xref: /linux/kernel/sched/core.c (revision 9ffc93f203c18a70623f21950f1dd473c9ec48cd)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 
76 #include <asm/switch_to.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79 #include <asm/mutex.h>
80 #ifdef CONFIG_PARAVIRT
81 #include <asm/paravirt.h>
82 #endif
83 
84 #include "sched.h"
85 #include "../workqueue_sched.h"
86 
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/sched.h>
89 
90 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
91 {
92 	unsigned long delta;
93 	ktime_t soft, hard, now;
94 
95 	for (;;) {
96 		if (hrtimer_active(period_timer))
97 			break;
98 
99 		now = hrtimer_cb_get_time(period_timer);
100 		hrtimer_forward(period_timer, now, period);
101 
102 		soft = hrtimer_get_softexpires(period_timer);
103 		hard = hrtimer_get_expires(period_timer);
104 		delta = ktime_to_ns(ktime_sub(hard, soft));
105 		__hrtimer_start_range_ns(period_timer, soft, delta,
106 					 HRTIMER_MODE_ABS_PINNED, 0);
107 	}
108 }
109 
110 DEFINE_MUTEX(sched_domains_mutex);
111 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
112 
113 static void update_rq_clock_task(struct rq *rq, s64 delta);
114 
115 void update_rq_clock(struct rq *rq)
116 {
117 	s64 delta;
118 
119 	if (rq->skip_clock_update > 0)
120 		return;
121 
122 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
123 	rq->clock += delta;
124 	update_rq_clock_task(rq, delta);
125 }
126 
127 /*
128  * Debugging: various feature bits
129  */
130 
131 #define SCHED_FEAT(name, enabled)	\
132 	(1UL << __SCHED_FEAT_##name) * enabled |
133 
134 const_debug unsigned int sysctl_sched_features =
135 #include "features.h"
136 	0;
137 
138 #undef SCHED_FEAT
139 
140 #ifdef CONFIG_SCHED_DEBUG
141 #define SCHED_FEAT(name, enabled)	\
142 	#name ,
143 
144 static __read_mostly char *sched_feat_names[] = {
145 #include "features.h"
146 	NULL
147 };
148 
149 #undef SCHED_FEAT
150 
151 static int sched_feat_show(struct seq_file *m, void *v)
152 {
153 	int i;
154 
155 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
156 		if (!(sysctl_sched_features & (1UL << i)))
157 			seq_puts(m, "NO_");
158 		seq_printf(m, "%s ", sched_feat_names[i]);
159 	}
160 	seq_puts(m, "\n");
161 
162 	return 0;
163 }
164 
165 #ifdef HAVE_JUMP_LABEL
166 
167 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
168 #define jump_label_key__false STATIC_KEY_INIT_FALSE
169 
170 #define SCHED_FEAT(name, enabled)	\
171 	jump_label_key__##enabled ,
172 
173 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 #include "features.h"
175 };
176 
177 #undef SCHED_FEAT
178 
179 static void sched_feat_disable(int i)
180 {
181 	if (static_key_enabled(&sched_feat_keys[i]))
182 		static_key_slow_dec(&sched_feat_keys[i]);
183 }
184 
185 static void sched_feat_enable(int i)
186 {
187 	if (!static_key_enabled(&sched_feat_keys[i]))
188 		static_key_slow_inc(&sched_feat_keys[i]);
189 }
190 #else
191 static void sched_feat_disable(int i) { };
192 static void sched_feat_enable(int i) { };
193 #endif /* HAVE_JUMP_LABEL */
194 
195 static ssize_t
196 sched_feat_write(struct file *filp, const char __user *ubuf,
197 		size_t cnt, loff_t *ppos)
198 {
199 	char buf[64];
200 	char *cmp;
201 	int neg = 0;
202 	int i;
203 
204 	if (cnt > 63)
205 		cnt = 63;
206 
207 	if (copy_from_user(&buf, ubuf, cnt))
208 		return -EFAULT;
209 
210 	buf[cnt] = 0;
211 	cmp = strstrip(buf);
212 
213 	if (strncmp(cmp, "NO_", 3) == 0) {
214 		neg = 1;
215 		cmp += 3;
216 	}
217 
218 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220 			if (neg) {
221 				sysctl_sched_features &= ~(1UL << i);
222 				sched_feat_disable(i);
223 			} else {
224 				sysctl_sched_features |= (1UL << i);
225 				sched_feat_enable(i);
226 			}
227 			break;
228 		}
229 	}
230 
231 	if (i == __SCHED_FEAT_NR)
232 		return -EINVAL;
233 
234 	*ppos += cnt;
235 
236 	return cnt;
237 }
238 
239 static int sched_feat_open(struct inode *inode, struct file *filp)
240 {
241 	return single_open(filp, sched_feat_show, NULL);
242 }
243 
244 static const struct file_operations sched_feat_fops = {
245 	.open		= sched_feat_open,
246 	.write		= sched_feat_write,
247 	.read		= seq_read,
248 	.llseek		= seq_lseek,
249 	.release	= single_release,
250 };
251 
252 static __init int sched_init_debug(void)
253 {
254 	debugfs_create_file("sched_features", 0644, NULL, NULL,
255 			&sched_feat_fops);
256 
257 	return 0;
258 }
259 late_initcall(sched_init_debug);
260 #endif /* CONFIG_SCHED_DEBUG */
261 
262 /*
263  * Number of tasks to iterate in a single balance run.
264  * Limited because this is done with IRQs disabled.
265  */
266 const_debug unsigned int sysctl_sched_nr_migrate = 32;
267 
268 /*
269  * period over which we average the RT time consumption, measured
270  * in ms.
271  *
272  * default: 1s
273  */
274 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275 
276 /*
277  * period over which we measure -rt task cpu usage in us.
278  * default: 1s
279  */
280 unsigned int sysctl_sched_rt_period = 1000000;
281 
282 __read_mostly int scheduler_running;
283 
284 /*
285  * part of the period that we allow rt tasks to run in us.
286  * default: 0.95s
287  */
288 int sysctl_sched_rt_runtime = 950000;
289 
290 
291 
292 /*
293  * __task_rq_lock - lock the rq @p resides on.
294  */
295 static inline struct rq *__task_rq_lock(struct task_struct *p)
296 	__acquires(rq->lock)
297 {
298 	struct rq *rq;
299 
300 	lockdep_assert_held(&p->pi_lock);
301 
302 	for (;;) {
303 		rq = task_rq(p);
304 		raw_spin_lock(&rq->lock);
305 		if (likely(rq == task_rq(p)))
306 			return rq;
307 		raw_spin_unlock(&rq->lock);
308 	}
309 }
310 
311 /*
312  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
313  */
314 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315 	__acquires(p->pi_lock)
316 	__acquires(rq->lock)
317 {
318 	struct rq *rq;
319 
320 	for (;;) {
321 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322 		rq = task_rq(p);
323 		raw_spin_lock(&rq->lock);
324 		if (likely(rq == task_rq(p)))
325 			return rq;
326 		raw_spin_unlock(&rq->lock);
327 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
328 	}
329 }
330 
331 static void __task_rq_unlock(struct rq *rq)
332 	__releases(rq->lock)
333 {
334 	raw_spin_unlock(&rq->lock);
335 }
336 
337 static inline void
338 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339 	__releases(rq->lock)
340 	__releases(p->pi_lock)
341 {
342 	raw_spin_unlock(&rq->lock);
343 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
344 }
345 
346 /*
347  * this_rq_lock - lock this runqueue and disable interrupts.
348  */
349 static struct rq *this_rq_lock(void)
350 	__acquires(rq->lock)
351 {
352 	struct rq *rq;
353 
354 	local_irq_disable();
355 	rq = this_rq();
356 	raw_spin_lock(&rq->lock);
357 
358 	return rq;
359 }
360 
361 #ifdef CONFIG_SCHED_HRTICK
362 /*
363  * Use HR-timers to deliver accurate preemption points.
364  *
365  * Its all a bit involved since we cannot program an hrt while holding the
366  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367  * reschedule event.
368  *
369  * When we get rescheduled we reprogram the hrtick_timer outside of the
370  * rq->lock.
371  */
372 
373 static void hrtick_clear(struct rq *rq)
374 {
375 	if (hrtimer_active(&rq->hrtick_timer))
376 		hrtimer_cancel(&rq->hrtick_timer);
377 }
378 
379 /*
380  * High-resolution timer tick.
381  * Runs from hardirq context with interrupts disabled.
382  */
383 static enum hrtimer_restart hrtick(struct hrtimer *timer)
384 {
385 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386 
387 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388 
389 	raw_spin_lock(&rq->lock);
390 	update_rq_clock(rq);
391 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392 	raw_spin_unlock(&rq->lock);
393 
394 	return HRTIMER_NORESTART;
395 }
396 
397 #ifdef CONFIG_SMP
398 /*
399  * called from hardirq (IPI) context
400  */
401 static void __hrtick_start(void *arg)
402 {
403 	struct rq *rq = arg;
404 
405 	raw_spin_lock(&rq->lock);
406 	hrtimer_restart(&rq->hrtick_timer);
407 	rq->hrtick_csd_pending = 0;
408 	raw_spin_unlock(&rq->lock);
409 }
410 
411 /*
412  * Called to set the hrtick timer state.
413  *
414  * called with rq->lock held and irqs disabled
415  */
416 void hrtick_start(struct rq *rq, u64 delay)
417 {
418 	struct hrtimer *timer = &rq->hrtick_timer;
419 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420 
421 	hrtimer_set_expires(timer, time);
422 
423 	if (rq == this_rq()) {
424 		hrtimer_restart(timer);
425 	} else if (!rq->hrtick_csd_pending) {
426 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 		rq->hrtick_csd_pending = 1;
428 	}
429 }
430 
431 static int
432 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433 {
434 	int cpu = (int)(long)hcpu;
435 
436 	switch (action) {
437 	case CPU_UP_CANCELED:
438 	case CPU_UP_CANCELED_FROZEN:
439 	case CPU_DOWN_PREPARE:
440 	case CPU_DOWN_PREPARE_FROZEN:
441 	case CPU_DEAD:
442 	case CPU_DEAD_FROZEN:
443 		hrtick_clear(cpu_rq(cpu));
444 		return NOTIFY_OK;
445 	}
446 
447 	return NOTIFY_DONE;
448 }
449 
450 static __init void init_hrtick(void)
451 {
452 	hotcpu_notifier(hotplug_hrtick, 0);
453 }
454 #else
455 /*
456  * Called to set the hrtick timer state.
457  *
458  * called with rq->lock held and irqs disabled
459  */
460 void hrtick_start(struct rq *rq, u64 delay)
461 {
462 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463 			HRTIMER_MODE_REL_PINNED, 0);
464 }
465 
466 static inline void init_hrtick(void)
467 {
468 }
469 #endif /* CONFIG_SMP */
470 
471 static void init_rq_hrtick(struct rq *rq)
472 {
473 #ifdef CONFIG_SMP
474 	rq->hrtick_csd_pending = 0;
475 
476 	rq->hrtick_csd.flags = 0;
477 	rq->hrtick_csd.func = __hrtick_start;
478 	rq->hrtick_csd.info = rq;
479 #endif
480 
481 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 	rq->hrtick_timer.function = hrtick;
483 }
484 #else	/* CONFIG_SCHED_HRTICK */
485 static inline void hrtick_clear(struct rq *rq)
486 {
487 }
488 
489 static inline void init_rq_hrtick(struct rq *rq)
490 {
491 }
492 
493 static inline void init_hrtick(void)
494 {
495 }
496 #endif	/* CONFIG_SCHED_HRTICK */
497 
498 /*
499  * resched_task - mark a task 'to be rescheduled now'.
500  *
501  * On UP this means the setting of the need_resched flag, on SMP it
502  * might also involve a cross-CPU call to trigger the scheduler on
503  * the target CPU.
504  */
505 #ifdef CONFIG_SMP
506 
507 #ifndef tsk_is_polling
508 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509 #endif
510 
511 void resched_task(struct task_struct *p)
512 {
513 	int cpu;
514 
515 	assert_raw_spin_locked(&task_rq(p)->lock);
516 
517 	if (test_tsk_need_resched(p))
518 		return;
519 
520 	set_tsk_need_resched(p);
521 
522 	cpu = task_cpu(p);
523 	if (cpu == smp_processor_id())
524 		return;
525 
526 	/* NEED_RESCHED must be visible before we test polling */
527 	smp_mb();
528 	if (!tsk_is_polling(p))
529 		smp_send_reschedule(cpu);
530 }
531 
532 void resched_cpu(int cpu)
533 {
534 	struct rq *rq = cpu_rq(cpu);
535 	unsigned long flags;
536 
537 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538 		return;
539 	resched_task(cpu_curr(cpu));
540 	raw_spin_unlock_irqrestore(&rq->lock, flags);
541 }
542 
543 #ifdef CONFIG_NO_HZ
544 /*
545  * In the semi idle case, use the nearest busy cpu for migrating timers
546  * from an idle cpu.  This is good for power-savings.
547  *
548  * We don't do similar optimization for completely idle system, as
549  * selecting an idle cpu will add more delays to the timers than intended
550  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551  */
552 int get_nohz_timer_target(void)
553 {
554 	int cpu = smp_processor_id();
555 	int i;
556 	struct sched_domain *sd;
557 
558 	rcu_read_lock();
559 	for_each_domain(cpu, sd) {
560 		for_each_cpu(i, sched_domain_span(sd)) {
561 			if (!idle_cpu(i)) {
562 				cpu = i;
563 				goto unlock;
564 			}
565 		}
566 	}
567 unlock:
568 	rcu_read_unlock();
569 	return cpu;
570 }
571 /*
572  * When add_timer_on() enqueues a timer into the timer wheel of an
573  * idle CPU then this timer might expire before the next timer event
574  * which is scheduled to wake up that CPU. In case of a completely
575  * idle system the next event might even be infinite time into the
576  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577  * leaves the inner idle loop so the newly added timer is taken into
578  * account when the CPU goes back to idle and evaluates the timer
579  * wheel for the next timer event.
580  */
581 void wake_up_idle_cpu(int cpu)
582 {
583 	struct rq *rq = cpu_rq(cpu);
584 
585 	if (cpu == smp_processor_id())
586 		return;
587 
588 	/*
589 	 * This is safe, as this function is called with the timer
590 	 * wheel base lock of (cpu) held. When the CPU is on the way
591 	 * to idle and has not yet set rq->curr to idle then it will
592 	 * be serialized on the timer wheel base lock and take the new
593 	 * timer into account automatically.
594 	 */
595 	if (rq->curr != rq->idle)
596 		return;
597 
598 	/*
599 	 * We can set TIF_RESCHED on the idle task of the other CPU
600 	 * lockless. The worst case is that the other CPU runs the
601 	 * idle task through an additional NOOP schedule()
602 	 */
603 	set_tsk_need_resched(rq->idle);
604 
605 	/* NEED_RESCHED must be visible before we test polling */
606 	smp_mb();
607 	if (!tsk_is_polling(rq->idle))
608 		smp_send_reschedule(cpu);
609 }
610 
611 static inline bool got_nohz_idle_kick(void)
612 {
613 	int cpu = smp_processor_id();
614 	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 }
616 
617 #else /* CONFIG_NO_HZ */
618 
619 static inline bool got_nohz_idle_kick(void)
620 {
621 	return false;
622 }
623 
624 #endif /* CONFIG_NO_HZ */
625 
626 void sched_avg_update(struct rq *rq)
627 {
628 	s64 period = sched_avg_period();
629 
630 	while ((s64)(rq->clock - rq->age_stamp) > period) {
631 		/*
632 		 * Inline assembly required to prevent the compiler
633 		 * optimising this loop into a divmod call.
634 		 * See __iter_div_u64_rem() for another example of this.
635 		 */
636 		asm("" : "+rm" (rq->age_stamp));
637 		rq->age_stamp += period;
638 		rq->rt_avg /= 2;
639 	}
640 }
641 
642 #else /* !CONFIG_SMP */
643 void resched_task(struct task_struct *p)
644 {
645 	assert_raw_spin_locked(&task_rq(p)->lock);
646 	set_tsk_need_resched(p);
647 }
648 #endif /* CONFIG_SMP */
649 
650 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652 /*
653  * Iterate task_group tree rooted at *from, calling @down when first entering a
654  * node and @up when leaving it for the final time.
655  *
656  * Caller must hold rcu_lock or sufficient equivalent.
657  */
658 int walk_tg_tree_from(struct task_group *from,
659 			     tg_visitor down, tg_visitor up, void *data)
660 {
661 	struct task_group *parent, *child;
662 	int ret;
663 
664 	parent = from;
665 
666 down:
667 	ret = (*down)(parent, data);
668 	if (ret)
669 		goto out;
670 	list_for_each_entry_rcu(child, &parent->children, siblings) {
671 		parent = child;
672 		goto down;
673 
674 up:
675 		continue;
676 	}
677 	ret = (*up)(parent, data);
678 	if (ret || parent == from)
679 		goto out;
680 
681 	child = parent;
682 	parent = parent->parent;
683 	if (parent)
684 		goto up;
685 out:
686 	return ret;
687 }
688 
689 int tg_nop(struct task_group *tg, void *data)
690 {
691 	return 0;
692 }
693 #endif
694 
695 void update_cpu_load(struct rq *this_rq);
696 
697 static void set_load_weight(struct task_struct *p)
698 {
699 	int prio = p->static_prio - MAX_RT_PRIO;
700 	struct load_weight *load = &p->se.load;
701 
702 	/*
703 	 * SCHED_IDLE tasks get minimal weight:
704 	 */
705 	if (p->policy == SCHED_IDLE) {
706 		load->weight = scale_load(WEIGHT_IDLEPRIO);
707 		load->inv_weight = WMULT_IDLEPRIO;
708 		return;
709 	}
710 
711 	load->weight = scale_load(prio_to_weight[prio]);
712 	load->inv_weight = prio_to_wmult[prio];
713 }
714 
715 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
716 {
717 	update_rq_clock(rq);
718 	sched_info_queued(p);
719 	p->sched_class->enqueue_task(rq, p, flags);
720 }
721 
722 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
723 {
724 	update_rq_clock(rq);
725 	sched_info_dequeued(p);
726 	p->sched_class->dequeue_task(rq, p, flags);
727 }
728 
729 void activate_task(struct rq *rq, struct task_struct *p, int flags)
730 {
731 	if (task_contributes_to_load(p))
732 		rq->nr_uninterruptible--;
733 
734 	enqueue_task(rq, p, flags);
735 }
736 
737 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
738 {
739 	if (task_contributes_to_load(p))
740 		rq->nr_uninterruptible++;
741 
742 	dequeue_task(rq, p, flags);
743 }
744 
745 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
746 
747 /*
748  * There are no locks covering percpu hardirq/softirq time.
749  * They are only modified in account_system_vtime, on corresponding CPU
750  * with interrupts disabled. So, writes are safe.
751  * They are read and saved off onto struct rq in update_rq_clock().
752  * This may result in other CPU reading this CPU's irq time and can
753  * race with irq/account_system_vtime on this CPU. We would either get old
754  * or new value with a side effect of accounting a slice of irq time to wrong
755  * task when irq is in progress while we read rq->clock. That is a worthy
756  * compromise in place of having locks on each irq in account_system_time.
757  */
758 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
759 static DEFINE_PER_CPU(u64, cpu_softirq_time);
760 
761 static DEFINE_PER_CPU(u64, irq_start_time);
762 static int sched_clock_irqtime;
763 
764 void enable_sched_clock_irqtime(void)
765 {
766 	sched_clock_irqtime = 1;
767 }
768 
769 void disable_sched_clock_irqtime(void)
770 {
771 	sched_clock_irqtime = 0;
772 }
773 
774 #ifndef CONFIG_64BIT
775 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
776 
777 static inline void irq_time_write_begin(void)
778 {
779 	__this_cpu_inc(irq_time_seq.sequence);
780 	smp_wmb();
781 }
782 
783 static inline void irq_time_write_end(void)
784 {
785 	smp_wmb();
786 	__this_cpu_inc(irq_time_seq.sequence);
787 }
788 
789 static inline u64 irq_time_read(int cpu)
790 {
791 	u64 irq_time;
792 	unsigned seq;
793 
794 	do {
795 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
796 		irq_time = per_cpu(cpu_softirq_time, cpu) +
797 			   per_cpu(cpu_hardirq_time, cpu);
798 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
799 
800 	return irq_time;
801 }
802 #else /* CONFIG_64BIT */
803 static inline void irq_time_write_begin(void)
804 {
805 }
806 
807 static inline void irq_time_write_end(void)
808 {
809 }
810 
811 static inline u64 irq_time_read(int cpu)
812 {
813 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
814 }
815 #endif /* CONFIG_64BIT */
816 
817 /*
818  * Called before incrementing preempt_count on {soft,}irq_enter
819  * and before decrementing preempt_count on {soft,}irq_exit.
820  */
821 void account_system_vtime(struct task_struct *curr)
822 {
823 	unsigned long flags;
824 	s64 delta;
825 	int cpu;
826 
827 	if (!sched_clock_irqtime)
828 		return;
829 
830 	local_irq_save(flags);
831 
832 	cpu = smp_processor_id();
833 	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
834 	__this_cpu_add(irq_start_time, delta);
835 
836 	irq_time_write_begin();
837 	/*
838 	 * We do not account for softirq time from ksoftirqd here.
839 	 * We want to continue accounting softirq time to ksoftirqd thread
840 	 * in that case, so as not to confuse scheduler with a special task
841 	 * that do not consume any time, but still wants to run.
842 	 */
843 	if (hardirq_count())
844 		__this_cpu_add(cpu_hardirq_time, delta);
845 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
846 		__this_cpu_add(cpu_softirq_time, delta);
847 
848 	irq_time_write_end();
849 	local_irq_restore(flags);
850 }
851 EXPORT_SYMBOL_GPL(account_system_vtime);
852 
853 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
854 
855 #ifdef CONFIG_PARAVIRT
856 static inline u64 steal_ticks(u64 steal)
857 {
858 	if (unlikely(steal > NSEC_PER_SEC))
859 		return div_u64(steal, TICK_NSEC);
860 
861 	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
862 }
863 #endif
864 
865 static void update_rq_clock_task(struct rq *rq, s64 delta)
866 {
867 /*
868  * In theory, the compile should just see 0 here, and optimize out the call
869  * to sched_rt_avg_update. But I don't trust it...
870  */
871 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
872 	s64 steal = 0, irq_delta = 0;
873 #endif
874 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
875 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
876 
877 	/*
878 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
879 	 * this case when a previous update_rq_clock() happened inside a
880 	 * {soft,}irq region.
881 	 *
882 	 * When this happens, we stop ->clock_task and only update the
883 	 * prev_irq_time stamp to account for the part that fit, so that a next
884 	 * update will consume the rest. This ensures ->clock_task is
885 	 * monotonic.
886 	 *
887 	 * It does however cause some slight miss-attribution of {soft,}irq
888 	 * time, a more accurate solution would be to update the irq_time using
889 	 * the current rq->clock timestamp, except that would require using
890 	 * atomic ops.
891 	 */
892 	if (irq_delta > delta)
893 		irq_delta = delta;
894 
895 	rq->prev_irq_time += irq_delta;
896 	delta -= irq_delta;
897 #endif
898 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
899 	if (static_key_false((&paravirt_steal_rq_enabled))) {
900 		u64 st;
901 
902 		steal = paravirt_steal_clock(cpu_of(rq));
903 		steal -= rq->prev_steal_time_rq;
904 
905 		if (unlikely(steal > delta))
906 			steal = delta;
907 
908 		st = steal_ticks(steal);
909 		steal = st * TICK_NSEC;
910 
911 		rq->prev_steal_time_rq += steal;
912 
913 		delta -= steal;
914 	}
915 #endif
916 
917 	rq->clock_task += delta;
918 
919 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
920 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
921 		sched_rt_avg_update(rq, irq_delta + steal);
922 #endif
923 }
924 
925 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
926 static int irqtime_account_hi_update(void)
927 {
928 	u64 *cpustat = kcpustat_this_cpu->cpustat;
929 	unsigned long flags;
930 	u64 latest_ns;
931 	int ret = 0;
932 
933 	local_irq_save(flags);
934 	latest_ns = this_cpu_read(cpu_hardirq_time);
935 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
936 		ret = 1;
937 	local_irq_restore(flags);
938 	return ret;
939 }
940 
941 static int irqtime_account_si_update(void)
942 {
943 	u64 *cpustat = kcpustat_this_cpu->cpustat;
944 	unsigned long flags;
945 	u64 latest_ns;
946 	int ret = 0;
947 
948 	local_irq_save(flags);
949 	latest_ns = this_cpu_read(cpu_softirq_time);
950 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
951 		ret = 1;
952 	local_irq_restore(flags);
953 	return ret;
954 }
955 
956 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
957 
958 #define sched_clock_irqtime	(0)
959 
960 #endif
961 
962 void sched_set_stop_task(int cpu, struct task_struct *stop)
963 {
964 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
965 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
966 
967 	if (stop) {
968 		/*
969 		 * Make it appear like a SCHED_FIFO task, its something
970 		 * userspace knows about and won't get confused about.
971 		 *
972 		 * Also, it will make PI more or less work without too
973 		 * much confusion -- but then, stop work should not
974 		 * rely on PI working anyway.
975 		 */
976 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
977 
978 		stop->sched_class = &stop_sched_class;
979 	}
980 
981 	cpu_rq(cpu)->stop = stop;
982 
983 	if (old_stop) {
984 		/*
985 		 * Reset it back to a normal scheduling class so that
986 		 * it can die in pieces.
987 		 */
988 		old_stop->sched_class = &rt_sched_class;
989 	}
990 }
991 
992 /*
993  * __normal_prio - return the priority that is based on the static prio
994  */
995 static inline int __normal_prio(struct task_struct *p)
996 {
997 	return p->static_prio;
998 }
999 
1000 /*
1001  * Calculate the expected normal priority: i.e. priority
1002  * without taking RT-inheritance into account. Might be
1003  * boosted by interactivity modifiers. Changes upon fork,
1004  * setprio syscalls, and whenever the interactivity
1005  * estimator recalculates.
1006  */
1007 static inline int normal_prio(struct task_struct *p)
1008 {
1009 	int prio;
1010 
1011 	if (task_has_rt_policy(p))
1012 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1013 	else
1014 		prio = __normal_prio(p);
1015 	return prio;
1016 }
1017 
1018 /*
1019  * Calculate the current priority, i.e. the priority
1020  * taken into account by the scheduler. This value might
1021  * be boosted by RT tasks, or might be boosted by
1022  * interactivity modifiers. Will be RT if the task got
1023  * RT-boosted. If not then it returns p->normal_prio.
1024  */
1025 static int effective_prio(struct task_struct *p)
1026 {
1027 	p->normal_prio = normal_prio(p);
1028 	/*
1029 	 * If we are RT tasks or we were boosted to RT priority,
1030 	 * keep the priority unchanged. Otherwise, update priority
1031 	 * to the normal priority:
1032 	 */
1033 	if (!rt_prio(p->prio))
1034 		return p->normal_prio;
1035 	return p->prio;
1036 }
1037 
1038 /**
1039  * task_curr - is this task currently executing on a CPU?
1040  * @p: the task in question.
1041  */
1042 inline int task_curr(const struct task_struct *p)
1043 {
1044 	return cpu_curr(task_cpu(p)) == p;
1045 }
1046 
1047 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1048 				       const struct sched_class *prev_class,
1049 				       int oldprio)
1050 {
1051 	if (prev_class != p->sched_class) {
1052 		if (prev_class->switched_from)
1053 			prev_class->switched_from(rq, p);
1054 		p->sched_class->switched_to(rq, p);
1055 	} else if (oldprio != p->prio)
1056 		p->sched_class->prio_changed(rq, p, oldprio);
1057 }
1058 
1059 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1060 {
1061 	const struct sched_class *class;
1062 
1063 	if (p->sched_class == rq->curr->sched_class) {
1064 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1065 	} else {
1066 		for_each_class(class) {
1067 			if (class == rq->curr->sched_class)
1068 				break;
1069 			if (class == p->sched_class) {
1070 				resched_task(rq->curr);
1071 				break;
1072 			}
1073 		}
1074 	}
1075 
1076 	/*
1077 	 * A queue event has occurred, and we're going to schedule.  In
1078 	 * this case, we can save a useless back to back clock update.
1079 	 */
1080 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1081 		rq->skip_clock_update = 1;
1082 }
1083 
1084 #ifdef CONFIG_SMP
1085 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1086 {
1087 #ifdef CONFIG_SCHED_DEBUG
1088 	/*
1089 	 * We should never call set_task_cpu() on a blocked task,
1090 	 * ttwu() will sort out the placement.
1091 	 */
1092 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1093 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1094 
1095 #ifdef CONFIG_LOCKDEP
1096 	/*
1097 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1098 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1099 	 *
1100 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1101 	 * see set_task_rq().
1102 	 *
1103 	 * Furthermore, all task_rq users should acquire both locks, see
1104 	 * task_rq_lock().
1105 	 */
1106 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1107 				      lockdep_is_held(&task_rq(p)->lock)));
1108 #endif
1109 #endif
1110 
1111 	trace_sched_migrate_task(p, new_cpu);
1112 
1113 	if (task_cpu(p) != new_cpu) {
1114 		p->se.nr_migrations++;
1115 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1116 	}
1117 
1118 	__set_task_cpu(p, new_cpu);
1119 }
1120 
1121 struct migration_arg {
1122 	struct task_struct *task;
1123 	int dest_cpu;
1124 };
1125 
1126 static int migration_cpu_stop(void *data);
1127 
1128 /*
1129  * wait_task_inactive - wait for a thread to unschedule.
1130  *
1131  * If @match_state is nonzero, it's the @p->state value just checked and
1132  * not expected to change.  If it changes, i.e. @p might have woken up,
1133  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1134  * we return a positive number (its total switch count).  If a second call
1135  * a short while later returns the same number, the caller can be sure that
1136  * @p has remained unscheduled the whole time.
1137  *
1138  * The caller must ensure that the task *will* unschedule sometime soon,
1139  * else this function might spin for a *long* time. This function can't
1140  * be called with interrupts off, or it may introduce deadlock with
1141  * smp_call_function() if an IPI is sent by the same process we are
1142  * waiting to become inactive.
1143  */
1144 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1145 {
1146 	unsigned long flags;
1147 	int running, on_rq;
1148 	unsigned long ncsw;
1149 	struct rq *rq;
1150 
1151 	for (;;) {
1152 		/*
1153 		 * We do the initial early heuristics without holding
1154 		 * any task-queue locks at all. We'll only try to get
1155 		 * the runqueue lock when things look like they will
1156 		 * work out!
1157 		 */
1158 		rq = task_rq(p);
1159 
1160 		/*
1161 		 * If the task is actively running on another CPU
1162 		 * still, just relax and busy-wait without holding
1163 		 * any locks.
1164 		 *
1165 		 * NOTE! Since we don't hold any locks, it's not
1166 		 * even sure that "rq" stays as the right runqueue!
1167 		 * But we don't care, since "task_running()" will
1168 		 * return false if the runqueue has changed and p
1169 		 * is actually now running somewhere else!
1170 		 */
1171 		while (task_running(rq, p)) {
1172 			if (match_state && unlikely(p->state != match_state))
1173 				return 0;
1174 			cpu_relax();
1175 		}
1176 
1177 		/*
1178 		 * Ok, time to look more closely! We need the rq
1179 		 * lock now, to be *sure*. If we're wrong, we'll
1180 		 * just go back and repeat.
1181 		 */
1182 		rq = task_rq_lock(p, &flags);
1183 		trace_sched_wait_task(p);
1184 		running = task_running(rq, p);
1185 		on_rq = p->on_rq;
1186 		ncsw = 0;
1187 		if (!match_state || p->state == match_state)
1188 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1189 		task_rq_unlock(rq, p, &flags);
1190 
1191 		/*
1192 		 * If it changed from the expected state, bail out now.
1193 		 */
1194 		if (unlikely(!ncsw))
1195 			break;
1196 
1197 		/*
1198 		 * Was it really running after all now that we
1199 		 * checked with the proper locks actually held?
1200 		 *
1201 		 * Oops. Go back and try again..
1202 		 */
1203 		if (unlikely(running)) {
1204 			cpu_relax();
1205 			continue;
1206 		}
1207 
1208 		/*
1209 		 * It's not enough that it's not actively running,
1210 		 * it must be off the runqueue _entirely_, and not
1211 		 * preempted!
1212 		 *
1213 		 * So if it was still runnable (but just not actively
1214 		 * running right now), it's preempted, and we should
1215 		 * yield - it could be a while.
1216 		 */
1217 		if (unlikely(on_rq)) {
1218 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1219 
1220 			set_current_state(TASK_UNINTERRUPTIBLE);
1221 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1222 			continue;
1223 		}
1224 
1225 		/*
1226 		 * Ahh, all good. It wasn't running, and it wasn't
1227 		 * runnable, which means that it will never become
1228 		 * running in the future either. We're all done!
1229 		 */
1230 		break;
1231 	}
1232 
1233 	return ncsw;
1234 }
1235 
1236 /***
1237  * kick_process - kick a running thread to enter/exit the kernel
1238  * @p: the to-be-kicked thread
1239  *
1240  * Cause a process which is running on another CPU to enter
1241  * kernel-mode, without any delay. (to get signals handled.)
1242  *
1243  * NOTE: this function doesn't have to take the runqueue lock,
1244  * because all it wants to ensure is that the remote task enters
1245  * the kernel. If the IPI races and the task has been migrated
1246  * to another CPU then no harm is done and the purpose has been
1247  * achieved as well.
1248  */
1249 void kick_process(struct task_struct *p)
1250 {
1251 	int cpu;
1252 
1253 	preempt_disable();
1254 	cpu = task_cpu(p);
1255 	if ((cpu != smp_processor_id()) && task_curr(p))
1256 		smp_send_reschedule(cpu);
1257 	preempt_enable();
1258 }
1259 EXPORT_SYMBOL_GPL(kick_process);
1260 #endif /* CONFIG_SMP */
1261 
1262 #ifdef CONFIG_SMP
1263 /*
1264  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1265  */
1266 static int select_fallback_rq(int cpu, struct task_struct *p)
1267 {
1268 	int dest_cpu;
1269 	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1270 
1271 	/* Look for allowed, online CPU in same node. */
1272 	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
1273 		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1274 			return dest_cpu;
1275 
1276 	/* Any allowed, online CPU? */
1277 	dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
1278 	if (dest_cpu < nr_cpu_ids)
1279 		return dest_cpu;
1280 
1281 	/* No more Mr. Nice Guy. */
1282 	dest_cpu = cpuset_cpus_allowed_fallback(p);
1283 	/*
1284 	 * Don't tell them about moving exiting tasks or
1285 	 * kernel threads (both mm NULL), since they never
1286 	 * leave kernel.
1287 	 */
1288 	if (p->mm && printk_ratelimit()) {
1289 		printk_sched("process %d (%s) no longer affine to cpu%d\n",
1290 				task_pid_nr(p), p->comm, cpu);
1291 	}
1292 
1293 	return dest_cpu;
1294 }
1295 
1296 /*
1297  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1298  */
1299 static inline
1300 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1301 {
1302 	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1303 
1304 	/*
1305 	 * In order not to call set_task_cpu() on a blocking task we need
1306 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1307 	 * cpu.
1308 	 *
1309 	 * Since this is common to all placement strategies, this lives here.
1310 	 *
1311 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1312 	 *   not worry about this generic constraint ]
1313 	 */
1314 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1315 		     !cpu_online(cpu)))
1316 		cpu = select_fallback_rq(task_cpu(p), p);
1317 
1318 	return cpu;
1319 }
1320 
1321 static void update_avg(u64 *avg, u64 sample)
1322 {
1323 	s64 diff = sample - *avg;
1324 	*avg += diff >> 3;
1325 }
1326 #endif
1327 
1328 static void
1329 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1330 {
1331 #ifdef CONFIG_SCHEDSTATS
1332 	struct rq *rq = this_rq();
1333 
1334 #ifdef CONFIG_SMP
1335 	int this_cpu = smp_processor_id();
1336 
1337 	if (cpu == this_cpu) {
1338 		schedstat_inc(rq, ttwu_local);
1339 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1340 	} else {
1341 		struct sched_domain *sd;
1342 
1343 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1344 		rcu_read_lock();
1345 		for_each_domain(this_cpu, sd) {
1346 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1347 				schedstat_inc(sd, ttwu_wake_remote);
1348 				break;
1349 			}
1350 		}
1351 		rcu_read_unlock();
1352 	}
1353 
1354 	if (wake_flags & WF_MIGRATED)
1355 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1356 
1357 #endif /* CONFIG_SMP */
1358 
1359 	schedstat_inc(rq, ttwu_count);
1360 	schedstat_inc(p, se.statistics.nr_wakeups);
1361 
1362 	if (wake_flags & WF_SYNC)
1363 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1364 
1365 #endif /* CONFIG_SCHEDSTATS */
1366 }
1367 
1368 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1369 {
1370 	activate_task(rq, p, en_flags);
1371 	p->on_rq = 1;
1372 
1373 	/* if a worker is waking up, notify workqueue */
1374 	if (p->flags & PF_WQ_WORKER)
1375 		wq_worker_waking_up(p, cpu_of(rq));
1376 }
1377 
1378 /*
1379  * Mark the task runnable and perform wakeup-preemption.
1380  */
1381 static void
1382 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1383 {
1384 	trace_sched_wakeup(p, true);
1385 	check_preempt_curr(rq, p, wake_flags);
1386 
1387 	p->state = TASK_RUNNING;
1388 #ifdef CONFIG_SMP
1389 	if (p->sched_class->task_woken)
1390 		p->sched_class->task_woken(rq, p);
1391 
1392 	if (rq->idle_stamp) {
1393 		u64 delta = rq->clock - rq->idle_stamp;
1394 		u64 max = 2*sysctl_sched_migration_cost;
1395 
1396 		if (delta > max)
1397 			rq->avg_idle = max;
1398 		else
1399 			update_avg(&rq->avg_idle, delta);
1400 		rq->idle_stamp = 0;
1401 	}
1402 #endif
1403 }
1404 
1405 static void
1406 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1407 {
1408 #ifdef CONFIG_SMP
1409 	if (p->sched_contributes_to_load)
1410 		rq->nr_uninterruptible--;
1411 #endif
1412 
1413 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1414 	ttwu_do_wakeup(rq, p, wake_flags);
1415 }
1416 
1417 /*
1418  * Called in case the task @p isn't fully descheduled from its runqueue,
1419  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1420  * since all we need to do is flip p->state to TASK_RUNNING, since
1421  * the task is still ->on_rq.
1422  */
1423 static int ttwu_remote(struct task_struct *p, int wake_flags)
1424 {
1425 	struct rq *rq;
1426 	int ret = 0;
1427 
1428 	rq = __task_rq_lock(p);
1429 	if (p->on_rq) {
1430 		ttwu_do_wakeup(rq, p, wake_flags);
1431 		ret = 1;
1432 	}
1433 	__task_rq_unlock(rq);
1434 
1435 	return ret;
1436 }
1437 
1438 #ifdef CONFIG_SMP
1439 static void sched_ttwu_pending(void)
1440 {
1441 	struct rq *rq = this_rq();
1442 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1443 	struct task_struct *p;
1444 
1445 	raw_spin_lock(&rq->lock);
1446 
1447 	while (llist) {
1448 		p = llist_entry(llist, struct task_struct, wake_entry);
1449 		llist = llist_next(llist);
1450 		ttwu_do_activate(rq, p, 0);
1451 	}
1452 
1453 	raw_spin_unlock(&rq->lock);
1454 }
1455 
1456 void scheduler_ipi(void)
1457 {
1458 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1459 		return;
1460 
1461 	/*
1462 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1463 	 * traditionally all their work was done from the interrupt return
1464 	 * path. Now that we actually do some work, we need to make sure
1465 	 * we do call them.
1466 	 *
1467 	 * Some archs already do call them, luckily irq_enter/exit nest
1468 	 * properly.
1469 	 *
1470 	 * Arguably we should visit all archs and update all handlers,
1471 	 * however a fair share of IPIs are still resched only so this would
1472 	 * somewhat pessimize the simple resched case.
1473 	 */
1474 	irq_enter();
1475 	sched_ttwu_pending();
1476 
1477 	/*
1478 	 * Check if someone kicked us for doing the nohz idle load balance.
1479 	 */
1480 	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1481 		this_rq()->idle_balance = 1;
1482 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1483 	}
1484 	irq_exit();
1485 }
1486 
1487 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1488 {
1489 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1490 		smp_send_reschedule(cpu);
1491 }
1492 
1493 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1494 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1495 {
1496 	struct rq *rq;
1497 	int ret = 0;
1498 
1499 	rq = __task_rq_lock(p);
1500 	if (p->on_cpu) {
1501 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1502 		ttwu_do_wakeup(rq, p, wake_flags);
1503 		ret = 1;
1504 	}
1505 	__task_rq_unlock(rq);
1506 
1507 	return ret;
1508 
1509 }
1510 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1511 
1512 bool cpus_share_cache(int this_cpu, int that_cpu)
1513 {
1514 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1515 }
1516 #endif /* CONFIG_SMP */
1517 
1518 static void ttwu_queue(struct task_struct *p, int cpu)
1519 {
1520 	struct rq *rq = cpu_rq(cpu);
1521 
1522 #if defined(CONFIG_SMP)
1523 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1524 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1525 		ttwu_queue_remote(p, cpu);
1526 		return;
1527 	}
1528 #endif
1529 
1530 	raw_spin_lock(&rq->lock);
1531 	ttwu_do_activate(rq, p, 0);
1532 	raw_spin_unlock(&rq->lock);
1533 }
1534 
1535 /**
1536  * try_to_wake_up - wake up a thread
1537  * @p: the thread to be awakened
1538  * @state: the mask of task states that can be woken
1539  * @wake_flags: wake modifier flags (WF_*)
1540  *
1541  * Put it on the run-queue if it's not already there. The "current"
1542  * thread is always on the run-queue (except when the actual
1543  * re-schedule is in progress), and as such you're allowed to do
1544  * the simpler "current->state = TASK_RUNNING" to mark yourself
1545  * runnable without the overhead of this.
1546  *
1547  * Returns %true if @p was woken up, %false if it was already running
1548  * or @state didn't match @p's state.
1549  */
1550 static int
1551 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1552 {
1553 	unsigned long flags;
1554 	int cpu, success = 0;
1555 
1556 	smp_wmb();
1557 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1558 	if (!(p->state & state))
1559 		goto out;
1560 
1561 	success = 1; /* we're going to change ->state */
1562 	cpu = task_cpu(p);
1563 
1564 	if (p->on_rq && ttwu_remote(p, wake_flags))
1565 		goto stat;
1566 
1567 #ifdef CONFIG_SMP
1568 	/*
1569 	 * If the owning (remote) cpu is still in the middle of schedule() with
1570 	 * this task as prev, wait until its done referencing the task.
1571 	 */
1572 	while (p->on_cpu) {
1573 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1574 		/*
1575 		 * In case the architecture enables interrupts in
1576 		 * context_switch(), we cannot busy wait, since that
1577 		 * would lead to deadlocks when an interrupt hits and
1578 		 * tries to wake up @prev. So bail and do a complete
1579 		 * remote wakeup.
1580 		 */
1581 		if (ttwu_activate_remote(p, wake_flags))
1582 			goto stat;
1583 #else
1584 		cpu_relax();
1585 #endif
1586 	}
1587 	/*
1588 	 * Pairs with the smp_wmb() in finish_lock_switch().
1589 	 */
1590 	smp_rmb();
1591 
1592 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1593 	p->state = TASK_WAKING;
1594 
1595 	if (p->sched_class->task_waking)
1596 		p->sched_class->task_waking(p);
1597 
1598 	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1599 	if (task_cpu(p) != cpu) {
1600 		wake_flags |= WF_MIGRATED;
1601 		set_task_cpu(p, cpu);
1602 	}
1603 #endif /* CONFIG_SMP */
1604 
1605 	ttwu_queue(p, cpu);
1606 stat:
1607 	ttwu_stat(p, cpu, wake_flags);
1608 out:
1609 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1610 
1611 	return success;
1612 }
1613 
1614 /**
1615  * try_to_wake_up_local - try to wake up a local task with rq lock held
1616  * @p: the thread to be awakened
1617  *
1618  * Put @p on the run-queue if it's not already there. The caller must
1619  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1620  * the current task.
1621  */
1622 static void try_to_wake_up_local(struct task_struct *p)
1623 {
1624 	struct rq *rq = task_rq(p);
1625 
1626 	BUG_ON(rq != this_rq());
1627 	BUG_ON(p == current);
1628 	lockdep_assert_held(&rq->lock);
1629 
1630 	if (!raw_spin_trylock(&p->pi_lock)) {
1631 		raw_spin_unlock(&rq->lock);
1632 		raw_spin_lock(&p->pi_lock);
1633 		raw_spin_lock(&rq->lock);
1634 	}
1635 
1636 	if (!(p->state & TASK_NORMAL))
1637 		goto out;
1638 
1639 	if (!p->on_rq)
1640 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1641 
1642 	ttwu_do_wakeup(rq, p, 0);
1643 	ttwu_stat(p, smp_processor_id(), 0);
1644 out:
1645 	raw_spin_unlock(&p->pi_lock);
1646 }
1647 
1648 /**
1649  * wake_up_process - Wake up a specific process
1650  * @p: The process to be woken up.
1651  *
1652  * Attempt to wake up the nominated process and move it to the set of runnable
1653  * processes.  Returns 1 if the process was woken up, 0 if it was already
1654  * running.
1655  *
1656  * It may be assumed that this function implies a write memory barrier before
1657  * changing the task state if and only if any tasks are woken up.
1658  */
1659 int wake_up_process(struct task_struct *p)
1660 {
1661 	return try_to_wake_up(p, TASK_ALL, 0);
1662 }
1663 EXPORT_SYMBOL(wake_up_process);
1664 
1665 int wake_up_state(struct task_struct *p, unsigned int state)
1666 {
1667 	return try_to_wake_up(p, state, 0);
1668 }
1669 
1670 /*
1671  * Perform scheduler related setup for a newly forked process p.
1672  * p is forked by current.
1673  *
1674  * __sched_fork() is basic setup used by init_idle() too:
1675  */
1676 static void __sched_fork(struct task_struct *p)
1677 {
1678 	p->on_rq			= 0;
1679 
1680 	p->se.on_rq			= 0;
1681 	p->se.exec_start		= 0;
1682 	p->se.sum_exec_runtime		= 0;
1683 	p->se.prev_sum_exec_runtime	= 0;
1684 	p->se.nr_migrations		= 0;
1685 	p->se.vruntime			= 0;
1686 	INIT_LIST_HEAD(&p->se.group_node);
1687 
1688 #ifdef CONFIG_SCHEDSTATS
1689 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1690 #endif
1691 
1692 	INIT_LIST_HEAD(&p->rt.run_list);
1693 
1694 #ifdef CONFIG_PREEMPT_NOTIFIERS
1695 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1696 #endif
1697 }
1698 
1699 /*
1700  * fork()/clone()-time setup:
1701  */
1702 void sched_fork(struct task_struct *p)
1703 {
1704 	unsigned long flags;
1705 	int cpu = get_cpu();
1706 
1707 	__sched_fork(p);
1708 	/*
1709 	 * We mark the process as running here. This guarantees that
1710 	 * nobody will actually run it, and a signal or other external
1711 	 * event cannot wake it up and insert it on the runqueue either.
1712 	 */
1713 	p->state = TASK_RUNNING;
1714 
1715 	/*
1716 	 * Make sure we do not leak PI boosting priority to the child.
1717 	 */
1718 	p->prio = current->normal_prio;
1719 
1720 	/*
1721 	 * Revert to default priority/policy on fork if requested.
1722 	 */
1723 	if (unlikely(p->sched_reset_on_fork)) {
1724 		if (task_has_rt_policy(p)) {
1725 			p->policy = SCHED_NORMAL;
1726 			p->static_prio = NICE_TO_PRIO(0);
1727 			p->rt_priority = 0;
1728 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1729 			p->static_prio = NICE_TO_PRIO(0);
1730 
1731 		p->prio = p->normal_prio = __normal_prio(p);
1732 		set_load_weight(p);
1733 
1734 		/*
1735 		 * We don't need the reset flag anymore after the fork. It has
1736 		 * fulfilled its duty:
1737 		 */
1738 		p->sched_reset_on_fork = 0;
1739 	}
1740 
1741 	if (!rt_prio(p->prio))
1742 		p->sched_class = &fair_sched_class;
1743 
1744 	if (p->sched_class->task_fork)
1745 		p->sched_class->task_fork(p);
1746 
1747 	/*
1748 	 * The child is not yet in the pid-hash so no cgroup attach races,
1749 	 * and the cgroup is pinned to this child due to cgroup_fork()
1750 	 * is ran before sched_fork().
1751 	 *
1752 	 * Silence PROVE_RCU.
1753 	 */
1754 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1755 	set_task_cpu(p, cpu);
1756 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1757 
1758 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1759 	if (likely(sched_info_on()))
1760 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1761 #endif
1762 #if defined(CONFIG_SMP)
1763 	p->on_cpu = 0;
1764 #endif
1765 #ifdef CONFIG_PREEMPT_COUNT
1766 	/* Want to start with kernel preemption disabled. */
1767 	task_thread_info(p)->preempt_count = 1;
1768 #endif
1769 #ifdef CONFIG_SMP
1770 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1771 #endif
1772 
1773 	put_cpu();
1774 }
1775 
1776 /*
1777  * wake_up_new_task - wake up a newly created task for the first time.
1778  *
1779  * This function will do some initial scheduler statistics housekeeping
1780  * that must be done for every newly created context, then puts the task
1781  * on the runqueue and wakes it.
1782  */
1783 void wake_up_new_task(struct task_struct *p)
1784 {
1785 	unsigned long flags;
1786 	struct rq *rq;
1787 
1788 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1789 #ifdef CONFIG_SMP
1790 	/*
1791 	 * Fork balancing, do it here and not earlier because:
1792 	 *  - cpus_allowed can change in the fork path
1793 	 *  - any previously selected cpu might disappear through hotplug
1794 	 */
1795 	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1796 #endif
1797 
1798 	rq = __task_rq_lock(p);
1799 	activate_task(rq, p, 0);
1800 	p->on_rq = 1;
1801 	trace_sched_wakeup_new(p, true);
1802 	check_preempt_curr(rq, p, WF_FORK);
1803 #ifdef CONFIG_SMP
1804 	if (p->sched_class->task_woken)
1805 		p->sched_class->task_woken(rq, p);
1806 #endif
1807 	task_rq_unlock(rq, p, &flags);
1808 }
1809 
1810 #ifdef CONFIG_PREEMPT_NOTIFIERS
1811 
1812 /**
1813  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1814  * @notifier: notifier struct to register
1815  */
1816 void preempt_notifier_register(struct preempt_notifier *notifier)
1817 {
1818 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1819 }
1820 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1821 
1822 /**
1823  * preempt_notifier_unregister - no longer interested in preemption notifications
1824  * @notifier: notifier struct to unregister
1825  *
1826  * This is safe to call from within a preemption notifier.
1827  */
1828 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1829 {
1830 	hlist_del(&notifier->link);
1831 }
1832 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1833 
1834 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1835 {
1836 	struct preempt_notifier *notifier;
1837 	struct hlist_node *node;
1838 
1839 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1840 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1841 }
1842 
1843 static void
1844 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1845 				 struct task_struct *next)
1846 {
1847 	struct preempt_notifier *notifier;
1848 	struct hlist_node *node;
1849 
1850 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1851 		notifier->ops->sched_out(notifier, next);
1852 }
1853 
1854 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1855 
1856 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1857 {
1858 }
1859 
1860 static void
1861 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1862 				 struct task_struct *next)
1863 {
1864 }
1865 
1866 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1867 
1868 /**
1869  * prepare_task_switch - prepare to switch tasks
1870  * @rq: the runqueue preparing to switch
1871  * @prev: the current task that is being switched out
1872  * @next: the task we are going to switch to.
1873  *
1874  * This is called with the rq lock held and interrupts off. It must
1875  * be paired with a subsequent finish_task_switch after the context
1876  * switch.
1877  *
1878  * prepare_task_switch sets up locking and calls architecture specific
1879  * hooks.
1880  */
1881 static inline void
1882 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1883 		    struct task_struct *next)
1884 {
1885 	sched_info_switch(prev, next);
1886 	perf_event_task_sched_out(prev, next);
1887 	fire_sched_out_preempt_notifiers(prev, next);
1888 	prepare_lock_switch(rq, next);
1889 	prepare_arch_switch(next);
1890 	trace_sched_switch(prev, next);
1891 }
1892 
1893 /**
1894  * finish_task_switch - clean up after a task-switch
1895  * @rq: runqueue associated with task-switch
1896  * @prev: the thread we just switched away from.
1897  *
1898  * finish_task_switch must be called after the context switch, paired
1899  * with a prepare_task_switch call before the context switch.
1900  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1901  * and do any other architecture-specific cleanup actions.
1902  *
1903  * Note that we may have delayed dropping an mm in context_switch(). If
1904  * so, we finish that here outside of the runqueue lock. (Doing it
1905  * with the lock held can cause deadlocks; see schedule() for
1906  * details.)
1907  */
1908 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1909 	__releases(rq->lock)
1910 {
1911 	struct mm_struct *mm = rq->prev_mm;
1912 	long prev_state;
1913 
1914 	rq->prev_mm = NULL;
1915 
1916 	/*
1917 	 * A task struct has one reference for the use as "current".
1918 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1919 	 * schedule one last time. The schedule call will never return, and
1920 	 * the scheduled task must drop that reference.
1921 	 * The test for TASK_DEAD must occur while the runqueue locks are
1922 	 * still held, otherwise prev could be scheduled on another cpu, die
1923 	 * there before we look at prev->state, and then the reference would
1924 	 * be dropped twice.
1925 	 *		Manfred Spraul <manfred@colorfullife.com>
1926 	 */
1927 	prev_state = prev->state;
1928 	finish_arch_switch(prev);
1929 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1930 	local_irq_disable();
1931 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1932 	perf_event_task_sched_in(prev, current);
1933 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1934 	local_irq_enable();
1935 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1936 	finish_lock_switch(rq, prev);
1937 
1938 	fire_sched_in_preempt_notifiers(current);
1939 	if (mm)
1940 		mmdrop(mm);
1941 	if (unlikely(prev_state == TASK_DEAD)) {
1942 		/*
1943 		 * Remove function-return probe instances associated with this
1944 		 * task and put them back on the free list.
1945 		 */
1946 		kprobe_flush_task(prev);
1947 		put_task_struct(prev);
1948 	}
1949 }
1950 
1951 #ifdef CONFIG_SMP
1952 
1953 /* assumes rq->lock is held */
1954 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1955 {
1956 	if (prev->sched_class->pre_schedule)
1957 		prev->sched_class->pre_schedule(rq, prev);
1958 }
1959 
1960 /* rq->lock is NOT held, but preemption is disabled */
1961 static inline void post_schedule(struct rq *rq)
1962 {
1963 	if (rq->post_schedule) {
1964 		unsigned long flags;
1965 
1966 		raw_spin_lock_irqsave(&rq->lock, flags);
1967 		if (rq->curr->sched_class->post_schedule)
1968 			rq->curr->sched_class->post_schedule(rq);
1969 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1970 
1971 		rq->post_schedule = 0;
1972 	}
1973 }
1974 
1975 #else
1976 
1977 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1978 {
1979 }
1980 
1981 static inline void post_schedule(struct rq *rq)
1982 {
1983 }
1984 
1985 #endif
1986 
1987 /**
1988  * schedule_tail - first thing a freshly forked thread must call.
1989  * @prev: the thread we just switched away from.
1990  */
1991 asmlinkage void schedule_tail(struct task_struct *prev)
1992 	__releases(rq->lock)
1993 {
1994 	struct rq *rq = this_rq();
1995 
1996 	finish_task_switch(rq, prev);
1997 
1998 	/*
1999 	 * FIXME: do we need to worry about rq being invalidated by the
2000 	 * task_switch?
2001 	 */
2002 	post_schedule(rq);
2003 
2004 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2005 	/* In this case, finish_task_switch does not reenable preemption */
2006 	preempt_enable();
2007 #endif
2008 	if (current->set_child_tid)
2009 		put_user(task_pid_vnr(current), current->set_child_tid);
2010 }
2011 
2012 /*
2013  * context_switch - switch to the new MM and the new
2014  * thread's register state.
2015  */
2016 static inline void
2017 context_switch(struct rq *rq, struct task_struct *prev,
2018 	       struct task_struct *next)
2019 {
2020 	struct mm_struct *mm, *oldmm;
2021 
2022 	prepare_task_switch(rq, prev, next);
2023 
2024 	mm = next->mm;
2025 	oldmm = prev->active_mm;
2026 	/*
2027 	 * For paravirt, this is coupled with an exit in switch_to to
2028 	 * combine the page table reload and the switch backend into
2029 	 * one hypercall.
2030 	 */
2031 	arch_start_context_switch(prev);
2032 
2033 	if (!mm) {
2034 		next->active_mm = oldmm;
2035 		atomic_inc(&oldmm->mm_count);
2036 		enter_lazy_tlb(oldmm, next);
2037 	} else
2038 		switch_mm(oldmm, mm, next);
2039 
2040 	if (!prev->mm) {
2041 		prev->active_mm = NULL;
2042 		rq->prev_mm = oldmm;
2043 	}
2044 	/*
2045 	 * Since the runqueue lock will be released by the next
2046 	 * task (which is an invalid locking op but in the case
2047 	 * of the scheduler it's an obvious special-case), so we
2048 	 * do an early lockdep release here:
2049 	 */
2050 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2051 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2052 #endif
2053 
2054 	/* Here we just switch the register state and the stack. */
2055 	switch_to(prev, next, prev);
2056 
2057 	barrier();
2058 	/*
2059 	 * this_rq must be evaluated again because prev may have moved
2060 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2061 	 * frame will be invalid.
2062 	 */
2063 	finish_task_switch(this_rq(), prev);
2064 }
2065 
2066 /*
2067  * nr_running, nr_uninterruptible and nr_context_switches:
2068  *
2069  * externally visible scheduler statistics: current number of runnable
2070  * threads, current number of uninterruptible-sleeping threads, total
2071  * number of context switches performed since bootup.
2072  */
2073 unsigned long nr_running(void)
2074 {
2075 	unsigned long i, sum = 0;
2076 
2077 	for_each_online_cpu(i)
2078 		sum += cpu_rq(i)->nr_running;
2079 
2080 	return sum;
2081 }
2082 
2083 unsigned long nr_uninterruptible(void)
2084 {
2085 	unsigned long i, sum = 0;
2086 
2087 	for_each_possible_cpu(i)
2088 		sum += cpu_rq(i)->nr_uninterruptible;
2089 
2090 	/*
2091 	 * Since we read the counters lockless, it might be slightly
2092 	 * inaccurate. Do not allow it to go below zero though:
2093 	 */
2094 	if (unlikely((long)sum < 0))
2095 		sum = 0;
2096 
2097 	return sum;
2098 }
2099 
2100 unsigned long long nr_context_switches(void)
2101 {
2102 	int i;
2103 	unsigned long long sum = 0;
2104 
2105 	for_each_possible_cpu(i)
2106 		sum += cpu_rq(i)->nr_switches;
2107 
2108 	return sum;
2109 }
2110 
2111 unsigned long nr_iowait(void)
2112 {
2113 	unsigned long i, sum = 0;
2114 
2115 	for_each_possible_cpu(i)
2116 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2117 
2118 	return sum;
2119 }
2120 
2121 unsigned long nr_iowait_cpu(int cpu)
2122 {
2123 	struct rq *this = cpu_rq(cpu);
2124 	return atomic_read(&this->nr_iowait);
2125 }
2126 
2127 unsigned long this_cpu_load(void)
2128 {
2129 	struct rq *this = this_rq();
2130 	return this->cpu_load[0];
2131 }
2132 
2133 
2134 /* Variables and functions for calc_load */
2135 static atomic_long_t calc_load_tasks;
2136 static unsigned long calc_load_update;
2137 unsigned long avenrun[3];
2138 EXPORT_SYMBOL(avenrun);
2139 
2140 static long calc_load_fold_active(struct rq *this_rq)
2141 {
2142 	long nr_active, delta = 0;
2143 
2144 	nr_active = this_rq->nr_running;
2145 	nr_active += (long) this_rq->nr_uninterruptible;
2146 
2147 	if (nr_active != this_rq->calc_load_active) {
2148 		delta = nr_active - this_rq->calc_load_active;
2149 		this_rq->calc_load_active = nr_active;
2150 	}
2151 
2152 	return delta;
2153 }
2154 
2155 static unsigned long
2156 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2157 {
2158 	load *= exp;
2159 	load += active * (FIXED_1 - exp);
2160 	load += 1UL << (FSHIFT - 1);
2161 	return load >> FSHIFT;
2162 }
2163 
2164 #ifdef CONFIG_NO_HZ
2165 /*
2166  * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2167  *
2168  * When making the ILB scale, we should try to pull this in as well.
2169  */
2170 static atomic_long_t calc_load_tasks_idle;
2171 
2172 void calc_load_account_idle(struct rq *this_rq)
2173 {
2174 	long delta;
2175 
2176 	delta = calc_load_fold_active(this_rq);
2177 	if (delta)
2178 		atomic_long_add(delta, &calc_load_tasks_idle);
2179 }
2180 
2181 static long calc_load_fold_idle(void)
2182 {
2183 	long delta = 0;
2184 
2185 	/*
2186 	 * Its got a race, we don't care...
2187 	 */
2188 	if (atomic_long_read(&calc_load_tasks_idle))
2189 		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2190 
2191 	return delta;
2192 }
2193 
2194 /**
2195  * fixed_power_int - compute: x^n, in O(log n) time
2196  *
2197  * @x:         base of the power
2198  * @frac_bits: fractional bits of @x
2199  * @n:         power to raise @x to.
2200  *
2201  * By exploiting the relation between the definition of the natural power
2202  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2203  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2204  * (where: n_i \elem {0, 1}, the binary vector representing n),
2205  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2206  * of course trivially computable in O(log_2 n), the length of our binary
2207  * vector.
2208  */
2209 static unsigned long
2210 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2211 {
2212 	unsigned long result = 1UL << frac_bits;
2213 
2214 	if (n) for (;;) {
2215 		if (n & 1) {
2216 			result *= x;
2217 			result += 1UL << (frac_bits - 1);
2218 			result >>= frac_bits;
2219 		}
2220 		n >>= 1;
2221 		if (!n)
2222 			break;
2223 		x *= x;
2224 		x += 1UL << (frac_bits - 1);
2225 		x >>= frac_bits;
2226 	}
2227 
2228 	return result;
2229 }
2230 
2231 /*
2232  * a1 = a0 * e + a * (1 - e)
2233  *
2234  * a2 = a1 * e + a * (1 - e)
2235  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2236  *    = a0 * e^2 + a * (1 - e) * (1 + e)
2237  *
2238  * a3 = a2 * e + a * (1 - e)
2239  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2240  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2241  *
2242  *  ...
2243  *
2244  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2245  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2246  *    = a0 * e^n + a * (1 - e^n)
2247  *
2248  * [1] application of the geometric series:
2249  *
2250  *              n         1 - x^(n+1)
2251  *     S_n := \Sum x^i = -------------
2252  *             i=0          1 - x
2253  */
2254 static unsigned long
2255 calc_load_n(unsigned long load, unsigned long exp,
2256 	    unsigned long active, unsigned int n)
2257 {
2258 
2259 	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2260 }
2261 
2262 /*
2263  * NO_HZ can leave us missing all per-cpu ticks calling
2264  * calc_load_account_active(), but since an idle CPU folds its delta into
2265  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2266  * in the pending idle delta if our idle period crossed a load cycle boundary.
2267  *
2268  * Once we've updated the global active value, we need to apply the exponential
2269  * weights adjusted to the number of cycles missed.
2270  */
2271 static void calc_global_nohz(void)
2272 {
2273 	long delta, active, n;
2274 
2275 	/*
2276 	 * If we crossed a calc_load_update boundary, make sure to fold
2277 	 * any pending idle changes, the respective CPUs might have
2278 	 * missed the tick driven calc_load_account_active() update
2279 	 * due to NO_HZ.
2280 	 */
2281 	delta = calc_load_fold_idle();
2282 	if (delta)
2283 		atomic_long_add(delta, &calc_load_tasks);
2284 
2285 	/*
2286 	 * It could be the one fold was all it took, we done!
2287 	 */
2288 	if (time_before(jiffies, calc_load_update + 10))
2289 		return;
2290 
2291 	/*
2292 	 * Catch-up, fold however many we are behind still
2293 	 */
2294 	delta = jiffies - calc_load_update - 10;
2295 	n = 1 + (delta / LOAD_FREQ);
2296 
2297 	active = atomic_long_read(&calc_load_tasks);
2298 	active = active > 0 ? active * FIXED_1 : 0;
2299 
2300 	avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2301 	avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2302 	avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2303 
2304 	calc_load_update += n * LOAD_FREQ;
2305 }
2306 #else
2307 void calc_load_account_idle(struct rq *this_rq)
2308 {
2309 }
2310 
2311 static inline long calc_load_fold_idle(void)
2312 {
2313 	return 0;
2314 }
2315 
2316 static void calc_global_nohz(void)
2317 {
2318 }
2319 #endif
2320 
2321 /**
2322  * get_avenrun - get the load average array
2323  * @loads:	pointer to dest load array
2324  * @offset:	offset to add
2325  * @shift:	shift count to shift the result left
2326  *
2327  * These values are estimates at best, so no need for locking.
2328  */
2329 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2330 {
2331 	loads[0] = (avenrun[0] + offset) << shift;
2332 	loads[1] = (avenrun[1] + offset) << shift;
2333 	loads[2] = (avenrun[2] + offset) << shift;
2334 }
2335 
2336 /*
2337  * calc_load - update the avenrun load estimates 10 ticks after the
2338  * CPUs have updated calc_load_tasks.
2339  */
2340 void calc_global_load(unsigned long ticks)
2341 {
2342 	long active;
2343 
2344 	if (time_before(jiffies, calc_load_update + 10))
2345 		return;
2346 
2347 	active = atomic_long_read(&calc_load_tasks);
2348 	active = active > 0 ? active * FIXED_1 : 0;
2349 
2350 	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2351 	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2352 	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2353 
2354 	calc_load_update += LOAD_FREQ;
2355 
2356 	/*
2357 	 * Account one period with whatever state we found before
2358 	 * folding in the nohz state and ageing the entire idle period.
2359 	 *
2360 	 * This avoids loosing a sample when we go idle between
2361 	 * calc_load_account_active() (10 ticks ago) and now and thus
2362 	 * under-accounting.
2363 	 */
2364 	calc_global_nohz();
2365 }
2366 
2367 /*
2368  * Called from update_cpu_load() to periodically update this CPU's
2369  * active count.
2370  */
2371 static void calc_load_account_active(struct rq *this_rq)
2372 {
2373 	long delta;
2374 
2375 	if (time_before(jiffies, this_rq->calc_load_update))
2376 		return;
2377 
2378 	delta  = calc_load_fold_active(this_rq);
2379 	delta += calc_load_fold_idle();
2380 	if (delta)
2381 		atomic_long_add(delta, &calc_load_tasks);
2382 
2383 	this_rq->calc_load_update += LOAD_FREQ;
2384 }
2385 
2386 /*
2387  * The exact cpuload at various idx values, calculated at every tick would be
2388  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2389  *
2390  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2391  * on nth tick when cpu may be busy, then we have:
2392  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2393  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2394  *
2395  * decay_load_missed() below does efficient calculation of
2396  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2397  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2398  *
2399  * The calculation is approximated on a 128 point scale.
2400  * degrade_zero_ticks is the number of ticks after which load at any
2401  * particular idx is approximated to be zero.
2402  * degrade_factor is a precomputed table, a row for each load idx.
2403  * Each column corresponds to degradation factor for a power of two ticks,
2404  * based on 128 point scale.
2405  * Example:
2406  * row 2, col 3 (=12) says that the degradation at load idx 2 after
2407  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2408  *
2409  * With this power of 2 load factors, we can degrade the load n times
2410  * by looking at 1 bits in n and doing as many mult/shift instead of
2411  * n mult/shifts needed by the exact degradation.
2412  */
2413 #define DEGRADE_SHIFT		7
2414 static const unsigned char
2415 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2416 static const unsigned char
2417 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2418 					{0, 0, 0, 0, 0, 0, 0, 0},
2419 					{64, 32, 8, 0, 0, 0, 0, 0},
2420 					{96, 72, 40, 12, 1, 0, 0},
2421 					{112, 98, 75, 43, 15, 1, 0},
2422 					{120, 112, 98, 76, 45, 16, 2} };
2423 
2424 /*
2425  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2426  * would be when CPU is idle and so we just decay the old load without
2427  * adding any new load.
2428  */
2429 static unsigned long
2430 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2431 {
2432 	int j = 0;
2433 
2434 	if (!missed_updates)
2435 		return load;
2436 
2437 	if (missed_updates >= degrade_zero_ticks[idx])
2438 		return 0;
2439 
2440 	if (idx == 1)
2441 		return load >> missed_updates;
2442 
2443 	while (missed_updates) {
2444 		if (missed_updates % 2)
2445 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2446 
2447 		missed_updates >>= 1;
2448 		j++;
2449 	}
2450 	return load;
2451 }
2452 
2453 /*
2454  * Update rq->cpu_load[] statistics. This function is usually called every
2455  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2456  * every tick. We fix it up based on jiffies.
2457  */
2458 void update_cpu_load(struct rq *this_rq)
2459 {
2460 	unsigned long this_load = this_rq->load.weight;
2461 	unsigned long curr_jiffies = jiffies;
2462 	unsigned long pending_updates;
2463 	int i, scale;
2464 
2465 	this_rq->nr_load_updates++;
2466 
2467 	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
2468 	if (curr_jiffies == this_rq->last_load_update_tick)
2469 		return;
2470 
2471 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2472 	this_rq->last_load_update_tick = curr_jiffies;
2473 
2474 	/* Update our load: */
2475 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2476 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2477 		unsigned long old_load, new_load;
2478 
2479 		/* scale is effectively 1 << i now, and >> i divides by scale */
2480 
2481 		old_load = this_rq->cpu_load[i];
2482 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2483 		new_load = this_load;
2484 		/*
2485 		 * Round up the averaging division if load is increasing. This
2486 		 * prevents us from getting stuck on 9 if the load is 10, for
2487 		 * example.
2488 		 */
2489 		if (new_load > old_load)
2490 			new_load += scale - 1;
2491 
2492 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2493 	}
2494 
2495 	sched_avg_update(this_rq);
2496 }
2497 
2498 static void update_cpu_load_active(struct rq *this_rq)
2499 {
2500 	update_cpu_load(this_rq);
2501 
2502 	calc_load_account_active(this_rq);
2503 }
2504 
2505 #ifdef CONFIG_SMP
2506 
2507 /*
2508  * sched_exec - execve() is a valuable balancing opportunity, because at
2509  * this point the task has the smallest effective memory and cache footprint.
2510  */
2511 void sched_exec(void)
2512 {
2513 	struct task_struct *p = current;
2514 	unsigned long flags;
2515 	int dest_cpu;
2516 
2517 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2518 	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2519 	if (dest_cpu == smp_processor_id())
2520 		goto unlock;
2521 
2522 	if (likely(cpu_active(dest_cpu))) {
2523 		struct migration_arg arg = { p, dest_cpu };
2524 
2525 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2526 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2527 		return;
2528 	}
2529 unlock:
2530 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2531 }
2532 
2533 #endif
2534 
2535 DEFINE_PER_CPU(struct kernel_stat, kstat);
2536 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2537 
2538 EXPORT_PER_CPU_SYMBOL(kstat);
2539 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2540 
2541 /*
2542  * Return any ns on the sched_clock that have not yet been accounted in
2543  * @p in case that task is currently running.
2544  *
2545  * Called with task_rq_lock() held on @rq.
2546  */
2547 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2548 {
2549 	u64 ns = 0;
2550 
2551 	if (task_current(rq, p)) {
2552 		update_rq_clock(rq);
2553 		ns = rq->clock_task - p->se.exec_start;
2554 		if ((s64)ns < 0)
2555 			ns = 0;
2556 	}
2557 
2558 	return ns;
2559 }
2560 
2561 unsigned long long task_delta_exec(struct task_struct *p)
2562 {
2563 	unsigned long flags;
2564 	struct rq *rq;
2565 	u64 ns = 0;
2566 
2567 	rq = task_rq_lock(p, &flags);
2568 	ns = do_task_delta_exec(p, rq);
2569 	task_rq_unlock(rq, p, &flags);
2570 
2571 	return ns;
2572 }
2573 
2574 /*
2575  * Return accounted runtime for the task.
2576  * In case the task is currently running, return the runtime plus current's
2577  * pending runtime that have not been accounted yet.
2578  */
2579 unsigned long long task_sched_runtime(struct task_struct *p)
2580 {
2581 	unsigned long flags;
2582 	struct rq *rq;
2583 	u64 ns = 0;
2584 
2585 	rq = task_rq_lock(p, &flags);
2586 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2587 	task_rq_unlock(rq, p, &flags);
2588 
2589 	return ns;
2590 }
2591 
2592 #ifdef CONFIG_CGROUP_CPUACCT
2593 struct cgroup_subsys cpuacct_subsys;
2594 struct cpuacct root_cpuacct;
2595 #endif
2596 
2597 static inline void task_group_account_field(struct task_struct *p, int index,
2598 					    u64 tmp)
2599 {
2600 #ifdef CONFIG_CGROUP_CPUACCT
2601 	struct kernel_cpustat *kcpustat;
2602 	struct cpuacct *ca;
2603 #endif
2604 	/*
2605 	 * Since all updates are sure to touch the root cgroup, we
2606 	 * get ourselves ahead and touch it first. If the root cgroup
2607 	 * is the only cgroup, then nothing else should be necessary.
2608 	 *
2609 	 */
2610 	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2611 
2612 #ifdef CONFIG_CGROUP_CPUACCT
2613 	if (unlikely(!cpuacct_subsys.active))
2614 		return;
2615 
2616 	rcu_read_lock();
2617 	ca = task_ca(p);
2618 	while (ca && (ca != &root_cpuacct)) {
2619 		kcpustat = this_cpu_ptr(ca->cpustat);
2620 		kcpustat->cpustat[index] += tmp;
2621 		ca = parent_ca(ca);
2622 	}
2623 	rcu_read_unlock();
2624 #endif
2625 }
2626 
2627 
2628 /*
2629  * Account user cpu time to a process.
2630  * @p: the process that the cpu time gets accounted to
2631  * @cputime: the cpu time spent in user space since the last update
2632  * @cputime_scaled: cputime scaled by cpu frequency
2633  */
2634 void account_user_time(struct task_struct *p, cputime_t cputime,
2635 		       cputime_t cputime_scaled)
2636 {
2637 	int index;
2638 
2639 	/* Add user time to process. */
2640 	p->utime += cputime;
2641 	p->utimescaled += cputime_scaled;
2642 	account_group_user_time(p, cputime);
2643 
2644 	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2645 
2646 	/* Add user time to cpustat. */
2647 	task_group_account_field(p, index, (__force u64) cputime);
2648 
2649 	/* Account for user time used */
2650 	acct_update_integrals(p);
2651 }
2652 
2653 /*
2654  * Account guest cpu time to a process.
2655  * @p: the process that the cpu time gets accounted to
2656  * @cputime: the cpu time spent in virtual machine since the last update
2657  * @cputime_scaled: cputime scaled by cpu frequency
2658  */
2659 static void account_guest_time(struct task_struct *p, cputime_t cputime,
2660 			       cputime_t cputime_scaled)
2661 {
2662 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2663 
2664 	/* Add guest time to process. */
2665 	p->utime += cputime;
2666 	p->utimescaled += cputime_scaled;
2667 	account_group_user_time(p, cputime);
2668 	p->gtime += cputime;
2669 
2670 	/* Add guest time to cpustat. */
2671 	if (TASK_NICE(p) > 0) {
2672 		cpustat[CPUTIME_NICE] += (__force u64) cputime;
2673 		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2674 	} else {
2675 		cpustat[CPUTIME_USER] += (__force u64) cputime;
2676 		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2677 	}
2678 }
2679 
2680 /*
2681  * Account system cpu time to a process and desired cpustat field
2682  * @p: the process that the cpu time gets accounted to
2683  * @cputime: the cpu time spent in kernel space since the last update
2684  * @cputime_scaled: cputime scaled by cpu frequency
2685  * @target_cputime64: pointer to cpustat field that has to be updated
2686  */
2687 static inline
2688 void __account_system_time(struct task_struct *p, cputime_t cputime,
2689 			cputime_t cputime_scaled, int index)
2690 {
2691 	/* Add system time to process. */
2692 	p->stime += cputime;
2693 	p->stimescaled += cputime_scaled;
2694 	account_group_system_time(p, cputime);
2695 
2696 	/* Add system time to cpustat. */
2697 	task_group_account_field(p, index, (__force u64) cputime);
2698 
2699 	/* Account for system time used */
2700 	acct_update_integrals(p);
2701 }
2702 
2703 /*
2704  * Account system cpu time to a process.
2705  * @p: the process that the cpu time gets accounted to
2706  * @hardirq_offset: the offset to subtract from hardirq_count()
2707  * @cputime: the cpu time spent in kernel space since the last update
2708  * @cputime_scaled: cputime scaled by cpu frequency
2709  */
2710 void account_system_time(struct task_struct *p, int hardirq_offset,
2711 			 cputime_t cputime, cputime_t cputime_scaled)
2712 {
2713 	int index;
2714 
2715 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2716 		account_guest_time(p, cputime, cputime_scaled);
2717 		return;
2718 	}
2719 
2720 	if (hardirq_count() - hardirq_offset)
2721 		index = CPUTIME_IRQ;
2722 	else if (in_serving_softirq())
2723 		index = CPUTIME_SOFTIRQ;
2724 	else
2725 		index = CPUTIME_SYSTEM;
2726 
2727 	__account_system_time(p, cputime, cputime_scaled, index);
2728 }
2729 
2730 /*
2731  * Account for involuntary wait time.
2732  * @cputime: the cpu time spent in involuntary wait
2733  */
2734 void account_steal_time(cputime_t cputime)
2735 {
2736 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2737 
2738 	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2739 }
2740 
2741 /*
2742  * Account for idle time.
2743  * @cputime: the cpu time spent in idle wait
2744  */
2745 void account_idle_time(cputime_t cputime)
2746 {
2747 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2748 	struct rq *rq = this_rq();
2749 
2750 	if (atomic_read(&rq->nr_iowait) > 0)
2751 		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2752 	else
2753 		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2754 }
2755 
2756 static __always_inline bool steal_account_process_tick(void)
2757 {
2758 #ifdef CONFIG_PARAVIRT
2759 	if (static_key_false(&paravirt_steal_enabled)) {
2760 		u64 steal, st = 0;
2761 
2762 		steal = paravirt_steal_clock(smp_processor_id());
2763 		steal -= this_rq()->prev_steal_time;
2764 
2765 		st = steal_ticks(steal);
2766 		this_rq()->prev_steal_time += st * TICK_NSEC;
2767 
2768 		account_steal_time(st);
2769 		return st;
2770 	}
2771 #endif
2772 	return false;
2773 }
2774 
2775 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2776 
2777 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2778 /*
2779  * Account a tick to a process and cpustat
2780  * @p: the process that the cpu time gets accounted to
2781  * @user_tick: is the tick from userspace
2782  * @rq: the pointer to rq
2783  *
2784  * Tick demultiplexing follows the order
2785  * - pending hardirq update
2786  * - pending softirq update
2787  * - user_time
2788  * - idle_time
2789  * - system time
2790  *   - check for guest_time
2791  *   - else account as system_time
2792  *
2793  * Check for hardirq is done both for system and user time as there is
2794  * no timer going off while we are on hardirq and hence we may never get an
2795  * opportunity to update it solely in system time.
2796  * p->stime and friends are only updated on system time and not on irq
2797  * softirq as those do not count in task exec_runtime any more.
2798  */
2799 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2800 						struct rq *rq)
2801 {
2802 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2803 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2804 
2805 	if (steal_account_process_tick())
2806 		return;
2807 
2808 	if (irqtime_account_hi_update()) {
2809 		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2810 	} else if (irqtime_account_si_update()) {
2811 		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2812 	} else if (this_cpu_ksoftirqd() == p) {
2813 		/*
2814 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
2815 		 * So, we have to handle it separately here.
2816 		 * Also, p->stime needs to be updated for ksoftirqd.
2817 		 */
2818 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2819 					CPUTIME_SOFTIRQ);
2820 	} else if (user_tick) {
2821 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2822 	} else if (p == rq->idle) {
2823 		account_idle_time(cputime_one_jiffy);
2824 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
2825 		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2826 	} else {
2827 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2828 					CPUTIME_SYSTEM);
2829 	}
2830 }
2831 
2832 static void irqtime_account_idle_ticks(int ticks)
2833 {
2834 	int i;
2835 	struct rq *rq = this_rq();
2836 
2837 	for (i = 0; i < ticks; i++)
2838 		irqtime_account_process_tick(current, 0, rq);
2839 }
2840 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2841 static void irqtime_account_idle_ticks(int ticks) {}
2842 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2843 						struct rq *rq) {}
2844 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2845 
2846 /*
2847  * Account a single tick of cpu time.
2848  * @p: the process that the cpu time gets accounted to
2849  * @user_tick: indicates if the tick is a user or a system tick
2850  */
2851 void account_process_tick(struct task_struct *p, int user_tick)
2852 {
2853 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2854 	struct rq *rq = this_rq();
2855 
2856 	if (sched_clock_irqtime) {
2857 		irqtime_account_process_tick(p, user_tick, rq);
2858 		return;
2859 	}
2860 
2861 	if (steal_account_process_tick())
2862 		return;
2863 
2864 	if (user_tick)
2865 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2866 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2867 		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2868 				    one_jiffy_scaled);
2869 	else
2870 		account_idle_time(cputime_one_jiffy);
2871 }
2872 
2873 /*
2874  * Account multiple ticks of steal time.
2875  * @p: the process from which the cpu time has been stolen
2876  * @ticks: number of stolen ticks
2877  */
2878 void account_steal_ticks(unsigned long ticks)
2879 {
2880 	account_steal_time(jiffies_to_cputime(ticks));
2881 }
2882 
2883 /*
2884  * Account multiple ticks of idle time.
2885  * @ticks: number of stolen ticks
2886  */
2887 void account_idle_ticks(unsigned long ticks)
2888 {
2889 
2890 	if (sched_clock_irqtime) {
2891 		irqtime_account_idle_ticks(ticks);
2892 		return;
2893 	}
2894 
2895 	account_idle_time(jiffies_to_cputime(ticks));
2896 }
2897 
2898 #endif
2899 
2900 /*
2901  * Use precise platform statistics if available:
2902  */
2903 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
2904 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2905 {
2906 	*ut = p->utime;
2907 	*st = p->stime;
2908 }
2909 
2910 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2911 {
2912 	struct task_cputime cputime;
2913 
2914 	thread_group_cputime(p, &cputime);
2915 
2916 	*ut = cputime.utime;
2917 	*st = cputime.stime;
2918 }
2919 #else
2920 
2921 #ifndef nsecs_to_cputime
2922 # define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
2923 #endif
2924 
2925 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2926 {
2927 	cputime_t rtime, utime = p->utime, total = utime + p->stime;
2928 
2929 	/*
2930 	 * Use CFS's precise accounting:
2931 	 */
2932 	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2933 
2934 	if (total) {
2935 		u64 temp = (__force u64) rtime;
2936 
2937 		temp *= (__force u64) utime;
2938 		do_div(temp, (__force u32) total);
2939 		utime = (__force cputime_t) temp;
2940 	} else
2941 		utime = rtime;
2942 
2943 	/*
2944 	 * Compare with previous values, to keep monotonicity:
2945 	 */
2946 	p->prev_utime = max(p->prev_utime, utime);
2947 	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2948 
2949 	*ut = p->prev_utime;
2950 	*st = p->prev_stime;
2951 }
2952 
2953 /*
2954  * Must be called with siglock held.
2955  */
2956 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2957 {
2958 	struct signal_struct *sig = p->signal;
2959 	struct task_cputime cputime;
2960 	cputime_t rtime, utime, total;
2961 
2962 	thread_group_cputime(p, &cputime);
2963 
2964 	total = cputime.utime + cputime.stime;
2965 	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2966 
2967 	if (total) {
2968 		u64 temp = (__force u64) rtime;
2969 
2970 		temp *= (__force u64) cputime.utime;
2971 		do_div(temp, (__force u32) total);
2972 		utime = (__force cputime_t) temp;
2973 	} else
2974 		utime = rtime;
2975 
2976 	sig->prev_utime = max(sig->prev_utime, utime);
2977 	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
2978 
2979 	*ut = sig->prev_utime;
2980 	*st = sig->prev_stime;
2981 }
2982 #endif
2983 
2984 /*
2985  * This function gets called by the timer code, with HZ frequency.
2986  * We call it with interrupts disabled.
2987  */
2988 void scheduler_tick(void)
2989 {
2990 	int cpu = smp_processor_id();
2991 	struct rq *rq = cpu_rq(cpu);
2992 	struct task_struct *curr = rq->curr;
2993 
2994 	sched_clock_tick();
2995 
2996 	raw_spin_lock(&rq->lock);
2997 	update_rq_clock(rq);
2998 	update_cpu_load_active(rq);
2999 	curr->sched_class->task_tick(rq, curr, 0);
3000 	raw_spin_unlock(&rq->lock);
3001 
3002 	perf_event_task_tick();
3003 
3004 #ifdef CONFIG_SMP
3005 	rq->idle_balance = idle_cpu(cpu);
3006 	trigger_load_balance(rq, cpu);
3007 #endif
3008 }
3009 
3010 notrace unsigned long get_parent_ip(unsigned long addr)
3011 {
3012 	if (in_lock_functions(addr)) {
3013 		addr = CALLER_ADDR2;
3014 		if (in_lock_functions(addr))
3015 			addr = CALLER_ADDR3;
3016 	}
3017 	return addr;
3018 }
3019 
3020 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3021 				defined(CONFIG_PREEMPT_TRACER))
3022 
3023 void __kprobes add_preempt_count(int val)
3024 {
3025 #ifdef CONFIG_DEBUG_PREEMPT
3026 	/*
3027 	 * Underflow?
3028 	 */
3029 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3030 		return;
3031 #endif
3032 	preempt_count() += val;
3033 #ifdef CONFIG_DEBUG_PREEMPT
3034 	/*
3035 	 * Spinlock count overflowing soon?
3036 	 */
3037 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3038 				PREEMPT_MASK - 10);
3039 #endif
3040 	if (preempt_count() == val)
3041 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3042 }
3043 EXPORT_SYMBOL(add_preempt_count);
3044 
3045 void __kprobes sub_preempt_count(int val)
3046 {
3047 #ifdef CONFIG_DEBUG_PREEMPT
3048 	/*
3049 	 * Underflow?
3050 	 */
3051 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3052 		return;
3053 	/*
3054 	 * Is the spinlock portion underflowing?
3055 	 */
3056 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3057 			!(preempt_count() & PREEMPT_MASK)))
3058 		return;
3059 #endif
3060 
3061 	if (preempt_count() == val)
3062 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3063 	preempt_count() -= val;
3064 }
3065 EXPORT_SYMBOL(sub_preempt_count);
3066 
3067 #endif
3068 
3069 /*
3070  * Print scheduling while atomic bug:
3071  */
3072 static noinline void __schedule_bug(struct task_struct *prev)
3073 {
3074 	struct pt_regs *regs = get_irq_regs();
3075 
3076 	if (oops_in_progress)
3077 		return;
3078 
3079 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3080 		prev->comm, prev->pid, preempt_count());
3081 
3082 	debug_show_held_locks(prev);
3083 	print_modules();
3084 	if (irqs_disabled())
3085 		print_irqtrace_events(prev);
3086 
3087 	if (regs)
3088 		show_regs(regs);
3089 	else
3090 		dump_stack();
3091 }
3092 
3093 /*
3094  * Various schedule()-time debugging checks and statistics:
3095  */
3096 static inline void schedule_debug(struct task_struct *prev)
3097 {
3098 	/*
3099 	 * Test if we are atomic. Since do_exit() needs to call into
3100 	 * schedule() atomically, we ignore that path for now.
3101 	 * Otherwise, whine if we are scheduling when we should not be.
3102 	 */
3103 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3104 		__schedule_bug(prev);
3105 	rcu_sleep_check();
3106 
3107 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3108 
3109 	schedstat_inc(this_rq(), sched_count);
3110 }
3111 
3112 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3113 {
3114 	if (prev->on_rq || rq->skip_clock_update < 0)
3115 		update_rq_clock(rq);
3116 	prev->sched_class->put_prev_task(rq, prev);
3117 }
3118 
3119 /*
3120  * Pick up the highest-prio task:
3121  */
3122 static inline struct task_struct *
3123 pick_next_task(struct rq *rq)
3124 {
3125 	const struct sched_class *class;
3126 	struct task_struct *p;
3127 
3128 	/*
3129 	 * Optimization: we know that if all tasks are in
3130 	 * the fair class we can call that function directly:
3131 	 */
3132 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3133 		p = fair_sched_class.pick_next_task(rq);
3134 		if (likely(p))
3135 			return p;
3136 	}
3137 
3138 	for_each_class(class) {
3139 		p = class->pick_next_task(rq);
3140 		if (p)
3141 			return p;
3142 	}
3143 
3144 	BUG(); /* the idle class will always have a runnable task */
3145 }
3146 
3147 /*
3148  * __schedule() is the main scheduler function.
3149  */
3150 static void __sched __schedule(void)
3151 {
3152 	struct task_struct *prev, *next;
3153 	unsigned long *switch_count;
3154 	struct rq *rq;
3155 	int cpu;
3156 
3157 need_resched:
3158 	preempt_disable();
3159 	cpu = smp_processor_id();
3160 	rq = cpu_rq(cpu);
3161 	rcu_note_context_switch(cpu);
3162 	prev = rq->curr;
3163 
3164 	schedule_debug(prev);
3165 
3166 	if (sched_feat(HRTICK))
3167 		hrtick_clear(rq);
3168 
3169 	raw_spin_lock_irq(&rq->lock);
3170 
3171 	switch_count = &prev->nivcsw;
3172 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3173 		if (unlikely(signal_pending_state(prev->state, prev))) {
3174 			prev->state = TASK_RUNNING;
3175 		} else {
3176 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3177 			prev->on_rq = 0;
3178 
3179 			/*
3180 			 * If a worker went to sleep, notify and ask workqueue
3181 			 * whether it wants to wake up a task to maintain
3182 			 * concurrency.
3183 			 */
3184 			if (prev->flags & PF_WQ_WORKER) {
3185 				struct task_struct *to_wakeup;
3186 
3187 				to_wakeup = wq_worker_sleeping(prev, cpu);
3188 				if (to_wakeup)
3189 					try_to_wake_up_local(to_wakeup);
3190 			}
3191 		}
3192 		switch_count = &prev->nvcsw;
3193 	}
3194 
3195 	pre_schedule(rq, prev);
3196 
3197 	if (unlikely(!rq->nr_running))
3198 		idle_balance(cpu, rq);
3199 
3200 	put_prev_task(rq, prev);
3201 	next = pick_next_task(rq);
3202 	clear_tsk_need_resched(prev);
3203 	rq->skip_clock_update = 0;
3204 
3205 	if (likely(prev != next)) {
3206 		rq->nr_switches++;
3207 		rq->curr = next;
3208 		++*switch_count;
3209 
3210 		context_switch(rq, prev, next); /* unlocks the rq */
3211 		/*
3212 		 * The context switch have flipped the stack from under us
3213 		 * and restored the local variables which were saved when
3214 		 * this task called schedule() in the past. prev == current
3215 		 * is still correct, but it can be moved to another cpu/rq.
3216 		 */
3217 		cpu = smp_processor_id();
3218 		rq = cpu_rq(cpu);
3219 	} else
3220 		raw_spin_unlock_irq(&rq->lock);
3221 
3222 	post_schedule(rq);
3223 
3224 	sched_preempt_enable_no_resched();
3225 	if (need_resched())
3226 		goto need_resched;
3227 }
3228 
3229 static inline void sched_submit_work(struct task_struct *tsk)
3230 {
3231 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3232 		return;
3233 	/*
3234 	 * If we are going to sleep and we have plugged IO queued,
3235 	 * make sure to submit it to avoid deadlocks.
3236 	 */
3237 	if (blk_needs_flush_plug(tsk))
3238 		blk_schedule_flush_plug(tsk);
3239 }
3240 
3241 asmlinkage void __sched schedule(void)
3242 {
3243 	struct task_struct *tsk = current;
3244 
3245 	sched_submit_work(tsk);
3246 	__schedule();
3247 }
3248 EXPORT_SYMBOL(schedule);
3249 
3250 /**
3251  * schedule_preempt_disabled - called with preemption disabled
3252  *
3253  * Returns with preemption disabled. Note: preempt_count must be 1
3254  */
3255 void __sched schedule_preempt_disabled(void)
3256 {
3257 	sched_preempt_enable_no_resched();
3258 	schedule();
3259 	preempt_disable();
3260 }
3261 
3262 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3263 
3264 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3265 {
3266 	if (lock->owner != owner)
3267 		return false;
3268 
3269 	/*
3270 	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3271 	 * lock->owner still matches owner, if that fails, owner might
3272 	 * point to free()d memory, if it still matches, the rcu_read_lock()
3273 	 * ensures the memory stays valid.
3274 	 */
3275 	barrier();
3276 
3277 	return owner->on_cpu;
3278 }
3279 
3280 /*
3281  * Look out! "owner" is an entirely speculative pointer
3282  * access and not reliable.
3283  */
3284 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3285 {
3286 	if (!sched_feat(OWNER_SPIN))
3287 		return 0;
3288 
3289 	rcu_read_lock();
3290 	while (owner_running(lock, owner)) {
3291 		if (need_resched())
3292 			break;
3293 
3294 		arch_mutex_cpu_relax();
3295 	}
3296 	rcu_read_unlock();
3297 
3298 	/*
3299 	 * We break out the loop above on need_resched() and when the
3300 	 * owner changed, which is a sign for heavy contention. Return
3301 	 * success only when lock->owner is NULL.
3302 	 */
3303 	return lock->owner == NULL;
3304 }
3305 #endif
3306 
3307 #ifdef CONFIG_PREEMPT
3308 /*
3309  * this is the entry point to schedule() from in-kernel preemption
3310  * off of preempt_enable. Kernel preemptions off return from interrupt
3311  * occur there and call schedule directly.
3312  */
3313 asmlinkage void __sched notrace preempt_schedule(void)
3314 {
3315 	struct thread_info *ti = current_thread_info();
3316 
3317 	/*
3318 	 * If there is a non-zero preempt_count or interrupts are disabled,
3319 	 * we do not want to preempt the current task. Just return..
3320 	 */
3321 	if (likely(ti->preempt_count || irqs_disabled()))
3322 		return;
3323 
3324 	do {
3325 		add_preempt_count_notrace(PREEMPT_ACTIVE);
3326 		__schedule();
3327 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3328 
3329 		/*
3330 		 * Check again in case we missed a preemption opportunity
3331 		 * between schedule and now.
3332 		 */
3333 		barrier();
3334 	} while (need_resched());
3335 }
3336 EXPORT_SYMBOL(preempt_schedule);
3337 
3338 /*
3339  * this is the entry point to schedule() from kernel preemption
3340  * off of irq context.
3341  * Note, that this is called and return with irqs disabled. This will
3342  * protect us against recursive calling from irq.
3343  */
3344 asmlinkage void __sched preempt_schedule_irq(void)
3345 {
3346 	struct thread_info *ti = current_thread_info();
3347 
3348 	/* Catch callers which need to be fixed */
3349 	BUG_ON(ti->preempt_count || !irqs_disabled());
3350 
3351 	do {
3352 		add_preempt_count(PREEMPT_ACTIVE);
3353 		local_irq_enable();
3354 		__schedule();
3355 		local_irq_disable();
3356 		sub_preempt_count(PREEMPT_ACTIVE);
3357 
3358 		/*
3359 		 * Check again in case we missed a preemption opportunity
3360 		 * between schedule and now.
3361 		 */
3362 		barrier();
3363 	} while (need_resched());
3364 }
3365 
3366 #endif /* CONFIG_PREEMPT */
3367 
3368 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3369 			  void *key)
3370 {
3371 	return try_to_wake_up(curr->private, mode, wake_flags);
3372 }
3373 EXPORT_SYMBOL(default_wake_function);
3374 
3375 /*
3376  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3377  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3378  * number) then we wake all the non-exclusive tasks and one exclusive task.
3379  *
3380  * There are circumstances in which we can try to wake a task which has already
3381  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3382  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3383  */
3384 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3385 			int nr_exclusive, int wake_flags, void *key)
3386 {
3387 	wait_queue_t *curr, *next;
3388 
3389 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3390 		unsigned flags = curr->flags;
3391 
3392 		if (curr->func(curr, mode, wake_flags, key) &&
3393 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3394 			break;
3395 	}
3396 }
3397 
3398 /**
3399  * __wake_up - wake up threads blocked on a waitqueue.
3400  * @q: the waitqueue
3401  * @mode: which threads
3402  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3403  * @key: is directly passed to the wakeup function
3404  *
3405  * It may be assumed that this function implies a write memory barrier before
3406  * changing the task state if and only if any tasks are woken up.
3407  */
3408 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3409 			int nr_exclusive, void *key)
3410 {
3411 	unsigned long flags;
3412 
3413 	spin_lock_irqsave(&q->lock, flags);
3414 	__wake_up_common(q, mode, nr_exclusive, 0, key);
3415 	spin_unlock_irqrestore(&q->lock, flags);
3416 }
3417 EXPORT_SYMBOL(__wake_up);
3418 
3419 /*
3420  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3421  */
3422 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3423 {
3424 	__wake_up_common(q, mode, nr, 0, NULL);
3425 }
3426 EXPORT_SYMBOL_GPL(__wake_up_locked);
3427 
3428 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3429 {
3430 	__wake_up_common(q, mode, 1, 0, key);
3431 }
3432 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3433 
3434 /**
3435  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3436  * @q: the waitqueue
3437  * @mode: which threads
3438  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3439  * @key: opaque value to be passed to wakeup targets
3440  *
3441  * The sync wakeup differs that the waker knows that it will schedule
3442  * away soon, so while the target thread will be woken up, it will not
3443  * be migrated to another CPU - ie. the two threads are 'synchronized'
3444  * with each other. This can prevent needless bouncing between CPUs.
3445  *
3446  * On UP it can prevent extra preemption.
3447  *
3448  * It may be assumed that this function implies a write memory barrier before
3449  * changing the task state if and only if any tasks are woken up.
3450  */
3451 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3452 			int nr_exclusive, void *key)
3453 {
3454 	unsigned long flags;
3455 	int wake_flags = WF_SYNC;
3456 
3457 	if (unlikely(!q))
3458 		return;
3459 
3460 	if (unlikely(!nr_exclusive))
3461 		wake_flags = 0;
3462 
3463 	spin_lock_irqsave(&q->lock, flags);
3464 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3465 	spin_unlock_irqrestore(&q->lock, flags);
3466 }
3467 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3468 
3469 /*
3470  * __wake_up_sync - see __wake_up_sync_key()
3471  */
3472 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3473 {
3474 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3475 }
3476 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3477 
3478 /**
3479  * complete: - signals a single thread waiting on this completion
3480  * @x:  holds the state of this particular completion
3481  *
3482  * This will wake up a single thread waiting on this completion. Threads will be
3483  * awakened in the same order in which they were queued.
3484  *
3485  * See also complete_all(), wait_for_completion() and related routines.
3486  *
3487  * It may be assumed that this function implies a write memory barrier before
3488  * changing the task state if and only if any tasks are woken up.
3489  */
3490 void complete(struct completion *x)
3491 {
3492 	unsigned long flags;
3493 
3494 	spin_lock_irqsave(&x->wait.lock, flags);
3495 	x->done++;
3496 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3497 	spin_unlock_irqrestore(&x->wait.lock, flags);
3498 }
3499 EXPORT_SYMBOL(complete);
3500 
3501 /**
3502  * complete_all: - signals all threads waiting on this completion
3503  * @x:  holds the state of this particular completion
3504  *
3505  * This will wake up all threads waiting on this particular completion event.
3506  *
3507  * It may be assumed that this function implies a write memory barrier before
3508  * changing the task state if and only if any tasks are woken up.
3509  */
3510 void complete_all(struct completion *x)
3511 {
3512 	unsigned long flags;
3513 
3514 	spin_lock_irqsave(&x->wait.lock, flags);
3515 	x->done += UINT_MAX/2;
3516 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3517 	spin_unlock_irqrestore(&x->wait.lock, flags);
3518 }
3519 EXPORT_SYMBOL(complete_all);
3520 
3521 static inline long __sched
3522 do_wait_for_common(struct completion *x, long timeout, int state)
3523 {
3524 	if (!x->done) {
3525 		DECLARE_WAITQUEUE(wait, current);
3526 
3527 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3528 		do {
3529 			if (signal_pending_state(state, current)) {
3530 				timeout = -ERESTARTSYS;
3531 				break;
3532 			}
3533 			__set_current_state(state);
3534 			spin_unlock_irq(&x->wait.lock);
3535 			timeout = schedule_timeout(timeout);
3536 			spin_lock_irq(&x->wait.lock);
3537 		} while (!x->done && timeout);
3538 		__remove_wait_queue(&x->wait, &wait);
3539 		if (!x->done)
3540 			return timeout;
3541 	}
3542 	x->done--;
3543 	return timeout ?: 1;
3544 }
3545 
3546 static long __sched
3547 wait_for_common(struct completion *x, long timeout, int state)
3548 {
3549 	might_sleep();
3550 
3551 	spin_lock_irq(&x->wait.lock);
3552 	timeout = do_wait_for_common(x, timeout, state);
3553 	spin_unlock_irq(&x->wait.lock);
3554 	return timeout;
3555 }
3556 
3557 /**
3558  * wait_for_completion: - waits for completion of a task
3559  * @x:  holds the state of this particular completion
3560  *
3561  * This waits to be signaled for completion of a specific task. It is NOT
3562  * interruptible and there is no timeout.
3563  *
3564  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3565  * and interrupt capability. Also see complete().
3566  */
3567 void __sched wait_for_completion(struct completion *x)
3568 {
3569 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3570 }
3571 EXPORT_SYMBOL(wait_for_completion);
3572 
3573 /**
3574  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3575  * @x:  holds the state of this particular completion
3576  * @timeout:  timeout value in jiffies
3577  *
3578  * This waits for either a completion of a specific task to be signaled or for a
3579  * specified timeout to expire. The timeout is in jiffies. It is not
3580  * interruptible.
3581  *
3582  * The return value is 0 if timed out, and positive (at least 1, or number of
3583  * jiffies left till timeout) if completed.
3584  */
3585 unsigned long __sched
3586 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3587 {
3588 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3589 }
3590 EXPORT_SYMBOL(wait_for_completion_timeout);
3591 
3592 /**
3593  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3594  * @x:  holds the state of this particular completion
3595  *
3596  * This waits for completion of a specific task to be signaled. It is
3597  * interruptible.
3598  *
3599  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3600  */
3601 int __sched wait_for_completion_interruptible(struct completion *x)
3602 {
3603 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3604 	if (t == -ERESTARTSYS)
3605 		return t;
3606 	return 0;
3607 }
3608 EXPORT_SYMBOL(wait_for_completion_interruptible);
3609 
3610 /**
3611  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3612  * @x:  holds the state of this particular completion
3613  * @timeout:  timeout value in jiffies
3614  *
3615  * This waits for either a completion of a specific task to be signaled or for a
3616  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3617  *
3618  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3619  * positive (at least 1, or number of jiffies left till timeout) if completed.
3620  */
3621 long __sched
3622 wait_for_completion_interruptible_timeout(struct completion *x,
3623 					  unsigned long timeout)
3624 {
3625 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3626 }
3627 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3628 
3629 /**
3630  * wait_for_completion_killable: - waits for completion of a task (killable)
3631  * @x:  holds the state of this particular completion
3632  *
3633  * This waits to be signaled for completion of a specific task. It can be
3634  * interrupted by a kill signal.
3635  *
3636  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3637  */
3638 int __sched wait_for_completion_killable(struct completion *x)
3639 {
3640 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3641 	if (t == -ERESTARTSYS)
3642 		return t;
3643 	return 0;
3644 }
3645 EXPORT_SYMBOL(wait_for_completion_killable);
3646 
3647 /**
3648  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3649  * @x:  holds the state of this particular completion
3650  * @timeout:  timeout value in jiffies
3651  *
3652  * This waits for either a completion of a specific task to be
3653  * signaled or for a specified timeout to expire. It can be
3654  * interrupted by a kill signal. The timeout is in jiffies.
3655  *
3656  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3657  * positive (at least 1, or number of jiffies left till timeout) if completed.
3658  */
3659 long __sched
3660 wait_for_completion_killable_timeout(struct completion *x,
3661 				     unsigned long timeout)
3662 {
3663 	return wait_for_common(x, timeout, TASK_KILLABLE);
3664 }
3665 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3666 
3667 /**
3668  *	try_wait_for_completion - try to decrement a completion without blocking
3669  *	@x:	completion structure
3670  *
3671  *	Returns: 0 if a decrement cannot be done without blocking
3672  *		 1 if a decrement succeeded.
3673  *
3674  *	If a completion is being used as a counting completion,
3675  *	attempt to decrement the counter without blocking. This
3676  *	enables us to avoid waiting if the resource the completion
3677  *	is protecting is not available.
3678  */
3679 bool try_wait_for_completion(struct completion *x)
3680 {
3681 	unsigned long flags;
3682 	int ret = 1;
3683 
3684 	spin_lock_irqsave(&x->wait.lock, flags);
3685 	if (!x->done)
3686 		ret = 0;
3687 	else
3688 		x->done--;
3689 	spin_unlock_irqrestore(&x->wait.lock, flags);
3690 	return ret;
3691 }
3692 EXPORT_SYMBOL(try_wait_for_completion);
3693 
3694 /**
3695  *	completion_done - Test to see if a completion has any waiters
3696  *	@x:	completion structure
3697  *
3698  *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3699  *		 1 if there are no waiters.
3700  *
3701  */
3702 bool completion_done(struct completion *x)
3703 {
3704 	unsigned long flags;
3705 	int ret = 1;
3706 
3707 	spin_lock_irqsave(&x->wait.lock, flags);
3708 	if (!x->done)
3709 		ret = 0;
3710 	spin_unlock_irqrestore(&x->wait.lock, flags);
3711 	return ret;
3712 }
3713 EXPORT_SYMBOL(completion_done);
3714 
3715 static long __sched
3716 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3717 {
3718 	unsigned long flags;
3719 	wait_queue_t wait;
3720 
3721 	init_waitqueue_entry(&wait, current);
3722 
3723 	__set_current_state(state);
3724 
3725 	spin_lock_irqsave(&q->lock, flags);
3726 	__add_wait_queue(q, &wait);
3727 	spin_unlock(&q->lock);
3728 	timeout = schedule_timeout(timeout);
3729 	spin_lock_irq(&q->lock);
3730 	__remove_wait_queue(q, &wait);
3731 	spin_unlock_irqrestore(&q->lock, flags);
3732 
3733 	return timeout;
3734 }
3735 
3736 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3737 {
3738 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3739 }
3740 EXPORT_SYMBOL(interruptible_sleep_on);
3741 
3742 long __sched
3743 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3744 {
3745 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3746 }
3747 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3748 
3749 void __sched sleep_on(wait_queue_head_t *q)
3750 {
3751 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3752 }
3753 EXPORT_SYMBOL(sleep_on);
3754 
3755 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3756 {
3757 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3758 }
3759 EXPORT_SYMBOL(sleep_on_timeout);
3760 
3761 #ifdef CONFIG_RT_MUTEXES
3762 
3763 /*
3764  * rt_mutex_setprio - set the current priority of a task
3765  * @p: task
3766  * @prio: prio value (kernel-internal form)
3767  *
3768  * This function changes the 'effective' priority of a task. It does
3769  * not touch ->normal_prio like __setscheduler().
3770  *
3771  * Used by the rt_mutex code to implement priority inheritance logic.
3772  */
3773 void rt_mutex_setprio(struct task_struct *p, int prio)
3774 {
3775 	int oldprio, on_rq, running;
3776 	struct rq *rq;
3777 	const struct sched_class *prev_class;
3778 
3779 	BUG_ON(prio < 0 || prio > MAX_PRIO);
3780 
3781 	rq = __task_rq_lock(p);
3782 
3783 	/*
3784 	 * Idle task boosting is a nono in general. There is one
3785 	 * exception, when PREEMPT_RT and NOHZ is active:
3786 	 *
3787 	 * The idle task calls get_next_timer_interrupt() and holds
3788 	 * the timer wheel base->lock on the CPU and another CPU wants
3789 	 * to access the timer (probably to cancel it). We can safely
3790 	 * ignore the boosting request, as the idle CPU runs this code
3791 	 * with interrupts disabled and will complete the lock
3792 	 * protected section without being interrupted. So there is no
3793 	 * real need to boost.
3794 	 */
3795 	if (unlikely(p == rq->idle)) {
3796 		WARN_ON(p != rq->curr);
3797 		WARN_ON(p->pi_blocked_on);
3798 		goto out_unlock;
3799 	}
3800 
3801 	trace_sched_pi_setprio(p, prio);
3802 	oldprio = p->prio;
3803 	prev_class = p->sched_class;
3804 	on_rq = p->on_rq;
3805 	running = task_current(rq, p);
3806 	if (on_rq)
3807 		dequeue_task(rq, p, 0);
3808 	if (running)
3809 		p->sched_class->put_prev_task(rq, p);
3810 
3811 	if (rt_prio(prio))
3812 		p->sched_class = &rt_sched_class;
3813 	else
3814 		p->sched_class = &fair_sched_class;
3815 
3816 	p->prio = prio;
3817 
3818 	if (running)
3819 		p->sched_class->set_curr_task(rq);
3820 	if (on_rq)
3821 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3822 
3823 	check_class_changed(rq, p, prev_class, oldprio);
3824 out_unlock:
3825 	__task_rq_unlock(rq);
3826 }
3827 #endif
3828 void set_user_nice(struct task_struct *p, long nice)
3829 {
3830 	int old_prio, delta, on_rq;
3831 	unsigned long flags;
3832 	struct rq *rq;
3833 
3834 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3835 		return;
3836 	/*
3837 	 * We have to be careful, if called from sys_setpriority(),
3838 	 * the task might be in the middle of scheduling on another CPU.
3839 	 */
3840 	rq = task_rq_lock(p, &flags);
3841 	/*
3842 	 * The RT priorities are set via sched_setscheduler(), but we still
3843 	 * allow the 'normal' nice value to be set - but as expected
3844 	 * it wont have any effect on scheduling until the task is
3845 	 * SCHED_FIFO/SCHED_RR:
3846 	 */
3847 	if (task_has_rt_policy(p)) {
3848 		p->static_prio = NICE_TO_PRIO(nice);
3849 		goto out_unlock;
3850 	}
3851 	on_rq = p->on_rq;
3852 	if (on_rq)
3853 		dequeue_task(rq, p, 0);
3854 
3855 	p->static_prio = NICE_TO_PRIO(nice);
3856 	set_load_weight(p);
3857 	old_prio = p->prio;
3858 	p->prio = effective_prio(p);
3859 	delta = p->prio - old_prio;
3860 
3861 	if (on_rq) {
3862 		enqueue_task(rq, p, 0);
3863 		/*
3864 		 * If the task increased its priority or is running and
3865 		 * lowered its priority, then reschedule its CPU:
3866 		 */
3867 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3868 			resched_task(rq->curr);
3869 	}
3870 out_unlock:
3871 	task_rq_unlock(rq, p, &flags);
3872 }
3873 EXPORT_SYMBOL(set_user_nice);
3874 
3875 /*
3876  * can_nice - check if a task can reduce its nice value
3877  * @p: task
3878  * @nice: nice value
3879  */
3880 int can_nice(const struct task_struct *p, const int nice)
3881 {
3882 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3883 	int nice_rlim = 20 - nice;
3884 
3885 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3886 		capable(CAP_SYS_NICE));
3887 }
3888 
3889 #ifdef __ARCH_WANT_SYS_NICE
3890 
3891 /*
3892  * sys_nice - change the priority of the current process.
3893  * @increment: priority increment
3894  *
3895  * sys_setpriority is a more generic, but much slower function that
3896  * does similar things.
3897  */
3898 SYSCALL_DEFINE1(nice, int, increment)
3899 {
3900 	long nice, retval;
3901 
3902 	/*
3903 	 * Setpriority might change our priority at the same moment.
3904 	 * We don't have to worry. Conceptually one call occurs first
3905 	 * and we have a single winner.
3906 	 */
3907 	if (increment < -40)
3908 		increment = -40;
3909 	if (increment > 40)
3910 		increment = 40;
3911 
3912 	nice = TASK_NICE(current) + increment;
3913 	if (nice < -20)
3914 		nice = -20;
3915 	if (nice > 19)
3916 		nice = 19;
3917 
3918 	if (increment < 0 && !can_nice(current, nice))
3919 		return -EPERM;
3920 
3921 	retval = security_task_setnice(current, nice);
3922 	if (retval)
3923 		return retval;
3924 
3925 	set_user_nice(current, nice);
3926 	return 0;
3927 }
3928 
3929 #endif
3930 
3931 /**
3932  * task_prio - return the priority value of a given task.
3933  * @p: the task in question.
3934  *
3935  * This is the priority value as seen by users in /proc.
3936  * RT tasks are offset by -200. Normal tasks are centered
3937  * around 0, value goes from -16 to +15.
3938  */
3939 int task_prio(const struct task_struct *p)
3940 {
3941 	return p->prio - MAX_RT_PRIO;
3942 }
3943 
3944 /**
3945  * task_nice - return the nice value of a given task.
3946  * @p: the task in question.
3947  */
3948 int task_nice(const struct task_struct *p)
3949 {
3950 	return TASK_NICE(p);
3951 }
3952 EXPORT_SYMBOL(task_nice);
3953 
3954 /**
3955  * idle_cpu - is a given cpu idle currently?
3956  * @cpu: the processor in question.
3957  */
3958 int idle_cpu(int cpu)
3959 {
3960 	struct rq *rq = cpu_rq(cpu);
3961 
3962 	if (rq->curr != rq->idle)
3963 		return 0;
3964 
3965 	if (rq->nr_running)
3966 		return 0;
3967 
3968 #ifdef CONFIG_SMP
3969 	if (!llist_empty(&rq->wake_list))
3970 		return 0;
3971 #endif
3972 
3973 	return 1;
3974 }
3975 
3976 /**
3977  * idle_task - return the idle task for a given cpu.
3978  * @cpu: the processor in question.
3979  */
3980 struct task_struct *idle_task(int cpu)
3981 {
3982 	return cpu_rq(cpu)->idle;
3983 }
3984 
3985 /**
3986  * find_process_by_pid - find a process with a matching PID value.
3987  * @pid: the pid in question.
3988  */
3989 static struct task_struct *find_process_by_pid(pid_t pid)
3990 {
3991 	return pid ? find_task_by_vpid(pid) : current;
3992 }
3993 
3994 /* Actually do priority change: must hold rq lock. */
3995 static void
3996 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3997 {
3998 	p->policy = policy;
3999 	p->rt_priority = prio;
4000 	p->normal_prio = normal_prio(p);
4001 	/* we are holding p->pi_lock already */
4002 	p->prio = rt_mutex_getprio(p);
4003 	if (rt_prio(p->prio))
4004 		p->sched_class = &rt_sched_class;
4005 	else
4006 		p->sched_class = &fair_sched_class;
4007 	set_load_weight(p);
4008 }
4009 
4010 /*
4011  * check the target process has a UID that matches the current process's
4012  */
4013 static bool check_same_owner(struct task_struct *p)
4014 {
4015 	const struct cred *cred = current_cred(), *pcred;
4016 	bool match;
4017 
4018 	rcu_read_lock();
4019 	pcred = __task_cred(p);
4020 	if (cred->user->user_ns == pcred->user->user_ns)
4021 		match = (cred->euid == pcred->euid ||
4022 			 cred->euid == pcred->uid);
4023 	else
4024 		match = false;
4025 	rcu_read_unlock();
4026 	return match;
4027 }
4028 
4029 static int __sched_setscheduler(struct task_struct *p, int policy,
4030 				const struct sched_param *param, bool user)
4031 {
4032 	int retval, oldprio, oldpolicy = -1, on_rq, running;
4033 	unsigned long flags;
4034 	const struct sched_class *prev_class;
4035 	struct rq *rq;
4036 	int reset_on_fork;
4037 
4038 	/* may grab non-irq protected spin_locks */
4039 	BUG_ON(in_interrupt());
4040 recheck:
4041 	/* double check policy once rq lock held */
4042 	if (policy < 0) {
4043 		reset_on_fork = p->sched_reset_on_fork;
4044 		policy = oldpolicy = p->policy;
4045 	} else {
4046 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4047 		policy &= ~SCHED_RESET_ON_FORK;
4048 
4049 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
4050 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4051 				policy != SCHED_IDLE)
4052 			return -EINVAL;
4053 	}
4054 
4055 	/*
4056 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4057 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4058 	 * SCHED_BATCH and SCHED_IDLE is 0.
4059 	 */
4060 	if (param->sched_priority < 0 ||
4061 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4062 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4063 		return -EINVAL;
4064 	if (rt_policy(policy) != (param->sched_priority != 0))
4065 		return -EINVAL;
4066 
4067 	/*
4068 	 * Allow unprivileged RT tasks to decrease priority:
4069 	 */
4070 	if (user && !capable(CAP_SYS_NICE)) {
4071 		if (rt_policy(policy)) {
4072 			unsigned long rlim_rtprio =
4073 					task_rlimit(p, RLIMIT_RTPRIO);
4074 
4075 			/* can't set/change the rt policy */
4076 			if (policy != p->policy && !rlim_rtprio)
4077 				return -EPERM;
4078 
4079 			/* can't increase priority */
4080 			if (param->sched_priority > p->rt_priority &&
4081 			    param->sched_priority > rlim_rtprio)
4082 				return -EPERM;
4083 		}
4084 
4085 		/*
4086 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4087 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4088 		 */
4089 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4090 			if (!can_nice(p, TASK_NICE(p)))
4091 				return -EPERM;
4092 		}
4093 
4094 		/* can't change other user's priorities */
4095 		if (!check_same_owner(p))
4096 			return -EPERM;
4097 
4098 		/* Normal users shall not reset the sched_reset_on_fork flag */
4099 		if (p->sched_reset_on_fork && !reset_on_fork)
4100 			return -EPERM;
4101 	}
4102 
4103 	if (user) {
4104 		retval = security_task_setscheduler(p);
4105 		if (retval)
4106 			return retval;
4107 	}
4108 
4109 	/*
4110 	 * make sure no PI-waiters arrive (or leave) while we are
4111 	 * changing the priority of the task:
4112 	 *
4113 	 * To be able to change p->policy safely, the appropriate
4114 	 * runqueue lock must be held.
4115 	 */
4116 	rq = task_rq_lock(p, &flags);
4117 
4118 	/*
4119 	 * Changing the policy of the stop threads its a very bad idea
4120 	 */
4121 	if (p == rq->stop) {
4122 		task_rq_unlock(rq, p, &flags);
4123 		return -EINVAL;
4124 	}
4125 
4126 	/*
4127 	 * If not changing anything there's no need to proceed further:
4128 	 */
4129 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4130 			param->sched_priority == p->rt_priority))) {
4131 
4132 		__task_rq_unlock(rq);
4133 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4134 		return 0;
4135 	}
4136 
4137 #ifdef CONFIG_RT_GROUP_SCHED
4138 	if (user) {
4139 		/*
4140 		 * Do not allow realtime tasks into groups that have no runtime
4141 		 * assigned.
4142 		 */
4143 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4144 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4145 				!task_group_is_autogroup(task_group(p))) {
4146 			task_rq_unlock(rq, p, &flags);
4147 			return -EPERM;
4148 		}
4149 	}
4150 #endif
4151 
4152 	/* recheck policy now with rq lock held */
4153 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4154 		policy = oldpolicy = -1;
4155 		task_rq_unlock(rq, p, &flags);
4156 		goto recheck;
4157 	}
4158 	on_rq = p->on_rq;
4159 	running = task_current(rq, p);
4160 	if (on_rq)
4161 		dequeue_task(rq, p, 0);
4162 	if (running)
4163 		p->sched_class->put_prev_task(rq, p);
4164 
4165 	p->sched_reset_on_fork = reset_on_fork;
4166 
4167 	oldprio = p->prio;
4168 	prev_class = p->sched_class;
4169 	__setscheduler(rq, p, policy, param->sched_priority);
4170 
4171 	if (running)
4172 		p->sched_class->set_curr_task(rq);
4173 	if (on_rq)
4174 		enqueue_task(rq, p, 0);
4175 
4176 	check_class_changed(rq, p, prev_class, oldprio);
4177 	task_rq_unlock(rq, p, &flags);
4178 
4179 	rt_mutex_adjust_pi(p);
4180 
4181 	return 0;
4182 }
4183 
4184 /**
4185  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4186  * @p: the task in question.
4187  * @policy: new policy.
4188  * @param: structure containing the new RT priority.
4189  *
4190  * NOTE that the task may be already dead.
4191  */
4192 int sched_setscheduler(struct task_struct *p, int policy,
4193 		       const struct sched_param *param)
4194 {
4195 	return __sched_setscheduler(p, policy, param, true);
4196 }
4197 EXPORT_SYMBOL_GPL(sched_setscheduler);
4198 
4199 /**
4200  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4201  * @p: the task in question.
4202  * @policy: new policy.
4203  * @param: structure containing the new RT priority.
4204  *
4205  * Just like sched_setscheduler, only don't bother checking if the
4206  * current context has permission.  For example, this is needed in
4207  * stop_machine(): we create temporary high priority worker threads,
4208  * but our caller might not have that capability.
4209  */
4210 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4211 			       const struct sched_param *param)
4212 {
4213 	return __sched_setscheduler(p, policy, param, false);
4214 }
4215 
4216 static int
4217 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4218 {
4219 	struct sched_param lparam;
4220 	struct task_struct *p;
4221 	int retval;
4222 
4223 	if (!param || pid < 0)
4224 		return -EINVAL;
4225 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4226 		return -EFAULT;
4227 
4228 	rcu_read_lock();
4229 	retval = -ESRCH;
4230 	p = find_process_by_pid(pid);
4231 	if (p != NULL)
4232 		retval = sched_setscheduler(p, policy, &lparam);
4233 	rcu_read_unlock();
4234 
4235 	return retval;
4236 }
4237 
4238 /**
4239  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4240  * @pid: the pid in question.
4241  * @policy: new policy.
4242  * @param: structure containing the new RT priority.
4243  */
4244 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4245 		struct sched_param __user *, param)
4246 {
4247 	/* negative values for policy are not valid */
4248 	if (policy < 0)
4249 		return -EINVAL;
4250 
4251 	return do_sched_setscheduler(pid, policy, param);
4252 }
4253 
4254 /**
4255  * sys_sched_setparam - set/change the RT priority of a thread
4256  * @pid: the pid in question.
4257  * @param: structure containing the new RT priority.
4258  */
4259 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4260 {
4261 	return do_sched_setscheduler(pid, -1, param);
4262 }
4263 
4264 /**
4265  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4266  * @pid: the pid in question.
4267  */
4268 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4269 {
4270 	struct task_struct *p;
4271 	int retval;
4272 
4273 	if (pid < 0)
4274 		return -EINVAL;
4275 
4276 	retval = -ESRCH;
4277 	rcu_read_lock();
4278 	p = find_process_by_pid(pid);
4279 	if (p) {
4280 		retval = security_task_getscheduler(p);
4281 		if (!retval)
4282 			retval = p->policy
4283 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4284 	}
4285 	rcu_read_unlock();
4286 	return retval;
4287 }
4288 
4289 /**
4290  * sys_sched_getparam - get the RT priority of a thread
4291  * @pid: the pid in question.
4292  * @param: structure containing the RT priority.
4293  */
4294 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4295 {
4296 	struct sched_param lp;
4297 	struct task_struct *p;
4298 	int retval;
4299 
4300 	if (!param || pid < 0)
4301 		return -EINVAL;
4302 
4303 	rcu_read_lock();
4304 	p = find_process_by_pid(pid);
4305 	retval = -ESRCH;
4306 	if (!p)
4307 		goto out_unlock;
4308 
4309 	retval = security_task_getscheduler(p);
4310 	if (retval)
4311 		goto out_unlock;
4312 
4313 	lp.sched_priority = p->rt_priority;
4314 	rcu_read_unlock();
4315 
4316 	/*
4317 	 * This one might sleep, we cannot do it with a spinlock held ...
4318 	 */
4319 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4320 
4321 	return retval;
4322 
4323 out_unlock:
4324 	rcu_read_unlock();
4325 	return retval;
4326 }
4327 
4328 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4329 {
4330 	cpumask_var_t cpus_allowed, new_mask;
4331 	struct task_struct *p;
4332 	int retval;
4333 
4334 	get_online_cpus();
4335 	rcu_read_lock();
4336 
4337 	p = find_process_by_pid(pid);
4338 	if (!p) {
4339 		rcu_read_unlock();
4340 		put_online_cpus();
4341 		return -ESRCH;
4342 	}
4343 
4344 	/* Prevent p going away */
4345 	get_task_struct(p);
4346 	rcu_read_unlock();
4347 
4348 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4349 		retval = -ENOMEM;
4350 		goto out_put_task;
4351 	}
4352 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4353 		retval = -ENOMEM;
4354 		goto out_free_cpus_allowed;
4355 	}
4356 	retval = -EPERM;
4357 	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4358 		goto out_unlock;
4359 
4360 	retval = security_task_setscheduler(p);
4361 	if (retval)
4362 		goto out_unlock;
4363 
4364 	cpuset_cpus_allowed(p, cpus_allowed);
4365 	cpumask_and(new_mask, in_mask, cpus_allowed);
4366 again:
4367 	retval = set_cpus_allowed_ptr(p, new_mask);
4368 
4369 	if (!retval) {
4370 		cpuset_cpus_allowed(p, cpus_allowed);
4371 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4372 			/*
4373 			 * We must have raced with a concurrent cpuset
4374 			 * update. Just reset the cpus_allowed to the
4375 			 * cpuset's cpus_allowed
4376 			 */
4377 			cpumask_copy(new_mask, cpus_allowed);
4378 			goto again;
4379 		}
4380 	}
4381 out_unlock:
4382 	free_cpumask_var(new_mask);
4383 out_free_cpus_allowed:
4384 	free_cpumask_var(cpus_allowed);
4385 out_put_task:
4386 	put_task_struct(p);
4387 	put_online_cpus();
4388 	return retval;
4389 }
4390 
4391 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4392 			     struct cpumask *new_mask)
4393 {
4394 	if (len < cpumask_size())
4395 		cpumask_clear(new_mask);
4396 	else if (len > cpumask_size())
4397 		len = cpumask_size();
4398 
4399 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4400 }
4401 
4402 /**
4403  * sys_sched_setaffinity - set the cpu affinity of a process
4404  * @pid: pid of the process
4405  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4406  * @user_mask_ptr: user-space pointer to the new cpu mask
4407  */
4408 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4409 		unsigned long __user *, user_mask_ptr)
4410 {
4411 	cpumask_var_t new_mask;
4412 	int retval;
4413 
4414 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4415 		return -ENOMEM;
4416 
4417 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4418 	if (retval == 0)
4419 		retval = sched_setaffinity(pid, new_mask);
4420 	free_cpumask_var(new_mask);
4421 	return retval;
4422 }
4423 
4424 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4425 {
4426 	struct task_struct *p;
4427 	unsigned long flags;
4428 	int retval;
4429 
4430 	get_online_cpus();
4431 	rcu_read_lock();
4432 
4433 	retval = -ESRCH;
4434 	p = find_process_by_pid(pid);
4435 	if (!p)
4436 		goto out_unlock;
4437 
4438 	retval = security_task_getscheduler(p);
4439 	if (retval)
4440 		goto out_unlock;
4441 
4442 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4443 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4444 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4445 
4446 out_unlock:
4447 	rcu_read_unlock();
4448 	put_online_cpus();
4449 
4450 	return retval;
4451 }
4452 
4453 /**
4454  * sys_sched_getaffinity - get the cpu affinity of a process
4455  * @pid: pid of the process
4456  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4457  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4458  */
4459 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4460 		unsigned long __user *, user_mask_ptr)
4461 {
4462 	int ret;
4463 	cpumask_var_t mask;
4464 
4465 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4466 		return -EINVAL;
4467 	if (len & (sizeof(unsigned long)-1))
4468 		return -EINVAL;
4469 
4470 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4471 		return -ENOMEM;
4472 
4473 	ret = sched_getaffinity(pid, mask);
4474 	if (ret == 0) {
4475 		size_t retlen = min_t(size_t, len, cpumask_size());
4476 
4477 		if (copy_to_user(user_mask_ptr, mask, retlen))
4478 			ret = -EFAULT;
4479 		else
4480 			ret = retlen;
4481 	}
4482 	free_cpumask_var(mask);
4483 
4484 	return ret;
4485 }
4486 
4487 /**
4488  * sys_sched_yield - yield the current processor to other threads.
4489  *
4490  * This function yields the current CPU to other tasks. If there are no
4491  * other threads running on this CPU then this function will return.
4492  */
4493 SYSCALL_DEFINE0(sched_yield)
4494 {
4495 	struct rq *rq = this_rq_lock();
4496 
4497 	schedstat_inc(rq, yld_count);
4498 	current->sched_class->yield_task(rq);
4499 
4500 	/*
4501 	 * Since we are going to call schedule() anyway, there's
4502 	 * no need to preempt or enable interrupts:
4503 	 */
4504 	__release(rq->lock);
4505 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4506 	do_raw_spin_unlock(&rq->lock);
4507 	sched_preempt_enable_no_resched();
4508 
4509 	schedule();
4510 
4511 	return 0;
4512 }
4513 
4514 static inline int should_resched(void)
4515 {
4516 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4517 }
4518 
4519 static void __cond_resched(void)
4520 {
4521 	add_preempt_count(PREEMPT_ACTIVE);
4522 	__schedule();
4523 	sub_preempt_count(PREEMPT_ACTIVE);
4524 }
4525 
4526 int __sched _cond_resched(void)
4527 {
4528 	if (should_resched()) {
4529 		__cond_resched();
4530 		return 1;
4531 	}
4532 	return 0;
4533 }
4534 EXPORT_SYMBOL(_cond_resched);
4535 
4536 /*
4537  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4538  * call schedule, and on return reacquire the lock.
4539  *
4540  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4541  * operations here to prevent schedule() from being called twice (once via
4542  * spin_unlock(), once by hand).
4543  */
4544 int __cond_resched_lock(spinlock_t *lock)
4545 {
4546 	int resched = should_resched();
4547 	int ret = 0;
4548 
4549 	lockdep_assert_held(lock);
4550 
4551 	if (spin_needbreak(lock) || resched) {
4552 		spin_unlock(lock);
4553 		if (resched)
4554 			__cond_resched();
4555 		else
4556 			cpu_relax();
4557 		ret = 1;
4558 		spin_lock(lock);
4559 	}
4560 	return ret;
4561 }
4562 EXPORT_SYMBOL(__cond_resched_lock);
4563 
4564 int __sched __cond_resched_softirq(void)
4565 {
4566 	BUG_ON(!in_softirq());
4567 
4568 	if (should_resched()) {
4569 		local_bh_enable();
4570 		__cond_resched();
4571 		local_bh_disable();
4572 		return 1;
4573 	}
4574 	return 0;
4575 }
4576 EXPORT_SYMBOL(__cond_resched_softirq);
4577 
4578 /**
4579  * yield - yield the current processor to other threads.
4580  *
4581  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4582  *
4583  * The scheduler is at all times free to pick the calling task as the most
4584  * eligible task to run, if removing the yield() call from your code breaks
4585  * it, its already broken.
4586  *
4587  * Typical broken usage is:
4588  *
4589  * while (!event)
4590  * 	yield();
4591  *
4592  * where one assumes that yield() will let 'the other' process run that will
4593  * make event true. If the current task is a SCHED_FIFO task that will never
4594  * happen. Never use yield() as a progress guarantee!!
4595  *
4596  * If you want to use yield() to wait for something, use wait_event().
4597  * If you want to use yield() to be 'nice' for others, use cond_resched().
4598  * If you still want to use yield(), do not!
4599  */
4600 void __sched yield(void)
4601 {
4602 	set_current_state(TASK_RUNNING);
4603 	sys_sched_yield();
4604 }
4605 EXPORT_SYMBOL(yield);
4606 
4607 /**
4608  * yield_to - yield the current processor to another thread in
4609  * your thread group, or accelerate that thread toward the
4610  * processor it's on.
4611  * @p: target task
4612  * @preempt: whether task preemption is allowed or not
4613  *
4614  * It's the caller's job to ensure that the target task struct
4615  * can't go away on us before we can do any checks.
4616  *
4617  * Returns true if we indeed boosted the target task.
4618  */
4619 bool __sched yield_to(struct task_struct *p, bool preempt)
4620 {
4621 	struct task_struct *curr = current;
4622 	struct rq *rq, *p_rq;
4623 	unsigned long flags;
4624 	bool yielded = 0;
4625 
4626 	local_irq_save(flags);
4627 	rq = this_rq();
4628 
4629 again:
4630 	p_rq = task_rq(p);
4631 	double_rq_lock(rq, p_rq);
4632 	while (task_rq(p) != p_rq) {
4633 		double_rq_unlock(rq, p_rq);
4634 		goto again;
4635 	}
4636 
4637 	if (!curr->sched_class->yield_to_task)
4638 		goto out;
4639 
4640 	if (curr->sched_class != p->sched_class)
4641 		goto out;
4642 
4643 	if (task_running(p_rq, p) || p->state)
4644 		goto out;
4645 
4646 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4647 	if (yielded) {
4648 		schedstat_inc(rq, yld_count);
4649 		/*
4650 		 * Make p's CPU reschedule; pick_next_entity takes care of
4651 		 * fairness.
4652 		 */
4653 		if (preempt && rq != p_rq)
4654 			resched_task(p_rq->curr);
4655 	} else {
4656 		/*
4657 		 * We might have set it in task_yield_fair(), but are
4658 		 * not going to schedule(), so don't want to skip
4659 		 * the next update.
4660 		 */
4661 		rq->skip_clock_update = 0;
4662 	}
4663 
4664 out:
4665 	double_rq_unlock(rq, p_rq);
4666 	local_irq_restore(flags);
4667 
4668 	if (yielded)
4669 		schedule();
4670 
4671 	return yielded;
4672 }
4673 EXPORT_SYMBOL_GPL(yield_to);
4674 
4675 /*
4676  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4677  * that process accounting knows that this is a task in IO wait state.
4678  */
4679 void __sched io_schedule(void)
4680 {
4681 	struct rq *rq = raw_rq();
4682 
4683 	delayacct_blkio_start();
4684 	atomic_inc(&rq->nr_iowait);
4685 	blk_flush_plug(current);
4686 	current->in_iowait = 1;
4687 	schedule();
4688 	current->in_iowait = 0;
4689 	atomic_dec(&rq->nr_iowait);
4690 	delayacct_blkio_end();
4691 }
4692 EXPORT_SYMBOL(io_schedule);
4693 
4694 long __sched io_schedule_timeout(long timeout)
4695 {
4696 	struct rq *rq = raw_rq();
4697 	long ret;
4698 
4699 	delayacct_blkio_start();
4700 	atomic_inc(&rq->nr_iowait);
4701 	blk_flush_plug(current);
4702 	current->in_iowait = 1;
4703 	ret = schedule_timeout(timeout);
4704 	current->in_iowait = 0;
4705 	atomic_dec(&rq->nr_iowait);
4706 	delayacct_blkio_end();
4707 	return ret;
4708 }
4709 
4710 /**
4711  * sys_sched_get_priority_max - return maximum RT priority.
4712  * @policy: scheduling class.
4713  *
4714  * this syscall returns the maximum rt_priority that can be used
4715  * by a given scheduling class.
4716  */
4717 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4718 {
4719 	int ret = -EINVAL;
4720 
4721 	switch (policy) {
4722 	case SCHED_FIFO:
4723 	case SCHED_RR:
4724 		ret = MAX_USER_RT_PRIO-1;
4725 		break;
4726 	case SCHED_NORMAL:
4727 	case SCHED_BATCH:
4728 	case SCHED_IDLE:
4729 		ret = 0;
4730 		break;
4731 	}
4732 	return ret;
4733 }
4734 
4735 /**
4736  * sys_sched_get_priority_min - return minimum RT priority.
4737  * @policy: scheduling class.
4738  *
4739  * this syscall returns the minimum rt_priority that can be used
4740  * by a given scheduling class.
4741  */
4742 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4743 {
4744 	int ret = -EINVAL;
4745 
4746 	switch (policy) {
4747 	case SCHED_FIFO:
4748 	case SCHED_RR:
4749 		ret = 1;
4750 		break;
4751 	case SCHED_NORMAL:
4752 	case SCHED_BATCH:
4753 	case SCHED_IDLE:
4754 		ret = 0;
4755 	}
4756 	return ret;
4757 }
4758 
4759 /**
4760  * sys_sched_rr_get_interval - return the default timeslice of a process.
4761  * @pid: pid of the process.
4762  * @interval: userspace pointer to the timeslice value.
4763  *
4764  * this syscall writes the default timeslice value of a given process
4765  * into the user-space timespec buffer. A value of '0' means infinity.
4766  */
4767 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4768 		struct timespec __user *, interval)
4769 {
4770 	struct task_struct *p;
4771 	unsigned int time_slice;
4772 	unsigned long flags;
4773 	struct rq *rq;
4774 	int retval;
4775 	struct timespec t;
4776 
4777 	if (pid < 0)
4778 		return -EINVAL;
4779 
4780 	retval = -ESRCH;
4781 	rcu_read_lock();
4782 	p = find_process_by_pid(pid);
4783 	if (!p)
4784 		goto out_unlock;
4785 
4786 	retval = security_task_getscheduler(p);
4787 	if (retval)
4788 		goto out_unlock;
4789 
4790 	rq = task_rq_lock(p, &flags);
4791 	time_slice = p->sched_class->get_rr_interval(rq, p);
4792 	task_rq_unlock(rq, p, &flags);
4793 
4794 	rcu_read_unlock();
4795 	jiffies_to_timespec(time_slice, &t);
4796 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4797 	return retval;
4798 
4799 out_unlock:
4800 	rcu_read_unlock();
4801 	return retval;
4802 }
4803 
4804 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4805 
4806 void sched_show_task(struct task_struct *p)
4807 {
4808 	unsigned long free = 0;
4809 	unsigned state;
4810 
4811 	state = p->state ? __ffs(p->state) + 1 : 0;
4812 	printk(KERN_INFO "%-15.15s %c", p->comm,
4813 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4814 #if BITS_PER_LONG == 32
4815 	if (state == TASK_RUNNING)
4816 		printk(KERN_CONT " running  ");
4817 	else
4818 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4819 #else
4820 	if (state == TASK_RUNNING)
4821 		printk(KERN_CONT "  running task    ");
4822 	else
4823 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4824 #endif
4825 #ifdef CONFIG_DEBUG_STACK_USAGE
4826 	free = stack_not_used(p);
4827 #endif
4828 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4829 		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4830 		(unsigned long)task_thread_info(p)->flags);
4831 
4832 	show_stack(p, NULL);
4833 }
4834 
4835 void show_state_filter(unsigned long state_filter)
4836 {
4837 	struct task_struct *g, *p;
4838 
4839 #if BITS_PER_LONG == 32
4840 	printk(KERN_INFO
4841 		"  task                PC stack   pid father\n");
4842 #else
4843 	printk(KERN_INFO
4844 		"  task                        PC stack   pid father\n");
4845 #endif
4846 	rcu_read_lock();
4847 	do_each_thread(g, p) {
4848 		/*
4849 		 * reset the NMI-timeout, listing all files on a slow
4850 		 * console might take a lot of time:
4851 		 */
4852 		touch_nmi_watchdog();
4853 		if (!state_filter || (p->state & state_filter))
4854 			sched_show_task(p);
4855 	} while_each_thread(g, p);
4856 
4857 	touch_all_softlockup_watchdogs();
4858 
4859 #ifdef CONFIG_SCHED_DEBUG
4860 	sysrq_sched_debug_show();
4861 #endif
4862 	rcu_read_unlock();
4863 	/*
4864 	 * Only show locks if all tasks are dumped:
4865 	 */
4866 	if (!state_filter)
4867 		debug_show_all_locks();
4868 }
4869 
4870 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4871 {
4872 	idle->sched_class = &idle_sched_class;
4873 }
4874 
4875 /**
4876  * init_idle - set up an idle thread for a given CPU
4877  * @idle: task in question
4878  * @cpu: cpu the idle task belongs to
4879  *
4880  * NOTE: this function does not set the idle thread's NEED_RESCHED
4881  * flag, to make booting more robust.
4882  */
4883 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4884 {
4885 	struct rq *rq = cpu_rq(cpu);
4886 	unsigned long flags;
4887 
4888 	raw_spin_lock_irqsave(&rq->lock, flags);
4889 
4890 	__sched_fork(idle);
4891 	idle->state = TASK_RUNNING;
4892 	idle->se.exec_start = sched_clock();
4893 
4894 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4895 	/*
4896 	 * We're having a chicken and egg problem, even though we are
4897 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4898 	 * lockdep check in task_group() will fail.
4899 	 *
4900 	 * Similar case to sched_fork(). / Alternatively we could
4901 	 * use task_rq_lock() here and obtain the other rq->lock.
4902 	 *
4903 	 * Silence PROVE_RCU
4904 	 */
4905 	rcu_read_lock();
4906 	__set_task_cpu(idle, cpu);
4907 	rcu_read_unlock();
4908 
4909 	rq->curr = rq->idle = idle;
4910 #if defined(CONFIG_SMP)
4911 	idle->on_cpu = 1;
4912 #endif
4913 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4914 
4915 	/* Set the preempt count _outside_ the spinlocks! */
4916 	task_thread_info(idle)->preempt_count = 0;
4917 
4918 	/*
4919 	 * The idle tasks have their own, simple scheduling class:
4920 	 */
4921 	idle->sched_class = &idle_sched_class;
4922 	ftrace_graph_init_idle_task(idle, cpu);
4923 #if defined(CONFIG_SMP)
4924 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4925 #endif
4926 }
4927 
4928 #ifdef CONFIG_SMP
4929 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4930 {
4931 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4932 		p->sched_class->set_cpus_allowed(p, new_mask);
4933 
4934 	cpumask_copy(&p->cpus_allowed, new_mask);
4935 	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4936 }
4937 
4938 /*
4939  * This is how migration works:
4940  *
4941  * 1) we invoke migration_cpu_stop() on the target CPU using
4942  *    stop_one_cpu().
4943  * 2) stopper starts to run (implicitly forcing the migrated thread
4944  *    off the CPU)
4945  * 3) it checks whether the migrated task is still in the wrong runqueue.
4946  * 4) if it's in the wrong runqueue then the migration thread removes
4947  *    it and puts it into the right queue.
4948  * 5) stopper completes and stop_one_cpu() returns and the migration
4949  *    is done.
4950  */
4951 
4952 /*
4953  * Change a given task's CPU affinity. Migrate the thread to a
4954  * proper CPU and schedule it away if the CPU it's executing on
4955  * is removed from the allowed bitmask.
4956  *
4957  * NOTE: the caller must have a valid reference to the task, the
4958  * task must not exit() & deallocate itself prematurely. The
4959  * call is not atomic; no spinlocks may be held.
4960  */
4961 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4962 {
4963 	unsigned long flags;
4964 	struct rq *rq;
4965 	unsigned int dest_cpu;
4966 	int ret = 0;
4967 
4968 	rq = task_rq_lock(p, &flags);
4969 
4970 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4971 		goto out;
4972 
4973 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4974 		ret = -EINVAL;
4975 		goto out;
4976 	}
4977 
4978 	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4979 		ret = -EINVAL;
4980 		goto out;
4981 	}
4982 
4983 	do_set_cpus_allowed(p, new_mask);
4984 
4985 	/* Can the task run on the task's current CPU? If so, we're done */
4986 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4987 		goto out;
4988 
4989 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4990 	if (p->on_rq) {
4991 		struct migration_arg arg = { p, dest_cpu };
4992 		/* Need help from migration thread: drop lock and wait. */
4993 		task_rq_unlock(rq, p, &flags);
4994 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4995 		tlb_migrate_finish(p->mm);
4996 		return 0;
4997 	}
4998 out:
4999 	task_rq_unlock(rq, p, &flags);
5000 
5001 	return ret;
5002 }
5003 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5004 
5005 /*
5006  * Move (not current) task off this cpu, onto dest cpu. We're doing
5007  * this because either it can't run here any more (set_cpus_allowed()
5008  * away from this CPU, or CPU going down), or because we're
5009  * attempting to rebalance this task on exec (sched_exec).
5010  *
5011  * So we race with normal scheduler movements, but that's OK, as long
5012  * as the task is no longer on this CPU.
5013  *
5014  * Returns non-zero if task was successfully migrated.
5015  */
5016 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5017 {
5018 	struct rq *rq_dest, *rq_src;
5019 	int ret = 0;
5020 
5021 	if (unlikely(!cpu_active(dest_cpu)))
5022 		return ret;
5023 
5024 	rq_src = cpu_rq(src_cpu);
5025 	rq_dest = cpu_rq(dest_cpu);
5026 
5027 	raw_spin_lock(&p->pi_lock);
5028 	double_rq_lock(rq_src, rq_dest);
5029 	/* Already moved. */
5030 	if (task_cpu(p) != src_cpu)
5031 		goto done;
5032 	/* Affinity changed (again). */
5033 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5034 		goto fail;
5035 
5036 	/*
5037 	 * If we're not on a rq, the next wake-up will ensure we're
5038 	 * placed properly.
5039 	 */
5040 	if (p->on_rq) {
5041 		dequeue_task(rq_src, p, 0);
5042 		set_task_cpu(p, dest_cpu);
5043 		enqueue_task(rq_dest, p, 0);
5044 		check_preempt_curr(rq_dest, p, 0);
5045 	}
5046 done:
5047 	ret = 1;
5048 fail:
5049 	double_rq_unlock(rq_src, rq_dest);
5050 	raw_spin_unlock(&p->pi_lock);
5051 	return ret;
5052 }
5053 
5054 /*
5055  * migration_cpu_stop - this will be executed by a highprio stopper thread
5056  * and performs thread migration by bumping thread off CPU then
5057  * 'pushing' onto another runqueue.
5058  */
5059 static int migration_cpu_stop(void *data)
5060 {
5061 	struct migration_arg *arg = data;
5062 
5063 	/*
5064 	 * The original target cpu might have gone down and we might
5065 	 * be on another cpu but it doesn't matter.
5066 	 */
5067 	local_irq_disable();
5068 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5069 	local_irq_enable();
5070 	return 0;
5071 }
5072 
5073 #ifdef CONFIG_HOTPLUG_CPU
5074 
5075 /*
5076  * Ensures that the idle task is using init_mm right before its cpu goes
5077  * offline.
5078  */
5079 void idle_task_exit(void)
5080 {
5081 	struct mm_struct *mm = current->active_mm;
5082 
5083 	BUG_ON(cpu_online(smp_processor_id()));
5084 
5085 	if (mm != &init_mm)
5086 		switch_mm(mm, &init_mm, current);
5087 	mmdrop(mm);
5088 }
5089 
5090 /*
5091  * While a dead CPU has no uninterruptible tasks queued at this point,
5092  * it might still have a nonzero ->nr_uninterruptible counter, because
5093  * for performance reasons the counter is not stricly tracking tasks to
5094  * their home CPUs. So we just add the counter to another CPU's counter,
5095  * to keep the global sum constant after CPU-down:
5096  */
5097 static void migrate_nr_uninterruptible(struct rq *rq_src)
5098 {
5099 	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5100 
5101 	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5102 	rq_src->nr_uninterruptible = 0;
5103 }
5104 
5105 /*
5106  * remove the tasks which were accounted by rq from calc_load_tasks.
5107  */
5108 static void calc_global_load_remove(struct rq *rq)
5109 {
5110 	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5111 	rq->calc_load_active = 0;
5112 }
5113 
5114 /*
5115  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5116  * try_to_wake_up()->select_task_rq().
5117  *
5118  * Called with rq->lock held even though we'er in stop_machine() and
5119  * there's no concurrency possible, we hold the required locks anyway
5120  * because of lock validation efforts.
5121  */
5122 static void migrate_tasks(unsigned int dead_cpu)
5123 {
5124 	struct rq *rq = cpu_rq(dead_cpu);
5125 	struct task_struct *next, *stop = rq->stop;
5126 	int dest_cpu;
5127 
5128 	/*
5129 	 * Fudge the rq selection such that the below task selection loop
5130 	 * doesn't get stuck on the currently eligible stop task.
5131 	 *
5132 	 * We're currently inside stop_machine() and the rq is either stuck
5133 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5134 	 * either way we should never end up calling schedule() until we're
5135 	 * done here.
5136 	 */
5137 	rq->stop = NULL;
5138 
5139 	/* Ensure any throttled groups are reachable by pick_next_task */
5140 	unthrottle_offline_cfs_rqs(rq);
5141 
5142 	for ( ; ; ) {
5143 		/*
5144 		 * There's this thread running, bail when that's the only
5145 		 * remaining thread.
5146 		 */
5147 		if (rq->nr_running == 1)
5148 			break;
5149 
5150 		next = pick_next_task(rq);
5151 		BUG_ON(!next);
5152 		next->sched_class->put_prev_task(rq, next);
5153 
5154 		/* Find suitable destination for @next, with force if needed. */
5155 		dest_cpu = select_fallback_rq(dead_cpu, next);
5156 		raw_spin_unlock(&rq->lock);
5157 
5158 		__migrate_task(next, dead_cpu, dest_cpu);
5159 
5160 		raw_spin_lock(&rq->lock);
5161 	}
5162 
5163 	rq->stop = stop;
5164 }
5165 
5166 #endif /* CONFIG_HOTPLUG_CPU */
5167 
5168 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5169 
5170 static struct ctl_table sd_ctl_dir[] = {
5171 	{
5172 		.procname	= "sched_domain",
5173 		.mode		= 0555,
5174 	},
5175 	{}
5176 };
5177 
5178 static struct ctl_table sd_ctl_root[] = {
5179 	{
5180 		.procname	= "kernel",
5181 		.mode		= 0555,
5182 		.child		= sd_ctl_dir,
5183 	},
5184 	{}
5185 };
5186 
5187 static struct ctl_table *sd_alloc_ctl_entry(int n)
5188 {
5189 	struct ctl_table *entry =
5190 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5191 
5192 	return entry;
5193 }
5194 
5195 static void sd_free_ctl_entry(struct ctl_table **tablep)
5196 {
5197 	struct ctl_table *entry;
5198 
5199 	/*
5200 	 * In the intermediate directories, both the child directory and
5201 	 * procname are dynamically allocated and could fail but the mode
5202 	 * will always be set. In the lowest directory the names are
5203 	 * static strings and all have proc handlers.
5204 	 */
5205 	for (entry = *tablep; entry->mode; entry++) {
5206 		if (entry->child)
5207 			sd_free_ctl_entry(&entry->child);
5208 		if (entry->proc_handler == NULL)
5209 			kfree(entry->procname);
5210 	}
5211 
5212 	kfree(*tablep);
5213 	*tablep = NULL;
5214 }
5215 
5216 static void
5217 set_table_entry(struct ctl_table *entry,
5218 		const char *procname, void *data, int maxlen,
5219 		umode_t mode, proc_handler *proc_handler)
5220 {
5221 	entry->procname = procname;
5222 	entry->data = data;
5223 	entry->maxlen = maxlen;
5224 	entry->mode = mode;
5225 	entry->proc_handler = proc_handler;
5226 }
5227 
5228 static struct ctl_table *
5229 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5230 {
5231 	struct ctl_table *table = sd_alloc_ctl_entry(13);
5232 
5233 	if (table == NULL)
5234 		return NULL;
5235 
5236 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5237 		sizeof(long), 0644, proc_doulongvec_minmax);
5238 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5239 		sizeof(long), 0644, proc_doulongvec_minmax);
5240 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5241 		sizeof(int), 0644, proc_dointvec_minmax);
5242 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5243 		sizeof(int), 0644, proc_dointvec_minmax);
5244 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5245 		sizeof(int), 0644, proc_dointvec_minmax);
5246 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5247 		sizeof(int), 0644, proc_dointvec_minmax);
5248 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5249 		sizeof(int), 0644, proc_dointvec_minmax);
5250 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5251 		sizeof(int), 0644, proc_dointvec_minmax);
5252 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5253 		sizeof(int), 0644, proc_dointvec_minmax);
5254 	set_table_entry(&table[9], "cache_nice_tries",
5255 		&sd->cache_nice_tries,
5256 		sizeof(int), 0644, proc_dointvec_minmax);
5257 	set_table_entry(&table[10], "flags", &sd->flags,
5258 		sizeof(int), 0644, proc_dointvec_minmax);
5259 	set_table_entry(&table[11], "name", sd->name,
5260 		CORENAME_MAX_SIZE, 0444, proc_dostring);
5261 	/* &table[12] is terminator */
5262 
5263 	return table;
5264 }
5265 
5266 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5267 {
5268 	struct ctl_table *entry, *table;
5269 	struct sched_domain *sd;
5270 	int domain_num = 0, i;
5271 	char buf[32];
5272 
5273 	for_each_domain(cpu, sd)
5274 		domain_num++;
5275 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5276 	if (table == NULL)
5277 		return NULL;
5278 
5279 	i = 0;
5280 	for_each_domain(cpu, sd) {
5281 		snprintf(buf, 32, "domain%d", i);
5282 		entry->procname = kstrdup(buf, GFP_KERNEL);
5283 		entry->mode = 0555;
5284 		entry->child = sd_alloc_ctl_domain_table(sd);
5285 		entry++;
5286 		i++;
5287 	}
5288 	return table;
5289 }
5290 
5291 static struct ctl_table_header *sd_sysctl_header;
5292 static void register_sched_domain_sysctl(void)
5293 {
5294 	int i, cpu_num = num_possible_cpus();
5295 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5296 	char buf[32];
5297 
5298 	WARN_ON(sd_ctl_dir[0].child);
5299 	sd_ctl_dir[0].child = entry;
5300 
5301 	if (entry == NULL)
5302 		return;
5303 
5304 	for_each_possible_cpu(i) {
5305 		snprintf(buf, 32, "cpu%d", i);
5306 		entry->procname = kstrdup(buf, GFP_KERNEL);
5307 		entry->mode = 0555;
5308 		entry->child = sd_alloc_ctl_cpu_table(i);
5309 		entry++;
5310 	}
5311 
5312 	WARN_ON(sd_sysctl_header);
5313 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5314 }
5315 
5316 /* may be called multiple times per register */
5317 static void unregister_sched_domain_sysctl(void)
5318 {
5319 	if (sd_sysctl_header)
5320 		unregister_sysctl_table(sd_sysctl_header);
5321 	sd_sysctl_header = NULL;
5322 	if (sd_ctl_dir[0].child)
5323 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5324 }
5325 #else
5326 static void register_sched_domain_sysctl(void)
5327 {
5328 }
5329 static void unregister_sched_domain_sysctl(void)
5330 {
5331 }
5332 #endif
5333 
5334 static void set_rq_online(struct rq *rq)
5335 {
5336 	if (!rq->online) {
5337 		const struct sched_class *class;
5338 
5339 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5340 		rq->online = 1;
5341 
5342 		for_each_class(class) {
5343 			if (class->rq_online)
5344 				class->rq_online(rq);
5345 		}
5346 	}
5347 }
5348 
5349 static void set_rq_offline(struct rq *rq)
5350 {
5351 	if (rq->online) {
5352 		const struct sched_class *class;
5353 
5354 		for_each_class(class) {
5355 			if (class->rq_offline)
5356 				class->rq_offline(rq);
5357 		}
5358 
5359 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5360 		rq->online = 0;
5361 	}
5362 }
5363 
5364 /*
5365  * migration_call - callback that gets triggered when a CPU is added.
5366  * Here we can start up the necessary migration thread for the new CPU.
5367  */
5368 static int __cpuinit
5369 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5370 {
5371 	int cpu = (long)hcpu;
5372 	unsigned long flags;
5373 	struct rq *rq = cpu_rq(cpu);
5374 
5375 	switch (action & ~CPU_TASKS_FROZEN) {
5376 
5377 	case CPU_UP_PREPARE:
5378 		rq->calc_load_update = calc_load_update;
5379 		break;
5380 
5381 	case CPU_ONLINE:
5382 		/* Update our root-domain */
5383 		raw_spin_lock_irqsave(&rq->lock, flags);
5384 		if (rq->rd) {
5385 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5386 
5387 			set_rq_online(rq);
5388 		}
5389 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5390 		break;
5391 
5392 #ifdef CONFIG_HOTPLUG_CPU
5393 	case CPU_DYING:
5394 		sched_ttwu_pending();
5395 		/* Update our root-domain */
5396 		raw_spin_lock_irqsave(&rq->lock, flags);
5397 		if (rq->rd) {
5398 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5399 			set_rq_offline(rq);
5400 		}
5401 		migrate_tasks(cpu);
5402 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5403 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5404 
5405 		migrate_nr_uninterruptible(rq);
5406 		calc_global_load_remove(rq);
5407 		break;
5408 #endif
5409 	}
5410 
5411 	update_max_interval();
5412 
5413 	return NOTIFY_OK;
5414 }
5415 
5416 /*
5417  * Register at high priority so that task migration (migrate_all_tasks)
5418  * happens before everything else.  This has to be lower priority than
5419  * the notifier in the perf_event subsystem, though.
5420  */
5421 static struct notifier_block __cpuinitdata migration_notifier = {
5422 	.notifier_call = migration_call,
5423 	.priority = CPU_PRI_MIGRATION,
5424 };
5425 
5426 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5427 				      unsigned long action, void *hcpu)
5428 {
5429 	switch (action & ~CPU_TASKS_FROZEN) {
5430 	case CPU_STARTING:
5431 	case CPU_DOWN_FAILED:
5432 		set_cpu_active((long)hcpu, true);
5433 		return NOTIFY_OK;
5434 	default:
5435 		return NOTIFY_DONE;
5436 	}
5437 }
5438 
5439 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5440 					unsigned long action, void *hcpu)
5441 {
5442 	switch (action & ~CPU_TASKS_FROZEN) {
5443 	case CPU_DOWN_PREPARE:
5444 		set_cpu_active((long)hcpu, false);
5445 		return NOTIFY_OK;
5446 	default:
5447 		return NOTIFY_DONE;
5448 	}
5449 }
5450 
5451 static int __init migration_init(void)
5452 {
5453 	void *cpu = (void *)(long)smp_processor_id();
5454 	int err;
5455 
5456 	/* Initialize migration for the boot CPU */
5457 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5458 	BUG_ON(err == NOTIFY_BAD);
5459 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5460 	register_cpu_notifier(&migration_notifier);
5461 
5462 	/* Register cpu active notifiers */
5463 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5464 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5465 
5466 	return 0;
5467 }
5468 early_initcall(migration_init);
5469 #endif
5470 
5471 #ifdef CONFIG_SMP
5472 
5473 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5474 
5475 #ifdef CONFIG_SCHED_DEBUG
5476 
5477 static __read_mostly int sched_domain_debug_enabled;
5478 
5479 static int __init sched_domain_debug_setup(char *str)
5480 {
5481 	sched_domain_debug_enabled = 1;
5482 
5483 	return 0;
5484 }
5485 early_param("sched_debug", sched_domain_debug_setup);
5486 
5487 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5488 				  struct cpumask *groupmask)
5489 {
5490 	struct sched_group *group = sd->groups;
5491 	char str[256];
5492 
5493 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5494 	cpumask_clear(groupmask);
5495 
5496 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5497 
5498 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5499 		printk("does not load-balance\n");
5500 		if (sd->parent)
5501 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5502 					" has parent");
5503 		return -1;
5504 	}
5505 
5506 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5507 
5508 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5509 		printk(KERN_ERR "ERROR: domain->span does not contain "
5510 				"CPU%d\n", cpu);
5511 	}
5512 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5513 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5514 				" CPU%d\n", cpu);
5515 	}
5516 
5517 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5518 	do {
5519 		if (!group) {
5520 			printk("\n");
5521 			printk(KERN_ERR "ERROR: group is NULL\n");
5522 			break;
5523 		}
5524 
5525 		if (!group->sgp->power) {
5526 			printk(KERN_CONT "\n");
5527 			printk(KERN_ERR "ERROR: domain->cpu_power not "
5528 					"set\n");
5529 			break;
5530 		}
5531 
5532 		if (!cpumask_weight(sched_group_cpus(group))) {
5533 			printk(KERN_CONT "\n");
5534 			printk(KERN_ERR "ERROR: empty group\n");
5535 			break;
5536 		}
5537 
5538 		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5539 			printk(KERN_CONT "\n");
5540 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5541 			break;
5542 		}
5543 
5544 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5545 
5546 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5547 
5548 		printk(KERN_CONT " %s", str);
5549 		if (group->sgp->power != SCHED_POWER_SCALE) {
5550 			printk(KERN_CONT " (cpu_power = %d)",
5551 				group->sgp->power);
5552 		}
5553 
5554 		group = group->next;
5555 	} while (group != sd->groups);
5556 	printk(KERN_CONT "\n");
5557 
5558 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5559 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5560 
5561 	if (sd->parent &&
5562 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5563 		printk(KERN_ERR "ERROR: parent span is not a superset "
5564 			"of domain->span\n");
5565 	return 0;
5566 }
5567 
5568 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5569 {
5570 	int level = 0;
5571 
5572 	if (!sched_domain_debug_enabled)
5573 		return;
5574 
5575 	if (!sd) {
5576 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5577 		return;
5578 	}
5579 
5580 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5581 
5582 	for (;;) {
5583 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5584 			break;
5585 		level++;
5586 		sd = sd->parent;
5587 		if (!sd)
5588 			break;
5589 	}
5590 }
5591 #else /* !CONFIG_SCHED_DEBUG */
5592 # define sched_domain_debug(sd, cpu) do { } while (0)
5593 #endif /* CONFIG_SCHED_DEBUG */
5594 
5595 static int sd_degenerate(struct sched_domain *sd)
5596 {
5597 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5598 		return 1;
5599 
5600 	/* Following flags need at least 2 groups */
5601 	if (sd->flags & (SD_LOAD_BALANCE |
5602 			 SD_BALANCE_NEWIDLE |
5603 			 SD_BALANCE_FORK |
5604 			 SD_BALANCE_EXEC |
5605 			 SD_SHARE_CPUPOWER |
5606 			 SD_SHARE_PKG_RESOURCES)) {
5607 		if (sd->groups != sd->groups->next)
5608 			return 0;
5609 	}
5610 
5611 	/* Following flags don't use groups */
5612 	if (sd->flags & (SD_WAKE_AFFINE))
5613 		return 0;
5614 
5615 	return 1;
5616 }
5617 
5618 static int
5619 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5620 {
5621 	unsigned long cflags = sd->flags, pflags = parent->flags;
5622 
5623 	if (sd_degenerate(parent))
5624 		return 1;
5625 
5626 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5627 		return 0;
5628 
5629 	/* Flags needing groups don't count if only 1 group in parent */
5630 	if (parent->groups == parent->groups->next) {
5631 		pflags &= ~(SD_LOAD_BALANCE |
5632 				SD_BALANCE_NEWIDLE |
5633 				SD_BALANCE_FORK |
5634 				SD_BALANCE_EXEC |
5635 				SD_SHARE_CPUPOWER |
5636 				SD_SHARE_PKG_RESOURCES);
5637 		if (nr_node_ids == 1)
5638 			pflags &= ~SD_SERIALIZE;
5639 	}
5640 	if (~cflags & pflags)
5641 		return 0;
5642 
5643 	return 1;
5644 }
5645 
5646 static void free_rootdomain(struct rcu_head *rcu)
5647 {
5648 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5649 
5650 	cpupri_cleanup(&rd->cpupri);
5651 	free_cpumask_var(rd->rto_mask);
5652 	free_cpumask_var(rd->online);
5653 	free_cpumask_var(rd->span);
5654 	kfree(rd);
5655 }
5656 
5657 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5658 {
5659 	struct root_domain *old_rd = NULL;
5660 	unsigned long flags;
5661 
5662 	raw_spin_lock_irqsave(&rq->lock, flags);
5663 
5664 	if (rq->rd) {
5665 		old_rd = rq->rd;
5666 
5667 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5668 			set_rq_offline(rq);
5669 
5670 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5671 
5672 		/*
5673 		 * If we dont want to free the old_rt yet then
5674 		 * set old_rd to NULL to skip the freeing later
5675 		 * in this function:
5676 		 */
5677 		if (!atomic_dec_and_test(&old_rd->refcount))
5678 			old_rd = NULL;
5679 	}
5680 
5681 	atomic_inc(&rd->refcount);
5682 	rq->rd = rd;
5683 
5684 	cpumask_set_cpu(rq->cpu, rd->span);
5685 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5686 		set_rq_online(rq);
5687 
5688 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5689 
5690 	if (old_rd)
5691 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5692 }
5693 
5694 static int init_rootdomain(struct root_domain *rd)
5695 {
5696 	memset(rd, 0, sizeof(*rd));
5697 
5698 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5699 		goto out;
5700 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5701 		goto free_span;
5702 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5703 		goto free_online;
5704 
5705 	if (cpupri_init(&rd->cpupri) != 0)
5706 		goto free_rto_mask;
5707 	return 0;
5708 
5709 free_rto_mask:
5710 	free_cpumask_var(rd->rto_mask);
5711 free_online:
5712 	free_cpumask_var(rd->online);
5713 free_span:
5714 	free_cpumask_var(rd->span);
5715 out:
5716 	return -ENOMEM;
5717 }
5718 
5719 /*
5720  * By default the system creates a single root-domain with all cpus as
5721  * members (mimicking the global state we have today).
5722  */
5723 struct root_domain def_root_domain;
5724 
5725 static void init_defrootdomain(void)
5726 {
5727 	init_rootdomain(&def_root_domain);
5728 
5729 	atomic_set(&def_root_domain.refcount, 1);
5730 }
5731 
5732 static struct root_domain *alloc_rootdomain(void)
5733 {
5734 	struct root_domain *rd;
5735 
5736 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5737 	if (!rd)
5738 		return NULL;
5739 
5740 	if (init_rootdomain(rd) != 0) {
5741 		kfree(rd);
5742 		return NULL;
5743 	}
5744 
5745 	return rd;
5746 }
5747 
5748 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5749 {
5750 	struct sched_group *tmp, *first;
5751 
5752 	if (!sg)
5753 		return;
5754 
5755 	first = sg;
5756 	do {
5757 		tmp = sg->next;
5758 
5759 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5760 			kfree(sg->sgp);
5761 
5762 		kfree(sg);
5763 		sg = tmp;
5764 	} while (sg != first);
5765 }
5766 
5767 static void free_sched_domain(struct rcu_head *rcu)
5768 {
5769 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5770 
5771 	/*
5772 	 * If its an overlapping domain it has private groups, iterate and
5773 	 * nuke them all.
5774 	 */
5775 	if (sd->flags & SD_OVERLAP) {
5776 		free_sched_groups(sd->groups, 1);
5777 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5778 		kfree(sd->groups->sgp);
5779 		kfree(sd->groups);
5780 	}
5781 	kfree(sd);
5782 }
5783 
5784 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5785 {
5786 	call_rcu(&sd->rcu, free_sched_domain);
5787 }
5788 
5789 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5790 {
5791 	for (; sd; sd = sd->parent)
5792 		destroy_sched_domain(sd, cpu);
5793 }
5794 
5795 /*
5796  * Keep a special pointer to the highest sched_domain that has
5797  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5798  * allows us to avoid some pointer chasing select_idle_sibling().
5799  *
5800  * Also keep a unique ID per domain (we use the first cpu number in
5801  * the cpumask of the domain), this allows us to quickly tell if
5802  * two cpus are in the same cache domain, see cpus_share_cache().
5803  */
5804 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5805 DEFINE_PER_CPU(int, sd_llc_id);
5806 
5807 static void update_top_cache_domain(int cpu)
5808 {
5809 	struct sched_domain *sd;
5810 	int id = cpu;
5811 
5812 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5813 	if (sd)
5814 		id = cpumask_first(sched_domain_span(sd));
5815 
5816 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5817 	per_cpu(sd_llc_id, cpu) = id;
5818 }
5819 
5820 /*
5821  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5822  * hold the hotplug lock.
5823  */
5824 static void
5825 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5826 {
5827 	struct rq *rq = cpu_rq(cpu);
5828 	struct sched_domain *tmp;
5829 
5830 	/* Remove the sched domains which do not contribute to scheduling. */
5831 	for (tmp = sd; tmp; ) {
5832 		struct sched_domain *parent = tmp->parent;
5833 		if (!parent)
5834 			break;
5835 
5836 		if (sd_parent_degenerate(tmp, parent)) {
5837 			tmp->parent = parent->parent;
5838 			if (parent->parent)
5839 				parent->parent->child = tmp;
5840 			destroy_sched_domain(parent, cpu);
5841 		} else
5842 			tmp = tmp->parent;
5843 	}
5844 
5845 	if (sd && sd_degenerate(sd)) {
5846 		tmp = sd;
5847 		sd = sd->parent;
5848 		destroy_sched_domain(tmp, cpu);
5849 		if (sd)
5850 			sd->child = NULL;
5851 	}
5852 
5853 	sched_domain_debug(sd, cpu);
5854 
5855 	rq_attach_root(rq, rd);
5856 	tmp = rq->sd;
5857 	rcu_assign_pointer(rq->sd, sd);
5858 	destroy_sched_domains(tmp, cpu);
5859 
5860 	update_top_cache_domain(cpu);
5861 }
5862 
5863 /* cpus with isolated domains */
5864 static cpumask_var_t cpu_isolated_map;
5865 
5866 /* Setup the mask of cpus configured for isolated domains */
5867 static int __init isolated_cpu_setup(char *str)
5868 {
5869 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5870 	cpulist_parse(str, cpu_isolated_map);
5871 	return 1;
5872 }
5873 
5874 __setup("isolcpus=", isolated_cpu_setup);
5875 
5876 #ifdef CONFIG_NUMA
5877 
5878 /**
5879  * find_next_best_node - find the next node to include in a sched_domain
5880  * @node: node whose sched_domain we're building
5881  * @used_nodes: nodes already in the sched_domain
5882  *
5883  * Find the next node to include in a given scheduling domain. Simply
5884  * finds the closest node not already in the @used_nodes map.
5885  *
5886  * Should use nodemask_t.
5887  */
5888 static int find_next_best_node(int node, nodemask_t *used_nodes)
5889 {
5890 	int i, n, val, min_val, best_node = -1;
5891 
5892 	min_val = INT_MAX;
5893 
5894 	for (i = 0; i < nr_node_ids; i++) {
5895 		/* Start at @node */
5896 		n = (node + i) % nr_node_ids;
5897 
5898 		if (!nr_cpus_node(n))
5899 			continue;
5900 
5901 		/* Skip already used nodes */
5902 		if (node_isset(n, *used_nodes))
5903 			continue;
5904 
5905 		/* Simple min distance search */
5906 		val = node_distance(node, n);
5907 
5908 		if (val < min_val) {
5909 			min_val = val;
5910 			best_node = n;
5911 		}
5912 	}
5913 
5914 	if (best_node != -1)
5915 		node_set(best_node, *used_nodes);
5916 	return best_node;
5917 }
5918 
5919 /**
5920  * sched_domain_node_span - get a cpumask for a node's sched_domain
5921  * @node: node whose cpumask we're constructing
5922  * @span: resulting cpumask
5923  *
5924  * Given a node, construct a good cpumask for its sched_domain to span. It
5925  * should be one that prevents unnecessary balancing, but also spreads tasks
5926  * out optimally.
5927  */
5928 static void sched_domain_node_span(int node, struct cpumask *span)
5929 {
5930 	nodemask_t used_nodes;
5931 	int i;
5932 
5933 	cpumask_clear(span);
5934 	nodes_clear(used_nodes);
5935 
5936 	cpumask_or(span, span, cpumask_of_node(node));
5937 	node_set(node, used_nodes);
5938 
5939 	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5940 		int next_node = find_next_best_node(node, &used_nodes);
5941 		if (next_node < 0)
5942 			break;
5943 		cpumask_or(span, span, cpumask_of_node(next_node));
5944 	}
5945 }
5946 
5947 static const struct cpumask *cpu_node_mask(int cpu)
5948 {
5949 	lockdep_assert_held(&sched_domains_mutex);
5950 
5951 	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5952 
5953 	return sched_domains_tmpmask;
5954 }
5955 
5956 static const struct cpumask *cpu_allnodes_mask(int cpu)
5957 {
5958 	return cpu_possible_mask;
5959 }
5960 #endif /* CONFIG_NUMA */
5961 
5962 static const struct cpumask *cpu_cpu_mask(int cpu)
5963 {
5964 	return cpumask_of_node(cpu_to_node(cpu));
5965 }
5966 
5967 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5968 
5969 struct sd_data {
5970 	struct sched_domain **__percpu sd;
5971 	struct sched_group **__percpu sg;
5972 	struct sched_group_power **__percpu sgp;
5973 };
5974 
5975 struct s_data {
5976 	struct sched_domain ** __percpu sd;
5977 	struct root_domain	*rd;
5978 };
5979 
5980 enum s_alloc {
5981 	sa_rootdomain,
5982 	sa_sd,
5983 	sa_sd_storage,
5984 	sa_none,
5985 };
5986 
5987 struct sched_domain_topology_level;
5988 
5989 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5990 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5991 
5992 #define SDTL_OVERLAP	0x01
5993 
5994 struct sched_domain_topology_level {
5995 	sched_domain_init_f init;
5996 	sched_domain_mask_f mask;
5997 	int		    flags;
5998 	struct sd_data      data;
5999 };
6000 
6001 static int
6002 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6003 {
6004 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6005 	const struct cpumask *span = sched_domain_span(sd);
6006 	struct cpumask *covered = sched_domains_tmpmask;
6007 	struct sd_data *sdd = sd->private;
6008 	struct sched_domain *child;
6009 	int i;
6010 
6011 	cpumask_clear(covered);
6012 
6013 	for_each_cpu(i, span) {
6014 		struct cpumask *sg_span;
6015 
6016 		if (cpumask_test_cpu(i, covered))
6017 			continue;
6018 
6019 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6020 				GFP_KERNEL, cpu_to_node(cpu));
6021 
6022 		if (!sg)
6023 			goto fail;
6024 
6025 		sg_span = sched_group_cpus(sg);
6026 
6027 		child = *per_cpu_ptr(sdd->sd, i);
6028 		if (child->child) {
6029 			child = child->child;
6030 			cpumask_copy(sg_span, sched_domain_span(child));
6031 		} else
6032 			cpumask_set_cpu(i, sg_span);
6033 
6034 		cpumask_or(covered, covered, sg_span);
6035 
6036 		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
6037 		atomic_inc(&sg->sgp->ref);
6038 
6039 		if (cpumask_test_cpu(cpu, sg_span))
6040 			groups = sg;
6041 
6042 		if (!first)
6043 			first = sg;
6044 		if (last)
6045 			last->next = sg;
6046 		last = sg;
6047 		last->next = first;
6048 	}
6049 	sd->groups = groups;
6050 
6051 	return 0;
6052 
6053 fail:
6054 	free_sched_groups(first, 0);
6055 
6056 	return -ENOMEM;
6057 }
6058 
6059 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6060 {
6061 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6062 	struct sched_domain *child = sd->child;
6063 
6064 	if (child)
6065 		cpu = cpumask_first(sched_domain_span(child));
6066 
6067 	if (sg) {
6068 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6069 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6070 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6071 	}
6072 
6073 	return cpu;
6074 }
6075 
6076 /*
6077  * build_sched_groups will build a circular linked list of the groups
6078  * covered by the given span, and will set each group's ->cpumask correctly,
6079  * and ->cpu_power to 0.
6080  *
6081  * Assumes the sched_domain tree is fully constructed
6082  */
6083 static int
6084 build_sched_groups(struct sched_domain *sd, int cpu)
6085 {
6086 	struct sched_group *first = NULL, *last = NULL;
6087 	struct sd_data *sdd = sd->private;
6088 	const struct cpumask *span = sched_domain_span(sd);
6089 	struct cpumask *covered;
6090 	int i;
6091 
6092 	get_group(cpu, sdd, &sd->groups);
6093 	atomic_inc(&sd->groups->ref);
6094 
6095 	if (cpu != cpumask_first(sched_domain_span(sd)))
6096 		return 0;
6097 
6098 	lockdep_assert_held(&sched_domains_mutex);
6099 	covered = sched_domains_tmpmask;
6100 
6101 	cpumask_clear(covered);
6102 
6103 	for_each_cpu(i, span) {
6104 		struct sched_group *sg;
6105 		int group = get_group(i, sdd, &sg);
6106 		int j;
6107 
6108 		if (cpumask_test_cpu(i, covered))
6109 			continue;
6110 
6111 		cpumask_clear(sched_group_cpus(sg));
6112 		sg->sgp->power = 0;
6113 
6114 		for_each_cpu(j, span) {
6115 			if (get_group(j, sdd, NULL) != group)
6116 				continue;
6117 
6118 			cpumask_set_cpu(j, covered);
6119 			cpumask_set_cpu(j, sched_group_cpus(sg));
6120 		}
6121 
6122 		if (!first)
6123 			first = sg;
6124 		if (last)
6125 			last->next = sg;
6126 		last = sg;
6127 	}
6128 	last->next = first;
6129 
6130 	return 0;
6131 }
6132 
6133 /*
6134  * Initialize sched groups cpu_power.
6135  *
6136  * cpu_power indicates the capacity of sched group, which is used while
6137  * distributing the load between different sched groups in a sched domain.
6138  * Typically cpu_power for all the groups in a sched domain will be same unless
6139  * there are asymmetries in the topology. If there are asymmetries, group
6140  * having more cpu_power will pickup more load compared to the group having
6141  * less cpu_power.
6142  */
6143 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6144 {
6145 	struct sched_group *sg = sd->groups;
6146 
6147 	WARN_ON(!sd || !sg);
6148 
6149 	do {
6150 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6151 		sg = sg->next;
6152 	} while (sg != sd->groups);
6153 
6154 	if (cpu != group_first_cpu(sg))
6155 		return;
6156 
6157 	update_group_power(sd, cpu);
6158 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6159 }
6160 
6161 int __weak arch_sd_sibling_asym_packing(void)
6162 {
6163        return 0*SD_ASYM_PACKING;
6164 }
6165 
6166 /*
6167  * Initializers for schedule domains
6168  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6169  */
6170 
6171 #ifdef CONFIG_SCHED_DEBUG
6172 # define SD_INIT_NAME(sd, type)		sd->name = #type
6173 #else
6174 # define SD_INIT_NAME(sd, type)		do { } while (0)
6175 #endif
6176 
6177 #define SD_INIT_FUNC(type)						\
6178 static noinline struct sched_domain *					\
6179 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
6180 {									\
6181 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
6182 	*sd = SD_##type##_INIT;						\
6183 	SD_INIT_NAME(sd, type);						\
6184 	sd->private = &tl->data;					\
6185 	return sd;							\
6186 }
6187 
6188 SD_INIT_FUNC(CPU)
6189 #ifdef CONFIG_NUMA
6190  SD_INIT_FUNC(ALLNODES)
6191  SD_INIT_FUNC(NODE)
6192 #endif
6193 #ifdef CONFIG_SCHED_SMT
6194  SD_INIT_FUNC(SIBLING)
6195 #endif
6196 #ifdef CONFIG_SCHED_MC
6197  SD_INIT_FUNC(MC)
6198 #endif
6199 #ifdef CONFIG_SCHED_BOOK
6200  SD_INIT_FUNC(BOOK)
6201 #endif
6202 
6203 static int default_relax_domain_level = -1;
6204 int sched_domain_level_max;
6205 
6206 static int __init setup_relax_domain_level(char *str)
6207 {
6208 	unsigned long val;
6209 
6210 	val = simple_strtoul(str, NULL, 0);
6211 	if (val < sched_domain_level_max)
6212 		default_relax_domain_level = val;
6213 
6214 	return 1;
6215 }
6216 __setup("relax_domain_level=", setup_relax_domain_level);
6217 
6218 static void set_domain_attribute(struct sched_domain *sd,
6219 				 struct sched_domain_attr *attr)
6220 {
6221 	int request;
6222 
6223 	if (!attr || attr->relax_domain_level < 0) {
6224 		if (default_relax_domain_level < 0)
6225 			return;
6226 		else
6227 			request = default_relax_domain_level;
6228 	} else
6229 		request = attr->relax_domain_level;
6230 	if (request < sd->level) {
6231 		/* turn off idle balance on this domain */
6232 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6233 	} else {
6234 		/* turn on idle balance on this domain */
6235 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6236 	}
6237 }
6238 
6239 static void __sdt_free(const struct cpumask *cpu_map);
6240 static int __sdt_alloc(const struct cpumask *cpu_map);
6241 
6242 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6243 				 const struct cpumask *cpu_map)
6244 {
6245 	switch (what) {
6246 	case sa_rootdomain:
6247 		if (!atomic_read(&d->rd->refcount))
6248 			free_rootdomain(&d->rd->rcu); /* fall through */
6249 	case sa_sd:
6250 		free_percpu(d->sd); /* fall through */
6251 	case sa_sd_storage:
6252 		__sdt_free(cpu_map); /* fall through */
6253 	case sa_none:
6254 		break;
6255 	}
6256 }
6257 
6258 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6259 						   const struct cpumask *cpu_map)
6260 {
6261 	memset(d, 0, sizeof(*d));
6262 
6263 	if (__sdt_alloc(cpu_map))
6264 		return sa_sd_storage;
6265 	d->sd = alloc_percpu(struct sched_domain *);
6266 	if (!d->sd)
6267 		return sa_sd_storage;
6268 	d->rd = alloc_rootdomain();
6269 	if (!d->rd)
6270 		return sa_sd;
6271 	return sa_rootdomain;
6272 }
6273 
6274 /*
6275  * NULL the sd_data elements we've used to build the sched_domain and
6276  * sched_group structure so that the subsequent __free_domain_allocs()
6277  * will not free the data we're using.
6278  */
6279 static void claim_allocations(int cpu, struct sched_domain *sd)
6280 {
6281 	struct sd_data *sdd = sd->private;
6282 
6283 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6284 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6285 
6286 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6287 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6288 
6289 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6290 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6291 }
6292 
6293 #ifdef CONFIG_SCHED_SMT
6294 static const struct cpumask *cpu_smt_mask(int cpu)
6295 {
6296 	return topology_thread_cpumask(cpu);
6297 }
6298 #endif
6299 
6300 /*
6301  * Topology list, bottom-up.
6302  */
6303 static struct sched_domain_topology_level default_topology[] = {
6304 #ifdef CONFIG_SCHED_SMT
6305 	{ sd_init_SIBLING, cpu_smt_mask, },
6306 #endif
6307 #ifdef CONFIG_SCHED_MC
6308 	{ sd_init_MC, cpu_coregroup_mask, },
6309 #endif
6310 #ifdef CONFIG_SCHED_BOOK
6311 	{ sd_init_BOOK, cpu_book_mask, },
6312 #endif
6313 	{ sd_init_CPU, cpu_cpu_mask, },
6314 #ifdef CONFIG_NUMA
6315 	{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6316 	{ sd_init_ALLNODES, cpu_allnodes_mask, },
6317 #endif
6318 	{ NULL, },
6319 };
6320 
6321 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6322 
6323 static int __sdt_alloc(const struct cpumask *cpu_map)
6324 {
6325 	struct sched_domain_topology_level *tl;
6326 	int j;
6327 
6328 	for (tl = sched_domain_topology; tl->init; tl++) {
6329 		struct sd_data *sdd = &tl->data;
6330 
6331 		sdd->sd = alloc_percpu(struct sched_domain *);
6332 		if (!sdd->sd)
6333 			return -ENOMEM;
6334 
6335 		sdd->sg = alloc_percpu(struct sched_group *);
6336 		if (!sdd->sg)
6337 			return -ENOMEM;
6338 
6339 		sdd->sgp = alloc_percpu(struct sched_group_power *);
6340 		if (!sdd->sgp)
6341 			return -ENOMEM;
6342 
6343 		for_each_cpu(j, cpu_map) {
6344 			struct sched_domain *sd;
6345 			struct sched_group *sg;
6346 			struct sched_group_power *sgp;
6347 
6348 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6349 					GFP_KERNEL, cpu_to_node(j));
6350 			if (!sd)
6351 				return -ENOMEM;
6352 
6353 			*per_cpu_ptr(sdd->sd, j) = sd;
6354 
6355 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6356 					GFP_KERNEL, cpu_to_node(j));
6357 			if (!sg)
6358 				return -ENOMEM;
6359 
6360 			*per_cpu_ptr(sdd->sg, j) = sg;
6361 
6362 			sgp = kzalloc_node(sizeof(struct sched_group_power),
6363 					GFP_KERNEL, cpu_to_node(j));
6364 			if (!sgp)
6365 				return -ENOMEM;
6366 
6367 			*per_cpu_ptr(sdd->sgp, j) = sgp;
6368 		}
6369 	}
6370 
6371 	return 0;
6372 }
6373 
6374 static void __sdt_free(const struct cpumask *cpu_map)
6375 {
6376 	struct sched_domain_topology_level *tl;
6377 	int j;
6378 
6379 	for (tl = sched_domain_topology; tl->init; tl++) {
6380 		struct sd_data *sdd = &tl->data;
6381 
6382 		for_each_cpu(j, cpu_map) {
6383 			struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6384 			if (sd && (sd->flags & SD_OVERLAP))
6385 				free_sched_groups(sd->groups, 0);
6386 			kfree(*per_cpu_ptr(sdd->sd, j));
6387 			kfree(*per_cpu_ptr(sdd->sg, j));
6388 			kfree(*per_cpu_ptr(sdd->sgp, j));
6389 		}
6390 		free_percpu(sdd->sd);
6391 		free_percpu(sdd->sg);
6392 		free_percpu(sdd->sgp);
6393 	}
6394 }
6395 
6396 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6397 		struct s_data *d, const struct cpumask *cpu_map,
6398 		struct sched_domain_attr *attr, struct sched_domain *child,
6399 		int cpu)
6400 {
6401 	struct sched_domain *sd = tl->init(tl, cpu);
6402 	if (!sd)
6403 		return child;
6404 
6405 	set_domain_attribute(sd, attr);
6406 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6407 	if (child) {
6408 		sd->level = child->level + 1;
6409 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6410 		child->parent = sd;
6411 	}
6412 	sd->child = child;
6413 
6414 	return sd;
6415 }
6416 
6417 /*
6418  * Build sched domains for a given set of cpus and attach the sched domains
6419  * to the individual cpus
6420  */
6421 static int build_sched_domains(const struct cpumask *cpu_map,
6422 			       struct sched_domain_attr *attr)
6423 {
6424 	enum s_alloc alloc_state = sa_none;
6425 	struct sched_domain *sd;
6426 	struct s_data d;
6427 	int i, ret = -ENOMEM;
6428 
6429 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6430 	if (alloc_state != sa_rootdomain)
6431 		goto error;
6432 
6433 	/* Set up domains for cpus specified by the cpu_map. */
6434 	for_each_cpu(i, cpu_map) {
6435 		struct sched_domain_topology_level *tl;
6436 
6437 		sd = NULL;
6438 		for (tl = sched_domain_topology; tl->init; tl++) {
6439 			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6440 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6441 				sd->flags |= SD_OVERLAP;
6442 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6443 				break;
6444 		}
6445 
6446 		while (sd->child)
6447 			sd = sd->child;
6448 
6449 		*per_cpu_ptr(d.sd, i) = sd;
6450 	}
6451 
6452 	/* Build the groups for the domains */
6453 	for_each_cpu(i, cpu_map) {
6454 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6455 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6456 			if (sd->flags & SD_OVERLAP) {
6457 				if (build_overlap_sched_groups(sd, i))
6458 					goto error;
6459 			} else {
6460 				if (build_sched_groups(sd, i))
6461 					goto error;
6462 			}
6463 		}
6464 	}
6465 
6466 	/* Calculate CPU power for physical packages and nodes */
6467 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6468 		if (!cpumask_test_cpu(i, cpu_map))
6469 			continue;
6470 
6471 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6472 			claim_allocations(i, sd);
6473 			init_sched_groups_power(i, sd);
6474 		}
6475 	}
6476 
6477 	/* Attach the domains */
6478 	rcu_read_lock();
6479 	for_each_cpu(i, cpu_map) {
6480 		sd = *per_cpu_ptr(d.sd, i);
6481 		cpu_attach_domain(sd, d.rd, i);
6482 	}
6483 	rcu_read_unlock();
6484 
6485 	ret = 0;
6486 error:
6487 	__free_domain_allocs(&d, alloc_state, cpu_map);
6488 	return ret;
6489 }
6490 
6491 static cpumask_var_t *doms_cur;	/* current sched domains */
6492 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6493 static struct sched_domain_attr *dattr_cur;
6494 				/* attribues of custom domains in 'doms_cur' */
6495 
6496 /*
6497  * Special case: If a kmalloc of a doms_cur partition (array of
6498  * cpumask) fails, then fallback to a single sched domain,
6499  * as determined by the single cpumask fallback_doms.
6500  */
6501 static cpumask_var_t fallback_doms;
6502 
6503 /*
6504  * arch_update_cpu_topology lets virtualized architectures update the
6505  * cpu core maps. It is supposed to return 1 if the topology changed
6506  * or 0 if it stayed the same.
6507  */
6508 int __attribute__((weak)) arch_update_cpu_topology(void)
6509 {
6510 	return 0;
6511 }
6512 
6513 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6514 {
6515 	int i;
6516 	cpumask_var_t *doms;
6517 
6518 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6519 	if (!doms)
6520 		return NULL;
6521 	for (i = 0; i < ndoms; i++) {
6522 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6523 			free_sched_domains(doms, i);
6524 			return NULL;
6525 		}
6526 	}
6527 	return doms;
6528 }
6529 
6530 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6531 {
6532 	unsigned int i;
6533 	for (i = 0; i < ndoms; i++)
6534 		free_cpumask_var(doms[i]);
6535 	kfree(doms);
6536 }
6537 
6538 /*
6539  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6540  * For now this just excludes isolated cpus, but could be used to
6541  * exclude other special cases in the future.
6542  */
6543 static int init_sched_domains(const struct cpumask *cpu_map)
6544 {
6545 	int err;
6546 
6547 	arch_update_cpu_topology();
6548 	ndoms_cur = 1;
6549 	doms_cur = alloc_sched_domains(ndoms_cur);
6550 	if (!doms_cur)
6551 		doms_cur = &fallback_doms;
6552 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6553 	dattr_cur = NULL;
6554 	err = build_sched_domains(doms_cur[0], NULL);
6555 	register_sched_domain_sysctl();
6556 
6557 	return err;
6558 }
6559 
6560 /*
6561  * Detach sched domains from a group of cpus specified in cpu_map
6562  * These cpus will now be attached to the NULL domain
6563  */
6564 static void detach_destroy_domains(const struct cpumask *cpu_map)
6565 {
6566 	int i;
6567 
6568 	rcu_read_lock();
6569 	for_each_cpu(i, cpu_map)
6570 		cpu_attach_domain(NULL, &def_root_domain, i);
6571 	rcu_read_unlock();
6572 }
6573 
6574 /* handle null as "default" */
6575 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6576 			struct sched_domain_attr *new, int idx_new)
6577 {
6578 	struct sched_domain_attr tmp;
6579 
6580 	/* fast path */
6581 	if (!new && !cur)
6582 		return 1;
6583 
6584 	tmp = SD_ATTR_INIT;
6585 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6586 			new ? (new + idx_new) : &tmp,
6587 			sizeof(struct sched_domain_attr));
6588 }
6589 
6590 /*
6591  * Partition sched domains as specified by the 'ndoms_new'
6592  * cpumasks in the array doms_new[] of cpumasks. This compares
6593  * doms_new[] to the current sched domain partitioning, doms_cur[].
6594  * It destroys each deleted domain and builds each new domain.
6595  *
6596  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6597  * The masks don't intersect (don't overlap.) We should setup one
6598  * sched domain for each mask. CPUs not in any of the cpumasks will
6599  * not be load balanced. If the same cpumask appears both in the
6600  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6601  * it as it is.
6602  *
6603  * The passed in 'doms_new' should be allocated using
6604  * alloc_sched_domains.  This routine takes ownership of it and will
6605  * free_sched_domains it when done with it. If the caller failed the
6606  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6607  * and partition_sched_domains() will fallback to the single partition
6608  * 'fallback_doms', it also forces the domains to be rebuilt.
6609  *
6610  * If doms_new == NULL it will be replaced with cpu_online_mask.
6611  * ndoms_new == 0 is a special case for destroying existing domains,
6612  * and it will not create the default domain.
6613  *
6614  * Call with hotplug lock held
6615  */
6616 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6617 			     struct sched_domain_attr *dattr_new)
6618 {
6619 	int i, j, n;
6620 	int new_topology;
6621 
6622 	mutex_lock(&sched_domains_mutex);
6623 
6624 	/* always unregister in case we don't destroy any domains */
6625 	unregister_sched_domain_sysctl();
6626 
6627 	/* Let architecture update cpu core mappings. */
6628 	new_topology = arch_update_cpu_topology();
6629 
6630 	n = doms_new ? ndoms_new : 0;
6631 
6632 	/* Destroy deleted domains */
6633 	for (i = 0; i < ndoms_cur; i++) {
6634 		for (j = 0; j < n && !new_topology; j++) {
6635 			if (cpumask_equal(doms_cur[i], doms_new[j])
6636 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6637 				goto match1;
6638 		}
6639 		/* no match - a current sched domain not in new doms_new[] */
6640 		detach_destroy_domains(doms_cur[i]);
6641 match1:
6642 		;
6643 	}
6644 
6645 	if (doms_new == NULL) {
6646 		ndoms_cur = 0;
6647 		doms_new = &fallback_doms;
6648 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6649 		WARN_ON_ONCE(dattr_new);
6650 	}
6651 
6652 	/* Build new domains */
6653 	for (i = 0; i < ndoms_new; i++) {
6654 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6655 			if (cpumask_equal(doms_new[i], doms_cur[j])
6656 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6657 				goto match2;
6658 		}
6659 		/* no match - add a new doms_new */
6660 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6661 match2:
6662 		;
6663 	}
6664 
6665 	/* Remember the new sched domains */
6666 	if (doms_cur != &fallback_doms)
6667 		free_sched_domains(doms_cur, ndoms_cur);
6668 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6669 	doms_cur = doms_new;
6670 	dattr_cur = dattr_new;
6671 	ndoms_cur = ndoms_new;
6672 
6673 	register_sched_domain_sysctl();
6674 
6675 	mutex_unlock(&sched_domains_mutex);
6676 }
6677 
6678 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6679 static void reinit_sched_domains(void)
6680 {
6681 	get_online_cpus();
6682 
6683 	/* Destroy domains first to force the rebuild */
6684 	partition_sched_domains(0, NULL, NULL);
6685 
6686 	rebuild_sched_domains();
6687 	put_online_cpus();
6688 }
6689 
6690 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6691 {
6692 	unsigned int level = 0;
6693 
6694 	if (sscanf(buf, "%u", &level) != 1)
6695 		return -EINVAL;
6696 
6697 	/*
6698 	 * level is always be positive so don't check for
6699 	 * level < POWERSAVINGS_BALANCE_NONE which is 0
6700 	 * What happens on 0 or 1 byte write,
6701 	 * need to check for count as well?
6702 	 */
6703 
6704 	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6705 		return -EINVAL;
6706 
6707 	if (smt)
6708 		sched_smt_power_savings = level;
6709 	else
6710 		sched_mc_power_savings = level;
6711 
6712 	reinit_sched_domains();
6713 
6714 	return count;
6715 }
6716 
6717 #ifdef CONFIG_SCHED_MC
6718 static ssize_t sched_mc_power_savings_show(struct device *dev,
6719 					   struct device_attribute *attr,
6720 					   char *buf)
6721 {
6722 	return sprintf(buf, "%u\n", sched_mc_power_savings);
6723 }
6724 static ssize_t sched_mc_power_savings_store(struct device *dev,
6725 					    struct device_attribute *attr,
6726 					    const char *buf, size_t count)
6727 {
6728 	return sched_power_savings_store(buf, count, 0);
6729 }
6730 static DEVICE_ATTR(sched_mc_power_savings, 0644,
6731 		   sched_mc_power_savings_show,
6732 		   sched_mc_power_savings_store);
6733 #endif
6734 
6735 #ifdef CONFIG_SCHED_SMT
6736 static ssize_t sched_smt_power_savings_show(struct device *dev,
6737 					    struct device_attribute *attr,
6738 					    char *buf)
6739 {
6740 	return sprintf(buf, "%u\n", sched_smt_power_savings);
6741 }
6742 static ssize_t sched_smt_power_savings_store(struct device *dev,
6743 					    struct device_attribute *attr,
6744 					     const char *buf, size_t count)
6745 {
6746 	return sched_power_savings_store(buf, count, 1);
6747 }
6748 static DEVICE_ATTR(sched_smt_power_savings, 0644,
6749 		   sched_smt_power_savings_show,
6750 		   sched_smt_power_savings_store);
6751 #endif
6752 
6753 int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6754 {
6755 	int err = 0;
6756 
6757 #ifdef CONFIG_SCHED_SMT
6758 	if (smt_capable())
6759 		err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6760 #endif
6761 #ifdef CONFIG_SCHED_MC
6762 	if (!err && mc_capable())
6763 		err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6764 #endif
6765 	return err;
6766 }
6767 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6768 
6769 /*
6770  * Update cpusets according to cpu_active mask.  If cpusets are
6771  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6772  * around partition_sched_domains().
6773  */
6774 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6775 			     void *hcpu)
6776 {
6777 	switch (action & ~CPU_TASKS_FROZEN) {
6778 	case CPU_ONLINE:
6779 	case CPU_DOWN_FAILED:
6780 		cpuset_update_active_cpus();
6781 		return NOTIFY_OK;
6782 	default:
6783 		return NOTIFY_DONE;
6784 	}
6785 }
6786 
6787 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6788 			       void *hcpu)
6789 {
6790 	switch (action & ~CPU_TASKS_FROZEN) {
6791 	case CPU_DOWN_PREPARE:
6792 		cpuset_update_active_cpus();
6793 		return NOTIFY_OK;
6794 	default:
6795 		return NOTIFY_DONE;
6796 	}
6797 }
6798 
6799 void __init sched_init_smp(void)
6800 {
6801 	cpumask_var_t non_isolated_cpus;
6802 
6803 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6804 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6805 
6806 	get_online_cpus();
6807 	mutex_lock(&sched_domains_mutex);
6808 	init_sched_domains(cpu_active_mask);
6809 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6810 	if (cpumask_empty(non_isolated_cpus))
6811 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6812 	mutex_unlock(&sched_domains_mutex);
6813 	put_online_cpus();
6814 
6815 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6816 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6817 
6818 	/* RT runtime code needs to handle some hotplug events */
6819 	hotcpu_notifier(update_runtime, 0);
6820 
6821 	init_hrtick();
6822 
6823 	/* Move init over to a non-isolated CPU */
6824 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6825 		BUG();
6826 	sched_init_granularity();
6827 	free_cpumask_var(non_isolated_cpus);
6828 
6829 	init_sched_rt_class();
6830 }
6831 #else
6832 void __init sched_init_smp(void)
6833 {
6834 	sched_init_granularity();
6835 }
6836 #endif /* CONFIG_SMP */
6837 
6838 const_debug unsigned int sysctl_timer_migration = 1;
6839 
6840 int in_sched_functions(unsigned long addr)
6841 {
6842 	return in_lock_functions(addr) ||
6843 		(addr >= (unsigned long)__sched_text_start
6844 		&& addr < (unsigned long)__sched_text_end);
6845 }
6846 
6847 #ifdef CONFIG_CGROUP_SCHED
6848 struct task_group root_task_group;
6849 #endif
6850 
6851 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6852 
6853 void __init sched_init(void)
6854 {
6855 	int i, j;
6856 	unsigned long alloc_size = 0, ptr;
6857 
6858 #ifdef CONFIG_FAIR_GROUP_SCHED
6859 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6860 #endif
6861 #ifdef CONFIG_RT_GROUP_SCHED
6862 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6863 #endif
6864 #ifdef CONFIG_CPUMASK_OFFSTACK
6865 	alloc_size += num_possible_cpus() * cpumask_size();
6866 #endif
6867 	if (alloc_size) {
6868 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6869 
6870 #ifdef CONFIG_FAIR_GROUP_SCHED
6871 		root_task_group.se = (struct sched_entity **)ptr;
6872 		ptr += nr_cpu_ids * sizeof(void **);
6873 
6874 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6875 		ptr += nr_cpu_ids * sizeof(void **);
6876 
6877 #endif /* CONFIG_FAIR_GROUP_SCHED */
6878 #ifdef CONFIG_RT_GROUP_SCHED
6879 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6880 		ptr += nr_cpu_ids * sizeof(void **);
6881 
6882 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6883 		ptr += nr_cpu_ids * sizeof(void **);
6884 
6885 #endif /* CONFIG_RT_GROUP_SCHED */
6886 #ifdef CONFIG_CPUMASK_OFFSTACK
6887 		for_each_possible_cpu(i) {
6888 			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6889 			ptr += cpumask_size();
6890 		}
6891 #endif /* CONFIG_CPUMASK_OFFSTACK */
6892 	}
6893 
6894 #ifdef CONFIG_SMP
6895 	init_defrootdomain();
6896 #endif
6897 
6898 	init_rt_bandwidth(&def_rt_bandwidth,
6899 			global_rt_period(), global_rt_runtime());
6900 
6901 #ifdef CONFIG_RT_GROUP_SCHED
6902 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6903 			global_rt_period(), global_rt_runtime());
6904 #endif /* CONFIG_RT_GROUP_SCHED */
6905 
6906 #ifdef CONFIG_CGROUP_SCHED
6907 	list_add(&root_task_group.list, &task_groups);
6908 	INIT_LIST_HEAD(&root_task_group.children);
6909 	INIT_LIST_HEAD(&root_task_group.siblings);
6910 	autogroup_init(&init_task);
6911 
6912 #endif /* CONFIG_CGROUP_SCHED */
6913 
6914 #ifdef CONFIG_CGROUP_CPUACCT
6915 	root_cpuacct.cpustat = &kernel_cpustat;
6916 	root_cpuacct.cpuusage = alloc_percpu(u64);
6917 	/* Too early, not expected to fail */
6918 	BUG_ON(!root_cpuacct.cpuusage);
6919 #endif
6920 	for_each_possible_cpu(i) {
6921 		struct rq *rq;
6922 
6923 		rq = cpu_rq(i);
6924 		raw_spin_lock_init(&rq->lock);
6925 		rq->nr_running = 0;
6926 		rq->calc_load_active = 0;
6927 		rq->calc_load_update = jiffies + LOAD_FREQ;
6928 		init_cfs_rq(&rq->cfs);
6929 		init_rt_rq(&rq->rt, rq);
6930 #ifdef CONFIG_FAIR_GROUP_SCHED
6931 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6932 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6933 		/*
6934 		 * How much cpu bandwidth does root_task_group get?
6935 		 *
6936 		 * In case of task-groups formed thr' the cgroup filesystem, it
6937 		 * gets 100% of the cpu resources in the system. This overall
6938 		 * system cpu resource is divided among the tasks of
6939 		 * root_task_group and its child task-groups in a fair manner,
6940 		 * based on each entity's (task or task-group's) weight
6941 		 * (se->load.weight).
6942 		 *
6943 		 * In other words, if root_task_group has 10 tasks of weight
6944 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6945 		 * then A0's share of the cpu resource is:
6946 		 *
6947 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6948 		 *
6949 		 * We achieve this by letting root_task_group's tasks sit
6950 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6951 		 */
6952 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6953 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6954 #endif /* CONFIG_FAIR_GROUP_SCHED */
6955 
6956 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6957 #ifdef CONFIG_RT_GROUP_SCHED
6958 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6959 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6960 #endif
6961 
6962 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6963 			rq->cpu_load[j] = 0;
6964 
6965 		rq->last_load_update_tick = jiffies;
6966 
6967 #ifdef CONFIG_SMP
6968 		rq->sd = NULL;
6969 		rq->rd = NULL;
6970 		rq->cpu_power = SCHED_POWER_SCALE;
6971 		rq->post_schedule = 0;
6972 		rq->active_balance = 0;
6973 		rq->next_balance = jiffies;
6974 		rq->push_cpu = 0;
6975 		rq->cpu = i;
6976 		rq->online = 0;
6977 		rq->idle_stamp = 0;
6978 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6979 
6980 		INIT_LIST_HEAD(&rq->cfs_tasks);
6981 
6982 		rq_attach_root(rq, &def_root_domain);
6983 #ifdef CONFIG_NO_HZ
6984 		rq->nohz_flags = 0;
6985 #endif
6986 #endif
6987 		init_rq_hrtick(rq);
6988 		atomic_set(&rq->nr_iowait, 0);
6989 	}
6990 
6991 	set_load_weight(&init_task);
6992 
6993 #ifdef CONFIG_PREEMPT_NOTIFIERS
6994 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6995 #endif
6996 
6997 #ifdef CONFIG_RT_MUTEXES
6998 	plist_head_init(&init_task.pi_waiters);
6999 #endif
7000 
7001 	/*
7002 	 * The boot idle thread does lazy MMU switching as well:
7003 	 */
7004 	atomic_inc(&init_mm.mm_count);
7005 	enter_lazy_tlb(&init_mm, current);
7006 
7007 	/*
7008 	 * Make us the idle thread. Technically, schedule() should not be
7009 	 * called from this thread, however somewhere below it might be,
7010 	 * but because we are the idle thread, we just pick up running again
7011 	 * when this runqueue becomes "idle".
7012 	 */
7013 	init_idle(current, smp_processor_id());
7014 
7015 	calc_load_update = jiffies + LOAD_FREQ;
7016 
7017 	/*
7018 	 * During early bootup we pretend to be a normal task:
7019 	 */
7020 	current->sched_class = &fair_sched_class;
7021 
7022 #ifdef CONFIG_SMP
7023 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7024 	/* May be allocated at isolcpus cmdline parse time */
7025 	if (cpu_isolated_map == NULL)
7026 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7027 #endif
7028 	init_sched_fair_class();
7029 
7030 	scheduler_running = 1;
7031 }
7032 
7033 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7034 static inline int preempt_count_equals(int preempt_offset)
7035 {
7036 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7037 
7038 	return (nested == preempt_offset);
7039 }
7040 
7041 void __might_sleep(const char *file, int line, int preempt_offset)
7042 {
7043 	static unsigned long prev_jiffy;	/* ratelimiting */
7044 
7045 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7046 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7047 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7048 		return;
7049 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7050 		return;
7051 	prev_jiffy = jiffies;
7052 
7053 	printk(KERN_ERR
7054 		"BUG: sleeping function called from invalid context at %s:%d\n",
7055 			file, line);
7056 	printk(KERN_ERR
7057 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7058 			in_atomic(), irqs_disabled(),
7059 			current->pid, current->comm);
7060 
7061 	debug_show_held_locks(current);
7062 	if (irqs_disabled())
7063 		print_irqtrace_events(current);
7064 	dump_stack();
7065 }
7066 EXPORT_SYMBOL(__might_sleep);
7067 #endif
7068 
7069 #ifdef CONFIG_MAGIC_SYSRQ
7070 static void normalize_task(struct rq *rq, struct task_struct *p)
7071 {
7072 	const struct sched_class *prev_class = p->sched_class;
7073 	int old_prio = p->prio;
7074 	int on_rq;
7075 
7076 	on_rq = p->on_rq;
7077 	if (on_rq)
7078 		dequeue_task(rq, p, 0);
7079 	__setscheduler(rq, p, SCHED_NORMAL, 0);
7080 	if (on_rq) {
7081 		enqueue_task(rq, p, 0);
7082 		resched_task(rq->curr);
7083 	}
7084 
7085 	check_class_changed(rq, p, prev_class, old_prio);
7086 }
7087 
7088 void normalize_rt_tasks(void)
7089 {
7090 	struct task_struct *g, *p;
7091 	unsigned long flags;
7092 	struct rq *rq;
7093 
7094 	read_lock_irqsave(&tasklist_lock, flags);
7095 	do_each_thread(g, p) {
7096 		/*
7097 		 * Only normalize user tasks:
7098 		 */
7099 		if (!p->mm)
7100 			continue;
7101 
7102 		p->se.exec_start		= 0;
7103 #ifdef CONFIG_SCHEDSTATS
7104 		p->se.statistics.wait_start	= 0;
7105 		p->se.statistics.sleep_start	= 0;
7106 		p->se.statistics.block_start	= 0;
7107 #endif
7108 
7109 		if (!rt_task(p)) {
7110 			/*
7111 			 * Renice negative nice level userspace
7112 			 * tasks back to 0:
7113 			 */
7114 			if (TASK_NICE(p) < 0 && p->mm)
7115 				set_user_nice(p, 0);
7116 			continue;
7117 		}
7118 
7119 		raw_spin_lock(&p->pi_lock);
7120 		rq = __task_rq_lock(p);
7121 
7122 		normalize_task(rq, p);
7123 
7124 		__task_rq_unlock(rq);
7125 		raw_spin_unlock(&p->pi_lock);
7126 	} while_each_thread(g, p);
7127 
7128 	read_unlock_irqrestore(&tasklist_lock, flags);
7129 }
7130 
7131 #endif /* CONFIG_MAGIC_SYSRQ */
7132 
7133 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7134 /*
7135  * These functions are only useful for the IA64 MCA handling, or kdb.
7136  *
7137  * They can only be called when the whole system has been
7138  * stopped - every CPU needs to be quiescent, and no scheduling
7139  * activity can take place. Using them for anything else would
7140  * be a serious bug, and as a result, they aren't even visible
7141  * under any other configuration.
7142  */
7143 
7144 /**
7145  * curr_task - return the current task for a given cpu.
7146  * @cpu: the processor in question.
7147  *
7148  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7149  */
7150 struct task_struct *curr_task(int cpu)
7151 {
7152 	return cpu_curr(cpu);
7153 }
7154 
7155 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7156 
7157 #ifdef CONFIG_IA64
7158 /**
7159  * set_curr_task - set the current task for a given cpu.
7160  * @cpu: the processor in question.
7161  * @p: the task pointer to set.
7162  *
7163  * Description: This function must only be used when non-maskable interrupts
7164  * are serviced on a separate stack. It allows the architecture to switch the
7165  * notion of the current task on a cpu in a non-blocking manner. This function
7166  * must be called with all CPU's synchronized, and interrupts disabled, the
7167  * and caller must save the original value of the current task (see
7168  * curr_task() above) and restore that value before reenabling interrupts and
7169  * re-starting the system.
7170  *
7171  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7172  */
7173 void set_curr_task(int cpu, struct task_struct *p)
7174 {
7175 	cpu_curr(cpu) = p;
7176 }
7177 
7178 #endif
7179 
7180 #ifdef CONFIG_CGROUP_SCHED
7181 /* task_group_lock serializes the addition/removal of task groups */
7182 static DEFINE_SPINLOCK(task_group_lock);
7183 
7184 static void free_sched_group(struct task_group *tg)
7185 {
7186 	free_fair_sched_group(tg);
7187 	free_rt_sched_group(tg);
7188 	autogroup_free(tg);
7189 	kfree(tg);
7190 }
7191 
7192 /* allocate runqueue etc for a new task group */
7193 struct task_group *sched_create_group(struct task_group *parent)
7194 {
7195 	struct task_group *tg;
7196 	unsigned long flags;
7197 
7198 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7199 	if (!tg)
7200 		return ERR_PTR(-ENOMEM);
7201 
7202 	if (!alloc_fair_sched_group(tg, parent))
7203 		goto err;
7204 
7205 	if (!alloc_rt_sched_group(tg, parent))
7206 		goto err;
7207 
7208 	spin_lock_irqsave(&task_group_lock, flags);
7209 	list_add_rcu(&tg->list, &task_groups);
7210 
7211 	WARN_ON(!parent); /* root should already exist */
7212 
7213 	tg->parent = parent;
7214 	INIT_LIST_HEAD(&tg->children);
7215 	list_add_rcu(&tg->siblings, &parent->children);
7216 	spin_unlock_irqrestore(&task_group_lock, flags);
7217 
7218 	return tg;
7219 
7220 err:
7221 	free_sched_group(tg);
7222 	return ERR_PTR(-ENOMEM);
7223 }
7224 
7225 /* rcu callback to free various structures associated with a task group */
7226 static void free_sched_group_rcu(struct rcu_head *rhp)
7227 {
7228 	/* now it should be safe to free those cfs_rqs */
7229 	free_sched_group(container_of(rhp, struct task_group, rcu));
7230 }
7231 
7232 /* Destroy runqueue etc associated with a task group */
7233 void sched_destroy_group(struct task_group *tg)
7234 {
7235 	unsigned long flags;
7236 	int i;
7237 
7238 	/* end participation in shares distribution */
7239 	for_each_possible_cpu(i)
7240 		unregister_fair_sched_group(tg, i);
7241 
7242 	spin_lock_irqsave(&task_group_lock, flags);
7243 	list_del_rcu(&tg->list);
7244 	list_del_rcu(&tg->siblings);
7245 	spin_unlock_irqrestore(&task_group_lock, flags);
7246 
7247 	/* wait for possible concurrent references to cfs_rqs complete */
7248 	call_rcu(&tg->rcu, free_sched_group_rcu);
7249 }
7250 
7251 /* change task's runqueue when it moves between groups.
7252  *	The caller of this function should have put the task in its new group
7253  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7254  *	reflect its new group.
7255  */
7256 void sched_move_task(struct task_struct *tsk)
7257 {
7258 	int on_rq, running;
7259 	unsigned long flags;
7260 	struct rq *rq;
7261 
7262 	rq = task_rq_lock(tsk, &flags);
7263 
7264 	running = task_current(rq, tsk);
7265 	on_rq = tsk->on_rq;
7266 
7267 	if (on_rq)
7268 		dequeue_task(rq, tsk, 0);
7269 	if (unlikely(running))
7270 		tsk->sched_class->put_prev_task(rq, tsk);
7271 
7272 #ifdef CONFIG_FAIR_GROUP_SCHED
7273 	if (tsk->sched_class->task_move_group)
7274 		tsk->sched_class->task_move_group(tsk, on_rq);
7275 	else
7276 #endif
7277 		set_task_rq(tsk, task_cpu(tsk));
7278 
7279 	if (unlikely(running))
7280 		tsk->sched_class->set_curr_task(rq);
7281 	if (on_rq)
7282 		enqueue_task(rq, tsk, 0);
7283 
7284 	task_rq_unlock(rq, tsk, &flags);
7285 }
7286 #endif /* CONFIG_CGROUP_SCHED */
7287 
7288 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7289 static unsigned long to_ratio(u64 period, u64 runtime)
7290 {
7291 	if (runtime == RUNTIME_INF)
7292 		return 1ULL << 20;
7293 
7294 	return div64_u64(runtime << 20, period);
7295 }
7296 #endif
7297 
7298 #ifdef CONFIG_RT_GROUP_SCHED
7299 /*
7300  * Ensure that the real time constraints are schedulable.
7301  */
7302 static DEFINE_MUTEX(rt_constraints_mutex);
7303 
7304 /* Must be called with tasklist_lock held */
7305 static inline int tg_has_rt_tasks(struct task_group *tg)
7306 {
7307 	struct task_struct *g, *p;
7308 
7309 	do_each_thread(g, p) {
7310 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7311 			return 1;
7312 	} while_each_thread(g, p);
7313 
7314 	return 0;
7315 }
7316 
7317 struct rt_schedulable_data {
7318 	struct task_group *tg;
7319 	u64 rt_period;
7320 	u64 rt_runtime;
7321 };
7322 
7323 static int tg_rt_schedulable(struct task_group *tg, void *data)
7324 {
7325 	struct rt_schedulable_data *d = data;
7326 	struct task_group *child;
7327 	unsigned long total, sum = 0;
7328 	u64 period, runtime;
7329 
7330 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7331 	runtime = tg->rt_bandwidth.rt_runtime;
7332 
7333 	if (tg == d->tg) {
7334 		period = d->rt_period;
7335 		runtime = d->rt_runtime;
7336 	}
7337 
7338 	/*
7339 	 * Cannot have more runtime than the period.
7340 	 */
7341 	if (runtime > period && runtime != RUNTIME_INF)
7342 		return -EINVAL;
7343 
7344 	/*
7345 	 * Ensure we don't starve existing RT tasks.
7346 	 */
7347 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7348 		return -EBUSY;
7349 
7350 	total = to_ratio(period, runtime);
7351 
7352 	/*
7353 	 * Nobody can have more than the global setting allows.
7354 	 */
7355 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7356 		return -EINVAL;
7357 
7358 	/*
7359 	 * The sum of our children's runtime should not exceed our own.
7360 	 */
7361 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7362 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7363 		runtime = child->rt_bandwidth.rt_runtime;
7364 
7365 		if (child == d->tg) {
7366 			period = d->rt_period;
7367 			runtime = d->rt_runtime;
7368 		}
7369 
7370 		sum += to_ratio(period, runtime);
7371 	}
7372 
7373 	if (sum > total)
7374 		return -EINVAL;
7375 
7376 	return 0;
7377 }
7378 
7379 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7380 {
7381 	int ret;
7382 
7383 	struct rt_schedulable_data data = {
7384 		.tg = tg,
7385 		.rt_period = period,
7386 		.rt_runtime = runtime,
7387 	};
7388 
7389 	rcu_read_lock();
7390 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7391 	rcu_read_unlock();
7392 
7393 	return ret;
7394 }
7395 
7396 static int tg_set_rt_bandwidth(struct task_group *tg,
7397 		u64 rt_period, u64 rt_runtime)
7398 {
7399 	int i, err = 0;
7400 
7401 	mutex_lock(&rt_constraints_mutex);
7402 	read_lock(&tasklist_lock);
7403 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7404 	if (err)
7405 		goto unlock;
7406 
7407 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7408 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7409 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7410 
7411 	for_each_possible_cpu(i) {
7412 		struct rt_rq *rt_rq = tg->rt_rq[i];
7413 
7414 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7415 		rt_rq->rt_runtime = rt_runtime;
7416 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7417 	}
7418 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7419 unlock:
7420 	read_unlock(&tasklist_lock);
7421 	mutex_unlock(&rt_constraints_mutex);
7422 
7423 	return err;
7424 }
7425 
7426 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7427 {
7428 	u64 rt_runtime, rt_period;
7429 
7430 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7431 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7432 	if (rt_runtime_us < 0)
7433 		rt_runtime = RUNTIME_INF;
7434 
7435 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7436 }
7437 
7438 long sched_group_rt_runtime(struct task_group *tg)
7439 {
7440 	u64 rt_runtime_us;
7441 
7442 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7443 		return -1;
7444 
7445 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7446 	do_div(rt_runtime_us, NSEC_PER_USEC);
7447 	return rt_runtime_us;
7448 }
7449 
7450 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7451 {
7452 	u64 rt_runtime, rt_period;
7453 
7454 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7455 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7456 
7457 	if (rt_period == 0)
7458 		return -EINVAL;
7459 
7460 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7461 }
7462 
7463 long sched_group_rt_period(struct task_group *tg)
7464 {
7465 	u64 rt_period_us;
7466 
7467 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7468 	do_div(rt_period_us, NSEC_PER_USEC);
7469 	return rt_period_us;
7470 }
7471 
7472 static int sched_rt_global_constraints(void)
7473 {
7474 	u64 runtime, period;
7475 	int ret = 0;
7476 
7477 	if (sysctl_sched_rt_period <= 0)
7478 		return -EINVAL;
7479 
7480 	runtime = global_rt_runtime();
7481 	period = global_rt_period();
7482 
7483 	/*
7484 	 * Sanity check on the sysctl variables.
7485 	 */
7486 	if (runtime > period && runtime != RUNTIME_INF)
7487 		return -EINVAL;
7488 
7489 	mutex_lock(&rt_constraints_mutex);
7490 	read_lock(&tasklist_lock);
7491 	ret = __rt_schedulable(NULL, 0, 0);
7492 	read_unlock(&tasklist_lock);
7493 	mutex_unlock(&rt_constraints_mutex);
7494 
7495 	return ret;
7496 }
7497 
7498 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7499 {
7500 	/* Don't accept realtime tasks when there is no way for them to run */
7501 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7502 		return 0;
7503 
7504 	return 1;
7505 }
7506 
7507 #else /* !CONFIG_RT_GROUP_SCHED */
7508 static int sched_rt_global_constraints(void)
7509 {
7510 	unsigned long flags;
7511 	int i;
7512 
7513 	if (sysctl_sched_rt_period <= 0)
7514 		return -EINVAL;
7515 
7516 	/*
7517 	 * There's always some RT tasks in the root group
7518 	 * -- migration, kstopmachine etc..
7519 	 */
7520 	if (sysctl_sched_rt_runtime == 0)
7521 		return -EBUSY;
7522 
7523 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7524 	for_each_possible_cpu(i) {
7525 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7526 
7527 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7528 		rt_rq->rt_runtime = global_rt_runtime();
7529 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7530 	}
7531 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7532 
7533 	return 0;
7534 }
7535 #endif /* CONFIG_RT_GROUP_SCHED */
7536 
7537 int sched_rt_handler(struct ctl_table *table, int write,
7538 		void __user *buffer, size_t *lenp,
7539 		loff_t *ppos)
7540 {
7541 	int ret;
7542 	int old_period, old_runtime;
7543 	static DEFINE_MUTEX(mutex);
7544 
7545 	mutex_lock(&mutex);
7546 	old_period = sysctl_sched_rt_period;
7547 	old_runtime = sysctl_sched_rt_runtime;
7548 
7549 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7550 
7551 	if (!ret && write) {
7552 		ret = sched_rt_global_constraints();
7553 		if (ret) {
7554 			sysctl_sched_rt_period = old_period;
7555 			sysctl_sched_rt_runtime = old_runtime;
7556 		} else {
7557 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7558 			def_rt_bandwidth.rt_period =
7559 				ns_to_ktime(global_rt_period());
7560 		}
7561 	}
7562 	mutex_unlock(&mutex);
7563 
7564 	return ret;
7565 }
7566 
7567 #ifdef CONFIG_CGROUP_SCHED
7568 
7569 /* return corresponding task_group object of a cgroup */
7570 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7571 {
7572 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7573 			    struct task_group, css);
7574 }
7575 
7576 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7577 {
7578 	struct task_group *tg, *parent;
7579 
7580 	if (!cgrp->parent) {
7581 		/* This is early initialization for the top cgroup */
7582 		return &root_task_group.css;
7583 	}
7584 
7585 	parent = cgroup_tg(cgrp->parent);
7586 	tg = sched_create_group(parent);
7587 	if (IS_ERR(tg))
7588 		return ERR_PTR(-ENOMEM);
7589 
7590 	return &tg->css;
7591 }
7592 
7593 static void cpu_cgroup_destroy(struct cgroup *cgrp)
7594 {
7595 	struct task_group *tg = cgroup_tg(cgrp);
7596 
7597 	sched_destroy_group(tg);
7598 }
7599 
7600 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7601 				 struct cgroup_taskset *tset)
7602 {
7603 	struct task_struct *task;
7604 
7605 	cgroup_taskset_for_each(task, cgrp, tset) {
7606 #ifdef CONFIG_RT_GROUP_SCHED
7607 		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7608 			return -EINVAL;
7609 #else
7610 		/* We don't support RT-tasks being in separate groups */
7611 		if (task->sched_class != &fair_sched_class)
7612 			return -EINVAL;
7613 #endif
7614 	}
7615 	return 0;
7616 }
7617 
7618 static void cpu_cgroup_attach(struct cgroup *cgrp,
7619 			      struct cgroup_taskset *tset)
7620 {
7621 	struct task_struct *task;
7622 
7623 	cgroup_taskset_for_each(task, cgrp, tset)
7624 		sched_move_task(task);
7625 }
7626 
7627 static void
7628 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7629 		struct task_struct *task)
7630 {
7631 	/*
7632 	 * cgroup_exit() is called in the copy_process() failure path.
7633 	 * Ignore this case since the task hasn't ran yet, this avoids
7634 	 * trying to poke a half freed task state from generic code.
7635 	 */
7636 	if (!(task->flags & PF_EXITING))
7637 		return;
7638 
7639 	sched_move_task(task);
7640 }
7641 
7642 #ifdef CONFIG_FAIR_GROUP_SCHED
7643 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7644 				u64 shareval)
7645 {
7646 	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7647 }
7648 
7649 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7650 {
7651 	struct task_group *tg = cgroup_tg(cgrp);
7652 
7653 	return (u64) scale_load_down(tg->shares);
7654 }
7655 
7656 #ifdef CONFIG_CFS_BANDWIDTH
7657 static DEFINE_MUTEX(cfs_constraints_mutex);
7658 
7659 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7660 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7661 
7662 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7663 
7664 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7665 {
7666 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7667 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7668 
7669 	if (tg == &root_task_group)
7670 		return -EINVAL;
7671 
7672 	/*
7673 	 * Ensure we have at some amount of bandwidth every period.  This is
7674 	 * to prevent reaching a state of large arrears when throttled via
7675 	 * entity_tick() resulting in prolonged exit starvation.
7676 	 */
7677 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7678 		return -EINVAL;
7679 
7680 	/*
7681 	 * Likewise, bound things on the otherside by preventing insane quota
7682 	 * periods.  This also allows us to normalize in computing quota
7683 	 * feasibility.
7684 	 */
7685 	if (period > max_cfs_quota_period)
7686 		return -EINVAL;
7687 
7688 	mutex_lock(&cfs_constraints_mutex);
7689 	ret = __cfs_schedulable(tg, period, quota);
7690 	if (ret)
7691 		goto out_unlock;
7692 
7693 	runtime_enabled = quota != RUNTIME_INF;
7694 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7695 	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7696 	raw_spin_lock_irq(&cfs_b->lock);
7697 	cfs_b->period = ns_to_ktime(period);
7698 	cfs_b->quota = quota;
7699 
7700 	__refill_cfs_bandwidth_runtime(cfs_b);
7701 	/* restart the period timer (if active) to handle new period expiry */
7702 	if (runtime_enabled && cfs_b->timer_active) {
7703 		/* force a reprogram */
7704 		cfs_b->timer_active = 0;
7705 		__start_cfs_bandwidth(cfs_b);
7706 	}
7707 	raw_spin_unlock_irq(&cfs_b->lock);
7708 
7709 	for_each_possible_cpu(i) {
7710 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7711 		struct rq *rq = cfs_rq->rq;
7712 
7713 		raw_spin_lock_irq(&rq->lock);
7714 		cfs_rq->runtime_enabled = runtime_enabled;
7715 		cfs_rq->runtime_remaining = 0;
7716 
7717 		if (cfs_rq->throttled)
7718 			unthrottle_cfs_rq(cfs_rq);
7719 		raw_spin_unlock_irq(&rq->lock);
7720 	}
7721 out_unlock:
7722 	mutex_unlock(&cfs_constraints_mutex);
7723 
7724 	return ret;
7725 }
7726 
7727 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7728 {
7729 	u64 quota, period;
7730 
7731 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7732 	if (cfs_quota_us < 0)
7733 		quota = RUNTIME_INF;
7734 	else
7735 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7736 
7737 	return tg_set_cfs_bandwidth(tg, period, quota);
7738 }
7739 
7740 long tg_get_cfs_quota(struct task_group *tg)
7741 {
7742 	u64 quota_us;
7743 
7744 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7745 		return -1;
7746 
7747 	quota_us = tg->cfs_bandwidth.quota;
7748 	do_div(quota_us, NSEC_PER_USEC);
7749 
7750 	return quota_us;
7751 }
7752 
7753 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7754 {
7755 	u64 quota, period;
7756 
7757 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7758 	quota = tg->cfs_bandwidth.quota;
7759 
7760 	return tg_set_cfs_bandwidth(tg, period, quota);
7761 }
7762 
7763 long tg_get_cfs_period(struct task_group *tg)
7764 {
7765 	u64 cfs_period_us;
7766 
7767 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7768 	do_div(cfs_period_us, NSEC_PER_USEC);
7769 
7770 	return cfs_period_us;
7771 }
7772 
7773 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7774 {
7775 	return tg_get_cfs_quota(cgroup_tg(cgrp));
7776 }
7777 
7778 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7779 				s64 cfs_quota_us)
7780 {
7781 	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7782 }
7783 
7784 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7785 {
7786 	return tg_get_cfs_period(cgroup_tg(cgrp));
7787 }
7788 
7789 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7790 				u64 cfs_period_us)
7791 {
7792 	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7793 }
7794 
7795 struct cfs_schedulable_data {
7796 	struct task_group *tg;
7797 	u64 period, quota;
7798 };
7799 
7800 /*
7801  * normalize group quota/period to be quota/max_period
7802  * note: units are usecs
7803  */
7804 static u64 normalize_cfs_quota(struct task_group *tg,
7805 			       struct cfs_schedulable_data *d)
7806 {
7807 	u64 quota, period;
7808 
7809 	if (tg == d->tg) {
7810 		period = d->period;
7811 		quota = d->quota;
7812 	} else {
7813 		period = tg_get_cfs_period(tg);
7814 		quota = tg_get_cfs_quota(tg);
7815 	}
7816 
7817 	/* note: these should typically be equivalent */
7818 	if (quota == RUNTIME_INF || quota == -1)
7819 		return RUNTIME_INF;
7820 
7821 	return to_ratio(period, quota);
7822 }
7823 
7824 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7825 {
7826 	struct cfs_schedulable_data *d = data;
7827 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7828 	s64 quota = 0, parent_quota = -1;
7829 
7830 	if (!tg->parent) {
7831 		quota = RUNTIME_INF;
7832 	} else {
7833 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7834 
7835 		quota = normalize_cfs_quota(tg, d);
7836 		parent_quota = parent_b->hierarchal_quota;
7837 
7838 		/*
7839 		 * ensure max(child_quota) <= parent_quota, inherit when no
7840 		 * limit is set
7841 		 */
7842 		if (quota == RUNTIME_INF)
7843 			quota = parent_quota;
7844 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7845 			return -EINVAL;
7846 	}
7847 	cfs_b->hierarchal_quota = quota;
7848 
7849 	return 0;
7850 }
7851 
7852 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7853 {
7854 	int ret;
7855 	struct cfs_schedulable_data data = {
7856 		.tg = tg,
7857 		.period = period,
7858 		.quota = quota,
7859 	};
7860 
7861 	if (quota != RUNTIME_INF) {
7862 		do_div(data.period, NSEC_PER_USEC);
7863 		do_div(data.quota, NSEC_PER_USEC);
7864 	}
7865 
7866 	rcu_read_lock();
7867 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7868 	rcu_read_unlock();
7869 
7870 	return ret;
7871 }
7872 
7873 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7874 		struct cgroup_map_cb *cb)
7875 {
7876 	struct task_group *tg = cgroup_tg(cgrp);
7877 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7878 
7879 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7880 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7881 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7882 
7883 	return 0;
7884 }
7885 #endif /* CONFIG_CFS_BANDWIDTH */
7886 #endif /* CONFIG_FAIR_GROUP_SCHED */
7887 
7888 #ifdef CONFIG_RT_GROUP_SCHED
7889 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7890 				s64 val)
7891 {
7892 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7893 }
7894 
7895 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7896 {
7897 	return sched_group_rt_runtime(cgroup_tg(cgrp));
7898 }
7899 
7900 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7901 		u64 rt_period_us)
7902 {
7903 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7904 }
7905 
7906 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7907 {
7908 	return sched_group_rt_period(cgroup_tg(cgrp));
7909 }
7910 #endif /* CONFIG_RT_GROUP_SCHED */
7911 
7912 static struct cftype cpu_files[] = {
7913 #ifdef CONFIG_FAIR_GROUP_SCHED
7914 	{
7915 		.name = "shares",
7916 		.read_u64 = cpu_shares_read_u64,
7917 		.write_u64 = cpu_shares_write_u64,
7918 	},
7919 #endif
7920 #ifdef CONFIG_CFS_BANDWIDTH
7921 	{
7922 		.name = "cfs_quota_us",
7923 		.read_s64 = cpu_cfs_quota_read_s64,
7924 		.write_s64 = cpu_cfs_quota_write_s64,
7925 	},
7926 	{
7927 		.name = "cfs_period_us",
7928 		.read_u64 = cpu_cfs_period_read_u64,
7929 		.write_u64 = cpu_cfs_period_write_u64,
7930 	},
7931 	{
7932 		.name = "stat",
7933 		.read_map = cpu_stats_show,
7934 	},
7935 #endif
7936 #ifdef CONFIG_RT_GROUP_SCHED
7937 	{
7938 		.name = "rt_runtime_us",
7939 		.read_s64 = cpu_rt_runtime_read,
7940 		.write_s64 = cpu_rt_runtime_write,
7941 	},
7942 	{
7943 		.name = "rt_period_us",
7944 		.read_u64 = cpu_rt_period_read_uint,
7945 		.write_u64 = cpu_rt_period_write_uint,
7946 	},
7947 #endif
7948 };
7949 
7950 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7951 {
7952 	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7953 }
7954 
7955 struct cgroup_subsys cpu_cgroup_subsys = {
7956 	.name		= "cpu",
7957 	.create		= cpu_cgroup_create,
7958 	.destroy	= cpu_cgroup_destroy,
7959 	.can_attach	= cpu_cgroup_can_attach,
7960 	.attach		= cpu_cgroup_attach,
7961 	.exit		= cpu_cgroup_exit,
7962 	.populate	= cpu_cgroup_populate,
7963 	.subsys_id	= cpu_cgroup_subsys_id,
7964 	.early_init	= 1,
7965 };
7966 
7967 #endif	/* CONFIG_CGROUP_SCHED */
7968 
7969 #ifdef CONFIG_CGROUP_CPUACCT
7970 
7971 /*
7972  * CPU accounting code for task groups.
7973  *
7974  * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7975  * (balbir@in.ibm.com).
7976  */
7977 
7978 /* create a new cpu accounting group */
7979 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
7980 {
7981 	struct cpuacct *ca;
7982 
7983 	if (!cgrp->parent)
7984 		return &root_cpuacct.css;
7985 
7986 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7987 	if (!ca)
7988 		goto out;
7989 
7990 	ca->cpuusage = alloc_percpu(u64);
7991 	if (!ca->cpuusage)
7992 		goto out_free_ca;
7993 
7994 	ca->cpustat = alloc_percpu(struct kernel_cpustat);
7995 	if (!ca->cpustat)
7996 		goto out_free_cpuusage;
7997 
7998 	return &ca->css;
7999 
8000 out_free_cpuusage:
8001 	free_percpu(ca->cpuusage);
8002 out_free_ca:
8003 	kfree(ca);
8004 out:
8005 	return ERR_PTR(-ENOMEM);
8006 }
8007 
8008 /* destroy an existing cpu accounting group */
8009 static void cpuacct_destroy(struct cgroup *cgrp)
8010 {
8011 	struct cpuacct *ca = cgroup_ca(cgrp);
8012 
8013 	free_percpu(ca->cpustat);
8014 	free_percpu(ca->cpuusage);
8015 	kfree(ca);
8016 }
8017 
8018 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8019 {
8020 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8021 	u64 data;
8022 
8023 #ifndef CONFIG_64BIT
8024 	/*
8025 	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8026 	 */
8027 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8028 	data = *cpuusage;
8029 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8030 #else
8031 	data = *cpuusage;
8032 #endif
8033 
8034 	return data;
8035 }
8036 
8037 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8038 {
8039 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8040 
8041 #ifndef CONFIG_64BIT
8042 	/*
8043 	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8044 	 */
8045 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8046 	*cpuusage = val;
8047 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8048 #else
8049 	*cpuusage = val;
8050 #endif
8051 }
8052 
8053 /* return total cpu usage (in nanoseconds) of a group */
8054 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8055 {
8056 	struct cpuacct *ca = cgroup_ca(cgrp);
8057 	u64 totalcpuusage = 0;
8058 	int i;
8059 
8060 	for_each_present_cpu(i)
8061 		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8062 
8063 	return totalcpuusage;
8064 }
8065 
8066 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8067 								u64 reset)
8068 {
8069 	struct cpuacct *ca = cgroup_ca(cgrp);
8070 	int err = 0;
8071 	int i;
8072 
8073 	if (reset) {
8074 		err = -EINVAL;
8075 		goto out;
8076 	}
8077 
8078 	for_each_present_cpu(i)
8079 		cpuacct_cpuusage_write(ca, i, 0);
8080 
8081 out:
8082 	return err;
8083 }
8084 
8085 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8086 				   struct seq_file *m)
8087 {
8088 	struct cpuacct *ca = cgroup_ca(cgroup);
8089 	u64 percpu;
8090 	int i;
8091 
8092 	for_each_present_cpu(i) {
8093 		percpu = cpuacct_cpuusage_read(ca, i);
8094 		seq_printf(m, "%llu ", (unsigned long long) percpu);
8095 	}
8096 	seq_printf(m, "\n");
8097 	return 0;
8098 }
8099 
8100 static const char *cpuacct_stat_desc[] = {
8101 	[CPUACCT_STAT_USER] = "user",
8102 	[CPUACCT_STAT_SYSTEM] = "system",
8103 };
8104 
8105 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8106 			      struct cgroup_map_cb *cb)
8107 {
8108 	struct cpuacct *ca = cgroup_ca(cgrp);
8109 	int cpu;
8110 	s64 val = 0;
8111 
8112 	for_each_online_cpu(cpu) {
8113 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8114 		val += kcpustat->cpustat[CPUTIME_USER];
8115 		val += kcpustat->cpustat[CPUTIME_NICE];
8116 	}
8117 	val = cputime64_to_clock_t(val);
8118 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8119 
8120 	val = 0;
8121 	for_each_online_cpu(cpu) {
8122 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8123 		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8124 		val += kcpustat->cpustat[CPUTIME_IRQ];
8125 		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8126 	}
8127 
8128 	val = cputime64_to_clock_t(val);
8129 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8130 
8131 	return 0;
8132 }
8133 
8134 static struct cftype files[] = {
8135 	{
8136 		.name = "usage",
8137 		.read_u64 = cpuusage_read,
8138 		.write_u64 = cpuusage_write,
8139 	},
8140 	{
8141 		.name = "usage_percpu",
8142 		.read_seq_string = cpuacct_percpu_seq_read,
8143 	},
8144 	{
8145 		.name = "stat",
8146 		.read_map = cpuacct_stats_show,
8147 	},
8148 };
8149 
8150 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8151 {
8152 	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8153 }
8154 
8155 /*
8156  * charge this task's execution time to its accounting group.
8157  *
8158  * called with rq->lock held.
8159  */
8160 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8161 {
8162 	struct cpuacct *ca;
8163 	int cpu;
8164 
8165 	if (unlikely(!cpuacct_subsys.active))
8166 		return;
8167 
8168 	cpu = task_cpu(tsk);
8169 
8170 	rcu_read_lock();
8171 
8172 	ca = task_ca(tsk);
8173 
8174 	for (; ca; ca = parent_ca(ca)) {
8175 		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8176 		*cpuusage += cputime;
8177 	}
8178 
8179 	rcu_read_unlock();
8180 }
8181 
8182 struct cgroup_subsys cpuacct_subsys = {
8183 	.name = "cpuacct",
8184 	.create = cpuacct_create,
8185 	.destroy = cpuacct_destroy,
8186 	.populate = cpuacct_populate,
8187 	.subsys_id = cpuacct_subsys_id,
8188 };
8189 #endif	/* CONFIG_CGROUP_CPUACCT */
8190