1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel CPU scheduler code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #define INSTANTIATE_EXPORTED_MIGRATE_DISABLE 11 #include <linux/sched.h> 12 #include <linux/highmem.h> 13 #include <linux/hrtimer_api.h> 14 #include <linux/ktime_api.h> 15 #include <linux/sched/signal.h> 16 #include <linux/syscalls_api.h> 17 #include <linux/debug_locks.h> 18 #include <linux/prefetch.h> 19 #include <linux/capability.h> 20 #include <linux/pgtable_api.h> 21 #include <linux/wait_bit.h> 22 #include <linux/jiffies.h> 23 #include <linux/spinlock_api.h> 24 #include <linux/cpumask_api.h> 25 #include <linux/lockdep_api.h> 26 #include <linux/hardirq.h> 27 #include <linux/softirq.h> 28 #include <linux/refcount_api.h> 29 #include <linux/topology.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/cond_resched.h> 32 #include <linux/sched/cputime.h> 33 #include <linux/sched/debug.h> 34 #include <linux/sched/hotplug.h> 35 #include <linux/sched/init.h> 36 #include <linux/sched/isolation.h> 37 #include <linux/sched/loadavg.h> 38 #include <linux/sched/mm.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/rseq_api.h> 41 #include <linux/sched/rt.h> 42 43 #include <linux/blkdev.h> 44 #include <linux/context_tracking.h> 45 #include <linux/cpuset.h> 46 #include <linux/delayacct.h> 47 #include <linux/init_task.h> 48 #include <linux/interrupt.h> 49 #include <linux/ioprio.h> 50 #include <linux/kallsyms.h> 51 #include <linux/kcov.h> 52 #include <linux/kprobes.h> 53 #include <linux/llist_api.h> 54 #include <linux/mmu_context.h> 55 #include <linux/mmzone.h> 56 #include <linux/mutex_api.h> 57 #include <linux/nmi.h> 58 #include <linux/nospec.h> 59 #include <linux/perf_event_api.h> 60 #include <linux/profile.h> 61 #include <linux/psi.h> 62 #include <linux/rcuwait_api.h> 63 #include <linux/rseq.h> 64 #include <linux/sched/wake_q.h> 65 #include <linux/scs.h> 66 #include <linux/slab.h> 67 #include <linux/syscalls.h> 68 #include <linux/vtime.h> 69 #include <linux/wait_api.h> 70 #include <linux/workqueue_api.h> 71 #include <linux/livepatch_sched.h> 72 73 #ifdef CONFIG_PREEMPT_DYNAMIC 74 # ifdef CONFIG_GENERIC_IRQ_ENTRY 75 # include <linux/irq-entry-common.h> 76 # endif 77 #endif 78 79 #include <uapi/linux/sched/types.h> 80 81 #include <asm/irq_regs.h> 82 #include <asm/switch_to.h> 83 #include <asm/tlb.h> 84 85 #define CREATE_TRACE_POINTS 86 #include <linux/sched/rseq_api.h> 87 #include <trace/events/sched.h> 88 #include <trace/events/ipi.h> 89 #undef CREATE_TRACE_POINTS 90 91 #include "sched.h" 92 #include "stats.h" 93 94 #include "autogroup.h" 95 #include "pelt.h" 96 #include "smp.h" 97 98 #include "../workqueue_internal.h" 99 #include "../../io_uring/io-wq.h" 100 #include "../smpboot.h" 101 #include "../locking/mutex.h" 102 103 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 104 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 105 106 /* 107 * Export tracepoints that act as a bare tracehook (ie: have no trace event 108 * associated with them) to allow external modules to probe them. 109 */ 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 119 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 120 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 121 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 122 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_entry_tp); 123 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_exit_tp); 124 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_set_need_resched_tp); 125 126 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 127 DEFINE_PER_CPU(struct rnd_state, sched_rnd_state); 128 129 #ifdef CONFIG_SCHED_PROXY_EXEC 130 DEFINE_STATIC_KEY_TRUE(__sched_proxy_exec); 131 static int __init setup_proxy_exec(char *str) 132 { 133 bool proxy_enable = true; 134 135 if (*str && kstrtobool(str + 1, &proxy_enable)) { 136 pr_warn("Unable to parse sched_proxy_exec=\n"); 137 return 0; 138 } 139 140 if (proxy_enable) { 141 pr_info("sched_proxy_exec enabled via boot arg\n"); 142 static_branch_enable(&__sched_proxy_exec); 143 } else { 144 pr_info("sched_proxy_exec disabled via boot arg\n"); 145 static_branch_disable(&__sched_proxy_exec); 146 } 147 return 1; 148 } 149 #else 150 static int __init setup_proxy_exec(char *str) 151 { 152 pr_warn("CONFIG_SCHED_PROXY_EXEC=n, so it cannot be enabled or disabled at boot time\n"); 153 return 0; 154 } 155 #endif 156 __setup("sched_proxy_exec", setup_proxy_exec); 157 158 /* 159 * Debugging: various feature bits 160 * 161 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 162 * sysctl_sched_features, defined in sched.h, to allow constants propagation 163 * at compile time and compiler optimization based on features default. 164 */ 165 #define SCHED_FEAT(name, enabled) \ 166 (1UL << __SCHED_FEAT_##name) * enabled | 167 __read_mostly unsigned int sysctl_sched_features = 168 #include "features.h" 169 0; 170 #undef SCHED_FEAT 171 172 /* 173 * Print a warning if need_resched is set for the given duration (if 174 * LATENCY_WARN is enabled). 175 * 176 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 177 * per boot. 178 */ 179 __read_mostly int sysctl_resched_latency_warn_ms = 100; 180 __read_mostly int sysctl_resched_latency_warn_once = 1; 181 182 /* 183 * Number of tasks to iterate in a single balance run. 184 * Limited because this is done with IRQs disabled. 185 */ 186 __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 187 188 __read_mostly int scheduler_running; 189 190 #ifdef CONFIG_SCHED_CORE 191 192 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 193 194 /* kernel prio, less is more */ 195 static inline int __task_prio(const struct task_struct *p) 196 { 197 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 198 return -2; 199 200 if (p->dl_server) 201 return -1; /* deadline */ 202 203 if (rt_or_dl_prio(p->prio)) 204 return p->prio; /* [-1, 99] */ 205 206 if (p->sched_class == &idle_sched_class) 207 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 208 209 if (task_on_scx(p)) 210 return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ 211 212 return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ 213 } 214 215 /* 216 * l(a,b) 217 * le(a,b) := !l(b,a) 218 * g(a,b) := l(b,a) 219 * ge(a,b) := !l(a,b) 220 */ 221 222 /* real prio, less is less */ 223 static inline bool prio_less(const struct task_struct *a, 224 const struct task_struct *b, bool in_fi) 225 { 226 227 int pa = __task_prio(a), pb = __task_prio(b); 228 229 if (-pa < -pb) 230 return true; 231 232 if (-pb < -pa) 233 return false; 234 235 if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */ 236 const struct sched_dl_entity *a_dl, *b_dl; 237 238 a_dl = &a->dl; 239 /* 240 * Since,'a' and 'b' can be CFS tasks served by DL server, 241 * __task_prio() can return -1 (for DL) even for those. In that 242 * case, get to the dl_server's DL entity. 243 */ 244 if (a->dl_server) 245 a_dl = a->dl_server; 246 247 b_dl = &b->dl; 248 if (b->dl_server) 249 b_dl = b->dl_server; 250 251 return !dl_time_before(a_dl->deadline, b_dl->deadline); 252 } 253 254 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 255 return cfs_prio_less(a, b, in_fi); 256 257 #ifdef CONFIG_SCHED_CLASS_EXT 258 if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */ 259 return scx_prio_less(a, b, in_fi); 260 #endif 261 262 return false; 263 } 264 265 static inline bool __sched_core_less(const struct task_struct *a, 266 const struct task_struct *b) 267 { 268 if (a->core_cookie < b->core_cookie) 269 return true; 270 271 if (a->core_cookie > b->core_cookie) 272 return false; 273 274 /* flip prio, so high prio is leftmost */ 275 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 276 return true; 277 278 return false; 279 } 280 281 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 282 283 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 284 { 285 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 286 } 287 288 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 289 { 290 const struct task_struct *p = __node_2_sc(node); 291 unsigned long cookie = (unsigned long)key; 292 293 if (cookie < p->core_cookie) 294 return -1; 295 296 if (cookie > p->core_cookie) 297 return 1; 298 299 return 0; 300 } 301 302 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 303 { 304 if (p->se.sched_delayed) 305 return; 306 307 rq->core->core_task_seq++; 308 309 if (!p->core_cookie) 310 return; 311 312 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 313 } 314 315 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 316 { 317 if (p->se.sched_delayed) 318 return; 319 320 rq->core->core_task_seq++; 321 322 if (sched_core_enqueued(p)) { 323 rb_erase(&p->core_node, &rq->core_tree); 324 RB_CLEAR_NODE(&p->core_node); 325 } 326 327 /* 328 * Migrating the last task off the cpu, with the cpu in forced idle 329 * state. Reschedule to create an accounting edge for forced idle, 330 * and re-examine whether the core is still in forced idle state. 331 */ 332 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 333 rq->core->core_forceidle_count && rq->curr == rq->idle) 334 resched_curr(rq); 335 } 336 337 static int sched_task_is_throttled(struct task_struct *p, int cpu) 338 { 339 if (p->sched_class->task_is_throttled) 340 return p->sched_class->task_is_throttled(p, cpu); 341 342 return 0; 343 } 344 345 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 346 { 347 struct rb_node *node = &p->core_node; 348 int cpu = task_cpu(p); 349 350 do { 351 node = rb_next(node); 352 if (!node) 353 return NULL; 354 355 p = __node_2_sc(node); 356 if (p->core_cookie != cookie) 357 return NULL; 358 359 } while (sched_task_is_throttled(p, cpu)); 360 361 return p; 362 } 363 364 /* 365 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 366 * If no suitable task is found, NULL will be returned. 367 */ 368 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 369 { 370 struct task_struct *p; 371 struct rb_node *node; 372 373 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 374 if (!node) 375 return NULL; 376 377 p = __node_2_sc(node); 378 if (!sched_task_is_throttled(p, rq->cpu)) 379 return p; 380 381 return sched_core_next(p, cookie); 382 } 383 384 /* 385 * Magic required such that: 386 * 387 * raw_spin_rq_lock(rq); 388 * ... 389 * raw_spin_rq_unlock(rq); 390 * 391 * ends up locking and unlocking the _same_ lock, and all CPUs 392 * always agree on what rq has what lock. 393 * 394 * XXX entirely possible to selectively enable cores, don't bother for now. 395 */ 396 397 static DEFINE_MUTEX(sched_core_mutex); 398 static atomic_t sched_core_count; 399 static struct cpumask sched_core_mask; 400 401 static void sched_core_lock(int cpu, unsigned long *flags) 402 { 403 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 404 int t, i = 0; 405 406 local_irq_save(*flags); 407 for_each_cpu(t, smt_mask) 408 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 409 } 410 411 static void sched_core_unlock(int cpu, unsigned long *flags) 412 { 413 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 414 int t; 415 416 for_each_cpu(t, smt_mask) 417 raw_spin_unlock(&cpu_rq(t)->__lock); 418 local_irq_restore(*flags); 419 } 420 421 static void __sched_core_flip(bool enabled) 422 { 423 unsigned long flags; 424 int cpu, t; 425 426 cpus_read_lock(); 427 428 /* 429 * Toggle the online cores, one by one. 430 */ 431 cpumask_copy(&sched_core_mask, cpu_online_mask); 432 for_each_cpu(cpu, &sched_core_mask) { 433 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 434 435 sched_core_lock(cpu, &flags); 436 437 for_each_cpu(t, smt_mask) 438 cpu_rq(t)->core_enabled = enabled; 439 440 cpu_rq(cpu)->core->core_forceidle_start = 0; 441 442 sched_core_unlock(cpu, &flags); 443 444 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 445 } 446 447 /* 448 * Toggle the offline CPUs. 449 */ 450 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 451 cpu_rq(cpu)->core_enabled = enabled; 452 453 cpus_read_unlock(); 454 } 455 456 static void sched_core_assert_empty(void) 457 { 458 int cpu; 459 460 for_each_possible_cpu(cpu) 461 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 462 } 463 464 static void __sched_core_enable(void) 465 { 466 static_branch_enable(&__sched_core_enabled); 467 /* 468 * Ensure all previous instances of raw_spin_rq_*lock() have finished 469 * and future ones will observe !sched_core_disabled(). 470 */ 471 synchronize_rcu(); 472 __sched_core_flip(true); 473 sched_core_assert_empty(); 474 } 475 476 static void __sched_core_disable(void) 477 { 478 sched_core_assert_empty(); 479 __sched_core_flip(false); 480 static_branch_disable(&__sched_core_enabled); 481 } 482 483 void sched_core_get(void) 484 { 485 if (atomic_inc_not_zero(&sched_core_count)) 486 return; 487 488 mutex_lock(&sched_core_mutex); 489 if (!atomic_read(&sched_core_count)) 490 __sched_core_enable(); 491 492 smp_mb__before_atomic(); 493 atomic_inc(&sched_core_count); 494 mutex_unlock(&sched_core_mutex); 495 } 496 497 static void __sched_core_put(struct work_struct *work) 498 { 499 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 500 __sched_core_disable(); 501 mutex_unlock(&sched_core_mutex); 502 } 503 } 504 505 void sched_core_put(void) 506 { 507 static DECLARE_WORK(_work, __sched_core_put); 508 509 /* 510 * "There can be only one" 511 * 512 * Either this is the last one, or we don't actually need to do any 513 * 'work'. If it is the last *again*, we rely on 514 * WORK_STRUCT_PENDING_BIT. 515 */ 516 if (!atomic_add_unless(&sched_core_count, -1, 1)) 517 schedule_work(&_work); 518 } 519 520 #else /* !CONFIG_SCHED_CORE: */ 521 522 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 523 static inline void 524 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 525 526 #endif /* !CONFIG_SCHED_CORE */ 527 528 /* need a wrapper since we may need to trace from modules */ 529 EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp); 530 531 /* Call via the helper macro trace_set_current_state. */ 532 void __trace_set_current_state(int state_value) 533 { 534 trace_sched_set_state_tp(current, state_value); 535 } 536 EXPORT_SYMBOL(__trace_set_current_state); 537 538 /* 539 * Serialization rules: 540 * 541 * Lock order: 542 * 543 * p->pi_lock 544 * rq->lock 545 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 546 * 547 * rq1->lock 548 * rq2->lock where: rq1 < rq2 549 * 550 * Regular state: 551 * 552 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 553 * local CPU's rq->lock, it optionally removes the task from the runqueue and 554 * always looks at the local rq data structures to find the most eligible task 555 * to run next. 556 * 557 * Task enqueue is also under rq->lock, possibly taken from another CPU. 558 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 559 * the local CPU to avoid bouncing the runqueue state around [ see 560 * ttwu_queue_wakelist() ] 561 * 562 * Task wakeup, specifically wakeups that involve migration, are horribly 563 * complicated to avoid having to take two rq->locks. 564 * 565 * Special state: 566 * 567 * System-calls and anything external will use task_rq_lock() which acquires 568 * both p->pi_lock and rq->lock. As a consequence the state they change is 569 * stable while holding either lock: 570 * 571 * - sched_setaffinity()/ 572 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 573 * - set_user_nice(): p->se.load, p->*prio 574 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 575 * p->se.load, p->rt_priority, 576 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 577 * - sched_setnuma(): p->numa_preferred_nid 578 * - sched_move_task(): p->sched_task_group 579 * - uclamp_update_active() p->uclamp* 580 * 581 * p->state <- TASK_*: 582 * 583 * is changed locklessly using set_current_state(), __set_current_state() or 584 * set_special_state(), see their respective comments, or by 585 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 586 * concurrent self. 587 * 588 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 589 * 590 * is set by activate_task() and cleared by deactivate_task()/block_task(), 591 * under rq->lock. Non-zero indicates the task is runnable, the special 592 * ON_RQ_MIGRATING state is used for migration without holding both 593 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 594 * 595 * Additionally it is possible to be ->on_rq but still be considered not 596 * runnable when p->se.sched_delayed is true. These tasks are on the runqueue 597 * but will be dequeued as soon as they get picked again. See the 598 * task_is_runnable() helper. 599 * 600 * p->on_cpu <- { 0, 1 }: 601 * 602 * is set by prepare_task() and cleared by finish_task() such that it will be 603 * set before p is scheduled-in and cleared after p is scheduled-out, both 604 * under rq->lock. Non-zero indicates the task is running on its CPU. 605 * 606 * [ The astute reader will observe that it is possible for two tasks on one 607 * CPU to have ->on_cpu = 1 at the same time. ] 608 * 609 * task_cpu(p): is changed by set_task_cpu(), the rules are: 610 * 611 * - Don't call set_task_cpu() on a blocked task: 612 * 613 * We don't care what CPU we're not running on, this simplifies hotplug, 614 * the CPU assignment of blocked tasks isn't required to be valid. 615 * 616 * - for try_to_wake_up(), called under p->pi_lock: 617 * 618 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 619 * 620 * - for migration called under rq->lock: 621 * [ see task_on_rq_migrating() in task_rq_lock() ] 622 * 623 * o move_queued_task() 624 * o detach_task() 625 * 626 * - for migration called under double_rq_lock(): 627 * 628 * o __migrate_swap_task() 629 * o push_rt_task() / pull_rt_task() 630 * o push_dl_task() / pull_dl_task() 631 * o dl_task_offline_migration() 632 * 633 */ 634 635 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 636 { 637 raw_spinlock_t *lock; 638 639 /* Matches synchronize_rcu() in __sched_core_enable() */ 640 preempt_disable(); 641 if (sched_core_disabled()) { 642 raw_spin_lock_nested(&rq->__lock, subclass); 643 /* preempt_count *MUST* be > 1 */ 644 preempt_enable_no_resched(); 645 return; 646 } 647 648 for (;;) { 649 lock = __rq_lockp(rq); 650 raw_spin_lock_nested(lock, subclass); 651 if (likely(lock == __rq_lockp(rq))) { 652 /* preempt_count *MUST* be > 1 */ 653 preempt_enable_no_resched(); 654 return; 655 } 656 raw_spin_unlock(lock); 657 } 658 } 659 660 bool raw_spin_rq_trylock(struct rq *rq) 661 { 662 raw_spinlock_t *lock; 663 bool ret; 664 665 /* Matches synchronize_rcu() in __sched_core_enable() */ 666 preempt_disable(); 667 if (sched_core_disabled()) { 668 ret = raw_spin_trylock(&rq->__lock); 669 preempt_enable(); 670 return ret; 671 } 672 673 for (;;) { 674 lock = __rq_lockp(rq); 675 ret = raw_spin_trylock(lock); 676 if (!ret || (likely(lock == __rq_lockp(rq)))) { 677 preempt_enable(); 678 return ret; 679 } 680 raw_spin_unlock(lock); 681 } 682 } 683 684 void raw_spin_rq_unlock(struct rq *rq) 685 { 686 raw_spin_unlock(rq_lockp(rq)); 687 } 688 689 /* 690 * double_rq_lock - safely lock two runqueues 691 */ 692 void double_rq_lock(struct rq *rq1, struct rq *rq2) 693 { 694 lockdep_assert_irqs_disabled(); 695 696 if (rq_order_less(rq2, rq1)) 697 swap(rq1, rq2); 698 699 raw_spin_rq_lock(rq1); 700 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 701 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 702 703 double_rq_clock_clear_update(rq1, rq2); 704 } 705 706 /* 707 * __task_rq_lock - lock the rq @p resides on. 708 */ 709 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 710 __acquires(rq->lock) 711 { 712 struct rq *rq; 713 714 lockdep_assert_held(&p->pi_lock); 715 716 for (;;) { 717 rq = task_rq(p); 718 raw_spin_rq_lock(rq); 719 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 720 rq_pin_lock(rq, rf); 721 return rq; 722 } 723 raw_spin_rq_unlock(rq); 724 725 while (unlikely(task_on_rq_migrating(p))) 726 cpu_relax(); 727 } 728 } 729 730 /* 731 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 732 */ 733 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 734 __acquires(p->pi_lock) 735 __acquires(rq->lock) 736 { 737 struct rq *rq; 738 739 for (;;) { 740 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 741 rq = task_rq(p); 742 raw_spin_rq_lock(rq); 743 /* 744 * move_queued_task() task_rq_lock() 745 * 746 * ACQUIRE (rq->lock) 747 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 748 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 749 * [S] ->cpu = new_cpu [L] task_rq() 750 * [L] ->on_rq 751 * RELEASE (rq->lock) 752 * 753 * If we observe the old CPU in task_rq_lock(), the acquire of 754 * the old rq->lock will fully serialize against the stores. 755 * 756 * If we observe the new CPU in task_rq_lock(), the address 757 * dependency headed by '[L] rq = task_rq()' and the acquire 758 * will pair with the WMB to ensure we then also see migrating. 759 */ 760 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 761 rq_pin_lock(rq, rf); 762 return rq; 763 } 764 raw_spin_rq_unlock(rq); 765 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 766 767 while (unlikely(task_on_rq_migrating(p))) 768 cpu_relax(); 769 } 770 } 771 772 /* 773 * RQ-clock updating methods: 774 */ 775 776 static void update_rq_clock_task(struct rq *rq, s64 delta) 777 { 778 /* 779 * In theory, the compile should just see 0 here, and optimize out the call 780 * to sched_rt_avg_update. But I don't trust it... 781 */ 782 s64 __maybe_unused steal = 0, irq_delta = 0; 783 784 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 785 if (irqtime_enabled()) { 786 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 787 788 /* 789 * Since irq_time is only updated on {soft,}irq_exit, we might run into 790 * this case when a previous update_rq_clock() happened inside a 791 * {soft,}IRQ region. 792 * 793 * When this happens, we stop ->clock_task and only update the 794 * prev_irq_time stamp to account for the part that fit, so that a next 795 * update will consume the rest. This ensures ->clock_task is 796 * monotonic. 797 * 798 * It does however cause some slight miss-attribution of {soft,}IRQ 799 * time, a more accurate solution would be to update the irq_time using 800 * the current rq->clock timestamp, except that would require using 801 * atomic ops. 802 */ 803 if (irq_delta > delta) 804 irq_delta = delta; 805 806 rq->prev_irq_time += irq_delta; 807 delta -= irq_delta; 808 delayacct_irq(rq->curr, irq_delta); 809 } 810 #endif 811 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 812 if (static_key_false((¶virt_steal_rq_enabled))) { 813 u64 prev_steal; 814 815 steal = prev_steal = paravirt_steal_clock(cpu_of(rq)); 816 steal -= rq->prev_steal_time_rq; 817 818 if (unlikely(steal > delta)) 819 steal = delta; 820 821 rq->prev_steal_time_rq = prev_steal; 822 delta -= steal; 823 } 824 #endif 825 826 rq->clock_task += delta; 827 828 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 829 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 830 update_irq_load_avg(rq, irq_delta + steal); 831 #endif 832 update_rq_clock_pelt(rq, delta); 833 } 834 835 void update_rq_clock(struct rq *rq) 836 { 837 s64 delta; 838 u64 clock; 839 840 lockdep_assert_rq_held(rq); 841 842 if (rq->clock_update_flags & RQCF_ACT_SKIP) 843 return; 844 845 if (sched_feat(WARN_DOUBLE_CLOCK)) 846 WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED); 847 rq->clock_update_flags |= RQCF_UPDATED; 848 849 clock = sched_clock_cpu(cpu_of(rq)); 850 scx_rq_clock_update(rq, clock); 851 852 delta = clock - rq->clock; 853 if (delta < 0) 854 return; 855 rq->clock += delta; 856 857 update_rq_clock_task(rq, delta); 858 } 859 860 #ifdef CONFIG_SCHED_HRTICK 861 /* 862 * Use HR-timers to deliver accurate preemption points. 863 */ 864 865 static void hrtick_clear(struct rq *rq) 866 { 867 if (hrtimer_active(&rq->hrtick_timer)) 868 hrtimer_cancel(&rq->hrtick_timer); 869 } 870 871 /* 872 * High-resolution timer tick. 873 * Runs from hardirq context with interrupts disabled. 874 */ 875 static enum hrtimer_restart hrtick(struct hrtimer *timer) 876 { 877 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 878 struct rq_flags rf; 879 880 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 881 882 rq_lock(rq, &rf); 883 update_rq_clock(rq); 884 rq->donor->sched_class->task_tick(rq, rq->donor, 1); 885 rq_unlock(rq, &rf); 886 887 return HRTIMER_NORESTART; 888 } 889 890 static void __hrtick_restart(struct rq *rq) 891 { 892 struct hrtimer *timer = &rq->hrtick_timer; 893 ktime_t time = rq->hrtick_time; 894 895 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 896 } 897 898 /* 899 * called from hardirq (IPI) context 900 */ 901 static void __hrtick_start(void *arg) 902 { 903 struct rq *rq = arg; 904 struct rq_flags rf; 905 906 rq_lock(rq, &rf); 907 __hrtick_restart(rq); 908 rq_unlock(rq, &rf); 909 } 910 911 /* 912 * Called to set the hrtick timer state. 913 * 914 * called with rq->lock held and IRQs disabled 915 */ 916 void hrtick_start(struct rq *rq, u64 delay) 917 { 918 struct hrtimer *timer = &rq->hrtick_timer; 919 s64 delta; 920 921 /* 922 * Don't schedule slices shorter than 10000ns, that just 923 * doesn't make sense and can cause timer DoS. 924 */ 925 delta = max_t(s64, delay, 10000LL); 926 rq->hrtick_time = ktime_add_ns(hrtimer_cb_get_time(timer), delta); 927 928 if (rq == this_rq()) 929 __hrtick_restart(rq); 930 else 931 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 932 } 933 934 static void hrtick_rq_init(struct rq *rq) 935 { 936 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 937 hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 938 } 939 #else /* !CONFIG_SCHED_HRTICK: */ 940 static inline void hrtick_clear(struct rq *rq) 941 { 942 } 943 944 static inline void hrtick_rq_init(struct rq *rq) 945 { 946 } 947 #endif /* !CONFIG_SCHED_HRTICK */ 948 949 /* 950 * try_cmpxchg based fetch_or() macro so it works for different integer types: 951 */ 952 #define fetch_or(ptr, mask) \ 953 ({ \ 954 typeof(ptr) _ptr = (ptr); \ 955 typeof(mask) _mask = (mask); \ 956 typeof(*_ptr) _val = *_ptr; \ 957 \ 958 do { \ 959 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 960 _val; \ 961 }) 962 963 #ifdef TIF_POLLING_NRFLAG 964 /* 965 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 966 * this avoids any races wrt polling state changes and thereby avoids 967 * spurious IPIs. 968 */ 969 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 970 { 971 return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG); 972 } 973 974 /* 975 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 976 * 977 * If this returns true, then the idle task promises to call 978 * sched_ttwu_pending() and reschedule soon. 979 */ 980 static bool set_nr_if_polling(struct task_struct *p) 981 { 982 struct thread_info *ti = task_thread_info(p); 983 typeof(ti->flags) val = READ_ONCE(ti->flags); 984 985 do { 986 if (!(val & _TIF_POLLING_NRFLAG)) 987 return false; 988 if (val & _TIF_NEED_RESCHED) 989 return true; 990 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 991 992 return true; 993 } 994 995 #else 996 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 997 { 998 set_ti_thread_flag(ti, tif); 999 return true; 1000 } 1001 1002 static inline bool set_nr_if_polling(struct task_struct *p) 1003 { 1004 return false; 1005 } 1006 #endif 1007 1008 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 1009 { 1010 struct wake_q_node *node = &task->wake_q; 1011 1012 /* 1013 * Atomically grab the task, if ->wake_q is !nil already it means 1014 * it's already queued (either by us or someone else) and will get the 1015 * wakeup due to that. 1016 * 1017 * In order to ensure that a pending wakeup will observe our pending 1018 * state, even in the failed case, an explicit smp_mb() must be used. 1019 */ 1020 smp_mb__before_atomic(); 1021 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 1022 return false; 1023 1024 /* 1025 * The head is context local, there can be no concurrency. 1026 */ 1027 *head->lastp = node; 1028 head->lastp = &node->next; 1029 return true; 1030 } 1031 1032 /** 1033 * wake_q_add() - queue a wakeup for 'later' waking. 1034 * @head: the wake_q_head to add @task to 1035 * @task: the task to queue for 'later' wakeup 1036 * 1037 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1038 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1039 * instantly. 1040 * 1041 * This function must be used as-if it were wake_up_process(); IOW the task 1042 * must be ready to be woken at this location. 1043 */ 1044 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 1045 { 1046 if (__wake_q_add(head, task)) 1047 get_task_struct(task); 1048 } 1049 1050 /** 1051 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 1052 * @head: the wake_q_head to add @task to 1053 * @task: the task to queue for 'later' wakeup 1054 * 1055 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1056 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1057 * instantly. 1058 * 1059 * This function must be used as-if it were wake_up_process(); IOW the task 1060 * must be ready to be woken at this location. 1061 * 1062 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1063 * that already hold reference to @task can call the 'safe' version and trust 1064 * wake_q to do the right thing depending whether or not the @task is already 1065 * queued for wakeup. 1066 */ 1067 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1068 { 1069 if (!__wake_q_add(head, task)) 1070 put_task_struct(task); 1071 } 1072 1073 void wake_up_q(struct wake_q_head *head) 1074 { 1075 struct wake_q_node *node = head->first; 1076 1077 while (node != WAKE_Q_TAIL) { 1078 struct task_struct *task; 1079 1080 task = container_of(node, struct task_struct, wake_q); 1081 node = node->next; 1082 /* pairs with cmpxchg_relaxed() in __wake_q_add() */ 1083 WRITE_ONCE(task->wake_q.next, NULL); 1084 /* Task can safely be re-inserted now. */ 1085 1086 /* 1087 * wake_up_process() executes a full barrier, which pairs with 1088 * the queueing in wake_q_add() so as not to miss wakeups. 1089 */ 1090 wake_up_process(task); 1091 put_task_struct(task); 1092 } 1093 } 1094 1095 /* 1096 * resched_curr - mark rq's current task 'to be rescheduled now'. 1097 * 1098 * On UP this means the setting of the need_resched flag, on SMP it 1099 * might also involve a cross-CPU call to trigger the scheduler on 1100 * the target CPU. 1101 */ 1102 static void __resched_curr(struct rq *rq, int tif) 1103 { 1104 struct task_struct *curr = rq->curr; 1105 struct thread_info *cti = task_thread_info(curr); 1106 int cpu; 1107 1108 lockdep_assert_rq_held(rq); 1109 1110 /* 1111 * Always immediately preempt the idle task; no point in delaying doing 1112 * actual work. 1113 */ 1114 if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY) 1115 tif = TIF_NEED_RESCHED; 1116 1117 if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED)) 1118 return; 1119 1120 cpu = cpu_of(rq); 1121 1122 trace_sched_set_need_resched_tp(curr, cpu, tif); 1123 if (cpu == smp_processor_id()) { 1124 set_ti_thread_flag(cti, tif); 1125 if (tif == TIF_NEED_RESCHED) 1126 set_preempt_need_resched(); 1127 return; 1128 } 1129 1130 if (set_nr_and_not_polling(cti, tif)) { 1131 if (tif == TIF_NEED_RESCHED) 1132 smp_send_reschedule(cpu); 1133 } else { 1134 trace_sched_wake_idle_without_ipi(cpu); 1135 } 1136 } 1137 1138 void __trace_set_need_resched(struct task_struct *curr, int tif) 1139 { 1140 trace_sched_set_need_resched_tp(curr, smp_processor_id(), tif); 1141 } 1142 EXPORT_SYMBOL_GPL(__trace_set_need_resched); 1143 1144 void resched_curr(struct rq *rq) 1145 { 1146 __resched_curr(rq, TIF_NEED_RESCHED); 1147 } 1148 1149 #ifdef CONFIG_PREEMPT_DYNAMIC 1150 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy); 1151 static __always_inline bool dynamic_preempt_lazy(void) 1152 { 1153 return static_branch_unlikely(&sk_dynamic_preempt_lazy); 1154 } 1155 #else 1156 static __always_inline bool dynamic_preempt_lazy(void) 1157 { 1158 return IS_ENABLED(CONFIG_PREEMPT_LAZY); 1159 } 1160 #endif 1161 1162 static __always_inline int get_lazy_tif_bit(void) 1163 { 1164 if (dynamic_preempt_lazy()) 1165 return TIF_NEED_RESCHED_LAZY; 1166 1167 return TIF_NEED_RESCHED; 1168 } 1169 1170 void resched_curr_lazy(struct rq *rq) 1171 { 1172 __resched_curr(rq, get_lazy_tif_bit()); 1173 } 1174 1175 void resched_cpu(int cpu) 1176 { 1177 struct rq *rq = cpu_rq(cpu); 1178 unsigned long flags; 1179 1180 raw_spin_rq_lock_irqsave(rq, flags); 1181 if (cpu_online(cpu) || cpu == smp_processor_id()) 1182 resched_curr(rq); 1183 raw_spin_rq_unlock_irqrestore(rq, flags); 1184 } 1185 1186 #ifdef CONFIG_NO_HZ_COMMON 1187 /* 1188 * In the semi idle case, use the nearest busy CPU for migrating timers 1189 * from an idle CPU. This is good for power-savings. 1190 * 1191 * We don't do similar optimization for completely idle system, as 1192 * selecting an idle CPU will add more delays to the timers than intended 1193 * (as that CPU's timer base may not be up to date wrt jiffies etc). 1194 */ 1195 int get_nohz_timer_target(void) 1196 { 1197 int i, cpu = smp_processor_id(), default_cpu = -1; 1198 struct sched_domain *sd; 1199 const struct cpumask *hk_mask; 1200 1201 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) { 1202 if (!idle_cpu(cpu)) 1203 return cpu; 1204 default_cpu = cpu; 1205 } 1206 1207 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 1208 1209 guard(rcu)(); 1210 1211 for_each_domain(cpu, sd) { 1212 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1213 if (cpu == i) 1214 continue; 1215 1216 if (!idle_cpu(i)) 1217 return i; 1218 } 1219 } 1220 1221 if (default_cpu == -1) 1222 default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE); 1223 1224 return default_cpu; 1225 } 1226 1227 /* 1228 * When add_timer_on() enqueues a timer into the timer wheel of an 1229 * idle CPU then this timer might expire before the next timer event 1230 * which is scheduled to wake up that CPU. In case of a completely 1231 * idle system the next event might even be infinite time into the 1232 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1233 * leaves the inner idle loop so the newly added timer is taken into 1234 * account when the CPU goes back to idle and evaluates the timer 1235 * wheel for the next timer event. 1236 */ 1237 static void wake_up_idle_cpu(int cpu) 1238 { 1239 struct rq *rq = cpu_rq(cpu); 1240 1241 if (cpu == smp_processor_id()) 1242 return; 1243 1244 /* 1245 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling 1246 * part of the idle loop. This forces an exit from the idle loop 1247 * and a round trip to schedule(). Now this could be optimized 1248 * because a simple new idle loop iteration is enough to 1249 * re-evaluate the next tick. Provided some re-ordering of tick 1250 * nohz functions that would need to follow TIF_NR_POLLING 1251 * clearing: 1252 * 1253 * - On most architectures, a simple fetch_or on ti::flags with a 1254 * "0" value would be enough to know if an IPI needs to be sent. 1255 * 1256 * - x86 needs to perform a last need_resched() check between 1257 * monitor and mwait which doesn't take timers into account. 1258 * There a dedicated TIF_TIMER flag would be required to 1259 * fetch_or here and be checked along with TIF_NEED_RESCHED 1260 * before mwait(). 1261 * 1262 * However, remote timer enqueue is not such a frequent event 1263 * and testing of the above solutions didn't appear to report 1264 * much benefits. 1265 */ 1266 if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED)) 1267 smp_send_reschedule(cpu); 1268 else 1269 trace_sched_wake_idle_without_ipi(cpu); 1270 } 1271 1272 static bool wake_up_full_nohz_cpu(int cpu) 1273 { 1274 /* 1275 * We just need the target to call irq_exit() and re-evaluate 1276 * the next tick. The nohz full kick at least implies that. 1277 * If needed we can still optimize that later with an 1278 * empty IRQ. 1279 */ 1280 if (cpu_is_offline(cpu)) 1281 return true; /* Don't try to wake offline CPUs. */ 1282 if (tick_nohz_full_cpu(cpu)) { 1283 if (cpu != smp_processor_id() || 1284 tick_nohz_tick_stopped()) 1285 tick_nohz_full_kick_cpu(cpu); 1286 return true; 1287 } 1288 1289 return false; 1290 } 1291 1292 /* 1293 * Wake up the specified CPU. If the CPU is going offline, it is the 1294 * caller's responsibility to deal with the lost wakeup, for example, 1295 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1296 */ 1297 void wake_up_nohz_cpu(int cpu) 1298 { 1299 if (!wake_up_full_nohz_cpu(cpu)) 1300 wake_up_idle_cpu(cpu); 1301 } 1302 1303 static void nohz_csd_func(void *info) 1304 { 1305 struct rq *rq = info; 1306 int cpu = cpu_of(rq); 1307 unsigned int flags; 1308 1309 /* 1310 * Release the rq::nohz_csd. 1311 */ 1312 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1313 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1314 1315 rq->idle_balance = idle_cpu(cpu); 1316 if (rq->idle_balance) { 1317 rq->nohz_idle_balance = flags; 1318 __raise_softirq_irqoff(SCHED_SOFTIRQ); 1319 } 1320 } 1321 1322 #endif /* CONFIG_NO_HZ_COMMON */ 1323 1324 #ifdef CONFIG_NO_HZ_FULL 1325 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1326 { 1327 if (rq->nr_running != 1) 1328 return false; 1329 1330 if (p->sched_class != &fair_sched_class) 1331 return false; 1332 1333 if (!task_on_rq_queued(p)) 1334 return false; 1335 1336 return true; 1337 } 1338 1339 bool sched_can_stop_tick(struct rq *rq) 1340 { 1341 int fifo_nr_running; 1342 1343 /* Deadline tasks, even if single, need the tick */ 1344 if (rq->dl.dl_nr_running) 1345 return false; 1346 1347 /* 1348 * If there are more than one RR tasks, we need the tick to affect the 1349 * actual RR behaviour. 1350 */ 1351 if (rq->rt.rr_nr_running) { 1352 if (rq->rt.rr_nr_running == 1) 1353 return true; 1354 else 1355 return false; 1356 } 1357 1358 /* 1359 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1360 * forced preemption between FIFO tasks. 1361 */ 1362 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1363 if (fifo_nr_running) 1364 return true; 1365 1366 /* 1367 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks 1368 * left. For CFS, if there's more than one we need the tick for 1369 * involuntary preemption. For SCX, ask. 1370 */ 1371 if (scx_enabled() && !scx_can_stop_tick(rq)) 1372 return false; 1373 1374 if (rq->cfs.h_nr_queued > 1) 1375 return false; 1376 1377 /* 1378 * If there is one task and it has CFS runtime bandwidth constraints 1379 * and it's on the cpu now we don't want to stop the tick. 1380 * This check prevents clearing the bit if a newly enqueued task here is 1381 * dequeued by migrating while the constrained task continues to run. 1382 * E.g. going from 2->1 without going through pick_next_task(). 1383 */ 1384 if (__need_bw_check(rq, rq->curr)) { 1385 if (cfs_task_bw_constrained(rq->curr)) 1386 return false; 1387 } 1388 1389 return true; 1390 } 1391 #endif /* CONFIG_NO_HZ_FULL */ 1392 1393 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_FAIR_GROUP_SCHED) 1394 /* 1395 * Iterate task_group tree rooted at *from, calling @down when first entering a 1396 * node and @up when leaving it for the final time. 1397 * 1398 * Caller must hold rcu_lock or sufficient equivalent. 1399 */ 1400 int walk_tg_tree_from(struct task_group *from, 1401 tg_visitor down, tg_visitor up, void *data) 1402 { 1403 struct task_group *parent, *child; 1404 int ret; 1405 1406 parent = from; 1407 1408 down: 1409 ret = (*down)(parent, data); 1410 if (ret) 1411 goto out; 1412 list_for_each_entry_rcu(child, &parent->children, siblings) { 1413 parent = child; 1414 goto down; 1415 1416 up: 1417 continue; 1418 } 1419 ret = (*up)(parent, data); 1420 if (ret || parent == from) 1421 goto out; 1422 1423 child = parent; 1424 parent = parent->parent; 1425 if (parent) 1426 goto up; 1427 out: 1428 return ret; 1429 } 1430 1431 int tg_nop(struct task_group *tg, void *data) 1432 { 1433 return 0; 1434 } 1435 #endif 1436 1437 void set_load_weight(struct task_struct *p, bool update_load) 1438 { 1439 int prio = p->static_prio - MAX_RT_PRIO; 1440 struct load_weight lw; 1441 1442 if (task_has_idle_policy(p)) { 1443 lw.weight = scale_load(WEIGHT_IDLEPRIO); 1444 lw.inv_weight = WMULT_IDLEPRIO; 1445 } else { 1446 lw.weight = scale_load(sched_prio_to_weight[prio]); 1447 lw.inv_weight = sched_prio_to_wmult[prio]; 1448 } 1449 1450 /* 1451 * SCHED_OTHER tasks have to update their load when changing their 1452 * weight 1453 */ 1454 if (update_load && p->sched_class->reweight_task) 1455 p->sched_class->reweight_task(task_rq(p), p, &lw); 1456 else 1457 p->se.load = lw; 1458 } 1459 1460 #ifdef CONFIG_UCLAMP_TASK 1461 /* 1462 * Serializes updates of utilization clamp values 1463 * 1464 * The (slow-path) user-space triggers utilization clamp value updates which 1465 * can require updates on (fast-path) scheduler's data structures used to 1466 * support enqueue/dequeue operations. 1467 * While the per-CPU rq lock protects fast-path update operations, user-space 1468 * requests are serialized using a mutex to reduce the risk of conflicting 1469 * updates or API abuses. 1470 */ 1471 static __maybe_unused DEFINE_MUTEX(uclamp_mutex); 1472 1473 /* Max allowed minimum utilization */ 1474 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1475 1476 /* Max allowed maximum utilization */ 1477 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1478 1479 /* 1480 * By default RT tasks run at the maximum performance point/capacity of the 1481 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1482 * SCHED_CAPACITY_SCALE. 1483 * 1484 * This knob allows admins to change the default behavior when uclamp is being 1485 * used. In battery powered devices, particularly, running at the maximum 1486 * capacity and frequency will increase energy consumption and shorten the 1487 * battery life. 1488 * 1489 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1490 * 1491 * This knob will not override the system default sched_util_clamp_min defined 1492 * above. 1493 */ 1494 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1495 1496 /* All clamps are required to be less or equal than these values */ 1497 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1498 1499 /* 1500 * This static key is used to reduce the uclamp overhead in the fast path. It 1501 * primarily disables the call to uclamp_rq_{inc, dec}() in 1502 * enqueue/dequeue_task(). 1503 * 1504 * This allows users to continue to enable uclamp in their kernel config with 1505 * minimum uclamp overhead in the fast path. 1506 * 1507 * As soon as userspace modifies any of the uclamp knobs, the static key is 1508 * enabled, since we have an actual users that make use of uclamp 1509 * functionality. 1510 * 1511 * The knobs that would enable this static key are: 1512 * 1513 * * A task modifying its uclamp value with sched_setattr(). 1514 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1515 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1516 */ 1517 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1518 1519 static inline unsigned int 1520 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1521 unsigned int clamp_value) 1522 { 1523 /* 1524 * Avoid blocked utilization pushing up the frequency when we go 1525 * idle (which drops the max-clamp) by retaining the last known 1526 * max-clamp. 1527 */ 1528 if (clamp_id == UCLAMP_MAX) { 1529 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1530 return clamp_value; 1531 } 1532 1533 return uclamp_none(UCLAMP_MIN); 1534 } 1535 1536 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1537 unsigned int clamp_value) 1538 { 1539 /* Reset max-clamp retention only on idle exit */ 1540 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1541 return; 1542 1543 uclamp_rq_set(rq, clamp_id, clamp_value); 1544 } 1545 1546 static inline 1547 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1548 unsigned int clamp_value) 1549 { 1550 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1551 int bucket_id = UCLAMP_BUCKETS - 1; 1552 1553 /* 1554 * Since both min and max clamps are max aggregated, find the 1555 * top most bucket with tasks in. 1556 */ 1557 for ( ; bucket_id >= 0; bucket_id--) { 1558 if (!bucket[bucket_id].tasks) 1559 continue; 1560 return bucket[bucket_id].value; 1561 } 1562 1563 /* No tasks -- default clamp values */ 1564 return uclamp_idle_value(rq, clamp_id, clamp_value); 1565 } 1566 1567 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1568 { 1569 unsigned int default_util_min; 1570 struct uclamp_se *uc_se; 1571 1572 lockdep_assert_held(&p->pi_lock); 1573 1574 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1575 1576 /* Only sync if user didn't override the default */ 1577 if (uc_se->user_defined) 1578 return; 1579 1580 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1581 uclamp_se_set(uc_se, default_util_min, false); 1582 } 1583 1584 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1585 { 1586 if (!rt_task(p)) 1587 return; 1588 1589 /* Protect updates to p->uclamp_* */ 1590 guard(task_rq_lock)(p); 1591 __uclamp_update_util_min_rt_default(p); 1592 } 1593 1594 static inline struct uclamp_se 1595 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1596 { 1597 /* Copy by value as we could modify it */ 1598 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1599 #ifdef CONFIG_UCLAMP_TASK_GROUP 1600 unsigned int tg_min, tg_max, value; 1601 1602 /* 1603 * Tasks in autogroups or root task group will be 1604 * restricted by system defaults. 1605 */ 1606 if (task_group_is_autogroup(task_group(p))) 1607 return uc_req; 1608 if (task_group(p) == &root_task_group) 1609 return uc_req; 1610 1611 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1612 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1613 value = uc_req.value; 1614 value = clamp(value, tg_min, tg_max); 1615 uclamp_se_set(&uc_req, value, false); 1616 #endif 1617 1618 return uc_req; 1619 } 1620 1621 /* 1622 * The effective clamp bucket index of a task depends on, by increasing 1623 * priority: 1624 * - the task specific clamp value, when explicitly requested from userspace 1625 * - the task group effective clamp value, for tasks not either in the root 1626 * group or in an autogroup 1627 * - the system default clamp value, defined by the sysadmin 1628 */ 1629 static inline struct uclamp_se 1630 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1631 { 1632 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1633 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1634 1635 /* System default restrictions always apply */ 1636 if (unlikely(uc_req.value > uc_max.value)) 1637 return uc_max; 1638 1639 return uc_req; 1640 } 1641 1642 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1643 { 1644 struct uclamp_se uc_eff; 1645 1646 /* Task currently refcounted: use back-annotated (effective) value */ 1647 if (p->uclamp[clamp_id].active) 1648 return (unsigned long)p->uclamp[clamp_id].value; 1649 1650 uc_eff = uclamp_eff_get(p, clamp_id); 1651 1652 return (unsigned long)uc_eff.value; 1653 } 1654 1655 /* 1656 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1657 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1658 * updates the rq's clamp value if required. 1659 * 1660 * Tasks can have a task-specific value requested from user-space, track 1661 * within each bucket the maximum value for tasks refcounted in it. 1662 * This "local max aggregation" allows to track the exact "requested" value 1663 * for each bucket when all its RUNNABLE tasks require the same clamp. 1664 */ 1665 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1666 enum uclamp_id clamp_id) 1667 { 1668 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1669 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1670 struct uclamp_bucket *bucket; 1671 1672 lockdep_assert_rq_held(rq); 1673 1674 /* Update task effective clamp */ 1675 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1676 1677 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1678 bucket->tasks++; 1679 uc_se->active = true; 1680 1681 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1682 1683 /* 1684 * Local max aggregation: rq buckets always track the max 1685 * "requested" clamp value of its RUNNABLE tasks. 1686 */ 1687 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1688 bucket->value = uc_se->value; 1689 1690 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1691 uclamp_rq_set(rq, clamp_id, uc_se->value); 1692 } 1693 1694 /* 1695 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1696 * is released. If this is the last task reference counting the rq's max 1697 * active clamp value, then the rq's clamp value is updated. 1698 * 1699 * Both refcounted tasks and rq's cached clamp values are expected to be 1700 * always valid. If it's detected they are not, as defensive programming, 1701 * enforce the expected state and warn. 1702 */ 1703 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1704 enum uclamp_id clamp_id) 1705 { 1706 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1707 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1708 struct uclamp_bucket *bucket; 1709 unsigned int bkt_clamp; 1710 unsigned int rq_clamp; 1711 1712 lockdep_assert_rq_held(rq); 1713 1714 /* 1715 * If sched_uclamp_used was enabled after task @p was enqueued, 1716 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1717 * 1718 * In this case the uc_se->active flag should be false since no uclamp 1719 * accounting was performed at enqueue time and we can just return 1720 * here. 1721 * 1722 * Need to be careful of the following enqueue/dequeue ordering 1723 * problem too 1724 * 1725 * enqueue(taskA) 1726 * // sched_uclamp_used gets enabled 1727 * enqueue(taskB) 1728 * dequeue(taskA) 1729 * // Must not decrement bucket->tasks here 1730 * dequeue(taskB) 1731 * 1732 * where we could end up with stale data in uc_se and 1733 * bucket[uc_se->bucket_id]. 1734 * 1735 * The following check here eliminates the possibility of such race. 1736 */ 1737 if (unlikely(!uc_se->active)) 1738 return; 1739 1740 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1741 1742 WARN_ON_ONCE(!bucket->tasks); 1743 if (likely(bucket->tasks)) 1744 bucket->tasks--; 1745 1746 uc_se->active = false; 1747 1748 /* 1749 * Keep "local max aggregation" simple and accept to (possibly) 1750 * overboost some RUNNABLE tasks in the same bucket. 1751 * The rq clamp bucket value is reset to its base value whenever 1752 * there are no more RUNNABLE tasks refcounting it. 1753 */ 1754 if (likely(bucket->tasks)) 1755 return; 1756 1757 rq_clamp = uclamp_rq_get(rq, clamp_id); 1758 /* 1759 * Defensive programming: this should never happen. If it happens, 1760 * e.g. due to future modification, warn and fix up the expected value. 1761 */ 1762 WARN_ON_ONCE(bucket->value > rq_clamp); 1763 if (bucket->value >= rq_clamp) { 1764 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1765 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1766 } 1767 } 1768 1769 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) 1770 { 1771 enum uclamp_id clamp_id; 1772 1773 /* 1774 * Avoid any overhead until uclamp is actually used by the userspace. 1775 * 1776 * The condition is constructed such that a NOP is generated when 1777 * sched_uclamp_used is disabled. 1778 */ 1779 if (!uclamp_is_used()) 1780 return; 1781 1782 if (unlikely(!p->sched_class->uclamp_enabled)) 1783 return; 1784 1785 /* Only inc the delayed task which being woken up. */ 1786 if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED)) 1787 return; 1788 1789 for_each_clamp_id(clamp_id) 1790 uclamp_rq_inc_id(rq, p, clamp_id); 1791 1792 /* Reset clamp idle holding when there is one RUNNABLE task */ 1793 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1794 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1795 } 1796 1797 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1798 { 1799 enum uclamp_id clamp_id; 1800 1801 /* 1802 * Avoid any overhead until uclamp is actually used by the userspace. 1803 * 1804 * The condition is constructed such that a NOP is generated when 1805 * sched_uclamp_used is disabled. 1806 */ 1807 if (!uclamp_is_used()) 1808 return; 1809 1810 if (unlikely(!p->sched_class->uclamp_enabled)) 1811 return; 1812 1813 if (p->se.sched_delayed) 1814 return; 1815 1816 for_each_clamp_id(clamp_id) 1817 uclamp_rq_dec_id(rq, p, clamp_id); 1818 } 1819 1820 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1821 enum uclamp_id clamp_id) 1822 { 1823 if (!p->uclamp[clamp_id].active) 1824 return; 1825 1826 uclamp_rq_dec_id(rq, p, clamp_id); 1827 uclamp_rq_inc_id(rq, p, clamp_id); 1828 1829 /* 1830 * Make sure to clear the idle flag if we've transiently reached 0 1831 * active tasks on rq. 1832 */ 1833 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1834 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1835 } 1836 1837 static inline void 1838 uclamp_update_active(struct task_struct *p) 1839 { 1840 enum uclamp_id clamp_id; 1841 struct rq_flags rf; 1842 struct rq *rq; 1843 1844 /* 1845 * Lock the task and the rq where the task is (or was) queued. 1846 * 1847 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1848 * price to pay to safely serialize util_{min,max} updates with 1849 * enqueues, dequeues and migration operations. 1850 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1851 */ 1852 rq = task_rq_lock(p, &rf); 1853 1854 /* 1855 * Setting the clamp bucket is serialized by task_rq_lock(). 1856 * If the task is not yet RUNNABLE and its task_struct is not 1857 * affecting a valid clamp bucket, the next time it's enqueued, 1858 * it will already see the updated clamp bucket value. 1859 */ 1860 for_each_clamp_id(clamp_id) 1861 uclamp_rq_reinc_id(rq, p, clamp_id); 1862 1863 task_rq_unlock(rq, p, &rf); 1864 } 1865 1866 #ifdef CONFIG_UCLAMP_TASK_GROUP 1867 static inline void 1868 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1869 { 1870 struct css_task_iter it; 1871 struct task_struct *p; 1872 1873 css_task_iter_start(css, 0, &it); 1874 while ((p = css_task_iter_next(&it))) 1875 uclamp_update_active(p); 1876 css_task_iter_end(&it); 1877 } 1878 1879 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1880 #endif 1881 1882 #ifdef CONFIG_SYSCTL 1883 #ifdef CONFIG_UCLAMP_TASK_GROUP 1884 static void uclamp_update_root_tg(void) 1885 { 1886 struct task_group *tg = &root_task_group; 1887 1888 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1889 sysctl_sched_uclamp_util_min, false); 1890 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1891 sysctl_sched_uclamp_util_max, false); 1892 1893 guard(rcu)(); 1894 cpu_util_update_eff(&root_task_group.css); 1895 } 1896 #else 1897 static void uclamp_update_root_tg(void) { } 1898 #endif 1899 1900 static void uclamp_sync_util_min_rt_default(void) 1901 { 1902 struct task_struct *g, *p; 1903 1904 /* 1905 * copy_process() sysctl_uclamp 1906 * uclamp_min_rt = X; 1907 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1908 * // link thread smp_mb__after_spinlock() 1909 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1910 * sched_post_fork() for_each_process_thread() 1911 * __uclamp_sync_rt() __uclamp_sync_rt() 1912 * 1913 * Ensures that either sched_post_fork() will observe the new 1914 * uclamp_min_rt or for_each_process_thread() will observe the new 1915 * task. 1916 */ 1917 read_lock(&tasklist_lock); 1918 smp_mb__after_spinlock(); 1919 read_unlock(&tasklist_lock); 1920 1921 guard(rcu)(); 1922 for_each_process_thread(g, p) 1923 uclamp_update_util_min_rt_default(p); 1924 } 1925 1926 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write, 1927 void *buffer, size_t *lenp, loff_t *ppos) 1928 { 1929 bool update_root_tg = false; 1930 int old_min, old_max, old_min_rt; 1931 int result; 1932 1933 guard(mutex)(&uclamp_mutex); 1934 1935 old_min = sysctl_sched_uclamp_util_min; 1936 old_max = sysctl_sched_uclamp_util_max; 1937 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1938 1939 result = proc_dointvec(table, write, buffer, lenp, ppos); 1940 if (result) 1941 goto undo; 1942 if (!write) 1943 return 0; 1944 1945 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1946 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1947 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1948 1949 result = -EINVAL; 1950 goto undo; 1951 } 1952 1953 if (old_min != sysctl_sched_uclamp_util_min) { 1954 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1955 sysctl_sched_uclamp_util_min, false); 1956 update_root_tg = true; 1957 } 1958 if (old_max != sysctl_sched_uclamp_util_max) { 1959 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1960 sysctl_sched_uclamp_util_max, false); 1961 update_root_tg = true; 1962 } 1963 1964 if (update_root_tg) { 1965 sched_uclamp_enable(); 1966 uclamp_update_root_tg(); 1967 } 1968 1969 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1970 sched_uclamp_enable(); 1971 uclamp_sync_util_min_rt_default(); 1972 } 1973 1974 /* 1975 * We update all RUNNABLE tasks only when task groups are in use. 1976 * Otherwise, keep it simple and do just a lazy update at each next 1977 * task enqueue time. 1978 */ 1979 return 0; 1980 1981 undo: 1982 sysctl_sched_uclamp_util_min = old_min; 1983 sysctl_sched_uclamp_util_max = old_max; 1984 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1985 return result; 1986 } 1987 #endif /* CONFIG_SYSCTL */ 1988 1989 static void uclamp_fork(struct task_struct *p) 1990 { 1991 enum uclamp_id clamp_id; 1992 1993 /* 1994 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1995 * as the task is still at its early fork stages. 1996 */ 1997 for_each_clamp_id(clamp_id) 1998 p->uclamp[clamp_id].active = false; 1999 2000 if (likely(!p->sched_reset_on_fork)) 2001 return; 2002 2003 for_each_clamp_id(clamp_id) { 2004 uclamp_se_set(&p->uclamp_req[clamp_id], 2005 uclamp_none(clamp_id), false); 2006 } 2007 } 2008 2009 static void uclamp_post_fork(struct task_struct *p) 2010 { 2011 uclamp_update_util_min_rt_default(p); 2012 } 2013 2014 static void __init init_uclamp_rq(struct rq *rq) 2015 { 2016 enum uclamp_id clamp_id; 2017 struct uclamp_rq *uc_rq = rq->uclamp; 2018 2019 for_each_clamp_id(clamp_id) { 2020 uc_rq[clamp_id] = (struct uclamp_rq) { 2021 .value = uclamp_none(clamp_id) 2022 }; 2023 } 2024 2025 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 2026 } 2027 2028 static void __init init_uclamp(void) 2029 { 2030 struct uclamp_se uc_max = {}; 2031 enum uclamp_id clamp_id; 2032 int cpu; 2033 2034 for_each_possible_cpu(cpu) 2035 init_uclamp_rq(cpu_rq(cpu)); 2036 2037 for_each_clamp_id(clamp_id) { 2038 uclamp_se_set(&init_task.uclamp_req[clamp_id], 2039 uclamp_none(clamp_id), false); 2040 } 2041 2042 /* System defaults allow max clamp values for both indexes */ 2043 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2044 for_each_clamp_id(clamp_id) { 2045 uclamp_default[clamp_id] = uc_max; 2046 #ifdef CONFIG_UCLAMP_TASK_GROUP 2047 root_task_group.uclamp_req[clamp_id] = uc_max; 2048 root_task_group.uclamp[clamp_id] = uc_max; 2049 #endif 2050 } 2051 } 2052 2053 #else /* !CONFIG_UCLAMP_TASK: */ 2054 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { } 2055 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2056 static inline void uclamp_fork(struct task_struct *p) { } 2057 static inline void uclamp_post_fork(struct task_struct *p) { } 2058 static inline void init_uclamp(void) { } 2059 #endif /* !CONFIG_UCLAMP_TASK */ 2060 2061 bool sched_task_on_rq(struct task_struct *p) 2062 { 2063 return task_on_rq_queued(p); 2064 } 2065 2066 unsigned long get_wchan(struct task_struct *p) 2067 { 2068 unsigned long ip = 0; 2069 unsigned int state; 2070 2071 if (!p || p == current) 2072 return 0; 2073 2074 /* Only get wchan if task is blocked and we can keep it that way. */ 2075 raw_spin_lock_irq(&p->pi_lock); 2076 state = READ_ONCE(p->__state); 2077 smp_rmb(); /* see try_to_wake_up() */ 2078 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2079 ip = __get_wchan(p); 2080 raw_spin_unlock_irq(&p->pi_lock); 2081 2082 return ip; 2083 } 2084 2085 void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2086 { 2087 if (!(flags & ENQUEUE_NOCLOCK)) 2088 update_rq_clock(rq); 2089 2090 /* 2091 * Can be before ->enqueue_task() because uclamp considers the 2092 * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared 2093 * in ->enqueue_task(). 2094 */ 2095 uclamp_rq_inc(rq, p, flags); 2096 2097 p->sched_class->enqueue_task(rq, p, flags); 2098 2099 psi_enqueue(p, flags); 2100 2101 if (!(flags & ENQUEUE_RESTORE)) 2102 sched_info_enqueue(rq, p); 2103 2104 if (sched_core_enabled(rq)) 2105 sched_core_enqueue(rq, p); 2106 } 2107 2108 /* 2109 * Must only return false when DEQUEUE_SLEEP. 2110 */ 2111 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2112 { 2113 if (sched_core_enabled(rq)) 2114 sched_core_dequeue(rq, p, flags); 2115 2116 if (!(flags & DEQUEUE_NOCLOCK)) 2117 update_rq_clock(rq); 2118 2119 if (!(flags & DEQUEUE_SAVE)) 2120 sched_info_dequeue(rq, p); 2121 2122 psi_dequeue(p, flags); 2123 2124 /* 2125 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail' 2126 * and mark the task ->sched_delayed. 2127 */ 2128 uclamp_rq_dec(rq, p); 2129 return p->sched_class->dequeue_task(rq, p, flags); 2130 } 2131 2132 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2133 { 2134 if (task_on_rq_migrating(p)) 2135 flags |= ENQUEUE_MIGRATED; 2136 2137 enqueue_task(rq, p, flags); 2138 2139 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); 2140 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2141 } 2142 2143 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2144 { 2145 WARN_ON_ONCE(flags & DEQUEUE_SLEEP); 2146 2147 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 2148 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2149 2150 /* 2151 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before* 2152 * dequeue_task() and cleared *after* enqueue_task(). 2153 */ 2154 2155 dequeue_task(rq, p, flags); 2156 } 2157 2158 static void block_task(struct rq *rq, struct task_struct *p, int flags) 2159 { 2160 if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags)) 2161 __block_task(rq, p); 2162 } 2163 2164 /** 2165 * task_curr - is this task currently executing on a CPU? 2166 * @p: the task in question. 2167 * 2168 * Return: 1 if the task is currently executing. 0 otherwise. 2169 */ 2170 inline int task_curr(const struct task_struct *p) 2171 { 2172 return cpu_curr(task_cpu(p)) == p; 2173 } 2174 2175 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2176 { 2177 struct task_struct *donor = rq->donor; 2178 2179 if (p->sched_class == rq->next_class) { 2180 rq->next_class->wakeup_preempt(rq, p, flags); 2181 2182 } else if (sched_class_above(p->sched_class, rq->next_class)) { 2183 rq->next_class->wakeup_preempt(rq, p, flags); 2184 resched_curr(rq); 2185 rq->next_class = p->sched_class; 2186 } 2187 2188 /* 2189 * A queue event has occurred, and we're going to schedule. In 2190 * this case, we can save a useless back to back clock update. 2191 */ 2192 if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr)) 2193 rq_clock_skip_update(rq); 2194 } 2195 2196 static __always_inline 2197 int __task_state_match(struct task_struct *p, unsigned int state) 2198 { 2199 if (READ_ONCE(p->__state) & state) 2200 return 1; 2201 2202 if (READ_ONCE(p->saved_state) & state) 2203 return -1; 2204 2205 return 0; 2206 } 2207 2208 static __always_inline 2209 int task_state_match(struct task_struct *p, unsigned int state) 2210 { 2211 /* 2212 * Serialize against current_save_and_set_rtlock_wait_state(), 2213 * current_restore_rtlock_saved_state(), and __refrigerator(). 2214 */ 2215 guard(raw_spinlock_irq)(&p->pi_lock); 2216 return __task_state_match(p, state); 2217 } 2218 2219 /* 2220 * wait_task_inactive - wait for a thread to unschedule. 2221 * 2222 * Wait for the thread to block in any of the states set in @match_state. 2223 * If it changes, i.e. @p might have woken up, then return zero. When we 2224 * succeed in waiting for @p to be off its CPU, we return a positive number 2225 * (its total switch count). If a second call a short while later returns the 2226 * same number, the caller can be sure that @p has remained unscheduled the 2227 * whole time. 2228 * 2229 * The caller must ensure that the task *will* unschedule sometime soon, 2230 * else this function might spin for a *long* time. This function can't 2231 * be called with interrupts off, or it may introduce deadlock with 2232 * smp_call_function() if an IPI is sent by the same process we are 2233 * waiting to become inactive. 2234 */ 2235 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2236 { 2237 int running, queued, match; 2238 struct rq_flags rf; 2239 unsigned long ncsw; 2240 struct rq *rq; 2241 2242 for (;;) { 2243 /* 2244 * We do the initial early heuristics without holding 2245 * any task-queue locks at all. We'll only try to get 2246 * the runqueue lock when things look like they will 2247 * work out! 2248 */ 2249 rq = task_rq(p); 2250 2251 /* 2252 * If the task is actively running on another CPU 2253 * still, just relax and busy-wait without holding 2254 * any locks. 2255 * 2256 * NOTE! Since we don't hold any locks, it's not 2257 * even sure that "rq" stays as the right runqueue! 2258 * But we don't care, since "task_on_cpu()" will 2259 * return false if the runqueue has changed and p 2260 * is actually now running somewhere else! 2261 */ 2262 while (task_on_cpu(rq, p)) { 2263 if (!task_state_match(p, match_state)) 2264 return 0; 2265 cpu_relax(); 2266 } 2267 2268 /* 2269 * Ok, time to look more closely! We need the rq 2270 * lock now, to be *sure*. If we're wrong, we'll 2271 * just go back and repeat. 2272 */ 2273 rq = task_rq_lock(p, &rf); 2274 /* 2275 * If task is sched_delayed, force dequeue it, to avoid always 2276 * hitting the tick timeout in the queued case 2277 */ 2278 if (p->se.sched_delayed) 2279 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 2280 trace_sched_wait_task(p); 2281 running = task_on_cpu(rq, p); 2282 queued = task_on_rq_queued(p); 2283 ncsw = 0; 2284 if ((match = __task_state_match(p, match_state))) { 2285 /* 2286 * When matching on p->saved_state, consider this task 2287 * still queued so it will wait. 2288 */ 2289 if (match < 0) 2290 queued = 1; 2291 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2292 } 2293 task_rq_unlock(rq, p, &rf); 2294 2295 /* 2296 * If it changed from the expected state, bail out now. 2297 */ 2298 if (unlikely(!ncsw)) 2299 break; 2300 2301 /* 2302 * Was it really running after all now that we 2303 * checked with the proper locks actually held? 2304 * 2305 * Oops. Go back and try again.. 2306 */ 2307 if (unlikely(running)) { 2308 cpu_relax(); 2309 continue; 2310 } 2311 2312 /* 2313 * It's not enough that it's not actively running, 2314 * it must be off the runqueue _entirely_, and not 2315 * preempted! 2316 * 2317 * So if it was still runnable (but just not actively 2318 * running right now), it's preempted, and we should 2319 * yield - it could be a while. 2320 */ 2321 if (unlikely(queued)) { 2322 ktime_t to = NSEC_PER_SEC / HZ; 2323 2324 set_current_state(TASK_UNINTERRUPTIBLE); 2325 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2326 continue; 2327 } 2328 2329 /* 2330 * Ahh, all good. It wasn't running, and it wasn't 2331 * runnable, which means that it will never become 2332 * running in the future either. We're all done! 2333 */ 2334 break; 2335 } 2336 2337 return ncsw; 2338 } 2339 2340 static void 2341 do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2342 2343 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2344 { 2345 struct affinity_context ac = { 2346 .new_mask = cpumask_of(rq->cpu), 2347 .flags = SCA_MIGRATE_DISABLE, 2348 }; 2349 2350 if (likely(!p->migration_disabled)) 2351 return; 2352 2353 if (p->cpus_ptr != &p->cpus_mask) 2354 return; 2355 2356 scoped_guard (task_rq_lock, p) 2357 do_set_cpus_allowed(p, &ac); 2358 } 2359 2360 void ___migrate_enable(void) 2361 { 2362 struct task_struct *p = current; 2363 struct affinity_context ac = { 2364 .new_mask = &p->cpus_mask, 2365 .flags = SCA_MIGRATE_ENABLE, 2366 }; 2367 2368 __set_cpus_allowed_ptr(p, &ac); 2369 } 2370 EXPORT_SYMBOL_GPL(___migrate_enable); 2371 2372 void migrate_disable(void) 2373 { 2374 __migrate_disable(); 2375 } 2376 EXPORT_SYMBOL_GPL(migrate_disable); 2377 2378 void migrate_enable(void) 2379 { 2380 __migrate_enable(); 2381 } 2382 EXPORT_SYMBOL_GPL(migrate_enable); 2383 2384 static inline bool rq_has_pinned_tasks(struct rq *rq) 2385 { 2386 return rq->nr_pinned; 2387 } 2388 2389 /* 2390 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2391 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2392 */ 2393 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2394 { 2395 /* When not in the task's cpumask, no point in looking further. */ 2396 if (!task_allowed_on_cpu(p, cpu)) 2397 return false; 2398 2399 /* migrate_disabled() must be allowed to finish. */ 2400 if (is_migration_disabled(p)) 2401 return cpu_online(cpu); 2402 2403 /* Non kernel threads are not allowed during either online or offline. */ 2404 if (!(p->flags & PF_KTHREAD)) 2405 return cpu_active(cpu); 2406 2407 /* KTHREAD_IS_PER_CPU is always allowed. */ 2408 if (kthread_is_per_cpu(p)) 2409 return cpu_online(cpu); 2410 2411 /* Regular kernel threads don't get to stay during offline. */ 2412 if (cpu_dying(cpu)) 2413 return false; 2414 2415 /* But are allowed during online. */ 2416 return cpu_online(cpu); 2417 } 2418 2419 /* 2420 * This is how migration works: 2421 * 2422 * 1) we invoke migration_cpu_stop() on the target CPU using 2423 * stop_one_cpu(). 2424 * 2) stopper starts to run (implicitly forcing the migrated thread 2425 * off the CPU) 2426 * 3) it checks whether the migrated task is still in the wrong runqueue. 2427 * 4) if it's in the wrong runqueue then the migration thread removes 2428 * it and puts it into the right queue. 2429 * 5) stopper completes and stop_one_cpu() returns and the migration 2430 * is done. 2431 */ 2432 2433 /* 2434 * move_queued_task - move a queued task to new rq. 2435 * 2436 * Returns (locked) new rq. Old rq's lock is released. 2437 */ 2438 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2439 struct task_struct *p, int new_cpu) 2440 { 2441 lockdep_assert_rq_held(rq); 2442 2443 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2444 set_task_cpu(p, new_cpu); 2445 rq_unlock(rq, rf); 2446 2447 rq = cpu_rq(new_cpu); 2448 2449 rq_lock(rq, rf); 2450 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2451 activate_task(rq, p, 0); 2452 wakeup_preempt(rq, p, 0); 2453 2454 return rq; 2455 } 2456 2457 struct migration_arg { 2458 struct task_struct *task; 2459 int dest_cpu; 2460 struct set_affinity_pending *pending; 2461 }; 2462 2463 /* 2464 * @refs: number of wait_for_completion() 2465 * @stop_pending: is @stop_work in use 2466 */ 2467 struct set_affinity_pending { 2468 refcount_t refs; 2469 unsigned int stop_pending; 2470 struct completion done; 2471 struct cpu_stop_work stop_work; 2472 struct migration_arg arg; 2473 }; 2474 2475 /* 2476 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2477 * this because either it can't run here any more (set_cpus_allowed() 2478 * away from this CPU, or CPU going down), or because we're 2479 * attempting to rebalance this task on exec (sched_exec). 2480 * 2481 * So we race with normal scheduler movements, but that's OK, as long 2482 * as the task is no longer on this CPU. 2483 */ 2484 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2485 struct task_struct *p, int dest_cpu) 2486 { 2487 /* Affinity changed (again). */ 2488 if (!is_cpu_allowed(p, dest_cpu)) 2489 return rq; 2490 2491 rq = move_queued_task(rq, rf, p, dest_cpu); 2492 2493 return rq; 2494 } 2495 2496 /* 2497 * migration_cpu_stop - this will be executed by a high-prio stopper thread 2498 * and performs thread migration by bumping thread off CPU then 2499 * 'pushing' onto another runqueue. 2500 */ 2501 static int migration_cpu_stop(void *data) 2502 { 2503 struct migration_arg *arg = data; 2504 struct set_affinity_pending *pending = arg->pending; 2505 struct task_struct *p = arg->task; 2506 struct rq *rq = this_rq(); 2507 bool complete = false; 2508 struct rq_flags rf; 2509 2510 /* 2511 * The original target CPU might have gone down and we might 2512 * be on another CPU but it doesn't matter. 2513 */ 2514 local_irq_save(rf.flags); 2515 /* 2516 * We need to explicitly wake pending tasks before running 2517 * __migrate_task() such that we will not miss enforcing cpus_ptr 2518 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2519 */ 2520 flush_smp_call_function_queue(); 2521 2522 raw_spin_lock(&p->pi_lock); 2523 rq_lock(rq, &rf); 2524 2525 /* 2526 * If we were passed a pending, then ->stop_pending was set, thus 2527 * p->migration_pending must have remained stable. 2528 */ 2529 WARN_ON_ONCE(pending && pending != p->migration_pending); 2530 2531 /* 2532 * If task_rq(p) != rq, it cannot be migrated here, because we're 2533 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2534 * we're holding p->pi_lock. 2535 */ 2536 if (task_rq(p) == rq) { 2537 if (is_migration_disabled(p)) 2538 goto out; 2539 2540 if (pending) { 2541 p->migration_pending = NULL; 2542 complete = true; 2543 2544 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2545 goto out; 2546 } 2547 2548 if (task_on_rq_queued(p)) { 2549 update_rq_clock(rq); 2550 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2551 } else { 2552 p->wake_cpu = arg->dest_cpu; 2553 } 2554 2555 /* 2556 * XXX __migrate_task() can fail, at which point we might end 2557 * up running on a dodgy CPU, AFAICT this can only happen 2558 * during CPU hotplug, at which point we'll get pushed out 2559 * anyway, so it's probably not a big deal. 2560 */ 2561 2562 } else if (pending) { 2563 /* 2564 * This happens when we get migrated between migrate_enable()'s 2565 * preempt_enable() and scheduling the stopper task. At that 2566 * point we're a regular task again and not current anymore. 2567 * 2568 * A !PREEMPT kernel has a giant hole here, which makes it far 2569 * more likely. 2570 */ 2571 2572 /* 2573 * The task moved before the stopper got to run. We're holding 2574 * ->pi_lock, so the allowed mask is stable - if it got 2575 * somewhere allowed, we're done. 2576 */ 2577 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2578 p->migration_pending = NULL; 2579 complete = true; 2580 goto out; 2581 } 2582 2583 /* 2584 * When migrate_enable() hits a rq mis-match we can't reliably 2585 * determine is_migration_disabled() and so have to chase after 2586 * it. 2587 */ 2588 WARN_ON_ONCE(!pending->stop_pending); 2589 preempt_disable(); 2590 rq_unlock(rq, &rf); 2591 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 2592 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2593 &pending->arg, &pending->stop_work); 2594 preempt_enable(); 2595 return 0; 2596 } 2597 out: 2598 if (pending) 2599 pending->stop_pending = false; 2600 rq_unlock(rq, &rf); 2601 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 2602 2603 if (complete) 2604 complete_all(&pending->done); 2605 2606 return 0; 2607 } 2608 2609 int push_cpu_stop(void *arg) 2610 { 2611 struct rq *lowest_rq = NULL, *rq = this_rq(); 2612 struct task_struct *p = arg; 2613 2614 raw_spin_lock_irq(&p->pi_lock); 2615 raw_spin_rq_lock(rq); 2616 2617 if (task_rq(p) != rq) 2618 goto out_unlock; 2619 2620 if (is_migration_disabled(p)) { 2621 p->migration_flags |= MDF_PUSH; 2622 goto out_unlock; 2623 } 2624 2625 p->migration_flags &= ~MDF_PUSH; 2626 2627 if (p->sched_class->find_lock_rq) 2628 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2629 2630 if (!lowest_rq) 2631 goto out_unlock; 2632 2633 // XXX validate p is still the highest prio task 2634 if (task_rq(p) == rq) { 2635 move_queued_task_locked(rq, lowest_rq, p); 2636 resched_curr(lowest_rq); 2637 } 2638 2639 double_unlock_balance(rq, lowest_rq); 2640 2641 out_unlock: 2642 rq->push_busy = false; 2643 raw_spin_rq_unlock(rq); 2644 raw_spin_unlock_irq(&p->pi_lock); 2645 2646 put_task_struct(p); 2647 return 0; 2648 } 2649 2650 static inline void mm_update_cpus_allowed(struct mm_struct *mm, const cpumask_t *affmask); 2651 2652 /* 2653 * sched_class::set_cpus_allowed must do the below, but is not required to 2654 * actually call this function. 2655 */ 2656 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2657 { 2658 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2659 p->cpus_ptr = ctx->new_mask; 2660 return; 2661 } 2662 2663 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2664 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2665 mm_update_cpus_allowed(p->mm, ctx->new_mask); 2666 2667 /* 2668 * Swap in a new user_cpus_ptr if SCA_USER flag set 2669 */ 2670 if (ctx->flags & SCA_USER) 2671 swap(p->user_cpus_ptr, ctx->user_mask); 2672 } 2673 2674 static void 2675 do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2676 { 2677 scoped_guard (sched_change, p, DEQUEUE_SAVE) 2678 p->sched_class->set_cpus_allowed(p, ctx); 2679 } 2680 2681 /* 2682 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2683 * affinity (if any) should be destroyed too. 2684 */ 2685 void set_cpus_allowed_force(struct task_struct *p, const struct cpumask *new_mask) 2686 { 2687 struct affinity_context ac = { 2688 .new_mask = new_mask, 2689 .user_mask = NULL, 2690 .flags = SCA_USER, /* clear the user requested mask */ 2691 }; 2692 union cpumask_rcuhead { 2693 cpumask_t cpumask; 2694 struct rcu_head rcu; 2695 }; 2696 2697 scoped_guard (__task_rq_lock, p) 2698 do_set_cpus_allowed(p, &ac); 2699 2700 /* 2701 * Because this is called with p->pi_lock held, it is not possible 2702 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2703 * kfree_rcu(). 2704 */ 2705 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2706 } 2707 2708 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2709 int node) 2710 { 2711 cpumask_t *user_mask; 2712 unsigned long flags; 2713 2714 /* 2715 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2716 * may differ by now due to racing. 2717 */ 2718 dst->user_cpus_ptr = NULL; 2719 2720 /* 2721 * This check is racy and losing the race is a valid situation. 2722 * It is not worth the extra overhead of taking the pi_lock on 2723 * every fork/clone. 2724 */ 2725 if (data_race(!src->user_cpus_ptr)) 2726 return 0; 2727 2728 user_mask = alloc_user_cpus_ptr(node); 2729 if (!user_mask) 2730 return -ENOMEM; 2731 2732 /* 2733 * Use pi_lock to protect content of user_cpus_ptr 2734 * 2735 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2736 * set_cpus_allowed_force(). 2737 */ 2738 raw_spin_lock_irqsave(&src->pi_lock, flags); 2739 if (src->user_cpus_ptr) { 2740 swap(dst->user_cpus_ptr, user_mask); 2741 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2742 } 2743 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2744 2745 if (unlikely(user_mask)) 2746 kfree(user_mask); 2747 2748 return 0; 2749 } 2750 2751 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2752 { 2753 struct cpumask *user_mask = NULL; 2754 2755 swap(p->user_cpus_ptr, user_mask); 2756 2757 return user_mask; 2758 } 2759 2760 void release_user_cpus_ptr(struct task_struct *p) 2761 { 2762 kfree(clear_user_cpus_ptr(p)); 2763 } 2764 2765 /* 2766 * This function is wildly self concurrent; here be dragons. 2767 * 2768 * 2769 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2770 * designated task is enqueued on an allowed CPU. If that task is currently 2771 * running, we have to kick it out using the CPU stopper. 2772 * 2773 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2774 * Consider: 2775 * 2776 * Initial conditions: P0->cpus_mask = [0, 1] 2777 * 2778 * P0@CPU0 P1 2779 * 2780 * migrate_disable(); 2781 * <preempted> 2782 * set_cpus_allowed_ptr(P0, [1]); 2783 * 2784 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2785 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2786 * This means we need the following scheme: 2787 * 2788 * P0@CPU0 P1 2789 * 2790 * migrate_disable(); 2791 * <preempted> 2792 * set_cpus_allowed_ptr(P0, [1]); 2793 * <blocks> 2794 * <resumes> 2795 * migrate_enable(); 2796 * __set_cpus_allowed_ptr(); 2797 * <wakes local stopper> 2798 * `--> <woken on migration completion> 2799 * 2800 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2801 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2802 * task p are serialized by p->pi_lock, which we can leverage: the one that 2803 * should come into effect at the end of the Migrate-Disable region is the last 2804 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2805 * but we still need to properly signal those waiting tasks at the appropriate 2806 * moment. 2807 * 2808 * This is implemented using struct set_affinity_pending. The first 2809 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2810 * setup an instance of that struct and install it on the targeted task_struct. 2811 * Any and all further callers will reuse that instance. Those then wait for 2812 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2813 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2814 * 2815 * 2816 * (1) In the cases covered above. There is one more where the completion is 2817 * signaled within affine_move_task() itself: when a subsequent affinity request 2818 * occurs after the stopper bailed out due to the targeted task still being 2819 * Migrate-Disable. Consider: 2820 * 2821 * Initial conditions: P0->cpus_mask = [0, 1] 2822 * 2823 * CPU0 P1 P2 2824 * <P0> 2825 * migrate_disable(); 2826 * <preempted> 2827 * set_cpus_allowed_ptr(P0, [1]); 2828 * <blocks> 2829 * <migration/0> 2830 * migration_cpu_stop() 2831 * is_migration_disabled() 2832 * <bails> 2833 * set_cpus_allowed_ptr(P0, [0, 1]); 2834 * <signal completion> 2835 * <awakes> 2836 * 2837 * Note that the above is safe vs a concurrent migrate_enable(), as any 2838 * pending affinity completion is preceded by an uninstallation of 2839 * p->migration_pending done with p->pi_lock held. 2840 */ 2841 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2842 int dest_cpu, unsigned int flags) 2843 __releases(rq->lock) 2844 __releases(p->pi_lock) 2845 { 2846 struct set_affinity_pending my_pending = { }, *pending = NULL; 2847 bool stop_pending, complete = false; 2848 2849 /* 2850 * Can the task run on the task's current CPU? If so, we're done 2851 * 2852 * We are also done if the task is the current donor, boosting a lock- 2853 * holding proxy, (and potentially has been migrated outside its 2854 * current or previous affinity mask) 2855 */ 2856 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask) || 2857 (task_current_donor(rq, p) && !task_current(rq, p))) { 2858 struct task_struct *push_task = NULL; 2859 2860 if ((flags & SCA_MIGRATE_ENABLE) && 2861 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2862 rq->push_busy = true; 2863 push_task = get_task_struct(p); 2864 } 2865 2866 /* 2867 * If there are pending waiters, but no pending stop_work, 2868 * then complete now. 2869 */ 2870 pending = p->migration_pending; 2871 if (pending && !pending->stop_pending) { 2872 p->migration_pending = NULL; 2873 complete = true; 2874 } 2875 2876 preempt_disable(); 2877 task_rq_unlock(rq, p, rf); 2878 if (push_task) { 2879 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2880 p, &rq->push_work); 2881 } 2882 preempt_enable(); 2883 2884 if (complete) 2885 complete_all(&pending->done); 2886 2887 return 0; 2888 } 2889 2890 if (!(flags & SCA_MIGRATE_ENABLE)) { 2891 /* serialized by p->pi_lock */ 2892 if (!p->migration_pending) { 2893 /* Install the request */ 2894 refcount_set(&my_pending.refs, 1); 2895 init_completion(&my_pending.done); 2896 my_pending.arg = (struct migration_arg) { 2897 .task = p, 2898 .dest_cpu = dest_cpu, 2899 .pending = &my_pending, 2900 }; 2901 2902 p->migration_pending = &my_pending; 2903 } else { 2904 pending = p->migration_pending; 2905 refcount_inc(&pending->refs); 2906 /* 2907 * Affinity has changed, but we've already installed a 2908 * pending. migration_cpu_stop() *must* see this, else 2909 * we risk a completion of the pending despite having a 2910 * task on a disallowed CPU. 2911 * 2912 * Serialized by p->pi_lock, so this is safe. 2913 */ 2914 pending->arg.dest_cpu = dest_cpu; 2915 } 2916 } 2917 pending = p->migration_pending; 2918 /* 2919 * - !MIGRATE_ENABLE: 2920 * we'll have installed a pending if there wasn't one already. 2921 * 2922 * - MIGRATE_ENABLE: 2923 * we're here because the current CPU isn't matching anymore, 2924 * the only way that can happen is because of a concurrent 2925 * set_cpus_allowed_ptr() call, which should then still be 2926 * pending completion. 2927 * 2928 * Either way, we really should have a @pending here. 2929 */ 2930 if (WARN_ON_ONCE(!pending)) { 2931 task_rq_unlock(rq, p, rf); 2932 return -EINVAL; 2933 } 2934 2935 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2936 /* 2937 * MIGRATE_ENABLE gets here because 'p == current', but for 2938 * anything else we cannot do is_migration_disabled(), punt 2939 * and have the stopper function handle it all race-free. 2940 */ 2941 stop_pending = pending->stop_pending; 2942 if (!stop_pending) 2943 pending->stop_pending = true; 2944 2945 if (flags & SCA_MIGRATE_ENABLE) 2946 p->migration_flags &= ~MDF_PUSH; 2947 2948 preempt_disable(); 2949 task_rq_unlock(rq, p, rf); 2950 if (!stop_pending) { 2951 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2952 &pending->arg, &pending->stop_work); 2953 } 2954 preempt_enable(); 2955 2956 if (flags & SCA_MIGRATE_ENABLE) 2957 return 0; 2958 } else { 2959 2960 if (!is_migration_disabled(p)) { 2961 if (task_on_rq_queued(p)) 2962 rq = move_queued_task(rq, rf, p, dest_cpu); 2963 2964 if (!pending->stop_pending) { 2965 p->migration_pending = NULL; 2966 complete = true; 2967 } 2968 } 2969 task_rq_unlock(rq, p, rf); 2970 2971 if (complete) 2972 complete_all(&pending->done); 2973 } 2974 2975 wait_for_completion(&pending->done); 2976 2977 if (refcount_dec_and_test(&pending->refs)) 2978 wake_up_var(&pending->refs); /* No UaF, just an address */ 2979 2980 /* 2981 * Block the original owner of &pending until all subsequent callers 2982 * have seen the completion and decremented the refcount 2983 */ 2984 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2985 2986 /* ARGH */ 2987 WARN_ON_ONCE(my_pending.stop_pending); 2988 2989 return 0; 2990 } 2991 2992 /* 2993 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2994 */ 2995 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2996 struct affinity_context *ctx, 2997 struct rq *rq, 2998 struct rq_flags *rf) 2999 __releases(rq->lock) 3000 __releases(p->pi_lock) 3001 { 3002 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 3003 const struct cpumask *cpu_valid_mask = cpu_active_mask; 3004 bool kthread = p->flags & PF_KTHREAD; 3005 unsigned int dest_cpu; 3006 int ret = 0; 3007 3008 if (kthread || is_migration_disabled(p)) { 3009 /* 3010 * Kernel threads are allowed on online && !active CPUs, 3011 * however, during cpu-hot-unplug, even these might get pushed 3012 * away if not KTHREAD_IS_PER_CPU. 3013 * 3014 * Specifically, migration_disabled() tasks must not fail the 3015 * cpumask_any_and_distribute() pick below, esp. so on 3016 * SCA_MIGRATE_ENABLE, otherwise we'll not call 3017 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 3018 */ 3019 cpu_valid_mask = cpu_online_mask; 3020 } 3021 3022 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 3023 ret = -EINVAL; 3024 goto out; 3025 } 3026 3027 /* 3028 * Must re-check here, to close a race against __kthread_bind(), 3029 * sched_setaffinity() is not guaranteed to observe the flag. 3030 */ 3031 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 3032 ret = -EINVAL; 3033 goto out; 3034 } 3035 3036 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 3037 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 3038 if (ctx->flags & SCA_USER) 3039 swap(p->user_cpus_ptr, ctx->user_mask); 3040 goto out; 3041 } 3042 3043 if (WARN_ON_ONCE(p == current && 3044 is_migration_disabled(p) && 3045 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 3046 ret = -EBUSY; 3047 goto out; 3048 } 3049 } 3050 3051 /* 3052 * Picking a ~random cpu helps in cases where we are changing affinity 3053 * for groups of tasks (ie. cpuset), so that load balancing is not 3054 * immediately required to distribute the tasks within their new mask. 3055 */ 3056 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 3057 if (dest_cpu >= nr_cpu_ids) { 3058 ret = -EINVAL; 3059 goto out; 3060 } 3061 3062 do_set_cpus_allowed(p, ctx); 3063 3064 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3065 3066 out: 3067 task_rq_unlock(rq, p, rf); 3068 3069 return ret; 3070 } 3071 3072 /* 3073 * Change a given task's CPU affinity. Migrate the thread to a 3074 * proper CPU and schedule it away if the CPU it's executing on 3075 * is removed from the allowed bitmask. 3076 * 3077 * NOTE: the caller must have a valid reference to the task, the 3078 * task must not exit() & deallocate itself prematurely. The 3079 * call is not atomic; no spinlocks may be held. 3080 */ 3081 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) 3082 { 3083 struct rq_flags rf; 3084 struct rq *rq; 3085 3086 rq = task_rq_lock(p, &rf); 3087 /* 3088 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3089 * flags are set. 3090 */ 3091 if (p->user_cpus_ptr && 3092 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3093 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3094 ctx->new_mask = rq->scratch_mask; 3095 3096 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3097 } 3098 3099 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3100 { 3101 struct affinity_context ac = { 3102 .new_mask = new_mask, 3103 .flags = 0, 3104 }; 3105 3106 return __set_cpus_allowed_ptr(p, &ac); 3107 } 3108 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3109 3110 /* 3111 * Change a given task's CPU affinity to the intersection of its current 3112 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3113 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3114 * affinity or use cpu_online_mask instead. 3115 * 3116 * If the resulting mask is empty, leave the affinity unchanged and return 3117 * -EINVAL. 3118 */ 3119 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3120 struct cpumask *new_mask, 3121 const struct cpumask *subset_mask) 3122 { 3123 struct affinity_context ac = { 3124 .new_mask = new_mask, 3125 .flags = 0, 3126 }; 3127 struct rq_flags rf; 3128 struct rq *rq; 3129 int err; 3130 3131 rq = task_rq_lock(p, &rf); 3132 3133 /* 3134 * Forcefully restricting the affinity of a deadline task is 3135 * likely to cause problems, so fail and noisily override the 3136 * mask entirely. 3137 */ 3138 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3139 err = -EPERM; 3140 goto err_unlock; 3141 } 3142 3143 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3144 err = -EINVAL; 3145 goto err_unlock; 3146 } 3147 3148 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3149 3150 err_unlock: 3151 task_rq_unlock(rq, p, &rf); 3152 return err; 3153 } 3154 3155 /* 3156 * Restrict the CPU affinity of task @p so that it is a subset of 3157 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3158 * old affinity mask. If the resulting mask is empty, we warn and walk 3159 * up the cpuset hierarchy until we find a suitable mask. 3160 */ 3161 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3162 { 3163 cpumask_var_t new_mask; 3164 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3165 3166 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3167 3168 /* 3169 * __migrate_task() can fail silently in the face of concurrent 3170 * offlining of the chosen destination CPU, so take the hotplug 3171 * lock to ensure that the migration succeeds. 3172 */ 3173 cpus_read_lock(); 3174 if (!cpumask_available(new_mask)) 3175 goto out_set_mask; 3176 3177 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3178 goto out_free_mask; 3179 3180 /* 3181 * We failed to find a valid subset of the affinity mask for the 3182 * task, so override it based on its cpuset hierarchy. 3183 */ 3184 cpuset_cpus_allowed(p, new_mask); 3185 override_mask = new_mask; 3186 3187 out_set_mask: 3188 if (printk_ratelimit()) { 3189 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3190 task_pid_nr(p), p->comm, 3191 cpumask_pr_args(override_mask)); 3192 } 3193 3194 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3195 out_free_mask: 3196 cpus_read_unlock(); 3197 free_cpumask_var(new_mask); 3198 } 3199 3200 /* 3201 * Restore the affinity of a task @p which was previously restricted by a 3202 * call to force_compatible_cpus_allowed_ptr(). 3203 * 3204 * It is the caller's responsibility to serialise this with any calls to 3205 * force_compatible_cpus_allowed_ptr(@p). 3206 */ 3207 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3208 { 3209 struct affinity_context ac = { 3210 .new_mask = task_user_cpus(p), 3211 .flags = 0, 3212 }; 3213 int ret; 3214 3215 /* 3216 * Try to restore the old affinity mask with __sched_setaffinity(). 3217 * Cpuset masking will be done there too. 3218 */ 3219 ret = __sched_setaffinity(p, &ac); 3220 WARN_ON_ONCE(ret); 3221 } 3222 3223 #ifdef CONFIG_SMP 3224 3225 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3226 { 3227 unsigned int state = READ_ONCE(p->__state); 3228 3229 /* 3230 * We should never call set_task_cpu() on a blocked task, 3231 * ttwu() will sort out the placement. 3232 */ 3233 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3234 3235 /* 3236 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3237 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3238 * time relying on p->on_rq. 3239 */ 3240 WARN_ON_ONCE(state == TASK_RUNNING && 3241 p->sched_class == &fair_sched_class && 3242 (p->on_rq && !task_on_rq_migrating(p))); 3243 3244 #ifdef CONFIG_LOCKDEP 3245 /* 3246 * The caller should hold either p->pi_lock or rq->lock, when changing 3247 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3248 * 3249 * sched_move_task() holds both and thus holding either pins the cgroup, 3250 * see task_group(). 3251 * 3252 * Furthermore, all task_rq users should acquire both locks, see 3253 * task_rq_lock(). 3254 */ 3255 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3256 lockdep_is_held(__rq_lockp(task_rq(p))))); 3257 #endif 3258 /* 3259 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3260 */ 3261 WARN_ON_ONCE(!cpu_online(new_cpu)); 3262 3263 WARN_ON_ONCE(is_migration_disabled(p)); 3264 3265 trace_sched_migrate_task(p, new_cpu); 3266 3267 if (task_cpu(p) != new_cpu) { 3268 if (p->sched_class->migrate_task_rq) 3269 p->sched_class->migrate_task_rq(p, new_cpu); 3270 p->se.nr_migrations++; 3271 perf_event_task_migrate(p); 3272 } 3273 3274 __set_task_cpu(p, new_cpu); 3275 } 3276 #endif /* CONFIG_SMP */ 3277 3278 #ifdef CONFIG_NUMA_BALANCING 3279 static void __migrate_swap_task(struct task_struct *p, int cpu) 3280 { 3281 if (task_on_rq_queued(p)) { 3282 struct rq *src_rq, *dst_rq; 3283 struct rq_flags srf, drf; 3284 3285 src_rq = task_rq(p); 3286 dst_rq = cpu_rq(cpu); 3287 3288 rq_pin_lock(src_rq, &srf); 3289 rq_pin_lock(dst_rq, &drf); 3290 3291 move_queued_task_locked(src_rq, dst_rq, p); 3292 wakeup_preempt(dst_rq, p, 0); 3293 3294 rq_unpin_lock(dst_rq, &drf); 3295 rq_unpin_lock(src_rq, &srf); 3296 3297 } else { 3298 /* 3299 * Task isn't running anymore; make it appear like we migrated 3300 * it before it went to sleep. This means on wakeup we make the 3301 * previous CPU our target instead of where it really is. 3302 */ 3303 p->wake_cpu = cpu; 3304 } 3305 } 3306 3307 struct migration_swap_arg { 3308 struct task_struct *src_task, *dst_task; 3309 int src_cpu, dst_cpu; 3310 }; 3311 3312 static int migrate_swap_stop(void *data) 3313 { 3314 struct migration_swap_arg *arg = data; 3315 struct rq *src_rq, *dst_rq; 3316 3317 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3318 return -EAGAIN; 3319 3320 src_rq = cpu_rq(arg->src_cpu); 3321 dst_rq = cpu_rq(arg->dst_cpu); 3322 3323 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3324 guard(double_rq_lock)(src_rq, dst_rq); 3325 3326 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3327 return -EAGAIN; 3328 3329 if (task_cpu(arg->src_task) != arg->src_cpu) 3330 return -EAGAIN; 3331 3332 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3333 return -EAGAIN; 3334 3335 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3336 return -EAGAIN; 3337 3338 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3339 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3340 3341 return 0; 3342 } 3343 3344 /* 3345 * Cross migrate two tasks 3346 */ 3347 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3348 int target_cpu, int curr_cpu) 3349 { 3350 struct migration_swap_arg arg; 3351 int ret = -EINVAL; 3352 3353 arg = (struct migration_swap_arg){ 3354 .src_task = cur, 3355 .src_cpu = curr_cpu, 3356 .dst_task = p, 3357 .dst_cpu = target_cpu, 3358 }; 3359 3360 if (arg.src_cpu == arg.dst_cpu) 3361 goto out; 3362 3363 /* 3364 * These three tests are all lockless; this is OK since all of them 3365 * will be re-checked with proper locks held further down the line. 3366 */ 3367 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3368 goto out; 3369 3370 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3371 goto out; 3372 3373 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3374 goto out; 3375 3376 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3377 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3378 3379 out: 3380 return ret; 3381 } 3382 #endif /* CONFIG_NUMA_BALANCING */ 3383 3384 /*** 3385 * kick_process - kick a running thread to enter/exit the kernel 3386 * @p: the to-be-kicked thread 3387 * 3388 * Cause a process which is running on another CPU to enter 3389 * kernel-mode, without any delay. (to get signals handled.) 3390 * 3391 * NOTE: this function doesn't have to take the runqueue lock, 3392 * because all it wants to ensure is that the remote task enters 3393 * the kernel. If the IPI races and the task has been migrated 3394 * to another CPU then no harm is done and the purpose has been 3395 * achieved as well. 3396 */ 3397 void kick_process(struct task_struct *p) 3398 { 3399 guard(preempt)(); 3400 int cpu = task_cpu(p); 3401 3402 if ((cpu != smp_processor_id()) && task_curr(p)) 3403 smp_send_reschedule(cpu); 3404 } 3405 EXPORT_SYMBOL_GPL(kick_process); 3406 3407 /* 3408 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3409 * 3410 * A few notes on cpu_active vs cpu_online: 3411 * 3412 * - cpu_active must be a subset of cpu_online 3413 * 3414 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3415 * see __set_cpus_allowed_ptr(). At this point the newly online 3416 * CPU isn't yet part of the sched domains, and balancing will not 3417 * see it. 3418 * 3419 * - on CPU-down we clear cpu_active() to mask the sched domains and 3420 * avoid the load balancer to place new tasks on the to be removed 3421 * CPU. Existing tasks will remain running there and will be taken 3422 * off. 3423 * 3424 * This means that fallback selection must not select !active CPUs. 3425 * And can assume that any active CPU must be online. Conversely 3426 * select_task_rq() below may allow selection of !active CPUs in order 3427 * to satisfy the above rules. 3428 */ 3429 static int select_fallback_rq(int cpu, struct task_struct *p) 3430 { 3431 int nid = cpu_to_node(cpu); 3432 const struct cpumask *nodemask = NULL; 3433 enum { cpuset, possible, fail } state = cpuset; 3434 int dest_cpu; 3435 3436 /* 3437 * If the node that the CPU is on has been offlined, cpu_to_node() 3438 * will return -1. There is no CPU on the node, and we should 3439 * select the CPU on the other node. 3440 */ 3441 if (nid != -1) { 3442 nodemask = cpumask_of_node(nid); 3443 3444 /* Look for allowed, online CPU in same node. */ 3445 for_each_cpu(dest_cpu, nodemask) { 3446 if (is_cpu_allowed(p, dest_cpu)) 3447 return dest_cpu; 3448 } 3449 } 3450 3451 for (;;) { 3452 /* Any allowed, online CPU? */ 3453 for_each_cpu(dest_cpu, p->cpus_ptr) { 3454 if (!is_cpu_allowed(p, dest_cpu)) 3455 continue; 3456 3457 goto out; 3458 } 3459 3460 /* No more Mr. Nice Guy. */ 3461 switch (state) { 3462 case cpuset: 3463 if (cpuset_cpus_allowed_fallback(p)) { 3464 state = possible; 3465 break; 3466 } 3467 fallthrough; 3468 case possible: 3469 set_cpus_allowed_force(p, task_cpu_fallback_mask(p)); 3470 state = fail; 3471 break; 3472 case fail: 3473 BUG(); 3474 break; 3475 } 3476 } 3477 3478 out: 3479 if (state != cpuset) { 3480 /* 3481 * Don't tell them about moving exiting tasks or 3482 * kernel threads (both mm NULL), since they never 3483 * leave kernel. 3484 */ 3485 if (p->mm && printk_ratelimit()) { 3486 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3487 task_pid_nr(p), p->comm, cpu); 3488 } 3489 } 3490 3491 return dest_cpu; 3492 } 3493 3494 /* 3495 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3496 */ 3497 static inline 3498 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags) 3499 { 3500 lockdep_assert_held(&p->pi_lock); 3501 3502 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) { 3503 cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags); 3504 *wake_flags |= WF_RQ_SELECTED; 3505 } else { 3506 cpu = cpumask_any(p->cpus_ptr); 3507 } 3508 3509 /* 3510 * In order not to call set_task_cpu() on a blocking task we need 3511 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3512 * CPU. 3513 * 3514 * Since this is common to all placement strategies, this lives here. 3515 * 3516 * [ this allows ->select_task() to simply return task_cpu(p) and 3517 * not worry about this generic constraint ] 3518 */ 3519 if (unlikely(!is_cpu_allowed(p, cpu))) 3520 cpu = select_fallback_rq(task_cpu(p), p); 3521 3522 return cpu; 3523 } 3524 3525 void sched_set_stop_task(int cpu, struct task_struct *stop) 3526 { 3527 static struct lock_class_key stop_pi_lock; 3528 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3529 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3530 3531 if (stop) { 3532 /* 3533 * Make it appear like a SCHED_FIFO task, its something 3534 * userspace knows about and won't get confused about. 3535 * 3536 * Also, it will make PI more or less work without too 3537 * much confusion -- but then, stop work should not 3538 * rely on PI working anyway. 3539 */ 3540 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3541 3542 stop->sched_class = &stop_sched_class; 3543 3544 /* 3545 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3546 * adjust the effective priority of a task. As a result, 3547 * rt_mutex_setprio() can trigger (RT) balancing operations, 3548 * which can then trigger wakeups of the stop thread to push 3549 * around the current task. 3550 * 3551 * The stop task itself will never be part of the PI-chain, it 3552 * never blocks, therefore that ->pi_lock recursion is safe. 3553 * Tell lockdep about this by placing the stop->pi_lock in its 3554 * own class. 3555 */ 3556 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3557 } 3558 3559 cpu_rq(cpu)->stop = stop; 3560 3561 if (old_stop) { 3562 /* 3563 * Reset it back to a normal scheduling class so that 3564 * it can die in pieces. 3565 */ 3566 old_stop->sched_class = &rt_sched_class; 3567 } 3568 } 3569 3570 static void 3571 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3572 { 3573 struct rq *rq; 3574 3575 if (!schedstat_enabled()) 3576 return; 3577 3578 rq = this_rq(); 3579 3580 if (cpu == rq->cpu) { 3581 __schedstat_inc(rq->ttwu_local); 3582 __schedstat_inc(p->stats.nr_wakeups_local); 3583 } else { 3584 struct sched_domain *sd; 3585 3586 __schedstat_inc(p->stats.nr_wakeups_remote); 3587 3588 guard(rcu)(); 3589 for_each_domain(rq->cpu, sd) { 3590 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3591 __schedstat_inc(sd->ttwu_wake_remote); 3592 break; 3593 } 3594 } 3595 } 3596 3597 if (wake_flags & WF_MIGRATED) 3598 __schedstat_inc(p->stats.nr_wakeups_migrate); 3599 3600 __schedstat_inc(rq->ttwu_count); 3601 __schedstat_inc(p->stats.nr_wakeups); 3602 3603 if (wake_flags & WF_SYNC) 3604 __schedstat_inc(p->stats.nr_wakeups_sync); 3605 } 3606 3607 /* 3608 * Mark the task runnable. 3609 */ 3610 static inline void ttwu_do_wakeup(struct task_struct *p) 3611 { 3612 WRITE_ONCE(p->__state, TASK_RUNNING); 3613 trace_sched_wakeup(p); 3614 } 3615 3616 static void 3617 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3618 struct rq_flags *rf) 3619 { 3620 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3621 3622 lockdep_assert_rq_held(rq); 3623 3624 if (p->sched_contributes_to_load) 3625 rq->nr_uninterruptible--; 3626 3627 if (wake_flags & WF_RQ_SELECTED) 3628 en_flags |= ENQUEUE_RQ_SELECTED; 3629 if (wake_flags & WF_MIGRATED) 3630 en_flags |= ENQUEUE_MIGRATED; 3631 else 3632 if (p->in_iowait) { 3633 delayacct_blkio_end(p); 3634 atomic_dec(&task_rq(p)->nr_iowait); 3635 } 3636 3637 activate_task(rq, p, en_flags); 3638 wakeup_preempt(rq, p, wake_flags); 3639 3640 ttwu_do_wakeup(p); 3641 3642 if (p->sched_class->task_woken) { 3643 /* 3644 * Our task @p is fully woken up and running; so it's safe to 3645 * drop the rq->lock, hereafter rq is only used for statistics. 3646 */ 3647 rq_unpin_lock(rq, rf); 3648 p->sched_class->task_woken(rq, p); 3649 rq_repin_lock(rq, rf); 3650 } 3651 3652 if (rq->idle_stamp) { 3653 u64 delta = rq_clock(rq) - rq->idle_stamp; 3654 u64 max = 2*rq->max_idle_balance_cost; 3655 3656 update_avg(&rq->avg_idle, delta); 3657 3658 if (rq->avg_idle > max) 3659 rq->avg_idle = max; 3660 3661 rq->idle_stamp = 0; 3662 } 3663 } 3664 3665 /* 3666 * Consider @p being inside a wait loop: 3667 * 3668 * for (;;) { 3669 * set_current_state(TASK_UNINTERRUPTIBLE); 3670 * 3671 * if (CONDITION) 3672 * break; 3673 * 3674 * schedule(); 3675 * } 3676 * __set_current_state(TASK_RUNNING); 3677 * 3678 * between set_current_state() and schedule(). In this case @p is still 3679 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3680 * an atomic manner. 3681 * 3682 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3683 * then schedule() must still happen and p->state can be changed to 3684 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3685 * need to do a full wakeup with enqueue. 3686 * 3687 * Returns: %true when the wakeup is done, 3688 * %false otherwise. 3689 */ 3690 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3691 { 3692 struct rq_flags rf; 3693 struct rq *rq; 3694 int ret = 0; 3695 3696 rq = __task_rq_lock(p, &rf); 3697 if (task_on_rq_queued(p)) { 3698 update_rq_clock(rq); 3699 if (p->se.sched_delayed) 3700 enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED); 3701 if (!task_on_cpu(rq, p)) { 3702 /* 3703 * When on_rq && !on_cpu the task is preempted, see if 3704 * it should preempt the task that is current now. 3705 */ 3706 wakeup_preempt(rq, p, wake_flags); 3707 } 3708 ttwu_do_wakeup(p); 3709 ret = 1; 3710 } 3711 __task_rq_unlock(rq, p, &rf); 3712 3713 return ret; 3714 } 3715 3716 void sched_ttwu_pending(void *arg) 3717 { 3718 struct llist_node *llist = arg; 3719 struct rq *rq = this_rq(); 3720 struct task_struct *p, *t; 3721 struct rq_flags rf; 3722 3723 if (!llist) 3724 return; 3725 3726 rq_lock_irqsave(rq, &rf); 3727 update_rq_clock(rq); 3728 3729 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3730 if (WARN_ON_ONCE(p->on_cpu)) 3731 smp_cond_load_acquire(&p->on_cpu, !VAL); 3732 3733 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3734 set_task_cpu(p, cpu_of(rq)); 3735 3736 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3737 } 3738 3739 /* 3740 * Must be after enqueueing at least once task such that 3741 * idle_cpu() does not observe a false-negative -- if it does, 3742 * it is possible for select_idle_siblings() to stack a number 3743 * of tasks on this CPU during that window. 3744 * 3745 * It is OK to clear ttwu_pending when another task pending. 3746 * We will receive IPI after local IRQ enabled and then enqueue it. 3747 * Since now nr_running > 0, idle_cpu() will always get correct result. 3748 */ 3749 WRITE_ONCE(rq->ttwu_pending, 0); 3750 rq_unlock_irqrestore(rq, &rf); 3751 } 3752 3753 /* 3754 * Prepare the scene for sending an IPI for a remote smp_call 3755 * 3756 * Returns true if the caller can proceed with sending the IPI. 3757 * Returns false otherwise. 3758 */ 3759 bool call_function_single_prep_ipi(int cpu) 3760 { 3761 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3762 trace_sched_wake_idle_without_ipi(cpu); 3763 return false; 3764 } 3765 3766 return true; 3767 } 3768 3769 /* 3770 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3771 * necessary. The wakee CPU on receipt of the IPI will queue the task 3772 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3773 * of the wakeup instead of the waker. 3774 */ 3775 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3776 { 3777 struct rq *rq = cpu_rq(cpu); 3778 3779 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3780 3781 WRITE_ONCE(rq->ttwu_pending, 1); 3782 #ifdef CONFIG_SMP 3783 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3784 #endif 3785 } 3786 3787 void wake_up_if_idle(int cpu) 3788 { 3789 struct rq *rq = cpu_rq(cpu); 3790 3791 guard(rcu)(); 3792 if (is_idle_task(rcu_dereference(rq->curr))) { 3793 guard(rq_lock_irqsave)(rq); 3794 if (is_idle_task(rq->curr)) 3795 resched_curr(rq); 3796 } 3797 } 3798 3799 bool cpus_equal_capacity(int this_cpu, int that_cpu) 3800 { 3801 if (!sched_asym_cpucap_active()) 3802 return true; 3803 3804 if (this_cpu == that_cpu) 3805 return true; 3806 3807 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); 3808 } 3809 3810 bool cpus_share_cache(int this_cpu, int that_cpu) 3811 { 3812 if (this_cpu == that_cpu) 3813 return true; 3814 3815 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3816 } 3817 3818 /* 3819 * Whether CPUs are share cache resources, which means LLC on non-cluster 3820 * machines and LLC tag or L2 on machines with clusters. 3821 */ 3822 bool cpus_share_resources(int this_cpu, int that_cpu) 3823 { 3824 if (this_cpu == that_cpu) 3825 return true; 3826 3827 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3828 } 3829 3830 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3831 { 3832 /* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */ 3833 if (!scx_allow_ttwu_queue(p)) 3834 return false; 3835 3836 #ifdef CONFIG_SMP 3837 if (p->sched_class == &stop_sched_class) 3838 return false; 3839 #endif 3840 3841 /* 3842 * Do not complicate things with the async wake_list while the CPU is 3843 * in hotplug state. 3844 */ 3845 if (!cpu_active(cpu)) 3846 return false; 3847 3848 /* Ensure the task will still be allowed to run on the CPU. */ 3849 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3850 return false; 3851 3852 /* 3853 * If the CPU does not share cache, then queue the task on the 3854 * remote rqs wakelist to avoid accessing remote data. 3855 */ 3856 if (!cpus_share_cache(smp_processor_id(), cpu)) 3857 return true; 3858 3859 if (cpu == smp_processor_id()) 3860 return false; 3861 3862 /* 3863 * If the wakee cpu is idle, or the task is descheduling and the 3864 * only running task on the CPU, then use the wakelist to offload 3865 * the task activation to the idle (or soon-to-be-idle) CPU as 3866 * the current CPU is likely busy. nr_running is checked to 3867 * avoid unnecessary task stacking. 3868 * 3869 * Note that we can only get here with (wakee) p->on_rq=0, 3870 * p->on_cpu can be whatever, we've done the dequeue, so 3871 * the wakee has been accounted out of ->nr_running. 3872 */ 3873 if (!cpu_rq(cpu)->nr_running) 3874 return true; 3875 3876 return false; 3877 } 3878 3879 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3880 { 3881 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3882 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3883 __ttwu_queue_wakelist(p, cpu, wake_flags); 3884 return true; 3885 } 3886 3887 return false; 3888 } 3889 3890 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3891 { 3892 struct rq *rq = cpu_rq(cpu); 3893 struct rq_flags rf; 3894 3895 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3896 return; 3897 3898 rq_lock(rq, &rf); 3899 update_rq_clock(rq); 3900 ttwu_do_activate(rq, p, wake_flags, &rf); 3901 rq_unlock(rq, &rf); 3902 } 3903 3904 /* 3905 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3906 * 3907 * The caller holds p::pi_lock if p != current or has preemption 3908 * disabled when p == current. 3909 * 3910 * The rules of saved_state: 3911 * 3912 * The related locking code always holds p::pi_lock when updating 3913 * p::saved_state, which means the code is fully serialized in both cases. 3914 * 3915 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 3916 * No other bits set. This allows to distinguish all wakeup scenarios. 3917 * 3918 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 3919 * allows us to prevent early wakeup of tasks before they can be run on 3920 * asymmetric ISA architectures (eg ARMv9). 3921 */ 3922 static __always_inline 3923 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3924 { 3925 int match; 3926 3927 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3928 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3929 state != TASK_RTLOCK_WAIT); 3930 } 3931 3932 *success = !!(match = __task_state_match(p, state)); 3933 3934 /* 3935 * Saved state preserves the task state across blocking on 3936 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 3937 * set p::saved_state to TASK_RUNNING, but do not wake the task 3938 * because it waits for a lock wakeup or __thaw_task(). Also 3939 * indicate success because from the regular waker's point of 3940 * view this has succeeded. 3941 * 3942 * After acquiring the lock the task will restore p::__state 3943 * from p::saved_state which ensures that the regular 3944 * wakeup is not lost. The restore will also set 3945 * p::saved_state to TASK_RUNNING so any further tests will 3946 * not result in false positives vs. @success 3947 */ 3948 if (match < 0) 3949 p->saved_state = TASK_RUNNING; 3950 3951 return match > 0; 3952 } 3953 3954 /* 3955 * Notes on Program-Order guarantees on SMP systems. 3956 * 3957 * MIGRATION 3958 * 3959 * The basic program-order guarantee on SMP systems is that when a task [t] 3960 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3961 * execution on its new CPU [c1]. 3962 * 3963 * For migration (of runnable tasks) this is provided by the following means: 3964 * 3965 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3966 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3967 * rq(c1)->lock (if not at the same time, then in that order). 3968 * C) LOCK of the rq(c1)->lock scheduling in task 3969 * 3970 * Release/acquire chaining guarantees that B happens after A and C after B. 3971 * Note: the CPU doing B need not be c0 or c1 3972 * 3973 * Example: 3974 * 3975 * CPU0 CPU1 CPU2 3976 * 3977 * LOCK rq(0)->lock 3978 * sched-out X 3979 * sched-in Y 3980 * UNLOCK rq(0)->lock 3981 * 3982 * LOCK rq(0)->lock // orders against CPU0 3983 * dequeue X 3984 * UNLOCK rq(0)->lock 3985 * 3986 * LOCK rq(1)->lock 3987 * enqueue X 3988 * UNLOCK rq(1)->lock 3989 * 3990 * LOCK rq(1)->lock // orders against CPU2 3991 * sched-out Z 3992 * sched-in X 3993 * UNLOCK rq(1)->lock 3994 * 3995 * 3996 * BLOCKING -- aka. SLEEP + WAKEUP 3997 * 3998 * For blocking we (obviously) need to provide the same guarantee as for 3999 * migration. However the means are completely different as there is no lock 4000 * chain to provide order. Instead we do: 4001 * 4002 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 4003 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 4004 * 4005 * Example: 4006 * 4007 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4008 * 4009 * LOCK rq(0)->lock LOCK X->pi_lock 4010 * dequeue X 4011 * sched-out X 4012 * smp_store_release(X->on_cpu, 0); 4013 * 4014 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4015 * X->state = WAKING 4016 * set_task_cpu(X,2) 4017 * 4018 * LOCK rq(2)->lock 4019 * enqueue X 4020 * X->state = RUNNING 4021 * UNLOCK rq(2)->lock 4022 * 4023 * LOCK rq(2)->lock // orders against CPU1 4024 * sched-out Z 4025 * sched-in X 4026 * UNLOCK rq(2)->lock 4027 * 4028 * UNLOCK X->pi_lock 4029 * UNLOCK rq(0)->lock 4030 * 4031 * 4032 * However, for wakeups there is a second guarantee we must provide, namely we 4033 * must ensure that CONDITION=1 done by the caller can not be reordered with 4034 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4035 */ 4036 4037 /** 4038 * try_to_wake_up - wake up a thread 4039 * @p: the thread to be awakened 4040 * @state: the mask of task states that can be woken 4041 * @wake_flags: wake modifier flags (WF_*) 4042 * 4043 * Conceptually does: 4044 * 4045 * If (@state & @p->state) @p->state = TASK_RUNNING. 4046 * 4047 * If the task was not queued/runnable, also place it back on a runqueue. 4048 * 4049 * This function is atomic against schedule() which would dequeue the task. 4050 * 4051 * It issues a full memory barrier before accessing @p->state, see the comment 4052 * with set_current_state(). 4053 * 4054 * Uses p->pi_lock to serialize against concurrent wake-ups. 4055 * 4056 * Relies on p->pi_lock stabilizing: 4057 * - p->sched_class 4058 * - p->cpus_ptr 4059 * - p->sched_task_group 4060 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4061 * 4062 * Tries really hard to only take one task_rq(p)->lock for performance. 4063 * Takes rq->lock in: 4064 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4065 * - ttwu_queue() -- new rq, for enqueue of the task; 4066 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4067 * 4068 * As a consequence we race really badly with just about everything. See the 4069 * many memory barriers and their comments for details. 4070 * 4071 * Return: %true if @p->state changes (an actual wakeup was done), 4072 * %false otherwise. 4073 */ 4074 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4075 { 4076 guard(preempt)(); 4077 int cpu, success = 0; 4078 4079 wake_flags |= WF_TTWU; 4080 4081 if (p == current) { 4082 /* 4083 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4084 * == smp_processor_id()'. Together this means we can special 4085 * case the whole 'p->on_rq && ttwu_runnable()' case below 4086 * without taking any locks. 4087 * 4088 * Specifically, given current runs ttwu() we must be before 4089 * schedule()'s block_task(), as such this must not observe 4090 * sched_delayed. 4091 * 4092 * In particular: 4093 * - we rely on Program-Order guarantees for all the ordering, 4094 * - we're serialized against set_special_state() by virtue of 4095 * it disabling IRQs (this allows not taking ->pi_lock). 4096 */ 4097 WARN_ON_ONCE(p->se.sched_delayed); 4098 if (!ttwu_state_match(p, state, &success)) 4099 goto out; 4100 4101 trace_sched_waking(p); 4102 ttwu_do_wakeup(p); 4103 goto out; 4104 } 4105 4106 /* 4107 * If we are going to wake up a thread waiting for CONDITION we 4108 * need to ensure that CONDITION=1 done by the caller can not be 4109 * reordered with p->state check below. This pairs with smp_store_mb() 4110 * in set_current_state() that the waiting thread does. 4111 */ 4112 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4113 smp_mb__after_spinlock(); 4114 if (!ttwu_state_match(p, state, &success)) 4115 break; 4116 4117 trace_sched_waking(p); 4118 4119 /* 4120 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4121 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4122 * in smp_cond_load_acquire() below. 4123 * 4124 * sched_ttwu_pending() try_to_wake_up() 4125 * STORE p->on_rq = 1 LOAD p->state 4126 * UNLOCK rq->lock 4127 * 4128 * __schedule() (switch to task 'p') 4129 * LOCK rq->lock smp_rmb(); 4130 * smp_mb__after_spinlock(); 4131 * UNLOCK rq->lock 4132 * 4133 * [task p] 4134 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4135 * 4136 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4137 * __schedule(). See the comment for smp_mb__after_spinlock(). 4138 * 4139 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4140 */ 4141 smp_rmb(); 4142 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4143 break; 4144 4145 /* 4146 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4147 * possible to, falsely, observe p->on_cpu == 0. 4148 * 4149 * One must be running (->on_cpu == 1) in order to remove oneself 4150 * from the runqueue. 4151 * 4152 * __schedule() (switch to task 'p') try_to_wake_up() 4153 * STORE p->on_cpu = 1 LOAD p->on_rq 4154 * UNLOCK rq->lock 4155 * 4156 * __schedule() (put 'p' to sleep) 4157 * LOCK rq->lock smp_rmb(); 4158 * smp_mb__after_spinlock(); 4159 * STORE p->on_rq = 0 LOAD p->on_cpu 4160 * 4161 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4162 * __schedule(). See the comment for smp_mb__after_spinlock(). 4163 * 4164 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4165 * schedule()'s block_task() has 'happened' and p will no longer 4166 * care about it's own p->state. See the comment in __schedule(). 4167 */ 4168 smp_acquire__after_ctrl_dep(); 4169 4170 /* 4171 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4172 * == 0), which means we need to do an enqueue, change p->state to 4173 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4174 * enqueue, such as ttwu_queue_wakelist(). 4175 */ 4176 WRITE_ONCE(p->__state, TASK_WAKING); 4177 4178 /* 4179 * If the owning (remote) CPU is still in the middle of schedule() with 4180 * this task as prev, considering queueing p on the remote CPUs wake_list 4181 * which potentially sends an IPI instead of spinning on p->on_cpu to 4182 * let the waker make forward progress. This is safe because IRQs are 4183 * disabled and the IPI will deliver after on_cpu is cleared. 4184 * 4185 * Ensure we load task_cpu(p) after p->on_cpu: 4186 * 4187 * set_task_cpu(p, cpu); 4188 * STORE p->cpu = @cpu 4189 * __schedule() (switch to task 'p') 4190 * LOCK rq->lock 4191 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4192 * STORE p->on_cpu = 1 LOAD p->cpu 4193 * 4194 * to ensure we observe the correct CPU on which the task is currently 4195 * scheduling. 4196 */ 4197 if (smp_load_acquire(&p->on_cpu) && 4198 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4199 break; 4200 4201 /* 4202 * If the owning (remote) CPU is still in the middle of schedule() with 4203 * this task as prev, wait until it's done referencing the task. 4204 * 4205 * Pairs with the smp_store_release() in finish_task(). 4206 * 4207 * This ensures that tasks getting woken will be fully ordered against 4208 * their previous state and preserve Program Order. 4209 */ 4210 smp_cond_load_acquire(&p->on_cpu, !VAL); 4211 4212 cpu = select_task_rq(p, p->wake_cpu, &wake_flags); 4213 if (task_cpu(p) != cpu) { 4214 if (p->in_iowait) { 4215 delayacct_blkio_end(p); 4216 atomic_dec(&task_rq(p)->nr_iowait); 4217 } 4218 4219 wake_flags |= WF_MIGRATED; 4220 psi_ttwu_dequeue(p); 4221 set_task_cpu(p, cpu); 4222 } 4223 4224 ttwu_queue(p, cpu, wake_flags); 4225 } 4226 out: 4227 if (success) 4228 ttwu_stat(p, task_cpu(p), wake_flags); 4229 4230 return success; 4231 } 4232 4233 static bool __task_needs_rq_lock(struct task_struct *p) 4234 { 4235 unsigned int state = READ_ONCE(p->__state); 4236 4237 /* 4238 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4239 * the task is blocked. Make sure to check @state since ttwu() can drop 4240 * locks at the end, see ttwu_queue_wakelist(). 4241 */ 4242 if (state == TASK_RUNNING || state == TASK_WAKING) 4243 return true; 4244 4245 /* 4246 * Ensure we load p->on_rq after p->__state, otherwise it would be 4247 * possible to, falsely, observe p->on_rq == 0. 4248 * 4249 * See try_to_wake_up() for a longer comment. 4250 */ 4251 smp_rmb(); 4252 if (p->on_rq) 4253 return true; 4254 4255 /* 4256 * Ensure the task has finished __schedule() and will not be referenced 4257 * anymore. Again, see try_to_wake_up() for a longer comment. 4258 */ 4259 smp_rmb(); 4260 smp_cond_load_acquire(&p->on_cpu, !VAL); 4261 4262 return false; 4263 } 4264 4265 /** 4266 * task_call_func - Invoke a function on task in fixed state 4267 * @p: Process for which the function is to be invoked, can be @current. 4268 * @func: Function to invoke. 4269 * @arg: Argument to function. 4270 * 4271 * Fix the task in it's current state by avoiding wakeups and or rq operations 4272 * and call @func(@arg) on it. This function can use task_is_runnable() and 4273 * task_curr() to work out what the state is, if required. Given that @func 4274 * can be invoked with a runqueue lock held, it had better be quite 4275 * lightweight. 4276 * 4277 * Returns: 4278 * Whatever @func returns 4279 */ 4280 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4281 { 4282 struct rq *rq = NULL; 4283 struct rq_flags rf; 4284 int ret; 4285 4286 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4287 4288 if (__task_needs_rq_lock(p)) 4289 rq = __task_rq_lock(p, &rf); 4290 4291 /* 4292 * At this point the task is pinned; either: 4293 * - blocked and we're holding off wakeups (pi->lock) 4294 * - woken, and we're holding off enqueue (rq->lock) 4295 * - queued, and we're holding off schedule (rq->lock) 4296 * - running, and we're holding off de-schedule (rq->lock) 4297 * 4298 * The called function (@func) can use: task_curr(), p->on_rq and 4299 * p->__state to differentiate between these states. 4300 */ 4301 ret = func(p, arg); 4302 4303 if (rq) 4304 __task_rq_unlock(rq, p, &rf); 4305 4306 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4307 return ret; 4308 } 4309 4310 /** 4311 * cpu_curr_snapshot - Return a snapshot of the currently running task 4312 * @cpu: The CPU on which to snapshot the task. 4313 * 4314 * Returns the task_struct pointer of the task "currently" running on 4315 * the specified CPU. 4316 * 4317 * If the specified CPU was offline, the return value is whatever it 4318 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4319 * task, but there is no guarantee. Callers wishing a useful return 4320 * value must take some action to ensure that the specified CPU remains 4321 * online throughout. 4322 * 4323 * This function executes full memory barriers before and after fetching 4324 * the pointer, which permits the caller to confine this function's fetch 4325 * with respect to the caller's accesses to other shared variables. 4326 */ 4327 struct task_struct *cpu_curr_snapshot(int cpu) 4328 { 4329 struct rq *rq = cpu_rq(cpu); 4330 struct task_struct *t; 4331 struct rq_flags rf; 4332 4333 rq_lock_irqsave(rq, &rf); 4334 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */ 4335 t = rcu_dereference(cpu_curr(cpu)); 4336 rq_unlock_irqrestore(rq, &rf); 4337 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4338 4339 return t; 4340 } 4341 4342 /** 4343 * wake_up_process - Wake up a specific process 4344 * @p: The process to be woken up. 4345 * 4346 * Attempt to wake up the nominated process and move it to the set of runnable 4347 * processes. 4348 * 4349 * Return: 1 if the process was woken up, 0 if it was already running. 4350 * 4351 * This function executes a full memory barrier before accessing the task state. 4352 */ 4353 int wake_up_process(struct task_struct *p) 4354 { 4355 return try_to_wake_up(p, TASK_NORMAL, 0); 4356 } 4357 EXPORT_SYMBOL(wake_up_process); 4358 4359 int wake_up_state(struct task_struct *p, unsigned int state) 4360 { 4361 return try_to_wake_up(p, state, 0); 4362 } 4363 4364 /* 4365 * Perform scheduler related setup for a newly forked process p. 4366 * p is forked by current. 4367 * 4368 * __sched_fork() is basic setup which is also used by sched_init() to 4369 * initialize the boot CPU's idle task. 4370 */ 4371 static void __sched_fork(u64 clone_flags, struct task_struct *p) 4372 { 4373 p->on_rq = 0; 4374 4375 p->se.on_rq = 0; 4376 p->se.exec_start = 0; 4377 p->se.sum_exec_runtime = 0; 4378 p->se.prev_sum_exec_runtime = 0; 4379 p->se.nr_migrations = 0; 4380 p->se.vruntime = 0; 4381 p->se.vlag = 0; 4382 INIT_LIST_HEAD(&p->se.group_node); 4383 4384 /* A delayed task cannot be in clone(). */ 4385 WARN_ON_ONCE(p->se.sched_delayed); 4386 4387 #ifdef CONFIG_FAIR_GROUP_SCHED 4388 p->se.cfs_rq = NULL; 4389 #ifdef CONFIG_CFS_BANDWIDTH 4390 init_cfs_throttle_work(p); 4391 #endif 4392 #endif 4393 4394 #ifdef CONFIG_SCHEDSTATS 4395 /* Even if schedstat is disabled, there should not be garbage */ 4396 memset(&p->stats, 0, sizeof(p->stats)); 4397 #endif 4398 4399 init_dl_entity(&p->dl); 4400 4401 INIT_LIST_HEAD(&p->rt.run_list); 4402 p->rt.timeout = 0; 4403 p->rt.time_slice = sched_rr_timeslice; 4404 p->rt.on_rq = 0; 4405 p->rt.on_list = 0; 4406 4407 #ifdef CONFIG_SCHED_CLASS_EXT 4408 init_scx_entity(&p->scx); 4409 #endif 4410 4411 #ifdef CONFIG_PREEMPT_NOTIFIERS 4412 INIT_HLIST_HEAD(&p->preempt_notifiers); 4413 #endif 4414 4415 #ifdef CONFIG_COMPACTION 4416 p->capture_control = NULL; 4417 #endif 4418 init_numa_balancing(clone_flags, p); 4419 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4420 p->migration_pending = NULL; 4421 } 4422 4423 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4424 4425 #ifdef CONFIG_NUMA_BALANCING 4426 4427 int sysctl_numa_balancing_mode; 4428 4429 static void __set_numabalancing_state(bool enabled) 4430 { 4431 if (enabled) 4432 static_branch_enable(&sched_numa_balancing); 4433 else 4434 static_branch_disable(&sched_numa_balancing); 4435 } 4436 4437 void set_numabalancing_state(bool enabled) 4438 { 4439 if (enabled) 4440 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4441 else 4442 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4443 __set_numabalancing_state(enabled); 4444 } 4445 4446 #ifdef CONFIG_PROC_SYSCTL 4447 static void reset_memory_tiering(void) 4448 { 4449 struct pglist_data *pgdat; 4450 4451 for_each_online_pgdat(pgdat) { 4452 pgdat->nbp_threshold = 0; 4453 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4454 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4455 } 4456 } 4457 4458 static int sysctl_numa_balancing(const struct ctl_table *table, int write, 4459 void *buffer, size_t *lenp, loff_t *ppos) 4460 { 4461 struct ctl_table t; 4462 int err; 4463 int state = sysctl_numa_balancing_mode; 4464 4465 if (write && !capable(CAP_SYS_ADMIN)) 4466 return -EPERM; 4467 4468 t = *table; 4469 t.data = &state; 4470 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4471 if (err < 0) 4472 return err; 4473 if (write) { 4474 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4475 (state & NUMA_BALANCING_MEMORY_TIERING)) 4476 reset_memory_tiering(); 4477 sysctl_numa_balancing_mode = state; 4478 __set_numabalancing_state(state); 4479 } 4480 return err; 4481 } 4482 #endif /* CONFIG_PROC_SYSCTL */ 4483 #endif /* CONFIG_NUMA_BALANCING */ 4484 4485 #ifdef CONFIG_SCHEDSTATS 4486 4487 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4488 4489 static void set_schedstats(bool enabled) 4490 { 4491 if (enabled) 4492 static_branch_enable(&sched_schedstats); 4493 else 4494 static_branch_disable(&sched_schedstats); 4495 } 4496 4497 void force_schedstat_enabled(void) 4498 { 4499 if (!schedstat_enabled()) { 4500 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4501 static_branch_enable(&sched_schedstats); 4502 } 4503 } 4504 4505 static int __init setup_schedstats(char *str) 4506 { 4507 int ret = 0; 4508 if (!str) 4509 goto out; 4510 4511 if (!strcmp(str, "enable")) { 4512 set_schedstats(true); 4513 ret = 1; 4514 } else if (!strcmp(str, "disable")) { 4515 set_schedstats(false); 4516 ret = 1; 4517 } 4518 out: 4519 if (!ret) 4520 pr_warn("Unable to parse schedstats=\n"); 4521 4522 return ret; 4523 } 4524 __setup("schedstats=", setup_schedstats); 4525 4526 #ifdef CONFIG_PROC_SYSCTL 4527 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer, 4528 size_t *lenp, loff_t *ppos) 4529 { 4530 struct ctl_table t; 4531 int err; 4532 int state = static_branch_likely(&sched_schedstats); 4533 4534 if (write && !capable(CAP_SYS_ADMIN)) 4535 return -EPERM; 4536 4537 t = *table; 4538 t.data = &state; 4539 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4540 if (err < 0) 4541 return err; 4542 if (write) 4543 set_schedstats(state); 4544 return err; 4545 } 4546 #endif /* CONFIG_PROC_SYSCTL */ 4547 #endif /* CONFIG_SCHEDSTATS */ 4548 4549 #ifdef CONFIG_SYSCTL 4550 static const struct ctl_table sched_core_sysctls[] = { 4551 #ifdef CONFIG_SCHEDSTATS 4552 { 4553 .procname = "sched_schedstats", 4554 .data = NULL, 4555 .maxlen = sizeof(unsigned int), 4556 .mode = 0644, 4557 .proc_handler = sysctl_schedstats, 4558 .extra1 = SYSCTL_ZERO, 4559 .extra2 = SYSCTL_ONE, 4560 }, 4561 #endif /* CONFIG_SCHEDSTATS */ 4562 #ifdef CONFIG_UCLAMP_TASK 4563 { 4564 .procname = "sched_util_clamp_min", 4565 .data = &sysctl_sched_uclamp_util_min, 4566 .maxlen = sizeof(unsigned int), 4567 .mode = 0644, 4568 .proc_handler = sysctl_sched_uclamp_handler, 4569 }, 4570 { 4571 .procname = "sched_util_clamp_max", 4572 .data = &sysctl_sched_uclamp_util_max, 4573 .maxlen = sizeof(unsigned int), 4574 .mode = 0644, 4575 .proc_handler = sysctl_sched_uclamp_handler, 4576 }, 4577 { 4578 .procname = "sched_util_clamp_min_rt_default", 4579 .data = &sysctl_sched_uclamp_util_min_rt_default, 4580 .maxlen = sizeof(unsigned int), 4581 .mode = 0644, 4582 .proc_handler = sysctl_sched_uclamp_handler, 4583 }, 4584 #endif /* CONFIG_UCLAMP_TASK */ 4585 #ifdef CONFIG_NUMA_BALANCING 4586 { 4587 .procname = "numa_balancing", 4588 .data = NULL, /* filled in by handler */ 4589 .maxlen = sizeof(unsigned int), 4590 .mode = 0644, 4591 .proc_handler = sysctl_numa_balancing, 4592 .extra1 = SYSCTL_ZERO, 4593 .extra2 = SYSCTL_FOUR, 4594 }, 4595 #endif /* CONFIG_NUMA_BALANCING */ 4596 }; 4597 static int __init sched_core_sysctl_init(void) 4598 { 4599 register_sysctl_init("kernel", sched_core_sysctls); 4600 return 0; 4601 } 4602 late_initcall(sched_core_sysctl_init); 4603 #endif /* CONFIG_SYSCTL */ 4604 4605 /* 4606 * fork()/clone()-time setup: 4607 */ 4608 int sched_fork(u64 clone_flags, struct task_struct *p) 4609 { 4610 __sched_fork(clone_flags, p); 4611 /* 4612 * We mark the process as NEW here. This guarantees that 4613 * nobody will actually run it, and a signal or other external 4614 * event cannot wake it up and insert it on the runqueue either. 4615 */ 4616 p->__state = TASK_NEW; 4617 4618 /* 4619 * Make sure we do not leak PI boosting priority to the child. 4620 */ 4621 p->prio = current->normal_prio; 4622 4623 uclamp_fork(p); 4624 4625 /* 4626 * Revert to default priority/policy on fork if requested. 4627 */ 4628 if (unlikely(p->sched_reset_on_fork)) { 4629 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4630 p->policy = SCHED_NORMAL; 4631 p->static_prio = NICE_TO_PRIO(0); 4632 p->rt_priority = 0; 4633 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4634 p->static_prio = NICE_TO_PRIO(0); 4635 4636 p->prio = p->normal_prio = p->static_prio; 4637 set_load_weight(p, false); 4638 p->se.custom_slice = 0; 4639 p->se.slice = sysctl_sched_base_slice; 4640 4641 /* 4642 * We don't need the reset flag anymore after the fork. It has 4643 * fulfilled its duty: 4644 */ 4645 p->sched_reset_on_fork = 0; 4646 } 4647 4648 if (dl_prio(p->prio)) 4649 return -EAGAIN; 4650 4651 scx_pre_fork(p); 4652 4653 if (rt_prio(p->prio)) { 4654 p->sched_class = &rt_sched_class; 4655 #ifdef CONFIG_SCHED_CLASS_EXT 4656 } else if (task_should_scx(p->policy)) { 4657 p->sched_class = &ext_sched_class; 4658 #endif 4659 } else { 4660 p->sched_class = &fair_sched_class; 4661 } 4662 4663 init_entity_runnable_average(&p->se); 4664 4665 4666 #ifdef CONFIG_SCHED_INFO 4667 if (likely(sched_info_on())) 4668 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4669 #endif 4670 p->on_cpu = 0; 4671 init_task_preempt_count(p); 4672 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4673 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4674 4675 return 0; 4676 } 4677 4678 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4679 { 4680 unsigned long flags; 4681 4682 /* 4683 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4684 * required yet, but lockdep gets upset if rules are violated. 4685 */ 4686 raw_spin_lock_irqsave(&p->pi_lock, flags); 4687 #ifdef CONFIG_CGROUP_SCHED 4688 if (1) { 4689 struct task_group *tg; 4690 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4691 struct task_group, css); 4692 tg = autogroup_task_group(p, tg); 4693 p->sched_task_group = tg; 4694 } 4695 #endif 4696 /* 4697 * We're setting the CPU for the first time, we don't migrate, 4698 * so use __set_task_cpu(). 4699 */ 4700 __set_task_cpu(p, smp_processor_id()); 4701 if (p->sched_class->task_fork) 4702 p->sched_class->task_fork(p); 4703 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4704 4705 return scx_fork(p); 4706 } 4707 4708 void sched_cancel_fork(struct task_struct *p) 4709 { 4710 scx_cancel_fork(p); 4711 } 4712 4713 void sched_post_fork(struct task_struct *p) 4714 { 4715 uclamp_post_fork(p); 4716 scx_post_fork(p); 4717 } 4718 4719 unsigned long to_ratio(u64 period, u64 runtime) 4720 { 4721 if (runtime == RUNTIME_INF) 4722 return BW_UNIT; 4723 4724 /* 4725 * Doing this here saves a lot of checks in all 4726 * the calling paths, and returning zero seems 4727 * safe for them anyway. 4728 */ 4729 if (period == 0) 4730 return 0; 4731 4732 return div64_u64(runtime << BW_SHIFT, period); 4733 } 4734 4735 /* 4736 * wake_up_new_task - wake up a newly created task for the first time. 4737 * 4738 * This function will do some initial scheduler statistics housekeeping 4739 * that must be done for every newly created context, then puts the task 4740 * on the runqueue and wakes it. 4741 */ 4742 void wake_up_new_task(struct task_struct *p) 4743 { 4744 struct rq_flags rf; 4745 struct rq *rq; 4746 int wake_flags = WF_FORK; 4747 4748 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4749 WRITE_ONCE(p->__state, TASK_RUNNING); 4750 /* 4751 * Fork balancing, do it here and not earlier because: 4752 * - cpus_ptr can change in the fork path 4753 * - any previously selected CPU might disappear through hotplug 4754 * 4755 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4756 * as we're not fully set-up yet. 4757 */ 4758 p->recent_used_cpu = task_cpu(p); 4759 __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags)); 4760 rq = __task_rq_lock(p, &rf); 4761 update_rq_clock(rq); 4762 post_init_entity_util_avg(p); 4763 4764 activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL); 4765 trace_sched_wakeup_new(p); 4766 wakeup_preempt(rq, p, wake_flags); 4767 if (p->sched_class->task_woken) { 4768 /* 4769 * Nothing relies on rq->lock after this, so it's fine to 4770 * drop it. 4771 */ 4772 rq_unpin_lock(rq, &rf); 4773 p->sched_class->task_woken(rq, p); 4774 rq_repin_lock(rq, &rf); 4775 } 4776 task_rq_unlock(rq, p, &rf); 4777 } 4778 4779 #ifdef CONFIG_PREEMPT_NOTIFIERS 4780 4781 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4782 4783 void preempt_notifier_inc(void) 4784 { 4785 static_branch_inc(&preempt_notifier_key); 4786 } 4787 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4788 4789 void preempt_notifier_dec(void) 4790 { 4791 static_branch_dec(&preempt_notifier_key); 4792 } 4793 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4794 4795 /** 4796 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4797 * @notifier: notifier struct to register 4798 */ 4799 void preempt_notifier_register(struct preempt_notifier *notifier) 4800 { 4801 if (!static_branch_unlikely(&preempt_notifier_key)) 4802 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4803 4804 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4805 } 4806 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4807 4808 /** 4809 * preempt_notifier_unregister - no longer interested in preemption notifications 4810 * @notifier: notifier struct to unregister 4811 * 4812 * This is *not* safe to call from within a preemption notifier. 4813 */ 4814 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4815 { 4816 hlist_del(¬ifier->link); 4817 } 4818 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4819 4820 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4821 { 4822 struct preempt_notifier *notifier; 4823 4824 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4825 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4826 } 4827 4828 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4829 { 4830 if (static_branch_unlikely(&preempt_notifier_key)) 4831 __fire_sched_in_preempt_notifiers(curr); 4832 } 4833 4834 static void 4835 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4836 struct task_struct *next) 4837 { 4838 struct preempt_notifier *notifier; 4839 4840 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4841 notifier->ops->sched_out(notifier, next); 4842 } 4843 4844 static __always_inline void 4845 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4846 struct task_struct *next) 4847 { 4848 if (static_branch_unlikely(&preempt_notifier_key)) 4849 __fire_sched_out_preempt_notifiers(curr, next); 4850 } 4851 4852 #else /* !CONFIG_PREEMPT_NOTIFIERS: */ 4853 4854 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4855 { 4856 } 4857 4858 static inline void 4859 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4860 struct task_struct *next) 4861 { 4862 } 4863 4864 #endif /* !CONFIG_PREEMPT_NOTIFIERS */ 4865 4866 static inline void prepare_task(struct task_struct *next) 4867 { 4868 /* 4869 * Claim the task as running, we do this before switching to it 4870 * such that any running task will have this set. 4871 * 4872 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4873 * its ordering comment. 4874 */ 4875 WRITE_ONCE(next->on_cpu, 1); 4876 } 4877 4878 static inline void finish_task(struct task_struct *prev) 4879 { 4880 /* 4881 * This must be the very last reference to @prev from this CPU. After 4882 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4883 * must ensure this doesn't happen until the switch is completely 4884 * finished. 4885 * 4886 * In particular, the load of prev->state in finish_task_switch() must 4887 * happen before this. 4888 * 4889 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4890 */ 4891 smp_store_release(&prev->on_cpu, 0); 4892 } 4893 4894 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 4895 { 4896 void (*func)(struct rq *rq); 4897 struct balance_callback *next; 4898 4899 lockdep_assert_rq_held(rq); 4900 4901 while (head) { 4902 func = (void (*)(struct rq *))head->func; 4903 next = head->next; 4904 head->next = NULL; 4905 head = next; 4906 4907 func(rq); 4908 } 4909 } 4910 4911 static void balance_push(struct rq *rq); 4912 4913 /* 4914 * balance_push_callback is a right abuse of the callback interface and plays 4915 * by significantly different rules. 4916 * 4917 * Where the normal balance_callback's purpose is to be ran in the same context 4918 * that queued it (only later, when it's safe to drop rq->lock again), 4919 * balance_push_callback is specifically targeted at __schedule(). 4920 * 4921 * This abuse is tolerated because it places all the unlikely/odd cases behind 4922 * a single test, namely: rq->balance_callback == NULL. 4923 */ 4924 struct balance_callback balance_push_callback = { 4925 .next = NULL, 4926 .func = balance_push, 4927 }; 4928 4929 static inline struct balance_callback * 4930 __splice_balance_callbacks(struct rq *rq, bool split) 4931 { 4932 struct balance_callback *head = rq->balance_callback; 4933 4934 if (likely(!head)) 4935 return NULL; 4936 4937 lockdep_assert_rq_held(rq); 4938 /* 4939 * Must not take balance_push_callback off the list when 4940 * splice_balance_callbacks() and balance_callbacks() are not 4941 * in the same rq->lock section. 4942 * 4943 * In that case it would be possible for __schedule() to interleave 4944 * and observe the list empty. 4945 */ 4946 if (split && head == &balance_push_callback) 4947 head = NULL; 4948 else 4949 rq->balance_callback = NULL; 4950 4951 return head; 4952 } 4953 4954 struct balance_callback *splice_balance_callbacks(struct rq *rq) 4955 { 4956 return __splice_balance_callbacks(rq, true); 4957 } 4958 4959 static void __balance_callbacks(struct rq *rq) 4960 { 4961 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 4962 } 4963 4964 void balance_callbacks(struct rq *rq, struct balance_callback *head) 4965 { 4966 unsigned long flags; 4967 4968 if (unlikely(head)) { 4969 raw_spin_rq_lock_irqsave(rq, flags); 4970 do_balance_callbacks(rq, head); 4971 raw_spin_rq_unlock_irqrestore(rq, flags); 4972 } 4973 } 4974 4975 static inline void 4976 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4977 { 4978 /* 4979 * Since the runqueue lock will be released by the next 4980 * task (which is an invalid locking op but in the case 4981 * of the scheduler it's an obvious special-case), so we 4982 * do an early lockdep release here: 4983 */ 4984 rq_unpin_lock(rq, rf); 4985 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 4986 #ifdef CONFIG_DEBUG_SPINLOCK 4987 /* this is a valid case when another task releases the spinlock */ 4988 rq_lockp(rq)->owner = next; 4989 #endif 4990 } 4991 4992 static inline void finish_lock_switch(struct rq *rq) 4993 { 4994 /* 4995 * If we are tracking spinlock dependencies then we have to 4996 * fix up the runqueue lock - which gets 'carried over' from 4997 * prev into current: 4998 */ 4999 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5000 __balance_callbacks(rq); 5001 raw_spin_rq_unlock_irq(rq); 5002 } 5003 5004 /* 5005 * NOP if the arch has not defined these: 5006 */ 5007 5008 #ifndef prepare_arch_switch 5009 # define prepare_arch_switch(next) do { } while (0) 5010 #endif 5011 5012 #ifndef finish_arch_post_lock_switch 5013 # define finish_arch_post_lock_switch() do { } while (0) 5014 #endif 5015 5016 static inline void kmap_local_sched_out(void) 5017 { 5018 #ifdef CONFIG_KMAP_LOCAL 5019 if (unlikely(current->kmap_ctrl.idx)) 5020 __kmap_local_sched_out(); 5021 #endif 5022 } 5023 5024 static inline void kmap_local_sched_in(void) 5025 { 5026 #ifdef CONFIG_KMAP_LOCAL 5027 if (unlikely(current->kmap_ctrl.idx)) 5028 __kmap_local_sched_in(); 5029 #endif 5030 } 5031 5032 /** 5033 * prepare_task_switch - prepare to switch tasks 5034 * @rq: the runqueue preparing to switch 5035 * @prev: the current task that is being switched out 5036 * @next: the task we are going to switch to. 5037 * 5038 * This is called with the rq lock held and interrupts off. It must 5039 * be paired with a subsequent finish_task_switch after the context 5040 * switch. 5041 * 5042 * prepare_task_switch sets up locking and calls architecture specific 5043 * hooks. 5044 */ 5045 static inline void 5046 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5047 struct task_struct *next) 5048 { 5049 kcov_prepare_switch(prev); 5050 sched_info_switch(rq, prev, next); 5051 perf_event_task_sched_out(prev, next); 5052 fire_sched_out_preempt_notifiers(prev, next); 5053 kmap_local_sched_out(); 5054 prepare_task(next); 5055 prepare_arch_switch(next); 5056 } 5057 5058 /** 5059 * finish_task_switch - clean up after a task-switch 5060 * @prev: the thread we just switched away from. 5061 * 5062 * finish_task_switch must be called after the context switch, paired 5063 * with a prepare_task_switch call before the context switch. 5064 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5065 * and do any other architecture-specific cleanup actions. 5066 * 5067 * Note that we may have delayed dropping an mm in context_switch(). If 5068 * so, we finish that here outside of the runqueue lock. (Doing it 5069 * with the lock held can cause deadlocks; see schedule() for 5070 * details.) 5071 * 5072 * The context switch have flipped the stack from under us and restored the 5073 * local variables which were saved when this task called schedule() in the 5074 * past. 'prev == current' is still correct but we need to recalculate this_rq 5075 * because prev may have moved to another CPU. 5076 */ 5077 static struct rq *finish_task_switch(struct task_struct *prev) 5078 __releases(rq->lock) 5079 { 5080 struct rq *rq = this_rq(); 5081 struct mm_struct *mm = rq->prev_mm; 5082 unsigned int prev_state; 5083 5084 /* 5085 * The previous task will have left us with a preempt_count of 2 5086 * because it left us after: 5087 * 5088 * schedule() 5089 * preempt_disable(); // 1 5090 * __schedule() 5091 * raw_spin_lock_irq(&rq->lock) // 2 5092 * 5093 * Also, see FORK_PREEMPT_COUNT. 5094 */ 5095 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5096 "corrupted preempt_count: %s/%d/0x%x\n", 5097 current->comm, current->pid, preempt_count())) 5098 preempt_count_set(FORK_PREEMPT_COUNT); 5099 5100 rq->prev_mm = NULL; 5101 5102 /* 5103 * A task struct has one reference for the use as "current". 5104 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5105 * schedule one last time. The schedule call will never return, and 5106 * the scheduled task must drop that reference. 5107 * 5108 * We must observe prev->state before clearing prev->on_cpu (in 5109 * finish_task), otherwise a concurrent wakeup can get prev 5110 * running on another CPU and we could rave with its RUNNING -> DEAD 5111 * transition, resulting in a double drop. 5112 */ 5113 prev_state = READ_ONCE(prev->__state); 5114 vtime_task_switch(prev); 5115 perf_event_task_sched_in(prev, current); 5116 finish_task(prev); 5117 tick_nohz_task_switch(); 5118 finish_lock_switch(rq); 5119 finish_arch_post_lock_switch(); 5120 kcov_finish_switch(current); 5121 /* 5122 * kmap_local_sched_out() is invoked with rq::lock held and 5123 * interrupts disabled. There is no requirement for that, but the 5124 * sched out code does not have an interrupt enabled section. 5125 * Restoring the maps on sched in does not require interrupts being 5126 * disabled either. 5127 */ 5128 kmap_local_sched_in(); 5129 5130 fire_sched_in_preempt_notifiers(current); 5131 /* 5132 * When switching through a kernel thread, the loop in 5133 * membarrier_{private,global}_expedited() may have observed that 5134 * kernel thread and not issued an IPI. It is therefore possible to 5135 * schedule between user->kernel->user threads without passing though 5136 * switch_mm(). Membarrier requires a barrier after storing to 5137 * rq->curr, before returning to userspace, so provide them here: 5138 * 5139 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5140 * provided by mmdrop_lazy_tlb(), 5141 * - a sync_core for SYNC_CORE. 5142 */ 5143 if (mm) { 5144 membarrier_mm_sync_core_before_usermode(mm); 5145 mmdrop_lazy_tlb_sched(mm); 5146 } 5147 5148 if (unlikely(prev_state == TASK_DEAD)) { 5149 if (prev->sched_class->task_dead) 5150 prev->sched_class->task_dead(prev); 5151 5152 /* 5153 * sched_ext_dead() must come before cgroup_task_dead() to 5154 * prevent cgroups from being removed while its member tasks are 5155 * visible to SCX schedulers. 5156 */ 5157 sched_ext_dead(prev); 5158 cgroup_task_dead(prev); 5159 5160 /* Task is done with its stack. */ 5161 put_task_stack(prev); 5162 5163 put_task_struct_rcu_user(prev); 5164 } 5165 5166 return rq; 5167 } 5168 5169 /** 5170 * schedule_tail - first thing a freshly forked thread must call. 5171 * @prev: the thread we just switched away from. 5172 */ 5173 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5174 __releases(rq->lock) 5175 { 5176 /* 5177 * New tasks start with FORK_PREEMPT_COUNT, see there and 5178 * finish_task_switch() for details. 5179 * 5180 * finish_task_switch() will drop rq->lock() and lower preempt_count 5181 * and the preempt_enable() will end up enabling preemption (on 5182 * PREEMPT_COUNT kernels). 5183 */ 5184 5185 finish_task_switch(prev); 5186 /* 5187 * This is a special case: the newly created task has just 5188 * switched the context for the first time. It is returning from 5189 * schedule for the first time in this path. 5190 */ 5191 trace_sched_exit_tp(true); 5192 preempt_enable(); 5193 5194 if (current->set_child_tid) 5195 put_user(task_pid_vnr(current), current->set_child_tid); 5196 5197 calculate_sigpending(); 5198 } 5199 5200 /* 5201 * context_switch - switch to the new MM and the new thread's register state. 5202 */ 5203 static __always_inline struct rq * 5204 context_switch(struct rq *rq, struct task_struct *prev, 5205 struct task_struct *next, struct rq_flags *rf) 5206 { 5207 prepare_task_switch(rq, prev, next); 5208 5209 /* 5210 * For paravirt, this is coupled with an exit in switch_to to 5211 * combine the page table reload and the switch backend into 5212 * one hypercall. 5213 */ 5214 arch_start_context_switch(prev); 5215 5216 /* 5217 * kernel -> kernel lazy + transfer active 5218 * user -> kernel lazy + mmgrab_lazy_tlb() active 5219 * 5220 * kernel -> user switch + mmdrop_lazy_tlb() active 5221 * user -> user switch 5222 */ 5223 if (!next->mm) { // to kernel 5224 enter_lazy_tlb(prev->active_mm, next); 5225 5226 next->active_mm = prev->active_mm; 5227 if (prev->mm) // from user 5228 mmgrab_lazy_tlb(prev->active_mm); 5229 else 5230 prev->active_mm = NULL; 5231 } else { // to user 5232 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5233 /* 5234 * sys_membarrier() requires an smp_mb() between setting 5235 * rq->curr / membarrier_switch_mm() and returning to userspace. 5236 * 5237 * The below provides this either through switch_mm(), or in 5238 * case 'prev->active_mm == next->mm' through 5239 * finish_task_switch()'s mmdrop(). 5240 */ 5241 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5242 lru_gen_use_mm(next->mm); 5243 5244 if (!prev->mm) { // from kernel 5245 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5246 rq->prev_mm = prev->active_mm; 5247 prev->active_mm = NULL; 5248 } 5249 } 5250 5251 mm_cid_switch_to(prev, next); 5252 5253 /* 5254 * Tell rseq that the task was scheduled in. Must be after 5255 * switch_mm_cid() to get the TIF flag set. 5256 */ 5257 rseq_sched_switch_event(next); 5258 5259 prepare_lock_switch(rq, next, rf); 5260 5261 /* Here we just switch the register state and the stack. */ 5262 switch_to(prev, next, prev); 5263 barrier(); 5264 5265 return finish_task_switch(prev); 5266 } 5267 5268 /* 5269 * nr_running and nr_context_switches: 5270 * 5271 * externally visible scheduler statistics: current number of runnable 5272 * threads, total number of context switches performed since bootup. 5273 */ 5274 unsigned int nr_running(void) 5275 { 5276 unsigned int i, sum = 0; 5277 5278 for_each_online_cpu(i) 5279 sum += cpu_rq(i)->nr_running; 5280 5281 return sum; 5282 } 5283 5284 /* 5285 * Check if only the current task is running on the CPU. 5286 * 5287 * Caution: this function does not check that the caller has disabled 5288 * preemption, thus the result might have a time-of-check-to-time-of-use 5289 * race. The caller is responsible to use it correctly, for example: 5290 * 5291 * - from a non-preemptible section (of course) 5292 * 5293 * - from a thread that is bound to a single CPU 5294 * 5295 * - in a loop with very short iterations (e.g. a polling loop) 5296 */ 5297 bool single_task_running(void) 5298 { 5299 return raw_rq()->nr_running == 1; 5300 } 5301 EXPORT_SYMBOL(single_task_running); 5302 5303 unsigned long long nr_context_switches_cpu(int cpu) 5304 { 5305 return cpu_rq(cpu)->nr_switches; 5306 } 5307 5308 unsigned long long nr_context_switches(void) 5309 { 5310 int i; 5311 unsigned long long sum = 0; 5312 5313 for_each_possible_cpu(i) 5314 sum += cpu_rq(i)->nr_switches; 5315 5316 return sum; 5317 } 5318 5319 /* 5320 * Consumers of these two interfaces, like for example the cpuidle menu 5321 * governor, are using nonsensical data. Preferring shallow idle state selection 5322 * for a CPU that has IO-wait which might not even end up running the task when 5323 * it does become runnable. 5324 */ 5325 5326 unsigned int nr_iowait_cpu(int cpu) 5327 { 5328 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5329 } 5330 5331 /* 5332 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5333 * 5334 * The idea behind IO-wait account is to account the idle time that we could 5335 * have spend running if it were not for IO. That is, if we were to improve the 5336 * storage performance, we'd have a proportional reduction in IO-wait time. 5337 * 5338 * This all works nicely on UP, where, when a task blocks on IO, we account 5339 * idle time as IO-wait, because if the storage were faster, it could've been 5340 * running and we'd not be idle. 5341 * 5342 * This has been extended to SMP, by doing the same for each CPU. This however 5343 * is broken. 5344 * 5345 * Imagine for instance the case where two tasks block on one CPU, only the one 5346 * CPU will have IO-wait accounted, while the other has regular idle. Even 5347 * though, if the storage were faster, both could've ran at the same time, 5348 * utilising both CPUs. 5349 * 5350 * This means, that when looking globally, the current IO-wait accounting on 5351 * SMP is a lower bound, by reason of under accounting. 5352 * 5353 * Worse, since the numbers are provided per CPU, they are sometimes 5354 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5355 * associated with any one particular CPU, it can wake to another CPU than it 5356 * blocked on. This means the per CPU IO-wait number is meaningless. 5357 * 5358 * Task CPU affinities can make all that even more 'interesting'. 5359 */ 5360 5361 unsigned int nr_iowait(void) 5362 { 5363 unsigned int i, sum = 0; 5364 5365 for_each_possible_cpu(i) 5366 sum += nr_iowait_cpu(i); 5367 5368 return sum; 5369 } 5370 5371 /* 5372 * sched_exec - execve() is a valuable balancing opportunity, because at 5373 * this point the task has the smallest effective memory and cache footprint. 5374 */ 5375 void sched_exec(void) 5376 { 5377 struct task_struct *p = current; 5378 struct migration_arg arg; 5379 int dest_cpu; 5380 5381 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5382 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5383 if (dest_cpu == smp_processor_id()) 5384 return; 5385 5386 if (unlikely(!cpu_active(dest_cpu))) 5387 return; 5388 5389 arg = (struct migration_arg){ p, dest_cpu }; 5390 } 5391 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5392 } 5393 5394 DEFINE_PER_CPU(struct kernel_stat, kstat); 5395 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5396 5397 EXPORT_PER_CPU_SYMBOL(kstat); 5398 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5399 5400 /* 5401 * The function fair_sched_class.update_curr accesses the struct curr 5402 * and its field curr->exec_start; when called from task_sched_runtime(), 5403 * we observe a high rate of cache misses in practice. 5404 * Prefetching this data results in improved performance. 5405 */ 5406 static inline void prefetch_curr_exec_start(struct task_struct *p) 5407 { 5408 #ifdef CONFIG_FAIR_GROUP_SCHED 5409 struct sched_entity *curr = p->se.cfs_rq->curr; 5410 #else 5411 struct sched_entity *curr = task_rq(p)->cfs.curr; 5412 #endif 5413 prefetch(curr); 5414 prefetch(&curr->exec_start); 5415 } 5416 5417 /* 5418 * Return accounted runtime for the task. 5419 * In case the task is currently running, return the runtime plus current's 5420 * pending runtime that have not been accounted yet. 5421 */ 5422 unsigned long long task_sched_runtime(struct task_struct *p) 5423 { 5424 struct rq_flags rf; 5425 struct rq *rq; 5426 u64 ns; 5427 5428 #ifdef CONFIG_64BIT 5429 /* 5430 * 64-bit doesn't need locks to atomically read a 64-bit value. 5431 * So we have a optimization chance when the task's delta_exec is 0. 5432 * Reading ->on_cpu is racy, but this is OK. 5433 * 5434 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5435 * If we race with it entering CPU, unaccounted time is 0. This is 5436 * indistinguishable from the read occurring a few cycles earlier. 5437 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5438 * been accounted, so we're correct here as well. 5439 */ 5440 if (!p->on_cpu || !task_on_rq_queued(p)) 5441 return p->se.sum_exec_runtime; 5442 #endif 5443 5444 rq = task_rq_lock(p, &rf); 5445 /* 5446 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5447 * project cycles that may never be accounted to this 5448 * thread, breaking clock_gettime(). 5449 */ 5450 if (task_current_donor(rq, p) && task_on_rq_queued(p)) { 5451 prefetch_curr_exec_start(p); 5452 update_rq_clock(rq); 5453 p->sched_class->update_curr(rq); 5454 } 5455 ns = p->se.sum_exec_runtime; 5456 task_rq_unlock(rq, p, &rf); 5457 5458 return ns; 5459 } 5460 5461 static u64 cpu_resched_latency(struct rq *rq) 5462 { 5463 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5464 u64 resched_latency, now = rq_clock(rq); 5465 static bool warned_once; 5466 5467 if (sysctl_resched_latency_warn_once && warned_once) 5468 return 0; 5469 5470 if (!need_resched() || !latency_warn_ms) 5471 return 0; 5472 5473 if (system_state == SYSTEM_BOOTING) 5474 return 0; 5475 5476 if (!rq->last_seen_need_resched_ns) { 5477 rq->last_seen_need_resched_ns = now; 5478 rq->ticks_without_resched = 0; 5479 return 0; 5480 } 5481 5482 rq->ticks_without_resched++; 5483 resched_latency = now - rq->last_seen_need_resched_ns; 5484 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5485 return 0; 5486 5487 warned_once = true; 5488 5489 return resched_latency; 5490 } 5491 5492 static int __init setup_resched_latency_warn_ms(char *str) 5493 { 5494 long val; 5495 5496 if ((kstrtol(str, 0, &val))) { 5497 pr_warn("Unable to set resched_latency_warn_ms\n"); 5498 return 1; 5499 } 5500 5501 sysctl_resched_latency_warn_ms = val; 5502 return 1; 5503 } 5504 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5505 5506 /* 5507 * This function gets called by the timer code, with HZ frequency. 5508 * We call it with interrupts disabled. 5509 */ 5510 void sched_tick(void) 5511 { 5512 int cpu = smp_processor_id(); 5513 struct rq *rq = cpu_rq(cpu); 5514 /* accounting goes to the donor task */ 5515 struct task_struct *donor; 5516 struct rq_flags rf; 5517 unsigned long hw_pressure; 5518 u64 resched_latency; 5519 5520 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5521 arch_scale_freq_tick(); 5522 5523 sched_clock_tick(); 5524 5525 rq_lock(rq, &rf); 5526 donor = rq->donor; 5527 5528 psi_account_irqtime(rq, donor, NULL); 5529 5530 update_rq_clock(rq); 5531 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 5532 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); 5533 5534 if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY)) 5535 resched_curr(rq); 5536 5537 donor->sched_class->task_tick(rq, donor, 0); 5538 if (sched_feat(LATENCY_WARN)) 5539 resched_latency = cpu_resched_latency(rq); 5540 calc_global_load_tick(rq); 5541 sched_core_tick(rq); 5542 scx_tick(rq); 5543 5544 rq_unlock(rq, &rf); 5545 5546 if (sched_feat(LATENCY_WARN) && resched_latency) 5547 resched_latency_warn(cpu, resched_latency); 5548 5549 perf_event_task_tick(); 5550 5551 if (donor->flags & PF_WQ_WORKER) 5552 wq_worker_tick(donor); 5553 5554 if (!scx_switched_all()) { 5555 rq->idle_balance = idle_cpu(cpu); 5556 sched_balance_trigger(rq); 5557 } 5558 } 5559 5560 #ifdef CONFIG_NO_HZ_FULL 5561 5562 struct tick_work { 5563 int cpu; 5564 atomic_t state; 5565 struct delayed_work work; 5566 }; 5567 /* Values for ->state, see diagram below. */ 5568 #define TICK_SCHED_REMOTE_OFFLINE 0 5569 #define TICK_SCHED_REMOTE_OFFLINING 1 5570 #define TICK_SCHED_REMOTE_RUNNING 2 5571 5572 /* 5573 * State diagram for ->state: 5574 * 5575 * 5576 * TICK_SCHED_REMOTE_OFFLINE 5577 * | ^ 5578 * | | 5579 * | | sched_tick_remote() 5580 * | | 5581 * | | 5582 * +--TICK_SCHED_REMOTE_OFFLINING 5583 * | ^ 5584 * | | 5585 * sched_tick_start() | | sched_tick_stop() 5586 * | | 5587 * V | 5588 * TICK_SCHED_REMOTE_RUNNING 5589 * 5590 * 5591 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5592 * and sched_tick_start() are happy to leave the state in RUNNING. 5593 */ 5594 5595 static struct tick_work __percpu *tick_work_cpu; 5596 5597 static void sched_tick_remote(struct work_struct *work) 5598 { 5599 struct delayed_work *dwork = to_delayed_work(work); 5600 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5601 int cpu = twork->cpu; 5602 struct rq *rq = cpu_rq(cpu); 5603 int os; 5604 5605 /* 5606 * Handle the tick only if it appears the remote CPU is running in full 5607 * dynticks mode. The check is racy by nature, but missing a tick or 5608 * having one too much is no big deal because the scheduler tick updates 5609 * statistics and checks timeslices in a time-independent way, regardless 5610 * of when exactly it is running. 5611 */ 5612 if (tick_nohz_tick_stopped_cpu(cpu)) { 5613 guard(rq_lock_irq)(rq); 5614 struct task_struct *curr = rq->curr; 5615 5616 if (cpu_online(cpu)) { 5617 /* 5618 * Since this is a remote tick for full dynticks mode, 5619 * we are always sure that there is no proxy (only a 5620 * single task is running). 5621 */ 5622 WARN_ON_ONCE(rq->curr != rq->donor); 5623 update_rq_clock(rq); 5624 5625 if (!is_idle_task(curr)) { 5626 /* 5627 * Make sure the next tick runs within a 5628 * reasonable amount of time. 5629 */ 5630 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5631 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 30); 5632 } 5633 curr->sched_class->task_tick(rq, curr, 0); 5634 5635 calc_load_nohz_remote(rq); 5636 } 5637 } 5638 5639 /* 5640 * Run the remote tick once per second (1Hz). This arbitrary 5641 * frequency is large enough to avoid overload but short enough 5642 * to keep scheduler internal stats reasonably up to date. But 5643 * first update state to reflect hotplug activity if required. 5644 */ 5645 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5646 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5647 if (os == TICK_SCHED_REMOTE_RUNNING) 5648 queue_delayed_work(system_unbound_wq, dwork, HZ); 5649 } 5650 5651 static void sched_tick_start(int cpu) 5652 { 5653 int os; 5654 struct tick_work *twork; 5655 5656 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5657 return; 5658 5659 WARN_ON_ONCE(!tick_work_cpu); 5660 5661 twork = per_cpu_ptr(tick_work_cpu, cpu); 5662 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5663 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5664 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5665 twork->cpu = cpu; 5666 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5667 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5668 } 5669 } 5670 5671 #ifdef CONFIG_HOTPLUG_CPU 5672 static void sched_tick_stop(int cpu) 5673 { 5674 struct tick_work *twork; 5675 int os; 5676 5677 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5678 return; 5679 5680 WARN_ON_ONCE(!tick_work_cpu); 5681 5682 twork = per_cpu_ptr(tick_work_cpu, cpu); 5683 /* There cannot be competing actions, but don't rely on stop-machine. */ 5684 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5685 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5686 /* Don't cancel, as this would mess up the state machine. */ 5687 } 5688 #endif /* CONFIG_HOTPLUG_CPU */ 5689 5690 int __init sched_tick_offload_init(void) 5691 { 5692 tick_work_cpu = alloc_percpu(struct tick_work); 5693 BUG_ON(!tick_work_cpu); 5694 return 0; 5695 } 5696 5697 #else /* !CONFIG_NO_HZ_FULL: */ 5698 static inline void sched_tick_start(int cpu) { } 5699 static inline void sched_tick_stop(int cpu) { } 5700 #endif /* !CONFIG_NO_HZ_FULL */ 5701 5702 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5703 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5704 /* 5705 * If the value passed in is equal to the current preempt count 5706 * then we just disabled preemption. Start timing the latency. 5707 */ 5708 static inline void preempt_latency_start(int val) 5709 { 5710 if (preempt_count() == val) { 5711 unsigned long ip = get_lock_parent_ip(); 5712 #ifdef CONFIG_DEBUG_PREEMPT 5713 current->preempt_disable_ip = ip; 5714 #endif 5715 trace_preempt_off(CALLER_ADDR0, ip); 5716 } 5717 } 5718 5719 void preempt_count_add(int val) 5720 { 5721 #ifdef CONFIG_DEBUG_PREEMPT 5722 /* 5723 * Underflow? 5724 */ 5725 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5726 return; 5727 #endif 5728 __preempt_count_add(val); 5729 #ifdef CONFIG_DEBUG_PREEMPT 5730 /* 5731 * Spinlock count overflowing soon? 5732 */ 5733 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5734 PREEMPT_MASK - 10); 5735 #endif 5736 preempt_latency_start(val); 5737 } 5738 EXPORT_SYMBOL(preempt_count_add); 5739 NOKPROBE_SYMBOL(preempt_count_add); 5740 5741 /* 5742 * If the value passed in equals to the current preempt count 5743 * then we just enabled preemption. Stop timing the latency. 5744 */ 5745 static inline void preempt_latency_stop(int val) 5746 { 5747 if (preempt_count() == val) 5748 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5749 } 5750 5751 void preempt_count_sub(int val) 5752 { 5753 #ifdef CONFIG_DEBUG_PREEMPT 5754 /* 5755 * Underflow? 5756 */ 5757 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5758 return; 5759 /* 5760 * Is the spinlock portion underflowing? 5761 */ 5762 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5763 !(preempt_count() & PREEMPT_MASK))) 5764 return; 5765 #endif 5766 5767 preempt_latency_stop(val); 5768 __preempt_count_sub(val); 5769 } 5770 EXPORT_SYMBOL(preempt_count_sub); 5771 NOKPROBE_SYMBOL(preempt_count_sub); 5772 5773 #else 5774 static inline void preempt_latency_start(int val) { } 5775 static inline void preempt_latency_stop(int val) { } 5776 #endif 5777 5778 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5779 { 5780 #ifdef CONFIG_DEBUG_PREEMPT 5781 return p->preempt_disable_ip; 5782 #else 5783 return 0; 5784 #endif 5785 } 5786 5787 /* 5788 * Print scheduling while atomic bug: 5789 */ 5790 static noinline void __schedule_bug(struct task_struct *prev) 5791 { 5792 /* Save this before calling printk(), since that will clobber it */ 5793 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5794 5795 if (oops_in_progress) 5796 return; 5797 5798 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5799 prev->comm, prev->pid, preempt_count()); 5800 5801 debug_show_held_locks(prev); 5802 print_modules(); 5803 if (irqs_disabled()) 5804 print_irqtrace_events(prev); 5805 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5806 pr_err("Preemption disabled at:"); 5807 print_ip_sym(KERN_ERR, preempt_disable_ip); 5808 } 5809 check_panic_on_warn("scheduling while atomic"); 5810 5811 dump_stack(); 5812 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5813 } 5814 5815 /* 5816 * Various schedule()-time debugging checks and statistics: 5817 */ 5818 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5819 { 5820 #ifdef CONFIG_SCHED_STACK_END_CHECK 5821 if (task_stack_end_corrupted(prev)) 5822 panic("corrupted stack end detected inside scheduler\n"); 5823 5824 if (task_scs_end_corrupted(prev)) 5825 panic("corrupted shadow stack detected inside scheduler\n"); 5826 #endif 5827 5828 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5829 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5830 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5831 prev->comm, prev->pid, prev->non_block_count); 5832 dump_stack(); 5833 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5834 } 5835 #endif 5836 5837 if (unlikely(in_atomic_preempt_off())) { 5838 __schedule_bug(prev); 5839 preempt_count_set(PREEMPT_DISABLED); 5840 } 5841 rcu_sleep_check(); 5842 WARN_ON_ONCE(ct_state() == CT_STATE_USER); 5843 5844 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5845 5846 schedstat_inc(this_rq()->sched_count); 5847 } 5848 5849 static void prev_balance(struct rq *rq, struct task_struct *prev, 5850 struct rq_flags *rf) 5851 { 5852 const struct sched_class *start_class = prev->sched_class; 5853 const struct sched_class *class; 5854 5855 /* 5856 * We must do the balancing pass before put_prev_task(), such 5857 * that when we release the rq->lock the task is in the same 5858 * state as before we took rq->lock. 5859 * 5860 * We can terminate the balance pass as soon as we know there is 5861 * a runnable task of @class priority or higher. 5862 */ 5863 for_active_class_range(class, start_class, &idle_sched_class) { 5864 if (class->balance && class->balance(rq, prev, rf)) 5865 break; 5866 } 5867 } 5868 5869 /* 5870 * Pick up the highest-prio task: 5871 */ 5872 static inline struct task_struct * 5873 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5874 { 5875 const struct sched_class *class; 5876 struct task_struct *p; 5877 5878 rq->dl_server = NULL; 5879 5880 if (scx_enabled()) 5881 goto restart; 5882 5883 /* 5884 * Optimization: we know that if all tasks are in the fair class we can 5885 * call that function directly, but only if the @prev task wasn't of a 5886 * higher scheduling class, because otherwise those lose the 5887 * opportunity to pull in more work from other CPUs. 5888 */ 5889 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5890 rq->nr_running == rq->cfs.h_nr_queued)) { 5891 5892 p = pick_next_task_fair(rq, prev, rf); 5893 if (unlikely(p == RETRY_TASK)) 5894 goto restart; 5895 5896 /* Assume the next prioritized class is idle_sched_class */ 5897 if (!p) { 5898 p = pick_task_idle(rq, rf); 5899 put_prev_set_next_task(rq, prev, p); 5900 } 5901 5902 return p; 5903 } 5904 5905 restart: 5906 prev_balance(rq, prev, rf); 5907 5908 for_each_active_class(class) { 5909 if (class->pick_next_task) { 5910 p = class->pick_next_task(rq, prev, rf); 5911 if (unlikely(p == RETRY_TASK)) 5912 goto restart; 5913 if (p) 5914 return p; 5915 } else { 5916 p = class->pick_task(rq, rf); 5917 if (unlikely(p == RETRY_TASK)) 5918 goto restart; 5919 if (p) { 5920 put_prev_set_next_task(rq, prev, p); 5921 return p; 5922 } 5923 } 5924 } 5925 5926 BUG(); /* The idle class should always have a runnable task. */ 5927 } 5928 5929 #ifdef CONFIG_SCHED_CORE 5930 static inline bool is_task_rq_idle(struct task_struct *t) 5931 { 5932 return (task_rq(t)->idle == t); 5933 } 5934 5935 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5936 { 5937 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5938 } 5939 5940 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5941 { 5942 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5943 return true; 5944 5945 return a->core_cookie == b->core_cookie; 5946 } 5947 5948 /* 5949 * Careful; this can return RETRY_TASK, it does not include the retry-loop 5950 * itself due to the whole SMT pick retry thing below. 5951 */ 5952 static inline struct task_struct *pick_task(struct rq *rq, struct rq_flags *rf) 5953 { 5954 const struct sched_class *class; 5955 struct task_struct *p; 5956 5957 rq->dl_server = NULL; 5958 5959 for_each_active_class(class) { 5960 p = class->pick_task(rq, rf); 5961 if (p) 5962 return p; 5963 } 5964 5965 BUG(); /* The idle class should always have a runnable task. */ 5966 } 5967 5968 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5969 5970 static void queue_core_balance(struct rq *rq); 5971 5972 static struct task_struct * 5973 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5974 { 5975 struct task_struct *next, *p, *max; 5976 const struct cpumask *smt_mask; 5977 bool fi_before = false; 5978 bool core_clock_updated = (rq == rq->core); 5979 unsigned long cookie; 5980 int i, cpu, occ = 0; 5981 struct rq *rq_i; 5982 bool need_sync; 5983 5984 if (!sched_core_enabled(rq)) 5985 return __pick_next_task(rq, prev, rf); 5986 5987 cpu = cpu_of(rq); 5988 5989 /* Stopper task is switching into idle, no need core-wide selection. */ 5990 if (cpu_is_offline(cpu)) { 5991 /* 5992 * Reset core_pick so that we don't enter the fastpath when 5993 * coming online. core_pick would already be migrated to 5994 * another cpu during offline. 5995 */ 5996 rq->core_pick = NULL; 5997 rq->core_dl_server = NULL; 5998 return __pick_next_task(rq, prev, rf); 5999 } 6000 6001 /* 6002 * If there were no {en,de}queues since we picked (IOW, the task 6003 * pointers are all still valid), and we haven't scheduled the last 6004 * pick yet, do so now. 6005 * 6006 * rq->core_pick can be NULL if no selection was made for a CPU because 6007 * it was either offline or went offline during a sibling's core-wide 6008 * selection. In this case, do a core-wide selection. 6009 */ 6010 if (rq->core->core_pick_seq == rq->core->core_task_seq && 6011 rq->core->core_pick_seq != rq->core_sched_seq && 6012 rq->core_pick) { 6013 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6014 6015 next = rq->core_pick; 6016 rq->dl_server = rq->core_dl_server; 6017 rq->core_pick = NULL; 6018 rq->core_dl_server = NULL; 6019 goto out_set_next; 6020 } 6021 6022 prev_balance(rq, prev, rf); 6023 6024 smt_mask = cpu_smt_mask(cpu); 6025 need_sync = !!rq->core->core_cookie; 6026 6027 /* reset state */ 6028 rq->core->core_cookie = 0UL; 6029 if (rq->core->core_forceidle_count) { 6030 if (!core_clock_updated) { 6031 update_rq_clock(rq->core); 6032 core_clock_updated = true; 6033 } 6034 sched_core_account_forceidle(rq); 6035 /* reset after accounting force idle */ 6036 rq->core->core_forceidle_start = 0; 6037 rq->core->core_forceidle_count = 0; 6038 rq->core->core_forceidle_occupation = 0; 6039 need_sync = true; 6040 fi_before = true; 6041 } 6042 6043 /* 6044 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6045 * 6046 * @task_seq guards the task state ({en,de}queues) 6047 * @pick_seq is the @task_seq we did a selection on 6048 * @sched_seq is the @pick_seq we scheduled 6049 * 6050 * However, preemptions can cause multiple picks on the same task set. 6051 * 'Fix' this by also increasing @task_seq for every pick. 6052 */ 6053 rq->core->core_task_seq++; 6054 6055 /* 6056 * Optimize for common case where this CPU has no cookies 6057 * and there are no cookied tasks running on siblings. 6058 */ 6059 if (!need_sync) { 6060 restart_single: 6061 next = pick_task(rq, rf); 6062 if (unlikely(next == RETRY_TASK)) 6063 goto restart_single; 6064 if (!next->core_cookie) { 6065 rq->core_pick = NULL; 6066 rq->core_dl_server = NULL; 6067 /* 6068 * For robustness, update the min_vruntime_fi for 6069 * unconstrained picks as well. 6070 */ 6071 WARN_ON_ONCE(fi_before); 6072 task_vruntime_update(rq, next, false); 6073 goto out_set_next; 6074 } 6075 } 6076 6077 /* 6078 * For each thread: do the regular task pick and find the max prio task 6079 * amongst them. 6080 * 6081 * Tie-break prio towards the current CPU 6082 */ 6083 restart_multi: 6084 max = NULL; 6085 for_each_cpu_wrap(i, smt_mask, cpu) { 6086 rq_i = cpu_rq(i); 6087 6088 /* 6089 * Current cpu always has its clock updated on entrance to 6090 * pick_next_task(). If the current cpu is not the core, 6091 * the core may also have been updated above. 6092 */ 6093 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6094 update_rq_clock(rq_i); 6095 6096 p = pick_task(rq_i, rf); 6097 if (unlikely(p == RETRY_TASK)) 6098 goto restart_multi; 6099 6100 rq_i->core_pick = p; 6101 rq_i->core_dl_server = rq_i->dl_server; 6102 6103 if (!max || prio_less(max, p, fi_before)) 6104 max = p; 6105 } 6106 6107 cookie = rq->core->core_cookie = max->core_cookie; 6108 6109 /* 6110 * For each thread: try and find a runnable task that matches @max or 6111 * force idle. 6112 */ 6113 for_each_cpu(i, smt_mask) { 6114 rq_i = cpu_rq(i); 6115 p = rq_i->core_pick; 6116 6117 if (!cookie_equals(p, cookie)) { 6118 p = NULL; 6119 if (cookie) 6120 p = sched_core_find(rq_i, cookie); 6121 if (!p) 6122 p = idle_sched_class.pick_task(rq_i, rf); 6123 } 6124 6125 rq_i->core_pick = p; 6126 rq_i->core_dl_server = NULL; 6127 6128 if (p == rq_i->idle) { 6129 if (rq_i->nr_running) { 6130 rq->core->core_forceidle_count++; 6131 if (!fi_before) 6132 rq->core->core_forceidle_seq++; 6133 } 6134 } else { 6135 occ++; 6136 } 6137 } 6138 6139 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6140 rq->core->core_forceidle_start = rq_clock(rq->core); 6141 rq->core->core_forceidle_occupation = occ; 6142 } 6143 6144 rq->core->core_pick_seq = rq->core->core_task_seq; 6145 next = rq->core_pick; 6146 rq->core_sched_seq = rq->core->core_pick_seq; 6147 6148 /* Something should have been selected for current CPU */ 6149 WARN_ON_ONCE(!next); 6150 6151 /* 6152 * Reschedule siblings 6153 * 6154 * NOTE: L1TF -- at this point we're no longer running the old task and 6155 * sending an IPI (below) ensures the sibling will no longer be running 6156 * their task. This ensures there is no inter-sibling overlap between 6157 * non-matching user state. 6158 */ 6159 for_each_cpu(i, smt_mask) { 6160 rq_i = cpu_rq(i); 6161 6162 /* 6163 * An online sibling might have gone offline before a task 6164 * could be picked for it, or it might be offline but later 6165 * happen to come online, but its too late and nothing was 6166 * picked for it. That's Ok - it will pick tasks for itself, 6167 * so ignore it. 6168 */ 6169 if (!rq_i->core_pick) 6170 continue; 6171 6172 /* 6173 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6174 * fi_before fi update? 6175 * 0 0 1 6176 * 0 1 1 6177 * 1 0 1 6178 * 1 1 0 6179 */ 6180 if (!(fi_before && rq->core->core_forceidle_count)) 6181 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6182 6183 rq_i->core_pick->core_occupation = occ; 6184 6185 if (i == cpu) { 6186 rq_i->core_pick = NULL; 6187 rq_i->core_dl_server = NULL; 6188 continue; 6189 } 6190 6191 /* Did we break L1TF mitigation requirements? */ 6192 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6193 6194 if (rq_i->curr == rq_i->core_pick) { 6195 rq_i->core_pick = NULL; 6196 rq_i->core_dl_server = NULL; 6197 continue; 6198 } 6199 6200 resched_curr(rq_i); 6201 } 6202 6203 out_set_next: 6204 put_prev_set_next_task(rq, prev, next); 6205 if (rq->core->core_forceidle_count && next == rq->idle) 6206 queue_core_balance(rq); 6207 6208 return next; 6209 } 6210 6211 static bool try_steal_cookie(int this, int that) 6212 { 6213 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6214 struct task_struct *p; 6215 unsigned long cookie; 6216 bool success = false; 6217 6218 guard(irq)(); 6219 guard(double_rq_lock)(dst, src); 6220 6221 cookie = dst->core->core_cookie; 6222 if (!cookie) 6223 return false; 6224 6225 if (dst->curr != dst->idle) 6226 return false; 6227 6228 p = sched_core_find(src, cookie); 6229 if (!p) 6230 return false; 6231 6232 do { 6233 if (p == src->core_pick || p == src->curr) 6234 goto next; 6235 6236 if (!is_cpu_allowed(p, this)) 6237 goto next; 6238 6239 if (p->core_occupation > dst->idle->core_occupation) 6240 goto next; 6241 /* 6242 * sched_core_find() and sched_core_next() will ensure 6243 * that task @p is not throttled now, we also need to 6244 * check whether the runqueue of the destination CPU is 6245 * being throttled. 6246 */ 6247 if (sched_task_is_throttled(p, this)) 6248 goto next; 6249 6250 move_queued_task_locked(src, dst, p); 6251 resched_curr(dst); 6252 6253 success = true; 6254 break; 6255 6256 next: 6257 p = sched_core_next(p, cookie); 6258 } while (p); 6259 6260 return success; 6261 } 6262 6263 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6264 { 6265 int i; 6266 6267 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6268 if (i == cpu) 6269 continue; 6270 6271 if (need_resched()) 6272 break; 6273 6274 if (try_steal_cookie(cpu, i)) 6275 return true; 6276 } 6277 6278 return false; 6279 } 6280 6281 static void sched_core_balance(struct rq *rq) 6282 { 6283 struct sched_domain *sd; 6284 int cpu = cpu_of(rq); 6285 6286 guard(preempt)(); 6287 guard(rcu)(); 6288 6289 raw_spin_rq_unlock_irq(rq); 6290 for_each_domain(cpu, sd) { 6291 if (need_resched()) 6292 break; 6293 6294 if (steal_cookie_task(cpu, sd)) 6295 break; 6296 } 6297 raw_spin_rq_lock_irq(rq); 6298 } 6299 6300 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6301 6302 static void queue_core_balance(struct rq *rq) 6303 { 6304 if (!sched_core_enabled(rq)) 6305 return; 6306 6307 if (!rq->core->core_cookie) 6308 return; 6309 6310 if (!rq->nr_running) /* not forced idle */ 6311 return; 6312 6313 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6314 } 6315 6316 DEFINE_LOCK_GUARD_1(core_lock, int, 6317 sched_core_lock(*_T->lock, &_T->flags), 6318 sched_core_unlock(*_T->lock, &_T->flags), 6319 unsigned long flags) 6320 6321 static void sched_core_cpu_starting(unsigned int cpu) 6322 { 6323 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6324 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6325 int t; 6326 6327 guard(core_lock)(&cpu); 6328 6329 WARN_ON_ONCE(rq->core != rq); 6330 6331 /* if we're the first, we'll be our own leader */ 6332 if (cpumask_weight(smt_mask) == 1) 6333 return; 6334 6335 /* find the leader */ 6336 for_each_cpu(t, smt_mask) { 6337 if (t == cpu) 6338 continue; 6339 rq = cpu_rq(t); 6340 if (rq->core == rq) { 6341 core_rq = rq; 6342 break; 6343 } 6344 } 6345 6346 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6347 return; 6348 6349 /* install and validate core_rq */ 6350 for_each_cpu(t, smt_mask) { 6351 rq = cpu_rq(t); 6352 6353 if (t == cpu) 6354 rq->core = core_rq; 6355 6356 WARN_ON_ONCE(rq->core != core_rq); 6357 } 6358 } 6359 6360 static void sched_core_cpu_deactivate(unsigned int cpu) 6361 { 6362 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6363 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6364 int t; 6365 6366 guard(core_lock)(&cpu); 6367 6368 /* if we're the last man standing, nothing to do */ 6369 if (cpumask_weight(smt_mask) == 1) { 6370 WARN_ON_ONCE(rq->core != rq); 6371 return; 6372 } 6373 6374 /* if we're not the leader, nothing to do */ 6375 if (rq->core != rq) 6376 return; 6377 6378 /* find a new leader */ 6379 for_each_cpu(t, smt_mask) { 6380 if (t == cpu) 6381 continue; 6382 core_rq = cpu_rq(t); 6383 break; 6384 } 6385 6386 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6387 return; 6388 6389 /* copy the shared state to the new leader */ 6390 core_rq->core_task_seq = rq->core_task_seq; 6391 core_rq->core_pick_seq = rq->core_pick_seq; 6392 core_rq->core_cookie = rq->core_cookie; 6393 core_rq->core_forceidle_count = rq->core_forceidle_count; 6394 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6395 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6396 6397 /* 6398 * Accounting edge for forced idle is handled in pick_next_task(). 6399 * Don't need another one here, since the hotplug thread shouldn't 6400 * have a cookie. 6401 */ 6402 core_rq->core_forceidle_start = 0; 6403 6404 /* install new leader */ 6405 for_each_cpu(t, smt_mask) { 6406 rq = cpu_rq(t); 6407 rq->core = core_rq; 6408 } 6409 } 6410 6411 static inline void sched_core_cpu_dying(unsigned int cpu) 6412 { 6413 struct rq *rq = cpu_rq(cpu); 6414 6415 if (rq->core != rq) 6416 rq->core = rq; 6417 } 6418 6419 #else /* !CONFIG_SCHED_CORE: */ 6420 6421 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6422 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6423 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6424 6425 static struct task_struct * 6426 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6427 { 6428 return __pick_next_task(rq, prev, rf); 6429 } 6430 6431 #endif /* !CONFIG_SCHED_CORE */ 6432 6433 /* 6434 * Constants for the sched_mode argument of __schedule(). 6435 * 6436 * The mode argument allows RT enabled kernels to differentiate a 6437 * preemption from blocking on an 'sleeping' spin/rwlock. 6438 */ 6439 #define SM_IDLE (-1) 6440 #define SM_NONE 0 6441 #define SM_PREEMPT 1 6442 #define SM_RTLOCK_WAIT 2 6443 6444 /* 6445 * Helper function for __schedule() 6446 * 6447 * Tries to deactivate the task, unless the should_block arg 6448 * is false or if a signal is pending. In the case a signal 6449 * is pending, marks the task's __state as RUNNING (and clear 6450 * blocked_on). 6451 */ 6452 static bool try_to_block_task(struct rq *rq, struct task_struct *p, 6453 unsigned long *task_state_p, bool should_block) 6454 { 6455 unsigned long task_state = *task_state_p; 6456 int flags = DEQUEUE_NOCLOCK; 6457 6458 if (signal_pending_state(task_state, p)) { 6459 WRITE_ONCE(p->__state, TASK_RUNNING); 6460 *task_state_p = TASK_RUNNING; 6461 return false; 6462 } 6463 6464 /* 6465 * We check should_block after signal_pending because we 6466 * will want to wake the task in that case. But if 6467 * should_block is false, its likely due to the task being 6468 * blocked on a mutex, and we want to keep it on the runqueue 6469 * to be selectable for proxy-execution. 6470 */ 6471 if (!should_block) 6472 return false; 6473 6474 p->sched_contributes_to_load = 6475 (task_state & TASK_UNINTERRUPTIBLE) && 6476 !(task_state & TASK_NOLOAD) && 6477 !(task_state & TASK_FROZEN); 6478 6479 if (unlikely(is_special_task_state(task_state))) 6480 flags |= DEQUEUE_SPECIAL; 6481 6482 /* 6483 * __schedule() ttwu() 6484 * prev_state = prev->state; if (p->on_rq && ...) 6485 * if (prev_state) goto out; 6486 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6487 * p->state = TASK_WAKING 6488 * 6489 * Where __schedule() and ttwu() have matching control dependencies. 6490 * 6491 * After this, schedule() must not care about p->state any more. 6492 */ 6493 block_task(rq, p, flags); 6494 return true; 6495 } 6496 6497 #ifdef CONFIG_SCHED_PROXY_EXEC 6498 static inline struct task_struct *proxy_resched_idle(struct rq *rq) 6499 { 6500 put_prev_set_next_task(rq, rq->donor, rq->idle); 6501 rq_set_donor(rq, rq->idle); 6502 set_tsk_need_resched(rq->idle); 6503 return rq->idle; 6504 } 6505 6506 static bool __proxy_deactivate(struct rq *rq, struct task_struct *donor) 6507 { 6508 unsigned long state = READ_ONCE(donor->__state); 6509 6510 /* Don't deactivate if the state has been changed to TASK_RUNNING */ 6511 if (state == TASK_RUNNING) 6512 return false; 6513 /* 6514 * Because we got donor from pick_next_task(), it is *crucial* 6515 * that we call proxy_resched_idle() before we deactivate it. 6516 * As once we deactivate donor, donor->on_rq is set to zero, 6517 * which allows ttwu() to immediately try to wake the task on 6518 * another rq. So we cannot use *any* references to donor 6519 * after that point. So things like cfs_rq->curr or rq->donor 6520 * need to be changed from next *before* we deactivate. 6521 */ 6522 proxy_resched_idle(rq); 6523 return try_to_block_task(rq, donor, &state, true); 6524 } 6525 6526 static struct task_struct *proxy_deactivate(struct rq *rq, struct task_struct *donor) 6527 { 6528 if (!__proxy_deactivate(rq, donor)) { 6529 /* 6530 * XXX: For now, if deactivation failed, set donor 6531 * as unblocked, as we aren't doing proxy-migrations 6532 * yet (more logic will be needed then). 6533 */ 6534 donor->blocked_on = NULL; 6535 } 6536 return NULL; 6537 } 6538 6539 /* 6540 * Find runnable lock owner to proxy for mutex blocked donor 6541 * 6542 * Follow the blocked-on relation: 6543 * task->blocked_on -> mutex->owner -> task... 6544 * 6545 * Lock order: 6546 * 6547 * p->pi_lock 6548 * rq->lock 6549 * mutex->wait_lock 6550 * 6551 * Returns the task that is going to be used as execution context (the one 6552 * that is actually going to be run on cpu_of(rq)). 6553 */ 6554 static struct task_struct * 6555 find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf) 6556 { 6557 struct task_struct *owner = NULL; 6558 int this_cpu = cpu_of(rq); 6559 struct task_struct *p; 6560 struct mutex *mutex; 6561 6562 /* Follow blocked_on chain. */ 6563 for (p = donor; task_is_blocked(p); p = owner) { 6564 mutex = p->blocked_on; 6565 /* Something changed in the chain, so pick again */ 6566 if (!mutex) 6567 return NULL; 6568 /* 6569 * By taking mutex->wait_lock we hold off concurrent mutex_unlock() 6570 * and ensure @owner sticks around. 6571 */ 6572 guard(raw_spinlock)(&mutex->wait_lock); 6573 6574 /* Check again that p is blocked with wait_lock held */ 6575 if (mutex != __get_task_blocked_on(p)) { 6576 /* 6577 * Something changed in the blocked_on chain and 6578 * we don't know if only at this level. So, let's 6579 * just bail out completely and let __schedule() 6580 * figure things out (pick_again loop). 6581 */ 6582 return NULL; 6583 } 6584 6585 owner = __mutex_owner(mutex); 6586 if (!owner) { 6587 __clear_task_blocked_on(p, mutex); 6588 return p; 6589 } 6590 6591 if (!READ_ONCE(owner->on_rq) || owner->se.sched_delayed) { 6592 /* XXX Don't handle blocked owners/delayed dequeue yet */ 6593 return proxy_deactivate(rq, donor); 6594 } 6595 6596 if (task_cpu(owner) != this_cpu) { 6597 /* XXX Don't handle migrations yet */ 6598 return proxy_deactivate(rq, donor); 6599 } 6600 6601 if (task_on_rq_migrating(owner)) { 6602 /* 6603 * One of the chain of mutex owners is currently migrating to this 6604 * CPU, but has not yet been enqueued because we are holding the 6605 * rq lock. As a simple solution, just schedule rq->idle to give 6606 * the migration a chance to complete. Much like the migrate_task 6607 * case we should end up back in find_proxy_task(), this time 6608 * hopefully with all relevant tasks already enqueued. 6609 */ 6610 return proxy_resched_idle(rq); 6611 } 6612 6613 /* 6614 * Its possible to race where after we check owner->on_rq 6615 * but before we check (owner_cpu != this_cpu) that the 6616 * task on another cpu was migrated back to this cpu. In 6617 * that case it could slip by our checks. So double check 6618 * we are still on this cpu and not migrating. If we get 6619 * inconsistent results, try again. 6620 */ 6621 if (!task_on_rq_queued(owner) || task_cpu(owner) != this_cpu) 6622 return NULL; 6623 6624 if (owner == p) { 6625 /* 6626 * It's possible we interleave with mutex_unlock like: 6627 * 6628 * lock(&rq->lock); 6629 * find_proxy_task() 6630 * mutex_unlock() 6631 * lock(&wait_lock); 6632 * donor(owner) = current->blocked_donor; 6633 * unlock(&wait_lock); 6634 * 6635 * wake_up_q(); 6636 * ... 6637 * ttwu_runnable() 6638 * __task_rq_lock() 6639 * lock(&wait_lock); 6640 * owner == p 6641 * 6642 * Which leaves us to finish the ttwu_runnable() and make it go. 6643 * 6644 * So schedule rq->idle so that ttwu_runnable() can get the rq 6645 * lock and mark owner as running. 6646 */ 6647 return proxy_resched_idle(rq); 6648 } 6649 /* 6650 * OK, now we're absolutely sure @owner is on this 6651 * rq, therefore holding @rq->lock is sufficient to 6652 * guarantee its existence, as per ttwu_remote(). 6653 */ 6654 } 6655 6656 WARN_ON_ONCE(owner && !owner->on_rq); 6657 return owner; 6658 } 6659 #else /* SCHED_PROXY_EXEC */ 6660 static struct task_struct * 6661 find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf) 6662 { 6663 WARN_ONCE(1, "This should never be called in the !SCHED_PROXY_EXEC case\n"); 6664 return donor; 6665 } 6666 #endif /* SCHED_PROXY_EXEC */ 6667 6668 static inline void proxy_tag_curr(struct rq *rq, struct task_struct *owner) 6669 { 6670 if (!sched_proxy_exec()) 6671 return; 6672 /* 6673 * pick_next_task() calls set_next_task() on the chosen task 6674 * at some point, which ensures it is not push/pullable. 6675 * However, the chosen/donor task *and* the mutex owner form an 6676 * atomic pair wrt push/pull. 6677 * 6678 * Make sure owner we run is not pushable. Unfortunately we can 6679 * only deal with that by means of a dequeue/enqueue cycle. :-/ 6680 */ 6681 dequeue_task(rq, owner, DEQUEUE_NOCLOCK | DEQUEUE_SAVE); 6682 enqueue_task(rq, owner, ENQUEUE_NOCLOCK | ENQUEUE_RESTORE); 6683 } 6684 6685 /* 6686 * __schedule() is the main scheduler function. 6687 * 6688 * The main means of driving the scheduler and thus entering this function are: 6689 * 6690 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6691 * 6692 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6693 * paths. For example, see arch/x86/entry_64.S. 6694 * 6695 * To drive preemption between tasks, the scheduler sets the flag in timer 6696 * interrupt handler sched_tick(). 6697 * 6698 * 3. Wakeups don't really cause entry into schedule(). They add a 6699 * task to the run-queue and that's it. 6700 * 6701 * Now, if the new task added to the run-queue preempts the current 6702 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6703 * called on the nearest possible occasion: 6704 * 6705 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6706 * 6707 * - in syscall or exception context, at the next outmost 6708 * preempt_enable(). (this might be as soon as the wake_up()'s 6709 * spin_unlock()!) 6710 * 6711 * - in IRQ context, return from interrupt-handler to 6712 * preemptible context 6713 * 6714 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6715 * then at the next: 6716 * 6717 * - cond_resched() call 6718 * - explicit schedule() call 6719 * - return from syscall or exception to user-space 6720 * - return from interrupt-handler to user-space 6721 * 6722 * WARNING: must be called with preemption disabled! 6723 */ 6724 static void __sched notrace __schedule(int sched_mode) 6725 { 6726 struct task_struct *prev, *next; 6727 /* 6728 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted 6729 * as a preemption by schedule_debug() and RCU. 6730 */ 6731 bool preempt = sched_mode > SM_NONE; 6732 bool is_switch = false; 6733 unsigned long *switch_count; 6734 unsigned long prev_state; 6735 struct rq_flags rf; 6736 struct rq *rq; 6737 int cpu; 6738 6739 /* Trace preemptions consistently with task switches */ 6740 trace_sched_entry_tp(sched_mode == SM_PREEMPT); 6741 6742 cpu = smp_processor_id(); 6743 rq = cpu_rq(cpu); 6744 prev = rq->curr; 6745 6746 schedule_debug(prev, preempt); 6747 6748 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6749 hrtick_clear(rq); 6750 6751 klp_sched_try_switch(prev); 6752 6753 local_irq_disable(); 6754 rcu_note_context_switch(preempt); 6755 migrate_disable_switch(rq, prev); 6756 6757 /* 6758 * Make sure that signal_pending_state()->signal_pending() below 6759 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6760 * done by the caller to avoid the race with signal_wake_up(): 6761 * 6762 * __set_current_state(@state) signal_wake_up() 6763 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6764 * wake_up_state(p, state) 6765 * LOCK rq->lock LOCK p->pi_state 6766 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6767 * if (signal_pending_state()) if (p->state & @state) 6768 * 6769 * Also, the membarrier system call requires a full memory barrier 6770 * after coming from user-space, before storing to rq->curr; this 6771 * barrier matches a full barrier in the proximity of the membarrier 6772 * system call exit. 6773 */ 6774 rq_lock(rq, &rf); 6775 smp_mb__after_spinlock(); 6776 6777 /* Promote REQ to ACT */ 6778 rq->clock_update_flags <<= 1; 6779 update_rq_clock(rq); 6780 rq->clock_update_flags = RQCF_UPDATED; 6781 6782 switch_count = &prev->nivcsw; 6783 6784 /* Task state changes only considers SM_PREEMPT as preemption */ 6785 preempt = sched_mode == SM_PREEMPT; 6786 6787 /* 6788 * We must load prev->state once (task_struct::state is volatile), such 6789 * that we form a control dependency vs deactivate_task() below. 6790 */ 6791 prev_state = READ_ONCE(prev->__state); 6792 if (sched_mode == SM_IDLE) { 6793 /* SCX must consult the BPF scheduler to tell if rq is empty */ 6794 if (!rq->nr_running && !scx_enabled()) { 6795 next = prev; 6796 goto picked; 6797 } 6798 } else if (!preempt && prev_state) { 6799 /* 6800 * We pass task_is_blocked() as the should_block arg 6801 * in order to keep mutex-blocked tasks on the runqueue 6802 * for slection with proxy-exec (without proxy-exec 6803 * task_is_blocked() will always be false). 6804 */ 6805 try_to_block_task(rq, prev, &prev_state, 6806 !task_is_blocked(prev)); 6807 switch_count = &prev->nvcsw; 6808 } 6809 6810 pick_again: 6811 next = pick_next_task(rq, rq->donor, &rf); 6812 rq_set_donor(rq, next); 6813 rq->next_class = next->sched_class; 6814 if (unlikely(task_is_blocked(next))) { 6815 next = find_proxy_task(rq, next, &rf); 6816 if (!next) 6817 goto pick_again; 6818 if (next == rq->idle) 6819 goto keep_resched; 6820 } 6821 picked: 6822 clear_tsk_need_resched(prev); 6823 clear_preempt_need_resched(); 6824 keep_resched: 6825 rq->last_seen_need_resched_ns = 0; 6826 6827 is_switch = prev != next; 6828 if (likely(is_switch)) { 6829 rq->nr_switches++; 6830 /* 6831 * RCU users of rcu_dereference(rq->curr) may not see 6832 * changes to task_struct made by pick_next_task(). 6833 */ 6834 RCU_INIT_POINTER(rq->curr, next); 6835 6836 if (!task_current_donor(rq, next)) 6837 proxy_tag_curr(rq, next); 6838 6839 /* 6840 * The membarrier system call requires each architecture 6841 * to have a full memory barrier after updating 6842 * rq->curr, before returning to user-space. 6843 * 6844 * Here are the schemes providing that barrier on the 6845 * various architectures: 6846 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, 6847 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() 6848 * on PowerPC and on RISC-V. 6849 * - finish_lock_switch() for weakly-ordered 6850 * architectures where spin_unlock is a full barrier, 6851 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6852 * is a RELEASE barrier), 6853 * 6854 * The barrier matches a full barrier in the proximity of 6855 * the membarrier system call entry. 6856 * 6857 * On RISC-V, this barrier pairing is also needed for the 6858 * SYNC_CORE command when switching between processes, cf. 6859 * the inline comments in membarrier_arch_switch_mm(). 6860 */ 6861 ++*switch_count; 6862 6863 psi_account_irqtime(rq, prev, next); 6864 psi_sched_switch(prev, next, !task_on_rq_queued(prev) || 6865 prev->se.sched_delayed); 6866 6867 trace_sched_switch(preempt, prev, next, prev_state); 6868 6869 /* Also unlocks the rq: */ 6870 rq = context_switch(rq, prev, next, &rf); 6871 } else { 6872 /* In case next was already curr but just got blocked_donor */ 6873 if (!task_current_donor(rq, next)) 6874 proxy_tag_curr(rq, next); 6875 6876 rq_unpin_lock(rq, &rf); 6877 __balance_callbacks(rq); 6878 raw_spin_rq_unlock_irq(rq); 6879 } 6880 trace_sched_exit_tp(is_switch); 6881 } 6882 6883 void __noreturn do_task_dead(void) 6884 { 6885 /* Causes final put_task_struct in finish_task_switch(): */ 6886 set_special_state(TASK_DEAD); 6887 6888 /* Tell freezer to ignore us: */ 6889 current->flags |= PF_NOFREEZE; 6890 6891 __schedule(SM_NONE); 6892 BUG(); 6893 6894 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6895 for (;;) 6896 cpu_relax(); 6897 } 6898 6899 static inline void sched_submit_work(struct task_struct *tsk) 6900 { 6901 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6902 unsigned int task_flags; 6903 6904 /* 6905 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6906 * will use a blocking primitive -- which would lead to recursion. 6907 */ 6908 lock_map_acquire_try(&sched_map); 6909 6910 task_flags = tsk->flags; 6911 /* 6912 * If a worker goes to sleep, notify and ask workqueue whether it 6913 * wants to wake up a task to maintain concurrency. 6914 */ 6915 if (task_flags & PF_WQ_WORKER) 6916 wq_worker_sleeping(tsk); 6917 else if (task_flags & PF_IO_WORKER) 6918 io_wq_worker_sleeping(tsk); 6919 6920 /* 6921 * spinlock and rwlock must not flush block requests. This will 6922 * deadlock if the callback attempts to acquire a lock which is 6923 * already acquired. 6924 */ 6925 WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT); 6926 6927 /* 6928 * If we are going to sleep and we have plugged IO queued, 6929 * make sure to submit it to avoid deadlocks. 6930 */ 6931 blk_flush_plug(tsk->plug, true); 6932 6933 lock_map_release(&sched_map); 6934 } 6935 6936 static void sched_update_worker(struct task_struct *tsk) 6937 { 6938 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { 6939 if (tsk->flags & PF_BLOCK_TS) 6940 blk_plug_invalidate_ts(tsk); 6941 if (tsk->flags & PF_WQ_WORKER) 6942 wq_worker_running(tsk); 6943 else if (tsk->flags & PF_IO_WORKER) 6944 io_wq_worker_running(tsk); 6945 } 6946 } 6947 6948 static __always_inline void __schedule_loop(int sched_mode) 6949 { 6950 do { 6951 preempt_disable(); 6952 __schedule(sched_mode); 6953 sched_preempt_enable_no_resched(); 6954 } while (need_resched()); 6955 } 6956 6957 asmlinkage __visible void __sched schedule(void) 6958 { 6959 struct task_struct *tsk = current; 6960 6961 #ifdef CONFIG_RT_MUTEXES 6962 lockdep_assert(!tsk->sched_rt_mutex); 6963 #endif 6964 6965 if (!task_is_running(tsk)) 6966 sched_submit_work(tsk); 6967 __schedule_loop(SM_NONE); 6968 sched_update_worker(tsk); 6969 } 6970 EXPORT_SYMBOL(schedule); 6971 6972 /* 6973 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6974 * state (have scheduled out non-voluntarily) by making sure that all 6975 * tasks have either left the run queue or have gone into user space. 6976 * As idle tasks do not do either, they must not ever be preempted 6977 * (schedule out non-voluntarily). 6978 * 6979 * schedule_idle() is similar to schedule_preempt_disable() except that it 6980 * never enables preemption because it does not call sched_submit_work(). 6981 */ 6982 void __sched schedule_idle(void) 6983 { 6984 /* 6985 * As this skips calling sched_submit_work(), which the idle task does 6986 * regardless because that function is a NOP when the task is in a 6987 * TASK_RUNNING state, make sure this isn't used someplace that the 6988 * current task can be in any other state. Note, idle is always in the 6989 * TASK_RUNNING state. 6990 */ 6991 WARN_ON_ONCE(current->__state); 6992 do { 6993 __schedule(SM_IDLE); 6994 } while (need_resched()); 6995 } 6996 6997 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6998 asmlinkage __visible void __sched schedule_user(void) 6999 { 7000 /* 7001 * If we come here after a random call to set_need_resched(), 7002 * or we have been woken up remotely but the IPI has not yet arrived, 7003 * we haven't yet exited the RCU idle mode. Do it here manually until 7004 * we find a better solution. 7005 * 7006 * NB: There are buggy callers of this function. Ideally we 7007 * should warn if prev_state != CT_STATE_USER, but that will trigger 7008 * too frequently to make sense yet. 7009 */ 7010 enum ctx_state prev_state = exception_enter(); 7011 schedule(); 7012 exception_exit(prev_state); 7013 } 7014 #endif 7015 7016 /** 7017 * schedule_preempt_disabled - called with preemption disabled 7018 * 7019 * Returns with preemption disabled. Note: preempt_count must be 1 7020 */ 7021 void __sched schedule_preempt_disabled(void) 7022 { 7023 sched_preempt_enable_no_resched(); 7024 schedule(); 7025 preempt_disable(); 7026 } 7027 7028 #ifdef CONFIG_PREEMPT_RT 7029 void __sched notrace schedule_rtlock(void) 7030 { 7031 __schedule_loop(SM_RTLOCK_WAIT); 7032 } 7033 NOKPROBE_SYMBOL(schedule_rtlock); 7034 #endif 7035 7036 static void __sched notrace preempt_schedule_common(void) 7037 { 7038 do { 7039 /* 7040 * Because the function tracer can trace preempt_count_sub() 7041 * and it also uses preempt_enable/disable_notrace(), if 7042 * NEED_RESCHED is set, the preempt_enable_notrace() called 7043 * by the function tracer will call this function again and 7044 * cause infinite recursion. 7045 * 7046 * Preemption must be disabled here before the function 7047 * tracer can trace. Break up preempt_disable() into two 7048 * calls. One to disable preemption without fear of being 7049 * traced. The other to still record the preemption latency, 7050 * which can also be traced by the function tracer. 7051 */ 7052 preempt_disable_notrace(); 7053 preempt_latency_start(1); 7054 __schedule(SM_PREEMPT); 7055 preempt_latency_stop(1); 7056 preempt_enable_no_resched_notrace(); 7057 7058 /* 7059 * Check again in case we missed a preemption opportunity 7060 * between schedule and now. 7061 */ 7062 } while (need_resched()); 7063 } 7064 7065 #ifdef CONFIG_PREEMPTION 7066 /* 7067 * This is the entry point to schedule() from in-kernel preemption 7068 * off of preempt_enable. 7069 */ 7070 asmlinkage __visible void __sched notrace preempt_schedule(void) 7071 { 7072 /* 7073 * If there is a non-zero preempt_count or interrupts are disabled, 7074 * we do not want to preempt the current task. Just return.. 7075 */ 7076 if (likely(!preemptible())) 7077 return; 7078 preempt_schedule_common(); 7079 } 7080 NOKPROBE_SYMBOL(preempt_schedule); 7081 EXPORT_SYMBOL(preempt_schedule); 7082 7083 #ifdef CONFIG_PREEMPT_DYNAMIC 7084 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7085 # ifndef preempt_schedule_dynamic_enabled 7086 # define preempt_schedule_dynamic_enabled preempt_schedule 7087 # define preempt_schedule_dynamic_disabled NULL 7088 # endif 7089 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 7090 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 7091 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7092 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 7093 void __sched notrace dynamic_preempt_schedule(void) 7094 { 7095 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 7096 return; 7097 preempt_schedule(); 7098 } 7099 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 7100 EXPORT_SYMBOL(dynamic_preempt_schedule); 7101 # endif 7102 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7103 7104 /** 7105 * preempt_schedule_notrace - preempt_schedule called by tracing 7106 * 7107 * The tracing infrastructure uses preempt_enable_notrace to prevent 7108 * recursion and tracing preempt enabling caused by the tracing 7109 * infrastructure itself. But as tracing can happen in areas coming 7110 * from userspace or just about to enter userspace, a preempt enable 7111 * can occur before user_exit() is called. This will cause the scheduler 7112 * to be called when the system is still in usermode. 7113 * 7114 * To prevent this, the preempt_enable_notrace will use this function 7115 * instead of preempt_schedule() to exit user context if needed before 7116 * calling the scheduler. 7117 */ 7118 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 7119 { 7120 enum ctx_state prev_ctx; 7121 7122 if (likely(!preemptible())) 7123 return; 7124 7125 do { 7126 /* 7127 * Because the function tracer can trace preempt_count_sub() 7128 * and it also uses preempt_enable/disable_notrace(), if 7129 * NEED_RESCHED is set, the preempt_enable_notrace() called 7130 * by the function tracer will call this function again and 7131 * cause infinite recursion. 7132 * 7133 * Preemption must be disabled here before the function 7134 * tracer can trace. Break up preempt_disable() into two 7135 * calls. One to disable preemption without fear of being 7136 * traced. The other to still record the preemption latency, 7137 * which can also be traced by the function tracer. 7138 */ 7139 preempt_disable_notrace(); 7140 preempt_latency_start(1); 7141 /* 7142 * Needs preempt disabled in case user_exit() is traced 7143 * and the tracer calls preempt_enable_notrace() causing 7144 * an infinite recursion. 7145 */ 7146 prev_ctx = exception_enter(); 7147 __schedule(SM_PREEMPT); 7148 exception_exit(prev_ctx); 7149 7150 preempt_latency_stop(1); 7151 preempt_enable_no_resched_notrace(); 7152 } while (need_resched()); 7153 } 7154 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 7155 7156 #ifdef CONFIG_PREEMPT_DYNAMIC 7157 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7158 # ifndef preempt_schedule_notrace_dynamic_enabled 7159 # define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 7160 # define preempt_schedule_notrace_dynamic_disabled NULL 7161 # endif 7162 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 7163 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 7164 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7165 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 7166 void __sched notrace dynamic_preempt_schedule_notrace(void) 7167 { 7168 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 7169 return; 7170 preempt_schedule_notrace(); 7171 } 7172 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 7173 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 7174 # endif 7175 #endif 7176 7177 #endif /* CONFIG_PREEMPTION */ 7178 7179 /* 7180 * This is the entry point to schedule() from kernel preemption 7181 * off of IRQ context. 7182 * Note, that this is called and return with IRQs disabled. This will 7183 * protect us against recursive calling from IRQ contexts. 7184 */ 7185 asmlinkage __visible void __sched preempt_schedule_irq(void) 7186 { 7187 enum ctx_state prev_state; 7188 7189 /* Catch callers which need to be fixed */ 7190 BUG_ON(preempt_count() || !irqs_disabled()); 7191 7192 prev_state = exception_enter(); 7193 7194 do { 7195 preempt_disable(); 7196 local_irq_enable(); 7197 __schedule(SM_PREEMPT); 7198 local_irq_disable(); 7199 sched_preempt_enable_no_resched(); 7200 } while (need_resched()); 7201 7202 exception_exit(prev_state); 7203 } 7204 7205 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 7206 void *key) 7207 { 7208 WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 7209 return try_to_wake_up(curr->private, mode, wake_flags); 7210 } 7211 EXPORT_SYMBOL(default_wake_function); 7212 7213 const struct sched_class *__setscheduler_class(int policy, int prio) 7214 { 7215 if (dl_prio(prio)) 7216 return &dl_sched_class; 7217 7218 if (rt_prio(prio)) 7219 return &rt_sched_class; 7220 7221 #ifdef CONFIG_SCHED_CLASS_EXT 7222 if (task_should_scx(policy)) 7223 return &ext_sched_class; 7224 #endif 7225 7226 return &fair_sched_class; 7227 } 7228 7229 #ifdef CONFIG_RT_MUTEXES 7230 7231 /* 7232 * Would be more useful with typeof()/auto_type but they don't mix with 7233 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 7234 * name such that if someone were to implement this function we get to compare 7235 * notes. 7236 */ 7237 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 7238 7239 void rt_mutex_pre_schedule(void) 7240 { 7241 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 7242 sched_submit_work(current); 7243 } 7244 7245 void rt_mutex_schedule(void) 7246 { 7247 lockdep_assert(current->sched_rt_mutex); 7248 __schedule_loop(SM_NONE); 7249 } 7250 7251 void rt_mutex_post_schedule(void) 7252 { 7253 sched_update_worker(current); 7254 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 7255 } 7256 7257 /* 7258 * rt_mutex_setprio - set the current priority of a task 7259 * @p: task to boost 7260 * @pi_task: donor task 7261 * 7262 * This function changes the 'effective' priority of a task. It does 7263 * not touch ->normal_prio like __setscheduler(). 7264 * 7265 * Used by the rt_mutex code to implement priority inheritance 7266 * logic. Call site only calls if the priority of the task changed. 7267 */ 7268 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 7269 { 7270 int prio, oldprio, queue_flag = 7271 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7272 const struct sched_class *prev_class, *next_class; 7273 struct rq_flags rf; 7274 struct rq *rq; 7275 7276 /* XXX used to be waiter->prio, not waiter->task->prio */ 7277 prio = __rt_effective_prio(pi_task, p->normal_prio); 7278 7279 /* 7280 * If nothing changed; bail early. 7281 */ 7282 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7283 return; 7284 7285 rq = __task_rq_lock(p, &rf); 7286 update_rq_clock(rq); 7287 /* 7288 * Set under pi_lock && rq->lock, such that the value can be used under 7289 * either lock. 7290 * 7291 * Note that there is loads of tricky to make this pointer cache work 7292 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7293 * ensure a task is de-boosted (pi_task is set to NULL) before the 7294 * task is allowed to run again (and can exit). This ensures the pointer 7295 * points to a blocked task -- which guarantees the task is present. 7296 */ 7297 p->pi_top_task = pi_task; 7298 7299 /* 7300 * For FIFO/RR we only need to set prio, if that matches we're done. 7301 */ 7302 if (prio == p->prio && !dl_prio(prio)) 7303 goto out_unlock; 7304 7305 /* 7306 * Idle task boosting is a no-no in general. There is one 7307 * exception, when PREEMPT_RT and NOHZ is active: 7308 * 7309 * The idle task calls get_next_timer_interrupt() and holds 7310 * the timer wheel base->lock on the CPU and another CPU wants 7311 * to access the timer (probably to cancel it). We can safely 7312 * ignore the boosting request, as the idle CPU runs this code 7313 * with interrupts disabled and will complete the lock 7314 * protected section without being interrupted. So there is no 7315 * real need to boost. 7316 */ 7317 if (unlikely(p == rq->idle)) { 7318 WARN_ON(p != rq->curr); 7319 WARN_ON(p->pi_blocked_on); 7320 goto out_unlock; 7321 } 7322 7323 trace_sched_pi_setprio(p, pi_task); 7324 oldprio = p->prio; 7325 7326 if (oldprio == prio) 7327 queue_flag &= ~DEQUEUE_MOVE; 7328 7329 prev_class = p->sched_class; 7330 next_class = __setscheduler_class(p->policy, prio); 7331 7332 if (prev_class != next_class) 7333 queue_flag |= DEQUEUE_CLASS; 7334 7335 scoped_guard (sched_change, p, queue_flag) { 7336 /* 7337 * Boosting condition are: 7338 * 1. -rt task is running and holds mutex A 7339 * --> -dl task blocks on mutex A 7340 * 7341 * 2. -dl task is running and holds mutex A 7342 * --> -dl task blocks on mutex A and could preempt the 7343 * running task 7344 */ 7345 if (dl_prio(prio)) { 7346 if (!dl_prio(p->normal_prio) || 7347 (pi_task && dl_prio(pi_task->prio) && 7348 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7349 p->dl.pi_se = pi_task->dl.pi_se; 7350 scope->flags |= ENQUEUE_REPLENISH; 7351 } else { 7352 p->dl.pi_se = &p->dl; 7353 } 7354 } else if (rt_prio(prio)) { 7355 if (dl_prio(oldprio)) 7356 p->dl.pi_se = &p->dl; 7357 if (oldprio < prio) 7358 scope->flags |= ENQUEUE_HEAD; 7359 } else { 7360 if (dl_prio(oldprio)) 7361 p->dl.pi_se = &p->dl; 7362 if (rt_prio(oldprio)) 7363 p->rt.timeout = 0; 7364 } 7365 7366 p->sched_class = next_class; 7367 p->prio = prio; 7368 } 7369 out_unlock: 7370 /* Caller holds task_struct::pi_lock, IRQs are still disabled */ 7371 7372 rq_unpin_lock(rq, &rf); 7373 __balance_callbacks(rq); 7374 rq_repin_lock(rq, &rf); 7375 __task_rq_unlock(rq, p, &rf); 7376 } 7377 #endif /* CONFIG_RT_MUTEXES */ 7378 7379 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7380 int __sched __cond_resched(void) 7381 { 7382 if (should_resched(0) && !irqs_disabled()) { 7383 preempt_schedule_common(); 7384 return 1; 7385 } 7386 /* 7387 * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick 7388 * whether the current CPU is in an RCU read-side critical section, 7389 * so the tick can report quiescent states even for CPUs looping 7390 * in kernel context. In contrast, in non-preemptible kernels, 7391 * RCU readers leave no in-memory hints, which means that CPU-bound 7392 * processes executing in kernel context might never report an 7393 * RCU quiescent state. Therefore, the following code causes 7394 * cond_resched() to report a quiescent state, but only when RCU 7395 * is in urgent need of one. 7396 * A third case, preemptible, but non-PREEMPT_RCU provides for 7397 * urgently needed quiescent states via rcu_flavor_sched_clock_irq(). 7398 */ 7399 #ifndef CONFIG_PREEMPT_RCU 7400 rcu_all_qs(); 7401 #endif 7402 return 0; 7403 } 7404 EXPORT_SYMBOL(__cond_resched); 7405 #endif 7406 7407 #ifdef CONFIG_PREEMPT_DYNAMIC 7408 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7409 # define cond_resched_dynamic_enabled __cond_resched 7410 # define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 7411 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7412 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7413 7414 # define might_resched_dynamic_enabled __cond_resched 7415 # define might_resched_dynamic_disabled ((void *)&__static_call_return0) 7416 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7417 EXPORT_STATIC_CALL_TRAMP(might_resched); 7418 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7419 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 7420 int __sched dynamic_cond_resched(void) 7421 { 7422 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 7423 return 0; 7424 return __cond_resched(); 7425 } 7426 EXPORT_SYMBOL(dynamic_cond_resched); 7427 7428 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 7429 int __sched dynamic_might_resched(void) 7430 { 7431 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 7432 return 0; 7433 return __cond_resched(); 7434 } 7435 EXPORT_SYMBOL(dynamic_might_resched); 7436 # endif 7437 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7438 7439 /* 7440 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7441 * call schedule, and on return reacquire the lock. 7442 * 7443 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7444 * operations here to prevent schedule() from being called twice (once via 7445 * spin_unlock(), once by hand). 7446 */ 7447 int __cond_resched_lock(spinlock_t *lock) 7448 { 7449 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7450 int ret = 0; 7451 7452 lockdep_assert_held(lock); 7453 7454 if (spin_needbreak(lock) || resched) { 7455 spin_unlock(lock); 7456 if (!_cond_resched()) 7457 cpu_relax(); 7458 ret = 1; 7459 spin_lock(lock); 7460 } 7461 return ret; 7462 } 7463 EXPORT_SYMBOL(__cond_resched_lock); 7464 7465 int __cond_resched_rwlock_read(rwlock_t *lock) 7466 { 7467 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7468 int ret = 0; 7469 7470 lockdep_assert_held_read(lock); 7471 7472 if (rwlock_needbreak(lock) || resched) { 7473 read_unlock(lock); 7474 if (!_cond_resched()) 7475 cpu_relax(); 7476 ret = 1; 7477 read_lock(lock); 7478 } 7479 return ret; 7480 } 7481 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7482 7483 int __cond_resched_rwlock_write(rwlock_t *lock) 7484 { 7485 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7486 int ret = 0; 7487 7488 lockdep_assert_held_write(lock); 7489 7490 if (rwlock_needbreak(lock) || resched) { 7491 write_unlock(lock); 7492 if (!_cond_resched()) 7493 cpu_relax(); 7494 ret = 1; 7495 write_lock(lock); 7496 } 7497 return ret; 7498 } 7499 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7500 7501 #ifdef CONFIG_PREEMPT_DYNAMIC 7502 7503 # ifdef CONFIG_GENERIC_IRQ_ENTRY 7504 # include <linux/irq-entry-common.h> 7505 # endif 7506 7507 /* 7508 * SC:cond_resched 7509 * SC:might_resched 7510 * SC:preempt_schedule 7511 * SC:preempt_schedule_notrace 7512 * SC:irqentry_exit_cond_resched 7513 * 7514 * 7515 * NONE: 7516 * cond_resched <- __cond_resched 7517 * might_resched <- RET0 7518 * preempt_schedule <- NOP 7519 * preempt_schedule_notrace <- NOP 7520 * irqentry_exit_cond_resched <- NOP 7521 * dynamic_preempt_lazy <- false 7522 * 7523 * VOLUNTARY: 7524 * cond_resched <- __cond_resched 7525 * might_resched <- __cond_resched 7526 * preempt_schedule <- NOP 7527 * preempt_schedule_notrace <- NOP 7528 * irqentry_exit_cond_resched <- NOP 7529 * dynamic_preempt_lazy <- false 7530 * 7531 * FULL: 7532 * cond_resched <- RET0 7533 * might_resched <- RET0 7534 * preempt_schedule <- preempt_schedule 7535 * preempt_schedule_notrace <- preempt_schedule_notrace 7536 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7537 * dynamic_preempt_lazy <- false 7538 * 7539 * LAZY: 7540 * cond_resched <- RET0 7541 * might_resched <- RET0 7542 * preempt_schedule <- preempt_schedule 7543 * preempt_schedule_notrace <- preempt_schedule_notrace 7544 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7545 * dynamic_preempt_lazy <- true 7546 */ 7547 7548 enum { 7549 preempt_dynamic_undefined = -1, 7550 preempt_dynamic_none, 7551 preempt_dynamic_voluntary, 7552 preempt_dynamic_full, 7553 preempt_dynamic_lazy, 7554 }; 7555 7556 int preempt_dynamic_mode = preempt_dynamic_undefined; 7557 7558 int sched_dynamic_mode(const char *str) 7559 { 7560 # if !(defined(CONFIG_PREEMPT_RT) || defined(CONFIG_ARCH_HAS_PREEMPT_LAZY)) 7561 if (!strcmp(str, "none")) 7562 return preempt_dynamic_none; 7563 7564 if (!strcmp(str, "voluntary")) 7565 return preempt_dynamic_voluntary; 7566 # endif 7567 7568 if (!strcmp(str, "full")) 7569 return preempt_dynamic_full; 7570 7571 # ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY 7572 if (!strcmp(str, "lazy")) 7573 return preempt_dynamic_lazy; 7574 # endif 7575 7576 return -EINVAL; 7577 } 7578 7579 # define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key) 7580 # define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key) 7581 7582 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7583 # define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 7584 # define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 7585 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7586 # define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f) 7587 # define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f) 7588 # else 7589 # error "Unsupported PREEMPT_DYNAMIC mechanism" 7590 # endif 7591 7592 static DEFINE_MUTEX(sched_dynamic_mutex); 7593 7594 static void __sched_dynamic_update(int mode) 7595 { 7596 /* 7597 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 7598 * the ZERO state, which is invalid. 7599 */ 7600 preempt_dynamic_enable(cond_resched); 7601 preempt_dynamic_enable(might_resched); 7602 preempt_dynamic_enable(preempt_schedule); 7603 preempt_dynamic_enable(preempt_schedule_notrace); 7604 preempt_dynamic_enable(irqentry_exit_cond_resched); 7605 preempt_dynamic_key_disable(preempt_lazy); 7606 7607 switch (mode) { 7608 case preempt_dynamic_none: 7609 preempt_dynamic_enable(cond_resched); 7610 preempt_dynamic_disable(might_resched); 7611 preempt_dynamic_disable(preempt_schedule); 7612 preempt_dynamic_disable(preempt_schedule_notrace); 7613 preempt_dynamic_disable(irqentry_exit_cond_resched); 7614 preempt_dynamic_key_disable(preempt_lazy); 7615 if (mode != preempt_dynamic_mode) 7616 pr_info("Dynamic Preempt: none\n"); 7617 break; 7618 7619 case preempt_dynamic_voluntary: 7620 preempt_dynamic_enable(cond_resched); 7621 preempt_dynamic_enable(might_resched); 7622 preempt_dynamic_disable(preempt_schedule); 7623 preempt_dynamic_disable(preempt_schedule_notrace); 7624 preempt_dynamic_disable(irqentry_exit_cond_resched); 7625 preempt_dynamic_key_disable(preempt_lazy); 7626 if (mode != preempt_dynamic_mode) 7627 pr_info("Dynamic Preempt: voluntary\n"); 7628 break; 7629 7630 case preempt_dynamic_full: 7631 preempt_dynamic_disable(cond_resched); 7632 preempt_dynamic_disable(might_resched); 7633 preempt_dynamic_enable(preempt_schedule); 7634 preempt_dynamic_enable(preempt_schedule_notrace); 7635 preempt_dynamic_enable(irqentry_exit_cond_resched); 7636 preempt_dynamic_key_disable(preempt_lazy); 7637 if (mode != preempt_dynamic_mode) 7638 pr_info("Dynamic Preempt: full\n"); 7639 break; 7640 7641 case preempt_dynamic_lazy: 7642 preempt_dynamic_disable(cond_resched); 7643 preempt_dynamic_disable(might_resched); 7644 preempt_dynamic_enable(preempt_schedule); 7645 preempt_dynamic_enable(preempt_schedule_notrace); 7646 preempt_dynamic_enable(irqentry_exit_cond_resched); 7647 preempt_dynamic_key_enable(preempt_lazy); 7648 if (mode != preempt_dynamic_mode) 7649 pr_info("Dynamic Preempt: lazy\n"); 7650 break; 7651 } 7652 7653 preempt_dynamic_mode = mode; 7654 } 7655 7656 void sched_dynamic_update(int mode) 7657 { 7658 mutex_lock(&sched_dynamic_mutex); 7659 __sched_dynamic_update(mode); 7660 mutex_unlock(&sched_dynamic_mutex); 7661 } 7662 7663 static int __init setup_preempt_mode(char *str) 7664 { 7665 int mode = sched_dynamic_mode(str); 7666 if (mode < 0) { 7667 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 7668 return 0; 7669 } 7670 7671 sched_dynamic_update(mode); 7672 return 1; 7673 } 7674 __setup("preempt=", setup_preempt_mode); 7675 7676 static void __init preempt_dynamic_init(void) 7677 { 7678 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 7679 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 7680 sched_dynamic_update(preempt_dynamic_none); 7681 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 7682 sched_dynamic_update(preempt_dynamic_voluntary); 7683 } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7684 sched_dynamic_update(preempt_dynamic_lazy); 7685 } else { 7686 /* Default static call setting, nothing to do */ 7687 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 7688 preempt_dynamic_mode = preempt_dynamic_full; 7689 pr_info("Dynamic Preempt: full\n"); 7690 } 7691 } 7692 } 7693 7694 # define PREEMPT_MODEL_ACCESSOR(mode) \ 7695 bool preempt_model_##mode(void) \ 7696 { \ 7697 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 7698 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 7699 } \ 7700 EXPORT_SYMBOL_GPL(preempt_model_##mode) 7701 7702 PREEMPT_MODEL_ACCESSOR(none); 7703 PREEMPT_MODEL_ACCESSOR(voluntary); 7704 PREEMPT_MODEL_ACCESSOR(full); 7705 PREEMPT_MODEL_ACCESSOR(lazy); 7706 7707 #else /* !CONFIG_PREEMPT_DYNAMIC: */ 7708 7709 #define preempt_dynamic_mode -1 7710 7711 static inline void preempt_dynamic_init(void) { } 7712 7713 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7714 7715 const char *preempt_modes[] = { 7716 "none", "voluntary", "full", "lazy", NULL, 7717 }; 7718 7719 const char *preempt_model_str(void) 7720 { 7721 bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) && 7722 (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) || 7723 IS_ENABLED(CONFIG_PREEMPT_LAZY)); 7724 static char buf[128]; 7725 7726 if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) { 7727 struct seq_buf s; 7728 7729 seq_buf_init(&s, buf, sizeof(buf)); 7730 seq_buf_puts(&s, "PREEMPT"); 7731 7732 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 7733 seq_buf_printf(&s, "%sRT%s", 7734 brace ? "_{" : "_", 7735 brace ? "," : ""); 7736 7737 if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) { 7738 seq_buf_printf(&s, "(%s)%s", 7739 preempt_dynamic_mode >= 0 ? 7740 preempt_modes[preempt_dynamic_mode] : "undef", 7741 brace ? "}" : ""); 7742 return seq_buf_str(&s); 7743 } 7744 7745 if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7746 seq_buf_printf(&s, "LAZY%s", 7747 brace ? "}" : ""); 7748 return seq_buf_str(&s); 7749 } 7750 7751 return seq_buf_str(&s); 7752 } 7753 7754 if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD)) 7755 return "VOLUNTARY"; 7756 7757 return "NONE"; 7758 } 7759 7760 int io_schedule_prepare(void) 7761 { 7762 int old_iowait = current->in_iowait; 7763 7764 current->in_iowait = 1; 7765 blk_flush_plug(current->plug, true); 7766 return old_iowait; 7767 } 7768 7769 void io_schedule_finish(int token) 7770 { 7771 current->in_iowait = token; 7772 } 7773 7774 /* 7775 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7776 * that process accounting knows that this is a task in IO wait state. 7777 */ 7778 long __sched io_schedule_timeout(long timeout) 7779 { 7780 int token; 7781 long ret; 7782 7783 token = io_schedule_prepare(); 7784 ret = schedule_timeout(timeout); 7785 io_schedule_finish(token); 7786 7787 return ret; 7788 } 7789 EXPORT_SYMBOL(io_schedule_timeout); 7790 7791 void __sched io_schedule(void) 7792 { 7793 int token; 7794 7795 token = io_schedule_prepare(); 7796 schedule(); 7797 io_schedule_finish(token); 7798 } 7799 EXPORT_SYMBOL(io_schedule); 7800 7801 void sched_show_task(struct task_struct *p) 7802 { 7803 unsigned long free; 7804 int ppid; 7805 7806 if (!try_get_task_stack(p)) 7807 return; 7808 7809 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7810 7811 if (task_is_running(p)) 7812 pr_cont(" running task "); 7813 free = stack_not_used(p); 7814 ppid = 0; 7815 rcu_read_lock(); 7816 if (pid_alive(p)) 7817 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7818 rcu_read_unlock(); 7819 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n", 7820 free, task_pid_nr(p), task_tgid_nr(p), 7821 ppid, p->flags, read_task_thread_flags(p)); 7822 7823 print_worker_info(KERN_INFO, p); 7824 print_stop_info(KERN_INFO, p); 7825 print_scx_info(KERN_INFO, p); 7826 show_stack(p, NULL, KERN_INFO); 7827 put_task_stack(p); 7828 } 7829 EXPORT_SYMBOL_GPL(sched_show_task); 7830 7831 static inline bool 7832 state_filter_match(unsigned long state_filter, struct task_struct *p) 7833 { 7834 unsigned int state = READ_ONCE(p->__state); 7835 7836 /* no filter, everything matches */ 7837 if (!state_filter) 7838 return true; 7839 7840 /* filter, but doesn't match */ 7841 if (!(state & state_filter)) 7842 return false; 7843 7844 /* 7845 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7846 * TASK_KILLABLE). 7847 */ 7848 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 7849 return false; 7850 7851 return true; 7852 } 7853 7854 7855 void show_state_filter(unsigned int state_filter) 7856 { 7857 struct task_struct *g, *p; 7858 7859 rcu_read_lock(); 7860 for_each_process_thread(g, p) { 7861 /* 7862 * reset the NMI-timeout, listing all files on a slow 7863 * console might take a lot of time: 7864 * Also, reset softlockup watchdogs on all CPUs, because 7865 * another CPU might be blocked waiting for us to process 7866 * an IPI. 7867 */ 7868 touch_nmi_watchdog(); 7869 touch_all_softlockup_watchdogs(); 7870 if (state_filter_match(state_filter, p)) 7871 sched_show_task(p); 7872 } 7873 7874 if (!state_filter) 7875 sysrq_sched_debug_show(); 7876 7877 rcu_read_unlock(); 7878 /* 7879 * Only show locks if all tasks are dumped: 7880 */ 7881 if (!state_filter) 7882 debug_show_all_locks(); 7883 } 7884 7885 /** 7886 * init_idle - set up an idle thread for a given CPU 7887 * @idle: task in question 7888 * @cpu: CPU the idle task belongs to 7889 * 7890 * NOTE: this function does not set the idle thread's NEED_RESCHED 7891 * flag, to make booting more robust. 7892 */ 7893 void __init init_idle(struct task_struct *idle, int cpu) 7894 { 7895 struct affinity_context ac = (struct affinity_context) { 7896 .new_mask = cpumask_of(cpu), 7897 .flags = 0, 7898 }; 7899 struct rq *rq = cpu_rq(cpu); 7900 unsigned long flags; 7901 7902 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7903 raw_spin_rq_lock(rq); 7904 7905 idle->__state = TASK_RUNNING; 7906 idle->se.exec_start = sched_clock(); 7907 /* 7908 * PF_KTHREAD should already be set at this point; regardless, make it 7909 * look like a proper per-CPU kthread. 7910 */ 7911 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 7912 kthread_set_per_cpu(idle, cpu); 7913 7914 /* 7915 * No validation and serialization required at boot time and for 7916 * setting up the idle tasks of not yet online CPUs. 7917 */ 7918 set_cpus_allowed_common(idle, &ac); 7919 /* 7920 * We're having a chicken and egg problem, even though we are 7921 * holding rq->lock, the CPU isn't yet set to this CPU so the 7922 * lockdep check in task_group() will fail. 7923 * 7924 * Similar case to sched_fork(). / Alternatively we could 7925 * use task_rq_lock() here and obtain the other rq->lock. 7926 * 7927 * Silence PROVE_RCU 7928 */ 7929 rcu_read_lock(); 7930 __set_task_cpu(idle, cpu); 7931 rcu_read_unlock(); 7932 7933 rq->idle = idle; 7934 rq_set_donor(rq, idle); 7935 rcu_assign_pointer(rq->curr, idle); 7936 idle->on_rq = TASK_ON_RQ_QUEUED; 7937 idle->on_cpu = 1; 7938 raw_spin_rq_unlock(rq); 7939 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7940 7941 /* Set the preempt count _outside_ the spinlocks! */ 7942 init_idle_preempt_count(idle, cpu); 7943 7944 /* 7945 * The idle tasks have their own, simple scheduling class: 7946 */ 7947 idle->sched_class = &idle_sched_class; 7948 ftrace_graph_init_idle_task(idle, cpu); 7949 vtime_init_idle(idle, cpu); 7950 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7951 } 7952 7953 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7954 const struct cpumask *trial) 7955 { 7956 int ret = 1; 7957 7958 if (cpumask_empty(cur)) 7959 return ret; 7960 7961 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7962 7963 return ret; 7964 } 7965 7966 int task_can_attach(struct task_struct *p) 7967 { 7968 int ret = 0; 7969 7970 /* 7971 * Kthreads which disallow setaffinity shouldn't be moved 7972 * to a new cpuset; we don't want to change their CPU 7973 * affinity and isolating such threads by their set of 7974 * allowed nodes is unnecessary. Thus, cpusets are not 7975 * applicable for such threads. This prevents checking for 7976 * success of set_cpus_allowed_ptr() on all attached tasks 7977 * before cpus_mask may be changed. 7978 */ 7979 if (p->flags & PF_NO_SETAFFINITY) 7980 ret = -EINVAL; 7981 7982 return ret; 7983 } 7984 7985 bool sched_smp_initialized __read_mostly; 7986 7987 #ifdef CONFIG_NUMA_BALANCING 7988 /* Migrate current task p to target_cpu */ 7989 int migrate_task_to(struct task_struct *p, int target_cpu) 7990 { 7991 struct migration_arg arg = { p, target_cpu }; 7992 int curr_cpu = task_cpu(p); 7993 7994 if (curr_cpu == target_cpu) 7995 return 0; 7996 7997 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7998 return -EINVAL; 7999 8000 /* TODO: This is not properly updating schedstats */ 8001 8002 trace_sched_move_numa(p, curr_cpu, target_cpu); 8003 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 8004 } 8005 8006 /* 8007 * Requeue a task on a given node and accurately track the number of NUMA 8008 * tasks on the runqueues 8009 */ 8010 void sched_setnuma(struct task_struct *p, int nid) 8011 { 8012 guard(task_rq_lock)(p); 8013 scoped_guard (sched_change, p, DEQUEUE_SAVE) 8014 p->numa_preferred_nid = nid; 8015 } 8016 #endif /* CONFIG_NUMA_BALANCING */ 8017 8018 #ifdef CONFIG_HOTPLUG_CPU 8019 /* 8020 * Invoked on the outgoing CPU in context of the CPU hotplug thread 8021 * after ensuring that there are no user space tasks left on the CPU. 8022 * 8023 * If there is a lazy mm in use on the hotplug thread, drop it and 8024 * switch to init_mm. 8025 * 8026 * The reference count on init_mm is dropped in finish_cpu(). 8027 */ 8028 static void sched_force_init_mm(void) 8029 { 8030 struct mm_struct *mm = current->active_mm; 8031 8032 if (mm != &init_mm) { 8033 mmgrab_lazy_tlb(&init_mm); 8034 local_irq_disable(); 8035 current->active_mm = &init_mm; 8036 switch_mm_irqs_off(mm, &init_mm, current); 8037 local_irq_enable(); 8038 finish_arch_post_lock_switch(); 8039 mmdrop_lazy_tlb(mm); 8040 } 8041 8042 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 8043 } 8044 8045 static int __balance_push_cpu_stop(void *arg) 8046 { 8047 struct task_struct *p = arg; 8048 struct rq *rq = this_rq(); 8049 struct rq_flags rf; 8050 int cpu; 8051 8052 scoped_guard (raw_spinlock_irq, &p->pi_lock) { 8053 cpu = select_fallback_rq(rq->cpu, p); 8054 8055 rq_lock(rq, &rf); 8056 update_rq_clock(rq); 8057 if (task_rq(p) == rq && task_on_rq_queued(p)) 8058 rq = __migrate_task(rq, &rf, p, cpu); 8059 rq_unlock(rq, &rf); 8060 } 8061 8062 put_task_struct(p); 8063 8064 return 0; 8065 } 8066 8067 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 8068 8069 /* 8070 * Ensure we only run per-cpu kthreads once the CPU goes !active. 8071 * 8072 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 8073 * effective when the hotplug motion is down. 8074 */ 8075 static void balance_push(struct rq *rq) 8076 { 8077 struct task_struct *push_task = rq->curr; 8078 8079 lockdep_assert_rq_held(rq); 8080 8081 /* 8082 * Ensure the thing is persistent until balance_push_set(.on = false); 8083 */ 8084 rq->balance_callback = &balance_push_callback; 8085 8086 /* 8087 * Only active while going offline and when invoked on the outgoing 8088 * CPU. 8089 */ 8090 if (!cpu_dying(rq->cpu) || rq != this_rq()) 8091 return; 8092 8093 /* 8094 * Both the cpu-hotplug and stop task are in this case and are 8095 * required to complete the hotplug process. 8096 */ 8097 if (kthread_is_per_cpu(push_task) || 8098 is_migration_disabled(push_task)) { 8099 8100 /* 8101 * If this is the idle task on the outgoing CPU try to wake 8102 * up the hotplug control thread which might wait for the 8103 * last task to vanish. The rcuwait_active() check is 8104 * accurate here because the waiter is pinned on this CPU 8105 * and can't obviously be running in parallel. 8106 * 8107 * On RT kernels this also has to check whether there are 8108 * pinned and scheduled out tasks on the runqueue. They 8109 * need to leave the migrate disabled section first. 8110 */ 8111 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 8112 rcuwait_active(&rq->hotplug_wait)) { 8113 raw_spin_rq_unlock(rq); 8114 rcuwait_wake_up(&rq->hotplug_wait); 8115 raw_spin_rq_lock(rq); 8116 } 8117 return; 8118 } 8119 8120 get_task_struct(push_task); 8121 /* 8122 * Temporarily drop rq->lock such that we can wake-up the stop task. 8123 * Both preemption and IRQs are still disabled. 8124 */ 8125 preempt_disable(); 8126 raw_spin_rq_unlock(rq); 8127 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 8128 this_cpu_ptr(&push_work)); 8129 preempt_enable(); 8130 /* 8131 * At this point need_resched() is true and we'll take the loop in 8132 * schedule(). The next pick is obviously going to be the stop task 8133 * which kthread_is_per_cpu() and will push this task away. 8134 */ 8135 raw_spin_rq_lock(rq); 8136 } 8137 8138 static void balance_push_set(int cpu, bool on) 8139 { 8140 struct rq *rq = cpu_rq(cpu); 8141 struct rq_flags rf; 8142 8143 rq_lock_irqsave(rq, &rf); 8144 if (on) { 8145 WARN_ON_ONCE(rq->balance_callback); 8146 rq->balance_callback = &balance_push_callback; 8147 } else if (rq->balance_callback == &balance_push_callback) { 8148 rq->balance_callback = NULL; 8149 } 8150 rq_unlock_irqrestore(rq, &rf); 8151 } 8152 8153 /* 8154 * Invoked from a CPUs hotplug control thread after the CPU has been marked 8155 * inactive. All tasks which are not per CPU kernel threads are either 8156 * pushed off this CPU now via balance_push() or placed on a different CPU 8157 * during wakeup. Wait until the CPU is quiescent. 8158 */ 8159 static void balance_hotplug_wait(void) 8160 { 8161 struct rq *rq = this_rq(); 8162 8163 rcuwait_wait_event(&rq->hotplug_wait, 8164 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 8165 TASK_UNINTERRUPTIBLE); 8166 } 8167 8168 #else /* !CONFIG_HOTPLUG_CPU: */ 8169 8170 static inline void balance_push(struct rq *rq) 8171 { 8172 } 8173 8174 static inline void balance_push_set(int cpu, bool on) 8175 { 8176 } 8177 8178 static inline void balance_hotplug_wait(void) 8179 { 8180 } 8181 8182 #endif /* !CONFIG_HOTPLUG_CPU */ 8183 8184 void set_rq_online(struct rq *rq) 8185 { 8186 if (!rq->online) { 8187 const struct sched_class *class; 8188 8189 cpumask_set_cpu(rq->cpu, rq->rd->online); 8190 rq->online = 1; 8191 8192 for_each_class(class) { 8193 if (class->rq_online) 8194 class->rq_online(rq); 8195 } 8196 } 8197 } 8198 8199 void set_rq_offline(struct rq *rq) 8200 { 8201 if (rq->online) { 8202 const struct sched_class *class; 8203 8204 update_rq_clock(rq); 8205 for_each_class(class) { 8206 if (class->rq_offline) 8207 class->rq_offline(rq); 8208 } 8209 8210 cpumask_clear_cpu(rq->cpu, rq->rd->online); 8211 rq->online = 0; 8212 } 8213 } 8214 8215 static inline void sched_set_rq_online(struct rq *rq, int cpu) 8216 { 8217 struct rq_flags rf; 8218 8219 rq_lock_irqsave(rq, &rf); 8220 if (rq->rd) { 8221 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8222 set_rq_online(rq); 8223 } 8224 rq_unlock_irqrestore(rq, &rf); 8225 } 8226 8227 static inline void sched_set_rq_offline(struct rq *rq, int cpu) 8228 { 8229 struct rq_flags rf; 8230 8231 rq_lock_irqsave(rq, &rf); 8232 if (rq->rd) { 8233 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8234 set_rq_offline(rq); 8235 } 8236 rq_unlock_irqrestore(rq, &rf); 8237 } 8238 8239 /* 8240 * used to mark begin/end of suspend/resume: 8241 */ 8242 static int num_cpus_frozen; 8243 8244 /* 8245 * Update cpusets according to cpu_active mask. If cpusets are 8246 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 8247 * around partition_sched_domains(). 8248 * 8249 * If we come here as part of a suspend/resume, don't touch cpusets because we 8250 * want to restore it back to its original state upon resume anyway. 8251 */ 8252 static void cpuset_cpu_active(void) 8253 { 8254 if (cpuhp_tasks_frozen) { 8255 /* 8256 * num_cpus_frozen tracks how many CPUs are involved in suspend 8257 * resume sequence. As long as this is not the last online 8258 * operation in the resume sequence, just build a single sched 8259 * domain, ignoring cpusets. 8260 */ 8261 cpuset_reset_sched_domains(); 8262 if (--num_cpus_frozen) 8263 return; 8264 /* 8265 * This is the last CPU online operation. So fall through and 8266 * restore the original sched domains by considering the 8267 * cpuset configurations. 8268 */ 8269 cpuset_force_rebuild(); 8270 } 8271 cpuset_update_active_cpus(); 8272 } 8273 8274 static void cpuset_cpu_inactive(unsigned int cpu) 8275 { 8276 if (!cpuhp_tasks_frozen) { 8277 cpuset_update_active_cpus(); 8278 } else { 8279 num_cpus_frozen++; 8280 cpuset_reset_sched_domains(); 8281 } 8282 } 8283 8284 static inline void sched_smt_present_inc(int cpu) 8285 { 8286 #ifdef CONFIG_SCHED_SMT 8287 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8288 static_branch_inc_cpuslocked(&sched_smt_present); 8289 #endif 8290 } 8291 8292 static inline void sched_smt_present_dec(int cpu) 8293 { 8294 #ifdef CONFIG_SCHED_SMT 8295 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8296 static_branch_dec_cpuslocked(&sched_smt_present); 8297 #endif 8298 } 8299 8300 int sched_cpu_activate(unsigned int cpu) 8301 { 8302 struct rq *rq = cpu_rq(cpu); 8303 8304 /* 8305 * Clear the balance_push callback and prepare to schedule 8306 * regular tasks. 8307 */ 8308 balance_push_set(cpu, false); 8309 8310 /* 8311 * When going up, increment the number of cores with SMT present. 8312 */ 8313 sched_smt_present_inc(cpu); 8314 set_cpu_active(cpu, true); 8315 8316 if (sched_smp_initialized) { 8317 sched_update_numa(cpu, true); 8318 sched_domains_numa_masks_set(cpu); 8319 cpuset_cpu_active(); 8320 } 8321 8322 scx_rq_activate(rq); 8323 8324 /* 8325 * Put the rq online, if not already. This happens: 8326 * 8327 * 1) In the early boot process, because we build the real domains 8328 * after all CPUs have been brought up. 8329 * 8330 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 8331 * domains. 8332 */ 8333 sched_set_rq_online(rq, cpu); 8334 8335 return 0; 8336 } 8337 8338 int sched_cpu_deactivate(unsigned int cpu) 8339 { 8340 struct rq *rq = cpu_rq(cpu); 8341 int ret; 8342 8343 ret = dl_bw_deactivate(cpu); 8344 8345 if (ret) 8346 return ret; 8347 8348 /* 8349 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 8350 * load balancing when not active 8351 */ 8352 nohz_balance_exit_idle(rq); 8353 8354 set_cpu_active(cpu, false); 8355 8356 /* 8357 * From this point forward, this CPU will refuse to run any task that 8358 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8359 * push those tasks away until this gets cleared, see 8360 * sched_cpu_dying(). 8361 */ 8362 balance_push_set(cpu, true); 8363 8364 /* 8365 * We've cleared cpu_active_mask / set balance_push, wait for all 8366 * preempt-disabled and RCU users of this state to go away such that 8367 * all new such users will observe it. 8368 * 8369 * Specifically, we rely on ttwu to no longer target this CPU, see 8370 * ttwu_queue_cond() and is_cpu_allowed(). 8371 * 8372 * Do sync before park smpboot threads to take care the RCU boost case. 8373 */ 8374 synchronize_rcu(); 8375 8376 sched_set_rq_offline(rq, cpu); 8377 8378 scx_rq_deactivate(rq); 8379 8380 /* 8381 * When going down, decrement the number of cores with SMT present. 8382 */ 8383 sched_smt_present_dec(cpu); 8384 8385 #ifdef CONFIG_SCHED_SMT 8386 sched_core_cpu_deactivate(cpu); 8387 #endif 8388 8389 if (!sched_smp_initialized) 8390 return 0; 8391 8392 sched_update_numa(cpu, false); 8393 cpuset_cpu_inactive(cpu); 8394 sched_domains_numa_masks_clear(cpu); 8395 return 0; 8396 } 8397 8398 static void sched_rq_cpu_starting(unsigned int cpu) 8399 { 8400 struct rq *rq = cpu_rq(cpu); 8401 8402 rq->calc_load_update = calc_load_update; 8403 update_max_interval(); 8404 } 8405 8406 int sched_cpu_starting(unsigned int cpu) 8407 { 8408 sched_core_cpu_starting(cpu); 8409 sched_rq_cpu_starting(cpu); 8410 sched_tick_start(cpu); 8411 return 0; 8412 } 8413 8414 #ifdef CONFIG_HOTPLUG_CPU 8415 8416 /* 8417 * Invoked immediately before the stopper thread is invoked to bring the 8418 * CPU down completely. At this point all per CPU kthreads except the 8419 * hotplug thread (current) and the stopper thread (inactive) have been 8420 * either parked or have been unbound from the outgoing CPU. Ensure that 8421 * any of those which might be on the way out are gone. 8422 * 8423 * If after this point a bound task is being woken on this CPU then the 8424 * responsible hotplug callback has failed to do it's job. 8425 * sched_cpu_dying() will catch it with the appropriate fireworks. 8426 */ 8427 int sched_cpu_wait_empty(unsigned int cpu) 8428 { 8429 balance_hotplug_wait(); 8430 sched_force_init_mm(); 8431 return 0; 8432 } 8433 8434 /* 8435 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8436 * might have. Called from the CPU stopper task after ensuring that the 8437 * stopper is the last running task on the CPU, so nr_active count is 8438 * stable. We need to take the tear-down thread which is calling this into 8439 * account, so we hand in adjust = 1 to the load calculation. 8440 * 8441 * Also see the comment "Global load-average calculations". 8442 */ 8443 static void calc_load_migrate(struct rq *rq) 8444 { 8445 long delta = calc_load_fold_active(rq, 1); 8446 8447 if (delta) 8448 atomic_long_add(delta, &calc_load_tasks); 8449 } 8450 8451 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8452 { 8453 struct task_struct *g, *p; 8454 int cpu = cpu_of(rq); 8455 8456 lockdep_assert_rq_held(rq); 8457 8458 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8459 for_each_process_thread(g, p) { 8460 if (task_cpu(p) != cpu) 8461 continue; 8462 8463 if (!task_on_rq_queued(p)) 8464 continue; 8465 8466 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8467 } 8468 } 8469 8470 int sched_cpu_dying(unsigned int cpu) 8471 { 8472 struct rq *rq = cpu_rq(cpu); 8473 struct rq_flags rf; 8474 8475 /* Handle pending wakeups and then migrate everything off */ 8476 sched_tick_stop(cpu); 8477 8478 rq_lock_irqsave(rq, &rf); 8479 update_rq_clock(rq); 8480 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8481 WARN(true, "Dying CPU not properly vacated!"); 8482 dump_rq_tasks(rq, KERN_WARNING); 8483 } 8484 dl_server_stop(&rq->fair_server); 8485 rq_unlock_irqrestore(rq, &rf); 8486 8487 calc_load_migrate(rq); 8488 update_max_interval(); 8489 hrtick_clear(rq); 8490 sched_core_cpu_dying(cpu); 8491 return 0; 8492 } 8493 #endif /* CONFIG_HOTPLUG_CPU */ 8494 8495 void __init sched_init_smp(void) 8496 { 8497 sched_init_numa(NUMA_NO_NODE); 8498 8499 prandom_init_once(&sched_rnd_state); 8500 8501 /* 8502 * There's no userspace yet to cause hotplug operations; hence all the 8503 * CPU masks are stable and all blatant races in the below code cannot 8504 * happen. 8505 */ 8506 sched_domains_mutex_lock(); 8507 sched_init_domains(cpu_active_mask); 8508 sched_domains_mutex_unlock(); 8509 8510 /* Move init over to a non-isolated CPU */ 8511 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 8512 BUG(); 8513 current->flags &= ~PF_NO_SETAFFINITY; 8514 sched_init_granularity(); 8515 8516 init_sched_rt_class(); 8517 init_sched_dl_class(); 8518 8519 sched_init_dl_servers(); 8520 8521 sched_smp_initialized = true; 8522 } 8523 8524 static int __init migration_init(void) 8525 { 8526 sched_cpu_starting(smp_processor_id()); 8527 return 0; 8528 } 8529 early_initcall(migration_init); 8530 8531 int in_sched_functions(unsigned long addr) 8532 { 8533 return in_lock_functions(addr) || 8534 (addr >= (unsigned long)__sched_text_start 8535 && addr < (unsigned long)__sched_text_end); 8536 } 8537 8538 #ifdef CONFIG_CGROUP_SCHED 8539 /* 8540 * Default task group. 8541 * Every task in system belongs to this group at bootup. 8542 */ 8543 struct task_group root_task_group; 8544 LIST_HEAD(task_groups); 8545 8546 /* Cacheline aligned slab cache for task_group */ 8547 static struct kmem_cache *task_group_cache __ro_after_init; 8548 #endif 8549 8550 void __init sched_init(void) 8551 { 8552 unsigned long ptr = 0; 8553 int i; 8554 8555 /* Make sure the linker didn't screw up */ 8556 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); 8557 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); 8558 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); 8559 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); 8560 #ifdef CONFIG_SCHED_CLASS_EXT 8561 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); 8562 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); 8563 #endif 8564 8565 wait_bit_init(); 8566 8567 #ifdef CONFIG_FAIR_GROUP_SCHED 8568 ptr += 2 * nr_cpu_ids * sizeof(void **); 8569 #endif 8570 #ifdef CONFIG_RT_GROUP_SCHED 8571 ptr += 2 * nr_cpu_ids * sizeof(void **); 8572 #endif 8573 if (ptr) { 8574 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8575 8576 #ifdef CONFIG_FAIR_GROUP_SCHED 8577 root_task_group.se = (struct sched_entity **)ptr; 8578 ptr += nr_cpu_ids * sizeof(void **); 8579 8580 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8581 ptr += nr_cpu_ids * sizeof(void **); 8582 8583 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8584 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 8585 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8586 #ifdef CONFIG_EXT_GROUP_SCHED 8587 scx_tg_init(&root_task_group); 8588 #endif /* CONFIG_EXT_GROUP_SCHED */ 8589 #ifdef CONFIG_RT_GROUP_SCHED 8590 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8591 ptr += nr_cpu_ids * sizeof(void **); 8592 8593 root_task_group.rt_rq = (struct rt_rq **)ptr; 8594 ptr += nr_cpu_ids * sizeof(void **); 8595 8596 #endif /* CONFIG_RT_GROUP_SCHED */ 8597 } 8598 8599 init_defrootdomain(); 8600 8601 #ifdef CONFIG_RT_GROUP_SCHED 8602 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8603 global_rt_period(), global_rt_runtime()); 8604 #endif /* CONFIG_RT_GROUP_SCHED */ 8605 8606 #ifdef CONFIG_CGROUP_SCHED 8607 task_group_cache = KMEM_CACHE(task_group, 0); 8608 8609 list_add(&root_task_group.list, &task_groups); 8610 INIT_LIST_HEAD(&root_task_group.children); 8611 INIT_LIST_HEAD(&root_task_group.siblings); 8612 autogroup_init(&init_task); 8613 #endif /* CONFIG_CGROUP_SCHED */ 8614 8615 for_each_possible_cpu(i) { 8616 struct rq *rq; 8617 8618 rq = cpu_rq(i); 8619 raw_spin_lock_init(&rq->__lock); 8620 rq->nr_running = 0; 8621 rq->calc_load_active = 0; 8622 rq->calc_load_update = jiffies + LOAD_FREQ; 8623 init_cfs_rq(&rq->cfs); 8624 init_rt_rq(&rq->rt); 8625 init_dl_rq(&rq->dl); 8626 #ifdef CONFIG_FAIR_GROUP_SCHED 8627 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8628 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8629 /* 8630 * How much CPU bandwidth does root_task_group get? 8631 * 8632 * In case of task-groups formed through the cgroup filesystem, it 8633 * gets 100% of the CPU resources in the system. This overall 8634 * system CPU resource is divided among the tasks of 8635 * root_task_group and its child task-groups in a fair manner, 8636 * based on each entity's (task or task-group's) weight 8637 * (se->load.weight). 8638 * 8639 * In other words, if root_task_group has 10 tasks of weight 8640 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8641 * then A0's share of the CPU resource is: 8642 * 8643 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8644 * 8645 * We achieve this by letting root_task_group's tasks sit 8646 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8647 */ 8648 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8649 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8650 8651 #ifdef CONFIG_RT_GROUP_SCHED 8652 /* 8653 * This is required for init cpu because rt.c:__enable_runtime() 8654 * starts working after scheduler_running, which is not the case 8655 * yet. 8656 */ 8657 rq->rt.rt_runtime = global_rt_runtime(); 8658 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8659 #endif 8660 rq->next_class = &idle_sched_class; 8661 8662 rq->sd = NULL; 8663 rq->rd = NULL; 8664 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 8665 rq->balance_callback = &balance_push_callback; 8666 rq->active_balance = 0; 8667 rq->next_balance = jiffies; 8668 rq->push_cpu = 0; 8669 rq->cpu = i; 8670 rq->online = 0; 8671 rq->idle_stamp = 0; 8672 rq->avg_idle = 2*sysctl_sched_migration_cost; 8673 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8674 8675 INIT_LIST_HEAD(&rq->cfs_tasks); 8676 8677 rq_attach_root(rq, &def_root_domain); 8678 #ifdef CONFIG_NO_HZ_COMMON 8679 rq->last_blocked_load_update_tick = jiffies; 8680 atomic_set(&rq->nohz_flags, 0); 8681 8682 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8683 #endif 8684 #ifdef CONFIG_HOTPLUG_CPU 8685 rcuwait_init(&rq->hotplug_wait); 8686 #endif 8687 hrtick_rq_init(rq); 8688 atomic_set(&rq->nr_iowait, 0); 8689 fair_server_init(rq); 8690 8691 #ifdef CONFIG_SCHED_CORE 8692 rq->core = rq; 8693 rq->core_pick = NULL; 8694 rq->core_dl_server = NULL; 8695 rq->core_enabled = 0; 8696 rq->core_tree = RB_ROOT; 8697 rq->core_forceidle_count = 0; 8698 rq->core_forceidle_occupation = 0; 8699 rq->core_forceidle_start = 0; 8700 8701 rq->core_cookie = 0UL; 8702 #endif 8703 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 8704 } 8705 8706 set_load_weight(&init_task, false); 8707 init_task.se.slice = sysctl_sched_base_slice, 8708 8709 /* 8710 * The boot idle thread does lazy MMU switching as well: 8711 */ 8712 mmgrab_lazy_tlb(&init_mm); 8713 enter_lazy_tlb(&init_mm, current); 8714 8715 /* 8716 * The idle task doesn't need the kthread struct to function, but it 8717 * is dressed up as a per-CPU kthread and thus needs to play the part 8718 * if we want to avoid special-casing it in code that deals with per-CPU 8719 * kthreads. 8720 */ 8721 WARN_ON(!set_kthread_struct(current)); 8722 8723 /* 8724 * Make us the idle thread. Technically, schedule() should not be 8725 * called from this thread, however somewhere below it might be, 8726 * but because we are the idle thread, we just pick up running again 8727 * when this runqueue becomes "idle". 8728 */ 8729 __sched_fork(0, current); 8730 init_idle(current, smp_processor_id()); 8731 8732 calc_load_update = jiffies + LOAD_FREQ; 8733 8734 idle_thread_set_boot_cpu(); 8735 8736 balance_push_set(smp_processor_id(), false); 8737 init_sched_fair_class(); 8738 init_sched_ext_class(); 8739 8740 psi_init(); 8741 8742 init_uclamp(); 8743 8744 preempt_dynamic_init(); 8745 8746 scheduler_running = 1; 8747 } 8748 8749 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8750 8751 void __might_sleep(const char *file, int line) 8752 { 8753 unsigned int state = get_current_state(); 8754 /* 8755 * Blocking primitives will set (and therefore destroy) current->state, 8756 * since we will exit with TASK_RUNNING make sure we enter with it, 8757 * otherwise we will destroy state. 8758 */ 8759 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 8760 "do not call blocking ops when !TASK_RUNNING; " 8761 "state=%x set at [<%p>] %pS\n", state, 8762 (void *)current->task_state_change, 8763 (void *)current->task_state_change); 8764 8765 __might_resched(file, line, 0); 8766 } 8767 EXPORT_SYMBOL(__might_sleep); 8768 8769 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 8770 { 8771 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 8772 return; 8773 8774 if (preempt_count() == preempt_offset) 8775 return; 8776 8777 pr_err("Preemption disabled at:"); 8778 print_ip_sym(KERN_ERR, ip); 8779 } 8780 8781 static inline bool resched_offsets_ok(unsigned int offsets) 8782 { 8783 unsigned int nested = preempt_count(); 8784 8785 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 8786 8787 return nested == offsets; 8788 } 8789 8790 void __might_resched(const char *file, int line, unsigned int offsets) 8791 { 8792 /* Ratelimiting timestamp: */ 8793 static unsigned long prev_jiffy; 8794 8795 unsigned long preempt_disable_ip; 8796 8797 /* WARN_ON_ONCE() by default, no rate limit required: */ 8798 rcu_sleep_check(); 8799 8800 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 8801 !is_idle_task(current) && !current->non_block_count) || 8802 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8803 oops_in_progress) 8804 return; 8805 8806 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8807 return; 8808 prev_jiffy = jiffies; 8809 8810 /* Save this before calling printk(), since that will clobber it: */ 8811 preempt_disable_ip = get_preempt_disable_ip(current); 8812 8813 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 8814 file, line); 8815 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8816 in_atomic(), irqs_disabled(), current->non_block_count, 8817 current->pid, current->comm); 8818 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 8819 offsets & MIGHT_RESCHED_PREEMPT_MASK); 8820 8821 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 8822 pr_err("RCU nest depth: %d, expected: %u\n", 8823 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 8824 } 8825 8826 if (task_stack_end_corrupted(current)) 8827 pr_emerg("Thread overran stack, or stack corrupted\n"); 8828 8829 debug_show_held_locks(current); 8830 if (irqs_disabled()) 8831 print_irqtrace_events(current); 8832 8833 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 8834 preempt_disable_ip); 8835 8836 dump_stack(); 8837 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8838 } 8839 EXPORT_SYMBOL(__might_resched); 8840 8841 void __cant_sleep(const char *file, int line, int preempt_offset) 8842 { 8843 static unsigned long prev_jiffy; 8844 8845 if (irqs_disabled()) 8846 return; 8847 8848 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8849 return; 8850 8851 if (preempt_count() > preempt_offset) 8852 return; 8853 8854 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8855 return; 8856 prev_jiffy = jiffies; 8857 8858 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8859 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8860 in_atomic(), irqs_disabled(), 8861 current->pid, current->comm); 8862 8863 debug_show_held_locks(current); 8864 dump_stack(); 8865 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8866 } 8867 EXPORT_SYMBOL_GPL(__cant_sleep); 8868 8869 # ifdef CONFIG_SMP 8870 void __cant_migrate(const char *file, int line) 8871 { 8872 static unsigned long prev_jiffy; 8873 8874 if (irqs_disabled()) 8875 return; 8876 8877 if (is_migration_disabled(current)) 8878 return; 8879 8880 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8881 return; 8882 8883 if (preempt_count() > 0) 8884 return; 8885 8886 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8887 return; 8888 prev_jiffy = jiffies; 8889 8890 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8891 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8892 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8893 current->pid, current->comm); 8894 8895 debug_show_held_locks(current); 8896 dump_stack(); 8897 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8898 } 8899 EXPORT_SYMBOL_GPL(__cant_migrate); 8900 # endif /* CONFIG_SMP */ 8901 #endif /* CONFIG_DEBUG_ATOMIC_SLEEP */ 8902 8903 #ifdef CONFIG_MAGIC_SYSRQ 8904 void normalize_rt_tasks(void) 8905 { 8906 struct task_struct *g, *p; 8907 struct sched_attr attr = { 8908 .sched_policy = SCHED_NORMAL, 8909 }; 8910 8911 read_lock(&tasklist_lock); 8912 for_each_process_thread(g, p) { 8913 /* 8914 * Only normalize user tasks: 8915 */ 8916 if (p->flags & PF_KTHREAD) 8917 continue; 8918 8919 p->se.exec_start = 0; 8920 schedstat_set(p->stats.wait_start, 0); 8921 schedstat_set(p->stats.sleep_start, 0); 8922 schedstat_set(p->stats.block_start, 0); 8923 8924 if (!rt_or_dl_task(p)) { 8925 /* 8926 * Renice negative nice level userspace 8927 * tasks back to 0: 8928 */ 8929 if (task_nice(p) < 0) 8930 set_user_nice(p, 0); 8931 continue; 8932 } 8933 8934 __sched_setscheduler(p, &attr, false, false); 8935 } 8936 read_unlock(&tasklist_lock); 8937 } 8938 8939 #endif /* CONFIG_MAGIC_SYSRQ */ 8940 8941 #ifdef CONFIG_KGDB_KDB 8942 /* 8943 * These functions are only useful for KDB. 8944 * 8945 * They can only be called when the whole system has been 8946 * stopped - every CPU needs to be quiescent, and no scheduling 8947 * activity can take place. Using them for anything else would 8948 * be a serious bug, and as a result, they aren't even visible 8949 * under any other configuration. 8950 */ 8951 8952 /** 8953 * curr_task - return the current task for a given CPU. 8954 * @cpu: the processor in question. 8955 * 8956 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8957 * 8958 * Return: The current task for @cpu. 8959 */ 8960 struct task_struct *curr_task(int cpu) 8961 { 8962 return cpu_curr(cpu); 8963 } 8964 8965 #endif /* CONFIG_KGDB_KDB */ 8966 8967 #ifdef CONFIG_CGROUP_SCHED 8968 /* task_group_lock serializes the addition/removal of task groups */ 8969 static DEFINE_SPINLOCK(task_group_lock); 8970 8971 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8972 struct task_group *parent) 8973 { 8974 #ifdef CONFIG_UCLAMP_TASK_GROUP 8975 enum uclamp_id clamp_id; 8976 8977 for_each_clamp_id(clamp_id) { 8978 uclamp_se_set(&tg->uclamp_req[clamp_id], 8979 uclamp_none(clamp_id), false); 8980 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8981 } 8982 #endif 8983 } 8984 8985 static void sched_free_group(struct task_group *tg) 8986 { 8987 free_fair_sched_group(tg); 8988 free_rt_sched_group(tg); 8989 autogroup_free(tg); 8990 kmem_cache_free(task_group_cache, tg); 8991 } 8992 8993 static void sched_free_group_rcu(struct rcu_head *rcu) 8994 { 8995 sched_free_group(container_of(rcu, struct task_group, rcu)); 8996 } 8997 8998 static void sched_unregister_group(struct task_group *tg) 8999 { 9000 unregister_fair_sched_group(tg); 9001 unregister_rt_sched_group(tg); 9002 /* 9003 * We have to wait for yet another RCU grace period to expire, as 9004 * print_cfs_stats() might run concurrently. 9005 */ 9006 call_rcu(&tg->rcu, sched_free_group_rcu); 9007 } 9008 9009 /* allocate runqueue etc for a new task group */ 9010 struct task_group *sched_create_group(struct task_group *parent) 9011 { 9012 struct task_group *tg; 9013 9014 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 9015 if (!tg) 9016 return ERR_PTR(-ENOMEM); 9017 9018 if (!alloc_fair_sched_group(tg, parent)) 9019 goto err; 9020 9021 if (!alloc_rt_sched_group(tg, parent)) 9022 goto err; 9023 9024 scx_tg_init(tg); 9025 alloc_uclamp_sched_group(tg, parent); 9026 9027 return tg; 9028 9029 err: 9030 sched_free_group(tg); 9031 return ERR_PTR(-ENOMEM); 9032 } 9033 9034 void sched_online_group(struct task_group *tg, struct task_group *parent) 9035 { 9036 unsigned long flags; 9037 9038 spin_lock_irqsave(&task_group_lock, flags); 9039 list_add_tail_rcu(&tg->list, &task_groups); 9040 9041 /* Root should already exist: */ 9042 WARN_ON(!parent); 9043 9044 tg->parent = parent; 9045 INIT_LIST_HEAD(&tg->children); 9046 list_add_rcu(&tg->siblings, &parent->children); 9047 spin_unlock_irqrestore(&task_group_lock, flags); 9048 9049 online_fair_sched_group(tg); 9050 } 9051 9052 /* RCU callback to free various structures associated with a task group */ 9053 static void sched_unregister_group_rcu(struct rcu_head *rhp) 9054 { 9055 /* Now it should be safe to free those cfs_rqs: */ 9056 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 9057 } 9058 9059 void sched_destroy_group(struct task_group *tg) 9060 { 9061 /* Wait for possible concurrent references to cfs_rqs complete: */ 9062 call_rcu(&tg->rcu, sched_unregister_group_rcu); 9063 } 9064 9065 void sched_release_group(struct task_group *tg) 9066 { 9067 unsigned long flags; 9068 9069 /* 9070 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 9071 * sched_cfs_period_timer()). 9072 * 9073 * For this to be effective, we have to wait for all pending users of 9074 * this task group to leave their RCU critical section to ensure no new 9075 * user will see our dying task group any more. Specifically ensure 9076 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 9077 * 9078 * We therefore defer calling unregister_fair_sched_group() to 9079 * sched_unregister_group() which is guarantied to get called only after the 9080 * current RCU grace period has expired. 9081 */ 9082 spin_lock_irqsave(&task_group_lock, flags); 9083 list_del_rcu(&tg->list); 9084 list_del_rcu(&tg->siblings); 9085 spin_unlock_irqrestore(&task_group_lock, flags); 9086 } 9087 9088 static void sched_change_group(struct task_struct *tsk) 9089 { 9090 struct task_group *tg; 9091 9092 /* 9093 * All callers are synchronized by task_rq_lock(); we do not use RCU 9094 * which is pointless here. Thus, we pass "true" to task_css_check() 9095 * to prevent lockdep warnings. 9096 */ 9097 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 9098 struct task_group, css); 9099 tg = autogroup_task_group(tsk, tg); 9100 tsk->sched_task_group = tg; 9101 9102 #ifdef CONFIG_FAIR_GROUP_SCHED 9103 if (tsk->sched_class->task_change_group) 9104 tsk->sched_class->task_change_group(tsk); 9105 else 9106 #endif 9107 set_task_rq(tsk, task_cpu(tsk)); 9108 } 9109 9110 /* 9111 * Change task's runqueue when it moves between groups. 9112 * 9113 * The caller of this function should have put the task in its new group by 9114 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 9115 * its new group. 9116 */ 9117 void sched_move_task(struct task_struct *tsk, bool for_autogroup) 9118 { 9119 unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE; 9120 bool resched = false; 9121 struct rq *rq; 9122 9123 CLASS(task_rq_lock, rq_guard)(tsk); 9124 rq = rq_guard.rq; 9125 9126 scoped_guard (sched_change, tsk, queue_flags) { 9127 sched_change_group(tsk); 9128 if (!for_autogroup) 9129 scx_cgroup_move_task(tsk); 9130 if (scope->running) 9131 resched = true; 9132 } 9133 9134 if (resched) 9135 resched_curr(rq); 9136 } 9137 9138 static struct cgroup_subsys_state * 9139 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9140 { 9141 struct task_group *parent = css_tg(parent_css); 9142 struct task_group *tg; 9143 9144 if (!parent) { 9145 /* This is early initialization for the top cgroup */ 9146 return &root_task_group.css; 9147 } 9148 9149 tg = sched_create_group(parent); 9150 if (IS_ERR(tg)) 9151 return ERR_PTR(-ENOMEM); 9152 9153 return &tg->css; 9154 } 9155 9156 /* Expose task group only after completing cgroup initialization */ 9157 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 9158 { 9159 struct task_group *tg = css_tg(css); 9160 struct task_group *parent = css_tg(css->parent); 9161 int ret; 9162 9163 ret = scx_tg_online(tg); 9164 if (ret) 9165 return ret; 9166 9167 if (parent) 9168 sched_online_group(tg, parent); 9169 9170 #ifdef CONFIG_UCLAMP_TASK_GROUP 9171 /* Propagate the effective uclamp value for the new group */ 9172 guard(mutex)(&uclamp_mutex); 9173 guard(rcu)(); 9174 cpu_util_update_eff(css); 9175 #endif 9176 9177 return 0; 9178 } 9179 9180 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 9181 { 9182 struct task_group *tg = css_tg(css); 9183 9184 scx_tg_offline(tg); 9185 } 9186 9187 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 9188 { 9189 struct task_group *tg = css_tg(css); 9190 9191 sched_release_group(tg); 9192 } 9193 9194 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 9195 { 9196 struct task_group *tg = css_tg(css); 9197 9198 /* 9199 * Relies on the RCU grace period between css_released() and this. 9200 */ 9201 sched_unregister_group(tg); 9202 } 9203 9204 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 9205 { 9206 #ifdef CONFIG_RT_GROUP_SCHED 9207 struct task_struct *task; 9208 struct cgroup_subsys_state *css; 9209 9210 if (!rt_group_sched_enabled()) 9211 goto scx_check; 9212 9213 cgroup_taskset_for_each(task, css, tset) { 9214 if (!sched_rt_can_attach(css_tg(css), task)) 9215 return -EINVAL; 9216 } 9217 scx_check: 9218 #endif /* CONFIG_RT_GROUP_SCHED */ 9219 return scx_cgroup_can_attach(tset); 9220 } 9221 9222 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 9223 { 9224 struct task_struct *task; 9225 struct cgroup_subsys_state *css; 9226 9227 cgroup_taskset_for_each(task, css, tset) 9228 sched_move_task(task, false); 9229 } 9230 9231 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset) 9232 { 9233 scx_cgroup_cancel_attach(tset); 9234 } 9235 9236 #ifdef CONFIG_UCLAMP_TASK_GROUP 9237 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 9238 { 9239 struct cgroup_subsys_state *top_css = css; 9240 struct uclamp_se *uc_parent = NULL; 9241 struct uclamp_se *uc_se = NULL; 9242 unsigned int eff[UCLAMP_CNT]; 9243 enum uclamp_id clamp_id; 9244 unsigned int clamps; 9245 9246 lockdep_assert_held(&uclamp_mutex); 9247 WARN_ON_ONCE(!rcu_read_lock_held()); 9248 9249 css_for_each_descendant_pre(css, top_css) { 9250 uc_parent = css_tg(css)->parent 9251 ? css_tg(css)->parent->uclamp : NULL; 9252 9253 for_each_clamp_id(clamp_id) { 9254 /* Assume effective clamps matches requested clamps */ 9255 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 9256 /* Cap effective clamps with parent's effective clamps */ 9257 if (uc_parent && 9258 eff[clamp_id] > uc_parent[clamp_id].value) { 9259 eff[clamp_id] = uc_parent[clamp_id].value; 9260 } 9261 } 9262 /* Ensure protection is always capped by limit */ 9263 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 9264 9265 /* Propagate most restrictive effective clamps */ 9266 clamps = 0x0; 9267 uc_se = css_tg(css)->uclamp; 9268 for_each_clamp_id(clamp_id) { 9269 if (eff[clamp_id] == uc_se[clamp_id].value) 9270 continue; 9271 uc_se[clamp_id].value = eff[clamp_id]; 9272 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 9273 clamps |= (0x1 << clamp_id); 9274 } 9275 if (!clamps) { 9276 css = css_rightmost_descendant(css); 9277 continue; 9278 } 9279 9280 /* Immediately update descendants RUNNABLE tasks */ 9281 uclamp_update_active_tasks(css); 9282 } 9283 } 9284 9285 /* 9286 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 9287 * C expression. Since there is no way to convert a macro argument (N) into a 9288 * character constant, use two levels of macros. 9289 */ 9290 #define _POW10(exp) ((unsigned int)1e##exp) 9291 #define POW10(exp) _POW10(exp) 9292 9293 struct uclamp_request { 9294 #define UCLAMP_PERCENT_SHIFT 2 9295 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 9296 s64 percent; 9297 u64 util; 9298 int ret; 9299 }; 9300 9301 static inline struct uclamp_request 9302 capacity_from_percent(char *buf) 9303 { 9304 struct uclamp_request req = { 9305 .percent = UCLAMP_PERCENT_SCALE, 9306 .util = SCHED_CAPACITY_SCALE, 9307 .ret = 0, 9308 }; 9309 9310 buf = strim(buf); 9311 if (strcmp(buf, "max")) { 9312 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 9313 &req.percent); 9314 if (req.ret) 9315 return req; 9316 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 9317 req.ret = -ERANGE; 9318 return req; 9319 } 9320 9321 req.util = req.percent << SCHED_CAPACITY_SHIFT; 9322 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 9323 } 9324 9325 return req; 9326 } 9327 9328 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 9329 size_t nbytes, loff_t off, 9330 enum uclamp_id clamp_id) 9331 { 9332 struct uclamp_request req; 9333 struct task_group *tg; 9334 9335 req = capacity_from_percent(buf); 9336 if (req.ret) 9337 return req.ret; 9338 9339 sched_uclamp_enable(); 9340 9341 guard(mutex)(&uclamp_mutex); 9342 guard(rcu)(); 9343 9344 tg = css_tg(of_css(of)); 9345 if (tg->uclamp_req[clamp_id].value != req.util) 9346 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 9347 9348 /* 9349 * Because of not recoverable conversion rounding we keep track of the 9350 * exact requested value 9351 */ 9352 tg->uclamp_pct[clamp_id] = req.percent; 9353 9354 /* Update effective clamps to track the most restrictive value */ 9355 cpu_util_update_eff(of_css(of)); 9356 9357 return nbytes; 9358 } 9359 9360 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9361 char *buf, size_t nbytes, 9362 loff_t off) 9363 { 9364 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9365 } 9366 9367 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9368 char *buf, size_t nbytes, 9369 loff_t off) 9370 { 9371 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9372 } 9373 9374 static inline void cpu_uclamp_print(struct seq_file *sf, 9375 enum uclamp_id clamp_id) 9376 { 9377 struct task_group *tg; 9378 u64 util_clamp; 9379 u64 percent; 9380 u32 rem; 9381 9382 scoped_guard (rcu) { 9383 tg = css_tg(seq_css(sf)); 9384 util_clamp = tg->uclamp_req[clamp_id].value; 9385 } 9386 9387 if (util_clamp == SCHED_CAPACITY_SCALE) { 9388 seq_puts(sf, "max\n"); 9389 return; 9390 } 9391 9392 percent = tg->uclamp_pct[clamp_id]; 9393 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9394 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9395 } 9396 9397 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9398 { 9399 cpu_uclamp_print(sf, UCLAMP_MIN); 9400 return 0; 9401 } 9402 9403 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9404 { 9405 cpu_uclamp_print(sf, UCLAMP_MAX); 9406 return 0; 9407 } 9408 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9409 9410 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9411 static unsigned long tg_weight(struct task_group *tg) 9412 { 9413 #ifdef CONFIG_FAIR_GROUP_SCHED 9414 return scale_load_down(tg->shares); 9415 #else 9416 return sched_weight_from_cgroup(tg->scx.weight); 9417 #endif 9418 } 9419 9420 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9421 struct cftype *cftype, u64 shareval) 9422 { 9423 int ret; 9424 9425 if (shareval > scale_load_down(ULONG_MAX)) 9426 shareval = MAX_SHARES; 9427 ret = sched_group_set_shares(css_tg(css), scale_load(shareval)); 9428 if (!ret) 9429 scx_group_set_weight(css_tg(css), 9430 sched_weight_to_cgroup(shareval)); 9431 return ret; 9432 } 9433 9434 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9435 struct cftype *cft) 9436 { 9437 return tg_weight(css_tg(css)); 9438 } 9439 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9440 9441 #ifdef CONFIG_CFS_BANDWIDTH 9442 static DEFINE_MUTEX(cfs_constraints_mutex); 9443 9444 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9445 9446 static int tg_set_cfs_bandwidth(struct task_group *tg, 9447 u64 period_us, u64 quota_us, u64 burst_us) 9448 { 9449 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9450 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9451 u64 period, quota, burst; 9452 9453 period = (u64)period_us * NSEC_PER_USEC; 9454 9455 if (quota_us == RUNTIME_INF) 9456 quota = RUNTIME_INF; 9457 else 9458 quota = (u64)quota_us * NSEC_PER_USEC; 9459 9460 burst = (u64)burst_us * NSEC_PER_USEC; 9461 9462 /* 9463 * Prevent race between setting of cfs_rq->runtime_enabled and 9464 * unthrottle_offline_cfs_rqs(). 9465 */ 9466 guard(cpus_read_lock)(); 9467 guard(mutex)(&cfs_constraints_mutex); 9468 9469 ret = __cfs_schedulable(tg, period, quota); 9470 if (ret) 9471 return ret; 9472 9473 runtime_enabled = quota != RUNTIME_INF; 9474 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9475 /* 9476 * If we need to toggle cfs_bandwidth_used, off->on must occur 9477 * before making related changes, and on->off must occur afterwards 9478 */ 9479 if (runtime_enabled && !runtime_was_enabled) 9480 cfs_bandwidth_usage_inc(); 9481 9482 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 9483 cfs_b->period = ns_to_ktime(period); 9484 cfs_b->quota = quota; 9485 cfs_b->burst = burst; 9486 9487 __refill_cfs_bandwidth_runtime(cfs_b); 9488 9489 /* 9490 * Restart the period timer (if active) to handle new 9491 * period expiry: 9492 */ 9493 if (runtime_enabled) 9494 start_cfs_bandwidth(cfs_b); 9495 } 9496 9497 for_each_online_cpu(i) { 9498 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9499 struct rq *rq = cfs_rq->rq; 9500 9501 guard(rq_lock_irq)(rq); 9502 cfs_rq->runtime_enabled = runtime_enabled; 9503 cfs_rq->runtime_remaining = 1; 9504 9505 if (cfs_rq->throttled) 9506 unthrottle_cfs_rq(cfs_rq); 9507 } 9508 9509 if (runtime_was_enabled && !runtime_enabled) 9510 cfs_bandwidth_usage_dec(); 9511 9512 return 0; 9513 } 9514 9515 static u64 tg_get_cfs_period(struct task_group *tg) 9516 { 9517 u64 cfs_period_us; 9518 9519 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9520 do_div(cfs_period_us, NSEC_PER_USEC); 9521 9522 return cfs_period_us; 9523 } 9524 9525 static u64 tg_get_cfs_quota(struct task_group *tg) 9526 { 9527 u64 quota_us; 9528 9529 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9530 return RUNTIME_INF; 9531 9532 quota_us = tg->cfs_bandwidth.quota; 9533 do_div(quota_us, NSEC_PER_USEC); 9534 9535 return quota_us; 9536 } 9537 9538 static u64 tg_get_cfs_burst(struct task_group *tg) 9539 { 9540 u64 burst_us; 9541 9542 burst_us = tg->cfs_bandwidth.burst; 9543 do_div(burst_us, NSEC_PER_USEC); 9544 9545 return burst_us; 9546 } 9547 9548 struct cfs_schedulable_data { 9549 struct task_group *tg; 9550 u64 period, quota; 9551 }; 9552 9553 /* 9554 * normalize group quota/period to be quota/max_period 9555 * note: units are usecs 9556 */ 9557 static u64 normalize_cfs_quota(struct task_group *tg, 9558 struct cfs_schedulable_data *d) 9559 { 9560 u64 quota, period; 9561 9562 if (tg == d->tg) { 9563 period = d->period; 9564 quota = d->quota; 9565 } else { 9566 period = tg_get_cfs_period(tg); 9567 quota = tg_get_cfs_quota(tg); 9568 } 9569 9570 /* note: these should typically be equivalent */ 9571 if (quota == RUNTIME_INF || quota == -1) 9572 return RUNTIME_INF; 9573 9574 return to_ratio(period, quota); 9575 } 9576 9577 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9578 { 9579 struct cfs_schedulable_data *d = data; 9580 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9581 s64 quota = 0, parent_quota = -1; 9582 9583 if (!tg->parent) { 9584 quota = RUNTIME_INF; 9585 } else { 9586 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9587 9588 quota = normalize_cfs_quota(tg, d); 9589 parent_quota = parent_b->hierarchical_quota; 9590 9591 /* 9592 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9593 * always take the non-RUNTIME_INF min. On cgroup1, only 9594 * inherit when no limit is set. In both cases this is used 9595 * by the scheduler to determine if a given CFS task has a 9596 * bandwidth constraint at some higher level. 9597 */ 9598 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9599 if (quota == RUNTIME_INF) 9600 quota = parent_quota; 9601 else if (parent_quota != RUNTIME_INF) 9602 quota = min(quota, parent_quota); 9603 } else { 9604 if (quota == RUNTIME_INF) 9605 quota = parent_quota; 9606 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9607 return -EINVAL; 9608 } 9609 } 9610 cfs_b->hierarchical_quota = quota; 9611 9612 return 0; 9613 } 9614 9615 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9616 { 9617 struct cfs_schedulable_data data = { 9618 .tg = tg, 9619 .period = period, 9620 .quota = quota, 9621 }; 9622 9623 if (quota != RUNTIME_INF) { 9624 do_div(data.period, NSEC_PER_USEC); 9625 do_div(data.quota, NSEC_PER_USEC); 9626 } 9627 9628 guard(rcu)(); 9629 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9630 } 9631 9632 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9633 { 9634 struct task_group *tg = css_tg(seq_css(sf)); 9635 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9636 9637 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9638 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9639 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9640 9641 if (schedstat_enabled() && tg != &root_task_group) { 9642 struct sched_statistics *stats; 9643 u64 ws = 0; 9644 int i; 9645 9646 for_each_possible_cpu(i) { 9647 stats = __schedstats_from_se(tg->se[i]); 9648 ws += schedstat_val(stats->wait_sum); 9649 } 9650 9651 seq_printf(sf, "wait_sum %llu\n", ws); 9652 } 9653 9654 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 9655 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 9656 9657 return 0; 9658 } 9659 9660 static u64 throttled_time_self(struct task_group *tg) 9661 { 9662 int i; 9663 u64 total = 0; 9664 9665 for_each_possible_cpu(i) { 9666 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 9667 } 9668 9669 return total; 9670 } 9671 9672 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 9673 { 9674 struct task_group *tg = css_tg(seq_css(sf)); 9675 9676 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 9677 9678 return 0; 9679 } 9680 #endif /* CONFIG_CFS_BANDWIDTH */ 9681 9682 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 9683 const u64 max_bw_quota_period_us = 1 * USEC_PER_SEC; /* 1s */ 9684 static const u64 min_bw_quota_period_us = 1 * USEC_PER_MSEC; /* 1ms */ 9685 /* More than 203 days if BW_SHIFT equals 20. */ 9686 static const u64 max_bw_runtime_us = MAX_BW; 9687 9688 static void tg_bandwidth(struct task_group *tg, 9689 u64 *period_us_p, u64 *quota_us_p, u64 *burst_us_p) 9690 { 9691 #ifdef CONFIG_CFS_BANDWIDTH 9692 if (period_us_p) 9693 *period_us_p = tg_get_cfs_period(tg); 9694 if (quota_us_p) 9695 *quota_us_p = tg_get_cfs_quota(tg); 9696 if (burst_us_p) 9697 *burst_us_p = tg_get_cfs_burst(tg); 9698 #else /* !CONFIG_CFS_BANDWIDTH */ 9699 if (period_us_p) 9700 *period_us_p = tg->scx.bw_period_us; 9701 if (quota_us_p) 9702 *quota_us_p = tg->scx.bw_quota_us; 9703 if (burst_us_p) 9704 *burst_us_p = tg->scx.bw_burst_us; 9705 #endif /* CONFIG_CFS_BANDWIDTH */ 9706 } 9707 9708 static u64 cpu_period_read_u64(struct cgroup_subsys_state *css, 9709 struct cftype *cft) 9710 { 9711 u64 period_us; 9712 9713 tg_bandwidth(css_tg(css), &period_us, NULL, NULL); 9714 return period_us; 9715 } 9716 9717 static int tg_set_bandwidth(struct task_group *tg, 9718 u64 period_us, u64 quota_us, u64 burst_us) 9719 { 9720 const u64 max_usec = U64_MAX / NSEC_PER_USEC; 9721 int ret = 0; 9722 9723 if (tg == &root_task_group) 9724 return -EINVAL; 9725 9726 /* Values should survive translation to nsec */ 9727 if (period_us > max_usec || 9728 (quota_us != RUNTIME_INF && quota_us > max_usec) || 9729 burst_us > max_usec) 9730 return -EINVAL; 9731 9732 /* 9733 * Ensure we have some amount of bandwidth every period. This is to 9734 * prevent reaching a state of large arrears when throttled via 9735 * entity_tick() resulting in prolonged exit starvation. 9736 */ 9737 if (quota_us < min_bw_quota_period_us || 9738 period_us < min_bw_quota_period_us) 9739 return -EINVAL; 9740 9741 /* 9742 * Likewise, bound things on the other side by preventing insane quota 9743 * periods. This also allows us to normalize in computing quota 9744 * feasibility. 9745 */ 9746 if (period_us > max_bw_quota_period_us) 9747 return -EINVAL; 9748 9749 /* 9750 * Bound quota to defend quota against overflow during bandwidth shift. 9751 */ 9752 if (quota_us != RUNTIME_INF && quota_us > max_bw_runtime_us) 9753 return -EINVAL; 9754 9755 if (quota_us != RUNTIME_INF && (burst_us > quota_us || 9756 burst_us + quota_us > max_bw_runtime_us)) 9757 return -EINVAL; 9758 9759 #ifdef CONFIG_CFS_BANDWIDTH 9760 ret = tg_set_cfs_bandwidth(tg, period_us, quota_us, burst_us); 9761 #endif /* CONFIG_CFS_BANDWIDTH */ 9762 if (!ret) 9763 scx_group_set_bandwidth(tg, period_us, quota_us, burst_us); 9764 return ret; 9765 } 9766 9767 static s64 cpu_quota_read_s64(struct cgroup_subsys_state *css, 9768 struct cftype *cft) 9769 { 9770 u64 quota_us; 9771 9772 tg_bandwidth(css_tg(css), NULL, "a_us, NULL); 9773 return quota_us; /* (s64)RUNTIME_INF becomes -1 */ 9774 } 9775 9776 static u64 cpu_burst_read_u64(struct cgroup_subsys_state *css, 9777 struct cftype *cft) 9778 { 9779 u64 burst_us; 9780 9781 tg_bandwidth(css_tg(css), NULL, NULL, &burst_us); 9782 return burst_us; 9783 } 9784 9785 static int cpu_period_write_u64(struct cgroup_subsys_state *css, 9786 struct cftype *cftype, u64 period_us) 9787 { 9788 struct task_group *tg = css_tg(css); 9789 u64 quota_us, burst_us; 9790 9791 tg_bandwidth(tg, NULL, "a_us, &burst_us); 9792 return tg_set_bandwidth(tg, period_us, quota_us, burst_us); 9793 } 9794 9795 static int cpu_quota_write_s64(struct cgroup_subsys_state *css, 9796 struct cftype *cftype, s64 quota_us) 9797 { 9798 struct task_group *tg = css_tg(css); 9799 u64 period_us, burst_us; 9800 9801 if (quota_us < 0) 9802 quota_us = RUNTIME_INF; 9803 9804 tg_bandwidth(tg, &period_us, NULL, &burst_us); 9805 return tg_set_bandwidth(tg, period_us, quota_us, burst_us); 9806 } 9807 9808 static int cpu_burst_write_u64(struct cgroup_subsys_state *css, 9809 struct cftype *cftype, u64 burst_us) 9810 { 9811 struct task_group *tg = css_tg(css); 9812 u64 period_us, quota_us; 9813 9814 tg_bandwidth(tg, &period_us, "a_us, NULL); 9815 return tg_set_bandwidth(tg, period_us, quota_us, burst_us); 9816 } 9817 #endif /* CONFIG_GROUP_SCHED_BANDWIDTH */ 9818 9819 #ifdef CONFIG_RT_GROUP_SCHED 9820 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9821 struct cftype *cft, s64 val) 9822 { 9823 return sched_group_set_rt_runtime(css_tg(css), val); 9824 } 9825 9826 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9827 struct cftype *cft) 9828 { 9829 return sched_group_rt_runtime(css_tg(css)); 9830 } 9831 9832 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9833 struct cftype *cftype, u64 rt_period_us) 9834 { 9835 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9836 } 9837 9838 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9839 struct cftype *cft) 9840 { 9841 return sched_group_rt_period(css_tg(css)); 9842 } 9843 #endif /* CONFIG_RT_GROUP_SCHED */ 9844 9845 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9846 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 9847 struct cftype *cft) 9848 { 9849 return css_tg(css)->idle; 9850 } 9851 9852 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 9853 struct cftype *cft, s64 idle) 9854 { 9855 int ret; 9856 9857 ret = sched_group_set_idle(css_tg(css), idle); 9858 if (!ret) 9859 scx_group_set_idle(css_tg(css), idle); 9860 return ret; 9861 } 9862 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9863 9864 static struct cftype cpu_legacy_files[] = { 9865 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9866 { 9867 .name = "shares", 9868 .read_u64 = cpu_shares_read_u64, 9869 .write_u64 = cpu_shares_write_u64, 9870 }, 9871 { 9872 .name = "idle", 9873 .read_s64 = cpu_idle_read_s64, 9874 .write_s64 = cpu_idle_write_s64, 9875 }, 9876 #endif 9877 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 9878 { 9879 .name = "cfs_period_us", 9880 .read_u64 = cpu_period_read_u64, 9881 .write_u64 = cpu_period_write_u64, 9882 }, 9883 { 9884 .name = "cfs_quota_us", 9885 .read_s64 = cpu_quota_read_s64, 9886 .write_s64 = cpu_quota_write_s64, 9887 }, 9888 { 9889 .name = "cfs_burst_us", 9890 .read_u64 = cpu_burst_read_u64, 9891 .write_u64 = cpu_burst_write_u64, 9892 }, 9893 #endif 9894 #ifdef CONFIG_CFS_BANDWIDTH 9895 { 9896 .name = "stat", 9897 .seq_show = cpu_cfs_stat_show, 9898 }, 9899 { 9900 .name = "stat.local", 9901 .seq_show = cpu_cfs_local_stat_show, 9902 }, 9903 #endif 9904 #ifdef CONFIG_UCLAMP_TASK_GROUP 9905 { 9906 .name = "uclamp.min", 9907 .flags = CFTYPE_NOT_ON_ROOT, 9908 .seq_show = cpu_uclamp_min_show, 9909 .write = cpu_uclamp_min_write, 9910 }, 9911 { 9912 .name = "uclamp.max", 9913 .flags = CFTYPE_NOT_ON_ROOT, 9914 .seq_show = cpu_uclamp_max_show, 9915 .write = cpu_uclamp_max_write, 9916 }, 9917 #endif 9918 { } /* Terminate */ 9919 }; 9920 9921 #ifdef CONFIG_RT_GROUP_SCHED 9922 static struct cftype rt_group_files[] = { 9923 { 9924 .name = "rt_runtime_us", 9925 .read_s64 = cpu_rt_runtime_read, 9926 .write_s64 = cpu_rt_runtime_write, 9927 }, 9928 { 9929 .name = "rt_period_us", 9930 .read_u64 = cpu_rt_period_read_uint, 9931 .write_u64 = cpu_rt_period_write_uint, 9932 }, 9933 { } /* Terminate */ 9934 }; 9935 9936 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED 9937 DEFINE_STATIC_KEY_FALSE(rt_group_sched); 9938 # else 9939 DEFINE_STATIC_KEY_TRUE(rt_group_sched); 9940 # endif 9941 9942 static int __init setup_rt_group_sched(char *str) 9943 { 9944 long val; 9945 9946 if (kstrtol(str, 0, &val) || val < 0 || val > 1) { 9947 pr_warn("Unable to set rt_group_sched\n"); 9948 return 1; 9949 } 9950 if (val) 9951 static_branch_enable(&rt_group_sched); 9952 else 9953 static_branch_disable(&rt_group_sched); 9954 9955 return 1; 9956 } 9957 __setup("rt_group_sched=", setup_rt_group_sched); 9958 9959 static int __init cpu_rt_group_init(void) 9960 { 9961 if (!rt_group_sched_enabled()) 9962 return 0; 9963 9964 WARN_ON(cgroup_add_legacy_cftypes(&cpu_cgrp_subsys, rt_group_files)); 9965 return 0; 9966 } 9967 subsys_initcall(cpu_rt_group_init); 9968 #endif /* CONFIG_RT_GROUP_SCHED */ 9969 9970 static int cpu_extra_stat_show(struct seq_file *sf, 9971 struct cgroup_subsys_state *css) 9972 { 9973 #ifdef CONFIG_CFS_BANDWIDTH 9974 { 9975 struct task_group *tg = css_tg(css); 9976 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9977 u64 throttled_usec, burst_usec; 9978 9979 throttled_usec = cfs_b->throttled_time; 9980 do_div(throttled_usec, NSEC_PER_USEC); 9981 burst_usec = cfs_b->burst_time; 9982 do_div(burst_usec, NSEC_PER_USEC); 9983 9984 seq_printf(sf, "nr_periods %d\n" 9985 "nr_throttled %d\n" 9986 "throttled_usec %llu\n" 9987 "nr_bursts %d\n" 9988 "burst_usec %llu\n", 9989 cfs_b->nr_periods, cfs_b->nr_throttled, 9990 throttled_usec, cfs_b->nr_burst, burst_usec); 9991 } 9992 #endif /* CONFIG_CFS_BANDWIDTH */ 9993 return 0; 9994 } 9995 9996 static int cpu_local_stat_show(struct seq_file *sf, 9997 struct cgroup_subsys_state *css) 9998 { 9999 #ifdef CONFIG_CFS_BANDWIDTH 10000 { 10001 struct task_group *tg = css_tg(css); 10002 u64 throttled_self_usec; 10003 10004 throttled_self_usec = throttled_time_self(tg); 10005 do_div(throttled_self_usec, NSEC_PER_USEC); 10006 10007 seq_printf(sf, "throttled_usec %llu\n", 10008 throttled_self_usec); 10009 } 10010 #endif 10011 return 0; 10012 } 10013 10014 #ifdef CONFIG_GROUP_SCHED_WEIGHT 10015 10016 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 10017 struct cftype *cft) 10018 { 10019 return sched_weight_to_cgroup(tg_weight(css_tg(css))); 10020 } 10021 10022 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 10023 struct cftype *cft, u64 cgrp_weight) 10024 { 10025 unsigned long weight; 10026 int ret; 10027 10028 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) 10029 return -ERANGE; 10030 10031 weight = sched_weight_from_cgroup(cgrp_weight); 10032 10033 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 10034 if (!ret) 10035 scx_group_set_weight(css_tg(css), cgrp_weight); 10036 return ret; 10037 } 10038 10039 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 10040 struct cftype *cft) 10041 { 10042 unsigned long weight = tg_weight(css_tg(css)); 10043 int last_delta = INT_MAX; 10044 int prio, delta; 10045 10046 /* find the closest nice value to the current weight */ 10047 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 10048 delta = abs(sched_prio_to_weight[prio] - weight); 10049 if (delta >= last_delta) 10050 break; 10051 last_delta = delta; 10052 } 10053 10054 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 10055 } 10056 10057 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 10058 struct cftype *cft, s64 nice) 10059 { 10060 unsigned long weight; 10061 int idx, ret; 10062 10063 if (nice < MIN_NICE || nice > MAX_NICE) 10064 return -ERANGE; 10065 10066 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 10067 idx = array_index_nospec(idx, 40); 10068 weight = sched_prio_to_weight[idx]; 10069 10070 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 10071 if (!ret) 10072 scx_group_set_weight(css_tg(css), 10073 sched_weight_to_cgroup(weight)); 10074 return ret; 10075 } 10076 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 10077 10078 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 10079 long period, long quota) 10080 { 10081 if (quota < 0) 10082 seq_puts(sf, "max"); 10083 else 10084 seq_printf(sf, "%ld", quota); 10085 10086 seq_printf(sf, " %ld\n", period); 10087 } 10088 10089 /* caller should put the current value in *@periodp before calling */ 10090 static int __maybe_unused cpu_period_quota_parse(char *buf, u64 *period_us_p, 10091 u64 *quota_us_p) 10092 { 10093 char tok[21]; /* U64_MAX */ 10094 10095 if (sscanf(buf, "%20s %llu", tok, period_us_p) < 1) 10096 return -EINVAL; 10097 10098 if (sscanf(tok, "%llu", quota_us_p) < 1) { 10099 if (!strcmp(tok, "max")) 10100 *quota_us_p = RUNTIME_INF; 10101 else 10102 return -EINVAL; 10103 } 10104 10105 return 0; 10106 } 10107 10108 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 10109 static int cpu_max_show(struct seq_file *sf, void *v) 10110 { 10111 struct task_group *tg = css_tg(seq_css(sf)); 10112 u64 period_us, quota_us; 10113 10114 tg_bandwidth(tg, &period_us, "a_us, NULL); 10115 cpu_period_quota_print(sf, period_us, quota_us); 10116 return 0; 10117 } 10118 10119 static ssize_t cpu_max_write(struct kernfs_open_file *of, 10120 char *buf, size_t nbytes, loff_t off) 10121 { 10122 struct task_group *tg = css_tg(of_css(of)); 10123 u64 period_us, quota_us, burst_us; 10124 int ret; 10125 10126 tg_bandwidth(tg, &period_us, NULL, &burst_us); 10127 ret = cpu_period_quota_parse(buf, &period_us, "a_us); 10128 if (!ret) 10129 ret = tg_set_bandwidth(tg, period_us, quota_us, burst_us); 10130 return ret ?: nbytes; 10131 } 10132 #endif /* CONFIG_CFS_BANDWIDTH */ 10133 10134 static struct cftype cpu_files[] = { 10135 #ifdef CONFIG_GROUP_SCHED_WEIGHT 10136 { 10137 .name = "weight", 10138 .flags = CFTYPE_NOT_ON_ROOT, 10139 .read_u64 = cpu_weight_read_u64, 10140 .write_u64 = cpu_weight_write_u64, 10141 }, 10142 { 10143 .name = "weight.nice", 10144 .flags = CFTYPE_NOT_ON_ROOT, 10145 .read_s64 = cpu_weight_nice_read_s64, 10146 .write_s64 = cpu_weight_nice_write_s64, 10147 }, 10148 { 10149 .name = "idle", 10150 .flags = CFTYPE_NOT_ON_ROOT, 10151 .read_s64 = cpu_idle_read_s64, 10152 .write_s64 = cpu_idle_write_s64, 10153 }, 10154 #endif 10155 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 10156 { 10157 .name = "max", 10158 .flags = CFTYPE_NOT_ON_ROOT, 10159 .seq_show = cpu_max_show, 10160 .write = cpu_max_write, 10161 }, 10162 { 10163 .name = "max.burst", 10164 .flags = CFTYPE_NOT_ON_ROOT, 10165 .read_u64 = cpu_burst_read_u64, 10166 .write_u64 = cpu_burst_write_u64, 10167 }, 10168 #endif /* CONFIG_CFS_BANDWIDTH */ 10169 #ifdef CONFIG_UCLAMP_TASK_GROUP 10170 { 10171 .name = "uclamp.min", 10172 .flags = CFTYPE_NOT_ON_ROOT, 10173 .seq_show = cpu_uclamp_min_show, 10174 .write = cpu_uclamp_min_write, 10175 }, 10176 { 10177 .name = "uclamp.max", 10178 .flags = CFTYPE_NOT_ON_ROOT, 10179 .seq_show = cpu_uclamp_max_show, 10180 .write = cpu_uclamp_max_write, 10181 }, 10182 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10183 { } /* terminate */ 10184 }; 10185 10186 struct cgroup_subsys cpu_cgrp_subsys = { 10187 .css_alloc = cpu_cgroup_css_alloc, 10188 .css_online = cpu_cgroup_css_online, 10189 .css_offline = cpu_cgroup_css_offline, 10190 .css_released = cpu_cgroup_css_released, 10191 .css_free = cpu_cgroup_css_free, 10192 .css_extra_stat_show = cpu_extra_stat_show, 10193 .css_local_stat_show = cpu_local_stat_show, 10194 .can_attach = cpu_cgroup_can_attach, 10195 .attach = cpu_cgroup_attach, 10196 .cancel_attach = cpu_cgroup_cancel_attach, 10197 .legacy_cftypes = cpu_legacy_files, 10198 .dfl_cftypes = cpu_files, 10199 .early_init = true, 10200 .threaded = true, 10201 }; 10202 10203 #endif /* CONFIG_CGROUP_SCHED */ 10204 10205 void dump_cpu_task(int cpu) 10206 { 10207 if (in_hardirq() && cpu == smp_processor_id()) { 10208 struct pt_regs *regs; 10209 10210 regs = get_irq_regs(); 10211 if (regs) { 10212 show_regs(regs); 10213 return; 10214 } 10215 } 10216 10217 if (trigger_single_cpu_backtrace(cpu)) 10218 return; 10219 10220 pr_info("Task dump for CPU %d:\n", cpu); 10221 sched_show_task(cpu_curr(cpu)); 10222 } 10223 10224 /* 10225 * Nice levels are multiplicative, with a gentle 10% change for every 10226 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 10227 * nice 1, it will get ~10% less CPU time than another CPU-bound task 10228 * that remained on nice 0. 10229 * 10230 * The "10% effect" is relative and cumulative: from _any_ nice level, 10231 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 10232 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 10233 * If a task goes up by ~10% and another task goes down by ~10% then 10234 * the relative distance between them is ~25%.) 10235 */ 10236 const int sched_prio_to_weight[40] = { 10237 /* -20 */ 88761, 71755, 56483, 46273, 36291, 10238 /* -15 */ 29154, 23254, 18705, 14949, 11916, 10239 /* -10 */ 9548, 7620, 6100, 4904, 3906, 10240 /* -5 */ 3121, 2501, 1991, 1586, 1277, 10241 /* 0 */ 1024, 820, 655, 526, 423, 10242 /* 5 */ 335, 272, 215, 172, 137, 10243 /* 10 */ 110, 87, 70, 56, 45, 10244 /* 15 */ 36, 29, 23, 18, 15, 10245 }; 10246 10247 /* 10248 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. 10249 * 10250 * In cases where the weight does not change often, we can use the 10251 * pre-calculated inverse to speed up arithmetics by turning divisions 10252 * into multiplications: 10253 */ 10254 const u32 sched_prio_to_wmult[40] = { 10255 /* -20 */ 48388, 59856, 76040, 92818, 118348, 10256 /* -15 */ 147320, 184698, 229616, 287308, 360437, 10257 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 10258 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 10259 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 10260 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 10261 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 10262 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 10263 }; 10264 10265 void call_trace_sched_update_nr_running(struct rq *rq, int count) 10266 { 10267 trace_sched_update_nr_running_tp(rq, count); 10268 } 10269 10270 #ifdef CONFIG_SCHED_MM_CID 10271 /* 10272 * Concurrency IDentifier management 10273 * 10274 * Serialization rules: 10275 * 10276 * mm::mm_cid::mutex: Serializes fork() and exit() and therefore 10277 * protects mm::mm_cid::users. 10278 * 10279 * mm::mm_cid::lock: Serializes mm_update_max_cids() and 10280 * mm_update_cpus_allowed(). Nests in mm_cid::mutex 10281 * and runqueue lock. 10282 * 10283 * The mm_cidmask bitmap is not protected by any of the mm::mm_cid locks 10284 * and can only be modified with atomic operations. 10285 * 10286 * The mm::mm_cid:pcpu per CPU storage is protected by the CPUs runqueue 10287 * lock. 10288 * 10289 * CID ownership: 10290 * 10291 * A CID is either owned by a task (stored in task_struct::mm_cid.cid) or 10292 * by a CPU (stored in mm::mm_cid.pcpu::cid). CIDs owned by CPUs have the 10293 * MM_CID_ONCPU bit set. During transition from CPU to task ownership mode, 10294 * MM_CID_TRANSIT is set on the per task CIDs. When this bit is set the 10295 * task needs to drop the CID into the pool when scheduling out. Both bits 10296 * (ONCPU and TRANSIT) are filtered out by task_cid() when the CID is 10297 * actually handed over to user space in the RSEQ memory. 10298 * 10299 * Mode switching: 10300 * 10301 * Switching to per CPU mode happens when the user count becomes greater 10302 * than the maximum number of CIDs, which is calculated by: 10303 * 10304 * opt_cids = min(mm_cid::nr_cpus_allowed, mm_cid::users); 10305 * max_cids = min(1.25 * opt_cids, num_possible_cpus()); 10306 * 10307 * The +25% allowance is useful for tight CPU masks in scenarios where only 10308 * a few threads are created and destroyed to avoid frequent mode 10309 * switches. Though this allowance shrinks, the closer opt_cids becomes to 10310 * num_possible_cpus(), which is the (unfortunate) hard ABI limit. 10311 * 10312 * At the point of switching to per CPU mode the new user is not yet 10313 * visible in the system, so the task which initiated the fork() runs the 10314 * fixup function: mm_cid_fixup_tasks_to_cpu() walks the thread list and 10315 * either transfers each tasks owned CID to the CPU the task runs on or 10316 * drops it into the CID pool if a task is not on a CPU at that point in 10317 * time. Tasks which schedule in before the task walk reaches them do the 10318 * handover in mm_cid_schedin(). When mm_cid_fixup_tasks_to_cpus() completes 10319 * it's guaranteed that no task related to that MM owns a CID anymore. 10320 * 10321 * Switching back to task mode happens when the user count goes below the 10322 * threshold which was recorded on the per CPU mode switch: 10323 * 10324 * pcpu_thrs = min(opt_cids - (opt_cids / 4), num_possible_cpus() / 2); 10325 * 10326 * This threshold is updated when a affinity change increases the number of 10327 * allowed CPUs for the MM, which might cause a switch back to per task 10328 * mode. 10329 * 10330 * If the switch back was initiated by a exiting task, then that task runs 10331 * the fixup function. If it was initiated by a affinity change, then it's 10332 * run either in the deferred update function in context of a workqueue or 10333 * by a task which forks a new one or by a task which exits. Whatever 10334 * happens first. mm_cid_fixup_cpus_to_task() walks through the possible 10335 * CPUs and either transfers the CPU owned CIDs to a related task which 10336 * runs on the CPU or drops it into the pool. Tasks which schedule in on a 10337 * CPU which the walk did not cover yet do the handover themself. 10338 * 10339 * This transition from CPU to per task ownership happens in two phases: 10340 * 10341 * 1) mm:mm_cid.transit contains MM_CID_TRANSIT This is OR'ed on the task 10342 * CID and denotes that the CID is only temporarily owned by the 10343 * task. When it schedules out the task drops the CID back into the 10344 * pool if this bit is set. 10345 * 10346 * 2) The initiating context walks the per CPU space and after completion 10347 * clears mm:mm_cid.transit. So after that point the CIDs are strictly 10348 * task owned again. 10349 * 10350 * This two phase transition is required to prevent CID space exhaustion 10351 * during the transition as a direct transfer of ownership would fail if 10352 * two tasks are scheduled in on the same CPU before the fixup freed per 10353 * CPU CIDs. 10354 * 10355 * When mm_cid_fixup_cpus_to_tasks() completes it's guaranteed that no CID 10356 * related to that MM is owned by a CPU anymore. 10357 */ 10358 10359 /* 10360 * Update the CID range properties when the constraints change. Invoked via 10361 * fork(), exit() and affinity changes 10362 */ 10363 static void __mm_update_max_cids(struct mm_mm_cid *mc) 10364 { 10365 unsigned int opt_cids, max_cids; 10366 10367 /* Calculate the new optimal constraint */ 10368 opt_cids = min(mc->nr_cpus_allowed, mc->users); 10369 10370 /* Adjust the maximum CIDs to +25% limited by the number of possible CPUs */ 10371 max_cids = min(opt_cids + (opt_cids / 4), num_possible_cpus()); 10372 WRITE_ONCE(mc->max_cids, max_cids); 10373 } 10374 10375 static inline unsigned int mm_cid_calc_pcpu_thrs(struct mm_mm_cid *mc) 10376 { 10377 unsigned int opt_cids; 10378 10379 opt_cids = min(mc->nr_cpus_allowed, mc->users); 10380 /* Has to be at least 1 because 0 indicates PCPU mode off */ 10381 return max(min(opt_cids - opt_cids / 4, num_possible_cpus() / 2), 1); 10382 } 10383 10384 static bool mm_update_max_cids(struct mm_struct *mm) 10385 { 10386 struct mm_mm_cid *mc = &mm->mm_cid; 10387 10388 lockdep_assert_held(&mm->mm_cid.lock); 10389 10390 /* Clear deferred mode switch flag. A change is handled by the caller */ 10391 mc->update_deferred = false; 10392 __mm_update_max_cids(mc); 10393 10394 /* Check whether owner mode must be changed */ 10395 if (!mc->percpu) { 10396 /* Enable per CPU mode when the number of users is above max_cids */ 10397 if (mc->users > mc->max_cids) 10398 mc->pcpu_thrs = mm_cid_calc_pcpu_thrs(mc); 10399 } else { 10400 /* Switch back to per task if user count under threshold */ 10401 if (mc->users < mc->pcpu_thrs) 10402 mc->pcpu_thrs = 0; 10403 } 10404 10405 /* Mode change required? */ 10406 if (!!mc->percpu == !!mc->pcpu_thrs) 10407 return false; 10408 /* When switching back to per TASK mode, set the transition flag */ 10409 if (!mc->pcpu_thrs) 10410 WRITE_ONCE(mc->transit, MM_CID_TRANSIT); 10411 WRITE_ONCE(mc->percpu, !!mc->pcpu_thrs); 10412 return true; 10413 } 10414 10415 static inline void mm_update_cpus_allowed(struct mm_struct *mm, const struct cpumask *affmsk) 10416 { 10417 struct cpumask *mm_allowed; 10418 struct mm_mm_cid *mc; 10419 unsigned int weight; 10420 10421 if (!mm || !READ_ONCE(mm->mm_cid.users)) 10422 return; 10423 /* 10424 * mm::mm_cid::mm_cpus_allowed is the superset of each threads 10425 * allowed CPUs mask which means it can only grow. 10426 */ 10427 mc = &mm->mm_cid; 10428 guard(raw_spinlock)(&mc->lock); 10429 mm_allowed = mm_cpus_allowed(mm); 10430 weight = cpumask_weighted_or(mm_allowed, mm_allowed, affmsk); 10431 if (weight == mc->nr_cpus_allowed) 10432 return; 10433 10434 WRITE_ONCE(mc->nr_cpus_allowed, weight); 10435 __mm_update_max_cids(mc); 10436 if (!mc->percpu) 10437 return; 10438 10439 /* Adjust the threshold to the wider set */ 10440 mc->pcpu_thrs = mm_cid_calc_pcpu_thrs(mc); 10441 /* Switch back to per task mode? */ 10442 if (mc->users >= mc->pcpu_thrs) 10443 return; 10444 10445 /* Don't queue twice */ 10446 if (mc->update_deferred) 10447 return; 10448 10449 /* Queue the irq work, which schedules the real work */ 10450 mc->update_deferred = true; 10451 irq_work_queue(&mc->irq_work); 10452 } 10453 10454 static inline void mm_cid_transit_to_task(struct task_struct *t, struct mm_cid_pcpu *pcp) 10455 { 10456 if (cid_on_cpu(t->mm_cid.cid)) { 10457 unsigned int cid = cpu_cid_to_cid(t->mm_cid.cid); 10458 10459 t->mm_cid.cid = cid_to_transit_cid(cid); 10460 pcp->cid = t->mm_cid.cid; 10461 } 10462 } 10463 10464 static void mm_cid_fixup_cpus_to_tasks(struct mm_struct *mm) 10465 { 10466 unsigned int cpu; 10467 10468 /* Walk the CPUs and fixup all stale CIDs */ 10469 for_each_possible_cpu(cpu) { 10470 struct mm_cid_pcpu *pcp = per_cpu_ptr(mm->mm_cid.pcpu, cpu); 10471 struct rq *rq = cpu_rq(cpu); 10472 10473 /* Remote access to mm::mm_cid::pcpu requires rq_lock */ 10474 guard(rq_lock_irq)(rq); 10475 /* Is the CID still owned by the CPU? */ 10476 if (cid_on_cpu(pcp->cid)) { 10477 /* 10478 * If rq->curr has @mm, transfer it with the 10479 * transition bit set. Otherwise drop it. 10480 */ 10481 if (rq->curr->mm == mm && rq->curr->mm_cid.active) 10482 mm_cid_transit_to_task(rq->curr, pcp); 10483 else 10484 mm_drop_cid_on_cpu(mm, pcp); 10485 10486 } else if (rq->curr->mm == mm && rq->curr->mm_cid.active) { 10487 unsigned int cid = rq->curr->mm_cid.cid; 10488 10489 /* Ensure it has the transition bit set */ 10490 if (!cid_in_transit(cid)) { 10491 cid = cid_to_transit_cid(cid); 10492 rq->curr->mm_cid.cid = cid; 10493 pcp->cid = cid; 10494 } 10495 } 10496 } 10497 /* Clear the transition bit */ 10498 WRITE_ONCE(mm->mm_cid.transit, 0); 10499 } 10500 10501 static inline void mm_cid_transfer_to_cpu(struct task_struct *t, struct mm_cid_pcpu *pcp) 10502 { 10503 if (cid_on_task(t->mm_cid.cid)) { 10504 t->mm_cid.cid = cid_to_cpu_cid(t->mm_cid.cid); 10505 pcp->cid = t->mm_cid.cid; 10506 } 10507 } 10508 10509 static bool mm_cid_fixup_task_to_cpu(struct task_struct *t, struct mm_struct *mm) 10510 { 10511 /* Remote access to mm::mm_cid::pcpu requires rq_lock */ 10512 guard(task_rq_lock)(t); 10513 /* If the task is not active it is not in the users count */ 10514 if (!t->mm_cid.active) 10515 return false; 10516 if (cid_on_task(t->mm_cid.cid)) { 10517 /* If running on the CPU, transfer the CID, otherwise drop it */ 10518 if (task_rq(t)->curr == t) 10519 mm_cid_transfer_to_cpu(t, per_cpu_ptr(mm->mm_cid.pcpu, task_cpu(t))); 10520 else 10521 mm_unset_cid_on_task(t); 10522 } 10523 return true; 10524 } 10525 10526 static void mm_cid_fixup_tasks_to_cpus(void) 10527 { 10528 struct mm_struct *mm = current->mm; 10529 struct task_struct *p, *t; 10530 unsigned int users; 10531 10532 /* 10533 * This can obviously race with a concurrent affinity change, which 10534 * increases the number of allowed CPUs for this mm, but that does 10535 * not affect the mode and only changes the CID constraints. A 10536 * possible switch back to per task mode happens either in the 10537 * deferred handler function or in the next fork()/exit(). 10538 * 10539 * The caller has already transferred. The newly incoming task is 10540 * already accounted for, but not yet visible. 10541 */ 10542 users = mm->mm_cid.users - 2; 10543 if (!users) 10544 return; 10545 10546 guard(rcu)(); 10547 for_other_threads(current, t) { 10548 if (mm_cid_fixup_task_to_cpu(t, mm)) 10549 users--; 10550 } 10551 10552 if (!users) 10553 return; 10554 10555 /* Happens only for VM_CLONE processes. */ 10556 for_each_process_thread(p, t) { 10557 if (t == current || t->mm != mm) 10558 continue; 10559 if (mm_cid_fixup_task_to_cpu(t, mm)) { 10560 if (--users == 0) 10561 return; 10562 } 10563 } 10564 } 10565 10566 static bool sched_mm_cid_add_user(struct task_struct *t, struct mm_struct *mm) 10567 { 10568 t->mm_cid.active = 1; 10569 mm->mm_cid.users++; 10570 return mm_update_max_cids(mm); 10571 } 10572 10573 void sched_mm_cid_fork(struct task_struct *t) 10574 { 10575 struct mm_struct *mm = t->mm; 10576 bool percpu; 10577 10578 WARN_ON_ONCE(!mm || t->mm_cid.cid != MM_CID_UNSET); 10579 10580 guard(mutex)(&mm->mm_cid.mutex); 10581 scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) { 10582 struct mm_cid_pcpu *pcp = this_cpu_ptr(mm->mm_cid.pcpu); 10583 10584 /* First user ? */ 10585 if (!mm->mm_cid.users) { 10586 sched_mm_cid_add_user(t, mm); 10587 t->mm_cid.cid = mm_get_cid(mm); 10588 /* Required for execve() */ 10589 pcp->cid = t->mm_cid.cid; 10590 return; 10591 } 10592 10593 if (!sched_mm_cid_add_user(t, mm)) { 10594 if (!mm->mm_cid.percpu) 10595 t->mm_cid.cid = mm_get_cid(mm); 10596 return; 10597 } 10598 10599 /* Handle the mode change and transfer current's CID */ 10600 percpu = !!mm->mm_cid.percpu; 10601 if (!percpu) 10602 mm_cid_transit_to_task(current, pcp); 10603 else 10604 mm_cid_transfer_to_cpu(current, pcp); 10605 } 10606 10607 if (percpu) { 10608 mm_cid_fixup_tasks_to_cpus(); 10609 } else { 10610 mm_cid_fixup_cpus_to_tasks(mm); 10611 t->mm_cid.cid = mm_get_cid(mm); 10612 } 10613 } 10614 10615 static bool sched_mm_cid_remove_user(struct task_struct *t) 10616 { 10617 t->mm_cid.active = 0; 10618 scoped_guard(preempt) { 10619 /* Clear the transition bit */ 10620 t->mm_cid.cid = cid_from_transit_cid(t->mm_cid.cid); 10621 mm_unset_cid_on_task(t); 10622 } 10623 t->mm->mm_cid.users--; 10624 return mm_update_max_cids(t->mm); 10625 } 10626 10627 static bool __sched_mm_cid_exit(struct task_struct *t) 10628 { 10629 struct mm_struct *mm = t->mm; 10630 10631 if (!sched_mm_cid_remove_user(t)) 10632 return false; 10633 /* 10634 * Contrary to fork() this only deals with a switch back to per 10635 * task mode either because the above decreased users or an 10636 * affinity change increased the number of allowed CPUs and the 10637 * deferred fixup did not run yet. 10638 */ 10639 if (WARN_ON_ONCE(mm->mm_cid.percpu)) 10640 return false; 10641 /* 10642 * A failed fork(2) cleanup never gets here, so @current must have 10643 * the same MM as @t. That's true for exit() and the failed 10644 * pthread_create() cleanup case. 10645 */ 10646 if (WARN_ON_ONCE(current->mm != mm)) 10647 return false; 10648 return true; 10649 } 10650 10651 /* 10652 * When a task exits, the MM CID held by the task is not longer required as 10653 * the task cannot return to user space. 10654 */ 10655 void sched_mm_cid_exit(struct task_struct *t) 10656 { 10657 struct mm_struct *mm = t->mm; 10658 10659 if (!mm || !t->mm_cid.active) 10660 return; 10661 /* 10662 * Ensure that only one instance is doing MM CID operations within 10663 * a MM. The common case is uncontended. The rare fixup case adds 10664 * some overhead. 10665 */ 10666 scoped_guard(mutex, &mm->mm_cid.mutex) { 10667 /* mm_cid::mutex is sufficient to protect mm_cid::users */ 10668 if (likely(mm->mm_cid.users > 1)) { 10669 scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) { 10670 if (!__sched_mm_cid_exit(t)) 10671 return; 10672 /* Mode change required. Transfer currents CID */ 10673 mm_cid_transit_to_task(current, this_cpu_ptr(mm->mm_cid.pcpu)); 10674 } 10675 mm_cid_fixup_cpus_to_tasks(mm); 10676 return; 10677 } 10678 /* Last user */ 10679 scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) { 10680 /* Required across execve() */ 10681 if (t == current) 10682 mm_cid_transit_to_task(t, this_cpu_ptr(mm->mm_cid.pcpu)); 10683 /* Ignore mode change. There is nothing to do. */ 10684 sched_mm_cid_remove_user(t); 10685 } 10686 } 10687 10688 /* 10689 * As this is the last user (execve(), process exit or failed 10690 * fork(2)) there is no concurrency anymore. 10691 * 10692 * Synchronize eventually pending work to ensure that there are no 10693 * dangling references left. @t->mm_cid.users is zero so nothing 10694 * can queue this work anymore. 10695 */ 10696 irq_work_sync(&mm->mm_cid.irq_work); 10697 cancel_work_sync(&mm->mm_cid.work); 10698 } 10699 10700 /* Deactivate MM CID allocation across execve() */ 10701 void sched_mm_cid_before_execve(struct task_struct *t) 10702 { 10703 sched_mm_cid_exit(t); 10704 } 10705 10706 /* Reactivate MM CID after successful execve() */ 10707 void sched_mm_cid_after_execve(struct task_struct *t) 10708 { 10709 sched_mm_cid_fork(t); 10710 } 10711 10712 static void mm_cid_work_fn(struct work_struct *work) 10713 { 10714 struct mm_struct *mm = container_of(work, struct mm_struct, mm_cid.work); 10715 10716 guard(mutex)(&mm->mm_cid.mutex); 10717 /* Did the last user task exit already? */ 10718 if (!mm->mm_cid.users) 10719 return; 10720 10721 scoped_guard(raw_spinlock_irq, &mm->mm_cid.lock) { 10722 /* Have fork() or exit() handled it already? */ 10723 if (!mm->mm_cid.update_deferred) 10724 return; 10725 /* This clears mm_cid::update_deferred */ 10726 if (!mm_update_max_cids(mm)) 10727 return; 10728 /* Affinity changes can only switch back to task mode */ 10729 if (WARN_ON_ONCE(mm->mm_cid.percpu)) 10730 return; 10731 } 10732 mm_cid_fixup_cpus_to_tasks(mm); 10733 } 10734 10735 static void mm_cid_irq_work(struct irq_work *work) 10736 { 10737 struct mm_struct *mm = container_of(work, struct mm_struct, mm_cid.irq_work); 10738 10739 /* 10740 * Needs to be unconditional because mm_cid::lock cannot be held 10741 * when scheduling work as mm_update_cpus_allowed() nests inside 10742 * rq::lock and schedule_work() might end up in wakeup... 10743 */ 10744 schedule_work(&mm->mm_cid.work); 10745 } 10746 10747 void mm_init_cid(struct mm_struct *mm, struct task_struct *p) 10748 { 10749 mm->mm_cid.max_cids = 0; 10750 mm->mm_cid.percpu = 0; 10751 mm->mm_cid.transit = 0; 10752 mm->mm_cid.nr_cpus_allowed = p->nr_cpus_allowed; 10753 mm->mm_cid.users = 0; 10754 mm->mm_cid.pcpu_thrs = 0; 10755 mm->mm_cid.update_deferred = 0; 10756 raw_spin_lock_init(&mm->mm_cid.lock); 10757 mutex_init(&mm->mm_cid.mutex); 10758 mm->mm_cid.irq_work = IRQ_WORK_INIT_HARD(mm_cid_irq_work); 10759 INIT_WORK(&mm->mm_cid.work, mm_cid_work_fn); 10760 cpumask_copy(mm_cpus_allowed(mm), &p->cpus_mask); 10761 bitmap_zero(mm_cidmask(mm), num_possible_cpus()); 10762 } 10763 #else /* CONFIG_SCHED_MM_CID */ 10764 static inline void mm_update_cpus_allowed(struct mm_struct *mm, const struct cpumask *affmsk) { } 10765 #endif /* !CONFIG_SCHED_MM_CID */ 10766 10767 static DEFINE_PER_CPU(struct sched_change_ctx, sched_change_ctx); 10768 10769 struct sched_change_ctx *sched_change_begin(struct task_struct *p, unsigned int flags) 10770 { 10771 struct sched_change_ctx *ctx = this_cpu_ptr(&sched_change_ctx); 10772 struct rq *rq = task_rq(p); 10773 10774 /* 10775 * Must exclusively use matched flags since this is both dequeue and 10776 * enqueue. 10777 */ 10778 WARN_ON_ONCE(flags & 0xFFFF0000); 10779 10780 lockdep_assert_rq_held(rq); 10781 10782 if (!(flags & DEQUEUE_NOCLOCK)) { 10783 update_rq_clock(rq); 10784 flags |= DEQUEUE_NOCLOCK; 10785 } 10786 10787 if ((flags & DEQUEUE_CLASS) && p->sched_class->switching_from) 10788 p->sched_class->switching_from(rq, p); 10789 10790 *ctx = (struct sched_change_ctx){ 10791 .p = p, 10792 .class = p->sched_class, 10793 .flags = flags, 10794 .queued = task_on_rq_queued(p), 10795 .running = task_current_donor(rq, p), 10796 }; 10797 10798 if (!(flags & DEQUEUE_CLASS)) { 10799 if (p->sched_class->get_prio) 10800 ctx->prio = p->sched_class->get_prio(rq, p); 10801 else 10802 ctx->prio = p->prio; 10803 } 10804 10805 if (ctx->queued) 10806 dequeue_task(rq, p, flags); 10807 if (ctx->running) 10808 put_prev_task(rq, p); 10809 10810 if ((flags & DEQUEUE_CLASS) && p->sched_class->switched_from) 10811 p->sched_class->switched_from(rq, p); 10812 10813 return ctx; 10814 } 10815 10816 void sched_change_end(struct sched_change_ctx *ctx) 10817 { 10818 struct task_struct *p = ctx->p; 10819 struct rq *rq = task_rq(p); 10820 10821 lockdep_assert_rq_held(rq); 10822 10823 /* 10824 * Changing class without *QUEUE_CLASS is bad. 10825 */ 10826 WARN_ON_ONCE(p->sched_class != ctx->class && !(ctx->flags & ENQUEUE_CLASS)); 10827 10828 if ((ctx->flags & ENQUEUE_CLASS) && p->sched_class->switching_to) 10829 p->sched_class->switching_to(rq, p); 10830 10831 if (ctx->queued) 10832 enqueue_task(rq, p, ctx->flags); 10833 if (ctx->running) 10834 set_next_task(rq, p); 10835 10836 if (ctx->flags & ENQUEUE_CLASS) { 10837 if (p->sched_class->switched_to) 10838 p->sched_class->switched_to(rq, p); 10839 10840 if (ctx->running) { 10841 /* 10842 * If this was a class promotion; let the old class 10843 * know it got preempted. Note that none of the 10844 * switch*_from() methods know the new class and none 10845 * of the switch*_to() methods know the old class. 10846 */ 10847 if (sched_class_above(p->sched_class, ctx->class)) { 10848 rq->next_class->wakeup_preempt(rq, p, 0); 10849 rq->next_class = p->sched_class; 10850 } 10851 /* 10852 * If this was a degradation in class; make sure to 10853 * reschedule. 10854 */ 10855 if (sched_class_above(ctx->class, p->sched_class)) 10856 resched_curr(rq); 10857 } 10858 } else { 10859 p->sched_class->prio_changed(rq, p, ctx->prio); 10860 } 10861 } 10862