstats(false);
4484 		ret = 1;
4485 	}
4486 out:
4487 	if (!ret)
4488 		pr_warn("Unable to parse schedstats=\n");
4489 
4490 	return ret;
4491 }
4492 __setup("schedstats=", setup_schedstats);
4493 
4494 #ifdef CONFIG_PROC_SYSCTL
4495 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
4496 		size_t *lenp, loff_t *ppos)
4497 {
4498 	struct ctl_table t;
4499 	int err;
4500 	int state = static_branch_likely(&sched_schedstats);
4501 
4502 	if (write && !capable(CAP_SYS_ADMIN))
4503 		return -EPERM;
4504 
4505 	t = *table;
4506 	t.data = &state;
4507 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4508 	if (err < 0)
4509 		return err;
4510 	if (write)
4511 		set_schedstats(state);
4512 	return err;
4513 }
4514 #endif /* CONFIG_PROC_SYSCTL */
4515 #endif /* CONFIG_SCHEDSTATS */
4516 
4517 #ifdef CONFIG_SYSCTL
4518 static struct ctl_table sched_core_sysctls[] = {
4519 #ifdef CONFIG_SCHEDSTATS
4520 	{
4521 		.procname       = "sched_schedstats",
4522 		.data           = NULL,
4523 		.maxlen         = sizeof(unsigned int),
4524 		.mode           = 0644,
4525 		.proc_handler   = sysctl_schedstats,
4526 		.extra1         = SYSCTL_ZERO,
4527 		.extra2         = SYSCTL_ONE,
4528 	},
4529 #endif /* CONFIG_SCHEDSTATS */
4530 #ifdef CONFIG_UCLAMP_TASK
4531 	{
4532 		.procname       = "sched_util_clamp_min",
4533 		.data           = &sysctl_sched_uclamp_util_min,
4534 		.maxlen         = sizeof(unsigned int),
4535 		.mode           = 0644,
4536 		.proc_handler   = sysctl_sched_uclamp_handler,
4537 	},
4538 	{
4539 		.procname       = "sched_util_clamp_max",
4540 		.data           = &sysctl_sched_uclamp_util_max,
4541 		.maxlen         = sizeof(unsigned int),
4542 		.mode           = 0644,
4543 		.proc_handler   = sysctl_sched_uclamp_handler,
4544 	},
4545 	{
4546 		.procname       = "sched_util_clamp_min_rt_default",
4547 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4548 		.maxlen         = sizeof(unsigned int),
4549 		.mode           = 0644,
4550 		.proc_handler   = sysctl_sched_uclamp_handler,
4551 	},
4552 #endif /* CONFIG_UCLAMP_TASK */
4553 #ifdef CONFIG_NUMA_BALANCING
4554 	{
4555 		.procname	= "numa_balancing",
4556 		.data		= NULL, /* filled in by handler */
4557 		.maxlen		= sizeof(unsigned int),
4558 		.mode		= 0644,
4559 		.proc_handler	= sysctl_numa_balancing,
4560 		.extra1		= SYSCTL_ZERO,
4561 		.extra2		= SYSCTL_FOUR,
4562 	},
4563 #endif /* CONFIG_NUMA_BALANCING */
4564 };
4565 static int __init sched_core_sysctl_init(void)
4566 {
4567 	register_sysctl_init("kernel", sched_core_sysctls);
4568 	return 0;
4569 }
4570 late_initcall(sched_core_sysctl_init);
4571 #endif /* CONFIG_SYSCTL */
4572 
4573 /*
4574  * fork()/clone()-time setup:
4575  */
4576 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4577 {
4578 	__sched_fork(clone_flags, p);
4579 	/*
4580 	 * We mark the process as NEW here. This guarantees that
4581 	 * nobody will actually run it, and a signal or other external
4582 	 * event cannot wake it up and insert it on the runqueue either.
4583 	 */
4584 	p->__state = TASK_NEW;
4585 
4586 	/*
4587 	 * Make sure we do not leak PI boosting priority to the child.
4588 	 */
4589 	p->prio = current->normal_prio;
4590 
4591 	uclamp_fork(p);
4592 
4593 	/*
4594 	 * Revert to default priority/policy on fork if requested.
4595 	 */
4596 	if (unlikely(p->sched_reset_on_fork)) {
4597 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4598 			p->policy = SCHED_NORMAL;
4599 			p->static_prio = NICE_TO_PRIO(0);
4600 			p->rt_priority = 0;
4601 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4602 			p->static_prio = NICE_TO_PRIO(0);
4603 
4604 		p->prio = p->normal_prio = p->static_prio;
4605 		set_load_weight(p, false);
4606 
4607 		/*
4608 		 * We don't need the reset flag anymore after the fork. It has
4609 		 * fulfilled its duty:
4610 		 */
4611 		p->sched_reset_on_fork = 0;
4612 	}
4613 
4614 	if (dl_prio(p->prio))
4615 		return -EAGAIN;
4616 	else if (rt_prio(p->prio))
4617 		p->sched_class = &rt_sched_class;
4618 	else
4619 		p->sched_class = &fair_sched_class;
4620 
4621 	init_entity_runnable_average(&p->se);
4622 
4623 
4624 #ifdef CONFIG_SCHED_INFO
4625 	if (likely(sched_info_on()))
4626 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4627 #endif
4628 #if defined(CONFIG_SMP)
4629 	p->on_cpu = 0;
4630 #endif
4631 	init_task_preempt_count(p);
4632 #ifdef CONFIG_SMP
4633 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4634 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4635 #endif
4636 	return 0;
4637 }
4638 
4639 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4640 {
4641 	unsigned long flags;
4642 
4643 	/*
4644 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4645 	 * required yet, but lockdep gets upset if rules are violated.
4646 	 */
4647 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4648 #ifdef CONFIG_CGROUP_SCHED
4649 	if (1) {
4650 		struct task_group *tg;
4651 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4652 				  struct task_group, css);
4653 		tg = autogroup_task_group(p, tg);
4654 		p->sched_task_group = tg;
4655 	}
4656 #endif
4657 	rseq_migrate(p);
4658 	/*
4659 	 * We're setting the CPU for the first time, we don't migrate,
4660 	 * so use __set_task_cpu().
4661 	 */
4662 	__set_task_cpu(p, smp_processor_id());
4663 	if (p->sched_class->task_fork)
4664 		p->sched_class->task_fork(p);
4665 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4666 }
4667 
4668 void sched_post_fork(struct task_struct *p)
4669 {
4670 	uclamp_post_fork(p);
4671 }
4672 
4673 unsigned long to_ratio(u64 period, u64 runtime)
4674 {
4675 	if (runtime == RUNTIME_INF)
4676 		return BW_UNIT;
4677 
4678 	/*
4679 	 * Doing this here saves a lot of checks in all
4680 	 * the calling paths, and returning zero seems
4681 	 * safe for them anyway.
4682 	 */
4683 	if (period == 0)
4684 		return 0;
4685 
4686 	return div64_u64(runtime << BW_SHIFT, period);
4687 }
4688 
4689 /*
4690  * wake_up_new_task - wake up a newly created task for the first time.
4691  *
4692  * This function will do some initial scheduler statistics housekeeping
4693  * that must be done for every newly created context, then puts the task
4694  * on the runqueue and wakes it.
4695  */
4696 void wake_up_new_task(struct task_struct *p)
4697 {
4698 	struct rq_flags rf;
4699 	struct rq *rq;
4700 
4701 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4702 	WRITE_ONCE(p->__state, TASK_RUNNING);
4703 #ifdef CONFIG_SMP
4704 	/*
4705 	 * Fork balancing, do it here and not earlier because:
4706 	 *  - cpus_ptr can change in the fork path
4707 	 *  - any previously selected CPU might disappear through hotplug
4708 	 *
4709 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4710 	 * as we're not fully set-up yet.
4711 	 */
4712 	p->recent_used_cpu = task_cpu(p);
4713 	rseq_migrate(p);
4714 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4715 #endif
4716 	rq = __task_rq_lock(p, &rf);
4717 	update_rq_clock(rq);
4718 	post_init_entity_util_avg(p);
4719 
4720 	activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
4721 	trace_sched_wakeup_new(p);
4722 	wakeup_preempt(rq, p, WF_FORK);
4723 #ifdef CONFIG_SMP
4724 	if (p->sched_class->task_woken) {
4725 		/*
4726 		 * Nothing relies on rq->lock after this, so it's fine to
4727 		 * drop it.
4728 		 */
4729 		rq_unpin_lock(rq, &rf);
4730 		p->sched_class->task_woken(rq, p);
4731 		rq_repin_lock(rq, &rf);
4732 	}
4733 #endif
4734 	task_rq_unlock(rq, p, &rf);
4735 }
4736 
4737 #ifdef CONFIG_PREEMPT_NOTIFIERS
4738 
4739 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4740 
4741 void preempt_notifier_inc(void)
4742 {
4743 	static_branch_inc(&preempt_notifier_key);
4744 }
4745 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4746 
4747 void preempt_notifier_dec(void)
4748 {
4749 	static_branch_dec(&preempt_notifier_key);
4750 }
4751 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4752 
4753 /**
4754  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4755  * @notifier: notifier struct to register
4756  */
4757 void preempt_notifier_register(struct preempt_notifier *notifier)
4758 {
4759 	if (!static_branch_unlikely(&preempt_notifier_key))
4760 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4761 
4762 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4763 }
4764 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4765 
4766 /**
4767  * preempt_notifier_unregister - no longer interested in preemption notifications
4768  * @notifier: notifier struct to unregister
4769  *
4770  * This is *not* safe to call from within a preemption notifier.
4771  */
4772 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4773 {
4774 	hlist_del(&notifier->link);
4775 }
4776 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4777 
4778 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4779 {
4780 	struct preempt_notifier *notifier;
4781 
4782 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4783 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4784 }
4785 
4786 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4787 {
4788 	if (static_branch_unlikely(&preempt_notifier_key))
4789 		__fire_sched_in_preempt_notifiers(curr);
4790 }
4791 
4792 static void
4793 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4794 				   struct task_struct *next)
4795 {
4796 	struct preempt_notifier *notifier;
4797 
4798 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4799 		notifier->ops->sched_out(notifier, next);
4800 }
4801 
4802 static __always_inline void
4803 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4804 				 struct task_struct *next)
4805 {
4806 	if (static_branch_unlikely(&preempt_notifier_key))
4807 		__fire_sched_out_preempt_notifiers(curr, next);
4808 }
4809 
4810 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4811 
4812 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4813 {
4814 }
4815 
4816 static inline void
4817 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4818 				 struct task_struct *next)
4819 {
4820 }
4821 
4822 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4823 
4824 static inline void prepare_task(struct task_struct *next)
4825 {
4826 #ifdef CONFIG_SMP
4827 	/*
4828 	 * Claim the task as running, we do this before switching to it
4829 	 * such that any running task will have this set.
4830 	 *
4831 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4832 	 * its ordering comment.
4833 	 */
4834 	WRITE_ONCE(next->on_cpu, 1);
4835 #endif
4836 }
4837 
4838 static inline void finish_task(struct task_struct *prev)
4839 {
4840 #ifdef CONFIG_SMP
4841 	/*
4842 	 * This must be the very last reference to @prev from this CPU. After
4843 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4844 	 * must ensure this doesn't happen until the switch is completely
4845 	 * finished.
4846 	 *
4847 	 * In particular, the load of prev->state in finish_task_switch() must
4848 	 * happen before this.
4849 	 *
4850 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4851 	 */
4852 	smp_store_release(&prev->on_cpu, 0);
4853 #endif
4854 }
4855 
4856 #ifdef CONFIG_SMP
4857 
4858 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
4859 {
4860 	void (*func)(struct rq *rq);
4861 	struct balance_callback *next;
4862 
4863 	lockdep_assert_rq_held(rq);
4864 
4865 	while (head) {
4866 		func = (void (*)(struct rq *))head->func;
4867 		next = head->next;
4868 		head->next = NULL;
4869 		head = next;
4870 
4871 		func(rq);
4872 	}
4873 }
4874 
4875 static void balance_push(struct rq *rq);
4876 
4877 /*
4878  * balance_push_callback is a right abuse of the callback interface and plays
4879  * by significantly different rules.
4880  *
4881  * Where the normal balance_callback's purpose is to be ran in the same context
4882  * that queued it (only later, when it's safe to drop rq->lock again),
4883  * balance_push_callback is specifically targeted at __schedule().
4884  *
4885  * This abuse is tolerated because it places all the unlikely/odd cases behind
4886  * a single test, namely: rq->balance_callback == NULL.
4887  */
4888 struct balance_callback balance_push_callback = {
4889 	.next = NULL,
4890 	.func = balance_push,
4891 };
4892 
4893 static inline struct balance_callback *
4894 __splice_balance_callbacks(struct rq *rq, bool split)
4895 {
4896 	struct balance_callback *head = rq->balance_callback;
4897 
4898 	if (likely(!head))
4899 		return NULL;
4900 
4901 	lockdep_assert_rq_held(rq);
4902 	/*
4903 	 * Must not take balance_push_callback off the list when
4904 	 * splice_balance_callbacks() and balance_callbacks() are not
4905 	 * in the same rq->lock section.
4906 	 *
4907 	 * In that case it would be possible for __schedule() to interleave
4908 	 * and observe the list empty.
4909 	 */
4910 	if (split && head == &balance_push_callback)
4911 		head = NULL;
4912 	else
4913 		rq->balance_callback = NULL;
4914 
4915 	return head;
4916 }
4917 
4918 struct balance_callback *splice_balance_callbacks(struct rq *rq)
4919 {
4920 	return __splice_balance_callbacks(rq, true);
4921 }
4922 
4923 static void __balance_callbacks(struct rq *rq)
4924 {
4925 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
4926 }
4927 
4928 void balance_callbacks(struct rq *rq, struct balance_callback *head)
4929 {
4930 	unsigned long flags;
4931 
4932 	if (unlikely(head)) {
4933 		raw_spin_rq_lock_irqsave(rq, flags);
4934 		do_balance_callbacks(rq, head);
4935 		raw_spin_rq_unlock_irqrestore(rq, flags);
4936 	}
4937 }
4938 
4939 #else
4940 
4941 static inline void __balance_callbacks(struct rq *rq)
4942 {
4943 }
4944 
4945 #endif
4946 
4947 static inline void
4948 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4949 {
4950 	/*
4951 	 * Since the runqueue lock will be released by the next
4952 	 * task (which is an invalid locking op but in the case
4953 	 * of the scheduler it's an obvious special-case), so we
4954 	 * do an early lockdep release here:
4955 	 */
4956 	rq_unpin_lock(rq, rf);
4957 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4958 #ifdef CONFIG_DEBUG_SPINLOCK
4959 	/* this is a valid case when another task releases the spinlock */
4960 	rq_lockp(rq)->owner = next;
4961 #endif
4962 }
4963 
4964 static inline void finish_lock_switch(struct rq *rq)
4965 {
4966 	/*
4967 	 * If we are tracking spinlock dependencies then we have to
4968 	 * fix up the runqueue lock - which gets 'carried over' from
4969 	 * prev into current:
4970 	 */
4971 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4972 	__balance_callbacks(rq);
4973 	raw_spin_rq_unlock_irq(rq);
4974 }
4975 
4976 /*
4977  * NOP if the arch has not defined these:
4978  */
4979 
4980 #ifndef prepare_arch_switch
4981 # define prepare_arch_switch(next)	do { } while (0)
4982 #endif
4983 
4984 #ifndef finish_arch_post_lock_switch
4985 # define finish_arch_post_lock_switch()	do { } while (0)
4986 #endif
4987 
4988 static inline void kmap_local_sched_out(void)
4989 {
4990 #ifdef CONFIG_KMAP_LOCAL
4991 	if (unlikely(current->kmap_ctrl.idx))
4992 		__kmap_local_sched_out();
4993 #endif
4994 }
4995 
4996 static inline void kmap_local_sched_in(void)
4997 {
4998 #ifdef CONFIG_KMAP_LOCAL
4999 	if (unlikely(current->kmap_ctrl.idx))
5000 		__kmap_local_sched_in();
5001 #endif
5002 }
5003 
5004 /**
5005  * prepare_task_switch - prepare to switch tasks
5006  * @rq: the runqueue preparing to switch
5007  * @prev: the current task that is being switched out
5008  * @next: the task we are going to switch to.
5009  *
5010  * This is called with the rq lock held and interrupts off. It must
5011  * be paired with a subsequent finish_task_switch after the context
5012  * switch.
5013  *
5014  * prepare_task_switch sets up locking and calls architecture specific
5015  * hooks.
5016  */
5017 static inline void
5018 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5019 		    struct task_struct *next)
5020 {
5021 	kcov_prepare_switch(prev);
5022 	sched_info_switch(rq, prev, next);
5023 	perf_event_task_sched_out(prev, next);
5024 	rseq_preempt(prev);
5025 	fire_sched_out_preempt_notifiers(prev, next);
5026 	kmap_local_sched_out();
5027 	prepare_task(next);
5028 	prepare_arch_switch(next);
5029 }
5030 
5031 /**
5032  * finish_task_switch - clean up after a task-switch
5033  * @prev: the thread we just switched away from.
5034  *
5035  * finish_task_switch must be called after the context switch, paired
5036  * with a prepare_task_switch call before the context switch.
5037  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5038  * and do any other architecture-specific cleanup actions.
5039  *
5040  * Note that we may have delayed dropping an mm in context_switch(). If
5041  * so, we finish that here outside of the runqueue lock. (Doing it
5042  * with the lock held can cause deadlocks; see schedule() for
5043  * details.)
5044  *
5045  * The context switch have flipped the stack from under us and restored the
5046  * local variables which were saved when this task called schedule() in the
5047  * past. 'prev == current' is still correct but we need to recalculate this_rq
5048  * because prev may have moved to another CPU.
5049  */
5050 static struct rq *finish_task_switch(struct task_struct *prev)
5051 	__releases(rq->lock)
5052 {
5053 	struct rq *rq = this_rq();
5054 	struct mm_struct *mm = rq->prev_mm;
5055 	unsigned int prev_state;
5056 
5057 	/*
5058 	 * The previous task will have left us with a preempt_count of 2
5059 	 * because it left us after:
5060 	 *
5061 	 *	schedule()
5062 	 *	  preempt_disable();			// 1
5063 	 *	  __schedule()
5064 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5065 	 *
5066 	 * Also, see FORK_PREEMPT_COUNT.
5067 	 */
5068 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5069 		      "corrupted preempt_count: %s/%d/0x%x\n",
5070 		      current->comm, current->pid, preempt_count()))
5071 		preempt_count_set(FORK_PREEMPT_COUNT);
5072 
5073 	rq->prev_mm = NULL;
5074 
5075 	/*
5076 	 * A task struct has one reference for the use as "current".
5077 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5078 	 * schedule one last time. The schedule call will never return, and
5079 	 * the scheduled task must drop that reference.
5080 	 *
5081 	 * We must observe prev->state before clearing prev->on_cpu (in
5082 	 * finish_task), otherwise a concurrent wakeup can get prev
5083 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5084 	 * transition, resulting in a double drop.
5085 	 */
5086 	prev_state = READ_ONCE(prev->__state);
5087 	vtime_task_switch(prev);
5088 	perf_event_task_sched_in(prev, current);
5089 	finish_task(prev);
5090 	tick_nohz_task_switch();
5091 	finish_lock_switch(rq);
5092 	finish_arch_post_lock_switch();
5093 	kcov_finish_switch(current);
5094 	/*
5095 	 * kmap_local_sched_out() is invoked with rq::lock held and
5096 	 * interrupts disabled. There is no requirement for that, but the
5097 	 * sched out code does not have an interrupt enabled section.
5098 	 * Restoring the maps on sched in does not require interrupts being
5099 	 * disabled either.
5100 	 */
5101 	kmap_local_sched_in();
5102 
5103 	fire_sched_in_preempt_notifiers(current);
5104 	/*
5105 	 * When switching through a kernel thread, the loop in
5106 	 * membarrier_{private,global}_expedited() may have observed that
5107 	 * kernel thread and not issued an IPI. It is therefore possible to
5108 	 * schedule between user->kernel->user threads without passing though
5109 	 * switch_mm(). Membarrier requires a barrier after storing to
5110 	 * rq->curr, before returning to userspace, so provide them here:
5111 	 *
5112 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5113 	 *   provided by mmdrop_lazy_tlb(),
5114 	 * - a sync_core for SYNC_CORE.
5115 	 */
5116 	if (mm) {
5117 		membarrier_mm_sync_core_before_usermode(mm);
5118 		mmdrop_lazy_tlb_sched(mm);
5119 	}
5120 
5121 	if (unlikely(prev_state == TASK_DEAD)) {
5122 		if (prev->sched_class->task_dead)
5123 			prev->sched_class->task_dead(prev);
5124 
5125 		/* Task is done with its stack. */
5126 		put_task_stack(prev);
5127 
5128 		put_task_struct_rcu_user(prev);
5129 	}
5130 
5131 	return rq;
5132 }
5133 
5134 /**
5135  * schedule_tail - first thing a freshly forked thread must call.
5136  * @prev: the thread we just switched away from.
5137  */
5138 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5139 	__releases(rq->lock)
5140 {
5141 	/*
5142 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5143 	 * finish_task_switch() for details.
5144 	 *
5145 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5146 	 * and the preempt_enable() will end up enabling preemption (on
5147 	 * PREEMPT_COUNT kernels).
5148 	 */
5149 
5150 	finish_task_switch(prev);
5151 	preempt_enable();
5152 
5153 	if (current->set_child_tid)
5154 		put_user(task_pid_vnr(current), current->set_child_tid);
5155 
5156 	calculate_sigpending();
5157 }
5158 
5159 /*
5160  * context_switch - switch to the new MM and the new thread's register state.
5161  */
5162 static __always_inline struct rq *
5163 context_switch(struct rq *rq, struct task_struct *prev,
5164 	       struct task_struct *next, struct rq_flags *rf)
5165 {
5166 	prepare_task_switch(rq, prev, next);
5167 
5168 	/*
5169 	 * For paravirt, this is coupled with an exit in switch_to to
5170 	 * combine the page table reload and the switch backend into
5171 	 * one hypercall.
5172 	 */
5173 	arch_start_context_switch(prev);
5174 
5175 	/*
5176 	 * kernel -> kernel   lazy + transfer active
5177 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5178 	 *
5179 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5180 	 *   user ->   user   switch
5181 	 *
5182 	 * switch_mm_cid() needs to be updated if the barriers provided
5183 	 * by context_switch() are modified.
5184 	 */
5185 	if (!next->mm) {                                // to kernel
5186 		enter_lazy_tlb(prev->active_mm, next);
5187 
5188 		next->active_mm = prev->active_mm;
5189 		if (prev->mm)                           // from user
5190 			mmgrab_lazy_tlb(prev->active_mm);
5191 		else
5192 			prev->active_mm = NULL;
5193 	} else {                                        // to user
5194 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5195 		/*
5196 		 * sys_membarrier() requires an smp_mb() between setting
5197 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5198 		 *
5199 		 * The below provides this either through switch_mm(), or in
5200 		 * case 'prev->active_mm == next->mm' through
5201 		 * finish_task_switch()'s mmdrop().
5202 		 */
5203 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5204 		lru_gen_use_mm(next->mm);
5205 
5206 		if (!prev->mm) {                        // from kernel
5207 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5208 			rq->prev_mm = prev->active_mm;
5209 			prev->active_mm = NULL;
5210 		}
5211 	}
5212 
5213 	/* switch_mm_cid() requires the memory barriers above. */
5214 	switch_mm_cid(rq, prev, next);
5215 
5216 	prepare_lock_switch(rq, next, rf);
5217 
5218 	/* Here we just switch the register state and the stack. */
5219 	switch_to(prev, next, prev);
5220 	barrier();
5221 
5222 	return finish_task_switch(prev);
5223 }
5224 
5225 /*
5226  * nr_running and nr_context_switches:
5227  *
5228  * externally visible scheduler statistics: current number of runnable
5229  * threads, total number of context switches performed since bootup.
5230  */
5231 unsigned int nr_running(void)
5232 {
5233 	unsigned int i, sum = 0;
5234 
5235 	for_each_online_cpu(i)
5236 		sum += cpu_rq(i)->nr_running;
5237 
5238 	return sum;
5239 }
5240 
5241 /*
5242  * Check if only the current task is running on the CPU.
5243  *
5244  * Caution: this function does not check that the caller has disabled
5245  * preemption, thus the result might have a time-of-check-to-time-of-use
5246  * race.  The caller is responsible to use it correctly, for example:
5247  *
5248  * - from a non-preemptible section (of course)
5249  *
5250  * - from a thread that is bound to a single CPU
5251  *
5252  * - in a loop with very short iterations (e.g. a polling loop)
5253  */
5254 bool single_task_running(void)
5255 {
5256 	return raw_rq()->nr_running == 1;
5257 }
5258 EXPORT_SYMBOL(single_task_running);
5259 
5260 unsigned long long nr_context_switches_cpu(int cpu)
5261 {
5262 	return cpu_rq(cpu)->nr_switches;
5263 }
5264 
5265 unsigned long long nr_context_switches(void)
5266 {
5267 	int i;
5268 	unsigned long long sum = 0;
5269 
5270 	for_each_possible_cpu(i)
5271 		sum += cpu_rq(i)->nr_switches;
5272 
5273 	return sum;
5274 }
5275 
5276 /*
5277  * Consumers of these two interfaces, like for example the cpuidle menu
5278  * governor, are using nonsensical data. Preferring shallow idle state selection
5279  * for a CPU that has IO-wait which might not even end up running the task when
5280  * it does become runnable.
5281  */
5282 
5283 unsigned int nr_iowait_cpu(int cpu)
5284 {
5285 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5286 }
5287 
5288 /*
5289  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5290  *
5291  * The idea behind IO-wait account is to account the idle time that we could
5292  * have spend running if it were not for IO. That is, if we were to improve the
5293  * storage performance, we'd have a proportional reduction in IO-wait time.
5294  *
5295  * This all works nicely on UP, where, when a task blocks on IO, we account
5296  * idle time as IO-wait, because if the storage were faster, it could've been
5297  * running and we'd not be idle.
5298  *
5299  * This has been extended to SMP, by doing the same for each CPU. This however
5300  * is broken.
5301  *
5302  * Imagine for instance the case where two tasks block on one CPU, only the one
5303  * CPU will have IO-wait accounted, while the other has regular idle. Even
5304  * though, if the storage were faster, both could've ran at the same time,
5305  * utilising both CPUs.
5306  *
5307  * This means, that when looking globally, the current IO-wait accounting on
5308  * SMP is a lower bound, by reason of under accounting.
5309  *
5310  * Worse, since the numbers are provided per CPU, they are sometimes
5311  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5312  * associated with any one particular CPU, it can wake to another CPU than it
5313  * blocked on. This means the per CPU IO-wait number is meaningless.
5314  *
5315  * Task CPU affinities can make all that even more 'interesting'.
5316  */
5317 
5318 unsigned int nr_iowait(void)
5319 {
5320 	unsigned int i, sum = 0;
5321 
5322 	for_each_possible_cpu(i)
5323 		sum += nr_iowait_cpu(i);
5324 
5325 	return sum;
5326 }
5327 
5328 #ifdef CONFIG_SMP
5329 
5330 /*
5331  * sched_exec - execve() is a valuable balancing opportunity, because at
5332  * this point the task has the smallest effective memory and cache footprint.
5333  */
5334 void sched_exec(void)
5335 {
5336 	struct task_struct *p = current;
5337 	struct migration_arg arg;
5338 	int dest_cpu;
5339 
5340 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5341 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5342 		if (dest_cpu == smp_processor_id())
5343 			return;
5344 
5345 		if (unlikely(!cpu_active(dest_cpu)))
5346 			return;
5347 
5348 		arg = (struct migration_arg){ p, dest_cpu };
5349 	}
5350 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5351 }
5352 
5353 #endif
5354 
5355 DEFINE_PER_CPU(struct kernel_stat, kstat);
5356 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5357 
5358 EXPORT_PER_CPU_SYMBOL(kstat);
5359 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5360 
5361 /*
5362  * The function fair_sched_class.update_curr accesses the struct curr
5363  * and its field curr->exec_start; when called from task_sched_runtime(),
5364  * we observe a high rate of cache misses in practice.
5365  * Prefetching this data results in improved performance.
5366  */
5367 static inline void prefetch_curr_exec_start(struct task_struct *p)
5368 {
5369 #ifdef CONFIG_FAIR_GROUP_SCHED
5370 	struct sched_entity *curr = p->se.cfs_rq->curr;
5371 #else
5372 	struct sched_entity *curr = task_rq(p)->cfs.curr;
5373 #endif
5374 	prefetch(curr);
5375 	prefetch(&curr->exec_start);
5376 }
5377 
5378 /*
5379  * Return accounted runtime for the task.
5380  * In case the task is currently running, return the runtime plus current's
5381  * pending runtime that have not been accounted yet.
5382  */
5383 unsigned long long task_sched_runtime(struct task_struct *p)
5384 {
5385 	struct rq_flags rf;
5386 	struct rq *rq;
5387 	u64 ns;
5388 
5389 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5390 	/*
5391 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5392 	 * So we have a optimization chance when the task's delta_exec is 0.
5393 	 * Reading ->on_cpu is racy, but this is OK.
5394 	 *
5395 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5396 	 * If we race with it entering CPU, unaccounted time is 0. This is
5397 	 * indistinguishable from the read occurring a few cycles earlier.
5398 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5399 	 * been accounted, so we're correct here as well.
5400 	 */
5401 	if (!p->on_cpu || !task_on_rq_queued(p))
5402 		return p->se.sum_exec_runtime;
5403 #endif
5404 
5405 	rq = task_rq_lock(p, &rf);
5406 	/*
5407 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5408 	 * project cycles that may never be accounted to this
5409 	 * thread, breaking clock_gettime().
5410 	 */
5411 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5412 		prefetch_curr_exec_start(p);
5413 		update_rq_clock(rq);
5414 		p->sched_class->update_curr(rq);
5415 	}
5416 	ns = p->se.sum_exec_runtime;
5417 	task_rq_unlock(rq, p, &rf);
5418 
5419 	return ns;
5420 }
5421 
5422 #ifdef CONFIG_SCHED_DEBUG
5423 static u64 cpu_resched_latency(struct rq *rq)
5424 {
5425 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5426 	u64 resched_latency, now = rq_clock(rq);
5427 	static bool warned_once;
5428 
5429 	if (sysctl_resched_latency_warn_once && warned_once)
5430 		return 0;
5431 
5432 	if (!need_resched() || !latency_warn_ms)
5433 		return 0;
5434 
5435 	if (system_state == SYSTEM_BOOTING)
5436 		return 0;
5437 
5438 	if (!rq->last_seen_need_resched_ns) {
5439 		rq->last_seen_need_resched_ns = now;
5440 		rq->ticks_without_resched = 0;
5441 		return 0;
5442 	}
5443 
5444 	rq->ticks_without_resched++;
5445 	resched_latency = now - rq->last_seen_need_resched_ns;
5446 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5447 		return 0;
5448 
5449 	warned_once = true;
5450 
5451 	return resched_latency;
5452 }
5453 
5454 static int __init setup_resched_latency_warn_ms(char *str)
5455 {
5456 	long val;
5457 
5458 	if ((kstrtol(str, 0, &val))) {
5459 		pr_warn("Unable to set resched_latency_warn_ms\n");
5460 		return 1;
5461 	}
5462 
5463 	sysctl_resched_latency_warn_ms = val;
5464 	return 1;
5465 }
5466 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5467 #else
5468 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5469 #endif /* CONFIG_SCHED_DEBUG */
5470 
5471 /*
5472  * This function gets called by the timer code, with HZ frequency.
5473  * We call it with interrupts disabled.
5474  */
5475 void sched_tick(void)
5476 {
5477 	int cpu = smp_processor_id();
5478 	struct rq *rq = cpu_rq(cpu);
5479 	struct task_struct *curr;
5480 	struct rq_flags rf;
5481 	unsigned long hw_pressure;
5482 	u64 resched_latency;
5483 
5484 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5485 		arch_scale_freq_tick();
5486 
5487 	sched_clock_tick();
5488 
5489 	rq_lock(rq, &rf);
5490 
5491 	curr = rq->curr;
5492 	psi_account_irqtime(rq, curr, NULL);
5493 
5494 	update_rq_clock(rq);
5495 	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
5496 	update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
5497 	curr->sched_class->task_tick(rq, curr, 0);
5498 	if (sched_feat(LATENCY_WARN))
5499 		resched_latency = cpu_resched_latency(rq);
5500 	calc_global_load_tick(rq);
5501 	sched_core_tick(rq);
5502 	task_tick_mm_cid(rq, curr);
5503 
5504 	rq_unlock(rq, &rf);
5505 
5506 	if (sched_feat(LATENCY_WARN) && resched_latency)
5507 		resched_latency_warn(cpu, resched_latency);
5508 
5509 	perf_event_task_tick();
5510 
5511 	if (curr->flags & PF_WQ_WORKER)
5512 		wq_worker_tick(curr);
5513 
5514 #ifdef CONFIG_SMP
5515 	rq->idle_balance = idle_cpu(cpu);
5516 	sched_balance_trigger(rq);
5517 #endif
5518 }
5519 
5520 #ifdef CONFIG_NO_HZ_FULL
5521 
5522 struct tick_work {
5523 	int			cpu;
5524 	atomic_t		state;
5525 	struct delayed_work	work;
5526 };
5527 /* Values for ->state, see diagram below. */
5528 #define TICK_SCHED_REMOTE_OFFLINE	0
5529 #define TICK_SCHED_REMOTE_OFFLINING	1
5530 #define TICK_SCHED_REMOTE_RUNNING	2
5531 
5532 /*
5533  * State diagram for ->state:
5534  *
5535  *
5536  *          TICK_SCHED_REMOTE_OFFLINE
5537  *                    |   ^
5538  *                    |   |
5539  *                    |   | sched_tick_remote()
5540  *                    |   |
5541  *                    |   |
5542  *                    +--TICK_SCHED_REMOTE_OFFLINING
5543  *                    |   ^
5544  *                    |   |
5545  * sched_tick_start() |   | sched_tick_stop()
5546  *                    |   |
5547  *                    V   |
5548  *          TICK_SCHED_REMOTE_RUNNING
5549  *
5550  *
5551  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5552  * and sched_tick_start() are happy to leave the state in RUNNING.
5553  */
5554 
5555 static struct tick_work __percpu *tick_work_cpu;
5556 
5557 static void sched_tick_remote(struct work_struct *work)
5558 {
5559 	struct delayed_work *dwork = to_delayed_work(work);
5560 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5561 	int cpu = twork->cpu;
5562 	struct rq *rq = cpu_rq(cpu);
5563 	int os;
5564 
5565 	/*
5566 	 * Handle the tick only if it appears the remote CPU is running in full
5567 	 * dynticks mode. The check is racy by nature, but missing a tick or
5568 	 * having one too much is no big deal because the scheduler tick updates
5569 	 * statistics and checks timeslices in a time-independent way, regardless
5570 	 * of when exactly it is running.
5571 	 */
5572 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5573 		guard(rq_lock_irq)(rq);
5574 		struct task_struct *curr = rq->curr;
5575 
5576 		if (cpu_online(cpu)) {
5577 			update_rq_clock(rq);
5578 
5579 			if (!is_idle_task(curr)) {
5580 				/*
5581 				 * Make sure the next tick runs within a
5582 				 * reasonable amount of time.
5583 				 */
5584 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5585 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5586 			}
5587 			curr->sched_class->task_tick(rq, curr, 0);
5588 
5589 			calc_load_nohz_remote(rq);
5590 		}
5591 	}
5592 
5593 	/*
5594 	 * Run the remote tick once per second (1Hz). This arbitrary
5595 	 * frequency is large enough to avoid overload but short enough
5596 	 * to keep scheduler internal stats reasonably up to date.  But
5597 	 * first update state to reflect hotplug activity if required.
5598 	 */
5599 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5600 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5601 	if (os == TICK_SCHED_REMOTE_RUNNING)
5602 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5603 }
5604 
5605 static void sched_tick_start(int cpu)
5606 {
5607 	int os;
5608 	struct tick_work *twork;
5609 
5610 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5611 		return;
5612 
5613 	WARN_ON_ONCE(!tick_work_cpu);
5614 
5615 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5616 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5617 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5618 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5619 		twork->cpu = cpu;
5620 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5621 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5622 	}
5623 }
5624 
5625 #ifdef CONFIG_HOTPLUG_CPU
5626 static void sched_tick_stop(int cpu)
5627 {
5628 	struct tick_work *twork;
5629 	int os;
5630 
5631 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5632 		return;
5633 
5634 	WARN_ON_ONCE(!tick_work_cpu);
5635 
5636 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5637 	/* There cannot be competing actions, but don't rely on stop-machine. */
5638 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5639 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5640 	/* Don't cancel, as this would mess up the state machine. */
5641 }
5642 #endif /* CONFIG_HOTPLUG_CPU */
5643 
5644 int __init sched_tick_offload_init(void)
5645 {
5646 	tick_work_cpu = alloc_percpu(struct tick_work);
5647 	BUG_ON(!tick_work_cpu);
5648 	return 0;
5649 }
5650 
5651 #else /* !CONFIG_NO_HZ_FULL */
5652 static inline void sched_tick_start(int cpu) { }
5653 static inline void sched_tick_stop(int cpu) { }
5654 #endif
5655 
5656 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5657 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5658 /*
5659  * If the value passed in is equal to the current preempt count
5660  * then we just disabled preemption. Start timing the latency.
5661  */
5662 static inline void preempt_latency_start(int val)
5663 {
5664 	if (preempt_count() == val) {
5665 		unsigned long ip = get_lock_parent_ip();
5666 #ifdef CONFIG_DEBUG_PREEMPT
5667 		current->preempt_disable_ip = ip;
5668 #endif
5669 		trace_preempt_off(CALLER_ADDR0, ip);
5670 	}
5671 }
5672 
5673 void preempt_count_add(int val)
5674 {
5675 #ifdef CONFIG_DEBUG_PREEMPT
5676 	/*
5677 	 * Underflow?
5678 	 */
5679 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5680 		return;
5681 #endif
5682 	__preempt_count_add(val);
5683 #ifdef CONFIG_DEBUG_PREEMPT
5684 	/*
5685 	 * Spinlock count overflowing soon?
5686 	 */
5687 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5688 				PREEMPT_MASK - 10);
5689 #endif
5690 	preempt_latency_start(val);
5691 }
5692 EXPORT_SYMBOL(preempt_count_add);
5693 NOKPROBE_SYMBOL(preempt_count_add);
5694 
5695 /*
5696  * If the value passed in equals to the current preempt count
5697  * then we just enabled preemption. Stop timing the latency.
5698  */
5699 static inline void preempt_latency_stop(int val)
5700 {
5701 	if (preempt_count() == val)
5702 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5703 }
5704 
5705 void preempt_count_sub(int val)
5706 {
5707 #ifdef CONFIG_DEBUG_PREEMPT
5708 	/*
5709 	 * Underflow?
5710 	 */
5711 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5712 		return;
5713 	/*
5714 	 * Is the spinlock portion underflowing?
5715 	 */
5716 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5717 			!(preempt_count() & PREEMPT_MASK)))
5718 		return;
5719 #endif
5720 
5721 	preempt_latency_stop(val);
5722 	__preempt_count_sub(val);
5723 }
5724 EXPORT_SYMBOL(preempt_count_sub);
5725 NOKPROBE_SYMBOL(preempt_count_sub);
5726 
5727 #else
5728 static inline void preempt_latency_start(int val) { }
5729 static inline void preempt_latency_stop(int val) { }
5730 #endif
5731 
5732 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5733 {
5734 #ifdef CONFIG_DEBUG_PREEMPT
5735 	return p->preempt_disable_ip;
5736 #else
5737 	return 0;
5738 #endif
5739 }
5740 
5741 /*
5742  * Print scheduling while atomic bug:
5743  */
5744 static noinline void __schedule_bug(struct task_struct *prev)
5745 {
5746 	/* Save this before calling printk(), since that will clobber it */
5747 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5748 
5749 	if (oops_in_progress)
5750 		return;
5751 
5752 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5753 		prev->comm, prev->pid, preempt_count());
5754 
5755 	debug_show_held_locks(prev);
5756 	print_modules();
5757 	if (irqs_disabled())
5758 		print_irqtrace_events(prev);
5759 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5760 		pr_err("Preemption disabled at:");
5761 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5762 	}
5763 	check_panic_on_warn("scheduling while atomic");
5764 
5765 	dump_stack();
5766 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5767 }
5768 
5769 /*
5770  * Various schedule()-time debugging checks and statistics:
5771  */
5772 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5773 {
5774 #ifdef CONFIG_SCHED_STACK_END_CHECK
5775 	if (task_stack_end_corrupted(prev))
5776 		panic("corrupted stack end detected inside scheduler\n");
5777 
5778 	if (task_scs_end_corrupted(prev))
5779 		panic("corrupted shadow stack detected inside scheduler\n");
5780 #endif
5781 
5782 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5783 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5784 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5785 			prev->comm, prev->pid, prev->non_block_count);
5786 		dump_stack();
5787 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5788 	}
5789 #endif
5790 
5791 	if (unlikely(in_atomic_preempt_off())) {
5792 		__schedule_bug(prev);
5793 		preempt_count_set(PREEMPT_DISABLED);
5794 	}
5795 	rcu_sleep_check();
5796 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5797 
5798 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5799 
5800 	schedstat_inc(this_rq()->sched_count);
5801 }
5802 
5803 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5804 				  struct rq_flags *rf)
5805 {
5806 #ifdef CONFIG_SMP
5807 	const struct sched_class *class;
5808 	/*
5809 	 * We must do the balancing pass before put_prev_task(), such
5810 	 * that when we release the rq->lock the task is in the same
5811 	 * state as before we took rq->lock.
5812 	 *
5813 	 * We can terminate the balance pass as soon as we know there is
5814 	 * a runnable task of @class priority or higher.
5815 	 */
5816 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5817 		if (class->balance(rq, prev, rf))
5818 			break;
5819 	}
5820 #endif
5821 
5822 	put_prev_task(rq, prev);
5823 
5824 	/*
5825 	 * We've updated @prev and no longer need the server link, clear it.
5826 	 * Must be done before ->pick_next_task() because that can (re)set
5827 	 * ->dl_server.
5828 	 */
5829 	if (prev->dl_server)
5830 		prev->dl_server = NULL;
5831 }
5832 
5833 /*
5834  * Pick up the highest-prio task:
5835  */
5836 static inline struct task_struct *
5837 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5838 {
5839 	const struct sched_class *class;
5840 	struct task_struct *p;
5841 
5842 	/*
5843 	 * Optimization: we know that if all tasks are in the fair class we can
5844 	 * call that function directly, but only if the @prev task wasn't of a
5845 	 * higher scheduling class, because otherwise those lose the
5846 	 * opportunity to pull in more work from other CPUs.
5847 	 */
5848 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5849 		   rq->nr_running == rq->cfs.h_nr_running)) {
5850 
5851 		p = pick_next_task_fair(rq, prev, rf);
5852 		if (unlikely(p == RETRY_TASK))
5853 			goto restart;
5854 
5855 		/* Assume the next prioritized class is idle_sched_class */
5856 		if (!p) {
5857 			put_prev_task(rq, prev);
5858 			p = pick_next_task_idle(rq);
5859 		}
5860 
5861 		/*
5862 		 * This is a normal CFS pick, but the previous could be a DL pick.
5863 		 * Clear it as previous is no longer picked.
5864 		 */
5865 		if (prev->dl_server)
5866 			prev->dl_server = NULL;
5867 
5868 		/*
5869 		 * This is the fast path; it cannot be a DL server pick;
5870 		 * therefore even if @p == @prev, ->dl_server must be NULL.
5871 		 */
5872 		if (p->dl_server)
5873 			p->dl_server = NULL;
5874 
5875 		return p;
5876 	}
5877 
5878 restart:
5879 	put_prev_task_balance(rq, prev, rf);
5880 
5881 	for_each_class(class) {
5882 		p = class->pick_next_task(rq);
5883 		if (p)
5884 			return p;
5885 	}
5886 
5887 	BUG(); /* The idle class should always have a runnable task. */
5888 }
5889 
5890 #ifdef CONFIG_SCHED_CORE
5891 static inline bool is_task_rq_idle(struct task_struct *t)
5892 {
5893 	return (task_rq(t)->idle == t);
5894 }
5895 
5896 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5897 {
5898 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5899 }
5900 
5901 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5902 {
5903 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5904 		return true;
5905 
5906 	return a->core_cookie == b->core_cookie;
5907 }
5908 
5909 static inline struct task_struct *pick_task(struct rq *rq)
5910 {
5911 	const struct sched_class *class;
5912 	struct task_struct *p;
5913 
5914 	for_each_class(class) {
5915 		p = class->pick_task(rq);
5916 		if (p)
5917 			return p;
5918 	}
5919 
5920 	BUG(); /* The idle class should always have a runnable task. */
5921 }
5922 
5923 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5924 
5925 static void queue_core_balance(struct rq *rq);
5926 
5927 static struct task_struct *
5928 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5929 {
5930 	struct task_struct *next, *p, *max = NULL;
5931 	const struct cpumask *smt_mask;
5932 	bool fi_before = false;
5933 	bool core_clock_updated = (rq == rq->core);
5934 	unsigned long cookie;
5935 	int i, cpu, occ = 0;
5936 	struct rq *rq_i;
5937 	bool need_sync;
5938 
5939 	if (!sched_core_enabled(rq))
5940 		return __pick_next_task(rq, prev, rf);
5941 
5942 	cpu = cpu_of(rq);
5943 
5944 	/* Stopper task is switching into idle, no need core-wide selection. */
5945 	if (cpu_is_offline(cpu)) {
5946 		/*
5947 		 * Reset core_pick so that we don't enter the fastpath when
5948 		 * coming online. core_pick would already be migrated to
5949 		 * another cpu during offline.
5950 		 */
5951 		rq->core_pick = NULL;
5952 		return __pick_next_task(rq, prev, rf);
5953 	}
5954 
5955 	/*
5956 	 * If there were no {en,de}queues since we picked (IOW, the task
5957 	 * pointers are all still valid), and we haven't scheduled the last
5958 	 * pick yet, do so now.
5959 	 *
5960 	 * rq->core_pick can be NULL if no selection was made for a CPU because
5961 	 * it was either offline or went offline during a sibling's core-wide
5962 	 * selection. In this case, do a core-wide selection.
5963 	 */
5964 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5965 	    rq->core->core_pick_seq != rq->core_sched_seq &&
5966 	    rq->core_pick) {
5967 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5968 
5969 		next = rq->core_pick;
5970 		if (next != prev) {
5971 			put_prev_task(rq, prev);
5972 			set_next_task(rq, next);
5973 		}
5974 
5975 		rq->core_pick = NULL;
5976 		goto out;
5977 	}
5978 
5979 	put_prev_task_balance(rq, prev, rf);
5980 
5981 	smt_mask = cpu_smt_mask(cpu);
5982 	need_sync = !!rq->core->core_cookie;
5983 
5984 	/* reset state */
5985 	rq->core->core_cookie = 0UL;
5986 	if (rq->core->core_forceidle_count) {
5987 		if (!core_clock_updated) {
5988 			update_rq_clock(rq->core);
5989 			core_clock_updated = true;
5990 		}
5991 		sched_core_account_forceidle(rq);
5992 		/* reset after accounting force idle */
5993 		rq->core->core_forceidle_start = 0;
5994 		rq->core->core_forceidle_count = 0;
5995 		rq->core->core_forceidle_occupation = 0;
5996 		need_sync = true;
5997 		fi_before = true;
5998 	}
5999 
6000 	/*
6001 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6002 	 *
6003 	 * @task_seq guards the task state ({en,de}queues)
6004 	 * @pick_seq is the @task_seq we did a selection on
6005 	 * @sched_seq is the @pick_seq we scheduled
6006 	 *
6007 	 * However, preemptions can cause multiple picks on the same task set.
6008 	 * 'Fix' this by also increasing @task_seq for every pick.
6009 	 */
6010 	rq->core->core_task_seq++;
6011 
6012 	/*
6013 	 * Optimize for common case where this CPU has no cookies
6014 	 * and there are no cookied tasks running on siblings.
6015 	 */
6016 	if (!need_sync) {
6017 		next = pick_task(rq);
6018 		if (!next->core_cookie) {
6019 			rq->core_pick = NULL;
6020 			/*
6021 			 * For robustness, update the min_vruntime_fi for
6022 			 * unconstrained picks as well.
6023 			 */
6024 			WARN_ON_ONCE(fi_before);
6025 			task_vruntime_update(rq, next, false);
6026 			goto out_set_next;
6027 		}
6028 	}
6029 
6030 	/*
6031 	 * For each thread: do the regular task pick and find the max prio task
6032 	 * amongst them.
6033 	 *
6034 	 * Tie-break prio towards the current CPU
6035 	 */
6036 	for_each_cpu_wrap(i, smt_mask, cpu) {
6037 		rq_i = cpu_rq(i);
6038 
6039 		/*
6040 		 * Current cpu always has its clock updated on entrance to
6041 		 * pick_next_task(). If the current cpu is not the core,
6042 		 * the core may also have been updated above.
6043 		 */
6044 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6045 			update_rq_clock(rq_i);
6046 
6047 		p = rq_i->core_pick = pick_task(rq_i);
6048 		if (!max || prio_less(max, p, fi_before))
6049 			max = p;
6050 	}
6051 
6052 	cookie = rq->core->core_cookie = max->core_cookie;
6053 
6054 	/*
6055 	 * For each thread: try and find a runnable task that matches @max or
6056 	 * force idle.
6057 	 */
6058 	for_each_cpu(i, smt_mask) {
6059 		rq_i = cpu_rq(i);
6060 		p = rq_i->core_pick;
6061 
6062 		if (!cookie_equals(p, cookie)) {
6063 			p = NULL;
6064 			if (cookie)
6065 				p = sched_core_find(rq_i, cookie);
6066 			if (!p)
6067 				p = idle_sched_class.pick_task(rq_i);
6068 		}
6069 
6070 		rq_i->core_pick = p;
6071 
6072 		if (p == rq_i->idle) {
6073 			if (rq_i->nr_running) {
6074 				rq->core->core_forceidle_count++;
6075 				if (!fi_before)
6076 					rq->core->core_forceidle_seq++;
6077 			}
6078 		} else {
6079 			occ++;
6080 		}
6081 	}
6082 
6083 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6084 		rq->core->core_forceidle_start = rq_clock(rq->core);
6085 		rq->core->core_forceidle_occupation = occ;
6086 	}
6087 
6088 	rq->core->core_pick_seq = rq->core->core_task_seq;
6089 	next = rq->core_pick;
6090 	rq->core_sched_seq = rq->core->core_pick_seq;
6091 
6092 	/* Something should have been selected for current CPU */
6093 	WARN_ON_ONCE(!next);
6094 
6095 	/*
6096 	 * Reschedule siblings
6097 	 *
6098 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6099 	 * sending an IPI (below) ensures the sibling will no longer be running
6100 	 * their task. This ensures there is no inter-sibling overlap between
6101 	 * non-matching user state.
6102 	 */
6103 	for_each_cpu(i, smt_mask) {
6104 		rq_i = cpu_rq(i);
6105 
6106 		/*
6107 		 * An online sibling might have gone offline before a task
6108 		 * could be picked for it, or it might be offline but later
6109 		 * happen to come online, but its too late and nothing was
6110 		 * picked for it.  That's Ok - it will pick tasks for itself,
6111 		 * so ignore it.
6112 		 */
6113 		if (!rq_i->core_pick)
6114 			continue;
6115 
6116 		/*
6117 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6118 		 * fi_before     fi      update?
6119 		 *  0            0       1
6120 		 *  0            1       1
6121 		 *  1            0       1
6122 		 *  1            1       0
6123 		 */
6124 		if (!(fi_before && rq->core->core_forceidle_count))
6125 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6126 
6127 		rq_i->core_pick->core_occupation = occ;
6128 
6129 		if (i == cpu) {
6130 			rq_i->core_pick = NULL;
6131 			continue;
6132 		}
6133 
6134 		/* Did we break L1TF mitigation requirements? */
6135 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6136 
6137 		if (rq_i->curr == rq_i->core_pick) {
6138 			rq_i->core_pick = NULL;
6139 			continue;
6140 		}
6141 
6142 		resched_curr(rq_i);
6143 	}
6144 
6145 out_set_next:
6146 	set_next_task(rq, next);
6147 out:
6148 	if (rq->core->core_forceidle_count && next == rq->idle)
6149 		queue_core_balance(rq);
6150 
6151 	return next;
6152 }
6153 
6154 static bool try_steal_cookie(int this, int that)
6155 {
6156 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6157 	struct task_struct *p;
6158 	unsigned long cookie;
6159 	bool success = false;
6160 
6161 	guard(irq)();
6162 	guard(double_rq_lock)(dst, src);
6163 
6164 	cookie = dst->core->core_cookie;
6165 	if (!cookie)
6166 		return false;
6167 
6168 	if (dst->curr != dst->idle)
6169 		return false;
6170 
6171 	p = sched_core_find(src, cookie);
6172 	if (!p)
6173 		return false;
6174 
6175 	do {
6176 		if (p == src->core_pick || p == src->curr)
6177 			goto next;
6178 
6179 		if (!is_cpu_allowed(p, this))
6180 			goto next;
6181 
6182 		if (p->core_occupation > dst->idle->core_occupation)
6183 			goto next;
6184 		/*
6185 		 * sched_core_find() and sched_core_next() will ensure
6186 		 * that task @p is not throttled now, we also need to
6187 		 * check whether the runqueue of the destination CPU is
6188 		 * being throttled.
6189 		 */
6190 		if (sched_task_is_throttled(p, this))
6191 			goto next;
6192 
6193 		deactivate_task(src, p, 0);
6194 		set_task_cpu(p, this);
6195 		activate_task(dst, p, 0);
6196 
6197 		resched_curr(dst);
6198 
6199 		success = true;
6200 		break;
6201 
6202 next:
6203 		p = sched_core_next(p, cookie);
6204 	} while (p);
6205 
6206 	return success;
6207 }
6208 
6209 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6210 {
6211 	int i;
6212 
6213 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6214 		if (i == cpu)
6215 			continue;
6216 
6217 		if (need_resched())
6218 			break;
6219 
6220 		if (try_steal_cookie(cpu, i))
6221 			return true;
6222 	}
6223 
6224 	return false;
6225 }
6226 
6227 static void sched_core_balance(struct rq *rq)
6228 {
6229 	struct sched_domain *sd;
6230 	int cpu = cpu_of(rq);
6231 
6232 	guard(preempt)();
6233 	guard(rcu)();
6234 
6235 	raw_spin_rq_unlock_irq(rq);
6236 	for_each_domain(cpu, sd) {
6237 		if (need_resched())
6238 			break;
6239 
6240 		if (steal_cookie_task(cpu, sd))
6241 			break;
6242 	}
6243 	raw_spin_rq_lock_irq(rq);
6244 }
6245 
6246 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6247 
6248 static void queue_core_balance(struct rq *rq)
6249 {
6250 	if (!sched_core_enabled(rq))
6251 		return;
6252 
6253 	if (!rq->core->core_cookie)
6254 		return;
6255 
6256 	if (!rq->nr_running) /* not forced idle */
6257 		return;
6258 
6259 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6260 }
6261 
6262 DEFINE_LOCK_GUARD_1(core_lock, int,
6263 		    sched_core_lock(*_T->lock, &_T->flags),
6264 		    sched_core_unlock(*_T->lock, &_T->flags),
6265 		    unsigned long flags)
6266 
6267 static void sched_core_cpu_starting(unsigned int cpu)
6268 {
6269 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6270 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6271 	int t;
6272 
6273 	guard(core_lock)(&cpu);
6274 
6275 	WARN_ON_ONCE(rq->core != rq);
6276 
6277 	/* if we're the first, we'll be our own leader */
6278 	if (cpumask_weight(smt_mask) == 1)
6279 		return;
6280 
6281 	/* find the leader */
6282 	for_each_cpu(t, smt_mask) {
6283 		if (t == cpu)
6284 			continue;
6285 		rq = cpu_rq(t);
6286 		if (rq->core == rq) {
6287 			core_rq = rq;
6288 			break;
6289 		}
6290 	}
6291 
6292 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6293 		return;
6294 
6295 	/* install and validate core_rq */
6296 	for_each_cpu(t, smt_mask) {
6297 		rq = cpu_rq(t);
6298 
6299 		if (t == cpu)
6300 			rq->core = core_rq;
6301 
6302 		WARN_ON_ONCE(rq->core != core_rq);
6303 	}
6304 }
6305 
6306 static void sched_core_cpu_deactivate(unsigned int cpu)
6307 {
6308 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6309 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6310 	int t;
6311 
6312 	guard(core_lock)(&cpu);
6313 
6314 	/* if we're the last man standing, nothing to do */
6315 	if (cpumask_weight(smt_mask) == 1) {
6316 		WARN_ON_ONCE(rq->core != rq);
6317 		return;
6318 	}
6319 
6320 	/* if we're not the leader, nothing to do */
6321 	if (rq->core != rq)
6322 		return;
6323 
6324 	/* find a new leader */
6325 	for_each_cpu(t, smt_mask) {
6326 		if (t == cpu)
6327 			continue;
6328 		core_rq = cpu_rq(t);
6329 		break;
6330 	}
6331 
6332 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6333 		return;
6334 
6335 	/* copy the shared state to the new leader */
6336 	core_rq->core_task_seq             = rq->core_task_seq;
6337 	core_rq->core_pick_seq             = rq->core_pick_seq;
6338 	core_rq->core_cookie               = rq->core_cookie;
6339 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6340 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6341 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6342 
6343 	/*
6344 	 * Accounting edge for forced idle is handled in pick_next_task().
6345 	 * Don't need another one here, since the hotplug thread shouldn't
6346 	 * have a cookie.
6347 	 */
6348 	core_rq->core_forceidle_start = 0;
6349 
6350 	/* install new leader */
6351 	for_each_cpu(t, smt_mask) {
6352 		rq = cpu_rq(t);
6353 		rq->core = core_rq;
6354 	}
6355 }
6356 
6357 static inline void sched_core_cpu_dying(unsigned int cpu)
6358 {
6359 	struct rq *rq = cpu_rq(cpu);
6360 
6361 	if (rq->core != rq)
6362 		rq->core = rq;
6363 }
6364 
6365 #else /* !CONFIG_SCHED_CORE */
6366 
6367 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6368 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6369 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6370 
6371 static struct task_struct *
6372 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6373 {
6374 	return __pick_next_task(rq, prev, rf);
6375 }
6376 
6377 #endif /* CONFIG_SCHED_CORE */
6378 
6379 /*
6380  * Constants for the sched_mode argument of __schedule().
6381  *
6382  * The mode argument allows RT enabled kernels to differentiate a
6383  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6384  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6385  * optimize the AND operation out and just check for zero.
6386  */
6387 #define SM_NONE			0x0
6388 #define SM_PREEMPT		0x1
6389 #define SM_RTLOCK_WAIT		0x2
6390 
6391 #ifndef CONFIG_PREEMPT_RT
6392 # define SM_MASK_PREEMPT	(~0U)
6393 #else
6394 # define SM_MASK_PREEMPT	SM_PREEMPT
6395 #endif
6396 
6397 /*
6398  * __schedule() is the main scheduler function.
6399  *
6400  * The main means of driving the scheduler and thus entering this function are:
6401  *
6402  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6403  *
6404  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6405  *      paths. For example, see arch/x86/entry_64.S.
6406  *
6407  *      To drive preemption between tasks, the scheduler sets the flag in timer
6408  *      interrupt handler sched_tick().
6409  *
6410  *   3. Wakeups don't really cause entry into schedule(). They add a
6411  *      task to the run-queue and that's it.
6412  *
6413  *      Now, if the new task added to the run-queue preempts the current
6414  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6415  *      called on the nearest possible occasion:
6416  *
6417  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6418  *
6419  *         - in syscall or exception context, at the next outmost
6420  *           preempt_enable(). (this might be as soon as the wake_up()'s
6421  *           spin_unlock()!)
6422  *
6423  *         - in IRQ context, return from interrupt-handler to
6424  *           preemptible context
6425  *
6426  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6427  *         then at the next:
6428  *
6429  *          - cond_resched() call
6430  *          - explicit schedule() call
6431  *          - return from syscall or exception to user-space
6432  *          - return from interrupt-handler to user-space
6433  *
6434  * WARNING: must be called with preemption disabled!
6435  */
6436 static void __sched notrace __schedule(unsigned int sched_mode)
6437 {
6438 	struct task_struct *prev, *next;
6439 	unsigned long *switch_count;
6440 	unsigned long prev_state;
6441 	struct rq_flags rf;
6442 	struct rq *rq;
6443 	int cpu;
6444 
6445 	cpu = smp_processor_id();
6446 	rq = cpu_rq(cpu);
6447 	prev = rq->curr;
6448 
6449 	schedule_debug(prev, !!sched_mode);
6450 
6451 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6452 		hrtick_clear(rq);
6453 
6454 	local_irq_disable();
6455 	rcu_note_context_switch(!!sched_mode);
6456 
6457 	/*
6458 	 * Make sure that signal_pending_state()->signal_pending() below
6459 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6460 	 * done by the caller to avoid the race with signal_wake_up():
6461 	 *
6462 	 * __set_current_state(@state)		signal_wake_up()
6463 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6464 	 *					  wake_up_state(p, state)
6465 	 *   LOCK rq->lock			    LOCK p->pi_state
6466 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6467 	 *     if (signal_pending_state())	    if (p->state & @state)
6468 	 *
6469 	 * Also, the membarrier system call requires a full memory barrier
6470 	 * after coming from user-space, before storing to rq->curr; this
6471 	 * barrier matches a full barrier in the proximity of the membarrier
6472 	 * system call exit.
6473 	 */
6474 	rq_lock(rq, &rf);
6475 	smp_mb__after_spinlock();
6476 
6477 	/* Promote REQ to ACT */
6478 	rq->clock_update_flags <<= 1;
6479 	update_rq_clock(rq);
6480 	rq->clock_update_flags = RQCF_UPDATED;
6481 
6482 	switch_count = &prev->nivcsw;
6483 
6484 	/*
6485 	 * We must load prev->state once (task_struct::state is volatile), such
6486 	 * that we form a control dependency vs deactivate_task() below.
6487 	 */
6488 	prev_state = READ_ONCE(prev->__state);
6489 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6490 		if (signal_pending_state(prev_state, prev)) {
6491 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6492 		} else {
6493 			prev->sched_contributes_to_load =
6494 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6495 				!(prev_state & TASK_NOLOAD) &&
6496 				!(prev_state & TASK_FROZEN);
6497 
6498 			if (prev->sched_contributes_to_load)
6499 				rq->nr_uninterruptible++;
6500 
6501 			/*
6502 			 * __schedule()			ttwu()
6503 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6504 			 *   if (prev_state)		    goto out;
6505 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6506 			 *				  p->state = TASK_WAKING
6507 			 *
6508 			 * Where __schedule() and ttwu() have matching control dependencies.
6509 			 *
6510 			 * After this, schedule() must not care about p->state any more.
6511 			 */
6512 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6513 
6514 			if (prev->in_iowait) {
6515 				atomic_inc(&rq->nr_iowait);
6516 				delayacct_blkio_start();
6517 			}
6518 		}
6519 		switch_count = &prev->nvcsw;
6520 	}
6521 
6522 	next = pick_next_task(rq, prev, &rf);
6523 	clear_tsk_need_resched(prev);
6524 	clear_preempt_need_resched();
6525 #ifdef CONFIG_SCHED_DEBUG
6526 	rq->last_seen_need_resched_ns = 0;
6527 #endif
6528 
6529 	if (likely(prev != next)) {
6530 		rq->nr_switches++;
6531 		/*
6532 		 * RCU users of rcu_dereference(rq->curr) may not see
6533 		 * changes to task_struct made by pick_next_task().
6534 		 */
6535 		RCU_INIT_POINTER(rq->curr, next);
6536 		/*
6537 		 * The membarrier system call requires each architecture
6538 		 * to have a full memory barrier after updating
6539 		 * rq->curr, before returning to user-space.
6540 		 *
6541 		 * Here are the schemes providing that barrier on the
6542 		 * various architectures:
6543 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6544 		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
6545 		 *   on PowerPC and on RISC-V.
6546 		 * - finish_lock_switch() for weakly-ordered
6547 		 *   architectures where spin_unlock is a full barrier,
6548 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6549 		 *   is a RELEASE barrier),
6550 		 *
6551 		 * The barrier matches a full barrier in the proximity of
6552 		 * the membarrier system call entry.
6553 		 *
6554 		 * On RISC-V, this barrier pairing is also needed for the
6555 		 * SYNC_CORE command when switching between processes, cf.
6556 		 * the inline comments in membarrier_arch_switch_mm().
6557 		 */
6558 		++*switch_count;
6559 
6560 		migrate_disable_switch(rq, prev);
6561 		psi_account_irqtime(rq, prev, next);
6562 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6563 
6564 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6565 
6566 		/* Also unlocks the rq: */
6567 		rq = context_switch(rq, prev, next, &rf);
6568 	} else {
6569 		rq_unpin_lock(rq, &rf);
6570 		__balance_callbacks(rq);
6571 		raw_spin_rq_unlock_irq(rq);
6572 	}
6573 }
6574 
6575 void __noreturn do_task_dead(void)
6576 {
6577 	/* Causes final put_task_struct in finish_task_switch(): */
6578 	set_special_state(TASK_DEAD);
6579 
6580 	/* Tell freezer to ignore us: */
6581 	current->flags |= PF_NOFREEZE;
6582 
6583 	__schedule(SM_NONE);
6584 	BUG();
6585 
6586 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6587 	for (;;)
6588 		cpu_relax();
6589 }
6590 
6591 static inline void sched_submit_work(struct task_struct *tsk)
6592 {
6593 	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6594 	unsigned int task_flags;
6595 
6596 	/*
6597 	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6598 	 * will use a blocking primitive -- which would lead to recursion.
6599 	 */
6600 	lock_map_acquire_try(&sched_map);
6601 
6602 	task_flags = tsk->flags;
6603 	/*
6604 	 * If a worker goes to sleep, notify and ask workqueue whether it
6605 	 * wants to wake up a task to maintain concurrency.
6606 	 */
6607 	if (task_flags & PF_WQ_WORKER)
6608 		wq_worker_sleeping(tsk);
6609 	else if (task_flags & PF_IO_WORKER)
6610 		io_wq_worker_sleeping(tsk);
6611 
6612 	/*
6613 	 * spinlock and rwlock must not flush block requests.  This will
6614 	 * deadlock if the callback attempts to acquire a lock which is
6615 	 * already acquired.
6616 	 */
6617 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6618 
6619 	/*
6620 	 * If we are going to sleep and we have plugged IO queued,
6621 	 * make sure to submit it to avoid deadlocks.
6622 	 */
6623 	blk_flush_plug(tsk->plug, true);
6624 
6625 	lock_map_release(&sched_map);
6626 }
6627 
6628 static void sched_update_worker(struct task_struct *tsk)
6629 {
6630 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
6631 		if (tsk->flags & PF_BLOCK_TS)
6632 			blk_plug_invalidate_ts(tsk);
6633 		if (tsk->flags & PF_WQ_WORKER)
6634 			wq_worker_running(tsk);
6635 		else if (tsk->flags & PF_IO_WORKER)
6636 			io_wq_worker_running(tsk);
6637 	}
6638 }
6639 
6640 static __always_inline void __schedule_loop(unsigned int sched_mode)
6641 {
6642 	do {
6643 		preempt_disable();
6644 		__schedule(sched_mode);
6645 		sched_preempt_enable_no_resched();
6646 	} while (need_resched());
6647 }
6648 
6649 asmlinkage __visible void __sched schedule(void)
6650 {
6651 	struct task_struct *tsk = current;
6652 
6653 #ifdef CONFIG_RT_MUTEXES
6654 	lockdep_assert(!tsk->sched_rt_mutex);
6655 #endif
6656 
6657 	if (!task_is_running(tsk))
6658 		sched_submit_work(tsk);
6659 	__schedule_loop(SM_NONE);
6660 	sched_update_worker(tsk);
6661 }
6662 EXPORT_SYMBOL(schedule);
6663 
6664 /*
6665  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6666  * state (have scheduled out non-voluntarily) by making sure that all
6667  * tasks have either left the run queue or have gone into user space.
6668  * As idle tasks do not do either, they must not ever be preempted
6669  * (schedule out non-voluntarily).
6670  *
6671  * schedule_idle() is similar to schedule_preempt_disable() except that it
6672  * never enables preemption because it does not call sched_submit_work().
6673  */
6674 void __sched schedule_idle(void)
6675 {
6676 	/*
6677 	 * As this skips calling sched_submit_work(), which the idle task does
6678 	 * regardless because that function is a NOP when the task is in a
6679 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6680 	 * current task can be in any other state. Note, idle is always in the
6681 	 * TASK_RUNNING state.
6682 	 */
6683 	WARN_ON_ONCE(current->__state);
6684 	do {
6685 		__schedule(SM_NONE);
6686 	} while (need_resched());
6687 }
6688 
6689 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6690 asmlinkage __visible void __sched schedule_user(void)
6691 {
6692 	/*
6693 	 * If we come here after a random call to set_need_resched(),
6694 	 * or we have been woken up remotely but the IPI has not yet arrived,
6695 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6696 	 * we find a better solution.
6697 	 *
6698 	 * NB: There are buggy callers of this function.  Ideally we
6699 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6700 	 * too frequently to make sense yet.
6701 	 */
6702 	enum ctx_state prev_state = exception_enter();
6703 	schedule();
6704 	exception_exit(prev_state);
6705 }
6706 #endif
6707 
6708 /**
6709  * schedule_preempt_disabled - called with preemption disabled
6710  *
6711  * Returns with preemption disabled. Note: preempt_count must be 1
6712  */
6713 void __sched schedule_preempt_disabled(void)
6714 {
6715 	sched_preempt_enable_no_resched();
6716 	schedule();
6717 	preempt_disable();
6718 }
6719 
6720 #ifdef CONFIG_PREEMPT_RT
6721 void __sched notrace schedule_rtlock(void)
6722 {
6723 	__schedule_loop(SM_RTLOCK_WAIT);
6724 }
6725 NOKPROBE_SYMBOL(schedule_rtlock);
6726 #endif
6727 
6728 static void __sched notrace preempt_schedule_common(void)
6729 {
6730 	do {
6731 		/*
6732 		 * Because the function tracer can trace preempt_count_sub()
6733 		 * and it also uses preempt_enable/disable_notrace(), if
6734 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6735 		 * by the function tracer will call this function again and
6736 		 * cause infinite recursion.
6737 		 *
6738 		 * Preemption must be disabled here before the function
6739 		 * tracer can trace. Break up preempt_disable() into two
6740 		 * calls. One to disable preemption without fear of being
6741 		 * traced. The other to still record the preemption latency,
6742 		 * which can also be traced by the function tracer.
6743 		 */
6744 		preempt_disable_notrace();
6745 		preempt_latency_start(1);
6746 		__schedule(SM_PREEMPT);
6747 		preempt_latency_stop(1);
6748 		preempt_enable_no_resched_notrace();
6749 
6750 		/*
6751 		 * Check again in case we missed a preemption opportunity
6752 		 * between schedule and now.
6753 		 */
6754 	} while (need_resched());
6755 }
6756 
6757 #ifdef CONFIG_PREEMPTION
6758 /*
6759  * This is the entry point to schedule() from in-kernel preemption
6760  * off of preempt_enable.
6761  */
6762 asmlinkage __visible void __sched notrace preempt_schedule(void)
6763 {
6764 	/*
6765 	 * If there is a non-zero preempt_count or interrupts are disabled,
6766 	 * we do not want to preempt the current task. Just return..
6767 	 */
6768 	if (likely(!preemptible()))
6769 		return;
6770 	preempt_schedule_common();
6771 }
6772 NOKPROBE_SYMBOL(preempt_schedule);
6773 EXPORT_SYMBOL(preempt_schedule);
6774 
6775 #ifdef CONFIG_PREEMPT_DYNAMIC
6776 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6777 #ifndef preempt_schedule_dynamic_enabled
6778 #define preempt_schedule_dynamic_enabled	preempt_schedule
6779 #define preempt_schedule_dynamic_disabled	NULL
6780 #endif
6781 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6782 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6783 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6784 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6785 void __sched notrace dynamic_preempt_schedule(void)
6786 {
6787 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6788 		return;
6789 	preempt_schedule();
6790 }
6791 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6792 EXPORT_SYMBOL(dynamic_preempt_schedule);
6793 #endif
6794 #endif
6795 
6796 /**
6797  * preempt_schedule_notrace - preempt_schedule called by tracing
6798  *
6799  * The tracing infrastructure uses preempt_enable_notrace to prevent
6800  * recursion and tracing preempt enabling caused by the tracing
6801  * infrastructure itself. But as tracing can happen in areas coming
6802  * from userspace or just about to enter userspace, a preempt enable
6803  * can occur before user_exit() is called. This will cause the scheduler
6804  * to be called when the system is still in usermode.
6805  *
6806  * To prevent this, the preempt_enable_notrace will use this function
6807  * instead of preempt_schedule() to exit user context if needed before
6808  * calling the scheduler.
6809  */
6810 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6811 {
6812 	enum ctx_state prev_ctx;
6813 
6814 	if (likely(!preemptible()))
6815 		return;
6816 
6817 	do {
6818 		/*
6819 		 * Because the function tracer can trace preempt_count_sub()
6820 		 * and it also uses preempt_enable/disable_notrace(), if
6821 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6822 		 * by the function tracer will call this function again and
6823 		 * cause infinite recursion.
6824 		 *
6825 		 * Preemption must be disabled here before the function
6826 		 * tracer can trace. Break up preempt_disable() into two
6827 		 * calls. One to disable preemption without fear of being
6828 		 * traced. The other to still record the preemption latency,
6829 		 * which can also be traced by the function tracer.
6830 		 */
6831 		preempt_disable_notrace();
6832 		preempt_latency_start(1);
6833 		/*
6834 		 * Needs preempt disabled in case user_exit() is traced
6835 		 * and the tracer calls preempt_enable_notrace() causing
6836 		 * an infinite recursion.
6837 		 */
6838 		prev_ctx = exception_enter();
6839 		__schedule(SM_PREEMPT);
6840 		exception_exit(prev_ctx);
6841 
6842 		preempt_latency_stop(1);
6843 		preempt_enable_no_resched_notrace();
6844 	} while (need_resched());
6845 }
6846 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6847 
6848 #ifdef CONFIG_PREEMPT_DYNAMIC
6849 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6850 #ifndef preempt_schedule_notrace_dynamic_enabled
6851 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6852 #define preempt_schedule_notrace_dynamic_disabled	NULL
6853 #endif
6854 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6855 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6856 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6857 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6858 void __sched notrace dynamic_preempt_schedule_notrace(void)
6859 {
6860 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6861 		return;
6862 	preempt_schedule_notrace();
6863 }
6864 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6865 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6866 #endif
6867 #endif
6868 
6869 #endif /* CONFIG_PREEMPTION */
6870 
6871 /*
6872  * This is the entry point to schedule() from kernel preemption
6873  * off of IRQ context.
6874  * Note, that this is called and return with IRQs disabled. This will
6875  * protect us against recursive calling from IRQ contexts.
6876  */
6877 asmlinkage __visible void __sched preempt_schedule_irq(void)
6878 {
6879 	enum ctx_state prev_state;
6880 
6881 	/* Catch callers which need to be fixed */
6882 	BUG_ON(preempt_count() || !irqs_disabled());
6883 
6884 	prev_state = exception_enter();
6885 
6886 	do {
6887 		preempt_disable();
6888 		local_irq_enable();
6889 		__schedule(SM_PREEMPT);
6890 		local_irq_disable();
6891 		sched_preempt_enable_no_resched();
6892 	} while (need_resched());
6893 
6894 	exception_exit(prev_state);
6895 }
6896 
6897 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6898 			  void *key)
6899 {
6900 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
6901 	return try_to_wake_up(curr->private, mode, wake_flags);
6902 }
6903 EXPORT_SYMBOL(default_wake_function);
6904 
6905 void __setscheduler_prio(struct task_struct *p, int prio)
6906 {
6907 	if (dl_prio(prio))
6908 		p->sched_class = &dl_sched_class;
6909 	else if (rt_prio(prio))
6910 		p->sched_class = &rt_sched_class;
6911 	else
6912 		p->sched_class = &fair_sched_class;
6913 
6914 	p->prio = prio;
6915 }
6916 
6917 #ifdef CONFIG_RT_MUTEXES
6918 
6919 /*
6920  * Would be more useful with typeof()/auto_type but they don't mix with
6921  * bit-fields. Since it's a local thing, use int. Keep the generic sounding
6922  * name such that if someone were to implement this function we get to compare
6923  * notes.
6924  */
6925 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
6926 
6927 void rt_mutex_pre_schedule(void)
6928 {
6929 	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
6930 	sched_submit_work(current);
6931 }
6932 
6933 void rt_mutex_schedule(void)
6934 {
6935 	lockdep_assert(current->sched_rt_mutex);
6936 	__schedule_loop(SM_NONE);
6937 }
6938 
6939 void rt_mutex_post_schedule(void)
6940 {
6941 	sched_update_worker(current);
6942 	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
6943 }
6944 
6945 /*
6946  * rt_mutex_setprio - set the current priority of a task
6947  * @p: task to boost
6948  * @pi_task: donor task
6949  *
6950  * This function changes the 'effective' priority of a task. It does
6951  * not touch ->normal_prio like __setscheduler().
6952  *
6953  * Used by the rt_mutex code to implement priority inheritance
6954  * logic. Call site only calls if the priority of the task changed.
6955  */
6956 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6957 {
6958 	int prio, oldprio, queued, running, queue_flag =
6959 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6960 	const struct sched_class *prev_class;
6961 	struct rq_flags rf;
6962 	struct rq *rq;
6963 
6964 	/* XXX used to be waiter->prio, not waiter->task->prio */
6965 	prio = __rt_effective_prio(pi_task, p->normal_prio);
6966 
6967 	/*
6968 	 * If nothing changed; bail early.
6969 	 */
6970 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6971 		return;
6972 
6973 	rq = __task_rq_lock(p, &rf);
6974 	update_rq_clock(rq);
6975 	/*
6976 	 * Set under pi_lock && rq->lock, such that the value can be used under
6977 	 * either lock.
6978 	 *
6979 	 * Note that there is loads of tricky to make this pointer cache work
6980 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6981 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
6982 	 * task is allowed to run again (and can exit). This ensures the pointer
6983 	 * points to a blocked task -- which guarantees the task is present.
6984 	 */
6985 	p->pi_top_task = pi_task;
6986 
6987 	/*
6988 	 * For FIFO/RR we only need to set prio, if that matches we're done.
6989 	 */
6990 	if (prio == p->prio && !dl_prio(prio))
6991 		goto out_unlock;
6992 
6993 	/*
6994 	 * Idle task boosting is a no-no in general. There is one
6995 	 * exception, when PREEMPT_RT and NOHZ is active:
6996 	 *
6997 	 * The idle task calls get_next_timer_interrupt() and holds
6998 	 * the timer wheel base->lock on the CPU and another CPU wants
6999 	 * to access the timer (probably to cancel it). We can safely
7000 	 * ignore the boosting request, as the idle CPU runs this code
7001 	 * with interrupts disabled and will complete the lock
7002 	 * protected section without being interrupted. So there is no
7003 	 * real need to boost.
7004 	 */
7005 	if (unlikely(p == rq->idle)) {
7006 		WARN_ON(p != rq->curr);
7007 		WARN_ON(p->pi_blocked_on);
7008 		goto out_unlock;
7009 	}
7010 
7011 	trace_sched_pi_setprio(p, pi_task);
7012 	oldprio = p->prio;
7013 
7014 	if (oldprio == prio)
7015 		queue_flag &= ~DEQUEUE_MOVE;
7016 
7017 	prev_class = p->sched_class;
7018 	queued = task_on_rq_queued(p);
7019 	running = task_current(rq, p);
7020 	if (queued)
7021 		dequeue_task(rq, p, queue_flag);
7022 	if (running)
7023 		put_prev_task(rq, p);
7024 
7025 	/*
7026 	 * Boosting condition are:
7027 	 * 1. -rt task is running and holds mutex A
7028 	 *      --> -dl task blocks on mutex A
7029 	 *
7030 	 * 2. -dl task is running and holds mutex A
7031 	 *      --> -dl task blocks on mutex A and could preempt the
7032 	 *          running task
7033 	 */
7034 	if (dl_prio(prio)) {
7035 		if (!dl_prio(p->normal_prio) ||
7036 		    (pi_task && dl_prio(pi_task->prio) &&
7037 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7038 			p->dl.pi_se = pi_task->dl.pi_se;
7039 			queue_flag |= ENQUEUE_REPLENISH;
7040 		} else {
7041 			p->dl.pi_se = &p->dl;
7042 		}
7043 	} else if (rt_prio(prio)) {
7044 		if (dl_prio(oldprio))
7045 			p->dl.pi_se = &p->dl;
7046 		if (oldprio < prio)
7047 			queue_flag |= ENQUEUE_HEAD;
7048 	} else {
7049 		if (dl_prio(oldprio))
7050 			p->dl.pi_se = &p->dl;
7051 		if (rt_prio(oldprio))
7052 			p->rt.timeout = 0;
7053 	}
7054 
7055 	__setscheduler_prio(p, prio);
7056 
7057 	if (queued)
7058 		enqueue_task(rq, p, queue_flag);
7059 	if (running)
7060 		set_next_task(rq, p);
7061 
7062 	check_class_changed(rq, p, prev_class, oldprio);
7063 out_unlock:
7064 	/* Avoid rq from going away on us: */
7065 	preempt_disable();
7066 
7067 	rq_unpin_lock(rq, &rf);
7068 	__balance_callbacks(rq);
7069 	raw_spin_rq_unlock(rq);
7070 
7071 	preempt_enable();
7072 }
7073 #endif
7074 
7075 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7076 int __sched __cond_resched(void)
7077 {
7078 	if (should_resched(0)) {
7079 		preempt_schedule_common();
7080 		return 1;
7081 	}
7082 	/*
7083 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
7084 	 * whether the current CPU is in an RCU read-side critical section,
7085 	 * so the tick can report quiescent states even for CPUs looping
7086 	 * in kernel context.  In contrast, in non-preemptible kernels,
7087 	 * RCU readers leave no in-memory hints, which means that CPU-bound
7088 	 * processes executing in kernel context might never report an
7089 	 * RCU quiescent state.  Therefore, the following code causes
7090 	 * cond_resched() to report a quiescent state, but only when RCU
7091 	 * is in urgent need of one.
7092 	 */
7093 #ifndef CONFIG_PREEMPT_RCU
7094 	rcu_all_qs();
7095 #endif
7096 	return 0;
7097 }
7098 EXPORT_SYMBOL(__cond_resched);
7099 #endif
7100 
7101 #ifdef CONFIG_PREEMPT_DYNAMIC
7102 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7103 #define cond_resched_dynamic_enabled	__cond_resched
7104 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
7105 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7106 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7107 
7108 #define might_resched_dynamic_enabled	__cond_resched
7109 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
7110 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7111 EXPORT_STATIC_CALL_TRAMP(might_resched);
7112 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7113 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
7114 int __sched dynamic_cond_resched(void)
7115 {
7116 	klp_sched_try_switch();
7117 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
7118 		return 0;
7119 	return __cond_resched();
7120 }
7121 EXPORT_SYMBOL(dynamic_cond_resched);
7122 
7123 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
7124 int __sched dynamic_might_resched(void)
7125 {
7126 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
7127 		return 0;
7128 	return __cond_resched();
7129 }
7130 EXPORT_SYMBOL(dynamic_might_resched);
7131 #endif
7132 #endif
7133 
7134 /*
7135  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7136  * call schedule, and on return reacquire the lock.
7137  *
7138  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7139  * operations here to prevent schedule() from being called twice (once via
7140  * spin_unlock(), once by hand).
7141  */
7142 int __cond_resched_lock(spinlock_t *lock)
7143 {
7144 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7145 	int ret = 0;
7146 
7147 	lockdep_assert_held(lock);
7148 
7149 	if (spin_needbreak(lock) || resched) {
7150 		spin_unlock(lock);
7151 		if (!_cond_resched())
7152 			cpu_relax();
7153 		ret = 1;
7154 		spin_lock(lock);
7155 	}
7156 	return ret;
7157 }
7158 EXPORT_SYMBOL(__cond_resched_lock);
7159 
7160 int __cond_resched_rwlock_read(rwlock_t *lock)
7161 {
7162 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7163 	int ret = 0;
7164 
7165 	lockdep_assert_held_read(lock);
7166 
7167 	if (rwlock_needbreak(lock) || resched) {
7168 		read_unlock(lock);
7169 		if (!_cond_resched())
7170 			cpu_relax();
7171 		ret = 1;
7172 		read_lock(lock);
7173 	}
7174 	return ret;
7175 }
7176 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7177 
7178 int __cond_resched_rwlock_write(rwlock_t *lock)
7179 {
7180 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7181 	int ret = 0;
7182 
7183 	lockdep_assert_held_write(lock);
7184 
7185 	if (rwlock_needbreak(lock) || resched) {
7186 		write_unlock(lock);
7187 		if (!_cond_resched())
7188 			cpu_relax();
7189 		ret = 1;
7190 		write_lock(lock);
7191 	}
7192 	return ret;
7193 }
7194 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7195 
7196 #ifdef CONFIG_PREEMPT_DYNAMIC
7197 
7198 #ifdef CONFIG_GENERIC_ENTRY
7199 #include <linux/entry-common.h>
7200 #endif
7201 
7202 /*
7203  * SC:cond_resched
7204  * SC:might_resched
7205  * SC:preempt_schedule
7206  * SC:preempt_schedule_notrace
7207  * SC:irqentry_exit_cond_resched
7208  *
7209  *
7210  * NONE:
7211  *   cond_resched               <- __cond_resched
7212  *   might_resched              <- RET0
7213  *   preempt_schedule           <- NOP
7214  *   preempt_schedule_notrace   <- NOP
7215  *   irqentry_exit_cond_resched <- NOP
7216  *
7217  * VOLUNTARY:
7218  *   cond_resched               <- __cond_resched
7219  *   might_resched              <- __cond_resched
7220  *   preempt_schedule           <- NOP
7221  *   preempt_schedule_notrace   <- NOP
7222  *   irqentry_exit_cond_resched <- NOP
7223  *
7224  * FULL:
7225  *   cond_resched               <- RET0
7226  *   might_resched              <- RET0
7227  *   preempt_schedule           <- preempt_schedule
7228  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7229  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7230  */
7231 
7232 enum {
7233 	preempt_dynamic_undefined = -1,
7234 	preempt_dynamic_none,
7235 	preempt_dynamic_voluntary,
7236 	preempt_dynamic_full,
7237 };
7238 
7239 int preempt_dynamic_mode = preempt_dynamic_undefined;
7240 
7241 int sched_dynamic_mode(const char *str)
7242 {
7243 	if (!strcmp(str, "none"))
7244 		return preempt_dynamic_none;
7245 
7246 	if (!strcmp(str, "voluntary"))
7247 		return preempt_dynamic_voluntary;
7248 
7249 	if (!strcmp(str, "full"))
7250 		return preempt_dynamic_full;
7251 
7252 	return -EINVAL;
7253 }
7254 
7255 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7256 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
7257 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
7258 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7259 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
7260 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
7261 #else
7262 #error "Unsupported PREEMPT_DYNAMIC mechanism"
7263 #endif
7264 
7265 static DEFINE_MUTEX(sched_dynamic_mutex);
7266 static bool klp_override;
7267 
7268 static void __sched_dynamic_update(int mode)
7269 {
7270 	/*
7271 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
7272 	 * the ZERO state, which is invalid.
7273 	 */
7274 	if (!klp_override)
7275 		preempt_dynamic_enable(cond_resched);
7276 	preempt_dynamic_enable(might_resched);
7277 	preempt_dynamic_enable(preempt_schedule);
7278 	preempt_dynamic_enable(preempt_schedule_notrace);
7279 	preempt_dynamic_enable(irqentry_exit_cond_resched);
7280 
7281 	switch (mode) {
7282 	case preempt_dynamic_none:
7283 		if (!klp_override)
7284 			preempt_dynamic_enable(cond_resched);
7285 		preempt_dynamic_disable(might_resched);
7286 		preempt_dynamic_disable(preempt_schedule);
7287 		preempt_dynamic_disable(preempt_schedule_notrace);
7288 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7289 		if (mode != preempt_dynamic_mode)
7290 			pr_info("Dynamic Preempt: none\n");
7291 		break;
7292 
7293 	case preempt_dynamic_voluntary:
7294 		if (!klp_override)
7295 			preempt_dynamic_enable(cond_resched);
7296 		preempt_dynamic_enable(might_resched);
7297 		preempt_dynamic_disable(preempt_schedule);
7298 		preempt_dynamic_disable(preempt_schedule_notrace);
7299 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7300 		if (mode != preempt_dynamic_mode)
7301 			pr_info("Dynamic Preempt: voluntary\n");
7302 		break;
7303 
7304 	case preempt_dynamic_full:
7305 		if (!klp_override)
7306 			preempt_dynamic_disable(cond_resched);
7307 		preempt_dynamic_disable(might_resched);
7308 		preempt_dynamic_enable(preempt_schedule);
7309 		preempt_dynamic_enable(preempt_schedule_notrace);
7310 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7311 		if (mode != preempt_dynamic_mode)
7312 			pr_info("Dynamic Preempt: full\n");
7313 		break;
7314 	}
7315 
7316 	preempt_dynamic_mode = mode;
7317 }
7318 
7319 void sched_dynamic_update(int mode)
7320 {
7321 	mutex_lock(&sched_dynamic_mutex);
7322 	__sched_dynamic_update(mode);
7323 	mutex_unlock(&sched_dynamic_mutex);
7324 }
7325 
7326 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
7327 
7328 static int klp_cond_resched(void)
7329 {
7330 	__klp_sched_try_switch();
7331 	return __cond_resched();
7332 }
7333 
7334 void sched_dynamic_klp_enable(void)
7335 {
7336 	mutex_lock(&sched_dynamic_mutex);
7337 
7338 	klp_override = true;
7339 	static_call_update(cond_resched, klp_cond_resched);
7340 
7341 	mutex_unlock(&sched_dynamic_mutex);
7342 }
7343 
7344 void sched_dynamic_klp_disable(void)
7345 {
7346 	mutex_lock(&sched_dynamic_mutex);
7347 
7348 	klp_override = false;
7349 	__sched_dynamic_update(preempt_dynamic_mode);
7350 
7351 	mutex_unlock(&sched_dynamic_mutex);
7352 }
7353 
7354 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
7355 
7356 static int __init setup_preempt_mode(char *str)
7357 {
7358 	int mode = sched_dynamic_mode(str);
7359 	if (mode < 0) {
7360 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
7361 		return 0;
7362 	}
7363 
7364 	sched_dynamic_update(mode);
7365 	return 1;
7366 }
7367 __setup("preempt=", setup_preempt_mode);
7368 
7369 static void __init preempt_dynamic_init(void)
7370 {
7371 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
7372 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
7373 			sched_dynamic_update(preempt_dynamic_none);
7374 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
7375 			sched_dynamic_update(preempt_dynamic_voluntary);
7376 		} else {
7377 			/* Default static call setting, nothing to do */
7378 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
7379 			preempt_dynamic_mode = preempt_dynamic_full;
7380 			pr_info("Dynamic Preempt: full\n");
7381 		}
7382 	}
7383 }
7384 
7385 #define PREEMPT_MODEL_ACCESSOR(mode) \
7386 	bool preempt_model_##mode(void)						 \
7387 	{									 \
7388 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
7389 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
7390 	}									 \
7391 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
7392 
7393 PREEMPT_MODEL_ACCESSOR(none);
7394 PREEMPT_MODEL_ACCESSOR(voluntary);
7395 PREEMPT_MODEL_ACCESSOR(full);
7396 
7397 #else /* !CONFIG_PREEMPT_DYNAMIC: */
7398 
7399 static inline void preempt_dynamic_init(void) { }
7400 
7401 #endif /* CONFIG_PREEMPT_DYNAMIC */
7402 
7403 int io_schedule_prepare(void)
7404 {
7405 	int old_iowait = current->in_iowait;
7406 
7407 	current->in_iowait = 1;
7408 	blk_flush_plug(current->plug, true);
7409 	return old_iowait;
7410 }
7411 
7412 void io_schedule_finish(int token)
7413 {
7414 	current->in_iowait = token;
7415 }
7416 
7417 /*
7418  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7419  * that process accounting knows that this is a task in IO wait state.
7420  */
7421 long __sched io_schedule_timeout(long timeout)
7422 {
7423 	int token;
7424 	long ret;
7425 
7426 	token = io_schedule_prepare();
7427 	ret = schedule_timeout(timeout);
7428 	io_schedule_finish(token);
7429 
7430 	return ret;
7431 }
7432 EXPORT_SYMBOL(io_schedule_timeout);
7433 
7434 void __sched io_schedule(void)
7435 {
7436 	int token;
7437 
7438 	token = io_schedule_prepare();
7439 	schedule();
7440 	io_schedule_finish(token);
7441 }
7442 EXPORT_SYMBOL(io_schedule);
7443 
7444 void sched_show_task(struct task_struct *p)
7445 {
7446 	unsigned long free = 0;
7447 	int ppid;
7448 
7449 	if (!try_get_task_stack(p))
7450 		return;
7451 
7452 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7453 
7454 	if (task_is_running(p))
7455 		pr_cont("  running task    ");
7456 #ifdef CONFIG_DEBUG_STACK_USAGE
7457 	free = stack_not_used(p);
7458 #endif
7459 	ppid = 0;
7460 	rcu_read_lock();
7461 	if (pid_alive(p))
7462 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7463 	rcu_read_unlock();
7464 	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
7465 		free, task_pid_nr(p), task_tgid_nr(p),
7466 		ppid, read_task_thread_flags(p));
7467 
7468 	print_worker_info(KERN_INFO, p);
7469 	print_stop_info(KERN_INFO, p);
7470 	show_stack(p, NULL, KERN_INFO);
7471 	put_task_stack(p);
7472 }
7473 EXPORT_SYMBOL_GPL(sched_show_task);
7474 
7475 static inline bool
7476 state_filter_match(unsigned long state_filter, struct task_struct *p)
7477 {
7478 	unsigned int state = READ_ONCE(p->__state);
7479 
7480 	/* no filter, everything matches */
7481 	if (!state_filter)
7482 		return true;
7483 
7484 	/* filter, but doesn't match */
7485 	if (!(state & state_filter))
7486 		return false;
7487 
7488 	/*
7489 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7490 	 * TASK_KILLABLE).
7491 	 */
7492 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
7493 		return false;
7494 
7495 	return true;
7496 }
7497 
7498 
7499 void show_state_filter(unsigned int state_filter)
7500 {
7501 	struct task_struct *g, *p;
7502 
7503 	rcu_read_lock();
7504 	for_each_process_thread(g, p) {
7505 		/*
7506 		 * reset the NMI-timeout, listing all files on a slow
7507 		 * console might take a lot of time:
7508 		 * Also, reset softlockup watchdogs on all CPUs, because
7509 		 * another CPU might be blocked waiting for us to process
7510 		 * an IPI.
7511 		 */
7512 		touch_nmi_watchdog();
7513 		touch_all_softlockup_watchdogs();
7514 		if (state_filter_match(state_filter, p))
7515 			sched_show_task(p);
7516 	}
7517 
7518 #ifdef CONFIG_SCHED_DEBUG
7519 	if (!state_filter)
7520 		sysrq_sched_debug_show();
7521 #endif
7522 	rcu_read_unlock();
7523 	/*
7524 	 * Only show locks if all tasks are dumped:
7525 	 */
7526 	if (!state_filter)
7527 		debug_show_all_locks();
7528 }
7529 
7530 /**
7531  * init_idle - set up an idle thread for a given CPU
7532  * @idle: task in question
7533  * @cpu: CPU the idle task belongs to
7534  *
7535  * NOTE: this function does not set the idle thread's NEED_RESCHED
7536  * flag, to make booting more robust.
7537  */
7538 void __init init_idle(struct task_struct *idle, int cpu)
7539 {
7540 #ifdef CONFIG_SMP
7541 	struct affinity_context ac = (struct affinity_context) {
7542 		.new_mask  = cpumask_of(cpu),
7543 		.flags     = 0,
7544 	};
7545 #endif
7546 	struct rq *rq = cpu_rq(cpu);
7547 	unsigned long flags;
7548 
7549 	__sched_fork(0, idle);
7550 
7551 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7552 	raw_spin_rq_lock(rq);
7553 
7554 	idle->__state = TASK_RUNNING;
7555 	idle->se.exec_start = sched_clock();
7556 	/*
7557 	 * PF_KTHREAD should already be set at this point; regardless, make it
7558 	 * look like a proper per-CPU kthread.
7559 	 */
7560 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
7561 	kthread_set_per_cpu(idle, cpu);
7562 
7563 #ifdef CONFIG_SMP
7564 	/*
7565 	 * It's possible that init_idle() gets called multiple times on a task,
7566 	 * in that case do_set_cpus_allowed() will not do the right thing.
7567 	 *
7568 	 * And since this is boot we can forgo the serialization.
7569 	 */
7570 	set_cpus_allowed_common(idle, &ac);
7571 #endif
7572 	/*
7573 	 * We're having a chicken and egg problem, even though we are
7574 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7575 	 * lockdep check in task_group() will fail.
7576 	 *
7577 	 * Similar case to sched_fork(). / Alternatively we could
7578 	 * use task_rq_lock() here and obtain the other rq->lock.
7579 	 *
7580 	 * Silence PROVE_RCU
7581 	 */
7582 	rcu_read_lock();
7583 	__set_task_cpu(idle, cpu);
7584 	rcu_read_unlock();
7585 
7586 	rq->idle = idle;
7587 	rcu_assign_pointer(rq->curr, idle);
7588 	idle->on_rq = TASK_ON_RQ_QUEUED;
7589 #ifdef CONFIG_SMP
7590 	idle->on_cpu = 1;
7591 #endif
7592 	raw_spin_rq_unlock(rq);
7593 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7594 
7595 	/* Set the preempt count _outside_ the spinlocks! */
7596 	init_idle_preempt_count(idle, cpu);
7597 
7598 	/*
7599 	 * The idle tasks have their own, simple scheduling class:
7600 	 */
7601 	idle->sched_class = &idle_sched_class;
7602 	ftrace_graph_init_idle_task(idle, cpu);
7603 	vtime_init_idle(idle, cpu);
7604 #ifdef CONFIG_SMP
7605 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7606 #endif
7607 }
7608 
7609 #ifdef CONFIG_SMP
7610 
7611 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7612 			      const struct cpumask *trial)
7613 {
7614 	int ret = 1;
7615 
7616 	if (cpumask_empty(cur))
7617 		return ret;
7618 
7619 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7620 
7621 	return ret;
7622 }
7623 
7624 int task_can_attach(struct task_struct *p)
7625 {
7626 	int ret = 0;
7627 
7628 	/*
7629 	 * Kthreads which disallow setaffinity shouldn't be moved
7630 	 * to a new cpuset; we don't want to change their CPU
7631 	 * affinity and isolating such threads by their set of
7632 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7633 	 * applicable for such threads.  This prevents checking for
7634 	 * success of set_cpus_allowed_ptr() on all attached tasks
7635 	 * before cpus_mask may be changed.
7636 	 */
7637 	if (p->flags & PF_NO_SETAFFINITY)
7638 		ret = -EINVAL;
7639 
7640 	return ret;
7641 }
7642 
7643 bool sched_smp_initialized __read_mostly;
7644 
7645 #ifdef CONFIG_NUMA_BALANCING
7646 /* Migrate current task p to target_cpu */
7647 int migrate_task_to(struct task_struct *p, int target_cpu)
7648 {
7649 	struct migration_arg arg = { p, target_cpu };
7650 	int curr_cpu = task_cpu(p);
7651 
7652 	if (curr_cpu == target_cpu)
7653 		return 0;
7654 
7655 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7656 		return -EINVAL;
7657 
7658 	/* TODO: This is not properly updating schedstats */
7659 
7660 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7661 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7662 }
7663 
7664 /*
7665  * Requeue a task on a given node and accurately track the number of NUMA
7666  * tasks on the runqueues
7667  */
7668 void sched_setnuma(struct task_struct *p, int nid)
7669 {
7670 	bool queued, running;
7671 	struct rq_flags rf;
7672 	struct rq *rq;
7673 
7674 	rq = task_rq_lock(p, &rf);
7675 	queued = task_on_rq_queued(p);
7676 	running = task_current(rq, p);
7677 
7678 	if (queued)
7679 		dequeue_task(rq, p, DEQUEUE_SAVE);
7680 	if (running)
7681 		put_prev_task(rq, p);
7682 
7683 	p->numa_preferred_nid = nid;
7684 
7685 	if (queued)
7686 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7687 	if (running)
7688 		set_next_task(rq, p);
7689 	task_rq_unlock(rq, p, &rf);
7690 }
7691 #endif /* CONFIG_NUMA_BALANCING */
7692 
7693 #ifdef CONFIG_HOTPLUG_CPU
7694 /*
7695  * Ensure that the idle task is using init_mm right before its CPU goes
7696  * offline.
7697  */
7698 void idle_task_exit(void)
7699 {
7700 	struct mm_struct *mm = current->active_mm;
7701 
7702 	BUG_ON(cpu_online(smp_processor_id()));
7703 	BUG_ON(current != this_rq()->idle);
7704 
7705 	if (mm != &init_mm) {
7706 		switch_mm(mm, &init_mm, current);
7707 		finish_arch_post_lock_switch();
7708 	}
7709 
7710 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7711 }
7712 
7713 static int __balance_push_cpu_stop(void *arg)
7714 {
7715 	struct task_struct *p = arg;
7716 	struct rq *rq = this_rq();
7717 	struct rq_flags rf;
7718 	int cpu;
7719 
7720 	raw_spin_lock_irq(&p->pi_lock);
7721 	rq_lock(rq, &rf);
7722 
7723 	update_rq_clock(rq);
7724 
7725 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
7726 		cpu = select_fallback_rq(rq->cpu, p);
7727 		rq = __migrate_task(rq, &rf, p, cpu);
7728 	}
7729 
7730 	rq_unlock(rq, &rf);
7731 	raw_spin_unlock_irq(&p->pi_lock);
7732 
7733 	put_task_struct(p);
7734 
7735 	return 0;
7736 }
7737 
7738 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7739 
7740 /*
7741  * Ensure we only run per-cpu kthreads once the CPU goes !active.
7742  *
7743  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
7744  * effective when the hotplug motion is down.
7745  */
7746 static void balance_push(struct rq *rq)
7747 {
7748 	struct task_struct *push_task = rq->curr;
7749 
7750 	lockdep_assert_rq_held(rq);
7751 
7752 	/*
7753 	 * Ensure the thing is persistent until balance_push_set(.on = false);
7754 	 */
7755 	rq->balance_callback = &balance_push_callback;
7756 
7757 	/*
7758 	 * Only active while going offline and when invoked on the outgoing
7759 	 * CPU.
7760 	 */
7761 	if (!cpu_dying(rq->cpu) || rq != this_rq())
7762 		return;
7763 
7764 	/*
7765 	 * Both the cpu-hotplug and stop task are in this case and are
7766 	 * required to complete the hotplug process.
7767 	 */
7768 	if (kthread_is_per_cpu(push_task) ||
7769 	    is_migration_disabled(push_task)) {
7770 
7771 		/*
7772 		 * If this is the idle task on the outgoing CPU try to wake
7773 		 * up the hotplug control thread which might wait for the
7774 		 * last task to vanish. The rcuwait_active() check is
7775 		 * accurate here because the waiter is pinned on this CPU
7776 		 * and can't obviously be running in parallel.
7777 		 *
7778 		 * On RT kernels this also has to check whether there are
7779 		 * pinned and scheduled out tasks on the runqueue. They
7780 		 * need to leave the migrate disabled section first.
7781 		 */
7782 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7783 		    rcuwait_active(&rq->hotplug_wait)) {
7784 			raw_spin_rq_unlock(rq);
7785 			rcuwait_wake_up(&rq->hotplug_wait);
7786 			raw_spin_rq_lock(rq);
7787 		}
7788 		return;
7789 	}
7790 
7791 	get_task_struct(push_task);
7792 	/*
7793 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
7794 	 * Both preemption and IRQs are still disabled.
7795 	 */
7796 	preempt_disable();
7797 	raw_spin_rq_unlock(rq);
7798 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7799 			    this_cpu_ptr(&push_work));
7800 	preempt_enable();
7801 	/*
7802 	 * At this point need_resched() is true and we'll take the loop in
7803 	 * schedule(). The next pick is obviously going to be the stop task
7804 	 * which kthread_is_per_cpu() and will push this task away.
7805 	 */
7806 	raw_spin_rq_lock(rq);
7807 }
7808 
7809 static void balance_push_set(int cpu, bool on)
7810 {
7811 	struct rq *rq = cpu_rq(cpu);
7812 	struct rq_flags rf;
7813 
7814 	rq_lock_irqsave(rq, &rf);
7815 	if (on) {
7816 		WARN_ON_ONCE(rq->balance_callback);
7817 		rq->balance_callback = &balance_push_callback;
7818 	} else if (rq->balance_callback == &balance_push_callback) {
7819 		rq->balance_callback = NULL;
7820 	}
7821 	rq_unlock_irqrestore(rq, &rf);
7822 }
7823 
7824 /*
7825  * Invoked from a CPUs hotplug control thread after the CPU has been marked
7826  * inactive. All tasks which are not per CPU kernel threads are either
7827  * pushed off this CPU now via balance_push() or placed on a different CPU
7828  * during wakeup. Wait until the CPU is quiescent.
7829  */
7830 static void balance_hotplug_wait(void)
7831 {
7832 	struct rq *rq = this_rq();
7833 
7834 	rcuwait_wait_event(&rq->hotplug_wait,
7835 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
7836 			   TASK_UNINTERRUPTIBLE);
7837 }
7838 
7839 #else
7840 
7841 static inline void balance_push(struct rq *rq)
7842 {
7843 }
7844 
7845 static inline void balance_push_set(int cpu, bool on)
7846 {
7847 }
7848 
7849 static inline void balance_hotplug_wait(void)
7850 {
7851 }
7852 
7853 #endif /* CONFIG_HOTPLUG_CPU */
7854 
7855 void set_rq_online(struct rq *rq)
7856 {
7857 	if (!rq->online) {
7858 		const struct sched_class *class;
7859 
7860 		cpumask_set_cpu(rq->cpu, rq->rd->online);
7861 		rq->online = 1;
7862 
7863 		for_each_class(class) {
7864 			if (class->rq_online)
7865 				class->rq_online(rq);
7866 		}
7867 	}
7868 }
7869 
7870 void set_rq_offline(struct rq *rq)
7871 {
7872 	if (rq->online) {
7873 		const struct sched_class *class;
7874 
7875 		update_rq_clock(rq);
7876 		for_each_class(class) {
7877 			if (class->rq_offline)
7878 				class->rq_offline(rq);
7879 		}
7880 
7881 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7882 		rq->online = 0;
7883 	}
7884 }
7885 
7886 static inline void sched_set_rq_online(struct rq *rq, int cpu)
7887 {
7888 	struct rq_flags rf;
7889 
7890 	rq_lock_irqsave(rq, &rf);
7891 	if (rq->rd) {
7892 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7893 		set_rq_online(rq);
7894 	}
7895 	rq_unlock_irqrestore(rq, &rf);
7896 }
7897 
7898 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
7899 {
7900 	struct rq_flags rf;
7901 
7902 	rq_lock_irqsave(rq, &rf);
7903 	if (rq->rd) {
7904 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7905 		set_rq_offline(rq);
7906 	}
7907 	rq_unlock_irqrestore(rq, &rf);
7908 }
7909 
7910 /*
7911  * used to mark begin/end of suspend/resume:
7912  */
7913 static int num_cpus_frozen;
7914 
7915 /*
7916  * Update cpusets according to cpu_active mask.  If cpusets are
7917  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7918  * around partition_sched_domains().
7919  *
7920  * If we come here as part of a suspend/resume, don't touch cpusets because we
7921  * want to restore it back to its original state upon resume anyway.
7922  */
7923 static void cpuset_cpu_active(void)
7924 {
7925 	if (cpuhp_tasks_frozen) {
7926 		/*
7927 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7928 		 * resume sequence. As long as this is not the last online
7929 		 * operation in the resume sequence, just build a single sched
7930 		 * domain, ignoring cpusets.
7931 		 */
7932 		partition_sched_domains(1, NULL, NULL);
7933 		if (--num_cpus_frozen)
7934 			return;
7935 		/*
7936 		 * This is the last CPU online operation. So fall through and
7937 		 * restore the original sched domains by considering the
7938 		 * cpuset configurations.
7939 		 */
7940 		cpuset_force_rebuild();
7941 	}
7942 	cpuset_update_active_cpus();
7943 }
7944 
7945 static int cpuset_cpu_inactive(unsigned int cpu)
7946 {
7947 	if (!cpuhp_tasks_frozen) {
7948 		int ret = dl_bw_check_overflow(cpu);
7949 
7950 		if (ret)
7951 			return ret;
7952 		cpuset_update_active_cpus();
7953 	} else {
7954 		num_cpus_frozen++;
7955 		partition_sched_domains(1, NULL, NULL);
7956 	}
7957 	return 0;
7958 }
7959 
7960 static inline void sched_smt_present_inc(int cpu)
7961 {
7962 #ifdef CONFIG_SCHED_SMT
7963 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7964 		static_branch_inc_cpuslocked(&sched_smt_present);
7965 #endif
7966 }
7967 
7968 static inline void sched_smt_present_dec(int cpu)
7969 {
7970 #ifdef CONFIG_SCHED_SMT
7971 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7972 		static_branch_dec_cpuslocked(&sched_smt_present);
7973 #endif
7974 }
7975 
7976 int sched_cpu_activate(unsigned int cpu)
7977 {
7978 	struct rq *rq = cpu_rq(cpu);
7979 
7980 	/*
7981 	 * Clear the balance_push callback and prepare to schedule
7982 	 * regular tasks.
7983 	 */
7984 	balance_push_set(cpu, false);
7985 
7986 	/*
7987 	 * When going up, increment the number of cores with SMT present.
7988 	 */
7989 	sched_smt_present_inc(cpu);
7990 	set_cpu_active(cpu, true);
7991 
7992 	if (sched_smp_initialized) {
7993 		sched_update_numa(cpu, true);
7994 		sched_domains_numa_masks_set(cpu);
7995 		cpuset_cpu_active();
7996 	}
7997 
7998 	/*
7999 	 * Put the rq online, if not already. This happens:
8000 	 *
8001 	 * 1) In the early boot process, because we build the real domains
8002 	 *    after all CPUs have been brought up.
8003 	 *
8004 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8005 	 *    domains.
8006 	 */
8007 	sched_set_rq_online(rq, cpu);
8008 
8009 	return 0;
8010 }
8011 
8012 int sched_cpu_deactivate(unsigned int cpu)
8013 {
8014 	struct rq *rq = cpu_rq(cpu);
8015 	int ret;
8016 
8017 	/*
8018 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8019 	 * load balancing when not active
8020 	 */
8021 	nohz_balance_exit_idle(rq);
8022 
8023 	set_cpu_active(cpu, false);
8024 
8025 	/*
8026 	 * From this point forward, this CPU will refuse to run any task that
8027 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8028 	 * push those tasks away until this gets cleared, see
8029 	 * sched_cpu_dying().
8030 	 */
8031 	balance_push_set(cpu, true);
8032 
8033 	/*
8034 	 * We've cleared cpu_active_mask / set balance_push, wait for all
8035 	 * preempt-disabled and RCU users of this state to go away such that
8036 	 * all new such users will observe it.
8037 	 *
8038 	 * Specifically, we rely on ttwu to no longer target this CPU, see
8039 	 * ttwu_queue_cond() and is_cpu_allowed().
8040 	 *
8041 	 * Do sync before park smpboot threads to take care the RCU boost case.
8042 	 */
8043 	synchronize_rcu();
8044 
8045 	sched_set_rq_offline(rq, cpu);
8046 
8047 	/*
8048 	 * When going down, decrement the number of cores with SMT present.
8049 	 */
8050 	sched_smt_present_dec(cpu);
8051 
8052 #ifdef CONFIG_SCHED_SMT
8053 	sched_core_cpu_deactivate(cpu);
8054 #endif
8055 
8056 	if (!sched_smp_initialized)
8057 		return 0;
8058 
8059 	sched_update_numa(cpu, false);
8060 	ret = cpuset_cpu_inactive(cpu);
8061 	if (ret) {
8062 		sched_smt_present_inc(cpu);
8063 		sched_set_rq_online(rq, cpu);
8064 		balance_push_set(cpu, false);
8065 		set_cpu_active(cpu, true);
8066 		sched_update_numa(cpu, true);
8067 		return ret;
8068 	}
8069 	sched_domains_numa_masks_clear(cpu);
8070 	return 0;
8071 }
8072 
8073 static void sched_rq_cpu_starting(unsigned int cpu)
8074 {
8075 	struct rq *rq = cpu_rq(cpu);
8076 
8077 	rq->calc_load_update = calc_load_update;
8078 	update_max_interval();
8079 }
8080 
8081 int sched_cpu_starting(unsigned int cpu)
8082 {
8083 	sched_core_cpu_starting(cpu);
8084 	sched_rq_cpu_starting(cpu);
8085 	sched_tick_start(cpu);
8086 	return 0;
8087 }
8088 
8089 #ifdef CONFIG_HOTPLUG_CPU
8090 
8091 /*
8092  * Invoked immediately before the stopper thread is invoked to bring the
8093  * CPU down completely. At this point all per CPU kthreads except the
8094  * hotplug thread (current) and the stopper thread (inactive) have been
8095  * either parked or have been unbound from the outgoing CPU. Ensure that
8096  * any of those which might be on the way out are gone.
8097  *
8098  * If after this point a bound task is being woken on this CPU then the
8099  * responsible hotplug callback has failed to do it's job.
8100  * sched_cpu_dying() will catch it with the appropriate fireworks.
8101  */
8102 int sched_cpu_wait_empty(unsigned int cpu)
8103 {
8104 	balance_hotplug_wait();
8105 	return 0;
8106 }
8107 
8108 /*
8109  * Since this CPU is going 'away' for a while, fold any nr_active delta we
8110  * might have. Called from the CPU stopper task after ensuring that the
8111  * stopper is the last running task on the CPU, so nr_active count is
8112  * stable. We need to take the tear-down thread which is calling this into
8113  * account, so we hand in adjust = 1 to the load calculation.
8114  *
8115  * Also see the comment "Global load-average calculations".
8116  */
8117 static void calc_load_migrate(struct rq *rq)
8118 {
8119 	long delta = calc_load_fold_active(rq, 1);
8120 
8121 	if (delta)
8122 		atomic_long_add(delta, &calc_load_tasks);
8123 }
8124 
8125 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8126 {
8127 	struct task_struct *g, *p;
8128 	int cpu = cpu_of(rq);
8129 
8130 	lockdep_assert_rq_held(rq);
8131 
8132 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8133 	for_each_process_thread(g, p) {
8134 		if (task_cpu(p) != cpu)
8135 			continue;
8136 
8137 		if (!task_on_rq_queued(p))
8138 			continue;
8139 
8140 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8141 	}
8142 }
8143 
8144 int sched_cpu_dying(unsigned int cpu)
8145 {
8146 	struct rq *rq = cpu_rq(cpu);
8147 	struct rq_flags rf;
8148 
8149 	/* Handle pending wakeups and then migrate everything off */
8150 	sched_tick_stop(cpu);
8151 
8152 	rq_lock_irqsave(rq, &rf);
8153 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8154 		WARN(true, "Dying CPU not properly vacated!");
8155 		dump_rq_tasks(rq, KERN_WARNING);
8156 	}
8157 	rq_unlock_irqrestore(rq, &rf);
8158 
8159 	calc_load_migrate(rq);
8160 	update_max_interval();
8161 	hrtick_clear(rq);
8162 	sched_core_cpu_dying(cpu);
8163 	return 0;
8164 }
8165 #endif
8166 
8167 void __init sched_init_smp(void)
8168 {
8169 	sched_init_numa(NUMA_NO_NODE);
8170 
8171 	/*
8172 	 * There's no userspace yet to cause hotplug operations; hence all the
8173 	 * CPU masks are stable and all blatant races in the below code cannot
8174 	 * happen.
8175 	 */
8176 	mutex_lock(&sched_domains_mutex);
8177 	sched_init_domains(cpu_active_mask);
8178 	mutex_unlock(&sched_domains_mutex);
8179 
8180 	/* Move init over to a non-isolated CPU */
8181 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
8182 		BUG();
8183 	current->flags &= ~PF_NO_SETAFFINITY;
8184 	sched_init_granularity();
8185 
8186 	init_sched_rt_class();
8187 	init_sched_dl_class();
8188 
8189 	sched_smp_initialized = true;
8190 }
8191 
8192 static int __init migration_init(void)
8193 {
8194 	sched_cpu_starting(smp_processor_id());
8195 	return 0;
8196 }
8197 early_initcall(migration_init);
8198 
8199 #else
8200 void __init sched_init_smp(void)
8201 {
8202 	sched_init_granularity();
8203 }
8204 #endif /* CONFIG_SMP */
8205 
8206 int in_sched_functions(unsigned long addr)
8207 {
8208 	return in_lock_functions(addr) ||
8209 		(addr >= (unsigned long)__sched_text_start
8210 		&& addr < (unsigned long)__sched_text_end);
8211 }
8212 
8213 #ifdef CONFIG_CGROUP_SCHED
8214 /*
8215  * Default task group.
8216  * Every task in system belongs to this group at bootup.
8217  */
8218 struct task_group root_task_group;
8219 LIST_HEAD(task_groups);
8220 
8221 /* Cacheline aligned slab cache for task_group */
8222 static struct kmem_cache *task_group_cache __ro_after_init;
8223 #endif
8224 
8225 void __init sched_init(void)
8226 {
8227 	unsigned long ptr = 0;
8228 	int i;
8229 
8230 	/* Make sure the linker didn't screw up */
8231 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
8232 	       &fair_sched_class != &rt_sched_class + 1 ||
8233 	       &rt_sched_class   != &dl_sched_class + 1);
8234 #ifdef CONFIG_SMP
8235 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
8236 #endif
8237 
8238 	wait_bit_init();
8239 
8240 #ifdef CONFIG_FAIR_GROUP_SCHED
8241 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8242 #endif
8243 #ifdef CONFIG_RT_GROUP_SCHED
8244 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8245 #endif
8246 	if (ptr) {
8247 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8248 
8249 #ifdef CONFIG_FAIR_GROUP_SCHED
8250 		root_task_group.se = (struct sched_entity **)ptr;
8251 		ptr += nr_cpu_ids * sizeof(void **);
8252 
8253 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8254 		ptr += nr_cpu_ids * sizeof(void **);
8255 
8256 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8257 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
8258 #endif /* CONFIG_FAIR_GROUP_SCHED */
8259 #ifdef CONFIG_RT_GROUP_SCHED
8260 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8261 		ptr += nr_cpu_ids * sizeof(void **);
8262 
8263 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8264 		ptr += nr_cpu_ids * sizeof(void **);
8265 
8266 #endif /* CONFIG_RT_GROUP_SCHED */
8267 	}
8268 
8269 #ifdef CONFIG_SMP
8270 	init_defrootdomain();
8271 #endif
8272 
8273 #ifdef CONFIG_RT_GROUP_SCHED
8274 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8275 			global_rt_period(), global_rt_runtime());
8276 #endif /* CONFIG_RT_GROUP_SCHED */
8277 
8278 #ifdef CONFIG_CGROUP_SCHED
8279 	task_group_cache = KMEM_CACHE(task_group, 0);
8280 
8281 	list_add(&root_task_group.list, &task_groups);
8282 	INIT_LIST_HEAD(&root_task_group.children);
8283 	INIT_LIST_HEAD(&root_task_group.siblings);
8284 	autogroup_init(&init_task);
8285 #endif /* CONFIG_CGROUP_SCHED */
8286 
8287 	for_each_possible_cpu(i) {
8288 		struct rq *rq;
8289 
8290 		rq = cpu_rq(i);
8291 		raw_spin_lock_init(&rq->__lock);
8292 		rq->nr_running = 0;
8293 		rq->calc_load_active = 0;
8294 		rq->calc_load_update = jiffies + LOAD_FREQ;
8295 		init_cfs_rq(&rq->cfs);
8296 		init_rt_rq(&rq->rt);
8297 		init_dl_rq(&rq->dl);
8298 #ifdef CONFIG_FAIR_GROUP_SCHED
8299 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8300 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8301 		/*
8302 		 * How much CPU bandwidth does root_task_group get?
8303 		 *
8304 		 * In case of task-groups formed through the cgroup filesystem, it
8305 		 * gets 100% of the CPU resources in the system. This overall
8306 		 * system CPU resource is divided among the tasks of
8307 		 * root_task_group and its child task-groups in a fair manner,
8308 		 * based on each entity's (task or task-group's) weight
8309 		 * (se->load.weight).
8310 		 *
8311 		 * In other words, if root_task_group has 10 tasks of weight
8312 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8313 		 * then A0's share of the CPU resource is:
8314 		 *
8315 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8316 		 *
8317 		 * We achieve this by letting root_task_group's tasks sit
8318 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8319 		 */
8320 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8321 #endif /* CONFIG_FAIR_GROUP_SCHED */
8322 
8323 #ifdef CONFIG_RT_GROUP_SCHED
8324 		/*
8325 		 * This is required for init cpu because rt.c:__enable_runtime()
8326 		 * starts working after scheduler_running, which is not the case
8327 		 * yet.
8328 		 */
8329 		rq->rt.rt_runtime = global_rt_runtime();
8330 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8331 #endif
8332 #ifdef CONFIG_SMP
8333 		rq->sd = NULL;
8334 		rq->rd = NULL;
8335 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
8336 		rq->balance_callback = &balance_push_callback;
8337 		rq->active_balance = 0;
8338 		rq->next_balance = jiffies;
8339 		rq->push_cpu = 0;
8340 		rq->cpu = i;
8341 		rq->online = 0;
8342 		rq->idle_stamp = 0;
8343 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8344 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8345 
8346 		INIT_LIST_HEAD(&rq->cfs_tasks);
8347 
8348 		rq_attach_root(rq, &def_root_domain);
8349 #ifdef CONFIG_NO_HZ_COMMON
8350 		rq->last_blocked_load_update_tick = jiffies;
8351 		atomic_set(&rq->nohz_flags, 0);
8352 
8353 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8354 #endif
8355 #ifdef CONFIG_HOTPLUG_CPU
8356 		rcuwait_init(&rq->hotplug_wait);
8357 #endif
8358 #endif /* CONFIG_SMP */
8359 		hrtick_rq_init(rq);
8360 		atomic_set(&rq->nr_iowait, 0);
8361 		fair_server_init(rq);
8362 
8363 #ifdef CONFIG_SCHED_CORE
8364 		rq->core = rq;
8365 		rq->core_pick = NULL;
8366 		rq->core_enabled = 0;
8367 		rq->core_tree = RB_ROOT;
8368 		rq->core_forceidle_count = 0;
8369 		rq->core_forceidle_occupation = 0;
8370 		rq->core_forceidle_start = 0;
8371 
8372 		rq->core_cookie = 0UL;
8373 #endif
8374 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
8375 	}
8376 
8377 	set_load_weight(&init_task, false);
8378 
8379 	/*
8380 	 * The boot idle thread does lazy MMU switching as well:
8381 	 */
8382 	mmgrab_lazy_tlb(&init_mm);
8383 	enter_lazy_tlb(&init_mm, current);
8384 
8385 	/*
8386 	 * The idle task doesn't need the kthread struct to function, but it
8387 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8388 	 * if we want to avoid special-casing it in code that deals with per-CPU
8389 	 * kthreads.
8390 	 */
8391 	WARN_ON(!set_kthread_struct(current));
8392 
8393 	/*
8394 	 * Make us the idle thread. Technically, schedule() should not be
8395 	 * called from this thread, however somewhere below it might be,
8396 	 * but because we are the idle thread, we just pick up running again
8397 	 * when this runqueue becomes "idle".
8398 	 */
8399 	init_idle(current, smp_processor_id());
8400 
8401 	calc_load_update = jiffies + LOAD_FREQ;
8402 
8403 #ifdef CONFIG_SMP
8404 	idle_thread_set_boot_cpu();
8405 	balance_push_set(smp_processor_id(), false);
8406 #endif
8407 	init_sched_fair_class();
8408 
8409 	psi_init();
8410 
8411 	init_uclamp();
8412 
8413 	preempt_dynamic_init();
8414 
8415 	scheduler_running = 1;
8416 }
8417 
8418 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8419 
8420 void __might_sleep(const char *file, int line)
8421 {
8422 	unsigned int state = get_current_state();
8423 	/*
8424 	 * Blocking primitives will set (and therefore destroy) current->state,
8425 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8426 	 * otherwise we will destroy state.
8427 	 */
8428 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8429 			"do not call blocking ops when !TASK_RUNNING; "
8430 			"state=%x set at [<%p>] %pS\n", state,
8431 			(void *)current->task_state_change,
8432 			(void *)current->task_state_change);
8433 
8434 	__might_resched(file, line, 0);
8435 }
8436 EXPORT_SYMBOL(__might_sleep);
8437 
8438 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
8439 {
8440 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
8441 		return;
8442 
8443 	if (preempt_count() == preempt_offset)
8444 		return;
8445 
8446 	pr_err("Preemption disabled at:");
8447 	print_ip_sym(KERN_ERR, ip);
8448 }
8449 
8450 static inline bool resched_offsets_ok(unsigned int offsets)
8451 {
8452 	unsigned int nested = preempt_count();
8453 
8454 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
8455 
8456 	return nested == offsets;
8457 }
8458 
8459 void __might_resched(const char *file, int line, unsigned int offsets)
8460 {
8461 	/* Ratelimiting timestamp: */
8462 	static unsigned long prev_jiffy;
8463 
8464 	unsigned long preempt_disable_ip;
8465 
8466 	/* WARN_ON_ONCE() by default, no rate limit required: */
8467 	rcu_sleep_check();
8468 
8469 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
8470 	     !is_idle_task(current) && !current->non_block_count) ||
8471 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8472 	    oops_in_progress)
8473 		return;
8474 
8475 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8476 		return;
8477 	prev_jiffy = jiffies;
8478 
8479 	/* Save this before calling printk(), since that will clobber it: */
8480 	preempt_disable_ip = get_preempt_disable_ip(current);
8481 
8482 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
8483 	       file, line);
8484 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8485 	       in_atomic(), irqs_disabled(), current->non_block_count,
8486 	       current->pid, current->comm);
8487 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
8488 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
8489 
8490 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
8491 		pr_err("RCU nest depth: %d, expected: %u\n",
8492 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8493 	}
8494 
8495 	if (task_stack_end_corrupted(current))
8496 		pr_emerg("Thread overran stack, or stack corrupted\n");
8497 
8498 	debug_show_held_locks(current);
8499 	if (irqs_disabled())
8500 		print_irqtrace_events(current);
8501 
8502 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
8503 				 preempt_disable_ip);
8504 
8505 	dump_stack();
8506 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8507 }
8508 EXPORT_SYMBOL(__might_resched);
8509 
8510 void __cant_sleep(const char *file, int line, int preempt_offset)
8511 {
8512 	static unsigned long prev_jiffy;
8513 
8514 	if (irqs_disabled())
8515 		return;
8516 
8517 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8518 		return;
8519 
8520 	if (preempt_count() > preempt_offset)
8521 		return;
8522 
8523 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8524 		return;
8525 	prev_jiffy = jiffies;
8526 
8527 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8528 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8529 			in_atomic(), irqs_disabled(),
8530 			current->pid, current->comm);
8531 
8532 	debug_show_held_locks(current);
8533 	dump_stack();
8534 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8535 }
8536 EXPORT_SYMBOL_GPL(__cant_sleep);
8537 
8538 #ifdef CONFIG_SMP
8539 void __cant_migrate(const char *file, int line)
8540 {
8541 	static unsigned long prev_jiffy;
8542 
8543 	if (irqs_disabled())
8544 		return;
8545 
8546 	if (is_migration_disabled(current))
8547 		return;
8548 
8549 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8550 		return;
8551 
8552 	if (preempt_count() > 0)
8553 		return;
8554 
8555 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8556 		return;
8557 	prev_jiffy = jiffies;
8558 
8559 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8560 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8561 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8562 	       current->pid, current->comm);
8563 
8564 	debug_show_held_locks(current);
8565 	dump_stack();
8566 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8567 }
8568 EXPORT_SYMBOL_GPL(__cant_migrate);
8569 #endif
8570 #endif
8571 
8572 #ifdef CONFIG_MAGIC_SYSRQ
8573 void normalize_rt_tasks(void)
8574 {
8575 	struct task_struct *g, *p;
8576 	struct sched_attr attr = {
8577 		.sched_policy = SCHED_NORMAL,
8578 	};
8579 
8580 	read_lock(&tasklist_lock);
8581 	for_each_process_thread(g, p) {
8582 		/*
8583 		 * Only normalize user tasks:
8584 		 */
8585 		if (p->flags & PF_KTHREAD)
8586 			continue;
8587 
8588 		p->se.exec_start = 0;
8589 		schedstat_set(p->stats.wait_start,  0);
8590 		schedstat_set(p->stats.sleep_start, 0);
8591 		schedstat_set(p->stats.block_start, 0);
8592 
8593 		if (!rt_or_dl_task(p)) {
8594 			/*
8595 			 * Renice negative nice level userspace
8596 			 * tasks back to 0:
8597 			 */
8598 			if (task_nice(p) < 0)
8599 				set_user_nice(p, 0);
8600 			continue;
8601 		}
8602 
8603 		__sched_setscheduler(p, &attr, false, false);
8604 	}
8605 	read_unlock(&tasklist_lock);
8606 }
8607 
8608 #endif /* CONFIG_MAGIC_SYSRQ */
8609 
8610 #if defined(CONFIG_KGDB_KDB)
8611 /*
8612  * These functions are only useful for KDB.
8613  *
8614  * They can only be called when the whole system has been
8615  * stopped - every CPU needs to be quiescent, and no scheduling
8616  * activity can take place. Using them for anything else would
8617  * be a serious bug, and as a result, they aren't even visible
8618  * under any other configuration.
8619  */
8620 
8621 /**
8622  * curr_task - return the current task for a given CPU.
8623  * @cpu: the processor in question.
8624  *
8625  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8626  *
8627  * Return: The current task for @cpu.
8628  */
8629 struct task_struct *curr_task(int cpu)
8630 {
8631 	return cpu_curr(cpu);
8632 }
8633 
8634 #endif /* defined(CONFIG_KGDB_KDB) */
8635 
8636 #ifdef CONFIG_CGROUP_SCHED
8637 /* task_group_lock serializes the addition/removal of task groups */
8638 static DEFINE_SPINLOCK(task_group_lock);
8639 
8640 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8641 					    struct task_group *parent)
8642 {
8643 #ifdef CONFIG_UCLAMP_TASK_GROUP
8644 	enum uclamp_id clamp_id;
8645 
8646 	for_each_clamp_id(clamp_id) {
8647 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8648 			      uclamp_none(clamp_id), false);
8649 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8650 	}
8651 #endif
8652 }
8653 
8654 static void sched_free_group(struct task_group *tg)
8655 {
8656 	free_fair_sched_group(tg);
8657 	free_rt_sched_group(tg);
8658 	autogroup_free(tg);
8659 	kmem_cache_free(task_group_cache, tg);
8660 }
8661 
8662 static void sched_free_group_rcu(struct rcu_head *rcu)
8663 {
8664 	sched_free_group(container_of(rcu, struct task_group, rcu));
8665 }
8666 
8667 static void sched_unregister_group(struct task_group *tg)
8668 {
8669 	unregister_fair_sched_group(tg);
8670 	unregister_rt_sched_group(tg);
8671 	/*
8672 	 * We have to wait for yet another RCU grace period to expire, as
8673 	 * print_cfs_stats() might run concurrently.
8674 	 */
8675 	call_rcu(&tg->rcu, sched_free_group_rcu);
8676 }
8677 
8678 /* allocate runqueue etc for a new task group */
8679 struct task_group *sched_create_group(struct task_group *parent)
8680 {
8681 	struct task_group *tg;
8682 
8683 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8684 	if (!tg)
8685 		return ERR_PTR(-ENOMEM);
8686 
8687 	if (!alloc_fair_sched_group(tg, parent))
8688 		goto err;
8689 
8690 	if (!alloc_rt_sched_group(tg, parent))
8691 		goto err;
8692 
8693 	alloc_uclamp_sched_group(tg, parent);
8694 
8695 	return tg;
8696 
8697 err:
8698 	sched_free_group(tg);
8699 	return ERR_PTR(-ENOMEM);
8700 }
8701 
8702 void sched_online_group(struct task_group *tg, struct task_group *parent)
8703 {
8704 	unsigned long flags;
8705 
8706 	spin_lock_irqsave(&task_group_lock, flags);
8707 	list_add_rcu(&tg->list, &task_groups);
8708 
8709 	/* Root should already exist: */
8710 	WARN_ON(!parent);
8711 
8712 	tg->parent = parent;
8713 	INIT_LIST_HEAD(&tg->children);
8714 	list_add_rcu(&tg->siblings, &parent->children);
8715 	spin_unlock_irqrestore(&task_group_lock, flags);
8716 
8717 	online_fair_sched_group(tg);
8718 }
8719 
8720 /* RCU callback to free various structures associated with a task group */
8721 static void sched_unregister_group_rcu(struct rcu_head *rhp)
8722 {
8723 	/* Now it should be safe to free those cfs_rqs: */
8724 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
8725 }
8726 
8727 void sched_destroy_group(struct task_group *tg)
8728 {
8729 	/* Wait for possible concurrent references to cfs_rqs complete: */
8730 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
8731 }
8732 
8733 void sched_release_group(struct task_group *tg)
8734 {
8735 	unsigned long flags;
8736 
8737 	/*
8738 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
8739 	 * sched_cfs_period_timer()).
8740 	 *
8741 	 * For this to be effective, we have to wait for all pending users of
8742 	 * this task group to leave their RCU critical section to ensure no new
8743 	 * user will see our dying task group any more. Specifically ensure
8744 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
8745 	 *
8746 	 * We therefore defer calling unregister_fair_sched_group() to
8747 	 * sched_unregister_group() which is guarantied to get called only after the
8748 	 * current RCU grace period has expired.
8749 	 */
8750 	spin_lock_irqsave(&task_group_lock, flags);
8751 	list_del_rcu(&tg->list);
8752 	list_del_rcu(&tg->siblings);
8753 	spin_unlock_irqrestore(&task_group_lock, flags);
8754 }
8755 
8756 static struct task_group *sched_get_task_group(struct task_struct *tsk)
8757 {
8758 	struct task_group *tg;
8759 
8760 	/*
8761 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
8762 	 * which is pointless here. Thus, we pass "true" to task_css_check()
8763 	 * to prevent lockdep warnings.
8764 	 */
8765 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8766 			  struct task_group, css);
8767 	tg = autogroup_task_group(tsk, tg);
8768 
8769 	return tg;
8770 }
8771 
8772 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
8773 {
8774 	tsk->sched_task_group = group;
8775 
8776 #ifdef CONFIG_FAIR_GROUP_SCHED
8777 	if (tsk->sched_class->task_change_group)
8778 		tsk->sched_class->task_change_group(tsk);
8779 	else
8780 #endif
8781 		set_task_rq(tsk, task_cpu(tsk));
8782 }
8783 
8784 /*
8785  * Change task's runqueue when it moves between groups.
8786  *
8787  * The caller of this function should have put the task in its new group by
8788  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8789  * its new group.
8790  */
8791 void sched_move_task(struct task_struct *tsk)
8792 {
8793 	int queued, running, queue_flags =
8794 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8795 	struct task_group *group;
8796 	struct rq *rq;
8797 
8798 	CLASS(task_rq_lock, rq_guard)(tsk);
8799 	rq = rq_guard.rq;
8800 
8801 	/*
8802 	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
8803 	 * group changes.
8804 	 */
8805 	group = sched_get_task_group(tsk);
8806 	if (group == tsk->sched_task_group)
8807 		return;
8808 
8809 	update_rq_clock(rq);
8810 
8811 	running = task_current(rq, tsk);
8812 	queued = task_on_rq_queued(tsk);
8813 
8814 	if (queued)
8815 		dequeue_task(rq, tsk, queue_flags);
8816 	if (running)
8817 		put_prev_task(rq, tsk);
8818 
8819 	sched_change_group(tsk, group);
8820 
8821 	if (queued)
8822 		enqueue_task(rq, tsk, queue_flags);
8823 	if (running) {
8824 		set_next_task(rq, tsk);
8825 		/*
8826 		 * After changing group, the running task may have joined a
8827 		 * throttled one but it's still the running task. Trigger a
8828 		 * resched to make sure that task can still run.
8829 		 */
8830 		resched_curr(rq);
8831 	}
8832 }
8833 
8834 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8835 {
8836 	return css ? container_of(css, struct task_group, css) : NULL;
8837 }
8838 
8839 static struct cgroup_subsys_state *
8840 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8841 {
8842 	struct task_group *parent = css_tg(parent_css);
8843 	struct task_group *tg;
8844 
8845 	if (!parent) {
8846 		/* This is early initialization for the top cgroup */
8847 		return &root_task_group.css;
8848 	}
8849 
8850 	tg = sched_create_group(parent);
8851 	if (IS_ERR(tg))
8852 		return ERR_PTR(-ENOMEM);
8853 
8854 	return &tg->css;
8855 }
8856 
8857 /* Expose task group only after completing cgroup initialization */
8858 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8859 {
8860 	struct task_group *tg = css_tg(css);
8861 	struct task_group *parent = css_tg(css->parent);
8862 
8863 	if (parent)
8864 		sched_online_group(tg, parent);
8865 
8866 #ifdef CONFIG_UCLAMP_TASK_GROUP
8867 	/* Propagate the effective uclamp value for the new group */
8868 	guard(mutex)(&uclamp_mutex);
8869 	guard(rcu)();
8870 	cpu_util_update_eff(css);
8871 #endif
8872 
8873 	return 0;
8874 }
8875 
8876 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8877 {
8878 	struct task_group *tg = css_tg(css);
8879 
8880 	sched_release_group(tg);
8881 }
8882 
8883 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8884 {
8885 	struct task_group *tg = css_tg(css);
8886 
8887 	/*
8888 	 * Relies on the RCU grace period between css_released() and this.
8889 	 */
8890 	sched_unregister_group(tg);
8891 }
8892 
8893 #ifdef CONFIG_RT_GROUP_SCHED
8894 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8895 {
8896 	struct task_struct *task;
8897 	struct cgroup_subsys_state *css;
8898 
8899 	cgroup_taskset_for_each(task, css, tset) {
8900 		if (!sched_rt_can_attach(css_tg(css), task))
8901 			return -EINVAL;
8902 	}
8903 	return 0;
8904 }
8905 #endif
8906 
8907 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8908 {
8909 	struct task_struct *task;
8910 	struct cgroup_subsys_state *css;
8911 
8912 	cgroup_taskset_for_each(task, css, tset)
8913 		sched_move_task(task);
8914 }
8915 
8916 #ifdef CONFIG_UCLAMP_TASK_GROUP
8917 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8918 {
8919 	struct cgroup_subsys_state *top_css = css;
8920 	struct uclamp_se *uc_parent = NULL;
8921 	struct uclamp_se *uc_se = NULL;
8922 	unsigned int eff[UCLAMP_CNT];
8923 	enum uclamp_id clamp_id;
8924 	unsigned int clamps;
8925 
8926 	lockdep_assert_held(&uclamp_mutex);
8927 	SCHED_WARN_ON(!rcu_read_lock_held());
8928 
8929 	css_for_each_descendant_pre(css, top_css) {
8930 		uc_parent = css_tg(css)->parent
8931 			? css_tg(css)->parent->uclamp : NULL;
8932 
8933 		for_each_clamp_id(clamp_id) {
8934 			/* Assume effective clamps matches requested clamps */
8935 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8936 			/* Cap effective clamps with parent's effective clamps */
8937 			if (uc_parent &&
8938 			    eff[clamp_id] > uc_parent[clamp_id].value) {
8939 				eff[clamp_id] = uc_parent[clamp_id].value;
8940 			}
8941 		}
8942 		/* Ensure protection is always capped by limit */
8943 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8944 
8945 		/* Propagate most restrictive effective clamps */
8946 		clamps = 0x0;
8947 		uc_se = css_tg(css)->uclamp;
8948 		for_each_clamp_id(clamp_id) {
8949 			if (eff[clamp_id] == uc_se[clamp_id].value)
8950 				continue;
8951 			uc_se[clamp_id].value = eff[clamp_id];
8952 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8953 			clamps |= (0x1 << clamp_id);
8954 		}
8955 		if (!clamps) {
8956 			css = css_rightmost_descendant(css);
8957 			continue;
8958 		}
8959 
8960 		/* Immediately update descendants RUNNABLE tasks */
8961 		uclamp_update_active_tasks(css);
8962 	}
8963 }
8964 
8965 /*
8966  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8967  * C expression. Since there is no way to convert a macro argument (N) into a
8968  * character constant, use two levels of macros.
8969  */
8970 #define _POW10(exp) ((unsigned int)1e##exp)
8971 #define POW10(exp) _POW10(exp)
8972 
8973 struct uclamp_request {
8974 #define UCLAMP_PERCENT_SHIFT	2
8975 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
8976 	s64 percent;
8977 	u64 util;
8978 	int ret;
8979 };
8980 
8981 static inline struct uclamp_request
8982 capacity_from_percent(char *buf)
8983 {
8984 	struct uclamp_request req = {
8985 		.percent = UCLAMP_PERCENT_SCALE,
8986 		.util = SCHED_CAPACITY_SCALE,
8987 		.ret = 0,
8988 	};
8989 
8990 	buf = strim(buf);
8991 	if (strcmp(buf, "max")) {
8992 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8993 					     &req.percent);
8994 		if (req.ret)
8995 			return req;
8996 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
8997 			req.ret = -ERANGE;
8998 			return req;
8999 		}
9000 
9001 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
9002 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9003 	}
9004 
9005 	return req;
9006 }
9007 
9008 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9009 				size_t nbytes, loff_t off,
9010 				enum uclamp_id clamp_id)
9011 {
9012 	struct uclamp_request req;
9013 	struct task_group *tg;
9014 
9015 	req = capacity_from_percent(buf);
9016 	if (req.ret)
9017 		return req.ret;
9018 
9019 	static_branch_enable(&sched_uclamp_used);
9020 
9021 	guard(mutex)(&uclamp_mutex);
9022 	guard(rcu)();
9023 
9024 	tg = css_tg(of_css(of));
9025 	if (tg->uclamp_req[clamp_id].value != req.util)
9026 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9027 
9028 	/*
9029 	 * Because of not recoverable conversion rounding we keep track of the
9030 	 * exact requested value
9031 	 */
9032 	tg->uclamp_pct[clamp_id] = req.percent;
9033 
9034 	/* Update effective clamps to track the most restrictive value */
9035 	cpu_util_update_eff(of_css(of));
9036 
9037 	return nbytes;
9038 }
9039 
9040 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9041 				    char *buf, size_t nbytes,
9042 				    loff_t off)
9043 {
9044 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9045 }
9046 
9047 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9048 				    char *buf, size_t nbytes,
9049 				    loff_t off)
9050 {
9051 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9052 }
9053 
9054 static inline void cpu_uclamp_print(struct seq_file *sf,
9055 				    enum uclamp_id clamp_id)
9056 {
9057 	struct task_group *tg;
9058 	u64 util_clamp;
9059 	u64 percent;
9060 	u32 rem;
9061 
9062 	scoped_guard (rcu) {
9063 		tg = css_tg(seq_css(sf));
9064 		util_clamp = tg->uclamp_req[clamp_id].value;
9065 	}
9066 
9067 	if (util_clamp == SCHED_CAPACITY_SCALE) {
9068 		seq_puts(sf, "max\n");
9069 		return;
9070 	}
9071 
9072 	percent = tg->uclamp_pct[clamp_id];
9073 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9074 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9075 }
9076 
9077 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9078 {
9079 	cpu_uclamp_print(sf, UCLAMP_MIN);
9080 	return 0;
9081 }
9082 
9083 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9084 {
9085 	cpu_uclamp_print(sf, UCLAMP_MAX);
9086 	return 0;
9087 }
9088 #endif /* CONFIG_UCLAMP_TASK_GROUP */
9089 
9090 #ifdef CONFIG_FAIR_GROUP_SCHED
9091 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9092 				struct cftype *cftype, u64 shareval)
9093 {
9094 	if (shareval > scale_load_down(ULONG_MAX))
9095 		shareval = MAX_SHARES;
9096 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
9097 }
9098 
9099 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9100 			       struct cftype *cft)
9101 {
9102 	struct task_group *tg = css_tg(css);
9103 
9104 	return (u64) scale_load_down(tg->shares);
9105 }
9106 
9107 #ifdef CONFIG_CFS_BANDWIDTH
9108 static DEFINE_MUTEX(cfs_constraints_mutex);
9109 
9110 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9111 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9112 /* More than 203 days if BW_SHIFT equals 20. */
9113 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9114 
9115 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9116 
9117 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9118 				u64 burst)
9119 {
9120 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
9121 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9122 
9123 	if (tg == &root_task_group)
9124 		return -EINVAL;
9125 
9126 	/*
9127 	 * Ensure we have at some amount of bandwidth every period.  This is
9128 	 * to prevent reaching a state of large arrears when throttled via
9129 	 * entity_tick() resulting in prolonged exit starvation.
9130 	 */
9131 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9132 		return -EINVAL;
9133 
9134 	/*
9135 	 * Likewise, bound things on the other side by preventing insane quota
9136 	 * periods.  This also allows us to normalize in computing quota
9137 	 * feasibility.
9138 	 */
9139 	if (period > max_cfs_quota_period)
9140 		return -EINVAL;
9141 
9142 	/*
9143 	 * Bound quota to defend quota against overflow during bandwidth shift.
9144 	 */
9145 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9146 		return -EINVAL;
9147 
9148 	if (quota != RUNTIME_INF && (burst > quota ||
9149 				     burst + quota > max_cfs_runtime))
9150 		return -EINVAL;
9151 
9152 	/*
9153 	 * Prevent race between setting of cfs_rq->runtime_enabled and
9154 	 * unthrottle_offline_cfs_rqs().
9155 	 */
9156 	guard(cpus_read_lock)();
9157 	guard(mutex)(&cfs_constraints_mutex);
9158 
9159 	ret = __cfs_schedulable(tg, period, quota);
9160 	if (ret)
9161 		return ret;
9162 
9163 	runtime_enabled = quota != RUNTIME_INF;
9164 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9165 	/*
9166 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9167 	 * before making related changes, and on->off must occur afterwards
9168 	 */
9169 	if (runtime_enabled && !runtime_was_enabled)
9170 		cfs_bandwidth_usage_inc();
9171 
9172 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
9173 		cfs_b->period = ns_to_ktime(period);
9174 		cfs_b->quota = quota;
9175 		cfs_b->burst = burst;
9176 
9177 		__refill_cfs_bandwidth_runtime(cfs_b);
9178 
9179 		/*
9180 		 * Restart the period timer (if active) to handle new
9181 		 * period expiry:
9182 		 */
9183 		if (runtime_enabled)
9184 			start_cfs_bandwidth(cfs_b);
9185 	}
9186 
9187 	for_each_online_cpu(i) {
9188 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9189 		struct rq *rq = cfs_rq->rq;
9190 
9191 		guard(rq_lock_irq)(rq);
9192 		cfs_rq->runtime_enabled = runtime_enabled;
9193 		cfs_rq->runtime_remaining = 0;
9194 
9195 		if (cfs_rq->throttled)
9196 			unthrottle_cfs_rq(cfs_rq);
9197 	}
9198 
9199 	if (runtime_was_enabled && !runtime_enabled)
9200 		cfs_bandwidth_usage_dec();
9201 
9202 	return 0;
9203 }
9204 
9205 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9206 {
9207 	u64 quota, period, burst;
9208 
9209 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9210 	burst = tg->cfs_bandwidth.burst;
9211 	if (cfs_quota_us < 0)
9212 		quota = RUNTIME_INF;
9213 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9214 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9215 	else
9216 		return -EINVAL;
9217 
9218 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9219 }
9220 
9221 static long tg_get_cfs_quota(struct task_group *tg)
9222 {
9223 	u64 quota_us;
9224 
9225 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9226 		return -1;
9227 
9228 	quota_us = tg->cfs_bandwidth.quota;
9229 	do_div(quota_us, NSEC_PER_USEC);
9230 
9231 	return quota_us;
9232 }
9233 
9234 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9235 {
9236 	u64 quota, period, burst;
9237 
9238 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9239 		return -EINVAL;
9240 
9241 	period = (u64)cfs_period_us * NSEC_PER_USEC;
9242 	quota = tg->cfs_bandwidth.quota;
9243 	burst = tg->cfs_bandwidth.burst;
9244 
9245 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9246 }
9247 
9248 static long tg_get_cfs_period(struct task_group *tg)
9249 {
9250 	u64 cfs_period_us;
9251 
9252 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9253 	do_div(cfs_period_us, NSEC_PER_USEC);
9254 
9255 	return cfs_period_us;
9256 }
9257 
9258 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
9259 {
9260 	u64 quota, period, burst;
9261 
9262 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
9263 		return -EINVAL;
9264 
9265 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
9266 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9267 	quota = tg->cfs_bandwidth.quota;
9268 
9269 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9270 }
9271 
9272 static long tg_get_cfs_burst(struct task_group *tg)
9273 {
9274 	u64 burst_us;
9275 
9276 	burst_us = tg->cfs_bandwidth.burst;
9277 	do_div(burst_us, NSEC_PER_USEC);
9278 
9279 	return burst_us;
9280 }
9281 
9282 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9283 				  struct cftype *cft)
9284 {
9285 	return tg_get_cfs_quota(css_tg(css));
9286 }
9287 
9288 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9289 				   struct cftype *cftype, s64 cfs_quota_us)
9290 {
9291 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9292 }
9293 
9294 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9295 				   struct cftype *cft)
9296 {
9297 	return tg_get_cfs_period(css_tg(css));
9298 }
9299 
9300 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9301 				    struct cftype *cftype, u64 cfs_period_us)
9302 {
9303 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
9304 }
9305 
9306 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
9307 				  struct cftype *cft)
9308 {
9309 	return tg_get_cfs_burst(css_tg(css));
9310 }
9311 
9312 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
9313 				   struct cftype *cftype, u64 cfs_burst_us)
9314 {
9315 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
9316 }
9317 
9318 struct cfs_schedulable_data {
9319 	struct task_group *tg;
9320 	u64 period, quota;
9321 };
9322 
9323 /*
9324  * normalize group quota/period to be quota/max_period
9325  * note: units are usecs
9326  */
9327 static u64 normalize_cfs_quota(struct task_group *tg,
9328 			       struct cfs_schedulable_data *d)
9329 {
9330 	u64 quota, period;
9331 
9332 	if (tg == d->tg) {
9333 		period = d->period;
9334 		quota = d->quota;
9335 	} else {
9336 		period = tg_get_cfs_period(tg);
9337 		quota = tg_get_cfs_quota(tg);
9338 	}
9339 
9340 	/* note: these should typically be equivalent */
9341 	if (quota == RUNTIME_INF || quota == -1)
9342 		return RUNTIME_INF;
9343 
9344 	return to_ratio(period, quota);
9345 }
9346 
9347 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9348 {
9349 	struct cfs_schedulable_data *d = data;
9350 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9351 	s64 quota = 0, parent_quota = -1;
9352 
9353 	if (!tg->parent) {
9354 		quota = RUNTIME_INF;
9355 	} else {
9356 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9357 
9358 		quota = normalize_cfs_quota(tg, d);
9359 		parent_quota = parent_b->hierarchical_quota;
9360 
9361 		/*
9362 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9363 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
9364 		 * inherit when no limit is set. In both cases this is used
9365 		 * by the scheduler to determine if a given CFS task has a
9366 		 * bandwidth constraint at some higher level.
9367 		 */
9368 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9369 			if (quota == RUNTIME_INF)
9370 				quota = parent_quota;
9371 			else if (parent_quota != RUNTIME_INF)
9372 				quota = min(quota, parent_quota);
9373 		} else {
9374 			if (quota == RUNTIME_INF)
9375 				quota = parent_quota;
9376 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9377 				return -EINVAL;
9378 		}
9379 	}
9380 	cfs_b->hierarchical_quota = quota;
9381 
9382 	return 0;
9383 }
9384 
9385 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9386 {
9387 	struct cfs_schedulable_data data = {
9388 		.tg = tg,
9389 		.period = period,
9390 		.quota = quota,
9391 	};
9392 
9393 	if (quota != RUNTIME_INF) {
9394 		do_div(data.period, NSEC_PER_USEC);
9395 		do_div(data.quota, NSEC_PER_USEC);
9396 	}
9397 
9398 	guard(rcu)();
9399 	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9400 }
9401 
9402 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9403 {
9404 	struct task_group *tg = css_tg(seq_css(sf));
9405 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9406 
9407 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9408 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9409 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9410 
9411 	if (schedstat_enabled() && tg != &root_task_group) {
9412 		struct sched_statistics *stats;
9413 		u64 ws = 0;
9414 		int i;
9415 
9416 		for_each_possible_cpu(i) {
9417 			stats = __schedstats_from_se(tg->se[i]);
9418 			ws += schedstat_val(stats->wait_sum);
9419 		}
9420 
9421 		seq_printf(sf, "wait_sum %llu\n", ws);
9422 	}
9423 
9424 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
9425 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
9426 
9427 	return 0;
9428 }
9429 
9430 static u64 throttled_time_self(struct task_group *tg)
9431 {
9432 	int i;
9433 	u64 total = 0;
9434 
9435 	for_each_possible_cpu(i) {
9436 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
9437 	}
9438 
9439 	return total;
9440 }
9441 
9442 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
9443 {
9444 	struct task_group *tg = css_tg(seq_css(sf));
9445 
9446 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
9447 
9448 	return 0;
9449 }
9450 #endif /* CONFIG_CFS_BANDWIDTH */
9451 #endif /* CONFIG_FAIR_GROUP_SCHED */
9452 
9453 #ifdef CONFIG_RT_GROUP_SCHED
9454 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9455 				struct cftype *cft, s64 val)
9456 {
9457 	return sched_group_set_rt_runtime(css_tg(css), val);
9458 }
9459 
9460 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9461 			       struct cftype *cft)
9462 {
9463 	return sched_group_rt_runtime(css_tg(css));
9464 }
9465 
9466 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9467 				    struct cftype *cftype, u64 rt_period_us)
9468 {
9469 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9470 }
9471 
9472 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9473 				   struct cftype *cft)
9474 {
9475 	return sched_group_rt_period(css_tg(css));
9476 }
9477 #endif /* CONFIG_RT_GROUP_SCHED */
9478 
9479 #ifdef CONFIG_FAIR_GROUP_SCHED
9480 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
9481 			       struct cftype *cft)
9482 {
9483 	return css_tg(css)->idle;
9484 }
9485 
9486 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
9487 				struct cftype *cft, s64 idle)
9488 {
9489 	return sched_group_set_idle(css_tg(css), idle);
9490 }
9491 #endif
9492 
9493 static struct cftype cpu_legacy_files[] = {
9494 #ifdef CONFIG_FAIR_GROUP_SCHED
9495 	{
9496 		.name = "shares",
9497 		.read_u64 = cpu_shares_read_u64,
9498 		.write_u64 = cpu_shares_write_u64,
9499 	},
9500 	{
9501 		.name = "idle",
9502 		.read_s64 = cpu_idle_read_s64,
9503 		.write_s64 = cpu_idle_write_s64,
9504 	},
9505 #endif
9506 #ifdef CONFIG_CFS_BANDWIDTH
9507 	{
9508 		.name = "cfs_quota_us",
9509 		.read_s64 = cpu_cfs_quota_read_s64,
9510 		.write_s64 = cpu_cfs_quota_write_s64,
9511 	},
9512 	{
9513 		.name = "cfs_period_us",
9514 		.read_u64 = cpu_cfs_period_read_u64,
9515 		.write_u64 = cpu_cfs_period_write_u64,
9516 	},
9517 	{
9518 		.name = "cfs_burst_us",
9519 		.read_u64 = cpu_cfs_burst_read_u64,
9520 		.write_u64 = cpu_cfs_burst_write_u64,
9521 	},
9522 	{
9523 		.name = "stat",
9524 		.seq_show = cpu_cfs_stat_show,
9525 	},
9526 	{
9527 		.name = "stat.local",
9528 		.seq_show = cpu_cfs_local_stat_show,
9529 	},
9530 #endif
9531 #ifdef CONFIG_RT_GROUP_SCHED
9532 	{
9533 		.name = "rt_runtime_us",
9534 		.read_s64 = cpu_rt_runtime_read,
9535 		.write_s64 = cpu_rt_runtime_write,
9536 	},
9537 	{
9538 		.name = "rt_period_us",
9539 		.read_u64 = cpu_rt_period_read_uint,
9540 		.write_u64 = cpu_rt_period_write_uint,
9541 	},
9542 #endif
9543 #ifdef CONFIG_UCLAMP_TASK_GROUP
9544 	{
9545 		.name = "uclamp.min",
9546 		.flags = CFTYPE_NOT_ON_ROOT,
9547 		.seq_show = cpu_uclamp_min_show,
9548 		.write = cpu_uclamp_min_write,
9549 	},
9550 	{
9551 		.name = "uclamp.max",
9552 		.flags = CFTYPE_NOT_ON_ROOT,
9553 		.seq_show = cpu_uclamp_max_show,
9554 		.write = cpu_uclamp_max_write,
9555 	},
9556 #endif
9557 	{ }	/* Terminate */
9558 };
9559 
9560 static int cpu_extra_stat_show(struct seq_file *sf,
9561 			       struct cgroup_subsys_state *css)
9562 {
9563 #ifdef CONFIG_CFS_BANDWIDTH
9564 	{
9565 		struct task_group *tg = css_tg(css);
9566 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9567 		u64 throttled_usec, burst_usec;
9568 
9569 		throttled_usec = cfs_b->throttled_time;
9570 		do_div(throttled_usec, NSEC_PER_USEC);
9571 		burst_usec = cfs_b->burst_time;
9572 		do_div(burst_usec, NSEC_PER_USEC);
9573 
9574 		seq_printf(sf, "nr_periods %d\n"
9575 			   "nr_throttled %d\n"
9576 			   "throttled_usec %llu\n"
9577 			   "nr_bursts %d\n"
9578 			   "burst_usec %llu\n",
9579 			   cfs_b->nr_periods, cfs_b->nr_throttled,
9580 			   throttled_usec, cfs_b->nr_burst, burst_usec);
9581 	}
9582 #endif
9583 	return 0;
9584 }
9585 
9586 static int cpu_local_stat_show(struct seq_file *sf,
9587 			       struct cgroup_subsys_state *css)
9588 {
9589 #ifdef CONFIG_CFS_BANDWIDTH
9590 	{
9591 		struct task_group *tg = css_tg(css);
9592 		u64 throttled_self_usec;
9593 
9594 		throttled_self_usec = throttled_time_self(tg);
9595 		do_div(throttled_self_usec, NSEC_PER_USEC);
9596 
9597 		seq_printf(sf, "throttled_usec %llu\n",
9598 			   throttled_self_usec);
9599 	}
9600 #endif
9601 	return 0;
9602 }
9603 
9604 #ifdef CONFIG_FAIR_GROUP_SCHED
9605 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9606 			       struct cftype *cft)
9607 {
9608 	struct task_group *tg = css_tg(css);
9609 	u64 weight = scale_load_down(tg->shares);
9610 
9611 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
9612 }
9613 
9614 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9615 				struct cftype *cft, u64 weight)
9616 {
9617 	/*
9618 	 * cgroup weight knobs should use the common MIN, DFL and MAX
9619 	 * values which are 1, 100 and 10000 respectively.  While it loses
9620 	 * a bit of range on both ends, it maps pretty well onto the shares
9621 	 * value used by scheduler and the round-trip conversions preserve
9622 	 * the original value over the entire range.
9623 	 */
9624 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
9625 		return -ERANGE;
9626 
9627 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
9628 
9629 	return sched_group_set_shares(css_tg(css), scale_load(weight));
9630 }
9631 
9632 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9633 				    struct cftype *cft)
9634 {
9635 	unsigned long weight = scale_load_down(css_tg(css)->shares);
9636 	int last_delta = INT_MAX;
9637 	int prio, delta;
9638 
9639 	/* find the closest nice value to the current weight */
9640 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9641 		delta = abs(sched_prio_to_weight[prio] - weight);
9642 		if (delta >= last_delta)
9643 			break;
9644 		last_delta = delta;
9645 	}
9646 
9647 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9648 }
9649 
9650 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9651 				     struct cftype *cft, s64 nice)
9652 {
9653 	unsigned long weight;
9654 	int idx;
9655 
9656 	if (nice < MIN_NICE || nice > MAX_NICE)
9657 		return -ERANGE;
9658 
9659 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9660 	idx = array_index_nospec(idx, 40);
9661 	weight = sched_prio_to_weight[idx];
9662 
9663 	return sched_group_set_shares(css_tg(css), scale_load(weight));
9664 }
9665 #endif
9666 
9667 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9668 						  long period, long quota)
9669 {
9670 	if (quota < 0)
9671 		seq_puts(sf, "max");
9672 	else
9673 		seq_printf(sf, "%ld", quota);
9674 
9675 	seq_printf(sf, " %ld\n", period);
9676 }
9677 
9678 /* caller should put the current value in *@periodp before calling */
9679 static int __maybe_unused cpu_period_quota_parse(char *buf,
9680 						 u64 *periodp, u64 *quotap)
9681 {
9682 	char tok[21];	/* U64_MAX */
9683 
9684 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9685 		return -EINVAL;
9686 
9687 	*periodp *= NSEC_PER_USEC;
9688 
9689 	if (sscanf(tok, "%llu", quotap))
9690 		*quotap *= NSEC_PER_USEC;
9691 	else if (!strcmp(tok, "max"))
9692 		*quotap = RUNTIME_INF;
9693 	else
9694 		return -EINVAL;
9695 
9696 	return 0;
9697 }
9698 
9699 #ifdef CONFIG_CFS_BANDWIDTH
9700 static int cpu_max_show(struct seq_file *sf, void *v)
9701 {
9702 	struct task_group *tg = css_tg(seq_css(sf));
9703 
9704 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9705 	return 0;
9706 }
9707 
9708 static ssize_t cpu_max_write(struct kernfs_open_file *of,
9709 			     char *buf, size_t nbytes, loff_t off)
9710 {
9711 	struct task_group *tg = css_tg(of_css(of));
9712 	u64 period = tg_get_cfs_period(tg);
9713 	u64 burst = tg->cfs_bandwidth.burst;
9714 	u64 quota;
9715 	int ret;
9716 
9717 	ret = cpu_period_quota_parse(buf, &period, &quota);
9718 	if (!ret)
9719 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
9720 	return ret ?: nbytes;
9721 }
9722 #endif
9723 
9724 static struct cftype cpu_files[] = {
9725 #ifdef CONFIG_FAIR_GROUP_SCHED
9726 	{
9727 		.name = "weight",
9728 		.flags = CFTYPE_NOT_ON_ROOT,
9729 		.read_u64 = cpu_weight_read_u64,
9730 		.write_u64 = cpu_weight_write_u64,
9731 	},
9732 	{
9733 		.name = "weight.nice",
9734 		.flags = CFTYPE_NOT_ON_ROOT,
9735 		.read_s64 = cpu_weight_nice_read_s64,
9736 		.write_s64 = cpu_weight_nice_write_s64,
9737 	},
9738 	{
9739 		.name = "idle",
9740 		.flags = CFTYPE_NOT_ON_ROOT,
9741 		.read_s64 = cpu_idle_read_s64,
9742 		.write_s64 = cpu_idle_write_s64,
9743 	},
9744 #endif
9745 #ifdef CONFIG_CFS_BANDWIDTH
9746 	{
9747 		.name = "max",
9748 		.flags = CFTYPE_NOT_ON_ROOT,
9749 		.seq_show = cpu_max_show,
9750 		.write = cpu_max_write,
9751 	},
9752 	{
9753 		.name = "max.burst",
9754 		.flags = CFTYPE_NOT_ON_ROOT,
9755 		.read_u64 = cpu_cfs_burst_read_u64,
9756 		.write_u64 = cpu_cfs_burst_write_u64,
9757 	},
9758 #endif
9759 #ifdef CONFIG_UCLAMP_TASK_GROUP
9760 	{
9761 		.name = "uclamp.min",
9762 		.flags = CFTYPE_NOT_ON_ROOT,
9763 		.seq_show = cpu_uclamp_min_show,
9764 		.write = cpu_uclamp_min_write,
9765 	},
9766 	{
9767 		.name = "uclamp.max",
9768 		.flags = CFTYPE_NOT_ON_ROOT,
9769 		.seq_show = cpu_uclamp_max_show,
9770 		.write = cpu_uclamp_max_write,
9771 	},
9772 #endif
9773 	{ }	/* terminate */
9774 };
9775 
9776 struct cgroup_subsys cpu_cgrp_subsys = {
9777 	.css_alloc	= cpu_cgroup_css_alloc,
9778 	.css_online	= cpu_cgroup_css_online,
9779 	.css_released	= cpu_cgroup_css_released,
9780 	.css_free	= cpu_cgroup_css_free,
9781 	.css_extra_stat_show = cpu_extra_stat_show,
9782 	.css_local_stat_show = cpu_local_stat_show,
9783 #ifdef CONFIG_RT_GROUP_SCHED
9784 	.can_attach	= cpu_cgroup_can_attach,
9785 #endif
9786 	.attach		= cpu_cgroup_attach,
9787 	.legacy_cftypes	= cpu_legacy_files,
9788 	.dfl_cftypes	= cpu_files,
9789 	.early_init	= true,
9790 	.threaded	= true,
9791 };
9792 
9793 #endif	/* CONFIG_CGROUP_SCHED */
9794 
9795 void dump_cpu_task(int cpu)
9796 {
9797 	if (cpu == smp_processor_id() && in_hardirq()) {
9798 		struct pt_regs *regs;
9799 
9800 		regs = get_irq_regs();
9801 		if (regs) {
9802 			show_regs(regs);
9803 			return;
9804 		}
9805 	}
9806 
9807 	if (trigger_single_cpu_backtrace(cpu))
9808 		return;
9809 
9810 	pr_info("Task dump for CPU %d:\n", cpu);
9811 	sched_show_task(cpu_curr(cpu));
9812 }
9813 
9814 /*
9815  * Nice levels are multiplicative, with a gentle 10% change for every
9816  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9817  * nice 1, it will get ~10% less CPU time than another CPU-bound task
9818  * that remained on nice 0.
9819  *
9820  * The "10% effect" is relative and cumulative: from _any_ nice level,
9821  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9822  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9823  * If a task goes up by ~10% and another task goes down by ~10% then
9824  * the relative distance between them is ~25%.)
9825  */
9826 const int sched_prio_to_weight[40] = {
9827  /* -20 */     88761,     71755,     56483,     46273,     36291,
9828  /* -15 */     29154,     23254,     18705,     14949,     11916,
9829  /* -10 */      9548,      7620,      6100,      4904,      3906,
9830  /*  -5 */      3121,      2501,      1991,      1586,      1277,
9831  /*   0 */      1024,       820,       655,       526,       423,
9832  /*   5 */       335,       272,       215,       172,       137,
9833  /*  10 */       110,        87,        70,        56,        45,
9834  /*  15 */        36,        29,        23,        18,        15,
9835 };
9836 
9837 /*
9838  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
9839  *
9840  * In cases where the weight does not change often, we can use the
9841  * pre-calculated inverse to speed up arithmetics by turning divisions
9842  * into multiplications:
9843  */
9844 const u32 sched_prio_to_wmult[40] = {
9845  /* -20 */     48388,     59856,     76040,     92818,    118348,
9846  /* -15 */    147320,    184698,    229616,    287308,    360437,
9847  /* -10 */    449829,    563644,    704093,    875809,   1099582,
9848  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
9849  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
9850  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
9851  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
9852  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9853 };
9854 
9855 void call_trace_sched_update_nr_running(struct rq *rq, int count)
9856 {
9857         trace_sched_update_nr_running_tp(rq, count);
9858 }
9859 
9860 #ifdef CONFIG_SCHED_MM_CID
9861 
9862 /*
9863  * @cid_lock: Guarantee forward-progress of cid allocation.
9864  *
9865  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
9866  * is only used when contention is detected by the lock-free allocation so
9867  * forward progress can be guaranteed.
9868  */
9869 DEFINE_RAW_SPINLOCK(cid_lock);
9870 
9871 /*
9872  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
9873  *
9874  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
9875  * detected, it is set to 1 to ensure that all newly coming allocations are
9876  * serialized by @cid_lock until the allocation which detected contention
9877  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
9878  * of a cid allocation.
9879  */
9880 int use_cid_lock;
9881 
9882 /*
9883  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
9884  * concurrently with respect to the execution of the source runqueue context
9885  * switch.
9886  *
9887  * There is one basic properties we want to guarantee here:
9888  *
9889  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
9890  * used by a task. That would lead to concurrent allocation of the cid and
9891  * userspace corruption.
9892  *
9893  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
9894  * that a pair of loads observe at least one of a pair of stores, which can be
9895  * shown as:
9896  *
9897  *      X = Y = 0
9898  *
9899  *      w[X]=1          w[Y]=1
9900  *      MB              MB
9901  *      r[Y]=y          r[X]=x
9902  *
9903  * Which guarantees that x==0 && y==0 is impossible. But rather than using
9904  * values 0 and 1, this algorithm cares about specific state transitions of the
9905  * runqueue current task (as updated by the scheduler context switch), and the
9906  * per-mm/cpu cid value.
9907  *
9908  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
9909  * task->mm != mm for the rest of the discussion. There are two scheduler state
9910  * transitions on context switch we care about:
9911  *
9912  * (TSA) Store to rq->curr with transition from (N) to (Y)
9913  *
9914  * (TSB) Store to rq->curr with transition from (Y) to (N)
9915  *
9916  * On the remote-clear side, there is one transition we care about:
9917  *
9918  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
9919  *
9920  * There is also a transition to UNSET state which can be performed from all
9921  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
9922  * guarantees that only a single thread will succeed:
9923  *
9924  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
9925  *
9926  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
9927  * when a thread is actively using the cid (property (1)).
9928  *
9929  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
9930  *
9931  * Scenario A) (TSA)+(TMA) (from next task perspective)
9932  *
9933  * CPU0                                      CPU1
9934  *
9935  * Context switch CS-1                       Remote-clear
9936  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
9937  *                                             (implied barrier after cmpxchg)
9938  *   - switch_mm_cid()
9939  *     - memory barrier (see switch_mm_cid()
9940  *       comment explaining how this barrier
9941  *       is combined with other scheduler
9942  *       barriers)
9943  *     - mm_cid_get (next)
9944  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
9945  *
9946  * This Dekker ensures that either task (Y) is observed by the
9947  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
9948  * observed.
9949  *
9950  * If task (Y) store is observed by rcu_dereference(), it means that there is
9951  * still an active task on the cpu. Remote-clear will therefore not transition
9952  * to UNSET, which fulfills property (1).
9953  *
9954  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
9955  * it will move its state to UNSET, which clears the percpu cid perhaps
9956  * uselessly (which is not an issue for correctness). Because task (Y) is not
9957  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
9958  * state to UNSET is done with a cmpxchg expecting that the old state has the
9959  * LAZY flag set, only one thread will successfully UNSET.
9960  *
9961  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
9962  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
9963  * CPU1 will observe task (Y) and do nothing more, which is fine.
9964  *
9965  * What we are effectively preventing with this Dekker is a scenario where
9966  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
9967  * because this would UNSET a cid which is actively used.
9968  */
9969 
9970 void sched_mm_cid_migrate_from(struct task_struct *t)
9971 {
9972 	t->migrate_from_cpu = task_cpu(t);
9973 }
9974 
9975 static
9976 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
9977 					  struct task_struct *t,
9978 					  struct mm_cid *src_pcpu_cid)
9979 {
9980 	struct mm_struct *mm = t->mm;
9981 	struct task_struct *src_task;
9982 	int src_cid, last_mm_cid;
9983 
9984 	if (!mm)
9985 		return -1;
9986 
9987 	last_mm_cid = t->last_mm_cid;
9988 	/*
9989 	 * If the migrated task has no last cid, or if the current
9990 	 * task on src rq uses the cid, it means the source cid does not need
9991 	 * to be moved to the destination cpu.
9992 	 */
9993 	if (last_mm_cid == -1)
9994 		return -1;
9995 	src_cid = READ_ONCE(src_pcpu_cid->cid);
9996 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
9997 		return -1;
9998 
9999 	/*
10000 	 * If we observe an active task using the mm on this rq, it means we
10001 	 * are not the last task to be migrated from this cpu for this mm, so
10002 	 * there is no need to move src_cid to the destination cpu.
10003 	 */
10004 	guard(rcu)();
10005 	src_task = rcu_dereference(src_rq->curr);
10006 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10007 		t->last_mm_cid = -1;
10008 		return -1;
10009 	}
10010 
10011 	return src_cid;
10012 }
10013 
10014 static
10015 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
10016 					      struct task_struct *t,
10017 					      struct mm_cid *src_pcpu_cid,
10018 					      int src_cid)
10019 {
10020 	struct task_struct *src_task;
10021 	struct mm_struct *mm = t->mm;
10022 	int lazy_cid;
10023 
10024 	if (src_cid == -1)
10025 		return -1;
10026 
10027 	/*
10028 	 * Attempt to clear the source cpu cid to move it to the destination
10029 	 * cpu.
10030 	 */
10031 	lazy_cid = mm_cid_set_lazy_put(src_cid);
10032 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
10033 		return -1;
10034 
10035 	/*
10036 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10037 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10038 	 * between store to rq->curr and load of prev and next task's
10039 	 * per-mm/cpu cid.
10040 	 *
10041 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10042 	 * rq->curr->mm_cid_active matches the barrier in
10043 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10044 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10045 	 * load of per-mm/cpu cid.
10046 	 */
10047 
10048 	/*
10049 	 * If we observe an active task using the mm on this rq after setting
10050 	 * the lazy-put flag, this task will be responsible for transitioning
10051 	 * from lazy-put flag set to MM_CID_UNSET.
10052 	 */
10053 	scoped_guard (rcu) {
10054 		src_task = rcu_dereference(src_rq->curr);
10055 		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10056 			/*
10057 			 * We observed an active task for this mm, there is therefore
10058 			 * no point in moving this cid to the destination cpu.
10059 			 */
10060 			t->last_mm_cid = -1;
10061 			return -1;
10062 		}
10063 	}
10064 
10065 	/*
10066 	 * The src_cid is unused, so it can be unset.
10067 	 */
10068 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10069 		return -1;
10070 	return src_cid;
10071 }
10072 
10073 /*
10074  * Migration to dst cpu. Called with dst_rq lock held.
10075  * Interrupts are disabled, which keeps the window of cid ownership without the
10076  * source rq lock held small.
10077  */
10078 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10079 {
10080 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10081 	struct mm_struct *mm = t->mm;
10082 	int src_cid, dst_cid, src_cpu;
10083 	struct rq *src_rq;
10084 
10085 	lockdep_assert_rq_held(dst_rq);
10086 
10087 	if (!mm)
10088 		return;
10089 	src_cpu = t->migrate_from_cpu;
10090 	if (src_cpu == -1) {
10091 		t->last_mm_cid = -1;
10092 		return;
10093 	}
10094 	/*
10095 	 * Move the src cid if the dst cid is unset. This keeps id
10096 	 * allocation closest to 0 in cases where few threads migrate around
10097 	 * many CPUs.
10098 	 *
10099 	 * If destination cid is already set, we may have to just clear
10100 	 * the src cid to ensure compactness in frequent migrations
10101 	 * scenarios.
10102 	 *
10103 	 * It is not useful to clear the src cid when the number of threads is
10104 	 * greater or equal to the number of allowed CPUs, because user-space
10105 	 * can expect that the number of allowed cids can reach the number of
10106 	 * allowed CPUs.
10107 	 */
10108 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10109 	dst_cid = READ_ONCE(dst_pcpu_cid->cid);
10110 	if (!mm_cid_is_unset(dst_cid) &&
10111 	    atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
10112 		return;
10113 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10114 	src_rq = cpu_rq(src_cpu);
10115 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10116 	if (src_cid == -1)
10117 		return;
10118 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10119 							    src_cid);
10120 	if (src_cid == -1)
10121 		return;
10122 	if (!mm_cid_is_unset(dst_cid)) {
10123 		__mm_cid_put(mm, src_cid);
10124 		return;
10125 	}
10126 	/* Move src_cid to dst cpu. */
10127 	mm_cid_snapshot_time(dst_rq, mm);
10128 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10129 }
10130 
10131 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10132 				      int cpu)
10133 {
10134 	struct rq *rq = cpu_rq(cpu);
10135 	struct task_struct *t;
10136 	int cid, lazy_cid;
10137 
10138 	cid = READ_ONCE(pcpu_cid->cid);
10139 	if (!mm_cid_is_valid(cid))
10140 		return;
10141 
10142 	/*
10143 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
10144 	 * there happens to be other tasks left on the source cpu using this
10145 	 * mm, the next task using this mm will reallocate its cid on context
10146 	 * switch.
10147 	 */
10148 	lazy_cid = mm_cid_set_lazy_put(cid);
10149 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10150 		return;
10151 
10152 	/*
10153 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10154 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10155 	 * between store to rq->curr and load of prev and next task's
10156 	 * per-mm/cpu cid.
10157 	 *
10158 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10159 	 * rq->curr->mm_cid_active matches the barrier in
10160 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10161 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10162 	 * load of per-mm/cpu cid.
10163 	 */
10164 
10165 	/*
10166 	 * If we observe an active task using the mm on this rq after setting
10167 	 * the lazy-put flag, that task will be responsible for transitioning
10168 	 * from lazy-put flag set to MM_CID_UNSET.
10169 	 */
10170 	scoped_guard (rcu) {
10171 		t = rcu_dereference(rq->curr);
10172 		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10173 			return;
10174 	}
10175 
10176 	/*
10177 	 * The cid is unused, so it can be unset.
10178 	 * Disable interrupts to keep the window of cid ownership without rq
10179 	 * lock small.
10180 	 */
10181 	scoped_guard (irqsave) {
10182 		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10183 			__mm_cid_put(mm, cid);
10184 	}
10185 }
10186 
10187 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10188 {
10189 	struct rq *rq = cpu_rq(cpu);
10190 	struct mm_cid *pcpu_cid;
10191 	struct task_struct *curr;
10192 	u64 rq_clock;
10193 
10194 	/*
10195 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
10196 	 * while is irrelevant.
10197 	 */
10198 	rq_clock = READ_ONCE(rq->clock);
10199 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10200 
10201 	/*
10202 	 * In order to take care of infrequently scheduled tasks, bump the time
10203 	 * snapshot associated with this cid if an active task using the mm is
10204 	 * observed on this rq.
10205 	 */
10206 	scoped_guard (rcu) {
10207 		curr = rcu_dereference(rq->curr);
10208 		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10209 			WRITE_ONCE(pcpu_cid->time, rq_clock);
10210 			return;
10211 		}
10212 	}
10213 
10214 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10215 		return;
10216 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10217 }
10218 
10219 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10220 					     int weight)
10221 {
10222 	struct mm_cid *pcpu_cid;
10223 	int cid;
10224 
10225 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10226 	cid = READ_ONCE(pcpu_cid->cid);
10227 	if (!mm_cid_is_valid(cid) || cid < weight)
10228 		return;
10229 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10230 }
10231 
10232 static void task_mm_cid_work(struct callback_head *work)
10233 {
10234 	unsigned long now = jiffies, old_scan, next_scan;
10235 	struct task_struct *t = current;
10236 	struct cpumask *cidmask;
10237 	struct mm_struct *mm;
10238 	int weight, cpu;
10239 
10240 	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
10241 
10242 	work->next = work;	/* Prevent double-add */
10243 	if (t->flags & PF_EXITING)
10244 		return;
10245 	mm = t->mm;
10246 	if (!mm)
10247 		return;
10248 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
10249 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10250 	if (!old_scan) {
10251 		unsigned long res;
10252 
10253 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10254 		if (res != old_scan)
10255 			old_scan = res;
10256 		else
10257 			old_scan = next_scan;
10258 	}
10259 	if (time_before(now, old_scan))
10260 		return;
10261 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10262 		return;
10263 	cidmask = mm_cidmask(mm);
10264 	/* Clear cids that were not recently used. */
10265 	for_each_possible_cpu(cpu)
10266 		sched_mm_cid_remote_clear_old(mm, cpu);
10267 	weight = cpumask_weight(cidmask);
10268 	/*
10269 	 * Clear cids that are greater or equal to the cidmask weight to
10270 	 * recompact it.
10271 	 */
10272 	for_each_possible_cpu(cpu)
10273 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10274 }
10275 
10276 void init_sched_mm_cid(struct task_struct *t)
10277 {
10278 	struct mm_struct *mm = t->mm;
10279 	int mm_users = 0;
10280 
10281 	if (mm) {
10282 		mm_users = atomic_read(&mm->mm_users);
10283 		if (mm_users == 1)
10284 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10285 	}
10286 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
10287 	init_task_work(&t->cid_work, task_mm_cid_work);
10288 }
10289 
10290 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10291 {
10292 	struct callback_head *work = &curr->cid_work;
10293 	unsigned long now = jiffies;
10294 
10295 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10296 	    work->next != work)
10297 		return;
10298 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10299 		return;
10300 	task_work_add(curr, work, TWA_RESUME);
10301 }
10302 
10303 void sched_mm_cid_exit_signals(struct task_struct *t)
10304 {
10305 	struct mm_struct *mm = t->mm;
10306 	struct rq *rq;
10307 
10308 	if (!mm)
10309 		return;
10310 
10311 	preempt_disable();
10312 	rq = this_rq();
10313 	guard(rq_lock_irqsave)(rq);
10314 	preempt_enable_no_resched();	/* holding spinlock */
10315 	WRITE_ONCE(t->mm_cid_active, 0);
10316 	/*
10317 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10318 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10319 	 */
10320 	smp_mb();
10321 	mm_cid_put(mm);
10322 	t->last_mm_cid = t->mm_cid = -1;
10323 }
10324 
10325 void sched_mm_cid_before_execve(struct task_struct *t)
10326 {
10327 	struct mm_struct *mm = t->mm;
10328 	struct rq *rq;
10329 
10330 	if (!mm)
10331 		return;
10332 
10333 	preempt_disable();
10334 	rq = this_rq();
10335 	guard(rq_lock_irqsave)(rq);
10336 	preempt_enable_no_resched();	/* holding spinlock */
10337 	WRITE_ONCE(t->mm_cid_active, 0);
10338 	/*
10339 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10340 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10341 	 */
10342 	smp_mb();
10343 	mm_cid_put(mm);
10344 	t->last_mm_cid = t->mm_cid = -1;
10345 }
10346 
10347 void sched_mm_cid_after_execve(struct task_struct *t)
10348 {
10349 	struct mm_struct *mm = t->mm;
10350 	struct rq *rq;
10351 
10352 	if (!mm)
10353 		return;
10354 
10355 	preempt_disable();
10356 	rq = this_rq();
10357 	scoped_guard (rq_lock_irqsave, rq) {
10358 		preempt_enable_no_resched();	/* holding spinlock */
10359 		WRITE_ONCE(t->mm_cid_active, 1);
10360 		/*
10361 		 * Store t->mm_cid_active before loading per-mm/cpu cid.
10362 		 * Matches barrier in sched_mm_cid_remote_clear_old().
10363 		 */
10364 		smp_mb();
10365 		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
10366 	}
10367 	rseq_set_notify_resume(t);
10368 }
10369 
10370 void sched_mm_cid_fork(struct task_struct *t)
10371 {
10372 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10373 	t->mm_cid_active = 1;
10374 }
10375 #endif
10376