xref: /linux/kernel/sched/core.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95 
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97 
98 void update_rq_clock(struct rq *rq)
99 {
100 	s64 delta;
101 
102 	lockdep_assert_held(&rq->lock);
103 
104 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 		return;
106 
107 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 	if (delta < 0)
109 		return;
110 	rq->clock += delta;
111 	update_rq_clock_task(rq, delta);
112 }
113 
114 /*
115  * Debugging: various feature bits
116  */
117 
118 #define SCHED_FEAT(name, enabled)	\
119 	(1UL << __SCHED_FEAT_##name) * enabled |
120 
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 	0;
124 
125 #undef SCHED_FEAT
126 
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled)	\
129 	#name ,
130 
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
133 };
134 
135 #undef SCHED_FEAT
136 
137 static int sched_feat_show(struct seq_file *m, void *v)
138 {
139 	int i;
140 
141 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 		if (!(sysctl_sched_features & (1UL << i)))
143 			seq_puts(m, "NO_");
144 		seq_printf(m, "%s ", sched_feat_names[i]);
145 	}
146 	seq_puts(m, "\n");
147 
148 	return 0;
149 }
150 
151 #ifdef HAVE_JUMP_LABEL
152 
153 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
155 
156 #define SCHED_FEAT(name, enabled)	\
157 	jump_label_key__##enabled ,
158 
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
161 };
162 
163 #undef SCHED_FEAT
164 
165 static void sched_feat_disable(int i)
166 {
167 	static_key_disable(&sched_feat_keys[i]);
168 }
169 
170 static void sched_feat_enable(int i)
171 {
172 	static_key_enable(&sched_feat_keys[i]);
173 }
174 #else
175 static void sched_feat_disable(int i) { };
176 static void sched_feat_enable(int i) { };
177 #endif /* HAVE_JUMP_LABEL */
178 
179 static int sched_feat_set(char *cmp)
180 {
181 	int i;
182 	int neg = 0;
183 
184 	if (strncmp(cmp, "NO_", 3) == 0) {
185 		neg = 1;
186 		cmp += 3;
187 	}
188 
189 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
190 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
191 			if (neg) {
192 				sysctl_sched_features &= ~(1UL << i);
193 				sched_feat_disable(i);
194 			} else {
195 				sysctl_sched_features |= (1UL << i);
196 				sched_feat_enable(i);
197 			}
198 			break;
199 		}
200 	}
201 
202 	return i;
203 }
204 
205 static ssize_t
206 sched_feat_write(struct file *filp, const char __user *ubuf,
207 		size_t cnt, loff_t *ppos)
208 {
209 	char buf[64];
210 	char *cmp;
211 	int i;
212 	struct inode *inode;
213 
214 	if (cnt > 63)
215 		cnt = 63;
216 
217 	if (copy_from_user(&buf, ubuf, cnt))
218 		return -EFAULT;
219 
220 	buf[cnt] = 0;
221 	cmp = strstrip(buf);
222 
223 	/* Ensure the static_key remains in a consistent state */
224 	inode = file_inode(filp);
225 	mutex_lock(&inode->i_mutex);
226 	i = sched_feat_set(cmp);
227 	mutex_unlock(&inode->i_mutex);
228 	if (i == __SCHED_FEAT_NR)
229 		return -EINVAL;
230 
231 	*ppos += cnt;
232 
233 	return cnt;
234 }
235 
236 static int sched_feat_open(struct inode *inode, struct file *filp)
237 {
238 	return single_open(filp, sched_feat_show, NULL);
239 }
240 
241 static const struct file_operations sched_feat_fops = {
242 	.open		= sched_feat_open,
243 	.write		= sched_feat_write,
244 	.read		= seq_read,
245 	.llseek		= seq_lseek,
246 	.release	= single_release,
247 };
248 
249 static __init int sched_init_debug(void)
250 {
251 	debugfs_create_file("sched_features", 0644, NULL, NULL,
252 			&sched_feat_fops);
253 
254 	return 0;
255 }
256 late_initcall(sched_init_debug);
257 #endif /* CONFIG_SCHED_DEBUG */
258 
259 /*
260  * Number of tasks to iterate in a single balance run.
261  * Limited because this is done with IRQs disabled.
262  */
263 const_debug unsigned int sysctl_sched_nr_migrate = 32;
264 
265 /*
266  * period over which we average the RT time consumption, measured
267  * in ms.
268  *
269  * default: 1s
270  */
271 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272 
273 /*
274  * period over which we measure -rt task cpu usage in us.
275  * default: 1s
276  */
277 unsigned int sysctl_sched_rt_period = 1000000;
278 
279 __read_mostly int scheduler_running;
280 
281 /*
282  * part of the period that we allow rt tasks to run in us.
283  * default: 0.95s
284  */
285 int sysctl_sched_rt_runtime = 950000;
286 
287 /* cpus with isolated domains */
288 cpumask_var_t cpu_isolated_map;
289 
290 /*
291  * this_rq_lock - lock this runqueue and disable interrupts.
292  */
293 static struct rq *this_rq_lock(void)
294 	__acquires(rq->lock)
295 {
296 	struct rq *rq;
297 
298 	local_irq_disable();
299 	rq = this_rq();
300 	raw_spin_lock(&rq->lock);
301 
302 	return rq;
303 }
304 
305 #ifdef CONFIG_SCHED_HRTICK
306 /*
307  * Use HR-timers to deliver accurate preemption points.
308  */
309 
310 static void hrtick_clear(struct rq *rq)
311 {
312 	if (hrtimer_active(&rq->hrtick_timer))
313 		hrtimer_cancel(&rq->hrtick_timer);
314 }
315 
316 /*
317  * High-resolution timer tick.
318  * Runs from hardirq context with interrupts disabled.
319  */
320 static enum hrtimer_restart hrtick(struct hrtimer *timer)
321 {
322 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323 
324 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325 
326 	raw_spin_lock(&rq->lock);
327 	update_rq_clock(rq);
328 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
329 	raw_spin_unlock(&rq->lock);
330 
331 	return HRTIMER_NORESTART;
332 }
333 
334 #ifdef CONFIG_SMP
335 
336 static void __hrtick_restart(struct rq *rq)
337 {
338 	struct hrtimer *timer = &rq->hrtick_timer;
339 
340 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
341 }
342 
343 /*
344  * called from hardirq (IPI) context
345  */
346 static void __hrtick_start(void *arg)
347 {
348 	struct rq *rq = arg;
349 
350 	raw_spin_lock(&rq->lock);
351 	__hrtick_restart(rq);
352 	rq->hrtick_csd_pending = 0;
353 	raw_spin_unlock(&rq->lock);
354 }
355 
356 /*
357  * Called to set the hrtick timer state.
358  *
359  * called with rq->lock held and irqs disabled
360  */
361 void hrtick_start(struct rq *rq, u64 delay)
362 {
363 	struct hrtimer *timer = &rq->hrtick_timer;
364 	ktime_t time;
365 	s64 delta;
366 
367 	/*
368 	 * Don't schedule slices shorter than 10000ns, that just
369 	 * doesn't make sense and can cause timer DoS.
370 	 */
371 	delta = max_t(s64, delay, 10000LL);
372 	time = ktime_add_ns(timer->base->get_time(), delta);
373 
374 	hrtimer_set_expires(timer, time);
375 
376 	if (rq == this_rq()) {
377 		__hrtick_restart(rq);
378 	} else if (!rq->hrtick_csd_pending) {
379 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
380 		rq->hrtick_csd_pending = 1;
381 	}
382 }
383 
384 static int
385 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386 {
387 	int cpu = (int)(long)hcpu;
388 
389 	switch (action) {
390 	case CPU_UP_CANCELED:
391 	case CPU_UP_CANCELED_FROZEN:
392 	case CPU_DOWN_PREPARE:
393 	case CPU_DOWN_PREPARE_FROZEN:
394 	case CPU_DEAD:
395 	case CPU_DEAD_FROZEN:
396 		hrtick_clear(cpu_rq(cpu));
397 		return NOTIFY_OK;
398 	}
399 
400 	return NOTIFY_DONE;
401 }
402 
403 static __init void init_hrtick(void)
404 {
405 	hotcpu_notifier(hotplug_hrtick, 0);
406 }
407 #else
408 /*
409  * Called to set the hrtick timer state.
410  *
411  * called with rq->lock held and irqs disabled
412  */
413 void hrtick_start(struct rq *rq, u64 delay)
414 {
415 	/*
416 	 * Don't schedule slices shorter than 10000ns, that just
417 	 * doesn't make sense. Rely on vruntime for fairness.
418 	 */
419 	delay = max_t(u64, delay, 10000LL);
420 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 		      HRTIMER_MODE_REL_PINNED);
422 }
423 
424 static inline void init_hrtick(void)
425 {
426 }
427 #endif /* CONFIG_SMP */
428 
429 static void init_rq_hrtick(struct rq *rq)
430 {
431 #ifdef CONFIG_SMP
432 	rq->hrtick_csd_pending = 0;
433 
434 	rq->hrtick_csd.flags = 0;
435 	rq->hrtick_csd.func = __hrtick_start;
436 	rq->hrtick_csd.info = rq;
437 #endif
438 
439 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 	rq->hrtick_timer.function = hrtick;
441 }
442 #else	/* CONFIG_SCHED_HRTICK */
443 static inline void hrtick_clear(struct rq *rq)
444 {
445 }
446 
447 static inline void init_rq_hrtick(struct rq *rq)
448 {
449 }
450 
451 static inline void init_hrtick(void)
452 {
453 }
454 #endif	/* CONFIG_SCHED_HRTICK */
455 
456 /*
457  * cmpxchg based fetch_or, macro so it works for different integer types
458  */
459 #define fetch_or(ptr, val)						\
460 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
461  	for (;;) {							\
462  		__old = cmpxchg((ptr), __val, __val | (val));		\
463  		if (__old == __val)					\
464  			break;						\
465  		__val = __old;						\
466  	}								\
467  	__old;								\
468 })
469 
470 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
471 /*
472  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473  * this avoids any races wrt polling state changes and thereby avoids
474  * spurious IPIs.
475  */
476 static bool set_nr_and_not_polling(struct task_struct *p)
477 {
478 	struct thread_info *ti = task_thread_info(p);
479 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
480 }
481 
482 /*
483  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
484  *
485  * If this returns true, then the idle task promises to call
486  * sched_ttwu_pending() and reschedule soon.
487  */
488 static bool set_nr_if_polling(struct task_struct *p)
489 {
490 	struct thread_info *ti = task_thread_info(p);
491 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
492 
493 	for (;;) {
494 		if (!(val & _TIF_POLLING_NRFLAG))
495 			return false;
496 		if (val & _TIF_NEED_RESCHED)
497 			return true;
498 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 		if (old == val)
500 			break;
501 		val = old;
502 	}
503 	return true;
504 }
505 
506 #else
507 static bool set_nr_and_not_polling(struct task_struct *p)
508 {
509 	set_tsk_need_resched(p);
510 	return true;
511 }
512 
513 #ifdef CONFIG_SMP
514 static bool set_nr_if_polling(struct task_struct *p)
515 {
516 	return false;
517 }
518 #endif
519 #endif
520 
521 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
522 {
523 	struct wake_q_node *node = &task->wake_q;
524 
525 	/*
526 	 * Atomically grab the task, if ->wake_q is !nil already it means
527 	 * its already queued (either by us or someone else) and will get the
528 	 * wakeup due to that.
529 	 *
530 	 * This cmpxchg() implies a full barrier, which pairs with the write
531 	 * barrier implied by the wakeup in wake_up_list().
532 	 */
533 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 		return;
535 
536 	get_task_struct(task);
537 
538 	/*
539 	 * The head is context local, there can be no concurrency.
540 	 */
541 	*head->lastp = node;
542 	head->lastp = &node->next;
543 }
544 
545 void wake_up_q(struct wake_q_head *head)
546 {
547 	struct wake_q_node *node = head->first;
548 
549 	while (node != WAKE_Q_TAIL) {
550 		struct task_struct *task;
551 
552 		task = container_of(node, struct task_struct, wake_q);
553 		BUG_ON(!task);
554 		/* task can safely be re-inserted now */
555 		node = node->next;
556 		task->wake_q.next = NULL;
557 
558 		/*
559 		 * wake_up_process() implies a wmb() to pair with the queueing
560 		 * in wake_q_add() so as not to miss wakeups.
561 		 */
562 		wake_up_process(task);
563 		put_task_struct(task);
564 	}
565 }
566 
567 /*
568  * resched_curr - mark rq's current task 'to be rescheduled now'.
569  *
570  * On UP this means the setting of the need_resched flag, on SMP it
571  * might also involve a cross-CPU call to trigger the scheduler on
572  * the target CPU.
573  */
574 void resched_curr(struct rq *rq)
575 {
576 	struct task_struct *curr = rq->curr;
577 	int cpu;
578 
579 	lockdep_assert_held(&rq->lock);
580 
581 	if (test_tsk_need_resched(curr))
582 		return;
583 
584 	cpu = cpu_of(rq);
585 
586 	if (cpu == smp_processor_id()) {
587 		set_tsk_need_resched(curr);
588 		set_preempt_need_resched();
589 		return;
590 	}
591 
592 	if (set_nr_and_not_polling(curr))
593 		smp_send_reschedule(cpu);
594 	else
595 		trace_sched_wake_idle_without_ipi(cpu);
596 }
597 
598 void resched_cpu(int cpu)
599 {
600 	struct rq *rq = cpu_rq(cpu);
601 	unsigned long flags;
602 
603 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
604 		return;
605 	resched_curr(rq);
606 	raw_spin_unlock_irqrestore(&rq->lock, flags);
607 }
608 
609 #ifdef CONFIG_SMP
610 #ifdef CONFIG_NO_HZ_COMMON
611 /*
612  * In the semi idle case, use the nearest busy cpu for migrating timers
613  * from an idle cpu.  This is good for power-savings.
614  *
615  * We don't do similar optimization for completely idle system, as
616  * selecting an idle cpu will add more delays to the timers than intended
617  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
618  */
619 int get_nohz_timer_target(void)
620 {
621 	int i, cpu = smp_processor_id();
622 	struct sched_domain *sd;
623 
624 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
625 		return cpu;
626 
627 	rcu_read_lock();
628 	for_each_domain(cpu, sd) {
629 		for_each_cpu(i, sched_domain_span(sd)) {
630 			if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
631 				cpu = i;
632 				goto unlock;
633 			}
634 		}
635 	}
636 
637 	if (!is_housekeeping_cpu(cpu))
638 		cpu = housekeeping_any_cpu();
639 unlock:
640 	rcu_read_unlock();
641 	return cpu;
642 }
643 /*
644  * When add_timer_on() enqueues a timer into the timer wheel of an
645  * idle CPU then this timer might expire before the next timer event
646  * which is scheduled to wake up that CPU. In case of a completely
647  * idle system the next event might even be infinite time into the
648  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649  * leaves the inner idle loop so the newly added timer is taken into
650  * account when the CPU goes back to idle and evaluates the timer
651  * wheel for the next timer event.
652  */
653 static void wake_up_idle_cpu(int cpu)
654 {
655 	struct rq *rq = cpu_rq(cpu);
656 
657 	if (cpu == smp_processor_id())
658 		return;
659 
660 	if (set_nr_and_not_polling(rq->idle))
661 		smp_send_reschedule(cpu);
662 	else
663 		trace_sched_wake_idle_without_ipi(cpu);
664 }
665 
666 static bool wake_up_full_nohz_cpu(int cpu)
667 {
668 	/*
669 	 * We just need the target to call irq_exit() and re-evaluate
670 	 * the next tick. The nohz full kick at least implies that.
671 	 * If needed we can still optimize that later with an
672 	 * empty IRQ.
673 	 */
674 	if (tick_nohz_full_cpu(cpu)) {
675 		if (cpu != smp_processor_id() ||
676 		    tick_nohz_tick_stopped())
677 			tick_nohz_full_kick_cpu(cpu);
678 		return true;
679 	}
680 
681 	return false;
682 }
683 
684 void wake_up_nohz_cpu(int cpu)
685 {
686 	if (!wake_up_full_nohz_cpu(cpu))
687 		wake_up_idle_cpu(cpu);
688 }
689 
690 static inline bool got_nohz_idle_kick(void)
691 {
692 	int cpu = smp_processor_id();
693 
694 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 		return false;
696 
697 	if (idle_cpu(cpu) && !need_resched())
698 		return true;
699 
700 	/*
701 	 * We can't run Idle Load Balance on this CPU for this time so we
702 	 * cancel it and clear NOHZ_BALANCE_KICK
703 	 */
704 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 	return false;
706 }
707 
708 #else /* CONFIG_NO_HZ_COMMON */
709 
710 static inline bool got_nohz_idle_kick(void)
711 {
712 	return false;
713 }
714 
715 #endif /* CONFIG_NO_HZ_COMMON */
716 
717 #ifdef CONFIG_NO_HZ_FULL
718 bool sched_can_stop_tick(void)
719 {
720 	/*
721 	 * FIFO realtime policy runs the highest priority task. Other runnable
722 	 * tasks are of a lower priority. The scheduler tick does nothing.
723 	 */
724 	if (current->policy == SCHED_FIFO)
725 		return true;
726 
727 	/*
728 	 * Round-robin realtime tasks time slice with other tasks at the same
729 	 * realtime priority. Is this task the only one at this priority?
730 	 */
731 	if (current->policy == SCHED_RR) {
732 		struct sched_rt_entity *rt_se = &current->rt;
733 
734 		return rt_se->run_list.prev == rt_se->run_list.next;
735 	}
736 
737 	/*
738 	 * More than one running task need preemption.
739 	 * nr_running update is assumed to be visible
740 	 * after IPI is sent from wakers.
741 	 */
742 	if (this_rq()->nr_running > 1)
743 		return false;
744 
745 	return true;
746 }
747 #endif /* CONFIG_NO_HZ_FULL */
748 
749 void sched_avg_update(struct rq *rq)
750 {
751 	s64 period = sched_avg_period();
752 
753 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
754 		/*
755 		 * Inline assembly required to prevent the compiler
756 		 * optimising this loop into a divmod call.
757 		 * See __iter_div_u64_rem() for another example of this.
758 		 */
759 		asm("" : "+rm" (rq->age_stamp));
760 		rq->age_stamp += period;
761 		rq->rt_avg /= 2;
762 	}
763 }
764 
765 #endif /* CONFIG_SMP */
766 
767 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
769 /*
770  * Iterate task_group tree rooted at *from, calling @down when first entering a
771  * node and @up when leaving it for the final time.
772  *
773  * Caller must hold rcu_lock or sufficient equivalent.
774  */
775 int walk_tg_tree_from(struct task_group *from,
776 			     tg_visitor down, tg_visitor up, void *data)
777 {
778 	struct task_group *parent, *child;
779 	int ret;
780 
781 	parent = from;
782 
783 down:
784 	ret = (*down)(parent, data);
785 	if (ret)
786 		goto out;
787 	list_for_each_entry_rcu(child, &parent->children, siblings) {
788 		parent = child;
789 		goto down;
790 
791 up:
792 		continue;
793 	}
794 	ret = (*up)(parent, data);
795 	if (ret || parent == from)
796 		goto out;
797 
798 	child = parent;
799 	parent = parent->parent;
800 	if (parent)
801 		goto up;
802 out:
803 	return ret;
804 }
805 
806 int tg_nop(struct task_group *tg, void *data)
807 {
808 	return 0;
809 }
810 #endif
811 
812 static void set_load_weight(struct task_struct *p)
813 {
814 	int prio = p->static_prio - MAX_RT_PRIO;
815 	struct load_weight *load = &p->se.load;
816 
817 	/*
818 	 * SCHED_IDLE tasks get minimal weight:
819 	 */
820 	if (idle_policy(p->policy)) {
821 		load->weight = scale_load(WEIGHT_IDLEPRIO);
822 		load->inv_weight = WMULT_IDLEPRIO;
823 		return;
824 	}
825 
826 	load->weight = scale_load(prio_to_weight[prio]);
827 	load->inv_weight = prio_to_wmult[prio];
828 }
829 
830 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
831 {
832 	update_rq_clock(rq);
833 	if (!(flags & ENQUEUE_RESTORE))
834 		sched_info_queued(rq, p);
835 	p->sched_class->enqueue_task(rq, p, flags);
836 }
837 
838 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
839 {
840 	update_rq_clock(rq);
841 	if (!(flags & DEQUEUE_SAVE))
842 		sched_info_dequeued(rq, p);
843 	p->sched_class->dequeue_task(rq, p, flags);
844 }
845 
846 void activate_task(struct rq *rq, struct task_struct *p, int flags)
847 {
848 	if (task_contributes_to_load(p))
849 		rq->nr_uninterruptible--;
850 
851 	enqueue_task(rq, p, flags);
852 }
853 
854 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
855 {
856 	if (task_contributes_to_load(p))
857 		rq->nr_uninterruptible++;
858 
859 	dequeue_task(rq, p, flags);
860 }
861 
862 static void update_rq_clock_task(struct rq *rq, s64 delta)
863 {
864 /*
865  * In theory, the compile should just see 0 here, and optimize out the call
866  * to sched_rt_avg_update. But I don't trust it...
867  */
868 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
869 	s64 steal = 0, irq_delta = 0;
870 #endif
871 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
872 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
873 
874 	/*
875 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
876 	 * this case when a previous update_rq_clock() happened inside a
877 	 * {soft,}irq region.
878 	 *
879 	 * When this happens, we stop ->clock_task and only update the
880 	 * prev_irq_time stamp to account for the part that fit, so that a next
881 	 * update will consume the rest. This ensures ->clock_task is
882 	 * monotonic.
883 	 *
884 	 * It does however cause some slight miss-attribution of {soft,}irq
885 	 * time, a more accurate solution would be to update the irq_time using
886 	 * the current rq->clock timestamp, except that would require using
887 	 * atomic ops.
888 	 */
889 	if (irq_delta > delta)
890 		irq_delta = delta;
891 
892 	rq->prev_irq_time += irq_delta;
893 	delta -= irq_delta;
894 #endif
895 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
896 	if (static_key_false((&paravirt_steal_rq_enabled))) {
897 		steal = paravirt_steal_clock(cpu_of(rq));
898 		steal -= rq->prev_steal_time_rq;
899 
900 		if (unlikely(steal > delta))
901 			steal = delta;
902 
903 		rq->prev_steal_time_rq += steal;
904 		delta -= steal;
905 	}
906 #endif
907 
908 	rq->clock_task += delta;
909 
910 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
911 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
912 		sched_rt_avg_update(rq, irq_delta + steal);
913 #endif
914 }
915 
916 void sched_set_stop_task(int cpu, struct task_struct *stop)
917 {
918 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
919 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
920 
921 	if (stop) {
922 		/*
923 		 * Make it appear like a SCHED_FIFO task, its something
924 		 * userspace knows about and won't get confused about.
925 		 *
926 		 * Also, it will make PI more or less work without too
927 		 * much confusion -- but then, stop work should not
928 		 * rely on PI working anyway.
929 		 */
930 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
931 
932 		stop->sched_class = &stop_sched_class;
933 	}
934 
935 	cpu_rq(cpu)->stop = stop;
936 
937 	if (old_stop) {
938 		/*
939 		 * Reset it back to a normal scheduling class so that
940 		 * it can die in pieces.
941 		 */
942 		old_stop->sched_class = &rt_sched_class;
943 	}
944 }
945 
946 /*
947  * __normal_prio - return the priority that is based on the static prio
948  */
949 static inline int __normal_prio(struct task_struct *p)
950 {
951 	return p->static_prio;
952 }
953 
954 /*
955  * Calculate the expected normal priority: i.e. priority
956  * without taking RT-inheritance into account. Might be
957  * boosted by interactivity modifiers. Changes upon fork,
958  * setprio syscalls, and whenever the interactivity
959  * estimator recalculates.
960  */
961 static inline int normal_prio(struct task_struct *p)
962 {
963 	int prio;
964 
965 	if (task_has_dl_policy(p))
966 		prio = MAX_DL_PRIO-1;
967 	else if (task_has_rt_policy(p))
968 		prio = MAX_RT_PRIO-1 - p->rt_priority;
969 	else
970 		prio = __normal_prio(p);
971 	return prio;
972 }
973 
974 /*
975  * Calculate the current priority, i.e. the priority
976  * taken into account by the scheduler. This value might
977  * be boosted by RT tasks, or might be boosted by
978  * interactivity modifiers. Will be RT if the task got
979  * RT-boosted. If not then it returns p->normal_prio.
980  */
981 static int effective_prio(struct task_struct *p)
982 {
983 	p->normal_prio = normal_prio(p);
984 	/*
985 	 * If we are RT tasks or we were boosted to RT priority,
986 	 * keep the priority unchanged. Otherwise, update priority
987 	 * to the normal priority:
988 	 */
989 	if (!rt_prio(p->prio))
990 		return p->normal_prio;
991 	return p->prio;
992 }
993 
994 /**
995  * task_curr - is this task currently executing on a CPU?
996  * @p: the task in question.
997  *
998  * Return: 1 if the task is currently executing. 0 otherwise.
999  */
1000 inline int task_curr(const struct task_struct *p)
1001 {
1002 	return cpu_curr(task_cpu(p)) == p;
1003 }
1004 
1005 /*
1006  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1007  * use the balance_callback list if you want balancing.
1008  *
1009  * this means any call to check_class_changed() must be followed by a call to
1010  * balance_callback().
1011  */
1012 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1013 				       const struct sched_class *prev_class,
1014 				       int oldprio)
1015 {
1016 	if (prev_class != p->sched_class) {
1017 		if (prev_class->switched_from)
1018 			prev_class->switched_from(rq, p);
1019 
1020 		p->sched_class->switched_to(rq, p);
1021 	} else if (oldprio != p->prio || dl_task(p))
1022 		p->sched_class->prio_changed(rq, p, oldprio);
1023 }
1024 
1025 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1026 {
1027 	const struct sched_class *class;
1028 
1029 	if (p->sched_class == rq->curr->sched_class) {
1030 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1031 	} else {
1032 		for_each_class(class) {
1033 			if (class == rq->curr->sched_class)
1034 				break;
1035 			if (class == p->sched_class) {
1036 				resched_curr(rq);
1037 				break;
1038 			}
1039 		}
1040 	}
1041 
1042 	/*
1043 	 * A queue event has occurred, and we're going to schedule.  In
1044 	 * this case, we can save a useless back to back clock update.
1045 	 */
1046 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1047 		rq_clock_skip_update(rq, true);
1048 }
1049 
1050 #ifdef CONFIG_SMP
1051 /*
1052  * This is how migration works:
1053  *
1054  * 1) we invoke migration_cpu_stop() on the target CPU using
1055  *    stop_one_cpu().
1056  * 2) stopper starts to run (implicitly forcing the migrated thread
1057  *    off the CPU)
1058  * 3) it checks whether the migrated task is still in the wrong runqueue.
1059  * 4) if it's in the wrong runqueue then the migration thread removes
1060  *    it and puts it into the right queue.
1061  * 5) stopper completes and stop_one_cpu() returns and the migration
1062  *    is done.
1063  */
1064 
1065 /*
1066  * move_queued_task - move a queued task to new rq.
1067  *
1068  * Returns (locked) new rq. Old rq's lock is released.
1069  */
1070 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1071 {
1072 	lockdep_assert_held(&rq->lock);
1073 
1074 	dequeue_task(rq, p, 0);
1075 	p->on_rq = TASK_ON_RQ_MIGRATING;
1076 	set_task_cpu(p, new_cpu);
1077 	raw_spin_unlock(&rq->lock);
1078 
1079 	rq = cpu_rq(new_cpu);
1080 
1081 	raw_spin_lock(&rq->lock);
1082 	BUG_ON(task_cpu(p) != new_cpu);
1083 	p->on_rq = TASK_ON_RQ_QUEUED;
1084 	enqueue_task(rq, p, 0);
1085 	check_preempt_curr(rq, p, 0);
1086 
1087 	return rq;
1088 }
1089 
1090 struct migration_arg {
1091 	struct task_struct *task;
1092 	int dest_cpu;
1093 };
1094 
1095 /*
1096  * Move (not current) task off this cpu, onto dest cpu. We're doing
1097  * this because either it can't run here any more (set_cpus_allowed()
1098  * away from this CPU, or CPU going down), or because we're
1099  * attempting to rebalance this task on exec (sched_exec).
1100  *
1101  * So we race with normal scheduler movements, but that's OK, as long
1102  * as the task is no longer on this CPU.
1103  */
1104 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1105 {
1106 	if (unlikely(!cpu_active(dest_cpu)))
1107 		return rq;
1108 
1109 	/* Affinity changed (again). */
1110 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1111 		return rq;
1112 
1113 	rq = move_queued_task(rq, p, dest_cpu);
1114 
1115 	return rq;
1116 }
1117 
1118 /*
1119  * migration_cpu_stop - this will be executed by a highprio stopper thread
1120  * and performs thread migration by bumping thread off CPU then
1121  * 'pushing' onto another runqueue.
1122  */
1123 static int migration_cpu_stop(void *data)
1124 {
1125 	struct migration_arg *arg = data;
1126 	struct task_struct *p = arg->task;
1127 	struct rq *rq = this_rq();
1128 
1129 	/*
1130 	 * The original target cpu might have gone down and we might
1131 	 * be on another cpu but it doesn't matter.
1132 	 */
1133 	local_irq_disable();
1134 	/*
1135 	 * We need to explicitly wake pending tasks before running
1136 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1137 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1138 	 */
1139 	sched_ttwu_pending();
1140 
1141 	raw_spin_lock(&p->pi_lock);
1142 	raw_spin_lock(&rq->lock);
1143 	/*
1144 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1145 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1146 	 * we're holding p->pi_lock.
1147 	 */
1148 	if (task_rq(p) == rq && task_on_rq_queued(p))
1149 		rq = __migrate_task(rq, p, arg->dest_cpu);
1150 	raw_spin_unlock(&rq->lock);
1151 	raw_spin_unlock(&p->pi_lock);
1152 
1153 	local_irq_enable();
1154 	return 0;
1155 }
1156 
1157 /*
1158  * sched_class::set_cpus_allowed must do the below, but is not required to
1159  * actually call this function.
1160  */
1161 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1162 {
1163 	cpumask_copy(&p->cpus_allowed, new_mask);
1164 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1165 }
1166 
1167 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1168 {
1169 	struct rq *rq = task_rq(p);
1170 	bool queued, running;
1171 
1172 	lockdep_assert_held(&p->pi_lock);
1173 
1174 	queued = task_on_rq_queued(p);
1175 	running = task_current(rq, p);
1176 
1177 	if (queued) {
1178 		/*
1179 		 * Because __kthread_bind() calls this on blocked tasks without
1180 		 * holding rq->lock.
1181 		 */
1182 		lockdep_assert_held(&rq->lock);
1183 		dequeue_task(rq, p, DEQUEUE_SAVE);
1184 	}
1185 	if (running)
1186 		put_prev_task(rq, p);
1187 
1188 	p->sched_class->set_cpus_allowed(p, new_mask);
1189 
1190 	if (running)
1191 		p->sched_class->set_curr_task(rq);
1192 	if (queued)
1193 		enqueue_task(rq, p, ENQUEUE_RESTORE);
1194 }
1195 
1196 /*
1197  * Change a given task's CPU affinity. Migrate the thread to a
1198  * proper CPU and schedule it away if the CPU it's executing on
1199  * is removed from the allowed bitmask.
1200  *
1201  * NOTE: the caller must have a valid reference to the task, the
1202  * task must not exit() & deallocate itself prematurely. The
1203  * call is not atomic; no spinlocks may be held.
1204  */
1205 static int __set_cpus_allowed_ptr(struct task_struct *p,
1206 				  const struct cpumask *new_mask, bool check)
1207 {
1208 	unsigned long flags;
1209 	struct rq *rq;
1210 	unsigned int dest_cpu;
1211 	int ret = 0;
1212 
1213 	rq = task_rq_lock(p, &flags);
1214 
1215 	/*
1216 	 * Must re-check here, to close a race against __kthread_bind(),
1217 	 * sched_setaffinity() is not guaranteed to observe the flag.
1218 	 */
1219 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1220 		ret = -EINVAL;
1221 		goto out;
1222 	}
1223 
1224 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1225 		goto out;
1226 
1227 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1228 		ret = -EINVAL;
1229 		goto out;
1230 	}
1231 
1232 	do_set_cpus_allowed(p, new_mask);
1233 
1234 	/* Can the task run on the task's current CPU? If so, we're done */
1235 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1236 		goto out;
1237 
1238 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1239 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1240 		struct migration_arg arg = { p, dest_cpu };
1241 		/* Need help from migration thread: drop lock and wait. */
1242 		task_rq_unlock(rq, p, &flags);
1243 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1244 		tlb_migrate_finish(p->mm);
1245 		return 0;
1246 	} else if (task_on_rq_queued(p)) {
1247 		/*
1248 		 * OK, since we're going to drop the lock immediately
1249 		 * afterwards anyway.
1250 		 */
1251 		lockdep_unpin_lock(&rq->lock);
1252 		rq = move_queued_task(rq, p, dest_cpu);
1253 		lockdep_pin_lock(&rq->lock);
1254 	}
1255 out:
1256 	task_rq_unlock(rq, p, &flags);
1257 
1258 	return ret;
1259 }
1260 
1261 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1262 {
1263 	return __set_cpus_allowed_ptr(p, new_mask, false);
1264 }
1265 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1266 
1267 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1268 {
1269 #ifdef CONFIG_SCHED_DEBUG
1270 	/*
1271 	 * We should never call set_task_cpu() on a blocked task,
1272 	 * ttwu() will sort out the placement.
1273 	 */
1274 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1275 			!p->on_rq);
1276 
1277 #ifdef CONFIG_LOCKDEP
1278 	/*
1279 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1280 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1281 	 *
1282 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1283 	 * see task_group().
1284 	 *
1285 	 * Furthermore, all task_rq users should acquire both locks, see
1286 	 * task_rq_lock().
1287 	 */
1288 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1289 				      lockdep_is_held(&task_rq(p)->lock)));
1290 #endif
1291 #endif
1292 
1293 	trace_sched_migrate_task(p, new_cpu);
1294 
1295 	if (task_cpu(p) != new_cpu) {
1296 		if (p->sched_class->migrate_task_rq)
1297 			p->sched_class->migrate_task_rq(p);
1298 		p->se.nr_migrations++;
1299 		perf_event_task_migrate(p);
1300 	}
1301 
1302 	__set_task_cpu(p, new_cpu);
1303 }
1304 
1305 static void __migrate_swap_task(struct task_struct *p, int cpu)
1306 {
1307 	if (task_on_rq_queued(p)) {
1308 		struct rq *src_rq, *dst_rq;
1309 
1310 		src_rq = task_rq(p);
1311 		dst_rq = cpu_rq(cpu);
1312 
1313 		deactivate_task(src_rq, p, 0);
1314 		set_task_cpu(p, cpu);
1315 		activate_task(dst_rq, p, 0);
1316 		check_preempt_curr(dst_rq, p, 0);
1317 	} else {
1318 		/*
1319 		 * Task isn't running anymore; make it appear like we migrated
1320 		 * it before it went to sleep. This means on wakeup we make the
1321 		 * previous cpu our targer instead of where it really is.
1322 		 */
1323 		p->wake_cpu = cpu;
1324 	}
1325 }
1326 
1327 struct migration_swap_arg {
1328 	struct task_struct *src_task, *dst_task;
1329 	int src_cpu, dst_cpu;
1330 };
1331 
1332 static int migrate_swap_stop(void *data)
1333 {
1334 	struct migration_swap_arg *arg = data;
1335 	struct rq *src_rq, *dst_rq;
1336 	int ret = -EAGAIN;
1337 
1338 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1339 		return -EAGAIN;
1340 
1341 	src_rq = cpu_rq(arg->src_cpu);
1342 	dst_rq = cpu_rq(arg->dst_cpu);
1343 
1344 	double_raw_lock(&arg->src_task->pi_lock,
1345 			&arg->dst_task->pi_lock);
1346 	double_rq_lock(src_rq, dst_rq);
1347 
1348 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1349 		goto unlock;
1350 
1351 	if (task_cpu(arg->src_task) != arg->src_cpu)
1352 		goto unlock;
1353 
1354 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1355 		goto unlock;
1356 
1357 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1358 		goto unlock;
1359 
1360 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1361 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1362 
1363 	ret = 0;
1364 
1365 unlock:
1366 	double_rq_unlock(src_rq, dst_rq);
1367 	raw_spin_unlock(&arg->dst_task->pi_lock);
1368 	raw_spin_unlock(&arg->src_task->pi_lock);
1369 
1370 	return ret;
1371 }
1372 
1373 /*
1374  * Cross migrate two tasks
1375  */
1376 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1377 {
1378 	struct migration_swap_arg arg;
1379 	int ret = -EINVAL;
1380 
1381 	arg = (struct migration_swap_arg){
1382 		.src_task = cur,
1383 		.src_cpu = task_cpu(cur),
1384 		.dst_task = p,
1385 		.dst_cpu = task_cpu(p),
1386 	};
1387 
1388 	if (arg.src_cpu == arg.dst_cpu)
1389 		goto out;
1390 
1391 	/*
1392 	 * These three tests are all lockless; this is OK since all of them
1393 	 * will be re-checked with proper locks held further down the line.
1394 	 */
1395 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1396 		goto out;
1397 
1398 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1399 		goto out;
1400 
1401 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1402 		goto out;
1403 
1404 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1405 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1406 
1407 out:
1408 	return ret;
1409 }
1410 
1411 /*
1412  * wait_task_inactive - wait for a thread to unschedule.
1413  *
1414  * If @match_state is nonzero, it's the @p->state value just checked and
1415  * not expected to change.  If it changes, i.e. @p might have woken up,
1416  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1417  * we return a positive number (its total switch count).  If a second call
1418  * a short while later returns the same number, the caller can be sure that
1419  * @p has remained unscheduled the whole time.
1420  *
1421  * The caller must ensure that the task *will* unschedule sometime soon,
1422  * else this function might spin for a *long* time. This function can't
1423  * be called with interrupts off, or it may introduce deadlock with
1424  * smp_call_function() if an IPI is sent by the same process we are
1425  * waiting to become inactive.
1426  */
1427 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1428 {
1429 	unsigned long flags;
1430 	int running, queued;
1431 	unsigned long ncsw;
1432 	struct rq *rq;
1433 
1434 	for (;;) {
1435 		/*
1436 		 * We do the initial early heuristics without holding
1437 		 * any task-queue locks at all. We'll only try to get
1438 		 * the runqueue lock when things look like they will
1439 		 * work out!
1440 		 */
1441 		rq = task_rq(p);
1442 
1443 		/*
1444 		 * If the task is actively running on another CPU
1445 		 * still, just relax and busy-wait without holding
1446 		 * any locks.
1447 		 *
1448 		 * NOTE! Since we don't hold any locks, it's not
1449 		 * even sure that "rq" stays as the right runqueue!
1450 		 * But we don't care, since "task_running()" will
1451 		 * return false if the runqueue has changed and p
1452 		 * is actually now running somewhere else!
1453 		 */
1454 		while (task_running(rq, p)) {
1455 			if (match_state && unlikely(p->state != match_state))
1456 				return 0;
1457 			cpu_relax();
1458 		}
1459 
1460 		/*
1461 		 * Ok, time to look more closely! We need the rq
1462 		 * lock now, to be *sure*. If we're wrong, we'll
1463 		 * just go back and repeat.
1464 		 */
1465 		rq = task_rq_lock(p, &flags);
1466 		trace_sched_wait_task(p);
1467 		running = task_running(rq, p);
1468 		queued = task_on_rq_queued(p);
1469 		ncsw = 0;
1470 		if (!match_state || p->state == match_state)
1471 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1472 		task_rq_unlock(rq, p, &flags);
1473 
1474 		/*
1475 		 * If it changed from the expected state, bail out now.
1476 		 */
1477 		if (unlikely(!ncsw))
1478 			break;
1479 
1480 		/*
1481 		 * Was it really running after all now that we
1482 		 * checked with the proper locks actually held?
1483 		 *
1484 		 * Oops. Go back and try again..
1485 		 */
1486 		if (unlikely(running)) {
1487 			cpu_relax();
1488 			continue;
1489 		}
1490 
1491 		/*
1492 		 * It's not enough that it's not actively running,
1493 		 * it must be off the runqueue _entirely_, and not
1494 		 * preempted!
1495 		 *
1496 		 * So if it was still runnable (but just not actively
1497 		 * running right now), it's preempted, and we should
1498 		 * yield - it could be a while.
1499 		 */
1500 		if (unlikely(queued)) {
1501 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1502 
1503 			set_current_state(TASK_UNINTERRUPTIBLE);
1504 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1505 			continue;
1506 		}
1507 
1508 		/*
1509 		 * Ahh, all good. It wasn't running, and it wasn't
1510 		 * runnable, which means that it will never become
1511 		 * running in the future either. We're all done!
1512 		 */
1513 		break;
1514 	}
1515 
1516 	return ncsw;
1517 }
1518 
1519 /***
1520  * kick_process - kick a running thread to enter/exit the kernel
1521  * @p: the to-be-kicked thread
1522  *
1523  * Cause a process which is running on another CPU to enter
1524  * kernel-mode, without any delay. (to get signals handled.)
1525  *
1526  * NOTE: this function doesn't have to take the runqueue lock,
1527  * because all it wants to ensure is that the remote task enters
1528  * the kernel. If the IPI races and the task has been migrated
1529  * to another CPU then no harm is done and the purpose has been
1530  * achieved as well.
1531  */
1532 void kick_process(struct task_struct *p)
1533 {
1534 	int cpu;
1535 
1536 	preempt_disable();
1537 	cpu = task_cpu(p);
1538 	if ((cpu != smp_processor_id()) && task_curr(p))
1539 		smp_send_reschedule(cpu);
1540 	preempt_enable();
1541 }
1542 EXPORT_SYMBOL_GPL(kick_process);
1543 
1544 /*
1545  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1546  */
1547 static int select_fallback_rq(int cpu, struct task_struct *p)
1548 {
1549 	int nid = cpu_to_node(cpu);
1550 	const struct cpumask *nodemask = NULL;
1551 	enum { cpuset, possible, fail } state = cpuset;
1552 	int dest_cpu;
1553 
1554 	/*
1555 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1556 	 * will return -1. There is no cpu on the node, and we should
1557 	 * select the cpu on the other node.
1558 	 */
1559 	if (nid != -1) {
1560 		nodemask = cpumask_of_node(nid);
1561 
1562 		/* Look for allowed, online CPU in same node. */
1563 		for_each_cpu(dest_cpu, nodemask) {
1564 			if (!cpu_online(dest_cpu))
1565 				continue;
1566 			if (!cpu_active(dest_cpu))
1567 				continue;
1568 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1569 				return dest_cpu;
1570 		}
1571 	}
1572 
1573 	for (;;) {
1574 		/* Any allowed, online CPU? */
1575 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1576 			if (!cpu_online(dest_cpu))
1577 				continue;
1578 			if (!cpu_active(dest_cpu))
1579 				continue;
1580 			goto out;
1581 		}
1582 
1583 		/* No more Mr. Nice Guy. */
1584 		switch (state) {
1585 		case cpuset:
1586 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1587 				cpuset_cpus_allowed_fallback(p);
1588 				state = possible;
1589 				break;
1590 			}
1591 			/* fall-through */
1592 		case possible:
1593 			do_set_cpus_allowed(p, cpu_possible_mask);
1594 			state = fail;
1595 			break;
1596 
1597 		case fail:
1598 			BUG();
1599 			break;
1600 		}
1601 	}
1602 
1603 out:
1604 	if (state != cpuset) {
1605 		/*
1606 		 * Don't tell them about moving exiting tasks or
1607 		 * kernel threads (both mm NULL), since they never
1608 		 * leave kernel.
1609 		 */
1610 		if (p->mm && printk_ratelimit()) {
1611 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1612 					task_pid_nr(p), p->comm, cpu);
1613 		}
1614 	}
1615 
1616 	return dest_cpu;
1617 }
1618 
1619 /*
1620  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1621  */
1622 static inline
1623 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1624 {
1625 	lockdep_assert_held(&p->pi_lock);
1626 
1627 	if (p->nr_cpus_allowed > 1)
1628 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1629 
1630 	/*
1631 	 * In order not to call set_task_cpu() on a blocking task we need
1632 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1633 	 * cpu.
1634 	 *
1635 	 * Since this is common to all placement strategies, this lives here.
1636 	 *
1637 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1638 	 *   not worry about this generic constraint ]
1639 	 */
1640 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1641 		     !cpu_online(cpu)))
1642 		cpu = select_fallback_rq(task_cpu(p), p);
1643 
1644 	return cpu;
1645 }
1646 
1647 static void update_avg(u64 *avg, u64 sample)
1648 {
1649 	s64 diff = sample - *avg;
1650 	*avg += diff >> 3;
1651 }
1652 
1653 #else
1654 
1655 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1656 					 const struct cpumask *new_mask, bool check)
1657 {
1658 	return set_cpus_allowed_ptr(p, new_mask);
1659 }
1660 
1661 #endif /* CONFIG_SMP */
1662 
1663 static void
1664 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1665 {
1666 #ifdef CONFIG_SCHEDSTATS
1667 	struct rq *rq = this_rq();
1668 
1669 #ifdef CONFIG_SMP
1670 	int this_cpu = smp_processor_id();
1671 
1672 	if (cpu == this_cpu) {
1673 		schedstat_inc(rq, ttwu_local);
1674 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1675 	} else {
1676 		struct sched_domain *sd;
1677 
1678 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1679 		rcu_read_lock();
1680 		for_each_domain(this_cpu, sd) {
1681 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1682 				schedstat_inc(sd, ttwu_wake_remote);
1683 				break;
1684 			}
1685 		}
1686 		rcu_read_unlock();
1687 	}
1688 
1689 	if (wake_flags & WF_MIGRATED)
1690 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1691 
1692 #endif /* CONFIG_SMP */
1693 
1694 	schedstat_inc(rq, ttwu_count);
1695 	schedstat_inc(p, se.statistics.nr_wakeups);
1696 
1697 	if (wake_flags & WF_SYNC)
1698 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1699 
1700 #endif /* CONFIG_SCHEDSTATS */
1701 }
1702 
1703 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1704 {
1705 	activate_task(rq, p, en_flags);
1706 	p->on_rq = TASK_ON_RQ_QUEUED;
1707 
1708 	/* if a worker is waking up, notify workqueue */
1709 	if (p->flags & PF_WQ_WORKER)
1710 		wq_worker_waking_up(p, cpu_of(rq));
1711 }
1712 
1713 /*
1714  * Mark the task runnable and perform wakeup-preemption.
1715  */
1716 static void
1717 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1718 {
1719 	check_preempt_curr(rq, p, wake_flags);
1720 	p->state = TASK_RUNNING;
1721 	trace_sched_wakeup(p);
1722 
1723 #ifdef CONFIG_SMP
1724 	if (p->sched_class->task_woken) {
1725 		/*
1726 		 * Our task @p is fully woken up and running; so its safe to
1727 		 * drop the rq->lock, hereafter rq is only used for statistics.
1728 		 */
1729 		lockdep_unpin_lock(&rq->lock);
1730 		p->sched_class->task_woken(rq, p);
1731 		lockdep_pin_lock(&rq->lock);
1732 	}
1733 
1734 	if (rq->idle_stamp) {
1735 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1736 		u64 max = 2*rq->max_idle_balance_cost;
1737 
1738 		update_avg(&rq->avg_idle, delta);
1739 
1740 		if (rq->avg_idle > max)
1741 			rq->avg_idle = max;
1742 
1743 		rq->idle_stamp = 0;
1744 	}
1745 #endif
1746 }
1747 
1748 static void
1749 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1750 {
1751 	lockdep_assert_held(&rq->lock);
1752 
1753 #ifdef CONFIG_SMP
1754 	if (p->sched_contributes_to_load)
1755 		rq->nr_uninterruptible--;
1756 #endif
1757 
1758 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1759 	ttwu_do_wakeup(rq, p, wake_flags);
1760 }
1761 
1762 /*
1763  * Called in case the task @p isn't fully descheduled from its runqueue,
1764  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1765  * since all we need to do is flip p->state to TASK_RUNNING, since
1766  * the task is still ->on_rq.
1767  */
1768 static int ttwu_remote(struct task_struct *p, int wake_flags)
1769 {
1770 	struct rq *rq;
1771 	int ret = 0;
1772 
1773 	rq = __task_rq_lock(p);
1774 	if (task_on_rq_queued(p)) {
1775 		/* check_preempt_curr() may use rq clock */
1776 		update_rq_clock(rq);
1777 		ttwu_do_wakeup(rq, p, wake_flags);
1778 		ret = 1;
1779 	}
1780 	__task_rq_unlock(rq);
1781 
1782 	return ret;
1783 }
1784 
1785 #ifdef CONFIG_SMP
1786 void sched_ttwu_pending(void)
1787 {
1788 	struct rq *rq = this_rq();
1789 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1790 	struct task_struct *p;
1791 	unsigned long flags;
1792 
1793 	if (!llist)
1794 		return;
1795 
1796 	raw_spin_lock_irqsave(&rq->lock, flags);
1797 	lockdep_pin_lock(&rq->lock);
1798 
1799 	while (llist) {
1800 		p = llist_entry(llist, struct task_struct, wake_entry);
1801 		llist = llist_next(llist);
1802 		ttwu_do_activate(rq, p, 0);
1803 	}
1804 
1805 	lockdep_unpin_lock(&rq->lock);
1806 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1807 }
1808 
1809 void scheduler_ipi(void)
1810 {
1811 	/*
1812 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1813 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1814 	 * this IPI.
1815 	 */
1816 	preempt_fold_need_resched();
1817 
1818 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1819 		return;
1820 
1821 	/*
1822 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1823 	 * traditionally all their work was done from the interrupt return
1824 	 * path. Now that we actually do some work, we need to make sure
1825 	 * we do call them.
1826 	 *
1827 	 * Some archs already do call them, luckily irq_enter/exit nest
1828 	 * properly.
1829 	 *
1830 	 * Arguably we should visit all archs and update all handlers,
1831 	 * however a fair share of IPIs are still resched only so this would
1832 	 * somewhat pessimize the simple resched case.
1833 	 */
1834 	irq_enter();
1835 	sched_ttwu_pending();
1836 
1837 	/*
1838 	 * Check if someone kicked us for doing the nohz idle load balance.
1839 	 */
1840 	if (unlikely(got_nohz_idle_kick())) {
1841 		this_rq()->idle_balance = 1;
1842 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1843 	}
1844 	irq_exit();
1845 }
1846 
1847 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1848 {
1849 	struct rq *rq = cpu_rq(cpu);
1850 
1851 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1852 		if (!set_nr_if_polling(rq->idle))
1853 			smp_send_reschedule(cpu);
1854 		else
1855 			trace_sched_wake_idle_without_ipi(cpu);
1856 	}
1857 }
1858 
1859 void wake_up_if_idle(int cpu)
1860 {
1861 	struct rq *rq = cpu_rq(cpu);
1862 	unsigned long flags;
1863 
1864 	rcu_read_lock();
1865 
1866 	if (!is_idle_task(rcu_dereference(rq->curr)))
1867 		goto out;
1868 
1869 	if (set_nr_if_polling(rq->idle)) {
1870 		trace_sched_wake_idle_without_ipi(cpu);
1871 	} else {
1872 		raw_spin_lock_irqsave(&rq->lock, flags);
1873 		if (is_idle_task(rq->curr))
1874 			smp_send_reschedule(cpu);
1875 		/* Else cpu is not in idle, do nothing here */
1876 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1877 	}
1878 
1879 out:
1880 	rcu_read_unlock();
1881 }
1882 
1883 bool cpus_share_cache(int this_cpu, int that_cpu)
1884 {
1885 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1886 }
1887 #endif /* CONFIG_SMP */
1888 
1889 static void ttwu_queue(struct task_struct *p, int cpu)
1890 {
1891 	struct rq *rq = cpu_rq(cpu);
1892 
1893 #if defined(CONFIG_SMP)
1894 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1895 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1896 		ttwu_queue_remote(p, cpu);
1897 		return;
1898 	}
1899 #endif
1900 
1901 	raw_spin_lock(&rq->lock);
1902 	lockdep_pin_lock(&rq->lock);
1903 	ttwu_do_activate(rq, p, 0);
1904 	lockdep_unpin_lock(&rq->lock);
1905 	raw_spin_unlock(&rq->lock);
1906 }
1907 
1908 /**
1909  * try_to_wake_up - wake up a thread
1910  * @p: the thread to be awakened
1911  * @state: the mask of task states that can be woken
1912  * @wake_flags: wake modifier flags (WF_*)
1913  *
1914  * Put it on the run-queue if it's not already there. The "current"
1915  * thread is always on the run-queue (except when the actual
1916  * re-schedule is in progress), and as such you're allowed to do
1917  * the simpler "current->state = TASK_RUNNING" to mark yourself
1918  * runnable without the overhead of this.
1919  *
1920  * Return: %true if @p was woken up, %false if it was already running.
1921  * or @state didn't match @p's state.
1922  */
1923 static int
1924 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1925 {
1926 	unsigned long flags;
1927 	int cpu, success = 0;
1928 
1929 	/*
1930 	 * If we are going to wake up a thread waiting for CONDITION we
1931 	 * need to ensure that CONDITION=1 done by the caller can not be
1932 	 * reordered with p->state check below. This pairs with mb() in
1933 	 * set_current_state() the waiting thread does.
1934 	 */
1935 	smp_mb__before_spinlock();
1936 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1937 	if (!(p->state & state))
1938 		goto out;
1939 
1940 	trace_sched_waking(p);
1941 
1942 	success = 1; /* we're going to change ->state */
1943 	cpu = task_cpu(p);
1944 
1945 	if (p->on_rq && ttwu_remote(p, wake_flags))
1946 		goto stat;
1947 
1948 #ifdef CONFIG_SMP
1949 	/*
1950 	 * If the owning (remote) cpu is still in the middle of schedule() with
1951 	 * this task as prev, wait until its done referencing the task.
1952 	 */
1953 	while (p->on_cpu)
1954 		cpu_relax();
1955 	/*
1956 	 * Pairs with the smp_wmb() in finish_lock_switch().
1957 	 */
1958 	smp_rmb();
1959 
1960 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1961 	p->state = TASK_WAKING;
1962 
1963 	if (p->sched_class->task_waking)
1964 		p->sched_class->task_waking(p);
1965 
1966 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1967 	if (task_cpu(p) != cpu) {
1968 		wake_flags |= WF_MIGRATED;
1969 		set_task_cpu(p, cpu);
1970 	}
1971 #endif /* CONFIG_SMP */
1972 
1973 	ttwu_queue(p, cpu);
1974 stat:
1975 	ttwu_stat(p, cpu, wake_flags);
1976 out:
1977 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1978 
1979 	return success;
1980 }
1981 
1982 /**
1983  * try_to_wake_up_local - try to wake up a local task with rq lock held
1984  * @p: the thread to be awakened
1985  *
1986  * Put @p on the run-queue if it's not already there. The caller must
1987  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1988  * the current task.
1989  */
1990 static void try_to_wake_up_local(struct task_struct *p)
1991 {
1992 	struct rq *rq = task_rq(p);
1993 
1994 	if (WARN_ON_ONCE(rq != this_rq()) ||
1995 	    WARN_ON_ONCE(p == current))
1996 		return;
1997 
1998 	lockdep_assert_held(&rq->lock);
1999 
2000 	if (!raw_spin_trylock(&p->pi_lock)) {
2001 		/*
2002 		 * This is OK, because current is on_cpu, which avoids it being
2003 		 * picked for load-balance and preemption/IRQs are still
2004 		 * disabled avoiding further scheduler activity on it and we've
2005 		 * not yet picked a replacement task.
2006 		 */
2007 		lockdep_unpin_lock(&rq->lock);
2008 		raw_spin_unlock(&rq->lock);
2009 		raw_spin_lock(&p->pi_lock);
2010 		raw_spin_lock(&rq->lock);
2011 		lockdep_pin_lock(&rq->lock);
2012 	}
2013 
2014 	if (!(p->state & TASK_NORMAL))
2015 		goto out;
2016 
2017 	trace_sched_waking(p);
2018 
2019 	if (!task_on_rq_queued(p))
2020 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2021 
2022 	ttwu_do_wakeup(rq, p, 0);
2023 	ttwu_stat(p, smp_processor_id(), 0);
2024 out:
2025 	raw_spin_unlock(&p->pi_lock);
2026 }
2027 
2028 /**
2029  * wake_up_process - Wake up a specific process
2030  * @p: The process to be woken up.
2031  *
2032  * Attempt to wake up the nominated process and move it to the set of runnable
2033  * processes.
2034  *
2035  * Return: 1 if the process was woken up, 0 if it was already running.
2036  *
2037  * It may be assumed that this function implies a write memory barrier before
2038  * changing the task state if and only if any tasks are woken up.
2039  */
2040 int wake_up_process(struct task_struct *p)
2041 {
2042 	WARN_ON(task_is_stopped_or_traced(p));
2043 	return try_to_wake_up(p, TASK_NORMAL, 0);
2044 }
2045 EXPORT_SYMBOL(wake_up_process);
2046 
2047 int wake_up_state(struct task_struct *p, unsigned int state)
2048 {
2049 	return try_to_wake_up(p, state, 0);
2050 }
2051 
2052 /*
2053  * This function clears the sched_dl_entity static params.
2054  */
2055 void __dl_clear_params(struct task_struct *p)
2056 {
2057 	struct sched_dl_entity *dl_se = &p->dl;
2058 
2059 	dl_se->dl_runtime = 0;
2060 	dl_se->dl_deadline = 0;
2061 	dl_se->dl_period = 0;
2062 	dl_se->flags = 0;
2063 	dl_se->dl_bw = 0;
2064 
2065 	dl_se->dl_throttled = 0;
2066 	dl_se->dl_new = 1;
2067 	dl_se->dl_yielded = 0;
2068 }
2069 
2070 /*
2071  * Perform scheduler related setup for a newly forked process p.
2072  * p is forked by current.
2073  *
2074  * __sched_fork() is basic setup used by init_idle() too:
2075  */
2076 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2077 {
2078 	p->on_rq			= 0;
2079 
2080 	p->se.on_rq			= 0;
2081 	p->se.exec_start		= 0;
2082 	p->se.sum_exec_runtime		= 0;
2083 	p->se.prev_sum_exec_runtime	= 0;
2084 	p->se.nr_migrations		= 0;
2085 	p->se.vruntime			= 0;
2086 	INIT_LIST_HEAD(&p->se.group_node);
2087 
2088 #ifdef CONFIG_SCHEDSTATS
2089 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2090 #endif
2091 
2092 	RB_CLEAR_NODE(&p->dl.rb_node);
2093 	init_dl_task_timer(&p->dl);
2094 	__dl_clear_params(p);
2095 
2096 	INIT_LIST_HEAD(&p->rt.run_list);
2097 
2098 #ifdef CONFIG_PREEMPT_NOTIFIERS
2099 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2100 #endif
2101 
2102 #ifdef CONFIG_NUMA_BALANCING
2103 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2104 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2105 		p->mm->numa_scan_seq = 0;
2106 	}
2107 
2108 	if (clone_flags & CLONE_VM)
2109 		p->numa_preferred_nid = current->numa_preferred_nid;
2110 	else
2111 		p->numa_preferred_nid = -1;
2112 
2113 	p->node_stamp = 0ULL;
2114 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2115 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2116 	p->numa_work.next = &p->numa_work;
2117 	p->numa_faults = NULL;
2118 	p->last_task_numa_placement = 0;
2119 	p->last_sum_exec_runtime = 0;
2120 
2121 	p->numa_group = NULL;
2122 #endif /* CONFIG_NUMA_BALANCING */
2123 }
2124 
2125 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2126 
2127 #ifdef CONFIG_NUMA_BALANCING
2128 
2129 void set_numabalancing_state(bool enabled)
2130 {
2131 	if (enabled)
2132 		static_branch_enable(&sched_numa_balancing);
2133 	else
2134 		static_branch_disable(&sched_numa_balancing);
2135 }
2136 
2137 #ifdef CONFIG_PROC_SYSCTL
2138 int sysctl_numa_balancing(struct ctl_table *table, int write,
2139 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2140 {
2141 	struct ctl_table t;
2142 	int err;
2143 	int state = static_branch_likely(&sched_numa_balancing);
2144 
2145 	if (write && !capable(CAP_SYS_ADMIN))
2146 		return -EPERM;
2147 
2148 	t = *table;
2149 	t.data = &state;
2150 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2151 	if (err < 0)
2152 		return err;
2153 	if (write)
2154 		set_numabalancing_state(state);
2155 	return err;
2156 }
2157 #endif
2158 #endif
2159 
2160 /*
2161  * fork()/clone()-time setup:
2162  */
2163 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2164 {
2165 	unsigned long flags;
2166 	int cpu = get_cpu();
2167 
2168 	__sched_fork(clone_flags, p);
2169 	/*
2170 	 * We mark the process as running here. This guarantees that
2171 	 * nobody will actually run it, and a signal or other external
2172 	 * event cannot wake it up and insert it on the runqueue either.
2173 	 */
2174 	p->state = TASK_RUNNING;
2175 
2176 	/*
2177 	 * Make sure we do not leak PI boosting priority to the child.
2178 	 */
2179 	p->prio = current->normal_prio;
2180 
2181 	/*
2182 	 * Revert to default priority/policy on fork if requested.
2183 	 */
2184 	if (unlikely(p->sched_reset_on_fork)) {
2185 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2186 			p->policy = SCHED_NORMAL;
2187 			p->static_prio = NICE_TO_PRIO(0);
2188 			p->rt_priority = 0;
2189 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2190 			p->static_prio = NICE_TO_PRIO(0);
2191 
2192 		p->prio = p->normal_prio = __normal_prio(p);
2193 		set_load_weight(p);
2194 
2195 		/*
2196 		 * We don't need the reset flag anymore after the fork. It has
2197 		 * fulfilled its duty:
2198 		 */
2199 		p->sched_reset_on_fork = 0;
2200 	}
2201 
2202 	if (dl_prio(p->prio)) {
2203 		put_cpu();
2204 		return -EAGAIN;
2205 	} else if (rt_prio(p->prio)) {
2206 		p->sched_class = &rt_sched_class;
2207 	} else {
2208 		p->sched_class = &fair_sched_class;
2209 	}
2210 
2211 	if (p->sched_class->task_fork)
2212 		p->sched_class->task_fork(p);
2213 
2214 	/*
2215 	 * The child is not yet in the pid-hash so no cgroup attach races,
2216 	 * and the cgroup is pinned to this child due to cgroup_fork()
2217 	 * is ran before sched_fork().
2218 	 *
2219 	 * Silence PROVE_RCU.
2220 	 */
2221 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2222 	set_task_cpu(p, cpu);
2223 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2224 
2225 #ifdef CONFIG_SCHED_INFO
2226 	if (likely(sched_info_on()))
2227 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2228 #endif
2229 #if defined(CONFIG_SMP)
2230 	p->on_cpu = 0;
2231 #endif
2232 	init_task_preempt_count(p);
2233 #ifdef CONFIG_SMP
2234 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2235 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2236 #endif
2237 
2238 	put_cpu();
2239 	return 0;
2240 }
2241 
2242 unsigned long to_ratio(u64 period, u64 runtime)
2243 {
2244 	if (runtime == RUNTIME_INF)
2245 		return 1ULL << 20;
2246 
2247 	/*
2248 	 * Doing this here saves a lot of checks in all
2249 	 * the calling paths, and returning zero seems
2250 	 * safe for them anyway.
2251 	 */
2252 	if (period == 0)
2253 		return 0;
2254 
2255 	return div64_u64(runtime << 20, period);
2256 }
2257 
2258 #ifdef CONFIG_SMP
2259 inline struct dl_bw *dl_bw_of(int i)
2260 {
2261 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2262 			 "sched RCU must be held");
2263 	return &cpu_rq(i)->rd->dl_bw;
2264 }
2265 
2266 static inline int dl_bw_cpus(int i)
2267 {
2268 	struct root_domain *rd = cpu_rq(i)->rd;
2269 	int cpus = 0;
2270 
2271 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2272 			 "sched RCU must be held");
2273 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2274 		cpus++;
2275 
2276 	return cpus;
2277 }
2278 #else
2279 inline struct dl_bw *dl_bw_of(int i)
2280 {
2281 	return &cpu_rq(i)->dl.dl_bw;
2282 }
2283 
2284 static inline int dl_bw_cpus(int i)
2285 {
2286 	return 1;
2287 }
2288 #endif
2289 
2290 /*
2291  * We must be sure that accepting a new task (or allowing changing the
2292  * parameters of an existing one) is consistent with the bandwidth
2293  * constraints. If yes, this function also accordingly updates the currently
2294  * allocated bandwidth to reflect the new situation.
2295  *
2296  * This function is called while holding p's rq->lock.
2297  *
2298  * XXX we should delay bw change until the task's 0-lag point, see
2299  * __setparam_dl().
2300  */
2301 static int dl_overflow(struct task_struct *p, int policy,
2302 		       const struct sched_attr *attr)
2303 {
2304 
2305 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2306 	u64 period = attr->sched_period ?: attr->sched_deadline;
2307 	u64 runtime = attr->sched_runtime;
2308 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2309 	int cpus, err = -1;
2310 
2311 	if (new_bw == p->dl.dl_bw)
2312 		return 0;
2313 
2314 	/*
2315 	 * Either if a task, enters, leave, or stays -deadline but changes
2316 	 * its parameters, we may need to update accordingly the total
2317 	 * allocated bandwidth of the container.
2318 	 */
2319 	raw_spin_lock(&dl_b->lock);
2320 	cpus = dl_bw_cpus(task_cpu(p));
2321 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2322 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2323 		__dl_add(dl_b, new_bw);
2324 		err = 0;
2325 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2326 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2327 		__dl_clear(dl_b, p->dl.dl_bw);
2328 		__dl_add(dl_b, new_bw);
2329 		err = 0;
2330 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2331 		__dl_clear(dl_b, p->dl.dl_bw);
2332 		err = 0;
2333 	}
2334 	raw_spin_unlock(&dl_b->lock);
2335 
2336 	return err;
2337 }
2338 
2339 extern void init_dl_bw(struct dl_bw *dl_b);
2340 
2341 /*
2342  * wake_up_new_task - wake up a newly created task for the first time.
2343  *
2344  * This function will do some initial scheduler statistics housekeeping
2345  * that must be done for every newly created context, then puts the task
2346  * on the runqueue and wakes it.
2347  */
2348 void wake_up_new_task(struct task_struct *p)
2349 {
2350 	unsigned long flags;
2351 	struct rq *rq;
2352 
2353 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2354 	/* Initialize new task's runnable average */
2355 	init_entity_runnable_average(&p->se);
2356 #ifdef CONFIG_SMP
2357 	/*
2358 	 * Fork balancing, do it here and not earlier because:
2359 	 *  - cpus_allowed can change in the fork path
2360 	 *  - any previously selected cpu might disappear through hotplug
2361 	 */
2362 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2363 #endif
2364 
2365 	rq = __task_rq_lock(p);
2366 	activate_task(rq, p, 0);
2367 	p->on_rq = TASK_ON_RQ_QUEUED;
2368 	trace_sched_wakeup_new(p);
2369 	check_preempt_curr(rq, p, WF_FORK);
2370 #ifdef CONFIG_SMP
2371 	if (p->sched_class->task_woken) {
2372 		/*
2373 		 * Nothing relies on rq->lock after this, so its fine to
2374 		 * drop it.
2375 		 */
2376 		lockdep_unpin_lock(&rq->lock);
2377 		p->sched_class->task_woken(rq, p);
2378 		lockdep_pin_lock(&rq->lock);
2379 	}
2380 #endif
2381 	task_rq_unlock(rq, p, &flags);
2382 }
2383 
2384 #ifdef CONFIG_PREEMPT_NOTIFIERS
2385 
2386 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2387 
2388 void preempt_notifier_inc(void)
2389 {
2390 	static_key_slow_inc(&preempt_notifier_key);
2391 }
2392 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2393 
2394 void preempt_notifier_dec(void)
2395 {
2396 	static_key_slow_dec(&preempt_notifier_key);
2397 }
2398 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2399 
2400 /**
2401  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2402  * @notifier: notifier struct to register
2403  */
2404 void preempt_notifier_register(struct preempt_notifier *notifier)
2405 {
2406 	if (!static_key_false(&preempt_notifier_key))
2407 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2408 
2409 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2410 }
2411 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2412 
2413 /**
2414  * preempt_notifier_unregister - no longer interested in preemption notifications
2415  * @notifier: notifier struct to unregister
2416  *
2417  * This is *not* safe to call from within a preemption notifier.
2418  */
2419 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2420 {
2421 	hlist_del(&notifier->link);
2422 }
2423 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2424 
2425 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2426 {
2427 	struct preempt_notifier *notifier;
2428 
2429 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2430 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2431 }
2432 
2433 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2434 {
2435 	if (static_key_false(&preempt_notifier_key))
2436 		__fire_sched_in_preempt_notifiers(curr);
2437 }
2438 
2439 static void
2440 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2441 				   struct task_struct *next)
2442 {
2443 	struct preempt_notifier *notifier;
2444 
2445 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2446 		notifier->ops->sched_out(notifier, next);
2447 }
2448 
2449 static __always_inline void
2450 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2451 				 struct task_struct *next)
2452 {
2453 	if (static_key_false(&preempt_notifier_key))
2454 		__fire_sched_out_preempt_notifiers(curr, next);
2455 }
2456 
2457 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2458 
2459 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2460 {
2461 }
2462 
2463 static inline void
2464 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2465 				 struct task_struct *next)
2466 {
2467 }
2468 
2469 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2470 
2471 /**
2472  * prepare_task_switch - prepare to switch tasks
2473  * @rq: the runqueue preparing to switch
2474  * @prev: the current task that is being switched out
2475  * @next: the task we are going to switch to.
2476  *
2477  * This is called with the rq lock held and interrupts off. It must
2478  * be paired with a subsequent finish_task_switch after the context
2479  * switch.
2480  *
2481  * prepare_task_switch sets up locking and calls architecture specific
2482  * hooks.
2483  */
2484 static inline void
2485 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2486 		    struct task_struct *next)
2487 {
2488 	sched_info_switch(rq, prev, next);
2489 	perf_event_task_sched_out(prev, next);
2490 	fire_sched_out_preempt_notifiers(prev, next);
2491 	prepare_lock_switch(rq, next);
2492 	prepare_arch_switch(next);
2493 }
2494 
2495 /**
2496  * finish_task_switch - clean up after a task-switch
2497  * @prev: the thread we just switched away from.
2498  *
2499  * finish_task_switch must be called after the context switch, paired
2500  * with a prepare_task_switch call before the context switch.
2501  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2502  * and do any other architecture-specific cleanup actions.
2503  *
2504  * Note that we may have delayed dropping an mm in context_switch(). If
2505  * so, we finish that here outside of the runqueue lock. (Doing it
2506  * with the lock held can cause deadlocks; see schedule() for
2507  * details.)
2508  *
2509  * The context switch have flipped the stack from under us and restored the
2510  * local variables which were saved when this task called schedule() in the
2511  * past. prev == current is still correct but we need to recalculate this_rq
2512  * because prev may have moved to another CPU.
2513  */
2514 static struct rq *finish_task_switch(struct task_struct *prev)
2515 	__releases(rq->lock)
2516 {
2517 	struct rq *rq = this_rq();
2518 	struct mm_struct *mm = rq->prev_mm;
2519 	long prev_state;
2520 
2521 	/*
2522 	 * The previous task will have left us with a preempt_count of 2
2523 	 * because it left us after:
2524 	 *
2525 	 *	schedule()
2526 	 *	  preempt_disable();			// 1
2527 	 *	  __schedule()
2528 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2529 	 *
2530 	 * Also, see FORK_PREEMPT_COUNT.
2531 	 */
2532 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2533 		      "corrupted preempt_count: %s/%d/0x%x\n",
2534 		      current->comm, current->pid, preempt_count()))
2535 		preempt_count_set(FORK_PREEMPT_COUNT);
2536 
2537 	rq->prev_mm = NULL;
2538 
2539 	/*
2540 	 * A task struct has one reference for the use as "current".
2541 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2542 	 * schedule one last time. The schedule call will never return, and
2543 	 * the scheduled task must drop that reference.
2544 	 *
2545 	 * We must observe prev->state before clearing prev->on_cpu (in
2546 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2547 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2548 	 * transition, resulting in a double drop.
2549 	 */
2550 	prev_state = prev->state;
2551 	vtime_task_switch(prev);
2552 	perf_event_task_sched_in(prev, current);
2553 	finish_lock_switch(rq, prev);
2554 	finish_arch_post_lock_switch();
2555 
2556 	fire_sched_in_preempt_notifiers(current);
2557 	if (mm)
2558 		mmdrop(mm);
2559 	if (unlikely(prev_state == TASK_DEAD)) {
2560 		if (prev->sched_class->task_dead)
2561 			prev->sched_class->task_dead(prev);
2562 
2563 		/*
2564 		 * Remove function-return probe instances associated with this
2565 		 * task and put them back on the free list.
2566 		 */
2567 		kprobe_flush_task(prev);
2568 		put_task_struct(prev);
2569 	}
2570 
2571 	tick_nohz_task_switch();
2572 	return rq;
2573 }
2574 
2575 #ifdef CONFIG_SMP
2576 
2577 /* rq->lock is NOT held, but preemption is disabled */
2578 static void __balance_callback(struct rq *rq)
2579 {
2580 	struct callback_head *head, *next;
2581 	void (*func)(struct rq *rq);
2582 	unsigned long flags;
2583 
2584 	raw_spin_lock_irqsave(&rq->lock, flags);
2585 	head = rq->balance_callback;
2586 	rq->balance_callback = NULL;
2587 	while (head) {
2588 		func = (void (*)(struct rq *))head->func;
2589 		next = head->next;
2590 		head->next = NULL;
2591 		head = next;
2592 
2593 		func(rq);
2594 	}
2595 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2596 }
2597 
2598 static inline void balance_callback(struct rq *rq)
2599 {
2600 	if (unlikely(rq->balance_callback))
2601 		__balance_callback(rq);
2602 }
2603 
2604 #else
2605 
2606 static inline void balance_callback(struct rq *rq)
2607 {
2608 }
2609 
2610 #endif
2611 
2612 /**
2613  * schedule_tail - first thing a freshly forked thread must call.
2614  * @prev: the thread we just switched away from.
2615  */
2616 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2617 	__releases(rq->lock)
2618 {
2619 	struct rq *rq;
2620 
2621 	/*
2622 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2623 	 * finish_task_switch() for details.
2624 	 *
2625 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2626 	 * and the preempt_enable() will end up enabling preemption (on
2627 	 * PREEMPT_COUNT kernels).
2628 	 */
2629 
2630 	rq = finish_task_switch(prev);
2631 	balance_callback(rq);
2632 	preempt_enable();
2633 
2634 	if (current->set_child_tid)
2635 		put_user(task_pid_vnr(current), current->set_child_tid);
2636 }
2637 
2638 /*
2639  * context_switch - switch to the new MM and the new thread's register state.
2640  */
2641 static inline struct rq *
2642 context_switch(struct rq *rq, struct task_struct *prev,
2643 	       struct task_struct *next)
2644 {
2645 	struct mm_struct *mm, *oldmm;
2646 
2647 	prepare_task_switch(rq, prev, next);
2648 
2649 	mm = next->mm;
2650 	oldmm = prev->active_mm;
2651 	/*
2652 	 * For paravirt, this is coupled with an exit in switch_to to
2653 	 * combine the page table reload and the switch backend into
2654 	 * one hypercall.
2655 	 */
2656 	arch_start_context_switch(prev);
2657 
2658 	if (!mm) {
2659 		next->active_mm = oldmm;
2660 		atomic_inc(&oldmm->mm_count);
2661 		enter_lazy_tlb(oldmm, next);
2662 	} else
2663 		switch_mm(oldmm, mm, next);
2664 
2665 	if (!prev->mm) {
2666 		prev->active_mm = NULL;
2667 		rq->prev_mm = oldmm;
2668 	}
2669 	/*
2670 	 * Since the runqueue lock will be released by the next
2671 	 * task (which is an invalid locking op but in the case
2672 	 * of the scheduler it's an obvious special-case), so we
2673 	 * do an early lockdep release here:
2674 	 */
2675 	lockdep_unpin_lock(&rq->lock);
2676 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2677 
2678 	/* Here we just switch the register state and the stack. */
2679 	switch_to(prev, next, prev);
2680 	barrier();
2681 
2682 	return finish_task_switch(prev);
2683 }
2684 
2685 /*
2686  * nr_running and nr_context_switches:
2687  *
2688  * externally visible scheduler statistics: current number of runnable
2689  * threads, total number of context switches performed since bootup.
2690  */
2691 unsigned long nr_running(void)
2692 {
2693 	unsigned long i, sum = 0;
2694 
2695 	for_each_online_cpu(i)
2696 		sum += cpu_rq(i)->nr_running;
2697 
2698 	return sum;
2699 }
2700 
2701 /*
2702  * Check if only the current task is running on the cpu.
2703  *
2704  * Caution: this function does not check that the caller has disabled
2705  * preemption, thus the result might have a time-of-check-to-time-of-use
2706  * race.  The caller is responsible to use it correctly, for example:
2707  *
2708  * - from a non-preemptable section (of course)
2709  *
2710  * - from a thread that is bound to a single CPU
2711  *
2712  * - in a loop with very short iterations (e.g. a polling loop)
2713  */
2714 bool single_task_running(void)
2715 {
2716 	return raw_rq()->nr_running == 1;
2717 }
2718 EXPORT_SYMBOL(single_task_running);
2719 
2720 unsigned long long nr_context_switches(void)
2721 {
2722 	int i;
2723 	unsigned long long sum = 0;
2724 
2725 	for_each_possible_cpu(i)
2726 		sum += cpu_rq(i)->nr_switches;
2727 
2728 	return sum;
2729 }
2730 
2731 unsigned long nr_iowait(void)
2732 {
2733 	unsigned long i, sum = 0;
2734 
2735 	for_each_possible_cpu(i)
2736 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2737 
2738 	return sum;
2739 }
2740 
2741 unsigned long nr_iowait_cpu(int cpu)
2742 {
2743 	struct rq *this = cpu_rq(cpu);
2744 	return atomic_read(&this->nr_iowait);
2745 }
2746 
2747 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2748 {
2749 	struct rq *rq = this_rq();
2750 	*nr_waiters = atomic_read(&rq->nr_iowait);
2751 	*load = rq->load.weight;
2752 }
2753 
2754 #ifdef CONFIG_SMP
2755 
2756 /*
2757  * sched_exec - execve() is a valuable balancing opportunity, because at
2758  * this point the task has the smallest effective memory and cache footprint.
2759  */
2760 void sched_exec(void)
2761 {
2762 	struct task_struct *p = current;
2763 	unsigned long flags;
2764 	int dest_cpu;
2765 
2766 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2767 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2768 	if (dest_cpu == smp_processor_id())
2769 		goto unlock;
2770 
2771 	if (likely(cpu_active(dest_cpu))) {
2772 		struct migration_arg arg = { p, dest_cpu };
2773 
2774 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2775 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2776 		return;
2777 	}
2778 unlock:
2779 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2780 }
2781 
2782 #endif
2783 
2784 DEFINE_PER_CPU(struct kernel_stat, kstat);
2785 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2786 
2787 EXPORT_PER_CPU_SYMBOL(kstat);
2788 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2789 
2790 /*
2791  * Return accounted runtime for the task.
2792  * In case the task is currently running, return the runtime plus current's
2793  * pending runtime that have not been accounted yet.
2794  */
2795 unsigned long long task_sched_runtime(struct task_struct *p)
2796 {
2797 	unsigned long flags;
2798 	struct rq *rq;
2799 	u64 ns;
2800 
2801 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2802 	/*
2803 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2804 	 * So we have a optimization chance when the task's delta_exec is 0.
2805 	 * Reading ->on_cpu is racy, but this is ok.
2806 	 *
2807 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2808 	 * If we race with it entering cpu, unaccounted time is 0. This is
2809 	 * indistinguishable from the read occurring a few cycles earlier.
2810 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2811 	 * been accounted, so we're correct here as well.
2812 	 */
2813 	if (!p->on_cpu || !task_on_rq_queued(p))
2814 		return p->se.sum_exec_runtime;
2815 #endif
2816 
2817 	rq = task_rq_lock(p, &flags);
2818 	/*
2819 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2820 	 * project cycles that may never be accounted to this
2821 	 * thread, breaking clock_gettime().
2822 	 */
2823 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2824 		update_rq_clock(rq);
2825 		p->sched_class->update_curr(rq);
2826 	}
2827 	ns = p->se.sum_exec_runtime;
2828 	task_rq_unlock(rq, p, &flags);
2829 
2830 	return ns;
2831 }
2832 
2833 /*
2834  * This function gets called by the timer code, with HZ frequency.
2835  * We call it with interrupts disabled.
2836  */
2837 void scheduler_tick(void)
2838 {
2839 	int cpu = smp_processor_id();
2840 	struct rq *rq = cpu_rq(cpu);
2841 	struct task_struct *curr = rq->curr;
2842 
2843 	sched_clock_tick();
2844 
2845 	raw_spin_lock(&rq->lock);
2846 	update_rq_clock(rq);
2847 	curr->sched_class->task_tick(rq, curr, 0);
2848 	update_cpu_load_active(rq);
2849 	calc_global_load_tick(rq);
2850 	raw_spin_unlock(&rq->lock);
2851 
2852 	perf_event_task_tick();
2853 
2854 #ifdef CONFIG_SMP
2855 	rq->idle_balance = idle_cpu(cpu);
2856 	trigger_load_balance(rq);
2857 #endif
2858 	rq_last_tick_reset(rq);
2859 }
2860 
2861 #ifdef CONFIG_NO_HZ_FULL
2862 /**
2863  * scheduler_tick_max_deferment
2864  *
2865  * Keep at least one tick per second when a single
2866  * active task is running because the scheduler doesn't
2867  * yet completely support full dynticks environment.
2868  *
2869  * This makes sure that uptime, CFS vruntime, load
2870  * balancing, etc... continue to move forward, even
2871  * with a very low granularity.
2872  *
2873  * Return: Maximum deferment in nanoseconds.
2874  */
2875 u64 scheduler_tick_max_deferment(void)
2876 {
2877 	struct rq *rq = this_rq();
2878 	unsigned long next, now = READ_ONCE(jiffies);
2879 
2880 	next = rq->last_sched_tick + HZ;
2881 
2882 	if (time_before_eq(next, now))
2883 		return 0;
2884 
2885 	return jiffies_to_nsecs(next - now);
2886 }
2887 #endif
2888 
2889 notrace unsigned long get_parent_ip(unsigned long addr)
2890 {
2891 	if (in_lock_functions(addr)) {
2892 		addr = CALLER_ADDR2;
2893 		if (in_lock_functions(addr))
2894 			addr = CALLER_ADDR3;
2895 	}
2896 	return addr;
2897 }
2898 
2899 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2900 				defined(CONFIG_PREEMPT_TRACER))
2901 
2902 void preempt_count_add(int val)
2903 {
2904 #ifdef CONFIG_DEBUG_PREEMPT
2905 	/*
2906 	 * Underflow?
2907 	 */
2908 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2909 		return;
2910 #endif
2911 	__preempt_count_add(val);
2912 #ifdef CONFIG_DEBUG_PREEMPT
2913 	/*
2914 	 * Spinlock count overflowing soon?
2915 	 */
2916 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2917 				PREEMPT_MASK - 10);
2918 #endif
2919 	if (preempt_count() == val) {
2920 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2921 #ifdef CONFIG_DEBUG_PREEMPT
2922 		current->preempt_disable_ip = ip;
2923 #endif
2924 		trace_preempt_off(CALLER_ADDR0, ip);
2925 	}
2926 }
2927 EXPORT_SYMBOL(preempt_count_add);
2928 NOKPROBE_SYMBOL(preempt_count_add);
2929 
2930 void preempt_count_sub(int val)
2931 {
2932 #ifdef CONFIG_DEBUG_PREEMPT
2933 	/*
2934 	 * Underflow?
2935 	 */
2936 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2937 		return;
2938 	/*
2939 	 * Is the spinlock portion underflowing?
2940 	 */
2941 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2942 			!(preempt_count() & PREEMPT_MASK)))
2943 		return;
2944 #endif
2945 
2946 	if (preempt_count() == val)
2947 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2948 	__preempt_count_sub(val);
2949 }
2950 EXPORT_SYMBOL(preempt_count_sub);
2951 NOKPROBE_SYMBOL(preempt_count_sub);
2952 
2953 #endif
2954 
2955 /*
2956  * Print scheduling while atomic bug:
2957  */
2958 static noinline void __schedule_bug(struct task_struct *prev)
2959 {
2960 	if (oops_in_progress)
2961 		return;
2962 
2963 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2964 		prev->comm, prev->pid, preempt_count());
2965 
2966 	debug_show_held_locks(prev);
2967 	print_modules();
2968 	if (irqs_disabled())
2969 		print_irqtrace_events(prev);
2970 #ifdef CONFIG_DEBUG_PREEMPT
2971 	if (in_atomic_preempt_off()) {
2972 		pr_err("Preemption disabled at:");
2973 		print_ip_sym(current->preempt_disable_ip);
2974 		pr_cont("\n");
2975 	}
2976 #endif
2977 	dump_stack();
2978 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2979 }
2980 
2981 /*
2982  * Various schedule()-time debugging checks and statistics:
2983  */
2984 static inline void schedule_debug(struct task_struct *prev)
2985 {
2986 #ifdef CONFIG_SCHED_STACK_END_CHECK
2987 	BUG_ON(task_stack_end_corrupted(prev));
2988 #endif
2989 
2990 	if (unlikely(in_atomic_preempt_off())) {
2991 		__schedule_bug(prev);
2992 		preempt_count_set(PREEMPT_DISABLED);
2993 	}
2994 	rcu_sleep_check();
2995 
2996 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2997 
2998 	schedstat_inc(this_rq(), sched_count);
2999 }
3000 
3001 /*
3002  * Pick up the highest-prio task:
3003  */
3004 static inline struct task_struct *
3005 pick_next_task(struct rq *rq, struct task_struct *prev)
3006 {
3007 	const struct sched_class *class = &fair_sched_class;
3008 	struct task_struct *p;
3009 
3010 	/*
3011 	 * Optimization: we know that if all tasks are in
3012 	 * the fair class we can call that function directly:
3013 	 */
3014 	if (likely(prev->sched_class == class &&
3015 		   rq->nr_running == rq->cfs.h_nr_running)) {
3016 		p = fair_sched_class.pick_next_task(rq, prev);
3017 		if (unlikely(p == RETRY_TASK))
3018 			goto again;
3019 
3020 		/* assumes fair_sched_class->next == idle_sched_class */
3021 		if (unlikely(!p))
3022 			p = idle_sched_class.pick_next_task(rq, prev);
3023 
3024 		return p;
3025 	}
3026 
3027 again:
3028 	for_each_class(class) {
3029 		p = class->pick_next_task(rq, prev);
3030 		if (p) {
3031 			if (unlikely(p == RETRY_TASK))
3032 				goto again;
3033 			return p;
3034 		}
3035 	}
3036 
3037 	BUG(); /* the idle class will always have a runnable task */
3038 }
3039 
3040 /*
3041  * __schedule() is the main scheduler function.
3042  *
3043  * The main means of driving the scheduler and thus entering this function are:
3044  *
3045  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3046  *
3047  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3048  *      paths. For example, see arch/x86/entry_64.S.
3049  *
3050  *      To drive preemption between tasks, the scheduler sets the flag in timer
3051  *      interrupt handler scheduler_tick().
3052  *
3053  *   3. Wakeups don't really cause entry into schedule(). They add a
3054  *      task to the run-queue and that's it.
3055  *
3056  *      Now, if the new task added to the run-queue preempts the current
3057  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3058  *      called on the nearest possible occasion:
3059  *
3060  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3061  *
3062  *         - in syscall or exception context, at the next outmost
3063  *           preempt_enable(). (this might be as soon as the wake_up()'s
3064  *           spin_unlock()!)
3065  *
3066  *         - in IRQ context, return from interrupt-handler to
3067  *           preemptible context
3068  *
3069  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3070  *         then at the next:
3071  *
3072  *          - cond_resched() call
3073  *          - explicit schedule() call
3074  *          - return from syscall or exception to user-space
3075  *          - return from interrupt-handler to user-space
3076  *
3077  * WARNING: must be called with preemption disabled!
3078  */
3079 static void __sched notrace __schedule(bool preempt)
3080 {
3081 	struct task_struct *prev, *next;
3082 	unsigned long *switch_count;
3083 	struct rq *rq;
3084 	int cpu;
3085 
3086 	cpu = smp_processor_id();
3087 	rq = cpu_rq(cpu);
3088 	rcu_note_context_switch();
3089 	prev = rq->curr;
3090 
3091 	/*
3092 	 * do_exit() calls schedule() with preemption disabled as an exception;
3093 	 * however we must fix that up, otherwise the next task will see an
3094 	 * inconsistent (higher) preempt count.
3095 	 *
3096 	 * It also avoids the below schedule_debug() test from complaining
3097 	 * about this.
3098 	 */
3099 	if (unlikely(prev->state == TASK_DEAD))
3100 		preempt_enable_no_resched_notrace();
3101 
3102 	schedule_debug(prev);
3103 
3104 	if (sched_feat(HRTICK))
3105 		hrtick_clear(rq);
3106 
3107 	/*
3108 	 * Make sure that signal_pending_state()->signal_pending() below
3109 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3110 	 * done by the caller to avoid the race with signal_wake_up().
3111 	 */
3112 	smp_mb__before_spinlock();
3113 	raw_spin_lock_irq(&rq->lock);
3114 	lockdep_pin_lock(&rq->lock);
3115 
3116 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3117 
3118 	switch_count = &prev->nivcsw;
3119 	if (!preempt && prev->state) {
3120 		if (unlikely(signal_pending_state(prev->state, prev))) {
3121 			prev->state = TASK_RUNNING;
3122 		} else {
3123 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3124 			prev->on_rq = 0;
3125 
3126 			/*
3127 			 * If a worker went to sleep, notify and ask workqueue
3128 			 * whether it wants to wake up a task to maintain
3129 			 * concurrency.
3130 			 */
3131 			if (prev->flags & PF_WQ_WORKER) {
3132 				struct task_struct *to_wakeup;
3133 
3134 				to_wakeup = wq_worker_sleeping(prev, cpu);
3135 				if (to_wakeup)
3136 					try_to_wake_up_local(to_wakeup);
3137 			}
3138 		}
3139 		switch_count = &prev->nvcsw;
3140 	}
3141 
3142 	if (task_on_rq_queued(prev))
3143 		update_rq_clock(rq);
3144 
3145 	next = pick_next_task(rq, prev);
3146 	clear_tsk_need_resched(prev);
3147 	clear_preempt_need_resched();
3148 	rq->clock_skip_update = 0;
3149 
3150 	if (likely(prev != next)) {
3151 		rq->nr_switches++;
3152 		rq->curr = next;
3153 		++*switch_count;
3154 
3155 		trace_sched_switch(preempt, prev, next);
3156 		rq = context_switch(rq, prev, next); /* unlocks the rq */
3157 		cpu = cpu_of(rq);
3158 	} else {
3159 		lockdep_unpin_lock(&rq->lock);
3160 		raw_spin_unlock_irq(&rq->lock);
3161 	}
3162 
3163 	balance_callback(rq);
3164 }
3165 
3166 static inline void sched_submit_work(struct task_struct *tsk)
3167 {
3168 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3169 		return;
3170 	/*
3171 	 * If we are going to sleep and we have plugged IO queued,
3172 	 * make sure to submit it to avoid deadlocks.
3173 	 */
3174 	if (blk_needs_flush_plug(tsk))
3175 		blk_schedule_flush_plug(tsk);
3176 }
3177 
3178 asmlinkage __visible void __sched schedule(void)
3179 {
3180 	struct task_struct *tsk = current;
3181 
3182 	sched_submit_work(tsk);
3183 	do {
3184 		preempt_disable();
3185 		__schedule(false);
3186 		sched_preempt_enable_no_resched();
3187 	} while (need_resched());
3188 }
3189 EXPORT_SYMBOL(schedule);
3190 
3191 #ifdef CONFIG_CONTEXT_TRACKING
3192 asmlinkage __visible void __sched schedule_user(void)
3193 {
3194 	/*
3195 	 * If we come here after a random call to set_need_resched(),
3196 	 * or we have been woken up remotely but the IPI has not yet arrived,
3197 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3198 	 * we find a better solution.
3199 	 *
3200 	 * NB: There are buggy callers of this function.  Ideally we
3201 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3202 	 * too frequently to make sense yet.
3203 	 */
3204 	enum ctx_state prev_state = exception_enter();
3205 	schedule();
3206 	exception_exit(prev_state);
3207 }
3208 #endif
3209 
3210 /**
3211  * schedule_preempt_disabled - called with preemption disabled
3212  *
3213  * Returns with preemption disabled. Note: preempt_count must be 1
3214  */
3215 void __sched schedule_preempt_disabled(void)
3216 {
3217 	sched_preempt_enable_no_resched();
3218 	schedule();
3219 	preempt_disable();
3220 }
3221 
3222 static void __sched notrace preempt_schedule_common(void)
3223 {
3224 	do {
3225 		preempt_disable_notrace();
3226 		__schedule(true);
3227 		preempt_enable_no_resched_notrace();
3228 
3229 		/*
3230 		 * Check again in case we missed a preemption opportunity
3231 		 * between schedule and now.
3232 		 */
3233 	} while (need_resched());
3234 }
3235 
3236 #ifdef CONFIG_PREEMPT
3237 /*
3238  * this is the entry point to schedule() from in-kernel preemption
3239  * off of preempt_enable. Kernel preemptions off return from interrupt
3240  * occur there and call schedule directly.
3241  */
3242 asmlinkage __visible void __sched notrace preempt_schedule(void)
3243 {
3244 	/*
3245 	 * If there is a non-zero preempt_count or interrupts are disabled,
3246 	 * we do not want to preempt the current task. Just return..
3247 	 */
3248 	if (likely(!preemptible()))
3249 		return;
3250 
3251 	preempt_schedule_common();
3252 }
3253 NOKPROBE_SYMBOL(preempt_schedule);
3254 EXPORT_SYMBOL(preempt_schedule);
3255 
3256 /**
3257  * preempt_schedule_notrace - preempt_schedule called by tracing
3258  *
3259  * The tracing infrastructure uses preempt_enable_notrace to prevent
3260  * recursion and tracing preempt enabling caused by the tracing
3261  * infrastructure itself. But as tracing can happen in areas coming
3262  * from userspace or just about to enter userspace, a preempt enable
3263  * can occur before user_exit() is called. This will cause the scheduler
3264  * to be called when the system is still in usermode.
3265  *
3266  * To prevent this, the preempt_enable_notrace will use this function
3267  * instead of preempt_schedule() to exit user context if needed before
3268  * calling the scheduler.
3269  */
3270 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3271 {
3272 	enum ctx_state prev_ctx;
3273 
3274 	if (likely(!preemptible()))
3275 		return;
3276 
3277 	do {
3278 		preempt_disable_notrace();
3279 		/*
3280 		 * Needs preempt disabled in case user_exit() is traced
3281 		 * and the tracer calls preempt_enable_notrace() causing
3282 		 * an infinite recursion.
3283 		 */
3284 		prev_ctx = exception_enter();
3285 		__schedule(true);
3286 		exception_exit(prev_ctx);
3287 
3288 		preempt_enable_no_resched_notrace();
3289 	} while (need_resched());
3290 }
3291 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3292 
3293 #endif /* CONFIG_PREEMPT */
3294 
3295 /*
3296  * this is the entry point to schedule() from kernel preemption
3297  * off of irq context.
3298  * Note, that this is called and return with irqs disabled. This will
3299  * protect us against recursive calling from irq.
3300  */
3301 asmlinkage __visible void __sched preempt_schedule_irq(void)
3302 {
3303 	enum ctx_state prev_state;
3304 
3305 	/* Catch callers which need to be fixed */
3306 	BUG_ON(preempt_count() || !irqs_disabled());
3307 
3308 	prev_state = exception_enter();
3309 
3310 	do {
3311 		preempt_disable();
3312 		local_irq_enable();
3313 		__schedule(true);
3314 		local_irq_disable();
3315 		sched_preempt_enable_no_resched();
3316 	} while (need_resched());
3317 
3318 	exception_exit(prev_state);
3319 }
3320 
3321 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3322 			  void *key)
3323 {
3324 	return try_to_wake_up(curr->private, mode, wake_flags);
3325 }
3326 EXPORT_SYMBOL(default_wake_function);
3327 
3328 #ifdef CONFIG_RT_MUTEXES
3329 
3330 /*
3331  * rt_mutex_setprio - set the current priority of a task
3332  * @p: task
3333  * @prio: prio value (kernel-internal form)
3334  *
3335  * This function changes the 'effective' priority of a task. It does
3336  * not touch ->normal_prio like __setscheduler().
3337  *
3338  * Used by the rt_mutex code to implement priority inheritance
3339  * logic. Call site only calls if the priority of the task changed.
3340  */
3341 void rt_mutex_setprio(struct task_struct *p, int prio)
3342 {
3343 	int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE;
3344 	struct rq *rq;
3345 	const struct sched_class *prev_class;
3346 
3347 	BUG_ON(prio > MAX_PRIO);
3348 
3349 	rq = __task_rq_lock(p);
3350 
3351 	/*
3352 	 * Idle task boosting is a nono in general. There is one
3353 	 * exception, when PREEMPT_RT and NOHZ is active:
3354 	 *
3355 	 * The idle task calls get_next_timer_interrupt() and holds
3356 	 * the timer wheel base->lock on the CPU and another CPU wants
3357 	 * to access the timer (probably to cancel it). We can safely
3358 	 * ignore the boosting request, as the idle CPU runs this code
3359 	 * with interrupts disabled and will complete the lock
3360 	 * protected section without being interrupted. So there is no
3361 	 * real need to boost.
3362 	 */
3363 	if (unlikely(p == rq->idle)) {
3364 		WARN_ON(p != rq->curr);
3365 		WARN_ON(p->pi_blocked_on);
3366 		goto out_unlock;
3367 	}
3368 
3369 	trace_sched_pi_setprio(p, prio);
3370 	oldprio = p->prio;
3371 	prev_class = p->sched_class;
3372 	queued = task_on_rq_queued(p);
3373 	running = task_current(rq, p);
3374 	if (queued)
3375 		dequeue_task(rq, p, DEQUEUE_SAVE);
3376 	if (running)
3377 		put_prev_task(rq, p);
3378 
3379 	/*
3380 	 * Boosting condition are:
3381 	 * 1. -rt task is running and holds mutex A
3382 	 *      --> -dl task blocks on mutex A
3383 	 *
3384 	 * 2. -dl task is running and holds mutex A
3385 	 *      --> -dl task blocks on mutex A and could preempt the
3386 	 *          running task
3387 	 */
3388 	if (dl_prio(prio)) {
3389 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3390 		if (!dl_prio(p->normal_prio) ||
3391 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3392 			p->dl.dl_boosted = 1;
3393 			enqueue_flag |= ENQUEUE_REPLENISH;
3394 		} else
3395 			p->dl.dl_boosted = 0;
3396 		p->sched_class = &dl_sched_class;
3397 	} else if (rt_prio(prio)) {
3398 		if (dl_prio(oldprio))
3399 			p->dl.dl_boosted = 0;
3400 		if (oldprio < prio)
3401 			enqueue_flag |= ENQUEUE_HEAD;
3402 		p->sched_class = &rt_sched_class;
3403 	} else {
3404 		if (dl_prio(oldprio))
3405 			p->dl.dl_boosted = 0;
3406 		if (rt_prio(oldprio))
3407 			p->rt.timeout = 0;
3408 		p->sched_class = &fair_sched_class;
3409 	}
3410 
3411 	p->prio = prio;
3412 
3413 	if (running)
3414 		p->sched_class->set_curr_task(rq);
3415 	if (queued)
3416 		enqueue_task(rq, p, enqueue_flag);
3417 
3418 	check_class_changed(rq, p, prev_class, oldprio);
3419 out_unlock:
3420 	preempt_disable(); /* avoid rq from going away on us */
3421 	__task_rq_unlock(rq);
3422 
3423 	balance_callback(rq);
3424 	preempt_enable();
3425 }
3426 #endif
3427 
3428 void set_user_nice(struct task_struct *p, long nice)
3429 {
3430 	int old_prio, delta, queued;
3431 	unsigned long flags;
3432 	struct rq *rq;
3433 
3434 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3435 		return;
3436 	/*
3437 	 * We have to be careful, if called from sys_setpriority(),
3438 	 * the task might be in the middle of scheduling on another CPU.
3439 	 */
3440 	rq = task_rq_lock(p, &flags);
3441 	/*
3442 	 * The RT priorities are set via sched_setscheduler(), but we still
3443 	 * allow the 'normal' nice value to be set - but as expected
3444 	 * it wont have any effect on scheduling until the task is
3445 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3446 	 */
3447 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3448 		p->static_prio = NICE_TO_PRIO(nice);
3449 		goto out_unlock;
3450 	}
3451 	queued = task_on_rq_queued(p);
3452 	if (queued)
3453 		dequeue_task(rq, p, DEQUEUE_SAVE);
3454 
3455 	p->static_prio = NICE_TO_PRIO(nice);
3456 	set_load_weight(p);
3457 	old_prio = p->prio;
3458 	p->prio = effective_prio(p);
3459 	delta = p->prio - old_prio;
3460 
3461 	if (queued) {
3462 		enqueue_task(rq, p, ENQUEUE_RESTORE);
3463 		/*
3464 		 * If the task increased its priority or is running and
3465 		 * lowered its priority, then reschedule its CPU:
3466 		 */
3467 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3468 			resched_curr(rq);
3469 	}
3470 out_unlock:
3471 	task_rq_unlock(rq, p, &flags);
3472 }
3473 EXPORT_SYMBOL(set_user_nice);
3474 
3475 /*
3476  * can_nice - check if a task can reduce its nice value
3477  * @p: task
3478  * @nice: nice value
3479  */
3480 int can_nice(const struct task_struct *p, const int nice)
3481 {
3482 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3483 	int nice_rlim = nice_to_rlimit(nice);
3484 
3485 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3486 		capable(CAP_SYS_NICE));
3487 }
3488 
3489 #ifdef __ARCH_WANT_SYS_NICE
3490 
3491 /*
3492  * sys_nice - change the priority of the current process.
3493  * @increment: priority increment
3494  *
3495  * sys_setpriority is a more generic, but much slower function that
3496  * does similar things.
3497  */
3498 SYSCALL_DEFINE1(nice, int, increment)
3499 {
3500 	long nice, retval;
3501 
3502 	/*
3503 	 * Setpriority might change our priority at the same moment.
3504 	 * We don't have to worry. Conceptually one call occurs first
3505 	 * and we have a single winner.
3506 	 */
3507 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3508 	nice = task_nice(current) + increment;
3509 
3510 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3511 	if (increment < 0 && !can_nice(current, nice))
3512 		return -EPERM;
3513 
3514 	retval = security_task_setnice(current, nice);
3515 	if (retval)
3516 		return retval;
3517 
3518 	set_user_nice(current, nice);
3519 	return 0;
3520 }
3521 
3522 #endif
3523 
3524 /**
3525  * task_prio - return the priority value of a given task.
3526  * @p: the task in question.
3527  *
3528  * Return: The priority value as seen by users in /proc.
3529  * RT tasks are offset by -200. Normal tasks are centered
3530  * around 0, value goes from -16 to +15.
3531  */
3532 int task_prio(const struct task_struct *p)
3533 {
3534 	return p->prio - MAX_RT_PRIO;
3535 }
3536 
3537 /**
3538  * idle_cpu - is a given cpu idle currently?
3539  * @cpu: the processor in question.
3540  *
3541  * Return: 1 if the CPU is currently idle. 0 otherwise.
3542  */
3543 int idle_cpu(int cpu)
3544 {
3545 	struct rq *rq = cpu_rq(cpu);
3546 
3547 	if (rq->curr != rq->idle)
3548 		return 0;
3549 
3550 	if (rq->nr_running)
3551 		return 0;
3552 
3553 #ifdef CONFIG_SMP
3554 	if (!llist_empty(&rq->wake_list))
3555 		return 0;
3556 #endif
3557 
3558 	return 1;
3559 }
3560 
3561 /**
3562  * idle_task - return the idle task for a given cpu.
3563  * @cpu: the processor in question.
3564  *
3565  * Return: The idle task for the cpu @cpu.
3566  */
3567 struct task_struct *idle_task(int cpu)
3568 {
3569 	return cpu_rq(cpu)->idle;
3570 }
3571 
3572 /**
3573  * find_process_by_pid - find a process with a matching PID value.
3574  * @pid: the pid in question.
3575  *
3576  * The task of @pid, if found. %NULL otherwise.
3577  */
3578 static struct task_struct *find_process_by_pid(pid_t pid)
3579 {
3580 	return pid ? find_task_by_vpid(pid) : current;
3581 }
3582 
3583 /*
3584  * This function initializes the sched_dl_entity of a newly becoming
3585  * SCHED_DEADLINE task.
3586  *
3587  * Only the static values are considered here, the actual runtime and the
3588  * absolute deadline will be properly calculated when the task is enqueued
3589  * for the first time with its new policy.
3590  */
3591 static void
3592 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3593 {
3594 	struct sched_dl_entity *dl_se = &p->dl;
3595 
3596 	dl_se->dl_runtime = attr->sched_runtime;
3597 	dl_se->dl_deadline = attr->sched_deadline;
3598 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3599 	dl_se->flags = attr->sched_flags;
3600 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3601 
3602 	/*
3603 	 * Changing the parameters of a task is 'tricky' and we're not doing
3604 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3605 	 *
3606 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3607 	 * point. This would include retaining the task_struct until that time
3608 	 * and change dl_overflow() to not immediately decrement the current
3609 	 * amount.
3610 	 *
3611 	 * Instead we retain the current runtime/deadline and let the new
3612 	 * parameters take effect after the current reservation period lapses.
3613 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3614 	 * before the current scheduling deadline.
3615 	 *
3616 	 * We can still have temporary overloads because we do not delay the
3617 	 * change in bandwidth until that time; so admission control is
3618 	 * not on the safe side. It does however guarantee tasks will never
3619 	 * consume more than promised.
3620 	 */
3621 }
3622 
3623 /*
3624  * sched_setparam() passes in -1 for its policy, to let the functions
3625  * it calls know not to change it.
3626  */
3627 #define SETPARAM_POLICY	-1
3628 
3629 static void __setscheduler_params(struct task_struct *p,
3630 		const struct sched_attr *attr)
3631 {
3632 	int policy = attr->sched_policy;
3633 
3634 	if (policy == SETPARAM_POLICY)
3635 		policy = p->policy;
3636 
3637 	p->policy = policy;
3638 
3639 	if (dl_policy(policy))
3640 		__setparam_dl(p, attr);
3641 	else if (fair_policy(policy))
3642 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3643 
3644 	/*
3645 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3646 	 * !rt_policy. Always setting this ensures that things like
3647 	 * getparam()/getattr() don't report silly values for !rt tasks.
3648 	 */
3649 	p->rt_priority = attr->sched_priority;
3650 	p->normal_prio = normal_prio(p);
3651 	set_load_weight(p);
3652 }
3653 
3654 /* Actually do priority change: must hold pi & rq lock. */
3655 static void __setscheduler(struct rq *rq, struct task_struct *p,
3656 			   const struct sched_attr *attr, bool keep_boost)
3657 {
3658 	__setscheduler_params(p, attr);
3659 
3660 	/*
3661 	 * Keep a potential priority boosting if called from
3662 	 * sched_setscheduler().
3663 	 */
3664 	if (keep_boost)
3665 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3666 	else
3667 		p->prio = normal_prio(p);
3668 
3669 	if (dl_prio(p->prio))
3670 		p->sched_class = &dl_sched_class;
3671 	else if (rt_prio(p->prio))
3672 		p->sched_class = &rt_sched_class;
3673 	else
3674 		p->sched_class = &fair_sched_class;
3675 }
3676 
3677 static void
3678 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3679 {
3680 	struct sched_dl_entity *dl_se = &p->dl;
3681 
3682 	attr->sched_priority = p->rt_priority;
3683 	attr->sched_runtime = dl_se->dl_runtime;
3684 	attr->sched_deadline = dl_se->dl_deadline;
3685 	attr->sched_period = dl_se->dl_period;
3686 	attr->sched_flags = dl_se->flags;
3687 }
3688 
3689 /*
3690  * This function validates the new parameters of a -deadline task.
3691  * We ask for the deadline not being zero, and greater or equal
3692  * than the runtime, as well as the period of being zero or
3693  * greater than deadline. Furthermore, we have to be sure that
3694  * user parameters are above the internal resolution of 1us (we
3695  * check sched_runtime only since it is always the smaller one) and
3696  * below 2^63 ns (we have to check both sched_deadline and
3697  * sched_period, as the latter can be zero).
3698  */
3699 static bool
3700 __checkparam_dl(const struct sched_attr *attr)
3701 {
3702 	/* deadline != 0 */
3703 	if (attr->sched_deadline == 0)
3704 		return false;
3705 
3706 	/*
3707 	 * Since we truncate DL_SCALE bits, make sure we're at least
3708 	 * that big.
3709 	 */
3710 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3711 		return false;
3712 
3713 	/*
3714 	 * Since we use the MSB for wrap-around and sign issues, make
3715 	 * sure it's not set (mind that period can be equal to zero).
3716 	 */
3717 	if (attr->sched_deadline & (1ULL << 63) ||
3718 	    attr->sched_period & (1ULL << 63))
3719 		return false;
3720 
3721 	/* runtime <= deadline <= period (if period != 0) */
3722 	if ((attr->sched_period != 0 &&
3723 	     attr->sched_period < attr->sched_deadline) ||
3724 	    attr->sched_deadline < attr->sched_runtime)
3725 		return false;
3726 
3727 	return true;
3728 }
3729 
3730 /*
3731  * check the target process has a UID that matches the current process's
3732  */
3733 static bool check_same_owner(struct task_struct *p)
3734 {
3735 	const struct cred *cred = current_cred(), *pcred;
3736 	bool match;
3737 
3738 	rcu_read_lock();
3739 	pcred = __task_cred(p);
3740 	match = (uid_eq(cred->euid, pcred->euid) ||
3741 		 uid_eq(cred->euid, pcred->uid));
3742 	rcu_read_unlock();
3743 	return match;
3744 }
3745 
3746 static bool dl_param_changed(struct task_struct *p,
3747 		const struct sched_attr *attr)
3748 {
3749 	struct sched_dl_entity *dl_se = &p->dl;
3750 
3751 	if (dl_se->dl_runtime != attr->sched_runtime ||
3752 		dl_se->dl_deadline != attr->sched_deadline ||
3753 		dl_se->dl_period != attr->sched_period ||
3754 		dl_se->flags != attr->sched_flags)
3755 		return true;
3756 
3757 	return false;
3758 }
3759 
3760 static int __sched_setscheduler(struct task_struct *p,
3761 				const struct sched_attr *attr,
3762 				bool user, bool pi)
3763 {
3764 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3765 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3766 	int retval, oldprio, oldpolicy = -1, queued, running;
3767 	int new_effective_prio, policy = attr->sched_policy;
3768 	unsigned long flags;
3769 	const struct sched_class *prev_class;
3770 	struct rq *rq;
3771 	int reset_on_fork;
3772 
3773 	/* may grab non-irq protected spin_locks */
3774 	BUG_ON(in_interrupt());
3775 recheck:
3776 	/* double check policy once rq lock held */
3777 	if (policy < 0) {
3778 		reset_on_fork = p->sched_reset_on_fork;
3779 		policy = oldpolicy = p->policy;
3780 	} else {
3781 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3782 
3783 		if (!valid_policy(policy))
3784 			return -EINVAL;
3785 	}
3786 
3787 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3788 		return -EINVAL;
3789 
3790 	/*
3791 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3792 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3793 	 * SCHED_BATCH and SCHED_IDLE is 0.
3794 	 */
3795 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3796 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3797 		return -EINVAL;
3798 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3799 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3800 		return -EINVAL;
3801 
3802 	/*
3803 	 * Allow unprivileged RT tasks to decrease priority:
3804 	 */
3805 	if (user && !capable(CAP_SYS_NICE)) {
3806 		if (fair_policy(policy)) {
3807 			if (attr->sched_nice < task_nice(p) &&
3808 			    !can_nice(p, attr->sched_nice))
3809 				return -EPERM;
3810 		}
3811 
3812 		if (rt_policy(policy)) {
3813 			unsigned long rlim_rtprio =
3814 					task_rlimit(p, RLIMIT_RTPRIO);
3815 
3816 			/* can't set/change the rt policy */
3817 			if (policy != p->policy && !rlim_rtprio)
3818 				return -EPERM;
3819 
3820 			/* can't increase priority */
3821 			if (attr->sched_priority > p->rt_priority &&
3822 			    attr->sched_priority > rlim_rtprio)
3823 				return -EPERM;
3824 		}
3825 
3826 		 /*
3827 		  * Can't set/change SCHED_DEADLINE policy at all for now
3828 		  * (safest behavior); in the future we would like to allow
3829 		  * unprivileged DL tasks to increase their relative deadline
3830 		  * or reduce their runtime (both ways reducing utilization)
3831 		  */
3832 		if (dl_policy(policy))
3833 			return -EPERM;
3834 
3835 		/*
3836 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3837 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3838 		 */
3839 		if (idle_policy(p->policy) && !idle_policy(policy)) {
3840 			if (!can_nice(p, task_nice(p)))
3841 				return -EPERM;
3842 		}
3843 
3844 		/* can't change other user's priorities */
3845 		if (!check_same_owner(p))
3846 			return -EPERM;
3847 
3848 		/* Normal users shall not reset the sched_reset_on_fork flag */
3849 		if (p->sched_reset_on_fork && !reset_on_fork)
3850 			return -EPERM;
3851 	}
3852 
3853 	if (user) {
3854 		retval = security_task_setscheduler(p);
3855 		if (retval)
3856 			return retval;
3857 	}
3858 
3859 	/*
3860 	 * make sure no PI-waiters arrive (or leave) while we are
3861 	 * changing the priority of the task:
3862 	 *
3863 	 * To be able to change p->policy safely, the appropriate
3864 	 * runqueue lock must be held.
3865 	 */
3866 	rq = task_rq_lock(p, &flags);
3867 
3868 	/*
3869 	 * Changing the policy of the stop threads its a very bad idea
3870 	 */
3871 	if (p == rq->stop) {
3872 		task_rq_unlock(rq, p, &flags);
3873 		return -EINVAL;
3874 	}
3875 
3876 	/*
3877 	 * If not changing anything there's no need to proceed further,
3878 	 * but store a possible modification of reset_on_fork.
3879 	 */
3880 	if (unlikely(policy == p->policy)) {
3881 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3882 			goto change;
3883 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3884 			goto change;
3885 		if (dl_policy(policy) && dl_param_changed(p, attr))
3886 			goto change;
3887 
3888 		p->sched_reset_on_fork = reset_on_fork;
3889 		task_rq_unlock(rq, p, &flags);
3890 		return 0;
3891 	}
3892 change:
3893 
3894 	if (user) {
3895 #ifdef CONFIG_RT_GROUP_SCHED
3896 		/*
3897 		 * Do not allow realtime tasks into groups that have no runtime
3898 		 * assigned.
3899 		 */
3900 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3901 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3902 				!task_group_is_autogroup(task_group(p))) {
3903 			task_rq_unlock(rq, p, &flags);
3904 			return -EPERM;
3905 		}
3906 #endif
3907 #ifdef CONFIG_SMP
3908 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3909 			cpumask_t *span = rq->rd->span;
3910 
3911 			/*
3912 			 * Don't allow tasks with an affinity mask smaller than
3913 			 * the entire root_domain to become SCHED_DEADLINE. We
3914 			 * will also fail if there's no bandwidth available.
3915 			 */
3916 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3917 			    rq->rd->dl_bw.bw == 0) {
3918 				task_rq_unlock(rq, p, &flags);
3919 				return -EPERM;
3920 			}
3921 		}
3922 #endif
3923 	}
3924 
3925 	/* recheck policy now with rq lock held */
3926 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3927 		policy = oldpolicy = -1;
3928 		task_rq_unlock(rq, p, &flags);
3929 		goto recheck;
3930 	}
3931 
3932 	/*
3933 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3934 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3935 	 * is available.
3936 	 */
3937 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3938 		task_rq_unlock(rq, p, &flags);
3939 		return -EBUSY;
3940 	}
3941 
3942 	p->sched_reset_on_fork = reset_on_fork;
3943 	oldprio = p->prio;
3944 
3945 	if (pi) {
3946 		/*
3947 		 * Take priority boosted tasks into account. If the new
3948 		 * effective priority is unchanged, we just store the new
3949 		 * normal parameters and do not touch the scheduler class and
3950 		 * the runqueue. This will be done when the task deboost
3951 		 * itself.
3952 		 */
3953 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3954 		if (new_effective_prio == oldprio) {
3955 			__setscheduler_params(p, attr);
3956 			task_rq_unlock(rq, p, &flags);
3957 			return 0;
3958 		}
3959 	}
3960 
3961 	queued = task_on_rq_queued(p);
3962 	running = task_current(rq, p);
3963 	if (queued)
3964 		dequeue_task(rq, p, DEQUEUE_SAVE);
3965 	if (running)
3966 		put_prev_task(rq, p);
3967 
3968 	prev_class = p->sched_class;
3969 	__setscheduler(rq, p, attr, pi);
3970 
3971 	if (running)
3972 		p->sched_class->set_curr_task(rq);
3973 	if (queued) {
3974 		int enqueue_flags = ENQUEUE_RESTORE;
3975 		/*
3976 		 * We enqueue to tail when the priority of a task is
3977 		 * increased (user space view).
3978 		 */
3979 		if (oldprio <= p->prio)
3980 			enqueue_flags |= ENQUEUE_HEAD;
3981 
3982 		enqueue_task(rq, p, enqueue_flags);
3983 	}
3984 
3985 	check_class_changed(rq, p, prev_class, oldprio);
3986 	preempt_disable(); /* avoid rq from going away on us */
3987 	task_rq_unlock(rq, p, &flags);
3988 
3989 	if (pi)
3990 		rt_mutex_adjust_pi(p);
3991 
3992 	/*
3993 	 * Run balance callbacks after we've adjusted the PI chain.
3994 	 */
3995 	balance_callback(rq);
3996 	preempt_enable();
3997 
3998 	return 0;
3999 }
4000 
4001 static int _sched_setscheduler(struct task_struct *p, int policy,
4002 			       const struct sched_param *param, bool check)
4003 {
4004 	struct sched_attr attr = {
4005 		.sched_policy   = policy,
4006 		.sched_priority = param->sched_priority,
4007 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4008 	};
4009 
4010 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4011 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4012 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4013 		policy &= ~SCHED_RESET_ON_FORK;
4014 		attr.sched_policy = policy;
4015 	}
4016 
4017 	return __sched_setscheduler(p, &attr, check, true);
4018 }
4019 /**
4020  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4021  * @p: the task in question.
4022  * @policy: new policy.
4023  * @param: structure containing the new RT priority.
4024  *
4025  * Return: 0 on success. An error code otherwise.
4026  *
4027  * NOTE that the task may be already dead.
4028  */
4029 int sched_setscheduler(struct task_struct *p, int policy,
4030 		       const struct sched_param *param)
4031 {
4032 	return _sched_setscheduler(p, policy, param, true);
4033 }
4034 EXPORT_SYMBOL_GPL(sched_setscheduler);
4035 
4036 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4037 {
4038 	return __sched_setscheduler(p, attr, true, true);
4039 }
4040 EXPORT_SYMBOL_GPL(sched_setattr);
4041 
4042 /**
4043  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4044  * @p: the task in question.
4045  * @policy: new policy.
4046  * @param: structure containing the new RT priority.
4047  *
4048  * Just like sched_setscheduler, only don't bother checking if the
4049  * current context has permission.  For example, this is needed in
4050  * stop_machine(): we create temporary high priority worker threads,
4051  * but our caller might not have that capability.
4052  *
4053  * Return: 0 on success. An error code otherwise.
4054  */
4055 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4056 			       const struct sched_param *param)
4057 {
4058 	return _sched_setscheduler(p, policy, param, false);
4059 }
4060 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4061 
4062 static int
4063 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4064 {
4065 	struct sched_param lparam;
4066 	struct task_struct *p;
4067 	int retval;
4068 
4069 	if (!param || pid < 0)
4070 		return -EINVAL;
4071 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4072 		return -EFAULT;
4073 
4074 	rcu_read_lock();
4075 	retval = -ESRCH;
4076 	p = find_process_by_pid(pid);
4077 	if (p != NULL)
4078 		retval = sched_setscheduler(p, policy, &lparam);
4079 	rcu_read_unlock();
4080 
4081 	return retval;
4082 }
4083 
4084 /*
4085  * Mimics kernel/events/core.c perf_copy_attr().
4086  */
4087 static int sched_copy_attr(struct sched_attr __user *uattr,
4088 			   struct sched_attr *attr)
4089 {
4090 	u32 size;
4091 	int ret;
4092 
4093 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4094 		return -EFAULT;
4095 
4096 	/*
4097 	 * zero the full structure, so that a short copy will be nice.
4098 	 */
4099 	memset(attr, 0, sizeof(*attr));
4100 
4101 	ret = get_user(size, &uattr->size);
4102 	if (ret)
4103 		return ret;
4104 
4105 	if (size > PAGE_SIZE)	/* silly large */
4106 		goto err_size;
4107 
4108 	if (!size)		/* abi compat */
4109 		size = SCHED_ATTR_SIZE_VER0;
4110 
4111 	if (size < SCHED_ATTR_SIZE_VER0)
4112 		goto err_size;
4113 
4114 	/*
4115 	 * If we're handed a bigger struct than we know of,
4116 	 * ensure all the unknown bits are 0 - i.e. new
4117 	 * user-space does not rely on any kernel feature
4118 	 * extensions we dont know about yet.
4119 	 */
4120 	if (size > sizeof(*attr)) {
4121 		unsigned char __user *addr;
4122 		unsigned char __user *end;
4123 		unsigned char val;
4124 
4125 		addr = (void __user *)uattr + sizeof(*attr);
4126 		end  = (void __user *)uattr + size;
4127 
4128 		for (; addr < end; addr++) {
4129 			ret = get_user(val, addr);
4130 			if (ret)
4131 				return ret;
4132 			if (val)
4133 				goto err_size;
4134 		}
4135 		size = sizeof(*attr);
4136 	}
4137 
4138 	ret = copy_from_user(attr, uattr, size);
4139 	if (ret)
4140 		return -EFAULT;
4141 
4142 	/*
4143 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4144 	 * to be strict and return an error on out-of-bounds values?
4145 	 */
4146 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4147 
4148 	return 0;
4149 
4150 err_size:
4151 	put_user(sizeof(*attr), &uattr->size);
4152 	return -E2BIG;
4153 }
4154 
4155 /**
4156  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4157  * @pid: the pid in question.
4158  * @policy: new policy.
4159  * @param: structure containing the new RT priority.
4160  *
4161  * Return: 0 on success. An error code otherwise.
4162  */
4163 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4164 		struct sched_param __user *, param)
4165 {
4166 	/* negative values for policy are not valid */
4167 	if (policy < 0)
4168 		return -EINVAL;
4169 
4170 	return do_sched_setscheduler(pid, policy, param);
4171 }
4172 
4173 /**
4174  * sys_sched_setparam - set/change the RT priority of a thread
4175  * @pid: the pid in question.
4176  * @param: structure containing the new RT priority.
4177  *
4178  * Return: 0 on success. An error code otherwise.
4179  */
4180 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4181 {
4182 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4183 }
4184 
4185 /**
4186  * sys_sched_setattr - same as above, but with extended sched_attr
4187  * @pid: the pid in question.
4188  * @uattr: structure containing the extended parameters.
4189  * @flags: for future extension.
4190  */
4191 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4192 			       unsigned int, flags)
4193 {
4194 	struct sched_attr attr;
4195 	struct task_struct *p;
4196 	int retval;
4197 
4198 	if (!uattr || pid < 0 || flags)
4199 		return -EINVAL;
4200 
4201 	retval = sched_copy_attr(uattr, &attr);
4202 	if (retval)
4203 		return retval;
4204 
4205 	if ((int)attr.sched_policy < 0)
4206 		return -EINVAL;
4207 
4208 	rcu_read_lock();
4209 	retval = -ESRCH;
4210 	p = find_process_by_pid(pid);
4211 	if (p != NULL)
4212 		retval = sched_setattr(p, &attr);
4213 	rcu_read_unlock();
4214 
4215 	return retval;
4216 }
4217 
4218 /**
4219  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4220  * @pid: the pid in question.
4221  *
4222  * Return: On success, the policy of the thread. Otherwise, a negative error
4223  * code.
4224  */
4225 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4226 {
4227 	struct task_struct *p;
4228 	int retval;
4229 
4230 	if (pid < 0)
4231 		return -EINVAL;
4232 
4233 	retval = -ESRCH;
4234 	rcu_read_lock();
4235 	p = find_process_by_pid(pid);
4236 	if (p) {
4237 		retval = security_task_getscheduler(p);
4238 		if (!retval)
4239 			retval = p->policy
4240 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4241 	}
4242 	rcu_read_unlock();
4243 	return retval;
4244 }
4245 
4246 /**
4247  * sys_sched_getparam - get the RT priority of a thread
4248  * @pid: the pid in question.
4249  * @param: structure containing the RT priority.
4250  *
4251  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4252  * code.
4253  */
4254 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4255 {
4256 	struct sched_param lp = { .sched_priority = 0 };
4257 	struct task_struct *p;
4258 	int retval;
4259 
4260 	if (!param || pid < 0)
4261 		return -EINVAL;
4262 
4263 	rcu_read_lock();
4264 	p = find_process_by_pid(pid);
4265 	retval = -ESRCH;
4266 	if (!p)
4267 		goto out_unlock;
4268 
4269 	retval = security_task_getscheduler(p);
4270 	if (retval)
4271 		goto out_unlock;
4272 
4273 	if (task_has_rt_policy(p))
4274 		lp.sched_priority = p->rt_priority;
4275 	rcu_read_unlock();
4276 
4277 	/*
4278 	 * This one might sleep, we cannot do it with a spinlock held ...
4279 	 */
4280 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4281 
4282 	return retval;
4283 
4284 out_unlock:
4285 	rcu_read_unlock();
4286 	return retval;
4287 }
4288 
4289 static int sched_read_attr(struct sched_attr __user *uattr,
4290 			   struct sched_attr *attr,
4291 			   unsigned int usize)
4292 {
4293 	int ret;
4294 
4295 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4296 		return -EFAULT;
4297 
4298 	/*
4299 	 * If we're handed a smaller struct than we know of,
4300 	 * ensure all the unknown bits are 0 - i.e. old
4301 	 * user-space does not get uncomplete information.
4302 	 */
4303 	if (usize < sizeof(*attr)) {
4304 		unsigned char *addr;
4305 		unsigned char *end;
4306 
4307 		addr = (void *)attr + usize;
4308 		end  = (void *)attr + sizeof(*attr);
4309 
4310 		for (; addr < end; addr++) {
4311 			if (*addr)
4312 				return -EFBIG;
4313 		}
4314 
4315 		attr->size = usize;
4316 	}
4317 
4318 	ret = copy_to_user(uattr, attr, attr->size);
4319 	if (ret)
4320 		return -EFAULT;
4321 
4322 	return 0;
4323 }
4324 
4325 /**
4326  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4327  * @pid: the pid in question.
4328  * @uattr: structure containing the extended parameters.
4329  * @size: sizeof(attr) for fwd/bwd comp.
4330  * @flags: for future extension.
4331  */
4332 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4333 		unsigned int, size, unsigned int, flags)
4334 {
4335 	struct sched_attr attr = {
4336 		.size = sizeof(struct sched_attr),
4337 	};
4338 	struct task_struct *p;
4339 	int retval;
4340 
4341 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4342 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4343 		return -EINVAL;
4344 
4345 	rcu_read_lock();
4346 	p = find_process_by_pid(pid);
4347 	retval = -ESRCH;
4348 	if (!p)
4349 		goto out_unlock;
4350 
4351 	retval = security_task_getscheduler(p);
4352 	if (retval)
4353 		goto out_unlock;
4354 
4355 	attr.sched_policy = p->policy;
4356 	if (p->sched_reset_on_fork)
4357 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4358 	if (task_has_dl_policy(p))
4359 		__getparam_dl(p, &attr);
4360 	else if (task_has_rt_policy(p))
4361 		attr.sched_priority = p->rt_priority;
4362 	else
4363 		attr.sched_nice = task_nice(p);
4364 
4365 	rcu_read_unlock();
4366 
4367 	retval = sched_read_attr(uattr, &attr, size);
4368 	return retval;
4369 
4370 out_unlock:
4371 	rcu_read_unlock();
4372 	return retval;
4373 }
4374 
4375 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4376 {
4377 	cpumask_var_t cpus_allowed, new_mask;
4378 	struct task_struct *p;
4379 	int retval;
4380 
4381 	rcu_read_lock();
4382 
4383 	p = find_process_by_pid(pid);
4384 	if (!p) {
4385 		rcu_read_unlock();
4386 		return -ESRCH;
4387 	}
4388 
4389 	/* Prevent p going away */
4390 	get_task_struct(p);
4391 	rcu_read_unlock();
4392 
4393 	if (p->flags & PF_NO_SETAFFINITY) {
4394 		retval = -EINVAL;
4395 		goto out_put_task;
4396 	}
4397 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4398 		retval = -ENOMEM;
4399 		goto out_put_task;
4400 	}
4401 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4402 		retval = -ENOMEM;
4403 		goto out_free_cpus_allowed;
4404 	}
4405 	retval = -EPERM;
4406 	if (!check_same_owner(p)) {
4407 		rcu_read_lock();
4408 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4409 			rcu_read_unlock();
4410 			goto out_free_new_mask;
4411 		}
4412 		rcu_read_unlock();
4413 	}
4414 
4415 	retval = security_task_setscheduler(p);
4416 	if (retval)
4417 		goto out_free_new_mask;
4418 
4419 
4420 	cpuset_cpus_allowed(p, cpus_allowed);
4421 	cpumask_and(new_mask, in_mask, cpus_allowed);
4422 
4423 	/*
4424 	 * Since bandwidth control happens on root_domain basis,
4425 	 * if admission test is enabled, we only admit -deadline
4426 	 * tasks allowed to run on all the CPUs in the task's
4427 	 * root_domain.
4428 	 */
4429 #ifdef CONFIG_SMP
4430 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4431 		rcu_read_lock();
4432 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4433 			retval = -EBUSY;
4434 			rcu_read_unlock();
4435 			goto out_free_new_mask;
4436 		}
4437 		rcu_read_unlock();
4438 	}
4439 #endif
4440 again:
4441 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4442 
4443 	if (!retval) {
4444 		cpuset_cpus_allowed(p, cpus_allowed);
4445 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4446 			/*
4447 			 * We must have raced with a concurrent cpuset
4448 			 * update. Just reset the cpus_allowed to the
4449 			 * cpuset's cpus_allowed
4450 			 */
4451 			cpumask_copy(new_mask, cpus_allowed);
4452 			goto again;
4453 		}
4454 	}
4455 out_free_new_mask:
4456 	free_cpumask_var(new_mask);
4457 out_free_cpus_allowed:
4458 	free_cpumask_var(cpus_allowed);
4459 out_put_task:
4460 	put_task_struct(p);
4461 	return retval;
4462 }
4463 
4464 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4465 			     struct cpumask *new_mask)
4466 {
4467 	if (len < cpumask_size())
4468 		cpumask_clear(new_mask);
4469 	else if (len > cpumask_size())
4470 		len = cpumask_size();
4471 
4472 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4473 }
4474 
4475 /**
4476  * sys_sched_setaffinity - set the cpu affinity of a process
4477  * @pid: pid of the process
4478  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4479  * @user_mask_ptr: user-space pointer to the new cpu mask
4480  *
4481  * Return: 0 on success. An error code otherwise.
4482  */
4483 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4484 		unsigned long __user *, user_mask_ptr)
4485 {
4486 	cpumask_var_t new_mask;
4487 	int retval;
4488 
4489 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4490 		return -ENOMEM;
4491 
4492 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4493 	if (retval == 0)
4494 		retval = sched_setaffinity(pid, new_mask);
4495 	free_cpumask_var(new_mask);
4496 	return retval;
4497 }
4498 
4499 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4500 {
4501 	struct task_struct *p;
4502 	unsigned long flags;
4503 	int retval;
4504 
4505 	rcu_read_lock();
4506 
4507 	retval = -ESRCH;
4508 	p = find_process_by_pid(pid);
4509 	if (!p)
4510 		goto out_unlock;
4511 
4512 	retval = security_task_getscheduler(p);
4513 	if (retval)
4514 		goto out_unlock;
4515 
4516 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4517 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4518 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4519 
4520 out_unlock:
4521 	rcu_read_unlock();
4522 
4523 	return retval;
4524 }
4525 
4526 /**
4527  * sys_sched_getaffinity - get the cpu affinity of a process
4528  * @pid: pid of the process
4529  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4530  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4531  *
4532  * Return: 0 on success. An error code otherwise.
4533  */
4534 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4535 		unsigned long __user *, user_mask_ptr)
4536 {
4537 	int ret;
4538 	cpumask_var_t mask;
4539 
4540 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4541 		return -EINVAL;
4542 	if (len & (sizeof(unsigned long)-1))
4543 		return -EINVAL;
4544 
4545 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4546 		return -ENOMEM;
4547 
4548 	ret = sched_getaffinity(pid, mask);
4549 	if (ret == 0) {
4550 		size_t retlen = min_t(size_t, len, cpumask_size());
4551 
4552 		if (copy_to_user(user_mask_ptr, mask, retlen))
4553 			ret = -EFAULT;
4554 		else
4555 			ret = retlen;
4556 	}
4557 	free_cpumask_var(mask);
4558 
4559 	return ret;
4560 }
4561 
4562 /**
4563  * sys_sched_yield - yield the current processor to other threads.
4564  *
4565  * This function yields the current CPU to other tasks. If there are no
4566  * other threads running on this CPU then this function will return.
4567  *
4568  * Return: 0.
4569  */
4570 SYSCALL_DEFINE0(sched_yield)
4571 {
4572 	struct rq *rq = this_rq_lock();
4573 
4574 	schedstat_inc(rq, yld_count);
4575 	current->sched_class->yield_task(rq);
4576 
4577 	/*
4578 	 * Since we are going to call schedule() anyway, there's
4579 	 * no need to preempt or enable interrupts:
4580 	 */
4581 	__release(rq->lock);
4582 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4583 	do_raw_spin_unlock(&rq->lock);
4584 	sched_preempt_enable_no_resched();
4585 
4586 	schedule();
4587 
4588 	return 0;
4589 }
4590 
4591 int __sched _cond_resched(void)
4592 {
4593 	if (should_resched(0)) {
4594 		preempt_schedule_common();
4595 		return 1;
4596 	}
4597 	return 0;
4598 }
4599 EXPORT_SYMBOL(_cond_resched);
4600 
4601 /*
4602  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4603  * call schedule, and on return reacquire the lock.
4604  *
4605  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4606  * operations here to prevent schedule() from being called twice (once via
4607  * spin_unlock(), once by hand).
4608  */
4609 int __cond_resched_lock(spinlock_t *lock)
4610 {
4611 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4612 	int ret = 0;
4613 
4614 	lockdep_assert_held(lock);
4615 
4616 	if (spin_needbreak(lock) || resched) {
4617 		spin_unlock(lock);
4618 		if (resched)
4619 			preempt_schedule_common();
4620 		else
4621 			cpu_relax();
4622 		ret = 1;
4623 		spin_lock(lock);
4624 	}
4625 	return ret;
4626 }
4627 EXPORT_SYMBOL(__cond_resched_lock);
4628 
4629 int __sched __cond_resched_softirq(void)
4630 {
4631 	BUG_ON(!in_softirq());
4632 
4633 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4634 		local_bh_enable();
4635 		preempt_schedule_common();
4636 		local_bh_disable();
4637 		return 1;
4638 	}
4639 	return 0;
4640 }
4641 EXPORT_SYMBOL(__cond_resched_softirq);
4642 
4643 /**
4644  * yield - yield the current processor to other threads.
4645  *
4646  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4647  *
4648  * The scheduler is at all times free to pick the calling task as the most
4649  * eligible task to run, if removing the yield() call from your code breaks
4650  * it, its already broken.
4651  *
4652  * Typical broken usage is:
4653  *
4654  * while (!event)
4655  * 	yield();
4656  *
4657  * where one assumes that yield() will let 'the other' process run that will
4658  * make event true. If the current task is a SCHED_FIFO task that will never
4659  * happen. Never use yield() as a progress guarantee!!
4660  *
4661  * If you want to use yield() to wait for something, use wait_event().
4662  * If you want to use yield() to be 'nice' for others, use cond_resched().
4663  * If you still want to use yield(), do not!
4664  */
4665 void __sched yield(void)
4666 {
4667 	set_current_state(TASK_RUNNING);
4668 	sys_sched_yield();
4669 }
4670 EXPORT_SYMBOL(yield);
4671 
4672 /**
4673  * yield_to - yield the current processor to another thread in
4674  * your thread group, or accelerate that thread toward the
4675  * processor it's on.
4676  * @p: target task
4677  * @preempt: whether task preemption is allowed or not
4678  *
4679  * It's the caller's job to ensure that the target task struct
4680  * can't go away on us before we can do any checks.
4681  *
4682  * Return:
4683  *	true (>0) if we indeed boosted the target task.
4684  *	false (0) if we failed to boost the target.
4685  *	-ESRCH if there's no task to yield to.
4686  */
4687 int __sched yield_to(struct task_struct *p, bool preempt)
4688 {
4689 	struct task_struct *curr = current;
4690 	struct rq *rq, *p_rq;
4691 	unsigned long flags;
4692 	int yielded = 0;
4693 
4694 	local_irq_save(flags);
4695 	rq = this_rq();
4696 
4697 again:
4698 	p_rq = task_rq(p);
4699 	/*
4700 	 * If we're the only runnable task on the rq and target rq also
4701 	 * has only one task, there's absolutely no point in yielding.
4702 	 */
4703 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4704 		yielded = -ESRCH;
4705 		goto out_irq;
4706 	}
4707 
4708 	double_rq_lock(rq, p_rq);
4709 	if (task_rq(p) != p_rq) {
4710 		double_rq_unlock(rq, p_rq);
4711 		goto again;
4712 	}
4713 
4714 	if (!curr->sched_class->yield_to_task)
4715 		goto out_unlock;
4716 
4717 	if (curr->sched_class != p->sched_class)
4718 		goto out_unlock;
4719 
4720 	if (task_running(p_rq, p) || p->state)
4721 		goto out_unlock;
4722 
4723 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4724 	if (yielded) {
4725 		schedstat_inc(rq, yld_count);
4726 		/*
4727 		 * Make p's CPU reschedule; pick_next_entity takes care of
4728 		 * fairness.
4729 		 */
4730 		if (preempt && rq != p_rq)
4731 			resched_curr(p_rq);
4732 	}
4733 
4734 out_unlock:
4735 	double_rq_unlock(rq, p_rq);
4736 out_irq:
4737 	local_irq_restore(flags);
4738 
4739 	if (yielded > 0)
4740 		schedule();
4741 
4742 	return yielded;
4743 }
4744 EXPORT_SYMBOL_GPL(yield_to);
4745 
4746 /*
4747  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4748  * that process accounting knows that this is a task in IO wait state.
4749  */
4750 long __sched io_schedule_timeout(long timeout)
4751 {
4752 	int old_iowait = current->in_iowait;
4753 	struct rq *rq;
4754 	long ret;
4755 
4756 	current->in_iowait = 1;
4757 	blk_schedule_flush_plug(current);
4758 
4759 	delayacct_blkio_start();
4760 	rq = raw_rq();
4761 	atomic_inc(&rq->nr_iowait);
4762 	ret = schedule_timeout(timeout);
4763 	current->in_iowait = old_iowait;
4764 	atomic_dec(&rq->nr_iowait);
4765 	delayacct_blkio_end();
4766 
4767 	return ret;
4768 }
4769 EXPORT_SYMBOL(io_schedule_timeout);
4770 
4771 /**
4772  * sys_sched_get_priority_max - return maximum RT priority.
4773  * @policy: scheduling class.
4774  *
4775  * Return: On success, this syscall returns the maximum
4776  * rt_priority that can be used by a given scheduling class.
4777  * On failure, a negative error code is returned.
4778  */
4779 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4780 {
4781 	int ret = -EINVAL;
4782 
4783 	switch (policy) {
4784 	case SCHED_FIFO:
4785 	case SCHED_RR:
4786 		ret = MAX_USER_RT_PRIO-1;
4787 		break;
4788 	case SCHED_DEADLINE:
4789 	case SCHED_NORMAL:
4790 	case SCHED_BATCH:
4791 	case SCHED_IDLE:
4792 		ret = 0;
4793 		break;
4794 	}
4795 	return ret;
4796 }
4797 
4798 /**
4799  * sys_sched_get_priority_min - return minimum RT priority.
4800  * @policy: scheduling class.
4801  *
4802  * Return: On success, this syscall returns the minimum
4803  * rt_priority that can be used by a given scheduling class.
4804  * On failure, a negative error code is returned.
4805  */
4806 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4807 {
4808 	int ret = -EINVAL;
4809 
4810 	switch (policy) {
4811 	case SCHED_FIFO:
4812 	case SCHED_RR:
4813 		ret = 1;
4814 		break;
4815 	case SCHED_DEADLINE:
4816 	case SCHED_NORMAL:
4817 	case SCHED_BATCH:
4818 	case SCHED_IDLE:
4819 		ret = 0;
4820 	}
4821 	return ret;
4822 }
4823 
4824 /**
4825  * sys_sched_rr_get_interval - return the default timeslice of a process.
4826  * @pid: pid of the process.
4827  * @interval: userspace pointer to the timeslice value.
4828  *
4829  * this syscall writes the default timeslice value of a given process
4830  * into the user-space timespec buffer. A value of '0' means infinity.
4831  *
4832  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4833  * an error code.
4834  */
4835 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4836 		struct timespec __user *, interval)
4837 {
4838 	struct task_struct *p;
4839 	unsigned int time_slice;
4840 	unsigned long flags;
4841 	struct rq *rq;
4842 	int retval;
4843 	struct timespec t;
4844 
4845 	if (pid < 0)
4846 		return -EINVAL;
4847 
4848 	retval = -ESRCH;
4849 	rcu_read_lock();
4850 	p = find_process_by_pid(pid);
4851 	if (!p)
4852 		goto out_unlock;
4853 
4854 	retval = security_task_getscheduler(p);
4855 	if (retval)
4856 		goto out_unlock;
4857 
4858 	rq = task_rq_lock(p, &flags);
4859 	time_slice = 0;
4860 	if (p->sched_class->get_rr_interval)
4861 		time_slice = p->sched_class->get_rr_interval(rq, p);
4862 	task_rq_unlock(rq, p, &flags);
4863 
4864 	rcu_read_unlock();
4865 	jiffies_to_timespec(time_slice, &t);
4866 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4867 	return retval;
4868 
4869 out_unlock:
4870 	rcu_read_unlock();
4871 	return retval;
4872 }
4873 
4874 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4875 
4876 void sched_show_task(struct task_struct *p)
4877 {
4878 	unsigned long free = 0;
4879 	int ppid;
4880 	unsigned long state = p->state;
4881 
4882 	if (state)
4883 		state = __ffs(state) + 1;
4884 	printk(KERN_INFO "%-15.15s %c", p->comm,
4885 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4886 #if BITS_PER_LONG == 32
4887 	if (state == TASK_RUNNING)
4888 		printk(KERN_CONT " running  ");
4889 	else
4890 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4891 #else
4892 	if (state == TASK_RUNNING)
4893 		printk(KERN_CONT "  running task    ");
4894 	else
4895 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4896 #endif
4897 #ifdef CONFIG_DEBUG_STACK_USAGE
4898 	free = stack_not_used(p);
4899 #endif
4900 	ppid = 0;
4901 	rcu_read_lock();
4902 	if (pid_alive(p))
4903 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4904 	rcu_read_unlock();
4905 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4906 		task_pid_nr(p), ppid,
4907 		(unsigned long)task_thread_info(p)->flags);
4908 
4909 	print_worker_info(KERN_INFO, p);
4910 	show_stack(p, NULL);
4911 }
4912 
4913 void show_state_filter(unsigned long state_filter)
4914 {
4915 	struct task_struct *g, *p;
4916 
4917 #if BITS_PER_LONG == 32
4918 	printk(KERN_INFO
4919 		"  task                PC stack   pid father\n");
4920 #else
4921 	printk(KERN_INFO
4922 		"  task                        PC stack   pid father\n");
4923 #endif
4924 	rcu_read_lock();
4925 	for_each_process_thread(g, p) {
4926 		/*
4927 		 * reset the NMI-timeout, listing all files on a slow
4928 		 * console might take a lot of time:
4929 		 */
4930 		touch_nmi_watchdog();
4931 		if (!state_filter || (p->state & state_filter))
4932 			sched_show_task(p);
4933 	}
4934 
4935 	touch_all_softlockup_watchdogs();
4936 
4937 #ifdef CONFIG_SCHED_DEBUG
4938 	sysrq_sched_debug_show();
4939 #endif
4940 	rcu_read_unlock();
4941 	/*
4942 	 * Only show locks if all tasks are dumped:
4943 	 */
4944 	if (!state_filter)
4945 		debug_show_all_locks();
4946 }
4947 
4948 void init_idle_bootup_task(struct task_struct *idle)
4949 {
4950 	idle->sched_class = &idle_sched_class;
4951 }
4952 
4953 /**
4954  * init_idle - set up an idle thread for a given CPU
4955  * @idle: task in question
4956  * @cpu: cpu the idle task belongs to
4957  *
4958  * NOTE: this function does not set the idle thread's NEED_RESCHED
4959  * flag, to make booting more robust.
4960  */
4961 void init_idle(struct task_struct *idle, int cpu)
4962 {
4963 	struct rq *rq = cpu_rq(cpu);
4964 	unsigned long flags;
4965 
4966 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
4967 	raw_spin_lock(&rq->lock);
4968 
4969 	__sched_fork(0, idle);
4970 	idle->state = TASK_RUNNING;
4971 	idle->se.exec_start = sched_clock();
4972 
4973 #ifdef CONFIG_SMP
4974 	/*
4975 	 * Its possible that init_idle() gets called multiple times on a task,
4976 	 * in that case do_set_cpus_allowed() will not do the right thing.
4977 	 *
4978 	 * And since this is boot we can forgo the serialization.
4979 	 */
4980 	set_cpus_allowed_common(idle, cpumask_of(cpu));
4981 #endif
4982 	/*
4983 	 * We're having a chicken and egg problem, even though we are
4984 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4985 	 * lockdep check in task_group() will fail.
4986 	 *
4987 	 * Similar case to sched_fork(). / Alternatively we could
4988 	 * use task_rq_lock() here and obtain the other rq->lock.
4989 	 *
4990 	 * Silence PROVE_RCU
4991 	 */
4992 	rcu_read_lock();
4993 	__set_task_cpu(idle, cpu);
4994 	rcu_read_unlock();
4995 
4996 	rq->curr = rq->idle = idle;
4997 	idle->on_rq = TASK_ON_RQ_QUEUED;
4998 #ifdef CONFIG_SMP
4999 	idle->on_cpu = 1;
5000 #endif
5001 	raw_spin_unlock(&rq->lock);
5002 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5003 
5004 	/* Set the preempt count _outside_ the spinlocks! */
5005 	init_idle_preempt_count(idle, cpu);
5006 
5007 	/*
5008 	 * The idle tasks have their own, simple scheduling class:
5009 	 */
5010 	idle->sched_class = &idle_sched_class;
5011 	ftrace_graph_init_idle_task(idle, cpu);
5012 	vtime_init_idle(idle, cpu);
5013 #ifdef CONFIG_SMP
5014 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5015 #endif
5016 }
5017 
5018 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5019 			      const struct cpumask *trial)
5020 {
5021 	int ret = 1, trial_cpus;
5022 	struct dl_bw *cur_dl_b;
5023 	unsigned long flags;
5024 
5025 	if (!cpumask_weight(cur))
5026 		return ret;
5027 
5028 	rcu_read_lock_sched();
5029 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5030 	trial_cpus = cpumask_weight(trial);
5031 
5032 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5033 	if (cur_dl_b->bw != -1 &&
5034 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5035 		ret = 0;
5036 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5037 	rcu_read_unlock_sched();
5038 
5039 	return ret;
5040 }
5041 
5042 int task_can_attach(struct task_struct *p,
5043 		    const struct cpumask *cs_cpus_allowed)
5044 {
5045 	int ret = 0;
5046 
5047 	/*
5048 	 * Kthreads which disallow setaffinity shouldn't be moved
5049 	 * to a new cpuset; we don't want to change their cpu
5050 	 * affinity and isolating such threads by their set of
5051 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5052 	 * applicable for such threads.  This prevents checking for
5053 	 * success of set_cpus_allowed_ptr() on all attached tasks
5054 	 * before cpus_allowed may be changed.
5055 	 */
5056 	if (p->flags & PF_NO_SETAFFINITY) {
5057 		ret = -EINVAL;
5058 		goto out;
5059 	}
5060 
5061 #ifdef CONFIG_SMP
5062 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5063 					      cs_cpus_allowed)) {
5064 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5065 							cs_cpus_allowed);
5066 		struct dl_bw *dl_b;
5067 		bool overflow;
5068 		int cpus;
5069 		unsigned long flags;
5070 
5071 		rcu_read_lock_sched();
5072 		dl_b = dl_bw_of(dest_cpu);
5073 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5074 		cpus = dl_bw_cpus(dest_cpu);
5075 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5076 		if (overflow)
5077 			ret = -EBUSY;
5078 		else {
5079 			/*
5080 			 * We reserve space for this task in the destination
5081 			 * root_domain, as we can't fail after this point.
5082 			 * We will free resources in the source root_domain
5083 			 * later on (see set_cpus_allowed_dl()).
5084 			 */
5085 			__dl_add(dl_b, p->dl.dl_bw);
5086 		}
5087 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5088 		rcu_read_unlock_sched();
5089 
5090 	}
5091 #endif
5092 out:
5093 	return ret;
5094 }
5095 
5096 #ifdef CONFIG_SMP
5097 
5098 #ifdef CONFIG_NUMA_BALANCING
5099 /* Migrate current task p to target_cpu */
5100 int migrate_task_to(struct task_struct *p, int target_cpu)
5101 {
5102 	struct migration_arg arg = { p, target_cpu };
5103 	int curr_cpu = task_cpu(p);
5104 
5105 	if (curr_cpu == target_cpu)
5106 		return 0;
5107 
5108 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5109 		return -EINVAL;
5110 
5111 	/* TODO: This is not properly updating schedstats */
5112 
5113 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5114 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5115 }
5116 
5117 /*
5118  * Requeue a task on a given node and accurately track the number of NUMA
5119  * tasks on the runqueues
5120  */
5121 void sched_setnuma(struct task_struct *p, int nid)
5122 {
5123 	struct rq *rq;
5124 	unsigned long flags;
5125 	bool queued, running;
5126 
5127 	rq = task_rq_lock(p, &flags);
5128 	queued = task_on_rq_queued(p);
5129 	running = task_current(rq, p);
5130 
5131 	if (queued)
5132 		dequeue_task(rq, p, DEQUEUE_SAVE);
5133 	if (running)
5134 		put_prev_task(rq, p);
5135 
5136 	p->numa_preferred_nid = nid;
5137 
5138 	if (running)
5139 		p->sched_class->set_curr_task(rq);
5140 	if (queued)
5141 		enqueue_task(rq, p, ENQUEUE_RESTORE);
5142 	task_rq_unlock(rq, p, &flags);
5143 }
5144 #endif /* CONFIG_NUMA_BALANCING */
5145 
5146 #ifdef CONFIG_HOTPLUG_CPU
5147 /*
5148  * Ensures that the idle task is using init_mm right before its cpu goes
5149  * offline.
5150  */
5151 void idle_task_exit(void)
5152 {
5153 	struct mm_struct *mm = current->active_mm;
5154 
5155 	BUG_ON(cpu_online(smp_processor_id()));
5156 
5157 	if (mm != &init_mm) {
5158 		switch_mm(mm, &init_mm, current);
5159 		finish_arch_post_lock_switch();
5160 	}
5161 	mmdrop(mm);
5162 }
5163 
5164 /*
5165  * Since this CPU is going 'away' for a while, fold any nr_active delta
5166  * we might have. Assumes we're called after migrate_tasks() so that the
5167  * nr_active count is stable.
5168  *
5169  * Also see the comment "Global load-average calculations".
5170  */
5171 static void calc_load_migrate(struct rq *rq)
5172 {
5173 	long delta = calc_load_fold_active(rq);
5174 	if (delta)
5175 		atomic_long_add(delta, &calc_load_tasks);
5176 }
5177 
5178 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5179 {
5180 }
5181 
5182 static const struct sched_class fake_sched_class = {
5183 	.put_prev_task = put_prev_task_fake,
5184 };
5185 
5186 static struct task_struct fake_task = {
5187 	/*
5188 	 * Avoid pull_{rt,dl}_task()
5189 	 */
5190 	.prio = MAX_PRIO + 1,
5191 	.sched_class = &fake_sched_class,
5192 };
5193 
5194 /*
5195  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5196  * try_to_wake_up()->select_task_rq().
5197  *
5198  * Called with rq->lock held even though we'er in stop_machine() and
5199  * there's no concurrency possible, we hold the required locks anyway
5200  * because of lock validation efforts.
5201  */
5202 static void migrate_tasks(struct rq *dead_rq)
5203 {
5204 	struct rq *rq = dead_rq;
5205 	struct task_struct *next, *stop = rq->stop;
5206 	int dest_cpu;
5207 
5208 	/*
5209 	 * Fudge the rq selection such that the below task selection loop
5210 	 * doesn't get stuck on the currently eligible stop task.
5211 	 *
5212 	 * We're currently inside stop_machine() and the rq is either stuck
5213 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5214 	 * either way we should never end up calling schedule() until we're
5215 	 * done here.
5216 	 */
5217 	rq->stop = NULL;
5218 
5219 	/*
5220 	 * put_prev_task() and pick_next_task() sched
5221 	 * class method both need to have an up-to-date
5222 	 * value of rq->clock[_task]
5223 	 */
5224 	update_rq_clock(rq);
5225 
5226 	for (;;) {
5227 		/*
5228 		 * There's this thread running, bail when that's the only
5229 		 * remaining thread.
5230 		 */
5231 		if (rq->nr_running == 1)
5232 			break;
5233 
5234 		/*
5235 		 * pick_next_task assumes pinned rq->lock.
5236 		 */
5237 		lockdep_pin_lock(&rq->lock);
5238 		next = pick_next_task(rq, &fake_task);
5239 		BUG_ON(!next);
5240 		next->sched_class->put_prev_task(rq, next);
5241 
5242 		/*
5243 		 * Rules for changing task_struct::cpus_allowed are holding
5244 		 * both pi_lock and rq->lock, such that holding either
5245 		 * stabilizes the mask.
5246 		 *
5247 		 * Drop rq->lock is not quite as disastrous as it usually is
5248 		 * because !cpu_active at this point, which means load-balance
5249 		 * will not interfere. Also, stop-machine.
5250 		 */
5251 		lockdep_unpin_lock(&rq->lock);
5252 		raw_spin_unlock(&rq->lock);
5253 		raw_spin_lock(&next->pi_lock);
5254 		raw_spin_lock(&rq->lock);
5255 
5256 		/*
5257 		 * Since we're inside stop-machine, _nothing_ should have
5258 		 * changed the task, WARN if weird stuff happened, because in
5259 		 * that case the above rq->lock drop is a fail too.
5260 		 */
5261 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5262 			raw_spin_unlock(&next->pi_lock);
5263 			continue;
5264 		}
5265 
5266 		/* Find suitable destination for @next, with force if needed. */
5267 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5268 
5269 		rq = __migrate_task(rq, next, dest_cpu);
5270 		if (rq != dead_rq) {
5271 			raw_spin_unlock(&rq->lock);
5272 			rq = dead_rq;
5273 			raw_spin_lock(&rq->lock);
5274 		}
5275 		raw_spin_unlock(&next->pi_lock);
5276 	}
5277 
5278 	rq->stop = stop;
5279 }
5280 #endif /* CONFIG_HOTPLUG_CPU */
5281 
5282 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5283 
5284 static struct ctl_table sd_ctl_dir[] = {
5285 	{
5286 		.procname	= "sched_domain",
5287 		.mode		= 0555,
5288 	},
5289 	{}
5290 };
5291 
5292 static struct ctl_table sd_ctl_root[] = {
5293 	{
5294 		.procname	= "kernel",
5295 		.mode		= 0555,
5296 		.child		= sd_ctl_dir,
5297 	},
5298 	{}
5299 };
5300 
5301 static struct ctl_table *sd_alloc_ctl_entry(int n)
5302 {
5303 	struct ctl_table *entry =
5304 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5305 
5306 	return entry;
5307 }
5308 
5309 static void sd_free_ctl_entry(struct ctl_table **tablep)
5310 {
5311 	struct ctl_table *entry;
5312 
5313 	/*
5314 	 * In the intermediate directories, both the child directory and
5315 	 * procname are dynamically allocated and could fail but the mode
5316 	 * will always be set. In the lowest directory the names are
5317 	 * static strings and all have proc handlers.
5318 	 */
5319 	for (entry = *tablep; entry->mode; entry++) {
5320 		if (entry->child)
5321 			sd_free_ctl_entry(&entry->child);
5322 		if (entry->proc_handler == NULL)
5323 			kfree(entry->procname);
5324 	}
5325 
5326 	kfree(*tablep);
5327 	*tablep = NULL;
5328 }
5329 
5330 static int min_load_idx = 0;
5331 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5332 
5333 static void
5334 set_table_entry(struct ctl_table *entry,
5335 		const char *procname, void *data, int maxlen,
5336 		umode_t mode, proc_handler *proc_handler,
5337 		bool load_idx)
5338 {
5339 	entry->procname = procname;
5340 	entry->data = data;
5341 	entry->maxlen = maxlen;
5342 	entry->mode = mode;
5343 	entry->proc_handler = proc_handler;
5344 
5345 	if (load_idx) {
5346 		entry->extra1 = &min_load_idx;
5347 		entry->extra2 = &max_load_idx;
5348 	}
5349 }
5350 
5351 static struct ctl_table *
5352 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5353 {
5354 	struct ctl_table *table = sd_alloc_ctl_entry(14);
5355 
5356 	if (table == NULL)
5357 		return NULL;
5358 
5359 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5360 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5361 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5362 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5363 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5364 		sizeof(int), 0644, proc_dointvec_minmax, true);
5365 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5366 		sizeof(int), 0644, proc_dointvec_minmax, true);
5367 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5368 		sizeof(int), 0644, proc_dointvec_minmax, true);
5369 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5370 		sizeof(int), 0644, proc_dointvec_minmax, true);
5371 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5372 		sizeof(int), 0644, proc_dointvec_minmax, true);
5373 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5374 		sizeof(int), 0644, proc_dointvec_minmax, false);
5375 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5376 		sizeof(int), 0644, proc_dointvec_minmax, false);
5377 	set_table_entry(&table[9], "cache_nice_tries",
5378 		&sd->cache_nice_tries,
5379 		sizeof(int), 0644, proc_dointvec_minmax, false);
5380 	set_table_entry(&table[10], "flags", &sd->flags,
5381 		sizeof(int), 0644, proc_dointvec_minmax, false);
5382 	set_table_entry(&table[11], "max_newidle_lb_cost",
5383 		&sd->max_newidle_lb_cost,
5384 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5385 	set_table_entry(&table[12], "name", sd->name,
5386 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5387 	/* &table[13] is terminator */
5388 
5389 	return table;
5390 }
5391 
5392 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5393 {
5394 	struct ctl_table *entry, *table;
5395 	struct sched_domain *sd;
5396 	int domain_num = 0, i;
5397 	char buf[32];
5398 
5399 	for_each_domain(cpu, sd)
5400 		domain_num++;
5401 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5402 	if (table == NULL)
5403 		return NULL;
5404 
5405 	i = 0;
5406 	for_each_domain(cpu, sd) {
5407 		snprintf(buf, 32, "domain%d", i);
5408 		entry->procname = kstrdup(buf, GFP_KERNEL);
5409 		entry->mode = 0555;
5410 		entry->child = sd_alloc_ctl_domain_table(sd);
5411 		entry++;
5412 		i++;
5413 	}
5414 	return table;
5415 }
5416 
5417 static struct ctl_table_header *sd_sysctl_header;
5418 static void register_sched_domain_sysctl(void)
5419 {
5420 	int i, cpu_num = num_possible_cpus();
5421 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5422 	char buf[32];
5423 
5424 	WARN_ON(sd_ctl_dir[0].child);
5425 	sd_ctl_dir[0].child = entry;
5426 
5427 	if (entry == NULL)
5428 		return;
5429 
5430 	for_each_possible_cpu(i) {
5431 		snprintf(buf, 32, "cpu%d", i);
5432 		entry->procname = kstrdup(buf, GFP_KERNEL);
5433 		entry->mode = 0555;
5434 		entry->child = sd_alloc_ctl_cpu_table(i);
5435 		entry++;
5436 	}
5437 
5438 	WARN_ON(sd_sysctl_header);
5439 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5440 }
5441 
5442 /* may be called multiple times per register */
5443 static void unregister_sched_domain_sysctl(void)
5444 {
5445 	unregister_sysctl_table(sd_sysctl_header);
5446 	sd_sysctl_header = NULL;
5447 	if (sd_ctl_dir[0].child)
5448 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5449 }
5450 #else
5451 static void register_sched_domain_sysctl(void)
5452 {
5453 }
5454 static void unregister_sched_domain_sysctl(void)
5455 {
5456 }
5457 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5458 
5459 static void set_rq_online(struct rq *rq)
5460 {
5461 	if (!rq->online) {
5462 		const struct sched_class *class;
5463 
5464 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5465 		rq->online = 1;
5466 
5467 		for_each_class(class) {
5468 			if (class->rq_online)
5469 				class->rq_online(rq);
5470 		}
5471 	}
5472 }
5473 
5474 static void set_rq_offline(struct rq *rq)
5475 {
5476 	if (rq->online) {
5477 		const struct sched_class *class;
5478 
5479 		for_each_class(class) {
5480 			if (class->rq_offline)
5481 				class->rq_offline(rq);
5482 		}
5483 
5484 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5485 		rq->online = 0;
5486 	}
5487 }
5488 
5489 /*
5490  * migration_call - callback that gets triggered when a CPU is added.
5491  * Here we can start up the necessary migration thread for the new CPU.
5492  */
5493 static int
5494 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5495 {
5496 	int cpu = (long)hcpu;
5497 	unsigned long flags;
5498 	struct rq *rq = cpu_rq(cpu);
5499 
5500 	switch (action & ~CPU_TASKS_FROZEN) {
5501 
5502 	case CPU_UP_PREPARE:
5503 		rq->calc_load_update = calc_load_update;
5504 		break;
5505 
5506 	case CPU_ONLINE:
5507 		/* Update our root-domain */
5508 		raw_spin_lock_irqsave(&rq->lock, flags);
5509 		if (rq->rd) {
5510 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5511 
5512 			set_rq_online(rq);
5513 		}
5514 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5515 		break;
5516 
5517 #ifdef CONFIG_HOTPLUG_CPU
5518 	case CPU_DYING:
5519 		sched_ttwu_pending();
5520 		/* Update our root-domain */
5521 		raw_spin_lock_irqsave(&rq->lock, flags);
5522 		if (rq->rd) {
5523 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5524 			set_rq_offline(rq);
5525 		}
5526 		migrate_tasks(rq);
5527 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5528 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5529 		break;
5530 
5531 	case CPU_DEAD:
5532 		calc_load_migrate(rq);
5533 		break;
5534 #endif
5535 	}
5536 
5537 	update_max_interval();
5538 
5539 	return NOTIFY_OK;
5540 }
5541 
5542 /*
5543  * Register at high priority so that task migration (migrate_all_tasks)
5544  * happens before everything else.  This has to be lower priority than
5545  * the notifier in the perf_event subsystem, though.
5546  */
5547 static struct notifier_block migration_notifier = {
5548 	.notifier_call = migration_call,
5549 	.priority = CPU_PRI_MIGRATION,
5550 };
5551 
5552 static void set_cpu_rq_start_time(void)
5553 {
5554 	int cpu = smp_processor_id();
5555 	struct rq *rq = cpu_rq(cpu);
5556 	rq->age_stamp = sched_clock_cpu(cpu);
5557 }
5558 
5559 static int sched_cpu_active(struct notifier_block *nfb,
5560 				      unsigned long action, void *hcpu)
5561 {
5562 	int cpu = (long)hcpu;
5563 
5564 	switch (action & ~CPU_TASKS_FROZEN) {
5565 	case CPU_STARTING:
5566 		set_cpu_rq_start_time();
5567 		return NOTIFY_OK;
5568 
5569 	case CPU_ONLINE:
5570 		/*
5571 		 * At this point a starting CPU has marked itself as online via
5572 		 * set_cpu_online(). But it might not yet have marked itself
5573 		 * as active, which is essential from here on.
5574 		 */
5575 		set_cpu_active(cpu, true);
5576 		stop_machine_unpark(cpu);
5577 		return NOTIFY_OK;
5578 
5579 	case CPU_DOWN_FAILED:
5580 		set_cpu_active(cpu, true);
5581 		return NOTIFY_OK;
5582 
5583 	default:
5584 		return NOTIFY_DONE;
5585 	}
5586 }
5587 
5588 static int sched_cpu_inactive(struct notifier_block *nfb,
5589 					unsigned long action, void *hcpu)
5590 {
5591 	switch (action & ~CPU_TASKS_FROZEN) {
5592 	case CPU_DOWN_PREPARE:
5593 		set_cpu_active((long)hcpu, false);
5594 		return NOTIFY_OK;
5595 	default:
5596 		return NOTIFY_DONE;
5597 	}
5598 }
5599 
5600 static int __init migration_init(void)
5601 {
5602 	void *cpu = (void *)(long)smp_processor_id();
5603 	int err;
5604 
5605 	/* Initialize migration for the boot CPU */
5606 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5607 	BUG_ON(err == NOTIFY_BAD);
5608 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5609 	register_cpu_notifier(&migration_notifier);
5610 
5611 	/* Register cpu active notifiers */
5612 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5613 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5614 
5615 	return 0;
5616 }
5617 early_initcall(migration_init);
5618 
5619 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5620 
5621 #ifdef CONFIG_SCHED_DEBUG
5622 
5623 static __read_mostly int sched_debug_enabled;
5624 
5625 static int __init sched_debug_setup(char *str)
5626 {
5627 	sched_debug_enabled = 1;
5628 
5629 	return 0;
5630 }
5631 early_param("sched_debug", sched_debug_setup);
5632 
5633 static inline bool sched_debug(void)
5634 {
5635 	return sched_debug_enabled;
5636 }
5637 
5638 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5639 				  struct cpumask *groupmask)
5640 {
5641 	struct sched_group *group = sd->groups;
5642 
5643 	cpumask_clear(groupmask);
5644 
5645 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5646 
5647 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5648 		printk("does not load-balance\n");
5649 		if (sd->parent)
5650 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5651 					" has parent");
5652 		return -1;
5653 	}
5654 
5655 	printk(KERN_CONT "span %*pbl level %s\n",
5656 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5657 
5658 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5659 		printk(KERN_ERR "ERROR: domain->span does not contain "
5660 				"CPU%d\n", cpu);
5661 	}
5662 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5663 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5664 				" CPU%d\n", cpu);
5665 	}
5666 
5667 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5668 	do {
5669 		if (!group) {
5670 			printk("\n");
5671 			printk(KERN_ERR "ERROR: group is NULL\n");
5672 			break;
5673 		}
5674 
5675 		if (!cpumask_weight(sched_group_cpus(group))) {
5676 			printk(KERN_CONT "\n");
5677 			printk(KERN_ERR "ERROR: empty group\n");
5678 			break;
5679 		}
5680 
5681 		if (!(sd->flags & SD_OVERLAP) &&
5682 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5683 			printk(KERN_CONT "\n");
5684 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5685 			break;
5686 		}
5687 
5688 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5689 
5690 		printk(KERN_CONT " %*pbl",
5691 		       cpumask_pr_args(sched_group_cpus(group)));
5692 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5693 			printk(KERN_CONT " (cpu_capacity = %d)",
5694 				group->sgc->capacity);
5695 		}
5696 
5697 		group = group->next;
5698 	} while (group != sd->groups);
5699 	printk(KERN_CONT "\n");
5700 
5701 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5702 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5703 
5704 	if (sd->parent &&
5705 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5706 		printk(KERN_ERR "ERROR: parent span is not a superset "
5707 			"of domain->span\n");
5708 	return 0;
5709 }
5710 
5711 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5712 {
5713 	int level = 0;
5714 
5715 	if (!sched_debug_enabled)
5716 		return;
5717 
5718 	if (!sd) {
5719 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5720 		return;
5721 	}
5722 
5723 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5724 
5725 	for (;;) {
5726 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5727 			break;
5728 		level++;
5729 		sd = sd->parent;
5730 		if (!sd)
5731 			break;
5732 	}
5733 }
5734 #else /* !CONFIG_SCHED_DEBUG */
5735 # define sched_domain_debug(sd, cpu) do { } while (0)
5736 static inline bool sched_debug(void)
5737 {
5738 	return false;
5739 }
5740 #endif /* CONFIG_SCHED_DEBUG */
5741 
5742 static int sd_degenerate(struct sched_domain *sd)
5743 {
5744 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5745 		return 1;
5746 
5747 	/* Following flags need at least 2 groups */
5748 	if (sd->flags & (SD_LOAD_BALANCE |
5749 			 SD_BALANCE_NEWIDLE |
5750 			 SD_BALANCE_FORK |
5751 			 SD_BALANCE_EXEC |
5752 			 SD_SHARE_CPUCAPACITY |
5753 			 SD_SHARE_PKG_RESOURCES |
5754 			 SD_SHARE_POWERDOMAIN)) {
5755 		if (sd->groups != sd->groups->next)
5756 			return 0;
5757 	}
5758 
5759 	/* Following flags don't use groups */
5760 	if (sd->flags & (SD_WAKE_AFFINE))
5761 		return 0;
5762 
5763 	return 1;
5764 }
5765 
5766 static int
5767 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5768 {
5769 	unsigned long cflags = sd->flags, pflags = parent->flags;
5770 
5771 	if (sd_degenerate(parent))
5772 		return 1;
5773 
5774 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5775 		return 0;
5776 
5777 	/* Flags needing groups don't count if only 1 group in parent */
5778 	if (parent->groups == parent->groups->next) {
5779 		pflags &= ~(SD_LOAD_BALANCE |
5780 				SD_BALANCE_NEWIDLE |
5781 				SD_BALANCE_FORK |
5782 				SD_BALANCE_EXEC |
5783 				SD_SHARE_CPUCAPACITY |
5784 				SD_SHARE_PKG_RESOURCES |
5785 				SD_PREFER_SIBLING |
5786 				SD_SHARE_POWERDOMAIN);
5787 		if (nr_node_ids == 1)
5788 			pflags &= ~SD_SERIALIZE;
5789 	}
5790 	if (~cflags & pflags)
5791 		return 0;
5792 
5793 	return 1;
5794 }
5795 
5796 static void free_rootdomain(struct rcu_head *rcu)
5797 {
5798 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5799 
5800 	cpupri_cleanup(&rd->cpupri);
5801 	cpudl_cleanup(&rd->cpudl);
5802 	free_cpumask_var(rd->dlo_mask);
5803 	free_cpumask_var(rd->rto_mask);
5804 	free_cpumask_var(rd->online);
5805 	free_cpumask_var(rd->span);
5806 	kfree(rd);
5807 }
5808 
5809 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5810 {
5811 	struct root_domain *old_rd = NULL;
5812 	unsigned long flags;
5813 
5814 	raw_spin_lock_irqsave(&rq->lock, flags);
5815 
5816 	if (rq->rd) {
5817 		old_rd = rq->rd;
5818 
5819 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5820 			set_rq_offline(rq);
5821 
5822 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5823 
5824 		/*
5825 		 * If we dont want to free the old_rd yet then
5826 		 * set old_rd to NULL to skip the freeing later
5827 		 * in this function:
5828 		 */
5829 		if (!atomic_dec_and_test(&old_rd->refcount))
5830 			old_rd = NULL;
5831 	}
5832 
5833 	atomic_inc(&rd->refcount);
5834 	rq->rd = rd;
5835 
5836 	cpumask_set_cpu(rq->cpu, rd->span);
5837 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5838 		set_rq_online(rq);
5839 
5840 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5841 
5842 	if (old_rd)
5843 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5844 }
5845 
5846 static int init_rootdomain(struct root_domain *rd)
5847 {
5848 	memset(rd, 0, sizeof(*rd));
5849 
5850 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5851 		goto out;
5852 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5853 		goto free_span;
5854 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5855 		goto free_online;
5856 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5857 		goto free_dlo_mask;
5858 
5859 	init_dl_bw(&rd->dl_bw);
5860 	if (cpudl_init(&rd->cpudl) != 0)
5861 		goto free_dlo_mask;
5862 
5863 	if (cpupri_init(&rd->cpupri) != 0)
5864 		goto free_rto_mask;
5865 	return 0;
5866 
5867 free_rto_mask:
5868 	free_cpumask_var(rd->rto_mask);
5869 free_dlo_mask:
5870 	free_cpumask_var(rd->dlo_mask);
5871 free_online:
5872 	free_cpumask_var(rd->online);
5873 free_span:
5874 	free_cpumask_var(rd->span);
5875 out:
5876 	return -ENOMEM;
5877 }
5878 
5879 /*
5880  * By default the system creates a single root-domain with all cpus as
5881  * members (mimicking the global state we have today).
5882  */
5883 struct root_domain def_root_domain;
5884 
5885 static void init_defrootdomain(void)
5886 {
5887 	init_rootdomain(&def_root_domain);
5888 
5889 	atomic_set(&def_root_domain.refcount, 1);
5890 }
5891 
5892 static struct root_domain *alloc_rootdomain(void)
5893 {
5894 	struct root_domain *rd;
5895 
5896 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5897 	if (!rd)
5898 		return NULL;
5899 
5900 	if (init_rootdomain(rd) != 0) {
5901 		kfree(rd);
5902 		return NULL;
5903 	}
5904 
5905 	return rd;
5906 }
5907 
5908 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5909 {
5910 	struct sched_group *tmp, *first;
5911 
5912 	if (!sg)
5913 		return;
5914 
5915 	first = sg;
5916 	do {
5917 		tmp = sg->next;
5918 
5919 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5920 			kfree(sg->sgc);
5921 
5922 		kfree(sg);
5923 		sg = tmp;
5924 	} while (sg != first);
5925 }
5926 
5927 static void free_sched_domain(struct rcu_head *rcu)
5928 {
5929 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5930 
5931 	/*
5932 	 * If its an overlapping domain it has private groups, iterate and
5933 	 * nuke them all.
5934 	 */
5935 	if (sd->flags & SD_OVERLAP) {
5936 		free_sched_groups(sd->groups, 1);
5937 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5938 		kfree(sd->groups->sgc);
5939 		kfree(sd->groups);
5940 	}
5941 	kfree(sd);
5942 }
5943 
5944 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5945 {
5946 	call_rcu(&sd->rcu, free_sched_domain);
5947 }
5948 
5949 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5950 {
5951 	for (; sd; sd = sd->parent)
5952 		destroy_sched_domain(sd, cpu);
5953 }
5954 
5955 /*
5956  * Keep a special pointer to the highest sched_domain that has
5957  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5958  * allows us to avoid some pointer chasing select_idle_sibling().
5959  *
5960  * Also keep a unique ID per domain (we use the first cpu number in
5961  * the cpumask of the domain), this allows us to quickly tell if
5962  * two cpus are in the same cache domain, see cpus_share_cache().
5963  */
5964 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5965 DEFINE_PER_CPU(int, sd_llc_size);
5966 DEFINE_PER_CPU(int, sd_llc_id);
5967 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5968 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5969 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5970 
5971 static void update_top_cache_domain(int cpu)
5972 {
5973 	struct sched_domain *sd;
5974 	struct sched_domain *busy_sd = NULL;
5975 	int id = cpu;
5976 	int size = 1;
5977 
5978 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5979 	if (sd) {
5980 		id = cpumask_first(sched_domain_span(sd));
5981 		size = cpumask_weight(sched_domain_span(sd));
5982 		busy_sd = sd->parent; /* sd_busy */
5983 	}
5984 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5985 
5986 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5987 	per_cpu(sd_llc_size, cpu) = size;
5988 	per_cpu(sd_llc_id, cpu) = id;
5989 
5990 	sd = lowest_flag_domain(cpu, SD_NUMA);
5991 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5992 
5993 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5994 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5995 }
5996 
5997 /*
5998  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5999  * hold the hotplug lock.
6000  */
6001 static void
6002 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6003 {
6004 	struct rq *rq = cpu_rq(cpu);
6005 	struct sched_domain *tmp;
6006 
6007 	/* Remove the sched domains which do not contribute to scheduling. */
6008 	for (tmp = sd; tmp; ) {
6009 		struct sched_domain *parent = tmp->parent;
6010 		if (!parent)
6011 			break;
6012 
6013 		if (sd_parent_degenerate(tmp, parent)) {
6014 			tmp->parent = parent->parent;
6015 			if (parent->parent)
6016 				parent->parent->child = tmp;
6017 			/*
6018 			 * Transfer SD_PREFER_SIBLING down in case of a
6019 			 * degenerate parent; the spans match for this
6020 			 * so the property transfers.
6021 			 */
6022 			if (parent->flags & SD_PREFER_SIBLING)
6023 				tmp->flags |= SD_PREFER_SIBLING;
6024 			destroy_sched_domain(parent, cpu);
6025 		} else
6026 			tmp = tmp->parent;
6027 	}
6028 
6029 	if (sd && sd_degenerate(sd)) {
6030 		tmp = sd;
6031 		sd = sd->parent;
6032 		destroy_sched_domain(tmp, cpu);
6033 		if (sd)
6034 			sd->child = NULL;
6035 	}
6036 
6037 	sched_domain_debug(sd, cpu);
6038 
6039 	rq_attach_root(rq, rd);
6040 	tmp = rq->sd;
6041 	rcu_assign_pointer(rq->sd, sd);
6042 	destroy_sched_domains(tmp, cpu);
6043 
6044 	update_top_cache_domain(cpu);
6045 }
6046 
6047 /* Setup the mask of cpus configured for isolated domains */
6048 static int __init isolated_cpu_setup(char *str)
6049 {
6050 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6051 	cpulist_parse(str, cpu_isolated_map);
6052 	return 1;
6053 }
6054 
6055 __setup("isolcpus=", isolated_cpu_setup);
6056 
6057 struct s_data {
6058 	struct sched_domain ** __percpu sd;
6059 	struct root_domain	*rd;
6060 };
6061 
6062 enum s_alloc {
6063 	sa_rootdomain,
6064 	sa_sd,
6065 	sa_sd_storage,
6066 	sa_none,
6067 };
6068 
6069 /*
6070  * Build an iteration mask that can exclude certain CPUs from the upwards
6071  * domain traversal.
6072  *
6073  * Asymmetric node setups can result in situations where the domain tree is of
6074  * unequal depth, make sure to skip domains that already cover the entire
6075  * range.
6076  *
6077  * In that case build_sched_domains() will have terminated the iteration early
6078  * and our sibling sd spans will be empty. Domains should always include the
6079  * cpu they're built on, so check that.
6080  *
6081  */
6082 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6083 {
6084 	const struct cpumask *span = sched_domain_span(sd);
6085 	struct sd_data *sdd = sd->private;
6086 	struct sched_domain *sibling;
6087 	int i;
6088 
6089 	for_each_cpu(i, span) {
6090 		sibling = *per_cpu_ptr(sdd->sd, i);
6091 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6092 			continue;
6093 
6094 		cpumask_set_cpu(i, sched_group_mask(sg));
6095 	}
6096 }
6097 
6098 /*
6099  * Return the canonical balance cpu for this group, this is the first cpu
6100  * of this group that's also in the iteration mask.
6101  */
6102 int group_balance_cpu(struct sched_group *sg)
6103 {
6104 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6105 }
6106 
6107 static int
6108 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6109 {
6110 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6111 	const struct cpumask *span = sched_domain_span(sd);
6112 	struct cpumask *covered = sched_domains_tmpmask;
6113 	struct sd_data *sdd = sd->private;
6114 	struct sched_domain *sibling;
6115 	int i;
6116 
6117 	cpumask_clear(covered);
6118 
6119 	for_each_cpu(i, span) {
6120 		struct cpumask *sg_span;
6121 
6122 		if (cpumask_test_cpu(i, covered))
6123 			continue;
6124 
6125 		sibling = *per_cpu_ptr(sdd->sd, i);
6126 
6127 		/* See the comment near build_group_mask(). */
6128 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6129 			continue;
6130 
6131 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6132 				GFP_KERNEL, cpu_to_node(cpu));
6133 
6134 		if (!sg)
6135 			goto fail;
6136 
6137 		sg_span = sched_group_cpus(sg);
6138 		if (sibling->child)
6139 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6140 		else
6141 			cpumask_set_cpu(i, sg_span);
6142 
6143 		cpumask_or(covered, covered, sg_span);
6144 
6145 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6146 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6147 			build_group_mask(sd, sg);
6148 
6149 		/*
6150 		 * Initialize sgc->capacity such that even if we mess up the
6151 		 * domains and no possible iteration will get us here, we won't
6152 		 * die on a /0 trap.
6153 		 */
6154 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6155 
6156 		/*
6157 		 * Make sure the first group of this domain contains the
6158 		 * canonical balance cpu. Otherwise the sched_domain iteration
6159 		 * breaks. See update_sg_lb_stats().
6160 		 */
6161 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6162 		    group_balance_cpu(sg) == cpu)
6163 			groups = sg;
6164 
6165 		if (!first)
6166 			first = sg;
6167 		if (last)
6168 			last->next = sg;
6169 		last = sg;
6170 		last->next = first;
6171 	}
6172 	sd->groups = groups;
6173 
6174 	return 0;
6175 
6176 fail:
6177 	free_sched_groups(first, 0);
6178 
6179 	return -ENOMEM;
6180 }
6181 
6182 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6183 {
6184 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6185 	struct sched_domain *child = sd->child;
6186 
6187 	if (child)
6188 		cpu = cpumask_first(sched_domain_span(child));
6189 
6190 	if (sg) {
6191 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6192 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6193 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6194 	}
6195 
6196 	return cpu;
6197 }
6198 
6199 /*
6200  * build_sched_groups will build a circular linked list of the groups
6201  * covered by the given span, and will set each group's ->cpumask correctly,
6202  * and ->cpu_capacity to 0.
6203  *
6204  * Assumes the sched_domain tree is fully constructed
6205  */
6206 static int
6207 build_sched_groups(struct sched_domain *sd, int cpu)
6208 {
6209 	struct sched_group *first = NULL, *last = NULL;
6210 	struct sd_data *sdd = sd->private;
6211 	const struct cpumask *span = sched_domain_span(sd);
6212 	struct cpumask *covered;
6213 	int i;
6214 
6215 	get_group(cpu, sdd, &sd->groups);
6216 	atomic_inc(&sd->groups->ref);
6217 
6218 	if (cpu != cpumask_first(span))
6219 		return 0;
6220 
6221 	lockdep_assert_held(&sched_domains_mutex);
6222 	covered = sched_domains_tmpmask;
6223 
6224 	cpumask_clear(covered);
6225 
6226 	for_each_cpu(i, span) {
6227 		struct sched_group *sg;
6228 		int group, j;
6229 
6230 		if (cpumask_test_cpu(i, covered))
6231 			continue;
6232 
6233 		group = get_group(i, sdd, &sg);
6234 		cpumask_setall(sched_group_mask(sg));
6235 
6236 		for_each_cpu(j, span) {
6237 			if (get_group(j, sdd, NULL) != group)
6238 				continue;
6239 
6240 			cpumask_set_cpu(j, covered);
6241 			cpumask_set_cpu(j, sched_group_cpus(sg));
6242 		}
6243 
6244 		if (!first)
6245 			first = sg;
6246 		if (last)
6247 			last->next = sg;
6248 		last = sg;
6249 	}
6250 	last->next = first;
6251 
6252 	return 0;
6253 }
6254 
6255 /*
6256  * Initialize sched groups cpu_capacity.
6257  *
6258  * cpu_capacity indicates the capacity of sched group, which is used while
6259  * distributing the load between different sched groups in a sched domain.
6260  * Typically cpu_capacity for all the groups in a sched domain will be same
6261  * unless there are asymmetries in the topology. If there are asymmetries,
6262  * group having more cpu_capacity will pickup more load compared to the
6263  * group having less cpu_capacity.
6264  */
6265 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6266 {
6267 	struct sched_group *sg = sd->groups;
6268 
6269 	WARN_ON(!sg);
6270 
6271 	do {
6272 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6273 		sg = sg->next;
6274 	} while (sg != sd->groups);
6275 
6276 	if (cpu != group_balance_cpu(sg))
6277 		return;
6278 
6279 	update_group_capacity(sd, cpu);
6280 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6281 }
6282 
6283 /*
6284  * Initializers for schedule domains
6285  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6286  */
6287 
6288 static int default_relax_domain_level = -1;
6289 int sched_domain_level_max;
6290 
6291 static int __init setup_relax_domain_level(char *str)
6292 {
6293 	if (kstrtoint(str, 0, &default_relax_domain_level))
6294 		pr_warn("Unable to set relax_domain_level\n");
6295 
6296 	return 1;
6297 }
6298 __setup("relax_domain_level=", setup_relax_domain_level);
6299 
6300 static void set_domain_attribute(struct sched_domain *sd,
6301 				 struct sched_domain_attr *attr)
6302 {
6303 	int request;
6304 
6305 	if (!attr || attr->relax_domain_level < 0) {
6306 		if (default_relax_domain_level < 0)
6307 			return;
6308 		else
6309 			request = default_relax_domain_level;
6310 	} else
6311 		request = attr->relax_domain_level;
6312 	if (request < sd->level) {
6313 		/* turn off idle balance on this domain */
6314 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6315 	} else {
6316 		/* turn on idle balance on this domain */
6317 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6318 	}
6319 }
6320 
6321 static void __sdt_free(const struct cpumask *cpu_map);
6322 static int __sdt_alloc(const struct cpumask *cpu_map);
6323 
6324 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6325 				 const struct cpumask *cpu_map)
6326 {
6327 	switch (what) {
6328 	case sa_rootdomain:
6329 		if (!atomic_read(&d->rd->refcount))
6330 			free_rootdomain(&d->rd->rcu); /* fall through */
6331 	case sa_sd:
6332 		free_percpu(d->sd); /* fall through */
6333 	case sa_sd_storage:
6334 		__sdt_free(cpu_map); /* fall through */
6335 	case sa_none:
6336 		break;
6337 	}
6338 }
6339 
6340 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6341 						   const struct cpumask *cpu_map)
6342 {
6343 	memset(d, 0, sizeof(*d));
6344 
6345 	if (__sdt_alloc(cpu_map))
6346 		return sa_sd_storage;
6347 	d->sd = alloc_percpu(struct sched_domain *);
6348 	if (!d->sd)
6349 		return sa_sd_storage;
6350 	d->rd = alloc_rootdomain();
6351 	if (!d->rd)
6352 		return sa_sd;
6353 	return sa_rootdomain;
6354 }
6355 
6356 /*
6357  * NULL the sd_data elements we've used to build the sched_domain and
6358  * sched_group structure so that the subsequent __free_domain_allocs()
6359  * will not free the data we're using.
6360  */
6361 static void claim_allocations(int cpu, struct sched_domain *sd)
6362 {
6363 	struct sd_data *sdd = sd->private;
6364 
6365 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6366 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6367 
6368 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6369 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6370 
6371 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6372 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6373 }
6374 
6375 #ifdef CONFIG_NUMA
6376 static int sched_domains_numa_levels;
6377 enum numa_topology_type sched_numa_topology_type;
6378 static int *sched_domains_numa_distance;
6379 int sched_max_numa_distance;
6380 static struct cpumask ***sched_domains_numa_masks;
6381 static int sched_domains_curr_level;
6382 #endif
6383 
6384 /*
6385  * SD_flags allowed in topology descriptions.
6386  *
6387  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6388  * SD_SHARE_PKG_RESOURCES - describes shared caches
6389  * SD_NUMA                - describes NUMA topologies
6390  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6391  *
6392  * Odd one out:
6393  * SD_ASYM_PACKING        - describes SMT quirks
6394  */
6395 #define TOPOLOGY_SD_FLAGS		\
6396 	(SD_SHARE_CPUCAPACITY |		\
6397 	 SD_SHARE_PKG_RESOURCES |	\
6398 	 SD_NUMA |			\
6399 	 SD_ASYM_PACKING |		\
6400 	 SD_SHARE_POWERDOMAIN)
6401 
6402 static struct sched_domain *
6403 sd_init(struct sched_domain_topology_level *tl, int cpu)
6404 {
6405 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6406 	int sd_weight, sd_flags = 0;
6407 
6408 #ifdef CONFIG_NUMA
6409 	/*
6410 	 * Ugly hack to pass state to sd_numa_mask()...
6411 	 */
6412 	sched_domains_curr_level = tl->numa_level;
6413 #endif
6414 
6415 	sd_weight = cpumask_weight(tl->mask(cpu));
6416 
6417 	if (tl->sd_flags)
6418 		sd_flags = (*tl->sd_flags)();
6419 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6420 			"wrong sd_flags in topology description\n"))
6421 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6422 
6423 	*sd = (struct sched_domain){
6424 		.min_interval		= sd_weight,
6425 		.max_interval		= 2*sd_weight,
6426 		.busy_factor		= 32,
6427 		.imbalance_pct		= 125,
6428 
6429 		.cache_nice_tries	= 0,
6430 		.busy_idx		= 0,
6431 		.idle_idx		= 0,
6432 		.newidle_idx		= 0,
6433 		.wake_idx		= 0,
6434 		.forkexec_idx		= 0,
6435 
6436 		.flags			= 1*SD_LOAD_BALANCE
6437 					| 1*SD_BALANCE_NEWIDLE
6438 					| 1*SD_BALANCE_EXEC
6439 					| 1*SD_BALANCE_FORK
6440 					| 0*SD_BALANCE_WAKE
6441 					| 1*SD_WAKE_AFFINE
6442 					| 0*SD_SHARE_CPUCAPACITY
6443 					| 0*SD_SHARE_PKG_RESOURCES
6444 					| 0*SD_SERIALIZE
6445 					| 0*SD_PREFER_SIBLING
6446 					| 0*SD_NUMA
6447 					| sd_flags
6448 					,
6449 
6450 		.last_balance		= jiffies,
6451 		.balance_interval	= sd_weight,
6452 		.smt_gain		= 0,
6453 		.max_newidle_lb_cost	= 0,
6454 		.next_decay_max_lb_cost	= jiffies,
6455 #ifdef CONFIG_SCHED_DEBUG
6456 		.name			= tl->name,
6457 #endif
6458 	};
6459 
6460 	/*
6461 	 * Convert topological properties into behaviour.
6462 	 */
6463 
6464 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6465 		sd->flags |= SD_PREFER_SIBLING;
6466 		sd->imbalance_pct = 110;
6467 		sd->smt_gain = 1178; /* ~15% */
6468 
6469 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6470 		sd->imbalance_pct = 117;
6471 		sd->cache_nice_tries = 1;
6472 		sd->busy_idx = 2;
6473 
6474 #ifdef CONFIG_NUMA
6475 	} else if (sd->flags & SD_NUMA) {
6476 		sd->cache_nice_tries = 2;
6477 		sd->busy_idx = 3;
6478 		sd->idle_idx = 2;
6479 
6480 		sd->flags |= SD_SERIALIZE;
6481 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6482 			sd->flags &= ~(SD_BALANCE_EXEC |
6483 				       SD_BALANCE_FORK |
6484 				       SD_WAKE_AFFINE);
6485 		}
6486 
6487 #endif
6488 	} else {
6489 		sd->flags |= SD_PREFER_SIBLING;
6490 		sd->cache_nice_tries = 1;
6491 		sd->busy_idx = 2;
6492 		sd->idle_idx = 1;
6493 	}
6494 
6495 	sd->private = &tl->data;
6496 
6497 	return sd;
6498 }
6499 
6500 /*
6501  * Topology list, bottom-up.
6502  */
6503 static struct sched_domain_topology_level default_topology[] = {
6504 #ifdef CONFIG_SCHED_SMT
6505 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6506 #endif
6507 #ifdef CONFIG_SCHED_MC
6508 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6509 #endif
6510 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6511 	{ NULL, },
6512 };
6513 
6514 static struct sched_domain_topology_level *sched_domain_topology =
6515 	default_topology;
6516 
6517 #define for_each_sd_topology(tl)			\
6518 	for (tl = sched_domain_topology; tl->mask; tl++)
6519 
6520 void set_sched_topology(struct sched_domain_topology_level *tl)
6521 {
6522 	sched_domain_topology = tl;
6523 }
6524 
6525 #ifdef CONFIG_NUMA
6526 
6527 static const struct cpumask *sd_numa_mask(int cpu)
6528 {
6529 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6530 }
6531 
6532 static void sched_numa_warn(const char *str)
6533 {
6534 	static int done = false;
6535 	int i,j;
6536 
6537 	if (done)
6538 		return;
6539 
6540 	done = true;
6541 
6542 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6543 
6544 	for (i = 0; i < nr_node_ids; i++) {
6545 		printk(KERN_WARNING "  ");
6546 		for (j = 0; j < nr_node_ids; j++)
6547 			printk(KERN_CONT "%02d ", node_distance(i,j));
6548 		printk(KERN_CONT "\n");
6549 	}
6550 	printk(KERN_WARNING "\n");
6551 }
6552 
6553 bool find_numa_distance(int distance)
6554 {
6555 	int i;
6556 
6557 	if (distance == node_distance(0, 0))
6558 		return true;
6559 
6560 	for (i = 0; i < sched_domains_numa_levels; i++) {
6561 		if (sched_domains_numa_distance[i] == distance)
6562 			return true;
6563 	}
6564 
6565 	return false;
6566 }
6567 
6568 /*
6569  * A system can have three types of NUMA topology:
6570  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6571  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6572  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6573  *
6574  * The difference between a glueless mesh topology and a backplane
6575  * topology lies in whether communication between not directly
6576  * connected nodes goes through intermediary nodes (where programs
6577  * could run), or through backplane controllers. This affects
6578  * placement of programs.
6579  *
6580  * The type of topology can be discerned with the following tests:
6581  * - If the maximum distance between any nodes is 1 hop, the system
6582  *   is directly connected.
6583  * - If for two nodes A and B, located N > 1 hops away from each other,
6584  *   there is an intermediary node C, which is < N hops away from both
6585  *   nodes A and B, the system is a glueless mesh.
6586  */
6587 static void init_numa_topology_type(void)
6588 {
6589 	int a, b, c, n;
6590 
6591 	n = sched_max_numa_distance;
6592 
6593 	if (sched_domains_numa_levels <= 1) {
6594 		sched_numa_topology_type = NUMA_DIRECT;
6595 		return;
6596 	}
6597 
6598 	for_each_online_node(a) {
6599 		for_each_online_node(b) {
6600 			/* Find two nodes furthest removed from each other. */
6601 			if (node_distance(a, b) < n)
6602 				continue;
6603 
6604 			/* Is there an intermediary node between a and b? */
6605 			for_each_online_node(c) {
6606 				if (node_distance(a, c) < n &&
6607 				    node_distance(b, c) < n) {
6608 					sched_numa_topology_type =
6609 							NUMA_GLUELESS_MESH;
6610 					return;
6611 				}
6612 			}
6613 
6614 			sched_numa_topology_type = NUMA_BACKPLANE;
6615 			return;
6616 		}
6617 	}
6618 }
6619 
6620 static void sched_init_numa(void)
6621 {
6622 	int next_distance, curr_distance = node_distance(0, 0);
6623 	struct sched_domain_topology_level *tl;
6624 	int level = 0;
6625 	int i, j, k;
6626 
6627 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6628 	if (!sched_domains_numa_distance)
6629 		return;
6630 
6631 	/*
6632 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6633 	 * unique distances in the node_distance() table.
6634 	 *
6635 	 * Assumes node_distance(0,j) includes all distances in
6636 	 * node_distance(i,j) in order to avoid cubic time.
6637 	 */
6638 	next_distance = curr_distance;
6639 	for (i = 0; i < nr_node_ids; i++) {
6640 		for (j = 0; j < nr_node_ids; j++) {
6641 			for (k = 0; k < nr_node_ids; k++) {
6642 				int distance = node_distance(i, k);
6643 
6644 				if (distance > curr_distance &&
6645 				    (distance < next_distance ||
6646 				     next_distance == curr_distance))
6647 					next_distance = distance;
6648 
6649 				/*
6650 				 * While not a strong assumption it would be nice to know
6651 				 * about cases where if node A is connected to B, B is not
6652 				 * equally connected to A.
6653 				 */
6654 				if (sched_debug() && node_distance(k, i) != distance)
6655 					sched_numa_warn("Node-distance not symmetric");
6656 
6657 				if (sched_debug() && i && !find_numa_distance(distance))
6658 					sched_numa_warn("Node-0 not representative");
6659 			}
6660 			if (next_distance != curr_distance) {
6661 				sched_domains_numa_distance[level++] = next_distance;
6662 				sched_domains_numa_levels = level;
6663 				curr_distance = next_distance;
6664 			} else break;
6665 		}
6666 
6667 		/*
6668 		 * In case of sched_debug() we verify the above assumption.
6669 		 */
6670 		if (!sched_debug())
6671 			break;
6672 	}
6673 
6674 	if (!level)
6675 		return;
6676 
6677 	/*
6678 	 * 'level' contains the number of unique distances, excluding the
6679 	 * identity distance node_distance(i,i).
6680 	 *
6681 	 * The sched_domains_numa_distance[] array includes the actual distance
6682 	 * numbers.
6683 	 */
6684 
6685 	/*
6686 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6687 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6688 	 * the array will contain less then 'level' members. This could be
6689 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6690 	 * in other functions.
6691 	 *
6692 	 * We reset it to 'level' at the end of this function.
6693 	 */
6694 	sched_domains_numa_levels = 0;
6695 
6696 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6697 	if (!sched_domains_numa_masks)
6698 		return;
6699 
6700 	/*
6701 	 * Now for each level, construct a mask per node which contains all
6702 	 * cpus of nodes that are that many hops away from us.
6703 	 */
6704 	for (i = 0; i < level; i++) {
6705 		sched_domains_numa_masks[i] =
6706 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6707 		if (!sched_domains_numa_masks[i])
6708 			return;
6709 
6710 		for (j = 0; j < nr_node_ids; j++) {
6711 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6712 			if (!mask)
6713 				return;
6714 
6715 			sched_domains_numa_masks[i][j] = mask;
6716 
6717 			for (k = 0; k < nr_node_ids; k++) {
6718 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6719 					continue;
6720 
6721 				cpumask_or(mask, mask, cpumask_of_node(k));
6722 			}
6723 		}
6724 	}
6725 
6726 	/* Compute default topology size */
6727 	for (i = 0; sched_domain_topology[i].mask; i++);
6728 
6729 	tl = kzalloc((i + level + 1) *
6730 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6731 	if (!tl)
6732 		return;
6733 
6734 	/*
6735 	 * Copy the default topology bits..
6736 	 */
6737 	for (i = 0; sched_domain_topology[i].mask; i++)
6738 		tl[i] = sched_domain_topology[i];
6739 
6740 	/*
6741 	 * .. and append 'j' levels of NUMA goodness.
6742 	 */
6743 	for (j = 0; j < level; i++, j++) {
6744 		tl[i] = (struct sched_domain_topology_level){
6745 			.mask = sd_numa_mask,
6746 			.sd_flags = cpu_numa_flags,
6747 			.flags = SDTL_OVERLAP,
6748 			.numa_level = j,
6749 			SD_INIT_NAME(NUMA)
6750 		};
6751 	}
6752 
6753 	sched_domain_topology = tl;
6754 
6755 	sched_domains_numa_levels = level;
6756 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6757 
6758 	init_numa_topology_type();
6759 }
6760 
6761 static void sched_domains_numa_masks_set(int cpu)
6762 {
6763 	int i, j;
6764 	int node = cpu_to_node(cpu);
6765 
6766 	for (i = 0; i < sched_domains_numa_levels; i++) {
6767 		for (j = 0; j < nr_node_ids; j++) {
6768 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6769 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6770 		}
6771 	}
6772 }
6773 
6774 static void sched_domains_numa_masks_clear(int cpu)
6775 {
6776 	int i, j;
6777 	for (i = 0; i < sched_domains_numa_levels; i++) {
6778 		for (j = 0; j < nr_node_ids; j++)
6779 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6780 	}
6781 }
6782 
6783 /*
6784  * Update sched_domains_numa_masks[level][node] array when new cpus
6785  * are onlined.
6786  */
6787 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6788 					   unsigned long action,
6789 					   void *hcpu)
6790 {
6791 	int cpu = (long)hcpu;
6792 
6793 	switch (action & ~CPU_TASKS_FROZEN) {
6794 	case CPU_ONLINE:
6795 		sched_domains_numa_masks_set(cpu);
6796 		break;
6797 
6798 	case CPU_DEAD:
6799 		sched_domains_numa_masks_clear(cpu);
6800 		break;
6801 
6802 	default:
6803 		return NOTIFY_DONE;
6804 	}
6805 
6806 	return NOTIFY_OK;
6807 }
6808 #else
6809 static inline void sched_init_numa(void)
6810 {
6811 }
6812 
6813 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6814 					   unsigned long action,
6815 					   void *hcpu)
6816 {
6817 	return 0;
6818 }
6819 #endif /* CONFIG_NUMA */
6820 
6821 static int __sdt_alloc(const struct cpumask *cpu_map)
6822 {
6823 	struct sched_domain_topology_level *tl;
6824 	int j;
6825 
6826 	for_each_sd_topology(tl) {
6827 		struct sd_data *sdd = &tl->data;
6828 
6829 		sdd->sd = alloc_percpu(struct sched_domain *);
6830 		if (!sdd->sd)
6831 			return -ENOMEM;
6832 
6833 		sdd->sg = alloc_percpu(struct sched_group *);
6834 		if (!sdd->sg)
6835 			return -ENOMEM;
6836 
6837 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6838 		if (!sdd->sgc)
6839 			return -ENOMEM;
6840 
6841 		for_each_cpu(j, cpu_map) {
6842 			struct sched_domain *sd;
6843 			struct sched_group *sg;
6844 			struct sched_group_capacity *sgc;
6845 
6846 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6847 					GFP_KERNEL, cpu_to_node(j));
6848 			if (!sd)
6849 				return -ENOMEM;
6850 
6851 			*per_cpu_ptr(sdd->sd, j) = sd;
6852 
6853 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6854 					GFP_KERNEL, cpu_to_node(j));
6855 			if (!sg)
6856 				return -ENOMEM;
6857 
6858 			sg->next = sg;
6859 
6860 			*per_cpu_ptr(sdd->sg, j) = sg;
6861 
6862 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6863 					GFP_KERNEL, cpu_to_node(j));
6864 			if (!sgc)
6865 				return -ENOMEM;
6866 
6867 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6868 		}
6869 	}
6870 
6871 	return 0;
6872 }
6873 
6874 static void __sdt_free(const struct cpumask *cpu_map)
6875 {
6876 	struct sched_domain_topology_level *tl;
6877 	int j;
6878 
6879 	for_each_sd_topology(tl) {
6880 		struct sd_data *sdd = &tl->data;
6881 
6882 		for_each_cpu(j, cpu_map) {
6883 			struct sched_domain *sd;
6884 
6885 			if (sdd->sd) {
6886 				sd = *per_cpu_ptr(sdd->sd, j);
6887 				if (sd && (sd->flags & SD_OVERLAP))
6888 					free_sched_groups(sd->groups, 0);
6889 				kfree(*per_cpu_ptr(sdd->sd, j));
6890 			}
6891 
6892 			if (sdd->sg)
6893 				kfree(*per_cpu_ptr(sdd->sg, j));
6894 			if (sdd->sgc)
6895 				kfree(*per_cpu_ptr(sdd->sgc, j));
6896 		}
6897 		free_percpu(sdd->sd);
6898 		sdd->sd = NULL;
6899 		free_percpu(sdd->sg);
6900 		sdd->sg = NULL;
6901 		free_percpu(sdd->sgc);
6902 		sdd->sgc = NULL;
6903 	}
6904 }
6905 
6906 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6907 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6908 		struct sched_domain *child, int cpu)
6909 {
6910 	struct sched_domain *sd = sd_init(tl, cpu);
6911 	if (!sd)
6912 		return child;
6913 
6914 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6915 	if (child) {
6916 		sd->level = child->level + 1;
6917 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6918 		child->parent = sd;
6919 		sd->child = child;
6920 
6921 		if (!cpumask_subset(sched_domain_span(child),
6922 				    sched_domain_span(sd))) {
6923 			pr_err("BUG: arch topology borken\n");
6924 #ifdef CONFIG_SCHED_DEBUG
6925 			pr_err("     the %s domain not a subset of the %s domain\n",
6926 					child->name, sd->name);
6927 #endif
6928 			/* Fixup, ensure @sd has at least @child cpus. */
6929 			cpumask_or(sched_domain_span(sd),
6930 				   sched_domain_span(sd),
6931 				   sched_domain_span(child));
6932 		}
6933 
6934 	}
6935 	set_domain_attribute(sd, attr);
6936 
6937 	return sd;
6938 }
6939 
6940 /*
6941  * Build sched domains for a given set of cpus and attach the sched domains
6942  * to the individual cpus
6943  */
6944 static int build_sched_domains(const struct cpumask *cpu_map,
6945 			       struct sched_domain_attr *attr)
6946 {
6947 	enum s_alloc alloc_state;
6948 	struct sched_domain *sd;
6949 	struct s_data d;
6950 	int i, ret = -ENOMEM;
6951 
6952 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6953 	if (alloc_state != sa_rootdomain)
6954 		goto error;
6955 
6956 	/* Set up domains for cpus specified by the cpu_map. */
6957 	for_each_cpu(i, cpu_map) {
6958 		struct sched_domain_topology_level *tl;
6959 
6960 		sd = NULL;
6961 		for_each_sd_topology(tl) {
6962 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6963 			if (tl == sched_domain_topology)
6964 				*per_cpu_ptr(d.sd, i) = sd;
6965 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6966 				sd->flags |= SD_OVERLAP;
6967 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6968 				break;
6969 		}
6970 	}
6971 
6972 	/* Build the groups for the domains */
6973 	for_each_cpu(i, cpu_map) {
6974 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6975 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6976 			if (sd->flags & SD_OVERLAP) {
6977 				if (build_overlap_sched_groups(sd, i))
6978 					goto error;
6979 			} else {
6980 				if (build_sched_groups(sd, i))
6981 					goto error;
6982 			}
6983 		}
6984 	}
6985 
6986 	/* Calculate CPU capacity for physical packages and nodes */
6987 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6988 		if (!cpumask_test_cpu(i, cpu_map))
6989 			continue;
6990 
6991 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6992 			claim_allocations(i, sd);
6993 			init_sched_groups_capacity(i, sd);
6994 		}
6995 	}
6996 
6997 	/* Attach the domains */
6998 	rcu_read_lock();
6999 	for_each_cpu(i, cpu_map) {
7000 		sd = *per_cpu_ptr(d.sd, i);
7001 		cpu_attach_domain(sd, d.rd, i);
7002 	}
7003 	rcu_read_unlock();
7004 
7005 	ret = 0;
7006 error:
7007 	__free_domain_allocs(&d, alloc_state, cpu_map);
7008 	return ret;
7009 }
7010 
7011 static cpumask_var_t *doms_cur;	/* current sched domains */
7012 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
7013 static struct sched_domain_attr *dattr_cur;
7014 				/* attribues of custom domains in 'doms_cur' */
7015 
7016 /*
7017  * Special case: If a kmalloc of a doms_cur partition (array of
7018  * cpumask) fails, then fallback to a single sched domain,
7019  * as determined by the single cpumask fallback_doms.
7020  */
7021 static cpumask_var_t fallback_doms;
7022 
7023 /*
7024  * arch_update_cpu_topology lets virtualized architectures update the
7025  * cpu core maps. It is supposed to return 1 if the topology changed
7026  * or 0 if it stayed the same.
7027  */
7028 int __weak arch_update_cpu_topology(void)
7029 {
7030 	return 0;
7031 }
7032 
7033 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7034 {
7035 	int i;
7036 	cpumask_var_t *doms;
7037 
7038 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7039 	if (!doms)
7040 		return NULL;
7041 	for (i = 0; i < ndoms; i++) {
7042 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7043 			free_sched_domains(doms, i);
7044 			return NULL;
7045 		}
7046 	}
7047 	return doms;
7048 }
7049 
7050 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7051 {
7052 	unsigned int i;
7053 	for (i = 0; i < ndoms; i++)
7054 		free_cpumask_var(doms[i]);
7055 	kfree(doms);
7056 }
7057 
7058 /*
7059  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7060  * For now this just excludes isolated cpus, but could be used to
7061  * exclude other special cases in the future.
7062  */
7063 static int init_sched_domains(const struct cpumask *cpu_map)
7064 {
7065 	int err;
7066 
7067 	arch_update_cpu_topology();
7068 	ndoms_cur = 1;
7069 	doms_cur = alloc_sched_domains(ndoms_cur);
7070 	if (!doms_cur)
7071 		doms_cur = &fallback_doms;
7072 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7073 	err = build_sched_domains(doms_cur[0], NULL);
7074 	register_sched_domain_sysctl();
7075 
7076 	return err;
7077 }
7078 
7079 /*
7080  * Detach sched domains from a group of cpus specified in cpu_map
7081  * These cpus will now be attached to the NULL domain
7082  */
7083 static void detach_destroy_domains(const struct cpumask *cpu_map)
7084 {
7085 	int i;
7086 
7087 	rcu_read_lock();
7088 	for_each_cpu(i, cpu_map)
7089 		cpu_attach_domain(NULL, &def_root_domain, i);
7090 	rcu_read_unlock();
7091 }
7092 
7093 /* handle null as "default" */
7094 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7095 			struct sched_domain_attr *new, int idx_new)
7096 {
7097 	struct sched_domain_attr tmp;
7098 
7099 	/* fast path */
7100 	if (!new && !cur)
7101 		return 1;
7102 
7103 	tmp = SD_ATTR_INIT;
7104 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7105 			new ? (new + idx_new) : &tmp,
7106 			sizeof(struct sched_domain_attr));
7107 }
7108 
7109 /*
7110  * Partition sched domains as specified by the 'ndoms_new'
7111  * cpumasks in the array doms_new[] of cpumasks. This compares
7112  * doms_new[] to the current sched domain partitioning, doms_cur[].
7113  * It destroys each deleted domain and builds each new domain.
7114  *
7115  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7116  * The masks don't intersect (don't overlap.) We should setup one
7117  * sched domain for each mask. CPUs not in any of the cpumasks will
7118  * not be load balanced. If the same cpumask appears both in the
7119  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7120  * it as it is.
7121  *
7122  * The passed in 'doms_new' should be allocated using
7123  * alloc_sched_domains.  This routine takes ownership of it and will
7124  * free_sched_domains it when done with it. If the caller failed the
7125  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7126  * and partition_sched_domains() will fallback to the single partition
7127  * 'fallback_doms', it also forces the domains to be rebuilt.
7128  *
7129  * If doms_new == NULL it will be replaced with cpu_online_mask.
7130  * ndoms_new == 0 is a special case for destroying existing domains,
7131  * and it will not create the default domain.
7132  *
7133  * Call with hotplug lock held
7134  */
7135 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7136 			     struct sched_domain_attr *dattr_new)
7137 {
7138 	int i, j, n;
7139 	int new_topology;
7140 
7141 	mutex_lock(&sched_domains_mutex);
7142 
7143 	/* always unregister in case we don't destroy any domains */
7144 	unregister_sched_domain_sysctl();
7145 
7146 	/* Let architecture update cpu core mappings. */
7147 	new_topology = arch_update_cpu_topology();
7148 
7149 	n = doms_new ? ndoms_new : 0;
7150 
7151 	/* Destroy deleted domains */
7152 	for (i = 0; i < ndoms_cur; i++) {
7153 		for (j = 0; j < n && !new_topology; j++) {
7154 			if (cpumask_equal(doms_cur[i], doms_new[j])
7155 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7156 				goto match1;
7157 		}
7158 		/* no match - a current sched domain not in new doms_new[] */
7159 		detach_destroy_domains(doms_cur[i]);
7160 match1:
7161 		;
7162 	}
7163 
7164 	n = ndoms_cur;
7165 	if (doms_new == NULL) {
7166 		n = 0;
7167 		doms_new = &fallback_doms;
7168 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7169 		WARN_ON_ONCE(dattr_new);
7170 	}
7171 
7172 	/* Build new domains */
7173 	for (i = 0; i < ndoms_new; i++) {
7174 		for (j = 0; j < n && !new_topology; j++) {
7175 			if (cpumask_equal(doms_new[i], doms_cur[j])
7176 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7177 				goto match2;
7178 		}
7179 		/* no match - add a new doms_new */
7180 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7181 match2:
7182 		;
7183 	}
7184 
7185 	/* Remember the new sched domains */
7186 	if (doms_cur != &fallback_doms)
7187 		free_sched_domains(doms_cur, ndoms_cur);
7188 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7189 	doms_cur = doms_new;
7190 	dattr_cur = dattr_new;
7191 	ndoms_cur = ndoms_new;
7192 
7193 	register_sched_domain_sysctl();
7194 
7195 	mutex_unlock(&sched_domains_mutex);
7196 }
7197 
7198 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7199 
7200 /*
7201  * Update cpusets according to cpu_active mask.  If cpusets are
7202  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7203  * around partition_sched_domains().
7204  *
7205  * If we come here as part of a suspend/resume, don't touch cpusets because we
7206  * want to restore it back to its original state upon resume anyway.
7207  */
7208 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7209 			     void *hcpu)
7210 {
7211 	switch (action) {
7212 	case CPU_ONLINE_FROZEN:
7213 	case CPU_DOWN_FAILED_FROZEN:
7214 
7215 		/*
7216 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7217 		 * resume sequence. As long as this is not the last online
7218 		 * operation in the resume sequence, just build a single sched
7219 		 * domain, ignoring cpusets.
7220 		 */
7221 		num_cpus_frozen--;
7222 		if (likely(num_cpus_frozen)) {
7223 			partition_sched_domains(1, NULL, NULL);
7224 			break;
7225 		}
7226 
7227 		/*
7228 		 * This is the last CPU online operation. So fall through and
7229 		 * restore the original sched domains by considering the
7230 		 * cpuset configurations.
7231 		 */
7232 
7233 	case CPU_ONLINE:
7234 		cpuset_update_active_cpus(true);
7235 		break;
7236 	default:
7237 		return NOTIFY_DONE;
7238 	}
7239 	return NOTIFY_OK;
7240 }
7241 
7242 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7243 			       void *hcpu)
7244 {
7245 	unsigned long flags;
7246 	long cpu = (long)hcpu;
7247 	struct dl_bw *dl_b;
7248 	bool overflow;
7249 	int cpus;
7250 
7251 	switch (action) {
7252 	case CPU_DOWN_PREPARE:
7253 		rcu_read_lock_sched();
7254 		dl_b = dl_bw_of(cpu);
7255 
7256 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7257 		cpus = dl_bw_cpus(cpu);
7258 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7259 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7260 
7261 		rcu_read_unlock_sched();
7262 
7263 		if (overflow)
7264 			return notifier_from_errno(-EBUSY);
7265 		cpuset_update_active_cpus(false);
7266 		break;
7267 	case CPU_DOWN_PREPARE_FROZEN:
7268 		num_cpus_frozen++;
7269 		partition_sched_domains(1, NULL, NULL);
7270 		break;
7271 	default:
7272 		return NOTIFY_DONE;
7273 	}
7274 	return NOTIFY_OK;
7275 }
7276 
7277 void __init sched_init_smp(void)
7278 {
7279 	cpumask_var_t non_isolated_cpus;
7280 
7281 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7282 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7283 
7284 	sched_init_numa();
7285 
7286 	/*
7287 	 * There's no userspace yet to cause hotplug operations; hence all the
7288 	 * cpu masks are stable and all blatant races in the below code cannot
7289 	 * happen.
7290 	 */
7291 	mutex_lock(&sched_domains_mutex);
7292 	init_sched_domains(cpu_active_mask);
7293 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7294 	if (cpumask_empty(non_isolated_cpus))
7295 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7296 	mutex_unlock(&sched_domains_mutex);
7297 
7298 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7299 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7300 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7301 
7302 	init_hrtick();
7303 
7304 	/* Move init over to a non-isolated CPU */
7305 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7306 		BUG();
7307 	sched_init_granularity();
7308 	free_cpumask_var(non_isolated_cpus);
7309 
7310 	init_sched_rt_class();
7311 	init_sched_dl_class();
7312 }
7313 #else
7314 void __init sched_init_smp(void)
7315 {
7316 	sched_init_granularity();
7317 }
7318 #endif /* CONFIG_SMP */
7319 
7320 int in_sched_functions(unsigned long addr)
7321 {
7322 	return in_lock_functions(addr) ||
7323 		(addr >= (unsigned long)__sched_text_start
7324 		&& addr < (unsigned long)__sched_text_end);
7325 }
7326 
7327 #ifdef CONFIG_CGROUP_SCHED
7328 /*
7329  * Default task group.
7330  * Every task in system belongs to this group at bootup.
7331  */
7332 struct task_group root_task_group;
7333 LIST_HEAD(task_groups);
7334 #endif
7335 
7336 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7337 
7338 void __init sched_init(void)
7339 {
7340 	int i, j;
7341 	unsigned long alloc_size = 0, ptr;
7342 
7343 #ifdef CONFIG_FAIR_GROUP_SCHED
7344 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7345 #endif
7346 #ifdef CONFIG_RT_GROUP_SCHED
7347 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7348 #endif
7349 	if (alloc_size) {
7350 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7351 
7352 #ifdef CONFIG_FAIR_GROUP_SCHED
7353 		root_task_group.se = (struct sched_entity **)ptr;
7354 		ptr += nr_cpu_ids * sizeof(void **);
7355 
7356 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7357 		ptr += nr_cpu_ids * sizeof(void **);
7358 
7359 #endif /* CONFIG_FAIR_GROUP_SCHED */
7360 #ifdef CONFIG_RT_GROUP_SCHED
7361 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7362 		ptr += nr_cpu_ids * sizeof(void **);
7363 
7364 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7365 		ptr += nr_cpu_ids * sizeof(void **);
7366 
7367 #endif /* CONFIG_RT_GROUP_SCHED */
7368 	}
7369 #ifdef CONFIG_CPUMASK_OFFSTACK
7370 	for_each_possible_cpu(i) {
7371 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7372 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7373 	}
7374 #endif /* CONFIG_CPUMASK_OFFSTACK */
7375 
7376 	init_rt_bandwidth(&def_rt_bandwidth,
7377 			global_rt_period(), global_rt_runtime());
7378 	init_dl_bandwidth(&def_dl_bandwidth,
7379 			global_rt_period(), global_rt_runtime());
7380 
7381 #ifdef CONFIG_SMP
7382 	init_defrootdomain();
7383 #endif
7384 
7385 #ifdef CONFIG_RT_GROUP_SCHED
7386 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7387 			global_rt_period(), global_rt_runtime());
7388 #endif /* CONFIG_RT_GROUP_SCHED */
7389 
7390 #ifdef CONFIG_CGROUP_SCHED
7391 	list_add(&root_task_group.list, &task_groups);
7392 	INIT_LIST_HEAD(&root_task_group.children);
7393 	INIT_LIST_HEAD(&root_task_group.siblings);
7394 	autogroup_init(&init_task);
7395 
7396 #endif /* CONFIG_CGROUP_SCHED */
7397 
7398 	for_each_possible_cpu(i) {
7399 		struct rq *rq;
7400 
7401 		rq = cpu_rq(i);
7402 		raw_spin_lock_init(&rq->lock);
7403 		rq->nr_running = 0;
7404 		rq->calc_load_active = 0;
7405 		rq->calc_load_update = jiffies + LOAD_FREQ;
7406 		init_cfs_rq(&rq->cfs);
7407 		init_rt_rq(&rq->rt);
7408 		init_dl_rq(&rq->dl);
7409 #ifdef CONFIG_FAIR_GROUP_SCHED
7410 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7411 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7412 		/*
7413 		 * How much cpu bandwidth does root_task_group get?
7414 		 *
7415 		 * In case of task-groups formed thr' the cgroup filesystem, it
7416 		 * gets 100% of the cpu resources in the system. This overall
7417 		 * system cpu resource is divided among the tasks of
7418 		 * root_task_group and its child task-groups in a fair manner,
7419 		 * based on each entity's (task or task-group's) weight
7420 		 * (se->load.weight).
7421 		 *
7422 		 * In other words, if root_task_group has 10 tasks of weight
7423 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7424 		 * then A0's share of the cpu resource is:
7425 		 *
7426 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7427 		 *
7428 		 * We achieve this by letting root_task_group's tasks sit
7429 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7430 		 */
7431 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7432 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7433 #endif /* CONFIG_FAIR_GROUP_SCHED */
7434 
7435 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7436 #ifdef CONFIG_RT_GROUP_SCHED
7437 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7438 #endif
7439 
7440 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7441 			rq->cpu_load[j] = 0;
7442 
7443 		rq->last_load_update_tick = jiffies;
7444 
7445 #ifdef CONFIG_SMP
7446 		rq->sd = NULL;
7447 		rq->rd = NULL;
7448 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7449 		rq->balance_callback = NULL;
7450 		rq->active_balance = 0;
7451 		rq->next_balance = jiffies;
7452 		rq->push_cpu = 0;
7453 		rq->cpu = i;
7454 		rq->online = 0;
7455 		rq->idle_stamp = 0;
7456 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7457 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7458 
7459 		INIT_LIST_HEAD(&rq->cfs_tasks);
7460 
7461 		rq_attach_root(rq, &def_root_domain);
7462 #ifdef CONFIG_NO_HZ_COMMON
7463 		rq->nohz_flags = 0;
7464 #endif
7465 #ifdef CONFIG_NO_HZ_FULL
7466 		rq->last_sched_tick = 0;
7467 #endif
7468 #endif
7469 		init_rq_hrtick(rq);
7470 		atomic_set(&rq->nr_iowait, 0);
7471 	}
7472 
7473 	set_load_weight(&init_task);
7474 
7475 #ifdef CONFIG_PREEMPT_NOTIFIERS
7476 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7477 #endif
7478 
7479 	/*
7480 	 * The boot idle thread does lazy MMU switching as well:
7481 	 */
7482 	atomic_inc(&init_mm.mm_count);
7483 	enter_lazy_tlb(&init_mm, current);
7484 
7485 	/*
7486 	 * During early bootup we pretend to be a normal task:
7487 	 */
7488 	current->sched_class = &fair_sched_class;
7489 
7490 	/*
7491 	 * Make us the idle thread. Technically, schedule() should not be
7492 	 * called from this thread, however somewhere below it might be,
7493 	 * but because we are the idle thread, we just pick up running again
7494 	 * when this runqueue becomes "idle".
7495 	 */
7496 	init_idle(current, smp_processor_id());
7497 
7498 	calc_load_update = jiffies + LOAD_FREQ;
7499 
7500 #ifdef CONFIG_SMP
7501 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7502 	/* May be allocated at isolcpus cmdline parse time */
7503 	if (cpu_isolated_map == NULL)
7504 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7505 	idle_thread_set_boot_cpu();
7506 	set_cpu_rq_start_time();
7507 #endif
7508 	init_sched_fair_class();
7509 
7510 	scheduler_running = 1;
7511 }
7512 
7513 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7514 static inline int preempt_count_equals(int preempt_offset)
7515 {
7516 	int nested = preempt_count() + rcu_preempt_depth();
7517 
7518 	return (nested == preempt_offset);
7519 }
7520 
7521 void __might_sleep(const char *file, int line, int preempt_offset)
7522 {
7523 	/*
7524 	 * Blocking primitives will set (and therefore destroy) current->state,
7525 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7526 	 * otherwise we will destroy state.
7527 	 */
7528 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7529 			"do not call blocking ops when !TASK_RUNNING; "
7530 			"state=%lx set at [<%p>] %pS\n",
7531 			current->state,
7532 			(void *)current->task_state_change,
7533 			(void *)current->task_state_change);
7534 
7535 	___might_sleep(file, line, preempt_offset);
7536 }
7537 EXPORT_SYMBOL(__might_sleep);
7538 
7539 void ___might_sleep(const char *file, int line, int preempt_offset)
7540 {
7541 	static unsigned long prev_jiffy;	/* ratelimiting */
7542 
7543 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7544 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7545 	     !is_idle_task(current)) ||
7546 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7547 		return;
7548 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7549 		return;
7550 	prev_jiffy = jiffies;
7551 
7552 	printk(KERN_ERR
7553 		"BUG: sleeping function called from invalid context at %s:%d\n",
7554 			file, line);
7555 	printk(KERN_ERR
7556 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7557 			in_atomic(), irqs_disabled(),
7558 			current->pid, current->comm);
7559 
7560 	if (task_stack_end_corrupted(current))
7561 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7562 
7563 	debug_show_held_locks(current);
7564 	if (irqs_disabled())
7565 		print_irqtrace_events(current);
7566 #ifdef CONFIG_DEBUG_PREEMPT
7567 	if (!preempt_count_equals(preempt_offset)) {
7568 		pr_err("Preemption disabled at:");
7569 		print_ip_sym(current->preempt_disable_ip);
7570 		pr_cont("\n");
7571 	}
7572 #endif
7573 	dump_stack();
7574 }
7575 EXPORT_SYMBOL(___might_sleep);
7576 #endif
7577 
7578 #ifdef CONFIG_MAGIC_SYSRQ
7579 void normalize_rt_tasks(void)
7580 {
7581 	struct task_struct *g, *p;
7582 	struct sched_attr attr = {
7583 		.sched_policy = SCHED_NORMAL,
7584 	};
7585 
7586 	read_lock(&tasklist_lock);
7587 	for_each_process_thread(g, p) {
7588 		/*
7589 		 * Only normalize user tasks:
7590 		 */
7591 		if (p->flags & PF_KTHREAD)
7592 			continue;
7593 
7594 		p->se.exec_start		= 0;
7595 #ifdef CONFIG_SCHEDSTATS
7596 		p->se.statistics.wait_start	= 0;
7597 		p->se.statistics.sleep_start	= 0;
7598 		p->se.statistics.block_start	= 0;
7599 #endif
7600 
7601 		if (!dl_task(p) && !rt_task(p)) {
7602 			/*
7603 			 * Renice negative nice level userspace
7604 			 * tasks back to 0:
7605 			 */
7606 			if (task_nice(p) < 0)
7607 				set_user_nice(p, 0);
7608 			continue;
7609 		}
7610 
7611 		__sched_setscheduler(p, &attr, false, false);
7612 	}
7613 	read_unlock(&tasklist_lock);
7614 }
7615 
7616 #endif /* CONFIG_MAGIC_SYSRQ */
7617 
7618 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7619 /*
7620  * These functions are only useful for the IA64 MCA handling, or kdb.
7621  *
7622  * They can only be called when the whole system has been
7623  * stopped - every CPU needs to be quiescent, and no scheduling
7624  * activity can take place. Using them for anything else would
7625  * be a serious bug, and as a result, they aren't even visible
7626  * under any other configuration.
7627  */
7628 
7629 /**
7630  * curr_task - return the current task for a given cpu.
7631  * @cpu: the processor in question.
7632  *
7633  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7634  *
7635  * Return: The current task for @cpu.
7636  */
7637 struct task_struct *curr_task(int cpu)
7638 {
7639 	return cpu_curr(cpu);
7640 }
7641 
7642 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7643 
7644 #ifdef CONFIG_IA64
7645 /**
7646  * set_curr_task - set the current task for a given cpu.
7647  * @cpu: the processor in question.
7648  * @p: the task pointer to set.
7649  *
7650  * Description: This function must only be used when non-maskable interrupts
7651  * are serviced on a separate stack. It allows the architecture to switch the
7652  * notion of the current task on a cpu in a non-blocking manner. This function
7653  * must be called with all CPU's synchronized, and interrupts disabled, the
7654  * and caller must save the original value of the current task (see
7655  * curr_task() above) and restore that value before reenabling interrupts and
7656  * re-starting the system.
7657  *
7658  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7659  */
7660 void set_curr_task(int cpu, struct task_struct *p)
7661 {
7662 	cpu_curr(cpu) = p;
7663 }
7664 
7665 #endif
7666 
7667 #ifdef CONFIG_CGROUP_SCHED
7668 /* task_group_lock serializes the addition/removal of task groups */
7669 static DEFINE_SPINLOCK(task_group_lock);
7670 
7671 static void free_sched_group(struct task_group *tg)
7672 {
7673 	free_fair_sched_group(tg);
7674 	free_rt_sched_group(tg);
7675 	autogroup_free(tg);
7676 	kfree(tg);
7677 }
7678 
7679 /* allocate runqueue etc for a new task group */
7680 struct task_group *sched_create_group(struct task_group *parent)
7681 {
7682 	struct task_group *tg;
7683 
7684 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7685 	if (!tg)
7686 		return ERR_PTR(-ENOMEM);
7687 
7688 	if (!alloc_fair_sched_group(tg, parent))
7689 		goto err;
7690 
7691 	if (!alloc_rt_sched_group(tg, parent))
7692 		goto err;
7693 
7694 	return tg;
7695 
7696 err:
7697 	free_sched_group(tg);
7698 	return ERR_PTR(-ENOMEM);
7699 }
7700 
7701 void sched_online_group(struct task_group *tg, struct task_group *parent)
7702 {
7703 	unsigned long flags;
7704 
7705 	spin_lock_irqsave(&task_group_lock, flags);
7706 	list_add_rcu(&tg->list, &task_groups);
7707 
7708 	WARN_ON(!parent); /* root should already exist */
7709 
7710 	tg->parent = parent;
7711 	INIT_LIST_HEAD(&tg->children);
7712 	list_add_rcu(&tg->siblings, &parent->children);
7713 	spin_unlock_irqrestore(&task_group_lock, flags);
7714 }
7715 
7716 /* rcu callback to free various structures associated with a task group */
7717 static void free_sched_group_rcu(struct rcu_head *rhp)
7718 {
7719 	/* now it should be safe to free those cfs_rqs */
7720 	free_sched_group(container_of(rhp, struct task_group, rcu));
7721 }
7722 
7723 /* Destroy runqueue etc associated with a task group */
7724 void sched_destroy_group(struct task_group *tg)
7725 {
7726 	/* wait for possible concurrent references to cfs_rqs complete */
7727 	call_rcu(&tg->rcu, free_sched_group_rcu);
7728 }
7729 
7730 void sched_offline_group(struct task_group *tg)
7731 {
7732 	unsigned long flags;
7733 	int i;
7734 
7735 	/* end participation in shares distribution */
7736 	for_each_possible_cpu(i)
7737 		unregister_fair_sched_group(tg, i);
7738 
7739 	spin_lock_irqsave(&task_group_lock, flags);
7740 	list_del_rcu(&tg->list);
7741 	list_del_rcu(&tg->siblings);
7742 	spin_unlock_irqrestore(&task_group_lock, flags);
7743 }
7744 
7745 /* change task's runqueue when it moves between groups.
7746  *	The caller of this function should have put the task in its new group
7747  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7748  *	reflect its new group.
7749  */
7750 void sched_move_task(struct task_struct *tsk)
7751 {
7752 	struct task_group *tg;
7753 	int queued, running;
7754 	unsigned long flags;
7755 	struct rq *rq;
7756 
7757 	rq = task_rq_lock(tsk, &flags);
7758 
7759 	running = task_current(rq, tsk);
7760 	queued = task_on_rq_queued(tsk);
7761 
7762 	if (queued)
7763 		dequeue_task(rq, tsk, DEQUEUE_SAVE);
7764 	if (unlikely(running))
7765 		put_prev_task(rq, tsk);
7766 
7767 	/*
7768 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7769 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7770 	 * to prevent lockdep warnings.
7771 	 */
7772 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7773 			  struct task_group, css);
7774 	tg = autogroup_task_group(tsk, tg);
7775 	tsk->sched_task_group = tg;
7776 
7777 #ifdef CONFIG_FAIR_GROUP_SCHED
7778 	if (tsk->sched_class->task_move_group)
7779 		tsk->sched_class->task_move_group(tsk);
7780 	else
7781 #endif
7782 		set_task_rq(tsk, task_cpu(tsk));
7783 
7784 	if (unlikely(running))
7785 		tsk->sched_class->set_curr_task(rq);
7786 	if (queued)
7787 		enqueue_task(rq, tsk, ENQUEUE_RESTORE);
7788 
7789 	task_rq_unlock(rq, tsk, &flags);
7790 }
7791 #endif /* CONFIG_CGROUP_SCHED */
7792 
7793 #ifdef CONFIG_RT_GROUP_SCHED
7794 /*
7795  * Ensure that the real time constraints are schedulable.
7796  */
7797 static DEFINE_MUTEX(rt_constraints_mutex);
7798 
7799 /* Must be called with tasklist_lock held */
7800 static inline int tg_has_rt_tasks(struct task_group *tg)
7801 {
7802 	struct task_struct *g, *p;
7803 
7804 	/*
7805 	 * Autogroups do not have RT tasks; see autogroup_create().
7806 	 */
7807 	if (task_group_is_autogroup(tg))
7808 		return 0;
7809 
7810 	for_each_process_thread(g, p) {
7811 		if (rt_task(p) && task_group(p) == tg)
7812 			return 1;
7813 	}
7814 
7815 	return 0;
7816 }
7817 
7818 struct rt_schedulable_data {
7819 	struct task_group *tg;
7820 	u64 rt_period;
7821 	u64 rt_runtime;
7822 };
7823 
7824 static int tg_rt_schedulable(struct task_group *tg, void *data)
7825 {
7826 	struct rt_schedulable_data *d = data;
7827 	struct task_group *child;
7828 	unsigned long total, sum = 0;
7829 	u64 period, runtime;
7830 
7831 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7832 	runtime = tg->rt_bandwidth.rt_runtime;
7833 
7834 	if (tg == d->tg) {
7835 		period = d->rt_period;
7836 		runtime = d->rt_runtime;
7837 	}
7838 
7839 	/*
7840 	 * Cannot have more runtime than the period.
7841 	 */
7842 	if (runtime > period && runtime != RUNTIME_INF)
7843 		return -EINVAL;
7844 
7845 	/*
7846 	 * Ensure we don't starve existing RT tasks.
7847 	 */
7848 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7849 		return -EBUSY;
7850 
7851 	total = to_ratio(period, runtime);
7852 
7853 	/*
7854 	 * Nobody can have more than the global setting allows.
7855 	 */
7856 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7857 		return -EINVAL;
7858 
7859 	/*
7860 	 * The sum of our children's runtime should not exceed our own.
7861 	 */
7862 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7863 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7864 		runtime = child->rt_bandwidth.rt_runtime;
7865 
7866 		if (child == d->tg) {
7867 			period = d->rt_period;
7868 			runtime = d->rt_runtime;
7869 		}
7870 
7871 		sum += to_ratio(period, runtime);
7872 	}
7873 
7874 	if (sum > total)
7875 		return -EINVAL;
7876 
7877 	return 0;
7878 }
7879 
7880 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7881 {
7882 	int ret;
7883 
7884 	struct rt_schedulable_data data = {
7885 		.tg = tg,
7886 		.rt_period = period,
7887 		.rt_runtime = runtime,
7888 	};
7889 
7890 	rcu_read_lock();
7891 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7892 	rcu_read_unlock();
7893 
7894 	return ret;
7895 }
7896 
7897 static int tg_set_rt_bandwidth(struct task_group *tg,
7898 		u64 rt_period, u64 rt_runtime)
7899 {
7900 	int i, err = 0;
7901 
7902 	/*
7903 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7904 	 * kernel creating (and or operating) RT threads.
7905 	 */
7906 	if (tg == &root_task_group && rt_runtime == 0)
7907 		return -EINVAL;
7908 
7909 	/* No period doesn't make any sense. */
7910 	if (rt_period == 0)
7911 		return -EINVAL;
7912 
7913 	mutex_lock(&rt_constraints_mutex);
7914 	read_lock(&tasklist_lock);
7915 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7916 	if (err)
7917 		goto unlock;
7918 
7919 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7920 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7921 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7922 
7923 	for_each_possible_cpu(i) {
7924 		struct rt_rq *rt_rq = tg->rt_rq[i];
7925 
7926 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7927 		rt_rq->rt_runtime = rt_runtime;
7928 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7929 	}
7930 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7931 unlock:
7932 	read_unlock(&tasklist_lock);
7933 	mutex_unlock(&rt_constraints_mutex);
7934 
7935 	return err;
7936 }
7937 
7938 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7939 {
7940 	u64 rt_runtime, rt_period;
7941 
7942 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7943 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7944 	if (rt_runtime_us < 0)
7945 		rt_runtime = RUNTIME_INF;
7946 
7947 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7948 }
7949 
7950 static long sched_group_rt_runtime(struct task_group *tg)
7951 {
7952 	u64 rt_runtime_us;
7953 
7954 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7955 		return -1;
7956 
7957 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7958 	do_div(rt_runtime_us, NSEC_PER_USEC);
7959 	return rt_runtime_us;
7960 }
7961 
7962 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7963 {
7964 	u64 rt_runtime, rt_period;
7965 
7966 	rt_period = rt_period_us * NSEC_PER_USEC;
7967 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7968 
7969 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7970 }
7971 
7972 static long sched_group_rt_period(struct task_group *tg)
7973 {
7974 	u64 rt_period_us;
7975 
7976 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7977 	do_div(rt_period_us, NSEC_PER_USEC);
7978 	return rt_period_us;
7979 }
7980 #endif /* CONFIG_RT_GROUP_SCHED */
7981 
7982 #ifdef CONFIG_RT_GROUP_SCHED
7983 static int sched_rt_global_constraints(void)
7984 {
7985 	int ret = 0;
7986 
7987 	mutex_lock(&rt_constraints_mutex);
7988 	read_lock(&tasklist_lock);
7989 	ret = __rt_schedulable(NULL, 0, 0);
7990 	read_unlock(&tasklist_lock);
7991 	mutex_unlock(&rt_constraints_mutex);
7992 
7993 	return ret;
7994 }
7995 
7996 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7997 {
7998 	/* Don't accept realtime tasks when there is no way for them to run */
7999 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8000 		return 0;
8001 
8002 	return 1;
8003 }
8004 
8005 #else /* !CONFIG_RT_GROUP_SCHED */
8006 static int sched_rt_global_constraints(void)
8007 {
8008 	unsigned long flags;
8009 	int i, ret = 0;
8010 
8011 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8012 	for_each_possible_cpu(i) {
8013 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8014 
8015 		raw_spin_lock(&rt_rq->rt_runtime_lock);
8016 		rt_rq->rt_runtime = global_rt_runtime();
8017 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
8018 	}
8019 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8020 
8021 	return ret;
8022 }
8023 #endif /* CONFIG_RT_GROUP_SCHED */
8024 
8025 static int sched_dl_global_validate(void)
8026 {
8027 	u64 runtime = global_rt_runtime();
8028 	u64 period = global_rt_period();
8029 	u64 new_bw = to_ratio(period, runtime);
8030 	struct dl_bw *dl_b;
8031 	int cpu, ret = 0;
8032 	unsigned long flags;
8033 
8034 	/*
8035 	 * Here we want to check the bandwidth not being set to some
8036 	 * value smaller than the currently allocated bandwidth in
8037 	 * any of the root_domains.
8038 	 *
8039 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8040 	 * cycling on root_domains... Discussion on different/better
8041 	 * solutions is welcome!
8042 	 */
8043 	for_each_possible_cpu(cpu) {
8044 		rcu_read_lock_sched();
8045 		dl_b = dl_bw_of(cpu);
8046 
8047 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8048 		if (new_bw < dl_b->total_bw)
8049 			ret = -EBUSY;
8050 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8051 
8052 		rcu_read_unlock_sched();
8053 
8054 		if (ret)
8055 			break;
8056 	}
8057 
8058 	return ret;
8059 }
8060 
8061 static void sched_dl_do_global(void)
8062 {
8063 	u64 new_bw = -1;
8064 	struct dl_bw *dl_b;
8065 	int cpu;
8066 	unsigned long flags;
8067 
8068 	def_dl_bandwidth.dl_period = global_rt_period();
8069 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
8070 
8071 	if (global_rt_runtime() != RUNTIME_INF)
8072 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8073 
8074 	/*
8075 	 * FIXME: As above...
8076 	 */
8077 	for_each_possible_cpu(cpu) {
8078 		rcu_read_lock_sched();
8079 		dl_b = dl_bw_of(cpu);
8080 
8081 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8082 		dl_b->bw = new_bw;
8083 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8084 
8085 		rcu_read_unlock_sched();
8086 	}
8087 }
8088 
8089 static int sched_rt_global_validate(void)
8090 {
8091 	if (sysctl_sched_rt_period <= 0)
8092 		return -EINVAL;
8093 
8094 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8095 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8096 		return -EINVAL;
8097 
8098 	return 0;
8099 }
8100 
8101 static void sched_rt_do_global(void)
8102 {
8103 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
8104 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8105 }
8106 
8107 int sched_rt_handler(struct ctl_table *table, int write,
8108 		void __user *buffer, size_t *lenp,
8109 		loff_t *ppos)
8110 {
8111 	int old_period, old_runtime;
8112 	static DEFINE_MUTEX(mutex);
8113 	int ret;
8114 
8115 	mutex_lock(&mutex);
8116 	old_period = sysctl_sched_rt_period;
8117 	old_runtime = sysctl_sched_rt_runtime;
8118 
8119 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8120 
8121 	if (!ret && write) {
8122 		ret = sched_rt_global_validate();
8123 		if (ret)
8124 			goto undo;
8125 
8126 		ret = sched_dl_global_validate();
8127 		if (ret)
8128 			goto undo;
8129 
8130 		ret = sched_rt_global_constraints();
8131 		if (ret)
8132 			goto undo;
8133 
8134 		sched_rt_do_global();
8135 		sched_dl_do_global();
8136 	}
8137 	if (0) {
8138 undo:
8139 		sysctl_sched_rt_period = old_period;
8140 		sysctl_sched_rt_runtime = old_runtime;
8141 	}
8142 	mutex_unlock(&mutex);
8143 
8144 	return ret;
8145 }
8146 
8147 int sched_rr_handler(struct ctl_table *table, int write,
8148 		void __user *buffer, size_t *lenp,
8149 		loff_t *ppos)
8150 {
8151 	int ret;
8152 	static DEFINE_MUTEX(mutex);
8153 
8154 	mutex_lock(&mutex);
8155 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8156 	/* make sure that internally we keep jiffies */
8157 	/* also, writing zero resets timeslice to default */
8158 	if (!ret && write) {
8159 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8160 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8161 	}
8162 	mutex_unlock(&mutex);
8163 	return ret;
8164 }
8165 
8166 #ifdef CONFIG_CGROUP_SCHED
8167 
8168 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8169 {
8170 	return css ? container_of(css, struct task_group, css) : NULL;
8171 }
8172 
8173 static struct cgroup_subsys_state *
8174 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8175 {
8176 	struct task_group *parent = css_tg(parent_css);
8177 	struct task_group *tg;
8178 
8179 	if (!parent) {
8180 		/* This is early initialization for the top cgroup */
8181 		return &root_task_group.css;
8182 	}
8183 
8184 	tg = sched_create_group(parent);
8185 	if (IS_ERR(tg))
8186 		return ERR_PTR(-ENOMEM);
8187 
8188 	return &tg->css;
8189 }
8190 
8191 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8192 {
8193 	struct task_group *tg = css_tg(css);
8194 	struct task_group *parent = css_tg(css->parent);
8195 
8196 	if (parent)
8197 		sched_online_group(tg, parent);
8198 	return 0;
8199 }
8200 
8201 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8202 {
8203 	struct task_group *tg = css_tg(css);
8204 
8205 	sched_destroy_group(tg);
8206 }
8207 
8208 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8209 {
8210 	struct task_group *tg = css_tg(css);
8211 
8212 	sched_offline_group(tg);
8213 }
8214 
8215 static void cpu_cgroup_fork(struct task_struct *task, void *private)
8216 {
8217 	sched_move_task(task);
8218 }
8219 
8220 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8221 				 struct cgroup_taskset *tset)
8222 {
8223 	struct task_struct *task;
8224 
8225 	cgroup_taskset_for_each(task, tset) {
8226 #ifdef CONFIG_RT_GROUP_SCHED
8227 		if (!sched_rt_can_attach(css_tg(css), task))
8228 			return -EINVAL;
8229 #else
8230 		/* We don't support RT-tasks being in separate groups */
8231 		if (task->sched_class != &fair_sched_class)
8232 			return -EINVAL;
8233 #endif
8234 	}
8235 	return 0;
8236 }
8237 
8238 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8239 			      struct cgroup_taskset *tset)
8240 {
8241 	struct task_struct *task;
8242 
8243 	cgroup_taskset_for_each(task, tset)
8244 		sched_move_task(task);
8245 }
8246 
8247 #ifdef CONFIG_FAIR_GROUP_SCHED
8248 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8249 				struct cftype *cftype, u64 shareval)
8250 {
8251 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8252 }
8253 
8254 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8255 			       struct cftype *cft)
8256 {
8257 	struct task_group *tg = css_tg(css);
8258 
8259 	return (u64) scale_load_down(tg->shares);
8260 }
8261 
8262 #ifdef CONFIG_CFS_BANDWIDTH
8263 static DEFINE_MUTEX(cfs_constraints_mutex);
8264 
8265 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8266 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8267 
8268 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8269 
8270 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8271 {
8272 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8273 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8274 
8275 	if (tg == &root_task_group)
8276 		return -EINVAL;
8277 
8278 	/*
8279 	 * Ensure we have at some amount of bandwidth every period.  This is
8280 	 * to prevent reaching a state of large arrears when throttled via
8281 	 * entity_tick() resulting in prolonged exit starvation.
8282 	 */
8283 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8284 		return -EINVAL;
8285 
8286 	/*
8287 	 * Likewise, bound things on the otherside by preventing insane quota
8288 	 * periods.  This also allows us to normalize in computing quota
8289 	 * feasibility.
8290 	 */
8291 	if (period > max_cfs_quota_period)
8292 		return -EINVAL;
8293 
8294 	/*
8295 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8296 	 * unthrottle_offline_cfs_rqs().
8297 	 */
8298 	get_online_cpus();
8299 	mutex_lock(&cfs_constraints_mutex);
8300 	ret = __cfs_schedulable(tg, period, quota);
8301 	if (ret)
8302 		goto out_unlock;
8303 
8304 	runtime_enabled = quota != RUNTIME_INF;
8305 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8306 	/*
8307 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8308 	 * before making related changes, and on->off must occur afterwards
8309 	 */
8310 	if (runtime_enabled && !runtime_was_enabled)
8311 		cfs_bandwidth_usage_inc();
8312 	raw_spin_lock_irq(&cfs_b->lock);
8313 	cfs_b->period = ns_to_ktime(period);
8314 	cfs_b->quota = quota;
8315 
8316 	__refill_cfs_bandwidth_runtime(cfs_b);
8317 	/* restart the period timer (if active) to handle new period expiry */
8318 	if (runtime_enabled)
8319 		start_cfs_bandwidth(cfs_b);
8320 	raw_spin_unlock_irq(&cfs_b->lock);
8321 
8322 	for_each_online_cpu(i) {
8323 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8324 		struct rq *rq = cfs_rq->rq;
8325 
8326 		raw_spin_lock_irq(&rq->lock);
8327 		cfs_rq->runtime_enabled = runtime_enabled;
8328 		cfs_rq->runtime_remaining = 0;
8329 
8330 		if (cfs_rq->throttled)
8331 			unthrottle_cfs_rq(cfs_rq);
8332 		raw_spin_unlock_irq(&rq->lock);
8333 	}
8334 	if (runtime_was_enabled && !runtime_enabled)
8335 		cfs_bandwidth_usage_dec();
8336 out_unlock:
8337 	mutex_unlock(&cfs_constraints_mutex);
8338 	put_online_cpus();
8339 
8340 	return ret;
8341 }
8342 
8343 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8344 {
8345 	u64 quota, period;
8346 
8347 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8348 	if (cfs_quota_us < 0)
8349 		quota = RUNTIME_INF;
8350 	else
8351 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8352 
8353 	return tg_set_cfs_bandwidth(tg, period, quota);
8354 }
8355 
8356 long tg_get_cfs_quota(struct task_group *tg)
8357 {
8358 	u64 quota_us;
8359 
8360 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8361 		return -1;
8362 
8363 	quota_us = tg->cfs_bandwidth.quota;
8364 	do_div(quota_us, NSEC_PER_USEC);
8365 
8366 	return quota_us;
8367 }
8368 
8369 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8370 {
8371 	u64 quota, period;
8372 
8373 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8374 	quota = tg->cfs_bandwidth.quota;
8375 
8376 	return tg_set_cfs_bandwidth(tg, period, quota);
8377 }
8378 
8379 long tg_get_cfs_period(struct task_group *tg)
8380 {
8381 	u64 cfs_period_us;
8382 
8383 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8384 	do_div(cfs_period_us, NSEC_PER_USEC);
8385 
8386 	return cfs_period_us;
8387 }
8388 
8389 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8390 				  struct cftype *cft)
8391 {
8392 	return tg_get_cfs_quota(css_tg(css));
8393 }
8394 
8395 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8396 				   struct cftype *cftype, s64 cfs_quota_us)
8397 {
8398 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8399 }
8400 
8401 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8402 				   struct cftype *cft)
8403 {
8404 	return tg_get_cfs_period(css_tg(css));
8405 }
8406 
8407 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8408 				    struct cftype *cftype, u64 cfs_period_us)
8409 {
8410 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8411 }
8412 
8413 struct cfs_schedulable_data {
8414 	struct task_group *tg;
8415 	u64 period, quota;
8416 };
8417 
8418 /*
8419  * normalize group quota/period to be quota/max_period
8420  * note: units are usecs
8421  */
8422 static u64 normalize_cfs_quota(struct task_group *tg,
8423 			       struct cfs_schedulable_data *d)
8424 {
8425 	u64 quota, period;
8426 
8427 	if (tg == d->tg) {
8428 		period = d->period;
8429 		quota = d->quota;
8430 	} else {
8431 		period = tg_get_cfs_period(tg);
8432 		quota = tg_get_cfs_quota(tg);
8433 	}
8434 
8435 	/* note: these should typically be equivalent */
8436 	if (quota == RUNTIME_INF || quota == -1)
8437 		return RUNTIME_INF;
8438 
8439 	return to_ratio(period, quota);
8440 }
8441 
8442 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8443 {
8444 	struct cfs_schedulable_data *d = data;
8445 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8446 	s64 quota = 0, parent_quota = -1;
8447 
8448 	if (!tg->parent) {
8449 		quota = RUNTIME_INF;
8450 	} else {
8451 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8452 
8453 		quota = normalize_cfs_quota(tg, d);
8454 		parent_quota = parent_b->hierarchical_quota;
8455 
8456 		/*
8457 		 * ensure max(child_quota) <= parent_quota, inherit when no
8458 		 * limit is set
8459 		 */
8460 		if (quota == RUNTIME_INF)
8461 			quota = parent_quota;
8462 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8463 			return -EINVAL;
8464 	}
8465 	cfs_b->hierarchical_quota = quota;
8466 
8467 	return 0;
8468 }
8469 
8470 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8471 {
8472 	int ret;
8473 	struct cfs_schedulable_data data = {
8474 		.tg = tg,
8475 		.period = period,
8476 		.quota = quota,
8477 	};
8478 
8479 	if (quota != RUNTIME_INF) {
8480 		do_div(data.period, NSEC_PER_USEC);
8481 		do_div(data.quota, NSEC_PER_USEC);
8482 	}
8483 
8484 	rcu_read_lock();
8485 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8486 	rcu_read_unlock();
8487 
8488 	return ret;
8489 }
8490 
8491 static int cpu_stats_show(struct seq_file *sf, void *v)
8492 {
8493 	struct task_group *tg = css_tg(seq_css(sf));
8494 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8495 
8496 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8497 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8498 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8499 
8500 	return 0;
8501 }
8502 #endif /* CONFIG_CFS_BANDWIDTH */
8503 #endif /* CONFIG_FAIR_GROUP_SCHED */
8504 
8505 #ifdef CONFIG_RT_GROUP_SCHED
8506 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8507 				struct cftype *cft, s64 val)
8508 {
8509 	return sched_group_set_rt_runtime(css_tg(css), val);
8510 }
8511 
8512 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8513 			       struct cftype *cft)
8514 {
8515 	return sched_group_rt_runtime(css_tg(css));
8516 }
8517 
8518 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8519 				    struct cftype *cftype, u64 rt_period_us)
8520 {
8521 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8522 }
8523 
8524 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8525 				   struct cftype *cft)
8526 {
8527 	return sched_group_rt_period(css_tg(css));
8528 }
8529 #endif /* CONFIG_RT_GROUP_SCHED */
8530 
8531 static struct cftype cpu_files[] = {
8532 #ifdef CONFIG_FAIR_GROUP_SCHED
8533 	{
8534 		.name = "shares",
8535 		.read_u64 = cpu_shares_read_u64,
8536 		.write_u64 = cpu_shares_write_u64,
8537 	},
8538 #endif
8539 #ifdef CONFIG_CFS_BANDWIDTH
8540 	{
8541 		.name = "cfs_quota_us",
8542 		.read_s64 = cpu_cfs_quota_read_s64,
8543 		.write_s64 = cpu_cfs_quota_write_s64,
8544 	},
8545 	{
8546 		.name = "cfs_period_us",
8547 		.read_u64 = cpu_cfs_period_read_u64,
8548 		.write_u64 = cpu_cfs_period_write_u64,
8549 	},
8550 	{
8551 		.name = "stat",
8552 		.seq_show = cpu_stats_show,
8553 	},
8554 #endif
8555 #ifdef CONFIG_RT_GROUP_SCHED
8556 	{
8557 		.name = "rt_runtime_us",
8558 		.read_s64 = cpu_rt_runtime_read,
8559 		.write_s64 = cpu_rt_runtime_write,
8560 	},
8561 	{
8562 		.name = "rt_period_us",
8563 		.read_u64 = cpu_rt_period_read_uint,
8564 		.write_u64 = cpu_rt_period_write_uint,
8565 	},
8566 #endif
8567 	{ }	/* terminate */
8568 };
8569 
8570 struct cgroup_subsys cpu_cgrp_subsys = {
8571 	.css_alloc	= cpu_cgroup_css_alloc,
8572 	.css_free	= cpu_cgroup_css_free,
8573 	.css_online	= cpu_cgroup_css_online,
8574 	.css_offline	= cpu_cgroup_css_offline,
8575 	.fork		= cpu_cgroup_fork,
8576 	.can_attach	= cpu_cgroup_can_attach,
8577 	.attach		= cpu_cgroup_attach,
8578 	.legacy_cftypes	= cpu_files,
8579 	.early_init	= 1,
8580 };
8581 
8582 #endif	/* CONFIG_CGROUP_SCHED */
8583 
8584 void dump_cpu_task(int cpu)
8585 {
8586 	pr_info("Task dump for CPU %d:\n", cpu);
8587 	sched_show_task(cpu_curr(cpu));
8588 }
8589