1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 #include <linux/compiler.h> 77 78 #include <asm/switch_to.h> 79 #include <asm/tlb.h> 80 #include <asm/irq_regs.h> 81 #include <asm/mutex.h> 82 #ifdef CONFIG_PARAVIRT 83 #include <asm/paravirt.h> 84 #endif 85 86 #include "sched.h" 87 #include "../workqueue_internal.h" 88 #include "../smpboot.h" 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/sched.h> 92 93 DEFINE_MUTEX(sched_domains_mutex); 94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 95 96 static void update_rq_clock_task(struct rq *rq, s64 delta); 97 98 void update_rq_clock(struct rq *rq) 99 { 100 s64 delta; 101 102 lockdep_assert_held(&rq->lock); 103 104 if (rq->clock_skip_update & RQCF_ACT_SKIP) 105 return; 106 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 108 if (delta < 0) 109 return; 110 rq->clock += delta; 111 update_rq_clock_task(rq, delta); 112 } 113 114 /* 115 * Debugging: various feature bits 116 */ 117 118 #define SCHED_FEAT(name, enabled) \ 119 (1UL << __SCHED_FEAT_##name) * enabled | 120 121 const_debug unsigned int sysctl_sched_features = 122 #include "features.h" 123 0; 124 125 #undef SCHED_FEAT 126 127 #ifdef CONFIG_SCHED_DEBUG 128 #define SCHED_FEAT(name, enabled) \ 129 #name , 130 131 static const char * const sched_feat_names[] = { 132 #include "features.h" 133 }; 134 135 #undef SCHED_FEAT 136 137 static int sched_feat_show(struct seq_file *m, void *v) 138 { 139 int i; 140 141 for (i = 0; i < __SCHED_FEAT_NR; i++) { 142 if (!(sysctl_sched_features & (1UL << i))) 143 seq_puts(m, "NO_"); 144 seq_printf(m, "%s ", sched_feat_names[i]); 145 } 146 seq_puts(m, "\n"); 147 148 return 0; 149 } 150 151 #ifdef HAVE_JUMP_LABEL 152 153 #define jump_label_key__true STATIC_KEY_INIT_TRUE 154 #define jump_label_key__false STATIC_KEY_INIT_FALSE 155 156 #define SCHED_FEAT(name, enabled) \ 157 jump_label_key__##enabled , 158 159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 160 #include "features.h" 161 }; 162 163 #undef SCHED_FEAT 164 165 static void sched_feat_disable(int i) 166 { 167 static_key_disable(&sched_feat_keys[i]); 168 } 169 170 static void sched_feat_enable(int i) 171 { 172 static_key_enable(&sched_feat_keys[i]); 173 } 174 #else 175 static void sched_feat_disable(int i) { }; 176 static void sched_feat_enable(int i) { }; 177 #endif /* HAVE_JUMP_LABEL */ 178 179 static int sched_feat_set(char *cmp) 180 { 181 int i; 182 int neg = 0; 183 184 if (strncmp(cmp, "NO_", 3) == 0) { 185 neg = 1; 186 cmp += 3; 187 } 188 189 for (i = 0; i < __SCHED_FEAT_NR; i++) { 190 if (strcmp(cmp, sched_feat_names[i]) == 0) { 191 if (neg) { 192 sysctl_sched_features &= ~(1UL << i); 193 sched_feat_disable(i); 194 } else { 195 sysctl_sched_features |= (1UL << i); 196 sched_feat_enable(i); 197 } 198 break; 199 } 200 } 201 202 return i; 203 } 204 205 static ssize_t 206 sched_feat_write(struct file *filp, const char __user *ubuf, 207 size_t cnt, loff_t *ppos) 208 { 209 char buf[64]; 210 char *cmp; 211 int i; 212 struct inode *inode; 213 214 if (cnt > 63) 215 cnt = 63; 216 217 if (copy_from_user(&buf, ubuf, cnt)) 218 return -EFAULT; 219 220 buf[cnt] = 0; 221 cmp = strstrip(buf); 222 223 /* Ensure the static_key remains in a consistent state */ 224 inode = file_inode(filp); 225 mutex_lock(&inode->i_mutex); 226 i = sched_feat_set(cmp); 227 mutex_unlock(&inode->i_mutex); 228 if (i == __SCHED_FEAT_NR) 229 return -EINVAL; 230 231 *ppos += cnt; 232 233 return cnt; 234 } 235 236 static int sched_feat_open(struct inode *inode, struct file *filp) 237 { 238 return single_open(filp, sched_feat_show, NULL); 239 } 240 241 static const struct file_operations sched_feat_fops = { 242 .open = sched_feat_open, 243 .write = sched_feat_write, 244 .read = seq_read, 245 .llseek = seq_lseek, 246 .release = single_release, 247 }; 248 249 static __init int sched_init_debug(void) 250 { 251 debugfs_create_file("sched_features", 0644, NULL, NULL, 252 &sched_feat_fops); 253 254 return 0; 255 } 256 late_initcall(sched_init_debug); 257 #endif /* CONFIG_SCHED_DEBUG */ 258 259 /* 260 * Number of tasks to iterate in a single balance run. 261 * Limited because this is done with IRQs disabled. 262 */ 263 const_debug unsigned int sysctl_sched_nr_migrate = 32; 264 265 /* 266 * period over which we average the RT time consumption, measured 267 * in ms. 268 * 269 * default: 1s 270 */ 271 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 272 273 /* 274 * period over which we measure -rt task cpu usage in us. 275 * default: 1s 276 */ 277 unsigned int sysctl_sched_rt_period = 1000000; 278 279 __read_mostly int scheduler_running; 280 281 /* 282 * part of the period that we allow rt tasks to run in us. 283 * default: 0.95s 284 */ 285 int sysctl_sched_rt_runtime = 950000; 286 287 /* cpus with isolated domains */ 288 cpumask_var_t cpu_isolated_map; 289 290 /* 291 * this_rq_lock - lock this runqueue and disable interrupts. 292 */ 293 static struct rq *this_rq_lock(void) 294 __acquires(rq->lock) 295 { 296 struct rq *rq; 297 298 local_irq_disable(); 299 rq = this_rq(); 300 raw_spin_lock(&rq->lock); 301 302 return rq; 303 } 304 305 #ifdef CONFIG_SCHED_HRTICK 306 /* 307 * Use HR-timers to deliver accurate preemption points. 308 */ 309 310 static void hrtick_clear(struct rq *rq) 311 { 312 if (hrtimer_active(&rq->hrtick_timer)) 313 hrtimer_cancel(&rq->hrtick_timer); 314 } 315 316 /* 317 * High-resolution timer tick. 318 * Runs from hardirq context with interrupts disabled. 319 */ 320 static enum hrtimer_restart hrtick(struct hrtimer *timer) 321 { 322 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 323 324 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 325 326 raw_spin_lock(&rq->lock); 327 update_rq_clock(rq); 328 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 329 raw_spin_unlock(&rq->lock); 330 331 return HRTIMER_NORESTART; 332 } 333 334 #ifdef CONFIG_SMP 335 336 static void __hrtick_restart(struct rq *rq) 337 { 338 struct hrtimer *timer = &rq->hrtick_timer; 339 340 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 341 } 342 343 /* 344 * called from hardirq (IPI) context 345 */ 346 static void __hrtick_start(void *arg) 347 { 348 struct rq *rq = arg; 349 350 raw_spin_lock(&rq->lock); 351 __hrtick_restart(rq); 352 rq->hrtick_csd_pending = 0; 353 raw_spin_unlock(&rq->lock); 354 } 355 356 /* 357 * Called to set the hrtick timer state. 358 * 359 * called with rq->lock held and irqs disabled 360 */ 361 void hrtick_start(struct rq *rq, u64 delay) 362 { 363 struct hrtimer *timer = &rq->hrtick_timer; 364 ktime_t time; 365 s64 delta; 366 367 /* 368 * Don't schedule slices shorter than 10000ns, that just 369 * doesn't make sense and can cause timer DoS. 370 */ 371 delta = max_t(s64, delay, 10000LL); 372 time = ktime_add_ns(timer->base->get_time(), delta); 373 374 hrtimer_set_expires(timer, time); 375 376 if (rq == this_rq()) { 377 __hrtick_restart(rq); 378 } else if (!rq->hrtick_csd_pending) { 379 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 380 rq->hrtick_csd_pending = 1; 381 } 382 } 383 384 static int 385 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 386 { 387 int cpu = (int)(long)hcpu; 388 389 switch (action) { 390 case CPU_UP_CANCELED: 391 case CPU_UP_CANCELED_FROZEN: 392 case CPU_DOWN_PREPARE: 393 case CPU_DOWN_PREPARE_FROZEN: 394 case CPU_DEAD: 395 case CPU_DEAD_FROZEN: 396 hrtick_clear(cpu_rq(cpu)); 397 return NOTIFY_OK; 398 } 399 400 return NOTIFY_DONE; 401 } 402 403 static __init void init_hrtick(void) 404 { 405 hotcpu_notifier(hotplug_hrtick, 0); 406 } 407 #else 408 /* 409 * Called to set the hrtick timer state. 410 * 411 * called with rq->lock held and irqs disabled 412 */ 413 void hrtick_start(struct rq *rq, u64 delay) 414 { 415 /* 416 * Don't schedule slices shorter than 10000ns, that just 417 * doesn't make sense. Rely on vruntime for fairness. 418 */ 419 delay = max_t(u64, delay, 10000LL); 420 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 421 HRTIMER_MODE_REL_PINNED); 422 } 423 424 static inline void init_hrtick(void) 425 { 426 } 427 #endif /* CONFIG_SMP */ 428 429 static void init_rq_hrtick(struct rq *rq) 430 { 431 #ifdef CONFIG_SMP 432 rq->hrtick_csd_pending = 0; 433 434 rq->hrtick_csd.flags = 0; 435 rq->hrtick_csd.func = __hrtick_start; 436 rq->hrtick_csd.info = rq; 437 #endif 438 439 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 440 rq->hrtick_timer.function = hrtick; 441 } 442 #else /* CONFIG_SCHED_HRTICK */ 443 static inline void hrtick_clear(struct rq *rq) 444 { 445 } 446 447 static inline void init_rq_hrtick(struct rq *rq) 448 { 449 } 450 451 static inline void init_hrtick(void) 452 { 453 } 454 #endif /* CONFIG_SCHED_HRTICK */ 455 456 /* 457 * cmpxchg based fetch_or, macro so it works for different integer types 458 */ 459 #define fetch_or(ptr, val) \ 460 ({ typeof(*(ptr)) __old, __val = *(ptr); \ 461 for (;;) { \ 462 __old = cmpxchg((ptr), __val, __val | (val)); \ 463 if (__old == __val) \ 464 break; \ 465 __val = __old; \ 466 } \ 467 __old; \ 468 }) 469 470 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 471 /* 472 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 473 * this avoids any races wrt polling state changes and thereby avoids 474 * spurious IPIs. 475 */ 476 static bool set_nr_and_not_polling(struct task_struct *p) 477 { 478 struct thread_info *ti = task_thread_info(p); 479 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 480 } 481 482 /* 483 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 484 * 485 * If this returns true, then the idle task promises to call 486 * sched_ttwu_pending() and reschedule soon. 487 */ 488 static bool set_nr_if_polling(struct task_struct *p) 489 { 490 struct thread_info *ti = task_thread_info(p); 491 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 492 493 for (;;) { 494 if (!(val & _TIF_POLLING_NRFLAG)) 495 return false; 496 if (val & _TIF_NEED_RESCHED) 497 return true; 498 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 499 if (old == val) 500 break; 501 val = old; 502 } 503 return true; 504 } 505 506 #else 507 static bool set_nr_and_not_polling(struct task_struct *p) 508 { 509 set_tsk_need_resched(p); 510 return true; 511 } 512 513 #ifdef CONFIG_SMP 514 static bool set_nr_if_polling(struct task_struct *p) 515 { 516 return false; 517 } 518 #endif 519 #endif 520 521 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 522 { 523 struct wake_q_node *node = &task->wake_q; 524 525 /* 526 * Atomically grab the task, if ->wake_q is !nil already it means 527 * its already queued (either by us or someone else) and will get the 528 * wakeup due to that. 529 * 530 * This cmpxchg() implies a full barrier, which pairs with the write 531 * barrier implied by the wakeup in wake_up_list(). 532 */ 533 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 534 return; 535 536 get_task_struct(task); 537 538 /* 539 * The head is context local, there can be no concurrency. 540 */ 541 *head->lastp = node; 542 head->lastp = &node->next; 543 } 544 545 void wake_up_q(struct wake_q_head *head) 546 { 547 struct wake_q_node *node = head->first; 548 549 while (node != WAKE_Q_TAIL) { 550 struct task_struct *task; 551 552 task = container_of(node, struct task_struct, wake_q); 553 BUG_ON(!task); 554 /* task can safely be re-inserted now */ 555 node = node->next; 556 task->wake_q.next = NULL; 557 558 /* 559 * wake_up_process() implies a wmb() to pair with the queueing 560 * in wake_q_add() so as not to miss wakeups. 561 */ 562 wake_up_process(task); 563 put_task_struct(task); 564 } 565 } 566 567 /* 568 * resched_curr - mark rq's current task 'to be rescheduled now'. 569 * 570 * On UP this means the setting of the need_resched flag, on SMP it 571 * might also involve a cross-CPU call to trigger the scheduler on 572 * the target CPU. 573 */ 574 void resched_curr(struct rq *rq) 575 { 576 struct task_struct *curr = rq->curr; 577 int cpu; 578 579 lockdep_assert_held(&rq->lock); 580 581 if (test_tsk_need_resched(curr)) 582 return; 583 584 cpu = cpu_of(rq); 585 586 if (cpu == smp_processor_id()) { 587 set_tsk_need_resched(curr); 588 set_preempt_need_resched(); 589 return; 590 } 591 592 if (set_nr_and_not_polling(curr)) 593 smp_send_reschedule(cpu); 594 else 595 trace_sched_wake_idle_without_ipi(cpu); 596 } 597 598 void resched_cpu(int cpu) 599 { 600 struct rq *rq = cpu_rq(cpu); 601 unsigned long flags; 602 603 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 604 return; 605 resched_curr(rq); 606 raw_spin_unlock_irqrestore(&rq->lock, flags); 607 } 608 609 #ifdef CONFIG_SMP 610 #ifdef CONFIG_NO_HZ_COMMON 611 /* 612 * In the semi idle case, use the nearest busy cpu for migrating timers 613 * from an idle cpu. This is good for power-savings. 614 * 615 * We don't do similar optimization for completely idle system, as 616 * selecting an idle cpu will add more delays to the timers than intended 617 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 618 */ 619 int get_nohz_timer_target(void) 620 { 621 int i, cpu = smp_processor_id(); 622 struct sched_domain *sd; 623 624 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu)) 625 return cpu; 626 627 rcu_read_lock(); 628 for_each_domain(cpu, sd) { 629 for_each_cpu(i, sched_domain_span(sd)) { 630 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) { 631 cpu = i; 632 goto unlock; 633 } 634 } 635 } 636 637 if (!is_housekeeping_cpu(cpu)) 638 cpu = housekeeping_any_cpu(); 639 unlock: 640 rcu_read_unlock(); 641 return cpu; 642 } 643 /* 644 * When add_timer_on() enqueues a timer into the timer wheel of an 645 * idle CPU then this timer might expire before the next timer event 646 * which is scheduled to wake up that CPU. In case of a completely 647 * idle system the next event might even be infinite time into the 648 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 649 * leaves the inner idle loop so the newly added timer is taken into 650 * account when the CPU goes back to idle and evaluates the timer 651 * wheel for the next timer event. 652 */ 653 static void wake_up_idle_cpu(int cpu) 654 { 655 struct rq *rq = cpu_rq(cpu); 656 657 if (cpu == smp_processor_id()) 658 return; 659 660 if (set_nr_and_not_polling(rq->idle)) 661 smp_send_reschedule(cpu); 662 else 663 trace_sched_wake_idle_without_ipi(cpu); 664 } 665 666 static bool wake_up_full_nohz_cpu(int cpu) 667 { 668 /* 669 * We just need the target to call irq_exit() and re-evaluate 670 * the next tick. The nohz full kick at least implies that. 671 * If needed we can still optimize that later with an 672 * empty IRQ. 673 */ 674 if (tick_nohz_full_cpu(cpu)) { 675 if (cpu != smp_processor_id() || 676 tick_nohz_tick_stopped()) 677 tick_nohz_full_kick_cpu(cpu); 678 return true; 679 } 680 681 return false; 682 } 683 684 void wake_up_nohz_cpu(int cpu) 685 { 686 if (!wake_up_full_nohz_cpu(cpu)) 687 wake_up_idle_cpu(cpu); 688 } 689 690 static inline bool got_nohz_idle_kick(void) 691 { 692 int cpu = smp_processor_id(); 693 694 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 695 return false; 696 697 if (idle_cpu(cpu) && !need_resched()) 698 return true; 699 700 /* 701 * We can't run Idle Load Balance on this CPU for this time so we 702 * cancel it and clear NOHZ_BALANCE_KICK 703 */ 704 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 705 return false; 706 } 707 708 #else /* CONFIG_NO_HZ_COMMON */ 709 710 static inline bool got_nohz_idle_kick(void) 711 { 712 return false; 713 } 714 715 #endif /* CONFIG_NO_HZ_COMMON */ 716 717 #ifdef CONFIG_NO_HZ_FULL 718 bool sched_can_stop_tick(void) 719 { 720 /* 721 * FIFO realtime policy runs the highest priority task. Other runnable 722 * tasks are of a lower priority. The scheduler tick does nothing. 723 */ 724 if (current->policy == SCHED_FIFO) 725 return true; 726 727 /* 728 * Round-robin realtime tasks time slice with other tasks at the same 729 * realtime priority. Is this task the only one at this priority? 730 */ 731 if (current->policy == SCHED_RR) { 732 struct sched_rt_entity *rt_se = ¤t->rt; 733 734 return rt_se->run_list.prev == rt_se->run_list.next; 735 } 736 737 /* 738 * More than one running task need preemption. 739 * nr_running update is assumed to be visible 740 * after IPI is sent from wakers. 741 */ 742 if (this_rq()->nr_running > 1) 743 return false; 744 745 return true; 746 } 747 #endif /* CONFIG_NO_HZ_FULL */ 748 749 void sched_avg_update(struct rq *rq) 750 { 751 s64 period = sched_avg_period(); 752 753 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 754 /* 755 * Inline assembly required to prevent the compiler 756 * optimising this loop into a divmod call. 757 * See __iter_div_u64_rem() for another example of this. 758 */ 759 asm("" : "+rm" (rq->age_stamp)); 760 rq->age_stamp += period; 761 rq->rt_avg /= 2; 762 } 763 } 764 765 #endif /* CONFIG_SMP */ 766 767 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 768 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 769 /* 770 * Iterate task_group tree rooted at *from, calling @down when first entering a 771 * node and @up when leaving it for the final time. 772 * 773 * Caller must hold rcu_lock or sufficient equivalent. 774 */ 775 int walk_tg_tree_from(struct task_group *from, 776 tg_visitor down, tg_visitor up, void *data) 777 { 778 struct task_group *parent, *child; 779 int ret; 780 781 parent = from; 782 783 down: 784 ret = (*down)(parent, data); 785 if (ret) 786 goto out; 787 list_for_each_entry_rcu(child, &parent->children, siblings) { 788 parent = child; 789 goto down; 790 791 up: 792 continue; 793 } 794 ret = (*up)(parent, data); 795 if (ret || parent == from) 796 goto out; 797 798 child = parent; 799 parent = parent->parent; 800 if (parent) 801 goto up; 802 out: 803 return ret; 804 } 805 806 int tg_nop(struct task_group *tg, void *data) 807 { 808 return 0; 809 } 810 #endif 811 812 static void set_load_weight(struct task_struct *p) 813 { 814 int prio = p->static_prio - MAX_RT_PRIO; 815 struct load_weight *load = &p->se.load; 816 817 /* 818 * SCHED_IDLE tasks get minimal weight: 819 */ 820 if (idle_policy(p->policy)) { 821 load->weight = scale_load(WEIGHT_IDLEPRIO); 822 load->inv_weight = WMULT_IDLEPRIO; 823 return; 824 } 825 826 load->weight = scale_load(prio_to_weight[prio]); 827 load->inv_weight = prio_to_wmult[prio]; 828 } 829 830 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 831 { 832 update_rq_clock(rq); 833 if (!(flags & ENQUEUE_RESTORE)) 834 sched_info_queued(rq, p); 835 p->sched_class->enqueue_task(rq, p, flags); 836 } 837 838 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 839 { 840 update_rq_clock(rq); 841 if (!(flags & DEQUEUE_SAVE)) 842 sched_info_dequeued(rq, p); 843 p->sched_class->dequeue_task(rq, p, flags); 844 } 845 846 void activate_task(struct rq *rq, struct task_struct *p, int flags) 847 { 848 if (task_contributes_to_load(p)) 849 rq->nr_uninterruptible--; 850 851 enqueue_task(rq, p, flags); 852 } 853 854 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 855 { 856 if (task_contributes_to_load(p)) 857 rq->nr_uninterruptible++; 858 859 dequeue_task(rq, p, flags); 860 } 861 862 static void update_rq_clock_task(struct rq *rq, s64 delta) 863 { 864 /* 865 * In theory, the compile should just see 0 here, and optimize out the call 866 * to sched_rt_avg_update. But I don't trust it... 867 */ 868 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 869 s64 steal = 0, irq_delta = 0; 870 #endif 871 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 872 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 873 874 /* 875 * Since irq_time is only updated on {soft,}irq_exit, we might run into 876 * this case when a previous update_rq_clock() happened inside a 877 * {soft,}irq region. 878 * 879 * When this happens, we stop ->clock_task and only update the 880 * prev_irq_time stamp to account for the part that fit, so that a next 881 * update will consume the rest. This ensures ->clock_task is 882 * monotonic. 883 * 884 * It does however cause some slight miss-attribution of {soft,}irq 885 * time, a more accurate solution would be to update the irq_time using 886 * the current rq->clock timestamp, except that would require using 887 * atomic ops. 888 */ 889 if (irq_delta > delta) 890 irq_delta = delta; 891 892 rq->prev_irq_time += irq_delta; 893 delta -= irq_delta; 894 #endif 895 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 896 if (static_key_false((¶virt_steal_rq_enabled))) { 897 steal = paravirt_steal_clock(cpu_of(rq)); 898 steal -= rq->prev_steal_time_rq; 899 900 if (unlikely(steal > delta)) 901 steal = delta; 902 903 rq->prev_steal_time_rq += steal; 904 delta -= steal; 905 } 906 #endif 907 908 rq->clock_task += delta; 909 910 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 911 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 912 sched_rt_avg_update(rq, irq_delta + steal); 913 #endif 914 } 915 916 void sched_set_stop_task(int cpu, struct task_struct *stop) 917 { 918 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 919 struct task_struct *old_stop = cpu_rq(cpu)->stop; 920 921 if (stop) { 922 /* 923 * Make it appear like a SCHED_FIFO task, its something 924 * userspace knows about and won't get confused about. 925 * 926 * Also, it will make PI more or less work without too 927 * much confusion -- but then, stop work should not 928 * rely on PI working anyway. 929 */ 930 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 931 932 stop->sched_class = &stop_sched_class; 933 } 934 935 cpu_rq(cpu)->stop = stop; 936 937 if (old_stop) { 938 /* 939 * Reset it back to a normal scheduling class so that 940 * it can die in pieces. 941 */ 942 old_stop->sched_class = &rt_sched_class; 943 } 944 } 945 946 /* 947 * __normal_prio - return the priority that is based on the static prio 948 */ 949 static inline int __normal_prio(struct task_struct *p) 950 { 951 return p->static_prio; 952 } 953 954 /* 955 * Calculate the expected normal priority: i.e. priority 956 * without taking RT-inheritance into account. Might be 957 * boosted by interactivity modifiers. Changes upon fork, 958 * setprio syscalls, and whenever the interactivity 959 * estimator recalculates. 960 */ 961 static inline int normal_prio(struct task_struct *p) 962 { 963 int prio; 964 965 if (task_has_dl_policy(p)) 966 prio = MAX_DL_PRIO-1; 967 else if (task_has_rt_policy(p)) 968 prio = MAX_RT_PRIO-1 - p->rt_priority; 969 else 970 prio = __normal_prio(p); 971 return prio; 972 } 973 974 /* 975 * Calculate the current priority, i.e. the priority 976 * taken into account by the scheduler. This value might 977 * be boosted by RT tasks, or might be boosted by 978 * interactivity modifiers. Will be RT if the task got 979 * RT-boosted. If not then it returns p->normal_prio. 980 */ 981 static int effective_prio(struct task_struct *p) 982 { 983 p->normal_prio = normal_prio(p); 984 /* 985 * If we are RT tasks or we were boosted to RT priority, 986 * keep the priority unchanged. Otherwise, update priority 987 * to the normal priority: 988 */ 989 if (!rt_prio(p->prio)) 990 return p->normal_prio; 991 return p->prio; 992 } 993 994 /** 995 * task_curr - is this task currently executing on a CPU? 996 * @p: the task in question. 997 * 998 * Return: 1 if the task is currently executing. 0 otherwise. 999 */ 1000 inline int task_curr(const struct task_struct *p) 1001 { 1002 return cpu_curr(task_cpu(p)) == p; 1003 } 1004 1005 /* 1006 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 1007 * use the balance_callback list if you want balancing. 1008 * 1009 * this means any call to check_class_changed() must be followed by a call to 1010 * balance_callback(). 1011 */ 1012 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1013 const struct sched_class *prev_class, 1014 int oldprio) 1015 { 1016 if (prev_class != p->sched_class) { 1017 if (prev_class->switched_from) 1018 prev_class->switched_from(rq, p); 1019 1020 p->sched_class->switched_to(rq, p); 1021 } else if (oldprio != p->prio || dl_task(p)) 1022 p->sched_class->prio_changed(rq, p, oldprio); 1023 } 1024 1025 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1026 { 1027 const struct sched_class *class; 1028 1029 if (p->sched_class == rq->curr->sched_class) { 1030 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1031 } else { 1032 for_each_class(class) { 1033 if (class == rq->curr->sched_class) 1034 break; 1035 if (class == p->sched_class) { 1036 resched_curr(rq); 1037 break; 1038 } 1039 } 1040 } 1041 1042 /* 1043 * A queue event has occurred, and we're going to schedule. In 1044 * this case, we can save a useless back to back clock update. 1045 */ 1046 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1047 rq_clock_skip_update(rq, true); 1048 } 1049 1050 #ifdef CONFIG_SMP 1051 /* 1052 * This is how migration works: 1053 * 1054 * 1) we invoke migration_cpu_stop() on the target CPU using 1055 * stop_one_cpu(). 1056 * 2) stopper starts to run (implicitly forcing the migrated thread 1057 * off the CPU) 1058 * 3) it checks whether the migrated task is still in the wrong runqueue. 1059 * 4) if it's in the wrong runqueue then the migration thread removes 1060 * it and puts it into the right queue. 1061 * 5) stopper completes and stop_one_cpu() returns and the migration 1062 * is done. 1063 */ 1064 1065 /* 1066 * move_queued_task - move a queued task to new rq. 1067 * 1068 * Returns (locked) new rq. Old rq's lock is released. 1069 */ 1070 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu) 1071 { 1072 lockdep_assert_held(&rq->lock); 1073 1074 dequeue_task(rq, p, 0); 1075 p->on_rq = TASK_ON_RQ_MIGRATING; 1076 set_task_cpu(p, new_cpu); 1077 raw_spin_unlock(&rq->lock); 1078 1079 rq = cpu_rq(new_cpu); 1080 1081 raw_spin_lock(&rq->lock); 1082 BUG_ON(task_cpu(p) != new_cpu); 1083 p->on_rq = TASK_ON_RQ_QUEUED; 1084 enqueue_task(rq, p, 0); 1085 check_preempt_curr(rq, p, 0); 1086 1087 return rq; 1088 } 1089 1090 struct migration_arg { 1091 struct task_struct *task; 1092 int dest_cpu; 1093 }; 1094 1095 /* 1096 * Move (not current) task off this cpu, onto dest cpu. We're doing 1097 * this because either it can't run here any more (set_cpus_allowed() 1098 * away from this CPU, or CPU going down), or because we're 1099 * attempting to rebalance this task on exec (sched_exec). 1100 * 1101 * So we race with normal scheduler movements, but that's OK, as long 1102 * as the task is no longer on this CPU. 1103 */ 1104 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu) 1105 { 1106 if (unlikely(!cpu_active(dest_cpu))) 1107 return rq; 1108 1109 /* Affinity changed (again). */ 1110 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1111 return rq; 1112 1113 rq = move_queued_task(rq, p, dest_cpu); 1114 1115 return rq; 1116 } 1117 1118 /* 1119 * migration_cpu_stop - this will be executed by a highprio stopper thread 1120 * and performs thread migration by bumping thread off CPU then 1121 * 'pushing' onto another runqueue. 1122 */ 1123 static int migration_cpu_stop(void *data) 1124 { 1125 struct migration_arg *arg = data; 1126 struct task_struct *p = arg->task; 1127 struct rq *rq = this_rq(); 1128 1129 /* 1130 * The original target cpu might have gone down and we might 1131 * be on another cpu but it doesn't matter. 1132 */ 1133 local_irq_disable(); 1134 /* 1135 * We need to explicitly wake pending tasks before running 1136 * __migrate_task() such that we will not miss enforcing cpus_allowed 1137 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1138 */ 1139 sched_ttwu_pending(); 1140 1141 raw_spin_lock(&p->pi_lock); 1142 raw_spin_lock(&rq->lock); 1143 /* 1144 * If task_rq(p) != rq, it cannot be migrated here, because we're 1145 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1146 * we're holding p->pi_lock. 1147 */ 1148 if (task_rq(p) == rq && task_on_rq_queued(p)) 1149 rq = __migrate_task(rq, p, arg->dest_cpu); 1150 raw_spin_unlock(&rq->lock); 1151 raw_spin_unlock(&p->pi_lock); 1152 1153 local_irq_enable(); 1154 return 0; 1155 } 1156 1157 /* 1158 * sched_class::set_cpus_allowed must do the below, but is not required to 1159 * actually call this function. 1160 */ 1161 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1162 { 1163 cpumask_copy(&p->cpus_allowed, new_mask); 1164 p->nr_cpus_allowed = cpumask_weight(new_mask); 1165 } 1166 1167 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1168 { 1169 struct rq *rq = task_rq(p); 1170 bool queued, running; 1171 1172 lockdep_assert_held(&p->pi_lock); 1173 1174 queued = task_on_rq_queued(p); 1175 running = task_current(rq, p); 1176 1177 if (queued) { 1178 /* 1179 * Because __kthread_bind() calls this on blocked tasks without 1180 * holding rq->lock. 1181 */ 1182 lockdep_assert_held(&rq->lock); 1183 dequeue_task(rq, p, DEQUEUE_SAVE); 1184 } 1185 if (running) 1186 put_prev_task(rq, p); 1187 1188 p->sched_class->set_cpus_allowed(p, new_mask); 1189 1190 if (running) 1191 p->sched_class->set_curr_task(rq); 1192 if (queued) 1193 enqueue_task(rq, p, ENQUEUE_RESTORE); 1194 } 1195 1196 /* 1197 * Change a given task's CPU affinity. Migrate the thread to a 1198 * proper CPU and schedule it away if the CPU it's executing on 1199 * is removed from the allowed bitmask. 1200 * 1201 * NOTE: the caller must have a valid reference to the task, the 1202 * task must not exit() & deallocate itself prematurely. The 1203 * call is not atomic; no spinlocks may be held. 1204 */ 1205 static int __set_cpus_allowed_ptr(struct task_struct *p, 1206 const struct cpumask *new_mask, bool check) 1207 { 1208 unsigned long flags; 1209 struct rq *rq; 1210 unsigned int dest_cpu; 1211 int ret = 0; 1212 1213 rq = task_rq_lock(p, &flags); 1214 1215 /* 1216 * Must re-check here, to close a race against __kthread_bind(), 1217 * sched_setaffinity() is not guaranteed to observe the flag. 1218 */ 1219 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1220 ret = -EINVAL; 1221 goto out; 1222 } 1223 1224 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1225 goto out; 1226 1227 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 1228 ret = -EINVAL; 1229 goto out; 1230 } 1231 1232 do_set_cpus_allowed(p, new_mask); 1233 1234 /* Can the task run on the task's current CPU? If so, we're done */ 1235 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1236 goto out; 1237 1238 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 1239 if (task_running(rq, p) || p->state == TASK_WAKING) { 1240 struct migration_arg arg = { p, dest_cpu }; 1241 /* Need help from migration thread: drop lock and wait. */ 1242 task_rq_unlock(rq, p, &flags); 1243 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1244 tlb_migrate_finish(p->mm); 1245 return 0; 1246 } else if (task_on_rq_queued(p)) { 1247 /* 1248 * OK, since we're going to drop the lock immediately 1249 * afterwards anyway. 1250 */ 1251 lockdep_unpin_lock(&rq->lock); 1252 rq = move_queued_task(rq, p, dest_cpu); 1253 lockdep_pin_lock(&rq->lock); 1254 } 1255 out: 1256 task_rq_unlock(rq, p, &flags); 1257 1258 return ret; 1259 } 1260 1261 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1262 { 1263 return __set_cpus_allowed_ptr(p, new_mask, false); 1264 } 1265 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1266 1267 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1268 { 1269 #ifdef CONFIG_SCHED_DEBUG 1270 /* 1271 * We should never call set_task_cpu() on a blocked task, 1272 * ttwu() will sort out the placement. 1273 */ 1274 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1275 !p->on_rq); 1276 1277 #ifdef CONFIG_LOCKDEP 1278 /* 1279 * The caller should hold either p->pi_lock or rq->lock, when changing 1280 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1281 * 1282 * sched_move_task() holds both and thus holding either pins the cgroup, 1283 * see task_group(). 1284 * 1285 * Furthermore, all task_rq users should acquire both locks, see 1286 * task_rq_lock(). 1287 */ 1288 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1289 lockdep_is_held(&task_rq(p)->lock))); 1290 #endif 1291 #endif 1292 1293 trace_sched_migrate_task(p, new_cpu); 1294 1295 if (task_cpu(p) != new_cpu) { 1296 if (p->sched_class->migrate_task_rq) 1297 p->sched_class->migrate_task_rq(p); 1298 p->se.nr_migrations++; 1299 perf_event_task_migrate(p); 1300 } 1301 1302 __set_task_cpu(p, new_cpu); 1303 } 1304 1305 static void __migrate_swap_task(struct task_struct *p, int cpu) 1306 { 1307 if (task_on_rq_queued(p)) { 1308 struct rq *src_rq, *dst_rq; 1309 1310 src_rq = task_rq(p); 1311 dst_rq = cpu_rq(cpu); 1312 1313 deactivate_task(src_rq, p, 0); 1314 set_task_cpu(p, cpu); 1315 activate_task(dst_rq, p, 0); 1316 check_preempt_curr(dst_rq, p, 0); 1317 } else { 1318 /* 1319 * Task isn't running anymore; make it appear like we migrated 1320 * it before it went to sleep. This means on wakeup we make the 1321 * previous cpu our targer instead of where it really is. 1322 */ 1323 p->wake_cpu = cpu; 1324 } 1325 } 1326 1327 struct migration_swap_arg { 1328 struct task_struct *src_task, *dst_task; 1329 int src_cpu, dst_cpu; 1330 }; 1331 1332 static int migrate_swap_stop(void *data) 1333 { 1334 struct migration_swap_arg *arg = data; 1335 struct rq *src_rq, *dst_rq; 1336 int ret = -EAGAIN; 1337 1338 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1339 return -EAGAIN; 1340 1341 src_rq = cpu_rq(arg->src_cpu); 1342 dst_rq = cpu_rq(arg->dst_cpu); 1343 1344 double_raw_lock(&arg->src_task->pi_lock, 1345 &arg->dst_task->pi_lock); 1346 double_rq_lock(src_rq, dst_rq); 1347 1348 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1349 goto unlock; 1350 1351 if (task_cpu(arg->src_task) != arg->src_cpu) 1352 goto unlock; 1353 1354 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1355 goto unlock; 1356 1357 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1358 goto unlock; 1359 1360 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1361 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1362 1363 ret = 0; 1364 1365 unlock: 1366 double_rq_unlock(src_rq, dst_rq); 1367 raw_spin_unlock(&arg->dst_task->pi_lock); 1368 raw_spin_unlock(&arg->src_task->pi_lock); 1369 1370 return ret; 1371 } 1372 1373 /* 1374 * Cross migrate two tasks 1375 */ 1376 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1377 { 1378 struct migration_swap_arg arg; 1379 int ret = -EINVAL; 1380 1381 arg = (struct migration_swap_arg){ 1382 .src_task = cur, 1383 .src_cpu = task_cpu(cur), 1384 .dst_task = p, 1385 .dst_cpu = task_cpu(p), 1386 }; 1387 1388 if (arg.src_cpu == arg.dst_cpu) 1389 goto out; 1390 1391 /* 1392 * These three tests are all lockless; this is OK since all of them 1393 * will be re-checked with proper locks held further down the line. 1394 */ 1395 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1396 goto out; 1397 1398 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1399 goto out; 1400 1401 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1402 goto out; 1403 1404 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1405 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1406 1407 out: 1408 return ret; 1409 } 1410 1411 /* 1412 * wait_task_inactive - wait for a thread to unschedule. 1413 * 1414 * If @match_state is nonzero, it's the @p->state value just checked and 1415 * not expected to change. If it changes, i.e. @p might have woken up, 1416 * then return zero. When we succeed in waiting for @p to be off its CPU, 1417 * we return a positive number (its total switch count). If a second call 1418 * a short while later returns the same number, the caller can be sure that 1419 * @p has remained unscheduled the whole time. 1420 * 1421 * The caller must ensure that the task *will* unschedule sometime soon, 1422 * else this function might spin for a *long* time. This function can't 1423 * be called with interrupts off, or it may introduce deadlock with 1424 * smp_call_function() if an IPI is sent by the same process we are 1425 * waiting to become inactive. 1426 */ 1427 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1428 { 1429 unsigned long flags; 1430 int running, queued; 1431 unsigned long ncsw; 1432 struct rq *rq; 1433 1434 for (;;) { 1435 /* 1436 * We do the initial early heuristics without holding 1437 * any task-queue locks at all. We'll only try to get 1438 * the runqueue lock when things look like they will 1439 * work out! 1440 */ 1441 rq = task_rq(p); 1442 1443 /* 1444 * If the task is actively running on another CPU 1445 * still, just relax and busy-wait without holding 1446 * any locks. 1447 * 1448 * NOTE! Since we don't hold any locks, it's not 1449 * even sure that "rq" stays as the right runqueue! 1450 * But we don't care, since "task_running()" will 1451 * return false if the runqueue has changed and p 1452 * is actually now running somewhere else! 1453 */ 1454 while (task_running(rq, p)) { 1455 if (match_state && unlikely(p->state != match_state)) 1456 return 0; 1457 cpu_relax(); 1458 } 1459 1460 /* 1461 * Ok, time to look more closely! We need the rq 1462 * lock now, to be *sure*. If we're wrong, we'll 1463 * just go back and repeat. 1464 */ 1465 rq = task_rq_lock(p, &flags); 1466 trace_sched_wait_task(p); 1467 running = task_running(rq, p); 1468 queued = task_on_rq_queued(p); 1469 ncsw = 0; 1470 if (!match_state || p->state == match_state) 1471 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1472 task_rq_unlock(rq, p, &flags); 1473 1474 /* 1475 * If it changed from the expected state, bail out now. 1476 */ 1477 if (unlikely(!ncsw)) 1478 break; 1479 1480 /* 1481 * Was it really running after all now that we 1482 * checked with the proper locks actually held? 1483 * 1484 * Oops. Go back and try again.. 1485 */ 1486 if (unlikely(running)) { 1487 cpu_relax(); 1488 continue; 1489 } 1490 1491 /* 1492 * It's not enough that it's not actively running, 1493 * it must be off the runqueue _entirely_, and not 1494 * preempted! 1495 * 1496 * So if it was still runnable (but just not actively 1497 * running right now), it's preempted, and we should 1498 * yield - it could be a while. 1499 */ 1500 if (unlikely(queued)) { 1501 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1502 1503 set_current_state(TASK_UNINTERRUPTIBLE); 1504 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1505 continue; 1506 } 1507 1508 /* 1509 * Ahh, all good. It wasn't running, and it wasn't 1510 * runnable, which means that it will never become 1511 * running in the future either. We're all done! 1512 */ 1513 break; 1514 } 1515 1516 return ncsw; 1517 } 1518 1519 /*** 1520 * kick_process - kick a running thread to enter/exit the kernel 1521 * @p: the to-be-kicked thread 1522 * 1523 * Cause a process which is running on another CPU to enter 1524 * kernel-mode, without any delay. (to get signals handled.) 1525 * 1526 * NOTE: this function doesn't have to take the runqueue lock, 1527 * because all it wants to ensure is that the remote task enters 1528 * the kernel. If the IPI races and the task has been migrated 1529 * to another CPU then no harm is done and the purpose has been 1530 * achieved as well. 1531 */ 1532 void kick_process(struct task_struct *p) 1533 { 1534 int cpu; 1535 1536 preempt_disable(); 1537 cpu = task_cpu(p); 1538 if ((cpu != smp_processor_id()) && task_curr(p)) 1539 smp_send_reschedule(cpu); 1540 preempt_enable(); 1541 } 1542 EXPORT_SYMBOL_GPL(kick_process); 1543 1544 /* 1545 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1546 */ 1547 static int select_fallback_rq(int cpu, struct task_struct *p) 1548 { 1549 int nid = cpu_to_node(cpu); 1550 const struct cpumask *nodemask = NULL; 1551 enum { cpuset, possible, fail } state = cpuset; 1552 int dest_cpu; 1553 1554 /* 1555 * If the node that the cpu is on has been offlined, cpu_to_node() 1556 * will return -1. There is no cpu on the node, and we should 1557 * select the cpu on the other node. 1558 */ 1559 if (nid != -1) { 1560 nodemask = cpumask_of_node(nid); 1561 1562 /* Look for allowed, online CPU in same node. */ 1563 for_each_cpu(dest_cpu, nodemask) { 1564 if (!cpu_online(dest_cpu)) 1565 continue; 1566 if (!cpu_active(dest_cpu)) 1567 continue; 1568 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1569 return dest_cpu; 1570 } 1571 } 1572 1573 for (;;) { 1574 /* Any allowed, online CPU? */ 1575 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1576 if (!cpu_online(dest_cpu)) 1577 continue; 1578 if (!cpu_active(dest_cpu)) 1579 continue; 1580 goto out; 1581 } 1582 1583 /* No more Mr. Nice Guy. */ 1584 switch (state) { 1585 case cpuset: 1586 if (IS_ENABLED(CONFIG_CPUSETS)) { 1587 cpuset_cpus_allowed_fallback(p); 1588 state = possible; 1589 break; 1590 } 1591 /* fall-through */ 1592 case possible: 1593 do_set_cpus_allowed(p, cpu_possible_mask); 1594 state = fail; 1595 break; 1596 1597 case fail: 1598 BUG(); 1599 break; 1600 } 1601 } 1602 1603 out: 1604 if (state != cpuset) { 1605 /* 1606 * Don't tell them about moving exiting tasks or 1607 * kernel threads (both mm NULL), since they never 1608 * leave kernel. 1609 */ 1610 if (p->mm && printk_ratelimit()) { 1611 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1612 task_pid_nr(p), p->comm, cpu); 1613 } 1614 } 1615 1616 return dest_cpu; 1617 } 1618 1619 /* 1620 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1621 */ 1622 static inline 1623 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1624 { 1625 lockdep_assert_held(&p->pi_lock); 1626 1627 if (p->nr_cpus_allowed > 1) 1628 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1629 1630 /* 1631 * In order not to call set_task_cpu() on a blocking task we need 1632 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1633 * cpu. 1634 * 1635 * Since this is common to all placement strategies, this lives here. 1636 * 1637 * [ this allows ->select_task() to simply return task_cpu(p) and 1638 * not worry about this generic constraint ] 1639 */ 1640 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1641 !cpu_online(cpu))) 1642 cpu = select_fallback_rq(task_cpu(p), p); 1643 1644 return cpu; 1645 } 1646 1647 static void update_avg(u64 *avg, u64 sample) 1648 { 1649 s64 diff = sample - *avg; 1650 *avg += diff >> 3; 1651 } 1652 1653 #else 1654 1655 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1656 const struct cpumask *new_mask, bool check) 1657 { 1658 return set_cpus_allowed_ptr(p, new_mask); 1659 } 1660 1661 #endif /* CONFIG_SMP */ 1662 1663 static void 1664 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1665 { 1666 #ifdef CONFIG_SCHEDSTATS 1667 struct rq *rq = this_rq(); 1668 1669 #ifdef CONFIG_SMP 1670 int this_cpu = smp_processor_id(); 1671 1672 if (cpu == this_cpu) { 1673 schedstat_inc(rq, ttwu_local); 1674 schedstat_inc(p, se.statistics.nr_wakeups_local); 1675 } else { 1676 struct sched_domain *sd; 1677 1678 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1679 rcu_read_lock(); 1680 for_each_domain(this_cpu, sd) { 1681 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1682 schedstat_inc(sd, ttwu_wake_remote); 1683 break; 1684 } 1685 } 1686 rcu_read_unlock(); 1687 } 1688 1689 if (wake_flags & WF_MIGRATED) 1690 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1691 1692 #endif /* CONFIG_SMP */ 1693 1694 schedstat_inc(rq, ttwu_count); 1695 schedstat_inc(p, se.statistics.nr_wakeups); 1696 1697 if (wake_flags & WF_SYNC) 1698 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1699 1700 #endif /* CONFIG_SCHEDSTATS */ 1701 } 1702 1703 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1704 { 1705 activate_task(rq, p, en_flags); 1706 p->on_rq = TASK_ON_RQ_QUEUED; 1707 1708 /* if a worker is waking up, notify workqueue */ 1709 if (p->flags & PF_WQ_WORKER) 1710 wq_worker_waking_up(p, cpu_of(rq)); 1711 } 1712 1713 /* 1714 * Mark the task runnable and perform wakeup-preemption. 1715 */ 1716 static void 1717 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1718 { 1719 check_preempt_curr(rq, p, wake_flags); 1720 p->state = TASK_RUNNING; 1721 trace_sched_wakeup(p); 1722 1723 #ifdef CONFIG_SMP 1724 if (p->sched_class->task_woken) { 1725 /* 1726 * Our task @p is fully woken up and running; so its safe to 1727 * drop the rq->lock, hereafter rq is only used for statistics. 1728 */ 1729 lockdep_unpin_lock(&rq->lock); 1730 p->sched_class->task_woken(rq, p); 1731 lockdep_pin_lock(&rq->lock); 1732 } 1733 1734 if (rq->idle_stamp) { 1735 u64 delta = rq_clock(rq) - rq->idle_stamp; 1736 u64 max = 2*rq->max_idle_balance_cost; 1737 1738 update_avg(&rq->avg_idle, delta); 1739 1740 if (rq->avg_idle > max) 1741 rq->avg_idle = max; 1742 1743 rq->idle_stamp = 0; 1744 } 1745 #endif 1746 } 1747 1748 static void 1749 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1750 { 1751 lockdep_assert_held(&rq->lock); 1752 1753 #ifdef CONFIG_SMP 1754 if (p->sched_contributes_to_load) 1755 rq->nr_uninterruptible--; 1756 #endif 1757 1758 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1759 ttwu_do_wakeup(rq, p, wake_flags); 1760 } 1761 1762 /* 1763 * Called in case the task @p isn't fully descheduled from its runqueue, 1764 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1765 * since all we need to do is flip p->state to TASK_RUNNING, since 1766 * the task is still ->on_rq. 1767 */ 1768 static int ttwu_remote(struct task_struct *p, int wake_flags) 1769 { 1770 struct rq *rq; 1771 int ret = 0; 1772 1773 rq = __task_rq_lock(p); 1774 if (task_on_rq_queued(p)) { 1775 /* check_preempt_curr() may use rq clock */ 1776 update_rq_clock(rq); 1777 ttwu_do_wakeup(rq, p, wake_flags); 1778 ret = 1; 1779 } 1780 __task_rq_unlock(rq); 1781 1782 return ret; 1783 } 1784 1785 #ifdef CONFIG_SMP 1786 void sched_ttwu_pending(void) 1787 { 1788 struct rq *rq = this_rq(); 1789 struct llist_node *llist = llist_del_all(&rq->wake_list); 1790 struct task_struct *p; 1791 unsigned long flags; 1792 1793 if (!llist) 1794 return; 1795 1796 raw_spin_lock_irqsave(&rq->lock, flags); 1797 lockdep_pin_lock(&rq->lock); 1798 1799 while (llist) { 1800 p = llist_entry(llist, struct task_struct, wake_entry); 1801 llist = llist_next(llist); 1802 ttwu_do_activate(rq, p, 0); 1803 } 1804 1805 lockdep_unpin_lock(&rq->lock); 1806 raw_spin_unlock_irqrestore(&rq->lock, flags); 1807 } 1808 1809 void scheduler_ipi(void) 1810 { 1811 /* 1812 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1813 * TIF_NEED_RESCHED remotely (for the first time) will also send 1814 * this IPI. 1815 */ 1816 preempt_fold_need_resched(); 1817 1818 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1819 return; 1820 1821 /* 1822 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1823 * traditionally all their work was done from the interrupt return 1824 * path. Now that we actually do some work, we need to make sure 1825 * we do call them. 1826 * 1827 * Some archs already do call them, luckily irq_enter/exit nest 1828 * properly. 1829 * 1830 * Arguably we should visit all archs and update all handlers, 1831 * however a fair share of IPIs are still resched only so this would 1832 * somewhat pessimize the simple resched case. 1833 */ 1834 irq_enter(); 1835 sched_ttwu_pending(); 1836 1837 /* 1838 * Check if someone kicked us for doing the nohz idle load balance. 1839 */ 1840 if (unlikely(got_nohz_idle_kick())) { 1841 this_rq()->idle_balance = 1; 1842 raise_softirq_irqoff(SCHED_SOFTIRQ); 1843 } 1844 irq_exit(); 1845 } 1846 1847 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1848 { 1849 struct rq *rq = cpu_rq(cpu); 1850 1851 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1852 if (!set_nr_if_polling(rq->idle)) 1853 smp_send_reschedule(cpu); 1854 else 1855 trace_sched_wake_idle_without_ipi(cpu); 1856 } 1857 } 1858 1859 void wake_up_if_idle(int cpu) 1860 { 1861 struct rq *rq = cpu_rq(cpu); 1862 unsigned long flags; 1863 1864 rcu_read_lock(); 1865 1866 if (!is_idle_task(rcu_dereference(rq->curr))) 1867 goto out; 1868 1869 if (set_nr_if_polling(rq->idle)) { 1870 trace_sched_wake_idle_without_ipi(cpu); 1871 } else { 1872 raw_spin_lock_irqsave(&rq->lock, flags); 1873 if (is_idle_task(rq->curr)) 1874 smp_send_reschedule(cpu); 1875 /* Else cpu is not in idle, do nothing here */ 1876 raw_spin_unlock_irqrestore(&rq->lock, flags); 1877 } 1878 1879 out: 1880 rcu_read_unlock(); 1881 } 1882 1883 bool cpus_share_cache(int this_cpu, int that_cpu) 1884 { 1885 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1886 } 1887 #endif /* CONFIG_SMP */ 1888 1889 static void ttwu_queue(struct task_struct *p, int cpu) 1890 { 1891 struct rq *rq = cpu_rq(cpu); 1892 1893 #if defined(CONFIG_SMP) 1894 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1895 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1896 ttwu_queue_remote(p, cpu); 1897 return; 1898 } 1899 #endif 1900 1901 raw_spin_lock(&rq->lock); 1902 lockdep_pin_lock(&rq->lock); 1903 ttwu_do_activate(rq, p, 0); 1904 lockdep_unpin_lock(&rq->lock); 1905 raw_spin_unlock(&rq->lock); 1906 } 1907 1908 /** 1909 * try_to_wake_up - wake up a thread 1910 * @p: the thread to be awakened 1911 * @state: the mask of task states that can be woken 1912 * @wake_flags: wake modifier flags (WF_*) 1913 * 1914 * Put it on the run-queue if it's not already there. The "current" 1915 * thread is always on the run-queue (except when the actual 1916 * re-schedule is in progress), and as such you're allowed to do 1917 * the simpler "current->state = TASK_RUNNING" to mark yourself 1918 * runnable without the overhead of this. 1919 * 1920 * Return: %true if @p was woken up, %false if it was already running. 1921 * or @state didn't match @p's state. 1922 */ 1923 static int 1924 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1925 { 1926 unsigned long flags; 1927 int cpu, success = 0; 1928 1929 /* 1930 * If we are going to wake up a thread waiting for CONDITION we 1931 * need to ensure that CONDITION=1 done by the caller can not be 1932 * reordered with p->state check below. This pairs with mb() in 1933 * set_current_state() the waiting thread does. 1934 */ 1935 smp_mb__before_spinlock(); 1936 raw_spin_lock_irqsave(&p->pi_lock, flags); 1937 if (!(p->state & state)) 1938 goto out; 1939 1940 trace_sched_waking(p); 1941 1942 success = 1; /* we're going to change ->state */ 1943 cpu = task_cpu(p); 1944 1945 if (p->on_rq && ttwu_remote(p, wake_flags)) 1946 goto stat; 1947 1948 #ifdef CONFIG_SMP 1949 /* 1950 * If the owning (remote) cpu is still in the middle of schedule() with 1951 * this task as prev, wait until its done referencing the task. 1952 */ 1953 while (p->on_cpu) 1954 cpu_relax(); 1955 /* 1956 * Pairs with the smp_wmb() in finish_lock_switch(). 1957 */ 1958 smp_rmb(); 1959 1960 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1961 p->state = TASK_WAKING; 1962 1963 if (p->sched_class->task_waking) 1964 p->sched_class->task_waking(p); 1965 1966 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 1967 if (task_cpu(p) != cpu) { 1968 wake_flags |= WF_MIGRATED; 1969 set_task_cpu(p, cpu); 1970 } 1971 #endif /* CONFIG_SMP */ 1972 1973 ttwu_queue(p, cpu); 1974 stat: 1975 ttwu_stat(p, cpu, wake_flags); 1976 out: 1977 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1978 1979 return success; 1980 } 1981 1982 /** 1983 * try_to_wake_up_local - try to wake up a local task with rq lock held 1984 * @p: the thread to be awakened 1985 * 1986 * Put @p on the run-queue if it's not already there. The caller must 1987 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1988 * the current task. 1989 */ 1990 static void try_to_wake_up_local(struct task_struct *p) 1991 { 1992 struct rq *rq = task_rq(p); 1993 1994 if (WARN_ON_ONCE(rq != this_rq()) || 1995 WARN_ON_ONCE(p == current)) 1996 return; 1997 1998 lockdep_assert_held(&rq->lock); 1999 2000 if (!raw_spin_trylock(&p->pi_lock)) { 2001 /* 2002 * This is OK, because current is on_cpu, which avoids it being 2003 * picked for load-balance and preemption/IRQs are still 2004 * disabled avoiding further scheduler activity on it and we've 2005 * not yet picked a replacement task. 2006 */ 2007 lockdep_unpin_lock(&rq->lock); 2008 raw_spin_unlock(&rq->lock); 2009 raw_spin_lock(&p->pi_lock); 2010 raw_spin_lock(&rq->lock); 2011 lockdep_pin_lock(&rq->lock); 2012 } 2013 2014 if (!(p->state & TASK_NORMAL)) 2015 goto out; 2016 2017 trace_sched_waking(p); 2018 2019 if (!task_on_rq_queued(p)) 2020 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 2021 2022 ttwu_do_wakeup(rq, p, 0); 2023 ttwu_stat(p, smp_processor_id(), 0); 2024 out: 2025 raw_spin_unlock(&p->pi_lock); 2026 } 2027 2028 /** 2029 * wake_up_process - Wake up a specific process 2030 * @p: The process to be woken up. 2031 * 2032 * Attempt to wake up the nominated process and move it to the set of runnable 2033 * processes. 2034 * 2035 * Return: 1 if the process was woken up, 0 if it was already running. 2036 * 2037 * It may be assumed that this function implies a write memory barrier before 2038 * changing the task state if and only if any tasks are woken up. 2039 */ 2040 int wake_up_process(struct task_struct *p) 2041 { 2042 WARN_ON(task_is_stopped_or_traced(p)); 2043 return try_to_wake_up(p, TASK_NORMAL, 0); 2044 } 2045 EXPORT_SYMBOL(wake_up_process); 2046 2047 int wake_up_state(struct task_struct *p, unsigned int state) 2048 { 2049 return try_to_wake_up(p, state, 0); 2050 } 2051 2052 /* 2053 * This function clears the sched_dl_entity static params. 2054 */ 2055 void __dl_clear_params(struct task_struct *p) 2056 { 2057 struct sched_dl_entity *dl_se = &p->dl; 2058 2059 dl_se->dl_runtime = 0; 2060 dl_se->dl_deadline = 0; 2061 dl_se->dl_period = 0; 2062 dl_se->flags = 0; 2063 dl_se->dl_bw = 0; 2064 2065 dl_se->dl_throttled = 0; 2066 dl_se->dl_new = 1; 2067 dl_se->dl_yielded = 0; 2068 } 2069 2070 /* 2071 * Perform scheduler related setup for a newly forked process p. 2072 * p is forked by current. 2073 * 2074 * __sched_fork() is basic setup used by init_idle() too: 2075 */ 2076 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2077 { 2078 p->on_rq = 0; 2079 2080 p->se.on_rq = 0; 2081 p->se.exec_start = 0; 2082 p->se.sum_exec_runtime = 0; 2083 p->se.prev_sum_exec_runtime = 0; 2084 p->se.nr_migrations = 0; 2085 p->se.vruntime = 0; 2086 INIT_LIST_HEAD(&p->se.group_node); 2087 2088 #ifdef CONFIG_SCHEDSTATS 2089 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2090 #endif 2091 2092 RB_CLEAR_NODE(&p->dl.rb_node); 2093 init_dl_task_timer(&p->dl); 2094 __dl_clear_params(p); 2095 2096 INIT_LIST_HEAD(&p->rt.run_list); 2097 2098 #ifdef CONFIG_PREEMPT_NOTIFIERS 2099 INIT_HLIST_HEAD(&p->preempt_notifiers); 2100 #endif 2101 2102 #ifdef CONFIG_NUMA_BALANCING 2103 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2104 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2105 p->mm->numa_scan_seq = 0; 2106 } 2107 2108 if (clone_flags & CLONE_VM) 2109 p->numa_preferred_nid = current->numa_preferred_nid; 2110 else 2111 p->numa_preferred_nid = -1; 2112 2113 p->node_stamp = 0ULL; 2114 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2115 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2116 p->numa_work.next = &p->numa_work; 2117 p->numa_faults = NULL; 2118 p->last_task_numa_placement = 0; 2119 p->last_sum_exec_runtime = 0; 2120 2121 p->numa_group = NULL; 2122 #endif /* CONFIG_NUMA_BALANCING */ 2123 } 2124 2125 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2126 2127 #ifdef CONFIG_NUMA_BALANCING 2128 2129 void set_numabalancing_state(bool enabled) 2130 { 2131 if (enabled) 2132 static_branch_enable(&sched_numa_balancing); 2133 else 2134 static_branch_disable(&sched_numa_balancing); 2135 } 2136 2137 #ifdef CONFIG_PROC_SYSCTL 2138 int sysctl_numa_balancing(struct ctl_table *table, int write, 2139 void __user *buffer, size_t *lenp, loff_t *ppos) 2140 { 2141 struct ctl_table t; 2142 int err; 2143 int state = static_branch_likely(&sched_numa_balancing); 2144 2145 if (write && !capable(CAP_SYS_ADMIN)) 2146 return -EPERM; 2147 2148 t = *table; 2149 t.data = &state; 2150 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2151 if (err < 0) 2152 return err; 2153 if (write) 2154 set_numabalancing_state(state); 2155 return err; 2156 } 2157 #endif 2158 #endif 2159 2160 /* 2161 * fork()/clone()-time setup: 2162 */ 2163 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2164 { 2165 unsigned long flags; 2166 int cpu = get_cpu(); 2167 2168 __sched_fork(clone_flags, p); 2169 /* 2170 * We mark the process as running here. This guarantees that 2171 * nobody will actually run it, and a signal or other external 2172 * event cannot wake it up and insert it on the runqueue either. 2173 */ 2174 p->state = TASK_RUNNING; 2175 2176 /* 2177 * Make sure we do not leak PI boosting priority to the child. 2178 */ 2179 p->prio = current->normal_prio; 2180 2181 /* 2182 * Revert to default priority/policy on fork if requested. 2183 */ 2184 if (unlikely(p->sched_reset_on_fork)) { 2185 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2186 p->policy = SCHED_NORMAL; 2187 p->static_prio = NICE_TO_PRIO(0); 2188 p->rt_priority = 0; 2189 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2190 p->static_prio = NICE_TO_PRIO(0); 2191 2192 p->prio = p->normal_prio = __normal_prio(p); 2193 set_load_weight(p); 2194 2195 /* 2196 * We don't need the reset flag anymore after the fork. It has 2197 * fulfilled its duty: 2198 */ 2199 p->sched_reset_on_fork = 0; 2200 } 2201 2202 if (dl_prio(p->prio)) { 2203 put_cpu(); 2204 return -EAGAIN; 2205 } else if (rt_prio(p->prio)) { 2206 p->sched_class = &rt_sched_class; 2207 } else { 2208 p->sched_class = &fair_sched_class; 2209 } 2210 2211 if (p->sched_class->task_fork) 2212 p->sched_class->task_fork(p); 2213 2214 /* 2215 * The child is not yet in the pid-hash so no cgroup attach races, 2216 * and the cgroup is pinned to this child due to cgroup_fork() 2217 * is ran before sched_fork(). 2218 * 2219 * Silence PROVE_RCU. 2220 */ 2221 raw_spin_lock_irqsave(&p->pi_lock, flags); 2222 set_task_cpu(p, cpu); 2223 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2224 2225 #ifdef CONFIG_SCHED_INFO 2226 if (likely(sched_info_on())) 2227 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2228 #endif 2229 #if defined(CONFIG_SMP) 2230 p->on_cpu = 0; 2231 #endif 2232 init_task_preempt_count(p); 2233 #ifdef CONFIG_SMP 2234 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2235 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2236 #endif 2237 2238 put_cpu(); 2239 return 0; 2240 } 2241 2242 unsigned long to_ratio(u64 period, u64 runtime) 2243 { 2244 if (runtime == RUNTIME_INF) 2245 return 1ULL << 20; 2246 2247 /* 2248 * Doing this here saves a lot of checks in all 2249 * the calling paths, and returning zero seems 2250 * safe for them anyway. 2251 */ 2252 if (period == 0) 2253 return 0; 2254 2255 return div64_u64(runtime << 20, period); 2256 } 2257 2258 #ifdef CONFIG_SMP 2259 inline struct dl_bw *dl_bw_of(int i) 2260 { 2261 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2262 "sched RCU must be held"); 2263 return &cpu_rq(i)->rd->dl_bw; 2264 } 2265 2266 static inline int dl_bw_cpus(int i) 2267 { 2268 struct root_domain *rd = cpu_rq(i)->rd; 2269 int cpus = 0; 2270 2271 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2272 "sched RCU must be held"); 2273 for_each_cpu_and(i, rd->span, cpu_active_mask) 2274 cpus++; 2275 2276 return cpus; 2277 } 2278 #else 2279 inline struct dl_bw *dl_bw_of(int i) 2280 { 2281 return &cpu_rq(i)->dl.dl_bw; 2282 } 2283 2284 static inline int dl_bw_cpus(int i) 2285 { 2286 return 1; 2287 } 2288 #endif 2289 2290 /* 2291 * We must be sure that accepting a new task (or allowing changing the 2292 * parameters of an existing one) is consistent with the bandwidth 2293 * constraints. If yes, this function also accordingly updates the currently 2294 * allocated bandwidth to reflect the new situation. 2295 * 2296 * This function is called while holding p's rq->lock. 2297 * 2298 * XXX we should delay bw change until the task's 0-lag point, see 2299 * __setparam_dl(). 2300 */ 2301 static int dl_overflow(struct task_struct *p, int policy, 2302 const struct sched_attr *attr) 2303 { 2304 2305 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2306 u64 period = attr->sched_period ?: attr->sched_deadline; 2307 u64 runtime = attr->sched_runtime; 2308 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2309 int cpus, err = -1; 2310 2311 if (new_bw == p->dl.dl_bw) 2312 return 0; 2313 2314 /* 2315 * Either if a task, enters, leave, or stays -deadline but changes 2316 * its parameters, we may need to update accordingly the total 2317 * allocated bandwidth of the container. 2318 */ 2319 raw_spin_lock(&dl_b->lock); 2320 cpus = dl_bw_cpus(task_cpu(p)); 2321 if (dl_policy(policy) && !task_has_dl_policy(p) && 2322 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2323 __dl_add(dl_b, new_bw); 2324 err = 0; 2325 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2326 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2327 __dl_clear(dl_b, p->dl.dl_bw); 2328 __dl_add(dl_b, new_bw); 2329 err = 0; 2330 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2331 __dl_clear(dl_b, p->dl.dl_bw); 2332 err = 0; 2333 } 2334 raw_spin_unlock(&dl_b->lock); 2335 2336 return err; 2337 } 2338 2339 extern void init_dl_bw(struct dl_bw *dl_b); 2340 2341 /* 2342 * wake_up_new_task - wake up a newly created task for the first time. 2343 * 2344 * This function will do some initial scheduler statistics housekeeping 2345 * that must be done for every newly created context, then puts the task 2346 * on the runqueue and wakes it. 2347 */ 2348 void wake_up_new_task(struct task_struct *p) 2349 { 2350 unsigned long flags; 2351 struct rq *rq; 2352 2353 raw_spin_lock_irqsave(&p->pi_lock, flags); 2354 /* Initialize new task's runnable average */ 2355 init_entity_runnable_average(&p->se); 2356 #ifdef CONFIG_SMP 2357 /* 2358 * Fork balancing, do it here and not earlier because: 2359 * - cpus_allowed can change in the fork path 2360 * - any previously selected cpu might disappear through hotplug 2361 */ 2362 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2363 #endif 2364 2365 rq = __task_rq_lock(p); 2366 activate_task(rq, p, 0); 2367 p->on_rq = TASK_ON_RQ_QUEUED; 2368 trace_sched_wakeup_new(p); 2369 check_preempt_curr(rq, p, WF_FORK); 2370 #ifdef CONFIG_SMP 2371 if (p->sched_class->task_woken) { 2372 /* 2373 * Nothing relies on rq->lock after this, so its fine to 2374 * drop it. 2375 */ 2376 lockdep_unpin_lock(&rq->lock); 2377 p->sched_class->task_woken(rq, p); 2378 lockdep_pin_lock(&rq->lock); 2379 } 2380 #endif 2381 task_rq_unlock(rq, p, &flags); 2382 } 2383 2384 #ifdef CONFIG_PREEMPT_NOTIFIERS 2385 2386 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE; 2387 2388 void preempt_notifier_inc(void) 2389 { 2390 static_key_slow_inc(&preempt_notifier_key); 2391 } 2392 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2393 2394 void preempt_notifier_dec(void) 2395 { 2396 static_key_slow_dec(&preempt_notifier_key); 2397 } 2398 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2399 2400 /** 2401 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2402 * @notifier: notifier struct to register 2403 */ 2404 void preempt_notifier_register(struct preempt_notifier *notifier) 2405 { 2406 if (!static_key_false(&preempt_notifier_key)) 2407 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2408 2409 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2410 } 2411 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2412 2413 /** 2414 * preempt_notifier_unregister - no longer interested in preemption notifications 2415 * @notifier: notifier struct to unregister 2416 * 2417 * This is *not* safe to call from within a preemption notifier. 2418 */ 2419 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2420 { 2421 hlist_del(¬ifier->link); 2422 } 2423 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2424 2425 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2426 { 2427 struct preempt_notifier *notifier; 2428 2429 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2430 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2431 } 2432 2433 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2434 { 2435 if (static_key_false(&preempt_notifier_key)) 2436 __fire_sched_in_preempt_notifiers(curr); 2437 } 2438 2439 static void 2440 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2441 struct task_struct *next) 2442 { 2443 struct preempt_notifier *notifier; 2444 2445 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2446 notifier->ops->sched_out(notifier, next); 2447 } 2448 2449 static __always_inline void 2450 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2451 struct task_struct *next) 2452 { 2453 if (static_key_false(&preempt_notifier_key)) 2454 __fire_sched_out_preempt_notifiers(curr, next); 2455 } 2456 2457 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2458 2459 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2460 { 2461 } 2462 2463 static inline void 2464 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2465 struct task_struct *next) 2466 { 2467 } 2468 2469 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2470 2471 /** 2472 * prepare_task_switch - prepare to switch tasks 2473 * @rq: the runqueue preparing to switch 2474 * @prev: the current task that is being switched out 2475 * @next: the task we are going to switch to. 2476 * 2477 * This is called with the rq lock held and interrupts off. It must 2478 * be paired with a subsequent finish_task_switch after the context 2479 * switch. 2480 * 2481 * prepare_task_switch sets up locking and calls architecture specific 2482 * hooks. 2483 */ 2484 static inline void 2485 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2486 struct task_struct *next) 2487 { 2488 sched_info_switch(rq, prev, next); 2489 perf_event_task_sched_out(prev, next); 2490 fire_sched_out_preempt_notifiers(prev, next); 2491 prepare_lock_switch(rq, next); 2492 prepare_arch_switch(next); 2493 } 2494 2495 /** 2496 * finish_task_switch - clean up after a task-switch 2497 * @prev: the thread we just switched away from. 2498 * 2499 * finish_task_switch must be called after the context switch, paired 2500 * with a prepare_task_switch call before the context switch. 2501 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2502 * and do any other architecture-specific cleanup actions. 2503 * 2504 * Note that we may have delayed dropping an mm in context_switch(). If 2505 * so, we finish that here outside of the runqueue lock. (Doing it 2506 * with the lock held can cause deadlocks; see schedule() for 2507 * details.) 2508 * 2509 * The context switch have flipped the stack from under us and restored the 2510 * local variables which were saved when this task called schedule() in the 2511 * past. prev == current is still correct but we need to recalculate this_rq 2512 * because prev may have moved to another CPU. 2513 */ 2514 static struct rq *finish_task_switch(struct task_struct *prev) 2515 __releases(rq->lock) 2516 { 2517 struct rq *rq = this_rq(); 2518 struct mm_struct *mm = rq->prev_mm; 2519 long prev_state; 2520 2521 /* 2522 * The previous task will have left us with a preempt_count of 2 2523 * because it left us after: 2524 * 2525 * schedule() 2526 * preempt_disable(); // 1 2527 * __schedule() 2528 * raw_spin_lock_irq(&rq->lock) // 2 2529 * 2530 * Also, see FORK_PREEMPT_COUNT. 2531 */ 2532 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2533 "corrupted preempt_count: %s/%d/0x%x\n", 2534 current->comm, current->pid, preempt_count())) 2535 preempt_count_set(FORK_PREEMPT_COUNT); 2536 2537 rq->prev_mm = NULL; 2538 2539 /* 2540 * A task struct has one reference for the use as "current". 2541 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2542 * schedule one last time. The schedule call will never return, and 2543 * the scheduled task must drop that reference. 2544 * 2545 * We must observe prev->state before clearing prev->on_cpu (in 2546 * finish_lock_switch), otherwise a concurrent wakeup can get prev 2547 * running on another CPU and we could rave with its RUNNING -> DEAD 2548 * transition, resulting in a double drop. 2549 */ 2550 prev_state = prev->state; 2551 vtime_task_switch(prev); 2552 perf_event_task_sched_in(prev, current); 2553 finish_lock_switch(rq, prev); 2554 finish_arch_post_lock_switch(); 2555 2556 fire_sched_in_preempt_notifiers(current); 2557 if (mm) 2558 mmdrop(mm); 2559 if (unlikely(prev_state == TASK_DEAD)) { 2560 if (prev->sched_class->task_dead) 2561 prev->sched_class->task_dead(prev); 2562 2563 /* 2564 * Remove function-return probe instances associated with this 2565 * task and put them back on the free list. 2566 */ 2567 kprobe_flush_task(prev); 2568 put_task_struct(prev); 2569 } 2570 2571 tick_nohz_task_switch(); 2572 return rq; 2573 } 2574 2575 #ifdef CONFIG_SMP 2576 2577 /* rq->lock is NOT held, but preemption is disabled */ 2578 static void __balance_callback(struct rq *rq) 2579 { 2580 struct callback_head *head, *next; 2581 void (*func)(struct rq *rq); 2582 unsigned long flags; 2583 2584 raw_spin_lock_irqsave(&rq->lock, flags); 2585 head = rq->balance_callback; 2586 rq->balance_callback = NULL; 2587 while (head) { 2588 func = (void (*)(struct rq *))head->func; 2589 next = head->next; 2590 head->next = NULL; 2591 head = next; 2592 2593 func(rq); 2594 } 2595 raw_spin_unlock_irqrestore(&rq->lock, flags); 2596 } 2597 2598 static inline void balance_callback(struct rq *rq) 2599 { 2600 if (unlikely(rq->balance_callback)) 2601 __balance_callback(rq); 2602 } 2603 2604 #else 2605 2606 static inline void balance_callback(struct rq *rq) 2607 { 2608 } 2609 2610 #endif 2611 2612 /** 2613 * schedule_tail - first thing a freshly forked thread must call. 2614 * @prev: the thread we just switched away from. 2615 */ 2616 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2617 __releases(rq->lock) 2618 { 2619 struct rq *rq; 2620 2621 /* 2622 * New tasks start with FORK_PREEMPT_COUNT, see there and 2623 * finish_task_switch() for details. 2624 * 2625 * finish_task_switch() will drop rq->lock() and lower preempt_count 2626 * and the preempt_enable() will end up enabling preemption (on 2627 * PREEMPT_COUNT kernels). 2628 */ 2629 2630 rq = finish_task_switch(prev); 2631 balance_callback(rq); 2632 preempt_enable(); 2633 2634 if (current->set_child_tid) 2635 put_user(task_pid_vnr(current), current->set_child_tid); 2636 } 2637 2638 /* 2639 * context_switch - switch to the new MM and the new thread's register state. 2640 */ 2641 static inline struct rq * 2642 context_switch(struct rq *rq, struct task_struct *prev, 2643 struct task_struct *next) 2644 { 2645 struct mm_struct *mm, *oldmm; 2646 2647 prepare_task_switch(rq, prev, next); 2648 2649 mm = next->mm; 2650 oldmm = prev->active_mm; 2651 /* 2652 * For paravirt, this is coupled with an exit in switch_to to 2653 * combine the page table reload and the switch backend into 2654 * one hypercall. 2655 */ 2656 arch_start_context_switch(prev); 2657 2658 if (!mm) { 2659 next->active_mm = oldmm; 2660 atomic_inc(&oldmm->mm_count); 2661 enter_lazy_tlb(oldmm, next); 2662 } else 2663 switch_mm(oldmm, mm, next); 2664 2665 if (!prev->mm) { 2666 prev->active_mm = NULL; 2667 rq->prev_mm = oldmm; 2668 } 2669 /* 2670 * Since the runqueue lock will be released by the next 2671 * task (which is an invalid locking op but in the case 2672 * of the scheduler it's an obvious special-case), so we 2673 * do an early lockdep release here: 2674 */ 2675 lockdep_unpin_lock(&rq->lock); 2676 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2677 2678 /* Here we just switch the register state and the stack. */ 2679 switch_to(prev, next, prev); 2680 barrier(); 2681 2682 return finish_task_switch(prev); 2683 } 2684 2685 /* 2686 * nr_running and nr_context_switches: 2687 * 2688 * externally visible scheduler statistics: current number of runnable 2689 * threads, total number of context switches performed since bootup. 2690 */ 2691 unsigned long nr_running(void) 2692 { 2693 unsigned long i, sum = 0; 2694 2695 for_each_online_cpu(i) 2696 sum += cpu_rq(i)->nr_running; 2697 2698 return sum; 2699 } 2700 2701 /* 2702 * Check if only the current task is running on the cpu. 2703 * 2704 * Caution: this function does not check that the caller has disabled 2705 * preemption, thus the result might have a time-of-check-to-time-of-use 2706 * race. The caller is responsible to use it correctly, for example: 2707 * 2708 * - from a non-preemptable section (of course) 2709 * 2710 * - from a thread that is bound to a single CPU 2711 * 2712 * - in a loop with very short iterations (e.g. a polling loop) 2713 */ 2714 bool single_task_running(void) 2715 { 2716 return raw_rq()->nr_running == 1; 2717 } 2718 EXPORT_SYMBOL(single_task_running); 2719 2720 unsigned long long nr_context_switches(void) 2721 { 2722 int i; 2723 unsigned long long sum = 0; 2724 2725 for_each_possible_cpu(i) 2726 sum += cpu_rq(i)->nr_switches; 2727 2728 return sum; 2729 } 2730 2731 unsigned long nr_iowait(void) 2732 { 2733 unsigned long i, sum = 0; 2734 2735 for_each_possible_cpu(i) 2736 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2737 2738 return sum; 2739 } 2740 2741 unsigned long nr_iowait_cpu(int cpu) 2742 { 2743 struct rq *this = cpu_rq(cpu); 2744 return atomic_read(&this->nr_iowait); 2745 } 2746 2747 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2748 { 2749 struct rq *rq = this_rq(); 2750 *nr_waiters = atomic_read(&rq->nr_iowait); 2751 *load = rq->load.weight; 2752 } 2753 2754 #ifdef CONFIG_SMP 2755 2756 /* 2757 * sched_exec - execve() is a valuable balancing opportunity, because at 2758 * this point the task has the smallest effective memory and cache footprint. 2759 */ 2760 void sched_exec(void) 2761 { 2762 struct task_struct *p = current; 2763 unsigned long flags; 2764 int dest_cpu; 2765 2766 raw_spin_lock_irqsave(&p->pi_lock, flags); 2767 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2768 if (dest_cpu == smp_processor_id()) 2769 goto unlock; 2770 2771 if (likely(cpu_active(dest_cpu))) { 2772 struct migration_arg arg = { p, dest_cpu }; 2773 2774 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2775 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2776 return; 2777 } 2778 unlock: 2779 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2780 } 2781 2782 #endif 2783 2784 DEFINE_PER_CPU(struct kernel_stat, kstat); 2785 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2786 2787 EXPORT_PER_CPU_SYMBOL(kstat); 2788 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2789 2790 /* 2791 * Return accounted runtime for the task. 2792 * In case the task is currently running, return the runtime plus current's 2793 * pending runtime that have not been accounted yet. 2794 */ 2795 unsigned long long task_sched_runtime(struct task_struct *p) 2796 { 2797 unsigned long flags; 2798 struct rq *rq; 2799 u64 ns; 2800 2801 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2802 /* 2803 * 64-bit doesn't need locks to atomically read a 64bit value. 2804 * So we have a optimization chance when the task's delta_exec is 0. 2805 * Reading ->on_cpu is racy, but this is ok. 2806 * 2807 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2808 * If we race with it entering cpu, unaccounted time is 0. This is 2809 * indistinguishable from the read occurring a few cycles earlier. 2810 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2811 * been accounted, so we're correct here as well. 2812 */ 2813 if (!p->on_cpu || !task_on_rq_queued(p)) 2814 return p->se.sum_exec_runtime; 2815 #endif 2816 2817 rq = task_rq_lock(p, &flags); 2818 /* 2819 * Must be ->curr _and_ ->on_rq. If dequeued, we would 2820 * project cycles that may never be accounted to this 2821 * thread, breaking clock_gettime(). 2822 */ 2823 if (task_current(rq, p) && task_on_rq_queued(p)) { 2824 update_rq_clock(rq); 2825 p->sched_class->update_curr(rq); 2826 } 2827 ns = p->se.sum_exec_runtime; 2828 task_rq_unlock(rq, p, &flags); 2829 2830 return ns; 2831 } 2832 2833 /* 2834 * This function gets called by the timer code, with HZ frequency. 2835 * We call it with interrupts disabled. 2836 */ 2837 void scheduler_tick(void) 2838 { 2839 int cpu = smp_processor_id(); 2840 struct rq *rq = cpu_rq(cpu); 2841 struct task_struct *curr = rq->curr; 2842 2843 sched_clock_tick(); 2844 2845 raw_spin_lock(&rq->lock); 2846 update_rq_clock(rq); 2847 curr->sched_class->task_tick(rq, curr, 0); 2848 update_cpu_load_active(rq); 2849 calc_global_load_tick(rq); 2850 raw_spin_unlock(&rq->lock); 2851 2852 perf_event_task_tick(); 2853 2854 #ifdef CONFIG_SMP 2855 rq->idle_balance = idle_cpu(cpu); 2856 trigger_load_balance(rq); 2857 #endif 2858 rq_last_tick_reset(rq); 2859 } 2860 2861 #ifdef CONFIG_NO_HZ_FULL 2862 /** 2863 * scheduler_tick_max_deferment 2864 * 2865 * Keep at least one tick per second when a single 2866 * active task is running because the scheduler doesn't 2867 * yet completely support full dynticks environment. 2868 * 2869 * This makes sure that uptime, CFS vruntime, load 2870 * balancing, etc... continue to move forward, even 2871 * with a very low granularity. 2872 * 2873 * Return: Maximum deferment in nanoseconds. 2874 */ 2875 u64 scheduler_tick_max_deferment(void) 2876 { 2877 struct rq *rq = this_rq(); 2878 unsigned long next, now = READ_ONCE(jiffies); 2879 2880 next = rq->last_sched_tick + HZ; 2881 2882 if (time_before_eq(next, now)) 2883 return 0; 2884 2885 return jiffies_to_nsecs(next - now); 2886 } 2887 #endif 2888 2889 notrace unsigned long get_parent_ip(unsigned long addr) 2890 { 2891 if (in_lock_functions(addr)) { 2892 addr = CALLER_ADDR2; 2893 if (in_lock_functions(addr)) 2894 addr = CALLER_ADDR3; 2895 } 2896 return addr; 2897 } 2898 2899 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2900 defined(CONFIG_PREEMPT_TRACER)) 2901 2902 void preempt_count_add(int val) 2903 { 2904 #ifdef CONFIG_DEBUG_PREEMPT 2905 /* 2906 * Underflow? 2907 */ 2908 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2909 return; 2910 #endif 2911 __preempt_count_add(val); 2912 #ifdef CONFIG_DEBUG_PREEMPT 2913 /* 2914 * Spinlock count overflowing soon? 2915 */ 2916 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2917 PREEMPT_MASK - 10); 2918 #endif 2919 if (preempt_count() == val) { 2920 unsigned long ip = get_parent_ip(CALLER_ADDR1); 2921 #ifdef CONFIG_DEBUG_PREEMPT 2922 current->preempt_disable_ip = ip; 2923 #endif 2924 trace_preempt_off(CALLER_ADDR0, ip); 2925 } 2926 } 2927 EXPORT_SYMBOL(preempt_count_add); 2928 NOKPROBE_SYMBOL(preempt_count_add); 2929 2930 void preempt_count_sub(int val) 2931 { 2932 #ifdef CONFIG_DEBUG_PREEMPT 2933 /* 2934 * Underflow? 2935 */ 2936 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2937 return; 2938 /* 2939 * Is the spinlock portion underflowing? 2940 */ 2941 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2942 !(preempt_count() & PREEMPT_MASK))) 2943 return; 2944 #endif 2945 2946 if (preempt_count() == val) 2947 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2948 __preempt_count_sub(val); 2949 } 2950 EXPORT_SYMBOL(preempt_count_sub); 2951 NOKPROBE_SYMBOL(preempt_count_sub); 2952 2953 #endif 2954 2955 /* 2956 * Print scheduling while atomic bug: 2957 */ 2958 static noinline void __schedule_bug(struct task_struct *prev) 2959 { 2960 if (oops_in_progress) 2961 return; 2962 2963 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2964 prev->comm, prev->pid, preempt_count()); 2965 2966 debug_show_held_locks(prev); 2967 print_modules(); 2968 if (irqs_disabled()) 2969 print_irqtrace_events(prev); 2970 #ifdef CONFIG_DEBUG_PREEMPT 2971 if (in_atomic_preempt_off()) { 2972 pr_err("Preemption disabled at:"); 2973 print_ip_sym(current->preempt_disable_ip); 2974 pr_cont("\n"); 2975 } 2976 #endif 2977 dump_stack(); 2978 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2979 } 2980 2981 /* 2982 * Various schedule()-time debugging checks and statistics: 2983 */ 2984 static inline void schedule_debug(struct task_struct *prev) 2985 { 2986 #ifdef CONFIG_SCHED_STACK_END_CHECK 2987 BUG_ON(task_stack_end_corrupted(prev)); 2988 #endif 2989 2990 if (unlikely(in_atomic_preempt_off())) { 2991 __schedule_bug(prev); 2992 preempt_count_set(PREEMPT_DISABLED); 2993 } 2994 rcu_sleep_check(); 2995 2996 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2997 2998 schedstat_inc(this_rq(), sched_count); 2999 } 3000 3001 /* 3002 * Pick up the highest-prio task: 3003 */ 3004 static inline struct task_struct * 3005 pick_next_task(struct rq *rq, struct task_struct *prev) 3006 { 3007 const struct sched_class *class = &fair_sched_class; 3008 struct task_struct *p; 3009 3010 /* 3011 * Optimization: we know that if all tasks are in 3012 * the fair class we can call that function directly: 3013 */ 3014 if (likely(prev->sched_class == class && 3015 rq->nr_running == rq->cfs.h_nr_running)) { 3016 p = fair_sched_class.pick_next_task(rq, prev); 3017 if (unlikely(p == RETRY_TASK)) 3018 goto again; 3019 3020 /* assumes fair_sched_class->next == idle_sched_class */ 3021 if (unlikely(!p)) 3022 p = idle_sched_class.pick_next_task(rq, prev); 3023 3024 return p; 3025 } 3026 3027 again: 3028 for_each_class(class) { 3029 p = class->pick_next_task(rq, prev); 3030 if (p) { 3031 if (unlikely(p == RETRY_TASK)) 3032 goto again; 3033 return p; 3034 } 3035 } 3036 3037 BUG(); /* the idle class will always have a runnable task */ 3038 } 3039 3040 /* 3041 * __schedule() is the main scheduler function. 3042 * 3043 * The main means of driving the scheduler and thus entering this function are: 3044 * 3045 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3046 * 3047 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3048 * paths. For example, see arch/x86/entry_64.S. 3049 * 3050 * To drive preemption between tasks, the scheduler sets the flag in timer 3051 * interrupt handler scheduler_tick(). 3052 * 3053 * 3. Wakeups don't really cause entry into schedule(). They add a 3054 * task to the run-queue and that's it. 3055 * 3056 * Now, if the new task added to the run-queue preempts the current 3057 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3058 * called on the nearest possible occasion: 3059 * 3060 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3061 * 3062 * - in syscall or exception context, at the next outmost 3063 * preempt_enable(). (this might be as soon as the wake_up()'s 3064 * spin_unlock()!) 3065 * 3066 * - in IRQ context, return from interrupt-handler to 3067 * preemptible context 3068 * 3069 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3070 * then at the next: 3071 * 3072 * - cond_resched() call 3073 * - explicit schedule() call 3074 * - return from syscall or exception to user-space 3075 * - return from interrupt-handler to user-space 3076 * 3077 * WARNING: must be called with preemption disabled! 3078 */ 3079 static void __sched notrace __schedule(bool preempt) 3080 { 3081 struct task_struct *prev, *next; 3082 unsigned long *switch_count; 3083 struct rq *rq; 3084 int cpu; 3085 3086 cpu = smp_processor_id(); 3087 rq = cpu_rq(cpu); 3088 rcu_note_context_switch(); 3089 prev = rq->curr; 3090 3091 /* 3092 * do_exit() calls schedule() with preemption disabled as an exception; 3093 * however we must fix that up, otherwise the next task will see an 3094 * inconsistent (higher) preempt count. 3095 * 3096 * It also avoids the below schedule_debug() test from complaining 3097 * about this. 3098 */ 3099 if (unlikely(prev->state == TASK_DEAD)) 3100 preempt_enable_no_resched_notrace(); 3101 3102 schedule_debug(prev); 3103 3104 if (sched_feat(HRTICK)) 3105 hrtick_clear(rq); 3106 3107 /* 3108 * Make sure that signal_pending_state()->signal_pending() below 3109 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3110 * done by the caller to avoid the race with signal_wake_up(). 3111 */ 3112 smp_mb__before_spinlock(); 3113 raw_spin_lock_irq(&rq->lock); 3114 lockdep_pin_lock(&rq->lock); 3115 3116 rq->clock_skip_update <<= 1; /* promote REQ to ACT */ 3117 3118 switch_count = &prev->nivcsw; 3119 if (!preempt && prev->state) { 3120 if (unlikely(signal_pending_state(prev->state, prev))) { 3121 prev->state = TASK_RUNNING; 3122 } else { 3123 deactivate_task(rq, prev, DEQUEUE_SLEEP); 3124 prev->on_rq = 0; 3125 3126 /* 3127 * If a worker went to sleep, notify and ask workqueue 3128 * whether it wants to wake up a task to maintain 3129 * concurrency. 3130 */ 3131 if (prev->flags & PF_WQ_WORKER) { 3132 struct task_struct *to_wakeup; 3133 3134 to_wakeup = wq_worker_sleeping(prev, cpu); 3135 if (to_wakeup) 3136 try_to_wake_up_local(to_wakeup); 3137 } 3138 } 3139 switch_count = &prev->nvcsw; 3140 } 3141 3142 if (task_on_rq_queued(prev)) 3143 update_rq_clock(rq); 3144 3145 next = pick_next_task(rq, prev); 3146 clear_tsk_need_resched(prev); 3147 clear_preempt_need_resched(); 3148 rq->clock_skip_update = 0; 3149 3150 if (likely(prev != next)) { 3151 rq->nr_switches++; 3152 rq->curr = next; 3153 ++*switch_count; 3154 3155 trace_sched_switch(preempt, prev, next); 3156 rq = context_switch(rq, prev, next); /* unlocks the rq */ 3157 cpu = cpu_of(rq); 3158 } else { 3159 lockdep_unpin_lock(&rq->lock); 3160 raw_spin_unlock_irq(&rq->lock); 3161 } 3162 3163 balance_callback(rq); 3164 } 3165 3166 static inline void sched_submit_work(struct task_struct *tsk) 3167 { 3168 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3169 return; 3170 /* 3171 * If we are going to sleep and we have plugged IO queued, 3172 * make sure to submit it to avoid deadlocks. 3173 */ 3174 if (blk_needs_flush_plug(tsk)) 3175 blk_schedule_flush_plug(tsk); 3176 } 3177 3178 asmlinkage __visible void __sched schedule(void) 3179 { 3180 struct task_struct *tsk = current; 3181 3182 sched_submit_work(tsk); 3183 do { 3184 preempt_disable(); 3185 __schedule(false); 3186 sched_preempt_enable_no_resched(); 3187 } while (need_resched()); 3188 } 3189 EXPORT_SYMBOL(schedule); 3190 3191 #ifdef CONFIG_CONTEXT_TRACKING 3192 asmlinkage __visible void __sched schedule_user(void) 3193 { 3194 /* 3195 * If we come here after a random call to set_need_resched(), 3196 * or we have been woken up remotely but the IPI has not yet arrived, 3197 * we haven't yet exited the RCU idle mode. Do it here manually until 3198 * we find a better solution. 3199 * 3200 * NB: There are buggy callers of this function. Ideally we 3201 * should warn if prev_state != CONTEXT_USER, but that will trigger 3202 * too frequently to make sense yet. 3203 */ 3204 enum ctx_state prev_state = exception_enter(); 3205 schedule(); 3206 exception_exit(prev_state); 3207 } 3208 #endif 3209 3210 /** 3211 * schedule_preempt_disabled - called with preemption disabled 3212 * 3213 * Returns with preemption disabled. Note: preempt_count must be 1 3214 */ 3215 void __sched schedule_preempt_disabled(void) 3216 { 3217 sched_preempt_enable_no_resched(); 3218 schedule(); 3219 preempt_disable(); 3220 } 3221 3222 static void __sched notrace preempt_schedule_common(void) 3223 { 3224 do { 3225 preempt_disable_notrace(); 3226 __schedule(true); 3227 preempt_enable_no_resched_notrace(); 3228 3229 /* 3230 * Check again in case we missed a preemption opportunity 3231 * between schedule and now. 3232 */ 3233 } while (need_resched()); 3234 } 3235 3236 #ifdef CONFIG_PREEMPT 3237 /* 3238 * this is the entry point to schedule() from in-kernel preemption 3239 * off of preempt_enable. Kernel preemptions off return from interrupt 3240 * occur there and call schedule directly. 3241 */ 3242 asmlinkage __visible void __sched notrace preempt_schedule(void) 3243 { 3244 /* 3245 * If there is a non-zero preempt_count or interrupts are disabled, 3246 * we do not want to preempt the current task. Just return.. 3247 */ 3248 if (likely(!preemptible())) 3249 return; 3250 3251 preempt_schedule_common(); 3252 } 3253 NOKPROBE_SYMBOL(preempt_schedule); 3254 EXPORT_SYMBOL(preempt_schedule); 3255 3256 /** 3257 * preempt_schedule_notrace - preempt_schedule called by tracing 3258 * 3259 * The tracing infrastructure uses preempt_enable_notrace to prevent 3260 * recursion and tracing preempt enabling caused by the tracing 3261 * infrastructure itself. But as tracing can happen in areas coming 3262 * from userspace or just about to enter userspace, a preempt enable 3263 * can occur before user_exit() is called. This will cause the scheduler 3264 * to be called when the system is still in usermode. 3265 * 3266 * To prevent this, the preempt_enable_notrace will use this function 3267 * instead of preempt_schedule() to exit user context if needed before 3268 * calling the scheduler. 3269 */ 3270 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3271 { 3272 enum ctx_state prev_ctx; 3273 3274 if (likely(!preemptible())) 3275 return; 3276 3277 do { 3278 preempt_disable_notrace(); 3279 /* 3280 * Needs preempt disabled in case user_exit() is traced 3281 * and the tracer calls preempt_enable_notrace() causing 3282 * an infinite recursion. 3283 */ 3284 prev_ctx = exception_enter(); 3285 __schedule(true); 3286 exception_exit(prev_ctx); 3287 3288 preempt_enable_no_resched_notrace(); 3289 } while (need_resched()); 3290 } 3291 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3292 3293 #endif /* CONFIG_PREEMPT */ 3294 3295 /* 3296 * this is the entry point to schedule() from kernel preemption 3297 * off of irq context. 3298 * Note, that this is called and return with irqs disabled. This will 3299 * protect us against recursive calling from irq. 3300 */ 3301 asmlinkage __visible void __sched preempt_schedule_irq(void) 3302 { 3303 enum ctx_state prev_state; 3304 3305 /* Catch callers which need to be fixed */ 3306 BUG_ON(preempt_count() || !irqs_disabled()); 3307 3308 prev_state = exception_enter(); 3309 3310 do { 3311 preempt_disable(); 3312 local_irq_enable(); 3313 __schedule(true); 3314 local_irq_disable(); 3315 sched_preempt_enable_no_resched(); 3316 } while (need_resched()); 3317 3318 exception_exit(prev_state); 3319 } 3320 3321 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3322 void *key) 3323 { 3324 return try_to_wake_up(curr->private, mode, wake_flags); 3325 } 3326 EXPORT_SYMBOL(default_wake_function); 3327 3328 #ifdef CONFIG_RT_MUTEXES 3329 3330 /* 3331 * rt_mutex_setprio - set the current priority of a task 3332 * @p: task 3333 * @prio: prio value (kernel-internal form) 3334 * 3335 * This function changes the 'effective' priority of a task. It does 3336 * not touch ->normal_prio like __setscheduler(). 3337 * 3338 * Used by the rt_mutex code to implement priority inheritance 3339 * logic. Call site only calls if the priority of the task changed. 3340 */ 3341 void rt_mutex_setprio(struct task_struct *p, int prio) 3342 { 3343 int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE; 3344 struct rq *rq; 3345 const struct sched_class *prev_class; 3346 3347 BUG_ON(prio > MAX_PRIO); 3348 3349 rq = __task_rq_lock(p); 3350 3351 /* 3352 * Idle task boosting is a nono in general. There is one 3353 * exception, when PREEMPT_RT and NOHZ is active: 3354 * 3355 * The idle task calls get_next_timer_interrupt() and holds 3356 * the timer wheel base->lock on the CPU and another CPU wants 3357 * to access the timer (probably to cancel it). We can safely 3358 * ignore the boosting request, as the idle CPU runs this code 3359 * with interrupts disabled and will complete the lock 3360 * protected section without being interrupted. So there is no 3361 * real need to boost. 3362 */ 3363 if (unlikely(p == rq->idle)) { 3364 WARN_ON(p != rq->curr); 3365 WARN_ON(p->pi_blocked_on); 3366 goto out_unlock; 3367 } 3368 3369 trace_sched_pi_setprio(p, prio); 3370 oldprio = p->prio; 3371 prev_class = p->sched_class; 3372 queued = task_on_rq_queued(p); 3373 running = task_current(rq, p); 3374 if (queued) 3375 dequeue_task(rq, p, DEQUEUE_SAVE); 3376 if (running) 3377 put_prev_task(rq, p); 3378 3379 /* 3380 * Boosting condition are: 3381 * 1. -rt task is running and holds mutex A 3382 * --> -dl task blocks on mutex A 3383 * 3384 * 2. -dl task is running and holds mutex A 3385 * --> -dl task blocks on mutex A and could preempt the 3386 * running task 3387 */ 3388 if (dl_prio(prio)) { 3389 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3390 if (!dl_prio(p->normal_prio) || 3391 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3392 p->dl.dl_boosted = 1; 3393 enqueue_flag |= ENQUEUE_REPLENISH; 3394 } else 3395 p->dl.dl_boosted = 0; 3396 p->sched_class = &dl_sched_class; 3397 } else if (rt_prio(prio)) { 3398 if (dl_prio(oldprio)) 3399 p->dl.dl_boosted = 0; 3400 if (oldprio < prio) 3401 enqueue_flag |= ENQUEUE_HEAD; 3402 p->sched_class = &rt_sched_class; 3403 } else { 3404 if (dl_prio(oldprio)) 3405 p->dl.dl_boosted = 0; 3406 if (rt_prio(oldprio)) 3407 p->rt.timeout = 0; 3408 p->sched_class = &fair_sched_class; 3409 } 3410 3411 p->prio = prio; 3412 3413 if (running) 3414 p->sched_class->set_curr_task(rq); 3415 if (queued) 3416 enqueue_task(rq, p, enqueue_flag); 3417 3418 check_class_changed(rq, p, prev_class, oldprio); 3419 out_unlock: 3420 preempt_disable(); /* avoid rq from going away on us */ 3421 __task_rq_unlock(rq); 3422 3423 balance_callback(rq); 3424 preempt_enable(); 3425 } 3426 #endif 3427 3428 void set_user_nice(struct task_struct *p, long nice) 3429 { 3430 int old_prio, delta, queued; 3431 unsigned long flags; 3432 struct rq *rq; 3433 3434 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3435 return; 3436 /* 3437 * We have to be careful, if called from sys_setpriority(), 3438 * the task might be in the middle of scheduling on another CPU. 3439 */ 3440 rq = task_rq_lock(p, &flags); 3441 /* 3442 * The RT priorities are set via sched_setscheduler(), but we still 3443 * allow the 'normal' nice value to be set - but as expected 3444 * it wont have any effect on scheduling until the task is 3445 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3446 */ 3447 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3448 p->static_prio = NICE_TO_PRIO(nice); 3449 goto out_unlock; 3450 } 3451 queued = task_on_rq_queued(p); 3452 if (queued) 3453 dequeue_task(rq, p, DEQUEUE_SAVE); 3454 3455 p->static_prio = NICE_TO_PRIO(nice); 3456 set_load_weight(p); 3457 old_prio = p->prio; 3458 p->prio = effective_prio(p); 3459 delta = p->prio - old_prio; 3460 3461 if (queued) { 3462 enqueue_task(rq, p, ENQUEUE_RESTORE); 3463 /* 3464 * If the task increased its priority or is running and 3465 * lowered its priority, then reschedule its CPU: 3466 */ 3467 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3468 resched_curr(rq); 3469 } 3470 out_unlock: 3471 task_rq_unlock(rq, p, &flags); 3472 } 3473 EXPORT_SYMBOL(set_user_nice); 3474 3475 /* 3476 * can_nice - check if a task can reduce its nice value 3477 * @p: task 3478 * @nice: nice value 3479 */ 3480 int can_nice(const struct task_struct *p, const int nice) 3481 { 3482 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3483 int nice_rlim = nice_to_rlimit(nice); 3484 3485 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3486 capable(CAP_SYS_NICE)); 3487 } 3488 3489 #ifdef __ARCH_WANT_SYS_NICE 3490 3491 /* 3492 * sys_nice - change the priority of the current process. 3493 * @increment: priority increment 3494 * 3495 * sys_setpriority is a more generic, but much slower function that 3496 * does similar things. 3497 */ 3498 SYSCALL_DEFINE1(nice, int, increment) 3499 { 3500 long nice, retval; 3501 3502 /* 3503 * Setpriority might change our priority at the same moment. 3504 * We don't have to worry. Conceptually one call occurs first 3505 * and we have a single winner. 3506 */ 3507 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3508 nice = task_nice(current) + increment; 3509 3510 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3511 if (increment < 0 && !can_nice(current, nice)) 3512 return -EPERM; 3513 3514 retval = security_task_setnice(current, nice); 3515 if (retval) 3516 return retval; 3517 3518 set_user_nice(current, nice); 3519 return 0; 3520 } 3521 3522 #endif 3523 3524 /** 3525 * task_prio - return the priority value of a given task. 3526 * @p: the task in question. 3527 * 3528 * Return: The priority value as seen by users in /proc. 3529 * RT tasks are offset by -200. Normal tasks are centered 3530 * around 0, value goes from -16 to +15. 3531 */ 3532 int task_prio(const struct task_struct *p) 3533 { 3534 return p->prio - MAX_RT_PRIO; 3535 } 3536 3537 /** 3538 * idle_cpu - is a given cpu idle currently? 3539 * @cpu: the processor in question. 3540 * 3541 * Return: 1 if the CPU is currently idle. 0 otherwise. 3542 */ 3543 int idle_cpu(int cpu) 3544 { 3545 struct rq *rq = cpu_rq(cpu); 3546 3547 if (rq->curr != rq->idle) 3548 return 0; 3549 3550 if (rq->nr_running) 3551 return 0; 3552 3553 #ifdef CONFIG_SMP 3554 if (!llist_empty(&rq->wake_list)) 3555 return 0; 3556 #endif 3557 3558 return 1; 3559 } 3560 3561 /** 3562 * idle_task - return the idle task for a given cpu. 3563 * @cpu: the processor in question. 3564 * 3565 * Return: The idle task for the cpu @cpu. 3566 */ 3567 struct task_struct *idle_task(int cpu) 3568 { 3569 return cpu_rq(cpu)->idle; 3570 } 3571 3572 /** 3573 * find_process_by_pid - find a process with a matching PID value. 3574 * @pid: the pid in question. 3575 * 3576 * The task of @pid, if found. %NULL otherwise. 3577 */ 3578 static struct task_struct *find_process_by_pid(pid_t pid) 3579 { 3580 return pid ? find_task_by_vpid(pid) : current; 3581 } 3582 3583 /* 3584 * This function initializes the sched_dl_entity of a newly becoming 3585 * SCHED_DEADLINE task. 3586 * 3587 * Only the static values are considered here, the actual runtime and the 3588 * absolute deadline will be properly calculated when the task is enqueued 3589 * for the first time with its new policy. 3590 */ 3591 static void 3592 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3593 { 3594 struct sched_dl_entity *dl_se = &p->dl; 3595 3596 dl_se->dl_runtime = attr->sched_runtime; 3597 dl_se->dl_deadline = attr->sched_deadline; 3598 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3599 dl_se->flags = attr->sched_flags; 3600 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3601 3602 /* 3603 * Changing the parameters of a task is 'tricky' and we're not doing 3604 * the correct thing -- also see task_dead_dl() and switched_from_dl(). 3605 * 3606 * What we SHOULD do is delay the bandwidth release until the 0-lag 3607 * point. This would include retaining the task_struct until that time 3608 * and change dl_overflow() to not immediately decrement the current 3609 * amount. 3610 * 3611 * Instead we retain the current runtime/deadline and let the new 3612 * parameters take effect after the current reservation period lapses. 3613 * This is safe (albeit pessimistic) because the 0-lag point is always 3614 * before the current scheduling deadline. 3615 * 3616 * We can still have temporary overloads because we do not delay the 3617 * change in bandwidth until that time; so admission control is 3618 * not on the safe side. It does however guarantee tasks will never 3619 * consume more than promised. 3620 */ 3621 } 3622 3623 /* 3624 * sched_setparam() passes in -1 for its policy, to let the functions 3625 * it calls know not to change it. 3626 */ 3627 #define SETPARAM_POLICY -1 3628 3629 static void __setscheduler_params(struct task_struct *p, 3630 const struct sched_attr *attr) 3631 { 3632 int policy = attr->sched_policy; 3633 3634 if (policy == SETPARAM_POLICY) 3635 policy = p->policy; 3636 3637 p->policy = policy; 3638 3639 if (dl_policy(policy)) 3640 __setparam_dl(p, attr); 3641 else if (fair_policy(policy)) 3642 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3643 3644 /* 3645 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3646 * !rt_policy. Always setting this ensures that things like 3647 * getparam()/getattr() don't report silly values for !rt tasks. 3648 */ 3649 p->rt_priority = attr->sched_priority; 3650 p->normal_prio = normal_prio(p); 3651 set_load_weight(p); 3652 } 3653 3654 /* Actually do priority change: must hold pi & rq lock. */ 3655 static void __setscheduler(struct rq *rq, struct task_struct *p, 3656 const struct sched_attr *attr, bool keep_boost) 3657 { 3658 __setscheduler_params(p, attr); 3659 3660 /* 3661 * Keep a potential priority boosting if called from 3662 * sched_setscheduler(). 3663 */ 3664 if (keep_boost) 3665 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p)); 3666 else 3667 p->prio = normal_prio(p); 3668 3669 if (dl_prio(p->prio)) 3670 p->sched_class = &dl_sched_class; 3671 else if (rt_prio(p->prio)) 3672 p->sched_class = &rt_sched_class; 3673 else 3674 p->sched_class = &fair_sched_class; 3675 } 3676 3677 static void 3678 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3679 { 3680 struct sched_dl_entity *dl_se = &p->dl; 3681 3682 attr->sched_priority = p->rt_priority; 3683 attr->sched_runtime = dl_se->dl_runtime; 3684 attr->sched_deadline = dl_se->dl_deadline; 3685 attr->sched_period = dl_se->dl_period; 3686 attr->sched_flags = dl_se->flags; 3687 } 3688 3689 /* 3690 * This function validates the new parameters of a -deadline task. 3691 * We ask for the deadline not being zero, and greater or equal 3692 * than the runtime, as well as the period of being zero or 3693 * greater than deadline. Furthermore, we have to be sure that 3694 * user parameters are above the internal resolution of 1us (we 3695 * check sched_runtime only since it is always the smaller one) and 3696 * below 2^63 ns (we have to check both sched_deadline and 3697 * sched_period, as the latter can be zero). 3698 */ 3699 static bool 3700 __checkparam_dl(const struct sched_attr *attr) 3701 { 3702 /* deadline != 0 */ 3703 if (attr->sched_deadline == 0) 3704 return false; 3705 3706 /* 3707 * Since we truncate DL_SCALE bits, make sure we're at least 3708 * that big. 3709 */ 3710 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3711 return false; 3712 3713 /* 3714 * Since we use the MSB for wrap-around and sign issues, make 3715 * sure it's not set (mind that period can be equal to zero). 3716 */ 3717 if (attr->sched_deadline & (1ULL << 63) || 3718 attr->sched_period & (1ULL << 63)) 3719 return false; 3720 3721 /* runtime <= deadline <= period (if period != 0) */ 3722 if ((attr->sched_period != 0 && 3723 attr->sched_period < attr->sched_deadline) || 3724 attr->sched_deadline < attr->sched_runtime) 3725 return false; 3726 3727 return true; 3728 } 3729 3730 /* 3731 * check the target process has a UID that matches the current process's 3732 */ 3733 static bool check_same_owner(struct task_struct *p) 3734 { 3735 const struct cred *cred = current_cred(), *pcred; 3736 bool match; 3737 3738 rcu_read_lock(); 3739 pcred = __task_cred(p); 3740 match = (uid_eq(cred->euid, pcred->euid) || 3741 uid_eq(cred->euid, pcred->uid)); 3742 rcu_read_unlock(); 3743 return match; 3744 } 3745 3746 static bool dl_param_changed(struct task_struct *p, 3747 const struct sched_attr *attr) 3748 { 3749 struct sched_dl_entity *dl_se = &p->dl; 3750 3751 if (dl_se->dl_runtime != attr->sched_runtime || 3752 dl_se->dl_deadline != attr->sched_deadline || 3753 dl_se->dl_period != attr->sched_period || 3754 dl_se->flags != attr->sched_flags) 3755 return true; 3756 3757 return false; 3758 } 3759 3760 static int __sched_setscheduler(struct task_struct *p, 3761 const struct sched_attr *attr, 3762 bool user, bool pi) 3763 { 3764 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 3765 MAX_RT_PRIO - 1 - attr->sched_priority; 3766 int retval, oldprio, oldpolicy = -1, queued, running; 3767 int new_effective_prio, policy = attr->sched_policy; 3768 unsigned long flags; 3769 const struct sched_class *prev_class; 3770 struct rq *rq; 3771 int reset_on_fork; 3772 3773 /* may grab non-irq protected spin_locks */ 3774 BUG_ON(in_interrupt()); 3775 recheck: 3776 /* double check policy once rq lock held */ 3777 if (policy < 0) { 3778 reset_on_fork = p->sched_reset_on_fork; 3779 policy = oldpolicy = p->policy; 3780 } else { 3781 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3782 3783 if (!valid_policy(policy)) 3784 return -EINVAL; 3785 } 3786 3787 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3788 return -EINVAL; 3789 3790 /* 3791 * Valid priorities for SCHED_FIFO and SCHED_RR are 3792 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3793 * SCHED_BATCH and SCHED_IDLE is 0. 3794 */ 3795 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 3796 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 3797 return -EINVAL; 3798 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 3799 (rt_policy(policy) != (attr->sched_priority != 0))) 3800 return -EINVAL; 3801 3802 /* 3803 * Allow unprivileged RT tasks to decrease priority: 3804 */ 3805 if (user && !capable(CAP_SYS_NICE)) { 3806 if (fair_policy(policy)) { 3807 if (attr->sched_nice < task_nice(p) && 3808 !can_nice(p, attr->sched_nice)) 3809 return -EPERM; 3810 } 3811 3812 if (rt_policy(policy)) { 3813 unsigned long rlim_rtprio = 3814 task_rlimit(p, RLIMIT_RTPRIO); 3815 3816 /* can't set/change the rt policy */ 3817 if (policy != p->policy && !rlim_rtprio) 3818 return -EPERM; 3819 3820 /* can't increase priority */ 3821 if (attr->sched_priority > p->rt_priority && 3822 attr->sched_priority > rlim_rtprio) 3823 return -EPERM; 3824 } 3825 3826 /* 3827 * Can't set/change SCHED_DEADLINE policy at all for now 3828 * (safest behavior); in the future we would like to allow 3829 * unprivileged DL tasks to increase their relative deadline 3830 * or reduce their runtime (both ways reducing utilization) 3831 */ 3832 if (dl_policy(policy)) 3833 return -EPERM; 3834 3835 /* 3836 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3837 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3838 */ 3839 if (idle_policy(p->policy) && !idle_policy(policy)) { 3840 if (!can_nice(p, task_nice(p))) 3841 return -EPERM; 3842 } 3843 3844 /* can't change other user's priorities */ 3845 if (!check_same_owner(p)) 3846 return -EPERM; 3847 3848 /* Normal users shall not reset the sched_reset_on_fork flag */ 3849 if (p->sched_reset_on_fork && !reset_on_fork) 3850 return -EPERM; 3851 } 3852 3853 if (user) { 3854 retval = security_task_setscheduler(p); 3855 if (retval) 3856 return retval; 3857 } 3858 3859 /* 3860 * make sure no PI-waiters arrive (or leave) while we are 3861 * changing the priority of the task: 3862 * 3863 * To be able to change p->policy safely, the appropriate 3864 * runqueue lock must be held. 3865 */ 3866 rq = task_rq_lock(p, &flags); 3867 3868 /* 3869 * Changing the policy of the stop threads its a very bad idea 3870 */ 3871 if (p == rq->stop) { 3872 task_rq_unlock(rq, p, &flags); 3873 return -EINVAL; 3874 } 3875 3876 /* 3877 * If not changing anything there's no need to proceed further, 3878 * but store a possible modification of reset_on_fork. 3879 */ 3880 if (unlikely(policy == p->policy)) { 3881 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 3882 goto change; 3883 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 3884 goto change; 3885 if (dl_policy(policy) && dl_param_changed(p, attr)) 3886 goto change; 3887 3888 p->sched_reset_on_fork = reset_on_fork; 3889 task_rq_unlock(rq, p, &flags); 3890 return 0; 3891 } 3892 change: 3893 3894 if (user) { 3895 #ifdef CONFIG_RT_GROUP_SCHED 3896 /* 3897 * Do not allow realtime tasks into groups that have no runtime 3898 * assigned. 3899 */ 3900 if (rt_bandwidth_enabled() && rt_policy(policy) && 3901 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3902 !task_group_is_autogroup(task_group(p))) { 3903 task_rq_unlock(rq, p, &flags); 3904 return -EPERM; 3905 } 3906 #endif 3907 #ifdef CONFIG_SMP 3908 if (dl_bandwidth_enabled() && dl_policy(policy)) { 3909 cpumask_t *span = rq->rd->span; 3910 3911 /* 3912 * Don't allow tasks with an affinity mask smaller than 3913 * the entire root_domain to become SCHED_DEADLINE. We 3914 * will also fail if there's no bandwidth available. 3915 */ 3916 if (!cpumask_subset(span, &p->cpus_allowed) || 3917 rq->rd->dl_bw.bw == 0) { 3918 task_rq_unlock(rq, p, &flags); 3919 return -EPERM; 3920 } 3921 } 3922 #endif 3923 } 3924 3925 /* recheck policy now with rq lock held */ 3926 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3927 policy = oldpolicy = -1; 3928 task_rq_unlock(rq, p, &flags); 3929 goto recheck; 3930 } 3931 3932 /* 3933 * If setscheduling to SCHED_DEADLINE (or changing the parameters 3934 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 3935 * is available. 3936 */ 3937 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 3938 task_rq_unlock(rq, p, &flags); 3939 return -EBUSY; 3940 } 3941 3942 p->sched_reset_on_fork = reset_on_fork; 3943 oldprio = p->prio; 3944 3945 if (pi) { 3946 /* 3947 * Take priority boosted tasks into account. If the new 3948 * effective priority is unchanged, we just store the new 3949 * normal parameters and do not touch the scheduler class and 3950 * the runqueue. This will be done when the task deboost 3951 * itself. 3952 */ 3953 new_effective_prio = rt_mutex_get_effective_prio(p, newprio); 3954 if (new_effective_prio == oldprio) { 3955 __setscheduler_params(p, attr); 3956 task_rq_unlock(rq, p, &flags); 3957 return 0; 3958 } 3959 } 3960 3961 queued = task_on_rq_queued(p); 3962 running = task_current(rq, p); 3963 if (queued) 3964 dequeue_task(rq, p, DEQUEUE_SAVE); 3965 if (running) 3966 put_prev_task(rq, p); 3967 3968 prev_class = p->sched_class; 3969 __setscheduler(rq, p, attr, pi); 3970 3971 if (running) 3972 p->sched_class->set_curr_task(rq); 3973 if (queued) { 3974 int enqueue_flags = ENQUEUE_RESTORE; 3975 /* 3976 * We enqueue to tail when the priority of a task is 3977 * increased (user space view). 3978 */ 3979 if (oldprio <= p->prio) 3980 enqueue_flags |= ENQUEUE_HEAD; 3981 3982 enqueue_task(rq, p, enqueue_flags); 3983 } 3984 3985 check_class_changed(rq, p, prev_class, oldprio); 3986 preempt_disable(); /* avoid rq from going away on us */ 3987 task_rq_unlock(rq, p, &flags); 3988 3989 if (pi) 3990 rt_mutex_adjust_pi(p); 3991 3992 /* 3993 * Run balance callbacks after we've adjusted the PI chain. 3994 */ 3995 balance_callback(rq); 3996 preempt_enable(); 3997 3998 return 0; 3999 } 4000 4001 static int _sched_setscheduler(struct task_struct *p, int policy, 4002 const struct sched_param *param, bool check) 4003 { 4004 struct sched_attr attr = { 4005 .sched_policy = policy, 4006 .sched_priority = param->sched_priority, 4007 .sched_nice = PRIO_TO_NICE(p->static_prio), 4008 }; 4009 4010 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4011 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4012 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4013 policy &= ~SCHED_RESET_ON_FORK; 4014 attr.sched_policy = policy; 4015 } 4016 4017 return __sched_setscheduler(p, &attr, check, true); 4018 } 4019 /** 4020 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4021 * @p: the task in question. 4022 * @policy: new policy. 4023 * @param: structure containing the new RT priority. 4024 * 4025 * Return: 0 on success. An error code otherwise. 4026 * 4027 * NOTE that the task may be already dead. 4028 */ 4029 int sched_setscheduler(struct task_struct *p, int policy, 4030 const struct sched_param *param) 4031 { 4032 return _sched_setscheduler(p, policy, param, true); 4033 } 4034 EXPORT_SYMBOL_GPL(sched_setscheduler); 4035 4036 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4037 { 4038 return __sched_setscheduler(p, attr, true, true); 4039 } 4040 EXPORT_SYMBOL_GPL(sched_setattr); 4041 4042 /** 4043 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4044 * @p: the task in question. 4045 * @policy: new policy. 4046 * @param: structure containing the new RT priority. 4047 * 4048 * Just like sched_setscheduler, only don't bother checking if the 4049 * current context has permission. For example, this is needed in 4050 * stop_machine(): we create temporary high priority worker threads, 4051 * but our caller might not have that capability. 4052 * 4053 * Return: 0 on success. An error code otherwise. 4054 */ 4055 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4056 const struct sched_param *param) 4057 { 4058 return _sched_setscheduler(p, policy, param, false); 4059 } 4060 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4061 4062 static int 4063 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4064 { 4065 struct sched_param lparam; 4066 struct task_struct *p; 4067 int retval; 4068 4069 if (!param || pid < 0) 4070 return -EINVAL; 4071 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4072 return -EFAULT; 4073 4074 rcu_read_lock(); 4075 retval = -ESRCH; 4076 p = find_process_by_pid(pid); 4077 if (p != NULL) 4078 retval = sched_setscheduler(p, policy, &lparam); 4079 rcu_read_unlock(); 4080 4081 return retval; 4082 } 4083 4084 /* 4085 * Mimics kernel/events/core.c perf_copy_attr(). 4086 */ 4087 static int sched_copy_attr(struct sched_attr __user *uattr, 4088 struct sched_attr *attr) 4089 { 4090 u32 size; 4091 int ret; 4092 4093 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4094 return -EFAULT; 4095 4096 /* 4097 * zero the full structure, so that a short copy will be nice. 4098 */ 4099 memset(attr, 0, sizeof(*attr)); 4100 4101 ret = get_user(size, &uattr->size); 4102 if (ret) 4103 return ret; 4104 4105 if (size > PAGE_SIZE) /* silly large */ 4106 goto err_size; 4107 4108 if (!size) /* abi compat */ 4109 size = SCHED_ATTR_SIZE_VER0; 4110 4111 if (size < SCHED_ATTR_SIZE_VER0) 4112 goto err_size; 4113 4114 /* 4115 * If we're handed a bigger struct than we know of, 4116 * ensure all the unknown bits are 0 - i.e. new 4117 * user-space does not rely on any kernel feature 4118 * extensions we dont know about yet. 4119 */ 4120 if (size > sizeof(*attr)) { 4121 unsigned char __user *addr; 4122 unsigned char __user *end; 4123 unsigned char val; 4124 4125 addr = (void __user *)uattr + sizeof(*attr); 4126 end = (void __user *)uattr + size; 4127 4128 for (; addr < end; addr++) { 4129 ret = get_user(val, addr); 4130 if (ret) 4131 return ret; 4132 if (val) 4133 goto err_size; 4134 } 4135 size = sizeof(*attr); 4136 } 4137 4138 ret = copy_from_user(attr, uattr, size); 4139 if (ret) 4140 return -EFAULT; 4141 4142 /* 4143 * XXX: do we want to be lenient like existing syscalls; or do we want 4144 * to be strict and return an error on out-of-bounds values? 4145 */ 4146 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4147 4148 return 0; 4149 4150 err_size: 4151 put_user(sizeof(*attr), &uattr->size); 4152 return -E2BIG; 4153 } 4154 4155 /** 4156 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4157 * @pid: the pid in question. 4158 * @policy: new policy. 4159 * @param: structure containing the new RT priority. 4160 * 4161 * Return: 0 on success. An error code otherwise. 4162 */ 4163 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4164 struct sched_param __user *, param) 4165 { 4166 /* negative values for policy are not valid */ 4167 if (policy < 0) 4168 return -EINVAL; 4169 4170 return do_sched_setscheduler(pid, policy, param); 4171 } 4172 4173 /** 4174 * sys_sched_setparam - set/change the RT priority of a thread 4175 * @pid: the pid in question. 4176 * @param: structure containing the new RT priority. 4177 * 4178 * Return: 0 on success. An error code otherwise. 4179 */ 4180 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4181 { 4182 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4183 } 4184 4185 /** 4186 * sys_sched_setattr - same as above, but with extended sched_attr 4187 * @pid: the pid in question. 4188 * @uattr: structure containing the extended parameters. 4189 * @flags: for future extension. 4190 */ 4191 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4192 unsigned int, flags) 4193 { 4194 struct sched_attr attr; 4195 struct task_struct *p; 4196 int retval; 4197 4198 if (!uattr || pid < 0 || flags) 4199 return -EINVAL; 4200 4201 retval = sched_copy_attr(uattr, &attr); 4202 if (retval) 4203 return retval; 4204 4205 if ((int)attr.sched_policy < 0) 4206 return -EINVAL; 4207 4208 rcu_read_lock(); 4209 retval = -ESRCH; 4210 p = find_process_by_pid(pid); 4211 if (p != NULL) 4212 retval = sched_setattr(p, &attr); 4213 rcu_read_unlock(); 4214 4215 return retval; 4216 } 4217 4218 /** 4219 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4220 * @pid: the pid in question. 4221 * 4222 * Return: On success, the policy of the thread. Otherwise, a negative error 4223 * code. 4224 */ 4225 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4226 { 4227 struct task_struct *p; 4228 int retval; 4229 4230 if (pid < 0) 4231 return -EINVAL; 4232 4233 retval = -ESRCH; 4234 rcu_read_lock(); 4235 p = find_process_by_pid(pid); 4236 if (p) { 4237 retval = security_task_getscheduler(p); 4238 if (!retval) 4239 retval = p->policy 4240 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4241 } 4242 rcu_read_unlock(); 4243 return retval; 4244 } 4245 4246 /** 4247 * sys_sched_getparam - get the RT priority of a thread 4248 * @pid: the pid in question. 4249 * @param: structure containing the RT priority. 4250 * 4251 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4252 * code. 4253 */ 4254 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4255 { 4256 struct sched_param lp = { .sched_priority = 0 }; 4257 struct task_struct *p; 4258 int retval; 4259 4260 if (!param || pid < 0) 4261 return -EINVAL; 4262 4263 rcu_read_lock(); 4264 p = find_process_by_pid(pid); 4265 retval = -ESRCH; 4266 if (!p) 4267 goto out_unlock; 4268 4269 retval = security_task_getscheduler(p); 4270 if (retval) 4271 goto out_unlock; 4272 4273 if (task_has_rt_policy(p)) 4274 lp.sched_priority = p->rt_priority; 4275 rcu_read_unlock(); 4276 4277 /* 4278 * This one might sleep, we cannot do it with a spinlock held ... 4279 */ 4280 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4281 4282 return retval; 4283 4284 out_unlock: 4285 rcu_read_unlock(); 4286 return retval; 4287 } 4288 4289 static int sched_read_attr(struct sched_attr __user *uattr, 4290 struct sched_attr *attr, 4291 unsigned int usize) 4292 { 4293 int ret; 4294 4295 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4296 return -EFAULT; 4297 4298 /* 4299 * If we're handed a smaller struct than we know of, 4300 * ensure all the unknown bits are 0 - i.e. old 4301 * user-space does not get uncomplete information. 4302 */ 4303 if (usize < sizeof(*attr)) { 4304 unsigned char *addr; 4305 unsigned char *end; 4306 4307 addr = (void *)attr + usize; 4308 end = (void *)attr + sizeof(*attr); 4309 4310 for (; addr < end; addr++) { 4311 if (*addr) 4312 return -EFBIG; 4313 } 4314 4315 attr->size = usize; 4316 } 4317 4318 ret = copy_to_user(uattr, attr, attr->size); 4319 if (ret) 4320 return -EFAULT; 4321 4322 return 0; 4323 } 4324 4325 /** 4326 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4327 * @pid: the pid in question. 4328 * @uattr: structure containing the extended parameters. 4329 * @size: sizeof(attr) for fwd/bwd comp. 4330 * @flags: for future extension. 4331 */ 4332 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4333 unsigned int, size, unsigned int, flags) 4334 { 4335 struct sched_attr attr = { 4336 .size = sizeof(struct sched_attr), 4337 }; 4338 struct task_struct *p; 4339 int retval; 4340 4341 if (!uattr || pid < 0 || size > PAGE_SIZE || 4342 size < SCHED_ATTR_SIZE_VER0 || flags) 4343 return -EINVAL; 4344 4345 rcu_read_lock(); 4346 p = find_process_by_pid(pid); 4347 retval = -ESRCH; 4348 if (!p) 4349 goto out_unlock; 4350 4351 retval = security_task_getscheduler(p); 4352 if (retval) 4353 goto out_unlock; 4354 4355 attr.sched_policy = p->policy; 4356 if (p->sched_reset_on_fork) 4357 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4358 if (task_has_dl_policy(p)) 4359 __getparam_dl(p, &attr); 4360 else if (task_has_rt_policy(p)) 4361 attr.sched_priority = p->rt_priority; 4362 else 4363 attr.sched_nice = task_nice(p); 4364 4365 rcu_read_unlock(); 4366 4367 retval = sched_read_attr(uattr, &attr, size); 4368 return retval; 4369 4370 out_unlock: 4371 rcu_read_unlock(); 4372 return retval; 4373 } 4374 4375 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4376 { 4377 cpumask_var_t cpus_allowed, new_mask; 4378 struct task_struct *p; 4379 int retval; 4380 4381 rcu_read_lock(); 4382 4383 p = find_process_by_pid(pid); 4384 if (!p) { 4385 rcu_read_unlock(); 4386 return -ESRCH; 4387 } 4388 4389 /* Prevent p going away */ 4390 get_task_struct(p); 4391 rcu_read_unlock(); 4392 4393 if (p->flags & PF_NO_SETAFFINITY) { 4394 retval = -EINVAL; 4395 goto out_put_task; 4396 } 4397 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4398 retval = -ENOMEM; 4399 goto out_put_task; 4400 } 4401 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4402 retval = -ENOMEM; 4403 goto out_free_cpus_allowed; 4404 } 4405 retval = -EPERM; 4406 if (!check_same_owner(p)) { 4407 rcu_read_lock(); 4408 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4409 rcu_read_unlock(); 4410 goto out_free_new_mask; 4411 } 4412 rcu_read_unlock(); 4413 } 4414 4415 retval = security_task_setscheduler(p); 4416 if (retval) 4417 goto out_free_new_mask; 4418 4419 4420 cpuset_cpus_allowed(p, cpus_allowed); 4421 cpumask_and(new_mask, in_mask, cpus_allowed); 4422 4423 /* 4424 * Since bandwidth control happens on root_domain basis, 4425 * if admission test is enabled, we only admit -deadline 4426 * tasks allowed to run on all the CPUs in the task's 4427 * root_domain. 4428 */ 4429 #ifdef CONFIG_SMP 4430 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4431 rcu_read_lock(); 4432 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4433 retval = -EBUSY; 4434 rcu_read_unlock(); 4435 goto out_free_new_mask; 4436 } 4437 rcu_read_unlock(); 4438 } 4439 #endif 4440 again: 4441 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4442 4443 if (!retval) { 4444 cpuset_cpus_allowed(p, cpus_allowed); 4445 if (!cpumask_subset(new_mask, cpus_allowed)) { 4446 /* 4447 * We must have raced with a concurrent cpuset 4448 * update. Just reset the cpus_allowed to the 4449 * cpuset's cpus_allowed 4450 */ 4451 cpumask_copy(new_mask, cpus_allowed); 4452 goto again; 4453 } 4454 } 4455 out_free_new_mask: 4456 free_cpumask_var(new_mask); 4457 out_free_cpus_allowed: 4458 free_cpumask_var(cpus_allowed); 4459 out_put_task: 4460 put_task_struct(p); 4461 return retval; 4462 } 4463 4464 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4465 struct cpumask *new_mask) 4466 { 4467 if (len < cpumask_size()) 4468 cpumask_clear(new_mask); 4469 else if (len > cpumask_size()) 4470 len = cpumask_size(); 4471 4472 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4473 } 4474 4475 /** 4476 * sys_sched_setaffinity - set the cpu affinity of a process 4477 * @pid: pid of the process 4478 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4479 * @user_mask_ptr: user-space pointer to the new cpu mask 4480 * 4481 * Return: 0 on success. An error code otherwise. 4482 */ 4483 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4484 unsigned long __user *, user_mask_ptr) 4485 { 4486 cpumask_var_t new_mask; 4487 int retval; 4488 4489 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4490 return -ENOMEM; 4491 4492 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4493 if (retval == 0) 4494 retval = sched_setaffinity(pid, new_mask); 4495 free_cpumask_var(new_mask); 4496 return retval; 4497 } 4498 4499 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4500 { 4501 struct task_struct *p; 4502 unsigned long flags; 4503 int retval; 4504 4505 rcu_read_lock(); 4506 4507 retval = -ESRCH; 4508 p = find_process_by_pid(pid); 4509 if (!p) 4510 goto out_unlock; 4511 4512 retval = security_task_getscheduler(p); 4513 if (retval) 4514 goto out_unlock; 4515 4516 raw_spin_lock_irqsave(&p->pi_lock, flags); 4517 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4518 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4519 4520 out_unlock: 4521 rcu_read_unlock(); 4522 4523 return retval; 4524 } 4525 4526 /** 4527 * sys_sched_getaffinity - get the cpu affinity of a process 4528 * @pid: pid of the process 4529 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4530 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4531 * 4532 * Return: 0 on success. An error code otherwise. 4533 */ 4534 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4535 unsigned long __user *, user_mask_ptr) 4536 { 4537 int ret; 4538 cpumask_var_t mask; 4539 4540 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4541 return -EINVAL; 4542 if (len & (sizeof(unsigned long)-1)) 4543 return -EINVAL; 4544 4545 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4546 return -ENOMEM; 4547 4548 ret = sched_getaffinity(pid, mask); 4549 if (ret == 0) { 4550 size_t retlen = min_t(size_t, len, cpumask_size()); 4551 4552 if (copy_to_user(user_mask_ptr, mask, retlen)) 4553 ret = -EFAULT; 4554 else 4555 ret = retlen; 4556 } 4557 free_cpumask_var(mask); 4558 4559 return ret; 4560 } 4561 4562 /** 4563 * sys_sched_yield - yield the current processor to other threads. 4564 * 4565 * This function yields the current CPU to other tasks. If there are no 4566 * other threads running on this CPU then this function will return. 4567 * 4568 * Return: 0. 4569 */ 4570 SYSCALL_DEFINE0(sched_yield) 4571 { 4572 struct rq *rq = this_rq_lock(); 4573 4574 schedstat_inc(rq, yld_count); 4575 current->sched_class->yield_task(rq); 4576 4577 /* 4578 * Since we are going to call schedule() anyway, there's 4579 * no need to preempt or enable interrupts: 4580 */ 4581 __release(rq->lock); 4582 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4583 do_raw_spin_unlock(&rq->lock); 4584 sched_preempt_enable_no_resched(); 4585 4586 schedule(); 4587 4588 return 0; 4589 } 4590 4591 int __sched _cond_resched(void) 4592 { 4593 if (should_resched(0)) { 4594 preempt_schedule_common(); 4595 return 1; 4596 } 4597 return 0; 4598 } 4599 EXPORT_SYMBOL(_cond_resched); 4600 4601 /* 4602 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4603 * call schedule, and on return reacquire the lock. 4604 * 4605 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4606 * operations here to prevent schedule() from being called twice (once via 4607 * spin_unlock(), once by hand). 4608 */ 4609 int __cond_resched_lock(spinlock_t *lock) 4610 { 4611 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4612 int ret = 0; 4613 4614 lockdep_assert_held(lock); 4615 4616 if (spin_needbreak(lock) || resched) { 4617 spin_unlock(lock); 4618 if (resched) 4619 preempt_schedule_common(); 4620 else 4621 cpu_relax(); 4622 ret = 1; 4623 spin_lock(lock); 4624 } 4625 return ret; 4626 } 4627 EXPORT_SYMBOL(__cond_resched_lock); 4628 4629 int __sched __cond_resched_softirq(void) 4630 { 4631 BUG_ON(!in_softirq()); 4632 4633 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { 4634 local_bh_enable(); 4635 preempt_schedule_common(); 4636 local_bh_disable(); 4637 return 1; 4638 } 4639 return 0; 4640 } 4641 EXPORT_SYMBOL(__cond_resched_softirq); 4642 4643 /** 4644 * yield - yield the current processor to other threads. 4645 * 4646 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4647 * 4648 * The scheduler is at all times free to pick the calling task as the most 4649 * eligible task to run, if removing the yield() call from your code breaks 4650 * it, its already broken. 4651 * 4652 * Typical broken usage is: 4653 * 4654 * while (!event) 4655 * yield(); 4656 * 4657 * where one assumes that yield() will let 'the other' process run that will 4658 * make event true. If the current task is a SCHED_FIFO task that will never 4659 * happen. Never use yield() as a progress guarantee!! 4660 * 4661 * If you want to use yield() to wait for something, use wait_event(). 4662 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4663 * If you still want to use yield(), do not! 4664 */ 4665 void __sched yield(void) 4666 { 4667 set_current_state(TASK_RUNNING); 4668 sys_sched_yield(); 4669 } 4670 EXPORT_SYMBOL(yield); 4671 4672 /** 4673 * yield_to - yield the current processor to another thread in 4674 * your thread group, or accelerate that thread toward the 4675 * processor it's on. 4676 * @p: target task 4677 * @preempt: whether task preemption is allowed or not 4678 * 4679 * It's the caller's job to ensure that the target task struct 4680 * can't go away on us before we can do any checks. 4681 * 4682 * Return: 4683 * true (>0) if we indeed boosted the target task. 4684 * false (0) if we failed to boost the target. 4685 * -ESRCH if there's no task to yield to. 4686 */ 4687 int __sched yield_to(struct task_struct *p, bool preempt) 4688 { 4689 struct task_struct *curr = current; 4690 struct rq *rq, *p_rq; 4691 unsigned long flags; 4692 int yielded = 0; 4693 4694 local_irq_save(flags); 4695 rq = this_rq(); 4696 4697 again: 4698 p_rq = task_rq(p); 4699 /* 4700 * If we're the only runnable task on the rq and target rq also 4701 * has only one task, there's absolutely no point in yielding. 4702 */ 4703 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4704 yielded = -ESRCH; 4705 goto out_irq; 4706 } 4707 4708 double_rq_lock(rq, p_rq); 4709 if (task_rq(p) != p_rq) { 4710 double_rq_unlock(rq, p_rq); 4711 goto again; 4712 } 4713 4714 if (!curr->sched_class->yield_to_task) 4715 goto out_unlock; 4716 4717 if (curr->sched_class != p->sched_class) 4718 goto out_unlock; 4719 4720 if (task_running(p_rq, p) || p->state) 4721 goto out_unlock; 4722 4723 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4724 if (yielded) { 4725 schedstat_inc(rq, yld_count); 4726 /* 4727 * Make p's CPU reschedule; pick_next_entity takes care of 4728 * fairness. 4729 */ 4730 if (preempt && rq != p_rq) 4731 resched_curr(p_rq); 4732 } 4733 4734 out_unlock: 4735 double_rq_unlock(rq, p_rq); 4736 out_irq: 4737 local_irq_restore(flags); 4738 4739 if (yielded > 0) 4740 schedule(); 4741 4742 return yielded; 4743 } 4744 EXPORT_SYMBOL_GPL(yield_to); 4745 4746 /* 4747 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4748 * that process accounting knows that this is a task in IO wait state. 4749 */ 4750 long __sched io_schedule_timeout(long timeout) 4751 { 4752 int old_iowait = current->in_iowait; 4753 struct rq *rq; 4754 long ret; 4755 4756 current->in_iowait = 1; 4757 blk_schedule_flush_plug(current); 4758 4759 delayacct_blkio_start(); 4760 rq = raw_rq(); 4761 atomic_inc(&rq->nr_iowait); 4762 ret = schedule_timeout(timeout); 4763 current->in_iowait = old_iowait; 4764 atomic_dec(&rq->nr_iowait); 4765 delayacct_blkio_end(); 4766 4767 return ret; 4768 } 4769 EXPORT_SYMBOL(io_schedule_timeout); 4770 4771 /** 4772 * sys_sched_get_priority_max - return maximum RT priority. 4773 * @policy: scheduling class. 4774 * 4775 * Return: On success, this syscall returns the maximum 4776 * rt_priority that can be used by a given scheduling class. 4777 * On failure, a negative error code is returned. 4778 */ 4779 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4780 { 4781 int ret = -EINVAL; 4782 4783 switch (policy) { 4784 case SCHED_FIFO: 4785 case SCHED_RR: 4786 ret = MAX_USER_RT_PRIO-1; 4787 break; 4788 case SCHED_DEADLINE: 4789 case SCHED_NORMAL: 4790 case SCHED_BATCH: 4791 case SCHED_IDLE: 4792 ret = 0; 4793 break; 4794 } 4795 return ret; 4796 } 4797 4798 /** 4799 * sys_sched_get_priority_min - return minimum RT priority. 4800 * @policy: scheduling class. 4801 * 4802 * Return: On success, this syscall returns the minimum 4803 * rt_priority that can be used by a given scheduling class. 4804 * On failure, a negative error code is returned. 4805 */ 4806 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4807 { 4808 int ret = -EINVAL; 4809 4810 switch (policy) { 4811 case SCHED_FIFO: 4812 case SCHED_RR: 4813 ret = 1; 4814 break; 4815 case SCHED_DEADLINE: 4816 case SCHED_NORMAL: 4817 case SCHED_BATCH: 4818 case SCHED_IDLE: 4819 ret = 0; 4820 } 4821 return ret; 4822 } 4823 4824 /** 4825 * sys_sched_rr_get_interval - return the default timeslice of a process. 4826 * @pid: pid of the process. 4827 * @interval: userspace pointer to the timeslice value. 4828 * 4829 * this syscall writes the default timeslice value of a given process 4830 * into the user-space timespec buffer. A value of '0' means infinity. 4831 * 4832 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 4833 * an error code. 4834 */ 4835 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4836 struct timespec __user *, interval) 4837 { 4838 struct task_struct *p; 4839 unsigned int time_slice; 4840 unsigned long flags; 4841 struct rq *rq; 4842 int retval; 4843 struct timespec t; 4844 4845 if (pid < 0) 4846 return -EINVAL; 4847 4848 retval = -ESRCH; 4849 rcu_read_lock(); 4850 p = find_process_by_pid(pid); 4851 if (!p) 4852 goto out_unlock; 4853 4854 retval = security_task_getscheduler(p); 4855 if (retval) 4856 goto out_unlock; 4857 4858 rq = task_rq_lock(p, &flags); 4859 time_slice = 0; 4860 if (p->sched_class->get_rr_interval) 4861 time_slice = p->sched_class->get_rr_interval(rq, p); 4862 task_rq_unlock(rq, p, &flags); 4863 4864 rcu_read_unlock(); 4865 jiffies_to_timespec(time_slice, &t); 4866 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4867 return retval; 4868 4869 out_unlock: 4870 rcu_read_unlock(); 4871 return retval; 4872 } 4873 4874 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4875 4876 void sched_show_task(struct task_struct *p) 4877 { 4878 unsigned long free = 0; 4879 int ppid; 4880 unsigned long state = p->state; 4881 4882 if (state) 4883 state = __ffs(state) + 1; 4884 printk(KERN_INFO "%-15.15s %c", p->comm, 4885 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4886 #if BITS_PER_LONG == 32 4887 if (state == TASK_RUNNING) 4888 printk(KERN_CONT " running "); 4889 else 4890 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4891 #else 4892 if (state == TASK_RUNNING) 4893 printk(KERN_CONT " running task "); 4894 else 4895 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4896 #endif 4897 #ifdef CONFIG_DEBUG_STACK_USAGE 4898 free = stack_not_used(p); 4899 #endif 4900 ppid = 0; 4901 rcu_read_lock(); 4902 if (pid_alive(p)) 4903 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4904 rcu_read_unlock(); 4905 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4906 task_pid_nr(p), ppid, 4907 (unsigned long)task_thread_info(p)->flags); 4908 4909 print_worker_info(KERN_INFO, p); 4910 show_stack(p, NULL); 4911 } 4912 4913 void show_state_filter(unsigned long state_filter) 4914 { 4915 struct task_struct *g, *p; 4916 4917 #if BITS_PER_LONG == 32 4918 printk(KERN_INFO 4919 " task PC stack pid father\n"); 4920 #else 4921 printk(KERN_INFO 4922 " task PC stack pid father\n"); 4923 #endif 4924 rcu_read_lock(); 4925 for_each_process_thread(g, p) { 4926 /* 4927 * reset the NMI-timeout, listing all files on a slow 4928 * console might take a lot of time: 4929 */ 4930 touch_nmi_watchdog(); 4931 if (!state_filter || (p->state & state_filter)) 4932 sched_show_task(p); 4933 } 4934 4935 touch_all_softlockup_watchdogs(); 4936 4937 #ifdef CONFIG_SCHED_DEBUG 4938 sysrq_sched_debug_show(); 4939 #endif 4940 rcu_read_unlock(); 4941 /* 4942 * Only show locks if all tasks are dumped: 4943 */ 4944 if (!state_filter) 4945 debug_show_all_locks(); 4946 } 4947 4948 void init_idle_bootup_task(struct task_struct *idle) 4949 { 4950 idle->sched_class = &idle_sched_class; 4951 } 4952 4953 /** 4954 * init_idle - set up an idle thread for a given CPU 4955 * @idle: task in question 4956 * @cpu: cpu the idle task belongs to 4957 * 4958 * NOTE: this function does not set the idle thread's NEED_RESCHED 4959 * flag, to make booting more robust. 4960 */ 4961 void init_idle(struct task_struct *idle, int cpu) 4962 { 4963 struct rq *rq = cpu_rq(cpu); 4964 unsigned long flags; 4965 4966 raw_spin_lock_irqsave(&idle->pi_lock, flags); 4967 raw_spin_lock(&rq->lock); 4968 4969 __sched_fork(0, idle); 4970 idle->state = TASK_RUNNING; 4971 idle->se.exec_start = sched_clock(); 4972 4973 #ifdef CONFIG_SMP 4974 /* 4975 * Its possible that init_idle() gets called multiple times on a task, 4976 * in that case do_set_cpus_allowed() will not do the right thing. 4977 * 4978 * And since this is boot we can forgo the serialization. 4979 */ 4980 set_cpus_allowed_common(idle, cpumask_of(cpu)); 4981 #endif 4982 /* 4983 * We're having a chicken and egg problem, even though we are 4984 * holding rq->lock, the cpu isn't yet set to this cpu so the 4985 * lockdep check in task_group() will fail. 4986 * 4987 * Similar case to sched_fork(). / Alternatively we could 4988 * use task_rq_lock() here and obtain the other rq->lock. 4989 * 4990 * Silence PROVE_RCU 4991 */ 4992 rcu_read_lock(); 4993 __set_task_cpu(idle, cpu); 4994 rcu_read_unlock(); 4995 4996 rq->curr = rq->idle = idle; 4997 idle->on_rq = TASK_ON_RQ_QUEUED; 4998 #ifdef CONFIG_SMP 4999 idle->on_cpu = 1; 5000 #endif 5001 raw_spin_unlock(&rq->lock); 5002 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5003 5004 /* Set the preempt count _outside_ the spinlocks! */ 5005 init_idle_preempt_count(idle, cpu); 5006 5007 /* 5008 * The idle tasks have their own, simple scheduling class: 5009 */ 5010 idle->sched_class = &idle_sched_class; 5011 ftrace_graph_init_idle_task(idle, cpu); 5012 vtime_init_idle(idle, cpu); 5013 #ifdef CONFIG_SMP 5014 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5015 #endif 5016 } 5017 5018 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5019 const struct cpumask *trial) 5020 { 5021 int ret = 1, trial_cpus; 5022 struct dl_bw *cur_dl_b; 5023 unsigned long flags; 5024 5025 if (!cpumask_weight(cur)) 5026 return ret; 5027 5028 rcu_read_lock_sched(); 5029 cur_dl_b = dl_bw_of(cpumask_any(cur)); 5030 trial_cpus = cpumask_weight(trial); 5031 5032 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 5033 if (cur_dl_b->bw != -1 && 5034 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 5035 ret = 0; 5036 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 5037 rcu_read_unlock_sched(); 5038 5039 return ret; 5040 } 5041 5042 int task_can_attach(struct task_struct *p, 5043 const struct cpumask *cs_cpus_allowed) 5044 { 5045 int ret = 0; 5046 5047 /* 5048 * Kthreads which disallow setaffinity shouldn't be moved 5049 * to a new cpuset; we don't want to change their cpu 5050 * affinity and isolating such threads by their set of 5051 * allowed nodes is unnecessary. Thus, cpusets are not 5052 * applicable for such threads. This prevents checking for 5053 * success of set_cpus_allowed_ptr() on all attached tasks 5054 * before cpus_allowed may be changed. 5055 */ 5056 if (p->flags & PF_NO_SETAFFINITY) { 5057 ret = -EINVAL; 5058 goto out; 5059 } 5060 5061 #ifdef CONFIG_SMP 5062 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5063 cs_cpus_allowed)) { 5064 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 5065 cs_cpus_allowed); 5066 struct dl_bw *dl_b; 5067 bool overflow; 5068 int cpus; 5069 unsigned long flags; 5070 5071 rcu_read_lock_sched(); 5072 dl_b = dl_bw_of(dest_cpu); 5073 raw_spin_lock_irqsave(&dl_b->lock, flags); 5074 cpus = dl_bw_cpus(dest_cpu); 5075 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 5076 if (overflow) 5077 ret = -EBUSY; 5078 else { 5079 /* 5080 * We reserve space for this task in the destination 5081 * root_domain, as we can't fail after this point. 5082 * We will free resources in the source root_domain 5083 * later on (see set_cpus_allowed_dl()). 5084 */ 5085 __dl_add(dl_b, p->dl.dl_bw); 5086 } 5087 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5088 rcu_read_unlock_sched(); 5089 5090 } 5091 #endif 5092 out: 5093 return ret; 5094 } 5095 5096 #ifdef CONFIG_SMP 5097 5098 #ifdef CONFIG_NUMA_BALANCING 5099 /* Migrate current task p to target_cpu */ 5100 int migrate_task_to(struct task_struct *p, int target_cpu) 5101 { 5102 struct migration_arg arg = { p, target_cpu }; 5103 int curr_cpu = task_cpu(p); 5104 5105 if (curr_cpu == target_cpu) 5106 return 0; 5107 5108 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 5109 return -EINVAL; 5110 5111 /* TODO: This is not properly updating schedstats */ 5112 5113 trace_sched_move_numa(p, curr_cpu, target_cpu); 5114 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5115 } 5116 5117 /* 5118 * Requeue a task on a given node and accurately track the number of NUMA 5119 * tasks on the runqueues 5120 */ 5121 void sched_setnuma(struct task_struct *p, int nid) 5122 { 5123 struct rq *rq; 5124 unsigned long flags; 5125 bool queued, running; 5126 5127 rq = task_rq_lock(p, &flags); 5128 queued = task_on_rq_queued(p); 5129 running = task_current(rq, p); 5130 5131 if (queued) 5132 dequeue_task(rq, p, DEQUEUE_SAVE); 5133 if (running) 5134 put_prev_task(rq, p); 5135 5136 p->numa_preferred_nid = nid; 5137 5138 if (running) 5139 p->sched_class->set_curr_task(rq); 5140 if (queued) 5141 enqueue_task(rq, p, ENQUEUE_RESTORE); 5142 task_rq_unlock(rq, p, &flags); 5143 } 5144 #endif /* CONFIG_NUMA_BALANCING */ 5145 5146 #ifdef CONFIG_HOTPLUG_CPU 5147 /* 5148 * Ensures that the idle task is using init_mm right before its cpu goes 5149 * offline. 5150 */ 5151 void idle_task_exit(void) 5152 { 5153 struct mm_struct *mm = current->active_mm; 5154 5155 BUG_ON(cpu_online(smp_processor_id())); 5156 5157 if (mm != &init_mm) { 5158 switch_mm(mm, &init_mm, current); 5159 finish_arch_post_lock_switch(); 5160 } 5161 mmdrop(mm); 5162 } 5163 5164 /* 5165 * Since this CPU is going 'away' for a while, fold any nr_active delta 5166 * we might have. Assumes we're called after migrate_tasks() so that the 5167 * nr_active count is stable. 5168 * 5169 * Also see the comment "Global load-average calculations". 5170 */ 5171 static void calc_load_migrate(struct rq *rq) 5172 { 5173 long delta = calc_load_fold_active(rq); 5174 if (delta) 5175 atomic_long_add(delta, &calc_load_tasks); 5176 } 5177 5178 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5179 { 5180 } 5181 5182 static const struct sched_class fake_sched_class = { 5183 .put_prev_task = put_prev_task_fake, 5184 }; 5185 5186 static struct task_struct fake_task = { 5187 /* 5188 * Avoid pull_{rt,dl}_task() 5189 */ 5190 .prio = MAX_PRIO + 1, 5191 .sched_class = &fake_sched_class, 5192 }; 5193 5194 /* 5195 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5196 * try_to_wake_up()->select_task_rq(). 5197 * 5198 * Called with rq->lock held even though we'er in stop_machine() and 5199 * there's no concurrency possible, we hold the required locks anyway 5200 * because of lock validation efforts. 5201 */ 5202 static void migrate_tasks(struct rq *dead_rq) 5203 { 5204 struct rq *rq = dead_rq; 5205 struct task_struct *next, *stop = rq->stop; 5206 int dest_cpu; 5207 5208 /* 5209 * Fudge the rq selection such that the below task selection loop 5210 * doesn't get stuck on the currently eligible stop task. 5211 * 5212 * We're currently inside stop_machine() and the rq is either stuck 5213 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5214 * either way we should never end up calling schedule() until we're 5215 * done here. 5216 */ 5217 rq->stop = NULL; 5218 5219 /* 5220 * put_prev_task() and pick_next_task() sched 5221 * class method both need to have an up-to-date 5222 * value of rq->clock[_task] 5223 */ 5224 update_rq_clock(rq); 5225 5226 for (;;) { 5227 /* 5228 * There's this thread running, bail when that's the only 5229 * remaining thread. 5230 */ 5231 if (rq->nr_running == 1) 5232 break; 5233 5234 /* 5235 * pick_next_task assumes pinned rq->lock. 5236 */ 5237 lockdep_pin_lock(&rq->lock); 5238 next = pick_next_task(rq, &fake_task); 5239 BUG_ON(!next); 5240 next->sched_class->put_prev_task(rq, next); 5241 5242 /* 5243 * Rules for changing task_struct::cpus_allowed are holding 5244 * both pi_lock and rq->lock, such that holding either 5245 * stabilizes the mask. 5246 * 5247 * Drop rq->lock is not quite as disastrous as it usually is 5248 * because !cpu_active at this point, which means load-balance 5249 * will not interfere. Also, stop-machine. 5250 */ 5251 lockdep_unpin_lock(&rq->lock); 5252 raw_spin_unlock(&rq->lock); 5253 raw_spin_lock(&next->pi_lock); 5254 raw_spin_lock(&rq->lock); 5255 5256 /* 5257 * Since we're inside stop-machine, _nothing_ should have 5258 * changed the task, WARN if weird stuff happened, because in 5259 * that case the above rq->lock drop is a fail too. 5260 */ 5261 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5262 raw_spin_unlock(&next->pi_lock); 5263 continue; 5264 } 5265 5266 /* Find suitable destination for @next, with force if needed. */ 5267 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5268 5269 rq = __migrate_task(rq, next, dest_cpu); 5270 if (rq != dead_rq) { 5271 raw_spin_unlock(&rq->lock); 5272 rq = dead_rq; 5273 raw_spin_lock(&rq->lock); 5274 } 5275 raw_spin_unlock(&next->pi_lock); 5276 } 5277 5278 rq->stop = stop; 5279 } 5280 #endif /* CONFIG_HOTPLUG_CPU */ 5281 5282 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 5283 5284 static struct ctl_table sd_ctl_dir[] = { 5285 { 5286 .procname = "sched_domain", 5287 .mode = 0555, 5288 }, 5289 {} 5290 }; 5291 5292 static struct ctl_table sd_ctl_root[] = { 5293 { 5294 .procname = "kernel", 5295 .mode = 0555, 5296 .child = sd_ctl_dir, 5297 }, 5298 {} 5299 }; 5300 5301 static struct ctl_table *sd_alloc_ctl_entry(int n) 5302 { 5303 struct ctl_table *entry = 5304 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 5305 5306 return entry; 5307 } 5308 5309 static void sd_free_ctl_entry(struct ctl_table **tablep) 5310 { 5311 struct ctl_table *entry; 5312 5313 /* 5314 * In the intermediate directories, both the child directory and 5315 * procname are dynamically allocated and could fail but the mode 5316 * will always be set. In the lowest directory the names are 5317 * static strings and all have proc handlers. 5318 */ 5319 for (entry = *tablep; entry->mode; entry++) { 5320 if (entry->child) 5321 sd_free_ctl_entry(&entry->child); 5322 if (entry->proc_handler == NULL) 5323 kfree(entry->procname); 5324 } 5325 5326 kfree(*tablep); 5327 *tablep = NULL; 5328 } 5329 5330 static int min_load_idx = 0; 5331 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 5332 5333 static void 5334 set_table_entry(struct ctl_table *entry, 5335 const char *procname, void *data, int maxlen, 5336 umode_t mode, proc_handler *proc_handler, 5337 bool load_idx) 5338 { 5339 entry->procname = procname; 5340 entry->data = data; 5341 entry->maxlen = maxlen; 5342 entry->mode = mode; 5343 entry->proc_handler = proc_handler; 5344 5345 if (load_idx) { 5346 entry->extra1 = &min_load_idx; 5347 entry->extra2 = &max_load_idx; 5348 } 5349 } 5350 5351 static struct ctl_table * 5352 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5353 { 5354 struct ctl_table *table = sd_alloc_ctl_entry(14); 5355 5356 if (table == NULL) 5357 return NULL; 5358 5359 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5360 sizeof(long), 0644, proc_doulongvec_minmax, false); 5361 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5362 sizeof(long), 0644, proc_doulongvec_minmax, false); 5363 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5364 sizeof(int), 0644, proc_dointvec_minmax, true); 5365 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5366 sizeof(int), 0644, proc_dointvec_minmax, true); 5367 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5368 sizeof(int), 0644, proc_dointvec_minmax, true); 5369 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5370 sizeof(int), 0644, proc_dointvec_minmax, true); 5371 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5372 sizeof(int), 0644, proc_dointvec_minmax, true); 5373 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5374 sizeof(int), 0644, proc_dointvec_minmax, false); 5375 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5376 sizeof(int), 0644, proc_dointvec_minmax, false); 5377 set_table_entry(&table[9], "cache_nice_tries", 5378 &sd->cache_nice_tries, 5379 sizeof(int), 0644, proc_dointvec_minmax, false); 5380 set_table_entry(&table[10], "flags", &sd->flags, 5381 sizeof(int), 0644, proc_dointvec_minmax, false); 5382 set_table_entry(&table[11], "max_newidle_lb_cost", 5383 &sd->max_newidle_lb_cost, 5384 sizeof(long), 0644, proc_doulongvec_minmax, false); 5385 set_table_entry(&table[12], "name", sd->name, 5386 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 5387 /* &table[13] is terminator */ 5388 5389 return table; 5390 } 5391 5392 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5393 { 5394 struct ctl_table *entry, *table; 5395 struct sched_domain *sd; 5396 int domain_num = 0, i; 5397 char buf[32]; 5398 5399 for_each_domain(cpu, sd) 5400 domain_num++; 5401 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5402 if (table == NULL) 5403 return NULL; 5404 5405 i = 0; 5406 for_each_domain(cpu, sd) { 5407 snprintf(buf, 32, "domain%d", i); 5408 entry->procname = kstrdup(buf, GFP_KERNEL); 5409 entry->mode = 0555; 5410 entry->child = sd_alloc_ctl_domain_table(sd); 5411 entry++; 5412 i++; 5413 } 5414 return table; 5415 } 5416 5417 static struct ctl_table_header *sd_sysctl_header; 5418 static void register_sched_domain_sysctl(void) 5419 { 5420 int i, cpu_num = num_possible_cpus(); 5421 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5422 char buf[32]; 5423 5424 WARN_ON(sd_ctl_dir[0].child); 5425 sd_ctl_dir[0].child = entry; 5426 5427 if (entry == NULL) 5428 return; 5429 5430 for_each_possible_cpu(i) { 5431 snprintf(buf, 32, "cpu%d", i); 5432 entry->procname = kstrdup(buf, GFP_KERNEL); 5433 entry->mode = 0555; 5434 entry->child = sd_alloc_ctl_cpu_table(i); 5435 entry++; 5436 } 5437 5438 WARN_ON(sd_sysctl_header); 5439 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5440 } 5441 5442 /* may be called multiple times per register */ 5443 static void unregister_sched_domain_sysctl(void) 5444 { 5445 unregister_sysctl_table(sd_sysctl_header); 5446 sd_sysctl_header = NULL; 5447 if (sd_ctl_dir[0].child) 5448 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5449 } 5450 #else 5451 static void register_sched_domain_sysctl(void) 5452 { 5453 } 5454 static void unregister_sched_domain_sysctl(void) 5455 { 5456 } 5457 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */ 5458 5459 static void set_rq_online(struct rq *rq) 5460 { 5461 if (!rq->online) { 5462 const struct sched_class *class; 5463 5464 cpumask_set_cpu(rq->cpu, rq->rd->online); 5465 rq->online = 1; 5466 5467 for_each_class(class) { 5468 if (class->rq_online) 5469 class->rq_online(rq); 5470 } 5471 } 5472 } 5473 5474 static void set_rq_offline(struct rq *rq) 5475 { 5476 if (rq->online) { 5477 const struct sched_class *class; 5478 5479 for_each_class(class) { 5480 if (class->rq_offline) 5481 class->rq_offline(rq); 5482 } 5483 5484 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5485 rq->online = 0; 5486 } 5487 } 5488 5489 /* 5490 * migration_call - callback that gets triggered when a CPU is added. 5491 * Here we can start up the necessary migration thread for the new CPU. 5492 */ 5493 static int 5494 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5495 { 5496 int cpu = (long)hcpu; 5497 unsigned long flags; 5498 struct rq *rq = cpu_rq(cpu); 5499 5500 switch (action & ~CPU_TASKS_FROZEN) { 5501 5502 case CPU_UP_PREPARE: 5503 rq->calc_load_update = calc_load_update; 5504 break; 5505 5506 case CPU_ONLINE: 5507 /* Update our root-domain */ 5508 raw_spin_lock_irqsave(&rq->lock, flags); 5509 if (rq->rd) { 5510 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5511 5512 set_rq_online(rq); 5513 } 5514 raw_spin_unlock_irqrestore(&rq->lock, flags); 5515 break; 5516 5517 #ifdef CONFIG_HOTPLUG_CPU 5518 case CPU_DYING: 5519 sched_ttwu_pending(); 5520 /* Update our root-domain */ 5521 raw_spin_lock_irqsave(&rq->lock, flags); 5522 if (rq->rd) { 5523 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5524 set_rq_offline(rq); 5525 } 5526 migrate_tasks(rq); 5527 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5528 raw_spin_unlock_irqrestore(&rq->lock, flags); 5529 break; 5530 5531 case CPU_DEAD: 5532 calc_load_migrate(rq); 5533 break; 5534 #endif 5535 } 5536 5537 update_max_interval(); 5538 5539 return NOTIFY_OK; 5540 } 5541 5542 /* 5543 * Register at high priority so that task migration (migrate_all_tasks) 5544 * happens before everything else. This has to be lower priority than 5545 * the notifier in the perf_event subsystem, though. 5546 */ 5547 static struct notifier_block migration_notifier = { 5548 .notifier_call = migration_call, 5549 .priority = CPU_PRI_MIGRATION, 5550 }; 5551 5552 static void set_cpu_rq_start_time(void) 5553 { 5554 int cpu = smp_processor_id(); 5555 struct rq *rq = cpu_rq(cpu); 5556 rq->age_stamp = sched_clock_cpu(cpu); 5557 } 5558 5559 static int sched_cpu_active(struct notifier_block *nfb, 5560 unsigned long action, void *hcpu) 5561 { 5562 int cpu = (long)hcpu; 5563 5564 switch (action & ~CPU_TASKS_FROZEN) { 5565 case CPU_STARTING: 5566 set_cpu_rq_start_time(); 5567 return NOTIFY_OK; 5568 5569 case CPU_ONLINE: 5570 /* 5571 * At this point a starting CPU has marked itself as online via 5572 * set_cpu_online(). But it might not yet have marked itself 5573 * as active, which is essential from here on. 5574 */ 5575 set_cpu_active(cpu, true); 5576 stop_machine_unpark(cpu); 5577 return NOTIFY_OK; 5578 5579 case CPU_DOWN_FAILED: 5580 set_cpu_active(cpu, true); 5581 return NOTIFY_OK; 5582 5583 default: 5584 return NOTIFY_DONE; 5585 } 5586 } 5587 5588 static int sched_cpu_inactive(struct notifier_block *nfb, 5589 unsigned long action, void *hcpu) 5590 { 5591 switch (action & ~CPU_TASKS_FROZEN) { 5592 case CPU_DOWN_PREPARE: 5593 set_cpu_active((long)hcpu, false); 5594 return NOTIFY_OK; 5595 default: 5596 return NOTIFY_DONE; 5597 } 5598 } 5599 5600 static int __init migration_init(void) 5601 { 5602 void *cpu = (void *)(long)smp_processor_id(); 5603 int err; 5604 5605 /* Initialize migration for the boot CPU */ 5606 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5607 BUG_ON(err == NOTIFY_BAD); 5608 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5609 register_cpu_notifier(&migration_notifier); 5610 5611 /* Register cpu active notifiers */ 5612 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5613 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5614 5615 return 0; 5616 } 5617 early_initcall(migration_init); 5618 5619 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5620 5621 #ifdef CONFIG_SCHED_DEBUG 5622 5623 static __read_mostly int sched_debug_enabled; 5624 5625 static int __init sched_debug_setup(char *str) 5626 { 5627 sched_debug_enabled = 1; 5628 5629 return 0; 5630 } 5631 early_param("sched_debug", sched_debug_setup); 5632 5633 static inline bool sched_debug(void) 5634 { 5635 return sched_debug_enabled; 5636 } 5637 5638 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5639 struct cpumask *groupmask) 5640 { 5641 struct sched_group *group = sd->groups; 5642 5643 cpumask_clear(groupmask); 5644 5645 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5646 5647 if (!(sd->flags & SD_LOAD_BALANCE)) { 5648 printk("does not load-balance\n"); 5649 if (sd->parent) 5650 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5651 " has parent"); 5652 return -1; 5653 } 5654 5655 printk(KERN_CONT "span %*pbl level %s\n", 5656 cpumask_pr_args(sched_domain_span(sd)), sd->name); 5657 5658 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5659 printk(KERN_ERR "ERROR: domain->span does not contain " 5660 "CPU%d\n", cpu); 5661 } 5662 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5663 printk(KERN_ERR "ERROR: domain->groups does not contain" 5664 " CPU%d\n", cpu); 5665 } 5666 5667 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5668 do { 5669 if (!group) { 5670 printk("\n"); 5671 printk(KERN_ERR "ERROR: group is NULL\n"); 5672 break; 5673 } 5674 5675 if (!cpumask_weight(sched_group_cpus(group))) { 5676 printk(KERN_CONT "\n"); 5677 printk(KERN_ERR "ERROR: empty group\n"); 5678 break; 5679 } 5680 5681 if (!(sd->flags & SD_OVERLAP) && 5682 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5683 printk(KERN_CONT "\n"); 5684 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5685 break; 5686 } 5687 5688 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5689 5690 printk(KERN_CONT " %*pbl", 5691 cpumask_pr_args(sched_group_cpus(group))); 5692 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5693 printk(KERN_CONT " (cpu_capacity = %d)", 5694 group->sgc->capacity); 5695 } 5696 5697 group = group->next; 5698 } while (group != sd->groups); 5699 printk(KERN_CONT "\n"); 5700 5701 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5702 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5703 5704 if (sd->parent && 5705 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5706 printk(KERN_ERR "ERROR: parent span is not a superset " 5707 "of domain->span\n"); 5708 return 0; 5709 } 5710 5711 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5712 { 5713 int level = 0; 5714 5715 if (!sched_debug_enabled) 5716 return; 5717 5718 if (!sd) { 5719 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5720 return; 5721 } 5722 5723 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5724 5725 for (;;) { 5726 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5727 break; 5728 level++; 5729 sd = sd->parent; 5730 if (!sd) 5731 break; 5732 } 5733 } 5734 #else /* !CONFIG_SCHED_DEBUG */ 5735 # define sched_domain_debug(sd, cpu) do { } while (0) 5736 static inline bool sched_debug(void) 5737 { 5738 return false; 5739 } 5740 #endif /* CONFIG_SCHED_DEBUG */ 5741 5742 static int sd_degenerate(struct sched_domain *sd) 5743 { 5744 if (cpumask_weight(sched_domain_span(sd)) == 1) 5745 return 1; 5746 5747 /* Following flags need at least 2 groups */ 5748 if (sd->flags & (SD_LOAD_BALANCE | 5749 SD_BALANCE_NEWIDLE | 5750 SD_BALANCE_FORK | 5751 SD_BALANCE_EXEC | 5752 SD_SHARE_CPUCAPACITY | 5753 SD_SHARE_PKG_RESOURCES | 5754 SD_SHARE_POWERDOMAIN)) { 5755 if (sd->groups != sd->groups->next) 5756 return 0; 5757 } 5758 5759 /* Following flags don't use groups */ 5760 if (sd->flags & (SD_WAKE_AFFINE)) 5761 return 0; 5762 5763 return 1; 5764 } 5765 5766 static int 5767 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5768 { 5769 unsigned long cflags = sd->flags, pflags = parent->flags; 5770 5771 if (sd_degenerate(parent)) 5772 return 1; 5773 5774 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5775 return 0; 5776 5777 /* Flags needing groups don't count if only 1 group in parent */ 5778 if (parent->groups == parent->groups->next) { 5779 pflags &= ~(SD_LOAD_BALANCE | 5780 SD_BALANCE_NEWIDLE | 5781 SD_BALANCE_FORK | 5782 SD_BALANCE_EXEC | 5783 SD_SHARE_CPUCAPACITY | 5784 SD_SHARE_PKG_RESOURCES | 5785 SD_PREFER_SIBLING | 5786 SD_SHARE_POWERDOMAIN); 5787 if (nr_node_ids == 1) 5788 pflags &= ~SD_SERIALIZE; 5789 } 5790 if (~cflags & pflags) 5791 return 0; 5792 5793 return 1; 5794 } 5795 5796 static void free_rootdomain(struct rcu_head *rcu) 5797 { 5798 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5799 5800 cpupri_cleanup(&rd->cpupri); 5801 cpudl_cleanup(&rd->cpudl); 5802 free_cpumask_var(rd->dlo_mask); 5803 free_cpumask_var(rd->rto_mask); 5804 free_cpumask_var(rd->online); 5805 free_cpumask_var(rd->span); 5806 kfree(rd); 5807 } 5808 5809 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5810 { 5811 struct root_domain *old_rd = NULL; 5812 unsigned long flags; 5813 5814 raw_spin_lock_irqsave(&rq->lock, flags); 5815 5816 if (rq->rd) { 5817 old_rd = rq->rd; 5818 5819 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5820 set_rq_offline(rq); 5821 5822 cpumask_clear_cpu(rq->cpu, old_rd->span); 5823 5824 /* 5825 * If we dont want to free the old_rd yet then 5826 * set old_rd to NULL to skip the freeing later 5827 * in this function: 5828 */ 5829 if (!atomic_dec_and_test(&old_rd->refcount)) 5830 old_rd = NULL; 5831 } 5832 5833 atomic_inc(&rd->refcount); 5834 rq->rd = rd; 5835 5836 cpumask_set_cpu(rq->cpu, rd->span); 5837 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5838 set_rq_online(rq); 5839 5840 raw_spin_unlock_irqrestore(&rq->lock, flags); 5841 5842 if (old_rd) 5843 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5844 } 5845 5846 static int init_rootdomain(struct root_domain *rd) 5847 { 5848 memset(rd, 0, sizeof(*rd)); 5849 5850 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5851 goto out; 5852 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5853 goto free_span; 5854 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5855 goto free_online; 5856 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5857 goto free_dlo_mask; 5858 5859 init_dl_bw(&rd->dl_bw); 5860 if (cpudl_init(&rd->cpudl) != 0) 5861 goto free_dlo_mask; 5862 5863 if (cpupri_init(&rd->cpupri) != 0) 5864 goto free_rto_mask; 5865 return 0; 5866 5867 free_rto_mask: 5868 free_cpumask_var(rd->rto_mask); 5869 free_dlo_mask: 5870 free_cpumask_var(rd->dlo_mask); 5871 free_online: 5872 free_cpumask_var(rd->online); 5873 free_span: 5874 free_cpumask_var(rd->span); 5875 out: 5876 return -ENOMEM; 5877 } 5878 5879 /* 5880 * By default the system creates a single root-domain with all cpus as 5881 * members (mimicking the global state we have today). 5882 */ 5883 struct root_domain def_root_domain; 5884 5885 static void init_defrootdomain(void) 5886 { 5887 init_rootdomain(&def_root_domain); 5888 5889 atomic_set(&def_root_domain.refcount, 1); 5890 } 5891 5892 static struct root_domain *alloc_rootdomain(void) 5893 { 5894 struct root_domain *rd; 5895 5896 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5897 if (!rd) 5898 return NULL; 5899 5900 if (init_rootdomain(rd) != 0) { 5901 kfree(rd); 5902 return NULL; 5903 } 5904 5905 return rd; 5906 } 5907 5908 static void free_sched_groups(struct sched_group *sg, int free_sgc) 5909 { 5910 struct sched_group *tmp, *first; 5911 5912 if (!sg) 5913 return; 5914 5915 first = sg; 5916 do { 5917 tmp = sg->next; 5918 5919 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 5920 kfree(sg->sgc); 5921 5922 kfree(sg); 5923 sg = tmp; 5924 } while (sg != first); 5925 } 5926 5927 static void free_sched_domain(struct rcu_head *rcu) 5928 { 5929 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5930 5931 /* 5932 * If its an overlapping domain it has private groups, iterate and 5933 * nuke them all. 5934 */ 5935 if (sd->flags & SD_OVERLAP) { 5936 free_sched_groups(sd->groups, 1); 5937 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5938 kfree(sd->groups->sgc); 5939 kfree(sd->groups); 5940 } 5941 kfree(sd); 5942 } 5943 5944 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5945 { 5946 call_rcu(&sd->rcu, free_sched_domain); 5947 } 5948 5949 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5950 { 5951 for (; sd; sd = sd->parent) 5952 destroy_sched_domain(sd, cpu); 5953 } 5954 5955 /* 5956 * Keep a special pointer to the highest sched_domain that has 5957 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5958 * allows us to avoid some pointer chasing select_idle_sibling(). 5959 * 5960 * Also keep a unique ID per domain (we use the first cpu number in 5961 * the cpumask of the domain), this allows us to quickly tell if 5962 * two cpus are in the same cache domain, see cpus_share_cache(). 5963 */ 5964 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5965 DEFINE_PER_CPU(int, sd_llc_size); 5966 DEFINE_PER_CPU(int, sd_llc_id); 5967 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5968 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5969 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5970 5971 static void update_top_cache_domain(int cpu) 5972 { 5973 struct sched_domain *sd; 5974 struct sched_domain *busy_sd = NULL; 5975 int id = cpu; 5976 int size = 1; 5977 5978 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5979 if (sd) { 5980 id = cpumask_first(sched_domain_span(sd)); 5981 size = cpumask_weight(sched_domain_span(sd)); 5982 busy_sd = sd->parent; /* sd_busy */ 5983 } 5984 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5985 5986 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5987 per_cpu(sd_llc_size, cpu) = size; 5988 per_cpu(sd_llc_id, cpu) = id; 5989 5990 sd = lowest_flag_domain(cpu, SD_NUMA); 5991 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5992 5993 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5994 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5995 } 5996 5997 /* 5998 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5999 * hold the hotplug lock. 6000 */ 6001 static void 6002 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 6003 { 6004 struct rq *rq = cpu_rq(cpu); 6005 struct sched_domain *tmp; 6006 6007 /* Remove the sched domains which do not contribute to scheduling. */ 6008 for (tmp = sd; tmp; ) { 6009 struct sched_domain *parent = tmp->parent; 6010 if (!parent) 6011 break; 6012 6013 if (sd_parent_degenerate(tmp, parent)) { 6014 tmp->parent = parent->parent; 6015 if (parent->parent) 6016 parent->parent->child = tmp; 6017 /* 6018 * Transfer SD_PREFER_SIBLING down in case of a 6019 * degenerate parent; the spans match for this 6020 * so the property transfers. 6021 */ 6022 if (parent->flags & SD_PREFER_SIBLING) 6023 tmp->flags |= SD_PREFER_SIBLING; 6024 destroy_sched_domain(parent, cpu); 6025 } else 6026 tmp = tmp->parent; 6027 } 6028 6029 if (sd && sd_degenerate(sd)) { 6030 tmp = sd; 6031 sd = sd->parent; 6032 destroy_sched_domain(tmp, cpu); 6033 if (sd) 6034 sd->child = NULL; 6035 } 6036 6037 sched_domain_debug(sd, cpu); 6038 6039 rq_attach_root(rq, rd); 6040 tmp = rq->sd; 6041 rcu_assign_pointer(rq->sd, sd); 6042 destroy_sched_domains(tmp, cpu); 6043 6044 update_top_cache_domain(cpu); 6045 } 6046 6047 /* Setup the mask of cpus configured for isolated domains */ 6048 static int __init isolated_cpu_setup(char *str) 6049 { 6050 alloc_bootmem_cpumask_var(&cpu_isolated_map); 6051 cpulist_parse(str, cpu_isolated_map); 6052 return 1; 6053 } 6054 6055 __setup("isolcpus=", isolated_cpu_setup); 6056 6057 struct s_data { 6058 struct sched_domain ** __percpu sd; 6059 struct root_domain *rd; 6060 }; 6061 6062 enum s_alloc { 6063 sa_rootdomain, 6064 sa_sd, 6065 sa_sd_storage, 6066 sa_none, 6067 }; 6068 6069 /* 6070 * Build an iteration mask that can exclude certain CPUs from the upwards 6071 * domain traversal. 6072 * 6073 * Asymmetric node setups can result in situations where the domain tree is of 6074 * unequal depth, make sure to skip domains that already cover the entire 6075 * range. 6076 * 6077 * In that case build_sched_domains() will have terminated the iteration early 6078 * and our sibling sd spans will be empty. Domains should always include the 6079 * cpu they're built on, so check that. 6080 * 6081 */ 6082 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 6083 { 6084 const struct cpumask *span = sched_domain_span(sd); 6085 struct sd_data *sdd = sd->private; 6086 struct sched_domain *sibling; 6087 int i; 6088 6089 for_each_cpu(i, span) { 6090 sibling = *per_cpu_ptr(sdd->sd, i); 6091 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6092 continue; 6093 6094 cpumask_set_cpu(i, sched_group_mask(sg)); 6095 } 6096 } 6097 6098 /* 6099 * Return the canonical balance cpu for this group, this is the first cpu 6100 * of this group that's also in the iteration mask. 6101 */ 6102 int group_balance_cpu(struct sched_group *sg) 6103 { 6104 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 6105 } 6106 6107 static int 6108 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 6109 { 6110 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 6111 const struct cpumask *span = sched_domain_span(sd); 6112 struct cpumask *covered = sched_domains_tmpmask; 6113 struct sd_data *sdd = sd->private; 6114 struct sched_domain *sibling; 6115 int i; 6116 6117 cpumask_clear(covered); 6118 6119 for_each_cpu(i, span) { 6120 struct cpumask *sg_span; 6121 6122 if (cpumask_test_cpu(i, covered)) 6123 continue; 6124 6125 sibling = *per_cpu_ptr(sdd->sd, i); 6126 6127 /* See the comment near build_group_mask(). */ 6128 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6129 continue; 6130 6131 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6132 GFP_KERNEL, cpu_to_node(cpu)); 6133 6134 if (!sg) 6135 goto fail; 6136 6137 sg_span = sched_group_cpus(sg); 6138 if (sibling->child) 6139 cpumask_copy(sg_span, sched_domain_span(sibling->child)); 6140 else 6141 cpumask_set_cpu(i, sg_span); 6142 6143 cpumask_or(covered, covered, sg_span); 6144 6145 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 6146 if (atomic_inc_return(&sg->sgc->ref) == 1) 6147 build_group_mask(sd, sg); 6148 6149 /* 6150 * Initialize sgc->capacity such that even if we mess up the 6151 * domains and no possible iteration will get us here, we won't 6152 * die on a /0 trap. 6153 */ 6154 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 6155 6156 /* 6157 * Make sure the first group of this domain contains the 6158 * canonical balance cpu. Otherwise the sched_domain iteration 6159 * breaks. See update_sg_lb_stats(). 6160 */ 6161 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 6162 group_balance_cpu(sg) == cpu) 6163 groups = sg; 6164 6165 if (!first) 6166 first = sg; 6167 if (last) 6168 last->next = sg; 6169 last = sg; 6170 last->next = first; 6171 } 6172 sd->groups = groups; 6173 6174 return 0; 6175 6176 fail: 6177 free_sched_groups(first, 0); 6178 6179 return -ENOMEM; 6180 } 6181 6182 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 6183 { 6184 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6185 struct sched_domain *child = sd->child; 6186 6187 if (child) 6188 cpu = cpumask_first(sched_domain_span(child)); 6189 6190 if (sg) { 6191 *sg = *per_cpu_ptr(sdd->sg, cpu); 6192 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 6193 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 6194 } 6195 6196 return cpu; 6197 } 6198 6199 /* 6200 * build_sched_groups will build a circular linked list of the groups 6201 * covered by the given span, and will set each group's ->cpumask correctly, 6202 * and ->cpu_capacity to 0. 6203 * 6204 * Assumes the sched_domain tree is fully constructed 6205 */ 6206 static int 6207 build_sched_groups(struct sched_domain *sd, int cpu) 6208 { 6209 struct sched_group *first = NULL, *last = NULL; 6210 struct sd_data *sdd = sd->private; 6211 const struct cpumask *span = sched_domain_span(sd); 6212 struct cpumask *covered; 6213 int i; 6214 6215 get_group(cpu, sdd, &sd->groups); 6216 atomic_inc(&sd->groups->ref); 6217 6218 if (cpu != cpumask_first(span)) 6219 return 0; 6220 6221 lockdep_assert_held(&sched_domains_mutex); 6222 covered = sched_domains_tmpmask; 6223 6224 cpumask_clear(covered); 6225 6226 for_each_cpu(i, span) { 6227 struct sched_group *sg; 6228 int group, j; 6229 6230 if (cpumask_test_cpu(i, covered)) 6231 continue; 6232 6233 group = get_group(i, sdd, &sg); 6234 cpumask_setall(sched_group_mask(sg)); 6235 6236 for_each_cpu(j, span) { 6237 if (get_group(j, sdd, NULL) != group) 6238 continue; 6239 6240 cpumask_set_cpu(j, covered); 6241 cpumask_set_cpu(j, sched_group_cpus(sg)); 6242 } 6243 6244 if (!first) 6245 first = sg; 6246 if (last) 6247 last->next = sg; 6248 last = sg; 6249 } 6250 last->next = first; 6251 6252 return 0; 6253 } 6254 6255 /* 6256 * Initialize sched groups cpu_capacity. 6257 * 6258 * cpu_capacity indicates the capacity of sched group, which is used while 6259 * distributing the load between different sched groups in a sched domain. 6260 * Typically cpu_capacity for all the groups in a sched domain will be same 6261 * unless there are asymmetries in the topology. If there are asymmetries, 6262 * group having more cpu_capacity will pickup more load compared to the 6263 * group having less cpu_capacity. 6264 */ 6265 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 6266 { 6267 struct sched_group *sg = sd->groups; 6268 6269 WARN_ON(!sg); 6270 6271 do { 6272 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6273 sg = sg->next; 6274 } while (sg != sd->groups); 6275 6276 if (cpu != group_balance_cpu(sg)) 6277 return; 6278 6279 update_group_capacity(sd, cpu); 6280 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); 6281 } 6282 6283 /* 6284 * Initializers for schedule domains 6285 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6286 */ 6287 6288 static int default_relax_domain_level = -1; 6289 int sched_domain_level_max; 6290 6291 static int __init setup_relax_domain_level(char *str) 6292 { 6293 if (kstrtoint(str, 0, &default_relax_domain_level)) 6294 pr_warn("Unable to set relax_domain_level\n"); 6295 6296 return 1; 6297 } 6298 __setup("relax_domain_level=", setup_relax_domain_level); 6299 6300 static void set_domain_attribute(struct sched_domain *sd, 6301 struct sched_domain_attr *attr) 6302 { 6303 int request; 6304 6305 if (!attr || attr->relax_domain_level < 0) { 6306 if (default_relax_domain_level < 0) 6307 return; 6308 else 6309 request = default_relax_domain_level; 6310 } else 6311 request = attr->relax_domain_level; 6312 if (request < sd->level) { 6313 /* turn off idle balance on this domain */ 6314 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6315 } else { 6316 /* turn on idle balance on this domain */ 6317 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6318 } 6319 } 6320 6321 static void __sdt_free(const struct cpumask *cpu_map); 6322 static int __sdt_alloc(const struct cpumask *cpu_map); 6323 6324 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6325 const struct cpumask *cpu_map) 6326 { 6327 switch (what) { 6328 case sa_rootdomain: 6329 if (!atomic_read(&d->rd->refcount)) 6330 free_rootdomain(&d->rd->rcu); /* fall through */ 6331 case sa_sd: 6332 free_percpu(d->sd); /* fall through */ 6333 case sa_sd_storage: 6334 __sdt_free(cpu_map); /* fall through */ 6335 case sa_none: 6336 break; 6337 } 6338 } 6339 6340 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6341 const struct cpumask *cpu_map) 6342 { 6343 memset(d, 0, sizeof(*d)); 6344 6345 if (__sdt_alloc(cpu_map)) 6346 return sa_sd_storage; 6347 d->sd = alloc_percpu(struct sched_domain *); 6348 if (!d->sd) 6349 return sa_sd_storage; 6350 d->rd = alloc_rootdomain(); 6351 if (!d->rd) 6352 return sa_sd; 6353 return sa_rootdomain; 6354 } 6355 6356 /* 6357 * NULL the sd_data elements we've used to build the sched_domain and 6358 * sched_group structure so that the subsequent __free_domain_allocs() 6359 * will not free the data we're using. 6360 */ 6361 static void claim_allocations(int cpu, struct sched_domain *sd) 6362 { 6363 struct sd_data *sdd = sd->private; 6364 6365 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6366 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6367 6368 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6369 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6370 6371 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 6372 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 6373 } 6374 6375 #ifdef CONFIG_NUMA 6376 static int sched_domains_numa_levels; 6377 enum numa_topology_type sched_numa_topology_type; 6378 static int *sched_domains_numa_distance; 6379 int sched_max_numa_distance; 6380 static struct cpumask ***sched_domains_numa_masks; 6381 static int sched_domains_curr_level; 6382 #endif 6383 6384 /* 6385 * SD_flags allowed in topology descriptions. 6386 * 6387 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6388 * SD_SHARE_PKG_RESOURCES - describes shared caches 6389 * SD_NUMA - describes NUMA topologies 6390 * SD_SHARE_POWERDOMAIN - describes shared power domain 6391 * 6392 * Odd one out: 6393 * SD_ASYM_PACKING - describes SMT quirks 6394 */ 6395 #define TOPOLOGY_SD_FLAGS \ 6396 (SD_SHARE_CPUCAPACITY | \ 6397 SD_SHARE_PKG_RESOURCES | \ 6398 SD_NUMA | \ 6399 SD_ASYM_PACKING | \ 6400 SD_SHARE_POWERDOMAIN) 6401 6402 static struct sched_domain * 6403 sd_init(struct sched_domain_topology_level *tl, int cpu) 6404 { 6405 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6406 int sd_weight, sd_flags = 0; 6407 6408 #ifdef CONFIG_NUMA 6409 /* 6410 * Ugly hack to pass state to sd_numa_mask()... 6411 */ 6412 sched_domains_curr_level = tl->numa_level; 6413 #endif 6414 6415 sd_weight = cpumask_weight(tl->mask(cpu)); 6416 6417 if (tl->sd_flags) 6418 sd_flags = (*tl->sd_flags)(); 6419 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6420 "wrong sd_flags in topology description\n")) 6421 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6422 6423 *sd = (struct sched_domain){ 6424 .min_interval = sd_weight, 6425 .max_interval = 2*sd_weight, 6426 .busy_factor = 32, 6427 .imbalance_pct = 125, 6428 6429 .cache_nice_tries = 0, 6430 .busy_idx = 0, 6431 .idle_idx = 0, 6432 .newidle_idx = 0, 6433 .wake_idx = 0, 6434 .forkexec_idx = 0, 6435 6436 .flags = 1*SD_LOAD_BALANCE 6437 | 1*SD_BALANCE_NEWIDLE 6438 | 1*SD_BALANCE_EXEC 6439 | 1*SD_BALANCE_FORK 6440 | 0*SD_BALANCE_WAKE 6441 | 1*SD_WAKE_AFFINE 6442 | 0*SD_SHARE_CPUCAPACITY 6443 | 0*SD_SHARE_PKG_RESOURCES 6444 | 0*SD_SERIALIZE 6445 | 0*SD_PREFER_SIBLING 6446 | 0*SD_NUMA 6447 | sd_flags 6448 , 6449 6450 .last_balance = jiffies, 6451 .balance_interval = sd_weight, 6452 .smt_gain = 0, 6453 .max_newidle_lb_cost = 0, 6454 .next_decay_max_lb_cost = jiffies, 6455 #ifdef CONFIG_SCHED_DEBUG 6456 .name = tl->name, 6457 #endif 6458 }; 6459 6460 /* 6461 * Convert topological properties into behaviour. 6462 */ 6463 6464 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6465 sd->flags |= SD_PREFER_SIBLING; 6466 sd->imbalance_pct = 110; 6467 sd->smt_gain = 1178; /* ~15% */ 6468 6469 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6470 sd->imbalance_pct = 117; 6471 sd->cache_nice_tries = 1; 6472 sd->busy_idx = 2; 6473 6474 #ifdef CONFIG_NUMA 6475 } else if (sd->flags & SD_NUMA) { 6476 sd->cache_nice_tries = 2; 6477 sd->busy_idx = 3; 6478 sd->idle_idx = 2; 6479 6480 sd->flags |= SD_SERIALIZE; 6481 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6482 sd->flags &= ~(SD_BALANCE_EXEC | 6483 SD_BALANCE_FORK | 6484 SD_WAKE_AFFINE); 6485 } 6486 6487 #endif 6488 } else { 6489 sd->flags |= SD_PREFER_SIBLING; 6490 sd->cache_nice_tries = 1; 6491 sd->busy_idx = 2; 6492 sd->idle_idx = 1; 6493 } 6494 6495 sd->private = &tl->data; 6496 6497 return sd; 6498 } 6499 6500 /* 6501 * Topology list, bottom-up. 6502 */ 6503 static struct sched_domain_topology_level default_topology[] = { 6504 #ifdef CONFIG_SCHED_SMT 6505 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6506 #endif 6507 #ifdef CONFIG_SCHED_MC 6508 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6509 #endif 6510 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6511 { NULL, }, 6512 }; 6513 6514 static struct sched_domain_topology_level *sched_domain_topology = 6515 default_topology; 6516 6517 #define for_each_sd_topology(tl) \ 6518 for (tl = sched_domain_topology; tl->mask; tl++) 6519 6520 void set_sched_topology(struct sched_domain_topology_level *tl) 6521 { 6522 sched_domain_topology = tl; 6523 } 6524 6525 #ifdef CONFIG_NUMA 6526 6527 static const struct cpumask *sd_numa_mask(int cpu) 6528 { 6529 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6530 } 6531 6532 static void sched_numa_warn(const char *str) 6533 { 6534 static int done = false; 6535 int i,j; 6536 6537 if (done) 6538 return; 6539 6540 done = true; 6541 6542 printk(KERN_WARNING "ERROR: %s\n\n", str); 6543 6544 for (i = 0; i < nr_node_ids; i++) { 6545 printk(KERN_WARNING " "); 6546 for (j = 0; j < nr_node_ids; j++) 6547 printk(KERN_CONT "%02d ", node_distance(i,j)); 6548 printk(KERN_CONT "\n"); 6549 } 6550 printk(KERN_WARNING "\n"); 6551 } 6552 6553 bool find_numa_distance(int distance) 6554 { 6555 int i; 6556 6557 if (distance == node_distance(0, 0)) 6558 return true; 6559 6560 for (i = 0; i < sched_domains_numa_levels; i++) { 6561 if (sched_domains_numa_distance[i] == distance) 6562 return true; 6563 } 6564 6565 return false; 6566 } 6567 6568 /* 6569 * A system can have three types of NUMA topology: 6570 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 6571 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 6572 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 6573 * 6574 * The difference between a glueless mesh topology and a backplane 6575 * topology lies in whether communication between not directly 6576 * connected nodes goes through intermediary nodes (where programs 6577 * could run), or through backplane controllers. This affects 6578 * placement of programs. 6579 * 6580 * The type of topology can be discerned with the following tests: 6581 * - If the maximum distance between any nodes is 1 hop, the system 6582 * is directly connected. 6583 * - If for two nodes A and B, located N > 1 hops away from each other, 6584 * there is an intermediary node C, which is < N hops away from both 6585 * nodes A and B, the system is a glueless mesh. 6586 */ 6587 static void init_numa_topology_type(void) 6588 { 6589 int a, b, c, n; 6590 6591 n = sched_max_numa_distance; 6592 6593 if (sched_domains_numa_levels <= 1) { 6594 sched_numa_topology_type = NUMA_DIRECT; 6595 return; 6596 } 6597 6598 for_each_online_node(a) { 6599 for_each_online_node(b) { 6600 /* Find two nodes furthest removed from each other. */ 6601 if (node_distance(a, b) < n) 6602 continue; 6603 6604 /* Is there an intermediary node between a and b? */ 6605 for_each_online_node(c) { 6606 if (node_distance(a, c) < n && 6607 node_distance(b, c) < n) { 6608 sched_numa_topology_type = 6609 NUMA_GLUELESS_MESH; 6610 return; 6611 } 6612 } 6613 6614 sched_numa_topology_type = NUMA_BACKPLANE; 6615 return; 6616 } 6617 } 6618 } 6619 6620 static void sched_init_numa(void) 6621 { 6622 int next_distance, curr_distance = node_distance(0, 0); 6623 struct sched_domain_topology_level *tl; 6624 int level = 0; 6625 int i, j, k; 6626 6627 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6628 if (!sched_domains_numa_distance) 6629 return; 6630 6631 /* 6632 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6633 * unique distances in the node_distance() table. 6634 * 6635 * Assumes node_distance(0,j) includes all distances in 6636 * node_distance(i,j) in order to avoid cubic time. 6637 */ 6638 next_distance = curr_distance; 6639 for (i = 0; i < nr_node_ids; i++) { 6640 for (j = 0; j < nr_node_ids; j++) { 6641 for (k = 0; k < nr_node_ids; k++) { 6642 int distance = node_distance(i, k); 6643 6644 if (distance > curr_distance && 6645 (distance < next_distance || 6646 next_distance == curr_distance)) 6647 next_distance = distance; 6648 6649 /* 6650 * While not a strong assumption it would be nice to know 6651 * about cases where if node A is connected to B, B is not 6652 * equally connected to A. 6653 */ 6654 if (sched_debug() && node_distance(k, i) != distance) 6655 sched_numa_warn("Node-distance not symmetric"); 6656 6657 if (sched_debug() && i && !find_numa_distance(distance)) 6658 sched_numa_warn("Node-0 not representative"); 6659 } 6660 if (next_distance != curr_distance) { 6661 sched_domains_numa_distance[level++] = next_distance; 6662 sched_domains_numa_levels = level; 6663 curr_distance = next_distance; 6664 } else break; 6665 } 6666 6667 /* 6668 * In case of sched_debug() we verify the above assumption. 6669 */ 6670 if (!sched_debug()) 6671 break; 6672 } 6673 6674 if (!level) 6675 return; 6676 6677 /* 6678 * 'level' contains the number of unique distances, excluding the 6679 * identity distance node_distance(i,i). 6680 * 6681 * The sched_domains_numa_distance[] array includes the actual distance 6682 * numbers. 6683 */ 6684 6685 /* 6686 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6687 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6688 * the array will contain less then 'level' members. This could be 6689 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6690 * in other functions. 6691 * 6692 * We reset it to 'level' at the end of this function. 6693 */ 6694 sched_domains_numa_levels = 0; 6695 6696 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6697 if (!sched_domains_numa_masks) 6698 return; 6699 6700 /* 6701 * Now for each level, construct a mask per node which contains all 6702 * cpus of nodes that are that many hops away from us. 6703 */ 6704 for (i = 0; i < level; i++) { 6705 sched_domains_numa_masks[i] = 6706 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6707 if (!sched_domains_numa_masks[i]) 6708 return; 6709 6710 for (j = 0; j < nr_node_ids; j++) { 6711 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6712 if (!mask) 6713 return; 6714 6715 sched_domains_numa_masks[i][j] = mask; 6716 6717 for (k = 0; k < nr_node_ids; k++) { 6718 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6719 continue; 6720 6721 cpumask_or(mask, mask, cpumask_of_node(k)); 6722 } 6723 } 6724 } 6725 6726 /* Compute default topology size */ 6727 for (i = 0; sched_domain_topology[i].mask; i++); 6728 6729 tl = kzalloc((i + level + 1) * 6730 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6731 if (!tl) 6732 return; 6733 6734 /* 6735 * Copy the default topology bits.. 6736 */ 6737 for (i = 0; sched_domain_topology[i].mask; i++) 6738 tl[i] = sched_domain_topology[i]; 6739 6740 /* 6741 * .. and append 'j' levels of NUMA goodness. 6742 */ 6743 for (j = 0; j < level; i++, j++) { 6744 tl[i] = (struct sched_domain_topology_level){ 6745 .mask = sd_numa_mask, 6746 .sd_flags = cpu_numa_flags, 6747 .flags = SDTL_OVERLAP, 6748 .numa_level = j, 6749 SD_INIT_NAME(NUMA) 6750 }; 6751 } 6752 6753 sched_domain_topology = tl; 6754 6755 sched_domains_numa_levels = level; 6756 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 6757 6758 init_numa_topology_type(); 6759 } 6760 6761 static void sched_domains_numa_masks_set(int cpu) 6762 { 6763 int i, j; 6764 int node = cpu_to_node(cpu); 6765 6766 for (i = 0; i < sched_domains_numa_levels; i++) { 6767 for (j = 0; j < nr_node_ids; j++) { 6768 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6769 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6770 } 6771 } 6772 } 6773 6774 static void sched_domains_numa_masks_clear(int cpu) 6775 { 6776 int i, j; 6777 for (i = 0; i < sched_domains_numa_levels; i++) { 6778 for (j = 0; j < nr_node_ids; j++) 6779 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6780 } 6781 } 6782 6783 /* 6784 * Update sched_domains_numa_masks[level][node] array when new cpus 6785 * are onlined. 6786 */ 6787 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6788 unsigned long action, 6789 void *hcpu) 6790 { 6791 int cpu = (long)hcpu; 6792 6793 switch (action & ~CPU_TASKS_FROZEN) { 6794 case CPU_ONLINE: 6795 sched_domains_numa_masks_set(cpu); 6796 break; 6797 6798 case CPU_DEAD: 6799 sched_domains_numa_masks_clear(cpu); 6800 break; 6801 6802 default: 6803 return NOTIFY_DONE; 6804 } 6805 6806 return NOTIFY_OK; 6807 } 6808 #else 6809 static inline void sched_init_numa(void) 6810 { 6811 } 6812 6813 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6814 unsigned long action, 6815 void *hcpu) 6816 { 6817 return 0; 6818 } 6819 #endif /* CONFIG_NUMA */ 6820 6821 static int __sdt_alloc(const struct cpumask *cpu_map) 6822 { 6823 struct sched_domain_topology_level *tl; 6824 int j; 6825 6826 for_each_sd_topology(tl) { 6827 struct sd_data *sdd = &tl->data; 6828 6829 sdd->sd = alloc_percpu(struct sched_domain *); 6830 if (!sdd->sd) 6831 return -ENOMEM; 6832 6833 sdd->sg = alloc_percpu(struct sched_group *); 6834 if (!sdd->sg) 6835 return -ENOMEM; 6836 6837 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6838 if (!sdd->sgc) 6839 return -ENOMEM; 6840 6841 for_each_cpu(j, cpu_map) { 6842 struct sched_domain *sd; 6843 struct sched_group *sg; 6844 struct sched_group_capacity *sgc; 6845 6846 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6847 GFP_KERNEL, cpu_to_node(j)); 6848 if (!sd) 6849 return -ENOMEM; 6850 6851 *per_cpu_ptr(sdd->sd, j) = sd; 6852 6853 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6854 GFP_KERNEL, cpu_to_node(j)); 6855 if (!sg) 6856 return -ENOMEM; 6857 6858 sg->next = sg; 6859 6860 *per_cpu_ptr(sdd->sg, j) = sg; 6861 6862 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6863 GFP_KERNEL, cpu_to_node(j)); 6864 if (!sgc) 6865 return -ENOMEM; 6866 6867 *per_cpu_ptr(sdd->sgc, j) = sgc; 6868 } 6869 } 6870 6871 return 0; 6872 } 6873 6874 static void __sdt_free(const struct cpumask *cpu_map) 6875 { 6876 struct sched_domain_topology_level *tl; 6877 int j; 6878 6879 for_each_sd_topology(tl) { 6880 struct sd_data *sdd = &tl->data; 6881 6882 for_each_cpu(j, cpu_map) { 6883 struct sched_domain *sd; 6884 6885 if (sdd->sd) { 6886 sd = *per_cpu_ptr(sdd->sd, j); 6887 if (sd && (sd->flags & SD_OVERLAP)) 6888 free_sched_groups(sd->groups, 0); 6889 kfree(*per_cpu_ptr(sdd->sd, j)); 6890 } 6891 6892 if (sdd->sg) 6893 kfree(*per_cpu_ptr(sdd->sg, j)); 6894 if (sdd->sgc) 6895 kfree(*per_cpu_ptr(sdd->sgc, j)); 6896 } 6897 free_percpu(sdd->sd); 6898 sdd->sd = NULL; 6899 free_percpu(sdd->sg); 6900 sdd->sg = NULL; 6901 free_percpu(sdd->sgc); 6902 sdd->sgc = NULL; 6903 } 6904 } 6905 6906 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6907 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6908 struct sched_domain *child, int cpu) 6909 { 6910 struct sched_domain *sd = sd_init(tl, cpu); 6911 if (!sd) 6912 return child; 6913 6914 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6915 if (child) { 6916 sd->level = child->level + 1; 6917 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6918 child->parent = sd; 6919 sd->child = child; 6920 6921 if (!cpumask_subset(sched_domain_span(child), 6922 sched_domain_span(sd))) { 6923 pr_err("BUG: arch topology borken\n"); 6924 #ifdef CONFIG_SCHED_DEBUG 6925 pr_err(" the %s domain not a subset of the %s domain\n", 6926 child->name, sd->name); 6927 #endif 6928 /* Fixup, ensure @sd has at least @child cpus. */ 6929 cpumask_or(sched_domain_span(sd), 6930 sched_domain_span(sd), 6931 sched_domain_span(child)); 6932 } 6933 6934 } 6935 set_domain_attribute(sd, attr); 6936 6937 return sd; 6938 } 6939 6940 /* 6941 * Build sched domains for a given set of cpus and attach the sched domains 6942 * to the individual cpus 6943 */ 6944 static int build_sched_domains(const struct cpumask *cpu_map, 6945 struct sched_domain_attr *attr) 6946 { 6947 enum s_alloc alloc_state; 6948 struct sched_domain *sd; 6949 struct s_data d; 6950 int i, ret = -ENOMEM; 6951 6952 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6953 if (alloc_state != sa_rootdomain) 6954 goto error; 6955 6956 /* Set up domains for cpus specified by the cpu_map. */ 6957 for_each_cpu(i, cpu_map) { 6958 struct sched_domain_topology_level *tl; 6959 6960 sd = NULL; 6961 for_each_sd_topology(tl) { 6962 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6963 if (tl == sched_domain_topology) 6964 *per_cpu_ptr(d.sd, i) = sd; 6965 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6966 sd->flags |= SD_OVERLAP; 6967 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6968 break; 6969 } 6970 } 6971 6972 /* Build the groups for the domains */ 6973 for_each_cpu(i, cpu_map) { 6974 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6975 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6976 if (sd->flags & SD_OVERLAP) { 6977 if (build_overlap_sched_groups(sd, i)) 6978 goto error; 6979 } else { 6980 if (build_sched_groups(sd, i)) 6981 goto error; 6982 } 6983 } 6984 } 6985 6986 /* Calculate CPU capacity for physical packages and nodes */ 6987 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6988 if (!cpumask_test_cpu(i, cpu_map)) 6989 continue; 6990 6991 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6992 claim_allocations(i, sd); 6993 init_sched_groups_capacity(i, sd); 6994 } 6995 } 6996 6997 /* Attach the domains */ 6998 rcu_read_lock(); 6999 for_each_cpu(i, cpu_map) { 7000 sd = *per_cpu_ptr(d.sd, i); 7001 cpu_attach_domain(sd, d.rd, i); 7002 } 7003 rcu_read_unlock(); 7004 7005 ret = 0; 7006 error: 7007 __free_domain_allocs(&d, alloc_state, cpu_map); 7008 return ret; 7009 } 7010 7011 static cpumask_var_t *doms_cur; /* current sched domains */ 7012 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 7013 static struct sched_domain_attr *dattr_cur; 7014 /* attribues of custom domains in 'doms_cur' */ 7015 7016 /* 7017 * Special case: If a kmalloc of a doms_cur partition (array of 7018 * cpumask) fails, then fallback to a single sched domain, 7019 * as determined by the single cpumask fallback_doms. 7020 */ 7021 static cpumask_var_t fallback_doms; 7022 7023 /* 7024 * arch_update_cpu_topology lets virtualized architectures update the 7025 * cpu core maps. It is supposed to return 1 if the topology changed 7026 * or 0 if it stayed the same. 7027 */ 7028 int __weak arch_update_cpu_topology(void) 7029 { 7030 return 0; 7031 } 7032 7033 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 7034 { 7035 int i; 7036 cpumask_var_t *doms; 7037 7038 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 7039 if (!doms) 7040 return NULL; 7041 for (i = 0; i < ndoms; i++) { 7042 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 7043 free_sched_domains(doms, i); 7044 return NULL; 7045 } 7046 } 7047 return doms; 7048 } 7049 7050 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 7051 { 7052 unsigned int i; 7053 for (i = 0; i < ndoms; i++) 7054 free_cpumask_var(doms[i]); 7055 kfree(doms); 7056 } 7057 7058 /* 7059 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 7060 * For now this just excludes isolated cpus, but could be used to 7061 * exclude other special cases in the future. 7062 */ 7063 static int init_sched_domains(const struct cpumask *cpu_map) 7064 { 7065 int err; 7066 7067 arch_update_cpu_topology(); 7068 ndoms_cur = 1; 7069 doms_cur = alloc_sched_domains(ndoms_cur); 7070 if (!doms_cur) 7071 doms_cur = &fallback_doms; 7072 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 7073 err = build_sched_domains(doms_cur[0], NULL); 7074 register_sched_domain_sysctl(); 7075 7076 return err; 7077 } 7078 7079 /* 7080 * Detach sched domains from a group of cpus specified in cpu_map 7081 * These cpus will now be attached to the NULL domain 7082 */ 7083 static void detach_destroy_domains(const struct cpumask *cpu_map) 7084 { 7085 int i; 7086 7087 rcu_read_lock(); 7088 for_each_cpu(i, cpu_map) 7089 cpu_attach_domain(NULL, &def_root_domain, i); 7090 rcu_read_unlock(); 7091 } 7092 7093 /* handle null as "default" */ 7094 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 7095 struct sched_domain_attr *new, int idx_new) 7096 { 7097 struct sched_domain_attr tmp; 7098 7099 /* fast path */ 7100 if (!new && !cur) 7101 return 1; 7102 7103 tmp = SD_ATTR_INIT; 7104 return !memcmp(cur ? (cur + idx_cur) : &tmp, 7105 new ? (new + idx_new) : &tmp, 7106 sizeof(struct sched_domain_attr)); 7107 } 7108 7109 /* 7110 * Partition sched domains as specified by the 'ndoms_new' 7111 * cpumasks in the array doms_new[] of cpumasks. This compares 7112 * doms_new[] to the current sched domain partitioning, doms_cur[]. 7113 * It destroys each deleted domain and builds each new domain. 7114 * 7115 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 7116 * The masks don't intersect (don't overlap.) We should setup one 7117 * sched domain for each mask. CPUs not in any of the cpumasks will 7118 * not be load balanced. If the same cpumask appears both in the 7119 * current 'doms_cur' domains and in the new 'doms_new', we can leave 7120 * it as it is. 7121 * 7122 * The passed in 'doms_new' should be allocated using 7123 * alloc_sched_domains. This routine takes ownership of it and will 7124 * free_sched_domains it when done with it. If the caller failed the 7125 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 7126 * and partition_sched_domains() will fallback to the single partition 7127 * 'fallback_doms', it also forces the domains to be rebuilt. 7128 * 7129 * If doms_new == NULL it will be replaced with cpu_online_mask. 7130 * ndoms_new == 0 is a special case for destroying existing domains, 7131 * and it will not create the default domain. 7132 * 7133 * Call with hotplug lock held 7134 */ 7135 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 7136 struct sched_domain_attr *dattr_new) 7137 { 7138 int i, j, n; 7139 int new_topology; 7140 7141 mutex_lock(&sched_domains_mutex); 7142 7143 /* always unregister in case we don't destroy any domains */ 7144 unregister_sched_domain_sysctl(); 7145 7146 /* Let architecture update cpu core mappings. */ 7147 new_topology = arch_update_cpu_topology(); 7148 7149 n = doms_new ? ndoms_new : 0; 7150 7151 /* Destroy deleted domains */ 7152 for (i = 0; i < ndoms_cur; i++) { 7153 for (j = 0; j < n && !new_topology; j++) { 7154 if (cpumask_equal(doms_cur[i], doms_new[j]) 7155 && dattrs_equal(dattr_cur, i, dattr_new, j)) 7156 goto match1; 7157 } 7158 /* no match - a current sched domain not in new doms_new[] */ 7159 detach_destroy_domains(doms_cur[i]); 7160 match1: 7161 ; 7162 } 7163 7164 n = ndoms_cur; 7165 if (doms_new == NULL) { 7166 n = 0; 7167 doms_new = &fallback_doms; 7168 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 7169 WARN_ON_ONCE(dattr_new); 7170 } 7171 7172 /* Build new domains */ 7173 for (i = 0; i < ndoms_new; i++) { 7174 for (j = 0; j < n && !new_topology; j++) { 7175 if (cpumask_equal(doms_new[i], doms_cur[j]) 7176 && dattrs_equal(dattr_new, i, dattr_cur, j)) 7177 goto match2; 7178 } 7179 /* no match - add a new doms_new */ 7180 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 7181 match2: 7182 ; 7183 } 7184 7185 /* Remember the new sched domains */ 7186 if (doms_cur != &fallback_doms) 7187 free_sched_domains(doms_cur, ndoms_cur); 7188 kfree(dattr_cur); /* kfree(NULL) is safe */ 7189 doms_cur = doms_new; 7190 dattr_cur = dattr_new; 7191 ndoms_cur = ndoms_new; 7192 7193 register_sched_domain_sysctl(); 7194 7195 mutex_unlock(&sched_domains_mutex); 7196 } 7197 7198 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 7199 7200 /* 7201 * Update cpusets according to cpu_active mask. If cpusets are 7202 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7203 * around partition_sched_domains(). 7204 * 7205 * If we come here as part of a suspend/resume, don't touch cpusets because we 7206 * want to restore it back to its original state upon resume anyway. 7207 */ 7208 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 7209 void *hcpu) 7210 { 7211 switch (action) { 7212 case CPU_ONLINE_FROZEN: 7213 case CPU_DOWN_FAILED_FROZEN: 7214 7215 /* 7216 * num_cpus_frozen tracks how many CPUs are involved in suspend 7217 * resume sequence. As long as this is not the last online 7218 * operation in the resume sequence, just build a single sched 7219 * domain, ignoring cpusets. 7220 */ 7221 num_cpus_frozen--; 7222 if (likely(num_cpus_frozen)) { 7223 partition_sched_domains(1, NULL, NULL); 7224 break; 7225 } 7226 7227 /* 7228 * This is the last CPU online operation. So fall through and 7229 * restore the original sched domains by considering the 7230 * cpuset configurations. 7231 */ 7232 7233 case CPU_ONLINE: 7234 cpuset_update_active_cpus(true); 7235 break; 7236 default: 7237 return NOTIFY_DONE; 7238 } 7239 return NOTIFY_OK; 7240 } 7241 7242 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 7243 void *hcpu) 7244 { 7245 unsigned long flags; 7246 long cpu = (long)hcpu; 7247 struct dl_bw *dl_b; 7248 bool overflow; 7249 int cpus; 7250 7251 switch (action) { 7252 case CPU_DOWN_PREPARE: 7253 rcu_read_lock_sched(); 7254 dl_b = dl_bw_of(cpu); 7255 7256 raw_spin_lock_irqsave(&dl_b->lock, flags); 7257 cpus = dl_bw_cpus(cpu); 7258 overflow = __dl_overflow(dl_b, cpus, 0, 0); 7259 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7260 7261 rcu_read_unlock_sched(); 7262 7263 if (overflow) 7264 return notifier_from_errno(-EBUSY); 7265 cpuset_update_active_cpus(false); 7266 break; 7267 case CPU_DOWN_PREPARE_FROZEN: 7268 num_cpus_frozen++; 7269 partition_sched_domains(1, NULL, NULL); 7270 break; 7271 default: 7272 return NOTIFY_DONE; 7273 } 7274 return NOTIFY_OK; 7275 } 7276 7277 void __init sched_init_smp(void) 7278 { 7279 cpumask_var_t non_isolated_cpus; 7280 7281 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 7282 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 7283 7284 sched_init_numa(); 7285 7286 /* 7287 * There's no userspace yet to cause hotplug operations; hence all the 7288 * cpu masks are stable and all blatant races in the below code cannot 7289 * happen. 7290 */ 7291 mutex_lock(&sched_domains_mutex); 7292 init_sched_domains(cpu_active_mask); 7293 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 7294 if (cpumask_empty(non_isolated_cpus)) 7295 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 7296 mutex_unlock(&sched_domains_mutex); 7297 7298 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 7299 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 7300 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 7301 7302 init_hrtick(); 7303 7304 /* Move init over to a non-isolated CPU */ 7305 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 7306 BUG(); 7307 sched_init_granularity(); 7308 free_cpumask_var(non_isolated_cpus); 7309 7310 init_sched_rt_class(); 7311 init_sched_dl_class(); 7312 } 7313 #else 7314 void __init sched_init_smp(void) 7315 { 7316 sched_init_granularity(); 7317 } 7318 #endif /* CONFIG_SMP */ 7319 7320 int in_sched_functions(unsigned long addr) 7321 { 7322 return in_lock_functions(addr) || 7323 (addr >= (unsigned long)__sched_text_start 7324 && addr < (unsigned long)__sched_text_end); 7325 } 7326 7327 #ifdef CONFIG_CGROUP_SCHED 7328 /* 7329 * Default task group. 7330 * Every task in system belongs to this group at bootup. 7331 */ 7332 struct task_group root_task_group; 7333 LIST_HEAD(task_groups); 7334 #endif 7335 7336 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 7337 7338 void __init sched_init(void) 7339 { 7340 int i, j; 7341 unsigned long alloc_size = 0, ptr; 7342 7343 #ifdef CONFIG_FAIR_GROUP_SCHED 7344 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7345 #endif 7346 #ifdef CONFIG_RT_GROUP_SCHED 7347 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7348 #endif 7349 if (alloc_size) { 7350 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7351 7352 #ifdef CONFIG_FAIR_GROUP_SCHED 7353 root_task_group.se = (struct sched_entity **)ptr; 7354 ptr += nr_cpu_ids * sizeof(void **); 7355 7356 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7357 ptr += nr_cpu_ids * sizeof(void **); 7358 7359 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7360 #ifdef CONFIG_RT_GROUP_SCHED 7361 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7362 ptr += nr_cpu_ids * sizeof(void **); 7363 7364 root_task_group.rt_rq = (struct rt_rq **)ptr; 7365 ptr += nr_cpu_ids * sizeof(void **); 7366 7367 #endif /* CONFIG_RT_GROUP_SCHED */ 7368 } 7369 #ifdef CONFIG_CPUMASK_OFFSTACK 7370 for_each_possible_cpu(i) { 7371 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 7372 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7373 } 7374 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7375 7376 init_rt_bandwidth(&def_rt_bandwidth, 7377 global_rt_period(), global_rt_runtime()); 7378 init_dl_bandwidth(&def_dl_bandwidth, 7379 global_rt_period(), global_rt_runtime()); 7380 7381 #ifdef CONFIG_SMP 7382 init_defrootdomain(); 7383 #endif 7384 7385 #ifdef CONFIG_RT_GROUP_SCHED 7386 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7387 global_rt_period(), global_rt_runtime()); 7388 #endif /* CONFIG_RT_GROUP_SCHED */ 7389 7390 #ifdef CONFIG_CGROUP_SCHED 7391 list_add(&root_task_group.list, &task_groups); 7392 INIT_LIST_HEAD(&root_task_group.children); 7393 INIT_LIST_HEAD(&root_task_group.siblings); 7394 autogroup_init(&init_task); 7395 7396 #endif /* CONFIG_CGROUP_SCHED */ 7397 7398 for_each_possible_cpu(i) { 7399 struct rq *rq; 7400 7401 rq = cpu_rq(i); 7402 raw_spin_lock_init(&rq->lock); 7403 rq->nr_running = 0; 7404 rq->calc_load_active = 0; 7405 rq->calc_load_update = jiffies + LOAD_FREQ; 7406 init_cfs_rq(&rq->cfs); 7407 init_rt_rq(&rq->rt); 7408 init_dl_rq(&rq->dl); 7409 #ifdef CONFIG_FAIR_GROUP_SCHED 7410 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7411 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7412 /* 7413 * How much cpu bandwidth does root_task_group get? 7414 * 7415 * In case of task-groups formed thr' the cgroup filesystem, it 7416 * gets 100% of the cpu resources in the system. This overall 7417 * system cpu resource is divided among the tasks of 7418 * root_task_group and its child task-groups in a fair manner, 7419 * based on each entity's (task or task-group's) weight 7420 * (se->load.weight). 7421 * 7422 * In other words, if root_task_group has 10 tasks of weight 7423 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7424 * then A0's share of the cpu resource is: 7425 * 7426 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7427 * 7428 * We achieve this by letting root_task_group's tasks sit 7429 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7430 */ 7431 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7432 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7433 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7434 7435 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7436 #ifdef CONFIG_RT_GROUP_SCHED 7437 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7438 #endif 7439 7440 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7441 rq->cpu_load[j] = 0; 7442 7443 rq->last_load_update_tick = jiffies; 7444 7445 #ifdef CONFIG_SMP 7446 rq->sd = NULL; 7447 rq->rd = NULL; 7448 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 7449 rq->balance_callback = NULL; 7450 rq->active_balance = 0; 7451 rq->next_balance = jiffies; 7452 rq->push_cpu = 0; 7453 rq->cpu = i; 7454 rq->online = 0; 7455 rq->idle_stamp = 0; 7456 rq->avg_idle = 2*sysctl_sched_migration_cost; 7457 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7458 7459 INIT_LIST_HEAD(&rq->cfs_tasks); 7460 7461 rq_attach_root(rq, &def_root_domain); 7462 #ifdef CONFIG_NO_HZ_COMMON 7463 rq->nohz_flags = 0; 7464 #endif 7465 #ifdef CONFIG_NO_HZ_FULL 7466 rq->last_sched_tick = 0; 7467 #endif 7468 #endif 7469 init_rq_hrtick(rq); 7470 atomic_set(&rq->nr_iowait, 0); 7471 } 7472 7473 set_load_weight(&init_task); 7474 7475 #ifdef CONFIG_PREEMPT_NOTIFIERS 7476 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7477 #endif 7478 7479 /* 7480 * The boot idle thread does lazy MMU switching as well: 7481 */ 7482 atomic_inc(&init_mm.mm_count); 7483 enter_lazy_tlb(&init_mm, current); 7484 7485 /* 7486 * During early bootup we pretend to be a normal task: 7487 */ 7488 current->sched_class = &fair_sched_class; 7489 7490 /* 7491 * Make us the idle thread. Technically, schedule() should not be 7492 * called from this thread, however somewhere below it might be, 7493 * but because we are the idle thread, we just pick up running again 7494 * when this runqueue becomes "idle". 7495 */ 7496 init_idle(current, smp_processor_id()); 7497 7498 calc_load_update = jiffies + LOAD_FREQ; 7499 7500 #ifdef CONFIG_SMP 7501 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7502 /* May be allocated at isolcpus cmdline parse time */ 7503 if (cpu_isolated_map == NULL) 7504 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7505 idle_thread_set_boot_cpu(); 7506 set_cpu_rq_start_time(); 7507 #endif 7508 init_sched_fair_class(); 7509 7510 scheduler_running = 1; 7511 } 7512 7513 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7514 static inline int preempt_count_equals(int preempt_offset) 7515 { 7516 int nested = preempt_count() + rcu_preempt_depth(); 7517 7518 return (nested == preempt_offset); 7519 } 7520 7521 void __might_sleep(const char *file, int line, int preempt_offset) 7522 { 7523 /* 7524 * Blocking primitives will set (and therefore destroy) current->state, 7525 * since we will exit with TASK_RUNNING make sure we enter with it, 7526 * otherwise we will destroy state. 7527 */ 7528 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 7529 "do not call blocking ops when !TASK_RUNNING; " 7530 "state=%lx set at [<%p>] %pS\n", 7531 current->state, 7532 (void *)current->task_state_change, 7533 (void *)current->task_state_change); 7534 7535 ___might_sleep(file, line, preempt_offset); 7536 } 7537 EXPORT_SYMBOL(__might_sleep); 7538 7539 void ___might_sleep(const char *file, int line, int preempt_offset) 7540 { 7541 static unsigned long prev_jiffy; /* ratelimiting */ 7542 7543 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7544 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7545 !is_idle_task(current)) || 7546 system_state != SYSTEM_RUNNING || oops_in_progress) 7547 return; 7548 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7549 return; 7550 prev_jiffy = jiffies; 7551 7552 printk(KERN_ERR 7553 "BUG: sleeping function called from invalid context at %s:%d\n", 7554 file, line); 7555 printk(KERN_ERR 7556 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7557 in_atomic(), irqs_disabled(), 7558 current->pid, current->comm); 7559 7560 if (task_stack_end_corrupted(current)) 7561 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 7562 7563 debug_show_held_locks(current); 7564 if (irqs_disabled()) 7565 print_irqtrace_events(current); 7566 #ifdef CONFIG_DEBUG_PREEMPT 7567 if (!preempt_count_equals(preempt_offset)) { 7568 pr_err("Preemption disabled at:"); 7569 print_ip_sym(current->preempt_disable_ip); 7570 pr_cont("\n"); 7571 } 7572 #endif 7573 dump_stack(); 7574 } 7575 EXPORT_SYMBOL(___might_sleep); 7576 #endif 7577 7578 #ifdef CONFIG_MAGIC_SYSRQ 7579 void normalize_rt_tasks(void) 7580 { 7581 struct task_struct *g, *p; 7582 struct sched_attr attr = { 7583 .sched_policy = SCHED_NORMAL, 7584 }; 7585 7586 read_lock(&tasklist_lock); 7587 for_each_process_thread(g, p) { 7588 /* 7589 * Only normalize user tasks: 7590 */ 7591 if (p->flags & PF_KTHREAD) 7592 continue; 7593 7594 p->se.exec_start = 0; 7595 #ifdef CONFIG_SCHEDSTATS 7596 p->se.statistics.wait_start = 0; 7597 p->se.statistics.sleep_start = 0; 7598 p->se.statistics.block_start = 0; 7599 #endif 7600 7601 if (!dl_task(p) && !rt_task(p)) { 7602 /* 7603 * Renice negative nice level userspace 7604 * tasks back to 0: 7605 */ 7606 if (task_nice(p) < 0) 7607 set_user_nice(p, 0); 7608 continue; 7609 } 7610 7611 __sched_setscheduler(p, &attr, false, false); 7612 } 7613 read_unlock(&tasklist_lock); 7614 } 7615 7616 #endif /* CONFIG_MAGIC_SYSRQ */ 7617 7618 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7619 /* 7620 * These functions are only useful for the IA64 MCA handling, or kdb. 7621 * 7622 * They can only be called when the whole system has been 7623 * stopped - every CPU needs to be quiescent, and no scheduling 7624 * activity can take place. Using them for anything else would 7625 * be a serious bug, and as a result, they aren't even visible 7626 * under any other configuration. 7627 */ 7628 7629 /** 7630 * curr_task - return the current task for a given cpu. 7631 * @cpu: the processor in question. 7632 * 7633 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7634 * 7635 * Return: The current task for @cpu. 7636 */ 7637 struct task_struct *curr_task(int cpu) 7638 { 7639 return cpu_curr(cpu); 7640 } 7641 7642 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7643 7644 #ifdef CONFIG_IA64 7645 /** 7646 * set_curr_task - set the current task for a given cpu. 7647 * @cpu: the processor in question. 7648 * @p: the task pointer to set. 7649 * 7650 * Description: This function must only be used when non-maskable interrupts 7651 * are serviced on a separate stack. It allows the architecture to switch the 7652 * notion of the current task on a cpu in a non-blocking manner. This function 7653 * must be called with all CPU's synchronized, and interrupts disabled, the 7654 * and caller must save the original value of the current task (see 7655 * curr_task() above) and restore that value before reenabling interrupts and 7656 * re-starting the system. 7657 * 7658 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7659 */ 7660 void set_curr_task(int cpu, struct task_struct *p) 7661 { 7662 cpu_curr(cpu) = p; 7663 } 7664 7665 #endif 7666 7667 #ifdef CONFIG_CGROUP_SCHED 7668 /* task_group_lock serializes the addition/removal of task groups */ 7669 static DEFINE_SPINLOCK(task_group_lock); 7670 7671 static void free_sched_group(struct task_group *tg) 7672 { 7673 free_fair_sched_group(tg); 7674 free_rt_sched_group(tg); 7675 autogroup_free(tg); 7676 kfree(tg); 7677 } 7678 7679 /* allocate runqueue etc for a new task group */ 7680 struct task_group *sched_create_group(struct task_group *parent) 7681 { 7682 struct task_group *tg; 7683 7684 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7685 if (!tg) 7686 return ERR_PTR(-ENOMEM); 7687 7688 if (!alloc_fair_sched_group(tg, parent)) 7689 goto err; 7690 7691 if (!alloc_rt_sched_group(tg, parent)) 7692 goto err; 7693 7694 return tg; 7695 7696 err: 7697 free_sched_group(tg); 7698 return ERR_PTR(-ENOMEM); 7699 } 7700 7701 void sched_online_group(struct task_group *tg, struct task_group *parent) 7702 { 7703 unsigned long flags; 7704 7705 spin_lock_irqsave(&task_group_lock, flags); 7706 list_add_rcu(&tg->list, &task_groups); 7707 7708 WARN_ON(!parent); /* root should already exist */ 7709 7710 tg->parent = parent; 7711 INIT_LIST_HEAD(&tg->children); 7712 list_add_rcu(&tg->siblings, &parent->children); 7713 spin_unlock_irqrestore(&task_group_lock, flags); 7714 } 7715 7716 /* rcu callback to free various structures associated with a task group */ 7717 static void free_sched_group_rcu(struct rcu_head *rhp) 7718 { 7719 /* now it should be safe to free those cfs_rqs */ 7720 free_sched_group(container_of(rhp, struct task_group, rcu)); 7721 } 7722 7723 /* Destroy runqueue etc associated with a task group */ 7724 void sched_destroy_group(struct task_group *tg) 7725 { 7726 /* wait for possible concurrent references to cfs_rqs complete */ 7727 call_rcu(&tg->rcu, free_sched_group_rcu); 7728 } 7729 7730 void sched_offline_group(struct task_group *tg) 7731 { 7732 unsigned long flags; 7733 int i; 7734 7735 /* end participation in shares distribution */ 7736 for_each_possible_cpu(i) 7737 unregister_fair_sched_group(tg, i); 7738 7739 spin_lock_irqsave(&task_group_lock, flags); 7740 list_del_rcu(&tg->list); 7741 list_del_rcu(&tg->siblings); 7742 spin_unlock_irqrestore(&task_group_lock, flags); 7743 } 7744 7745 /* change task's runqueue when it moves between groups. 7746 * The caller of this function should have put the task in its new group 7747 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7748 * reflect its new group. 7749 */ 7750 void sched_move_task(struct task_struct *tsk) 7751 { 7752 struct task_group *tg; 7753 int queued, running; 7754 unsigned long flags; 7755 struct rq *rq; 7756 7757 rq = task_rq_lock(tsk, &flags); 7758 7759 running = task_current(rq, tsk); 7760 queued = task_on_rq_queued(tsk); 7761 7762 if (queued) 7763 dequeue_task(rq, tsk, DEQUEUE_SAVE); 7764 if (unlikely(running)) 7765 put_prev_task(rq, tsk); 7766 7767 /* 7768 * All callers are synchronized by task_rq_lock(); we do not use RCU 7769 * which is pointless here. Thus, we pass "true" to task_css_check() 7770 * to prevent lockdep warnings. 7771 */ 7772 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7773 struct task_group, css); 7774 tg = autogroup_task_group(tsk, tg); 7775 tsk->sched_task_group = tg; 7776 7777 #ifdef CONFIG_FAIR_GROUP_SCHED 7778 if (tsk->sched_class->task_move_group) 7779 tsk->sched_class->task_move_group(tsk); 7780 else 7781 #endif 7782 set_task_rq(tsk, task_cpu(tsk)); 7783 7784 if (unlikely(running)) 7785 tsk->sched_class->set_curr_task(rq); 7786 if (queued) 7787 enqueue_task(rq, tsk, ENQUEUE_RESTORE); 7788 7789 task_rq_unlock(rq, tsk, &flags); 7790 } 7791 #endif /* CONFIG_CGROUP_SCHED */ 7792 7793 #ifdef CONFIG_RT_GROUP_SCHED 7794 /* 7795 * Ensure that the real time constraints are schedulable. 7796 */ 7797 static DEFINE_MUTEX(rt_constraints_mutex); 7798 7799 /* Must be called with tasklist_lock held */ 7800 static inline int tg_has_rt_tasks(struct task_group *tg) 7801 { 7802 struct task_struct *g, *p; 7803 7804 /* 7805 * Autogroups do not have RT tasks; see autogroup_create(). 7806 */ 7807 if (task_group_is_autogroup(tg)) 7808 return 0; 7809 7810 for_each_process_thread(g, p) { 7811 if (rt_task(p) && task_group(p) == tg) 7812 return 1; 7813 } 7814 7815 return 0; 7816 } 7817 7818 struct rt_schedulable_data { 7819 struct task_group *tg; 7820 u64 rt_period; 7821 u64 rt_runtime; 7822 }; 7823 7824 static int tg_rt_schedulable(struct task_group *tg, void *data) 7825 { 7826 struct rt_schedulable_data *d = data; 7827 struct task_group *child; 7828 unsigned long total, sum = 0; 7829 u64 period, runtime; 7830 7831 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7832 runtime = tg->rt_bandwidth.rt_runtime; 7833 7834 if (tg == d->tg) { 7835 period = d->rt_period; 7836 runtime = d->rt_runtime; 7837 } 7838 7839 /* 7840 * Cannot have more runtime than the period. 7841 */ 7842 if (runtime > period && runtime != RUNTIME_INF) 7843 return -EINVAL; 7844 7845 /* 7846 * Ensure we don't starve existing RT tasks. 7847 */ 7848 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7849 return -EBUSY; 7850 7851 total = to_ratio(period, runtime); 7852 7853 /* 7854 * Nobody can have more than the global setting allows. 7855 */ 7856 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7857 return -EINVAL; 7858 7859 /* 7860 * The sum of our children's runtime should not exceed our own. 7861 */ 7862 list_for_each_entry_rcu(child, &tg->children, siblings) { 7863 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7864 runtime = child->rt_bandwidth.rt_runtime; 7865 7866 if (child == d->tg) { 7867 period = d->rt_period; 7868 runtime = d->rt_runtime; 7869 } 7870 7871 sum += to_ratio(period, runtime); 7872 } 7873 7874 if (sum > total) 7875 return -EINVAL; 7876 7877 return 0; 7878 } 7879 7880 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7881 { 7882 int ret; 7883 7884 struct rt_schedulable_data data = { 7885 .tg = tg, 7886 .rt_period = period, 7887 .rt_runtime = runtime, 7888 }; 7889 7890 rcu_read_lock(); 7891 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7892 rcu_read_unlock(); 7893 7894 return ret; 7895 } 7896 7897 static int tg_set_rt_bandwidth(struct task_group *tg, 7898 u64 rt_period, u64 rt_runtime) 7899 { 7900 int i, err = 0; 7901 7902 /* 7903 * Disallowing the root group RT runtime is BAD, it would disallow the 7904 * kernel creating (and or operating) RT threads. 7905 */ 7906 if (tg == &root_task_group && rt_runtime == 0) 7907 return -EINVAL; 7908 7909 /* No period doesn't make any sense. */ 7910 if (rt_period == 0) 7911 return -EINVAL; 7912 7913 mutex_lock(&rt_constraints_mutex); 7914 read_lock(&tasklist_lock); 7915 err = __rt_schedulable(tg, rt_period, rt_runtime); 7916 if (err) 7917 goto unlock; 7918 7919 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7920 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7921 tg->rt_bandwidth.rt_runtime = rt_runtime; 7922 7923 for_each_possible_cpu(i) { 7924 struct rt_rq *rt_rq = tg->rt_rq[i]; 7925 7926 raw_spin_lock(&rt_rq->rt_runtime_lock); 7927 rt_rq->rt_runtime = rt_runtime; 7928 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7929 } 7930 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7931 unlock: 7932 read_unlock(&tasklist_lock); 7933 mutex_unlock(&rt_constraints_mutex); 7934 7935 return err; 7936 } 7937 7938 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7939 { 7940 u64 rt_runtime, rt_period; 7941 7942 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7943 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7944 if (rt_runtime_us < 0) 7945 rt_runtime = RUNTIME_INF; 7946 7947 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7948 } 7949 7950 static long sched_group_rt_runtime(struct task_group *tg) 7951 { 7952 u64 rt_runtime_us; 7953 7954 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7955 return -1; 7956 7957 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7958 do_div(rt_runtime_us, NSEC_PER_USEC); 7959 return rt_runtime_us; 7960 } 7961 7962 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 7963 { 7964 u64 rt_runtime, rt_period; 7965 7966 rt_period = rt_period_us * NSEC_PER_USEC; 7967 rt_runtime = tg->rt_bandwidth.rt_runtime; 7968 7969 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7970 } 7971 7972 static long sched_group_rt_period(struct task_group *tg) 7973 { 7974 u64 rt_period_us; 7975 7976 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7977 do_div(rt_period_us, NSEC_PER_USEC); 7978 return rt_period_us; 7979 } 7980 #endif /* CONFIG_RT_GROUP_SCHED */ 7981 7982 #ifdef CONFIG_RT_GROUP_SCHED 7983 static int sched_rt_global_constraints(void) 7984 { 7985 int ret = 0; 7986 7987 mutex_lock(&rt_constraints_mutex); 7988 read_lock(&tasklist_lock); 7989 ret = __rt_schedulable(NULL, 0, 0); 7990 read_unlock(&tasklist_lock); 7991 mutex_unlock(&rt_constraints_mutex); 7992 7993 return ret; 7994 } 7995 7996 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7997 { 7998 /* Don't accept realtime tasks when there is no way for them to run */ 7999 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 8000 return 0; 8001 8002 return 1; 8003 } 8004 8005 #else /* !CONFIG_RT_GROUP_SCHED */ 8006 static int sched_rt_global_constraints(void) 8007 { 8008 unsigned long flags; 8009 int i, ret = 0; 8010 8011 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 8012 for_each_possible_cpu(i) { 8013 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 8014 8015 raw_spin_lock(&rt_rq->rt_runtime_lock); 8016 rt_rq->rt_runtime = global_rt_runtime(); 8017 raw_spin_unlock(&rt_rq->rt_runtime_lock); 8018 } 8019 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 8020 8021 return ret; 8022 } 8023 #endif /* CONFIG_RT_GROUP_SCHED */ 8024 8025 static int sched_dl_global_validate(void) 8026 { 8027 u64 runtime = global_rt_runtime(); 8028 u64 period = global_rt_period(); 8029 u64 new_bw = to_ratio(period, runtime); 8030 struct dl_bw *dl_b; 8031 int cpu, ret = 0; 8032 unsigned long flags; 8033 8034 /* 8035 * Here we want to check the bandwidth not being set to some 8036 * value smaller than the currently allocated bandwidth in 8037 * any of the root_domains. 8038 * 8039 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 8040 * cycling on root_domains... Discussion on different/better 8041 * solutions is welcome! 8042 */ 8043 for_each_possible_cpu(cpu) { 8044 rcu_read_lock_sched(); 8045 dl_b = dl_bw_of(cpu); 8046 8047 raw_spin_lock_irqsave(&dl_b->lock, flags); 8048 if (new_bw < dl_b->total_bw) 8049 ret = -EBUSY; 8050 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 8051 8052 rcu_read_unlock_sched(); 8053 8054 if (ret) 8055 break; 8056 } 8057 8058 return ret; 8059 } 8060 8061 static void sched_dl_do_global(void) 8062 { 8063 u64 new_bw = -1; 8064 struct dl_bw *dl_b; 8065 int cpu; 8066 unsigned long flags; 8067 8068 def_dl_bandwidth.dl_period = global_rt_period(); 8069 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 8070 8071 if (global_rt_runtime() != RUNTIME_INF) 8072 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 8073 8074 /* 8075 * FIXME: As above... 8076 */ 8077 for_each_possible_cpu(cpu) { 8078 rcu_read_lock_sched(); 8079 dl_b = dl_bw_of(cpu); 8080 8081 raw_spin_lock_irqsave(&dl_b->lock, flags); 8082 dl_b->bw = new_bw; 8083 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 8084 8085 rcu_read_unlock_sched(); 8086 } 8087 } 8088 8089 static int sched_rt_global_validate(void) 8090 { 8091 if (sysctl_sched_rt_period <= 0) 8092 return -EINVAL; 8093 8094 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 8095 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 8096 return -EINVAL; 8097 8098 return 0; 8099 } 8100 8101 static void sched_rt_do_global(void) 8102 { 8103 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 8104 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 8105 } 8106 8107 int sched_rt_handler(struct ctl_table *table, int write, 8108 void __user *buffer, size_t *lenp, 8109 loff_t *ppos) 8110 { 8111 int old_period, old_runtime; 8112 static DEFINE_MUTEX(mutex); 8113 int ret; 8114 8115 mutex_lock(&mutex); 8116 old_period = sysctl_sched_rt_period; 8117 old_runtime = sysctl_sched_rt_runtime; 8118 8119 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8120 8121 if (!ret && write) { 8122 ret = sched_rt_global_validate(); 8123 if (ret) 8124 goto undo; 8125 8126 ret = sched_dl_global_validate(); 8127 if (ret) 8128 goto undo; 8129 8130 ret = sched_rt_global_constraints(); 8131 if (ret) 8132 goto undo; 8133 8134 sched_rt_do_global(); 8135 sched_dl_do_global(); 8136 } 8137 if (0) { 8138 undo: 8139 sysctl_sched_rt_period = old_period; 8140 sysctl_sched_rt_runtime = old_runtime; 8141 } 8142 mutex_unlock(&mutex); 8143 8144 return ret; 8145 } 8146 8147 int sched_rr_handler(struct ctl_table *table, int write, 8148 void __user *buffer, size_t *lenp, 8149 loff_t *ppos) 8150 { 8151 int ret; 8152 static DEFINE_MUTEX(mutex); 8153 8154 mutex_lock(&mutex); 8155 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8156 /* make sure that internally we keep jiffies */ 8157 /* also, writing zero resets timeslice to default */ 8158 if (!ret && write) { 8159 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 8160 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 8161 } 8162 mutex_unlock(&mutex); 8163 return ret; 8164 } 8165 8166 #ifdef CONFIG_CGROUP_SCHED 8167 8168 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8169 { 8170 return css ? container_of(css, struct task_group, css) : NULL; 8171 } 8172 8173 static struct cgroup_subsys_state * 8174 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8175 { 8176 struct task_group *parent = css_tg(parent_css); 8177 struct task_group *tg; 8178 8179 if (!parent) { 8180 /* This is early initialization for the top cgroup */ 8181 return &root_task_group.css; 8182 } 8183 8184 tg = sched_create_group(parent); 8185 if (IS_ERR(tg)) 8186 return ERR_PTR(-ENOMEM); 8187 8188 return &tg->css; 8189 } 8190 8191 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 8192 { 8193 struct task_group *tg = css_tg(css); 8194 struct task_group *parent = css_tg(css->parent); 8195 8196 if (parent) 8197 sched_online_group(tg, parent); 8198 return 0; 8199 } 8200 8201 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8202 { 8203 struct task_group *tg = css_tg(css); 8204 8205 sched_destroy_group(tg); 8206 } 8207 8208 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 8209 { 8210 struct task_group *tg = css_tg(css); 8211 8212 sched_offline_group(tg); 8213 } 8214 8215 static void cpu_cgroup_fork(struct task_struct *task, void *private) 8216 { 8217 sched_move_task(task); 8218 } 8219 8220 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css, 8221 struct cgroup_taskset *tset) 8222 { 8223 struct task_struct *task; 8224 8225 cgroup_taskset_for_each(task, tset) { 8226 #ifdef CONFIG_RT_GROUP_SCHED 8227 if (!sched_rt_can_attach(css_tg(css), task)) 8228 return -EINVAL; 8229 #else 8230 /* We don't support RT-tasks being in separate groups */ 8231 if (task->sched_class != &fair_sched_class) 8232 return -EINVAL; 8233 #endif 8234 } 8235 return 0; 8236 } 8237 8238 static void cpu_cgroup_attach(struct cgroup_subsys_state *css, 8239 struct cgroup_taskset *tset) 8240 { 8241 struct task_struct *task; 8242 8243 cgroup_taskset_for_each(task, tset) 8244 sched_move_task(task); 8245 } 8246 8247 #ifdef CONFIG_FAIR_GROUP_SCHED 8248 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8249 struct cftype *cftype, u64 shareval) 8250 { 8251 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8252 } 8253 8254 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8255 struct cftype *cft) 8256 { 8257 struct task_group *tg = css_tg(css); 8258 8259 return (u64) scale_load_down(tg->shares); 8260 } 8261 8262 #ifdef CONFIG_CFS_BANDWIDTH 8263 static DEFINE_MUTEX(cfs_constraints_mutex); 8264 8265 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8266 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8267 8268 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8269 8270 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8271 { 8272 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8273 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8274 8275 if (tg == &root_task_group) 8276 return -EINVAL; 8277 8278 /* 8279 * Ensure we have at some amount of bandwidth every period. This is 8280 * to prevent reaching a state of large arrears when throttled via 8281 * entity_tick() resulting in prolonged exit starvation. 8282 */ 8283 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8284 return -EINVAL; 8285 8286 /* 8287 * Likewise, bound things on the otherside by preventing insane quota 8288 * periods. This also allows us to normalize in computing quota 8289 * feasibility. 8290 */ 8291 if (period > max_cfs_quota_period) 8292 return -EINVAL; 8293 8294 /* 8295 * Prevent race between setting of cfs_rq->runtime_enabled and 8296 * unthrottle_offline_cfs_rqs(). 8297 */ 8298 get_online_cpus(); 8299 mutex_lock(&cfs_constraints_mutex); 8300 ret = __cfs_schedulable(tg, period, quota); 8301 if (ret) 8302 goto out_unlock; 8303 8304 runtime_enabled = quota != RUNTIME_INF; 8305 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8306 /* 8307 * If we need to toggle cfs_bandwidth_used, off->on must occur 8308 * before making related changes, and on->off must occur afterwards 8309 */ 8310 if (runtime_enabled && !runtime_was_enabled) 8311 cfs_bandwidth_usage_inc(); 8312 raw_spin_lock_irq(&cfs_b->lock); 8313 cfs_b->period = ns_to_ktime(period); 8314 cfs_b->quota = quota; 8315 8316 __refill_cfs_bandwidth_runtime(cfs_b); 8317 /* restart the period timer (if active) to handle new period expiry */ 8318 if (runtime_enabled) 8319 start_cfs_bandwidth(cfs_b); 8320 raw_spin_unlock_irq(&cfs_b->lock); 8321 8322 for_each_online_cpu(i) { 8323 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 8324 struct rq *rq = cfs_rq->rq; 8325 8326 raw_spin_lock_irq(&rq->lock); 8327 cfs_rq->runtime_enabled = runtime_enabled; 8328 cfs_rq->runtime_remaining = 0; 8329 8330 if (cfs_rq->throttled) 8331 unthrottle_cfs_rq(cfs_rq); 8332 raw_spin_unlock_irq(&rq->lock); 8333 } 8334 if (runtime_was_enabled && !runtime_enabled) 8335 cfs_bandwidth_usage_dec(); 8336 out_unlock: 8337 mutex_unlock(&cfs_constraints_mutex); 8338 put_online_cpus(); 8339 8340 return ret; 8341 } 8342 8343 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 8344 { 8345 u64 quota, period; 8346 8347 period = ktime_to_ns(tg->cfs_bandwidth.period); 8348 if (cfs_quota_us < 0) 8349 quota = RUNTIME_INF; 8350 else 8351 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 8352 8353 return tg_set_cfs_bandwidth(tg, period, quota); 8354 } 8355 8356 long tg_get_cfs_quota(struct task_group *tg) 8357 { 8358 u64 quota_us; 8359 8360 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8361 return -1; 8362 8363 quota_us = tg->cfs_bandwidth.quota; 8364 do_div(quota_us, NSEC_PER_USEC); 8365 8366 return quota_us; 8367 } 8368 8369 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8370 { 8371 u64 quota, period; 8372 8373 period = (u64)cfs_period_us * NSEC_PER_USEC; 8374 quota = tg->cfs_bandwidth.quota; 8375 8376 return tg_set_cfs_bandwidth(tg, period, quota); 8377 } 8378 8379 long tg_get_cfs_period(struct task_group *tg) 8380 { 8381 u64 cfs_period_us; 8382 8383 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8384 do_div(cfs_period_us, NSEC_PER_USEC); 8385 8386 return cfs_period_us; 8387 } 8388 8389 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 8390 struct cftype *cft) 8391 { 8392 return tg_get_cfs_quota(css_tg(css)); 8393 } 8394 8395 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 8396 struct cftype *cftype, s64 cfs_quota_us) 8397 { 8398 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 8399 } 8400 8401 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8402 struct cftype *cft) 8403 { 8404 return tg_get_cfs_period(css_tg(css)); 8405 } 8406 8407 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8408 struct cftype *cftype, u64 cfs_period_us) 8409 { 8410 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8411 } 8412 8413 struct cfs_schedulable_data { 8414 struct task_group *tg; 8415 u64 period, quota; 8416 }; 8417 8418 /* 8419 * normalize group quota/period to be quota/max_period 8420 * note: units are usecs 8421 */ 8422 static u64 normalize_cfs_quota(struct task_group *tg, 8423 struct cfs_schedulable_data *d) 8424 { 8425 u64 quota, period; 8426 8427 if (tg == d->tg) { 8428 period = d->period; 8429 quota = d->quota; 8430 } else { 8431 period = tg_get_cfs_period(tg); 8432 quota = tg_get_cfs_quota(tg); 8433 } 8434 8435 /* note: these should typically be equivalent */ 8436 if (quota == RUNTIME_INF || quota == -1) 8437 return RUNTIME_INF; 8438 8439 return to_ratio(period, quota); 8440 } 8441 8442 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8443 { 8444 struct cfs_schedulable_data *d = data; 8445 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8446 s64 quota = 0, parent_quota = -1; 8447 8448 if (!tg->parent) { 8449 quota = RUNTIME_INF; 8450 } else { 8451 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8452 8453 quota = normalize_cfs_quota(tg, d); 8454 parent_quota = parent_b->hierarchical_quota; 8455 8456 /* 8457 * ensure max(child_quota) <= parent_quota, inherit when no 8458 * limit is set 8459 */ 8460 if (quota == RUNTIME_INF) 8461 quota = parent_quota; 8462 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8463 return -EINVAL; 8464 } 8465 cfs_b->hierarchical_quota = quota; 8466 8467 return 0; 8468 } 8469 8470 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8471 { 8472 int ret; 8473 struct cfs_schedulable_data data = { 8474 .tg = tg, 8475 .period = period, 8476 .quota = quota, 8477 }; 8478 8479 if (quota != RUNTIME_INF) { 8480 do_div(data.period, NSEC_PER_USEC); 8481 do_div(data.quota, NSEC_PER_USEC); 8482 } 8483 8484 rcu_read_lock(); 8485 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8486 rcu_read_unlock(); 8487 8488 return ret; 8489 } 8490 8491 static int cpu_stats_show(struct seq_file *sf, void *v) 8492 { 8493 struct task_group *tg = css_tg(seq_css(sf)); 8494 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8495 8496 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8497 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8498 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8499 8500 return 0; 8501 } 8502 #endif /* CONFIG_CFS_BANDWIDTH */ 8503 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8504 8505 #ifdef CONFIG_RT_GROUP_SCHED 8506 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8507 struct cftype *cft, s64 val) 8508 { 8509 return sched_group_set_rt_runtime(css_tg(css), val); 8510 } 8511 8512 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8513 struct cftype *cft) 8514 { 8515 return sched_group_rt_runtime(css_tg(css)); 8516 } 8517 8518 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8519 struct cftype *cftype, u64 rt_period_us) 8520 { 8521 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8522 } 8523 8524 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8525 struct cftype *cft) 8526 { 8527 return sched_group_rt_period(css_tg(css)); 8528 } 8529 #endif /* CONFIG_RT_GROUP_SCHED */ 8530 8531 static struct cftype cpu_files[] = { 8532 #ifdef CONFIG_FAIR_GROUP_SCHED 8533 { 8534 .name = "shares", 8535 .read_u64 = cpu_shares_read_u64, 8536 .write_u64 = cpu_shares_write_u64, 8537 }, 8538 #endif 8539 #ifdef CONFIG_CFS_BANDWIDTH 8540 { 8541 .name = "cfs_quota_us", 8542 .read_s64 = cpu_cfs_quota_read_s64, 8543 .write_s64 = cpu_cfs_quota_write_s64, 8544 }, 8545 { 8546 .name = "cfs_period_us", 8547 .read_u64 = cpu_cfs_period_read_u64, 8548 .write_u64 = cpu_cfs_period_write_u64, 8549 }, 8550 { 8551 .name = "stat", 8552 .seq_show = cpu_stats_show, 8553 }, 8554 #endif 8555 #ifdef CONFIG_RT_GROUP_SCHED 8556 { 8557 .name = "rt_runtime_us", 8558 .read_s64 = cpu_rt_runtime_read, 8559 .write_s64 = cpu_rt_runtime_write, 8560 }, 8561 { 8562 .name = "rt_period_us", 8563 .read_u64 = cpu_rt_period_read_uint, 8564 .write_u64 = cpu_rt_period_write_uint, 8565 }, 8566 #endif 8567 { } /* terminate */ 8568 }; 8569 8570 struct cgroup_subsys cpu_cgrp_subsys = { 8571 .css_alloc = cpu_cgroup_css_alloc, 8572 .css_free = cpu_cgroup_css_free, 8573 .css_online = cpu_cgroup_css_online, 8574 .css_offline = cpu_cgroup_css_offline, 8575 .fork = cpu_cgroup_fork, 8576 .can_attach = cpu_cgroup_can_attach, 8577 .attach = cpu_cgroup_attach, 8578 .legacy_cftypes = cpu_files, 8579 .early_init = 1, 8580 }; 8581 8582 #endif /* CONFIG_CGROUP_SCHED */ 8583 8584 void dump_cpu_task(int cpu) 8585 { 8586 pr_info("Task dump for CPU %d:\n", cpu); 8587 sched_show_task(cpu_curr(cpu)); 8588 } 8589