xref: /linux/kernel/sched/core.c (revision 9cc8d0ecdd2aad42e377e971e3bb114339df609e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel CPU scheduler code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #include <linux/highmem.h>
11 #include <linux/hrtimer_api.h>
12 #include <linux/ktime_api.h>
13 #include <linux/sched/signal.h>
14 #include <linux/syscalls_api.h>
15 #include <linux/debug_locks.h>
16 #include <linux/prefetch.h>
17 #include <linux/capability.h>
18 #include <linux/pgtable_api.h>
19 #include <linux/wait_bit.h>
20 #include <linux/jiffies.h>
21 #include <linux/spinlock_api.h>
22 #include <linux/cpumask_api.h>
23 #include <linux/lockdep_api.h>
24 #include <linux/hardirq.h>
25 #include <linux/softirq.h>
26 #include <linux/refcount_api.h>
27 #include <linux/topology.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/cond_resched.h>
30 #include <linux/sched/cputime.h>
31 #include <linux/sched/debug.h>
32 #include <linux/sched/hotplug.h>
33 #include <linux/sched/init.h>
34 #include <linux/sched/isolation.h>
35 #include <linux/sched/loadavg.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/nohz.h>
38 #include <linux/sched/rseq_api.h>
39 #include <linux/sched/rt.h>
40 
41 #include <linux/blkdev.h>
42 #include <linux/context_tracking.h>
43 #include <linux/cpuset.h>
44 #include <linux/delayacct.h>
45 #include <linux/init_task.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioprio.h>
48 #include <linux/kallsyms.h>
49 #include <linux/kcov.h>
50 #include <linux/kprobes.h>
51 #include <linux/llist_api.h>
52 #include <linux/mmu_context.h>
53 #include <linux/mmzone.h>
54 #include <linux/mutex_api.h>
55 #include <linux/nmi.h>
56 #include <linux/nospec.h>
57 #include <linux/perf_event_api.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcuwait_api.h>
61 #include <linux/rseq.h>
62 #include <linux/sched/wake_q.h>
63 #include <linux/scs.h>
64 #include <linux/slab.h>
65 #include <linux/syscalls.h>
66 #include <linux/vtime.h>
67 #include <linux/wait_api.h>
68 #include <linux/workqueue_api.h>
69 
70 #ifdef CONFIG_PREEMPT_DYNAMIC
71 # ifdef CONFIG_GENERIC_ENTRY
72 #  include <linux/entry-common.h>
73 # endif
74 #endif
75 
76 #include <uapi/linux/sched/types.h>
77 
78 #include <asm/irq_regs.h>
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 
82 #define CREATE_TRACE_POINTS
83 #include <linux/sched/rseq_api.h>
84 #include <trace/events/sched.h>
85 #include <trace/events/ipi.h>
86 #undef CREATE_TRACE_POINTS
87 
88 #include "sched.h"
89 #include "stats.h"
90 
91 #include "autogroup.h"
92 #include "pelt.h"
93 #include "smp.h"
94 #include "stats.h"
95 
96 #include "../workqueue_internal.h"
97 #include "../../io_uring/io-wq.h"
98 #include "../smpboot.h"
99 
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
102 
103 /*
104  * Export tracepoints that act as a bare tracehook (ie: have no trace event
105  * associated with them) to allow external modules to probe them.
106  */
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
119 
120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
121 
122 #ifdef CONFIG_SCHED_DEBUG
123 /*
124  * Debugging: various feature bits
125  *
126  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
127  * sysctl_sched_features, defined in sched.h, to allow constants propagation
128  * at compile time and compiler optimization based on features default.
129  */
130 #define SCHED_FEAT(name, enabled)	\
131 	(1UL << __SCHED_FEAT_##name) * enabled |
132 const_debug unsigned int sysctl_sched_features =
133 #include "features.h"
134 	0;
135 #undef SCHED_FEAT
136 
137 /*
138  * Print a warning if need_resched is set for the given duration (if
139  * LATENCY_WARN is enabled).
140  *
141  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
142  * per boot.
143  */
144 __read_mostly int sysctl_resched_latency_warn_ms = 100;
145 __read_mostly int sysctl_resched_latency_warn_once = 1;
146 #endif /* CONFIG_SCHED_DEBUG */
147 
148 /*
149  * Number of tasks to iterate in a single balance run.
150  * Limited because this is done with IRQs disabled.
151  */
152 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
153 
154 __read_mostly int scheduler_running;
155 
156 #ifdef CONFIG_SCHED_CORE
157 
158 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
159 
160 /* kernel prio, less is more */
161 static inline int __task_prio(const struct task_struct *p)
162 {
163 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
164 		return -2;
165 
166 	if (p->dl_server)
167 		return -1; /* deadline */
168 
169 	if (rt_or_dl_prio(p->prio))
170 		return p->prio; /* [-1, 99] */
171 
172 	if (p->sched_class == &idle_sched_class)
173 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
174 
175 	if (task_on_scx(p))
176 		return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
177 
178 	return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
179 }
180 
181 /*
182  * l(a,b)
183  * le(a,b) := !l(b,a)
184  * g(a,b)  := l(b,a)
185  * ge(a,b) := !l(a,b)
186  */
187 
188 /* real prio, less is less */
189 static inline bool prio_less(const struct task_struct *a,
190 			     const struct task_struct *b, bool in_fi)
191 {
192 
193 	int pa = __task_prio(a), pb = __task_prio(b);
194 
195 	if (-pa < -pb)
196 		return true;
197 
198 	if (-pb < -pa)
199 		return false;
200 
201 	if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
202 		const struct sched_dl_entity *a_dl, *b_dl;
203 
204 		a_dl = &a->dl;
205 		/*
206 		 * Since,'a' and 'b' can be CFS tasks served by DL server,
207 		 * __task_prio() can return -1 (for DL) even for those. In that
208 		 * case, get to the dl_server's DL entity.
209 		 */
210 		if (a->dl_server)
211 			a_dl = a->dl_server;
212 
213 		b_dl = &b->dl;
214 		if (b->dl_server)
215 			b_dl = b->dl_server;
216 
217 		return !dl_time_before(a_dl->deadline, b_dl->deadline);
218 	}
219 
220 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
221 		return cfs_prio_less(a, b, in_fi);
222 
223 #ifdef CONFIG_SCHED_CLASS_EXT
224 	if (pa == MAX_RT_PRIO + MAX_NICE + 1)	/* ext */
225 		return scx_prio_less(a, b, in_fi);
226 #endif
227 
228 	return false;
229 }
230 
231 static inline bool __sched_core_less(const struct task_struct *a,
232 				     const struct task_struct *b)
233 {
234 	if (a->core_cookie < b->core_cookie)
235 		return true;
236 
237 	if (a->core_cookie > b->core_cookie)
238 		return false;
239 
240 	/* flip prio, so high prio is leftmost */
241 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
242 		return true;
243 
244 	return false;
245 }
246 
247 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
248 
249 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
250 {
251 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
252 }
253 
254 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
255 {
256 	const struct task_struct *p = __node_2_sc(node);
257 	unsigned long cookie = (unsigned long)key;
258 
259 	if (cookie < p->core_cookie)
260 		return -1;
261 
262 	if (cookie > p->core_cookie)
263 		return 1;
264 
265 	return 0;
266 }
267 
268 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
269 {
270 	if (p->se.sched_delayed)
271 		return;
272 
273 	rq->core->core_task_seq++;
274 
275 	if (!p->core_cookie)
276 		return;
277 
278 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
279 }
280 
281 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
282 {
283 	if (p->se.sched_delayed)
284 		return;
285 
286 	rq->core->core_task_seq++;
287 
288 	if (sched_core_enqueued(p)) {
289 		rb_erase(&p->core_node, &rq->core_tree);
290 		RB_CLEAR_NODE(&p->core_node);
291 	}
292 
293 	/*
294 	 * Migrating the last task off the cpu, with the cpu in forced idle
295 	 * state. Reschedule to create an accounting edge for forced idle,
296 	 * and re-examine whether the core is still in forced idle state.
297 	 */
298 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
299 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
300 		resched_curr(rq);
301 }
302 
303 static int sched_task_is_throttled(struct task_struct *p, int cpu)
304 {
305 	if (p->sched_class->task_is_throttled)
306 		return p->sched_class->task_is_throttled(p, cpu);
307 
308 	return 0;
309 }
310 
311 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
312 {
313 	struct rb_node *node = &p->core_node;
314 	int cpu = task_cpu(p);
315 
316 	do {
317 		node = rb_next(node);
318 		if (!node)
319 			return NULL;
320 
321 		p = __node_2_sc(node);
322 		if (p->core_cookie != cookie)
323 			return NULL;
324 
325 	} while (sched_task_is_throttled(p, cpu));
326 
327 	return p;
328 }
329 
330 /*
331  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
332  * If no suitable task is found, NULL will be returned.
333  */
334 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
335 {
336 	struct task_struct *p;
337 	struct rb_node *node;
338 
339 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
340 	if (!node)
341 		return NULL;
342 
343 	p = __node_2_sc(node);
344 	if (!sched_task_is_throttled(p, rq->cpu))
345 		return p;
346 
347 	return sched_core_next(p, cookie);
348 }
349 
350 /*
351  * Magic required such that:
352  *
353  *	raw_spin_rq_lock(rq);
354  *	...
355  *	raw_spin_rq_unlock(rq);
356  *
357  * ends up locking and unlocking the _same_ lock, and all CPUs
358  * always agree on what rq has what lock.
359  *
360  * XXX entirely possible to selectively enable cores, don't bother for now.
361  */
362 
363 static DEFINE_MUTEX(sched_core_mutex);
364 static atomic_t sched_core_count;
365 static struct cpumask sched_core_mask;
366 
367 static void sched_core_lock(int cpu, unsigned long *flags)
368 {
369 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
370 	int t, i = 0;
371 
372 	local_irq_save(*flags);
373 	for_each_cpu(t, smt_mask)
374 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
375 }
376 
377 static void sched_core_unlock(int cpu, unsigned long *flags)
378 {
379 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
380 	int t;
381 
382 	for_each_cpu(t, smt_mask)
383 		raw_spin_unlock(&cpu_rq(t)->__lock);
384 	local_irq_restore(*flags);
385 }
386 
387 static void __sched_core_flip(bool enabled)
388 {
389 	unsigned long flags;
390 	int cpu, t;
391 
392 	cpus_read_lock();
393 
394 	/*
395 	 * Toggle the online cores, one by one.
396 	 */
397 	cpumask_copy(&sched_core_mask, cpu_online_mask);
398 	for_each_cpu(cpu, &sched_core_mask) {
399 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
400 
401 		sched_core_lock(cpu, &flags);
402 
403 		for_each_cpu(t, smt_mask)
404 			cpu_rq(t)->core_enabled = enabled;
405 
406 		cpu_rq(cpu)->core->core_forceidle_start = 0;
407 
408 		sched_core_unlock(cpu, &flags);
409 
410 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
411 	}
412 
413 	/*
414 	 * Toggle the offline CPUs.
415 	 */
416 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
417 		cpu_rq(cpu)->core_enabled = enabled;
418 
419 	cpus_read_unlock();
420 }
421 
422 static void sched_core_assert_empty(void)
423 {
424 	int cpu;
425 
426 	for_each_possible_cpu(cpu)
427 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
428 }
429 
430 static void __sched_core_enable(void)
431 {
432 	static_branch_enable(&__sched_core_enabled);
433 	/*
434 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
435 	 * and future ones will observe !sched_core_disabled().
436 	 */
437 	synchronize_rcu();
438 	__sched_core_flip(true);
439 	sched_core_assert_empty();
440 }
441 
442 static void __sched_core_disable(void)
443 {
444 	sched_core_assert_empty();
445 	__sched_core_flip(false);
446 	static_branch_disable(&__sched_core_enabled);
447 }
448 
449 void sched_core_get(void)
450 {
451 	if (atomic_inc_not_zero(&sched_core_count))
452 		return;
453 
454 	mutex_lock(&sched_core_mutex);
455 	if (!atomic_read(&sched_core_count))
456 		__sched_core_enable();
457 
458 	smp_mb__before_atomic();
459 	atomic_inc(&sched_core_count);
460 	mutex_unlock(&sched_core_mutex);
461 }
462 
463 static void __sched_core_put(struct work_struct *work)
464 {
465 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
466 		__sched_core_disable();
467 		mutex_unlock(&sched_core_mutex);
468 	}
469 }
470 
471 void sched_core_put(void)
472 {
473 	static DECLARE_WORK(_work, __sched_core_put);
474 
475 	/*
476 	 * "There can be only one"
477 	 *
478 	 * Either this is the last one, or we don't actually need to do any
479 	 * 'work'. If it is the last *again*, we rely on
480 	 * WORK_STRUCT_PENDING_BIT.
481 	 */
482 	if (!atomic_add_unless(&sched_core_count, -1, 1))
483 		schedule_work(&_work);
484 }
485 
486 #else /* !CONFIG_SCHED_CORE */
487 
488 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
489 static inline void
490 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
491 
492 #endif /* CONFIG_SCHED_CORE */
493 
494 /*
495  * Serialization rules:
496  *
497  * Lock order:
498  *
499  *   p->pi_lock
500  *     rq->lock
501  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
502  *
503  *  rq1->lock
504  *    rq2->lock  where: rq1 < rq2
505  *
506  * Regular state:
507  *
508  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
509  * local CPU's rq->lock, it optionally removes the task from the runqueue and
510  * always looks at the local rq data structures to find the most eligible task
511  * to run next.
512  *
513  * Task enqueue is also under rq->lock, possibly taken from another CPU.
514  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
515  * the local CPU to avoid bouncing the runqueue state around [ see
516  * ttwu_queue_wakelist() ]
517  *
518  * Task wakeup, specifically wakeups that involve migration, are horribly
519  * complicated to avoid having to take two rq->locks.
520  *
521  * Special state:
522  *
523  * System-calls and anything external will use task_rq_lock() which acquires
524  * both p->pi_lock and rq->lock. As a consequence the state they change is
525  * stable while holding either lock:
526  *
527  *  - sched_setaffinity()/
528  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
529  *  - set_user_nice():		p->se.load, p->*prio
530  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
531  *				p->se.load, p->rt_priority,
532  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
533  *  - sched_setnuma():		p->numa_preferred_nid
534  *  - sched_move_task():	p->sched_task_group
535  *  - uclamp_update_active()	p->uclamp*
536  *
537  * p->state <- TASK_*:
538  *
539  *   is changed locklessly using set_current_state(), __set_current_state() or
540  *   set_special_state(), see their respective comments, or by
541  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
542  *   concurrent self.
543  *
544  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
545  *
546  *   is set by activate_task() and cleared by deactivate_task(), under
547  *   rq->lock. Non-zero indicates the task is runnable, the special
548  *   ON_RQ_MIGRATING state is used for migration without holding both
549  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
550  *
551  *   Additionally it is possible to be ->on_rq but still be considered not
552  *   runnable when p->se.sched_delayed is true. These tasks are on the runqueue
553  *   but will be dequeued as soon as they get picked again. See the
554  *   task_is_runnable() helper.
555  *
556  * p->on_cpu <- { 0, 1 }:
557  *
558  *   is set by prepare_task() and cleared by finish_task() such that it will be
559  *   set before p is scheduled-in and cleared after p is scheduled-out, both
560  *   under rq->lock. Non-zero indicates the task is running on its CPU.
561  *
562  *   [ The astute reader will observe that it is possible for two tasks on one
563  *     CPU to have ->on_cpu = 1 at the same time. ]
564  *
565  * task_cpu(p): is changed by set_task_cpu(), the rules are:
566  *
567  *  - Don't call set_task_cpu() on a blocked task:
568  *
569  *    We don't care what CPU we're not running on, this simplifies hotplug,
570  *    the CPU assignment of blocked tasks isn't required to be valid.
571  *
572  *  - for try_to_wake_up(), called under p->pi_lock:
573  *
574  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
575  *
576  *  - for migration called under rq->lock:
577  *    [ see task_on_rq_migrating() in task_rq_lock() ]
578  *
579  *    o move_queued_task()
580  *    o detach_task()
581  *
582  *  - for migration called under double_rq_lock():
583  *
584  *    o __migrate_swap_task()
585  *    o push_rt_task() / pull_rt_task()
586  *    o push_dl_task() / pull_dl_task()
587  *    o dl_task_offline_migration()
588  *
589  */
590 
591 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
592 {
593 	raw_spinlock_t *lock;
594 
595 	/* Matches synchronize_rcu() in __sched_core_enable() */
596 	preempt_disable();
597 	if (sched_core_disabled()) {
598 		raw_spin_lock_nested(&rq->__lock, subclass);
599 		/* preempt_count *MUST* be > 1 */
600 		preempt_enable_no_resched();
601 		return;
602 	}
603 
604 	for (;;) {
605 		lock = __rq_lockp(rq);
606 		raw_spin_lock_nested(lock, subclass);
607 		if (likely(lock == __rq_lockp(rq))) {
608 			/* preempt_count *MUST* be > 1 */
609 			preempt_enable_no_resched();
610 			return;
611 		}
612 		raw_spin_unlock(lock);
613 	}
614 }
615 
616 bool raw_spin_rq_trylock(struct rq *rq)
617 {
618 	raw_spinlock_t *lock;
619 	bool ret;
620 
621 	/* Matches synchronize_rcu() in __sched_core_enable() */
622 	preempt_disable();
623 	if (sched_core_disabled()) {
624 		ret = raw_spin_trylock(&rq->__lock);
625 		preempt_enable();
626 		return ret;
627 	}
628 
629 	for (;;) {
630 		lock = __rq_lockp(rq);
631 		ret = raw_spin_trylock(lock);
632 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
633 			preempt_enable();
634 			return ret;
635 		}
636 		raw_spin_unlock(lock);
637 	}
638 }
639 
640 void raw_spin_rq_unlock(struct rq *rq)
641 {
642 	raw_spin_unlock(rq_lockp(rq));
643 }
644 
645 #ifdef CONFIG_SMP
646 /*
647  * double_rq_lock - safely lock two runqueues
648  */
649 void double_rq_lock(struct rq *rq1, struct rq *rq2)
650 {
651 	lockdep_assert_irqs_disabled();
652 
653 	if (rq_order_less(rq2, rq1))
654 		swap(rq1, rq2);
655 
656 	raw_spin_rq_lock(rq1);
657 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
658 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
659 
660 	double_rq_clock_clear_update(rq1, rq2);
661 }
662 #endif
663 
664 /*
665  * __task_rq_lock - lock the rq @p resides on.
666  */
667 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
668 	__acquires(rq->lock)
669 {
670 	struct rq *rq;
671 
672 	lockdep_assert_held(&p->pi_lock);
673 
674 	for (;;) {
675 		rq = task_rq(p);
676 		raw_spin_rq_lock(rq);
677 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
678 			rq_pin_lock(rq, rf);
679 			return rq;
680 		}
681 		raw_spin_rq_unlock(rq);
682 
683 		while (unlikely(task_on_rq_migrating(p)))
684 			cpu_relax();
685 	}
686 }
687 
688 /*
689  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
690  */
691 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
692 	__acquires(p->pi_lock)
693 	__acquires(rq->lock)
694 {
695 	struct rq *rq;
696 
697 	for (;;) {
698 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
699 		rq = task_rq(p);
700 		raw_spin_rq_lock(rq);
701 		/*
702 		 *	move_queued_task()		task_rq_lock()
703 		 *
704 		 *	ACQUIRE (rq->lock)
705 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
706 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
707 		 *	[S] ->cpu = new_cpu		[L] task_rq()
708 		 *					[L] ->on_rq
709 		 *	RELEASE (rq->lock)
710 		 *
711 		 * If we observe the old CPU in task_rq_lock(), the acquire of
712 		 * the old rq->lock will fully serialize against the stores.
713 		 *
714 		 * If we observe the new CPU in task_rq_lock(), the address
715 		 * dependency headed by '[L] rq = task_rq()' and the acquire
716 		 * will pair with the WMB to ensure we then also see migrating.
717 		 */
718 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
719 			rq_pin_lock(rq, rf);
720 			return rq;
721 		}
722 		raw_spin_rq_unlock(rq);
723 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
724 
725 		while (unlikely(task_on_rq_migrating(p)))
726 			cpu_relax();
727 	}
728 }
729 
730 /*
731  * RQ-clock updating methods:
732  */
733 
734 static void update_rq_clock_task(struct rq *rq, s64 delta)
735 {
736 /*
737  * In theory, the compile should just see 0 here, and optimize out the call
738  * to sched_rt_avg_update. But I don't trust it...
739  */
740 	s64 __maybe_unused steal = 0, irq_delta = 0;
741 
742 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
743 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
744 
745 	/*
746 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
747 	 * this case when a previous update_rq_clock() happened inside a
748 	 * {soft,}IRQ region.
749 	 *
750 	 * When this happens, we stop ->clock_task and only update the
751 	 * prev_irq_time stamp to account for the part that fit, so that a next
752 	 * update will consume the rest. This ensures ->clock_task is
753 	 * monotonic.
754 	 *
755 	 * It does however cause some slight miss-attribution of {soft,}IRQ
756 	 * time, a more accurate solution would be to update the irq_time using
757 	 * the current rq->clock timestamp, except that would require using
758 	 * atomic ops.
759 	 */
760 	if (irq_delta > delta)
761 		irq_delta = delta;
762 
763 	rq->prev_irq_time += irq_delta;
764 	delta -= irq_delta;
765 	delayacct_irq(rq->curr, irq_delta);
766 #endif
767 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
768 	if (static_key_false((&paravirt_steal_rq_enabled))) {
769 		steal = paravirt_steal_clock(cpu_of(rq));
770 		steal -= rq->prev_steal_time_rq;
771 
772 		if (unlikely(steal > delta))
773 			steal = delta;
774 
775 		rq->prev_steal_time_rq += steal;
776 		delta -= steal;
777 	}
778 #endif
779 
780 	rq->clock_task += delta;
781 
782 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
783 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
784 		update_irq_load_avg(rq, irq_delta + steal);
785 #endif
786 	update_rq_clock_pelt(rq, delta);
787 }
788 
789 void update_rq_clock(struct rq *rq)
790 {
791 	s64 delta;
792 
793 	lockdep_assert_rq_held(rq);
794 
795 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
796 		return;
797 
798 #ifdef CONFIG_SCHED_DEBUG
799 	if (sched_feat(WARN_DOUBLE_CLOCK))
800 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
801 	rq->clock_update_flags |= RQCF_UPDATED;
802 #endif
803 
804 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
805 	if (delta < 0)
806 		return;
807 	rq->clock += delta;
808 	update_rq_clock_task(rq, delta);
809 }
810 
811 #ifdef CONFIG_SCHED_HRTICK
812 /*
813  * Use HR-timers to deliver accurate preemption points.
814  */
815 
816 static void hrtick_clear(struct rq *rq)
817 {
818 	if (hrtimer_active(&rq->hrtick_timer))
819 		hrtimer_cancel(&rq->hrtick_timer);
820 }
821 
822 /*
823  * High-resolution timer tick.
824  * Runs from hardirq context with interrupts disabled.
825  */
826 static enum hrtimer_restart hrtick(struct hrtimer *timer)
827 {
828 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
829 	struct rq_flags rf;
830 
831 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
832 
833 	rq_lock(rq, &rf);
834 	update_rq_clock(rq);
835 	rq->donor->sched_class->task_tick(rq, rq->curr, 1);
836 	rq_unlock(rq, &rf);
837 
838 	return HRTIMER_NORESTART;
839 }
840 
841 #ifdef CONFIG_SMP
842 
843 static void __hrtick_restart(struct rq *rq)
844 {
845 	struct hrtimer *timer = &rq->hrtick_timer;
846 	ktime_t time = rq->hrtick_time;
847 
848 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
849 }
850 
851 /*
852  * called from hardirq (IPI) context
853  */
854 static void __hrtick_start(void *arg)
855 {
856 	struct rq *rq = arg;
857 	struct rq_flags rf;
858 
859 	rq_lock(rq, &rf);
860 	__hrtick_restart(rq);
861 	rq_unlock(rq, &rf);
862 }
863 
864 /*
865  * Called to set the hrtick timer state.
866  *
867  * called with rq->lock held and IRQs disabled
868  */
869 void hrtick_start(struct rq *rq, u64 delay)
870 {
871 	struct hrtimer *timer = &rq->hrtick_timer;
872 	s64 delta;
873 
874 	/*
875 	 * Don't schedule slices shorter than 10000ns, that just
876 	 * doesn't make sense and can cause timer DoS.
877 	 */
878 	delta = max_t(s64, delay, 10000LL);
879 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
880 
881 	if (rq == this_rq())
882 		__hrtick_restart(rq);
883 	else
884 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
885 }
886 
887 #else
888 /*
889  * Called to set the hrtick timer state.
890  *
891  * called with rq->lock held and IRQs disabled
892  */
893 void hrtick_start(struct rq *rq, u64 delay)
894 {
895 	/*
896 	 * Don't schedule slices shorter than 10000ns, that just
897 	 * doesn't make sense. Rely on vruntime for fairness.
898 	 */
899 	delay = max_t(u64, delay, 10000LL);
900 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
901 		      HRTIMER_MODE_REL_PINNED_HARD);
902 }
903 
904 #endif /* CONFIG_SMP */
905 
906 static void hrtick_rq_init(struct rq *rq)
907 {
908 #ifdef CONFIG_SMP
909 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
910 #endif
911 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
912 	rq->hrtick_timer.function = hrtick;
913 }
914 #else	/* CONFIG_SCHED_HRTICK */
915 static inline void hrtick_clear(struct rq *rq)
916 {
917 }
918 
919 static inline void hrtick_rq_init(struct rq *rq)
920 {
921 }
922 #endif	/* CONFIG_SCHED_HRTICK */
923 
924 /*
925  * try_cmpxchg based fetch_or() macro so it works for different integer types:
926  */
927 #define fetch_or(ptr, mask)						\
928 	({								\
929 		typeof(ptr) _ptr = (ptr);				\
930 		typeof(mask) _mask = (mask);				\
931 		typeof(*_ptr) _val = *_ptr;				\
932 									\
933 		do {							\
934 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
935 	_val;								\
936 })
937 
938 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
939 /*
940  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
941  * this avoids any races wrt polling state changes and thereby avoids
942  * spurious IPIs.
943  */
944 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
945 {
946 	return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG);
947 }
948 
949 /*
950  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
951  *
952  * If this returns true, then the idle task promises to call
953  * sched_ttwu_pending() and reschedule soon.
954  */
955 static bool set_nr_if_polling(struct task_struct *p)
956 {
957 	struct thread_info *ti = task_thread_info(p);
958 	typeof(ti->flags) val = READ_ONCE(ti->flags);
959 
960 	do {
961 		if (!(val & _TIF_POLLING_NRFLAG))
962 			return false;
963 		if (val & _TIF_NEED_RESCHED)
964 			return true;
965 	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
966 
967 	return true;
968 }
969 
970 #else
971 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
972 {
973 	set_ti_thread_flag(ti, tif);
974 	return true;
975 }
976 
977 #ifdef CONFIG_SMP
978 static inline bool set_nr_if_polling(struct task_struct *p)
979 {
980 	return false;
981 }
982 #endif
983 #endif
984 
985 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
986 {
987 	struct wake_q_node *node = &task->wake_q;
988 
989 	/*
990 	 * Atomically grab the task, if ->wake_q is !nil already it means
991 	 * it's already queued (either by us or someone else) and will get the
992 	 * wakeup due to that.
993 	 *
994 	 * In order to ensure that a pending wakeup will observe our pending
995 	 * state, even in the failed case, an explicit smp_mb() must be used.
996 	 */
997 	smp_mb__before_atomic();
998 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
999 		return false;
1000 
1001 	/*
1002 	 * The head is context local, there can be no concurrency.
1003 	 */
1004 	*head->lastp = node;
1005 	head->lastp = &node->next;
1006 	return true;
1007 }
1008 
1009 /**
1010  * wake_q_add() - queue a wakeup for 'later' waking.
1011  * @head: the wake_q_head to add @task to
1012  * @task: the task to queue for 'later' wakeup
1013  *
1014  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1015  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1016  * instantly.
1017  *
1018  * This function must be used as-if it were wake_up_process(); IOW the task
1019  * must be ready to be woken at this location.
1020  */
1021 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1022 {
1023 	if (__wake_q_add(head, task))
1024 		get_task_struct(task);
1025 }
1026 
1027 /**
1028  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1029  * @head: the wake_q_head to add @task to
1030  * @task: the task to queue for 'later' wakeup
1031  *
1032  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1033  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1034  * instantly.
1035  *
1036  * This function must be used as-if it were wake_up_process(); IOW the task
1037  * must be ready to be woken at this location.
1038  *
1039  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1040  * that already hold reference to @task can call the 'safe' version and trust
1041  * wake_q to do the right thing depending whether or not the @task is already
1042  * queued for wakeup.
1043  */
1044 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1045 {
1046 	if (!__wake_q_add(head, task))
1047 		put_task_struct(task);
1048 }
1049 
1050 void wake_up_q(struct wake_q_head *head)
1051 {
1052 	struct wake_q_node *node = head->first;
1053 
1054 	while (node != WAKE_Q_TAIL) {
1055 		struct task_struct *task;
1056 
1057 		task = container_of(node, struct task_struct, wake_q);
1058 		/* Task can safely be re-inserted now: */
1059 		node = node->next;
1060 		task->wake_q.next = NULL;
1061 
1062 		/*
1063 		 * wake_up_process() executes a full barrier, which pairs with
1064 		 * the queueing in wake_q_add() so as not to miss wakeups.
1065 		 */
1066 		wake_up_process(task);
1067 		put_task_struct(task);
1068 	}
1069 }
1070 
1071 /*
1072  * resched_curr - mark rq's current task 'to be rescheduled now'.
1073  *
1074  * On UP this means the setting of the need_resched flag, on SMP it
1075  * might also involve a cross-CPU call to trigger the scheduler on
1076  * the target CPU.
1077  */
1078 static void __resched_curr(struct rq *rq, int tif)
1079 {
1080 	struct task_struct *curr = rq->curr;
1081 	struct thread_info *cti = task_thread_info(curr);
1082 	int cpu;
1083 
1084 	lockdep_assert_rq_held(rq);
1085 
1086 	/*
1087 	 * Always immediately preempt the idle task; no point in delaying doing
1088 	 * actual work.
1089 	 */
1090 	if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY)
1091 		tif = TIF_NEED_RESCHED;
1092 
1093 	if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED))
1094 		return;
1095 
1096 	cpu = cpu_of(rq);
1097 
1098 	if (cpu == smp_processor_id()) {
1099 		set_ti_thread_flag(cti, tif);
1100 		if (tif == TIF_NEED_RESCHED)
1101 			set_preempt_need_resched();
1102 		return;
1103 	}
1104 
1105 	if (set_nr_and_not_polling(cti, tif)) {
1106 		if (tif == TIF_NEED_RESCHED)
1107 			smp_send_reschedule(cpu);
1108 	} else {
1109 		trace_sched_wake_idle_without_ipi(cpu);
1110 	}
1111 }
1112 
1113 void resched_curr(struct rq *rq)
1114 {
1115 	__resched_curr(rq, TIF_NEED_RESCHED);
1116 }
1117 
1118 #ifdef CONFIG_PREEMPT_DYNAMIC
1119 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy);
1120 static __always_inline bool dynamic_preempt_lazy(void)
1121 {
1122 	return static_branch_unlikely(&sk_dynamic_preempt_lazy);
1123 }
1124 #else
1125 static __always_inline bool dynamic_preempt_lazy(void)
1126 {
1127 	return IS_ENABLED(CONFIG_PREEMPT_LAZY);
1128 }
1129 #endif
1130 
1131 static __always_inline int get_lazy_tif_bit(void)
1132 {
1133 	if (dynamic_preempt_lazy())
1134 		return TIF_NEED_RESCHED_LAZY;
1135 
1136 	return TIF_NEED_RESCHED;
1137 }
1138 
1139 void resched_curr_lazy(struct rq *rq)
1140 {
1141 	__resched_curr(rq, get_lazy_tif_bit());
1142 }
1143 
1144 void resched_cpu(int cpu)
1145 {
1146 	struct rq *rq = cpu_rq(cpu);
1147 	unsigned long flags;
1148 
1149 	raw_spin_rq_lock_irqsave(rq, flags);
1150 	if (cpu_online(cpu) || cpu == smp_processor_id())
1151 		resched_curr(rq);
1152 	raw_spin_rq_unlock_irqrestore(rq, flags);
1153 }
1154 
1155 #ifdef CONFIG_SMP
1156 #ifdef CONFIG_NO_HZ_COMMON
1157 /*
1158  * In the semi idle case, use the nearest busy CPU for migrating timers
1159  * from an idle CPU.  This is good for power-savings.
1160  *
1161  * We don't do similar optimization for completely idle system, as
1162  * selecting an idle CPU will add more delays to the timers than intended
1163  * (as that CPU's timer base may not be up to date wrt jiffies etc).
1164  */
1165 int get_nohz_timer_target(void)
1166 {
1167 	int i, cpu = smp_processor_id(), default_cpu = -1;
1168 	struct sched_domain *sd;
1169 	const struct cpumask *hk_mask;
1170 
1171 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1172 		if (!idle_cpu(cpu))
1173 			return cpu;
1174 		default_cpu = cpu;
1175 	}
1176 
1177 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1178 
1179 	guard(rcu)();
1180 
1181 	for_each_domain(cpu, sd) {
1182 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1183 			if (cpu == i)
1184 				continue;
1185 
1186 			if (!idle_cpu(i))
1187 				return i;
1188 		}
1189 	}
1190 
1191 	if (default_cpu == -1)
1192 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1193 
1194 	return default_cpu;
1195 }
1196 
1197 /*
1198  * When add_timer_on() enqueues a timer into the timer wheel of an
1199  * idle CPU then this timer might expire before the next timer event
1200  * which is scheduled to wake up that CPU. In case of a completely
1201  * idle system the next event might even be infinite time into the
1202  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1203  * leaves the inner idle loop so the newly added timer is taken into
1204  * account when the CPU goes back to idle and evaluates the timer
1205  * wheel for the next timer event.
1206  */
1207 static void wake_up_idle_cpu(int cpu)
1208 {
1209 	struct rq *rq = cpu_rq(cpu);
1210 
1211 	if (cpu == smp_processor_id())
1212 		return;
1213 
1214 	/*
1215 	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1216 	 * part of the idle loop. This forces an exit from the idle loop
1217 	 * and a round trip to schedule(). Now this could be optimized
1218 	 * because a simple new idle loop iteration is enough to
1219 	 * re-evaluate the next tick. Provided some re-ordering of tick
1220 	 * nohz functions that would need to follow TIF_NR_POLLING
1221 	 * clearing:
1222 	 *
1223 	 * - On most architectures, a simple fetch_or on ti::flags with a
1224 	 *   "0" value would be enough to know if an IPI needs to be sent.
1225 	 *
1226 	 * - x86 needs to perform a last need_resched() check between
1227 	 *   monitor and mwait which doesn't take timers into account.
1228 	 *   There a dedicated TIF_TIMER flag would be required to
1229 	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1230 	 *   before mwait().
1231 	 *
1232 	 * However, remote timer enqueue is not such a frequent event
1233 	 * and testing of the above solutions didn't appear to report
1234 	 * much benefits.
1235 	 */
1236 	if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED))
1237 		smp_send_reschedule(cpu);
1238 	else
1239 		trace_sched_wake_idle_without_ipi(cpu);
1240 }
1241 
1242 static bool wake_up_full_nohz_cpu(int cpu)
1243 {
1244 	/*
1245 	 * We just need the target to call irq_exit() and re-evaluate
1246 	 * the next tick. The nohz full kick at least implies that.
1247 	 * If needed we can still optimize that later with an
1248 	 * empty IRQ.
1249 	 */
1250 	if (cpu_is_offline(cpu))
1251 		return true;  /* Don't try to wake offline CPUs. */
1252 	if (tick_nohz_full_cpu(cpu)) {
1253 		if (cpu != smp_processor_id() ||
1254 		    tick_nohz_tick_stopped())
1255 			tick_nohz_full_kick_cpu(cpu);
1256 		return true;
1257 	}
1258 
1259 	return false;
1260 }
1261 
1262 /*
1263  * Wake up the specified CPU.  If the CPU is going offline, it is the
1264  * caller's responsibility to deal with the lost wakeup, for example,
1265  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1266  */
1267 void wake_up_nohz_cpu(int cpu)
1268 {
1269 	if (!wake_up_full_nohz_cpu(cpu))
1270 		wake_up_idle_cpu(cpu);
1271 }
1272 
1273 static void nohz_csd_func(void *info)
1274 {
1275 	struct rq *rq = info;
1276 	int cpu = cpu_of(rq);
1277 	unsigned int flags;
1278 
1279 	/*
1280 	 * Release the rq::nohz_csd.
1281 	 */
1282 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1283 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1284 
1285 	rq->idle_balance = idle_cpu(cpu);
1286 	if (rq->idle_balance && !need_resched()) {
1287 		rq->nohz_idle_balance = flags;
1288 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1289 	}
1290 }
1291 
1292 #endif /* CONFIG_NO_HZ_COMMON */
1293 
1294 #ifdef CONFIG_NO_HZ_FULL
1295 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1296 {
1297 	if (rq->nr_running != 1)
1298 		return false;
1299 
1300 	if (p->sched_class != &fair_sched_class)
1301 		return false;
1302 
1303 	if (!task_on_rq_queued(p))
1304 		return false;
1305 
1306 	return true;
1307 }
1308 
1309 bool sched_can_stop_tick(struct rq *rq)
1310 {
1311 	int fifo_nr_running;
1312 
1313 	/* Deadline tasks, even if single, need the tick */
1314 	if (rq->dl.dl_nr_running)
1315 		return false;
1316 
1317 	/*
1318 	 * If there are more than one RR tasks, we need the tick to affect the
1319 	 * actual RR behaviour.
1320 	 */
1321 	if (rq->rt.rr_nr_running) {
1322 		if (rq->rt.rr_nr_running == 1)
1323 			return true;
1324 		else
1325 			return false;
1326 	}
1327 
1328 	/*
1329 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1330 	 * forced preemption between FIFO tasks.
1331 	 */
1332 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1333 	if (fifo_nr_running)
1334 		return true;
1335 
1336 	/*
1337 	 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
1338 	 * left. For CFS, if there's more than one we need the tick for
1339 	 * involuntary preemption. For SCX, ask.
1340 	 */
1341 	if (scx_enabled() && !scx_can_stop_tick(rq))
1342 		return false;
1343 
1344 	if (rq->cfs.nr_running > 1)
1345 		return false;
1346 
1347 	/*
1348 	 * If there is one task and it has CFS runtime bandwidth constraints
1349 	 * and it's on the cpu now we don't want to stop the tick.
1350 	 * This check prevents clearing the bit if a newly enqueued task here is
1351 	 * dequeued by migrating while the constrained task continues to run.
1352 	 * E.g. going from 2->1 without going through pick_next_task().
1353 	 */
1354 	if (__need_bw_check(rq, rq->curr)) {
1355 		if (cfs_task_bw_constrained(rq->curr))
1356 			return false;
1357 	}
1358 
1359 	return true;
1360 }
1361 #endif /* CONFIG_NO_HZ_FULL */
1362 #endif /* CONFIG_SMP */
1363 
1364 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1365 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1366 /*
1367  * Iterate task_group tree rooted at *from, calling @down when first entering a
1368  * node and @up when leaving it for the final time.
1369  *
1370  * Caller must hold rcu_lock or sufficient equivalent.
1371  */
1372 int walk_tg_tree_from(struct task_group *from,
1373 			     tg_visitor down, tg_visitor up, void *data)
1374 {
1375 	struct task_group *parent, *child;
1376 	int ret;
1377 
1378 	parent = from;
1379 
1380 down:
1381 	ret = (*down)(parent, data);
1382 	if (ret)
1383 		goto out;
1384 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1385 		parent = child;
1386 		goto down;
1387 
1388 up:
1389 		continue;
1390 	}
1391 	ret = (*up)(parent, data);
1392 	if (ret || parent == from)
1393 		goto out;
1394 
1395 	child = parent;
1396 	parent = parent->parent;
1397 	if (parent)
1398 		goto up;
1399 out:
1400 	return ret;
1401 }
1402 
1403 int tg_nop(struct task_group *tg, void *data)
1404 {
1405 	return 0;
1406 }
1407 #endif
1408 
1409 void set_load_weight(struct task_struct *p, bool update_load)
1410 {
1411 	int prio = p->static_prio - MAX_RT_PRIO;
1412 	struct load_weight lw;
1413 
1414 	if (task_has_idle_policy(p)) {
1415 		lw.weight = scale_load(WEIGHT_IDLEPRIO);
1416 		lw.inv_weight = WMULT_IDLEPRIO;
1417 	} else {
1418 		lw.weight = scale_load(sched_prio_to_weight[prio]);
1419 		lw.inv_weight = sched_prio_to_wmult[prio];
1420 	}
1421 
1422 	/*
1423 	 * SCHED_OTHER tasks have to update their load when changing their
1424 	 * weight
1425 	 */
1426 	if (update_load && p->sched_class->reweight_task)
1427 		p->sched_class->reweight_task(task_rq(p), p, &lw);
1428 	else
1429 		p->se.load = lw;
1430 }
1431 
1432 #ifdef CONFIG_UCLAMP_TASK
1433 /*
1434  * Serializes updates of utilization clamp values
1435  *
1436  * The (slow-path) user-space triggers utilization clamp value updates which
1437  * can require updates on (fast-path) scheduler's data structures used to
1438  * support enqueue/dequeue operations.
1439  * While the per-CPU rq lock protects fast-path update operations, user-space
1440  * requests are serialized using a mutex to reduce the risk of conflicting
1441  * updates or API abuses.
1442  */
1443 static __maybe_unused DEFINE_MUTEX(uclamp_mutex);
1444 
1445 /* Max allowed minimum utilization */
1446 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1447 
1448 /* Max allowed maximum utilization */
1449 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1450 
1451 /*
1452  * By default RT tasks run at the maximum performance point/capacity of the
1453  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1454  * SCHED_CAPACITY_SCALE.
1455  *
1456  * This knob allows admins to change the default behavior when uclamp is being
1457  * used. In battery powered devices, particularly, running at the maximum
1458  * capacity and frequency will increase energy consumption and shorten the
1459  * battery life.
1460  *
1461  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1462  *
1463  * This knob will not override the system default sched_util_clamp_min defined
1464  * above.
1465  */
1466 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1467 
1468 /* All clamps are required to be less or equal than these values */
1469 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1470 
1471 /*
1472  * This static key is used to reduce the uclamp overhead in the fast path. It
1473  * primarily disables the call to uclamp_rq_{inc, dec}() in
1474  * enqueue/dequeue_task().
1475  *
1476  * This allows users to continue to enable uclamp in their kernel config with
1477  * minimum uclamp overhead in the fast path.
1478  *
1479  * As soon as userspace modifies any of the uclamp knobs, the static key is
1480  * enabled, since we have an actual users that make use of uclamp
1481  * functionality.
1482  *
1483  * The knobs that would enable this static key are:
1484  *
1485  *   * A task modifying its uclamp value with sched_setattr().
1486  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1487  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1488  */
1489 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1490 
1491 static inline unsigned int
1492 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1493 		  unsigned int clamp_value)
1494 {
1495 	/*
1496 	 * Avoid blocked utilization pushing up the frequency when we go
1497 	 * idle (which drops the max-clamp) by retaining the last known
1498 	 * max-clamp.
1499 	 */
1500 	if (clamp_id == UCLAMP_MAX) {
1501 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1502 		return clamp_value;
1503 	}
1504 
1505 	return uclamp_none(UCLAMP_MIN);
1506 }
1507 
1508 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1509 				     unsigned int clamp_value)
1510 {
1511 	/* Reset max-clamp retention only on idle exit */
1512 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1513 		return;
1514 
1515 	uclamp_rq_set(rq, clamp_id, clamp_value);
1516 }
1517 
1518 static inline
1519 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1520 				   unsigned int clamp_value)
1521 {
1522 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1523 	int bucket_id = UCLAMP_BUCKETS - 1;
1524 
1525 	/*
1526 	 * Since both min and max clamps are max aggregated, find the
1527 	 * top most bucket with tasks in.
1528 	 */
1529 	for ( ; bucket_id >= 0; bucket_id--) {
1530 		if (!bucket[bucket_id].tasks)
1531 			continue;
1532 		return bucket[bucket_id].value;
1533 	}
1534 
1535 	/* No tasks -- default clamp values */
1536 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1537 }
1538 
1539 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1540 {
1541 	unsigned int default_util_min;
1542 	struct uclamp_se *uc_se;
1543 
1544 	lockdep_assert_held(&p->pi_lock);
1545 
1546 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1547 
1548 	/* Only sync if user didn't override the default */
1549 	if (uc_se->user_defined)
1550 		return;
1551 
1552 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1553 	uclamp_se_set(uc_se, default_util_min, false);
1554 }
1555 
1556 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1557 {
1558 	if (!rt_task(p))
1559 		return;
1560 
1561 	/* Protect updates to p->uclamp_* */
1562 	guard(task_rq_lock)(p);
1563 	__uclamp_update_util_min_rt_default(p);
1564 }
1565 
1566 static inline struct uclamp_se
1567 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1568 {
1569 	/* Copy by value as we could modify it */
1570 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1571 #ifdef CONFIG_UCLAMP_TASK_GROUP
1572 	unsigned int tg_min, tg_max, value;
1573 
1574 	/*
1575 	 * Tasks in autogroups or root task group will be
1576 	 * restricted by system defaults.
1577 	 */
1578 	if (task_group_is_autogroup(task_group(p)))
1579 		return uc_req;
1580 	if (task_group(p) == &root_task_group)
1581 		return uc_req;
1582 
1583 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1584 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1585 	value = uc_req.value;
1586 	value = clamp(value, tg_min, tg_max);
1587 	uclamp_se_set(&uc_req, value, false);
1588 #endif
1589 
1590 	return uc_req;
1591 }
1592 
1593 /*
1594  * The effective clamp bucket index of a task depends on, by increasing
1595  * priority:
1596  * - the task specific clamp value, when explicitly requested from userspace
1597  * - the task group effective clamp value, for tasks not either in the root
1598  *   group or in an autogroup
1599  * - the system default clamp value, defined by the sysadmin
1600  */
1601 static inline struct uclamp_se
1602 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1603 {
1604 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1605 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1606 
1607 	/* System default restrictions always apply */
1608 	if (unlikely(uc_req.value > uc_max.value))
1609 		return uc_max;
1610 
1611 	return uc_req;
1612 }
1613 
1614 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1615 {
1616 	struct uclamp_se uc_eff;
1617 
1618 	/* Task currently refcounted: use back-annotated (effective) value */
1619 	if (p->uclamp[clamp_id].active)
1620 		return (unsigned long)p->uclamp[clamp_id].value;
1621 
1622 	uc_eff = uclamp_eff_get(p, clamp_id);
1623 
1624 	return (unsigned long)uc_eff.value;
1625 }
1626 
1627 /*
1628  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1629  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1630  * updates the rq's clamp value if required.
1631  *
1632  * Tasks can have a task-specific value requested from user-space, track
1633  * within each bucket the maximum value for tasks refcounted in it.
1634  * This "local max aggregation" allows to track the exact "requested" value
1635  * for each bucket when all its RUNNABLE tasks require the same clamp.
1636  */
1637 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1638 				    enum uclamp_id clamp_id)
1639 {
1640 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1641 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1642 	struct uclamp_bucket *bucket;
1643 
1644 	lockdep_assert_rq_held(rq);
1645 
1646 	/* Update task effective clamp */
1647 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1648 
1649 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1650 	bucket->tasks++;
1651 	uc_se->active = true;
1652 
1653 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1654 
1655 	/*
1656 	 * Local max aggregation: rq buckets always track the max
1657 	 * "requested" clamp value of its RUNNABLE tasks.
1658 	 */
1659 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1660 		bucket->value = uc_se->value;
1661 
1662 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1663 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1664 }
1665 
1666 /*
1667  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1668  * is released. If this is the last task reference counting the rq's max
1669  * active clamp value, then the rq's clamp value is updated.
1670  *
1671  * Both refcounted tasks and rq's cached clamp values are expected to be
1672  * always valid. If it's detected they are not, as defensive programming,
1673  * enforce the expected state and warn.
1674  */
1675 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1676 				    enum uclamp_id clamp_id)
1677 {
1678 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1679 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1680 	struct uclamp_bucket *bucket;
1681 	unsigned int bkt_clamp;
1682 	unsigned int rq_clamp;
1683 
1684 	lockdep_assert_rq_held(rq);
1685 
1686 	/*
1687 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1688 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1689 	 *
1690 	 * In this case the uc_se->active flag should be false since no uclamp
1691 	 * accounting was performed at enqueue time and we can just return
1692 	 * here.
1693 	 *
1694 	 * Need to be careful of the following enqueue/dequeue ordering
1695 	 * problem too
1696 	 *
1697 	 *	enqueue(taskA)
1698 	 *	// sched_uclamp_used gets enabled
1699 	 *	enqueue(taskB)
1700 	 *	dequeue(taskA)
1701 	 *	// Must not decrement bucket->tasks here
1702 	 *	dequeue(taskB)
1703 	 *
1704 	 * where we could end up with stale data in uc_se and
1705 	 * bucket[uc_se->bucket_id].
1706 	 *
1707 	 * The following check here eliminates the possibility of such race.
1708 	 */
1709 	if (unlikely(!uc_se->active))
1710 		return;
1711 
1712 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1713 
1714 	SCHED_WARN_ON(!bucket->tasks);
1715 	if (likely(bucket->tasks))
1716 		bucket->tasks--;
1717 
1718 	uc_se->active = false;
1719 
1720 	/*
1721 	 * Keep "local max aggregation" simple and accept to (possibly)
1722 	 * overboost some RUNNABLE tasks in the same bucket.
1723 	 * The rq clamp bucket value is reset to its base value whenever
1724 	 * there are no more RUNNABLE tasks refcounting it.
1725 	 */
1726 	if (likely(bucket->tasks))
1727 		return;
1728 
1729 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1730 	/*
1731 	 * Defensive programming: this should never happen. If it happens,
1732 	 * e.g. due to future modification, warn and fix up the expected value.
1733 	 */
1734 	SCHED_WARN_ON(bucket->value > rq_clamp);
1735 	if (bucket->value >= rq_clamp) {
1736 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1737 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1738 	}
1739 }
1740 
1741 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1742 {
1743 	enum uclamp_id clamp_id;
1744 
1745 	/*
1746 	 * Avoid any overhead until uclamp is actually used by the userspace.
1747 	 *
1748 	 * The condition is constructed such that a NOP is generated when
1749 	 * sched_uclamp_used is disabled.
1750 	 */
1751 	if (!static_branch_unlikely(&sched_uclamp_used))
1752 		return;
1753 
1754 	if (unlikely(!p->sched_class->uclamp_enabled))
1755 		return;
1756 
1757 	if (p->se.sched_delayed)
1758 		return;
1759 
1760 	for_each_clamp_id(clamp_id)
1761 		uclamp_rq_inc_id(rq, p, clamp_id);
1762 
1763 	/* Reset clamp idle holding when there is one RUNNABLE task */
1764 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1765 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1766 }
1767 
1768 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1769 {
1770 	enum uclamp_id clamp_id;
1771 
1772 	/*
1773 	 * Avoid any overhead until uclamp is actually used by the userspace.
1774 	 *
1775 	 * The condition is constructed such that a NOP is generated when
1776 	 * sched_uclamp_used is disabled.
1777 	 */
1778 	if (!static_branch_unlikely(&sched_uclamp_used))
1779 		return;
1780 
1781 	if (unlikely(!p->sched_class->uclamp_enabled))
1782 		return;
1783 
1784 	if (p->se.sched_delayed)
1785 		return;
1786 
1787 	for_each_clamp_id(clamp_id)
1788 		uclamp_rq_dec_id(rq, p, clamp_id);
1789 }
1790 
1791 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1792 				      enum uclamp_id clamp_id)
1793 {
1794 	if (!p->uclamp[clamp_id].active)
1795 		return;
1796 
1797 	uclamp_rq_dec_id(rq, p, clamp_id);
1798 	uclamp_rq_inc_id(rq, p, clamp_id);
1799 
1800 	/*
1801 	 * Make sure to clear the idle flag if we've transiently reached 0
1802 	 * active tasks on rq.
1803 	 */
1804 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1805 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1806 }
1807 
1808 static inline void
1809 uclamp_update_active(struct task_struct *p)
1810 {
1811 	enum uclamp_id clamp_id;
1812 	struct rq_flags rf;
1813 	struct rq *rq;
1814 
1815 	/*
1816 	 * Lock the task and the rq where the task is (or was) queued.
1817 	 *
1818 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1819 	 * price to pay to safely serialize util_{min,max} updates with
1820 	 * enqueues, dequeues and migration operations.
1821 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1822 	 */
1823 	rq = task_rq_lock(p, &rf);
1824 
1825 	/*
1826 	 * Setting the clamp bucket is serialized by task_rq_lock().
1827 	 * If the task is not yet RUNNABLE and its task_struct is not
1828 	 * affecting a valid clamp bucket, the next time it's enqueued,
1829 	 * it will already see the updated clamp bucket value.
1830 	 */
1831 	for_each_clamp_id(clamp_id)
1832 		uclamp_rq_reinc_id(rq, p, clamp_id);
1833 
1834 	task_rq_unlock(rq, p, &rf);
1835 }
1836 
1837 #ifdef CONFIG_UCLAMP_TASK_GROUP
1838 static inline void
1839 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1840 {
1841 	struct css_task_iter it;
1842 	struct task_struct *p;
1843 
1844 	css_task_iter_start(css, 0, &it);
1845 	while ((p = css_task_iter_next(&it)))
1846 		uclamp_update_active(p);
1847 	css_task_iter_end(&it);
1848 }
1849 
1850 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1851 #endif
1852 
1853 #ifdef CONFIG_SYSCTL
1854 #ifdef CONFIG_UCLAMP_TASK_GROUP
1855 static void uclamp_update_root_tg(void)
1856 {
1857 	struct task_group *tg = &root_task_group;
1858 
1859 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1860 		      sysctl_sched_uclamp_util_min, false);
1861 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1862 		      sysctl_sched_uclamp_util_max, false);
1863 
1864 	guard(rcu)();
1865 	cpu_util_update_eff(&root_task_group.css);
1866 }
1867 #else
1868 static void uclamp_update_root_tg(void) { }
1869 #endif
1870 
1871 static void uclamp_sync_util_min_rt_default(void)
1872 {
1873 	struct task_struct *g, *p;
1874 
1875 	/*
1876 	 * copy_process()			sysctl_uclamp
1877 	 *					  uclamp_min_rt = X;
1878 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1879 	 *   // link thread			  smp_mb__after_spinlock()
1880 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1881 	 *   sched_post_fork()			  for_each_process_thread()
1882 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1883 	 *
1884 	 * Ensures that either sched_post_fork() will observe the new
1885 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1886 	 * task.
1887 	 */
1888 	read_lock(&tasklist_lock);
1889 	smp_mb__after_spinlock();
1890 	read_unlock(&tasklist_lock);
1891 
1892 	guard(rcu)();
1893 	for_each_process_thread(g, p)
1894 		uclamp_update_util_min_rt_default(p);
1895 }
1896 
1897 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1898 				void *buffer, size_t *lenp, loff_t *ppos)
1899 {
1900 	bool update_root_tg = false;
1901 	int old_min, old_max, old_min_rt;
1902 	int result;
1903 
1904 	guard(mutex)(&uclamp_mutex);
1905 
1906 	old_min = sysctl_sched_uclamp_util_min;
1907 	old_max = sysctl_sched_uclamp_util_max;
1908 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1909 
1910 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1911 	if (result)
1912 		goto undo;
1913 	if (!write)
1914 		return 0;
1915 
1916 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1917 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1918 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1919 
1920 		result = -EINVAL;
1921 		goto undo;
1922 	}
1923 
1924 	if (old_min != sysctl_sched_uclamp_util_min) {
1925 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1926 			      sysctl_sched_uclamp_util_min, false);
1927 		update_root_tg = true;
1928 	}
1929 	if (old_max != sysctl_sched_uclamp_util_max) {
1930 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1931 			      sysctl_sched_uclamp_util_max, false);
1932 		update_root_tg = true;
1933 	}
1934 
1935 	if (update_root_tg) {
1936 		static_branch_enable(&sched_uclamp_used);
1937 		uclamp_update_root_tg();
1938 	}
1939 
1940 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1941 		static_branch_enable(&sched_uclamp_used);
1942 		uclamp_sync_util_min_rt_default();
1943 	}
1944 
1945 	/*
1946 	 * We update all RUNNABLE tasks only when task groups are in use.
1947 	 * Otherwise, keep it simple and do just a lazy update at each next
1948 	 * task enqueue time.
1949 	 */
1950 	return 0;
1951 
1952 undo:
1953 	sysctl_sched_uclamp_util_min = old_min;
1954 	sysctl_sched_uclamp_util_max = old_max;
1955 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1956 	return result;
1957 }
1958 #endif
1959 
1960 static void uclamp_fork(struct task_struct *p)
1961 {
1962 	enum uclamp_id clamp_id;
1963 
1964 	/*
1965 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1966 	 * as the task is still at its early fork stages.
1967 	 */
1968 	for_each_clamp_id(clamp_id)
1969 		p->uclamp[clamp_id].active = false;
1970 
1971 	if (likely(!p->sched_reset_on_fork))
1972 		return;
1973 
1974 	for_each_clamp_id(clamp_id) {
1975 		uclamp_se_set(&p->uclamp_req[clamp_id],
1976 			      uclamp_none(clamp_id), false);
1977 	}
1978 }
1979 
1980 static void uclamp_post_fork(struct task_struct *p)
1981 {
1982 	uclamp_update_util_min_rt_default(p);
1983 }
1984 
1985 static void __init init_uclamp_rq(struct rq *rq)
1986 {
1987 	enum uclamp_id clamp_id;
1988 	struct uclamp_rq *uc_rq = rq->uclamp;
1989 
1990 	for_each_clamp_id(clamp_id) {
1991 		uc_rq[clamp_id] = (struct uclamp_rq) {
1992 			.value = uclamp_none(clamp_id)
1993 		};
1994 	}
1995 
1996 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1997 }
1998 
1999 static void __init init_uclamp(void)
2000 {
2001 	struct uclamp_se uc_max = {};
2002 	enum uclamp_id clamp_id;
2003 	int cpu;
2004 
2005 	for_each_possible_cpu(cpu)
2006 		init_uclamp_rq(cpu_rq(cpu));
2007 
2008 	for_each_clamp_id(clamp_id) {
2009 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2010 			      uclamp_none(clamp_id), false);
2011 	}
2012 
2013 	/* System defaults allow max clamp values for both indexes */
2014 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2015 	for_each_clamp_id(clamp_id) {
2016 		uclamp_default[clamp_id] = uc_max;
2017 #ifdef CONFIG_UCLAMP_TASK_GROUP
2018 		root_task_group.uclamp_req[clamp_id] = uc_max;
2019 		root_task_group.uclamp[clamp_id] = uc_max;
2020 #endif
2021 	}
2022 }
2023 
2024 #else /* !CONFIG_UCLAMP_TASK */
2025 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2026 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2027 static inline void uclamp_fork(struct task_struct *p) { }
2028 static inline void uclamp_post_fork(struct task_struct *p) { }
2029 static inline void init_uclamp(void) { }
2030 #endif /* CONFIG_UCLAMP_TASK */
2031 
2032 bool sched_task_on_rq(struct task_struct *p)
2033 {
2034 	return task_on_rq_queued(p);
2035 }
2036 
2037 unsigned long get_wchan(struct task_struct *p)
2038 {
2039 	unsigned long ip = 0;
2040 	unsigned int state;
2041 
2042 	if (!p || p == current)
2043 		return 0;
2044 
2045 	/* Only get wchan if task is blocked and we can keep it that way. */
2046 	raw_spin_lock_irq(&p->pi_lock);
2047 	state = READ_ONCE(p->__state);
2048 	smp_rmb(); /* see try_to_wake_up() */
2049 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2050 		ip = __get_wchan(p);
2051 	raw_spin_unlock_irq(&p->pi_lock);
2052 
2053 	return ip;
2054 }
2055 
2056 void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2057 {
2058 	if (!(flags & ENQUEUE_NOCLOCK))
2059 		update_rq_clock(rq);
2060 
2061 	p->sched_class->enqueue_task(rq, p, flags);
2062 	/*
2063 	 * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear
2064 	 * ->sched_delayed.
2065 	 */
2066 	uclamp_rq_inc(rq, p);
2067 
2068 	psi_enqueue(p, flags);
2069 
2070 	if (!(flags & ENQUEUE_RESTORE))
2071 		sched_info_enqueue(rq, p);
2072 
2073 	if (sched_core_enabled(rq))
2074 		sched_core_enqueue(rq, p);
2075 }
2076 
2077 /*
2078  * Must only return false when DEQUEUE_SLEEP.
2079  */
2080 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2081 {
2082 	if (sched_core_enabled(rq))
2083 		sched_core_dequeue(rq, p, flags);
2084 
2085 	if (!(flags & DEQUEUE_NOCLOCK))
2086 		update_rq_clock(rq);
2087 
2088 	if (!(flags & DEQUEUE_SAVE))
2089 		sched_info_dequeue(rq, p);
2090 
2091 	psi_dequeue(p, flags);
2092 
2093 	/*
2094 	 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
2095 	 * and mark the task ->sched_delayed.
2096 	 */
2097 	uclamp_rq_dec(rq, p);
2098 	return p->sched_class->dequeue_task(rq, p, flags);
2099 }
2100 
2101 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2102 {
2103 	if (task_on_rq_migrating(p))
2104 		flags |= ENQUEUE_MIGRATED;
2105 	if (flags & ENQUEUE_MIGRATED)
2106 		sched_mm_cid_migrate_to(rq, p);
2107 
2108 	enqueue_task(rq, p, flags);
2109 
2110 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2111 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2112 }
2113 
2114 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2115 {
2116 	SCHED_WARN_ON(flags & DEQUEUE_SLEEP);
2117 
2118 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
2119 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2120 
2121 	/*
2122 	 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
2123 	 * dequeue_task() and cleared *after* enqueue_task().
2124 	 */
2125 
2126 	dequeue_task(rq, p, flags);
2127 }
2128 
2129 static void block_task(struct rq *rq, struct task_struct *p, int flags)
2130 {
2131 	if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
2132 		__block_task(rq, p);
2133 }
2134 
2135 /**
2136  * task_curr - is this task currently executing on a CPU?
2137  * @p: the task in question.
2138  *
2139  * Return: 1 if the task is currently executing. 0 otherwise.
2140  */
2141 inline int task_curr(const struct task_struct *p)
2142 {
2143 	return cpu_curr(task_cpu(p)) == p;
2144 }
2145 
2146 /*
2147  * ->switching_to() is called with the pi_lock and rq_lock held and must not
2148  * mess with locking.
2149  */
2150 void check_class_changing(struct rq *rq, struct task_struct *p,
2151 			  const struct sched_class *prev_class)
2152 {
2153 	if (prev_class != p->sched_class && p->sched_class->switching_to)
2154 		p->sched_class->switching_to(rq, p);
2155 }
2156 
2157 /*
2158  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2159  * use the balance_callback list if you want balancing.
2160  *
2161  * this means any call to check_class_changed() must be followed by a call to
2162  * balance_callback().
2163  */
2164 void check_class_changed(struct rq *rq, struct task_struct *p,
2165 			 const struct sched_class *prev_class,
2166 			 int oldprio)
2167 {
2168 	if (prev_class != p->sched_class) {
2169 		if (prev_class->switched_from)
2170 			prev_class->switched_from(rq, p);
2171 
2172 		p->sched_class->switched_to(rq, p);
2173 	} else if (oldprio != p->prio || dl_task(p))
2174 		p->sched_class->prio_changed(rq, p, oldprio);
2175 }
2176 
2177 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2178 {
2179 	struct task_struct *donor = rq->donor;
2180 
2181 	if (p->sched_class == donor->sched_class)
2182 		donor->sched_class->wakeup_preempt(rq, p, flags);
2183 	else if (sched_class_above(p->sched_class, donor->sched_class))
2184 		resched_curr(rq);
2185 
2186 	/*
2187 	 * A queue event has occurred, and we're going to schedule.  In
2188 	 * this case, we can save a useless back to back clock update.
2189 	 */
2190 	if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr))
2191 		rq_clock_skip_update(rq);
2192 }
2193 
2194 static __always_inline
2195 int __task_state_match(struct task_struct *p, unsigned int state)
2196 {
2197 	if (READ_ONCE(p->__state) & state)
2198 		return 1;
2199 
2200 	if (READ_ONCE(p->saved_state) & state)
2201 		return -1;
2202 
2203 	return 0;
2204 }
2205 
2206 static __always_inline
2207 int task_state_match(struct task_struct *p, unsigned int state)
2208 {
2209 	/*
2210 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2211 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2212 	 */
2213 	guard(raw_spinlock_irq)(&p->pi_lock);
2214 	return __task_state_match(p, state);
2215 }
2216 
2217 /*
2218  * wait_task_inactive - wait for a thread to unschedule.
2219  *
2220  * Wait for the thread to block in any of the states set in @match_state.
2221  * If it changes, i.e. @p might have woken up, then return zero.  When we
2222  * succeed in waiting for @p to be off its CPU, we return a positive number
2223  * (its total switch count).  If a second call a short while later returns the
2224  * same number, the caller can be sure that @p has remained unscheduled the
2225  * whole time.
2226  *
2227  * The caller must ensure that the task *will* unschedule sometime soon,
2228  * else this function might spin for a *long* time. This function can't
2229  * be called with interrupts off, or it may introduce deadlock with
2230  * smp_call_function() if an IPI is sent by the same process we are
2231  * waiting to become inactive.
2232  */
2233 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2234 {
2235 	int running, queued, match;
2236 	struct rq_flags rf;
2237 	unsigned long ncsw;
2238 	struct rq *rq;
2239 
2240 	for (;;) {
2241 		/*
2242 		 * We do the initial early heuristics without holding
2243 		 * any task-queue locks at all. We'll only try to get
2244 		 * the runqueue lock when things look like they will
2245 		 * work out!
2246 		 */
2247 		rq = task_rq(p);
2248 
2249 		/*
2250 		 * If the task is actively running on another CPU
2251 		 * still, just relax and busy-wait without holding
2252 		 * any locks.
2253 		 *
2254 		 * NOTE! Since we don't hold any locks, it's not
2255 		 * even sure that "rq" stays as the right runqueue!
2256 		 * But we don't care, since "task_on_cpu()" will
2257 		 * return false if the runqueue has changed and p
2258 		 * is actually now running somewhere else!
2259 		 */
2260 		while (task_on_cpu(rq, p)) {
2261 			if (!task_state_match(p, match_state))
2262 				return 0;
2263 			cpu_relax();
2264 		}
2265 
2266 		/*
2267 		 * Ok, time to look more closely! We need the rq
2268 		 * lock now, to be *sure*. If we're wrong, we'll
2269 		 * just go back and repeat.
2270 		 */
2271 		rq = task_rq_lock(p, &rf);
2272 		trace_sched_wait_task(p);
2273 		running = task_on_cpu(rq, p);
2274 		queued = task_on_rq_queued(p);
2275 		ncsw = 0;
2276 		if ((match = __task_state_match(p, match_state))) {
2277 			/*
2278 			 * When matching on p->saved_state, consider this task
2279 			 * still queued so it will wait.
2280 			 */
2281 			if (match < 0)
2282 				queued = 1;
2283 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2284 		}
2285 		task_rq_unlock(rq, p, &rf);
2286 
2287 		/*
2288 		 * If it changed from the expected state, bail out now.
2289 		 */
2290 		if (unlikely(!ncsw))
2291 			break;
2292 
2293 		/*
2294 		 * Was it really running after all now that we
2295 		 * checked with the proper locks actually held?
2296 		 *
2297 		 * Oops. Go back and try again..
2298 		 */
2299 		if (unlikely(running)) {
2300 			cpu_relax();
2301 			continue;
2302 		}
2303 
2304 		/*
2305 		 * It's not enough that it's not actively running,
2306 		 * it must be off the runqueue _entirely_, and not
2307 		 * preempted!
2308 		 *
2309 		 * So if it was still runnable (but just not actively
2310 		 * running right now), it's preempted, and we should
2311 		 * yield - it could be a while.
2312 		 */
2313 		if (unlikely(queued)) {
2314 			ktime_t to = NSEC_PER_SEC / HZ;
2315 
2316 			set_current_state(TASK_UNINTERRUPTIBLE);
2317 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2318 			continue;
2319 		}
2320 
2321 		/*
2322 		 * Ahh, all good. It wasn't running, and it wasn't
2323 		 * runnable, which means that it will never become
2324 		 * running in the future either. We're all done!
2325 		 */
2326 		break;
2327 	}
2328 
2329 	return ncsw;
2330 }
2331 
2332 #ifdef CONFIG_SMP
2333 
2334 static void
2335 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2336 
2337 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2338 {
2339 	struct affinity_context ac = {
2340 		.new_mask  = cpumask_of(rq->cpu),
2341 		.flags     = SCA_MIGRATE_DISABLE,
2342 	};
2343 
2344 	if (likely(!p->migration_disabled))
2345 		return;
2346 
2347 	if (p->cpus_ptr != &p->cpus_mask)
2348 		return;
2349 
2350 	/*
2351 	 * Violates locking rules! See comment in __do_set_cpus_allowed().
2352 	 */
2353 	__do_set_cpus_allowed(p, &ac);
2354 }
2355 
2356 void migrate_disable(void)
2357 {
2358 	struct task_struct *p = current;
2359 
2360 	if (p->migration_disabled) {
2361 #ifdef CONFIG_DEBUG_PREEMPT
2362 		/*
2363 		 *Warn about overflow half-way through the range.
2364 		 */
2365 		WARN_ON_ONCE((s16)p->migration_disabled < 0);
2366 #endif
2367 		p->migration_disabled++;
2368 		return;
2369 	}
2370 
2371 	guard(preempt)();
2372 	this_rq()->nr_pinned++;
2373 	p->migration_disabled = 1;
2374 }
2375 EXPORT_SYMBOL_GPL(migrate_disable);
2376 
2377 void migrate_enable(void)
2378 {
2379 	struct task_struct *p = current;
2380 	struct affinity_context ac = {
2381 		.new_mask  = &p->cpus_mask,
2382 		.flags     = SCA_MIGRATE_ENABLE,
2383 	};
2384 
2385 #ifdef CONFIG_DEBUG_PREEMPT
2386 	/*
2387 	 * Check both overflow from migrate_disable() and superfluous
2388 	 * migrate_enable().
2389 	 */
2390 	if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
2391 		return;
2392 #endif
2393 
2394 	if (p->migration_disabled > 1) {
2395 		p->migration_disabled--;
2396 		return;
2397 	}
2398 
2399 	/*
2400 	 * Ensure stop_task runs either before or after this, and that
2401 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2402 	 */
2403 	guard(preempt)();
2404 	if (p->cpus_ptr != &p->cpus_mask)
2405 		__set_cpus_allowed_ptr(p, &ac);
2406 	/*
2407 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2408 	 * regular cpus_mask, otherwise things that race (eg.
2409 	 * select_fallback_rq) get confused.
2410 	 */
2411 	barrier();
2412 	p->migration_disabled = 0;
2413 	this_rq()->nr_pinned--;
2414 }
2415 EXPORT_SYMBOL_GPL(migrate_enable);
2416 
2417 static inline bool rq_has_pinned_tasks(struct rq *rq)
2418 {
2419 	return rq->nr_pinned;
2420 }
2421 
2422 /*
2423  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2424  * __set_cpus_allowed_ptr() and select_fallback_rq().
2425  */
2426 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2427 {
2428 	/* When not in the task's cpumask, no point in looking further. */
2429 	if (!task_allowed_on_cpu(p, cpu))
2430 		return false;
2431 
2432 	/* migrate_disabled() must be allowed to finish. */
2433 	if (is_migration_disabled(p))
2434 		return cpu_online(cpu);
2435 
2436 	/* Non kernel threads are not allowed during either online or offline. */
2437 	if (!(p->flags & PF_KTHREAD))
2438 		return cpu_active(cpu);
2439 
2440 	/* KTHREAD_IS_PER_CPU is always allowed. */
2441 	if (kthread_is_per_cpu(p))
2442 		return cpu_online(cpu);
2443 
2444 	/* Regular kernel threads don't get to stay during offline. */
2445 	if (cpu_dying(cpu))
2446 		return false;
2447 
2448 	/* But are allowed during online. */
2449 	return cpu_online(cpu);
2450 }
2451 
2452 /*
2453  * This is how migration works:
2454  *
2455  * 1) we invoke migration_cpu_stop() on the target CPU using
2456  *    stop_one_cpu().
2457  * 2) stopper starts to run (implicitly forcing the migrated thread
2458  *    off the CPU)
2459  * 3) it checks whether the migrated task is still in the wrong runqueue.
2460  * 4) if it's in the wrong runqueue then the migration thread removes
2461  *    it and puts it into the right queue.
2462  * 5) stopper completes and stop_one_cpu() returns and the migration
2463  *    is done.
2464  */
2465 
2466 /*
2467  * move_queued_task - move a queued task to new rq.
2468  *
2469  * Returns (locked) new rq. Old rq's lock is released.
2470  */
2471 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2472 				   struct task_struct *p, int new_cpu)
2473 {
2474 	lockdep_assert_rq_held(rq);
2475 
2476 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2477 	set_task_cpu(p, new_cpu);
2478 	rq_unlock(rq, rf);
2479 
2480 	rq = cpu_rq(new_cpu);
2481 
2482 	rq_lock(rq, rf);
2483 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2484 	activate_task(rq, p, 0);
2485 	wakeup_preempt(rq, p, 0);
2486 
2487 	return rq;
2488 }
2489 
2490 struct migration_arg {
2491 	struct task_struct		*task;
2492 	int				dest_cpu;
2493 	struct set_affinity_pending	*pending;
2494 };
2495 
2496 /*
2497  * @refs: number of wait_for_completion()
2498  * @stop_pending: is @stop_work in use
2499  */
2500 struct set_affinity_pending {
2501 	refcount_t		refs;
2502 	unsigned int		stop_pending;
2503 	struct completion	done;
2504 	struct cpu_stop_work	stop_work;
2505 	struct migration_arg	arg;
2506 };
2507 
2508 /*
2509  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2510  * this because either it can't run here any more (set_cpus_allowed()
2511  * away from this CPU, or CPU going down), or because we're
2512  * attempting to rebalance this task on exec (sched_exec).
2513  *
2514  * So we race with normal scheduler movements, but that's OK, as long
2515  * as the task is no longer on this CPU.
2516  */
2517 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2518 				 struct task_struct *p, int dest_cpu)
2519 {
2520 	/* Affinity changed (again). */
2521 	if (!is_cpu_allowed(p, dest_cpu))
2522 		return rq;
2523 
2524 	rq = move_queued_task(rq, rf, p, dest_cpu);
2525 
2526 	return rq;
2527 }
2528 
2529 /*
2530  * migration_cpu_stop - this will be executed by a high-prio stopper thread
2531  * and performs thread migration by bumping thread off CPU then
2532  * 'pushing' onto another runqueue.
2533  */
2534 static int migration_cpu_stop(void *data)
2535 {
2536 	struct migration_arg *arg = data;
2537 	struct set_affinity_pending *pending = arg->pending;
2538 	struct task_struct *p = arg->task;
2539 	struct rq *rq = this_rq();
2540 	bool complete = false;
2541 	struct rq_flags rf;
2542 
2543 	/*
2544 	 * The original target CPU might have gone down and we might
2545 	 * be on another CPU but it doesn't matter.
2546 	 */
2547 	local_irq_save(rf.flags);
2548 	/*
2549 	 * We need to explicitly wake pending tasks before running
2550 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2551 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2552 	 */
2553 	flush_smp_call_function_queue();
2554 
2555 	raw_spin_lock(&p->pi_lock);
2556 	rq_lock(rq, &rf);
2557 
2558 	/*
2559 	 * If we were passed a pending, then ->stop_pending was set, thus
2560 	 * p->migration_pending must have remained stable.
2561 	 */
2562 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2563 
2564 	/*
2565 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2566 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2567 	 * we're holding p->pi_lock.
2568 	 */
2569 	if (task_rq(p) == rq) {
2570 		if (is_migration_disabled(p))
2571 			goto out;
2572 
2573 		if (pending) {
2574 			p->migration_pending = NULL;
2575 			complete = true;
2576 
2577 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2578 				goto out;
2579 		}
2580 
2581 		if (task_on_rq_queued(p)) {
2582 			update_rq_clock(rq);
2583 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2584 		} else {
2585 			p->wake_cpu = arg->dest_cpu;
2586 		}
2587 
2588 		/*
2589 		 * XXX __migrate_task() can fail, at which point we might end
2590 		 * up running on a dodgy CPU, AFAICT this can only happen
2591 		 * during CPU hotplug, at which point we'll get pushed out
2592 		 * anyway, so it's probably not a big deal.
2593 		 */
2594 
2595 	} else if (pending) {
2596 		/*
2597 		 * This happens when we get migrated between migrate_enable()'s
2598 		 * preempt_enable() and scheduling the stopper task. At that
2599 		 * point we're a regular task again and not current anymore.
2600 		 *
2601 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2602 		 * more likely.
2603 		 */
2604 
2605 		/*
2606 		 * The task moved before the stopper got to run. We're holding
2607 		 * ->pi_lock, so the allowed mask is stable - if it got
2608 		 * somewhere allowed, we're done.
2609 		 */
2610 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2611 			p->migration_pending = NULL;
2612 			complete = true;
2613 			goto out;
2614 		}
2615 
2616 		/*
2617 		 * When migrate_enable() hits a rq mis-match we can't reliably
2618 		 * determine is_migration_disabled() and so have to chase after
2619 		 * it.
2620 		 */
2621 		WARN_ON_ONCE(!pending->stop_pending);
2622 		preempt_disable();
2623 		task_rq_unlock(rq, p, &rf);
2624 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2625 				    &pending->arg, &pending->stop_work);
2626 		preempt_enable();
2627 		return 0;
2628 	}
2629 out:
2630 	if (pending)
2631 		pending->stop_pending = false;
2632 	task_rq_unlock(rq, p, &rf);
2633 
2634 	if (complete)
2635 		complete_all(&pending->done);
2636 
2637 	return 0;
2638 }
2639 
2640 int push_cpu_stop(void *arg)
2641 {
2642 	struct rq *lowest_rq = NULL, *rq = this_rq();
2643 	struct task_struct *p = arg;
2644 
2645 	raw_spin_lock_irq(&p->pi_lock);
2646 	raw_spin_rq_lock(rq);
2647 
2648 	if (task_rq(p) != rq)
2649 		goto out_unlock;
2650 
2651 	if (is_migration_disabled(p)) {
2652 		p->migration_flags |= MDF_PUSH;
2653 		goto out_unlock;
2654 	}
2655 
2656 	p->migration_flags &= ~MDF_PUSH;
2657 
2658 	if (p->sched_class->find_lock_rq)
2659 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2660 
2661 	if (!lowest_rq)
2662 		goto out_unlock;
2663 
2664 	// XXX validate p is still the highest prio task
2665 	if (task_rq(p) == rq) {
2666 		move_queued_task_locked(rq, lowest_rq, p);
2667 		resched_curr(lowest_rq);
2668 	}
2669 
2670 	double_unlock_balance(rq, lowest_rq);
2671 
2672 out_unlock:
2673 	rq->push_busy = false;
2674 	raw_spin_rq_unlock(rq);
2675 	raw_spin_unlock_irq(&p->pi_lock);
2676 
2677 	put_task_struct(p);
2678 	return 0;
2679 }
2680 
2681 /*
2682  * sched_class::set_cpus_allowed must do the below, but is not required to
2683  * actually call this function.
2684  */
2685 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2686 {
2687 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2688 		p->cpus_ptr = ctx->new_mask;
2689 		return;
2690 	}
2691 
2692 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2693 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2694 
2695 	/*
2696 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2697 	 */
2698 	if (ctx->flags & SCA_USER)
2699 		swap(p->user_cpus_ptr, ctx->user_mask);
2700 }
2701 
2702 static void
2703 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2704 {
2705 	struct rq *rq = task_rq(p);
2706 	bool queued, running;
2707 
2708 	/*
2709 	 * This here violates the locking rules for affinity, since we're only
2710 	 * supposed to change these variables while holding both rq->lock and
2711 	 * p->pi_lock.
2712 	 *
2713 	 * HOWEVER, it magically works, because ttwu() is the only code that
2714 	 * accesses these variables under p->pi_lock and only does so after
2715 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2716 	 * before finish_task().
2717 	 *
2718 	 * XXX do further audits, this smells like something putrid.
2719 	 */
2720 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2721 		SCHED_WARN_ON(!p->on_cpu);
2722 	else
2723 		lockdep_assert_held(&p->pi_lock);
2724 
2725 	queued = task_on_rq_queued(p);
2726 	running = task_current_donor(rq, p);
2727 
2728 	if (queued) {
2729 		/*
2730 		 * Because __kthread_bind() calls this on blocked tasks without
2731 		 * holding rq->lock.
2732 		 */
2733 		lockdep_assert_rq_held(rq);
2734 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2735 	}
2736 	if (running)
2737 		put_prev_task(rq, p);
2738 
2739 	p->sched_class->set_cpus_allowed(p, ctx);
2740 	mm_set_cpus_allowed(p->mm, ctx->new_mask);
2741 
2742 	if (queued)
2743 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2744 	if (running)
2745 		set_next_task(rq, p);
2746 }
2747 
2748 /*
2749  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2750  * affinity (if any) should be destroyed too.
2751  */
2752 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2753 {
2754 	struct affinity_context ac = {
2755 		.new_mask  = new_mask,
2756 		.user_mask = NULL,
2757 		.flags     = SCA_USER,	/* clear the user requested mask */
2758 	};
2759 	union cpumask_rcuhead {
2760 		cpumask_t cpumask;
2761 		struct rcu_head rcu;
2762 	};
2763 
2764 	__do_set_cpus_allowed(p, &ac);
2765 
2766 	/*
2767 	 * Because this is called with p->pi_lock held, it is not possible
2768 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2769 	 * kfree_rcu().
2770 	 */
2771 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2772 }
2773 
2774 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2775 		      int node)
2776 {
2777 	cpumask_t *user_mask;
2778 	unsigned long flags;
2779 
2780 	/*
2781 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2782 	 * may differ by now due to racing.
2783 	 */
2784 	dst->user_cpus_ptr = NULL;
2785 
2786 	/*
2787 	 * This check is racy and losing the race is a valid situation.
2788 	 * It is not worth the extra overhead of taking the pi_lock on
2789 	 * every fork/clone.
2790 	 */
2791 	if (data_race(!src->user_cpus_ptr))
2792 		return 0;
2793 
2794 	user_mask = alloc_user_cpus_ptr(node);
2795 	if (!user_mask)
2796 		return -ENOMEM;
2797 
2798 	/*
2799 	 * Use pi_lock to protect content of user_cpus_ptr
2800 	 *
2801 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2802 	 * do_set_cpus_allowed().
2803 	 */
2804 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2805 	if (src->user_cpus_ptr) {
2806 		swap(dst->user_cpus_ptr, user_mask);
2807 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2808 	}
2809 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2810 
2811 	if (unlikely(user_mask))
2812 		kfree(user_mask);
2813 
2814 	return 0;
2815 }
2816 
2817 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2818 {
2819 	struct cpumask *user_mask = NULL;
2820 
2821 	swap(p->user_cpus_ptr, user_mask);
2822 
2823 	return user_mask;
2824 }
2825 
2826 void release_user_cpus_ptr(struct task_struct *p)
2827 {
2828 	kfree(clear_user_cpus_ptr(p));
2829 }
2830 
2831 /*
2832  * This function is wildly self concurrent; here be dragons.
2833  *
2834  *
2835  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2836  * designated task is enqueued on an allowed CPU. If that task is currently
2837  * running, we have to kick it out using the CPU stopper.
2838  *
2839  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2840  * Consider:
2841  *
2842  *     Initial conditions: P0->cpus_mask = [0, 1]
2843  *
2844  *     P0@CPU0                  P1
2845  *
2846  *     migrate_disable();
2847  *     <preempted>
2848  *                              set_cpus_allowed_ptr(P0, [1]);
2849  *
2850  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2851  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2852  * This means we need the following scheme:
2853  *
2854  *     P0@CPU0                  P1
2855  *
2856  *     migrate_disable();
2857  *     <preempted>
2858  *                              set_cpus_allowed_ptr(P0, [1]);
2859  *                                <blocks>
2860  *     <resumes>
2861  *     migrate_enable();
2862  *       __set_cpus_allowed_ptr();
2863  *       <wakes local stopper>
2864  *                         `--> <woken on migration completion>
2865  *
2866  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2867  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2868  * task p are serialized by p->pi_lock, which we can leverage: the one that
2869  * should come into effect at the end of the Migrate-Disable region is the last
2870  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2871  * but we still need to properly signal those waiting tasks at the appropriate
2872  * moment.
2873  *
2874  * This is implemented using struct set_affinity_pending. The first
2875  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2876  * setup an instance of that struct and install it on the targeted task_struct.
2877  * Any and all further callers will reuse that instance. Those then wait for
2878  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2879  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2880  *
2881  *
2882  * (1) In the cases covered above. There is one more where the completion is
2883  * signaled within affine_move_task() itself: when a subsequent affinity request
2884  * occurs after the stopper bailed out due to the targeted task still being
2885  * Migrate-Disable. Consider:
2886  *
2887  *     Initial conditions: P0->cpus_mask = [0, 1]
2888  *
2889  *     CPU0		  P1				P2
2890  *     <P0>
2891  *       migrate_disable();
2892  *       <preempted>
2893  *                        set_cpus_allowed_ptr(P0, [1]);
2894  *                          <blocks>
2895  *     <migration/0>
2896  *       migration_cpu_stop()
2897  *         is_migration_disabled()
2898  *           <bails>
2899  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2900  *                                                         <signal completion>
2901  *                          <awakes>
2902  *
2903  * Note that the above is safe vs a concurrent migrate_enable(), as any
2904  * pending affinity completion is preceded by an uninstallation of
2905  * p->migration_pending done with p->pi_lock held.
2906  */
2907 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2908 			    int dest_cpu, unsigned int flags)
2909 	__releases(rq->lock)
2910 	__releases(p->pi_lock)
2911 {
2912 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2913 	bool stop_pending, complete = false;
2914 
2915 	/* Can the task run on the task's current CPU? If so, we're done */
2916 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2917 		struct task_struct *push_task = NULL;
2918 
2919 		if ((flags & SCA_MIGRATE_ENABLE) &&
2920 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2921 			rq->push_busy = true;
2922 			push_task = get_task_struct(p);
2923 		}
2924 
2925 		/*
2926 		 * If there are pending waiters, but no pending stop_work,
2927 		 * then complete now.
2928 		 */
2929 		pending = p->migration_pending;
2930 		if (pending && !pending->stop_pending) {
2931 			p->migration_pending = NULL;
2932 			complete = true;
2933 		}
2934 
2935 		preempt_disable();
2936 		task_rq_unlock(rq, p, rf);
2937 		if (push_task) {
2938 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2939 					    p, &rq->push_work);
2940 		}
2941 		preempt_enable();
2942 
2943 		if (complete)
2944 			complete_all(&pending->done);
2945 
2946 		return 0;
2947 	}
2948 
2949 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2950 		/* serialized by p->pi_lock */
2951 		if (!p->migration_pending) {
2952 			/* Install the request */
2953 			refcount_set(&my_pending.refs, 1);
2954 			init_completion(&my_pending.done);
2955 			my_pending.arg = (struct migration_arg) {
2956 				.task = p,
2957 				.dest_cpu = dest_cpu,
2958 				.pending = &my_pending,
2959 			};
2960 
2961 			p->migration_pending = &my_pending;
2962 		} else {
2963 			pending = p->migration_pending;
2964 			refcount_inc(&pending->refs);
2965 			/*
2966 			 * Affinity has changed, but we've already installed a
2967 			 * pending. migration_cpu_stop() *must* see this, else
2968 			 * we risk a completion of the pending despite having a
2969 			 * task on a disallowed CPU.
2970 			 *
2971 			 * Serialized by p->pi_lock, so this is safe.
2972 			 */
2973 			pending->arg.dest_cpu = dest_cpu;
2974 		}
2975 	}
2976 	pending = p->migration_pending;
2977 	/*
2978 	 * - !MIGRATE_ENABLE:
2979 	 *   we'll have installed a pending if there wasn't one already.
2980 	 *
2981 	 * - MIGRATE_ENABLE:
2982 	 *   we're here because the current CPU isn't matching anymore,
2983 	 *   the only way that can happen is because of a concurrent
2984 	 *   set_cpus_allowed_ptr() call, which should then still be
2985 	 *   pending completion.
2986 	 *
2987 	 * Either way, we really should have a @pending here.
2988 	 */
2989 	if (WARN_ON_ONCE(!pending)) {
2990 		task_rq_unlock(rq, p, rf);
2991 		return -EINVAL;
2992 	}
2993 
2994 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2995 		/*
2996 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2997 		 * anything else we cannot do is_migration_disabled(), punt
2998 		 * and have the stopper function handle it all race-free.
2999 		 */
3000 		stop_pending = pending->stop_pending;
3001 		if (!stop_pending)
3002 			pending->stop_pending = true;
3003 
3004 		if (flags & SCA_MIGRATE_ENABLE)
3005 			p->migration_flags &= ~MDF_PUSH;
3006 
3007 		preempt_disable();
3008 		task_rq_unlock(rq, p, rf);
3009 		if (!stop_pending) {
3010 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3011 					    &pending->arg, &pending->stop_work);
3012 		}
3013 		preempt_enable();
3014 
3015 		if (flags & SCA_MIGRATE_ENABLE)
3016 			return 0;
3017 	} else {
3018 
3019 		if (!is_migration_disabled(p)) {
3020 			if (task_on_rq_queued(p))
3021 				rq = move_queued_task(rq, rf, p, dest_cpu);
3022 
3023 			if (!pending->stop_pending) {
3024 				p->migration_pending = NULL;
3025 				complete = true;
3026 			}
3027 		}
3028 		task_rq_unlock(rq, p, rf);
3029 
3030 		if (complete)
3031 			complete_all(&pending->done);
3032 	}
3033 
3034 	wait_for_completion(&pending->done);
3035 
3036 	if (refcount_dec_and_test(&pending->refs))
3037 		wake_up_var(&pending->refs); /* No UaF, just an address */
3038 
3039 	/*
3040 	 * Block the original owner of &pending until all subsequent callers
3041 	 * have seen the completion and decremented the refcount
3042 	 */
3043 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3044 
3045 	/* ARGH */
3046 	WARN_ON_ONCE(my_pending.stop_pending);
3047 
3048 	return 0;
3049 }
3050 
3051 /*
3052  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3053  */
3054 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3055 					 struct affinity_context *ctx,
3056 					 struct rq *rq,
3057 					 struct rq_flags *rf)
3058 	__releases(rq->lock)
3059 	__releases(p->pi_lock)
3060 {
3061 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3062 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3063 	bool kthread = p->flags & PF_KTHREAD;
3064 	unsigned int dest_cpu;
3065 	int ret = 0;
3066 
3067 	update_rq_clock(rq);
3068 
3069 	if (kthread || is_migration_disabled(p)) {
3070 		/*
3071 		 * Kernel threads are allowed on online && !active CPUs,
3072 		 * however, during cpu-hot-unplug, even these might get pushed
3073 		 * away if not KTHREAD_IS_PER_CPU.
3074 		 *
3075 		 * Specifically, migration_disabled() tasks must not fail the
3076 		 * cpumask_any_and_distribute() pick below, esp. so on
3077 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3078 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3079 		 */
3080 		cpu_valid_mask = cpu_online_mask;
3081 	}
3082 
3083 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3084 		ret = -EINVAL;
3085 		goto out;
3086 	}
3087 
3088 	/*
3089 	 * Must re-check here, to close a race against __kthread_bind(),
3090 	 * sched_setaffinity() is not guaranteed to observe the flag.
3091 	 */
3092 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3093 		ret = -EINVAL;
3094 		goto out;
3095 	}
3096 
3097 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3098 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3099 			if (ctx->flags & SCA_USER)
3100 				swap(p->user_cpus_ptr, ctx->user_mask);
3101 			goto out;
3102 		}
3103 
3104 		if (WARN_ON_ONCE(p == current &&
3105 				 is_migration_disabled(p) &&
3106 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3107 			ret = -EBUSY;
3108 			goto out;
3109 		}
3110 	}
3111 
3112 	/*
3113 	 * Picking a ~random cpu helps in cases where we are changing affinity
3114 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3115 	 * immediately required to distribute the tasks within their new mask.
3116 	 */
3117 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3118 	if (dest_cpu >= nr_cpu_ids) {
3119 		ret = -EINVAL;
3120 		goto out;
3121 	}
3122 
3123 	__do_set_cpus_allowed(p, ctx);
3124 
3125 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3126 
3127 out:
3128 	task_rq_unlock(rq, p, rf);
3129 
3130 	return ret;
3131 }
3132 
3133 /*
3134  * Change a given task's CPU affinity. Migrate the thread to a
3135  * proper CPU and schedule it away if the CPU it's executing on
3136  * is removed from the allowed bitmask.
3137  *
3138  * NOTE: the caller must have a valid reference to the task, the
3139  * task must not exit() & deallocate itself prematurely. The
3140  * call is not atomic; no spinlocks may be held.
3141  */
3142 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3143 {
3144 	struct rq_flags rf;
3145 	struct rq *rq;
3146 
3147 	rq = task_rq_lock(p, &rf);
3148 	/*
3149 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3150 	 * flags are set.
3151 	 */
3152 	if (p->user_cpus_ptr &&
3153 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3154 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3155 		ctx->new_mask = rq->scratch_mask;
3156 
3157 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3158 }
3159 
3160 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3161 {
3162 	struct affinity_context ac = {
3163 		.new_mask  = new_mask,
3164 		.flags     = 0,
3165 	};
3166 
3167 	return __set_cpus_allowed_ptr(p, &ac);
3168 }
3169 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3170 
3171 /*
3172  * Change a given task's CPU affinity to the intersection of its current
3173  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3174  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3175  * affinity or use cpu_online_mask instead.
3176  *
3177  * If the resulting mask is empty, leave the affinity unchanged and return
3178  * -EINVAL.
3179  */
3180 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3181 				     struct cpumask *new_mask,
3182 				     const struct cpumask *subset_mask)
3183 {
3184 	struct affinity_context ac = {
3185 		.new_mask  = new_mask,
3186 		.flags     = 0,
3187 	};
3188 	struct rq_flags rf;
3189 	struct rq *rq;
3190 	int err;
3191 
3192 	rq = task_rq_lock(p, &rf);
3193 
3194 	/*
3195 	 * Forcefully restricting the affinity of a deadline task is
3196 	 * likely to cause problems, so fail and noisily override the
3197 	 * mask entirely.
3198 	 */
3199 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3200 		err = -EPERM;
3201 		goto err_unlock;
3202 	}
3203 
3204 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3205 		err = -EINVAL;
3206 		goto err_unlock;
3207 	}
3208 
3209 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3210 
3211 err_unlock:
3212 	task_rq_unlock(rq, p, &rf);
3213 	return err;
3214 }
3215 
3216 /*
3217  * Restrict the CPU affinity of task @p so that it is a subset of
3218  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3219  * old affinity mask. If the resulting mask is empty, we warn and walk
3220  * up the cpuset hierarchy until we find a suitable mask.
3221  */
3222 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3223 {
3224 	cpumask_var_t new_mask;
3225 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3226 
3227 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3228 
3229 	/*
3230 	 * __migrate_task() can fail silently in the face of concurrent
3231 	 * offlining of the chosen destination CPU, so take the hotplug
3232 	 * lock to ensure that the migration succeeds.
3233 	 */
3234 	cpus_read_lock();
3235 	if (!cpumask_available(new_mask))
3236 		goto out_set_mask;
3237 
3238 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3239 		goto out_free_mask;
3240 
3241 	/*
3242 	 * We failed to find a valid subset of the affinity mask for the
3243 	 * task, so override it based on its cpuset hierarchy.
3244 	 */
3245 	cpuset_cpus_allowed(p, new_mask);
3246 	override_mask = new_mask;
3247 
3248 out_set_mask:
3249 	if (printk_ratelimit()) {
3250 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3251 				task_pid_nr(p), p->comm,
3252 				cpumask_pr_args(override_mask));
3253 	}
3254 
3255 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3256 out_free_mask:
3257 	cpus_read_unlock();
3258 	free_cpumask_var(new_mask);
3259 }
3260 
3261 /*
3262  * Restore the affinity of a task @p which was previously restricted by a
3263  * call to force_compatible_cpus_allowed_ptr().
3264  *
3265  * It is the caller's responsibility to serialise this with any calls to
3266  * force_compatible_cpus_allowed_ptr(@p).
3267  */
3268 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3269 {
3270 	struct affinity_context ac = {
3271 		.new_mask  = task_user_cpus(p),
3272 		.flags     = 0,
3273 	};
3274 	int ret;
3275 
3276 	/*
3277 	 * Try to restore the old affinity mask with __sched_setaffinity().
3278 	 * Cpuset masking will be done there too.
3279 	 */
3280 	ret = __sched_setaffinity(p, &ac);
3281 	WARN_ON_ONCE(ret);
3282 }
3283 
3284 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3285 {
3286 #ifdef CONFIG_SCHED_DEBUG
3287 	unsigned int state = READ_ONCE(p->__state);
3288 
3289 	/*
3290 	 * We should never call set_task_cpu() on a blocked task,
3291 	 * ttwu() will sort out the placement.
3292 	 */
3293 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3294 
3295 	/*
3296 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3297 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3298 	 * time relying on p->on_rq.
3299 	 */
3300 	WARN_ON_ONCE(state == TASK_RUNNING &&
3301 		     p->sched_class == &fair_sched_class &&
3302 		     (p->on_rq && !task_on_rq_migrating(p)));
3303 
3304 #ifdef CONFIG_LOCKDEP
3305 	/*
3306 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3307 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3308 	 *
3309 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3310 	 * see task_group().
3311 	 *
3312 	 * Furthermore, all task_rq users should acquire both locks, see
3313 	 * task_rq_lock().
3314 	 */
3315 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3316 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3317 #endif
3318 	/*
3319 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3320 	 */
3321 	WARN_ON_ONCE(!cpu_online(new_cpu));
3322 
3323 	WARN_ON_ONCE(is_migration_disabled(p));
3324 #endif
3325 
3326 	trace_sched_migrate_task(p, new_cpu);
3327 
3328 	if (task_cpu(p) != new_cpu) {
3329 		if (p->sched_class->migrate_task_rq)
3330 			p->sched_class->migrate_task_rq(p, new_cpu);
3331 		p->se.nr_migrations++;
3332 		rseq_migrate(p);
3333 		sched_mm_cid_migrate_from(p);
3334 		perf_event_task_migrate(p);
3335 	}
3336 
3337 	__set_task_cpu(p, new_cpu);
3338 }
3339 
3340 #ifdef CONFIG_NUMA_BALANCING
3341 static void __migrate_swap_task(struct task_struct *p, int cpu)
3342 {
3343 	if (task_on_rq_queued(p)) {
3344 		struct rq *src_rq, *dst_rq;
3345 		struct rq_flags srf, drf;
3346 
3347 		src_rq = task_rq(p);
3348 		dst_rq = cpu_rq(cpu);
3349 
3350 		rq_pin_lock(src_rq, &srf);
3351 		rq_pin_lock(dst_rq, &drf);
3352 
3353 		move_queued_task_locked(src_rq, dst_rq, p);
3354 		wakeup_preempt(dst_rq, p, 0);
3355 
3356 		rq_unpin_lock(dst_rq, &drf);
3357 		rq_unpin_lock(src_rq, &srf);
3358 
3359 	} else {
3360 		/*
3361 		 * Task isn't running anymore; make it appear like we migrated
3362 		 * it before it went to sleep. This means on wakeup we make the
3363 		 * previous CPU our target instead of where it really is.
3364 		 */
3365 		p->wake_cpu = cpu;
3366 	}
3367 }
3368 
3369 struct migration_swap_arg {
3370 	struct task_struct *src_task, *dst_task;
3371 	int src_cpu, dst_cpu;
3372 };
3373 
3374 static int migrate_swap_stop(void *data)
3375 {
3376 	struct migration_swap_arg *arg = data;
3377 	struct rq *src_rq, *dst_rq;
3378 
3379 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3380 		return -EAGAIN;
3381 
3382 	src_rq = cpu_rq(arg->src_cpu);
3383 	dst_rq = cpu_rq(arg->dst_cpu);
3384 
3385 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3386 	guard(double_rq_lock)(src_rq, dst_rq);
3387 
3388 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3389 		return -EAGAIN;
3390 
3391 	if (task_cpu(arg->src_task) != arg->src_cpu)
3392 		return -EAGAIN;
3393 
3394 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3395 		return -EAGAIN;
3396 
3397 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3398 		return -EAGAIN;
3399 
3400 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3401 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3402 
3403 	return 0;
3404 }
3405 
3406 /*
3407  * Cross migrate two tasks
3408  */
3409 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3410 		int target_cpu, int curr_cpu)
3411 {
3412 	struct migration_swap_arg arg;
3413 	int ret = -EINVAL;
3414 
3415 	arg = (struct migration_swap_arg){
3416 		.src_task = cur,
3417 		.src_cpu = curr_cpu,
3418 		.dst_task = p,
3419 		.dst_cpu = target_cpu,
3420 	};
3421 
3422 	if (arg.src_cpu == arg.dst_cpu)
3423 		goto out;
3424 
3425 	/*
3426 	 * These three tests are all lockless; this is OK since all of them
3427 	 * will be re-checked with proper locks held further down the line.
3428 	 */
3429 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3430 		goto out;
3431 
3432 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3433 		goto out;
3434 
3435 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3436 		goto out;
3437 
3438 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3439 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3440 
3441 out:
3442 	return ret;
3443 }
3444 #endif /* CONFIG_NUMA_BALANCING */
3445 
3446 /***
3447  * kick_process - kick a running thread to enter/exit the kernel
3448  * @p: the to-be-kicked thread
3449  *
3450  * Cause a process which is running on another CPU to enter
3451  * kernel-mode, without any delay. (to get signals handled.)
3452  *
3453  * NOTE: this function doesn't have to take the runqueue lock,
3454  * because all it wants to ensure is that the remote task enters
3455  * the kernel. If the IPI races and the task has been migrated
3456  * to another CPU then no harm is done and the purpose has been
3457  * achieved as well.
3458  */
3459 void kick_process(struct task_struct *p)
3460 {
3461 	guard(preempt)();
3462 	int cpu = task_cpu(p);
3463 
3464 	if ((cpu != smp_processor_id()) && task_curr(p))
3465 		smp_send_reschedule(cpu);
3466 }
3467 EXPORT_SYMBOL_GPL(kick_process);
3468 
3469 /*
3470  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3471  *
3472  * A few notes on cpu_active vs cpu_online:
3473  *
3474  *  - cpu_active must be a subset of cpu_online
3475  *
3476  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3477  *    see __set_cpus_allowed_ptr(). At this point the newly online
3478  *    CPU isn't yet part of the sched domains, and balancing will not
3479  *    see it.
3480  *
3481  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3482  *    avoid the load balancer to place new tasks on the to be removed
3483  *    CPU. Existing tasks will remain running there and will be taken
3484  *    off.
3485  *
3486  * This means that fallback selection must not select !active CPUs.
3487  * And can assume that any active CPU must be online. Conversely
3488  * select_task_rq() below may allow selection of !active CPUs in order
3489  * to satisfy the above rules.
3490  */
3491 static int select_fallback_rq(int cpu, struct task_struct *p)
3492 {
3493 	int nid = cpu_to_node(cpu);
3494 	const struct cpumask *nodemask = NULL;
3495 	enum { cpuset, possible, fail } state = cpuset;
3496 	int dest_cpu;
3497 
3498 	/*
3499 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3500 	 * will return -1. There is no CPU on the node, and we should
3501 	 * select the CPU on the other node.
3502 	 */
3503 	if (nid != -1) {
3504 		nodemask = cpumask_of_node(nid);
3505 
3506 		/* Look for allowed, online CPU in same node. */
3507 		for_each_cpu(dest_cpu, nodemask) {
3508 			if (is_cpu_allowed(p, dest_cpu))
3509 				return dest_cpu;
3510 		}
3511 	}
3512 
3513 	for (;;) {
3514 		/* Any allowed, online CPU? */
3515 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3516 			if (!is_cpu_allowed(p, dest_cpu))
3517 				continue;
3518 
3519 			goto out;
3520 		}
3521 
3522 		/* No more Mr. Nice Guy. */
3523 		switch (state) {
3524 		case cpuset:
3525 			if (cpuset_cpus_allowed_fallback(p)) {
3526 				state = possible;
3527 				break;
3528 			}
3529 			fallthrough;
3530 		case possible:
3531 			/*
3532 			 * XXX When called from select_task_rq() we only
3533 			 * hold p->pi_lock and again violate locking order.
3534 			 *
3535 			 * More yuck to audit.
3536 			 */
3537 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3538 			state = fail;
3539 			break;
3540 		case fail:
3541 			BUG();
3542 			break;
3543 		}
3544 	}
3545 
3546 out:
3547 	if (state != cpuset) {
3548 		/*
3549 		 * Don't tell them about moving exiting tasks or
3550 		 * kernel threads (both mm NULL), since they never
3551 		 * leave kernel.
3552 		 */
3553 		if (p->mm && printk_ratelimit()) {
3554 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3555 					task_pid_nr(p), p->comm, cpu);
3556 		}
3557 	}
3558 
3559 	return dest_cpu;
3560 }
3561 
3562 /*
3563  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3564  */
3565 static inline
3566 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
3567 {
3568 	lockdep_assert_held(&p->pi_lock);
3569 
3570 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
3571 		cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
3572 		*wake_flags |= WF_RQ_SELECTED;
3573 	} else {
3574 		cpu = cpumask_any(p->cpus_ptr);
3575 	}
3576 
3577 	/*
3578 	 * In order not to call set_task_cpu() on a blocking task we need
3579 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3580 	 * CPU.
3581 	 *
3582 	 * Since this is common to all placement strategies, this lives here.
3583 	 *
3584 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3585 	 *   not worry about this generic constraint ]
3586 	 */
3587 	if (unlikely(!is_cpu_allowed(p, cpu)))
3588 		cpu = select_fallback_rq(task_cpu(p), p);
3589 
3590 	return cpu;
3591 }
3592 
3593 void sched_set_stop_task(int cpu, struct task_struct *stop)
3594 {
3595 	static struct lock_class_key stop_pi_lock;
3596 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3597 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3598 
3599 	if (stop) {
3600 		/*
3601 		 * Make it appear like a SCHED_FIFO task, its something
3602 		 * userspace knows about and won't get confused about.
3603 		 *
3604 		 * Also, it will make PI more or less work without too
3605 		 * much confusion -- but then, stop work should not
3606 		 * rely on PI working anyway.
3607 		 */
3608 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3609 
3610 		stop->sched_class = &stop_sched_class;
3611 
3612 		/*
3613 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3614 		 * adjust the effective priority of a task. As a result,
3615 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3616 		 * which can then trigger wakeups of the stop thread to push
3617 		 * around the current task.
3618 		 *
3619 		 * The stop task itself will never be part of the PI-chain, it
3620 		 * never blocks, therefore that ->pi_lock recursion is safe.
3621 		 * Tell lockdep about this by placing the stop->pi_lock in its
3622 		 * own class.
3623 		 */
3624 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3625 	}
3626 
3627 	cpu_rq(cpu)->stop = stop;
3628 
3629 	if (old_stop) {
3630 		/*
3631 		 * Reset it back to a normal scheduling class so that
3632 		 * it can die in pieces.
3633 		 */
3634 		old_stop->sched_class = &rt_sched_class;
3635 	}
3636 }
3637 
3638 #else /* CONFIG_SMP */
3639 
3640 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3641 
3642 static inline bool rq_has_pinned_tasks(struct rq *rq)
3643 {
3644 	return false;
3645 }
3646 
3647 #endif /* !CONFIG_SMP */
3648 
3649 static void
3650 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3651 {
3652 	struct rq *rq;
3653 
3654 	if (!schedstat_enabled())
3655 		return;
3656 
3657 	rq = this_rq();
3658 
3659 #ifdef CONFIG_SMP
3660 	if (cpu == rq->cpu) {
3661 		__schedstat_inc(rq->ttwu_local);
3662 		__schedstat_inc(p->stats.nr_wakeups_local);
3663 	} else {
3664 		struct sched_domain *sd;
3665 
3666 		__schedstat_inc(p->stats.nr_wakeups_remote);
3667 
3668 		guard(rcu)();
3669 		for_each_domain(rq->cpu, sd) {
3670 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3671 				__schedstat_inc(sd->ttwu_wake_remote);
3672 				break;
3673 			}
3674 		}
3675 	}
3676 
3677 	if (wake_flags & WF_MIGRATED)
3678 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3679 #endif /* CONFIG_SMP */
3680 
3681 	__schedstat_inc(rq->ttwu_count);
3682 	__schedstat_inc(p->stats.nr_wakeups);
3683 
3684 	if (wake_flags & WF_SYNC)
3685 		__schedstat_inc(p->stats.nr_wakeups_sync);
3686 }
3687 
3688 /*
3689  * Mark the task runnable.
3690  */
3691 static inline void ttwu_do_wakeup(struct task_struct *p)
3692 {
3693 	WRITE_ONCE(p->__state, TASK_RUNNING);
3694 	trace_sched_wakeup(p);
3695 }
3696 
3697 static void
3698 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3699 		 struct rq_flags *rf)
3700 {
3701 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3702 
3703 	lockdep_assert_rq_held(rq);
3704 
3705 	if (p->sched_contributes_to_load)
3706 		rq->nr_uninterruptible--;
3707 
3708 #ifdef CONFIG_SMP
3709 	if (wake_flags & WF_RQ_SELECTED)
3710 		en_flags |= ENQUEUE_RQ_SELECTED;
3711 	if (wake_flags & WF_MIGRATED)
3712 		en_flags |= ENQUEUE_MIGRATED;
3713 	else
3714 #endif
3715 	if (p->in_iowait) {
3716 		delayacct_blkio_end(p);
3717 		atomic_dec(&task_rq(p)->nr_iowait);
3718 	}
3719 
3720 	activate_task(rq, p, en_flags);
3721 	wakeup_preempt(rq, p, wake_flags);
3722 
3723 	ttwu_do_wakeup(p);
3724 
3725 #ifdef CONFIG_SMP
3726 	if (p->sched_class->task_woken) {
3727 		/*
3728 		 * Our task @p is fully woken up and running; so it's safe to
3729 		 * drop the rq->lock, hereafter rq is only used for statistics.
3730 		 */
3731 		rq_unpin_lock(rq, rf);
3732 		p->sched_class->task_woken(rq, p);
3733 		rq_repin_lock(rq, rf);
3734 	}
3735 
3736 	if (rq->idle_stamp) {
3737 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3738 		u64 max = 2*rq->max_idle_balance_cost;
3739 
3740 		update_avg(&rq->avg_idle, delta);
3741 
3742 		if (rq->avg_idle > max)
3743 			rq->avg_idle = max;
3744 
3745 		rq->idle_stamp = 0;
3746 	}
3747 #endif
3748 }
3749 
3750 /*
3751  * Consider @p being inside a wait loop:
3752  *
3753  *   for (;;) {
3754  *      set_current_state(TASK_UNINTERRUPTIBLE);
3755  *
3756  *      if (CONDITION)
3757  *         break;
3758  *
3759  *      schedule();
3760  *   }
3761  *   __set_current_state(TASK_RUNNING);
3762  *
3763  * between set_current_state() and schedule(). In this case @p is still
3764  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3765  * an atomic manner.
3766  *
3767  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3768  * then schedule() must still happen and p->state can be changed to
3769  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3770  * need to do a full wakeup with enqueue.
3771  *
3772  * Returns: %true when the wakeup is done,
3773  *          %false otherwise.
3774  */
3775 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3776 {
3777 	struct rq_flags rf;
3778 	struct rq *rq;
3779 	int ret = 0;
3780 
3781 	rq = __task_rq_lock(p, &rf);
3782 	if (task_on_rq_queued(p)) {
3783 		update_rq_clock(rq);
3784 		if (p->se.sched_delayed)
3785 			enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
3786 		if (!task_on_cpu(rq, p)) {
3787 			/*
3788 			 * When on_rq && !on_cpu the task is preempted, see if
3789 			 * it should preempt the task that is current now.
3790 			 */
3791 			wakeup_preempt(rq, p, wake_flags);
3792 		}
3793 		ttwu_do_wakeup(p);
3794 		ret = 1;
3795 	}
3796 	__task_rq_unlock(rq, &rf);
3797 
3798 	return ret;
3799 }
3800 
3801 #ifdef CONFIG_SMP
3802 void sched_ttwu_pending(void *arg)
3803 {
3804 	struct llist_node *llist = arg;
3805 	struct rq *rq = this_rq();
3806 	struct task_struct *p, *t;
3807 	struct rq_flags rf;
3808 
3809 	if (!llist)
3810 		return;
3811 
3812 	rq_lock_irqsave(rq, &rf);
3813 	update_rq_clock(rq);
3814 
3815 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3816 		if (WARN_ON_ONCE(p->on_cpu))
3817 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3818 
3819 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3820 			set_task_cpu(p, cpu_of(rq));
3821 
3822 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3823 	}
3824 
3825 	/*
3826 	 * Must be after enqueueing at least once task such that
3827 	 * idle_cpu() does not observe a false-negative -- if it does,
3828 	 * it is possible for select_idle_siblings() to stack a number
3829 	 * of tasks on this CPU during that window.
3830 	 *
3831 	 * It is OK to clear ttwu_pending when another task pending.
3832 	 * We will receive IPI after local IRQ enabled and then enqueue it.
3833 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3834 	 */
3835 	WRITE_ONCE(rq->ttwu_pending, 0);
3836 	rq_unlock_irqrestore(rq, &rf);
3837 }
3838 
3839 /*
3840  * Prepare the scene for sending an IPI for a remote smp_call
3841  *
3842  * Returns true if the caller can proceed with sending the IPI.
3843  * Returns false otherwise.
3844  */
3845 bool call_function_single_prep_ipi(int cpu)
3846 {
3847 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3848 		trace_sched_wake_idle_without_ipi(cpu);
3849 		return false;
3850 	}
3851 
3852 	return true;
3853 }
3854 
3855 /*
3856  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3857  * necessary. The wakee CPU on receipt of the IPI will queue the task
3858  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3859  * of the wakeup instead of the waker.
3860  */
3861 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3862 {
3863 	struct rq *rq = cpu_rq(cpu);
3864 
3865 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3866 
3867 	WRITE_ONCE(rq->ttwu_pending, 1);
3868 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3869 }
3870 
3871 void wake_up_if_idle(int cpu)
3872 {
3873 	struct rq *rq = cpu_rq(cpu);
3874 
3875 	guard(rcu)();
3876 	if (is_idle_task(rcu_dereference(rq->curr))) {
3877 		guard(rq_lock_irqsave)(rq);
3878 		if (is_idle_task(rq->curr))
3879 			resched_curr(rq);
3880 	}
3881 }
3882 
3883 bool cpus_equal_capacity(int this_cpu, int that_cpu)
3884 {
3885 	if (!sched_asym_cpucap_active())
3886 		return true;
3887 
3888 	if (this_cpu == that_cpu)
3889 		return true;
3890 
3891 	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3892 }
3893 
3894 bool cpus_share_cache(int this_cpu, int that_cpu)
3895 {
3896 	if (this_cpu == that_cpu)
3897 		return true;
3898 
3899 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3900 }
3901 
3902 /*
3903  * Whether CPUs are share cache resources, which means LLC on non-cluster
3904  * machines and LLC tag or L2 on machines with clusters.
3905  */
3906 bool cpus_share_resources(int this_cpu, int that_cpu)
3907 {
3908 	if (this_cpu == that_cpu)
3909 		return true;
3910 
3911 	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3912 }
3913 
3914 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3915 {
3916 	/*
3917 	 * The BPF scheduler may depend on select_task_rq() being invoked during
3918 	 * wakeups. In addition, @p may end up executing on a different CPU
3919 	 * regardless of what happens in the wakeup path making the ttwu_queue
3920 	 * optimization less meaningful. Skip if on SCX.
3921 	 */
3922 	if (task_on_scx(p))
3923 		return false;
3924 
3925 	/*
3926 	 * Do not complicate things with the async wake_list while the CPU is
3927 	 * in hotplug state.
3928 	 */
3929 	if (!cpu_active(cpu))
3930 		return false;
3931 
3932 	/* Ensure the task will still be allowed to run on the CPU. */
3933 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3934 		return false;
3935 
3936 	/*
3937 	 * If the CPU does not share cache, then queue the task on the
3938 	 * remote rqs wakelist to avoid accessing remote data.
3939 	 */
3940 	if (!cpus_share_cache(smp_processor_id(), cpu))
3941 		return true;
3942 
3943 	if (cpu == smp_processor_id())
3944 		return false;
3945 
3946 	/*
3947 	 * If the wakee cpu is idle, or the task is descheduling and the
3948 	 * only running task on the CPU, then use the wakelist to offload
3949 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3950 	 * the current CPU is likely busy. nr_running is checked to
3951 	 * avoid unnecessary task stacking.
3952 	 *
3953 	 * Note that we can only get here with (wakee) p->on_rq=0,
3954 	 * p->on_cpu can be whatever, we've done the dequeue, so
3955 	 * the wakee has been accounted out of ->nr_running.
3956 	 */
3957 	if (!cpu_rq(cpu)->nr_running)
3958 		return true;
3959 
3960 	return false;
3961 }
3962 
3963 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3964 {
3965 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3966 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3967 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3968 		return true;
3969 	}
3970 
3971 	return false;
3972 }
3973 
3974 #else /* !CONFIG_SMP */
3975 
3976 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3977 {
3978 	return false;
3979 }
3980 
3981 #endif /* CONFIG_SMP */
3982 
3983 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3984 {
3985 	struct rq *rq = cpu_rq(cpu);
3986 	struct rq_flags rf;
3987 
3988 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3989 		return;
3990 
3991 	rq_lock(rq, &rf);
3992 	update_rq_clock(rq);
3993 	ttwu_do_activate(rq, p, wake_flags, &rf);
3994 	rq_unlock(rq, &rf);
3995 }
3996 
3997 /*
3998  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3999  *
4000  * The caller holds p::pi_lock if p != current or has preemption
4001  * disabled when p == current.
4002  *
4003  * The rules of saved_state:
4004  *
4005  *   The related locking code always holds p::pi_lock when updating
4006  *   p::saved_state, which means the code is fully serialized in both cases.
4007  *
4008  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4009  *   No other bits set. This allows to distinguish all wakeup scenarios.
4010  *
4011  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4012  *   allows us to prevent early wakeup of tasks before they can be run on
4013  *   asymmetric ISA architectures (eg ARMv9).
4014  */
4015 static __always_inline
4016 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4017 {
4018 	int match;
4019 
4020 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4021 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4022 			     state != TASK_RTLOCK_WAIT);
4023 	}
4024 
4025 	*success = !!(match = __task_state_match(p, state));
4026 
4027 	/*
4028 	 * Saved state preserves the task state across blocking on
4029 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
4030 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
4031 	 * because it waits for a lock wakeup or __thaw_task(). Also
4032 	 * indicate success because from the regular waker's point of
4033 	 * view this has succeeded.
4034 	 *
4035 	 * After acquiring the lock the task will restore p::__state
4036 	 * from p::saved_state which ensures that the regular
4037 	 * wakeup is not lost. The restore will also set
4038 	 * p::saved_state to TASK_RUNNING so any further tests will
4039 	 * not result in false positives vs. @success
4040 	 */
4041 	if (match < 0)
4042 		p->saved_state = TASK_RUNNING;
4043 
4044 	return match > 0;
4045 }
4046 
4047 /*
4048  * Notes on Program-Order guarantees on SMP systems.
4049  *
4050  *  MIGRATION
4051  *
4052  * The basic program-order guarantee on SMP systems is that when a task [t]
4053  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4054  * execution on its new CPU [c1].
4055  *
4056  * For migration (of runnable tasks) this is provided by the following means:
4057  *
4058  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4059  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4060  *     rq(c1)->lock (if not at the same time, then in that order).
4061  *  C) LOCK of the rq(c1)->lock scheduling in task
4062  *
4063  * Release/acquire chaining guarantees that B happens after A and C after B.
4064  * Note: the CPU doing B need not be c0 or c1
4065  *
4066  * Example:
4067  *
4068  *   CPU0            CPU1            CPU2
4069  *
4070  *   LOCK rq(0)->lock
4071  *   sched-out X
4072  *   sched-in Y
4073  *   UNLOCK rq(0)->lock
4074  *
4075  *                                   LOCK rq(0)->lock // orders against CPU0
4076  *                                   dequeue X
4077  *                                   UNLOCK rq(0)->lock
4078  *
4079  *                                   LOCK rq(1)->lock
4080  *                                   enqueue X
4081  *                                   UNLOCK rq(1)->lock
4082  *
4083  *                   LOCK rq(1)->lock // orders against CPU2
4084  *                   sched-out Z
4085  *                   sched-in X
4086  *                   UNLOCK rq(1)->lock
4087  *
4088  *
4089  *  BLOCKING -- aka. SLEEP + WAKEUP
4090  *
4091  * For blocking we (obviously) need to provide the same guarantee as for
4092  * migration. However the means are completely different as there is no lock
4093  * chain to provide order. Instead we do:
4094  *
4095  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4096  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4097  *
4098  * Example:
4099  *
4100  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4101  *
4102  *   LOCK rq(0)->lock LOCK X->pi_lock
4103  *   dequeue X
4104  *   sched-out X
4105  *   smp_store_release(X->on_cpu, 0);
4106  *
4107  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4108  *                    X->state = WAKING
4109  *                    set_task_cpu(X,2)
4110  *
4111  *                    LOCK rq(2)->lock
4112  *                    enqueue X
4113  *                    X->state = RUNNING
4114  *                    UNLOCK rq(2)->lock
4115  *
4116  *                                          LOCK rq(2)->lock // orders against CPU1
4117  *                                          sched-out Z
4118  *                                          sched-in X
4119  *                                          UNLOCK rq(2)->lock
4120  *
4121  *                    UNLOCK X->pi_lock
4122  *   UNLOCK rq(0)->lock
4123  *
4124  *
4125  * However, for wakeups there is a second guarantee we must provide, namely we
4126  * must ensure that CONDITION=1 done by the caller can not be reordered with
4127  * accesses to the task state; see try_to_wake_up() and set_current_state().
4128  */
4129 
4130 /**
4131  * try_to_wake_up - wake up a thread
4132  * @p: the thread to be awakened
4133  * @state: the mask of task states that can be woken
4134  * @wake_flags: wake modifier flags (WF_*)
4135  *
4136  * Conceptually does:
4137  *
4138  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4139  *
4140  * If the task was not queued/runnable, also place it back on a runqueue.
4141  *
4142  * This function is atomic against schedule() which would dequeue the task.
4143  *
4144  * It issues a full memory barrier before accessing @p->state, see the comment
4145  * with set_current_state().
4146  *
4147  * Uses p->pi_lock to serialize against concurrent wake-ups.
4148  *
4149  * Relies on p->pi_lock stabilizing:
4150  *  - p->sched_class
4151  *  - p->cpus_ptr
4152  *  - p->sched_task_group
4153  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4154  *
4155  * Tries really hard to only take one task_rq(p)->lock for performance.
4156  * Takes rq->lock in:
4157  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4158  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4159  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4160  *
4161  * As a consequence we race really badly with just about everything. See the
4162  * many memory barriers and their comments for details.
4163  *
4164  * Return: %true if @p->state changes (an actual wakeup was done),
4165  *	   %false otherwise.
4166  */
4167 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4168 {
4169 	guard(preempt)();
4170 	int cpu, success = 0;
4171 
4172 	wake_flags |= WF_TTWU;
4173 
4174 	if (p == current) {
4175 		/*
4176 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4177 		 * == smp_processor_id()'. Together this means we can special
4178 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4179 		 * without taking any locks.
4180 		 *
4181 		 * Specifically, given current runs ttwu() we must be before
4182 		 * schedule()'s block_task(), as such this must not observe
4183 		 * sched_delayed.
4184 		 *
4185 		 * In particular:
4186 		 *  - we rely on Program-Order guarantees for all the ordering,
4187 		 *  - we're serialized against set_special_state() by virtue of
4188 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4189 		 */
4190 		SCHED_WARN_ON(p->se.sched_delayed);
4191 		if (!ttwu_state_match(p, state, &success))
4192 			goto out;
4193 
4194 		trace_sched_waking(p);
4195 		ttwu_do_wakeup(p);
4196 		goto out;
4197 	}
4198 
4199 	/*
4200 	 * If we are going to wake up a thread waiting for CONDITION we
4201 	 * need to ensure that CONDITION=1 done by the caller can not be
4202 	 * reordered with p->state check below. This pairs with smp_store_mb()
4203 	 * in set_current_state() that the waiting thread does.
4204 	 */
4205 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4206 		smp_mb__after_spinlock();
4207 		if (!ttwu_state_match(p, state, &success))
4208 			break;
4209 
4210 		trace_sched_waking(p);
4211 
4212 		/*
4213 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4214 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4215 		 * in smp_cond_load_acquire() below.
4216 		 *
4217 		 * sched_ttwu_pending()			try_to_wake_up()
4218 		 *   STORE p->on_rq = 1			  LOAD p->state
4219 		 *   UNLOCK rq->lock
4220 		 *
4221 		 * __schedule() (switch to task 'p')
4222 		 *   LOCK rq->lock			  smp_rmb();
4223 		 *   smp_mb__after_spinlock();
4224 		 *   UNLOCK rq->lock
4225 		 *
4226 		 * [task p]
4227 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4228 		 *
4229 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4230 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4231 		 *
4232 		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4233 		 */
4234 		smp_rmb();
4235 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4236 			break;
4237 
4238 #ifdef CONFIG_SMP
4239 		/*
4240 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4241 		 * possible to, falsely, observe p->on_cpu == 0.
4242 		 *
4243 		 * One must be running (->on_cpu == 1) in order to remove oneself
4244 		 * from the runqueue.
4245 		 *
4246 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4247 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4248 		 *   UNLOCK rq->lock
4249 		 *
4250 		 * __schedule() (put 'p' to sleep)
4251 		 *   LOCK rq->lock			  smp_rmb();
4252 		 *   smp_mb__after_spinlock();
4253 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4254 		 *
4255 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4256 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4257 		 *
4258 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4259 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4260 		 * care about it's own p->state. See the comment in __schedule().
4261 		 */
4262 		smp_acquire__after_ctrl_dep();
4263 
4264 		/*
4265 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4266 		 * == 0), which means we need to do an enqueue, change p->state to
4267 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4268 		 * enqueue, such as ttwu_queue_wakelist().
4269 		 */
4270 		WRITE_ONCE(p->__state, TASK_WAKING);
4271 
4272 		/*
4273 		 * If the owning (remote) CPU is still in the middle of schedule() with
4274 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4275 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4276 		 * let the waker make forward progress. This is safe because IRQs are
4277 		 * disabled and the IPI will deliver after on_cpu is cleared.
4278 		 *
4279 		 * Ensure we load task_cpu(p) after p->on_cpu:
4280 		 *
4281 		 * set_task_cpu(p, cpu);
4282 		 *   STORE p->cpu = @cpu
4283 		 * __schedule() (switch to task 'p')
4284 		 *   LOCK rq->lock
4285 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4286 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4287 		 *
4288 		 * to ensure we observe the correct CPU on which the task is currently
4289 		 * scheduling.
4290 		 */
4291 		if (smp_load_acquire(&p->on_cpu) &&
4292 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4293 			break;
4294 
4295 		/*
4296 		 * If the owning (remote) CPU is still in the middle of schedule() with
4297 		 * this task as prev, wait until it's done referencing the task.
4298 		 *
4299 		 * Pairs with the smp_store_release() in finish_task().
4300 		 *
4301 		 * This ensures that tasks getting woken will be fully ordered against
4302 		 * their previous state and preserve Program Order.
4303 		 */
4304 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4305 
4306 		cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
4307 		if (task_cpu(p) != cpu) {
4308 			if (p->in_iowait) {
4309 				delayacct_blkio_end(p);
4310 				atomic_dec(&task_rq(p)->nr_iowait);
4311 			}
4312 
4313 			wake_flags |= WF_MIGRATED;
4314 			psi_ttwu_dequeue(p);
4315 			set_task_cpu(p, cpu);
4316 		}
4317 #else
4318 		cpu = task_cpu(p);
4319 #endif /* CONFIG_SMP */
4320 
4321 		ttwu_queue(p, cpu, wake_flags);
4322 	}
4323 out:
4324 	if (success)
4325 		ttwu_stat(p, task_cpu(p), wake_flags);
4326 
4327 	return success;
4328 }
4329 
4330 static bool __task_needs_rq_lock(struct task_struct *p)
4331 {
4332 	unsigned int state = READ_ONCE(p->__state);
4333 
4334 	/*
4335 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4336 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4337 	 * locks at the end, see ttwu_queue_wakelist().
4338 	 */
4339 	if (state == TASK_RUNNING || state == TASK_WAKING)
4340 		return true;
4341 
4342 	/*
4343 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4344 	 * possible to, falsely, observe p->on_rq == 0.
4345 	 *
4346 	 * See try_to_wake_up() for a longer comment.
4347 	 */
4348 	smp_rmb();
4349 	if (p->on_rq)
4350 		return true;
4351 
4352 #ifdef CONFIG_SMP
4353 	/*
4354 	 * Ensure the task has finished __schedule() and will not be referenced
4355 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4356 	 */
4357 	smp_rmb();
4358 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4359 #endif
4360 
4361 	return false;
4362 }
4363 
4364 /**
4365  * task_call_func - Invoke a function on task in fixed state
4366  * @p: Process for which the function is to be invoked, can be @current.
4367  * @func: Function to invoke.
4368  * @arg: Argument to function.
4369  *
4370  * Fix the task in it's current state by avoiding wakeups and or rq operations
4371  * and call @func(@arg) on it.  This function can use task_is_runnable() and
4372  * task_curr() to work out what the state is, if required.  Given that @func
4373  * can be invoked with a runqueue lock held, it had better be quite
4374  * lightweight.
4375  *
4376  * Returns:
4377  *   Whatever @func returns
4378  */
4379 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4380 {
4381 	struct rq *rq = NULL;
4382 	struct rq_flags rf;
4383 	int ret;
4384 
4385 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4386 
4387 	if (__task_needs_rq_lock(p))
4388 		rq = __task_rq_lock(p, &rf);
4389 
4390 	/*
4391 	 * At this point the task is pinned; either:
4392 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4393 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4394 	 *  - queued, and we're holding off schedule	 (rq->lock)
4395 	 *  - running, and we're holding off de-schedule (rq->lock)
4396 	 *
4397 	 * The called function (@func) can use: task_curr(), p->on_rq and
4398 	 * p->__state to differentiate between these states.
4399 	 */
4400 	ret = func(p, arg);
4401 
4402 	if (rq)
4403 		rq_unlock(rq, &rf);
4404 
4405 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4406 	return ret;
4407 }
4408 
4409 /**
4410  * cpu_curr_snapshot - Return a snapshot of the currently running task
4411  * @cpu: The CPU on which to snapshot the task.
4412  *
4413  * Returns the task_struct pointer of the task "currently" running on
4414  * the specified CPU.
4415  *
4416  * If the specified CPU was offline, the return value is whatever it
4417  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4418  * task, but there is no guarantee.  Callers wishing a useful return
4419  * value must take some action to ensure that the specified CPU remains
4420  * online throughout.
4421  *
4422  * This function executes full memory barriers before and after fetching
4423  * the pointer, which permits the caller to confine this function's fetch
4424  * with respect to the caller's accesses to other shared variables.
4425  */
4426 struct task_struct *cpu_curr_snapshot(int cpu)
4427 {
4428 	struct rq *rq = cpu_rq(cpu);
4429 	struct task_struct *t;
4430 	struct rq_flags rf;
4431 
4432 	rq_lock_irqsave(rq, &rf);
4433 	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4434 	t = rcu_dereference(cpu_curr(cpu));
4435 	rq_unlock_irqrestore(rq, &rf);
4436 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4437 
4438 	return t;
4439 }
4440 
4441 /**
4442  * wake_up_process - Wake up a specific process
4443  * @p: The process to be woken up.
4444  *
4445  * Attempt to wake up the nominated process and move it to the set of runnable
4446  * processes.
4447  *
4448  * Return: 1 if the process was woken up, 0 if it was already running.
4449  *
4450  * This function executes a full memory barrier before accessing the task state.
4451  */
4452 int wake_up_process(struct task_struct *p)
4453 {
4454 	return try_to_wake_up(p, TASK_NORMAL, 0);
4455 }
4456 EXPORT_SYMBOL(wake_up_process);
4457 
4458 int wake_up_state(struct task_struct *p, unsigned int state)
4459 {
4460 	return try_to_wake_up(p, state, 0);
4461 }
4462 
4463 /*
4464  * Perform scheduler related setup for a newly forked process p.
4465  * p is forked by current.
4466  *
4467  * __sched_fork() is basic setup which is also used by sched_init() to
4468  * initialize the boot CPU's idle task.
4469  */
4470 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4471 {
4472 	p->on_rq			= 0;
4473 
4474 	p->se.on_rq			= 0;
4475 	p->se.exec_start		= 0;
4476 	p->se.sum_exec_runtime		= 0;
4477 	p->se.prev_sum_exec_runtime	= 0;
4478 	p->se.nr_migrations		= 0;
4479 	p->se.vruntime			= 0;
4480 	p->se.vlag			= 0;
4481 	INIT_LIST_HEAD(&p->se.group_node);
4482 
4483 	/* A delayed task cannot be in clone(). */
4484 	SCHED_WARN_ON(p->se.sched_delayed);
4485 
4486 #ifdef CONFIG_FAIR_GROUP_SCHED
4487 	p->se.cfs_rq			= NULL;
4488 #endif
4489 
4490 #ifdef CONFIG_SCHEDSTATS
4491 	/* Even if schedstat is disabled, there should not be garbage */
4492 	memset(&p->stats, 0, sizeof(p->stats));
4493 #endif
4494 
4495 	init_dl_entity(&p->dl);
4496 
4497 	INIT_LIST_HEAD(&p->rt.run_list);
4498 	p->rt.timeout		= 0;
4499 	p->rt.time_slice	= sched_rr_timeslice;
4500 	p->rt.on_rq		= 0;
4501 	p->rt.on_list		= 0;
4502 
4503 #ifdef CONFIG_SCHED_CLASS_EXT
4504 	init_scx_entity(&p->scx);
4505 #endif
4506 
4507 #ifdef CONFIG_PREEMPT_NOTIFIERS
4508 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4509 #endif
4510 
4511 #ifdef CONFIG_COMPACTION
4512 	p->capture_control = NULL;
4513 #endif
4514 	init_numa_balancing(clone_flags, p);
4515 #ifdef CONFIG_SMP
4516 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4517 	p->migration_pending = NULL;
4518 #endif
4519 	init_sched_mm_cid(p);
4520 }
4521 
4522 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4523 
4524 #ifdef CONFIG_NUMA_BALANCING
4525 
4526 int sysctl_numa_balancing_mode;
4527 
4528 static void __set_numabalancing_state(bool enabled)
4529 {
4530 	if (enabled)
4531 		static_branch_enable(&sched_numa_balancing);
4532 	else
4533 		static_branch_disable(&sched_numa_balancing);
4534 }
4535 
4536 void set_numabalancing_state(bool enabled)
4537 {
4538 	if (enabled)
4539 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4540 	else
4541 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4542 	__set_numabalancing_state(enabled);
4543 }
4544 
4545 #ifdef CONFIG_PROC_SYSCTL
4546 static void reset_memory_tiering(void)
4547 {
4548 	struct pglist_data *pgdat;
4549 
4550 	for_each_online_pgdat(pgdat) {
4551 		pgdat->nbp_threshold = 0;
4552 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4553 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4554 	}
4555 }
4556 
4557 static int sysctl_numa_balancing(const struct ctl_table *table, int write,
4558 			  void *buffer, size_t *lenp, loff_t *ppos)
4559 {
4560 	struct ctl_table t;
4561 	int err;
4562 	int state = sysctl_numa_balancing_mode;
4563 
4564 	if (write && !capable(CAP_SYS_ADMIN))
4565 		return -EPERM;
4566 
4567 	t = *table;
4568 	t.data = &state;
4569 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4570 	if (err < 0)
4571 		return err;
4572 	if (write) {
4573 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4574 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4575 			reset_memory_tiering();
4576 		sysctl_numa_balancing_mode = state;
4577 		__set_numabalancing_state(state);
4578 	}
4579 	return err;
4580 }
4581 #endif
4582 #endif
4583 
4584 #ifdef CONFIG_SCHEDSTATS
4585 
4586 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4587 
4588 static void set_schedstats(bool enabled)
4589 {
4590 	if (enabled)
4591 		static_branch_enable(&sched_schedstats);
4592 	else
4593 		static_branch_disable(&sched_schedstats);
4594 }
4595 
4596 void force_schedstat_enabled(void)
4597 {
4598 	if (!schedstat_enabled()) {
4599 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4600 		static_branch_enable(&sched_schedstats);
4601 	}
4602 }
4603 
4604 static int __init setup_schedstats(char *str)
4605 {
4606 	int ret = 0;
4607 	if (!str)
4608 		goto out;
4609 
4610 	if (!strcmp(str, "enable")) {
4611 		set_schedstats(true);
4612 		ret = 1;
4613 	} else if (!strcmp(str, "disable")) {
4614 		set_schedstats(false);
4615 		ret = 1;
4616 	}
4617 out:
4618 	if (!ret)
4619 		pr_warn("Unable to parse schedstats=\n");
4620 
4621 	return ret;
4622 }
4623 __setup("schedstats=", setup_schedstats);
4624 
4625 #ifdef CONFIG_PROC_SYSCTL
4626 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
4627 		size_t *lenp, loff_t *ppos)
4628 {
4629 	struct ctl_table t;
4630 	int err;
4631 	int state = static_branch_likely(&sched_schedstats);
4632 
4633 	if (write && !capable(CAP_SYS_ADMIN))
4634 		return -EPERM;
4635 
4636 	t = *table;
4637 	t.data = &state;
4638 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4639 	if (err < 0)
4640 		return err;
4641 	if (write)
4642 		set_schedstats(state);
4643 	return err;
4644 }
4645 #endif /* CONFIG_PROC_SYSCTL */
4646 #endif /* CONFIG_SCHEDSTATS */
4647 
4648 #ifdef CONFIG_SYSCTL
4649 static struct ctl_table sched_core_sysctls[] = {
4650 #ifdef CONFIG_SCHEDSTATS
4651 	{
4652 		.procname       = "sched_schedstats",
4653 		.data           = NULL,
4654 		.maxlen         = sizeof(unsigned int),
4655 		.mode           = 0644,
4656 		.proc_handler   = sysctl_schedstats,
4657 		.extra1         = SYSCTL_ZERO,
4658 		.extra2         = SYSCTL_ONE,
4659 	},
4660 #endif /* CONFIG_SCHEDSTATS */
4661 #ifdef CONFIG_UCLAMP_TASK
4662 	{
4663 		.procname       = "sched_util_clamp_min",
4664 		.data           = &sysctl_sched_uclamp_util_min,
4665 		.maxlen         = sizeof(unsigned int),
4666 		.mode           = 0644,
4667 		.proc_handler   = sysctl_sched_uclamp_handler,
4668 	},
4669 	{
4670 		.procname       = "sched_util_clamp_max",
4671 		.data           = &sysctl_sched_uclamp_util_max,
4672 		.maxlen         = sizeof(unsigned int),
4673 		.mode           = 0644,
4674 		.proc_handler   = sysctl_sched_uclamp_handler,
4675 	},
4676 	{
4677 		.procname       = "sched_util_clamp_min_rt_default",
4678 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4679 		.maxlen         = sizeof(unsigned int),
4680 		.mode           = 0644,
4681 		.proc_handler   = sysctl_sched_uclamp_handler,
4682 	},
4683 #endif /* CONFIG_UCLAMP_TASK */
4684 #ifdef CONFIG_NUMA_BALANCING
4685 	{
4686 		.procname	= "numa_balancing",
4687 		.data		= NULL, /* filled in by handler */
4688 		.maxlen		= sizeof(unsigned int),
4689 		.mode		= 0644,
4690 		.proc_handler	= sysctl_numa_balancing,
4691 		.extra1		= SYSCTL_ZERO,
4692 		.extra2		= SYSCTL_FOUR,
4693 	},
4694 #endif /* CONFIG_NUMA_BALANCING */
4695 };
4696 static int __init sched_core_sysctl_init(void)
4697 {
4698 	register_sysctl_init("kernel", sched_core_sysctls);
4699 	return 0;
4700 }
4701 late_initcall(sched_core_sysctl_init);
4702 #endif /* CONFIG_SYSCTL */
4703 
4704 /*
4705  * fork()/clone()-time setup:
4706  */
4707 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4708 {
4709 	__sched_fork(clone_flags, p);
4710 	/*
4711 	 * We mark the process as NEW here. This guarantees that
4712 	 * nobody will actually run it, and a signal or other external
4713 	 * event cannot wake it up and insert it on the runqueue either.
4714 	 */
4715 	p->__state = TASK_NEW;
4716 
4717 	/*
4718 	 * Make sure we do not leak PI boosting priority to the child.
4719 	 */
4720 	p->prio = current->normal_prio;
4721 
4722 	uclamp_fork(p);
4723 
4724 	/*
4725 	 * Revert to default priority/policy on fork if requested.
4726 	 */
4727 	if (unlikely(p->sched_reset_on_fork)) {
4728 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4729 			p->policy = SCHED_NORMAL;
4730 			p->static_prio = NICE_TO_PRIO(0);
4731 			p->rt_priority = 0;
4732 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4733 			p->static_prio = NICE_TO_PRIO(0);
4734 
4735 		p->prio = p->normal_prio = p->static_prio;
4736 		set_load_weight(p, false);
4737 		p->se.custom_slice = 0;
4738 		p->se.slice = sysctl_sched_base_slice;
4739 
4740 		/*
4741 		 * We don't need the reset flag anymore after the fork. It has
4742 		 * fulfilled its duty:
4743 		 */
4744 		p->sched_reset_on_fork = 0;
4745 	}
4746 
4747 	if (dl_prio(p->prio))
4748 		return -EAGAIN;
4749 
4750 	scx_pre_fork(p);
4751 
4752 	if (rt_prio(p->prio)) {
4753 		p->sched_class = &rt_sched_class;
4754 #ifdef CONFIG_SCHED_CLASS_EXT
4755 	} else if (task_should_scx(p->policy)) {
4756 		p->sched_class = &ext_sched_class;
4757 #endif
4758 	} else {
4759 		p->sched_class = &fair_sched_class;
4760 	}
4761 
4762 	init_entity_runnable_average(&p->se);
4763 
4764 
4765 #ifdef CONFIG_SCHED_INFO
4766 	if (likely(sched_info_on()))
4767 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4768 #endif
4769 #if defined(CONFIG_SMP)
4770 	p->on_cpu = 0;
4771 #endif
4772 	init_task_preempt_count(p);
4773 #ifdef CONFIG_SMP
4774 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4775 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4776 #endif
4777 	return 0;
4778 }
4779 
4780 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4781 {
4782 	unsigned long flags;
4783 
4784 	/*
4785 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4786 	 * required yet, but lockdep gets upset if rules are violated.
4787 	 */
4788 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4789 #ifdef CONFIG_CGROUP_SCHED
4790 	if (1) {
4791 		struct task_group *tg;
4792 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4793 				  struct task_group, css);
4794 		tg = autogroup_task_group(p, tg);
4795 		p->sched_task_group = tg;
4796 	}
4797 #endif
4798 	rseq_migrate(p);
4799 	/*
4800 	 * We're setting the CPU for the first time, we don't migrate,
4801 	 * so use __set_task_cpu().
4802 	 */
4803 	__set_task_cpu(p, smp_processor_id());
4804 	if (p->sched_class->task_fork)
4805 		p->sched_class->task_fork(p);
4806 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4807 
4808 	return scx_fork(p);
4809 }
4810 
4811 void sched_cancel_fork(struct task_struct *p)
4812 {
4813 	scx_cancel_fork(p);
4814 }
4815 
4816 void sched_post_fork(struct task_struct *p)
4817 {
4818 	uclamp_post_fork(p);
4819 	scx_post_fork(p);
4820 }
4821 
4822 unsigned long to_ratio(u64 period, u64 runtime)
4823 {
4824 	if (runtime == RUNTIME_INF)
4825 		return BW_UNIT;
4826 
4827 	/*
4828 	 * Doing this here saves a lot of checks in all
4829 	 * the calling paths, and returning zero seems
4830 	 * safe for them anyway.
4831 	 */
4832 	if (period == 0)
4833 		return 0;
4834 
4835 	return div64_u64(runtime << BW_SHIFT, period);
4836 }
4837 
4838 /*
4839  * wake_up_new_task - wake up a newly created task for the first time.
4840  *
4841  * This function will do some initial scheduler statistics housekeeping
4842  * that must be done for every newly created context, then puts the task
4843  * on the runqueue and wakes it.
4844  */
4845 void wake_up_new_task(struct task_struct *p)
4846 {
4847 	struct rq_flags rf;
4848 	struct rq *rq;
4849 	int wake_flags = WF_FORK;
4850 
4851 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4852 	WRITE_ONCE(p->__state, TASK_RUNNING);
4853 #ifdef CONFIG_SMP
4854 	/*
4855 	 * Fork balancing, do it here and not earlier because:
4856 	 *  - cpus_ptr can change in the fork path
4857 	 *  - any previously selected CPU might disappear through hotplug
4858 	 *
4859 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4860 	 * as we're not fully set-up yet.
4861 	 */
4862 	p->recent_used_cpu = task_cpu(p);
4863 	rseq_migrate(p);
4864 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
4865 #endif
4866 	rq = __task_rq_lock(p, &rf);
4867 	update_rq_clock(rq);
4868 	post_init_entity_util_avg(p);
4869 
4870 	activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
4871 	trace_sched_wakeup_new(p);
4872 	wakeup_preempt(rq, p, wake_flags);
4873 #ifdef CONFIG_SMP
4874 	if (p->sched_class->task_woken) {
4875 		/*
4876 		 * Nothing relies on rq->lock after this, so it's fine to
4877 		 * drop it.
4878 		 */
4879 		rq_unpin_lock(rq, &rf);
4880 		p->sched_class->task_woken(rq, p);
4881 		rq_repin_lock(rq, &rf);
4882 	}
4883 #endif
4884 	task_rq_unlock(rq, p, &rf);
4885 }
4886 
4887 #ifdef CONFIG_PREEMPT_NOTIFIERS
4888 
4889 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4890 
4891 void preempt_notifier_inc(void)
4892 {
4893 	static_branch_inc(&preempt_notifier_key);
4894 }
4895 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4896 
4897 void preempt_notifier_dec(void)
4898 {
4899 	static_branch_dec(&preempt_notifier_key);
4900 }
4901 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4902 
4903 /**
4904  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4905  * @notifier: notifier struct to register
4906  */
4907 void preempt_notifier_register(struct preempt_notifier *notifier)
4908 {
4909 	if (!static_branch_unlikely(&preempt_notifier_key))
4910 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4911 
4912 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4913 }
4914 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4915 
4916 /**
4917  * preempt_notifier_unregister - no longer interested in preemption notifications
4918  * @notifier: notifier struct to unregister
4919  *
4920  * This is *not* safe to call from within a preemption notifier.
4921  */
4922 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4923 {
4924 	hlist_del(&notifier->link);
4925 }
4926 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4927 
4928 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4929 {
4930 	struct preempt_notifier *notifier;
4931 
4932 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4933 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4934 }
4935 
4936 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4937 {
4938 	if (static_branch_unlikely(&preempt_notifier_key))
4939 		__fire_sched_in_preempt_notifiers(curr);
4940 }
4941 
4942 static void
4943 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4944 				   struct task_struct *next)
4945 {
4946 	struct preempt_notifier *notifier;
4947 
4948 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4949 		notifier->ops->sched_out(notifier, next);
4950 }
4951 
4952 static __always_inline void
4953 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4954 				 struct task_struct *next)
4955 {
4956 	if (static_branch_unlikely(&preempt_notifier_key))
4957 		__fire_sched_out_preempt_notifiers(curr, next);
4958 }
4959 
4960 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4961 
4962 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4963 {
4964 }
4965 
4966 static inline void
4967 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4968 				 struct task_struct *next)
4969 {
4970 }
4971 
4972 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4973 
4974 static inline void prepare_task(struct task_struct *next)
4975 {
4976 #ifdef CONFIG_SMP
4977 	/*
4978 	 * Claim the task as running, we do this before switching to it
4979 	 * such that any running task will have this set.
4980 	 *
4981 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4982 	 * its ordering comment.
4983 	 */
4984 	WRITE_ONCE(next->on_cpu, 1);
4985 #endif
4986 }
4987 
4988 static inline void finish_task(struct task_struct *prev)
4989 {
4990 #ifdef CONFIG_SMP
4991 	/*
4992 	 * This must be the very last reference to @prev from this CPU. After
4993 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4994 	 * must ensure this doesn't happen until the switch is completely
4995 	 * finished.
4996 	 *
4997 	 * In particular, the load of prev->state in finish_task_switch() must
4998 	 * happen before this.
4999 	 *
5000 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5001 	 */
5002 	smp_store_release(&prev->on_cpu, 0);
5003 #endif
5004 }
5005 
5006 #ifdef CONFIG_SMP
5007 
5008 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5009 {
5010 	void (*func)(struct rq *rq);
5011 	struct balance_callback *next;
5012 
5013 	lockdep_assert_rq_held(rq);
5014 
5015 	while (head) {
5016 		func = (void (*)(struct rq *))head->func;
5017 		next = head->next;
5018 		head->next = NULL;
5019 		head = next;
5020 
5021 		func(rq);
5022 	}
5023 }
5024 
5025 static void balance_push(struct rq *rq);
5026 
5027 /*
5028  * balance_push_callback is a right abuse of the callback interface and plays
5029  * by significantly different rules.
5030  *
5031  * Where the normal balance_callback's purpose is to be ran in the same context
5032  * that queued it (only later, when it's safe to drop rq->lock again),
5033  * balance_push_callback is specifically targeted at __schedule().
5034  *
5035  * This abuse is tolerated because it places all the unlikely/odd cases behind
5036  * a single test, namely: rq->balance_callback == NULL.
5037  */
5038 struct balance_callback balance_push_callback = {
5039 	.next = NULL,
5040 	.func = balance_push,
5041 };
5042 
5043 static inline struct balance_callback *
5044 __splice_balance_callbacks(struct rq *rq, bool split)
5045 {
5046 	struct balance_callback *head = rq->balance_callback;
5047 
5048 	if (likely(!head))
5049 		return NULL;
5050 
5051 	lockdep_assert_rq_held(rq);
5052 	/*
5053 	 * Must not take balance_push_callback off the list when
5054 	 * splice_balance_callbacks() and balance_callbacks() are not
5055 	 * in the same rq->lock section.
5056 	 *
5057 	 * In that case it would be possible for __schedule() to interleave
5058 	 * and observe the list empty.
5059 	 */
5060 	if (split && head == &balance_push_callback)
5061 		head = NULL;
5062 	else
5063 		rq->balance_callback = NULL;
5064 
5065 	return head;
5066 }
5067 
5068 struct balance_callback *splice_balance_callbacks(struct rq *rq)
5069 {
5070 	return __splice_balance_callbacks(rq, true);
5071 }
5072 
5073 static void __balance_callbacks(struct rq *rq)
5074 {
5075 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5076 }
5077 
5078 void balance_callbacks(struct rq *rq, struct balance_callback *head)
5079 {
5080 	unsigned long flags;
5081 
5082 	if (unlikely(head)) {
5083 		raw_spin_rq_lock_irqsave(rq, flags);
5084 		do_balance_callbacks(rq, head);
5085 		raw_spin_rq_unlock_irqrestore(rq, flags);
5086 	}
5087 }
5088 
5089 #else
5090 
5091 static inline void __balance_callbacks(struct rq *rq)
5092 {
5093 }
5094 
5095 #endif
5096 
5097 static inline void
5098 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5099 {
5100 	/*
5101 	 * Since the runqueue lock will be released by the next
5102 	 * task (which is an invalid locking op but in the case
5103 	 * of the scheduler it's an obvious special-case), so we
5104 	 * do an early lockdep release here:
5105 	 */
5106 	rq_unpin_lock(rq, rf);
5107 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5108 #ifdef CONFIG_DEBUG_SPINLOCK
5109 	/* this is a valid case when another task releases the spinlock */
5110 	rq_lockp(rq)->owner = next;
5111 #endif
5112 }
5113 
5114 static inline void finish_lock_switch(struct rq *rq)
5115 {
5116 	/*
5117 	 * If we are tracking spinlock dependencies then we have to
5118 	 * fix up the runqueue lock - which gets 'carried over' from
5119 	 * prev into current:
5120 	 */
5121 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5122 	__balance_callbacks(rq);
5123 	raw_spin_rq_unlock_irq(rq);
5124 }
5125 
5126 /*
5127  * NOP if the arch has not defined these:
5128  */
5129 
5130 #ifndef prepare_arch_switch
5131 # define prepare_arch_switch(next)	do { } while (0)
5132 #endif
5133 
5134 #ifndef finish_arch_post_lock_switch
5135 # define finish_arch_post_lock_switch()	do { } while (0)
5136 #endif
5137 
5138 static inline void kmap_local_sched_out(void)
5139 {
5140 #ifdef CONFIG_KMAP_LOCAL
5141 	if (unlikely(current->kmap_ctrl.idx))
5142 		__kmap_local_sched_out();
5143 #endif
5144 }
5145 
5146 static inline void kmap_local_sched_in(void)
5147 {
5148 #ifdef CONFIG_KMAP_LOCAL
5149 	if (unlikely(current->kmap_ctrl.idx))
5150 		__kmap_local_sched_in();
5151 #endif
5152 }
5153 
5154 /**
5155  * prepare_task_switch - prepare to switch tasks
5156  * @rq: the runqueue preparing to switch
5157  * @prev: the current task that is being switched out
5158  * @next: the task we are going to switch to.
5159  *
5160  * This is called with the rq lock held and interrupts off. It must
5161  * be paired with a subsequent finish_task_switch after the context
5162  * switch.
5163  *
5164  * prepare_task_switch sets up locking and calls architecture specific
5165  * hooks.
5166  */
5167 static inline void
5168 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5169 		    struct task_struct *next)
5170 {
5171 	kcov_prepare_switch(prev);
5172 	sched_info_switch(rq, prev, next);
5173 	perf_event_task_sched_out(prev, next);
5174 	rseq_preempt(prev);
5175 	fire_sched_out_preempt_notifiers(prev, next);
5176 	kmap_local_sched_out();
5177 	prepare_task(next);
5178 	prepare_arch_switch(next);
5179 }
5180 
5181 /**
5182  * finish_task_switch - clean up after a task-switch
5183  * @prev: the thread we just switched away from.
5184  *
5185  * finish_task_switch must be called after the context switch, paired
5186  * with a prepare_task_switch call before the context switch.
5187  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5188  * and do any other architecture-specific cleanup actions.
5189  *
5190  * Note that we may have delayed dropping an mm in context_switch(). If
5191  * so, we finish that here outside of the runqueue lock. (Doing it
5192  * with the lock held can cause deadlocks; see schedule() for
5193  * details.)
5194  *
5195  * The context switch have flipped the stack from under us and restored the
5196  * local variables which were saved when this task called schedule() in the
5197  * past. 'prev == current' is still correct but we need to recalculate this_rq
5198  * because prev may have moved to another CPU.
5199  */
5200 static struct rq *finish_task_switch(struct task_struct *prev)
5201 	__releases(rq->lock)
5202 {
5203 	struct rq *rq = this_rq();
5204 	struct mm_struct *mm = rq->prev_mm;
5205 	unsigned int prev_state;
5206 
5207 	/*
5208 	 * The previous task will have left us with a preempt_count of 2
5209 	 * because it left us after:
5210 	 *
5211 	 *	schedule()
5212 	 *	  preempt_disable();			// 1
5213 	 *	  __schedule()
5214 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5215 	 *
5216 	 * Also, see FORK_PREEMPT_COUNT.
5217 	 */
5218 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5219 		      "corrupted preempt_count: %s/%d/0x%x\n",
5220 		      current->comm, current->pid, preempt_count()))
5221 		preempt_count_set(FORK_PREEMPT_COUNT);
5222 
5223 	rq->prev_mm = NULL;
5224 
5225 	/*
5226 	 * A task struct has one reference for the use as "current".
5227 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5228 	 * schedule one last time. The schedule call will never return, and
5229 	 * the scheduled task must drop that reference.
5230 	 *
5231 	 * We must observe prev->state before clearing prev->on_cpu (in
5232 	 * finish_task), otherwise a concurrent wakeup can get prev
5233 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5234 	 * transition, resulting in a double drop.
5235 	 */
5236 	prev_state = READ_ONCE(prev->__state);
5237 	vtime_task_switch(prev);
5238 	perf_event_task_sched_in(prev, current);
5239 	finish_task(prev);
5240 	tick_nohz_task_switch();
5241 	finish_lock_switch(rq);
5242 	finish_arch_post_lock_switch();
5243 	kcov_finish_switch(current);
5244 	/*
5245 	 * kmap_local_sched_out() is invoked with rq::lock held and
5246 	 * interrupts disabled. There is no requirement for that, but the
5247 	 * sched out code does not have an interrupt enabled section.
5248 	 * Restoring the maps on sched in does not require interrupts being
5249 	 * disabled either.
5250 	 */
5251 	kmap_local_sched_in();
5252 
5253 	fire_sched_in_preempt_notifiers(current);
5254 	/*
5255 	 * When switching through a kernel thread, the loop in
5256 	 * membarrier_{private,global}_expedited() may have observed that
5257 	 * kernel thread and not issued an IPI. It is therefore possible to
5258 	 * schedule between user->kernel->user threads without passing though
5259 	 * switch_mm(). Membarrier requires a barrier after storing to
5260 	 * rq->curr, before returning to userspace, so provide them here:
5261 	 *
5262 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5263 	 *   provided by mmdrop_lazy_tlb(),
5264 	 * - a sync_core for SYNC_CORE.
5265 	 */
5266 	if (mm) {
5267 		membarrier_mm_sync_core_before_usermode(mm);
5268 		mmdrop_lazy_tlb_sched(mm);
5269 	}
5270 
5271 	if (unlikely(prev_state == TASK_DEAD)) {
5272 		if (prev->sched_class->task_dead)
5273 			prev->sched_class->task_dead(prev);
5274 
5275 		/* Task is done with its stack. */
5276 		put_task_stack(prev);
5277 
5278 		put_task_struct_rcu_user(prev);
5279 	}
5280 
5281 	return rq;
5282 }
5283 
5284 /**
5285  * schedule_tail - first thing a freshly forked thread must call.
5286  * @prev: the thread we just switched away from.
5287  */
5288 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5289 	__releases(rq->lock)
5290 {
5291 	/*
5292 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5293 	 * finish_task_switch() for details.
5294 	 *
5295 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5296 	 * and the preempt_enable() will end up enabling preemption (on
5297 	 * PREEMPT_COUNT kernels).
5298 	 */
5299 
5300 	finish_task_switch(prev);
5301 	preempt_enable();
5302 
5303 	if (current->set_child_tid)
5304 		put_user(task_pid_vnr(current), current->set_child_tid);
5305 
5306 	calculate_sigpending();
5307 }
5308 
5309 /*
5310  * context_switch - switch to the new MM and the new thread's register state.
5311  */
5312 static __always_inline struct rq *
5313 context_switch(struct rq *rq, struct task_struct *prev,
5314 	       struct task_struct *next, struct rq_flags *rf)
5315 {
5316 	prepare_task_switch(rq, prev, next);
5317 
5318 	/*
5319 	 * For paravirt, this is coupled with an exit in switch_to to
5320 	 * combine the page table reload and the switch backend into
5321 	 * one hypercall.
5322 	 */
5323 	arch_start_context_switch(prev);
5324 
5325 	/*
5326 	 * kernel -> kernel   lazy + transfer active
5327 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5328 	 *
5329 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5330 	 *   user ->   user   switch
5331 	 *
5332 	 * switch_mm_cid() needs to be updated if the barriers provided
5333 	 * by context_switch() are modified.
5334 	 */
5335 	if (!next->mm) {                                // to kernel
5336 		enter_lazy_tlb(prev->active_mm, next);
5337 
5338 		next->active_mm = prev->active_mm;
5339 		if (prev->mm)                           // from user
5340 			mmgrab_lazy_tlb(prev->active_mm);
5341 		else
5342 			prev->active_mm = NULL;
5343 	} else {                                        // to user
5344 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5345 		/*
5346 		 * sys_membarrier() requires an smp_mb() between setting
5347 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5348 		 *
5349 		 * The below provides this either through switch_mm(), or in
5350 		 * case 'prev->active_mm == next->mm' through
5351 		 * finish_task_switch()'s mmdrop().
5352 		 */
5353 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5354 		lru_gen_use_mm(next->mm);
5355 
5356 		if (!prev->mm) {                        // from kernel
5357 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5358 			rq->prev_mm = prev->active_mm;
5359 			prev->active_mm = NULL;
5360 		}
5361 	}
5362 
5363 	/* switch_mm_cid() requires the memory barriers above. */
5364 	switch_mm_cid(rq, prev, next);
5365 
5366 	prepare_lock_switch(rq, next, rf);
5367 
5368 	/* Here we just switch the register state and the stack. */
5369 	switch_to(prev, next, prev);
5370 	barrier();
5371 
5372 	return finish_task_switch(prev);
5373 }
5374 
5375 /*
5376  * nr_running and nr_context_switches:
5377  *
5378  * externally visible scheduler statistics: current number of runnable
5379  * threads, total number of context switches performed since bootup.
5380  */
5381 unsigned int nr_running(void)
5382 {
5383 	unsigned int i, sum = 0;
5384 
5385 	for_each_online_cpu(i)
5386 		sum += cpu_rq(i)->nr_running;
5387 
5388 	return sum;
5389 }
5390 
5391 /*
5392  * Check if only the current task is running on the CPU.
5393  *
5394  * Caution: this function does not check that the caller has disabled
5395  * preemption, thus the result might have a time-of-check-to-time-of-use
5396  * race.  The caller is responsible to use it correctly, for example:
5397  *
5398  * - from a non-preemptible section (of course)
5399  *
5400  * - from a thread that is bound to a single CPU
5401  *
5402  * - in a loop with very short iterations (e.g. a polling loop)
5403  */
5404 bool single_task_running(void)
5405 {
5406 	return raw_rq()->nr_running == 1;
5407 }
5408 EXPORT_SYMBOL(single_task_running);
5409 
5410 unsigned long long nr_context_switches_cpu(int cpu)
5411 {
5412 	return cpu_rq(cpu)->nr_switches;
5413 }
5414 
5415 unsigned long long nr_context_switches(void)
5416 {
5417 	int i;
5418 	unsigned long long sum = 0;
5419 
5420 	for_each_possible_cpu(i)
5421 		sum += cpu_rq(i)->nr_switches;
5422 
5423 	return sum;
5424 }
5425 
5426 /*
5427  * Consumers of these two interfaces, like for example the cpuidle menu
5428  * governor, are using nonsensical data. Preferring shallow idle state selection
5429  * for a CPU that has IO-wait which might not even end up running the task when
5430  * it does become runnable.
5431  */
5432 
5433 unsigned int nr_iowait_cpu(int cpu)
5434 {
5435 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5436 }
5437 
5438 /*
5439  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5440  *
5441  * The idea behind IO-wait account is to account the idle time that we could
5442  * have spend running if it were not for IO. That is, if we were to improve the
5443  * storage performance, we'd have a proportional reduction in IO-wait time.
5444  *
5445  * This all works nicely on UP, where, when a task blocks on IO, we account
5446  * idle time as IO-wait, because if the storage were faster, it could've been
5447  * running and we'd not be idle.
5448  *
5449  * This has been extended to SMP, by doing the same for each CPU. This however
5450  * is broken.
5451  *
5452  * Imagine for instance the case where two tasks block on one CPU, only the one
5453  * CPU will have IO-wait accounted, while the other has regular idle. Even
5454  * though, if the storage were faster, both could've ran at the same time,
5455  * utilising both CPUs.
5456  *
5457  * This means, that when looking globally, the current IO-wait accounting on
5458  * SMP is a lower bound, by reason of under accounting.
5459  *
5460  * Worse, since the numbers are provided per CPU, they are sometimes
5461  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5462  * associated with any one particular CPU, it can wake to another CPU than it
5463  * blocked on. This means the per CPU IO-wait number is meaningless.
5464  *
5465  * Task CPU affinities can make all that even more 'interesting'.
5466  */
5467 
5468 unsigned int nr_iowait(void)
5469 {
5470 	unsigned int i, sum = 0;
5471 
5472 	for_each_possible_cpu(i)
5473 		sum += nr_iowait_cpu(i);
5474 
5475 	return sum;
5476 }
5477 
5478 #ifdef CONFIG_SMP
5479 
5480 /*
5481  * sched_exec - execve() is a valuable balancing opportunity, because at
5482  * this point the task has the smallest effective memory and cache footprint.
5483  */
5484 void sched_exec(void)
5485 {
5486 	struct task_struct *p = current;
5487 	struct migration_arg arg;
5488 	int dest_cpu;
5489 
5490 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5491 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5492 		if (dest_cpu == smp_processor_id())
5493 			return;
5494 
5495 		if (unlikely(!cpu_active(dest_cpu)))
5496 			return;
5497 
5498 		arg = (struct migration_arg){ p, dest_cpu };
5499 	}
5500 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5501 }
5502 
5503 #endif
5504 
5505 DEFINE_PER_CPU(struct kernel_stat, kstat);
5506 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5507 
5508 EXPORT_PER_CPU_SYMBOL(kstat);
5509 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5510 
5511 /*
5512  * The function fair_sched_class.update_curr accesses the struct curr
5513  * and its field curr->exec_start; when called from task_sched_runtime(),
5514  * we observe a high rate of cache misses in practice.
5515  * Prefetching this data results in improved performance.
5516  */
5517 static inline void prefetch_curr_exec_start(struct task_struct *p)
5518 {
5519 #ifdef CONFIG_FAIR_GROUP_SCHED
5520 	struct sched_entity *curr = p->se.cfs_rq->curr;
5521 #else
5522 	struct sched_entity *curr = task_rq(p)->cfs.curr;
5523 #endif
5524 	prefetch(curr);
5525 	prefetch(&curr->exec_start);
5526 }
5527 
5528 /*
5529  * Return accounted runtime for the task.
5530  * In case the task is currently running, return the runtime plus current's
5531  * pending runtime that have not been accounted yet.
5532  */
5533 unsigned long long task_sched_runtime(struct task_struct *p)
5534 {
5535 	struct rq_flags rf;
5536 	struct rq *rq;
5537 	u64 ns;
5538 
5539 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5540 	/*
5541 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5542 	 * So we have a optimization chance when the task's delta_exec is 0.
5543 	 * Reading ->on_cpu is racy, but this is OK.
5544 	 *
5545 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5546 	 * If we race with it entering CPU, unaccounted time is 0. This is
5547 	 * indistinguishable from the read occurring a few cycles earlier.
5548 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5549 	 * been accounted, so we're correct here as well.
5550 	 */
5551 	if (!p->on_cpu || !task_on_rq_queued(p))
5552 		return p->se.sum_exec_runtime;
5553 #endif
5554 
5555 	rq = task_rq_lock(p, &rf);
5556 	/*
5557 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5558 	 * project cycles that may never be accounted to this
5559 	 * thread, breaking clock_gettime().
5560 	 */
5561 	if (task_current_donor(rq, p) && task_on_rq_queued(p)) {
5562 		prefetch_curr_exec_start(p);
5563 		update_rq_clock(rq);
5564 		p->sched_class->update_curr(rq);
5565 	}
5566 	ns = p->se.sum_exec_runtime;
5567 	task_rq_unlock(rq, p, &rf);
5568 
5569 	return ns;
5570 }
5571 
5572 #ifdef CONFIG_SCHED_DEBUG
5573 static u64 cpu_resched_latency(struct rq *rq)
5574 {
5575 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5576 	u64 resched_latency, now = rq_clock(rq);
5577 	static bool warned_once;
5578 
5579 	if (sysctl_resched_latency_warn_once && warned_once)
5580 		return 0;
5581 
5582 	if (!need_resched() || !latency_warn_ms)
5583 		return 0;
5584 
5585 	if (system_state == SYSTEM_BOOTING)
5586 		return 0;
5587 
5588 	if (!rq->last_seen_need_resched_ns) {
5589 		rq->last_seen_need_resched_ns = now;
5590 		rq->ticks_without_resched = 0;
5591 		return 0;
5592 	}
5593 
5594 	rq->ticks_without_resched++;
5595 	resched_latency = now - rq->last_seen_need_resched_ns;
5596 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5597 		return 0;
5598 
5599 	warned_once = true;
5600 
5601 	return resched_latency;
5602 }
5603 
5604 static int __init setup_resched_latency_warn_ms(char *str)
5605 {
5606 	long val;
5607 
5608 	if ((kstrtol(str, 0, &val))) {
5609 		pr_warn("Unable to set resched_latency_warn_ms\n");
5610 		return 1;
5611 	}
5612 
5613 	sysctl_resched_latency_warn_ms = val;
5614 	return 1;
5615 }
5616 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5617 #else
5618 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5619 #endif /* CONFIG_SCHED_DEBUG */
5620 
5621 /*
5622  * This function gets called by the timer code, with HZ frequency.
5623  * We call it with interrupts disabled.
5624  */
5625 void sched_tick(void)
5626 {
5627 	int cpu = smp_processor_id();
5628 	struct rq *rq = cpu_rq(cpu);
5629 	/* accounting goes to the donor task */
5630 	struct task_struct *donor;
5631 	struct rq_flags rf;
5632 	unsigned long hw_pressure;
5633 	u64 resched_latency;
5634 
5635 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5636 		arch_scale_freq_tick();
5637 
5638 	sched_clock_tick();
5639 
5640 	rq_lock(rq, &rf);
5641 	donor = rq->donor;
5642 
5643 	psi_account_irqtime(rq, donor, NULL);
5644 
5645 	update_rq_clock(rq);
5646 	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
5647 	update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
5648 
5649 	if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY))
5650 		resched_curr(rq);
5651 
5652 	donor->sched_class->task_tick(rq, donor, 0);
5653 	if (sched_feat(LATENCY_WARN))
5654 		resched_latency = cpu_resched_latency(rq);
5655 	calc_global_load_tick(rq);
5656 	sched_core_tick(rq);
5657 	task_tick_mm_cid(rq, donor);
5658 	scx_tick(rq);
5659 
5660 	rq_unlock(rq, &rf);
5661 
5662 	if (sched_feat(LATENCY_WARN) && resched_latency)
5663 		resched_latency_warn(cpu, resched_latency);
5664 
5665 	perf_event_task_tick();
5666 
5667 	if (donor->flags & PF_WQ_WORKER)
5668 		wq_worker_tick(donor);
5669 
5670 #ifdef CONFIG_SMP
5671 	if (!scx_switched_all()) {
5672 		rq->idle_balance = idle_cpu(cpu);
5673 		sched_balance_trigger(rq);
5674 	}
5675 #endif
5676 }
5677 
5678 #ifdef CONFIG_NO_HZ_FULL
5679 
5680 struct tick_work {
5681 	int			cpu;
5682 	atomic_t		state;
5683 	struct delayed_work	work;
5684 };
5685 /* Values for ->state, see diagram below. */
5686 #define TICK_SCHED_REMOTE_OFFLINE	0
5687 #define TICK_SCHED_REMOTE_OFFLINING	1
5688 #define TICK_SCHED_REMOTE_RUNNING	2
5689 
5690 /*
5691  * State diagram for ->state:
5692  *
5693  *
5694  *          TICK_SCHED_REMOTE_OFFLINE
5695  *                    |   ^
5696  *                    |   |
5697  *                    |   | sched_tick_remote()
5698  *                    |   |
5699  *                    |   |
5700  *                    +--TICK_SCHED_REMOTE_OFFLINING
5701  *                    |   ^
5702  *                    |   |
5703  * sched_tick_start() |   | sched_tick_stop()
5704  *                    |   |
5705  *                    V   |
5706  *          TICK_SCHED_REMOTE_RUNNING
5707  *
5708  *
5709  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5710  * and sched_tick_start() are happy to leave the state in RUNNING.
5711  */
5712 
5713 static struct tick_work __percpu *tick_work_cpu;
5714 
5715 static void sched_tick_remote(struct work_struct *work)
5716 {
5717 	struct delayed_work *dwork = to_delayed_work(work);
5718 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5719 	int cpu = twork->cpu;
5720 	struct rq *rq = cpu_rq(cpu);
5721 	int os;
5722 
5723 	/*
5724 	 * Handle the tick only if it appears the remote CPU is running in full
5725 	 * dynticks mode. The check is racy by nature, but missing a tick or
5726 	 * having one too much is no big deal because the scheduler tick updates
5727 	 * statistics and checks timeslices in a time-independent way, regardless
5728 	 * of when exactly it is running.
5729 	 */
5730 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5731 		guard(rq_lock_irq)(rq);
5732 		struct task_struct *curr = rq->curr;
5733 
5734 		if (cpu_online(cpu)) {
5735 			/*
5736 			 * Since this is a remote tick for full dynticks mode,
5737 			 * we are always sure that there is no proxy (only a
5738 			 * single task is running).
5739 			 */
5740 			SCHED_WARN_ON(rq->curr != rq->donor);
5741 			update_rq_clock(rq);
5742 
5743 			if (!is_idle_task(curr)) {
5744 				/*
5745 				 * Make sure the next tick runs within a
5746 				 * reasonable amount of time.
5747 				 */
5748 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5749 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5750 			}
5751 			curr->sched_class->task_tick(rq, curr, 0);
5752 
5753 			calc_load_nohz_remote(rq);
5754 		}
5755 	}
5756 
5757 	/*
5758 	 * Run the remote tick once per second (1Hz). This arbitrary
5759 	 * frequency is large enough to avoid overload but short enough
5760 	 * to keep scheduler internal stats reasonably up to date.  But
5761 	 * first update state to reflect hotplug activity if required.
5762 	 */
5763 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5764 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5765 	if (os == TICK_SCHED_REMOTE_RUNNING)
5766 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5767 }
5768 
5769 static void sched_tick_start(int cpu)
5770 {
5771 	int os;
5772 	struct tick_work *twork;
5773 
5774 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5775 		return;
5776 
5777 	WARN_ON_ONCE(!tick_work_cpu);
5778 
5779 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5780 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5781 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5782 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5783 		twork->cpu = cpu;
5784 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5785 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5786 	}
5787 }
5788 
5789 #ifdef CONFIG_HOTPLUG_CPU
5790 static void sched_tick_stop(int cpu)
5791 {
5792 	struct tick_work *twork;
5793 	int os;
5794 
5795 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5796 		return;
5797 
5798 	WARN_ON_ONCE(!tick_work_cpu);
5799 
5800 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5801 	/* There cannot be competing actions, but don't rely on stop-machine. */
5802 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5803 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5804 	/* Don't cancel, as this would mess up the state machine. */
5805 }
5806 #endif /* CONFIG_HOTPLUG_CPU */
5807 
5808 int __init sched_tick_offload_init(void)
5809 {
5810 	tick_work_cpu = alloc_percpu(struct tick_work);
5811 	BUG_ON(!tick_work_cpu);
5812 	return 0;
5813 }
5814 
5815 #else /* !CONFIG_NO_HZ_FULL */
5816 static inline void sched_tick_start(int cpu) { }
5817 static inline void sched_tick_stop(int cpu) { }
5818 #endif
5819 
5820 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5821 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5822 /*
5823  * If the value passed in is equal to the current preempt count
5824  * then we just disabled preemption. Start timing the latency.
5825  */
5826 static inline void preempt_latency_start(int val)
5827 {
5828 	if (preempt_count() == val) {
5829 		unsigned long ip = get_lock_parent_ip();
5830 #ifdef CONFIG_DEBUG_PREEMPT
5831 		current->preempt_disable_ip = ip;
5832 #endif
5833 		trace_preempt_off(CALLER_ADDR0, ip);
5834 	}
5835 }
5836 
5837 void preempt_count_add(int val)
5838 {
5839 #ifdef CONFIG_DEBUG_PREEMPT
5840 	/*
5841 	 * Underflow?
5842 	 */
5843 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5844 		return;
5845 #endif
5846 	__preempt_count_add(val);
5847 #ifdef CONFIG_DEBUG_PREEMPT
5848 	/*
5849 	 * Spinlock count overflowing soon?
5850 	 */
5851 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5852 				PREEMPT_MASK - 10);
5853 #endif
5854 	preempt_latency_start(val);
5855 }
5856 EXPORT_SYMBOL(preempt_count_add);
5857 NOKPROBE_SYMBOL(preempt_count_add);
5858 
5859 /*
5860  * If the value passed in equals to the current preempt count
5861  * then we just enabled preemption. Stop timing the latency.
5862  */
5863 static inline void preempt_latency_stop(int val)
5864 {
5865 	if (preempt_count() == val)
5866 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5867 }
5868 
5869 void preempt_count_sub(int val)
5870 {
5871 #ifdef CONFIG_DEBUG_PREEMPT
5872 	/*
5873 	 * Underflow?
5874 	 */
5875 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5876 		return;
5877 	/*
5878 	 * Is the spinlock portion underflowing?
5879 	 */
5880 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5881 			!(preempt_count() & PREEMPT_MASK)))
5882 		return;
5883 #endif
5884 
5885 	preempt_latency_stop(val);
5886 	__preempt_count_sub(val);
5887 }
5888 EXPORT_SYMBOL(preempt_count_sub);
5889 NOKPROBE_SYMBOL(preempt_count_sub);
5890 
5891 #else
5892 static inline void preempt_latency_start(int val) { }
5893 static inline void preempt_latency_stop(int val) { }
5894 #endif
5895 
5896 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5897 {
5898 #ifdef CONFIG_DEBUG_PREEMPT
5899 	return p->preempt_disable_ip;
5900 #else
5901 	return 0;
5902 #endif
5903 }
5904 
5905 /*
5906  * Print scheduling while atomic bug:
5907  */
5908 static noinline void __schedule_bug(struct task_struct *prev)
5909 {
5910 	/* Save this before calling printk(), since that will clobber it */
5911 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5912 
5913 	if (oops_in_progress)
5914 		return;
5915 
5916 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5917 		prev->comm, prev->pid, preempt_count());
5918 
5919 	debug_show_held_locks(prev);
5920 	print_modules();
5921 	if (irqs_disabled())
5922 		print_irqtrace_events(prev);
5923 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5924 		pr_err("Preemption disabled at:");
5925 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5926 	}
5927 	check_panic_on_warn("scheduling while atomic");
5928 
5929 	dump_stack();
5930 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5931 }
5932 
5933 /*
5934  * Various schedule()-time debugging checks and statistics:
5935  */
5936 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5937 {
5938 #ifdef CONFIG_SCHED_STACK_END_CHECK
5939 	if (task_stack_end_corrupted(prev))
5940 		panic("corrupted stack end detected inside scheduler\n");
5941 
5942 	if (task_scs_end_corrupted(prev))
5943 		panic("corrupted shadow stack detected inside scheduler\n");
5944 #endif
5945 
5946 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5947 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5948 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5949 			prev->comm, prev->pid, prev->non_block_count);
5950 		dump_stack();
5951 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5952 	}
5953 #endif
5954 
5955 	if (unlikely(in_atomic_preempt_off())) {
5956 		__schedule_bug(prev);
5957 		preempt_count_set(PREEMPT_DISABLED);
5958 	}
5959 	rcu_sleep_check();
5960 	SCHED_WARN_ON(ct_state() == CT_STATE_USER);
5961 
5962 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5963 
5964 	schedstat_inc(this_rq()->sched_count);
5965 }
5966 
5967 static void prev_balance(struct rq *rq, struct task_struct *prev,
5968 			 struct rq_flags *rf)
5969 {
5970 	const struct sched_class *start_class = prev->sched_class;
5971 	const struct sched_class *class;
5972 
5973 #ifdef CONFIG_SCHED_CLASS_EXT
5974 	/*
5975 	 * SCX requires a balance() call before every pick_task() including when
5976 	 * waking up from SCHED_IDLE. If @start_class is below SCX, start from
5977 	 * SCX instead. Also, set a flag to detect missing balance() call.
5978 	 */
5979 	if (scx_enabled()) {
5980 		rq->scx.flags |= SCX_RQ_BAL_PENDING;
5981 		if (sched_class_above(&ext_sched_class, start_class))
5982 			start_class = &ext_sched_class;
5983 	}
5984 #endif
5985 
5986 	/*
5987 	 * We must do the balancing pass before put_prev_task(), such
5988 	 * that when we release the rq->lock the task is in the same
5989 	 * state as before we took rq->lock.
5990 	 *
5991 	 * We can terminate the balance pass as soon as we know there is
5992 	 * a runnable task of @class priority or higher.
5993 	 */
5994 	for_active_class_range(class, start_class, &idle_sched_class) {
5995 		if (class->balance && class->balance(rq, prev, rf))
5996 			break;
5997 	}
5998 }
5999 
6000 /*
6001  * Pick up the highest-prio task:
6002  */
6003 static inline struct task_struct *
6004 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6005 {
6006 	const struct sched_class *class;
6007 	struct task_struct *p;
6008 
6009 	rq->dl_server = NULL;
6010 
6011 	if (scx_enabled())
6012 		goto restart;
6013 
6014 	/*
6015 	 * Optimization: we know that if all tasks are in the fair class we can
6016 	 * call that function directly, but only if the @prev task wasn't of a
6017 	 * higher scheduling class, because otherwise those lose the
6018 	 * opportunity to pull in more work from other CPUs.
6019 	 */
6020 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6021 		   rq->nr_running == rq->cfs.h_nr_running)) {
6022 
6023 		p = pick_next_task_fair(rq, prev, rf);
6024 		if (unlikely(p == RETRY_TASK))
6025 			goto restart;
6026 
6027 		/* Assume the next prioritized class is idle_sched_class */
6028 		if (!p) {
6029 			p = pick_task_idle(rq);
6030 			put_prev_set_next_task(rq, prev, p);
6031 		}
6032 
6033 		return p;
6034 	}
6035 
6036 restart:
6037 	prev_balance(rq, prev, rf);
6038 
6039 	for_each_active_class(class) {
6040 		if (class->pick_next_task) {
6041 			p = class->pick_next_task(rq, prev);
6042 			if (p)
6043 				return p;
6044 		} else {
6045 			p = class->pick_task(rq);
6046 			if (p) {
6047 				put_prev_set_next_task(rq, prev, p);
6048 				return p;
6049 			}
6050 		}
6051 	}
6052 
6053 	BUG(); /* The idle class should always have a runnable task. */
6054 }
6055 
6056 #ifdef CONFIG_SCHED_CORE
6057 static inline bool is_task_rq_idle(struct task_struct *t)
6058 {
6059 	return (task_rq(t)->idle == t);
6060 }
6061 
6062 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6063 {
6064 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6065 }
6066 
6067 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6068 {
6069 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6070 		return true;
6071 
6072 	return a->core_cookie == b->core_cookie;
6073 }
6074 
6075 static inline struct task_struct *pick_task(struct rq *rq)
6076 {
6077 	const struct sched_class *class;
6078 	struct task_struct *p;
6079 
6080 	rq->dl_server = NULL;
6081 
6082 	for_each_active_class(class) {
6083 		p = class->pick_task(rq);
6084 		if (p)
6085 			return p;
6086 	}
6087 
6088 	BUG(); /* The idle class should always have a runnable task. */
6089 }
6090 
6091 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6092 
6093 static void queue_core_balance(struct rq *rq);
6094 
6095 static struct task_struct *
6096 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6097 {
6098 	struct task_struct *next, *p, *max = NULL;
6099 	const struct cpumask *smt_mask;
6100 	bool fi_before = false;
6101 	bool core_clock_updated = (rq == rq->core);
6102 	unsigned long cookie;
6103 	int i, cpu, occ = 0;
6104 	struct rq *rq_i;
6105 	bool need_sync;
6106 
6107 	if (!sched_core_enabled(rq))
6108 		return __pick_next_task(rq, prev, rf);
6109 
6110 	cpu = cpu_of(rq);
6111 
6112 	/* Stopper task is switching into idle, no need core-wide selection. */
6113 	if (cpu_is_offline(cpu)) {
6114 		/*
6115 		 * Reset core_pick so that we don't enter the fastpath when
6116 		 * coming online. core_pick would already be migrated to
6117 		 * another cpu during offline.
6118 		 */
6119 		rq->core_pick = NULL;
6120 		rq->core_dl_server = NULL;
6121 		return __pick_next_task(rq, prev, rf);
6122 	}
6123 
6124 	/*
6125 	 * If there were no {en,de}queues since we picked (IOW, the task
6126 	 * pointers are all still valid), and we haven't scheduled the last
6127 	 * pick yet, do so now.
6128 	 *
6129 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6130 	 * it was either offline or went offline during a sibling's core-wide
6131 	 * selection. In this case, do a core-wide selection.
6132 	 */
6133 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6134 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6135 	    rq->core_pick) {
6136 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6137 
6138 		next = rq->core_pick;
6139 		rq->dl_server = rq->core_dl_server;
6140 		rq->core_pick = NULL;
6141 		rq->core_dl_server = NULL;
6142 		goto out_set_next;
6143 	}
6144 
6145 	prev_balance(rq, prev, rf);
6146 
6147 	smt_mask = cpu_smt_mask(cpu);
6148 	need_sync = !!rq->core->core_cookie;
6149 
6150 	/* reset state */
6151 	rq->core->core_cookie = 0UL;
6152 	if (rq->core->core_forceidle_count) {
6153 		if (!core_clock_updated) {
6154 			update_rq_clock(rq->core);
6155 			core_clock_updated = true;
6156 		}
6157 		sched_core_account_forceidle(rq);
6158 		/* reset after accounting force idle */
6159 		rq->core->core_forceidle_start = 0;
6160 		rq->core->core_forceidle_count = 0;
6161 		rq->core->core_forceidle_occupation = 0;
6162 		need_sync = true;
6163 		fi_before = true;
6164 	}
6165 
6166 	/*
6167 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6168 	 *
6169 	 * @task_seq guards the task state ({en,de}queues)
6170 	 * @pick_seq is the @task_seq we did a selection on
6171 	 * @sched_seq is the @pick_seq we scheduled
6172 	 *
6173 	 * However, preemptions can cause multiple picks on the same task set.
6174 	 * 'Fix' this by also increasing @task_seq for every pick.
6175 	 */
6176 	rq->core->core_task_seq++;
6177 
6178 	/*
6179 	 * Optimize for common case where this CPU has no cookies
6180 	 * and there are no cookied tasks running on siblings.
6181 	 */
6182 	if (!need_sync) {
6183 		next = pick_task(rq);
6184 		if (!next->core_cookie) {
6185 			rq->core_pick = NULL;
6186 			rq->core_dl_server = NULL;
6187 			/*
6188 			 * For robustness, update the min_vruntime_fi for
6189 			 * unconstrained picks as well.
6190 			 */
6191 			WARN_ON_ONCE(fi_before);
6192 			task_vruntime_update(rq, next, false);
6193 			goto out_set_next;
6194 		}
6195 	}
6196 
6197 	/*
6198 	 * For each thread: do the regular task pick and find the max prio task
6199 	 * amongst them.
6200 	 *
6201 	 * Tie-break prio towards the current CPU
6202 	 */
6203 	for_each_cpu_wrap(i, smt_mask, cpu) {
6204 		rq_i = cpu_rq(i);
6205 
6206 		/*
6207 		 * Current cpu always has its clock updated on entrance to
6208 		 * pick_next_task(). If the current cpu is not the core,
6209 		 * the core may also have been updated above.
6210 		 */
6211 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6212 			update_rq_clock(rq_i);
6213 
6214 		rq_i->core_pick = p = pick_task(rq_i);
6215 		rq_i->core_dl_server = rq_i->dl_server;
6216 
6217 		if (!max || prio_less(max, p, fi_before))
6218 			max = p;
6219 	}
6220 
6221 	cookie = rq->core->core_cookie = max->core_cookie;
6222 
6223 	/*
6224 	 * For each thread: try and find a runnable task that matches @max or
6225 	 * force idle.
6226 	 */
6227 	for_each_cpu(i, smt_mask) {
6228 		rq_i = cpu_rq(i);
6229 		p = rq_i->core_pick;
6230 
6231 		if (!cookie_equals(p, cookie)) {
6232 			p = NULL;
6233 			if (cookie)
6234 				p = sched_core_find(rq_i, cookie);
6235 			if (!p)
6236 				p = idle_sched_class.pick_task(rq_i);
6237 		}
6238 
6239 		rq_i->core_pick = p;
6240 		rq_i->core_dl_server = NULL;
6241 
6242 		if (p == rq_i->idle) {
6243 			if (rq_i->nr_running) {
6244 				rq->core->core_forceidle_count++;
6245 				if (!fi_before)
6246 					rq->core->core_forceidle_seq++;
6247 			}
6248 		} else {
6249 			occ++;
6250 		}
6251 	}
6252 
6253 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6254 		rq->core->core_forceidle_start = rq_clock(rq->core);
6255 		rq->core->core_forceidle_occupation = occ;
6256 	}
6257 
6258 	rq->core->core_pick_seq = rq->core->core_task_seq;
6259 	next = rq->core_pick;
6260 	rq->core_sched_seq = rq->core->core_pick_seq;
6261 
6262 	/* Something should have been selected for current CPU */
6263 	WARN_ON_ONCE(!next);
6264 
6265 	/*
6266 	 * Reschedule siblings
6267 	 *
6268 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6269 	 * sending an IPI (below) ensures the sibling will no longer be running
6270 	 * their task. This ensures there is no inter-sibling overlap between
6271 	 * non-matching user state.
6272 	 */
6273 	for_each_cpu(i, smt_mask) {
6274 		rq_i = cpu_rq(i);
6275 
6276 		/*
6277 		 * An online sibling might have gone offline before a task
6278 		 * could be picked for it, or it might be offline but later
6279 		 * happen to come online, but its too late and nothing was
6280 		 * picked for it.  That's Ok - it will pick tasks for itself,
6281 		 * so ignore it.
6282 		 */
6283 		if (!rq_i->core_pick)
6284 			continue;
6285 
6286 		/*
6287 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6288 		 * fi_before     fi      update?
6289 		 *  0            0       1
6290 		 *  0            1       1
6291 		 *  1            0       1
6292 		 *  1            1       0
6293 		 */
6294 		if (!(fi_before && rq->core->core_forceidle_count))
6295 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6296 
6297 		rq_i->core_pick->core_occupation = occ;
6298 
6299 		if (i == cpu) {
6300 			rq_i->core_pick = NULL;
6301 			rq_i->core_dl_server = NULL;
6302 			continue;
6303 		}
6304 
6305 		/* Did we break L1TF mitigation requirements? */
6306 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6307 
6308 		if (rq_i->curr == rq_i->core_pick) {
6309 			rq_i->core_pick = NULL;
6310 			rq_i->core_dl_server = NULL;
6311 			continue;
6312 		}
6313 
6314 		resched_curr(rq_i);
6315 	}
6316 
6317 out_set_next:
6318 	put_prev_set_next_task(rq, prev, next);
6319 	if (rq->core->core_forceidle_count && next == rq->idle)
6320 		queue_core_balance(rq);
6321 
6322 	return next;
6323 }
6324 
6325 static bool try_steal_cookie(int this, int that)
6326 {
6327 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6328 	struct task_struct *p;
6329 	unsigned long cookie;
6330 	bool success = false;
6331 
6332 	guard(irq)();
6333 	guard(double_rq_lock)(dst, src);
6334 
6335 	cookie = dst->core->core_cookie;
6336 	if (!cookie)
6337 		return false;
6338 
6339 	if (dst->curr != dst->idle)
6340 		return false;
6341 
6342 	p = sched_core_find(src, cookie);
6343 	if (!p)
6344 		return false;
6345 
6346 	do {
6347 		if (p == src->core_pick || p == src->curr)
6348 			goto next;
6349 
6350 		if (!is_cpu_allowed(p, this))
6351 			goto next;
6352 
6353 		if (p->core_occupation > dst->idle->core_occupation)
6354 			goto next;
6355 		/*
6356 		 * sched_core_find() and sched_core_next() will ensure
6357 		 * that task @p is not throttled now, we also need to
6358 		 * check whether the runqueue of the destination CPU is
6359 		 * being throttled.
6360 		 */
6361 		if (sched_task_is_throttled(p, this))
6362 			goto next;
6363 
6364 		move_queued_task_locked(src, dst, p);
6365 		resched_curr(dst);
6366 
6367 		success = true;
6368 		break;
6369 
6370 next:
6371 		p = sched_core_next(p, cookie);
6372 	} while (p);
6373 
6374 	return success;
6375 }
6376 
6377 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6378 {
6379 	int i;
6380 
6381 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6382 		if (i == cpu)
6383 			continue;
6384 
6385 		if (need_resched())
6386 			break;
6387 
6388 		if (try_steal_cookie(cpu, i))
6389 			return true;
6390 	}
6391 
6392 	return false;
6393 }
6394 
6395 static void sched_core_balance(struct rq *rq)
6396 {
6397 	struct sched_domain *sd;
6398 	int cpu = cpu_of(rq);
6399 
6400 	guard(preempt)();
6401 	guard(rcu)();
6402 
6403 	raw_spin_rq_unlock_irq(rq);
6404 	for_each_domain(cpu, sd) {
6405 		if (need_resched())
6406 			break;
6407 
6408 		if (steal_cookie_task(cpu, sd))
6409 			break;
6410 	}
6411 	raw_spin_rq_lock_irq(rq);
6412 }
6413 
6414 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6415 
6416 static void queue_core_balance(struct rq *rq)
6417 {
6418 	if (!sched_core_enabled(rq))
6419 		return;
6420 
6421 	if (!rq->core->core_cookie)
6422 		return;
6423 
6424 	if (!rq->nr_running) /* not forced idle */
6425 		return;
6426 
6427 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6428 }
6429 
6430 DEFINE_LOCK_GUARD_1(core_lock, int,
6431 		    sched_core_lock(*_T->lock, &_T->flags),
6432 		    sched_core_unlock(*_T->lock, &_T->flags),
6433 		    unsigned long flags)
6434 
6435 static void sched_core_cpu_starting(unsigned int cpu)
6436 {
6437 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6438 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6439 	int t;
6440 
6441 	guard(core_lock)(&cpu);
6442 
6443 	WARN_ON_ONCE(rq->core != rq);
6444 
6445 	/* if we're the first, we'll be our own leader */
6446 	if (cpumask_weight(smt_mask) == 1)
6447 		return;
6448 
6449 	/* find the leader */
6450 	for_each_cpu(t, smt_mask) {
6451 		if (t == cpu)
6452 			continue;
6453 		rq = cpu_rq(t);
6454 		if (rq->core == rq) {
6455 			core_rq = rq;
6456 			break;
6457 		}
6458 	}
6459 
6460 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6461 		return;
6462 
6463 	/* install and validate core_rq */
6464 	for_each_cpu(t, smt_mask) {
6465 		rq = cpu_rq(t);
6466 
6467 		if (t == cpu)
6468 			rq->core = core_rq;
6469 
6470 		WARN_ON_ONCE(rq->core != core_rq);
6471 	}
6472 }
6473 
6474 static void sched_core_cpu_deactivate(unsigned int cpu)
6475 {
6476 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6477 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6478 	int t;
6479 
6480 	guard(core_lock)(&cpu);
6481 
6482 	/* if we're the last man standing, nothing to do */
6483 	if (cpumask_weight(smt_mask) == 1) {
6484 		WARN_ON_ONCE(rq->core != rq);
6485 		return;
6486 	}
6487 
6488 	/* if we're not the leader, nothing to do */
6489 	if (rq->core != rq)
6490 		return;
6491 
6492 	/* find a new leader */
6493 	for_each_cpu(t, smt_mask) {
6494 		if (t == cpu)
6495 			continue;
6496 		core_rq = cpu_rq(t);
6497 		break;
6498 	}
6499 
6500 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6501 		return;
6502 
6503 	/* copy the shared state to the new leader */
6504 	core_rq->core_task_seq             = rq->core_task_seq;
6505 	core_rq->core_pick_seq             = rq->core_pick_seq;
6506 	core_rq->core_cookie               = rq->core_cookie;
6507 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6508 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6509 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6510 
6511 	/*
6512 	 * Accounting edge for forced idle is handled in pick_next_task().
6513 	 * Don't need another one here, since the hotplug thread shouldn't
6514 	 * have a cookie.
6515 	 */
6516 	core_rq->core_forceidle_start = 0;
6517 
6518 	/* install new leader */
6519 	for_each_cpu(t, smt_mask) {
6520 		rq = cpu_rq(t);
6521 		rq->core = core_rq;
6522 	}
6523 }
6524 
6525 static inline void sched_core_cpu_dying(unsigned int cpu)
6526 {
6527 	struct rq *rq = cpu_rq(cpu);
6528 
6529 	if (rq->core != rq)
6530 		rq->core = rq;
6531 }
6532 
6533 #else /* !CONFIG_SCHED_CORE */
6534 
6535 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6536 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6537 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6538 
6539 static struct task_struct *
6540 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6541 {
6542 	return __pick_next_task(rq, prev, rf);
6543 }
6544 
6545 #endif /* CONFIG_SCHED_CORE */
6546 
6547 /*
6548  * Constants for the sched_mode argument of __schedule().
6549  *
6550  * The mode argument allows RT enabled kernels to differentiate a
6551  * preemption from blocking on an 'sleeping' spin/rwlock.
6552  */
6553 #define SM_IDLE			(-1)
6554 #define SM_NONE			0
6555 #define SM_PREEMPT		1
6556 #define SM_RTLOCK_WAIT		2
6557 
6558 /*
6559  * Helper function for __schedule()
6560  *
6561  * If a task does not have signals pending, deactivate it
6562  * Otherwise marks the task's __state as RUNNING
6563  */
6564 static bool try_to_block_task(struct rq *rq, struct task_struct *p,
6565 			      unsigned long task_state)
6566 {
6567 	int flags = DEQUEUE_NOCLOCK;
6568 
6569 	if (signal_pending_state(task_state, p)) {
6570 		WRITE_ONCE(p->__state, TASK_RUNNING);
6571 		return false;
6572 	}
6573 
6574 	p->sched_contributes_to_load =
6575 		(task_state & TASK_UNINTERRUPTIBLE) &&
6576 		!(task_state & TASK_NOLOAD) &&
6577 		!(task_state & TASK_FROZEN);
6578 
6579 	if (unlikely(is_special_task_state(task_state)))
6580 		flags |= DEQUEUE_SPECIAL;
6581 
6582 	/*
6583 	 * __schedule()			ttwu()
6584 	 *   prev_state = prev->state;    if (p->on_rq && ...)
6585 	 *   if (prev_state)		    goto out;
6586 	 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6587 	 *				  p->state = TASK_WAKING
6588 	 *
6589 	 * Where __schedule() and ttwu() have matching control dependencies.
6590 	 *
6591 	 * After this, schedule() must not care about p->state any more.
6592 	 */
6593 	block_task(rq, p, flags);
6594 	return true;
6595 }
6596 
6597 /*
6598  * __schedule() is the main scheduler function.
6599  *
6600  * The main means of driving the scheduler and thus entering this function are:
6601  *
6602  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6603  *
6604  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6605  *      paths. For example, see arch/x86/entry_64.S.
6606  *
6607  *      To drive preemption between tasks, the scheduler sets the flag in timer
6608  *      interrupt handler sched_tick().
6609  *
6610  *   3. Wakeups don't really cause entry into schedule(). They add a
6611  *      task to the run-queue and that's it.
6612  *
6613  *      Now, if the new task added to the run-queue preempts the current
6614  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6615  *      called on the nearest possible occasion:
6616  *
6617  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6618  *
6619  *         - in syscall or exception context, at the next outmost
6620  *           preempt_enable(). (this might be as soon as the wake_up()'s
6621  *           spin_unlock()!)
6622  *
6623  *         - in IRQ context, return from interrupt-handler to
6624  *           preemptible context
6625  *
6626  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6627  *         then at the next:
6628  *
6629  *          - cond_resched() call
6630  *          - explicit schedule() call
6631  *          - return from syscall or exception to user-space
6632  *          - return from interrupt-handler to user-space
6633  *
6634  * WARNING: must be called with preemption disabled!
6635  */
6636 static void __sched notrace __schedule(int sched_mode)
6637 {
6638 	struct task_struct *prev, *next;
6639 	/*
6640 	 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
6641 	 * as a preemption by schedule_debug() and RCU.
6642 	 */
6643 	bool preempt = sched_mode > SM_NONE;
6644 	bool block = false;
6645 	unsigned long *switch_count;
6646 	unsigned long prev_state;
6647 	struct rq_flags rf;
6648 	struct rq *rq;
6649 	int cpu;
6650 
6651 	cpu = smp_processor_id();
6652 	rq = cpu_rq(cpu);
6653 	prev = rq->curr;
6654 
6655 	schedule_debug(prev, preempt);
6656 
6657 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6658 		hrtick_clear(rq);
6659 
6660 	local_irq_disable();
6661 	rcu_note_context_switch(preempt);
6662 
6663 	/*
6664 	 * Make sure that signal_pending_state()->signal_pending() below
6665 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6666 	 * done by the caller to avoid the race with signal_wake_up():
6667 	 *
6668 	 * __set_current_state(@state)		signal_wake_up()
6669 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6670 	 *					  wake_up_state(p, state)
6671 	 *   LOCK rq->lock			    LOCK p->pi_state
6672 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6673 	 *     if (signal_pending_state())	    if (p->state & @state)
6674 	 *
6675 	 * Also, the membarrier system call requires a full memory barrier
6676 	 * after coming from user-space, before storing to rq->curr; this
6677 	 * barrier matches a full barrier in the proximity of the membarrier
6678 	 * system call exit.
6679 	 */
6680 	rq_lock(rq, &rf);
6681 	smp_mb__after_spinlock();
6682 
6683 	/* Promote REQ to ACT */
6684 	rq->clock_update_flags <<= 1;
6685 	update_rq_clock(rq);
6686 	rq->clock_update_flags = RQCF_UPDATED;
6687 
6688 	switch_count = &prev->nivcsw;
6689 
6690 	/* Task state changes only considers SM_PREEMPT as preemption */
6691 	preempt = sched_mode == SM_PREEMPT;
6692 
6693 	/*
6694 	 * We must load prev->state once (task_struct::state is volatile), such
6695 	 * that we form a control dependency vs deactivate_task() below.
6696 	 */
6697 	prev_state = READ_ONCE(prev->__state);
6698 	if (sched_mode == SM_IDLE) {
6699 		/* SCX must consult the BPF scheduler to tell if rq is empty */
6700 		if (!rq->nr_running && !scx_enabled()) {
6701 			next = prev;
6702 			goto picked;
6703 		}
6704 	} else if (!preempt && prev_state) {
6705 		block = try_to_block_task(rq, prev, prev_state);
6706 		switch_count = &prev->nvcsw;
6707 	}
6708 
6709 	next = pick_next_task(rq, prev, &rf);
6710 	rq_set_donor(rq, next);
6711 picked:
6712 	clear_tsk_need_resched(prev);
6713 	clear_preempt_need_resched();
6714 #ifdef CONFIG_SCHED_DEBUG
6715 	rq->last_seen_need_resched_ns = 0;
6716 #endif
6717 
6718 	if (likely(prev != next)) {
6719 		rq->nr_switches++;
6720 		/*
6721 		 * RCU users of rcu_dereference(rq->curr) may not see
6722 		 * changes to task_struct made by pick_next_task().
6723 		 */
6724 		RCU_INIT_POINTER(rq->curr, next);
6725 		/*
6726 		 * The membarrier system call requires each architecture
6727 		 * to have a full memory barrier after updating
6728 		 * rq->curr, before returning to user-space.
6729 		 *
6730 		 * Here are the schemes providing that barrier on the
6731 		 * various architectures:
6732 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6733 		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
6734 		 *   on PowerPC and on RISC-V.
6735 		 * - finish_lock_switch() for weakly-ordered
6736 		 *   architectures where spin_unlock is a full barrier,
6737 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6738 		 *   is a RELEASE barrier),
6739 		 *
6740 		 * The barrier matches a full barrier in the proximity of
6741 		 * the membarrier system call entry.
6742 		 *
6743 		 * On RISC-V, this barrier pairing is also needed for the
6744 		 * SYNC_CORE command when switching between processes, cf.
6745 		 * the inline comments in membarrier_arch_switch_mm().
6746 		 */
6747 		++*switch_count;
6748 
6749 		migrate_disable_switch(rq, prev);
6750 		psi_account_irqtime(rq, prev, next);
6751 		psi_sched_switch(prev, next, block);
6752 
6753 		trace_sched_switch(preempt, prev, next, prev_state);
6754 
6755 		/* Also unlocks the rq: */
6756 		rq = context_switch(rq, prev, next, &rf);
6757 	} else {
6758 		rq_unpin_lock(rq, &rf);
6759 		__balance_callbacks(rq);
6760 		raw_spin_rq_unlock_irq(rq);
6761 	}
6762 }
6763 
6764 void __noreturn do_task_dead(void)
6765 {
6766 	/* Causes final put_task_struct in finish_task_switch(): */
6767 	set_special_state(TASK_DEAD);
6768 
6769 	/* Tell freezer to ignore us: */
6770 	current->flags |= PF_NOFREEZE;
6771 
6772 	__schedule(SM_NONE);
6773 	BUG();
6774 
6775 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6776 	for (;;)
6777 		cpu_relax();
6778 }
6779 
6780 static inline void sched_submit_work(struct task_struct *tsk)
6781 {
6782 	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6783 	unsigned int task_flags;
6784 
6785 	/*
6786 	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6787 	 * will use a blocking primitive -- which would lead to recursion.
6788 	 */
6789 	lock_map_acquire_try(&sched_map);
6790 
6791 	task_flags = tsk->flags;
6792 	/*
6793 	 * If a worker goes to sleep, notify and ask workqueue whether it
6794 	 * wants to wake up a task to maintain concurrency.
6795 	 */
6796 	if (task_flags & PF_WQ_WORKER)
6797 		wq_worker_sleeping(tsk);
6798 	else if (task_flags & PF_IO_WORKER)
6799 		io_wq_worker_sleeping(tsk);
6800 
6801 	/*
6802 	 * spinlock and rwlock must not flush block requests.  This will
6803 	 * deadlock if the callback attempts to acquire a lock which is
6804 	 * already acquired.
6805 	 */
6806 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6807 
6808 	/*
6809 	 * If we are going to sleep and we have plugged IO queued,
6810 	 * make sure to submit it to avoid deadlocks.
6811 	 */
6812 	blk_flush_plug(tsk->plug, true);
6813 
6814 	lock_map_release(&sched_map);
6815 }
6816 
6817 static void sched_update_worker(struct task_struct *tsk)
6818 {
6819 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
6820 		if (tsk->flags & PF_BLOCK_TS)
6821 			blk_plug_invalidate_ts(tsk);
6822 		if (tsk->flags & PF_WQ_WORKER)
6823 			wq_worker_running(tsk);
6824 		else if (tsk->flags & PF_IO_WORKER)
6825 			io_wq_worker_running(tsk);
6826 	}
6827 }
6828 
6829 static __always_inline void __schedule_loop(int sched_mode)
6830 {
6831 	do {
6832 		preempt_disable();
6833 		__schedule(sched_mode);
6834 		sched_preempt_enable_no_resched();
6835 	} while (need_resched());
6836 }
6837 
6838 asmlinkage __visible void __sched schedule(void)
6839 {
6840 	struct task_struct *tsk = current;
6841 
6842 #ifdef CONFIG_RT_MUTEXES
6843 	lockdep_assert(!tsk->sched_rt_mutex);
6844 #endif
6845 
6846 	if (!task_is_running(tsk))
6847 		sched_submit_work(tsk);
6848 	__schedule_loop(SM_NONE);
6849 	sched_update_worker(tsk);
6850 }
6851 EXPORT_SYMBOL(schedule);
6852 
6853 /*
6854  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6855  * state (have scheduled out non-voluntarily) by making sure that all
6856  * tasks have either left the run queue or have gone into user space.
6857  * As idle tasks do not do either, they must not ever be preempted
6858  * (schedule out non-voluntarily).
6859  *
6860  * schedule_idle() is similar to schedule_preempt_disable() except that it
6861  * never enables preemption because it does not call sched_submit_work().
6862  */
6863 void __sched schedule_idle(void)
6864 {
6865 	/*
6866 	 * As this skips calling sched_submit_work(), which the idle task does
6867 	 * regardless because that function is a NOP when the task is in a
6868 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6869 	 * current task can be in any other state. Note, idle is always in the
6870 	 * TASK_RUNNING state.
6871 	 */
6872 	WARN_ON_ONCE(current->__state);
6873 	do {
6874 		__schedule(SM_IDLE);
6875 	} while (need_resched());
6876 }
6877 
6878 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6879 asmlinkage __visible void __sched schedule_user(void)
6880 {
6881 	/*
6882 	 * If we come here after a random call to set_need_resched(),
6883 	 * or we have been woken up remotely but the IPI has not yet arrived,
6884 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6885 	 * we find a better solution.
6886 	 *
6887 	 * NB: There are buggy callers of this function.  Ideally we
6888 	 * should warn if prev_state != CT_STATE_USER, but that will trigger
6889 	 * too frequently to make sense yet.
6890 	 */
6891 	enum ctx_state prev_state = exception_enter();
6892 	schedule();
6893 	exception_exit(prev_state);
6894 }
6895 #endif
6896 
6897 /**
6898  * schedule_preempt_disabled - called with preemption disabled
6899  *
6900  * Returns with preemption disabled. Note: preempt_count must be 1
6901  */
6902 void __sched schedule_preempt_disabled(void)
6903 {
6904 	sched_preempt_enable_no_resched();
6905 	schedule();
6906 	preempt_disable();
6907 }
6908 
6909 #ifdef CONFIG_PREEMPT_RT
6910 void __sched notrace schedule_rtlock(void)
6911 {
6912 	__schedule_loop(SM_RTLOCK_WAIT);
6913 }
6914 NOKPROBE_SYMBOL(schedule_rtlock);
6915 #endif
6916 
6917 static void __sched notrace preempt_schedule_common(void)
6918 {
6919 	do {
6920 		/*
6921 		 * Because the function tracer can trace preempt_count_sub()
6922 		 * and it also uses preempt_enable/disable_notrace(), if
6923 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6924 		 * by the function tracer will call this function again and
6925 		 * cause infinite recursion.
6926 		 *
6927 		 * Preemption must be disabled here before the function
6928 		 * tracer can trace. Break up preempt_disable() into two
6929 		 * calls. One to disable preemption without fear of being
6930 		 * traced. The other to still record the preemption latency,
6931 		 * which can also be traced by the function tracer.
6932 		 */
6933 		preempt_disable_notrace();
6934 		preempt_latency_start(1);
6935 		__schedule(SM_PREEMPT);
6936 		preempt_latency_stop(1);
6937 		preempt_enable_no_resched_notrace();
6938 
6939 		/*
6940 		 * Check again in case we missed a preemption opportunity
6941 		 * between schedule and now.
6942 		 */
6943 	} while (need_resched());
6944 }
6945 
6946 #ifdef CONFIG_PREEMPTION
6947 /*
6948  * This is the entry point to schedule() from in-kernel preemption
6949  * off of preempt_enable.
6950  */
6951 asmlinkage __visible void __sched notrace preempt_schedule(void)
6952 {
6953 	/*
6954 	 * If there is a non-zero preempt_count or interrupts are disabled,
6955 	 * we do not want to preempt the current task. Just return..
6956 	 */
6957 	if (likely(!preemptible()))
6958 		return;
6959 	preempt_schedule_common();
6960 }
6961 NOKPROBE_SYMBOL(preempt_schedule);
6962 EXPORT_SYMBOL(preempt_schedule);
6963 
6964 #ifdef CONFIG_PREEMPT_DYNAMIC
6965 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6966 #ifndef preempt_schedule_dynamic_enabled
6967 #define preempt_schedule_dynamic_enabled	preempt_schedule
6968 #define preempt_schedule_dynamic_disabled	NULL
6969 #endif
6970 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6971 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6972 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6973 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6974 void __sched notrace dynamic_preempt_schedule(void)
6975 {
6976 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6977 		return;
6978 	preempt_schedule();
6979 }
6980 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6981 EXPORT_SYMBOL(dynamic_preempt_schedule);
6982 #endif
6983 #endif
6984 
6985 /**
6986  * preempt_schedule_notrace - preempt_schedule called by tracing
6987  *
6988  * The tracing infrastructure uses preempt_enable_notrace to prevent
6989  * recursion and tracing preempt enabling caused by the tracing
6990  * infrastructure itself. But as tracing can happen in areas coming
6991  * from userspace or just about to enter userspace, a preempt enable
6992  * can occur before user_exit() is called. This will cause the scheduler
6993  * to be called when the system is still in usermode.
6994  *
6995  * To prevent this, the preempt_enable_notrace will use this function
6996  * instead of preempt_schedule() to exit user context if needed before
6997  * calling the scheduler.
6998  */
6999 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
7000 {
7001 	enum ctx_state prev_ctx;
7002 
7003 	if (likely(!preemptible()))
7004 		return;
7005 
7006 	do {
7007 		/*
7008 		 * Because the function tracer can trace preempt_count_sub()
7009 		 * and it also uses preempt_enable/disable_notrace(), if
7010 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
7011 		 * by the function tracer will call this function again and
7012 		 * cause infinite recursion.
7013 		 *
7014 		 * Preemption must be disabled here before the function
7015 		 * tracer can trace. Break up preempt_disable() into two
7016 		 * calls. One to disable preemption without fear of being
7017 		 * traced. The other to still record the preemption latency,
7018 		 * which can also be traced by the function tracer.
7019 		 */
7020 		preempt_disable_notrace();
7021 		preempt_latency_start(1);
7022 		/*
7023 		 * Needs preempt disabled in case user_exit() is traced
7024 		 * and the tracer calls preempt_enable_notrace() causing
7025 		 * an infinite recursion.
7026 		 */
7027 		prev_ctx = exception_enter();
7028 		__schedule(SM_PREEMPT);
7029 		exception_exit(prev_ctx);
7030 
7031 		preempt_latency_stop(1);
7032 		preempt_enable_no_resched_notrace();
7033 	} while (need_resched());
7034 }
7035 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7036 
7037 #ifdef CONFIG_PREEMPT_DYNAMIC
7038 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7039 #ifndef preempt_schedule_notrace_dynamic_enabled
7040 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
7041 #define preempt_schedule_notrace_dynamic_disabled	NULL
7042 #endif
7043 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7044 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7045 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7046 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
7047 void __sched notrace dynamic_preempt_schedule_notrace(void)
7048 {
7049 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7050 		return;
7051 	preempt_schedule_notrace();
7052 }
7053 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7054 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7055 #endif
7056 #endif
7057 
7058 #endif /* CONFIG_PREEMPTION */
7059 
7060 /*
7061  * This is the entry point to schedule() from kernel preemption
7062  * off of IRQ context.
7063  * Note, that this is called and return with IRQs disabled. This will
7064  * protect us against recursive calling from IRQ contexts.
7065  */
7066 asmlinkage __visible void __sched preempt_schedule_irq(void)
7067 {
7068 	enum ctx_state prev_state;
7069 
7070 	/* Catch callers which need to be fixed */
7071 	BUG_ON(preempt_count() || !irqs_disabled());
7072 
7073 	prev_state = exception_enter();
7074 
7075 	do {
7076 		preempt_disable();
7077 		local_irq_enable();
7078 		__schedule(SM_PREEMPT);
7079 		local_irq_disable();
7080 		sched_preempt_enable_no_resched();
7081 	} while (need_resched());
7082 
7083 	exception_exit(prev_state);
7084 }
7085 
7086 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7087 			  void *key)
7088 {
7089 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7090 	return try_to_wake_up(curr->private, mode, wake_flags);
7091 }
7092 EXPORT_SYMBOL(default_wake_function);
7093 
7094 const struct sched_class *__setscheduler_class(int policy, int prio)
7095 {
7096 	if (dl_prio(prio))
7097 		return &dl_sched_class;
7098 
7099 	if (rt_prio(prio))
7100 		return &rt_sched_class;
7101 
7102 #ifdef CONFIG_SCHED_CLASS_EXT
7103 	if (task_should_scx(policy))
7104 		return &ext_sched_class;
7105 #endif
7106 
7107 	return &fair_sched_class;
7108 }
7109 
7110 #ifdef CONFIG_RT_MUTEXES
7111 
7112 /*
7113  * Would be more useful with typeof()/auto_type but they don't mix with
7114  * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7115  * name such that if someone were to implement this function we get to compare
7116  * notes.
7117  */
7118 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7119 
7120 void rt_mutex_pre_schedule(void)
7121 {
7122 	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7123 	sched_submit_work(current);
7124 }
7125 
7126 void rt_mutex_schedule(void)
7127 {
7128 	lockdep_assert(current->sched_rt_mutex);
7129 	__schedule_loop(SM_NONE);
7130 }
7131 
7132 void rt_mutex_post_schedule(void)
7133 {
7134 	sched_update_worker(current);
7135 	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7136 }
7137 
7138 /*
7139  * rt_mutex_setprio - set the current priority of a task
7140  * @p: task to boost
7141  * @pi_task: donor task
7142  *
7143  * This function changes the 'effective' priority of a task. It does
7144  * not touch ->normal_prio like __setscheduler().
7145  *
7146  * Used by the rt_mutex code to implement priority inheritance
7147  * logic. Call site only calls if the priority of the task changed.
7148  */
7149 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7150 {
7151 	int prio, oldprio, queued, running, queue_flag =
7152 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7153 	const struct sched_class *prev_class, *next_class;
7154 	struct rq_flags rf;
7155 	struct rq *rq;
7156 
7157 	/* XXX used to be waiter->prio, not waiter->task->prio */
7158 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7159 
7160 	/*
7161 	 * If nothing changed; bail early.
7162 	 */
7163 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7164 		return;
7165 
7166 	rq = __task_rq_lock(p, &rf);
7167 	update_rq_clock(rq);
7168 	/*
7169 	 * Set under pi_lock && rq->lock, such that the value can be used under
7170 	 * either lock.
7171 	 *
7172 	 * Note that there is loads of tricky to make this pointer cache work
7173 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7174 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7175 	 * task is allowed to run again (and can exit). This ensures the pointer
7176 	 * points to a blocked task -- which guarantees the task is present.
7177 	 */
7178 	p->pi_top_task = pi_task;
7179 
7180 	/*
7181 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7182 	 */
7183 	if (prio == p->prio && !dl_prio(prio))
7184 		goto out_unlock;
7185 
7186 	/*
7187 	 * Idle task boosting is a no-no in general. There is one
7188 	 * exception, when PREEMPT_RT and NOHZ is active:
7189 	 *
7190 	 * The idle task calls get_next_timer_interrupt() and holds
7191 	 * the timer wheel base->lock on the CPU and another CPU wants
7192 	 * to access the timer (probably to cancel it). We can safely
7193 	 * ignore the boosting request, as the idle CPU runs this code
7194 	 * with interrupts disabled and will complete the lock
7195 	 * protected section without being interrupted. So there is no
7196 	 * real need to boost.
7197 	 */
7198 	if (unlikely(p == rq->idle)) {
7199 		WARN_ON(p != rq->curr);
7200 		WARN_ON(p->pi_blocked_on);
7201 		goto out_unlock;
7202 	}
7203 
7204 	trace_sched_pi_setprio(p, pi_task);
7205 	oldprio = p->prio;
7206 
7207 	if (oldprio == prio)
7208 		queue_flag &= ~DEQUEUE_MOVE;
7209 
7210 	prev_class = p->sched_class;
7211 	next_class = __setscheduler_class(p->policy, prio);
7212 
7213 	if (prev_class != next_class && p->se.sched_delayed)
7214 		dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
7215 
7216 	queued = task_on_rq_queued(p);
7217 	running = task_current_donor(rq, p);
7218 	if (queued)
7219 		dequeue_task(rq, p, queue_flag);
7220 	if (running)
7221 		put_prev_task(rq, p);
7222 
7223 	/*
7224 	 * Boosting condition are:
7225 	 * 1. -rt task is running and holds mutex A
7226 	 *      --> -dl task blocks on mutex A
7227 	 *
7228 	 * 2. -dl task is running and holds mutex A
7229 	 *      --> -dl task blocks on mutex A and could preempt the
7230 	 *          running task
7231 	 */
7232 	if (dl_prio(prio)) {
7233 		if (!dl_prio(p->normal_prio) ||
7234 		    (pi_task && dl_prio(pi_task->prio) &&
7235 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7236 			p->dl.pi_se = pi_task->dl.pi_se;
7237 			queue_flag |= ENQUEUE_REPLENISH;
7238 		} else {
7239 			p->dl.pi_se = &p->dl;
7240 		}
7241 	} else if (rt_prio(prio)) {
7242 		if (dl_prio(oldprio))
7243 			p->dl.pi_se = &p->dl;
7244 		if (oldprio < prio)
7245 			queue_flag |= ENQUEUE_HEAD;
7246 	} else {
7247 		if (dl_prio(oldprio))
7248 			p->dl.pi_se = &p->dl;
7249 		if (rt_prio(oldprio))
7250 			p->rt.timeout = 0;
7251 	}
7252 
7253 	p->sched_class = next_class;
7254 	p->prio = prio;
7255 
7256 	check_class_changing(rq, p, prev_class);
7257 
7258 	if (queued)
7259 		enqueue_task(rq, p, queue_flag);
7260 	if (running)
7261 		set_next_task(rq, p);
7262 
7263 	check_class_changed(rq, p, prev_class, oldprio);
7264 out_unlock:
7265 	/* Avoid rq from going away on us: */
7266 	preempt_disable();
7267 
7268 	rq_unpin_lock(rq, &rf);
7269 	__balance_callbacks(rq);
7270 	raw_spin_rq_unlock(rq);
7271 
7272 	preempt_enable();
7273 }
7274 #endif
7275 
7276 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7277 int __sched __cond_resched(void)
7278 {
7279 	if (should_resched(0)) {
7280 		preempt_schedule_common();
7281 		return 1;
7282 	}
7283 	/*
7284 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
7285 	 * whether the current CPU is in an RCU read-side critical section,
7286 	 * so the tick can report quiescent states even for CPUs looping
7287 	 * in kernel context.  In contrast, in non-preemptible kernels,
7288 	 * RCU readers leave no in-memory hints, which means that CPU-bound
7289 	 * processes executing in kernel context might never report an
7290 	 * RCU quiescent state.  Therefore, the following code causes
7291 	 * cond_resched() to report a quiescent state, but only when RCU
7292 	 * is in urgent need of one.
7293 	 */
7294 #ifndef CONFIG_PREEMPT_RCU
7295 	rcu_all_qs();
7296 #endif
7297 	return 0;
7298 }
7299 EXPORT_SYMBOL(__cond_resched);
7300 #endif
7301 
7302 #ifdef CONFIG_PREEMPT_DYNAMIC
7303 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7304 #define cond_resched_dynamic_enabled	__cond_resched
7305 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
7306 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7307 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7308 
7309 #define might_resched_dynamic_enabled	__cond_resched
7310 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
7311 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7312 EXPORT_STATIC_CALL_TRAMP(might_resched);
7313 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7314 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
7315 int __sched dynamic_cond_resched(void)
7316 {
7317 	klp_sched_try_switch();
7318 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
7319 		return 0;
7320 	return __cond_resched();
7321 }
7322 EXPORT_SYMBOL(dynamic_cond_resched);
7323 
7324 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
7325 int __sched dynamic_might_resched(void)
7326 {
7327 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
7328 		return 0;
7329 	return __cond_resched();
7330 }
7331 EXPORT_SYMBOL(dynamic_might_resched);
7332 #endif
7333 #endif
7334 
7335 /*
7336  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7337  * call schedule, and on return reacquire the lock.
7338  *
7339  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7340  * operations here to prevent schedule() from being called twice (once via
7341  * spin_unlock(), once by hand).
7342  */
7343 int __cond_resched_lock(spinlock_t *lock)
7344 {
7345 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7346 	int ret = 0;
7347 
7348 	lockdep_assert_held(lock);
7349 
7350 	if (spin_needbreak(lock) || resched) {
7351 		spin_unlock(lock);
7352 		if (!_cond_resched())
7353 			cpu_relax();
7354 		ret = 1;
7355 		spin_lock(lock);
7356 	}
7357 	return ret;
7358 }
7359 EXPORT_SYMBOL(__cond_resched_lock);
7360 
7361 int __cond_resched_rwlock_read(rwlock_t *lock)
7362 {
7363 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7364 	int ret = 0;
7365 
7366 	lockdep_assert_held_read(lock);
7367 
7368 	if (rwlock_needbreak(lock) || resched) {
7369 		read_unlock(lock);
7370 		if (!_cond_resched())
7371 			cpu_relax();
7372 		ret = 1;
7373 		read_lock(lock);
7374 	}
7375 	return ret;
7376 }
7377 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7378 
7379 int __cond_resched_rwlock_write(rwlock_t *lock)
7380 {
7381 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7382 	int ret = 0;
7383 
7384 	lockdep_assert_held_write(lock);
7385 
7386 	if (rwlock_needbreak(lock) || resched) {
7387 		write_unlock(lock);
7388 		if (!_cond_resched())
7389 			cpu_relax();
7390 		ret = 1;
7391 		write_lock(lock);
7392 	}
7393 	return ret;
7394 }
7395 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7396 
7397 #ifdef CONFIG_PREEMPT_DYNAMIC
7398 
7399 #ifdef CONFIG_GENERIC_ENTRY
7400 #include <linux/entry-common.h>
7401 #endif
7402 
7403 /*
7404  * SC:cond_resched
7405  * SC:might_resched
7406  * SC:preempt_schedule
7407  * SC:preempt_schedule_notrace
7408  * SC:irqentry_exit_cond_resched
7409  *
7410  *
7411  * NONE:
7412  *   cond_resched               <- __cond_resched
7413  *   might_resched              <- RET0
7414  *   preempt_schedule           <- NOP
7415  *   preempt_schedule_notrace   <- NOP
7416  *   irqentry_exit_cond_resched <- NOP
7417  *   dynamic_preempt_lazy       <- false
7418  *
7419  * VOLUNTARY:
7420  *   cond_resched               <- __cond_resched
7421  *   might_resched              <- __cond_resched
7422  *   preempt_schedule           <- NOP
7423  *   preempt_schedule_notrace   <- NOP
7424  *   irqentry_exit_cond_resched <- NOP
7425  *   dynamic_preempt_lazy       <- false
7426  *
7427  * FULL:
7428  *   cond_resched               <- RET0
7429  *   might_resched              <- RET0
7430  *   preempt_schedule           <- preempt_schedule
7431  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7432  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7433  *   dynamic_preempt_lazy       <- false
7434  *
7435  * LAZY:
7436  *   cond_resched               <- RET0
7437  *   might_resched              <- RET0
7438  *   preempt_schedule           <- preempt_schedule
7439  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7440  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7441  *   dynamic_preempt_lazy       <- true
7442  */
7443 
7444 enum {
7445 	preempt_dynamic_undefined = -1,
7446 	preempt_dynamic_none,
7447 	preempt_dynamic_voluntary,
7448 	preempt_dynamic_full,
7449 	preempt_dynamic_lazy,
7450 };
7451 
7452 int preempt_dynamic_mode = preempt_dynamic_undefined;
7453 
7454 int sched_dynamic_mode(const char *str)
7455 {
7456 #ifndef CONFIG_PREEMPT_RT
7457 	if (!strcmp(str, "none"))
7458 		return preempt_dynamic_none;
7459 
7460 	if (!strcmp(str, "voluntary"))
7461 		return preempt_dynamic_voluntary;
7462 #endif
7463 
7464 	if (!strcmp(str, "full"))
7465 		return preempt_dynamic_full;
7466 
7467 #ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
7468 	if (!strcmp(str, "lazy"))
7469 		return preempt_dynamic_lazy;
7470 #endif
7471 
7472 	return -EINVAL;
7473 }
7474 
7475 #define preempt_dynamic_key_enable(f)	static_key_enable(&sk_dynamic_##f.key)
7476 #define preempt_dynamic_key_disable(f)	static_key_disable(&sk_dynamic_##f.key)
7477 
7478 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7479 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
7480 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
7481 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7482 #define preempt_dynamic_enable(f)	preempt_dynamic_key_enable(f)
7483 #define preempt_dynamic_disable(f)	preempt_dynamic_key_disable(f)
7484 #else
7485 #error "Unsupported PREEMPT_DYNAMIC mechanism"
7486 #endif
7487 
7488 static DEFINE_MUTEX(sched_dynamic_mutex);
7489 static bool klp_override;
7490 
7491 static void __sched_dynamic_update(int mode)
7492 {
7493 	/*
7494 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
7495 	 * the ZERO state, which is invalid.
7496 	 */
7497 	if (!klp_override)
7498 		preempt_dynamic_enable(cond_resched);
7499 	preempt_dynamic_enable(might_resched);
7500 	preempt_dynamic_enable(preempt_schedule);
7501 	preempt_dynamic_enable(preempt_schedule_notrace);
7502 	preempt_dynamic_enable(irqentry_exit_cond_resched);
7503 	preempt_dynamic_key_disable(preempt_lazy);
7504 
7505 	switch (mode) {
7506 	case preempt_dynamic_none:
7507 		if (!klp_override)
7508 			preempt_dynamic_enable(cond_resched);
7509 		preempt_dynamic_disable(might_resched);
7510 		preempt_dynamic_disable(preempt_schedule);
7511 		preempt_dynamic_disable(preempt_schedule_notrace);
7512 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7513 		preempt_dynamic_key_disable(preempt_lazy);
7514 		if (mode != preempt_dynamic_mode)
7515 			pr_info("Dynamic Preempt: none\n");
7516 		break;
7517 
7518 	case preempt_dynamic_voluntary:
7519 		if (!klp_override)
7520 			preempt_dynamic_enable(cond_resched);
7521 		preempt_dynamic_enable(might_resched);
7522 		preempt_dynamic_disable(preempt_schedule);
7523 		preempt_dynamic_disable(preempt_schedule_notrace);
7524 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7525 		preempt_dynamic_key_disable(preempt_lazy);
7526 		if (mode != preempt_dynamic_mode)
7527 			pr_info("Dynamic Preempt: voluntary\n");
7528 		break;
7529 
7530 	case preempt_dynamic_full:
7531 		if (!klp_override)
7532 			preempt_dynamic_disable(cond_resched);
7533 		preempt_dynamic_disable(might_resched);
7534 		preempt_dynamic_enable(preempt_schedule);
7535 		preempt_dynamic_enable(preempt_schedule_notrace);
7536 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7537 		preempt_dynamic_key_disable(preempt_lazy);
7538 		if (mode != preempt_dynamic_mode)
7539 			pr_info("Dynamic Preempt: full\n");
7540 		break;
7541 
7542 	case preempt_dynamic_lazy:
7543 		if (!klp_override)
7544 			preempt_dynamic_disable(cond_resched);
7545 		preempt_dynamic_disable(might_resched);
7546 		preempt_dynamic_enable(preempt_schedule);
7547 		preempt_dynamic_enable(preempt_schedule_notrace);
7548 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7549 		preempt_dynamic_key_enable(preempt_lazy);
7550 		if (mode != preempt_dynamic_mode)
7551 			pr_info("Dynamic Preempt: lazy\n");
7552 		break;
7553 	}
7554 
7555 	preempt_dynamic_mode = mode;
7556 }
7557 
7558 void sched_dynamic_update(int mode)
7559 {
7560 	mutex_lock(&sched_dynamic_mutex);
7561 	__sched_dynamic_update(mode);
7562 	mutex_unlock(&sched_dynamic_mutex);
7563 }
7564 
7565 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
7566 
7567 static int klp_cond_resched(void)
7568 {
7569 	__klp_sched_try_switch();
7570 	return __cond_resched();
7571 }
7572 
7573 void sched_dynamic_klp_enable(void)
7574 {
7575 	mutex_lock(&sched_dynamic_mutex);
7576 
7577 	klp_override = true;
7578 	static_call_update(cond_resched, klp_cond_resched);
7579 
7580 	mutex_unlock(&sched_dynamic_mutex);
7581 }
7582 
7583 void sched_dynamic_klp_disable(void)
7584 {
7585 	mutex_lock(&sched_dynamic_mutex);
7586 
7587 	klp_override = false;
7588 	__sched_dynamic_update(preempt_dynamic_mode);
7589 
7590 	mutex_unlock(&sched_dynamic_mutex);
7591 }
7592 
7593 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
7594 
7595 static int __init setup_preempt_mode(char *str)
7596 {
7597 	int mode = sched_dynamic_mode(str);
7598 	if (mode < 0) {
7599 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
7600 		return 0;
7601 	}
7602 
7603 	sched_dynamic_update(mode);
7604 	return 1;
7605 }
7606 __setup("preempt=", setup_preempt_mode);
7607 
7608 static void __init preempt_dynamic_init(void)
7609 {
7610 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
7611 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
7612 			sched_dynamic_update(preempt_dynamic_none);
7613 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
7614 			sched_dynamic_update(preempt_dynamic_voluntary);
7615 		} else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7616 			sched_dynamic_update(preempt_dynamic_lazy);
7617 		} else {
7618 			/* Default static call setting, nothing to do */
7619 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
7620 			preempt_dynamic_mode = preempt_dynamic_full;
7621 			pr_info("Dynamic Preempt: full\n");
7622 		}
7623 	}
7624 }
7625 
7626 #define PREEMPT_MODEL_ACCESSOR(mode) \
7627 	bool preempt_model_##mode(void)						 \
7628 	{									 \
7629 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
7630 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
7631 	}									 \
7632 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
7633 
7634 PREEMPT_MODEL_ACCESSOR(none);
7635 PREEMPT_MODEL_ACCESSOR(voluntary);
7636 PREEMPT_MODEL_ACCESSOR(full);
7637 PREEMPT_MODEL_ACCESSOR(lazy);
7638 
7639 #else /* !CONFIG_PREEMPT_DYNAMIC: */
7640 
7641 static inline void preempt_dynamic_init(void) { }
7642 
7643 #endif /* CONFIG_PREEMPT_DYNAMIC */
7644 
7645 int io_schedule_prepare(void)
7646 {
7647 	int old_iowait = current->in_iowait;
7648 
7649 	current->in_iowait = 1;
7650 	blk_flush_plug(current->plug, true);
7651 	return old_iowait;
7652 }
7653 
7654 void io_schedule_finish(int token)
7655 {
7656 	current->in_iowait = token;
7657 }
7658 
7659 /*
7660  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7661  * that process accounting knows that this is a task in IO wait state.
7662  */
7663 long __sched io_schedule_timeout(long timeout)
7664 {
7665 	int token;
7666 	long ret;
7667 
7668 	token = io_schedule_prepare();
7669 	ret = schedule_timeout(timeout);
7670 	io_schedule_finish(token);
7671 
7672 	return ret;
7673 }
7674 EXPORT_SYMBOL(io_schedule_timeout);
7675 
7676 void __sched io_schedule(void)
7677 {
7678 	int token;
7679 
7680 	token = io_schedule_prepare();
7681 	schedule();
7682 	io_schedule_finish(token);
7683 }
7684 EXPORT_SYMBOL(io_schedule);
7685 
7686 void sched_show_task(struct task_struct *p)
7687 {
7688 	unsigned long free;
7689 	int ppid;
7690 
7691 	if (!try_get_task_stack(p))
7692 		return;
7693 
7694 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7695 
7696 	if (task_is_running(p))
7697 		pr_cont("  running task    ");
7698 	free = stack_not_used(p);
7699 	ppid = 0;
7700 	rcu_read_lock();
7701 	if (pid_alive(p))
7702 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7703 	rcu_read_unlock();
7704 	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
7705 		free, task_pid_nr(p), task_tgid_nr(p),
7706 		ppid, read_task_thread_flags(p));
7707 
7708 	print_worker_info(KERN_INFO, p);
7709 	print_stop_info(KERN_INFO, p);
7710 	print_scx_info(KERN_INFO, p);
7711 	show_stack(p, NULL, KERN_INFO);
7712 	put_task_stack(p);
7713 }
7714 EXPORT_SYMBOL_GPL(sched_show_task);
7715 
7716 static inline bool
7717 state_filter_match(unsigned long state_filter, struct task_struct *p)
7718 {
7719 	unsigned int state = READ_ONCE(p->__state);
7720 
7721 	/* no filter, everything matches */
7722 	if (!state_filter)
7723 		return true;
7724 
7725 	/* filter, but doesn't match */
7726 	if (!(state & state_filter))
7727 		return false;
7728 
7729 	/*
7730 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7731 	 * TASK_KILLABLE).
7732 	 */
7733 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
7734 		return false;
7735 
7736 	return true;
7737 }
7738 
7739 
7740 void show_state_filter(unsigned int state_filter)
7741 {
7742 	struct task_struct *g, *p;
7743 
7744 	rcu_read_lock();
7745 	for_each_process_thread(g, p) {
7746 		/*
7747 		 * reset the NMI-timeout, listing all files on a slow
7748 		 * console might take a lot of time:
7749 		 * Also, reset softlockup watchdogs on all CPUs, because
7750 		 * another CPU might be blocked waiting for us to process
7751 		 * an IPI.
7752 		 */
7753 		touch_nmi_watchdog();
7754 		touch_all_softlockup_watchdogs();
7755 		if (state_filter_match(state_filter, p))
7756 			sched_show_task(p);
7757 	}
7758 
7759 #ifdef CONFIG_SCHED_DEBUG
7760 	if (!state_filter)
7761 		sysrq_sched_debug_show();
7762 #endif
7763 	rcu_read_unlock();
7764 	/*
7765 	 * Only show locks if all tasks are dumped:
7766 	 */
7767 	if (!state_filter)
7768 		debug_show_all_locks();
7769 }
7770 
7771 /**
7772  * init_idle - set up an idle thread for a given CPU
7773  * @idle: task in question
7774  * @cpu: CPU the idle task belongs to
7775  *
7776  * NOTE: this function does not set the idle thread's NEED_RESCHED
7777  * flag, to make booting more robust.
7778  */
7779 void __init init_idle(struct task_struct *idle, int cpu)
7780 {
7781 #ifdef CONFIG_SMP
7782 	struct affinity_context ac = (struct affinity_context) {
7783 		.new_mask  = cpumask_of(cpu),
7784 		.flags     = 0,
7785 	};
7786 #endif
7787 	struct rq *rq = cpu_rq(cpu);
7788 	unsigned long flags;
7789 
7790 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7791 	raw_spin_rq_lock(rq);
7792 
7793 	idle->__state = TASK_RUNNING;
7794 	idle->se.exec_start = sched_clock();
7795 	/*
7796 	 * PF_KTHREAD should already be set at this point; regardless, make it
7797 	 * look like a proper per-CPU kthread.
7798 	 */
7799 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
7800 	kthread_set_per_cpu(idle, cpu);
7801 
7802 #ifdef CONFIG_SMP
7803 	/*
7804 	 * No validation and serialization required at boot time and for
7805 	 * setting up the idle tasks of not yet online CPUs.
7806 	 */
7807 	set_cpus_allowed_common(idle, &ac);
7808 #endif
7809 	/*
7810 	 * We're having a chicken and egg problem, even though we are
7811 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7812 	 * lockdep check in task_group() will fail.
7813 	 *
7814 	 * Similar case to sched_fork(). / Alternatively we could
7815 	 * use task_rq_lock() here and obtain the other rq->lock.
7816 	 *
7817 	 * Silence PROVE_RCU
7818 	 */
7819 	rcu_read_lock();
7820 	__set_task_cpu(idle, cpu);
7821 	rcu_read_unlock();
7822 
7823 	rq->idle = idle;
7824 	rq_set_donor(rq, idle);
7825 	rcu_assign_pointer(rq->curr, idle);
7826 	idle->on_rq = TASK_ON_RQ_QUEUED;
7827 #ifdef CONFIG_SMP
7828 	idle->on_cpu = 1;
7829 #endif
7830 	raw_spin_rq_unlock(rq);
7831 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7832 
7833 	/* Set the preempt count _outside_ the spinlocks! */
7834 	init_idle_preempt_count(idle, cpu);
7835 
7836 	/*
7837 	 * The idle tasks have their own, simple scheduling class:
7838 	 */
7839 	idle->sched_class = &idle_sched_class;
7840 	ftrace_graph_init_idle_task(idle, cpu);
7841 	vtime_init_idle(idle, cpu);
7842 #ifdef CONFIG_SMP
7843 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7844 #endif
7845 }
7846 
7847 #ifdef CONFIG_SMP
7848 
7849 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7850 			      const struct cpumask *trial)
7851 {
7852 	int ret = 1;
7853 
7854 	if (cpumask_empty(cur))
7855 		return ret;
7856 
7857 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7858 
7859 	return ret;
7860 }
7861 
7862 int task_can_attach(struct task_struct *p)
7863 {
7864 	int ret = 0;
7865 
7866 	/*
7867 	 * Kthreads which disallow setaffinity shouldn't be moved
7868 	 * to a new cpuset; we don't want to change their CPU
7869 	 * affinity and isolating such threads by their set of
7870 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7871 	 * applicable for such threads.  This prevents checking for
7872 	 * success of set_cpus_allowed_ptr() on all attached tasks
7873 	 * before cpus_mask may be changed.
7874 	 */
7875 	if (p->flags & PF_NO_SETAFFINITY)
7876 		ret = -EINVAL;
7877 
7878 	return ret;
7879 }
7880 
7881 bool sched_smp_initialized __read_mostly;
7882 
7883 #ifdef CONFIG_NUMA_BALANCING
7884 /* Migrate current task p to target_cpu */
7885 int migrate_task_to(struct task_struct *p, int target_cpu)
7886 {
7887 	struct migration_arg arg = { p, target_cpu };
7888 	int curr_cpu = task_cpu(p);
7889 
7890 	if (curr_cpu == target_cpu)
7891 		return 0;
7892 
7893 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7894 		return -EINVAL;
7895 
7896 	/* TODO: This is not properly updating schedstats */
7897 
7898 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7899 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7900 }
7901 
7902 /*
7903  * Requeue a task on a given node and accurately track the number of NUMA
7904  * tasks on the runqueues
7905  */
7906 void sched_setnuma(struct task_struct *p, int nid)
7907 {
7908 	bool queued, running;
7909 	struct rq_flags rf;
7910 	struct rq *rq;
7911 
7912 	rq = task_rq_lock(p, &rf);
7913 	queued = task_on_rq_queued(p);
7914 	running = task_current_donor(rq, p);
7915 
7916 	if (queued)
7917 		dequeue_task(rq, p, DEQUEUE_SAVE);
7918 	if (running)
7919 		put_prev_task(rq, p);
7920 
7921 	p->numa_preferred_nid = nid;
7922 
7923 	if (queued)
7924 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7925 	if (running)
7926 		set_next_task(rq, p);
7927 	task_rq_unlock(rq, p, &rf);
7928 }
7929 #endif /* CONFIG_NUMA_BALANCING */
7930 
7931 #ifdef CONFIG_HOTPLUG_CPU
7932 /*
7933  * Ensure that the idle task is using init_mm right before its CPU goes
7934  * offline.
7935  */
7936 void idle_task_exit(void)
7937 {
7938 	struct mm_struct *mm = current->active_mm;
7939 
7940 	BUG_ON(cpu_online(smp_processor_id()));
7941 	BUG_ON(current != this_rq()->idle);
7942 
7943 	if (mm != &init_mm) {
7944 		switch_mm(mm, &init_mm, current);
7945 		finish_arch_post_lock_switch();
7946 	}
7947 
7948 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7949 }
7950 
7951 static int __balance_push_cpu_stop(void *arg)
7952 {
7953 	struct task_struct *p = arg;
7954 	struct rq *rq = this_rq();
7955 	struct rq_flags rf;
7956 	int cpu;
7957 
7958 	raw_spin_lock_irq(&p->pi_lock);
7959 	rq_lock(rq, &rf);
7960 
7961 	update_rq_clock(rq);
7962 
7963 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
7964 		cpu = select_fallback_rq(rq->cpu, p);
7965 		rq = __migrate_task(rq, &rf, p, cpu);
7966 	}
7967 
7968 	rq_unlock(rq, &rf);
7969 	raw_spin_unlock_irq(&p->pi_lock);
7970 
7971 	put_task_struct(p);
7972 
7973 	return 0;
7974 }
7975 
7976 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7977 
7978 /*
7979  * Ensure we only run per-cpu kthreads once the CPU goes !active.
7980  *
7981  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
7982  * effective when the hotplug motion is down.
7983  */
7984 static void balance_push(struct rq *rq)
7985 {
7986 	struct task_struct *push_task = rq->curr;
7987 
7988 	lockdep_assert_rq_held(rq);
7989 
7990 	/*
7991 	 * Ensure the thing is persistent until balance_push_set(.on = false);
7992 	 */
7993 	rq->balance_callback = &balance_push_callback;
7994 
7995 	/*
7996 	 * Only active while going offline and when invoked on the outgoing
7997 	 * CPU.
7998 	 */
7999 	if (!cpu_dying(rq->cpu) || rq != this_rq())
8000 		return;
8001 
8002 	/*
8003 	 * Both the cpu-hotplug and stop task are in this case and are
8004 	 * required to complete the hotplug process.
8005 	 */
8006 	if (kthread_is_per_cpu(push_task) ||
8007 	    is_migration_disabled(push_task)) {
8008 
8009 		/*
8010 		 * If this is the idle task on the outgoing CPU try to wake
8011 		 * up the hotplug control thread which might wait for the
8012 		 * last task to vanish. The rcuwait_active() check is
8013 		 * accurate here because the waiter is pinned on this CPU
8014 		 * and can't obviously be running in parallel.
8015 		 *
8016 		 * On RT kernels this also has to check whether there are
8017 		 * pinned and scheduled out tasks on the runqueue. They
8018 		 * need to leave the migrate disabled section first.
8019 		 */
8020 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8021 		    rcuwait_active(&rq->hotplug_wait)) {
8022 			raw_spin_rq_unlock(rq);
8023 			rcuwait_wake_up(&rq->hotplug_wait);
8024 			raw_spin_rq_lock(rq);
8025 		}
8026 		return;
8027 	}
8028 
8029 	get_task_struct(push_task);
8030 	/*
8031 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
8032 	 * Both preemption and IRQs are still disabled.
8033 	 */
8034 	preempt_disable();
8035 	raw_spin_rq_unlock(rq);
8036 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8037 			    this_cpu_ptr(&push_work));
8038 	preempt_enable();
8039 	/*
8040 	 * At this point need_resched() is true and we'll take the loop in
8041 	 * schedule(). The next pick is obviously going to be the stop task
8042 	 * which kthread_is_per_cpu() and will push this task away.
8043 	 */
8044 	raw_spin_rq_lock(rq);
8045 }
8046 
8047 static void balance_push_set(int cpu, bool on)
8048 {
8049 	struct rq *rq = cpu_rq(cpu);
8050 	struct rq_flags rf;
8051 
8052 	rq_lock_irqsave(rq, &rf);
8053 	if (on) {
8054 		WARN_ON_ONCE(rq->balance_callback);
8055 		rq->balance_callback = &balance_push_callback;
8056 	} else if (rq->balance_callback == &balance_push_callback) {
8057 		rq->balance_callback = NULL;
8058 	}
8059 	rq_unlock_irqrestore(rq, &rf);
8060 }
8061 
8062 /*
8063  * Invoked from a CPUs hotplug control thread after the CPU has been marked
8064  * inactive. All tasks which are not per CPU kernel threads are either
8065  * pushed off this CPU now via balance_push() or placed on a different CPU
8066  * during wakeup. Wait until the CPU is quiescent.
8067  */
8068 static void balance_hotplug_wait(void)
8069 {
8070 	struct rq *rq = this_rq();
8071 
8072 	rcuwait_wait_event(&rq->hotplug_wait,
8073 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8074 			   TASK_UNINTERRUPTIBLE);
8075 }
8076 
8077 #else
8078 
8079 static inline void balance_push(struct rq *rq)
8080 {
8081 }
8082 
8083 static inline void balance_push_set(int cpu, bool on)
8084 {
8085 }
8086 
8087 static inline void balance_hotplug_wait(void)
8088 {
8089 }
8090 
8091 #endif /* CONFIG_HOTPLUG_CPU */
8092 
8093 void set_rq_online(struct rq *rq)
8094 {
8095 	if (!rq->online) {
8096 		const struct sched_class *class;
8097 
8098 		cpumask_set_cpu(rq->cpu, rq->rd->online);
8099 		rq->online = 1;
8100 
8101 		for_each_class(class) {
8102 			if (class->rq_online)
8103 				class->rq_online(rq);
8104 		}
8105 	}
8106 }
8107 
8108 void set_rq_offline(struct rq *rq)
8109 {
8110 	if (rq->online) {
8111 		const struct sched_class *class;
8112 
8113 		update_rq_clock(rq);
8114 		for_each_class(class) {
8115 			if (class->rq_offline)
8116 				class->rq_offline(rq);
8117 		}
8118 
8119 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
8120 		rq->online = 0;
8121 	}
8122 }
8123 
8124 static inline void sched_set_rq_online(struct rq *rq, int cpu)
8125 {
8126 	struct rq_flags rf;
8127 
8128 	rq_lock_irqsave(rq, &rf);
8129 	if (rq->rd) {
8130 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8131 		set_rq_online(rq);
8132 	}
8133 	rq_unlock_irqrestore(rq, &rf);
8134 }
8135 
8136 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
8137 {
8138 	struct rq_flags rf;
8139 
8140 	rq_lock_irqsave(rq, &rf);
8141 	if (rq->rd) {
8142 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8143 		set_rq_offline(rq);
8144 	}
8145 	rq_unlock_irqrestore(rq, &rf);
8146 }
8147 
8148 /*
8149  * used to mark begin/end of suspend/resume:
8150  */
8151 static int num_cpus_frozen;
8152 
8153 /*
8154  * Update cpusets according to cpu_active mask.  If cpusets are
8155  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8156  * around partition_sched_domains().
8157  *
8158  * If we come here as part of a suspend/resume, don't touch cpusets because we
8159  * want to restore it back to its original state upon resume anyway.
8160  */
8161 static void cpuset_cpu_active(void)
8162 {
8163 	if (cpuhp_tasks_frozen) {
8164 		/*
8165 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
8166 		 * resume sequence. As long as this is not the last online
8167 		 * operation in the resume sequence, just build a single sched
8168 		 * domain, ignoring cpusets.
8169 		 */
8170 		partition_sched_domains(1, NULL, NULL);
8171 		if (--num_cpus_frozen)
8172 			return;
8173 		/*
8174 		 * This is the last CPU online operation. So fall through and
8175 		 * restore the original sched domains by considering the
8176 		 * cpuset configurations.
8177 		 */
8178 		cpuset_force_rebuild();
8179 	}
8180 	cpuset_update_active_cpus();
8181 }
8182 
8183 static int cpuset_cpu_inactive(unsigned int cpu)
8184 {
8185 	if (!cpuhp_tasks_frozen) {
8186 		int ret = dl_bw_check_overflow(cpu);
8187 
8188 		if (ret)
8189 			return ret;
8190 		cpuset_update_active_cpus();
8191 	} else {
8192 		num_cpus_frozen++;
8193 		partition_sched_domains(1, NULL, NULL);
8194 	}
8195 	return 0;
8196 }
8197 
8198 static inline void sched_smt_present_inc(int cpu)
8199 {
8200 #ifdef CONFIG_SCHED_SMT
8201 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8202 		static_branch_inc_cpuslocked(&sched_smt_present);
8203 #endif
8204 }
8205 
8206 static inline void sched_smt_present_dec(int cpu)
8207 {
8208 #ifdef CONFIG_SCHED_SMT
8209 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8210 		static_branch_dec_cpuslocked(&sched_smt_present);
8211 #endif
8212 }
8213 
8214 int sched_cpu_activate(unsigned int cpu)
8215 {
8216 	struct rq *rq = cpu_rq(cpu);
8217 
8218 	/*
8219 	 * Clear the balance_push callback and prepare to schedule
8220 	 * regular tasks.
8221 	 */
8222 	balance_push_set(cpu, false);
8223 
8224 	/*
8225 	 * When going up, increment the number of cores with SMT present.
8226 	 */
8227 	sched_smt_present_inc(cpu);
8228 	set_cpu_active(cpu, true);
8229 
8230 	if (sched_smp_initialized) {
8231 		sched_update_numa(cpu, true);
8232 		sched_domains_numa_masks_set(cpu);
8233 		cpuset_cpu_active();
8234 	}
8235 
8236 	scx_rq_activate(rq);
8237 
8238 	/*
8239 	 * Put the rq online, if not already. This happens:
8240 	 *
8241 	 * 1) In the early boot process, because we build the real domains
8242 	 *    after all CPUs have been brought up.
8243 	 *
8244 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8245 	 *    domains.
8246 	 */
8247 	sched_set_rq_online(rq, cpu);
8248 
8249 	return 0;
8250 }
8251 
8252 int sched_cpu_deactivate(unsigned int cpu)
8253 {
8254 	struct rq *rq = cpu_rq(cpu);
8255 	int ret;
8256 
8257 	/*
8258 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8259 	 * load balancing when not active
8260 	 */
8261 	nohz_balance_exit_idle(rq);
8262 
8263 	set_cpu_active(cpu, false);
8264 
8265 	/*
8266 	 * From this point forward, this CPU will refuse to run any task that
8267 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8268 	 * push those tasks away until this gets cleared, see
8269 	 * sched_cpu_dying().
8270 	 */
8271 	balance_push_set(cpu, true);
8272 
8273 	/*
8274 	 * We've cleared cpu_active_mask / set balance_push, wait for all
8275 	 * preempt-disabled and RCU users of this state to go away such that
8276 	 * all new such users will observe it.
8277 	 *
8278 	 * Specifically, we rely on ttwu to no longer target this CPU, see
8279 	 * ttwu_queue_cond() and is_cpu_allowed().
8280 	 *
8281 	 * Do sync before park smpboot threads to take care the RCU boost case.
8282 	 */
8283 	synchronize_rcu();
8284 
8285 	sched_set_rq_offline(rq, cpu);
8286 
8287 	scx_rq_deactivate(rq);
8288 
8289 	/*
8290 	 * When going down, decrement the number of cores with SMT present.
8291 	 */
8292 	sched_smt_present_dec(cpu);
8293 
8294 #ifdef CONFIG_SCHED_SMT
8295 	sched_core_cpu_deactivate(cpu);
8296 #endif
8297 
8298 	if (!sched_smp_initialized)
8299 		return 0;
8300 
8301 	sched_update_numa(cpu, false);
8302 	ret = cpuset_cpu_inactive(cpu);
8303 	if (ret) {
8304 		sched_smt_present_inc(cpu);
8305 		sched_set_rq_online(rq, cpu);
8306 		balance_push_set(cpu, false);
8307 		set_cpu_active(cpu, true);
8308 		sched_update_numa(cpu, true);
8309 		return ret;
8310 	}
8311 	sched_domains_numa_masks_clear(cpu);
8312 	return 0;
8313 }
8314 
8315 static void sched_rq_cpu_starting(unsigned int cpu)
8316 {
8317 	struct rq *rq = cpu_rq(cpu);
8318 
8319 	rq->calc_load_update = calc_load_update;
8320 	update_max_interval();
8321 }
8322 
8323 int sched_cpu_starting(unsigned int cpu)
8324 {
8325 	sched_core_cpu_starting(cpu);
8326 	sched_rq_cpu_starting(cpu);
8327 	sched_tick_start(cpu);
8328 	return 0;
8329 }
8330 
8331 #ifdef CONFIG_HOTPLUG_CPU
8332 
8333 /*
8334  * Invoked immediately before the stopper thread is invoked to bring the
8335  * CPU down completely. At this point all per CPU kthreads except the
8336  * hotplug thread (current) and the stopper thread (inactive) have been
8337  * either parked or have been unbound from the outgoing CPU. Ensure that
8338  * any of those which might be on the way out are gone.
8339  *
8340  * If after this point a bound task is being woken on this CPU then the
8341  * responsible hotplug callback has failed to do it's job.
8342  * sched_cpu_dying() will catch it with the appropriate fireworks.
8343  */
8344 int sched_cpu_wait_empty(unsigned int cpu)
8345 {
8346 	balance_hotplug_wait();
8347 	return 0;
8348 }
8349 
8350 /*
8351  * Since this CPU is going 'away' for a while, fold any nr_active delta we
8352  * might have. Called from the CPU stopper task after ensuring that the
8353  * stopper is the last running task on the CPU, so nr_active count is
8354  * stable. We need to take the tear-down thread which is calling this into
8355  * account, so we hand in adjust = 1 to the load calculation.
8356  *
8357  * Also see the comment "Global load-average calculations".
8358  */
8359 static void calc_load_migrate(struct rq *rq)
8360 {
8361 	long delta = calc_load_fold_active(rq, 1);
8362 
8363 	if (delta)
8364 		atomic_long_add(delta, &calc_load_tasks);
8365 }
8366 
8367 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8368 {
8369 	struct task_struct *g, *p;
8370 	int cpu = cpu_of(rq);
8371 
8372 	lockdep_assert_rq_held(rq);
8373 
8374 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8375 	for_each_process_thread(g, p) {
8376 		if (task_cpu(p) != cpu)
8377 			continue;
8378 
8379 		if (!task_on_rq_queued(p))
8380 			continue;
8381 
8382 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8383 	}
8384 }
8385 
8386 int sched_cpu_dying(unsigned int cpu)
8387 {
8388 	struct rq *rq = cpu_rq(cpu);
8389 	struct rq_flags rf;
8390 
8391 	/* Handle pending wakeups and then migrate everything off */
8392 	sched_tick_stop(cpu);
8393 
8394 	rq_lock_irqsave(rq, &rf);
8395 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8396 		WARN(true, "Dying CPU not properly vacated!");
8397 		dump_rq_tasks(rq, KERN_WARNING);
8398 	}
8399 	rq_unlock_irqrestore(rq, &rf);
8400 
8401 	calc_load_migrate(rq);
8402 	update_max_interval();
8403 	hrtick_clear(rq);
8404 	sched_core_cpu_dying(cpu);
8405 	return 0;
8406 }
8407 #endif
8408 
8409 void __init sched_init_smp(void)
8410 {
8411 	sched_init_numa(NUMA_NO_NODE);
8412 
8413 	/*
8414 	 * There's no userspace yet to cause hotplug operations; hence all the
8415 	 * CPU masks are stable and all blatant races in the below code cannot
8416 	 * happen.
8417 	 */
8418 	mutex_lock(&sched_domains_mutex);
8419 	sched_init_domains(cpu_active_mask);
8420 	mutex_unlock(&sched_domains_mutex);
8421 
8422 	/* Move init over to a non-isolated CPU */
8423 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
8424 		BUG();
8425 	current->flags &= ~PF_NO_SETAFFINITY;
8426 	sched_init_granularity();
8427 
8428 	init_sched_rt_class();
8429 	init_sched_dl_class();
8430 
8431 	sched_smp_initialized = true;
8432 }
8433 
8434 static int __init migration_init(void)
8435 {
8436 	sched_cpu_starting(smp_processor_id());
8437 	return 0;
8438 }
8439 early_initcall(migration_init);
8440 
8441 #else
8442 void __init sched_init_smp(void)
8443 {
8444 	sched_init_granularity();
8445 }
8446 #endif /* CONFIG_SMP */
8447 
8448 int in_sched_functions(unsigned long addr)
8449 {
8450 	return in_lock_functions(addr) ||
8451 		(addr >= (unsigned long)__sched_text_start
8452 		&& addr < (unsigned long)__sched_text_end);
8453 }
8454 
8455 #ifdef CONFIG_CGROUP_SCHED
8456 /*
8457  * Default task group.
8458  * Every task in system belongs to this group at bootup.
8459  */
8460 struct task_group root_task_group;
8461 LIST_HEAD(task_groups);
8462 
8463 /* Cacheline aligned slab cache for task_group */
8464 static struct kmem_cache *task_group_cache __ro_after_init;
8465 #endif
8466 
8467 void __init sched_init(void)
8468 {
8469 	unsigned long ptr = 0;
8470 	int i;
8471 
8472 	/* Make sure the linker didn't screw up */
8473 #ifdef CONFIG_SMP
8474 	BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
8475 #endif
8476 	BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
8477 	BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
8478 	BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
8479 #ifdef CONFIG_SCHED_CLASS_EXT
8480 	BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
8481 	BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
8482 #endif
8483 
8484 	wait_bit_init();
8485 
8486 #ifdef CONFIG_FAIR_GROUP_SCHED
8487 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8488 #endif
8489 #ifdef CONFIG_RT_GROUP_SCHED
8490 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8491 #endif
8492 	if (ptr) {
8493 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8494 
8495 #ifdef CONFIG_FAIR_GROUP_SCHED
8496 		root_task_group.se = (struct sched_entity **)ptr;
8497 		ptr += nr_cpu_ids * sizeof(void **);
8498 
8499 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8500 		ptr += nr_cpu_ids * sizeof(void **);
8501 
8502 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8503 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
8504 #endif /* CONFIG_FAIR_GROUP_SCHED */
8505 #ifdef CONFIG_EXT_GROUP_SCHED
8506 		root_task_group.scx_weight = CGROUP_WEIGHT_DFL;
8507 #endif /* CONFIG_EXT_GROUP_SCHED */
8508 #ifdef CONFIG_RT_GROUP_SCHED
8509 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8510 		ptr += nr_cpu_ids * sizeof(void **);
8511 
8512 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8513 		ptr += nr_cpu_ids * sizeof(void **);
8514 
8515 #endif /* CONFIG_RT_GROUP_SCHED */
8516 	}
8517 
8518 #ifdef CONFIG_SMP
8519 	init_defrootdomain();
8520 #endif
8521 
8522 #ifdef CONFIG_RT_GROUP_SCHED
8523 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8524 			global_rt_period(), global_rt_runtime());
8525 #endif /* CONFIG_RT_GROUP_SCHED */
8526 
8527 #ifdef CONFIG_CGROUP_SCHED
8528 	task_group_cache = KMEM_CACHE(task_group, 0);
8529 
8530 	list_add(&root_task_group.list, &task_groups);
8531 	INIT_LIST_HEAD(&root_task_group.children);
8532 	INIT_LIST_HEAD(&root_task_group.siblings);
8533 	autogroup_init(&init_task);
8534 #endif /* CONFIG_CGROUP_SCHED */
8535 
8536 	for_each_possible_cpu(i) {
8537 		struct rq *rq;
8538 
8539 		rq = cpu_rq(i);
8540 		raw_spin_lock_init(&rq->__lock);
8541 		rq->nr_running = 0;
8542 		rq->calc_load_active = 0;
8543 		rq->calc_load_update = jiffies + LOAD_FREQ;
8544 		init_cfs_rq(&rq->cfs);
8545 		init_rt_rq(&rq->rt);
8546 		init_dl_rq(&rq->dl);
8547 #ifdef CONFIG_FAIR_GROUP_SCHED
8548 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8549 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8550 		/*
8551 		 * How much CPU bandwidth does root_task_group get?
8552 		 *
8553 		 * In case of task-groups formed through the cgroup filesystem, it
8554 		 * gets 100% of the CPU resources in the system. This overall
8555 		 * system CPU resource is divided among the tasks of
8556 		 * root_task_group and its child task-groups in a fair manner,
8557 		 * based on each entity's (task or task-group's) weight
8558 		 * (se->load.weight).
8559 		 *
8560 		 * In other words, if root_task_group has 10 tasks of weight
8561 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8562 		 * then A0's share of the CPU resource is:
8563 		 *
8564 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8565 		 *
8566 		 * We achieve this by letting root_task_group's tasks sit
8567 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8568 		 */
8569 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8570 #endif /* CONFIG_FAIR_GROUP_SCHED */
8571 
8572 #ifdef CONFIG_RT_GROUP_SCHED
8573 		/*
8574 		 * This is required for init cpu because rt.c:__enable_runtime()
8575 		 * starts working after scheduler_running, which is not the case
8576 		 * yet.
8577 		 */
8578 		rq->rt.rt_runtime = global_rt_runtime();
8579 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8580 #endif
8581 #ifdef CONFIG_SMP
8582 		rq->sd = NULL;
8583 		rq->rd = NULL;
8584 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
8585 		rq->balance_callback = &balance_push_callback;
8586 		rq->active_balance = 0;
8587 		rq->next_balance = jiffies;
8588 		rq->push_cpu = 0;
8589 		rq->cpu = i;
8590 		rq->online = 0;
8591 		rq->idle_stamp = 0;
8592 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8593 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8594 
8595 		INIT_LIST_HEAD(&rq->cfs_tasks);
8596 
8597 		rq_attach_root(rq, &def_root_domain);
8598 #ifdef CONFIG_NO_HZ_COMMON
8599 		rq->last_blocked_load_update_tick = jiffies;
8600 		atomic_set(&rq->nohz_flags, 0);
8601 
8602 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8603 #endif
8604 #ifdef CONFIG_HOTPLUG_CPU
8605 		rcuwait_init(&rq->hotplug_wait);
8606 #endif
8607 #endif /* CONFIG_SMP */
8608 		hrtick_rq_init(rq);
8609 		atomic_set(&rq->nr_iowait, 0);
8610 		fair_server_init(rq);
8611 
8612 #ifdef CONFIG_SCHED_CORE
8613 		rq->core = rq;
8614 		rq->core_pick = NULL;
8615 		rq->core_dl_server = NULL;
8616 		rq->core_enabled = 0;
8617 		rq->core_tree = RB_ROOT;
8618 		rq->core_forceidle_count = 0;
8619 		rq->core_forceidle_occupation = 0;
8620 		rq->core_forceidle_start = 0;
8621 
8622 		rq->core_cookie = 0UL;
8623 #endif
8624 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
8625 	}
8626 
8627 	set_load_weight(&init_task, false);
8628 	init_task.se.slice = sysctl_sched_base_slice,
8629 
8630 	/*
8631 	 * The boot idle thread does lazy MMU switching as well:
8632 	 */
8633 	mmgrab_lazy_tlb(&init_mm);
8634 	enter_lazy_tlb(&init_mm, current);
8635 
8636 	/*
8637 	 * The idle task doesn't need the kthread struct to function, but it
8638 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8639 	 * if we want to avoid special-casing it in code that deals with per-CPU
8640 	 * kthreads.
8641 	 */
8642 	WARN_ON(!set_kthread_struct(current));
8643 
8644 	/*
8645 	 * Make us the idle thread. Technically, schedule() should not be
8646 	 * called from this thread, however somewhere below it might be,
8647 	 * but because we are the idle thread, we just pick up running again
8648 	 * when this runqueue becomes "idle".
8649 	 */
8650 	__sched_fork(0, current);
8651 	init_idle(current, smp_processor_id());
8652 
8653 	calc_load_update = jiffies + LOAD_FREQ;
8654 
8655 #ifdef CONFIG_SMP
8656 	idle_thread_set_boot_cpu();
8657 	balance_push_set(smp_processor_id(), false);
8658 #endif
8659 	init_sched_fair_class();
8660 	init_sched_ext_class();
8661 
8662 	psi_init();
8663 
8664 	init_uclamp();
8665 
8666 	preempt_dynamic_init();
8667 
8668 	scheduler_running = 1;
8669 }
8670 
8671 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8672 
8673 void __might_sleep(const char *file, int line)
8674 {
8675 	unsigned int state = get_current_state();
8676 	/*
8677 	 * Blocking primitives will set (and therefore destroy) current->state,
8678 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8679 	 * otherwise we will destroy state.
8680 	 */
8681 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8682 			"do not call blocking ops when !TASK_RUNNING; "
8683 			"state=%x set at [<%p>] %pS\n", state,
8684 			(void *)current->task_state_change,
8685 			(void *)current->task_state_change);
8686 
8687 	__might_resched(file, line, 0);
8688 }
8689 EXPORT_SYMBOL(__might_sleep);
8690 
8691 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
8692 {
8693 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
8694 		return;
8695 
8696 	if (preempt_count() == preempt_offset)
8697 		return;
8698 
8699 	pr_err("Preemption disabled at:");
8700 	print_ip_sym(KERN_ERR, ip);
8701 }
8702 
8703 static inline bool resched_offsets_ok(unsigned int offsets)
8704 {
8705 	unsigned int nested = preempt_count();
8706 
8707 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
8708 
8709 	return nested == offsets;
8710 }
8711 
8712 void __might_resched(const char *file, int line, unsigned int offsets)
8713 {
8714 	/* Ratelimiting timestamp: */
8715 	static unsigned long prev_jiffy;
8716 
8717 	unsigned long preempt_disable_ip;
8718 
8719 	/* WARN_ON_ONCE() by default, no rate limit required: */
8720 	rcu_sleep_check();
8721 
8722 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
8723 	     !is_idle_task(current) && !current->non_block_count) ||
8724 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8725 	    oops_in_progress)
8726 		return;
8727 
8728 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8729 		return;
8730 	prev_jiffy = jiffies;
8731 
8732 	/* Save this before calling printk(), since that will clobber it: */
8733 	preempt_disable_ip = get_preempt_disable_ip(current);
8734 
8735 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
8736 	       file, line);
8737 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8738 	       in_atomic(), irqs_disabled(), current->non_block_count,
8739 	       current->pid, current->comm);
8740 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
8741 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
8742 
8743 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
8744 		pr_err("RCU nest depth: %d, expected: %u\n",
8745 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8746 	}
8747 
8748 	if (task_stack_end_corrupted(current))
8749 		pr_emerg("Thread overran stack, or stack corrupted\n");
8750 
8751 	debug_show_held_locks(current);
8752 	if (irqs_disabled())
8753 		print_irqtrace_events(current);
8754 
8755 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
8756 				 preempt_disable_ip);
8757 
8758 	dump_stack();
8759 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8760 }
8761 EXPORT_SYMBOL(__might_resched);
8762 
8763 void __cant_sleep(const char *file, int line, int preempt_offset)
8764 {
8765 	static unsigned long prev_jiffy;
8766 
8767 	if (irqs_disabled())
8768 		return;
8769 
8770 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8771 		return;
8772 
8773 	if (preempt_count() > preempt_offset)
8774 		return;
8775 
8776 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8777 		return;
8778 	prev_jiffy = jiffies;
8779 
8780 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8781 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8782 			in_atomic(), irqs_disabled(),
8783 			current->pid, current->comm);
8784 
8785 	debug_show_held_locks(current);
8786 	dump_stack();
8787 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8788 }
8789 EXPORT_SYMBOL_GPL(__cant_sleep);
8790 
8791 #ifdef CONFIG_SMP
8792 void __cant_migrate(const char *file, int line)
8793 {
8794 	static unsigned long prev_jiffy;
8795 
8796 	if (irqs_disabled())
8797 		return;
8798 
8799 	if (is_migration_disabled(current))
8800 		return;
8801 
8802 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8803 		return;
8804 
8805 	if (preempt_count() > 0)
8806 		return;
8807 
8808 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8809 		return;
8810 	prev_jiffy = jiffies;
8811 
8812 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8813 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8814 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8815 	       current->pid, current->comm);
8816 
8817 	debug_show_held_locks(current);
8818 	dump_stack();
8819 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8820 }
8821 EXPORT_SYMBOL_GPL(__cant_migrate);
8822 #endif
8823 #endif
8824 
8825 #ifdef CONFIG_MAGIC_SYSRQ
8826 void normalize_rt_tasks(void)
8827 {
8828 	struct task_struct *g, *p;
8829 	struct sched_attr attr = {
8830 		.sched_policy = SCHED_NORMAL,
8831 	};
8832 
8833 	read_lock(&tasklist_lock);
8834 	for_each_process_thread(g, p) {
8835 		/*
8836 		 * Only normalize user tasks:
8837 		 */
8838 		if (p->flags & PF_KTHREAD)
8839 			continue;
8840 
8841 		p->se.exec_start = 0;
8842 		schedstat_set(p->stats.wait_start,  0);
8843 		schedstat_set(p->stats.sleep_start, 0);
8844 		schedstat_set(p->stats.block_start, 0);
8845 
8846 		if (!rt_or_dl_task(p)) {
8847 			/*
8848 			 * Renice negative nice level userspace
8849 			 * tasks back to 0:
8850 			 */
8851 			if (task_nice(p) < 0)
8852 				set_user_nice(p, 0);
8853 			continue;
8854 		}
8855 
8856 		__sched_setscheduler(p, &attr, false, false);
8857 	}
8858 	read_unlock(&tasklist_lock);
8859 }
8860 
8861 #endif /* CONFIG_MAGIC_SYSRQ */
8862 
8863 #if defined(CONFIG_KGDB_KDB)
8864 /*
8865  * These functions are only useful for KDB.
8866  *
8867  * They can only be called when the whole system has been
8868  * stopped - every CPU needs to be quiescent, and no scheduling
8869  * activity can take place. Using them for anything else would
8870  * be a serious bug, and as a result, they aren't even visible
8871  * under any other configuration.
8872  */
8873 
8874 /**
8875  * curr_task - return the current task for a given CPU.
8876  * @cpu: the processor in question.
8877  *
8878  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8879  *
8880  * Return: The current task for @cpu.
8881  */
8882 struct task_struct *curr_task(int cpu)
8883 {
8884 	return cpu_curr(cpu);
8885 }
8886 
8887 #endif /* defined(CONFIG_KGDB_KDB) */
8888 
8889 #ifdef CONFIG_CGROUP_SCHED
8890 /* task_group_lock serializes the addition/removal of task groups */
8891 static DEFINE_SPINLOCK(task_group_lock);
8892 
8893 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8894 					    struct task_group *parent)
8895 {
8896 #ifdef CONFIG_UCLAMP_TASK_GROUP
8897 	enum uclamp_id clamp_id;
8898 
8899 	for_each_clamp_id(clamp_id) {
8900 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8901 			      uclamp_none(clamp_id), false);
8902 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8903 	}
8904 #endif
8905 }
8906 
8907 static void sched_free_group(struct task_group *tg)
8908 {
8909 	free_fair_sched_group(tg);
8910 	free_rt_sched_group(tg);
8911 	autogroup_free(tg);
8912 	kmem_cache_free(task_group_cache, tg);
8913 }
8914 
8915 static void sched_free_group_rcu(struct rcu_head *rcu)
8916 {
8917 	sched_free_group(container_of(rcu, struct task_group, rcu));
8918 }
8919 
8920 static void sched_unregister_group(struct task_group *tg)
8921 {
8922 	unregister_fair_sched_group(tg);
8923 	unregister_rt_sched_group(tg);
8924 	/*
8925 	 * We have to wait for yet another RCU grace period to expire, as
8926 	 * print_cfs_stats() might run concurrently.
8927 	 */
8928 	call_rcu(&tg->rcu, sched_free_group_rcu);
8929 }
8930 
8931 /* allocate runqueue etc for a new task group */
8932 struct task_group *sched_create_group(struct task_group *parent)
8933 {
8934 	struct task_group *tg;
8935 
8936 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8937 	if (!tg)
8938 		return ERR_PTR(-ENOMEM);
8939 
8940 	if (!alloc_fair_sched_group(tg, parent))
8941 		goto err;
8942 
8943 	if (!alloc_rt_sched_group(tg, parent))
8944 		goto err;
8945 
8946 	scx_group_set_weight(tg, CGROUP_WEIGHT_DFL);
8947 	alloc_uclamp_sched_group(tg, parent);
8948 
8949 	return tg;
8950 
8951 err:
8952 	sched_free_group(tg);
8953 	return ERR_PTR(-ENOMEM);
8954 }
8955 
8956 void sched_online_group(struct task_group *tg, struct task_group *parent)
8957 {
8958 	unsigned long flags;
8959 
8960 	spin_lock_irqsave(&task_group_lock, flags);
8961 	list_add_rcu(&tg->list, &task_groups);
8962 
8963 	/* Root should already exist: */
8964 	WARN_ON(!parent);
8965 
8966 	tg->parent = parent;
8967 	INIT_LIST_HEAD(&tg->children);
8968 	list_add_rcu(&tg->siblings, &parent->children);
8969 	spin_unlock_irqrestore(&task_group_lock, flags);
8970 
8971 	online_fair_sched_group(tg);
8972 }
8973 
8974 /* RCU callback to free various structures associated with a task group */
8975 static void sched_unregister_group_rcu(struct rcu_head *rhp)
8976 {
8977 	/* Now it should be safe to free those cfs_rqs: */
8978 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
8979 }
8980 
8981 void sched_destroy_group(struct task_group *tg)
8982 {
8983 	/* Wait for possible concurrent references to cfs_rqs complete: */
8984 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
8985 }
8986 
8987 void sched_release_group(struct task_group *tg)
8988 {
8989 	unsigned long flags;
8990 
8991 	/*
8992 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
8993 	 * sched_cfs_period_timer()).
8994 	 *
8995 	 * For this to be effective, we have to wait for all pending users of
8996 	 * this task group to leave their RCU critical section to ensure no new
8997 	 * user will see our dying task group any more. Specifically ensure
8998 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
8999 	 *
9000 	 * We therefore defer calling unregister_fair_sched_group() to
9001 	 * sched_unregister_group() which is guarantied to get called only after the
9002 	 * current RCU grace period has expired.
9003 	 */
9004 	spin_lock_irqsave(&task_group_lock, flags);
9005 	list_del_rcu(&tg->list);
9006 	list_del_rcu(&tg->siblings);
9007 	spin_unlock_irqrestore(&task_group_lock, flags);
9008 }
9009 
9010 static struct task_group *sched_get_task_group(struct task_struct *tsk)
9011 {
9012 	struct task_group *tg;
9013 
9014 	/*
9015 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
9016 	 * which is pointless here. Thus, we pass "true" to task_css_check()
9017 	 * to prevent lockdep warnings.
9018 	 */
9019 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9020 			  struct task_group, css);
9021 	tg = autogroup_task_group(tsk, tg);
9022 
9023 	return tg;
9024 }
9025 
9026 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
9027 {
9028 	tsk->sched_task_group = group;
9029 
9030 #ifdef CONFIG_FAIR_GROUP_SCHED
9031 	if (tsk->sched_class->task_change_group)
9032 		tsk->sched_class->task_change_group(tsk);
9033 	else
9034 #endif
9035 		set_task_rq(tsk, task_cpu(tsk));
9036 }
9037 
9038 /*
9039  * Change task's runqueue when it moves between groups.
9040  *
9041  * The caller of this function should have put the task in its new group by
9042  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9043  * its new group.
9044  */
9045 void sched_move_task(struct task_struct *tsk)
9046 {
9047 	int queued, running, queue_flags =
9048 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9049 	struct task_group *group;
9050 	struct rq *rq;
9051 
9052 	CLASS(task_rq_lock, rq_guard)(tsk);
9053 	rq = rq_guard.rq;
9054 
9055 	/*
9056 	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
9057 	 * group changes.
9058 	 */
9059 	group = sched_get_task_group(tsk);
9060 	if (group == tsk->sched_task_group)
9061 		return;
9062 
9063 	update_rq_clock(rq);
9064 
9065 	running = task_current_donor(rq, tsk);
9066 	queued = task_on_rq_queued(tsk);
9067 
9068 	if (queued)
9069 		dequeue_task(rq, tsk, queue_flags);
9070 	if (running)
9071 		put_prev_task(rq, tsk);
9072 
9073 	sched_change_group(tsk, group);
9074 	scx_move_task(tsk);
9075 
9076 	if (queued)
9077 		enqueue_task(rq, tsk, queue_flags);
9078 	if (running) {
9079 		set_next_task(rq, tsk);
9080 		/*
9081 		 * After changing group, the running task may have joined a
9082 		 * throttled one but it's still the running task. Trigger a
9083 		 * resched to make sure that task can still run.
9084 		 */
9085 		resched_curr(rq);
9086 	}
9087 }
9088 
9089 static struct cgroup_subsys_state *
9090 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9091 {
9092 	struct task_group *parent = css_tg(parent_css);
9093 	struct task_group *tg;
9094 
9095 	if (!parent) {
9096 		/* This is early initialization for the top cgroup */
9097 		return &root_task_group.css;
9098 	}
9099 
9100 	tg = sched_create_group(parent);
9101 	if (IS_ERR(tg))
9102 		return ERR_PTR(-ENOMEM);
9103 
9104 	return &tg->css;
9105 }
9106 
9107 /* Expose task group only after completing cgroup initialization */
9108 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9109 {
9110 	struct task_group *tg = css_tg(css);
9111 	struct task_group *parent = css_tg(css->parent);
9112 	int ret;
9113 
9114 	ret = scx_tg_online(tg);
9115 	if (ret)
9116 		return ret;
9117 
9118 	if (parent)
9119 		sched_online_group(tg, parent);
9120 
9121 #ifdef CONFIG_UCLAMP_TASK_GROUP
9122 	/* Propagate the effective uclamp value for the new group */
9123 	guard(mutex)(&uclamp_mutex);
9124 	guard(rcu)();
9125 	cpu_util_update_eff(css);
9126 #endif
9127 
9128 	return 0;
9129 }
9130 
9131 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
9132 {
9133 	struct task_group *tg = css_tg(css);
9134 
9135 	scx_tg_offline(tg);
9136 }
9137 
9138 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9139 {
9140 	struct task_group *tg = css_tg(css);
9141 
9142 	sched_release_group(tg);
9143 }
9144 
9145 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9146 {
9147 	struct task_group *tg = css_tg(css);
9148 
9149 	/*
9150 	 * Relies on the RCU grace period between css_released() and this.
9151 	 */
9152 	sched_unregister_group(tg);
9153 }
9154 
9155 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9156 {
9157 #ifdef CONFIG_RT_GROUP_SCHED
9158 	struct task_struct *task;
9159 	struct cgroup_subsys_state *css;
9160 
9161 	cgroup_taskset_for_each(task, css, tset) {
9162 		if (!sched_rt_can_attach(css_tg(css), task))
9163 			return -EINVAL;
9164 	}
9165 #endif
9166 	return scx_cgroup_can_attach(tset);
9167 }
9168 
9169 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9170 {
9171 	struct task_struct *task;
9172 	struct cgroup_subsys_state *css;
9173 
9174 	cgroup_taskset_for_each(task, css, tset)
9175 		sched_move_task(task);
9176 
9177 	scx_cgroup_finish_attach();
9178 }
9179 
9180 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
9181 {
9182 	scx_cgroup_cancel_attach(tset);
9183 }
9184 
9185 #ifdef CONFIG_UCLAMP_TASK_GROUP
9186 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9187 {
9188 	struct cgroup_subsys_state *top_css = css;
9189 	struct uclamp_se *uc_parent = NULL;
9190 	struct uclamp_se *uc_se = NULL;
9191 	unsigned int eff[UCLAMP_CNT];
9192 	enum uclamp_id clamp_id;
9193 	unsigned int clamps;
9194 
9195 	lockdep_assert_held(&uclamp_mutex);
9196 	SCHED_WARN_ON(!rcu_read_lock_held());
9197 
9198 	css_for_each_descendant_pre(css, top_css) {
9199 		uc_parent = css_tg(css)->parent
9200 			? css_tg(css)->parent->uclamp : NULL;
9201 
9202 		for_each_clamp_id(clamp_id) {
9203 			/* Assume effective clamps matches requested clamps */
9204 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9205 			/* Cap effective clamps with parent's effective clamps */
9206 			if (uc_parent &&
9207 			    eff[clamp_id] > uc_parent[clamp_id].value) {
9208 				eff[clamp_id] = uc_parent[clamp_id].value;
9209 			}
9210 		}
9211 		/* Ensure protection is always capped by limit */
9212 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9213 
9214 		/* Propagate most restrictive effective clamps */
9215 		clamps = 0x0;
9216 		uc_se = css_tg(css)->uclamp;
9217 		for_each_clamp_id(clamp_id) {
9218 			if (eff[clamp_id] == uc_se[clamp_id].value)
9219 				continue;
9220 			uc_se[clamp_id].value = eff[clamp_id];
9221 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9222 			clamps |= (0x1 << clamp_id);
9223 		}
9224 		if (!clamps) {
9225 			css = css_rightmost_descendant(css);
9226 			continue;
9227 		}
9228 
9229 		/* Immediately update descendants RUNNABLE tasks */
9230 		uclamp_update_active_tasks(css);
9231 	}
9232 }
9233 
9234 /*
9235  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9236  * C expression. Since there is no way to convert a macro argument (N) into a
9237  * character constant, use two levels of macros.
9238  */
9239 #define _POW10(exp) ((unsigned int)1e##exp)
9240 #define POW10(exp) _POW10(exp)
9241 
9242 struct uclamp_request {
9243 #define UCLAMP_PERCENT_SHIFT	2
9244 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
9245 	s64 percent;
9246 	u64 util;
9247 	int ret;
9248 };
9249 
9250 static inline struct uclamp_request
9251 capacity_from_percent(char *buf)
9252 {
9253 	struct uclamp_request req = {
9254 		.percent = UCLAMP_PERCENT_SCALE,
9255 		.util = SCHED_CAPACITY_SCALE,
9256 		.ret = 0,
9257 	};
9258 
9259 	buf = strim(buf);
9260 	if (strcmp(buf, "max")) {
9261 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9262 					     &req.percent);
9263 		if (req.ret)
9264 			return req;
9265 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9266 			req.ret = -ERANGE;
9267 			return req;
9268 		}
9269 
9270 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
9271 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9272 	}
9273 
9274 	return req;
9275 }
9276 
9277 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9278 				size_t nbytes, loff_t off,
9279 				enum uclamp_id clamp_id)
9280 {
9281 	struct uclamp_request req;
9282 	struct task_group *tg;
9283 
9284 	req = capacity_from_percent(buf);
9285 	if (req.ret)
9286 		return req.ret;
9287 
9288 	static_branch_enable(&sched_uclamp_used);
9289 
9290 	guard(mutex)(&uclamp_mutex);
9291 	guard(rcu)();
9292 
9293 	tg = css_tg(of_css(of));
9294 	if (tg->uclamp_req[clamp_id].value != req.util)
9295 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9296 
9297 	/*
9298 	 * Because of not recoverable conversion rounding we keep track of the
9299 	 * exact requested value
9300 	 */
9301 	tg->uclamp_pct[clamp_id] = req.percent;
9302 
9303 	/* Update effective clamps to track the most restrictive value */
9304 	cpu_util_update_eff(of_css(of));
9305 
9306 	return nbytes;
9307 }
9308 
9309 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9310 				    char *buf, size_t nbytes,
9311 				    loff_t off)
9312 {
9313 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9314 }
9315 
9316 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9317 				    char *buf, size_t nbytes,
9318 				    loff_t off)
9319 {
9320 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9321 }
9322 
9323 static inline void cpu_uclamp_print(struct seq_file *sf,
9324 				    enum uclamp_id clamp_id)
9325 {
9326 	struct task_group *tg;
9327 	u64 util_clamp;
9328 	u64 percent;
9329 	u32 rem;
9330 
9331 	scoped_guard (rcu) {
9332 		tg = css_tg(seq_css(sf));
9333 		util_clamp = tg->uclamp_req[clamp_id].value;
9334 	}
9335 
9336 	if (util_clamp == SCHED_CAPACITY_SCALE) {
9337 		seq_puts(sf, "max\n");
9338 		return;
9339 	}
9340 
9341 	percent = tg->uclamp_pct[clamp_id];
9342 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9343 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9344 }
9345 
9346 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9347 {
9348 	cpu_uclamp_print(sf, UCLAMP_MIN);
9349 	return 0;
9350 }
9351 
9352 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9353 {
9354 	cpu_uclamp_print(sf, UCLAMP_MAX);
9355 	return 0;
9356 }
9357 #endif /* CONFIG_UCLAMP_TASK_GROUP */
9358 
9359 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9360 static unsigned long tg_weight(struct task_group *tg)
9361 {
9362 #ifdef CONFIG_FAIR_GROUP_SCHED
9363 	return scale_load_down(tg->shares);
9364 #else
9365 	return sched_weight_from_cgroup(tg->scx_weight);
9366 #endif
9367 }
9368 
9369 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9370 				struct cftype *cftype, u64 shareval)
9371 {
9372 	int ret;
9373 
9374 	if (shareval > scale_load_down(ULONG_MAX))
9375 		shareval = MAX_SHARES;
9376 	ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
9377 	if (!ret)
9378 		scx_group_set_weight(css_tg(css),
9379 				     sched_weight_to_cgroup(shareval));
9380 	return ret;
9381 }
9382 
9383 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9384 			       struct cftype *cft)
9385 {
9386 	return tg_weight(css_tg(css));
9387 }
9388 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9389 
9390 #ifdef CONFIG_CFS_BANDWIDTH
9391 static DEFINE_MUTEX(cfs_constraints_mutex);
9392 
9393 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9394 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9395 /* More than 203 days if BW_SHIFT equals 20. */
9396 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9397 
9398 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9399 
9400 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9401 				u64 burst)
9402 {
9403 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
9404 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9405 
9406 	if (tg == &root_task_group)
9407 		return -EINVAL;
9408 
9409 	/*
9410 	 * Ensure we have at some amount of bandwidth every period.  This is
9411 	 * to prevent reaching a state of large arrears when throttled via
9412 	 * entity_tick() resulting in prolonged exit starvation.
9413 	 */
9414 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9415 		return -EINVAL;
9416 
9417 	/*
9418 	 * Likewise, bound things on the other side by preventing insane quota
9419 	 * periods.  This also allows us to normalize in computing quota
9420 	 * feasibility.
9421 	 */
9422 	if (period > max_cfs_quota_period)
9423 		return -EINVAL;
9424 
9425 	/*
9426 	 * Bound quota to defend quota against overflow during bandwidth shift.
9427 	 */
9428 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9429 		return -EINVAL;
9430 
9431 	if (quota != RUNTIME_INF && (burst > quota ||
9432 				     burst + quota > max_cfs_runtime))
9433 		return -EINVAL;
9434 
9435 	/*
9436 	 * Prevent race between setting of cfs_rq->runtime_enabled and
9437 	 * unthrottle_offline_cfs_rqs().
9438 	 */
9439 	guard(cpus_read_lock)();
9440 	guard(mutex)(&cfs_constraints_mutex);
9441 
9442 	ret = __cfs_schedulable(tg, period, quota);
9443 	if (ret)
9444 		return ret;
9445 
9446 	runtime_enabled = quota != RUNTIME_INF;
9447 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9448 	/*
9449 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9450 	 * before making related changes, and on->off must occur afterwards
9451 	 */
9452 	if (runtime_enabled && !runtime_was_enabled)
9453 		cfs_bandwidth_usage_inc();
9454 
9455 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
9456 		cfs_b->period = ns_to_ktime(period);
9457 		cfs_b->quota = quota;
9458 		cfs_b->burst = burst;
9459 
9460 		__refill_cfs_bandwidth_runtime(cfs_b);
9461 
9462 		/*
9463 		 * Restart the period timer (if active) to handle new
9464 		 * period expiry:
9465 		 */
9466 		if (runtime_enabled)
9467 			start_cfs_bandwidth(cfs_b);
9468 	}
9469 
9470 	for_each_online_cpu(i) {
9471 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9472 		struct rq *rq = cfs_rq->rq;
9473 
9474 		guard(rq_lock_irq)(rq);
9475 		cfs_rq->runtime_enabled = runtime_enabled;
9476 		cfs_rq->runtime_remaining = 0;
9477 
9478 		if (cfs_rq->throttled)
9479 			unthrottle_cfs_rq(cfs_rq);
9480 	}
9481 
9482 	if (runtime_was_enabled && !runtime_enabled)
9483 		cfs_bandwidth_usage_dec();
9484 
9485 	return 0;
9486 }
9487 
9488 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9489 {
9490 	u64 quota, period, burst;
9491 
9492 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9493 	burst = tg->cfs_bandwidth.burst;
9494 	if (cfs_quota_us < 0)
9495 		quota = RUNTIME_INF;
9496 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9497 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9498 	else
9499 		return -EINVAL;
9500 
9501 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9502 }
9503 
9504 static long tg_get_cfs_quota(struct task_group *tg)
9505 {
9506 	u64 quota_us;
9507 
9508 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9509 		return -1;
9510 
9511 	quota_us = tg->cfs_bandwidth.quota;
9512 	do_div(quota_us, NSEC_PER_USEC);
9513 
9514 	return quota_us;
9515 }
9516 
9517 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9518 {
9519 	u64 quota, period, burst;
9520 
9521 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9522 		return -EINVAL;
9523 
9524 	period = (u64)cfs_period_us * NSEC_PER_USEC;
9525 	quota = tg->cfs_bandwidth.quota;
9526 	burst = tg->cfs_bandwidth.burst;
9527 
9528 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9529 }
9530 
9531 static long tg_get_cfs_period(struct task_group *tg)
9532 {
9533 	u64 cfs_period_us;
9534 
9535 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9536 	do_div(cfs_period_us, NSEC_PER_USEC);
9537 
9538 	return cfs_period_us;
9539 }
9540 
9541 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
9542 {
9543 	u64 quota, period, burst;
9544 
9545 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
9546 		return -EINVAL;
9547 
9548 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
9549 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9550 	quota = tg->cfs_bandwidth.quota;
9551 
9552 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9553 }
9554 
9555 static long tg_get_cfs_burst(struct task_group *tg)
9556 {
9557 	u64 burst_us;
9558 
9559 	burst_us = tg->cfs_bandwidth.burst;
9560 	do_div(burst_us, NSEC_PER_USEC);
9561 
9562 	return burst_us;
9563 }
9564 
9565 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9566 				  struct cftype *cft)
9567 {
9568 	return tg_get_cfs_quota(css_tg(css));
9569 }
9570 
9571 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9572 				   struct cftype *cftype, s64 cfs_quota_us)
9573 {
9574 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9575 }
9576 
9577 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9578 				   struct cftype *cft)
9579 {
9580 	return tg_get_cfs_period(css_tg(css));
9581 }
9582 
9583 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9584 				    struct cftype *cftype, u64 cfs_period_us)
9585 {
9586 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
9587 }
9588 
9589 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
9590 				  struct cftype *cft)
9591 {
9592 	return tg_get_cfs_burst(css_tg(css));
9593 }
9594 
9595 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
9596 				   struct cftype *cftype, u64 cfs_burst_us)
9597 {
9598 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
9599 }
9600 
9601 struct cfs_schedulable_data {
9602 	struct task_group *tg;
9603 	u64 period, quota;
9604 };
9605 
9606 /*
9607  * normalize group quota/period to be quota/max_period
9608  * note: units are usecs
9609  */
9610 static u64 normalize_cfs_quota(struct task_group *tg,
9611 			       struct cfs_schedulable_data *d)
9612 {
9613 	u64 quota, period;
9614 
9615 	if (tg == d->tg) {
9616 		period = d->period;
9617 		quota = d->quota;
9618 	} else {
9619 		period = tg_get_cfs_period(tg);
9620 		quota = tg_get_cfs_quota(tg);
9621 	}
9622 
9623 	/* note: these should typically be equivalent */
9624 	if (quota == RUNTIME_INF || quota == -1)
9625 		return RUNTIME_INF;
9626 
9627 	return to_ratio(period, quota);
9628 }
9629 
9630 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9631 {
9632 	struct cfs_schedulable_data *d = data;
9633 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9634 	s64 quota = 0, parent_quota = -1;
9635 
9636 	if (!tg->parent) {
9637 		quota = RUNTIME_INF;
9638 	} else {
9639 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9640 
9641 		quota = normalize_cfs_quota(tg, d);
9642 		parent_quota = parent_b->hierarchical_quota;
9643 
9644 		/*
9645 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9646 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
9647 		 * inherit when no limit is set. In both cases this is used
9648 		 * by the scheduler to determine if a given CFS task has a
9649 		 * bandwidth constraint at some higher level.
9650 		 */
9651 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9652 			if (quota == RUNTIME_INF)
9653 				quota = parent_quota;
9654 			else if (parent_quota != RUNTIME_INF)
9655 				quota = min(quota, parent_quota);
9656 		} else {
9657 			if (quota == RUNTIME_INF)
9658 				quota = parent_quota;
9659 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9660 				return -EINVAL;
9661 		}
9662 	}
9663 	cfs_b->hierarchical_quota = quota;
9664 
9665 	return 0;
9666 }
9667 
9668 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9669 {
9670 	struct cfs_schedulable_data data = {
9671 		.tg = tg,
9672 		.period = period,
9673 		.quota = quota,
9674 	};
9675 
9676 	if (quota != RUNTIME_INF) {
9677 		do_div(data.period, NSEC_PER_USEC);
9678 		do_div(data.quota, NSEC_PER_USEC);
9679 	}
9680 
9681 	guard(rcu)();
9682 	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9683 }
9684 
9685 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9686 {
9687 	struct task_group *tg = css_tg(seq_css(sf));
9688 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9689 
9690 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9691 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9692 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9693 
9694 	if (schedstat_enabled() && tg != &root_task_group) {
9695 		struct sched_statistics *stats;
9696 		u64 ws = 0;
9697 		int i;
9698 
9699 		for_each_possible_cpu(i) {
9700 			stats = __schedstats_from_se(tg->se[i]);
9701 			ws += schedstat_val(stats->wait_sum);
9702 		}
9703 
9704 		seq_printf(sf, "wait_sum %llu\n", ws);
9705 	}
9706 
9707 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
9708 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
9709 
9710 	return 0;
9711 }
9712 
9713 static u64 throttled_time_self(struct task_group *tg)
9714 {
9715 	int i;
9716 	u64 total = 0;
9717 
9718 	for_each_possible_cpu(i) {
9719 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
9720 	}
9721 
9722 	return total;
9723 }
9724 
9725 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
9726 {
9727 	struct task_group *tg = css_tg(seq_css(sf));
9728 
9729 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
9730 
9731 	return 0;
9732 }
9733 #endif /* CONFIG_CFS_BANDWIDTH */
9734 
9735 #ifdef CONFIG_RT_GROUP_SCHED
9736 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9737 				struct cftype *cft, s64 val)
9738 {
9739 	return sched_group_set_rt_runtime(css_tg(css), val);
9740 }
9741 
9742 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9743 			       struct cftype *cft)
9744 {
9745 	return sched_group_rt_runtime(css_tg(css));
9746 }
9747 
9748 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9749 				    struct cftype *cftype, u64 rt_period_us)
9750 {
9751 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9752 }
9753 
9754 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9755 				   struct cftype *cft)
9756 {
9757 	return sched_group_rt_period(css_tg(css));
9758 }
9759 #endif /* CONFIG_RT_GROUP_SCHED */
9760 
9761 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9762 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
9763 			       struct cftype *cft)
9764 {
9765 	return css_tg(css)->idle;
9766 }
9767 
9768 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
9769 				struct cftype *cft, s64 idle)
9770 {
9771 	int ret;
9772 
9773 	ret = sched_group_set_idle(css_tg(css), idle);
9774 	if (!ret)
9775 		scx_group_set_idle(css_tg(css), idle);
9776 	return ret;
9777 }
9778 #endif
9779 
9780 static struct cftype cpu_legacy_files[] = {
9781 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9782 	{
9783 		.name = "shares",
9784 		.read_u64 = cpu_shares_read_u64,
9785 		.write_u64 = cpu_shares_write_u64,
9786 	},
9787 	{
9788 		.name = "idle",
9789 		.read_s64 = cpu_idle_read_s64,
9790 		.write_s64 = cpu_idle_write_s64,
9791 	},
9792 #endif
9793 #ifdef CONFIG_CFS_BANDWIDTH
9794 	{
9795 		.name = "cfs_quota_us",
9796 		.read_s64 = cpu_cfs_quota_read_s64,
9797 		.write_s64 = cpu_cfs_quota_write_s64,
9798 	},
9799 	{
9800 		.name = "cfs_period_us",
9801 		.read_u64 = cpu_cfs_period_read_u64,
9802 		.write_u64 = cpu_cfs_period_write_u64,
9803 	},
9804 	{
9805 		.name = "cfs_burst_us",
9806 		.read_u64 = cpu_cfs_burst_read_u64,
9807 		.write_u64 = cpu_cfs_burst_write_u64,
9808 	},
9809 	{
9810 		.name = "stat",
9811 		.seq_show = cpu_cfs_stat_show,
9812 	},
9813 	{
9814 		.name = "stat.local",
9815 		.seq_show = cpu_cfs_local_stat_show,
9816 	},
9817 #endif
9818 #ifdef CONFIG_RT_GROUP_SCHED
9819 	{
9820 		.name = "rt_runtime_us",
9821 		.read_s64 = cpu_rt_runtime_read,
9822 		.write_s64 = cpu_rt_runtime_write,
9823 	},
9824 	{
9825 		.name = "rt_period_us",
9826 		.read_u64 = cpu_rt_period_read_uint,
9827 		.write_u64 = cpu_rt_period_write_uint,
9828 	},
9829 #endif
9830 #ifdef CONFIG_UCLAMP_TASK_GROUP
9831 	{
9832 		.name = "uclamp.min",
9833 		.flags = CFTYPE_NOT_ON_ROOT,
9834 		.seq_show = cpu_uclamp_min_show,
9835 		.write = cpu_uclamp_min_write,
9836 	},
9837 	{
9838 		.name = "uclamp.max",
9839 		.flags = CFTYPE_NOT_ON_ROOT,
9840 		.seq_show = cpu_uclamp_max_show,
9841 		.write = cpu_uclamp_max_write,
9842 	},
9843 #endif
9844 	{ }	/* Terminate */
9845 };
9846 
9847 static int cpu_extra_stat_show(struct seq_file *sf,
9848 			       struct cgroup_subsys_state *css)
9849 {
9850 #ifdef CONFIG_CFS_BANDWIDTH
9851 	{
9852 		struct task_group *tg = css_tg(css);
9853 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9854 		u64 throttled_usec, burst_usec;
9855 
9856 		throttled_usec = cfs_b->throttled_time;
9857 		do_div(throttled_usec, NSEC_PER_USEC);
9858 		burst_usec = cfs_b->burst_time;
9859 		do_div(burst_usec, NSEC_PER_USEC);
9860 
9861 		seq_printf(sf, "nr_periods %d\n"
9862 			   "nr_throttled %d\n"
9863 			   "throttled_usec %llu\n"
9864 			   "nr_bursts %d\n"
9865 			   "burst_usec %llu\n",
9866 			   cfs_b->nr_periods, cfs_b->nr_throttled,
9867 			   throttled_usec, cfs_b->nr_burst, burst_usec);
9868 	}
9869 #endif
9870 	return 0;
9871 }
9872 
9873 static int cpu_local_stat_show(struct seq_file *sf,
9874 			       struct cgroup_subsys_state *css)
9875 {
9876 #ifdef CONFIG_CFS_BANDWIDTH
9877 	{
9878 		struct task_group *tg = css_tg(css);
9879 		u64 throttled_self_usec;
9880 
9881 		throttled_self_usec = throttled_time_self(tg);
9882 		do_div(throttled_self_usec, NSEC_PER_USEC);
9883 
9884 		seq_printf(sf, "throttled_usec %llu\n",
9885 			   throttled_self_usec);
9886 	}
9887 #endif
9888 	return 0;
9889 }
9890 
9891 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9892 
9893 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9894 			       struct cftype *cft)
9895 {
9896 	return sched_weight_to_cgroup(tg_weight(css_tg(css)));
9897 }
9898 
9899 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9900 				struct cftype *cft, u64 cgrp_weight)
9901 {
9902 	unsigned long weight;
9903 	int ret;
9904 
9905 	if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
9906 		return -ERANGE;
9907 
9908 	weight = sched_weight_from_cgroup(cgrp_weight);
9909 
9910 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9911 	if (!ret)
9912 		scx_group_set_weight(css_tg(css), cgrp_weight);
9913 	return ret;
9914 }
9915 
9916 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9917 				    struct cftype *cft)
9918 {
9919 	unsigned long weight = tg_weight(css_tg(css));
9920 	int last_delta = INT_MAX;
9921 	int prio, delta;
9922 
9923 	/* find the closest nice value to the current weight */
9924 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9925 		delta = abs(sched_prio_to_weight[prio] - weight);
9926 		if (delta >= last_delta)
9927 			break;
9928 		last_delta = delta;
9929 	}
9930 
9931 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9932 }
9933 
9934 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9935 				     struct cftype *cft, s64 nice)
9936 {
9937 	unsigned long weight;
9938 	int idx, ret;
9939 
9940 	if (nice < MIN_NICE || nice > MAX_NICE)
9941 		return -ERANGE;
9942 
9943 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9944 	idx = array_index_nospec(idx, 40);
9945 	weight = sched_prio_to_weight[idx];
9946 
9947 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9948 	if (!ret)
9949 		scx_group_set_weight(css_tg(css),
9950 				     sched_weight_to_cgroup(weight));
9951 	return ret;
9952 }
9953 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9954 
9955 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9956 						  long period, long quota)
9957 {
9958 	if (quota < 0)
9959 		seq_puts(sf, "max");
9960 	else
9961 		seq_printf(sf, "%ld", quota);
9962 
9963 	seq_printf(sf, " %ld\n", period);
9964 }
9965 
9966 /* caller should put the current value in *@periodp before calling */
9967 static int __maybe_unused cpu_period_quota_parse(char *buf,
9968 						 u64 *periodp, u64 *quotap)
9969 {
9970 	char tok[21];	/* U64_MAX */
9971 
9972 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9973 		return -EINVAL;
9974 
9975 	*periodp *= NSEC_PER_USEC;
9976 
9977 	if (sscanf(tok, "%llu", quotap))
9978 		*quotap *= NSEC_PER_USEC;
9979 	else if (!strcmp(tok, "max"))
9980 		*quotap = RUNTIME_INF;
9981 	else
9982 		return -EINVAL;
9983 
9984 	return 0;
9985 }
9986 
9987 #ifdef CONFIG_CFS_BANDWIDTH
9988 static int cpu_max_show(struct seq_file *sf, void *v)
9989 {
9990 	struct task_group *tg = css_tg(seq_css(sf));
9991 
9992 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9993 	return 0;
9994 }
9995 
9996 static ssize_t cpu_max_write(struct kernfs_open_file *of,
9997 			     char *buf, size_t nbytes, loff_t off)
9998 {
9999 	struct task_group *tg = css_tg(of_css(of));
10000 	u64 period = tg_get_cfs_period(tg);
10001 	u64 burst = tg->cfs_bandwidth.burst;
10002 	u64 quota;
10003 	int ret;
10004 
10005 	ret = cpu_period_quota_parse(buf, &period, &quota);
10006 	if (!ret)
10007 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10008 	return ret ?: nbytes;
10009 }
10010 #endif
10011 
10012 static struct cftype cpu_files[] = {
10013 #ifdef CONFIG_GROUP_SCHED_WEIGHT
10014 	{
10015 		.name = "weight",
10016 		.flags = CFTYPE_NOT_ON_ROOT,
10017 		.read_u64 = cpu_weight_read_u64,
10018 		.write_u64 = cpu_weight_write_u64,
10019 	},
10020 	{
10021 		.name = "weight.nice",
10022 		.flags = CFTYPE_NOT_ON_ROOT,
10023 		.read_s64 = cpu_weight_nice_read_s64,
10024 		.write_s64 = cpu_weight_nice_write_s64,
10025 	},
10026 	{
10027 		.name = "idle",
10028 		.flags = CFTYPE_NOT_ON_ROOT,
10029 		.read_s64 = cpu_idle_read_s64,
10030 		.write_s64 = cpu_idle_write_s64,
10031 	},
10032 #endif
10033 #ifdef CONFIG_CFS_BANDWIDTH
10034 	{
10035 		.name = "max",
10036 		.flags = CFTYPE_NOT_ON_ROOT,
10037 		.seq_show = cpu_max_show,
10038 		.write = cpu_max_write,
10039 	},
10040 	{
10041 		.name = "max.burst",
10042 		.flags = CFTYPE_NOT_ON_ROOT,
10043 		.read_u64 = cpu_cfs_burst_read_u64,
10044 		.write_u64 = cpu_cfs_burst_write_u64,
10045 	},
10046 #endif
10047 #ifdef CONFIG_UCLAMP_TASK_GROUP
10048 	{
10049 		.name = "uclamp.min",
10050 		.flags = CFTYPE_NOT_ON_ROOT,
10051 		.seq_show = cpu_uclamp_min_show,
10052 		.write = cpu_uclamp_min_write,
10053 	},
10054 	{
10055 		.name = "uclamp.max",
10056 		.flags = CFTYPE_NOT_ON_ROOT,
10057 		.seq_show = cpu_uclamp_max_show,
10058 		.write = cpu_uclamp_max_write,
10059 	},
10060 #endif
10061 	{ }	/* terminate */
10062 };
10063 
10064 struct cgroup_subsys cpu_cgrp_subsys = {
10065 	.css_alloc	= cpu_cgroup_css_alloc,
10066 	.css_online	= cpu_cgroup_css_online,
10067 	.css_offline	= cpu_cgroup_css_offline,
10068 	.css_released	= cpu_cgroup_css_released,
10069 	.css_free	= cpu_cgroup_css_free,
10070 	.css_extra_stat_show = cpu_extra_stat_show,
10071 	.css_local_stat_show = cpu_local_stat_show,
10072 	.can_attach	= cpu_cgroup_can_attach,
10073 	.attach		= cpu_cgroup_attach,
10074 	.cancel_attach	= cpu_cgroup_cancel_attach,
10075 	.legacy_cftypes	= cpu_legacy_files,
10076 	.dfl_cftypes	= cpu_files,
10077 	.early_init	= true,
10078 	.threaded	= true,
10079 };
10080 
10081 #endif	/* CONFIG_CGROUP_SCHED */
10082 
10083 void dump_cpu_task(int cpu)
10084 {
10085 	if (in_hardirq() && cpu == smp_processor_id()) {
10086 		struct pt_regs *regs;
10087 
10088 		regs = get_irq_regs();
10089 		if (regs) {
10090 			show_regs(regs);
10091 			return;
10092 		}
10093 	}
10094 
10095 	if (trigger_single_cpu_backtrace(cpu))
10096 		return;
10097 
10098 	pr_info("Task dump for CPU %d:\n", cpu);
10099 	sched_show_task(cpu_curr(cpu));
10100 }
10101 
10102 /*
10103  * Nice levels are multiplicative, with a gentle 10% change for every
10104  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10105  * nice 1, it will get ~10% less CPU time than another CPU-bound task
10106  * that remained on nice 0.
10107  *
10108  * The "10% effect" is relative and cumulative: from _any_ nice level,
10109  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10110  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10111  * If a task goes up by ~10% and another task goes down by ~10% then
10112  * the relative distance between them is ~25%.)
10113  */
10114 const int sched_prio_to_weight[40] = {
10115  /* -20 */     88761,     71755,     56483,     46273,     36291,
10116  /* -15 */     29154,     23254,     18705,     14949,     11916,
10117  /* -10 */      9548,      7620,      6100,      4904,      3906,
10118  /*  -5 */      3121,      2501,      1991,      1586,      1277,
10119  /*   0 */      1024,       820,       655,       526,       423,
10120  /*   5 */       335,       272,       215,       172,       137,
10121  /*  10 */       110,        87,        70,        56,        45,
10122  /*  15 */        36,        29,        23,        18,        15,
10123 };
10124 
10125 /*
10126  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
10127  *
10128  * In cases where the weight does not change often, we can use the
10129  * pre-calculated inverse to speed up arithmetics by turning divisions
10130  * into multiplications:
10131  */
10132 const u32 sched_prio_to_wmult[40] = {
10133  /* -20 */     48388,     59856,     76040,     92818,    118348,
10134  /* -15 */    147320,    184698,    229616,    287308,    360437,
10135  /* -10 */    449829,    563644,    704093,    875809,   1099582,
10136  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10137  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10138  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10139  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10140  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10141 };
10142 
10143 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10144 {
10145         trace_sched_update_nr_running_tp(rq, count);
10146 }
10147 
10148 #ifdef CONFIG_SCHED_MM_CID
10149 
10150 /*
10151  * @cid_lock: Guarantee forward-progress of cid allocation.
10152  *
10153  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
10154  * is only used when contention is detected by the lock-free allocation so
10155  * forward progress can be guaranteed.
10156  */
10157 DEFINE_RAW_SPINLOCK(cid_lock);
10158 
10159 /*
10160  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
10161  *
10162  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
10163  * detected, it is set to 1 to ensure that all newly coming allocations are
10164  * serialized by @cid_lock until the allocation which detected contention
10165  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
10166  * of a cid allocation.
10167  */
10168 int use_cid_lock;
10169 
10170 /*
10171  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
10172  * concurrently with respect to the execution of the source runqueue context
10173  * switch.
10174  *
10175  * There is one basic properties we want to guarantee here:
10176  *
10177  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
10178  * used by a task. That would lead to concurrent allocation of the cid and
10179  * userspace corruption.
10180  *
10181  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
10182  * that a pair of loads observe at least one of a pair of stores, which can be
10183  * shown as:
10184  *
10185  *      X = Y = 0
10186  *
10187  *      w[X]=1          w[Y]=1
10188  *      MB              MB
10189  *      r[Y]=y          r[X]=x
10190  *
10191  * Which guarantees that x==0 && y==0 is impossible. But rather than using
10192  * values 0 and 1, this algorithm cares about specific state transitions of the
10193  * runqueue current task (as updated by the scheduler context switch), and the
10194  * per-mm/cpu cid value.
10195  *
10196  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
10197  * task->mm != mm for the rest of the discussion. There are two scheduler state
10198  * transitions on context switch we care about:
10199  *
10200  * (TSA) Store to rq->curr with transition from (N) to (Y)
10201  *
10202  * (TSB) Store to rq->curr with transition from (Y) to (N)
10203  *
10204  * On the remote-clear side, there is one transition we care about:
10205  *
10206  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
10207  *
10208  * There is also a transition to UNSET state which can be performed from all
10209  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
10210  * guarantees that only a single thread will succeed:
10211  *
10212  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
10213  *
10214  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
10215  * when a thread is actively using the cid (property (1)).
10216  *
10217  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
10218  *
10219  * Scenario A) (TSA)+(TMA) (from next task perspective)
10220  *
10221  * CPU0                                      CPU1
10222  *
10223  * Context switch CS-1                       Remote-clear
10224  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
10225  *                                             (implied barrier after cmpxchg)
10226  *   - switch_mm_cid()
10227  *     - memory barrier (see switch_mm_cid()
10228  *       comment explaining how this barrier
10229  *       is combined with other scheduler
10230  *       barriers)
10231  *     - mm_cid_get (next)
10232  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
10233  *
10234  * This Dekker ensures that either task (Y) is observed by the
10235  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
10236  * observed.
10237  *
10238  * If task (Y) store is observed by rcu_dereference(), it means that there is
10239  * still an active task on the cpu. Remote-clear will therefore not transition
10240  * to UNSET, which fulfills property (1).
10241  *
10242  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
10243  * it will move its state to UNSET, which clears the percpu cid perhaps
10244  * uselessly (which is not an issue for correctness). Because task (Y) is not
10245  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
10246  * state to UNSET is done with a cmpxchg expecting that the old state has the
10247  * LAZY flag set, only one thread will successfully UNSET.
10248  *
10249  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
10250  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
10251  * CPU1 will observe task (Y) and do nothing more, which is fine.
10252  *
10253  * What we are effectively preventing with this Dekker is a scenario where
10254  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
10255  * because this would UNSET a cid which is actively used.
10256  */
10257 
10258 void sched_mm_cid_migrate_from(struct task_struct *t)
10259 {
10260 	t->migrate_from_cpu = task_cpu(t);
10261 }
10262 
10263 static
10264 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
10265 					  struct task_struct *t,
10266 					  struct mm_cid *src_pcpu_cid)
10267 {
10268 	struct mm_struct *mm = t->mm;
10269 	struct task_struct *src_task;
10270 	int src_cid, last_mm_cid;
10271 
10272 	if (!mm)
10273 		return -1;
10274 
10275 	last_mm_cid = t->last_mm_cid;
10276 	/*
10277 	 * If the migrated task has no last cid, or if the current
10278 	 * task on src rq uses the cid, it means the source cid does not need
10279 	 * to be moved to the destination cpu.
10280 	 */
10281 	if (last_mm_cid == -1)
10282 		return -1;
10283 	src_cid = READ_ONCE(src_pcpu_cid->cid);
10284 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
10285 		return -1;
10286 
10287 	/*
10288 	 * If we observe an active task using the mm on this rq, it means we
10289 	 * are not the last task to be migrated from this cpu for this mm, so
10290 	 * there is no need to move src_cid to the destination cpu.
10291 	 */
10292 	guard(rcu)();
10293 	src_task = rcu_dereference(src_rq->curr);
10294 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10295 		t->last_mm_cid = -1;
10296 		return -1;
10297 	}
10298 
10299 	return src_cid;
10300 }
10301 
10302 static
10303 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
10304 					      struct task_struct *t,
10305 					      struct mm_cid *src_pcpu_cid,
10306 					      int src_cid)
10307 {
10308 	struct task_struct *src_task;
10309 	struct mm_struct *mm = t->mm;
10310 	int lazy_cid;
10311 
10312 	if (src_cid == -1)
10313 		return -1;
10314 
10315 	/*
10316 	 * Attempt to clear the source cpu cid to move it to the destination
10317 	 * cpu.
10318 	 */
10319 	lazy_cid = mm_cid_set_lazy_put(src_cid);
10320 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
10321 		return -1;
10322 
10323 	/*
10324 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10325 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10326 	 * between store to rq->curr and load of prev and next task's
10327 	 * per-mm/cpu cid.
10328 	 *
10329 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10330 	 * rq->curr->mm_cid_active matches the barrier in
10331 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10332 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10333 	 * load of per-mm/cpu cid.
10334 	 */
10335 
10336 	/*
10337 	 * If we observe an active task using the mm on this rq after setting
10338 	 * the lazy-put flag, this task will be responsible for transitioning
10339 	 * from lazy-put flag set to MM_CID_UNSET.
10340 	 */
10341 	scoped_guard (rcu) {
10342 		src_task = rcu_dereference(src_rq->curr);
10343 		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10344 			/*
10345 			 * We observed an active task for this mm, there is therefore
10346 			 * no point in moving this cid to the destination cpu.
10347 			 */
10348 			t->last_mm_cid = -1;
10349 			return -1;
10350 		}
10351 	}
10352 
10353 	/*
10354 	 * The src_cid is unused, so it can be unset.
10355 	 */
10356 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10357 		return -1;
10358 	WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET);
10359 	return src_cid;
10360 }
10361 
10362 /*
10363  * Migration to dst cpu. Called with dst_rq lock held.
10364  * Interrupts are disabled, which keeps the window of cid ownership without the
10365  * source rq lock held small.
10366  */
10367 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10368 {
10369 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10370 	struct mm_struct *mm = t->mm;
10371 	int src_cid, src_cpu;
10372 	bool dst_cid_is_set;
10373 	struct rq *src_rq;
10374 
10375 	lockdep_assert_rq_held(dst_rq);
10376 
10377 	if (!mm)
10378 		return;
10379 	src_cpu = t->migrate_from_cpu;
10380 	if (src_cpu == -1) {
10381 		t->last_mm_cid = -1;
10382 		return;
10383 	}
10384 	/*
10385 	 * Move the src cid if the dst cid is unset. This keeps id
10386 	 * allocation closest to 0 in cases where few threads migrate around
10387 	 * many CPUs.
10388 	 *
10389 	 * If destination cid or recent cid is already set, we may have
10390 	 * to just clear the src cid to ensure compactness in frequent
10391 	 * migrations scenarios.
10392 	 *
10393 	 * It is not useful to clear the src cid when the number of threads is
10394 	 * greater or equal to the number of allowed CPUs, because user-space
10395 	 * can expect that the number of allowed cids can reach the number of
10396 	 * allowed CPUs.
10397 	 */
10398 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10399 	dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) ||
10400 			 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid));
10401 	if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed))
10402 		return;
10403 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10404 	src_rq = cpu_rq(src_cpu);
10405 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10406 	if (src_cid == -1)
10407 		return;
10408 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10409 							    src_cid);
10410 	if (src_cid == -1)
10411 		return;
10412 	if (dst_cid_is_set) {
10413 		__mm_cid_put(mm, src_cid);
10414 		return;
10415 	}
10416 	/* Move src_cid to dst cpu. */
10417 	mm_cid_snapshot_time(dst_rq, mm);
10418 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10419 	WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid);
10420 }
10421 
10422 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10423 				      int cpu)
10424 {
10425 	struct rq *rq = cpu_rq(cpu);
10426 	struct task_struct *t;
10427 	int cid, lazy_cid;
10428 
10429 	cid = READ_ONCE(pcpu_cid->cid);
10430 	if (!mm_cid_is_valid(cid))
10431 		return;
10432 
10433 	/*
10434 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
10435 	 * there happens to be other tasks left on the source cpu using this
10436 	 * mm, the next task using this mm will reallocate its cid on context
10437 	 * switch.
10438 	 */
10439 	lazy_cid = mm_cid_set_lazy_put(cid);
10440 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10441 		return;
10442 
10443 	/*
10444 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10445 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10446 	 * between store to rq->curr and load of prev and next task's
10447 	 * per-mm/cpu cid.
10448 	 *
10449 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10450 	 * rq->curr->mm_cid_active matches the barrier in
10451 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10452 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10453 	 * load of per-mm/cpu cid.
10454 	 */
10455 
10456 	/*
10457 	 * If we observe an active task using the mm on this rq after setting
10458 	 * the lazy-put flag, that task will be responsible for transitioning
10459 	 * from lazy-put flag set to MM_CID_UNSET.
10460 	 */
10461 	scoped_guard (rcu) {
10462 		t = rcu_dereference(rq->curr);
10463 		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10464 			return;
10465 	}
10466 
10467 	/*
10468 	 * The cid is unused, so it can be unset.
10469 	 * Disable interrupts to keep the window of cid ownership without rq
10470 	 * lock small.
10471 	 */
10472 	scoped_guard (irqsave) {
10473 		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10474 			__mm_cid_put(mm, cid);
10475 	}
10476 }
10477 
10478 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10479 {
10480 	struct rq *rq = cpu_rq(cpu);
10481 	struct mm_cid *pcpu_cid;
10482 	struct task_struct *curr;
10483 	u64 rq_clock;
10484 
10485 	/*
10486 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
10487 	 * while is irrelevant.
10488 	 */
10489 	rq_clock = READ_ONCE(rq->clock);
10490 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10491 
10492 	/*
10493 	 * In order to take care of infrequently scheduled tasks, bump the time
10494 	 * snapshot associated with this cid if an active task using the mm is
10495 	 * observed on this rq.
10496 	 */
10497 	scoped_guard (rcu) {
10498 		curr = rcu_dereference(rq->curr);
10499 		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10500 			WRITE_ONCE(pcpu_cid->time, rq_clock);
10501 			return;
10502 		}
10503 	}
10504 
10505 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10506 		return;
10507 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10508 }
10509 
10510 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10511 					     int weight)
10512 {
10513 	struct mm_cid *pcpu_cid;
10514 	int cid;
10515 
10516 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10517 	cid = READ_ONCE(pcpu_cid->cid);
10518 	if (!mm_cid_is_valid(cid) || cid < weight)
10519 		return;
10520 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10521 }
10522 
10523 static void task_mm_cid_work(struct callback_head *work)
10524 {
10525 	unsigned long now = jiffies, old_scan, next_scan;
10526 	struct task_struct *t = current;
10527 	struct cpumask *cidmask;
10528 	struct mm_struct *mm;
10529 	int weight, cpu;
10530 
10531 	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
10532 
10533 	work->next = work;	/* Prevent double-add */
10534 	if (t->flags & PF_EXITING)
10535 		return;
10536 	mm = t->mm;
10537 	if (!mm)
10538 		return;
10539 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
10540 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10541 	if (!old_scan) {
10542 		unsigned long res;
10543 
10544 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10545 		if (res != old_scan)
10546 			old_scan = res;
10547 		else
10548 			old_scan = next_scan;
10549 	}
10550 	if (time_before(now, old_scan))
10551 		return;
10552 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10553 		return;
10554 	cidmask = mm_cidmask(mm);
10555 	/* Clear cids that were not recently used. */
10556 	for_each_possible_cpu(cpu)
10557 		sched_mm_cid_remote_clear_old(mm, cpu);
10558 	weight = cpumask_weight(cidmask);
10559 	/*
10560 	 * Clear cids that are greater or equal to the cidmask weight to
10561 	 * recompact it.
10562 	 */
10563 	for_each_possible_cpu(cpu)
10564 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10565 }
10566 
10567 void init_sched_mm_cid(struct task_struct *t)
10568 {
10569 	struct mm_struct *mm = t->mm;
10570 	int mm_users = 0;
10571 
10572 	if (mm) {
10573 		mm_users = atomic_read(&mm->mm_users);
10574 		if (mm_users == 1)
10575 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10576 	}
10577 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
10578 	init_task_work(&t->cid_work, task_mm_cid_work);
10579 }
10580 
10581 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10582 {
10583 	struct callback_head *work = &curr->cid_work;
10584 	unsigned long now = jiffies;
10585 
10586 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10587 	    work->next != work)
10588 		return;
10589 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10590 		return;
10591 
10592 	/* No page allocation under rq lock */
10593 	task_work_add(curr, work, TWA_RESUME | TWAF_NO_ALLOC);
10594 }
10595 
10596 void sched_mm_cid_exit_signals(struct task_struct *t)
10597 {
10598 	struct mm_struct *mm = t->mm;
10599 	struct rq *rq;
10600 
10601 	if (!mm)
10602 		return;
10603 
10604 	preempt_disable();
10605 	rq = this_rq();
10606 	guard(rq_lock_irqsave)(rq);
10607 	preempt_enable_no_resched();	/* holding spinlock */
10608 	WRITE_ONCE(t->mm_cid_active, 0);
10609 	/*
10610 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10611 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10612 	 */
10613 	smp_mb();
10614 	mm_cid_put(mm);
10615 	t->last_mm_cid = t->mm_cid = -1;
10616 }
10617 
10618 void sched_mm_cid_before_execve(struct task_struct *t)
10619 {
10620 	struct mm_struct *mm = t->mm;
10621 	struct rq *rq;
10622 
10623 	if (!mm)
10624 		return;
10625 
10626 	preempt_disable();
10627 	rq = this_rq();
10628 	guard(rq_lock_irqsave)(rq);
10629 	preempt_enable_no_resched();	/* holding spinlock */
10630 	WRITE_ONCE(t->mm_cid_active, 0);
10631 	/*
10632 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10633 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10634 	 */
10635 	smp_mb();
10636 	mm_cid_put(mm);
10637 	t->last_mm_cid = t->mm_cid = -1;
10638 }
10639 
10640 void sched_mm_cid_after_execve(struct task_struct *t)
10641 {
10642 	struct mm_struct *mm = t->mm;
10643 	struct rq *rq;
10644 
10645 	if (!mm)
10646 		return;
10647 
10648 	preempt_disable();
10649 	rq = this_rq();
10650 	scoped_guard (rq_lock_irqsave, rq) {
10651 		preempt_enable_no_resched();	/* holding spinlock */
10652 		WRITE_ONCE(t->mm_cid_active, 1);
10653 		/*
10654 		 * Store t->mm_cid_active before loading per-mm/cpu cid.
10655 		 * Matches barrier in sched_mm_cid_remote_clear_old().
10656 		 */
10657 		smp_mb();
10658 		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm);
10659 	}
10660 	rseq_set_notify_resume(t);
10661 }
10662 
10663 void sched_mm_cid_fork(struct task_struct *t)
10664 {
10665 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10666 	t->mm_cid_active = 1;
10667 }
10668 #endif
10669 
10670 #ifdef CONFIG_SCHED_CLASS_EXT
10671 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
10672 			    struct sched_enq_and_set_ctx *ctx)
10673 {
10674 	struct rq *rq = task_rq(p);
10675 
10676 	lockdep_assert_rq_held(rq);
10677 
10678 	*ctx = (struct sched_enq_and_set_ctx){
10679 		.p = p,
10680 		.queue_flags = queue_flags,
10681 		.queued = task_on_rq_queued(p),
10682 		.running = task_current(rq, p),
10683 	};
10684 
10685 	update_rq_clock(rq);
10686 	if (ctx->queued)
10687 		dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
10688 	if (ctx->running)
10689 		put_prev_task(rq, p);
10690 }
10691 
10692 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
10693 {
10694 	struct rq *rq = task_rq(ctx->p);
10695 
10696 	lockdep_assert_rq_held(rq);
10697 
10698 	if (ctx->queued)
10699 		enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
10700 	if (ctx->running)
10701 		set_next_task(rq, ctx->p);
10702 }
10703 #endif	/* CONFIG_SCHED_CLASS_EXT */
10704