1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel CPU scheduler code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #include <linux/highmem.h> 11 #include <linux/hrtimer_api.h> 12 #include <linux/ktime_api.h> 13 #include <linux/sched/signal.h> 14 #include <linux/syscalls_api.h> 15 #include <linux/debug_locks.h> 16 #include <linux/prefetch.h> 17 #include <linux/capability.h> 18 #include <linux/pgtable_api.h> 19 #include <linux/wait_bit.h> 20 #include <linux/jiffies.h> 21 #include <linux/spinlock_api.h> 22 #include <linux/cpumask_api.h> 23 #include <linux/lockdep_api.h> 24 #include <linux/hardirq.h> 25 #include <linux/softirq.h> 26 #include <linux/refcount_api.h> 27 #include <linux/topology.h> 28 #include <linux/sched/clock.h> 29 #include <linux/sched/cond_resched.h> 30 #include <linux/sched/cputime.h> 31 #include <linux/sched/debug.h> 32 #include <linux/sched/hotplug.h> 33 #include <linux/sched/init.h> 34 #include <linux/sched/isolation.h> 35 #include <linux/sched/loadavg.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/nohz.h> 38 #include <linux/sched/rseq_api.h> 39 #include <linux/sched/rt.h> 40 41 #include <linux/blkdev.h> 42 #include <linux/context_tracking.h> 43 #include <linux/cpuset.h> 44 #include <linux/delayacct.h> 45 #include <linux/init_task.h> 46 #include <linux/interrupt.h> 47 #include <linux/ioprio.h> 48 #include <linux/kallsyms.h> 49 #include <linux/kcov.h> 50 #include <linux/kprobes.h> 51 #include <linux/llist_api.h> 52 #include <linux/mmu_context.h> 53 #include <linux/mmzone.h> 54 #include <linux/mutex_api.h> 55 #include <linux/nmi.h> 56 #include <linux/nospec.h> 57 #include <linux/perf_event_api.h> 58 #include <linux/profile.h> 59 #include <linux/psi.h> 60 #include <linux/rcuwait_api.h> 61 #include <linux/rseq.h> 62 #include <linux/sched/wake_q.h> 63 #include <linux/scs.h> 64 #include <linux/slab.h> 65 #include <linux/syscalls.h> 66 #include <linux/vtime.h> 67 #include <linux/wait_api.h> 68 #include <linux/workqueue_api.h> 69 70 #ifdef CONFIG_PREEMPT_DYNAMIC 71 # ifdef CONFIG_GENERIC_ENTRY 72 # include <linux/entry-common.h> 73 # endif 74 #endif 75 76 #include <uapi/linux/sched/types.h> 77 78 #include <asm/irq_regs.h> 79 #include <asm/switch_to.h> 80 #include <asm/tlb.h> 81 82 #define CREATE_TRACE_POINTS 83 #include <linux/sched/rseq_api.h> 84 #include <trace/events/sched.h> 85 #include <trace/events/ipi.h> 86 #undef CREATE_TRACE_POINTS 87 88 #include "sched.h" 89 #include "stats.h" 90 91 #include "autogroup.h" 92 #include "pelt.h" 93 #include "smp.h" 94 #include "stats.h" 95 96 #include "../workqueue_internal.h" 97 #include "../../io_uring/io-wq.h" 98 #include "../smpboot.h" 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 102 103 /* 104 * Export tracepoints that act as a bare tracehook (ie: have no trace event 105 * associated with them) to allow external modules to probe them. 106 */ 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 119 120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 121 122 #ifdef CONFIG_SCHED_DEBUG 123 /* 124 * Debugging: various feature bits 125 * 126 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 127 * sysctl_sched_features, defined in sched.h, to allow constants propagation 128 * at compile time and compiler optimization based on features default. 129 */ 130 #define SCHED_FEAT(name, enabled) \ 131 (1UL << __SCHED_FEAT_##name) * enabled | 132 const_debug unsigned int sysctl_sched_features = 133 #include "features.h" 134 0; 135 #undef SCHED_FEAT 136 137 /* 138 * Print a warning if need_resched is set for the given duration (if 139 * LATENCY_WARN is enabled). 140 * 141 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 142 * per boot. 143 */ 144 __read_mostly int sysctl_resched_latency_warn_ms = 100; 145 __read_mostly int sysctl_resched_latency_warn_once = 1; 146 #endif /* CONFIG_SCHED_DEBUG */ 147 148 /* 149 * Number of tasks to iterate in a single balance run. 150 * Limited because this is done with IRQs disabled. 151 */ 152 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 153 154 __read_mostly int scheduler_running; 155 156 #ifdef CONFIG_SCHED_CORE 157 158 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 159 160 /* kernel prio, less is more */ 161 static inline int __task_prio(const struct task_struct *p) 162 { 163 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 164 return -2; 165 166 if (p->dl_server) 167 return -1; /* deadline */ 168 169 if (rt_or_dl_prio(p->prio)) 170 return p->prio; /* [-1, 99] */ 171 172 if (p->sched_class == &idle_sched_class) 173 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 174 175 if (task_on_scx(p)) 176 return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ 177 178 return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ 179 } 180 181 /* 182 * l(a,b) 183 * le(a,b) := !l(b,a) 184 * g(a,b) := l(b,a) 185 * ge(a,b) := !l(a,b) 186 */ 187 188 /* real prio, less is less */ 189 static inline bool prio_less(const struct task_struct *a, 190 const struct task_struct *b, bool in_fi) 191 { 192 193 int pa = __task_prio(a), pb = __task_prio(b); 194 195 if (-pa < -pb) 196 return true; 197 198 if (-pb < -pa) 199 return false; 200 201 if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */ 202 const struct sched_dl_entity *a_dl, *b_dl; 203 204 a_dl = &a->dl; 205 /* 206 * Since,'a' and 'b' can be CFS tasks served by DL server, 207 * __task_prio() can return -1 (for DL) even for those. In that 208 * case, get to the dl_server's DL entity. 209 */ 210 if (a->dl_server) 211 a_dl = a->dl_server; 212 213 b_dl = &b->dl; 214 if (b->dl_server) 215 b_dl = b->dl_server; 216 217 return !dl_time_before(a_dl->deadline, b_dl->deadline); 218 } 219 220 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 221 return cfs_prio_less(a, b, in_fi); 222 223 #ifdef CONFIG_SCHED_CLASS_EXT 224 if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */ 225 return scx_prio_less(a, b, in_fi); 226 #endif 227 228 return false; 229 } 230 231 static inline bool __sched_core_less(const struct task_struct *a, 232 const struct task_struct *b) 233 { 234 if (a->core_cookie < b->core_cookie) 235 return true; 236 237 if (a->core_cookie > b->core_cookie) 238 return false; 239 240 /* flip prio, so high prio is leftmost */ 241 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 242 return true; 243 244 return false; 245 } 246 247 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 248 249 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 250 { 251 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 252 } 253 254 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 255 { 256 const struct task_struct *p = __node_2_sc(node); 257 unsigned long cookie = (unsigned long)key; 258 259 if (cookie < p->core_cookie) 260 return -1; 261 262 if (cookie > p->core_cookie) 263 return 1; 264 265 return 0; 266 } 267 268 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 269 { 270 if (p->se.sched_delayed) 271 return; 272 273 rq->core->core_task_seq++; 274 275 if (!p->core_cookie) 276 return; 277 278 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 279 } 280 281 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 282 { 283 if (p->se.sched_delayed) 284 return; 285 286 rq->core->core_task_seq++; 287 288 if (sched_core_enqueued(p)) { 289 rb_erase(&p->core_node, &rq->core_tree); 290 RB_CLEAR_NODE(&p->core_node); 291 } 292 293 /* 294 * Migrating the last task off the cpu, with the cpu in forced idle 295 * state. Reschedule to create an accounting edge for forced idle, 296 * and re-examine whether the core is still in forced idle state. 297 */ 298 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 299 rq->core->core_forceidle_count && rq->curr == rq->idle) 300 resched_curr(rq); 301 } 302 303 static int sched_task_is_throttled(struct task_struct *p, int cpu) 304 { 305 if (p->sched_class->task_is_throttled) 306 return p->sched_class->task_is_throttled(p, cpu); 307 308 return 0; 309 } 310 311 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 312 { 313 struct rb_node *node = &p->core_node; 314 int cpu = task_cpu(p); 315 316 do { 317 node = rb_next(node); 318 if (!node) 319 return NULL; 320 321 p = __node_2_sc(node); 322 if (p->core_cookie != cookie) 323 return NULL; 324 325 } while (sched_task_is_throttled(p, cpu)); 326 327 return p; 328 } 329 330 /* 331 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 332 * If no suitable task is found, NULL will be returned. 333 */ 334 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 335 { 336 struct task_struct *p; 337 struct rb_node *node; 338 339 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 340 if (!node) 341 return NULL; 342 343 p = __node_2_sc(node); 344 if (!sched_task_is_throttled(p, rq->cpu)) 345 return p; 346 347 return sched_core_next(p, cookie); 348 } 349 350 /* 351 * Magic required such that: 352 * 353 * raw_spin_rq_lock(rq); 354 * ... 355 * raw_spin_rq_unlock(rq); 356 * 357 * ends up locking and unlocking the _same_ lock, and all CPUs 358 * always agree on what rq has what lock. 359 * 360 * XXX entirely possible to selectively enable cores, don't bother for now. 361 */ 362 363 static DEFINE_MUTEX(sched_core_mutex); 364 static atomic_t sched_core_count; 365 static struct cpumask sched_core_mask; 366 367 static void sched_core_lock(int cpu, unsigned long *flags) 368 { 369 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 370 int t, i = 0; 371 372 local_irq_save(*flags); 373 for_each_cpu(t, smt_mask) 374 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 375 } 376 377 static void sched_core_unlock(int cpu, unsigned long *flags) 378 { 379 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 380 int t; 381 382 for_each_cpu(t, smt_mask) 383 raw_spin_unlock(&cpu_rq(t)->__lock); 384 local_irq_restore(*flags); 385 } 386 387 static void __sched_core_flip(bool enabled) 388 { 389 unsigned long flags; 390 int cpu, t; 391 392 cpus_read_lock(); 393 394 /* 395 * Toggle the online cores, one by one. 396 */ 397 cpumask_copy(&sched_core_mask, cpu_online_mask); 398 for_each_cpu(cpu, &sched_core_mask) { 399 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 400 401 sched_core_lock(cpu, &flags); 402 403 for_each_cpu(t, smt_mask) 404 cpu_rq(t)->core_enabled = enabled; 405 406 cpu_rq(cpu)->core->core_forceidle_start = 0; 407 408 sched_core_unlock(cpu, &flags); 409 410 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 411 } 412 413 /* 414 * Toggle the offline CPUs. 415 */ 416 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 417 cpu_rq(cpu)->core_enabled = enabled; 418 419 cpus_read_unlock(); 420 } 421 422 static void sched_core_assert_empty(void) 423 { 424 int cpu; 425 426 for_each_possible_cpu(cpu) 427 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 428 } 429 430 static void __sched_core_enable(void) 431 { 432 static_branch_enable(&__sched_core_enabled); 433 /* 434 * Ensure all previous instances of raw_spin_rq_*lock() have finished 435 * and future ones will observe !sched_core_disabled(). 436 */ 437 synchronize_rcu(); 438 __sched_core_flip(true); 439 sched_core_assert_empty(); 440 } 441 442 static void __sched_core_disable(void) 443 { 444 sched_core_assert_empty(); 445 __sched_core_flip(false); 446 static_branch_disable(&__sched_core_enabled); 447 } 448 449 void sched_core_get(void) 450 { 451 if (atomic_inc_not_zero(&sched_core_count)) 452 return; 453 454 mutex_lock(&sched_core_mutex); 455 if (!atomic_read(&sched_core_count)) 456 __sched_core_enable(); 457 458 smp_mb__before_atomic(); 459 atomic_inc(&sched_core_count); 460 mutex_unlock(&sched_core_mutex); 461 } 462 463 static void __sched_core_put(struct work_struct *work) 464 { 465 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 466 __sched_core_disable(); 467 mutex_unlock(&sched_core_mutex); 468 } 469 } 470 471 void sched_core_put(void) 472 { 473 static DECLARE_WORK(_work, __sched_core_put); 474 475 /* 476 * "There can be only one" 477 * 478 * Either this is the last one, or we don't actually need to do any 479 * 'work'. If it is the last *again*, we rely on 480 * WORK_STRUCT_PENDING_BIT. 481 */ 482 if (!atomic_add_unless(&sched_core_count, -1, 1)) 483 schedule_work(&_work); 484 } 485 486 #else /* !CONFIG_SCHED_CORE */ 487 488 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 489 static inline void 490 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 491 492 #endif /* CONFIG_SCHED_CORE */ 493 494 /* 495 * Serialization rules: 496 * 497 * Lock order: 498 * 499 * p->pi_lock 500 * rq->lock 501 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 502 * 503 * rq1->lock 504 * rq2->lock where: rq1 < rq2 505 * 506 * Regular state: 507 * 508 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 509 * local CPU's rq->lock, it optionally removes the task from the runqueue and 510 * always looks at the local rq data structures to find the most eligible task 511 * to run next. 512 * 513 * Task enqueue is also under rq->lock, possibly taken from another CPU. 514 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 515 * the local CPU to avoid bouncing the runqueue state around [ see 516 * ttwu_queue_wakelist() ] 517 * 518 * Task wakeup, specifically wakeups that involve migration, are horribly 519 * complicated to avoid having to take two rq->locks. 520 * 521 * Special state: 522 * 523 * System-calls and anything external will use task_rq_lock() which acquires 524 * both p->pi_lock and rq->lock. As a consequence the state they change is 525 * stable while holding either lock: 526 * 527 * - sched_setaffinity()/ 528 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 529 * - set_user_nice(): p->se.load, p->*prio 530 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 531 * p->se.load, p->rt_priority, 532 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 533 * - sched_setnuma(): p->numa_preferred_nid 534 * - sched_move_task(): p->sched_task_group 535 * - uclamp_update_active() p->uclamp* 536 * 537 * p->state <- TASK_*: 538 * 539 * is changed locklessly using set_current_state(), __set_current_state() or 540 * set_special_state(), see their respective comments, or by 541 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 542 * concurrent self. 543 * 544 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 545 * 546 * is set by activate_task() and cleared by deactivate_task(), under 547 * rq->lock. Non-zero indicates the task is runnable, the special 548 * ON_RQ_MIGRATING state is used for migration without holding both 549 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 550 * 551 * Additionally it is possible to be ->on_rq but still be considered not 552 * runnable when p->se.sched_delayed is true. These tasks are on the runqueue 553 * but will be dequeued as soon as they get picked again. See the 554 * task_is_runnable() helper. 555 * 556 * p->on_cpu <- { 0, 1 }: 557 * 558 * is set by prepare_task() and cleared by finish_task() such that it will be 559 * set before p is scheduled-in and cleared after p is scheduled-out, both 560 * under rq->lock. Non-zero indicates the task is running on its CPU. 561 * 562 * [ The astute reader will observe that it is possible for two tasks on one 563 * CPU to have ->on_cpu = 1 at the same time. ] 564 * 565 * task_cpu(p): is changed by set_task_cpu(), the rules are: 566 * 567 * - Don't call set_task_cpu() on a blocked task: 568 * 569 * We don't care what CPU we're not running on, this simplifies hotplug, 570 * the CPU assignment of blocked tasks isn't required to be valid. 571 * 572 * - for try_to_wake_up(), called under p->pi_lock: 573 * 574 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 575 * 576 * - for migration called under rq->lock: 577 * [ see task_on_rq_migrating() in task_rq_lock() ] 578 * 579 * o move_queued_task() 580 * o detach_task() 581 * 582 * - for migration called under double_rq_lock(): 583 * 584 * o __migrate_swap_task() 585 * o push_rt_task() / pull_rt_task() 586 * o push_dl_task() / pull_dl_task() 587 * o dl_task_offline_migration() 588 * 589 */ 590 591 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 592 { 593 raw_spinlock_t *lock; 594 595 /* Matches synchronize_rcu() in __sched_core_enable() */ 596 preempt_disable(); 597 if (sched_core_disabled()) { 598 raw_spin_lock_nested(&rq->__lock, subclass); 599 /* preempt_count *MUST* be > 1 */ 600 preempt_enable_no_resched(); 601 return; 602 } 603 604 for (;;) { 605 lock = __rq_lockp(rq); 606 raw_spin_lock_nested(lock, subclass); 607 if (likely(lock == __rq_lockp(rq))) { 608 /* preempt_count *MUST* be > 1 */ 609 preempt_enable_no_resched(); 610 return; 611 } 612 raw_spin_unlock(lock); 613 } 614 } 615 616 bool raw_spin_rq_trylock(struct rq *rq) 617 { 618 raw_spinlock_t *lock; 619 bool ret; 620 621 /* Matches synchronize_rcu() in __sched_core_enable() */ 622 preempt_disable(); 623 if (sched_core_disabled()) { 624 ret = raw_spin_trylock(&rq->__lock); 625 preempt_enable(); 626 return ret; 627 } 628 629 for (;;) { 630 lock = __rq_lockp(rq); 631 ret = raw_spin_trylock(lock); 632 if (!ret || (likely(lock == __rq_lockp(rq)))) { 633 preempt_enable(); 634 return ret; 635 } 636 raw_spin_unlock(lock); 637 } 638 } 639 640 void raw_spin_rq_unlock(struct rq *rq) 641 { 642 raw_spin_unlock(rq_lockp(rq)); 643 } 644 645 #ifdef CONFIG_SMP 646 /* 647 * double_rq_lock - safely lock two runqueues 648 */ 649 void double_rq_lock(struct rq *rq1, struct rq *rq2) 650 { 651 lockdep_assert_irqs_disabled(); 652 653 if (rq_order_less(rq2, rq1)) 654 swap(rq1, rq2); 655 656 raw_spin_rq_lock(rq1); 657 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 658 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 659 660 double_rq_clock_clear_update(rq1, rq2); 661 } 662 #endif 663 664 /* 665 * __task_rq_lock - lock the rq @p resides on. 666 */ 667 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 668 __acquires(rq->lock) 669 { 670 struct rq *rq; 671 672 lockdep_assert_held(&p->pi_lock); 673 674 for (;;) { 675 rq = task_rq(p); 676 raw_spin_rq_lock(rq); 677 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 678 rq_pin_lock(rq, rf); 679 return rq; 680 } 681 raw_spin_rq_unlock(rq); 682 683 while (unlikely(task_on_rq_migrating(p))) 684 cpu_relax(); 685 } 686 } 687 688 /* 689 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 690 */ 691 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 692 __acquires(p->pi_lock) 693 __acquires(rq->lock) 694 { 695 struct rq *rq; 696 697 for (;;) { 698 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 699 rq = task_rq(p); 700 raw_spin_rq_lock(rq); 701 /* 702 * move_queued_task() task_rq_lock() 703 * 704 * ACQUIRE (rq->lock) 705 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 706 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 707 * [S] ->cpu = new_cpu [L] task_rq() 708 * [L] ->on_rq 709 * RELEASE (rq->lock) 710 * 711 * If we observe the old CPU in task_rq_lock(), the acquire of 712 * the old rq->lock will fully serialize against the stores. 713 * 714 * If we observe the new CPU in task_rq_lock(), the address 715 * dependency headed by '[L] rq = task_rq()' and the acquire 716 * will pair with the WMB to ensure we then also see migrating. 717 */ 718 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 719 rq_pin_lock(rq, rf); 720 return rq; 721 } 722 raw_spin_rq_unlock(rq); 723 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 724 725 while (unlikely(task_on_rq_migrating(p))) 726 cpu_relax(); 727 } 728 } 729 730 /* 731 * RQ-clock updating methods: 732 */ 733 734 static void update_rq_clock_task(struct rq *rq, s64 delta) 735 { 736 /* 737 * In theory, the compile should just see 0 here, and optimize out the call 738 * to sched_rt_avg_update. But I don't trust it... 739 */ 740 s64 __maybe_unused steal = 0, irq_delta = 0; 741 742 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 743 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 744 745 /* 746 * Since irq_time is only updated on {soft,}irq_exit, we might run into 747 * this case when a previous update_rq_clock() happened inside a 748 * {soft,}IRQ region. 749 * 750 * When this happens, we stop ->clock_task and only update the 751 * prev_irq_time stamp to account for the part that fit, so that a next 752 * update will consume the rest. This ensures ->clock_task is 753 * monotonic. 754 * 755 * It does however cause some slight miss-attribution of {soft,}IRQ 756 * time, a more accurate solution would be to update the irq_time using 757 * the current rq->clock timestamp, except that would require using 758 * atomic ops. 759 */ 760 if (irq_delta > delta) 761 irq_delta = delta; 762 763 rq->prev_irq_time += irq_delta; 764 delta -= irq_delta; 765 delayacct_irq(rq->curr, irq_delta); 766 #endif 767 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 768 if (static_key_false((¶virt_steal_rq_enabled))) { 769 steal = paravirt_steal_clock(cpu_of(rq)); 770 steal -= rq->prev_steal_time_rq; 771 772 if (unlikely(steal > delta)) 773 steal = delta; 774 775 rq->prev_steal_time_rq += steal; 776 delta -= steal; 777 } 778 #endif 779 780 rq->clock_task += delta; 781 782 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 783 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 784 update_irq_load_avg(rq, irq_delta + steal); 785 #endif 786 update_rq_clock_pelt(rq, delta); 787 } 788 789 void update_rq_clock(struct rq *rq) 790 { 791 s64 delta; 792 793 lockdep_assert_rq_held(rq); 794 795 if (rq->clock_update_flags & RQCF_ACT_SKIP) 796 return; 797 798 #ifdef CONFIG_SCHED_DEBUG 799 if (sched_feat(WARN_DOUBLE_CLOCK)) 800 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 801 rq->clock_update_flags |= RQCF_UPDATED; 802 #endif 803 804 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 805 if (delta < 0) 806 return; 807 rq->clock += delta; 808 update_rq_clock_task(rq, delta); 809 } 810 811 #ifdef CONFIG_SCHED_HRTICK 812 /* 813 * Use HR-timers to deliver accurate preemption points. 814 */ 815 816 static void hrtick_clear(struct rq *rq) 817 { 818 if (hrtimer_active(&rq->hrtick_timer)) 819 hrtimer_cancel(&rq->hrtick_timer); 820 } 821 822 /* 823 * High-resolution timer tick. 824 * Runs from hardirq context with interrupts disabled. 825 */ 826 static enum hrtimer_restart hrtick(struct hrtimer *timer) 827 { 828 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 829 struct rq_flags rf; 830 831 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 832 833 rq_lock(rq, &rf); 834 update_rq_clock(rq); 835 rq->donor->sched_class->task_tick(rq, rq->curr, 1); 836 rq_unlock(rq, &rf); 837 838 return HRTIMER_NORESTART; 839 } 840 841 #ifdef CONFIG_SMP 842 843 static void __hrtick_restart(struct rq *rq) 844 { 845 struct hrtimer *timer = &rq->hrtick_timer; 846 ktime_t time = rq->hrtick_time; 847 848 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 849 } 850 851 /* 852 * called from hardirq (IPI) context 853 */ 854 static void __hrtick_start(void *arg) 855 { 856 struct rq *rq = arg; 857 struct rq_flags rf; 858 859 rq_lock(rq, &rf); 860 __hrtick_restart(rq); 861 rq_unlock(rq, &rf); 862 } 863 864 /* 865 * Called to set the hrtick timer state. 866 * 867 * called with rq->lock held and IRQs disabled 868 */ 869 void hrtick_start(struct rq *rq, u64 delay) 870 { 871 struct hrtimer *timer = &rq->hrtick_timer; 872 s64 delta; 873 874 /* 875 * Don't schedule slices shorter than 10000ns, that just 876 * doesn't make sense and can cause timer DoS. 877 */ 878 delta = max_t(s64, delay, 10000LL); 879 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 880 881 if (rq == this_rq()) 882 __hrtick_restart(rq); 883 else 884 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 885 } 886 887 #else 888 /* 889 * Called to set the hrtick timer state. 890 * 891 * called with rq->lock held and IRQs disabled 892 */ 893 void hrtick_start(struct rq *rq, u64 delay) 894 { 895 /* 896 * Don't schedule slices shorter than 10000ns, that just 897 * doesn't make sense. Rely on vruntime for fairness. 898 */ 899 delay = max_t(u64, delay, 10000LL); 900 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 901 HRTIMER_MODE_REL_PINNED_HARD); 902 } 903 904 #endif /* CONFIG_SMP */ 905 906 static void hrtick_rq_init(struct rq *rq) 907 { 908 #ifdef CONFIG_SMP 909 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 910 #endif 911 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 912 rq->hrtick_timer.function = hrtick; 913 } 914 #else /* CONFIG_SCHED_HRTICK */ 915 static inline void hrtick_clear(struct rq *rq) 916 { 917 } 918 919 static inline void hrtick_rq_init(struct rq *rq) 920 { 921 } 922 #endif /* CONFIG_SCHED_HRTICK */ 923 924 /* 925 * try_cmpxchg based fetch_or() macro so it works for different integer types: 926 */ 927 #define fetch_or(ptr, mask) \ 928 ({ \ 929 typeof(ptr) _ptr = (ptr); \ 930 typeof(mask) _mask = (mask); \ 931 typeof(*_ptr) _val = *_ptr; \ 932 \ 933 do { \ 934 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 935 _val; \ 936 }) 937 938 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 939 /* 940 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 941 * this avoids any races wrt polling state changes and thereby avoids 942 * spurious IPIs. 943 */ 944 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 945 { 946 return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG); 947 } 948 949 /* 950 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 951 * 952 * If this returns true, then the idle task promises to call 953 * sched_ttwu_pending() and reschedule soon. 954 */ 955 static bool set_nr_if_polling(struct task_struct *p) 956 { 957 struct thread_info *ti = task_thread_info(p); 958 typeof(ti->flags) val = READ_ONCE(ti->flags); 959 960 do { 961 if (!(val & _TIF_POLLING_NRFLAG)) 962 return false; 963 if (val & _TIF_NEED_RESCHED) 964 return true; 965 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 966 967 return true; 968 } 969 970 #else 971 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 972 { 973 set_ti_thread_flag(ti, tif); 974 return true; 975 } 976 977 #ifdef CONFIG_SMP 978 static inline bool set_nr_if_polling(struct task_struct *p) 979 { 980 return false; 981 } 982 #endif 983 #endif 984 985 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 986 { 987 struct wake_q_node *node = &task->wake_q; 988 989 /* 990 * Atomically grab the task, if ->wake_q is !nil already it means 991 * it's already queued (either by us or someone else) and will get the 992 * wakeup due to that. 993 * 994 * In order to ensure that a pending wakeup will observe our pending 995 * state, even in the failed case, an explicit smp_mb() must be used. 996 */ 997 smp_mb__before_atomic(); 998 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 999 return false; 1000 1001 /* 1002 * The head is context local, there can be no concurrency. 1003 */ 1004 *head->lastp = node; 1005 head->lastp = &node->next; 1006 return true; 1007 } 1008 1009 /** 1010 * wake_q_add() - queue a wakeup for 'later' waking. 1011 * @head: the wake_q_head to add @task to 1012 * @task: the task to queue for 'later' wakeup 1013 * 1014 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1015 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1016 * instantly. 1017 * 1018 * This function must be used as-if it were wake_up_process(); IOW the task 1019 * must be ready to be woken at this location. 1020 */ 1021 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 1022 { 1023 if (__wake_q_add(head, task)) 1024 get_task_struct(task); 1025 } 1026 1027 /** 1028 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 1029 * @head: the wake_q_head to add @task to 1030 * @task: the task to queue for 'later' wakeup 1031 * 1032 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1033 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1034 * instantly. 1035 * 1036 * This function must be used as-if it were wake_up_process(); IOW the task 1037 * must be ready to be woken at this location. 1038 * 1039 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1040 * that already hold reference to @task can call the 'safe' version and trust 1041 * wake_q to do the right thing depending whether or not the @task is already 1042 * queued for wakeup. 1043 */ 1044 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1045 { 1046 if (!__wake_q_add(head, task)) 1047 put_task_struct(task); 1048 } 1049 1050 void wake_up_q(struct wake_q_head *head) 1051 { 1052 struct wake_q_node *node = head->first; 1053 1054 while (node != WAKE_Q_TAIL) { 1055 struct task_struct *task; 1056 1057 task = container_of(node, struct task_struct, wake_q); 1058 /* Task can safely be re-inserted now: */ 1059 node = node->next; 1060 task->wake_q.next = NULL; 1061 1062 /* 1063 * wake_up_process() executes a full barrier, which pairs with 1064 * the queueing in wake_q_add() so as not to miss wakeups. 1065 */ 1066 wake_up_process(task); 1067 put_task_struct(task); 1068 } 1069 } 1070 1071 /* 1072 * resched_curr - mark rq's current task 'to be rescheduled now'. 1073 * 1074 * On UP this means the setting of the need_resched flag, on SMP it 1075 * might also involve a cross-CPU call to trigger the scheduler on 1076 * the target CPU. 1077 */ 1078 static void __resched_curr(struct rq *rq, int tif) 1079 { 1080 struct task_struct *curr = rq->curr; 1081 struct thread_info *cti = task_thread_info(curr); 1082 int cpu; 1083 1084 lockdep_assert_rq_held(rq); 1085 1086 /* 1087 * Always immediately preempt the idle task; no point in delaying doing 1088 * actual work. 1089 */ 1090 if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY) 1091 tif = TIF_NEED_RESCHED; 1092 1093 if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED)) 1094 return; 1095 1096 cpu = cpu_of(rq); 1097 1098 if (cpu == smp_processor_id()) { 1099 set_ti_thread_flag(cti, tif); 1100 if (tif == TIF_NEED_RESCHED) 1101 set_preempt_need_resched(); 1102 return; 1103 } 1104 1105 if (set_nr_and_not_polling(cti, tif)) { 1106 if (tif == TIF_NEED_RESCHED) 1107 smp_send_reschedule(cpu); 1108 } else { 1109 trace_sched_wake_idle_without_ipi(cpu); 1110 } 1111 } 1112 1113 void resched_curr(struct rq *rq) 1114 { 1115 __resched_curr(rq, TIF_NEED_RESCHED); 1116 } 1117 1118 #ifdef CONFIG_PREEMPT_DYNAMIC 1119 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy); 1120 static __always_inline bool dynamic_preempt_lazy(void) 1121 { 1122 return static_branch_unlikely(&sk_dynamic_preempt_lazy); 1123 } 1124 #else 1125 static __always_inline bool dynamic_preempt_lazy(void) 1126 { 1127 return IS_ENABLED(CONFIG_PREEMPT_LAZY); 1128 } 1129 #endif 1130 1131 static __always_inline int get_lazy_tif_bit(void) 1132 { 1133 if (dynamic_preempt_lazy()) 1134 return TIF_NEED_RESCHED_LAZY; 1135 1136 return TIF_NEED_RESCHED; 1137 } 1138 1139 void resched_curr_lazy(struct rq *rq) 1140 { 1141 __resched_curr(rq, get_lazy_tif_bit()); 1142 } 1143 1144 void resched_cpu(int cpu) 1145 { 1146 struct rq *rq = cpu_rq(cpu); 1147 unsigned long flags; 1148 1149 raw_spin_rq_lock_irqsave(rq, flags); 1150 if (cpu_online(cpu) || cpu == smp_processor_id()) 1151 resched_curr(rq); 1152 raw_spin_rq_unlock_irqrestore(rq, flags); 1153 } 1154 1155 #ifdef CONFIG_SMP 1156 #ifdef CONFIG_NO_HZ_COMMON 1157 /* 1158 * In the semi idle case, use the nearest busy CPU for migrating timers 1159 * from an idle CPU. This is good for power-savings. 1160 * 1161 * We don't do similar optimization for completely idle system, as 1162 * selecting an idle CPU will add more delays to the timers than intended 1163 * (as that CPU's timer base may not be up to date wrt jiffies etc). 1164 */ 1165 int get_nohz_timer_target(void) 1166 { 1167 int i, cpu = smp_processor_id(), default_cpu = -1; 1168 struct sched_domain *sd; 1169 const struct cpumask *hk_mask; 1170 1171 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1172 if (!idle_cpu(cpu)) 1173 return cpu; 1174 default_cpu = cpu; 1175 } 1176 1177 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1178 1179 guard(rcu)(); 1180 1181 for_each_domain(cpu, sd) { 1182 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1183 if (cpu == i) 1184 continue; 1185 1186 if (!idle_cpu(i)) 1187 return i; 1188 } 1189 } 1190 1191 if (default_cpu == -1) 1192 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1193 1194 return default_cpu; 1195 } 1196 1197 /* 1198 * When add_timer_on() enqueues a timer into the timer wheel of an 1199 * idle CPU then this timer might expire before the next timer event 1200 * which is scheduled to wake up that CPU. In case of a completely 1201 * idle system the next event might even be infinite time into the 1202 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1203 * leaves the inner idle loop so the newly added timer is taken into 1204 * account when the CPU goes back to idle and evaluates the timer 1205 * wheel for the next timer event. 1206 */ 1207 static void wake_up_idle_cpu(int cpu) 1208 { 1209 struct rq *rq = cpu_rq(cpu); 1210 1211 if (cpu == smp_processor_id()) 1212 return; 1213 1214 /* 1215 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling 1216 * part of the idle loop. This forces an exit from the idle loop 1217 * and a round trip to schedule(). Now this could be optimized 1218 * because a simple new idle loop iteration is enough to 1219 * re-evaluate the next tick. Provided some re-ordering of tick 1220 * nohz functions that would need to follow TIF_NR_POLLING 1221 * clearing: 1222 * 1223 * - On most architectures, a simple fetch_or on ti::flags with a 1224 * "0" value would be enough to know if an IPI needs to be sent. 1225 * 1226 * - x86 needs to perform a last need_resched() check between 1227 * monitor and mwait which doesn't take timers into account. 1228 * There a dedicated TIF_TIMER flag would be required to 1229 * fetch_or here and be checked along with TIF_NEED_RESCHED 1230 * before mwait(). 1231 * 1232 * However, remote timer enqueue is not such a frequent event 1233 * and testing of the above solutions didn't appear to report 1234 * much benefits. 1235 */ 1236 if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED)) 1237 smp_send_reschedule(cpu); 1238 else 1239 trace_sched_wake_idle_without_ipi(cpu); 1240 } 1241 1242 static bool wake_up_full_nohz_cpu(int cpu) 1243 { 1244 /* 1245 * We just need the target to call irq_exit() and re-evaluate 1246 * the next tick. The nohz full kick at least implies that. 1247 * If needed we can still optimize that later with an 1248 * empty IRQ. 1249 */ 1250 if (cpu_is_offline(cpu)) 1251 return true; /* Don't try to wake offline CPUs. */ 1252 if (tick_nohz_full_cpu(cpu)) { 1253 if (cpu != smp_processor_id() || 1254 tick_nohz_tick_stopped()) 1255 tick_nohz_full_kick_cpu(cpu); 1256 return true; 1257 } 1258 1259 return false; 1260 } 1261 1262 /* 1263 * Wake up the specified CPU. If the CPU is going offline, it is the 1264 * caller's responsibility to deal with the lost wakeup, for example, 1265 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1266 */ 1267 void wake_up_nohz_cpu(int cpu) 1268 { 1269 if (!wake_up_full_nohz_cpu(cpu)) 1270 wake_up_idle_cpu(cpu); 1271 } 1272 1273 static void nohz_csd_func(void *info) 1274 { 1275 struct rq *rq = info; 1276 int cpu = cpu_of(rq); 1277 unsigned int flags; 1278 1279 /* 1280 * Release the rq::nohz_csd. 1281 */ 1282 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1283 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1284 1285 rq->idle_balance = idle_cpu(cpu); 1286 if (rq->idle_balance && !need_resched()) { 1287 rq->nohz_idle_balance = flags; 1288 raise_softirq_irqoff(SCHED_SOFTIRQ); 1289 } 1290 } 1291 1292 #endif /* CONFIG_NO_HZ_COMMON */ 1293 1294 #ifdef CONFIG_NO_HZ_FULL 1295 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1296 { 1297 if (rq->nr_running != 1) 1298 return false; 1299 1300 if (p->sched_class != &fair_sched_class) 1301 return false; 1302 1303 if (!task_on_rq_queued(p)) 1304 return false; 1305 1306 return true; 1307 } 1308 1309 bool sched_can_stop_tick(struct rq *rq) 1310 { 1311 int fifo_nr_running; 1312 1313 /* Deadline tasks, even if single, need the tick */ 1314 if (rq->dl.dl_nr_running) 1315 return false; 1316 1317 /* 1318 * If there are more than one RR tasks, we need the tick to affect the 1319 * actual RR behaviour. 1320 */ 1321 if (rq->rt.rr_nr_running) { 1322 if (rq->rt.rr_nr_running == 1) 1323 return true; 1324 else 1325 return false; 1326 } 1327 1328 /* 1329 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1330 * forced preemption between FIFO tasks. 1331 */ 1332 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1333 if (fifo_nr_running) 1334 return true; 1335 1336 /* 1337 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks 1338 * left. For CFS, if there's more than one we need the tick for 1339 * involuntary preemption. For SCX, ask. 1340 */ 1341 if (scx_enabled() && !scx_can_stop_tick(rq)) 1342 return false; 1343 1344 if (rq->cfs.nr_running > 1) 1345 return false; 1346 1347 /* 1348 * If there is one task and it has CFS runtime bandwidth constraints 1349 * and it's on the cpu now we don't want to stop the tick. 1350 * This check prevents clearing the bit if a newly enqueued task here is 1351 * dequeued by migrating while the constrained task continues to run. 1352 * E.g. going from 2->1 without going through pick_next_task(). 1353 */ 1354 if (__need_bw_check(rq, rq->curr)) { 1355 if (cfs_task_bw_constrained(rq->curr)) 1356 return false; 1357 } 1358 1359 return true; 1360 } 1361 #endif /* CONFIG_NO_HZ_FULL */ 1362 #endif /* CONFIG_SMP */ 1363 1364 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1365 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1366 /* 1367 * Iterate task_group tree rooted at *from, calling @down when first entering a 1368 * node and @up when leaving it for the final time. 1369 * 1370 * Caller must hold rcu_lock or sufficient equivalent. 1371 */ 1372 int walk_tg_tree_from(struct task_group *from, 1373 tg_visitor down, tg_visitor up, void *data) 1374 { 1375 struct task_group *parent, *child; 1376 int ret; 1377 1378 parent = from; 1379 1380 down: 1381 ret = (*down)(parent, data); 1382 if (ret) 1383 goto out; 1384 list_for_each_entry_rcu(child, &parent->children, siblings) { 1385 parent = child; 1386 goto down; 1387 1388 up: 1389 continue; 1390 } 1391 ret = (*up)(parent, data); 1392 if (ret || parent == from) 1393 goto out; 1394 1395 child = parent; 1396 parent = parent->parent; 1397 if (parent) 1398 goto up; 1399 out: 1400 return ret; 1401 } 1402 1403 int tg_nop(struct task_group *tg, void *data) 1404 { 1405 return 0; 1406 } 1407 #endif 1408 1409 void set_load_weight(struct task_struct *p, bool update_load) 1410 { 1411 int prio = p->static_prio - MAX_RT_PRIO; 1412 struct load_weight lw; 1413 1414 if (task_has_idle_policy(p)) { 1415 lw.weight = scale_load(WEIGHT_IDLEPRIO); 1416 lw.inv_weight = WMULT_IDLEPRIO; 1417 } else { 1418 lw.weight = scale_load(sched_prio_to_weight[prio]); 1419 lw.inv_weight = sched_prio_to_wmult[prio]; 1420 } 1421 1422 /* 1423 * SCHED_OTHER tasks have to update their load when changing their 1424 * weight 1425 */ 1426 if (update_load && p->sched_class->reweight_task) 1427 p->sched_class->reweight_task(task_rq(p), p, &lw); 1428 else 1429 p->se.load = lw; 1430 } 1431 1432 #ifdef CONFIG_UCLAMP_TASK 1433 /* 1434 * Serializes updates of utilization clamp values 1435 * 1436 * The (slow-path) user-space triggers utilization clamp value updates which 1437 * can require updates on (fast-path) scheduler's data structures used to 1438 * support enqueue/dequeue operations. 1439 * While the per-CPU rq lock protects fast-path update operations, user-space 1440 * requests are serialized using a mutex to reduce the risk of conflicting 1441 * updates or API abuses. 1442 */ 1443 static __maybe_unused DEFINE_MUTEX(uclamp_mutex); 1444 1445 /* Max allowed minimum utilization */ 1446 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1447 1448 /* Max allowed maximum utilization */ 1449 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1450 1451 /* 1452 * By default RT tasks run at the maximum performance point/capacity of the 1453 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1454 * SCHED_CAPACITY_SCALE. 1455 * 1456 * This knob allows admins to change the default behavior when uclamp is being 1457 * used. In battery powered devices, particularly, running at the maximum 1458 * capacity and frequency will increase energy consumption and shorten the 1459 * battery life. 1460 * 1461 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1462 * 1463 * This knob will not override the system default sched_util_clamp_min defined 1464 * above. 1465 */ 1466 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1467 1468 /* All clamps are required to be less or equal than these values */ 1469 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1470 1471 /* 1472 * This static key is used to reduce the uclamp overhead in the fast path. It 1473 * primarily disables the call to uclamp_rq_{inc, dec}() in 1474 * enqueue/dequeue_task(). 1475 * 1476 * This allows users to continue to enable uclamp in their kernel config with 1477 * minimum uclamp overhead in the fast path. 1478 * 1479 * As soon as userspace modifies any of the uclamp knobs, the static key is 1480 * enabled, since we have an actual users that make use of uclamp 1481 * functionality. 1482 * 1483 * The knobs that would enable this static key are: 1484 * 1485 * * A task modifying its uclamp value with sched_setattr(). 1486 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1487 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1488 */ 1489 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1490 1491 static inline unsigned int 1492 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1493 unsigned int clamp_value) 1494 { 1495 /* 1496 * Avoid blocked utilization pushing up the frequency when we go 1497 * idle (which drops the max-clamp) by retaining the last known 1498 * max-clamp. 1499 */ 1500 if (clamp_id == UCLAMP_MAX) { 1501 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1502 return clamp_value; 1503 } 1504 1505 return uclamp_none(UCLAMP_MIN); 1506 } 1507 1508 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1509 unsigned int clamp_value) 1510 { 1511 /* Reset max-clamp retention only on idle exit */ 1512 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1513 return; 1514 1515 uclamp_rq_set(rq, clamp_id, clamp_value); 1516 } 1517 1518 static inline 1519 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1520 unsigned int clamp_value) 1521 { 1522 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1523 int bucket_id = UCLAMP_BUCKETS - 1; 1524 1525 /* 1526 * Since both min and max clamps are max aggregated, find the 1527 * top most bucket with tasks in. 1528 */ 1529 for ( ; bucket_id >= 0; bucket_id--) { 1530 if (!bucket[bucket_id].tasks) 1531 continue; 1532 return bucket[bucket_id].value; 1533 } 1534 1535 /* No tasks -- default clamp values */ 1536 return uclamp_idle_value(rq, clamp_id, clamp_value); 1537 } 1538 1539 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1540 { 1541 unsigned int default_util_min; 1542 struct uclamp_se *uc_se; 1543 1544 lockdep_assert_held(&p->pi_lock); 1545 1546 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1547 1548 /* Only sync if user didn't override the default */ 1549 if (uc_se->user_defined) 1550 return; 1551 1552 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1553 uclamp_se_set(uc_se, default_util_min, false); 1554 } 1555 1556 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1557 { 1558 if (!rt_task(p)) 1559 return; 1560 1561 /* Protect updates to p->uclamp_* */ 1562 guard(task_rq_lock)(p); 1563 __uclamp_update_util_min_rt_default(p); 1564 } 1565 1566 static inline struct uclamp_se 1567 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1568 { 1569 /* Copy by value as we could modify it */ 1570 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1571 #ifdef CONFIG_UCLAMP_TASK_GROUP 1572 unsigned int tg_min, tg_max, value; 1573 1574 /* 1575 * Tasks in autogroups or root task group will be 1576 * restricted by system defaults. 1577 */ 1578 if (task_group_is_autogroup(task_group(p))) 1579 return uc_req; 1580 if (task_group(p) == &root_task_group) 1581 return uc_req; 1582 1583 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1584 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1585 value = uc_req.value; 1586 value = clamp(value, tg_min, tg_max); 1587 uclamp_se_set(&uc_req, value, false); 1588 #endif 1589 1590 return uc_req; 1591 } 1592 1593 /* 1594 * The effective clamp bucket index of a task depends on, by increasing 1595 * priority: 1596 * - the task specific clamp value, when explicitly requested from userspace 1597 * - the task group effective clamp value, for tasks not either in the root 1598 * group or in an autogroup 1599 * - the system default clamp value, defined by the sysadmin 1600 */ 1601 static inline struct uclamp_se 1602 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1603 { 1604 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1605 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1606 1607 /* System default restrictions always apply */ 1608 if (unlikely(uc_req.value > uc_max.value)) 1609 return uc_max; 1610 1611 return uc_req; 1612 } 1613 1614 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1615 { 1616 struct uclamp_se uc_eff; 1617 1618 /* Task currently refcounted: use back-annotated (effective) value */ 1619 if (p->uclamp[clamp_id].active) 1620 return (unsigned long)p->uclamp[clamp_id].value; 1621 1622 uc_eff = uclamp_eff_get(p, clamp_id); 1623 1624 return (unsigned long)uc_eff.value; 1625 } 1626 1627 /* 1628 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1629 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1630 * updates the rq's clamp value if required. 1631 * 1632 * Tasks can have a task-specific value requested from user-space, track 1633 * within each bucket the maximum value for tasks refcounted in it. 1634 * This "local max aggregation" allows to track the exact "requested" value 1635 * for each bucket when all its RUNNABLE tasks require the same clamp. 1636 */ 1637 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1638 enum uclamp_id clamp_id) 1639 { 1640 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1641 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1642 struct uclamp_bucket *bucket; 1643 1644 lockdep_assert_rq_held(rq); 1645 1646 /* Update task effective clamp */ 1647 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1648 1649 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1650 bucket->tasks++; 1651 uc_se->active = true; 1652 1653 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1654 1655 /* 1656 * Local max aggregation: rq buckets always track the max 1657 * "requested" clamp value of its RUNNABLE tasks. 1658 */ 1659 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1660 bucket->value = uc_se->value; 1661 1662 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1663 uclamp_rq_set(rq, clamp_id, uc_se->value); 1664 } 1665 1666 /* 1667 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1668 * is released. If this is the last task reference counting the rq's max 1669 * active clamp value, then the rq's clamp value is updated. 1670 * 1671 * Both refcounted tasks and rq's cached clamp values are expected to be 1672 * always valid. If it's detected they are not, as defensive programming, 1673 * enforce the expected state and warn. 1674 */ 1675 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1676 enum uclamp_id clamp_id) 1677 { 1678 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1679 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1680 struct uclamp_bucket *bucket; 1681 unsigned int bkt_clamp; 1682 unsigned int rq_clamp; 1683 1684 lockdep_assert_rq_held(rq); 1685 1686 /* 1687 * If sched_uclamp_used was enabled after task @p was enqueued, 1688 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1689 * 1690 * In this case the uc_se->active flag should be false since no uclamp 1691 * accounting was performed at enqueue time and we can just return 1692 * here. 1693 * 1694 * Need to be careful of the following enqueue/dequeue ordering 1695 * problem too 1696 * 1697 * enqueue(taskA) 1698 * // sched_uclamp_used gets enabled 1699 * enqueue(taskB) 1700 * dequeue(taskA) 1701 * // Must not decrement bucket->tasks here 1702 * dequeue(taskB) 1703 * 1704 * where we could end up with stale data in uc_se and 1705 * bucket[uc_se->bucket_id]. 1706 * 1707 * The following check here eliminates the possibility of such race. 1708 */ 1709 if (unlikely(!uc_se->active)) 1710 return; 1711 1712 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1713 1714 SCHED_WARN_ON(!bucket->tasks); 1715 if (likely(bucket->tasks)) 1716 bucket->tasks--; 1717 1718 uc_se->active = false; 1719 1720 /* 1721 * Keep "local max aggregation" simple and accept to (possibly) 1722 * overboost some RUNNABLE tasks in the same bucket. 1723 * The rq clamp bucket value is reset to its base value whenever 1724 * there are no more RUNNABLE tasks refcounting it. 1725 */ 1726 if (likely(bucket->tasks)) 1727 return; 1728 1729 rq_clamp = uclamp_rq_get(rq, clamp_id); 1730 /* 1731 * Defensive programming: this should never happen. If it happens, 1732 * e.g. due to future modification, warn and fix up the expected value. 1733 */ 1734 SCHED_WARN_ON(bucket->value > rq_clamp); 1735 if (bucket->value >= rq_clamp) { 1736 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1737 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1738 } 1739 } 1740 1741 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1742 { 1743 enum uclamp_id clamp_id; 1744 1745 /* 1746 * Avoid any overhead until uclamp is actually used by the userspace. 1747 * 1748 * The condition is constructed such that a NOP is generated when 1749 * sched_uclamp_used is disabled. 1750 */ 1751 if (!static_branch_unlikely(&sched_uclamp_used)) 1752 return; 1753 1754 if (unlikely(!p->sched_class->uclamp_enabled)) 1755 return; 1756 1757 if (p->se.sched_delayed) 1758 return; 1759 1760 for_each_clamp_id(clamp_id) 1761 uclamp_rq_inc_id(rq, p, clamp_id); 1762 1763 /* Reset clamp idle holding when there is one RUNNABLE task */ 1764 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1765 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1766 } 1767 1768 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1769 { 1770 enum uclamp_id clamp_id; 1771 1772 /* 1773 * Avoid any overhead until uclamp is actually used by the userspace. 1774 * 1775 * The condition is constructed such that a NOP is generated when 1776 * sched_uclamp_used is disabled. 1777 */ 1778 if (!static_branch_unlikely(&sched_uclamp_used)) 1779 return; 1780 1781 if (unlikely(!p->sched_class->uclamp_enabled)) 1782 return; 1783 1784 if (p->se.sched_delayed) 1785 return; 1786 1787 for_each_clamp_id(clamp_id) 1788 uclamp_rq_dec_id(rq, p, clamp_id); 1789 } 1790 1791 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1792 enum uclamp_id clamp_id) 1793 { 1794 if (!p->uclamp[clamp_id].active) 1795 return; 1796 1797 uclamp_rq_dec_id(rq, p, clamp_id); 1798 uclamp_rq_inc_id(rq, p, clamp_id); 1799 1800 /* 1801 * Make sure to clear the idle flag if we've transiently reached 0 1802 * active tasks on rq. 1803 */ 1804 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1805 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1806 } 1807 1808 static inline void 1809 uclamp_update_active(struct task_struct *p) 1810 { 1811 enum uclamp_id clamp_id; 1812 struct rq_flags rf; 1813 struct rq *rq; 1814 1815 /* 1816 * Lock the task and the rq where the task is (or was) queued. 1817 * 1818 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1819 * price to pay to safely serialize util_{min,max} updates with 1820 * enqueues, dequeues and migration operations. 1821 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1822 */ 1823 rq = task_rq_lock(p, &rf); 1824 1825 /* 1826 * Setting the clamp bucket is serialized by task_rq_lock(). 1827 * If the task is not yet RUNNABLE and its task_struct is not 1828 * affecting a valid clamp bucket, the next time it's enqueued, 1829 * it will already see the updated clamp bucket value. 1830 */ 1831 for_each_clamp_id(clamp_id) 1832 uclamp_rq_reinc_id(rq, p, clamp_id); 1833 1834 task_rq_unlock(rq, p, &rf); 1835 } 1836 1837 #ifdef CONFIG_UCLAMP_TASK_GROUP 1838 static inline void 1839 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1840 { 1841 struct css_task_iter it; 1842 struct task_struct *p; 1843 1844 css_task_iter_start(css, 0, &it); 1845 while ((p = css_task_iter_next(&it))) 1846 uclamp_update_active(p); 1847 css_task_iter_end(&it); 1848 } 1849 1850 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1851 #endif 1852 1853 #ifdef CONFIG_SYSCTL 1854 #ifdef CONFIG_UCLAMP_TASK_GROUP 1855 static void uclamp_update_root_tg(void) 1856 { 1857 struct task_group *tg = &root_task_group; 1858 1859 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1860 sysctl_sched_uclamp_util_min, false); 1861 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1862 sysctl_sched_uclamp_util_max, false); 1863 1864 guard(rcu)(); 1865 cpu_util_update_eff(&root_task_group.css); 1866 } 1867 #else 1868 static void uclamp_update_root_tg(void) { } 1869 #endif 1870 1871 static void uclamp_sync_util_min_rt_default(void) 1872 { 1873 struct task_struct *g, *p; 1874 1875 /* 1876 * copy_process() sysctl_uclamp 1877 * uclamp_min_rt = X; 1878 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1879 * // link thread smp_mb__after_spinlock() 1880 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1881 * sched_post_fork() for_each_process_thread() 1882 * __uclamp_sync_rt() __uclamp_sync_rt() 1883 * 1884 * Ensures that either sched_post_fork() will observe the new 1885 * uclamp_min_rt or for_each_process_thread() will observe the new 1886 * task. 1887 */ 1888 read_lock(&tasklist_lock); 1889 smp_mb__after_spinlock(); 1890 read_unlock(&tasklist_lock); 1891 1892 guard(rcu)(); 1893 for_each_process_thread(g, p) 1894 uclamp_update_util_min_rt_default(p); 1895 } 1896 1897 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write, 1898 void *buffer, size_t *lenp, loff_t *ppos) 1899 { 1900 bool update_root_tg = false; 1901 int old_min, old_max, old_min_rt; 1902 int result; 1903 1904 guard(mutex)(&uclamp_mutex); 1905 1906 old_min = sysctl_sched_uclamp_util_min; 1907 old_max = sysctl_sched_uclamp_util_max; 1908 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1909 1910 result = proc_dointvec(table, write, buffer, lenp, ppos); 1911 if (result) 1912 goto undo; 1913 if (!write) 1914 return 0; 1915 1916 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1917 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1918 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1919 1920 result = -EINVAL; 1921 goto undo; 1922 } 1923 1924 if (old_min != sysctl_sched_uclamp_util_min) { 1925 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1926 sysctl_sched_uclamp_util_min, false); 1927 update_root_tg = true; 1928 } 1929 if (old_max != sysctl_sched_uclamp_util_max) { 1930 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1931 sysctl_sched_uclamp_util_max, false); 1932 update_root_tg = true; 1933 } 1934 1935 if (update_root_tg) { 1936 static_branch_enable(&sched_uclamp_used); 1937 uclamp_update_root_tg(); 1938 } 1939 1940 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1941 static_branch_enable(&sched_uclamp_used); 1942 uclamp_sync_util_min_rt_default(); 1943 } 1944 1945 /* 1946 * We update all RUNNABLE tasks only when task groups are in use. 1947 * Otherwise, keep it simple and do just a lazy update at each next 1948 * task enqueue time. 1949 */ 1950 return 0; 1951 1952 undo: 1953 sysctl_sched_uclamp_util_min = old_min; 1954 sysctl_sched_uclamp_util_max = old_max; 1955 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1956 return result; 1957 } 1958 #endif 1959 1960 static void uclamp_fork(struct task_struct *p) 1961 { 1962 enum uclamp_id clamp_id; 1963 1964 /* 1965 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1966 * as the task is still at its early fork stages. 1967 */ 1968 for_each_clamp_id(clamp_id) 1969 p->uclamp[clamp_id].active = false; 1970 1971 if (likely(!p->sched_reset_on_fork)) 1972 return; 1973 1974 for_each_clamp_id(clamp_id) { 1975 uclamp_se_set(&p->uclamp_req[clamp_id], 1976 uclamp_none(clamp_id), false); 1977 } 1978 } 1979 1980 static void uclamp_post_fork(struct task_struct *p) 1981 { 1982 uclamp_update_util_min_rt_default(p); 1983 } 1984 1985 static void __init init_uclamp_rq(struct rq *rq) 1986 { 1987 enum uclamp_id clamp_id; 1988 struct uclamp_rq *uc_rq = rq->uclamp; 1989 1990 for_each_clamp_id(clamp_id) { 1991 uc_rq[clamp_id] = (struct uclamp_rq) { 1992 .value = uclamp_none(clamp_id) 1993 }; 1994 } 1995 1996 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 1997 } 1998 1999 static void __init init_uclamp(void) 2000 { 2001 struct uclamp_se uc_max = {}; 2002 enum uclamp_id clamp_id; 2003 int cpu; 2004 2005 for_each_possible_cpu(cpu) 2006 init_uclamp_rq(cpu_rq(cpu)); 2007 2008 for_each_clamp_id(clamp_id) { 2009 uclamp_se_set(&init_task.uclamp_req[clamp_id], 2010 uclamp_none(clamp_id), false); 2011 } 2012 2013 /* System defaults allow max clamp values for both indexes */ 2014 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2015 for_each_clamp_id(clamp_id) { 2016 uclamp_default[clamp_id] = uc_max; 2017 #ifdef CONFIG_UCLAMP_TASK_GROUP 2018 root_task_group.uclamp_req[clamp_id] = uc_max; 2019 root_task_group.uclamp[clamp_id] = uc_max; 2020 #endif 2021 } 2022 } 2023 2024 #else /* !CONFIG_UCLAMP_TASK */ 2025 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 2026 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2027 static inline void uclamp_fork(struct task_struct *p) { } 2028 static inline void uclamp_post_fork(struct task_struct *p) { } 2029 static inline void init_uclamp(void) { } 2030 #endif /* CONFIG_UCLAMP_TASK */ 2031 2032 bool sched_task_on_rq(struct task_struct *p) 2033 { 2034 return task_on_rq_queued(p); 2035 } 2036 2037 unsigned long get_wchan(struct task_struct *p) 2038 { 2039 unsigned long ip = 0; 2040 unsigned int state; 2041 2042 if (!p || p == current) 2043 return 0; 2044 2045 /* Only get wchan if task is blocked and we can keep it that way. */ 2046 raw_spin_lock_irq(&p->pi_lock); 2047 state = READ_ONCE(p->__state); 2048 smp_rmb(); /* see try_to_wake_up() */ 2049 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2050 ip = __get_wchan(p); 2051 raw_spin_unlock_irq(&p->pi_lock); 2052 2053 return ip; 2054 } 2055 2056 void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2057 { 2058 if (!(flags & ENQUEUE_NOCLOCK)) 2059 update_rq_clock(rq); 2060 2061 p->sched_class->enqueue_task(rq, p, flags); 2062 /* 2063 * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear 2064 * ->sched_delayed. 2065 */ 2066 uclamp_rq_inc(rq, p); 2067 2068 psi_enqueue(p, flags); 2069 2070 if (!(flags & ENQUEUE_RESTORE)) 2071 sched_info_enqueue(rq, p); 2072 2073 if (sched_core_enabled(rq)) 2074 sched_core_enqueue(rq, p); 2075 } 2076 2077 /* 2078 * Must only return false when DEQUEUE_SLEEP. 2079 */ 2080 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2081 { 2082 if (sched_core_enabled(rq)) 2083 sched_core_dequeue(rq, p, flags); 2084 2085 if (!(flags & DEQUEUE_NOCLOCK)) 2086 update_rq_clock(rq); 2087 2088 if (!(flags & DEQUEUE_SAVE)) 2089 sched_info_dequeue(rq, p); 2090 2091 psi_dequeue(p, flags); 2092 2093 /* 2094 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail' 2095 * and mark the task ->sched_delayed. 2096 */ 2097 uclamp_rq_dec(rq, p); 2098 return p->sched_class->dequeue_task(rq, p, flags); 2099 } 2100 2101 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2102 { 2103 if (task_on_rq_migrating(p)) 2104 flags |= ENQUEUE_MIGRATED; 2105 if (flags & ENQUEUE_MIGRATED) 2106 sched_mm_cid_migrate_to(rq, p); 2107 2108 enqueue_task(rq, p, flags); 2109 2110 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); 2111 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2112 } 2113 2114 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2115 { 2116 SCHED_WARN_ON(flags & DEQUEUE_SLEEP); 2117 2118 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 2119 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2120 2121 /* 2122 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before* 2123 * dequeue_task() and cleared *after* enqueue_task(). 2124 */ 2125 2126 dequeue_task(rq, p, flags); 2127 } 2128 2129 static void block_task(struct rq *rq, struct task_struct *p, int flags) 2130 { 2131 if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags)) 2132 __block_task(rq, p); 2133 } 2134 2135 /** 2136 * task_curr - is this task currently executing on a CPU? 2137 * @p: the task in question. 2138 * 2139 * Return: 1 if the task is currently executing. 0 otherwise. 2140 */ 2141 inline int task_curr(const struct task_struct *p) 2142 { 2143 return cpu_curr(task_cpu(p)) == p; 2144 } 2145 2146 /* 2147 * ->switching_to() is called with the pi_lock and rq_lock held and must not 2148 * mess with locking. 2149 */ 2150 void check_class_changing(struct rq *rq, struct task_struct *p, 2151 const struct sched_class *prev_class) 2152 { 2153 if (prev_class != p->sched_class && p->sched_class->switching_to) 2154 p->sched_class->switching_to(rq, p); 2155 } 2156 2157 /* 2158 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2159 * use the balance_callback list if you want balancing. 2160 * 2161 * this means any call to check_class_changed() must be followed by a call to 2162 * balance_callback(). 2163 */ 2164 void check_class_changed(struct rq *rq, struct task_struct *p, 2165 const struct sched_class *prev_class, 2166 int oldprio) 2167 { 2168 if (prev_class != p->sched_class) { 2169 if (prev_class->switched_from) 2170 prev_class->switched_from(rq, p); 2171 2172 p->sched_class->switched_to(rq, p); 2173 } else if (oldprio != p->prio || dl_task(p)) 2174 p->sched_class->prio_changed(rq, p, oldprio); 2175 } 2176 2177 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2178 { 2179 struct task_struct *donor = rq->donor; 2180 2181 if (p->sched_class == donor->sched_class) 2182 donor->sched_class->wakeup_preempt(rq, p, flags); 2183 else if (sched_class_above(p->sched_class, donor->sched_class)) 2184 resched_curr(rq); 2185 2186 /* 2187 * A queue event has occurred, and we're going to schedule. In 2188 * this case, we can save a useless back to back clock update. 2189 */ 2190 if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr)) 2191 rq_clock_skip_update(rq); 2192 } 2193 2194 static __always_inline 2195 int __task_state_match(struct task_struct *p, unsigned int state) 2196 { 2197 if (READ_ONCE(p->__state) & state) 2198 return 1; 2199 2200 if (READ_ONCE(p->saved_state) & state) 2201 return -1; 2202 2203 return 0; 2204 } 2205 2206 static __always_inline 2207 int task_state_match(struct task_struct *p, unsigned int state) 2208 { 2209 /* 2210 * Serialize against current_save_and_set_rtlock_wait_state(), 2211 * current_restore_rtlock_saved_state(), and __refrigerator(). 2212 */ 2213 guard(raw_spinlock_irq)(&p->pi_lock); 2214 return __task_state_match(p, state); 2215 } 2216 2217 /* 2218 * wait_task_inactive - wait for a thread to unschedule. 2219 * 2220 * Wait for the thread to block in any of the states set in @match_state. 2221 * If it changes, i.e. @p might have woken up, then return zero. When we 2222 * succeed in waiting for @p to be off its CPU, we return a positive number 2223 * (its total switch count). If a second call a short while later returns the 2224 * same number, the caller can be sure that @p has remained unscheduled the 2225 * whole time. 2226 * 2227 * The caller must ensure that the task *will* unschedule sometime soon, 2228 * else this function might spin for a *long* time. This function can't 2229 * be called with interrupts off, or it may introduce deadlock with 2230 * smp_call_function() if an IPI is sent by the same process we are 2231 * waiting to become inactive. 2232 */ 2233 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2234 { 2235 int running, queued, match; 2236 struct rq_flags rf; 2237 unsigned long ncsw; 2238 struct rq *rq; 2239 2240 for (;;) { 2241 /* 2242 * We do the initial early heuristics without holding 2243 * any task-queue locks at all. We'll only try to get 2244 * the runqueue lock when things look like they will 2245 * work out! 2246 */ 2247 rq = task_rq(p); 2248 2249 /* 2250 * If the task is actively running on another CPU 2251 * still, just relax and busy-wait without holding 2252 * any locks. 2253 * 2254 * NOTE! Since we don't hold any locks, it's not 2255 * even sure that "rq" stays as the right runqueue! 2256 * But we don't care, since "task_on_cpu()" will 2257 * return false if the runqueue has changed and p 2258 * is actually now running somewhere else! 2259 */ 2260 while (task_on_cpu(rq, p)) { 2261 if (!task_state_match(p, match_state)) 2262 return 0; 2263 cpu_relax(); 2264 } 2265 2266 /* 2267 * Ok, time to look more closely! We need the rq 2268 * lock now, to be *sure*. If we're wrong, we'll 2269 * just go back and repeat. 2270 */ 2271 rq = task_rq_lock(p, &rf); 2272 trace_sched_wait_task(p); 2273 running = task_on_cpu(rq, p); 2274 queued = task_on_rq_queued(p); 2275 ncsw = 0; 2276 if ((match = __task_state_match(p, match_state))) { 2277 /* 2278 * When matching on p->saved_state, consider this task 2279 * still queued so it will wait. 2280 */ 2281 if (match < 0) 2282 queued = 1; 2283 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2284 } 2285 task_rq_unlock(rq, p, &rf); 2286 2287 /* 2288 * If it changed from the expected state, bail out now. 2289 */ 2290 if (unlikely(!ncsw)) 2291 break; 2292 2293 /* 2294 * Was it really running after all now that we 2295 * checked with the proper locks actually held? 2296 * 2297 * Oops. Go back and try again.. 2298 */ 2299 if (unlikely(running)) { 2300 cpu_relax(); 2301 continue; 2302 } 2303 2304 /* 2305 * It's not enough that it's not actively running, 2306 * it must be off the runqueue _entirely_, and not 2307 * preempted! 2308 * 2309 * So if it was still runnable (but just not actively 2310 * running right now), it's preempted, and we should 2311 * yield - it could be a while. 2312 */ 2313 if (unlikely(queued)) { 2314 ktime_t to = NSEC_PER_SEC / HZ; 2315 2316 set_current_state(TASK_UNINTERRUPTIBLE); 2317 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2318 continue; 2319 } 2320 2321 /* 2322 * Ahh, all good. It wasn't running, and it wasn't 2323 * runnable, which means that it will never become 2324 * running in the future either. We're all done! 2325 */ 2326 break; 2327 } 2328 2329 return ncsw; 2330 } 2331 2332 #ifdef CONFIG_SMP 2333 2334 static void 2335 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2336 2337 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2338 { 2339 struct affinity_context ac = { 2340 .new_mask = cpumask_of(rq->cpu), 2341 .flags = SCA_MIGRATE_DISABLE, 2342 }; 2343 2344 if (likely(!p->migration_disabled)) 2345 return; 2346 2347 if (p->cpus_ptr != &p->cpus_mask) 2348 return; 2349 2350 /* 2351 * Violates locking rules! See comment in __do_set_cpus_allowed(). 2352 */ 2353 __do_set_cpus_allowed(p, &ac); 2354 } 2355 2356 void migrate_disable(void) 2357 { 2358 struct task_struct *p = current; 2359 2360 if (p->migration_disabled) { 2361 #ifdef CONFIG_DEBUG_PREEMPT 2362 /* 2363 *Warn about overflow half-way through the range. 2364 */ 2365 WARN_ON_ONCE((s16)p->migration_disabled < 0); 2366 #endif 2367 p->migration_disabled++; 2368 return; 2369 } 2370 2371 guard(preempt)(); 2372 this_rq()->nr_pinned++; 2373 p->migration_disabled = 1; 2374 } 2375 EXPORT_SYMBOL_GPL(migrate_disable); 2376 2377 void migrate_enable(void) 2378 { 2379 struct task_struct *p = current; 2380 struct affinity_context ac = { 2381 .new_mask = &p->cpus_mask, 2382 .flags = SCA_MIGRATE_ENABLE, 2383 }; 2384 2385 #ifdef CONFIG_DEBUG_PREEMPT 2386 /* 2387 * Check both overflow from migrate_disable() and superfluous 2388 * migrate_enable(). 2389 */ 2390 if (WARN_ON_ONCE((s16)p->migration_disabled <= 0)) 2391 return; 2392 #endif 2393 2394 if (p->migration_disabled > 1) { 2395 p->migration_disabled--; 2396 return; 2397 } 2398 2399 /* 2400 * Ensure stop_task runs either before or after this, and that 2401 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2402 */ 2403 guard(preempt)(); 2404 if (p->cpus_ptr != &p->cpus_mask) 2405 __set_cpus_allowed_ptr(p, &ac); 2406 /* 2407 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2408 * regular cpus_mask, otherwise things that race (eg. 2409 * select_fallback_rq) get confused. 2410 */ 2411 barrier(); 2412 p->migration_disabled = 0; 2413 this_rq()->nr_pinned--; 2414 } 2415 EXPORT_SYMBOL_GPL(migrate_enable); 2416 2417 static inline bool rq_has_pinned_tasks(struct rq *rq) 2418 { 2419 return rq->nr_pinned; 2420 } 2421 2422 /* 2423 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2424 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2425 */ 2426 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2427 { 2428 /* When not in the task's cpumask, no point in looking further. */ 2429 if (!task_allowed_on_cpu(p, cpu)) 2430 return false; 2431 2432 /* migrate_disabled() must be allowed to finish. */ 2433 if (is_migration_disabled(p)) 2434 return cpu_online(cpu); 2435 2436 /* Non kernel threads are not allowed during either online or offline. */ 2437 if (!(p->flags & PF_KTHREAD)) 2438 return cpu_active(cpu); 2439 2440 /* KTHREAD_IS_PER_CPU is always allowed. */ 2441 if (kthread_is_per_cpu(p)) 2442 return cpu_online(cpu); 2443 2444 /* Regular kernel threads don't get to stay during offline. */ 2445 if (cpu_dying(cpu)) 2446 return false; 2447 2448 /* But are allowed during online. */ 2449 return cpu_online(cpu); 2450 } 2451 2452 /* 2453 * This is how migration works: 2454 * 2455 * 1) we invoke migration_cpu_stop() on the target CPU using 2456 * stop_one_cpu(). 2457 * 2) stopper starts to run (implicitly forcing the migrated thread 2458 * off the CPU) 2459 * 3) it checks whether the migrated task is still in the wrong runqueue. 2460 * 4) if it's in the wrong runqueue then the migration thread removes 2461 * it and puts it into the right queue. 2462 * 5) stopper completes and stop_one_cpu() returns and the migration 2463 * is done. 2464 */ 2465 2466 /* 2467 * move_queued_task - move a queued task to new rq. 2468 * 2469 * Returns (locked) new rq. Old rq's lock is released. 2470 */ 2471 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2472 struct task_struct *p, int new_cpu) 2473 { 2474 lockdep_assert_rq_held(rq); 2475 2476 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2477 set_task_cpu(p, new_cpu); 2478 rq_unlock(rq, rf); 2479 2480 rq = cpu_rq(new_cpu); 2481 2482 rq_lock(rq, rf); 2483 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2484 activate_task(rq, p, 0); 2485 wakeup_preempt(rq, p, 0); 2486 2487 return rq; 2488 } 2489 2490 struct migration_arg { 2491 struct task_struct *task; 2492 int dest_cpu; 2493 struct set_affinity_pending *pending; 2494 }; 2495 2496 /* 2497 * @refs: number of wait_for_completion() 2498 * @stop_pending: is @stop_work in use 2499 */ 2500 struct set_affinity_pending { 2501 refcount_t refs; 2502 unsigned int stop_pending; 2503 struct completion done; 2504 struct cpu_stop_work stop_work; 2505 struct migration_arg arg; 2506 }; 2507 2508 /* 2509 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2510 * this because either it can't run here any more (set_cpus_allowed() 2511 * away from this CPU, or CPU going down), or because we're 2512 * attempting to rebalance this task on exec (sched_exec). 2513 * 2514 * So we race with normal scheduler movements, but that's OK, as long 2515 * as the task is no longer on this CPU. 2516 */ 2517 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2518 struct task_struct *p, int dest_cpu) 2519 { 2520 /* Affinity changed (again). */ 2521 if (!is_cpu_allowed(p, dest_cpu)) 2522 return rq; 2523 2524 rq = move_queued_task(rq, rf, p, dest_cpu); 2525 2526 return rq; 2527 } 2528 2529 /* 2530 * migration_cpu_stop - this will be executed by a high-prio stopper thread 2531 * and performs thread migration by bumping thread off CPU then 2532 * 'pushing' onto another runqueue. 2533 */ 2534 static int migration_cpu_stop(void *data) 2535 { 2536 struct migration_arg *arg = data; 2537 struct set_affinity_pending *pending = arg->pending; 2538 struct task_struct *p = arg->task; 2539 struct rq *rq = this_rq(); 2540 bool complete = false; 2541 struct rq_flags rf; 2542 2543 /* 2544 * The original target CPU might have gone down and we might 2545 * be on another CPU but it doesn't matter. 2546 */ 2547 local_irq_save(rf.flags); 2548 /* 2549 * We need to explicitly wake pending tasks before running 2550 * __migrate_task() such that we will not miss enforcing cpus_ptr 2551 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2552 */ 2553 flush_smp_call_function_queue(); 2554 2555 raw_spin_lock(&p->pi_lock); 2556 rq_lock(rq, &rf); 2557 2558 /* 2559 * If we were passed a pending, then ->stop_pending was set, thus 2560 * p->migration_pending must have remained stable. 2561 */ 2562 WARN_ON_ONCE(pending && pending != p->migration_pending); 2563 2564 /* 2565 * If task_rq(p) != rq, it cannot be migrated here, because we're 2566 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2567 * we're holding p->pi_lock. 2568 */ 2569 if (task_rq(p) == rq) { 2570 if (is_migration_disabled(p)) 2571 goto out; 2572 2573 if (pending) { 2574 p->migration_pending = NULL; 2575 complete = true; 2576 2577 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2578 goto out; 2579 } 2580 2581 if (task_on_rq_queued(p)) { 2582 update_rq_clock(rq); 2583 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2584 } else { 2585 p->wake_cpu = arg->dest_cpu; 2586 } 2587 2588 /* 2589 * XXX __migrate_task() can fail, at which point we might end 2590 * up running on a dodgy CPU, AFAICT this can only happen 2591 * during CPU hotplug, at which point we'll get pushed out 2592 * anyway, so it's probably not a big deal. 2593 */ 2594 2595 } else if (pending) { 2596 /* 2597 * This happens when we get migrated between migrate_enable()'s 2598 * preempt_enable() and scheduling the stopper task. At that 2599 * point we're a regular task again and not current anymore. 2600 * 2601 * A !PREEMPT kernel has a giant hole here, which makes it far 2602 * more likely. 2603 */ 2604 2605 /* 2606 * The task moved before the stopper got to run. We're holding 2607 * ->pi_lock, so the allowed mask is stable - if it got 2608 * somewhere allowed, we're done. 2609 */ 2610 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2611 p->migration_pending = NULL; 2612 complete = true; 2613 goto out; 2614 } 2615 2616 /* 2617 * When migrate_enable() hits a rq mis-match we can't reliably 2618 * determine is_migration_disabled() and so have to chase after 2619 * it. 2620 */ 2621 WARN_ON_ONCE(!pending->stop_pending); 2622 preempt_disable(); 2623 task_rq_unlock(rq, p, &rf); 2624 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2625 &pending->arg, &pending->stop_work); 2626 preempt_enable(); 2627 return 0; 2628 } 2629 out: 2630 if (pending) 2631 pending->stop_pending = false; 2632 task_rq_unlock(rq, p, &rf); 2633 2634 if (complete) 2635 complete_all(&pending->done); 2636 2637 return 0; 2638 } 2639 2640 int push_cpu_stop(void *arg) 2641 { 2642 struct rq *lowest_rq = NULL, *rq = this_rq(); 2643 struct task_struct *p = arg; 2644 2645 raw_spin_lock_irq(&p->pi_lock); 2646 raw_spin_rq_lock(rq); 2647 2648 if (task_rq(p) != rq) 2649 goto out_unlock; 2650 2651 if (is_migration_disabled(p)) { 2652 p->migration_flags |= MDF_PUSH; 2653 goto out_unlock; 2654 } 2655 2656 p->migration_flags &= ~MDF_PUSH; 2657 2658 if (p->sched_class->find_lock_rq) 2659 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2660 2661 if (!lowest_rq) 2662 goto out_unlock; 2663 2664 // XXX validate p is still the highest prio task 2665 if (task_rq(p) == rq) { 2666 move_queued_task_locked(rq, lowest_rq, p); 2667 resched_curr(lowest_rq); 2668 } 2669 2670 double_unlock_balance(rq, lowest_rq); 2671 2672 out_unlock: 2673 rq->push_busy = false; 2674 raw_spin_rq_unlock(rq); 2675 raw_spin_unlock_irq(&p->pi_lock); 2676 2677 put_task_struct(p); 2678 return 0; 2679 } 2680 2681 /* 2682 * sched_class::set_cpus_allowed must do the below, but is not required to 2683 * actually call this function. 2684 */ 2685 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2686 { 2687 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2688 p->cpus_ptr = ctx->new_mask; 2689 return; 2690 } 2691 2692 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2693 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2694 2695 /* 2696 * Swap in a new user_cpus_ptr if SCA_USER flag set 2697 */ 2698 if (ctx->flags & SCA_USER) 2699 swap(p->user_cpus_ptr, ctx->user_mask); 2700 } 2701 2702 static void 2703 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2704 { 2705 struct rq *rq = task_rq(p); 2706 bool queued, running; 2707 2708 /* 2709 * This here violates the locking rules for affinity, since we're only 2710 * supposed to change these variables while holding both rq->lock and 2711 * p->pi_lock. 2712 * 2713 * HOWEVER, it magically works, because ttwu() is the only code that 2714 * accesses these variables under p->pi_lock and only does so after 2715 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2716 * before finish_task(). 2717 * 2718 * XXX do further audits, this smells like something putrid. 2719 */ 2720 if (ctx->flags & SCA_MIGRATE_DISABLE) 2721 SCHED_WARN_ON(!p->on_cpu); 2722 else 2723 lockdep_assert_held(&p->pi_lock); 2724 2725 queued = task_on_rq_queued(p); 2726 running = task_current_donor(rq, p); 2727 2728 if (queued) { 2729 /* 2730 * Because __kthread_bind() calls this on blocked tasks without 2731 * holding rq->lock. 2732 */ 2733 lockdep_assert_rq_held(rq); 2734 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2735 } 2736 if (running) 2737 put_prev_task(rq, p); 2738 2739 p->sched_class->set_cpus_allowed(p, ctx); 2740 mm_set_cpus_allowed(p->mm, ctx->new_mask); 2741 2742 if (queued) 2743 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2744 if (running) 2745 set_next_task(rq, p); 2746 } 2747 2748 /* 2749 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2750 * affinity (if any) should be destroyed too. 2751 */ 2752 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2753 { 2754 struct affinity_context ac = { 2755 .new_mask = new_mask, 2756 .user_mask = NULL, 2757 .flags = SCA_USER, /* clear the user requested mask */ 2758 }; 2759 union cpumask_rcuhead { 2760 cpumask_t cpumask; 2761 struct rcu_head rcu; 2762 }; 2763 2764 __do_set_cpus_allowed(p, &ac); 2765 2766 /* 2767 * Because this is called with p->pi_lock held, it is not possible 2768 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2769 * kfree_rcu(). 2770 */ 2771 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2772 } 2773 2774 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2775 int node) 2776 { 2777 cpumask_t *user_mask; 2778 unsigned long flags; 2779 2780 /* 2781 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2782 * may differ by now due to racing. 2783 */ 2784 dst->user_cpus_ptr = NULL; 2785 2786 /* 2787 * This check is racy and losing the race is a valid situation. 2788 * It is not worth the extra overhead of taking the pi_lock on 2789 * every fork/clone. 2790 */ 2791 if (data_race(!src->user_cpus_ptr)) 2792 return 0; 2793 2794 user_mask = alloc_user_cpus_ptr(node); 2795 if (!user_mask) 2796 return -ENOMEM; 2797 2798 /* 2799 * Use pi_lock to protect content of user_cpus_ptr 2800 * 2801 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2802 * do_set_cpus_allowed(). 2803 */ 2804 raw_spin_lock_irqsave(&src->pi_lock, flags); 2805 if (src->user_cpus_ptr) { 2806 swap(dst->user_cpus_ptr, user_mask); 2807 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2808 } 2809 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2810 2811 if (unlikely(user_mask)) 2812 kfree(user_mask); 2813 2814 return 0; 2815 } 2816 2817 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2818 { 2819 struct cpumask *user_mask = NULL; 2820 2821 swap(p->user_cpus_ptr, user_mask); 2822 2823 return user_mask; 2824 } 2825 2826 void release_user_cpus_ptr(struct task_struct *p) 2827 { 2828 kfree(clear_user_cpus_ptr(p)); 2829 } 2830 2831 /* 2832 * This function is wildly self concurrent; here be dragons. 2833 * 2834 * 2835 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2836 * designated task is enqueued on an allowed CPU. If that task is currently 2837 * running, we have to kick it out using the CPU stopper. 2838 * 2839 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2840 * Consider: 2841 * 2842 * Initial conditions: P0->cpus_mask = [0, 1] 2843 * 2844 * P0@CPU0 P1 2845 * 2846 * migrate_disable(); 2847 * <preempted> 2848 * set_cpus_allowed_ptr(P0, [1]); 2849 * 2850 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2851 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2852 * This means we need the following scheme: 2853 * 2854 * P0@CPU0 P1 2855 * 2856 * migrate_disable(); 2857 * <preempted> 2858 * set_cpus_allowed_ptr(P0, [1]); 2859 * <blocks> 2860 * <resumes> 2861 * migrate_enable(); 2862 * __set_cpus_allowed_ptr(); 2863 * <wakes local stopper> 2864 * `--> <woken on migration completion> 2865 * 2866 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2867 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2868 * task p are serialized by p->pi_lock, which we can leverage: the one that 2869 * should come into effect at the end of the Migrate-Disable region is the last 2870 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2871 * but we still need to properly signal those waiting tasks at the appropriate 2872 * moment. 2873 * 2874 * This is implemented using struct set_affinity_pending. The first 2875 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2876 * setup an instance of that struct and install it on the targeted task_struct. 2877 * Any and all further callers will reuse that instance. Those then wait for 2878 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2879 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2880 * 2881 * 2882 * (1) In the cases covered above. There is one more where the completion is 2883 * signaled within affine_move_task() itself: when a subsequent affinity request 2884 * occurs after the stopper bailed out due to the targeted task still being 2885 * Migrate-Disable. Consider: 2886 * 2887 * Initial conditions: P0->cpus_mask = [0, 1] 2888 * 2889 * CPU0 P1 P2 2890 * <P0> 2891 * migrate_disable(); 2892 * <preempted> 2893 * set_cpus_allowed_ptr(P0, [1]); 2894 * <blocks> 2895 * <migration/0> 2896 * migration_cpu_stop() 2897 * is_migration_disabled() 2898 * <bails> 2899 * set_cpus_allowed_ptr(P0, [0, 1]); 2900 * <signal completion> 2901 * <awakes> 2902 * 2903 * Note that the above is safe vs a concurrent migrate_enable(), as any 2904 * pending affinity completion is preceded by an uninstallation of 2905 * p->migration_pending done with p->pi_lock held. 2906 */ 2907 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2908 int dest_cpu, unsigned int flags) 2909 __releases(rq->lock) 2910 __releases(p->pi_lock) 2911 { 2912 struct set_affinity_pending my_pending = { }, *pending = NULL; 2913 bool stop_pending, complete = false; 2914 2915 /* Can the task run on the task's current CPU? If so, we're done */ 2916 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2917 struct task_struct *push_task = NULL; 2918 2919 if ((flags & SCA_MIGRATE_ENABLE) && 2920 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2921 rq->push_busy = true; 2922 push_task = get_task_struct(p); 2923 } 2924 2925 /* 2926 * If there are pending waiters, but no pending stop_work, 2927 * then complete now. 2928 */ 2929 pending = p->migration_pending; 2930 if (pending && !pending->stop_pending) { 2931 p->migration_pending = NULL; 2932 complete = true; 2933 } 2934 2935 preempt_disable(); 2936 task_rq_unlock(rq, p, rf); 2937 if (push_task) { 2938 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2939 p, &rq->push_work); 2940 } 2941 preempt_enable(); 2942 2943 if (complete) 2944 complete_all(&pending->done); 2945 2946 return 0; 2947 } 2948 2949 if (!(flags & SCA_MIGRATE_ENABLE)) { 2950 /* serialized by p->pi_lock */ 2951 if (!p->migration_pending) { 2952 /* Install the request */ 2953 refcount_set(&my_pending.refs, 1); 2954 init_completion(&my_pending.done); 2955 my_pending.arg = (struct migration_arg) { 2956 .task = p, 2957 .dest_cpu = dest_cpu, 2958 .pending = &my_pending, 2959 }; 2960 2961 p->migration_pending = &my_pending; 2962 } else { 2963 pending = p->migration_pending; 2964 refcount_inc(&pending->refs); 2965 /* 2966 * Affinity has changed, but we've already installed a 2967 * pending. migration_cpu_stop() *must* see this, else 2968 * we risk a completion of the pending despite having a 2969 * task on a disallowed CPU. 2970 * 2971 * Serialized by p->pi_lock, so this is safe. 2972 */ 2973 pending->arg.dest_cpu = dest_cpu; 2974 } 2975 } 2976 pending = p->migration_pending; 2977 /* 2978 * - !MIGRATE_ENABLE: 2979 * we'll have installed a pending if there wasn't one already. 2980 * 2981 * - MIGRATE_ENABLE: 2982 * we're here because the current CPU isn't matching anymore, 2983 * the only way that can happen is because of a concurrent 2984 * set_cpus_allowed_ptr() call, which should then still be 2985 * pending completion. 2986 * 2987 * Either way, we really should have a @pending here. 2988 */ 2989 if (WARN_ON_ONCE(!pending)) { 2990 task_rq_unlock(rq, p, rf); 2991 return -EINVAL; 2992 } 2993 2994 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2995 /* 2996 * MIGRATE_ENABLE gets here because 'p == current', but for 2997 * anything else we cannot do is_migration_disabled(), punt 2998 * and have the stopper function handle it all race-free. 2999 */ 3000 stop_pending = pending->stop_pending; 3001 if (!stop_pending) 3002 pending->stop_pending = true; 3003 3004 if (flags & SCA_MIGRATE_ENABLE) 3005 p->migration_flags &= ~MDF_PUSH; 3006 3007 preempt_disable(); 3008 task_rq_unlock(rq, p, rf); 3009 if (!stop_pending) { 3010 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 3011 &pending->arg, &pending->stop_work); 3012 } 3013 preempt_enable(); 3014 3015 if (flags & SCA_MIGRATE_ENABLE) 3016 return 0; 3017 } else { 3018 3019 if (!is_migration_disabled(p)) { 3020 if (task_on_rq_queued(p)) 3021 rq = move_queued_task(rq, rf, p, dest_cpu); 3022 3023 if (!pending->stop_pending) { 3024 p->migration_pending = NULL; 3025 complete = true; 3026 } 3027 } 3028 task_rq_unlock(rq, p, rf); 3029 3030 if (complete) 3031 complete_all(&pending->done); 3032 } 3033 3034 wait_for_completion(&pending->done); 3035 3036 if (refcount_dec_and_test(&pending->refs)) 3037 wake_up_var(&pending->refs); /* No UaF, just an address */ 3038 3039 /* 3040 * Block the original owner of &pending until all subsequent callers 3041 * have seen the completion and decremented the refcount 3042 */ 3043 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 3044 3045 /* ARGH */ 3046 WARN_ON_ONCE(my_pending.stop_pending); 3047 3048 return 0; 3049 } 3050 3051 /* 3052 * Called with both p->pi_lock and rq->lock held; drops both before returning. 3053 */ 3054 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 3055 struct affinity_context *ctx, 3056 struct rq *rq, 3057 struct rq_flags *rf) 3058 __releases(rq->lock) 3059 __releases(p->pi_lock) 3060 { 3061 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 3062 const struct cpumask *cpu_valid_mask = cpu_active_mask; 3063 bool kthread = p->flags & PF_KTHREAD; 3064 unsigned int dest_cpu; 3065 int ret = 0; 3066 3067 update_rq_clock(rq); 3068 3069 if (kthread || is_migration_disabled(p)) { 3070 /* 3071 * Kernel threads are allowed on online && !active CPUs, 3072 * however, during cpu-hot-unplug, even these might get pushed 3073 * away if not KTHREAD_IS_PER_CPU. 3074 * 3075 * Specifically, migration_disabled() tasks must not fail the 3076 * cpumask_any_and_distribute() pick below, esp. so on 3077 * SCA_MIGRATE_ENABLE, otherwise we'll not call 3078 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 3079 */ 3080 cpu_valid_mask = cpu_online_mask; 3081 } 3082 3083 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 3084 ret = -EINVAL; 3085 goto out; 3086 } 3087 3088 /* 3089 * Must re-check here, to close a race against __kthread_bind(), 3090 * sched_setaffinity() is not guaranteed to observe the flag. 3091 */ 3092 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 3093 ret = -EINVAL; 3094 goto out; 3095 } 3096 3097 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 3098 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 3099 if (ctx->flags & SCA_USER) 3100 swap(p->user_cpus_ptr, ctx->user_mask); 3101 goto out; 3102 } 3103 3104 if (WARN_ON_ONCE(p == current && 3105 is_migration_disabled(p) && 3106 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 3107 ret = -EBUSY; 3108 goto out; 3109 } 3110 } 3111 3112 /* 3113 * Picking a ~random cpu helps in cases where we are changing affinity 3114 * for groups of tasks (ie. cpuset), so that load balancing is not 3115 * immediately required to distribute the tasks within their new mask. 3116 */ 3117 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 3118 if (dest_cpu >= nr_cpu_ids) { 3119 ret = -EINVAL; 3120 goto out; 3121 } 3122 3123 __do_set_cpus_allowed(p, ctx); 3124 3125 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3126 3127 out: 3128 task_rq_unlock(rq, p, rf); 3129 3130 return ret; 3131 } 3132 3133 /* 3134 * Change a given task's CPU affinity. Migrate the thread to a 3135 * proper CPU and schedule it away if the CPU it's executing on 3136 * is removed from the allowed bitmask. 3137 * 3138 * NOTE: the caller must have a valid reference to the task, the 3139 * task must not exit() & deallocate itself prematurely. The 3140 * call is not atomic; no spinlocks may be held. 3141 */ 3142 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) 3143 { 3144 struct rq_flags rf; 3145 struct rq *rq; 3146 3147 rq = task_rq_lock(p, &rf); 3148 /* 3149 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3150 * flags are set. 3151 */ 3152 if (p->user_cpus_ptr && 3153 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3154 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3155 ctx->new_mask = rq->scratch_mask; 3156 3157 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3158 } 3159 3160 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3161 { 3162 struct affinity_context ac = { 3163 .new_mask = new_mask, 3164 .flags = 0, 3165 }; 3166 3167 return __set_cpus_allowed_ptr(p, &ac); 3168 } 3169 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3170 3171 /* 3172 * Change a given task's CPU affinity to the intersection of its current 3173 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3174 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3175 * affinity or use cpu_online_mask instead. 3176 * 3177 * If the resulting mask is empty, leave the affinity unchanged and return 3178 * -EINVAL. 3179 */ 3180 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3181 struct cpumask *new_mask, 3182 const struct cpumask *subset_mask) 3183 { 3184 struct affinity_context ac = { 3185 .new_mask = new_mask, 3186 .flags = 0, 3187 }; 3188 struct rq_flags rf; 3189 struct rq *rq; 3190 int err; 3191 3192 rq = task_rq_lock(p, &rf); 3193 3194 /* 3195 * Forcefully restricting the affinity of a deadline task is 3196 * likely to cause problems, so fail and noisily override the 3197 * mask entirely. 3198 */ 3199 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3200 err = -EPERM; 3201 goto err_unlock; 3202 } 3203 3204 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3205 err = -EINVAL; 3206 goto err_unlock; 3207 } 3208 3209 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3210 3211 err_unlock: 3212 task_rq_unlock(rq, p, &rf); 3213 return err; 3214 } 3215 3216 /* 3217 * Restrict the CPU affinity of task @p so that it is a subset of 3218 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3219 * old affinity mask. If the resulting mask is empty, we warn and walk 3220 * up the cpuset hierarchy until we find a suitable mask. 3221 */ 3222 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3223 { 3224 cpumask_var_t new_mask; 3225 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3226 3227 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3228 3229 /* 3230 * __migrate_task() can fail silently in the face of concurrent 3231 * offlining of the chosen destination CPU, so take the hotplug 3232 * lock to ensure that the migration succeeds. 3233 */ 3234 cpus_read_lock(); 3235 if (!cpumask_available(new_mask)) 3236 goto out_set_mask; 3237 3238 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3239 goto out_free_mask; 3240 3241 /* 3242 * We failed to find a valid subset of the affinity mask for the 3243 * task, so override it based on its cpuset hierarchy. 3244 */ 3245 cpuset_cpus_allowed(p, new_mask); 3246 override_mask = new_mask; 3247 3248 out_set_mask: 3249 if (printk_ratelimit()) { 3250 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3251 task_pid_nr(p), p->comm, 3252 cpumask_pr_args(override_mask)); 3253 } 3254 3255 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3256 out_free_mask: 3257 cpus_read_unlock(); 3258 free_cpumask_var(new_mask); 3259 } 3260 3261 /* 3262 * Restore the affinity of a task @p which was previously restricted by a 3263 * call to force_compatible_cpus_allowed_ptr(). 3264 * 3265 * It is the caller's responsibility to serialise this with any calls to 3266 * force_compatible_cpus_allowed_ptr(@p). 3267 */ 3268 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3269 { 3270 struct affinity_context ac = { 3271 .new_mask = task_user_cpus(p), 3272 .flags = 0, 3273 }; 3274 int ret; 3275 3276 /* 3277 * Try to restore the old affinity mask with __sched_setaffinity(). 3278 * Cpuset masking will be done there too. 3279 */ 3280 ret = __sched_setaffinity(p, &ac); 3281 WARN_ON_ONCE(ret); 3282 } 3283 3284 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3285 { 3286 #ifdef CONFIG_SCHED_DEBUG 3287 unsigned int state = READ_ONCE(p->__state); 3288 3289 /* 3290 * We should never call set_task_cpu() on a blocked task, 3291 * ttwu() will sort out the placement. 3292 */ 3293 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3294 3295 /* 3296 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3297 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3298 * time relying on p->on_rq. 3299 */ 3300 WARN_ON_ONCE(state == TASK_RUNNING && 3301 p->sched_class == &fair_sched_class && 3302 (p->on_rq && !task_on_rq_migrating(p))); 3303 3304 #ifdef CONFIG_LOCKDEP 3305 /* 3306 * The caller should hold either p->pi_lock or rq->lock, when changing 3307 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3308 * 3309 * sched_move_task() holds both and thus holding either pins the cgroup, 3310 * see task_group(). 3311 * 3312 * Furthermore, all task_rq users should acquire both locks, see 3313 * task_rq_lock(). 3314 */ 3315 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3316 lockdep_is_held(__rq_lockp(task_rq(p))))); 3317 #endif 3318 /* 3319 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3320 */ 3321 WARN_ON_ONCE(!cpu_online(new_cpu)); 3322 3323 WARN_ON_ONCE(is_migration_disabled(p)); 3324 #endif 3325 3326 trace_sched_migrate_task(p, new_cpu); 3327 3328 if (task_cpu(p) != new_cpu) { 3329 if (p->sched_class->migrate_task_rq) 3330 p->sched_class->migrate_task_rq(p, new_cpu); 3331 p->se.nr_migrations++; 3332 rseq_migrate(p); 3333 sched_mm_cid_migrate_from(p); 3334 perf_event_task_migrate(p); 3335 } 3336 3337 __set_task_cpu(p, new_cpu); 3338 } 3339 3340 #ifdef CONFIG_NUMA_BALANCING 3341 static void __migrate_swap_task(struct task_struct *p, int cpu) 3342 { 3343 if (task_on_rq_queued(p)) { 3344 struct rq *src_rq, *dst_rq; 3345 struct rq_flags srf, drf; 3346 3347 src_rq = task_rq(p); 3348 dst_rq = cpu_rq(cpu); 3349 3350 rq_pin_lock(src_rq, &srf); 3351 rq_pin_lock(dst_rq, &drf); 3352 3353 move_queued_task_locked(src_rq, dst_rq, p); 3354 wakeup_preempt(dst_rq, p, 0); 3355 3356 rq_unpin_lock(dst_rq, &drf); 3357 rq_unpin_lock(src_rq, &srf); 3358 3359 } else { 3360 /* 3361 * Task isn't running anymore; make it appear like we migrated 3362 * it before it went to sleep. This means on wakeup we make the 3363 * previous CPU our target instead of where it really is. 3364 */ 3365 p->wake_cpu = cpu; 3366 } 3367 } 3368 3369 struct migration_swap_arg { 3370 struct task_struct *src_task, *dst_task; 3371 int src_cpu, dst_cpu; 3372 }; 3373 3374 static int migrate_swap_stop(void *data) 3375 { 3376 struct migration_swap_arg *arg = data; 3377 struct rq *src_rq, *dst_rq; 3378 3379 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3380 return -EAGAIN; 3381 3382 src_rq = cpu_rq(arg->src_cpu); 3383 dst_rq = cpu_rq(arg->dst_cpu); 3384 3385 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3386 guard(double_rq_lock)(src_rq, dst_rq); 3387 3388 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3389 return -EAGAIN; 3390 3391 if (task_cpu(arg->src_task) != arg->src_cpu) 3392 return -EAGAIN; 3393 3394 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3395 return -EAGAIN; 3396 3397 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3398 return -EAGAIN; 3399 3400 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3401 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3402 3403 return 0; 3404 } 3405 3406 /* 3407 * Cross migrate two tasks 3408 */ 3409 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3410 int target_cpu, int curr_cpu) 3411 { 3412 struct migration_swap_arg arg; 3413 int ret = -EINVAL; 3414 3415 arg = (struct migration_swap_arg){ 3416 .src_task = cur, 3417 .src_cpu = curr_cpu, 3418 .dst_task = p, 3419 .dst_cpu = target_cpu, 3420 }; 3421 3422 if (arg.src_cpu == arg.dst_cpu) 3423 goto out; 3424 3425 /* 3426 * These three tests are all lockless; this is OK since all of them 3427 * will be re-checked with proper locks held further down the line. 3428 */ 3429 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3430 goto out; 3431 3432 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3433 goto out; 3434 3435 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3436 goto out; 3437 3438 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3439 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3440 3441 out: 3442 return ret; 3443 } 3444 #endif /* CONFIG_NUMA_BALANCING */ 3445 3446 /*** 3447 * kick_process - kick a running thread to enter/exit the kernel 3448 * @p: the to-be-kicked thread 3449 * 3450 * Cause a process which is running on another CPU to enter 3451 * kernel-mode, without any delay. (to get signals handled.) 3452 * 3453 * NOTE: this function doesn't have to take the runqueue lock, 3454 * because all it wants to ensure is that the remote task enters 3455 * the kernel. If the IPI races and the task has been migrated 3456 * to another CPU then no harm is done and the purpose has been 3457 * achieved as well. 3458 */ 3459 void kick_process(struct task_struct *p) 3460 { 3461 guard(preempt)(); 3462 int cpu = task_cpu(p); 3463 3464 if ((cpu != smp_processor_id()) && task_curr(p)) 3465 smp_send_reschedule(cpu); 3466 } 3467 EXPORT_SYMBOL_GPL(kick_process); 3468 3469 /* 3470 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3471 * 3472 * A few notes on cpu_active vs cpu_online: 3473 * 3474 * - cpu_active must be a subset of cpu_online 3475 * 3476 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3477 * see __set_cpus_allowed_ptr(). At this point the newly online 3478 * CPU isn't yet part of the sched domains, and balancing will not 3479 * see it. 3480 * 3481 * - on CPU-down we clear cpu_active() to mask the sched domains and 3482 * avoid the load balancer to place new tasks on the to be removed 3483 * CPU. Existing tasks will remain running there and will be taken 3484 * off. 3485 * 3486 * This means that fallback selection must not select !active CPUs. 3487 * And can assume that any active CPU must be online. Conversely 3488 * select_task_rq() below may allow selection of !active CPUs in order 3489 * to satisfy the above rules. 3490 */ 3491 static int select_fallback_rq(int cpu, struct task_struct *p) 3492 { 3493 int nid = cpu_to_node(cpu); 3494 const struct cpumask *nodemask = NULL; 3495 enum { cpuset, possible, fail } state = cpuset; 3496 int dest_cpu; 3497 3498 /* 3499 * If the node that the CPU is on has been offlined, cpu_to_node() 3500 * will return -1. There is no CPU on the node, and we should 3501 * select the CPU on the other node. 3502 */ 3503 if (nid != -1) { 3504 nodemask = cpumask_of_node(nid); 3505 3506 /* Look for allowed, online CPU in same node. */ 3507 for_each_cpu(dest_cpu, nodemask) { 3508 if (is_cpu_allowed(p, dest_cpu)) 3509 return dest_cpu; 3510 } 3511 } 3512 3513 for (;;) { 3514 /* Any allowed, online CPU? */ 3515 for_each_cpu(dest_cpu, p->cpus_ptr) { 3516 if (!is_cpu_allowed(p, dest_cpu)) 3517 continue; 3518 3519 goto out; 3520 } 3521 3522 /* No more Mr. Nice Guy. */ 3523 switch (state) { 3524 case cpuset: 3525 if (cpuset_cpus_allowed_fallback(p)) { 3526 state = possible; 3527 break; 3528 } 3529 fallthrough; 3530 case possible: 3531 /* 3532 * XXX When called from select_task_rq() we only 3533 * hold p->pi_lock and again violate locking order. 3534 * 3535 * More yuck to audit. 3536 */ 3537 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3538 state = fail; 3539 break; 3540 case fail: 3541 BUG(); 3542 break; 3543 } 3544 } 3545 3546 out: 3547 if (state != cpuset) { 3548 /* 3549 * Don't tell them about moving exiting tasks or 3550 * kernel threads (both mm NULL), since they never 3551 * leave kernel. 3552 */ 3553 if (p->mm && printk_ratelimit()) { 3554 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3555 task_pid_nr(p), p->comm, cpu); 3556 } 3557 } 3558 3559 return dest_cpu; 3560 } 3561 3562 /* 3563 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3564 */ 3565 static inline 3566 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags) 3567 { 3568 lockdep_assert_held(&p->pi_lock); 3569 3570 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) { 3571 cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags); 3572 *wake_flags |= WF_RQ_SELECTED; 3573 } else { 3574 cpu = cpumask_any(p->cpus_ptr); 3575 } 3576 3577 /* 3578 * In order not to call set_task_cpu() on a blocking task we need 3579 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3580 * CPU. 3581 * 3582 * Since this is common to all placement strategies, this lives here. 3583 * 3584 * [ this allows ->select_task() to simply return task_cpu(p) and 3585 * not worry about this generic constraint ] 3586 */ 3587 if (unlikely(!is_cpu_allowed(p, cpu))) 3588 cpu = select_fallback_rq(task_cpu(p), p); 3589 3590 return cpu; 3591 } 3592 3593 void sched_set_stop_task(int cpu, struct task_struct *stop) 3594 { 3595 static struct lock_class_key stop_pi_lock; 3596 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3597 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3598 3599 if (stop) { 3600 /* 3601 * Make it appear like a SCHED_FIFO task, its something 3602 * userspace knows about and won't get confused about. 3603 * 3604 * Also, it will make PI more or less work without too 3605 * much confusion -- but then, stop work should not 3606 * rely on PI working anyway. 3607 */ 3608 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3609 3610 stop->sched_class = &stop_sched_class; 3611 3612 /* 3613 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3614 * adjust the effective priority of a task. As a result, 3615 * rt_mutex_setprio() can trigger (RT) balancing operations, 3616 * which can then trigger wakeups of the stop thread to push 3617 * around the current task. 3618 * 3619 * The stop task itself will never be part of the PI-chain, it 3620 * never blocks, therefore that ->pi_lock recursion is safe. 3621 * Tell lockdep about this by placing the stop->pi_lock in its 3622 * own class. 3623 */ 3624 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3625 } 3626 3627 cpu_rq(cpu)->stop = stop; 3628 3629 if (old_stop) { 3630 /* 3631 * Reset it back to a normal scheduling class so that 3632 * it can die in pieces. 3633 */ 3634 old_stop->sched_class = &rt_sched_class; 3635 } 3636 } 3637 3638 #else /* CONFIG_SMP */ 3639 3640 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3641 3642 static inline bool rq_has_pinned_tasks(struct rq *rq) 3643 { 3644 return false; 3645 } 3646 3647 #endif /* !CONFIG_SMP */ 3648 3649 static void 3650 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3651 { 3652 struct rq *rq; 3653 3654 if (!schedstat_enabled()) 3655 return; 3656 3657 rq = this_rq(); 3658 3659 #ifdef CONFIG_SMP 3660 if (cpu == rq->cpu) { 3661 __schedstat_inc(rq->ttwu_local); 3662 __schedstat_inc(p->stats.nr_wakeups_local); 3663 } else { 3664 struct sched_domain *sd; 3665 3666 __schedstat_inc(p->stats.nr_wakeups_remote); 3667 3668 guard(rcu)(); 3669 for_each_domain(rq->cpu, sd) { 3670 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3671 __schedstat_inc(sd->ttwu_wake_remote); 3672 break; 3673 } 3674 } 3675 } 3676 3677 if (wake_flags & WF_MIGRATED) 3678 __schedstat_inc(p->stats.nr_wakeups_migrate); 3679 #endif /* CONFIG_SMP */ 3680 3681 __schedstat_inc(rq->ttwu_count); 3682 __schedstat_inc(p->stats.nr_wakeups); 3683 3684 if (wake_flags & WF_SYNC) 3685 __schedstat_inc(p->stats.nr_wakeups_sync); 3686 } 3687 3688 /* 3689 * Mark the task runnable. 3690 */ 3691 static inline void ttwu_do_wakeup(struct task_struct *p) 3692 { 3693 WRITE_ONCE(p->__state, TASK_RUNNING); 3694 trace_sched_wakeup(p); 3695 } 3696 3697 static void 3698 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3699 struct rq_flags *rf) 3700 { 3701 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3702 3703 lockdep_assert_rq_held(rq); 3704 3705 if (p->sched_contributes_to_load) 3706 rq->nr_uninterruptible--; 3707 3708 #ifdef CONFIG_SMP 3709 if (wake_flags & WF_RQ_SELECTED) 3710 en_flags |= ENQUEUE_RQ_SELECTED; 3711 if (wake_flags & WF_MIGRATED) 3712 en_flags |= ENQUEUE_MIGRATED; 3713 else 3714 #endif 3715 if (p->in_iowait) { 3716 delayacct_blkio_end(p); 3717 atomic_dec(&task_rq(p)->nr_iowait); 3718 } 3719 3720 activate_task(rq, p, en_flags); 3721 wakeup_preempt(rq, p, wake_flags); 3722 3723 ttwu_do_wakeup(p); 3724 3725 #ifdef CONFIG_SMP 3726 if (p->sched_class->task_woken) { 3727 /* 3728 * Our task @p is fully woken up and running; so it's safe to 3729 * drop the rq->lock, hereafter rq is only used for statistics. 3730 */ 3731 rq_unpin_lock(rq, rf); 3732 p->sched_class->task_woken(rq, p); 3733 rq_repin_lock(rq, rf); 3734 } 3735 3736 if (rq->idle_stamp) { 3737 u64 delta = rq_clock(rq) - rq->idle_stamp; 3738 u64 max = 2*rq->max_idle_balance_cost; 3739 3740 update_avg(&rq->avg_idle, delta); 3741 3742 if (rq->avg_idle > max) 3743 rq->avg_idle = max; 3744 3745 rq->idle_stamp = 0; 3746 } 3747 #endif 3748 } 3749 3750 /* 3751 * Consider @p being inside a wait loop: 3752 * 3753 * for (;;) { 3754 * set_current_state(TASK_UNINTERRUPTIBLE); 3755 * 3756 * if (CONDITION) 3757 * break; 3758 * 3759 * schedule(); 3760 * } 3761 * __set_current_state(TASK_RUNNING); 3762 * 3763 * between set_current_state() and schedule(). In this case @p is still 3764 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3765 * an atomic manner. 3766 * 3767 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3768 * then schedule() must still happen and p->state can be changed to 3769 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3770 * need to do a full wakeup with enqueue. 3771 * 3772 * Returns: %true when the wakeup is done, 3773 * %false otherwise. 3774 */ 3775 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3776 { 3777 struct rq_flags rf; 3778 struct rq *rq; 3779 int ret = 0; 3780 3781 rq = __task_rq_lock(p, &rf); 3782 if (task_on_rq_queued(p)) { 3783 update_rq_clock(rq); 3784 if (p->se.sched_delayed) 3785 enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED); 3786 if (!task_on_cpu(rq, p)) { 3787 /* 3788 * When on_rq && !on_cpu the task is preempted, see if 3789 * it should preempt the task that is current now. 3790 */ 3791 wakeup_preempt(rq, p, wake_flags); 3792 } 3793 ttwu_do_wakeup(p); 3794 ret = 1; 3795 } 3796 __task_rq_unlock(rq, &rf); 3797 3798 return ret; 3799 } 3800 3801 #ifdef CONFIG_SMP 3802 void sched_ttwu_pending(void *arg) 3803 { 3804 struct llist_node *llist = arg; 3805 struct rq *rq = this_rq(); 3806 struct task_struct *p, *t; 3807 struct rq_flags rf; 3808 3809 if (!llist) 3810 return; 3811 3812 rq_lock_irqsave(rq, &rf); 3813 update_rq_clock(rq); 3814 3815 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3816 if (WARN_ON_ONCE(p->on_cpu)) 3817 smp_cond_load_acquire(&p->on_cpu, !VAL); 3818 3819 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3820 set_task_cpu(p, cpu_of(rq)); 3821 3822 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3823 } 3824 3825 /* 3826 * Must be after enqueueing at least once task such that 3827 * idle_cpu() does not observe a false-negative -- if it does, 3828 * it is possible for select_idle_siblings() to stack a number 3829 * of tasks on this CPU during that window. 3830 * 3831 * It is OK to clear ttwu_pending when another task pending. 3832 * We will receive IPI after local IRQ enabled and then enqueue it. 3833 * Since now nr_running > 0, idle_cpu() will always get correct result. 3834 */ 3835 WRITE_ONCE(rq->ttwu_pending, 0); 3836 rq_unlock_irqrestore(rq, &rf); 3837 } 3838 3839 /* 3840 * Prepare the scene for sending an IPI for a remote smp_call 3841 * 3842 * Returns true if the caller can proceed with sending the IPI. 3843 * Returns false otherwise. 3844 */ 3845 bool call_function_single_prep_ipi(int cpu) 3846 { 3847 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3848 trace_sched_wake_idle_without_ipi(cpu); 3849 return false; 3850 } 3851 3852 return true; 3853 } 3854 3855 /* 3856 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3857 * necessary. The wakee CPU on receipt of the IPI will queue the task 3858 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3859 * of the wakeup instead of the waker. 3860 */ 3861 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3862 { 3863 struct rq *rq = cpu_rq(cpu); 3864 3865 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3866 3867 WRITE_ONCE(rq->ttwu_pending, 1); 3868 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3869 } 3870 3871 void wake_up_if_idle(int cpu) 3872 { 3873 struct rq *rq = cpu_rq(cpu); 3874 3875 guard(rcu)(); 3876 if (is_idle_task(rcu_dereference(rq->curr))) { 3877 guard(rq_lock_irqsave)(rq); 3878 if (is_idle_task(rq->curr)) 3879 resched_curr(rq); 3880 } 3881 } 3882 3883 bool cpus_equal_capacity(int this_cpu, int that_cpu) 3884 { 3885 if (!sched_asym_cpucap_active()) 3886 return true; 3887 3888 if (this_cpu == that_cpu) 3889 return true; 3890 3891 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); 3892 } 3893 3894 bool cpus_share_cache(int this_cpu, int that_cpu) 3895 { 3896 if (this_cpu == that_cpu) 3897 return true; 3898 3899 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3900 } 3901 3902 /* 3903 * Whether CPUs are share cache resources, which means LLC on non-cluster 3904 * machines and LLC tag or L2 on machines with clusters. 3905 */ 3906 bool cpus_share_resources(int this_cpu, int that_cpu) 3907 { 3908 if (this_cpu == that_cpu) 3909 return true; 3910 3911 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3912 } 3913 3914 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3915 { 3916 /* 3917 * The BPF scheduler may depend on select_task_rq() being invoked during 3918 * wakeups. In addition, @p may end up executing on a different CPU 3919 * regardless of what happens in the wakeup path making the ttwu_queue 3920 * optimization less meaningful. Skip if on SCX. 3921 */ 3922 if (task_on_scx(p)) 3923 return false; 3924 3925 /* 3926 * Do not complicate things with the async wake_list while the CPU is 3927 * in hotplug state. 3928 */ 3929 if (!cpu_active(cpu)) 3930 return false; 3931 3932 /* Ensure the task will still be allowed to run on the CPU. */ 3933 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3934 return false; 3935 3936 /* 3937 * If the CPU does not share cache, then queue the task on the 3938 * remote rqs wakelist to avoid accessing remote data. 3939 */ 3940 if (!cpus_share_cache(smp_processor_id(), cpu)) 3941 return true; 3942 3943 if (cpu == smp_processor_id()) 3944 return false; 3945 3946 /* 3947 * If the wakee cpu is idle, or the task is descheduling and the 3948 * only running task on the CPU, then use the wakelist to offload 3949 * the task activation to the idle (or soon-to-be-idle) CPU as 3950 * the current CPU is likely busy. nr_running is checked to 3951 * avoid unnecessary task stacking. 3952 * 3953 * Note that we can only get here with (wakee) p->on_rq=0, 3954 * p->on_cpu can be whatever, we've done the dequeue, so 3955 * the wakee has been accounted out of ->nr_running. 3956 */ 3957 if (!cpu_rq(cpu)->nr_running) 3958 return true; 3959 3960 return false; 3961 } 3962 3963 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3964 { 3965 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3966 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3967 __ttwu_queue_wakelist(p, cpu, wake_flags); 3968 return true; 3969 } 3970 3971 return false; 3972 } 3973 3974 #else /* !CONFIG_SMP */ 3975 3976 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3977 { 3978 return false; 3979 } 3980 3981 #endif /* CONFIG_SMP */ 3982 3983 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3984 { 3985 struct rq *rq = cpu_rq(cpu); 3986 struct rq_flags rf; 3987 3988 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3989 return; 3990 3991 rq_lock(rq, &rf); 3992 update_rq_clock(rq); 3993 ttwu_do_activate(rq, p, wake_flags, &rf); 3994 rq_unlock(rq, &rf); 3995 } 3996 3997 /* 3998 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3999 * 4000 * The caller holds p::pi_lock if p != current or has preemption 4001 * disabled when p == current. 4002 * 4003 * The rules of saved_state: 4004 * 4005 * The related locking code always holds p::pi_lock when updating 4006 * p::saved_state, which means the code is fully serialized in both cases. 4007 * 4008 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 4009 * No other bits set. This allows to distinguish all wakeup scenarios. 4010 * 4011 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 4012 * allows us to prevent early wakeup of tasks before they can be run on 4013 * asymmetric ISA architectures (eg ARMv9). 4014 */ 4015 static __always_inline 4016 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 4017 { 4018 int match; 4019 4020 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 4021 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 4022 state != TASK_RTLOCK_WAIT); 4023 } 4024 4025 *success = !!(match = __task_state_match(p, state)); 4026 4027 /* 4028 * Saved state preserves the task state across blocking on 4029 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 4030 * set p::saved_state to TASK_RUNNING, but do not wake the task 4031 * because it waits for a lock wakeup or __thaw_task(). Also 4032 * indicate success because from the regular waker's point of 4033 * view this has succeeded. 4034 * 4035 * After acquiring the lock the task will restore p::__state 4036 * from p::saved_state which ensures that the regular 4037 * wakeup is not lost. The restore will also set 4038 * p::saved_state to TASK_RUNNING so any further tests will 4039 * not result in false positives vs. @success 4040 */ 4041 if (match < 0) 4042 p->saved_state = TASK_RUNNING; 4043 4044 return match > 0; 4045 } 4046 4047 /* 4048 * Notes on Program-Order guarantees on SMP systems. 4049 * 4050 * MIGRATION 4051 * 4052 * The basic program-order guarantee on SMP systems is that when a task [t] 4053 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 4054 * execution on its new CPU [c1]. 4055 * 4056 * For migration (of runnable tasks) this is provided by the following means: 4057 * 4058 * A) UNLOCK of the rq(c0)->lock scheduling out task t 4059 * B) migration for t is required to synchronize *both* rq(c0)->lock and 4060 * rq(c1)->lock (if not at the same time, then in that order). 4061 * C) LOCK of the rq(c1)->lock scheduling in task 4062 * 4063 * Release/acquire chaining guarantees that B happens after A and C after B. 4064 * Note: the CPU doing B need not be c0 or c1 4065 * 4066 * Example: 4067 * 4068 * CPU0 CPU1 CPU2 4069 * 4070 * LOCK rq(0)->lock 4071 * sched-out X 4072 * sched-in Y 4073 * UNLOCK rq(0)->lock 4074 * 4075 * LOCK rq(0)->lock // orders against CPU0 4076 * dequeue X 4077 * UNLOCK rq(0)->lock 4078 * 4079 * LOCK rq(1)->lock 4080 * enqueue X 4081 * UNLOCK rq(1)->lock 4082 * 4083 * LOCK rq(1)->lock // orders against CPU2 4084 * sched-out Z 4085 * sched-in X 4086 * UNLOCK rq(1)->lock 4087 * 4088 * 4089 * BLOCKING -- aka. SLEEP + WAKEUP 4090 * 4091 * For blocking we (obviously) need to provide the same guarantee as for 4092 * migration. However the means are completely different as there is no lock 4093 * chain to provide order. Instead we do: 4094 * 4095 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 4096 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 4097 * 4098 * Example: 4099 * 4100 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4101 * 4102 * LOCK rq(0)->lock LOCK X->pi_lock 4103 * dequeue X 4104 * sched-out X 4105 * smp_store_release(X->on_cpu, 0); 4106 * 4107 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4108 * X->state = WAKING 4109 * set_task_cpu(X,2) 4110 * 4111 * LOCK rq(2)->lock 4112 * enqueue X 4113 * X->state = RUNNING 4114 * UNLOCK rq(2)->lock 4115 * 4116 * LOCK rq(2)->lock // orders against CPU1 4117 * sched-out Z 4118 * sched-in X 4119 * UNLOCK rq(2)->lock 4120 * 4121 * UNLOCK X->pi_lock 4122 * UNLOCK rq(0)->lock 4123 * 4124 * 4125 * However, for wakeups there is a second guarantee we must provide, namely we 4126 * must ensure that CONDITION=1 done by the caller can not be reordered with 4127 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4128 */ 4129 4130 /** 4131 * try_to_wake_up - wake up a thread 4132 * @p: the thread to be awakened 4133 * @state: the mask of task states that can be woken 4134 * @wake_flags: wake modifier flags (WF_*) 4135 * 4136 * Conceptually does: 4137 * 4138 * If (@state & @p->state) @p->state = TASK_RUNNING. 4139 * 4140 * If the task was not queued/runnable, also place it back on a runqueue. 4141 * 4142 * This function is atomic against schedule() which would dequeue the task. 4143 * 4144 * It issues a full memory barrier before accessing @p->state, see the comment 4145 * with set_current_state(). 4146 * 4147 * Uses p->pi_lock to serialize against concurrent wake-ups. 4148 * 4149 * Relies on p->pi_lock stabilizing: 4150 * - p->sched_class 4151 * - p->cpus_ptr 4152 * - p->sched_task_group 4153 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4154 * 4155 * Tries really hard to only take one task_rq(p)->lock for performance. 4156 * Takes rq->lock in: 4157 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4158 * - ttwu_queue() -- new rq, for enqueue of the task; 4159 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4160 * 4161 * As a consequence we race really badly with just about everything. See the 4162 * many memory barriers and their comments for details. 4163 * 4164 * Return: %true if @p->state changes (an actual wakeup was done), 4165 * %false otherwise. 4166 */ 4167 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4168 { 4169 guard(preempt)(); 4170 int cpu, success = 0; 4171 4172 wake_flags |= WF_TTWU; 4173 4174 if (p == current) { 4175 /* 4176 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4177 * == smp_processor_id()'. Together this means we can special 4178 * case the whole 'p->on_rq && ttwu_runnable()' case below 4179 * without taking any locks. 4180 * 4181 * Specifically, given current runs ttwu() we must be before 4182 * schedule()'s block_task(), as such this must not observe 4183 * sched_delayed. 4184 * 4185 * In particular: 4186 * - we rely on Program-Order guarantees for all the ordering, 4187 * - we're serialized against set_special_state() by virtue of 4188 * it disabling IRQs (this allows not taking ->pi_lock). 4189 */ 4190 SCHED_WARN_ON(p->se.sched_delayed); 4191 if (!ttwu_state_match(p, state, &success)) 4192 goto out; 4193 4194 trace_sched_waking(p); 4195 ttwu_do_wakeup(p); 4196 goto out; 4197 } 4198 4199 /* 4200 * If we are going to wake up a thread waiting for CONDITION we 4201 * need to ensure that CONDITION=1 done by the caller can not be 4202 * reordered with p->state check below. This pairs with smp_store_mb() 4203 * in set_current_state() that the waiting thread does. 4204 */ 4205 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4206 smp_mb__after_spinlock(); 4207 if (!ttwu_state_match(p, state, &success)) 4208 break; 4209 4210 trace_sched_waking(p); 4211 4212 /* 4213 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4214 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4215 * in smp_cond_load_acquire() below. 4216 * 4217 * sched_ttwu_pending() try_to_wake_up() 4218 * STORE p->on_rq = 1 LOAD p->state 4219 * UNLOCK rq->lock 4220 * 4221 * __schedule() (switch to task 'p') 4222 * LOCK rq->lock smp_rmb(); 4223 * smp_mb__after_spinlock(); 4224 * UNLOCK rq->lock 4225 * 4226 * [task p] 4227 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4228 * 4229 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4230 * __schedule(). See the comment for smp_mb__after_spinlock(). 4231 * 4232 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4233 */ 4234 smp_rmb(); 4235 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4236 break; 4237 4238 #ifdef CONFIG_SMP 4239 /* 4240 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4241 * possible to, falsely, observe p->on_cpu == 0. 4242 * 4243 * One must be running (->on_cpu == 1) in order to remove oneself 4244 * from the runqueue. 4245 * 4246 * __schedule() (switch to task 'p') try_to_wake_up() 4247 * STORE p->on_cpu = 1 LOAD p->on_rq 4248 * UNLOCK rq->lock 4249 * 4250 * __schedule() (put 'p' to sleep) 4251 * LOCK rq->lock smp_rmb(); 4252 * smp_mb__after_spinlock(); 4253 * STORE p->on_rq = 0 LOAD p->on_cpu 4254 * 4255 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4256 * __schedule(). See the comment for smp_mb__after_spinlock(). 4257 * 4258 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4259 * schedule()'s deactivate_task() has 'happened' and p will no longer 4260 * care about it's own p->state. See the comment in __schedule(). 4261 */ 4262 smp_acquire__after_ctrl_dep(); 4263 4264 /* 4265 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4266 * == 0), which means we need to do an enqueue, change p->state to 4267 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4268 * enqueue, such as ttwu_queue_wakelist(). 4269 */ 4270 WRITE_ONCE(p->__state, TASK_WAKING); 4271 4272 /* 4273 * If the owning (remote) CPU is still in the middle of schedule() with 4274 * this task as prev, considering queueing p on the remote CPUs wake_list 4275 * which potentially sends an IPI instead of spinning on p->on_cpu to 4276 * let the waker make forward progress. This is safe because IRQs are 4277 * disabled and the IPI will deliver after on_cpu is cleared. 4278 * 4279 * Ensure we load task_cpu(p) after p->on_cpu: 4280 * 4281 * set_task_cpu(p, cpu); 4282 * STORE p->cpu = @cpu 4283 * __schedule() (switch to task 'p') 4284 * LOCK rq->lock 4285 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4286 * STORE p->on_cpu = 1 LOAD p->cpu 4287 * 4288 * to ensure we observe the correct CPU on which the task is currently 4289 * scheduling. 4290 */ 4291 if (smp_load_acquire(&p->on_cpu) && 4292 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4293 break; 4294 4295 /* 4296 * If the owning (remote) CPU is still in the middle of schedule() with 4297 * this task as prev, wait until it's done referencing the task. 4298 * 4299 * Pairs with the smp_store_release() in finish_task(). 4300 * 4301 * This ensures that tasks getting woken will be fully ordered against 4302 * their previous state and preserve Program Order. 4303 */ 4304 smp_cond_load_acquire(&p->on_cpu, !VAL); 4305 4306 cpu = select_task_rq(p, p->wake_cpu, &wake_flags); 4307 if (task_cpu(p) != cpu) { 4308 if (p->in_iowait) { 4309 delayacct_blkio_end(p); 4310 atomic_dec(&task_rq(p)->nr_iowait); 4311 } 4312 4313 wake_flags |= WF_MIGRATED; 4314 psi_ttwu_dequeue(p); 4315 set_task_cpu(p, cpu); 4316 } 4317 #else 4318 cpu = task_cpu(p); 4319 #endif /* CONFIG_SMP */ 4320 4321 ttwu_queue(p, cpu, wake_flags); 4322 } 4323 out: 4324 if (success) 4325 ttwu_stat(p, task_cpu(p), wake_flags); 4326 4327 return success; 4328 } 4329 4330 static bool __task_needs_rq_lock(struct task_struct *p) 4331 { 4332 unsigned int state = READ_ONCE(p->__state); 4333 4334 /* 4335 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4336 * the task is blocked. Make sure to check @state since ttwu() can drop 4337 * locks at the end, see ttwu_queue_wakelist(). 4338 */ 4339 if (state == TASK_RUNNING || state == TASK_WAKING) 4340 return true; 4341 4342 /* 4343 * Ensure we load p->on_rq after p->__state, otherwise it would be 4344 * possible to, falsely, observe p->on_rq == 0. 4345 * 4346 * See try_to_wake_up() for a longer comment. 4347 */ 4348 smp_rmb(); 4349 if (p->on_rq) 4350 return true; 4351 4352 #ifdef CONFIG_SMP 4353 /* 4354 * Ensure the task has finished __schedule() and will not be referenced 4355 * anymore. Again, see try_to_wake_up() for a longer comment. 4356 */ 4357 smp_rmb(); 4358 smp_cond_load_acquire(&p->on_cpu, !VAL); 4359 #endif 4360 4361 return false; 4362 } 4363 4364 /** 4365 * task_call_func - Invoke a function on task in fixed state 4366 * @p: Process for which the function is to be invoked, can be @current. 4367 * @func: Function to invoke. 4368 * @arg: Argument to function. 4369 * 4370 * Fix the task in it's current state by avoiding wakeups and or rq operations 4371 * and call @func(@arg) on it. This function can use task_is_runnable() and 4372 * task_curr() to work out what the state is, if required. Given that @func 4373 * can be invoked with a runqueue lock held, it had better be quite 4374 * lightweight. 4375 * 4376 * Returns: 4377 * Whatever @func returns 4378 */ 4379 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4380 { 4381 struct rq *rq = NULL; 4382 struct rq_flags rf; 4383 int ret; 4384 4385 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4386 4387 if (__task_needs_rq_lock(p)) 4388 rq = __task_rq_lock(p, &rf); 4389 4390 /* 4391 * At this point the task is pinned; either: 4392 * - blocked and we're holding off wakeups (pi->lock) 4393 * - woken, and we're holding off enqueue (rq->lock) 4394 * - queued, and we're holding off schedule (rq->lock) 4395 * - running, and we're holding off de-schedule (rq->lock) 4396 * 4397 * The called function (@func) can use: task_curr(), p->on_rq and 4398 * p->__state to differentiate between these states. 4399 */ 4400 ret = func(p, arg); 4401 4402 if (rq) 4403 rq_unlock(rq, &rf); 4404 4405 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4406 return ret; 4407 } 4408 4409 /** 4410 * cpu_curr_snapshot - Return a snapshot of the currently running task 4411 * @cpu: The CPU on which to snapshot the task. 4412 * 4413 * Returns the task_struct pointer of the task "currently" running on 4414 * the specified CPU. 4415 * 4416 * If the specified CPU was offline, the return value is whatever it 4417 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4418 * task, but there is no guarantee. Callers wishing a useful return 4419 * value must take some action to ensure that the specified CPU remains 4420 * online throughout. 4421 * 4422 * This function executes full memory barriers before and after fetching 4423 * the pointer, which permits the caller to confine this function's fetch 4424 * with respect to the caller's accesses to other shared variables. 4425 */ 4426 struct task_struct *cpu_curr_snapshot(int cpu) 4427 { 4428 struct rq *rq = cpu_rq(cpu); 4429 struct task_struct *t; 4430 struct rq_flags rf; 4431 4432 rq_lock_irqsave(rq, &rf); 4433 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */ 4434 t = rcu_dereference(cpu_curr(cpu)); 4435 rq_unlock_irqrestore(rq, &rf); 4436 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4437 4438 return t; 4439 } 4440 4441 /** 4442 * wake_up_process - Wake up a specific process 4443 * @p: The process to be woken up. 4444 * 4445 * Attempt to wake up the nominated process and move it to the set of runnable 4446 * processes. 4447 * 4448 * Return: 1 if the process was woken up, 0 if it was already running. 4449 * 4450 * This function executes a full memory barrier before accessing the task state. 4451 */ 4452 int wake_up_process(struct task_struct *p) 4453 { 4454 return try_to_wake_up(p, TASK_NORMAL, 0); 4455 } 4456 EXPORT_SYMBOL(wake_up_process); 4457 4458 int wake_up_state(struct task_struct *p, unsigned int state) 4459 { 4460 return try_to_wake_up(p, state, 0); 4461 } 4462 4463 /* 4464 * Perform scheduler related setup for a newly forked process p. 4465 * p is forked by current. 4466 * 4467 * __sched_fork() is basic setup which is also used by sched_init() to 4468 * initialize the boot CPU's idle task. 4469 */ 4470 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4471 { 4472 p->on_rq = 0; 4473 4474 p->se.on_rq = 0; 4475 p->se.exec_start = 0; 4476 p->se.sum_exec_runtime = 0; 4477 p->se.prev_sum_exec_runtime = 0; 4478 p->se.nr_migrations = 0; 4479 p->se.vruntime = 0; 4480 p->se.vlag = 0; 4481 INIT_LIST_HEAD(&p->se.group_node); 4482 4483 /* A delayed task cannot be in clone(). */ 4484 SCHED_WARN_ON(p->se.sched_delayed); 4485 4486 #ifdef CONFIG_FAIR_GROUP_SCHED 4487 p->se.cfs_rq = NULL; 4488 #endif 4489 4490 #ifdef CONFIG_SCHEDSTATS 4491 /* Even if schedstat is disabled, there should not be garbage */ 4492 memset(&p->stats, 0, sizeof(p->stats)); 4493 #endif 4494 4495 init_dl_entity(&p->dl); 4496 4497 INIT_LIST_HEAD(&p->rt.run_list); 4498 p->rt.timeout = 0; 4499 p->rt.time_slice = sched_rr_timeslice; 4500 p->rt.on_rq = 0; 4501 p->rt.on_list = 0; 4502 4503 #ifdef CONFIG_SCHED_CLASS_EXT 4504 init_scx_entity(&p->scx); 4505 #endif 4506 4507 #ifdef CONFIG_PREEMPT_NOTIFIERS 4508 INIT_HLIST_HEAD(&p->preempt_notifiers); 4509 #endif 4510 4511 #ifdef CONFIG_COMPACTION 4512 p->capture_control = NULL; 4513 #endif 4514 init_numa_balancing(clone_flags, p); 4515 #ifdef CONFIG_SMP 4516 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4517 p->migration_pending = NULL; 4518 #endif 4519 init_sched_mm_cid(p); 4520 } 4521 4522 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4523 4524 #ifdef CONFIG_NUMA_BALANCING 4525 4526 int sysctl_numa_balancing_mode; 4527 4528 static void __set_numabalancing_state(bool enabled) 4529 { 4530 if (enabled) 4531 static_branch_enable(&sched_numa_balancing); 4532 else 4533 static_branch_disable(&sched_numa_balancing); 4534 } 4535 4536 void set_numabalancing_state(bool enabled) 4537 { 4538 if (enabled) 4539 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4540 else 4541 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4542 __set_numabalancing_state(enabled); 4543 } 4544 4545 #ifdef CONFIG_PROC_SYSCTL 4546 static void reset_memory_tiering(void) 4547 { 4548 struct pglist_data *pgdat; 4549 4550 for_each_online_pgdat(pgdat) { 4551 pgdat->nbp_threshold = 0; 4552 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4553 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4554 } 4555 } 4556 4557 static int sysctl_numa_balancing(const struct ctl_table *table, int write, 4558 void *buffer, size_t *lenp, loff_t *ppos) 4559 { 4560 struct ctl_table t; 4561 int err; 4562 int state = sysctl_numa_balancing_mode; 4563 4564 if (write && !capable(CAP_SYS_ADMIN)) 4565 return -EPERM; 4566 4567 t = *table; 4568 t.data = &state; 4569 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4570 if (err < 0) 4571 return err; 4572 if (write) { 4573 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4574 (state & NUMA_BALANCING_MEMORY_TIERING)) 4575 reset_memory_tiering(); 4576 sysctl_numa_balancing_mode = state; 4577 __set_numabalancing_state(state); 4578 } 4579 return err; 4580 } 4581 #endif 4582 #endif 4583 4584 #ifdef CONFIG_SCHEDSTATS 4585 4586 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4587 4588 static void set_schedstats(bool enabled) 4589 { 4590 if (enabled) 4591 static_branch_enable(&sched_schedstats); 4592 else 4593 static_branch_disable(&sched_schedstats); 4594 } 4595 4596 void force_schedstat_enabled(void) 4597 { 4598 if (!schedstat_enabled()) { 4599 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4600 static_branch_enable(&sched_schedstats); 4601 } 4602 } 4603 4604 static int __init setup_schedstats(char *str) 4605 { 4606 int ret = 0; 4607 if (!str) 4608 goto out; 4609 4610 if (!strcmp(str, "enable")) { 4611 set_schedstats(true); 4612 ret = 1; 4613 } else if (!strcmp(str, "disable")) { 4614 set_schedstats(false); 4615 ret = 1; 4616 } 4617 out: 4618 if (!ret) 4619 pr_warn("Unable to parse schedstats=\n"); 4620 4621 return ret; 4622 } 4623 __setup("schedstats=", setup_schedstats); 4624 4625 #ifdef CONFIG_PROC_SYSCTL 4626 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer, 4627 size_t *lenp, loff_t *ppos) 4628 { 4629 struct ctl_table t; 4630 int err; 4631 int state = static_branch_likely(&sched_schedstats); 4632 4633 if (write && !capable(CAP_SYS_ADMIN)) 4634 return -EPERM; 4635 4636 t = *table; 4637 t.data = &state; 4638 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4639 if (err < 0) 4640 return err; 4641 if (write) 4642 set_schedstats(state); 4643 return err; 4644 } 4645 #endif /* CONFIG_PROC_SYSCTL */ 4646 #endif /* CONFIG_SCHEDSTATS */ 4647 4648 #ifdef CONFIG_SYSCTL 4649 static struct ctl_table sched_core_sysctls[] = { 4650 #ifdef CONFIG_SCHEDSTATS 4651 { 4652 .procname = "sched_schedstats", 4653 .data = NULL, 4654 .maxlen = sizeof(unsigned int), 4655 .mode = 0644, 4656 .proc_handler = sysctl_schedstats, 4657 .extra1 = SYSCTL_ZERO, 4658 .extra2 = SYSCTL_ONE, 4659 }, 4660 #endif /* CONFIG_SCHEDSTATS */ 4661 #ifdef CONFIG_UCLAMP_TASK 4662 { 4663 .procname = "sched_util_clamp_min", 4664 .data = &sysctl_sched_uclamp_util_min, 4665 .maxlen = sizeof(unsigned int), 4666 .mode = 0644, 4667 .proc_handler = sysctl_sched_uclamp_handler, 4668 }, 4669 { 4670 .procname = "sched_util_clamp_max", 4671 .data = &sysctl_sched_uclamp_util_max, 4672 .maxlen = sizeof(unsigned int), 4673 .mode = 0644, 4674 .proc_handler = sysctl_sched_uclamp_handler, 4675 }, 4676 { 4677 .procname = "sched_util_clamp_min_rt_default", 4678 .data = &sysctl_sched_uclamp_util_min_rt_default, 4679 .maxlen = sizeof(unsigned int), 4680 .mode = 0644, 4681 .proc_handler = sysctl_sched_uclamp_handler, 4682 }, 4683 #endif /* CONFIG_UCLAMP_TASK */ 4684 #ifdef CONFIG_NUMA_BALANCING 4685 { 4686 .procname = "numa_balancing", 4687 .data = NULL, /* filled in by handler */ 4688 .maxlen = sizeof(unsigned int), 4689 .mode = 0644, 4690 .proc_handler = sysctl_numa_balancing, 4691 .extra1 = SYSCTL_ZERO, 4692 .extra2 = SYSCTL_FOUR, 4693 }, 4694 #endif /* CONFIG_NUMA_BALANCING */ 4695 }; 4696 static int __init sched_core_sysctl_init(void) 4697 { 4698 register_sysctl_init("kernel", sched_core_sysctls); 4699 return 0; 4700 } 4701 late_initcall(sched_core_sysctl_init); 4702 #endif /* CONFIG_SYSCTL */ 4703 4704 /* 4705 * fork()/clone()-time setup: 4706 */ 4707 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4708 { 4709 __sched_fork(clone_flags, p); 4710 /* 4711 * We mark the process as NEW here. This guarantees that 4712 * nobody will actually run it, and a signal or other external 4713 * event cannot wake it up and insert it on the runqueue either. 4714 */ 4715 p->__state = TASK_NEW; 4716 4717 /* 4718 * Make sure we do not leak PI boosting priority to the child. 4719 */ 4720 p->prio = current->normal_prio; 4721 4722 uclamp_fork(p); 4723 4724 /* 4725 * Revert to default priority/policy on fork if requested. 4726 */ 4727 if (unlikely(p->sched_reset_on_fork)) { 4728 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4729 p->policy = SCHED_NORMAL; 4730 p->static_prio = NICE_TO_PRIO(0); 4731 p->rt_priority = 0; 4732 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4733 p->static_prio = NICE_TO_PRIO(0); 4734 4735 p->prio = p->normal_prio = p->static_prio; 4736 set_load_weight(p, false); 4737 p->se.custom_slice = 0; 4738 p->se.slice = sysctl_sched_base_slice; 4739 4740 /* 4741 * We don't need the reset flag anymore after the fork. It has 4742 * fulfilled its duty: 4743 */ 4744 p->sched_reset_on_fork = 0; 4745 } 4746 4747 if (dl_prio(p->prio)) 4748 return -EAGAIN; 4749 4750 scx_pre_fork(p); 4751 4752 if (rt_prio(p->prio)) { 4753 p->sched_class = &rt_sched_class; 4754 #ifdef CONFIG_SCHED_CLASS_EXT 4755 } else if (task_should_scx(p->policy)) { 4756 p->sched_class = &ext_sched_class; 4757 #endif 4758 } else { 4759 p->sched_class = &fair_sched_class; 4760 } 4761 4762 init_entity_runnable_average(&p->se); 4763 4764 4765 #ifdef CONFIG_SCHED_INFO 4766 if (likely(sched_info_on())) 4767 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4768 #endif 4769 #if defined(CONFIG_SMP) 4770 p->on_cpu = 0; 4771 #endif 4772 init_task_preempt_count(p); 4773 #ifdef CONFIG_SMP 4774 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4775 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4776 #endif 4777 return 0; 4778 } 4779 4780 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4781 { 4782 unsigned long flags; 4783 4784 /* 4785 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4786 * required yet, but lockdep gets upset if rules are violated. 4787 */ 4788 raw_spin_lock_irqsave(&p->pi_lock, flags); 4789 #ifdef CONFIG_CGROUP_SCHED 4790 if (1) { 4791 struct task_group *tg; 4792 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4793 struct task_group, css); 4794 tg = autogroup_task_group(p, tg); 4795 p->sched_task_group = tg; 4796 } 4797 #endif 4798 rseq_migrate(p); 4799 /* 4800 * We're setting the CPU for the first time, we don't migrate, 4801 * so use __set_task_cpu(). 4802 */ 4803 __set_task_cpu(p, smp_processor_id()); 4804 if (p->sched_class->task_fork) 4805 p->sched_class->task_fork(p); 4806 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4807 4808 return scx_fork(p); 4809 } 4810 4811 void sched_cancel_fork(struct task_struct *p) 4812 { 4813 scx_cancel_fork(p); 4814 } 4815 4816 void sched_post_fork(struct task_struct *p) 4817 { 4818 uclamp_post_fork(p); 4819 scx_post_fork(p); 4820 } 4821 4822 unsigned long to_ratio(u64 period, u64 runtime) 4823 { 4824 if (runtime == RUNTIME_INF) 4825 return BW_UNIT; 4826 4827 /* 4828 * Doing this here saves a lot of checks in all 4829 * the calling paths, and returning zero seems 4830 * safe for them anyway. 4831 */ 4832 if (period == 0) 4833 return 0; 4834 4835 return div64_u64(runtime << BW_SHIFT, period); 4836 } 4837 4838 /* 4839 * wake_up_new_task - wake up a newly created task for the first time. 4840 * 4841 * This function will do some initial scheduler statistics housekeeping 4842 * that must be done for every newly created context, then puts the task 4843 * on the runqueue and wakes it. 4844 */ 4845 void wake_up_new_task(struct task_struct *p) 4846 { 4847 struct rq_flags rf; 4848 struct rq *rq; 4849 int wake_flags = WF_FORK; 4850 4851 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4852 WRITE_ONCE(p->__state, TASK_RUNNING); 4853 #ifdef CONFIG_SMP 4854 /* 4855 * Fork balancing, do it here and not earlier because: 4856 * - cpus_ptr can change in the fork path 4857 * - any previously selected CPU might disappear through hotplug 4858 * 4859 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4860 * as we're not fully set-up yet. 4861 */ 4862 p->recent_used_cpu = task_cpu(p); 4863 rseq_migrate(p); 4864 __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags)); 4865 #endif 4866 rq = __task_rq_lock(p, &rf); 4867 update_rq_clock(rq); 4868 post_init_entity_util_avg(p); 4869 4870 activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL); 4871 trace_sched_wakeup_new(p); 4872 wakeup_preempt(rq, p, wake_flags); 4873 #ifdef CONFIG_SMP 4874 if (p->sched_class->task_woken) { 4875 /* 4876 * Nothing relies on rq->lock after this, so it's fine to 4877 * drop it. 4878 */ 4879 rq_unpin_lock(rq, &rf); 4880 p->sched_class->task_woken(rq, p); 4881 rq_repin_lock(rq, &rf); 4882 } 4883 #endif 4884 task_rq_unlock(rq, p, &rf); 4885 } 4886 4887 #ifdef CONFIG_PREEMPT_NOTIFIERS 4888 4889 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4890 4891 void preempt_notifier_inc(void) 4892 { 4893 static_branch_inc(&preempt_notifier_key); 4894 } 4895 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4896 4897 void preempt_notifier_dec(void) 4898 { 4899 static_branch_dec(&preempt_notifier_key); 4900 } 4901 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4902 4903 /** 4904 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4905 * @notifier: notifier struct to register 4906 */ 4907 void preempt_notifier_register(struct preempt_notifier *notifier) 4908 { 4909 if (!static_branch_unlikely(&preempt_notifier_key)) 4910 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4911 4912 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4913 } 4914 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4915 4916 /** 4917 * preempt_notifier_unregister - no longer interested in preemption notifications 4918 * @notifier: notifier struct to unregister 4919 * 4920 * This is *not* safe to call from within a preemption notifier. 4921 */ 4922 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4923 { 4924 hlist_del(¬ifier->link); 4925 } 4926 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4927 4928 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4929 { 4930 struct preempt_notifier *notifier; 4931 4932 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4933 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4934 } 4935 4936 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4937 { 4938 if (static_branch_unlikely(&preempt_notifier_key)) 4939 __fire_sched_in_preempt_notifiers(curr); 4940 } 4941 4942 static void 4943 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4944 struct task_struct *next) 4945 { 4946 struct preempt_notifier *notifier; 4947 4948 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4949 notifier->ops->sched_out(notifier, next); 4950 } 4951 4952 static __always_inline void 4953 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4954 struct task_struct *next) 4955 { 4956 if (static_branch_unlikely(&preempt_notifier_key)) 4957 __fire_sched_out_preempt_notifiers(curr, next); 4958 } 4959 4960 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4961 4962 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4963 { 4964 } 4965 4966 static inline void 4967 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4968 struct task_struct *next) 4969 { 4970 } 4971 4972 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4973 4974 static inline void prepare_task(struct task_struct *next) 4975 { 4976 #ifdef CONFIG_SMP 4977 /* 4978 * Claim the task as running, we do this before switching to it 4979 * such that any running task will have this set. 4980 * 4981 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4982 * its ordering comment. 4983 */ 4984 WRITE_ONCE(next->on_cpu, 1); 4985 #endif 4986 } 4987 4988 static inline void finish_task(struct task_struct *prev) 4989 { 4990 #ifdef CONFIG_SMP 4991 /* 4992 * This must be the very last reference to @prev from this CPU. After 4993 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4994 * must ensure this doesn't happen until the switch is completely 4995 * finished. 4996 * 4997 * In particular, the load of prev->state in finish_task_switch() must 4998 * happen before this. 4999 * 5000 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 5001 */ 5002 smp_store_release(&prev->on_cpu, 0); 5003 #endif 5004 } 5005 5006 #ifdef CONFIG_SMP 5007 5008 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 5009 { 5010 void (*func)(struct rq *rq); 5011 struct balance_callback *next; 5012 5013 lockdep_assert_rq_held(rq); 5014 5015 while (head) { 5016 func = (void (*)(struct rq *))head->func; 5017 next = head->next; 5018 head->next = NULL; 5019 head = next; 5020 5021 func(rq); 5022 } 5023 } 5024 5025 static void balance_push(struct rq *rq); 5026 5027 /* 5028 * balance_push_callback is a right abuse of the callback interface and plays 5029 * by significantly different rules. 5030 * 5031 * Where the normal balance_callback's purpose is to be ran in the same context 5032 * that queued it (only later, when it's safe to drop rq->lock again), 5033 * balance_push_callback is specifically targeted at __schedule(). 5034 * 5035 * This abuse is tolerated because it places all the unlikely/odd cases behind 5036 * a single test, namely: rq->balance_callback == NULL. 5037 */ 5038 struct balance_callback balance_push_callback = { 5039 .next = NULL, 5040 .func = balance_push, 5041 }; 5042 5043 static inline struct balance_callback * 5044 __splice_balance_callbacks(struct rq *rq, bool split) 5045 { 5046 struct balance_callback *head = rq->balance_callback; 5047 5048 if (likely(!head)) 5049 return NULL; 5050 5051 lockdep_assert_rq_held(rq); 5052 /* 5053 * Must not take balance_push_callback off the list when 5054 * splice_balance_callbacks() and balance_callbacks() are not 5055 * in the same rq->lock section. 5056 * 5057 * In that case it would be possible for __schedule() to interleave 5058 * and observe the list empty. 5059 */ 5060 if (split && head == &balance_push_callback) 5061 head = NULL; 5062 else 5063 rq->balance_callback = NULL; 5064 5065 return head; 5066 } 5067 5068 struct balance_callback *splice_balance_callbacks(struct rq *rq) 5069 { 5070 return __splice_balance_callbacks(rq, true); 5071 } 5072 5073 static void __balance_callbacks(struct rq *rq) 5074 { 5075 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 5076 } 5077 5078 void balance_callbacks(struct rq *rq, struct balance_callback *head) 5079 { 5080 unsigned long flags; 5081 5082 if (unlikely(head)) { 5083 raw_spin_rq_lock_irqsave(rq, flags); 5084 do_balance_callbacks(rq, head); 5085 raw_spin_rq_unlock_irqrestore(rq, flags); 5086 } 5087 } 5088 5089 #else 5090 5091 static inline void __balance_callbacks(struct rq *rq) 5092 { 5093 } 5094 5095 #endif 5096 5097 static inline void 5098 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 5099 { 5100 /* 5101 * Since the runqueue lock will be released by the next 5102 * task (which is an invalid locking op but in the case 5103 * of the scheduler it's an obvious special-case), so we 5104 * do an early lockdep release here: 5105 */ 5106 rq_unpin_lock(rq, rf); 5107 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 5108 #ifdef CONFIG_DEBUG_SPINLOCK 5109 /* this is a valid case when another task releases the spinlock */ 5110 rq_lockp(rq)->owner = next; 5111 #endif 5112 } 5113 5114 static inline void finish_lock_switch(struct rq *rq) 5115 { 5116 /* 5117 * If we are tracking spinlock dependencies then we have to 5118 * fix up the runqueue lock - which gets 'carried over' from 5119 * prev into current: 5120 */ 5121 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5122 __balance_callbacks(rq); 5123 raw_spin_rq_unlock_irq(rq); 5124 } 5125 5126 /* 5127 * NOP if the arch has not defined these: 5128 */ 5129 5130 #ifndef prepare_arch_switch 5131 # define prepare_arch_switch(next) do { } while (0) 5132 #endif 5133 5134 #ifndef finish_arch_post_lock_switch 5135 # define finish_arch_post_lock_switch() do { } while (0) 5136 #endif 5137 5138 static inline void kmap_local_sched_out(void) 5139 { 5140 #ifdef CONFIG_KMAP_LOCAL 5141 if (unlikely(current->kmap_ctrl.idx)) 5142 __kmap_local_sched_out(); 5143 #endif 5144 } 5145 5146 static inline void kmap_local_sched_in(void) 5147 { 5148 #ifdef CONFIG_KMAP_LOCAL 5149 if (unlikely(current->kmap_ctrl.idx)) 5150 __kmap_local_sched_in(); 5151 #endif 5152 } 5153 5154 /** 5155 * prepare_task_switch - prepare to switch tasks 5156 * @rq: the runqueue preparing to switch 5157 * @prev: the current task that is being switched out 5158 * @next: the task we are going to switch to. 5159 * 5160 * This is called with the rq lock held and interrupts off. It must 5161 * be paired with a subsequent finish_task_switch after the context 5162 * switch. 5163 * 5164 * prepare_task_switch sets up locking and calls architecture specific 5165 * hooks. 5166 */ 5167 static inline void 5168 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5169 struct task_struct *next) 5170 { 5171 kcov_prepare_switch(prev); 5172 sched_info_switch(rq, prev, next); 5173 perf_event_task_sched_out(prev, next); 5174 rseq_preempt(prev); 5175 fire_sched_out_preempt_notifiers(prev, next); 5176 kmap_local_sched_out(); 5177 prepare_task(next); 5178 prepare_arch_switch(next); 5179 } 5180 5181 /** 5182 * finish_task_switch - clean up after a task-switch 5183 * @prev: the thread we just switched away from. 5184 * 5185 * finish_task_switch must be called after the context switch, paired 5186 * with a prepare_task_switch call before the context switch. 5187 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5188 * and do any other architecture-specific cleanup actions. 5189 * 5190 * Note that we may have delayed dropping an mm in context_switch(). If 5191 * so, we finish that here outside of the runqueue lock. (Doing it 5192 * with the lock held can cause deadlocks; see schedule() for 5193 * details.) 5194 * 5195 * The context switch have flipped the stack from under us and restored the 5196 * local variables which were saved when this task called schedule() in the 5197 * past. 'prev == current' is still correct but we need to recalculate this_rq 5198 * because prev may have moved to another CPU. 5199 */ 5200 static struct rq *finish_task_switch(struct task_struct *prev) 5201 __releases(rq->lock) 5202 { 5203 struct rq *rq = this_rq(); 5204 struct mm_struct *mm = rq->prev_mm; 5205 unsigned int prev_state; 5206 5207 /* 5208 * The previous task will have left us with a preempt_count of 2 5209 * because it left us after: 5210 * 5211 * schedule() 5212 * preempt_disable(); // 1 5213 * __schedule() 5214 * raw_spin_lock_irq(&rq->lock) // 2 5215 * 5216 * Also, see FORK_PREEMPT_COUNT. 5217 */ 5218 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5219 "corrupted preempt_count: %s/%d/0x%x\n", 5220 current->comm, current->pid, preempt_count())) 5221 preempt_count_set(FORK_PREEMPT_COUNT); 5222 5223 rq->prev_mm = NULL; 5224 5225 /* 5226 * A task struct has one reference for the use as "current". 5227 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5228 * schedule one last time. The schedule call will never return, and 5229 * the scheduled task must drop that reference. 5230 * 5231 * We must observe prev->state before clearing prev->on_cpu (in 5232 * finish_task), otherwise a concurrent wakeup can get prev 5233 * running on another CPU and we could rave with its RUNNING -> DEAD 5234 * transition, resulting in a double drop. 5235 */ 5236 prev_state = READ_ONCE(prev->__state); 5237 vtime_task_switch(prev); 5238 perf_event_task_sched_in(prev, current); 5239 finish_task(prev); 5240 tick_nohz_task_switch(); 5241 finish_lock_switch(rq); 5242 finish_arch_post_lock_switch(); 5243 kcov_finish_switch(current); 5244 /* 5245 * kmap_local_sched_out() is invoked with rq::lock held and 5246 * interrupts disabled. There is no requirement for that, but the 5247 * sched out code does not have an interrupt enabled section. 5248 * Restoring the maps on sched in does not require interrupts being 5249 * disabled either. 5250 */ 5251 kmap_local_sched_in(); 5252 5253 fire_sched_in_preempt_notifiers(current); 5254 /* 5255 * When switching through a kernel thread, the loop in 5256 * membarrier_{private,global}_expedited() may have observed that 5257 * kernel thread and not issued an IPI. It is therefore possible to 5258 * schedule between user->kernel->user threads without passing though 5259 * switch_mm(). Membarrier requires a barrier after storing to 5260 * rq->curr, before returning to userspace, so provide them here: 5261 * 5262 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5263 * provided by mmdrop_lazy_tlb(), 5264 * - a sync_core for SYNC_CORE. 5265 */ 5266 if (mm) { 5267 membarrier_mm_sync_core_before_usermode(mm); 5268 mmdrop_lazy_tlb_sched(mm); 5269 } 5270 5271 if (unlikely(prev_state == TASK_DEAD)) { 5272 if (prev->sched_class->task_dead) 5273 prev->sched_class->task_dead(prev); 5274 5275 /* Task is done with its stack. */ 5276 put_task_stack(prev); 5277 5278 put_task_struct_rcu_user(prev); 5279 } 5280 5281 return rq; 5282 } 5283 5284 /** 5285 * schedule_tail - first thing a freshly forked thread must call. 5286 * @prev: the thread we just switched away from. 5287 */ 5288 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5289 __releases(rq->lock) 5290 { 5291 /* 5292 * New tasks start with FORK_PREEMPT_COUNT, see there and 5293 * finish_task_switch() for details. 5294 * 5295 * finish_task_switch() will drop rq->lock() and lower preempt_count 5296 * and the preempt_enable() will end up enabling preemption (on 5297 * PREEMPT_COUNT kernels). 5298 */ 5299 5300 finish_task_switch(prev); 5301 preempt_enable(); 5302 5303 if (current->set_child_tid) 5304 put_user(task_pid_vnr(current), current->set_child_tid); 5305 5306 calculate_sigpending(); 5307 } 5308 5309 /* 5310 * context_switch - switch to the new MM and the new thread's register state. 5311 */ 5312 static __always_inline struct rq * 5313 context_switch(struct rq *rq, struct task_struct *prev, 5314 struct task_struct *next, struct rq_flags *rf) 5315 { 5316 prepare_task_switch(rq, prev, next); 5317 5318 /* 5319 * For paravirt, this is coupled with an exit in switch_to to 5320 * combine the page table reload and the switch backend into 5321 * one hypercall. 5322 */ 5323 arch_start_context_switch(prev); 5324 5325 /* 5326 * kernel -> kernel lazy + transfer active 5327 * user -> kernel lazy + mmgrab_lazy_tlb() active 5328 * 5329 * kernel -> user switch + mmdrop_lazy_tlb() active 5330 * user -> user switch 5331 * 5332 * switch_mm_cid() needs to be updated if the barriers provided 5333 * by context_switch() are modified. 5334 */ 5335 if (!next->mm) { // to kernel 5336 enter_lazy_tlb(prev->active_mm, next); 5337 5338 next->active_mm = prev->active_mm; 5339 if (prev->mm) // from user 5340 mmgrab_lazy_tlb(prev->active_mm); 5341 else 5342 prev->active_mm = NULL; 5343 } else { // to user 5344 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5345 /* 5346 * sys_membarrier() requires an smp_mb() between setting 5347 * rq->curr / membarrier_switch_mm() and returning to userspace. 5348 * 5349 * The below provides this either through switch_mm(), or in 5350 * case 'prev->active_mm == next->mm' through 5351 * finish_task_switch()'s mmdrop(). 5352 */ 5353 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5354 lru_gen_use_mm(next->mm); 5355 5356 if (!prev->mm) { // from kernel 5357 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5358 rq->prev_mm = prev->active_mm; 5359 prev->active_mm = NULL; 5360 } 5361 } 5362 5363 /* switch_mm_cid() requires the memory barriers above. */ 5364 switch_mm_cid(rq, prev, next); 5365 5366 prepare_lock_switch(rq, next, rf); 5367 5368 /* Here we just switch the register state and the stack. */ 5369 switch_to(prev, next, prev); 5370 barrier(); 5371 5372 return finish_task_switch(prev); 5373 } 5374 5375 /* 5376 * nr_running and nr_context_switches: 5377 * 5378 * externally visible scheduler statistics: current number of runnable 5379 * threads, total number of context switches performed since bootup. 5380 */ 5381 unsigned int nr_running(void) 5382 { 5383 unsigned int i, sum = 0; 5384 5385 for_each_online_cpu(i) 5386 sum += cpu_rq(i)->nr_running; 5387 5388 return sum; 5389 } 5390 5391 /* 5392 * Check if only the current task is running on the CPU. 5393 * 5394 * Caution: this function does not check that the caller has disabled 5395 * preemption, thus the result might have a time-of-check-to-time-of-use 5396 * race. The caller is responsible to use it correctly, for example: 5397 * 5398 * - from a non-preemptible section (of course) 5399 * 5400 * - from a thread that is bound to a single CPU 5401 * 5402 * - in a loop with very short iterations (e.g. a polling loop) 5403 */ 5404 bool single_task_running(void) 5405 { 5406 return raw_rq()->nr_running == 1; 5407 } 5408 EXPORT_SYMBOL(single_task_running); 5409 5410 unsigned long long nr_context_switches_cpu(int cpu) 5411 { 5412 return cpu_rq(cpu)->nr_switches; 5413 } 5414 5415 unsigned long long nr_context_switches(void) 5416 { 5417 int i; 5418 unsigned long long sum = 0; 5419 5420 for_each_possible_cpu(i) 5421 sum += cpu_rq(i)->nr_switches; 5422 5423 return sum; 5424 } 5425 5426 /* 5427 * Consumers of these two interfaces, like for example the cpuidle menu 5428 * governor, are using nonsensical data. Preferring shallow idle state selection 5429 * for a CPU that has IO-wait which might not even end up running the task when 5430 * it does become runnable. 5431 */ 5432 5433 unsigned int nr_iowait_cpu(int cpu) 5434 { 5435 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5436 } 5437 5438 /* 5439 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5440 * 5441 * The idea behind IO-wait account is to account the idle time that we could 5442 * have spend running if it were not for IO. That is, if we were to improve the 5443 * storage performance, we'd have a proportional reduction in IO-wait time. 5444 * 5445 * This all works nicely on UP, where, when a task blocks on IO, we account 5446 * idle time as IO-wait, because if the storage were faster, it could've been 5447 * running and we'd not be idle. 5448 * 5449 * This has been extended to SMP, by doing the same for each CPU. This however 5450 * is broken. 5451 * 5452 * Imagine for instance the case where two tasks block on one CPU, only the one 5453 * CPU will have IO-wait accounted, while the other has regular idle. Even 5454 * though, if the storage were faster, both could've ran at the same time, 5455 * utilising both CPUs. 5456 * 5457 * This means, that when looking globally, the current IO-wait accounting on 5458 * SMP is a lower bound, by reason of under accounting. 5459 * 5460 * Worse, since the numbers are provided per CPU, they are sometimes 5461 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5462 * associated with any one particular CPU, it can wake to another CPU than it 5463 * blocked on. This means the per CPU IO-wait number is meaningless. 5464 * 5465 * Task CPU affinities can make all that even more 'interesting'. 5466 */ 5467 5468 unsigned int nr_iowait(void) 5469 { 5470 unsigned int i, sum = 0; 5471 5472 for_each_possible_cpu(i) 5473 sum += nr_iowait_cpu(i); 5474 5475 return sum; 5476 } 5477 5478 #ifdef CONFIG_SMP 5479 5480 /* 5481 * sched_exec - execve() is a valuable balancing opportunity, because at 5482 * this point the task has the smallest effective memory and cache footprint. 5483 */ 5484 void sched_exec(void) 5485 { 5486 struct task_struct *p = current; 5487 struct migration_arg arg; 5488 int dest_cpu; 5489 5490 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5491 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5492 if (dest_cpu == smp_processor_id()) 5493 return; 5494 5495 if (unlikely(!cpu_active(dest_cpu))) 5496 return; 5497 5498 arg = (struct migration_arg){ p, dest_cpu }; 5499 } 5500 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5501 } 5502 5503 #endif 5504 5505 DEFINE_PER_CPU(struct kernel_stat, kstat); 5506 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5507 5508 EXPORT_PER_CPU_SYMBOL(kstat); 5509 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5510 5511 /* 5512 * The function fair_sched_class.update_curr accesses the struct curr 5513 * and its field curr->exec_start; when called from task_sched_runtime(), 5514 * we observe a high rate of cache misses in practice. 5515 * Prefetching this data results in improved performance. 5516 */ 5517 static inline void prefetch_curr_exec_start(struct task_struct *p) 5518 { 5519 #ifdef CONFIG_FAIR_GROUP_SCHED 5520 struct sched_entity *curr = p->se.cfs_rq->curr; 5521 #else 5522 struct sched_entity *curr = task_rq(p)->cfs.curr; 5523 #endif 5524 prefetch(curr); 5525 prefetch(&curr->exec_start); 5526 } 5527 5528 /* 5529 * Return accounted runtime for the task. 5530 * In case the task is currently running, return the runtime plus current's 5531 * pending runtime that have not been accounted yet. 5532 */ 5533 unsigned long long task_sched_runtime(struct task_struct *p) 5534 { 5535 struct rq_flags rf; 5536 struct rq *rq; 5537 u64 ns; 5538 5539 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5540 /* 5541 * 64-bit doesn't need locks to atomically read a 64-bit value. 5542 * So we have a optimization chance when the task's delta_exec is 0. 5543 * Reading ->on_cpu is racy, but this is OK. 5544 * 5545 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5546 * If we race with it entering CPU, unaccounted time is 0. This is 5547 * indistinguishable from the read occurring a few cycles earlier. 5548 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5549 * been accounted, so we're correct here as well. 5550 */ 5551 if (!p->on_cpu || !task_on_rq_queued(p)) 5552 return p->se.sum_exec_runtime; 5553 #endif 5554 5555 rq = task_rq_lock(p, &rf); 5556 /* 5557 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5558 * project cycles that may never be accounted to this 5559 * thread, breaking clock_gettime(). 5560 */ 5561 if (task_current_donor(rq, p) && task_on_rq_queued(p)) { 5562 prefetch_curr_exec_start(p); 5563 update_rq_clock(rq); 5564 p->sched_class->update_curr(rq); 5565 } 5566 ns = p->se.sum_exec_runtime; 5567 task_rq_unlock(rq, p, &rf); 5568 5569 return ns; 5570 } 5571 5572 #ifdef CONFIG_SCHED_DEBUG 5573 static u64 cpu_resched_latency(struct rq *rq) 5574 { 5575 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5576 u64 resched_latency, now = rq_clock(rq); 5577 static bool warned_once; 5578 5579 if (sysctl_resched_latency_warn_once && warned_once) 5580 return 0; 5581 5582 if (!need_resched() || !latency_warn_ms) 5583 return 0; 5584 5585 if (system_state == SYSTEM_BOOTING) 5586 return 0; 5587 5588 if (!rq->last_seen_need_resched_ns) { 5589 rq->last_seen_need_resched_ns = now; 5590 rq->ticks_without_resched = 0; 5591 return 0; 5592 } 5593 5594 rq->ticks_without_resched++; 5595 resched_latency = now - rq->last_seen_need_resched_ns; 5596 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5597 return 0; 5598 5599 warned_once = true; 5600 5601 return resched_latency; 5602 } 5603 5604 static int __init setup_resched_latency_warn_ms(char *str) 5605 { 5606 long val; 5607 5608 if ((kstrtol(str, 0, &val))) { 5609 pr_warn("Unable to set resched_latency_warn_ms\n"); 5610 return 1; 5611 } 5612 5613 sysctl_resched_latency_warn_ms = val; 5614 return 1; 5615 } 5616 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5617 #else 5618 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5619 #endif /* CONFIG_SCHED_DEBUG */ 5620 5621 /* 5622 * This function gets called by the timer code, with HZ frequency. 5623 * We call it with interrupts disabled. 5624 */ 5625 void sched_tick(void) 5626 { 5627 int cpu = smp_processor_id(); 5628 struct rq *rq = cpu_rq(cpu); 5629 /* accounting goes to the donor task */ 5630 struct task_struct *donor; 5631 struct rq_flags rf; 5632 unsigned long hw_pressure; 5633 u64 resched_latency; 5634 5635 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5636 arch_scale_freq_tick(); 5637 5638 sched_clock_tick(); 5639 5640 rq_lock(rq, &rf); 5641 donor = rq->donor; 5642 5643 psi_account_irqtime(rq, donor, NULL); 5644 5645 update_rq_clock(rq); 5646 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 5647 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); 5648 5649 if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY)) 5650 resched_curr(rq); 5651 5652 donor->sched_class->task_tick(rq, donor, 0); 5653 if (sched_feat(LATENCY_WARN)) 5654 resched_latency = cpu_resched_latency(rq); 5655 calc_global_load_tick(rq); 5656 sched_core_tick(rq); 5657 task_tick_mm_cid(rq, donor); 5658 scx_tick(rq); 5659 5660 rq_unlock(rq, &rf); 5661 5662 if (sched_feat(LATENCY_WARN) && resched_latency) 5663 resched_latency_warn(cpu, resched_latency); 5664 5665 perf_event_task_tick(); 5666 5667 if (donor->flags & PF_WQ_WORKER) 5668 wq_worker_tick(donor); 5669 5670 #ifdef CONFIG_SMP 5671 if (!scx_switched_all()) { 5672 rq->idle_balance = idle_cpu(cpu); 5673 sched_balance_trigger(rq); 5674 } 5675 #endif 5676 } 5677 5678 #ifdef CONFIG_NO_HZ_FULL 5679 5680 struct tick_work { 5681 int cpu; 5682 atomic_t state; 5683 struct delayed_work work; 5684 }; 5685 /* Values for ->state, see diagram below. */ 5686 #define TICK_SCHED_REMOTE_OFFLINE 0 5687 #define TICK_SCHED_REMOTE_OFFLINING 1 5688 #define TICK_SCHED_REMOTE_RUNNING 2 5689 5690 /* 5691 * State diagram for ->state: 5692 * 5693 * 5694 * TICK_SCHED_REMOTE_OFFLINE 5695 * | ^ 5696 * | | 5697 * | | sched_tick_remote() 5698 * | | 5699 * | | 5700 * +--TICK_SCHED_REMOTE_OFFLINING 5701 * | ^ 5702 * | | 5703 * sched_tick_start() | | sched_tick_stop() 5704 * | | 5705 * V | 5706 * TICK_SCHED_REMOTE_RUNNING 5707 * 5708 * 5709 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5710 * and sched_tick_start() are happy to leave the state in RUNNING. 5711 */ 5712 5713 static struct tick_work __percpu *tick_work_cpu; 5714 5715 static void sched_tick_remote(struct work_struct *work) 5716 { 5717 struct delayed_work *dwork = to_delayed_work(work); 5718 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5719 int cpu = twork->cpu; 5720 struct rq *rq = cpu_rq(cpu); 5721 int os; 5722 5723 /* 5724 * Handle the tick only if it appears the remote CPU is running in full 5725 * dynticks mode. The check is racy by nature, but missing a tick or 5726 * having one too much is no big deal because the scheduler tick updates 5727 * statistics and checks timeslices in a time-independent way, regardless 5728 * of when exactly it is running. 5729 */ 5730 if (tick_nohz_tick_stopped_cpu(cpu)) { 5731 guard(rq_lock_irq)(rq); 5732 struct task_struct *curr = rq->curr; 5733 5734 if (cpu_online(cpu)) { 5735 /* 5736 * Since this is a remote tick for full dynticks mode, 5737 * we are always sure that there is no proxy (only a 5738 * single task is running). 5739 */ 5740 SCHED_WARN_ON(rq->curr != rq->donor); 5741 update_rq_clock(rq); 5742 5743 if (!is_idle_task(curr)) { 5744 /* 5745 * Make sure the next tick runs within a 5746 * reasonable amount of time. 5747 */ 5748 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5749 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5750 } 5751 curr->sched_class->task_tick(rq, curr, 0); 5752 5753 calc_load_nohz_remote(rq); 5754 } 5755 } 5756 5757 /* 5758 * Run the remote tick once per second (1Hz). This arbitrary 5759 * frequency is large enough to avoid overload but short enough 5760 * to keep scheduler internal stats reasonably up to date. But 5761 * first update state to reflect hotplug activity if required. 5762 */ 5763 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5764 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5765 if (os == TICK_SCHED_REMOTE_RUNNING) 5766 queue_delayed_work(system_unbound_wq, dwork, HZ); 5767 } 5768 5769 static void sched_tick_start(int cpu) 5770 { 5771 int os; 5772 struct tick_work *twork; 5773 5774 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5775 return; 5776 5777 WARN_ON_ONCE(!tick_work_cpu); 5778 5779 twork = per_cpu_ptr(tick_work_cpu, cpu); 5780 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5781 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5782 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5783 twork->cpu = cpu; 5784 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5785 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5786 } 5787 } 5788 5789 #ifdef CONFIG_HOTPLUG_CPU 5790 static void sched_tick_stop(int cpu) 5791 { 5792 struct tick_work *twork; 5793 int os; 5794 5795 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5796 return; 5797 5798 WARN_ON_ONCE(!tick_work_cpu); 5799 5800 twork = per_cpu_ptr(tick_work_cpu, cpu); 5801 /* There cannot be competing actions, but don't rely on stop-machine. */ 5802 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5803 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5804 /* Don't cancel, as this would mess up the state machine. */ 5805 } 5806 #endif /* CONFIG_HOTPLUG_CPU */ 5807 5808 int __init sched_tick_offload_init(void) 5809 { 5810 tick_work_cpu = alloc_percpu(struct tick_work); 5811 BUG_ON(!tick_work_cpu); 5812 return 0; 5813 } 5814 5815 #else /* !CONFIG_NO_HZ_FULL */ 5816 static inline void sched_tick_start(int cpu) { } 5817 static inline void sched_tick_stop(int cpu) { } 5818 #endif 5819 5820 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5821 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5822 /* 5823 * If the value passed in is equal to the current preempt count 5824 * then we just disabled preemption. Start timing the latency. 5825 */ 5826 static inline void preempt_latency_start(int val) 5827 { 5828 if (preempt_count() == val) { 5829 unsigned long ip = get_lock_parent_ip(); 5830 #ifdef CONFIG_DEBUG_PREEMPT 5831 current->preempt_disable_ip = ip; 5832 #endif 5833 trace_preempt_off(CALLER_ADDR0, ip); 5834 } 5835 } 5836 5837 void preempt_count_add(int val) 5838 { 5839 #ifdef CONFIG_DEBUG_PREEMPT 5840 /* 5841 * Underflow? 5842 */ 5843 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5844 return; 5845 #endif 5846 __preempt_count_add(val); 5847 #ifdef CONFIG_DEBUG_PREEMPT 5848 /* 5849 * Spinlock count overflowing soon? 5850 */ 5851 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5852 PREEMPT_MASK - 10); 5853 #endif 5854 preempt_latency_start(val); 5855 } 5856 EXPORT_SYMBOL(preempt_count_add); 5857 NOKPROBE_SYMBOL(preempt_count_add); 5858 5859 /* 5860 * If the value passed in equals to the current preempt count 5861 * then we just enabled preemption. Stop timing the latency. 5862 */ 5863 static inline void preempt_latency_stop(int val) 5864 { 5865 if (preempt_count() == val) 5866 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5867 } 5868 5869 void preempt_count_sub(int val) 5870 { 5871 #ifdef CONFIG_DEBUG_PREEMPT 5872 /* 5873 * Underflow? 5874 */ 5875 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5876 return; 5877 /* 5878 * Is the spinlock portion underflowing? 5879 */ 5880 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5881 !(preempt_count() & PREEMPT_MASK))) 5882 return; 5883 #endif 5884 5885 preempt_latency_stop(val); 5886 __preempt_count_sub(val); 5887 } 5888 EXPORT_SYMBOL(preempt_count_sub); 5889 NOKPROBE_SYMBOL(preempt_count_sub); 5890 5891 #else 5892 static inline void preempt_latency_start(int val) { } 5893 static inline void preempt_latency_stop(int val) { } 5894 #endif 5895 5896 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5897 { 5898 #ifdef CONFIG_DEBUG_PREEMPT 5899 return p->preempt_disable_ip; 5900 #else 5901 return 0; 5902 #endif 5903 } 5904 5905 /* 5906 * Print scheduling while atomic bug: 5907 */ 5908 static noinline void __schedule_bug(struct task_struct *prev) 5909 { 5910 /* Save this before calling printk(), since that will clobber it */ 5911 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5912 5913 if (oops_in_progress) 5914 return; 5915 5916 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5917 prev->comm, prev->pid, preempt_count()); 5918 5919 debug_show_held_locks(prev); 5920 print_modules(); 5921 if (irqs_disabled()) 5922 print_irqtrace_events(prev); 5923 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5924 pr_err("Preemption disabled at:"); 5925 print_ip_sym(KERN_ERR, preempt_disable_ip); 5926 } 5927 check_panic_on_warn("scheduling while atomic"); 5928 5929 dump_stack(); 5930 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5931 } 5932 5933 /* 5934 * Various schedule()-time debugging checks and statistics: 5935 */ 5936 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5937 { 5938 #ifdef CONFIG_SCHED_STACK_END_CHECK 5939 if (task_stack_end_corrupted(prev)) 5940 panic("corrupted stack end detected inside scheduler\n"); 5941 5942 if (task_scs_end_corrupted(prev)) 5943 panic("corrupted shadow stack detected inside scheduler\n"); 5944 #endif 5945 5946 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5947 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5948 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5949 prev->comm, prev->pid, prev->non_block_count); 5950 dump_stack(); 5951 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5952 } 5953 #endif 5954 5955 if (unlikely(in_atomic_preempt_off())) { 5956 __schedule_bug(prev); 5957 preempt_count_set(PREEMPT_DISABLED); 5958 } 5959 rcu_sleep_check(); 5960 SCHED_WARN_ON(ct_state() == CT_STATE_USER); 5961 5962 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5963 5964 schedstat_inc(this_rq()->sched_count); 5965 } 5966 5967 static void prev_balance(struct rq *rq, struct task_struct *prev, 5968 struct rq_flags *rf) 5969 { 5970 const struct sched_class *start_class = prev->sched_class; 5971 const struct sched_class *class; 5972 5973 #ifdef CONFIG_SCHED_CLASS_EXT 5974 /* 5975 * SCX requires a balance() call before every pick_task() including when 5976 * waking up from SCHED_IDLE. If @start_class is below SCX, start from 5977 * SCX instead. Also, set a flag to detect missing balance() call. 5978 */ 5979 if (scx_enabled()) { 5980 rq->scx.flags |= SCX_RQ_BAL_PENDING; 5981 if (sched_class_above(&ext_sched_class, start_class)) 5982 start_class = &ext_sched_class; 5983 } 5984 #endif 5985 5986 /* 5987 * We must do the balancing pass before put_prev_task(), such 5988 * that when we release the rq->lock the task is in the same 5989 * state as before we took rq->lock. 5990 * 5991 * We can terminate the balance pass as soon as we know there is 5992 * a runnable task of @class priority or higher. 5993 */ 5994 for_active_class_range(class, start_class, &idle_sched_class) { 5995 if (class->balance && class->balance(rq, prev, rf)) 5996 break; 5997 } 5998 } 5999 6000 /* 6001 * Pick up the highest-prio task: 6002 */ 6003 static inline struct task_struct * 6004 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6005 { 6006 const struct sched_class *class; 6007 struct task_struct *p; 6008 6009 rq->dl_server = NULL; 6010 6011 if (scx_enabled()) 6012 goto restart; 6013 6014 /* 6015 * Optimization: we know that if all tasks are in the fair class we can 6016 * call that function directly, but only if the @prev task wasn't of a 6017 * higher scheduling class, because otherwise those lose the 6018 * opportunity to pull in more work from other CPUs. 6019 */ 6020 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 6021 rq->nr_running == rq->cfs.h_nr_running)) { 6022 6023 p = pick_next_task_fair(rq, prev, rf); 6024 if (unlikely(p == RETRY_TASK)) 6025 goto restart; 6026 6027 /* Assume the next prioritized class is idle_sched_class */ 6028 if (!p) { 6029 p = pick_task_idle(rq); 6030 put_prev_set_next_task(rq, prev, p); 6031 } 6032 6033 return p; 6034 } 6035 6036 restart: 6037 prev_balance(rq, prev, rf); 6038 6039 for_each_active_class(class) { 6040 if (class->pick_next_task) { 6041 p = class->pick_next_task(rq, prev); 6042 if (p) 6043 return p; 6044 } else { 6045 p = class->pick_task(rq); 6046 if (p) { 6047 put_prev_set_next_task(rq, prev, p); 6048 return p; 6049 } 6050 } 6051 } 6052 6053 BUG(); /* The idle class should always have a runnable task. */ 6054 } 6055 6056 #ifdef CONFIG_SCHED_CORE 6057 static inline bool is_task_rq_idle(struct task_struct *t) 6058 { 6059 return (task_rq(t)->idle == t); 6060 } 6061 6062 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 6063 { 6064 return is_task_rq_idle(a) || (a->core_cookie == cookie); 6065 } 6066 6067 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 6068 { 6069 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 6070 return true; 6071 6072 return a->core_cookie == b->core_cookie; 6073 } 6074 6075 static inline struct task_struct *pick_task(struct rq *rq) 6076 { 6077 const struct sched_class *class; 6078 struct task_struct *p; 6079 6080 rq->dl_server = NULL; 6081 6082 for_each_active_class(class) { 6083 p = class->pick_task(rq); 6084 if (p) 6085 return p; 6086 } 6087 6088 BUG(); /* The idle class should always have a runnable task. */ 6089 } 6090 6091 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 6092 6093 static void queue_core_balance(struct rq *rq); 6094 6095 static struct task_struct * 6096 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6097 { 6098 struct task_struct *next, *p, *max = NULL; 6099 const struct cpumask *smt_mask; 6100 bool fi_before = false; 6101 bool core_clock_updated = (rq == rq->core); 6102 unsigned long cookie; 6103 int i, cpu, occ = 0; 6104 struct rq *rq_i; 6105 bool need_sync; 6106 6107 if (!sched_core_enabled(rq)) 6108 return __pick_next_task(rq, prev, rf); 6109 6110 cpu = cpu_of(rq); 6111 6112 /* Stopper task is switching into idle, no need core-wide selection. */ 6113 if (cpu_is_offline(cpu)) { 6114 /* 6115 * Reset core_pick so that we don't enter the fastpath when 6116 * coming online. core_pick would already be migrated to 6117 * another cpu during offline. 6118 */ 6119 rq->core_pick = NULL; 6120 rq->core_dl_server = NULL; 6121 return __pick_next_task(rq, prev, rf); 6122 } 6123 6124 /* 6125 * If there were no {en,de}queues since we picked (IOW, the task 6126 * pointers are all still valid), and we haven't scheduled the last 6127 * pick yet, do so now. 6128 * 6129 * rq->core_pick can be NULL if no selection was made for a CPU because 6130 * it was either offline or went offline during a sibling's core-wide 6131 * selection. In this case, do a core-wide selection. 6132 */ 6133 if (rq->core->core_pick_seq == rq->core->core_task_seq && 6134 rq->core->core_pick_seq != rq->core_sched_seq && 6135 rq->core_pick) { 6136 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6137 6138 next = rq->core_pick; 6139 rq->dl_server = rq->core_dl_server; 6140 rq->core_pick = NULL; 6141 rq->core_dl_server = NULL; 6142 goto out_set_next; 6143 } 6144 6145 prev_balance(rq, prev, rf); 6146 6147 smt_mask = cpu_smt_mask(cpu); 6148 need_sync = !!rq->core->core_cookie; 6149 6150 /* reset state */ 6151 rq->core->core_cookie = 0UL; 6152 if (rq->core->core_forceidle_count) { 6153 if (!core_clock_updated) { 6154 update_rq_clock(rq->core); 6155 core_clock_updated = true; 6156 } 6157 sched_core_account_forceidle(rq); 6158 /* reset after accounting force idle */ 6159 rq->core->core_forceidle_start = 0; 6160 rq->core->core_forceidle_count = 0; 6161 rq->core->core_forceidle_occupation = 0; 6162 need_sync = true; 6163 fi_before = true; 6164 } 6165 6166 /* 6167 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6168 * 6169 * @task_seq guards the task state ({en,de}queues) 6170 * @pick_seq is the @task_seq we did a selection on 6171 * @sched_seq is the @pick_seq we scheduled 6172 * 6173 * However, preemptions can cause multiple picks on the same task set. 6174 * 'Fix' this by also increasing @task_seq for every pick. 6175 */ 6176 rq->core->core_task_seq++; 6177 6178 /* 6179 * Optimize for common case where this CPU has no cookies 6180 * and there are no cookied tasks running on siblings. 6181 */ 6182 if (!need_sync) { 6183 next = pick_task(rq); 6184 if (!next->core_cookie) { 6185 rq->core_pick = NULL; 6186 rq->core_dl_server = NULL; 6187 /* 6188 * For robustness, update the min_vruntime_fi for 6189 * unconstrained picks as well. 6190 */ 6191 WARN_ON_ONCE(fi_before); 6192 task_vruntime_update(rq, next, false); 6193 goto out_set_next; 6194 } 6195 } 6196 6197 /* 6198 * For each thread: do the regular task pick and find the max prio task 6199 * amongst them. 6200 * 6201 * Tie-break prio towards the current CPU 6202 */ 6203 for_each_cpu_wrap(i, smt_mask, cpu) { 6204 rq_i = cpu_rq(i); 6205 6206 /* 6207 * Current cpu always has its clock updated on entrance to 6208 * pick_next_task(). If the current cpu is not the core, 6209 * the core may also have been updated above. 6210 */ 6211 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6212 update_rq_clock(rq_i); 6213 6214 rq_i->core_pick = p = pick_task(rq_i); 6215 rq_i->core_dl_server = rq_i->dl_server; 6216 6217 if (!max || prio_less(max, p, fi_before)) 6218 max = p; 6219 } 6220 6221 cookie = rq->core->core_cookie = max->core_cookie; 6222 6223 /* 6224 * For each thread: try and find a runnable task that matches @max or 6225 * force idle. 6226 */ 6227 for_each_cpu(i, smt_mask) { 6228 rq_i = cpu_rq(i); 6229 p = rq_i->core_pick; 6230 6231 if (!cookie_equals(p, cookie)) { 6232 p = NULL; 6233 if (cookie) 6234 p = sched_core_find(rq_i, cookie); 6235 if (!p) 6236 p = idle_sched_class.pick_task(rq_i); 6237 } 6238 6239 rq_i->core_pick = p; 6240 rq_i->core_dl_server = NULL; 6241 6242 if (p == rq_i->idle) { 6243 if (rq_i->nr_running) { 6244 rq->core->core_forceidle_count++; 6245 if (!fi_before) 6246 rq->core->core_forceidle_seq++; 6247 } 6248 } else { 6249 occ++; 6250 } 6251 } 6252 6253 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6254 rq->core->core_forceidle_start = rq_clock(rq->core); 6255 rq->core->core_forceidle_occupation = occ; 6256 } 6257 6258 rq->core->core_pick_seq = rq->core->core_task_seq; 6259 next = rq->core_pick; 6260 rq->core_sched_seq = rq->core->core_pick_seq; 6261 6262 /* Something should have been selected for current CPU */ 6263 WARN_ON_ONCE(!next); 6264 6265 /* 6266 * Reschedule siblings 6267 * 6268 * NOTE: L1TF -- at this point we're no longer running the old task and 6269 * sending an IPI (below) ensures the sibling will no longer be running 6270 * their task. This ensures there is no inter-sibling overlap between 6271 * non-matching user state. 6272 */ 6273 for_each_cpu(i, smt_mask) { 6274 rq_i = cpu_rq(i); 6275 6276 /* 6277 * An online sibling might have gone offline before a task 6278 * could be picked for it, or it might be offline but later 6279 * happen to come online, but its too late and nothing was 6280 * picked for it. That's Ok - it will pick tasks for itself, 6281 * so ignore it. 6282 */ 6283 if (!rq_i->core_pick) 6284 continue; 6285 6286 /* 6287 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6288 * fi_before fi update? 6289 * 0 0 1 6290 * 0 1 1 6291 * 1 0 1 6292 * 1 1 0 6293 */ 6294 if (!(fi_before && rq->core->core_forceidle_count)) 6295 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6296 6297 rq_i->core_pick->core_occupation = occ; 6298 6299 if (i == cpu) { 6300 rq_i->core_pick = NULL; 6301 rq_i->core_dl_server = NULL; 6302 continue; 6303 } 6304 6305 /* Did we break L1TF mitigation requirements? */ 6306 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6307 6308 if (rq_i->curr == rq_i->core_pick) { 6309 rq_i->core_pick = NULL; 6310 rq_i->core_dl_server = NULL; 6311 continue; 6312 } 6313 6314 resched_curr(rq_i); 6315 } 6316 6317 out_set_next: 6318 put_prev_set_next_task(rq, prev, next); 6319 if (rq->core->core_forceidle_count && next == rq->idle) 6320 queue_core_balance(rq); 6321 6322 return next; 6323 } 6324 6325 static bool try_steal_cookie(int this, int that) 6326 { 6327 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6328 struct task_struct *p; 6329 unsigned long cookie; 6330 bool success = false; 6331 6332 guard(irq)(); 6333 guard(double_rq_lock)(dst, src); 6334 6335 cookie = dst->core->core_cookie; 6336 if (!cookie) 6337 return false; 6338 6339 if (dst->curr != dst->idle) 6340 return false; 6341 6342 p = sched_core_find(src, cookie); 6343 if (!p) 6344 return false; 6345 6346 do { 6347 if (p == src->core_pick || p == src->curr) 6348 goto next; 6349 6350 if (!is_cpu_allowed(p, this)) 6351 goto next; 6352 6353 if (p->core_occupation > dst->idle->core_occupation) 6354 goto next; 6355 /* 6356 * sched_core_find() and sched_core_next() will ensure 6357 * that task @p is not throttled now, we also need to 6358 * check whether the runqueue of the destination CPU is 6359 * being throttled. 6360 */ 6361 if (sched_task_is_throttled(p, this)) 6362 goto next; 6363 6364 move_queued_task_locked(src, dst, p); 6365 resched_curr(dst); 6366 6367 success = true; 6368 break; 6369 6370 next: 6371 p = sched_core_next(p, cookie); 6372 } while (p); 6373 6374 return success; 6375 } 6376 6377 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6378 { 6379 int i; 6380 6381 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6382 if (i == cpu) 6383 continue; 6384 6385 if (need_resched()) 6386 break; 6387 6388 if (try_steal_cookie(cpu, i)) 6389 return true; 6390 } 6391 6392 return false; 6393 } 6394 6395 static void sched_core_balance(struct rq *rq) 6396 { 6397 struct sched_domain *sd; 6398 int cpu = cpu_of(rq); 6399 6400 guard(preempt)(); 6401 guard(rcu)(); 6402 6403 raw_spin_rq_unlock_irq(rq); 6404 for_each_domain(cpu, sd) { 6405 if (need_resched()) 6406 break; 6407 6408 if (steal_cookie_task(cpu, sd)) 6409 break; 6410 } 6411 raw_spin_rq_lock_irq(rq); 6412 } 6413 6414 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6415 6416 static void queue_core_balance(struct rq *rq) 6417 { 6418 if (!sched_core_enabled(rq)) 6419 return; 6420 6421 if (!rq->core->core_cookie) 6422 return; 6423 6424 if (!rq->nr_running) /* not forced idle */ 6425 return; 6426 6427 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6428 } 6429 6430 DEFINE_LOCK_GUARD_1(core_lock, int, 6431 sched_core_lock(*_T->lock, &_T->flags), 6432 sched_core_unlock(*_T->lock, &_T->flags), 6433 unsigned long flags) 6434 6435 static void sched_core_cpu_starting(unsigned int cpu) 6436 { 6437 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6438 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6439 int t; 6440 6441 guard(core_lock)(&cpu); 6442 6443 WARN_ON_ONCE(rq->core != rq); 6444 6445 /* if we're the first, we'll be our own leader */ 6446 if (cpumask_weight(smt_mask) == 1) 6447 return; 6448 6449 /* find the leader */ 6450 for_each_cpu(t, smt_mask) { 6451 if (t == cpu) 6452 continue; 6453 rq = cpu_rq(t); 6454 if (rq->core == rq) { 6455 core_rq = rq; 6456 break; 6457 } 6458 } 6459 6460 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6461 return; 6462 6463 /* install and validate core_rq */ 6464 for_each_cpu(t, smt_mask) { 6465 rq = cpu_rq(t); 6466 6467 if (t == cpu) 6468 rq->core = core_rq; 6469 6470 WARN_ON_ONCE(rq->core != core_rq); 6471 } 6472 } 6473 6474 static void sched_core_cpu_deactivate(unsigned int cpu) 6475 { 6476 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6477 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6478 int t; 6479 6480 guard(core_lock)(&cpu); 6481 6482 /* if we're the last man standing, nothing to do */ 6483 if (cpumask_weight(smt_mask) == 1) { 6484 WARN_ON_ONCE(rq->core != rq); 6485 return; 6486 } 6487 6488 /* if we're not the leader, nothing to do */ 6489 if (rq->core != rq) 6490 return; 6491 6492 /* find a new leader */ 6493 for_each_cpu(t, smt_mask) { 6494 if (t == cpu) 6495 continue; 6496 core_rq = cpu_rq(t); 6497 break; 6498 } 6499 6500 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6501 return; 6502 6503 /* copy the shared state to the new leader */ 6504 core_rq->core_task_seq = rq->core_task_seq; 6505 core_rq->core_pick_seq = rq->core_pick_seq; 6506 core_rq->core_cookie = rq->core_cookie; 6507 core_rq->core_forceidle_count = rq->core_forceidle_count; 6508 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6509 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6510 6511 /* 6512 * Accounting edge for forced idle is handled in pick_next_task(). 6513 * Don't need another one here, since the hotplug thread shouldn't 6514 * have a cookie. 6515 */ 6516 core_rq->core_forceidle_start = 0; 6517 6518 /* install new leader */ 6519 for_each_cpu(t, smt_mask) { 6520 rq = cpu_rq(t); 6521 rq->core = core_rq; 6522 } 6523 } 6524 6525 static inline void sched_core_cpu_dying(unsigned int cpu) 6526 { 6527 struct rq *rq = cpu_rq(cpu); 6528 6529 if (rq->core != rq) 6530 rq->core = rq; 6531 } 6532 6533 #else /* !CONFIG_SCHED_CORE */ 6534 6535 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6536 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6537 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6538 6539 static struct task_struct * 6540 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6541 { 6542 return __pick_next_task(rq, prev, rf); 6543 } 6544 6545 #endif /* CONFIG_SCHED_CORE */ 6546 6547 /* 6548 * Constants for the sched_mode argument of __schedule(). 6549 * 6550 * The mode argument allows RT enabled kernels to differentiate a 6551 * preemption from blocking on an 'sleeping' spin/rwlock. 6552 */ 6553 #define SM_IDLE (-1) 6554 #define SM_NONE 0 6555 #define SM_PREEMPT 1 6556 #define SM_RTLOCK_WAIT 2 6557 6558 /* 6559 * Helper function for __schedule() 6560 * 6561 * If a task does not have signals pending, deactivate it 6562 * Otherwise marks the task's __state as RUNNING 6563 */ 6564 static bool try_to_block_task(struct rq *rq, struct task_struct *p, 6565 unsigned long task_state) 6566 { 6567 int flags = DEQUEUE_NOCLOCK; 6568 6569 if (signal_pending_state(task_state, p)) { 6570 WRITE_ONCE(p->__state, TASK_RUNNING); 6571 return false; 6572 } 6573 6574 p->sched_contributes_to_load = 6575 (task_state & TASK_UNINTERRUPTIBLE) && 6576 !(task_state & TASK_NOLOAD) && 6577 !(task_state & TASK_FROZEN); 6578 6579 if (unlikely(is_special_task_state(task_state))) 6580 flags |= DEQUEUE_SPECIAL; 6581 6582 /* 6583 * __schedule() ttwu() 6584 * prev_state = prev->state; if (p->on_rq && ...) 6585 * if (prev_state) goto out; 6586 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6587 * p->state = TASK_WAKING 6588 * 6589 * Where __schedule() and ttwu() have matching control dependencies. 6590 * 6591 * After this, schedule() must not care about p->state any more. 6592 */ 6593 block_task(rq, p, flags); 6594 return true; 6595 } 6596 6597 /* 6598 * __schedule() is the main scheduler function. 6599 * 6600 * The main means of driving the scheduler and thus entering this function are: 6601 * 6602 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6603 * 6604 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6605 * paths. For example, see arch/x86/entry_64.S. 6606 * 6607 * To drive preemption between tasks, the scheduler sets the flag in timer 6608 * interrupt handler sched_tick(). 6609 * 6610 * 3. Wakeups don't really cause entry into schedule(). They add a 6611 * task to the run-queue and that's it. 6612 * 6613 * Now, if the new task added to the run-queue preempts the current 6614 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6615 * called on the nearest possible occasion: 6616 * 6617 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6618 * 6619 * - in syscall or exception context, at the next outmost 6620 * preempt_enable(). (this might be as soon as the wake_up()'s 6621 * spin_unlock()!) 6622 * 6623 * - in IRQ context, return from interrupt-handler to 6624 * preemptible context 6625 * 6626 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6627 * then at the next: 6628 * 6629 * - cond_resched() call 6630 * - explicit schedule() call 6631 * - return from syscall or exception to user-space 6632 * - return from interrupt-handler to user-space 6633 * 6634 * WARNING: must be called with preemption disabled! 6635 */ 6636 static void __sched notrace __schedule(int sched_mode) 6637 { 6638 struct task_struct *prev, *next; 6639 /* 6640 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted 6641 * as a preemption by schedule_debug() and RCU. 6642 */ 6643 bool preempt = sched_mode > SM_NONE; 6644 bool block = false; 6645 unsigned long *switch_count; 6646 unsigned long prev_state; 6647 struct rq_flags rf; 6648 struct rq *rq; 6649 int cpu; 6650 6651 cpu = smp_processor_id(); 6652 rq = cpu_rq(cpu); 6653 prev = rq->curr; 6654 6655 schedule_debug(prev, preempt); 6656 6657 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6658 hrtick_clear(rq); 6659 6660 local_irq_disable(); 6661 rcu_note_context_switch(preempt); 6662 6663 /* 6664 * Make sure that signal_pending_state()->signal_pending() below 6665 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6666 * done by the caller to avoid the race with signal_wake_up(): 6667 * 6668 * __set_current_state(@state) signal_wake_up() 6669 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6670 * wake_up_state(p, state) 6671 * LOCK rq->lock LOCK p->pi_state 6672 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6673 * if (signal_pending_state()) if (p->state & @state) 6674 * 6675 * Also, the membarrier system call requires a full memory barrier 6676 * after coming from user-space, before storing to rq->curr; this 6677 * barrier matches a full barrier in the proximity of the membarrier 6678 * system call exit. 6679 */ 6680 rq_lock(rq, &rf); 6681 smp_mb__after_spinlock(); 6682 6683 /* Promote REQ to ACT */ 6684 rq->clock_update_flags <<= 1; 6685 update_rq_clock(rq); 6686 rq->clock_update_flags = RQCF_UPDATED; 6687 6688 switch_count = &prev->nivcsw; 6689 6690 /* Task state changes only considers SM_PREEMPT as preemption */ 6691 preempt = sched_mode == SM_PREEMPT; 6692 6693 /* 6694 * We must load prev->state once (task_struct::state is volatile), such 6695 * that we form a control dependency vs deactivate_task() below. 6696 */ 6697 prev_state = READ_ONCE(prev->__state); 6698 if (sched_mode == SM_IDLE) { 6699 /* SCX must consult the BPF scheduler to tell if rq is empty */ 6700 if (!rq->nr_running && !scx_enabled()) { 6701 next = prev; 6702 goto picked; 6703 } 6704 } else if (!preempt && prev_state) { 6705 block = try_to_block_task(rq, prev, prev_state); 6706 switch_count = &prev->nvcsw; 6707 } 6708 6709 next = pick_next_task(rq, prev, &rf); 6710 rq_set_donor(rq, next); 6711 picked: 6712 clear_tsk_need_resched(prev); 6713 clear_preempt_need_resched(); 6714 #ifdef CONFIG_SCHED_DEBUG 6715 rq->last_seen_need_resched_ns = 0; 6716 #endif 6717 6718 if (likely(prev != next)) { 6719 rq->nr_switches++; 6720 /* 6721 * RCU users of rcu_dereference(rq->curr) may not see 6722 * changes to task_struct made by pick_next_task(). 6723 */ 6724 RCU_INIT_POINTER(rq->curr, next); 6725 /* 6726 * The membarrier system call requires each architecture 6727 * to have a full memory barrier after updating 6728 * rq->curr, before returning to user-space. 6729 * 6730 * Here are the schemes providing that barrier on the 6731 * various architectures: 6732 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, 6733 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() 6734 * on PowerPC and on RISC-V. 6735 * - finish_lock_switch() for weakly-ordered 6736 * architectures where spin_unlock is a full barrier, 6737 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6738 * is a RELEASE barrier), 6739 * 6740 * The barrier matches a full barrier in the proximity of 6741 * the membarrier system call entry. 6742 * 6743 * On RISC-V, this barrier pairing is also needed for the 6744 * SYNC_CORE command when switching between processes, cf. 6745 * the inline comments in membarrier_arch_switch_mm(). 6746 */ 6747 ++*switch_count; 6748 6749 migrate_disable_switch(rq, prev); 6750 psi_account_irqtime(rq, prev, next); 6751 psi_sched_switch(prev, next, block); 6752 6753 trace_sched_switch(preempt, prev, next, prev_state); 6754 6755 /* Also unlocks the rq: */ 6756 rq = context_switch(rq, prev, next, &rf); 6757 } else { 6758 rq_unpin_lock(rq, &rf); 6759 __balance_callbacks(rq); 6760 raw_spin_rq_unlock_irq(rq); 6761 } 6762 } 6763 6764 void __noreturn do_task_dead(void) 6765 { 6766 /* Causes final put_task_struct in finish_task_switch(): */ 6767 set_special_state(TASK_DEAD); 6768 6769 /* Tell freezer to ignore us: */ 6770 current->flags |= PF_NOFREEZE; 6771 6772 __schedule(SM_NONE); 6773 BUG(); 6774 6775 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6776 for (;;) 6777 cpu_relax(); 6778 } 6779 6780 static inline void sched_submit_work(struct task_struct *tsk) 6781 { 6782 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6783 unsigned int task_flags; 6784 6785 /* 6786 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6787 * will use a blocking primitive -- which would lead to recursion. 6788 */ 6789 lock_map_acquire_try(&sched_map); 6790 6791 task_flags = tsk->flags; 6792 /* 6793 * If a worker goes to sleep, notify and ask workqueue whether it 6794 * wants to wake up a task to maintain concurrency. 6795 */ 6796 if (task_flags & PF_WQ_WORKER) 6797 wq_worker_sleeping(tsk); 6798 else if (task_flags & PF_IO_WORKER) 6799 io_wq_worker_sleeping(tsk); 6800 6801 /* 6802 * spinlock and rwlock must not flush block requests. This will 6803 * deadlock if the callback attempts to acquire a lock which is 6804 * already acquired. 6805 */ 6806 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6807 6808 /* 6809 * If we are going to sleep and we have plugged IO queued, 6810 * make sure to submit it to avoid deadlocks. 6811 */ 6812 blk_flush_plug(tsk->plug, true); 6813 6814 lock_map_release(&sched_map); 6815 } 6816 6817 static void sched_update_worker(struct task_struct *tsk) 6818 { 6819 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { 6820 if (tsk->flags & PF_BLOCK_TS) 6821 blk_plug_invalidate_ts(tsk); 6822 if (tsk->flags & PF_WQ_WORKER) 6823 wq_worker_running(tsk); 6824 else if (tsk->flags & PF_IO_WORKER) 6825 io_wq_worker_running(tsk); 6826 } 6827 } 6828 6829 static __always_inline void __schedule_loop(int sched_mode) 6830 { 6831 do { 6832 preempt_disable(); 6833 __schedule(sched_mode); 6834 sched_preempt_enable_no_resched(); 6835 } while (need_resched()); 6836 } 6837 6838 asmlinkage __visible void __sched schedule(void) 6839 { 6840 struct task_struct *tsk = current; 6841 6842 #ifdef CONFIG_RT_MUTEXES 6843 lockdep_assert(!tsk->sched_rt_mutex); 6844 #endif 6845 6846 if (!task_is_running(tsk)) 6847 sched_submit_work(tsk); 6848 __schedule_loop(SM_NONE); 6849 sched_update_worker(tsk); 6850 } 6851 EXPORT_SYMBOL(schedule); 6852 6853 /* 6854 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6855 * state (have scheduled out non-voluntarily) by making sure that all 6856 * tasks have either left the run queue or have gone into user space. 6857 * As idle tasks do not do either, they must not ever be preempted 6858 * (schedule out non-voluntarily). 6859 * 6860 * schedule_idle() is similar to schedule_preempt_disable() except that it 6861 * never enables preemption because it does not call sched_submit_work(). 6862 */ 6863 void __sched schedule_idle(void) 6864 { 6865 /* 6866 * As this skips calling sched_submit_work(), which the idle task does 6867 * regardless because that function is a NOP when the task is in a 6868 * TASK_RUNNING state, make sure this isn't used someplace that the 6869 * current task can be in any other state. Note, idle is always in the 6870 * TASK_RUNNING state. 6871 */ 6872 WARN_ON_ONCE(current->__state); 6873 do { 6874 __schedule(SM_IDLE); 6875 } while (need_resched()); 6876 } 6877 6878 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6879 asmlinkage __visible void __sched schedule_user(void) 6880 { 6881 /* 6882 * If we come here after a random call to set_need_resched(), 6883 * or we have been woken up remotely but the IPI has not yet arrived, 6884 * we haven't yet exited the RCU idle mode. Do it here manually until 6885 * we find a better solution. 6886 * 6887 * NB: There are buggy callers of this function. Ideally we 6888 * should warn if prev_state != CT_STATE_USER, but that will trigger 6889 * too frequently to make sense yet. 6890 */ 6891 enum ctx_state prev_state = exception_enter(); 6892 schedule(); 6893 exception_exit(prev_state); 6894 } 6895 #endif 6896 6897 /** 6898 * schedule_preempt_disabled - called with preemption disabled 6899 * 6900 * Returns with preemption disabled. Note: preempt_count must be 1 6901 */ 6902 void __sched schedule_preempt_disabled(void) 6903 { 6904 sched_preempt_enable_no_resched(); 6905 schedule(); 6906 preempt_disable(); 6907 } 6908 6909 #ifdef CONFIG_PREEMPT_RT 6910 void __sched notrace schedule_rtlock(void) 6911 { 6912 __schedule_loop(SM_RTLOCK_WAIT); 6913 } 6914 NOKPROBE_SYMBOL(schedule_rtlock); 6915 #endif 6916 6917 static void __sched notrace preempt_schedule_common(void) 6918 { 6919 do { 6920 /* 6921 * Because the function tracer can trace preempt_count_sub() 6922 * and it also uses preempt_enable/disable_notrace(), if 6923 * NEED_RESCHED is set, the preempt_enable_notrace() called 6924 * by the function tracer will call this function again and 6925 * cause infinite recursion. 6926 * 6927 * Preemption must be disabled here before the function 6928 * tracer can trace. Break up preempt_disable() into two 6929 * calls. One to disable preemption without fear of being 6930 * traced. The other to still record the preemption latency, 6931 * which can also be traced by the function tracer. 6932 */ 6933 preempt_disable_notrace(); 6934 preempt_latency_start(1); 6935 __schedule(SM_PREEMPT); 6936 preempt_latency_stop(1); 6937 preempt_enable_no_resched_notrace(); 6938 6939 /* 6940 * Check again in case we missed a preemption opportunity 6941 * between schedule and now. 6942 */ 6943 } while (need_resched()); 6944 } 6945 6946 #ifdef CONFIG_PREEMPTION 6947 /* 6948 * This is the entry point to schedule() from in-kernel preemption 6949 * off of preempt_enable. 6950 */ 6951 asmlinkage __visible void __sched notrace preempt_schedule(void) 6952 { 6953 /* 6954 * If there is a non-zero preempt_count or interrupts are disabled, 6955 * we do not want to preempt the current task. Just return.. 6956 */ 6957 if (likely(!preemptible())) 6958 return; 6959 preempt_schedule_common(); 6960 } 6961 NOKPROBE_SYMBOL(preempt_schedule); 6962 EXPORT_SYMBOL(preempt_schedule); 6963 6964 #ifdef CONFIG_PREEMPT_DYNAMIC 6965 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6966 #ifndef preempt_schedule_dynamic_enabled 6967 #define preempt_schedule_dynamic_enabled preempt_schedule 6968 #define preempt_schedule_dynamic_disabled NULL 6969 #endif 6970 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6971 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6972 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6973 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6974 void __sched notrace dynamic_preempt_schedule(void) 6975 { 6976 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6977 return; 6978 preempt_schedule(); 6979 } 6980 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6981 EXPORT_SYMBOL(dynamic_preempt_schedule); 6982 #endif 6983 #endif 6984 6985 /** 6986 * preempt_schedule_notrace - preempt_schedule called by tracing 6987 * 6988 * The tracing infrastructure uses preempt_enable_notrace to prevent 6989 * recursion and tracing preempt enabling caused by the tracing 6990 * infrastructure itself. But as tracing can happen in areas coming 6991 * from userspace or just about to enter userspace, a preempt enable 6992 * can occur before user_exit() is called. This will cause the scheduler 6993 * to be called when the system is still in usermode. 6994 * 6995 * To prevent this, the preempt_enable_notrace will use this function 6996 * instead of preempt_schedule() to exit user context if needed before 6997 * calling the scheduler. 6998 */ 6999 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 7000 { 7001 enum ctx_state prev_ctx; 7002 7003 if (likely(!preemptible())) 7004 return; 7005 7006 do { 7007 /* 7008 * Because the function tracer can trace preempt_count_sub() 7009 * and it also uses preempt_enable/disable_notrace(), if 7010 * NEED_RESCHED is set, the preempt_enable_notrace() called 7011 * by the function tracer will call this function again and 7012 * cause infinite recursion. 7013 * 7014 * Preemption must be disabled here before the function 7015 * tracer can trace. Break up preempt_disable() into two 7016 * calls. One to disable preemption without fear of being 7017 * traced. The other to still record the preemption latency, 7018 * which can also be traced by the function tracer. 7019 */ 7020 preempt_disable_notrace(); 7021 preempt_latency_start(1); 7022 /* 7023 * Needs preempt disabled in case user_exit() is traced 7024 * and the tracer calls preempt_enable_notrace() causing 7025 * an infinite recursion. 7026 */ 7027 prev_ctx = exception_enter(); 7028 __schedule(SM_PREEMPT); 7029 exception_exit(prev_ctx); 7030 7031 preempt_latency_stop(1); 7032 preempt_enable_no_resched_notrace(); 7033 } while (need_resched()); 7034 } 7035 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 7036 7037 #ifdef CONFIG_PREEMPT_DYNAMIC 7038 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7039 #ifndef preempt_schedule_notrace_dynamic_enabled 7040 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 7041 #define preempt_schedule_notrace_dynamic_disabled NULL 7042 #endif 7043 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 7044 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 7045 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7046 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 7047 void __sched notrace dynamic_preempt_schedule_notrace(void) 7048 { 7049 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 7050 return; 7051 preempt_schedule_notrace(); 7052 } 7053 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 7054 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 7055 #endif 7056 #endif 7057 7058 #endif /* CONFIG_PREEMPTION */ 7059 7060 /* 7061 * This is the entry point to schedule() from kernel preemption 7062 * off of IRQ context. 7063 * Note, that this is called and return with IRQs disabled. This will 7064 * protect us against recursive calling from IRQ contexts. 7065 */ 7066 asmlinkage __visible void __sched preempt_schedule_irq(void) 7067 { 7068 enum ctx_state prev_state; 7069 7070 /* Catch callers which need to be fixed */ 7071 BUG_ON(preempt_count() || !irqs_disabled()); 7072 7073 prev_state = exception_enter(); 7074 7075 do { 7076 preempt_disable(); 7077 local_irq_enable(); 7078 __schedule(SM_PREEMPT); 7079 local_irq_disable(); 7080 sched_preempt_enable_no_resched(); 7081 } while (need_resched()); 7082 7083 exception_exit(prev_state); 7084 } 7085 7086 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 7087 void *key) 7088 { 7089 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 7090 return try_to_wake_up(curr->private, mode, wake_flags); 7091 } 7092 EXPORT_SYMBOL(default_wake_function); 7093 7094 const struct sched_class *__setscheduler_class(int policy, int prio) 7095 { 7096 if (dl_prio(prio)) 7097 return &dl_sched_class; 7098 7099 if (rt_prio(prio)) 7100 return &rt_sched_class; 7101 7102 #ifdef CONFIG_SCHED_CLASS_EXT 7103 if (task_should_scx(policy)) 7104 return &ext_sched_class; 7105 #endif 7106 7107 return &fair_sched_class; 7108 } 7109 7110 #ifdef CONFIG_RT_MUTEXES 7111 7112 /* 7113 * Would be more useful with typeof()/auto_type but they don't mix with 7114 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 7115 * name such that if someone were to implement this function we get to compare 7116 * notes. 7117 */ 7118 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 7119 7120 void rt_mutex_pre_schedule(void) 7121 { 7122 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 7123 sched_submit_work(current); 7124 } 7125 7126 void rt_mutex_schedule(void) 7127 { 7128 lockdep_assert(current->sched_rt_mutex); 7129 __schedule_loop(SM_NONE); 7130 } 7131 7132 void rt_mutex_post_schedule(void) 7133 { 7134 sched_update_worker(current); 7135 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 7136 } 7137 7138 /* 7139 * rt_mutex_setprio - set the current priority of a task 7140 * @p: task to boost 7141 * @pi_task: donor task 7142 * 7143 * This function changes the 'effective' priority of a task. It does 7144 * not touch ->normal_prio like __setscheduler(). 7145 * 7146 * Used by the rt_mutex code to implement priority inheritance 7147 * logic. Call site only calls if the priority of the task changed. 7148 */ 7149 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 7150 { 7151 int prio, oldprio, queued, running, queue_flag = 7152 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7153 const struct sched_class *prev_class, *next_class; 7154 struct rq_flags rf; 7155 struct rq *rq; 7156 7157 /* XXX used to be waiter->prio, not waiter->task->prio */ 7158 prio = __rt_effective_prio(pi_task, p->normal_prio); 7159 7160 /* 7161 * If nothing changed; bail early. 7162 */ 7163 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7164 return; 7165 7166 rq = __task_rq_lock(p, &rf); 7167 update_rq_clock(rq); 7168 /* 7169 * Set under pi_lock && rq->lock, such that the value can be used under 7170 * either lock. 7171 * 7172 * Note that there is loads of tricky to make this pointer cache work 7173 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7174 * ensure a task is de-boosted (pi_task is set to NULL) before the 7175 * task is allowed to run again (and can exit). This ensures the pointer 7176 * points to a blocked task -- which guarantees the task is present. 7177 */ 7178 p->pi_top_task = pi_task; 7179 7180 /* 7181 * For FIFO/RR we only need to set prio, if that matches we're done. 7182 */ 7183 if (prio == p->prio && !dl_prio(prio)) 7184 goto out_unlock; 7185 7186 /* 7187 * Idle task boosting is a no-no in general. There is one 7188 * exception, when PREEMPT_RT and NOHZ is active: 7189 * 7190 * The idle task calls get_next_timer_interrupt() and holds 7191 * the timer wheel base->lock on the CPU and another CPU wants 7192 * to access the timer (probably to cancel it). We can safely 7193 * ignore the boosting request, as the idle CPU runs this code 7194 * with interrupts disabled and will complete the lock 7195 * protected section without being interrupted. So there is no 7196 * real need to boost. 7197 */ 7198 if (unlikely(p == rq->idle)) { 7199 WARN_ON(p != rq->curr); 7200 WARN_ON(p->pi_blocked_on); 7201 goto out_unlock; 7202 } 7203 7204 trace_sched_pi_setprio(p, pi_task); 7205 oldprio = p->prio; 7206 7207 if (oldprio == prio) 7208 queue_flag &= ~DEQUEUE_MOVE; 7209 7210 prev_class = p->sched_class; 7211 next_class = __setscheduler_class(p->policy, prio); 7212 7213 if (prev_class != next_class && p->se.sched_delayed) 7214 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK); 7215 7216 queued = task_on_rq_queued(p); 7217 running = task_current_donor(rq, p); 7218 if (queued) 7219 dequeue_task(rq, p, queue_flag); 7220 if (running) 7221 put_prev_task(rq, p); 7222 7223 /* 7224 * Boosting condition are: 7225 * 1. -rt task is running and holds mutex A 7226 * --> -dl task blocks on mutex A 7227 * 7228 * 2. -dl task is running and holds mutex A 7229 * --> -dl task blocks on mutex A and could preempt the 7230 * running task 7231 */ 7232 if (dl_prio(prio)) { 7233 if (!dl_prio(p->normal_prio) || 7234 (pi_task && dl_prio(pi_task->prio) && 7235 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7236 p->dl.pi_se = pi_task->dl.pi_se; 7237 queue_flag |= ENQUEUE_REPLENISH; 7238 } else { 7239 p->dl.pi_se = &p->dl; 7240 } 7241 } else if (rt_prio(prio)) { 7242 if (dl_prio(oldprio)) 7243 p->dl.pi_se = &p->dl; 7244 if (oldprio < prio) 7245 queue_flag |= ENQUEUE_HEAD; 7246 } else { 7247 if (dl_prio(oldprio)) 7248 p->dl.pi_se = &p->dl; 7249 if (rt_prio(oldprio)) 7250 p->rt.timeout = 0; 7251 } 7252 7253 p->sched_class = next_class; 7254 p->prio = prio; 7255 7256 check_class_changing(rq, p, prev_class); 7257 7258 if (queued) 7259 enqueue_task(rq, p, queue_flag); 7260 if (running) 7261 set_next_task(rq, p); 7262 7263 check_class_changed(rq, p, prev_class, oldprio); 7264 out_unlock: 7265 /* Avoid rq from going away on us: */ 7266 preempt_disable(); 7267 7268 rq_unpin_lock(rq, &rf); 7269 __balance_callbacks(rq); 7270 raw_spin_rq_unlock(rq); 7271 7272 preempt_enable(); 7273 } 7274 #endif 7275 7276 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7277 int __sched __cond_resched(void) 7278 { 7279 if (should_resched(0)) { 7280 preempt_schedule_common(); 7281 return 1; 7282 } 7283 /* 7284 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 7285 * whether the current CPU is in an RCU read-side critical section, 7286 * so the tick can report quiescent states even for CPUs looping 7287 * in kernel context. In contrast, in non-preemptible kernels, 7288 * RCU readers leave no in-memory hints, which means that CPU-bound 7289 * processes executing in kernel context might never report an 7290 * RCU quiescent state. Therefore, the following code causes 7291 * cond_resched() to report a quiescent state, but only when RCU 7292 * is in urgent need of one. 7293 */ 7294 #ifndef CONFIG_PREEMPT_RCU 7295 rcu_all_qs(); 7296 #endif 7297 return 0; 7298 } 7299 EXPORT_SYMBOL(__cond_resched); 7300 #endif 7301 7302 #ifdef CONFIG_PREEMPT_DYNAMIC 7303 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7304 #define cond_resched_dynamic_enabled __cond_resched 7305 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 7306 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7307 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7308 7309 #define might_resched_dynamic_enabled __cond_resched 7310 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 7311 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7312 EXPORT_STATIC_CALL_TRAMP(might_resched); 7313 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7314 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 7315 int __sched dynamic_cond_resched(void) 7316 { 7317 klp_sched_try_switch(); 7318 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 7319 return 0; 7320 return __cond_resched(); 7321 } 7322 EXPORT_SYMBOL(dynamic_cond_resched); 7323 7324 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 7325 int __sched dynamic_might_resched(void) 7326 { 7327 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 7328 return 0; 7329 return __cond_resched(); 7330 } 7331 EXPORT_SYMBOL(dynamic_might_resched); 7332 #endif 7333 #endif 7334 7335 /* 7336 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7337 * call schedule, and on return reacquire the lock. 7338 * 7339 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7340 * operations here to prevent schedule() from being called twice (once via 7341 * spin_unlock(), once by hand). 7342 */ 7343 int __cond_resched_lock(spinlock_t *lock) 7344 { 7345 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7346 int ret = 0; 7347 7348 lockdep_assert_held(lock); 7349 7350 if (spin_needbreak(lock) || resched) { 7351 spin_unlock(lock); 7352 if (!_cond_resched()) 7353 cpu_relax(); 7354 ret = 1; 7355 spin_lock(lock); 7356 } 7357 return ret; 7358 } 7359 EXPORT_SYMBOL(__cond_resched_lock); 7360 7361 int __cond_resched_rwlock_read(rwlock_t *lock) 7362 { 7363 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7364 int ret = 0; 7365 7366 lockdep_assert_held_read(lock); 7367 7368 if (rwlock_needbreak(lock) || resched) { 7369 read_unlock(lock); 7370 if (!_cond_resched()) 7371 cpu_relax(); 7372 ret = 1; 7373 read_lock(lock); 7374 } 7375 return ret; 7376 } 7377 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7378 7379 int __cond_resched_rwlock_write(rwlock_t *lock) 7380 { 7381 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7382 int ret = 0; 7383 7384 lockdep_assert_held_write(lock); 7385 7386 if (rwlock_needbreak(lock) || resched) { 7387 write_unlock(lock); 7388 if (!_cond_resched()) 7389 cpu_relax(); 7390 ret = 1; 7391 write_lock(lock); 7392 } 7393 return ret; 7394 } 7395 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7396 7397 #ifdef CONFIG_PREEMPT_DYNAMIC 7398 7399 #ifdef CONFIG_GENERIC_ENTRY 7400 #include <linux/entry-common.h> 7401 #endif 7402 7403 /* 7404 * SC:cond_resched 7405 * SC:might_resched 7406 * SC:preempt_schedule 7407 * SC:preempt_schedule_notrace 7408 * SC:irqentry_exit_cond_resched 7409 * 7410 * 7411 * NONE: 7412 * cond_resched <- __cond_resched 7413 * might_resched <- RET0 7414 * preempt_schedule <- NOP 7415 * preempt_schedule_notrace <- NOP 7416 * irqentry_exit_cond_resched <- NOP 7417 * dynamic_preempt_lazy <- false 7418 * 7419 * VOLUNTARY: 7420 * cond_resched <- __cond_resched 7421 * might_resched <- __cond_resched 7422 * preempt_schedule <- NOP 7423 * preempt_schedule_notrace <- NOP 7424 * irqentry_exit_cond_resched <- NOP 7425 * dynamic_preempt_lazy <- false 7426 * 7427 * FULL: 7428 * cond_resched <- RET0 7429 * might_resched <- RET0 7430 * preempt_schedule <- preempt_schedule 7431 * preempt_schedule_notrace <- preempt_schedule_notrace 7432 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7433 * dynamic_preempt_lazy <- false 7434 * 7435 * LAZY: 7436 * cond_resched <- RET0 7437 * might_resched <- RET0 7438 * preempt_schedule <- preempt_schedule 7439 * preempt_schedule_notrace <- preempt_schedule_notrace 7440 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7441 * dynamic_preempt_lazy <- true 7442 */ 7443 7444 enum { 7445 preempt_dynamic_undefined = -1, 7446 preempt_dynamic_none, 7447 preempt_dynamic_voluntary, 7448 preempt_dynamic_full, 7449 preempt_dynamic_lazy, 7450 }; 7451 7452 int preempt_dynamic_mode = preempt_dynamic_undefined; 7453 7454 int sched_dynamic_mode(const char *str) 7455 { 7456 #ifndef CONFIG_PREEMPT_RT 7457 if (!strcmp(str, "none")) 7458 return preempt_dynamic_none; 7459 7460 if (!strcmp(str, "voluntary")) 7461 return preempt_dynamic_voluntary; 7462 #endif 7463 7464 if (!strcmp(str, "full")) 7465 return preempt_dynamic_full; 7466 7467 #ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY 7468 if (!strcmp(str, "lazy")) 7469 return preempt_dynamic_lazy; 7470 #endif 7471 7472 return -EINVAL; 7473 } 7474 7475 #define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key) 7476 #define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key) 7477 7478 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7479 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 7480 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 7481 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7482 #define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f) 7483 #define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f) 7484 #else 7485 #error "Unsupported PREEMPT_DYNAMIC mechanism" 7486 #endif 7487 7488 static DEFINE_MUTEX(sched_dynamic_mutex); 7489 static bool klp_override; 7490 7491 static void __sched_dynamic_update(int mode) 7492 { 7493 /* 7494 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 7495 * the ZERO state, which is invalid. 7496 */ 7497 if (!klp_override) 7498 preempt_dynamic_enable(cond_resched); 7499 preempt_dynamic_enable(might_resched); 7500 preempt_dynamic_enable(preempt_schedule); 7501 preempt_dynamic_enable(preempt_schedule_notrace); 7502 preempt_dynamic_enable(irqentry_exit_cond_resched); 7503 preempt_dynamic_key_disable(preempt_lazy); 7504 7505 switch (mode) { 7506 case preempt_dynamic_none: 7507 if (!klp_override) 7508 preempt_dynamic_enable(cond_resched); 7509 preempt_dynamic_disable(might_resched); 7510 preempt_dynamic_disable(preempt_schedule); 7511 preempt_dynamic_disable(preempt_schedule_notrace); 7512 preempt_dynamic_disable(irqentry_exit_cond_resched); 7513 preempt_dynamic_key_disable(preempt_lazy); 7514 if (mode != preempt_dynamic_mode) 7515 pr_info("Dynamic Preempt: none\n"); 7516 break; 7517 7518 case preempt_dynamic_voluntary: 7519 if (!klp_override) 7520 preempt_dynamic_enable(cond_resched); 7521 preempt_dynamic_enable(might_resched); 7522 preempt_dynamic_disable(preempt_schedule); 7523 preempt_dynamic_disable(preempt_schedule_notrace); 7524 preempt_dynamic_disable(irqentry_exit_cond_resched); 7525 preempt_dynamic_key_disable(preempt_lazy); 7526 if (mode != preempt_dynamic_mode) 7527 pr_info("Dynamic Preempt: voluntary\n"); 7528 break; 7529 7530 case preempt_dynamic_full: 7531 if (!klp_override) 7532 preempt_dynamic_disable(cond_resched); 7533 preempt_dynamic_disable(might_resched); 7534 preempt_dynamic_enable(preempt_schedule); 7535 preempt_dynamic_enable(preempt_schedule_notrace); 7536 preempt_dynamic_enable(irqentry_exit_cond_resched); 7537 preempt_dynamic_key_disable(preempt_lazy); 7538 if (mode != preempt_dynamic_mode) 7539 pr_info("Dynamic Preempt: full\n"); 7540 break; 7541 7542 case preempt_dynamic_lazy: 7543 if (!klp_override) 7544 preempt_dynamic_disable(cond_resched); 7545 preempt_dynamic_disable(might_resched); 7546 preempt_dynamic_enable(preempt_schedule); 7547 preempt_dynamic_enable(preempt_schedule_notrace); 7548 preempt_dynamic_enable(irqentry_exit_cond_resched); 7549 preempt_dynamic_key_enable(preempt_lazy); 7550 if (mode != preempt_dynamic_mode) 7551 pr_info("Dynamic Preempt: lazy\n"); 7552 break; 7553 } 7554 7555 preempt_dynamic_mode = mode; 7556 } 7557 7558 void sched_dynamic_update(int mode) 7559 { 7560 mutex_lock(&sched_dynamic_mutex); 7561 __sched_dynamic_update(mode); 7562 mutex_unlock(&sched_dynamic_mutex); 7563 } 7564 7565 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7566 7567 static int klp_cond_resched(void) 7568 { 7569 __klp_sched_try_switch(); 7570 return __cond_resched(); 7571 } 7572 7573 void sched_dynamic_klp_enable(void) 7574 { 7575 mutex_lock(&sched_dynamic_mutex); 7576 7577 klp_override = true; 7578 static_call_update(cond_resched, klp_cond_resched); 7579 7580 mutex_unlock(&sched_dynamic_mutex); 7581 } 7582 7583 void sched_dynamic_klp_disable(void) 7584 { 7585 mutex_lock(&sched_dynamic_mutex); 7586 7587 klp_override = false; 7588 __sched_dynamic_update(preempt_dynamic_mode); 7589 7590 mutex_unlock(&sched_dynamic_mutex); 7591 } 7592 7593 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ 7594 7595 static int __init setup_preempt_mode(char *str) 7596 { 7597 int mode = sched_dynamic_mode(str); 7598 if (mode < 0) { 7599 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 7600 return 0; 7601 } 7602 7603 sched_dynamic_update(mode); 7604 return 1; 7605 } 7606 __setup("preempt=", setup_preempt_mode); 7607 7608 static void __init preempt_dynamic_init(void) 7609 { 7610 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 7611 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 7612 sched_dynamic_update(preempt_dynamic_none); 7613 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 7614 sched_dynamic_update(preempt_dynamic_voluntary); 7615 } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7616 sched_dynamic_update(preempt_dynamic_lazy); 7617 } else { 7618 /* Default static call setting, nothing to do */ 7619 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 7620 preempt_dynamic_mode = preempt_dynamic_full; 7621 pr_info("Dynamic Preempt: full\n"); 7622 } 7623 } 7624 } 7625 7626 #define PREEMPT_MODEL_ACCESSOR(mode) \ 7627 bool preempt_model_##mode(void) \ 7628 { \ 7629 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 7630 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 7631 } \ 7632 EXPORT_SYMBOL_GPL(preempt_model_##mode) 7633 7634 PREEMPT_MODEL_ACCESSOR(none); 7635 PREEMPT_MODEL_ACCESSOR(voluntary); 7636 PREEMPT_MODEL_ACCESSOR(full); 7637 PREEMPT_MODEL_ACCESSOR(lazy); 7638 7639 #else /* !CONFIG_PREEMPT_DYNAMIC: */ 7640 7641 static inline void preempt_dynamic_init(void) { } 7642 7643 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7644 7645 int io_schedule_prepare(void) 7646 { 7647 int old_iowait = current->in_iowait; 7648 7649 current->in_iowait = 1; 7650 blk_flush_plug(current->plug, true); 7651 return old_iowait; 7652 } 7653 7654 void io_schedule_finish(int token) 7655 { 7656 current->in_iowait = token; 7657 } 7658 7659 /* 7660 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7661 * that process accounting knows that this is a task in IO wait state. 7662 */ 7663 long __sched io_schedule_timeout(long timeout) 7664 { 7665 int token; 7666 long ret; 7667 7668 token = io_schedule_prepare(); 7669 ret = schedule_timeout(timeout); 7670 io_schedule_finish(token); 7671 7672 return ret; 7673 } 7674 EXPORT_SYMBOL(io_schedule_timeout); 7675 7676 void __sched io_schedule(void) 7677 { 7678 int token; 7679 7680 token = io_schedule_prepare(); 7681 schedule(); 7682 io_schedule_finish(token); 7683 } 7684 EXPORT_SYMBOL(io_schedule); 7685 7686 void sched_show_task(struct task_struct *p) 7687 { 7688 unsigned long free; 7689 int ppid; 7690 7691 if (!try_get_task_stack(p)) 7692 return; 7693 7694 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7695 7696 if (task_is_running(p)) 7697 pr_cont(" running task "); 7698 free = stack_not_used(p); 7699 ppid = 0; 7700 rcu_read_lock(); 7701 if (pid_alive(p)) 7702 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7703 rcu_read_unlock(); 7704 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n", 7705 free, task_pid_nr(p), task_tgid_nr(p), 7706 ppid, read_task_thread_flags(p)); 7707 7708 print_worker_info(KERN_INFO, p); 7709 print_stop_info(KERN_INFO, p); 7710 print_scx_info(KERN_INFO, p); 7711 show_stack(p, NULL, KERN_INFO); 7712 put_task_stack(p); 7713 } 7714 EXPORT_SYMBOL_GPL(sched_show_task); 7715 7716 static inline bool 7717 state_filter_match(unsigned long state_filter, struct task_struct *p) 7718 { 7719 unsigned int state = READ_ONCE(p->__state); 7720 7721 /* no filter, everything matches */ 7722 if (!state_filter) 7723 return true; 7724 7725 /* filter, but doesn't match */ 7726 if (!(state & state_filter)) 7727 return false; 7728 7729 /* 7730 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7731 * TASK_KILLABLE). 7732 */ 7733 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 7734 return false; 7735 7736 return true; 7737 } 7738 7739 7740 void show_state_filter(unsigned int state_filter) 7741 { 7742 struct task_struct *g, *p; 7743 7744 rcu_read_lock(); 7745 for_each_process_thread(g, p) { 7746 /* 7747 * reset the NMI-timeout, listing all files on a slow 7748 * console might take a lot of time: 7749 * Also, reset softlockup watchdogs on all CPUs, because 7750 * another CPU might be blocked waiting for us to process 7751 * an IPI. 7752 */ 7753 touch_nmi_watchdog(); 7754 touch_all_softlockup_watchdogs(); 7755 if (state_filter_match(state_filter, p)) 7756 sched_show_task(p); 7757 } 7758 7759 #ifdef CONFIG_SCHED_DEBUG 7760 if (!state_filter) 7761 sysrq_sched_debug_show(); 7762 #endif 7763 rcu_read_unlock(); 7764 /* 7765 * Only show locks if all tasks are dumped: 7766 */ 7767 if (!state_filter) 7768 debug_show_all_locks(); 7769 } 7770 7771 /** 7772 * init_idle - set up an idle thread for a given CPU 7773 * @idle: task in question 7774 * @cpu: CPU the idle task belongs to 7775 * 7776 * NOTE: this function does not set the idle thread's NEED_RESCHED 7777 * flag, to make booting more robust. 7778 */ 7779 void __init init_idle(struct task_struct *idle, int cpu) 7780 { 7781 #ifdef CONFIG_SMP 7782 struct affinity_context ac = (struct affinity_context) { 7783 .new_mask = cpumask_of(cpu), 7784 .flags = 0, 7785 }; 7786 #endif 7787 struct rq *rq = cpu_rq(cpu); 7788 unsigned long flags; 7789 7790 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7791 raw_spin_rq_lock(rq); 7792 7793 idle->__state = TASK_RUNNING; 7794 idle->se.exec_start = sched_clock(); 7795 /* 7796 * PF_KTHREAD should already be set at this point; regardless, make it 7797 * look like a proper per-CPU kthread. 7798 */ 7799 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 7800 kthread_set_per_cpu(idle, cpu); 7801 7802 #ifdef CONFIG_SMP 7803 /* 7804 * No validation and serialization required at boot time and for 7805 * setting up the idle tasks of not yet online CPUs. 7806 */ 7807 set_cpus_allowed_common(idle, &ac); 7808 #endif 7809 /* 7810 * We're having a chicken and egg problem, even though we are 7811 * holding rq->lock, the CPU isn't yet set to this CPU so the 7812 * lockdep check in task_group() will fail. 7813 * 7814 * Similar case to sched_fork(). / Alternatively we could 7815 * use task_rq_lock() here and obtain the other rq->lock. 7816 * 7817 * Silence PROVE_RCU 7818 */ 7819 rcu_read_lock(); 7820 __set_task_cpu(idle, cpu); 7821 rcu_read_unlock(); 7822 7823 rq->idle = idle; 7824 rq_set_donor(rq, idle); 7825 rcu_assign_pointer(rq->curr, idle); 7826 idle->on_rq = TASK_ON_RQ_QUEUED; 7827 #ifdef CONFIG_SMP 7828 idle->on_cpu = 1; 7829 #endif 7830 raw_spin_rq_unlock(rq); 7831 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7832 7833 /* Set the preempt count _outside_ the spinlocks! */ 7834 init_idle_preempt_count(idle, cpu); 7835 7836 /* 7837 * The idle tasks have their own, simple scheduling class: 7838 */ 7839 idle->sched_class = &idle_sched_class; 7840 ftrace_graph_init_idle_task(idle, cpu); 7841 vtime_init_idle(idle, cpu); 7842 #ifdef CONFIG_SMP 7843 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7844 #endif 7845 } 7846 7847 #ifdef CONFIG_SMP 7848 7849 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7850 const struct cpumask *trial) 7851 { 7852 int ret = 1; 7853 7854 if (cpumask_empty(cur)) 7855 return ret; 7856 7857 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7858 7859 return ret; 7860 } 7861 7862 int task_can_attach(struct task_struct *p) 7863 { 7864 int ret = 0; 7865 7866 /* 7867 * Kthreads which disallow setaffinity shouldn't be moved 7868 * to a new cpuset; we don't want to change their CPU 7869 * affinity and isolating such threads by their set of 7870 * allowed nodes is unnecessary. Thus, cpusets are not 7871 * applicable for such threads. This prevents checking for 7872 * success of set_cpus_allowed_ptr() on all attached tasks 7873 * before cpus_mask may be changed. 7874 */ 7875 if (p->flags & PF_NO_SETAFFINITY) 7876 ret = -EINVAL; 7877 7878 return ret; 7879 } 7880 7881 bool sched_smp_initialized __read_mostly; 7882 7883 #ifdef CONFIG_NUMA_BALANCING 7884 /* Migrate current task p to target_cpu */ 7885 int migrate_task_to(struct task_struct *p, int target_cpu) 7886 { 7887 struct migration_arg arg = { p, target_cpu }; 7888 int curr_cpu = task_cpu(p); 7889 7890 if (curr_cpu == target_cpu) 7891 return 0; 7892 7893 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7894 return -EINVAL; 7895 7896 /* TODO: This is not properly updating schedstats */ 7897 7898 trace_sched_move_numa(p, curr_cpu, target_cpu); 7899 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7900 } 7901 7902 /* 7903 * Requeue a task on a given node and accurately track the number of NUMA 7904 * tasks on the runqueues 7905 */ 7906 void sched_setnuma(struct task_struct *p, int nid) 7907 { 7908 bool queued, running; 7909 struct rq_flags rf; 7910 struct rq *rq; 7911 7912 rq = task_rq_lock(p, &rf); 7913 queued = task_on_rq_queued(p); 7914 running = task_current_donor(rq, p); 7915 7916 if (queued) 7917 dequeue_task(rq, p, DEQUEUE_SAVE); 7918 if (running) 7919 put_prev_task(rq, p); 7920 7921 p->numa_preferred_nid = nid; 7922 7923 if (queued) 7924 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7925 if (running) 7926 set_next_task(rq, p); 7927 task_rq_unlock(rq, p, &rf); 7928 } 7929 #endif /* CONFIG_NUMA_BALANCING */ 7930 7931 #ifdef CONFIG_HOTPLUG_CPU 7932 /* 7933 * Ensure that the idle task is using init_mm right before its CPU goes 7934 * offline. 7935 */ 7936 void idle_task_exit(void) 7937 { 7938 struct mm_struct *mm = current->active_mm; 7939 7940 BUG_ON(cpu_online(smp_processor_id())); 7941 BUG_ON(current != this_rq()->idle); 7942 7943 if (mm != &init_mm) { 7944 switch_mm(mm, &init_mm, current); 7945 finish_arch_post_lock_switch(); 7946 } 7947 7948 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 7949 } 7950 7951 static int __balance_push_cpu_stop(void *arg) 7952 { 7953 struct task_struct *p = arg; 7954 struct rq *rq = this_rq(); 7955 struct rq_flags rf; 7956 int cpu; 7957 7958 raw_spin_lock_irq(&p->pi_lock); 7959 rq_lock(rq, &rf); 7960 7961 update_rq_clock(rq); 7962 7963 if (task_rq(p) == rq && task_on_rq_queued(p)) { 7964 cpu = select_fallback_rq(rq->cpu, p); 7965 rq = __migrate_task(rq, &rf, p, cpu); 7966 } 7967 7968 rq_unlock(rq, &rf); 7969 raw_spin_unlock_irq(&p->pi_lock); 7970 7971 put_task_struct(p); 7972 7973 return 0; 7974 } 7975 7976 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 7977 7978 /* 7979 * Ensure we only run per-cpu kthreads once the CPU goes !active. 7980 * 7981 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 7982 * effective when the hotplug motion is down. 7983 */ 7984 static void balance_push(struct rq *rq) 7985 { 7986 struct task_struct *push_task = rq->curr; 7987 7988 lockdep_assert_rq_held(rq); 7989 7990 /* 7991 * Ensure the thing is persistent until balance_push_set(.on = false); 7992 */ 7993 rq->balance_callback = &balance_push_callback; 7994 7995 /* 7996 * Only active while going offline and when invoked on the outgoing 7997 * CPU. 7998 */ 7999 if (!cpu_dying(rq->cpu) || rq != this_rq()) 8000 return; 8001 8002 /* 8003 * Both the cpu-hotplug and stop task are in this case and are 8004 * required to complete the hotplug process. 8005 */ 8006 if (kthread_is_per_cpu(push_task) || 8007 is_migration_disabled(push_task)) { 8008 8009 /* 8010 * If this is the idle task on the outgoing CPU try to wake 8011 * up the hotplug control thread which might wait for the 8012 * last task to vanish. The rcuwait_active() check is 8013 * accurate here because the waiter is pinned on this CPU 8014 * and can't obviously be running in parallel. 8015 * 8016 * On RT kernels this also has to check whether there are 8017 * pinned and scheduled out tasks on the runqueue. They 8018 * need to leave the migrate disabled section first. 8019 */ 8020 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 8021 rcuwait_active(&rq->hotplug_wait)) { 8022 raw_spin_rq_unlock(rq); 8023 rcuwait_wake_up(&rq->hotplug_wait); 8024 raw_spin_rq_lock(rq); 8025 } 8026 return; 8027 } 8028 8029 get_task_struct(push_task); 8030 /* 8031 * Temporarily drop rq->lock such that we can wake-up the stop task. 8032 * Both preemption and IRQs are still disabled. 8033 */ 8034 preempt_disable(); 8035 raw_spin_rq_unlock(rq); 8036 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 8037 this_cpu_ptr(&push_work)); 8038 preempt_enable(); 8039 /* 8040 * At this point need_resched() is true and we'll take the loop in 8041 * schedule(). The next pick is obviously going to be the stop task 8042 * which kthread_is_per_cpu() and will push this task away. 8043 */ 8044 raw_spin_rq_lock(rq); 8045 } 8046 8047 static void balance_push_set(int cpu, bool on) 8048 { 8049 struct rq *rq = cpu_rq(cpu); 8050 struct rq_flags rf; 8051 8052 rq_lock_irqsave(rq, &rf); 8053 if (on) { 8054 WARN_ON_ONCE(rq->balance_callback); 8055 rq->balance_callback = &balance_push_callback; 8056 } else if (rq->balance_callback == &balance_push_callback) { 8057 rq->balance_callback = NULL; 8058 } 8059 rq_unlock_irqrestore(rq, &rf); 8060 } 8061 8062 /* 8063 * Invoked from a CPUs hotplug control thread after the CPU has been marked 8064 * inactive. All tasks which are not per CPU kernel threads are either 8065 * pushed off this CPU now via balance_push() or placed on a different CPU 8066 * during wakeup. Wait until the CPU is quiescent. 8067 */ 8068 static void balance_hotplug_wait(void) 8069 { 8070 struct rq *rq = this_rq(); 8071 8072 rcuwait_wait_event(&rq->hotplug_wait, 8073 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 8074 TASK_UNINTERRUPTIBLE); 8075 } 8076 8077 #else 8078 8079 static inline void balance_push(struct rq *rq) 8080 { 8081 } 8082 8083 static inline void balance_push_set(int cpu, bool on) 8084 { 8085 } 8086 8087 static inline void balance_hotplug_wait(void) 8088 { 8089 } 8090 8091 #endif /* CONFIG_HOTPLUG_CPU */ 8092 8093 void set_rq_online(struct rq *rq) 8094 { 8095 if (!rq->online) { 8096 const struct sched_class *class; 8097 8098 cpumask_set_cpu(rq->cpu, rq->rd->online); 8099 rq->online = 1; 8100 8101 for_each_class(class) { 8102 if (class->rq_online) 8103 class->rq_online(rq); 8104 } 8105 } 8106 } 8107 8108 void set_rq_offline(struct rq *rq) 8109 { 8110 if (rq->online) { 8111 const struct sched_class *class; 8112 8113 update_rq_clock(rq); 8114 for_each_class(class) { 8115 if (class->rq_offline) 8116 class->rq_offline(rq); 8117 } 8118 8119 cpumask_clear_cpu(rq->cpu, rq->rd->online); 8120 rq->online = 0; 8121 } 8122 } 8123 8124 static inline void sched_set_rq_online(struct rq *rq, int cpu) 8125 { 8126 struct rq_flags rf; 8127 8128 rq_lock_irqsave(rq, &rf); 8129 if (rq->rd) { 8130 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8131 set_rq_online(rq); 8132 } 8133 rq_unlock_irqrestore(rq, &rf); 8134 } 8135 8136 static inline void sched_set_rq_offline(struct rq *rq, int cpu) 8137 { 8138 struct rq_flags rf; 8139 8140 rq_lock_irqsave(rq, &rf); 8141 if (rq->rd) { 8142 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8143 set_rq_offline(rq); 8144 } 8145 rq_unlock_irqrestore(rq, &rf); 8146 } 8147 8148 /* 8149 * used to mark begin/end of suspend/resume: 8150 */ 8151 static int num_cpus_frozen; 8152 8153 /* 8154 * Update cpusets according to cpu_active mask. If cpusets are 8155 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 8156 * around partition_sched_domains(). 8157 * 8158 * If we come here as part of a suspend/resume, don't touch cpusets because we 8159 * want to restore it back to its original state upon resume anyway. 8160 */ 8161 static void cpuset_cpu_active(void) 8162 { 8163 if (cpuhp_tasks_frozen) { 8164 /* 8165 * num_cpus_frozen tracks how many CPUs are involved in suspend 8166 * resume sequence. As long as this is not the last online 8167 * operation in the resume sequence, just build a single sched 8168 * domain, ignoring cpusets. 8169 */ 8170 partition_sched_domains(1, NULL, NULL); 8171 if (--num_cpus_frozen) 8172 return; 8173 /* 8174 * This is the last CPU online operation. So fall through and 8175 * restore the original sched domains by considering the 8176 * cpuset configurations. 8177 */ 8178 cpuset_force_rebuild(); 8179 } 8180 cpuset_update_active_cpus(); 8181 } 8182 8183 static int cpuset_cpu_inactive(unsigned int cpu) 8184 { 8185 if (!cpuhp_tasks_frozen) { 8186 int ret = dl_bw_check_overflow(cpu); 8187 8188 if (ret) 8189 return ret; 8190 cpuset_update_active_cpus(); 8191 } else { 8192 num_cpus_frozen++; 8193 partition_sched_domains(1, NULL, NULL); 8194 } 8195 return 0; 8196 } 8197 8198 static inline void sched_smt_present_inc(int cpu) 8199 { 8200 #ifdef CONFIG_SCHED_SMT 8201 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8202 static_branch_inc_cpuslocked(&sched_smt_present); 8203 #endif 8204 } 8205 8206 static inline void sched_smt_present_dec(int cpu) 8207 { 8208 #ifdef CONFIG_SCHED_SMT 8209 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8210 static_branch_dec_cpuslocked(&sched_smt_present); 8211 #endif 8212 } 8213 8214 int sched_cpu_activate(unsigned int cpu) 8215 { 8216 struct rq *rq = cpu_rq(cpu); 8217 8218 /* 8219 * Clear the balance_push callback and prepare to schedule 8220 * regular tasks. 8221 */ 8222 balance_push_set(cpu, false); 8223 8224 /* 8225 * When going up, increment the number of cores with SMT present. 8226 */ 8227 sched_smt_present_inc(cpu); 8228 set_cpu_active(cpu, true); 8229 8230 if (sched_smp_initialized) { 8231 sched_update_numa(cpu, true); 8232 sched_domains_numa_masks_set(cpu); 8233 cpuset_cpu_active(); 8234 } 8235 8236 scx_rq_activate(rq); 8237 8238 /* 8239 * Put the rq online, if not already. This happens: 8240 * 8241 * 1) In the early boot process, because we build the real domains 8242 * after all CPUs have been brought up. 8243 * 8244 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 8245 * domains. 8246 */ 8247 sched_set_rq_online(rq, cpu); 8248 8249 return 0; 8250 } 8251 8252 int sched_cpu_deactivate(unsigned int cpu) 8253 { 8254 struct rq *rq = cpu_rq(cpu); 8255 int ret; 8256 8257 /* 8258 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 8259 * load balancing when not active 8260 */ 8261 nohz_balance_exit_idle(rq); 8262 8263 set_cpu_active(cpu, false); 8264 8265 /* 8266 * From this point forward, this CPU will refuse to run any task that 8267 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8268 * push those tasks away until this gets cleared, see 8269 * sched_cpu_dying(). 8270 */ 8271 balance_push_set(cpu, true); 8272 8273 /* 8274 * We've cleared cpu_active_mask / set balance_push, wait for all 8275 * preempt-disabled and RCU users of this state to go away such that 8276 * all new such users will observe it. 8277 * 8278 * Specifically, we rely on ttwu to no longer target this CPU, see 8279 * ttwu_queue_cond() and is_cpu_allowed(). 8280 * 8281 * Do sync before park smpboot threads to take care the RCU boost case. 8282 */ 8283 synchronize_rcu(); 8284 8285 sched_set_rq_offline(rq, cpu); 8286 8287 scx_rq_deactivate(rq); 8288 8289 /* 8290 * When going down, decrement the number of cores with SMT present. 8291 */ 8292 sched_smt_present_dec(cpu); 8293 8294 #ifdef CONFIG_SCHED_SMT 8295 sched_core_cpu_deactivate(cpu); 8296 #endif 8297 8298 if (!sched_smp_initialized) 8299 return 0; 8300 8301 sched_update_numa(cpu, false); 8302 ret = cpuset_cpu_inactive(cpu); 8303 if (ret) { 8304 sched_smt_present_inc(cpu); 8305 sched_set_rq_online(rq, cpu); 8306 balance_push_set(cpu, false); 8307 set_cpu_active(cpu, true); 8308 sched_update_numa(cpu, true); 8309 return ret; 8310 } 8311 sched_domains_numa_masks_clear(cpu); 8312 return 0; 8313 } 8314 8315 static void sched_rq_cpu_starting(unsigned int cpu) 8316 { 8317 struct rq *rq = cpu_rq(cpu); 8318 8319 rq->calc_load_update = calc_load_update; 8320 update_max_interval(); 8321 } 8322 8323 int sched_cpu_starting(unsigned int cpu) 8324 { 8325 sched_core_cpu_starting(cpu); 8326 sched_rq_cpu_starting(cpu); 8327 sched_tick_start(cpu); 8328 return 0; 8329 } 8330 8331 #ifdef CONFIG_HOTPLUG_CPU 8332 8333 /* 8334 * Invoked immediately before the stopper thread is invoked to bring the 8335 * CPU down completely. At this point all per CPU kthreads except the 8336 * hotplug thread (current) and the stopper thread (inactive) have been 8337 * either parked or have been unbound from the outgoing CPU. Ensure that 8338 * any of those which might be on the way out are gone. 8339 * 8340 * If after this point a bound task is being woken on this CPU then the 8341 * responsible hotplug callback has failed to do it's job. 8342 * sched_cpu_dying() will catch it with the appropriate fireworks. 8343 */ 8344 int sched_cpu_wait_empty(unsigned int cpu) 8345 { 8346 balance_hotplug_wait(); 8347 return 0; 8348 } 8349 8350 /* 8351 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8352 * might have. Called from the CPU stopper task after ensuring that the 8353 * stopper is the last running task on the CPU, so nr_active count is 8354 * stable. We need to take the tear-down thread which is calling this into 8355 * account, so we hand in adjust = 1 to the load calculation. 8356 * 8357 * Also see the comment "Global load-average calculations". 8358 */ 8359 static void calc_load_migrate(struct rq *rq) 8360 { 8361 long delta = calc_load_fold_active(rq, 1); 8362 8363 if (delta) 8364 atomic_long_add(delta, &calc_load_tasks); 8365 } 8366 8367 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8368 { 8369 struct task_struct *g, *p; 8370 int cpu = cpu_of(rq); 8371 8372 lockdep_assert_rq_held(rq); 8373 8374 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8375 for_each_process_thread(g, p) { 8376 if (task_cpu(p) != cpu) 8377 continue; 8378 8379 if (!task_on_rq_queued(p)) 8380 continue; 8381 8382 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8383 } 8384 } 8385 8386 int sched_cpu_dying(unsigned int cpu) 8387 { 8388 struct rq *rq = cpu_rq(cpu); 8389 struct rq_flags rf; 8390 8391 /* Handle pending wakeups and then migrate everything off */ 8392 sched_tick_stop(cpu); 8393 8394 rq_lock_irqsave(rq, &rf); 8395 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8396 WARN(true, "Dying CPU not properly vacated!"); 8397 dump_rq_tasks(rq, KERN_WARNING); 8398 } 8399 rq_unlock_irqrestore(rq, &rf); 8400 8401 calc_load_migrate(rq); 8402 update_max_interval(); 8403 hrtick_clear(rq); 8404 sched_core_cpu_dying(cpu); 8405 return 0; 8406 } 8407 #endif 8408 8409 void __init sched_init_smp(void) 8410 { 8411 sched_init_numa(NUMA_NO_NODE); 8412 8413 /* 8414 * There's no userspace yet to cause hotplug operations; hence all the 8415 * CPU masks are stable and all blatant races in the below code cannot 8416 * happen. 8417 */ 8418 mutex_lock(&sched_domains_mutex); 8419 sched_init_domains(cpu_active_mask); 8420 mutex_unlock(&sched_domains_mutex); 8421 8422 /* Move init over to a non-isolated CPU */ 8423 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 8424 BUG(); 8425 current->flags &= ~PF_NO_SETAFFINITY; 8426 sched_init_granularity(); 8427 8428 init_sched_rt_class(); 8429 init_sched_dl_class(); 8430 8431 sched_smp_initialized = true; 8432 } 8433 8434 static int __init migration_init(void) 8435 { 8436 sched_cpu_starting(smp_processor_id()); 8437 return 0; 8438 } 8439 early_initcall(migration_init); 8440 8441 #else 8442 void __init sched_init_smp(void) 8443 { 8444 sched_init_granularity(); 8445 } 8446 #endif /* CONFIG_SMP */ 8447 8448 int in_sched_functions(unsigned long addr) 8449 { 8450 return in_lock_functions(addr) || 8451 (addr >= (unsigned long)__sched_text_start 8452 && addr < (unsigned long)__sched_text_end); 8453 } 8454 8455 #ifdef CONFIG_CGROUP_SCHED 8456 /* 8457 * Default task group. 8458 * Every task in system belongs to this group at bootup. 8459 */ 8460 struct task_group root_task_group; 8461 LIST_HEAD(task_groups); 8462 8463 /* Cacheline aligned slab cache for task_group */ 8464 static struct kmem_cache *task_group_cache __ro_after_init; 8465 #endif 8466 8467 void __init sched_init(void) 8468 { 8469 unsigned long ptr = 0; 8470 int i; 8471 8472 /* Make sure the linker didn't screw up */ 8473 #ifdef CONFIG_SMP 8474 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); 8475 #endif 8476 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); 8477 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); 8478 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); 8479 #ifdef CONFIG_SCHED_CLASS_EXT 8480 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); 8481 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); 8482 #endif 8483 8484 wait_bit_init(); 8485 8486 #ifdef CONFIG_FAIR_GROUP_SCHED 8487 ptr += 2 * nr_cpu_ids * sizeof(void **); 8488 #endif 8489 #ifdef CONFIG_RT_GROUP_SCHED 8490 ptr += 2 * nr_cpu_ids * sizeof(void **); 8491 #endif 8492 if (ptr) { 8493 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8494 8495 #ifdef CONFIG_FAIR_GROUP_SCHED 8496 root_task_group.se = (struct sched_entity **)ptr; 8497 ptr += nr_cpu_ids * sizeof(void **); 8498 8499 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8500 ptr += nr_cpu_ids * sizeof(void **); 8501 8502 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8503 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 8504 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8505 #ifdef CONFIG_EXT_GROUP_SCHED 8506 root_task_group.scx_weight = CGROUP_WEIGHT_DFL; 8507 #endif /* CONFIG_EXT_GROUP_SCHED */ 8508 #ifdef CONFIG_RT_GROUP_SCHED 8509 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8510 ptr += nr_cpu_ids * sizeof(void **); 8511 8512 root_task_group.rt_rq = (struct rt_rq **)ptr; 8513 ptr += nr_cpu_ids * sizeof(void **); 8514 8515 #endif /* CONFIG_RT_GROUP_SCHED */ 8516 } 8517 8518 #ifdef CONFIG_SMP 8519 init_defrootdomain(); 8520 #endif 8521 8522 #ifdef CONFIG_RT_GROUP_SCHED 8523 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8524 global_rt_period(), global_rt_runtime()); 8525 #endif /* CONFIG_RT_GROUP_SCHED */ 8526 8527 #ifdef CONFIG_CGROUP_SCHED 8528 task_group_cache = KMEM_CACHE(task_group, 0); 8529 8530 list_add(&root_task_group.list, &task_groups); 8531 INIT_LIST_HEAD(&root_task_group.children); 8532 INIT_LIST_HEAD(&root_task_group.siblings); 8533 autogroup_init(&init_task); 8534 #endif /* CONFIG_CGROUP_SCHED */ 8535 8536 for_each_possible_cpu(i) { 8537 struct rq *rq; 8538 8539 rq = cpu_rq(i); 8540 raw_spin_lock_init(&rq->__lock); 8541 rq->nr_running = 0; 8542 rq->calc_load_active = 0; 8543 rq->calc_load_update = jiffies + LOAD_FREQ; 8544 init_cfs_rq(&rq->cfs); 8545 init_rt_rq(&rq->rt); 8546 init_dl_rq(&rq->dl); 8547 #ifdef CONFIG_FAIR_GROUP_SCHED 8548 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8549 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8550 /* 8551 * How much CPU bandwidth does root_task_group get? 8552 * 8553 * In case of task-groups formed through the cgroup filesystem, it 8554 * gets 100% of the CPU resources in the system. This overall 8555 * system CPU resource is divided among the tasks of 8556 * root_task_group and its child task-groups in a fair manner, 8557 * based on each entity's (task or task-group's) weight 8558 * (se->load.weight). 8559 * 8560 * In other words, if root_task_group has 10 tasks of weight 8561 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8562 * then A0's share of the CPU resource is: 8563 * 8564 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8565 * 8566 * We achieve this by letting root_task_group's tasks sit 8567 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8568 */ 8569 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8570 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8571 8572 #ifdef CONFIG_RT_GROUP_SCHED 8573 /* 8574 * This is required for init cpu because rt.c:__enable_runtime() 8575 * starts working after scheduler_running, which is not the case 8576 * yet. 8577 */ 8578 rq->rt.rt_runtime = global_rt_runtime(); 8579 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8580 #endif 8581 #ifdef CONFIG_SMP 8582 rq->sd = NULL; 8583 rq->rd = NULL; 8584 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 8585 rq->balance_callback = &balance_push_callback; 8586 rq->active_balance = 0; 8587 rq->next_balance = jiffies; 8588 rq->push_cpu = 0; 8589 rq->cpu = i; 8590 rq->online = 0; 8591 rq->idle_stamp = 0; 8592 rq->avg_idle = 2*sysctl_sched_migration_cost; 8593 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8594 8595 INIT_LIST_HEAD(&rq->cfs_tasks); 8596 8597 rq_attach_root(rq, &def_root_domain); 8598 #ifdef CONFIG_NO_HZ_COMMON 8599 rq->last_blocked_load_update_tick = jiffies; 8600 atomic_set(&rq->nohz_flags, 0); 8601 8602 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8603 #endif 8604 #ifdef CONFIG_HOTPLUG_CPU 8605 rcuwait_init(&rq->hotplug_wait); 8606 #endif 8607 #endif /* CONFIG_SMP */ 8608 hrtick_rq_init(rq); 8609 atomic_set(&rq->nr_iowait, 0); 8610 fair_server_init(rq); 8611 8612 #ifdef CONFIG_SCHED_CORE 8613 rq->core = rq; 8614 rq->core_pick = NULL; 8615 rq->core_dl_server = NULL; 8616 rq->core_enabled = 0; 8617 rq->core_tree = RB_ROOT; 8618 rq->core_forceidle_count = 0; 8619 rq->core_forceidle_occupation = 0; 8620 rq->core_forceidle_start = 0; 8621 8622 rq->core_cookie = 0UL; 8623 #endif 8624 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 8625 } 8626 8627 set_load_weight(&init_task, false); 8628 init_task.se.slice = sysctl_sched_base_slice, 8629 8630 /* 8631 * The boot idle thread does lazy MMU switching as well: 8632 */ 8633 mmgrab_lazy_tlb(&init_mm); 8634 enter_lazy_tlb(&init_mm, current); 8635 8636 /* 8637 * The idle task doesn't need the kthread struct to function, but it 8638 * is dressed up as a per-CPU kthread and thus needs to play the part 8639 * if we want to avoid special-casing it in code that deals with per-CPU 8640 * kthreads. 8641 */ 8642 WARN_ON(!set_kthread_struct(current)); 8643 8644 /* 8645 * Make us the idle thread. Technically, schedule() should not be 8646 * called from this thread, however somewhere below it might be, 8647 * but because we are the idle thread, we just pick up running again 8648 * when this runqueue becomes "idle". 8649 */ 8650 __sched_fork(0, current); 8651 init_idle(current, smp_processor_id()); 8652 8653 calc_load_update = jiffies + LOAD_FREQ; 8654 8655 #ifdef CONFIG_SMP 8656 idle_thread_set_boot_cpu(); 8657 balance_push_set(smp_processor_id(), false); 8658 #endif 8659 init_sched_fair_class(); 8660 init_sched_ext_class(); 8661 8662 psi_init(); 8663 8664 init_uclamp(); 8665 8666 preempt_dynamic_init(); 8667 8668 scheduler_running = 1; 8669 } 8670 8671 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8672 8673 void __might_sleep(const char *file, int line) 8674 { 8675 unsigned int state = get_current_state(); 8676 /* 8677 * Blocking primitives will set (and therefore destroy) current->state, 8678 * since we will exit with TASK_RUNNING make sure we enter with it, 8679 * otherwise we will destroy state. 8680 */ 8681 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 8682 "do not call blocking ops when !TASK_RUNNING; " 8683 "state=%x set at [<%p>] %pS\n", state, 8684 (void *)current->task_state_change, 8685 (void *)current->task_state_change); 8686 8687 __might_resched(file, line, 0); 8688 } 8689 EXPORT_SYMBOL(__might_sleep); 8690 8691 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 8692 { 8693 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 8694 return; 8695 8696 if (preempt_count() == preempt_offset) 8697 return; 8698 8699 pr_err("Preemption disabled at:"); 8700 print_ip_sym(KERN_ERR, ip); 8701 } 8702 8703 static inline bool resched_offsets_ok(unsigned int offsets) 8704 { 8705 unsigned int nested = preempt_count(); 8706 8707 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 8708 8709 return nested == offsets; 8710 } 8711 8712 void __might_resched(const char *file, int line, unsigned int offsets) 8713 { 8714 /* Ratelimiting timestamp: */ 8715 static unsigned long prev_jiffy; 8716 8717 unsigned long preempt_disable_ip; 8718 8719 /* WARN_ON_ONCE() by default, no rate limit required: */ 8720 rcu_sleep_check(); 8721 8722 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 8723 !is_idle_task(current) && !current->non_block_count) || 8724 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8725 oops_in_progress) 8726 return; 8727 8728 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8729 return; 8730 prev_jiffy = jiffies; 8731 8732 /* Save this before calling printk(), since that will clobber it: */ 8733 preempt_disable_ip = get_preempt_disable_ip(current); 8734 8735 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 8736 file, line); 8737 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8738 in_atomic(), irqs_disabled(), current->non_block_count, 8739 current->pid, current->comm); 8740 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 8741 offsets & MIGHT_RESCHED_PREEMPT_MASK); 8742 8743 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 8744 pr_err("RCU nest depth: %d, expected: %u\n", 8745 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 8746 } 8747 8748 if (task_stack_end_corrupted(current)) 8749 pr_emerg("Thread overran stack, or stack corrupted\n"); 8750 8751 debug_show_held_locks(current); 8752 if (irqs_disabled()) 8753 print_irqtrace_events(current); 8754 8755 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 8756 preempt_disable_ip); 8757 8758 dump_stack(); 8759 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8760 } 8761 EXPORT_SYMBOL(__might_resched); 8762 8763 void __cant_sleep(const char *file, int line, int preempt_offset) 8764 { 8765 static unsigned long prev_jiffy; 8766 8767 if (irqs_disabled()) 8768 return; 8769 8770 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8771 return; 8772 8773 if (preempt_count() > preempt_offset) 8774 return; 8775 8776 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8777 return; 8778 prev_jiffy = jiffies; 8779 8780 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8781 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8782 in_atomic(), irqs_disabled(), 8783 current->pid, current->comm); 8784 8785 debug_show_held_locks(current); 8786 dump_stack(); 8787 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8788 } 8789 EXPORT_SYMBOL_GPL(__cant_sleep); 8790 8791 #ifdef CONFIG_SMP 8792 void __cant_migrate(const char *file, int line) 8793 { 8794 static unsigned long prev_jiffy; 8795 8796 if (irqs_disabled()) 8797 return; 8798 8799 if (is_migration_disabled(current)) 8800 return; 8801 8802 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8803 return; 8804 8805 if (preempt_count() > 0) 8806 return; 8807 8808 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8809 return; 8810 prev_jiffy = jiffies; 8811 8812 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8813 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8814 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8815 current->pid, current->comm); 8816 8817 debug_show_held_locks(current); 8818 dump_stack(); 8819 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8820 } 8821 EXPORT_SYMBOL_GPL(__cant_migrate); 8822 #endif 8823 #endif 8824 8825 #ifdef CONFIG_MAGIC_SYSRQ 8826 void normalize_rt_tasks(void) 8827 { 8828 struct task_struct *g, *p; 8829 struct sched_attr attr = { 8830 .sched_policy = SCHED_NORMAL, 8831 }; 8832 8833 read_lock(&tasklist_lock); 8834 for_each_process_thread(g, p) { 8835 /* 8836 * Only normalize user tasks: 8837 */ 8838 if (p->flags & PF_KTHREAD) 8839 continue; 8840 8841 p->se.exec_start = 0; 8842 schedstat_set(p->stats.wait_start, 0); 8843 schedstat_set(p->stats.sleep_start, 0); 8844 schedstat_set(p->stats.block_start, 0); 8845 8846 if (!rt_or_dl_task(p)) { 8847 /* 8848 * Renice negative nice level userspace 8849 * tasks back to 0: 8850 */ 8851 if (task_nice(p) < 0) 8852 set_user_nice(p, 0); 8853 continue; 8854 } 8855 8856 __sched_setscheduler(p, &attr, false, false); 8857 } 8858 read_unlock(&tasklist_lock); 8859 } 8860 8861 #endif /* CONFIG_MAGIC_SYSRQ */ 8862 8863 #if defined(CONFIG_KGDB_KDB) 8864 /* 8865 * These functions are only useful for KDB. 8866 * 8867 * They can only be called when the whole system has been 8868 * stopped - every CPU needs to be quiescent, and no scheduling 8869 * activity can take place. Using them for anything else would 8870 * be a serious bug, and as a result, they aren't even visible 8871 * under any other configuration. 8872 */ 8873 8874 /** 8875 * curr_task - return the current task for a given CPU. 8876 * @cpu: the processor in question. 8877 * 8878 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8879 * 8880 * Return: The current task for @cpu. 8881 */ 8882 struct task_struct *curr_task(int cpu) 8883 { 8884 return cpu_curr(cpu); 8885 } 8886 8887 #endif /* defined(CONFIG_KGDB_KDB) */ 8888 8889 #ifdef CONFIG_CGROUP_SCHED 8890 /* task_group_lock serializes the addition/removal of task groups */ 8891 static DEFINE_SPINLOCK(task_group_lock); 8892 8893 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8894 struct task_group *parent) 8895 { 8896 #ifdef CONFIG_UCLAMP_TASK_GROUP 8897 enum uclamp_id clamp_id; 8898 8899 for_each_clamp_id(clamp_id) { 8900 uclamp_se_set(&tg->uclamp_req[clamp_id], 8901 uclamp_none(clamp_id), false); 8902 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8903 } 8904 #endif 8905 } 8906 8907 static void sched_free_group(struct task_group *tg) 8908 { 8909 free_fair_sched_group(tg); 8910 free_rt_sched_group(tg); 8911 autogroup_free(tg); 8912 kmem_cache_free(task_group_cache, tg); 8913 } 8914 8915 static void sched_free_group_rcu(struct rcu_head *rcu) 8916 { 8917 sched_free_group(container_of(rcu, struct task_group, rcu)); 8918 } 8919 8920 static void sched_unregister_group(struct task_group *tg) 8921 { 8922 unregister_fair_sched_group(tg); 8923 unregister_rt_sched_group(tg); 8924 /* 8925 * We have to wait for yet another RCU grace period to expire, as 8926 * print_cfs_stats() might run concurrently. 8927 */ 8928 call_rcu(&tg->rcu, sched_free_group_rcu); 8929 } 8930 8931 /* allocate runqueue etc for a new task group */ 8932 struct task_group *sched_create_group(struct task_group *parent) 8933 { 8934 struct task_group *tg; 8935 8936 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 8937 if (!tg) 8938 return ERR_PTR(-ENOMEM); 8939 8940 if (!alloc_fair_sched_group(tg, parent)) 8941 goto err; 8942 8943 if (!alloc_rt_sched_group(tg, parent)) 8944 goto err; 8945 8946 scx_group_set_weight(tg, CGROUP_WEIGHT_DFL); 8947 alloc_uclamp_sched_group(tg, parent); 8948 8949 return tg; 8950 8951 err: 8952 sched_free_group(tg); 8953 return ERR_PTR(-ENOMEM); 8954 } 8955 8956 void sched_online_group(struct task_group *tg, struct task_group *parent) 8957 { 8958 unsigned long flags; 8959 8960 spin_lock_irqsave(&task_group_lock, flags); 8961 list_add_rcu(&tg->list, &task_groups); 8962 8963 /* Root should already exist: */ 8964 WARN_ON(!parent); 8965 8966 tg->parent = parent; 8967 INIT_LIST_HEAD(&tg->children); 8968 list_add_rcu(&tg->siblings, &parent->children); 8969 spin_unlock_irqrestore(&task_group_lock, flags); 8970 8971 online_fair_sched_group(tg); 8972 } 8973 8974 /* RCU callback to free various structures associated with a task group */ 8975 static void sched_unregister_group_rcu(struct rcu_head *rhp) 8976 { 8977 /* Now it should be safe to free those cfs_rqs: */ 8978 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 8979 } 8980 8981 void sched_destroy_group(struct task_group *tg) 8982 { 8983 /* Wait for possible concurrent references to cfs_rqs complete: */ 8984 call_rcu(&tg->rcu, sched_unregister_group_rcu); 8985 } 8986 8987 void sched_release_group(struct task_group *tg) 8988 { 8989 unsigned long flags; 8990 8991 /* 8992 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 8993 * sched_cfs_period_timer()). 8994 * 8995 * For this to be effective, we have to wait for all pending users of 8996 * this task group to leave their RCU critical section to ensure no new 8997 * user will see our dying task group any more. Specifically ensure 8998 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 8999 * 9000 * We therefore defer calling unregister_fair_sched_group() to 9001 * sched_unregister_group() which is guarantied to get called only after the 9002 * current RCU grace period has expired. 9003 */ 9004 spin_lock_irqsave(&task_group_lock, flags); 9005 list_del_rcu(&tg->list); 9006 list_del_rcu(&tg->siblings); 9007 spin_unlock_irqrestore(&task_group_lock, flags); 9008 } 9009 9010 static struct task_group *sched_get_task_group(struct task_struct *tsk) 9011 { 9012 struct task_group *tg; 9013 9014 /* 9015 * All callers are synchronized by task_rq_lock(); we do not use RCU 9016 * which is pointless here. Thus, we pass "true" to task_css_check() 9017 * to prevent lockdep warnings. 9018 */ 9019 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 9020 struct task_group, css); 9021 tg = autogroup_task_group(tsk, tg); 9022 9023 return tg; 9024 } 9025 9026 static void sched_change_group(struct task_struct *tsk, struct task_group *group) 9027 { 9028 tsk->sched_task_group = group; 9029 9030 #ifdef CONFIG_FAIR_GROUP_SCHED 9031 if (tsk->sched_class->task_change_group) 9032 tsk->sched_class->task_change_group(tsk); 9033 else 9034 #endif 9035 set_task_rq(tsk, task_cpu(tsk)); 9036 } 9037 9038 /* 9039 * Change task's runqueue when it moves between groups. 9040 * 9041 * The caller of this function should have put the task in its new group by 9042 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 9043 * its new group. 9044 */ 9045 void sched_move_task(struct task_struct *tsk) 9046 { 9047 int queued, running, queue_flags = 9048 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 9049 struct task_group *group; 9050 struct rq *rq; 9051 9052 CLASS(task_rq_lock, rq_guard)(tsk); 9053 rq = rq_guard.rq; 9054 9055 /* 9056 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous 9057 * group changes. 9058 */ 9059 group = sched_get_task_group(tsk); 9060 if (group == tsk->sched_task_group) 9061 return; 9062 9063 update_rq_clock(rq); 9064 9065 running = task_current_donor(rq, tsk); 9066 queued = task_on_rq_queued(tsk); 9067 9068 if (queued) 9069 dequeue_task(rq, tsk, queue_flags); 9070 if (running) 9071 put_prev_task(rq, tsk); 9072 9073 sched_change_group(tsk, group); 9074 scx_move_task(tsk); 9075 9076 if (queued) 9077 enqueue_task(rq, tsk, queue_flags); 9078 if (running) { 9079 set_next_task(rq, tsk); 9080 /* 9081 * After changing group, the running task may have joined a 9082 * throttled one but it's still the running task. Trigger a 9083 * resched to make sure that task can still run. 9084 */ 9085 resched_curr(rq); 9086 } 9087 } 9088 9089 static struct cgroup_subsys_state * 9090 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9091 { 9092 struct task_group *parent = css_tg(parent_css); 9093 struct task_group *tg; 9094 9095 if (!parent) { 9096 /* This is early initialization for the top cgroup */ 9097 return &root_task_group.css; 9098 } 9099 9100 tg = sched_create_group(parent); 9101 if (IS_ERR(tg)) 9102 return ERR_PTR(-ENOMEM); 9103 9104 return &tg->css; 9105 } 9106 9107 /* Expose task group only after completing cgroup initialization */ 9108 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 9109 { 9110 struct task_group *tg = css_tg(css); 9111 struct task_group *parent = css_tg(css->parent); 9112 int ret; 9113 9114 ret = scx_tg_online(tg); 9115 if (ret) 9116 return ret; 9117 9118 if (parent) 9119 sched_online_group(tg, parent); 9120 9121 #ifdef CONFIG_UCLAMP_TASK_GROUP 9122 /* Propagate the effective uclamp value for the new group */ 9123 guard(mutex)(&uclamp_mutex); 9124 guard(rcu)(); 9125 cpu_util_update_eff(css); 9126 #endif 9127 9128 return 0; 9129 } 9130 9131 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 9132 { 9133 struct task_group *tg = css_tg(css); 9134 9135 scx_tg_offline(tg); 9136 } 9137 9138 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 9139 { 9140 struct task_group *tg = css_tg(css); 9141 9142 sched_release_group(tg); 9143 } 9144 9145 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 9146 { 9147 struct task_group *tg = css_tg(css); 9148 9149 /* 9150 * Relies on the RCU grace period between css_released() and this. 9151 */ 9152 sched_unregister_group(tg); 9153 } 9154 9155 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 9156 { 9157 #ifdef CONFIG_RT_GROUP_SCHED 9158 struct task_struct *task; 9159 struct cgroup_subsys_state *css; 9160 9161 cgroup_taskset_for_each(task, css, tset) { 9162 if (!sched_rt_can_attach(css_tg(css), task)) 9163 return -EINVAL; 9164 } 9165 #endif 9166 return scx_cgroup_can_attach(tset); 9167 } 9168 9169 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 9170 { 9171 struct task_struct *task; 9172 struct cgroup_subsys_state *css; 9173 9174 cgroup_taskset_for_each(task, css, tset) 9175 sched_move_task(task); 9176 9177 scx_cgroup_finish_attach(); 9178 } 9179 9180 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset) 9181 { 9182 scx_cgroup_cancel_attach(tset); 9183 } 9184 9185 #ifdef CONFIG_UCLAMP_TASK_GROUP 9186 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 9187 { 9188 struct cgroup_subsys_state *top_css = css; 9189 struct uclamp_se *uc_parent = NULL; 9190 struct uclamp_se *uc_se = NULL; 9191 unsigned int eff[UCLAMP_CNT]; 9192 enum uclamp_id clamp_id; 9193 unsigned int clamps; 9194 9195 lockdep_assert_held(&uclamp_mutex); 9196 SCHED_WARN_ON(!rcu_read_lock_held()); 9197 9198 css_for_each_descendant_pre(css, top_css) { 9199 uc_parent = css_tg(css)->parent 9200 ? css_tg(css)->parent->uclamp : NULL; 9201 9202 for_each_clamp_id(clamp_id) { 9203 /* Assume effective clamps matches requested clamps */ 9204 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 9205 /* Cap effective clamps with parent's effective clamps */ 9206 if (uc_parent && 9207 eff[clamp_id] > uc_parent[clamp_id].value) { 9208 eff[clamp_id] = uc_parent[clamp_id].value; 9209 } 9210 } 9211 /* Ensure protection is always capped by limit */ 9212 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 9213 9214 /* Propagate most restrictive effective clamps */ 9215 clamps = 0x0; 9216 uc_se = css_tg(css)->uclamp; 9217 for_each_clamp_id(clamp_id) { 9218 if (eff[clamp_id] == uc_se[clamp_id].value) 9219 continue; 9220 uc_se[clamp_id].value = eff[clamp_id]; 9221 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 9222 clamps |= (0x1 << clamp_id); 9223 } 9224 if (!clamps) { 9225 css = css_rightmost_descendant(css); 9226 continue; 9227 } 9228 9229 /* Immediately update descendants RUNNABLE tasks */ 9230 uclamp_update_active_tasks(css); 9231 } 9232 } 9233 9234 /* 9235 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 9236 * C expression. Since there is no way to convert a macro argument (N) into a 9237 * character constant, use two levels of macros. 9238 */ 9239 #define _POW10(exp) ((unsigned int)1e##exp) 9240 #define POW10(exp) _POW10(exp) 9241 9242 struct uclamp_request { 9243 #define UCLAMP_PERCENT_SHIFT 2 9244 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 9245 s64 percent; 9246 u64 util; 9247 int ret; 9248 }; 9249 9250 static inline struct uclamp_request 9251 capacity_from_percent(char *buf) 9252 { 9253 struct uclamp_request req = { 9254 .percent = UCLAMP_PERCENT_SCALE, 9255 .util = SCHED_CAPACITY_SCALE, 9256 .ret = 0, 9257 }; 9258 9259 buf = strim(buf); 9260 if (strcmp(buf, "max")) { 9261 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 9262 &req.percent); 9263 if (req.ret) 9264 return req; 9265 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 9266 req.ret = -ERANGE; 9267 return req; 9268 } 9269 9270 req.util = req.percent << SCHED_CAPACITY_SHIFT; 9271 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 9272 } 9273 9274 return req; 9275 } 9276 9277 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 9278 size_t nbytes, loff_t off, 9279 enum uclamp_id clamp_id) 9280 { 9281 struct uclamp_request req; 9282 struct task_group *tg; 9283 9284 req = capacity_from_percent(buf); 9285 if (req.ret) 9286 return req.ret; 9287 9288 static_branch_enable(&sched_uclamp_used); 9289 9290 guard(mutex)(&uclamp_mutex); 9291 guard(rcu)(); 9292 9293 tg = css_tg(of_css(of)); 9294 if (tg->uclamp_req[clamp_id].value != req.util) 9295 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 9296 9297 /* 9298 * Because of not recoverable conversion rounding we keep track of the 9299 * exact requested value 9300 */ 9301 tg->uclamp_pct[clamp_id] = req.percent; 9302 9303 /* Update effective clamps to track the most restrictive value */ 9304 cpu_util_update_eff(of_css(of)); 9305 9306 return nbytes; 9307 } 9308 9309 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9310 char *buf, size_t nbytes, 9311 loff_t off) 9312 { 9313 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9314 } 9315 9316 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9317 char *buf, size_t nbytes, 9318 loff_t off) 9319 { 9320 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9321 } 9322 9323 static inline void cpu_uclamp_print(struct seq_file *sf, 9324 enum uclamp_id clamp_id) 9325 { 9326 struct task_group *tg; 9327 u64 util_clamp; 9328 u64 percent; 9329 u32 rem; 9330 9331 scoped_guard (rcu) { 9332 tg = css_tg(seq_css(sf)); 9333 util_clamp = tg->uclamp_req[clamp_id].value; 9334 } 9335 9336 if (util_clamp == SCHED_CAPACITY_SCALE) { 9337 seq_puts(sf, "max\n"); 9338 return; 9339 } 9340 9341 percent = tg->uclamp_pct[clamp_id]; 9342 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9343 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9344 } 9345 9346 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9347 { 9348 cpu_uclamp_print(sf, UCLAMP_MIN); 9349 return 0; 9350 } 9351 9352 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9353 { 9354 cpu_uclamp_print(sf, UCLAMP_MAX); 9355 return 0; 9356 } 9357 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9358 9359 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9360 static unsigned long tg_weight(struct task_group *tg) 9361 { 9362 #ifdef CONFIG_FAIR_GROUP_SCHED 9363 return scale_load_down(tg->shares); 9364 #else 9365 return sched_weight_from_cgroup(tg->scx_weight); 9366 #endif 9367 } 9368 9369 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9370 struct cftype *cftype, u64 shareval) 9371 { 9372 int ret; 9373 9374 if (shareval > scale_load_down(ULONG_MAX)) 9375 shareval = MAX_SHARES; 9376 ret = sched_group_set_shares(css_tg(css), scale_load(shareval)); 9377 if (!ret) 9378 scx_group_set_weight(css_tg(css), 9379 sched_weight_to_cgroup(shareval)); 9380 return ret; 9381 } 9382 9383 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9384 struct cftype *cft) 9385 { 9386 return tg_weight(css_tg(css)); 9387 } 9388 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9389 9390 #ifdef CONFIG_CFS_BANDWIDTH 9391 static DEFINE_MUTEX(cfs_constraints_mutex); 9392 9393 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 9394 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 9395 /* More than 203 days if BW_SHIFT equals 20. */ 9396 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 9397 9398 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9399 9400 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 9401 u64 burst) 9402 { 9403 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9404 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9405 9406 if (tg == &root_task_group) 9407 return -EINVAL; 9408 9409 /* 9410 * Ensure we have at some amount of bandwidth every period. This is 9411 * to prevent reaching a state of large arrears when throttled via 9412 * entity_tick() resulting in prolonged exit starvation. 9413 */ 9414 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 9415 return -EINVAL; 9416 9417 /* 9418 * Likewise, bound things on the other side by preventing insane quota 9419 * periods. This also allows us to normalize in computing quota 9420 * feasibility. 9421 */ 9422 if (period > max_cfs_quota_period) 9423 return -EINVAL; 9424 9425 /* 9426 * Bound quota to defend quota against overflow during bandwidth shift. 9427 */ 9428 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 9429 return -EINVAL; 9430 9431 if (quota != RUNTIME_INF && (burst > quota || 9432 burst + quota > max_cfs_runtime)) 9433 return -EINVAL; 9434 9435 /* 9436 * Prevent race between setting of cfs_rq->runtime_enabled and 9437 * unthrottle_offline_cfs_rqs(). 9438 */ 9439 guard(cpus_read_lock)(); 9440 guard(mutex)(&cfs_constraints_mutex); 9441 9442 ret = __cfs_schedulable(tg, period, quota); 9443 if (ret) 9444 return ret; 9445 9446 runtime_enabled = quota != RUNTIME_INF; 9447 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9448 /* 9449 * If we need to toggle cfs_bandwidth_used, off->on must occur 9450 * before making related changes, and on->off must occur afterwards 9451 */ 9452 if (runtime_enabled && !runtime_was_enabled) 9453 cfs_bandwidth_usage_inc(); 9454 9455 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 9456 cfs_b->period = ns_to_ktime(period); 9457 cfs_b->quota = quota; 9458 cfs_b->burst = burst; 9459 9460 __refill_cfs_bandwidth_runtime(cfs_b); 9461 9462 /* 9463 * Restart the period timer (if active) to handle new 9464 * period expiry: 9465 */ 9466 if (runtime_enabled) 9467 start_cfs_bandwidth(cfs_b); 9468 } 9469 9470 for_each_online_cpu(i) { 9471 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9472 struct rq *rq = cfs_rq->rq; 9473 9474 guard(rq_lock_irq)(rq); 9475 cfs_rq->runtime_enabled = runtime_enabled; 9476 cfs_rq->runtime_remaining = 0; 9477 9478 if (cfs_rq->throttled) 9479 unthrottle_cfs_rq(cfs_rq); 9480 } 9481 9482 if (runtime_was_enabled && !runtime_enabled) 9483 cfs_bandwidth_usage_dec(); 9484 9485 return 0; 9486 } 9487 9488 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 9489 { 9490 u64 quota, period, burst; 9491 9492 period = ktime_to_ns(tg->cfs_bandwidth.period); 9493 burst = tg->cfs_bandwidth.burst; 9494 if (cfs_quota_us < 0) 9495 quota = RUNTIME_INF; 9496 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 9497 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 9498 else 9499 return -EINVAL; 9500 9501 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9502 } 9503 9504 static long tg_get_cfs_quota(struct task_group *tg) 9505 { 9506 u64 quota_us; 9507 9508 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9509 return -1; 9510 9511 quota_us = tg->cfs_bandwidth.quota; 9512 do_div(quota_us, NSEC_PER_USEC); 9513 9514 return quota_us; 9515 } 9516 9517 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 9518 { 9519 u64 quota, period, burst; 9520 9521 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 9522 return -EINVAL; 9523 9524 period = (u64)cfs_period_us * NSEC_PER_USEC; 9525 quota = tg->cfs_bandwidth.quota; 9526 burst = tg->cfs_bandwidth.burst; 9527 9528 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9529 } 9530 9531 static long tg_get_cfs_period(struct task_group *tg) 9532 { 9533 u64 cfs_period_us; 9534 9535 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9536 do_div(cfs_period_us, NSEC_PER_USEC); 9537 9538 return cfs_period_us; 9539 } 9540 9541 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 9542 { 9543 u64 quota, period, burst; 9544 9545 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 9546 return -EINVAL; 9547 9548 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 9549 period = ktime_to_ns(tg->cfs_bandwidth.period); 9550 quota = tg->cfs_bandwidth.quota; 9551 9552 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9553 } 9554 9555 static long tg_get_cfs_burst(struct task_group *tg) 9556 { 9557 u64 burst_us; 9558 9559 burst_us = tg->cfs_bandwidth.burst; 9560 do_div(burst_us, NSEC_PER_USEC); 9561 9562 return burst_us; 9563 } 9564 9565 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 9566 struct cftype *cft) 9567 { 9568 return tg_get_cfs_quota(css_tg(css)); 9569 } 9570 9571 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 9572 struct cftype *cftype, s64 cfs_quota_us) 9573 { 9574 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 9575 } 9576 9577 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 9578 struct cftype *cft) 9579 { 9580 return tg_get_cfs_period(css_tg(css)); 9581 } 9582 9583 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 9584 struct cftype *cftype, u64 cfs_period_us) 9585 { 9586 return tg_set_cfs_period(css_tg(css), cfs_period_us); 9587 } 9588 9589 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 9590 struct cftype *cft) 9591 { 9592 return tg_get_cfs_burst(css_tg(css)); 9593 } 9594 9595 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 9596 struct cftype *cftype, u64 cfs_burst_us) 9597 { 9598 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 9599 } 9600 9601 struct cfs_schedulable_data { 9602 struct task_group *tg; 9603 u64 period, quota; 9604 }; 9605 9606 /* 9607 * normalize group quota/period to be quota/max_period 9608 * note: units are usecs 9609 */ 9610 static u64 normalize_cfs_quota(struct task_group *tg, 9611 struct cfs_schedulable_data *d) 9612 { 9613 u64 quota, period; 9614 9615 if (tg == d->tg) { 9616 period = d->period; 9617 quota = d->quota; 9618 } else { 9619 period = tg_get_cfs_period(tg); 9620 quota = tg_get_cfs_quota(tg); 9621 } 9622 9623 /* note: these should typically be equivalent */ 9624 if (quota == RUNTIME_INF || quota == -1) 9625 return RUNTIME_INF; 9626 9627 return to_ratio(period, quota); 9628 } 9629 9630 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9631 { 9632 struct cfs_schedulable_data *d = data; 9633 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9634 s64 quota = 0, parent_quota = -1; 9635 9636 if (!tg->parent) { 9637 quota = RUNTIME_INF; 9638 } else { 9639 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9640 9641 quota = normalize_cfs_quota(tg, d); 9642 parent_quota = parent_b->hierarchical_quota; 9643 9644 /* 9645 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9646 * always take the non-RUNTIME_INF min. On cgroup1, only 9647 * inherit when no limit is set. In both cases this is used 9648 * by the scheduler to determine if a given CFS task has a 9649 * bandwidth constraint at some higher level. 9650 */ 9651 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9652 if (quota == RUNTIME_INF) 9653 quota = parent_quota; 9654 else if (parent_quota != RUNTIME_INF) 9655 quota = min(quota, parent_quota); 9656 } else { 9657 if (quota == RUNTIME_INF) 9658 quota = parent_quota; 9659 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9660 return -EINVAL; 9661 } 9662 } 9663 cfs_b->hierarchical_quota = quota; 9664 9665 return 0; 9666 } 9667 9668 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9669 { 9670 struct cfs_schedulable_data data = { 9671 .tg = tg, 9672 .period = period, 9673 .quota = quota, 9674 }; 9675 9676 if (quota != RUNTIME_INF) { 9677 do_div(data.period, NSEC_PER_USEC); 9678 do_div(data.quota, NSEC_PER_USEC); 9679 } 9680 9681 guard(rcu)(); 9682 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9683 } 9684 9685 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9686 { 9687 struct task_group *tg = css_tg(seq_css(sf)); 9688 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9689 9690 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9691 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9692 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9693 9694 if (schedstat_enabled() && tg != &root_task_group) { 9695 struct sched_statistics *stats; 9696 u64 ws = 0; 9697 int i; 9698 9699 for_each_possible_cpu(i) { 9700 stats = __schedstats_from_se(tg->se[i]); 9701 ws += schedstat_val(stats->wait_sum); 9702 } 9703 9704 seq_printf(sf, "wait_sum %llu\n", ws); 9705 } 9706 9707 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 9708 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 9709 9710 return 0; 9711 } 9712 9713 static u64 throttled_time_self(struct task_group *tg) 9714 { 9715 int i; 9716 u64 total = 0; 9717 9718 for_each_possible_cpu(i) { 9719 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 9720 } 9721 9722 return total; 9723 } 9724 9725 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 9726 { 9727 struct task_group *tg = css_tg(seq_css(sf)); 9728 9729 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 9730 9731 return 0; 9732 } 9733 #endif /* CONFIG_CFS_BANDWIDTH */ 9734 9735 #ifdef CONFIG_RT_GROUP_SCHED 9736 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9737 struct cftype *cft, s64 val) 9738 { 9739 return sched_group_set_rt_runtime(css_tg(css), val); 9740 } 9741 9742 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9743 struct cftype *cft) 9744 { 9745 return sched_group_rt_runtime(css_tg(css)); 9746 } 9747 9748 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9749 struct cftype *cftype, u64 rt_period_us) 9750 { 9751 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9752 } 9753 9754 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9755 struct cftype *cft) 9756 { 9757 return sched_group_rt_period(css_tg(css)); 9758 } 9759 #endif /* CONFIG_RT_GROUP_SCHED */ 9760 9761 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9762 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 9763 struct cftype *cft) 9764 { 9765 return css_tg(css)->idle; 9766 } 9767 9768 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 9769 struct cftype *cft, s64 idle) 9770 { 9771 int ret; 9772 9773 ret = sched_group_set_idle(css_tg(css), idle); 9774 if (!ret) 9775 scx_group_set_idle(css_tg(css), idle); 9776 return ret; 9777 } 9778 #endif 9779 9780 static struct cftype cpu_legacy_files[] = { 9781 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9782 { 9783 .name = "shares", 9784 .read_u64 = cpu_shares_read_u64, 9785 .write_u64 = cpu_shares_write_u64, 9786 }, 9787 { 9788 .name = "idle", 9789 .read_s64 = cpu_idle_read_s64, 9790 .write_s64 = cpu_idle_write_s64, 9791 }, 9792 #endif 9793 #ifdef CONFIG_CFS_BANDWIDTH 9794 { 9795 .name = "cfs_quota_us", 9796 .read_s64 = cpu_cfs_quota_read_s64, 9797 .write_s64 = cpu_cfs_quota_write_s64, 9798 }, 9799 { 9800 .name = "cfs_period_us", 9801 .read_u64 = cpu_cfs_period_read_u64, 9802 .write_u64 = cpu_cfs_period_write_u64, 9803 }, 9804 { 9805 .name = "cfs_burst_us", 9806 .read_u64 = cpu_cfs_burst_read_u64, 9807 .write_u64 = cpu_cfs_burst_write_u64, 9808 }, 9809 { 9810 .name = "stat", 9811 .seq_show = cpu_cfs_stat_show, 9812 }, 9813 { 9814 .name = "stat.local", 9815 .seq_show = cpu_cfs_local_stat_show, 9816 }, 9817 #endif 9818 #ifdef CONFIG_RT_GROUP_SCHED 9819 { 9820 .name = "rt_runtime_us", 9821 .read_s64 = cpu_rt_runtime_read, 9822 .write_s64 = cpu_rt_runtime_write, 9823 }, 9824 { 9825 .name = "rt_period_us", 9826 .read_u64 = cpu_rt_period_read_uint, 9827 .write_u64 = cpu_rt_period_write_uint, 9828 }, 9829 #endif 9830 #ifdef CONFIG_UCLAMP_TASK_GROUP 9831 { 9832 .name = "uclamp.min", 9833 .flags = CFTYPE_NOT_ON_ROOT, 9834 .seq_show = cpu_uclamp_min_show, 9835 .write = cpu_uclamp_min_write, 9836 }, 9837 { 9838 .name = "uclamp.max", 9839 .flags = CFTYPE_NOT_ON_ROOT, 9840 .seq_show = cpu_uclamp_max_show, 9841 .write = cpu_uclamp_max_write, 9842 }, 9843 #endif 9844 { } /* Terminate */ 9845 }; 9846 9847 static int cpu_extra_stat_show(struct seq_file *sf, 9848 struct cgroup_subsys_state *css) 9849 { 9850 #ifdef CONFIG_CFS_BANDWIDTH 9851 { 9852 struct task_group *tg = css_tg(css); 9853 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9854 u64 throttled_usec, burst_usec; 9855 9856 throttled_usec = cfs_b->throttled_time; 9857 do_div(throttled_usec, NSEC_PER_USEC); 9858 burst_usec = cfs_b->burst_time; 9859 do_div(burst_usec, NSEC_PER_USEC); 9860 9861 seq_printf(sf, "nr_periods %d\n" 9862 "nr_throttled %d\n" 9863 "throttled_usec %llu\n" 9864 "nr_bursts %d\n" 9865 "burst_usec %llu\n", 9866 cfs_b->nr_periods, cfs_b->nr_throttled, 9867 throttled_usec, cfs_b->nr_burst, burst_usec); 9868 } 9869 #endif 9870 return 0; 9871 } 9872 9873 static int cpu_local_stat_show(struct seq_file *sf, 9874 struct cgroup_subsys_state *css) 9875 { 9876 #ifdef CONFIG_CFS_BANDWIDTH 9877 { 9878 struct task_group *tg = css_tg(css); 9879 u64 throttled_self_usec; 9880 9881 throttled_self_usec = throttled_time_self(tg); 9882 do_div(throttled_self_usec, NSEC_PER_USEC); 9883 9884 seq_printf(sf, "throttled_usec %llu\n", 9885 throttled_self_usec); 9886 } 9887 #endif 9888 return 0; 9889 } 9890 9891 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9892 9893 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 9894 struct cftype *cft) 9895 { 9896 return sched_weight_to_cgroup(tg_weight(css_tg(css))); 9897 } 9898 9899 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 9900 struct cftype *cft, u64 cgrp_weight) 9901 { 9902 unsigned long weight; 9903 int ret; 9904 9905 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) 9906 return -ERANGE; 9907 9908 weight = sched_weight_from_cgroup(cgrp_weight); 9909 9910 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 9911 if (!ret) 9912 scx_group_set_weight(css_tg(css), cgrp_weight); 9913 return ret; 9914 } 9915 9916 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 9917 struct cftype *cft) 9918 { 9919 unsigned long weight = tg_weight(css_tg(css)); 9920 int last_delta = INT_MAX; 9921 int prio, delta; 9922 9923 /* find the closest nice value to the current weight */ 9924 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 9925 delta = abs(sched_prio_to_weight[prio] - weight); 9926 if (delta >= last_delta) 9927 break; 9928 last_delta = delta; 9929 } 9930 9931 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 9932 } 9933 9934 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 9935 struct cftype *cft, s64 nice) 9936 { 9937 unsigned long weight; 9938 int idx, ret; 9939 9940 if (nice < MIN_NICE || nice > MAX_NICE) 9941 return -ERANGE; 9942 9943 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 9944 idx = array_index_nospec(idx, 40); 9945 weight = sched_prio_to_weight[idx]; 9946 9947 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 9948 if (!ret) 9949 scx_group_set_weight(css_tg(css), 9950 sched_weight_to_cgroup(weight)); 9951 return ret; 9952 } 9953 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9954 9955 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 9956 long period, long quota) 9957 { 9958 if (quota < 0) 9959 seq_puts(sf, "max"); 9960 else 9961 seq_printf(sf, "%ld", quota); 9962 9963 seq_printf(sf, " %ld\n", period); 9964 } 9965 9966 /* caller should put the current value in *@periodp before calling */ 9967 static int __maybe_unused cpu_period_quota_parse(char *buf, 9968 u64 *periodp, u64 *quotap) 9969 { 9970 char tok[21]; /* U64_MAX */ 9971 9972 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 9973 return -EINVAL; 9974 9975 *periodp *= NSEC_PER_USEC; 9976 9977 if (sscanf(tok, "%llu", quotap)) 9978 *quotap *= NSEC_PER_USEC; 9979 else if (!strcmp(tok, "max")) 9980 *quotap = RUNTIME_INF; 9981 else 9982 return -EINVAL; 9983 9984 return 0; 9985 } 9986 9987 #ifdef CONFIG_CFS_BANDWIDTH 9988 static int cpu_max_show(struct seq_file *sf, void *v) 9989 { 9990 struct task_group *tg = css_tg(seq_css(sf)); 9991 9992 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 9993 return 0; 9994 } 9995 9996 static ssize_t cpu_max_write(struct kernfs_open_file *of, 9997 char *buf, size_t nbytes, loff_t off) 9998 { 9999 struct task_group *tg = css_tg(of_css(of)); 10000 u64 period = tg_get_cfs_period(tg); 10001 u64 burst = tg->cfs_bandwidth.burst; 10002 u64 quota; 10003 int ret; 10004 10005 ret = cpu_period_quota_parse(buf, &period, "a); 10006 if (!ret) 10007 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 10008 return ret ?: nbytes; 10009 } 10010 #endif 10011 10012 static struct cftype cpu_files[] = { 10013 #ifdef CONFIG_GROUP_SCHED_WEIGHT 10014 { 10015 .name = "weight", 10016 .flags = CFTYPE_NOT_ON_ROOT, 10017 .read_u64 = cpu_weight_read_u64, 10018 .write_u64 = cpu_weight_write_u64, 10019 }, 10020 { 10021 .name = "weight.nice", 10022 .flags = CFTYPE_NOT_ON_ROOT, 10023 .read_s64 = cpu_weight_nice_read_s64, 10024 .write_s64 = cpu_weight_nice_write_s64, 10025 }, 10026 { 10027 .name = "idle", 10028 .flags = CFTYPE_NOT_ON_ROOT, 10029 .read_s64 = cpu_idle_read_s64, 10030 .write_s64 = cpu_idle_write_s64, 10031 }, 10032 #endif 10033 #ifdef CONFIG_CFS_BANDWIDTH 10034 { 10035 .name = "max", 10036 .flags = CFTYPE_NOT_ON_ROOT, 10037 .seq_show = cpu_max_show, 10038 .write = cpu_max_write, 10039 }, 10040 { 10041 .name = "max.burst", 10042 .flags = CFTYPE_NOT_ON_ROOT, 10043 .read_u64 = cpu_cfs_burst_read_u64, 10044 .write_u64 = cpu_cfs_burst_write_u64, 10045 }, 10046 #endif 10047 #ifdef CONFIG_UCLAMP_TASK_GROUP 10048 { 10049 .name = "uclamp.min", 10050 .flags = CFTYPE_NOT_ON_ROOT, 10051 .seq_show = cpu_uclamp_min_show, 10052 .write = cpu_uclamp_min_write, 10053 }, 10054 { 10055 .name = "uclamp.max", 10056 .flags = CFTYPE_NOT_ON_ROOT, 10057 .seq_show = cpu_uclamp_max_show, 10058 .write = cpu_uclamp_max_write, 10059 }, 10060 #endif 10061 { } /* terminate */ 10062 }; 10063 10064 struct cgroup_subsys cpu_cgrp_subsys = { 10065 .css_alloc = cpu_cgroup_css_alloc, 10066 .css_online = cpu_cgroup_css_online, 10067 .css_offline = cpu_cgroup_css_offline, 10068 .css_released = cpu_cgroup_css_released, 10069 .css_free = cpu_cgroup_css_free, 10070 .css_extra_stat_show = cpu_extra_stat_show, 10071 .css_local_stat_show = cpu_local_stat_show, 10072 .can_attach = cpu_cgroup_can_attach, 10073 .attach = cpu_cgroup_attach, 10074 .cancel_attach = cpu_cgroup_cancel_attach, 10075 .legacy_cftypes = cpu_legacy_files, 10076 .dfl_cftypes = cpu_files, 10077 .early_init = true, 10078 .threaded = true, 10079 }; 10080 10081 #endif /* CONFIG_CGROUP_SCHED */ 10082 10083 void dump_cpu_task(int cpu) 10084 { 10085 if (in_hardirq() && cpu == smp_processor_id()) { 10086 struct pt_regs *regs; 10087 10088 regs = get_irq_regs(); 10089 if (regs) { 10090 show_regs(regs); 10091 return; 10092 } 10093 } 10094 10095 if (trigger_single_cpu_backtrace(cpu)) 10096 return; 10097 10098 pr_info("Task dump for CPU %d:\n", cpu); 10099 sched_show_task(cpu_curr(cpu)); 10100 } 10101 10102 /* 10103 * Nice levels are multiplicative, with a gentle 10% change for every 10104 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 10105 * nice 1, it will get ~10% less CPU time than another CPU-bound task 10106 * that remained on nice 0. 10107 * 10108 * The "10% effect" is relative and cumulative: from _any_ nice level, 10109 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 10110 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 10111 * If a task goes up by ~10% and another task goes down by ~10% then 10112 * the relative distance between them is ~25%.) 10113 */ 10114 const int sched_prio_to_weight[40] = { 10115 /* -20 */ 88761, 71755, 56483, 46273, 36291, 10116 /* -15 */ 29154, 23254, 18705, 14949, 11916, 10117 /* -10 */ 9548, 7620, 6100, 4904, 3906, 10118 /* -5 */ 3121, 2501, 1991, 1586, 1277, 10119 /* 0 */ 1024, 820, 655, 526, 423, 10120 /* 5 */ 335, 272, 215, 172, 137, 10121 /* 10 */ 110, 87, 70, 56, 45, 10122 /* 15 */ 36, 29, 23, 18, 15, 10123 }; 10124 10125 /* 10126 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. 10127 * 10128 * In cases where the weight does not change often, we can use the 10129 * pre-calculated inverse to speed up arithmetics by turning divisions 10130 * into multiplications: 10131 */ 10132 const u32 sched_prio_to_wmult[40] = { 10133 /* -20 */ 48388, 59856, 76040, 92818, 118348, 10134 /* -15 */ 147320, 184698, 229616, 287308, 360437, 10135 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 10136 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 10137 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 10138 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 10139 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 10140 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 10141 }; 10142 10143 void call_trace_sched_update_nr_running(struct rq *rq, int count) 10144 { 10145 trace_sched_update_nr_running_tp(rq, count); 10146 } 10147 10148 #ifdef CONFIG_SCHED_MM_CID 10149 10150 /* 10151 * @cid_lock: Guarantee forward-progress of cid allocation. 10152 * 10153 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock 10154 * is only used when contention is detected by the lock-free allocation so 10155 * forward progress can be guaranteed. 10156 */ 10157 DEFINE_RAW_SPINLOCK(cid_lock); 10158 10159 /* 10160 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. 10161 * 10162 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is 10163 * detected, it is set to 1 to ensure that all newly coming allocations are 10164 * serialized by @cid_lock until the allocation which detected contention 10165 * completes and sets @use_cid_lock back to 0. This guarantees forward progress 10166 * of a cid allocation. 10167 */ 10168 int use_cid_lock; 10169 10170 /* 10171 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid 10172 * concurrently with respect to the execution of the source runqueue context 10173 * switch. 10174 * 10175 * There is one basic properties we want to guarantee here: 10176 * 10177 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively 10178 * used by a task. That would lead to concurrent allocation of the cid and 10179 * userspace corruption. 10180 * 10181 * Provide this guarantee by introducing a Dekker memory ordering to guarantee 10182 * that a pair of loads observe at least one of a pair of stores, which can be 10183 * shown as: 10184 * 10185 * X = Y = 0 10186 * 10187 * w[X]=1 w[Y]=1 10188 * MB MB 10189 * r[Y]=y r[X]=x 10190 * 10191 * Which guarantees that x==0 && y==0 is impossible. But rather than using 10192 * values 0 and 1, this algorithm cares about specific state transitions of the 10193 * runqueue current task (as updated by the scheduler context switch), and the 10194 * per-mm/cpu cid value. 10195 * 10196 * Let's introduce task (Y) which has task->mm == mm and task (N) which has 10197 * task->mm != mm for the rest of the discussion. There are two scheduler state 10198 * transitions on context switch we care about: 10199 * 10200 * (TSA) Store to rq->curr with transition from (N) to (Y) 10201 * 10202 * (TSB) Store to rq->curr with transition from (Y) to (N) 10203 * 10204 * On the remote-clear side, there is one transition we care about: 10205 * 10206 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag 10207 * 10208 * There is also a transition to UNSET state which can be performed from all 10209 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which 10210 * guarantees that only a single thread will succeed: 10211 * 10212 * (TMB) cmpxchg to *pcpu_cid to mark UNSET 10213 * 10214 * Just to be clear, what we do _not_ want to happen is a transition to UNSET 10215 * when a thread is actively using the cid (property (1)). 10216 * 10217 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. 10218 * 10219 * Scenario A) (TSA)+(TMA) (from next task perspective) 10220 * 10221 * CPU0 CPU1 10222 * 10223 * Context switch CS-1 Remote-clear 10224 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) 10225 * (implied barrier after cmpxchg) 10226 * - switch_mm_cid() 10227 * - memory barrier (see switch_mm_cid() 10228 * comment explaining how this barrier 10229 * is combined with other scheduler 10230 * barriers) 10231 * - mm_cid_get (next) 10232 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) 10233 * 10234 * This Dekker ensures that either task (Y) is observed by the 10235 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are 10236 * observed. 10237 * 10238 * If task (Y) store is observed by rcu_dereference(), it means that there is 10239 * still an active task on the cpu. Remote-clear will therefore not transition 10240 * to UNSET, which fulfills property (1). 10241 * 10242 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), 10243 * it will move its state to UNSET, which clears the percpu cid perhaps 10244 * uselessly (which is not an issue for correctness). Because task (Y) is not 10245 * observed, CPU1 can move ahead to set the state to UNSET. Because moving 10246 * state to UNSET is done with a cmpxchg expecting that the old state has the 10247 * LAZY flag set, only one thread will successfully UNSET. 10248 * 10249 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 10250 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and 10251 * CPU1 will observe task (Y) and do nothing more, which is fine. 10252 * 10253 * What we are effectively preventing with this Dekker is a scenario where 10254 * neither LAZY flag nor store (Y) are observed, which would fail property (1) 10255 * because this would UNSET a cid which is actively used. 10256 */ 10257 10258 void sched_mm_cid_migrate_from(struct task_struct *t) 10259 { 10260 t->migrate_from_cpu = task_cpu(t); 10261 } 10262 10263 static 10264 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, 10265 struct task_struct *t, 10266 struct mm_cid *src_pcpu_cid) 10267 { 10268 struct mm_struct *mm = t->mm; 10269 struct task_struct *src_task; 10270 int src_cid, last_mm_cid; 10271 10272 if (!mm) 10273 return -1; 10274 10275 last_mm_cid = t->last_mm_cid; 10276 /* 10277 * If the migrated task has no last cid, or if the current 10278 * task on src rq uses the cid, it means the source cid does not need 10279 * to be moved to the destination cpu. 10280 */ 10281 if (last_mm_cid == -1) 10282 return -1; 10283 src_cid = READ_ONCE(src_pcpu_cid->cid); 10284 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) 10285 return -1; 10286 10287 /* 10288 * If we observe an active task using the mm on this rq, it means we 10289 * are not the last task to be migrated from this cpu for this mm, so 10290 * there is no need to move src_cid to the destination cpu. 10291 */ 10292 guard(rcu)(); 10293 src_task = rcu_dereference(src_rq->curr); 10294 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10295 t->last_mm_cid = -1; 10296 return -1; 10297 } 10298 10299 return src_cid; 10300 } 10301 10302 static 10303 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, 10304 struct task_struct *t, 10305 struct mm_cid *src_pcpu_cid, 10306 int src_cid) 10307 { 10308 struct task_struct *src_task; 10309 struct mm_struct *mm = t->mm; 10310 int lazy_cid; 10311 10312 if (src_cid == -1) 10313 return -1; 10314 10315 /* 10316 * Attempt to clear the source cpu cid to move it to the destination 10317 * cpu. 10318 */ 10319 lazy_cid = mm_cid_set_lazy_put(src_cid); 10320 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) 10321 return -1; 10322 10323 /* 10324 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10325 * rq->curr->mm matches the scheduler barrier in context_switch() 10326 * between store to rq->curr and load of prev and next task's 10327 * per-mm/cpu cid. 10328 * 10329 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10330 * rq->curr->mm_cid_active matches the barrier in 10331 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10332 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10333 * load of per-mm/cpu cid. 10334 */ 10335 10336 /* 10337 * If we observe an active task using the mm on this rq after setting 10338 * the lazy-put flag, this task will be responsible for transitioning 10339 * from lazy-put flag set to MM_CID_UNSET. 10340 */ 10341 scoped_guard (rcu) { 10342 src_task = rcu_dereference(src_rq->curr); 10343 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10344 /* 10345 * We observed an active task for this mm, there is therefore 10346 * no point in moving this cid to the destination cpu. 10347 */ 10348 t->last_mm_cid = -1; 10349 return -1; 10350 } 10351 } 10352 10353 /* 10354 * The src_cid is unused, so it can be unset. 10355 */ 10356 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10357 return -1; 10358 WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET); 10359 return src_cid; 10360 } 10361 10362 /* 10363 * Migration to dst cpu. Called with dst_rq lock held. 10364 * Interrupts are disabled, which keeps the window of cid ownership without the 10365 * source rq lock held small. 10366 */ 10367 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) 10368 { 10369 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; 10370 struct mm_struct *mm = t->mm; 10371 int src_cid, src_cpu; 10372 bool dst_cid_is_set; 10373 struct rq *src_rq; 10374 10375 lockdep_assert_rq_held(dst_rq); 10376 10377 if (!mm) 10378 return; 10379 src_cpu = t->migrate_from_cpu; 10380 if (src_cpu == -1) { 10381 t->last_mm_cid = -1; 10382 return; 10383 } 10384 /* 10385 * Move the src cid if the dst cid is unset. This keeps id 10386 * allocation closest to 0 in cases where few threads migrate around 10387 * many CPUs. 10388 * 10389 * If destination cid or recent cid is already set, we may have 10390 * to just clear the src cid to ensure compactness in frequent 10391 * migrations scenarios. 10392 * 10393 * It is not useful to clear the src cid when the number of threads is 10394 * greater or equal to the number of allowed CPUs, because user-space 10395 * can expect that the number of allowed cids can reach the number of 10396 * allowed CPUs. 10397 */ 10398 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); 10399 dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) || 10400 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid)); 10401 if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed)) 10402 return; 10403 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); 10404 src_rq = cpu_rq(src_cpu); 10405 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); 10406 if (src_cid == -1) 10407 return; 10408 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, 10409 src_cid); 10410 if (src_cid == -1) 10411 return; 10412 if (dst_cid_is_set) { 10413 __mm_cid_put(mm, src_cid); 10414 return; 10415 } 10416 /* Move src_cid to dst cpu. */ 10417 mm_cid_snapshot_time(dst_rq, mm); 10418 WRITE_ONCE(dst_pcpu_cid->cid, src_cid); 10419 WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid); 10420 } 10421 10422 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, 10423 int cpu) 10424 { 10425 struct rq *rq = cpu_rq(cpu); 10426 struct task_struct *t; 10427 int cid, lazy_cid; 10428 10429 cid = READ_ONCE(pcpu_cid->cid); 10430 if (!mm_cid_is_valid(cid)) 10431 return; 10432 10433 /* 10434 * Clear the cpu cid if it is set to keep cid allocation compact. If 10435 * there happens to be other tasks left on the source cpu using this 10436 * mm, the next task using this mm will reallocate its cid on context 10437 * switch. 10438 */ 10439 lazy_cid = mm_cid_set_lazy_put(cid); 10440 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) 10441 return; 10442 10443 /* 10444 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10445 * rq->curr->mm matches the scheduler barrier in context_switch() 10446 * between store to rq->curr and load of prev and next task's 10447 * per-mm/cpu cid. 10448 * 10449 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10450 * rq->curr->mm_cid_active matches the barrier in 10451 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10452 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10453 * load of per-mm/cpu cid. 10454 */ 10455 10456 /* 10457 * If we observe an active task using the mm on this rq after setting 10458 * the lazy-put flag, that task will be responsible for transitioning 10459 * from lazy-put flag set to MM_CID_UNSET. 10460 */ 10461 scoped_guard (rcu) { 10462 t = rcu_dereference(rq->curr); 10463 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) 10464 return; 10465 } 10466 10467 /* 10468 * The cid is unused, so it can be unset. 10469 * Disable interrupts to keep the window of cid ownership without rq 10470 * lock small. 10471 */ 10472 scoped_guard (irqsave) { 10473 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10474 __mm_cid_put(mm, cid); 10475 } 10476 } 10477 10478 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) 10479 { 10480 struct rq *rq = cpu_rq(cpu); 10481 struct mm_cid *pcpu_cid; 10482 struct task_struct *curr; 10483 u64 rq_clock; 10484 10485 /* 10486 * rq->clock load is racy on 32-bit but one spurious clear once in a 10487 * while is irrelevant. 10488 */ 10489 rq_clock = READ_ONCE(rq->clock); 10490 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10491 10492 /* 10493 * In order to take care of infrequently scheduled tasks, bump the time 10494 * snapshot associated with this cid if an active task using the mm is 10495 * observed on this rq. 10496 */ 10497 scoped_guard (rcu) { 10498 curr = rcu_dereference(rq->curr); 10499 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { 10500 WRITE_ONCE(pcpu_cid->time, rq_clock); 10501 return; 10502 } 10503 } 10504 10505 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) 10506 return; 10507 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10508 } 10509 10510 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, 10511 int weight) 10512 { 10513 struct mm_cid *pcpu_cid; 10514 int cid; 10515 10516 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10517 cid = READ_ONCE(pcpu_cid->cid); 10518 if (!mm_cid_is_valid(cid) || cid < weight) 10519 return; 10520 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10521 } 10522 10523 static void task_mm_cid_work(struct callback_head *work) 10524 { 10525 unsigned long now = jiffies, old_scan, next_scan; 10526 struct task_struct *t = current; 10527 struct cpumask *cidmask; 10528 struct mm_struct *mm; 10529 int weight, cpu; 10530 10531 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work)); 10532 10533 work->next = work; /* Prevent double-add */ 10534 if (t->flags & PF_EXITING) 10535 return; 10536 mm = t->mm; 10537 if (!mm) 10538 return; 10539 old_scan = READ_ONCE(mm->mm_cid_next_scan); 10540 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10541 if (!old_scan) { 10542 unsigned long res; 10543 10544 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); 10545 if (res != old_scan) 10546 old_scan = res; 10547 else 10548 old_scan = next_scan; 10549 } 10550 if (time_before(now, old_scan)) 10551 return; 10552 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) 10553 return; 10554 cidmask = mm_cidmask(mm); 10555 /* Clear cids that were not recently used. */ 10556 for_each_possible_cpu(cpu) 10557 sched_mm_cid_remote_clear_old(mm, cpu); 10558 weight = cpumask_weight(cidmask); 10559 /* 10560 * Clear cids that are greater or equal to the cidmask weight to 10561 * recompact it. 10562 */ 10563 for_each_possible_cpu(cpu) 10564 sched_mm_cid_remote_clear_weight(mm, cpu, weight); 10565 } 10566 10567 void init_sched_mm_cid(struct task_struct *t) 10568 { 10569 struct mm_struct *mm = t->mm; 10570 int mm_users = 0; 10571 10572 if (mm) { 10573 mm_users = atomic_read(&mm->mm_users); 10574 if (mm_users == 1) 10575 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10576 } 10577 t->cid_work.next = &t->cid_work; /* Protect against double add */ 10578 init_task_work(&t->cid_work, task_mm_cid_work); 10579 } 10580 10581 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) 10582 { 10583 struct callback_head *work = &curr->cid_work; 10584 unsigned long now = jiffies; 10585 10586 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || 10587 work->next != work) 10588 return; 10589 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) 10590 return; 10591 10592 /* No page allocation under rq lock */ 10593 task_work_add(curr, work, TWA_RESUME | TWAF_NO_ALLOC); 10594 } 10595 10596 void sched_mm_cid_exit_signals(struct task_struct *t) 10597 { 10598 struct mm_struct *mm = t->mm; 10599 struct rq *rq; 10600 10601 if (!mm) 10602 return; 10603 10604 preempt_disable(); 10605 rq = this_rq(); 10606 guard(rq_lock_irqsave)(rq); 10607 preempt_enable_no_resched(); /* holding spinlock */ 10608 WRITE_ONCE(t->mm_cid_active, 0); 10609 /* 10610 * Store t->mm_cid_active before loading per-mm/cpu cid. 10611 * Matches barrier in sched_mm_cid_remote_clear_old(). 10612 */ 10613 smp_mb(); 10614 mm_cid_put(mm); 10615 t->last_mm_cid = t->mm_cid = -1; 10616 } 10617 10618 void sched_mm_cid_before_execve(struct task_struct *t) 10619 { 10620 struct mm_struct *mm = t->mm; 10621 struct rq *rq; 10622 10623 if (!mm) 10624 return; 10625 10626 preempt_disable(); 10627 rq = this_rq(); 10628 guard(rq_lock_irqsave)(rq); 10629 preempt_enable_no_resched(); /* holding spinlock */ 10630 WRITE_ONCE(t->mm_cid_active, 0); 10631 /* 10632 * Store t->mm_cid_active before loading per-mm/cpu cid. 10633 * Matches barrier in sched_mm_cid_remote_clear_old(). 10634 */ 10635 smp_mb(); 10636 mm_cid_put(mm); 10637 t->last_mm_cid = t->mm_cid = -1; 10638 } 10639 10640 void sched_mm_cid_after_execve(struct task_struct *t) 10641 { 10642 struct mm_struct *mm = t->mm; 10643 struct rq *rq; 10644 10645 if (!mm) 10646 return; 10647 10648 preempt_disable(); 10649 rq = this_rq(); 10650 scoped_guard (rq_lock_irqsave, rq) { 10651 preempt_enable_no_resched(); /* holding spinlock */ 10652 WRITE_ONCE(t->mm_cid_active, 1); 10653 /* 10654 * Store t->mm_cid_active before loading per-mm/cpu cid. 10655 * Matches barrier in sched_mm_cid_remote_clear_old(). 10656 */ 10657 smp_mb(); 10658 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm); 10659 } 10660 rseq_set_notify_resume(t); 10661 } 10662 10663 void sched_mm_cid_fork(struct task_struct *t) 10664 { 10665 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 10666 t->mm_cid_active = 1; 10667 } 10668 #endif 10669 10670 #ifdef CONFIG_SCHED_CLASS_EXT 10671 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 10672 struct sched_enq_and_set_ctx *ctx) 10673 { 10674 struct rq *rq = task_rq(p); 10675 10676 lockdep_assert_rq_held(rq); 10677 10678 *ctx = (struct sched_enq_and_set_ctx){ 10679 .p = p, 10680 .queue_flags = queue_flags, 10681 .queued = task_on_rq_queued(p), 10682 .running = task_current(rq, p), 10683 }; 10684 10685 update_rq_clock(rq); 10686 if (ctx->queued) 10687 dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK); 10688 if (ctx->running) 10689 put_prev_task(rq, p); 10690 } 10691 10692 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx) 10693 { 10694 struct rq *rq = task_rq(ctx->p); 10695 10696 lockdep_assert_rq_held(rq); 10697 10698 if (ctx->queued) 10699 enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK); 10700 if (ctx->running) 10701 set_next_task(rq, ctx->p); 10702 } 10703 #endif /* CONFIG_SCHED_CLASS_EXT */ 10704