1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include <linux/highmem.h> 10 #include <linux/hrtimer_api.h> 11 #include <linux/ktime_api.h> 12 #include <linux/sched/signal.h> 13 #include <linux/syscalls_api.h> 14 #include <linux/debug_locks.h> 15 #include <linux/prefetch.h> 16 #include <linux/capability.h> 17 #include <linux/pgtable_api.h> 18 #include <linux/wait_bit.h> 19 #include <linux/jiffies.h> 20 #include <linux/spinlock_api.h> 21 #include <linux/cpumask_api.h> 22 #include <linux/lockdep_api.h> 23 #include <linux/hardirq.h> 24 #include <linux/softirq.h> 25 #include <linux/refcount_api.h> 26 #include <linux/topology.h> 27 #include <linux/sched/clock.h> 28 #include <linux/sched/cond_resched.h> 29 #include <linux/sched/cputime.h> 30 #include <linux/sched/debug.h> 31 #include <linux/sched/hotplug.h> 32 #include <linux/sched/init.h> 33 #include <linux/sched/isolation.h> 34 #include <linux/sched/loadavg.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/nohz.h> 37 #include <linux/sched/rseq_api.h> 38 #include <linux/sched/rt.h> 39 40 #include <linux/blkdev.h> 41 #include <linux/context_tracking.h> 42 #include <linux/cpuset.h> 43 #include <linux/delayacct.h> 44 #include <linux/init_task.h> 45 #include <linux/interrupt.h> 46 #include <linux/ioprio.h> 47 #include <linux/kallsyms.h> 48 #include <linux/kcov.h> 49 #include <linux/kprobes.h> 50 #include <linux/llist_api.h> 51 #include <linux/mmu_context.h> 52 #include <linux/mmzone.h> 53 #include <linux/mutex_api.h> 54 #include <linux/nmi.h> 55 #include <linux/nospec.h> 56 #include <linux/perf_event_api.h> 57 #include <linux/profile.h> 58 #include <linux/psi.h> 59 #include <linux/rcuwait_api.h> 60 #include <linux/sched/wake_q.h> 61 #include <linux/scs.h> 62 #include <linux/slab.h> 63 #include <linux/syscalls.h> 64 #include <linux/vtime.h> 65 #include <linux/wait_api.h> 66 #include <linux/workqueue_api.h> 67 68 #ifdef CONFIG_PREEMPT_DYNAMIC 69 # ifdef CONFIG_GENERIC_ENTRY 70 # include <linux/entry-common.h> 71 # endif 72 #endif 73 74 #include <uapi/linux/sched/types.h> 75 76 #include <asm/irq_regs.h> 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 80 #define CREATE_TRACE_POINTS 81 #include <linux/sched/rseq_api.h> 82 #include <trace/events/sched.h> 83 #undef CREATE_TRACE_POINTS 84 85 #include "sched.h" 86 #include "stats.h" 87 #include "autogroup.h" 88 89 #include "autogroup.h" 90 #include "pelt.h" 91 #include "smp.h" 92 #include "stats.h" 93 94 #include "../workqueue_internal.h" 95 #include "../../io_uring/io-wq.h" 96 #include "../smpboot.h" 97 98 /* 99 * Export tracepoints that act as a bare tracehook (ie: have no trace event 100 * associated with them) to allow external modules to probe them. 101 */ 102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 113 114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 115 116 #ifdef CONFIG_SCHED_DEBUG 117 /* 118 * Debugging: various feature bits 119 * 120 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 121 * sysctl_sched_features, defined in sched.h, to allow constants propagation 122 * at compile time and compiler optimization based on features default. 123 */ 124 #define SCHED_FEAT(name, enabled) \ 125 (1UL << __SCHED_FEAT_##name) * enabled | 126 const_debug unsigned int sysctl_sched_features = 127 #include "features.h" 128 0; 129 #undef SCHED_FEAT 130 131 /* 132 * Print a warning if need_resched is set for the given duration (if 133 * LATENCY_WARN is enabled). 134 * 135 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 136 * per boot. 137 */ 138 __read_mostly int sysctl_resched_latency_warn_ms = 100; 139 __read_mostly int sysctl_resched_latency_warn_once = 1; 140 #endif /* CONFIG_SCHED_DEBUG */ 141 142 /* 143 * Number of tasks to iterate in a single balance run. 144 * Limited because this is done with IRQs disabled. 145 */ 146 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 147 148 __read_mostly int scheduler_running; 149 150 #ifdef CONFIG_SCHED_CORE 151 152 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 153 154 /* kernel prio, less is more */ 155 static inline int __task_prio(struct task_struct *p) 156 { 157 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 158 return -2; 159 160 if (rt_prio(p->prio)) /* includes deadline */ 161 return p->prio; /* [-1, 99] */ 162 163 if (p->sched_class == &idle_sched_class) 164 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 165 166 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 167 } 168 169 /* 170 * l(a,b) 171 * le(a,b) := !l(b,a) 172 * g(a,b) := l(b,a) 173 * ge(a,b) := !l(a,b) 174 */ 175 176 /* real prio, less is less */ 177 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 178 { 179 180 int pa = __task_prio(a), pb = __task_prio(b); 181 182 if (-pa < -pb) 183 return true; 184 185 if (-pb < -pa) 186 return false; 187 188 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 189 return !dl_time_before(a->dl.deadline, b->dl.deadline); 190 191 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 192 return cfs_prio_less(a, b, in_fi); 193 194 return false; 195 } 196 197 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b) 198 { 199 if (a->core_cookie < b->core_cookie) 200 return true; 201 202 if (a->core_cookie > b->core_cookie) 203 return false; 204 205 /* flip prio, so high prio is leftmost */ 206 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 207 return true; 208 209 return false; 210 } 211 212 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 213 214 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 215 { 216 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 217 } 218 219 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 220 { 221 const struct task_struct *p = __node_2_sc(node); 222 unsigned long cookie = (unsigned long)key; 223 224 if (cookie < p->core_cookie) 225 return -1; 226 227 if (cookie > p->core_cookie) 228 return 1; 229 230 return 0; 231 } 232 233 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 234 { 235 rq->core->core_task_seq++; 236 237 if (!p->core_cookie) 238 return; 239 240 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 241 } 242 243 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 244 { 245 rq->core->core_task_seq++; 246 247 if (sched_core_enqueued(p)) { 248 rb_erase(&p->core_node, &rq->core_tree); 249 RB_CLEAR_NODE(&p->core_node); 250 } 251 252 /* 253 * Migrating the last task off the cpu, with the cpu in forced idle 254 * state. Reschedule to create an accounting edge for forced idle, 255 * and re-examine whether the core is still in forced idle state. 256 */ 257 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 258 rq->core->core_forceidle_count && rq->curr == rq->idle) 259 resched_curr(rq); 260 } 261 262 /* 263 * Find left-most (aka, highest priority) task matching @cookie. 264 */ 265 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 266 { 267 struct rb_node *node; 268 269 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 270 /* 271 * The idle task always matches any cookie! 272 */ 273 if (!node) 274 return idle_sched_class.pick_task(rq); 275 276 return __node_2_sc(node); 277 } 278 279 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 280 { 281 struct rb_node *node = &p->core_node; 282 283 node = rb_next(node); 284 if (!node) 285 return NULL; 286 287 p = container_of(node, struct task_struct, core_node); 288 if (p->core_cookie != cookie) 289 return NULL; 290 291 return p; 292 } 293 294 /* 295 * Magic required such that: 296 * 297 * raw_spin_rq_lock(rq); 298 * ... 299 * raw_spin_rq_unlock(rq); 300 * 301 * ends up locking and unlocking the _same_ lock, and all CPUs 302 * always agree on what rq has what lock. 303 * 304 * XXX entirely possible to selectively enable cores, don't bother for now. 305 */ 306 307 static DEFINE_MUTEX(sched_core_mutex); 308 static atomic_t sched_core_count; 309 static struct cpumask sched_core_mask; 310 311 static void sched_core_lock(int cpu, unsigned long *flags) 312 { 313 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 314 int t, i = 0; 315 316 local_irq_save(*flags); 317 for_each_cpu(t, smt_mask) 318 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 319 } 320 321 static void sched_core_unlock(int cpu, unsigned long *flags) 322 { 323 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 324 int t; 325 326 for_each_cpu(t, smt_mask) 327 raw_spin_unlock(&cpu_rq(t)->__lock); 328 local_irq_restore(*flags); 329 } 330 331 static void __sched_core_flip(bool enabled) 332 { 333 unsigned long flags; 334 int cpu, t; 335 336 cpus_read_lock(); 337 338 /* 339 * Toggle the online cores, one by one. 340 */ 341 cpumask_copy(&sched_core_mask, cpu_online_mask); 342 for_each_cpu(cpu, &sched_core_mask) { 343 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 344 345 sched_core_lock(cpu, &flags); 346 347 for_each_cpu(t, smt_mask) 348 cpu_rq(t)->core_enabled = enabled; 349 350 cpu_rq(cpu)->core->core_forceidle_start = 0; 351 352 sched_core_unlock(cpu, &flags); 353 354 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 355 } 356 357 /* 358 * Toggle the offline CPUs. 359 */ 360 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 361 cpu_rq(cpu)->core_enabled = enabled; 362 363 cpus_read_unlock(); 364 } 365 366 static void sched_core_assert_empty(void) 367 { 368 int cpu; 369 370 for_each_possible_cpu(cpu) 371 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 372 } 373 374 static void __sched_core_enable(void) 375 { 376 static_branch_enable(&__sched_core_enabled); 377 /* 378 * Ensure all previous instances of raw_spin_rq_*lock() have finished 379 * and future ones will observe !sched_core_disabled(). 380 */ 381 synchronize_rcu(); 382 __sched_core_flip(true); 383 sched_core_assert_empty(); 384 } 385 386 static void __sched_core_disable(void) 387 { 388 sched_core_assert_empty(); 389 __sched_core_flip(false); 390 static_branch_disable(&__sched_core_enabled); 391 } 392 393 void sched_core_get(void) 394 { 395 if (atomic_inc_not_zero(&sched_core_count)) 396 return; 397 398 mutex_lock(&sched_core_mutex); 399 if (!atomic_read(&sched_core_count)) 400 __sched_core_enable(); 401 402 smp_mb__before_atomic(); 403 atomic_inc(&sched_core_count); 404 mutex_unlock(&sched_core_mutex); 405 } 406 407 static void __sched_core_put(struct work_struct *work) 408 { 409 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 410 __sched_core_disable(); 411 mutex_unlock(&sched_core_mutex); 412 } 413 } 414 415 void sched_core_put(void) 416 { 417 static DECLARE_WORK(_work, __sched_core_put); 418 419 /* 420 * "There can be only one" 421 * 422 * Either this is the last one, or we don't actually need to do any 423 * 'work'. If it is the last *again*, we rely on 424 * WORK_STRUCT_PENDING_BIT. 425 */ 426 if (!atomic_add_unless(&sched_core_count, -1, 1)) 427 schedule_work(&_work); 428 } 429 430 #else /* !CONFIG_SCHED_CORE */ 431 432 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 433 static inline void 434 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 435 436 #endif /* CONFIG_SCHED_CORE */ 437 438 /* 439 * Serialization rules: 440 * 441 * Lock order: 442 * 443 * p->pi_lock 444 * rq->lock 445 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 446 * 447 * rq1->lock 448 * rq2->lock where: rq1 < rq2 449 * 450 * Regular state: 451 * 452 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 453 * local CPU's rq->lock, it optionally removes the task from the runqueue and 454 * always looks at the local rq data structures to find the most eligible task 455 * to run next. 456 * 457 * Task enqueue is also under rq->lock, possibly taken from another CPU. 458 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 459 * the local CPU to avoid bouncing the runqueue state around [ see 460 * ttwu_queue_wakelist() ] 461 * 462 * Task wakeup, specifically wakeups that involve migration, are horribly 463 * complicated to avoid having to take two rq->locks. 464 * 465 * Special state: 466 * 467 * System-calls and anything external will use task_rq_lock() which acquires 468 * both p->pi_lock and rq->lock. As a consequence the state they change is 469 * stable while holding either lock: 470 * 471 * - sched_setaffinity()/ 472 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 473 * - set_user_nice(): p->se.load, p->*prio 474 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 475 * p->se.load, p->rt_priority, 476 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 477 * - sched_setnuma(): p->numa_preferred_nid 478 * - sched_move_task(): p->sched_task_group 479 * - uclamp_update_active() p->uclamp* 480 * 481 * p->state <- TASK_*: 482 * 483 * is changed locklessly using set_current_state(), __set_current_state() or 484 * set_special_state(), see their respective comments, or by 485 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 486 * concurrent self. 487 * 488 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 489 * 490 * is set by activate_task() and cleared by deactivate_task(), under 491 * rq->lock. Non-zero indicates the task is runnable, the special 492 * ON_RQ_MIGRATING state is used for migration without holding both 493 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 494 * 495 * p->on_cpu <- { 0, 1 }: 496 * 497 * is set by prepare_task() and cleared by finish_task() such that it will be 498 * set before p is scheduled-in and cleared after p is scheduled-out, both 499 * under rq->lock. Non-zero indicates the task is running on its CPU. 500 * 501 * [ The astute reader will observe that it is possible for two tasks on one 502 * CPU to have ->on_cpu = 1 at the same time. ] 503 * 504 * task_cpu(p): is changed by set_task_cpu(), the rules are: 505 * 506 * - Don't call set_task_cpu() on a blocked task: 507 * 508 * We don't care what CPU we're not running on, this simplifies hotplug, 509 * the CPU assignment of blocked tasks isn't required to be valid. 510 * 511 * - for try_to_wake_up(), called under p->pi_lock: 512 * 513 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 514 * 515 * - for migration called under rq->lock: 516 * [ see task_on_rq_migrating() in task_rq_lock() ] 517 * 518 * o move_queued_task() 519 * o detach_task() 520 * 521 * - for migration called under double_rq_lock(): 522 * 523 * o __migrate_swap_task() 524 * o push_rt_task() / pull_rt_task() 525 * o push_dl_task() / pull_dl_task() 526 * o dl_task_offline_migration() 527 * 528 */ 529 530 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 531 { 532 raw_spinlock_t *lock; 533 534 /* Matches synchronize_rcu() in __sched_core_enable() */ 535 preempt_disable(); 536 if (sched_core_disabled()) { 537 raw_spin_lock_nested(&rq->__lock, subclass); 538 /* preempt_count *MUST* be > 1 */ 539 preempt_enable_no_resched(); 540 return; 541 } 542 543 for (;;) { 544 lock = __rq_lockp(rq); 545 raw_spin_lock_nested(lock, subclass); 546 if (likely(lock == __rq_lockp(rq))) { 547 /* preempt_count *MUST* be > 1 */ 548 preempt_enable_no_resched(); 549 return; 550 } 551 raw_spin_unlock(lock); 552 } 553 } 554 555 bool raw_spin_rq_trylock(struct rq *rq) 556 { 557 raw_spinlock_t *lock; 558 bool ret; 559 560 /* Matches synchronize_rcu() in __sched_core_enable() */ 561 preempt_disable(); 562 if (sched_core_disabled()) { 563 ret = raw_spin_trylock(&rq->__lock); 564 preempt_enable(); 565 return ret; 566 } 567 568 for (;;) { 569 lock = __rq_lockp(rq); 570 ret = raw_spin_trylock(lock); 571 if (!ret || (likely(lock == __rq_lockp(rq)))) { 572 preempt_enable(); 573 return ret; 574 } 575 raw_spin_unlock(lock); 576 } 577 } 578 579 void raw_spin_rq_unlock(struct rq *rq) 580 { 581 raw_spin_unlock(rq_lockp(rq)); 582 } 583 584 #ifdef CONFIG_SMP 585 /* 586 * double_rq_lock - safely lock two runqueues 587 */ 588 void double_rq_lock(struct rq *rq1, struct rq *rq2) 589 { 590 lockdep_assert_irqs_disabled(); 591 592 if (rq_order_less(rq2, rq1)) 593 swap(rq1, rq2); 594 595 raw_spin_rq_lock(rq1); 596 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 597 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 598 599 double_rq_clock_clear_update(rq1, rq2); 600 } 601 #endif 602 603 /* 604 * __task_rq_lock - lock the rq @p resides on. 605 */ 606 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 607 __acquires(rq->lock) 608 { 609 struct rq *rq; 610 611 lockdep_assert_held(&p->pi_lock); 612 613 for (;;) { 614 rq = task_rq(p); 615 raw_spin_rq_lock(rq); 616 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 617 rq_pin_lock(rq, rf); 618 return rq; 619 } 620 raw_spin_rq_unlock(rq); 621 622 while (unlikely(task_on_rq_migrating(p))) 623 cpu_relax(); 624 } 625 } 626 627 /* 628 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 629 */ 630 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 631 __acquires(p->pi_lock) 632 __acquires(rq->lock) 633 { 634 struct rq *rq; 635 636 for (;;) { 637 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 638 rq = task_rq(p); 639 raw_spin_rq_lock(rq); 640 /* 641 * move_queued_task() task_rq_lock() 642 * 643 * ACQUIRE (rq->lock) 644 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 645 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 646 * [S] ->cpu = new_cpu [L] task_rq() 647 * [L] ->on_rq 648 * RELEASE (rq->lock) 649 * 650 * If we observe the old CPU in task_rq_lock(), the acquire of 651 * the old rq->lock will fully serialize against the stores. 652 * 653 * If we observe the new CPU in task_rq_lock(), the address 654 * dependency headed by '[L] rq = task_rq()' and the acquire 655 * will pair with the WMB to ensure we then also see migrating. 656 */ 657 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 658 rq_pin_lock(rq, rf); 659 return rq; 660 } 661 raw_spin_rq_unlock(rq); 662 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 663 664 while (unlikely(task_on_rq_migrating(p))) 665 cpu_relax(); 666 } 667 } 668 669 /* 670 * RQ-clock updating methods: 671 */ 672 673 static void update_rq_clock_task(struct rq *rq, s64 delta) 674 { 675 /* 676 * In theory, the compile should just see 0 here, and optimize out the call 677 * to sched_rt_avg_update. But I don't trust it... 678 */ 679 s64 __maybe_unused steal = 0, irq_delta = 0; 680 681 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 682 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 683 684 /* 685 * Since irq_time is only updated on {soft,}irq_exit, we might run into 686 * this case when a previous update_rq_clock() happened inside a 687 * {soft,}irq region. 688 * 689 * When this happens, we stop ->clock_task and only update the 690 * prev_irq_time stamp to account for the part that fit, so that a next 691 * update will consume the rest. This ensures ->clock_task is 692 * monotonic. 693 * 694 * It does however cause some slight miss-attribution of {soft,}irq 695 * time, a more accurate solution would be to update the irq_time using 696 * the current rq->clock timestamp, except that would require using 697 * atomic ops. 698 */ 699 if (irq_delta > delta) 700 irq_delta = delta; 701 702 rq->prev_irq_time += irq_delta; 703 delta -= irq_delta; 704 psi_account_irqtime(rq->curr, irq_delta); 705 #endif 706 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 707 if (static_key_false((¶virt_steal_rq_enabled))) { 708 steal = paravirt_steal_clock(cpu_of(rq)); 709 steal -= rq->prev_steal_time_rq; 710 711 if (unlikely(steal > delta)) 712 steal = delta; 713 714 rq->prev_steal_time_rq += steal; 715 delta -= steal; 716 } 717 #endif 718 719 rq->clock_task += delta; 720 721 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 722 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 723 update_irq_load_avg(rq, irq_delta + steal); 724 #endif 725 update_rq_clock_pelt(rq, delta); 726 } 727 728 void update_rq_clock(struct rq *rq) 729 { 730 s64 delta; 731 732 lockdep_assert_rq_held(rq); 733 734 if (rq->clock_update_flags & RQCF_ACT_SKIP) 735 return; 736 737 #ifdef CONFIG_SCHED_DEBUG 738 if (sched_feat(WARN_DOUBLE_CLOCK)) 739 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 740 rq->clock_update_flags |= RQCF_UPDATED; 741 #endif 742 743 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 744 if (delta < 0) 745 return; 746 rq->clock += delta; 747 update_rq_clock_task(rq, delta); 748 } 749 750 #ifdef CONFIG_SCHED_HRTICK 751 /* 752 * Use HR-timers to deliver accurate preemption points. 753 */ 754 755 static void hrtick_clear(struct rq *rq) 756 { 757 if (hrtimer_active(&rq->hrtick_timer)) 758 hrtimer_cancel(&rq->hrtick_timer); 759 } 760 761 /* 762 * High-resolution timer tick. 763 * Runs from hardirq context with interrupts disabled. 764 */ 765 static enum hrtimer_restart hrtick(struct hrtimer *timer) 766 { 767 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 768 struct rq_flags rf; 769 770 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 771 772 rq_lock(rq, &rf); 773 update_rq_clock(rq); 774 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 775 rq_unlock(rq, &rf); 776 777 return HRTIMER_NORESTART; 778 } 779 780 #ifdef CONFIG_SMP 781 782 static void __hrtick_restart(struct rq *rq) 783 { 784 struct hrtimer *timer = &rq->hrtick_timer; 785 ktime_t time = rq->hrtick_time; 786 787 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 788 } 789 790 /* 791 * called from hardirq (IPI) context 792 */ 793 static void __hrtick_start(void *arg) 794 { 795 struct rq *rq = arg; 796 struct rq_flags rf; 797 798 rq_lock(rq, &rf); 799 __hrtick_restart(rq); 800 rq_unlock(rq, &rf); 801 } 802 803 /* 804 * Called to set the hrtick timer state. 805 * 806 * called with rq->lock held and irqs disabled 807 */ 808 void hrtick_start(struct rq *rq, u64 delay) 809 { 810 struct hrtimer *timer = &rq->hrtick_timer; 811 s64 delta; 812 813 /* 814 * Don't schedule slices shorter than 10000ns, that just 815 * doesn't make sense and can cause timer DoS. 816 */ 817 delta = max_t(s64, delay, 10000LL); 818 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 819 820 if (rq == this_rq()) 821 __hrtick_restart(rq); 822 else 823 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 824 } 825 826 #else 827 /* 828 * Called to set the hrtick timer state. 829 * 830 * called with rq->lock held and irqs disabled 831 */ 832 void hrtick_start(struct rq *rq, u64 delay) 833 { 834 /* 835 * Don't schedule slices shorter than 10000ns, that just 836 * doesn't make sense. Rely on vruntime for fairness. 837 */ 838 delay = max_t(u64, delay, 10000LL); 839 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 840 HRTIMER_MODE_REL_PINNED_HARD); 841 } 842 843 #endif /* CONFIG_SMP */ 844 845 static void hrtick_rq_init(struct rq *rq) 846 { 847 #ifdef CONFIG_SMP 848 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 849 #endif 850 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 851 rq->hrtick_timer.function = hrtick; 852 } 853 #else /* CONFIG_SCHED_HRTICK */ 854 static inline void hrtick_clear(struct rq *rq) 855 { 856 } 857 858 static inline void hrtick_rq_init(struct rq *rq) 859 { 860 } 861 #endif /* CONFIG_SCHED_HRTICK */ 862 863 /* 864 * cmpxchg based fetch_or, macro so it works for different integer types 865 */ 866 #define fetch_or(ptr, mask) \ 867 ({ \ 868 typeof(ptr) _ptr = (ptr); \ 869 typeof(mask) _mask = (mask); \ 870 typeof(*_ptr) _val = *_ptr; \ 871 \ 872 do { \ 873 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 874 _val; \ 875 }) 876 877 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 878 /* 879 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 880 * this avoids any races wrt polling state changes and thereby avoids 881 * spurious IPIs. 882 */ 883 static inline bool set_nr_and_not_polling(struct task_struct *p) 884 { 885 struct thread_info *ti = task_thread_info(p); 886 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 887 } 888 889 /* 890 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 891 * 892 * If this returns true, then the idle task promises to call 893 * sched_ttwu_pending() and reschedule soon. 894 */ 895 static bool set_nr_if_polling(struct task_struct *p) 896 { 897 struct thread_info *ti = task_thread_info(p); 898 typeof(ti->flags) val = READ_ONCE(ti->flags); 899 900 for (;;) { 901 if (!(val & _TIF_POLLING_NRFLAG)) 902 return false; 903 if (val & _TIF_NEED_RESCHED) 904 return true; 905 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)) 906 break; 907 } 908 return true; 909 } 910 911 #else 912 static inline bool set_nr_and_not_polling(struct task_struct *p) 913 { 914 set_tsk_need_resched(p); 915 return true; 916 } 917 918 #ifdef CONFIG_SMP 919 static inline bool set_nr_if_polling(struct task_struct *p) 920 { 921 return false; 922 } 923 #endif 924 #endif 925 926 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 927 { 928 struct wake_q_node *node = &task->wake_q; 929 930 /* 931 * Atomically grab the task, if ->wake_q is !nil already it means 932 * it's already queued (either by us or someone else) and will get the 933 * wakeup due to that. 934 * 935 * In order to ensure that a pending wakeup will observe our pending 936 * state, even in the failed case, an explicit smp_mb() must be used. 937 */ 938 smp_mb__before_atomic(); 939 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 940 return false; 941 942 /* 943 * The head is context local, there can be no concurrency. 944 */ 945 *head->lastp = node; 946 head->lastp = &node->next; 947 return true; 948 } 949 950 /** 951 * wake_q_add() - queue a wakeup for 'later' waking. 952 * @head: the wake_q_head to add @task to 953 * @task: the task to queue for 'later' wakeup 954 * 955 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 956 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 957 * instantly. 958 * 959 * This function must be used as-if it were wake_up_process(); IOW the task 960 * must be ready to be woken at this location. 961 */ 962 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 963 { 964 if (__wake_q_add(head, task)) 965 get_task_struct(task); 966 } 967 968 /** 969 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 970 * @head: the wake_q_head to add @task to 971 * @task: the task to queue for 'later' wakeup 972 * 973 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 974 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 975 * instantly. 976 * 977 * This function must be used as-if it were wake_up_process(); IOW the task 978 * must be ready to be woken at this location. 979 * 980 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 981 * that already hold reference to @task can call the 'safe' version and trust 982 * wake_q to do the right thing depending whether or not the @task is already 983 * queued for wakeup. 984 */ 985 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 986 { 987 if (!__wake_q_add(head, task)) 988 put_task_struct(task); 989 } 990 991 void wake_up_q(struct wake_q_head *head) 992 { 993 struct wake_q_node *node = head->first; 994 995 while (node != WAKE_Q_TAIL) { 996 struct task_struct *task; 997 998 task = container_of(node, struct task_struct, wake_q); 999 /* Task can safely be re-inserted now: */ 1000 node = node->next; 1001 task->wake_q.next = NULL; 1002 1003 /* 1004 * wake_up_process() executes a full barrier, which pairs with 1005 * the queueing in wake_q_add() so as not to miss wakeups. 1006 */ 1007 wake_up_process(task); 1008 put_task_struct(task); 1009 } 1010 } 1011 1012 /* 1013 * resched_curr - mark rq's current task 'to be rescheduled now'. 1014 * 1015 * On UP this means the setting of the need_resched flag, on SMP it 1016 * might also involve a cross-CPU call to trigger the scheduler on 1017 * the target CPU. 1018 */ 1019 void resched_curr(struct rq *rq) 1020 { 1021 struct task_struct *curr = rq->curr; 1022 int cpu; 1023 1024 lockdep_assert_rq_held(rq); 1025 1026 if (test_tsk_need_resched(curr)) 1027 return; 1028 1029 cpu = cpu_of(rq); 1030 1031 if (cpu == smp_processor_id()) { 1032 set_tsk_need_resched(curr); 1033 set_preempt_need_resched(); 1034 return; 1035 } 1036 1037 if (set_nr_and_not_polling(curr)) 1038 smp_send_reschedule(cpu); 1039 else 1040 trace_sched_wake_idle_without_ipi(cpu); 1041 } 1042 1043 void resched_cpu(int cpu) 1044 { 1045 struct rq *rq = cpu_rq(cpu); 1046 unsigned long flags; 1047 1048 raw_spin_rq_lock_irqsave(rq, flags); 1049 if (cpu_online(cpu) || cpu == smp_processor_id()) 1050 resched_curr(rq); 1051 raw_spin_rq_unlock_irqrestore(rq, flags); 1052 } 1053 1054 #ifdef CONFIG_SMP 1055 #ifdef CONFIG_NO_HZ_COMMON 1056 /* 1057 * In the semi idle case, use the nearest busy CPU for migrating timers 1058 * from an idle CPU. This is good for power-savings. 1059 * 1060 * We don't do similar optimization for completely idle system, as 1061 * selecting an idle CPU will add more delays to the timers than intended 1062 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 1063 */ 1064 int get_nohz_timer_target(void) 1065 { 1066 int i, cpu = smp_processor_id(), default_cpu = -1; 1067 struct sched_domain *sd; 1068 const struct cpumask *hk_mask; 1069 1070 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1071 if (!idle_cpu(cpu)) 1072 return cpu; 1073 default_cpu = cpu; 1074 } 1075 1076 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1077 1078 rcu_read_lock(); 1079 for_each_domain(cpu, sd) { 1080 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1081 if (cpu == i) 1082 continue; 1083 1084 if (!idle_cpu(i)) { 1085 cpu = i; 1086 goto unlock; 1087 } 1088 } 1089 } 1090 1091 if (default_cpu == -1) 1092 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1093 cpu = default_cpu; 1094 unlock: 1095 rcu_read_unlock(); 1096 return cpu; 1097 } 1098 1099 /* 1100 * When add_timer_on() enqueues a timer into the timer wheel of an 1101 * idle CPU then this timer might expire before the next timer event 1102 * which is scheduled to wake up that CPU. In case of a completely 1103 * idle system the next event might even be infinite time into the 1104 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1105 * leaves the inner idle loop so the newly added timer is taken into 1106 * account when the CPU goes back to idle and evaluates the timer 1107 * wheel for the next timer event. 1108 */ 1109 static void wake_up_idle_cpu(int cpu) 1110 { 1111 struct rq *rq = cpu_rq(cpu); 1112 1113 if (cpu == smp_processor_id()) 1114 return; 1115 1116 if (set_nr_and_not_polling(rq->idle)) 1117 smp_send_reschedule(cpu); 1118 else 1119 trace_sched_wake_idle_without_ipi(cpu); 1120 } 1121 1122 static bool wake_up_full_nohz_cpu(int cpu) 1123 { 1124 /* 1125 * We just need the target to call irq_exit() and re-evaluate 1126 * the next tick. The nohz full kick at least implies that. 1127 * If needed we can still optimize that later with an 1128 * empty IRQ. 1129 */ 1130 if (cpu_is_offline(cpu)) 1131 return true; /* Don't try to wake offline CPUs. */ 1132 if (tick_nohz_full_cpu(cpu)) { 1133 if (cpu != smp_processor_id() || 1134 tick_nohz_tick_stopped()) 1135 tick_nohz_full_kick_cpu(cpu); 1136 return true; 1137 } 1138 1139 return false; 1140 } 1141 1142 /* 1143 * Wake up the specified CPU. If the CPU is going offline, it is the 1144 * caller's responsibility to deal with the lost wakeup, for example, 1145 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1146 */ 1147 void wake_up_nohz_cpu(int cpu) 1148 { 1149 if (!wake_up_full_nohz_cpu(cpu)) 1150 wake_up_idle_cpu(cpu); 1151 } 1152 1153 static void nohz_csd_func(void *info) 1154 { 1155 struct rq *rq = info; 1156 int cpu = cpu_of(rq); 1157 unsigned int flags; 1158 1159 /* 1160 * Release the rq::nohz_csd. 1161 */ 1162 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1163 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1164 1165 rq->idle_balance = idle_cpu(cpu); 1166 if (rq->idle_balance && !need_resched()) { 1167 rq->nohz_idle_balance = flags; 1168 raise_softirq_irqoff(SCHED_SOFTIRQ); 1169 } 1170 } 1171 1172 #endif /* CONFIG_NO_HZ_COMMON */ 1173 1174 #ifdef CONFIG_NO_HZ_FULL 1175 bool sched_can_stop_tick(struct rq *rq) 1176 { 1177 int fifo_nr_running; 1178 1179 /* Deadline tasks, even if single, need the tick */ 1180 if (rq->dl.dl_nr_running) 1181 return false; 1182 1183 /* 1184 * If there are more than one RR tasks, we need the tick to affect the 1185 * actual RR behaviour. 1186 */ 1187 if (rq->rt.rr_nr_running) { 1188 if (rq->rt.rr_nr_running == 1) 1189 return true; 1190 else 1191 return false; 1192 } 1193 1194 /* 1195 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1196 * forced preemption between FIFO tasks. 1197 */ 1198 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1199 if (fifo_nr_running) 1200 return true; 1201 1202 /* 1203 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1204 * if there's more than one we need the tick for involuntary 1205 * preemption. 1206 */ 1207 if (rq->nr_running > 1) 1208 return false; 1209 1210 return true; 1211 } 1212 #endif /* CONFIG_NO_HZ_FULL */ 1213 #endif /* CONFIG_SMP */ 1214 1215 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1216 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1217 /* 1218 * Iterate task_group tree rooted at *from, calling @down when first entering a 1219 * node and @up when leaving it for the final time. 1220 * 1221 * Caller must hold rcu_lock or sufficient equivalent. 1222 */ 1223 int walk_tg_tree_from(struct task_group *from, 1224 tg_visitor down, tg_visitor up, void *data) 1225 { 1226 struct task_group *parent, *child; 1227 int ret; 1228 1229 parent = from; 1230 1231 down: 1232 ret = (*down)(parent, data); 1233 if (ret) 1234 goto out; 1235 list_for_each_entry_rcu(child, &parent->children, siblings) { 1236 parent = child; 1237 goto down; 1238 1239 up: 1240 continue; 1241 } 1242 ret = (*up)(parent, data); 1243 if (ret || parent == from) 1244 goto out; 1245 1246 child = parent; 1247 parent = parent->parent; 1248 if (parent) 1249 goto up; 1250 out: 1251 return ret; 1252 } 1253 1254 int tg_nop(struct task_group *tg, void *data) 1255 { 1256 return 0; 1257 } 1258 #endif 1259 1260 static void set_load_weight(struct task_struct *p, bool update_load) 1261 { 1262 int prio = p->static_prio - MAX_RT_PRIO; 1263 struct load_weight *load = &p->se.load; 1264 1265 /* 1266 * SCHED_IDLE tasks get minimal weight: 1267 */ 1268 if (task_has_idle_policy(p)) { 1269 load->weight = scale_load(WEIGHT_IDLEPRIO); 1270 load->inv_weight = WMULT_IDLEPRIO; 1271 return; 1272 } 1273 1274 /* 1275 * SCHED_OTHER tasks have to update their load when changing their 1276 * weight 1277 */ 1278 if (update_load && p->sched_class == &fair_sched_class) { 1279 reweight_task(p, prio); 1280 } else { 1281 load->weight = scale_load(sched_prio_to_weight[prio]); 1282 load->inv_weight = sched_prio_to_wmult[prio]; 1283 } 1284 } 1285 1286 #ifdef CONFIG_UCLAMP_TASK 1287 /* 1288 * Serializes updates of utilization clamp values 1289 * 1290 * The (slow-path) user-space triggers utilization clamp value updates which 1291 * can require updates on (fast-path) scheduler's data structures used to 1292 * support enqueue/dequeue operations. 1293 * While the per-CPU rq lock protects fast-path update operations, user-space 1294 * requests are serialized using a mutex to reduce the risk of conflicting 1295 * updates or API abuses. 1296 */ 1297 static DEFINE_MUTEX(uclamp_mutex); 1298 1299 /* Max allowed minimum utilization */ 1300 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1301 1302 /* Max allowed maximum utilization */ 1303 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1304 1305 /* 1306 * By default RT tasks run at the maximum performance point/capacity of the 1307 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1308 * SCHED_CAPACITY_SCALE. 1309 * 1310 * This knob allows admins to change the default behavior when uclamp is being 1311 * used. In battery powered devices, particularly, running at the maximum 1312 * capacity and frequency will increase energy consumption and shorten the 1313 * battery life. 1314 * 1315 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1316 * 1317 * This knob will not override the system default sched_util_clamp_min defined 1318 * above. 1319 */ 1320 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1321 1322 /* All clamps are required to be less or equal than these values */ 1323 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1324 1325 /* 1326 * This static key is used to reduce the uclamp overhead in the fast path. It 1327 * primarily disables the call to uclamp_rq_{inc, dec}() in 1328 * enqueue/dequeue_task(). 1329 * 1330 * This allows users to continue to enable uclamp in their kernel config with 1331 * minimum uclamp overhead in the fast path. 1332 * 1333 * As soon as userspace modifies any of the uclamp knobs, the static key is 1334 * enabled, since we have an actual users that make use of uclamp 1335 * functionality. 1336 * 1337 * The knobs that would enable this static key are: 1338 * 1339 * * A task modifying its uclamp value with sched_setattr(). 1340 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1341 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1342 */ 1343 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1344 1345 /* Integer rounded range for each bucket */ 1346 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 1347 1348 #define for_each_clamp_id(clamp_id) \ 1349 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 1350 1351 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 1352 { 1353 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 1354 } 1355 1356 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 1357 { 1358 if (clamp_id == UCLAMP_MIN) 1359 return 0; 1360 return SCHED_CAPACITY_SCALE; 1361 } 1362 1363 static inline void uclamp_se_set(struct uclamp_se *uc_se, 1364 unsigned int value, bool user_defined) 1365 { 1366 uc_se->value = value; 1367 uc_se->bucket_id = uclamp_bucket_id(value); 1368 uc_se->user_defined = user_defined; 1369 } 1370 1371 static inline unsigned int 1372 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1373 unsigned int clamp_value) 1374 { 1375 /* 1376 * Avoid blocked utilization pushing up the frequency when we go 1377 * idle (which drops the max-clamp) by retaining the last known 1378 * max-clamp. 1379 */ 1380 if (clamp_id == UCLAMP_MAX) { 1381 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1382 return clamp_value; 1383 } 1384 1385 return uclamp_none(UCLAMP_MIN); 1386 } 1387 1388 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1389 unsigned int clamp_value) 1390 { 1391 /* Reset max-clamp retention only on idle exit */ 1392 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1393 return; 1394 1395 uclamp_rq_set(rq, clamp_id, clamp_value); 1396 } 1397 1398 static inline 1399 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1400 unsigned int clamp_value) 1401 { 1402 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1403 int bucket_id = UCLAMP_BUCKETS - 1; 1404 1405 /* 1406 * Since both min and max clamps are max aggregated, find the 1407 * top most bucket with tasks in. 1408 */ 1409 for ( ; bucket_id >= 0; bucket_id--) { 1410 if (!bucket[bucket_id].tasks) 1411 continue; 1412 return bucket[bucket_id].value; 1413 } 1414 1415 /* No tasks -- default clamp values */ 1416 return uclamp_idle_value(rq, clamp_id, clamp_value); 1417 } 1418 1419 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1420 { 1421 unsigned int default_util_min; 1422 struct uclamp_se *uc_se; 1423 1424 lockdep_assert_held(&p->pi_lock); 1425 1426 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1427 1428 /* Only sync if user didn't override the default */ 1429 if (uc_se->user_defined) 1430 return; 1431 1432 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1433 uclamp_se_set(uc_se, default_util_min, false); 1434 } 1435 1436 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1437 { 1438 struct rq_flags rf; 1439 struct rq *rq; 1440 1441 if (!rt_task(p)) 1442 return; 1443 1444 /* Protect updates to p->uclamp_* */ 1445 rq = task_rq_lock(p, &rf); 1446 __uclamp_update_util_min_rt_default(p); 1447 task_rq_unlock(rq, p, &rf); 1448 } 1449 1450 static inline struct uclamp_se 1451 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1452 { 1453 /* Copy by value as we could modify it */ 1454 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1455 #ifdef CONFIG_UCLAMP_TASK_GROUP 1456 unsigned int tg_min, tg_max, value; 1457 1458 /* 1459 * Tasks in autogroups or root task group will be 1460 * restricted by system defaults. 1461 */ 1462 if (task_group_is_autogroup(task_group(p))) 1463 return uc_req; 1464 if (task_group(p) == &root_task_group) 1465 return uc_req; 1466 1467 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1468 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1469 value = uc_req.value; 1470 value = clamp(value, tg_min, tg_max); 1471 uclamp_se_set(&uc_req, value, false); 1472 #endif 1473 1474 return uc_req; 1475 } 1476 1477 /* 1478 * The effective clamp bucket index of a task depends on, by increasing 1479 * priority: 1480 * - the task specific clamp value, when explicitly requested from userspace 1481 * - the task group effective clamp value, for tasks not either in the root 1482 * group or in an autogroup 1483 * - the system default clamp value, defined by the sysadmin 1484 */ 1485 static inline struct uclamp_se 1486 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1487 { 1488 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1489 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1490 1491 /* System default restrictions always apply */ 1492 if (unlikely(uc_req.value > uc_max.value)) 1493 return uc_max; 1494 1495 return uc_req; 1496 } 1497 1498 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1499 { 1500 struct uclamp_se uc_eff; 1501 1502 /* Task currently refcounted: use back-annotated (effective) value */ 1503 if (p->uclamp[clamp_id].active) 1504 return (unsigned long)p->uclamp[clamp_id].value; 1505 1506 uc_eff = uclamp_eff_get(p, clamp_id); 1507 1508 return (unsigned long)uc_eff.value; 1509 } 1510 1511 /* 1512 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1513 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1514 * updates the rq's clamp value if required. 1515 * 1516 * Tasks can have a task-specific value requested from user-space, track 1517 * within each bucket the maximum value for tasks refcounted in it. 1518 * This "local max aggregation" allows to track the exact "requested" value 1519 * for each bucket when all its RUNNABLE tasks require the same clamp. 1520 */ 1521 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1522 enum uclamp_id clamp_id) 1523 { 1524 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1525 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1526 struct uclamp_bucket *bucket; 1527 1528 lockdep_assert_rq_held(rq); 1529 1530 /* Update task effective clamp */ 1531 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1532 1533 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1534 bucket->tasks++; 1535 uc_se->active = true; 1536 1537 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1538 1539 /* 1540 * Local max aggregation: rq buckets always track the max 1541 * "requested" clamp value of its RUNNABLE tasks. 1542 */ 1543 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1544 bucket->value = uc_se->value; 1545 1546 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1547 uclamp_rq_set(rq, clamp_id, uc_se->value); 1548 } 1549 1550 /* 1551 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1552 * is released. If this is the last task reference counting the rq's max 1553 * active clamp value, then the rq's clamp value is updated. 1554 * 1555 * Both refcounted tasks and rq's cached clamp values are expected to be 1556 * always valid. If it's detected they are not, as defensive programming, 1557 * enforce the expected state and warn. 1558 */ 1559 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1560 enum uclamp_id clamp_id) 1561 { 1562 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1563 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1564 struct uclamp_bucket *bucket; 1565 unsigned int bkt_clamp; 1566 unsigned int rq_clamp; 1567 1568 lockdep_assert_rq_held(rq); 1569 1570 /* 1571 * If sched_uclamp_used was enabled after task @p was enqueued, 1572 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1573 * 1574 * In this case the uc_se->active flag should be false since no uclamp 1575 * accounting was performed at enqueue time and we can just return 1576 * here. 1577 * 1578 * Need to be careful of the following enqueue/dequeue ordering 1579 * problem too 1580 * 1581 * enqueue(taskA) 1582 * // sched_uclamp_used gets enabled 1583 * enqueue(taskB) 1584 * dequeue(taskA) 1585 * // Must not decrement bucket->tasks here 1586 * dequeue(taskB) 1587 * 1588 * where we could end up with stale data in uc_se and 1589 * bucket[uc_se->bucket_id]. 1590 * 1591 * The following check here eliminates the possibility of such race. 1592 */ 1593 if (unlikely(!uc_se->active)) 1594 return; 1595 1596 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1597 1598 SCHED_WARN_ON(!bucket->tasks); 1599 if (likely(bucket->tasks)) 1600 bucket->tasks--; 1601 1602 uc_se->active = false; 1603 1604 /* 1605 * Keep "local max aggregation" simple and accept to (possibly) 1606 * overboost some RUNNABLE tasks in the same bucket. 1607 * The rq clamp bucket value is reset to its base value whenever 1608 * there are no more RUNNABLE tasks refcounting it. 1609 */ 1610 if (likely(bucket->tasks)) 1611 return; 1612 1613 rq_clamp = uclamp_rq_get(rq, clamp_id); 1614 /* 1615 * Defensive programming: this should never happen. If it happens, 1616 * e.g. due to future modification, warn and fixup the expected value. 1617 */ 1618 SCHED_WARN_ON(bucket->value > rq_clamp); 1619 if (bucket->value >= rq_clamp) { 1620 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1621 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1622 } 1623 } 1624 1625 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1626 { 1627 enum uclamp_id clamp_id; 1628 1629 /* 1630 * Avoid any overhead until uclamp is actually used by the userspace. 1631 * 1632 * The condition is constructed such that a NOP is generated when 1633 * sched_uclamp_used is disabled. 1634 */ 1635 if (!static_branch_unlikely(&sched_uclamp_used)) 1636 return; 1637 1638 if (unlikely(!p->sched_class->uclamp_enabled)) 1639 return; 1640 1641 for_each_clamp_id(clamp_id) 1642 uclamp_rq_inc_id(rq, p, clamp_id); 1643 1644 /* Reset clamp idle holding when there is one RUNNABLE task */ 1645 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1646 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1647 } 1648 1649 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1650 { 1651 enum uclamp_id clamp_id; 1652 1653 /* 1654 * Avoid any overhead until uclamp is actually used by the userspace. 1655 * 1656 * The condition is constructed such that a NOP is generated when 1657 * sched_uclamp_used is disabled. 1658 */ 1659 if (!static_branch_unlikely(&sched_uclamp_used)) 1660 return; 1661 1662 if (unlikely(!p->sched_class->uclamp_enabled)) 1663 return; 1664 1665 for_each_clamp_id(clamp_id) 1666 uclamp_rq_dec_id(rq, p, clamp_id); 1667 } 1668 1669 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1670 enum uclamp_id clamp_id) 1671 { 1672 if (!p->uclamp[clamp_id].active) 1673 return; 1674 1675 uclamp_rq_dec_id(rq, p, clamp_id); 1676 uclamp_rq_inc_id(rq, p, clamp_id); 1677 1678 /* 1679 * Make sure to clear the idle flag if we've transiently reached 0 1680 * active tasks on rq. 1681 */ 1682 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1683 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1684 } 1685 1686 static inline void 1687 uclamp_update_active(struct task_struct *p) 1688 { 1689 enum uclamp_id clamp_id; 1690 struct rq_flags rf; 1691 struct rq *rq; 1692 1693 /* 1694 * Lock the task and the rq where the task is (or was) queued. 1695 * 1696 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1697 * price to pay to safely serialize util_{min,max} updates with 1698 * enqueues, dequeues and migration operations. 1699 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1700 */ 1701 rq = task_rq_lock(p, &rf); 1702 1703 /* 1704 * Setting the clamp bucket is serialized by task_rq_lock(). 1705 * If the task is not yet RUNNABLE and its task_struct is not 1706 * affecting a valid clamp bucket, the next time it's enqueued, 1707 * it will already see the updated clamp bucket value. 1708 */ 1709 for_each_clamp_id(clamp_id) 1710 uclamp_rq_reinc_id(rq, p, clamp_id); 1711 1712 task_rq_unlock(rq, p, &rf); 1713 } 1714 1715 #ifdef CONFIG_UCLAMP_TASK_GROUP 1716 static inline void 1717 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1718 { 1719 struct css_task_iter it; 1720 struct task_struct *p; 1721 1722 css_task_iter_start(css, 0, &it); 1723 while ((p = css_task_iter_next(&it))) 1724 uclamp_update_active(p); 1725 css_task_iter_end(&it); 1726 } 1727 1728 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1729 #endif 1730 1731 #ifdef CONFIG_SYSCTL 1732 #ifdef CONFIG_UCLAMP_TASK 1733 #ifdef CONFIG_UCLAMP_TASK_GROUP 1734 static void uclamp_update_root_tg(void) 1735 { 1736 struct task_group *tg = &root_task_group; 1737 1738 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1739 sysctl_sched_uclamp_util_min, false); 1740 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1741 sysctl_sched_uclamp_util_max, false); 1742 1743 rcu_read_lock(); 1744 cpu_util_update_eff(&root_task_group.css); 1745 rcu_read_unlock(); 1746 } 1747 #else 1748 static void uclamp_update_root_tg(void) { } 1749 #endif 1750 1751 static void uclamp_sync_util_min_rt_default(void) 1752 { 1753 struct task_struct *g, *p; 1754 1755 /* 1756 * copy_process() sysctl_uclamp 1757 * uclamp_min_rt = X; 1758 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1759 * // link thread smp_mb__after_spinlock() 1760 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1761 * sched_post_fork() for_each_process_thread() 1762 * __uclamp_sync_rt() __uclamp_sync_rt() 1763 * 1764 * Ensures that either sched_post_fork() will observe the new 1765 * uclamp_min_rt or for_each_process_thread() will observe the new 1766 * task. 1767 */ 1768 read_lock(&tasklist_lock); 1769 smp_mb__after_spinlock(); 1770 read_unlock(&tasklist_lock); 1771 1772 rcu_read_lock(); 1773 for_each_process_thread(g, p) 1774 uclamp_update_util_min_rt_default(p); 1775 rcu_read_unlock(); 1776 } 1777 1778 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1779 void *buffer, size_t *lenp, loff_t *ppos) 1780 { 1781 bool update_root_tg = false; 1782 int old_min, old_max, old_min_rt; 1783 int result; 1784 1785 mutex_lock(&uclamp_mutex); 1786 old_min = sysctl_sched_uclamp_util_min; 1787 old_max = sysctl_sched_uclamp_util_max; 1788 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1789 1790 result = proc_dointvec(table, write, buffer, lenp, ppos); 1791 if (result) 1792 goto undo; 1793 if (!write) 1794 goto done; 1795 1796 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1797 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1798 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1799 1800 result = -EINVAL; 1801 goto undo; 1802 } 1803 1804 if (old_min != sysctl_sched_uclamp_util_min) { 1805 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1806 sysctl_sched_uclamp_util_min, false); 1807 update_root_tg = true; 1808 } 1809 if (old_max != sysctl_sched_uclamp_util_max) { 1810 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1811 sysctl_sched_uclamp_util_max, false); 1812 update_root_tg = true; 1813 } 1814 1815 if (update_root_tg) { 1816 static_branch_enable(&sched_uclamp_used); 1817 uclamp_update_root_tg(); 1818 } 1819 1820 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1821 static_branch_enable(&sched_uclamp_used); 1822 uclamp_sync_util_min_rt_default(); 1823 } 1824 1825 /* 1826 * We update all RUNNABLE tasks only when task groups are in use. 1827 * Otherwise, keep it simple and do just a lazy update at each next 1828 * task enqueue time. 1829 */ 1830 1831 goto done; 1832 1833 undo: 1834 sysctl_sched_uclamp_util_min = old_min; 1835 sysctl_sched_uclamp_util_max = old_max; 1836 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1837 done: 1838 mutex_unlock(&uclamp_mutex); 1839 1840 return result; 1841 } 1842 #endif 1843 #endif 1844 1845 static int uclamp_validate(struct task_struct *p, 1846 const struct sched_attr *attr) 1847 { 1848 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1849 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1850 1851 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1852 util_min = attr->sched_util_min; 1853 1854 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1855 return -EINVAL; 1856 } 1857 1858 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1859 util_max = attr->sched_util_max; 1860 1861 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1862 return -EINVAL; 1863 } 1864 1865 if (util_min != -1 && util_max != -1 && util_min > util_max) 1866 return -EINVAL; 1867 1868 /* 1869 * We have valid uclamp attributes; make sure uclamp is enabled. 1870 * 1871 * We need to do that here, because enabling static branches is a 1872 * blocking operation which obviously cannot be done while holding 1873 * scheduler locks. 1874 */ 1875 static_branch_enable(&sched_uclamp_used); 1876 1877 return 0; 1878 } 1879 1880 static bool uclamp_reset(const struct sched_attr *attr, 1881 enum uclamp_id clamp_id, 1882 struct uclamp_se *uc_se) 1883 { 1884 /* Reset on sched class change for a non user-defined clamp value. */ 1885 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1886 !uc_se->user_defined) 1887 return true; 1888 1889 /* Reset on sched_util_{min,max} == -1. */ 1890 if (clamp_id == UCLAMP_MIN && 1891 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1892 attr->sched_util_min == -1) { 1893 return true; 1894 } 1895 1896 if (clamp_id == UCLAMP_MAX && 1897 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1898 attr->sched_util_max == -1) { 1899 return true; 1900 } 1901 1902 return false; 1903 } 1904 1905 static void __setscheduler_uclamp(struct task_struct *p, 1906 const struct sched_attr *attr) 1907 { 1908 enum uclamp_id clamp_id; 1909 1910 for_each_clamp_id(clamp_id) { 1911 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1912 unsigned int value; 1913 1914 if (!uclamp_reset(attr, clamp_id, uc_se)) 1915 continue; 1916 1917 /* 1918 * RT by default have a 100% boost value that could be modified 1919 * at runtime. 1920 */ 1921 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1922 value = sysctl_sched_uclamp_util_min_rt_default; 1923 else 1924 value = uclamp_none(clamp_id); 1925 1926 uclamp_se_set(uc_se, value, false); 1927 1928 } 1929 1930 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1931 return; 1932 1933 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1934 attr->sched_util_min != -1) { 1935 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1936 attr->sched_util_min, true); 1937 } 1938 1939 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1940 attr->sched_util_max != -1) { 1941 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1942 attr->sched_util_max, true); 1943 } 1944 } 1945 1946 static void uclamp_fork(struct task_struct *p) 1947 { 1948 enum uclamp_id clamp_id; 1949 1950 /* 1951 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1952 * as the task is still at its early fork stages. 1953 */ 1954 for_each_clamp_id(clamp_id) 1955 p->uclamp[clamp_id].active = false; 1956 1957 if (likely(!p->sched_reset_on_fork)) 1958 return; 1959 1960 for_each_clamp_id(clamp_id) { 1961 uclamp_se_set(&p->uclamp_req[clamp_id], 1962 uclamp_none(clamp_id), false); 1963 } 1964 } 1965 1966 static void uclamp_post_fork(struct task_struct *p) 1967 { 1968 uclamp_update_util_min_rt_default(p); 1969 } 1970 1971 static void __init init_uclamp_rq(struct rq *rq) 1972 { 1973 enum uclamp_id clamp_id; 1974 struct uclamp_rq *uc_rq = rq->uclamp; 1975 1976 for_each_clamp_id(clamp_id) { 1977 uc_rq[clamp_id] = (struct uclamp_rq) { 1978 .value = uclamp_none(clamp_id) 1979 }; 1980 } 1981 1982 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 1983 } 1984 1985 static void __init init_uclamp(void) 1986 { 1987 struct uclamp_se uc_max = {}; 1988 enum uclamp_id clamp_id; 1989 int cpu; 1990 1991 for_each_possible_cpu(cpu) 1992 init_uclamp_rq(cpu_rq(cpu)); 1993 1994 for_each_clamp_id(clamp_id) { 1995 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1996 uclamp_none(clamp_id), false); 1997 } 1998 1999 /* System defaults allow max clamp values for both indexes */ 2000 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2001 for_each_clamp_id(clamp_id) { 2002 uclamp_default[clamp_id] = uc_max; 2003 #ifdef CONFIG_UCLAMP_TASK_GROUP 2004 root_task_group.uclamp_req[clamp_id] = uc_max; 2005 root_task_group.uclamp[clamp_id] = uc_max; 2006 #endif 2007 } 2008 } 2009 2010 #else /* CONFIG_UCLAMP_TASK */ 2011 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 2012 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2013 static inline int uclamp_validate(struct task_struct *p, 2014 const struct sched_attr *attr) 2015 { 2016 return -EOPNOTSUPP; 2017 } 2018 static void __setscheduler_uclamp(struct task_struct *p, 2019 const struct sched_attr *attr) { } 2020 static inline void uclamp_fork(struct task_struct *p) { } 2021 static inline void uclamp_post_fork(struct task_struct *p) { } 2022 static inline void init_uclamp(void) { } 2023 #endif /* CONFIG_UCLAMP_TASK */ 2024 2025 bool sched_task_on_rq(struct task_struct *p) 2026 { 2027 return task_on_rq_queued(p); 2028 } 2029 2030 unsigned long get_wchan(struct task_struct *p) 2031 { 2032 unsigned long ip = 0; 2033 unsigned int state; 2034 2035 if (!p || p == current) 2036 return 0; 2037 2038 /* Only get wchan if task is blocked and we can keep it that way. */ 2039 raw_spin_lock_irq(&p->pi_lock); 2040 state = READ_ONCE(p->__state); 2041 smp_rmb(); /* see try_to_wake_up() */ 2042 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2043 ip = __get_wchan(p); 2044 raw_spin_unlock_irq(&p->pi_lock); 2045 2046 return ip; 2047 } 2048 2049 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2050 { 2051 if (!(flags & ENQUEUE_NOCLOCK)) 2052 update_rq_clock(rq); 2053 2054 if (!(flags & ENQUEUE_RESTORE)) { 2055 sched_info_enqueue(rq, p); 2056 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED)); 2057 } 2058 2059 uclamp_rq_inc(rq, p); 2060 p->sched_class->enqueue_task(rq, p, flags); 2061 2062 if (sched_core_enabled(rq)) 2063 sched_core_enqueue(rq, p); 2064 } 2065 2066 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2067 { 2068 if (sched_core_enabled(rq)) 2069 sched_core_dequeue(rq, p, flags); 2070 2071 if (!(flags & DEQUEUE_NOCLOCK)) 2072 update_rq_clock(rq); 2073 2074 if (!(flags & DEQUEUE_SAVE)) { 2075 sched_info_dequeue(rq, p); 2076 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2077 } 2078 2079 uclamp_rq_dec(rq, p); 2080 p->sched_class->dequeue_task(rq, p, flags); 2081 } 2082 2083 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2084 { 2085 enqueue_task(rq, p, flags); 2086 2087 p->on_rq = TASK_ON_RQ_QUEUED; 2088 } 2089 2090 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2091 { 2092 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 2093 2094 dequeue_task(rq, p, flags); 2095 } 2096 2097 static inline int __normal_prio(int policy, int rt_prio, int nice) 2098 { 2099 int prio; 2100 2101 if (dl_policy(policy)) 2102 prio = MAX_DL_PRIO - 1; 2103 else if (rt_policy(policy)) 2104 prio = MAX_RT_PRIO - 1 - rt_prio; 2105 else 2106 prio = NICE_TO_PRIO(nice); 2107 2108 return prio; 2109 } 2110 2111 /* 2112 * Calculate the expected normal priority: i.e. priority 2113 * without taking RT-inheritance into account. Might be 2114 * boosted by interactivity modifiers. Changes upon fork, 2115 * setprio syscalls, and whenever the interactivity 2116 * estimator recalculates. 2117 */ 2118 static inline int normal_prio(struct task_struct *p) 2119 { 2120 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); 2121 } 2122 2123 /* 2124 * Calculate the current priority, i.e. the priority 2125 * taken into account by the scheduler. This value might 2126 * be boosted by RT tasks, or might be boosted by 2127 * interactivity modifiers. Will be RT if the task got 2128 * RT-boosted. If not then it returns p->normal_prio. 2129 */ 2130 static int effective_prio(struct task_struct *p) 2131 { 2132 p->normal_prio = normal_prio(p); 2133 /* 2134 * If we are RT tasks or we were boosted to RT priority, 2135 * keep the priority unchanged. Otherwise, update priority 2136 * to the normal priority: 2137 */ 2138 if (!rt_prio(p->prio)) 2139 return p->normal_prio; 2140 return p->prio; 2141 } 2142 2143 /** 2144 * task_curr - is this task currently executing on a CPU? 2145 * @p: the task in question. 2146 * 2147 * Return: 1 if the task is currently executing. 0 otherwise. 2148 */ 2149 inline int task_curr(const struct task_struct *p) 2150 { 2151 return cpu_curr(task_cpu(p)) == p; 2152 } 2153 2154 /* 2155 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2156 * use the balance_callback list if you want balancing. 2157 * 2158 * this means any call to check_class_changed() must be followed by a call to 2159 * balance_callback(). 2160 */ 2161 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 2162 const struct sched_class *prev_class, 2163 int oldprio) 2164 { 2165 if (prev_class != p->sched_class) { 2166 if (prev_class->switched_from) 2167 prev_class->switched_from(rq, p); 2168 2169 p->sched_class->switched_to(rq, p); 2170 } else if (oldprio != p->prio || dl_task(p)) 2171 p->sched_class->prio_changed(rq, p, oldprio); 2172 } 2173 2174 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 2175 { 2176 if (p->sched_class == rq->curr->sched_class) 2177 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 2178 else if (sched_class_above(p->sched_class, rq->curr->sched_class)) 2179 resched_curr(rq); 2180 2181 /* 2182 * A queue event has occurred, and we're going to schedule. In 2183 * this case, we can save a useless back to back clock update. 2184 */ 2185 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2186 rq_clock_skip_update(rq); 2187 } 2188 2189 #ifdef CONFIG_SMP 2190 2191 static void 2192 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2193 2194 static int __set_cpus_allowed_ptr(struct task_struct *p, 2195 struct affinity_context *ctx); 2196 2197 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2198 { 2199 struct affinity_context ac = { 2200 .new_mask = cpumask_of(rq->cpu), 2201 .flags = SCA_MIGRATE_DISABLE, 2202 }; 2203 2204 if (likely(!p->migration_disabled)) 2205 return; 2206 2207 if (p->cpus_ptr != &p->cpus_mask) 2208 return; 2209 2210 /* 2211 * Violates locking rules! see comment in __do_set_cpus_allowed(). 2212 */ 2213 __do_set_cpus_allowed(p, &ac); 2214 } 2215 2216 void migrate_disable(void) 2217 { 2218 struct task_struct *p = current; 2219 2220 if (p->migration_disabled) { 2221 p->migration_disabled++; 2222 return; 2223 } 2224 2225 preempt_disable(); 2226 this_rq()->nr_pinned++; 2227 p->migration_disabled = 1; 2228 preempt_enable(); 2229 } 2230 EXPORT_SYMBOL_GPL(migrate_disable); 2231 2232 void migrate_enable(void) 2233 { 2234 struct task_struct *p = current; 2235 struct affinity_context ac = { 2236 .new_mask = &p->cpus_mask, 2237 .flags = SCA_MIGRATE_ENABLE, 2238 }; 2239 2240 if (p->migration_disabled > 1) { 2241 p->migration_disabled--; 2242 return; 2243 } 2244 2245 if (WARN_ON_ONCE(!p->migration_disabled)) 2246 return; 2247 2248 /* 2249 * Ensure stop_task runs either before or after this, and that 2250 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2251 */ 2252 preempt_disable(); 2253 if (p->cpus_ptr != &p->cpus_mask) 2254 __set_cpus_allowed_ptr(p, &ac); 2255 /* 2256 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2257 * regular cpus_mask, otherwise things that race (eg. 2258 * select_fallback_rq) get confused. 2259 */ 2260 barrier(); 2261 p->migration_disabled = 0; 2262 this_rq()->nr_pinned--; 2263 preempt_enable(); 2264 } 2265 EXPORT_SYMBOL_GPL(migrate_enable); 2266 2267 static inline bool rq_has_pinned_tasks(struct rq *rq) 2268 { 2269 return rq->nr_pinned; 2270 } 2271 2272 /* 2273 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2274 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2275 */ 2276 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2277 { 2278 /* When not in the task's cpumask, no point in looking further. */ 2279 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2280 return false; 2281 2282 /* migrate_disabled() must be allowed to finish. */ 2283 if (is_migration_disabled(p)) 2284 return cpu_online(cpu); 2285 2286 /* Non kernel threads are not allowed during either online or offline. */ 2287 if (!(p->flags & PF_KTHREAD)) 2288 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2289 2290 /* KTHREAD_IS_PER_CPU is always allowed. */ 2291 if (kthread_is_per_cpu(p)) 2292 return cpu_online(cpu); 2293 2294 /* Regular kernel threads don't get to stay during offline. */ 2295 if (cpu_dying(cpu)) 2296 return false; 2297 2298 /* But are allowed during online. */ 2299 return cpu_online(cpu); 2300 } 2301 2302 /* 2303 * This is how migration works: 2304 * 2305 * 1) we invoke migration_cpu_stop() on the target CPU using 2306 * stop_one_cpu(). 2307 * 2) stopper starts to run (implicitly forcing the migrated thread 2308 * off the CPU) 2309 * 3) it checks whether the migrated task is still in the wrong runqueue. 2310 * 4) if it's in the wrong runqueue then the migration thread removes 2311 * it and puts it into the right queue. 2312 * 5) stopper completes and stop_one_cpu() returns and the migration 2313 * is done. 2314 */ 2315 2316 /* 2317 * move_queued_task - move a queued task to new rq. 2318 * 2319 * Returns (locked) new rq. Old rq's lock is released. 2320 */ 2321 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2322 struct task_struct *p, int new_cpu) 2323 { 2324 lockdep_assert_rq_held(rq); 2325 2326 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2327 set_task_cpu(p, new_cpu); 2328 rq_unlock(rq, rf); 2329 2330 rq = cpu_rq(new_cpu); 2331 2332 rq_lock(rq, rf); 2333 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2334 activate_task(rq, p, 0); 2335 check_preempt_curr(rq, p, 0); 2336 2337 return rq; 2338 } 2339 2340 struct migration_arg { 2341 struct task_struct *task; 2342 int dest_cpu; 2343 struct set_affinity_pending *pending; 2344 }; 2345 2346 /* 2347 * @refs: number of wait_for_completion() 2348 * @stop_pending: is @stop_work in use 2349 */ 2350 struct set_affinity_pending { 2351 refcount_t refs; 2352 unsigned int stop_pending; 2353 struct completion done; 2354 struct cpu_stop_work stop_work; 2355 struct migration_arg arg; 2356 }; 2357 2358 /* 2359 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2360 * this because either it can't run here any more (set_cpus_allowed() 2361 * away from this CPU, or CPU going down), or because we're 2362 * attempting to rebalance this task on exec (sched_exec). 2363 * 2364 * So we race with normal scheduler movements, but that's OK, as long 2365 * as the task is no longer on this CPU. 2366 */ 2367 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2368 struct task_struct *p, int dest_cpu) 2369 { 2370 /* Affinity changed (again). */ 2371 if (!is_cpu_allowed(p, dest_cpu)) 2372 return rq; 2373 2374 update_rq_clock(rq); 2375 rq = move_queued_task(rq, rf, p, dest_cpu); 2376 2377 return rq; 2378 } 2379 2380 /* 2381 * migration_cpu_stop - this will be executed by a highprio stopper thread 2382 * and performs thread migration by bumping thread off CPU then 2383 * 'pushing' onto another runqueue. 2384 */ 2385 static int migration_cpu_stop(void *data) 2386 { 2387 struct migration_arg *arg = data; 2388 struct set_affinity_pending *pending = arg->pending; 2389 struct task_struct *p = arg->task; 2390 struct rq *rq = this_rq(); 2391 bool complete = false; 2392 struct rq_flags rf; 2393 2394 /* 2395 * The original target CPU might have gone down and we might 2396 * be on another CPU but it doesn't matter. 2397 */ 2398 local_irq_save(rf.flags); 2399 /* 2400 * We need to explicitly wake pending tasks before running 2401 * __migrate_task() such that we will not miss enforcing cpus_ptr 2402 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2403 */ 2404 flush_smp_call_function_queue(); 2405 2406 raw_spin_lock(&p->pi_lock); 2407 rq_lock(rq, &rf); 2408 2409 /* 2410 * If we were passed a pending, then ->stop_pending was set, thus 2411 * p->migration_pending must have remained stable. 2412 */ 2413 WARN_ON_ONCE(pending && pending != p->migration_pending); 2414 2415 /* 2416 * If task_rq(p) != rq, it cannot be migrated here, because we're 2417 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2418 * we're holding p->pi_lock. 2419 */ 2420 if (task_rq(p) == rq) { 2421 if (is_migration_disabled(p)) 2422 goto out; 2423 2424 if (pending) { 2425 p->migration_pending = NULL; 2426 complete = true; 2427 2428 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2429 goto out; 2430 } 2431 2432 if (task_on_rq_queued(p)) 2433 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2434 else 2435 p->wake_cpu = arg->dest_cpu; 2436 2437 /* 2438 * XXX __migrate_task() can fail, at which point we might end 2439 * up running on a dodgy CPU, AFAICT this can only happen 2440 * during CPU hotplug, at which point we'll get pushed out 2441 * anyway, so it's probably not a big deal. 2442 */ 2443 2444 } else if (pending) { 2445 /* 2446 * This happens when we get migrated between migrate_enable()'s 2447 * preempt_enable() and scheduling the stopper task. At that 2448 * point we're a regular task again and not current anymore. 2449 * 2450 * A !PREEMPT kernel has a giant hole here, which makes it far 2451 * more likely. 2452 */ 2453 2454 /* 2455 * The task moved before the stopper got to run. We're holding 2456 * ->pi_lock, so the allowed mask is stable - if it got 2457 * somewhere allowed, we're done. 2458 */ 2459 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2460 p->migration_pending = NULL; 2461 complete = true; 2462 goto out; 2463 } 2464 2465 /* 2466 * When migrate_enable() hits a rq mis-match we can't reliably 2467 * determine is_migration_disabled() and so have to chase after 2468 * it. 2469 */ 2470 WARN_ON_ONCE(!pending->stop_pending); 2471 task_rq_unlock(rq, p, &rf); 2472 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2473 &pending->arg, &pending->stop_work); 2474 return 0; 2475 } 2476 out: 2477 if (pending) 2478 pending->stop_pending = false; 2479 task_rq_unlock(rq, p, &rf); 2480 2481 if (complete) 2482 complete_all(&pending->done); 2483 2484 return 0; 2485 } 2486 2487 int push_cpu_stop(void *arg) 2488 { 2489 struct rq *lowest_rq = NULL, *rq = this_rq(); 2490 struct task_struct *p = arg; 2491 2492 raw_spin_lock_irq(&p->pi_lock); 2493 raw_spin_rq_lock(rq); 2494 2495 if (task_rq(p) != rq) 2496 goto out_unlock; 2497 2498 if (is_migration_disabled(p)) { 2499 p->migration_flags |= MDF_PUSH; 2500 goto out_unlock; 2501 } 2502 2503 p->migration_flags &= ~MDF_PUSH; 2504 2505 if (p->sched_class->find_lock_rq) 2506 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2507 2508 if (!lowest_rq) 2509 goto out_unlock; 2510 2511 // XXX validate p is still the highest prio task 2512 if (task_rq(p) == rq) { 2513 deactivate_task(rq, p, 0); 2514 set_task_cpu(p, lowest_rq->cpu); 2515 activate_task(lowest_rq, p, 0); 2516 resched_curr(lowest_rq); 2517 } 2518 2519 double_unlock_balance(rq, lowest_rq); 2520 2521 out_unlock: 2522 rq->push_busy = false; 2523 raw_spin_rq_unlock(rq); 2524 raw_spin_unlock_irq(&p->pi_lock); 2525 2526 put_task_struct(p); 2527 return 0; 2528 } 2529 2530 /* 2531 * sched_class::set_cpus_allowed must do the below, but is not required to 2532 * actually call this function. 2533 */ 2534 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2535 { 2536 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2537 p->cpus_ptr = ctx->new_mask; 2538 return; 2539 } 2540 2541 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2542 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2543 2544 /* 2545 * Swap in a new user_cpus_ptr if SCA_USER flag set 2546 */ 2547 if (ctx->flags & SCA_USER) 2548 swap(p->user_cpus_ptr, ctx->user_mask); 2549 } 2550 2551 static void 2552 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2553 { 2554 struct rq *rq = task_rq(p); 2555 bool queued, running; 2556 2557 /* 2558 * This here violates the locking rules for affinity, since we're only 2559 * supposed to change these variables while holding both rq->lock and 2560 * p->pi_lock. 2561 * 2562 * HOWEVER, it magically works, because ttwu() is the only code that 2563 * accesses these variables under p->pi_lock and only does so after 2564 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2565 * before finish_task(). 2566 * 2567 * XXX do further audits, this smells like something putrid. 2568 */ 2569 if (ctx->flags & SCA_MIGRATE_DISABLE) 2570 SCHED_WARN_ON(!p->on_cpu); 2571 else 2572 lockdep_assert_held(&p->pi_lock); 2573 2574 queued = task_on_rq_queued(p); 2575 running = task_current(rq, p); 2576 2577 if (queued) { 2578 /* 2579 * Because __kthread_bind() calls this on blocked tasks without 2580 * holding rq->lock. 2581 */ 2582 lockdep_assert_rq_held(rq); 2583 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2584 } 2585 if (running) 2586 put_prev_task(rq, p); 2587 2588 p->sched_class->set_cpus_allowed(p, ctx); 2589 2590 if (queued) 2591 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2592 if (running) 2593 set_next_task(rq, p); 2594 } 2595 2596 /* 2597 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2598 * affinity (if any) should be destroyed too. 2599 */ 2600 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2601 { 2602 struct affinity_context ac = { 2603 .new_mask = new_mask, 2604 .user_mask = NULL, 2605 .flags = SCA_USER, /* clear the user requested mask */ 2606 }; 2607 2608 __do_set_cpus_allowed(p, &ac); 2609 kfree(ac.user_mask); 2610 } 2611 2612 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2613 int node) 2614 { 2615 unsigned long flags; 2616 2617 if (!src->user_cpus_ptr) 2618 return 0; 2619 2620 dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node); 2621 if (!dst->user_cpus_ptr) 2622 return -ENOMEM; 2623 2624 /* Use pi_lock to protect content of user_cpus_ptr */ 2625 raw_spin_lock_irqsave(&src->pi_lock, flags); 2626 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2627 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2628 return 0; 2629 } 2630 2631 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2632 { 2633 struct cpumask *user_mask = NULL; 2634 2635 swap(p->user_cpus_ptr, user_mask); 2636 2637 return user_mask; 2638 } 2639 2640 void release_user_cpus_ptr(struct task_struct *p) 2641 { 2642 kfree(clear_user_cpus_ptr(p)); 2643 } 2644 2645 /* 2646 * This function is wildly self concurrent; here be dragons. 2647 * 2648 * 2649 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2650 * designated task is enqueued on an allowed CPU. If that task is currently 2651 * running, we have to kick it out using the CPU stopper. 2652 * 2653 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2654 * Consider: 2655 * 2656 * Initial conditions: P0->cpus_mask = [0, 1] 2657 * 2658 * P0@CPU0 P1 2659 * 2660 * migrate_disable(); 2661 * <preempted> 2662 * set_cpus_allowed_ptr(P0, [1]); 2663 * 2664 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2665 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2666 * This means we need the following scheme: 2667 * 2668 * P0@CPU0 P1 2669 * 2670 * migrate_disable(); 2671 * <preempted> 2672 * set_cpus_allowed_ptr(P0, [1]); 2673 * <blocks> 2674 * <resumes> 2675 * migrate_enable(); 2676 * __set_cpus_allowed_ptr(); 2677 * <wakes local stopper> 2678 * `--> <woken on migration completion> 2679 * 2680 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2681 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2682 * task p are serialized by p->pi_lock, which we can leverage: the one that 2683 * should come into effect at the end of the Migrate-Disable region is the last 2684 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2685 * but we still need to properly signal those waiting tasks at the appropriate 2686 * moment. 2687 * 2688 * This is implemented using struct set_affinity_pending. The first 2689 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2690 * setup an instance of that struct and install it on the targeted task_struct. 2691 * Any and all further callers will reuse that instance. Those then wait for 2692 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2693 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2694 * 2695 * 2696 * (1) In the cases covered above. There is one more where the completion is 2697 * signaled within affine_move_task() itself: when a subsequent affinity request 2698 * occurs after the stopper bailed out due to the targeted task still being 2699 * Migrate-Disable. Consider: 2700 * 2701 * Initial conditions: P0->cpus_mask = [0, 1] 2702 * 2703 * CPU0 P1 P2 2704 * <P0> 2705 * migrate_disable(); 2706 * <preempted> 2707 * set_cpus_allowed_ptr(P0, [1]); 2708 * <blocks> 2709 * <migration/0> 2710 * migration_cpu_stop() 2711 * is_migration_disabled() 2712 * <bails> 2713 * set_cpus_allowed_ptr(P0, [0, 1]); 2714 * <signal completion> 2715 * <awakes> 2716 * 2717 * Note that the above is safe vs a concurrent migrate_enable(), as any 2718 * pending affinity completion is preceded by an uninstallation of 2719 * p->migration_pending done with p->pi_lock held. 2720 */ 2721 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2722 int dest_cpu, unsigned int flags) 2723 __releases(rq->lock) 2724 __releases(p->pi_lock) 2725 { 2726 struct set_affinity_pending my_pending = { }, *pending = NULL; 2727 bool stop_pending, complete = false; 2728 2729 /* Can the task run on the task's current CPU? If so, we're done */ 2730 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2731 struct task_struct *push_task = NULL; 2732 2733 if ((flags & SCA_MIGRATE_ENABLE) && 2734 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2735 rq->push_busy = true; 2736 push_task = get_task_struct(p); 2737 } 2738 2739 /* 2740 * If there are pending waiters, but no pending stop_work, 2741 * then complete now. 2742 */ 2743 pending = p->migration_pending; 2744 if (pending && !pending->stop_pending) { 2745 p->migration_pending = NULL; 2746 complete = true; 2747 } 2748 2749 task_rq_unlock(rq, p, rf); 2750 2751 if (push_task) { 2752 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2753 p, &rq->push_work); 2754 } 2755 2756 if (complete) 2757 complete_all(&pending->done); 2758 2759 return 0; 2760 } 2761 2762 if (!(flags & SCA_MIGRATE_ENABLE)) { 2763 /* serialized by p->pi_lock */ 2764 if (!p->migration_pending) { 2765 /* Install the request */ 2766 refcount_set(&my_pending.refs, 1); 2767 init_completion(&my_pending.done); 2768 my_pending.arg = (struct migration_arg) { 2769 .task = p, 2770 .dest_cpu = dest_cpu, 2771 .pending = &my_pending, 2772 }; 2773 2774 p->migration_pending = &my_pending; 2775 } else { 2776 pending = p->migration_pending; 2777 refcount_inc(&pending->refs); 2778 /* 2779 * Affinity has changed, but we've already installed a 2780 * pending. migration_cpu_stop() *must* see this, else 2781 * we risk a completion of the pending despite having a 2782 * task on a disallowed CPU. 2783 * 2784 * Serialized by p->pi_lock, so this is safe. 2785 */ 2786 pending->arg.dest_cpu = dest_cpu; 2787 } 2788 } 2789 pending = p->migration_pending; 2790 /* 2791 * - !MIGRATE_ENABLE: 2792 * we'll have installed a pending if there wasn't one already. 2793 * 2794 * - MIGRATE_ENABLE: 2795 * we're here because the current CPU isn't matching anymore, 2796 * the only way that can happen is because of a concurrent 2797 * set_cpus_allowed_ptr() call, which should then still be 2798 * pending completion. 2799 * 2800 * Either way, we really should have a @pending here. 2801 */ 2802 if (WARN_ON_ONCE(!pending)) { 2803 task_rq_unlock(rq, p, rf); 2804 return -EINVAL; 2805 } 2806 2807 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2808 /* 2809 * MIGRATE_ENABLE gets here because 'p == current', but for 2810 * anything else we cannot do is_migration_disabled(), punt 2811 * and have the stopper function handle it all race-free. 2812 */ 2813 stop_pending = pending->stop_pending; 2814 if (!stop_pending) 2815 pending->stop_pending = true; 2816 2817 if (flags & SCA_MIGRATE_ENABLE) 2818 p->migration_flags &= ~MDF_PUSH; 2819 2820 task_rq_unlock(rq, p, rf); 2821 2822 if (!stop_pending) { 2823 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2824 &pending->arg, &pending->stop_work); 2825 } 2826 2827 if (flags & SCA_MIGRATE_ENABLE) 2828 return 0; 2829 } else { 2830 2831 if (!is_migration_disabled(p)) { 2832 if (task_on_rq_queued(p)) 2833 rq = move_queued_task(rq, rf, p, dest_cpu); 2834 2835 if (!pending->stop_pending) { 2836 p->migration_pending = NULL; 2837 complete = true; 2838 } 2839 } 2840 task_rq_unlock(rq, p, rf); 2841 2842 if (complete) 2843 complete_all(&pending->done); 2844 } 2845 2846 wait_for_completion(&pending->done); 2847 2848 if (refcount_dec_and_test(&pending->refs)) 2849 wake_up_var(&pending->refs); /* No UaF, just an address */ 2850 2851 /* 2852 * Block the original owner of &pending until all subsequent callers 2853 * have seen the completion and decremented the refcount 2854 */ 2855 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2856 2857 /* ARGH */ 2858 WARN_ON_ONCE(my_pending.stop_pending); 2859 2860 return 0; 2861 } 2862 2863 /* 2864 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2865 */ 2866 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2867 struct affinity_context *ctx, 2868 struct rq *rq, 2869 struct rq_flags *rf) 2870 __releases(rq->lock) 2871 __releases(p->pi_lock) 2872 { 2873 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2874 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2875 bool kthread = p->flags & PF_KTHREAD; 2876 unsigned int dest_cpu; 2877 int ret = 0; 2878 2879 update_rq_clock(rq); 2880 2881 if (kthread || is_migration_disabled(p)) { 2882 /* 2883 * Kernel threads are allowed on online && !active CPUs, 2884 * however, during cpu-hot-unplug, even these might get pushed 2885 * away if not KTHREAD_IS_PER_CPU. 2886 * 2887 * Specifically, migration_disabled() tasks must not fail the 2888 * cpumask_any_and_distribute() pick below, esp. so on 2889 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2890 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2891 */ 2892 cpu_valid_mask = cpu_online_mask; 2893 } 2894 2895 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 2896 ret = -EINVAL; 2897 goto out; 2898 } 2899 2900 /* 2901 * Must re-check here, to close a race against __kthread_bind(), 2902 * sched_setaffinity() is not guaranteed to observe the flag. 2903 */ 2904 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2905 ret = -EINVAL; 2906 goto out; 2907 } 2908 2909 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 2910 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) 2911 goto out; 2912 2913 if (WARN_ON_ONCE(p == current && 2914 is_migration_disabled(p) && 2915 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 2916 ret = -EBUSY; 2917 goto out; 2918 } 2919 } 2920 2921 /* 2922 * Picking a ~random cpu helps in cases where we are changing affinity 2923 * for groups of tasks (ie. cpuset), so that load balancing is not 2924 * immediately required to distribute the tasks within their new mask. 2925 */ 2926 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 2927 if (dest_cpu >= nr_cpu_ids) { 2928 ret = -EINVAL; 2929 goto out; 2930 } 2931 2932 __do_set_cpus_allowed(p, ctx); 2933 2934 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 2935 2936 out: 2937 task_rq_unlock(rq, p, rf); 2938 2939 return ret; 2940 } 2941 2942 /* 2943 * Change a given task's CPU affinity. Migrate the thread to a 2944 * proper CPU and schedule it away if the CPU it's executing on 2945 * is removed from the allowed bitmask. 2946 * 2947 * NOTE: the caller must have a valid reference to the task, the 2948 * task must not exit() & deallocate itself prematurely. The 2949 * call is not atomic; no spinlocks may be held. 2950 */ 2951 static int __set_cpus_allowed_ptr(struct task_struct *p, 2952 struct affinity_context *ctx) 2953 { 2954 struct rq_flags rf; 2955 struct rq *rq; 2956 2957 rq = task_rq_lock(p, &rf); 2958 /* 2959 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 2960 * flags are set. 2961 */ 2962 if (p->user_cpus_ptr && 2963 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 2964 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 2965 ctx->new_mask = rq->scratch_mask; 2966 2967 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 2968 } 2969 2970 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 2971 { 2972 struct affinity_context ac = { 2973 .new_mask = new_mask, 2974 .flags = 0, 2975 }; 2976 2977 return __set_cpus_allowed_ptr(p, &ac); 2978 } 2979 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 2980 2981 /* 2982 * Change a given task's CPU affinity to the intersection of its current 2983 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 2984 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 2985 * affinity or use cpu_online_mask instead. 2986 * 2987 * If the resulting mask is empty, leave the affinity unchanged and return 2988 * -EINVAL. 2989 */ 2990 static int restrict_cpus_allowed_ptr(struct task_struct *p, 2991 struct cpumask *new_mask, 2992 const struct cpumask *subset_mask) 2993 { 2994 struct affinity_context ac = { 2995 .new_mask = new_mask, 2996 .flags = 0, 2997 }; 2998 struct rq_flags rf; 2999 struct rq *rq; 3000 int err; 3001 3002 rq = task_rq_lock(p, &rf); 3003 3004 /* 3005 * Forcefully restricting the affinity of a deadline task is 3006 * likely to cause problems, so fail and noisily override the 3007 * mask entirely. 3008 */ 3009 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3010 err = -EPERM; 3011 goto err_unlock; 3012 } 3013 3014 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3015 err = -EINVAL; 3016 goto err_unlock; 3017 } 3018 3019 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3020 3021 err_unlock: 3022 task_rq_unlock(rq, p, &rf); 3023 return err; 3024 } 3025 3026 /* 3027 * Restrict the CPU affinity of task @p so that it is a subset of 3028 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3029 * old affinity mask. If the resulting mask is empty, we warn and walk 3030 * up the cpuset hierarchy until we find a suitable mask. 3031 */ 3032 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3033 { 3034 cpumask_var_t new_mask; 3035 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3036 3037 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3038 3039 /* 3040 * __migrate_task() can fail silently in the face of concurrent 3041 * offlining of the chosen destination CPU, so take the hotplug 3042 * lock to ensure that the migration succeeds. 3043 */ 3044 cpus_read_lock(); 3045 if (!cpumask_available(new_mask)) 3046 goto out_set_mask; 3047 3048 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3049 goto out_free_mask; 3050 3051 /* 3052 * We failed to find a valid subset of the affinity mask for the 3053 * task, so override it based on its cpuset hierarchy. 3054 */ 3055 cpuset_cpus_allowed(p, new_mask); 3056 override_mask = new_mask; 3057 3058 out_set_mask: 3059 if (printk_ratelimit()) { 3060 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3061 task_pid_nr(p), p->comm, 3062 cpumask_pr_args(override_mask)); 3063 } 3064 3065 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3066 out_free_mask: 3067 cpus_read_unlock(); 3068 free_cpumask_var(new_mask); 3069 } 3070 3071 static int 3072 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3073 3074 /* 3075 * Restore the affinity of a task @p which was previously restricted by a 3076 * call to force_compatible_cpus_allowed_ptr(). 3077 * 3078 * It is the caller's responsibility to serialise this with any calls to 3079 * force_compatible_cpus_allowed_ptr(@p). 3080 */ 3081 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3082 { 3083 struct affinity_context ac = { 3084 .new_mask = task_user_cpus(p), 3085 .flags = 0, 3086 }; 3087 int ret; 3088 3089 /* 3090 * Try to restore the old affinity mask with __sched_setaffinity(). 3091 * Cpuset masking will be done there too. 3092 */ 3093 ret = __sched_setaffinity(p, &ac); 3094 WARN_ON_ONCE(ret); 3095 } 3096 3097 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3098 { 3099 #ifdef CONFIG_SCHED_DEBUG 3100 unsigned int state = READ_ONCE(p->__state); 3101 3102 /* 3103 * We should never call set_task_cpu() on a blocked task, 3104 * ttwu() will sort out the placement. 3105 */ 3106 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3107 3108 /* 3109 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3110 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3111 * time relying on p->on_rq. 3112 */ 3113 WARN_ON_ONCE(state == TASK_RUNNING && 3114 p->sched_class == &fair_sched_class && 3115 (p->on_rq && !task_on_rq_migrating(p))); 3116 3117 #ifdef CONFIG_LOCKDEP 3118 /* 3119 * The caller should hold either p->pi_lock or rq->lock, when changing 3120 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3121 * 3122 * sched_move_task() holds both and thus holding either pins the cgroup, 3123 * see task_group(). 3124 * 3125 * Furthermore, all task_rq users should acquire both locks, see 3126 * task_rq_lock(). 3127 */ 3128 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3129 lockdep_is_held(__rq_lockp(task_rq(p))))); 3130 #endif 3131 /* 3132 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3133 */ 3134 WARN_ON_ONCE(!cpu_online(new_cpu)); 3135 3136 WARN_ON_ONCE(is_migration_disabled(p)); 3137 #endif 3138 3139 trace_sched_migrate_task(p, new_cpu); 3140 3141 if (task_cpu(p) != new_cpu) { 3142 if (p->sched_class->migrate_task_rq) 3143 p->sched_class->migrate_task_rq(p, new_cpu); 3144 p->se.nr_migrations++; 3145 rseq_migrate(p); 3146 perf_event_task_migrate(p); 3147 } 3148 3149 __set_task_cpu(p, new_cpu); 3150 } 3151 3152 #ifdef CONFIG_NUMA_BALANCING 3153 static void __migrate_swap_task(struct task_struct *p, int cpu) 3154 { 3155 if (task_on_rq_queued(p)) { 3156 struct rq *src_rq, *dst_rq; 3157 struct rq_flags srf, drf; 3158 3159 src_rq = task_rq(p); 3160 dst_rq = cpu_rq(cpu); 3161 3162 rq_pin_lock(src_rq, &srf); 3163 rq_pin_lock(dst_rq, &drf); 3164 3165 deactivate_task(src_rq, p, 0); 3166 set_task_cpu(p, cpu); 3167 activate_task(dst_rq, p, 0); 3168 check_preempt_curr(dst_rq, p, 0); 3169 3170 rq_unpin_lock(dst_rq, &drf); 3171 rq_unpin_lock(src_rq, &srf); 3172 3173 } else { 3174 /* 3175 * Task isn't running anymore; make it appear like we migrated 3176 * it before it went to sleep. This means on wakeup we make the 3177 * previous CPU our target instead of where it really is. 3178 */ 3179 p->wake_cpu = cpu; 3180 } 3181 } 3182 3183 struct migration_swap_arg { 3184 struct task_struct *src_task, *dst_task; 3185 int src_cpu, dst_cpu; 3186 }; 3187 3188 static int migrate_swap_stop(void *data) 3189 { 3190 struct migration_swap_arg *arg = data; 3191 struct rq *src_rq, *dst_rq; 3192 int ret = -EAGAIN; 3193 3194 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3195 return -EAGAIN; 3196 3197 src_rq = cpu_rq(arg->src_cpu); 3198 dst_rq = cpu_rq(arg->dst_cpu); 3199 3200 double_raw_lock(&arg->src_task->pi_lock, 3201 &arg->dst_task->pi_lock); 3202 double_rq_lock(src_rq, dst_rq); 3203 3204 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3205 goto unlock; 3206 3207 if (task_cpu(arg->src_task) != arg->src_cpu) 3208 goto unlock; 3209 3210 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3211 goto unlock; 3212 3213 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3214 goto unlock; 3215 3216 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3217 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3218 3219 ret = 0; 3220 3221 unlock: 3222 double_rq_unlock(src_rq, dst_rq); 3223 raw_spin_unlock(&arg->dst_task->pi_lock); 3224 raw_spin_unlock(&arg->src_task->pi_lock); 3225 3226 return ret; 3227 } 3228 3229 /* 3230 * Cross migrate two tasks 3231 */ 3232 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3233 int target_cpu, int curr_cpu) 3234 { 3235 struct migration_swap_arg arg; 3236 int ret = -EINVAL; 3237 3238 arg = (struct migration_swap_arg){ 3239 .src_task = cur, 3240 .src_cpu = curr_cpu, 3241 .dst_task = p, 3242 .dst_cpu = target_cpu, 3243 }; 3244 3245 if (arg.src_cpu == arg.dst_cpu) 3246 goto out; 3247 3248 /* 3249 * These three tests are all lockless; this is OK since all of them 3250 * will be re-checked with proper locks held further down the line. 3251 */ 3252 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3253 goto out; 3254 3255 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3256 goto out; 3257 3258 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3259 goto out; 3260 3261 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3262 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3263 3264 out: 3265 return ret; 3266 } 3267 #endif /* CONFIG_NUMA_BALANCING */ 3268 3269 /* 3270 * wait_task_inactive - wait for a thread to unschedule. 3271 * 3272 * Wait for the thread to block in any of the states set in @match_state. 3273 * If it changes, i.e. @p might have woken up, then return zero. When we 3274 * succeed in waiting for @p to be off its CPU, we return a positive number 3275 * (its total switch count). If a second call a short while later returns the 3276 * same number, the caller can be sure that @p has remained unscheduled the 3277 * whole time. 3278 * 3279 * The caller must ensure that the task *will* unschedule sometime soon, 3280 * else this function might spin for a *long* time. This function can't 3281 * be called with interrupts off, or it may introduce deadlock with 3282 * smp_call_function() if an IPI is sent by the same process we are 3283 * waiting to become inactive. 3284 */ 3285 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 3286 { 3287 int running, queued; 3288 struct rq_flags rf; 3289 unsigned long ncsw; 3290 struct rq *rq; 3291 3292 for (;;) { 3293 /* 3294 * We do the initial early heuristics without holding 3295 * any task-queue locks at all. We'll only try to get 3296 * the runqueue lock when things look like they will 3297 * work out! 3298 */ 3299 rq = task_rq(p); 3300 3301 /* 3302 * If the task is actively running on another CPU 3303 * still, just relax and busy-wait without holding 3304 * any locks. 3305 * 3306 * NOTE! Since we don't hold any locks, it's not 3307 * even sure that "rq" stays as the right runqueue! 3308 * But we don't care, since "task_on_cpu()" will 3309 * return false if the runqueue has changed and p 3310 * is actually now running somewhere else! 3311 */ 3312 while (task_on_cpu(rq, p)) { 3313 if (!(READ_ONCE(p->__state) & match_state)) 3314 return 0; 3315 cpu_relax(); 3316 } 3317 3318 /* 3319 * Ok, time to look more closely! We need the rq 3320 * lock now, to be *sure*. If we're wrong, we'll 3321 * just go back and repeat. 3322 */ 3323 rq = task_rq_lock(p, &rf); 3324 trace_sched_wait_task(p); 3325 running = task_on_cpu(rq, p); 3326 queued = task_on_rq_queued(p); 3327 ncsw = 0; 3328 if (READ_ONCE(p->__state) & match_state) 3329 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 3330 task_rq_unlock(rq, p, &rf); 3331 3332 /* 3333 * If it changed from the expected state, bail out now. 3334 */ 3335 if (unlikely(!ncsw)) 3336 break; 3337 3338 /* 3339 * Was it really running after all now that we 3340 * checked with the proper locks actually held? 3341 * 3342 * Oops. Go back and try again.. 3343 */ 3344 if (unlikely(running)) { 3345 cpu_relax(); 3346 continue; 3347 } 3348 3349 /* 3350 * It's not enough that it's not actively running, 3351 * it must be off the runqueue _entirely_, and not 3352 * preempted! 3353 * 3354 * So if it was still runnable (but just not actively 3355 * running right now), it's preempted, and we should 3356 * yield - it could be a while. 3357 */ 3358 if (unlikely(queued)) { 3359 ktime_t to = NSEC_PER_SEC / HZ; 3360 3361 set_current_state(TASK_UNINTERRUPTIBLE); 3362 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 3363 continue; 3364 } 3365 3366 /* 3367 * Ahh, all good. It wasn't running, and it wasn't 3368 * runnable, which means that it will never become 3369 * running in the future either. We're all done! 3370 */ 3371 break; 3372 } 3373 3374 return ncsw; 3375 } 3376 3377 /*** 3378 * kick_process - kick a running thread to enter/exit the kernel 3379 * @p: the to-be-kicked thread 3380 * 3381 * Cause a process which is running on another CPU to enter 3382 * kernel-mode, without any delay. (to get signals handled.) 3383 * 3384 * NOTE: this function doesn't have to take the runqueue lock, 3385 * because all it wants to ensure is that the remote task enters 3386 * the kernel. If the IPI races and the task has been migrated 3387 * to another CPU then no harm is done and the purpose has been 3388 * achieved as well. 3389 */ 3390 void kick_process(struct task_struct *p) 3391 { 3392 int cpu; 3393 3394 preempt_disable(); 3395 cpu = task_cpu(p); 3396 if ((cpu != smp_processor_id()) && task_curr(p)) 3397 smp_send_reschedule(cpu); 3398 preempt_enable(); 3399 } 3400 EXPORT_SYMBOL_GPL(kick_process); 3401 3402 /* 3403 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3404 * 3405 * A few notes on cpu_active vs cpu_online: 3406 * 3407 * - cpu_active must be a subset of cpu_online 3408 * 3409 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3410 * see __set_cpus_allowed_ptr(). At this point the newly online 3411 * CPU isn't yet part of the sched domains, and balancing will not 3412 * see it. 3413 * 3414 * - on CPU-down we clear cpu_active() to mask the sched domains and 3415 * avoid the load balancer to place new tasks on the to be removed 3416 * CPU. Existing tasks will remain running there and will be taken 3417 * off. 3418 * 3419 * This means that fallback selection must not select !active CPUs. 3420 * And can assume that any active CPU must be online. Conversely 3421 * select_task_rq() below may allow selection of !active CPUs in order 3422 * to satisfy the above rules. 3423 */ 3424 static int select_fallback_rq(int cpu, struct task_struct *p) 3425 { 3426 int nid = cpu_to_node(cpu); 3427 const struct cpumask *nodemask = NULL; 3428 enum { cpuset, possible, fail } state = cpuset; 3429 int dest_cpu; 3430 3431 /* 3432 * If the node that the CPU is on has been offlined, cpu_to_node() 3433 * will return -1. There is no CPU on the node, and we should 3434 * select the CPU on the other node. 3435 */ 3436 if (nid != -1) { 3437 nodemask = cpumask_of_node(nid); 3438 3439 /* Look for allowed, online CPU in same node. */ 3440 for_each_cpu(dest_cpu, nodemask) { 3441 if (is_cpu_allowed(p, dest_cpu)) 3442 return dest_cpu; 3443 } 3444 } 3445 3446 for (;;) { 3447 /* Any allowed, online CPU? */ 3448 for_each_cpu(dest_cpu, p->cpus_ptr) { 3449 if (!is_cpu_allowed(p, dest_cpu)) 3450 continue; 3451 3452 goto out; 3453 } 3454 3455 /* No more Mr. Nice Guy. */ 3456 switch (state) { 3457 case cpuset: 3458 if (cpuset_cpus_allowed_fallback(p)) { 3459 state = possible; 3460 break; 3461 } 3462 fallthrough; 3463 case possible: 3464 /* 3465 * XXX When called from select_task_rq() we only 3466 * hold p->pi_lock and again violate locking order. 3467 * 3468 * More yuck to audit. 3469 */ 3470 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3471 state = fail; 3472 break; 3473 case fail: 3474 BUG(); 3475 break; 3476 } 3477 } 3478 3479 out: 3480 if (state != cpuset) { 3481 /* 3482 * Don't tell them about moving exiting tasks or 3483 * kernel threads (both mm NULL), since they never 3484 * leave kernel. 3485 */ 3486 if (p->mm && printk_ratelimit()) { 3487 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3488 task_pid_nr(p), p->comm, cpu); 3489 } 3490 } 3491 3492 return dest_cpu; 3493 } 3494 3495 /* 3496 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3497 */ 3498 static inline 3499 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3500 { 3501 lockdep_assert_held(&p->pi_lock); 3502 3503 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3504 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3505 else 3506 cpu = cpumask_any(p->cpus_ptr); 3507 3508 /* 3509 * In order not to call set_task_cpu() on a blocking task we need 3510 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3511 * CPU. 3512 * 3513 * Since this is common to all placement strategies, this lives here. 3514 * 3515 * [ this allows ->select_task() to simply return task_cpu(p) and 3516 * not worry about this generic constraint ] 3517 */ 3518 if (unlikely(!is_cpu_allowed(p, cpu))) 3519 cpu = select_fallback_rq(task_cpu(p), p); 3520 3521 return cpu; 3522 } 3523 3524 void sched_set_stop_task(int cpu, struct task_struct *stop) 3525 { 3526 static struct lock_class_key stop_pi_lock; 3527 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3528 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3529 3530 if (stop) { 3531 /* 3532 * Make it appear like a SCHED_FIFO task, its something 3533 * userspace knows about and won't get confused about. 3534 * 3535 * Also, it will make PI more or less work without too 3536 * much confusion -- but then, stop work should not 3537 * rely on PI working anyway. 3538 */ 3539 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3540 3541 stop->sched_class = &stop_sched_class; 3542 3543 /* 3544 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3545 * adjust the effective priority of a task. As a result, 3546 * rt_mutex_setprio() can trigger (RT) balancing operations, 3547 * which can then trigger wakeups of the stop thread to push 3548 * around the current task. 3549 * 3550 * The stop task itself will never be part of the PI-chain, it 3551 * never blocks, therefore that ->pi_lock recursion is safe. 3552 * Tell lockdep about this by placing the stop->pi_lock in its 3553 * own class. 3554 */ 3555 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3556 } 3557 3558 cpu_rq(cpu)->stop = stop; 3559 3560 if (old_stop) { 3561 /* 3562 * Reset it back to a normal scheduling class so that 3563 * it can die in pieces. 3564 */ 3565 old_stop->sched_class = &rt_sched_class; 3566 } 3567 } 3568 3569 #else /* CONFIG_SMP */ 3570 3571 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 3572 struct affinity_context *ctx) 3573 { 3574 return set_cpus_allowed_ptr(p, ctx->new_mask); 3575 } 3576 3577 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3578 3579 static inline bool rq_has_pinned_tasks(struct rq *rq) 3580 { 3581 return false; 3582 } 3583 3584 #endif /* !CONFIG_SMP */ 3585 3586 static void 3587 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3588 { 3589 struct rq *rq; 3590 3591 if (!schedstat_enabled()) 3592 return; 3593 3594 rq = this_rq(); 3595 3596 #ifdef CONFIG_SMP 3597 if (cpu == rq->cpu) { 3598 __schedstat_inc(rq->ttwu_local); 3599 __schedstat_inc(p->stats.nr_wakeups_local); 3600 } else { 3601 struct sched_domain *sd; 3602 3603 __schedstat_inc(p->stats.nr_wakeups_remote); 3604 rcu_read_lock(); 3605 for_each_domain(rq->cpu, sd) { 3606 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3607 __schedstat_inc(sd->ttwu_wake_remote); 3608 break; 3609 } 3610 } 3611 rcu_read_unlock(); 3612 } 3613 3614 if (wake_flags & WF_MIGRATED) 3615 __schedstat_inc(p->stats.nr_wakeups_migrate); 3616 #endif /* CONFIG_SMP */ 3617 3618 __schedstat_inc(rq->ttwu_count); 3619 __schedstat_inc(p->stats.nr_wakeups); 3620 3621 if (wake_flags & WF_SYNC) 3622 __schedstat_inc(p->stats.nr_wakeups_sync); 3623 } 3624 3625 /* 3626 * Mark the task runnable and perform wakeup-preemption. 3627 */ 3628 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 3629 struct rq_flags *rf) 3630 { 3631 check_preempt_curr(rq, p, wake_flags); 3632 WRITE_ONCE(p->__state, TASK_RUNNING); 3633 trace_sched_wakeup(p); 3634 3635 #ifdef CONFIG_SMP 3636 if (p->sched_class->task_woken) { 3637 /* 3638 * Our task @p is fully woken up and running; so it's safe to 3639 * drop the rq->lock, hereafter rq is only used for statistics. 3640 */ 3641 rq_unpin_lock(rq, rf); 3642 p->sched_class->task_woken(rq, p); 3643 rq_repin_lock(rq, rf); 3644 } 3645 3646 if (rq->idle_stamp) { 3647 u64 delta = rq_clock(rq) - rq->idle_stamp; 3648 u64 max = 2*rq->max_idle_balance_cost; 3649 3650 update_avg(&rq->avg_idle, delta); 3651 3652 if (rq->avg_idle > max) 3653 rq->avg_idle = max; 3654 3655 rq->wake_stamp = jiffies; 3656 rq->wake_avg_idle = rq->avg_idle / 2; 3657 3658 rq->idle_stamp = 0; 3659 } 3660 #endif 3661 } 3662 3663 static void 3664 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3665 struct rq_flags *rf) 3666 { 3667 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3668 3669 lockdep_assert_rq_held(rq); 3670 3671 if (p->sched_contributes_to_load) 3672 rq->nr_uninterruptible--; 3673 3674 #ifdef CONFIG_SMP 3675 if (wake_flags & WF_MIGRATED) 3676 en_flags |= ENQUEUE_MIGRATED; 3677 else 3678 #endif 3679 if (p->in_iowait) { 3680 delayacct_blkio_end(p); 3681 atomic_dec(&task_rq(p)->nr_iowait); 3682 } 3683 3684 activate_task(rq, p, en_flags); 3685 ttwu_do_wakeup(rq, p, wake_flags, rf); 3686 } 3687 3688 /* 3689 * Consider @p being inside a wait loop: 3690 * 3691 * for (;;) { 3692 * set_current_state(TASK_UNINTERRUPTIBLE); 3693 * 3694 * if (CONDITION) 3695 * break; 3696 * 3697 * schedule(); 3698 * } 3699 * __set_current_state(TASK_RUNNING); 3700 * 3701 * between set_current_state() and schedule(). In this case @p is still 3702 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3703 * an atomic manner. 3704 * 3705 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3706 * then schedule() must still happen and p->state can be changed to 3707 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3708 * need to do a full wakeup with enqueue. 3709 * 3710 * Returns: %true when the wakeup is done, 3711 * %false otherwise. 3712 */ 3713 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3714 { 3715 struct rq_flags rf; 3716 struct rq *rq; 3717 int ret = 0; 3718 3719 rq = __task_rq_lock(p, &rf); 3720 if (task_on_rq_queued(p)) { 3721 /* check_preempt_curr() may use rq clock */ 3722 update_rq_clock(rq); 3723 ttwu_do_wakeup(rq, p, wake_flags, &rf); 3724 ret = 1; 3725 } 3726 __task_rq_unlock(rq, &rf); 3727 3728 return ret; 3729 } 3730 3731 #ifdef CONFIG_SMP 3732 void sched_ttwu_pending(void *arg) 3733 { 3734 struct llist_node *llist = arg; 3735 struct rq *rq = this_rq(); 3736 struct task_struct *p, *t; 3737 struct rq_flags rf; 3738 3739 if (!llist) 3740 return; 3741 3742 rq_lock_irqsave(rq, &rf); 3743 update_rq_clock(rq); 3744 3745 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3746 if (WARN_ON_ONCE(p->on_cpu)) 3747 smp_cond_load_acquire(&p->on_cpu, !VAL); 3748 3749 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3750 set_task_cpu(p, cpu_of(rq)); 3751 3752 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3753 } 3754 3755 /* 3756 * Must be after enqueueing at least once task such that 3757 * idle_cpu() does not observe a false-negative -- if it does, 3758 * it is possible for select_idle_siblings() to stack a number 3759 * of tasks on this CPU during that window. 3760 * 3761 * It is ok to clear ttwu_pending when another task pending. 3762 * We will receive IPI after local irq enabled and then enqueue it. 3763 * Since now nr_running > 0, idle_cpu() will always get correct result. 3764 */ 3765 WRITE_ONCE(rq->ttwu_pending, 0); 3766 rq_unlock_irqrestore(rq, &rf); 3767 } 3768 3769 void send_call_function_single_ipi(int cpu) 3770 { 3771 struct rq *rq = cpu_rq(cpu); 3772 3773 if (!set_nr_if_polling(rq->idle)) 3774 arch_send_call_function_single_ipi(cpu); 3775 else 3776 trace_sched_wake_idle_without_ipi(cpu); 3777 } 3778 3779 /* 3780 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3781 * necessary. The wakee CPU on receipt of the IPI will queue the task 3782 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3783 * of the wakeup instead of the waker. 3784 */ 3785 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3786 { 3787 struct rq *rq = cpu_rq(cpu); 3788 3789 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3790 3791 WRITE_ONCE(rq->ttwu_pending, 1); 3792 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3793 } 3794 3795 void wake_up_if_idle(int cpu) 3796 { 3797 struct rq *rq = cpu_rq(cpu); 3798 struct rq_flags rf; 3799 3800 rcu_read_lock(); 3801 3802 if (!is_idle_task(rcu_dereference(rq->curr))) 3803 goto out; 3804 3805 rq_lock_irqsave(rq, &rf); 3806 if (is_idle_task(rq->curr)) 3807 resched_curr(rq); 3808 /* Else CPU is not idle, do nothing here: */ 3809 rq_unlock_irqrestore(rq, &rf); 3810 3811 out: 3812 rcu_read_unlock(); 3813 } 3814 3815 bool cpus_share_cache(int this_cpu, int that_cpu) 3816 { 3817 if (this_cpu == that_cpu) 3818 return true; 3819 3820 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3821 } 3822 3823 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3824 { 3825 /* 3826 * Do not complicate things with the async wake_list while the CPU is 3827 * in hotplug state. 3828 */ 3829 if (!cpu_active(cpu)) 3830 return false; 3831 3832 /* Ensure the task will still be allowed to run on the CPU. */ 3833 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3834 return false; 3835 3836 /* 3837 * If the CPU does not share cache, then queue the task on the 3838 * remote rqs wakelist to avoid accessing remote data. 3839 */ 3840 if (!cpus_share_cache(smp_processor_id(), cpu)) 3841 return true; 3842 3843 if (cpu == smp_processor_id()) 3844 return false; 3845 3846 /* 3847 * If the wakee cpu is idle, or the task is descheduling and the 3848 * only running task on the CPU, then use the wakelist to offload 3849 * the task activation to the idle (or soon-to-be-idle) CPU as 3850 * the current CPU is likely busy. nr_running is checked to 3851 * avoid unnecessary task stacking. 3852 * 3853 * Note that we can only get here with (wakee) p->on_rq=0, 3854 * p->on_cpu can be whatever, we've done the dequeue, so 3855 * the wakee has been accounted out of ->nr_running. 3856 */ 3857 if (!cpu_rq(cpu)->nr_running) 3858 return true; 3859 3860 return false; 3861 } 3862 3863 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3864 { 3865 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3866 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3867 __ttwu_queue_wakelist(p, cpu, wake_flags); 3868 return true; 3869 } 3870 3871 return false; 3872 } 3873 3874 #else /* !CONFIG_SMP */ 3875 3876 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3877 { 3878 return false; 3879 } 3880 3881 #endif /* CONFIG_SMP */ 3882 3883 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3884 { 3885 struct rq *rq = cpu_rq(cpu); 3886 struct rq_flags rf; 3887 3888 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3889 return; 3890 3891 rq_lock(rq, &rf); 3892 update_rq_clock(rq); 3893 ttwu_do_activate(rq, p, wake_flags, &rf); 3894 rq_unlock(rq, &rf); 3895 } 3896 3897 /* 3898 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3899 * 3900 * The caller holds p::pi_lock if p != current or has preemption 3901 * disabled when p == current. 3902 * 3903 * The rules of PREEMPT_RT saved_state: 3904 * 3905 * The related locking code always holds p::pi_lock when updating 3906 * p::saved_state, which means the code is fully serialized in both cases. 3907 * 3908 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other 3909 * bits set. This allows to distinguish all wakeup scenarios. 3910 */ 3911 static __always_inline 3912 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3913 { 3914 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3915 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3916 state != TASK_RTLOCK_WAIT); 3917 } 3918 3919 if (READ_ONCE(p->__state) & state) { 3920 *success = 1; 3921 return true; 3922 } 3923 3924 #ifdef CONFIG_PREEMPT_RT 3925 /* 3926 * Saved state preserves the task state across blocking on 3927 * an RT lock. If the state matches, set p::saved_state to 3928 * TASK_RUNNING, but do not wake the task because it waits 3929 * for a lock wakeup. Also indicate success because from 3930 * the regular waker's point of view this has succeeded. 3931 * 3932 * After acquiring the lock the task will restore p::__state 3933 * from p::saved_state which ensures that the regular 3934 * wakeup is not lost. The restore will also set 3935 * p::saved_state to TASK_RUNNING so any further tests will 3936 * not result in false positives vs. @success 3937 */ 3938 if (p->saved_state & state) { 3939 p->saved_state = TASK_RUNNING; 3940 *success = 1; 3941 } 3942 #endif 3943 return false; 3944 } 3945 3946 /* 3947 * Notes on Program-Order guarantees on SMP systems. 3948 * 3949 * MIGRATION 3950 * 3951 * The basic program-order guarantee on SMP systems is that when a task [t] 3952 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3953 * execution on its new CPU [c1]. 3954 * 3955 * For migration (of runnable tasks) this is provided by the following means: 3956 * 3957 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3958 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3959 * rq(c1)->lock (if not at the same time, then in that order). 3960 * C) LOCK of the rq(c1)->lock scheduling in task 3961 * 3962 * Release/acquire chaining guarantees that B happens after A and C after B. 3963 * Note: the CPU doing B need not be c0 or c1 3964 * 3965 * Example: 3966 * 3967 * CPU0 CPU1 CPU2 3968 * 3969 * LOCK rq(0)->lock 3970 * sched-out X 3971 * sched-in Y 3972 * UNLOCK rq(0)->lock 3973 * 3974 * LOCK rq(0)->lock // orders against CPU0 3975 * dequeue X 3976 * UNLOCK rq(0)->lock 3977 * 3978 * LOCK rq(1)->lock 3979 * enqueue X 3980 * UNLOCK rq(1)->lock 3981 * 3982 * LOCK rq(1)->lock // orders against CPU2 3983 * sched-out Z 3984 * sched-in X 3985 * UNLOCK rq(1)->lock 3986 * 3987 * 3988 * BLOCKING -- aka. SLEEP + WAKEUP 3989 * 3990 * For blocking we (obviously) need to provide the same guarantee as for 3991 * migration. However the means are completely different as there is no lock 3992 * chain to provide order. Instead we do: 3993 * 3994 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3995 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3996 * 3997 * Example: 3998 * 3999 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4000 * 4001 * LOCK rq(0)->lock LOCK X->pi_lock 4002 * dequeue X 4003 * sched-out X 4004 * smp_store_release(X->on_cpu, 0); 4005 * 4006 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4007 * X->state = WAKING 4008 * set_task_cpu(X,2) 4009 * 4010 * LOCK rq(2)->lock 4011 * enqueue X 4012 * X->state = RUNNING 4013 * UNLOCK rq(2)->lock 4014 * 4015 * LOCK rq(2)->lock // orders against CPU1 4016 * sched-out Z 4017 * sched-in X 4018 * UNLOCK rq(2)->lock 4019 * 4020 * UNLOCK X->pi_lock 4021 * UNLOCK rq(0)->lock 4022 * 4023 * 4024 * However, for wakeups there is a second guarantee we must provide, namely we 4025 * must ensure that CONDITION=1 done by the caller can not be reordered with 4026 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4027 */ 4028 4029 /** 4030 * try_to_wake_up - wake up a thread 4031 * @p: the thread to be awakened 4032 * @state: the mask of task states that can be woken 4033 * @wake_flags: wake modifier flags (WF_*) 4034 * 4035 * Conceptually does: 4036 * 4037 * If (@state & @p->state) @p->state = TASK_RUNNING. 4038 * 4039 * If the task was not queued/runnable, also place it back on a runqueue. 4040 * 4041 * This function is atomic against schedule() which would dequeue the task. 4042 * 4043 * It issues a full memory barrier before accessing @p->state, see the comment 4044 * with set_current_state(). 4045 * 4046 * Uses p->pi_lock to serialize against concurrent wake-ups. 4047 * 4048 * Relies on p->pi_lock stabilizing: 4049 * - p->sched_class 4050 * - p->cpus_ptr 4051 * - p->sched_task_group 4052 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4053 * 4054 * Tries really hard to only take one task_rq(p)->lock for performance. 4055 * Takes rq->lock in: 4056 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4057 * - ttwu_queue() -- new rq, for enqueue of the task; 4058 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4059 * 4060 * As a consequence we race really badly with just about everything. See the 4061 * many memory barriers and their comments for details. 4062 * 4063 * Return: %true if @p->state changes (an actual wakeup was done), 4064 * %false otherwise. 4065 */ 4066 static int 4067 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4068 { 4069 unsigned long flags; 4070 int cpu, success = 0; 4071 4072 preempt_disable(); 4073 if (p == current) { 4074 /* 4075 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4076 * == smp_processor_id()'. Together this means we can special 4077 * case the whole 'p->on_rq && ttwu_runnable()' case below 4078 * without taking any locks. 4079 * 4080 * In particular: 4081 * - we rely on Program-Order guarantees for all the ordering, 4082 * - we're serialized against set_special_state() by virtue of 4083 * it disabling IRQs (this allows not taking ->pi_lock). 4084 */ 4085 if (!ttwu_state_match(p, state, &success)) 4086 goto out; 4087 4088 trace_sched_waking(p); 4089 WRITE_ONCE(p->__state, TASK_RUNNING); 4090 trace_sched_wakeup(p); 4091 goto out; 4092 } 4093 4094 /* 4095 * If we are going to wake up a thread waiting for CONDITION we 4096 * need to ensure that CONDITION=1 done by the caller can not be 4097 * reordered with p->state check below. This pairs with smp_store_mb() 4098 * in set_current_state() that the waiting thread does. 4099 */ 4100 raw_spin_lock_irqsave(&p->pi_lock, flags); 4101 smp_mb__after_spinlock(); 4102 if (!ttwu_state_match(p, state, &success)) 4103 goto unlock; 4104 4105 trace_sched_waking(p); 4106 4107 /* 4108 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4109 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4110 * in smp_cond_load_acquire() below. 4111 * 4112 * sched_ttwu_pending() try_to_wake_up() 4113 * STORE p->on_rq = 1 LOAD p->state 4114 * UNLOCK rq->lock 4115 * 4116 * __schedule() (switch to task 'p') 4117 * LOCK rq->lock smp_rmb(); 4118 * smp_mb__after_spinlock(); 4119 * UNLOCK rq->lock 4120 * 4121 * [task p] 4122 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4123 * 4124 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4125 * __schedule(). See the comment for smp_mb__after_spinlock(). 4126 * 4127 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 4128 */ 4129 smp_rmb(); 4130 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4131 goto unlock; 4132 4133 #ifdef CONFIG_SMP 4134 /* 4135 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4136 * possible to, falsely, observe p->on_cpu == 0. 4137 * 4138 * One must be running (->on_cpu == 1) in order to remove oneself 4139 * from the runqueue. 4140 * 4141 * __schedule() (switch to task 'p') try_to_wake_up() 4142 * STORE p->on_cpu = 1 LOAD p->on_rq 4143 * UNLOCK rq->lock 4144 * 4145 * __schedule() (put 'p' to sleep) 4146 * LOCK rq->lock smp_rmb(); 4147 * smp_mb__after_spinlock(); 4148 * STORE p->on_rq = 0 LOAD p->on_cpu 4149 * 4150 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4151 * __schedule(). See the comment for smp_mb__after_spinlock(). 4152 * 4153 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4154 * schedule()'s deactivate_task() has 'happened' and p will no longer 4155 * care about it's own p->state. See the comment in __schedule(). 4156 */ 4157 smp_acquire__after_ctrl_dep(); 4158 4159 /* 4160 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4161 * == 0), which means we need to do an enqueue, change p->state to 4162 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4163 * enqueue, such as ttwu_queue_wakelist(). 4164 */ 4165 WRITE_ONCE(p->__state, TASK_WAKING); 4166 4167 /* 4168 * If the owning (remote) CPU is still in the middle of schedule() with 4169 * this task as prev, considering queueing p on the remote CPUs wake_list 4170 * which potentially sends an IPI instead of spinning on p->on_cpu to 4171 * let the waker make forward progress. This is safe because IRQs are 4172 * disabled and the IPI will deliver after on_cpu is cleared. 4173 * 4174 * Ensure we load task_cpu(p) after p->on_cpu: 4175 * 4176 * set_task_cpu(p, cpu); 4177 * STORE p->cpu = @cpu 4178 * __schedule() (switch to task 'p') 4179 * LOCK rq->lock 4180 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4181 * STORE p->on_cpu = 1 LOAD p->cpu 4182 * 4183 * to ensure we observe the correct CPU on which the task is currently 4184 * scheduling. 4185 */ 4186 if (smp_load_acquire(&p->on_cpu) && 4187 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4188 goto unlock; 4189 4190 /* 4191 * If the owning (remote) CPU is still in the middle of schedule() with 4192 * this task as prev, wait until it's done referencing the task. 4193 * 4194 * Pairs with the smp_store_release() in finish_task(). 4195 * 4196 * This ensures that tasks getting woken will be fully ordered against 4197 * their previous state and preserve Program Order. 4198 */ 4199 smp_cond_load_acquire(&p->on_cpu, !VAL); 4200 4201 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4202 if (task_cpu(p) != cpu) { 4203 if (p->in_iowait) { 4204 delayacct_blkio_end(p); 4205 atomic_dec(&task_rq(p)->nr_iowait); 4206 } 4207 4208 wake_flags |= WF_MIGRATED; 4209 psi_ttwu_dequeue(p); 4210 set_task_cpu(p, cpu); 4211 } 4212 #else 4213 cpu = task_cpu(p); 4214 #endif /* CONFIG_SMP */ 4215 4216 ttwu_queue(p, cpu, wake_flags); 4217 unlock: 4218 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4219 out: 4220 if (success) 4221 ttwu_stat(p, task_cpu(p), wake_flags); 4222 preempt_enable(); 4223 4224 return success; 4225 } 4226 4227 static bool __task_needs_rq_lock(struct task_struct *p) 4228 { 4229 unsigned int state = READ_ONCE(p->__state); 4230 4231 /* 4232 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4233 * the task is blocked. Make sure to check @state since ttwu() can drop 4234 * locks at the end, see ttwu_queue_wakelist(). 4235 */ 4236 if (state == TASK_RUNNING || state == TASK_WAKING) 4237 return true; 4238 4239 /* 4240 * Ensure we load p->on_rq after p->__state, otherwise it would be 4241 * possible to, falsely, observe p->on_rq == 0. 4242 * 4243 * See try_to_wake_up() for a longer comment. 4244 */ 4245 smp_rmb(); 4246 if (p->on_rq) 4247 return true; 4248 4249 #ifdef CONFIG_SMP 4250 /* 4251 * Ensure the task has finished __schedule() and will not be referenced 4252 * anymore. Again, see try_to_wake_up() for a longer comment. 4253 */ 4254 smp_rmb(); 4255 smp_cond_load_acquire(&p->on_cpu, !VAL); 4256 #endif 4257 4258 return false; 4259 } 4260 4261 /** 4262 * task_call_func - Invoke a function on task in fixed state 4263 * @p: Process for which the function is to be invoked, can be @current. 4264 * @func: Function to invoke. 4265 * @arg: Argument to function. 4266 * 4267 * Fix the task in it's current state by avoiding wakeups and or rq operations 4268 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4269 * to work out what the state is, if required. Given that @func can be invoked 4270 * with a runqueue lock held, it had better be quite lightweight. 4271 * 4272 * Returns: 4273 * Whatever @func returns 4274 */ 4275 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4276 { 4277 struct rq *rq = NULL; 4278 struct rq_flags rf; 4279 int ret; 4280 4281 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4282 4283 if (__task_needs_rq_lock(p)) 4284 rq = __task_rq_lock(p, &rf); 4285 4286 /* 4287 * At this point the task is pinned; either: 4288 * - blocked and we're holding off wakeups (pi->lock) 4289 * - woken, and we're holding off enqueue (rq->lock) 4290 * - queued, and we're holding off schedule (rq->lock) 4291 * - running, and we're holding off de-schedule (rq->lock) 4292 * 4293 * The called function (@func) can use: task_curr(), p->on_rq and 4294 * p->__state to differentiate between these states. 4295 */ 4296 ret = func(p, arg); 4297 4298 if (rq) 4299 rq_unlock(rq, &rf); 4300 4301 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4302 return ret; 4303 } 4304 4305 /** 4306 * cpu_curr_snapshot - Return a snapshot of the currently running task 4307 * @cpu: The CPU on which to snapshot the task. 4308 * 4309 * Returns the task_struct pointer of the task "currently" running on 4310 * the specified CPU. If the same task is running on that CPU throughout, 4311 * the return value will be a pointer to that task's task_struct structure. 4312 * If the CPU did any context switches even vaguely concurrently with the 4313 * execution of this function, the return value will be a pointer to the 4314 * task_struct structure of a randomly chosen task that was running on 4315 * that CPU somewhere around the time that this function was executing. 4316 * 4317 * If the specified CPU was offline, the return value is whatever it 4318 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4319 * task, but there is no guarantee. Callers wishing a useful return 4320 * value must take some action to ensure that the specified CPU remains 4321 * online throughout. 4322 * 4323 * This function executes full memory barriers before and after fetching 4324 * the pointer, which permits the caller to confine this function's fetch 4325 * with respect to the caller's accesses to other shared variables. 4326 */ 4327 struct task_struct *cpu_curr_snapshot(int cpu) 4328 { 4329 struct task_struct *t; 4330 4331 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4332 t = rcu_dereference(cpu_curr(cpu)); 4333 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4334 return t; 4335 } 4336 4337 /** 4338 * wake_up_process - Wake up a specific process 4339 * @p: The process to be woken up. 4340 * 4341 * Attempt to wake up the nominated process and move it to the set of runnable 4342 * processes. 4343 * 4344 * Return: 1 if the process was woken up, 0 if it was already running. 4345 * 4346 * This function executes a full memory barrier before accessing the task state. 4347 */ 4348 int wake_up_process(struct task_struct *p) 4349 { 4350 return try_to_wake_up(p, TASK_NORMAL, 0); 4351 } 4352 EXPORT_SYMBOL(wake_up_process); 4353 4354 int wake_up_state(struct task_struct *p, unsigned int state) 4355 { 4356 return try_to_wake_up(p, state, 0); 4357 } 4358 4359 /* 4360 * Perform scheduler related setup for a newly forked process p. 4361 * p is forked by current. 4362 * 4363 * __sched_fork() is basic setup used by init_idle() too: 4364 */ 4365 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4366 { 4367 p->on_rq = 0; 4368 4369 p->se.on_rq = 0; 4370 p->se.exec_start = 0; 4371 p->se.sum_exec_runtime = 0; 4372 p->se.prev_sum_exec_runtime = 0; 4373 p->se.nr_migrations = 0; 4374 p->se.vruntime = 0; 4375 INIT_LIST_HEAD(&p->se.group_node); 4376 4377 #ifdef CONFIG_FAIR_GROUP_SCHED 4378 p->se.cfs_rq = NULL; 4379 #endif 4380 4381 #ifdef CONFIG_SCHEDSTATS 4382 /* Even if schedstat is disabled, there should not be garbage */ 4383 memset(&p->stats, 0, sizeof(p->stats)); 4384 #endif 4385 4386 RB_CLEAR_NODE(&p->dl.rb_node); 4387 init_dl_task_timer(&p->dl); 4388 init_dl_inactive_task_timer(&p->dl); 4389 __dl_clear_params(p); 4390 4391 INIT_LIST_HEAD(&p->rt.run_list); 4392 p->rt.timeout = 0; 4393 p->rt.time_slice = sched_rr_timeslice; 4394 p->rt.on_rq = 0; 4395 p->rt.on_list = 0; 4396 4397 #ifdef CONFIG_PREEMPT_NOTIFIERS 4398 INIT_HLIST_HEAD(&p->preempt_notifiers); 4399 #endif 4400 4401 #ifdef CONFIG_COMPACTION 4402 p->capture_control = NULL; 4403 #endif 4404 init_numa_balancing(clone_flags, p); 4405 #ifdef CONFIG_SMP 4406 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4407 p->migration_pending = NULL; 4408 #endif 4409 } 4410 4411 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4412 4413 #ifdef CONFIG_NUMA_BALANCING 4414 4415 int sysctl_numa_balancing_mode; 4416 4417 static void __set_numabalancing_state(bool enabled) 4418 { 4419 if (enabled) 4420 static_branch_enable(&sched_numa_balancing); 4421 else 4422 static_branch_disable(&sched_numa_balancing); 4423 } 4424 4425 void set_numabalancing_state(bool enabled) 4426 { 4427 if (enabled) 4428 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4429 else 4430 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4431 __set_numabalancing_state(enabled); 4432 } 4433 4434 #ifdef CONFIG_PROC_SYSCTL 4435 static void reset_memory_tiering(void) 4436 { 4437 struct pglist_data *pgdat; 4438 4439 for_each_online_pgdat(pgdat) { 4440 pgdat->nbp_threshold = 0; 4441 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4442 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4443 } 4444 } 4445 4446 int sysctl_numa_balancing(struct ctl_table *table, int write, 4447 void *buffer, size_t *lenp, loff_t *ppos) 4448 { 4449 struct ctl_table t; 4450 int err; 4451 int state = sysctl_numa_balancing_mode; 4452 4453 if (write && !capable(CAP_SYS_ADMIN)) 4454 return -EPERM; 4455 4456 t = *table; 4457 t.data = &state; 4458 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4459 if (err < 0) 4460 return err; 4461 if (write) { 4462 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4463 (state & NUMA_BALANCING_MEMORY_TIERING)) 4464 reset_memory_tiering(); 4465 sysctl_numa_balancing_mode = state; 4466 __set_numabalancing_state(state); 4467 } 4468 return err; 4469 } 4470 #endif 4471 #endif 4472 4473 #ifdef CONFIG_SCHEDSTATS 4474 4475 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4476 4477 static void set_schedstats(bool enabled) 4478 { 4479 if (enabled) 4480 static_branch_enable(&sched_schedstats); 4481 else 4482 static_branch_disable(&sched_schedstats); 4483 } 4484 4485 void force_schedstat_enabled(void) 4486 { 4487 if (!schedstat_enabled()) { 4488 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4489 static_branch_enable(&sched_schedstats); 4490 } 4491 } 4492 4493 static int __init setup_schedstats(char *str) 4494 { 4495 int ret = 0; 4496 if (!str) 4497 goto out; 4498 4499 if (!strcmp(str, "enable")) { 4500 set_schedstats(true); 4501 ret = 1; 4502 } else if (!strcmp(str, "disable")) { 4503 set_schedstats(false); 4504 ret = 1; 4505 } 4506 out: 4507 if (!ret) 4508 pr_warn("Unable to parse schedstats=\n"); 4509 4510 return ret; 4511 } 4512 __setup("schedstats=", setup_schedstats); 4513 4514 #ifdef CONFIG_PROC_SYSCTL 4515 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4516 size_t *lenp, loff_t *ppos) 4517 { 4518 struct ctl_table t; 4519 int err; 4520 int state = static_branch_likely(&sched_schedstats); 4521 4522 if (write && !capable(CAP_SYS_ADMIN)) 4523 return -EPERM; 4524 4525 t = *table; 4526 t.data = &state; 4527 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4528 if (err < 0) 4529 return err; 4530 if (write) 4531 set_schedstats(state); 4532 return err; 4533 } 4534 #endif /* CONFIG_PROC_SYSCTL */ 4535 #endif /* CONFIG_SCHEDSTATS */ 4536 4537 #ifdef CONFIG_SYSCTL 4538 static struct ctl_table sched_core_sysctls[] = { 4539 #ifdef CONFIG_SCHEDSTATS 4540 { 4541 .procname = "sched_schedstats", 4542 .data = NULL, 4543 .maxlen = sizeof(unsigned int), 4544 .mode = 0644, 4545 .proc_handler = sysctl_schedstats, 4546 .extra1 = SYSCTL_ZERO, 4547 .extra2 = SYSCTL_ONE, 4548 }, 4549 #endif /* CONFIG_SCHEDSTATS */ 4550 #ifdef CONFIG_UCLAMP_TASK 4551 { 4552 .procname = "sched_util_clamp_min", 4553 .data = &sysctl_sched_uclamp_util_min, 4554 .maxlen = sizeof(unsigned int), 4555 .mode = 0644, 4556 .proc_handler = sysctl_sched_uclamp_handler, 4557 }, 4558 { 4559 .procname = "sched_util_clamp_max", 4560 .data = &sysctl_sched_uclamp_util_max, 4561 .maxlen = sizeof(unsigned int), 4562 .mode = 0644, 4563 .proc_handler = sysctl_sched_uclamp_handler, 4564 }, 4565 { 4566 .procname = "sched_util_clamp_min_rt_default", 4567 .data = &sysctl_sched_uclamp_util_min_rt_default, 4568 .maxlen = sizeof(unsigned int), 4569 .mode = 0644, 4570 .proc_handler = sysctl_sched_uclamp_handler, 4571 }, 4572 #endif /* CONFIG_UCLAMP_TASK */ 4573 {} 4574 }; 4575 static int __init sched_core_sysctl_init(void) 4576 { 4577 register_sysctl_init("kernel", sched_core_sysctls); 4578 return 0; 4579 } 4580 late_initcall(sched_core_sysctl_init); 4581 #endif /* CONFIG_SYSCTL */ 4582 4583 /* 4584 * fork()/clone()-time setup: 4585 */ 4586 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4587 { 4588 __sched_fork(clone_flags, p); 4589 /* 4590 * We mark the process as NEW here. This guarantees that 4591 * nobody will actually run it, and a signal or other external 4592 * event cannot wake it up and insert it on the runqueue either. 4593 */ 4594 p->__state = TASK_NEW; 4595 4596 /* 4597 * Make sure we do not leak PI boosting priority to the child. 4598 */ 4599 p->prio = current->normal_prio; 4600 4601 uclamp_fork(p); 4602 4603 /* 4604 * Revert to default priority/policy on fork if requested. 4605 */ 4606 if (unlikely(p->sched_reset_on_fork)) { 4607 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4608 p->policy = SCHED_NORMAL; 4609 p->static_prio = NICE_TO_PRIO(0); 4610 p->rt_priority = 0; 4611 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4612 p->static_prio = NICE_TO_PRIO(0); 4613 4614 p->prio = p->normal_prio = p->static_prio; 4615 set_load_weight(p, false); 4616 4617 /* 4618 * We don't need the reset flag anymore after the fork. It has 4619 * fulfilled its duty: 4620 */ 4621 p->sched_reset_on_fork = 0; 4622 } 4623 4624 if (dl_prio(p->prio)) 4625 return -EAGAIN; 4626 else if (rt_prio(p->prio)) 4627 p->sched_class = &rt_sched_class; 4628 else 4629 p->sched_class = &fair_sched_class; 4630 4631 init_entity_runnable_average(&p->se); 4632 4633 4634 #ifdef CONFIG_SCHED_INFO 4635 if (likely(sched_info_on())) 4636 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4637 #endif 4638 #if defined(CONFIG_SMP) 4639 p->on_cpu = 0; 4640 #endif 4641 init_task_preempt_count(p); 4642 #ifdef CONFIG_SMP 4643 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4644 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4645 #endif 4646 return 0; 4647 } 4648 4649 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4650 { 4651 unsigned long flags; 4652 4653 /* 4654 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4655 * required yet, but lockdep gets upset if rules are violated. 4656 */ 4657 raw_spin_lock_irqsave(&p->pi_lock, flags); 4658 #ifdef CONFIG_CGROUP_SCHED 4659 if (1) { 4660 struct task_group *tg; 4661 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4662 struct task_group, css); 4663 tg = autogroup_task_group(p, tg); 4664 p->sched_task_group = tg; 4665 } 4666 #endif 4667 rseq_migrate(p); 4668 /* 4669 * We're setting the CPU for the first time, we don't migrate, 4670 * so use __set_task_cpu(). 4671 */ 4672 __set_task_cpu(p, smp_processor_id()); 4673 if (p->sched_class->task_fork) 4674 p->sched_class->task_fork(p); 4675 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4676 } 4677 4678 void sched_post_fork(struct task_struct *p) 4679 { 4680 uclamp_post_fork(p); 4681 } 4682 4683 unsigned long to_ratio(u64 period, u64 runtime) 4684 { 4685 if (runtime == RUNTIME_INF) 4686 return BW_UNIT; 4687 4688 /* 4689 * Doing this here saves a lot of checks in all 4690 * the calling paths, and returning zero seems 4691 * safe for them anyway. 4692 */ 4693 if (period == 0) 4694 return 0; 4695 4696 return div64_u64(runtime << BW_SHIFT, period); 4697 } 4698 4699 /* 4700 * wake_up_new_task - wake up a newly created task for the first time. 4701 * 4702 * This function will do some initial scheduler statistics housekeeping 4703 * that must be done for every newly created context, then puts the task 4704 * on the runqueue and wakes it. 4705 */ 4706 void wake_up_new_task(struct task_struct *p) 4707 { 4708 struct rq_flags rf; 4709 struct rq *rq; 4710 4711 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4712 WRITE_ONCE(p->__state, TASK_RUNNING); 4713 #ifdef CONFIG_SMP 4714 /* 4715 * Fork balancing, do it here and not earlier because: 4716 * - cpus_ptr can change in the fork path 4717 * - any previously selected CPU might disappear through hotplug 4718 * 4719 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4720 * as we're not fully set-up yet. 4721 */ 4722 p->recent_used_cpu = task_cpu(p); 4723 rseq_migrate(p); 4724 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4725 #endif 4726 rq = __task_rq_lock(p, &rf); 4727 update_rq_clock(rq); 4728 post_init_entity_util_avg(p); 4729 4730 activate_task(rq, p, ENQUEUE_NOCLOCK); 4731 trace_sched_wakeup_new(p); 4732 check_preempt_curr(rq, p, WF_FORK); 4733 #ifdef CONFIG_SMP 4734 if (p->sched_class->task_woken) { 4735 /* 4736 * Nothing relies on rq->lock after this, so it's fine to 4737 * drop it. 4738 */ 4739 rq_unpin_lock(rq, &rf); 4740 p->sched_class->task_woken(rq, p); 4741 rq_repin_lock(rq, &rf); 4742 } 4743 #endif 4744 task_rq_unlock(rq, p, &rf); 4745 } 4746 4747 #ifdef CONFIG_PREEMPT_NOTIFIERS 4748 4749 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4750 4751 void preempt_notifier_inc(void) 4752 { 4753 static_branch_inc(&preempt_notifier_key); 4754 } 4755 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4756 4757 void preempt_notifier_dec(void) 4758 { 4759 static_branch_dec(&preempt_notifier_key); 4760 } 4761 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4762 4763 /** 4764 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4765 * @notifier: notifier struct to register 4766 */ 4767 void preempt_notifier_register(struct preempt_notifier *notifier) 4768 { 4769 if (!static_branch_unlikely(&preempt_notifier_key)) 4770 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4771 4772 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4773 } 4774 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4775 4776 /** 4777 * preempt_notifier_unregister - no longer interested in preemption notifications 4778 * @notifier: notifier struct to unregister 4779 * 4780 * This is *not* safe to call from within a preemption notifier. 4781 */ 4782 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4783 { 4784 hlist_del(¬ifier->link); 4785 } 4786 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4787 4788 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4789 { 4790 struct preempt_notifier *notifier; 4791 4792 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4793 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4794 } 4795 4796 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4797 { 4798 if (static_branch_unlikely(&preempt_notifier_key)) 4799 __fire_sched_in_preempt_notifiers(curr); 4800 } 4801 4802 static void 4803 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4804 struct task_struct *next) 4805 { 4806 struct preempt_notifier *notifier; 4807 4808 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4809 notifier->ops->sched_out(notifier, next); 4810 } 4811 4812 static __always_inline void 4813 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4814 struct task_struct *next) 4815 { 4816 if (static_branch_unlikely(&preempt_notifier_key)) 4817 __fire_sched_out_preempt_notifiers(curr, next); 4818 } 4819 4820 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4821 4822 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4823 { 4824 } 4825 4826 static inline void 4827 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4828 struct task_struct *next) 4829 { 4830 } 4831 4832 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4833 4834 static inline void prepare_task(struct task_struct *next) 4835 { 4836 #ifdef CONFIG_SMP 4837 /* 4838 * Claim the task as running, we do this before switching to it 4839 * such that any running task will have this set. 4840 * 4841 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4842 * its ordering comment. 4843 */ 4844 WRITE_ONCE(next->on_cpu, 1); 4845 #endif 4846 } 4847 4848 static inline void finish_task(struct task_struct *prev) 4849 { 4850 #ifdef CONFIG_SMP 4851 /* 4852 * This must be the very last reference to @prev from this CPU. After 4853 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4854 * must ensure this doesn't happen until the switch is completely 4855 * finished. 4856 * 4857 * In particular, the load of prev->state in finish_task_switch() must 4858 * happen before this. 4859 * 4860 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4861 */ 4862 smp_store_release(&prev->on_cpu, 0); 4863 #endif 4864 } 4865 4866 #ifdef CONFIG_SMP 4867 4868 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 4869 { 4870 void (*func)(struct rq *rq); 4871 struct balance_callback *next; 4872 4873 lockdep_assert_rq_held(rq); 4874 4875 while (head) { 4876 func = (void (*)(struct rq *))head->func; 4877 next = head->next; 4878 head->next = NULL; 4879 head = next; 4880 4881 func(rq); 4882 } 4883 } 4884 4885 static void balance_push(struct rq *rq); 4886 4887 /* 4888 * balance_push_callback is a right abuse of the callback interface and plays 4889 * by significantly different rules. 4890 * 4891 * Where the normal balance_callback's purpose is to be ran in the same context 4892 * that queued it (only later, when it's safe to drop rq->lock again), 4893 * balance_push_callback is specifically targeted at __schedule(). 4894 * 4895 * This abuse is tolerated because it places all the unlikely/odd cases behind 4896 * a single test, namely: rq->balance_callback == NULL. 4897 */ 4898 struct balance_callback balance_push_callback = { 4899 .next = NULL, 4900 .func = balance_push, 4901 }; 4902 4903 static inline struct balance_callback * 4904 __splice_balance_callbacks(struct rq *rq, bool split) 4905 { 4906 struct balance_callback *head = rq->balance_callback; 4907 4908 if (likely(!head)) 4909 return NULL; 4910 4911 lockdep_assert_rq_held(rq); 4912 /* 4913 * Must not take balance_push_callback off the list when 4914 * splice_balance_callbacks() and balance_callbacks() are not 4915 * in the same rq->lock section. 4916 * 4917 * In that case it would be possible for __schedule() to interleave 4918 * and observe the list empty. 4919 */ 4920 if (split && head == &balance_push_callback) 4921 head = NULL; 4922 else 4923 rq->balance_callback = NULL; 4924 4925 return head; 4926 } 4927 4928 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 4929 { 4930 return __splice_balance_callbacks(rq, true); 4931 } 4932 4933 static void __balance_callbacks(struct rq *rq) 4934 { 4935 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 4936 } 4937 4938 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 4939 { 4940 unsigned long flags; 4941 4942 if (unlikely(head)) { 4943 raw_spin_rq_lock_irqsave(rq, flags); 4944 do_balance_callbacks(rq, head); 4945 raw_spin_rq_unlock_irqrestore(rq, flags); 4946 } 4947 } 4948 4949 #else 4950 4951 static inline void __balance_callbacks(struct rq *rq) 4952 { 4953 } 4954 4955 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 4956 { 4957 return NULL; 4958 } 4959 4960 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 4961 { 4962 } 4963 4964 #endif 4965 4966 static inline void 4967 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4968 { 4969 /* 4970 * Since the runqueue lock will be released by the next 4971 * task (which is an invalid locking op but in the case 4972 * of the scheduler it's an obvious special-case), so we 4973 * do an early lockdep release here: 4974 */ 4975 rq_unpin_lock(rq, rf); 4976 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 4977 #ifdef CONFIG_DEBUG_SPINLOCK 4978 /* this is a valid case when another task releases the spinlock */ 4979 rq_lockp(rq)->owner = next; 4980 #endif 4981 } 4982 4983 static inline void finish_lock_switch(struct rq *rq) 4984 { 4985 /* 4986 * If we are tracking spinlock dependencies then we have to 4987 * fix up the runqueue lock - which gets 'carried over' from 4988 * prev into current: 4989 */ 4990 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 4991 __balance_callbacks(rq); 4992 raw_spin_rq_unlock_irq(rq); 4993 } 4994 4995 /* 4996 * NOP if the arch has not defined these: 4997 */ 4998 4999 #ifndef prepare_arch_switch 5000 # define prepare_arch_switch(next) do { } while (0) 5001 #endif 5002 5003 #ifndef finish_arch_post_lock_switch 5004 # define finish_arch_post_lock_switch() do { } while (0) 5005 #endif 5006 5007 static inline void kmap_local_sched_out(void) 5008 { 5009 #ifdef CONFIG_KMAP_LOCAL 5010 if (unlikely(current->kmap_ctrl.idx)) 5011 __kmap_local_sched_out(); 5012 #endif 5013 } 5014 5015 static inline void kmap_local_sched_in(void) 5016 { 5017 #ifdef CONFIG_KMAP_LOCAL 5018 if (unlikely(current->kmap_ctrl.idx)) 5019 __kmap_local_sched_in(); 5020 #endif 5021 } 5022 5023 /** 5024 * prepare_task_switch - prepare to switch tasks 5025 * @rq: the runqueue preparing to switch 5026 * @prev: the current task that is being switched out 5027 * @next: the task we are going to switch to. 5028 * 5029 * This is called with the rq lock held and interrupts off. It must 5030 * be paired with a subsequent finish_task_switch after the context 5031 * switch. 5032 * 5033 * prepare_task_switch sets up locking and calls architecture specific 5034 * hooks. 5035 */ 5036 static inline void 5037 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5038 struct task_struct *next) 5039 { 5040 kcov_prepare_switch(prev); 5041 sched_info_switch(rq, prev, next); 5042 perf_event_task_sched_out(prev, next); 5043 rseq_preempt(prev); 5044 fire_sched_out_preempt_notifiers(prev, next); 5045 kmap_local_sched_out(); 5046 prepare_task(next); 5047 prepare_arch_switch(next); 5048 } 5049 5050 /** 5051 * finish_task_switch - clean up after a task-switch 5052 * @prev: the thread we just switched away from. 5053 * 5054 * finish_task_switch must be called after the context switch, paired 5055 * with a prepare_task_switch call before the context switch. 5056 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5057 * and do any other architecture-specific cleanup actions. 5058 * 5059 * Note that we may have delayed dropping an mm in context_switch(). If 5060 * so, we finish that here outside of the runqueue lock. (Doing it 5061 * with the lock held can cause deadlocks; see schedule() for 5062 * details.) 5063 * 5064 * The context switch have flipped the stack from under us and restored the 5065 * local variables which were saved when this task called schedule() in the 5066 * past. prev == current is still correct but we need to recalculate this_rq 5067 * because prev may have moved to another CPU. 5068 */ 5069 static struct rq *finish_task_switch(struct task_struct *prev) 5070 __releases(rq->lock) 5071 { 5072 struct rq *rq = this_rq(); 5073 struct mm_struct *mm = rq->prev_mm; 5074 unsigned int prev_state; 5075 5076 /* 5077 * The previous task will have left us with a preempt_count of 2 5078 * because it left us after: 5079 * 5080 * schedule() 5081 * preempt_disable(); // 1 5082 * __schedule() 5083 * raw_spin_lock_irq(&rq->lock) // 2 5084 * 5085 * Also, see FORK_PREEMPT_COUNT. 5086 */ 5087 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5088 "corrupted preempt_count: %s/%d/0x%x\n", 5089 current->comm, current->pid, preempt_count())) 5090 preempt_count_set(FORK_PREEMPT_COUNT); 5091 5092 rq->prev_mm = NULL; 5093 5094 /* 5095 * A task struct has one reference for the use as "current". 5096 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5097 * schedule one last time. The schedule call will never return, and 5098 * the scheduled task must drop that reference. 5099 * 5100 * We must observe prev->state before clearing prev->on_cpu (in 5101 * finish_task), otherwise a concurrent wakeup can get prev 5102 * running on another CPU and we could rave with its RUNNING -> DEAD 5103 * transition, resulting in a double drop. 5104 */ 5105 prev_state = READ_ONCE(prev->__state); 5106 vtime_task_switch(prev); 5107 perf_event_task_sched_in(prev, current); 5108 finish_task(prev); 5109 tick_nohz_task_switch(); 5110 finish_lock_switch(rq); 5111 finish_arch_post_lock_switch(); 5112 kcov_finish_switch(current); 5113 /* 5114 * kmap_local_sched_out() is invoked with rq::lock held and 5115 * interrupts disabled. There is no requirement for that, but the 5116 * sched out code does not have an interrupt enabled section. 5117 * Restoring the maps on sched in does not require interrupts being 5118 * disabled either. 5119 */ 5120 kmap_local_sched_in(); 5121 5122 fire_sched_in_preempt_notifiers(current); 5123 /* 5124 * When switching through a kernel thread, the loop in 5125 * membarrier_{private,global}_expedited() may have observed that 5126 * kernel thread and not issued an IPI. It is therefore possible to 5127 * schedule between user->kernel->user threads without passing though 5128 * switch_mm(). Membarrier requires a barrier after storing to 5129 * rq->curr, before returning to userspace, so provide them here: 5130 * 5131 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5132 * provided by mmdrop(), 5133 * - a sync_core for SYNC_CORE. 5134 */ 5135 if (mm) { 5136 membarrier_mm_sync_core_before_usermode(mm); 5137 mmdrop_sched(mm); 5138 } 5139 if (unlikely(prev_state == TASK_DEAD)) { 5140 if (prev->sched_class->task_dead) 5141 prev->sched_class->task_dead(prev); 5142 5143 /* Task is done with its stack. */ 5144 put_task_stack(prev); 5145 5146 put_task_struct_rcu_user(prev); 5147 } 5148 5149 return rq; 5150 } 5151 5152 /** 5153 * schedule_tail - first thing a freshly forked thread must call. 5154 * @prev: the thread we just switched away from. 5155 */ 5156 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5157 __releases(rq->lock) 5158 { 5159 /* 5160 * New tasks start with FORK_PREEMPT_COUNT, see there and 5161 * finish_task_switch() for details. 5162 * 5163 * finish_task_switch() will drop rq->lock() and lower preempt_count 5164 * and the preempt_enable() will end up enabling preemption (on 5165 * PREEMPT_COUNT kernels). 5166 */ 5167 5168 finish_task_switch(prev); 5169 preempt_enable(); 5170 5171 if (current->set_child_tid) 5172 put_user(task_pid_vnr(current), current->set_child_tid); 5173 5174 calculate_sigpending(); 5175 } 5176 5177 /* 5178 * context_switch - switch to the new MM and the new thread's register state. 5179 */ 5180 static __always_inline struct rq * 5181 context_switch(struct rq *rq, struct task_struct *prev, 5182 struct task_struct *next, struct rq_flags *rf) 5183 { 5184 prepare_task_switch(rq, prev, next); 5185 5186 /* 5187 * For paravirt, this is coupled with an exit in switch_to to 5188 * combine the page table reload and the switch backend into 5189 * one hypercall. 5190 */ 5191 arch_start_context_switch(prev); 5192 5193 /* 5194 * kernel -> kernel lazy + transfer active 5195 * user -> kernel lazy + mmgrab() active 5196 * 5197 * kernel -> user switch + mmdrop() active 5198 * user -> user switch 5199 */ 5200 if (!next->mm) { // to kernel 5201 enter_lazy_tlb(prev->active_mm, next); 5202 5203 next->active_mm = prev->active_mm; 5204 if (prev->mm) // from user 5205 mmgrab(prev->active_mm); 5206 else 5207 prev->active_mm = NULL; 5208 } else { // to user 5209 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5210 /* 5211 * sys_membarrier() requires an smp_mb() between setting 5212 * rq->curr / membarrier_switch_mm() and returning to userspace. 5213 * 5214 * The below provides this either through switch_mm(), or in 5215 * case 'prev->active_mm == next->mm' through 5216 * finish_task_switch()'s mmdrop(). 5217 */ 5218 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5219 lru_gen_use_mm(next->mm); 5220 5221 if (!prev->mm) { // from kernel 5222 /* will mmdrop() in finish_task_switch(). */ 5223 rq->prev_mm = prev->active_mm; 5224 prev->active_mm = NULL; 5225 } 5226 } 5227 5228 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 5229 5230 prepare_lock_switch(rq, next, rf); 5231 5232 /* Here we just switch the register state and the stack. */ 5233 switch_to(prev, next, prev); 5234 barrier(); 5235 5236 return finish_task_switch(prev); 5237 } 5238 5239 /* 5240 * nr_running and nr_context_switches: 5241 * 5242 * externally visible scheduler statistics: current number of runnable 5243 * threads, total number of context switches performed since bootup. 5244 */ 5245 unsigned int nr_running(void) 5246 { 5247 unsigned int i, sum = 0; 5248 5249 for_each_online_cpu(i) 5250 sum += cpu_rq(i)->nr_running; 5251 5252 return sum; 5253 } 5254 5255 /* 5256 * Check if only the current task is running on the CPU. 5257 * 5258 * Caution: this function does not check that the caller has disabled 5259 * preemption, thus the result might have a time-of-check-to-time-of-use 5260 * race. The caller is responsible to use it correctly, for example: 5261 * 5262 * - from a non-preemptible section (of course) 5263 * 5264 * - from a thread that is bound to a single CPU 5265 * 5266 * - in a loop with very short iterations (e.g. a polling loop) 5267 */ 5268 bool single_task_running(void) 5269 { 5270 return raw_rq()->nr_running == 1; 5271 } 5272 EXPORT_SYMBOL(single_task_running); 5273 5274 unsigned long long nr_context_switches(void) 5275 { 5276 int i; 5277 unsigned long long sum = 0; 5278 5279 for_each_possible_cpu(i) 5280 sum += cpu_rq(i)->nr_switches; 5281 5282 return sum; 5283 } 5284 5285 /* 5286 * Consumers of these two interfaces, like for example the cpuidle menu 5287 * governor, are using nonsensical data. Preferring shallow idle state selection 5288 * for a CPU that has IO-wait which might not even end up running the task when 5289 * it does become runnable. 5290 */ 5291 5292 unsigned int nr_iowait_cpu(int cpu) 5293 { 5294 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5295 } 5296 5297 /* 5298 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5299 * 5300 * The idea behind IO-wait account is to account the idle time that we could 5301 * have spend running if it were not for IO. That is, if we were to improve the 5302 * storage performance, we'd have a proportional reduction in IO-wait time. 5303 * 5304 * This all works nicely on UP, where, when a task blocks on IO, we account 5305 * idle time as IO-wait, because if the storage were faster, it could've been 5306 * running and we'd not be idle. 5307 * 5308 * This has been extended to SMP, by doing the same for each CPU. This however 5309 * is broken. 5310 * 5311 * Imagine for instance the case where two tasks block on one CPU, only the one 5312 * CPU will have IO-wait accounted, while the other has regular idle. Even 5313 * though, if the storage were faster, both could've ran at the same time, 5314 * utilising both CPUs. 5315 * 5316 * This means, that when looking globally, the current IO-wait accounting on 5317 * SMP is a lower bound, by reason of under accounting. 5318 * 5319 * Worse, since the numbers are provided per CPU, they are sometimes 5320 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5321 * associated with any one particular CPU, it can wake to another CPU than it 5322 * blocked on. This means the per CPU IO-wait number is meaningless. 5323 * 5324 * Task CPU affinities can make all that even more 'interesting'. 5325 */ 5326 5327 unsigned int nr_iowait(void) 5328 { 5329 unsigned int i, sum = 0; 5330 5331 for_each_possible_cpu(i) 5332 sum += nr_iowait_cpu(i); 5333 5334 return sum; 5335 } 5336 5337 #ifdef CONFIG_SMP 5338 5339 /* 5340 * sched_exec - execve() is a valuable balancing opportunity, because at 5341 * this point the task has the smallest effective memory and cache footprint. 5342 */ 5343 void sched_exec(void) 5344 { 5345 struct task_struct *p = current; 5346 unsigned long flags; 5347 int dest_cpu; 5348 5349 raw_spin_lock_irqsave(&p->pi_lock, flags); 5350 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5351 if (dest_cpu == smp_processor_id()) 5352 goto unlock; 5353 5354 if (likely(cpu_active(dest_cpu))) { 5355 struct migration_arg arg = { p, dest_cpu }; 5356 5357 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5358 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5359 return; 5360 } 5361 unlock: 5362 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5363 } 5364 5365 #endif 5366 5367 DEFINE_PER_CPU(struct kernel_stat, kstat); 5368 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5369 5370 EXPORT_PER_CPU_SYMBOL(kstat); 5371 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5372 5373 /* 5374 * The function fair_sched_class.update_curr accesses the struct curr 5375 * and its field curr->exec_start; when called from task_sched_runtime(), 5376 * we observe a high rate of cache misses in practice. 5377 * Prefetching this data results in improved performance. 5378 */ 5379 static inline void prefetch_curr_exec_start(struct task_struct *p) 5380 { 5381 #ifdef CONFIG_FAIR_GROUP_SCHED 5382 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 5383 #else 5384 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 5385 #endif 5386 prefetch(curr); 5387 prefetch(&curr->exec_start); 5388 } 5389 5390 /* 5391 * Return accounted runtime for the task. 5392 * In case the task is currently running, return the runtime plus current's 5393 * pending runtime that have not been accounted yet. 5394 */ 5395 unsigned long long task_sched_runtime(struct task_struct *p) 5396 { 5397 struct rq_flags rf; 5398 struct rq *rq; 5399 u64 ns; 5400 5401 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5402 /* 5403 * 64-bit doesn't need locks to atomically read a 64-bit value. 5404 * So we have a optimization chance when the task's delta_exec is 0. 5405 * Reading ->on_cpu is racy, but this is ok. 5406 * 5407 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5408 * If we race with it entering CPU, unaccounted time is 0. This is 5409 * indistinguishable from the read occurring a few cycles earlier. 5410 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5411 * been accounted, so we're correct here as well. 5412 */ 5413 if (!p->on_cpu || !task_on_rq_queued(p)) 5414 return p->se.sum_exec_runtime; 5415 #endif 5416 5417 rq = task_rq_lock(p, &rf); 5418 /* 5419 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5420 * project cycles that may never be accounted to this 5421 * thread, breaking clock_gettime(). 5422 */ 5423 if (task_current(rq, p) && task_on_rq_queued(p)) { 5424 prefetch_curr_exec_start(p); 5425 update_rq_clock(rq); 5426 p->sched_class->update_curr(rq); 5427 } 5428 ns = p->se.sum_exec_runtime; 5429 task_rq_unlock(rq, p, &rf); 5430 5431 return ns; 5432 } 5433 5434 #ifdef CONFIG_SCHED_DEBUG 5435 static u64 cpu_resched_latency(struct rq *rq) 5436 { 5437 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5438 u64 resched_latency, now = rq_clock(rq); 5439 static bool warned_once; 5440 5441 if (sysctl_resched_latency_warn_once && warned_once) 5442 return 0; 5443 5444 if (!need_resched() || !latency_warn_ms) 5445 return 0; 5446 5447 if (system_state == SYSTEM_BOOTING) 5448 return 0; 5449 5450 if (!rq->last_seen_need_resched_ns) { 5451 rq->last_seen_need_resched_ns = now; 5452 rq->ticks_without_resched = 0; 5453 return 0; 5454 } 5455 5456 rq->ticks_without_resched++; 5457 resched_latency = now - rq->last_seen_need_resched_ns; 5458 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5459 return 0; 5460 5461 warned_once = true; 5462 5463 return resched_latency; 5464 } 5465 5466 static int __init setup_resched_latency_warn_ms(char *str) 5467 { 5468 long val; 5469 5470 if ((kstrtol(str, 0, &val))) { 5471 pr_warn("Unable to set resched_latency_warn_ms\n"); 5472 return 1; 5473 } 5474 5475 sysctl_resched_latency_warn_ms = val; 5476 return 1; 5477 } 5478 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5479 #else 5480 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5481 #endif /* CONFIG_SCHED_DEBUG */ 5482 5483 /* 5484 * This function gets called by the timer code, with HZ frequency. 5485 * We call it with interrupts disabled. 5486 */ 5487 void scheduler_tick(void) 5488 { 5489 int cpu = smp_processor_id(); 5490 struct rq *rq = cpu_rq(cpu); 5491 struct task_struct *curr = rq->curr; 5492 struct rq_flags rf; 5493 unsigned long thermal_pressure; 5494 u64 resched_latency; 5495 5496 arch_scale_freq_tick(); 5497 sched_clock_tick(); 5498 5499 rq_lock(rq, &rf); 5500 5501 update_rq_clock(rq); 5502 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 5503 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 5504 curr->sched_class->task_tick(rq, curr, 0); 5505 if (sched_feat(LATENCY_WARN)) 5506 resched_latency = cpu_resched_latency(rq); 5507 calc_global_load_tick(rq); 5508 sched_core_tick(rq); 5509 5510 rq_unlock(rq, &rf); 5511 5512 if (sched_feat(LATENCY_WARN) && resched_latency) 5513 resched_latency_warn(cpu, resched_latency); 5514 5515 perf_event_task_tick(); 5516 5517 #ifdef CONFIG_SMP 5518 rq->idle_balance = idle_cpu(cpu); 5519 trigger_load_balance(rq); 5520 #endif 5521 } 5522 5523 #ifdef CONFIG_NO_HZ_FULL 5524 5525 struct tick_work { 5526 int cpu; 5527 atomic_t state; 5528 struct delayed_work work; 5529 }; 5530 /* Values for ->state, see diagram below. */ 5531 #define TICK_SCHED_REMOTE_OFFLINE 0 5532 #define TICK_SCHED_REMOTE_OFFLINING 1 5533 #define TICK_SCHED_REMOTE_RUNNING 2 5534 5535 /* 5536 * State diagram for ->state: 5537 * 5538 * 5539 * TICK_SCHED_REMOTE_OFFLINE 5540 * | ^ 5541 * | | 5542 * | | sched_tick_remote() 5543 * | | 5544 * | | 5545 * +--TICK_SCHED_REMOTE_OFFLINING 5546 * | ^ 5547 * | | 5548 * sched_tick_start() | | sched_tick_stop() 5549 * | | 5550 * V | 5551 * TICK_SCHED_REMOTE_RUNNING 5552 * 5553 * 5554 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5555 * and sched_tick_start() are happy to leave the state in RUNNING. 5556 */ 5557 5558 static struct tick_work __percpu *tick_work_cpu; 5559 5560 static void sched_tick_remote(struct work_struct *work) 5561 { 5562 struct delayed_work *dwork = to_delayed_work(work); 5563 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5564 int cpu = twork->cpu; 5565 struct rq *rq = cpu_rq(cpu); 5566 struct task_struct *curr; 5567 struct rq_flags rf; 5568 u64 delta; 5569 int os; 5570 5571 /* 5572 * Handle the tick only if it appears the remote CPU is running in full 5573 * dynticks mode. The check is racy by nature, but missing a tick or 5574 * having one too much is no big deal because the scheduler tick updates 5575 * statistics and checks timeslices in a time-independent way, regardless 5576 * of when exactly it is running. 5577 */ 5578 if (!tick_nohz_tick_stopped_cpu(cpu)) 5579 goto out_requeue; 5580 5581 rq_lock_irq(rq, &rf); 5582 curr = rq->curr; 5583 if (cpu_is_offline(cpu)) 5584 goto out_unlock; 5585 5586 update_rq_clock(rq); 5587 5588 if (!is_idle_task(curr)) { 5589 /* 5590 * Make sure the next tick runs within a reasonable 5591 * amount of time. 5592 */ 5593 delta = rq_clock_task(rq) - curr->se.exec_start; 5594 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5595 } 5596 curr->sched_class->task_tick(rq, curr, 0); 5597 5598 calc_load_nohz_remote(rq); 5599 out_unlock: 5600 rq_unlock_irq(rq, &rf); 5601 out_requeue: 5602 5603 /* 5604 * Run the remote tick once per second (1Hz). This arbitrary 5605 * frequency is large enough to avoid overload but short enough 5606 * to keep scheduler internal stats reasonably up to date. But 5607 * first update state to reflect hotplug activity if required. 5608 */ 5609 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5610 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5611 if (os == TICK_SCHED_REMOTE_RUNNING) 5612 queue_delayed_work(system_unbound_wq, dwork, HZ); 5613 } 5614 5615 static void sched_tick_start(int cpu) 5616 { 5617 int os; 5618 struct tick_work *twork; 5619 5620 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5621 return; 5622 5623 WARN_ON_ONCE(!tick_work_cpu); 5624 5625 twork = per_cpu_ptr(tick_work_cpu, cpu); 5626 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5627 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5628 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5629 twork->cpu = cpu; 5630 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5631 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5632 } 5633 } 5634 5635 #ifdef CONFIG_HOTPLUG_CPU 5636 static void sched_tick_stop(int cpu) 5637 { 5638 struct tick_work *twork; 5639 int os; 5640 5641 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5642 return; 5643 5644 WARN_ON_ONCE(!tick_work_cpu); 5645 5646 twork = per_cpu_ptr(tick_work_cpu, cpu); 5647 /* There cannot be competing actions, but don't rely on stop-machine. */ 5648 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5649 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5650 /* Don't cancel, as this would mess up the state machine. */ 5651 } 5652 #endif /* CONFIG_HOTPLUG_CPU */ 5653 5654 int __init sched_tick_offload_init(void) 5655 { 5656 tick_work_cpu = alloc_percpu(struct tick_work); 5657 BUG_ON(!tick_work_cpu); 5658 return 0; 5659 } 5660 5661 #else /* !CONFIG_NO_HZ_FULL */ 5662 static inline void sched_tick_start(int cpu) { } 5663 static inline void sched_tick_stop(int cpu) { } 5664 #endif 5665 5666 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5667 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5668 /* 5669 * If the value passed in is equal to the current preempt count 5670 * then we just disabled preemption. Start timing the latency. 5671 */ 5672 static inline void preempt_latency_start(int val) 5673 { 5674 if (preempt_count() == val) { 5675 unsigned long ip = get_lock_parent_ip(); 5676 #ifdef CONFIG_DEBUG_PREEMPT 5677 current->preempt_disable_ip = ip; 5678 #endif 5679 trace_preempt_off(CALLER_ADDR0, ip); 5680 } 5681 } 5682 5683 void preempt_count_add(int val) 5684 { 5685 #ifdef CONFIG_DEBUG_PREEMPT 5686 /* 5687 * Underflow? 5688 */ 5689 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5690 return; 5691 #endif 5692 __preempt_count_add(val); 5693 #ifdef CONFIG_DEBUG_PREEMPT 5694 /* 5695 * Spinlock count overflowing soon? 5696 */ 5697 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5698 PREEMPT_MASK - 10); 5699 #endif 5700 preempt_latency_start(val); 5701 } 5702 EXPORT_SYMBOL(preempt_count_add); 5703 NOKPROBE_SYMBOL(preempt_count_add); 5704 5705 /* 5706 * If the value passed in equals to the current preempt count 5707 * then we just enabled preemption. Stop timing the latency. 5708 */ 5709 static inline void preempt_latency_stop(int val) 5710 { 5711 if (preempt_count() == val) 5712 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5713 } 5714 5715 void preempt_count_sub(int val) 5716 { 5717 #ifdef CONFIG_DEBUG_PREEMPT 5718 /* 5719 * Underflow? 5720 */ 5721 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5722 return; 5723 /* 5724 * Is the spinlock portion underflowing? 5725 */ 5726 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5727 !(preempt_count() & PREEMPT_MASK))) 5728 return; 5729 #endif 5730 5731 preempt_latency_stop(val); 5732 __preempt_count_sub(val); 5733 } 5734 EXPORT_SYMBOL(preempt_count_sub); 5735 NOKPROBE_SYMBOL(preempt_count_sub); 5736 5737 #else 5738 static inline void preempt_latency_start(int val) { } 5739 static inline void preempt_latency_stop(int val) { } 5740 #endif 5741 5742 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5743 { 5744 #ifdef CONFIG_DEBUG_PREEMPT 5745 return p->preempt_disable_ip; 5746 #else 5747 return 0; 5748 #endif 5749 } 5750 5751 /* 5752 * Print scheduling while atomic bug: 5753 */ 5754 static noinline void __schedule_bug(struct task_struct *prev) 5755 { 5756 /* Save this before calling printk(), since that will clobber it */ 5757 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5758 5759 if (oops_in_progress) 5760 return; 5761 5762 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5763 prev->comm, prev->pid, preempt_count()); 5764 5765 debug_show_held_locks(prev); 5766 print_modules(); 5767 if (irqs_disabled()) 5768 print_irqtrace_events(prev); 5769 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 5770 && in_atomic_preempt_off()) { 5771 pr_err("Preemption disabled at:"); 5772 print_ip_sym(KERN_ERR, preempt_disable_ip); 5773 } 5774 if (panic_on_warn) 5775 panic("scheduling while atomic\n"); 5776 5777 dump_stack(); 5778 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5779 } 5780 5781 /* 5782 * Various schedule()-time debugging checks and statistics: 5783 */ 5784 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5785 { 5786 #ifdef CONFIG_SCHED_STACK_END_CHECK 5787 if (task_stack_end_corrupted(prev)) 5788 panic("corrupted stack end detected inside scheduler\n"); 5789 5790 if (task_scs_end_corrupted(prev)) 5791 panic("corrupted shadow stack detected inside scheduler\n"); 5792 #endif 5793 5794 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5795 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5796 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5797 prev->comm, prev->pid, prev->non_block_count); 5798 dump_stack(); 5799 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5800 } 5801 #endif 5802 5803 if (unlikely(in_atomic_preempt_off())) { 5804 __schedule_bug(prev); 5805 preempt_count_set(PREEMPT_DISABLED); 5806 } 5807 rcu_sleep_check(); 5808 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5809 5810 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5811 5812 schedstat_inc(this_rq()->sched_count); 5813 } 5814 5815 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5816 struct rq_flags *rf) 5817 { 5818 #ifdef CONFIG_SMP 5819 const struct sched_class *class; 5820 /* 5821 * We must do the balancing pass before put_prev_task(), such 5822 * that when we release the rq->lock the task is in the same 5823 * state as before we took rq->lock. 5824 * 5825 * We can terminate the balance pass as soon as we know there is 5826 * a runnable task of @class priority or higher. 5827 */ 5828 for_class_range(class, prev->sched_class, &idle_sched_class) { 5829 if (class->balance(rq, prev, rf)) 5830 break; 5831 } 5832 #endif 5833 5834 put_prev_task(rq, prev); 5835 } 5836 5837 /* 5838 * Pick up the highest-prio task: 5839 */ 5840 static inline struct task_struct * 5841 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5842 { 5843 const struct sched_class *class; 5844 struct task_struct *p; 5845 5846 /* 5847 * Optimization: we know that if all tasks are in the fair class we can 5848 * call that function directly, but only if the @prev task wasn't of a 5849 * higher scheduling class, because otherwise those lose the 5850 * opportunity to pull in more work from other CPUs. 5851 */ 5852 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5853 rq->nr_running == rq->cfs.h_nr_running)) { 5854 5855 p = pick_next_task_fair(rq, prev, rf); 5856 if (unlikely(p == RETRY_TASK)) 5857 goto restart; 5858 5859 /* Assume the next prioritized class is idle_sched_class */ 5860 if (!p) { 5861 put_prev_task(rq, prev); 5862 p = pick_next_task_idle(rq); 5863 } 5864 5865 return p; 5866 } 5867 5868 restart: 5869 put_prev_task_balance(rq, prev, rf); 5870 5871 for_each_class(class) { 5872 p = class->pick_next_task(rq); 5873 if (p) 5874 return p; 5875 } 5876 5877 BUG(); /* The idle class should always have a runnable task. */ 5878 } 5879 5880 #ifdef CONFIG_SCHED_CORE 5881 static inline bool is_task_rq_idle(struct task_struct *t) 5882 { 5883 return (task_rq(t)->idle == t); 5884 } 5885 5886 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5887 { 5888 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5889 } 5890 5891 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5892 { 5893 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5894 return true; 5895 5896 return a->core_cookie == b->core_cookie; 5897 } 5898 5899 static inline struct task_struct *pick_task(struct rq *rq) 5900 { 5901 const struct sched_class *class; 5902 struct task_struct *p; 5903 5904 for_each_class(class) { 5905 p = class->pick_task(rq); 5906 if (p) 5907 return p; 5908 } 5909 5910 BUG(); /* The idle class should always have a runnable task. */ 5911 } 5912 5913 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5914 5915 static void queue_core_balance(struct rq *rq); 5916 5917 static struct task_struct * 5918 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5919 { 5920 struct task_struct *next, *p, *max = NULL; 5921 const struct cpumask *smt_mask; 5922 bool fi_before = false; 5923 bool core_clock_updated = (rq == rq->core); 5924 unsigned long cookie; 5925 int i, cpu, occ = 0; 5926 struct rq *rq_i; 5927 bool need_sync; 5928 5929 if (!sched_core_enabled(rq)) 5930 return __pick_next_task(rq, prev, rf); 5931 5932 cpu = cpu_of(rq); 5933 5934 /* Stopper task is switching into idle, no need core-wide selection. */ 5935 if (cpu_is_offline(cpu)) { 5936 /* 5937 * Reset core_pick so that we don't enter the fastpath when 5938 * coming online. core_pick would already be migrated to 5939 * another cpu during offline. 5940 */ 5941 rq->core_pick = NULL; 5942 return __pick_next_task(rq, prev, rf); 5943 } 5944 5945 /* 5946 * If there were no {en,de}queues since we picked (IOW, the task 5947 * pointers are all still valid), and we haven't scheduled the last 5948 * pick yet, do so now. 5949 * 5950 * rq->core_pick can be NULL if no selection was made for a CPU because 5951 * it was either offline or went offline during a sibling's core-wide 5952 * selection. In this case, do a core-wide selection. 5953 */ 5954 if (rq->core->core_pick_seq == rq->core->core_task_seq && 5955 rq->core->core_pick_seq != rq->core_sched_seq && 5956 rq->core_pick) { 5957 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 5958 5959 next = rq->core_pick; 5960 if (next != prev) { 5961 put_prev_task(rq, prev); 5962 set_next_task(rq, next); 5963 } 5964 5965 rq->core_pick = NULL; 5966 goto out; 5967 } 5968 5969 put_prev_task_balance(rq, prev, rf); 5970 5971 smt_mask = cpu_smt_mask(cpu); 5972 need_sync = !!rq->core->core_cookie; 5973 5974 /* reset state */ 5975 rq->core->core_cookie = 0UL; 5976 if (rq->core->core_forceidle_count) { 5977 if (!core_clock_updated) { 5978 update_rq_clock(rq->core); 5979 core_clock_updated = true; 5980 } 5981 sched_core_account_forceidle(rq); 5982 /* reset after accounting force idle */ 5983 rq->core->core_forceidle_start = 0; 5984 rq->core->core_forceidle_count = 0; 5985 rq->core->core_forceidle_occupation = 0; 5986 need_sync = true; 5987 fi_before = true; 5988 } 5989 5990 /* 5991 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 5992 * 5993 * @task_seq guards the task state ({en,de}queues) 5994 * @pick_seq is the @task_seq we did a selection on 5995 * @sched_seq is the @pick_seq we scheduled 5996 * 5997 * However, preemptions can cause multiple picks on the same task set. 5998 * 'Fix' this by also increasing @task_seq for every pick. 5999 */ 6000 rq->core->core_task_seq++; 6001 6002 /* 6003 * Optimize for common case where this CPU has no cookies 6004 * and there are no cookied tasks running on siblings. 6005 */ 6006 if (!need_sync) { 6007 next = pick_task(rq); 6008 if (!next->core_cookie) { 6009 rq->core_pick = NULL; 6010 /* 6011 * For robustness, update the min_vruntime_fi for 6012 * unconstrained picks as well. 6013 */ 6014 WARN_ON_ONCE(fi_before); 6015 task_vruntime_update(rq, next, false); 6016 goto out_set_next; 6017 } 6018 } 6019 6020 /* 6021 * For each thread: do the regular task pick and find the max prio task 6022 * amongst them. 6023 * 6024 * Tie-break prio towards the current CPU 6025 */ 6026 for_each_cpu_wrap(i, smt_mask, cpu) { 6027 rq_i = cpu_rq(i); 6028 6029 /* 6030 * Current cpu always has its clock updated on entrance to 6031 * pick_next_task(). If the current cpu is not the core, 6032 * the core may also have been updated above. 6033 */ 6034 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6035 update_rq_clock(rq_i); 6036 6037 p = rq_i->core_pick = pick_task(rq_i); 6038 if (!max || prio_less(max, p, fi_before)) 6039 max = p; 6040 } 6041 6042 cookie = rq->core->core_cookie = max->core_cookie; 6043 6044 /* 6045 * For each thread: try and find a runnable task that matches @max or 6046 * force idle. 6047 */ 6048 for_each_cpu(i, smt_mask) { 6049 rq_i = cpu_rq(i); 6050 p = rq_i->core_pick; 6051 6052 if (!cookie_equals(p, cookie)) { 6053 p = NULL; 6054 if (cookie) 6055 p = sched_core_find(rq_i, cookie); 6056 if (!p) 6057 p = idle_sched_class.pick_task(rq_i); 6058 } 6059 6060 rq_i->core_pick = p; 6061 6062 if (p == rq_i->idle) { 6063 if (rq_i->nr_running) { 6064 rq->core->core_forceidle_count++; 6065 if (!fi_before) 6066 rq->core->core_forceidle_seq++; 6067 } 6068 } else { 6069 occ++; 6070 } 6071 } 6072 6073 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6074 rq->core->core_forceidle_start = rq_clock(rq->core); 6075 rq->core->core_forceidle_occupation = occ; 6076 } 6077 6078 rq->core->core_pick_seq = rq->core->core_task_seq; 6079 next = rq->core_pick; 6080 rq->core_sched_seq = rq->core->core_pick_seq; 6081 6082 /* Something should have been selected for current CPU */ 6083 WARN_ON_ONCE(!next); 6084 6085 /* 6086 * Reschedule siblings 6087 * 6088 * NOTE: L1TF -- at this point we're no longer running the old task and 6089 * sending an IPI (below) ensures the sibling will no longer be running 6090 * their task. This ensures there is no inter-sibling overlap between 6091 * non-matching user state. 6092 */ 6093 for_each_cpu(i, smt_mask) { 6094 rq_i = cpu_rq(i); 6095 6096 /* 6097 * An online sibling might have gone offline before a task 6098 * could be picked for it, or it might be offline but later 6099 * happen to come online, but its too late and nothing was 6100 * picked for it. That's Ok - it will pick tasks for itself, 6101 * so ignore it. 6102 */ 6103 if (!rq_i->core_pick) 6104 continue; 6105 6106 /* 6107 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6108 * fi_before fi update? 6109 * 0 0 1 6110 * 0 1 1 6111 * 1 0 1 6112 * 1 1 0 6113 */ 6114 if (!(fi_before && rq->core->core_forceidle_count)) 6115 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6116 6117 rq_i->core_pick->core_occupation = occ; 6118 6119 if (i == cpu) { 6120 rq_i->core_pick = NULL; 6121 continue; 6122 } 6123 6124 /* Did we break L1TF mitigation requirements? */ 6125 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6126 6127 if (rq_i->curr == rq_i->core_pick) { 6128 rq_i->core_pick = NULL; 6129 continue; 6130 } 6131 6132 resched_curr(rq_i); 6133 } 6134 6135 out_set_next: 6136 set_next_task(rq, next); 6137 out: 6138 if (rq->core->core_forceidle_count && next == rq->idle) 6139 queue_core_balance(rq); 6140 6141 return next; 6142 } 6143 6144 static bool try_steal_cookie(int this, int that) 6145 { 6146 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6147 struct task_struct *p; 6148 unsigned long cookie; 6149 bool success = false; 6150 6151 local_irq_disable(); 6152 double_rq_lock(dst, src); 6153 6154 cookie = dst->core->core_cookie; 6155 if (!cookie) 6156 goto unlock; 6157 6158 if (dst->curr != dst->idle) 6159 goto unlock; 6160 6161 p = sched_core_find(src, cookie); 6162 if (p == src->idle) 6163 goto unlock; 6164 6165 do { 6166 if (p == src->core_pick || p == src->curr) 6167 goto next; 6168 6169 if (!is_cpu_allowed(p, this)) 6170 goto next; 6171 6172 if (p->core_occupation > dst->idle->core_occupation) 6173 goto next; 6174 6175 deactivate_task(src, p, 0); 6176 set_task_cpu(p, this); 6177 activate_task(dst, p, 0); 6178 6179 resched_curr(dst); 6180 6181 success = true; 6182 break; 6183 6184 next: 6185 p = sched_core_next(p, cookie); 6186 } while (p); 6187 6188 unlock: 6189 double_rq_unlock(dst, src); 6190 local_irq_enable(); 6191 6192 return success; 6193 } 6194 6195 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6196 { 6197 int i; 6198 6199 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) { 6200 if (i == cpu) 6201 continue; 6202 6203 if (need_resched()) 6204 break; 6205 6206 if (try_steal_cookie(cpu, i)) 6207 return true; 6208 } 6209 6210 return false; 6211 } 6212 6213 static void sched_core_balance(struct rq *rq) 6214 { 6215 struct sched_domain *sd; 6216 int cpu = cpu_of(rq); 6217 6218 preempt_disable(); 6219 rcu_read_lock(); 6220 raw_spin_rq_unlock_irq(rq); 6221 for_each_domain(cpu, sd) { 6222 if (need_resched()) 6223 break; 6224 6225 if (steal_cookie_task(cpu, sd)) 6226 break; 6227 } 6228 raw_spin_rq_lock_irq(rq); 6229 rcu_read_unlock(); 6230 preempt_enable(); 6231 } 6232 6233 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6234 6235 static void queue_core_balance(struct rq *rq) 6236 { 6237 if (!sched_core_enabled(rq)) 6238 return; 6239 6240 if (!rq->core->core_cookie) 6241 return; 6242 6243 if (!rq->nr_running) /* not forced idle */ 6244 return; 6245 6246 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6247 } 6248 6249 static void sched_core_cpu_starting(unsigned int cpu) 6250 { 6251 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6252 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6253 unsigned long flags; 6254 int t; 6255 6256 sched_core_lock(cpu, &flags); 6257 6258 WARN_ON_ONCE(rq->core != rq); 6259 6260 /* if we're the first, we'll be our own leader */ 6261 if (cpumask_weight(smt_mask) == 1) 6262 goto unlock; 6263 6264 /* find the leader */ 6265 for_each_cpu(t, smt_mask) { 6266 if (t == cpu) 6267 continue; 6268 rq = cpu_rq(t); 6269 if (rq->core == rq) { 6270 core_rq = rq; 6271 break; 6272 } 6273 } 6274 6275 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6276 goto unlock; 6277 6278 /* install and validate core_rq */ 6279 for_each_cpu(t, smt_mask) { 6280 rq = cpu_rq(t); 6281 6282 if (t == cpu) 6283 rq->core = core_rq; 6284 6285 WARN_ON_ONCE(rq->core != core_rq); 6286 } 6287 6288 unlock: 6289 sched_core_unlock(cpu, &flags); 6290 } 6291 6292 static void sched_core_cpu_deactivate(unsigned int cpu) 6293 { 6294 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6295 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6296 unsigned long flags; 6297 int t; 6298 6299 sched_core_lock(cpu, &flags); 6300 6301 /* if we're the last man standing, nothing to do */ 6302 if (cpumask_weight(smt_mask) == 1) { 6303 WARN_ON_ONCE(rq->core != rq); 6304 goto unlock; 6305 } 6306 6307 /* if we're not the leader, nothing to do */ 6308 if (rq->core != rq) 6309 goto unlock; 6310 6311 /* find a new leader */ 6312 for_each_cpu(t, smt_mask) { 6313 if (t == cpu) 6314 continue; 6315 core_rq = cpu_rq(t); 6316 break; 6317 } 6318 6319 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6320 goto unlock; 6321 6322 /* copy the shared state to the new leader */ 6323 core_rq->core_task_seq = rq->core_task_seq; 6324 core_rq->core_pick_seq = rq->core_pick_seq; 6325 core_rq->core_cookie = rq->core_cookie; 6326 core_rq->core_forceidle_count = rq->core_forceidle_count; 6327 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6328 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6329 6330 /* 6331 * Accounting edge for forced idle is handled in pick_next_task(). 6332 * Don't need another one here, since the hotplug thread shouldn't 6333 * have a cookie. 6334 */ 6335 core_rq->core_forceidle_start = 0; 6336 6337 /* install new leader */ 6338 for_each_cpu(t, smt_mask) { 6339 rq = cpu_rq(t); 6340 rq->core = core_rq; 6341 } 6342 6343 unlock: 6344 sched_core_unlock(cpu, &flags); 6345 } 6346 6347 static inline void sched_core_cpu_dying(unsigned int cpu) 6348 { 6349 struct rq *rq = cpu_rq(cpu); 6350 6351 if (rq->core != rq) 6352 rq->core = rq; 6353 } 6354 6355 #else /* !CONFIG_SCHED_CORE */ 6356 6357 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6358 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6359 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6360 6361 static struct task_struct * 6362 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6363 { 6364 return __pick_next_task(rq, prev, rf); 6365 } 6366 6367 #endif /* CONFIG_SCHED_CORE */ 6368 6369 /* 6370 * Constants for the sched_mode argument of __schedule(). 6371 * 6372 * The mode argument allows RT enabled kernels to differentiate a 6373 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6374 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6375 * optimize the AND operation out and just check for zero. 6376 */ 6377 #define SM_NONE 0x0 6378 #define SM_PREEMPT 0x1 6379 #define SM_RTLOCK_WAIT 0x2 6380 6381 #ifndef CONFIG_PREEMPT_RT 6382 # define SM_MASK_PREEMPT (~0U) 6383 #else 6384 # define SM_MASK_PREEMPT SM_PREEMPT 6385 #endif 6386 6387 /* 6388 * __schedule() is the main scheduler function. 6389 * 6390 * The main means of driving the scheduler and thus entering this function are: 6391 * 6392 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6393 * 6394 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6395 * paths. For example, see arch/x86/entry_64.S. 6396 * 6397 * To drive preemption between tasks, the scheduler sets the flag in timer 6398 * interrupt handler scheduler_tick(). 6399 * 6400 * 3. Wakeups don't really cause entry into schedule(). They add a 6401 * task to the run-queue and that's it. 6402 * 6403 * Now, if the new task added to the run-queue preempts the current 6404 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6405 * called on the nearest possible occasion: 6406 * 6407 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6408 * 6409 * - in syscall or exception context, at the next outmost 6410 * preempt_enable(). (this might be as soon as the wake_up()'s 6411 * spin_unlock()!) 6412 * 6413 * - in IRQ context, return from interrupt-handler to 6414 * preemptible context 6415 * 6416 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6417 * then at the next: 6418 * 6419 * - cond_resched() call 6420 * - explicit schedule() call 6421 * - return from syscall or exception to user-space 6422 * - return from interrupt-handler to user-space 6423 * 6424 * WARNING: must be called with preemption disabled! 6425 */ 6426 static void __sched notrace __schedule(unsigned int sched_mode) 6427 { 6428 struct task_struct *prev, *next; 6429 unsigned long *switch_count; 6430 unsigned long prev_state; 6431 struct rq_flags rf; 6432 struct rq *rq; 6433 int cpu; 6434 6435 cpu = smp_processor_id(); 6436 rq = cpu_rq(cpu); 6437 prev = rq->curr; 6438 6439 schedule_debug(prev, !!sched_mode); 6440 6441 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6442 hrtick_clear(rq); 6443 6444 local_irq_disable(); 6445 rcu_note_context_switch(!!sched_mode); 6446 6447 /* 6448 * Make sure that signal_pending_state()->signal_pending() below 6449 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6450 * done by the caller to avoid the race with signal_wake_up(): 6451 * 6452 * __set_current_state(@state) signal_wake_up() 6453 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6454 * wake_up_state(p, state) 6455 * LOCK rq->lock LOCK p->pi_state 6456 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6457 * if (signal_pending_state()) if (p->state & @state) 6458 * 6459 * Also, the membarrier system call requires a full memory barrier 6460 * after coming from user-space, before storing to rq->curr. 6461 */ 6462 rq_lock(rq, &rf); 6463 smp_mb__after_spinlock(); 6464 6465 /* Promote REQ to ACT */ 6466 rq->clock_update_flags <<= 1; 6467 update_rq_clock(rq); 6468 6469 switch_count = &prev->nivcsw; 6470 6471 /* 6472 * We must load prev->state once (task_struct::state is volatile), such 6473 * that we form a control dependency vs deactivate_task() below. 6474 */ 6475 prev_state = READ_ONCE(prev->__state); 6476 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6477 if (signal_pending_state(prev_state, prev)) { 6478 WRITE_ONCE(prev->__state, TASK_RUNNING); 6479 } else { 6480 prev->sched_contributes_to_load = 6481 (prev_state & TASK_UNINTERRUPTIBLE) && 6482 !(prev_state & TASK_NOLOAD) && 6483 !(prev_state & TASK_FROZEN); 6484 6485 if (prev->sched_contributes_to_load) 6486 rq->nr_uninterruptible++; 6487 6488 /* 6489 * __schedule() ttwu() 6490 * prev_state = prev->state; if (p->on_rq && ...) 6491 * if (prev_state) goto out; 6492 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6493 * p->state = TASK_WAKING 6494 * 6495 * Where __schedule() and ttwu() have matching control dependencies. 6496 * 6497 * After this, schedule() must not care about p->state any more. 6498 */ 6499 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6500 6501 if (prev->in_iowait) { 6502 atomic_inc(&rq->nr_iowait); 6503 delayacct_blkio_start(); 6504 } 6505 } 6506 switch_count = &prev->nvcsw; 6507 } 6508 6509 next = pick_next_task(rq, prev, &rf); 6510 clear_tsk_need_resched(prev); 6511 clear_preempt_need_resched(); 6512 #ifdef CONFIG_SCHED_DEBUG 6513 rq->last_seen_need_resched_ns = 0; 6514 #endif 6515 6516 if (likely(prev != next)) { 6517 rq->nr_switches++; 6518 /* 6519 * RCU users of rcu_dereference(rq->curr) may not see 6520 * changes to task_struct made by pick_next_task(). 6521 */ 6522 RCU_INIT_POINTER(rq->curr, next); 6523 /* 6524 * The membarrier system call requires each architecture 6525 * to have a full memory barrier after updating 6526 * rq->curr, before returning to user-space. 6527 * 6528 * Here are the schemes providing that barrier on the 6529 * various architectures: 6530 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 6531 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 6532 * - finish_lock_switch() for weakly-ordered 6533 * architectures where spin_unlock is a full barrier, 6534 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6535 * is a RELEASE barrier), 6536 */ 6537 ++*switch_count; 6538 6539 migrate_disable_switch(rq, prev); 6540 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6541 6542 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); 6543 6544 /* Also unlocks the rq: */ 6545 rq = context_switch(rq, prev, next, &rf); 6546 } else { 6547 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 6548 6549 rq_unpin_lock(rq, &rf); 6550 __balance_callbacks(rq); 6551 raw_spin_rq_unlock_irq(rq); 6552 } 6553 } 6554 6555 void __noreturn do_task_dead(void) 6556 { 6557 /* Causes final put_task_struct in finish_task_switch(): */ 6558 set_special_state(TASK_DEAD); 6559 6560 /* Tell freezer to ignore us: */ 6561 current->flags |= PF_NOFREEZE; 6562 6563 __schedule(SM_NONE); 6564 BUG(); 6565 6566 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6567 for (;;) 6568 cpu_relax(); 6569 } 6570 6571 static inline void sched_submit_work(struct task_struct *tsk) 6572 { 6573 unsigned int task_flags; 6574 6575 if (task_is_running(tsk)) 6576 return; 6577 6578 task_flags = tsk->flags; 6579 /* 6580 * If a worker goes to sleep, notify and ask workqueue whether it 6581 * wants to wake up a task to maintain concurrency. 6582 */ 6583 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6584 if (task_flags & PF_WQ_WORKER) 6585 wq_worker_sleeping(tsk); 6586 else 6587 io_wq_worker_sleeping(tsk); 6588 } 6589 6590 /* 6591 * spinlock and rwlock must not flush block requests. This will 6592 * deadlock if the callback attempts to acquire a lock which is 6593 * already acquired. 6594 */ 6595 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6596 6597 /* 6598 * If we are going to sleep and we have plugged IO queued, 6599 * make sure to submit it to avoid deadlocks. 6600 */ 6601 blk_flush_plug(tsk->plug, true); 6602 } 6603 6604 static void sched_update_worker(struct task_struct *tsk) 6605 { 6606 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6607 if (tsk->flags & PF_WQ_WORKER) 6608 wq_worker_running(tsk); 6609 else 6610 io_wq_worker_running(tsk); 6611 } 6612 } 6613 6614 asmlinkage __visible void __sched schedule(void) 6615 { 6616 struct task_struct *tsk = current; 6617 6618 sched_submit_work(tsk); 6619 do { 6620 preempt_disable(); 6621 __schedule(SM_NONE); 6622 sched_preempt_enable_no_resched(); 6623 } while (need_resched()); 6624 sched_update_worker(tsk); 6625 } 6626 EXPORT_SYMBOL(schedule); 6627 6628 /* 6629 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6630 * state (have scheduled out non-voluntarily) by making sure that all 6631 * tasks have either left the run queue or have gone into user space. 6632 * As idle tasks do not do either, they must not ever be preempted 6633 * (schedule out non-voluntarily). 6634 * 6635 * schedule_idle() is similar to schedule_preempt_disable() except that it 6636 * never enables preemption because it does not call sched_submit_work(). 6637 */ 6638 void __sched schedule_idle(void) 6639 { 6640 /* 6641 * As this skips calling sched_submit_work(), which the idle task does 6642 * regardless because that function is a nop when the task is in a 6643 * TASK_RUNNING state, make sure this isn't used someplace that the 6644 * current task can be in any other state. Note, idle is always in the 6645 * TASK_RUNNING state. 6646 */ 6647 WARN_ON_ONCE(current->__state); 6648 do { 6649 __schedule(SM_NONE); 6650 } while (need_resched()); 6651 } 6652 6653 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6654 asmlinkage __visible void __sched schedule_user(void) 6655 { 6656 /* 6657 * If we come here after a random call to set_need_resched(), 6658 * or we have been woken up remotely but the IPI has not yet arrived, 6659 * we haven't yet exited the RCU idle mode. Do it here manually until 6660 * we find a better solution. 6661 * 6662 * NB: There are buggy callers of this function. Ideally we 6663 * should warn if prev_state != CONTEXT_USER, but that will trigger 6664 * too frequently to make sense yet. 6665 */ 6666 enum ctx_state prev_state = exception_enter(); 6667 schedule(); 6668 exception_exit(prev_state); 6669 } 6670 #endif 6671 6672 /** 6673 * schedule_preempt_disabled - called with preemption disabled 6674 * 6675 * Returns with preemption disabled. Note: preempt_count must be 1 6676 */ 6677 void __sched schedule_preempt_disabled(void) 6678 { 6679 sched_preempt_enable_no_resched(); 6680 schedule(); 6681 preempt_disable(); 6682 } 6683 6684 #ifdef CONFIG_PREEMPT_RT 6685 void __sched notrace schedule_rtlock(void) 6686 { 6687 do { 6688 preempt_disable(); 6689 __schedule(SM_RTLOCK_WAIT); 6690 sched_preempt_enable_no_resched(); 6691 } while (need_resched()); 6692 } 6693 NOKPROBE_SYMBOL(schedule_rtlock); 6694 #endif 6695 6696 static void __sched notrace preempt_schedule_common(void) 6697 { 6698 do { 6699 /* 6700 * Because the function tracer can trace preempt_count_sub() 6701 * and it also uses preempt_enable/disable_notrace(), if 6702 * NEED_RESCHED is set, the preempt_enable_notrace() called 6703 * by the function tracer will call this function again and 6704 * cause infinite recursion. 6705 * 6706 * Preemption must be disabled here before the function 6707 * tracer can trace. Break up preempt_disable() into two 6708 * calls. One to disable preemption without fear of being 6709 * traced. The other to still record the preemption latency, 6710 * which can also be traced by the function tracer. 6711 */ 6712 preempt_disable_notrace(); 6713 preempt_latency_start(1); 6714 __schedule(SM_PREEMPT); 6715 preempt_latency_stop(1); 6716 preempt_enable_no_resched_notrace(); 6717 6718 /* 6719 * Check again in case we missed a preemption opportunity 6720 * between schedule and now. 6721 */ 6722 } while (need_resched()); 6723 } 6724 6725 #ifdef CONFIG_PREEMPTION 6726 /* 6727 * This is the entry point to schedule() from in-kernel preemption 6728 * off of preempt_enable. 6729 */ 6730 asmlinkage __visible void __sched notrace preempt_schedule(void) 6731 { 6732 /* 6733 * If there is a non-zero preempt_count or interrupts are disabled, 6734 * we do not want to preempt the current task. Just return.. 6735 */ 6736 if (likely(!preemptible())) 6737 return; 6738 preempt_schedule_common(); 6739 } 6740 NOKPROBE_SYMBOL(preempt_schedule); 6741 EXPORT_SYMBOL(preempt_schedule); 6742 6743 #ifdef CONFIG_PREEMPT_DYNAMIC 6744 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6745 #ifndef preempt_schedule_dynamic_enabled 6746 #define preempt_schedule_dynamic_enabled preempt_schedule 6747 #define preempt_schedule_dynamic_disabled NULL 6748 #endif 6749 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6750 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6751 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6752 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6753 void __sched notrace dynamic_preempt_schedule(void) 6754 { 6755 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6756 return; 6757 preempt_schedule(); 6758 } 6759 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6760 EXPORT_SYMBOL(dynamic_preempt_schedule); 6761 #endif 6762 #endif 6763 6764 /** 6765 * preempt_schedule_notrace - preempt_schedule called by tracing 6766 * 6767 * The tracing infrastructure uses preempt_enable_notrace to prevent 6768 * recursion and tracing preempt enabling caused by the tracing 6769 * infrastructure itself. But as tracing can happen in areas coming 6770 * from userspace or just about to enter userspace, a preempt enable 6771 * can occur before user_exit() is called. This will cause the scheduler 6772 * to be called when the system is still in usermode. 6773 * 6774 * To prevent this, the preempt_enable_notrace will use this function 6775 * instead of preempt_schedule() to exit user context if needed before 6776 * calling the scheduler. 6777 */ 6778 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6779 { 6780 enum ctx_state prev_ctx; 6781 6782 if (likely(!preemptible())) 6783 return; 6784 6785 do { 6786 /* 6787 * Because the function tracer can trace preempt_count_sub() 6788 * and it also uses preempt_enable/disable_notrace(), if 6789 * NEED_RESCHED is set, the preempt_enable_notrace() called 6790 * by the function tracer will call this function again and 6791 * cause infinite recursion. 6792 * 6793 * Preemption must be disabled here before the function 6794 * tracer can trace. Break up preempt_disable() into two 6795 * calls. One to disable preemption without fear of being 6796 * traced. The other to still record the preemption latency, 6797 * which can also be traced by the function tracer. 6798 */ 6799 preempt_disable_notrace(); 6800 preempt_latency_start(1); 6801 /* 6802 * Needs preempt disabled in case user_exit() is traced 6803 * and the tracer calls preempt_enable_notrace() causing 6804 * an infinite recursion. 6805 */ 6806 prev_ctx = exception_enter(); 6807 __schedule(SM_PREEMPT); 6808 exception_exit(prev_ctx); 6809 6810 preempt_latency_stop(1); 6811 preempt_enable_no_resched_notrace(); 6812 } while (need_resched()); 6813 } 6814 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6815 6816 #ifdef CONFIG_PREEMPT_DYNAMIC 6817 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6818 #ifndef preempt_schedule_notrace_dynamic_enabled 6819 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6820 #define preempt_schedule_notrace_dynamic_disabled NULL 6821 #endif 6822 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6823 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6824 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6825 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6826 void __sched notrace dynamic_preempt_schedule_notrace(void) 6827 { 6828 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6829 return; 6830 preempt_schedule_notrace(); 6831 } 6832 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6833 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6834 #endif 6835 #endif 6836 6837 #endif /* CONFIG_PREEMPTION */ 6838 6839 /* 6840 * This is the entry point to schedule() from kernel preemption 6841 * off of irq context. 6842 * Note, that this is called and return with irqs disabled. This will 6843 * protect us against recursive calling from irq. 6844 */ 6845 asmlinkage __visible void __sched preempt_schedule_irq(void) 6846 { 6847 enum ctx_state prev_state; 6848 6849 /* Catch callers which need to be fixed */ 6850 BUG_ON(preempt_count() || !irqs_disabled()); 6851 6852 prev_state = exception_enter(); 6853 6854 do { 6855 preempt_disable(); 6856 local_irq_enable(); 6857 __schedule(SM_PREEMPT); 6858 local_irq_disable(); 6859 sched_preempt_enable_no_resched(); 6860 } while (need_resched()); 6861 6862 exception_exit(prev_state); 6863 } 6864 6865 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6866 void *key) 6867 { 6868 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 6869 return try_to_wake_up(curr->private, mode, wake_flags); 6870 } 6871 EXPORT_SYMBOL(default_wake_function); 6872 6873 static void __setscheduler_prio(struct task_struct *p, int prio) 6874 { 6875 if (dl_prio(prio)) 6876 p->sched_class = &dl_sched_class; 6877 else if (rt_prio(prio)) 6878 p->sched_class = &rt_sched_class; 6879 else 6880 p->sched_class = &fair_sched_class; 6881 6882 p->prio = prio; 6883 } 6884 6885 #ifdef CONFIG_RT_MUTEXES 6886 6887 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 6888 { 6889 if (pi_task) 6890 prio = min(prio, pi_task->prio); 6891 6892 return prio; 6893 } 6894 6895 static inline int rt_effective_prio(struct task_struct *p, int prio) 6896 { 6897 struct task_struct *pi_task = rt_mutex_get_top_task(p); 6898 6899 return __rt_effective_prio(pi_task, prio); 6900 } 6901 6902 /* 6903 * rt_mutex_setprio - set the current priority of a task 6904 * @p: task to boost 6905 * @pi_task: donor task 6906 * 6907 * This function changes the 'effective' priority of a task. It does 6908 * not touch ->normal_prio like __setscheduler(). 6909 * 6910 * Used by the rt_mutex code to implement priority inheritance 6911 * logic. Call site only calls if the priority of the task changed. 6912 */ 6913 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 6914 { 6915 int prio, oldprio, queued, running, queue_flag = 6916 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6917 const struct sched_class *prev_class; 6918 struct rq_flags rf; 6919 struct rq *rq; 6920 6921 /* XXX used to be waiter->prio, not waiter->task->prio */ 6922 prio = __rt_effective_prio(pi_task, p->normal_prio); 6923 6924 /* 6925 * If nothing changed; bail early. 6926 */ 6927 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 6928 return; 6929 6930 rq = __task_rq_lock(p, &rf); 6931 update_rq_clock(rq); 6932 /* 6933 * Set under pi_lock && rq->lock, such that the value can be used under 6934 * either lock. 6935 * 6936 * Note that there is loads of tricky to make this pointer cache work 6937 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 6938 * ensure a task is de-boosted (pi_task is set to NULL) before the 6939 * task is allowed to run again (and can exit). This ensures the pointer 6940 * points to a blocked task -- which guarantees the task is present. 6941 */ 6942 p->pi_top_task = pi_task; 6943 6944 /* 6945 * For FIFO/RR we only need to set prio, if that matches we're done. 6946 */ 6947 if (prio == p->prio && !dl_prio(prio)) 6948 goto out_unlock; 6949 6950 /* 6951 * Idle task boosting is a nono in general. There is one 6952 * exception, when PREEMPT_RT and NOHZ is active: 6953 * 6954 * The idle task calls get_next_timer_interrupt() and holds 6955 * the timer wheel base->lock on the CPU and another CPU wants 6956 * to access the timer (probably to cancel it). We can safely 6957 * ignore the boosting request, as the idle CPU runs this code 6958 * with interrupts disabled and will complete the lock 6959 * protected section without being interrupted. So there is no 6960 * real need to boost. 6961 */ 6962 if (unlikely(p == rq->idle)) { 6963 WARN_ON(p != rq->curr); 6964 WARN_ON(p->pi_blocked_on); 6965 goto out_unlock; 6966 } 6967 6968 trace_sched_pi_setprio(p, pi_task); 6969 oldprio = p->prio; 6970 6971 if (oldprio == prio) 6972 queue_flag &= ~DEQUEUE_MOVE; 6973 6974 prev_class = p->sched_class; 6975 queued = task_on_rq_queued(p); 6976 running = task_current(rq, p); 6977 if (queued) 6978 dequeue_task(rq, p, queue_flag); 6979 if (running) 6980 put_prev_task(rq, p); 6981 6982 /* 6983 * Boosting condition are: 6984 * 1. -rt task is running and holds mutex A 6985 * --> -dl task blocks on mutex A 6986 * 6987 * 2. -dl task is running and holds mutex A 6988 * --> -dl task blocks on mutex A and could preempt the 6989 * running task 6990 */ 6991 if (dl_prio(prio)) { 6992 if (!dl_prio(p->normal_prio) || 6993 (pi_task && dl_prio(pi_task->prio) && 6994 dl_entity_preempt(&pi_task->dl, &p->dl))) { 6995 p->dl.pi_se = pi_task->dl.pi_se; 6996 queue_flag |= ENQUEUE_REPLENISH; 6997 } else { 6998 p->dl.pi_se = &p->dl; 6999 } 7000 } else if (rt_prio(prio)) { 7001 if (dl_prio(oldprio)) 7002 p->dl.pi_se = &p->dl; 7003 if (oldprio < prio) 7004 queue_flag |= ENQUEUE_HEAD; 7005 } else { 7006 if (dl_prio(oldprio)) 7007 p->dl.pi_se = &p->dl; 7008 if (rt_prio(oldprio)) 7009 p->rt.timeout = 0; 7010 } 7011 7012 __setscheduler_prio(p, prio); 7013 7014 if (queued) 7015 enqueue_task(rq, p, queue_flag); 7016 if (running) 7017 set_next_task(rq, p); 7018 7019 check_class_changed(rq, p, prev_class, oldprio); 7020 out_unlock: 7021 /* Avoid rq from going away on us: */ 7022 preempt_disable(); 7023 7024 rq_unpin_lock(rq, &rf); 7025 __balance_callbacks(rq); 7026 raw_spin_rq_unlock(rq); 7027 7028 preempt_enable(); 7029 } 7030 #else 7031 static inline int rt_effective_prio(struct task_struct *p, int prio) 7032 { 7033 return prio; 7034 } 7035 #endif 7036 7037 void set_user_nice(struct task_struct *p, long nice) 7038 { 7039 bool queued, running; 7040 int old_prio; 7041 struct rq_flags rf; 7042 struct rq *rq; 7043 7044 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 7045 return; 7046 /* 7047 * We have to be careful, if called from sys_setpriority(), 7048 * the task might be in the middle of scheduling on another CPU. 7049 */ 7050 rq = task_rq_lock(p, &rf); 7051 update_rq_clock(rq); 7052 7053 /* 7054 * The RT priorities are set via sched_setscheduler(), but we still 7055 * allow the 'normal' nice value to be set - but as expected 7056 * it won't have any effect on scheduling until the task is 7057 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 7058 */ 7059 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 7060 p->static_prio = NICE_TO_PRIO(nice); 7061 goto out_unlock; 7062 } 7063 queued = task_on_rq_queued(p); 7064 running = task_current(rq, p); 7065 if (queued) 7066 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 7067 if (running) 7068 put_prev_task(rq, p); 7069 7070 p->static_prio = NICE_TO_PRIO(nice); 7071 set_load_weight(p, true); 7072 old_prio = p->prio; 7073 p->prio = effective_prio(p); 7074 7075 if (queued) 7076 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7077 if (running) 7078 set_next_task(rq, p); 7079 7080 /* 7081 * If the task increased its priority or is running and 7082 * lowered its priority, then reschedule its CPU: 7083 */ 7084 p->sched_class->prio_changed(rq, p, old_prio); 7085 7086 out_unlock: 7087 task_rq_unlock(rq, p, &rf); 7088 } 7089 EXPORT_SYMBOL(set_user_nice); 7090 7091 /* 7092 * is_nice_reduction - check if nice value is an actual reduction 7093 * 7094 * Similar to can_nice() but does not perform a capability check. 7095 * 7096 * @p: task 7097 * @nice: nice value 7098 */ 7099 static bool is_nice_reduction(const struct task_struct *p, const int nice) 7100 { 7101 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 7102 int nice_rlim = nice_to_rlimit(nice); 7103 7104 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); 7105 } 7106 7107 /* 7108 * can_nice - check if a task can reduce its nice value 7109 * @p: task 7110 * @nice: nice value 7111 */ 7112 int can_nice(const struct task_struct *p, const int nice) 7113 { 7114 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); 7115 } 7116 7117 #ifdef __ARCH_WANT_SYS_NICE 7118 7119 /* 7120 * sys_nice - change the priority of the current process. 7121 * @increment: priority increment 7122 * 7123 * sys_setpriority is a more generic, but much slower function that 7124 * does similar things. 7125 */ 7126 SYSCALL_DEFINE1(nice, int, increment) 7127 { 7128 long nice, retval; 7129 7130 /* 7131 * Setpriority might change our priority at the same moment. 7132 * We don't have to worry. Conceptually one call occurs first 7133 * and we have a single winner. 7134 */ 7135 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 7136 nice = task_nice(current) + increment; 7137 7138 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 7139 if (increment < 0 && !can_nice(current, nice)) 7140 return -EPERM; 7141 7142 retval = security_task_setnice(current, nice); 7143 if (retval) 7144 return retval; 7145 7146 set_user_nice(current, nice); 7147 return 0; 7148 } 7149 7150 #endif 7151 7152 /** 7153 * task_prio - return the priority value of a given task. 7154 * @p: the task in question. 7155 * 7156 * Return: The priority value as seen by users in /proc. 7157 * 7158 * sched policy return value kernel prio user prio/nice 7159 * 7160 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 7161 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 7162 * deadline -101 -1 0 7163 */ 7164 int task_prio(const struct task_struct *p) 7165 { 7166 return p->prio - MAX_RT_PRIO; 7167 } 7168 7169 /** 7170 * idle_cpu - is a given CPU idle currently? 7171 * @cpu: the processor in question. 7172 * 7173 * Return: 1 if the CPU is currently idle. 0 otherwise. 7174 */ 7175 int idle_cpu(int cpu) 7176 { 7177 struct rq *rq = cpu_rq(cpu); 7178 7179 if (rq->curr != rq->idle) 7180 return 0; 7181 7182 if (rq->nr_running) 7183 return 0; 7184 7185 #ifdef CONFIG_SMP 7186 if (rq->ttwu_pending) 7187 return 0; 7188 #endif 7189 7190 return 1; 7191 } 7192 7193 /** 7194 * available_idle_cpu - is a given CPU idle for enqueuing work. 7195 * @cpu: the CPU in question. 7196 * 7197 * Return: 1 if the CPU is currently idle. 0 otherwise. 7198 */ 7199 int available_idle_cpu(int cpu) 7200 { 7201 if (!idle_cpu(cpu)) 7202 return 0; 7203 7204 if (vcpu_is_preempted(cpu)) 7205 return 0; 7206 7207 return 1; 7208 } 7209 7210 /** 7211 * idle_task - return the idle task for a given CPU. 7212 * @cpu: the processor in question. 7213 * 7214 * Return: The idle task for the CPU @cpu. 7215 */ 7216 struct task_struct *idle_task(int cpu) 7217 { 7218 return cpu_rq(cpu)->idle; 7219 } 7220 7221 #ifdef CONFIG_SMP 7222 /* 7223 * This function computes an effective utilization for the given CPU, to be 7224 * used for frequency selection given the linear relation: f = u * f_max. 7225 * 7226 * The scheduler tracks the following metrics: 7227 * 7228 * cpu_util_{cfs,rt,dl,irq}() 7229 * cpu_bw_dl() 7230 * 7231 * Where the cfs,rt and dl util numbers are tracked with the same metric and 7232 * synchronized windows and are thus directly comparable. 7233 * 7234 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 7235 * which excludes things like IRQ and steal-time. These latter are then accrued 7236 * in the irq utilization. 7237 * 7238 * The DL bandwidth number otoh is not a measured metric but a value computed 7239 * based on the task model parameters and gives the minimal utilization 7240 * required to meet deadlines. 7241 */ 7242 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 7243 enum cpu_util_type type, 7244 struct task_struct *p) 7245 { 7246 unsigned long dl_util, util, irq, max; 7247 struct rq *rq = cpu_rq(cpu); 7248 7249 max = arch_scale_cpu_capacity(cpu); 7250 7251 if (!uclamp_is_used() && 7252 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 7253 return max; 7254 } 7255 7256 /* 7257 * Early check to see if IRQ/steal time saturates the CPU, can be 7258 * because of inaccuracies in how we track these -- see 7259 * update_irq_load_avg(). 7260 */ 7261 irq = cpu_util_irq(rq); 7262 if (unlikely(irq >= max)) 7263 return max; 7264 7265 /* 7266 * Because the time spend on RT/DL tasks is visible as 'lost' time to 7267 * CFS tasks and we use the same metric to track the effective 7268 * utilization (PELT windows are synchronized) we can directly add them 7269 * to obtain the CPU's actual utilization. 7270 * 7271 * CFS and RT utilization can be boosted or capped, depending on 7272 * utilization clamp constraints requested by currently RUNNABLE 7273 * tasks. 7274 * When there are no CFS RUNNABLE tasks, clamps are released and 7275 * frequency will be gracefully reduced with the utilization decay. 7276 */ 7277 util = util_cfs + cpu_util_rt(rq); 7278 if (type == FREQUENCY_UTIL) 7279 util = uclamp_rq_util_with(rq, util, p); 7280 7281 dl_util = cpu_util_dl(rq); 7282 7283 /* 7284 * For frequency selection we do not make cpu_util_dl() a permanent part 7285 * of this sum because we want to use cpu_bw_dl() later on, but we need 7286 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 7287 * that we select f_max when there is no idle time. 7288 * 7289 * NOTE: numerical errors or stop class might cause us to not quite hit 7290 * saturation when we should -- something for later. 7291 */ 7292 if (util + dl_util >= max) 7293 return max; 7294 7295 /* 7296 * OTOH, for energy computation we need the estimated running time, so 7297 * include util_dl and ignore dl_bw. 7298 */ 7299 if (type == ENERGY_UTIL) 7300 util += dl_util; 7301 7302 /* 7303 * There is still idle time; further improve the number by using the 7304 * irq metric. Because IRQ/steal time is hidden from the task clock we 7305 * need to scale the task numbers: 7306 * 7307 * max - irq 7308 * U' = irq + --------- * U 7309 * max 7310 */ 7311 util = scale_irq_capacity(util, irq, max); 7312 util += irq; 7313 7314 /* 7315 * Bandwidth required by DEADLINE must always be granted while, for 7316 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 7317 * to gracefully reduce the frequency when no tasks show up for longer 7318 * periods of time. 7319 * 7320 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 7321 * bw_dl as requested freq. However, cpufreq is not yet ready for such 7322 * an interface. So, we only do the latter for now. 7323 */ 7324 if (type == FREQUENCY_UTIL) 7325 util += cpu_bw_dl(rq); 7326 7327 return min(max, util); 7328 } 7329 7330 unsigned long sched_cpu_util(int cpu) 7331 { 7332 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL); 7333 } 7334 #endif /* CONFIG_SMP */ 7335 7336 /** 7337 * find_process_by_pid - find a process with a matching PID value. 7338 * @pid: the pid in question. 7339 * 7340 * The task of @pid, if found. %NULL otherwise. 7341 */ 7342 static struct task_struct *find_process_by_pid(pid_t pid) 7343 { 7344 return pid ? find_task_by_vpid(pid) : current; 7345 } 7346 7347 /* 7348 * sched_setparam() passes in -1 for its policy, to let the functions 7349 * it calls know not to change it. 7350 */ 7351 #define SETPARAM_POLICY -1 7352 7353 static void __setscheduler_params(struct task_struct *p, 7354 const struct sched_attr *attr) 7355 { 7356 int policy = attr->sched_policy; 7357 7358 if (policy == SETPARAM_POLICY) 7359 policy = p->policy; 7360 7361 p->policy = policy; 7362 7363 if (dl_policy(policy)) 7364 __setparam_dl(p, attr); 7365 else if (fair_policy(policy)) 7366 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 7367 7368 /* 7369 * __sched_setscheduler() ensures attr->sched_priority == 0 when 7370 * !rt_policy. Always setting this ensures that things like 7371 * getparam()/getattr() don't report silly values for !rt tasks. 7372 */ 7373 p->rt_priority = attr->sched_priority; 7374 p->normal_prio = normal_prio(p); 7375 set_load_weight(p, true); 7376 } 7377 7378 /* 7379 * Check the target process has a UID that matches the current process's: 7380 */ 7381 static bool check_same_owner(struct task_struct *p) 7382 { 7383 const struct cred *cred = current_cred(), *pcred; 7384 bool match; 7385 7386 rcu_read_lock(); 7387 pcred = __task_cred(p); 7388 match = (uid_eq(cred->euid, pcred->euid) || 7389 uid_eq(cred->euid, pcred->uid)); 7390 rcu_read_unlock(); 7391 return match; 7392 } 7393 7394 /* 7395 * Allow unprivileged RT tasks to decrease priority. 7396 * Only issue a capable test if needed and only once to avoid an audit 7397 * event on permitted non-privileged operations: 7398 */ 7399 static int user_check_sched_setscheduler(struct task_struct *p, 7400 const struct sched_attr *attr, 7401 int policy, int reset_on_fork) 7402 { 7403 if (fair_policy(policy)) { 7404 if (attr->sched_nice < task_nice(p) && 7405 !is_nice_reduction(p, attr->sched_nice)) 7406 goto req_priv; 7407 } 7408 7409 if (rt_policy(policy)) { 7410 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); 7411 7412 /* Can't set/change the rt policy: */ 7413 if (policy != p->policy && !rlim_rtprio) 7414 goto req_priv; 7415 7416 /* Can't increase priority: */ 7417 if (attr->sched_priority > p->rt_priority && 7418 attr->sched_priority > rlim_rtprio) 7419 goto req_priv; 7420 } 7421 7422 /* 7423 * Can't set/change SCHED_DEADLINE policy at all for now 7424 * (safest behavior); in the future we would like to allow 7425 * unprivileged DL tasks to increase their relative deadline 7426 * or reduce their runtime (both ways reducing utilization) 7427 */ 7428 if (dl_policy(policy)) 7429 goto req_priv; 7430 7431 /* 7432 * Treat SCHED_IDLE as nice 20. Only allow a switch to 7433 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 7434 */ 7435 if (task_has_idle_policy(p) && !idle_policy(policy)) { 7436 if (!is_nice_reduction(p, task_nice(p))) 7437 goto req_priv; 7438 } 7439 7440 /* Can't change other user's priorities: */ 7441 if (!check_same_owner(p)) 7442 goto req_priv; 7443 7444 /* Normal users shall not reset the sched_reset_on_fork flag: */ 7445 if (p->sched_reset_on_fork && !reset_on_fork) 7446 goto req_priv; 7447 7448 return 0; 7449 7450 req_priv: 7451 if (!capable(CAP_SYS_NICE)) 7452 return -EPERM; 7453 7454 return 0; 7455 } 7456 7457 static int __sched_setscheduler(struct task_struct *p, 7458 const struct sched_attr *attr, 7459 bool user, bool pi) 7460 { 7461 int oldpolicy = -1, policy = attr->sched_policy; 7462 int retval, oldprio, newprio, queued, running; 7463 const struct sched_class *prev_class; 7464 struct balance_callback *head; 7465 struct rq_flags rf; 7466 int reset_on_fork; 7467 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7468 struct rq *rq; 7469 7470 /* The pi code expects interrupts enabled */ 7471 BUG_ON(pi && in_interrupt()); 7472 recheck: 7473 /* Double check policy once rq lock held: */ 7474 if (policy < 0) { 7475 reset_on_fork = p->sched_reset_on_fork; 7476 policy = oldpolicy = p->policy; 7477 } else { 7478 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 7479 7480 if (!valid_policy(policy)) 7481 return -EINVAL; 7482 } 7483 7484 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 7485 return -EINVAL; 7486 7487 /* 7488 * Valid priorities for SCHED_FIFO and SCHED_RR are 7489 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 7490 * SCHED_BATCH and SCHED_IDLE is 0. 7491 */ 7492 if (attr->sched_priority > MAX_RT_PRIO-1) 7493 return -EINVAL; 7494 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 7495 (rt_policy(policy) != (attr->sched_priority != 0))) 7496 return -EINVAL; 7497 7498 if (user) { 7499 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); 7500 if (retval) 7501 return retval; 7502 7503 if (attr->sched_flags & SCHED_FLAG_SUGOV) 7504 return -EINVAL; 7505 7506 retval = security_task_setscheduler(p); 7507 if (retval) 7508 return retval; 7509 } 7510 7511 /* Update task specific "requested" clamps */ 7512 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 7513 retval = uclamp_validate(p, attr); 7514 if (retval) 7515 return retval; 7516 } 7517 7518 if (pi) 7519 cpuset_read_lock(); 7520 7521 /* 7522 * Make sure no PI-waiters arrive (or leave) while we are 7523 * changing the priority of the task: 7524 * 7525 * To be able to change p->policy safely, the appropriate 7526 * runqueue lock must be held. 7527 */ 7528 rq = task_rq_lock(p, &rf); 7529 update_rq_clock(rq); 7530 7531 /* 7532 * Changing the policy of the stop threads its a very bad idea: 7533 */ 7534 if (p == rq->stop) { 7535 retval = -EINVAL; 7536 goto unlock; 7537 } 7538 7539 /* 7540 * If not changing anything there's no need to proceed further, 7541 * but store a possible modification of reset_on_fork. 7542 */ 7543 if (unlikely(policy == p->policy)) { 7544 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 7545 goto change; 7546 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 7547 goto change; 7548 if (dl_policy(policy) && dl_param_changed(p, attr)) 7549 goto change; 7550 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 7551 goto change; 7552 7553 p->sched_reset_on_fork = reset_on_fork; 7554 retval = 0; 7555 goto unlock; 7556 } 7557 change: 7558 7559 if (user) { 7560 #ifdef CONFIG_RT_GROUP_SCHED 7561 /* 7562 * Do not allow realtime tasks into groups that have no runtime 7563 * assigned. 7564 */ 7565 if (rt_bandwidth_enabled() && rt_policy(policy) && 7566 task_group(p)->rt_bandwidth.rt_runtime == 0 && 7567 !task_group_is_autogroup(task_group(p))) { 7568 retval = -EPERM; 7569 goto unlock; 7570 } 7571 #endif 7572 #ifdef CONFIG_SMP 7573 if (dl_bandwidth_enabled() && dl_policy(policy) && 7574 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 7575 cpumask_t *span = rq->rd->span; 7576 7577 /* 7578 * Don't allow tasks with an affinity mask smaller than 7579 * the entire root_domain to become SCHED_DEADLINE. We 7580 * will also fail if there's no bandwidth available. 7581 */ 7582 if (!cpumask_subset(span, p->cpus_ptr) || 7583 rq->rd->dl_bw.bw == 0) { 7584 retval = -EPERM; 7585 goto unlock; 7586 } 7587 } 7588 #endif 7589 } 7590 7591 /* Re-check policy now with rq lock held: */ 7592 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 7593 policy = oldpolicy = -1; 7594 task_rq_unlock(rq, p, &rf); 7595 if (pi) 7596 cpuset_read_unlock(); 7597 goto recheck; 7598 } 7599 7600 /* 7601 * If setscheduling to SCHED_DEADLINE (or changing the parameters 7602 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 7603 * is available. 7604 */ 7605 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 7606 retval = -EBUSY; 7607 goto unlock; 7608 } 7609 7610 p->sched_reset_on_fork = reset_on_fork; 7611 oldprio = p->prio; 7612 7613 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); 7614 if (pi) { 7615 /* 7616 * Take priority boosted tasks into account. If the new 7617 * effective priority is unchanged, we just store the new 7618 * normal parameters and do not touch the scheduler class and 7619 * the runqueue. This will be done when the task deboost 7620 * itself. 7621 */ 7622 newprio = rt_effective_prio(p, newprio); 7623 if (newprio == oldprio) 7624 queue_flags &= ~DEQUEUE_MOVE; 7625 } 7626 7627 queued = task_on_rq_queued(p); 7628 running = task_current(rq, p); 7629 if (queued) 7630 dequeue_task(rq, p, queue_flags); 7631 if (running) 7632 put_prev_task(rq, p); 7633 7634 prev_class = p->sched_class; 7635 7636 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { 7637 __setscheduler_params(p, attr); 7638 __setscheduler_prio(p, newprio); 7639 } 7640 __setscheduler_uclamp(p, attr); 7641 7642 if (queued) { 7643 /* 7644 * We enqueue to tail when the priority of a task is 7645 * increased (user space view). 7646 */ 7647 if (oldprio < p->prio) 7648 queue_flags |= ENQUEUE_HEAD; 7649 7650 enqueue_task(rq, p, queue_flags); 7651 } 7652 if (running) 7653 set_next_task(rq, p); 7654 7655 check_class_changed(rq, p, prev_class, oldprio); 7656 7657 /* Avoid rq from going away on us: */ 7658 preempt_disable(); 7659 head = splice_balance_callbacks(rq); 7660 task_rq_unlock(rq, p, &rf); 7661 7662 if (pi) { 7663 cpuset_read_unlock(); 7664 rt_mutex_adjust_pi(p); 7665 } 7666 7667 /* Run balance callbacks after we've adjusted the PI chain: */ 7668 balance_callbacks(rq, head); 7669 preempt_enable(); 7670 7671 return 0; 7672 7673 unlock: 7674 task_rq_unlock(rq, p, &rf); 7675 if (pi) 7676 cpuset_read_unlock(); 7677 return retval; 7678 } 7679 7680 static int _sched_setscheduler(struct task_struct *p, int policy, 7681 const struct sched_param *param, bool check) 7682 { 7683 struct sched_attr attr = { 7684 .sched_policy = policy, 7685 .sched_priority = param->sched_priority, 7686 .sched_nice = PRIO_TO_NICE(p->static_prio), 7687 }; 7688 7689 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 7690 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 7691 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7692 policy &= ~SCHED_RESET_ON_FORK; 7693 attr.sched_policy = policy; 7694 } 7695 7696 return __sched_setscheduler(p, &attr, check, true); 7697 } 7698 /** 7699 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 7700 * @p: the task in question. 7701 * @policy: new policy. 7702 * @param: structure containing the new RT priority. 7703 * 7704 * Use sched_set_fifo(), read its comment. 7705 * 7706 * Return: 0 on success. An error code otherwise. 7707 * 7708 * NOTE that the task may be already dead. 7709 */ 7710 int sched_setscheduler(struct task_struct *p, int policy, 7711 const struct sched_param *param) 7712 { 7713 return _sched_setscheduler(p, policy, param, true); 7714 } 7715 7716 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 7717 { 7718 return __sched_setscheduler(p, attr, true, true); 7719 } 7720 7721 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 7722 { 7723 return __sched_setscheduler(p, attr, false, true); 7724 } 7725 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 7726 7727 /** 7728 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 7729 * @p: the task in question. 7730 * @policy: new policy. 7731 * @param: structure containing the new RT priority. 7732 * 7733 * Just like sched_setscheduler, only don't bother checking if the 7734 * current context has permission. For example, this is needed in 7735 * stop_machine(): we create temporary high priority worker threads, 7736 * but our caller might not have that capability. 7737 * 7738 * Return: 0 on success. An error code otherwise. 7739 */ 7740 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 7741 const struct sched_param *param) 7742 { 7743 return _sched_setscheduler(p, policy, param, false); 7744 } 7745 7746 /* 7747 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 7748 * incapable of resource management, which is the one thing an OS really should 7749 * be doing. 7750 * 7751 * This is of course the reason it is limited to privileged users only. 7752 * 7753 * Worse still; it is fundamentally impossible to compose static priority 7754 * workloads. You cannot take two correctly working static prio workloads 7755 * and smash them together and still expect them to work. 7756 * 7757 * For this reason 'all' FIFO tasks the kernel creates are basically at: 7758 * 7759 * MAX_RT_PRIO / 2 7760 * 7761 * The administrator _MUST_ configure the system, the kernel simply doesn't 7762 * know enough information to make a sensible choice. 7763 */ 7764 void sched_set_fifo(struct task_struct *p) 7765 { 7766 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 7767 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7768 } 7769 EXPORT_SYMBOL_GPL(sched_set_fifo); 7770 7771 /* 7772 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 7773 */ 7774 void sched_set_fifo_low(struct task_struct *p) 7775 { 7776 struct sched_param sp = { .sched_priority = 1 }; 7777 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7778 } 7779 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 7780 7781 void sched_set_normal(struct task_struct *p, int nice) 7782 { 7783 struct sched_attr attr = { 7784 .sched_policy = SCHED_NORMAL, 7785 .sched_nice = nice, 7786 }; 7787 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 7788 } 7789 EXPORT_SYMBOL_GPL(sched_set_normal); 7790 7791 static int 7792 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 7793 { 7794 struct sched_param lparam; 7795 struct task_struct *p; 7796 int retval; 7797 7798 if (!param || pid < 0) 7799 return -EINVAL; 7800 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 7801 return -EFAULT; 7802 7803 rcu_read_lock(); 7804 retval = -ESRCH; 7805 p = find_process_by_pid(pid); 7806 if (likely(p)) 7807 get_task_struct(p); 7808 rcu_read_unlock(); 7809 7810 if (likely(p)) { 7811 retval = sched_setscheduler(p, policy, &lparam); 7812 put_task_struct(p); 7813 } 7814 7815 return retval; 7816 } 7817 7818 /* 7819 * Mimics kernel/events/core.c perf_copy_attr(). 7820 */ 7821 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 7822 { 7823 u32 size; 7824 int ret; 7825 7826 /* Zero the full structure, so that a short copy will be nice: */ 7827 memset(attr, 0, sizeof(*attr)); 7828 7829 ret = get_user(size, &uattr->size); 7830 if (ret) 7831 return ret; 7832 7833 /* ABI compatibility quirk: */ 7834 if (!size) 7835 size = SCHED_ATTR_SIZE_VER0; 7836 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 7837 goto err_size; 7838 7839 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 7840 if (ret) { 7841 if (ret == -E2BIG) 7842 goto err_size; 7843 return ret; 7844 } 7845 7846 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 7847 size < SCHED_ATTR_SIZE_VER1) 7848 return -EINVAL; 7849 7850 /* 7851 * XXX: Do we want to be lenient like existing syscalls; or do we want 7852 * to be strict and return an error on out-of-bounds values? 7853 */ 7854 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 7855 7856 return 0; 7857 7858 err_size: 7859 put_user(sizeof(*attr), &uattr->size); 7860 return -E2BIG; 7861 } 7862 7863 static void get_params(struct task_struct *p, struct sched_attr *attr) 7864 { 7865 if (task_has_dl_policy(p)) 7866 __getparam_dl(p, attr); 7867 else if (task_has_rt_policy(p)) 7868 attr->sched_priority = p->rt_priority; 7869 else 7870 attr->sched_nice = task_nice(p); 7871 } 7872 7873 /** 7874 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 7875 * @pid: the pid in question. 7876 * @policy: new policy. 7877 * @param: structure containing the new RT priority. 7878 * 7879 * Return: 0 on success. An error code otherwise. 7880 */ 7881 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 7882 { 7883 if (policy < 0) 7884 return -EINVAL; 7885 7886 return do_sched_setscheduler(pid, policy, param); 7887 } 7888 7889 /** 7890 * sys_sched_setparam - set/change the RT priority of a thread 7891 * @pid: the pid in question. 7892 * @param: structure containing the new RT priority. 7893 * 7894 * Return: 0 on success. An error code otherwise. 7895 */ 7896 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 7897 { 7898 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 7899 } 7900 7901 /** 7902 * sys_sched_setattr - same as above, but with extended sched_attr 7903 * @pid: the pid in question. 7904 * @uattr: structure containing the extended parameters. 7905 * @flags: for future extension. 7906 */ 7907 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 7908 unsigned int, flags) 7909 { 7910 struct sched_attr attr; 7911 struct task_struct *p; 7912 int retval; 7913 7914 if (!uattr || pid < 0 || flags) 7915 return -EINVAL; 7916 7917 retval = sched_copy_attr(uattr, &attr); 7918 if (retval) 7919 return retval; 7920 7921 if ((int)attr.sched_policy < 0) 7922 return -EINVAL; 7923 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 7924 attr.sched_policy = SETPARAM_POLICY; 7925 7926 rcu_read_lock(); 7927 retval = -ESRCH; 7928 p = find_process_by_pid(pid); 7929 if (likely(p)) 7930 get_task_struct(p); 7931 rcu_read_unlock(); 7932 7933 if (likely(p)) { 7934 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) 7935 get_params(p, &attr); 7936 retval = sched_setattr(p, &attr); 7937 put_task_struct(p); 7938 } 7939 7940 return retval; 7941 } 7942 7943 /** 7944 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 7945 * @pid: the pid in question. 7946 * 7947 * Return: On success, the policy of the thread. Otherwise, a negative error 7948 * code. 7949 */ 7950 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 7951 { 7952 struct task_struct *p; 7953 int retval; 7954 7955 if (pid < 0) 7956 return -EINVAL; 7957 7958 retval = -ESRCH; 7959 rcu_read_lock(); 7960 p = find_process_by_pid(pid); 7961 if (p) { 7962 retval = security_task_getscheduler(p); 7963 if (!retval) 7964 retval = p->policy 7965 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 7966 } 7967 rcu_read_unlock(); 7968 return retval; 7969 } 7970 7971 /** 7972 * sys_sched_getparam - get the RT priority of a thread 7973 * @pid: the pid in question. 7974 * @param: structure containing the RT priority. 7975 * 7976 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 7977 * code. 7978 */ 7979 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 7980 { 7981 struct sched_param lp = { .sched_priority = 0 }; 7982 struct task_struct *p; 7983 int retval; 7984 7985 if (!param || pid < 0) 7986 return -EINVAL; 7987 7988 rcu_read_lock(); 7989 p = find_process_by_pid(pid); 7990 retval = -ESRCH; 7991 if (!p) 7992 goto out_unlock; 7993 7994 retval = security_task_getscheduler(p); 7995 if (retval) 7996 goto out_unlock; 7997 7998 if (task_has_rt_policy(p)) 7999 lp.sched_priority = p->rt_priority; 8000 rcu_read_unlock(); 8001 8002 /* 8003 * This one might sleep, we cannot do it with a spinlock held ... 8004 */ 8005 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 8006 8007 return retval; 8008 8009 out_unlock: 8010 rcu_read_unlock(); 8011 return retval; 8012 } 8013 8014 /* 8015 * Copy the kernel size attribute structure (which might be larger 8016 * than what user-space knows about) to user-space. 8017 * 8018 * Note that all cases are valid: user-space buffer can be larger or 8019 * smaller than the kernel-space buffer. The usual case is that both 8020 * have the same size. 8021 */ 8022 static int 8023 sched_attr_copy_to_user(struct sched_attr __user *uattr, 8024 struct sched_attr *kattr, 8025 unsigned int usize) 8026 { 8027 unsigned int ksize = sizeof(*kattr); 8028 8029 if (!access_ok(uattr, usize)) 8030 return -EFAULT; 8031 8032 /* 8033 * sched_getattr() ABI forwards and backwards compatibility: 8034 * 8035 * If usize == ksize then we just copy everything to user-space and all is good. 8036 * 8037 * If usize < ksize then we only copy as much as user-space has space for, 8038 * this keeps ABI compatibility as well. We skip the rest. 8039 * 8040 * If usize > ksize then user-space is using a newer version of the ABI, 8041 * which part the kernel doesn't know about. Just ignore it - tooling can 8042 * detect the kernel's knowledge of attributes from the attr->size value 8043 * which is set to ksize in this case. 8044 */ 8045 kattr->size = min(usize, ksize); 8046 8047 if (copy_to_user(uattr, kattr, kattr->size)) 8048 return -EFAULT; 8049 8050 return 0; 8051 } 8052 8053 /** 8054 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 8055 * @pid: the pid in question. 8056 * @uattr: structure containing the extended parameters. 8057 * @usize: sizeof(attr) for fwd/bwd comp. 8058 * @flags: for future extension. 8059 */ 8060 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 8061 unsigned int, usize, unsigned int, flags) 8062 { 8063 struct sched_attr kattr = { }; 8064 struct task_struct *p; 8065 int retval; 8066 8067 if (!uattr || pid < 0 || usize > PAGE_SIZE || 8068 usize < SCHED_ATTR_SIZE_VER0 || flags) 8069 return -EINVAL; 8070 8071 rcu_read_lock(); 8072 p = find_process_by_pid(pid); 8073 retval = -ESRCH; 8074 if (!p) 8075 goto out_unlock; 8076 8077 retval = security_task_getscheduler(p); 8078 if (retval) 8079 goto out_unlock; 8080 8081 kattr.sched_policy = p->policy; 8082 if (p->sched_reset_on_fork) 8083 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 8084 get_params(p, &kattr); 8085 kattr.sched_flags &= SCHED_FLAG_ALL; 8086 8087 #ifdef CONFIG_UCLAMP_TASK 8088 /* 8089 * This could race with another potential updater, but this is fine 8090 * because it'll correctly read the old or the new value. We don't need 8091 * to guarantee who wins the race as long as it doesn't return garbage. 8092 */ 8093 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 8094 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 8095 #endif 8096 8097 rcu_read_unlock(); 8098 8099 return sched_attr_copy_to_user(uattr, &kattr, usize); 8100 8101 out_unlock: 8102 rcu_read_unlock(); 8103 return retval; 8104 } 8105 8106 #ifdef CONFIG_SMP 8107 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 8108 { 8109 int ret = 0; 8110 8111 /* 8112 * If the task isn't a deadline task or admission control is 8113 * disabled then we don't care about affinity changes. 8114 */ 8115 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) 8116 return 0; 8117 8118 /* 8119 * Since bandwidth control happens on root_domain basis, 8120 * if admission test is enabled, we only admit -deadline 8121 * tasks allowed to run on all the CPUs in the task's 8122 * root_domain. 8123 */ 8124 rcu_read_lock(); 8125 if (!cpumask_subset(task_rq(p)->rd->span, mask)) 8126 ret = -EBUSY; 8127 rcu_read_unlock(); 8128 return ret; 8129 } 8130 #endif 8131 8132 static int 8133 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx) 8134 { 8135 int retval; 8136 cpumask_var_t cpus_allowed, new_mask; 8137 8138 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) 8139 return -ENOMEM; 8140 8141 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 8142 retval = -ENOMEM; 8143 goto out_free_cpus_allowed; 8144 } 8145 8146 cpuset_cpus_allowed(p, cpus_allowed); 8147 cpumask_and(new_mask, ctx->new_mask, cpus_allowed); 8148 8149 ctx->new_mask = new_mask; 8150 ctx->flags |= SCA_CHECK; 8151 8152 retval = dl_task_check_affinity(p, new_mask); 8153 if (retval) 8154 goto out_free_new_mask; 8155 8156 retval = __set_cpus_allowed_ptr(p, ctx); 8157 if (retval) 8158 goto out_free_new_mask; 8159 8160 cpuset_cpus_allowed(p, cpus_allowed); 8161 if (!cpumask_subset(new_mask, cpus_allowed)) { 8162 /* 8163 * We must have raced with a concurrent cpuset update. 8164 * Just reset the cpumask to the cpuset's cpus_allowed. 8165 */ 8166 cpumask_copy(new_mask, cpus_allowed); 8167 8168 /* 8169 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr() 8170 * will restore the previous user_cpus_ptr value. 8171 * 8172 * In the unlikely event a previous user_cpus_ptr exists, 8173 * we need to further restrict the mask to what is allowed 8174 * by that old user_cpus_ptr. 8175 */ 8176 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) { 8177 bool empty = !cpumask_and(new_mask, new_mask, 8178 ctx->user_mask); 8179 8180 if (WARN_ON_ONCE(empty)) 8181 cpumask_copy(new_mask, cpus_allowed); 8182 } 8183 __set_cpus_allowed_ptr(p, ctx); 8184 retval = -EINVAL; 8185 } 8186 8187 out_free_new_mask: 8188 free_cpumask_var(new_mask); 8189 out_free_cpus_allowed: 8190 free_cpumask_var(cpus_allowed); 8191 return retval; 8192 } 8193 8194 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 8195 { 8196 struct affinity_context ac; 8197 struct cpumask *user_mask; 8198 struct task_struct *p; 8199 int retval; 8200 8201 rcu_read_lock(); 8202 8203 p = find_process_by_pid(pid); 8204 if (!p) { 8205 rcu_read_unlock(); 8206 return -ESRCH; 8207 } 8208 8209 /* Prevent p going away */ 8210 get_task_struct(p); 8211 rcu_read_unlock(); 8212 8213 if (p->flags & PF_NO_SETAFFINITY) { 8214 retval = -EINVAL; 8215 goto out_put_task; 8216 } 8217 8218 if (!check_same_owner(p)) { 8219 rcu_read_lock(); 8220 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 8221 rcu_read_unlock(); 8222 retval = -EPERM; 8223 goto out_put_task; 8224 } 8225 rcu_read_unlock(); 8226 } 8227 8228 retval = security_task_setscheduler(p); 8229 if (retval) 8230 goto out_put_task; 8231 8232 user_mask = kmalloc(cpumask_size(), GFP_KERNEL); 8233 if (!user_mask) { 8234 retval = -ENOMEM; 8235 goto out_put_task; 8236 } 8237 cpumask_copy(user_mask, in_mask); 8238 ac = (struct affinity_context){ 8239 .new_mask = in_mask, 8240 .user_mask = user_mask, 8241 .flags = SCA_USER, 8242 }; 8243 8244 retval = __sched_setaffinity(p, &ac); 8245 kfree(ac.user_mask); 8246 8247 out_put_task: 8248 put_task_struct(p); 8249 return retval; 8250 } 8251 8252 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 8253 struct cpumask *new_mask) 8254 { 8255 if (len < cpumask_size()) 8256 cpumask_clear(new_mask); 8257 else if (len > cpumask_size()) 8258 len = cpumask_size(); 8259 8260 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 8261 } 8262 8263 /** 8264 * sys_sched_setaffinity - set the CPU affinity of a process 8265 * @pid: pid of the process 8266 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8267 * @user_mask_ptr: user-space pointer to the new CPU mask 8268 * 8269 * Return: 0 on success. An error code otherwise. 8270 */ 8271 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 8272 unsigned long __user *, user_mask_ptr) 8273 { 8274 cpumask_var_t new_mask; 8275 int retval; 8276 8277 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 8278 return -ENOMEM; 8279 8280 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 8281 if (retval == 0) 8282 retval = sched_setaffinity(pid, new_mask); 8283 free_cpumask_var(new_mask); 8284 return retval; 8285 } 8286 8287 long sched_getaffinity(pid_t pid, struct cpumask *mask) 8288 { 8289 struct task_struct *p; 8290 unsigned long flags; 8291 int retval; 8292 8293 rcu_read_lock(); 8294 8295 retval = -ESRCH; 8296 p = find_process_by_pid(pid); 8297 if (!p) 8298 goto out_unlock; 8299 8300 retval = security_task_getscheduler(p); 8301 if (retval) 8302 goto out_unlock; 8303 8304 raw_spin_lock_irqsave(&p->pi_lock, flags); 8305 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 8306 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 8307 8308 out_unlock: 8309 rcu_read_unlock(); 8310 8311 return retval; 8312 } 8313 8314 /** 8315 * sys_sched_getaffinity - get the CPU affinity of a process 8316 * @pid: pid of the process 8317 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8318 * @user_mask_ptr: user-space pointer to hold the current CPU mask 8319 * 8320 * Return: size of CPU mask copied to user_mask_ptr on success. An 8321 * error code otherwise. 8322 */ 8323 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 8324 unsigned long __user *, user_mask_ptr) 8325 { 8326 int ret; 8327 cpumask_var_t mask; 8328 8329 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 8330 return -EINVAL; 8331 if (len & (sizeof(unsigned long)-1)) 8332 return -EINVAL; 8333 8334 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 8335 return -ENOMEM; 8336 8337 ret = sched_getaffinity(pid, mask); 8338 if (ret == 0) { 8339 unsigned int retlen = min(len, cpumask_size()); 8340 8341 if (copy_to_user(user_mask_ptr, mask, retlen)) 8342 ret = -EFAULT; 8343 else 8344 ret = retlen; 8345 } 8346 free_cpumask_var(mask); 8347 8348 return ret; 8349 } 8350 8351 static void do_sched_yield(void) 8352 { 8353 struct rq_flags rf; 8354 struct rq *rq; 8355 8356 rq = this_rq_lock_irq(&rf); 8357 8358 schedstat_inc(rq->yld_count); 8359 current->sched_class->yield_task(rq); 8360 8361 preempt_disable(); 8362 rq_unlock_irq(rq, &rf); 8363 sched_preempt_enable_no_resched(); 8364 8365 schedule(); 8366 } 8367 8368 /** 8369 * sys_sched_yield - yield the current processor to other threads. 8370 * 8371 * This function yields the current CPU to other tasks. If there are no 8372 * other threads running on this CPU then this function will return. 8373 * 8374 * Return: 0. 8375 */ 8376 SYSCALL_DEFINE0(sched_yield) 8377 { 8378 do_sched_yield(); 8379 return 0; 8380 } 8381 8382 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 8383 int __sched __cond_resched(void) 8384 { 8385 if (should_resched(0)) { 8386 preempt_schedule_common(); 8387 return 1; 8388 } 8389 /* 8390 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 8391 * whether the current CPU is in an RCU read-side critical section, 8392 * so the tick can report quiescent states even for CPUs looping 8393 * in kernel context. In contrast, in non-preemptible kernels, 8394 * RCU readers leave no in-memory hints, which means that CPU-bound 8395 * processes executing in kernel context might never report an 8396 * RCU quiescent state. Therefore, the following code causes 8397 * cond_resched() to report a quiescent state, but only when RCU 8398 * is in urgent need of one. 8399 */ 8400 #ifndef CONFIG_PREEMPT_RCU 8401 rcu_all_qs(); 8402 #endif 8403 return 0; 8404 } 8405 EXPORT_SYMBOL(__cond_resched); 8406 #endif 8407 8408 #ifdef CONFIG_PREEMPT_DYNAMIC 8409 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8410 #define cond_resched_dynamic_enabled __cond_resched 8411 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 8412 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 8413 EXPORT_STATIC_CALL_TRAMP(cond_resched); 8414 8415 #define might_resched_dynamic_enabled __cond_resched 8416 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 8417 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 8418 EXPORT_STATIC_CALL_TRAMP(might_resched); 8419 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8420 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 8421 int __sched dynamic_cond_resched(void) 8422 { 8423 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 8424 return 0; 8425 return __cond_resched(); 8426 } 8427 EXPORT_SYMBOL(dynamic_cond_resched); 8428 8429 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 8430 int __sched dynamic_might_resched(void) 8431 { 8432 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 8433 return 0; 8434 return __cond_resched(); 8435 } 8436 EXPORT_SYMBOL(dynamic_might_resched); 8437 #endif 8438 #endif 8439 8440 /* 8441 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 8442 * call schedule, and on return reacquire the lock. 8443 * 8444 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 8445 * operations here to prevent schedule() from being called twice (once via 8446 * spin_unlock(), once by hand). 8447 */ 8448 int __cond_resched_lock(spinlock_t *lock) 8449 { 8450 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8451 int ret = 0; 8452 8453 lockdep_assert_held(lock); 8454 8455 if (spin_needbreak(lock) || resched) { 8456 spin_unlock(lock); 8457 if (!_cond_resched()) 8458 cpu_relax(); 8459 ret = 1; 8460 spin_lock(lock); 8461 } 8462 return ret; 8463 } 8464 EXPORT_SYMBOL(__cond_resched_lock); 8465 8466 int __cond_resched_rwlock_read(rwlock_t *lock) 8467 { 8468 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8469 int ret = 0; 8470 8471 lockdep_assert_held_read(lock); 8472 8473 if (rwlock_needbreak(lock) || resched) { 8474 read_unlock(lock); 8475 if (!_cond_resched()) 8476 cpu_relax(); 8477 ret = 1; 8478 read_lock(lock); 8479 } 8480 return ret; 8481 } 8482 EXPORT_SYMBOL(__cond_resched_rwlock_read); 8483 8484 int __cond_resched_rwlock_write(rwlock_t *lock) 8485 { 8486 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8487 int ret = 0; 8488 8489 lockdep_assert_held_write(lock); 8490 8491 if (rwlock_needbreak(lock) || resched) { 8492 write_unlock(lock); 8493 if (!_cond_resched()) 8494 cpu_relax(); 8495 ret = 1; 8496 write_lock(lock); 8497 } 8498 return ret; 8499 } 8500 EXPORT_SYMBOL(__cond_resched_rwlock_write); 8501 8502 #ifdef CONFIG_PREEMPT_DYNAMIC 8503 8504 #ifdef CONFIG_GENERIC_ENTRY 8505 #include <linux/entry-common.h> 8506 #endif 8507 8508 /* 8509 * SC:cond_resched 8510 * SC:might_resched 8511 * SC:preempt_schedule 8512 * SC:preempt_schedule_notrace 8513 * SC:irqentry_exit_cond_resched 8514 * 8515 * 8516 * NONE: 8517 * cond_resched <- __cond_resched 8518 * might_resched <- RET0 8519 * preempt_schedule <- NOP 8520 * preempt_schedule_notrace <- NOP 8521 * irqentry_exit_cond_resched <- NOP 8522 * 8523 * VOLUNTARY: 8524 * cond_resched <- __cond_resched 8525 * might_resched <- __cond_resched 8526 * preempt_schedule <- NOP 8527 * preempt_schedule_notrace <- NOP 8528 * irqentry_exit_cond_resched <- NOP 8529 * 8530 * FULL: 8531 * cond_resched <- RET0 8532 * might_resched <- RET0 8533 * preempt_schedule <- preempt_schedule 8534 * preempt_schedule_notrace <- preempt_schedule_notrace 8535 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 8536 */ 8537 8538 enum { 8539 preempt_dynamic_undefined = -1, 8540 preempt_dynamic_none, 8541 preempt_dynamic_voluntary, 8542 preempt_dynamic_full, 8543 }; 8544 8545 int preempt_dynamic_mode = preempt_dynamic_undefined; 8546 8547 int sched_dynamic_mode(const char *str) 8548 { 8549 if (!strcmp(str, "none")) 8550 return preempt_dynamic_none; 8551 8552 if (!strcmp(str, "voluntary")) 8553 return preempt_dynamic_voluntary; 8554 8555 if (!strcmp(str, "full")) 8556 return preempt_dynamic_full; 8557 8558 return -EINVAL; 8559 } 8560 8561 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8562 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 8563 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 8564 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8565 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) 8566 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) 8567 #else 8568 #error "Unsupported PREEMPT_DYNAMIC mechanism" 8569 #endif 8570 8571 void sched_dynamic_update(int mode) 8572 { 8573 /* 8574 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 8575 * the ZERO state, which is invalid. 8576 */ 8577 preempt_dynamic_enable(cond_resched); 8578 preempt_dynamic_enable(might_resched); 8579 preempt_dynamic_enable(preempt_schedule); 8580 preempt_dynamic_enable(preempt_schedule_notrace); 8581 preempt_dynamic_enable(irqentry_exit_cond_resched); 8582 8583 switch (mode) { 8584 case preempt_dynamic_none: 8585 preempt_dynamic_enable(cond_resched); 8586 preempt_dynamic_disable(might_resched); 8587 preempt_dynamic_disable(preempt_schedule); 8588 preempt_dynamic_disable(preempt_schedule_notrace); 8589 preempt_dynamic_disable(irqentry_exit_cond_resched); 8590 pr_info("Dynamic Preempt: none\n"); 8591 break; 8592 8593 case preempt_dynamic_voluntary: 8594 preempt_dynamic_enable(cond_resched); 8595 preempt_dynamic_enable(might_resched); 8596 preempt_dynamic_disable(preempt_schedule); 8597 preempt_dynamic_disable(preempt_schedule_notrace); 8598 preempt_dynamic_disable(irqentry_exit_cond_resched); 8599 pr_info("Dynamic Preempt: voluntary\n"); 8600 break; 8601 8602 case preempt_dynamic_full: 8603 preempt_dynamic_disable(cond_resched); 8604 preempt_dynamic_disable(might_resched); 8605 preempt_dynamic_enable(preempt_schedule); 8606 preempt_dynamic_enable(preempt_schedule_notrace); 8607 preempt_dynamic_enable(irqentry_exit_cond_resched); 8608 pr_info("Dynamic Preempt: full\n"); 8609 break; 8610 } 8611 8612 preempt_dynamic_mode = mode; 8613 } 8614 8615 static int __init setup_preempt_mode(char *str) 8616 { 8617 int mode = sched_dynamic_mode(str); 8618 if (mode < 0) { 8619 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 8620 return 0; 8621 } 8622 8623 sched_dynamic_update(mode); 8624 return 1; 8625 } 8626 __setup("preempt=", setup_preempt_mode); 8627 8628 static void __init preempt_dynamic_init(void) 8629 { 8630 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 8631 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 8632 sched_dynamic_update(preempt_dynamic_none); 8633 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 8634 sched_dynamic_update(preempt_dynamic_voluntary); 8635 } else { 8636 /* Default static call setting, nothing to do */ 8637 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 8638 preempt_dynamic_mode = preempt_dynamic_full; 8639 pr_info("Dynamic Preempt: full\n"); 8640 } 8641 } 8642 } 8643 8644 #define PREEMPT_MODEL_ACCESSOR(mode) \ 8645 bool preempt_model_##mode(void) \ 8646 { \ 8647 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 8648 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 8649 } \ 8650 EXPORT_SYMBOL_GPL(preempt_model_##mode) 8651 8652 PREEMPT_MODEL_ACCESSOR(none); 8653 PREEMPT_MODEL_ACCESSOR(voluntary); 8654 PREEMPT_MODEL_ACCESSOR(full); 8655 8656 #else /* !CONFIG_PREEMPT_DYNAMIC */ 8657 8658 static inline void preempt_dynamic_init(void) { } 8659 8660 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */ 8661 8662 /** 8663 * yield - yield the current processor to other threads. 8664 * 8665 * Do not ever use this function, there's a 99% chance you're doing it wrong. 8666 * 8667 * The scheduler is at all times free to pick the calling task as the most 8668 * eligible task to run, if removing the yield() call from your code breaks 8669 * it, it's already broken. 8670 * 8671 * Typical broken usage is: 8672 * 8673 * while (!event) 8674 * yield(); 8675 * 8676 * where one assumes that yield() will let 'the other' process run that will 8677 * make event true. If the current task is a SCHED_FIFO task that will never 8678 * happen. Never use yield() as a progress guarantee!! 8679 * 8680 * If you want to use yield() to wait for something, use wait_event(). 8681 * If you want to use yield() to be 'nice' for others, use cond_resched(). 8682 * If you still want to use yield(), do not! 8683 */ 8684 void __sched yield(void) 8685 { 8686 set_current_state(TASK_RUNNING); 8687 do_sched_yield(); 8688 } 8689 EXPORT_SYMBOL(yield); 8690 8691 /** 8692 * yield_to - yield the current processor to another thread in 8693 * your thread group, or accelerate that thread toward the 8694 * processor it's on. 8695 * @p: target task 8696 * @preempt: whether task preemption is allowed or not 8697 * 8698 * It's the caller's job to ensure that the target task struct 8699 * can't go away on us before we can do any checks. 8700 * 8701 * Return: 8702 * true (>0) if we indeed boosted the target task. 8703 * false (0) if we failed to boost the target. 8704 * -ESRCH if there's no task to yield to. 8705 */ 8706 int __sched yield_to(struct task_struct *p, bool preempt) 8707 { 8708 struct task_struct *curr = current; 8709 struct rq *rq, *p_rq; 8710 unsigned long flags; 8711 int yielded = 0; 8712 8713 local_irq_save(flags); 8714 rq = this_rq(); 8715 8716 again: 8717 p_rq = task_rq(p); 8718 /* 8719 * If we're the only runnable task on the rq and target rq also 8720 * has only one task, there's absolutely no point in yielding. 8721 */ 8722 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 8723 yielded = -ESRCH; 8724 goto out_irq; 8725 } 8726 8727 double_rq_lock(rq, p_rq); 8728 if (task_rq(p) != p_rq) { 8729 double_rq_unlock(rq, p_rq); 8730 goto again; 8731 } 8732 8733 if (!curr->sched_class->yield_to_task) 8734 goto out_unlock; 8735 8736 if (curr->sched_class != p->sched_class) 8737 goto out_unlock; 8738 8739 if (task_on_cpu(p_rq, p) || !task_is_running(p)) 8740 goto out_unlock; 8741 8742 yielded = curr->sched_class->yield_to_task(rq, p); 8743 if (yielded) { 8744 schedstat_inc(rq->yld_count); 8745 /* 8746 * Make p's CPU reschedule; pick_next_entity takes care of 8747 * fairness. 8748 */ 8749 if (preempt && rq != p_rq) 8750 resched_curr(p_rq); 8751 } 8752 8753 out_unlock: 8754 double_rq_unlock(rq, p_rq); 8755 out_irq: 8756 local_irq_restore(flags); 8757 8758 if (yielded > 0) 8759 schedule(); 8760 8761 return yielded; 8762 } 8763 EXPORT_SYMBOL_GPL(yield_to); 8764 8765 int io_schedule_prepare(void) 8766 { 8767 int old_iowait = current->in_iowait; 8768 8769 current->in_iowait = 1; 8770 blk_flush_plug(current->plug, true); 8771 return old_iowait; 8772 } 8773 8774 void io_schedule_finish(int token) 8775 { 8776 current->in_iowait = token; 8777 } 8778 8779 /* 8780 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 8781 * that process accounting knows that this is a task in IO wait state. 8782 */ 8783 long __sched io_schedule_timeout(long timeout) 8784 { 8785 int token; 8786 long ret; 8787 8788 token = io_schedule_prepare(); 8789 ret = schedule_timeout(timeout); 8790 io_schedule_finish(token); 8791 8792 return ret; 8793 } 8794 EXPORT_SYMBOL(io_schedule_timeout); 8795 8796 void __sched io_schedule(void) 8797 { 8798 int token; 8799 8800 token = io_schedule_prepare(); 8801 schedule(); 8802 io_schedule_finish(token); 8803 } 8804 EXPORT_SYMBOL(io_schedule); 8805 8806 /** 8807 * sys_sched_get_priority_max - return maximum RT priority. 8808 * @policy: scheduling class. 8809 * 8810 * Return: On success, this syscall returns the maximum 8811 * rt_priority that can be used by a given scheduling class. 8812 * On failure, a negative error code is returned. 8813 */ 8814 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 8815 { 8816 int ret = -EINVAL; 8817 8818 switch (policy) { 8819 case SCHED_FIFO: 8820 case SCHED_RR: 8821 ret = MAX_RT_PRIO-1; 8822 break; 8823 case SCHED_DEADLINE: 8824 case SCHED_NORMAL: 8825 case SCHED_BATCH: 8826 case SCHED_IDLE: 8827 ret = 0; 8828 break; 8829 } 8830 return ret; 8831 } 8832 8833 /** 8834 * sys_sched_get_priority_min - return minimum RT priority. 8835 * @policy: scheduling class. 8836 * 8837 * Return: On success, this syscall returns the minimum 8838 * rt_priority that can be used by a given scheduling class. 8839 * On failure, a negative error code is returned. 8840 */ 8841 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 8842 { 8843 int ret = -EINVAL; 8844 8845 switch (policy) { 8846 case SCHED_FIFO: 8847 case SCHED_RR: 8848 ret = 1; 8849 break; 8850 case SCHED_DEADLINE: 8851 case SCHED_NORMAL: 8852 case SCHED_BATCH: 8853 case SCHED_IDLE: 8854 ret = 0; 8855 } 8856 return ret; 8857 } 8858 8859 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 8860 { 8861 struct task_struct *p; 8862 unsigned int time_slice; 8863 struct rq_flags rf; 8864 struct rq *rq; 8865 int retval; 8866 8867 if (pid < 0) 8868 return -EINVAL; 8869 8870 retval = -ESRCH; 8871 rcu_read_lock(); 8872 p = find_process_by_pid(pid); 8873 if (!p) 8874 goto out_unlock; 8875 8876 retval = security_task_getscheduler(p); 8877 if (retval) 8878 goto out_unlock; 8879 8880 rq = task_rq_lock(p, &rf); 8881 time_slice = 0; 8882 if (p->sched_class->get_rr_interval) 8883 time_slice = p->sched_class->get_rr_interval(rq, p); 8884 task_rq_unlock(rq, p, &rf); 8885 8886 rcu_read_unlock(); 8887 jiffies_to_timespec64(time_slice, t); 8888 return 0; 8889 8890 out_unlock: 8891 rcu_read_unlock(); 8892 return retval; 8893 } 8894 8895 /** 8896 * sys_sched_rr_get_interval - return the default timeslice of a process. 8897 * @pid: pid of the process. 8898 * @interval: userspace pointer to the timeslice value. 8899 * 8900 * this syscall writes the default timeslice value of a given process 8901 * into the user-space timespec buffer. A value of '0' means infinity. 8902 * 8903 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 8904 * an error code. 8905 */ 8906 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 8907 struct __kernel_timespec __user *, interval) 8908 { 8909 struct timespec64 t; 8910 int retval = sched_rr_get_interval(pid, &t); 8911 8912 if (retval == 0) 8913 retval = put_timespec64(&t, interval); 8914 8915 return retval; 8916 } 8917 8918 #ifdef CONFIG_COMPAT_32BIT_TIME 8919 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 8920 struct old_timespec32 __user *, interval) 8921 { 8922 struct timespec64 t; 8923 int retval = sched_rr_get_interval(pid, &t); 8924 8925 if (retval == 0) 8926 retval = put_old_timespec32(&t, interval); 8927 return retval; 8928 } 8929 #endif 8930 8931 void sched_show_task(struct task_struct *p) 8932 { 8933 unsigned long free = 0; 8934 int ppid; 8935 8936 if (!try_get_task_stack(p)) 8937 return; 8938 8939 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 8940 8941 if (task_is_running(p)) 8942 pr_cont(" running task "); 8943 #ifdef CONFIG_DEBUG_STACK_USAGE 8944 free = stack_not_used(p); 8945 #endif 8946 ppid = 0; 8947 rcu_read_lock(); 8948 if (pid_alive(p)) 8949 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 8950 rcu_read_unlock(); 8951 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n", 8952 free, task_pid_nr(p), ppid, 8953 read_task_thread_flags(p)); 8954 8955 print_worker_info(KERN_INFO, p); 8956 print_stop_info(KERN_INFO, p); 8957 show_stack(p, NULL, KERN_INFO); 8958 put_task_stack(p); 8959 } 8960 EXPORT_SYMBOL_GPL(sched_show_task); 8961 8962 static inline bool 8963 state_filter_match(unsigned long state_filter, struct task_struct *p) 8964 { 8965 unsigned int state = READ_ONCE(p->__state); 8966 8967 /* no filter, everything matches */ 8968 if (!state_filter) 8969 return true; 8970 8971 /* filter, but doesn't match */ 8972 if (!(state & state_filter)) 8973 return false; 8974 8975 /* 8976 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 8977 * TASK_KILLABLE). 8978 */ 8979 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 8980 return false; 8981 8982 return true; 8983 } 8984 8985 8986 void show_state_filter(unsigned int state_filter) 8987 { 8988 struct task_struct *g, *p; 8989 8990 rcu_read_lock(); 8991 for_each_process_thread(g, p) { 8992 /* 8993 * reset the NMI-timeout, listing all files on a slow 8994 * console might take a lot of time: 8995 * Also, reset softlockup watchdogs on all CPUs, because 8996 * another CPU might be blocked waiting for us to process 8997 * an IPI. 8998 */ 8999 touch_nmi_watchdog(); 9000 touch_all_softlockup_watchdogs(); 9001 if (state_filter_match(state_filter, p)) 9002 sched_show_task(p); 9003 } 9004 9005 #ifdef CONFIG_SCHED_DEBUG 9006 if (!state_filter) 9007 sysrq_sched_debug_show(); 9008 #endif 9009 rcu_read_unlock(); 9010 /* 9011 * Only show locks if all tasks are dumped: 9012 */ 9013 if (!state_filter) 9014 debug_show_all_locks(); 9015 } 9016 9017 /** 9018 * init_idle - set up an idle thread for a given CPU 9019 * @idle: task in question 9020 * @cpu: CPU the idle task belongs to 9021 * 9022 * NOTE: this function does not set the idle thread's NEED_RESCHED 9023 * flag, to make booting more robust. 9024 */ 9025 void __init init_idle(struct task_struct *idle, int cpu) 9026 { 9027 #ifdef CONFIG_SMP 9028 struct affinity_context ac = (struct affinity_context) { 9029 .new_mask = cpumask_of(cpu), 9030 .flags = 0, 9031 }; 9032 #endif 9033 struct rq *rq = cpu_rq(cpu); 9034 unsigned long flags; 9035 9036 __sched_fork(0, idle); 9037 9038 raw_spin_lock_irqsave(&idle->pi_lock, flags); 9039 raw_spin_rq_lock(rq); 9040 9041 idle->__state = TASK_RUNNING; 9042 idle->se.exec_start = sched_clock(); 9043 /* 9044 * PF_KTHREAD should already be set at this point; regardless, make it 9045 * look like a proper per-CPU kthread. 9046 */ 9047 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY; 9048 kthread_set_per_cpu(idle, cpu); 9049 9050 #ifdef CONFIG_SMP 9051 /* 9052 * It's possible that init_idle() gets called multiple times on a task, 9053 * in that case do_set_cpus_allowed() will not do the right thing. 9054 * 9055 * And since this is boot we can forgo the serialization. 9056 */ 9057 set_cpus_allowed_common(idle, &ac); 9058 #endif 9059 /* 9060 * We're having a chicken and egg problem, even though we are 9061 * holding rq->lock, the CPU isn't yet set to this CPU so the 9062 * lockdep check in task_group() will fail. 9063 * 9064 * Similar case to sched_fork(). / Alternatively we could 9065 * use task_rq_lock() here and obtain the other rq->lock. 9066 * 9067 * Silence PROVE_RCU 9068 */ 9069 rcu_read_lock(); 9070 __set_task_cpu(idle, cpu); 9071 rcu_read_unlock(); 9072 9073 rq->idle = idle; 9074 rcu_assign_pointer(rq->curr, idle); 9075 idle->on_rq = TASK_ON_RQ_QUEUED; 9076 #ifdef CONFIG_SMP 9077 idle->on_cpu = 1; 9078 #endif 9079 raw_spin_rq_unlock(rq); 9080 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 9081 9082 /* Set the preempt count _outside_ the spinlocks! */ 9083 init_idle_preempt_count(idle, cpu); 9084 9085 /* 9086 * The idle tasks have their own, simple scheduling class: 9087 */ 9088 idle->sched_class = &idle_sched_class; 9089 ftrace_graph_init_idle_task(idle, cpu); 9090 vtime_init_idle(idle, cpu); 9091 #ifdef CONFIG_SMP 9092 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 9093 #endif 9094 } 9095 9096 #ifdef CONFIG_SMP 9097 9098 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 9099 const struct cpumask *trial) 9100 { 9101 int ret = 1; 9102 9103 if (cpumask_empty(cur)) 9104 return ret; 9105 9106 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 9107 9108 return ret; 9109 } 9110 9111 int task_can_attach(struct task_struct *p, 9112 const struct cpumask *cs_effective_cpus) 9113 { 9114 int ret = 0; 9115 9116 /* 9117 * Kthreads which disallow setaffinity shouldn't be moved 9118 * to a new cpuset; we don't want to change their CPU 9119 * affinity and isolating such threads by their set of 9120 * allowed nodes is unnecessary. Thus, cpusets are not 9121 * applicable for such threads. This prevents checking for 9122 * success of set_cpus_allowed_ptr() on all attached tasks 9123 * before cpus_mask may be changed. 9124 */ 9125 if (p->flags & PF_NO_SETAFFINITY) { 9126 ret = -EINVAL; 9127 goto out; 9128 } 9129 9130 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 9131 cs_effective_cpus)) { 9132 int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus); 9133 9134 if (unlikely(cpu >= nr_cpu_ids)) 9135 return -EINVAL; 9136 ret = dl_cpu_busy(cpu, p); 9137 } 9138 9139 out: 9140 return ret; 9141 } 9142 9143 bool sched_smp_initialized __read_mostly; 9144 9145 #ifdef CONFIG_NUMA_BALANCING 9146 /* Migrate current task p to target_cpu */ 9147 int migrate_task_to(struct task_struct *p, int target_cpu) 9148 { 9149 struct migration_arg arg = { p, target_cpu }; 9150 int curr_cpu = task_cpu(p); 9151 9152 if (curr_cpu == target_cpu) 9153 return 0; 9154 9155 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 9156 return -EINVAL; 9157 9158 /* TODO: This is not properly updating schedstats */ 9159 9160 trace_sched_move_numa(p, curr_cpu, target_cpu); 9161 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 9162 } 9163 9164 /* 9165 * Requeue a task on a given node and accurately track the number of NUMA 9166 * tasks on the runqueues 9167 */ 9168 void sched_setnuma(struct task_struct *p, int nid) 9169 { 9170 bool queued, running; 9171 struct rq_flags rf; 9172 struct rq *rq; 9173 9174 rq = task_rq_lock(p, &rf); 9175 queued = task_on_rq_queued(p); 9176 running = task_current(rq, p); 9177 9178 if (queued) 9179 dequeue_task(rq, p, DEQUEUE_SAVE); 9180 if (running) 9181 put_prev_task(rq, p); 9182 9183 p->numa_preferred_nid = nid; 9184 9185 if (queued) 9186 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 9187 if (running) 9188 set_next_task(rq, p); 9189 task_rq_unlock(rq, p, &rf); 9190 } 9191 #endif /* CONFIG_NUMA_BALANCING */ 9192 9193 #ifdef CONFIG_HOTPLUG_CPU 9194 /* 9195 * Ensure that the idle task is using init_mm right before its CPU goes 9196 * offline. 9197 */ 9198 void idle_task_exit(void) 9199 { 9200 struct mm_struct *mm = current->active_mm; 9201 9202 BUG_ON(cpu_online(smp_processor_id())); 9203 BUG_ON(current != this_rq()->idle); 9204 9205 if (mm != &init_mm) { 9206 switch_mm(mm, &init_mm, current); 9207 finish_arch_post_lock_switch(); 9208 } 9209 9210 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 9211 } 9212 9213 static int __balance_push_cpu_stop(void *arg) 9214 { 9215 struct task_struct *p = arg; 9216 struct rq *rq = this_rq(); 9217 struct rq_flags rf; 9218 int cpu; 9219 9220 raw_spin_lock_irq(&p->pi_lock); 9221 rq_lock(rq, &rf); 9222 9223 update_rq_clock(rq); 9224 9225 if (task_rq(p) == rq && task_on_rq_queued(p)) { 9226 cpu = select_fallback_rq(rq->cpu, p); 9227 rq = __migrate_task(rq, &rf, p, cpu); 9228 } 9229 9230 rq_unlock(rq, &rf); 9231 raw_spin_unlock_irq(&p->pi_lock); 9232 9233 put_task_struct(p); 9234 9235 return 0; 9236 } 9237 9238 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 9239 9240 /* 9241 * Ensure we only run per-cpu kthreads once the CPU goes !active. 9242 * 9243 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 9244 * effective when the hotplug motion is down. 9245 */ 9246 static void balance_push(struct rq *rq) 9247 { 9248 struct task_struct *push_task = rq->curr; 9249 9250 lockdep_assert_rq_held(rq); 9251 9252 /* 9253 * Ensure the thing is persistent until balance_push_set(.on = false); 9254 */ 9255 rq->balance_callback = &balance_push_callback; 9256 9257 /* 9258 * Only active while going offline and when invoked on the outgoing 9259 * CPU. 9260 */ 9261 if (!cpu_dying(rq->cpu) || rq != this_rq()) 9262 return; 9263 9264 /* 9265 * Both the cpu-hotplug and stop task are in this case and are 9266 * required to complete the hotplug process. 9267 */ 9268 if (kthread_is_per_cpu(push_task) || 9269 is_migration_disabled(push_task)) { 9270 9271 /* 9272 * If this is the idle task on the outgoing CPU try to wake 9273 * up the hotplug control thread which might wait for the 9274 * last task to vanish. The rcuwait_active() check is 9275 * accurate here because the waiter is pinned on this CPU 9276 * and can't obviously be running in parallel. 9277 * 9278 * On RT kernels this also has to check whether there are 9279 * pinned and scheduled out tasks on the runqueue. They 9280 * need to leave the migrate disabled section first. 9281 */ 9282 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 9283 rcuwait_active(&rq->hotplug_wait)) { 9284 raw_spin_rq_unlock(rq); 9285 rcuwait_wake_up(&rq->hotplug_wait); 9286 raw_spin_rq_lock(rq); 9287 } 9288 return; 9289 } 9290 9291 get_task_struct(push_task); 9292 /* 9293 * Temporarily drop rq->lock such that we can wake-up the stop task. 9294 * Both preemption and IRQs are still disabled. 9295 */ 9296 raw_spin_rq_unlock(rq); 9297 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 9298 this_cpu_ptr(&push_work)); 9299 /* 9300 * At this point need_resched() is true and we'll take the loop in 9301 * schedule(). The next pick is obviously going to be the stop task 9302 * which kthread_is_per_cpu() and will push this task away. 9303 */ 9304 raw_spin_rq_lock(rq); 9305 } 9306 9307 static void balance_push_set(int cpu, bool on) 9308 { 9309 struct rq *rq = cpu_rq(cpu); 9310 struct rq_flags rf; 9311 9312 rq_lock_irqsave(rq, &rf); 9313 if (on) { 9314 WARN_ON_ONCE(rq->balance_callback); 9315 rq->balance_callback = &balance_push_callback; 9316 } else if (rq->balance_callback == &balance_push_callback) { 9317 rq->balance_callback = NULL; 9318 } 9319 rq_unlock_irqrestore(rq, &rf); 9320 } 9321 9322 /* 9323 * Invoked from a CPUs hotplug control thread after the CPU has been marked 9324 * inactive. All tasks which are not per CPU kernel threads are either 9325 * pushed off this CPU now via balance_push() or placed on a different CPU 9326 * during wakeup. Wait until the CPU is quiescent. 9327 */ 9328 static void balance_hotplug_wait(void) 9329 { 9330 struct rq *rq = this_rq(); 9331 9332 rcuwait_wait_event(&rq->hotplug_wait, 9333 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 9334 TASK_UNINTERRUPTIBLE); 9335 } 9336 9337 #else 9338 9339 static inline void balance_push(struct rq *rq) 9340 { 9341 } 9342 9343 static inline void balance_push_set(int cpu, bool on) 9344 { 9345 } 9346 9347 static inline void balance_hotplug_wait(void) 9348 { 9349 } 9350 9351 #endif /* CONFIG_HOTPLUG_CPU */ 9352 9353 void set_rq_online(struct rq *rq) 9354 { 9355 if (!rq->online) { 9356 const struct sched_class *class; 9357 9358 cpumask_set_cpu(rq->cpu, rq->rd->online); 9359 rq->online = 1; 9360 9361 for_each_class(class) { 9362 if (class->rq_online) 9363 class->rq_online(rq); 9364 } 9365 } 9366 } 9367 9368 void set_rq_offline(struct rq *rq) 9369 { 9370 if (rq->online) { 9371 const struct sched_class *class; 9372 9373 for_each_class(class) { 9374 if (class->rq_offline) 9375 class->rq_offline(rq); 9376 } 9377 9378 cpumask_clear_cpu(rq->cpu, rq->rd->online); 9379 rq->online = 0; 9380 } 9381 } 9382 9383 /* 9384 * used to mark begin/end of suspend/resume: 9385 */ 9386 static int num_cpus_frozen; 9387 9388 /* 9389 * Update cpusets according to cpu_active mask. If cpusets are 9390 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 9391 * around partition_sched_domains(). 9392 * 9393 * If we come here as part of a suspend/resume, don't touch cpusets because we 9394 * want to restore it back to its original state upon resume anyway. 9395 */ 9396 static void cpuset_cpu_active(void) 9397 { 9398 if (cpuhp_tasks_frozen) { 9399 /* 9400 * num_cpus_frozen tracks how many CPUs are involved in suspend 9401 * resume sequence. As long as this is not the last online 9402 * operation in the resume sequence, just build a single sched 9403 * domain, ignoring cpusets. 9404 */ 9405 partition_sched_domains(1, NULL, NULL); 9406 if (--num_cpus_frozen) 9407 return; 9408 /* 9409 * This is the last CPU online operation. So fall through and 9410 * restore the original sched domains by considering the 9411 * cpuset configurations. 9412 */ 9413 cpuset_force_rebuild(); 9414 } 9415 cpuset_update_active_cpus(); 9416 } 9417 9418 static int cpuset_cpu_inactive(unsigned int cpu) 9419 { 9420 if (!cpuhp_tasks_frozen) { 9421 int ret = dl_cpu_busy(cpu, NULL); 9422 9423 if (ret) 9424 return ret; 9425 cpuset_update_active_cpus(); 9426 } else { 9427 num_cpus_frozen++; 9428 partition_sched_domains(1, NULL, NULL); 9429 } 9430 return 0; 9431 } 9432 9433 int sched_cpu_activate(unsigned int cpu) 9434 { 9435 struct rq *rq = cpu_rq(cpu); 9436 struct rq_flags rf; 9437 9438 /* 9439 * Clear the balance_push callback and prepare to schedule 9440 * regular tasks. 9441 */ 9442 balance_push_set(cpu, false); 9443 9444 #ifdef CONFIG_SCHED_SMT 9445 /* 9446 * When going up, increment the number of cores with SMT present. 9447 */ 9448 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9449 static_branch_inc_cpuslocked(&sched_smt_present); 9450 #endif 9451 set_cpu_active(cpu, true); 9452 9453 if (sched_smp_initialized) { 9454 sched_update_numa(cpu, true); 9455 sched_domains_numa_masks_set(cpu); 9456 cpuset_cpu_active(); 9457 } 9458 9459 /* 9460 * Put the rq online, if not already. This happens: 9461 * 9462 * 1) In the early boot process, because we build the real domains 9463 * after all CPUs have been brought up. 9464 * 9465 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 9466 * domains. 9467 */ 9468 rq_lock_irqsave(rq, &rf); 9469 if (rq->rd) { 9470 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9471 set_rq_online(rq); 9472 } 9473 rq_unlock_irqrestore(rq, &rf); 9474 9475 return 0; 9476 } 9477 9478 int sched_cpu_deactivate(unsigned int cpu) 9479 { 9480 struct rq *rq = cpu_rq(cpu); 9481 struct rq_flags rf; 9482 int ret; 9483 9484 /* 9485 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 9486 * load balancing when not active 9487 */ 9488 nohz_balance_exit_idle(rq); 9489 9490 set_cpu_active(cpu, false); 9491 9492 /* 9493 * From this point forward, this CPU will refuse to run any task that 9494 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 9495 * push those tasks away until this gets cleared, see 9496 * sched_cpu_dying(). 9497 */ 9498 balance_push_set(cpu, true); 9499 9500 /* 9501 * We've cleared cpu_active_mask / set balance_push, wait for all 9502 * preempt-disabled and RCU users of this state to go away such that 9503 * all new such users will observe it. 9504 * 9505 * Specifically, we rely on ttwu to no longer target this CPU, see 9506 * ttwu_queue_cond() and is_cpu_allowed(). 9507 * 9508 * Do sync before park smpboot threads to take care the rcu boost case. 9509 */ 9510 synchronize_rcu(); 9511 9512 rq_lock_irqsave(rq, &rf); 9513 if (rq->rd) { 9514 update_rq_clock(rq); 9515 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9516 set_rq_offline(rq); 9517 } 9518 rq_unlock_irqrestore(rq, &rf); 9519 9520 #ifdef CONFIG_SCHED_SMT 9521 /* 9522 * When going down, decrement the number of cores with SMT present. 9523 */ 9524 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9525 static_branch_dec_cpuslocked(&sched_smt_present); 9526 9527 sched_core_cpu_deactivate(cpu); 9528 #endif 9529 9530 if (!sched_smp_initialized) 9531 return 0; 9532 9533 sched_update_numa(cpu, false); 9534 ret = cpuset_cpu_inactive(cpu); 9535 if (ret) { 9536 balance_push_set(cpu, false); 9537 set_cpu_active(cpu, true); 9538 sched_update_numa(cpu, true); 9539 return ret; 9540 } 9541 sched_domains_numa_masks_clear(cpu); 9542 return 0; 9543 } 9544 9545 static void sched_rq_cpu_starting(unsigned int cpu) 9546 { 9547 struct rq *rq = cpu_rq(cpu); 9548 9549 rq->calc_load_update = calc_load_update; 9550 update_max_interval(); 9551 } 9552 9553 int sched_cpu_starting(unsigned int cpu) 9554 { 9555 sched_core_cpu_starting(cpu); 9556 sched_rq_cpu_starting(cpu); 9557 sched_tick_start(cpu); 9558 return 0; 9559 } 9560 9561 #ifdef CONFIG_HOTPLUG_CPU 9562 9563 /* 9564 * Invoked immediately before the stopper thread is invoked to bring the 9565 * CPU down completely. At this point all per CPU kthreads except the 9566 * hotplug thread (current) and the stopper thread (inactive) have been 9567 * either parked or have been unbound from the outgoing CPU. Ensure that 9568 * any of those which might be on the way out are gone. 9569 * 9570 * If after this point a bound task is being woken on this CPU then the 9571 * responsible hotplug callback has failed to do it's job. 9572 * sched_cpu_dying() will catch it with the appropriate fireworks. 9573 */ 9574 int sched_cpu_wait_empty(unsigned int cpu) 9575 { 9576 balance_hotplug_wait(); 9577 return 0; 9578 } 9579 9580 /* 9581 * Since this CPU is going 'away' for a while, fold any nr_active delta we 9582 * might have. Called from the CPU stopper task after ensuring that the 9583 * stopper is the last running task on the CPU, so nr_active count is 9584 * stable. We need to take the teardown thread which is calling this into 9585 * account, so we hand in adjust = 1 to the load calculation. 9586 * 9587 * Also see the comment "Global load-average calculations". 9588 */ 9589 static void calc_load_migrate(struct rq *rq) 9590 { 9591 long delta = calc_load_fold_active(rq, 1); 9592 9593 if (delta) 9594 atomic_long_add(delta, &calc_load_tasks); 9595 } 9596 9597 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 9598 { 9599 struct task_struct *g, *p; 9600 int cpu = cpu_of(rq); 9601 9602 lockdep_assert_rq_held(rq); 9603 9604 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 9605 for_each_process_thread(g, p) { 9606 if (task_cpu(p) != cpu) 9607 continue; 9608 9609 if (!task_on_rq_queued(p)) 9610 continue; 9611 9612 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 9613 } 9614 } 9615 9616 int sched_cpu_dying(unsigned int cpu) 9617 { 9618 struct rq *rq = cpu_rq(cpu); 9619 struct rq_flags rf; 9620 9621 /* Handle pending wakeups and then migrate everything off */ 9622 sched_tick_stop(cpu); 9623 9624 rq_lock_irqsave(rq, &rf); 9625 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 9626 WARN(true, "Dying CPU not properly vacated!"); 9627 dump_rq_tasks(rq, KERN_WARNING); 9628 } 9629 rq_unlock_irqrestore(rq, &rf); 9630 9631 calc_load_migrate(rq); 9632 update_max_interval(); 9633 hrtick_clear(rq); 9634 sched_core_cpu_dying(cpu); 9635 return 0; 9636 } 9637 #endif 9638 9639 void __init sched_init_smp(void) 9640 { 9641 sched_init_numa(NUMA_NO_NODE); 9642 9643 /* 9644 * There's no userspace yet to cause hotplug operations; hence all the 9645 * CPU masks are stable and all blatant races in the below code cannot 9646 * happen. 9647 */ 9648 mutex_lock(&sched_domains_mutex); 9649 sched_init_domains(cpu_active_mask); 9650 mutex_unlock(&sched_domains_mutex); 9651 9652 /* Move init over to a non-isolated CPU */ 9653 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 9654 BUG(); 9655 current->flags &= ~PF_NO_SETAFFINITY; 9656 sched_init_granularity(); 9657 9658 init_sched_rt_class(); 9659 init_sched_dl_class(); 9660 9661 sched_smp_initialized = true; 9662 } 9663 9664 static int __init migration_init(void) 9665 { 9666 sched_cpu_starting(smp_processor_id()); 9667 return 0; 9668 } 9669 early_initcall(migration_init); 9670 9671 #else 9672 void __init sched_init_smp(void) 9673 { 9674 sched_init_granularity(); 9675 } 9676 #endif /* CONFIG_SMP */ 9677 9678 int in_sched_functions(unsigned long addr) 9679 { 9680 return in_lock_functions(addr) || 9681 (addr >= (unsigned long)__sched_text_start 9682 && addr < (unsigned long)__sched_text_end); 9683 } 9684 9685 #ifdef CONFIG_CGROUP_SCHED 9686 /* 9687 * Default task group. 9688 * Every task in system belongs to this group at bootup. 9689 */ 9690 struct task_group root_task_group; 9691 LIST_HEAD(task_groups); 9692 9693 /* Cacheline aligned slab cache for task_group */ 9694 static struct kmem_cache *task_group_cache __read_mostly; 9695 #endif 9696 9697 void __init sched_init(void) 9698 { 9699 unsigned long ptr = 0; 9700 int i; 9701 9702 /* Make sure the linker didn't screw up */ 9703 BUG_ON(&idle_sched_class != &fair_sched_class + 1 || 9704 &fair_sched_class != &rt_sched_class + 1 || 9705 &rt_sched_class != &dl_sched_class + 1); 9706 #ifdef CONFIG_SMP 9707 BUG_ON(&dl_sched_class != &stop_sched_class + 1); 9708 #endif 9709 9710 wait_bit_init(); 9711 9712 #ifdef CONFIG_FAIR_GROUP_SCHED 9713 ptr += 2 * nr_cpu_ids * sizeof(void **); 9714 #endif 9715 #ifdef CONFIG_RT_GROUP_SCHED 9716 ptr += 2 * nr_cpu_ids * sizeof(void **); 9717 #endif 9718 if (ptr) { 9719 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 9720 9721 #ifdef CONFIG_FAIR_GROUP_SCHED 9722 root_task_group.se = (struct sched_entity **)ptr; 9723 ptr += nr_cpu_ids * sizeof(void **); 9724 9725 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 9726 ptr += nr_cpu_ids * sizeof(void **); 9727 9728 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 9729 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 9730 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9731 #ifdef CONFIG_RT_GROUP_SCHED 9732 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 9733 ptr += nr_cpu_ids * sizeof(void **); 9734 9735 root_task_group.rt_rq = (struct rt_rq **)ptr; 9736 ptr += nr_cpu_ids * sizeof(void **); 9737 9738 #endif /* CONFIG_RT_GROUP_SCHED */ 9739 } 9740 9741 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 9742 9743 #ifdef CONFIG_SMP 9744 init_defrootdomain(); 9745 #endif 9746 9747 #ifdef CONFIG_RT_GROUP_SCHED 9748 init_rt_bandwidth(&root_task_group.rt_bandwidth, 9749 global_rt_period(), global_rt_runtime()); 9750 #endif /* CONFIG_RT_GROUP_SCHED */ 9751 9752 #ifdef CONFIG_CGROUP_SCHED 9753 task_group_cache = KMEM_CACHE(task_group, 0); 9754 9755 list_add(&root_task_group.list, &task_groups); 9756 INIT_LIST_HEAD(&root_task_group.children); 9757 INIT_LIST_HEAD(&root_task_group.siblings); 9758 autogroup_init(&init_task); 9759 #endif /* CONFIG_CGROUP_SCHED */ 9760 9761 for_each_possible_cpu(i) { 9762 struct rq *rq; 9763 9764 rq = cpu_rq(i); 9765 raw_spin_lock_init(&rq->__lock); 9766 rq->nr_running = 0; 9767 rq->calc_load_active = 0; 9768 rq->calc_load_update = jiffies + LOAD_FREQ; 9769 init_cfs_rq(&rq->cfs); 9770 init_rt_rq(&rq->rt); 9771 init_dl_rq(&rq->dl); 9772 #ifdef CONFIG_FAIR_GROUP_SCHED 9773 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 9774 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 9775 /* 9776 * How much CPU bandwidth does root_task_group get? 9777 * 9778 * In case of task-groups formed thr' the cgroup filesystem, it 9779 * gets 100% of the CPU resources in the system. This overall 9780 * system CPU resource is divided among the tasks of 9781 * root_task_group and its child task-groups in a fair manner, 9782 * based on each entity's (task or task-group's) weight 9783 * (se->load.weight). 9784 * 9785 * In other words, if root_task_group has 10 tasks of weight 9786 * 1024) and two child groups A0 and A1 (of weight 1024 each), 9787 * then A0's share of the CPU resource is: 9788 * 9789 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 9790 * 9791 * We achieve this by letting root_task_group's tasks sit 9792 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 9793 */ 9794 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 9795 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9796 9797 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 9798 #ifdef CONFIG_RT_GROUP_SCHED 9799 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 9800 #endif 9801 #ifdef CONFIG_SMP 9802 rq->sd = NULL; 9803 rq->rd = NULL; 9804 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 9805 rq->balance_callback = &balance_push_callback; 9806 rq->active_balance = 0; 9807 rq->next_balance = jiffies; 9808 rq->push_cpu = 0; 9809 rq->cpu = i; 9810 rq->online = 0; 9811 rq->idle_stamp = 0; 9812 rq->avg_idle = 2*sysctl_sched_migration_cost; 9813 rq->wake_stamp = jiffies; 9814 rq->wake_avg_idle = rq->avg_idle; 9815 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 9816 9817 INIT_LIST_HEAD(&rq->cfs_tasks); 9818 9819 rq_attach_root(rq, &def_root_domain); 9820 #ifdef CONFIG_NO_HZ_COMMON 9821 rq->last_blocked_load_update_tick = jiffies; 9822 atomic_set(&rq->nohz_flags, 0); 9823 9824 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 9825 #endif 9826 #ifdef CONFIG_HOTPLUG_CPU 9827 rcuwait_init(&rq->hotplug_wait); 9828 #endif 9829 #endif /* CONFIG_SMP */ 9830 hrtick_rq_init(rq); 9831 atomic_set(&rq->nr_iowait, 0); 9832 9833 #ifdef CONFIG_SCHED_CORE 9834 rq->core = rq; 9835 rq->core_pick = NULL; 9836 rq->core_enabled = 0; 9837 rq->core_tree = RB_ROOT; 9838 rq->core_forceidle_count = 0; 9839 rq->core_forceidle_occupation = 0; 9840 rq->core_forceidle_start = 0; 9841 9842 rq->core_cookie = 0UL; 9843 #endif 9844 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 9845 } 9846 9847 set_load_weight(&init_task, false); 9848 9849 /* 9850 * The boot idle thread does lazy MMU switching as well: 9851 */ 9852 mmgrab(&init_mm); 9853 enter_lazy_tlb(&init_mm, current); 9854 9855 /* 9856 * The idle task doesn't need the kthread struct to function, but it 9857 * is dressed up as a per-CPU kthread and thus needs to play the part 9858 * if we want to avoid special-casing it in code that deals with per-CPU 9859 * kthreads. 9860 */ 9861 WARN_ON(!set_kthread_struct(current)); 9862 9863 /* 9864 * Make us the idle thread. Technically, schedule() should not be 9865 * called from this thread, however somewhere below it might be, 9866 * but because we are the idle thread, we just pick up running again 9867 * when this runqueue becomes "idle". 9868 */ 9869 init_idle(current, smp_processor_id()); 9870 9871 calc_load_update = jiffies + LOAD_FREQ; 9872 9873 #ifdef CONFIG_SMP 9874 idle_thread_set_boot_cpu(); 9875 balance_push_set(smp_processor_id(), false); 9876 #endif 9877 init_sched_fair_class(); 9878 9879 psi_init(); 9880 9881 init_uclamp(); 9882 9883 preempt_dynamic_init(); 9884 9885 scheduler_running = 1; 9886 } 9887 9888 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 9889 9890 void __might_sleep(const char *file, int line) 9891 { 9892 unsigned int state = get_current_state(); 9893 /* 9894 * Blocking primitives will set (and therefore destroy) current->state, 9895 * since we will exit with TASK_RUNNING make sure we enter with it, 9896 * otherwise we will destroy state. 9897 */ 9898 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 9899 "do not call blocking ops when !TASK_RUNNING; " 9900 "state=%x set at [<%p>] %pS\n", state, 9901 (void *)current->task_state_change, 9902 (void *)current->task_state_change); 9903 9904 __might_resched(file, line, 0); 9905 } 9906 EXPORT_SYMBOL(__might_sleep); 9907 9908 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 9909 { 9910 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 9911 return; 9912 9913 if (preempt_count() == preempt_offset) 9914 return; 9915 9916 pr_err("Preemption disabled at:"); 9917 print_ip_sym(KERN_ERR, ip); 9918 } 9919 9920 static inline bool resched_offsets_ok(unsigned int offsets) 9921 { 9922 unsigned int nested = preempt_count(); 9923 9924 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 9925 9926 return nested == offsets; 9927 } 9928 9929 void __might_resched(const char *file, int line, unsigned int offsets) 9930 { 9931 /* Ratelimiting timestamp: */ 9932 static unsigned long prev_jiffy; 9933 9934 unsigned long preempt_disable_ip; 9935 9936 /* WARN_ON_ONCE() by default, no rate limit required: */ 9937 rcu_sleep_check(); 9938 9939 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 9940 !is_idle_task(current) && !current->non_block_count) || 9941 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 9942 oops_in_progress) 9943 return; 9944 9945 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9946 return; 9947 prev_jiffy = jiffies; 9948 9949 /* Save this before calling printk(), since that will clobber it: */ 9950 preempt_disable_ip = get_preempt_disable_ip(current); 9951 9952 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 9953 file, line); 9954 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 9955 in_atomic(), irqs_disabled(), current->non_block_count, 9956 current->pid, current->comm); 9957 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 9958 offsets & MIGHT_RESCHED_PREEMPT_MASK); 9959 9960 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 9961 pr_err("RCU nest depth: %d, expected: %u\n", 9962 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 9963 } 9964 9965 if (task_stack_end_corrupted(current)) 9966 pr_emerg("Thread overran stack, or stack corrupted\n"); 9967 9968 debug_show_held_locks(current); 9969 if (irqs_disabled()) 9970 print_irqtrace_events(current); 9971 9972 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 9973 preempt_disable_ip); 9974 9975 dump_stack(); 9976 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9977 } 9978 EXPORT_SYMBOL(__might_resched); 9979 9980 void __cant_sleep(const char *file, int line, int preempt_offset) 9981 { 9982 static unsigned long prev_jiffy; 9983 9984 if (irqs_disabled()) 9985 return; 9986 9987 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9988 return; 9989 9990 if (preempt_count() > preempt_offset) 9991 return; 9992 9993 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9994 return; 9995 prev_jiffy = jiffies; 9996 9997 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 9998 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 9999 in_atomic(), irqs_disabled(), 10000 current->pid, current->comm); 10001 10002 debug_show_held_locks(current); 10003 dump_stack(); 10004 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10005 } 10006 EXPORT_SYMBOL_GPL(__cant_sleep); 10007 10008 #ifdef CONFIG_SMP 10009 void __cant_migrate(const char *file, int line) 10010 { 10011 static unsigned long prev_jiffy; 10012 10013 if (irqs_disabled()) 10014 return; 10015 10016 if (is_migration_disabled(current)) 10017 return; 10018 10019 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 10020 return; 10021 10022 if (preempt_count() > 0) 10023 return; 10024 10025 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10026 return; 10027 prev_jiffy = jiffies; 10028 10029 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 10030 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 10031 in_atomic(), irqs_disabled(), is_migration_disabled(current), 10032 current->pid, current->comm); 10033 10034 debug_show_held_locks(current); 10035 dump_stack(); 10036 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10037 } 10038 EXPORT_SYMBOL_GPL(__cant_migrate); 10039 #endif 10040 #endif 10041 10042 #ifdef CONFIG_MAGIC_SYSRQ 10043 void normalize_rt_tasks(void) 10044 { 10045 struct task_struct *g, *p; 10046 struct sched_attr attr = { 10047 .sched_policy = SCHED_NORMAL, 10048 }; 10049 10050 read_lock(&tasklist_lock); 10051 for_each_process_thread(g, p) { 10052 /* 10053 * Only normalize user tasks: 10054 */ 10055 if (p->flags & PF_KTHREAD) 10056 continue; 10057 10058 p->se.exec_start = 0; 10059 schedstat_set(p->stats.wait_start, 0); 10060 schedstat_set(p->stats.sleep_start, 0); 10061 schedstat_set(p->stats.block_start, 0); 10062 10063 if (!dl_task(p) && !rt_task(p)) { 10064 /* 10065 * Renice negative nice level userspace 10066 * tasks back to 0: 10067 */ 10068 if (task_nice(p) < 0) 10069 set_user_nice(p, 0); 10070 continue; 10071 } 10072 10073 __sched_setscheduler(p, &attr, false, false); 10074 } 10075 read_unlock(&tasklist_lock); 10076 } 10077 10078 #endif /* CONFIG_MAGIC_SYSRQ */ 10079 10080 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 10081 /* 10082 * These functions are only useful for the IA64 MCA handling, or kdb. 10083 * 10084 * They can only be called when the whole system has been 10085 * stopped - every CPU needs to be quiescent, and no scheduling 10086 * activity can take place. Using them for anything else would 10087 * be a serious bug, and as a result, they aren't even visible 10088 * under any other configuration. 10089 */ 10090 10091 /** 10092 * curr_task - return the current task for a given CPU. 10093 * @cpu: the processor in question. 10094 * 10095 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10096 * 10097 * Return: The current task for @cpu. 10098 */ 10099 struct task_struct *curr_task(int cpu) 10100 { 10101 return cpu_curr(cpu); 10102 } 10103 10104 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 10105 10106 #ifdef CONFIG_IA64 10107 /** 10108 * ia64_set_curr_task - set the current task for a given CPU. 10109 * @cpu: the processor in question. 10110 * @p: the task pointer to set. 10111 * 10112 * Description: This function must only be used when non-maskable interrupts 10113 * are serviced on a separate stack. It allows the architecture to switch the 10114 * notion of the current task on a CPU in a non-blocking manner. This function 10115 * must be called with all CPU's synchronized, and interrupts disabled, the 10116 * and caller must save the original value of the current task (see 10117 * curr_task() above) and restore that value before reenabling interrupts and 10118 * re-starting the system. 10119 * 10120 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10121 */ 10122 void ia64_set_curr_task(int cpu, struct task_struct *p) 10123 { 10124 cpu_curr(cpu) = p; 10125 } 10126 10127 #endif 10128 10129 #ifdef CONFIG_CGROUP_SCHED 10130 /* task_group_lock serializes the addition/removal of task groups */ 10131 static DEFINE_SPINLOCK(task_group_lock); 10132 10133 static inline void alloc_uclamp_sched_group(struct task_group *tg, 10134 struct task_group *parent) 10135 { 10136 #ifdef CONFIG_UCLAMP_TASK_GROUP 10137 enum uclamp_id clamp_id; 10138 10139 for_each_clamp_id(clamp_id) { 10140 uclamp_se_set(&tg->uclamp_req[clamp_id], 10141 uclamp_none(clamp_id), false); 10142 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 10143 } 10144 #endif 10145 } 10146 10147 static void sched_free_group(struct task_group *tg) 10148 { 10149 free_fair_sched_group(tg); 10150 free_rt_sched_group(tg); 10151 autogroup_free(tg); 10152 kmem_cache_free(task_group_cache, tg); 10153 } 10154 10155 static void sched_free_group_rcu(struct rcu_head *rcu) 10156 { 10157 sched_free_group(container_of(rcu, struct task_group, rcu)); 10158 } 10159 10160 static void sched_unregister_group(struct task_group *tg) 10161 { 10162 unregister_fair_sched_group(tg); 10163 unregister_rt_sched_group(tg); 10164 /* 10165 * We have to wait for yet another RCU grace period to expire, as 10166 * print_cfs_stats() might run concurrently. 10167 */ 10168 call_rcu(&tg->rcu, sched_free_group_rcu); 10169 } 10170 10171 /* allocate runqueue etc for a new task group */ 10172 struct task_group *sched_create_group(struct task_group *parent) 10173 { 10174 struct task_group *tg; 10175 10176 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 10177 if (!tg) 10178 return ERR_PTR(-ENOMEM); 10179 10180 if (!alloc_fair_sched_group(tg, parent)) 10181 goto err; 10182 10183 if (!alloc_rt_sched_group(tg, parent)) 10184 goto err; 10185 10186 alloc_uclamp_sched_group(tg, parent); 10187 10188 return tg; 10189 10190 err: 10191 sched_free_group(tg); 10192 return ERR_PTR(-ENOMEM); 10193 } 10194 10195 void sched_online_group(struct task_group *tg, struct task_group *parent) 10196 { 10197 unsigned long flags; 10198 10199 spin_lock_irqsave(&task_group_lock, flags); 10200 list_add_rcu(&tg->list, &task_groups); 10201 10202 /* Root should already exist: */ 10203 WARN_ON(!parent); 10204 10205 tg->parent = parent; 10206 INIT_LIST_HEAD(&tg->children); 10207 list_add_rcu(&tg->siblings, &parent->children); 10208 spin_unlock_irqrestore(&task_group_lock, flags); 10209 10210 online_fair_sched_group(tg); 10211 } 10212 10213 /* rcu callback to free various structures associated with a task group */ 10214 static void sched_unregister_group_rcu(struct rcu_head *rhp) 10215 { 10216 /* Now it should be safe to free those cfs_rqs: */ 10217 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 10218 } 10219 10220 void sched_destroy_group(struct task_group *tg) 10221 { 10222 /* Wait for possible concurrent references to cfs_rqs complete: */ 10223 call_rcu(&tg->rcu, sched_unregister_group_rcu); 10224 } 10225 10226 void sched_release_group(struct task_group *tg) 10227 { 10228 unsigned long flags; 10229 10230 /* 10231 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 10232 * sched_cfs_period_timer()). 10233 * 10234 * For this to be effective, we have to wait for all pending users of 10235 * this task group to leave their RCU critical section to ensure no new 10236 * user will see our dying task group any more. Specifically ensure 10237 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 10238 * 10239 * We therefore defer calling unregister_fair_sched_group() to 10240 * sched_unregister_group() which is guarantied to get called only after the 10241 * current RCU grace period has expired. 10242 */ 10243 spin_lock_irqsave(&task_group_lock, flags); 10244 list_del_rcu(&tg->list); 10245 list_del_rcu(&tg->siblings); 10246 spin_unlock_irqrestore(&task_group_lock, flags); 10247 } 10248 10249 static void sched_change_group(struct task_struct *tsk) 10250 { 10251 struct task_group *tg; 10252 10253 /* 10254 * All callers are synchronized by task_rq_lock(); we do not use RCU 10255 * which is pointless here. Thus, we pass "true" to task_css_check() 10256 * to prevent lockdep warnings. 10257 */ 10258 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 10259 struct task_group, css); 10260 tg = autogroup_task_group(tsk, tg); 10261 tsk->sched_task_group = tg; 10262 10263 #ifdef CONFIG_FAIR_GROUP_SCHED 10264 if (tsk->sched_class->task_change_group) 10265 tsk->sched_class->task_change_group(tsk); 10266 else 10267 #endif 10268 set_task_rq(tsk, task_cpu(tsk)); 10269 } 10270 10271 /* 10272 * Change task's runqueue when it moves between groups. 10273 * 10274 * The caller of this function should have put the task in its new group by 10275 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 10276 * its new group. 10277 */ 10278 void sched_move_task(struct task_struct *tsk) 10279 { 10280 int queued, running, queue_flags = 10281 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 10282 struct rq_flags rf; 10283 struct rq *rq; 10284 10285 rq = task_rq_lock(tsk, &rf); 10286 update_rq_clock(rq); 10287 10288 running = task_current(rq, tsk); 10289 queued = task_on_rq_queued(tsk); 10290 10291 if (queued) 10292 dequeue_task(rq, tsk, queue_flags); 10293 if (running) 10294 put_prev_task(rq, tsk); 10295 10296 sched_change_group(tsk); 10297 10298 if (queued) 10299 enqueue_task(rq, tsk, queue_flags); 10300 if (running) { 10301 set_next_task(rq, tsk); 10302 /* 10303 * After changing group, the running task may have joined a 10304 * throttled one but it's still the running task. Trigger a 10305 * resched to make sure that task can still run. 10306 */ 10307 resched_curr(rq); 10308 } 10309 10310 task_rq_unlock(rq, tsk, &rf); 10311 } 10312 10313 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 10314 { 10315 return css ? container_of(css, struct task_group, css) : NULL; 10316 } 10317 10318 static struct cgroup_subsys_state * 10319 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10320 { 10321 struct task_group *parent = css_tg(parent_css); 10322 struct task_group *tg; 10323 10324 if (!parent) { 10325 /* This is early initialization for the top cgroup */ 10326 return &root_task_group.css; 10327 } 10328 10329 tg = sched_create_group(parent); 10330 if (IS_ERR(tg)) 10331 return ERR_PTR(-ENOMEM); 10332 10333 return &tg->css; 10334 } 10335 10336 /* Expose task group only after completing cgroup initialization */ 10337 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 10338 { 10339 struct task_group *tg = css_tg(css); 10340 struct task_group *parent = css_tg(css->parent); 10341 10342 if (parent) 10343 sched_online_group(tg, parent); 10344 10345 #ifdef CONFIG_UCLAMP_TASK_GROUP 10346 /* Propagate the effective uclamp value for the new group */ 10347 mutex_lock(&uclamp_mutex); 10348 rcu_read_lock(); 10349 cpu_util_update_eff(css); 10350 rcu_read_unlock(); 10351 mutex_unlock(&uclamp_mutex); 10352 #endif 10353 10354 return 0; 10355 } 10356 10357 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 10358 { 10359 struct task_group *tg = css_tg(css); 10360 10361 sched_release_group(tg); 10362 } 10363 10364 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 10365 { 10366 struct task_group *tg = css_tg(css); 10367 10368 /* 10369 * Relies on the RCU grace period between css_released() and this. 10370 */ 10371 sched_unregister_group(tg); 10372 } 10373 10374 #ifdef CONFIG_RT_GROUP_SCHED 10375 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 10376 { 10377 struct task_struct *task; 10378 struct cgroup_subsys_state *css; 10379 10380 cgroup_taskset_for_each(task, css, tset) { 10381 if (!sched_rt_can_attach(css_tg(css), task)) 10382 return -EINVAL; 10383 } 10384 return 0; 10385 } 10386 #endif 10387 10388 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 10389 { 10390 struct task_struct *task; 10391 struct cgroup_subsys_state *css; 10392 10393 cgroup_taskset_for_each(task, css, tset) 10394 sched_move_task(task); 10395 } 10396 10397 #ifdef CONFIG_UCLAMP_TASK_GROUP 10398 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 10399 { 10400 struct cgroup_subsys_state *top_css = css; 10401 struct uclamp_se *uc_parent = NULL; 10402 struct uclamp_se *uc_se = NULL; 10403 unsigned int eff[UCLAMP_CNT]; 10404 enum uclamp_id clamp_id; 10405 unsigned int clamps; 10406 10407 lockdep_assert_held(&uclamp_mutex); 10408 SCHED_WARN_ON(!rcu_read_lock_held()); 10409 10410 css_for_each_descendant_pre(css, top_css) { 10411 uc_parent = css_tg(css)->parent 10412 ? css_tg(css)->parent->uclamp : NULL; 10413 10414 for_each_clamp_id(clamp_id) { 10415 /* Assume effective clamps matches requested clamps */ 10416 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 10417 /* Cap effective clamps with parent's effective clamps */ 10418 if (uc_parent && 10419 eff[clamp_id] > uc_parent[clamp_id].value) { 10420 eff[clamp_id] = uc_parent[clamp_id].value; 10421 } 10422 } 10423 /* Ensure protection is always capped by limit */ 10424 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 10425 10426 /* Propagate most restrictive effective clamps */ 10427 clamps = 0x0; 10428 uc_se = css_tg(css)->uclamp; 10429 for_each_clamp_id(clamp_id) { 10430 if (eff[clamp_id] == uc_se[clamp_id].value) 10431 continue; 10432 uc_se[clamp_id].value = eff[clamp_id]; 10433 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 10434 clamps |= (0x1 << clamp_id); 10435 } 10436 if (!clamps) { 10437 css = css_rightmost_descendant(css); 10438 continue; 10439 } 10440 10441 /* Immediately update descendants RUNNABLE tasks */ 10442 uclamp_update_active_tasks(css); 10443 } 10444 } 10445 10446 /* 10447 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 10448 * C expression. Since there is no way to convert a macro argument (N) into a 10449 * character constant, use two levels of macros. 10450 */ 10451 #define _POW10(exp) ((unsigned int)1e##exp) 10452 #define POW10(exp) _POW10(exp) 10453 10454 struct uclamp_request { 10455 #define UCLAMP_PERCENT_SHIFT 2 10456 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 10457 s64 percent; 10458 u64 util; 10459 int ret; 10460 }; 10461 10462 static inline struct uclamp_request 10463 capacity_from_percent(char *buf) 10464 { 10465 struct uclamp_request req = { 10466 .percent = UCLAMP_PERCENT_SCALE, 10467 .util = SCHED_CAPACITY_SCALE, 10468 .ret = 0, 10469 }; 10470 10471 buf = strim(buf); 10472 if (strcmp(buf, "max")) { 10473 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 10474 &req.percent); 10475 if (req.ret) 10476 return req; 10477 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 10478 req.ret = -ERANGE; 10479 return req; 10480 } 10481 10482 req.util = req.percent << SCHED_CAPACITY_SHIFT; 10483 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 10484 } 10485 10486 return req; 10487 } 10488 10489 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 10490 size_t nbytes, loff_t off, 10491 enum uclamp_id clamp_id) 10492 { 10493 struct uclamp_request req; 10494 struct task_group *tg; 10495 10496 req = capacity_from_percent(buf); 10497 if (req.ret) 10498 return req.ret; 10499 10500 static_branch_enable(&sched_uclamp_used); 10501 10502 mutex_lock(&uclamp_mutex); 10503 rcu_read_lock(); 10504 10505 tg = css_tg(of_css(of)); 10506 if (tg->uclamp_req[clamp_id].value != req.util) 10507 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 10508 10509 /* 10510 * Because of not recoverable conversion rounding we keep track of the 10511 * exact requested value 10512 */ 10513 tg->uclamp_pct[clamp_id] = req.percent; 10514 10515 /* Update effective clamps to track the most restrictive value */ 10516 cpu_util_update_eff(of_css(of)); 10517 10518 rcu_read_unlock(); 10519 mutex_unlock(&uclamp_mutex); 10520 10521 return nbytes; 10522 } 10523 10524 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 10525 char *buf, size_t nbytes, 10526 loff_t off) 10527 { 10528 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 10529 } 10530 10531 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 10532 char *buf, size_t nbytes, 10533 loff_t off) 10534 { 10535 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 10536 } 10537 10538 static inline void cpu_uclamp_print(struct seq_file *sf, 10539 enum uclamp_id clamp_id) 10540 { 10541 struct task_group *tg; 10542 u64 util_clamp; 10543 u64 percent; 10544 u32 rem; 10545 10546 rcu_read_lock(); 10547 tg = css_tg(seq_css(sf)); 10548 util_clamp = tg->uclamp_req[clamp_id].value; 10549 rcu_read_unlock(); 10550 10551 if (util_clamp == SCHED_CAPACITY_SCALE) { 10552 seq_puts(sf, "max\n"); 10553 return; 10554 } 10555 10556 percent = tg->uclamp_pct[clamp_id]; 10557 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 10558 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 10559 } 10560 10561 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 10562 { 10563 cpu_uclamp_print(sf, UCLAMP_MIN); 10564 return 0; 10565 } 10566 10567 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 10568 { 10569 cpu_uclamp_print(sf, UCLAMP_MAX); 10570 return 0; 10571 } 10572 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10573 10574 #ifdef CONFIG_FAIR_GROUP_SCHED 10575 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 10576 struct cftype *cftype, u64 shareval) 10577 { 10578 if (shareval > scale_load_down(ULONG_MAX)) 10579 shareval = MAX_SHARES; 10580 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 10581 } 10582 10583 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 10584 struct cftype *cft) 10585 { 10586 struct task_group *tg = css_tg(css); 10587 10588 return (u64) scale_load_down(tg->shares); 10589 } 10590 10591 #ifdef CONFIG_CFS_BANDWIDTH 10592 static DEFINE_MUTEX(cfs_constraints_mutex); 10593 10594 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 10595 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 10596 /* More than 203 days if BW_SHIFT equals 20. */ 10597 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 10598 10599 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 10600 10601 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 10602 u64 burst) 10603 { 10604 int i, ret = 0, runtime_enabled, runtime_was_enabled; 10605 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10606 10607 if (tg == &root_task_group) 10608 return -EINVAL; 10609 10610 /* 10611 * Ensure we have at some amount of bandwidth every period. This is 10612 * to prevent reaching a state of large arrears when throttled via 10613 * entity_tick() resulting in prolonged exit starvation. 10614 */ 10615 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 10616 return -EINVAL; 10617 10618 /* 10619 * Likewise, bound things on the other side by preventing insane quota 10620 * periods. This also allows us to normalize in computing quota 10621 * feasibility. 10622 */ 10623 if (period > max_cfs_quota_period) 10624 return -EINVAL; 10625 10626 /* 10627 * Bound quota to defend quota against overflow during bandwidth shift. 10628 */ 10629 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 10630 return -EINVAL; 10631 10632 if (quota != RUNTIME_INF && (burst > quota || 10633 burst + quota > max_cfs_runtime)) 10634 return -EINVAL; 10635 10636 /* 10637 * Prevent race between setting of cfs_rq->runtime_enabled and 10638 * unthrottle_offline_cfs_rqs(). 10639 */ 10640 cpus_read_lock(); 10641 mutex_lock(&cfs_constraints_mutex); 10642 ret = __cfs_schedulable(tg, period, quota); 10643 if (ret) 10644 goto out_unlock; 10645 10646 runtime_enabled = quota != RUNTIME_INF; 10647 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 10648 /* 10649 * If we need to toggle cfs_bandwidth_used, off->on must occur 10650 * before making related changes, and on->off must occur afterwards 10651 */ 10652 if (runtime_enabled && !runtime_was_enabled) 10653 cfs_bandwidth_usage_inc(); 10654 raw_spin_lock_irq(&cfs_b->lock); 10655 cfs_b->period = ns_to_ktime(period); 10656 cfs_b->quota = quota; 10657 cfs_b->burst = burst; 10658 10659 __refill_cfs_bandwidth_runtime(cfs_b); 10660 10661 /* Restart the period timer (if active) to handle new period expiry: */ 10662 if (runtime_enabled) 10663 start_cfs_bandwidth(cfs_b); 10664 10665 raw_spin_unlock_irq(&cfs_b->lock); 10666 10667 for_each_online_cpu(i) { 10668 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 10669 struct rq *rq = cfs_rq->rq; 10670 struct rq_flags rf; 10671 10672 rq_lock_irq(rq, &rf); 10673 cfs_rq->runtime_enabled = runtime_enabled; 10674 cfs_rq->runtime_remaining = 0; 10675 10676 if (cfs_rq->throttled) 10677 unthrottle_cfs_rq(cfs_rq); 10678 rq_unlock_irq(rq, &rf); 10679 } 10680 if (runtime_was_enabled && !runtime_enabled) 10681 cfs_bandwidth_usage_dec(); 10682 out_unlock: 10683 mutex_unlock(&cfs_constraints_mutex); 10684 cpus_read_unlock(); 10685 10686 return ret; 10687 } 10688 10689 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 10690 { 10691 u64 quota, period, burst; 10692 10693 period = ktime_to_ns(tg->cfs_bandwidth.period); 10694 burst = tg->cfs_bandwidth.burst; 10695 if (cfs_quota_us < 0) 10696 quota = RUNTIME_INF; 10697 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 10698 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 10699 else 10700 return -EINVAL; 10701 10702 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10703 } 10704 10705 static long tg_get_cfs_quota(struct task_group *tg) 10706 { 10707 u64 quota_us; 10708 10709 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 10710 return -1; 10711 10712 quota_us = tg->cfs_bandwidth.quota; 10713 do_div(quota_us, NSEC_PER_USEC); 10714 10715 return quota_us; 10716 } 10717 10718 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 10719 { 10720 u64 quota, period, burst; 10721 10722 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 10723 return -EINVAL; 10724 10725 period = (u64)cfs_period_us * NSEC_PER_USEC; 10726 quota = tg->cfs_bandwidth.quota; 10727 burst = tg->cfs_bandwidth.burst; 10728 10729 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10730 } 10731 10732 static long tg_get_cfs_period(struct task_group *tg) 10733 { 10734 u64 cfs_period_us; 10735 10736 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 10737 do_div(cfs_period_us, NSEC_PER_USEC); 10738 10739 return cfs_period_us; 10740 } 10741 10742 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 10743 { 10744 u64 quota, period, burst; 10745 10746 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 10747 return -EINVAL; 10748 10749 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 10750 period = ktime_to_ns(tg->cfs_bandwidth.period); 10751 quota = tg->cfs_bandwidth.quota; 10752 10753 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10754 } 10755 10756 static long tg_get_cfs_burst(struct task_group *tg) 10757 { 10758 u64 burst_us; 10759 10760 burst_us = tg->cfs_bandwidth.burst; 10761 do_div(burst_us, NSEC_PER_USEC); 10762 10763 return burst_us; 10764 } 10765 10766 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 10767 struct cftype *cft) 10768 { 10769 return tg_get_cfs_quota(css_tg(css)); 10770 } 10771 10772 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 10773 struct cftype *cftype, s64 cfs_quota_us) 10774 { 10775 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 10776 } 10777 10778 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 10779 struct cftype *cft) 10780 { 10781 return tg_get_cfs_period(css_tg(css)); 10782 } 10783 10784 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 10785 struct cftype *cftype, u64 cfs_period_us) 10786 { 10787 return tg_set_cfs_period(css_tg(css), cfs_period_us); 10788 } 10789 10790 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 10791 struct cftype *cft) 10792 { 10793 return tg_get_cfs_burst(css_tg(css)); 10794 } 10795 10796 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 10797 struct cftype *cftype, u64 cfs_burst_us) 10798 { 10799 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 10800 } 10801 10802 struct cfs_schedulable_data { 10803 struct task_group *tg; 10804 u64 period, quota; 10805 }; 10806 10807 /* 10808 * normalize group quota/period to be quota/max_period 10809 * note: units are usecs 10810 */ 10811 static u64 normalize_cfs_quota(struct task_group *tg, 10812 struct cfs_schedulable_data *d) 10813 { 10814 u64 quota, period; 10815 10816 if (tg == d->tg) { 10817 period = d->period; 10818 quota = d->quota; 10819 } else { 10820 period = tg_get_cfs_period(tg); 10821 quota = tg_get_cfs_quota(tg); 10822 } 10823 10824 /* note: these should typically be equivalent */ 10825 if (quota == RUNTIME_INF || quota == -1) 10826 return RUNTIME_INF; 10827 10828 return to_ratio(period, quota); 10829 } 10830 10831 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 10832 { 10833 struct cfs_schedulable_data *d = data; 10834 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10835 s64 quota = 0, parent_quota = -1; 10836 10837 if (!tg->parent) { 10838 quota = RUNTIME_INF; 10839 } else { 10840 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 10841 10842 quota = normalize_cfs_quota(tg, d); 10843 parent_quota = parent_b->hierarchical_quota; 10844 10845 /* 10846 * Ensure max(child_quota) <= parent_quota. On cgroup2, 10847 * always take the min. On cgroup1, only inherit when no 10848 * limit is set: 10849 */ 10850 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 10851 quota = min(quota, parent_quota); 10852 } else { 10853 if (quota == RUNTIME_INF) 10854 quota = parent_quota; 10855 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 10856 return -EINVAL; 10857 } 10858 } 10859 cfs_b->hierarchical_quota = quota; 10860 10861 return 0; 10862 } 10863 10864 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 10865 { 10866 int ret; 10867 struct cfs_schedulable_data data = { 10868 .tg = tg, 10869 .period = period, 10870 .quota = quota, 10871 }; 10872 10873 if (quota != RUNTIME_INF) { 10874 do_div(data.period, NSEC_PER_USEC); 10875 do_div(data.quota, NSEC_PER_USEC); 10876 } 10877 10878 rcu_read_lock(); 10879 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 10880 rcu_read_unlock(); 10881 10882 return ret; 10883 } 10884 10885 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 10886 { 10887 struct task_group *tg = css_tg(seq_css(sf)); 10888 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10889 10890 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 10891 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 10892 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 10893 10894 if (schedstat_enabled() && tg != &root_task_group) { 10895 struct sched_statistics *stats; 10896 u64 ws = 0; 10897 int i; 10898 10899 for_each_possible_cpu(i) { 10900 stats = __schedstats_from_se(tg->se[i]); 10901 ws += schedstat_val(stats->wait_sum); 10902 } 10903 10904 seq_printf(sf, "wait_sum %llu\n", ws); 10905 } 10906 10907 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 10908 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 10909 10910 return 0; 10911 } 10912 #endif /* CONFIG_CFS_BANDWIDTH */ 10913 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10914 10915 #ifdef CONFIG_RT_GROUP_SCHED 10916 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 10917 struct cftype *cft, s64 val) 10918 { 10919 return sched_group_set_rt_runtime(css_tg(css), val); 10920 } 10921 10922 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 10923 struct cftype *cft) 10924 { 10925 return sched_group_rt_runtime(css_tg(css)); 10926 } 10927 10928 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 10929 struct cftype *cftype, u64 rt_period_us) 10930 { 10931 return sched_group_set_rt_period(css_tg(css), rt_period_us); 10932 } 10933 10934 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 10935 struct cftype *cft) 10936 { 10937 return sched_group_rt_period(css_tg(css)); 10938 } 10939 #endif /* CONFIG_RT_GROUP_SCHED */ 10940 10941 #ifdef CONFIG_FAIR_GROUP_SCHED 10942 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 10943 struct cftype *cft) 10944 { 10945 return css_tg(css)->idle; 10946 } 10947 10948 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 10949 struct cftype *cft, s64 idle) 10950 { 10951 return sched_group_set_idle(css_tg(css), idle); 10952 } 10953 #endif 10954 10955 static struct cftype cpu_legacy_files[] = { 10956 #ifdef CONFIG_FAIR_GROUP_SCHED 10957 { 10958 .name = "shares", 10959 .read_u64 = cpu_shares_read_u64, 10960 .write_u64 = cpu_shares_write_u64, 10961 }, 10962 { 10963 .name = "idle", 10964 .read_s64 = cpu_idle_read_s64, 10965 .write_s64 = cpu_idle_write_s64, 10966 }, 10967 #endif 10968 #ifdef CONFIG_CFS_BANDWIDTH 10969 { 10970 .name = "cfs_quota_us", 10971 .read_s64 = cpu_cfs_quota_read_s64, 10972 .write_s64 = cpu_cfs_quota_write_s64, 10973 }, 10974 { 10975 .name = "cfs_period_us", 10976 .read_u64 = cpu_cfs_period_read_u64, 10977 .write_u64 = cpu_cfs_period_write_u64, 10978 }, 10979 { 10980 .name = "cfs_burst_us", 10981 .read_u64 = cpu_cfs_burst_read_u64, 10982 .write_u64 = cpu_cfs_burst_write_u64, 10983 }, 10984 { 10985 .name = "stat", 10986 .seq_show = cpu_cfs_stat_show, 10987 }, 10988 #endif 10989 #ifdef CONFIG_RT_GROUP_SCHED 10990 { 10991 .name = "rt_runtime_us", 10992 .read_s64 = cpu_rt_runtime_read, 10993 .write_s64 = cpu_rt_runtime_write, 10994 }, 10995 { 10996 .name = "rt_period_us", 10997 .read_u64 = cpu_rt_period_read_uint, 10998 .write_u64 = cpu_rt_period_write_uint, 10999 }, 11000 #endif 11001 #ifdef CONFIG_UCLAMP_TASK_GROUP 11002 { 11003 .name = "uclamp.min", 11004 .flags = CFTYPE_NOT_ON_ROOT, 11005 .seq_show = cpu_uclamp_min_show, 11006 .write = cpu_uclamp_min_write, 11007 }, 11008 { 11009 .name = "uclamp.max", 11010 .flags = CFTYPE_NOT_ON_ROOT, 11011 .seq_show = cpu_uclamp_max_show, 11012 .write = cpu_uclamp_max_write, 11013 }, 11014 #endif 11015 { } /* Terminate */ 11016 }; 11017 11018 static int cpu_extra_stat_show(struct seq_file *sf, 11019 struct cgroup_subsys_state *css) 11020 { 11021 #ifdef CONFIG_CFS_BANDWIDTH 11022 { 11023 struct task_group *tg = css_tg(css); 11024 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 11025 u64 throttled_usec, burst_usec; 11026 11027 throttled_usec = cfs_b->throttled_time; 11028 do_div(throttled_usec, NSEC_PER_USEC); 11029 burst_usec = cfs_b->burst_time; 11030 do_div(burst_usec, NSEC_PER_USEC); 11031 11032 seq_printf(sf, "nr_periods %d\n" 11033 "nr_throttled %d\n" 11034 "throttled_usec %llu\n" 11035 "nr_bursts %d\n" 11036 "burst_usec %llu\n", 11037 cfs_b->nr_periods, cfs_b->nr_throttled, 11038 throttled_usec, cfs_b->nr_burst, burst_usec); 11039 } 11040 #endif 11041 return 0; 11042 } 11043 11044 #ifdef CONFIG_FAIR_GROUP_SCHED 11045 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 11046 struct cftype *cft) 11047 { 11048 struct task_group *tg = css_tg(css); 11049 u64 weight = scale_load_down(tg->shares); 11050 11051 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 11052 } 11053 11054 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 11055 struct cftype *cft, u64 weight) 11056 { 11057 /* 11058 * cgroup weight knobs should use the common MIN, DFL and MAX 11059 * values which are 1, 100 and 10000 respectively. While it loses 11060 * a bit of range on both ends, it maps pretty well onto the shares 11061 * value used by scheduler and the round-trip conversions preserve 11062 * the original value over the entire range. 11063 */ 11064 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 11065 return -ERANGE; 11066 11067 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 11068 11069 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11070 } 11071 11072 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 11073 struct cftype *cft) 11074 { 11075 unsigned long weight = scale_load_down(css_tg(css)->shares); 11076 int last_delta = INT_MAX; 11077 int prio, delta; 11078 11079 /* find the closest nice value to the current weight */ 11080 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 11081 delta = abs(sched_prio_to_weight[prio] - weight); 11082 if (delta >= last_delta) 11083 break; 11084 last_delta = delta; 11085 } 11086 11087 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 11088 } 11089 11090 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 11091 struct cftype *cft, s64 nice) 11092 { 11093 unsigned long weight; 11094 int idx; 11095 11096 if (nice < MIN_NICE || nice > MAX_NICE) 11097 return -ERANGE; 11098 11099 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 11100 idx = array_index_nospec(idx, 40); 11101 weight = sched_prio_to_weight[idx]; 11102 11103 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11104 } 11105 #endif 11106 11107 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 11108 long period, long quota) 11109 { 11110 if (quota < 0) 11111 seq_puts(sf, "max"); 11112 else 11113 seq_printf(sf, "%ld", quota); 11114 11115 seq_printf(sf, " %ld\n", period); 11116 } 11117 11118 /* caller should put the current value in *@periodp before calling */ 11119 static int __maybe_unused cpu_period_quota_parse(char *buf, 11120 u64 *periodp, u64 *quotap) 11121 { 11122 char tok[21]; /* U64_MAX */ 11123 11124 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 11125 return -EINVAL; 11126 11127 *periodp *= NSEC_PER_USEC; 11128 11129 if (sscanf(tok, "%llu", quotap)) 11130 *quotap *= NSEC_PER_USEC; 11131 else if (!strcmp(tok, "max")) 11132 *quotap = RUNTIME_INF; 11133 else 11134 return -EINVAL; 11135 11136 return 0; 11137 } 11138 11139 #ifdef CONFIG_CFS_BANDWIDTH 11140 static int cpu_max_show(struct seq_file *sf, void *v) 11141 { 11142 struct task_group *tg = css_tg(seq_css(sf)); 11143 11144 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 11145 return 0; 11146 } 11147 11148 static ssize_t cpu_max_write(struct kernfs_open_file *of, 11149 char *buf, size_t nbytes, loff_t off) 11150 { 11151 struct task_group *tg = css_tg(of_css(of)); 11152 u64 period = tg_get_cfs_period(tg); 11153 u64 burst = tg_get_cfs_burst(tg); 11154 u64 quota; 11155 int ret; 11156 11157 ret = cpu_period_quota_parse(buf, &period, "a); 11158 if (!ret) 11159 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 11160 return ret ?: nbytes; 11161 } 11162 #endif 11163 11164 static struct cftype cpu_files[] = { 11165 #ifdef CONFIG_FAIR_GROUP_SCHED 11166 { 11167 .name = "weight", 11168 .flags = CFTYPE_NOT_ON_ROOT, 11169 .read_u64 = cpu_weight_read_u64, 11170 .write_u64 = cpu_weight_write_u64, 11171 }, 11172 { 11173 .name = "weight.nice", 11174 .flags = CFTYPE_NOT_ON_ROOT, 11175 .read_s64 = cpu_weight_nice_read_s64, 11176 .write_s64 = cpu_weight_nice_write_s64, 11177 }, 11178 { 11179 .name = "idle", 11180 .flags = CFTYPE_NOT_ON_ROOT, 11181 .read_s64 = cpu_idle_read_s64, 11182 .write_s64 = cpu_idle_write_s64, 11183 }, 11184 #endif 11185 #ifdef CONFIG_CFS_BANDWIDTH 11186 { 11187 .name = "max", 11188 .flags = CFTYPE_NOT_ON_ROOT, 11189 .seq_show = cpu_max_show, 11190 .write = cpu_max_write, 11191 }, 11192 { 11193 .name = "max.burst", 11194 .flags = CFTYPE_NOT_ON_ROOT, 11195 .read_u64 = cpu_cfs_burst_read_u64, 11196 .write_u64 = cpu_cfs_burst_write_u64, 11197 }, 11198 #endif 11199 #ifdef CONFIG_UCLAMP_TASK_GROUP 11200 { 11201 .name = "uclamp.min", 11202 .flags = CFTYPE_NOT_ON_ROOT, 11203 .seq_show = cpu_uclamp_min_show, 11204 .write = cpu_uclamp_min_write, 11205 }, 11206 { 11207 .name = "uclamp.max", 11208 .flags = CFTYPE_NOT_ON_ROOT, 11209 .seq_show = cpu_uclamp_max_show, 11210 .write = cpu_uclamp_max_write, 11211 }, 11212 #endif 11213 { } /* terminate */ 11214 }; 11215 11216 struct cgroup_subsys cpu_cgrp_subsys = { 11217 .css_alloc = cpu_cgroup_css_alloc, 11218 .css_online = cpu_cgroup_css_online, 11219 .css_released = cpu_cgroup_css_released, 11220 .css_free = cpu_cgroup_css_free, 11221 .css_extra_stat_show = cpu_extra_stat_show, 11222 #ifdef CONFIG_RT_GROUP_SCHED 11223 .can_attach = cpu_cgroup_can_attach, 11224 #endif 11225 .attach = cpu_cgroup_attach, 11226 .legacy_cftypes = cpu_legacy_files, 11227 .dfl_cftypes = cpu_files, 11228 .early_init = true, 11229 .threaded = true, 11230 }; 11231 11232 #endif /* CONFIG_CGROUP_SCHED */ 11233 11234 void dump_cpu_task(int cpu) 11235 { 11236 if (cpu == smp_processor_id() && in_hardirq()) { 11237 struct pt_regs *regs; 11238 11239 regs = get_irq_regs(); 11240 if (regs) { 11241 show_regs(regs); 11242 return; 11243 } 11244 } 11245 11246 if (trigger_single_cpu_backtrace(cpu)) 11247 return; 11248 11249 pr_info("Task dump for CPU %d:\n", cpu); 11250 sched_show_task(cpu_curr(cpu)); 11251 } 11252 11253 /* 11254 * Nice levels are multiplicative, with a gentle 10% change for every 11255 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 11256 * nice 1, it will get ~10% less CPU time than another CPU-bound task 11257 * that remained on nice 0. 11258 * 11259 * The "10% effect" is relative and cumulative: from _any_ nice level, 11260 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 11261 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 11262 * If a task goes up by ~10% and another task goes down by ~10% then 11263 * the relative distance between them is ~25%.) 11264 */ 11265 const int sched_prio_to_weight[40] = { 11266 /* -20 */ 88761, 71755, 56483, 46273, 36291, 11267 /* -15 */ 29154, 23254, 18705, 14949, 11916, 11268 /* -10 */ 9548, 7620, 6100, 4904, 3906, 11269 /* -5 */ 3121, 2501, 1991, 1586, 1277, 11270 /* 0 */ 1024, 820, 655, 526, 423, 11271 /* 5 */ 335, 272, 215, 172, 137, 11272 /* 10 */ 110, 87, 70, 56, 45, 11273 /* 15 */ 36, 29, 23, 18, 15, 11274 }; 11275 11276 /* 11277 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 11278 * 11279 * In cases where the weight does not change often, we can use the 11280 * precalculated inverse to speed up arithmetics by turning divisions 11281 * into multiplications: 11282 */ 11283 const u32 sched_prio_to_wmult[40] = { 11284 /* -20 */ 48388, 59856, 76040, 92818, 118348, 11285 /* -15 */ 147320, 184698, 229616, 287308, 360437, 11286 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 11287 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 11288 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 11289 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 11290 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 11291 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 11292 }; 11293 11294 void call_trace_sched_update_nr_running(struct rq *rq, int count) 11295 { 11296 trace_sched_update_nr_running_tp(rq, count); 11297 } 11298