xref: /linux/kernel/sched/core.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95 
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97 
98 void update_rq_clock(struct rq *rq)
99 {
100 	s64 delta;
101 
102 	lockdep_assert_held(&rq->lock);
103 
104 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 		return;
106 
107 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 	if (delta < 0)
109 		return;
110 	rq->clock += delta;
111 	update_rq_clock_task(rq, delta);
112 }
113 
114 /*
115  * Debugging: various feature bits
116  */
117 
118 #define SCHED_FEAT(name, enabled)	\
119 	(1UL << __SCHED_FEAT_##name) * enabled |
120 
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 	0;
124 
125 #undef SCHED_FEAT
126 
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled)	\
129 	#name ,
130 
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
133 };
134 
135 #undef SCHED_FEAT
136 
137 static int sched_feat_show(struct seq_file *m, void *v)
138 {
139 	int i;
140 
141 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 		if (!(sysctl_sched_features & (1UL << i)))
143 			seq_puts(m, "NO_");
144 		seq_printf(m, "%s ", sched_feat_names[i]);
145 	}
146 	seq_puts(m, "\n");
147 
148 	return 0;
149 }
150 
151 #ifdef HAVE_JUMP_LABEL
152 
153 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
155 
156 #define SCHED_FEAT(name, enabled)	\
157 	jump_label_key__##enabled ,
158 
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
161 };
162 
163 #undef SCHED_FEAT
164 
165 static void sched_feat_disable(int i)
166 {
167 	static_key_disable(&sched_feat_keys[i]);
168 }
169 
170 static void sched_feat_enable(int i)
171 {
172 	static_key_enable(&sched_feat_keys[i]);
173 }
174 #else
175 static void sched_feat_disable(int i) { };
176 static void sched_feat_enable(int i) { };
177 #endif /* HAVE_JUMP_LABEL */
178 
179 static int sched_feat_set(char *cmp)
180 {
181 	int i;
182 	int neg = 0;
183 
184 	if (strncmp(cmp, "NO_", 3) == 0) {
185 		neg = 1;
186 		cmp += 3;
187 	}
188 
189 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
190 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
191 			if (neg) {
192 				sysctl_sched_features &= ~(1UL << i);
193 				sched_feat_disable(i);
194 			} else {
195 				sysctl_sched_features |= (1UL << i);
196 				sched_feat_enable(i);
197 			}
198 			break;
199 		}
200 	}
201 
202 	return i;
203 }
204 
205 static ssize_t
206 sched_feat_write(struct file *filp, const char __user *ubuf,
207 		size_t cnt, loff_t *ppos)
208 {
209 	char buf[64];
210 	char *cmp;
211 	int i;
212 	struct inode *inode;
213 
214 	if (cnt > 63)
215 		cnt = 63;
216 
217 	if (copy_from_user(&buf, ubuf, cnt))
218 		return -EFAULT;
219 
220 	buf[cnt] = 0;
221 	cmp = strstrip(buf);
222 
223 	/* Ensure the static_key remains in a consistent state */
224 	inode = file_inode(filp);
225 	inode_lock(inode);
226 	i = sched_feat_set(cmp);
227 	inode_unlock(inode);
228 	if (i == __SCHED_FEAT_NR)
229 		return -EINVAL;
230 
231 	*ppos += cnt;
232 
233 	return cnt;
234 }
235 
236 static int sched_feat_open(struct inode *inode, struct file *filp)
237 {
238 	return single_open(filp, sched_feat_show, NULL);
239 }
240 
241 static const struct file_operations sched_feat_fops = {
242 	.open		= sched_feat_open,
243 	.write		= sched_feat_write,
244 	.read		= seq_read,
245 	.llseek		= seq_lseek,
246 	.release	= single_release,
247 };
248 
249 static __init int sched_init_debug(void)
250 {
251 	debugfs_create_file("sched_features", 0644, NULL, NULL,
252 			&sched_feat_fops);
253 
254 	return 0;
255 }
256 late_initcall(sched_init_debug);
257 #endif /* CONFIG_SCHED_DEBUG */
258 
259 /*
260  * Number of tasks to iterate in a single balance run.
261  * Limited because this is done with IRQs disabled.
262  */
263 const_debug unsigned int sysctl_sched_nr_migrate = 32;
264 
265 /*
266  * period over which we average the RT time consumption, measured
267  * in ms.
268  *
269  * default: 1s
270  */
271 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272 
273 /*
274  * period over which we measure -rt task cpu usage in us.
275  * default: 1s
276  */
277 unsigned int sysctl_sched_rt_period = 1000000;
278 
279 __read_mostly int scheduler_running;
280 
281 /*
282  * part of the period that we allow rt tasks to run in us.
283  * default: 0.95s
284  */
285 int sysctl_sched_rt_runtime = 950000;
286 
287 /* cpus with isolated domains */
288 cpumask_var_t cpu_isolated_map;
289 
290 /*
291  * this_rq_lock - lock this runqueue and disable interrupts.
292  */
293 static struct rq *this_rq_lock(void)
294 	__acquires(rq->lock)
295 {
296 	struct rq *rq;
297 
298 	local_irq_disable();
299 	rq = this_rq();
300 	raw_spin_lock(&rq->lock);
301 
302 	return rq;
303 }
304 
305 #ifdef CONFIG_SCHED_HRTICK
306 /*
307  * Use HR-timers to deliver accurate preemption points.
308  */
309 
310 static void hrtick_clear(struct rq *rq)
311 {
312 	if (hrtimer_active(&rq->hrtick_timer))
313 		hrtimer_cancel(&rq->hrtick_timer);
314 }
315 
316 /*
317  * High-resolution timer tick.
318  * Runs from hardirq context with interrupts disabled.
319  */
320 static enum hrtimer_restart hrtick(struct hrtimer *timer)
321 {
322 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323 
324 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325 
326 	raw_spin_lock(&rq->lock);
327 	update_rq_clock(rq);
328 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
329 	raw_spin_unlock(&rq->lock);
330 
331 	return HRTIMER_NORESTART;
332 }
333 
334 #ifdef CONFIG_SMP
335 
336 static void __hrtick_restart(struct rq *rq)
337 {
338 	struct hrtimer *timer = &rq->hrtick_timer;
339 
340 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
341 }
342 
343 /*
344  * called from hardirq (IPI) context
345  */
346 static void __hrtick_start(void *arg)
347 {
348 	struct rq *rq = arg;
349 
350 	raw_spin_lock(&rq->lock);
351 	__hrtick_restart(rq);
352 	rq->hrtick_csd_pending = 0;
353 	raw_spin_unlock(&rq->lock);
354 }
355 
356 /*
357  * Called to set the hrtick timer state.
358  *
359  * called with rq->lock held and irqs disabled
360  */
361 void hrtick_start(struct rq *rq, u64 delay)
362 {
363 	struct hrtimer *timer = &rq->hrtick_timer;
364 	ktime_t time;
365 	s64 delta;
366 
367 	/*
368 	 * Don't schedule slices shorter than 10000ns, that just
369 	 * doesn't make sense and can cause timer DoS.
370 	 */
371 	delta = max_t(s64, delay, 10000LL);
372 	time = ktime_add_ns(timer->base->get_time(), delta);
373 
374 	hrtimer_set_expires(timer, time);
375 
376 	if (rq == this_rq()) {
377 		__hrtick_restart(rq);
378 	} else if (!rq->hrtick_csd_pending) {
379 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
380 		rq->hrtick_csd_pending = 1;
381 	}
382 }
383 
384 static int
385 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386 {
387 	int cpu = (int)(long)hcpu;
388 
389 	switch (action) {
390 	case CPU_UP_CANCELED:
391 	case CPU_UP_CANCELED_FROZEN:
392 	case CPU_DOWN_PREPARE:
393 	case CPU_DOWN_PREPARE_FROZEN:
394 	case CPU_DEAD:
395 	case CPU_DEAD_FROZEN:
396 		hrtick_clear(cpu_rq(cpu));
397 		return NOTIFY_OK;
398 	}
399 
400 	return NOTIFY_DONE;
401 }
402 
403 static __init void init_hrtick(void)
404 {
405 	hotcpu_notifier(hotplug_hrtick, 0);
406 }
407 #else
408 /*
409  * Called to set the hrtick timer state.
410  *
411  * called with rq->lock held and irqs disabled
412  */
413 void hrtick_start(struct rq *rq, u64 delay)
414 {
415 	/*
416 	 * Don't schedule slices shorter than 10000ns, that just
417 	 * doesn't make sense. Rely on vruntime for fairness.
418 	 */
419 	delay = max_t(u64, delay, 10000LL);
420 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 		      HRTIMER_MODE_REL_PINNED);
422 }
423 
424 static inline void init_hrtick(void)
425 {
426 }
427 #endif /* CONFIG_SMP */
428 
429 static void init_rq_hrtick(struct rq *rq)
430 {
431 #ifdef CONFIG_SMP
432 	rq->hrtick_csd_pending = 0;
433 
434 	rq->hrtick_csd.flags = 0;
435 	rq->hrtick_csd.func = __hrtick_start;
436 	rq->hrtick_csd.info = rq;
437 #endif
438 
439 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 	rq->hrtick_timer.function = hrtick;
441 }
442 #else	/* CONFIG_SCHED_HRTICK */
443 static inline void hrtick_clear(struct rq *rq)
444 {
445 }
446 
447 static inline void init_rq_hrtick(struct rq *rq)
448 {
449 }
450 
451 static inline void init_hrtick(void)
452 {
453 }
454 #endif	/* CONFIG_SCHED_HRTICK */
455 
456 /*
457  * cmpxchg based fetch_or, macro so it works for different integer types
458  */
459 #define fetch_or(ptr, val)						\
460 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
461  	for (;;) {							\
462  		__old = cmpxchg((ptr), __val, __val | (val));		\
463  		if (__old == __val)					\
464  			break;						\
465  		__val = __old;						\
466  	}								\
467  	__old;								\
468 })
469 
470 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
471 /*
472  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473  * this avoids any races wrt polling state changes and thereby avoids
474  * spurious IPIs.
475  */
476 static bool set_nr_and_not_polling(struct task_struct *p)
477 {
478 	struct thread_info *ti = task_thread_info(p);
479 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
480 }
481 
482 /*
483  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
484  *
485  * If this returns true, then the idle task promises to call
486  * sched_ttwu_pending() and reschedule soon.
487  */
488 static bool set_nr_if_polling(struct task_struct *p)
489 {
490 	struct thread_info *ti = task_thread_info(p);
491 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
492 
493 	for (;;) {
494 		if (!(val & _TIF_POLLING_NRFLAG))
495 			return false;
496 		if (val & _TIF_NEED_RESCHED)
497 			return true;
498 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 		if (old == val)
500 			break;
501 		val = old;
502 	}
503 	return true;
504 }
505 
506 #else
507 static bool set_nr_and_not_polling(struct task_struct *p)
508 {
509 	set_tsk_need_resched(p);
510 	return true;
511 }
512 
513 #ifdef CONFIG_SMP
514 static bool set_nr_if_polling(struct task_struct *p)
515 {
516 	return false;
517 }
518 #endif
519 #endif
520 
521 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
522 {
523 	struct wake_q_node *node = &task->wake_q;
524 
525 	/*
526 	 * Atomically grab the task, if ->wake_q is !nil already it means
527 	 * its already queued (either by us or someone else) and will get the
528 	 * wakeup due to that.
529 	 *
530 	 * This cmpxchg() implies a full barrier, which pairs with the write
531 	 * barrier implied by the wakeup in wake_up_list().
532 	 */
533 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 		return;
535 
536 	get_task_struct(task);
537 
538 	/*
539 	 * The head is context local, there can be no concurrency.
540 	 */
541 	*head->lastp = node;
542 	head->lastp = &node->next;
543 }
544 
545 void wake_up_q(struct wake_q_head *head)
546 {
547 	struct wake_q_node *node = head->first;
548 
549 	while (node != WAKE_Q_TAIL) {
550 		struct task_struct *task;
551 
552 		task = container_of(node, struct task_struct, wake_q);
553 		BUG_ON(!task);
554 		/* task can safely be re-inserted now */
555 		node = node->next;
556 		task->wake_q.next = NULL;
557 
558 		/*
559 		 * wake_up_process() implies a wmb() to pair with the queueing
560 		 * in wake_q_add() so as not to miss wakeups.
561 		 */
562 		wake_up_process(task);
563 		put_task_struct(task);
564 	}
565 }
566 
567 /*
568  * resched_curr - mark rq's current task 'to be rescheduled now'.
569  *
570  * On UP this means the setting of the need_resched flag, on SMP it
571  * might also involve a cross-CPU call to trigger the scheduler on
572  * the target CPU.
573  */
574 void resched_curr(struct rq *rq)
575 {
576 	struct task_struct *curr = rq->curr;
577 	int cpu;
578 
579 	lockdep_assert_held(&rq->lock);
580 
581 	if (test_tsk_need_resched(curr))
582 		return;
583 
584 	cpu = cpu_of(rq);
585 
586 	if (cpu == smp_processor_id()) {
587 		set_tsk_need_resched(curr);
588 		set_preempt_need_resched();
589 		return;
590 	}
591 
592 	if (set_nr_and_not_polling(curr))
593 		smp_send_reschedule(cpu);
594 	else
595 		trace_sched_wake_idle_without_ipi(cpu);
596 }
597 
598 void resched_cpu(int cpu)
599 {
600 	struct rq *rq = cpu_rq(cpu);
601 	unsigned long flags;
602 
603 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
604 		return;
605 	resched_curr(rq);
606 	raw_spin_unlock_irqrestore(&rq->lock, flags);
607 }
608 
609 #ifdef CONFIG_SMP
610 #ifdef CONFIG_NO_HZ_COMMON
611 /*
612  * In the semi idle case, use the nearest busy cpu for migrating timers
613  * from an idle cpu.  This is good for power-savings.
614  *
615  * We don't do similar optimization for completely idle system, as
616  * selecting an idle cpu will add more delays to the timers than intended
617  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
618  */
619 int get_nohz_timer_target(void)
620 {
621 	int i, cpu = smp_processor_id();
622 	struct sched_domain *sd;
623 
624 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
625 		return cpu;
626 
627 	rcu_read_lock();
628 	for_each_domain(cpu, sd) {
629 		for_each_cpu(i, sched_domain_span(sd)) {
630 			if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
631 				cpu = i;
632 				goto unlock;
633 			}
634 		}
635 	}
636 
637 	if (!is_housekeeping_cpu(cpu))
638 		cpu = housekeeping_any_cpu();
639 unlock:
640 	rcu_read_unlock();
641 	return cpu;
642 }
643 /*
644  * When add_timer_on() enqueues a timer into the timer wheel of an
645  * idle CPU then this timer might expire before the next timer event
646  * which is scheduled to wake up that CPU. In case of a completely
647  * idle system the next event might even be infinite time into the
648  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649  * leaves the inner idle loop so the newly added timer is taken into
650  * account when the CPU goes back to idle and evaluates the timer
651  * wheel for the next timer event.
652  */
653 static void wake_up_idle_cpu(int cpu)
654 {
655 	struct rq *rq = cpu_rq(cpu);
656 
657 	if (cpu == smp_processor_id())
658 		return;
659 
660 	if (set_nr_and_not_polling(rq->idle))
661 		smp_send_reschedule(cpu);
662 	else
663 		trace_sched_wake_idle_without_ipi(cpu);
664 }
665 
666 static bool wake_up_full_nohz_cpu(int cpu)
667 {
668 	/*
669 	 * We just need the target to call irq_exit() and re-evaluate
670 	 * the next tick. The nohz full kick at least implies that.
671 	 * If needed we can still optimize that later with an
672 	 * empty IRQ.
673 	 */
674 	if (tick_nohz_full_cpu(cpu)) {
675 		if (cpu != smp_processor_id() ||
676 		    tick_nohz_tick_stopped())
677 			tick_nohz_full_kick_cpu(cpu);
678 		return true;
679 	}
680 
681 	return false;
682 }
683 
684 void wake_up_nohz_cpu(int cpu)
685 {
686 	if (!wake_up_full_nohz_cpu(cpu))
687 		wake_up_idle_cpu(cpu);
688 }
689 
690 static inline bool got_nohz_idle_kick(void)
691 {
692 	int cpu = smp_processor_id();
693 
694 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 		return false;
696 
697 	if (idle_cpu(cpu) && !need_resched())
698 		return true;
699 
700 	/*
701 	 * We can't run Idle Load Balance on this CPU for this time so we
702 	 * cancel it and clear NOHZ_BALANCE_KICK
703 	 */
704 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 	return false;
706 }
707 
708 #else /* CONFIG_NO_HZ_COMMON */
709 
710 static inline bool got_nohz_idle_kick(void)
711 {
712 	return false;
713 }
714 
715 #endif /* CONFIG_NO_HZ_COMMON */
716 
717 #ifdef CONFIG_NO_HZ_FULL
718 bool sched_can_stop_tick(void)
719 {
720 	/*
721 	 * FIFO realtime policy runs the highest priority task. Other runnable
722 	 * tasks are of a lower priority. The scheduler tick does nothing.
723 	 */
724 	if (current->policy == SCHED_FIFO)
725 		return true;
726 
727 	/*
728 	 * Round-robin realtime tasks time slice with other tasks at the same
729 	 * realtime priority. Is this task the only one at this priority?
730 	 */
731 	if (current->policy == SCHED_RR) {
732 		struct sched_rt_entity *rt_se = &current->rt;
733 
734 		return list_is_singular(&rt_se->run_list);
735 	}
736 
737 	/*
738 	 * More than one running task need preemption.
739 	 * nr_running update is assumed to be visible
740 	 * after IPI is sent from wakers.
741 	 */
742 	if (this_rq()->nr_running > 1)
743 		return false;
744 
745 	return true;
746 }
747 #endif /* CONFIG_NO_HZ_FULL */
748 
749 void sched_avg_update(struct rq *rq)
750 {
751 	s64 period = sched_avg_period();
752 
753 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
754 		/*
755 		 * Inline assembly required to prevent the compiler
756 		 * optimising this loop into a divmod call.
757 		 * See __iter_div_u64_rem() for another example of this.
758 		 */
759 		asm("" : "+rm" (rq->age_stamp));
760 		rq->age_stamp += period;
761 		rq->rt_avg /= 2;
762 	}
763 }
764 
765 #endif /* CONFIG_SMP */
766 
767 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
769 /*
770  * Iterate task_group tree rooted at *from, calling @down when first entering a
771  * node and @up when leaving it for the final time.
772  *
773  * Caller must hold rcu_lock or sufficient equivalent.
774  */
775 int walk_tg_tree_from(struct task_group *from,
776 			     tg_visitor down, tg_visitor up, void *data)
777 {
778 	struct task_group *parent, *child;
779 	int ret;
780 
781 	parent = from;
782 
783 down:
784 	ret = (*down)(parent, data);
785 	if (ret)
786 		goto out;
787 	list_for_each_entry_rcu(child, &parent->children, siblings) {
788 		parent = child;
789 		goto down;
790 
791 up:
792 		continue;
793 	}
794 	ret = (*up)(parent, data);
795 	if (ret || parent == from)
796 		goto out;
797 
798 	child = parent;
799 	parent = parent->parent;
800 	if (parent)
801 		goto up;
802 out:
803 	return ret;
804 }
805 
806 int tg_nop(struct task_group *tg, void *data)
807 {
808 	return 0;
809 }
810 #endif
811 
812 static void set_load_weight(struct task_struct *p)
813 {
814 	int prio = p->static_prio - MAX_RT_PRIO;
815 	struct load_weight *load = &p->se.load;
816 
817 	/*
818 	 * SCHED_IDLE tasks get minimal weight:
819 	 */
820 	if (idle_policy(p->policy)) {
821 		load->weight = scale_load(WEIGHT_IDLEPRIO);
822 		load->inv_weight = WMULT_IDLEPRIO;
823 		return;
824 	}
825 
826 	load->weight = scale_load(sched_prio_to_weight[prio]);
827 	load->inv_weight = sched_prio_to_wmult[prio];
828 }
829 
830 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
831 {
832 	update_rq_clock(rq);
833 	if (!(flags & ENQUEUE_RESTORE))
834 		sched_info_queued(rq, p);
835 	p->sched_class->enqueue_task(rq, p, flags);
836 }
837 
838 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
839 {
840 	update_rq_clock(rq);
841 	if (!(flags & DEQUEUE_SAVE))
842 		sched_info_dequeued(rq, p);
843 	p->sched_class->dequeue_task(rq, p, flags);
844 }
845 
846 void activate_task(struct rq *rq, struct task_struct *p, int flags)
847 {
848 	if (task_contributes_to_load(p))
849 		rq->nr_uninterruptible--;
850 
851 	enqueue_task(rq, p, flags);
852 }
853 
854 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
855 {
856 	if (task_contributes_to_load(p))
857 		rq->nr_uninterruptible++;
858 
859 	dequeue_task(rq, p, flags);
860 }
861 
862 static void update_rq_clock_task(struct rq *rq, s64 delta)
863 {
864 /*
865  * In theory, the compile should just see 0 here, and optimize out the call
866  * to sched_rt_avg_update. But I don't trust it...
867  */
868 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
869 	s64 steal = 0, irq_delta = 0;
870 #endif
871 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
872 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
873 
874 	/*
875 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
876 	 * this case when a previous update_rq_clock() happened inside a
877 	 * {soft,}irq region.
878 	 *
879 	 * When this happens, we stop ->clock_task and only update the
880 	 * prev_irq_time stamp to account for the part that fit, so that a next
881 	 * update will consume the rest. This ensures ->clock_task is
882 	 * monotonic.
883 	 *
884 	 * It does however cause some slight miss-attribution of {soft,}irq
885 	 * time, a more accurate solution would be to update the irq_time using
886 	 * the current rq->clock timestamp, except that would require using
887 	 * atomic ops.
888 	 */
889 	if (irq_delta > delta)
890 		irq_delta = delta;
891 
892 	rq->prev_irq_time += irq_delta;
893 	delta -= irq_delta;
894 #endif
895 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
896 	if (static_key_false((&paravirt_steal_rq_enabled))) {
897 		steal = paravirt_steal_clock(cpu_of(rq));
898 		steal -= rq->prev_steal_time_rq;
899 
900 		if (unlikely(steal > delta))
901 			steal = delta;
902 
903 		rq->prev_steal_time_rq += steal;
904 		delta -= steal;
905 	}
906 #endif
907 
908 	rq->clock_task += delta;
909 
910 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
911 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
912 		sched_rt_avg_update(rq, irq_delta + steal);
913 #endif
914 }
915 
916 void sched_set_stop_task(int cpu, struct task_struct *stop)
917 {
918 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
919 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
920 
921 	if (stop) {
922 		/*
923 		 * Make it appear like a SCHED_FIFO task, its something
924 		 * userspace knows about and won't get confused about.
925 		 *
926 		 * Also, it will make PI more or less work without too
927 		 * much confusion -- but then, stop work should not
928 		 * rely on PI working anyway.
929 		 */
930 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
931 
932 		stop->sched_class = &stop_sched_class;
933 	}
934 
935 	cpu_rq(cpu)->stop = stop;
936 
937 	if (old_stop) {
938 		/*
939 		 * Reset it back to a normal scheduling class so that
940 		 * it can die in pieces.
941 		 */
942 		old_stop->sched_class = &rt_sched_class;
943 	}
944 }
945 
946 /*
947  * __normal_prio - return the priority that is based on the static prio
948  */
949 static inline int __normal_prio(struct task_struct *p)
950 {
951 	return p->static_prio;
952 }
953 
954 /*
955  * Calculate the expected normal priority: i.e. priority
956  * without taking RT-inheritance into account. Might be
957  * boosted by interactivity modifiers. Changes upon fork,
958  * setprio syscalls, and whenever the interactivity
959  * estimator recalculates.
960  */
961 static inline int normal_prio(struct task_struct *p)
962 {
963 	int prio;
964 
965 	if (task_has_dl_policy(p))
966 		prio = MAX_DL_PRIO-1;
967 	else if (task_has_rt_policy(p))
968 		prio = MAX_RT_PRIO-1 - p->rt_priority;
969 	else
970 		prio = __normal_prio(p);
971 	return prio;
972 }
973 
974 /*
975  * Calculate the current priority, i.e. the priority
976  * taken into account by the scheduler. This value might
977  * be boosted by RT tasks, or might be boosted by
978  * interactivity modifiers. Will be RT if the task got
979  * RT-boosted. If not then it returns p->normal_prio.
980  */
981 static int effective_prio(struct task_struct *p)
982 {
983 	p->normal_prio = normal_prio(p);
984 	/*
985 	 * If we are RT tasks or we were boosted to RT priority,
986 	 * keep the priority unchanged. Otherwise, update priority
987 	 * to the normal priority:
988 	 */
989 	if (!rt_prio(p->prio))
990 		return p->normal_prio;
991 	return p->prio;
992 }
993 
994 /**
995  * task_curr - is this task currently executing on a CPU?
996  * @p: the task in question.
997  *
998  * Return: 1 if the task is currently executing. 0 otherwise.
999  */
1000 inline int task_curr(const struct task_struct *p)
1001 {
1002 	return cpu_curr(task_cpu(p)) == p;
1003 }
1004 
1005 /*
1006  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1007  * use the balance_callback list if you want balancing.
1008  *
1009  * this means any call to check_class_changed() must be followed by a call to
1010  * balance_callback().
1011  */
1012 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1013 				       const struct sched_class *prev_class,
1014 				       int oldprio)
1015 {
1016 	if (prev_class != p->sched_class) {
1017 		if (prev_class->switched_from)
1018 			prev_class->switched_from(rq, p);
1019 
1020 		p->sched_class->switched_to(rq, p);
1021 	} else if (oldprio != p->prio || dl_task(p))
1022 		p->sched_class->prio_changed(rq, p, oldprio);
1023 }
1024 
1025 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1026 {
1027 	const struct sched_class *class;
1028 
1029 	if (p->sched_class == rq->curr->sched_class) {
1030 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1031 	} else {
1032 		for_each_class(class) {
1033 			if (class == rq->curr->sched_class)
1034 				break;
1035 			if (class == p->sched_class) {
1036 				resched_curr(rq);
1037 				break;
1038 			}
1039 		}
1040 	}
1041 
1042 	/*
1043 	 * A queue event has occurred, and we're going to schedule.  In
1044 	 * this case, we can save a useless back to back clock update.
1045 	 */
1046 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1047 		rq_clock_skip_update(rq, true);
1048 }
1049 
1050 #ifdef CONFIG_SMP
1051 /*
1052  * This is how migration works:
1053  *
1054  * 1) we invoke migration_cpu_stop() on the target CPU using
1055  *    stop_one_cpu().
1056  * 2) stopper starts to run (implicitly forcing the migrated thread
1057  *    off the CPU)
1058  * 3) it checks whether the migrated task is still in the wrong runqueue.
1059  * 4) if it's in the wrong runqueue then the migration thread removes
1060  *    it and puts it into the right queue.
1061  * 5) stopper completes and stop_one_cpu() returns and the migration
1062  *    is done.
1063  */
1064 
1065 /*
1066  * move_queued_task - move a queued task to new rq.
1067  *
1068  * Returns (locked) new rq. Old rq's lock is released.
1069  */
1070 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1071 {
1072 	lockdep_assert_held(&rq->lock);
1073 
1074 	p->on_rq = TASK_ON_RQ_MIGRATING;
1075 	dequeue_task(rq, p, 0);
1076 	set_task_cpu(p, new_cpu);
1077 	raw_spin_unlock(&rq->lock);
1078 
1079 	rq = cpu_rq(new_cpu);
1080 
1081 	raw_spin_lock(&rq->lock);
1082 	BUG_ON(task_cpu(p) != new_cpu);
1083 	enqueue_task(rq, p, 0);
1084 	p->on_rq = TASK_ON_RQ_QUEUED;
1085 	check_preempt_curr(rq, p, 0);
1086 
1087 	return rq;
1088 }
1089 
1090 struct migration_arg {
1091 	struct task_struct *task;
1092 	int dest_cpu;
1093 };
1094 
1095 /*
1096  * Move (not current) task off this cpu, onto dest cpu. We're doing
1097  * this because either it can't run here any more (set_cpus_allowed()
1098  * away from this CPU, or CPU going down), or because we're
1099  * attempting to rebalance this task on exec (sched_exec).
1100  *
1101  * So we race with normal scheduler movements, but that's OK, as long
1102  * as the task is no longer on this CPU.
1103  */
1104 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1105 {
1106 	if (unlikely(!cpu_active(dest_cpu)))
1107 		return rq;
1108 
1109 	/* Affinity changed (again). */
1110 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1111 		return rq;
1112 
1113 	rq = move_queued_task(rq, p, dest_cpu);
1114 
1115 	return rq;
1116 }
1117 
1118 /*
1119  * migration_cpu_stop - this will be executed by a highprio stopper thread
1120  * and performs thread migration by bumping thread off CPU then
1121  * 'pushing' onto another runqueue.
1122  */
1123 static int migration_cpu_stop(void *data)
1124 {
1125 	struct migration_arg *arg = data;
1126 	struct task_struct *p = arg->task;
1127 	struct rq *rq = this_rq();
1128 
1129 	/*
1130 	 * The original target cpu might have gone down and we might
1131 	 * be on another cpu but it doesn't matter.
1132 	 */
1133 	local_irq_disable();
1134 	/*
1135 	 * We need to explicitly wake pending tasks before running
1136 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1137 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1138 	 */
1139 	sched_ttwu_pending();
1140 
1141 	raw_spin_lock(&p->pi_lock);
1142 	raw_spin_lock(&rq->lock);
1143 	/*
1144 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1145 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1146 	 * we're holding p->pi_lock.
1147 	 */
1148 	if (task_rq(p) == rq && task_on_rq_queued(p))
1149 		rq = __migrate_task(rq, p, arg->dest_cpu);
1150 	raw_spin_unlock(&rq->lock);
1151 	raw_spin_unlock(&p->pi_lock);
1152 
1153 	local_irq_enable();
1154 	return 0;
1155 }
1156 
1157 /*
1158  * sched_class::set_cpus_allowed must do the below, but is not required to
1159  * actually call this function.
1160  */
1161 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1162 {
1163 	cpumask_copy(&p->cpus_allowed, new_mask);
1164 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1165 }
1166 
1167 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1168 {
1169 	struct rq *rq = task_rq(p);
1170 	bool queued, running;
1171 
1172 	lockdep_assert_held(&p->pi_lock);
1173 
1174 	queued = task_on_rq_queued(p);
1175 	running = task_current(rq, p);
1176 
1177 	if (queued) {
1178 		/*
1179 		 * Because __kthread_bind() calls this on blocked tasks without
1180 		 * holding rq->lock.
1181 		 */
1182 		lockdep_assert_held(&rq->lock);
1183 		dequeue_task(rq, p, DEQUEUE_SAVE);
1184 	}
1185 	if (running)
1186 		put_prev_task(rq, p);
1187 
1188 	p->sched_class->set_cpus_allowed(p, new_mask);
1189 
1190 	if (running)
1191 		p->sched_class->set_curr_task(rq);
1192 	if (queued)
1193 		enqueue_task(rq, p, ENQUEUE_RESTORE);
1194 }
1195 
1196 /*
1197  * Change a given task's CPU affinity. Migrate the thread to a
1198  * proper CPU and schedule it away if the CPU it's executing on
1199  * is removed from the allowed bitmask.
1200  *
1201  * NOTE: the caller must have a valid reference to the task, the
1202  * task must not exit() & deallocate itself prematurely. The
1203  * call is not atomic; no spinlocks may be held.
1204  */
1205 static int __set_cpus_allowed_ptr(struct task_struct *p,
1206 				  const struct cpumask *new_mask, bool check)
1207 {
1208 	unsigned long flags;
1209 	struct rq *rq;
1210 	unsigned int dest_cpu;
1211 	int ret = 0;
1212 
1213 	rq = task_rq_lock(p, &flags);
1214 
1215 	/*
1216 	 * Must re-check here, to close a race against __kthread_bind(),
1217 	 * sched_setaffinity() is not guaranteed to observe the flag.
1218 	 */
1219 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1220 		ret = -EINVAL;
1221 		goto out;
1222 	}
1223 
1224 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1225 		goto out;
1226 
1227 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1228 		ret = -EINVAL;
1229 		goto out;
1230 	}
1231 
1232 	do_set_cpus_allowed(p, new_mask);
1233 
1234 	/* Can the task run on the task's current CPU? If so, we're done */
1235 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1236 		goto out;
1237 
1238 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1239 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1240 		struct migration_arg arg = { p, dest_cpu };
1241 		/* Need help from migration thread: drop lock and wait. */
1242 		task_rq_unlock(rq, p, &flags);
1243 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1244 		tlb_migrate_finish(p->mm);
1245 		return 0;
1246 	} else if (task_on_rq_queued(p)) {
1247 		/*
1248 		 * OK, since we're going to drop the lock immediately
1249 		 * afterwards anyway.
1250 		 */
1251 		lockdep_unpin_lock(&rq->lock);
1252 		rq = move_queued_task(rq, p, dest_cpu);
1253 		lockdep_pin_lock(&rq->lock);
1254 	}
1255 out:
1256 	task_rq_unlock(rq, p, &flags);
1257 
1258 	return ret;
1259 }
1260 
1261 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1262 {
1263 	return __set_cpus_allowed_ptr(p, new_mask, false);
1264 }
1265 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1266 
1267 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1268 {
1269 #ifdef CONFIG_SCHED_DEBUG
1270 	/*
1271 	 * We should never call set_task_cpu() on a blocked task,
1272 	 * ttwu() will sort out the placement.
1273 	 */
1274 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1275 			!p->on_rq);
1276 
1277 	/*
1278 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1279 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1280 	 * time relying on p->on_rq.
1281 	 */
1282 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1283 		     p->sched_class == &fair_sched_class &&
1284 		     (p->on_rq && !task_on_rq_migrating(p)));
1285 
1286 #ifdef CONFIG_LOCKDEP
1287 	/*
1288 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1289 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1290 	 *
1291 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1292 	 * see task_group().
1293 	 *
1294 	 * Furthermore, all task_rq users should acquire both locks, see
1295 	 * task_rq_lock().
1296 	 */
1297 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1298 				      lockdep_is_held(&task_rq(p)->lock)));
1299 #endif
1300 #endif
1301 
1302 	trace_sched_migrate_task(p, new_cpu);
1303 
1304 	if (task_cpu(p) != new_cpu) {
1305 		if (p->sched_class->migrate_task_rq)
1306 			p->sched_class->migrate_task_rq(p);
1307 		p->se.nr_migrations++;
1308 		perf_event_task_migrate(p);
1309 	}
1310 
1311 	__set_task_cpu(p, new_cpu);
1312 }
1313 
1314 static void __migrate_swap_task(struct task_struct *p, int cpu)
1315 {
1316 	if (task_on_rq_queued(p)) {
1317 		struct rq *src_rq, *dst_rq;
1318 
1319 		src_rq = task_rq(p);
1320 		dst_rq = cpu_rq(cpu);
1321 
1322 		p->on_rq = TASK_ON_RQ_MIGRATING;
1323 		deactivate_task(src_rq, p, 0);
1324 		set_task_cpu(p, cpu);
1325 		activate_task(dst_rq, p, 0);
1326 		p->on_rq = TASK_ON_RQ_QUEUED;
1327 		check_preempt_curr(dst_rq, p, 0);
1328 	} else {
1329 		/*
1330 		 * Task isn't running anymore; make it appear like we migrated
1331 		 * it before it went to sleep. This means on wakeup we make the
1332 		 * previous cpu our targer instead of where it really is.
1333 		 */
1334 		p->wake_cpu = cpu;
1335 	}
1336 }
1337 
1338 struct migration_swap_arg {
1339 	struct task_struct *src_task, *dst_task;
1340 	int src_cpu, dst_cpu;
1341 };
1342 
1343 static int migrate_swap_stop(void *data)
1344 {
1345 	struct migration_swap_arg *arg = data;
1346 	struct rq *src_rq, *dst_rq;
1347 	int ret = -EAGAIN;
1348 
1349 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1350 		return -EAGAIN;
1351 
1352 	src_rq = cpu_rq(arg->src_cpu);
1353 	dst_rq = cpu_rq(arg->dst_cpu);
1354 
1355 	double_raw_lock(&arg->src_task->pi_lock,
1356 			&arg->dst_task->pi_lock);
1357 	double_rq_lock(src_rq, dst_rq);
1358 
1359 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1360 		goto unlock;
1361 
1362 	if (task_cpu(arg->src_task) != arg->src_cpu)
1363 		goto unlock;
1364 
1365 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1366 		goto unlock;
1367 
1368 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1369 		goto unlock;
1370 
1371 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1372 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1373 
1374 	ret = 0;
1375 
1376 unlock:
1377 	double_rq_unlock(src_rq, dst_rq);
1378 	raw_spin_unlock(&arg->dst_task->pi_lock);
1379 	raw_spin_unlock(&arg->src_task->pi_lock);
1380 
1381 	return ret;
1382 }
1383 
1384 /*
1385  * Cross migrate two tasks
1386  */
1387 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1388 {
1389 	struct migration_swap_arg arg;
1390 	int ret = -EINVAL;
1391 
1392 	arg = (struct migration_swap_arg){
1393 		.src_task = cur,
1394 		.src_cpu = task_cpu(cur),
1395 		.dst_task = p,
1396 		.dst_cpu = task_cpu(p),
1397 	};
1398 
1399 	if (arg.src_cpu == arg.dst_cpu)
1400 		goto out;
1401 
1402 	/*
1403 	 * These three tests are all lockless; this is OK since all of them
1404 	 * will be re-checked with proper locks held further down the line.
1405 	 */
1406 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1407 		goto out;
1408 
1409 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1410 		goto out;
1411 
1412 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1413 		goto out;
1414 
1415 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1416 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1417 
1418 out:
1419 	return ret;
1420 }
1421 
1422 /*
1423  * wait_task_inactive - wait for a thread to unschedule.
1424  *
1425  * If @match_state is nonzero, it's the @p->state value just checked and
1426  * not expected to change.  If it changes, i.e. @p might have woken up,
1427  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1428  * we return a positive number (its total switch count).  If a second call
1429  * a short while later returns the same number, the caller can be sure that
1430  * @p has remained unscheduled the whole time.
1431  *
1432  * The caller must ensure that the task *will* unschedule sometime soon,
1433  * else this function might spin for a *long* time. This function can't
1434  * be called with interrupts off, or it may introduce deadlock with
1435  * smp_call_function() if an IPI is sent by the same process we are
1436  * waiting to become inactive.
1437  */
1438 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1439 {
1440 	unsigned long flags;
1441 	int running, queued;
1442 	unsigned long ncsw;
1443 	struct rq *rq;
1444 
1445 	for (;;) {
1446 		/*
1447 		 * We do the initial early heuristics without holding
1448 		 * any task-queue locks at all. We'll only try to get
1449 		 * the runqueue lock when things look like they will
1450 		 * work out!
1451 		 */
1452 		rq = task_rq(p);
1453 
1454 		/*
1455 		 * If the task is actively running on another CPU
1456 		 * still, just relax and busy-wait without holding
1457 		 * any locks.
1458 		 *
1459 		 * NOTE! Since we don't hold any locks, it's not
1460 		 * even sure that "rq" stays as the right runqueue!
1461 		 * But we don't care, since "task_running()" will
1462 		 * return false if the runqueue has changed and p
1463 		 * is actually now running somewhere else!
1464 		 */
1465 		while (task_running(rq, p)) {
1466 			if (match_state && unlikely(p->state != match_state))
1467 				return 0;
1468 			cpu_relax();
1469 		}
1470 
1471 		/*
1472 		 * Ok, time to look more closely! We need the rq
1473 		 * lock now, to be *sure*. If we're wrong, we'll
1474 		 * just go back and repeat.
1475 		 */
1476 		rq = task_rq_lock(p, &flags);
1477 		trace_sched_wait_task(p);
1478 		running = task_running(rq, p);
1479 		queued = task_on_rq_queued(p);
1480 		ncsw = 0;
1481 		if (!match_state || p->state == match_state)
1482 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1483 		task_rq_unlock(rq, p, &flags);
1484 
1485 		/*
1486 		 * If it changed from the expected state, bail out now.
1487 		 */
1488 		if (unlikely(!ncsw))
1489 			break;
1490 
1491 		/*
1492 		 * Was it really running after all now that we
1493 		 * checked with the proper locks actually held?
1494 		 *
1495 		 * Oops. Go back and try again..
1496 		 */
1497 		if (unlikely(running)) {
1498 			cpu_relax();
1499 			continue;
1500 		}
1501 
1502 		/*
1503 		 * It's not enough that it's not actively running,
1504 		 * it must be off the runqueue _entirely_, and not
1505 		 * preempted!
1506 		 *
1507 		 * So if it was still runnable (but just not actively
1508 		 * running right now), it's preempted, and we should
1509 		 * yield - it could be a while.
1510 		 */
1511 		if (unlikely(queued)) {
1512 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1513 
1514 			set_current_state(TASK_UNINTERRUPTIBLE);
1515 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1516 			continue;
1517 		}
1518 
1519 		/*
1520 		 * Ahh, all good. It wasn't running, and it wasn't
1521 		 * runnable, which means that it will never become
1522 		 * running in the future either. We're all done!
1523 		 */
1524 		break;
1525 	}
1526 
1527 	return ncsw;
1528 }
1529 
1530 /***
1531  * kick_process - kick a running thread to enter/exit the kernel
1532  * @p: the to-be-kicked thread
1533  *
1534  * Cause a process which is running on another CPU to enter
1535  * kernel-mode, without any delay. (to get signals handled.)
1536  *
1537  * NOTE: this function doesn't have to take the runqueue lock,
1538  * because all it wants to ensure is that the remote task enters
1539  * the kernel. If the IPI races and the task has been migrated
1540  * to another CPU then no harm is done and the purpose has been
1541  * achieved as well.
1542  */
1543 void kick_process(struct task_struct *p)
1544 {
1545 	int cpu;
1546 
1547 	preempt_disable();
1548 	cpu = task_cpu(p);
1549 	if ((cpu != smp_processor_id()) && task_curr(p))
1550 		smp_send_reschedule(cpu);
1551 	preempt_enable();
1552 }
1553 EXPORT_SYMBOL_GPL(kick_process);
1554 
1555 /*
1556  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1557  */
1558 static int select_fallback_rq(int cpu, struct task_struct *p)
1559 {
1560 	int nid = cpu_to_node(cpu);
1561 	const struct cpumask *nodemask = NULL;
1562 	enum { cpuset, possible, fail } state = cpuset;
1563 	int dest_cpu;
1564 
1565 	/*
1566 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1567 	 * will return -1. There is no cpu on the node, and we should
1568 	 * select the cpu on the other node.
1569 	 */
1570 	if (nid != -1) {
1571 		nodemask = cpumask_of_node(nid);
1572 
1573 		/* Look for allowed, online CPU in same node. */
1574 		for_each_cpu(dest_cpu, nodemask) {
1575 			if (!cpu_online(dest_cpu))
1576 				continue;
1577 			if (!cpu_active(dest_cpu))
1578 				continue;
1579 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1580 				return dest_cpu;
1581 		}
1582 	}
1583 
1584 	for (;;) {
1585 		/* Any allowed, online CPU? */
1586 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1587 			if (!cpu_online(dest_cpu))
1588 				continue;
1589 			if (!cpu_active(dest_cpu))
1590 				continue;
1591 			goto out;
1592 		}
1593 
1594 		/* No more Mr. Nice Guy. */
1595 		switch (state) {
1596 		case cpuset:
1597 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1598 				cpuset_cpus_allowed_fallback(p);
1599 				state = possible;
1600 				break;
1601 			}
1602 			/* fall-through */
1603 		case possible:
1604 			do_set_cpus_allowed(p, cpu_possible_mask);
1605 			state = fail;
1606 			break;
1607 
1608 		case fail:
1609 			BUG();
1610 			break;
1611 		}
1612 	}
1613 
1614 out:
1615 	if (state != cpuset) {
1616 		/*
1617 		 * Don't tell them about moving exiting tasks or
1618 		 * kernel threads (both mm NULL), since they never
1619 		 * leave kernel.
1620 		 */
1621 		if (p->mm && printk_ratelimit()) {
1622 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1623 					task_pid_nr(p), p->comm, cpu);
1624 		}
1625 	}
1626 
1627 	return dest_cpu;
1628 }
1629 
1630 /*
1631  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1632  */
1633 static inline
1634 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1635 {
1636 	lockdep_assert_held(&p->pi_lock);
1637 
1638 	if (p->nr_cpus_allowed > 1)
1639 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1640 
1641 	/*
1642 	 * In order not to call set_task_cpu() on a blocking task we need
1643 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1644 	 * cpu.
1645 	 *
1646 	 * Since this is common to all placement strategies, this lives here.
1647 	 *
1648 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1649 	 *   not worry about this generic constraint ]
1650 	 */
1651 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1652 		     !cpu_online(cpu)))
1653 		cpu = select_fallback_rq(task_cpu(p), p);
1654 
1655 	return cpu;
1656 }
1657 
1658 static void update_avg(u64 *avg, u64 sample)
1659 {
1660 	s64 diff = sample - *avg;
1661 	*avg += diff >> 3;
1662 }
1663 
1664 #else
1665 
1666 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1667 					 const struct cpumask *new_mask, bool check)
1668 {
1669 	return set_cpus_allowed_ptr(p, new_mask);
1670 }
1671 
1672 #endif /* CONFIG_SMP */
1673 
1674 static void
1675 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1676 {
1677 #ifdef CONFIG_SCHEDSTATS
1678 	struct rq *rq = this_rq();
1679 
1680 #ifdef CONFIG_SMP
1681 	int this_cpu = smp_processor_id();
1682 
1683 	if (cpu == this_cpu) {
1684 		schedstat_inc(rq, ttwu_local);
1685 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1686 	} else {
1687 		struct sched_domain *sd;
1688 
1689 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1690 		rcu_read_lock();
1691 		for_each_domain(this_cpu, sd) {
1692 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1693 				schedstat_inc(sd, ttwu_wake_remote);
1694 				break;
1695 			}
1696 		}
1697 		rcu_read_unlock();
1698 	}
1699 
1700 	if (wake_flags & WF_MIGRATED)
1701 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1702 
1703 #endif /* CONFIG_SMP */
1704 
1705 	schedstat_inc(rq, ttwu_count);
1706 	schedstat_inc(p, se.statistics.nr_wakeups);
1707 
1708 	if (wake_flags & WF_SYNC)
1709 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1710 
1711 #endif /* CONFIG_SCHEDSTATS */
1712 }
1713 
1714 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1715 {
1716 	activate_task(rq, p, en_flags);
1717 	p->on_rq = TASK_ON_RQ_QUEUED;
1718 
1719 	/* if a worker is waking up, notify workqueue */
1720 	if (p->flags & PF_WQ_WORKER)
1721 		wq_worker_waking_up(p, cpu_of(rq));
1722 }
1723 
1724 /*
1725  * Mark the task runnable and perform wakeup-preemption.
1726  */
1727 static void
1728 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1729 {
1730 	check_preempt_curr(rq, p, wake_flags);
1731 	p->state = TASK_RUNNING;
1732 	trace_sched_wakeup(p);
1733 
1734 #ifdef CONFIG_SMP
1735 	if (p->sched_class->task_woken) {
1736 		/*
1737 		 * Our task @p is fully woken up and running; so its safe to
1738 		 * drop the rq->lock, hereafter rq is only used for statistics.
1739 		 */
1740 		lockdep_unpin_lock(&rq->lock);
1741 		p->sched_class->task_woken(rq, p);
1742 		lockdep_pin_lock(&rq->lock);
1743 	}
1744 
1745 	if (rq->idle_stamp) {
1746 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1747 		u64 max = 2*rq->max_idle_balance_cost;
1748 
1749 		update_avg(&rq->avg_idle, delta);
1750 
1751 		if (rq->avg_idle > max)
1752 			rq->avg_idle = max;
1753 
1754 		rq->idle_stamp = 0;
1755 	}
1756 #endif
1757 }
1758 
1759 static void
1760 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1761 {
1762 	lockdep_assert_held(&rq->lock);
1763 
1764 #ifdef CONFIG_SMP
1765 	if (p->sched_contributes_to_load)
1766 		rq->nr_uninterruptible--;
1767 #endif
1768 
1769 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1770 	ttwu_do_wakeup(rq, p, wake_flags);
1771 }
1772 
1773 /*
1774  * Called in case the task @p isn't fully descheduled from its runqueue,
1775  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1776  * since all we need to do is flip p->state to TASK_RUNNING, since
1777  * the task is still ->on_rq.
1778  */
1779 static int ttwu_remote(struct task_struct *p, int wake_flags)
1780 {
1781 	struct rq *rq;
1782 	int ret = 0;
1783 
1784 	rq = __task_rq_lock(p);
1785 	if (task_on_rq_queued(p)) {
1786 		/* check_preempt_curr() may use rq clock */
1787 		update_rq_clock(rq);
1788 		ttwu_do_wakeup(rq, p, wake_flags);
1789 		ret = 1;
1790 	}
1791 	__task_rq_unlock(rq);
1792 
1793 	return ret;
1794 }
1795 
1796 #ifdef CONFIG_SMP
1797 void sched_ttwu_pending(void)
1798 {
1799 	struct rq *rq = this_rq();
1800 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1801 	struct task_struct *p;
1802 	unsigned long flags;
1803 
1804 	if (!llist)
1805 		return;
1806 
1807 	raw_spin_lock_irqsave(&rq->lock, flags);
1808 	lockdep_pin_lock(&rq->lock);
1809 
1810 	while (llist) {
1811 		p = llist_entry(llist, struct task_struct, wake_entry);
1812 		llist = llist_next(llist);
1813 		ttwu_do_activate(rq, p, 0);
1814 	}
1815 
1816 	lockdep_unpin_lock(&rq->lock);
1817 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1818 }
1819 
1820 void scheduler_ipi(void)
1821 {
1822 	/*
1823 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1824 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1825 	 * this IPI.
1826 	 */
1827 	preempt_fold_need_resched();
1828 
1829 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1830 		return;
1831 
1832 	/*
1833 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1834 	 * traditionally all their work was done from the interrupt return
1835 	 * path. Now that we actually do some work, we need to make sure
1836 	 * we do call them.
1837 	 *
1838 	 * Some archs already do call them, luckily irq_enter/exit nest
1839 	 * properly.
1840 	 *
1841 	 * Arguably we should visit all archs and update all handlers,
1842 	 * however a fair share of IPIs are still resched only so this would
1843 	 * somewhat pessimize the simple resched case.
1844 	 */
1845 	irq_enter();
1846 	sched_ttwu_pending();
1847 
1848 	/*
1849 	 * Check if someone kicked us for doing the nohz idle load balance.
1850 	 */
1851 	if (unlikely(got_nohz_idle_kick())) {
1852 		this_rq()->idle_balance = 1;
1853 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1854 	}
1855 	irq_exit();
1856 }
1857 
1858 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1859 {
1860 	struct rq *rq = cpu_rq(cpu);
1861 
1862 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1863 		if (!set_nr_if_polling(rq->idle))
1864 			smp_send_reschedule(cpu);
1865 		else
1866 			trace_sched_wake_idle_without_ipi(cpu);
1867 	}
1868 }
1869 
1870 void wake_up_if_idle(int cpu)
1871 {
1872 	struct rq *rq = cpu_rq(cpu);
1873 	unsigned long flags;
1874 
1875 	rcu_read_lock();
1876 
1877 	if (!is_idle_task(rcu_dereference(rq->curr)))
1878 		goto out;
1879 
1880 	if (set_nr_if_polling(rq->idle)) {
1881 		trace_sched_wake_idle_without_ipi(cpu);
1882 	} else {
1883 		raw_spin_lock_irqsave(&rq->lock, flags);
1884 		if (is_idle_task(rq->curr))
1885 			smp_send_reschedule(cpu);
1886 		/* Else cpu is not in idle, do nothing here */
1887 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1888 	}
1889 
1890 out:
1891 	rcu_read_unlock();
1892 }
1893 
1894 bool cpus_share_cache(int this_cpu, int that_cpu)
1895 {
1896 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1897 }
1898 #endif /* CONFIG_SMP */
1899 
1900 static void ttwu_queue(struct task_struct *p, int cpu)
1901 {
1902 	struct rq *rq = cpu_rq(cpu);
1903 
1904 #if defined(CONFIG_SMP)
1905 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1906 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1907 		ttwu_queue_remote(p, cpu);
1908 		return;
1909 	}
1910 #endif
1911 
1912 	raw_spin_lock(&rq->lock);
1913 	lockdep_pin_lock(&rq->lock);
1914 	ttwu_do_activate(rq, p, 0);
1915 	lockdep_unpin_lock(&rq->lock);
1916 	raw_spin_unlock(&rq->lock);
1917 }
1918 
1919 /*
1920  * Notes on Program-Order guarantees on SMP systems.
1921  *
1922  *  MIGRATION
1923  *
1924  * The basic program-order guarantee on SMP systems is that when a task [t]
1925  * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1926  * execution on its new cpu [c1].
1927  *
1928  * For migration (of runnable tasks) this is provided by the following means:
1929  *
1930  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1931  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1932  *     rq(c1)->lock (if not at the same time, then in that order).
1933  *  C) LOCK of the rq(c1)->lock scheduling in task
1934  *
1935  * Transitivity guarantees that B happens after A and C after B.
1936  * Note: we only require RCpc transitivity.
1937  * Note: the cpu doing B need not be c0 or c1
1938  *
1939  * Example:
1940  *
1941  *   CPU0            CPU1            CPU2
1942  *
1943  *   LOCK rq(0)->lock
1944  *   sched-out X
1945  *   sched-in Y
1946  *   UNLOCK rq(0)->lock
1947  *
1948  *                                   LOCK rq(0)->lock // orders against CPU0
1949  *                                   dequeue X
1950  *                                   UNLOCK rq(0)->lock
1951  *
1952  *                                   LOCK rq(1)->lock
1953  *                                   enqueue X
1954  *                                   UNLOCK rq(1)->lock
1955  *
1956  *                   LOCK rq(1)->lock // orders against CPU2
1957  *                   sched-out Z
1958  *                   sched-in X
1959  *                   UNLOCK rq(1)->lock
1960  *
1961  *
1962  *  BLOCKING -- aka. SLEEP + WAKEUP
1963  *
1964  * For blocking we (obviously) need to provide the same guarantee as for
1965  * migration. However the means are completely different as there is no lock
1966  * chain to provide order. Instead we do:
1967  *
1968  *   1) smp_store_release(X->on_cpu, 0)
1969  *   2) smp_cond_acquire(!X->on_cpu)
1970  *
1971  * Example:
1972  *
1973  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1974  *
1975  *   LOCK rq(0)->lock LOCK X->pi_lock
1976  *   dequeue X
1977  *   sched-out X
1978  *   smp_store_release(X->on_cpu, 0);
1979  *
1980  *                    smp_cond_acquire(!X->on_cpu);
1981  *                    X->state = WAKING
1982  *                    set_task_cpu(X,2)
1983  *
1984  *                    LOCK rq(2)->lock
1985  *                    enqueue X
1986  *                    X->state = RUNNING
1987  *                    UNLOCK rq(2)->lock
1988  *
1989  *                                          LOCK rq(2)->lock // orders against CPU1
1990  *                                          sched-out Z
1991  *                                          sched-in X
1992  *                                          UNLOCK rq(2)->lock
1993  *
1994  *                    UNLOCK X->pi_lock
1995  *   UNLOCK rq(0)->lock
1996  *
1997  *
1998  * However; for wakeups there is a second guarantee we must provide, namely we
1999  * must observe the state that lead to our wakeup. That is, not only must our
2000  * task observe its own prior state, it must also observe the stores prior to
2001  * its wakeup.
2002  *
2003  * This means that any means of doing remote wakeups must order the CPU doing
2004  * the wakeup against the CPU the task is going to end up running on. This,
2005  * however, is already required for the regular Program-Order guarantee above,
2006  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
2007  *
2008  */
2009 
2010 /**
2011  * try_to_wake_up - wake up a thread
2012  * @p: the thread to be awakened
2013  * @state: the mask of task states that can be woken
2014  * @wake_flags: wake modifier flags (WF_*)
2015  *
2016  * Put it on the run-queue if it's not already there. The "current"
2017  * thread is always on the run-queue (except when the actual
2018  * re-schedule is in progress), and as such you're allowed to do
2019  * the simpler "current->state = TASK_RUNNING" to mark yourself
2020  * runnable without the overhead of this.
2021  *
2022  * Return: %true if @p was woken up, %false if it was already running.
2023  * or @state didn't match @p's state.
2024  */
2025 static int
2026 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2027 {
2028 	unsigned long flags;
2029 	int cpu, success = 0;
2030 
2031 	/*
2032 	 * If we are going to wake up a thread waiting for CONDITION we
2033 	 * need to ensure that CONDITION=1 done by the caller can not be
2034 	 * reordered with p->state check below. This pairs with mb() in
2035 	 * set_current_state() the waiting thread does.
2036 	 */
2037 	smp_mb__before_spinlock();
2038 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2039 	if (!(p->state & state))
2040 		goto out;
2041 
2042 	trace_sched_waking(p);
2043 
2044 	success = 1; /* we're going to change ->state */
2045 	cpu = task_cpu(p);
2046 
2047 	if (p->on_rq && ttwu_remote(p, wake_flags))
2048 		goto stat;
2049 
2050 #ifdef CONFIG_SMP
2051 	/*
2052 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2053 	 * possible to, falsely, observe p->on_cpu == 0.
2054 	 *
2055 	 * One must be running (->on_cpu == 1) in order to remove oneself
2056 	 * from the runqueue.
2057 	 *
2058 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2059 	 *      UNLOCK rq->lock
2060 	 *			RMB
2061 	 *      LOCK   rq->lock
2062 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2063 	 *
2064 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2065 	 * from the consecutive calls to schedule(); the first switching to our
2066 	 * task, the second putting it to sleep.
2067 	 */
2068 	smp_rmb();
2069 
2070 	/*
2071 	 * If the owning (remote) cpu is still in the middle of schedule() with
2072 	 * this task as prev, wait until its done referencing the task.
2073 	 *
2074 	 * Pairs with the smp_store_release() in finish_lock_switch().
2075 	 *
2076 	 * This ensures that tasks getting woken will be fully ordered against
2077 	 * their previous state and preserve Program Order.
2078 	 */
2079 	smp_cond_acquire(!p->on_cpu);
2080 
2081 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2082 	p->state = TASK_WAKING;
2083 
2084 	if (p->sched_class->task_waking)
2085 		p->sched_class->task_waking(p);
2086 
2087 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2088 	if (task_cpu(p) != cpu) {
2089 		wake_flags |= WF_MIGRATED;
2090 		set_task_cpu(p, cpu);
2091 	}
2092 #endif /* CONFIG_SMP */
2093 
2094 	ttwu_queue(p, cpu);
2095 stat:
2096 	ttwu_stat(p, cpu, wake_flags);
2097 out:
2098 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2099 
2100 	return success;
2101 }
2102 
2103 /**
2104  * try_to_wake_up_local - try to wake up a local task with rq lock held
2105  * @p: the thread to be awakened
2106  *
2107  * Put @p on the run-queue if it's not already there. The caller must
2108  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2109  * the current task.
2110  */
2111 static void try_to_wake_up_local(struct task_struct *p)
2112 {
2113 	struct rq *rq = task_rq(p);
2114 
2115 	if (WARN_ON_ONCE(rq != this_rq()) ||
2116 	    WARN_ON_ONCE(p == current))
2117 		return;
2118 
2119 	lockdep_assert_held(&rq->lock);
2120 
2121 	if (!raw_spin_trylock(&p->pi_lock)) {
2122 		/*
2123 		 * This is OK, because current is on_cpu, which avoids it being
2124 		 * picked for load-balance and preemption/IRQs are still
2125 		 * disabled avoiding further scheduler activity on it and we've
2126 		 * not yet picked a replacement task.
2127 		 */
2128 		lockdep_unpin_lock(&rq->lock);
2129 		raw_spin_unlock(&rq->lock);
2130 		raw_spin_lock(&p->pi_lock);
2131 		raw_spin_lock(&rq->lock);
2132 		lockdep_pin_lock(&rq->lock);
2133 	}
2134 
2135 	if (!(p->state & TASK_NORMAL))
2136 		goto out;
2137 
2138 	trace_sched_waking(p);
2139 
2140 	if (!task_on_rq_queued(p))
2141 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2142 
2143 	ttwu_do_wakeup(rq, p, 0);
2144 	ttwu_stat(p, smp_processor_id(), 0);
2145 out:
2146 	raw_spin_unlock(&p->pi_lock);
2147 }
2148 
2149 /**
2150  * wake_up_process - Wake up a specific process
2151  * @p: The process to be woken up.
2152  *
2153  * Attempt to wake up the nominated process and move it to the set of runnable
2154  * processes.
2155  *
2156  * Return: 1 if the process was woken up, 0 if it was already running.
2157  *
2158  * It may be assumed that this function implies a write memory barrier before
2159  * changing the task state if and only if any tasks are woken up.
2160  */
2161 int wake_up_process(struct task_struct *p)
2162 {
2163 	return try_to_wake_up(p, TASK_NORMAL, 0);
2164 }
2165 EXPORT_SYMBOL(wake_up_process);
2166 
2167 int wake_up_state(struct task_struct *p, unsigned int state)
2168 {
2169 	return try_to_wake_up(p, state, 0);
2170 }
2171 
2172 /*
2173  * This function clears the sched_dl_entity static params.
2174  */
2175 void __dl_clear_params(struct task_struct *p)
2176 {
2177 	struct sched_dl_entity *dl_se = &p->dl;
2178 
2179 	dl_se->dl_runtime = 0;
2180 	dl_se->dl_deadline = 0;
2181 	dl_se->dl_period = 0;
2182 	dl_se->flags = 0;
2183 	dl_se->dl_bw = 0;
2184 
2185 	dl_se->dl_throttled = 0;
2186 	dl_se->dl_new = 1;
2187 	dl_se->dl_yielded = 0;
2188 }
2189 
2190 /*
2191  * Perform scheduler related setup for a newly forked process p.
2192  * p is forked by current.
2193  *
2194  * __sched_fork() is basic setup used by init_idle() too:
2195  */
2196 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2197 {
2198 	p->on_rq			= 0;
2199 
2200 	p->se.on_rq			= 0;
2201 	p->se.exec_start		= 0;
2202 	p->se.sum_exec_runtime		= 0;
2203 	p->se.prev_sum_exec_runtime	= 0;
2204 	p->se.nr_migrations		= 0;
2205 	p->se.vruntime			= 0;
2206 	INIT_LIST_HEAD(&p->se.group_node);
2207 
2208 #ifdef CONFIG_FAIR_GROUP_SCHED
2209 	p->se.cfs_rq			= NULL;
2210 #endif
2211 
2212 #ifdef CONFIG_SCHEDSTATS
2213 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2214 #endif
2215 
2216 	RB_CLEAR_NODE(&p->dl.rb_node);
2217 	init_dl_task_timer(&p->dl);
2218 	__dl_clear_params(p);
2219 
2220 	INIT_LIST_HEAD(&p->rt.run_list);
2221 
2222 #ifdef CONFIG_PREEMPT_NOTIFIERS
2223 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2224 #endif
2225 
2226 #ifdef CONFIG_NUMA_BALANCING
2227 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2228 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2229 		p->mm->numa_scan_seq = 0;
2230 	}
2231 
2232 	if (clone_flags & CLONE_VM)
2233 		p->numa_preferred_nid = current->numa_preferred_nid;
2234 	else
2235 		p->numa_preferred_nid = -1;
2236 
2237 	p->node_stamp = 0ULL;
2238 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2239 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2240 	p->numa_work.next = &p->numa_work;
2241 	p->numa_faults = NULL;
2242 	p->last_task_numa_placement = 0;
2243 	p->last_sum_exec_runtime = 0;
2244 
2245 	p->numa_group = NULL;
2246 #endif /* CONFIG_NUMA_BALANCING */
2247 }
2248 
2249 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2250 
2251 #ifdef CONFIG_NUMA_BALANCING
2252 
2253 void set_numabalancing_state(bool enabled)
2254 {
2255 	if (enabled)
2256 		static_branch_enable(&sched_numa_balancing);
2257 	else
2258 		static_branch_disable(&sched_numa_balancing);
2259 }
2260 
2261 #ifdef CONFIG_PROC_SYSCTL
2262 int sysctl_numa_balancing(struct ctl_table *table, int write,
2263 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2264 {
2265 	struct ctl_table t;
2266 	int err;
2267 	int state = static_branch_likely(&sched_numa_balancing);
2268 
2269 	if (write && !capable(CAP_SYS_ADMIN))
2270 		return -EPERM;
2271 
2272 	t = *table;
2273 	t.data = &state;
2274 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2275 	if (err < 0)
2276 		return err;
2277 	if (write)
2278 		set_numabalancing_state(state);
2279 	return err;
2280 }
2281 #endif
2282 #endif
2283 
2284 /*
2285  * fork()/clone()-time setup:
2286  */
2287 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2288 {
2289 	unsigned long flags;
2290 	int cpu = get_cpu();
2291 
2292 	__sched_fork(clone_flags, p);
2293 	/*
2294 	 * We mark the process as running here. This guarantees that
2295 	 * nobody will actually run it, and a signal or other external
2296 	 * event cannot wake it up and insert it on the runqueue either.
2297 	 */
2298 	p->state = TASK_RUNNING;
2299 
2300 	/*
2301 	 * Make sure we do not leak PI boosting priority to the child.
2302 	 */
2303 	p->prio = current->normal_prio;
2304 
2305 	/*
2306 	 * Revert to default priority/policy on fork if requested.
2307 	 */
2308 	if (unlikely(p->sched_reset_on_fork)) {
2309 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2310 			p->policy = SCHED_NORMAL;
2311 			p->static_prio = NICE_TO_PRIO(0);
2312 			p->rt_priority = 0;
2313 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2314 			p->static_prio = NICE_TO_PRIO(0);
2315 
2316 		p->prio = p->normal_prio = __normal_prio(p);
2317 		set_load_weight(p);
2318 
2319 		/*
2320 		 * We don't need the reset flag anymore after the fork. It has
2321 		 * fulfilled its duty:
2322 		 */
2323 		p->sched_reset_on_fork = 0;
2324 	}
2325 
2326 	if (dl_prio(p->prio)) {
2327 		put_cpu();
2328 		return -EAGAIN;
2329 	} else if (rt_prio(p->prio)) {
2330 		p->sched_class = &rt_sched_class;
2331 	} else {
2332 		p->sched_class = &fair_sched_class;
2333 	}
2334 
2335 	if (p->sched_class->task_fork)
2336 		p->sched_class->task_fork(p);
2337 
2338 	/*
2339 	 * The child is not yet in the pid-hash so no cgroup attach races,
2340 	 * and the cgroup is pinned to this child due to cgroup_fork()
2341 	 * is ran before sched_fork().
2342 	 *
2343 	 * Silence PROVE_RCU.
2344 	 */
2345 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2346 	set_task_cpu(p, cpu);
2347 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2348 
2349 #ifdef CONFIG_SCHED_INFO
2350 	if (likely(sched_info_on()))
2351 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2352 #endif
2353 #if defined(CONFIG_SMP)
2354 	p->on_cpu = 0;
2355 #endif
2356 	init_task_preempt_count(p);
2357 #ifdef CONFIG_SMP
2358 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2359 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2360 #endif
2361 
2362 	put_cpu();
2363 	return 0;
2364 }
2365 
2366 unsigned long to_ratio(u64 period, u64 runtime)
2367 {
2368 	if (runtime == RUNTIME_INF)
2369 		return 1ULL << 20;
2370 
2371 	/*
2372 	 * Doing this here saves a lot of checks in all
2373 	 * the calling paths, and returning zero seems
2374 	 * safe for them anyway.
2375 	 */
2376 	if (period == 0)
2377 		return 0;
2378 
2379 	return div64_u64(runtime << 20, period);
2380 }
2381 
2382 #ifdef CONFIG_SMP
2383 inline struct dl_bw *dl_bw_of(int i)
2384 {
2385 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2386 			 "sched RCU must be held");
2387 	return &cpu_rq(i)->rd->dl_bw;
2388 }
2389 
2390 static inline int dl_bw_cpus(int i)
2391 {
2392 	struct root_domain *rd = cpu_rq(i)->rd;
2393 	int cpus = 0;
2394 
2395 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2396 			 "sched RCU must be held");
2397 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2398 		cpus++;
2399 
2400 	return cpus;
2401 }
2402 #else
2403 inline struct dl_bw *dl_bw_of(int i)
2404 {
2405 	return &cpu_rq(i)->dl.dl_bw;
2406 }
2407 
2408 static inline int dl_bw_cpus(int i)
2409 {
2410 	return 1;
2411 }
2412 #endif
2413 
2414 /*
2415  * We must be sure that accepting a new task (or allowing changing the
2416  * parameters of an existing one) is consistent with the bandwidth
2417  * constraints. If yes, this function also accordingly updates the currently
2418  * allocated bandwidth to reflect the new situation.
2419  *
2420  * This function is called while holding p's rq->lock.
2421  *
2422  * XXX we should delay bw change until the task's 0-lag point, see
2423  * __setparam_dl().
2424  */
2425 static int dl_overflow(struct task_struct *p, int policy,
2426 		       const struct sched_attr *attr)
2427 {
2428 
2429 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2430 	u64 period = attr->sched_period ?: attr->sched_deadline;
2431 	u64 runtime = attr->sched_runtime;
2432 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2433 	int cpus, err = -1;
2434 
2435 	if (new_bw == p->dl.dl_bw)
2436 		return 0;
2437 
2438 	/*
2439 	 * Either if a task, enters, leave, or stays -deadline but changes
2440 	 * its parameters, we may need to update accordingly the total
2441 	 * allocated bandwidth of the container.
2442 	 */
2443 	raw_spin_lock(&dl_b->lock);
2444 	cpus = dl_bw_cpus(task_cpu(p));
2445 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2446 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2447 		__dl_add(dl_b, new_bw);
2448 		err = 0;
2449 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2450 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2451 		__dl_clear(dl_b, p->dl.dl_bw);
2452 		__dl_add(dl_b, new_bw);
2453 		err = 0;
2454 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2455 		__dl_clear(dl_b, p->dl.dl_bw);
2456 		err = 0;
2457 	}
2458 	raw_spin_unlock(&dl_b->lock);
2459 
2460 	return err;
2461 }
2462 
2463 extern void init_dl_bw(struct dl_bw *dl_b);
2464 
2465 /*
2466  * wake_up_new_task - wake up a newly created task for the first time.
2467  *
2468  * This function will do some initial scheduler statistics housekeeping
2469  * that must be done for every newly created context, then puts the task
2470  * on the runqueue and wakes it.
2471  */
2472 void wake_up_new_task(struct task_struct *p)
2473 {
2474 	unsigned long flags;
2475 	struct rq *rq;
2476 
2477 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2478 	/* Initialize new task's runnable average */
2479 	init_entity_runnable_average(&p->se);
2480 #ifdef CONFIG_SMP
2481 	/*
2482 	 * Fork balancing, do it here and not earlier because:
2483 	 *  - cpus_allowed can change in the fork path
2484 	 *  - any previously selected cpu might disappear through hotplug
2485 	 */
2486 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2487 #endif
2488 
2489 	rq = __task_rq_lock(p);
2490 	activate_task(rq, p, 0);
2491 	p->on_rq = TASK_ON_RQ_QUEUED;
2492 	trace_sched_wakeup_new(p);
2493 	check_preempt_curr(rq, p, WF_FORK);
2494 #ifdef CONFIG_SMP
2495 	if (p->sched_class->task_woken) {
2496 		/*
2497 		 * Nothing relies on rq->lock after this, so its fine to
2498 		 * drop it.
2499 		 */
2500 		lockdep_unpin_lock(&rq->lock);
2501 		p->sched_class->task_woken(rq, p);
2502 		lockdep_pin_lock(&rq->lock);
2503 	}
2504 #endif
2505 	task_rq_unlock(rq, p, &flags);
2506 }
2507 
2508 #ifdef CONFIG_PREEMPT_NOTIFIERS
2509 
2510 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2511 
2512 void preempt_notifier_inc(void)
2513 {
2514 	static_key_slow_inc(&preempt_notifier_key);
2515 }
2516 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2517 
2518 void preempt_notifier_dec(void)
2519 {
2520 	static_key_slow_dec(&preempt_notifier_key);
2521 }
2522 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2523 
2524 /**
2525  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2526  * @notifier: notifier struct to register
2527  */
2528 void preempt_notifier_register(struct preempt_notifier *notifier)
2529 {
2530 	if (!static_key_false(&preempt_notifier_key))
2531 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2532 
2533 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2534 }
2535 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2536 
2537 /**
2538  * preempt_notifier_unregister - no longer interested in preemption notifications
2539  * @notifier: notifier struct to unregister
2540  *
2541  * This is *not* safe to call from within a preemption notifier.
2542  */
2543 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2544 {
2545 	hlist_del(&notifier->link);
2546 }
2547 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2548 
2549 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2550 {
2551 	struct preempt_notifier *notifier;
2552 
2553 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2554 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2555 }
2556 
2557 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2558 {
2559 	if (static_key_false(&preempt_notifier_key))
2560 		__fire_sched_in_preempt_notifiers(curr);
2561 }
2562 
2563 static void
2564 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2565 				   struct task_struct *next)
2566 {
2567 	struct preempt_notifier *notifier;
2568 
2569 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2570 		notifier->ops->sched_out(notifier, next);
2571 }
2572 
2573 static __always_inline void
2574 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2575 				 struct task_struct *next)
2576 {
2577 	if (static_key_false(&preempt_notifier_key))
2578 		__fire_sched_out_preempt_notifiers(curr, next);
2579 }
2580 
2581 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2582 
2583 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2584 {
2585 }
2586 
2587 static inline void
2588 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2589 				 struct task_struct *next)
2590 {
2591 }
2592 
2593 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2594 
2595 /**
2596  * prepare_task_switch - prepare to switch tasks
2597  * @rq: the runqueue preparing to switch
2598  * @prev: the current task that is being switched out
2599  * @next: the task we are going to switch to.
2600  *
2601  * This is called with the rq lock held and interrupts off. It must
2602  * be paired with a subsequent finish_task_switch after the context
2603  * switch.
2604  *
2605  * prepare_task_switch sets up locking and calls architecture specific
2606  * hooks.
2607  */
2608 static inline void
2609 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2610 		    struct task_struct *next)
2611 {
2612 	sched_info_switch(rq, prev, next);
2613 	perf_event_task_sched_out(prev, next);
2614 	fire_sched_out_preempt_notifiers(prev, next);
2615 	prepare_lock_switch(rq, next);
2616 	prepare_arch_switch(next);
2617 }
2618 
2619 /**
2620  * finish_task_switch - clean up after a task-switch
2621  * @prev: the thread we just switched away from.
2622  *
2623  * finish_task_switch must be called after the context switch, paired
2624  * with a prepare_task_switch call before the context switch.
2625  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2626  * and do any other architecture-specific cleanup actions.
2627  *
2628  * Note that we may have delayed dropping an mm in context_switch(). If
2629  * so, we finish that here outside of the runqueue lock. (Doing it
2630  * with the lock held can cause deadlocks; see schedule() for
2631  * details.)
2632  *
2633  * The context switch have flipped the stack from under us and restored the
2634  * local variables which were saved when this task called schedule() in the
2635  * past. prev == current is still correct but we need to recalculate this_rq
2636  * because prev may have moved to another CPU.
2637  */
2638 static struct rq *finish_task_switch(struct task_struct *prev)
2639 	__releases(rq->lock)
2640 {
2641 	struct rq *rq = this_rq();
2642 	struct mm_struct *mm = rq->prev_mm;
2643 	long prev_state;
2644 
2645 	/*
2646 	 * The previous task will have left us with a preempt_count of 2
2647 	 * because it left us after:
2648 	 *
2649 	 *	schedule()
2650 	 *	  preempt_disable();			// 1
2651 	 *	  __schedule()
2652 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2653 	 *
2654 	 * Also, see FORK_PREEMPT_COUNT.
2655 	 */
2656 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2657 		      "corrupted preempt_count: %s/%d/0x%x\n",
2658 		      current->comm, current->pid, preempt_count()))
2659 		preempt_count_set(FORK_PREEMPT_COUNT);
2660 
2661 	rq->prev_mm = NULL;
2662 
2663 	/*
2664 	 * A task struct has one reference for the use as "current".
2665 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2666 	 * schedule one last time. The schedule call will never return, and
2667 	 * the scheduled task must drop that reference.
2668 	 *
2669 	 * We must observe prev->state before clearing prev->on_cpu (in
2670 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2671 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2672 	 * transition, resulting in a double drop.
2673 	 */
2674 	prev_state = prev->state;
2675 	vtime_task_switch(prev);
2676 	perf_event_task_sched_in(prev, current);
2677 	finish_lock_switch(rq, prev);
2678 	finish_arch_post_lock_switch();
2679 
2680 	fire_sched_in_preempt_notifiers(current);
2681 	if (mm)
2682 		mmdrop(mm);
2683 	if (unlikely(prev_state == TASK_DEAD)) {
2684 		if (prev->sched_class->task_dead)
2685 			prev->sched_class->task_dead(prev);
2686 
2687 		/*
2688 		 * Remove function-return probe instances associated with this
2689 		 * task and put them back on the free list.
2690 		 */
2691 		kprobe_flush_task(prev);
2692 		put_task_struct(prev);
2693 	}
2694 
2695 	tick_nohz_task_switch();
2696 	return rq;
2697 }
2698 
2699 #ifdef CONFIG_SMP
2700 
2701 /* rq->lock is NOT held, but preemption is disabled */
2702 static void __balance_callback(struct rq *rq)
2703 {
2704 	struct callback_head *head, *next;
2705 	void (*func)(struct rq *rq);
2706 	unsigned long flags;
2707 
2708 	raw_spin_lock_irqsave(&rq->lock, flags);
2709 	head = rq->balance_callback;
2710 	rq->balance_callback = NULL;
2711 	while (head) {
2712 		func = (void (*)(struct rq *))head->func;
2713 		next = head->next;
2714 		head->next = NULL;
2715 		head = next;
2716 
2717 		func(rq);
2718 	}
2719 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2720 }
2721 
2722 static inline void balance_callback(struct rq *rq)
2723 {
2724 	if (unlikely(rq->balance_callback))
2725 		__balance_callback(rq);
2726 }
2727 
2728 #else
2729 
2730 static inline void balance_callback(struct rq *rq)
2731 {
2732 }
2733 
2734 #endif
2735 
2736 /**
2737  * schedule_tail - first thing a freshly forked thread must call.
2738  * @prev: the thread we just switched away from.
2739  */
2740 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2741 	__releases(rq->lock)
2742 {
2743 	struct rq *rq;
2744 
2745 	/*
2746 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2747 	 * finish_task_switch() for details.
2748 	 *
2749 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2750 	 * and the preempt_enable() will end up enabling preemption (on
2751 	 * PREEMPT_COUNT kernels).
2752 	 */
2753 
2754 	rq = finish_task_switch(prev);
2755 	balance_callback(rq);
2756 	preempt_enable();
2757 
2758 	if (current->set_child_tid)
2759 		put_user(task_pid_vnr(current), current->set_child_tid);
2760 }
2761 
2762 /*
2763  * context_switch - switch to the new MM and the new thread's register state.
2764  */
2765 static inline struct rq *
2766 context_switch(struct rq *rq, struct task_struct *prev,
2767 	       struct task_struct *next)
2768 {
2769 	struct mm_struct *mm, *oldmm;
2770 
2771 	prepare_task_switch(rq, prev, next);
2772 
2773 	mm = next->mm;
2774 	oldmm = prev->active_mm;
2775 	/*
2776 	 * For paravirt, this is coupled with an exit in switch_to to
2777 	 * combine the page table reload and the switch backend into
2778 	 * one hypercall.
2779 	 */
2780 	arch_start_context_switch(prev);
2781 
2782 	if (!mm) {
2783 		next->active_mm = oldmm;
2784 		atomic_inc(&oldmm->mm_count);
2785 		enter_lazy_tlb(oldmm, next);
2786 	} else
2787 		switch_mm(oldmm, mm, next);
2788 
2789 	if (!prev->mm) {
2790 		prev->active_mm = NULL;
2791 		rq->prev_mm = oldmm;
2792 	}
2793 	/*
2794 	 * Since the runqueue lock will be released by the next
2795 	 * task (which is an invalid locking op but in the case
2796 	 * of the scheduler it's an obvious special-case), so we
2797 	 * do an early lockdep release here:
2798 	 */
2799 	lockdep_unpin_lock(&rq->lock);
2800 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2801 
2802 	/* Here we just switch the register state and the stack. */
2803 	switch_to(prev, next, prev);
2804 	barrier();
2805 
2806 	return finish_task_switch(prev);
2807 }
2808 
2809 /*
2810  * nr_running and nr_context_switches:
2811  *
2812  * externally visible scheduler statistics: current number of runnable
2813  * threads, total number of context switches performed since bootup.
2814  */
2815 unsigned long nr_running(void)
2816 {
2817 	unsigned long i, sum = 0;
2818 
2819 	for_each_online_cpu(i)
2820 		sum += cpu_rq(i)->nr_running;
2821 
2822 	return sum;
2823 }
2824 
2825 /*
2826  * Check if only the current task is running on the cpu.
2827  *
2828  * Caution: this function does not check that the caller has disabled
2829  * preemption, thus the result might have a time-of-check-to-time-of-use
2830  * race.  The caller is responsible to use it correctly, for example:
2831  *
2832  * - from a non-preemptable section (of course)
2833  *
2834  * - from a thread that is bound to a single CPU
2835  *
2836  * - in a loop with very short iterations (e.g. a polling loop)
2837  */
2838 bool single_task_running(void)
2839 {
2840 	return raw_rq()->nr_running == 1;
2841 }
2842 EXPORT_SYMBOL(single_task_running);
2843 
2844 unsigned long long nr_context_switches(void)
2845 {
2846 	int i;
2847 	unsigned long long sum = 0;
2848 
2849 	for_each_possible_cpu(i)
2850 		sum += cpu_rq(i)->nr_switches;
2851 
2852 	return sum;
2853 }
2854 
2855 unsigned long nr_iowait(void)
2856 {
2857 	unsigned long i, sum = 0;
2858 
2859 	for_each_possible_cpu(i)
2860 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2861 
2862 	return sum;
2863 }
2864 
2865 unsigned long nr_iowait_cpu(int cpu)
2866 {
2867 	struct rq *this = cpu_rq(cpu);
2868 	return atomic_read(&this->nr_iowait);
2869 }
2870 
2871 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2872 {
2873 	struct rq *rq = this_rq();
2874 	*nr_waiters = atomic_read(&rq->nr_iowait);
2875 	*load = rq->load.weight;
2876 }
2877 
2878 #ifdef CONFIG_SMP
2879 
2880 /*
2881  * sched_exec - execve() is a valuable balancing opportunity, because at
2882  * this point the task has the smallest effective memory and cache footprint.
2883  */
2884 void sched_exec(void)
2885 {
2886 	struct task_struct *p = current;
2887 	unsigned long flags;
2888 	int dest_cpu;
2889 
2890 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2891 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2892 	if (dest_cpu == smp_processor_id())
2893 		goto unlock;
2894 
2895 	if (likely(cpu_active(dest_cpu))) {
2896 		struct migration_arg arg = { p, dest_cpu };
2897 
2898 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2899 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2900 		return;
2901 	}
2902 unlock:
2903 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2904 }
2905 
2906 #endif
2907 
2908 DEFINE_PER_CPU(struct kernel_stat, kstat);
2909 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2910 
2911 EXPORT_PER_CPU_SYMBOL(kstat);
2912 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2913 
2914 /*
2915  * Return accounted runtime for the task.
2916  * In case the task is currently running, return the runtime plus current's
2917  * pending runtime that have not been accounted yet.
2918  */
2919 unsigned long long task_sched_runtime(struct task_struct *p)
2920 {
2921 	unsigned long flags;
2922 	struct rq *rq;
2923 	u64 ns;
2924 
2925 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2926 	/*
2927 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2928 	 * So we have a optimization chance when the task's delta_exec is 0.
2929 	 * Reading ->on_cpu is racy, but this is ok.
2930 	 *
2931 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2932 	 * If we race with it entering cpu, unaccounted time is 0. This is
2933 	 * indistinguishable from the read occurring a few cycles earlier.
2934 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2935 	 * been accounted, so we're correct here as well.
2936 	 */
2937 	if (!p->on_cpu || !task_on_rq_queued(p))
2938 		return p->se.sum_exec_runtime;
2939 #endif
2940 
2941 	rq = task_rq_lock(p, &flags);
2942 	/*
2943 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2944 	 * project cycles that may never be accounted to this
2945 	 * thread, breaking clock_gettime().
2946 	 */
2947 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2948 		update_rq_clock(rq);
2949 		p->sched_class->update_curr(rq);
2950 	}
2951 	ns = p->se.sum_exec_runtime;
2952 	task_rq_unlock(rq, p, &flags);
2953 
2954 	return ns;
2955 }
2956 
2957 /*
2958  * This function gets called by the timer code, with HZ frequency.
2959  * We call it with interrupts disabled.
2960  */
2961 void scheduler_tick(void)
2962 {
2963 	int cpu = smp_processor_id();
2964 	struct rq *rq = cpu_rq(cpu);
2965 	struct task_struct *curr = rq->curr;
2966 
2967 	sched_clock_tick();
2968 
2969 	raw_spin_lock(&rq->lock);
2970 	update_rq_clock(rq);
2971 	curr->sched_class->task_tick(rq, curr, 0);
2972 	update_cpu_load_active(rq);
2973 	calc_global_load_tick(rq);
2974 	raw_spin_unlock(&rq->lock);
2975 
2976 	perf_event_task_tick();
2977 
2978 #ifdef CONFIG_SMP
2979 	rq->idle_balance = idle_cpu(cpu);
2980 	trigger_load_balance(rq);
2981 #endif
2982 	rq_last_tick_reset(rq);
2983 }
2984 
2985 #ifdef CONFIG_NO_HZ_FULL
2986 /**
2987  * scheduler_tick_max_deferment
2988  *
2989  * Keep at least one tick per second when a single
2990  * active task is running because the scheduler doesn't
2991  * yet completely support full dynticks environment.
2992  *
2993  * This makes sure that uptime, CFS vruntime, load
2994  * balancing, etc... continue to move forward, even
2995  * with a very low granularity.
2996  *
2997  * Return: Maximum deferment in nanoseconds.
2998  */
2999 u64 scheduler_tick_max_deferment(void)
3000 {
3001 	struct rq *rq = this_rq();
3002 	unsigned long next, now = READ_ONCE(jiffies);
3003 
3004 	next = rq->last_sched_tick + HZ;
3005 
3006 	if (time_before_eq(next, now))
3007 		return 0;
3008 
3009 	return jiffies_to_nsecs(next - now);
3010 }
3011 #endif
3012 
3013 notrace unsigned long get_parent_ip(unsigned long addr)
3014 {
3015 	if (in_lock_functions(addr)) {
3016 		addr = CALLER_ADDR2;
3017 		if (in_lock_functions(addr))
3018 			addr = CALLER_ADDR3;
3019 	}
3020 	return addr;
3021 }
3022 
3023 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3024 				defined(CONFIG_PREEMPT_TRACER))
3025 
3026 void preempt_count_add(int val)
3027 {
3028 #ifdef CONFIG_DEBUG_PREEMPT
3029 	/*
3030 	 * Underflow?
3031 	 */
3032 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3033 		return;
3034 #endif
3035 	__preempt_count_add(val);
3036 #ifdef CONFIG_DEBUG_PREEMPT
3037 	/*
3038 	 * Spinlock count overflowing soon?
3039 	 */
3040 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3041 				PREEMPT_MASK - 10);
3042 #endif
3043 	if (preempt_count() == val) {
3044 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
3045 #ifdef CONFIG_DEBUG_PREEMPT
3046 		current->preempt_disable_ip = ip;
3047 #endif
3048 		trace_preempt_off(CALLER_ADDR0, ip);
3049 	}
3050 }
3051 EXPORT_SYMBOL(preempt_count_add);
3052 NOKPROBE_SYMBOL(preempt_count_add);
3053 
3054 void preempt_count_sub(int val)
3055 {
3056 #ifdef CONFIG_DEBUG_PREEMPT
3057 	/*
3058 	 * Underflow?
3059 	 */
3060 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3061 		return;
3062 	/*
3063 	 * Is the spinlock portion underflowing?
3064 	 */
3065 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3066 			!(preempt_count() & PREEMPT_MASK)))
3067 		return;
3068 #endif
3069 
3070 	if (preempt_count() == val)
3071 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3072 	__preempt_count_sub(val);
3073 }
3074 EXPORT_SYMBOL(preempt_count_sub);
3075 NOKPROBE_SYMBOL(preempt_count_sub);
3076 
3077 #endif
3078 
3079 /*
3080  * Print scheduling while atomic bug:
3081  */
3082 static noinline void __schedule_bug(struct task_struct *prev)
3083 {
3084 	if (oops_in_progress)
3085 		return;
3086 
3087 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3088 		prev->comm, prev->pid, preempt_count());
3089 
3090 	debug_show_held_locks(prev);
3091 	print_modules();
3092 	if (irqs_disabled())
3093 		print_irqtrace_events(prev);
3094 #ifdef CONFIG_DEBUG_PREEMPT
3095 	if (in_atomic_preempt_off()) {
3096 		pr_err("Preemption disabled at:");
3097 		print_ip_sym(current->preempt_disable_ip);
3098 		pr_cont("\n");
3099 	}
3100 #endif
3101 	dump_stack();
3102 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3103 }
3104 
3105 /*
3106  * Various schedule()-time debugging checks and statistics:
3107  */
3108 static inline void schedule_debug(struct task_struct *prev)
3109 {
3110 #ifdef CONFIG_SCHED_STACK_END_CHECK
3111 	BUG_ON(task_stack_end_corrupted(prev));
3112 #endif
3113 
3114 	if (unlikely(in_atomic_preempt_off())) {
3115 		__schedule_bug(prev);
3116 		preempt_count_set(PREEMPT_DISABLED);
3117 	}
3118 	rcu_sleep_check();
3119 
3120 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3121 
3122 	schedstat_inc(this_rq(), sched_count);
3123 }
3124 
3125 /*
3126  * Pick up the highest-prio task:
3127  */
3128 static inline struct task_struct *
3129 pick_next_task(struct rq *rq, struct task_struct *prev)
3130 {
3131 	const struct sched_class *class = &fair_sched_class;
3132 	struct task_struct *p;
3133 
3134 	/*
3135 	 * Optimization: we know that if all tasks are in
3136 	 * the fair class we can call that function directly:
3137 	 */
3138 	if (likely(prev->sched_class == class &&
3139 		   rq->nr_running == rq->cfs.h_nr_running)) {
3140 		p = fair_sched_class.pick_next_task(rq, prev);
3141 		if (unlikely(p == RETRY_TASK))
3142 			goto again;
3143 
3144 		/* assumes fair_sched_class->next == idle_sched_class */
3145 		if (unlikely(!p))
3146 			p = idle_sched_class.pick_next_task(rq, prev);
3147 
3148 		return p;
3149 	}
3150 
3151 again:
3152 	for_each_class(class) {
3153 		p = class->pick_next_task(rq, prev);
3154 		if (p) {
3155 			if (unlikely(p == RETRY_TASK))
3156 				goto again;
3157 			return p;
3158 		}
3159 	}
3160 
3161 	BUG(); /* the idle class will always have a runnable task */
3162 }
3163 
3164 /*
3165  * __schedule() is the main scheduler function.
3166  *
3167  * The main means of driving the scheduler and thus entering this function are:
3168  *
3169  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3170  *
3171  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3172  *      paths. For example, see arch/x86/entry_64.S.
3173  *
3174  *      To drive preemption between tasks, the scheduler sets the flag in timer
3175  *      interrupt handler scheduler_tick().
3176  *
3177  *   3. Wakeups don't really cause entry into schedule(). They add a
3178  *      task to the run-queue and that's it.
3179  *
3180  *      Now, if the new task added to the run-queue preempts the current
3181  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3182  *      called on the nearest possible occasion:
3183  *
3184  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3185  *
3186  *         - in syscall or exception context, at the next outmost
3187  *           preempt_enable(). (this might be as soon as the wake_up()'s
3188  *           spin_unlock()!)
3189  *
3190  *         - in IRQ context, return from interrupt-handler to
3191  *           preemptible context
3192  *
3193  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3194  *         then at the next:
3195  *
3196  *          - cond_resched() call
3197  *          - explicit schedule() call
3198  *          - return from syscall or exception to user-space
3199  *          - return from interrupt-handler to user-space
3200  *
3201  * WARNING: must be called with preemption disabled!
3202  */
3203 static void __sched notrace __schedule(bool preempt)
3204 {
3205 	struct task_struct *prev, *next;
3206 	unsigned long *switch_count;
3207 	struct rq *rq;
3208 	int cpu;
3209 
3210 	cpu = smp_processor_id();
3211 	rq = cpu_rq(cpu);
3212 	prev = rq->curr;
3213 
3214 	/*
3215 	 * do_exit() calls schedule() with preemption disabled as an exception;
3216 	 * however we must fix that up, otherwise the next task will see an
3217 	 * inconsistent (higher) preempt count.
3218 	 *
3219 	 * It also avoids the below schedule_debug() test from complaining
3220 	 * about this.
3221 	 */
3222 	if (unlikely(prev->state == TASK_DEAD))
3223 		preempt_enable_no_resched_notrace();
3224 
3225 	schedule_debug(prev);
3226 
3227 	if (sched_feat(HRTICK))
3228 		hrtick_clear(rq);
3229 
3230 	local_irq_disable();
3231 	rcu_note_context_switch();
3232 
3233 	/*
3234 	 * Make sure that signal_pending_state()->signal_pending() below
3235 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3236 	 * done by the caller to avoid the race with signal_wake_up().
3237 	 */
3238 	smp_mb__before_spinlock();
3239 	raw_spin_lock(&rq->lock);
3240 	lockdep_pin_lock(&rq->lock);
3241 
3242 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3243 
3244 	switch_count = &prev->nivcsw;
3245 	if (!preempt && prev->state) {
3246 		if (unlikely(signal_pending_state(prev->state, prev))) {
3247 			prev->state = TASK_RUNNING;
3248 		} else {
3249 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3250 			prev->on_rq = 0;
3251 
3252 			/*
3253 			 * If a worker went to sleep, notify and ask workqueue
3254 			 * whether it wants to wake up a task to maintain
3255 			 * concurrency.
3256 			 */
3257 			if (prev->flags & PF_WQ_WORKER) {
3258 				struct task_struct *to_wakeup;
3259 
3260 				to_wakeup = wq_worker_sleeping(prev, cpu);
3261 				if (to_wakeup)
3262 					try_to_wake_up_local(to_wakeup);
3263 			}
3264 		}
3265 		switch_count = &prev->nvcsw;
3266 	}
3267 
3268 	if (task_on_rq_queued(prev))
3269 		update_rq_clock(rq);
3270 
3271 	next = pick_next_task(rq, prev);
3272 	clear_tsk_need_resched(prev);
3273 	clear_preempt_need_resched();
3274 	rq->clock_skip_update = 0;
3275 
3276 	if (likely(prev != next)) {
3277 		rq->nr_switches++;
3278 		rq->curr = next;
3279 		++*switch_count;
3280 
3281 		trace_sched_switch(preempt, prev, next);
3282 		rq = context_switch(rq, prev, next); /* unlocks the rq */
3283 		cpu = cpu_of(rq);
3284 	} else {
3285 		lockdep_unpin_lock(&rq->lock);
3286 		raw_spin_unlock_irq(&rq->lock);
3287 	}
3288 
3289 	balance_callback(rq);
3290 }
3291 
3292 static inline void sched_submit_work(struct task_struct *tsk)
3293 {
3294 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3295 		return;
3296 	/*
3297 	 * If we are going to sleep and we have plugged IO queued,
3298 	 * make sure to submit it to avoid deadlocks.
3299 	 */
3300 	if (blk_needs_flush_plug(tsk))
3301 		blk_schedule_flush_plug(tsk);
3302 }
3303 
3304 asmlinkage __visible void __sched schedule(void)
3305 {
3306 	struct task_struct *tsk = current;
3307 
3308 	sched_submit_work(tsk);
3309 	do {
3310 		preempt_disable();
3311 		__schedule(false);
3312 		sched_preempt_enable_no_resched();
3313 	} while (need_resched());
3314 }
3315 EXPORT_SYMBOL(schedule);
3316 
3317 #ifdef CONFIG_CONTEXT_TRACKING
3318 asmlinkage __visible void __sched schedule_user(void)
3319 {
3320 	/*
3321 	 * If we come here after a random call to set_need_resched(),
3322 	 * or we have been woken up remotely but the IPI has not yet arrived,
3323 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3324 	 * we find a better solution.
3325 	 *
3326 	 * NB: There are buggy callers of this function.  Ideally we
3327 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3328 	 * too frequently to make sense yet.
3329 	 */
3330 	enum ctx_state prev_state = exception_enter();
3331 	schedule();
3332 	exception_exit(prev_state);
3333 }
3334 #endif
3335 
3336 /**
3337  * schedule_preempt_disabled - called with preemption disabled
3338  *
3339  * Returns with preemption disabled. Note: preempt_count must be 1
3340  */
3341 void __sched schedule_preempt_disabled(void)
3342 {
3343 	sched_preempt_enable_no_resched();
3344 	schedule();
3345 	preempt_disable();
3346 }
3347 
3348 static void __sched notrace preempt_schedule_common(void)
3349 {
3350 	do {
3351 		preempt_disable_notrace();
3352 		__schedule(true);
3353 		preempt_enable_no_resched_notrace();
3354 
3355 		/*
3356 		 * Check again in case we missed a preemption opportunity
3357 		 * between schedule and now.
3358 		 */
3359 	} while (need_resched());
3360 }
3361 
3362 #ifdef CONFIG_PREEMPT
3363 /*
3364  * this is the entry point to schedule() from in-kernel preemption
3365  * off of preempt_enable. Kernel preemptions off return from interrupt
3366  * occur there and call schedule directly.
3367  */
3368 asmlinkage __visible void __sched notrace preempt_schedule(void)
3369 {
3370 	/*
3371 	 * If there is a non-zero preempt_count or interrupts are disabled,
3372 	 * we do not want to preempt the current task. Just return..
3373 	 */
3374 	if (likely(!preemptible()))
3375 		return;
3376 
3377 	preempt_schedule_common();
3378 }
3379 NOKPROBE_SYMBOL(preempt_schedule);
3380 EXPORT_SYMBOL(preempt_schedule);
3381 
3382 /**
3383  * preempt_schedule_notrace - preempt_schedule called by tracing
3384  *
3385  * The tracing infrastructure uses preempt_enable_notrace to prevent
3386  * recursion and tracing preempt enabling caused by the tracing
3387  * infrastructure itself. But as tracing can happen in areas coming
3388  * from userspace or just about to enter userspace, a preempt enable
3389  * can occur before user_exit() is called. This will cause the scheduler
3390  * to be called when the system is still in usermode.
3391  *
3392  * To prevent this, the preempt_enable_notrace will use this function
3393  * instead of preempt_schedule() to exit user context if needed before
3394  * calling the scheduler.
3395  */
3396 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3397 {
3398 	enum ctx_state prev_ctx;
3399 
3400 	if (likely(!preemptible()))
3401 		return;
3402 
3403 	do {
3404 		preempt_disable_notrace();
3405 		/*
3406 		 * Needs preempt disabled in case user_exit() is traced
3407 		 * and the tracer calls preempt_enable_notrace() causing
3408 		 * an infinite recursion.
3409 		 */
3410 		prev_ctx = exception_enter();
3411 		__schedule(true);
3412 		exception_exit(prev_ctx);
3413 
3414 		preempt_enable_no_resched_notrace();
3415 	} while (need_resched());
3416 }
3417 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3418 
3419 #endif /* CONFIG_PREEMPT */
3420 
3421 /*
3422  * this is the entry point to schedule() from kernel preemption
3423  * off of irq context.
3424  * Note, that this is called and return with irqs disabled. This will
3425  * protect us against recursive calling from irq.
3426  */
3427 asmlinkage __visible void __sched preempt_schedule_irq(void)
3428 {
3429 	enum ctx_state prev_state;
3430 
3431 	/* Catch callers which need to be fixed */
3432 	BUG_ON(preempt_count() || !irqs_disabled());
3433 
3434 	prev_state = exception_enter();
3435 
3436 	do {
3437 		preempt_disable();
3438 		local_irq_enable();
3439 		__schedule(true);
3440 		local_irq_disable();
3441 		sched_preempt_enable_no_resched();
3442 	} while (need_resched());
3443 
3444 	exception_exit(prev_state);
3445 }
3446 
3447 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3448 			  void *key)
3449 {
3450 	return try_to_wake_up(curr->private, mode, wake_flags);
3451 }
3452 EXPORT_SYMBOL(default_wake_function);
3453 
3454 #ifdef CONFIG_RT_MUTEXES
3455 
3456 /*
3457  * rt_mutex_setprio - set the current priority of a task
3458  * @p: task
3459  * @prio: prio value (kernel-internal form)
3460  *
3461  * This function changes the 'effective' priority of a task. It does
3462  * not touch ->normal_prio like __setscheduler().
3463  *
3464  * Used by the rt_mutex code to implement priority inheritance
3465  * logic. Call site only calls if the priority of the task changed.
3466  */
3467 void rt_mutex_setprio(struct task_struct *p, int prio)
3468 {
3469 	int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE;
3470 	struct rq *rq;
3471 	const struct sched_class *prev_class;
3472 
3473 	BUG_ON(prio > MAX_PRIO);
3474 
3475 	rq = __task_rq_lock(p);
3476 
3477 	/*
3478 	 * Idle task boosting is a nono in general. There is one
3479 	 * exception, when PREEMPT_RT and NOHZ is active:
3480 	 *
3481 	 * The idle task calls get_next_timer_interrupt() and holds
3482 	 * the timer wheel base->lock on the CPU and another CPU wants
3483 	 * to access the timer (probably to cancel it). We can safely
3484 	 * ignore the boosting request, as the idle CPU runs this code
3485 	 * with interrupts disabled and will complete the lock
3486 	 * protected section without being interrupted. So there is no
3487 	 * real need to boost.
3488 	 */
3489 	if (unlikely(p == rq->idle)) {
3490 		WARN_ON(p != rq->curr);
3491 		WARN_ON(p->pi_blocked_on);
3492 		goto out_unlock;
3493 	}
3494 
3495 	trace_sched_pi_setprio(p, prio);
3496 	oldprio = p->prio;
3497 	prev_class = p->sched_class;
3498 	queued = task_on_rq_queued(p);
3499 	running = task_current(rq, p);
3500 	if (queued)
3501 		dequeue_task(rq, p, DEQUEUE_SAVE);
3502 	if (running)
3503 		put_prev_task(rq, p);
3504 
3505 	/*
3506 	 * Boosting condition are:
3507 	 * 1. -rt task is running and holds mutex A
3508 	 *      --> -dl task blocks on mutex A
3509 	 *
3510 	 * 2. -dl task is running and holds mutex A
3511 	 *      --> -dl task blocks on mutex A and could preempt the
3512 	 *          running task
3513 	 */
3514 	if (dl_prio(prio)) {
3515 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3516 		if (!dl_prio(p->normal_prio) ||
3517 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3518 			p->dl.dl_boosted = 1;
3519 			enqueue_flag |= ENQUEUE_REPLENISH;
3520 		} else
3521 			p->dl.dl_boosted = 0;
3522 		p->sched_class = &dl_sched_class;
3523 	} else if (rt_prio(prio)) {
3524 		if (dl_prio(oldprio))
3525 			p->dl.dl_boosted = 0;
3526 		if (oldprio < prio)
3527 			enqueue_flag |= ENQUEUE_HEAD;
3528 		p->sched_class = &rt_sched_class;
3529 	} else {
3530 		if (dl_prio(oldprio))
3531 			p->dl.dl_boosted = 0;
3532 		if (rt_prio(oldprio))
3533 			p->rt.timeout = 0;
3534 		p->sched_class = &fair_sched_class;
3535 	}
3536 
3537 	p->prio = prio;
3538 
3539 	if (running)
3540 		p->sched_class->set_curr_task(rq);
3541 	if (queued)
3542 		enqueue_task(rq, p, enqueue_flag);
3543 
3544 	check_class_changed(rq, p, prev_class, oldprio);
3545 out_unlock:
3546 	preempt_disable(); /* avoid rq from going away on us */
3547 	__task_rq_unlock(rq);
3548 
3549 	balance_callback(rq);
3550 	preempt_enable();
3551 }
3552 #endif
3553 
3554 void set_user_nice(struct task_struct *p, long nice)
3555 {
3556 	int old_prio, delta, queued;
3557 	unsigned long flags;
3558 	struct rq *rq;
3559 
3560 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3561 		return;
3562 	/*
3563 	 * We have to be careful, if called from sys_setpriority(),
3564 	 * the task might be in the middle of scheduling on another CPU.
3565 	 */
3566 	rq = task_rq_lock(p, &flags);
3567 	/*
3568 	 * The RT priorities are set via sched_setscheduler(), but we still
3569 	 * allow the 'normal' nice value to be set - but as expected
3570 	 * it wont have any effect on scheduling until the task is
3571 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3572 	 */
3573 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3574 		p->static_prio = NICE_TO_PRIO(nice);
3575 		goto out_unlock;
3576 	}
3577 	queued = task_on_rq_queued(p);
3578 	if (queued)
3579 		dequeue_task(rq, p, DEQUEUE_SAVE);
3580 
3581 	p->static_prio = NICE_TO_PRIO(nice);
3582 	set_load_weight(p);
3583 	old_prio = p->prio;
3584 	p->prio = effective_prio(p);
3585 	delta = p->prio - old_prio;
3586 
3587 	if (queued) {
3588 		enqueue_task(rq, p, ENQUEUE_RESTORE);
3589 		/*
3590 		 * If the task increased its priority or is running and
3591 		 * lowered its priority, then reschedule its CPU:
3592 		 */
3593 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3594 			resched_curr(rq);
3595 	}
3596 out_unlock:
3597 	task_rq_unlock(rq, p, &flags);
3598 }
3599 EXPORT_SYMBOL(set_user_nice);
3600 
3601 /*
3602  * can_nice - check if a task can reduce its nice value
3603  * @p: task
3604  * @nice: nice value
3605  */
3606 int can_nice(const struct task_struct *p, const int nice)
3607 {
3608 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3609 	int nice_rlim = nice_to_rlimit(nice);
3610 
3611 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3612 		capable(CAP_SYS_NICE));
3613 }
3614 
3615 #ifdef __ARCH_WANT_SYS_NICE
3616 
3617 /*
3618  * sys_nice - change the priority of the current process.
3619  * @increment: priority increment
3620  *
3621  * sys_setpriority is a more generic, but much slower function that
3622  * does similar things.
3623  */
3624 SYSCALL_DEFINE1(nice, int, increment)
3625 {
3626 	long nice, retval;
3627 
3628 	/*
3629 	 * Setpriority might change our priority at the same moment.
3630 	 * We don't have to worry. Conceptually one call occurs first
3631 	 * and we have a single winner.
3632 	 */
3633 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3634 	nice = task_nice(current) + increment;
3635 
3636 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3637 	if (increment < 0 && !can_nice(current, nice))
3638 		return -EPERM;
3639 
3640 	retval = security_task_setnice(current, nice);
3641 	if (retval)
3642 		return retval;
3643 
3644 	set_user_nice(current, nice);
3645 	return 0;
3646 }
3647 
3648 #endif
3649 
3650 /**
3651  * task_prio - return the priority value of a given task.
3652  * @p: the task in question.
3653  *
3654  * Return: The priority value as seen by users in /proc.
3655  * RT tasks are offset by -200. Normal tasks are centered
3656  * around 0, value goes from -16 to +15.
3657  */
3658 int task_prio(const struct task_struct *p)
3659 {
3660 	return p->prio - MAX_RT_PRIO;
3661 }
3662 
3663 /**
3664  * idle_cpu - is a given cpu idle currently?
3665  * @cpu: the processor in question.
3666  *
3667  * Return: 1 if the CPU is currently idle. 0 otherwise.
3668  */
3669 int idle_cpu(int cpu)
3670 {
3671 	struct rq *rq = cpu_rq(cpu);
3672 
3673 	if (rq->curr != rq->idle)
3674 		return 0;
3675 
3676 	if (rq->nr_running)
3677 		return 0;
3678 
3679 #ifdef CONFIG_SMP
3680 	if (!llist_empty(&rq->wake_list))
3681 		return 0;
3682 #endif
3683 
3684 	return 1;
3685 }
3686 
3687 /**
3688  * idle_task - return the idle task for a given cpu.
3689  * @cpu: the processor in question.
3690  *
3691  * Return: The idle task for the cpu @cpu.
3692  */
3693 struct task_struct *idle_task(int cpu)
3694 {
3695 	return cpu_rq(cpu)->idle;
3696 }
3697 
3698 /**
3699  * find_process_by_pid - find a process with a matching PID value.
3700  * @pid: the pid in question.
3701  *
3702  * The task of @pid, if found. %NULL otherwise.
3703  */
3704 static struct task_struct *find_process_by_pid(pid_t pid)
3705 {
3706 	return pid ? find_task_by_vpid(pid) : current;
3707 }
3708 
3709 /*
3710  * This function initializes the sched_dl_entity of a newly becoming
3711  * SCHED_DEADLINE task.
3712  *
3713  * Only the static values are considered here, the actual runtime and the
3714  * absolute deadline will be properly calculated when the task is enqueued
3715  * for the first time with its new policy.
3716  */
3717 static void
3718 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3719 {
3720 	struct sched_dl_entity *dl_se = &p->dl;
3721 
3722 	dl_se->dl_runtime = attr->sched_runtime;
3723 	dl_se->dl_deadline = attr->sched_deadline;
3724 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3725 	dl_se->flags = attr->sched_flags;
3726 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3727 
3728 	/*
3729 	 * Changing the parameters of a task is 'tricky' and we're not doing
3730 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3731 	 *
3732 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3733 	 * point. This would include retaining the task_struct until that time
3734 	 * and change dl_overflow() to not immediately decrement the current
3735 	 * amount.
3736 	 *
3737 	 * Instead we retain the current runtime/deadline and let the new
3738 	 * parameters take effect after the current reservation period lapses.
3739 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3740 	 * before the current scheduling deadline.
3741 	 *
3742 	 * We can still have temporary overloads because we do not delay the
3743 	 * change in bandwidth until that time; so admission control is
3744 	 * not on the safe side. It does however guarantee tasks will never
3745 	 * consume more than promised.
3746 	 */
3747 }
3748 
3749 /*
3750  * sched_setparam() passes in -1 for its policy, to let the functions
3751  * it calls know not to change it.
3752  */
3753 #define SETPARAM_POLICY	-1
3754 
3755 static void __setscheduler_params(struct task_struct *p,
3756 		const struct sched_attr *attr)
3757 {
3758 	int policy = attr->sched_policy;
3759 
3760 	if (policy == SETPARAM_POLICY)
3761 		policy = p->policy;
3762 
3763 	p->policy = policy;
3764 
3765 	if (dl_policy(policy))
3766 		__setparam_dl(p, attr);
3767 	else if (fair_policy(policy))
3768 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3769 
3770 	/*
3771 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3772 	 * !rt_policy. Always setting this ensures that things like
3773 	 * getparam()/getattr() don't report silly values for !rt tasks.
3774 	 */
3775 	p->rt_priority = attr->sched_priority;
3776 	p->normal_prio = normal_prio(p);
3777 	set_load_weight(p);
3778 }
3779 
3780 /* Actually do priority change: must hold pi & rq lock. */
3781 static void __setscheduler(struct rq *rq, struct task_struct *p,
3782 			   const struct sched_attr *attr, bool keep_boost)
3783 {
3784 	__setscheduler_params(p, attr);
3785 
3786 	/*
3787 	 * Keep a potential priority boosting if called from
3788 	 * sched_setscheduler().
3789 	 */
3790 	if (keep_boost)
3791 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3792 	else
3793 		p->prio = normal_prio(p);
3794 
3795 	if (dl_prio(p->prio))
3796 		p->sched_class = &dl_sched_class;
3797 	else if (rt_prio(p->prio))
3798 		p->sched_class = &rt_sched_class;
3799 	else
3800 		p->sched_class = &fair_sched_class;
3801 }
3802 
3803 static void
3804 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3805 {
3806 	struct sched_dl_entity *dl_se = &p->dl;
3807 
3808 	attr->sched_priority = p->rt_priority;
3809 	attr->sched_runtime = dl_se->dl_runtime;
3810 	attr->sched_deadline = dl_se->dl_deadline;
3811 	attr->sched_period = dl_se->dl_period;
3812 	attr->sched_flags = dl_se->flags;
3813 }
3814 
3815 /*
3816  * This function validates the new parameters of a -deadline task.
3817  * We ask for the deadline not being zero, and greater or equal
3818  * than the runtime, as well as the period of being zero or
3819  * greater than deadline. Furthermore, we have to be sure that
3820  * user parameters are above the internal resolution of 1us (we
3821  * check sched_runtime only since it is always the smaller one) and
3822  * below 2^63 ns (we have to check both sched_deadline and
3823  * sched_period, as the latter can be zero).
3824  */
3825 static bool
3826 __checkparam_dl(const struct sched_attr *attr)
3827 {
3828 	/* deadline != 0 */
3829 	if (attr->sched_deadline == 0)
3830 		return false;
3831 
3832 	/*
3833 	 * Since we truncate DL_SCALE bits, make sure we're at least
3834 	 * that big.
3835 	 */
3836 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3837 		return false;
3838 
3839 	/*
3840 	 * Since we use the MSB for wrap-around and sign issues, make
3841 	 * sure it's not set (mind that period can be equal to zero).
3842 	 */
3843 	if (attr->sched_deadline & (1ULL << 63) ||
3844 	    attr->sched_period & (1ULL << 63))
3845 		return false;
3846 
3847 	/* runtime <= deadline <= period (if period != 0) */
3848 	if ((attr->sched_period != 0 &&
3849 	     attr->sched_period < attr->sched_deadline) ||
3850 	    attr->sched_deadline < attr->sched_runtime)
3851 		return false;
3852 
3853 	return true;
3854 }
3855 
3856 /*
3857  * check the target process has a UID that matches the current process's
3858  */
3859 static bool check_same_owner(struct task_struct *p)
3860 {
3861 	const struct cred *cred = current_cred(), *pcred;
3862 	bool match;
3863 
3864 	rcu_read_lock();
3865 	pcred = __task_cred(p);
3866 	match = (uid_eq(cred->euid, pcred->euid) ||
3867 		 uid_eq(cred->euid, pcred->uid));
3868 	rcu_read_unlock();
3869 	return match;
3870 }
3871 
3872 static bool dl_param_changed(struct task_struct *p,
3873 		const struct sched_attr *attr)
3874 {
3875 	struct sched_dl_entity *dl_se = &p->dl;
3876 
3877 	if (dl_se->dl_runtime != attr->sched_runtime ||
3878 		dl_se->dl_deadline != attr->sched_deadline ||
3879 		dl_se->dl_period != attr->sched_period ||
3880 		dl_se->flags != attr->sched_flags)
3881 		return true;
3882 
3883 	return false;
3884 }
3885 
3886 static int __sched_setscheduler(struct task_struct *p,
3887 				const struct sched_attr *attr,
3888 				bool user, bool pi)
3889 {
3890 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3891 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3892 	int retval, oldprio, oldpolicy = -1, queued, running;
3893 	int new_effective_prio, policy = attr->sched_policy;
3894 	unsigned long flags;
3895 	const struct sched_class *prev_class;
3896 	struct rq *rq;
3897 	int reset_on_fork;
3898 
3899 	/* may grab non-irq protected spin_locks */
3900 	BUG_ON(in_interrupt());
3901 recheck:
3902 	/* double check policy once rq lock held */
3903 	if (policy < 0) {
3904 		reset_on_fork = p->sched_reset_on_fork;
3905 		policy = oldpolicy = p->policy;
3906 	} else {
3907 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3908 
3909 		if (!valid_policy(policy))
3910 			return -EINVAL;
3911 	}
3912 
3913 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3914 		return -EINVAL;
3915 
3916 	/*
3917 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3918 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3919 	 * SCHED_BATCH and SCHED_IDLE is 0.
3920 	 */
3921 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3922 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3923 		return -EINVAL;
3924 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3925 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3926 		return -EINVAL;
3927 
3928 	/*
3929 	 * Allow unprivileged RT tasks to decrease priority:
3930 	 */
3931 	if (user && !capable(CAP_SYS_NICE)) {
3932 		if (fair_policy(policy)) {
3933 			if (attr->sched_nice < task_nice(p) &&
3934 			    !can_nice(p, attr->sched_nice))
3935 				return -EPERM;
3936 		}
3937 
3938 		if (rt_policy(policy)) {
3939 			unsigned long rlim_rtprio =
3940 					task_rlimit(p, RLIMIT_RTPRIO);
3941 
3942 			/* can't set/change the rt policy */
3943 			if (policy != p->policy && !rlim_rtprio)
3944 				return -EPERM;
3945 
3946 			/* can't increase priority */
3947 			if (attr->sched_priority > p->rt_priority &&
3948 			    attr->sched_priority > rlim_rtprio)
3949 				return -EPERM;
3950 		}
3951 
3952 		 /*
3953 		  * Can't set/change SCHED_DEADLINE policy at all for now
3954 		  * (safest behavior); in the future we would like to allow
3955 		  * unprivileged DL tasks to increase their relative deadline
3956 		  * or reduce their runtime (both ways reducing utilization)
3957 		  */
3958 		if (dl_policy(policy))
3959 			return -EPERM;
3960 
3961 		/*
3962 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3963 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3964 		 */
3965 		if (idle_policy(p->policy) && !idle_policy(policy)) {
3966 			if (!can_nice(p, task_nice(p)))
3967 				return -EPERM;
3968 		}
3969 
3970 		/* can't change other user's priorities */
3971 		if (!check_same_owner(p))
3972 			return -EPERM;
3973 
3974 		/* Normal users shall not reset the sched_reset_on_fork flag */
3975 		if (p->sched_reset_on_fork && !reset_on_fork)
3976 			return -EPERM;
3977 	}
3978 
3979 	if (user) {
3980 		retval = security_task_setscheduler(p);
3981 		if (retval)
3982 			return retval;
3983 	}
3984 
3985 	/*
3986 	 * make sure no PI-waiters arrive (or leave) while we are
3987 	 * changing the priority of the task:
3988 	 *
3989 	 * To be able to change p->policy safely, the appropriate
3990 	 * runqueue lock must be held.
3991 	 */
3992 	rq = task_rq_lock(p, &flags);
3993 
3994 	/*
3995 	 * Changing the policy of the stop threads its a very bad idea
3996 	 */
3997 	if (p == rq->stop) {
3998 		task_rq_unlock(rq, p, &flags);
3999 		return -EINVAL;
4000 	}
4001 
4002 	/*
4003 	 * If not changing anything there's no need to proceed further,
4004 	 * but store a possible modification of reset_on_fork.
4005 	 */
4006 	if (unlikely(policy == p->policy)) {
4007 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4008 			goto change;
4009 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4010 			goto change;
4011 		if (dl_policy(policy) && dl_param_changed(p, attr))
4012 			goto change;
4013 
4014 		p->sched_reset_on_fork = reset_on_fork;
4015 		task_rq_unlock(rq, p, &flags);
4016 		return 0;
4017 	}
4018 change:
4019 
4020 	if (user) {
4021 #ifdef CONFIG_RT_GROUP_SCHED
4022 		/*
4023 		 * Do not allow realtime tasks into groups that have no runtime
4024 		 * assigned.
4025 		 */
4026 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4027 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4028 				!task_group_is_autogroup(task_group(p))) {
4029 			task_rq_unlock(rq, p, &flags);
4030 			return -EPERM;
4031 		}
4032 #endif
4033 #ifdef CONFIG_SMP
4034 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
4035 			cpumask_t *span = rq->rd->span;
4036 
4037 			/*
4038 			 * Don't allow tasks with an affinity mask smaller than
4039 			 * the entire root_domain to become SCHED_DEADLINE. We
4040 			 * will also fail if there's no bandwidth available.
4041 			 */
4042 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4043 			    rq->rd->dl_bw.bw == 0) {
4044 				task_rq_unlock(rq, p, &flags);
4045 				return -EPERM;
4046 			}
4047 		}
4048 #endif
4049 	}
4050 
4051 	/* recheck policy now with rq lock held */
4052 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4053 		policy = oldpolicy = -1;
4054 		task_rq_unlock(rq, p, &flags);
4055 		goto recheck;
4056 	}
4057 
4058 	/*
4059 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4060 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4061 	 * is available.
4062 	 */
4063 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4064 		task_rq_unlock(rq, p, &flags);
4065 		return -EBUSY;
4066 	}
4067 
4068 	p->sched_reset_on_fork = reset_on_fork;
4069 	oldprio = p->prio;
4070 
4071 	if (pi) {
4072 		/*
4073 		 * Take priority boosted tasks into account. If the new
4074 		 * effective priority is unchanged, we just store the new
4075 		 * normal parameters and do not touch the scheduler class and
4076 		 * the runqueue. This will be done when the task deboost
4077 		 * itself.
4078 		 */
4079 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4080 		if (new_effective_prio == oldprio) {
4081 			__setscheduler_params(p, attr);
4082 			task_rq_unlock(rq, p, &flags);
4083 			return 0;
4084 		}
4085 	}
4086 
4087 	queued = task_on_rq_queued(p);
4088 	running = task_current(rq, p);
4089 	if (queued)
4090 		dequeue_task(rq, p, DEQUEUE_SAVE);
4091 	if (running)
4092 		put_prev_task(rq, p);
4093 
4094 	prev_class = p->sched_class;
4095 	__setscheduler(rq, p, attr, pi);
4096 
4097 	if (running)
4098 		p->sched_class->set_curr_task(rq);
4099 	if (queued) {
4100 		int enqueue_flags = ENQUEUE_RESTORE;
4101 		/*
4102 		 * We enqueue to tail when the priority of a task is
4103 		 * increased (user space view).
4104 		 */
4105 		if (oldprio <= p->prio)
4106 			enqueue_flags |= ENQUEUE_HEAD;
4107 
4108 		enqueue_task(rq, p, enqueue_flags);
4109 	}
4110 
4111 	check_class_changed(rq, p, prev_class, oldprio);
4112 	preempt_disable(); /* avoid rq from going away on us */
4113 	task_rq_unlock(rq, p, &flags);
4114 
4115 	if (pi)
4116 		rt_mutex_adjust_pi(p);
4117 
4118 	/*
4119 	 * Run balance callbacks after we've adjusted the PI chain.
4120 	 */
4121 	balance_callback(rq);
4122 	preempt_enable();
4123 
4124 	return 0;
4125 }
4126 
4127 static int _sched_setscheduler(struct task_struct *p, int policy,
4128 			       const struct sched_param *param, bool check)
4129 {
4130 	struct sched_attr attr = {
4131 		.sched_policy   = policy,
4132 		.sched_priority = param->sched_priority,
4133 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4134 	};
4135 
4136 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4137 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4138 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4139 		policy &= ~SCHED_RESET_ON_FORK;
4140 		attr.sched_policy = policy;
4141 	}
4142 
4143 	return __sched_setscheduler(p, &attr, check, true);
4144 }
4145 /**
4146  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4147  * @p: the task in question.
4148  * @policy: new policy.
4149  * @param: structure containing the new RT priority.
4150  *
4151  * Return: 0 on success. An error code otherwise.
4152  *
4153  * NOTE that the task may be already dead.
4154  */
4155 int sched_setscheduler(struct task_struct *p, int policy,
4156 		       const struct sched_param *param)
4157 {
4158 	return _sched_setscheduler(p, policy, param, true);
4159 }
4160 EXPORT_SYMBOL_GPL(sched_setscheduler);
4161 
4162 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4163 {
4164 	return __sched_setscheduler(p, attr, true, true);
4165 }
4166 EXPORT_SYMBOL_GPL(sched_setattr);
4167 
4168 /**
4169  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4170  * @p: the task in question.
4171  * @policy: new policy.
4172  * @param: structure containing the new RT priority.
4173  *
4174  * Just like sched_setscheduler, only don't bother checking if the
4175  * current context has permission.  For example, this is needed in
4176  * stop_machine(): we create temporary high priority worker threads,
4177  * but our caller might not have that capability.
4178  *
4179  * Return: 0 on success. An error code otherwise.
4180  */
4181 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4182 			       const struct sched_param *param)
4183 {
4184 	return _sched_setscheduler(p, policy, param, false);
4185 }
4186 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4187 
4188 static int
4189 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4190 {
4191 	struct sched_param lparam;
4192 	struct task_struct *p;
4193 	int retval;
4194 
4195 	if (!param || pid < 0)
4196 		return -EINVAL;
4197 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4198 		return -EFAULT;
4199 
4200 	rcu_read_lock();
4201 	retval = -ESRCH;
4202 	p = find_process_by_pid(pid);
4203 	if (p != NULL)
4204 		retval = sched_setscheduler(p, policy, &lparam);
4205 	rcu_read_unlock();
4206 
4207 	return retval;
4208 }
4209 
4210 /*
4211  * Mimics kernel/events/core.c perf_copy_attr().
4212  */
4213 static int sched_copy_attr(struct sched_attr __user *uattr,
4214 			   struct sched_attr *attr)
4215 {
4216 	u32 size;
4217 	int ret;
4218 
4219 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4220 		return -EFAULT;
4221 
4222 	/*
4223 	 * zero the full structure, so that a short copy will be nice.
4224 	 */
4225 	memset(attr, 0, sizeof(*attr));
4226 
4227 	ret = get_user(size, &uattr->size);
4228 	if (ret)
4229 		return ret;
4230 
4231 	if (size > PAGE_SIZE)	/* silly large */
4232 		goto err_size;
4233 
4234 	if (!size)		/* abi compat */
4235 		size = SCHED_ATTR_SIZE_VER0;
4236 
4237 	if (size < SCHED_ATTR_SIZE_VER0)
4238 		goto err_size;
4239 
4240 	/*
4241 	 * If we're handed a bigger struct than we know of,
4242 	 * ensure all the unknown bits are 0 - i.e. new
4243 	 * user-space does not rely on any kernel feature
4244 	 * extensions we dont know about yet.
4245 	 */
4246 	if (size > sizeof(*attr)) {
4247 		unsigned char __user *addr;
4248 		unsigned char __user *end;
4249 		unsigned char val;
4250 
4251 		addr = (void __user *)uattr + sizeof(*attr);
4252 		end  = (void __user *)uattr + size;
4253 
4254 		for (; addr < end; addr++) {
4255 			ret = get_user(val, addr);
4256 			if (ret)
4257 				return ret;
4258 			if (val)
4259 				goto err_size;
4260 		}
4261 		size = sizeof(*attr);
4262 	}
4263 
4264 	ret = copy_from_user(attr, uattr, size);
4265 	if (ret)
4266 		return -EFAULT;
4267 
4268 	/*
4269 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4270 	 * to be strict and return an error on out-of-bounds values?
4271 	 */
4272 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4273 
4274 	return 0;
4275 
4276 err_size:
4277 	put_user(sizeof(*attr), &uattr->size);
4278 	return -E2BIG;
4279 }
4280 
4281 /**
4282  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4283  * @pid: the pid in question.
4284  * @policy: new policy.
4285  * @param: structure containing the new RT priority.
4286  *
4287  * Return: 0 on success. An error code otherwise.
4288  */
4289 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4290 		struct sched_param __user *, param)
4291 {
4292 	/* negative values for policy are not valid */
4293 	if (policy < 0)
4294 		return -EINVAL;
4295 
4296 	return do_sched_setscheduler(pid, policy, param);
4297 }
4298 
4299 /**
4300  * sys_sched_setparam - set/change the RT priority of a thread
4301  * @pid: the pid in question.
4302  * @param: structure containing the new RT priority.
4303  *
4304  * Return: 0 on success. An error code otherwise.
4305  */
4306 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4307 {
4308 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4309 }
4310 
4311 /**
4312  * sys_sched_setattr - same as above, but with extended sched_attr
4313  * @pid: the pid in question.
4314  * @uattr: structure containing the extended parameters.
4315  * @flags: for future extension.
4316  */
4317 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4318 			       unsigned int, flags)
4319 {
4320 	struct sched_attr attr;
4321 	struct task_struct *p;
4322 	int retval;
4323 
4324 	if (!uattr || pid < 0 || flags)
4325 		return -EINVAL;
4326 
4327 	retval = sched_copy_attr(uattr, &attr);
4328 	if (retval)
4329 		return retval;
4330 
4331 	if ((int)attr.sched_policy < 0)
4332 		return -EINVAL;
4333 
4334 	rcu_read_lock();
4335 	retval = -ESRCH;
4336 	p = find_process_by_pid(pid);
4337 	if (p != NULL)
4338 		retval = sched_setattr(p, &attr);
4339 	rcu_read_unlock();
4340 
4341 	return retval;
4342 }
4343 
4344 /**
4345  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4346  * @pid: the pid in question.
4347  *
4348  * Return: On success, the policy of the thread. Otherwise, a negative error
4349  * code.
4350  */
4351 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4352 {
4353 	struct task_struct *p;
4354 	int retval;
4355 
4356 	if (pid < 0)
4357 		return -EINVAL;
4358 
4359 	retval = -ESRCH;
4360 	rcu_read_lock();
4361 	p = find_process_by_pid(pid);
4362 	if (p) {
4363 		retval = security_task_getscheduler(p);
4364 		if (!retval)
4365 			retval = p->policy
4366 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4367 	}
4368 	rcu_read_unlock();
4369 	return retval;
4370 }
4371 
4372 /**
4373  * sys_sched_getparam - get the RT priority of a thread
4374  * @pid: the pid in question.
4375  * @param: structure containing the RT priority.
4376  *
4377  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4378  * code.
4379  */
4380 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4381 {
4382 	struct sched_param lp = { .sched_priority = 0 };
4383 	struct task_struct *p;
4384 	int retval;
4385 
4386 	if (!param || pid < 0)
4387 		return -EINVAL;
4388 
4389 	rcu_read_lock();
4390 	p = find_process_by_pid(pid);
4391 	retval = -ESRCH;
4392 	if (!p)
4393 		goto out_unlock;
4394 
4395 	retval = security_task_getscheduler(p);
4396 	if (retval)
4397 		goto out_unlock;
4398 
4399 	if (task_has_rt_policy(p))
4400 		lp.sched_priority = p->rt_priority;
4401 	rcu_read_unlock();
4402 
4403 	/*
4404 	 * This one might sleep, we cannot do it with a spinlock held ...
4405 	 */
4406 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4407 
4408 	return retval;
4409 
4410 out_unlock:
4411 	rcu_read_unlock();
4412 	return retval;
4413 }
4414 
4415 static int sched_read_attr(struct sched_attr __user *uattr,
4416 			   struct sched_attr *attr,
4417 			   unsigned int usize)
4418 {
4419 	int ret;
4420 
4421 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4422 		return -EFAULT;
4423 
4424 	/*
4425 	 * If we're handed a smaller struct than we know of,
4426 	 * ensure all the unknown bits are 0 - i.e. old
4427 	 * user-space does not get uncomplete information.
4428 	 */
4429 	if (usize < sizeof(*attr)) {
4430 		unsigned char *addr;
4431 		unsigned char *end;
4432 
4433 		addr = (void *)attr + usize;
4434 		end  = (void *)attr + sizeof(*attr);
4435 
4436 		for (; addr < end; addr++) {
4437 			if (*addr)
4438 				return -EFBIG;
4439 		}
4440 
4441 		attr->size = usize;
4442 	}
4443 
4444 	ret = copy_to_user(uattr, attr, attr->size);
4445 	if (ret)
4446 		return -EFAULT;
4447 
4448 	return 0;
4449 }
4450 
4451 /**
4452  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4453  * @pid: the pid in question.
4454  * @uattr: structure containing the extended parameters.
4455  * @size: sizeof(attr) for fwd/bwd comp.
4456  * @flags: for future extension.
4457  */
4458 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4459 		unsigned int, size, unsigned int, flags)
4460 {
4461 	struct sched_attr attr = {
4462 		.size = sizeof(struct sched_attr),
4463 	};
4464 	struct task_struct *p;
4465 	int retval;
4466 
4467 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4468 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4469 		return -EINVAL;
4470 
4471 	rcu_read_lock();
4472 	p = find_process_by_pid(pid);
4473 	retval = -ESRCH;
4474 	if (!p)
4475 		goto out_unlock;
4476 
4477 	retval = security_task_getscheduler(p);
4478 	if (retval)
4479 		goto out_unlock;
4480 
4481 	attr.sched_policy = p->policy;
4482 	if (p->sched_reset_on_fork)
4483 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4484 	if (task_has_dl_policy(p))
4485 		__getparam_dl(p, &attr);
4486 	else if (task_has_rt_policy(p))
4487 		attr.sched_priority = p->rt_priority;
4488 	else
4489 		attr.sched_nice = task_nice(p);
4490 
4491 	rcu_read_unlock();
4492 
4493 	retval = sched_read_attr(uattr, &attr, size);
4494 	return retval;
4495 
4496 out_unlock:
4497 	rcu_read_unlock();
4498 	return retval;
4499 }
4500 
4501 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4502 {
4503 	cpumask_var_t cpus_allowed, new_mask;
4504 	struct task_struct *p;
4505 	int retval;
4506 
4507 	rcu_read_lock();
4508 
4509 	p = find_process_by_pid(pid);
4510 	if (!p) {
4511 		rcu_read_unlock();
4512 		return -ESRCH;
4513 	}
4514 
4515 	/* Prevent p going away */
4516 	get_task_struct(p);
4517 	rcu_read_unlock();
4518 
4519 	if (p->flags & PF_NO_SETAFFINITY) {
4520 		retval = -EINVAL;
4521 		goto out_put_task;
4522 	}
4523 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4524 		retval = -ENOMEM;
4525 		goto out_put_task;
4526 	}
4527 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4528 		retval = -ENOMEM;
4529 		goto out_free_cpus_allowed;
4530 	}
4531 	retval = -EPERM;
4532 	if (!check_same_owner(p)) {
4533 		rcu_read_lock();
4534 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4535 			rcu_read_unlock();
4536 			goto out_free_new_mask;
4537 		}
4538 		rcu_read_unlock();
4539 	}
4540 
4541 	retval = security_task_setscheduler(p);
4542 	if (retval)
4543 		goto out_free_new_mask;
4544 
4545 
4546 	cpuset_cpus_allowed(p, cpus_allowed);
4547 	cpumask_and(new_mask, in_mask, cpus_allowed);
4548 
4549 	/*
4550 	 * Since bandwidth control happens on root_domain basis,
4551 	 * if admission test is enabled, we only admit -deadline
4552 	 * tasks allowed to run on all the CPUs in the task's
4553 	 * root_domain.
4554 	 */
4555 #ifdef CONFIG_SMP
4556 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4557 		rcu_read_lock();
4558 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4559 			retval = -EBUSY;
4560 			rcu_read_unlock();
4561 			goto out_free_new_mask;
4562 		}
4563 		rcu_read_unlock();
4564 	}
4565 #endif
4566 again:
4567 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4568 
4569 	if (!retval) {
4570 		cpuset_cpus_allowed(p, cpus_allowed);
4571 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4572 			/*
4573 			 * We must have raced with a concurrent cpuset
4574 			 * update. Just reset the cpus_allowed to the
4575 			 * cpuset's cpus_allowed
4576 			 */
4577 			cpumask_copy(new_mask, cpus_allowed);
4578 			goto again;
4579 		}
4580 	}
4581 out_free_new_mask:
4582 	free_cpumask_var(new_mask);
4583 out_free_cpus_allowed:
4584 	free_cpumask_var(cpus_allowed);
4585 out_put_task:
4586 	put_task_struct(p);
4587 	return retval;
4588 }
4589 
4590 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4591 			     struct cpumask *new_mask)
4592 {
4593 	if (len < cpumask_size())
4594 		cpumask_clear(new_mask);
4595 	else if (len > cpumask_size())
4596 		len = cpumask_size();
4597 
4598 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4599 }
4600 
4601 /**
4602  * sys_sched_setaffinity - set the cpu affinity of a process
4603  * @pid: pid of the process
4604  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4605  * @user_mask_ptr: user-space pointer to the new cpu mask
4606  *
4607  * Return: 0 on success. An error code otherwise.
4608  */
4609 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4610 		unsigned long __user *, user_mask_ptr)
4611 {
4612 	cpumask_var_t new_mask;
4613 	int retval;
4614 
4615 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4616 		return -ENOMEM;
4617 
4618 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4619 	if (retval == 0)
4620 		retval = sched_setaffinity(pid, new_mask);
4621 	free_cpumask_var(new_mask);
4622 	return retval;
4623 }
4624 
4625 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4626 {
4627 	struct task_struct *p;
4628 	unsigned long flags;
4629 	int retval;
4630 
4631 	rcu_read_lock();
4632 
4633 	retval = -ESRCH;
4634 	p = find_process_by_pid(pid);
4635 	if (!p)
4636 		goto out_unlock;
4637 
4638 	retval = security_task_getscheduler(p);
4639 	if (retval)
4640 		goto out_unlock;
4641 
4642 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4643 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4644 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4645 
4646 out_unlock:
4647 	rcu_read_unlock();
4648 
4649 	return retval;
4650 }
4651 
4652 /**
4653  * sys_sched_getaffinity - get the cpu affinity of a process
4654  * @pid: pid of the process
4655  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4656  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4657  *
4658  * Return: 0 on success. An error code otherwise.
4659  */
4660 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4661 		unsigned long __user *, user_mask_ptr)
4662 {
4663 	int ret;
4664 	cpumask_var_t mask;
4665 
4666 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4667 		return -EINVAL;
4668 	if (len & (sizeof(unsigned long)-1))
4669 		return -EINVAL;
4670 
4671 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4672 		return -ENOMEM;
4673 
4674 	ret = sched_getaffinity(pid, mask);
4675 	if (ret == 0) {
4676 		size_t retlen = min_t(size_t, len, cpumask_size());
4677 
4678 		if (copy_to_user(user_mask_ptr, mask, retlen))
4679 			ret = -EFAULT;
4680 		else
4681 			ret = retlen;
4682 	}
4683 	free_cpumask_var(mask);
4684 
4685 	return ret;
4686 }
4687 
4688 /**
4689  * sys_sched_yield - yield the current processor to other threads.
4690  *
4691  * This function yields the current CPU to other tasks. If there are no
4692  * other threads running on this CPU then this function will return.
4693  *
4694  * Return: 0.
4695  */
4696 SYSCALL_DEFINE0(sched_yield)
4697 {
4698 	struct rq *rq = this_rq_lock();
4699 
4700 	schedstat_inc(rq, yld_count);
4701 	current->sched_class->yield_task(rq);
4702 
4703 	/*
4704 	 * Since we are going to call schedule() anyway, there's
4705 	 * no need to preempt or enable interrupts:
4706 	 */
4707 	__release(rq->lock);
4708 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4709 	do_raw_spin_unlock(&rq->lock);
4710 	sched_preempt_enable_no_resched();
4711 
4712 	schedule();
4713 
4714 	return 0;
4715 }
4716 
4717 int __sched _cond_resched(void)
4718 {
4719 	if (should_resched(0)) {
4720 		preempt_schedule_common();
4721 		return 1;
4722 	}
4723 	return 0;
4724 }
4725 EXPORT_SYMBOL(_cond_resched);
4726 
4727 /*
4728  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4729  * call schedule, and on return reacquire the lock.
4730  *
4731  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4732  * operations here to prevent schedule() from being called twice (once via
4733  * spin_unlock(), once by hand).
4734  */
4735 int __cond_resched_lock(spinlock_t *lock)
4736 {
4737 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4738 	int ret = 0;
4739 
4740 	lockdep_assert_held(lock);
4741 
4742 	if (spin_needbreak(lock) || resched) {
4743 		spin_unlock(lock);
4744 		if (resched)
4745 			preempt_schedule_common();
4746 		else
4747 			cpu_relax();
4748 		ret = 1;
4749 		spin_lock(lock);
4750 	}
4751 	return ret;
4752 }
4753 EXPORT_SYMBOL(__cond_resched_lock);
4754 
4755 int __sched __cond_resched_softirq(void)
4756 {
4757 	BUG_ON(!in_softirq());
4758 
4759 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4760 		local_bh_enable();
4761 		preempt_schedule_common();
4762 		local_bh_disable();
4763 		return 1;
4764 	}
4765 	return 0;
4766 }
4767 EXPORT_SYMBOL(__cond_resched_softirq);
4768 
4769 /**
4770  * yield - yield the current processor to other threads.
4771  *
4772  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4773  *
4774  * The scheduler is at all times free to pick the calling task as the most
4775  * eligible task to run, if removing the yield() call from your code breaks
4776  * it, its already broken.
4777  *
4778  * Typical broken usage is:
4779  *
4780  * while (!event)
4781  * 	yield();
4782  *
4783  * where one assumes that yield() will let 'the other' process run that will
4784  * make event true. If the current task is a SCHED_FIFO task that will never
4785  * happen. Never use yield() as a progress guarantee!!
4786  *
4787  * If you want to use yield() to wait for something, use wait_event().
4788  * If you want to use yield() to be 'nice' for others, use cond_resched().
4789  * If you still want to use yield(), do not!
4790  */
4791 void __sched yield(void)
4792 {
4793 	set_current_state(TASK_RUNNING);
4794 	sys_sched_yield();
4795 }
4796 EXPORT_SYMBOL(yield);
4797 
4798 /**
4799  * yield_to - yield the current processor to another thread in
4800  * your thread group, or accelerate that thread toward the
4801  * processor it's on.
4802  * @p: target task
4803  * @preempt: whether task preemption is allowed or not
4804  *
4805  * It's the caller's job to ensure that the target task struct
4806  * can't go away on us before we can do any checks.
4807  *
4808  * Return:
4809  *	true (>0) if we indeed boosted the target task.
4810  *	false (0) if we failed to boost the target.
4811  *	-ESRCH if there's no task to yield to.
4812  */
4813 int __sched yield_to(struct task_struct *p, bool preempt)
4814 {
4815 	struct task_struct *curr = current;
4816 	struct rq *rq, *p_rq;
4817 	unsigned long flags;
4818 	int yielded = 0;
4819 
4820 	local_irq_save(flags);
4821 	rq = this_rq();
4822 
4823 again:
4824 	p_rq = task_rq(p);
4825 	/*
4826 	 * If we're the only runnable task on the rq and target rq also
4827 	 * has only one task, there's absolutely no point in yielding.
4828 	 */
4829 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4830 		yielded = -ESRCH;
4831 		goto out_irq;
4832 	}
4833 
4834 	double_rq_lock(rq, p_rq);
4835 	if (task_rq(p) != p_rq) {
4836 		double_rq_unlock(rq, p_rq);
4837 		goto again;
4838 	}
4839 
4840 	if (!curr->sched_class->yield_to_task)
4841 		goto out_unlock;
4842 
4843 	if (curr->sched_class != p->sched_class)
4844 		goto out_unlock;
4845 
4846 	if (task_running(p_rq, p) || p->state)
4847 		goto out_unlock;
4848 
4849 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4850 	if (yielded) {
4851 		schedstat_inc(rq, yld_count);
4852 		/*
4853 		 * Make p's CPU reschedule; pick_next_entity takes care of
4854 		 * fairness.
4855 		 */
4856 		if (preempt && rq != p_rq)
4857 			resched_curr(p_rq);
4858 	}
4859 
4860 out_unlock:
4861 	double_rq_unlock(rq, p_rq);
4862 out_irq:
4863 	local_irq_restore(flags);
4864 
4865 	if (yielded > 0)
4866 		schedule();
4867 
4868 	return yielded;
4869 }
4870 EXPORT_SYMBOL_GPL(yield_to);
4871 
4872 /*
4873  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4874  * that process accounting knows that this is a task in IO wait state.
4875  */
4876 long __sched io_schedule_timeout(long timeout)
4877 {
4878 	int old_iowait = current->in_iowait;
4879 	struct rq *rq;
4880 	long ret;
4881 
4882 	current->in_iowait = 1;
4883 	blk_schedule_flush_plug(current);
4884 
4885 	delayacct_blkio_start();
4886 	rq = raw_rq();
4887 	atomic_inc(&rq->nr_iowait);
4888 	ret = schedule_timeout(timeout);
4889 	current->in_iowait = old_iowait;
4890 	atomic_dec(&rq->nr_iowait);
4891 	delayacct_blkio_end();
4892 
4893 	return ret;
4894 }
4895 EXPORT_SYMBOL(io_schedule_timeout);
4896 
4897 /**
4898  * sys_sched_get_priority_max - return maximum RT priority.
4899  * @policy: scheduling class.
4900  *
4901  * Return: On success, this syscall returns the maximum
4902  * rt_priority that can be used by a given scheduling class.
4903  * On failure, a negative error code is returned.
4904  */
4905 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4906 {
4907 	int ret = -EINVAL;
4908 
4909 	switch (policy) {
4910 	case SCHED_FIFO:
4911 	case SCHED_RR:
4912 		ret = MAX_USER_RT_PRIO-1;
4913 		break;
4914 	case SCHED_DEADLINE:
4915 	case SCHED_NORMAL:
4916 	case SCHED_BATCH:
4917 	case SCHED_IDLE:
4918 		ret = 0;
4919 		break;
4920 	}
4921 	return ret;
4922 }
4923 
4924 /**
4925  * sys_sched_get_priority_min - return minimum RT priority.
4926  * @policy: scheduling class.
4927  *
4928  * Return: On success, this syscall returns the minimum
4929  * rt_priority that can be used by a given scheduling class.
4930  * On failure, a negative error code is returned.
4931  */
4932 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4933 {
4934 	int ret = -EINVAL;
4935 
4936 	switch (policy) {
4937 	case SCHED_FIFO:
4938 	case SCHED_RR:
4939 		ret = 1;
4940 		break;
4941 	case SCHED_DEADLINE:
4942 	case SCHED_NORMAL:
4943 	case SCHED_BATCH:
4944 	case SCHED_IDLE:
4945 		ret = 0;
4946 	}
4947 	return ret;
4948 }
4949 
4950 /**
4951  * sys_sched_rr_get_interval - return the default timeslice of a process.
4952  * @pid: pid of the process.
4953  * @interval: userspace pointer to the timeslice value.
4954  *
4955  * this syscall writes the default timeslice value of a given process
4956  * into the user-space timespec buffer. A value of '0' means infinity.
4957  *
4958  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4959  * an error code.
4960  */
4961 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4962 		struct timespec __user *, interval)
4963 {
4964 	struct task_struct *p;
4965 	unsigned int time_slice;
4966 	unsigned long flags;
4967 	struct rq *rq;
4968 	int retval;
4969 	struct timespec t;
4970 
4971 	if (pid < 0)
4972 		return -EINVAL;
4973 
4974 	retval = -ESRCH;
4975 	rcu_read_lock();
4976 	p = find_process_by_pid(pid);
4977 	if (!p)
4978 		goto out_unlock;
4979 
4980 	retval = security_task_getscheduler(p);
4981 	if (retval)
4982 		goto out_unlock;
4983 
4984 	rq = task_rq_lock(p, &flags);
4985 	time_slice = 0;
4986 	if (p->sched_class->get_rr_interval)
4987 		time_slice = p->sched_class->get_rr_interval(rq, p);
4988 	task_rq_unlock(rq, p, &flags);
4989 
4990 	rcu_read_unlock();
4991 	jiffies_to_timespec(time_slice, &t);
4992 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4993 	return retval;
4994 
4995 out_unlock:
4996 	rcu_read_unlock();
4997 	return retval;
4998 }
4999 
5000 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5001 
5002 void sched_show_task(struct task_struct *p)
5003 {
5004 	unsigned long free = 0;
5005 	int ppid;
5006 	unsigned long state = p->state;
5007 
5008 	if (state)
5009 		state = __ffs(state) + 1;
5010 	printk(KERN_INFO "%-15.15s %c", p->comm,
5011 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5012 #if BITS_PER_LONG == 32
5013 	if (state == TASK_RUNNING)
5014 		printk(KERN_CONT " running  ");
5015 	else
5016 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5017 #else
5018 	if (state == TASK_RUNNING)
5019 		printk(KERN_CONT "  running task    ");
5020 	else
5021 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5022 #endif
5023 #ifdef CONFIG_DEBUG_STACK_USAGE
5024 	free = stack_not_used(p);
5025 #endif
5026 	ppid = 0;
5027 	rcu_read_lock();
5028 	if (pid_alive(p))
5029 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5030 	rcu_read_unlock();
5031 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5032 		task_pid_nr(p), ppid,
5033 		(unsigned long)task_thread_info(p)->flags);
5034 
5035 	print_worker_info(KERN_INFO, p);
5036 	show_stack(p, NULL);
5037 }
5038 
5039 void show_state_filter(unsigned long state_filter)
5040 {
5041 	struct task_struct *g, *p;
5042 
5043 #if BITS_PER_LONG == 32
5044 	printk(KERN_INFO
5045 		"  task                PC stack   pid father\n");
5046 #else
5047 	printk(KERN_INFO
5048 		"  task                        PC stack   pid father\n");
5049 #endif
5050 	rcu_read_lock();
5051 	for_each_process_thread(g, p) {
5052 		/*
5053 		 * reset the NMI-timeout, listing all files on a slow
5054 		 * console might take a lot of time:
5055 		 */
5056 		touch_nmi_watchdog();
5057 		if (!state_filter || (p->state & state_filter))
5058 			sched_show_task(p);
5059 	}
5060 
5061 	touch_all_softlockup_watchdogs();
5062 
5063 #ifdef CONFIG_SCHED_DEBUG
5064 	sysrq_sched_debug_show();
5065 #endif
5066 	rcu_read_unlock();
5067 	/*
5068 	 * Only show locks if all tasks are dumped:
5069 	 */
5070 	if (!state_filter)
5071 		debug_show_all_locks();
5072 }
5073 
5074 void init_idle_bootup_task(struct task_struct *idle)
5075 {
5076 	idle->sched_class = &idle_sched_class;
5077 }
5078 
5079 /**
5080  * init_idle - set up an idle thread for a given CPU
5081  * @idle: task in question
5082  * @cpu: cpu the idle task belongs to
5083  *
5084  * NOTE: this function does not set the idle thread's NEED_RESCHED
5085  * flag, to make booting more robust.
5086  */
5087 void init_idle(struct task_struct *idle, int cpu)
5088 {
5089 	struct rq *rq = cpu_rq(cpu);
5090 	unsigned long flags;
5091 
5092 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5093 	raw_spin_lock(&rq->lock);
5094 
5095 	__sched_fork(0, idle);
5096 	idle->state = TASK_RUNNING;
5097 	idle->se.exec_start = sched_clock();
5098 
5099 #ifdef CONFIG_SMP
5100 	/*
5101 	 * Its possible that init_idle() gets called multiple times on a task,
5102 	 * in that case do_set_cpus_allowed() will not do the right thing.
5103 	 *
5104 	 * And since this is boot we can forgo the serialization.
5105 	 */
5106 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5107 #endif
5108 	/*
5109 	 * We're having a chicken and egg problem, even though we are
5110 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5111 	 * lockdep check in task_group() will fail.
5112 	 *
5113 	 * Similar case to sched_fork(). / Alternatively we could
5114 	 * use task_rq_lock() here and obtain the other rq->lock.
5115 	 *
5116 	 * Silence PROVE_RCU
5117 	 */
5118 	rcu_read_lock();
5119 	__set_task_cpu(idle, cpu);
5120 	rcu_read_unlock();
5121 
5122 	rq->curr = rq->idle = idle;
5123 	idle->on_rq = TASK_ON_RQ_QUEUED;
5124 #ifdef CONFIG_SMP
5125 	idle->on_cpu = 1;
5126 #endif
5127 	raw_spin_unlock(&rq->lock);
5128 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5129 
5130 	/* Set the preempt count _outside_ the spinlocks! */
5131 	init_idle_preempt_count(idle, cpu);
5132 
5133 	/*
5134 	 * The idle tasks have their own, simple scheduling class:
5135 	 */
5136 	idle->sched_class = &idle_sched_class;
5137 	ftrace_graph_init_idle_task(idle, cpu);
5138 	vtime_init_idle(idle, cpu);
5139 #ifdef CONFIG_SMP
5140 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5141 #endif
5142 }
5143 
5144 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5145 			      const struct cpumask *trial)
5146 {
5147 	int ret = 1, trial_cpus;
5148 	struct dl_bw *cur_dl_b;
5149 	unsigned long flags;
5150 
5151 	if (!cpumask_weight(cur))
5152 		return ret;
5153 
5154 	rcu_read_lock_sched();
5155 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5156 	trial_cpus = cpumask_weight(trial);
5157 
5158 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5159 	if (cur_dl_b->bw != -1 &&
5160 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5161 		ret = 0;
5162 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5163 	rcu_read_unlock_sched();
5164 
5165 	return ret;
5166 }
5167 
5168 int task_can_attach(struct task_struct *p,
5169 		    const struct cpumask *cs_cpus_allowed)
5170 {
5171 	int ret = 0;
5172 
5173 	/*
5174 	 * Kthreads which disallow setaffinity shouldn't be moved
5175 	 * to a new cpuset; we don't want to change their cpu
5176 	 * affinity and isolating such threads by their set of
5177 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5178 	 * applicable for such threads.  This prevents checking for
5179 	 * success of set_cpus_allowed_ptr() on all attached tasks
5180 	 * before cpus_allowed may be changed.
5181 	 */
5182 	if (p->flags & PF_NO_SETAFFINITY) {
5183 		ret = -EINVAL;
5184 		goto out;
5185 	}
5186 
5187 #ifdef CONFIG_SMP
5188 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5189 					      cs_cpus_allowed)) {
5190 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5191 							cs_cpus_allowed);
5192 		struct dl_bw *dl_b;
5193 		bool overflow;
5194 		int cpus;
5195 		unsigned long flags;
5196 
5197 		rcu_read_lock_sched();
5198 		dl_b = dl_bw_of(dest_cpu);
5199 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5200 		cpus = dl_bw_cpus(dest_cpu);
5201 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5202 		if (overflow)
5203 			ret = -EBUSY;
5204 		else {
5205 			/*
5206 			 * We reserve space for this task in the destination
5207 			 * root_domain, as we can't fail after this point.
5208 			 * We will free resources in the source root_domain
5209 			 * later on (see set_cpus_allowed_dl()).
5210 			 */
5211 			__dl_add(dl_b, p->dl.dl_bw);
5212 		}
5213 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5214 		rcu_read_unlock_sched();
5215 
5216 	}
5217 #endif
5218 out:
5219 	return ret;
5220 }
5221 
5222 #ifdef CONFIG_SMP
5223 
5224 #ifdef CONFIG_NUMA_BALANCING
5225 /* Migrate current task p to target_cpu */
5226 int migrate_task_to(struct task_struct *p, int target_cpu)
5227 {
5228 	struct migration_arg arg = { p, target_cpu };
5229 	int curr_cpu = task_cpu(p);
5230 
5231 	if (curr_cpu == target_cpu)
5232 		return 0;
5233 
5234 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5235 		return -EINVAL;
5236 
5237 	/* TODO: This is not properly updating schedstats */
5238 
5239 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5240 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5241 }
5242 
5243 /*
5244  * Requeue a task on a given node and accurately track the number of NUMA
5245  * tasks on the runqueues
5246  */
5247 void sched_setnuma(struct task_struct *p, int nid)
5248 {
5249 	struct rq *rq;
5250 	unsigned long flags;
5251 	bool queued, running;
5252 
5253 	rq = task_rq_lock(p, &flags);
5254 	queued = task_on_rq_queued(p);
5255 	running = task_current(rq, p);
5256 
5257 	if (queued)
5258 		dequeue_task(rq, p, DEQUEUE_SAVE);
5259 	if (running)
5260 		put_prev_task(rq, p);
5261 
5262 	p->numa_preferred_nid = nid;
5263 
5264 	if (running)
5265 		p->sched_class->set_curr_task(rq);
5266 	if (queued)
5267 		enqueue_task(rq, p, ENQUEUE_RESTORE);
5268 	task_rq_unlock(rq, p, &flags);
5269 }
5270 #endif /* CONFIG_NUMA_BALANCING */
5271 
5272 #ifdef CONFIG_HOTPLUG_CPU
5273 /*
5274  * Ensures that the idle task is using init_mm right before its cpu goes
5275  * offline.
5276  */
5277 void idle_task_exit(void)
5278 {
5279 	struct mm_struct *mm = current->active_mm;
5280 
5281 	BUG_ON(cpu_online(smp_processor_id()));
5282 
5283 	if (mm != &init_mm) {
5284 		switch_mm(mm, &init_mm, current);
5285 		finish_arch_post_lock_switch();
5286 	}
5287 	mmdrop(mm);
5288 }
5289 
5290 /*
5291  * Since this CPU is going 'away' for a while, fold any nr_active delta
5292  * we might have. Assumes we're called after migrate_tasks() so that the
5293  * nr_active count is stable.
5294  *
5295  * Also see the comment "Global load-average calculations".
5296  */
5297 static void calc_load_migrate(struct rq *rq)
5298 {
5299 	long delta = calc_load_fold_active(rq);
5300 	if (delta)
5301 		atomic_long_add(delta, &calc_load_tasks);
5302 }
5303 
5304 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5305 {
5306 }
5307 
5308 static const struct sched_class fake_sched_class = {
5309 	.put_prev_task = put_prev_task_fake,
5310 };
5311 
5312 static struct task_struct fake_task = {
5313 	/*
5314 	 * Avoid pull_{rt,dl}_task()
5315 	 */
5316 	.prio = MAX_PRIO + 1,
5317 	.sched_class = &fake_sched_class,
5318 };
5319 
5320 /*
5321  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5322  * try_to_wake_up()->select_task_rq().
5323  *
5324  * Called with rq->lock held even though we'er in stop_machine() and
5325  * there's no concurrency possible, we hold the required locks anyway
5326  * because of lock validation efforts.
5327  */
5328 static void migrate_tasks(struct rq *dead_rq)
5329 {
5330 	struct rq *rq = dead_rq;
5331 	struct task_struct *next, *stop = rq->stop;
5332 	int dest_cpu;
5333 
5334 	/*
5335 	 * Fudge the rq selection such that the below task selection loop
5336 	 * doesn't get stuck on the currently eligible stop task.
5337 	 *
5338 	 * We're currently inside stop_machine() and the rq is either stuck
5339 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5340 	 * either way we should never end up calling schedule() until we're
5341 	 * done here.
5342 	 */
5343 	rq->stop = NULL;
5344 
5345 	/*
5346 	 * put_prev_task() and pick_next_task() sched
5347 	 * class method both need to have an up-to-date
5348 	 * value of rq->clock[_task]
5349 	 */
5350 	update_rq_clock(rq);
5351 
5352 	for (;;) {
5353 		/*
5354 		 * There's this thread running, bail when that's the only
5355 		 * remaining thread.
5356 		 */
5357 		if (rq->nr_running == 1)
5358 			break;
5359 
5360 		/*
5361 		 * pick_next_task assumes pinned rq->lock.
5362 		 */
5363 		lockdep_pin_lock(&rq->lock);
5364 		next = pick_next_task(rq, &fake_task);
5365 		BUG_ON(!next);
5366 		next->sched_class->put_prev_task(rq, next);
5367 
5368 		/*
5369 		 * Rules for changing task_struct::cpus_allowed are holding
5370 		 * both pi_lock and rq->lock, such that holding either
5371 		 * stabilizes the mask.
5372 		 *
5373 		 * Drop rq->lock is not quite as disastrous as it usually is
5374 		 * because !cpu_active at this point, which means load-balance
5375 		 * will not interfere. Also, stop-machine.
5376 		 */
5377 		lockdep_unpin_lock(&rq->lock);
5378 		raw_spin_unlock(&rq->lock);
5379 		raw_spin_lock(&next->pi_lock);
5380 		raw_spin_lock(&rq->lock);
5381 
5382 		/*
5383 		 * Since we're inside stop-machine, _nothing_ should have
5384 		 * changed the task, WARN if weird stuff happened, because in
5385 		 * that case the above rq->lock drop is a fail too.
5386 		 */
5387 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5388 			raw_spin_unlock(&next->pi_lock);
5389 			continue;
5390 		}
5391 
5392 		/* Find suitable destination for @next, with force if needed. */
5393 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5394 
5395 		rq = __migrate_task(rq, next, dest_cpu);
5396 		if (rq != dead_rq) {
5397 			raw_spin_unlock(&rq->lock);
5398 			rq = dead_rq;
5399 			raw_spin_lock(&rq->lock);
5400 		}
5401 		raw_spin_unlock(&next->pi_lock);
5402 	}
5403 
5404 	rq->stop = stop;
5405 }
5406 #endif /* CONFIG_HOTPLUG_CPU */
5407 
5408 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5409 
5410 static struct ctl_table sd_ctl_dir[] = {
5411 	{
5412 		.procname	= "sched_domain",
5413 		.mode		= 0555,
5414 	},
5415 	{}
5416 };
5417 
5418 static struct ctl_table sd_ctl_root[] = {
5419 	{
5420 		.procname	= "kernel",
5421 		.mode		= 0555,
5422 		.child		= sd_ctl_dir,
5423 	},
5424 	{}
5425 };
5426 
5427 static struct ctl_table *sd_alloc_ctl_entry(int n)
5428 {
5429 	struct ctl_table *entry =
5430 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5431 
5432 	return entry;
5433 }
5434 
5435 static void sd_free_ctl_entry(struct ctl_table **tablep)
5436 {
5437 	struct ctl_table *entry;
5438 
5439 	/*
5440 	 * In the intermediate directories, both the child directory and
5441 	 * procname are dynamically allocated and could fail but the mode
5442 	 * will always be set. In the lowest directory the names are
5443 	 * static strings and all have proc handlers.
5444 	 */
5445 	for (entry = *tablep; entry->mode; entry++) {
5446 		if (entry->child)
5447 			sd_free_ctl_entry(&entry->child);
5448 		if (entry->proc_handler == NULL)
5449 			kfree(entry->procname);
5450 	}
5451 
5452 	kfree(*tablep);
5453 	*tablep = NULL;
5454 }
5455 
5456 static int min_load_idx = 0;
5457 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5458 
5459 static void
5460 set_table_entry(struct ctl_table *entry,
5461 		const char *procname, void *data, int maxlen,
5462 		umode_t mode, proc_handler *proc_handler,
5463 		bool load_idx)
5464 {
5465 	entry->procname = procname;
5466 	entry->data = data;
5467 	entry->maxlen = maxlen;
5468 	entry->mode = mode;
5469 	entry->proc_handler = proc_handler;
5470 
5471 	if (load_idx) {
5472 		entry->extra1 = &min_load_idx;
5473 		entry->extra2 = &max_load_idx;
5474 	}
5475 }
5476 
5477 static struct ctl_table *
5478 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5479 {
5480 	struct ctl_table *table = sd_alloc_ctl_entry(14);
5481 
5482 	if (table == NULL)
5483 		return NULL;
5484 
5485 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5486 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5487 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5488 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5489 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5490 		sizeof(int), 0644, proc_dointvec_minmax, true);
5491 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5492 		sizeof(int), 0644, proc_dointvec_minmax, true);
5493 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5494 		sizeof(int), 0644, proc_dointvec_minmax, true);
5495 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5496 		sizeof(int), 0644, proc_dointvec_minmax, true);
5497 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5498 		sizeof(int), 0644, proc_dointvec_minmax, true);
5499 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5500 		sizeof(int), 0644, proc_dointvec_minmax, false);
5501 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5502 		sizeof(int), 0644, proc_dointvec_minmax, false);
5503 	set_table_entry(&table[9], "cache_nice_tries",
5504 		&sd->cache_nice_tries,
5505 		sizeof(int), 0644, proc_dointvec_minmax, false);
5506 	set_table_entry(&table[10], "flags", &sd->flags,
5507 		sizeof(int), 0644, proc_dointvec_minmax, false);
5508 	set_table_entry(&table[11], "max_newidle_lb_cost",
5509 		&sd->max_newidle_lb_cost,
5510 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5511 	set_table_entry(&table[12], "name", sd->name,
5512 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5513 	/* &table[13] is terminator */
5514 
5515 	return table;
5516 }
5517 
5518 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5519 {
5520 	struct ctl_table *entry, *table;
5521 	struct sched_domain *sd;
5522 	int domain_num = 0, i;
5523 	char buf[32];
5524 
5525 	for_each_domain(cpu, sd)
5526 		domain_num++;
5527 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5528 	if (table == NULL)
5529 		return NULL;
5530 
5531 	i = 0;
5532 	for_each_domain(cpu, sd) {
5533 		snprintf(buf, 32, "domain%d", i);
5534 		entry->procname = kstrdup(buf, GFP_KERNEL);
5535 		entry->mode = 0555;
5536 		entry->child = sd_alloc_ctl_domain_table(sd);
5537 		entry++;
5538 		i++;
5539 	}
5540 	return table;
5541 }
5542 
5543 static struct ctl_table_header *sd_sysctl_header;
5544 static void register_sched_domain_sysctl(void)
5545 {
5546 	int i, cpu_num = num_possible_cpus();
5547 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5548 	char buf[32];
5549 
5550 	WARN_ON(sd_ctl_dir[0].child);
5551 	sd_ctl_dir[0].child = entry;
5552 
5553 	if (entry == NULL)
5554 		return;
5555 
5556 	for_each_possible_cpu(i) {
5557 		snprintf(buf, 32, "cpu%d", i);
5558 		entry->procname = kstrdup(buf, GFP_KERNEL);
5559 		entry->mode = 0555;
5560 		entry->child = sd_alloc_ctl_cpu_table(i);
5561 		entry++;
5562 	}
5563 
5564 	WARN_ON(sd_sysctl_header);
5565 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5566 }
5567 
5568 /* may be called multiple times per register */
5569 static void unregister_sched_domain_sysctl(void)
5570 {
5571 	unregister_sysctl_table(sd_sysctl_header);
5572 	sd_sysctl_header = NULL;
5573 	if (sd_ctl_dir[0].child)
5574 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5575 }
5576 #else
5577 static void register_sched_domain_sysctl(void)
5578 {
5579 }
5580 static void unregister_sched_domain_sysctl(void)
5581 {
5582 }
5583 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5584 
5585 static void set_rq_online(struct rq *rq)
5586 {
5587 	if (!rq->online) {
5588 		const struct sched_class *class;
5589 
5590 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5591 		rq->online = 1;
5592 
5593 		for_each_class(class) {
5594 			if (class->rq_online)
5595 				class->rq_online(rq);
5596 		}
5597 	}
5598 }
5599 
5600 static void set_rq_offline(struct rq *rq)
5601 {
5602 	if (rq->online) {
5603 		const struct sched_class *class;
5604 
5605 		for_each_class(class) {
5606 			if (class->rq_offline)
5607 				class->rq_offline(rq);
5608 		}
5609 
5610 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5611 		rq->online = 0;
5612 	}
5613 }
5614 
5615 /*
5616  * migration_call - callback that gets triggered when a CPU is added.
5617  * Here we can start up the necessary migration thread for the new CPU.
5618  */
5619 static int
5620 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5621 {
5622 	int cpu = (long)hcpu;
5623 	unsigned long flags;
5624 	struct rq *rq = cpu_rq(cpu);
5625 
5626 	switch (action & ~CPU_TASKS_FROZEN) {
5627 
5628 	case CPU_UP_PREPARE:
5629 		rq->calc_load_update = calc_load_update;
5630 		break;
5631 
5632 	case CPU_ONLINE:
5633 		/* Update our root-domain */
5634 		raw_spin_lock_irqsave(&rq->lock, flags);
5635 		if (rq->rd) {
5636 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5637 
5638 			set_rq_online(rq);
5639 		}
5640 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5641 		break;
5642 
5643 #ifdef CONFIG_HOTPLUG_CPU
5644 	case CPU_DYING:
5645 		sched_ttwu_pending();
5646 		/* Update our root-domain */
5647 		raw_spin_lock_irqsave(&rq->lock, flags);
5648 		if (rq->rd) {
5649 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5650 			set_rq_offline(rq);
5651 		}
5652 		migrate_tasks(rq);
5653 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5654 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5655 		break;
5656 
5657 	case CPU_DEAD:
5658 		calc_load_migrate(rq);
5659 		break;
5660 #endif
5661 	}
5662 
5663 	update_max_interval();
5664 
5665 	return NOTIFY_OK;
5666 }
5667 
5668 /*
5669  * Register at high priority so that task migration (migrate_all_tasks)
5670  * happens before everything else.  This has to be lower priority than
5671  * the notifier in the perf_event subsystem, though.
5672  */
5673 static struct notifier_block migration_notifier = {
5674 	.notifier_call = migration_call,
5675 	.priority = CPU_PRI_MIGRATION,
5676 };
5677 
5678 static void set_cpu_rq_start_time(void)
5679 {
5680 	int cpu = smp_processor_id();
5681 	struct rq *rq = cpu_rq(cpu);
5682 	rq->age_stamp = sched_clock_cpu(cpu);
5683 }
5684 
5685 static int sched_cpu_active(struct notifier_block *nfb,
5686 				      unsigned long action, void *hcpu)
5687 {
5688 	int cpu = (long)hcpu;
5689 
5690 	switch (action & ~CPU_TASKS_FROZEN) {
5691 	case CPU_STARTING:
5692 		set_cpu_rq_start_time();
5693 		return NOTIFY_OK;
5694 
5695 	case CPU_ONLINE:
5696 		/*
5697 		 * At this point a starting CPU has marked itself as online via
5698 		 * set_cpu_online(). But it might not yet have marked itself
5699 		 * as active, which is essential from here on.
5700 		 */
5701 		set_cpu_active(cpu, true);
5702 		stop_machine_unpark(cpu);
5703 		return NOTIFY_OK;
5704 
5705 	case CPU_DOWN_FAILED:
5706 		set_cpu_active(cpu, true);
5707 		return NOTIFY_OK;
5708 
5709 	default:
5710 		return NOTIFY_DONE;
5711 	}
5712 }
5713 
5714 static int sched_cpu_inactive(struct notifier_block *nfb,
5715 					unsigned long action, void *hcpu)
5716 {
5717 	switch (action & ~CPU_TASKS_FROZEN) {
5718 	case CPU_DOWN_PREPARE:
5719 		set_cpu_active((long)hcpu, false);
5720 		return NOTIFY_OK;
5721 	default:
5722 		return NOTIFY_DONE;
5723 	}
5724 }
5725 
5726 static int __init migration_init(void)
5727 {
5728 	void *cpu = (void *)(long)smp_processor_id();
5729 	int err;
5730 
5731 	/* Initialize migration for the boot CPU */
5732 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5733 	BUG_ON(err == NOTIFY_BAD);
5734 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5735 	register_cpu_notifier(&migration_notifier);
5736 
5737 	/* Register cpu active notifiers */
5738 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5739 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5740 
5741 	return 0;
5742 }
5743 early_initcall(migration_init);
5744 
5745 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5746 
5747 #ifdef CONFIG_SCHED_DEBUG
5748 
5749 static __read_mostly int sched_debug_enabled;
5750 
5751 static int __init sched_debug_setup(char *str)
5752 {
5753 	sched_debug_enabled = 1;
5754 
5755 	return 0;
5756 }
5757 early_param("sched_debug", sched_debug_setup);
5758 
5759 static inline bool sched_debug(void)
5760 {
5761 	return sched_debug_enabled;
5762 }
5763 
5764 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5765 				  struct cpumask *groupmask)
5766 {
5767 	struct sched_group *group = sd->groups;
5768 
5769 	cpumask_clear(groupmask);
5770 
5771 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5772 
5773 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5774 		printk("does not load-balance\n");
5775 		if (sd->parent)
5776 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5777 					" has parent");
5778 		return -1;
5779 	}
5780 
5781 	printk(KERN_CONT "span %*pbl level %s\n",
5782 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5783 
5784 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5785 		printk(KERN_ERR "ERROR: domain->span does not contain "
5786 				"CPU%d\n", cpu);
5787 	}
5788 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5789 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5790 				" CPU%d\n", cpu);
5791 	}
5792 
5793 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5794 	do {
5795 		if (!group) {
5796 			printk("\n");
5797 			printk(KERN_ERR "ERROR: group is NULL\n");
5798 			break;
5799 		}
5800 
5801 		if (!cpumask_weight(sched_group_cpus(group))) {
5802 			printk(KERN_CONT "\n");
5803 			printk(KERN_ERR "ERROR: empty group\n");
5804 			break;
5805 		}
5806 
5807 		if (!(sd->flags & SD_OVERLAP) &&
5808 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5809 			printk(KERN_CONT "\n");
5810 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5811 			break;
5812 		}
5813 
5814 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5815 
5816 		printk(KERN_CONT " %*pbl",
5817 		       cpumask_pr_args(sched_group_cpus(group)));
5818 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5819 			printk(KERN_CONT " (cpu_capacity = %d)",
5820 				group->sgc->capacity);
5821 		}
5822 
5823 		group = group->next;
5824 	} while (group != sd->groups);
5825 	printk(KERN_CONT "\n");
5826 
5827 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5828 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5829 
5830 	if (sd->parent &&
5831 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5832 		printk(KERN_ERR "ERROR: parent span is not a superset "
5833 			"of domain->span\n");
5834 	return 0;
5835 }
5836 
5837 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5838 {
5839 	int level = 0;
5840 
5841 	if (!sched_debug_enabled)
5842 		return;
5843 
5844 	if (!sd) {
5845 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5846 		return;
5847 	}
5848 
5849 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5850 
5851 	for (;;) {
5852 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5853 			break;
5854 		level++;
5855 		sd = sd->parent;
5856 		if (!sd)
5857 			break;
5858 	}
5859 }
5860 #else /* !CONFIG_SCHED_DEBUG */
5861 # define sched_domain_debug(sd, cpu) do { } while (0)
5862 static inline bool sched_debug(void)
5863 {
5864 	return false;
5865 }
5866 #endif /* CONFIG_SCHED_DEBUG */
5867 
5868 static int sd_degenerate(struct sched_domain *sd)
5869 {
5870 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5871 		return 1;
5872 
5873 	/* Following flags need at least 2 groups */
5874 	if (sd->flags & (SD_LOAD_BALANCE |
5875 			 SD_BALANCE_NEWIDLE |
5876 			 SD_BALANCE_FORK |
5877 			 SD_BALANCE_EXEC |
5878 			 SD_SHARE_CPUCAPACITY |
5879 			 SD_SHARE_PKG_RESOURCES |
5880 			 SD_SHARE_POWERDOMAIN)) {
5881 		if (sd->groups != sd->groups->next)
5882 			return 0;
5883 	}
5884 
5885 	/* Following flags don't use groups */
5886 	if (sd->flags & (SD_WAKE_AFFINE))
5887 		return 0;
5888 
5889 	return 1;
5890 }
5891 
5892 static int
5893 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5894 {
5895 	unsigned long cflags = sd->flags, pflags = parent->flags;
5896 
5897 	if (sd_degenerate(parent))
5898 		return 1;
5899 
5900 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5901 		return 0;
5902 
5903 	/* Flags needing groups don't count if only 1 group in parent */
5904 	if (parent->groups == parent->groups->next) {
5905 		pflags &= ~(SD_LOAD_BALANCE |
5906 				SD_BALANCE_NEWIDLE |
5907 				SD_BALANCE_FORK |
5908 				SD_BALANCE_EXEC |
5909 				SD_SHARE_CPUCAPACITY |
5910 				SD_SHARE_PKG_RESOURCES |
5911 				SD_PREFER_SIBLING |
5912 				SD_SHARE_POWERDOMAIN);
5913 		if (nr_node_ids == 1)
5914 			pflags &= ~SD_SERIALIZE;
5915 	}
5916 	if (~cflags & pflags)
5917 		return 0;
5918 
5919 	return 1;
5920 }
5921 
5922 static void free_rootdomain(struct rcu_head *rcu)
5923 {
5924 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5925 
5926 	cpupri_cleanup(&rd->cpupri);
5927 	cpudl_cleanup(&rd->cpudl);
5928 	free_cpumask_var(rd->dlo_mask);
5929 	free_cpumask_var(rd->rto_mask);
5930 	free_cpumask_var(rd->online);
5931 	free_cpumask_var(rd->span);
5932 	kfree(rd);
5933 }
5934 
5935 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5936 {
5937 	struct root_domain *old_rd = NULL;
5938 	unsigned long flags;
5939 
5940 	raw_spin_lock_irqsave(&rq->lock, flags);
5941 
5942 	if (rq->rd) {
5943 		old_rd = rq->rd;
5944 
5945 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5946 			set_rq_offline(rq);
5947 
5948 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5949 
5950 		/*
5951 		 * If we dont want to free the old_rd yet then
5952 		 * set old_rd to NULL to skip the freeing later
5953 		 * in this function:
5954 		 */
5955 		if (!atomic_dec_and_test(&old_rd->refcount))
5956 			old_rd = NULL;
5957 	}
5958 
5959 	atomic_inc(&rd->refcount);
5960 	rq->rd = rd;
5961 
5962 	cpumask_set_cpu(rq->cpu, rd->span);
5963 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5964 		set_rq_online(rq);
5965 
5966 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5967 
5968 	if (old_rd)
5969 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5970 }
5971 
5972 static int init_rootdomain(struct root_domain *rd)
5973 {
5974 	memset(rd, 0, sizeof(*rd));
5975 
5976 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5977 		goto out;
5978 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5979 		goto free_span;
5980 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5981 		goto free_online;
5982 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5983 		goto free_dlo_mask;
5984 
5985 	init_dl_bw(&rd->dl_bw);
5986 	if (cpudl_init(&rd->cpudl) != 0)
5987 		goto free_dlo_mask;
5988 
5989 	if (cpupri_init(&rd->cpupri) != 0)
5990 		goto free_rto_mask;
5991 	return 0;
5992 
5993 free_rto_mask:
5994 	free_cpumask_var(rd->rto_mask);
5995 free_dlo_mask:
5996 	free_cpumask_var(rd->dlo_mask);
5997 free_online:
5998 	free_cpumask_var(rd->online);
5999 free_span:
6000 	free_cpumask_var(rd->span);
6001 out:
6002 	return -ENOMEM;
6003 }
6004 
6005 /*
6006  * By default the system creates a single root-domain with all cpus as
6007  * members (mimicking the global state we have today).
6008  */
6009 struct root_domain def_root_domain;
6010 
6011 static void init_defrootdomain(void)
6012 {
6013 	init_rootdomain(&def_root_domain);
6014 
6015 	atomic_set(&def_root_domain.refcount, 1);
6016 }
6017 
6018 static struct root_domain *alloc_rootdomain(void)
6019 {
6020 	struct root_domain *rd;
6021 
6022 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6023 	if (!rd)
6024 		return NULL;
6025 
6026 	if (init_rootdomain(rd) != 0) {
6027 		kfree(rd);
6028 		return NULL;
6029 	}
6030 
6031 	return rd;
6032 }
6033 
6034 static void free_sched_groups(struct sched_group *sg, int free_sgc)
6035 {
6036 	struct sched_group *tmp, *first;
6037 
6038 	if (!sg)
6039 		return;
6040 
6041 	first = sg;
6042 	do {
6043 		tmp = sg->next;
6044 
6045 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
6046 			kfree(sg->sgc);
6047 
6048 		kfree(sg);
6049 		sg = tmp;
6050 	} while (sg != first);
6051 }
6052 
6053 static void free_sched_domain(struct rcu_head *rcu)
6054 {
6055 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6056 
6057 	/*
6058 	 * If its an overlapping domain it has private groups, iterate and
6059 	 * nuke them all.
6060 	 */
6061 	if (sd->flags & SD_OVERLAP) {
6062 		free_sched_groups(sd->groups, 1);
6063 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
6064 		kfree(sd->groups->sgc);
6065 		kfree(sd->groups);
6066 	}
6067 	kfree(sd);
6068 }
6069 
6070 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6071 {
6072 	call_rcu(&sd->rcu, free_sched_domain);
6073 }
6074 
6075 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6076 {
6077 	for (; sd; sd = sd->parent)
6078 		destroy_sched_domain(sd, cpu);
6079 }
6080 
6081 /*
6082  * Keep a special pointer to the highest sched_domain that has
6083  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6084  * allows us to avoid some pointer chasing select_idle_sibling().
6085  *
6086  * Also keep a unique ID per domain (we use the first cpu number in
6087  * the cpumask of the domain), this allows us to quickly tell if
6088  * two cpus are in the same cache domain, see cpus_share_cache().
6089  */
6090 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6091 DEFINE_PER_CPU(int, sd_llc_size);
6092 DEFINE_PER_CPU(int, sd_llc_id);
6093 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
6094 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
6095 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
6096 
6097 static void update_top_cache_domain(int cpu)
6098 {
6099 	struct sched_domain *sd;
6100 	struct sched_domain *busy_sd = NULL;
6101 	int id = cpu;
6102 	int size = 1;
6103 
6104 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6105 	if (sd) {
6106 		id = cpumask_first(sched_domain_span(sd));
6107 		size = cpumask_weight(sched_domain_span(sd));
6108 		busy_sd = sd->parent; /* sd_busy */
6109 	}
6110 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
6111 
6112 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6113 	per_cpu(sd_llc_size, cpu) = size;
6114 	per_cpu(sd_llc_id, cpu) = id;
6115 
6116 	sd = lowest_flag_domain(cpu, SD_NUMA);
6117 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6118 
6119 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6120 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6121 }
6122 
6123 /*
6124  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6125  * hold the hotplug lock.
6126  */
6127 static void
6128 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6129 {
6130 	struct rq *rq = cpu_rq(cpu);
6131 	struct sched_domain *tmp;
6132 
6133 	/* Remove the sched domains which do not contribute to scheduling. */
6134 	for (tmp = sd; tmp; ) {
6135 		struct sched_domain *parent = tmp->parent;
6136 		if (!parent)
6137 			break;
6138 
6139 		if (sd_parent_degenerate(tmp, parent)) {
6140 			tmp->parent = parent->parent;
6141 			if (parent->parent)
6142 				parent->parent->child = tmp;
6143 			/*
6144 			 * Transfer SD_PREFER_SIBLING down in case of a
6145 			 * degenerate parent; the spans match for this
6146 			 * so the property transfers.
6147 			 */
6148 			if (parent->flags & SD_PREFER_SIBLING)
6149 				tmp->flags |= SD_PREFER_SIBLING;
6150 			destroy_sched_domain(parent, cpu);
6151 		} else
6152 			tmp = tmp->parent;
6153 	}
6154 
6155 	if (sd && sd_degenerate(sd)) {
6156 		tmp = sd;
6157 		sd = sd->parent;
6158 		destroy_sched_domain(tmp, cpu);
6159 		if (sd)
6160 			sd->child = NULL;
6161 	}
6162 
6163 	sched_domain_debug(sd, cpu);
6164 
6165 	rq_attach_root(rq, rd);
6166 	tmp = rq->sd;
6167 	rcu_assign_pointer(rq->sd, sd);
6168 	destroy_sched_domains(tmp, cpu);
6169 
6170 	update_top_cache_domain(cpu);
6171 }
6172 
6173 /* Setup the mask of cpus configured for isolated domains */
6174 static int __init isolated_cpu_setup(char *str)
6175 {
6176 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6177 	cpulist_parse(str, cpu_isolated_map);
6178 	return 1;
6179 }
6180 
6181 __setup("isolcpus=", isolated_cpu_setup);
6182 
6183 struct s_data {
6184 	struct sched_domain ** __percpu sd;
6185 	struct root_domain	*rd;
6186 };
6187 
6188 enum s_alloc {
6189 	sa_rootdomain,
6190 	sa_sd,
6191 	sa_sd_storage,
6192 	sa_none,
6193 };
6194 
6195 /*
6196  * Build an iteration mask that can exclude certain CPUs from the upwards
6197  * domain traversal.
6198  *
6199  * Asymmetric node setups can result in situations where the domain tree is of
6200  * unequal depth, make sure to skip domains that already cover the entire
6201  * range.
6202  *
6203  * In that case build_sched_domains() will have terminated the iteration early
6204  * and our sibling sd spans will be empty. Domains should always include the
6205  * cpu they're built on, so check that.
6206  *
6207  */
6208 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6209 {
6210 	const struct cpumask *span = sched_domain_span(sd);
6211 	struct sd_data *sdd = sd->private;
6212 	struct sched_domain *sibling;
6213 	int i;
6214 
6215 	for_each_cpu(i, span) {
6216 		sibling = *per_cpu_ptr(sdd->sd, i);
6217 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6218 			continue;
6219 
6220 		cpumask_set_cpu(i, sched_group_mask(sg));
6221 	}
6222 }
6223 
6224 /*
6225  * Return the canonical balance cpu for this group, this is the first cpu
6226  * of this group that's also in the iteration mask.
6227  */
6228 int group_balance_cpu(struct sched_group *sg)
6229 {
6230 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6231 }
6232 
6233 static int
6234 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6235 {
6236 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6237 	const struct cpumask *span = sched_domain_span(sd);
6238 	struct cpumask *covered = sched_domains_tmpmask;
6239 	struct sd_data *sdd = sd->private;
6240 	struct sched_domain *sibling;
6241 	int i;
6242 
6243 	cpumask_clear(covered);
6244 
6245 	for_each_cpu(i, span) {
6246 		struct cpumask *sg_span;
6247 
6248 		if (cpumask_test_cpu(i, covered))
6249 			continue;
6250 
6251 		sibling = *per_cpu_ptr(sdd->sd, i);
6252 
6253 		/* See the comment near build_group_mask(). */
6254 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6255 			continue;
6256 
6257 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6258 				GFP_KERNEL, cpu_to_node(cpu));
6259 
6260 		if (!sg)
6261 			goto fail;
6262 
6263 		sg_span = sched_group_cpus(sg);
6264 		if (sibling->child)
6265 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6266 		else
6267 			cpumask_set_cpu(i, sg_span);
6268 
6269 		cpumask_or(covered, covered, sg_span);
6270 
6271 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6272 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6273 			build_group_mask(sd, sg);
6274 
6275 		/*
6276 		 * Initialize sgc->capacity such that even if we mess up the
6277 		 * domains and no possible iteration will get us here, we won't
6278 		 * die on a /0 trap.
6279 		 */
6280 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6281 
6282 		/*
6283 		 * Make sure the first group of this domain contains the
6284 		 * canonical balance cpu. Otherwise the sched_domain iteration
6285 		 * breaks. See update_sg_lb_stats().
6286 		 */
6287 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6288 		    group_balance_cpu(sg) == cpu)
6289 			groups = sg;
6290 
6291 		if (!first)
6292 			first = sg;
6293 		if (last)
6294 			last->next = sg;
6295 		last = sg;
6296 		last->next = first;
6297 	}
6298 	sd->groups = groups;
6299 
6300 	return 0;
6301 
6302 fail:
6303 	free_sched_groups(first, 0);
6304 
6305 	return -ENOMEM;
6306 }
6307 
6308 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6309 {
6310 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6311 	struct sched_domain *child = sd->child;
6312 
6313 	if (child)
6314 		cpu = cpumask_first(sched_domain_span(child));
6315 
6316 	if (sg) {
6317 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6318 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6319 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6320 	}
6321 
6322 	return cpu;
6323 }
6324 
6325 /*
6326  * build_sched_groups will build a circular linked list of the groups
6327  * covered by the given span, and will set each group's ->cpumask correctly,
6328  * and ->cpu_capacity to 0.
6329  *
6330  * Assumes the sched_domain tree is fully constructed
6331  */
6332 static int
6333 build_sched_groups(struct sched_domain *sd, int cpu)
6334 {
6335 	struct sched_group *first = NULL, *last = NULL;
6336 	struct sd_data *sdd = sd->private;
6337 	const struct cpumask *span = sched_domain_span(sd);
6338 	struct cpumask *covered;
6339 	int i;
6340 
6341 	get_group(cpu, sdd, &sd->groups);
6342 	atomic_inc(&sd->groups->ref);
6343 
6344 	if (cpu != cpumask_first(span))
6345 		return 0;
6346 
6347 	lockdep_assert_held(&sched_domains_mutex);
6348 	covered = sched_domains_tmpmask;
6349 
6350 	cpumask_clear(covered);
6351 
6352 	for_each_cpu(i, span) {
6353 		struct sched_group *sg;
6354 		int group, j;
6355 
6356 		if (cpumask_test_cpu(i, covered))
6357 			continue;
6358 
6359 		group = get_group(i, sdd, &sg);
6360 		cpumask_setall(sched_group_mask(sg));
6361 
6362 		for_each_cpu(j, span) {
6363 			if (get_group(j, sdd, NULL) != group)
6364 				continue;
6365 
6366 			cpumask_set_cpu(j, covered);
6367 			cpumask_set_cpu(j, sched_group_cpus(sg));
6368 		}
6369 
6370 		if (!first)
6371 			first = sg;
6372 		if (last)
6373 			last->next = sg;
6374 		last = sg;
6375 	}
6376 	last->next = first;
6377 
6378 	return 0;
6379 }
6380 
6381 /*
6382  * Initialize sched groups cpu_capacity.
6383  *
6384  * cpu_capacity indicates the capacity of sched group, which is used while
6385  * distributing the load between different sched groups in a sched domain.
6386  * Typically cpu_capacity for all the groups in a sched domain will be same
6387  * unless there are asymmetries in the topology. If there are asymmetries,
6388  * group having more cpu_capacity will pickup more load compared to the
6389  * group having less cpu_capacity.
6390  */
6391 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6392 {
6393 	struct sched_group *sg = sd->groups;
6394 
6395 	WARN_ON(!sg);
6396 
6397 	do {
6398 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6399 		sg = sg->next;
6400 	} while (sg != sd->groups);
6401 
6402 	if (cpu != group_balance_cpu(sg))
6403 		return;
6404 
6405 	update_group_capacity(sd, cpu);
6406 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6407 }
6408 
6409 /*
6410  * Initializers for schedule domains
6411  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6412  */
6413 
6414 static int default_relax_domain_level = -1;
6415 int sched_domain_level_max;
6416 
6417 static int __init setup_relax_domain_level(char *str)
6418 {
6419 	if (kstrtoint(str, 0, &default_relax_domain_level))
6420 		pr_warn("Unable to set relax_domain_level\n");
6421 
6422 	return 1;
6423 }
6424 __setup("relax_domain_level=", setup_relax_domain_level);
6425 
6426 static void set_domain_attribute(struct sched_domain *sd,
6427 				 struct sched_domain_attr *attr)
6428 {
6429 	int request;
6430 
6431 	if (!attr || attr->relax_domain_level < 0) {
6432 		if (default_relax_domain_level < 0)
6433 			return;
6434 		else
6435 			request = default_relax_domain_level;
6436 	} else
6437 		request = attr->relax_domain_level;
6438 	if (request < sd->level) {
6439 		/* turn off idle balance on this domain */
6440 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6441 	} else {
6442 		/* turn on idle balance on this domain */
6443 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6444 	}
6445 }
6446 
6447 static void __sdt_free(const struct cpumask *cpu_map);
6448 static int __sdt_alloc(const struct cpumask *cpu_map);
6449 
6450 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6451 				 const struct cpumask *cpu_map)
6452 {
6453 	switch (what) {
6454 	case sa_rootdomain:
6455 		if (!atomic_read(&d->rd->refcount))
6456 			free_rootdomain(&d->rd->rcu); /* fall through */
6457 	case sa_sd:
6458 		free_percpu(d->sd); /* fall through */
6459 	case sa_sd_storage:
6460 		__sdt_free(cpu_map); /* fall through */
6461 	case sa_none:
6462 		break;
6463 	}
6464 }
6465 
6466 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6467 						   const struct cpumask *cpu_map)
6468 {
6469 	memset(d, 0, sizeof(*d));
6470 
6471 	if (__sdt_alloc(cpu_map))
6472 		return sa_sd_storage;
6473 	d->sd = alloc_percpu(struct sched_domain *);
6474 	if (!d->sd)
6475 		return sa_sd_storage;
6476 	d->rd = alloc_rootdomain();
6477 	if (!d->rd)
6478 		return sa_sd;
6479 	return sa_rootdomain;
6480 }
6481 
6482 /*
6483  * NULL the sd_data elements we've used to build the sched_domain and
6484  * sched_group structure so that the subsequent __free_domain_allocs()
6485  * will not free the data we're using.
6486  */
6487 static void claim_allocations(int cpu, struct sched_domain *sd)
6488 {
6489 	struct sd_data *sdd = sd->private;
6490 
6491 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6492 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6493 
6494 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6495 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6496 
6497 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6498 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6499 }
6500 
6501 #ifdef CONFIG_NUMA
6502 static int sched_domains_numa_levels;
6503 enum numa_topology_type sched_numa_topology_type;
6504 static int *sched_domains_numa_distance;
6505 int sched_max_numa_distance;
6506 static struct cpumask ***sched_domains_numa_masks;
6507 static int sched_domains_curr_level;
6508 #endif
6509 
6510 /*
6511  * SD_flags allowed in topology descriptions.
6512  *
6513  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6514  * SD_SHARE_PKG_RESOURCES - describes shared caches
6515  * SD_NUMA                - describes NUMA topologies
6516  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6517  *
6518  * Odd one out:
6519  * SD_ASYM_PACKING        - describes SMT quirks
6520  */
6521 #define TOPOLOGY_SD_FLAGS		\
6522 	(SD_SHARE_CPUCAPACITY |		\
6523 	 SD_SHARE_PKG_RESOURCES |	\
6524 	 SD_NUMA |			\
6525 	 SD_ASYM_PACKING |		\
6526 	 SD_SHARE_POWERDOMAIN)
6527 
6528 static struct sched_domain *
6529 sd_init(struct sched_domain_topology_level *tl, int cpu)
6530 {
6531 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6532 	int sd_weight, sd_flags = 0;
6533 
6534 #ifdef CONFIG_NUMA
6535 	/*
6536 	 * Ugly hack to pass state to sd_numa_mask()...
6537 	 */
6538 	sched_domains_curr_level = tl->numa_level;
6539 #endif
6540 
6541 	sd_weight = cpumask_weight(tl->mask(cpu));
6542 
6543 	if (tl->sd_flags)
6544 		sd_flags = (*tl->sd_flags)();
6545 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6546 			"wrong sd_flags in topology description\n"))
6547 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6548 
6549 	*sd = (struct sched_domain){
6550 		.min_interval		= sd_weight,
6551 		.max_interval		= 2*sd_weight,
6552 		.busy_factor		= 32,
6553 		.imbalance_pct		= 125,
6554 
6555 		.cache_nice_tries	= 0,
6556 		.busy_idx		= 0,
6557 		.idle_idx		= 0,
6558 		.newidle_idx		= 0,
6559 		.wake_idx		= 0,
6560 		.forkexec_idx		= 0,
6561 
6562 		.flags			= 1*SD_LOAD_BALANCE
6563 					| 1*SD_BALANCE_NEWIDLE
6564 					| 1*SD_BALANCE_EXEC
6565 					| 1*SD_BALANCE_FORK
6566 					| 0*SD_BALANCE_WAKE
6567 					| 1*SD_WAKE_AFFINE
6568 					| 0*SD_SHARE_CPUCAPACITY
6569 					| 0*SD_SHARE_PKG_RESOURCES
6570 					| 0*SD_SERIALIZE
6571 					| 0*SD_PREFER_SIBLING
6572 					| 0*SD_NUMA
6573 					| sd_flags
6574 					,
6575 
6576 		.last_balance		= jiffies,
6577 		.balance_interval	= sd_weight,
6578 		.smt_gain		= 0,
6579 		.max_newidle_lb_cost	= 0,
6580 		.next_decay_max_lb_cost	= jiffies,
6581 #ifdef CONFIG_SCHED_DEBUG
6582 		.name			= tl->name,
6583 #endif
6584 	};
6585 
6586 	/*
6587 	 * Convert topological properties into behaviour.
6588 	 */
6589 
6590 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6591 		sd->flags |= SD_PREFER_SIBLING;
6592 		sd->imbalance_pct = 110;
6593 		sd->smt_gain = 1178; /* ~15% */
6594 
6595 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6596 		sd->imbalance_pct = 117;
6597 		sd->cache_nice_tries = 1;
6598 		sd->busy_idx = 2;
6599 
6600 #ifdef CONFIG_NUMA
6601 	} else if (sd->flags & SD_NUMA) {
6602 		sd->cache_nice_tries = 2;
6603 		sd->busy_idx = 3;
6604 		sd->idle_idx = 2;
6605 
6606 		sd->flags |= SD_SERIALIZE;
6607 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6608 			sd->flags &= ~(SD_BALANCE_EXEC |
6609 				       SD_BALANCE_FORK |
6610 				       SD_WAKE_AFFINE);
6611 		}
6612 
6613 #endif
6614 	} else {
6615 		sd->flags |= SD_PREFER_SIBLING;
6616 		sd->cache_nice_tries = 1;
6617 		sd->busy_idx = 2;
6618 		sd->idle_idx = 1;
6619 	}
6620 
6621 	sd->private = &tl->data;
6622 
6623 	return sd;
6624 }
6625 
6626 /*
6627  * Topology list, bottom-up.
6628  */
6629 static struct sched_domain_topology_level default_topology[] = {
6630 #ifdef CONFIG_SCHED_SMT
6631 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6632 #endif
6633 #ifdef CONFIG_SCHED_MC
6634 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6635 #endif
6636 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6637 	{ NULL, },
6638 };
6639 
6640 static struct sched_domain_topology_level *sched_domain_topology =
6641 	default_topology;
6642 
6643 #define for_each_sd_topology(tl)			\
6644 	for (tl = sched_domain_topology; tl->mask; tl++)
6645 
6646 void set_sched_topology(struct sched_domain_topology_level *tl)
6647 {
6648 	sched_domain_topology = tl;
6649 }
6650 
6651 #ifdef CONFIG_NUMA
6652 
6653 static const struct cpumask *sd_numa_mask(int cpu)
6654 {
6655 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6656 }
6657 
6658 static void sched_numa_warn(const char *str)
6659 {
6660 	static int done = false;
6661 	int i,j;
6662 
6663 	if (done)
6664 		return;
6665 
6666 	done = true;
6667 
6668 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6669 
6670 	for (i = 0; i < nr_node_ids; i++) {
6671 		printk(KERN_WARNING "  ");
6672 		for (j = 0; j < nr_node_ids; j++)
6673 			printk(KERN_CONT "%02d ", node_distance(i,j));
6674 		printk(KERN_CONT "\n");
6675 	}
6676 	printk(KERN_WARNING "\n");
6677 }
6678 
6679 bool find_numa_distance(int distance)
6680 {
6681 	int i;
6682 
6683 	if (distance == node_distance(0, 0))
6684 		return true;
6685 
6686 	for (i = 0; i < sched_domains_numa_levels; i++) {
6687 		if (sched_domains_numa_distance[i] == distance)
6688 			return true;
6689 	}
6690 
6691 	return false;
6692 }
6693 
6694 /*
6695  * A system can have three types of NUMA topology:
6696  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6697  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6698  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6699  *
6700  * The difference between a glueless mesh topology and a backplane
6701  * topology lies in whether communication between not directly
6702  * connected nodes goes through intermediary nodes (where programs
6703  * could run), or through backplane controllers. This affects
6704  * placement of programs.
6705  *
6706  * The type of topology can be discerned with the following tests:
6707  * - If the maximum distance between any nodes is 1 hop, the system
6708  *   is directly connected.
6709  * - If for two nodes A and B, located N > 1 hops away from each other,
6710  *   there is an intermediary node C, which is < N hops away from both
6711  *   nodes A and B, the system is a glueless mesh.
6712  */
6713 static void init_numa_topology_type(void)
6714 {
6715 	int a, b, c, n;
6716 
6717 	n = sched_max_numa_distance;
6718 
6719 	if (sched_domains_numa_levels <= 1) {
6720 		sched_numa_topology_type = NUMA_DIRECT;
6721 		return;
6722 	}
6723 
6724 	for_each_online_node(a) {
6725 		for_each_online_node(b) {
6726 			/* Find two nodes furthest removed from each other. */
6727 			if (node_distance(a, b) < n)
6728 				continue;
6729 
6730 			/* Is there an intermediary node between a and b? */
6731 			for_each_online_node(c) {
6732 				if (node_distance(a, c) < n &&
6733 				    node_distance(b, c) < n) {
6734 					sched_numa_topology_type =
6735 							NUMA_GLUELESS_MESH;
6736 					return;
6737 				}
6738 			}
6739 
6740 			sched_numa_topology_type = NUMA_BACKPLANE;
6741 			return;
6742 		}
6743 	}
6744 }
6745 
6746 static void sched_init_numa(void)
6747 {
6748 	int next_distance, curr_distance = node_distance(0, 0);
6749 	struct sched_domain_topology_level *tl;
6750 	int level = 0;
6751 	int i, j, k;
6752 
6753 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6754 	if (!sched_domains_numa_distance)
6755 		return;
6756 
6757 	/*
6758 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6759 	 * unique distances in the node_distance() table.
6760 	 *
6761 	 * Assumes node_distance(0,j) includes all distances in
6762 	 * node_distance(i,j) in order to avoid cubic time.
6763 	 */
6764 	next_distance = curr_distance;
6765 	for (i = 0; i < nr_node_ids; i++) {
6766 		for (j = 0; j < nr_node_ids; j++) {
6767 			for (k = 0; k < nr_node_ids; k++) {
6768 				int distance = node_distance(i, k);
6769 
6770 				if (distance > curr_distance &&
6771 				    (distance < next_distance ||
6772 				     next_distance == curr_distance))
6773 					next_distance = distance;
6774 
6775 				/*
6776 				 * While not a strong assumption it would be nice to know
6777 				 * about cases where if node A is connected to B, B is not
6778 				 * equally connected to A.
6779 				 */
6780 				if (sched_debug() && node_distance(k, i) != distance)
6781 					sched_numa_warn("Node-distance not symmetric");
6782 
6783 				if (sched_debug() && i && !find_numa_distance(distance))
6784 					sched_numa_warn("Node-0 not representative");
6785 			}
6786 			if (next_distance != curr_distance) {
6787 				sched_domains_numa_distance[level++] = next_distance;
6788 				sched_domains_numa_levels = level;
6789 				curr_distance = next_distance;
6790 			} else break;
6791 		}
6792 
6793 		/*
6794 		 * In case of sched_debug() we verify the above assumption.
6795 		 */
6796 		if (!sched_debug())
6797 			break;
6798 	}
6799 
6800 	if (!level)
6801 		return;
6802 
6803 	/*
6804 	 * 'level' contains the number of unique distances, excluding the
6805 	 * identity distance node_distance(i,i).
6806 	 *
6807 	 * The sched_domains_numa_distance[] array includes the actual distance
6808 	 * numbers.
6809 	 */
6810 
6811 	/*
6812 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6813 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6814 	 * the array will contain less then 'level' members. This could be
6815 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6816 	 * in other functions.
6817 	 *
6818 	 * We reset it to 'level' at the end of this function.
6819 	 */
6820 	sched_domains_numa_levels = 0;
6821 
6822 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6823 	if (!sched_domains_numa_masks)
6824 		return;
6825 
6826 	/*
6827 	 * Now for each level, construct a mask per node which contains all
6828 	 * cpus of nodes that are that many hops away from us.
6829 	 */
6830 	for (i = 0; i < level; i++) {
6831 		sched_domains_numa_masks[i] =
6832 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6833 		if (!sched_domains_numa_masks[i])
6834 			return;
6835 
6836 		for (j = 0; j < nr_node_ids; j++) {
6837 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6838 			if (!mask)
6839 				return;
6840 
6841 			sched_domains_numa_masks[i][j] = mask;
6842 
6843 			for_each_node(k) {
6844 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6845 					continue;
6846 
6847 				cpumask_or(mask, mask, cpumask_of_node(k));
6848 			}
6849 		}
6850 	}
6851 
6852 	/* Compute default topology size */
6853 	for (i = 0; sched_domain_topology[i].mask; i++);
6854 
6855 	tl = kzalloc((i + level + 1) *
6856 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6857 	if (!tl)
6858 		return;
6859 
6860 	/*
6861 	 * Copy the default topology bits..
6862 	 */
6863 	for (i = 0; sched_domain_topology[i].mask; i++)
6864 		tl[i] = sched_domain_topology[i];
6865 
6866 	/*
6867 	 * .. and append 'j' levels of NUMA goodness.
6868 	 */
6869 	for (j = 0; j < level; i++, j++) {
6870 		tl[i] = (struct sched_domain_topology_level){
6871 			.mask = sd_numa_mask,
6872 			.sd_flags = cpu_numa_flags,
6873 			.flags = SDTL_OVERLAP,
6874 			.numa_level = j,
6875 			SD_INIT_NAME(NUMA)
6876 		};
6877 	}
6878 
6879 	sched_domain_topology = tl;
6880 
6881 	sched_domains_numa_levels = level;
6882 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6883 
6884 	init_numa_topology_type();
6885 }
6886 
6887 static void sched_domains_numa_masks_set(int cpu)
6888 {
6889 	int i, j;
6890 	int node = cpu_to_node(cpu);
6891 
6892 	for (i = 0; i < sched_domains_numa_levels; i++) {
6893 		for (j = 0; j < nr_node_ids; j++) {
6894 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6895 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6896 		}
6897 	}
6898 }
6899 
6900 static void sched_domains_numa_masks_clear(int cpu)
6901 {
6902 	int i, j;
6903 	for (i = 0; i < sched_domains_numa_levels; i++) {
6904 		for (j = 0; j < nr_node_ids; j++)
6905 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6906 	}
6907 }
6908 
6909 /*
6910  * Update sched_domains_numa_masks[level][node] array when new cpus
6911  * are onlined.
6912  */
6913 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6914 					   unsigned long action,
6915 					   void *hcpu)
6916 {
6917 	int cpu = (long)hcpu;
6918 
6919 	switch (action & ~CPU_TASKS_FROZEN) {
6920 	case CPU_ONLINE:
6921 		sched_domains_numa_masks_set(cpu);
6922 		break;
6923 
6924 	case CPU_DEAD:
6925 		sched_domains_numa_masks_clear(cpu);
6926 		break;
6927 
6928 	default:
6929 		return NOTIFY_DONE;
6930 	}
6931 
6932 	return NOTIFY_OK;
6933 }
6934 #else
6935 static inline void sched_init_numa(void)
6936 {
6937 }
6938 
6939 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6940 					   unsigned long action,
6941 					   void *hcpu)
6942 {
6943 	return 0;
6944 }
6945 #endif /* CONFIG_NUMA */
6946 
6947 static int __sdt_alloc(const struct cpumask *cpu_map)
6948 {
6949 	struct sched_domain_topology_level *tl;
6950 	int j;
6951 
6952 	for_each_sd_topology(tl) {
6953 		struct sd_data *sdd = &tl->data;
6954 
6955 		sdd->sd = alloc_percpu(struct sched_domain *);
6956 		if (!sdd->sd)
6957 			return -ENOMEM;
6958 
6959 		sdd->sg = alloc_percpu(struct sched_group *);
6960 		if (!sdd->sg)
6961 			return -ENOMEM;
6962 
6963 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6964 		if (!sdd->sgc)
6965 			return -ENOMEM;
6966 
6967 		for_each_cpu(j, cpu_map) {
6968 			struct sched_domain *sd;
6969 			struct sched_group *sg;
6970 			struct sched_group_capacity *sgc;
6971 
6972 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6973 					GFP_KERNEL, cpu_to_node(j));
6974 			if (!sd)
6975 				return -ENOMEM;
6976 
6977 			*per_cpu_ptr(sdd->sd, j) = sd;
6978 
6979 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6980 					GFP_KERNEL, cpu_to_node(j));
6981 			if (!sg)
6982 				return -ENOMEM;
6983 
6984 			sg->next = sg;
6985 
6986 			*per_cpu_ptr(sdd->sg, j) = sg;
6987 
6988 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6989 					GFP_KERNEL, cpu_to_node(j));
6990 			if (!sgc)
6991 				return -ENOMEM;
6992 
6993 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6994 		}
6995 	}
6996 
6997 	return 0;
6998 }
6999 
7000 static void __sdt_free(const struct cpumask *cpu_map)
7001 {
7002 	struct sched_domain_topology_level *tl;
7003 	int j;
7004 
7005 	for_each_sd_topology(tl) {
7006 		struct sd_data *sdd = &tl->data;
7007 
7008 		for_each_cpu(j, cpu_map) {
7009 			struct sched_domain *sd;
7010 
7011 			if (sdd->sd) {
7012 				sd = *per_cpu_ptr(sdd->sd, j);
7013 				if (sd && (sd->flags & SD_OVERLAP))
7014 					free_sched_groups(sd->groups, 0);
7015 				kfree(*per_cpu_ptr(sdd->sd, j));
7016 			}
7017 
7018 			if (sdd->sg)
7019 				kfree(*per_cpu_ptr(sdd->sg, j));
7020 			if (sdd->sgc)
7021 				kfree(*per_cpu_ptr(sdd->sgc, j));
7022 		}
7023 		free_percpu(sdd->sd);
7024 		sdd->sd = NULL;
7025 		free_percpu(sdd->sg);
7026 		sdd->sg = NULL;
7027 		free_percpu(sdd->sgc);
7028 		sdd->sgc = NULL;
7029 	}
7030 }
7031 
7032 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7033 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7034 		struct sched_domain *child, int cpu)
7035 {
7036 	struct sched_domain *sd = sd_init(tl, cpu);
7037 	if (!sd)
7038 		return child;
7039 
7040 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7041 	if (child) {
7042 		sd->level = child->level + 1;
7043 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
7044 		child->parent = sd;
7045 		sd->child = child;
7046 
7047 		if (!cpumask_subset(sched_domain_span(child),
7048 				    sched_domain_span(sd))) {
7049 			pr_err("BUG: arch topology borken\n");
7050 #ifdef CONFIG_SCHED_DEBUG
7051 			pr_err("     the %s domain not a subset of the %s domain\n",
7052 					child->name, sd->name);
7053 #endif
7054 			/* Fixup, ensure @sd has at least @child cpus. */
7055 			cpumask_or(sched_domain_span(sd),
7056 				   sched_domain_span(sd),
7057 				   sched_domain_span(child));
7058 		}
7059 
7060 	}
7061 	set_domain_attribute(sd, attr);
7062 
7063 	return sd;
7064 }
7065 
7066 /*
7067  * Build sched domains for a given set of cpus and attach the sched domains
7068  * to the individual cpus
7069  */
7070 static int build_sched_domains(const struct cpumask *cpu_map,
7071 			       struct sched_domain_attr *attr)
7072 {
7073 	enum s_alloc alloc_state;
7074 	struct sched_domain *sd;
7075 	struct s_data d;
7076 	int i, ret = -ENOMEM;
7077 
7078 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7079 	if (alloc_state != sa_rootdomain)
7080 		goto error;
7081 
7082 	/* Set up domains for cpus specified by the cpu_map. */
7083 	for_each_cpu(i, cpu_map) {
7084 		struct sched_domain_topology_level *tl;
7085 
7086 		sd = NULL;
7087 		for_each_sd_topology(tl) {
7088 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
7089 			if (tl == sched_domain_topology)
7090 				*per_cpu_ptr(d.sd, i) = sd;
7091 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7092 				sd->flags |= SD_OVERLAP;
7093 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7094 				break;
7095 		}
7096 	}
7097 
7098 	/* Build the groups for the domains */
7099 	for_each_cpu(i, cpu_map) {
7100 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7101 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
7102 			if (sd->flags & SD_OVERLAP) {
7103 				if (build_overlap_sched_groups(sd, i))
7104 					goto error;
7105 			} else {
7106 				if (build_sched_groups(sd, i))
7107 					goto error;
7108 			}
7109 		}
7110 	}
7111 
7112 	/* Calculate CPU capacity for physical packages and nodes */
7113 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
7114 		if (!cpumask_test_cpu(i, cpu_map))
7115 			continue;
7116 
7117 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7118 			claim_allocations(i, sd);
7119 			init_sched_groups_capacity(i, sd);
7120 		}
7121 	}
7122 
7123 	/* Attach the domains */
7124 	rcu_read_lock();
7125 	for_each_cpu(i, cpu_map) {
7126 		sd = *per_cpu_ptr(d.sd, i);
7127 		cpu_attach_domain(sd, d.rd, i);
7128 	}
7129 	rcu_read_unlock();
7130 
7131 	ret = 0;
7132 error:
7133 	__free_domain_allocs(&d, alloc_state, cpu_map);
7134 	return ret;
7135 }
7136 
7137 static cpumask_var_t *doms_cur;	/* current sched domains */
7138 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
7139 static struct sched_domain_attr *dattr_cur;
7140 				/* attribues of custom domains in 'doms_cur' */
7141 
7142 /*
7143  * Special case: If a kmalloc of a doms_cur partition (array of
7144  * cpumask) fails, then fallback to a single sched domain,
7145  * as determined by the single cpumask fallback_doms.
7146  */
7147 static cpumask_var_t fallback_doms;
7148 
7149 /*
7150  * arch_update_cpu_topology lets virtualized architectures update the
7151  * cpu core maps. It is supposed to return 1 if the topology changed
7152  * or 0 if it stayed the same.
7153  */
7154 int __weak arch_update_cpu_topology(void)
7155 {
7156 	return 0;
7157 }
7158 
7159 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7160 {
7161 	int i;
7162 	cpumask_var_t *doms;
7163 
7164 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7165 	if (!doms)
7166 		return NULL;
7167 	for (i = 0; i < ndoms; i++) {
7168 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7169 			free_sched_domains(doms, i);
7170 			return NULL;
7171 		}
7172 	}
7173 	return doms;
7174 }
7175 
7176 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7177 {
7178 	unsigned int i;
7179 	for (i = 0; i < ndoms; i++)
7180 		free_cpumask_var(doms[i]);
7181 	kfree(doms);
7182 }
7183 
7184 /*
7185  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7186  * For now this just excludes isolated cpus, but could be used to
7187  * exclude other special cases in the future.
7188  */
7189 static int init_sched_domains(const struct cpumask *cpu_map)
7190 {
7191 	int err;
7192 
7193 	arch_update_cpu_topology();
7194 	ndoms_cur = 1;
7195 	doms_cur = alloc_sched_domains(ndoms_cur);
7196 	if (!doms_cur)
7197 		doms_cur = &fallback_doms;
7198 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7199 	err = build_sched_domains(doms_cur[0], NULL);
7200 	register_sched_domain_sysctl();
7201 
7202 	return err;
7203 }
7204 
7205 /*
7206  * Detach sched domains from a group of cpus specified in cpu_map
7207  * These cpus will now be attached to the NULL domain
7208  */
7209 static void detach_destroy_domains(const struct cpumask *cpu_map)
7210 {
7211 	int i;
7212 
7213 	rcu_read_lock();
7214 	for_each_cpu(i, cpu_map)
7215 		cpu_attach_domain(NULL, &def_root_domain, i);
7216 	rcu_read_unlock();
7217 }
7218 
7219 /* handle null as "default" */
7220 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7221 			struct sched_domain_attr *new, int idx_new)
7222 {
7223 	struct sched_domain_attr tmp;
7224 
7225 	/* fast path */
7226 	if (!new && !cur)
7227 		return 1;
7228 
7229 	tmp = SD_ATTR_INIT;
7230 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7231 			new ? (new + idx_new) : &tmp,
7232 			sizeof(struct sched_domain_attr));
7233 }
7234 
7235 /*
7236  * Partition sched domains as specified by the 'ndoms_new'
7237  * cpumasks in the array doms_new[] of cpumasks. This compares
7238  * doms_new[] to the current sched domain partitioning, doms_cur[].
7239  * It destroys each deleted domain and builds each new domain.
7240  *
7241  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7242  * The masks don't intersect (don't overlap.) We should setup one
7243  * sched domain for each mask. CPUs not in any of the cpumasks will
7244  * not be load balanced. If the same cpumask appears both in the
7245  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7246  * it as it is.
7247  *
7248  * The passed in 'doms_new' should be allocated using
7249  * alloc_sched_domains.  This routine takes ownership of it and will
7250  * free_sched_domains it when done with it. If the caller failed the
7251  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7252  * and partition_sched_domains() will fallback to the single partition
7253  * 'fallback_doms', it also forces the domains to be rebuilt.
7254  *
7255  * If doms_new == NULL it will be replaced with cpu_online_mask.
7256  * ndoms_new == 0 is a special case for destroying existing domains,
7257  * and it will not create the default domain.
7258  *
7259  * Call with hotplug lock held
7260  */
7261 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7262 			     struct sched_domain_attr *dattr_new)
7263 {
7264 	int i, j, n;
7265 	int new_topology;
7266 
7267 	mutex_lock(&sched_domains_mutex);
7268 
7269 	/* always unregister in case we don't destroy any domains */
7270 	unregister_sched_domain_sysctl();
7271 
7272 	/* Let architecture update cpu core mappings. */
7273 	new_topology = arch_update_cpu_topology();
7274 
7275 	n = doms_new ? ndoms_new : 0;
7276 
7277 	/* Destroy deleted domains */
7278 	for (i = 0; i < ndoms_cur; i++) {
7279 		for (j = 0; j < n && !new_topology; j++) {
7280 			if (cpumask_equal(doms_cur[i], doms_new[j])
7281 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7282 				goto match1;
7283 		}
7284 		/* no match - a current sched domain not in new doms_new[] */
7285 		detach_destroy_domains(doms_cur[i]);
7286 match1:
7287 		;
7288 	}
7289 
7290 	n = ndoms_cur;
7291 	if (doms_new == NULL) {
7292 		n = 0;
7293 		doms_new = &fallback_doms;
7294 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7295 		WARN_ON_ONCE(dattr_new);
7296 	}
7297 
7298 	/* Build new domains */
7299 	for (i = 0; i < ndoms_new; i++) {
7300 		for (j = 0; j < n && !new_topology; j++) {
7301 			if (cpumask_equal(doms_new[i], doms_cur[j])
7302 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7303 				goto match2;
7304 		}
7305 		/* no match - add a new doms_new */
7306 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7307 match2:
7308 		;
7309 	}
7310 
7311 	/* Remember the new sched domains */
7312 	if (doms_cur != &fallback_doms)
7313 		free_sched_domains(doms_cur, ndoms_cur);
7314 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7315 	doms_cur = doms_new;
7316 	dattr_cur = dattr_new;
7317 	ndoms_cur = ndoms_new;
7318 
7319 	register_sched_domain_sysctl();
7320 
7321 	mutex_unlock(&sched_domains_mutex);
7322 }
7323 
7324 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7325 
7326 /*
7327  * Update cpusets according to cpu_active mask.  If cpusets are
7328  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7329  * around partition_sched_domains().
7330  *
7331  * If we come here as part of a suspend/resume, don't touch cpusets because we
7332  * want to restore it back to its original state upon resume anyway.
7333  */
7334 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7335 			     void *hcpu)
7336 {
7337 	switch (action) {
7338 	case CPU_ONLINE_FROZEN:
7339 	case CPU_DOWN_FAILED_FROZEN:
7340 
7341 		/*
7342 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7343 		 * resume sequence. As long as this is not the last online
7344 		 * operation in the resume sequence, just build a single sched
7345 		 * domain, ignoring cpusets.
7346 		 */
7347 		num_cpus_frozen--;
7348 		if (likely(num_cpus_frozen)) {
7349 			partition_sched_domains(1, NULL, NULL);
7350 			break;
7351 		}
7352 
7353 		/*
7354 		 * This is the last CPU online operation. So fall through and
7355 		 * restore the original sched domains by considering the
7356 		 * cpuset configurations.
7357 		 */
7358 
7359 	case CPU_ONLINE:
7360 		cpuset_update_active_cpus(true);
7361 		break;
7362 	default:
7363 		return NOTIFY_DONE;
7364 	}
7365 	return NOTIFY_OK;
7366 }
7367 
7368 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7369 			       void *hcpu)
7370 {
7371 	unsigned long flags;
7372 	long cpu = (long)hcpu;
7373 	struct dl_bw *dl_b;
7374 	bool overflow;
7375 	int cpus;
7376 
7377 	switch (action) {
7378 	case CPU_DOWN_PREPARE:
7379 		rcu_read_lock_sched();
7380 		dl_b = dl_bw_of(cpu);
7381 
7382 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7383 		cpus = dl_bw_cpus(cpu);
7384 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7385 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7386 
7387 		rcu_read_unlock_sched();
7388 
7389 		if (overflow)
7390 			return notifier_from_errno(-EBUSY);
7391 		cpuset_update_active_cpus(false);
7392 		break;
7393 	case CPU_DOWN_PREPARE_FROZEN:
7394 		num_cpus_frozen++;
7395 		partition_sched_domains(1, NULL, NULL);
7396 		break;
7397 	default:
7398 		return NOTIFY_DONE;
7399 	}
7400 	return NOTIFY_OK;
7401 }
7402 
7403 void __init sched_init_smp(void)
7404 {
7405 	cpumask_var_t non_isolated_cpus;
7406 
7407 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7408 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7409 
7410 	sched_init_numa();
7411 
7412 	/*
7413 	 * There's no userspace yet to cause hotplug operations; hence all the
7414 	 * cpu masks are stable and all blatant races in the below code cannot
7415 	 * happen.
7416 	 */
7417 	mutex_lock(&sched_domains_mutex);
7418 	init_sched_domains(cpu_active_mask);
7419 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7420 	if (cpumask_empty(non_isolated_cpus))
7421 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7422 	mutex_unlock(&sched_domains_mutex);
7423 
7424 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7425 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7426 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7427 
7428 	init_hrtick();
7429 
7430 	/* Move init over to a non-isolated CPU */
7431 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7432 		BUG();
7433 	sched_init_granularity();
7434 	free_cpumask_var(non_isolated_cpus);
7435 
7436 	init_sched_rt_class();
7437 	init_sched_dl_class();
7438 }
7439 #else
7440 void __init sched_init_smp(void)
7441 {
7442 	sched_init_granularity();
7443 }
7444 #endif /* CONFIG_SMP */
7445 
7446 int in_sched_functions(unsigned long addr)
7447 {
7448 	return in_lock_functions(addr) ||
7449 		(addr >= (unsigned long)__sched_text_start
7450 		&& addr < (unsigned long)__sched_text_end);
7451 }
7452 
7453 #ifdef CONFIG_CGROUP_SCHED
7454 /*
7455  * Default task group.
7456  * Every task in system belongs to this group at bootup.
7457  */
7458 struct task_group root_task_group;
7459 LIST_HEAD(task_groups);
7460 
7461 /* Cacheline aligned slab cache for task_group */
7462 static struct kmem_cache *task_group_cache __read_mostly;
7463 #endif
7464 
7465 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7466 
7467 void __init sched_init(void)
7468 {
7469 	int i, j;
7470 	unsigned long alloc_size = 0, ptr;
7471 
7472 #ifdef CONFIG_FAIR_GROUP_SCHED
7473 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7474 #endif
7475 #ifdef CONFIG_RT_GROUP_SCHED
7476 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7477 #endif
7478 	if (alloc_size) {
7479 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7480 
7481 #ifdef CONFIG_FAIR_GROUP_SCHED
7482 		root_task_group.se = (struct sched_entity **)ptr;
7483 		ptr += nr_cpu_ids * sizeof(void **);
7484 
7485 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7486 		ptr += nr_cpu_ids * sizeof(void **);
7487 
7488 #endif /* CONFIG_FAIR_GROUP_SCHED */
7489 #ifdef CONFIG_RT_GROUP_SCHED
7490 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7491 		ptr += nr_cpu_ids * sizeof(void **);
7492 
7493 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7494 		ptr += nr_cpu_ids * sizeof(void **);
7495 
7496 #endif /* CONFIG_RT_GROUP_SCHED */
7497 	}
7498 #ifdef CONFIG_CPUMASK_OFFSTACK
7499 	for_each_possible_cpu(i) {
7500 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7501 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7502 	}
7503 #endif /* CONFIG_CPUMASK_OFFSTACK */
7504 
7505 	init_rt_bandwidth(&def_rt_bandwidth,
7506 			global_rt_period(), global_rt_runtime());
7507 	init_dl_bandwidth(&def_dl_bandwidth,
7508 			global_rt_period(), global_rt_runtime());
7509 
7510 #ifdef CONFIG_SMP
7511 	init_defrootdomain();
7512 #endif
7513 
7514 #ifdef CONFIG_RT_GROUP_SCHED
7515 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7516 			global_rt_period(), global_rt_runtime());
7517 #endif /* CONFIG_RT_GROUP_SCHED */
7518 
7519 #ifdef CONFIG_CGROUP_SCHED
7520 	task_group_cache = KMEM_CACHE(task_group, 0);
7521 
7522 	list_add(&root_task_group.list, &task_groups);
7523 	INIT_LIST_HEAD(&root_task_group.children);
7524 	INIT_LIST_HEAD(&root_task_group.siblings);
7525 	autogroup_init(&init_task);
7526 #endif /* CONFIG_CGROUP_SCHED */
7527 
7528 	for_each_possible_cpu(i) {
7529 		struct rq *rq;
7530 
7531 		rq = cpu_rq(i);
7532 		raw_spin_lock_init(&rq->lock);
7533 		rq->nr_running = 0;
7534 		rq->calc_load_active = 0;
7535 		rq->calc_load_update = jiffies + LOAD_FREQ;
7536 		init_cfs_rq(&rq->cfs);
7537 		init_rt_rq(&rq->rt);
7538 		init_dl_rq(&rq->dl);
7539 #ifdef CONFIG_FAIR_GROUP_SCHED
7540 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7541 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7542 		/*
7543 		 * How much cpu bandwidth does root_task_group get?
7544 		 *
7545 		 * In case of task-groups formed thr' the cgroup filesystem, it
7546 		 * gets 100% of the cpu resources in the system. This overall
7547 		 * system cpu resource is divided among the tasks of
7548 		 * root_task_group and its child task-groups in a fair manner,
7549 		 * based on each entity's (task or task-group's) weight
7550 		 * (se->load.weight).
7551 		 *
7552 		 * In other words, if root_task_group has 10 tasks of weight
7553 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7554 		 * then A0's share of the cpu resource is:
7555 		 *
7556 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7557 		 *
7558 		 * We achieve this by letting root_task_group's tasks sit
7559 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7560 		 */
7561 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7562 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7563 #endif /* CONFIG_FAIR_GROUP_SCHED */
7564 
7565 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7566 #ifdef CONFIG_RT_GROUP_SCHED
7567 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7568 #endif
7569 
7570 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7571 			rq->cpu_load[j] = 0;
7572 
7573 		rq->last_load_update_tick = jiffies;
7574 
7575 #ifdef CONFIG_SMP
7576 		rq->sd = NULL;
7577 		rq->rd = NULL;
7578 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7579 		rq->balance_callback = NULL;
7580 		rq->active_balance = 0;
7581 		rq->next_balance = jiffies;
7582 		rq->push_cpu = 0;
7583 		rq->cpu = i;
7584 		rq->online = 0;
7585 		rq->idle_stamp = 0;
7586 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7587 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7588 
7589 		INIT_LIST_HEAD(&rq->cfs_tasks);
7590 
7591 		rq_attach_root(rq, &def_root_domain);
7592 #ifdef CONFIG_NO_HZ_COMMON
7593 		rq->nohz_flags = 0;
7594 #endif
7595 #ifdef CONFIG_NO_HZ_FULL
7596 		rq->last_sched_tick = 0;
7597 #endif
7598 #endif
7599 		init_rq_hrtick(rq);
7600 		atomic_set(&rq->nr_iowait, 0);
7601 	}
7602 
7603 	set_load_weight(&init_task);
7604 
7605 #ifdef CONFIG_PREEMPT_NOTIFIERS
7606 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7607 #endif
7608 
7609 	/*
7610 	 * The boot idle thread does lazy MMU switching as well:
7611 	 */
7612 	atomic_inc(&init_mm.mm_count);
7613 	enter_lazy_tlb(&init_mm, current);
7614 
7615 	/*
7616 	 * During early bootup we pretend to be a normal task:
7617 	 */
7618 	current->sched_class = &fair_sched_class;
7619 
7620 	/*
7621 	 * Make us the idle thread. Technically, schedule() should not be
7622 	 * called from this thread, however somewhere below it might be,
7623 	 * but because we are the idle thread, we just pick up running again
7624 	 * when this runqueue becomes "idle".
7625 	 */
7626 	init_idle(current, smp_processor_id());
7627 
7628 	calc_load_update = jiffies + LOAD_FREQ;
7629 
7630 #ifdef CONFIG_SMP
7631 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7632 	/* May be allocated at isolcpus cmdline parse time */
7633 	if (cpu_isolated_map == NULL)
7634 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7635 	idle_thread_set_boot_cpu();
7636 	set_cpu_rq_start_time();
7637 #endif
7638 	init_sched_fair_class();
7639 
7640 	scheduler_running = 1;
7641 }
7642 
7643 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7644 static inline int preempt_count_equals(int preempt_offset)
7645 {
7646 	int nested = preempt_count() + rcu_preempt_depth();
7647 
7648 	return (nested == preempt_offset);
7649 }
7650 
7651 void __might_sleep(const char *file, int line, int preempt_offset)
7652 {
7653 	/*
7654 	 * Blocking primitives will set (and therefore destroy) current->state,
7655 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7656 	 * otherwise we will destroy state.
7657 	 */
7658 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7659 			"do not call blocking ops when !TASK_RUNNING; "
7660 			"state=%lx set at [<%p>] %pS\n",
7661 			current->state,
7662 			(void *)current->task_state_change,
7663 			(void *)current->task_state_change);
7664 
7665 	___might_sleep(file, line, preempt_offset);
7666 }
7667 EXPORT_SYMBOL(__might_sleep);
7668 
7669 void ___might_sleep(const char *file, int line, int preempt_offset)
7670 {
7671 	static unsigned long prev_jiffy;	/* ratelimiting */
7672 
7673 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7674 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7675 	     !is_idle_task(current)) ||
7676 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7677 		return;
7678 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7679 		return;
7680 	prev_jiffy = jiffies;
7681 
7682 	printk(KERN_ERR
7683 		"BUG: sleeping function called from invalid context at %s:%d\n",
7684 			file, line);
7685 	printk(KERN_ERR
7686 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7687 			in_atomic(), irqs_disabled(),
7688 			current->pid, current->comm);
7689 
7690 	if (task_stack_end_corrupted(current))
7691 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7692 
7693 	debug_show_held_locks(current);
7694 	if (irqs_disabled())
7695 		print_irqtrace_events(current);
7696 #ifdef CONFIG_DEBUG_PREEMPT
7697 	if (!preempt_count_equals(preempt_offset)) {
7698 		pr_err("Preemption disabled at:");
7699 		print_ip_sym(current->preempt_disable_ip);
7700 		pr_cont("\n");
7701 	}
7702 #endif
7703 	dump_stack();
7704 }
7705 EXPORT_SYMBOL(___might_sleep);
7706 #endif
7707 
7708 #ifdef CONFIG_MAGIC_SYSRQ
7709 void normalize_rt_tasks(void)
7710 {
7711 	struct task_struct *g, *p;
7712 	struct sched_attr attr = {
7713 		.sched_policy = SCHED_NORMAL,
7714 	};
7715 
7716 	read_lock(&tasklist_lock);
7717 	for_each_process_thread(g, p) {
7718 		/*
7719 		 * Only normalize user tasks:
7720 		 */
7721 		if (p->flags & PF_KTHREAD)
7722 			continue;
7723 
7724 		p->se.exec_start		= 0;
7725 #ifdef CONFIG_SCHEDSTATS
7726 		p->se.statistics.wait_start	= 0;
7727 		p->se.statistics.sleep_start	= 0;
7728 		p->se.statistics.block_start	= 0;
7729 #endif
7730 
7731 		if (!dl_task(p) && !rt_task(p)) {
7732 			/*
7733 			 * Renice negative nice level userspace
7734 			 * tasks back to 0:
7735 			 */
7736 			if (task_nice(p) < 0)
7737 				set_user_nice(p, 0);
7738 			continue;
7739 		}
7740 
7741 		__sched_setscheduler(p, &attr, false, false);
7742 	}
7743 	read_unlock(&tasklist_lock);
7744 }
7745 
7746 #endif /* CONFIG_MAGIC_SYSRQ */
7747 
7748 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7749 /*
7750  * These functions are only useful for the IA64 MCA handling, or kdb.
7751  *
7752  * They can only be called when the whole system has been
7753  * stopped - every CPU needs to be quiescent, and no scheduling
7754  * activity can take place. Using them for anything else would
7755  * be a serious bug, and as a result, they aren't even visible
7756  * under any other configuration.
7757  */
7758 
7759 /**
7760  * curr_task - return the current task for a given cpu.
7761  * @cpu: the processor in question.
7762  *
7763  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7764  *
7765  * Return: The current task for @cpu.
7766  */
7767 struct task_struct *curr_task(int cpu)
7768 {
7769 	return cpu_curr(cpu);
7770 }
7771 
7772 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7773 
7774 #ifdef CONFIG_IA64
7775 /**
7776  * set_curr_task - set the current task for a given cpu.
7777  * @cpu: the processor in question.
7778  * @p: the task pointer to set.
7779  *
7780  * Description: This function must only be used when non-maskable interrupts
7781  * are serviced on a separate stack. It allows the architecture to switch the
7782  * notion of the current task on a cpu in a non-blocking manner. This function
7783  * must be called with all CPU's synchronized, and interrupts disabled, the
7784  * and caller must save the original value of the current task (see
7785  * curr_task() above) and restore that value before reenabling interrupts and
7786  * re-starting the system.
7787  *
7788  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7789  */
7790 void set_curr_task(int cpu, struct task_struct *p)
7791 {
7792 	cpu_curr(cpu) = p;
7793 }
7794 
7795 #endif
7796 
7797 #ifdef CONFIG_CGROUP_SCHED
7798 /* task_group_lock serializes the addition/removal of task groups */
7799 static DEFINE_SPINLOCK(task_group_lock);
7800 
7801 static void free_sched_group(struct task_group *tg)
7802 {
7803 	free_fair_sched_group(tg);
7804 	free_rt_sched_group(tg);
7805 	autogroup_free(tg);
7806 	kmem_cache_free(task_group_cache, tg);
7807 }
7808 
7809 /* allocate runqueue etc for a new task group */
7810 struct task_group *sched_create_group(struct task_group *parent)
7811 {
7812 	struct task_group *tg;
7813 
7814 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7815 	if (!tg)
7816 		return ERR_PTR(-ENOMEM);
7817 
7818 	if (!alloc_fair_sched_group(tg, parent))
7819 		goto err;
7820 
7821 	if (!alloc_rt_sched_group(tg, parent))
7822 		goto err;
7823 
7824 	return tg;
7825 
7826 err:
7827 	free_sched_group(tg);
7828 	return ERR_PTR(-ENOMEM);
7829 }
7830 
7831 void sched_online_group(struct task_group *tg, struct task_group *parent)
7832 {
7833 	unsigned long flags;
7834 
7835 	spin_lock_irqsave(&task_group_lock, flags);
7836 	list_add_rcu(&tg->list, &task_groups);
7837 
7838 	WARN_ON(!parent); /* root should already exist */
7839 
7840 	tg->parent = parent;
7841 	INIT_LIST_HEAD(&tg->children);
7842 	list_add_rcu(&tg->siblings, &parent->children);
7843 	spin_unlock_irqrestore(&task_group_lock, flags);
7844 }
7845 
7846 /* rcu callback to free various structures associated with a task group */
7847 static void free_sched_group_rcu(struct rcu_head *rhp)
7848 {
7849 	/* now it should be safe to free those cfs_rqs */
7850 	free_sched_group(container_of(rhp, struct task_group, rcu));
7851 }
7852 
7853 /* Destroy runqueue etc associated with a task group */
7854 void sched_destroy_group(struct task_group *tg)
7855 {
7856 	/* wait for possible concurrent references to cfs_rqs complete */
7857 	call_rcu(&tg->rcu, free_sched_group_rcu);
7858 }
7859 
7860 void sched_offline_group(struct task_group *tg)
7861 {
7862 	unsigned long flags;
7863 	int i;
7864 
7865 	/* end participation in shares distribution */
7866 	for_each_possible_cpu(i)
7867 		unregister_fair_sched_group(tg, i);
7868 
7869 	spin_lock_irqsave(&task_group_lock, flags);
7870 	list_del_rcu(&tg->list);
7871 	list_del_rcu(&tg->siblings);
7872 	spin_unlock_irqrestore(&task_group_lock, flags);
7873 }
7874 
7875 /* change task's runqueue when it moves between groups.
7876  *	The caller of this function should have put the task in its new group
7877  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7878  *	reflect its new group.
7879  */
7880 void sched_move_task(struct task_struct *tsk)
7881 {
7882 	struct task_group *tg;
7883 	int queued, running;
7884 	unsigned long flags;
7885 	struct rq *rq;
7886 
7887 	rq = task_rq_lock(tsk, &flags);
7888 
7889 	running = task_current(rq, tsk);
7890 	queued = task_on_rq_queued(tsk);
7891 
7892 	if (queued)
7893 		dequeue_task(rq, tsk, DEQUEUE_SAVE);
7894 	if (unlikely(running))
7895 		put_prev_task(rq, tsk);
7896 
7897 	/*
7898 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7899 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7900 	 * to prevent lockdep warnings.
7901 	 */
7902 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7903 			  struct task_group, css);
7904 	tg = autogroup_task_group(tsk, tg);
7905 	tsk->sched_task_group = tg;
7906 
7907 #ifdef CONFIG_FAIR_GROUP_SCHED
7908 	if (tsk->sched_class->task_move_group)
7909 		tsk->sched_class->task_move_group(tsk);
7910 	else
7911 #endif
7912 		set_task_rq(tsk, task_cpu(tsk));
7913 
7914 	if (unlikely(running))
7915 		tsk->sched_class->set_curr_task(rq);
7916 	if (queued)
7917 		enqueue_task(rq, tsk, ENQUEUE_RESTORE);
7918 
7919 	task_rq_unlock(rq, tsk, &flags);
7920 }
7921 #endif /* CONFIG_CGROUP_SCHED */
7922 
7923 #ifdef CONFIG_RT_GROUP_SCHED
7924 /*
7925  * Ensure that the real time constraints are schedulable.
7926  */
7927 static DEFINE_MUTEX(rt_constraints_mutex);
7928 
7929 /* Must be called with tasklist_lock held */
7930 static inline int tg_has_rt_tasks(struct task_group *tg)
7931 {
7932 	struct task_struct *g, *p;
7933 
7934 	/*
7935 	 * Autogroups do not have RT tasks; see autogroup_create().
7936 	 */
7937 	if (task_group_is_autogroup(tg))
7938 		return 0;
7939 
7940 	for_each_process_thread(g, p) {
7941 		if (rt_task(p) && task_group(p) == tg)
7942 			return 1;
7943 	}
7944 
7945 	return 0;
7946 }
7947 
7948 struct rt_schedulable_data {
7949 	struct task_group *tg;
7950 	u64 rt_period;
7951 	u64 rt_runtime;
7952 };
7953 
7954 static int tg_rt_schedulable(struct task_group *tg, void *data)
7955 {
7956 	struct rt_schedulable_data *d = data;
7957 	struct task_group *child;
7958 	unsigned long total, sum = 0;
7959 	u64 period, runtime;
7960 
7961 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7962 	runtime = tg->rt_bandwidth.rt_runtime;
7963 
7964 	if (tg == d->tg) {
7965 		period = d->rt_period;
7966 		runtime = d->rt_runtime;
7967 	}
7968 
7969 	/*
7970 	 * Cannot have more runtime than the period.
7971 	 */
7972 	if (runtime > period && runtime != RUNTIME_INF)
7973 		return -EINVAL;
7974 
7975 	/*
7976 	 * Ensure we don't starve existing RT tasks.
7977 	 */
7978 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7979 		return -EBUSY;
7980 
7981 	total = to_ratio(period, runtime);
7982 
7983 	/*
7984 	 * Nobody can have more than the global setting allows.
7985 	 */
7986 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7987 		return -EINVAL;
7988 
7989 	/*
7990 	 * The sum of our children's runtime should not exceed our own.
7991 	 */
7992 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7993 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7994 		runtime = child->rt_bandwidth.rt_runtime;
7995 
7996 		if (child == d->tg) {
7997 			period = d->rt_period;
7998 			runtime = d->rt_runtime;
7999 		}
8000 
8001 		sum += to_ratio(period, runtime);
8002 	}
8003 
8004 	if (sum > total)
8005 		return -EINVAL;
8006 
8007 	return 0;
8008 }
8009 
8010 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8011 {
8012 	int ret;
8013 
8014 	struct rt_schedulable_data data = {
8015 		.tg = tg,
8016 		.rt_period = period,
8017 		.rt_runtime = runtime,
8018 	};
8019 
8020 	rcu_read_lock();
8021 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8022 	rcu_read_unlock();
8023 
8024 	return ret;
8025 }
8026 
8027 static int tg_set_rt_bandwidth(struct task_group *tg,
8028 		u64 rt_period, u64 rt_runtime)
8029 {
8030 	int i, err = 0;
8031 
8032 	/*
8033 	 * Disallowing the root group RT runtime is BAD, it would disallow the
8034 	 * kernel creating (and or operating) RT threads.
8035 	 */
8036 	if (tg == &root_task_group && rt_runtime == 0)
8037 		return -EINVAL;
8038 
8039 	/* No period doesn't make any sense. */
8040 	if (rt_period == 0)
8041 		return -EINVAL;
8042 
8043 	mutex_lock(&rt_constraints_mutex);
8044 	read_lock(&tasklist_lock);
8045 	err = __rt_schedulable(tg, rt_period, rt_runtime);
8046 	if (err)
8047 		goto unlock;
8048 
8049 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8050 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8051 	tg->rt_bandwidth.rt_runtime = rt_runtime;
8052 
8053 	for_each_possible_cpu(i) {
8054 		struct rt_rq *rt_rq = tg->rt_rq[i];
8055 
8056 		raw_spin_lock(&rt_rq->rt_runtime_lock);
8057 		rt_rq->rt_runtime = rt_runtime;
8058 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
8059 	}
8060 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8061 unlock:
8062 	read_unlock(&tasklist_lock);
8063 	mutex_unlock(&rt_constraints_mutex);
8064 
8065 	return err;
8066 }
8067 
8068 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8069 {
8070 	u64 rt_runtime, rt_period;
8071 
8072 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8073 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8074 	if (rt_runtime_us < 0)
8075 		rt_runtime = RUNTIME_INF;
8076 
8077 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8078 }
8079 
8080 static long sched_group_rt_runtime(struct task_group *tg)
8081 {
8082 	u64 rt_runtime_us;
8083 
8084 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8085 		return -1;
8086 
8087 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8088 	do_div(rt_runtime_us, NSEC_PER_USEC);
8089 	return rt_runtime_us;
8090 }
8091 
8092 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8093 {
8094 	u64 rt_runtime, rt_period;
8095 
8096 	rt_period = rt_period_us * NSEC_PER_USEC;
8097 	rt_runtime = tg->rt_bandwidth.rt_runtime;
8098 
8099 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8100 }
8101 
8102 static long sched_group_rt_period(struct task_group *tg)
8103 {
8104 	u64 rt_period_us;
8105 
8106 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8107 	do_div(rt_period_us, NSEC_PER_USEC);
8108 	return rt_period_us;
8109 }
8110 #endif /* CONFIG_RT_GROUP_SCHED */
8111 
8112 #ifdef CONFIG_RT_GROUP_SCHED
8113 static int sched_rt_global_constraints(void)
8114 {
8115 	int ret = 0;
8116 
8117 	mutex_lock(&rt_constraints_mutex);
8118 	read_lock(&tasklist_lock);
8119 	ret = __rt_schedulable(NULL, 0, 0);
8120 	read_unlock(&tasklist_lock);
8121 	mutex_unlock(&rt_constraints_mutex);
8122 
8123 	return ret;
8124 }
8125 
8126 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8127 {
8128 	/* Don't accept realtime tasks when there is no way for them to run */
8129 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8130 		return 0;
8131 
8132 	return 1;
8133 }
8134 
8135 #else /* !CONFIG_RT_GROUP_SCHED */
8136 static int sched_rt_global_constraints(void)
8137 {
8138 	unsigned long flags;
8139 	int i, ret = 0;
8140 
8141 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8142 	for_each_possible_cpu(i) {
8143 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8144 
8145 		raw_spin_lock(&rt_rq->rt_runtime_lock);
8146 		rt_rq->rt_runtime = global_rt_runtime();
8147 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
8148 	}
8149 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8150 
8151 	return ret;
8152 }
8153 #endif /* CONFIG_RT_GROUP_SCHED */
8154 
8155 static int sched_dl_global_validate(void)
8156 {
8157 	u64 runtime = global_rt_runtime();
8158 	u64 period = global_rt_period();
8159 	u64 new_bw = to_ratio(period, runtime);
8160 	struct dl_bw *dl_b;
8161 	int cpu, ret = 0;
8162 	unsigned long flags;
8163 
8164 	/*
8165 	 * Here we want to check the bandwidth not being set to some
8166 	 * value smaller than the currently allocated bandwidth in
8167 	 * any of the root_domains.
8168 	 *
8169 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8170 	 * cycling on root_domains... Discussion on different/better
8171 	 * solutions is welcome!
8172 	 */
8173 	for_each_possible_cpu(cpu) {
8174 		rcu_read_lock_sched();
8175 		dl_b = dl_bw_of(cpu);
8176 
8177 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8178 		if (new_bw < dl_b->total_bw)
8179 			ret = -EBUSY;
8180 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8181 
8182 		rcu_read_unlock_sched();
8183 
8184 		if (ret)
8185 			break;
8186 	}
8187 
8188 	return ret;
8189 }
8190 
8191 static void sched_dl_do_global(void)
8192 {
8193 	u64 new_bw = -1;
8194 	struct dl_bw *dl_b;
8195 	int cpu;
8196 	unsigned long flags;
8197 
8198 	def_dl_bandwidth.dl_period = global_rt_period();
8199 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
8200 
8201 	if (global_rt_runtime() != RUNTIME_INF)
8202 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8203 
8204 	/*
8205 	 * FIXME: As above...
8206 	 */
8207 	for_each_possible_cpu(cpu) {
8208 		rcu_read_lock_sched();
8209 		dl_b = dl_bw_of(cpu);
8210 
8211 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8212 		dl_b->bw = new_bw;
8213 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8214 
8215 		rcu_read_unlock_sched();
8216 	}
8217 }
8218 
8219 static int sched_rt_global_validate(void)
8220 {
8221 	if (sysctl_sched_rt_period <= 0)
8222 		return -EINVAL;
8223 
8224 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8225 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8226 		return -EINVAL;
8227 
8228 	return 0;
8229 }
8230 
8231 static void sched_rt_do_global(void)
8232 {
8233 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
8234 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8235 }
8236 
8237 int sched_rt_handler(struct ctl_table *table, int write,
8238 		void __user *buffer, size_t *lenp,
8239 		loff_t *ppos)
8240 {
8241 	int old_period, old_runtime;
8242 	static DEFINE_MUTEX(mutex);
8243 	int ret;
8244 
8245 	mutex_lock(&mutex);
8246 	old_period = sysctl_sched_rt_period;
8247 	old_runtime = sysctl_sched_rt_runtime;
8248 
8249 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8250 
8251 	if (!ret && write) {
8252 		ret = sched_rt_global_validate();
8253 		if (ret)
8254 			goto undo;
8255 
8256 		ret = sched_dl_global_validate();
8257 		if (ret)
8258 			goto undo;
8259 
8260 		ret = sched_rt_global_constraints();
8261 		if (ret)
8262 			goto undo;
8263 
8264 		sched_rt_do_global();
8265 		sched_dl_do_global();
8266 	}
8267 	if (0) {
8268 undo:
8269 		sysctl_sched_rt_period = old_period;
8270 		sysctl_sched_rt_runtime = old_runtime;
8271 	}
8272 	mutex_unlock(&mutex);
8273 
8274 	return ret;
8275 }
8276 
8277 int sched_rr_handler(struct ctl_table *table, int write,
8278 		void __user *buffer, size_t *lenp,
8279 		loff_t *ppos)
8280 {
8281 	int ret;
8282 	static DEFINE_MUTEX(mutex);
8283 
8284 	mutex_lock(&mutex);
8285 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8286 	/* make sure that internally we keep jiffies */
8287 	/* also, writing zero resets timeslice to default */
8288 	if (!ret && write) {
8289 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8290 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8291 	}
8292 	mutex_unlock(&mutex);
8293 	return ret;
8294 }
8295 
8296 #ifdef CONFIG_CGROUP_SCHED
8297 
8298 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8299 {
8300 	return css ? container_of(css, struct task_group, css) : NULL;
8301 }
8302 
8303 static struct cgroup_subsys_state *
8304 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8305 {
8306 	struct task_group *parent = css_tg(parent_css);
8307 	struct task_group *tg;
8308 
8309 	if (!parent) {
8310 		/* This is early initialization for the top cgroup */
8311 		return &root_task_group.css;
8312 	}
8313 
8314 	tg = sched_create_group(parent);
8315 	if (IS_ERR(tg))
8316 		return ERR_PTR(-ENOMEM);
8317 
8318 	return &tg->css;
8319 }
8320 
8321 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8322 {
8323 	struct task_group *tg = css_tg(css);
8324 	struct task_group *parent = css_tg(css->parent);
8325 
8326 	if (parent)
8327 		sched_online_group(tg, parent);
8328 	return 0;
8329 }
8330 
8331 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8332 {
8333 	struct task_group *tg = css_tg(css);
8334 
8335 	sched_destroy_group(tg);
8336 }
8337 
8338 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8339 {
8340 	struct task_group *tg = css_tg(css);
8341 
8342 	sched_offline_group(tg);
8343 }
8344 
8345 static void cpu_cgroup_fork(struct task_struct *task)
8346 {
8347 	sched_move_task(task);
8348 }
8349 
8350 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8351 {
8352 	struct task_struct *task;
8353 	struct cgroup_subsys_state *css;
8354 
8355 	cgroup_taskset_for_each(task, css, tset) {
8356 #ifdef CONFIG_RT_GROUP_SCHED
8357 		if (!sched_rt_can_attach(css_tg(css), task))
8358 			return -EINVAL;
8359 #else
8360 		/* We don't support RT-tasks being in separate groups */
8361 		if (task->sched_class != &fair_sched_class)
8362 			return -EINVAL;
8363 #endif
8364 	}
8365 	return 0;
8366 }
8367 
8368 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8369 {
8370 	struct task_struct *task;
8371 	struct cgroup_subsys_state *css;
8372 
8373 	cgroup_taskset_for_each(task, css, tset)
8374 		sched_move_task(task);
8375 }
8376 
8377 #ifdef CONFIG_FAIR_GROUP_SCHED
8378 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8379 				struct cftype *cftype, u64 shareval)
8380 {
8381 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8382 }
8383 
8384 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8385 			       struct cftype *cft)
8386 {
8387 	struct task_group *tg = css_tg(css);
8388 
8389 	return (u64) scale_load_down(tg->shares);
8390 }
8391 
8392 #ifdef CONFIG_CFS_BANDWIDTH
8393 static DEFINE_MUTEX(cfs_constraints_mutex);
8394 
8395 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8396 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8397 
8398 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8399 
8400 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8401 {
8402 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8403 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8404 
8405 	if (tg == &root_task_group)
8406 		return -EINVAL;
8407 
8408 	/*
8409 	 * Ensure we have at some amount of bandwidth every period.  This is
8410 	 * to prevent reaching a state of large arrears when throttled via
8411 	 * entity_tick() resulting in prolonged exit starvation.
8412 	 */
8413 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8414 		return -EINVAL;
8415 
8416 	/*
8417 	 * Likewise, bound things on the otherside by preventing insane quota
8418 	 * periods.  This also allows us to normalize in computing quota
8419 	 * feasibility.
8420 	 */
8421 	if (period > max_cfs_quota_period)
8422 		return -EINVAL;
8423 
8424 	/*
8425 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8426 	 * unthrottle_offline_cfs_rqs().
8427 	 */
8428 	get_online_cpus();
8429 	mutex_lock(&cfs_constraints_mutex);
8430 	ret = __cfs_schedulable(tg, period, quota);
8431 	if (ret)
8432 		goto out_unlock;
8433 
8434 	runtime_enabled = quota != RUNTIME_INF;
8435 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8436 	/*
8437 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8438 	 * before making related changes, and on->off must occur afterwards
8439 	 */
8440 	if (runtime_enabled && !runtime_was_enabled)
8441 		cfs_bandwidth_usage_inc();
8442 	raw_spin_lock_irq(&cfs_b->lock);
8443 	cfs_b->period = ns_to_ktime(period);
8444 	cfs_b->quota = quota;
8445 
8446 	__refill_cfs_bandwidth_runtime(cfs_b);
8447 	/* restart the period timer (if active) to handle new period expiry */
8448 	if (runtime_enabled)
8449 		start_cfs_bandwidth(cfs_b);
8450 	raw_spin_unlock_irq(&cfs_b->lock);
8451 
8452 	for_each_online_cpu(i) {
8453 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8454 		struct rq *rq = cfs_rq->rq;
8455 
8456 		raw_spin_lock_irq(&rq->lock);
8457 		cfs_rq->runtime_enabled = runtime_enabled;
8458 		cfs_rq->runtime_remaining = 0;
8459 
8460 		if (cfs_rq->throttled)
8461 			unthrottle_cfs_rq(cfs_rq);
8462 		raw_spin_unlock_irq(&rq->lock);
8463 	}
8464 	if (runtime_was_enabled && !runtime_enabled)
8465 		cfs_bandwidth_usage_dec();
8466 out_unlock:
8467 	mutex_unlock(&cfs_constraints_mutex);
8468 	put_online_cpus();
8469 
8470 	return ret;
8471 }
8472 
8473 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8474 {
8475 	u64 quota, period;
8476 
8477 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8478 	if (cfs_quota_us < 0)
8479 		quota = RUNTIME_INF;
8480 	else
8481 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8482 
8483 	return tg_set_cfs_bandwidth(tg, period, quota);
8484 }
8485 
8486 long tg_get_cfs_quota(struct task_group *tg)
8487 {
8488 	u64 quota_us;
8489 
8490 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8491 		return -1;
8492 
8493 	quota_us = tg->cfs_bandwidth.quota;
8494 	do_div(quota_us, NSEC_PER_USEC);
8495 
8496 	return quota_us;
8497 }
8498 
8499 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8500 {
8501 	u64 quota, period;
8502 
8503 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8504 	quota = tg->cfs_bandwidth.quota;
8505 
8506 	return tg_set_cfs_bandwidth(tg, period, quota);
8507 }
8508 
8509 long tg_get_cfs_period(struct task_group *tg)
8510 {
8511 	u64 cfs_period_us;
8512 
8513 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8514 	do_div(cfs_period_us, NSEC_PER_USEC);
8515 
8516 	return cfs_period_us;
8517 }
8518 
8519 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8520 				  struct cftype *cft)
8521 {
8522 	return tg_get_cfs_quota(css_tg(css));
8523 }
8524 
8525 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8526 				   struct cftype *cftype, s64 cfs_quota_us)
8527 {
8528 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8529 }
8530 
8531 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8532 				   struct cftype *cft)
8533 {
8534 	return tg_get_cfs_period(css_tg(css));
8535 }
8536 
8537 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8538 				    struct cftype *cftype, u64 cfs_period_us)
8539 {
8540 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8541 }
8542 
8543 struct cfs_schedulable_data {
8544 	struct task_group *tg;
8545 	u64 period, quota;
8546 };
8547 
8548 /*
8549  * normalize group quota/period to be quota/max_period
8550  * note: units are usecs
8551  */
8552 static u64 normalize_cfs_quota(struct task_group *tg,
8553 			       struct cfs_schedulable_data *d)
8554 {
8555 	u64 quota, period;
8556 
8557 	if (tg == d->tg) {
8558 		period = d->period;
8559 		quota = d->quota;
8560 	} else {
8561 		period = tg_get_cfs_period(tg);
8562 		quota = tg_get_cfs_quota(tg);
8563 	}
8564 
8565 	/* note: these should typically be equivalent */
8566 	if (quota == RUNTIME_INF || quota == -1)
8567 		return RUNTIME_INF;
8568 
8569 	return to_ratio(period, quota);
8570 }
8571 
8572 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8573 {
8574 	struct cfs_schedulable_data *d = data;
8575 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8576 	s64 quota = 0, parent_quota = -1;
8577 
8578 	if (!tg->parent) {
8579 		quota = RUNTIME_INF;
8580 	} else {
8581 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8582 
8583 		quota = normalize_cfs_quota(tg, d);
8584 		parent_quota = parent_b->hierarchical_quota;
8585 
8586 		/*
8587 		 * ensure max(child_quota) <= parent_quota, inherit when no
8588 		 * limit is set
8589 		 */
8590 		if (quota == RUNTIME_INF)
8591 			quota = parent_quota;
8592 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8593 			return -EINVAL;
8594 	}
8595 	cfs_b->hierarchical_quota = quota;
8596 
8597 	return 0;
8598 }
8599 
8600 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8601 {
8602 	int ret;
8603 	struct cfs_schedulable_data data = {
8604 		.tg = tg,
8605 		.period = period,
8606 		.quota = quota,
8607 	};
8608 
8609 	if (quota != RUNTIME_INF) {
8610 		do_div(data.period, NSEC_PER_USEC);
8611 		do_div(data.quota, NSEC_PER_USEC);
8612 	}
8613 
8614 	rcu_read_lock();
8615 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8616 	rcu_read_unlock();
8617 
8618 	return ret;
8619 }
8620 
8621 static int cpu_stats_show(struct seq_file *sf, void *v)
8622 {
8623 	struct task_group *tg = css_tg(seq_css(sf));
8624 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8625 
8626 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8627 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8628 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8629 
8630 	return 0;
8631 }
8632 #endif /* CONFIG_CFS_BANDWIDTH */
8633 #endif /* CONFIG_FAIR_GROUP_SCHED */
8634 
8635 #ifdef CONFIG_RT_GROUP_SCHED
8636 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8637 				struct cftype *cft, s64 val)
8638 {
8639 	return sched_group_set_rt_runtime(css_tg(css), val);
8640 }
8641 
8642 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8643 			       struct cftype *cft)
8644 {
8645 	return sched_group_rt_runtime(css_tg(css));
8646 }
8647 
8648 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8649 				    struct cftype *cftype, u64 rt_period_us)
8650 {
8651 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8652 }
8653 
8654 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8655 				   struct cftype *cft)
8656 {
8657 	return sched_group_rt_period(css_tg(css));
8658 }
8659 #endif /* CONFIG_RT_GROUP_SCHED */
8660 
8661 static struct cftype cpu_files[] = {
8662 #ifdef CONFIG_FAIR_GROUP_SCHED
8663 	{
8664 		.name = "shares",
8665 		.read_u64 = cpu_shares_read_u64,
8666 		.write_u64 = cpu_shares_write_u64,
8667 	},
8668 #endif
8669 #ifdef CONFIG_CFS_BANDWIDTH
8670 	{
8671 		.name = "cfs_quota_us",
8672 		.read_s64 = cpu_cfs_quota_read_s64,
8673 		.write_s64 = cpu_cfs_quota_write_s64,
8674 	},
8675 	{
8676 		.name = "cfs_period_us",
8677 		.read_u64 = cpu_cfs_period_read_u64,
8678 		.write_u64 = cpu_cfs_period_write_u64,
8679 	},
8680 	{
8681 		.name = "stat",
8682 		.seq_show = cpu_stats_show,
8683 	},
8684 #endif
8685 #ifdef CONFIG_RT_GROUP_SCHED
8686 	{
8687 		.name = "rt_runtime_us",
8688 		.read_s64 = cpu_rt_runtime_read,
8689 		.write_s64 = cpu_rt_runtime_write,
8690 	},
8691 	{
8692 		.name = "rt_period_us",
8693 		.read_u64 = cpu_rt_period_read_uint,
8694 		.write_u64 = cpu_rt_period_write_uint,
8695 	},
8696 #endif
8697 	{ }	/* terminate */
8698 };
8699 
8700 struct cgroup_subsys cpu_cgrp_subsys = {
8701 	.css_alloc	= cpu_cgroup_css_alloc,
8702 	.css_free	= cpu_cgroup_css_free,
8703 	.css_online	= cpu_cgroup_css_online,
8704 	.css_offline	= cpu_cgroup_css_offline,
8705 	.fork		= cpu_cgroup_fork,
8706 	.can_attach	= cpu_cgroup_can_attach,
8707 	.attach		= cpu_cgroup_attach,
8708 	.legacy_cftypes	= cpu_files,
8709 	.early_init	= 1,
8710 };
8711 
8712 #endif	/* CONFIG_CGROUP_SCHED */
8713 
8714 void dump_cpu_task(int cpu)
8715 {
8716 	pr_info("Task dump for CPU %d:\n", cpu);
8717 	sched_show_task(cpu_curr(cpu));
8718 }
8719 
8720 /*
8721  * Nice levels are multiplicative, with a gentle 10% change for every
8722  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8723  * nice 1, it will get ~10% less CPU time than another CPU-bound task
8724  * that remained on nice 0.
8725  *
8726  * The "10% effect" is relative and cumulative: from _any_ nice level,
8727  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8728  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8729  * If a task goes up by ~10% and another task goes down by ~10% then
8730  * the relative distance between them is ~25%.)
8731  */
8732 const int sched_prio_to_weight[40] = {
8733  /* -20 */     88761,     71755,     56483,     46273,     36291,
8734  /* -15 */     29154,     23254,     18705,     14949,     11916,
8735  /* -10 */      9548,      7620,      6100,      4904,      3906,
8736  /*  -5 */      3121,      2501,      1991,      1586,      1277,
8737  /*   0 */      1024,       820,       655,       526,       423,
8738  /*   5 */       335,       272,       215,       172,       137,
8739  /*  10 */       110,        87,        70,        56,        45,
8740  /*  15 */        36,        29,        23,        18,        15,
8741 };
8742 
8743 /*
8744  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8745  *
8746  * In cases where the weight does not change often, we can use the
8747  * precalculated inverse to speed up arithmetics by turning divisions
8748  * into multiplications:
8749  */
8750 const u32 sched_prio_to_wmult[40] = {
8751  /* -20 */     48388,     59856,     76040,     92818,    118348,
8752  /* -15 */    147320,    184698,    229616,    287308,    360437,
8753  /* -10 */    449829,    563644,    704093,    875809,   1099582,
8754  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8755  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8756  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8757  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8758  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8759 };
8760