xref: /linux/kernel/sched/core.c (revision a594533df0f6ca391da003f43d53b336a2d23ffa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 #  include <linux/entry-common.h>
71 # endif
72 #endif
73 
74 #include <uapi/linux/sched/types.h>
75 
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #undef CREATE_TRACE_POINTS
84 
85 #include "sched.h"
86 #include "stats.h"
87 #include "autogroup.h"
88 
89 #include "autogroup.h"
90 #include "pelt.h"
91 #include "smp.h"
92 #include "stats.h"
93 
94 #include "../workqueue_internal.h"
95 #include "../../io_uring/io-wq.h"
96 #include "../smpboot.h"
97 
98 /*
99  * Export tracepoints that act as a bare tracehook (ie: have no trace event
100  * associated with them) to allow external modules to probe them.
101  */
102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
113 
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 
116 #ifdef CONFIG_SCHED_DEBUG
117 /*
118  * Debugging: various feature bits
119  *
120  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
121  * sysctl_sched_features, defined in sched.h, to allow constants propagation
122  * at compile time and compiler optimization based on features default.
123  */
124 #define SCHED_FEAT(name, enabled)	\
125 	(1UL << __SCHED_FEAT_##name) * enabled |
126 const_debug unsigned int sysctl_sched_features =
127 #include "features.h"
128 	0;
129 #undef SCHED_FEAT
130 
131 /*
132  * Print a warning if need_resched is set for the given duration (if
133  * LATENCY_WARN is enabled).
134  *
135  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
136  * per boot.
137  */
138 __read_mostly int sysctl_resched_latency_warn_ms = 100;
139 __read_mostly int sysctl_resched_latency_warn_once = 1;
140 #endif /* CONFIG_SCHED_DEBUG */
141 
142 /*
143  * Number of tasks to iterate in a single balance run.
144  * Limited because this is done with IRQs disabled.
145  */
146 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
147 
148 __read_mostly int scheduler_running;
149 
150 #ifdef CONFIG_SCHED_CORE
151 
152 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
153 
154 /* kernel prio, less is more */
155 static inline int __task_prio(struct task_struct *p)
156 {
157 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
158 		return -2;
159 
160 	if (rt_prio(p->prio)) /* includes deadline */
161 		return p->prio; /* [-1, 99] */
162 
163 	if (p->sched_class == &idle_sched_class)
164 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
165 
166 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
167 }
168 
169 /*
170  * l(a,b)
171  * le(a,b) := !l(b,a)
172  * g(a,b)  := l(b,a)
173  * ge(a,b) := !l(a,b)
174  */
175 
176 /* real prio, less is less */
177 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
178 {
179 
180 	int pa = __task_prio(a), pb = __task_prio(b);
181 
182 	if (-pa < -pb)
183 		return true;
184 
185 	if (-pb < -pa)
186 		return false;
187 
188 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
189 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
190 
191 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
192 		return cfs_prio_less(a, b, in_fi);
193 
194 	return false;
195 }
196 
197 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
198 {
199 	if (a->core_cookie < b->core_cookie)
200 		return true;
201 
202 	if (a->core_cookie > b->core_cookie)
203 		return false;
204 
205 	/* flip prio, so high prio is leftmost */
206 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
207 		return true;
208 
209 	return false;
210 }
211 
212 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
213 
214 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
215 {
216 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
217 }
218 
219 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
220 {
221 	const struct task_struct *p = __node_2_sc(node);
222 	unsigned long cookie = (unsigned long)key;
223 
224 	if (cookie < p->core_cookie)
225 		return -1;
226 
227 	if (cookie > p->core_cookie)
228 		return 1;
229 
230 	return 0;
231 }
232 
233 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
234 {
235 	rq->core->core_task_seq++;
236 
237 	if (!p->core_cookie)
238 		return;
239 
240 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
241 }
242 
243 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
244 {
245 	rq->core->core_task_seq++;
246 
247 	if (sched_core_enqueued(p)) {
248 		rb_erase(&p->core_node, &rq->core_tree);
249 		RB_CLEAR_NODE(&p->core_node);
250 	}
251 
252 	/*
253 	 * Migrating the last task off the cpu, with the cpu in forced idle
254 	 * state. Reschedule to create an accounting edge for forced idle,
255 	 * and re-examine whether the core is still in forced idle state.
256 	 */
257 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
258 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
259 		resched_curr(rq);
260 }
261 
262 /*
263  * Find left-most (aka, highest priority) task matching @cookie.
264  */
265 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
266 {
267 	struct rb_node *node;
268 
269 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
270 	/*
271 	 * The idle task always matches any cookie!
272 	 */
273 	if (!node)
274 		return idle_sched_class.pick_task(rq);
275 
276 	return __node_2_sc(node);
277 }
278 
279 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
280 {
281 	struct rb_node *node = &p->core_node;
282 
283 	node = rb_next(node);
284 	if (!node)
285 		return NULL;
286 
287 	p = container_of(node, struct task_struct, core_node);
288 	if (p->core_cookie != cookie)
289 		return NULL;
290 
291 	return p;
292 }
293 
294 /*
295  * Magic required such that:
296  *
297  *	raw_spin_rq_lock(rq);
298  *	...
299  *	raw_spin_rq_unlock(rq);
300  *
301  * ends up locking and unlocking the _same_ lock, and all CPUs
302  * always agree on what rq has what lock.
303  *
304  * XXX entirely possible to selectively enable cores, don't bother for now.
305  */
306 
307 static DEFINE_MUTEX(sched_core_mutex);
308 static atomic_t sched_core_count;
309 static struct cpumask sched_core_mask;
310 
311 static void sched_core_lock(int cpu, unsigned long *flags)
312 {
313 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
314 	int t, i = 0;
315 
316 	local_irq_save(*flags);
317 	for_each_cpu(t, smt_mask)
318 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
319 }
320 
321 static void sched_core_unlock(int cpu, unsigned long *flags)
322 {
323 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
324 	int t;
325 
326 	for_each_cpu(t, smt_mask)
327 		raw_spin_unlock(&cpu_rq(t)->__lock);
328 	local_irq_restore(*flags);
329 }
330 
331 static void __sched_core_flip(bool enabled)
332 {
333 	unsigned long flags;
334 	int cpu, t;
335 
336 	cpus_read_lock();
337 
338 	/*
339 	 * Toggle the online cores, one by one.
340 	 */
341 	cpumask_copy(&sched_core_mask, cpu_online_mask);
342 	for_each_cpu(cpu, &sched_core_mask) {
343 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
344 
345 		sched_core_lock(cpu, &flags);
346 
347 		for_each_cpu(t, smt_mask)
348 			cpu_rq(t)->core_enabled = enabled;
349 
350 		cpu_rq(cpu)->core->core_forceidle_start = 0;
351 
352 		sched_core_unlock(cpu, &flags);
353 
354 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
355 	}
356 
357 	/*
358 	 * Toggle the offline CPUs.
359 	 */
360 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
361 		cpu_rq(cpu)->core_enabled = enabled;
362 
363 	cpus_read_unlock();
364 }
365 
366 static void sched_core_assert_empty(void)
367 {
368 	int cpu;
369 
370 	for_each_possible_cpu(cpu)
371 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
372 }
373 
374 static void __sched_core_enable(void)
375 {
376 	static_branch_enable(&__sched_core_enabled);
377 	/*
378 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
379 	 * and future ones will observe !sched_core_disabled().
380 	 */
381 	synchronize_rcu();
382 	__sched_core_flip(true);
383 	sched_core_assert_empty();
384 }
385 
386 static void __sched_core_disable(void)
387 {
388 	sched_core_assert_empty();
389 	__sched_core_flip(false);
390 	static_branch_disable(&__sched_core_enabled);
391 }
392 
393 void sched_core_get(void)
394 {
395 	if (atomic_inc_not_zero(&sched_core_count))
396 		return;
397 
398 	mutex_lock(&sched_core_mutex);
399 	if (!atomic_read(&sched_core_count))
400 		__sched_core_enable();
401 
402 	smp_mb__before_atomic();
403 	atomic_inc(&sched_core_count);
404 	mutex_unlock(&sched_core_mutex);
405 }
406 
407 static void __sched_core_put(struct work_struct *work)
408 {
409 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
410 		__sched_core_disable();
411 		mutex_unlock(&sched_core_mutex);
412 	}
413 }
414 
415 void sched_core_put(void)
416 {
417 	static DECLARE_WORK(_work, __sched_core_put);
418 
419 	/*
420 	 * "There can be only one"
421 	 *
422 	 * Either this is the last one, or we don't actually need to do any
423 	 * 'work'. If it is the last *again*, we rely on
424 	 * WORK_STRUCT_PENDING_BIT.
425 	 */
426 	if (!atomic_add_unless(&sched_core_count, -1, 1))
427 		schedule_work(&_work);
428 }
429 
430 #else /* !CONFIG_SCHED_CORE */
431 
432 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
433 static inline void
434 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
435 
436 #endif /* CONFIG_SCHED_CORE */
437 
438 /*
439  * Serialization rules:
440  *
441  * Lock order:
442  *
443  *   p->pi_lock
444  *     rq->lock
445  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
446  *
447  *  rq1->lock
448  *    rq2->lock  where: rq1 < rq2
449  *
450  * Regular state:
451  *
452  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
453  * local CPU's rq->lock, it optionally removes the task from the runqueue and
454  * always looks at the local rq data structures to find the most eligible task
455  * to run next.
456  *
457  * Task enqueue is also under rq->lock, possibly taken from another CPU.
458  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
459  * the local CPU to avoid bouncing the runqueue state around [ see
460  * ttwu_queue_wakelist() ]
461  *
462  * Task wakeup, specifically wakeups that involve migration, are horribly
463  * complicated to avoid having to take two rq->locks.
464  *
465  * Special state:
466  *
467  * System-calls and anything external will use task_rq_lock() which acquires
468  * both p->pi_lock and rq->lock. As a consequence the state they change is
469  * stable while holding either lock:
470  *
471  *  - sched_setaffinity()/
472  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
473  *  - set_user_nice():		p->se.load, p->*prio
474  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
475  *				p->se.load, p->rt_priority,
476  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
477  *  - sched_setnuma():		p->numa_preferred_nid
478  *  - sched_move_task():	p->sched_task_group
479  *  - uclamp_update_active()	p->uclamp*
480  *
481  * p->state <- TASK_*:
482  *
483  *   is changed locklessly using set_current_state(), __set_current_state() or
484  *   set_special_state(), see their respective comments, or by
485  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
486  *   concurrent self.
487  *
488  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
489  *
490  *   is set by activate_task() and cleared by deactivate_task(), under
491  *   rq->lock. Non-zero indicates the task is runnable, the special
492  *   ON_RQ_MIGRATING state is used for migration without holding both
493  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
494  *
495  * p->on_cpu <- { 0, 1 }:
496  *
497  *   is set by prepare_task() and cleared by finish_task() such that it will be
498  *   set before p is scheduled-in and cleared after p is scheduled-out, both
499  *   under rq->lock. Non-zero indicates the task is running on its CPU.
500  *
501  *   [ The astute reader will observe that it is possible for two tasks on one
502  *     CPU to have ->on_cpu = 1 at the same time. ]
503  *
504  * task_cpu(p): is changed by set_task_cpu(), the rules are:
505  *
506  *  - Don't call set_task_cpu() on a blocked task:
507  *
508  *    We don't care what CPU we're not running on, this simplifies hotplug,
509  *    the CPU assignment of blocked tasks isn't required to be valid.
510  *
511  *  - for try_to_wake_up(), called under p->pi_lock:
512  *
513  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
514  *
515  *  - for migration called under rq->lock:
516  *    [ see task_on_rq_migrating() in task_rq_lock() ]
517  *
518  *    o move_queued_task()
519  *    o detach_task()
520  *
521  *  - for migration called under double_rq_lock():
522  *
523  *    o __migrate_swap_task()
524  *    o push_rt_task() / pull_rt_task()
525  *    o push_dl_task() / pull_dl_task()
526  *    o dl_task_offline_migration()
527  *
528  */
529 
530 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
531 {
532 	raw_spinlock_t *lock;
533 
534 	/* Matches synchronize_rcu() in __sched_core_enable() */
535 	preempt_disable();
536 	if (sched_core_disabled()) {
537 		raw_spin_lock_nested(&rq->__lock, subclass);
538 		/* preempt_count *MUST* be > 1 */
539 		preempt_enable_no_resched();
540 		return;
541 	}
542 
543 	for (;;) {
544 		lock = __rq_lockp(rq);
545 		raw_spin_lock_nested(lock, subclass);
546 		if (likely(lock == __rq_lockp(rq))) {
547 			/* preempt_count *MUST* be > 1 */
548 			preempt_enable_no_resched();
549 			return;
550 		}
551 		raw_spin_unlock(lock);
552 	}
553 }
554 
555 bool raw_spin_rq_trylock(struct rq *rq)
556 {
557 	raw_spinlock_t *lock;
558 	bool ret;
559 
560 	/* Matches synchronize_rcu() in __sched_core_enable() */
561 	preempt_disable();
562 	if (sched_core_disabled()) {
563 		ret = raw_spin_trylock(&rq->__lock);
564 		preempt_enable();
565 		return ret;
566 	}
567 
568 	for (;;) {
569 		lock = __rq_lockp(rq);
570 		ret = raw_spin_trylock(lock);
571 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
572 			preempt_enable();
573 			return ret;
574 		}
575 		raw_spin_unlock(lock);
576 	}
577 }
578 
579 void raw_spin_rq_unlock(struct rq *rq)
580 {
581 	raw_spin_unlock(rq_lockp(rq));
582 }
583 
584 #ifdef CONFIG_SMP
585 /*
586  * double_rq_lock - safely lock two runqueues
587  */
588 void double_rq_lock(struct rq *rq1, struct rq *rq2)
589 {
590 	lockdep_assert_irqs_disabled();
591 
592 	if (rq_order_less(rq2, rq1))
593 		swap(rq1, rq2);
594 
595 	raw_spin_rq_lock(rq1);
596 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
597 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
598 
599 	double_rq_clock_clear_update(rq1, rq2);
600 }
601 #endif
602 
603 /*
604  * __task_rq_lock - lock the rq @p resides on.
605  */
606 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
607 	__acquires(rq->lock)
608 {
609 	struct rq *rq;
610 
611 	lockdep_assert_held(&p->pi_lock);
612 
613 	for (;;) {
614 		rq = task_rq(p);
615 		raw_spin_rq_lock(rq);
616 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
617 			rq_pin_lock(rq, rf);
618 			return rq;
619 		}
620 		raw_spin_rq_unlock(rq);
621 
622 		while (unlikely(task_on_rq_migrating(p)))
623 			cpu_relax();
624 	}
625 }
626 
627 /*
628  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
629  */
630 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
631 	__acquires(p->pi_lock)
632 	__acquires(rq->lock)
633 {
634 	struct rq *rq;
635 
636 	for (;;) {
637 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
638 		rq = task_rq(p);
639 		raw_spin_rq_lock(rq);
640 		/*
641 		 *	move_queued_task()		task_rq_lock()
642 		 *
643 		 *	ACQUIRE (rq->lock)
644 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
645 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
646 		 *	[S] ->cpu = new_cpu		[L] task_rq()
647 		 *					[L] ->on_rq
648 		 *	RELEASE (rq->lock)
649 		 *
650 		 * If we observe the old CPU in task_rq_lock(), the acquire of
651 		 * the old rq->lock will fully serialize against the stores.
652 		 *
653 		 * If we observe the new CPU in task_rq_lock(), the address
654 		 * dependency headed by '[L] rq = task_rq()' and the acquire
655 		 * will pair with the WMB to ensure we then also see migrating.
656 		 */
657 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
658 			rq_pin_lock(rq, rf);
659 			return rq;
660 		}
661 		raw_spin_rq_unlock(rq);
662 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
663 
664 		while (unlikely(task_on_rq_migrating(p)))
665 			cpu_relax();
666 	}
667 }
668 
669 /*
670  * RQ-clock updating methods:
671  */
672 
673 static void update_rq_clock_task(struct rq *rq, s64 delta)
674 {
675 /*
676  * In theory, the compile should just see 0 here, and optimize out the call
677  * to sched_rt_avg_update. But I don't trust it...
678  */
679 	s64 __maybe_unused steal = 0, irq_delta = 0;
680 
681 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
682 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
683 
684 	/*
685 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
686 	 * this case when a previous update_rq_clock() happened inside a
687 	 * {soft,}irq region.
688 	 *
689 	 * When this happens, we stop ->clock_task and only update the
690 	 * prev_irq_time stamp to account for the part that fit, so that a next
691 	 * update will consume the rest. This ensures ->clock_task is
692 	 * monotonic.
693 	 *
694 	 * It does however cause some slight miss-attribution of {soft,}irq
695 	 * time, a more accurate solution would be to update the irq_time using
696 	 * the current rq->clock timestamp, except that would require using
697 	 * atomic ops.
698 	 */
699 	if (irq_delta > delta)
700 		irq_delta = delta;
701 
702 	rq->prev_irq_time += irq_delta;
703 	delta -= irq_delta;
704 	psi_account_irqtime(rq->curr, irq_delta);
705 #endif
706 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
707 	if (static_key_false((&paravirt_steal_rq_enabled))) {
708 		steal = paravirt_steal_clock(cpu_of(rq));
709 		steal -= rq->prev_steal_time_rq;
710 
711 		if (unlikely(steal > delta))
712 			steal = delta;
713 
714 		rq->prev_steal_time_rq += steal;
715 		delta -= steal;
716 	}
717 #endif
718 
719 	rq->clock_task += delta;
720 
721 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
722 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
723 		update_irq_load_avg(rq, irq_delta + steal);
724 #endif
725 	update_rq_clock_pelt(rq, delta);
726 }
727 
728 void update_rq_clock(struct rq *rq)
729 {
730 	s64 delta;
731 
732 	lockdep_assert_rq_held(rq);
733 
734 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
735 		return;
736 
737 #ifdef CONFIG_SCHED_DEBUG
738 	if (sched_feat(WARN_DOUBLE_CLOCK))
739 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
740 	rq->clock_update_flags |= RQCF_UPDATED;
741 #endif
742 
743 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
744 	if (delta < 0)
745 		return;
746 	rq->clock += delta;
747 	update_rq_clock_task(rq, delta);
748 }
749 
750 #ifdef CONFIG_SCHED_HRTICK
751 /*
752  * Use HR-timers to deliver accurate preemption points.
753  */
754 
755 static void hrtick_clear(struct rq *rq)
756 {
757 	if (hrtimer_active(&rq->hrtick_timer))
758 		hrtimer_cancel(&rq->hrtick_timer);
759 }
760 
761 /*
762  * High-resolution timer tick.
763  * Runs from hardirq context with interrupts disabled.
764  */
765 static enum hrtimer_restart hrtick(struct hrtimer *timer)
766 {
767 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
768 	struct rq_flags rf;
769 
770 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
771 
772 	rq_lock(rq, &rf);
773 	update_rq_clock(rq);
774 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
775 	rq_unlock(rq, &rf);
776 
777 	return HRTIMER_NORESTART;
778 }
779 
780 #ifdef CONFIG_SMP
781 
782 static void __hrtick_restart(struct rq *rq)
783 {
784 	struct hrtimer *timer = &rq->hrtick_timer;
785 	ktime_t time = rq->hrtick_time;
786 
787 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
788 }
789 
790 /*
791  * called from hardirq (IPI) context
792  */
793 static void __hrtick_start(void *arg)
794 {
795 	struct rq *rq = arg;
796 	struct rq_flags rf;
797 
798 	rq_lock(rq, &rf);
799 	__hrtick_restart(rq);
800 	rq_unlock(rq, &rf);
801 }
802 
803 /*
804  * Called to set the hrtick timer state.
805  *
806  * called with rq->lock held and irqs disabled
807  */
808 void hrtick_start(struct rq *rq, u64 delay)
809 {
810 	struct hrtimer *timer = &rq->hrtick_timer;
811 	s64 delta;
812 
813 	/*
814 	 * Don't schedule slices shorter than 10000ns, that just
815 	 * doesn't make sense and can cause timer DoS.
816 	 */
817 	delta = max_t(s64, delay, 10000LL);
818 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
819 
820 	if (rq == this_rq())
821 		__hrtick_restart(rq);
822 	else
823 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
824 }
825 
826 #else
827 /*
828  * Called to set the hrtick timer state.
829  *
830  * called with rq->lock held and irqs disabled
831  */
832 void hrtick_start(struct rq *rq, u64 delay)
833 {
834 	/*
835 	 * Don't schedule slices shorter than 10000ns, that just
836 	 * doesn't make sense. Rely on vruntime for fairness.
837 	 */
838 	delay = max_t(u64, delay, 10000LL);
839 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
840 		      HRTIMER_MODE_REL_PINNED_HARD);
841 }
842 
843 #endif /* CONFIG_SMP */
844 
845 static void hrtick_rq_init(struct rq *rq)
846 {
847 #ifdef CONFIG_SMP
848 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
849 #endif
850 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
851 	rq->hrtick_timer.function = hrtick;
852 }
853 #else	/* CONFIG_SCHED_HRTICK */
854 static inline void hrtick_clear(struct rq *rq)
855 {
856 }
857 
858 static inline void hrtick_rq_init(struct rq *rq)
859 {
860 }
861 #endif	/* CONFIG_SCHED_HRTICK */
862 
863 /*
864  * cmpxchg based fetch_or, macro so it works for different integer types
865  */
866 #define fetch_or(ptr, mask)						\
867 	({								\
868 		typeof(ptr) _ptr = (ptr);				\
869 		typeof(mask) _mask = (mask);				\
870 		typeof(*_ptr) _val = *_ptr;				\
871 									\
872 		do {							\
873 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
874 	_val;								\
875 })
876 
877 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
878 /*
879  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
880  * this avoids any races wrt polling state changes and thereby avoids
881  * spurious IPIs.
882  */
883 static inline bool set_nr_and_not_polling(struct task_struct *p)
884 {
885 	struct thread_info *ti = task_thread_info(p);
886 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
887 }
888 
889 /*
890  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
891  *
892  * If this returns true, then the idle task promises to call
893  * sched_ttwu_pending() and reschedule soon.
894  */
895 static bool set_nr_if_polling(struct task_struct *p)
896 {
897 	struct thread_info *ti = task_thread_info(p);
898 	typeof(ti->flags) val = READ_ONCE(ti->flags);
899 
900 	for (;;) {
901 		if (!(val & _TIF_POLLING_NRFLAG))
902 			return false;
903 		if (val & _TIF_NEED_RESCHED)
904 			return true;
905 		if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
906 			break;
907 	}
908 	return true;
909 }
910 
911 #else
912 static inline bool set_nr_and_not_polling(struct task_struct *p)
913 {
914 	set_tsk_need_resched(p);
915 	return true;
916 }
917 
918 #ifdef CONFIG_SMP
919 static inline bool set_nr_if_polling(struct task_struct *p)
920 {
921 	return false;
922 }
923 #endif
924 #endif
925 
926 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
927 {
928 	struct wake_q_node *node = &task->wake_q;
929 
930 	/*
931 	 * Atomically grab the task, if ->wake_q is !nil already it means
932 	 * it's already queued (either by us or someone else) and will get the
933 	 * wakeup due to that.
934 	 *
935 	 * In order to ensure that a pending wakeup will observe our pending
936 	 * state, even in the failed case, an explicit smp_mb() must be used.
937 	 */
938 	smp_mb__before_atomic();
939 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
940 		return false;
941 
942 	/*
943 	 * The head is context local, there can be no concurrency.
944 	 */
945 	*head->lastp = node;
946 	head->lastp = &node->next;
947 	return true;
948 }
949 
950 /**
951  * wake_q_add() - queue a wakeup for 'later' waking.
952  * @head: the wake_q_head to add @task to
953  * @task: the task to queue for 'later' wakeup
954  *
955  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
956  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
957  * instantly.
958  *
959  * This function must be used as-if it were wake_up_process(); IOW the task
960  * must be ready to be woken at this location.
961  */
962 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
963 {
964 	if (__wake_q_add(head, task))
965 		get_task_struct(task);
966 }
967 
968 /**
969  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
970  * @head: the wake_q_head to add @task to
971  * @task: the task to queue for 'later' wakeup
972  *
973  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
974  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
975  * instantly.
976  *
977  * This function must be used as-if it were wake_up_process(); IOW the task
978  * must be ready to be woken at this location.
979  *
980  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
981  * that already hold reference to @task can call the 'safe' version and trust
982  * wake_q to do the right thing depending whether or not the @task is already
983  * queued for wakeup.
984  */
985 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
986 {
987 	if (!__wake_q_add(head, task))
988 		put_task_struct(task);
989 }
990 
991 void wake_up_q(struct wake_q_head *head)
992 {
993 	struct wake_q_node *node = head->first;
994 
995 	while (node != WAKE_Q_TAIL) {
996 		struct task_struct *task;
997 
998 		task = container_of(node, struct task_struct, wake_q);
999 		/* Task can safely be re-inserted now: */
1000 		node = node->next;
1001 		task->wake_q.next = NULL;
1002 
1003 		/*
1004 		 * wake_up_process() executes a full barrier, which pairs with
1005 		 * the queueing in wake_q_add() so as not to miss wakeups.
1006 		 */
1007 		wake_up_process(task);
1008 		put_task_struct(task);
1009 	}
1010 }
1011 
1012 /*
1013  * resched_curr - mark rq's current task 'to be rescheduled now'.
1014  *
1015  * On UP this means the setting of the need_resched flag, on SMP it
1016  * might also involve a cross-CPU call to trigger the scheduler on
1017  * the target CPU.
1018  */
1019 void resched_curr(struct rq *rq)
1020 {
1021 	struct task_struct *curr = rq->curr;
1022 	int cpu;
1023 
1024 	lockdep_assert_rq_held(rq);
1025 
1026 	if (test_tsk_need_resched(curr))
1027 		return;
1028 
1029 	cpu = cpu_of(rq);
1030 
1031 	if (cpu == smp_processor_id()) {
1032 		set_tsk_need_resched(curr);
1033 		set_preempt_need_resched();
1034 		return;
1035 	}
1036 
1037 	if (set_nr_and_not_polling(curr))
1038 		smp_send_reschedule(cpu);
1039 	else
1040 		trace_sched_wake_idle_without_ipi(cpu);
1041 }
1042 
1043 void resched_cpu(int cpu)
1044 {
1045 	struct rq *rq = cpu_rq(cpu);
1046 	unsigned long flags;
1047 
1048 	raw_spin_rq_lock_irqsave(rq, flags);
1049 	if (cpu_online(cpu) || cpu == smp_processor_id())
1050 		resched_curr(rq);
1051 	raw_spin_rq_unlock_irqrestore(rq, flags);
1052 }
1053 
1054 #ifdef CONFIG_SMP
1055 #ifdef CONFIG_NO_HZ_COMMON
1056 /*
1057  * In the semi idle case, use the nearest busy CPU for migrating timers
1058  * from an idle CPU.  This is good for power-savings.
1059  *
1060  * We don't do similar optimization for completely idle system, as
1061  * selecting an idle CPU will add more delays to the timers than intended
1062  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1063  */
1064 int get_nohz_timer_target(void)
1065 {
1066 	int i, cpu = smp_processor_id(), default_cpu = -1;
1067 	struct sched_domain *sd;
1068 	const struct cpumask *hk_mask;
1069 
1070 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1071 		if (!idle_cpu(cpu))
1072 			return cpu;
1073 		default_cpu = cpu;
1074 	}
1075 
1076 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1077 
1078 	rcu_read_lock();
1079 	for_each_domain(cpu, sd) {
1080 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1081 			if (cpu == i)
1082 				continue;
1083 
1084 			if (!idle_cpu(i)) {
1085 				cpu = i;
1086 				goto unlock;
1087 			}
1088 		}
1089 	}
1090 
1091 	if (default_cpu == -1)
1092 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1093 	cpu = default_cpu;
1094 unlock:
1095 	rcu_read_unlock();
1096 	return cpu;
1097 }
1098 
1099 /*
1100  * When add_timer_on() enqueues a timer into the timer wheel of an
1101  * idle CPU then this timer might expire before the next timer event
1102  * which is scheduled to wake up that CPU. In case of a completely
1103  * idle system the next event might even be infinite time into the
1104  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1105  * leaves the inner idle loop so the newly added timer is taken into
1106  * account when the CPU goes back to idle and evaluates the timer
1107  * wheel for the next timer event.
1108  */
1109 static void wake_up_idle_cpu(int cpu)
1110 {
1111 	struct rq *rq = cpu_rq(cpu);
1112 
1113 	if (cpu == smp_processor_id())
1114 		return;
1115 
1116 	if (set_nr_and_not_polling(rq->idle))
1117 		smp_send_reschedule(cpu);
1118 	else
1119 		trace_sched_wake_idle_without_ipi(cpu);
1120 }
1121 
1122 static bool wake_up_full_nohz_cpu(int cpu)
1123 {
1124 	/*
1125 	 * We just need the target to call irq_exit() and re-evaluate
1126 	 * the next tick. The nohz full kick at least implies that.
1127 	 * If needed we can still optimize that later with an
1128 	 * empty IRQ.
1129 	 */
1130 	if (cpu_is_offline(cpu))
1131 		return true;  /* Don't try to wake offline CPUs. */
1132 	if (tick_nohz_full_cpu(cpu)) {
1133 		if (cpu != smp_processor_id() ||
1134 		    tick_nohz_tick_stopped())
1135 			tick_nohz_full_kick_cpu(cpu);
1136 		return true;
1137 	}
1138 
1139 	return false;
1140 }
1141 
1142 /*
1143  * Wake up the specified CPU.  If the CPU is going offline, it is the
1144  * caller's responsibility to deal with the lost wakeup, for example,
1145  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1146  */
1147 void wake_up_nohz_cpu(int cpu)
1148 {
1149 	if (!wake_up_full_nohz_cpu(cpu))
1150 		wake_up_idle_cpu(cpu);
1151 }
1152 
1153 static void nohz_csd_func(void *info)
1154 {
1155 	struct rq *rq = info;
1156 	int cpu = cpu_of(rq);
1157 	unsigned int flags;
1158 
1159 	/*
1160 	 * Release the rq::nohz_csd.
1161 	 */
1162 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1163 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1164 
1165 	rq->idle_balance = idle_cpu(cpu);
1166 	if (rq->idle_balance && !need_resched()) {
1167 		rq->nohz_idle_balance = flags;
1168 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1169 	}
1170 }
1171 
1172 #endif /* CONFIG_NO_HZ_COMMON */
1173 
1174 #ifdef CONFIG_NO_HZ_FULL
1175 bool sched_can_stop_tick(struct rq *rq)
1176 {
1177 	int fifo_nr_running;
1178 
1179 	/* Deadline tasks, even if single, need the tick */
1180 	if (rq->dl.dl_nr_running)
1181 		return false;
1182 
1183 	/*
1184 	 * If there are more than one RR tasks, we need the tick to affect the
1185 	 * actual RR behaviour.
1186 	 */
1187 	if (rq->rt.rr_nr_running) {
1188 		if (rq->rt.rr_nr_running == 1)
1189 			return true;
1190 		else
1191 			return false;
1192 	}
1193 
1194 	/*
1195 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1196 	 * forced preemption between FIFO tasks.
1197 	 */
1198 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1199 	if (fifo_nr_running)
1200 		return true;
1201 
1202 	/*
1203 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1204 	 * if there's more than one we need the tick for involuntary
1205 	 * preemption.
1206 	 */
1207 	if (rq->nr_running > 1)
1208 		return false;
1209 
1210 	return true;
1211 }
1212 #endif /* CONFIG_NO_HZ_FULL */
1213 #endif /* CONFIG_SMP */
1214 
1215 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1216 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1217 /*
1218  * Iterate task_group tree rooted at *from, calling @down when first entering a
1219  * node and @up when leaving it for the final time.
1220  *
1221  * Caller must hold rcu_lock or sufficient equivalent.
1222  */
1223 int walk_tg_tree_from(struct task_group *from,
1224 			     tg_visitor down, tg_visitor up, void *data)
1225 {
1226 	struct task_group *parent, *child;
1227 	int ret;
1228 
1229 	parent = from;
1230 
1231 down:
1232 	ret = (*down)(parent, data);
1233 	if (ret)
1234 		goto out;
1235 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1236 		parent = child;
1237 		goto down;
1238 
1239 up:
1240 		continue;
1241 	}
1242 	ret = (*up)(parent, data);
1243 	if (ret || parent == from)
1244 		goto out;
1245 
1246 	child = parent;
1247 	parent = parent->parent;
1248 	if (parent)
1249 		goto up;
1250 out:
1251 	return ret;
1252 }
1253 
1254 int tg_nop(struct task_group *tg, void *data)
1255 {
1256 	return 0;
1257 }
1258 #endif
1259 
1260 static void set_load_weight(struct task_struct *p, bool update_load)
1261 {
1262 	int prio = p->static_prio - MAX_RT_PRIO;
1263 	struct load_weight *load = &p->se.load;
1264 
1265 	/*
1266 	 * SCHED_IDLE tasks get minimal weight:
1267 	 */
1268 	if (task_has_idle_policy(p)) {
1269 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1270 		load->inv_weight = WMULT_IDLEPRIO;
1271 		return;
1272 	}
1273 
1274 	/*
1275 	 * SCHED_OTHER tasks have to update their load when changing their
1276 	 * weight
1277 	 */
1278 	if (update_load && p->sched_class == &fair_sched_class) {
1279 		reweight_task(p, prio);
1280 	} else {
1281 		load->weight = scale_load(sched_prio_to_weight[prio]);
1282 		load->inv_weight = sched_prio_to_wmult[prio];
1283 	}
1284 }
1285 
1286 #ifdef CONFIG_UCLAMP_TASK
1287 /*
1288  * Serializes updates of utilization clamp values
1289  *
1290  * The (slow-path) user-space triggers utilization clamp value updates which
1291  * can require updates on (fast-path) scheduler's data structures used to
1292  * support enqueue/dequeue operations.
1293  * While the per-CPU rq lock protects fast-path update operations, user-space
1294  * requests are serialized using a mutex to reduce the risk of conflicting
1295  * updates or API abuses.
1296  */
1297 static DEFINE_MUTEX(uclamp_mutex);
1298 
1299 /* Max allowed minimum utilization */
1300 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1301 
1302 /* Max allowed maximum utilization */
1303 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1304 
1305 /*
1306  * By default RT tasks run at the maximum performance point/capacity of the
1307  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1308  * SCHED_CAPACITY_SCALE.
1309  *
1310  * This knob allows admins to change the default behavior when uclamp is being
1311  * used. In battery powered devices, particularly, running at the maximum
1312  * capacity and frequency will increase energy consumption and shorten the
1313  * battery life.
1314  *
1315  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1316  *
1317  * This knob will not override the system default sched_util_clamp_min defined
1318  * above.
1319  */
1320 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1321 
1322 /* All clamps are required to be less or equal than these values */
1323 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1324 
1325 /*
1326  * This static key is used to reduce the uclamp overhead in the fast path. It
1327  * primarily disables the call to uclamp_rq_{inc, dec}() in
1328  * enqueue/dequeue_task().
1329  *
1330  * This allows users to continue to enable uclamp in their kernel config with
1331  * minimum uclamp overhead in the fast path.
1332  *
1333  * As soon as userspace modifies any of the uclamp knobs, the static key is
1334  * enabled, since we have an actual users that make use of uclamp
1335  * functionality.
1336  *
1337  * The knobs that would enable this static key are:
1338  *
1339  *   * A task modifying its uclamp value with sched_setattr().
1340  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1341  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1342  */
1343 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1344 
1345 /* Integer rounded range for each bucket */
1346 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1347 
1348 #define for_each_clamp_id(clamp_id) \
1349 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1350 
1351 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1352 {
1353 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1354 }
1355 
1356 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1357 {
1358 	if (clamp_id == UCLAMP_MIN)
1359 		return 0;
1360 	return SCHED_CAPACITY_SCALE;
1361 }
1362 
1363 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1364 				 unsigned int value, bool user_defined)
1365 {
1366 	uc_se->value = value;
1367 	uc_se->bucket_id = uclamp_bucket_id(value);
1368 	uc_se->user_defined = user_defined;
1369 }
1370 
1371 static inline unsigned int
1372 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1373 		  unsigned int clamp_value)
1374 {
1375 	/*
1376 	 * Avoid blocked utilization pushing up the frequency when we go
1377 	 * idle (which drops the max-clamp) by retaining the last known
1378 	 * max-clamp.
1379 	 */
1380 	if (clamp_id == UCLAMP_MAX) {
1381 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1382 		return clamp_value;
1383 	}
1384 
1385 	return uclamp_none(UCLAMP_MIN);
1386 }
1387 
1388 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1389 				     unsigned int clamp_value)
1390 {
1391 	/* Reset max-clamp retention only on idle exit */
1392 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1393 		return;
1394 
1395 	uclamp_rq_set(rq, clamp_id, clamp_value);
1396 }
1397 
1398 static inline
1399 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1400 				   unsigned int clamp_value)
1401 {
1402 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1403 	int bucket_id = UCLAMP_BUCKETS - 1;
1404 
1405 	/*
1406 	 * Since both min and max clamps are max aggregated, find the
1407 	 * top most bucket with tasks in.
1408 	 */
1409 	for ( ; bucket_id >= 0; bucket_id--) {
1410 		if (!bucket[bucket_id].tasks)
1411 			continue;
1412 		return bucket[bucket_id].value;
1413 	}
1414 
1415 	/* No tasks -- default clamp values */
1416 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1417 }
1418 
1419 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1420 {
1421 	unsigned int default_util_min;
1422 	struct uclamp_se *uc_se;
1423 
1424 	lockdep_assert_held(&p->pi_lock);
1425 
1426 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1427 
1428 	/* Only sync if user didn't override the default */
1429 	if (uc_se->user_defined)
1430 		return;
1431 
1432 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1433 	uclamp_se_set(uc_se, default_util_min, false);
1434 }
1435 
1436 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1437 {
1438 	struct rq_flags rf;
1439 	struct rq *rq;
1440 
1441 	if (!rt_task(p))
1442 		return;
1443 
1444 	/* Protect updates to p->uclamp_* */
1445 	rq = task_rq_lock(p, &rf);
1446 	__uclamp_update_util_min_rt_default(p);
1447 	task_rq_unlock(rq, p, &rf);
1448 }
1449 
1450 static inline struct uclamp_se
1451 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1452 {
1453 	/* Copy by value as we could modify it */
1454 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1455 #ifdef CONFIG_UCLAMP_TASK_GROUP
1456 	unsigned int tg_min, tg_max, value;
1457 
1458 	/*
1459 	 * Tasks in autogroups or root task group will be
1460 	 * restricted by system defaults.
1461 	 */
1462 	if (task_group_is_autogroup(task_group(p)))
1463 		return uc_req;
1464 	if (task_group(p) == &root_task_group)
1465 		return uc_req;
1466 
1467 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1468 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1469 	value = uc_req.value;
1470 	value = clamp(value, tg_min, tg_max);
1471 	uclamp_se_set(&uc_req, value, false);
1472 #endif
1473 
1474 	return uc_req;
1475 }
1476 
1477 /*
1478  * The effective clamp bucket index of a task depends on, by increasing
1479  * priority:
1480  * - the task specific clamp value, when explicitly requested from userspace
1481  * - the task group effective clamp value, for tasks not either in the root
1482  *   group or in an autogroup
1483  * - the system default clamp value, defined by the sysadmin
1484  */
1485 static inline struct uclamp_se
1486 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1487 {
1488 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1489 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1490 
1491 	/* System default restrictions always apply */
1492 	if (unlikely(uc_req.value > uc_max.value))
1493 		return uc_max;
1494 
1495 	return uc_req;
1496 }
1497 
1498 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1499 {
1500 	struct uclamp_se uc_eff;
1501 
1502 	/* Task currently refcounted: use back-annotated (effective) value */
1503 	if (p->uclamp[clamp_id].active)
1504 		return (unsigned long)p->uclamp[clamp_id].value;
1505 
1506 	uc_eff = uclamp_eff_get(p, clamp_id);
1507 
1508 	return (unsigned long)uc_eff.value;
1509 }
1510 
1511 /*
1512  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1513  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1514  * updates the rq's clamp value if required.
1515  *
1516  * Tasks can have a task-specific value requested from user-space, track
1517  * within each bucket the maximum value for tasks refcounted in it.
1518  * This "local max aggregation" allows to track the exact "requested" value
1519  * for each bucket when all its RUNNABLE tasks require the same clamp.
1520  */
1521 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1522 				    enum uclamp_id clamp_id)
1523 {
1524 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1525 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1526 	struct uclamp_bucket *bucket;
1527 
1528 	lockdep_assert_rq_held(rq);
1529 
1530 	/* Update task effective clamp */
1531 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1532 
1533 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1534 	bucket->tasks++;
1535 	uc_se->active = true;
1536 
1537 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1538 
1539 	/*
1540 	 * Local max aggregation: rq buckets always track the max
1541 	 * "requested" clamp value of its RUNNABLE tasks.
1542 	 */
1543 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1544 		bucket->value = uc_se->value;
1545 
1546 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1547 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1548 }
1549 
1550 /*
1551  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1552  * is released. If this is the last task reference counting the rq's max
1553  * active clamp value, then the rq's clamp value is updated.
1554  *
1555  * Both refcounted tasks and rq's cached clamp values are expected to be
1556  * always valid. If it's detected they are not, as defensive programming,
1557  * enforce the expected state and warn.
1558  */
1559 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1560 				    enum uclamp_id clamp_id)
1561 {
1562 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1563 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1564 	struct uclamp_bucket *bucket;
1565 	unsigned int bkt_clamp;
1566 	unsigned int rq_clamp;
1567 
1568 	lockdep_assert_rq_held(rq);
1569 
1570 	/*
1571 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1572 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1573 	 *
1574 	 * In this case the uc_se->active flag should be false since no uclamp
1575 	 * accounting was performed at enqueue time and we can just return
1576 	 * here.
1577 	 *
1578 	 * Need to be careful of the following enqueue/dequeue ordering
1579 	 * problem too
1580 	 *
1581 	 *	enqueue(taskA)
1582 	 *	// sched_uclamp_used gets enabled
1583 	 *	enqueue(taskB)
1584 	 *	dequeue(taskA)
1585 	 *	// Must not decrement bucket->tasks here
1586 	 *	dequeue(taskB)
1587 	 *
1588 	 * where we could end up with stale data in uc_se and
1589 	 * bucket[uc_se->bucket_id].
1590 	 *
1591 	 * The following check here eliminates the possibility of such race.
1592 	 */
1593 	if (unlikely(!uc_se->active))
1594 		return;
1595 
1596 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1597 
1598 	SCHED_WARN_ON(!bucket->tasks);
1599 	if (likely(bucket->tasks))
1600 		bucket->tasks--;
1601 
1602 	uc_se->active = false;
1603 
1604 	/*
1605 	 * Keep "local max aggregation" simple and accept to (possibly)
1606 	 * overboost some RUNNABLE tasks in the same bucket.
1607 	 * The rq clamp bucket value is reset to its base value whenever
1608 	 * there are no more RUNNABLE tasks refcounting it.
1609 	 */
1610 	if (likely(bucket->tasks))
1611 		return;
1612 
1613 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1614 	/*
1615 	 * Defensive programming: this should never happen. If it happens,
1616 	 * e.g. due to future modification, warn and fixup the expected value.
1617 	 */
1618 	SCHED_WARN_ON(bucket->value > rq_clamp);
1619 	if (bucket->value >= rq_clamp) {
1620 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1621 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1622 	}
1623 }
1624 
1625 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1626 {
1627 	enum uclamp_id clamp_id;
1628 
1629 	/*
1630 	 * Avoid any overhead until uclamp is actually used by the userspace.
1631 	 *
1632 	 * The condition is constructed such that a NOP is generated when
1633 	 * sched_uclamp_used is disabled.
1634 	 */
1635 	if (!static_branch_unlikely(&sched_uclamp_used))
1636 		return;
1637 
1638 	if (unlikely(!p->sched_class->uclamp_enabled))
1639 		return;
1640 
1641 	for_each_clamp_id(clamp_id)
1642 		uclamp_rq_inc_id(rq, p, clamp_id);
1643 
1644 	/* Reset clamp idle holding when there is one RUNNABLE task */
1645 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1646 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1647 }
1648 
1649 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1650 {
1651 	enum uclamp_id clamp_id;
1652 
1653 	/*
1654 	 * Avoid any overhead until uclamp is actually used by the userspace.
1655 	 *
1656 	 * The condition is constructed such that a NOP is generated when
1657 	 * sched_uclamp_used is disabled.
1658 	 */
1659 	if (!static_branch_unlikely(&sched_uclamp_used))
1660 		return;
1661 
1662 	if (unlikely(!p->sched_class->uclamp_enabled))
1663 		return;
1664 
1665 	for_each_clamp_id(clamp_id)
1666 		uclamp_rq_dec_id(rq, p, clamp_id);
1667 }
1668 
1669 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1670 				      enum uclamp_id clamp_id)
1671 {
1672 	if (!p->uclamp[clamp_id].active)
1673 		return;
1674 
1675 	uclamp_rq_dec_id(rq, p, clamp_id);
1676 	uclamp_rq_inc_id(rq, p, clamp_id);
1677 
1678 	/*
1679 	 * Make sure to clear the idle flag if we've transiently reached 0
1680 	 * active tasks on rq.
1681 	 */
1682 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1683 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1684 }
1685 
1686 static inline void
1687 uclamp_update_active(struct task_struct *p)
1688 {
1689 	enum uclamp_id clamp_id;
1690 	struct rq_flags rf;
1691 	struct rq *rq;
1692 
1693 	/*
1694 	 * Lock the task and the rq where the task is (or was) queued.
1695 	 *
1696 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1697 	 * price to pay to safely serialize util_{min,max} updates with
1698 	 * enqueues, dequeues and migration operations.
1699 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1700 	 */
1701 	rq = task_rq_lock(p, &rf);
1702 
1703 	/*
1704 	 * Setting the clamp bucket is serialized by task_rq_lock().
1705 	 * If the task is not yet RUNNABLE and its task_struct is not
1706 	 * affecting a valid clamp bucket, the next time it's enqueued,
1707 	 * it will already see the updated clamp bucket value.
1708 	 */
1709 	for_each_clamp_id(clamp_id)
1710 		uclamp_rq_reinc_id(rq, p, clamp_id);
1711 
1712 	task_rq_unlock(rq, p, &rf);
1713 }
1714 
1715 #ifdef CONFIG_UCLAMP_TASK_GROUP
1716 static inline void
1717 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1718 {
1719 	struct css_task_iter it;
1720 	struct task_struct *p;
1721 
1722 	css_task_iter_start(css, 0, &it);
1723 	while ((p = css_task_iter_next(&it)))
1724 		uclamp_update_active(p);
1725 	css_task_iter_end(&it);
1726 }
1727 
1728 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1729 #endif
1730 
1731 #ifdef CONFIG_SYSCTL
1732 #ifdef CONFIG_UCLAMP_TASK
1733 #ifdef CONFIG_UCLAMP_TASK_GROUP
1734 static void uclamp_update_root_tg(void)
1735 {
1736 	struct task_group *tg = &root_task_group;
1737 
1738 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1739 		      sysctl_sched_uclamp_util_min, false);
1740 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1741 		      sysctl_sched_uclamp_util_max, false);
1742 
1743 	rcu_read_lock();
1744 	cpu_util_update_eff(&root_task_group.css);
1745 	rcu_read_unlock();
1746 }
1747 #else
1748 static void uclamp_update_root_tg(void) { }
1749 #endif
1750 
1751 static void uclamp_sync_util_min_rt_default(void)
1752 {
1753 	struct task_struct *g, *p;
1754 
1755 	/*
1756 	 * copy_process()			sysctl_uclamp
1757 	 *					  uclamp_min_rt = X;
1758 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1759 	 *   // link thread			  smp_mb__after_spinlock()
1760 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1761 	 *   sched_post_fork()			  for_each_process_thread()
1762 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1763 	 *
1764 	 * Ensures that either sched_post_fork() will observe the new
1765 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1766 	 * task.
1767 	 */
1768 	read_lock(&tasklist_lock);
1769 	smp_mb__after_spinlock();
1770 	read_unlock(&tasklist_lock);
1771 
1772 	rcu_read_lock();
1773 	for_each_process_thread(g, p)
1774 		uclamp_update_util_min_rt_default(p);
1775 	rcu_read_unlock();
1776 }
1777 
1778 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1779 				void *buffer, size_t *lenp, loff_t *ppos)
1780 {
1781 	bool update_root_tg = false;
1782 	int old_min, old_max, old_min_rt;
1783 	int result;
1784 
1785 	mutex_lock(&uclamp_mutex);
1786 	old_min = sysctl_sched_uclamp_util_min;
1787 	old_max = sysctl_sched_uclamp_util_max;
1788 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1789 
1790 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1791 	if (result)
1792 		goto undo;
1793 	if (!write)
1794 		goto done;
1795 
1796 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1797 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1798 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1799 
1800 		result = -EINVAL;
1801 		goto undo;
1802 	}
1803 
1804 	if (old_min != sysctl_sched_uclamp_util_min) {
1805 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1806 			      sysctl_sched_uclamp_util_min, false);
1807 		update_root_tg = true;
1808 	}
1809 	if (old_max != sysctl_sched_uclamp_util_max) {
1810 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1811 			      sysctl_sched_uclamp_util_max, false);
1812 		update_root_tg = true;
1813 	}
1814 
1815 	if (update_root_tg) {
1816 		static_branch_enable(&sched_uclamp_used);
1817 		uclamp_update_root_tg();
1818 	}
1819 
1820 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1821 		static_branch_enable(&sched_uclamp_used);
1822 		uclamp_sync_util_min_rt_default();
1823 	}
1824 
1825 	/*
1826 	 * We update all RUNNABLE tasks only when task groups are in use.
1827 	 * Otherwise, keep it simple and do just a lazy update at each next
1828 	 * task enqueue time.
1829 	 */
1830 
1831 	goto done;
1832 
1833 undo:
1834 	sysctl_sched_uclamp_util_min = old_min;
1835 	sysctl_sched_uclamp_util_max = old_max;
1836 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1837 done:
1838 	mutex_unlock(&uclamp_mutex);
1839 
1840 	return result;
1841 }
1842 #endif
1843 #endif
1844 
1845 static int uclamp_validate(struct task_struct *p,
1846 			   const struct sched_attr *attr)
1847 {
1848 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1849 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1850 
1851 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1852 		util_min = attr->sched_util_min;
1853 
1854 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1855 			return -EINVAL;
1856 	}
1857 
1858 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1859 		util_max = attr->sched_util_max;
1860 
1861 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1862 			return -EINVAL;
1863 	}
1864 
1865 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1866 		return -EINVAL;
1867 
1868 	/*
1869 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1870 	 *
1871 	 * We need to do that here, because enabling static branches is a
1872 	 * blocking operation which obviously cannot be done while holding
1873 	 * scheduler locks.
1874 	 */
1875 	static_branch_enable(&sched_uclamp_used);
1876 
1877 	return 0;
1878 }
1879 
1880 static bool uclamp_reset(const struct sched_attr *attr,
1881 			 enum uclamp_id clamp_id,
1882 			 struct uclamp_se *uc_se)
1883 {
1884 	/* Reset on sched class change for a non user-defined clamp value. */
1885 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1886 	    !uc_se->user_defined)
1887 		return true;
1888 
1889 	/* Reset on sched_util_{min,max} == -1. */
1890 	if (clamp_id == UCLAMP_MIN &&
1891 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1892 	    attr->sched_util_min == -1) {
1893 		return true;
1894 	}
1895 
1896 	if (clamp_id == UCLAMP_MAX &&
1897 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1898 	    attr->sched_util_max == -1) {
1899 		return true;
1900 	}
1901 
1902 	return false;
1903 }
1904 
1905 static void __setscheduler_uclamp(struct task_struct *p,
1906 				  const struct sched_attr *attr)
1907 {
1908 	enum uclamp_id clamp_id;
1909 
1910 	for_each_clamp_id(clamp_id) {
1911 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1912 		unsigned int value;
1913 
1914 		if (!uclamp_reset(attr, clamp_id, uc_se))
1915 			continue;
1916 
1917 		/*
1918 		 * RT by default have a 100% boost value that could be modified
1919 		 * at runtime.
1920 		 */
1921 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1922 			value = sysctl_sched_uclamp_util_min_rt_default;
1923 		else
1924 			value = uclamp_none(clamp_id);
1925 
1926 		uclamp_se_set(uc_se, value, false);
1927 
1928 	}
1929 
1930 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1931 		return;
1932 
1933 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1934 	    attr->sched_util_min != -1) {
1935 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1936 			      attr->sched_util_min, true);
1937 	}
1938 
1939 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1940 	    attr->sched_util_max != -1) {
1941 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1942 			      attr->sched_util_max, true);
1943 	}
1944 }
1945 
1946 static void uclamp_fork(struct task_struct *p)
1947 {
1948 	enum uclamp_id clamp_id;
1949 
1950 	/*
1951 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1952 	 * as the task is still at its early fork stages.
1953 	 */
1954 	for_each_clamp_id(clamp_id)
1955 		p->uclamp[clamp_id].active = false;
1956 
1957 	if (likely(!p->sched_reset_on_fork))
1958 		return;
1959 
1960 	for_each_clamp_id(clamp_id) {
1961 		uclamp_se_set(&p->uclamp_req[clamp_id],
1962 			      uclamp_none(clamp_id), false);
1963 	}
1964 }
1965 
1966 static void uclamp_post_fork(struct task_struct *p)
1967 {
1968 	uclamp_update_util_min_rt_default(p);
1969 }
1970 
1971 static void __init init_uclamp_rq(struct rq *rq)
1972 {
1973 	enum uclamp_id clamp_id;
1974 	struct uclamp_rq *uc_rq = rq->uclamp;
1975 
1976 	for_each_clamp_id(clamp_id) {
1977 		uc_rq[clamp_id] = (struct uclamp_rq) {
1978 			.value = uclamp_none(clamp_id)
1979 		};
1980 	}
1981 
1982 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1983 }
1984 
1985 static void __init init_uclamp(void)
1986 {
1987 	struct uclamp_se uc_max = {};
1988 	enum uclamp_id clamp_id;
1989 	int cpu;
1990 
1991 	for_each_possible_cpu(cpu)
1992 		init_uclamp_rq(cpu_rq(cpu));
1993 
1994 	for_each_clamp_id(clamp_id) {
1995 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1996 			      uclamp_none(clamp_id), false);
1997 	}
1998 
1999 	/* System defaults allow max clamp values for both indexes */
2000 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2001 	for_each_clamp_id(clamp_id) {
2002 		uclamp_default[clamp_id] = uc_max;
2003 #ifdef CONFIG_UCLAMP_TASK_GROUP
2004 		root_task_group.uclamp_req[clamp_id] = uc_max;
2005 		root_task_group.uclamp[clamp_id] = uc_max;
2006 #endif
2007 	}
2008 }
2009 
2010 #else /* CONFIG_UCLAMP_TASK */
2011 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2012 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2013 static inline int uclamp_validate(struct task_struct *p,
2014 				  const struct sched_attr *attr)
2015 {
2016 	return -EOPNOTSUPP;
2017 }
2018 static void __setscheduler_uclamp(struct task_struct *p,
2019 				  const struct sched_attr *attr) { }
2020 static inline void uclamp_fork(struct task_struct *p) { }
2021 static inline void uclamp_post_fork(struct task_struct *p) { }
2022 static inline void init_uclamp(void) { }
2023 #endif /* CONFIG_UCLAMP_TASK */
2024 
2025 bool sched_task_on_rq(struct task_struct *p)
2026 {
2027 	return task_on_rq_queued(p);
2028 }
2029 
2030 unsigned long get_wchan(struct task_struct *p)
2031 {
2032 	unsigned long ip = 0;
2033 	unsigned int state;
2034 
2035 	if (!p || p == current)
2036 		return 0;
2037 
2038 	/* Only get wchan if task is blocked and we can keep it that way. */
2039 	raw_spin_lock_irq(&p->pi_lock);
2040 	state = READ_ONCE(p->__state);
2041 	smp_rmb(); /* see try_to_wake_up() */
2042 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2043 		ip = __get_wchan(p);
2044 	raw_spin_unlock_irq(&p->pi_lock);
2045 
2046 	return ip;
2047 }
2048 
2049 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2050 {
2051 	if (!(flags & ENQUEUE_NOCLOCK))
2052 		update_rq_clock(rq);
2053 
2054 	if (!(flags & ENQUEUE_RESTORE)) {
2055 		sched_info_enqueue(rq, p);
2056 		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2057 	}
2058 
2059 	uclamp_rq_inc(rq, p);
2060 	p->sched_class->enqueue_task(rq, p, flags);
2061 
2062 	if (sched_core_enabled(rq))
2063 		sched_core_enqueue(rq, p);
2064 }
2065 
2066 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2067 {
2068 	if (sched_core_enabled(rq))
2069 		sched_core_dequeue(rq, p, flags);
2070 
2071 	if (!(flags & DEQUEUE_NOCLOCK))
2072 		update_rq_clock(rq);
2073 
2074 	if (!(flags & DEQUEUE_SAVE)) {
2075 		sched_info_dequeue(rq, p);
2076 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2077 	}
2078 
2079 	uclamp_rq_dec(rq, p);
2080 	p->sched_class->dequeue_task(rq, p, flags);
2081 }
2082 
2083 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2084 {
2085 	enqueue_task(rq, p, flags);
2086 
2087 	p->on_rq = TASK_ON_RQ_QUEUED;
2088 }
2089 
2090 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2091 {
2092 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2093 
2094 	dequeue_task(rq, p, flags);
2095 }
2096 
2097 static inline int __normal_prio(int policy, int rt_prio, int nice)
2098 {
2099 	int prio;
2100 
2101 	if (dl_policy(policy))
2102 		prio = MAX_DL_PRIO - 1;
2103 	else if (rt_policy(policy))
2104 		prio = MAX_RT_PRIO - 1 - rt_prio;
2105 	else
2106 		prio = NICE_TO_PRIO(nice);
2107 
2108 	return prio;
2109 }
2110 
2111 /*
2112  * Calculate the expected normal priority: i.e. priority
2113  * without taking RT-inheritance into account. Might be
2114  * boosted by interactivity modifiers. Changes upon fork,
2115  * setprio syscalls, and whenever the interactivity
2116  * estimator recalculates.
2117  */
2118 static inline int normal_prio(struct task_struct *p)
2119 {
2120 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2121 }
2122 
2123 /*
2124  * Calculate the current priority, i.e. the priority
2125  * taken into account by the scheduler. This value might
2126  * be boosted by RT tasks, or might be boosted by
2127  * interactivity modifiers. Will be RT if the task got
2128  * RT-boosted. If not then it returns p->normal_prio.
2129  */
2130 static int effective_prio(struct task_struct *p)
2131 {
2132 	p->normal_prio = normal_prio(p);
2133 	/*
2134 	 * If we are RT tasks or we were boosted to RT priority,
2135 	 * keep the priority unchanged. Otherwise, update priority
2136 	 * to the normal priority:
2137 	 */
2138 	if (!rt_prio(p->prio))
2139 		return p->normal_prio;
2140 	return p->prio;
2141 }
2142 
2143 /**
2144  * task_curr - is this task currently executing on a CPU?
2145  * @p: the task in question.
2146  *
2147  * Return: 1 if the task is currently executing. 0 otherwise.
2148  */
2149 inline int task_curr(const struct task_struct *p)
2150 {
2151 	return cpu_curr(task_cpu(p)) == p;
2152 }
2153 
2154 /*
2155  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2156  * use the balance_callback list if you want balancing.
2157  *
2158  * this means any call to check_class_changed() must be followed by a call to
2159  * balance_callback().
2160  */
2161 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2162 				       const struct sched_class *prev_class,
2163 				       int oldprio)
2164 {
2165 	if (prev_class != p->sched_class) {
2166 		if (prev_class->switched_from)
2167 			prev_class->switched_from(rq, p);
2168 
2169 		p->sched_class->switched_to(rq, p);
2170 	} else if (oldprio != p->prio || dl_task(p))
2171 		p->sched_class->prio_changed(rq, p, oldprio);
2172 }
2173 
2174 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2175 {
2176 	if (p->sched_class == rq->curr->sched_class)
2177 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2178 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2179 		resched_curr(rq);
2180 
2181 	/*
2182 	 * A queue event has occurred, and we're going to schedule.  In
2183 	 * this case, we can save a useless back to back clock update.
2184 	 */
2185 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2186 		rq_clock_skip_update(rq);
2187 }
2188 
2189 #ifdef CONFIG_SMP
2190 
2191 static void
2192 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2193 
2194 static int __set_cpus_allowed_ptr(struct task_struct *p,
2195 				  struct affinity_context *ctx);
2196 
2197 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2198 {
2199 	struct affinity_context ac = {
2200 		.new_mask  = cpumask_of(rq->cpu),
2201 		.flags     = SCA_MIGRATE_DISABLE,
2202 	};
2203 
2204 	if (likely(!p->migration_disabled))
2205 		return;
2206 
2207 	if (p->cpus_ptr != &p->cpus_mask)
2208 		return;
2209 
2210 	/*
2211 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2212 	 */
2213 	__do_set_cpus_allowed(p, &ac);
2214 }
2215 
2216 void migrate_disable(void)
2217 {
2218 	struct task_struct *p = current;
2219 
2220 	if (p->migration_disabled) {
2221 		p->migration_disabled++;
2222 		return;
2223 	}
2224 
2225 	preempt_disable();
2226 	this_rq()->nr_pinned++;
2227 	p->migration_disabled = 1;
2228 	preempt_enable();
2229 }
2230 EXPORT_SYMBOL_GPL(migrate_disable);
2231 
2232 void migrate_enable(void)
2233 {
2234 	struct task_struct *p = current;
2235 	struct affinity_context ac = {
2236 		.new_mask  = &p->cpus_mask,
2237 		.flags     = SCA_MIGRATE_ENABLE,
2238 	};
2239 
2240 	if (p->migration_disabled > 1) {
2241 		p->migration_disabled--;
2242 		return;
2243 	}
2244 
2245 	if (WARN_ON_ONCE(!p->migration_disabled))
2246 		return;
2247 
2248 	/*
2249 	 * Ensure stop_task runs either before or after this, and that
2250 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2251 	 */
2252 	preempt_disable();
2253 	if (p->cpus_ptr != &p->cpus_mask)
2254 		__set_cpus_allowed_ptr(p, &ac);
2255 	/*
2256 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2257 	 * regular cpus_mask, otherwise things that race (eg.
2258 	 * select_fallback_rq) get confused.
2259 	 */
2260 	barrier();
2261 	p->migration_disabled = 0;
2262 	this_rq()->nr_pinned--;
2263 	preempt_enable();
2264 }
2265 EXPORT_SYMBOL_GPL(migrate_enable);
2266 
2267 static inline bool rq_has_pinned_tasks(struct rq *rq)
2268 {
2269 	return rq->nr_pinned;
2270 }
2271 
2272 /*
2273  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2274  * __set_cpus_allowed_ptr() and select_fallback_rq().
2275  */
2276 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2277 {
2278 	/* When not in the task's cpumask, no point in looking further. */
2279 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2280 		return false;
2281 
2282 	/* migrate_disabled() must be allowed to finish. */
2283 	if (is_migration_disabled(p))
2284 		return cpu_online(cpu);
2285 
2286 	/* Non kernel threads are not allowed during either online or offline. */
2287 	if (!(p->flags & PF_KTHREAD))
2288 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2289 
2290 	/* KTHREAD_IS_PER_CPU is always allowed. */
2291 	if (kthread_is_per_cpu(p))
2292 		return cpu_online(cpu);
2293 
2294 	/* Regular kernel threads don't get to stay during offline. */
2295 	if (cpu_dying(cpu))
2296 		return false;
2297 
2298 	/* But are allowed during online. */
2299 	return cpu_online(cpu);
2300 }
2301 
2302 /*
2303  * This is how migration works:
2304  *
2305  * 1) we invoke migration_cpu_stop() on the target CPU using
2306  *    stop_one_cpu().
2307  * 2) stopper starts to run (implicitly forcing the migrated thread
2308  *    off the CPU)
2309  * 3) it checks whether the migrated task is still in the wrong runqueue.
2310  * 4) if it's in the wrong runqueue then the migration thread removes
2311  *    it and puts it into the right queue.
2312  * 5) stopper completes and stop_one_cpu() returns and the migration
2313  *    is done.
2314  */
2315 
2316 /*
2317  * move_queued_task - move a queued task to new rq.
2318  *
2319  * Returns (locked) new rq. Old rq's lock is released.
2320  */
2321 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2322 				   struct task_struct *p, int new_cpu)
2323 {
2324 	lockdep_assert_rq_held(rq);
2325 
2326 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2327 	set_task_cpu(p, new_cpu);
2328 	rq_unlock(rq, rf);
2329 
2330 	rq = cpu_rq(new_cpu);
2331 
2332 	rq_lock(rq, rf);
2333 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2334 	activate_task(rq, p, 0);
2335 	check_preempt_curr(rq, p, 0);
2336 
2337 	return rq;
2338 }
2339 
2340 struct migration_arg {
2341 	struct task_struct		*task;
2342 	int				dest_cpu;
2343 	struct set_affinity_pending	*pending;
2344 };
2345 
2346 /*
2347  * @refs: number of wait_for_completion()
2348  * @stop_pending: is @stop_work in use
2349  */
2350 struct set_affinity_pending {
2351 	refcount_t		refs;
2352 	unsigned int		stop_pending;
2353 	struct completion	done;
2354 	struct cpu_stop_work	stop_work;
2355 	struct migration_arg	arg;
2356 };
2357 
2358 /*
2359  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2360  * this because either it can't run here any more (set_cpus_allowed()
2361  * away from this CPU, or CPU going down), or because we're
2362  * attempting to rebalance this task on exec (sched_exec).
2363  *
2364  * So we race with normal scheduler movements, but that's OK, as long
2365  * as the task is no longer on this CPU.
2366  */
2367 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2368 				 struct task_struct *p, int dest_cpu)
2369 {
2370 	/* Affinity changed (again). */
2371 	if (!is_cpu_allowed(p, dest_cpu))
2372 		return rq;
2373 
2374 	update_rq_clock(rq);
2375 	rq = move_queued_task(rq, rf, p, dest_cpu);
2376 
2377 	return rq;
2378 }
2379 
2380 /*
2381  * migration_cpu_stop - this will be executed by a highprio stopper thread
2382  * and performs thread migration by bumping thread off CPU then
2383  * 'pushing' onto another runqueue.
2384  */
2385 static int migration_cpu_stop(void *data)
2386 {
2387 	struct migration_arg *arg = data;
2388 	struct set_affinity_pending *pending = arg->pending;
2389 	struct task_struct *p = arg->task;
2390 	struct rq *rq = this_rq();
2391 	bool complete = false;
2392 	struct rq_flags rf;
2393 
2394 	/*
2395 	 * The original target CPU might have gone down and we might
2396 	 * be on another CPU but it doesn't matter.
2397 	 */
2398 	local_irq_save(rf.flags);
2399 	/*
2400 	 * We need to explicitly wake pending tasks before running
2401 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2402 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2403 	 */
2404 	flush_smp_call_function_queue();
2405 
2406 	raw_spin_lock(&p->pi_lock);
2407 	rq_lock(rq, &rf);
2408 
2409 	/*
2410 	 * If we were passed a pending, then ->stop_pending was set, thus
2411 	 * p->migration_pending must have remained stable.
2412 	 */
2413 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2414 
2415 	/*
2416 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2417 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2418 	 * we're holding p->pi_lock.
2419 	 */
2420 	if (task_rq(p) == rq) {
2421 		if (is_migration_disabled(p))
2422 			goto out;
2423 
2424 		if (pending) {
2425 			p->migration_pending = NULL;
2426 			complete = true;
2427 
2428 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2429 				goto out;
2430 		}
2431 
2432 		if (task_on_rq_queued(p))
2433 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2434 		else
2435 			p->wake_cpu = arg->dest_cpu;
2436 
2437 		/*
2438 		 * XXX __migrate_task() can fail, at which point we might end
2439 		 * up running on a dodgy CPU, AFAICT this can only happen
2440 		 * during CPU hotplug, at which point we'll get pushed out
2441 		 * anyway, so it's probably not a big deal.
2442 		 */
2443 
2444 	} else if (pending) {
2445 		/*
2446 		 * This happens when we get migrated between migrate_enable()'s
2447 		 * preempt_enable() and scheduling the stopper task. At that
2448 		 * point we're a regular task again and not current anymore.
2449 		 *
2450 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2451 		 * more likely.
2452 		 */
2453 
2454 		/*
2455 		 * The task moved before the stopper got to run. We're holding
2456 		 * ->pi_lock, so the allowed mask is stable - if it got
2457 		 * somewhere allowed, we're done.
2458 		 */
2459 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2460 			p->migration_pending = NULL;
2461 			complete = true;
2462 			goto out;
2463 		}
2464 
2465 		/*
2466 		 * When migrate_enable() hits a rq mis-match we can't reliably
2467 		 * determine is_migration_disabled() and so have to chase after
2468 		 * it.
2469 		 */
2470 		WARN_ON_ONCE(!pending->stop_pending);
2471 		task_rq_unlock(rq, p, &rf);
2472 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2473 				    &pending->arg, &pending->stop_work);
2474 		return 0;
2475 	}
2476 out:
2477 	if (pending)
2478 		pending->stop_pending = false;
2479 	task_rq_unlock(rq, p, &rf);
2480 
2481 	if (complete)
2482 		complete_all(&pending->done);
2483 
2484 	return 0;
2485 }
2486 
2487 int push_cpu_stop(void *arg)
2488 {
2489 	struct rq *lowest_rq = NULL, *rq = this_rq();
2490 	struct task_struct *p = arg;
2491 
2492 	raw_spin_lock_irq(&p->pi_lock);
2493 	raw_spin_rq_lock(rq);
2494 
2495 	if (task_rq(p) != rq)
2496 		goto out_unlock;
2497 
2498 	if (is_migration_disabled(p)) {
2499 		p->migration_flags |= MDF_PUSH;
2500 		goto out_unlock;
2501 	}
2502 
2503 	p->migration_flags &= ~MDF_PUSH;
2504 
2505 	if (p->sched_class->find_lock_rq)
2506 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2507 
2508 	if (!lowest_rq)
2509 		goto out_unlock;
2510 
2511 	// XXX validate p is still the highest prio task
2512 	if (task_rq(p) == rq) {
2513 		deactivate_task(rq, p, 0);
2514 		set_task_cpu(p, lowest_rq->cpu);
2515 		activate_task(lowest_rq, p, 0);
2516 		resched_curr(lowest_rq);
2517 	}
2518 
2519 	double_unlock_balance(rq, lowest_rq);
2520 
2521 out_unlock:
2522 	rq->push_busy = false;
2523 	raw_spin_rq_unlock(rq);
2524 	raw_spin_unlock_irq(&p->pi_lock);
2525 
2526 	put_task_struct(p);
2527 	return 0;
2528 }
2529 
2530 /*
2531  * sched_class::set_cpus_allowed must do the below, but is not required to
2532  * actually call this function.
2533  */
2534 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2535 {
2536 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2537 		p->cpus_ptr = ctx->new_mask;
2538 		return;
2539 	}
2540 
2541 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2542 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2543 
2544 	/*
2545 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2546 	 */
2547 	if (ctx->flags & SCA_USER)
2548 		swap(p->user_cpus_ptr, ctx->user_mask);
2549 }
2550 
2551 static void
2552 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2553 {
2554 	struct rq *rq = task_rq(p);
2555 	bool queued, running;
2556 
2557 	/*
2558 	 * This here violates the locking rules for affinity, since we're only
2559 	 * supposed to change these variables while holding both rq->lock and
2560 	 * p->pi_lock.
2561 	 *
2562 	 * HOWEVER, it magically works, because ttwu() is the only code that
2563 	 * accesses these variables under p->pi_lock and only does so after
2564 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2565 	 * before finish_task().
2566 	 *
2567 	 * XXX do further audits, this smells like something putrid.
2568 	 */
2569 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2570 		SCHED_WARN_ON(!p->on_cpu);
2571 	else
2572 		lockdep_assert_held(&p->pi_lock);
2573 
2574 	queued = task_on_rq_queued(p);
2575 	running = task_current(rq, p);
2576 
2577 	if (queued) {
2578 		/*
2579 		 * Because __kthread_bind() calls this on blocked tasks without
2580 		 * holding rq->lock.
2581 		 */
2582 		lockdep_assert_rq_held(rq);
2583 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2584 	}
2585 	if (running)
2586 		put_prev_task(rq, p);
2587 
2588 	p->sched_class->set_cpus_allowed(p, ctx);
2589 
2590 	if (queued)
2591 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2592 	if (running)
2593 		set_next_task(rq, p);
2594 }
2595 
2596 /*
2597  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2598  * affinity (if any) should be destroyed too.
2599  */
2600 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2601 {
2602 	struct affinity_context ac = {
2603 		.new_mask  = new_mask,
2604 		.user_mask = NULL,
2605 		.flags     = SCA_USER,	/* clear the user requested mask */
2606 	};
2607 
2608 	__do_set_cpus_allowed(p, &ac);
2609 	kfree(ac.user_mask);
2610 }
2611 
2612 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2613 		      int node)
2614 {
2615 	unsigned long flags;
2616 
2617 	if (!src->user_cpus_ptr)
2618 		return 0;
2619 
2620 	dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2621 	if (!dst->user_cpus_ptr)
2622 		return -ENOMEM;
2623 
2624 	/* Use pi_lock to protect content of user_cpus_ptr */
2625 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2626 	cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2627 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2628 	return 0;
2629 }
2630 
2631 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2632 {
2633 	struct cpumask *user_mask = NULL;
2634 
2635 	swap(p->user_cpus_ptr, user_mask);
2636 
2637 	return user_mask;
2638 }
2639 
2640 void release_user_cpus_ptr(struct task_struct *p)
2641 {
2642 	kfree(clear_user_cpus_ptr(p));
2643 }
2644 
2645 /*
2646  * This function is wildly self concurrent; here be dragons.
2647  *
2648  *
2649  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2650  * designated task is enqueued on an allowed CPU. If that task is currently
2651  * running, we have to kick it out using the CPU stopper.
2652  *
2653  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2654  * Consider:
2655  *
2656  *     Initial conditions: P0->cpus_mask = [0, 1]
2657  *
2658  *     P0@CPU0                  P1
2659  *
2660  *     migrate_disable();
2661  *     <preempted>
2662  *                              set_cpus_allowed_ptr(P0, [1]);
2663  *
2664  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2665  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2666  * This means we need the following scheme:
2667  *
2668  *     P0@CPU0                  P1
2669  *
2670  *     migrate_disable();
2671  *     <preempted>
2672  *                              set_cpus_allowed_ptr(P0, [1]);
2673  *                                <blocks>
2674  *     <resumes>
2675  *     migrate_enable();
2676  *       __set_cpus_allowed_ptr();
2677  *       <wakes local stopper>
2678  *                         `--> <woken on migration completion>
2679  *
2680  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2681  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2682  * task p are serialized by p->pi_lock, which we can leverage: the one that
2683  * should come into effect at the end of the Migrate-Disable region is the last
2684  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2685  * but we still need to properly signal those waiting tasks at the appropriate
2686  * moment.
2687  *
2688  * This is implemented using struct set_affinity_pending. The first
2689  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2690  * setup an instance of that struct and install it on the targeted task_struct.
2691  * Any and all further callers will reuse that instance. Those then wait for
2692  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2693  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2694  *
2695  *
2696  * (1) In the cases covered above. There is one more where the completion is
2697  * signaled within affine_move_task() itself: when a subsequent affinity request
2698  * occurs after the stopper bailed out due to the targeted task still being
2699  * Migrate-Disable. Consider:
2700  *
2701  *     Initial conditions: P0->cpus_mask = [0, 1]
2702  *
2703  *     CPU0		  P1				P2
2704  *     <P0>
2705  *       migrate_disable();
2706  *       <preempted>
2707  *                        set_cpus_allowed_ptr(P0, [1]);
2708  *                          <blocks>
2709  *     <migration/0>
2710  *       migration_cpu_stop()
2711  *         is_migration_disabled()
2712  *           <bails>
2713  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2714  *                                                         <signal completion>
2715  *                          <awakes>
2716  *
2717  * Note that the above is safe vs a concurrent migrate_enable(), as any
2718  * pending affinity completion is preceded by an uninstallation of
2719  * p->migration_pending done with p->pi_lock held.
2720  */
2721 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2722 			    int dest_cpu, unsigned int flags)
2723 	__releases(rq->lock)
2724 	__releases(p->pi_lock)
2725 {
2726 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2727 	bool stop_pending, complete = false;
2728 
2729 	/* Can the task run on the task's current CPU? If so, we're done */
2730 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2731 		struct task_struct *push_task = NULL;
2732 
2733 		if ((flags & SCA_MIGRATE_ENABLE) &&
2734 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2735 			rq->push_busy = true;
2736 			push_task = get_task_struct(p);
2737 		}
2738 
2739 		/*
2740 		 * If there are pending waiters, but no pending stop_work,
2741 		 * then complete now.
2742 		 */
2743 		pending = p->migration_pending;
2744 		if (pending && !pending->stop_pending) {
2745 			p->migration_pending = NULL;
2746 			complete = true;
2747 		}
2748 
2749 		task_rq_unlock(rq, p, rf);
2750 
2751 		if (push_task) {
2752 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2753 					    p, &rq->push_work);
2754 		}
2755 
2756 		if (complete)
2757 			complete_all(&pending->done);
2758 
2759 		return 0;
2760 	}
2761 
2762 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2763 		/* serialized by p->pi_lock */
2764 		if (!p->migration_pending) {
2765 			/* Install the request */
2766 			refcount_set(&my_pending.refs, 1);
2767 			init_completion(&my_pending.done);
2768 			my_pending.arg = (struct migration_arg) {
2769 				.task = p,
2770 				.dest_cpu = dest_cpu,
2771 				.pending = &my_pending,
2772 			};
2773 
2774 			p->migration_pending = &my_pending;
2775 		} else {
2776 			pending = p->migration_pending;
2777 			refcount_inc(&pending->refs);
2778 			/*
2779 			 * Affinity has changed, but we've already installed a
2780 			 * pending. migration_cpu_stop() *must* see this, else
2781 			 * we risk a completion of the pending despite having a
2782 			 * task on a disallowed CPU.
2783 			 *
2784 			 * Serialized by p->pi_lock, so this is safe.
2785 			 */
2786 			pending->arg.dest_cpu = dest_cpu;
2787 		}
2788 	}
2789 	pending = p->migration_pending;
2790 	/*
2791 	 * - !MIGRATE_ENABLE:
2792 	 *   we'll have installed a pending if there wasn't one already.
2793 	 *
2794 	 * - MIGRATE_ENABLE:
2795 	 *   we're here because the current CPU isn't matching anymore,
2796 	 *   the only way that can happen is because of a concurrent
2797 	 *   set_cpus_allowed_ptr() call, which should then still be
2798 	 *   pending completion.
2799 	 *
2800 	 * Either way, we really should have a @pending here.
2801 	 */
2802 	if (WARN_ON_ONCE(!pending)) {
2803 		task_rq_unlock(rq, p, rf);
2804 		return -EINVAL;
2805 	}
2806 
2807 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2808 		/*
2809 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2810 		 * anything else we cannot do is_migration_disabled(), punt
2811 		 * and have the stopper function handle it all race-free.
2812 		 */
2813 		stop_pending = pending->stop_pending;
2814 		if (!stop_pending)
2815 			pending->stop_pending = true;
2816 
2817 		if (flags & SCA_MIGRATE_ENABLE)
2818 			p->migration_flags &= ~MDF_PUSH;
2819 
2820 		task_rq_unlock(rq, p, rf);
2821 
2822 		if (!stop_pending) {
2823 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2824 					    &pending->arg, &pending->stop_work);
2825 		}
2826 
2827 		if (flags & SCA_MIGRATE_ENABLE)
2828 			return 0;
2829 	} else {
2830 
2831 		if (!is_migration_disabled(p)) {
2832 			if (task_on_rq_queued(p))
2833 				rq = move_queued_task(rq, rf, p, dest_cpu);
2834 
2835 			if (!pending->stop_pending) {
2836 				p->migration_pending = NULL;
2837 				complete = true;
2838 			}
2839 		}
2840 		task_rq_unlock(rq, p, rf);
2841 
2842 		if (complete)
2843 			complete_all(&pending->done);
2844 	}
2845 
2846 	wait_for_completion(&pending->done);
2847 
2848 	if (refcount_dec_and_test(&pending->refs))
2849 		wake_up_var(&pending->refs); /* No UaF, just an address */
2850 
2851 	/*
2852 	 * Block the original owner of &pending until all subsequent callers
2853 	 * have seen the completion and decremented the refcount
2854 	 */
2855 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2856 
2857 	/* ARGH */
2858 	WARN_ON_ONCE(my_pending.stop_pending);
2859 
2860 	return 0;
2861 }
2862 
2863 /*
2864  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2865  */
2866 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2867 					 struct affinity_context *ctx,
2868 					 struct rq *rq,
2869 					 struct rq_flags *rf)
2870 	__releases(rq->lock)
2871 	__releases(p->pi_lock)
2872 {
2873 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2874 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2875 	bool kthread = p->flags & PF_KTHREAD;
2876 	unsigned int dest_cpu;
2877 	int ret = 0;
2878 
2879 	update_rq_clock(rq);
2880 
2881 	if (kthread || is_migration_disabled(p)) {
2882 		/*
2883 		 * Kernel threads are allowed on online && !active CPUs,
2884 		 * however, during cpu-hot-unplug, even these might get pushed
2885 		 * away if not KTHREAD_IS_PER_CPU.
2886 		 *
2887 		 * Specifically, migration_disabled() tasks must not fail the
2888 		 * cpumask_any_and_distribute() pick below, esp. so on
2889 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2890 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2891 		 */
2892 		cpu_valid_mask = cpu_online_mask;
2893 	}
2894 
2895 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
2896 		ret = -EINVAL;
2897 		goto out;
2898 	}
2899 
2900 	/*
2901 	 * Must re-check here, to close a race against __kthread_bind(),
2902 	 * sched_setaffinity() is not guaranteed to observe the flag.
2903 	 */
2904 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2905 		ret = -EINVAL;
2906 		goto out;
2907 	}
2908 
2909 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
2910 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask))
2911 			goto out;
2912 
2913 		if (WARN_ON_ONCE(p == current &&
2914 				 is_migration_disabled(p) &&
2915 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
2916 			ret = -EBUSY;
2917 			goto out;
2918 		}
2919 	}
2920 
2921 	/*
2922 	 * Picking a ~random cpu helps in cases where we are changing affinity
2923 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2924 	 * immediately required to distribute the tasks within their new mask.
2925 	 */
2926 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
2927 	if (dest_cpu >= nr_cpu_ids) {
2928 		ret = -EINVAL;
2929 		goto out;
2930 	}
2931 
2932 	__do_set_cpus_allowed(p, ctx);
2933 
2934 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
2935 
2936 out:
2937 	task_rq_unlock(rq, p, rf);
2938 
2939 	return ret;
2940 }
2941 
2942 /*
2943  * Change a given task's CPU affinity. Migrate the thread to a
2944  * proper CPU and schedule it away if the CPU it's executing on
2945  * is removed from the allowed bitmask.
2946  *
2947  * NOTE: the caller must have a valid reference to the task, the
2948  * task must not exit() & deallocate itself prematurely. The
2949  * call is not atomic; no spinlocks may be held.
2950  */
2951 static int __set_cpus_allowed_ptr(struct task_struct *p,
2952 				  struct affinity_context *ctx)
2953 {
2954 	struct rq_flags rf;
2955 	struct rq *rq;
2956 
2957 	rq = task_rq_lock(p, &rf);
2958 	/*
2959 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
2960 	 * flags are set.
2961 	 */
2962 	if (p->user_cpus_ptr &&
2963 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
2964 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
2965 		ctx->new_mask = rq->scratch_mask;
2966 
2967 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
2968 }
2969 
2970 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2971 {
2972 	struct affinity_context ac = {
2973 		.new_mask  = new_mask,
2974 		.flags     = 0,
2975 	};
2976 
2977 	return __set_cpus_allowed_ptr(p, &ac);
2978 }
2979 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2980 
2981 /*
2982  * Change a given task's CPU affinity to the intersection of its current
2983  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
2984  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
2985  * affinity or use cpu_online_mask instead.
2986  *
2987  * If the resulting mask is empty, leave the affinity unchanged and return
2988  * -EINVAL.
2989  */
2990 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2991 				     struct cpumask *new_mask,
2992 				     const struct cpumask *subset_mask)
2993 {
2994 	struct affinity_context ac = {
2995 		.new_mask  = new_mask,
2996 		.flags     = 0,
2997 	};
2998 	struct rq_flags rf;
2999 	struct rq *rq;
3000 	int err;
3001 
3002 	rq = task_rq_lock(p, &rf);
3003 
3004 	/*
3005 	 * Forcefully restricting the affinity of a deadline task is
3006 	 * likely to cause problems, so fail and noisily override the
3007 	 * mask entirely.
3008 	 */
3009 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3010 		err = -EPERM;
3011 		goto err_unlock;
3012 	}
3013 
3014 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3015 		err = -EINVAL;
3016 		goto err_unlock;
3017 	}
3018 
3019 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3020 
3021 err_unlock:
3022 	task_rq_unlock(rq, p, &rf);
3023 	return err;
3024 }
3025 
3026 /*
3027  * Restrict the CPU affinity of task @p so that it is a subset of
3028  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3029  * old affinity mask. If the resulting mask is empty, we warn and walk
3030  * up the cpuset hierarchy until we find a suitable mask.
3031  */
3032 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3033 {
3034 	cpumask_var_t new_mask;
3035 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3036 
3037 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3038 
3039 	/*
3040 	 * __migrate_task() can fail silently in the face of concurrent
3041 	 * offlining of the chosen destination CPU, so take the hotplug
3042 	 * lock to ensure that the migration succeeds.
3043 	 */
3044 	cpus_read_lock();
3045 	if (!cpumask_available(new_mask))
3046 		goto out_set_mask;
3047 
3048 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3049 		goto out_free_mask;
3050 
3051 	/*
3052 	 * We failed to find a valid subset of the affinity mask for the
3053 	 * task, so override it based on its cpuset hierarchy.
3054 	 */
3055 	cpuset_cpus_allowed(p, new_mask);
3056 	override_mask = new_mask;
3057 
3058 out_set_mask:
3059 	if (printk_ratelimit()) {
3060 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3061 				task_pid_nr(p), p->comm,
3062 				cpumask_pr_args(override_mask));
3063 	}
3064 
3065 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3066 out_free_mask:
3067 	cpus_read_unlock();
3068 	free_cpumask_var(new_mask);
3069 }
3070 
3071 static int
3072 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3073 
3074 /*
3075  * Restore the affinity of a task @p which was previously restricted by a
3076  * call to force_compatible_cpus_allowed_ptr().
3077  *
3078  * It is the caller's responsibility to serialise this with any calls to
3079  * force_compatible_cpus_allowed_ptr(@p).
3080  */
3081 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3082 {
3083 	struct affinity_context ac = {
3084 		.new_mask  = task_user_cpus(p),
3085 		.flags     = 0,
3086 	};
3087 	int ret;
3088 
3089 	/*
3090 	 * Try to restore the old affinity mask with __sched_setaffinity().
3091 	 * Cpuset masking will be done there too.
3092 	 */
3093 	ret = __sched_setaffinity(p, &ac);
3094 	WARN_ON_ONCE(ret);
3095 }
3096 
3097 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3098 {
3099 #ifdef CONFIG_SCHED_DEBUG
3100 	unsigned int state = READ_ONCE(p->__state);
3101 
3102 	/*
3103 	 * We should never call set_task_cpu() on a blocked task,
3104 	 * ttwu() will sort out the placement.
3105 	 */
3106 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3107 
3108 	/*
3109 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3110 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3111 	 * time relying on p->on_rq.
3112 	 */
3113 	WARN_ON_ONCE(state == TASK_RUNNING &&
3114 		     p->sched_class == &fair_sched_class &&
3115 		     (p->on_rq && !task_on_rq_migrating(p)));
3116 
3117 #ifdef CONFIG_LOCKDEP
3118 	/*
3119 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3120 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3121 	 *
3122 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3123 	 * see task_group().
3124 	 *
3125 	 * Furthermore, all task_rq users should acquire both locks, see
3126 	 * task_rq_lock().
3127 	 */
3128 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3129 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3130 #endif
3131 	/*
3132 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3133 	 */
3134 	WARN_ON_ONCE(!cpu_online(new_cpu));
3135 
3136 	WARN_ON_ONCE(is_migration_disabled(p));
3137 #endif
3138 
3139 	trace_sched_migrate_task(p, new_cpu);
3140 
3141 	if (task_cpu(p) != new_cpu) {
3142 		if (p->sched_class->migrate_task_rq)
3143 			p->sched_class->migrate_task_rq(p, new_cpu);
3144 		p->se.nr_migrations++;
3145 		rseq_migrate(p);
3146 		perf_event_task_migrate(p);
3147 	}
3148 
3149 	__set_task_cpu(p, new_cpu);
3150 }
3151 
3152 #ifdef CONFIG_NUMA_BALANCING
3153 static void __migrate_swap_task(struct task_struct *p, int cpu)
3154 {
3155 	if (task_on_rq_queued(p)) {
3156 		struct rq *src_rq, *dst_rq;
3157 		struct rq_flags srf, drf;
3158 
3159 		src_rq = task_rq(p);
3160 		dst_rq = cpu_rq(cpu);
3161 
3162 		rq_pin_lock(src_rq, &srf);
3163 		rq_pin_lock(dst_rq, &drf);
3164 
3165 		deactivate_task(src_rq, p, 0);
3166 		set_task_cpu(p, cpu);
3167 		activate_task(dst_rq, p, 0);
3168 		check_preempt_curr(dst_rq, p, 0);
3169 
3170 		rq_unpin_lock(dst_rq, &drf);
3171 		rq_unpin_lock(src_rq, &srf);
3172 
3173 	} else {
3174 		/*
3175 		 * Task isn't running anymore; make it appear like we migrated
3176 		 * it before it went to sleep. This means on wakeup we make the
3177 		 * previous CPU our target instead of where it really is.
3178 		 */
3179 		p->wake_cpu = cpu;
3180 	}
3181 }
3182 
3183 struct migration_swap_arg {
3184 	struct task_struct *src_task, *dst_task;
3185 	int src_cpu, dst_cpu;
3186 };
3187 
3188 static int migrate_swap_stop(void *data)
3189 {
3190 	struct migration_swap_arg *arg = data;
3191 	struct rq *src_rq, *dst_rq;
3192 	int ret = -EAGAIN;
3193 
3194 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3195 		return -EAGAIN;
3196 
3197 	src_rq = cpu_rq(arg->src_cpu);
3198 	dst_rq = cpu_rq(arg->dst_cpu);
3199 
3200 	double_raw_lock(&arg->src_task->pi_lock,
3201 			&arg->dst_task->pi_lock);
3202 	double_rq_lock(src_rq, dst_rq);
3203 
3204 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3205 		goto unlock;
3206 
3207 	if (task_cpu(arg->src_task) != arg->src_cpu)
3208 		goto unlock;
3209 
3210 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3211 		goto unlock;
3212 
3213 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3214 		goto unlock;
3215 
3216 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3217 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3218 
3219 	ret = 0;
3220 
3221 unlock:
3222 	double_rq_unlock(src_rq, dst_rq);
3223 	raw_spin_unlock(&arg->dst_task->pi_lock);
3224 	raw_spin_unlock(&arg->src_task->pi_lock);
3225 
3226 	return ret;
3227 }
3228 
3229 /*
3230  * Cross migrate two tasks
3231  */
3232 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3233 		int target_cpu, int curr_cpu)
3234 {
3235 	struct migration_swap_arg arg;
3236 	int ret = -EINVAL;
3237 
3238 	arg = (struct migration_swap_arg){
3239 		.src_task = cur,
3240 		.src_cpu = curr_cpu,
3241 		.dst_task = p,
3242 		.dst_cpu = target_cpu,
3243 	};
3244 
3245 	if (arg.src_cpu == arg.dst_cpu)
3246 		goto out;
3247 
3248 	/*
3249 	 * These three tests are all lockless; this is OK since all of them
3250 	 * will be re-checked with proper locks held further down the line.
3251 	 */
3252 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3253 		goto out;
3254 
3255 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3256 		goto out;
3257 
3258 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3259 		goto out;
3260 
3261 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3262 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3263 
3264 out:
3265 	return ret;
3266 }
3267 #endif /* CONFIG_NUMA_BALANCING */
3268 
3269 /*
3270  * wait_task_inactive - wait for a thread to unschedule.
3271  *
3272  * Wait for the thread to block in any of the states set in @match_state.
3273  * If it changes, i.e. @p might have woken up, then return zero.  When we
3274  * succeed in waiting for @p to be off its CPU, we return a positive number
3275  * (its total switch count).  If a second call a short while later returns the
3276  * same number, the caller can be sure that @p has remained unscheduled the
3277  * whole time.
3278  *
3279  * The caller must ensure that the task *will* unschedule sometime soon,
3280  * else this function might spin for a *long* time. This function can't
3281  * be called with interrupts off, or it may introduce deadlock with
3282  * smp_call_function() if an IPI is sent by the same process we are
3283  * waiting to become inactive.
3284  */
3285 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3286 {
3287 	int running, queued;
3288 	struct rq_flags rf;
3289 	unsigned long ncsw;
3290 	struct rq *rq;
3291 
3292 	for (;;) {
3293 		/*
3294 		 * We do the initial early heuristics without holding
3295 		 * any task-queue locks at all. We'll only try to get
3296 		 * the runqueue lock when things look like they will
3297 		 * work out!
3298 		 */
3299 		rq = task_rq(p);
3300 
3301 		/*
3302 		 * If the task is actively running on another CPU
3303 		 * still, just relax and busy-wait without holding
3304 		 * any locks.
3305 		 *
3306 		 * NOTE! Since we don't hold any locks, it's not
3307 		 * even sure that "rq" stays as the right runqueue!
3308 		 * But we don't care, since "task_on_cpu()" will
3309 		 * return false if the runqueue has changed and p
3310 		 * is actually now running somewhere else!
3311 		 */
3312 		while (task_on_cpu(rq, p)) {
3313 			if (!(READ_ONCE(p->__state) & match_state))
3314 				return 0;
3315 			cpu_relax();
3316 		}
3317 
3318 		/*
3319 		 * Ok, time to look more closely! We need the rq
3320 		 * lock now, to be *sure*. If we're wrong, we'll
3321 		 * just go back and repeat.
3322 		 */
3323 		rq = task_rq_lock(p, &rf);
3324 		trace_sched_wait_task(p);
3325 		running = task_on_cpu(rq, p);
3326 		queued = task_on_rq_queued(p);
3327 		ncsw = 0;
3328 		if (READ_ONCE(p->__state) & match_state)
3329 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3330 		task_rq_unlock(rq, p, &rf);
3331 
3332 		/*
3333 		 * If it changed from the expected state, bail out now.
3334 		 */
3335 		if (unlikely(!ncsw))
3336 			break;
3337 
3338 		/*
3339 		 * Was it really running after all now that we
3340 		 * checked with the proper locks actually held?
3341 		 *
3342 		 * Oops. Go back and try again..
3343 		 */
3344 		if (unlikely(running)) {
3345 			cpu_relax();
3346 			continue;
3347 		}
3348 
3349 		/*
3350 		 * It's not enough that it's not actively running,
3351 		 * it must be off the runqueue _entirely_, and not
3352 		 * preempted!
3353 		 *
3354 		 * So if it was still runnable (but just not actively
3355 		 * running right now), it's preempted, and we should
3356 		 * yield - it could be a while.
3357 		 */
3358 		if (unlikely(queued)) {
3359 			ktime_t to = NSEC_PER_SEC / HZ;
3360 
3361 			set_current_state(TASK_UNINTERRUPTIBLE);
3362 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3363 			continue;
3364 		}
3365 
3366 		/*
3367 		 * Ahh, all good. It wasn't running, and it wasn't
3368 		 * runnable, which means that it will never become
3369 		 * running in the future either. We're all done!
3370 		 */
3371 		break;
3372 	}
3373 
3374 	return ncsw;
3375 }
3376 
3377 /***
3378  * kick_process - kick a running thread to enter/exit the kernel
3379  * @p: the to-be-kicked thread
3380  *
3381  * Cause a process which is running on another CPU to enter
3382  * kernel-mode, without any delay. (to get signals handled.)
3383  *
3384  * NOTE: this function doesn't have to take the runqueue lock,
3385  * because all it wants to ensure is that the remote task enters
3386  * the kernel. If the IPI races and the task has been migrated
3387  * to another CPU then no harm is done and the purpose has been
3388  * achieved as well.
3389  */
3390 void kick_process(struct task_struct *p)
3391 {
3392 	int cpu;
3393 
3394 	preempt_disable();
3395 	cpu = task_cpu(p);
3396 	if ((cpu != smp_processor_id()) && task_curr(p))
3397 		smp_send_reschedule(cpu);
3398 	preempt_enable();
3399 }
3400 EXPORT_SYMBOL_GPL(kick_process);
3401 
3402 /*
3403  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3404  *
3405  * A few notes on cpu_active vs cpu_online:
3406  *
3407  *  - cpu_active must be a subset of cpu_online
3408  *
3409  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3410  *    see __set_cpus_allowed_ptr(). At this point the newly online
3411  *    CPU isn't yet part of the sched domains, and balancing will not
3412  *    see it.
3413  *
3414  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3415  *    avoid the load balancer to place new tasks on the to be removed
3416  *    CPU. Existing tasks will remain running there and will be taken
3417  *    off.
3418  *
3419  * This means that fallback selection must not select !active CPUs.
3420  * And can assume that any active CPU must be online. Conversely
3421  * select_task_rq() below may allow selection of !active CPUs in order
3422  * to satisfy the above rules.
3423  */
3424 static int select_fallback_rq(int cpu, struct task_struct *p)
3425 {
3426 	int nid = cpu_to_node(cpu);
3427 	const struct cpumask *nodemask = NULL;
3428 	enum { cpuset, possible, fail } state = cpuset;
3429 	int dest_cpu;
3430 
3431 	/*
3432 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3433 	 * will return -1. There is no CPU on the node, and we should
3434 	 * select the CPU on the other node.
3435 	 */
3436 	if (nid != -1) {
3437 		nodemask = cpumask_of_node(nid);
3438 
3439 		/* Look for allowed, online CPU in same node. */
3440 		for_each_cpu(dest_cpu, nodemask) {
3441 			if (is_cpu_allowed(p, dest_cpu))
3442 				return dest_cpu;
3443 		}
3444 	}
3445 
3446 	for (;;) {
3447 		/* Any allowed, online CPU? */
3448 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3449 			if (!is_cpu_allowed(p, dest_cpu))
3450 				continue;
3451 
3452 			goto out;
3453 		}
3454 
3455 		/* No more Mr. Nice Guy. */
3456 		switch (state) {
3457 		case cpuset:
3458 			if (cpuset_cpus_allowed_fallback(p)) {
3459 				state = possible;
3460 				break;
3461 			}
3462 			fallthrough;
3463 		case possible:
3464 			/*
3465 			 * XXX When called from select_task_rq() we only
3466 			 * hold p->pi_lock and again violate locking order.
3467 			 *
3468 			 * More yuck to audit.
3469 			 */
3470 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3471 			state = fail;
3472 			break;
3473 		case fail:
3474 			BUG();
3475 			break;
3476 		}
3477 	}
3478 
3479 out:
3480 	if (state != cpuset) {
3481 		/*
3482 		 * Don't tell them about moving exiting tasks or
3483 		 * kernel threads (both mm NULL), since they never
3484 		 * leave kernel.
3485 		 */
3486 		if (p->mm && printk_ratelimit()) {
3487 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3488 					task_pid_nr(p), p->comm, cpu);
3489 		}
3490 	}
3491 
3492 	return dest_cpu;
3493 }
3494 
3495 /*
3496  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3497  */
3498 static inline
3499 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3500 {
3501 	lockdep_assert_held(&p->pi_lock);
3502 
3503 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3504 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3505 	else
3506 		cpu = cpumask_any(p->cpus_ptr);
3507 
3508 	/*
3509 	 * In order not to call set_task_cpu() on a blocking task we need
3510 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3511 	 * CPU.
3512 	 *
3513 	 * Since this is common to all placement strategies, this lives here.
3514 	 *
3515 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3516 	 *   not worry about this generic constraint ]
3517 	 */
3518 	if (unlikely(!is_cpu_allowed(p, cpu)))
3519 		cpu = select_fallback_rq(task_cpu(p), p);
3520 
3521 	return cpu;
3522 }
3523 
3524 void sched_set_stop_task(int cpu, struct task_struct *stop)
3525 {
3526 	static struct lock_class_key stop_pi_lock;
3527 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3528 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3529 
3530 	if (stop) {
3531 		/*
3532 		 * Make it appear like a SCHED_FIFO task, its something
3533 		 * userspace knows about and won't get confused about.
3534 		 *
3535 		 * Also, it will make PI more or less work without too
3536 		 * much confusion -- but then, stop work should not
3537 		 * rely on PI working anyway.
3538 		 */
3539 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3540 
3541 		stop->sched_class = &stop_sched_class;
3542 
3543 		/*
3544 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3545 		 * adjust the effective priority of a task. As a result,
3546 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3547 		 * which can then trigger wakeups of the stop thread to push
3548 		 * around the current task.
3549 		 *
3550 		 * The stop task itself will never be part of the PI-chain, it
3551 		 * never blocks, therefore that ->pi_lock recursion is safe.
3552 		 * Tell lockdep about this by placing the stop->pi_lock in its
3553 		 * own class.
3554 		 */
3555 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3556 	}
3557 
3558 	cpu_rq(cpu)->stop = stop;
3559 
3560 	if (old_stop) {
3561 		/*
3562 		 * Reset it back to a normal scheduling class so that
3563 		 * it can die in pieces.
3564 		 */
3565 		old_stop->sched_class = &rt_sched_class;
3566 	}
3567 }
3568 
3569 #else /* CONFIG_SMP */
3570 
3571 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3572 					 struct affinity_context *ctx)
3573 {
3574 	return set_cpus_allowed_ptr(p, ctx->new_mask);
3575 }
3576 
3577 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3578 
3579 static inline bool rq_has_pinned_tasks(struct rq *rq)
3580 {
3581 	return false;
3582 }
3583 
3584 #endif /* !CONFIG_SMP */
3585 
3586 static void
3587 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3588 {
3589 	struct rq *rq;
3590 
3591 	if (!schedstat_enabled())
3592 		return;
3593 
3594 	rq = this_rq();
3595 
3596 #ifdef CONFIG_SMP
3597 	if (cpu == rq->cpu) {
3598 		__schedstat_inc(rq->ttwu_local);
3599 		__schedstat_inc(p->stats.nr_wakeups_local);
3600 	} else {
3601 		struct sched_domain *sd;
3602 
3603 		__schedstat_inc(p->stats.nr_wakeups_remote);
3604 		rcu_read_lock();
3605 		for_each_domain(rq->cpu, sd) {
3606 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3607 				__schedstat_inc(sd->ttwu_wake_remote);
3608 				break;
3609 			}
3610 		}
3611 		rcu_read_unlock();
3612 	}
3613 
3614 	if (wake_flags & WF_MIGRATED)
3615 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3616 #endif /* CONFIG_SMP */
3617 
3618 	__schedstat_inc(rq->ttwu_count);
3619 	__schedstat_inc(p->stats.nr_wakeups);
3620 
3621 	if (wake_flags & WF_SYNC)
3622 		__schedstat_inc(p->stats.nr_wakeups_sync);
3623 }
3624 
3625 /*
3626  * Mark the task runnable and perform wakeup-preemption.
3627  */
3628 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3629 			   struct rq_flags *rf)
3630 {
3631 	check_preempt_curr(rq, p, wake_flags);
3632 	WRITE_ONCE(p->__state, TASK_RUNNING);
3633 	trace_sched_wakeup(p);
3634 
3635 #ifdef CONFIG_SMP
3636 	if (p->sched_class->task_woken) {
3637 		/*
3638 		 * Our task @p is fully woken up and running; so it's safe to
3639 		 * drop the rq->lock, hereafter rq is only used for statistics.
3640 		 */
3641 		rq_unpin_lock(rq, rf);
3642 		p->sched_class->task_woken(rq, p);
3643 		rq_repin_lock(rq, rf);
3644 	}
3645 
3646 	if (rq->idle_stamp) {
3647 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3648 		u64 max = 2*rq->max_idle_balance_cost;
3649 
3650 		update_avg(&rq->avg_idle, delta);
3651 
3652 		if (rq->avg_idle > max)
3653 			rq->avg_idle = max;
3654 
3655 		rq->wake_stamp = jiffies;
3656 		rq->wake_avg_idle = rq->avg_idle / 2;
3657 
3658 		rq->idle_stamp = 0;
3659 	}
3660 #endif
3661 }
3662 
3663 static void
3664 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3665 		 struct rq_flags *rf)
3666 {
3667 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3668 
3669 	lockdep_assert_rq_held(rq);
3670 
3671 	if (p->sched_contributes_to_load)
3672 		rq->nr_uninterruptible--;
3673 
3674 #ifdef CONFIG_SMP
3675 	if (wake_flags & WF_MIGRATED)
3676 		en_flags |= ENQUEUE_MIGRATED;
3677 	else
3678 #endif
3679 	if (p->in_iowait) {
3680 		delayacct_blkio_end(p);
3681 		atomic_dec(&task_rq(p)->nr_iowait);
3682 	}
3683 
3684 	activate_task(rq, p, en_flags);
3685 	ttwu_do_wakeup(rq, p, wake_flags, rf);
3686 }
3687 
3688 /*
3689  * Consider @p being inside a wait loop:
3690  *
3691  *   for (;;) {
3692  *      set_current_state(TASK_UNINTERRUPTIBLE);
3693  *
3694  *      if (CONDITION)
3695  *         break;
3696  *
3697  *      schedule();
3698  *   }
3699  *   __set_current_state(TASK_RUNNING);
3700  *
3701  * between set_current_state() and schedule(). In this case @p is still
3702  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3703  * an atomic manner.
3704  *
3705  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3706  * then schedule() must still happen and p->state can be changed to
3707  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3708  * need to do a full wakeup with enqueue.
3709  *
3710  * Returns: %true when the wakeup is done,
3711  *          %false otherwise.
3712  */
3713 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3714 {
3715 	struct rq_flags rf;
3716 	struct rq *rq;
3717 	int ret = 0;
3718 
3719 	rq = __task_rq_lock(p, &rf);
3720 	if (task_on_rq_queued(p)) {
3721 		/* check_preempt_curr() may use rq clock */
3722 		update_rq_clock(rq);
3723 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3724 		ret = 1;
3725 	}
3726 	__task_rq_unlock(rq, &rf);
3727 
3728 	return ret;
3729 }
3730 
3731 #ifdef CONFIG_SMP
3732 void sched_ttwu_pending(void *arg)
3733 {
3734 	struct llist_node *llist = arg;
3735 	struct rq *rq = this_rq();
3736 	struct task_struct *p, *t;
3737 	struct rq_flags rf;
3738 
3739 	if (!llist)
3740 		return;
3741 
3742 	rq_lock_irqsave(rq, &rf);
3743 	update_rq_clock(rq);
3744 
3745 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3746 		if (WARN_ON_ONCE(p->on_cpu))
3747 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3748 
3749 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3750 			set_task_cpu(p, cpu_of(rq));
3751 
3752 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3753 	}
3754 
3755 	/*
3756 	 * Must be after enqueueing at least once task such that
3757 	 * idle_cpu() does not observe a false-negative -- if it does,
3758 	 * it is possible for select_idle_siblings() to stack a number
3759 	 * of tasks on this CPU during that window.
3760 	 *
3761 	 * It is ok to clear ttwu_pending when another task pending.
3762 	 * We will receive IPI after local irq enabled and then enqueue it.
3763 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3764 	 */
3765 	WRITE_ONCE(rq->ttwu_pending, 0);
3766 	rq_unlock_irqrestore(rq, &rf);
3767 }
3768 
3769 void send_call_function_single_ipi(int cpu)
3770 {
3771 	struct rq *rq = cpu_rq(cpu);
3772 
3773 	if (!set_nr_if_polling(rq->idle))
3774 		arch_send_call_function_single_ipi(cpu);
3775 	else
3776 		trace_sched_wake_idle_without_ipi(cpu);
3777 }
3778 
3779 /*
3780  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3781  * necessary. The wakee CPU on receipt of the IPI will queue the task
3782  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3783  * of the wakeup instead of the waker.
3784  */
3785 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3786 {
3787 	struct rq *rq = cpu_rq(cpu);
3788 
3789 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3790 
3791 	WRITE_ONCE(rq->ttwu_pending, 1);
3792 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3793 }
3794 
3795 void wake_up_if_idle(int cpu)
3796 {
3797 	struct rq *rq = cpu_rq(cpu);
3798 	struct rq_flags rf;
3799 
3800 	rcu_read_lock();
3801 
3802 	if (!is_idle_task(rcu_dereference(rq->curr)))
3803 		goto out;
3804 
3805 	rq_lock_irqsave(rq, &rf);
3806 	if (is_idle_task(rq->curr))
3807 		resched_curr(rq);
3808 	/* Else CPU is not idle, do nothing here: */
3809 	rq_unlock_irqrestore(rq, &rf);
3810 
3811 out:
3812 	rcu_read_unlock();
3813 }
3814 
3815 bool cpus_share_cache(int this_cpu, int that_cpu)
3816 {
3817 	if (this_cpu == that_cpu)
3818 		return true;
3819 
3820 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3821 }
3822 
3823 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3824 {
3825 	/*
3826 	 * Do not complicate things with the async wake_list while the CPU is
3827 	 * in hotplug state.
3828 	 */
3829 	if (!cpu_active(cpu))
3830 		return false;
3831 
3832 	/* Ensure the task will still be allowed to run on the CPU. */
3833 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3834 		return false;
3835 
3836 	/*
3837 	 * If the CPU does not share cache, then queue the task on the
3838 	 * remote rqs wakelist to avoid accessing remote data.
3839 	 */
3840 	if (!cpus_share_cache(smp_processor_id(), cpu))
3841 		return true;
3842 
3843 	if (cpu == smp_processor_id())
3844 		return false;
3845 
3846 	/*
3847 	 * If the wakee cpu is idle, or the task is descheduling and the
3848 	 * only running task on the CPU, then use the wakelist to offload
3849 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3850 	 * the current CPU is likely busy. nr_running is checked to
3851 	 * avoid unnecessary task stacking.
3852 	 *
3853 	 * Note that we can only get here with (wakee) p->on_rq=0,
3854 	 * p->on_cpu can be whatever, we've done the dequeue, so
3855 	 * the wakee has been accounted out of ->nr_running.
3856 	 */
3857 	if (!cpu_rq(cpu)->nr_running)
3858 		return true;
3859 
3860 	return false;
3861 }
3862 
3863 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3864 {
3865 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3866 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3867 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3868 		return true;
3869 	}
3870 
3871 	return false;
3872 }
3873 
3874 #else /* !CONFIG_SMP */
3875 
3876 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3877 {
3878 	return false;
3879 }
3880 
3881 #endif /* CONFIG_SMP */
3882 
3883 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3884 {
3885 	struct rq *rq = cpu_rq(cpu);
3886 	struct rq_flags rf;
3887 
3888 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3889 		return;
3890 
3891 	rq_lock(rq, &rf);
3892 	update_rq_clock(rq);
3893 	ttwu_do_activate(rq, p, wake_flags, &rf);
3894 	rq_unlock(rq, &rf);
3895 }
3896 
3897 /*
3898  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3899  *
3900  * The caller holds p::pi_lock if p != current or has preemption
3901  * disabled when p == current.
3902  *
3903  * The rules of PREEMPT_RT saved_state:
3904  *
3905  *   The related locking code always holds p::pi_lock when updating
3906  *   p::saved_state, which means the code is fully serialized in both cases.
3907  *
3908  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3909  *   bits set. This allows to distinguish all wakeup scenarios.
3910  */
3911 static __always_inline
3912 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3913 {
3914 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3915 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3916 			     state != TASK_RTLOCK_WAIT);
3917 	}
3918 
3919 	if (READ_ONCE(p->__state) & state) {
3920 		*success = 1;
3921 		return true;
3922 	}
3923 
3924 #ifdef CONFIG_PREEMPT_RT
3925 	/*
3926 	 * Saved state preserves the task state across blocking on
3927 	 * an RT lock.  If the state matches, set p::saved_state to
3928 	 * TASK_RUNNING, but do not wake the task because it waits
3929 	 * for a lock wakeup. Also indicate success because from
3930 	 * the regular waker's point of view this has succeeded.
3931 	 *
3932 	 * After acquiring the lock the task will restore p::__state
3933 	 * from p::saved_state which ensures that the regular
3934 	 * wakeup is not lost. The restore will also set
3935 	 * p::saved_state to TASK_RUNNING so any further tests will
3936 	 * not result in false positives vs. @success
3937 	 */
3938 	if (p->saved_state & state) {
3939 		p->saved_state = TASK_RUNNING;
3940 		*success = 1;
3941 	}
3942 #endif
3943 	return false;
3944 }
3945 
3946 /*
3947  * Notes on Program-Order guarantees on SMP systems.
3948  *
3949  *  MIGRATION
3950  *
3951  * The basic program-order guarantee on SMP systems is that when a task [t]
3952  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3953  * execution on its new CPU [c1].
3954  *
3955  * For migration (of runnable tasks) this is provided by the following means:
3956  *
3957  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3958  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3959  *     rq(c1)->lock (if not at the same time, then in that order).
3960  *  C) LOCK of the rq(c1)->lock scheduling in task
3961  *
3962  * Release/acquire chaining guarantees that B happens after A and C after B.
3963  * Note: the CPU doing B need not be c0 or c1
3964  *
3965  * Example:
3966  *
3967  *   CPU0            CPU1            CPU2
3968  *
3969  *   LOCK rq(0)->lock
3970  *   sched-out X
3971  *   sched-in Y
3972  *   UNLOCK rq(0)->lock
3973  *
3974  *                                   LOCK rq(0)->lock // orders against CPU0
3975  *                                   dequeue X
3976  *                                   UNLOCK rq(0)->lock
3977  *
3978  *                                   LOCK rq(1)->lock
3979  *                                   enqueue X
3980  *                                   UNLOCK rq(1)->lock
3981  *
3982  *                   LOCK rq(1)->lock // orders against CPU2
3983  *                   sched-out Z
3984  *                   sched-in X
3985  *                   UNLOCK rq(1)->lock
3986  *
3987  *
3988  *  BLOCKING -- aka. SLEEP + WAKEUP
3989  *
3990  * For blocking we (obviously) need to provide the same guarantee as for
3991  * migration. However the means are completely different as there is no lock
3992  * chain to provide order. Instead we do:
3993  *
3994  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3995  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3996  *
3997  * Example:
3998  *
3999  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4000  *
4001  *   LOCK rq(0)->lock LOCK X->pi_lock
4002  *   dequeue X
4003  *   sched-out X
4004  *   smp_store_release(X->on_cpu, 0);
4005  *
4006  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4007  *                    X->state = WAKING
4008  *                    set_task_cpu(X,2)
4009  *
4010  *                    LOCK rq(2)->lock
4011  *                    enqueue X
4012  *                    X->state = RUNNING
4013  *                    UNLOCK rq(2)->lock
4014  *
4015  *                                          LOCK rq(2)->lock // orders against CPU1
4016  *                                          sched-out Z
4017  *                                          sched-in X
4018  *                                          UNLOCK rq(2)->lock
4019  *
4020  *                    UNLOCK X->pi_lock
4021  *   UNLOCK rq(0)->lock
4022  *
4023  *
4024  * However, for wakeups there is a second guarantee we must provide, namely we
4025  * must ensure that CONDITION=1 done by the caller can not be reordered with
4026  * accesses to the task state; see try_to_wake_up() and set_current_state().
4027  */
4028 
4029 /**
4030  * try_to_wake_up - wake up a thread
4031  * @p: the thread to be awakened
4032  * @state: the mask of task states that can be woken
4033  * @wake_flags: wake modifier flags (WF_*)
4034  *
4035  * Conceptually does:
4036  *
4037  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4038  *
4039  * If the task was not queued/runnable, also place it back on a runqueue.
4040  *
4041  * This function is atomic against schedule() which would dequeue the task.
4042  *
4043  * It issues a full memory barrier before accessing @p->state, see the comment
4044  * with set_current_state().
4045  *
4046  * Uses p->pi_lock to serialize against concurrent wake-ups.
4047  *
4048  * Relies on p->pi_lock stabilizing:
4049  *  - p->sched_class
4050  *  - p->cpus_ptr
4051  *  - p->sched_task_group
4052  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4053  *
4054  * Tries really hard to only take one task_rq(p)->lock for performance.
4055  * Takes rq->lock in:
4056  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4057  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4058  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4059  *
4060  * As a consequence we race really badly with just about everything. See the
4061  * many memory barriers and their comments for details.
4062  *
4063  * Return: %true if @p->state changes (an actual wakeup was done),
4064  *	   %false otherwise.
4065  */
4066 static int
4067 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4068 {
4069 	unsigned long flags;
4070 	int cpu, success = 0;
4071 
4072 	preempt_disable();
4073 	if (p == current) {
4074 		/*
4075 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4076 		 * == smp_processor_id()'. Together this means we can special
4077 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4078 		 * without taking any locks.
4079 		 *
4080 		 * In particular:
4081 		 *  - we rely on Program-Order guarantees for all the ordering,
4082 		 *  - we're serialized against set_special_state() by virtue of
4083 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4084 		 */
4085 		if (!ttwu_state_match(p, state, &success))
4086 			goto out;
4087 
4088 		trace_sched_waking(p);
4089 		WRITE_ONCE(p->__state, TASK_RUNNING);
4090 		trace_sched_wakeup(p);
4091 		goto out;
4092 	}
4093 
4094 	/*
4095 	 * If we are going to wake up a thread waiting for CONDITION we
4096 	 * need to ensure that CONDITION=1 done by the caller can not be
4097 	 * reordered with p->state check below. This pairs with smp_store_mb()
4098 	 * in set_current_state() that the waiting thread does.
4099 	 */
4100 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4101 	smp_mb__after_spinlock();
4102 	if (!ttwu_state_match(p, state, &success))
4103 		goto unlock;
4104 
4105 	trace_sched_waking(p);
4106 
4107 	/*
4108 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4109 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4110 	 * in smp_cond_load_acquire() below.
4111 	 *
4112 	 * sched_ttwu_pending()			try_to_wake_up()
4113 	 *   STORE p->on_rq = 1			  LOAD p->state
4114 	 *   UNLOCK rq->lock
4115 	 *
4116 	 * __schedule() (switch to task 'p')
4117 	 *   LOCK rq->lock			  smp_rmb();
4118 	 *   smp_mb__after_spinlock();
4119 	 *   UNLOCK rq->lock
4120 	 *
4121 	 * [task p]
4122 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4123 	 *
4124 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4125 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4126 	 *
4127 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4128 	 */
4129 	smp_rmb();
4130 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4131 		goto unlock;
4132 
4133 #ifdef CONFIG_SMP
4134 	/*
4135 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4136 	 * possible to, falsely, observe p->on_cpu == 0.
4137 	 *
4138 	 * One must be running (->on_cpu == 1) in order to remove oneself
4139 	 * from the runqueue.
4140 	 *
4141 	 * __schedule() (switch to task 'p')	try_to_wake_up()
4142 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4143 	 *   UNLOCK rq->lock
4144 	 *
4145 	 * __schedule() (put 'p' to sleep)
4146 	 *   LOCK rq->lock			  smp_rmb();
4147 	 *   smp_mb__after_spinlock();
4148 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4149 	 *
4150 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4151 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4152 	 *
4153 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4154 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
4155 	 * care about it's own p->state. See the comment in __schedule().
4156 	 */
4157 	smp_acquire__after_ctrl_dep();
4158 
4159 	/*
4160 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4161 	 * == 0), which means we need to do an enqueue, change p->state to
4162 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4163 	 * enqueue, such as ttwu_queue_wakelist().
4164 	 */
4165 	WRITE_ONCE(p->__state, TASK_WAKING);
4166 
4167 	/*
4168 	 * If the owning (remote) CPU is still in the middle of schedule() with
4169 	 * this task as prev, considering queueing p on the remote CPUs wake_list
4170 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
4171 	 * let the waker make forward progress. This is safe because IRQs are
4172 	 * disabled and the IPI will deliver after on_cpu is cleared.
4173 	 *
4174 	 * Ensure we load task_cpu(p) after p->on_cpu:
4175 	 *
4176 	 * set_task_cpu(p, cpu);
4177 	 *   STORE p->cpu = @cpu
4178 	 * __schedule() (switch to task 'p')
4179 	 *   LOCK rq->lock
4180 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4181 	 *   STORE p->on_cpu = 1		LOAD p->cpu
4182 	 *
4183 	 * to ensure we observe the correct CPU on which the task is currently
4184 	 * scheduling.
4185 	 */
4186 	if (smp_load_acquire(&p->on_cpu) &&
4187 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4188 		goto unlock;
4189 
4190 	/*
4191 	 * If the owning (remote) CPU is still in the middle of schedule() with
4192 	 * this task as prev, wait until it's done referencing the task.
4193 	 *
4194 	 * Pairs with the smp_store_release() in finish_task().
4195 	 *
4196 	 * This ensures that tasks getting woken will be fully ordered against
4197 	 * their previous state and preserve Program Order.
4198 	 */
4199 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4200 
4201 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4202 	if (task_cpu(p) != cpu) {
4203 		if (p->in_iowait) {
4204 			delayacct_blkio_end(p);
4205 			atomic_dec(&task_rq(p)->nr_iowait);
4206 		}
4207 
4208 		wake_flags |= WF_MIGRATED;
4209 		psi_ttwu_dequeue(p);
4210 		set_task_cpu(p, cpu);
4211 	}
4212 #else
4213 	cpu = task_cpu(p);
4214 #endif /* CONFIG_SMP */
4215 
4216 	ttwu_queue(p, cpu, wake_flags);
4217 unlock:
4218 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4219 out:
4220 	if (success)
4221 		ttwu_stat(p, task_cpu(p), wake_flags);
4222 	preempt_enable();
4223 
4224 	return success;
4225 }
4226 
4227 static bool __task_needs_rq_lock(struct task_struct *p)
4228 {
4229 	unsigned int state = READ_ONCE(p->__state);
4230 
4231 	/*
4232 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4233 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4234 	 * locks at the end, see ttwu_queue_wakelist().
4235 	 */
4236 	if (state == TASK_RUNNING || state == TASK_WAKING)
4237 		return true;
4238 
4239 	/*
4240 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4241 	 * possible to, falsely, observe p->on_rq == 0.
4242 	 *
4243 	 * See try_to_wake_up() for a longer comment.
4244 	 */
4245 	smp_rmb();
4246 	if (p->on_rq)
4247 		return true;
4248 
4249 #ifdef CONFIG_SMP
4250 	/*
4251 	 * Ensure the task has finished __schedule() and will not be referenced
4252 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4253 	 */
4254 	smp_rmb();
4255 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4256 #endif
4257 
4258 	return false;
4259 }
4260 
4261 /**
4262  * task_call_func - Invoke a function on task in fixed state
4263  * @p: Process for which the function is to be invoked, can be @current.
4264  * @func: Function to invoke.
4265  * @arg: Argument to function.
4266  *
4267  * Fix the task in it's current state by avoiding wakeups and or rq operations
4268  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4269  * to work out what the state is, if required.  Given that @func can be invoked
4270  * with a runqueue lock held, it had better be quite lightweight.
4271  *
4272  * Returns:
4273  *   Whatever @func returns
4274  */
4275 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4276 {
4277 	struct rq *rq = NULL;
4278 	struct rq_flags rf;
4279 	int ret;
4280 
4281 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4282 
4283 	if (__task_needs_rq_lock(p))
4284 		rq = __task_rq_lock(p, &rf);
4285 
4286 	/*
4287 	 * At this point the task is pinned; either:
4288 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4289 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4290 	 *  - queued, and we're holding off schedule	 (rq->lock)
4291 	 *  - running, and we're holding off de-schedule (rq->lock)
4292 	 *
4293 	 * The called function (@func) can use: task_curr(), p->on_rq and
4294 	 * p->__state to differentiate between these states.
4295 	 */
4296 	ret = func(p, arg);
4297 
4298 	if (rq)
4299 		rq_unlock(rq, &rf);
4300 
4301 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4302 	return ret;
4303 }
4304 
4305 /**
4306  * cpu_curr_snapshot - Return a snapshot of the currently running task
4307  * @cpu: The CPU on which to snapshot the task.
4308  *
4309  * Returns the task_struct pointer of the task "currently" running on
4310  * the specified CPU.  If the same task is running on that CPU throughout,
4311  * the return value will be a pointer to that task's task_struct structure.
4312  * If the CPU did any context switches even vaguely concurrently with the
4313  * execution of this function, the return value will be a pointer to the
4314  * task_struct structure of a randomly chosen task that was running on
4315  * that CPU somewhere around the time that this function was executing.
4316  *
4317  * If the specified CPU was offline, the return value is whatever it
4318  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4319  * task, but there is no guarantee.  Callers wishing a useful return
4320  * value must take some action to ensure that the specified CPU remains
4321  * online throughout.
4322  *
4323  * This function executes full memory barriers before and after fetching
4324  * the pointer, which permits the caller to confine this function's fetch
4325  * with respect to the caller's accesses to other shared variables.
4326  */
4327 struct task_struct *cpu_curr_snapshot(int cpu)
4328 {
4329 	struct task_struct *t;
4330 
4331 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4332 	t = rcu_dereference(cpu_curr(cpu));
4333 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4334 	return t;
4335 }
4336 
4337 /**
4338  * wake_up_process - Wake up a specific process
4339  * @p: The process to be woken up.
4340  *
4341  * Attempt to wake up the nominated process and move it to the set of runnable
4342  * processes.
4343  *
4344  * Return: 1 if the process was woken up, 0 if it was already running.
4345  *
4346  * This function executes a full memory barrier before accessing the task state.
4347  */
4348 int wake_up_process(struct task_struct *p)
4349 {
4350 	return try_to_wake_up(p, TASK_NORMAL, 0);
4351 }
4352 EXPORT_SYMBOL(wake_up_process);
4353 
4354 int wake_up_state(struct task_struct *p, unsigned int state)
4355 {
4356 	return try_to_wake_up(p, state, 0);
4357 }
4358 
4359 /*
4360  * Perform scheduler related setup for a newly forked process p.
4361  * p is forked by current.
4362  *
4363  * __sched_fork() is basic setup used by init_idle() too:
4364  */
4365 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4366 {
4367 	p->on_rq			= 0;
4368 
4369 	p->se.on_rq			= 0;
4370 	p->se.exec_start		= 0;
4371 	p->se.sum_exec_runtime		= 0;
4372 	p->se.prev_sum_exec_runtime	= 0;
4373 	p->se.nr_migrations		= 0;
4374 	p->se.vruntime			= 0;
4375 	INIT_LIST_HEAD(&p->se.group_node);
4376 
4377 #ifdef CONFIG_FAIR_GROUP_SCHED
4378 	p->se.cfs_rq			= NULL;
4379 #endif
4380 
4381 #ifdef CONFIG_SCHEDSTATS
4382 	/* Even if schedstat is disabled, there should not be garbage */
4383 	memset(&p->stats, 0, sizeof(p->stats));
4384 #endif
4385 
4386 	RB_CLEAR_NODE(&p->dl.rb_node);
4387 	init_dl_task_timer(&p->dl);
4388 	init_dl_inactive_task_timer(&p->dl);
4389 	__dl_clear_params(p);
4390 
4391 	INIT_LIST_HEAD(&p->rt.run_list);
4392 	p->rt.timeout		= 0;
4393 	p->rt.time_slice	= sched_rr_timeslice;
4394 	p->rt.on_rq		= 0;
4395 	p->rt.on_list		= 0;
4396 
4397 #ifdef CONFIG_PREEMPT_NOTIFIERS
4398 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4399 #endif
4400 
4401 #ifdef CONFIG_COMPACTION
4402 	p->capture_control = NULL;
4403 #endif
4404 	init_numa_balancing(clone_flags, p);
4405 #ifdef CONFIG_SMP
4406 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4407 	p->migration_pending = NULL;
4408 #endif
4409 }
4410 
4411 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4412 
4413 #ifdef CONFIG_NUMA_BALANCING
4414 
4415 int sysctl_numa_balancing_mode;
4416 
4417 static void __set_numabalancing_state(bool enabled)
4418 {
4419 	if (enabled)
4420 		static_branch_enable(&sched_numa_balancing);
4421 	else
4422 		static_branch_disable(&sched_numa_balancing);
4423 }
4424 
4425 void set_numabalancing_state(bool enabled)
4426 {
4427 	if (enabled)
4428 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4429 	else
4430 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4431 	__set_numabalancing_state(enabled);
4432 }
4433 
4434 #ifdef CONFIG_PROC_SYSCTL
4435 static void reset_memory_tiering(void)
4436 {
4437 	struct pglist_data *pgdat;
4438 
4439 	for_each_online_pgdat(pgdat) {
4440 		pgdat->nbp_threshold = 0;
4441 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4442 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4443 	}
4444 }
4445 
4446 int sysctl_numa_balancing(struct ctl_table *table, int write,
4447 			  void *buffer, size_t *lenp, loff_t *ppos)
4448 {
4449 	struct ctl_table t;
4450 	int err;
4451 	int state = sysctl_numa_balancing_mode;
4452 
4453 	if (write && !capable(CAP_SYS_ADMIN))
4454 		return -EPERM;
4455 
4456 	t = *table;
4457 	t.data = &state;
4458 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4459 	if (err < 0)
4460 		return err;
4461 	if (write) {
4462 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4463 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4464 			reset_memory_tiering();
4465 		sysctl_numa_balancing_mode = state;
4466 		__set_numabalancing_state(state);
4467 	}
4468 	return err;
4469 }
4470 #endif
4471 #endif
4472 
4473 #ifdef CONFIG_SCHEDSTATS
4474 
4475 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4476 
4477 static void set_schedstats(bool enabled)
4478 {
4479 	if (enabled)
4480 		static_branch_enable(&sched_schedstats);
4481 	else
4482 		static_branch_disable(&sched_schedstats);
4483 }
4484 
4485 void force_schedstat_enabled(void)
4486 {
4487 	if (!schedstat_enabled()) {
4488 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4489 		static_branch_enable(&sched_schedstats);
4490 	}
4491 }
4492 
4493 static int __init setup_schedstats(char *str)
4494 {
4495 	int ret = 0;
4496 	if (!str)
4497 		goto out;
4498 
4499 	if (!strcmp(str, "enable")) {
4500 		set_schedstats(true);
4501 		ret = 1;
4502 	} else if (!strcmp(str, "disable")) {
4503 		set_schedstats(false);
4504 		ret = 1;
4505 	}
4506 out:
4507 	if (!ret)
4508 		pr_warn("Unable to parse schedstats=\n");
4509 
4510 	return ret;
4511 }
4512 __setup("schedstats=", setup_schedstats);
4513 
4514 #ifdef CONFIG_PROC_SYSCTL
4515 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4516 		size_t *lenp, loff_t *ppos)
4517 {
4518 	struct ctl_table t;
4519 	int err;
4520 	int state = static_branch_likely(&sched_schedstats);
4521 
4522 	if (write && !capable(CAP_SYS_ADMIN))
4523 		return -EPERM;
4524 
4525 	t = *table;
4526 	t.data = &state;
4527 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4528 	if (err < 0)
4529 		return err;
4530 	if (write)
4531 		set_schedstats(state);
4532 	return err;
4533 }
4534 #endif /* CONFIG_PROC_SYSCTL */
4535 #endif /* CONFIG_SCHEDSTATS */
4536 
4537 #ifdef CONFIG_SYSCTL
4538 static struct ctl_table sched_core_sysctls[] = {
4539 #ifdef CONFIG_SCHEDSTATS
4540 	{
4541 		.procname       = "sched_schedstats",
4542 		.data           = NULL,
4543 		.maxlen         = sizeof(unsigned int),
4544 		.mode           = 0644,
4545 		.proc_handler   = sysctl_schedstats,
4546 		.extra1         = SYSCTL_ZERO,
4547 		.extra2         = SYSCTL_ONE,
4548 	},
4549 #endif /* CONFIG_SCHEDSTATS */
4550 #ifdef CONFIG_UCLAMP_TASK
4551 	{
4552 		.procname       = "sched_util_clamp_min",
4553 		.data           = &sysctl_sched_uclamp_util_min,
4554 		.maxlen         = sizeof(unsigned int),
4555 		.mode           = 0644,
4556 		.proc_handler   = sysctl_sched_uclamp_handler,
4557 	},
4558 	{
4559 		.procname       = "sched_util_clamp_max",
4560 		.data           = &sysctl_sched_uclamp_util_max,
4561 		.maxlen         = sizeof(unsigned int),
4562 		.mode           = 0644,
4563 		.proc_handler   = sysctl_sched_uclamp_handler,
4564 	},
4565 	{
4566 		.procname       = "sched_util_clamp_min_rt_default",
4567 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4568 		.maxlen         = sizeof(unsigned int),
4569 		.mode           = 0644,
4570 		.proc_handler   = sysctl_sched_uclamp_handler,
4571 	},
4572 #endif /* CONFIG_UCLAMP_TASK */
4573 	{}
4574 };
4575 static int __init sched_core_sysctl_init(void)
4576 {
4577 	register_sysctl_init("kernel", sched_core_sysctls);
4578 	return 0;
4579 }
4580 late_initcall(sched_core_sysctl_init);
4581 #endif /* CONFIG_SYSCTL */
4582 
4583 /*
4584  * fork()/clone()-time setup:
4585  */
4586 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4587 {
4588 	__sched_fork(clone_flags, p);
4589 	/*
4590 	 * We mark the process as NEW here. This guarantees that
4591 	 * nobody will actually run it, and a signal or other external
4592 	 * event cannot wake it up and insert it on the runqueue either.
4593 	 */
4594 	p->__state = TASK_NEW;
4595 
4596 	/*
4597 	 * Make sure we do not leak PI boosting priority to the child.
4598 	 */
4599 	p->prio = current->normal_prio;
4600 
4601 	uclamp_fork(p);
4602 
4603 	/*
4604 	 * Revert to default priority/policy on fork if requested.
4605 	 */
4606 	if (unlikely(p->sched_reset_on_fork)) {
4607 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4608 			p->policy = SCHED_NORMAL;
4609 			p->static_prio = NICE_TO_PRIO(0);
4610 			p->rt_priority = 0;
4611 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4612 			p->static_prio = NICE_TO_PRIO(0);
4613 
4614 		p->prio = p->normal_prio = p->static_prio;
4615 		set_load_weight(p, false);
4616 
4617 		/*
4618 		 * We don't need the reset flag anymore after the fork. It has
4619 		 * fulfilled its duty:
4620 		 */
4621 		p->sched_reset_on_fork = 0;
4622 	}
4623 
4624 	if (dl_prio(p->prio))
4625 		return -EAGAIN;
4626 	else if (rt_prio(p->prio))
4627 		p->sched_class = &rt_sched_class;
4628 	else
4629 		p->sched_class = &fair_sched_class;
4630 
4631 	init_entity_runnable_average(&p->se);
4632 
4633 
4634 #ifdef CONFIG_SCHED_INFO
4635 	if (likely(sched_info_on()))
4636 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4637 #endif
4638 #if defined(CONFIG_SMP)
4639 	p->on_cpu = 0;
4640 #endif
4641 	init_task_preempt_count(p);
4642 #ifdef CONFIG_SMP
4643 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4644 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4645 #endif
4646 	return 0;
4647 }
4648 
4649 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4650 {
4651 	unsigned long flags;
4652 
4653 	/*
4654 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4655 	 * required yet, but lockdep gets upset if rules are violated.
4656 	 */
4657 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4658 #ifdef CONFIG_CGROUP_SCHED
4659 	if (1) {
4660 		struct task_group *tg;
4661 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4662 				  struct task_group, css);
4663 		tg = autogroup_task_group(p, tg);
4664 		p->sched_task_group = tg;
4665 	}
4666 #endif
4667 	rseq_migrate(p);
4668 	/*
4669 	 * We're setting the CPU for the first time, we don't migrate,
4670 	 * so use __set_task_cpu().
4671 	 */
4672 	__set_task_cpu(p, smp_processor_id());
4673 	if (p->sched_class->task_fork)
4674 		p->sched_class->task_fork(p);
4675 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4676 }
4677 
4678 void sched_post_fork(struct task_struct *p)
4679 {
4680 	uclamp_post_fork(p);
4681 }
4682 
4683 unsigned long to_ratio(u64 period, u64 runtime)
4684 {
4685 	if (runtime == RUNTIME_INF)
4686 		return BW_UNIT;
4687 
4688 	/*
4689 	 * Doing this here saves a lot of checks in all
4690 	 * the calling paths, and returning zero seems
4691 	 * safe for them anyway.
4692 	 */
4693 	if (period == 0)
4694 		return 0;
4695 
4696 	return div64_u64(runtime << BW_SHIFT, period);
4697 }
4698 
4699 /*
4700  * wake_up_new_task - wake up a newly created task for the first time.
4701  *
4702  * This function will do some initial scheduler statistics housekeeping
4703  * that must be done for every newly created context, then puts the task
4704  * on the runqueue and wakes it.
4705  */
4706 void wake_up_new_task(struct task_struct *p)
4707 {
4708 	struct rq_flags rf;
4709 	struct rq *rq;
4710 
4711 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4712 	WRITE_ONCE(p->__state, TASK_RUNNING);
4713 #ifdef CONFIG_SMP
4714 	/*
4715 	 * Fork balancing, do it here and not earlier because:
4716 	 *  - cpus_ptr can change in the fork path
4717 	 *  - any previously selected CPU might disappear through hotplug
4718 	 *
4719 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4720 	 * as we're not fully set-up yet.
4721 	 */
4722 	p->recent_used_cpu = task_cpu(p);
4723 	rseq_migrate(p);
4724 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4725 #endif
4726 	rq = __task_rq_lock(p, &rf);
4727 	update_rq_clock(rq);
4728 	post_init_entity_util_avg(p);
4729 
4730 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4731 	trace_sched_wakeup_new(p);
4732 	check_preempt_curr(rq, p, WF_FORK);
4733 #ifdef CONFIG_SMP
4734 	if (p->sched_class->task_woken) {
4735 		/*
4736 		 * Nothing relies on rq->lock after this, so it's fine to
4737 		 * drop it.
4738 		 */
4739 		rq_unpin_lock(rq, &rf);
4740 		p->sched_class->task_woken(rq, p);
4741 		rq_repin_lock(rq, &rf);
4742 	}
4743 #endif
4744 	task_rq_unlock(rq, p, &rf);
4745 }
4746 
4747 #ifdef CONFIG_PREEMPT_NOTIFIERS
4748 
4749 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4750 
4751 void preempt_notifier_inc(void)
4752 {
4753 	static_branch_inc(&preempt_notifier_key);
4754 }
4755 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4756 
4757 void preempt_notifier_dec(void)
4758 {
4759 	static_branch_dec(&preempt_notifier_key);
4760 }
4761 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4762 
4763 /**
4764  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4765  * @notifier: notifier struct to register
4766  */
4767 void preempt_notifier_register(struct preempt_notifier *notifier)
4768 {
4769 	if (!static_branch_unlikely(&preempt_notifier_key))
4770 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4771 
4772 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4773 }
4774 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4775 
4776 /**
4777  * preempt_notifier_unregister - no longer interested in preemption notifications
4778  * @notifier: notifier struct to unregister
4779  *
4780  * This is *not* safe to call from within a preemption notifier.
4781  */
4782 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4783 {
4784 	hlist_del(&notifier->link);
4785 }
4786 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4787 
4788 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4789 {
4790 	struct preempt_notifier *notifier;
4791 
4792 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4793 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4794 }
4795 
4796 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4797 {
4798 	if (static_branch_unlikely(&preempt_notifier_key))
4799 		__fire_sched_in_preempt_notifiers(curr);
4800 }
4801 
4802 static void
4803 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4804 				   struct task_struct *next)
4805 {
4806 	struct preempt_notifier *notifier;
4807 
4808 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4809 		notifier->ops->sched_out(notifier, next);
4810 }
4811 
4812 static __always_inline void
4813 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4814 				 struct task_struct *next)
4815 {
4816 	if (static_branch_unlikely(&preempt_notifier_key))
4817 		__fire_sched_out_preempt_notifiers(curr, next);
4818 }
4819 
4820 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4821 
4822 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4823 {
4824 }
4825 
4826 static inline void
4827 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4828 				 struct task_struct *next)
4829 {
4830 }
4831 
4832 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4833 
4834 static inline void prepare_task(struct task_struct *next)
4835 {
4836 #ifdef CONFIG_SMP
4837 	/*
4838 	 * Claim the task as running, we do this before switching to it
4839 	 * such that any running task will have this set.
4840 	 *
4841 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4842 	 * its ordering comment.
4843 	 */
4844 	WRITE_ONCE(next->on_cpu, 1);
4845 #endif
4846 }
4847 
4848 static inline void finish_task(struct task_struct *prev)
4849 {
4850 #ifdef CONFIG_SMP
4851 	/*
4852 	 * This must be the very last reference to @prev from this CPU. After
4853 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4854 	 * must ensure this doesn't happen until the switch is completely
4855 	 * finished.
4856 	 *
4857 	 * In particular, the load of prev->state in finish_task_switch() must
4858 	 * happen before this.
4859 	 *
4860 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4861 	 */
4862 	smp_store_release(&prev->on_cpu, 0);
4863 #endif
4864 }
4865 
4866 #ifdef CONFIG_SMP
4867 
4868 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
4869 {
4870 	void (*func)(struct rq *rq);
4871 	struct balance_callback *next;
4872 
4873 	lockdep_assert_rq_held(rq);
4874 
4875 	while (head) {
4876 		func = (void (*)(struct rq *))head->func;
4877 		next = head->next;
4878 		head->next = NULL;
4879 		head = next;
4880 
4881 		func(rq);
4882 	}
4883 }
4884 
4885 static void balance_push(struct rq *rq);
4886 
4887 /*
4888  * balance_push_callback is a right abuse of the callback interface and plays
4889  * by significantly different rules.
4890  *
4891  * Where the normal balance_callback's purpose is to be ran in the same context
4892  * that queued it (only later, when it's safe to drop rq->lock again),
4893  * balance_push_callback is specifically targeted at __schedule().
4894  *
4895  * This abuse is tolerated because it places all the unlikely/odd cases behind
4896  * a single test, namely: rq->balance_callback == NULL.
4897  */
4898 struct balance_callback balance_push_callback = {
4899 	.next = NULL,
4900 	.func = balance_push,
4901 };
4902 
4903 static inline struct balance_callback *
4904 __splice_balance_callbacks(struct rq *rq, bool split)
4905 {
4906 	struct balance_callback *head = rq->balance_callback;
4907 
4908 	if (likely(!head))
4909 		return NULL;
4910 
4911 	lockdep_assert_rq_held(rq);
4912 	/*
4913 	 * Must not take balance_push_callback off the list when
4914 	 * splice_balance_callbacks() and balance_callbacks() are not
4915 	 * in the same rq->lock section.
4916 	 *
4917 	 * In that case it would be possible for __schedule() to interleave
4918 	 * and observe the list empty.
4919 	 */
4920 	if (split && head == &balance_push_callback)
4921 		head = NULL;
4922 	else
4923 		rq->balance_callback = NULL;
4924 
4925 	return head;
4926 }
4927 
4928 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
4929 {
4930 	return __splice_balance_callbacks(rq, true);
4931 }
4932 
4933 static void __balance_callbacks(struct rq *rq)
4934 {
4935 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
4936 }
4937 
4938 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
4939 {
4940 	unsigned long flags;
4941 
4942 	if (unlikely(head)) {
4943 		raw_spin_rq_lock_irqsave(rq, flags);
4944 		do_balance_callbacks(rq, head);
4945 		raw_spin_rq_unlock_irqrestore(rq, flags);
4946 	}
4947 }
4948 
4949 #else
4950 
4951 static inline void __balance_callbacks(struct rq *rq)
4952 {
4953 }
4954 
4955 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
4956 {
4957 	return NULL;
4958 }
4959 
4960 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
4961 {
4962 }
4963 
4964 #endif
4965 
4966 static inline void
4967 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4968 {
4969 	/*
4970 	 * Since the runqueue lock will be released by the next
4971 	 * task (which is an invalid locking op but in the case
4972 	 * of the scheduler it's an obvious special-case), so we
4973 	 * do an early lockdep release here:
4974 	 */
4975 	rq_unpin_lock(rq, rf);
4976 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4977 #ifdef CONFIG_DEBUG_SPINLOCK
4978 	/* this is a valid case when another task releases the spinlock */
4979 	rq_lockp(rq)->owner = next;
4980 #endif
4981 }
4982 
4983 static inline void finish_lock_switch(struct rq *rq)
4984 {
4985 	/*
4986 	 * If we are tracking spinlock dependencies then we have to
4987 	 * fix up the runqueue lock - which gets 'carried over' from
4988 	 * prev into current:
4989 	 */
4990 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4991 	__balance_callbacks(rq);
4992 	raw_spin_rq_unlock_irq(rq);
4993 }
4994 
4995 /*
4996  * NOP if the arch has not defined these:
4997  */
4998 
4999 #ifndef prepare_arch_switch
5000 # define prepare_arch_switch(next)	do { } while (0)
5001 #endif
5002 
5003 #ifndef finish_arch_post_lock_switch
5004 # define finish_arch_post_lock_switch()	do { } while (0)
5005 #endif
5006 
5007 static inline void kmap_local_sched_out(void)
5008 {
5009 #ifdef CONFIG_KMAP_LOCAL
5010 	if (unlikely(current->kmap_ctrl.idx))
5011 		__kmap_local_sched_out();
5012 #endif
5013 }
5014 
5015 static inline void kmap_local_sched_in(void)
5016 {
5017 #ifdef CONFIG_KMAP_LOCAL
5018 	if (unlikely(current->kmap_ctrl.idx))
5019 		__kmap_local_sched_in();
5020 #endif
5021 }
5022 
5023 /**
5024  * prepare_task_switch - prepare to switch tasks
5025  * @rq: the runqueue preparing to switch
5026  * @prev: the current task that is being switched out
5027  * @next: the task we are going to switch to.
5028  *
5029  * This is called with the rq lock held and interrupts off. It must
5030  * be paired with a subsequent finish_task_switch after the context
5031  * switch.
5032  *
5033  * prepare_task_switch sets up locking and calls architecture specific
5034  * hooks.
5035  */
5036 static inline void
5037 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5038 		    struct task_struct *next)
5039 {
5040 	kcov_prepare_switch(prev);
5041 	sched_info_switch(rq, prev, next);
5042 	perf_event_task_sched_out(prev, next);
5043 	rseq_preempt(prev);
5044 	fire_sched_out_preempt_notifiers(prev, next);
5045 	kmap_local_sched_out();
5046 	prepare_task(next);
5047 	prepare_arch_switch(next);
5048 }
5049 
5050 /**
5051  * finish_task_switch - clean up after a task-switch
5052  * @prev: the thread we just switched away from.
5053  *
5054  * finish_task_switch must be called after the context switch, paired
5055  * with a prepare_task_switch call before the context switch.
5056  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5057  * and do any other architecture-specific cleanup actions.
5058  *
5059  * Note that we may have delayed dropping an mm in context_switch(). If
5060  * so, we finish that here outside of the runqueue lock. (Doing it
5061  * with the lock held can cause deadlocks; see schedule() for
5062  * details.)
5063  *
5064  * The context switch have flipped the stack from under us and restored the
5065  * local variables which were saved when this task called schedule() in the
5066  * past. prev == current is still correct but we need to recalculate this_rq
5067  * because prev may have moved to another CPU.
5068  */
5069 static struct rq *finish_task_switch(struct task_struct *prev)
5070 	__releases(rq->lock)
5071 {
5072 	struct rq *rq = this_rq();
5073 	struct mm_struct *mm = rq->prev_mm;
5074 	unsigned int prev_state;
5075 
5076 	/*
5077 	 * The previous task will have left us with a preempt_count of 2
5078 	 * because it left us after:
5079 	 *
5080 	 *	schedule()
5081 	 *	  preempt_disable();			// 1
5082 	 *	  __schedule()
5083 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5084 	 *
5085 	 * Also, see FORK_PREEMPT_COUNT.
5086 	 */
5087 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5088 		      "corrupted preempt_count: %s/%d/0x%x\n",
5089 		      current->comm, current->pid, preempt_count()))
5090 		preempt_count_set(FORK_PREEMPT_COUNT);
5091 
5092 	rq->prev_mm = NULL;
5093 
5094 	/*
5095 	 * A task struct has one reference for the use as "current".
5096 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5097 	 * schedule one last time. The schedule call will never return, and
5098 	 * the scheduled task must drop that reference.
5099 	 *
5100 	 * We must observe prev->state before clearing prev->on_cpu (in
5101 	 * finish_task), otherwise a concurrent wakeup can get prev
5102 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5103 	 * transition, resulting in a double drop.
5104 	 */
5105 	prev_state = READ_ONCE(prev->__state);
5106 	vtime_task_switch(prev);
5107 	perf_event_task_sched_in(prev, current);
5108 	finish_task(prev);
5109 	tick_nohz_task_switch();
5110 	finish_lock_switch(rq);
5111 	finish_arch_post_lock_switch();
5112 	kcov_finish_switch(current);
5113 	/*
5114 	 * kmap_local_sched_out() is invoked with rq::lock held and
5115 	 * interrupts disabled. There is no requirement for that, but the
5116 	 * sched out code does not have an interrupt enabled section.
5117 	 * Restoring the maps on sched in does not require interrupts being
5118 	 * disabled either.
5119 	 */
5120 	kmap_local_sched_in();
5121 
5122 	fire_sched_in_preempt_notifiers(current);
5123 	/*
5124 	 * When switching through a kernel thread, the loop in
5125 	 * membarrier_{private,global}_expedited() may have observed that
5126 	 * kernel thread and not issued an IPI. It is therefore possible to
5127 	 * schedule between user->kernel->user threads without passing though
5128 	 * switch_mm(). Membarrier requires a barrier after storing to
5129 	 * rq->curr, before returning to userspace, so provide them here:
5130 	 *
5131 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5132 	 *   provided by mmdrop(),
5133 	 * - a sync_core for SYNC_CORE.
5134 	 */
5135 	if (mm) {
5136 		membarrier_mm_sync_core_before_usermode(mm);
5137 		mmdrop_sched(mm);
5138 	}
5139 	if (unlikely(prev_state == TASK_DEAD)) {
5140 		if (prev->sched_class->task_dead)
5141 			prev->sched_class->task_dead(prev);
5142 
5143 		/* Task is done with its stack. */
5144 		put_task_stack(prev);
5145 
5146 		put_task_struct_rcu_user(prev);
5147 	}
5148 
5149 	return rq;
5150 }
5151 
5152 /**
5153  * schedule_tail - first thing a freshly forked thread must call.
5154  * @prev: the thread we just switched away from.
5155  */
5156 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5157 	__releases(rq->lock)
5158 {
5159 	/*
5160 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5161 	 * finish_task_switch() for details.
5162 	 *
5163 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5164 	 * and the preempt_enable() will end up enabling preemption (on
5165 	 * PREEMPT_COUNT kernels).
5166 	 */
5167 
5168 	finish_task_switch(prev);
5169 	preempt_enable();
5170 
5171 	if (current->set_child_tid)
5172 		put_user(task_pid_vnr(current), current->set_child_tid);
5173 
5174 	calculate_sigpending();
5175 }
5176 
5177 /*
5178  * context_switch - switch to the new MM and the new thread's register state.
5179  */
5180 static __always_inline struct rq *
5181 context_switch(struct rq *rq, struct task_struct *prev,
5182 	       struct task_struct *next, struct rq_flags *rf)
5183 {
5184 	prepare_task_switch(rq, prev, next);
5185 
5186 	/*
5187 	 * For paravirt, this is coupled with an exit in switch_to to
5188 	 * combine the page table reload and the switch backend into
5189 	 * one hypercall.
5190 	 */
5191 	arch_start_context_switch(prev);
5192 
5193 	/*
5194 	 * kernel -> kernel   lazy + transfer active
5195 	 *   user -> kernel   lazy + mmgrab() active
5196 	 *
5197 	 * kernel ->   user   switch + mmdrop() active
5198 	 *   user ->   user   switch
5199 	 */
5200 	if (!next->mm) {                                // to kernel
5201 		enter_lazy_tlb(prev->active_mm, next);
5202 
5203 		next->active_mm = prev->active_mm;
5204 		if (prev->mm)                           // from user
5205 			mmgrab(prev->active_mm);
5206 		else
5207 			prev->active_mm = NULL;
5208 	} else {                                        // to user
5209 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5210 		/*
5211 		 * sys_membarrier() requires an smp_mb() between setting
5212 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5213 		 *
5214 		 * The below provides this either through switch_mm(), or in
5215 		 * case 'prev->active_mm == next->mm' through
5216 		 * finish_task_switch()'s mmdrop().
5217 		 */
5218 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5219 		lru_gen_use_mm(next->mm);
5220 
5221 		if (!prev->mm) {                        // from kernel
5222 			/* will mmdrop() in finish_task_switch(). */
5223 			rq->prev_mm = prev->active_mm;
5224 			prev->active_mm = NULL;
5225 		}
5226 	}
5227 
5228 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5229 
5230 	prepare_lock_switch(rq, next, rf);
5231 
5232 	/* Here we just switch the register state and the stack. */
5233 	switch_to(prev, next, prev);
5234 	barrier();
5235 
5236 	return finish_task_switch(prev);
5237 }
5238 
5239 /*
5240  * nr_running and nr_context_switches:
5241  *
5242  * externally visible scheduler statistics: current number of runnable
5243  * threads, total number of context switches performed since bootup.
5244  */
5245 unsigned int nr_running(void)
5246 {
5247 	unsigned int i, sum = 0;
5248 
5249 	for_each_online_cpu(i)
5250 		sum += cpu_rq(i)->nr_running;
5251 
5252 	return sum;
5253 }
5254 
5255 /*
5256  * Check if only the current task is running on the CPU.
5257  *
5258  * Caution: this function does not check that the caller has disabled
5259  * preemption, thus the result might have a time-of-check-to-time-of-use
5260  * race.  The caller is responsible to use it correctly, for example:
5261  *
5262  * - from a non-preemptible section (of course)
5263  *
5264  * - from a thread that is bound to a single CPU
5265  *
5266  * - in a loop with very short iterations (e.g. a polling loop)
5267  */
5268 bool single_task_running(void)
5269 {
5270 	return raw_rq()->nr_running == 1;
5271 }
5272 EXPORT_SYMBOL(single_task_running);
5273 
5274 unsigned long long nr_context_switches(void)
5275 {
5276 	int i;
5277 	unsigned long long sum = 0;
5278 
5279 	for_each_possible_cpu(i)
5280 		sum += cpu_rq(i)->nr_switches;
5281 
5282 	return sum;
5283 }
5284 
5285 /*
5286  * Consumers of these two interfaces, like for example the cpuidle menu
5287  * governor, are using nonsensical data. Preferring shallow idle state selection
5288  * for a CPU that has IO-wait which might not even end up running the task when
5289  * it does become runnable.
5290  */
5291 
5292 unsigned int nr_iowait_cpu(int cpu)
5293 {
5294 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5295 }
5296 
5297 /*
5298  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5299  *
5300  * The idea behind IO-wait account is to account the idle time that we could
5301  * have spend running if it were not for IO. That is, if we were to improve the
5302  * storage performance, we'd have a proportional reduction in IO-wait time.
5303  *
5304  * This all works nicely on UP, where, when a task blocks on IO, we account
5305  * idle time as IO-wait, because if the storage were faster, it could've been
5306  * running and we'd not be idle.
5307  *
5308  * This has been extended to SMP, by doing the same for each CPU. This however
5309  * is broken.
5310  *
5311  * Imagine for instance the case where two tasks block on one CPU, only the one
5312  * CPU will have IO-wait accounted, while the other has regular idle. Even
5313  * though, if the storage were faster, both could've ran at the same time,
5314  * utilising both CPUs.
5315  *
5316  * This means, that when looking globally, the current IO-wait accounting on
5317  * SMP is a lower bound, by reason of under accounting.
5318  *
5319  * Worse, since the numbers are provided per CPU, they are sometimes
5320  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5321  * associated with any one particular CPU, it can wake to another CPU than it
5322  * blocked on. This means the per CPU IO-wait number is meaningless.
5323  *
5324  * Task CPU affinities can make all that even more 'interesting'.
5325  */
5326 
5327 unsigned int nr_iowait(void)
5328 {
5329 	unsigned int i, sum = 0;
5330 
5331 	for_each_possible_cpu(i)
5332 		sum += nr_iowait_cpu(i);
5333 
5334 	return sum;
5335 }
5336 
5337 #ifdef CONFIG_SMP
5338 
5339 /*
5340  * sched_exec - execve() is a valuable balancing opportunity, because at
5341  * this point the task has the smallest effective memory and cache footprint.
5342  */
5343 void sched_exec(void)
5344 {
5345 	struct task_struct *p = current;
5346 	unsigned long flags;
5347 	int dest_cpu;
5348 
5349 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5350 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5351 	if (dest_cpu == smp_processor_id())
5352 		goto unlock;
5353 
5354 	if (likely(cpu_active(dest_cpu))) {
5355 		struct migration_arg arg = { p, dest_cpu };
5356 
5357 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5358 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5359 		return;
5360 	}
5361 unlock:
5362 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5363 }
5364 
5365 #endif
5366 
5367 DEFINE_PER_CPU(struct kernel_stat, kstat);
5368 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5369 
5370 EXPORT_PER_CPU_SYMBOL(kstat);
5371 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5372 
5373 /*
5374  * The function fair_sched_class.update_curr accesses the struct curr
5375  * and its field curr->exec_start; when called from task_sched_runtime(),
5376  * we observe a high rate of cache misses in practice.
5377  * Prefetching this data results in improved performance.
5378  */
5379 static inline void prefetch_curr_exec_start(struct task_struct *p)
5380 {
5381 #ifdef CONFIG_FAIR_GROUP_SCHED
5382 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5383 #else
5384 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5385 #endif
5386 	prefetch(curr);
5387 	prefetch(&curr->exec_start);
5388 }
5389 
5390 /*
5391  * Return accounted runtime for the task.
5392  * In case the task is currently running, return the runtime plus current's
5393  * pending runtime that have not been accounted yet.
5394  */
5395 unsigned long long task_sched_runtime(struct task_struct *p)
5396 {
5397 	struct rq_flags rf;
5398 	struct rq *rq;
5399 	u64 ns;
5400 
5401 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5402 	/*
5403 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5404 	 * So we have a optimization chance when the task's delta_exec is 0.
5405 	 * Reading ->on_cpu is racy, but this is ok.
5406 	 *
5407 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5408 	 * If we race with it entering CPU, unaccounted time is 0. This is
5409 	 * indistinguishable from the read occurring a few cycles earlier.
5410 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5411 	 * been accounted, so we're correct here as well.
5412 	 */
5413 	if (!p->on_cpu || !task_on_rq_queued(p))
5414 		return p->se.sum_exec_runtime;
5415 #endif
5416 
5417 	rq = task_rq_lock(p, &rf);
5418 	/*
5419 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5420 	 * project cycles that may never be accounted to this
5421 	 * thread, breaking clock_gettime().
5422 	 */
5423 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5424 		prefetch_curr_exec_start(p);
5425 		update_rq_clock(rq);
5426 		p->sched_class->update_curr(rq);
5427 	}
5428 	ns = p->se.sum_exec_runtime;
5429 	task_rq_unlock(rq, p, &rf);
5430 
5431 	return ns;
5432 }
5433 
5434 #ifdef CONFIG_SCHED_DEBUG
5435 static u64 cpu_resched_latency(struct rq *rq)
5436 {
5437 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5438 	u64 resched_latency, now = rq_clock(rq);
5439 	static bool warned_once;
5440 
5441 	if (sysctl_resched_latency_warn_once && warned_once)
5442 		return 0;
5443 
5444 	if (!need_resched() || !latency_warn_ms)
5445 		return 0;
5446 
5447 	if (system_state == SYSTEM_BOOTING)
5448 		return 0;
5449 
5450 	if (!rq->last_seen_need_resched_ns) {
5451 		rq->last_seen_need_resched_ns = now;
5452 		rq->ticks_without_resched = 0;
5453 		return 0;
5454 	}
5455 
5456 	rq->ticks_without_resched++;
5457 	resched_latency = now - rq->last_seen_need_resched_ns;
5458 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5459 		return 0;
5460 
5461 	warned_once = true;
5462 
5463 	return resched_latency;
5464 }
5465 
5466 static int __init setup_resched_latency_warn_ms(char *str)
5467 {
5468 	long val;
5469 
5470 	if ((kstrtol(str, 0, &val))) {
5471 		pr_warn("Unable to set resched_latency_warn_ms\n");
5472 		return 1;
5473 	}
5474 
5475 	sysctl_resched_latency_warn_ms = val;
5476 	return 1;
5477 }
5478 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5479 #else
5480 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5481 #endif /* CONFIG_SCHED_DEBUG */
5482 
5483 /*
5484  * This function gets called by the timer code, with HZ frequency.
5485  * We call it with interrupts disabled.
5486  */
5487 void scheduler_tick(void)
5488 {
5489 	int cpu = smp_processor_id();
5490 	struct rq *rq = cpu_rq(cpu);
5491 	struct task_struct *curr = rq->curr;
5492 	struct rq_flags rf;
5493 	unsigned long thermal_pressure;
5494 	u64 resched_latency;
5495 
5496 	arch_scale_freq_tick();
5497 	sched_clock_tick();
5498 
5499 	rq_lock(rq, &rf);
5500 
5501 	update_rq_clock(rq);
5502 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5503 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5504 	curr->sched_class->task_tick(rq, curr, 0);
5505 	if (sched_feat(LATENCY_WARN))
5506 		resched_latency = cpu_resched_latency(rq);
5507 	calc_global_load_tick(rq);
5508 	sched_core_tick(rq);
5509 
5510 	rq_unlock(rq, &rf);
5511 
5512 	if (sched_feat(LATENCY_WARN) && resched_latency)
5513 		resched_latency_warn(cpu, resched_latency);
5514 
5515 	perf_event_task_tick();
5516 
5517 #ifdef CONFIG_SMP
5518 	rq->idle_balance = idle_cpu(cpu);
5519 	trigger_load_balance(rq);
5520 #endif
5521 }
5522 
5523 #ifdef CONFIG_NO_HZ_FULL
5524 
5525 struct tick_work {
5526 	int			cpu;
5527 	atomic_t		state;
5528 	struct delayed_work	work;
5529 };
5530 /* Values for ->state, see diagram below. */
5531 #define TICK_SCHED_REMOTE_OFFLINE	0
5532 #define TICK_SCHED_REMOTE_OFFLINING	1
5533 #define TICK_SCHED_REMOTE_RUNNING	2
5534 
5535 /*
5536  * State diagram for ->state:
5537  *
5538  *
5539  *          TICK_SCHED_REMOTE_OFFLINE
5540  *                    |   ^
5541  *                    |   |
5542  *                    |   | sched_tick_remote()
5543  *                    |   |
5544  *                    |   |
5545  *                    +--TICK_SCHED_REMOTE_OFFLINING
5546  *                    |   ^
5547  *                    |   |
5548  * sched_tick_start() |   | sched_tick_stop()
5549  *                    |   |
5550  *                    V   |
5551  *          TICK_SCHED_REMOTE_RUNNING
5552  *
5553  *
5554  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5555  * and sched_tick_start() are happy to leave the state in RUNNING.
5556  */
5557 
5558 static struct tick_work __percpu *tick_work_cpu;
5559 
5560 static void sched_tick_remote(struct work_struct *work)
5561 {
5562 	struct delayed_work *dwork = to_delayed_work(work);
5563 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5564 	int cpu = twork->cpu;
5565 	struct rq *rq = cpu_rq(cpu);
5566 	struct task_struct *curr;
5567 	struct rq_flags rf;
5568 	u64 delta;
5569 	int os;
5570 
5571 	/*
5572 	 * Handle the tick only if it appears the remote CPU is running in full
5573 	 * dynticks mode. The check is racy by nature, but missing a tick or
5574 	 * having one too much is no big deal because the scheduler tick updates
5575 	 * statistics and checks timeslices in a time-independent way, regardless
5576 	 * of when exactly it is running.
5577 	 */
5578 	if (!tick_nohz_tick_stopped_cpu(cpu))
5579 		goto out_requeue;
5580 
5581 	rq_lock_irq(rq, &rf);
5582 	curr = rq->curr;
5583 	if (cpu_is_offline(cpu))
5584 		goto out_unlock;
5585 
5586 	update_rq_clock(rq);
5587 
5588 	if (!is_idle_task(curr)) {
5589 		/*
5590 		 * Make sure the next tick runs within a reasonable
5591 		 * amount of time.
5592 		 */
5593 		delta = rq_clock_task(rq) - curr->se.exec_start;
5594 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5595 	}
5596 	curr->sched_class->task_tick(rq, curr, 0);
5597 
5598 	calc_load_nohz_remote(rq);
5599 out_unlock:
5600 	rq_unlock_irq(rq, &rf);
5601 out_requeue:
5602 
5603 	/*
5604 	 * Run the remote tick once per second (1Hz). This arbitrary
5605 	 * frequency is large enough to avoid overload but short enough
5606 	 * to keep scheduler internal stats reasonably up to date.  But
5607 	 * first update state to reflect hotplug activity if required.
5608 	 */
5609 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5610 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5611 	if (os == TICK_SCHED_REMOTE_RUNNING)
5612 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5613 }
5614 
5615 static void sched_tick_start(int cpu)
5616 {
5617 	int os;
5618 	struct tick_work *twork;
5619 
5620 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5621 		return;
5622 
5623 	WARN_ON_ONCE(!tick_work_cpu);
5624 
5625 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5626 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5627 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5628 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5629 		twork->cpu = cpu;
5630 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5631 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5632 	}
5633 }
5634 
5635 #ifdef CONFIG_HOTPLUG_CPU
5636 static void sched_tick_stop(int cpu)
5637 {
5638 	struct tick_work *twork;
5639 	int os;
5640 
5641 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5642 		return;
5643 
5644 	WARN_ON_ONCE(!tick_work_cpu);
5645 
5646 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5647 	/* There cannot be competing actions, but don't rely on stop-machine. */
5648 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5649 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5650 	/* Don't cancel, as this would mess up the state machine. */
5651 }
5652 #endif /* CONFIG_HOTPLUG_CPU */
5653 
5654 int __init sched_tick_offload_init(void)
5655 {
5656 	tick_work_cpu = alloc_percpu(struct tick_work);
5657 	BUG_ON(!tick_work_cpu);
5658 	return 0;
5659 }
5660 
5661 #else /* !CONFIG_NO_HZ_FULL */
5662 static inline void sched_tick_start(int cpu) { }
5663 static inline void sched_tick_stop(int cpu) { }
5664 #endif
5665 
5666 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5667 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5668 /*
5669  * If the value passed in is equal to the current preempt count
5670  * then we just disabled preemption. Start timing the latency.
5671  */
5672 static inline void preempt_latency_start(int val)
5673 {
5674 	if (preempt_count() == val) {
5675 		unsigned long ip = get_lock_parent_ip();
5676 #ifdef CONFIG_DEBUG_PREEMPT
5677 		current->preempt_disable_ip = ip;
5678 #endif
5679 		trace_preempt_off(CALLER_ADDR0, ip);
5680 	}
5681 }
5682 
5683 void preempt_count_add(int val)
5684 {
5685 #ifdef CONFIG_DEBUG_PREEMPT
5686 	/*
5687 	 * Underflow?
5688 	 */
5689 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5690 		return;
5691 #endif
5692 	__preempt_count_add(val);
5693 #ifdef CONFIG_DEBUG_PREEMPT
5694 	/*
5695 	 * Spinlock count overflowing soon?
5696 	 */
5697 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5698 				PREEMPT_MASK - 10);
5699 #endif
5700 	preempt_latency_start(val);
5701 }
5702 EXPORT_SYMBOL(preempt_count_add);
5703 NOKPROBE_SYMBOL(preempt_count_add);
5704 
5705 /*
5706  * If the value passed in equals to the current preempt count
5707  * then we just enabled preemption. Stop timing the latency.
5708  */
5709 static inline void preempt_latency_stop(int val)
5710 {
5711 	if (preempt_count() == val)
5712 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5713 }
5714 
5715 void preempt_count_sub(int val)
5716 {
5717 #ifdef CONFIG_DEBUG_PREEMPT
5718 	/*
5719 	 * Underflow?
5720 	 */
5721 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5722 		return;
5723 	/*
5724 	 * Is the spinlock portion underflowing?
5725 	 */
5726 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5727 			!(preempt_count() & PREEMPT_MASK)))
5728 		return;
5729 #endif
5730 
5731 	preempt_latency_stop(val);
5732 	__preempt_count_sub(val);
5733 }
5734 EXPORT_SYMBOL(preempt_count_sub);
5735 NOKPROBE_SYMBOL(preempt_count_sub);
5736 
5737 #else
5738 static inline void preempt_latency_start(int val) { }
5739 static inline void preempt_latency_stop(int val) { }
5740 #endif
5741 
5742 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5743 {
5744 #ifdef CONFIG_DEBUG_PREEMPT
5745 	return p->preempt_disable_ip;
5746 #else
5747 	return 0;
5748 #endif
5749 }
5750 
5751 /*
5752  * Print scheduling while atomic bug:
5753  */
5754 static noinline void __schedule_bug(struct task_struct *prev)
5755 {
5756 	/* Save this before calling printk(), since that will clobber it */
5757 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5758 
5759 	if (oops_in_progress)
5760 		return;
5761 
5762 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5763 		prev->comm, prev->pid, preempt_count());
5764 
5765 	debug_show_held_locks(prev);
5766 	print_modules();
5767 	if (irqs_disabled())
5768 		print_irqtrace_events(prev);
5769 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5770 	    && in_atomic_preempt_off()) {
5771 		pr_err("Preemption disabled at:");
5772 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5773 	}
5774 	if (panic_on_warn)
5775 		panic("scheduling while atomic\n");
5776 
5777 	dump_stack();
5778 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5779 }
5780 
5781 /*
5782  * Various schedule()-time debugging checks and statistics:
5783  */
5784 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5785 {
5786 #ifdef CONFIG_SCHED_STACK_END_CHECK
5787 	if (task_stack_end_corrupted(prev))
5788 		panic("corrupted stack end detected inside scheduler\n");
5789 
5790 	if (task_scs_end_corrupted(prev))
5791 		panic("corrupted shadow stack detected inside scheduler\n");
5792 #endif
5793 
5794 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5795 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5796 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5797 			prev->comm, prev->pid, prev->non_block_count);
5798 		dump_stack();
5799 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5800 	}
5801 #endif
5802 
5803 	if (unlikely(in_atomic_preempt_off())) {
5804 		__schedule_bug(prev);
5805 		preempt_count_set(PREEMPT_DISABLED);
5806 	}
5807 	rcu_sleep_check();
5808 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5809 
5810 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5811 
5812 	schedstat_inc(this_rq()->sched_count);
5813 }
5814 
5815 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5816 				  struct rq_flags *rf)
5817 {
5818 #ifdef CONFIG_SMP
5819 	const struct sched_class *class;
5820 	/*
5821 	 * We must do the balancing pass before put_prev_task(), such
5822 	 * that when we release the rq->lock the task is in the same
5823 	 * state as before we took rq->lock.
5824 	 *
5825 	 * We can terminate the balance pass as soon as we know there is
5826 	 * a runnable task of @class priority or higher.
5827 	 */
5828 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5829 		if (class->balance(rq, prev, rf))
5830 			break;
5831 	}
5832 #endif
5833 
5834 	put_prev_task(rq, prev);
5835 }
5836 
5837 /*
5838  * Pick up the highest-prio task:
5839  */
5840 static inline struct task_struct *
5841 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5842 {
5843 	const struct sched_class *class;
5844 	struct task_struct *p;
5845 
5846 	/*
5847 	 * Optimization: we know that if all tasks are in the fair class we can
5848 	 * call that function directly, but only if the @prev task wasn't of a
5849 	 * higher scheduling class, because otherwise those lose the
5850 	 * opportunity to pull in more work from other CPUs.
5851 	 */
5852 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5853 		   rq->nr_running == rq->cfs.h_nr_running)) {
5854 
5855 		p = pick_next_task_fair(rq, prev, rf);
5856 		if (unlikely(p == RETRY_TASK))
5857 			goto restart;
5858 
5859 		/* Assume the next prioritized class is idle_sched_class */
5860 		if (!p) {
5861 			put_prev_task(rq, prev);
5862 			p = pick_next_task_idle(rq);
5863 		}
5864 
5865 		return p;
5866 	}
5867 
5868 restart:
5869 	put_prev_task_balance(rq, prev, rf);
5870 
5871 	for_each_class(class) {
5872 		p = class->pick_next_task(rq);
5873 		if (p)
5874 			return p;
5875 	}
5876 
5877 	BUG(); /* The idle class should always have a runnable task. */
5878 }
5879 
5880 #ifdef CONFIG_SCHED_CORE
5881 static inline bool is_task_rq_idle(struct task_struct *t)
5882 {
5883 	return (task_rq(t)->idle == t);
5884 }
5885 
5886 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5887 {
5888 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5889 }
5890 
5891 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5892 {
5893 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5894 		return true;
5895 
5896 	return a->core_cookie == b->core_cookie;
5897 }
5898 
5899 static inline struct task_struct *pick_task(struct rq *rq)
5900 {
5901 	const struct sched_class *class;
5902 	struct task_struct *p;
5903 
5904 	for_each_class(class) {
5905 		p = class->pick_task(rq);
5906 		if (p)
5907 			return p;
5908 	}
5909 
5910 	BUG(); /* The idle class should always have a runnable task. */
5911 }
5912 
5913 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5914 
5915 static void queue_core_balance(struct rq *rq);
5916 
5917 static struct task_struct *
5918 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5919 {
5920 	struct task_struct *next, *p, *max = NULL;
5921 	const struct cpumask *smt_mask;
5922 	bool fi_before = false;
5923 	bool core_clock_updated = (rq == rq->core);
5924 	unsigned long cookie;
5925 	int i, cpu, occ = 0;
5926 	struct rq *rq_i;
5927 	bool need_sync;
5928 
5929 	if (!sched_core_enabled(rq))
5930 		return __pick_next_task(rq, prev, rf);
5931 
5932 	cpu = cpu_of(rq);
5933 
5934 	/* Stopper task is switching into idle, no need core-wide selection. */
5935 	if (cpu_is_offline(cpu)) {
5936 		/*
5937 		 * Reset core_pick so that we don't enter the fastpath when
5938 		 * coming online. core_pick would already be migrated to
5939 		 * another cpu during offline.
5940 		 */
5941 		rq->core_pick = NULL;
5942 		return __pick_next_task(rq, prev, rf);
5943 	}
5944 
5945 	/*
5946 	 * If there were no {en,de}queues since we picked (IOW, the task
5947 	 * pointers are all still valid), and we haven't scheduled the last
5948 	 * pick yet, do so now.
5949 	 *
5950 	 * rq->core_pick can be NULL if no selection was made for a CPU because
5951 	 * it was either offline or went offline during a sibling's core-wide
5952 	 * selection. In this case, do a core-wide selection.
5953 	 */
5954 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5955 	    rq->core->core_pick_seq != rq->core_sched_seq &&
5956 	    rq->core_pick) {
5957 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5958 
5959 		next = rq->core_pick;
5960 		if (next != prev) {
5961 			put_prev_task(rq, prev);
5962 			set_next_task(rq, next);
5963 		}
5964 
5965 		rq->core_pick = NULL;
5966 		goto out;
5967 	}
5968 
5969 	put_prev_task_balance(rq, prev, rf);
5970 
5971 	smt_mask = cpu_smt_mask(cpu);
5972 	need_sync = !!rq->core->core_cookie;
5973 
5974 	/* reset state */
5975 	rq->core->core_cookie = 0UL;
5976 	if (rq->core->core_forceidle_count) {
5977 		if (!core_clock_updated) {
5978 			update_rq_clock(rq->core);
5979 			core_clock_updated = true;
5980 		}
5981 		sched_core_account_forceidle(rq);
5982 		/* reset after accounting force idle */
5983 		rq->core->core_forceidle_start = 0;
5984 		rq->core->core_forceidle_count = 0;
5985 		rq->core->core_forceidle_occupation = 0;
5986 		need_sync = true;
5987 		fi_before = true;
5988 	}
5989 
5990 	/*
5991 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5992 	 *
5993 	 * @task_seq guards the task state ({en,de}queues)
5994 	 * @pick_seq is the @task_seq we did a selection on
5995 	 * @sched_seq is the @pick_seq we scheduled
5996 	 *
5997 	 * However, preemptions can cause multiple picks on the same task set.
5998 	 * 'Fix' this by also increasing @task_seq for every pick.
5999 	 */
6000 	rq->core->core_task_seq++;
6001 
6002 	/*
6003 	 * Optimize for common case where this CPU has no cookies
6004 	 * and there are no cookied tasks running on siblings.
6005 	 */
6006 	if (!need_sync) {
6007 		next = pick_task(rq);
6008 		if (!next->core_cookie) {
6009 			rq->core_pick = NULL;
6010 			/*
6011 			 * For robustness, update the min_vruntime_fi for
6012 			 * unconstrained picks as well.
6013 			 */
6014 			WARN_ON_ONCE(fi_before);
6015 			task_vruntime_update(rq, next, false);
6016 			goto out_set_next;
6017 		}
6018 	}
6019 
6020 	/*
6021 	 * For each thread: do the regular task pick and find the max prio task
6022 	 * amongst them.
6023 	 *
6024 	 * Tie-break prio towards the current CPU
6025 	 */
6026 	for_each_cpu_wrap(i, smt_mask, cpu) {
6027 		rq_i = cpu_rq(i);
6028 
6029 		/*
6030 		 * Current cpu always has its clock updated on entrance to
6031 		 * pick_next_task(). If the current cpu is not the core,
6032 		 * the core may also have been updated above.
6033 		 */
6034 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6035 			update_rq_clock(rq_i);
6036 
6037 		p = rq_i->core_pick = pick_task(rq_i);
6038 		if (!max || prio_less(max, p, fi_before))
6039 			max = p;
6040 	}
6041 
6042 	cookie = rq->core->core_cookie = max->core_cookie;
6043 
6044 	/*
6045 	 * For each thread: try and find a runnable task that matches @max or
6046 	 * force idle.
6047 	 */
6048 	for_each_cpu(i, smt_mask) {
6049 		rq_i = cpu_rq(i);
6050 		p = rq_i->core_pick;
6051 
6052 		if (!cookie_equals(p, cookie)) {
6053 			p = NULL;
6054 			if (cookie)
6055 				p = sched_core_find(rq_i, cookie);
6056 			if (!p)
6057 				p = idle_sched_class.pick_task(rq_i);
6058 		}
6059 
6060 		rq_i->core_pick = p;
6061 
6062 		if (p == rq_i->idle) {
6063 			if (rq_i->nr_running) {
6064 				rq->core->core_forceidle_count++;
6065 				if (!fi_before)
6066 					rq->core->core_forceidle_seq++;
6067 			}
6068 		} else {
6069 			occ++;
6070 		}
6071 	}
6072 
6073 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6074 		rq->core->core_forceidle_start = rq_clock(rq->core);
6075 		rq->core->core_forceidle_occupation = occ;
6076 	}
6077 
6078 	rq->core->core_pick_seq = rq->core->core_task_seq;
6079 	next = rq->core_pick;
6080 	rq->core_sched_seq = rq->core->core_pick_seq;
6081 
6082 	/* Something should have been selected for current CPU */
6083 	WARN_ON_ONCE(!next);
6084 
6085 	/*
6086 	 * Reschedule siblings
6087 	 *
6088 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6089 	 * sending an IPI (below) ensures the sibling will no longer be running
6090 	 * their task. This ensures there is no inter-sibling overlap between
6091 	 * non-matching user state.
6092 	 */
6093 	for_each_cpu(i, smt_mask) {
6094 		rq_i = cpu_rq(i);
6095 
6096 		/*
6097 		 * An online sibling might have gone offline before a task
6098 		 * could be picked for it, or it might be offline but later
6099 		 * happen to come online, but its too late and nothing was
6100 		 * picked for it.  That's Ok - it will pick tasks for itself,
6101 		 * so ignore it.
6102 		 */
6103 		if (!rq_i->core_pick)
6104 			continue;
6105 
6106 		/*
6107 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6108 		 * fi_before     fi      update?
6109 		 *  0            0       1
6110 		 *  0            1       1
6111 		 *  1            0       1
6112 		 *  1            1       0
6113 		 */
6114 		if (!(fi_before && rq->core->core_forceidle_count))
6115 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6116 
6117 		rq_i->core_pick->core_occupation = occ;
6118 
6119 		if (i == cpu) {
6120 			rq_i->core_pick = NULL;
6121 			continue;
6122 		}
6123 
6124 		/* Did we break L1TF mitigation requirements? */
6125 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6126 
6127 		if (rq_i->curr == rq_i->core_pick) {
6128 			rq_i->core_pick = NULL;
6129 			continue;
6130 		}
6131 
6132 		resched_curr(rq_i);
6133 	}
6134 
6135 out_set_next:
6136 	set_next_task(rq, next);
6137 out:
6138 	if (rq->core->core_forceidle_count && next == rq->idle)
6139 		queue_core_balance(rq);
6140 
6141 	return next;
6142 }
6143 
6144 static bool try_steal_cookie(int this, int that)
6145 {
6146 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6147 	struct task_struct *p;
6148 	unsigned long cookie;
6149 	bool success = false;
6150 
6151 	local_irq_disable();
6152 	double_rq_lock(dst, src);
6153 
6154 	cookie = dst->core->core_cookie;
6155 	if (!cookie)
6156 		goto unlock;
6157 
6158 	if (dst->curr != dst->idle)
6159 		goto unlock;
6160 
6161 	p = sched_core_find(src, cookie);
6162 	if (p == src->idle)
6163 		goto unlock;
6164 
6165 	do {
6166 		if (p == src->core_pick || p == src->curr)
6167 			goto next;
6168 
6169 		if (!is_cpu_allowed(p, this))
6170 			goto next;
6171 
6172 		if (p->core_occupation > dst->idle->core_occupation)
6173 			goto next;
6174 
6175 		deactivate_task(src, p, 0);
6176 		set_task_cpu(p, this);
6177 		activate_task(dst, p, 0);
6178 
6179 		resched_curr(dst);
6180 
6181 		success = true;
6182 		break;
6183 
6184 next:
6185 		p = sched_core_next(p, cookie);
6186 	} while (p);
6187 
6188 unlock:
6189 	double_rq_unlock(dst, src);
6190 	local_irq_enable();
6191 
6192 	return success;
6193 }
6194 
6195 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6196 {
6197 	int i;
6198 
6199 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
6200 		if (i == cpu)
6201 			continue;
6202 
6203 		if (need_resched())
6204 			break;
6205 
6206 		if (try_steal_cookie(cpu, i))
6207 			return true;
6208 	}
6209 
6210 	return false;
6211 }
6212 
6213 static void sched_core_balance(struct rq *rq)
6214 {
6215 	struct sched_domain *sd;
6216 	int cpu = cpu_of(rq);
6217 
6218 	preempt_disable();
6219 	rcu_read_lock();
6220 	raw_spin_rq_unlock_irq(rq);
6221 	for_each_domain(cpu, sd) {
6222 		if (need_resched())
6223 			break;
6224 
6225 		if (steal_cookie_task(cpu, sd))
6226 			break;
6227 	}
6228 	raw_spin_rq_lock_irq(rq);
6229 	rcu_read_unlock();
6230 	preempt_enable();
6231 }
6232 
6233 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6234 
6235 static void queue_core_balance(struct rq *rq)
6236 {
6237 	if (!sched_core_enabled(rq))
6238 		return;
6239 
6240 	if (!rq->core->core_cookie)
6241 		return;
6242 
6243 	if (!rq->nr_running) /* not forced idle */
6244 		return;
6245 
6246 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6247 }
6248 
6249 static void sched_core_cpu_starting(unsigned int cpu)
6250 {
6251 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6252 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6253 	unsigned long flags;
6254 	int t;
6255 
6256 	sched_core_lock(cpu, &flags);
6257 
6258 	WARN_ON_ONCE(rq->core != rq);
6259 
6260 	/* if we're the first, we'll be our own leader */
6261 	if (cpumask_weight(smt_mask) == 1)
6262 		goto unlock;
6263 
6264 	/* find the leader */
6265 	for_each_cpu(t, smt_mask) {
6266 		if (t == cpu)
6267 			continue;
6268 		rq = cpu_rq(t);
6269 		if (rq->core == rq) {
6270 			core_rq = rq;
6271 			break;
6272 		}
6273 	}
6274 
6275 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6276 		goto unlock;
6277 
6278 	/* install and validate core_rq */
6279 	for_each_cpu(t, smt_mask) {
6280 		rq = cpu_rq(t);
6281 
6282 		if (t == cpu)
6283 			rq->core = core_rq;
6284 
6285 		WARN_ON_ONCE(rq->core != core_rq);
6286 	}
6287 
6288 unlock:
6289 	sched_core_unlock(cpu, &flags);
6290 }
6291 
6292 static void sched_core_cpu_deactivate(unsigned int cpu)
6293 {
6294 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6295 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6296 	unsigned long flags;
6297 	int t;
6298 
6299 	sched_core_lock(cpu, &flags);
6300 
6301 	/* if we're the last man standing, nothing to do */
6302 	if (cpumask_weight(smt_mask) == 1) {
6303 		WARN_ON_ONCE(rq->core != rq);
6304 		goto unlock;
6305 	}
6306 
6307 	/* if we're not the leader, nothing to do */
6308 	if (rq->core != rq)
6309 		goto unlock;
6310 
6311 	/* find a new leader */
6312 	for_each_cpu(t, smt_mask) {
6313 		if (t == cpu)
6314 			continue;
6315 		core_rq = cpu_rq(t);
6316 		break;
6317 	}
6318 
6319 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6320 		goto unlock;
6321 
6322 	/* copy the shared state to the new leader */
6323 	core_rq->core_task_seq             = rq->core_task_seq;
6324 	core_rq->core_pick_seq             = rq->core_pick_seq;
6325 	core_rq->core_cookie               = rq->core_cookie;
6326 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6327 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6328 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6329 
6330 	/*
6331 	 * Accounting edge for forced idle is handled in pick_next_task().
6332 	 * Don't need another one here, since the hotplug thread shouldn't
6333 	 * have a cookie.
6334 	 */
6335 	core_rq->core_forceidle_start = 0;
6336 
6337 	/* install new leader */
6338 	for_each_cpu(t, smt_mask) {
6339 		rq = cpu_rq(t);
6340 		rq->core = core_rq;
6341 	}
6342 
6343 unlock:
6344 	sched_core_unlock(cpu, &flags);
6345 }
6346 
6347 static inline void sched_core_cpu_dying(unsigned int cpu)
6348 {
6349 	struct rq *rq = cpu_rq(cpu);
6350 
6351 	if (rq->core != rq)
6352 		rq->core = rq;
6353 }
6354 
6355 #else /* !CONFIG_SCHED_CORE */
6356 
6357 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6358 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6359 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6360 
6361 static struct task_struct *
6362 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6363 {
6364 	return __pick_next_task(rq, prev, rf);
6365 }
6366 
6367 #endif /* CONFIG_SCHED_CORE */
6368 
6369 /*
6370  * Constants for the sched_mode argument of __schedule().
6371  *
6372  * The mode argument allows RT enabled kernels to differentiate a
6373  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6374  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6375  * optimize the AND operation out and just check for zero.
6376  */
6377 #define SM_NONE			0x0
6378 #define SM_PREEMPT		0x1
6379 #define SM_RTLOCK_WAIT		0x2
6380 
6381 #ifndef CONFIG_PREEMPT_RT
6382 # define SM_MASK_PREEMPT	(~0U)
6383 #else
6384 # define SM_MASK_PREEMPT	SM_PREEMPT
6385 #endif
6386 
6387 /*
6388  * __schedule() is the main scheduler function.
6389  *
6390  * The main means of driving the scheduler and thus entering this function are:
6391  *
6392  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6393  *
6394  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6395  *      paths. For example, see arch/x86/entry_64.S.
6396  *
6397  *      To drive preemption between tasks, the scheduler sets the flag in timer
6398  *      interrupt handler scheduler_tick().
6399  *
6400  *   3. Wakeups don't really cause entry into schedule(). They add a
6401  *      task to the run-queue and that's it.
6402  *
6403  *      Now, if the new task added to the run-queue preempts the current
6404  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6405  *      called on the nearest possible occasion:
6406  *
6407  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6408  *
6409  *         - in syscall or exception context, at the next outmost
6410  *           preempt_enable(). (this might be as soon as the wake_up()'s
6411  *           spin_unlock()!)
6412  *
6413  *         - in IRQ context, return from interrupt-handler to
6414  *           preemptible context
6415  *
6416  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6417  *         then at the next:
6418  *
6419  *          - cond_resched() call
6420  *          - explicit schedule() call
6421  *          - return from syscall or exception to user-space
6422  *          - return from interrupt-handler to user-space
6423  *
6424  * WARNING: must be called with preemption disabled!
6425  */
6426 static void __sched notrace __schedule(unsigned int sched_mode)
6427 {
6428 	struct task_struct *prev, *next;
6429 	unsigned long *switch_count;
6430 	unsigned long prev_state;
6431 	struct rq_flags rf;
6432 	struct rq *rq;
6433 	int cpu;
6434 
6435 	cpu = smp_processor_id();
6436 	rq = cpu_rq(cpu);
6437 	prev = rq->curr;
6438 
6439 	schedule_debug(prev, !!sched_mode);
6440 
6441 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6442 		hrtick_clear(rq);
6443 
6444 	local_irq_disable();
6445 	rcu_note_context_switch(!!sched_mode);
6446 
6447 	/*
6448 	 * Make sure that signal_pending_state()->signal_pending() below
6449 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6450 	 * done by the caller to avoid the race with signal_wake_up():
6451 	 *
6452 	 * __set_current_state(@state)		signal_wake_up()
6453 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6454 	 *					  wake_up_state(p, state)
6455 	 *   LOCK rq->lock			    LOCK p->pi_state
6456 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6457 	 *     if (signal_pending_state())	    if (p->state & @state)
6458 	 *
6459 	 * Also, the membarrier system call requires a full memory barrier
6460 	 * after coming from user-space, before storing to rq->curr.
6461 	 */
6462 	rq_lock(rq, &rf);
6463 	smp_mb__after_spinlock();
6464 
6465 	/* Promote REQ to ACT */
6466 	rq->clock_update_flags <<= 1;
6467 	update_rq_clock(rq);
6468 
6469 	switch_count = &prev->nivcsw;
6470 
6471 	/*
6472 	 * We must load prev->state once (task_struct::state is volatile), such
6473 	 * that we form a control dependency vs deactivate_task() below.
6474 	 */
6475 	prev_state = READ_ONCE(prev->__state);
6476 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6477 		if (signal_pending_state(prev_state, prev)) {
6478 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6479 		} else {
6480 			prev->sched_contributes_to_load =
6481 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6482 				!(prev_state & TASK_NOLOAD) &&
6483 				!(prev_state & TASK_FROZEN);
6484 
6485 			if (prev->sched_contributes_to_load)
6486 				rq->nr_uninterruptible++;
6487 
6488 			/*
6489 			 * __schedule()			ttwu()
6490 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6491 			 *   if (prev_state)		    goto out;
6492 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6493 			 *				  p->state = TASK_WAKING
6494 			 *
6495 			 * Where __schedule() and ttwu() have matching control dependencies.
6496 			 *
6497 			 * After this, schedule() must not care about p->state any more.
6498 			 */
6499 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6500 
6501 			if (prev->in_iowait) {
6502 				atomic_inc(&rq->nr_iowait);
6503 				delayacct_blkio_start();
6504 			}
6505 		}
6506 		switch_count = &prev->nvcsw;
6507 	}
6508 
6509 	next = pick_next_task(rq, prev, &rf);
6510 	clear_tsk_need_resched(prev);
6511 	clear_preempt_need_resched();
6512 #ifdef CONFIG_SCHED_DEBUG
6513 	rq->last_seen_need_resched_ns = 0;
6514 #endif
6515 
6516 	if (likely(prev != next)) {
6517 		rq->nr_switches++;
6518 		/*
6519 		 * RCU users of rcu_dereference(rq->curr) may not see
6520 		 * changes to task_struct made by pick_next_task().
6521 		 */
6522 		RCU_INIT_POINTER(rq->curr, next);
6523 		/*
6524 		 * The membarrier system call requires each architecture
6525 		 * to have a full memory barrier after updating
6526 		 * rq->curr, before returning to user-space.
6527 		 *
6528 		 * Here are the schemes providing that barrier on the
6529 		 * various architectures:
6530 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6531 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6532 		 * - finish_lock_switch() for weakly-ordered
6533 		 *   architectures where spin_unlock is a full barrier,
6534 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6535 		 *   is a RELEASE barrier),
6536 		 */
6537 		++*switch_count;
6538 
6539 		migrate_disable_switch(rq, prev);
6540 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6541 
6542 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6543 
6544 		/* Also unlocks the rq: */
6545 		rq = context_switch(rq, prev, next, &rf);
6546 	} else {
6547 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6548 
6549 		rq_unpin_lock(rq, &rf);
6550 		__balance_callbacks(rq);
6551 		raw_spin_rq_unlock_irq(rq);
6552 	}
6553 }
6554 
6555 void __noreturn do_task_dead(void)
6556 {
6557 	/* Causes final put_task_struct in finish_task_switch(): */
6558 	set_special_state(TASK_DEAD);
6559 
6560 	/* Tell freezer to ignore us: */
6561 	current->flags |= PF_NOFREEZE;
6562 
6563 	__schedule(SM_NONE);
6564 	BUG();
6565 
6566 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6567 	for (;;)
6568 		cpu_relax();
6569 }
6570 
6571 static inline void sched_submit_work(struct task_struct *tsk)
6572 {
6573 	unsigned int task_flags;
6574 
6575 	if (task_is_running(tsk))
6576 		return;
6577 
6578 	task_flags = tsk->flags;
6579 	/*
6580 	 * If a worker goes to sleep, notify and ask workqueue whether it
6581 	 * wants to wake up a task to maintain concurrency.
6582 	 */
6583 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6584 		if (task_flags & PF_WQ_WORKER)
6585 			wq_worker_sleeping(tsk);
6586 		else
6587 			io_wq_worker_sleeping(tsk);
6588 	}
6589 
6590 	/*
6591 	 * spinlock and rwlock must not flush block requests.  This will
6592 	 * deadlock if the callback attempts to acquire a lock which is
6593 	 * already acquired.
6594 	 */
6595 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6596 
6597 	/*
6598 	 * If we are going to sleep and we have plugged IO queued,
6599 	 * make sure to submit it to avoid deadlocks.
6600 	 */
6601 	blk_flush_plug(tsk->plug, true);
6602 }
6603 
6604 static void sched_update_worker(struct task_struct *tsk)
6605 {
6606 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6607 		if (tsk->flags & PF_WQ_WORKER)
6608 			wq_worker_running(tsk);
6609 		else
6610 			io_wq_worker_running(tsk);
6611 	}
6612 }
6613 
6614 asmlinkage __visible void __sched schedule(void)
6615 {
6616 	struct task_struct *tsk = current;
6617 
6618 	sched_submit_work(tsk);
6619 	do {
6620 		preempt_disable();
6621 		__schedule(SM_NONE);
6622 		sched_preempt_enable_no_resched();
6623 	} while (need_resched());
6624 	sched_update_worker(tsk);
6625 }
6626 EXPORT_SYMBOL(schedule);
6627 
6628 /*
6629  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6630  * state (have scheduled out non-voluntarily) by making sure that all
6631  * tasks have either left the run queue or have gone into user space.
6632  * As idle tasks do not do either, they must not ever be preempted
6633  * (schedule out non-voluntarily).
6634  *
6635  * schedule_idle() is similar to schedule_preempt_disable() except that it
6636  * never enables preemption because it does not call sched_submit_work().
6637  */
6638 void __sched schedule_idle(void)
6639 {
6640 	/*
6641 	 * As this skips calling sched_submit_work(), which the idle task does
6642 	 * regardless because that function is a nop when the task is in a
6643 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6644 	 * current task can be in any other state. Note, idle is always in the
6645 	 * TASK_RUNNING state.
6646 	 */
6647 	WARN_ON_ONCE(current->__state);
6648 	do {
6649 		__schedule(SM_NONE);
6650 	} while (need_resched());
6651 }
6652 
6653 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6654 asmlinkage __visible void __sched schedule_user(void)
6655 {
6656 	/*
6657 	 * If we come here after a random call to set_need_resched(),
6658 	 * or we have been woken up remotely but the IPI has not yet arrived,
6659 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6660 	 * we find a better solution.
6661 	 *
6662 	 * NB: There are buggy callers of this function.  Ideally we
6663 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6664 	 * too frequently to make sense yet.
6665 	 */
6666 	enum ctx_state prev_state = exception_enter();
6667 	schedule();
6668 	exception_exit(prev_state);
6669 }
6670 #endif
6671 
6672 /**
6673  * schedule_preempt_disabled - called with preemption disabled
6674  *
6675  * Returns with preemption disabled. Note: preempt_count must be 1
6676  */
6677 void __sched schedule_preempt_disabled(void)
6678 {
6679 	sched_preempt_enable_no_resched();
6680 	schedule();
6681 	preempt_disable();
6682 }
6683 
6684 #ifdef CONFIG_PREEMPT_RT
6685 void __sched notrace schedule_rtlock(void)
6686 {
6687 	do {
6688 		preempt_disable();
6689 		__schedule(SM_RTLOCK_WAIT);
6690 		sched_preempt_enable_no_resched();
6691 	} while (need_resched());
6692 }
6693 NOKPROBE_SYMBOL(schedule_rtlock);
6694 #endif
6695 
6696 static void __sched notrace preempt_schedule_common(void)
6697 {
6698 	do {
6699 		/*
6700 		 * Because the function tracer can trace preempt_count_sub()
6701 		 * and it also uses preempt_enable/disable_notrace(), if
6702 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6703 		 * by the function tracer will call this function again and
6704 		 * cause infinite recursion.
6705 		 *
6706 		 * Preemption must be disabled here before the function
6707 		 * tracer can trace. Break up preempt_disable() into two
6708 		 * calls. One to disable preemption without fear of being
6709 		 * traced. The other to still record the preemption latency,
6710 		 * which can also be traced by the function tracer.
6711 		 */
6712 		preempt_disable_notrace();
6713 		preempt_latency_start(1);
6714 		__schedule(SM_PREEMPT);
6715 		preempt_latency_stop(1);
6716 		preempt_enable_no_resched_notrace();
6717 
6718 		/*
6719 		 * Check again in case we missed a preemption opportunity
6720 		 * between schedule and now.
6721 		 */
6722 	} while (need_resched());
6723 }
6724 
6725 #ifdef CONFIG_PREEMPTION
6726 /*
6727  * This is the entry point to schedule() from in-kernel preemption
6728  * off of preempt_enable.
6729  */
6730 asmlinkage __visible void __sched notrace preempt_schedule(void)
6731 {
6732 	/*
6733 	 * If there is a non-zero preempt_count or interrupts are disabled,
6734 	 * we do not want to preempt the current task. Just return..
6735 	 */
6736 	if (likely(!preemptible()))
6737 		return;
6738 	preempt_schedule_common();
6739 }
6740 NOKPROBE_SYMBOL(preempt_schedule);
6741 EXPORT_SYMBOL(preempt_schedule);
6742 
6743 #ifdef CONFIG_PREEMPT_DYNAMIC
6744 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6745 #ifndef preempt_schedule_dynamic_enabled
6746 #define preempt_schedule_dynamic_enabled	preempt_schedule
6747 #define preempt_schedule_dynamic_disabled	NULL
6748 #endif
6749 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6750 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6751 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6752 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6753 void __sched notrace dynamic_preempt_schedule(void)
6754 {
6755 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6756 		return;
6757 	preempt_schedule();
6758 }
6759 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6760 EXPORT_SYMBOL(dynamic_preempt_schedule);
6761 #endif
6762 #endif
6763 
6764 /**
6765  * preempt_schedule_notrace - preempt_schedule called by tracing
6766  *
6767  * The tracing infrastructure uses preempt_enable_notrace to prevent
6768  * recursion and tracing preempt enabling caused by the tracing
6769  * infrastructure itself. But as tracing can happen in areas coming
6770  * from userspace or just about to enter userspace, a preempt enable
6771  * can occur before user_exit() is called. This will cause the scheduler
6772  * to be called when the system is still in usermode.
6773  *
6774  * To prevent this, the preempt_enable_notrace will use this function
6775  * instead of preempt_schedule() to exit user context if needed before
6776  * calling the scheduler.
6777  */
6778 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6779 {
6780 	enum ctx_state prev_ctx;
6781 
6782 	if (likely(!preemptible()))
6783 		return;
6784 
6785 	do {
6786 		/*
6787 		 * Because the function tracer can trace preempt_count_sub()
6788 		 * and it also uses preempt_enable/disable_notrace(), if
6789 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6790 		 * by the function tracer will call this function again and
6791 		 * cause infinite recursion.
6792 		 *
6793 		 * Preemption must be disabled here before the function
6794 		 * tracer can trace. Break up preempt_disable() into two
6795 		 * calls. One to disable preemption without fear of being
6796 		 * traced. The other to still record the preemption latency,
6797 		 * which can also be traced by the function tracer.
6798 		 */
6799 		preempt_disable_notrace();
6800 		preempt_latency_start(1);
6801 		/*
6802 		 * Needs preempt disabled in case user_exit() is traced
6803 		 * and the tracer calls preempt_enable_notrace() causing
6804 		 * an infinite recursion.
6805 		 */
6806 		prev_ctx = exception_enter();
6807 		__schedule(SM_PREEMPT);
6808 		exception_exit(prev_ctx);
6809 
6810 		preempt_latency_stop(1);
6811 		preempt_enable_no_resched_notrace();
6812 	} while (need_resched());
6813 }
6814 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6815 
6816 #ifdef CONFIG_PREEMPT_DYNAMIC
6817 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6818 #ifndef preempt_schedule_notrace_dynamic_enabled
6819 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6820 #define preempt_schedule_notrace_dynamic_disabled	NULL
6821 #endif
6822 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6823 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6824 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6825 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6826 void __sched notrace dynamic_preempt_schedule_notrace(void)
6827 {
6828 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6829 		return;
6830 	preempt_schedule_notrace();
6831 }
6832 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6833 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6834 #endif
6835 #endif
6836 
6837 #endif /* CONFIG_PREEMPTION */
6838 
6839 /*
6840  * This is the entry point to schedule() from kernel preemption
6841  * off of irq context.
6842  * Note, that this is called and return with irqs disabled. This will
6843  * protect us against recursive calling from irq.
6844  */
6845 asmlinkage __visible void __sched preempt_schedule_irq(void)
6846 {
6847 	enum ctx_state prev_state;
6848 
6849 	/* Catch callers which need to be fixed */
6850 	BUG_ON(preempt_count() || !irqs_disabled());
6851 
6852 	prev_state = exception_enter();
6853 
6854 	do {
6855 		preempt_disable();
6856 		local_irq_enable();
6857 		__schedule(SM_PREEMPT);
6858 		local_irq_disable();
6859 		sched_preempt_enable_no_resched();
6860 	} while (need_resched());
6861 
6862 	exception_exit(prev_state);
6863 }
6864 
6865 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6866 			  void *key)
6867 {
6868 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6869 	return try_to_wake_up(curr->private, mode, wake_flags);
6870 }
6871 EXPORT_SYMBOL(default_wake_function);
6872 
6873 static void __setscheduler_prio(struct task_struct *p, int prio)
6874 {
6875 	if (dl_prio(prio))
6876 		p->sched_class = &dl_sched_class;
6877 	else if (rt_prio(prio))
6878 		p->sched_class = &rt_sched_class;
6879 	else
6880 		p->sched_class = &fair_sched_class;
6881 
6882 	p->prio = prio;
6883 }
6884 
6885 #ifdef CONFIG_RT_MUTEXES
6886 
6887 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6888 {
6889 	if (pi_task)
6890 		prio = min(prio, pi_task->prio);
6891 
6892 	return prio;
6893 }
6894 
6895 static inline int rt_effective_prio(struct task_struct *p, int prio)
6896 {
6897 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
6898 
6899 	return __rt_effective_prio(pi_task, prio);
6900 }
6901 
6902 /*
6903  * rt_mutex_setprio - set the current priority of a task
6904  * @p: task to boost
6905  * @pi_task: donor task
6906  *
6907  * This function changes the 'effective' priority of a task. It does
6908  * not touch ->normal_prio like __setscheduler().
6909  *
6910  * Used by the rt_mutex code to implement priority inheritance
6911  * logic. Call site only calls if the priority of the task changed.
6912  */
6913 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6914 {
6915 	int prio, oldprio, queued, running, queue_flag =
6916 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6917 	const struct sched_class *prev_class;
6918 	struct rq_flags rf;
6919 	struct rq *rq;
6920 
6921 	/* XXX used to be waiter->prio, not waiter->task->prio */
6922 	prio = __rt_effective_prio(pi_task, p->normal_prio);
6923 
6924 	/*
6925 	 * If nothing changed; bail early.
6926 	 */
6927 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6928 		return;
6929 
6930 	rq = __task_rq_lock(p, &rf);
6931 	update_rq_clock(rq);
6932 	/*
6933 	 * Set under pi_lock && rq->lock, such that the value can be used under
6934 	 * either lock.
6935 	 *
6936 	 * Note that there is loads of tricky to make this pointer cache work
6937 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6938 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
6939 	 * task is allowed to run again (and can exit). This ensures the pointer
6940 	 * points to a blocked task -- which guarantees the task is present.
6941 	 */
6942 	p->pi_top_task = pi_task;
6943 
6944 	/*
6945 	 * For FIFO/RR we only need to set prio, if that matches we're done.
6946 	 */
6947 	if (prio == p->prio && !dl_prio(prio))
6948 		goto out_unlock;
6949 
6950 	/*
6951 	 * Idle task boosting is a nono in general. There is one
6952 	 * exception, when PREEMPT_RT and NOHZ is active:
6953 	 *
6954 	 * The idle task calls get_next_timer_interrupt() and holds
6955 	 * the timer wheel base->lock on the CPU and another CPU wants
6956 	 * to access the timer (probably to cancel it). We can safely
6957 	 * ignore the boosting request, as the idle CPU runs this code
6958 	 * with interrupts disabled and will complete the lock
6959 	 * protected section without being interrupted. So there is no
6960 	 * real need to boost.
6961 	 */
6962 	if (unlikely(p == rq->idle)) {
6963 		WARN_ON(p != rq->curr);
6964 		WARN_ON(p->pi_blocked_on);
6965 		goto out_unlock;
6966 	}
6967 
6968 	trace_sched_pi_setprio(p, pi_task);
6969 	oldprio = p->prio;
6970 
6971 	if (oldprio == prio)
6972 		queue_flag &= ~DEQUEUE_MOVE;
6973 
6974 	prev_class = p->sched_class;
6975 	queued = task_on_rq_queued(p);
6976 	running = task_current(rq, p);
6977 	if (queued)
6978 		dequeue_task(rq, p, queue_flag);
6979 	if (running)
6980 		put_prev_task(rq, p);
6981 
6982 	/*
6983 	 * Boosting condition are:
6984 	 * 1. -rt task is running and holds mutex A
6985 	 *      --> -dl task blocks on mutex A
6986 	 *
6987 	 * 2. -dl task is running and holds mutex A
6988 	 *      --> -dl task blocks on mutex A and could preempt the
6989 	 *          running task
6990 	 */
6991 	if (dl_prio(prio)) {
6992 		if (!dl_prio(p->normal_prio) ||
6993 		    (pi_task && dl_prio(pi_task->prio) &&
6994 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
6995 			p->dl.pi_se = pi_task->dl.pi_se;
6996 			queue_flag |= ENQUEUE_REPLENISH;
6997 		} else {
6998 			p->dl.pi_se = &p->dl;
6999 		}
7000 	} else if (rt_prio(prio)) {
7001 		if (dl_prio(oldprio))
7002 			p->dl.pi_se = &p->dl;
7003 		if (oldprio < prio)
7004 			queue_flag |= ENQUEUE_HEAD;
7005 	} else {
7006 		if (dl_prio(oldprio))
7007 			p->dl.pi_se = &p->dl;
7008 		if (rt_prio(oldprio))
7009 			p->rt.timeout = 0;
7010 	}
7011 
7012 	__setscheduler_prio(p, prio);
7013 
7014 	if (queued)
7015 		enqueue_task(rq, p, queue_flag);
7016 	if (running)
7017 		set_next_task(rq, p);
7018 
7019 	check_class_changed(rq, p, prev_class, oldprio);
7020 out_unlock:
7021 	/* Avoid rq from going away on us: */
7022 	preempt_disable();
7023 
7024 	rq_unpin_lock(rq, &rf);
7025 	__balance_callbacks(rq);
7026 	raw_spin_rq_unlock(rq);
7027 
7028 	preempt_enable();
7029 }
7030 #else
7031 static inline int rt_effective_prio(struct task_struct *p, int prio)
7032 {
7033 	return prio;
7034 }
7035 #endif
7036 
7037 void set_user_nice(struct task_struct *p, long nice)
7038 {
7039 	bool queued, running;
7040 	int old_prio;
7041 	struct rq_flags rf;
7042 	struct rq *rq;
7043 
7044 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7045 		return;
7046 	/*
7047 	 * We have to be careful, if called from sys_setpriority(),
7048 	 * the task might be in the middle of scheduling on another CPU.
7049 	 */
7050 	rq = task_rq_lock(p, &rf);
7051 	update_rq_clock(rq);
7052 
7053 	/*
7054 	 * The RT priorities are set via sched_setscheduler(), but we still
7055 	 * allow the 'normal' nice value to be set - but as expected
7056 	 * it won't have any effect on scheduling until the task is
7057 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7058 	 */
7059 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7060 		p->static_prio = NICE_TO_PRIO(nice);
7061 		goto out_unlock;
7062 	}
7063 	queued = task_on_rq_queued(p);
7064 	running = task_current(rq, p);
7065 	if (queued)
7066 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7067 	if (running)
7068 		put_prev_task(rq, p);
7069 
7070 	p->static_prio = NICE_TO_PRIO(nice);
7071 	set_load_weight(p, true);
7072 	old_prio = p->prio;
7073 	p->prio = effective_prio(p);
7074 
7075 	if (queued)
7076 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7077 	if (running)
7078 		set_next_task(rq, p);
7079 
7080 	/*
7081 	 * If the task increased its priority or is running and
7082 	 * lowered its priority, then reschedule its CPU:
7083 	 */
7084 	p->sched_class->prio_changed(rq, p, old_prio);
7085 
7086 out_unlock:
7087 	task_rq_unlock(rq, p, &rf);
7088 }
7089 EXPORT_SYMBOL(set_user_nice);
7090 
7091 /*
7092  * is_nice_reduction - check if nice value is an actual reduction
7093  *
7094  * Similar to can_nice() but does not perform a capability check.
7095  *
7096  * @p: task
7097  * @nice: nice value
7098  */
7099 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7100 {
7101 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7102 	int nice_rlim = nice_to_rlimit(nice);
7103 
7104 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7105 }
7106 
7107 /*
7108  * can_nice - check if a task can reduce its nice value
7109  * @p: task
7110  * @nice: nice value
7111  */
7112 int can_nice(const struct task_struct *p, const int nice)
7113 {
7114 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7115 }
7116 
7117 #ifdef __ARCH_WANT_SYS_NICE
7118 
7119 /*
7120  * sys_nice - change the priority of the current process.
7121  * @increment: priority increment
7122  *
7123  * sys_setpriority is a more generic, but much slower function that
7124  * does similar things.
7125  */
7126 SYSCALL_DEFINE1(nice, int, increment)
7127 {
7128 	long nice, retval;
7129 
7130 	/*
7131 	 * Setpriority might change our priority at the same moment.
7132 	 * We don't have to worry. Conceptually one call occurs first
7133 	 * and we have a single winner.
7134 	 */
7135 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7136 	nice = task_nice(current) + increment;
7137 
7138 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7139 	if (increment < 0 && !can_nice(current, nice))
7140 		return -EPERM;
7141 
7142 	retval = security_task_setnice(current, nice);
7143 	if (retval)
7144 		return retval;
7145 
7146 	set_user_nice(current, nice);
7147 	return 0;
7148 }
7149 
7150 #endif
7151 
7152 /**
7153  * task_prio - return the priority value of a given task.
7154  * @p: the task in question.
7155  *
7156  * Return: The priority value as seen by users in /proc.
7157  *
7158  * sched policy         return value   kernel prio    user prio/nice
7159  *
7160  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7161  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7162  * deadline                     -101             -1           0
7163  */
7164 int task_prio(const struct task_struct *p)
7165 {
7166 	return p->prio - MAX_RT_PRIO;
7167 }
7168 
7169 /**
7170  * idle_cpu - is a given CPU idle currently?
7171  * @cpu: the processor in question.
7172  *
7173  * Return: 1 if the CPU is currently idle. 0 otherwise.
7174  */
7175 int idle_cpu(int cpu)
7176 {
7177 	struct rq *rq = cpu_rq(cpu);
7178 
7179 	if (rq->curr != rq->idle)
7180 		return 0;
7181 
7182 	if (rq->nr_running)
7183 		return 0;
7184 
7185 #ifdef CONFIG_SMP
7186 	if (rq->ttwu_pending)
7187 		return 0;
7188 #endif
7189 
7190 	return 1;
7191 }
7192 
7193 /**
7194  * available_idle_cpu - is a given CPU idle for enqueuing work.
7195  * @cpu: the CPU in question.
7196  *
7197  * Return: 1 if the CPU is currently idle. 0 otherwise.
7198  */
7199 int available_idle_cpu(int cpu)
7200 {
7201 	if (!idle_cpu(cpu))
7202 		return 0;
7203 
7204 	if (vcpu_is_preempted(cpu))
7205 		return 0;
7206 
7207 	return 1;
7208 }
7209 
7210 /**
7211  * idle_task - return the idle task for a given CPU.
7212  * @cpu: the processor in question.
7213  *
7214  * Return: The idle task for the CPU @cpu.
7215  */
7216 struct task_struct *idle_task(int cpu)
7217 {
7218 	return cpu_rq(cpu)->idle;
7219 }
7220 
7221 #ifdef CONFIG_SMP
7222 /*
7223  * This function computes an effective utilization for the given CPU, to be
7224  * used for frequency selection given the linear relation: f = u * f_max.
7225  *
7226  * The scheduler tracks the following metrics:
7227  *
7228  *   cpu_util_{cfs,rt,dl,irq}()
7229  *   cpu_bw_dl()
7230  *
7231  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7232  * synchronized windows and are thus directly comparable.
7233  *
7234  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7235  * which excludes things like IRQ and steal-time. These latter are then accrued
7236  * in the irq utilization.
7237  *
7238  * The DL bandwidth number otoh is not a measured metric but a value computed
7239  * based on the task model parameters and gives the minimal utilization
7240  * required to meet deadlines.
7241  */
7242 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7243 				 enum cpu_util_type type,
7244 				 struct task_struct *p)
7245 {
7246 	unsigned long dl_util, util, irq, max;
7247 	struct rq *rq = cpu_rq(cpu);
7248 
7249 	max = arch_scale_cpu_capacity(cpu);
7250 
7251 	if (!uclamp_is_used() &&
7252 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7253 		return max;
7254 	}
7255 
7256 	/*
7257 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7258 	 * because of inaccuracies in how we track these -- see
7259 	 * update_irq_load_avg().
7260 	 */
7261 	irq = cpu_util_irq(rq);
7262 	if (unlikely(irq >= max))
7263 		return max;
7264 
7265 	/*
7266 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7267 	 * CFS tasks and we use the same metric to track the effective
7268 	 * utilization (PELT windows are synchronized) we can directly add them
7269 	 * to obtain the CPU's actual utilization.
7270 	 *
7271 	 * CFS and RT utilization can be boosted or capped, depending on
7272 	 * utilization clamp constraints requested by currently RUNNABLE
7273 	 * tasks.
7274 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7275 	 * frequency will be gracefully reduced with the utilization decay.
7276 	 */
7277 	util = util_cfs + cpu_util_rt(rq);
7278 	if (type == FREQUENCY_UTIL)
7279 		util = uclamp_rq_util_with(rq, util, p);
7280 
7281 	dl_util = cpu_util_dl(rq);
7282 
7283 	/*
7284 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7285 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7286 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7287 	 * that we select f_max when there is no idle time.
7288 	 *
7289 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7290 	 * saturation when we should -- something for later.
7291 	 */
7292 	if (util + dl_util >= max)
7293 		return max;
7294 
7295 	/*
7296 	 * OTOH, for energy computation we need the estimated running time, so
7297 	 * include util_dl and ignore dl_bw.
7298 	 */
7299 	if (type == ENERGY_UTIL)
7300 		util += dl_util;
7301 
7302 	/*
7303 	 * There is still idle time; further improve the number by using the
7304 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7305 	 * need to scale the task numbers:
7306 	 *
7307 	 *              max - irq
7308 	 *   U' = irq + --------- * U
7309 	 *                 max
7310 	 */
7311 	util = scale_irq_capacity(util, irq, max);
7312 	util += irq;
7313 
7314 	/*
7315 	 * Bandwidth required by DEADLINE must always be granted while, for
7316 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7317 	 * to gracefully reduce the frequency when no tasks show up for longer
7318 	 * periods of time.
7319 	 *
7320 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7321 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7322 	 * an interface. So, we only do the latter for now.
7323 	 */
7324 	if (type == FREQUENCY_UTIL)
7325 		util += cpu_bw_dl(rq);
7326 
7327 	return min(max, util);
7328 }
7329 
7330 unsigned long sched_cpu_util(int cpu)
7331 {
7332 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7333 }
7334 #endif /* CONFIG_SMP */
7335 
7336 /**
7337  * find_process_by_pid - find a process with a matching PID value.
7338  * @pid: the pid in question.
7339  *
7340  * The task of @pid, if found. %NULL otherwise.
7341  */
7342 static struct task_struct *find_process_by_pid(pid_t pid)
7343 {
7344 	return pid ? find_task_by_vpid(pid) : current;
7345 }
7346 
7347 /*
7348  * sched_setparam() passes in -1 for its policy, to let the functions
7349  * it calls know not to change it.
7350  */
7351 #define SETPARAM_POLICY	-1
7352 
7353 static void __setscheduler_params(struct task_struct *p,
7354 		const struct sched_attr *attr)
7355 {
7356 	int policy = attr->sched_policy;
7357 
7358 	if (policy == SETPARAM_POLICY)
7359 		policy = p->policy;
7360 
7361 	p->policy = policy;
7362 
7363 	if (dl_policy(policy))
7364 		__setparam_dl(p, attr);
7365 	else if (fair_policy(policy))
7366 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7367 
7368 	/*
7369 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7370 	 * !rt_policy. Always setting this ensures that things like
7371 	 * getparam()/getattr() don't report silly values for !rt tasks.
7372 	 */
7373 	p->rt_priority = attr->sched_priority;
7374 	p->normal_prio = normal_prio(p);
7375 	set_load_weight(p, true);
7376 }
7377 
7378 /*
7379  * Check the target process has a UID that matches the current process's:
7380  */
7381 static bool check_same_owner(struct task_struct *p)
7382 {
7383 	const struct cred *cred = current_cred(), *pcred;
7384 	bool match;
7385 
7386 	rcu_read_lock();
7387 	pcred = __task_cred(p);
7388 	match = (uid_eq(cred->euid, pcred->euid) ||
7389 		 uid_eq(cred->euid, pcred->uid));
7390 	rcu_read_unlock();
7391 	return match;
7392 }
7393 
7394 /*
7395  * Allow unprivileged RT tasks to decrease priority.
7396  * Only issue a capable test if needed and only once to avoid an audit
7397  * event on permitted non-privileged operations:
7398  */
7399 static int user_check_sched_setscheduler(struct task_struct *p,
7400 					 const struct sched_attr *attr,
7401 					 int policy, int reset_on_fork)
7402 {
7403 	if (fair_policy(policy)) {
7404 		if (attr->sched_nice < task_nice(p) &&
7405 		    !is_nice_reduction(p, attr->sched_nice))
7406 			goto req_priv;
7407 	}
7408 
7409 	if (rt_policy(policy)) {
7410 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7411 
7412 		/* Can't set/change the rt policy: */
7413 		if (policy != p->policy && !rlim_rtprio)
7414 			goto req_priv;
7415 
7416 		/* Can't increase priority: */
7417 		if (attr->sched_priority > p->rt_priority &&
7418 		    attr->sched_priority > rlim_rtprio)
7419 			goto req_priv;
7420 	}
7421 
7422 	/*
7423 	 * Can't set/change SCHED_DEADLINE policy at all for now
7424 	 * (safest behavior); in the future we would like to allow
7425 	 * unprivileged DL tasks to increase their relative deadline
7426 	 * or reduce their runtime (both ways reducing utilization)
7427 	 */
7428 	if (dl_policy(policy))
7429 		goto req_priv;
7430 
7431 	/*
7432 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7433 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7434 	 */
7435 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7436 		if (!is_nice_reduction(p, task_nice(p)))
7437 			goto req_priv;
7438 	}
7439 
7440 	/* Can't change other user's priorities: */
7441 	if (!check_same_owner(p))
7442 		goto req_priv;
7443 
7444 	/* Normal users shall not reset the sched_reset_on_fork flag: */
7445 	if (p->sched_reset_on_fork && !reset_on_fork)
7446 		goto req_priv;
7447 
7448 	return 0;
7449 
7450 req_priv:
7451 	if (!capable(CAP_SYS_NICE))
7452 		return -EPERM;
7453 
7454 	return 0;
7455 }
7456 
7457 static int __sched_setscheduler(struct task_struct *p,
7458 				const struct sched_attr *attr,
7459 				bool user, bool pi)
7460 {
7461 	int oldpolicy = -1, policy = attr->sched_policy;
7462 	int retval, oldprio, newprio, queued, running;
7463 	const struct sched_class *prev_class;
7464 	struct balance_callback *head;
7465 	struct rq_flags rf;
7466 	int reset_on_fork;
7467 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7468 	struct rq *rq;
7469 
7470 	/* The pi code expects interrupts enabled */
7471 	BUG_ON(pi && in_interrupt());
7472 recheck:
7473 	/* Double check policy once rq lock held: */
7474 	if (policy < 0) {
7475 		reset_on_fork = p->sched_reset_on_fork;
7476 		policy = oldpolicy = p->policy;
7477 	} else {
7478 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7479 
7480 		if (!valid_policy(policy))
7481 			return -EINVAL;
7482 	}
7483 
7484 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7485 		return -EINVAL;
7486 
7487 	/*
7488 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7489 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7490 	 * SCHED_BATCH and SCHED_IDLE is 0.
7491 	 */
7492 	if (attr->sched_priority > MAX_RT_PRIO-1)
7493 		return -EINVAL;
7494 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7495 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7496 		return -EINVAL;
7497 
7498 	if (user) {
7499 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7500 		if (retval)
7501 			return retval;
7502 
7503 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7504 			return -EINVAL;
7505 
7506 		retval = security_task_setscheduler(p);
7507 		if (retval)
7508 			return retval;
7509 	}
7510 
7511 	/* Update task specific "requested" clamps */
7512 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7513 		retval = uclamp_validate(p, attr);
7514 		if (retval)
7515 			return retval;
7516 	}
7517 
7518 	if (pi)
7519 		cpuset_read_lock();
7520 
7521 	/*
7522 	 * Make sure no PI-waiters arrive (or leave) while we are
7523 	 * changing the priority of the task:
7524 	 *
7525 	 * To be able to change p->policy safely, the appropriate
7526 	 * runqueue lock must be held.
7527 	 */
7528 	rq = task_rq_lock(p, &rf);
7529 	update_rq_clock(rq);
7530 
7531 	/*
7532 	 * Changing the policy of the stop threads its a very bad idea:
7533 	 */
7534 	if (p == rq->stop) {
7535 		retval = -EINVAL;
7536 		goto unlock;
7537 	}
7538 
7539 	/*
7540 	 * If not changing anything there's no need to proceed further,
7541 	 * but store a possible modification of reset_on_fork.
7542 	 */
7543 	if (unlikely(policy == p->policy)) {
7544 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7545 			goto change;
7546 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7547 			goto change;
7548 		if (dl_policy(policy) && dl_param_changed(p, attr))
7549 			goto change;
7550 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7551 			goto change;
7552 
7553 		p->sched_reset_on_fork = reset_on_fork;
7554 		retval = 0;
7555 		goto unlock;
7556 	}
7557 change:
7558 
7559 	if (user) {
7560 #ifdef CONFIG_RT_GROUP_SCHED
7561 		/*
7562 		 * Do not allow realtime tasks into groups that have no runtime
7563 		 * assigned.
7564 		 */
7565 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7566 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7567 				!task_group_is_autogroup(task_group(p))) {
7568 			retval = -EPERM;
7569 			goto unlock;
7570 		}
7571 #endif
7572 #ifdef CONFIG_SMP
7573 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7574 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7575 			cpumask_t *span = rq->rd->span;
7576 
7577 			/*
7578 			 * Don't allow tasks with an affinity mask smaller than
7579 			 * the entire root_domain to become SCHED_DEADLINE. We
7580 			 * will also fail if there's no bandwidth available.
7581 			 */
7582 			if (!cpumask_subset(span, p->cpus_ptr) ||
7583 			    rq->rd->dl_bw.bw == 0) {
7584 				retval = -EPERM;
7585 				goto unlock;
7586 			}
7587 		}
7588 #endif
7589 	}
7590 
7591 	/* Re-check policy now with rq lock held: */
7592 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7593 		policy = oldpolicy = -1;
7594 		task_rq_unlock(rq, p, &rf);
7595 		if (pi)
7596 			cpuset_read_unlock();
7597 		goto recheck;
7598 	}
7599 
7600 	/*
7601 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7602 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7603 	 * is available.
7604 	 */
7605 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7606 		retval = -EBUSY;
7607 		goto unlock;
7608 	}
7609 
7610 	p->sched_reset_on_fork = reset_on_fork;
7611 	oldprio = p->prio;
7612 
7613 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7614 	if (pi) {
7615 		/*
7616 		 * Take priority boosted tasks into account. If the new
7617 		 * effective priority is unchanged, we just store the new
7618 		 * normal parameters and do not touch the scheduler class and
7619 		 * the runqueue. This will be done when the task deboost
7620 		 * itself.
7621 		 */
7622 		newprio = rt_effective_prio(p, newprio);
7623 		if (newprio == oldprio)
7624 			queue_flags &= ~DEQUEUE_MOVE;
7625 	}
7626 
7627 	queued = task_on_rq_queued(p);
7628 	running = task_current(rq, p);
7629 	if (queued)
7630 		dequeue_task(rq, p, queue_flags);
7631 	if (running)
7632 		put_prev_task(rq, p);
7633 
7634 	prev_class = p->sched_class;
7635 
7636 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7637 		__setscheduler_params(p, attr);
7638 		__setscheduler_prio(p, newprio);
7639 	}
7640 	__setscheduler_uclamp(p, attr);
7641 
7642 	if (queued) {
7643 		/*
7644 		 * We enqueue to tail when the priority of a task is
7645 		 * increased (user space view).
7646 		 */
7647 		if (oldprio < p->prio)
7648 			queue_flags |= ENQUEUE_HEAD;
7649 
7650 		enqueue_task(rq, p, queue_flags);
7651 	}
7652 	if (running)
7653 		set_next_task(rq, p);
7654 
7655 	check_class_changed(rq, p, prev_class, oldprio);
7656 
7657 	/* Avoid rq from going away on us: */
7658 	preempt_disable();
7659 	head = splice_balance_callbacks(rq);
7660 	task_rq_unlock(rq, p, &rf);
7661 
7662 	if (pi) {
7663 		cpuset_read_unlock();
7664 		rt_mutex_adjust_pi(p);
7665 	}
7666 
7667 	/* Run balance callbacks after we've adjusted the PI chain: */
7668 	balance_callbacks(rq, head);
7669 	preempt_enable();
7670 
7671 	return 0;
7672 
7673 unlock:
7674 	task_rq_unlock(rq, p, &rf);
7675 	if (pi)
7676 		cpuset_read_unlock();
7677 	return retval;
7678 }
7679 
7680 static int _sched_setscheduler(struct task_struct *p, int policy,
7681 			       const struct sched_param *param, bool check)
7682 {
7683 	struct sched_attr attr = {
7684 		.sched_policy   = policy,
7685 		.sched_priority = param->sched_priority,
7686 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7687 	};
7688 
7689 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7690 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7691 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7692 		policy &= ~SCHED_RESET_ON_FORK;
7693 		attr.sched_policy = policy;
7694 	}
7695 
7696 	return __sched_setscheduler(p, &attr, check, true);
7697 }
7698 /**
7699  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7700  * @p: the task in question.
7701  * @policy: new policy.
7702  * @param: structure containing the new RT priority.
7703  *
7704  * Use sched_set_fifo(), read its comment.
7705  *
7706  * Return: 0 on success. An error code otherwise.
7707  *
7708  * NOTE that the task may be already dead.
7709  */
7710 int sched_setscheduler(struct task_struct *p, int policy,
7711 		       const struct sched_param *param)
7712 {
7713 	return _sched_setscheduler(p, policy, param, true);
7714 }
7715 
7716 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7717 {
7718 	return __sched_setscheduler(p, attr, true, true);
7719 }
7720 
7721 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7722 {
7723 	return __sched_setscheduler(p, attr, false, true);
7724 }
7725 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7726 
7727 /**
7728  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7729  * @p: the task in question.
7730  * @policy: new policy.
7731  * @param: structure containing the new RT priority.
7732  *
7733  * Just like sched_setscheduler, only don't bother checking if the
7734  * current context has permission.  For example, this is needed in
7735  * stop_machine(): we create temporary high priority worker threads,
7736  * but our caller might not have that capability.
7737  *
7738  * Return: 0 on success. An error code otherwise.
7739  */
7740 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7741 			       const struct sched_param *param)
7742 {
7743 	return _sched_setscheduler(p, policy, param, false);
7744 }
7745 
7746 /*
7747  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7748  * incapable of resource management, which is the one thing an OS really should
7749  * be doing.
7750  *
7751  * This is of course the reason it is limited to privileged users only.
7752  *
7753  * Worse still; it is fundamentally impossible to compose static priority
7754  * workloads. You cannot take two correctly working static prio workloads
7755  * and smash them together and still expect them to work.
7756  *
7757  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7758  *
7759  *   MAX_RT_PRIO / 2
7760  *
7761  * The administrator _MUST_ configure the system, the kernel simply doesn't
7762  * know enough information to make a sensible choice.
7763  */
7764 void sched_set_fifo(struct task_struct *p)
7765 {
7766 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7767 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7768 }
7769 EXPORT_SYMBOL_GPL(sched_set_fifo);
7770 
7771 /*
7772  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7773  */
7774 void sched_set_fifo_low(struct task_struct *p)
7775 {
7776 	struct sched_param sp = { .sched_priority = 1 };
7777 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7778 }
7779 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7780 
7781 void sched_set_normal(struct task_struct *p, int nice)
7782 {
7783 	struct sched_attr attr = {
7784 		.sched_policy = SCHED_NORMAL,
7785 		.sched_nice = nice,
7786 	};
7787 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7788 }
7789 EXPORT_SYMBOL_GPL(sched_set_normal);
7790 
7791 static int
7792 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7793 {
7794 	struct sched_param lparam;
7795 	struct task_struct *p;
7796 	int retval;
7797 
7798 	if (!param || pid < 0)
7799 		return -EINVAL;
7800 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7801 		return -EFAULT;
7802 
7803 	rcu_read_lock();
7804 	retval = -ESRCH;
7805 	p = find_process_by_pid(pid);
7806 	if (likely(p))
7807 		get_task_struct(p);
7808 	rcu_read_unlock();
7809 
7810 	if (likely(p)) {
7811 		retval = sched_setscheduler(p, policy, &lparam);
7812 		put_task_struct(p);
7813 	}
7814 
7815 	return retval;
7816 }
7817 
7818 /*
7819  * Mimics kernel/events/core.c perf_copy_attr().
7820  */
7821 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7822 {
7823 	u32 size;
7824 	int ret;
7825 
7826 	/* Zero the full structure, so that a short copy will be nice: */
7827 	memset(attr, 0, sizeof(*attr));
7828 
7829 	ret = get_user(size, &uattr->size);
7830 	if (ret)
7831 		return ret;
7832 
7833 	/* ABI compatibility quirk: */
7834 	if (!size)
7835 		size = SCHED_ATTR_SIZE_VER0;
7836 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7837 		goto err_size;
7838 
7839 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7840 	if (ret) {
7841 		if (ret == -E2BIG)
7842 			goto err_size;
7843 		return ret;
7844 	}
7845 
7846 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7847 	    size < SCHED_ATTR_SIZE_VER1)
7848 		return -EINVAL;
7849 
7850 	/*
7851 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
7852 	 * to be strict and return an error on out-of-bounds values?
7853 	 */
7854 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7855 
7856 	return 0;
7857 
7858 err_size:
7859 	put_user(sizeof(*attr), &uattr->size);
7860 	return -E2BIG;
7861 }
7862 
7863 static void get_params(struct task_struct *p, struct sched_attr *attr)
7864 {
7865 	if (task_has_dl_policy(p))
7866 		__getparam_dl(p, attr);
7867 	else if (task_has_rt_policy(p))
7868 		attr->sched_priority = p->rt_priority;
7869 	else
7870 		attr->sched_nice = task_nice(p);
7871 }
7872 
7873 /**
7874  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7875  * @pid: the pid in question.
7876  * @policy: new policy.
7877  * @param: structure containing the new RT priority.
7878  *
7879  * Return: 0 on success. An error code otherwise.
7880  */
7881 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7882 {
7883 	if (policy < 0)
7884 		return -EINVAL;
7885 
7886 	return do_sched_setscheduler(pid, policy, param);
7887 }
7888 
7889 /**
7890  * sys_sched_setparam - set/change the RT priority of a thread
7891  * @pid: the pid in question.
7892  * @param: structure containing the new RT priority.
7893  *
7894  * Return: 0 on success. An error code otherwise.
7895  */
7896 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7897 {
7898 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7899 }
7900 
7901 /**
7902  * sys_sched_setattr - same as above, but with extended sched_attr
7903  * @pid: the pid in question.
7904  * @uattr: structure containing the extended parameters.
7905  * @flags: for future extension.
7906  */
7907 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7908 			       unsigned int, flags)
7909 {
7910 	struct sched_attr attr;
7911 	struct task_struct *p;
7912 	int retval;
7913 
7914 	if (!uattr || pid < 0 || flags)
7915 		return -EINVAL;
7916 
7917 	retval = sched_copy_attr(uattr, &attr);
7918 	if (retval)
7919 		return retval;
7920 
7921 	if ((int)attr.sched_policy < 0)
7922 		return -EINVAL;
7923 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7924 		attr.sched_policy = SETPARAM_POLICY;
7925 
7926 	rcu_read_lock();
7927 	retval = -ESRCH;
7928 	p = find_process_by_pid(pid);
7929 	if (likely(p))
7930 		get_task_struct(p);
7931 	rcu_read_unlock();
7932 
7933 	if (likely(p)) {
7934 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7935 			get_params(p, &attr);
7936 		retval = sched_setattr(p, &attr);
7937 		put_task_struct(p);
7938 	}
7939 
7940 	return retval;
7941 }
7942 
7943 /**
7944  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7945  * @pid: the pid in question.
7946  *
7947  * Return: On success, the policy of the thread. Otherwise, a negative error
7948  * code.
7949  */
7950 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7951 {
7952 	struct task_struct *p;
7953 	int retval;
7954 
7955 	if (pid < 0)
7956 		return -EINVAL;
7957 
7958 	retval = -ESRCH;
7959 	rcu_read_lock();
7960 	p = find_process_by_pid(pid);
7961 	if (p) {
7962 		retval = security_task_getscheduler(p);
7963 		if (!retval)
7964 			retval = p->policy
7965 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7966 	}
7967 	rcu_read_unlock();
7968 	return retval;
7969 }
7970 
7971 /**
7972  * sys_sched_getparam - get the RT priority of a thread
7973  * @pid: the pid in question.
7974  * @param: structure containing the RT priority.
7975  *
7976  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7977  * code.
7978  */
7979 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7980 {
7981 	struct sched_param lp = { .sched_priority = 0 };
7982 	struct task_struct *p;
7983 	int retval;
7984 
7985 	if (!param || pid < 0)
7986 		return -EINVAL;
7987 
7988 	rcu_read_lock();
7989 	p = find_process_by_pid(pid);
7990 	retval = -ESRCH;
7991 	if (!p)
7992 		goto out_unlock;
7993 
7994 	retval = security_task_getscheduler(p);
7995 	if (retval)
7996 		goto out_unlock;
7997 
7998 	if (task_has_rt_policy(p))
7999 		lp.sched_priority = p->rt_priority;
8000 	rcu_read_unlock();
8001 
8002 	/*
8003 	 * This one might sleep, we cannot do it with a spinlock held ...
8004 	 */
8005 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8006 
8007 	return retval;
8008 
8009 out_unlock:
8010 	rcu_read_unlock();
8011 	return retval;
8012 }
8013 
8014 /*
8015  * Copy the kernel size attribute structure (which might be larger
8016  * than what user-space knows about) to user-space.
8017  *
8018  * Note that all cases are valid: user-space buffer can be larger or
8019  * smaller than the kernel-space buffer. The usual case is that both
8020  * have the same size.
8021  */
8022 static int
8023 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8024 			struct sched_attr *kattr,
8025 			unsigned int usize)
8026 {
8027 	unsigned int ksize = sizeof(*kattr);
8028 
8029 	if (!access_ok(uattr, usize))
8030 		return -EFAULT;
8031 
8032 	/*
8033 	 * sched_getattr() ABI forwards and backwards compatibility:
8034 	 *
8035 	 * If usize == ksize then we just copy everything to user-space and all is good.
8036 	 *
8037 	 * If usize < ksize then we only copy as much as user-space has space for,
8038 	 * this keeps ABI compatibility as well. We skip the rest.
8039 	 *
8040 	 * If usize > ksize then user-space is using a newer version of the ABI,
8041 	 * which part the kernel doesn't know about. Just ignore it - tooling can
8042 	 * detect the kernel's knowledge of attributes from the attr->size value
8043 	 * which is set to ksize in this case.
8044 	 */
8045 	kattr->size = min(usize, ksize);
8046 
8047 	if (copy_to_user(uattr, kattr, kattr->size))
8048 		return -EFAULT;
8049 
8050 	return 0;
8051 }
8052 
8053 /**
8054  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8055  * @pid: the pid in question.
8056  * @uattr: structure containing the extended parameters.
8057  * @usize: sizeof(attr) for fwd/bwd comp.
8058  * @flags: for future extension.
8059  */
8060 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8061 		unsigned int, usize, unsigned int, flags)
8062 {
8063 	struct sched_attr kattr = { };
8064 	struct task_struct *p;
8065 	int retval;
8066 
8067 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8068 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8069 		return -EINVAL;
8070 
8071 	rcu_read_lock();
8072 	p = find_process_by_pid(pid);
8073 	retval = -ESRCH;
8074 	if (!p)
8075 		goto out_unlock;
8076 
8077 	retval = security_task_getscheduler(p);
8078 	if (retval)
8079 		goto out_unlock;
8080 
8081 	kattr.sched_policy = p->policy;
8082 	if (p->sched_reset_on_fork)
8083 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8084 	get_params(p, &kattr);
8085 	kattr.sched_flags &= SCHED_FLAG_ALL;
8086 
8087 #ifdef CONFIG_UCLAMP_TASK
8088 	/*
8089 	 * This could race with another potential updater, but this is fine
8090 	 * because it'll correctly read the old or the new value. We don't need
8091 	 * to guarantee who wins the race as long as it doesn't return garbage.
8092 	 */
8093 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8094 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8095 #endif
8096 
8097 	rcu_read_unlock();
8098 
8099 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8100 
8101 out_unlock:
8102 	rcu_read_unlock();
8103 	return retval;
8104 }
8105 
8106 #ifdef CONFIG_SMP
8107 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8108 {
8109 	int ret = 0;
8110 
8111 	/*
8112 	 * If the task isn't a deadline task or admission control is
8113 	 * disabled then we don't care about affinity changes.
8114 	 */
8115 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8116 		return 0;
8117 
8118 	/*
8119 	 * Since bandwidth control happens on root_domain basis,
8120 	 * if admission test is enabled, we only admit -deadline
8121 	 * tasks allowed to run on all the CPUs in the task's
8122 	 * root_domain.
8123 	 */
8124 	rcu_read_lock();
8125 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8126 		ret = -EBUSY;
8127 	rcu_read_unlock();
8128 	return ret;
8129 }
8130 #endif
8131 
8132 static int
8133 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8134 {
8135 	int retval;
8136 	cpumask_var_t cpus_allowed, new_mask;
8137 
8138 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8139 		return -ENOMEM;
8140 
8141 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8142 		retval = -ENOMEM;
8143 		goto out_free_cpus_allowed;
8144 	}
8145 
8146 	cpuset_cpus_allowed(p, cpus_allowed);
8147 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8148 
8149 	ctx->new_mask = new_mask;
8150 	ctx->flags |= SCA_CHECK;
8151 
8152 	retval = dl_task_check_affinity(p, new_mask);
8153 	if (retval)
8154 		goto out_free_new_mask;
8155 
8156 	retval = __set_cpus_allowed_ptr(p, ctx);
8157 	if (retval)
8158 		goto out_free_new_mask;
8159 
8160 	cpuset_cpus_allowed(p, cpus_allowed);
8161 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8162 		/*
8163 		 * We must have raced with a concurrent cpuset update.
8164 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8165 		 */
8166 		cpumask_copy(new_mask, cpus_allowed);
8167 
8168 		/*
8169 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8170 		 * will restore the previous user_cpus_ptr value.
8171 		 *
8172 		 * In the unlikely event a previous user_cpus_ptr exists,
8173 		 * we need to further restrict the mask to what is allowed
8174 		 * by that old user_cpus_ptr.
8175 		 */
8176 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8177 			bool empty = !cpumask_and(new_mask, new_mask,
8178 						  ctx->user_mask);
8179 
8180 			if (WARN_ON_ONCE(empty))
8181 				cpumask_copy(new_mask, cpus_allowed);
8182 		}
8183 		__set_cpus_allowed_ptr(p, ctx);
8184 		retval = -EINVAL;
8185 	}
8186 
8187 out_free_new_mask:
8188 	free_cpumask_var(new_mask);
8189 out_free_cpus_allowed:
8190 	free_cpumask_var(cpus_allowed);
8191 	return retval;
8192 }
8193 
8194 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8195 {
8196 	struct affinity_context ac;
8197 	struct cpumask *user_mask;
8198 	struct task_struct *p;
8199 	int retval;
8200 
8201 	rcu_read_lock();
8202 
8203 	p = find_process_by_pid(pid);
8204 	if (!p) {
8205 		rcu_read_unlock();
8206 		return -ESRCH;
8207 	}
8208 
8209 	/* Prevent p going away */
8210 	get_task_struct(p);
8211 	rcu_read_unlock();
8212 
8213 	if (p->flags & PF_NO_SETAFFINITY) {
8214 		retval = -EINVAL;
8215 		goto out_put_task;
8216 	}
8217 
8218 	if (!check_same_owner(p)) {
8219 		rcu_read_lock();
8220 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8221 			rcu_read_unlock();
8222 			retval = -EPERM;
8223 			goto out_put_task;
8224 		}
8225 		rcu_read_unlock();
8226 	}
8227 
8228 	retval = security_task_setscheduler(p);
8229 	if (retval)
8230 		goto out_put_task;
8231 
8232 	user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
8233 	if (!user_mask) {
8234 		retval = -ENOMEM;
8235 		goto out_put_task;
8236 	}
8237 	cpumask_copy(user_mask, in_mask);
8238 	ac = (struct affinity_context){
8239 		.new_mask  = in_mask,
8240 		.user_mask = user_mask,
8241 		.flags     = SCA_USER,
8242 	};
8243 
8244 	retval = __sched_setaffinity(p, &ac);
8245 	kfree(ac.user_mask);
8246 
8247 out_put_task:
8248 	put_task_struct(p);
8249 	return retval;
8250 }
8251 
8252 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8253 			     struct cpumask *new_mask)
8254 {
8255 	if (len < cpumask_size())
8256 		cpumask_clear(new_mask);
8257 	else if (len > cpumask_size())
8258 		len = cpumask_size();
8259 
8260 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8261 }
8262 
8263 /**
8264  * sys_sched_setaffinity - set the CPU affinity of a process
8265  * @pid: pid of the process
8266  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8267  * @user_mask_ptr: user-space pointer to the new CPU mask
8268  *
8269  * Return: 0 on success. An error code otherwise.
8270  */
8271 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8272 		unsigned long __user *, user_mask_ptr)
8273 {
8274 	cpumask_var_t new_mask;
8275 	int retval;
8276 
8277 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8278 		return -ENOMEM;
8279 
8280 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8281 	if (retval == 0)
8282 		retval = sched_setaffinity(pid, new_mask);
8283 	free_cpumask_var(new_mask);
8284 	return retval;
8285 }
8286 
8287 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8288 {
8289 	struct task_struct *p;
8290 	unsigned long flags;
8291 	int retval;
8292 
8293 	rcu_read_lock();
8294 
8295 	retval = -ESRCH;
8296 	p = find_process_by_pid(pid);
8297 	if (!p)
8298 		goto out_unlock;
8299 
8300 	retval = security_task_getscheduler(p);
8301 	if (retval)
8302 		goto out_unlock;
8303 
8304 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8305 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8306 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8307 
8308 out_unlock:
8309 	rcu_read_unlock();
8310 
8311 	return retval;
8312 }
8313 
8314 /**
8315  * sys_sched_getaffinity - get the CPU affinity of a process
8316  * @pid: pid of the process
8317  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8318  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8319  *
8320  * Return: size of CPU mask copied to user_mask_ptr on success. An
8321  * error code otherwise.
8322  */
8323 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8324 		unsigned long __user *, user_mask_ptr)
8325 {
8326 	int ret;
8327 	cpumask_var_t mask;
8328 
8329 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8330 		return -EINVAL;
8331 	if (len & (sizeof(unsigned long)-1))
8332 		return -EINVAL;
8333 
8334 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8335 		return -ENOMEM;
8336 
8337 	ret = sched_getaffinity(pid, mask);
8338 	if (ret == 0) {
8339 		unsigned int retlen = min(len, cpumask_size());
8340 
8341 		if (copy_to_user(user_mask_ptr, mask, retlen))
8342 			ret = -EFAULT;
8343 		else
8344 			ret = retlen;
8345 	}
8346 	free_cpumask_var(mask);
8347 
8348 	return ret;
8349 }
8350 
8351 static void do_sched_yield(void)
8352 {
8353 	struct rq_flags rf;
8354 	struct rq *rq;
8355 
8356 	rq = this_rq_lock_irq(&rf);
8357 
8358 	schedstat_inc(rq->yld_count);
8359 	current->sched_class->yield_task(rq);
8360 
8361 	preempt_disable();
8362 	rq_unlock_irq(rq, &rf);
8363 	sched_preempt_enable_no_resched();
8364 
8365 	schedule();
8366 }
8367 
8368 /**
8369  * sys_sched_yield - yield the current processor to other threads.
8370  *
8371  * This function yields the current CPU to other tasks. If there are no
8372  * other threads running on this CPU then this function will return.
8373  *
8374  * Return: 0.
8375  */
8376 SYSCALL_DEFINE0(sched_yield)
8377 {
8378 	do_sched_yield();
8379 	return 0;
8380 }
8381 
8382 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8383 int __sched __cond_resched(void)
8384 {
8385 	if (should_resched(0)) {
8386 		preempt_schedule_common();
8387 		return 1;
8388 	}
8389 	/*
8390 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8391 	 * whether the current CPU is in an RCU read-side critical section,
8392 	 * so the tick can report quiescent states even for CPUs looping
8393 	 * in kernel context.  In contrast, in non-preemptible kernels,
8394 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8395 	 * processes executing in kernel context might never report an
8396 	 * RCU quiescent state.  Therefore, the following code causes
8397 	 * cond_resched() to report a quiescent state, but only when RCU
8398 	 * is in urgent need of one.
8399 	 */
8400 #ifndef CONFIG_PREEMPT_RCU
8401 	rcu_all_qs();
8402 #endif
8403 	return 0;
8404 }
8405 EXPORT_SYMBOL(__cond_resched);
8406 #endif
8407 
8408 #ifdef CONFIG_PREEMPT_DYNAMIC
8409 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8410 #define cond_resched_dynamic_enabled	__cond_resched
8411 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8412 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8413 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8414 
8415 #define might_resched_dynamic_enabled	__cond_resched
8416 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8417 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8418 EXPORT_STATIC_CALL_TRAMP(might_resched);
8419 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8420 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8421 int __sched dynamic_cond_resched(void)
8422 {
8423 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8424 		return 0;
8425 	return __cond_resched();
8426 }
8427 EXPORT_SYMBOL(dynamic_cond_resched);
8428 
8429 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8430 int __sched dynamic_might_resched(void)
8431 {
8432 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8433 		return 0;
8434 	return __cond_resched();
8435 }
8436 EXPORT_SYMBOL(dynamic_might_resched);
8437 #endif
8438 #endif
8439 
8440 /*
8441  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8442  * call schedule, and on return reacquire the lock.
8443  *
8444  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8445  * operations here to prevent schedule() from being called twice (once via
8446  * spin_unlock(), once by hand).
8447  */
8448 int __cond_resched_lock(spinlock_t *lock)
8449 {
8450 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8451 	int ret = 0;
8452 
8453 	lockdep_assert_held(lock);
8454 
8455 	if (spin_needbreak(lock) || resched) {
8456 		spin_unlock(lock);
8457 		if (!_cond_resched())
8458 			cpu_relax();
8459 		ret = 1;
8460 		spin_lock(lock);
8461 	}
8462 	return ret;
8463 }
8464 EXPORT_SYMBOL(__cond_resched_lock);
8465 
8466 int __cond_resched_rwlock_read(rwlock_t *lock)
8467 {
8468 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8469 	int ret = 0;
8470 
8471 	lockdep_assert_held_read(lock);
8472 
8473 	if (rwlock_needbreak(lock) || resched) {
8474 		read_unlock(lock);
8475 		if (!_cond_resched())
8476 			cpu_relax();
8477 		ret = 1;
8478 		read_lock(lock);
8479 	}
8480 	return ret;
8481 }
8482 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8483 
8484 int __cond_resched_rwlock_write(rwlock_t *lock)
8485 {
8486 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8487 	int ret = 0;
8488 
8489 	lockdep_assert_held_write(lock);
8490 
8491 	if (rwlock_needbreak(lock) || resched) {
8492 		write_unlock(lock);
8493 		if (!_cond_resched())
8494 			cpu_relax();
8495 		ret = 1;
8496 		write_lock(lock);
8497 	}
8498 	return ret;
8499 }
8500 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8501 
8502 #ifdef CONFIG_PREEMPT_DYNAMIC
8503 
8504 #ifdef CONFIG_GENERIC_ENTRY
8505 #include <linux/entry-common.h>
8506 #endif
8507 
8508 /*
8509  * SC:cond_resched
8510  * SC:might_resched
8511  * SC:preempt_schedule
8512  * SC:preempt_schedule_notrace
8513  * SC:irqentry_exit_cond_resched
8514  *
8515  *
8516  * NONE:
8517  *   cond_resched               <- __cond_resched
8518  *   might_resched              <- RET0
8519  *   preempt_schedule           <- NOP
8520  *   preempt_schedule_notrace   <- NOP
8521  *   irqentry_exit_cond_resched <- NOP
8522  *
8523  * VOLUNTARY:
8524  *   cond_resched               <- __cond_resched
8525  *   might_resched              <- __cond_resched
8526  *   preempt_schedule           <- NOP
8527  *   preempt_schedule_notrace   <- NOP
8528  *   irqentry_exit_cond_resched <- NOP
8529  *
8530  * FULL:
8531  *   cond_resched               <- RET0
8532  *   might_resched              <- RET0
8533  *   preempt_schedule           <- preempt_schedule
8534  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8535  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8536  */
8537 
8538 enum {
8539 	preempt_dynamic_undefined = -1,
8540 	preempt_dynamic_none,
8541 	preempt_dynamic_voluntary,
8542 	preempt_dynamic_full,
8543 };
8544 
8545 int preempt_dynamic_mode = preempt_dynamic_undefined;
8546 
8547 int sched_dynamic_mode(const char *str)
8548 {
8549 	if (!strcmp(str, "none"))
8550 		return preempt_dynamic_none;
8551 
8552 	if (!strcmp(str, "voluntary"))
8553 		return preempt_dynamic_voluntary;
8554 
8555 	if (!strcmp(str, "full"))
8556 		return preempt_dynamic_full;
8557 
8558 	return -EINVAL;
8559 }
8560 
8561 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8562 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8563 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8564 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8565 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8566 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8567 #else
8568 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8569 #endif
8570 
8571 void sched_dynamic_update(int mode)
8572 {
8573 	/*
8574 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8575 	 * the ZERO state, which is invalid.
8576 	 */
8577 	preempt_dynamic_enable(cond_resched);
8578 	preempt_dynamic_enable(might_resched);
8579 	preempt_dynamic_enable(preempt_schedule);
8580 	preempt_dynamic_enable(preempt_schedule_notrace);
8581 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8582 
8583 	switch (mode) {
8584 	case preempt_dynamic_none:
8585 		preempt_dynamic_enable(cond_resched);
8586 		preempt_dynamic_disable(might_resched);
8587 		preempt_dynamic_disable(preempt_schedule);
8588 		preempt_dynamic_disable(preempt_schedule_notrace);
8589 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8590 		pr_info("Dynamic Preempt: none\n");
8591 		break;
8592 
8593 	case preempt_dynamic_voluntary:
8594 		preempt_dynamic_enable(cond_resched);
8595 		preempt_dynamic_enable(might_resched);
8596 		preempt_dynamic_disable(preempt_schedule);
8597 		preempt_dynamic_disable(preempt_schedule_notrace);
8598 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8599 		pr_info("Dynamic Preempt: voluntary\n");
8600 		break;
8601 
8602 	case preempt_dynamic_full:
8603 		preempt_dynamic_disable(cond_resched);
8604 		preempt_dynamic_disable(might_resched);
8605 		preempt_dynamic_enable(preempt_schedule);
8606 		preempt_dynamic_enable(preempt_schedule_notrace);
8607 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8608 		pr_info("Dynamic Preempt: full\n");
8609 		break;
8610 	}
8611 
8612 	preempt_dynamic_mode = mode;
8613 }
8614 
8615 static int __init setup_preempt_mode(char *str)
8616 {
8617 	int mode = sched_dynamic_mode(str);
8618 	if (mode < 0) {
8619 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8620 		return 0;
8621 	}
8622 
8623 	sched_dynamic_update(mode);
8624 	return 1;
8625 }
8626 __setup("preempt=", setup_preempt_mode);
8627 
8628 static void __init preempt_dynamic_init(void)
8629 {
8630 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8631 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8632 			sched_dynamic_update(preempt_dynamic_none);
8633 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8634 			sched_dynamic_update(preempt_dynamic_voluntary);
8635 		} else {
8636 			/* Default static call setting, nothing to do */
8637 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8638 			preempt_dynamic_mode = preempt_dynamic_full;
8639 			pr_info("Dynamic Preempt: full\n");
8640 		}
8641 	}
8642 }
8643 
8644 #define PREEMPT_MODEL_ACCESSOR(mode) \
8645 	bool preempt_model_##mode(void)						 \
8646 	{									 \
8647 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8648 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8649 	}									 \
8650 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8651 
8652 PREEMPT_MODEL_ACCESSOR(none);
8653 PREEMPT_MODEL_ACCESSOR(voluntary);
8654 PREEMPT_MODEL_ACCESSOR(full);
8655 
8656 #else /* !CONFIG_PREEMPT_DYNAMIC */
8657 
8658 static inline void preempt_dynamic_init(void) { }
8659 
8660 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8661 
8662 /**
8663  * yield - yield the current processor to other threads.
8664  *
8665  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8666  *
8667  * The scheduler is at all times free to pick the calling task as the most
8668  * eligible task to run, if removing the yield() call from your code breaks
8669  * it, it's already broken.
8670  *
8671  * Typical broken usage is:
8672  *
8673  * while (!event)
8674  *	yield();
8675  *
8676  * where one assumes that yield() will let 'the other' process run that will
8677  * make event true. If the current task is a SCHED_FIFO task that will never
8678  * happen. Never use yield() as a progress guarantee!!
8679  *
8680  * If you want to use yield() to wait for something, use wait_event().
8681  * If you want to use yield() to be 'nice' for others, use cond_resched().
8682  * If you still want to use yield(), do not!
8683  */
8684 void __sched yield(void)
8685 {
8686 	set_current_state(TASK_RUNNING);
8687 	do_sched_yield();
8688 }
8689 EXPORT_SYMBOL(yield);
8690 
8691 /**
8692  * yield_to - yield the current processor to another thread in
8693  * your thread group, or accelerate that thread toward the
8694  * processor it's on.
8695  * @p: target task
8696  * @preempt: whether task preemption is allowed or not
8697  *
8698  * It's the caller's job to ensure that the target task struct
8699  * can't go away on us before we can do any checks.
8700  *
8701  * Return:
8702  *	true (>0) if we indeed boosted the target task.
8703  *	false (0) if we failed to boost the target.
8704  *	-ESRCH if there's no task to yield to.
8705  */
8706 int __sched yield_to(struct task_struct *p, bool preempt)
8707 {
8708 	struct task_struct *curr = current;
8709 	struct rq *rq, *p_rq;
8710 	unsigned long flags;
8711 	int yielded = 0;
8712 
8713 	local_irq_save(flags);
8714 	rq = this_rq();
8715 
8716 again:
8717 	p_rq = task_rq(p);
8718 	/*
8719 	 * If we're the only runnable task on the rq and target rq also
8720 	 * has only one task, there's absolutely no point in yielding.
8721 	 */
8722 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8723 		yielded = -ESRCH;
8724 		goto out_irq;
8725 	}
8726 
8727 	double_rq_lock(rq, p_rq);
8728 	if (task_rq(p) != p_rq) {
8729 		double_rq_unlock(rq, p_rq);
8730 		goto again;
8731 	}
8732 
8733 	if (!curr->sched_class->yield_to_task)
8734 		goto out_unlock;
8735 
8736 	if (curr->sched_class != p->sched_class)
8737 		goto out_unlock;
8738 
8739 	if (task_on_cpu(p_rq, p) || !task_is_running(p))
8740 		goto out_unlock;
8741 
8742 	yielded = curr->sched_class->yield_to_task(rq, p);
8743 	if (yielded) {
8744 		schedstat_inc(rq->yld_count);
8745 		/*
8746 		 * Make p's CPU reschedule; pick_next_entity takes care of
8747 		 * fairness.
8748 		 */
8749 		if (preempt && rq != p_rq)
8750 			resched_curr(p_rq);
8751 	}
8752 
8753 out_unlock:
8754 	double_rq_unlock(rq, p_rq);
8755 out_irq:
8756 	local_irq_restore(flags);
8757 
8758 	if (yielded > 0)
8759 		schedule();
8760 
8761 	return yielded;
8762 }
8763 EXPORT_SYMBOL_GPL(yield_to);
8764 
8765 int io_schedule_prepare(void)
8766 {
8767 	int old_iowait = current->in_iowait;
8768 
8769 	current->in_iowait = 1;
8770 	blk_flush_plug(current->plug, true);
8771 	return old_iowait;
8772 }
8773 
8774 void io_schedule_finish(int token)
8775 {
8776 	current->in_iowait = token;
8777 }
8778 
8779 /*
8780  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8781  * that process accounting knows that this is a task in IO wait state.
8782  */
8783 long __sched io_schedule_timeout(long timeout)
8784 {
8785 	int token;
8786 	long ret;
8787 
8788 	token = io_schedule_prepare();
8789 	ret = schedule_timeout(timeout);
8790 	io_schedule_finish(token);
8791 
8792 	return ret;
8793 }
8794 EXPORT_SYMBOL(io_schedule_timeout);
8795 
8796 void __sched io_schedule(void)
8797 {
8798 	int token;
8799 
8800 	token = io_schedule_prepare();
8801 	schedule();
8802 	io_schedule_finish(token);
8803 }
8804 EXPORT_SYMBOL(io_schedule);
8805 
8806 /**
8807  * sys_sched_get_priority_max - return maximum RT priority.
8808  * @policy: scheduling class.
8809  *
8810  * Return: On success, this syscall returns the maximum
8811  * rt_priority that can be used by a given scheduling class.
8812  * On failure, a negative error code is returned.
8813  */
8814 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8815 {
8816 	int ret = -EINVAL;
8817 
8818 	switch (policy) {
8819 	case SCHED_FIFO:
8820 	case SCHED_RR:
8821 		ret = MAX_RT_PRIO-1;
8822 		break;
8823 	case SCHED_DEADLINE:
8824 	case SCHED_NORMAL:
8825 	case SCHED_BATCH:
8826 	case SCHED_IDLE:
8827 		ret = 0;
8828 		break;
8829 	}
8830 	return ret;
8831 }
8832 
8833 /**
8834  * sys_sched_get_priority_min - return minimum RT priority.
8835  * @policy: scheduling class.
8836  *
8837  * Return: On success, this syscall returns the minimum
8838  * rt_priority that can be used by a given scheduling class.
8839  * On failure, a negative error code is returned.
8840  */
8841 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8842 {
8843 	int ret = -EINVAL;
8844 
8845 	switch (policy) {
8846 	case SCHED_FIFO:
8847 	case SCHED_RR:
8848 		ret = 1;
8849 		break;
8850 	case SCHED_DEADLINE:
8851 	case SCHED_NORMAL:
8852 	case SCHED_BATCH:
8853 	case SCHED_IDLE:
8854 		ret = 0;
8855 	}
8856 	return ret;
8857 }
8858 
8859 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8860 {
8861 	struct task_struct *p;
8862 	unsigned int time_slice;
8863 	struct rq_flags rf;
8864 	struct rq *rq;
8865 	int retval;
8866 
8867 	if (pid < 0)
8868 		return -EINVAL;
8869 
8870 	retval = -ESRCH;
8871 	rcu_read_lock();
8872 	p = find_process_by_pid(pid);
8873 	if (!p)
8874 		goto out_unlock;
8875 
8876 	retval = security_task_getscheduler(p);
8877 	if (retval)
8878 		goto out_unlock;
8879 
8880 	rq = task_rq_lock(p, &rf);
8881 	time_slice = 0;
8882 	if (p->sched_class->get_rr_interval)
8883 		time_slice = p->sched_class->get_rr_interval(rq, p);
8884 	task_rq_unlock(rq, p, &rf);
8885 
8886 	rcu_read_unlock();
8887 	jiffies_to_timespec64(time_slice, t);
8888 	return 0;
8889 
8890 out_unlock:
8891 	rcu_read_unlock();
8892 	return retval;
8893 }
8894 
8895 /**
8896  * sys_sched_rr_get_interval - return the default timeslice of a process.
8897  * @pid: pid of the process.
8898  * @interval: userspace pointer to the timeslice value.
8899  *
8900  * this syscall writes the default timeslice value of a given process
8901  * into the user-space timespec buffer. A value of '0' means infinity.
8902  *
8903  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8904  * an error code.
8905  */
8906 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8907 		struct __kernel_timespec __user *, interval)
8908 {
8909 	struct timespec64 t;
8910 	int retval = sched_rr_get_interval(pid, &t);
8911 
8912 	if (retval == 0)
8913 		retval = put_timespec64(&t, interval);
8914 
8915 	return retval;
8916 }
8917 
8918 #ifdef CONFIG_COMPAT_32BIT_TIME
8919 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8920 		struct old_timespec32 __user *, interval)
8921 {
8922 	struct timespec64 t;
8923 	int retval = sched_rr_get_interval(pid, &t);
8924 
8925 	if (retval == 0)
8926 		retval = put_old_timespec32(&t, interval);
8927 	return retval;
8928 }
8929 #endif
8930 
8931 void sched_show_task(struct task_struct *p)
8932 {
8933 	unsigned long free = 0;
8934 	int ppid;
8935 
8936 	if (!try_get_task_stack(p))
8937 		return;
8938 
8939 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8940 
8941 	if (task_is_running(p))
8942 		pr_cont("  running task    ");
8943 #ifdef CONFIG_DEBUG_STACK_USAGE
8944 	free = stack_not_used(p);
8945 #endif
8946 	ppid = 0;
8947 	rcu_read_lock();
8948 	if (pid_alive(p))
8949 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
8950 	rcu_read_unlock();
8951 	pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
8952 		free, task_pid_nr(p), ppid,
8953 		read_task_thread_flags(p));
8954 
8955 	print_worker_info(KERN_INFO, p);
8956 	print_stop_info(KERN_INFO, p);
8957 	show_stack(p, NULL, KERN_INFO);
8958 	put_task_stack(p);
8959 }
8960 EXPORT_SYMBOL_GPL(sched_show_task);
8961 
8962 static inline bool
8963 state_filter_match(unsigned long state_filter, struct task_struct *p)
8964 {
8965 	unsigned int state = READ_ONCE(p->__state);
8966 
8967 	/* no filter, everything matches */
8968 	if (!state_filter)
8969 		return true;
8970 
8971 	/* filter, but doesn't match */
8972 	if (!(state & state_filter))
8973 		return false;
8974 
8975 	/*
8976 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8977 	 * TASK_KILLABLE).
8978 	 */
8979 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
8980 		return false;
8981 
8982 	return true;
8983 }
8984 
8985 
8986 void show_state_filter(unsigned int state_filter)
8987 {
8988 	struct task_struct *g, *p;
8989 
8990 	rcu_read_lock();
8991 	for_each_process_thread(g, p) {
8992 		/*
8993 		 * reset the NMI-timeout, listing all files on a slow
8994 		 * console might take a lot of time:
8995 		 * Also, reset softlockup watchdogs on all CPUs, because
8996 		 * another CPU might be blocked waiting for us to process
8997 		 * an IPI.
8998 		 */
8999 		touch_nmi_watchdog();
9000 		touch_all_softlockup_watchdogs();
9001 		if (state_filter_match(state_filter, p))
9002 			sched_show_task(p);
9003 	}
9004 
9005 #ifdef CONFIG_SCHED_DEBUG
9006 	if (!state_filter)
9007 		sysrq_sched_debug_show();
9008 #endif
9009 	rcu_read_unlock();
9010 	/*
9011 	 * Only show locks if all tasks are dumped:
9012 	 */
9013 	if (!state_filter)
9014 		debug_show_all_locks();
9015 }
9016 
9017 /**
9018  * init_idle - set up an idle thread for a given CPU
9019  * @idle: task in question
9020  * @cpu: CPU the idle task belongs to
9021  *
9022  * NOTE: this function does not set the idle thread's NEED_RESCHED
9023  * flag, to make booting more robust.
9024  */
9025 void __init init_idle(struct task_struct *idle, int cpu)
9026 {
9027 #ifdef CONFIG_SMP
9028 	struct affinity_context ac = (struct affinity_context) {
9029 		.new_mask  = cpumask_of(cpu),
9030 		.flags     = 0,
9031 	};
9032 #endif
9033 	struct rq *rq = cpu_rq(cpu);
9034 	unsigned long flags;
9035 
9036 	__sched_fork(0, idle);
9037 
9038 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
9039 	raw_spin_rq_lock(rq);
9040 
9041 	idle->__state = TASK_RUNNING;
9042 	idle->se.exec_start = sched_clock();
9043 	/*
9044 	 * PF_KTHREAD should already be set at this point; regardless, make it
9045 	 * look like a proper per-CPU kthread.
9046 	 */
9047 	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
9048 	kthread_set_per_cpu(idle, cpu);
9049 
9050 #ifdef CONFIG_SMP
9051 	/*
9052 	 * It's possible that init_idle() gets called multiple times on a task,
9053 	 * in that case do_set_cpus_allowed() will not do the right thing.
9054 	 *
9055 	 * And since this is boot we can forgo the serialization.
9056 	 */
9057 	set_cpus_allowed_common(idle, &ac);
9058 #endif
9059 	/*
9060 	 * We're having a chicken and egg problem, even though we are
9061 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
9062 	 * lockdep check in task_group() will fail.
9063 	 *
9064 	 * Similar case to sched_fork(). / Alternatively we could
9065 	 * use task_rq_lock() here and obtain the other rq->lock.
9066 	 *
9067 	 * Silence PROVE_RCU
9068 	 */
9069 	rcu_read_lock();
9070 	__set_task_cpu(idle, cpu);
9071 	rcu_read_unlock();
9072 
9073 	rq->idle = idle;
9074 	rcu_assign_pointer(rq->curr, idle);
9075 	idle->on_rq = TASK_ON_RQ_QUEUED;
9076 #ifdef CONFIG_SMP
9077 	idle->on_cpu = 1;
9078 #endif
9079 	raw_spin_rq_unlock(rq);
9080 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9081 
9082 	/* Set the preempt count _outside_ the spinlocks! */
9083 	init_idle_preempt_count(idle, cpu);
9084 
9085 	/*
9086 	 * The idle tasks have their own, simple scheduling class:
9087 	 */
9088 	idle->sched_class = &idle_sched_class;
9089 	ftrace_graph_init_idle_task(idle, cpu);
9090 	vtime_init_idle(idle, cpu);
9091 #ifdef CONFIG_SMP
9092 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9093 #endif
9094 }
9095 
9096 #ifdef CONFIG_SMP
9097 
9098 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9099 			      const struct cpumask *trial)
9100 {
9101 	int ret = 1;
9102 
9103 	if (cpumask_empty(cur))
9104 		return ret;
9105 
9106 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9107 
9108 	return ret;
9109 }
9110 
9111 int task_can_attach(struct task_struct *p,
9112 		    const struct cpumask *cs_effective_cpus)
9113 {
9114 	int ret = 0;
9115 
9116 	/*
9117 	 * Kthreads which disallow setaffinity shouldn't be moved
9118 	 * to a new cpuset; we don't want to change their CPU
9119 	 * affinity and isolating such threads by their set of
9120 	 * allowed nodes is unnecessary.  Thus, cpusets are not
9121 	 * applicable for such threads.  This prevents checking for
9122 	 * success of set_cpus_allowed_ptr() on all attached tasks
9123 	 * before cpus_mask may be changed.
9124 	 */
9125 	if (p->flags & PF_NO_SETAFFINITY) {
9126 		ret = -EINVAL;
9127 		goto out;
9128 	}
9129 
9130 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
9131 					      cs_effective_cpus)) {
9132 		int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus);
9133 
9134 		if (unlikely(cpu >= nr_cpu_ids))
9135 			return -EINVAL;
9136 		ret = dl_cpu_busy(cpu, p);
9137 	}
9138 
9139 out:
9140 	return ret;
9141 }
9142 
9143 bool sched_smp_initialized __read_mostly;
9144 
9145 #ifdef CONFIG_NUMA_BALANCING
9146 /* Migrate current task p to target_cpu */
9147 int migrate_task_to(struct task_struct *p, int target_cpu)
9148 {
9149 	struct migration_arg arg = { p, target_cpu };
9150 	int curr_cpu = task_cpu(p);
9151 
9152 	if (curr_cpu == target_cpu)
9153 		return 0;
9154 
9155 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9156 		return -EINVAL;
9157 
9158 	/* TODO: This is not properly updating schedstats */
9159 
9160 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9161 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9162 }
9163 
9164 /*
9165  * Requeue a task on a given node and accurately track the number of NUMA
9166  * tasks on the runqueues
9167  */
9168 void sched_setnuma(struct task_struct *p, int nid)
9169 {
9170 	bool queued, running;
9171 	struct rq_flags rf;
9172 	struct rq *rq;
9173 
9174 	rq = task_rq_lock(p, &rf);
9175 	queued = task_on_rq_queued(p);
9176 	running = task_current(rq, p);
9177 
9178 	if (queued)
9179 		dequeue_task(rq, p, DEQUEUE_SAVE);
9180 	if (running)
9181 		put_prev_task(rq, p);
9182 
9183 	p->numa_preferred_nid = nid;
9184 
9185 	if (queued)
9186 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9187 	if (running)
9188 		set_next_task(rq, p);
9189 	task_rq_unlock(rq, p, &rf);
9190 }
9191 #endif /* CONFIG_NUMA_BALANCING */
9192 
9193 #ifdef CONFIG_HOTPLUG_CPU
9194 /*
9195  * Ensure that the idle task is using init_mm right before its CPU goes
9196  * offline.
9197  */
9198 void idle_task_exit(void)
9199 {
9200 	struct mm_struct *mm = current->active_mm;
9201 
9202 	BUG_ON(cpu_online(smp_processor_id()));
9203 	BUG_ON(current != this_rq()->idle);
9204 
9205 	if (mm != &init_mm) {
9206 		switch_mm(mm, &init_mm, current);
9207 		finish_arch_post_lock_switch();
9208 	}
9209 
9210 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9211 }
9212 
9213 static int __balance_push_cpu_stop(void *arg)
9214 {
9215 	struct task_struct *p = arg;
9216 	struct rq *rq = this_rq();
9217 	struct rq_flags rf;
9218 	int cpu;
9219 
9220 	raw_spin_lock_irq(&p->pi_lock);
9221 	rq_lock(rq, &rf);
9222 
9223 	update_rq_clock(rq);
9224 
9225 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9226 		cpu = select_fallback_rq(rq->cpu, p);
9227 		rq = __migrate_task(rq, &rf, p, cpu);
9228 	}
9229 
9230 	rq_unlock(rq, &rf);
9231 	raw_spin_unlock_irq(&p->pi_lock);
9232 
9233 	put_task_struct(p);
9234 
9235 	return 0;
9236 }
9237 
9238 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9239 
9240 /*
9241  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9242  *
9243  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9244  * effective when the hotplug motion is down.
9245  */
9246 static void balance_push(struct rq *rq)
9247 {
9248 	struct task_struct *push_task = rq->curr;
9249 
9250 	lockdep_assert_rq_held(rq);
9251 
9252 	/*
9253 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9254 	 */
9255 	rq->balance_callback = &balance_push_callback;
9256 
9257 	/*
9258 	 * Only active while going offline and when invoked on the outgoing
9259 	 * CPU.
9260 	 */
9261 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9262 		return;
9263 
9264 	/*
9265 	 * Both the cpu-hotplug and stop task are in this case and are
9266 	 * required to complete the hotplug process.
9267 	 */
9268 	if (kthread_is_per_cpu(push_task) ||
9269 	    is_migration_disabled(push_task)) {
9270 
9271 		/*
9272 		 * If this is the idle task on the outgoing CPU try to wake
9273 		 * up the hotplug control thread which might wait for the
9274 		 * last task to vanish. The rcuwait_active() check is
9275 		 * accurate here because the waiter is pinned on this CPU
9276 		 * and can't obviously be running in parallel.
9277 		 *
9278 		 * On RT kernels this also has to check whether there are
9279 		 * pinned and scheduled out tasks on the runqueue. They
9280 		 * need to leave the migrate disabled section first.
9281 		 */
9282 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9283 		    rcuwait_active(&rq->hotplug_wait)) {
9284 			raw_spin_rq_unlock(rq);
9285 			rcuwait_wake_up(&rq->hotplug_wait);
9286 			raw_spin_rq_lock(rq);
9287 		}
9288 		return;
9289 	}
9290 
9291 	get_task_struct(push_task);
9292 	/*
9293 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9294 	 * Both preemption and IRQs are still disabled.
9295 	 */
9296 	raw_spin_rq_unlock(rq);
9297 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9298 			    this_cpu_ptr(&push_work));
9299 	/*
9300 	 * At this point need_resched() is true and we'll take the loop in
9301 	 * schedule(). The next pick is obviously going to be the stop task
9302 	 * which kthread_is_per_cpu() and will push this task away.
9303 	 */
9304 	raw_spin_rq_lock(rq);
9305 }
9306 
9307 static void balance_push_set(int cpu, bool on)
9308 {
9309 	struct rq *rq = cpu_rq(cpu);
9310 	struct rq_flags rf;
9311 
9312 	rq_lock_irqsave(rq, &rf);
9313 	if (on) {
9314 		WARN_ON_ONCE(rq->balance_callback);
9315 		rq->balance_callback = &balance_push_callback;
9316 	} else if (rq->balance_callback == &balance_push_callback) {
9317 		rq->balance_callback = NULL;
9318 	}
9319 	rq_unlock_irqrestore(rq, &rf);
9320 }
9321 
9322 /*
9323  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9324  * inactive. All tasks which are not per CPU kernel threads are either
9325  * pushed off this CPU now via balance_push() or placed on a different CPU
9326  * during wakeup. Wait until the CPU is quiescent.
9327  */
9328 static void balance_hotplug_wait(void)
9329 {
9330 	struct rq *rq = this_rq();
9331 
9332 	rcuwait_wait_event(&rq->hotplug_wait,
9333 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9334 			   TASK_UNINTERRUPTIBLE);
9335 }
9336 
9337 #else
9338 
9339 static inline void balance_push(struct rq *rq)
9340 {
9341 }
9342 
9343 static inline void balance_push_set(int cpu, bool on)
9344 {
9345 }
9346 
9347 static inline void balance_hotplug_wait(void)
9348 {
9349 }
9350 
9351 #endif /* CONFIG_HOTPLUG_CPU */
9352 
9353 void set_rq_online(struct rq *rq)
9354 {
9355 	if (!rq->online) {
9356 		const struct sched_class *class;
9357 
9358 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9359 		rq->online = 1;
9360 
9361 		for_each_class(class) {
9362 			if (class->rq_online)
9363 				class->rq_online(rq);
9364 		}
9365 	}
9366 }
9367 
9368 void set_rq_offline(struct rq *rq)
9369 {
9370 	if (rq->online) {
9371 		const struct sched_class *class;
9372 
9373 		for_each_class(class) {
9374 			if (class->rq_offline)
9375 				class->rq_offline(rq);
9376 		}
9377 
9378 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9379 		rq->online = 0;
9380 	}
9381 }
9382 
9383 /*
9384  * used to mark begin/end of suspend/resume:
9385  */
9386 static int num_cpus_frozen;
9387 
9388 /*
9389  * Update cpusets according to cpu_active mask.  If cpusets are
9390  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9391  * around partition_sched_domains().
9392  *
9393  * If we come here as part of a suspend/resume, don't touch cpusets because we
9394  * want to restore it back to its original state upon resume anyway.
9395  */
9396 static void cpuset_cpu_active(void)
9397 {
9398 	if (cpuhp_tasks_frozen) {
9399 		/*
9400 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9401 		 * resume sequence. As long as this is not the last online
9402 		 * operation in the resume sequence, just build a single sched
9403 		 * domain, ignoring cpusets.
9404 		 */
9405 		partition_sched_domains(1, NULL, NULL);
9406 		if (--num_cpus_frozen)
9407 			return;
9408 		/*
9409 		 * This is the last CPU online operation. So fall through and
9410 		 * restore the original sched domains by considering the
9411 		 * cpuset configurations.
9412 		 */
9413 		cpuset_force_rebuild();
9414 	}
9415 	cpuset_update_active_cpus();
9416 }
9417 
9418 static int cpuset_cpu_inactive(unsigned int cpu)
9419 {
9420 	if (!cpuhp_tasks_frozen) {
9421 		int ret = dl_cpu_busy(cpu, NULL);
9422 
9423 		if (ret)
9424 			return ret;
9425 		cpuset_update_active_cpus();
9426 	} else {
9427 		num_cpus_frozen++;
9428 		partition_sched_domains(1, NULL, NULL);
9429 	}
9430 	return 0;
9431 }
9432 
9433 int sched_cpu_activate(unsigned int cpu)
9434 {
9435 	struct rq *rq = cpu_rq(cpu);
9436 	struct rq_flags rf;
9437 
9438 	/*
9439 	 * Clear the balance_push callback and prepare to schedule
9440 	 * regular tasks.
9441 	 */
9442 	balance_push_set(cpu, false);
9443 
9444 #ifdef CONFIG_SCHED_SMT
9445 	/*
9446 	 * When going up, increment the number of cores with SMT present.
9447 	 */
9448 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9449 		static_branch_inc_cpuslocked(&sched_smt_present);
9450 #endif
9451 	set_cpu_active(cpu, true);
9452 
9453 	if (sched_smp_initialized) {
9454 		sched_update_numa(cpu, true);
9455 		sched_domains_numa_masks_set(cpu);
9456 		cpuset_cpu_active();
9457 	}
9458 
9459 	/*
9460 	 * Put the rq online, if not already. This happens:
9461 	 *
9462 	 * 1) In the early boot process, because we build the real domains
9463 	 *    after all CPUs have been brought up.
9464 	 *
9465 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9466 	 *    domains.
9467 	 */
9468 	rq_lock_irqsave(rq, &rf);
9469 	if (rq->rd) {
9470 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9471 		set_rq_online(rq);
9472 	}
9473 	rq_unlock_irqrestore(rq, &rf);
9474 
9475 	return 0;
9476 }
9477 
9478 int sched_cpu_deactivate(unsigned int cpu)
9479 {
9480 	struct rq *rq = cpu_rq(cpu);
9481 	struct rq_flags rf;
9482 	int ret;
9483 
9484 	/*
9485 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9486 	 * load balancing when not active
9487 	 */
9488 	nohz_balance_exit_idle(rq);
9489 
9490 	set_cpu_active(cpu, false);
9491 
9492 	/*
9493 	 * From this point forward, this CPU will refuse to run any task that
9494 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9495 	 * push those tasks away until this gets cleared, see
9496 	 * sched_cpu_dying().
9497 	 */
9498 	balance_push_set(cpu, true);
9499 
9500 	/*
9501 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9502 	 * preempt-disabled and RCU users of this state to go away such that
9503 	 * all new such users will observe it.
9504 	 *
9505 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9506 	 * ttwu_queue_cond() and is_cpu_allowed().
9507 	 *
9508 	 * Do sync before park smpboot threads to take care the rcu boost case.
9509 	 */
9510 	synchronize_rcu();
9511 
9512 	rq_lock_irqsave(rq, &rf);
9513 	if (rq->rd) {
9514 		update_rq_clock(rq);
9515 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9516 		set_rq_offline(rq);
9517 	}
9518 	rq_unlock_irqrestore(rq, &rf);
9519 
9520 #ifdef CONFIG_SCHED_SMT
9521 	/*
9522 	 * When going down, decrement the number of cores with SMT present.
9523 	 */
9524 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9525 		static_branch_dec_cpuslocked(&sched_smt_present);
9526 
9527 	sched_core_cpu_deactivate(cpu);
9528 #endif
9529 
9530 	if (!sched_smp_initialized)
9531 		return 0;
9532 
9533 	sched_update_numa(cpu, false);
9534 	ret = cpuset_cpu_inactive(cpu);
9535 	if (ret) {
9536 		balance_push_set(cpu, false);
9537 		set_cpu_active(cpu, true);
9538 		sched_update_numa(cpu, true);
9539 		return ret;
9540 	}
9541 	sched_domains_numa_masks_clear(cpu);
9542 	return 0;
9543 }
9544 
9545 static void sched_rq_cpu_starting(unsigned int cpu)
9546 {
9547 	struct rq *rq = cpu_rq(cpu);
9548 
9549 	rq->calc_load_update = calc_load_update;
9550 	update_max_interval();
9551 }
9552 
9553 int sched_cpu_starting(unsigned int cpu)
9554 {
9555 	sched_core_cpu_starting(cpu);
9556 	sched_rq_cpu_starting(cpu);
9557 	sched_tick_start(cpu);
9558 	return 0;
9559 }
9560 
9561 #ifdef CONFIG_HOTPLUG_CPU
9562 
9563 /*
9564  * Invoked immediately before the stopper thread is invoked to bring the
9565  * CPU down completely. At this point all per CPU kthreads except the
9566  * hotplug thread (current) and the stopper thread (inactive) have been
9567  * either parked or have been unbound from the outgoing CPU. Ensure that
9568  * any of those which might be on the way out are gone.
9569  *
9570  * If after this point a bound task is being woken on this CPU then the
9571  * responsible hotplug callback has failed to do it's job.
9572  * sched_cpu_dying() will catch it with the appropriate fireworks.
9573  */
9574 int sched_cpu_wait_empty(unsigned int cpu)
9575 {
9576 	balance_hotplug_wait();
9577 	return 0;
9578 }
9579 
9580 /*
9581  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9582  * might have. Called from the CPU stopper task after ensuring that the
9583  * stopper is the last running task on the CPU, so nr_active count is
9584  * stable. We need to take the teardown thread which is calling this into
9585  * account, so we hand in adjust = 1 to the load calculation.
9586  *
9587  * Also see the comment "Global load-average calculations".
9588  */
9589 static void calc_load_migrate(struct rq *rq)
9590 {
9591 	long delta = calc_load_fold_active(rq, 1);
9592 
9593 	if (delta)
9594 		atomic_long_add(delta, &calc_load_tasks);
9595 }
9596 
9597 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9598 {
9599 	struct task_struct *g, *p;
9600 	int cpu = cpu_of(rq);
9601 
9602 	lockdep_assert_rq_held(rq);
9603 
9604 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9605 	for_each_process_thread(g, p) {
9606 		if (task_cpu(p) != cpu)
9607 			continue;
9608 
9609 		if (!task_on_rq_queued(p))
9610 			continue;
9611 
9612 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9613 	}
9614 }
9615 
9616 int sched_cpu_dying(unsigned int cpu)
9617 {
9618 	struct rq *rq = cpu_rq(cpu);
9619 	struct rq_flags rf;
9620 
9621 	/* Handle pending wakeups and then migrate everything off */
9622 	sched_tick_stop(cpu);
9623 
9624 	rq_lock_irqsave(rq, &rf);
9625 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9626 		WARN(true, "Dying CPU not properly vacated!");
9627 		dump_rq_tasks(rq, KERN_WARNING);
9628 	}
9629 	rq_unlock_irqrestore(rq, &rf);
9630 
9631 	calc_load_migrate(rq);
9632 	update_max_interval();
9633 	hrtick_clear(rq);
9634 	sched_core_cpu_dying(cpu);
9635 	return 0;
9636 }
9637 #endif
9638 
9639 void __init sched_init_smp(void)
9640 {
9641 	sched_init_numa(NUMA_NO_NODE);
9642 
9643 	/*
9644 	 * There's no userspace yet to cause hotplug operations; hence all the
9645 	 * CPU masks are stable and all blatant races in the below code cannot
9646 	 * happen.
9647 	 */
9648 	mutex_lock(&sched_domains_mutex);
9649 	sched_init_domains(cpu_active_mask);
9650 	mutex_unlock(&sched_domains_mutex);
9651 
9652 	/* Move init over to a non-isolated CPU */
9653 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9654 		BUG();
9655 	current->flags &= ~PF_NO_SETAFFINITY;
9656 	sched_init_granularity();
9657 
9658 	init_sched_rt_class();
9659 	init_sched_dl_class();
9660 
9661 	sched_smp_initialized = true;
9662 }
9663 
9664 static int __init migration_init(void)
9665 {
9666 	sched_cpu_starting(smp_processor_id());
9667 	return 0;
9668 }
9669 early_initcall(migration_init);
9670 
9671 #else
9672 void __init sched_init_smp(void)
9673 {
9674 	sched_init_granularity();
9675 }
9676 #endif /* CONFIG_SMP */
9677 
9678 int in_sched_functions(unsigned long addr)
9679 {
9680 	return in_lock_functions(addr) ||
9681 		(addr >= (unsigned long)__sched_text_start
9682 		&& addr < (unsigned long)__sched_text_end);
9683 }
9684 
9685 #ifdef CONFIG_CGROUP_SCHED
9686 /*
9687  * Default task group.
9688  * Every task in system belongs to this group at bootup.
9689  */
9690 struct task_group root_task_group;
9691 LIST_HEAD(task_groups);
9692 
9693 /* Cacheline aligned slab cache for task_group */
9694 static struct kmem_cache *task_group_cache __read_mostly;
9695 #endif
9696 
9697 void __init sched_init(void)
9698 {
9699 	unsigned long ptr = 0;
9700 	int i;
9701 
9702 	/* Make sure the linker didn't screw up */
9703 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9704 	       &fair_sched_class != &rt_sched_class + 1 ||
9705 	       &rt_sched_class   != &dl_sched_class + 1);
9706 #ifdef CONFIG_SMP
9707 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9708 #endif
9709 
9710 	wait_bit_init();
9711 
9712 #ifdef CONFIG_FAIR_GROUP_SCHED
9713 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9714 #endif
9715 #ifdef CONFIG_RT_GROUP_SCHED
9716 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9717 #endif
9718 	if (ptr) {
9719 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9720 
9721 #ifdef CONFIG_FAIR_GROUP_SCHED
9722 		root_task_group.se = (struct sched_entity **)ptr;
9723 		ptr += nr_cpu_ids * sizeof(void **);
9724 
9725 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9726 		ptr += nr_cpu_ids * sizeof(void **);
9727 
9728 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9729 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9730 #endif /* CONFIG_FAIR_GROUP_SCHED */
9731 #ifdef CONFIG_RT_GROUP_SCHED
9732 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9733 		ptr += nr_cpu_ids * sizeof(void **);
9734 
9735 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9736 		ptr += nr_cpu_ids * sizeof(void **);
9737 
9738 #endif /* CONFIG_RT_GROUP_SCHED */
9739 	}
9740 
9741 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9742 
9743 #ifdef CONFIG_SMP
9744 	init_defrootdomain();
9745 #endif
9746 
9747 #ifdef CONFIG_RT_GROUP_SCHED
9748 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9749 			global_rt_period(), global_rt_runtime());
9750 #endif /* CONFIG_RT_GROUP_SCHED */
9751 
9752 #ifdef CONFIG_CGROUP_SCHED
9753 	task_group_cache = KMEM_CACHE(task_group, 0);
9754 
9755 	list_add(&root_task_group.list, &task_groups);
9756 	INIT_LIST_HEAD(&root_task_group.children);
9757 	INIT_LIST_HEAD(&root_task_group.siblings);
9758 	autogroup_init(&init_task);
9759 #endif /* CONFIG_CGROUP_SCHED */
9760 
9761 	for_each_possible_cpu(i) {
9762 		struct rq *rq;
9763 
9764 		rq = cpu_rq(i);
9765 		raw_spin_lock_init(&rq->__lock);
9766 		rq->nr_running = 0;
9767 		rq->calc_load_active = 0;
9768 		rq->calc_load_update = jiffies + LOAD_FREQ;
9769 		init_cfs_rq(&rq->cfs);
9770 		init_rt_rq(&rq->rt);
9771 		init_dl_rq(&rq->dl);
9772 #ifdef CONFIG_FAIR_GROUP_SCHED
9773 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9774 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9775 		/*
9776 		 * How much CPU bandwidth does root_task_group get?
9777 		 *
9778 		 * In case of task-groups formed thr' the cgroup filesystem, it
9779 		 * gets 100% of the CPU resources in the system. This overall
9780 		 * system CPU resource is divided among the tasks of
9781 		 * root_task_group and its child task-groups in a fair manner,
9782 		 * based on each entity's (task or task-group's) weight
9783 		 * (se->load.weight).
9784 		 *
9785 		 * In other words, if root_task_group has 10 tasks of weight
9786 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9787 		 * then A0's share of the CPU resource is:
9788 		 *
9789 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9790 		 *
9791 		 * We achieve this by letting root_task_group's tasks sit
9792 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9793 		 */
9794 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9795 #endif /* CONFIG_FAIR_GROUP_SCHED */
9796 
9797 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9798 #ifdef CONFIG_RT_GROUP_SCHED
9799 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9800 #endif
9801 #ifdef CONFIG_SMP
9802 		rq->sd = NULL;
9803 		rq->rd = NULL;
9804 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9805 		rq->balance_callback = &balance_push_callback;
9806 		rq->active_balance = 0;
9807 		rq->next_balance = jiffies;
9808 		rq->push_cpu = 0;
9809 		rq->cpu = i;
9810 		rq->online = 0;
9811 		rq->idle_stamp = 0;
9812 		rq->avg_idle = 2*sysctl_sched_migration_cost;
9813 		rq->wake_stamp = jiffies;
9814 		rq->wake_avg_idle = rq->avg_idle;
9815 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9816 
9817 		INIT_LIST_HEAD(&rq->cfs_tasks);
9818 
9819 		rq_attach_root(rq, &def_root_domain);
9820 #ifdef CONFIG_NO_HZ_COMMON
9821 		rq->last_blocked_load_update_tick = jiffies;
9822 		atomic_set(&rq->nohz_flags, 0);
9823 
9824 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9825 #endif
9826 #ifdef CONFIG_HOTPLUG_CPU
9827 		rcuwait_init(&rq->hotplug_wait);
9828 #endif
9829 #endif /* CONFIG_SMP */
9830 		hrtick_rq_init(rq);
9831 		atomic_set(&rq->nr_iowait, 0);
9832 
9833 #ifdef CONFIG_SCHED_CORE
9834 		rq->core = rq;
9835 		rq->core_pick = NULL;
9836 		rq->core_enabled = 0;
9837 		rq->core_tree = RB_ROOT;
9838 		rq->core_forceidle_count = 0;
9839 		rq->core_forceidle_occupation = 0;
9840 		rq->core_forceidle_start = 0;
9841 
9842 		rq->core_cookie = 0UL;
9843 #endif
9844 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
9845 	}
9846 
9847 	set_load_weight(&init_task, false);
9848 
9849 	/*
9850 	 * The boot idle thread does lazy MMU switching as well:
9851 	 */
9852 	mmgrab(&init_mm);
9853 	enter_lazy_tlb(&init_mm, current);
9854 
9855 	/*
9856 	 * The idle task doesn't need the kthread struct to function, but it
9857 	 * is dressed up as a per-CPU kthread and thus needs to play the part
9858 	 * if we want to avoid special-casing it in code that deals with per-CPU
9859 	 * kthreads.
9860 	 */
9861 	WARN_ON(!set_kthread_struct(current));
9862 
9863 	/*
9864 	 * Make us the idle thread. Technically, schedule() should not be
9865 	 * called from this thread, however somewhere below it might be,
9866 	 * but because we are the idle thread, we just pick up running again
9867 	 * when this runqueue becomes "idle".
9868 	 */
9869 	init_idle(current, smp_processor_id());
9870 
9871 	calc_load_update = jiffies + LOAD_FREQ;
9872 
9873 #ifdef CONFIG_SMP
9874 	idle_thread_set_boot_cpu();
9875 	balance_push_set(smp_processor_id(), false);
9876 #endif
9877 	init_sched_fair_class();
9878 
9879 	psi_init();
9880 
9881 	init_uclamp();
9882 
9883 	preempt_dynamic_init();
9884 
9885 	scheduler_running = 1;
9886 }
9887 
9888 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9889 
9890 void __might_sleep(const char *file, int line)
9891 {
9892 	unsigned int state = get_current_state();
9893 	/*
9894 	 * Blocking primitives will set (and therefore destroy) current->state,
9895 	 * since we will exit with TASK_RUNNING make sure we enter with it,
9896 	 * otherwise we will destroy state.
9897 	 */
9898 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9899 			"do not call blocking ops when !TASK_RUNNING; "
9900 			"state=%x set at [<%p>] %pS\n", state,
9901 			(void *)current->task_state_change,
9902 			(void *)current->task_state_change);
9903 
9904 	__might_resched(file, line, 0);
9905 }
9906 EXPORT_SYMBOL(__might_sleep);
9907 
9908 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
9909 {
9910 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
9911 		return;
9912 
9913 	if (preempt_count() == preempt_offset)
9914 		return;
9915 
9916 	pr_err("Preemption disabled at:");
9917 	print_ip_sym(KERN_ERR, ip);
9918 }
9919 
9920 static inline bool resched_offsets_ok(unsigned int offsets)
9921 {
9922 	unsigned int nested = preempt_count();
9923 
9924 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
9925 
9926 	return nested == offsets;
9927 }
9928 
9929 void __might_resched(const char *file, int line, unsigned int offsets)
9930 {
9931 	/* Ratelimiting timestamp: */
9932 	static unsigned long prev_jiffy;
9933 
9934 	unsigned long preempt_disable_ip;
9935 
9936 	/* WARN_ON_ONCE() by default, no rate limit required: */
9937 	rcu_sleep_check();
9938 
9939 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
9940 	     !is_idle_task(current) && !current->non_block_count) ||
9941 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9942 	    oops_in_progress)
9943 		return;
9944 
9945 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9946 		return;
9947 	prev_jiffy = jiffies;
9948 
9949 	/* Save this before calling printk(), since that will clobber it: */
9950 	preempt_disable_ip = get_preempt_disable_ip(current);
9951 
9952 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9953 	       file, line);
9954 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9955 	       in_atomic(), irqs_disabled(), current->non_block_count,
9956 	       current->pid, current->comm);
9957 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
9958 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
9959 
9960 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
9961 		pr_err("RCU nest depth: %d, expected: %u\n",
9962 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
9963 	}
9964 
9965 	if (task_stack_end_corrupted(current))
9966 		pr_emerg("Thread overran stack, or stack corrupted\n");
9967 
9968 	debug_show_held_locks(current);
9969 	if (irqs_disabled())
9970 		print_irqtrace_events(current);
9971 
9972 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
9973 				 preempt_disable_ip);
9974 
9975 	dump_stack();
9976 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9977 }
9978 EXPORT_SYMBOL(__might_resched);
9979 
9980 void __cant_sleep(const char *file, int line, int preempt_offset)
9981 {
9982 	static unsigned long prev_jiffy;
9983 
9984 	if (irqs_disabled())
9985 		return;
9986 
9987 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9988 		return;
9989 
9990 	if (preempt_count() > preempt_offset)
9991 		return;
9992 
9993 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9994 		return;
9995 	prev_jiffy = jiffies;
9996 
9997 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9998 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9999 			in_atomic(), irqs_disabled(),
10000 			current->pid, current->comm);
10001 
10002 	debug_show_held_locks(current);
10003 	dump_stack();
10004 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10005 }
10006 EXPORT_SYMBOL_GPL(__cant_sleep);
10007 
10008 #ifdef CONFIG_SMP
10009 void __cant_migrate(const char *file, int line)
10010 {
10011 	static unsigned long prev_jiffy;
10012 
10013 	if (irqs_disabled())
10014 		return;
10015 
10016 	if (is_migration_disabled(current))
10017 		return;
10018 
10019 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10020 		return;
10021 
10022 	if (preempt_count() > 0)
10023 		return;
10024 
10025 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10026 		return;
10027 	prev_jiffy = jiffies;
10028 
10029 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10030 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10031 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
10032 	       current->pid, current->comm);
10033 
10034 	debug_show_held_locks(current);
10035 	dump_stack();
10036 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10037 }
10038 EXPORT_SYMBOL_GPL(__cant_migrate);
10039 #endif
10040 #endif
10041 
10042 #ifdef CONFIG_MAGIC_SYSRQ
10043 void normalize_rt_tasks(void)
10044 {
10045 	struct task_struct *g, *p;
10046 	struct sched_attr attr = {
10047 		.sched_policy = SCHED_NORMAL,
10048 	};
10049 
10050 	read_lock(&tasklist_lock);
10051 	for_each_process_thread(g, p) {
10052 		/*
10053 		 * Only normalize user tasks:
10054 		 */
10055 		if (p->flags & PF_KTHREAD)
10056 			continue;
10057 
10058 		p->se.exec_start = 0;
10059 		schedstat_set(p->stats.wait_start,  0);
10060 		schedstat_set(p->stats.sleep_start, 0);
10061 		schedstat_set(p->stats.block_start, 0);
10062 
10063 		if (!dl_task(p) && !rt_task(p)) {
10064 			/*
10065 			 * Renice negative nice level userspace
10066 			 * tasks back to 0:
10067 			 */
10068 			if (task_nice(p) < 0)
10069 				set_user_nice(p, 0);
10070 			continue;
10071 		}
10072 
10073 		__sched_setscheduler(p, &attr, false, false);
10074 	}
10075 	read_unlock(&tasklist_lock);
10076 }
10077 
10078 #endif /* CONFIG_MAGIC_SYSRQ */
10079 
10080 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10081 /*
10082  * These functions are only useful for the IA64 MCA handling, or kdb.
10083  *
10084  * They can only be called when the whole system has been
10085  * stopped - every CPU needs to be quiescent, and no scheduling
10086  * activity can take place. Using them for anything else would
10087  * be a serious bug, and as a result, they aren't even visible
10088  * under any other configuration.
10089  */
10090 
10091 /**
10092  * curr_task - return the current task for a given CPU.
10093  * @cpu: the processor in question.
10094  *
10095  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10096  *
10097  * Return: The current task for @cpu.
10098  */
10099 struct task_struct *curr_task(int cpu)
10100 {
10101 	return cpu_curr(cpu);
10102 }
10103 
10104 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10105 
10106 #ifdef CONFIG_IA64
10107 /**
10108  * ia64_set_curr_task - set the current task for a given CPU.
10109  * @cpu: the processor in question.
10110  * @p: the task pointer to set.
10111  *
10112  * Description: This function must only be used when non-maskable interrupts
10113  * are serviced on a separate stack. It allows the architecture to switch the
10114  * notion of the current task on a CPU in a non-blocking manner. This function
10115  * must be called with all CPU's synchronized, and interrupts disabled, the
10116  * and caller must save the original value of the current task (see
10117  * curr_task() above) and restore that value before reenabling interrupts and
10118  * re-starting the system.
10119  *
10120  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10121  */
10122 void ia64_set_curr_task(int cpu, struct task_struct *p)
10123 {
10124 	cpu_curr(cpu) = p;
10125 }
10126 
10127 #endif
10128 
10129 #ifdef CONFIG_CGROUP_SCHED
10130 /* task_group_lock serializes the addition/removal of task groups */
10131 static DEFINE_SPINLOCK(task_group_lock);
10132 
10133 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10134 					    struct task_group *parent)
10135 {
10136 #ifdef CONFIG_UCLAMP_TASK_GROUP
10137 	enum uclamp_id clamp_id;
10138 
10139 	for_each_clamp_id(clamp_id) {
10140 		uclamp_se_set(&tg->uclamp_req[clamp_id],
10141 			      uclamp_none(clamp_id), false);
10142 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10143 	}
10144 #endif
10145 }
10146 
10147 static void sched_free_group(struct task_group *tg)
10148 {
10149 	free_fair_sched_group(tg);
10150 	free_rt_sched_group(tg);
10151 	autogroup_free(tg);
10152 	kmem_cache_free(task_group_cache, tg);
10153 }
10154 
10155 static void sched_free_group_rcu(struct rcu_head *rcu)
10156 {
10157 	sched_free_group(container_of(rcu, struct task_group, rcu));
10158 }
10159 
10160 static void sched_unregister_group(struct task_group *tg)
10161 {
10162 	unregister_fair_sched_group(tg);
10163 	unregister_rt_sched_group(tg);
10164 	/*
10165 	 * We have to wait for yet another RCU grace period to expire, as
10166 	 * print_cfs_stats() might run concurrently.
10167 	 */
10168 	call_rcu(&tg->rcu, sched_free_group_rcu);
10169 }
10170 
10171 /* allocate runqueue etc for a new task group */
10172 struct task_group *sched_create_group(struct task_group *parent)
10173 {
10174 	struct task_group *tg;
10175 
10176 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10177 	if (!tg)
10178 		return ERR_PTR(-ENOMEM);
10179 
10180 	if (!alloc_fair_sched_group(tg, parent))
10181 		goto err;
10182 
10183 	if (!alloc_rt_sched_group(tg, parent))
10184 		goto err;
10185 
10186 	alloc_uclamp_sched_group(tg, parent);
10187 
10188 	return tg;
10189 
10190 err:
10191 	sched_free_group(tg);
10192 	return ERR_PTR(-ENOMEM);
10193 }
10194 
10195 void sched_online_group(struct task_group *tg, struct task_group *parent)
10196 {
10197 	unsigned long flags;
10198 
10199 	spin_lock_irqsave(&task_group_lock, flags);
10200 	list_add_rcu(&tg->list, &task_groups);
10201 
10202 	/* Root should already exist: */
10203 	WARN_ON(!parent);
10204 
10205 	tg->parent = parent;
10206 	INIT_LIST_HEAD(&tg->children);
10207 	list_add_rcu(&tg->siblings, &parent->children);
10208 	spin_unlock_irqrestore(&task_group_lock, flags);
10209 
10210 	online_fair_sched_group(tg);
10211 }
10212 
10213 /* rcu callback to free various structures associated with a task group */
10214 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10215 {
10216 	/* Now it should be safe to free those cfs_rqs: */
10217 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10218 }
10219 
10220 void sched_destroy_group(struct task_group *tg)
10221 {
10222 	/* Wait for possible concurrent references to cfs_rqs complete: */
10223 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10224 }
10225 
10226 void sched_release_group(struct task_group *tg)
10227 {
10228 	unsigned long flags;
10229 
10230 	/*
10231 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10232 	 * sched_cfs_period_timer()).
10233 	 *
10234 	 * For this to be effective, we have to wait for all pending users of
10235 	 * this task group to leave their RCU critical section to ensure no new
10236 	 * user will see our dying task group any more. Specifically ensure
10237 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10238 	 *
10239 	 * We therefore defer calling unregister_fair_sched_group() to
10240 	 * sched_unregister_group() which is guarantied to get called only after the
10241 	 * current RCU grace period has expired.
10242 	 */
10243 	spin_lock_irqsave(&task_group_lock, flags);
10244 	list_del_rcu(&tg->list);
10245 	list_del_rcu(&tg->siblings);
10246 	spin_unlock_irqrestore(&task_group_lock, flags);
10247 }
10248 
10249 static void sched_change_group(struct task_struct *tsk)
10250 {
10251 	struct task_group *tg;
10252 
10253 	/*
10254 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10255 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10256 	 * to prevent lockdep warnings.
10257 	 */
10258 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10259 			  struct task_group, css);
10260 	tg = autogroup_task_group(tsk, tg);
10261 	tsk->sched_task_group = tg;
10262 
10263 #ifdef CONFIG_FAIR_GROUP_SCHED
10264 	if (tsk->sched_class->task_change_group)
10265 		tsk->sched_class->task_change_group(tsk);
10266 	else
10267 #endif
10268 		set_task_rq(tsk, task_cpu(tsk));
10269 }
10270 
10271 /*
10272  * Change task's runqueue when it moves between groups.
10273  *
10274  * The caller of this function should have put the task in its new group by
10275  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10276  * its new group.
10277  */
10278 void sched_move_task(struct task_struct *tsk)
10279 {
10280 	int queued, running, queue_flags =
10281 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10282 	struct rq_flags rf;
10283 	struct rq *rq;
10284 
10285 	rq = task_rq_lock(tsk, &rf);
10286 	update_rq_clock(rq);
10287 
10288 	running = task_current(rq, tsk);
10289 	queued = task_on_rq_queued(tsk);
10290 
10291 	if (queued)
10292 		dequeue_task(rq, tsk, queue_flags);
10293 	if (running)
10294 		put_prev_task(rq, tsk);
10295 
10296 	sched_change_group(tsk);
10297 
10298 	if (queued)
10299 		enqueue_task(rq, tsk, queue_flags);
10300 	if (running) {
10301 		set_next_task(rq, tsk);
10302 		/*
10303 		 * After changing group, the running task may have joined a
10304 		 * throttled one but it's still the running task. Trigger a
10305 		 * resched to make sure that task can still run.
10306 		 */
10307 		resched_curr(rq);
10308 	}
10309 
10310 	task_rq_unlock(rq, tsk, &rf);
10311 }
10312 
10313 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10314 {
10315 	return css ? container_of(css, struct task_group, css) : NULL;
10316 }
10317 
10318 static struct cgroup_subsys_state *
10319 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10320 {
10321 	struct task_group *parent = css_tg(parent_css);
10322 	struct task_group *tg;
10323 
10324 	if (!parent) {
10325 		/* This is early initialization for the top cgroup */
10326 		return &root_task_group.css;
10327 	}
10328 
10329 	tg = sched_create_group(parent);
10330 	if (IS_ERR(tg))
10331 		return ERR_PTR(-ENOMEM);
10332 
10333 	return &tg->css;
10334 }
10335 
10336 /* Expose task group only after completing cgroup initialization */
10337 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10338 {
10339 	struct task_group *tg = css_tg(css);
10340 	struct task_group *parent = css_tg(css->parent);
10341 
10342 	if (parent)
10343 		sched_online_group(tg, parent);
10344 
10345 #ifdef CONFIG_UCLAMP_TASK_GROUP
10346 	/* Propagate the effective uclamp value for the new group */
10347 	mutex_lock(&uclamp_mutex);
10348 	rcu_read_lock();
10349 	cpu_util_update_eff(css);
10350 	rcu_read_unlock();
10351 	mutex_unlock(&uclamp_mutex);
10352 #endif
10353 
10354 	return 0;
10355 }
10356 
10357 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10358 {
10359 	struct task_group *tg = css_tg(css);
10360 
10361 	sched_release_group(tg);
10362 }
10363 
10364 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10365 {
10366 	struct task_group *tg = css_tg(css);
10367 
10368 	/*
10369 	 * Relies on the RCU grace period between css_released() and this.
10370 	 */
10371 	sched_unregister_group(tg);
10372 }
10373 
10374 #ifdef CONFIG_RT_GROUP_SCHED
10375 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10376 {
10377 	struct task_struct *task;
10378 	struct cgroup_subsys_state *css;
10379 
10380 	cgroup_taskset_for_each(task, css, tset) {
10381 		if (!sched_rt_can_attach(css_tg(css), task))
10382 			return -EINVAL;
10383 	}
10384 	return 0;
10385 }
10386 #endif
10387 
10388 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10389 {
10390 	struct task_struct *task;
10391 	struct cgroup_subsys_state *css;
10392 
10393 	cgroup_taskset_for_each(task, css, tset)
10394 		sched_move_task(task);
10395 }
10396 
10397 #ifdef CONFIG_UCLAMP_TASK_GROUP
10398 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10399 {
10400 	struct cgroup_subsys_state *top_css = css;
10401 	struct uclamp_se *uc_parent = NULL;
10402 	struct uclamp_se *uc_se = NULL;
10403 	unsigned int eff[UCLAMP_CNT];
10404 	enum uclamp_id clamp_id;
10405 	unsigned int clamps;
10406 
10407 	lockdep_assert_held(&uclamp_mutex);
10408 	SCHED_WARN_ON(!rcu_read_lock_held());
10409 
10410 	css_for_each_descendant_pre(css, top_css) {
10411 		uc_parent = css_tg(css)->parent
10412 			? css_tg(css)->parent->uclamp : NULL;
10413 
10414 		for_each_clamp_id(clamp_id) {
10415 			/* Assume effective clamps matches requested clamps */
10416 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10417 			/* Cap effective clamps with parent's effective clamps */
10418 			if (uc_parent &&
10419 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10420 				eff[clamp_id] = uc_parent[clamp_id].value;
10421 			}
10422 		}
10423 		/* Ensure protection is always capped by limit */
10424 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10425 
10426 		/* Propagate most restrictive effective clamps */
10427 		clamps = 0x0;
10428 		uc_se = css_tg(css)->uclamp;
10429 		for_each_clamp_id(clamp_id) {
10430 			if (eff[clamp_id] == uc_se[clamp_id].value)
10431 				continue;
10432 			uc_se[clamp_id].value = eff[clamp_id];
10433 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10434 			clamps |= (0x1 << clamp_id);
10435 		}
10436 		if (!clamps) {
10437 			css = css_rightmost_descendant(css);
10438 			continue;
10439 		}
10440 
10441 		/* Immediately update descendants RUNNABLE tasks */
10442 		uclamp_update_active_tasks(css);
10443 	}
10444 }
10445 
10446 /*
10447  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10448  * C expression. Since there is no way to convert a macro argument (N) into a
10449  * character constant, use two levels of macros.
10450  */
10451 #define _POW10(exp) ((unsigned int)1e##exp)
10452 #define POW10(exp) _POW10(exp)
10453 
10454 struct uclamp_request {
10455 #define UCLAMP_PERCENT_SHIFT	2
10456 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10457 	s64 percent;
10458 	u64 util;
10459 	int ret;
10460 };
10461 
10462 static inline struct uclamp_request
10463 capacity_from_percent(char *buf)
10464 {
10465 	struct uclamp_request req = {
10466 		.percent = UCLAMP_PERCENT_SCALE,
10467 		.util = SCHED_CAPACITY_SCALE,
10468 		.ret = 0,
10469 	};
10470 
10471 	buf = strim(buf);
10472 	if (strcmp(buf, "max")) {
10473 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10474 					     &req.percent);
10475 		if (req.ret)
10476 			return req;
10477 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10478 			req.ret = -ERANGE;
10479 			return req;
10480 		}
10481 
10482 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10483 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10484 	}
10485 
10486 	return req;
10487 }
10488 
10489 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10490 				size_t nbytes, loff_t off,
10491 				enum uclamp_id clamp_id)
10492 {
10493 	struct uclamp_request req;
10494 	struct task_group *tg;
10495 
10496 	req = capacity_from_percent(buf);
10497 	if (req.ret)
10498 		return req.ret;
10499 
10500 	static_branch_enable(&sched_uclamp_used);
10501 
10502 	mutex_lock(&uclamp_mutex);
10503 	rcu_read_lock();
10504 
10505 	tg = css_tg(of_css(of));
10506 	if (tg->uclamp_req[clamp_id].value != req.util)
10507 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10508 
10509 	/*
10510 	 * Because of not recoverable conversion rounding we keep track of the
10511 	 * exact requested value
10512 	 */
10513 	tg->uclamp_pct[clamp_id] = req.percent;
10514 
10515 	/* Update effective clamps to track the most restrictive value */
10516 	cpu_util_update_eff(of_css(of));
10517 
10518 	rcu_read_unlock();
10519 	mutex_unlock(&uclamp_mutex);
10520 
10521 	return nbytes;
10522 }
10523 
10524 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10525 				    char *buf, size_t nbytes,
10526 				    loff_t off)
10527 {
10528 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10529 }
10530 
10531 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10532 				    char *buf, size_t nbytes,
10533 				    loff_t off)
10534 {
10535 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10536 }
10537 
10538 static inline void cpu_uclamp_print(struct seq_file *sf,
10539 				    enum uclamp_id clamp_id)
10540 {
10541 	struct task_group *tg;
10542 	u64 util_clamp;
10543 	u64 percent;
10544 	u32 rem;
10545 
10546 	rcu_read_lock();
10547 	tg = css_tg(seq_css(sf));
10548 	util_clamp = tg->uclamp_req[clamp_id].value;
10549 	rcu_read_unlock();
10550 
10551 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10552 		seq_puts(sf, "max\n");
10553 		return;
10554 	}
10555 
10556 	percent = tg->uclamp_pct[clamp_id];
10557 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10558 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10559 }
10560 
10561 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10562 {
10563 	cpu_uclamp_print(sf, UCLAMP_MIN);
10564 	return 0;
10565 }
10566 
10567 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10568 {
10569 	cpu_uclamp_print(sf, UCLAMP_MAX);
10570 	return 0;
10571 }
10572 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10573 
10574 #ifdef CONFIG_FAIR_GROUP_SCHED
10575 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10576 				struct cftype *cftype, u64 shareval)
10577 {
10578 	if (shareval > scale_load_down(ULONG_MAX))
10579 		shareval = MAX_SHARES;
10580 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10581 }
10582 
10583 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10584 			       struct cftype *cft)
10585 {
10586 	struct task_group *tg = css_tg(css);
10587 
10588 	return (u64) scale_load_down(tg->shares);
10589 }
10590 
10591 #ifdef CONFIG_CFS_BANDWIDTH
10592 static DEFINE_MUTEX(cfs_constraints_mutex);
10593 
10594 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10595 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10596 /* More than 203 days if BW_SHIFT equals 20. */
10597 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10598 
10599 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10600 
10601 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10602 				u64 burst)
10603 {
10604 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10605 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10606 
10607 	if (tg == &root_task_group)
10608 		return -EINVAL;
10609 
10610 	/*
10611 	 * Ensure we have at some amount of bandwidth every period.  This is
10612 	 * to prevent reaching a state of large arrears when throttled via
10613 	 * entity_tick() resulting in prolonged exit starvation.
10614 	 */
10615 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10616 		return -EINVAL;
10617 
10618 	/*
10619 	 * Likewise, bound things on the other side by preventing insane quota
10620 	 * periods.  This also allows us to normalize in computing quota
10621 	 * feasibility.
10622 	 */
10623 	if (period > max_cfs_quota_period)
10624 		return -EINVAL;
10625 
10626 	/*
10627 	 * Bound quota to defend quota against overflow during bandwidth shift.
10628 	 */
10629 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10630 		return -EINVAL;
10631 
10632 	if (quota != RUNTIME_INF && (burst > quota ||
10633 				     burst + quota > max_cfs_runtime))
10634 		return -EINVAL;
10635 
10636 	/*
10637 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10638 	 * unthrottle_offline_cfs_rqs().
10639 	 */
10640 	cpus_read_lock();
10641 	mutex_lock(&cfs_constraints_mutex);
10642 	ret = __cfs_schedulable(tg, period, quota);
10643 	if (ret)
10644 		goto out_unlock;
10645 
10646 	runtime_enabled = quota != RUNTIME_INF;
10647 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10648 	/*
10649 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10650 	 * before making related changes, and on->off must occur afterwards
10651 	 */
10652 	if (runtime_enabled && !runtime_was_enabled)
10653 		cfs_bandwidth_usage_inc();
10654 	raw_spin_lock_irq(&cfs_b->lock);
10655 	cfs_b->period = ns_to_ktime(period);
10656 	cfs_b->quota = quota;
10657 	cfs_b->burst = burst;
10658 
10659 	__refill_cfs_bandwidth_runtime(cfs_b);
10660 
10661 	/* Restart the period timer (if active) to handle new period expiry: */
10662 	if (runtime_enabled)
10663 		start_cfs_bandwidth(cfs_b);
10664 
10665 	raw_spin_unlock_irq(&cfs_b->lock);
10666 
10667 	for_each_online_cpu(i) {
10668 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10669 		struct rq *rq = cfs_rq->rq;
10670 		struct rq_flags rf;
10671 
10672 		rq_lock_irq(rq, &rf);
10673 		cfs_rq->runtime_enabled = runtime_enabled;
10674 		cfs_rq->runtime_remaining = 0;
10675 
10676 		if (cfs_rq->throttled)
10677 			unthrottle_cfs_rq(cfs_rq);
10678 		rq_unlock_irq(rq, &rf);
10679 	}
10680 	if (runtime_was_enabled && !runtime_enabled)
10681 		cfs_bandwidth_usage_dec();
10682 out_unlock:
10683 	mutex_unlock(&cfs_constraints_mutex);
10684 	cpus_read_unlock();
10685 
10686 	return ret;
10687 }
10688 
10689 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10690 {
10691 	u64 quota, period, burst;
10692 
10693 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10694 	burst = tg->cfs_bandwidth.burst;
10695 	if (cfs_quota_us < 0)
10696 		quota = RUNTIME_INF;
10697 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10698 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10699 	else
10700 		return -EINVAL;
10701 
10702 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10703 }
10704 
10705 static long tg_get_cfs_quota(struct task_group *tg)
10706 {
10707 	u64 quota_us;
10708 
10709 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10710 		return -1;
10711 
10712 	quota_us = tg->cfs_bandwidth.quota;
10713 	do_div(quota_us, NSEC_PER_USEC);
10714 
10715 	return quota_us;
10716 }
10717 
10718 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10719 {
10720 	u64 quota, period, burst;
10721 
10722 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10723 		return -EINVAL;
10724 
10725 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10726 	quota = tg->cfs_bandwidth.quota;
10727 	burst = tg->cfs_bandwidth.burst;
10728 
10729 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10730 }
10731 
10732 static long tg_get_cfs_period(struct task_group *tg)
10733 {
10734 	u64 cfs_period_us;
10735 
10736 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10737 	do_div(cfs_period_us, NSEC_PER_USEC);
10738 
10739 	return cfs_period_us;
10740 }
10741 
10742 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10743 {
10744 	u64 quota, period, burst;
10745 
10746 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10747 		return -EINVAL;
10748 
10749 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10750 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10751 	quota = tg->cfs_bandwidth.quota;
10752 
10753 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10754 }
10755 
10756 static long tg_get_cfs_burst(struct task_group *tg)
10757 {
10758 	u64 burst_us;
10759 
10760 	burst_us = tg->cfs_bandwidth.burst;
10761 	do_div(burst_us, NSEC_PER_USEC);
10762 
10763 	return burst_us;
10764 }
10765 
10766 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10767 				  struct cftype *cft)
10768 {
10769 	return tg_get_cfs_quota(css_tg(css));
10770 }
10771 
10772 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10773 				   struct cftype *cftype, s64 cfs_quota_us)
10774 {
10775 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10776 }
10777 
10778 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10779 				   struct cftype *cft)
10780 {
10781 	return tg_get_cfs_period(css_tg(css));
10782 }
10783 
10784 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10785 				    struct cftype *cftype, u64 cfs_period_us)
10786 {
10787 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10788 }
10789 
10790 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10791 				  struct cftype *cft)
10792 {
10793 	return tg_get_cfs_burst(css_tg(css));
10794 }
10795 
10796 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10797 				   struct cftype *cftype, u64 cfs_burst_us)
10798 {
10799 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10800 }
10801 
10802 struct cfs_schedulable_data {
10803 	struct task_group *tg;
10804 	u64 period, quota;
10805 };
10806 
10807 /*
10808  * normalize group quota/period to be quota/max_period
10809  * note: units are usecs
10810  */
10811 static u64 normalize_cfs_quota(struct task_group *tg,
10812 			       struct cfs_schedulable_data *d)
10813 {
10814 	u64 quota, period;
10815 
10816 	if (tg == d->tg) {
10817 		period = d->period;
10818 		quota = d->quota;
10819 	} else {
10820 		period = tg_get_cfs_period(tg);
10821 		quota = tg_get_cfs_quota(tg);
10822 	}
10823 
10824 	/* note: these should typically be equivalent */
10825 	if (quota == RUNTIME_INF || quota == -1)
10826 		return RUNTIME_INF;
10827 
10828 	return to_ratio(period, quota);
10829 }
10830 
10831 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10832 {
10833 	struct cfs_schedulable_data *d = data;
10834 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10835 	s64 quota = 0, parent_quota = -1;
10836 
10837 	if (!tg->parent) {
10838 		quota = RUNTIME_INF;
10839 	} else {
10840 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10841 
10842 		quota = normalize_cfs_quota(tg, d);
10843 		parent_quota = parent_b->hierarchical_quota;
10844 
10845 		/*
10846 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10847 		 * always take the min.  On cgroup1, only inherit when no
10848 		 * limit is set:
10849 		 */
10850 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10851 			quota = min(quota, parent_quota);
10852 		} else {
10853 			if (quota == RUNTIME_INF)
10854 				quota = parent_quota;
10855 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10856 				return -EINVAL;
10857 		}
10858 	}
10859 	cfs_b->hierarchical_quota = quota;
10860 
10861 	return 0;
10862 }
10863 
10864 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10865 {
10866 	int ret;
10867 	struct cfs_schedulable_data data = {
10868 		.tg = tg,
10869 		.period = period,
10870 		.quota = quota,
10871 	};
10872 
10873 	if (quota != RUNTIME_INF) {
10874 		do_div(data.period, NSEC_PER_USEC);
10875 		do_div(data.quota, NSEC_PER_USEC);
10876 	}
10877 
10878 	rcu_read_lock();
10879 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10880 	rcu_read_unlock();
10881 
10882 	return ret;
10883 }
10884 
10885 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10886 {
10887 	struct task_group *tg = css_tg(seq_css(sf));
10888 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10889 
10890 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10891 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10892 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10893 
10894 	if (schedstat_enabled() && tg != &root_task_group) {
10895 		struct sched_statistics *stats;
10896 		u64 ws = 0;
10897 		int i;
10898 
10899 		for_each_possible_cpu(i) {
10900 			stats = __schedstats_from_se(tg->se[i]);
10901 			ws += schedstat_val(stats->wait_sum);
10902 		}
10903 
10904 		seq_printf(sf, "wait_sum %llu\n", ws);
10905 	}
10906 
10907 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10908 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10909 
10910 	return 0;
10911 }
10912 #endif /* CONFIG_CFS_BANDWIDTH */
10913 #endif /* CONFIG_FAIR_GROUP_SCHED */
10914 
10915 #ifdef CONFIG_RT_GROUP_SCHED
10916 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10917 				struct cftype *cft, s64 val)
10918 {
10919 	return sched_group_set_rt_runtime(css_tg(css), val);
10920 }
10921 
10922 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10923 			       struct cftype *cft)
10924 {
10925 	return sched_group_rt_runtime(css_tg(css));
10926 }
10927 
10928 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10929 				    struct cftype *cftype, u64 rt_period_us)
10930 {
10931 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
10932 }
10933 
10934 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10935 				   struct cftype *cft)
10936 {
10937 	return sched_group_rt_period(css_tg(css));
10938 }
10939 #endif /* CONFIG_RT_GROUP_SCHED */
10940 
10941 #ifdef CONFIG_FAIR_GROUP_SCHED
10942 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10943 			       struct cftype *cft)
10944 {
10945 	return css_tg(css)->idle;
10946 }
10947 
10948 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10949 				struct cftype *cft, s64 idle)
10950 {
10951 	return sched_group_set_idle(css_tg(css), idle);
10952 }
10953 #endif
10954 
10955 static struct cftype cpu_legacy_files[] = {
10956 #ifdef CONFIG_FAIR_GROUP_SCHED
10957 	{
10958 		.name = "shares",
10959 		.read_u64 = cpu_shares_read_u64,
10960 		.write_u64 = cpu_shares_write_u64,
10961 	},
10962 	{
10963 		.name = "idle",
10964 		.read_s64 = cpu_idle_read_s64,
10965 		.write_s64 = cpu_idle_write_s64,
10966 	},
10967 #endif
10968 #ifdef CONFIG_CFS_BANDWIDTH
10969 	{
10970 		.name = "cfs_quota_us",
10971 		.read_s64 = cpu_cfs_quota_read_s64,
10972 		.write_s64 = cpu_cfs_quota_write_s64,
10973 	},
10974 	{
10975 		.name = "cfs_period_us",
10976 		.read_u64 = cpu_cfs_period_read_u64,
10977 		.write_u64 = cpu_cfs_period_write_u64,
10978 	},
10979 	{
10980 		.name = "cfs_burst_us",
10981 		.read_u64 = cpu_cfs_burst_read_u64,
10982 		.write_u64 = cpu_cfs_burst_write_u64,
10983 	},
10984 	{
10985 		.name = "stat",
10986 		.seq_show = cpu_cfs_stat_show,
10987 	},
10988 #endif
10989 #ifdef CONFIG_RT_GROUP_SCHED
10990 	{
10991 		.name = "rt_runtime_us",
10992 		.read_s64 = cpu_rt_runtime_read,
10993 		.write_s64 = cpu_rt_runtime_write,
10994 	},
10995 	{
10996 		.name = "rt_period_us",
10997 		.read_u64 = cpu_rt_period_read_uint,
10998 		.write_u64 = cpu_rt_period_write_uint,
10999 	},
11000 #endif
11001 #ifdef CONFIG_UCLAMP_TASK_GROUP
11002 	{
11003 		.name = "uclamp.min",
11004 		.flags = CFTYPE_NOT_ON_ROOT,
11005 		.seq_show = cpu_uclamp_min_show,
11006 		.write = cpu_uclamp_min_write,
11007 	},
11008 	{
11009 		.name = "uclamp.max",
11010 		.flags = CFTYPE_NOT_ON_ROOT,
11011 		.seq_show = cpu_uclamp_max_show,
11012 		.write = cpu_uclamp_max_write,
11013 	},
11014 #endif
11015 	{ }	/* Terminate */
11016 };
11017 
11018 static int cpu_extra_stat_show(struct seq_file *sf,
11019 			       struct cgroup_subsys_state *css)
11020 {
11021 #ifdef CONFIG_CFS_BANDWIDTH
11022 	{
11023 		struct task_group *tg = css_tg(css);
11024 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11025 		u64 throttled_usec, burst_usec;
11026 
11027 		throttled_usec = cfs_b->throttled_time;
11028 		do_div(throttled_usec, NSEC_PER_USEC);
11029 		burst_usec = cfs_b->burst_time;
11030 		do_div(burst_usec, NSEC_PER_USEC);
11031 
11032 		seq_printf(sf, "nr_periods %d\n"
11033 			   "nr_throttled %d\n"
11034 			   "throttled_usec %llu\n"
11035 			   "nr_bursts %d\n"
11036 			   "burst_usec %llu\n",
11037 			   cfs_b->nr_periods, cfs_b->nr_throttled,
11038 			   throttled_usec, cfs_b->nr_burst, burst_usec);
11039 	}
11040 #endif
11041 	return 0;
11042 }
11043 
11044 #ifdef CONFIG_FAIR_GROUP_SCHED
11045 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11046 			       struct cftype *cft)
11047 {
11048 	struct task_group *tg = css_tg(css);
11049 	u64 weight = scale_load_down(tg->shares);
11050 
11051 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11052 }
11053 
11054 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11055 				struct cftype *cft, u64 weight)
11056 {
11057 	/*
11058 	 * cgroup weight knobs should use the common MIN, DFL and MAX
11059 	 * values which are 1, 100 and 10000 respectively.  While it loses
11060 	 * a bit of range on both ends, it maps pretty well onto the shares
11061 	 * value used by scheduler and the round-trip conversions preserve
11062 	 * the original value over the entire range.
11063 	 */
11064 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11065 		return -ERANGE;
11066 
11067 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11068 
11069 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11070 }
11071 
11072 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11073 				    struct cftype *cft)
11074 {
11075 	unsigned long weight = scale_load_down(css_tg(css)->shares);
11076 	int last_delta = INT_MAX;
11077 	int prio, delta;
11078 
11079 	/* find the closest nice value to the current weight */
11080 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11081 		delta = abs(sched_prio_to_weight[prio] - weight);
11082 		if (delta >= last_delta)
11083 			break;
11084 		last_delta = delta;
11085 	}
11086 
11087 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11088 }
11089 
11090 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11091 				     struct cftype *cft, s64 nice)
11092 {
11093 	unsigned long weight;
11094 	int idx;
11095 
11096 	if (nice < MIN_NICE || nice > MAX_NICE)
11097 		return -ERANGE;
11098 
11099 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11100 	idx = array_index_nospec(idx, 40);
11101 	weight = sched_prio_to_weight[idx];
11102 
11103 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11104 }
11105 #endif
11106 
11107 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11108 						  long period, long quota)
11109 {
11110 	if (quota < 0)
11111 		seq_puts(sf, "max");
11112 	else
11113 		seq_printf(sf, "%ld", quota);
11114 
11115 	seq_printf(sf, " %ld\n", period);
11116 }
11117 
11118 /* caller should put the current value in *@periodp before calling */
11119 static int __maybe_unused cpu_period_quota_parse(char *buf,
11120 						 u64 *periodp, u64 *quotap)
11121 {
11122 	char tok[21];	/* U64_MAX */
11123 
11124 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11125 		return -EINVAL;
11126 
11127 	*periodp *= NSEC_PER_USEC;
11128 
11129 	if (sscanf(tok, "%llu", quotap))
11130 		*quotap *= NSEC_PER_USEC;
11131 	else if (!strcmp(tok, "max"))
11132 		*quotap = RUNTIME_INF;
11133 	else
11134 		return -EINVAL;
11135 
11136 	return 0;
11137 }
11138 
11139 #ifdef CONFIG_CFS_BANDWIDTH
11140 static int cpu_max_show(struct seq_file *sf, void *v)
11141 {
11142 	struct task_group *tg = css_tg(seq_css(sf));
11143 
11144 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11145 	return 0;
11146 }
11147 
11148 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11149 			     char *buf, size_t nbytes, loff_t off)
11150 {
11151 	struct task_group *tg = css_tg(of_css(of));
11152 	u64 period = tg_get_cfs_period(tg);
11153 	u64 burst = tg_get_cfs_burst(tg);
11154 	u64 quota;
11155 	int ret;
11156 
11157 	ret = cpu_period_quota_parse(buf, &period, &quota);
11158 	if (!ret)
11159 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11160 	return ret ?: nbytes;
11161 }
11162 #endif
11163 
11164 static struct cftype cpu_files[] = {
11165 #ifdef CONFIG_FAIR_GROUP_SCHED
11166 	{
11167 		.name = "weight",
11168 		.flags = CFTYPE_NOT_ON_ROOT,
11169 		.read_u64 = cpu_weight_read_u64,
11170 		.write_u64 = cpu_weight_write_u64,
11171 	},
11172 	{
11173 		.name = "weight.nice",
11174 		.flags = CFTYPE_NOT_ON_ROOT,
11175 		.read_s64 = cpu_weight_nice_read_s64,
11176 		.write_s64 = cpu_weight_nice_write_s64,
11177 	},
11178 	{
11179 		.name = "idle",
11180 		.flags = CFTYPE_NOT_ON_ROOT,
11181 		.read_s64 = cpu_idle_read_s64,
11182 		.write_s64 = cpu_idle_write_s64,
11183 	},
11184 #endif
11185 #ifdef CONFIG_CFS_BANDWIDTH
11186 	{
11187 		.name = "max",
11188 		.flags = CFTYPE_NOT_ON_ROOT,
11189 		.seq_show = cpu_max_show,
11190 		.write = cpu_max_write,
11191 	},
11192 	{
11193 		.name = "max.burst",
11194 		.flags = CFTYPE_NOT_ON_ROOT,
11195 		.read_u64 = cpu_cfs_burst_read_u64,
11196 		.write_u64 = cpu_cfs_burst_write_u64,
11197 	},
11198 #endif
11199 #ifdef CONFIG_UCLAMP_TASK_GROUP
11200 	{
11201 		.name = "uclamp.min",
11202 		.flags = CFTYPE_NOT_ON_ROOT,
11203 		.seq_show = cpu_uclamp_min_show,
11204 		.write = cpu_uclamp_min_write,
11205 	},
11206 	{
11207 		.name = "uclamp.max",
11208 		.flags = CFTYPE_NOT_ON_ROOT,
11209 		.seq_show = cpu_uclamp_max_show,
11210 		.write = cpu_uclamp_max_write,
11211 	},
11212 #endif
11213 	{ }	/* terminate */
11214 };
11215 
11216 struct cgroup_subsys cpu_cgrp_subsys = {
11217 	.css_alloc	= cpu_cgroup_css_alloc,
11218 	.css_online	= cpu_cgroup_css_online,
11219 	.css_released	= cpu_cgroup_css_released,
11220 	.css_free	= cpu_cgroup_css_free,
11221 	.css_extra_stat_show = cpu_extra_stat_show,
11222 #ifdef CONFIG_RT_GROUP_SCHED
11223 	.can_attach	= cpu_cgroup_can_attach,
11224 #endif
11225 	.attach		= cpu_cgroup_attach,
11226 	.legacy_cftypes	= cpu_legacy_files,
11227 	.dfl_cftypes	= cpu_files,
11228 	.early_init	= true,
11229 	.threaded	= true,
11230 };
11231 
11232 #endif	/* CONFIG_CGROUP_SCHED */
11233 
11234 void dump_cpu_task(int cpu)
11235 {
11236 	if (cpu == smp_processor_id() && in_hardirq()) {
11237 		struct pt_regs *regs;
11238 
11239 		regs = get_irq_regs();
11240 		if (regs) {
11241 			show_regs(regs);
11242 			return;
11243 		}
11244 	}
11245 
11246 	if (trigger_single_cpu_backtrace(cpu))
11247 		return;
11248 
11249 	pr_info("Task dump for CPU %d:\n", cpu);
11250 	sched_show_task(cpu_curr(cpu));
11251 }
11252 
11253 /*
11254  * Nice levels are multiplicative, with a gentle 10% change for every
11255  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11256  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11257  * that remained on nice 0.
11258  *
11259  * The "10% effect" is relative and cumulative: from _any_ nice level,
11260  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11261  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11262  * If a task goes up by ~10% and another task goes down by ~10% then
11263  * the relative distance between them is ~25%.)
11264  */
11265 const int sched_prio_to_weight[40] = {
11266  /* -20 */     88761,     71755,     56483,     46273,     36291,
11267  /* -15 */     29154,     23254,     18705,     14949,     11916,
11268  /* -10 */      9548,      7620,      6100,      4904,      3906,
11269  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11270  /*   0 */      1024,       820,       655,       526,       423,
11271  /*   5 */       335,       272,       215,       172,       137,
11272  /*  10 */       110,        87,        70,        56,        45,
11273  /*  15 */        36,        29,        23,        18,        15,
11274 };
11275 
11276 /*
11277  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11278  *
11279  * In cases where the weight does not change often, we can use the
11280  * precalculated inverse to speed up arithmetics by turning divisions
11281  * into multiplications:
11282  */
11283 const u32 sched_prio_to_wmult[40] = {
11284  /* -20 */     48388,     59856,     76040,     92818,    118348,
11285  /* -15 */    147320,    184698,    229616,    287308,    360437,
11286  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11287  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11288  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11289  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11290  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11291  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11292 };
11293 
11294 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11295 {
11296         trace_sched_update_nr_running_tp(rq, count);
11297 }
11298