1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel CPU scheduler code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #include <linux/highmem.h> 11 #include <linux/hrtimer_api.h> 12 #include <linux/ktime_api.h> 13 #include <linux/sched/signal.h> 14 #include <linux/syscalls_api.h> 15 #include <linux/debug_locks.h> 16 #include <linux/prefetch.h> 17 #include <linux/capability.h> 18 #include <linux/pgtable_api.h> 19 #include <linux/wait_bit.h> 20 #include <linux/jiffies.h> 21 #include <linux/spinlock_api.h> 22 #include <linux/cpumask_api.h> 23 #include <linux/lockdep_api.h> 24 #include <linux/hardirq.h> 25 #include <linux/softirq.h> 26 #include <linux/refcount_api.h> 27 #include <linux/topology.h> 28 #include <linux/sched/clock.h> 29 #include <linux/sched/cond_resched.h> 30 #include <linux/sched/cputime.h> 31 #include <linux/sched/debug.h> 32 #include <linux/sched/hotplug.h> 33 #include <linux/sched/init.h> 34 #include <linux/sched/isolation.h> 35 #include <linux/sched/loadavg.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/nohz.h> 38 #include <linux/sched/rseq_api.h> 39 #include <linux/sched/rt.h> 40 41 #include <linux/blkdev.h> 42 #include <linux/context_tracking.h> 43 #include <linux/cpuset.h> 44 #include <linux/delayacct.h> 45 #include <linux/init_task.h> 46 #include <linux/interrupt.h> 47 #include <linux/ioprio.h> 48 #include <linux/kallsyms.h> 49 #include <linux/kcov.h> 50 #include <linux/kprobes.h> 51 #include <linux/llist_api.h> 52 #include <linux/mmu_context.h> 53 #include <linux/mmzone.h> 54 #include <linux/mutex_api.h> 55 #include <linux/nmi.h> 56 #include <linux/nospec.h> 57 #include <linux/perf_event_api.h> 58 #include <linux/profile.h> 59 #include <linux/psi.h> 60 #include <linux/rcuwait_api.h> 61 #include <linux/rseq.h> 62 #include <linux/sched/wake_q.h> 63 #include <linux/scs.h> 64 #include <linux/slab.h> 65 #include <linux/syscalls.h> 66 #include <linux/vtime.h> 67 #include <linux/wait_api.h> 68 #include <linux/workqueue_api.h> 69 #include <linux/livepatch_sched.h> 70 71 #ifdef CONFIG_PREEMPT_DYNAMIC 72 # ifdef CONFIG_GENERIC_IRQ_ENTRY 73 # include <linux/irq-entry-common.h> 74 # endif 75 #endif 76 77 #include <uapi/linux/sched/types.h> 78 79 #include <asm/irq_regs.h> 80 #include <asm/switch_to.h> 81 #include <asm/tlb.h> 82 83 #define CREATE_TRACE_POINTS 84 #include <linux/sched/rseq_api.h> 85 #include <trace/events/sched.h> 86 #include <trace/events/ipi.h> 87 #undef CREATE_TRACE_POINTS 88 89 #include "sched.h" 90 #include "stats.h" 91 92 #include "autogroup.h" 93 #include "pelt.h" 94 #include "smp.h" 95 96 #include "../workqueue_internal.h" 97 #include "../../io_uring/io-wq.h" 98 #include "../smpboot.h" 99 #include "../locking/mutex.h" 100 101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 102 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 103 104 /* 105 * Export tracepoints that act as a bare tracehook (ie: have no trace event 106 * associated with them) to allow external modules to probe them. 107 */ 108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 119 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 120 121 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 122 123 #ifdef CONFIG_SCHED_PROXY_EXEC 124 DEFINE_STATIC_KEY_TRUE(__sched_proxy_exec); 125 static int __init setup_proxy_exec(char *str) 126 { 127 bool proxy_enable = true; 128 129 if (*str && kstrtobool(str + 1, &proxy_enable)) { 130 pr_warn("Unable to parse sched_proxy_exec=\n"); 131 return 0; 132 } 133 134 if (proxy_enable) { 135 pr_info("sched_proxy_exec enabled via boot arg\n"); 136 static_branch_enable(&__sched_proxy_exec); 137 } else { 138 pr_info("sched_proxy_exec disabled via boot arg\n"); 139 static_branch_disable(&__sched_proxy_exec); 140 } 141 return 1; 142 } 143 #else 144 static int __init setup_proxy_exec(char *str) 145 { 146 pr_warn("CONFIG_SCHED_PROXY_EXEC=n, so it cannot be enabled or disabled at boot time\n"); 147 return 0; 148 } 149 #endif 150 __setup("sched_proxy_exec", setup_proxy_exec); 151 152 /* 153 * Debugging: various feature bits 154 * 155 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 156 * sysctl_sched_features, defined in sched.h, to allow constants propagation 157 * at compile time and compiler optimization based on features default. 158 */ 159 #define SCHED_FEAT(name, enabled) \ 160 (1UL << __SCHED_FEAT_##name) * enabled | 161 __read_mostly unsigned int sysctl_sched_features = 162 #include "features.h" 163 0; 164 #undef SCHED_FEAT 165 166 /* 167 * Print a warning if need_resched is set for the given duration (if 168 * LATENCY_WARN is enabled). 169 * 170 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 171 * per boot. 172 */ 173 __read_mostly int sysctl_resched_latency_warn_ms = 100; 174 __read_mostly int sysctl_resched_latency_warn_once = 1; 175 176 /* 177 * Number of tasks to iterate in a single balance run. 178 * Limited because this is done with IRQs disabled. 179 */ 180 __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 181 182 __read_mostly int scheduler_running; 183 184 #ifdef CONFIG_SCHED_CORE 185 186 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 187 188 /* kernel prio, less is more */ 189 static inline int __task_prio(const struct task_struct *p) 190 { 191 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 192 return -2; 193 194 if (p->dl_server) 195 return -1; /* deadline */ 196 197 if (rt_or_dl_prio(p->prio)) 198 return p->prio; /* [-1, 99] */ 199 200 if (p->sched_class == &idle_sched_class) 201 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 202 203 if (task_on_scx(p)) 204 return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ 205 206 return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ 207 } 208 209 /* 210 * l(a,b) 211 * le(a,b) := !l(b,a) 212 * g(a,b) := l(b,a) 213 * ge(a,b) := !l(a,b) 214 */ 215 216 /* real prio, less is less */ 217 static inline bool prio_less(const struct task_struct *a, 218 const struct task_struct *b, bool in_fi) 219 { 220 221 int pa = __task_prio(a), pb = __task_prio(b); 222 223 if (-pa < -pb) 224 return true; 225 226 if (-pb < -pa) 227 return false; 228 229 if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */ 230 const struct sched_dl_entity *a_dl, *b_dl; 231 232 a_dl = &a->dl; 233 /* 234 * Since,'a' and 'b' can be CFS tasks served by DL server, 235 * __task_prio() can return -1 (for DL) even for those. In that 236 * case, get to the dl_server's DL entity. 237 */ 238 if (a->dl_server) 239 a_dl = a->dl_server; 240 241 b_dl = &b->dl; 242 if (b->dl_server) 243 b_dl = b->dl_server; 244 245 return !dl_time_before(a_dl->deadline, b_dl->deadline); 246 } 247 248 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 249 return cfs_prio_less(a, b, in_fi); 250 251 #ifdef CONFIG_SCHED_CLASS_EXT 252 if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */ 253 return scx_prio_less(a, b, in_fi); 254 #endif 255 256 return false; 257 } 258 259 static inline bool __sched_core_less(const struct task_struct *a, 260 const struct task_struct *b) 261 { 262 if (a->core_cookie < b->core_cookie) 263 return true; 264 265 if (a->core_cookie > b->core_cookie) 266 return false; 267 268 /* flip prio, so high prio is leftmost */ 269 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 270 return true; 271 272 return false; 273 } 274 275 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 276 277 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 278 { 279 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 280 } 281 282 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 283 { 284 const struct task_struct *p = __node_2_sc(node); 285 unsigned long cookie = (unsigned long)key; 286 287 if (cookie < p->core_cookie) 288 return -1; 289 290 if (cookie > p->core_cookie) 291 return 1; 292 293 return 0; 294 } 295 296 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 297 { 298 if (p->se.sched_delayed) 299 return; 300 301 rq->core->core_task_seq++; 302 303 if (!p->core_cookie) 304 return; 305 306 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 307 } 308 309 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 310 { 311 if (p->se.sched_delayed) 312 return; 313 314 rq->core->core_task_seq++; 315 316 if (sched_core_enqueued(p)) { 317 rb_erase(&p->core_node, &rq->core_tree); 318 RB_CLEAR_NODE(&p->core_node); 319 } 320 321 /* 322 * Migrating the last task off the cpu, with the cpu in forced idle 323 * state. Reschedule to create an accounting edge for forced idle, 324 * and re-examine whether the core is still in forced idle state. 325 */ 326 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 327 rq->core->core_forceidle_count && rq->curr == rq->idle) 328 resched_curr(rq); 329 } 330 331 static int sched_task_is_throttled(struct task_struct *p, int cpu) 332 { 333 if (p->sched_class->task_is_throttled) 334 return p->sched_class->task_is_throttled(p, cpu); 335 336 return 0; 337 } 338 339 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 340 { 341 struct rb_node *node = &p->core_node; 342 int cpu = task_cpu(p); 343 344 do { 345 node = rb_next(node); 346 if (!node) 347 return NULL; 348 349 p = __node_2_sc(node); 350 if (p->core_cookie != cookie) 351 return NULL; 352 353 } while (sched_task_is_throttled(p, cpu)); 354 355 return p; 356 } 357 358 /* 359 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 360 * If no suitable task is found, NULL will be returned. 361 */ 362 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 363 { 364 struct task_struct *p; 365 struct rb_node *node; 366 367 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 368 if (!node) 369 return NULL; 370 371 p = __node_2_sc(node); 372 if (!sched_task_is_throttled(p, rq->cpu)) 373 return p; 374 375 return sched_core_next(p, cookie); 376 } 377 378 /* 379 * Magic required such that: 380 * 381 * raw_spin_rq_lock(rq); 382 * ... 383 * raw_spin_rq_unlock(rq); 384 * 385 * ends up locking and unlocking the _same_ lock, and all CPUs 386 * always agree on what rq has what lock. 387 * 388 * XXX entirely possible to selectively enable cores, don't bother for now. 389 */ 390 391 static DEFINE_MUTEX(sched_core_mutex); 392 static atomic_t sched_core_count; 393 static struct cpumask sched_core_mask; 394 395 static void sched_core_lock(int cpu, unsigned long *flags) 396 { 397 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 398 int t, i = 0; 399 400 local_irq_save(*flags); 401 for_each_cpu(t, smt_mask) 402 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 403 } 404 405 static void sched_core_unlock(int cpu, unsigned long *flags) 406 { 407 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 408 int t; 409 410 for_each_cpu(t, smt_mask) 411 raw_spin_unlock(&cpu_rq(t)->__lock); 412 local_irq_restore(*flags); 413 } 414 415 static void __sched_core_flip(bool enabled) 416 { 417 unsigned long flags; 418 int cpu, t; 419 420 cpus_read_lock(); 421 422 /* 423 * Toggle the online cores, one by one. 424 */ 425 cpumask_copy(&sched_core_mask, cpu_online_mask); 426 for_each_cpu(cpu, &sched_core_mask) { 427 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 428 429 sched_core_lock(cpu, &flags); 430 431 for_each_cpu(t, smt_mask) 432 cpu_rq(t)->core_enabled = enabled; 433 434 cpu_rq(cpu)->core->core_forceidle_start = 0; 435 436 sched_core_unlock(cpu, &flags); 437 438 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 439 } 440 441 /* 442 * Toggle the offline CPUs. 443 */ 444 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 445 cpu_rq(cpu)->core_enabled = enabled; 446 447 cpus_read_unlock(); 448 } 449 450 static void sched_core_assert_empty(void) 451 { 452 int cpu; 453 454 for_each_possible_cpu(cpu) 455 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 456 } 457 458 static void __sched_core_enable(void) 459 { 460 static_branch_enable(&__sched_core_enabled); 461 /* 462 * Ensure all previous instances of raw_spin_rq_*lock() have finished 463 * and future ones will observe !sched_core_disabled(). 464 */ 465 synchronize_rcu(); 466 __sched_core_flip(true); 467 sched_core_assert_empty(); 468 } 469 470 static void __sched_core_disable(void) 471 { 472 sched_core_assert_empty(); 473 __sched_core_flip(false); 474 static_branch_disable(&__sched_core_enabled); 475 } 476 477 void sched_core_get(void) 478 { 479 if (atomic_inc_not_zero(&sched_core_count)) 480 return; 481 482 mutex_lock(&sched_core_mutex); 483 if (!atomic_read(&sched_core_count)) 484 __sched_core_enable(); 485 486 smp_mb__before_atomic(); 487 atomic_inc(&sched_core_count); 488 mutex_unlock(&sched_core_mutex); 489 } 490 491 static void __sched_core_put(struct work_struct *work) 492 { 493 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 494 __sched_core_disable(); 495 mutex_unlock(&sched_core_mutex); 496 } 497 } 498 499 void sched_core_put(void) 500 { 501 static DECLARE_WORK(_work, __sched_core_put); 502 503 /* 504 * "There can be only one" 505 * 506 * Either this is the last one, or we don't actually need to do any 507 * 'work'. If it is the last *again*, we rely on 508 * WORK_STRUCT_PENDING_BIT. 509 */ 510 if (!atomic_add_unless(&sched_core_count, -1, 1)) 511 schedule_work(&_work); 512 } 513 514 #else /* !CONFIG_SCHED_CORE: */ 515 516 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 517 static inline void 518 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 519 520 #endif /* !CONFIG_SCHED_CORE */ 521 522 /* need a wrapper since we may need to trace from modules */ 523 EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp); 524 525 /* Call via the helper macro trace_set_current_state. */ 526 void __trace_set_current_state(int state_value) 527 { 528 trace_sched_set_state_tp(current, state_value); 529 } 530 EXPORT_SYMBOL(__trace_set_current_state); 531 532 /* 533 * Serialization rules: 534 * 535 * Lock order: 536 * 537 * p->pi_lock 538 * rq->lock 539 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 540 * 541 * rq1->lock 542 * rq2->lock where: rq1 < rq2 543 * 544 * Regular state: 545 * 546 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 547 * local CPU's rq->lock, it optionally removes the task from the runqueue and 548 * always looks at the local rq data structures to find the most eligible task 549 * to run next. 550 * 551 * Task enqueue is also under rq->lock, possibly taken from another CPU. 552 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 553 * the local CPU to avoid bouncing the runqueue state around [ see 554 * ttwu_queue_wakelist() ] 555 * 556 * Task wakeup, specifically wakeups that involve migration, are horribly 557 * complicated to avoid having to take two rq->locks. 558 * 559 * Special state: 560 * 561 * System-calls and anything external will use task_rq_lock() which acquires 562 * both p->pi_lock and rq->lock. As a consequence the state they change is 563 * stable while holding either lock: 564 * 565 * - sched_setaffinity()/ 566 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 567 * - set_user_nice(): p->se.load, p->*prio 568 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 569 * p->se.load, p->rt_priority, 570 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 571 * - sched_setnuma(): p->numa_preferred_nid 572 * - sched_move_task(): p->sched_task_group 573 * - uclamp_update_active() p->uclamp* 574 * 575 * p->state <- TASK_*: 576 * 577 * is changed locklessly using set_current_state(), __set_current_state() or 578 * set_special_state(), see their respective comments, or by 579 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 580 * concurrent self. 581 * 582 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 583 * 584 * is set by activate_task() and cleared by deactivate_task(), under 585 * rq->lock. Non-zero indicates the task is runnable, the special 586 * ON_RQ_MIGRATING state is used for migration without holding both 587 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 588 * 589 * Additionally it is possible to be ->on_rq but still be considered not 590 * runnable when p->se.sched_delayed is true. These tasks are on the runqueue 591 * but will be dequeued as soon as they get picked again. See the 592 * task_is_runnable() helper. 593 * 594 * p->on_cpu <- { 0, 1 }: 595 * 596 * is set by prepare_task() and cleared by finish_task() such that it will be 597 * set before p is scheduled-in and cleared after p is scheduled-out, both 598 * under rq->lock. Non-zero indicates the task is running on its CPU. 599 * 600 * [ The astute reader will observe that it is possible for two tasks on one 601 * CPU to have ->on_cpu = 1 at the same time. ] 602 * 603 * task_cpu(p): is changed by set_task_cpu(), the rules are: 604 * 605 * - Don't call set_task_cpu() on a blocked task: 606 * 607 * We don't care what CPU we're not running on, this simplifies hotplug, 608 * the CPU assignment of blocked tasks isn't required to be valid. 609 * 610 * - for try_to_wake_up(), called under p->pi_lock: 611 * 612 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 613 * 614 * - for migration called under rq->lock: 615 * [ see task_on_rq_migrating() in task_rq_lock() ] 616 * 617 * o move_queued_task() 618 * o detach_task() 619 * 620 * - for migration called under double_rq_lock(): 621 * 622 * o __migrate_swap_task() 623 * o push_rt_task() / pull_rt_task() 624 * o push_dl_task() / pull_dl_task() 625 * o dl_task_offline_migration() 626 * 627 */ 628 629 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 630 { 631 raw_spinlock_t *lock; 632 633 /* Matches synchronize_rcu() in __sched_core_enable() */ 634 preempt_disable(); 635 if (sched_core_disabled()) { 636 raw_spin_lock_nested(&rq->__lock, subclass); 637 /* preempt_count *MUST* be > 1 */ 638 preempt_enable_no_resched(); 639 return; 640 } 641 642 for (;;) { 643 lock = __rq_lockp(rq); 644 raw_spin_lock_nested(lock, subclass); 645 if (likely(lock == __rq_lockp(rq))) { 646 /* preempt_count *MUST* be > 1 */ 647 preempt_enable_no_resched(); 648 return; 649 } 650 raw_spin_unlock(lock); 651 } 652 } 653 654 bool raw_spin_rq_trylock(struct rq *rq) 655 { 656 raw_spinlock_t *lock; 657 bool ret; 658 659 /* Matches synchronize_rcu() in __sched_core_enable() */ 660 preempt_disable(); 661 if (sched_core_disabled()) { 662 ret = raw_spin_trylock(&rq->__lock); 663 preempt_enable(); 664 return ret; 665 } 666 667 for (;;) { 668 lock = __rq_lockp(rq); 669 ret = raw_spin_trylock(lock); 670 if (!ret || (likely(lock == __rq_lockp(rq)))) { 671 preempt_enable(); 672 return ret; 673 } 674 raw_spin_unlock(lock); 675 } 676 } 677 678 void raw_spin_rq_unlock(struct rq *rq) 679 { 680 raw_spin_unlock(rq_lockp(rq)); 681 } 682 683 /* 684 * double_rq_lock - safely lock two runqueues 685 */ 686 void double_rq_lock(struct rq *rq1, struct rq *rq2) 687 { 688 lockdep_assert_irqs_disabled(); 689 690 if (rq_order_less(rq2, rq1)) 691 swap(rq1, rq2); 692 693 raw_spin_rq_lock(rq1); 694 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 695 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 696 697 double_rq_clock_clear_update(rq1, rq2); 698 } 699 700 /* 701 * __task_rq_lock - lock the rq @p resides on. 702 */ 703 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 704 __acquires(rq->lock) 705 { 706 struct rq *rq; 707 708 lockdep_assert_held(&p->pi_lock); 709 710 for (;;) { 711 rq = task_rq(p); 712 raw_spin_rq_lock(rq); 713 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 714 rq_pin_lock(rq, rf); 715 return rq; 716 } 717 raw_spin_rq_unlock(rq); 718 719 while (unlikely(task_on_rq_migrating(p))) 720 cpu_relax(); 721 } 722 } 723 724 /* 725 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 726 */ 727 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 728 __acquires(p->pi_lock) 729 __acquires(rq->lock) 730 { 731 struct rq *rq; 732 733 for (;;) { 734 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 735 rq = task_rq(p); 736 raw_spin_rq_lock(rq); 737 /* 738 * move_queued_task() task_rq_lock() 739 * 740 * ACQUIRE (rq->lock) 741 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 742 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 743 * [S] ->cpu = new_cpu [L] task_rq() 744 * [L] ->on_rq 745 * RELEASE (rq->lock) 746 * 747 * If we observe the old CPU in task_rq_lock(), the acquire of 748 * the old rq->lock will fully serialize against the stores. 749 * 750 * If we observe the new CPU in task_rq_lock(), the address 751 * dependency headed by '[L] rq = task_rq()' and the acquire 752 * will pair with the WMB to ensure we then also see migrating. 753 */ 754 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 755 rq_pin_lock(rq, rf); 756 return rq; 757 } 758 raw_spin_rq_unlock(rq); 759 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 760 761 while (unlikely(task_on_rq_migrating(p))) 762 cpu_relax(); 763 } 764 } 765 766 /* 767 * RQ-clock updating methods: 768 */ 769 770 static void update_rq_clock_task(struct rq *rq, s64 delta) 771 { 772 /* 773 * In theory, the compile should just see 0 here, and optimize out the call 774 * to sched_rt_avg_update. But I don't trust it... 775 */ 776 s64 __maybe_unused steal = 0, irq_delta = 0; 777 778 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 779 if (irqtime_enabled()) { 780 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 781 782 /* 783 * Since irq_time is only updated on {soft,}irq_exit, we might run into 784 * this case when a previous update_rq_clock() happened inside a 785 * {soft,}IRQ region. 786 * 787 * When this happens, we stop ->clock_task and only update the 788 * prev_irq_time stamp to account for the part that fit, so that a next 789 * update will consume the rest. This ensures ->clock_task is 790 * monotonic. 791 * 792 * It does however cause some slight miss-attribution of {soft,}IRQ 793 * time, a more accurate solution would be to update the irq_time using 794 * the current rq->clock timestamp, except that would require using 795 * atomic ops. 796 */ 797 if (irq_delta > delta) 798 irq_delta = delta; 799 800 rq->prev_irq_time += irq_delta; 801 delta -= irq_delta; 802 delayacct_irq(rq->curr, irq_delta); 803 } 804 #endif 805 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 806 if (static_key_false((¶virt_steal_rq_enabled))) { 807 u64 prev_steal; 808 809 steal = prev_steal = paravirt_steal_clock(cpu_of(rq)); 810 steal -= rq->prev_steal_time_rq; 811 812 if (unlikely(steal > delta)) 813 steal = delta; 814 815 rq->prev_steal_time_rq = prev_steal; 816 delta -= steal; 817 } 818 #endif 819 820 rq->clock_task += delta; 821 822 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 823 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 824 update_irq_load_avg(rq, irq_delta + steal); 825 #endif 826 update_rq_clock_pelt(rq, delta); 827 } 828 829 void update_rq_clock(struct rq *rq) 830 { 831 s64 delta; 832 u64 clock; 833 834 lockdep_assert_rq_held(rq); 835 836 if (rq->clock_update_flags & RQCF_ACT_SKIP) 837 return; 838 839 if (sched_feat(WARN_DOUBLE_CLOCK)) 840 WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED); 841 rq->clock_update_flags |= RQCF_UPDATED; 842 843 clock = sched_clock_cpu(cpu_of(rq)); 844 scx_rq_clock_update(rq, clock); 845 846 delta = clock - rq->clock; 847 if (delta < 0) 848 return; 849 rq->clock += delta; 850 851 update_rq_clock_task(rq, delta); 852 } 853 854 #ifdef CONFIG_SCHED_HRTICK 855 /* 856 * Use HR-timers to deliver accurate preemption points. 857 */ 858 859 static void hrtick_clear(struct rq *rq) 860 { 861 if (hrtimer_active(&rq->hrtick_timer)) 862 hrtimer_cancel(&rq->hrtick_timer); 863 } 864 865 /* 866 * High-resolution timer tick. 867 * Runs from hardirq context with interrupts disabled. 868 */ 869 static enum hrtimer_restart hrtick(struct hrtimer *timer) 870 { 871 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 872 struct rq_flags rf; 873 874 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 875 876 rq_lock(rq, &rf); 877 update_rq_clock(rq); 878 rq->donor->sched_class->task_tick(rq, rq->curr, 1); 879 rq_unlock(rq, &rf); 880 881 return HRTIMER_NORESTART; 882 } 883 884 static void __hrtick_restart(struct rq *rq) 885 { 886 struct hrtimer *timer = &rq->hrtick_timer; 887 ktime_t time = rq->hrtick_time; 888 889 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 890 } 891 892 /* 893 * called from hardirq (IPI) context 894 */ 895 static void __hrtick_start(void *arg) 896 { 897 struct rq *rq = arg; 898 struct rq_flags rf; 899 900 rq_lock(rq, &rf); 901 __hrtick_restart(rq); 902 rq_unlock(rq, &rf); 903 } 904 905 /* 906 * Called to set the hrtick timer state. 907 * 908 * called with rq->lock held and IRQs disabled 909 */ 910 void hrtick_start(struct rq *rq, u64 delay) 911 { 912 struct hrtimer *timer = &rq->hrtick_timer; 913 s64 delta; 914 915 /* 916 * Don't schedule slices shorter than 10000ns, that just 917 * doesn't make sense and can cause timer DoS. 918 */ 919 delta = max_t(s64, delay, 10000LL); 920 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 921 922 if (rq == this_rq()) 923 __hrtick_restart(rq); 924 else 925 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 926 } 927 928 static void hrtick_rq_init(struct rq *rq) 929 { 930 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 931 hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 932 } 933 #else /* !CONFIG_SCHED_HRTICK: */ 934 static inline void hrtick_clear(struct rq *rq) 935 { 936 } 937 938 static inline void hrtick_rq_init(struct rq *rq) 939 { 940 } 941 #endif /* !CONFIG_SCHED_HRTICK */ 942 943 /* 944 * try_cmpxchg based fetch_or() macro so it works for different integer types: 945 */ 946 #define fetch_or(ptr, mask) \ 947 ({ \ 948 typeof(ptr) _ptr = (ptr); \ 949 typeof(mask) _mask = (mask); \ 950 typeof(*_ptr) _val = *_ptr; \ 951 \ 952 do { \ 953 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 954 _val; \ 955 }) 956 957 #ifdef TIF_POLLING_NRFLAG 958 /* 959 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 960 * this avoids any races wrt polling state changes and thereby avoids 961 * spurious IPIs. 962 */ 963 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 964 { 965 return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG); 966 } 967 968 /* 969 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 970 * 971 * If this returns true, then the idle task promises to call 972 * sched_ttwu_pending() and reschedule soon. 973 */ 974 static bool set_nr_if_polling(struct task_struct *p) 975 { 976 struct thread_info *ti = task_thread_info(p); 977 typeof(ti->flags) val = READ_ONCE(ti->flags); 978 979 do { 980 if (!(val & _TIF_POLLING_NRFLAG)) 981 return false; 982 if (val & _TIF_NEED_RESCHED) 983 return true; 984 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 985 986 return true; 987 } 988 989 #else 990 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 991 { 992 set_ti_thread_flag(ti, tif); 993 return true; 994 } 995 996 static inline bool set_nr_if_polling(struct task_struct *p) 997 { 998 return false; 999 } 1000 #endif 1001 1002 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 1003 { 1004 struct wake_q_node *node = &task->wake_q; 1005 1006 /* 1007 * Atomically grab the task, if ->wake_q is !nil already it means 1008 * it's already queued (either by us or someone else) and will get the 1009 * wakeup due to that. 1010 * 1011 * In order to ensure that a pending wakeup will observe our pending 1012 * state, even in the failed case, an explicit smp_mb() must be used. 1013 */ 1014 smp_mb__before_atomic(); 1015 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 1016 return false; 1017 1018 /* 1019 * The head is context local, there can be no concurrency. 1020 */ 1021 *head->lastp = node; 1022 head->lastp = &node->next; 1023 return true; 1024 } 1025 1026 /** 1027 * wake_q_add() - queue a wakeup for 'later' waking. 1028 * @head: the wake_q_head to add @task to 1029 * @task: the task to queue for 'later' wakeup 1030 * 1031 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1032 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1033 * instantly. 1034 * 1035 * This function must be used as-if it were wake_up_process(); IOW the task 1036 * must be ready to be woken at this location. 1037 */ 1038 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 1039 { 1040 if (__wake_q_add(head, task)) 1041 get_task_struct(task); 1042 } 1043 1044 /** 1045 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 1046 * @head: the wake_q_head to add @task to 1047 * @task: the task to queue for 'later' wakeup 1048 * 1049 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1050 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1051 * instantly. 1052 * 1053 * This function must be used as-if it were wake_up_process(); IOW the task 1054 * must be ready to be woken at this location. 1055 * 1056 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1057 * that already hold reference to @task can call the 'safe' version and trust 1058 * wake_q to do the right thing depending whether or not the @task is already 1059 * queued for wakeup. 1060 */ 1061 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1062 { 1063 if (!__wake_q_add(head, task)) 1064 put_task_struct(task); 1065 } 1066 1067 void wake_up_q(struct wake_q_head *head) 1068 { 1069 struct wake_q_node *node = head->first; 1070 1071 while (node != WAKE_Q_TAIL) { 1072 struct task_struct *task; 1073 1074 task = container_of(node, struct task_struct, wake_q); 1075 node = node->next; 1076 /* pairs with cmpxchg_relaxed() in __wake_q_add() */ 1077 WRITE_ONCE(task->wake_q.next, NULL); 1078 /* Task can safely be re-inserted now. */ 1079 1080 /* 1081 * wake_up_process() executes a full barrier, which pairs with 1082 * the queueing in wake_q_add() so as not to miss wakeups. 1083 */ 1084 wake_up_process(task); 1085 put_task_struct(task); 1086 } 1087 } 1088 1089 /* 1090 * resched_curr - mark rq's current task 'to be rescheduled now'. 1091 * 1092 * On UP this means the setting of the need_resched flag, on SMP it 1093 * might also involve a cross-CPU call to trigger the scheduler on 1094 * the target CPU. 1095 */ 1096 static void __resched_curr(struct rq *rq, int tif) 1097 { 1098 struct task_struct *curr = rq->curr; 1099 struct thread_info *cti = task_thread_info(curr); 1100 int cpu; 1101 1102 lockdep_assert_rq_held(rq); 1103 1104 /* 1105 * Always immediately preempt the idle task; no point in delaying doing 1106 * actual work. 1107 */ 1108 if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY) 1109 tif = TIF_NEED_RESCHED; 1110 1111 if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED)) 1112 return; 1113 1114 cpu = cpu_of(rq); 1115 1116 trace_sched_set_need_resched_tp(curr, cpu, tif); 1117 if (cpu == smp_processor_id()) { 1118 set_ti_thread_flag(cti, tif); 1119 if (tif == TIF_NEED_RESCHED) 1120 set_preempt_need_resched(); 1121 return; 1122 } 1123 1124 if (set_nr_and_not_polling(cti, tif)) { 1125 if (tif == TIF_NEED_RESCHED) 1126 smp_send_reschedule(cpu); 1127 } else { 1128 trace_sched_wake_idle_without_ipi(cpu); 1129 } 1130 } 1131 1132 void __trace_set_need_resched(struct task_struct *curr, int tif) 1133 { 1134 trace_sched_set_need_resched_tp(curr, smp_processor_id(), tif); 1135 } 1136 1137 void resched_curr(struct rq *rq) 1138 { 1139 __resched_curr(rq, TIF_NEED_RESCHED); 1140 } 1141 1142 #ifdef CONFIG_PREEMPT_DYNAMIC 1143 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy); 1144 static __always_inline bool dynamic_preempt_lazy(void) 1145 { 1146 return static_branch_unlikely(&sk_dynamic_preempt_lazy); 1147 } 1148 #else 1149 static __always_inline bool dynamic_preempt_lazy(void) 1150 { 1151 return IS_ENABLED(CONFIG_PREEMPT_LAZY); 1152 } 1153 #endif 1154 1155 static __always_inline int get_lazy_tif_bit(void) 1156 { 1157 if (dynamic_preempt_lazy()) 1158 return TIF_NEED_RESCHED_LAZY; 1159 1160 return TIF_NEED_RESCHED; 1161 } 1162 1163 void resched_curr_lazy(struct rq *rq) 1164 { 1165 __resched_curr(rq, get_lazy_tif_bit()); 1166 } 1167 1168 void resched_cpu(int cpu) 1169 { 1170 struct rq *rq = cpu_rq(cpu); 1171 unsigned long flags; 1172 1173 raw_spin_rq_lock_irqsave(rq, flags); 1174 if (cpu_online(cpu) || cpu == smp_processor_id()) 1175 resched_curr(rq); 1176 raw_spin_rq_unlock_irqrestore(rq, flags); 1177 } 1178 1179 #ifdef CONFIG_NO_HZ_COMMON 1180 /* 1181 * In the semi idle case, use the nearest busy CPU for migrating timers 1182 * from an idle CPU. This is good for power-savings. 1183 * 1184 * We don't do similar optimization for completely idle system, as 1185 * selecting an idle CPU will add more delays to the timers than intended 1186 * (as that CPU's timer base may not be up to date wrt jiffies etc). 1187 */ 1188 int get_nohz_timer_target(void) 1189 { 1190 int i, cpu = smp_processor_id(), default_cpu = -1; 1191 struct sched_domain *sd; 1192 const struct cpumask *hk_mask; 1193 1194 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) { 1195 if (!idle_cpu(cpu)) 1196 return cpu; 1197 default_cpu = cpu; 1198 } 1199 1200 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 1201 1202 guard(rcu)(); 1203 1204 for_each_domain(cpu, sd) { 1205 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1206 if (cpu == i) 1207 continue; 1208 1209 if (!idle_cpu(i)) 1210 return i; 1211 } 1212 } 1213 1214 if (default_cpu == -1) 1215 default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE); 1216 1217 return default_cpu; 1218 } 1219 1220 /* 1221 * When add_timer_on() enqueues a timer into the timer wheel of an 1222 * idle CPU then this timer might expire before the next timer event 1223 * which is scheduled to wake up that CPU. In case of a completely 1224 * idle system the next event might even be infinite time into the 1225 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1226 * leaves the inner idle loop so the newly added timer is taken into 1227 * account when the CPU goes back to idle and evaluates the timer 1228 * wheel for the next timer event. 1229 */ 1230 static void wake_up_idle_cpu(int cpu) 1231 { 1232 struct rq *rq = cpu_rq(cpu); 1233 1234 if (cpu == smp_processor_id()) 1235 return; 1236 1237 /* 1238 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling 1239 * part of the idle loop. This forces an exit from the idle loop 1240 * and a round trip to schedule(). Now this could be optimized 1241 * because a simple new idle loop iteration is enough to 1242 * re-evaluate the next tick. Provided some re-ordering of tick 1243 * nohz functions that would need to follow TIF_NR_POLLING 1244 * clearing: 1245 * 1246 * - On most architectures, a simple fetch_or on ti::flags with a 1247 * "0" value would be enough to know if an IPI needs to be sent. 1248 * 1249 * - x86 needs to perform a last need_resched() check between 1250 * monitor and mwait which doesn't take timers into account. 1251 * There a dedicated TIF_TIMER flag would be required to 1252 * fetch_or here and be checked along with TIF_NEED_RESCHED 1253 * before mwait(). 1254 * 1255 * However, remote timer enqueue is not such a frequent event 1256 * and testing of the above solutions didn't appear to report 1257 * much benefits. 1258 */ 1259 if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED)) 1260 smp_send_reschedule(cpu); 1261 else 1262 trace_sched_wake_idle_without_ipi(cpu); 1263 } 1264 1265 static bool wake_up_full_nohz_cpu(int cpu) 1266 { 1267 /* 1268 * We just need the target to call irq_exit() and re-evaluate 1269 * the next tick. The nohz full kick at least implies that. 1270 * If needed we can still optimize that later with an 1271 * empty IRQ. 1272 */ 1273 if (cpu_is_offline(cpu)) 1274 return true; /* Don't try to wake offline CPUs. */ 1275 if (tick_nohz_full_cpu(cpu)) { 1276 if (cpu != smp_processor_id() || 1277 tick_nohz_tick_stopped()) 1278 tick_nohz_full_kick_cpu(cpu); 1279 return true; 1280 } 1281 1282 return false; 1283 } 1284 1285 /* 1286 * Wake up the specified CPU. If the CPU is going offline, it is the 1287 * caller's responsibility to deal with the lost wakeup, for example, 1288 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1289 */ 1290 void wake_up_nohz_cpu(int cpu) 1291 { 1292 if (!wake_up_full_nohz_cpu(cpu)) 1293 wake_up_idle_cpu(cpu); 1294 } 1295 1296 static void nohz_csd_func(void *info) 1297 { 1298 struct rq *rq = info; 1299 int cpu = cpu_of(rq); 1300 unsigned int flags; 1301 1302 /* 1303 * Release the rq::nohz_csd. 1304 */ 1305 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1306 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1307 1308 rq->idle_balance = idle_cpu(cpu); 1309 if (rq->idle_balance) { 1310 rq->nohz_idle_balance = flags; 1311 __raise_softirq_irqoff(SCHED_SOFTIRQ); 1312 } 1313 } 1314 1315 #endif /* CONFIG_NO_HZ_COMMON */ 1316 1317 #ifdef CONFIG_NO_HZ_FULL 1318 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1319 { 1320 if (rq->nr_running != 1) 1321 return false; 1322 1323 if (p->sched_class != &fair_sched_class) 1324 return false; 1325 1326 if (!task_on_rq_queued(p)) 1327 return false; 1328 1329 return true; 1330 } 1331 1332 bool sched_can_stop_tick(struct rq *rq) 1333 { 1334 int fifo_nr_running; 1335 1336 /* Deadline tasks, even if single, need the tick */ 1337 if (rq->dl.dl_nr_running) 1338 return false; 1339 1340 /* 1341 * If there are more than one RR tasks, we need the tick to affect the 1342 * actual RR behaviour. 1343 */ 1344 if (rq->rt.rr_nr_running) { 1345 if (rq->rt.rr_nr_running == 1) 1346 return true; 1347 else 1348 return false; 1349 } 1350 1351 /* 1352 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1353 * forced preemption between FIFO tasks. 1354 */ 1355 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1356 if (fifo_nr_running) 1357 return true; 1358 1359 /* 1360 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks 1361 * left. For CFS, if there's more than one we need the tick for 1362 * involuntary preemption. For SCX, ask. 1363 */ 1364 if (scx_enabled() && !scx_can_stop_tick(rq)) 1365 return false; 1366 1367 if (rq->cfs.h_nr_queued > 1) 1368 return false; 1369 1370 /* 1371 * If there is one task and it has CFS runtime bandwidth constraints 1372 * and it's on the cpu now we don't want to stop the tick. 1373 * This check prevents clearing the bit if a newly enqueued task here is 1374 * dequeued by migrating while the constrained task continues to run. 1375 * E.g. going from 2->1 without going through pick_next_task(). 1376 */ 1377 if (__need_bw_check(rq, rq->curr)) { 1378 if (cfs_task_bw_constrained(rq->curr)) 1379 return false; 1380 } 1381 1382 return true; 1383 } 1384 #endif /* CONFIG_NO_HZ_FULL */ 1385 1386 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_FAIR_GROUP_SCHED) 1387 /* 1388 * Iterate task_group tree rooted at *from, calling @down when first entering a 1389 * node and @up when leaving it for the final time. 1390 * 1391 * Caller must hold rcu_lock or sufficient equivalent. 1392 */ 1393 int walk_tg_tree_from(struct task_group *from, 1394 tg_visitor down, tg_visitor up, void *data) 1395 { 1396 struct task_group *parent, *child; 1397 int ret; 1398 1399 parent = from; 1400 1401 down: 1402 ret = (*down)(parent, data); 1403 if (ret) 1404 goto out; 1405 list_for_each_entry_rcu(child, &parent->children, siblings) { 1406 parent = child; 1407 goto down; 1408 1409 up: 1410 continue; 1411 } 1412 ret = (*up)(parent, data); 1413 if (ret || parent == from) 1414 goto out; 1415 1416 child = parent; 1417 parent = parent->parent; 1418 if (parent) 1419 goto up; 1420 out: 1421 return ret; 1422 } 1423 1424 int tg_nop(struct task_group *tg, void *data) 1425 { 1426 return 0; 1427 } 1428 #endif 1429 1430 void set_load_weight(struct task_struct *p, bool update_load) 1431 { 1432 int prio = p->static_prio - MAX_RT_PRIO; 1433 struct load_weight lw; 1434 1435 if (task_has_idle_policy(p)) { 1436 lw.weight = scale_load(WEIGHT_IDLEPRIO); 1437 lw.inv_weight = WMULT_IDLEPRIO; 1438 } else { 1439 lw.weight = scale_load(sched_prio_to_weight[prio]); 1440 lw.inv_weight = sched_prio_to_wmult[prio]; 1441 } 1442 1443 /* 1444 * SCHED_OTHER tasks have to update their load when changing their 1445 * weight 1446 */ 1447 if (update_load && p->sched_class->reweight_task) 1448 p->sched_class->reweight_task(task_rq(p), p, &lw); 1449 else 1450 p->se.load = lw; 1451 } 1452 1453 #ifdef CONFIG_UCLAMP_TASK 1454 /* 1455 * Serializes updates of utilization clamp values 1456 * 1457 * The (slow-path) user-space triggers utilization clamp value updates which 1458 * can require updates on (fast-path) scheduler's data structures used to 1459 * support enqueue/dequeue operations. 1460 * While the per-CPU rq lock protects fast-path update operations, user-space 1461 * requests are serialized using a mutex to reduce the risk of conflicting 1462 * updates or API abuses. 1463 */ 1464 static __maybe_unused DEFINE_MUTEX(uclamp_mutex); 1465 1466 /* Max allowed minimum utilization */ 1467 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1468 1469 /* Max allowed maximum utilization */ 1470 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1471 1472 /* 1473 * By default RT tasks run at the maximum performance point/capacity of the 1474 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1475 * SCHED_CAPACITY_SCALE. 1476 * 1477 * This knob allows admins to change the default behavior when uclamp is being 1478 * used. In battery powered devices, particularly, running at the maximum 1479 * capacity and frequency will increase energy consumption and shorten the 1480 * battery life. 1481 * 1482 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1483 * 1484 * This knob will not override the system default sched_util_clamp_min defined 1485 * above. 1486 */ 1487 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1488 1489 /* All clamps are required to be less or equal than these values */ 1490 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1491 1492 /* 1493 * This static key is used to reduce the uclamp overhead in the fast path. It 1494 * primarily disables the call to uclamp_rq_{inc, dec}() in 1495 * enqueue/dequeue_task(). 1496 * 1497 * This allows users to continue to enable uclamp in their kernel config with 1498 * minimum uclamp overhead in the fast path. 1499 * 1500 * As soon as userspace modifies any of the uclamp knobs, the static key is 1501 * enabled, since we have an actual users that make use of uclamp 1502 * functionality. 1503 * 1504 * The knobs that would enable this static key are: 1505 * 1506 * * A task modifying its uclamp value with sched_setattr(). 1507 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1508 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1509 */ 1510 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1511 1512 static inline unsigned int 1513 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1514 unsigned int clamp_value) 1515 { 1516 /* 1517 * Avoid blocked utilization pushing up the frequency when we go 1518 * idle (which drops the max-clamp) by retaining the last known 1519 * max-clamp. 1520 */ 1521 if (clamp_id == UCLAMP_MAX) { 1522 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1523 return clamp_value; 1524 } 1525 1526 return uclamp_none(UCLAMP_MIN); 1527 } 1528 1529 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1530 unsigned int clamp_value) 1531 { 1532 /* Reset max-clamp retention only on idle exit */ 1533 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1534 return; 1535 1536 uclamp_rq_set(rq, clamp_id, clamp_value); 1537 } 1538 1539 static inline 1540 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1541 unsigned int clamp_value) 1542 { 1543 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1544 int bucket_id = UCLAMP_BUCKETS - 1; 1545 1546 /* 1547 * Since both min and max clamps are max aggregated, find the 1548 * top most bucket with tasks in. 1549 */ 1550 for ( ; bucket_id >= 0; bucket_id--) { 1551 if (!bucket[bucket_id].tasks) 1552 continue; 1553 return bucket[bucket_id].value; 1554 } 1555 1556 /* No tasks -- default clamp values */ 1557 return uclamp_idle_value(rq, clamp_id, clamp_value); 1558 } 1559 1560 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1561 { 1562 unsigned int default_util_min; 1563 struct uclamp_se *uc_se; 1564 1565 lockdep_assert_held(&p->pi_lock); 1566 1567 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1568 1569 /* Only sync if user didn't override the default */ 1570 if (uc_se->user_defined) 1571 return; 1572 1573 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1574 uclamp_se_set(uc_se, default_util_min, false); 1575 } 1576 1577 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1578 { 1579 if (!rt_task(p)) 1580 return; 1581 1582 /* Protect updates to p->uclamp_* */ 1583 guard(task_rq_lock)(p); 1584 __uclamp_update_util_min_rt_default(p); 1585 } 1586 1587 static inline struct uclamp_se 1588 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1589 { 1590 /* Copy by value as we could modify it */ 1591 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1592 #ifdef CONFIG_UCLAMP_TASK_GROUP 1593 unsigned int tg_min, tg_max, value; 1594 1595 /* 1596 * Tasks in autogroups or root task group will be 1597 * restricted by system defaults. 1598 */ 1599 if (task_group_is_autogroup(task_group(p))) 1600 return uc_req; 1601 if (task_group(p) == &root_task_group) 1602 return uc_req; 1603 1604 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1605 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1606 value = uc_req.value; 1607 value = clamp(value, tg_min, tg_max); 1608 uclamp_se_set(&uc_req, value, false); 1609 #endif 1610 1611 return uc_req; 1612 } 1613 1614 /* 1615 * The effective clamp bucket index of a task depends on, by increasing 1616 * priority: 1617 * - the task specific clamp value, when explicitly requested from userspace 1618 * - the task group effective clamp value, for tasks not either in the root 1619 * group or in an autogroup 1620 * - the system default clamp value, defined by the sysadmin 1621 */ 1622 static inline struct uclamp_se 1623 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1624 { 1625 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1626 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1627 1628 /* System default restrictions always apply */ 1629 if (unlikely(uc_req.value > uc_max.value)) 1630 return uc_max; 1631 1632 return uc_req; 1633 } 1634 1635 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1636 { 1637 struct uclamp_se uc_eff; 1638 1639 /* Task currently refcounted: use back-annotated (effective) value */ 1640 if (p->uclamp[clamp_id].active) 1641 return (unsigned long)p->uclamp[clamp_id].value; 1642 1643 uc_eff = uclamp_eff_get(p, clamp_id); 1644 1645 return (unsigned long)uc_eff.value; 1646 } 1647 1648 /* 1649 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1650 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1651 * updates the rq's clamp value if required. 1652 * 1653 * Tasks can have a task-specific value requested from user-space, track 1654 * within each bucket the maximum value for tasks refcounted in it. 1655 * This "local max aggregation" allows to track the exact "requested" value 1656 * for each bucket when all its RUNNABLE tasks require the same clamp. 1657 */ 1658 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1659 enum uclamp_id clamp_id) 1660 { 1661 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1662 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1663 struct uclamp_bucket *bucket; 1664 1665 lockdep_assert_rq_held(rq); 1666 1667 /* Update task effective clamp */ 1668 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1669 1670 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1671 bucket->tasks++; 1672 uc_se->active = true; 1673 1674 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1675 1676 /* 1677 * Local max aggregation: rq buckets always track the max 1678 * "requested" clamp value of its RUNNABLE tasks. 1679 */ 1680 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1681 bucket->value = uc_se->value; 1682 1683 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1684 uclamp_rq_set(rq, clamp_id, uc_se->value); 1685 } 1686 1687 /* 1688 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1689 * is released. If this is the last task reference counting the rq's max 1690 * active clamp value, then the rq's clamp value is updated. 1691 * 1692 * Both refcounted tasks and rq's cached clamp values are expected to be 1693 * always valid. If it's detected they are not, as defensive programming, 1694 * enforce the expected state and warn. 1695 */ 1696 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1697 enum uclamp_id clamp_id) 1698 { 1699 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1700 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1701 struct uclamp_bucket *bucket; 1702 unsigned int bkt_clamp; 1703 unsigned int rq_clamp; 1704 1705 lockdep_assert_rq_held(rq); 1706 1707 /* 1708 * If sched_uclamp_used was enabled after task @p was enqueued, 1709 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1710 * 1711 * In this case the uc_se->active flag should be false since no uclamp 1712 * accounting was performed at enqueue time and we can just return 1713 * here. 1714 * 1715 * Need to be careful of the following enqueue/dequeue ordering 1716 * problem too 1717 * 1718 * enqueue(taskA) 1719 * // sched_uclamp_used gets enabled 1720 * enqueue(taskB) 1721 * dequeue(taskA) 1722 * // Must not decrement bucket->tasks here 1723 * dequeue(taskB) 1724 * 1725 * where we could end up with stale data in uc_se and 1726 * bucket[uc_se->bucket_id]. 1727 * 1728 * The following check here eliminates the possibility of such race. 1729 */ 1730 if (unlikely(!uc_se->active)) 1731 return; 1732 1733 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1734 1735 WARN_ON_ONCE(!bucket->tasks); 1736 if (likely(bucket->tasks)) 1737 bucket->tasks--; 1738 1739 uc_se->active = false; 1740 1741 /* 1742 * Keep "local max aggregation" simple and accept to (possibly) 1743 * overboost some RUNNABLE tasks in the same bucket. 1744 * The rq clamp bucket value is reset to its base value whenever 1745 * there are no more RUNNABLE tasks refcounting it. 1746 */ 1747 if (likely(bucket->tasks)) 1748 return; 1749 1750 rq_clamp = uclamp_rq_get(rq, clamp_id); 1751 /* 1752 * Defensive programming: this should never happen. If it happens, 1753 * e.g. due to future modification, warn and fix up the expected value. 1754 */ 1755 WARN_ON_ONCE(bucket->value > rq_clamp); 1756 if (bucket->value >= rq_clamp) { 1757 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1758 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1759 } 1760 } 1761 1762 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) 1763 { 1764 enum uclamp_id clamp_id; 1765 1766 /* 1767 * Avoid any overhead until uclamp is actually used by the userspace. 1768 * 1769 * The condition is constructed such that a NOP is generated when 1770 * sched_uclamp_used is disabled. 1771 */ 1772 if (!uclamp_is_used()) 1773 return; 1774 1775 if (unlikely(!p->sched_class->uclamp_enabled)) 1776 return; 1777 1778 /* Only inc the delayed task which being woken up. */ 1779 if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED)) 1780 return; 1781 1782 for_each_clamp_id(clamp_id) 1783 uclamp_rq_inc_id(rq, p, clamp_id); 1784 1785 /* Reset clamp idle holding when there is one RUNNABLE task */ 1786 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1787 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1788 } 1789 1790 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1791 { 1792 enum uclamp_id clamp_id; 1793 1794 /* 1795 * Avoid any overhead until uclamp is actually used by the userspace. 1796 * 1797 * The condition is constructed such that a NOP is generated when 1798 * sched_uclamp_used is disabled. 1799 */ 1800 if (!uclamp_is_used()) 1801 return; 1802 1803 if (unlikely(!p->sched_class->uclamp_enabled)) 1804 return; 1805 1806 if (p->se.sched_delayed) 1807 return; 1808 1809 for_each_clamp_id(clamp_id) 1810 uclamp_rq_dec_id(rq, p, clamp_id); 1811 } 1812 1813 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1814 enum uclamp_id clamp_id) 1815 { 1816 if (!p->uclamp[clamp_id].active) 1817 return; 1818 1819 uclamp_rq_dec_id(rq, p, clamp_id); 1820 uclamp_rq_inc_id(rq, p, clamp_id); 1821 1822 /* 1823 * Make sure to clear the idle flag if we've transiently reached 0 1824 * active tasks on rq. 1825 */ 1826 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1827 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1828 } 1829 1830 static inline void 1831 uclamp_update_active(struct task_struct *p) 1832 { 1833 enum uclamp_id clamp_id; 1834 struct rq_flags rf; 1835 struct rq *rq; 1836 1837 /* 1838 * Lock the task and the rq where the task is (or was) queued. 1839 * 1840 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1841 * price to pay to safely serialize util_{min,max} updates with 1842 * enqueues, dequeues and migration operations. 1843 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1844 */ 1845 rq = task_rq_lock(p, &rf); 1846 1847 /* 1848 * Setting the clamp bucket is serialized by task_rq_lock(). 1849 * If the task is not yet RUNNABLE and its task_struct is not 1850 * affecting a valid clamp bucket, the next time it's enqueued, 1851 * it will already see the updated clamp bucket value. 1852 */ 1853 for_each_clamp_id(clamp_id) 1854 uclamp_rq_reinc_id(rq, p, clamp_id); 1855 1856 task_rq_unlock(rq, p, &rf); 1857 } 1858 1859 #ifdef CONFIG_UCLAMP_TASK_GROUP 1860 static inline void 1861 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1862 { 1863 struct css_task_iter it; 1864 struct task_struct *p; 1865 1866 css_task_iter_start(css, 0, &it); 1867 while ((p = css_task_iter_next(&it))) 1868 uclamp_update_active(p); 1869 css_task_iter_end(&it); 1870 } 1871 1872 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1873 #endif 1874 1875 #ifdef CONFIG_SYSCTL 1876 #ifdef CONFIG_UCLAMP_TASK_GROUP 1877 static void uclamp_update_root_tg(void) 1878 { 1879 struct task_group *tg = &root_task_group; 1880 1881 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1882 sysctl_sched_uclamp_util_min, false); 1883 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1884 sysctl_sched_uclamp_util_max, false); 1885 1886 guard(rcu)(); 1887 cpu_util_update_eff(&root_task_group.css); 1888 } 1889 #else 1890 static void uclamp_update_root_tg(void) { } 1891 #endif 1892 1893 static void uclamp_sync_util_min_rt_default(void) 1894 { 1895 struct task_struct *g, *p; 1896 1897 /* 1898 * copy_process() sysctl_uclamp 1899 * uclamp_min_rt = X; 1900 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1901 * // link thread smp_mb__after_spinlock() 1902 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1903 * sched_post_fork() for_each_process_thread() 1904 * __uclamp_sync_rt() __uclamp_sync_rt() 1905 * 1906 * Ensures that either sched_post_fork() will observe the new 1907 * uclamp_min_rt or for_each_process_thread() will observe the new 1908 * task. 1909 */ 1910 read_lock(&tasklist_lock); 1911 smp_mb__after_spinlock(); 1912 read_unlock(&tasklist_lock); 1913 1914 guard(rcu)(); 1915 for_each_process_thread(g, p) 1916 uclamp_update_util_min_rt_default(p); 1917 } 1918 1919 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write, 1920 void *buffer, size_t *lenp, loff_t *ppos) 1921 { 1922 bool update_root_tg = false; 1923 int old_min, old_max, old_min_rt; 1924 int result; 1925 1926 guard(mutex)(&uclamp_mutex); 1927 1928 old_min = sysctl_sched_uclamp_util_min; 1929 old_max = sysctl_sched_uclamp_util_max; 1930 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1931 1932 result = proc_dointvec(table, write, buffer, lenp, ppos); 1933 if (result) 1934 goto undo; 1935 if (!write) 1936 return 0; 1937 1938 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1939 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1940 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1941 1942 result = -EINVAL; 1943 goto undo; 1944 } 1945 1946 if (old_min != sysctl_sched_uclamp_util_min) { 1947 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1948 sysctl_sched_uclamp_util_min, false); 1949 update_root_tg = true; 1950 } 1951 if (old_max != sysctl_sched_uclamp_util_max) { 1952 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1953 sysctl_sched_uclamp_util_max, false); 1954 update_root_tg = true; 1955 } 1956 1957 if (update_root_tg) { 1958 sched_uclamp_enable(); 1959 uclamp_update_root_tg(); 1960 } 1961 1962 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1963 sched_uclamp_enable(); 1964 uclamp_sync_util_min_rt_default(); 1965 } 1966 1967 /* 1968 * We update all RUNNABLE tasks only when task groups are in use. 1969 * Otherwise, keep it simple and do just a lazy update at each next 1970 * task enqueue time. 1971 */ 1972 return 0; 1973 1974 undo: 1975 sysctl_sched_uclamp_util_min = old_min; 1976 sysctl_sched_uclamp_util_max = old_max; 1977 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1978 return result; 1979 } 1980 #endif /* CONFIG_SYSCTL */ 1981 1982 static void uclamp_fork(struct task_struct *p) 1983 { 1984 enum uclamp_id clamp_id; 1985 1986 /* 1987 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1988 * as the task is still at its early fork stages. 1989 */ 1990 for_each_clamp_id(clamp_id) 1991 p->uclamp[clamp_id].active = false; 1992 1993 if (likely(!p->sched_reset_on_fork)) 1994 return; 1995 1996 for_each_clamp_id(clamp_id) { 1997 uclamp_se_set(&p->uclamp_req[clamp_id], 1998 uclamp_none(clamp_id), false); 1999 } 2000 } 2001 2002 static void uclamp_post_fork(struct task_struct *p) 2003 { 2004 uclamp_update_util_min_rt_default(p); 2005 } 2006 2007 static void __init init_uclamp_rq(struct rq *rq) 2008 { 2009 enum uclamp_id clamp_id; 2010 struct uclamp_rq *uc_rq = rq->uclamp; 2011 2012 for_each_clamp_id(clamp_id) { 2013 uc_rq[clamp_id] = (struct uclamp_rq) { 2014 .value = uclamp_none(clamp_id) 2015 }; 2016 } 2017 2018 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 2019 } 2020 2021 static void __init init_uclamp(void) 2022 { 2023 struct uclamp_se uc_max = {}; 2024 enum uclamp_id clamp_id; 2025 int cpu; 2026 2027 for_each_possible_cpu(cpu) 2028 init_uclamp_rq(cpu_rq(cpu)); 2029 2030 for_each_clamp_id(clamp_id) { 2031 uclamp_se_set(&init_task.uclamp_req[clamp_id], 2032 uclamp_none(clamp_id), false); 2033 } 2034 2035 /* System defaults allow max clamp values for both indexes */ 2036 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2037 for_each_clamp_id(clamp_id) { 2038 uclamp_default[clamp_id] = uc_max; 2039 #ifdef CONFIG_UCLAMP_TASK_GROUP 2040 root_task_group.uclamp_req[clamp_id] = uc_max; 2041 root_task_group.uclamp[clamp_id] = uc_max; 2042 #endif 2043 } 2044 } 2045 2046 #else /* !CONFIG_UCLAMP_TASK: */ 2047 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { } 2048 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2049 static inline void uclamp_fork(struct task_struct *p) { } 2050 static inline void uclamp_post_fork(struct task_struct *p) { } 2051 static inline void init_uclamp(void) { } 2052 #endif /* !CONFIG_UCLAMP_TASK */ 2053 2054 bool sched_task_on_rq(struct task_struct *p) 2055 { 2056 return task_on_rq_queued(p); 2057 } 2058 2059 unsigned long get_wchan(struct task_struct *p) 2060 { 2061 unsigned long ip = 0; 2062 unsigned int state; 2063 2064 if (!p || p == current) 2065 return 0; 2066 2067 /* Only get wchan if task is blocked and we can keep it that way. */ 2068 raw_spin_lock_irq(&p->pi_lock); 2069 state = READ_ONCE(p->__state); 2070 smp_rmb(); /* see try_to_wake_up() */ 2071 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2072 ip = __get_wchan(p); 2073 raw_spin_unlock_irq(&p->pi_lock); 2074 2075 return ip; 2076 } 2077 2078 void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2079 { 2080 if (!(flags & ENQUEUE_NOCLOCK)) 2081 update_rq_clock(rq); 2082 2083 /* 2084 * Can be before ->enqueue_task() because uclamp considers the 2085 * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared 2086 * in ->enqueue_task(). 2087 */ 2088 uclamp_rq_inc(rq, p, flags); 2089 2090 p->sched_class->enqueue_task(rq, p, flags); 2091 2092 psi_enqueue(p, flags); 2093 2094 if (!(flags & ENQUEUE_RESTORE)) 2095 sched_info_enqueue(rq, p); 2096 2097 if (sched_core_enabled(rq)) 2098 sched_core_enqueue(rq, p); 2099 } 2100 2101 /* 2102 * Must only return false when DEQUEUE_SLEEP. 2103 */ 2104 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2105 { 2106 if (sched_core_enabled(rq)) 2107 sched_core_dequeue(rq, p, flags); 2108 2109 if (!(flags & DEQUEUE_NOCLOCK)) 2110 update_rq_clock(rq); 2111 2112 if (!(flags & DEQUEUE_SAVE)) 2113 sched_info_dequeue(rq, p); 2114 2115 psi_dequeue(p, flags); 2116 2117 /* 2118 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail' 2119 * and mark the task ->sched_delayed. 2120 */ 2121 uclamp_rq_dec(rq, p); 2122 return p->sched_class->dequeue_task(rq, p, flags); 2123 } 2124 2125 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2126 { 2127 if (task_on_rq_migrating(p)) 2128 flags |= ENQUEUE_MIGRATED; 2129 if (flags & ENQUEUE_MIGRATED) 2130 sched_mm_cid_migrate_to(rq, p); 2131 2132 enqueue_task(rq, p, flags); 2133 2134 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); 2135 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2136 } 2137 2138 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2139 { 2140 WARN_ON_ONCE(flags & DEQUEUE_SLEEP); 2141 2142 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 2143 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2144 2145 /* 2146 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before* 2147 * dequeue_task() and cleared *after* enqueue_task(). 2148 */ 2149 2150 dequeue_task(rq, p, flags); 2151 } 2152 2153 static void block_task(struct rq *rq, struct task_struct *p, int flags) 2154 { 2155 if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags)) 2156 __block_task(rq, p); 2157 } 2158 2159 /** 2160 * task_curr - is this task currently executing on a CPU? 2161 * @p: the task in question. 2162 * 2163 * Return: 1 if the task is currently executing. 0 otherwise. 2164 */ 2165 inline int task_curr(const struct task_struct *p) 2166 { 2167 return cpu_curr(task_cpu(p)) == p; 2168 } 2169 2170 /* 2171 * ->switching_to() is called with the pi_lock and rq_lock held and must not 2172 * mess with locking. 2173 */ 2174 void check_class_changing(struct rq *rq, struct task_struct *p, 2175 const struct sched_class *prev_class) 2176 { 2177 if (prev_class != p->sched_class && p->sched_class->switching_to) 2178 p->sched_class->switching_to(rq, p); 2179 } 2180 2181 /* 2182 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2183 * use the balance_callback list if you want balancing. 2184 * 2185 * this means any call to check_class_changed() must be followed by a call to 2186 * balance_callback(). 2187 */ 2188 void check_class_changed(struct rq *rq, struct task_struct *p, 2189 const struct sched_class *prev_class, 2190 int oldprio) 2191 { 2192 if (prev_class != p->sched_class) { 2193 if (prev_class->switched_from) 2194 prev_class->switched_from(rq, p); 2195 2196 p->sched_class->switched_to(rq, p); 2197 } else if (oldprio != p->prio || dl_task(p)) 2198 p->sched_class->prio_changed(rq, p, oldprio); 2199 } 2200 2201 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2202 { 2203 struct task_struct *donor = rq->donor; 2204 2205 if (p->sched_class == donor->sched_class) 2206 donor->sched_class->wakeup_preempt(rq, p, flags); 2207 else if (sched_class_above(p->sched_class, donor->sched_class)) 2208 resched_curr(rq); 2209 2210 /* 2211 * A queue event has occurred, and we're going to schedule. In 2212 * this case, we can save a useless back to back clock update. 2213 */ 2214 if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr)) 2215 rq_clock_skip_update(rq); 2216 } 2217 2218 static __always_inline 2219 int __task_state_match(struct task_struct *p, unsigned int state) 2220 { 2221 if (READ_ONCE(p->__state) & state) 2222 return 1; 2223 2224 if (READ_ONCE(p->saved_state) & state) 2225 return -1; 2226 2227 return 0; 2228 } 2229 2230 static __always_inline 2231 int task_state_match(struct task_struct *p, unsigned int state) 2232 { 2233 /* 2234 * Serialize against current_save_and_set_rtlock_wait_state(), 2235 * current_restore_rtlock_saved_state(), and __refrigerator(). 2236 */ 2237 guard(raw_spinlock_irq)(&p->pi_lock); 2238 return __task_state_match(p, state); 2239 } 2240 2241 /* 2242 * wait_task_inactive - wait for a thread to unschedule. 2243 * 2244 * Wait for the thread to block in any of the states set in @match_state. 2245 * If it changes, i.e. @p might have woken up, then return zero. When we 2246 * succeed in waiting for @p to be off its CPU, we return a positive number 2247 * (its total switch count). If a second call a short while later returns the 2248 * same number, the caller can be sure that @p has remained unscheduled the 2249 * whole time. 2250 * 2251 * The caller must ensure that the task *will* unschedule sometime soon, 2252 * else this function might spin for a *long* time. This function can't 2253 * be called with interrupts off, or it may introduce deadlock with 2254 * smp_call_function() if an IPI is sent by the same process we are 2255 * waiting to become inactive. 2256 */ 2257 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2258 { 2259 int running, queued, match; 2260 struct rq_flags rf; 2261 unsigned long ncsw; 2262 struct rq *rq; 2263 2264 for (;;) { 2265 /* 2266 * We do the initial early heuristics without holding 2267 * any task-queue locks at all. We'll only try to get 2268 * the runqueue lock when things look like they will 2269 * work out! 2270 */ 2271 rq = task_rq(p); 2272 2273 /* 2274 * If the task is actively running on another CPU 2275 * still, just relax and busy-wait without holding 2276 * any locks. 2277 * 2278 * NOTE! Since we don't hold any locks, it's not 2279 * even sure that "rq" stays as the right runqueue! 2280 * But we don't care, since "task_on_cpu()" will 2281 * return false if the runqueue has changed and p 2282 * is actually now running somewhere else! 2283 */ 2284 while (task_on_cpu(rq, p)) { 2285 if (!task_state_match(p, match_state)) 2286 return 0; 2287 cpu_relax(); 2288 } 2289 2290 /* 2291 * Ok, time to look more closely! We need the rq 2292 * lock now, to be *sure*. If we're wrong, we'll 2293 * just go back and repeat. 2294 */ 2295 rq = task_rq_lock(p, &rf); 2296 /* 2297 * If task is sched_delayed, force dequeue it, to avoid always 2298 * hitting the tick timeout in the queued case 2299 */ 2300 if (p->se.sched_delayed) 2301 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 2302 trace_sched_wait_task(p); 2303 running = task_on_cpu(rq, p); 2304 queued = task_on_rq_queued(p); 2305 ncsw = 0; 2306 if ((match = __task_state_match(p, match_state))) { 2307 /* 2308 * When matching on p->saved_state, consider this task 2309 * still queued so it will wait. 2310 */ 2311 if (match < 0) 2312 queued = 1; 2313 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2314 } 2315 task_rq_unlock(rq, p, &rf); 2316 2317 /* 2318 * If it changed from the expected state, bail out now. 2319 */ 2320 if (unlikely(!ncsw)) 2321 break; 2322 2323 /* 2324 * Was it really running after all now that we 2325 * checked with the proper locks actually held? 2326 * 2327 * Oops. Go back and try again.. 2328 */ 2329 if (unlikely(running)) { 2330 cpu_relax(); 2331 continue; 2332 } 2333 2334 /* 2335 * It's not enough that it's not actively running, 2336 * it must be off the runqueue _entirely_, and not 2337 * preempted! 2338 * 2339 * So if it was still runnable (but just not actively 2340 * running right now), it's preempted, and we should 2341 * yield - it could be a while. 2342 */ 2343 if (unlikely(queued)) { 2344 ktime_t to = NSEC_PER_SEC / HZ; 2345 2346 set_current_state(TASK_UNINTERRUPTIBLE); 2347 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2348 continue; 2349 } 2350 2351 /* 2352 * Ahh, all good. It wasn't running, and it wasn't 2353 * runnable, which means that it will never become 2354 * running in the future either. We're all done! 2355 */ 2356 break; 2357 } 2358 2359 return ncsw; 2360 } 2361 2362 static void 2363 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2364 2365 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2366 { 2367 struct affinity_context ac = { 2368 .new_mask = cpumask_of(rq->cpu), 2369 .flags = SCA_MIGRATE_DISABLE, 2370 }; 2371 2372 if (likely(!p->migration_disabled)) 2373 return; 2374 2375 if (p->cpus_ptr != &p->cpus_mask) 2376 return; 2377 2378 /* 2379 * Violates locking rules! See comment in __do_set_cpus_allowed(). 2380 */ 2381 __do_set_cpus_allowed(p, &ac); 2382 } 2383 2384 void migrate_disable(void) 2385 { 2386 struct task_struct *p = current; 2387 2388 if (p->migration_disabled) { 2389 #ifdef CONFIG_DEBUG_PREEMPT 2390 /* 2391 *Warn about overflow half-way through the range. 2392 */ 2393 WARN_ON_ONCE((s16)p->migration_disabled < 0); 2394 #endif 2395 p->migration_disabled++; 2396 return; 2397 } 2398 2399 guard(preempt)(); 2400 this_rq()->nr_pinned++; 2401 p->migration_disabled = 1; 2402 } 2403 EXPORT_SYMBOL_GPL(migrate_disable); 2404 2405 void migrate_enable(void) 2406 { 2407 struct task_struct *p = current; 2408 struct affinity_context ac = { 2409 .new_mask = &p->cpus_mask, 2410 .flags = SCA_MIGRATE_ENABLE, 2411 }; 2412 2413 #ifdef CONFIG_DEBUG_PREEMPT 2414 /* 2415 * Check both overflow from migrate_disable() and superfluous 2416 * migrate_enable(). 2417 */ 2418 if (WARN_ON_ONCE((s16)p->migration_disabled <= 0)) 2419 return; 2420 #endif 2421 2422 if (p->migration_disabled > 1) { 2423 p->migration_disabled--; 2424 return; 2425 } 2426 2427 /* 2428 * Ensure stop_task runs either before or after this, and that 2429 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2430 */ 2431 guard(preempt)(); 2432 if (p->cpus_ptr != &p->cpus_mask) 2433 __set_cpus_allowed_ptr(p, &ac); 2434 /* 2435 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2436 * regular cpus_mask, otherwise things that race (eg. 2437 * select_fallback_rq) get confused. 2438 */ 2439 barrier(); 2440 p->migration_disabled = 0; 2441 this_rq()->nr_pinned--; 2442 } 2443 EXPORT_SYMBOL_GPL(migrate_enable); 2444 2445 static inline bool rq_has_pinned_tasks(struct rq *rq) 2446 { 2447 return rq->nr_pinned; 2448 } 2449 2450 /* 2451 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2452 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2453 */ 2454 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2455 { 2456 /* When not in the task's cpumask, no point in looking further. */ 2457 if (!task_allowed_on_cpu(p, cpu)) 2458 return false; 2459 2460 /* migrate_disabled() must be allowed to finish. */ 2461 if (is_migration_disabled(p)) 2462 return cpu_online(cpu); 2463 2464 /* Non kernel threads are not allowed during either online or offline. */ 2465 if (!(p->flags & PF_KTHREAD)) 2466 return cpu_active(cpu); 2467 2468 /* KTHREAD_IS_PER_CPU is always allowed. */ 2469 if (kthread_is_per_cpu(p)) 2470 return cpu_online(cpu); 2471 2472 /* Regular kernel threads don't get to stay during offline. */ 2473 if (cpu_dying(cpu)) 2474 return false; 2475 2476 /* But are allowed during online. */ 2477 return cpu_online(cpu); 2478 } 2479 2480 /* 2481 * This is how migration works: 2482 * 2483 * 1) we invoke migration_cpu_stop() on the target CPU using 2484 * stop_one_cpu(). 2485 * 2) stopper starts to run (implicitly forcing the migrated thread 2486 * off the CPU) 2487 * 3) it checks whether the migrated task is still in the wrong runqueue. 2488 * 4) if it's in the wrong runqueue then the migration thread removes 2489 * it and puts it into the right queue. 2490 * 5) stopper completes and stop_one_cpu() returns and the migration 2491 * is done. 2492 */ 2493 2494 /* 2495 * move_queued_task - move a queued task to new rq. 2496 * 2497 * Returns (locked) new rq. Old rq's lock is released. 2498 */ 2499 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2500 struct task_struct *p, int new_cpu) 2501 { 2502 lockdep_assert_rq_held(rq); 2503 2504 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2505 set_task_cpu(p, new_cpu); 2506 rq_unlock(rq, rf); 2507 2508 rq = cpu_rq(new_cpu); 2509 2510 rq_lock(rq, rf); 2511 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2512 activate_task(rq, p, 0); 2513 wakeup_preempt(rq, p, 0); 2514 2515 return rq; 2516 } 2517 2518 struct migration_arg { 2519 struct task_struct *task; 2520 int dest_cpu; 2521 struct set_affinity_pending *pending; 2522 }; 2523 2524 /* 2525 * @refs: number of wait_for_completion() 2526 * @stop_pending: is @stop_work in use 2527 */ 2528 struct set_affinity_pending { 2529 refcount_t refs; 2530 unsigned int stop_pending; 2531 struct completion done; 2532 struct cpu_stop_work stop_work; 2533 struct migration_arg arg; 2534 }; 2535 2536 /* 2537 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2538 * this because either it can't run here any more (set_cpus_allowed() 2539 * away from this CPU, or CPU going down), or because we're 2540 * attempting to rebalance this task on exec (sched_exec). 2541 * 2542 * So we race with normal scheduler movements, but that's OK, as long 2543 * as the task is no longer on this CPU. 2544 */ 2545 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2546 struct task_struct *p, int dest_cpu) 2547 { 2548 /* Affinity changed (again). */ 2549 if (!is_cpu_allowed(p, dest_cpu)) 2550 return rq; 2551 2552 rq = move_queued_task(rq, rf, p, dest_cpu); 2553 2554 return rq; 2555 } 2556 2557 /* 2558 * migration_cpu_stop - this will be executed by a high-prio stopper thread 2559 * and performs thread migration by bumping thread off CPU then 2560 * 'pushing' onto another runqueue. 2561 */ 2562 static int migration_cpu_stop(void *data) 2563 { 2564 struct migration_arg *arg = data; 2565 struct set_affinity_pending *pending = arg->pending; 2566 struct task_struct *p = arg->task; 2567 struct rq *rq = this_rq(); 2568 bool complete = false; 2569 struct rq_flags rf; 2570 2571 /* 2572 * The original target CPU might have gone down and we might 2573 * be on another CPU but it doesn't matter. 2574 */ 2575 local_irq_save(rf.flags); 2576 /* 2577 * We need to explicitly wake pending tasks before running 2578 * __migrate_task() such that we will not miss enforcing cpus_ptr 2579 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2580 */ 2581 flush_smp_call_function_queue(); 2582 2583 raw_spin_lock(&p->pi_lock); 2584 rq_lock(rq, &rf); 2585 2586 /* 2587 * If we were passed a pending, then ->stop_pending was set, thus 2588 * p->migration_pending must have remained stable. 2589 */ 2590 WARN_ON_ONCE(pending && pending != p->migration_pending); 2591 2592 /* 2593 * If task_rq(p) != rq, it cannot be migrated here, because we're 2594 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2595 * we're holding p->pi_lock. 2596 */ 2597 if (task_rq(p) == rq) { 2598 if (is_migration_disabled(p)) 2599 goto out; 2600 2601 if (pending) { 2602 p->migration_pending = NULL; 2603 complete = true; 2604 2605 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2606 goto out; 2607 } 2608 2609 if (task_on_rq_queued(p)) { 2610 update_rq_clock(rq); 2611 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2612 } else { 2613 p->wake_cpu = arg->dest_cpu; 2614 } 2615 2616 /* 2617 * XXX __migrate_task() can fail, at which point we might end 2618 * up running on a dodgy CPU, AFAICT this can only happen 2619 * during CPU hotplug, at which point we'll get pushed out 2620 * anyway, so it's probably not a big deal. 2621 */ 2622 2623 } else if (pending) { 2624 /* 2625 * This happens when we get migrated between migrate_enable()'s 2626 * preempt_enable() and scheduling the stopper task. At that 2627 * point we're a regular task again and not current anymore. 2628 * 2629 * A !PREEMPT kernel has a giant hole here, which makes it far 2630 * more likely. 2631 */ 2632 2633 /* 2634 * The task moved before the stopper got to run. We're holding 2635 * ->pi_lock, so the allowed mask is stable - if it got 2636 * somewhere allowed, we're done. 2637 */ 2638 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2639 p->migration_pending = NULL; 2640 complete = true; 2641 goto out; 2642 } 2643 2644 /* 2645 * When migrate_enable() hits a rq mis-match we can't reliably 2646 * determine is_migration_disabled() and so have to chase after 2647 * it. 2648 */ 2649 WARN_ON_ONCE(!pending->stop_pending); 2650 preempt_disable(); 2651 task_rq_unlock(rq, p, &rf); 2652 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2653 &pending->arg, &pending->stop_work); 2654 preempt_enable(); 2655 return 0; 2656 } 2657 out: 2658 if (pending) 2659 pending->stop_pending = false; 2660 task_rq_unlock(rq, p, &rf); 2661 2662 if (complete) 2663 complete_all(&pending->done); 2664 2665 return 0; 2666 } 2667 2668 int push_cpu_stop(void *arg) 2669 { 2670 struct rq *lowest_rq = NULL, *rq = this_rq(); 2671 struct task_struct *p = arg; 2672 2673 raw_spin_lock_irq(&p->pi_lock); 2674 raw_spin_rq_lock(rq); 2675 2676 if (task_rq(p) != rq) 2677 goto out_unlock; 2678 2679 if (is_migration_disabled(p)) { 2680 p->migration_flags |= MDF_PUSH; 2681 goto out_unlock; 2682 } 2683 2684 p->migration_flags &= ~MDF_PUSH; 2685 2686 if (p->sched_class->find_lock_rq) 2687 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2688 2689 if (!lowest_rq) 2690 goto out_unlock; 2691 2692 // XXX validate p is still the highest prio task 2693 if (task_rq(p) == rq) { 2694 move_queued_task_locked(rq, lowest_rq, p); 2695 resched_curr(lowest_rq); 2696 } 2697 2698 double_unlock_balance(rq, lowest_rq); 2699 2700 out_unlock: 2701 rq->push_busy = false; 2702 raw_spin_rq_unlock(rq); 2703 raw_spin_unlock_irq(&p->pi_lock); 2704 2705 put_task_struct(p); 2706 return 0; 2707 } 2708 2709 /* 2710 * sched_class::set_cpus_allowed must do the below, but is not required to 2711 * actually call this function. 2712 */ 2713 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2714 { 2715 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2716 p->cpus_ptr = ctx->new_mask; 2717 return; 2718 } 2719 2720 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2721 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2722 2723 /* 2724 * Swap in a new user_cpus_ptr if SCA_USER flag set 2725 */ 2726 if (ctx->flags & SCA_USER) 2727 swap(p->user_cpus_ptr, ctx->user_mask); 2728 } 2729 2730 static void 2731 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2732 { 2733 struct rq *rq = task_rq(p); 2734 bool queued, running; 2735 2736 /* 2737 * This here violates the locking rules for affinity, since we're only 2738 * supposed to change these variables while holding both rq->lock and 2739 * p->pi_lock. 2740 * 2741 * HOWEVER, it magically works, because ttwu() is the only code that 2742 * accesses these variables under p->pi_lock and only does so after 2743 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2744 * before finish_task(). 2745 * 2746 * XXX do further audits, this smells like something putrid. 2747 */ 2748 if (ctx->flags & SCA_MIGRATE_DISABLE) 2749 WARN_ON_ONCE(!p->on_cpu); 2750 else 2751 lockdep_assert_held(&p->pi_lock); 2752 2753 queued = task_on_rq_queued(p); 2754 running = task_current_donor(rq, p); 2755 2756 if (queued) { 2757 /* 2758 * Because __kthread_bind() calls this on blocked tasks without 2759 * holding rq->lock. 2760 */ 2761 lockdep_assert_rq_held(rq); 2762 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2763 } 2764 if (running) 2765 put_prev_task(rq, p); 2766 2767 p->sched_class->set_cpus_allowed(p, ctx); 2768 mm_set_cpus_allowed(p->mm, ctx->new_mask); 2769 2770 if (queued) 2771 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2772 if (running) 2773 set_next_task(rq, p); 2774 } 2775 2776 /* 2777 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2778 * affinity (if any) should be destroyed too. 2779 */ 2780 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2781 { 2782 struct affinity_context ac = { 2783 .new_mask = new_mask, 2784 .user_mask = NULL, 2785 .flags = SCA_USER, /* clear the user requested mask */ 2786 }; 2787 union cpumask_rcuhead { 2788 cpumask_t cpumask; 2789 struct rcu_head rcu; 2790 }; 2791 2792 __do_set_cpus_allowed(p, &ac); 2793 2794 /* 2795 * Because this is called with p->pi_lock held, it is not possible 2796 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2797 * kfree_rcu(). 2798 */ 2799 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2800 } 2801 2802 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2803 int node) 2804 { 2805 cpumask_t *user_mask; 2806 unsigned long flags; 2807 2808 /* 2809 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2810 * may differ by now due to racing. 2811 */ 2812 dst->user_cpus_ptr = NULL; 2813 2814 /* 2815 * This check is racy and losing the race is a valid situation. 2816 * It is not worth the extra overhead of taking the pi_lock on 2817 * every fork/clone. 2818 */ 2819 if (data_race(!src->user_cpus_ptr)) 2820 return 0; 2821 2822 user_mask = alloc_user_cpus_ptr(node); 2823 if (!user_mask) 2824 return -ENOMEM; 2825 2826 /* 2827 * Use pi_lock to protect content of user_cpus_ptr 2828 * 2829 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2830 * do_set_cpus_allowed(). 2831 */ 2832 raw_spin_lock_irqsave(&src->pi_lock, flags); 2833 if (src->user_cpus_ptr) { 2834 swap(dst->user_cpus_ptr, user_mask); 2835 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2836 } 2837 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2838 2839 if (unlikely(user_mask)) 2840 kfree(user_mask); 2841 2842 return 0; 2843 } 2844 2845 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2846 { 2847 struct cpumask *user_mask = NULL; 2848 2849 swap(p->user_cpus_ptr, user_mask); 2850 2851 return user_mask; 2852 } 2853 2854 void release_user_cpus_ptr(struct task_struct *p) 2855 { 2856 kfree(clear_user_cpus_ptr(p)); 2857 } 2858 2859 /* 2860 * This function is wildly self concurrent; here be dragons. 2861 * 2862 * 2863 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2864 * designated task is enqueued on an allowed CPU. If that task is currently 2865 * running, we have to kick it out using the CPU stopper. 2866 * 2867 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2868 * Consider: 2869 * 2870 * Initial conditions: P0->cpus_mask = [0, 1] 2871 * 2872 * P0@CPU0 P1 2873 * 2874 * migrate_disable(); 2875 * <preempted> 2876 * set_cpus_allowed_ptr(P0, [1]); 2877 * 2878 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2879 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2880 * This means we need the following scheme: 2881 * 2882 * P0@CPU0 P1 2883 * 2884 * migrate_disable(); 2885 * <preempted> 2886 * set_cpus_allowed_ptr(P0, [1]); 2887 * <blocks> 2888 * <resumes> 2889 * migrate_enable(); 2890 * __set_cpus_allowed_ptr(); 2891 * <wakes local stopper> 2892 * `--> <woken on migration completion> 2893 * 2894 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2895 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2896 * task p are serialized by p->pi_lock, which we can leverage: the one that 2897 * should come into effect at the end of the Migrate-Disable region is the last 2898 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2899 * but we still need to properly signal those waiting tasks at the appropriate 2900 * moment. 2901 * 2902 * This is implemented using struct set_affinity_pending. The first 2903 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2904 * setup an instance of that struct and install it on the targeted task_struct. 2905 * Any and all further callers will reuse that instance. Those then wait for 2906 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2907 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2908 * 2909 * 2910 * (1) In the cases covered above. There is one more where the completion is 2911 * signaled within affine_move_task() itself: when a subsequent affinity request 2912 * occurs after the stopper bailed out due to the targeted task still being 2913 * Migrate-Disable. Consider: 2914 * 2915 * Initial conditions: P0->cpus_mask = [0, 1] 2916 * 2917 * CPU0 P1 P2 2918 * <P0> 2919 * migrate_disable(); 2920 * <preempted> 2921 * set_cpus_allowed_ptr(P0, [1]); 2922 * <blocks> 2923 * <migration/0> 2924 * migration_cpu_stop() 2925 * is_migration_disabled() 2926 * <bails> 2927 * set_cpus_allowed_ptr(P0, [0, 1]); 2928 * <signal completion> 2929 * <awakes> 2930 * 2931 * Note that the above is safe vs a concurrent migrate_enable(), as any 2932 * pending affinity completion is preceded by an uninstallation of 2933 * p->migration_pending done with p->pi_lock held. 2934 */ 2935 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2936 int dest_cpu, unsigned int flags) 2937 __releases(rq->lock) 2938 __releases(p->pi_lock) 2939 { 2940 struct set_affinity_pending my_pending = { }, *pending = NULL; 2941 bool stop_pending, complete = false; 2942 2943 /* 2944 * Can the task run on the task's current CPU? If so, we're done 2945 * 2946 * We are also done if the task is the current donor, boosting a lock- 2947 * holding proxy, (and potentially has been migrated outside its 2948 * current or previous affinity mask) 2949 */ 2950 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask) || 2951 (task_current_donor(rq, p) && !task_current(rq, p))) { 2952 struct task_struct *push_task = NULL; 2953 2954 if ((flags & SCA_MIGRATE_ENABLE) && 2955 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2956 rq->push_busy = true; 2957 push_task = get_task_struct(p); 2958 } 2959 2960 /* 2961 * If there are pending waiters, but no pending stop_work, 2962 * then complete now. 2963 */ 2964 pending = p->migration_pending; 2965 if (pending && !pending->stop_pending) { 2966 p->migration_pending = NULL; 2967 complete = true; 2968 } 2969 2970 preempt_disable(); 2971 task_rq_unlock(rq, p, rf); 2972 if (push_task) { 2973 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2974 p, &rq->push_work); 2975 } 2976 preempt_enable(); 2977 2978 if (complete) 2979 complete_all(&pending->done); 2980 2981 return 0; 2982 } 2983 2984 if (!(flags & SCA_MIGRATE_ENABLE)) { 2985 /* serialized by p->pi_lock */ 2986 if (!p->migration_pending) { 2987 /* Install the request */ 2988 refcount_set(&my_pending.refs, 1); 2989 init_completion(&my_pending.done); 2990 my_pending.arg = (struct migration_arg) { 2991 .task = p, 2992 .dest_cpu = dest_cpu, 2993 .pending = &my_pending, 2994 }; 2995 2996 p->migration_pending = &my_pending; 2997 } else { 2998 pending = p->migration_pending; 2999 refcount_inc(&pending->refs); 3000 /* 3001 * Affinity has changed, but we've already installed a 3002 * pending. migration_cpu_stop() *must* see this, else 3003 * we risk a completion of the pending despite having a 3004 * task on a disallowed CPU. 3005 * 3006 * Serialized by p->pi_lock, so this is safe. 3007 */ 3008 pending->arg.dest_cpu = dest_cpu; 3009 } 3010 } 3011 pending = p->migration_pending; 3012 /* 3013 * - !MIGRATE_ENABLE: 3014 * we'll have installed a pending if there wasn't one already. 3015 * 3016 * - MIGRATE_ENABLE: 3017 * we're here because the current CPU isn't matching anymore, 3018 * the only way that can happen is because of a concurrent 3019 * set_cpus_allowed_ptr() call, which should then still be 3020 * pending completion. 3021 * 3022 * Either way, we really should have a @pending here. 3023 */ 3024 if (WARN_ON_ONCE(!pending)) { 3025 task_rq_unlock(rq, p, rf); 3026 return -EINVAL; 3027 } 3028 3029 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 3030 /* 3031 * MIGRATE_ENABLE gets here because 'p == current', but for 3032 * anything else we cannot do is_migration_disabled(), punt 3033 * and have the stopper function handle it all race-free. 3034 */ 3035 stop_pending = pending->stop_pending; 3036 if (!stop_pending) 3037 pending->stop_pending = true; 3038 3039 if (flags & SCA_MIGRATE_ENABLE) 3040 p->migration_flags &= ~MDF_PUSH; 3041 3042 preempt_disable(); 3043 task_rq_unlock(rq, p, rf); 3044 if (!stop_pending) { 3045 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 3046 &pending->arg, &pending->stop_work); 3047 } 3048 preempt_enable(); 3049 3050 if (flags & SCA_MIGRATE_ENABLE) 3051 return 0; 3052 } else { 3053 3054 if (!is_migration_disabled(p)) { 3055 if (task_on_rq_queued(p)) 3056 rq = move_queued_task(rq, rf, p, dest_cpu); 3057 3058 if (!pending->stop_pending) { 3059 p->migration_pending = NULL; 3060 complete = true; 3061 } 3062 } 3063 task_rq_unlock(rq, p, rf); 3064 3065 if (complete) 3066 complete_all(&pending->done); 3067 } 3068 3069 wait_for_completion(&pending->done); 3070 3071 if (refcount_dec_and_test(&pending->refs)) 3072 wake_up_var(&pending->refs); /* No UaF, just an address */ 3073 3074 /* 3075 * Block the original owner of &pending until all subsequent callers 3076 * have seen the completion and decremented the refcount 3077 */ 3078 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 3079 3080 /* ARGH */ 3081 WARN_ON_ONCE(my_pending.stop_pending); 3082 3083 return 0; 3084 } 3085 3086 /* 3087 * Called with both p->pi_lock and rq->lock held; drops both before returning. 3088 */ 3089 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 3090 struct affinity_context *ctx, 3091 struct rq *rq, 3092 struct rq_flags *rf) 3093 __releases(rq->lock) 3094 __releases(p->pi_lock) 3095 { 3096 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 3097 const struct cpumask *cpu_valid_mask = cpu_active_mask; 3098 bool kthread = p->flags & PF_KTHREAD; 3099 unsigned int dest_cpu; 3100 int ret = 0; 3101 3102 update_rq_clock(rq); 3103 3104 if (kthread || is_migration_disabled(p)) { 3105 /* 3106 * Kernel threads are allowed on online && !active CPUs, 3107 * however, during cpu-hot-unplug, even these might get pushed 3108 * away if not KTHREAD_IS_PER_CPU. 3109 * 3110 * Specifically, migration_disabled() tasks must not fail the 3111 * cpumask_any_and_distribute() pick below, esp. so on 3112 * SCA_MIGRATE_ENABLE, otherwise we'll not call 3113 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 3114 */ 3115 cpu_valid_mask = cpu_online_mask; 3116 } 3117 3118 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 3119 ret = -EINVAL; 3120 goto out; 3121 } 3122 3123 /* 3124 * Must re-check here, to close a race against __kthread_bind(), 3125 * sched_setaffinity() is not guaranteed to observe the flag. 3126 */ 3127 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 3128 ret = -EINVAL; 3129 goto out; 3130 } 3131 3132 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 3133 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 3134 if (ctx->flags & SCA_USER) 3135 swap(p->user_cpus_ptr, ctx->user_mask); 3136 goto out; 3137 } 3138 3139 if (WARN_ON_ONCE(p == current && 3140 is_migration_disabled(p) && 3141 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 3142 ret = -EBUSY; 3143 goto out; 3144 } 3145 } 3146 3147 /* 3148 * Picking a ~random cpu helps in cases where we are changing affinity 3149 * for groups of tasks (ie. cpuset), so that load balancing is not 3150 * immediately required to distribute the tasks within their new mask. 3151 */ 3152 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 3153 if (dest_cpu >= nr_cpu_ids) { 3154 ret = -EINVAL; 3155 goto out; 3156 } 3157 3158 __do_set_cpus_allowed(p, ctx); 3159 3160 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3161 3162 out: 3163 task_rq_unlock(rq, p, rf); 3164 3165 return ret; 3166 } 3167 3168 /* 3169 * Change a given task's CPU affinity. Migrate the thread to a 3170 * proper CPU and schedule it away if the CPU it's executing on 3171 * is removed from the allowed bitmask. 3172 * 3173 * NOTE: the caller must have a valid reference to the task, the 3174 * task must not exit() & deallocate itself prematurely. The 3175 * call is not atomic; no spinlocks may be held. 3176 */ 3177 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) 3178 { 3179 struct rq_flags rf; 3180 struct rq *rq; 3181 3182 rq = task_rq_lock(p, &rf); 3183 /* 3184 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3185 * flags are set. 3186 */ 3187 if (p->user_cpus_ptr && 3188 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3189 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3190 ctx->new_mask = rq->scratch_mask; 3191 3192 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3193 } 3194 3195 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3196 { 3197 struct affinity_context ac = { 3198 .new_mask = new_mask, 3199 .flags = 0, 3200 }; 3201 3202 return __set_cpus_allowed_ptr(p, &ac); 3203 } 3204 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3205 3206 /* 3207 * Change a given task's CPU affinity to the intersection of its current 3208 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3209 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3210 * affinity or use cpu_online_mask instead. 3211 * 3212 * If the resulting mask is empty, leave the affinity unchanged and return 3213 * -EINVAL. 3214 */ 3215 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3216 struct cpumask *new_mask, 3217 const struct cpumask *subset_mask) 3218 { 3219 struct affinity_context ac = { 3220 .new_mask = new_mask, 3221 .flags = 0, 3222 }; 3223 struct rq_flags rf; 3224 struct rq *rq; 3225 int err; 3226 3227 rq = task_rq_lock(p, &rf); 3228 3229 /* 3230 * Forcefully restricting the affinity of a deadline task is 3231 * likely to cause problems, so fail and noisily override the 3232 * mask entirely. 3233 */ 3234 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3235 err = -EPERM; 3236 goto err_unlock; 3237 } 3238 3239 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3240 err = -EINVAL; 3241 goto err_unlock; 3242 } 3243 3244 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3245 3246 err_unlock: 3247 task_rq_unlock(rq, p, &rf); 3248 return err; 3249 } 3250 3251 /* 3252 * Restrict the CPU affinity of task @p so that it is a subset of 3253 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3254 * old affinity mask. If the resulting mask is empty, we warn and walk 3255 * up the cpuset hierarchy until we find a suitable mask. 3256 */ 3257 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3258 { 3259 cpumask_var_t new_mask; 3260 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3261 3262 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3263 3264 /* 3265 * __migrate_task() can fail silently in the face of concurrent 3266 * offlining of the chosen destination CPU, so take the hotplug 3267 * lock to ensure that the migration succeeds. 3268 */ 3269 cpus_read_lock(); 3270 if (!cpumask_available(new_mask)) 3271 goto out_set_mask; 3272 3273 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3274 goto out_free_mask; 3275 3276 /* 3277 * We failed to find a valid subset of the affinity mask for the 3278 * task, so override it based on its cpuset hierarchy. 3279 */ 3280 cpuset_cpus_allowed(p, new_mask); 3281 override_mask = new_mask; 3282 3283 out_set_mask: 3284 if (printk_ratelimit()) { 3285 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3286 task_pid_nr(p), p->comm, 3287 cpumask_pr_args(override_mask)); 3288 } 3289 3290 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3291 out_free_mask: 3292 cpus_read_unlock(); 3293 free_cpumask_var(new_mask); 3294 } 3295 3296 /* 3297 * Restore the affinity of a task @p which was previously restricted by a 3298 * call to force_compatible_cpus_allowed_ptr(). 3299 * 3300 * It is the caller's responsibility to serialise this with any calls to 3301 * force_compatible_cpus_allowed_ptr(@p). 3302 */ 3303 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3304 { 3305 struct affinity_context ac = { 3306 .new_mask = task_user_cpus(p), 3307 .flags = 0, 3308 }; 3309 int ret; 3310 3311 /* 3312 * Try to restore the old affinity mask with __sched_setaffinity(). 3313 * Cpuset masking will be done there too. 3314 */ 3315 ret = __sched_setaffinity(p, &ac); 3316 WARN_ON_ONCE(ret); 3317 } 3318 3319 #ifdef CONFIG_SMP 3320 3321 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3322 { 3323 unsigned int state = READ_ONCE(p->__state); 3324 3325 /* 3326 * We should never call set_task_cpu() on a blocked task, 3327 * ttwu() will sort out the placement. 3328 */ 3329 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3330 3331 /* 3332 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3333 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3334 * time relying on p->on_rq. 3335 */ 3336 WARN_ON_ONCE(state == TASK_RUNNING && 3337 p->sched_class == &fair_sched_class && 3338 (p->on_rq && !task_on_rq_migrating(p))); 3339 3340 #ifdef CONFIG_LOCKDEP 3341 /* 3342 * The caller should hold either p->pi_lock or rq->lock, when changing 3343 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3344 * 3345 * sched_move_task() holds both and thus holding either pins the cgroup, 3346 * see task_group(). 3347 * 3348 * Furthermore, all task_rq users should acquire both locks, see 3349 * task_rq_lock(). 3350 */ 3351 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3352 lockdep_is_held(__rq_lockp(task_rq(p))))); 3353 #endif 3354 /* 3355 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3356 */ 3357 WARN_ON_ONCE(!cpu_online(new_cpu)); 3358 3359 WARN_ON_ONCE(is_migration_disabled(p)); 3360 3361 trace_sched_migrate_task(p, new_cpu); 3362 3363 if (task_cpu(p) != new_cpu) { 3364 if (p->sched_class->migrate_task_rq) 3365 p->sched_class->migrate_task_rq(p, new_cpu); 3366 p->se.nr_migrations++; 3367 rseq_migrate(p); 3368 sched_mm_cid_migrate_from(p); 3369 perf_event_task_migrate(p); 3370 } 3371 3372 __set_task_cpu(p, new_cpu); 3373 } 3374 #endif /* CONFIG_SMP */ 3375 3376 #ifdef CONFIG_NUMA_BALANCING 3377 static void __migrate_swap_task(struct task_struct *p, int cpu) 3378 { 3379 if (task_on_rq_queued(p)) { 3380 struct rq *src_rq, *dst_rq; 3381 struct rq_flags srf, drf; 3382 3383 src_rq = task_rq(p); 3384 dst_rq = cpu_rq(cpu); 3385 3386 rq_pin_lock(src_rq, &srf); 3387 rq_pin_lock(dst_rq, &drf); 3388 3389 move_queued_task_locked(src_rq, dst_rq, p); 3390 wakeup_preempt(dst_rq, p, 0); 3391 3392 rq_unpin_lock(dst_rq, &drf); 3393 rq_unpin_lock(src_rq, &srf); 3394 3395 } else { 3396 /* 3397 * Task isn't running anymore; make it appear like we migrated 3398 * it before it went to sleep. This means on wakeup we make the 3399 * previous CPU our target instead of where it really is. 3400 */ 3401 p->wake_cpu = cpu; 3402 } 3403 } 3404 3405 struct migration_swap_arg { 3406 struct task_struct *src_task, *dst_task; 3407 int src_cpu, dst_cpu; 3408 }; 3409 3410 static int migrate_swap_stop(void *data) 3411 { 3412 struct migration_swap_arg *arg = data; 3413 struct rq *src_rq, *dst_rq; 3414 3415 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3416 return -EAGAIN; 3417 3418 src_rq = cpu_rq(arg->src_cpu); 3419 dst_rq = cpu_rq(arg->dst_cpu); 3420 3421 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3422 guard(double_rq_lock)(src_rq, dst_rq); 3423 3424 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3425 return -EAGAIN; 3426 3427 if (task_cpu(arg->src_task) != arg->src_cpu) 3428 return -EAGAIN; 3429 3430 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3431 return -EAGAIN; 3432 3433 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3434 return -EAGAIN; 3435 3436 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3437 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3438 3439 return 0; 3440 } 3441 3442 /* 3443 * Cross migrate two tasks 3444 */ 3445 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3446 int target_cpu, int curr_cpu) 3447 { 3448 struct migration_swap_arg arg; 3449 int ret = -EINVAL; 3450 3451 arg = (struct migration_swap_arg){ 3452 .src_task = cur, 3453 .src_cpu = curr_cpu, 3454 .dst_task = p, 3455 .dst_cpu = target_cpu, 3456 }; 3457 3458 if (arg.src_cpu == arg.dst_cpu) 3459 goto out; 3460 3461 /* 3462 * These three tests are all lockless; this is OK since all of them 3463 * will be re-checked with proper locks held further down the line. 3464 */ 3465 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3466 goto out; 3467 3468 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3469 goto out; 3470 3471 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3472 goto out; 3473 3474 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3475 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3476 3477 out: 3478 return ret; 3479 } 3480 #endif /* CONFIG_NUMA_BALANCING */ 3481 3482 /*** 3483 * kick_process - kick a running thread to enter/exit the kernel 3484 * @p: the to-be-kicked thread 3485 * 3486 * Cause a process which is running on another CPU to enter 3487 * kernel-mode, without any delay. (to get signals handled.) 3488 * 3489 * NOTE: this function doesn't have to take the runqueue lock, 3490 * because all it wants to ensure is that the remote task enters 3491 * the kernel. If the IPI races and the task has been migrated 3492 * to another CPU then no harm is done and the purpose has been 3493 * achieved as well. 3494 */ 3495 void kick_process(struct task_struct *p) 3496 { 3497 guard(preempt)(); 3498 int cpu = task_cpu(p); 3499 3500 if ((cpu != smp_processor_id()) && task_curr(p)) 3501 smp_send_reschedule(cpu); 3502 } 3503 EXPORT_SYMBOL_GPL(kick_process); 3504 3505 /* 3506 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3507 * 3508 * A few notes on cpu_active vs cpu_online: 3509 * 3510 * - cpu_active must be a subset of cpu_online 3511 * 3512 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3513 * see __set_cpus_allowed_ptr(). At this point the newly online 3514 * CPU isn't yet part of the sched domains, and balancing will not 3515 * see it. 3516 * 3517 * - on CPU-down we clear cpu_active() to mask the sched domains and 3518 * avoid the load balancer to place new tasks on the to be removed 3519 * CPU. Existing tasks will remain running there and will be taken 3520 * off. 3521 * 3522 * This means that fallback selection must not select !active CPUs. 3523 * And can assume that any active CPU must be online. Conversely 3524 * select_task_rq() below may allow selection of !active CPUs in order 3525 * to satisfy the above rules. 3526 */ 3527 static int select_fallback_rq(int cpu, struct task_struct *p) 3528 { 3529 int nid = cpu_to_node(cpu); 3530 const struct cpumask *nodemask = NULL; 3531 enum { cpuset, possible, fail } state = cpuset; 3532 int dest_cpu; 3533 3534 /* 3535 * If the node that the CPU is on has been offlined, cpu_to_node() 3536 * will return -1. There is no CPU on the node, and we should 3537 * select the CPU on the other node. 3538 */ 3539 if (nid != -1) { 3540 nodemask = cpumask_of_node(nid); 3541 3542 /* Look for allowed, online CPU in same node. */ 3543 for_each_cpu(dest_cpu, nodemask) { 3544 if (is_cpu_allowed(p, dest_cpu)) 3545 return dest_cpu; 3546 } 3547 } 3548 3549 for (;;) { 3550 /* Any allowed, online CPU? */ 3551 for_each_cpu(dest_cpu, p->cpus_ptr) { 3552 if (!is_cpu_allowed(p, dest_cpu)) 3553 continue; 3554 3555 goto out; 3556 } 3557 3558 /* No more Mr. Nice Guy. */ 3559 switch (state) { 3560 case cpuset: 3561 if (cpuset_cpus_allowed_fallback(p)) { 3562 state = possible; 3563 break; 3564 } 3565 fallthrough; 3566 case possible: 3567 /* 3568 * XXX When called from select_task_rq() we only 3569 * hold p->pi_lock and again violate locking order. 3570 * 3571 * More yuck to audit. 3572 */ 3573 do_set_cpus_allowed(p, task_cpu_fallback_mask(p)); 3574 state = fail; 3575 break; 3576 case fail: 3577 BUG(); 3578 break; 3579 } 3580 } 3581 3582 out: 3583 if (state != cpuset) { 3584 /* 3585 * Don't tell them about moving exiting tasks or 3586 * kernel threads (both mm NULL), since they never 3587 * leave kernel. 3588 */ 3589 if (p->mm && printk_ratelimit()) { 3590 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3591 task_pid_nr(p), p->comm, cpu); 3592 } 3593 } 3594 3595 return dest_cpu; 3596 } 3597 3598 /* 3599 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3600 */ 3601 static inline 3602 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags) 3603 { 3604 lockdep_assert_held(&p->pi_lock); 3605 3606 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) { 3607 cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags); 3608 *wake_flags |= WF_RQ_SELECTED; 3609 } else { 3610 cpu = cpumask_any(p->cpus_ptr); 3611 } 3612 3613 /* 3614 * In order not to call set_task_cpu() on a blocking task we need 3615 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3616 * CPU. 3617 * 3618 * Since this is common to all placement strategies, this lives here. 3619 * 3620 * [ this allows ->select_task() to simply return task_cpu(p) and 3621 * not worry about this generic constraint ] 3622 */ 3623 if (unlikely(!is_cpu_allowed(p, cpu))) 3624 cpu = select_fallback_rq(task_cpu(p), p); 3625 3626 return cpu; 3627 } 3628 3629 void sched_set_stop_task(int cpu, struct task_struct *stop) 3630 { 3631 static struct lock_class_key stop_pi_lock; 3632 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3633 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3634 3635 if (stop) { 3636 /* 3637 * Make it appear like a SCHED_FIFO task, its something 3638 * userspace knows about and won't get confused about. 3639 * 3640 * Also, it will make PI more or less work without too 3641 * much confusion -- but then, stop work should not 3642 * rely on PI working anyway. 3643 */ 3644 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3645 3646 stop->sched_class = &stop_sched_class; 3647 3648 /* 3649 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3650 * adjust the effective priority of a task. As a result, 3651 * rt_mutex_setprio() can trigger (RT) balancing operations, 3652 * which can then trigger wakeups of the stop thread to push 3653 * around the current task. 3654 * 3655 * The stop task itself will never be part of the PI-chain, it 3656 * never blocks, therefore that ->pi_lock recursion is safe. 3657 * Tell lockdep about this by placing the stop->pi_lock in its 3658 * own class. 3659 */ 3660 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3661 } 3662 3663 cpu_rq(cpu)->stop = stop; 3664 3665 if (old_stop) { 3666 /* 3667 * Reset it back to a normal scheduling class so that 3668 * it can die in pieces. 3669 */ 3670 old_stop->sched_class = &rt_sched_class; 3671 } 3672 } 3673 3674 static void 3675 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3676 { 3677 struct rq *rq; 3678 3679 if (!schedstat_enabled()) 3680 return; 3681 3682 rq = this_rq(); 3683 3684 if (cpu == rq->cpu) { 3685 __schedstat_inc(rq->ttwu_local); 3686 __schedstat_inc(p->stats.nr_wakeups_local); 3687 } else { 3688 struct sched_domain *sd; 3689 3690 __schedstat_inc(p->stats.nr_wakeups_remote); 3691 3692 guard(rcu)(); 3693 for_each_domain(rq->cpu, sd) { 3694 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3695 __schedstat_inc(sd->ttwu_wake_remote); 3696 break; 3697 } 3698 } 3699 } 3700 3701 if (wake_flags & WF_MIGRATED) 3702 __schedstat_inc(p->stats.nr_wakeups_migrate); 3703 3704 __schedstat_inc(rq->ttwu_count); 3705 __schedstat_inc(p->stats.nr_wakeups); 3706 3707 if (wake_flags & WF_SYNC) 3708 __schedstat_inc(p->stats.nr_wakeups_sync); 3709 } 3710 3711 /* 3712 * Mark the task runnable. 3713 */ 3714 static inline void ttwu_do_wakeup(struct task_struct *p) 3715 { 3716 WRITE_ONCE(p->__state, TASK_RUNNING); 3717 trace_sched_wakeup(p); 3718 } 3719 3720 static void 3721 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3722 struct rq_flags *rf) 3723 { 3724 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3725 3726 lockdep_assert_rq_held(rq); 3727 3728 if (p->sched_contributes_to_load) 3729 rq->nr_uninterruptible--; 3730 3731 if (wake_flags & WF_RQ_SELECTED) 3732 en_flags |= ENQUEUE_RQ_SELECTED; 3733 if (wake_flags & WF_MIGRATED) 3734 en_flags |= ENQUEUE_MIGRATED; 3735 else 3736 if (p->in_iowait) { 3737 delayacct_blkio_end(p); 3738 atomic_dec(&task_rq(p)->nr_iowait); 3739 } 3740 3741 activate_task(rq, p, en_flags); 3742 wakeup_preempt(rq, p, wake_flags); 3743 3744 ttwu_do_wakeup(p); 3745 3746 if (p->sched_class->task_woken) { 3747 /* 3748 * Our task @p is fully woken up and running; so it's safe to 3749 * drop the rq->lock, hereafter rq is only used for statistics. 3750 */ 3751 rq_unpin_lock(rq, rf); 3752 p->sched_class->task_woken(rq, p); 3753 rq_repin_lock(rq, rf); 3754 } 3755 3756 if (rq->idle_stamp) { 3757 u64 delta = rq_clock(rq) - rq->idle_stamp; 3758 u64 max = 2*rq->max_idle_balance_cost; 3759 3760 update_avg(&rq->avg_idle, delta); 3761 3762 if (rq->avg_idle > max) 3763 rq->avg_idle = max; 3764 3765 rq->idle_stamp = 0; 3766 } 3767 } 3768 3769 /* 3770 * Consider @p being inside a wait loop: 3771 * 3772 * for (;;) { 3773 * set_current_state(TASK_UNINTERRUPTIBLE); 3774 * 3775 * if (CONDITION) 3776 * break; 3777 * 3778 * schedule(); 3779 * } 3780 * __set_current_state(TASK_RUNNING); 3781 * 3782 * between set_current_state() and schedule(). In this case @p is still 3783 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3784 * an atomic manner. 3785 * 3786 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3787 * then schedule() must still happen and p->state can be changed to 3788 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3789 * need to do a full wakeup with enqueue. 3790 * 3791 * Returns: %true when the wakeup is done, 3792 * %false otherwise. 3793 */ 3794 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3795 { 3796 struct rq_flags rf; 3797 struct rq *rq; 3798 int ret = 0; 3799 3800 rq = __task_rq_lock(p, &rf); 3801 if (task_on_rq_queued(p)) { 3802 update_rq_clock(rq); 3803 if (p->se.sched_delayed) 3804 enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED); 3805 if (!task_on_cpu(rq, p)) { 3806 /* 3807 * When on_rq && !on_cpu the task is preempted, see if 3808 * it should preempt the task that is current now. 3809 */ 3810 wakeup_preempt(rq, p, wake_flags); 3811 } 3812 ttwu_do_wakeup(p); 3813 ret = 1; 3814 } 3815 __task_rq_unlock(rq, &rf); 3816 3817 return ret; 3818 } 3819 3820 void sched_ttwu_pending(void *arg) 3821 { 3822 struct llist_node *llist = arg; 3823 struct rq *rq = this_rq(); 3824 struct task_struct *p, *t; 3825 struct rq_flags rf; 3826 3827 if (!llist) 3828 return; 3829 3830 rq_lock_irqsave(rq, &rf); 3831 update_rq_clock(rq); 3832 3833 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3834 if (WARN_ON_ONCE(p->on_cpu)) 3835 smp_cond_load_acquire(&p->on_cpu, !VAL); 3836 3837 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3838 set_task_cpu(p, cpu_of(rq)); 3839 3840 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3841 } 3842 3843 /* 3844 * Must be after enqueueing at least once task such that 3845 * idle_cpu() does not observe a false-negative -- if it does, 3846 * it is possible for select_idle_siblings() to stack a number 3847 * of tasks on this CPU during that window. 3848 * 3849 * It is OK to clear ttwu_pending when another task pending. 3850 * We will receive IPI after local IRQ enabled and then enqueue it. 3851 * Since now nr_running > 0, idle_cpu() will always get correct result. 3852 */ 3853 WRITE_ONCE(rq->ttwu_pending, 0); 3854 rq_unlock_irqrestore(rq, &rf); 3855 } 3856 3857 /* 3858 * Prepare the scene for sending an IPI for a remote smp_call 3859 * 3860 * Returns true if the caller can proceed with sending the IPI. 3861 * Returns false otherwise. 3862 */ 3863 bool call_function_single_prep_ipi(int cpu) 3864 { 3865 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3866 trace_sched_wake_idle_without_ipi(cpu); 3867 return false; 3868 } 3869 3870 return true; 3871 } 3872 3873 /* 3874 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3875 * necessary. The wakee CPU on receipt of the IPI will queue the task 3876 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3877 * of the wakeup instead of the waker. 3878 */ 3879 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3880 { 3881 struct rq *rq = cpu_rq(cpu); 3882 3883 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3884 3885 WRITE_ONCE(rq->ttwu_pending, 1); 3886 #ifdef CONFIG_SMP 3887 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3888 #endif 3889 } 3890 3891 void wake_up_if_idle(int cpu) 3892 { 3893 struct rq *rq = cpu_rq(cpu); 3894 3895 guard(rcu)(); 3896 if (is_idle_task(rcu_dereference(rq->curr))) { 3897 guard(rq_lock_irqsave)(rq); 3898 if (is_idle_task(rq->curr)) 3899 resched_curr(rq); 3900 } 3901 } 3902 3903 bool cpus_equal_capacity(int this_cpu, int that_cpu) 3904 { 3905 if (!sched_asym_cpucap_active()) 3906 return true; 3907 3908 if (this_cpu == that_cpu) 3909 return true; 3910 3911 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); 3912 } 3913 3914 bool cpus_share_cache(int this_cpu, int that_cpu) 3915 { 3916 if (this_cpu == that_cpu) 3917 return true; 3918 3919 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3920 } 3921 3922 /* 3923 * Whether CPUs are share cache resources, which means LLC on non-cluster 3924 * machines and LLC tag or L2 on machines with clusters. 3925 */ 3926 bool cpus_share_resources(int this_cpu, int that_cpu) 3927 { 3928 if (this_cpu == that_cpu) 3929 return true; 3930 3931 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3932 } 3933 3934 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3935 { 3936 /* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */ 3937 if (!scx_allow_ttwu_queue(p)) 3938 return false; 3939 3940 #ifdef CONFIG_SMP 3941 if (p->sched_class == &stop_sched_class) 3942 return false; 3943 #endif 3944 3945 /* 3946 * Do not complicate things with the async wake_list while the CPU is 3947 * in hotplug state. 3948 */ 3949 if (!cpu_active(cpu)) 3950 return false; 3951 3952 /* Ensure the task will still be allowed to run on the CPU. */ 3953 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3954 return false; 3955 3956 /* 3957 * If the CPU does not share cache, then queue the task on the 3958 * remote rqs wakelist to avoid accessing remote data. 3959 */ 3960 if (!cpus_share_cache(smp_processor_id(), cpu)) 3961 return true; 3962 3963 if (cpu == smp_processor_id()) 3964 return false; 3965 3966 /* 3967 * If the wakee cpu is idle, or the task is descheduling and the 3968 * only running task on the CPU, then use the wakelist to offload 3969 * the task activation to the idle (or soon-to-be-idle) CPU as 3970 * the current CPU is likely busy. nr_running is checked to 3971 * avoid unnecessary task stacking. 3972 * 3973 * Note that we can only get here with (wakee) p->on_rq=0, 3974 * p->on_cpu can be whatever, we've done the dequeue, so 3975 * the wakee has been accounted out of ->nr_running. 3976 */ 3977 if (!cpu_rq(cpu)->nr_running) 3978 return true; 3979 3980 return false; 3981 } 3982 3983 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3984 { 3985 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3986 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3987 __ttwu_queue_wakelist(p, cpu, wake_flags); 3988 return true; 3989 } 3990 3991 return false; 3992 } 3993 3994 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3995 { 3996 struct rq *rq = cpu_rq(cpu); 3997 struct rq_flags rf; 3998 3999 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 4000 return; 4001 4002 rq_lock(rq, &rf); 4003 update_rq_clock(rq); 4004 ttwu_do_activate(rq, p, wake_flags, &rf); 4005 rq_unlock(rq, &rf); 4006 } 4007 4008 /* 4009 * Invoked from try_to_wake_up() to check whether the task can be woken up. 4010 * 4011 * The caller holds p::pi_lock if p != current or has preemption 4012 * disabled when p == current. 4013 * 4014 * The rules of saved_state: 4015 * 4016 * The related locking code always holds p::pi_lock when updating 4017 * p::saved_state, which means the code is fully serialized in both cases. 4018 * 4019 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 4020 * No other bits set. This allows to distinguish all wakeup scenarios. 4021 * 4022 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 4023 * allows us to prevent early wakeup of tasks before they can be run on 4024 * asymmetric ISA architectures (eg ARMv9). 4025 */ 4026 static __always_inline 4027 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 4028 { 4029 int match; 4030 4031 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 4032 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 4033 state != TASK_RTLOCK_WAIT); 4034 } 4035 4036 *success = !!(match = __task_state_match(p, state)); 4037 4038 /* 4039 * Saved state preserves the task state across blocking on 4040 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 4041 * set p::saved_state to TASK_RUNNING, but do not wake the task 4042 * because it waits for a lock wakeup or __thaw_task(). Also 4043 * indicate success because from the regular waker's point of 4044 * view this has succeeded. 4045 * 4046 * After acquiring the lock the task will restore p::__state 4047 * from p::saved_state which ensures that the regular 4048 * wakeup is not lost. The restore will also set 4049 * p::saved_state to TASK_RUNNING so any further tests will 4050 * not result in false positives vs. @success 4051 */ 4052 if (match < 0) 4053 p->saved_state = TASK_RUNNING; 4054 4055 return match > 0; 4056 } 4057 4058 /* 4059 * Notes on Program-Order guarantees on SMP systems. 4060 * 4061 * MIGRATION 4062 * 4063 * The basic program-order guarantee on SMP systems is that when a task [t] 4064 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 4065 * execution on its new CPU [c1]. 4066 * 4067 * For migration (of runnable tasks) this is provided by the following means: 4068 * 4069 * A) UNLOCK of the rq(c0)->lock scheduling out task t 4070 * B) migration for t is required to synchronize *both* rq(c0)->lock and 4071 * rq(c1)->lock (if not at the same time, then in that order). 4072 * C) LOCK of the rq(c1)->lock scheduling in task 4073 * 4074 * Release/acquire chaining guarantees that B happens after A and C after B. 4075 * Note: the CPU doing B need not be c0 or c1 4076 * 4077 * Example: 4078 * 4079 * CPU0 CPU1 CPU2 4080 * 4081 * LOCK rq(0)->lock 4082 * sched-out X 4083 * sched-in Y 4084 * UNLOCK rq(0)->lock 4085 * 4086 * LOCK rq(0)->lock // orders against CPU0 4087 * dequeue X 4088 * UNLOCK rq(0)->lock 4089 * 4090 * LOCK rq(1)->lock 4091 * enqueue X 4092 * UNLOCK rq(1)->lock 4093 * 4094 * LOCK rq(1)->lock // orders against CPU2 4095 * sched-out Z 4096 * sched-in X 4097 * UNLOCK rq(1)->lock 4098 * 4099 * 4100 * BLOCKING -- aka. SLEEP + WAKEUP 4101 * 4102 * For blocking we (obviously) need to provide the same guarantee as for 4103 * migration. However the means are completely different as there is no lock 4104 * chain to provide order. Instead we do: 4105 * 4106 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 4107 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 4108 * 4109 * Example: 4110 * 4111 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4112 * 4113 * LOCK rq(0)->lock LOCK X->pi_lock 4114 * dequeue X 4115 * sched-out X 4116 * smp_store_release(X->on_cpu, 0); 4117 * 4118 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4119 * X->state = WAKING 4120 * set_task_cpu(X,2) 4121 * 4122 * LOCK rq(2)->lock 4123 * enqueue X 4124 * X->state = RUNNING 4125 * UNLOCK rq(2)->lock 4126 * 4127 * LOCK rq(2)->lock // orders against CPU1 4128 * sched-out Z 4129 * sched-in X 4130 * UNLOCK rq(2)->lock 4131 * 4132 * UNLOCK X->pi_lock 4133 * UNLOCK rq(0)->lock 4134 * 4135 * 4136 * However, for wakeups there is a second guarantee we must provide, namely we 4137 * must ensure that CONDITION=1 done by the caller can not be reordered with 4138 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4139 */ 4140 4141 /** 4142 * try_to_wake_up - wake up a thread 4143 * @p: the thread to be awakened 4144 * @state: the mask of task states that can be woken 4145 * @wake_flags: wake modifier flags (WF_*) 4146 * 4147 * Conceptually does: 4148 * 4149 * If (@state & @p->state) @p->state = TASK_RUNNING. 4150 * 4151 * If the task was not queued/runnable, also place it back on a runqueue. 4152 * 4153 * This function is atomic against schedule() which would dequeue the task. 4154 * 4155 * It issues a full memory barrier before accessing @p->state, see the comment 4156 * with set_current_state(). 4157 * 4158 * Uses p->pi_lock to serialize against concurrent wake-ups. 4159 * 4160 * Relies on p->pi_lock stabilizing: 4161 * - p->sched_class 4162 * - p->cpus_ptr 4163 * - p->sched_task_group 4164 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4165 * 4166 * Tries really hard to only take one task_rq(p)->lock for performance. 4167 * Takes rq->lock in: 4168 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4169 * - ttwu_queue() -- new rq, for enqueue of the task; 4170 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4171 * 4172 * As a consequence we race really badly with just about everything. See the 4173 * many memory barriers and their comments for details. 4174 * 4175 * Return: %true if @p->state changes (an actual wakeup was done), 4176 * %false otherwise. 4177 */ 4178 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4179 { 4180 guard(preempt)(); 4181 int cpu, success = 0; 4182 4183 wake_flags |= WF_TTWU; 4184 4185 if (p == current) { 4186 /* 4187 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4188 * == smp_processor_id()'. Together this means we can special 4189 * case the whole 'p->on_rq && ttwu_runnable()' case below 4190 * without taking any locks. 4191 * 4192 * Specifically, given current runs ttwu() we must be before 4193 * schedule()'s block_task(), as such this must not observe 4194 * sched_delayed. 4195 * 4196 * In particular: 4197 * - we rely on Program-Order guarantees for all the ordering, 4198 * - we're serialized against set_special_state() by virtue of 4199 * it disabling IRQs (this allows not taking ->pi_lock). 4200 */ 4201 WARN_ON_ONCE(p->se.sched_delayed); 4202 if (!ttwu_state_match(p, state, &success)) 4203 goto out; 4204 4205 trace_sched_waking(p); 4206 ttwu_do_wakeup(p); 4207 goto out; 4208 } 4209 4210 /* 4211 * If we are going to wake up a thread waiting for CONDITION we 4212 * need to ensure that CONDITION=1 done by the caller can not be 4213 * reordered with p->state check below. This pairs with smp_store_mb() 4214 * in set_current_state() that the waiting thread does. 4215 */ 4216 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4217 smp_mb__after_spinlock(); 4218 if (!ttwu_state_match(p, state, &success)) 4219 break; 4220 4221 trace_sched_waking(p); 4222 4223 /* 4224 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4225 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4226 * in smp_cond_load_acquire() below. 4227 * 4228 * sched_ttwu_pending() try_to_wake_up() 4229 * STORE p->on_rq = 1 LOAD p->state 4230 * UNLOCK rq->lock 4231 * 4232 * __schedule() (switch to task 'p') 4233 * LOCK rq->lock smp_rmb(); 4234 * smp_mb__after_spinlock(); 4235 * UNLOCK rq->lock 4236 * 4237 * [task p] 4238 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4239 * 4240 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4241 * __schedule(). See the comment for smp_mb__after_spinlock(). 4242 * 4243 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4244 */ 4245 smp_rmb(); 4246 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4247 break; 4248 4249 /* 4250 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4251 * possible to, falsely, observe p->on_cpu == 0. 4252 * 4253 * One must be running (->on_cpu == 1) in order to remove oneself 4254 * from the runqueue. 4255 * 4256 * __schedule() (switch to task 'p') try_to_wake_up() 4257 * STORE p->on_cpu = 1 LOAD p->on_rq 4258 * UNLOCK rq->lock 4259 * 4260 * __schedule() (put 'p' to sleep) 4261 * LOCK rq->lock smp_rmb(); 4262 * smp_mb__after_spinlock(); 4263 * STORE p->on_rq = 0 LOAD p->on_cpu 4264 * 4265 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4266 * __schedule(). See the comment for smp_mb__after_spinlock(). 4267 * 4268 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4269 * schedule()'s deactivate_task() has 'happened' and p will no longer 4270 * care about it's own p->state. See the comment in __schedule(). 4271 */ 4272 smp_acquire__after_ctrl_dep(); 4273 4274 /* 4275 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4276 * == 0), which means we need to do an enqueue, change p->state to 4277 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4278 * enqueue, such as ttwu_queue_wakelist(). 4279 */ 4280 WRITE_ONCE(p->__state, TASK_WAKING); 4281 4282 /* 4283 * If the owning (remote) CPU is still in the middle of schedule() with 4284 * this task as prev, considering queueing p on the remote CPUs wake_list 4285 * which potentially sends an IPI instead of spinning on p->on_cpu to 4286 * let the waker make forward progress. This is safe because IRQs are 4287 * disabled and the IPI will deliver after on_cpu is cleared. 4288 * 4289 * Ensure we load task_cpu(p) after p->on_cpu: 4290 * 4291 * set_task_cpu(p, cpu); 4292 * STORE p->cpu = @cpu 4293 * __schedule() (switch to task 'p') 4294 * LOCK rq->lock 4295 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4296 * STORE p->on_cpu = 1 LOAD p->cpu 4297 * 4298 * to ensure we observe the correct CPU on which the task is currently 4299 * scheduling. 4300 */ 4301 if (smp_load_acquire(&p->on_cpu) && 4302 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4303 break; 4304 4305 /* 4306 * If the owning (remote) CPU is still in the middle of schedule() with 4307 * this task as prev, wait until it's done referencing the task. 4308 * 4309 * Pairs with the smp_store_release() in finish_task(). 4310 * 4311 * This ensures that tasks getting woken will be fully ordered against 4312 * their previous state and preserve Program Order. 4313 */ 4314 smp_cond_load_acquire(&p->on_cpu, !VAL); 4315 4316 cpu = select_task_rq(p, p->wake_cpu, &wake_flags); 4317 if (task_cpu(p) != cpu) { 4318 if (p->in_iowait) { 4319 delayacct_blkio_end(p); 4320 atomic_dec(&task_rq(p)->nr_iowait); 4321 } 4322 4323 wake_flags |= WF_MIGRATED; 4324 psi_ttwu_dequeue(p); 4325 set_task_cpu(p, cpu); 4326 } 4327 4328 ttwu_queue(p, cpu, wake_flags); 4329 } 4330 out: 4331 if (success) 4332 ttwu_stat(p, task_cpu(p), wake_flags); 4333 4334 return success; 4335 } 4336 4337 static bool __task_needs_rq_lock(struct task_struct *p) 4338 { 4339 unsigned int state = READ_ONCE(p->__state); 4340 4341 /* 4342 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4343 * the task is blocked. Make sure to check @state since ttwu() can drop 4344 * locks at the end, see ttwu_queue_wakelist(). 4345 */ 4346 if (state == TASK_RUNNING || state == TASK_WAKING) 4347 return true; 4348 4349 /* 4350 * Ensure we load p->on_rq after p->__state, otherwise it would be 4351 * possible to, falsely, observe p->on_rq == 0. 4352 * 4353 * See try_to_wake_up() for a longer comment. 4354 */ 4355 smp_rmb(); 4356 if (p->on_rq) 4357 return true; 4358 4359 /* 4360 * Ensure the task has finished __schedule() and will not be referenced 4361 * anymore. Again, see try_to_wake_up() for a longer comment. 4362 */ 4363 smp_rmb(); 4364 smp_cond_load_acquire(&p->on_cpu, !VAL); 4365 4366 return false; 4367 } 4368 4369 /** 4370 * task_call_func - Invoke a function on task in fixed state 4371 * @p: Process for which the function is to be invoked, can be @current. 4372 * @func: Function to invoke. 4373 * @arg: Argument to function. 4374 * 4375 * Fix the task in it's current state by avoiding wakeups and or rq operations 4376 * and call @func(@arg) on it. This function can use task_is_runnable() and 4377 * task_curr() to work out what the state is, if required. Given that @func 4378 * can be invoked with a runqueue lock held, it had better be quite 4379 * lightweight. 4380 * 4381 * Returns: 4382 * Whatever @func returns 4383 */ 4384 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4385 { 4386 struct rq *rq = NULL; 4387 struct rq_flags rf; 4388 int ret; 4389 4390 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4391 4392 if (__task_needs_rq_lock(p)) 4393 rq = __task_rq_lock(p, &rf); 4394 4395 /* 4396 * At this point the task is pinned; either: 4397 * - blocked and we're holding off wakeups (pi->lock) 4398 * - woken, and we're holding off enqueue (rq->lock) 4399 * - queued, and we're holding off schedule (rq->lock) 4400 * - running, and we're holding off de-schedule (rq->lock) 4401 * 4402 * The called function (@func) can use: task_curr(), p->on_rq and 4403 * p->__state to differentiate between these states. 4404 */ 4405 ret = func(p, arg); 4406 4407 if (rq) 4408 rq_unlock(rq, &rf); 4409 4410 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4411 return ret; 4412 } 4413 4414 /** 4415 * cpu_curr_snapshot - Return a snapshot of the currently running task 4416 * @cpu: The CPU on which to snapshot the task. 4417 * 4418 * Returns the task_struct pointer of the task "currently" running on 4419 * the specified CPU. 4420 * 4421 * If the specified CPU was offline, the return value is whatever it 4422 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4423 * task, but there is no guarantee. Callers wishing a useful return 4424 * value must take some action to ensure that the specified CPU remains 4425 * online throughout. 4426 * 4427 * This function executes full memory barriers before and after fetching 4428 * the pointer, which permits the caller to confine this function's fetch 4429 * with respect to the caller's accesses to other shared variables. 4430 */ 4431 struct task_struct *cpu_curr_snapshot(int cpu) 4432 { 4433 struct rq *rq = cpu_rq(cpu); 4434 struct task_struct *t; 4435 struct rq_flags rf; 4436 4437 rq_lock_irqsave(rq, &rf); 4438 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */ 4439 t = rcu_dereference(cpu_curr(cpu)); 4440 rq_unlock_irqrestore(rq, &rf); 4441 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4442 4443 return t; 4444 } 4445 4446 /** 4447 * wake_up_process - Wake up a specific process 4448 * @p: The process to be woken up. 4449 * 4450 * Attempt to wake up the nominated process and move it to the set of runnable 4451 * processes. 4452 * 4453 * Return: 1 if the process was woken up, 0 if it was already running. 4454 * 4455 * This function executes a full memory barrier before accessing the task state. 4456 */ 4457 int wake_up_process(struct task_struct *p) 4458 { 4459 return try_to_wake_up(p, TASK_NORMAL, 0); 4460 } 4461 EXPORT_SYMBOL(wake_up_process); 4462 4463 int wake_up_state(struct task_struct *p, unsigned int state) 4464 { 4465 return try_to_wake_up(p, state, 0); 4466 } 4467 4468 /* 4469 * Perform scheduler related setup for a newly forked process p. 4470 * p is forked by current. 4471 * 4472 * __sched_fork() is basic setup which is also used by sched_init() to 4473 * initialize the boot CPU's idle task. 4474 */ 4475 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4476 { 4477 p->on_rq = 0; 4478 4479 p->se.on_rq = 0; 4480 p->se.exec_start = 0; 4481 p->se.sum_exec_runtime = 0; 4482 p->se.prev_sum_exec_runtime = 0; 4483 p->se.nr_migrations = 0; 4484 p->se.vruntime = 0; 4485 p->se.vlag = 0; 4486 INIT_LIST_HEAD(&p->se.group_node); 4487 4488 /* A delayed task cannot be in clone(). */ 4489 WARN_ON_ONCE(p->se.sched_delayed); 4490 4491 #ifdef CONFIG_FAIR_GROUP_SCHED 4492 p->se.cfs_rq = NULL; 4493 #endif 4494 4495 #ifdef CONFIG_SCHEDSTATS 4496 /* Even if schedstat is disabled, there should not be garbage */ 4497 memset(&p->stats, 0, sizeof(p->stats)); 4498 #endif 4499 4500 init_dl_entity(&p->dl); 4501 4502 INIT_LIST_HEAD(&p->rt.run_list); 4503 p->rt.timeout = 0; 4504 p->rt.time_slice = sched_rr_timeslice; 4505 p->rt.on_rq = 0; 4506 p->rt.on_list = 0; 4507 4508 #ifdef CONFIG_SCHED_CLASS_EXT 4509 init_scx_entity(&p->scx); 4510 #endif 4511 4512 #ifdef CONFIG_PREEMPT_NOTIFIERS 4513 INIT_HLIST_HEAD(&p->preempt_notifiers); 4514 #endif 4515 4516 #ifdef CONFIG_COMPACTION 4517 p->capture_control = NULL; 4518 #endif 4519 init_numa_balancing(clone_flags, p); 4520 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4521 p->migration_pending = NULL; 4522 init_sched_mm_cid(p); 4523 } 4524 4525 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4526 4527 #ifdef CONFIG_NUMA_BALANCING 4528 4529 int sysctl_numa_balancing_mode; 4530 4531 static void __set_numabalancing_state(bool enabled) 4532 { 4533 if (enabled) 4534 static_branch_enable(&sched_numa_balancing); 4535 else 4536 static_branch_disable(&sched_numa_balancing); 4537 } 4538 4539 void set_numabalancing_state(bool enabled) 4540 { 4541 if (enabled) 4542 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4543 else 4544 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4545 __set_numabalancing_state(enabled); 4546 } 4547 4548 #ifdef CONFIG_PROC_SYSCTL 4549 static void reset_memory_tiering(void) 4550 { 4551 struct pglist_data *pgdat; 4552 4553 for_each_online_pgdat(pgdat) { 4554 pgdat->nbp_threshold = 0; 4555 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4556 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4557 } 4558 } 4559 4560 static int sysctl_numa_balancing(const struct ctl_table *table, int write, 4561 void *buffer, size_t *lenp, loff_t *ppos) 4562 { 4563 struct ctl_table t; 4564 int err; 4565 int state = sysctl_numa_balancing_mode; 4566 4567 if (write && !capable(CAP_SYS_ADMIN)) 4568 return -EPERM; 4569 4570 t = *table; 4571 t.data = &state; 4572 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4573 if (err < 0) 4574 return err; 4575 if (write) { 4576 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4577 (state & NUMA_BALANCING_MEMORY_TIERING)) 4578 reset_memory_tiering(); 4579 sysctl_numa_balancing_mode = state; 4580 __set_numabalancing_state(state); 4581 } 4582 return err; 4583 } 4584 #endif /* CONFIG_PROC_SYSCTL */ 4585 #endif /* CONFIG_NUMA_BALANCING */ 4586 4587 #ifdef CONFIG_SCHEDSTATS 4588 4589 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4590 4591 static void set_schedstats(bool enabled) 4592 { 4593 if (enabled) 4594 static_branch_enable(&sched_schedstats); 4595 else 4596 static_branch_disable(&sched_schedstats); 4597 } 4598 4599 void force_schedstat_enabled(void) 4600 { 4601 if (!schedstat_enabled()) { 4602 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4603 static_branch_enable(&sched_schedstats); 4604 } 4605 } 4606 4607 static int __init setup_schedstats(char *str) 4608 { 4609 int ret = 0; 4610 if (!str) 4611 goto out; 4612 4613 if (!strcmp(str, "enable")) { 4614 set_schedstats(true); 4615 ret = 1; 4616 } else if (!strcmp(str, "disable")) { 4617 set_schedstats(false); 4618 ret = 1; 4619 } 4620 out: 4621 if (!ret) 4622 pr_warn("Unable to parse schedstats=\n"); 4623 4624 return ret; 4625 } 4626 __setup("schedstats=", setup_schedstats); 4627 4628 #ifdef CONFIG_PROC_SYSCTL 4629 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer, 4630 size_t *lenp, loff_t *ppos) 4631 { 4632 struct ctl_table t; 4633 int err; 4634 int state = static_branch_likely(&sched_schedstats); 4635 4636 if (write && !capable(CAP_SYS_ADMIN)) 4637 return -EPERM; 4638 4639 t = *table; 4640 t.data = &state; 4641 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4642 if (err < 0) 4643 return err; 4644 if (write) 4645 set_schedstats(state); 4646 return err; 4647 } 4648 #endif /* CONFIG_PROC_SYSCTL */ 4649 #endif /* CONFIG_SCHEDSTATS */ 4650 4651 #ifdef CONFIG_SYSCTL 4652 static const struct ctl_table sched_core_sysctls[] = { 4653 #ifdef CONFIG_SCHEDSTATS 4654 { 4655 .procname = "sched_schedstats", 4656 .data = NULL, 4657 .maxlen = sizeof(unsigned int), 4658 .mode = 0644, 4659 .proc_handler = sysctl_schedstats, 4660 .extra1 = SYSCTL_ZERO, 4661 .extra2 = SYSCTL_ONE, 4662 }, 4663 #endif /* CONFIG_SCHEDSTATS */ 4664 #ifdef CONFIG_UCLAMP_TASK 4665 { 4666 .procname = "sched_util_clamp_min", 4667 .data = &sysctl_sched_uclamp_util_min, 4668 .maxlen = sizeof(unsigned int), 4669 .mode = 0644, 4670 .proc_handler = sysctl_sched_uclamp_handler, 4671 }, 4672 { 4673 .procname = "sched_util_clamp_max", 4674 .data = &sysctl_sched_uclamp_util_max, 4675 .maxlen = sizeof(unsigned int), 4676 .mode = 0644, 4677 .proc_handler = sysctl_sched_uclamp_handler, 4678 }, 4679 { 4680 .procname = "sched_util_clamp_min_rt_default", 4681 .data = &sysctl_sched_uclamp_util_min_rt_default, 4682 .maxlen = sizeof(unsigned int), 4683 .mode = 0644, 4684 .proc_handler = sysctl_sched_uclamp_handler, 4685 }, 4686 #endif /* CONFIG_UCLAMP_TASK */ 4687 #ifdef CONFIG_NUMA_BALANCING 4688 { 4689 .procname = "numa_balancing", 4690 .data = NULL, /* filled in by handler */ 4691 .maxlen = sizeof(unsigned int), 4692 .mode = 0644, 4693 .proc_handler = sysctl_numa_balancing, 4694 .extra1 = SYSCTL_ZERO, 4695 .extra2 = SYSCTL_FOUR, 4696 }, 4697 #endif /* CONFIG_NUMA_BALANCING */ 4698 }; 4699 static int __init sched_core_sysctl_init(void) 4700 { 4701 register_sysctl_init("kernel", sched_core_sysctls); 4702 return 0; 4703 } 4704 late_initcall(sched_core_sysctl_init); 4705 #endif /* CONFIG_SYSCTL */ 4706 4707 /* 4708 * fork()/clone()-time setup: 4709 */ 4710 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4711 { 4712 __sched_fork(clone_flags, p); 4713 /* 4714 * We mark the process as NEW here. This guarantees that 4715 * nobody will actually run it, and a signal or other external 4716 * event cannot wake it up and insert it on the runqueue either. 4717 */ 4718 p->__state = TASK_NEW; 4719 4720 /* 4721 * Make sure we do not leak PI boosting priority to the child. 4722 */ 4723 p->prio = current->normal_prio; 4724 4725 uclamp_fork(p); 4726 4727 /* 4728 * Revert to default priority/policy on fork if requested. 4729 */ 4730 if (unlikely(p->sched_reset_on_fork)) { 4731 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4732 p->policy = SCHED_NORMAL; 4733 p->static_prio = NICE_TO_PRIO(0); 4734 p->rt_priority = 0; 4735 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4736 p->static_prio = NICE_TO_PRIO(0); 4737 4738 p->prio = p->normal_prio = p->static_prio; 4739 set_load_weight(p, false); 4740 p->se.custom_slice = 0; 4741 p->se.slice = sysctl_sched_base_slice; 4742 4743 /* 4744 * We don't need the reset flag anymore after the fork. It has 4745 * fulfilled its duty: 4746 */ 4747 p->sched_reset_on_fork = 0; 4748 } 4749 4750 if (dl_prio(p->prio)) 4751 return -EAGAIN; 4752 4753 scx_pre_fork(p); 4754 4755 if (rt_prio(p->prio)) { 4756 p->sched_class = &rt_sched_class; 4757 #ifdef CONFIG_SCHED_CLASS_EXT 4758 } else if (task_should_scx(p->policy)) { 4759 p->sched_class = &ext_sched_class; 4760 #endif 4761 } else { 4762 p->sched_class = &fair_sched_class; 4763 } 4764 4765 init_entity_runnable_average(&p->se); 4766 4767 4768 #ifdef CONFIG_SCHED_INFO 4769 if (likely(sched_info_on())) 4770 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4771 #endif 4772 p->on_cpu = 0; 4773 init_task_preempt_count(p); 4774 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4775 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4776 4777 return 0; 4778 } 4779 4780 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4781 { 4782 unsigned long flags; 4783 4784 /* 4785 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4786 * required yet, but lockdep gets upset if rules are violated. 4787 */ 4788 raw_spin_lock_irqsave(&p->pi_lock, flags); 4789 #ifdef CONFIG_CGROUP_SCHED 4790 if (1) { 4791 struct task_group *tg; 4792 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4793 struct task_group, css); 4794 tg = autogroup_task_group(p, tg); 4795 p->sched_task_group = tg; 4796 } 4797 #endif 4798 rseq_migrate(p); 4799 /* 4800 * We're setting the CPU for the first time, we don't migrate, 4801 * so use __set_task_cpu(). 4802 */ 4803 __set_task_cpu(p, smp_processor_id()); 4804 if (p->sched_class->task_fork) 4805 p->sched_class->task_fork(p); 4806 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4807 4808 return scx_fork(p); 4809 } 4810 4811 void sched_cancel_fork(struct task_struct *p) 4812 { 4813 scx_cancel_fork(p); 4814 } 4815 4816 void sched_post_fork(struct task_struct *p) 4817 { 4818 uclamp_post_fork(p); 4819 scx_post_fork(p); 4820 } 4821 4822 unsigned long to_ratio(u64 period, u64 runtime) 4823 { 4824 if (runtime == RUNTIME_INF) 4825 return BW_UNIT; 4826 4827 /* 4828 * Doing this here saves a lot of checks in all 4829 * the calling paths, and returning zero seems 4830 * safe for them anyway. 4831 */ 4832 if (period == 0) 4833 return 0; 4834 4835 return div64_u64(runtime << BW_SHIFT, period); 4836 } 4837 4838 /* 4839 * wake_up_new_task - wake up a newly created task for the first time. 4840 * 4841 * This function will do some initial scheduler statistics housekeeping 4842 * that must be done for every newly created context, then puts the task 4843 * on the runqueue and wakes it. 4844 */ 4845 void wake_up_new_task(struct task_struct *p) 4846 { 4847 struct rq_flags rf; 4848 struct rq *rq; 4849 int wake_flags = WF_FORK; 4850 4851 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4852 WRITE_ONCE(p->__state, TASK_RUNNING); 4853 /* 4854 * Fork balancing, do it here and not earlier because: 4855 * - cpus_ptr can change in the fork path 4856 * - any previously selected CPU might disappear through hotplug 4857 * 4858 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4859 * as we're not fully set-up yet. 4860 */ 4861 p->recent_used_cpu = task_cpu(p); 4862 rseq_migrate(p); 4863 __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags)); 4864 rq = __task_rq_lock(p, &rf); 4865 update_rq_clock(rq); 4866 post_init_entity_util_avg(p); 4867 4868 activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL); 4869 trace_sched_wakeup_new(p); 4870 wakeup_preempt(rq, p, wake_flags); 4871 if (p->sched_class->task_woken) { 4872 /* 4873 * Nothing relies on rq->lock after this, so it's fine to 4874 * drop it. 4875 */ 4876 rq_unpin_lock(rq, &rf); 4877 p->sched_class->task_woken(rq, p); 4878 rq_repin_lock(rq, &rf); 4879 } 4880 task_rq_unlock(rq, p, &rf); 4881 } 4882 4883 #ifdef CONFIG_PREEMPT_NOTIFIERS 4884 4885 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4886 4887 void preempt_notifier_inc(void) 4888 { 4889 static_branch_inc(&preempt_notifier_key); 4890 } 4891 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4892 4893 void preempt_notifier_dec(void) 4894 { 4895 static_branch_dec(&preempt_notifier_key); 4896 } 4897 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4898 4899 /** 4900 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4901 * @notifier: notifier struct to register 4902 */ 4903 void preempt_notifier_register(struct preempt_notifier *notifier) 4904 { 4905 if (!static_branch_unlikely(&preempt_notifier_key)) 4906 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4907 4908 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4909 } 4910 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4911 4912 /** 4913 * preempt_notifier_unregister - no longer interested in preemption notifications 4914 * @notifier: notifier struct to unregister 4915 * 4916 * This is *not* safe to call from within a preemption notifier. 4917 */ 4918 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4919 { 4920 hlist_del(¬ifier->link); 4921 } 4922 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4923 4924 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4925 { 4926 struct preempt_notifier *notifier; 4927 4928 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4929 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4930 } 4931 4932 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4933 { 4934 if (static_branch_unlikely(&preempt_notifier_key)) 4935 __fire_sched_in_preempt_notifiers(curr); 4936 } 4937 4938 static void 4939 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4940 struct task_struct *next) 4941 { 4942 struct preempt_notifier *notifier; 4943 4944 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4945 notifier->ops->sched_out(notifier, next); 4946 } 4947 4948 static __always_inline void 4949 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4950 struct task_struct *next) 4951 { 4952 if (static_branch_unlikely(&preempt_notifier_key)) 4953 __fire_sched_out_preempt_notifiers(curr, next); 4954 } 4955 4956 #else /* !CONFIG_PREEMPT_NOTIFIERS: */ 4957 4958 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4959 { 4960 } 4961 4962 static inline void 4963 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4964 struct task_struct *next) 4965 { 4966 } 4967 4968 #endif /* !CONFIG_PREEMPT_NOTIFIERS */ 4969 4970 static inline void prepare_task(struct task_struct *next) 4971 { 4972 /* 4973 * Claim the task as running, we do this before switching to it 4974 * such that any running task will have this set. 4975 * 4976 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4977 * its ordering comment. 4978 */ 4979 WRITE_ONCE(next->on_cpu, 1); 4980 } 4981 4982 static inline void finish_task(struct task_struct *prev) 4983 { 4984 /* 4985 * This must be the very last reference to @prev from this CPU. After 4986 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4987 * must ensure this doesn't happen until the switch is completely 4988 * finished. 4989 * 4990 * In particular, the load of prev->state in finish_task_switch() must 4991 * happen before this. 4992 * 4993 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4994 */ 4995 smp_store_release(&prev->on_cpu, 0); 4996 } 4997 4998 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 4999 { 5000 void (*func)(struct rq *rq); 5001 struct balance_callback *next; 5002 5003 lockdep_assert_rq_held(rq); 5004 5005 while (head) { 5006 func = (void (*)(struct rq *))head->func; 5007 next = head->next; 5008 head->next = NULL; 5009 head = next; 5010 5011 func(rq); 5012 } 5013 } 5014 5015 static void balance_push(struct rq *rq); 5016 5017 /* 5018 * balance_push_callback is a right abuse of the callback interface and plays 5019 * by significantly different rules. 5020 * 5021 * Where the normal balance_callback's purpose is to be ran in the same context 5022 * that queued it (only later, when it's safe to drop rq->lock again), 5023 * balance_push_callback is specifically targeted at __schedule(). 5024 * 5025 * This abuse is tolerated because it places all the unlikely/odd cases behind 5026 * a single test, namely: rq->balance_callback == NULL. 5027 */ 5028 struct balance_callback balance_push_callback = { 5029 .next = NULL, 5030 .func = balance_push, 5031 }; 5032 5033 static inline struct balance_callback * 5034 __splice_balance_callbacks(struct rq *rq, bool split) 5035 { 5036 struct balance_callback *head = rq->balance_callback; 5037 5038 if (likely(!head)) 5039 return NULL; 5040 5041 lockdep_assert_rq_held(rq); 5042 /* 5043 * Must not take balance_push_callback off the list when 5044 * splice_balance_callbacks() and balance_callbacks() are not 5045 * in the same rq->lock section. 5046 * 5047 * In that case it would be possible for __schedule() to interleave 5048 * and observe the list empty. 5049 */ 5050 if (split && head == &balance_push_callback) 5051 head = NULL; 5052 else 5053 rq->balance_callback = NULL; 5054 5055 return head; 5056 } 5057 5058 struct balance_callback *splice_balance_callbacks(struct rq *rq) 5059 { 5060 return __splice_balance_callbacks(rq, true); 5061 } 5062 5063 static void __balance_callbacks(struct rq *rq) 5064 { 5065 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 5066 } 5067 5068 void balance_callbacks(struct rq *rq, struct balance_callback *head) 5069 { 5070 unsigned long flags; 5071 5072 if (unlikely(head)) { 5073 raw_spin_rq_lock_irqsave(rq, flags); 5074 do_balance_callbacks(rq, head); 5075 raw_spin_rq_unlock_irqrestore(rq, flags); 5076 } 5077 } 5078 5079 static inline void 5080 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 5081 { 5082 /* 5083 * Since the runqueue lock will be released by the next 5084 * task (which is an invalid locking op but in the case 5085 * of the scheduler it's an obvious special-case), so we 5086 * do an early lockdep release here: 5087 */ 5088 rq_unpin_lock(rq, rf); 5089 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 5090 #ifdef CONFIG_DEBUG_SPINLOCK 5091 /* this is a valid case when another task releases the spinlock */ 5092 rq_lockp(rq)->owner = next; 5093 #endif 5094 } 5095 5096 static inline void finish_lock_switch(struct rq *rq) 5097 { 5098 /* 5099 * If we are tracking spinlock dependencies then we have to 5100 * fix up the runqueue lock - which gets 'carried over' from 5101 * prev into current: 5102 */ 5103 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5104 __balance_callbacks(rq); 5105 raw_spin_rq_unlock_irq(rq); 5106 } 5107 5108 /* 5109 * NOP if the arch has not defined these: 5110 */ 5111 5112 #ifndef prepare_arch_switch 5113 # define prepare_arch_switch(next) do { } while (0) 5114 #endif 5115 5116 #ifndef finish_arch_post_lock_switch 5117 # define finish_arch_post_lock_switch() do { } while (0) 5118 #endif 5119 5120 static inline void kmap_local_sched_out(void) 5121 { 5122 #ifdef CONFIG_KMAP_LOCAL 5123 if (unlikely(current->kmap_ctrl.idx)) 5124 __kmap_local_sched_out(); 5125 #endif 5126 } 5127 5128 static inline void kmap_local_sched_in(void) 5129 { 5130 #ifdef CONFIG_KMAP_LOCAL 5131 if (unlikely(current->kmap_ctrl.idx)) 5132 __kmap_local_sched_in(); 5133 #endif 5134 } 5135 5136 /** 5137 * prepare_task_switch - prepare to switch tasks 5138 * @rq: the runqueue preparing to switch 5139 * @prev: the current task that is being switched out 5140 * @next: the task we are going to switch to. 5141 * 5142 * This is called with the rq lock held and interrupts off. It must 5143 * be paired with a subsequent finish_task_switch after the context 5144 * switch. 5145 * 5146 * prepare_task_switch sets up locking and calls architecture specific 5147 * hooks. 5148 */ 5149 static inline void 5150 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5151 struct task_struct *next) 5152 { 5153 kcov_prepare_switch(prev); 5154 sched_info_switch(rq, prev, next); 5155 perf_event_task_sched_out(prev, next); 5156 rseq_preempt(prev); 5157 fire_sched_out_preempt_notifiers(prev, next); 5158 kmap_local_sched_out(); 5159 prepare_task(next); 5160 prepare_arch_switch(next); 5161 } 5162 5163 /** 5164 * finish_task_switch - clean up after a task-switch 5165 * @prev: the thread we just switched away from. 5166 * 5167 * finish_task_switch must be called after the context switch, paired 5168 * with a prepare_task_switch call before the context switch. 5169 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5170 * and do any other architecture-specific cleanup actions. 5171 * 5172 * Note that we may have delayed dropping an mm in context_switch(). If 5173 * so, we finish that here outside of the runqueue lock. (Doing it 5174 * with the lock held can cause deadlocks; see schedule() for 5175 * details.) 5176 * 5177 * The context switch have flipped the stack from under us and restored the 5178 * local variables which were saved when this task called schedule() in the 5179 * past. 'prev == current' is still correct but we need to recalculate this_rq 5180 * because prev may have moved to another CPU. 5181 */ 5182 static struct rq *finish_task_switch(struct task_struct *prev) 5183 __releases(rq->lock) 5184 { 5185 struct rq *rq = this_rq(); 5186 struct mm_struct *mm = rq->prev_mm; 5187 unsigned int prev_state; 5188 5189 /* 5190 * The previous task will have left us with a preempt_count of 2 5191 * because it left us after: 5192 * 5193 * schedule() 5194 * preempt_disable(); // 1 5195 * __schedule() 5196 * raw_spin_lock_irq(&rq->lock) // 2 5197 * 5198 * Also, see FORK_PREEMPT_COUNT. 5199 */ 5200 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5201 "corrupted preempt_count: %s/%d/0x%x\n", 5202 current->comm, current->pid, preempt_count())) 5203 preempt_count_set(FORK_PREEMPT_COUNT); 5204 5205 rq->prev_mm = NULL; 5206 5207 /* 5208 * A task struct has one reference for the use as "current". 5209 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5210 * schedule one last time. The schedule call will never return, and 5211 * the scheduled task must drop that reference. 5212 * 5213 * We must observe prev->state before clearing prev->on_cpu (in 5214 * finish_task), otherwise a concurrent wakeup can get prev 5215 * running on another CPU and we could rave with its RUNNING -> DEAD 5216 * transition, resulting in a double drop. 5217 */ 5218 prev_state = READ_ONCE(prev->__state); 5219 vtime_task_switch(prev); 5220 perf_event_task_sched_in(prev, current); 5221 finish_task(prev); 5222 tick_nohz_task_switch(); 5223 finish_lock_switch(rq); 5224 finish_arch_post_lock_switch(); 5225 kcov_finish_switch(current); 5226 /* 5227 * kmap_local_sched_out() is invoked with rq::lock held and 5228 * interrupts disabled. There is no requirement for that, but the 5229 * sched out code does not have an interrupt enabled section. 5230 * Restoring the maps on sched in does not require interrupts being 5231 * disabled either. 5232 */ 5233 kmap_local_sched_in(); 5234 5235 fire_sched_in_preempt_notifiers(current); 5236 /* 5237 * When switching through a kernel thread, the loop in 5238 * membarrier_{private,global}_expedited() may have observed that 5239 * kernel thread and not issued an IPI. It is therefore possible to 5240 * schedule between user->kernel->user threads without passing though 5241 * switch_mm(). Membarrier requires a barrier after storing to 5242 * rq->curr, before returning to userspace, so provide them here: 5243 * 5244 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5245 * provided by mmdrop_lazy_tlb(), 5246 * - a sync_core for SYNC_CORE. 5247 */ 5248 if (mm) { 5249 membarrier_mm_sync_core_before_usermode(mm); 5250 mmdrop_lazy_tlb_sched(mm); 5251 } 5252 5253 if (unlikely(prev_state == TASK_DEAD)) { 5254 if (prev->sched_class->task_dead) 5255 prev->sched_class->task_dead(prev); 5256 5257 /* Task is done with its stack. */ 5258 put_task_stack(prev); 5259 5260 put_task_struct_rcu_user(prev); 5261 } 5262 5263 return rq; 5264 } 5265 5266 /** 5267 * schedule_tail - first thing a freshly forked thread must call. 5268 * @prev: the thread we just switched away from. 5269 */ 5270 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5271 __releases(rq->lock) 5272 { 5273 /* 5274 * New tasks start with FORK_PREEMPT_COUNT, see there and 5275 * finish_task_switch() for details. 5276 * 5277 * finish_task_switch() will drop rq->lock() and lower preempt_count 5278 * and the preempt_enable() will end up enabling preemption (on 5279 * PREEMPT_COUNT kernels). 5280 */ 5281 5282 finish_task_switch(prev); 5283 /* 5284 * This is a special case: the newly created task has just 5285 * switched the context for the first time. It is returning from 5286 * schedule for the first time in this path. 5287 */ 5288 trace_sched_exit_tp(true); 5289 preempt_enable(); 5290 5291 if (current->set_child_tid) 5292 put_user(task_pid_vnr(current), current->set_child_tid); 5293 5294 calculate_sigpending(); 5295 } 5296 5297 /* 5298 * context_switch - switch to the new MM and the new thread's register state. 5299 */ 5300 static __always_inline struct rq * 5301 context_switch(struct rq *rq, struct task_struct *prev, 5302 struct task_struct *next, struct rq_flags *rf) 5303 { 5304 prepare_task_switch(rq, prev, next); 5305 5306 /* 5307 * For paravirt, this is coupled with an exit in switch_to to 5308 * combine the page table reload and the switch backend into 5309 * one hypercall. 5310 */ 5311 arch_start_context_switch(prev); 5312 5313 /* 5314 * kernel -> kernel lazy + transfer active 5315 * user -> kernel lazy + mmgrab_lazy_tlb() active 5316 * 5317 * kernel -> user switch + mmdrop_lazy_tlb() active 5318 * user -> user switch 5319 * 5320 * switch_mm_cid() needs to be updated if the barriers provided 5321 * by context_switch() are modified. 5322 */ 5323 if (!next->mm) { // to kernel 5324 enter_lazy_tlb(prev->active_mm, next); 5325 5326 next->active_mm = prev->active_mm; 5327 if (prev->mm) // from user 5328 mmgrab_lazy_tlb(prev->active_mm); 5329 else 5330 prev->active_mm = NULL; 5331 } else { // to user 5332 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5333 /* 5334 * sys_membarrier() requires an smp_mb() between setting 5335 * rq->curr / membarrier_switch_mm() and returning to userspace. 5336 * 5337 * The below provides this either through switch_mm(), or in 5338 * case 'prev->active_mm == next->mm' through 5339 * finish_task_switch()'s mmdrop(). 5340 */ 5341 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5342 lru_gen_use_mm(next->mm); 5343 5344 if (!prev->mm) { // from kernel 5345 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5346 rq->prev_mm = prev->active_mm; 5347 prev->active_mm = NULL; 5348 } 5349 } 5350 5351 /* switch_mm_cid() requires the memory barriers above. */ 5352 switch_mm_cid(rq, prev, next); 5353 5354 prepare_lock_switch(rq, next, rf); 5355 5356 /* Here we just switch the register state and the stack. */ 5357 switch_to(prev, next, prev); 5358 barrier(); 5359 5360 return finish_task_switch(prev); 5361 } 5362 5363 /* 5364 * nr_running and nr_context_switches: 5365 * 5366 * externally visible scheduler statistics: current number of runnable 5367 * threads, total number of context switches performed since bootup. 5368 */ 5369 unsigned int nr_running(void) 5370 { 5371 unsigned int i, sum = 0; 5372 5373 for_each_online_cpu(i) 5374 sum += cpu_rq(i)->nr_running; 5375 5376 return sum; 5377 } 5378 5379 /* 5380 * Check if only the current task is running on the CPU. 5381 * 5382 * Caution: this function does not check that the caller has disabled 5383 * preemption, thus the result might have a time-of-check-to-time-of-use 5384 * race. The caller is responsible to use it correctly, for example: 5385 * 5386 * - from a non-preemptible section (of course) 5387 * 5388 * - from a thread that is bound to a single CPU 5389 * 5390 * - in a loop with very short iterations (e.g. a polling loop) 5391 */ 5392 bool single_task_running(void) 5393 { 5394 return raw_rq()->nr_running == 1; 5395 } 5396 EXPORT_SYMBOL(single_task_running); 5397 5398 unsigned long long nr_context_switches_cpu(int cpu) 5399 { 5400 return cpu_rq(cpu)->nr_switches; 5401 } 5402 5403 unsigned long long nr_context_switches(void) 5404 { 5405 int i; 5406 unsigned long long sum = 0; 5407 5408 for_each_possible_cpu(i) 5409 sum += cpu_rq(i)->nr_switches; 5410 5411 return sum; 5412 } 5413 5414 /* 5415 * Consumers of these two interfaces, like for example the cpuidle menu 5416 * governor, are using nonsensical data. Preferring shallow idle state selection 5417 * for a CPU that has IO-wait which might not even end up running the task when 5418 * it does become runnable. 5419 */ 5420 5421 unsigned int nr_iowait_cpu(int cpu) 5422 { 5423 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5424 } 5425 5426 /* 5427 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5428 * 5429 * The idea behind IO-wait account is to account the idle time that we could 5430 * have spend running if it were not for IO. That is, if we were to improve the 5431 * storage performance, we'd have a proportional reduction in IO-wait time. 5432 * 5433 * This all works nicely on UP, where, when a task blocks on IO, we account 5434 * idle time as IO-wait, because if the storage were faster, it could've been 5435 * running and we'd not be idle. 5436 * 5437 * This has been extended to SMP, by doing the same for each CPU. This however 5438 * is broken. 5439 * 5440 * Imagine for instance the case where two tasks block on one CPU, only the one 5441 * CPU will have IO-wait accounted, while the other has regular idle. Even 5442 * though, if the storage were faster, both could've ran at the same time, 5443 * utilising both CPUs. 5444 * 5445 * This means, that when looking globally, the current IO-wait accounting on 5446 * SMP is a lower bound, by reason of under accounting. 5447 * 5448 * Worse, since the numbers are provided per CPU, they are sometimes 5449 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5450 * associated with any one particular CPU, it can wake to another CPU than it 5451 * blocked on. This means the per CPU IO-wait number is meaningless. 5452 * 5453 * Task CPU affinities can make all that even more 'interesting'. 5454 */ 5455 5456 unsigned int nr_iowait(void) 5457 { 5458 unsigned int i, sum = 0; 5459 5460 for_each_possible_cpu(i) 5461 sum += nr_iowait_cpu(i); 5462 5463 return sum; 5464 } 5465 5466 /* 5467 * sched_exec - execve() is a valuable balancing opportunity, because at 5468 * this point the task has the smallest effective memory and cache footprint. 5469 */ 5470 void sched_exec(void) 5471 { 5472 struct task_struct *p = current; 5473 struct migration_arg arg; 5474 int dest_cpu; 5475 5476 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5477 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5478 if (dest_cpu == smp_processor_id()) 5479 return; 5480 5481 if (unlikely(!cpu_active(dest_cpu))) 5482 return; 5483 5484 arg = (struct migration_arg){ p, dest_cpu }; 5485 } 5486 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5487 } 5488 5489 DEFINE_PER_CPU(struct kernel_stat, kstat); 5490 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5491 5492 EXPORT_PER_CPU_SYMBOL(kstat); 5493 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5494 5495 /* 5496 * The function fair_sched_class.update_curr accesses the struct curr 5497 * and its field curr->exec_start; when called from task_sched_runtime(), 5498 * we observe a high rate of cache misses in practice. 5499 * Prefetching this data results in improved performance. 5500 */ 5501 static inline void prefetch_curr_exec_start(struct task_struct *p) 5502 { 5503 #ifdef CONFIG_FAIR_GROUP_SCHED 5504 struct sched_entity *curr = p->se.cfs_rq->curr; 5505 #else 5506 struct sched_entity *curr = task_rq(p)->cfs.curr; 5507 #endif 5508 prefetch(curr); 5509 prefetch(&curr->exec_start); 5510 } 5511 5512 /* 5513 * Return accounted runtime for the task. 5514 * In case the task is currently running, return the runtime plus current's 5515 * pending runtime that have not been accounted yet. 5516 */ 5517 unsigned long long task_sched_runtime(struct task_struct *p) 5518 { 5519 struct rq_flags rf; 5520 struct rq *rq; 5521 u64 ns; 5522 5523 #ifdef CONFIG_64BIT 5524 /* 5525 * 64-bit doesn't need locks to atomically read a 64-bit value. 5526 * So we have a optimization chance when the task's delta_exec is 0. 5527 * Reading ->on_cpu is racy, but this is OK. 5528 * 5529 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5530 * If we race with it entering CPU, unaccounted time is 0. This is 5531 * indistinguishable from the read occurring a few cycles earlier. 5532 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5533 * been accounted, so we're correct here as well. 5534 */ 5535 if (!p->on_cpu || !task_on_rq_queued(p)) 5536 return p->se.sum_exec_runtime; 5537 #endif 5538 5539 rq = task_rq_lock(p, &rf); 5540 /* 5541 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5542 * project cycles that may never be accounted to this 5543 * thread, breaking clock_gettime(). 5544 */ 5545 if (task_current_donor(rq, p) && task_on_rq_queued(p)) { 5546 prefetch_curr_exec_start(p); 5547 update_rq_clock(rq); 5548 p->sched_class->update_curr(rq); 5549 } 5550 ns = p->se.sum_exec_runtime; 5551 task_rq_unlock(rq, p, &rf); 5552 5553 return ns; 5554 } 5555 5556 static u64 cpu_resched_latency(struct rq *rq) 5557 { 5558 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5559 u64 resched_latency, now = rq_clock(rq); 5560 static bool warned_once; 5561 5562 if (sysctl_resched_latency_warn_once && warned_once) 5563 return 0; 5564 5565 if (!need_resched() || !latency_warn_ms) 5566 return 0; 5567 5568 if (system_state == SYSTEM_BOOTING) 5569 return 0; 5570 5571 if (!rq->last_seen_need_resched_ns) { 5572 rq->last_seen_need_resched_ns = now; 5573 rq->ticks_without_resched = 0; 5574 return 0; 5575 } 5576 5577 rq->ticks_without_resched++; 5578 resched_latency = now - rq->last_seen_need_resched_ns; 5579 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5580 return 0; 5581 5582 warned_once = true; 5583 5584 return resched_latency; 5585 } 5586 5587 static int __init setup_resched_latency_warn_ms(char *str) 5588 { 5589 long val; 5590 5591 if ((kstrtol(str, 0, &val))) { 5592 pr_warn("Unable to set resched_latency_warn_ms\n"); 5593 return 1; 5594 } 5595 5596 sysctl_resched_latency_warn_ms = val; 5597 return 1; 5598 } 5599 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5600 5601 /* 5602 * This function gets called by the timer code, with HZ frequency. 5603 * We call it with interrupts disabled. 5604 */ 5605 void sched_tick(void) 5606 { 5607 int cpu = smp_processor_id(); 5608 struct rq *rq = cpu_rq(cpu); 5609 /* accounting goes to the donor task */ 5610 struct task_struct *donor; 5611 struct rq_flags rf; 5612 unsigned long hw_pressure; 5613 u64 resched_latency; 5614 5615 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5616 arch_scale_freq_tick(); 5617 5618 sched_clock_tick(); 5619 5620 rq_lock(rq, &rf); 5621 donor = rq->donor; 5622 5623 psi_account_irqtime(rq, donor, NULL); 5624 5625 update_rq_clock(rq); 5626 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 5627 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); 5628 5629 if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY)) 5630 resched_curr(rq); 5631 5632 donor->sched_class->task_tick(rq, donor, 0); 5633 if (sched_feat(LATENCY_WARN)) 5634 resched_latency = cpu_resched_latency(rq); 5635 calc_global_load_tick(rq); 5636 sched_core_tick(rq); 5637 task_tick_mm_cid(rq, donor); 5638 scx_tick(rq); 5639 5640 rq_unlock(rq, &rf); 5641 5642 if (sched_feat(LATENCY_WARN) && resched_latency) 5643 resched_latency_warn(cpu, resched_latency); 5644 5645 perf_event_task_tick(); 5646 5647 if (donor->flags & PF_WQ_WORKER) 5648 wq_worker_tick(donor); 5649 5650 if (!scx_switched_all()) { 5651 rq->idle_balance = idle_cpu(cpu); 5652 sched_balance_trigger(rq); 5653 } 5654 } 5655 5656 #ifdef CONFIG_NO_HZ_FULL 5657 5658 struct tick_work { 5659 int cpu; 5660 atomic_t state; 5661 struct delayed_work work; 5662 }; 5663 /* Values for ->state, see diagram below. */ 5664 #define TICK_SCHED_REMOTE_OFFLINE 0 5665 #define TICK_SCHED_REMOTE_OFFLINING 1 5666 #define TICK_SCHED_REMOTE_RUNNING 2 5667 5668 /* 5669 * State diagram for ->state: 5670 * 5671 * 5672 * TICK_SCHED_REMOTE_OFFLINE 5673 * | ^ 5674 * | | 5675 * | | sched_tick_remote() 5676 * | | 5677 * | | 5678 * +--TICK_SCHED_REMOTE_OFFLINING 5679 * | ^ 5680 * | | 5681 * sched_tick_start() | | sched_tick_stop() 5682 * | | 5683 * V | 5684 * TICK_SCHED_REMOTE_RUNNING 5685 * 5686 * 5687 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5688 * and sched_tick_start() are happy to leave the state in RUNNING. 5689 */ 5690 5691 static struct tick_work __percpu *tick_work_cpu; 5692 5693 static void sched_tick_remote(struct work_struct *work) 5694 { 5695 struct delayed_work *dwork = to_delayed_work(work); 5696 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5697 int cpu = twork->cpu; 5698 struct rq *rq = cpu_rq(cpu); 5699 int os; 5700 5701 /* 5702 * Handle the tick only if it appears the remote CPU is running in full 5703 * dynticks mode. The check is racy by nature, but missing a tick or 5704 * having one too much is no big deal because the scheduler tick updates 5705 * statistics and checks timeslices in a time-independent way, regardless 5706 * of when exactly it is running. 5707 */ 5708 if (tick_nohz_tick_stopped_cpu(cpu)) { 5709 guard(rq_lock_irq)(rq); 5710 struct task_struct *curr = rq->curr; 5711 5712 if (cpu_online(cpu)) { 5713 /* 5714 * Since this is a remote tick for full dynticks mode, 5715 * we are always sure that there is no proxy (only a 5716 * single task is running). 5717 */ 5718 WARN_ON_ONCE(rq->curr != rq->donor); 5719 update_rq_clock(rq); 5720 5721 if (!is_idle_task(curr)) { 5722 /* 5723 * Make sure the next tick runs within a 5724 * reasonable amount of time. 5725 */ 5726 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5727 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5728 } 5729 curr->sched_class->task_tick(rq, curr, 0); 5730 5731 calc_load_nohz_remote(rq); 5732 } 5733 } 5734 5735 /* 5736 * Run the remote tick once per second (1Hz). This arbitrary 5737 * frequency is large enough to avoid overload but short enough 5738 * to keep scheduler internal stats reasonably up to date. But 5739 * first update state to reflect hotplug activity if required. 5740 */ 5741 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5742 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5743 if (os == TICK_SCHED_REMOTE_RUNNING) 5744 queue_delayed_work(system_unbound_wq, dwork, HZ); 5745 } 5746 5747 static void sched_tick_start(int cpu) 5748 { 5749 int os; 5750 struct tick_work *twork; 5751 5752 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5753 return; 5754 5755 WARN_ON_ONCE(!tick_work_cpu); 5756 5757 twork = per_cpu_ptr(tick_work_cpu, cpu); 5758 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5759 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5760 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5761 twork->cpu = cpu; 5762 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5763 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5764 } 5765 } 5766 5767 #ifdef CONFIG_HOTPLUG_CPU 5768 static void sched_tick_stop(int cpu) 5769 { 5770 struct tick_work *twork; 5771 int os; 5772 5773 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5774 return; 5775 5776 WARN_ON_ONCE(!tick_work_cpu); 5777 5778 twork = per_cpu_ptr(tick_work_cpu, cpu); 5779 /* There cannot be competing actions, but don't rely on stop-machine. */ 5780 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5781 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5782 /* Don't cancel, as this would mess up the state machine. */ 5783 } 5784 #endif /* CONFIG_HOTPLUG_CPU */ 5785 5786 int __init sched_tick_offload_init(void) 5787 { 5788 tick_work_cpu = alloc_percpu(struct tick_work); 5789 BUG_ON(!tick_work_cpu); 5790 return 0; 5791 } 5792 5793 #else /* !CONFIG_NO_HZ_FULL: */ 5794 static inline void sched_tick_start(int cpu) { } 5795 static inline void sched_tick_stop(int cpu) { } 5796 #endif /* !CONFIG_NO_HZ_FULL */ 5797 5798 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5799 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5800 /* 5801 * If the value passed in is equal to the current preempt count 5802 * then we just disabled preemption. Start timing the latency. 5803 */ 5804 static inline void preempt_latency_start(int val) 5805 { 5806 if (preempt_count() == val) { 5807 unsigned long ip = get_lock_parent_ip(); 5808 #ifdef CONFIG_DEBUG_PREEMPT 5809 current->preempt_disable_ip = ip; 5810 #endif 5811 trace_preempt_off(CALLER_ADDR0, ip); 5812 } 5813 } 5814 5815 void preempt_count_add(int val) 5816 { 5817 #ifdef CONFIG_DEBUG_PREEMPT 5818 /* 5819 * Underflow? 5820 */ 5821 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5822 return; 5823 #endif 5824 __preempt_count_add(val); 5825 #ifdef CONFIG_DEBUG_PREEMPT 5826 /* 5827 * Spinlock count overflowing soon? 5828 */ 5829 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5830 PREEMPT_MASK - 10); 5831 #endif 5832 preempt_latency_start(val); 5833 } 5834 EXPORT_SYMBOL(preempt_count_add); 5835 NOKPROBE_SYMBOL(preempt_count_add); 5836 5837 /* 5838 * If the value passed in equals to the current preempt count 5839 * then we just enabled preemption. Stop timing the latency. 5840 */ 5841 static inline void preempt_latency_stop(int val) 5842 { 5843 if (preempt_count() == val) 5844 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5845 } 5846 5847 void preempt_count_sub(int val) 5848 { 5849 #ifdef CONFIG_DEBUG_PREEMPT 5850 /* 5851 * Underflow? 5852 */ 5853 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5854 return; 5855 /* 5856 * Is the spinlock portion underflowing? 5857 */ 5858 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5859 !(preempt_count() & PREEMPT_MASK))) 5860 return; 5861 #endif 5862 5863 preempt_latency_stop(val); 5864 __preempt_count_sub(val); 5865 } 5866 EXPORT_SYMBOL(preempt_count_sub); 5867 NOKPROBE_SYMBOL(preempt_count_sub); 5868 5869 #else 5870 static inline void preempt_latency_start(int val) { } 5871 static inline void preempt_latency_stop(int val) { } 5872 #endif 5873 5874 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5875 { 5876 #ifdef CONFIG_DEBUG_PREEMPT 5877 return p->preempt_disable_ip; 5878 #else 5879 return 0; 5880 #endif 5881 } 5882 5883 /* 5884 * Print scheduling while atomic bug: 5885 */ 5886 static noinline void __schedule_bug(struct task_struct *prev) 5887 { 5888 /* Save this before calling printk(), since that will clobber it */ 5889 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5890 5891 if (oops_in_progress) 5892 return; 5893 5894 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5895 prev->comm, prev->pid, preempt_count()); 5896 5897 debug_show_held_locks(prev); 5898 print_modules(); 5899 if (irqs_disabled()) 5900 print_irqtrace_events(prev); 5901 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5902 pr_err("Preemption disabled at:"); 5903 print_ip_sym(KERN_ERR, preempt_disable_ip); 5904 } 5905 check_panic_on_warn("scheduling while atomic"); 5906 5907 dump_stack(); 5908 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5909 } 5910 5911 /* 5912 * Various schedule()-time debugging checks and statistics: 5913 */ 5914 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5915 { 5916 #ifdef CONFIG_SCHED_STACK_END_CHECK 5917 if (task_stack_end_corrupted(prev)) 5918 panic("corrupted stack end detected inside scheduler\n"); 5919 5920 if (task_scs_end_corrupted(prev)) 5921 panic("corrupted shadow stack detected inside scheduler\n"); 5922 #endif 5923 5924 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5925 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5926 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5927 prev->comm, prev->pid, prev->non_block_count); 5928 dump_stack(); 5929 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5930 } 5931 #endif 5932 5933 if (unlikely(in_atomic_preempt_off())) { 5934 __schedule_bug(prev); 5935 preempt_count_set(PREEMPT_DISABLED); 5936 } 5937 rcu_sleep_check(); 5938 WARN_ON_ONCE(ct_state() == CT_STATE_USER); 5939 5940 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5941 5942 schedstat_inc(this_rq()->sched_count); 5943 } 5944 5945 static void prev_balance(struct rq *rq, struct task_struct *prev, 5946 struct rq_flags *rf) 5947 { 5948 const struct sched_class *start_class = prev->sched_class; 5949 const struct sched_class *class; 5950 5951 #ifdef CONFIG_SCHED_CLASS_EXT 5952 /* 5953 * SCX requires a balance() call before every pick_task() including when 5954 * waking up from SCHED_IDLE. If @start_class is below SCX, start from 5955 * SCX instead. Also, set a flag to detect missing balance() call. 5956 */ 5957 if (scx_enabled()) { 5958 rq->scx.flags |= SCX_RQ_BAL_PENDING; 5959 if (sched_class_above(&ext_sched_class, start_class)) 5960 start_class = &ext_sched_class; 5961 } 5962 #endif 5963 5964 /* 5965 * We must do the balancing pass before put_prev_task(), such 5966 * that when we release the rq->lock the task is in the same 5967 * state as before we took rq->lock. 5968 * 5969 * We can terminate the balance pass as soon as we know there is 5970 * a runnable task of @class priority or higher. 5971 */ 5972 for_active_class_range(class, start_class, &idle_sched_class) { 5973 if (class->balance && class->balance(rq, prev, rf)) 5974 break; 5975 } 5976 } 5977 5978 /* 5979 * Pick up the highest-prio task: 5980 */ 5981 static inline struct task_struct * 5982 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5983 { 5984 const struct sched_class *class; 5985 struct task_struct *p; 5986 5987 rq->dl_server = NULL; 5988 5989 if (scx_enabled()) 5990 goto restart; 5991 5992 /* 5993 * Optimization: we know that if all tasks are in the fair class we can 5994 * call that function directly, but only if the @prev task wasn't of a 5995 * higher scheduling class, because otherwise those lose the 5996 * opportunity to pull in more work from other CPUs. 5997 */ 5998 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5999 rq->nr_running == rq->cfs.h_nr_queued)) { 6000 6001 p = pick_next_task_fair(rq, prev, rf); 6002 if (unlikely(p == RETRY_TASK)) 6003 goto restart; 6004 6005 /* Assume the next prioritized class is idle_sched_class */ 6006 if (!p) { 6007 p = pick_task_idle(rq); 6008 put_prev_set_next_task(rq, prev, p); 6009 } 6010 6011 return p; 6012 } 6013 6014 restart: 6015 prev_balance(rq, prev, rf); 6016 6017 for_each_active_class(class) { 6018 if (class->pick_next_task) { 6019 p = class->pick_next_task(rq, prev); 6020 if (p) 6021 return p; 6022 } else { 6023 p = class->pick_task(rq); 6024 if (p) { 6025 put_prev_set_next_task(rq, prev, p); 6026 return p; 6027 } 6028 } 6029 } 6030 6031 BUG(); /* The idle class should always have a runnable task. */ 6032 } 6033 6034 #ifdef CONFIG_SCHED_CORE 6035 static inline bool is_task_rq_idle(struct task_struct *t) 6036 { 6037 return (task_rq(t)->idle == t); 6038 } 6039 6040 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 6041 { 6042 return is_task_rq_idle(a) || (a->core_cookie == cookie); 6043 } 6044 6045 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 6046 { 6047 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 6048 return true; 6049 6050 return a->core_cookie == b->core_cookie; 6051 } 6052 6053 static inline struct task_struct *pick_task(struct rq *rq) 6054 { 6055 const struct sched_class *class; 6056 struct task_struct *p; 6057 6058 rq->dl_server = NULL; 6059 6060 for_each_active_class(class) { 6061 p = class->pick_task(rq); 6062 if (p) 6063 return p; 6064 } 6065 6066 BUG(); /* The idle class should always have a runnable task. */ 6067 } 6068 6069 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 6070 6071 static void queue_core_balance(struct rq *rq); 6072 6073 static struct task_struct * 6074 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6075 { 6076 struct task_struct *next, *p, *max = NULL; 6077 const struct cpumask *smt_mask; 6078 bool fi_before = false; 6079 bool core_clock_updated = (rq == rq->core); 6080 unsigned long cookie; 6081 int i, cpu, occ = 0; 6082 struct rq *rq_i; 6083 bool need_sync; 6084 6085 if (!sched_core_enabled(rq)) 6086 return __pick_next_task(rq, prev, rf); 6087 6088 cpu = cpu_of(rq); 6089 6090 /* Stopper task is switching into idle, no need core-wide selection. */ 6091 if (cpu_is_offline(cpu)) { 6092 /* 6093 * Reset core_pick so that we don't enter the fastpath when 6094 * coming online. core_pick would already be migrated to 6095 * another cpu during offline. 6096 */ 6097 rq->core_pick = NULL; 6098 rq->core_dl_server = NULL; 6099 return __pick_next_task(rq, prev, rf); 6100 } 6101 6102 /* 6103 * If there were no {en,de}queues since we picked (IOW, the task 6104 * pointers are all still valid), and we haven't scheduled the last 6105 * pick yet, do so now. 6106 * 6107 * rq->core_pick can be NULL if no selection was made for a CPU because 6108 * it was either offline or went offline during a sibling's core-wide 6109 * selection. In this case, do a core-wide selection. 6110 */ 6111 if (rq->core->core_pick_seq == rq->core->core_task_seq && 6112 rq->core->core_pick_seq != rq->core_sched_seq && 6113 rq->core_pick) { 6114 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6115 6116 next = rq->core_pick; 6117 rq->dl_server = rq->core_dl_server; 6118 rq->core_pick = NULL; 6119 rq->core_dl_server = NULL; 6120 goto out_set_next; 6121 } 6122 6123 prev_balance(rq, prev, rf); 6124 6125 smt_mask = cpu_smt_mask(cpu); 6126 need_sync = !!rq->core->core_cookie; 6127 6128 /* reset state */ 6129 rq->core->core_cookie = 0UL; 6130 if (rq->core->core_forceidle_count) { 6131 if (!core_clock_updated) { 6132 update_rq_clock(rq->core); 6133 core_clock_updated = true; 6134 } 6135 sched_core_account_forceidle(rq); 6136 /* reset after accounting force idle */ 6137 rq->core->core_forceidle_start = 0; 6138 rq->core->core_forceidle_count = 0; 6139 rq->core->core_forceidle_occupation = 0; 6140 need_sync = true; 6141 fi_before = true; 6142 } 6143 6144 /* 6145 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6146 * 6147 * @task_seq guards the task state ({en,de}queues) 6148 * @pick_seq is the @task_seq we did a selection on 6149 * @sched_seq is the @pick_seq we scheduled 6150 * 6151 * However, preemptions can cause multiple picks on the same task set. 6152 * 'Fix' this by also increasing @task_seq for every pick. 6153 */ 6154 rq->core->core_task_seq++; 6155 6156 /* 6157 * Optimize for common case where this CPU has no cookies 6158 * and there are no cookied tasks running on siblings. 6159 */ 6160 if (!need_sync) { 6161 next = pick_task(rq); 6162 if (!next->core_cookie) { 6163 rq->core_pick = NULL; 6164 rq->core_dl_server = NULL; 6165 /* 6166 * For robustness, update the min_vruntime_fi for 6167 * unconstrained picks as well. 6168 */ 6169 WARN_ON_ONCE(fi_before); 6170 task_vruntime_update(rq, next, false); 6171 goto out_set_next; 6172 } 6173 } 6174 6175 /* 6176 * For each thread: do the regular task pick and find the max prio task 6177 * amongst them. 6178 * 6179 * Tie-break prio towards the current CPU 6180 */ 6181 for_each_cpu_wrap(i, smt_mask, cpu) { 6182 rq_i = cpu_rq(i); 6183 6184 /* 6185 * Current cpu always has its clock updated on entrance to 6186 * pick_next_task(). If the current cpu is not the core, 6187 * the core may also have been updated above. 6188 */ 6189 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6190 update_rq_clock(rq_i); 6191 6192 rq_i->core_pick = p = pick_task(rq_i); 6193 rq_i->core_dl_server = rq_i->dl_server; 6194 6195 if (!max || prio_less(max, p, fi_before)) 6196 max = p; 6197 } 6198 6199 cookie = rq->core->core_cookie = max->core_cookie; 6200 6201 /* 6202 * For each thread: try and find a runnable task that matches @max or 6203 * force idle. 6204 */ 6205 for_each_cpu(i, smt_mask) { 6206 rq_i = cpu_rq(i); 6207 p = rq_i->core_pick; 6208 6209 if (!cookie_equals(p, cookie)) { 6210 p = NULL; 6211 if (cookie) 6212 p = sched_core_find(rq_i, cookie); 6213 if (!p) 6214 p = idle_sched_class.pick_task(rq_i); 6215 } 6216 6217 rq_i->core_pick = p; 6218 rq_i->core_dl_server = NULL; 6219 6220 if (p == rq_i->idle) { 6221 if (rq_i->nr_running) { 6222 rq->core->core_forceidle_count++; 6223 if (!fi_before) 6224 rq->core->core_forceidle_seq++; 6225 } 6226 } else { 6227 occ++; 6228 } 6229 } 6230 6231 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6232 rq->core->core_forceidle_start = rq_clock(rq->core); 6233 rq->core->core_forceidle_occupation = occ; 6234 } 6235 6236 rq->core->core_pick_seq = rq->core->core_task_seq; 6237 next = rq->core_pick; 6238 rq->core_sched_seq = rq->core->core_pick_seq; 6239 6240 /* Something should have been selected for current CPU */ 6241 WARN_ON_ONCE(!next); 6242 6243 /* 6244 * Reschedule siblings 6245 * 6246 * NOTE: L1TF -- at this point we're no longer running the old task and 6247 * sending an IPI (below) ensures the sibling will no longer be running 6248 * their task. This ensures there is no inter-sibling overlap between 6249 * non-matching user state. 6250 */ 6251 for_each_cpu(i, smt_mask) { 6252 rq_i = cpu_rq(i); 6253 6254 /* 6255 * An online sibling might have gone offline before a task 6256 * could be picked for it, or it might be offline but later 6257 * happen to come online, but its too late and nothing was 6258 * picked for it. That's Ok - it will pick tasks for itself, 6259 * so ignore it. 6260 */ 6261 if (!rq_i->core_pick) 6262 continue; 6263 6264 /* 6265 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6266 * fi_before fi update? 6267 * 0 0 1 6268 * 0 1 1 6269 * 1 0 1 6270 * 1 1 0 6271 */ 6272 if (!(fi_before && rq->core->core_forceidle_count)) 6273 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6274 6275 rq_i->core_pick->core_occupation = occ; 6276 6277 if (i == cpu) { 6278 rq_i->core_pick = NULL; 6279 rq_i->core_dl_server = NULL; 6280 continue; 6281 } 6282 6283 /* Did we break L1TF mitigation requirements? */ 6284 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6285 6286 if (rq_i->curr == rq_i->core_pick) { 6287 rq_i->core_pick = NULL; 6288 rq_i->core_dl_server = NULL; 6289 continue; 6290 } 6291 6292 resched_curr(rq_i); 6293 } 6294 6295 out_set_next: 6296 put_prev_set_next_task(rq, prev, next); 6297 if (rq->core->core_forceidle_count && next == rq->idle) 6298 queue_core_balance(rq); 6299 6300 return next; 6301 } 6302 6303 static bool try_steal_cookie(int this, int that) 6304 { 6305 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6306 struct task_struct *p; 6307 unsigned long cookie; 6308 bool success = false; 6309 6310 guard(irq)(); 6311 guard(double_rq_lock)(dst, src); 6312 6313 cookie = dst->core->core_cookie; 6314 if (!cookie) 6315 return false; 6316 6317 if (dst->curr != dst->idle) 6318 return false; 6319 6320 p = sched_core_find(src, cookie); 6321 if (!p) 6322 return false; 6323 6324 do { 6325 if (p == src->core_pick || p == src->curr) 6326 goto next; 6327 6328 if (!is_cpu_allowed(p, this)) 6329 goto next; 6330 6331 if (p->core_occupation > dst->idle->core_occupation) 6332 goto next; 6333 /* 6334 * sched_core_find() and sched_core_next() will ensure 6335 * that task @p is not throttled now, we also need to 6336 * check whether the runqueue of the destination CPU is 6337 * being throttled. 6338 */ 6339 if (sched_task_is_throttled(p, this)) 6340 goto next; 6341 6342 move_queued_task_locked(src, dst, p); 6343 resched_curr(dst); 6344 6345 success = true; 6346 break; 6347 6348 next: 6349 p = sched_core_next(p, cookie); 6350 } while (p); 6351 6352 return success; 6353 } 6354 6355 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6356 { 6357 int i; 6358 6359 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6360 if (i == cpu) 6361 continue; 6362 6363 if (need_resched()) 6364 break; 6365 6366 if (try_steal_cookie(cpu, i)) 6367 return true; 6368 } 6369 6370 return false; 6371 } 6372 6373 static void sched_core_balance(struct rq *rq) 6374 { 6375 struct sched_domain *sd; 6376 int cpu = cpu_of(rq); 6377 6378 guard(preempt)(); 6379 guard(rcu)(); 6380 6381 raw_spin_rq_unlock_irq(rq); 6382 for_each_domain(cpu, sd) { 6383 if (need_resched()) 6384 break; 6385 6386 if (steal_cookie_task(cpu, sd)) 6387 break; 6388 } 6389 raw_spin_rq_lock_irq(rq); 6390 } 6391 6392 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6393 6394 static void queue_core_balance(struct rq *rq) 6395 { 6396 if (!sched_core_enabled(rq)) 6397 return; 6398 6399 if (!rq->core->core_cookie) 6400 return; 6401 6402 if (!rq->nr_running) /* not forced idle */ 6403 return; 6404 6405 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6406 } 6407 6408 DEFINE_LOCK_GUARD_1(core_lock, int, 6409 sched_core_lock(*_T->lock, &_T->flags), 6410 sched_core_unlock(*_T->lock, &_T->flags), 6411 unsigned long flags) 6412 6413 static void sched_core_cpu_starting(unsigned int cpu) 6414 { 6415 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6416 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6417 int t; 6418 6419 guard(core_lock)(&cpu); 6420 6421 WARN_ON_ONCE(rq->core != rq); 6422 6423 /* if we're the first, we'll be our own leader */ 6424 if (cpumask_weight(smt_mask) == 1) 6425 return; 6426 6427 /* find the leader */ 6428 for_each_cpu(t, smt_mask) { 6429 if (t == cpu) 6430 continue; 6431 rq = cpu_rq(t); 6432 if (rq->core == rq) { 6433 core_rq = rq; 6434 break; 6435 } 6436 } 6437 6438 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6439 return; 6440 6441 /* install and validate core_rq */ 6442 for_each_cpu(t, smt_mask) { 6443 rq = cpu_rq(t); 6444 6445 if (t == cpu) 6446 rq->core = core_rq; 6447 6448 WARN_ON_ONCE(rq->core != core_rq); 6449 } 6450 } 6451 6452 static void sched_core_cpu_deactivate(unsigned int cpu) 6453 { 6454 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6455 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6456 int t; 6457 6458 guard(core_lock)(&cpu); 6459 6460 /* if we're the last man standing, nothing to do */ 6461 if (cpumask_weight(smt_mask) == 1) { 6462 WARN_ON_ONCE(rq->core != rq); 6463 return; 6464 } 6465 6466 /* if we're not the leader, nothing to do */ 6467 if (rq->core != rq) 6468 return; 6469 6470 /* find a new leader */ 6471 for_each_cpu(t, smt_mask) { 6472 if (t == cpu) 6473 continue; 6474 core_rq = cpu_rq(t); 6475 break; 6476 } 6477 6478 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6479 return; 6480 6481 /* copy the shared state to the new leader */ 6482 core_rq->core_task_seq = rq->core_task_seq; 6483 core_rq->core_pick_seq = rq->core_pick_seq; 6484 core_rq->core_cookie = rq->core_cookie; 6485 core_rq->core_forceidle_count = rq->core_forceidle_count; 6486 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6487 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6488 6489 /* 6490 * Accounting edge for forced idle is handled in pick_next_task(). 6491 * Don't need another one here, since the hotplug thread shouldn't 6492 * have a cookie. 6493 */ 6494 core_rq->core_forceidle_start = 0; 6495 6496 /* install new leader */ 6497 for_each_cpu(t, smt_mask) { 6498 rq = cpu_rq(t); 6499 rq->core = core_rq; 6500 } 6501 } 6502 6503 static inline void sched_core_cpu_dying(unsigned int cpu) 6504 { 6505 struct rq *rq = cpu_rq(cpu); 6506 6507 if (rq->core != rq) 6508 rq->core = rq; 6509 } 6510 6511 #else /* !CONFIG_SCHED_CORE: */ 6512 6513 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6514 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6515 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6516 6517 static struct task_struct * 6518 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6519 { 6520 return __pick_next_task(rq, prev, rf); 6521 } 6522 6523 #endif /* !CONFIG_SCHED_CORE */ 6524 6525 /* 6526 * Constants for the sched_mode argument of __schedule(). 6527 * 6528 * The mode argument allows RT enabled kernels to differentiate a 6529 * preemption from blocking on an 'sleeping' spin/rwlock. 6530 */ 6531 #define SM_IDLE (-1) 6532 #define SM_NONE 0 6533 #define SM_PREEMPT 1 6534 #define SM_RTLOCK_WAIT 2 6535 6536 /* 6537 * Helper function for __schedule() 6538 * 6539 * Tries to deactivate the task, unless the should_block arg 6540 * is false or if a signal is pending. In the case a signal 6541 * is pending, marks the task's __state as RUNNING (and clear 6542 * blocked_on). 6543 */ 6544 static bool try_to_block_task(struct rq *rq, struct task_struct *p, 6545 unsigned long *task_state_p, bool should_block) 6546 { 6547 unsigned long task_state = *task_state_p; 6548 int flags = DEQUEUE_NOCLOCK; 6549 6550 if (signal_pending_state(task_state, p)) { 6551 WRITE_ONCE(p->__state, TASK_RUNNING); 6552 *task_state_p = TASK_RUNNING; 6553 return false; 6554 } 6555 6556 /* 6557 * We check should_block after signal_pending because we 6558 * will want to wake the task in that case. But if 6559 * should_block is false, its likely due to the task being 6560 * blocked on a mutex, and we want to keep it on the runqueue 6561 * to be selectable for proxy-execution. 6562 */ 6563 if (!should_block) 6564 return false; 6565 6566 p->sched_contributes_to_load = 6567 (task_state & TASK_UNINTERRUPTIBLE) && 6568 !(task_state & TASK_NOLOAD) && 6569 !(task_state & TASK_FROZEN); 6570 6571 if (unlikely(is_special_task_state(task_state))) 6572 flags |= DEQUEUE_SPECIAL; 6573 6574 /* 6575 * __schedule() ttwu() 6576 * prev_state = prev->state; if (p->on_rq && ...) 6577 * if (prev_state) goto out; 6578 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6579 * p->state = TASK_WAKING 6580 * 6581 * Where __schedule() and ttwu() have matching control dependencies. 6582 * 6583 * After this, schedule() must not care about p->state any more. 6584 */ 6585 block_task(rq, p, flags); 6586 return true; 6587 } 6588 6589 #ifdef CONFIG_SCHED_PROXY_EXEC 6590 static inline struct task_struct *proxy_resched_idle(struct rq *rq) 6591 { 6592 put_prev_set_next_task(rq, rq->donor, rq->idle); 6593 rq_set_donor(rq, rq->idle); 6594 set_tsk_need_resched(rq->idle); 6595 return rq->idle; 6596 } 6597 6598 static bool __proxy_deactivate(struct rq *rq, struct task_struct *donor) 6599 { 6600 unsigned long state = READ_ONCE(donor->__state); 6601 6602 /* Don't deactivate if the state has been changed to TASK_RUNNING */ 6603 if (state == TASK_RUNNING) 6604 return false; 6605 /* 6606 * Because we got donor from pick_next_task(), it is *crucial* 6607 * that we call proxy_resched_idle() before we deactivate it. 6608 * As once we deactivate donor, donor->on_rq is set to zero, 6609 * which allows ttwu() to immediately try to wake the task on 6610 * another rq. So we cannot use *any* references to donor 6611 * after that point. So things like cfs_rq->curr or rq->donor 6612 * need to be changed from next *before* we deactivate. 6613 */ 6614 proxy_resched_idle(rq); 6615 return try_to_block_task(rq, donor, &state, true); 6616 } 6617 6618 static struct task_struct *proxy_deactivate(struct rq *rq, struct task_struct *donor) 6619 { 6620 if (!__proxy_deactivate(rq, donor)) { 6621 /* 6622 * XXX: For now, if deactivation failed, set donor 6623 * as unblocked, as we aren't doing proxy-migrations 6624 * yet (more logic will be needed then). 6625 */ 6626 donor->blocked_on = NULL; 6627 } 6628 return NULL; 6629 } 6630 6631 /* 6632 * Find runnable lock owner to proxy for mutex blocked donor 6633 * 6634 * Follow the blocked-on relation: 6635 * task->blocked_on -> mutex->owner -> task... 6636 * 6637 * Lock order: 6638 * 6639 * p->pi_lock 6640 * rq->lock 6641 * mutex->wait_lock 6642 * 6643 * Returns the task that is going to be used as execution context (the one 6644 * that is actually going to be run on cpu_of(rq)). 6645 */ 6646 static struct task_struct * 6647 find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf) 6648 { 6649 struct task_struct *owner = NULL; 6650 int this_cpu = cpu_of(rq); 6651 struct task_struct *p; 6652 struct mutex *mutex; 6653 6654 /* Follow blocked_on chain. */ 6655 for (p = donor; task_is_blocked(p); p = owner) { 6656 mutex = p->blocked_on; 6657 /* Something changed in the chain, so pick again */ 6658 if (!mutex) 6659 return NULL; 6660 /* 6661 * By taking mutex->wait_lock we hold off concurrent mutex_unlock() 6662 * and ensure @owner sticks around. 6663 */ 6664 guard(raw_spinlock)(&mutex->wait_lock); 6665 6666 /* Check again that p is blocked with wait_lock held */ 6667 if (mutex != __get_task_blocked_on(p)) { 6668 /* 6669 * Something changed in the blocked_on chain and 6670 * we don't know if only at this level. So, let's 6671 * just bail out completely and let __schedule() 6672 * figure things out (pick_again loop). 6673 */ 6674 return NULL; 6675 } 6676 6677 owner = __mutex_owner(mutex); 6678 if (!owner) { 6679 __clear_task_blocked_on(p, mutex); 6680 return p; 6681 } 6682 6683 if (!READ_ONCE(owner->on_rq) || owner->se.sched_delayed) { 6684 /* XXX Don't handle blocked owners/delayed dequeue yet */ 6685 return proxy_deactivate(rq, donor); 6686 } 6687 6688 if (task_cpu(owner) != this_cpu) { 6689 /* XXX Don't handle migrations yet */ 6690 return proxy_deactivate(rq, donor); 6691 } 6692 6693 if (task_on_rq_migrating(owner)) { 6694 /* 6695 * One of the chain of mutex owners is currently migrating to this 6696 * CPU, but has not yet been enqueued because we are holding the 6697 * rq lock. As a simple solution, just schedule rq->idle to give 6698 * the migration a chance to complete. Much like the migrate_task 6699 * case we should end up back in find_proxy_task(), this time 6700 * hopefully with all relevant tasks already enqueued. 6701 */ 6702 return proxy_resched_idle(rq); 6703 } 6704 6705 /* 6706 * Its possible to race where after we check owner->on_rq 6707 * but before we check (owner_cpu != this_cpu) that the 6708 * task on another cpu was migrated back to this cpu. In 6709 * that case it could slip by our checks. So double check 6710 * we are still on this cpu and not migrating. If we get 6711 * inconsistent results, try again. 6712 */ 6713 if (!task_on_rq_queued(owner) || task_cpu(owner) != this_cpu) 6714 return NULL; 6715 6716 if (owner == p) { 6717 /* 6718 * It's possible we interleave with mutex_unlock like: 6719 * 6720 * lock(&rq->lock); 6721 * find_proxy_task() 6722 * mutex_unlock() 6723 * lock(&wait_lock); 6724 * donor(owner) = current->blocked_donor; 6725 * unlock(&wait_lock); 6726 * 6727 * wake_up_q(); 6728 * ... 6729 * ttwu_runnable() 6730 * __task_rq_lock() 6731 * lock(&wait_lock); 6732 * owner == p 6733 * 6734 * Which leaves us to finish the ttwu_runnable() and make it go. 6735 * 6736 * So schedule rq->idle so that ttwu_runnable() can get the rq 6737 * lock and mark owner as running. 6738 */ 6739 return proxy_resched_idle(rq); 6740 } 6741 /* 6742 * OK, now we're absolutely sure @owner is on this 6743 * rq, therefore holding @rq->lock is sufficient to 6744 * guarantee its existence, as per ttwu_remote(). 6745 */ 6746 } 6747 6748 WARN_ON_ONCE(owner && !owner->on_rq); 6749 return owner; 6750 } 6751 #else /* SCHED_PROXY_EXEC */ 6752 static struct task_struct * 6753 find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf) 6754 { 6755 WARN_ONCE(1, "This should never be called in the !SCHED_PROXY_EXEC case\n"); 6756 return donor; 6757 } 6758 #endif /* SCHED_PROXY_EXEC */ 6759 6760 static inline void proxy_tag_curr(struct rq *rq, struct task_struct *owner) 6761 { 6762 if (!sched_proxy_exec()) 6763 return; 6764 /* 6765 * pick_next_task() calls set_next_task() on the chosen task 6766 * at some point, which ensures it is not push/pullable. 6767 * However, the chosen/donor task *and* the mutex owner form an 6768 * atomic pair wrt push/pull. 6769 * 6770 * Make sure owner we run is not pushable. Unfortunately we can 6771 * only deal with that by means of a dequeue/enqueue cycle. :-/ 6772 */ 6773 dequeue_task(rq, owner, DEQUEUE_NOCLOCK | DEQUEUE_SAVE); 6774 enqueue_task(rq, owner, ENQUEUE_NOCLOCK | ENQUEUE_RESTORE); 6775 } 6776 6777 /* 6778 * __schedule() is the main scheduler function. 6779 * 6780 * The main means of driving the scheduler and thus entering this function are: 6781 * 6782 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6783 * 6784 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6785 * paths. For example, see arch/x86/entry_64.S. 6786 * 6787 * To drive preemption between tasks, the scheduler sets the flag in timer 6788 * interrupt handler sched_tick(). 6789 * 6790 * 3. Wakeups don't really cause entry into schedule(). They add a 6791 * task to the run-queue and that's it. 6792 * 6793 * Now, if the new task added to the run-queue preempts the current 6794 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6795 * called on the nearest possible occasion: 6796 * 6797 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6798 * 6799 * - in syscall or exception context, at the next outmost 6800 * preempt_enable(). (this might be as soon as the wake_up()'s 6801 * spin_unlock()!) 6802 * 6803 * - in IRQ context, return from interrupt-handler to 6804 * preemptible context 6805 * 6806 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6807 * then at the next: 6808 * 6809 * - cond_resched() call 6810 * - explicit schedule() call 6811 * - return from syscall or exception to user-space 6812 * - return from interrupt-handler to user-space 6813 * 6814 * WARNING: must be called with preemption disabled! 6815 */ 6816 static void __sched notrace __schedule(int sched_mode) 6817 { 6818 struct task_struct *prev, *next; 6819 /* 6820 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted 6821 * as a preemption by schedule_debug() and RCU. 6822 */ 6823 bool preempt = sched_mode > SM_NONE; 6824 bool is_switch = false; 6825 unsigned long *switch_count; 6826 unsigned long prev_state; 6827 struct rq_flags rf; 6828 struct rq *rq; 6829 int cpu; 6830 6831 /* Trace preemptions consistently with task switches */ 6832 trace_sched_entry_tp(sched_mode == SM_PREEMPT); 6833 6834 cpu = smp_processor_id(); 6835 rq = cpu_rq(cpu); 6836 prev = rq->curr; 6837 6838 schedule_debug(prev, preempt); 6839 6840 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6841 hrtick_clear(rq); 6842 6843 klp_sched_try_switch(prev); 6844 6845 local_irq_disable(); 6846 rcu_note_context_switch(preempt); 6847 6848 /* 6849 * Make sure that signal_pending_state()->signal_pending() below 6850 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6851 * done by the caller to avoid the race with signal_wake_up(): 6852 * 6853 * __set_current_state(@state) signal_wake_up() 6854 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6855 * wake_up_state(p, state) 6856 * LOCK rq->lock LOCK p->pi_state 6857 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6858 * if (signal_pending_state()) if (p->state & @state) 6859 * 6860 * Also, the membarrier system call requires a full memory barrier 6861 * after coming from user-space, before storing to rq->curr; this 6862 * barrier matches a full barrier in the proximity of the membarrier 6863 * system call exit. 6864 */ 6865 rq_lock(rq, &rf); 6866 smp_mb__after_spinlock(); 6867 6868 /* Promote REQ to ACT */ 6869 rq->clock_update_flags <<= 1; 6870 update_rq_clock(rq); 6871 rq->clock_update_flags = RQCF_UPDATED; 6872 6873 switch_count = &prev->nivcsw; 6874 6875 /* Task state changes only considers SM_PREEMPT as preemption */ 6876 preempt = sched_mode == SM_PREEMPT; 6877 6878 /* 6879 * We must load prev->state once (task_struct::state is volatile), such 6880 * that we form a control dependency vs deactivate_task() below. 6881 */ 6882 prev_state = READ_ONCE(prev->__state); 6883 if (sched_mode == SM_IDLE) { 6884 /* SCX must consult the BPF scheduler to tell if rq is empty */ 6885 if (!rq->nr_running && !scx_enabled()) { 6886 next = prev; 6887 goto picked; 6888 } 6889 } else if (!preempt && prev_state) { 6890 /* 6891 * We pass task_is_blocked() as the should_block arg 6892 * in order to keep mutex-blocked tasks on the runqueue 6893 * for slection with proxy-exec (without proxy-exec 6894 * task_is_blocked() will always be false). 6895 */ 6896 try_to_block_task(rq, prev, &prev_state, 6897 !task_is_blocked(prev)); 6898 switch_count = &prev->nvcsw; 6899 } 6900 6901 pick_again: 6902 next = pick_next_task(rq, rq->donor, &rf); 6903 rq_set_donor(rq, next); 6904 if (unlikely(task_is_blocked(next))) { 6905 next = find_proxy_task(rq, next, &rf); 6906 if (!next) 6907 goto pick_again; 6908 if (next == rq->idle) 6909 goto keep_resched; 6910 } 6911 picked: 6912 clear_tsk_need_resched(prev); 6913 clear_preempt_need_resched(); 6914 keep_resched: 6915 rq->last_seen_need_resched_ns = 0; 6916 6917 is_switch = prev != next; 6918 if (likely(is_switch)) { 6919 rq->nr_switches++; 6920 /* 6921 * RCU users of rcu_dereference(rq->curr) may not see 6922 * changes to task_struct made by pick_next_task(). 6923 */ 6924 RCU_INIT_POINTER(rq->curr, next); 6925 6926 if (!task_current_donor(rq, next)) 6927 proxy_tag_curr(rq, next); 6928 6929 /* 6930 * The membarrier system call requires each architecture 6931 * to have a full memory barrier after updating 6932 * rq->curr, before returning to user-space. 6933 * 6934 * Here are the schemes providing that barrier on the 6935 * various architectures: 6936 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, 6937 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() 6938 * on PowerPC and on RISC-V. 6939 * - finish_lock_switch() for weakly-ordered 6940 * architectures where spin_unlock is a full barrier, 6941 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6942 * is a RELEASE barrier), 6943 * 6944 * The barrier matches a full barrier in the proximity of 6945 * the membarrier system call entry. 6946 * 6947 * On RISC-V, this barrier pairing is also needed for the 6948 * SYNC_CORE command when switching between processes, cf. 6949 * the inline comments in membarrier_arch_switch_mm(). 6950 */ 6951 ++*switch_count; 6952 6953 migrate_disable_switch(rq, prev); 6954 psi_account_irqtime(rq, prev, next); 6955 psi_sched_switch(prev, next, !task_on_rq_queued(prev) || 6956 prev->se.sched_delayed); 6957 6958 trace_sched_switch(preempt, prev, next, prev_state); 6959 6960 /* Also unlocks the rq: */ 6961 rq = context_switch(rq, prev, next, &rf); 6962 } else { 6963 /* In case next was already curr but just got blocked_donor */ 6964 if (!task_current_donor(rq, next)) 6965 proxy_tag_curr(rq, next); 6966 6967 rq_unpin_lock(rq, &rf); 6968 __balance_callbacks(rq); 6969 raw_spin_rq_unlock_irq(rq); 6970 } 6971 trace_sched_exit_tp(is_switch); 6972 } 6973 6974 void __noreturn do_task_dead(void) 6975 { 6976 /* Causes final put_task_struct in finish_task_switch(): */ 6977 set_special_state(TASK_DEAD); 6978 6979 /* Tell freezer to ignore us: */ 6980 current->flags |= PF_NOFREEZE; 6981 6982 __schedule(SM_NONE); 6983 BUG(); 6984 6985 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6986 for (;;) 6987 cpu_relax(); 6988 } 6989 6990 static inline void sched_submit_work(struct task_struct *tsk) 6991 { 6992 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6993 unsigned int task_flags; 6994 6995 /* 6996 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6997 * will use a blocking primitive -- which would lead to recursion. 6998 */ 6999 lock_map_acquire_try(&sched_map); 7000 7001 task_flags = tsk->flags; 7002 /* 7003 * If a worker goes to sleep, notify and ask workqueue whether it 7004 * wants to wake up a task to maintain concurrency. 7005 */ 7006 if (task_flags & PF_WQ_WORKER) 7007 wq_worker_sleeping(tsk); 7008 else if (task_flags & PF_IO_WORKER) 7009 io_wq_worker_sleeping(tsk); 7010 7011 /* 7012 * spinlock and rwlock must not flush block requests. This will 7013 * deadlock if the callback attempts to acquire a lock which is 7014 * already acquired. 7015 */ 7016 WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT); 7017 7018 /* 7019 * If we are going to sleep and we have plugged IO queued, 7020 * make sure to submit it to avoid deadlocks. 7021 */ 7022 blk_flush_plug(tsk->plug, true); 7023 7024 lock_map_release(&sched_map); 7025 } 7026 7027 static void sched_update_worker(struct task_struct *tsk) 7028 { 7029 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { 7030 if (tsk->flags & PF_BLOCK_TS) 7031 blk_plug_invalidate_ts(tsk); 7032 if (tsk->flags & PF_WQ_WORKER) 7033 wq_worker_running(tsk); 7034 else if (tsk->flags & PF_IO_WORKER) 7035 io_wq_worker_running(tsk); 7036 } 7037 } 7038 7039 static __always_inline void __schedule_loop(int sched_mode) 7040 { 7041 do { 7042 preempt_disable(); 7043 __schedule(sched_mode); 7044 sched_preempt_enable_no_resched(); 7045 } while (need_resched()); 7046 } 7047 7048 asmlinkage __visible void __sched schedule(void) 7049 { 7050 struct task_struct *tsk = current; 7051 7052 #ifdef CONFIG_RT_MUTEXES 7053 lockdep_assert(!tsk->sched_rt_mutex); 7054 #endif 7055 7056 if (!task_is_running(tsk)) 7057 sched_submit_work(tsk); 7058 __schedule_loop(SM_NONE); 7059 sched_update_worker(tsk); 7060 } 7061 EXPORT_SYMBOL(schedule); 7062 7063 /* 7064 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 7065 * state (have scheduled out non-voluntarily) by making sure that all 7066 * tasks have either left the run queue or have gone into user space. 7067 * As idle tasks do not do either, they must not ever be preempted 7068 * (schedule out non-voluntarily). 7069 * 7070 * schedule_idle() is similar to schedule_preempt_disable() except that it 7071 * never enables preemption because it does not call sched_submit_work(). 7072 */ 7073 void __sched schedule_idle(void) 7074 { 7075 /* 7076 * As this skips calling sched_submit_work(), which the idle task does 7077 * regardless because that function is a NOP when the task is in a 7078 * TASK_RUNNING state, make sure this isn't used someplace that the 7079 * current task can be in any other state. Note, idle is always in the 7080 * TASK_RUNNING state. 7081 */ 7082 WARN_ON_ONCE(current->__state); 7083 do { 7084 __schedule(SM_IDLE); 7085 } while (need_resched()); 7086 } 7087 7088 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 7089 asmlinkage __visible void __sched schedule_user(void) 7090 { 7091 /* 7092 * If we come here after a random call to set_need_resched(), 7093 * or we have been woken up remotely but the IPI has not yet arrived, 7094 * we haven't yet exited the RCU idle mode. Do it here manually until 7095 * we find a better solution. 7096 * 7097 * NB: There are buggy callers of this function. Ideally we 7098 * should warn if prev_state != CT_STATE_USER, but that will trigger 7099 * too frequently to make sense yet. 7100 */ 7101 enum ctx_state prev_state = exception_enter(); 7102 schedule(); 7103 exception_exit(prev_state); 7104 } 7105 #endif 7106 7107 /** 7108 * schedule_preempt_disabled - called with preemption disabled 7109 * 7110 * Returns with preemption disabled. Note: preempt_count must be 1 7111 */ 7112 void __sched schedule_preempt_disabled(void) 7113 { 7114 sched_preempt_enable_no_resched(); 7115 schedule(); 7116 preempt_disable(); 7117 } 7118 7119 #ifdef CONFIG_PREEMPT_RT 7120 void __sched notrace schedule_rtlock(void) 7121 { 7122 __schedule_loop(SM_RTLOCK_WAIT); 7123 } 7124 NOKPROBE_SYMBOL(schedule_rtlock); 7125 #endif 7126 7127 static void __sched notrace preempt_schedule_common(void) 7128 { 7129 do { 7130 /* 7131 * Because the function tracer can trace preempt_count_sub() 7132 * and it also uses preempt_enable/disable_notrace(), if 7133 * NEED_RESCHED is set, the preempt_enable_notrace() called 7134 * by the function tracer will call this function again and 7135 * cause infinite recursion. 7136 * 7137 * Preemption must be disabled here before the function 7138 * tracer can trace. Break up preempt_disable() into two 7139 * calls. One to disable preemption without fear of being 7140 * traced. The other to still record the preemption latency, 7141 * which can also be traced by the function tracer. 7142 */ 7143 preempt_disable_notrace(); 7144 preempt_latency_start(1); 7145 __schedule(SM_PREEMPT); 7146 preempt_latency_stop(1); 7147 preempt_enable_no_resched_notrace(); 7148 7149 /* 7150 * Check again in case we missed a preemption opportunity 7151 * between schedule and now. 7152 */ 7153 } while (need_resched()); 7154 } 7155 7156 #ifdef CONFIG_PREEMPTION 7157 /* 7158 * This is the entry point to schedule() from in-kernel preemption 7159 * off of preempt_enable. 7160 */ 7161 asmlinkage __visible void __sched notrace preempt_schedule(void) 7162 { 7163 /* 7164 * If there is a non-zero preempt_count or interrupts are disabled, 7165 * we do not want to preempt the current task. Just return.. 7166 */ 7167 if (likely(!preemptible())) 7168 return; 7169 preempt_schedule_common(); 7170 } 7171 NOKPROBE_SYMBOL(preempt_schedule); 7172 EXPORT_SYMBOL(preempt_schedule); 7173 7174 #ifdef CONFIG_PREEMPT_DYNAMIC 7175 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7176 # ifndef preempt_schedule_dynamic_enabled 7177 # define preempt_schedule_dynamic_enabled preempt_schedule 7178 # define preempt_schedule_dynamic_disabled NULL 7179 # endif 7180 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 7181 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 7182 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7183 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 7184 void __sched notrace dynamic_preempt_schedule(void) 7185 { 7186 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 7187 return; 7188 preempt_schedule(); 7189 } 7190 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 7191 EXPORT_SYMBOL(dynamic_preempt_schedule); 7192 # endif 7193 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7194 7195 /** 7196 * preempt_schedule_notrace - preempt_schedule called by tracing 7197 * 7198 * The tracing infrastructure uses preempt_enable_notrace to prevent 7199 * recursion and tracing preempt enabling caused by the tracing 7200 * infrastructure itself. But as tracing can happen in areas coming 7201 * from userspace or just about to enter userspace, a preempt enable 7202 * can occur before user_exit() is called. This will cause the scheduler 7203 * to be called when the system is still in usermode. 7204 * 7205 * To prevent this, the preempt_enable_notrace will use this function 7206 * instead of preempt_schedule() to exit user context if needed before 7207 * calling the scheduler. 7208 */ 7209 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 7210 { 7211 enum ctx_state prev_ctx; 7212 7213 if (likely(!preemptible())) 7214 return; 7215 7216 do { 7217 /* 7218 * Because the function tracer can trace preempt_count_sub() 7219 * and it also uses preempt_enable/disable_notrace(), if 7220 * NEED_RESCHED is set, the preempt_enable_notrace() called 7221 * by the function tracer will call this function again and 7222 * cause infinite recursion. 7223 * 7224 * Preemption must be disabled here before the function 7225 * tracer can trace. Break up preempt_disable() into two 7226 * calls. One to disable preemption without fear of being 7227 * traced. The other to still record the preemption latency, 7228 * which can also be traced by the function tracer. 7229 */ 7230 preempt_disable_notrace(); 7231 preempt_latency_start(1); 7232 /* 7233 * Needs preempt disabled in case user_exit() is traced 7234 * and the tracer calls preempt_enable_notrace() causing 7235 * an infinite recursion. 7236 */ 7237 prev_ctx = exception_enter(); 7238 __schedule(SM_PREEMPT); 7239 exception_exit(prev_ctx); 7240 7241 preempt_latency_stop(1); 7242 preempt_enable_no_resched_notrace(); 7243 } while (need_resched()); 7244 } 7245 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 7246 7247 #ifdef CONFIG_PREEMPT_DYNAMIC 7248 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7249 # ifndef preempt_schedule_notrace_dynamic_enabled 7250 # define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 7251 # define preempt_schedule_notrace_dynamic_disabled NULL 7252 # endif 7253 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 7254 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 7255 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7256 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 7257 void __sched notrace dynamic_preempt_schedule_notrace(void) 7258 { 7259 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 7260 return; 7261 preempt_schedule_notrace(); 7262 } 7263 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 7264 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 7265 # endif 7266 #endif 7267 7268 #endif /* CONFIG_PREEMPTION */ 7269 7270 /* 7271 * This is the entry point to schedule() from kernel preemption 7272 * off of IRQ context. 7273 * Note, that this is called and return with IRQs disabled. This will 7274 * protect us against recursive calling from IRQ contexts. 7275 */ 7276 asmlinkage __visible void __sched preempt_schedule_irq(void) 7277 { 7278 enum ctx_state prev_state; 7279 7280 /* Catch callers which need to be fixed */ 7281 BUG_ON(preempt_count() || !irqs_disabled()); 7282 7283 prev_state = exception_enter(); 7284 7285 do { 7286 preempt_disable(); 7287 local_irq_enable(); 7288 __schedule(SM_PREEMPT); 7289 local_irq_disable(); 7290 sched_preempt_enable_no_resched(); 7291 } while (need_resched()); 7292 7293 exception_exit(prev_state); 7294 } 7295 7296 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 7297 void *key) 7298 { 7299 WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 7300 return try_to_wake_up(curr->private, mode, wake_flags); 7301 } 7302 EXPORT_SYMBOL(default_wake_function); 7303 7304 const struct sched_class *__setscheduler_class(int policy, int prio) 7305 { 7306 if (dl_prio(prio)) 7307 return &dl_sched_class; 7308 7309 if (rt_prio(prio)) 7310 return &rt_sched_class; 7311 7312 #ifdef CONFIG_SCHED_CLASS_EXT 7313 if (task_should_scx(policy)) 7314 return &ext_sched_class; 7315 #endif 7316 7317 return &fair_sched_class; 7318 } 7319 7320 #ifdef CONFIG_RT_MUTEXES 7321 7322 /* 7323 * Would be more useful with typeof()/auto_type but they don't mix with 7324 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 7325 * name such that if someone were to implement this function we get to compare 7326 * notes. 7327 */ 7328 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 7329 7330 void rt_mutex_pre_schedule(void) 7331 { 7332 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 7333 sched_submit_work(current); 7334 } 7335 7336 void rt_mutex_schedule(void) 7337 { 7338 lockdep_assert(current->sched_rt_mutex); 7339 __schedule_loop(SM_NONE); 7340 } 7341 7342 void rt_mutex_post_schedule(void) 7343 { 7344 sched_update_worker(current); 7345 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 7346 } 7347 7348 /* 7349 * rt_mutex_setprio - set the current priority of a task 7350 * @p: task to boost 7351 * @pi_task: donor task 7352 * 7353 * This function changes the 'effective' priority of a task. It does 7354 * not touch ->normal_prio like __setscheduler(). 7355 * 7356 * Used by the rt_mutex code to implement priority inheritance 7357 * logic. Call site only calls if the priority of the task changed. 7358 */ 7359 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 7360 { 7361 int prio, oldprio, queued, running, queue_flag = 7362 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7363 const struct sched_class *prev_class, *next_class; 7364 struct rq_flags rf; 7365 struct rq *rq; 7366 7367 /* XXX used to be waiter->prio, not waiter->task->prio */ 7368 prio = __rt_effective_prio(pi_task, p->normal_prio); 7369 7370 /* 7371 * If nothing changed; bail early. 7372 */ 7373 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7374 return; 7375 7376 rq = __task_rq_lock(p, &rf); 7377 update_rq_clock(rq); 7378 /* 7379 * Set under pi_lock && rq->lock, such that the value can be used under 7380 * either lock. 7381 * 7382 * Note that there is loads of tricky to make this pointer cache work 7383 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7384 * ensure a task is de-boosted (pi_task is set to NULL) before the 7385 * task is allowed to run again (and can exit). This ensures the pointer 7386 * points to a blocked task -- which guarantees the task is present. 7387 */ 7388 p->pi_top_task = pi_task; 7389 7390 /* 7391 * For FIFO/RR we only need to set prio, if that matches we're done. 7392 */ 7393 if (prio == p->prio && !dl_prio(prio)) 7394 goto out_unlock; 7395 7396 /* 7397 * Idle task boosting is a no-no in general. There is one 7398 * exception, when PREEMPT_RT and NOHZ is active: 7399 * 7400 * The idle task calls get_next_timer_interrupt() and holds 7401 * the timer wheel base->lock on the CPU and another CPU wants 7402 * to access the timer (probably to cancel it). We can safely 7403 * ignore the boosting request, as the idle CPU runs this code 7404 * with interrupts disabled and will complete the lock 7405 * protected section without being interrupted. So there is no 7406 * real need to boost. 7407 */ 7408 if (unlikely(p == rq->idle)) { 7409 WARN_ON(p != rq->curr); 7410 WARN_ON(p->pi_blocked_on); 7411 goto out_unlock; 7412 } 7413 7414 trace_sched_pi_setprio(p, pi_task); 7415 oldprio = p->prio; 7416 7417 if (oldprio == prio) 7418 queue_flag &= ~DEQUEUE_MOVE; 7419 7420 prev_class = p->sched_class; 7421 next_class = __setscheduler_class(p->policy, prio); 7422 7423 if (prev_class != next_class && p->se.sched_delayed) 7424 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK); 7425 7426 queued = task_on_rq_queued(p); 7427 running = task_current_donor(rq, p); 7428 if (queued) 7429 dequeue_task(rq, p, queue_flag); 7430 if (running) 7431 put_prev_task(rq, p); 7432 7433 /* 7434 * Boosting condition are: 7435 * 1. -rt task is running and holds mutex A 7436 * --> -dl task blocks on mutex A 7437 * 7438 * 2. -dl task is running and holds mutex A 7439 * --> -dl task blocks on mutex A and could preempt the 7440 * running task 7441 */ 7442 if (dl_prio(prio)) { 7443 if (!dl_prio(p->normal_prio) || 7444 (pi_task && dl_prio(pi_task->prio) && 7445 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7446 p->dl.pi_se = pi_task->dl.pi_se; 7447 queue_flag |= ENQUEUE_REPLENISH; 7448 } else { 7449 p->dl.pi_se = &p->dl; 7450 } 7451 } else if (rt_prio(prio)) { 7452 if (dl_prio(oldprio)) 7453 p->dl.pi_se = &p->dl; 7454 if (oldprio < prio) 7455 queue_flag |= ENQUEUE_HEAD; 7456 } else { 7457 if (dl_prio(oldprio)) 7458 p->dl.pi_se = &p->dl; 7459 if (rt_prio(oldprio)) 7460 p->rt.timeout = 0; 7461 } 7462 7463 p->sched_class = next_class; 7464 p->prio = prio; 7465 7466 check_class_changing(rq, p, prev_class); 7467 7468 if (queued) 7469 enqueue_task(rq, p, queue_flag); 7470 if (running) 7471 set_next_task(rq, p); 7472 7473 check_class_changed(rq, p, prev_class, oldprio); 7474 out_unlock: 7475 /* Avoid rq from going away on us: */ 7476 preempt_disable(); 7477 7478 rq_unpin_lock(rq, &rf); 7479 __balance_callbacks(rq); 7480 raw_spin_rq_unlock(rq); 7481 7482 preempt_enable(); 7483 } 7484 #endif /* CONFIG_RT_MUTEXES */ 7485 7486 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7487 int __sched __cond_resched(void) 7488 { 7489 if (should_resched(0) && !irqs_disabled()) { 7490 preempt_schedule_common(); 7491 return 1; 7492 } 7493 /* 7494 * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick 7495 * whether the current CPU is in an RCU read-side critical section, 7496 * so the tick can report quiescent states even for CPUs looping 7497 * in kernel context. In contrast, in non-preemptible kernels, 7498 * RCU readers leave no in-memory hints, which means that CPU-bound 7499 * processes executing in kernel context might never report an 7500 * RCU quiescent state. Therefore, the following code causes 7501 * cond_resched() to report a quiescent state, but only when RCU 7502 * is in urgent need of one. 7503 * A third case, preemptible, but non-PREEMPT_RCU provides for 7504 * urgently needed quiescent states via rcu_flavor_sched_clock_irq(). 7505 */ 7506 #ifndef CONFIG_PREEMPT_RCU 7507 rcu_all_qs(); 7508 #endif 7509 return 0; 7510 } 7511 EXPORT_SYMBOL(__cond_resched); 7512 #endif 7513 7514 #ifdef CONFIG_PREEMPT_DYNAMIC 7515 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7516 # define cond_resched_dynamic_enabled __cond_resched 7517 # define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 7518 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7519 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7520 7521 # define might_resched_dynamic_enabled __cond_resched 7522 # define might_resched_dynamic_disabled ((void *)&__static_call_return0) 7523 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7524 EXPORT_STATIC_CALL_TRAMP(might_resched); 7525 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7526 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 7527 int __sched dynamic_cond_resched(void) 7528 { 7529 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 7530 return 0; 7531 return __cond_resched(); 7532 } 7533 EXPORT_SYMBOL(dynamic_cond_resched); 7534 7535 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 7536 int __sched dynamic_might_resched(void) 7537 { 7538 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 7539 return 0; 7540 return __cond_resched(); 7541 } 7542 EXPORT_SYMBOL(dynamic_might_resched); 7543 # endif 7544 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7545 7546 /* 7547 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7548 * call schedule, and on return reacquire the lock. 7549 * 7550 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7551 * operations here to prevent schedule() from being called twice (once via 7552 * spin_unlock(), once by hand). 7553 */ 7554 int __cond_resched_lock(spinlock_t *lock) 7555 { 7556 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7557 int ret = 0; 7558 7559 lockdep_assert_held(lock); 7560 7561 if (spin_needbreak(lock) || resched) { 7562 spin_unlock(lock); 7563 if (!_cond_resched()) 7564 cpu_relax(); 7565 ret = 1; 7566 spin_lock(lock); 7567 } 7568 return ret; 7569 } 7570 EXPORT_SYMBOL(__cond_resched_lock); 7571 7572 int __cond_resched_rwlock_read(rwlock_t *lock) 7573 { 7574 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7575 int ret = 0; 7576 7577 lockdep_assert_held_read(lock); 7578 7579 if (rwlock_needbreak(lock) || resched) { 7580 read_unlock(lock); 7581 if (!_cond_resched()) 7582 cpu_relax(); 7583 ret = 1; 7584 read_lock(lock); 7585 } 7586 return ret; 7587 } 7588 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7589 7590 int __cond_resched_rwlock_write(rwlock_t *lock) 7591 { 7592 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7593 int ret = 0; 7594 7595 lockdep_assert_held_write(lock); 7596 7597 if (rwlock_needbreak(lock) || resched) { 7598 write_unlock(lock); 7599 if (!_cond_resched()) 7600 cpu_relax(); 7601 ret = 1; 7602 write_lock(lock); 7603 } 7604 return ret; 7605 } 7606 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7607 7608 #ifdef CONFIG_PREEMPT_DYNAMIC 7609 7610 # ifdef CONFIG_GENERIC_IRQ_ENTRY 7611 # include <linux/irq-entry-common.h> 7612 # endif 7613 7614 /* 7615 * SC:cond_resched 7616 * SC:might_resched 7617 * SC:preempt_schedule 7618 * SC:preempt_schedule_notrace 7619 * SC:irqentry_exit_cond_resched 7620 * 7621 * 7622 * NONE: 7623 * cond_resched <- __cond_resched 7624 * might_resched <- RET0 7625 * preempt_schedule <- NOP 7626 * preempt_schedule_notrace <- NOP 7627 * irqentry_exit_cond_resched <- NOP 7628 * dynamic_preempt_lazy <- false 7629 * 7630 * VOLUNTARY: 7631 * cond_resched <- __cond_resched 7632 * might_resched <- __cond_resched 7633 * preempt_schedule <- NOP 7634 * preempt_schedule_notrace <- NOP 7635 * irqentry_exit_cond_resched <- NOP 7636 * dynamic_preempt_lazy <- false 7637 * 7638 * FULL: 7639 * cond_resched <- RET0 7640 * might_resched <- RET0 7641 * preempt_schedule <- preempt_schedule 7642 * preempt_schedule_notrace <- preempt_schedule_notrace 7643 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7644 * dynamic_preempt_lazy <- false 7645 * 7646 * LAZY: 7647 * cond_resched <- RET0 7648 * might_resched <- RET0 7649 * preempt_schedule <- preempt_schedule 7650 * preempt_schedule_notrace <- preempt_schedule_notrace 7651 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7652 * dynamic_preempt_lazy <- true 7653 */ 7654 7655 enum { 7656 preempt_dynamic_undefined = -1, 7657 preempt_dynamic_none, 7658 preempt_dynamic_voluntary, 7659 preempt_dynamic_full, 7660 preempt_dynamic_lazy, 7661 }; 7662 7663 int preempt_dynamic_mode = preempt_dynamic_undefined; 7664 7665 int sched_dynamic_mode(const char *str) 7666 { 7667 # ifndef CONFIG_PREEMPT_RT 7668 if (!strcmp(str, "none")) 7669 return preempt_dynamic_none; 7670 7671 if (!strcmp(str, "voluntary")) 7672 return preempt_dynamic_voluntary; 7673 # endif 7674 7675 if (!strcmp(str, "full")) 7676 return preempt_dynamic_full; 7677 7678 # ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY 7679 if (!strcmp(str, "lazy")) 7680 return preempt_dynamic_lazy; 7681 # endif 7682 7683 return -EINVAL; 7684 } 7685 7686 # define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key) 7687 # define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key) 7688 7689 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7690 # define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 7691 # define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 7692 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7693 # define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f) 7694 # define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f) 7695 # else 7696 # error "Unsupported PREEMPT_DYNAMIC mechanism" 7697 # endif 7698 7699 static DEFINE_MUTEX(sched_dynamic_mutex); 7700 7701 static void __sched_dynamic_update(int mode) 7702 { 7703 /* 7704 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 7705 * the ZERO state, which is invalid. 7706 */ 7707 preempt_dynamic_enable(cond_resched); 7708 preempt_dynamic_enable(might_resched); 7709 preempt_dynamic_enable(preempt_schedule); 7710 preempt_dynamic_enable(preempt_schedule_notrace); 7711 preempt_dynamic_enable(irqentry_exit_cond_resched); 7712 preempt_dynamic_key_disable(preempt_lazy); 7713 7714 switch (mode) { 7715 case preempt_dynamic_none: 7716 preempt_dynamic_enable(cond_resched); 7717 preempt_dynamic_disable(might_resched); 7718 preempt_dynamic_disable(preempt_schedule); 7719 preempt_dynamic_disable(preempt_schedule_notrace); 7720 preempt_dynamic_disable(irqentry_exit_cond_resched); 7721 preempt_dynamic_key_disable(preempt_lazy); 7722 if (mode != preempt_dynamic_mode) 7723 pr_info("Dynamic Preempt: none\n"); 7724 break; 7725 7726 case preempt_dynamic_voluntary: 7727 preempt_dynamic_enable(cond_resched); 7728 preempt_dynamic_enable(might_resched); 7729 preempt_dynamic_disable(preempt_schedule); 7730 preempt_dynamic_disable(preempt_schedule_notrace); 7731 preempt_dynamic_disable(irqentry_exit_cond_resched); 7732 preempt_dynamic_key_disable(preempt_lazy); 7733 if (mode != preempt_dynamic_mode) 7734 pr_info("Dynamic Preempt: voluntary\n"); 7735 break; 7736 7737 case preempt_dynamic_full: 7738 preempt_dynamic_disable(cond_resched); 7739 preempt_dynamic_disable(might_resched); 7740 preempt_dynamic_enable(preempt_schedule); 7741 preempt_dynamic_enable(preempt_schedule_notrace); 7742 preempt_dynamic_enable(irqentry_exit_cond_resched); 7743 preempt_dynamic_key_disable(preempt_lazy); 7744 if (mode != preempt_dynamic_mode) 7745 pr_info("Dynamic Preempt: full\n"); 7746 break; 7747 7748 case preempt_dynamic_lazy: 7749 preempt_dynamic_disable(cond_resched); 7750 preempt_dynamic_disable(might_resched); 7751 preempt_dynamic_enable(preempt_schedule); 7752 preempt_dynamic_enable(preempt_schedule_notrace); 7753 preempt_dynamic_enable(irqentry_exit_cond_resched); 7754 preempt_dynamic_key_enable(preempt_lazy); 7755 if (mode != preempt_dynamic_mode) 7756 pr_info("Dynamic Preempt: lazy\n"); 7757 break; 7758 } 7759 7760 preempt_dynamic_mode = mode; 7761 } 7762 7763 void sched_dynamic_update(int mode) 7764 { 7765 mutex_lock(&sched_dynamic_mutex); 7766 __sched_dynamic_update(mode); 7767 mutex_unlock(&sched_dynamic_mutex); 7768 } 7769 7770 static int __init setup_preempt_mode(char *str) 7771 { 7772 int mode = sched_dynamic_mode(str); 7773 if (mode < 0) { 7774 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 7775 return 0; 7776 } 7777 7778 sched_dynamic_update(mode); 7779 return 1; 7780 } 7781 __setup("preempt=", setup_preempt_mode); 7782 7783 static void __init preempt_dynamic_init(void) 7784 { 7785 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 7786 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 7787 sched_dynamic_update(preempt_dynamic_none); 7788 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 7789 sched_dynamic_update(preempt_dynamic_voluntary); 7790 } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7791 sched_dynamic_update(preempt_dynamic_lazy); 7792 } else { 7793 /* Default static call setting, nothing to do */ 7794 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 7795 preempt_dynamic_mode = preempt_dynamic_full; 7796 pr_info("Dynamic Preempt: full\n"); 7797 } 7798 } 7799 } 7800 7801 # define PREEMPT_MODEL_ACCESSOR(mode) \ 7802 bool preempt_model_##mode(void) \ 7803 { \ 7804 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 7805 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 7806 } \ 7807 EXPORT_SYMBOL_GPL(preempt_model_##mode) 7808 7809 PREEMPT_MODEL_ACCESSOR(none); 7810 PREEMPT_MODEL_ACCESSOR(voluntary); 7811 PREEMPT_MODEL_ACCESSOR(full); 7812 PREEMPT_MODEL_ACCESSOR(lazy); 7813 7814 #else /* !CONFIG_PREEMPT_DYNAMIC: */ 7815 7816 #define preempt_dynamic_mode -1 7817 7818 static inline void preempt_dynamic_init(void) { } 7819 7820 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7821 7822 const char *preempt_modes[] = { 7823 "none", "voluntary", "full", "lazy", NULL, 7824 }; 7825 7826 const char *preempt_model_str(void) 7827 { 7828 bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) && 7829 (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) || 7830 IS_ENABLED(CONFIG_PREEMPT_LAZY)); 7831 static char buf[128]; 7832 7833 if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) { 7834 struct seq_buf s; 7835 7836 seq_buf_init(&s, buf, sizeof(buf)); 7837 seq_buf_puts(&s, "PREEMPT"); 7838 7839 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 7840 seq_buf_printf(&s, "%sRT%s", 7841 brace ? "_{" : "_", 7842 brace ? "," : ""); 7843 7844 if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) { 7845 seq_buf_printf(&s, "(%s)%s", 7846 preempt_dynamic_mode >= 0 ? 7847 preempt_modes[preempt_dynamic_mode] : "undef", 7848 brace ? "}" : ""); 7849 return seq_buf_str(&s); 7850 } 7851 7852 if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7853 seq_buf_printf(&s, "LAZY%s", 7854 brace ? "}" : ""); 7855 return seq_buf_str(&s); 7856 } 7857 7858 return seq_buf_str(&s); 7859 } 7860 7861 if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD)) 7862 return "VOLUNTARY"; 7863 7864 return "NONE"; 7865 } 7866 7867 int io_schedule_prepare(void) 7868 { 7869 int old_iowait = current->in_iowait; 7870 7871 current->in_iowait = 1; 7872 blk_flush_plug(current->plug, true); 7873 return old_iowait; 7874 } 7875 7876 void io_schedule_finish(int token) 7877 { 7878 current->in_iowait = token; 7879 } 7880 7881 /* 7882 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7883 * that process accounting knows that this is a task in IO wait state. 7884 */ 7885 long __sched io_schedule_timeout(long timeout) 7886 { 7887 int token; 7888 long ret; 7889 7890 token = io_schedule_prepare(); 7891 ret = schedule_timeout(timeout); 7892 io_schedule_finish(token); 7893 7894 return ret; 7895 } 7896 EXPORT_SYMBOL(io_schedule_timeout); 7897 7898 void __sched io_schedule(void) 7899 { 7900 int token; 7901 7902 token = io_schedule_prepare(); 7903 schedule(); 7904 io_schedule_finish(token); 7905 } 7906 EXPORT_SYMBOL(io_schedule); 7907 7908 void sched_show_task(struct task_struct *p) 7909 { 7910 unsigned long free; 7911 int ppid; 7912 7913 if (!try_get_task_stack(p)) 7914 return; 7915 7916 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7917 7918 if (task_is_running(p)) 7919 pr_cont(" running task "); 7920 free = stack_not_used(p); 7921 ppid = 0; 7922 rcu_read_lock(); 7923 if (pid_alive(p)) 7924 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7925 rcu_read_unlock(); 7926 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n", 7927 free, task_pid_nr(p), task_tgid_nr(p), 7928 ppid, p->flags, read_task_thread_flags(p)); 7929 7930 print_worker_info(KERN_INFO, p); 7931 print_stop_info(KERN_INFO, p); 7932 print_scx_info(KERN_INFO, p); 7933 show_stack(p, NULL, KERN_INFO); 7934 put_task_stack(p); 7935 } 7936 EXPORT_SYMBOL_GPL(sched_show_task); 7937 7938 static inline bool 7939 state_filter_match(unsigned long state_filter, struct task_struct *p) 7940 { 7941 unsigned int state = READ_ONCE(p->__state); 7942 7943 /* no filter, everything matches */ 7944 if (!state_filter) 7945 return true; 7946 7947 /* filter, but doesn't match */ 7948 if (!(state & state_filter)) 7949 return false; 7950 7951 /* 7952 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7953 * TASK_KILLABLE). 7954 */ 7955 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 7956 return false; 7957 7958 return true; 7959 } 7960 7961 7962 void show_state_filter(unsigned int state_filter) 7963 { 7964 struct task_struct *g, *p; 7965 7966 rcu_read_lock(); 7967 for_each_process_thread(g, p) { 7968 /* 7969 * reset the NMI-timeout, listing all files on a slow 7970 * console might take a lot of time: 7971 * Also, reset softlockup watchdogs on all CPUs, because 7972 * another CPU might be blocked waiting for us to process 7973 * an IPI. 7974 */ 7975 touch_nmi_watchdog(); 7976 touch_all_softlockup_watchdogs(); 7977 if (state_filter_match(state_filter, p)) 7978 sched_show_task(p); 7979 } 7980 7981 if (!state_filter) 7982 sysrq_sched_debug_show(); 7983 7984 rcu_read_unlock(); 7985 /* 7986 * Only show locks if all tasks are dumped: 7987 */ 7988 if (!state_filter) 7989 debug_show_all_locks(); 7990 } 7991 7992 /** 7993 * init_idle - set up an idle thread for a given CPU 7994 * @idle: task in question 7995 * @cpu: CPU the idle task belongs to 7996 * 7997 * NOTE: this function does not set the idle thread's NEED_RESCHED 7998 * flag, to make booting more robust. 7999 */ 8000 void __init init_idle(struct task_struct *idle, int cpu) 8001 { 8002 struct affinity_context ac = (struct affinity_context) { 8003 .new_mask = cpumask_of(cpu), 8004 .flags = 0, 8005 }; 8006 struct rq *rq = cpu_rq(cpu); 8007 unsigned long flags; 8008 8009 raw_spin_lock_irqsave(&idle->pi_lock, flags); 8010 raw_spin_rq_lock(rq); 8011 8012 idle->__state = TASK_RUNNING; 8013 idle->se.exec_start = sched_clock(); 8014 /* 8015 * PF_KTHREAD should already be set at this point; regardless, make it 8016 * look like a proper per-CPU kthread. 8017 */ 8018 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 8019 kthread_set_per_cpu(idle, cpu); 8020 8021 /* 8022 * No validation and serialization required at boot time and for 8023 * setting up the idle tasks of not yet online CPUs. 8024 */ 8025 set_cpus_allowed_common(idle, &ac); 8026 /* 8027 * We're having a chicken and egg problem, even though we are 8028 * holding rq->lock, the CPU isn't yet set to this CPU so the 8029 * lockdep check in task_group() will fail. 8030 * 8031 * Similar case to sched_fork(). / Alternatively we could 8032 * use task_rq_lock() here and obtain the other rq->lock. 8033 * 8034 * Silence PROVE_RCU 8035 */ 8036 rcu_read_lock(); 8037 __set_task_cpu(idle, cpu); 8038 rcu_read_unlock(); 8039 8040 rq->idle = idle; 8041 rq_set_donor(rq, idle); 8042 rcu_assign_pointer(rq->curr, idle); 8043 idle->on_rq = TASK_ON_RQ_QUEUED; 8044 idle->on_cpu = 1; 8045 raw_spin_rq_unlock(rq); 8046 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 8047 8048 /* Set the preempt count _outside_ the spinlocks! */ 8049 init_idle_preempt_count(idle, cpu); 8050 8051 /* 8052 * The idle tasks have their own, simple scheduling class: 8053 */ 8054 idle->sched_class = &idle_sched_class; 8055 ftrace_graph_init_idle_task(idle, cpu); 8056 vtime_init_idle(idle, cpu); 8057 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 8058 } 8059 8060 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 8061 const struct cpumask *trial) 8062 { 8063 int ret = 1; 8064 8065 if (cpumask_empty(cur)) 8066 return ret; 8067 8068 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 8069 8070 return ret; 8071 } 8072 8073 int task_can_attach(struct task_struct *p) 8074 { 8075 int ret = 0; 8076 8077 /* 8078 * Kthreads which disallow setaffinity shouldn't be moved 8079 * to a new cpuset; we don't want to change their CPU 8080 * affinity and isolating such threads by their set of 8081 * allowed nodes is unnecessary. Thus, cpusets are not 8082 * applicable for such threads. This prevents checking for 8083 * success of set_cpus_allowed_ptr() on all attached tasks 8084 * before cpus_mask may be changed. 8085 */ 8086 if (p->flags & PF_NO_SETAFFINITY) 8087 ret = -EINVAL; 8088 8089 return ret; 8090 } 8091 8092 bool sched_smp_initialized __read_mostly; 8093 8094 #ifdef CONFIG_NUMA_BALANCING 8095 /* Migrate current task p to target_cpu */ 8096 int migrate_task_to(struct task_struct *p, int target_cpu) 8097 { 8098 struct migration_arg arg = { p, target_cpu }; 8099 int curr_cpu = task_cpu(p); 8100 8101 if (curr_cpu == target_cpu) 8102 return 0; 8103 8104 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 8105 return -EINVAL; 8106 8107 /* TODO: This is not properly updating schedstats */ 8108 8109 trace_sched_move_numa(p, curr_cpu, target_cpu); 8110 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 8111 } 8112 8113 /* 8114 * Requeue a task on a given node and accurately track the number of NUMA 8115 * tasks on the runqueues 8116 */ 8117 void sched_setnuma(struct task_struct *p, int nid) 8118 { 8119 bool queued, running; 8120 struct rq_flags rf; 8121 struct rq *rq; 8122 8123 rq = task_rq_lock(p, &rf); 8124 queued = task_on_rq_queued(p); 8125 running = task_current_donor(rq, p); 8126 8127 if (queued) 8128 dequeue_task(rq, p, DEQUEUE_SAVE); 8129 if (running) 8130 put_prev_task(rq, p); 8131 8132 p->numa_preferred_nid = nid; 8133 8134 if (queued) 8135 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 8136 if (running) 8137 set_next_task(rq, p); 8138 task_rq_unlock(rq, p, &rf); 8139 } 8140 #endif /* CONFIG_NUMA_BALANCING */ 8141 8142 #ifdef CONFIG_HOTPLUG_CPU 8143 /* 8144 * Invoked on the outgoing CPU in context of the CPU hotplug thread 8145 * after ensuring that there are no user space tasks left on the CPU. 8146 * 8147 * If there is a lazy mm in use on the hotplug thread, drop it and 8148 * switch to init_mm. 8149 * 8150 * The reference count on init_mm is dropped in finish_cpu(). 8151 */ 8152 static void sched_force_init_mm(void) 8153 { 8154 struct mm_struct *mm = current->active_mm; 8155 8156 if (mm != &init_mm) { 8157 mmgrab_lazy_tlb(&init_mm); 8158 local_irq_disable(); 8159 current->active_mm = &init_mm; 8160 switch_mm_irqs_off(mm, &init_mm, current); 8161 local_irq_enable(); 8162 finish_arch_post_lock_switch(); 8163 mmdrop_lazy_tlb(mm); 8164 } 8165 8166 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 8167 } 8168 8169 static int __balance_push_cpu_stop(void *arg) 8170 { 8171 struct task_struct *p = arg; 8172 struct rq *rq = this_rq(); 8173 struct rq_flags rf; 8174 int cpu; 8175 8176 raw_spin_lock_irq(&p->pi_lock); 8177 rq_lock(rq, &rf); 8178 8179 update_rq_clock(rq); 8180 8181 if (task_rq(p) == rq && task_on_rq_queued(p)) { 8182 cpu = select_fallback_rq(rq->cpu, p); 8183 rq = __migrate_task(rq, &rf, p, cpu); 8184 } 8185 8186 rq_unlock(rq, &rf); 8187 raw_spin_unlock_irq(&p->pi_lock); 8188 8189 put_task_struct(p); 8190 8191 return 0; 8192 } 8193 8194 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 8195 8196 /* 8197 * Ensure we only run per-cpu kthreads once the CPU goes !active. 8198 * 8199 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 8200 * effective when the hotplug motion is down. 8201 */ 8202 static void balance_push(struct rq *rq) 8203 { 8204 struct task_struct *push_task = rq->curr; 8205 8206 lockdep_assert_rq_held(rq); 8207 8208 /* 8209 * Ensure the thing is persistent until balance_push_set(.on = false); 8210 */ 8211 rq->balance_callback = &balance_push_callback; 8212 8213 /* 8214 * Only active while going offline and when invoked on the outgoing 8215 * CPU. 8216 */ 8217 if (!cpu_dying(rq->cpu) || rq != this_rq()) 8218 return; 8219 8220 /* 8221 * Both the cpu-hotplug and stop task are in this case and are 8222 * required to complete the hotplug process. 8223 */ 8224 if (kthread_is_per_cpu(push_task) || 8225 is_migration_disabled(push_task)) { 8226 8227 /* 8228 * If this is the idle task on the outgoing CPU try to wake 8229 * up the hotplug control thread which might wait for the 8230 * last task to vanish. The rcuwait_active() check is 8231 * accurate here because the waiter is pinned on this CPU 8232 * and can't obviously be running in parallel. 8233 * 8234 * On RT kernels this also has to check whether there are 8235 * pinned and scheduled out tasks on the runqueue. They 8236 * need to leave the migrate disabled section first. 8237 */ 8238 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 8239 rcuwait_active(&rq->hotplug_wait)) { 8240 raw_spin_rq_unlock(rq); 8241 rcuwait_wake_up(&rq->hotplug_wait); 8242 raw_spin_rq_lock(rq); 8243 } 8244 return; 8245 } 8246 8247 get_task_struct(push_task); 8248 /* 8249 * Temporarily drop rq->lock such that we can wake-up the stop task. 8250 * Both preemption and IRQs are still disabled. 8251 */ 8252 preempt_disable(); 8253 raw_spin_rq_unlock(rq); 8254 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 8255 this_cpu_ptr(&push_work)); 8256 preempt_enable(); 8257 /* 8258 * At this point need_resched() is true and we'll take the loop in 8259 * schedule(). The next pick is obviously going to be the stop task 8260 * which kthread_is_per_cpu() and will push this task away. 8261 */ 8262 raw_spin_rq_lock(rq); 8263 } 8264 8265 static void balance_push_set(int cpu, bool on) 8266 { 8267 struct rq *rq = cpu_rq(cpu); 8268 struct rq_flags rf; 8269 8270 rq_lock_irqsave(rq, &rf); 8271 if (on) { 8272 WARN_ON_ONCE(rq->balance_callback); 8273 rq->balance_callback = &balance_push_callback; 8274 } else if (rq->balance_callback == &balance_push_callback) { 8275 rq->balance_callback = NULL; 8276 } 8277 rq_unlock_irqrestore(rq, &rf); 8278 } 8279 8280 /* 8281 * Invoked from a CPUs hotplug control thread after the CPU has been marked 8282 * inactive. All tasks which are not per CPU kernel threads are either 8283 * pushed off this CPU now via balance_push() or placed on a different CPU 8284 * during wakeup. Wait until the CPU is quiescent. 8285 */ 8286 static void balance_hotplug_wait(void) 8287 { 8288 struct rq *rq = this_rq(); 8289 8290 rcuwait_wait_event(&rq->hotplug_wait, 8291 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 8292 TASK_UNINTERRUPTIBLE); 8293 } 8294 8295 #else /* !CONFIG_HOTPLUG_CPU: */ 8296 8297 static inline void balance_push(struct rq *rq) 8298 { 8299 } 8300 8301 static inline void balance_push_set(int cpu, bool on) 8302 { 8303 } 8304 8305 static inline void balance_hotplug_wait(void) 8306 { 8307 } 8308 8309 #endif /* !CONFIG_HOTPLUG_CPU */ 8310 8311 void set_rq_online(struct rq *rq) 8312 { 8313 if (!rq->online) { 8314 const struct sched_class *class; 8315 8316 cpumask_set_cpu(rq->cpu, rq->rd->online); 8317 rq->online = 1; 8318 8319 for_each_class(class) { 8320 if (class->rq_online) 8321 class->rq_online(rq); 8322 } 8323 } 8324 } 8325 8326 void set_rq_offline(struct rq *rq) 8327 { 8328 if (rq->online) { 8329 const struct sched_class *class; 8330 8331 update_rq_clock(rq); 8332 for_each_class(class) { 8333 if (class->rq_offline) 8334 class->rq_offline(rq); 8335 } 8336 8337 cpumask_clear_cpu(rq->cpu, rq->rd->online); 8338 rq->online = 0; 8339 } 8340 } 8341 8342 static inline void sched_set_rq_online(struct rq *rq, int cpu) 8343 { 8344 struct rq_flags rf; 8345 8346 rq_lock_irqsave(rq, &rf); 8347 if (rq->rd) { 8348 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8349 set_rq_online(rq); 8350 } 8351 rq_unlock_irqrestore(rq, &rf); 8352 } 8353 8354 static inline void sched_set_rq_offline(struct rq *rq, int cpu) 8355 { 8356 struct rq_flags rf; 8357 8358 rq_lock_irqsave(rq, &rf); 8359 if (rq->rd) { 8360 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8361 set_rq_offline(rq); 8362 } 8363 rq_unlock_irqrestore(rq, &rf); 8364 } 8365 8366 /* 8367 * used to mark begin/end of suspend/resume: 8368 */ 8369 static int num_cpus_frozen; 8370 8371 /* 8372 * Update cpusets according to cpu_active mask. If cpusets are 8373 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 8374 * around partition_sched_domains(). 8375 * 8376 * If we come here as part of a suspend/resume, don't touch cpusets because we 8377 * want to restore it back to its original state upon resume anyway. 8378 */ 8379 static void cpuset_cpu_active(void) 8380 { 8381 if (cpuhp_tasks_frozen) { 8382 /* 8383 * num_cpus_frozen tracks how many CPUs are involved in suspend 8384 * resume sequence. As long as this is not the last online 8385 * operation in the resume sequence, just build a single sched 8386 * domain, ignoring cpusets. 8387 */ 8388 cpuset_reset_sched_domains(); 8389 if (--num_cpus_frozen) 8390 return; 8391 /* 8392 * This is the last CPU online operation. So fall through and 8393 * restore the original sched domains by considering the 8394 * cpuset configurations. 8395 */ 8396 cpuset_force_rebuild(); 8397 } 8398 cpuset_update_active_cpus(); 8399 } 8400 8401 static void cpuset_cpu_inactive(unsigned int cpu) 8402 { 8403 if (!cpuhp_tasks_frozen) { 8404 cpuset_update_active_cpus(); 8405 } else { 8406 num_cpus_frozen++; 8407 cpuset_reset_sched_domains(); 8408 } 8409 } 8410 8411 static inline void sched_smt_present_inc(int cpu) 8412 { 8413 #ifdef CONFIG_SCHED_SMT 8414 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8415 static_branch_inc_cpuslocked(&sched_smt_present); 8416 #endif 8417 } 8418 8419 static inline void sched_smt_present_dec(int cpu) 8420 { 8421 #ifdef CONFIG_SCHED_SMT 8422 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8423 static_branch_dec_cpuslocked(&sched_smt_present); 8424 #endif 8425 } 8426 8427 int sched_cpu_activate(unsigned int cpu) 8428 { 8429 struct rq *rq = cpu_rq(cpu); 8430 8431 /* 8432 * Clear the balance_push callback and prepare to schedule 8433 * regular tasks. 8434 */ 8435 balance_push_set(cpu, false); 8436 8437 /* 8438 * When going up, increment the number of cores with SMT present. 8439 */ 8440 sched_smt_present_inc(cpu); 8441 set_cpu_active(cpu, true); 8442 8443 if (sched_smp_initialized) { 8444 sched_update_numa(cpu, true); 8445 sched_domains_numa_masks_set(cpu); 8446 cpuset_cpu_active(); 8447 } 8448 8449 scx_rq_activate(rq); 8450 8451 /* 8452 * Put the rq online, if not already. This happens: 8453 * 8454 * 1) In the early boot process, because we build the real domains 8455 * after all CPUs have been brought up. 8456 * 8457 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 8458 * domains. 8459 */ 8460 sched_set_rq_online(rq, cpu); 8461 8462 return 0; 8463 } 8464 8465 int sched_cpu_deactivate(unsigned int cpu) 8466 { 8467 struct rq *rq = cpu_rq(cpu); 8468 int ret; 8469 8470 ret = dl_bw_deactivate(cpu); 8471 8472 if (ret) 8473 return ret; 8474 8475 /* 8476 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 8477 * load balancing when not active 8478 */ 8479 nohz_balance_exit_idle(rq); 8480 8481 set_cpu_active(cpu, false); 8482 8483 /* 8484 * From this point forward, this CPU will refuse to run any task that 8485 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8486 * push those tasks away until this gets cleared, see 8487 * sched_cpu_dying(). 8488 */ 8489 balance_push_set(cpu, true); 8490 8491 /* 8492 * We've cleared cpu_active_mask / set balance_push, wait for all 8493 * preempt-disabled and RCU users of this state to go away such that 8494 * all new such users will observe it. 8495 * 8496 * Specifically, we rely on ttwu to no longer target this CPU, see 8497 * ttwu_queue_cond() and is_cpu_allowed(). 8498 * 8499 * Do sync before park smpboot threads to take care the RCU boost case. 8500 */ 8501 synchronize_rcu(); 8502 8503 sched_set_rq_offline(rq, cpu); 8504 8505 scx_rq_deactivate(rq); 8506 8507 /* 8508 * When going down, decrement the number of cores with SMT present. 8509 */ 8510 sched_smt_present_dec(cpu); 8511 8512 #ifdef CONFIG_SCHED_SMT 8513 sched_core_cpu_deactivate(cpu); 8514 #endif 8515 8516 if (!sched_smp_initialized) 8517 return 0; 8518 8519 sched_update_numa(cpu, false); 8520 cpuset_cpu_inactive(cpu); 8521 sched_domains_numa_masks_clear(cpu); 8522 return 0; 8523 } 8524 8525 static void sched_rq_cpu_starting(unsigned int cpu) 8526 { 8527 struct rq *rq = cpu_rq(cpu); 8528 8529 rq->calc_load_update = calc_load_update; 8530 update_max_interval(); 8531 } 8532 8533 int sched_cpu_starting(unsigned int cpu) 8534 { 8535 sched_core_cpu_starting(cpu); 8536 sched_rq_cpu_starting(cpu); 8537 sched_tick_start(cpu); 8538 return 0; 8539 } 8540 8541 #ifdef CONFIG_HOTPLUG_CPU 8542 8543 /* 8544 * Invoked immediately before the stopper thread is invoked to bring the 8545 * CPU down completely. At this point all per CPU kthreads except the 8546 * hotplug thread (current) and the stopper thread (inactive) have been 8547 * either parked or have been unbound from the outgoing CPU. Ensure that 8548 * any of those which might be on the way out are gone. 8549 * 8550 * If after this point a bound task is being woken on this CPU then the 8551 * responsible hotplug callback has failed to do it's job. 8552 * sched_cpu_dying() will catch it with the appropriate fireworks. 8553 */ 8554 int sched_cpu_wait_empty(unsigned int cpu) 8555 { 8556 balance_hotplug_wait(); 8557 sched_force_init_mm(); 8558 return 0; 8559 } 8560 8561 /* 8562 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8563 * might have. Called from the CPU stopper task after ensuring that the 8564 * stopper is the last running task on the CPU, so nr_active count is 8565 * stable. We need to take the tear-down thread which is calling this into 8566 * account, so we hand in adjust = 1 to the load calculation. 8567 * 8568 * Also see the comment "Global load-average calculations". 8569 */ 8570 static void calc_load_migrate(struct rq *rq) 8571 { 8572 long delta = calc_load_fold_active(rq, 1); 8573 8574 if (delta) 8575 atomic_long_add(delta, &calc_load_tasks); 8576 } 8577 8578 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8579 { 8580 struct task_struct *g, *p; 8581 int cpu = cpu_of(rq); 8582 8583 lockdep_assert_rq_held(rq); 8584 8585 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8586 for_each_process_thread(g, p) { 8587 if (task_cpu(p) != cpu) 8588 continue; 8589 8590 if (!task_on_rq_queued(p)) 8591 continue; 8592 8593 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8594 } 8595 } 8596 8597 int sched_cpu_dying(unsigned int cpu) 8598 { 8599 struct rq *rq = cpu_rq(cpu); 8600 struct rq_flags rf; 8601 8602 /* Handle pending wakeups and then migrate everything off */ 8603 sched_tick_stop(cpu); 8604 8605 rq_lock_irqsave(rq, &rf); 8606 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8607 WARN(true, "Dying CPU not properly vacated!"); 8608 dump_rq_tasks(rq, KERN_WARNING); 8609 } 8610 rq_unlock_irqrestore(rq, &rf); 8611 8612 calc_load_migrate(rq); 8613 update_max_interval(); 8614 hrtick_clear(rq); 8615 sched_core_cpu_dying(cpu); 8616 return 0; 8617 } 8618 #endif /* CONFIG_HOTPLUG_CPU */ 8619 8620 void __init sched_init_smp(void) 8621 { 8622 sched_init_numa(NUMA_NO_NODE); 8623 8624 /* 8625 * There's no userspace yet to cause hotplug operations; hence all the 8626 * CPU masks are stable and all blatant races in the below code cannot 8627 * happen. 8628 */ 8629 sched_domains_mutex_lock(); 8630 sched_init_domains(cpu_active_mask); 8631 sched_domains_mutex_unlock(); 8632 8633 /* Move init over to a non-isolated CPU */ 8634 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 8635 BUG(); 8636 current->flags &= ~PF_NO_SETAFFINITY; 8637 sched_init_granularity(); 8638 8639 init_sched_rt_class(); 8640 init_sched_dl_class(); 8641 8642 sched_init_dl_servers(); 8643 8644 sched_smp_initialized = true; 8645 } 8646 8647 static int __init migration_init(void) 8648 { 8649 sched_cpu_starting(smp_processor_id()); 8650 return 0; 8651 } 8652 early_initcall(migration_init); 8653 8654 int in_sched_functions(unsigned long addr) 8655 { 8656 return in_lock_functions(addr) || 8657 (addr >= (unsigned long)__sched_text_start 8658 && addr < (unsigned long)__sched_text_end); 8659 } 8660 8661 #ifdef CONFIG_CGROUP_SCHED 8662 /* 8663 * Default task group. 8664 * Every task in system belongs to this group at bootup. 8665 */ 8666 struct task_group root_task_group; 8667 LIST_HEAD(task_groups); 8668 8669 /* Cacheline aligned slab cache for task_group */ 8670 static struct kmem_cache *task_group_cache __ro_after_init; 8671 #endif 8672 8673 void __init sched_init(void) 8674 { 8675 unsigned long ptr = 0; 8676 int i; 8677 8678 /* Make sure the linker didn't screw up */ 8679 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); 8680 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); 8681 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); 8682 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); 8683 #ifdef CONFIG_SCHED_CLASS_EXT 8684 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); 8685 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); 8686 #endif 8687 8688 wait_bit_init(); 8689 8690 #ifdef CONFIG_FAIR_GROUP_SCHED 8691 ptr += 2 * nr_cpu_ids * sizeof(void **); 8692 #endif 8693 #ifdef CONFIG_RT_GROUP_SCHED 8694 ptr += 2 * nr_cpu_ids * sizeof(void **); 8695 #endif 8696 if (ptr) { 8697 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8698 8699 #ifdef CONFIG_FAIR_GROUP_SCHED 8700 root_task_group.se = (struct sched_entity **)ptr; 8701 ptr += nr_cpu_ids * sizeof(void **); 8702 8703 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8704 ptr += nr_cpu_ids * sizeof(void **); 8705 8706 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8707 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 8708 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8709 #ifdef CONFIG_EXT_GROUP_SCHED 8710 scx_tg_init(&root_task_group); 8711 #endif /* CONFIG_EXT_GROUP_SCHED */ 8712 #ifdef CONFIG_RT_GROUP_SCHED 8713 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8714 ptr += nr_cpu_ids * sizeof(void **); 8715 8716 root_task_group.rt_rq = (struct rt_rq **)ptr; 8717 ptr += nr_cpu_ids * sizeof(void **); 8718 8719 #endif /* CONFIG_RT_GROUP_SCHED */ 8720 } 8721 8722 init_defrootdomain(); 8723 8724 #ifdef CONFIG_RT_GROUP_SCHED 8725 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8726 global_rt_period(), global_rt_runtime()); 8727 #endif /* CONFIG_RT_GROUP_SCHED */ 8728 8729 #ifdef CONFIG_CGROUP_SCHED 8730 task_group_cache = KMEM_CACHE(task_group, 0); 8731 8732 list_add(&root_task_group.list, &task_groups); 8733 INIT_LIST_HEAD(&root_task_group.children); 8734 INIT_LIST_HEAD(&root_task_group.siblings); 8735 autogroup_init(&init_task); 8736 #endif /* CONFIG_CGROUP_SCHED */ 8737 8738 for_each_possible_cpu(i) { 8739 struct rq *rq; 8740 8741 rq = cpu_rq(i); 8742 raw_spin_lock_init(&rq->__lock); 8743 rq->nr_running = 0; 8744 rq->calc_load_active = 0; 8745 rq->calc_load_update = jiffies + LOAD_FREQ; 8746 init_cfs_rq(&rq->cfs); 8747 init_rt_rq(&rq->rt); 8748 init_dl_rq(&rq->dl); 8749 #ifdef CONFIG_FAIR_GROUP_SCHED 8750 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8751 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8752 /* 8753 * How much CPU bandwidth does root_task_group get? 8754 * 8755 * In case of task-groups formed through the cgroup filesystem, it 8756 * gets 100% of the CPU resources in the system. This overall 8757 * system CPU resource is divided among the tasks of 8758 * root_task_group and its child task-groups in a fair manner, 8759 * based on each entity's (task or task-group's) weight 8760 * (se->load.weight). 8761 * 8762 * In other words, if root_task_group has 10 tasks of weight 8763 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8764 * then A0's share of the CPU resource is: 8765 * 8766 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8767 * 8768 * We achieve this by letting root_task_group's tasks sit 8769 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8770 */ 8771 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8772 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8773 8774 #ifdef CONFIG_RT_GROUP_SCHED 8775 /* 8776 * This is required for init cpu because rt.c:__enable_runtime() 8777 * starts working after scheduler_running, which is not the case 8778 * yet. 8779 */ 8780 rq->rt.rt_runtime = global_rt_runtime(); 8781 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8782 #endif 8783 rq->sd = NULL; 8784 rq->rd = NULL; 8785 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 8786 rq->balance_callback = &balance_push_callback; 8787 rq->active_balance = 0; 8788 rq->next_balance = jiffies; 8789 rq->push_cpu = 0; 8790 rq->cpu = i; 8791 rq->online = 0; 8792 rq->idle_stamp = 0; 8793 rq->avg_idle = 2*sysctl_sched_migration_cost; 8794 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8795 8796 INIT_LIST_HEAD(&rq->cfs_tasks); 8797 8798 rq_attach_root(rq, &def_root_domain); 8799 #ifdef CONFIG_NO_HZ_COMMON 8800 rq->last_blocked_load_update_tick = jiffies; 8801 atomic_set(&rq->nohz_flags, 0); 8802 8803 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8804 #endif 8805 #ifdef CONFIG_HOTPLUG_CPU 8806 rcuwait_init(&rq->hotplug_wait); 8807 #endif 8808 hrtick_rq_init(rq); 8809 atomic_set(&rq->nr_iowait, 0); 8810 fair_server_init(rq); 8811 8812 #ifdef CONFIG_SCHED_CORE 8813 rq->core = rq; 8814 rq->core_pick = NULL; 8815 rq->core_dl_server = NULL; 8816 rq->core_enabled = 0; 8817 rq->core_tree = RB_ROOT; 8818 rq->core_forceidle_count = 0; 8819 rq->core_forceidle_occupation = 0; 8820 rq->core_forceidle_start = 0; 8821 8822 rq->core_cookie = 0UL; 8823 #endif 8824 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 8825 } 8826 8827 set_load_weight(&init_task, false); 8828 init_task.se.slice = sysctl_sched_base_slice, 8829 8830 /* 8831 * The boot idle thread does lazy MMU switching as well: 8832 */ 8833 mmgrab_lazy_tlb(&init_mm); 8834 enter_lazy_tlb(&init_mm, current); 8835 8836 /* 8837 * The idle task doesn't need the kthread struct to function, but it 8838 * is dressed up as a per-CPU kthread and thus needs to play the part 8839 * if we want to avoid special-casing it in code that deals with per-CPU 8840 * kthreads. 8841 */ 8842 WARN_ON(!set_kthread_struct(current)); 8843 8844 /* 8845 * Make us the idle thread. Technically, schedule() should not be 8846 * called from this thread, however somewhere below it might be, 8847 * but because we are the idle thread, we just pick up running again 8848 * when this runqueue becomes "idle". 8849 */ 8850 __sched_fork(0, current); 8851 init_idle(current, smp_processor_id()); 8852 8853 calc_load_update = jiffies + LOAD_FREQ; 8854 8855 idle_thread_set_boot_cpu(); 8856 8857 balance_push_set(smp_processor_id(), false); 8858 init_sched_fair_class(); 8859 init_sched_ext_class(); 8860 8861 psi_init(); 8862 8863 init_uclamp(); 8864 8865 preempt_dynamic_init(); 8866 8867 scheduler_running = 1; 8868 } 8869 8870 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8871 8872 void __might_sleep(const char *file, int line) 8873 { 8874 unsigned int state = get_current_state(); 8875 /* 8876 * Blocking primitives will set (and therefore destroy) current->state, 8877 * since we will exit with TASK_RUNNING make sure we enter with it, 8878 * otherwise we will destroy state. 8879 */ 8880 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 8881 "do not call blocking ops when !TASK_RUNNING; " 8882 "state=%x set at [<%p>] %pS\n", state, 8883 (void *)current->task_state_change, 8884 (void *)current->task_state_change); 8885 8886 __might_resched(file, line, 0); 8887 } 8888 EXPORT_SYMBOL(__might_sleep); 8889 8890 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 8891 { 8892 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 8893 return; 8894 8895 if (preempt_count() == preempt_offset) 8896 return; 8897 8898 pr_err("Preemption disabled at:"); 8899 print_ip_sym(KERN_ERR, ip); 8900 } 8901 8902 static inline bool resched_offsets_ok(unsigned int offsets) 8903 { 8904 unsigned int nested = preempt_count(); 8905 8906 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 8907 8908 return nested == offsets; 8909 } 8910 8911 void __might_resched(const char *file, int line, unsigned int offsets) 8912 { 8913 /* Ratelimiting timestamp: */ 8914 static unsigned long prev_jiffy; 8915 8916 unsigned long preempt_disable_ip; 8917 8918 /* WARN_ON_ONCE() by default, no rate limit required: */ 8919 rcu_sleep_check(); 8920 8921 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 8922 !is_idle_task(current) && !current->non_block_count) || 8923 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8924 oops_in_progress) 8925 return; 8926 8927 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8928 return; 8929 prev_jiffy = jiffies; 8930 8931 /* Save this before calling printk(), since that will clobber it: */ 8932 preempt_disable_ip = get_preempt_disable_ip(current); 8933 8934 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 8935 file, line); 8936 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8937 in_atomic(), irqs_disabled(), current->non_block_count, 8938 current->pid, current->comm); 8939 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 8940 offsets & MIGHT_RESCHED_PREEMPT_MASK); 8941 8942 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 8943 pr_err("RCU nest depth: %d, expected: %u\n", 8944 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 8945 } 8946 8947 if (task_stack_end_corrupted(current)) 8948 pr_emerg("Thread overran stack, or stack corrupted\n"); 8949 8950 debug_show_held_locks(current); 8951 if (irqs_disabled()) 8952 print_irqtrace_events(current); 8953 8954 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 8955 preempt_disable_ip); 8956 8957 dump_stack(); 8958 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8959 } 8960 EXPORT_SYMBOL(__might_resched); 8961 8962 void __cant_sleep(const char *file, int line, int preempt_offset) 8963 { 8964 static unsigned long prev_jiffy; 8965 8966 if (irqs_disabled()) 8967 return; 8968 8969 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8970 return; 8971 8972 if (preempt_count() > preempt_offset) 8973 return; 8974 8975 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8976 return; 8977 prev_jiffy = jiffies; 8978 8979 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8980 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8981 in_atomic(), irqs_disabled(), 8982 current->pid, current->comm); 8983 8984 debug_show_held_locks(current); 8985 dump_stack(); 8986 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8987 } 8988 EXPORT_SYMBOL_GPL(__cant_sleep); 8989 8990 # ifdef CONFIG_SMP 8991 void __cant_migrate(const char *file, int line) 8992 { 8993 static unsigned long prev_jiffy; 8994 8995 if (irqs_disabled()) 8996 return; 8997 8998 if (is_migration_disabled(current)) 8999 return; 9000 9001 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9002 return; 9003 9004 if (preempt_count() > 0) 9005 return; 9006 9007 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9008 return; 9009 prev_jiffy = jiffies; 9010 9011 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 9012 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 9013 in_atomic(), irqs_disabled(), is_migration_disabled(current), 9014 current->pid, current->comm); 9015 9016 debug_show_held_locks(current); 9017 dump_stack(); 9018 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9019 } 9020 EXPORT_SYMBOL_GPL(__cant_migrate); 9021 # endif /* CONFIG_SMP */ 9022 #endif /* CONFIG_DEBUG_ATOMIC_SLEEP */ 9023 9024 #ifdef CONFIG_MAGIC_SYSRQ 9025 void normalize_rt_tasks(void) 9026 { 9027 struct task_struct *g, *p; 9028 struct sched_attr attr = { 9029 .sched_policy = SCHED_NORMAL, 9030 }; 9031 9032 read_lock(&tasklist_lock); 9033 for_each_process_thread(g, p) { 9034 /* 9035 * Only normalize user tasks: 9036 */ 9037 if (p->flags & PF_KTHREAD) 9038 continue; 9039 9040 p->se.exec_start = 0; 9041 schedstat_set(p->stats.wait_start, 0); 9042 schedstat_set(p->stats.sleep_start, 0); 9043 schedstat_set(p->stats.block_start, 0); 9044 9045 if (!rt_or_dl_task(p)) { 9046 /* 9047 * Renice negative nice level userspace 9048 * tasks back to 0: 9049 */ 9050 if (task_nice(p) < 0) 9051 set_user_nice(p, 0); 9052 continue; 9053 } 9054 9055 __sched_setscheduler(p, &attr, false, false); 9056 } 9057 read_unlock(&tasklist_lock); 9058 } 9059 9060 #endif /* CONFIG_MAGIC_SYSRQ */ 9061 9062 #ifdef CONFIG_KGDB_KDB 9063 /* 9064 * These functions are only useful for KDB. 9065 * 9066 * They can only be called when the whole system has been 9067 * stopped - every CPU needs to be quiescent, and no scheduling 9068 * activity can take place. Using them for anything else would 9069 * be a serious bug, and as a result, they aren't even visible 9070 * under any other configuration. 9071 */ 9072 9073 /** 9074 * curr_task - return the current task for a given CPU. 9075 * @cpu: the processor in question. 9076 * 9077 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 9078 * 9079 * Return: The current task for @cpu. 9080 */ 9081 struct task_struct *curr_task(int cpu) 9082 { 9083 return cpu_curr(cpu); 9084 } 9085 9086 #endif /* CONFIG_KGDB_KDB */ 9087 9088 #ifdef CONFIG_CGROUP_SCHED 9089 /* task_group_lock serializes the addition/removal of task groups */ 9090 static DEFINE_SPINLOCK(task_group_lock); 9091 9092 static inline void alloc_uclamp_sched_group(struct task_group *tg, 9093 struct task_group *parent) 9094 { 9095 #ifdef CONFIG_UCLAMP_TASK_GROUP 9096 enum uclamp_id clamp_id; 9097 9098 for_each_clamp_id(clamp_id) { 9099 uclamp_se_set(&tg->uclamp_req[clamp_id], 9100 uclamp_none(clamp_id), false); 9101 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 9102 } 9103 #endif 9104 } 9105 9106 static void sched_free_group(struct task_group *tg) 9107 { 9108 free_fair_sched_group(tg); 9109 free_rt_sched_group(tg); 9110 autogroup_free(tg); 9111 kmem_cache_free(task_group_cache, tg); 9112 } 9113 9114 static void sched_free_group_rcu(struct rcu_head *rcu) 9115 { 9116 sched_free_group(container_of(rcu, struct task_group, rcu)); 9117 } 9118 9119 static void sched_unregister_group(struct task_group *tg) 9120 { 9121 unregister_fair_sched_group(tg); 9122 unregister_rt_sched_group(tg); 9123 /* 9124 * We have to wait for yet another RCU grace period to expire, as 9125 * print_cfs_stats() might run concurrently. 9126 */ 9127 call_rcu(&tg->rcu, sched_free_group_rcu); 9128 } 9129 9130 /* allocate runqueue etc for a new task group */ 9131 struct task_group *sched_create_group(struct task_group *parent) 9132 { 9133 struct task_group *tg; 9134 9135 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 9136 if (!tg) 9137 return ERR_PTR(-ENOMEM); 9138 9139 if (!alloc_fair_sched_group(tg, parent)) 9140 goto err; 9141 9142 if (!alloc_rt_sched_group(tg, parent)) 9143 goto err; 9144 9145 scx_tg_init(tg); 9146 alloc_uclamp_sched_group(tg, parent); 9147 9148 return tg; 9149 9150 err: 9151 sched_free_group(tg); 9152 return ERR_PTR(-ENOMEM); 9153 } 9154 9155 void sched_online_group(struct task_group *tg, struct task_group *parent) 9156 { 9157 unsigned long flags; 9158 9159 spin_lock_irqsave(&task_group_lock, flags); 9160 list_add_tail_rcu(&tg->list, &task_groups); 9161 9162 /* Root should already exist: */ 9163 WARN_ON(!parent); 9164 9165 tg->parent = parent; 9166 INIT_LIST_HEAD(&tg->children); 9167 list_add_rcu(&tg->siblings, &parent->children); 9168 spin_unlock_irqrestore(&task_group_lock, flags); 9169 9170 online_fair_sched_group(tg); 9171 } 9172 9173 /* RCU callback to free various structures associated with a task group */ 9174 static void sched_unregister_group_rcu(struct rcu_head *rhp) 9175 { 9176 /* Now it should be safe to free those cfs_rqs: */ 9177 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 9178 } 9179 9180 void sched_destroy_group(struct task_group *tg) 9181 { 9182 /* Wait for possible concurrent references to cfs_rqs complete: */ 9183 call_rcu(&tg->rcu, sched_unregister_group_rcu); 9184 } 9185 9186 void sched_release_group(struct task_group *tg) 9187 { 9188 unsigned long flags; 9189 9190 /* 9191 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 9192 * sched_cfs_period_timer()). 9193 * 9194 * For this to be effective, we have to wait for all pending users of 9195 * this task group to leave their RCU critical section to ensure no new 9196 * user will see our dying task group any more. Specifically ensure 9197 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 9198 * 9199 * We therefore defer calling unregister_fair_sched_group() to 9200 * sched_unregister_group() which is guarantied to get called only after the 9201 * current RCU grace period has expired. 9202 */ 9203 spin_lock_irqsave(&task_group_lock, flags); 9204 list_del_rcu(&tg->list); 9205 list_del_rcu(&tg->siblings); 9206 spin_unlock_irqrestore(&task_group_lock, flags); 9207 } 9208 9209 static void sched_change_group(struct task_struct *tsk) 9210 { 9211 struct task_group *tg; 9212 9213 /* 9214 * All callers are synchronized by task_rq_lock(); we do not use RCU 9215 * which is pointless here. Thus, we pass "true" to task_css_check() 9216 * to prevent lockdep warnings. 9217 */ 9218 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 9219 struct task_group, css); 9220 tg = autogroup_task_group(tsk, tg); 9221 tsk->sched_task_group = tg; 9222 9223 #ifdef CONFIG_FAIR_GROUP_SCHED 9224 if (tsk->sched_class->task_change_group) 9225 tsk->sched_class->task_change_group(tsk); 9226 else 9227 #endif 9228 set_task_rq(tsk, task_cpu(tsk)); 9229 } 9230 9231 /* 9232 * Change task's runqueue when it moves between groups. 9233 * 9234 * The caller of this function should have put the task in its new group by 9235 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 9236 * its new group. 9237 */ 9238 void sched_move_task(struct task_struct *tsk, bool for_autogroup) 9239 { 9240 int queued, running, queue_flags = 9241 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 9242 struct rq *rq; 9243 9244 CLASS(task_rq_lock, rq_guard)(tsk); 9245 rq = rq_guard.rq; 9246 9247 update_rq_clock(rq); 9248 9249 running = task_current_donor(rq, tsk); 9250 queued = task_on_rq_queued(tsk); 9251 9252 if (queued) 9253 dequeue_task(rq, tsk, queue_flags); 9254 if (running) 9255 put_prev_task(rq, tsk); 9256 9257 sched_change_group(tsk); 9258 if (!for_autogroup) 9259 scx_cgroup_move_task(tsk); 9260 9261 if (queued) 9262 enqueue_task(rq, tsk, queue_flags); 9263 if (running) { 9264 set_next_task(rq, tsk); 9265 /* 9266 * After changing group, the running task may have joined a 9267 * throttled one but it's still the running task. Trigger a 9268 * resched to make sure that task can still run. 9269 */ 9270 resched_curr(rq); 9271 } 9272 } 9273 9274 static struct cgroup_subsys_state * 9275 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9276 { 9277 struct task_group *parent = css_tg(parent_css); 9278 struct task_group *tg; 9279 9280 if (!parent) { 9281 /* This is early initialization for the top cgroup */ 9282 return &root_task_group.css; 9283 } 9284 9285 tg = sched_create_group(parent); 9286 if (IS_ERR(tg)) 9287 return ERR_PTR(-ENOMEM); 9288 9289 return &tg->css; 9290 } 9291 9292 /* Expose task group only after completing cgroup initialization */ 9293 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 9294 { 9295 struct task_group *tg = css_tg(css); 9296 struct task_group *parent = css_tg(css->parent); 9297 int ret; 9298 9299 ret = scx_tg_online(tg); 9300 if (ret) 9301 return ret; 9302 9303 if (parent) 9304 sched_online_group(tg, parent); 9305 9306 #ifdef CONFIG_UCLAMP_TASK_GROUP 9307 /* Propagate the effective uclamp value for the new group */ 9308 guard(mutex)(&uclamp_mutex); 9309 guard(rcu)(); 9310 cpu_util_update_eff(css); 9311 #endif 9312 9313 return 0; 9314 } 9315 9316 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 9317 { 9318 struct task_group *tg = css_tg(css); 9319 9320 scx_tg_offline(tg); 9321 } 9322 9323 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 9324 { 9325 struct task_group *tg = css_tg(css); 9326 9327 sched_release_group(tg); 9328 } 9329 9330 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 9331 { 9332 struct task_group *tg = css_tg(css); 9333 9334 /* 9335 * Relies on the RCU grace period between css_released() and this. 9336 */ 9337 sched_unregister_group(tg); 9338 } 9339 9340 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 9341 { 9342 #ifdef CONFIG_RT_GROUP_SCHED 9343 struct task_struct *task; 9344 struct cgroup_subsys_state *css; 9345 9346 if (!rt_group_sched_enabled()) 9347 goto scx_check; 9348 9349 cgroup_taskset_for_each(task, css, tset) { 9350 if (!sched_rt_can_attach(css_tg(css), task)) 9351 return -EINVAL; 9352 } 9353 scx_check: 9354 #endif /* CONFIG_RT_GROUP_SCHED */ 9355 return scx_cgroup_can_attach(tset); 9356 } 9357 9358 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 9359 { 9360 struct task_struct *task; 9361 struct cgroup_subsys_state *css; 9362 9363 cgroup_taskset_for_each(task, css, tset) 9364 sched_move_task(task, false); 9365 9366 scx_cgroup_finish_attach(); 9367 } 9368 9369 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset) 9370 { 9371 scx_cgroup_cancel_attach(tset); 9372 } 9373 9374 #ifdef CONFIG_UCLAMP_TASK_GROUP 9375 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 9376 { 9377 struct cgroup_subsys_state *top_css = css; 9378 struct uclamp_se *uc_parent = NULL; 9379 struct uclamp_se *uc_se = NULL; 9380 unsigned int eff[UCLAMP_CNT]; 9381 enum uclamp_id clamp_id; 9382 unsigned int clamps; 9383 9384 lockdep_assert_held(&uclamp_mutex); 9385 WARN_ON_ONCE(!rcu_read_lock_held()); 9386 9387 css_for_each_descendant_pre(css, top_css) { 9388 uc_parent = css_tg(css)->parent 9389 ? css_tg(css)->parent->uclamp : NULL; 9390 9391 for_each_clamp_id(clamp_id) { 9392 /* Assume effective clamps matches requested clamps */ 9393 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 9394 /* Cap effective clamps with parent's effective clamps */ 9395 if (uc_parent && 9396 eff[clamp_id] > uc_parent[clamp_id].value) { 9397 eff[clamp_id] = uc_parent[clamp_id].value; 9398 } 9399 } 9400 /* Ensure protection is always capped by limit */ 9401 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 9402 9403 /* Propagate most restrictive effective clamps */ 9404 clamps = 0x0; 9405 uc_se = css_tg(css)->uclamp; 9406 for_each_clamp_id(clamp_id) { 9407 if (eff[clamp_id] == uc_se[clamp_id].value) 9408 continue; 9409 uc_se[clamp_id].value = eff[clamp_id]; 9410 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 9411 clamps |= (0x1 << clamp_id); 9412 } 9413 if (!clamps) { 9414 css = css_rightmost_descendant(css); 9415 continue; 9416 } 9417 9418 /* Immediately update descendants RUNNABLE tasks */ 9419 uclamp_update_active_tasks(css); 9420 } 9421 } 9422 9423 /* 9424 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 9425 * C expression. Since there is no way to convert a macro argument (N) into a 9426 * character constant, use two levels of macros. 9427 */ 9428 #define _POW10(exp) ((unsigned int)1e##exp) 9429 #define POW10(exp) _POW10(exp) 9430 9431 struct uclamp_request { 9432 #define UCLAMP_PERCENT_SHIFT 2 9433 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 9434 s64 percent; 9435 u64 util; 9436 int ret; 9437 }; 9438 9439 static inline struct uclamp_request 9440 capacity_from_percent(char *buf) 9441 { 9442 struct uclamp_request req = { 9443 .percent = UCLAMP_PERCENT_SCALE, 9444 .util = SCHED_CAPACITY_SCALE, 9445 .ret = 0, 9446 }; 9447 9448 buf = strim(buf); 9449 if (strcmp(buf, "max")) { 9450 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 9451 &req.percent); 9452 if (req.ret) 9453 return req; 9454 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 9455 req.ret = -ERANGE; 9456 return req; 9457 } 9458 9459 req.util = req.percent << SCHED_CAPACITY_SHIFT; 9460 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 9461 } 9462 9463 return req; 9464 } 9465 9466 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 9467 size_t nbytes, loff_t off, 9468 enum uclamp_id clamp_id) 9469 { 9470 struct uclamp_request req; 9471 struct task_group *tg; 9472 9473 req = capacity_from_percent(buf); 9474 if (req.ret) 9475 return req.ret; 9476 9477 sched_uclamp_enable(); 9478 9479 guard(mutex)(&uclamp_mutex); 9480 guard(rcu)(); 9481 9482 tg = css_tg(of_css(of)); 9483 if (tg->uclamp_req[clamp_id].value != req.util) 9484 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 9485 9486 /* 9487 * Because of not recoverable conversion rounding we keep track of the 9488 * exact requested value 9489 */ 9490 tg->uclamp_pct[clamp_id] = req.percent; 9491 9492 /* Update effective clamps to track the most restrictive value */ 9493 cpu_util_update_eff(of_css(of)); 9494 9495 return nbytes; 9496 } 9497 9498 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9499 char *buf, size_t nbytes, 9500 loff_t off) 9501 { 9502 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9503 } 9504 9505 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9506 char *buf, size_t nbytes, 9507 loff_t off) 9508 { 9509 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9510 } 9511 9512 static inline void cpu_uclamp_print(struct seq_file *sf, 9513 enum uclamp_id clamp_id) 9514 { 9515 struct task_group *tg; 9516 u64 util_clamp; 9517 u64 percent; 9518 u32 rem; 9519 9520 scoped_guard (rcu) { 9521 tg = css_tg(seq_css(sf)); 9522 util_clamp = tg->uclamp_req[clamp_id].value; 9523 } 9524 9525 if (util_clamp == SCHED_CAPACITY_SCALE) { 9526 seq_puts(sf, "max\n"); 9527 return; 9528 } 9529 9530 percent = tg->uclamp_pct[clamp_id]; 9531 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9532 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9533 } 9534 9535 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9536 { 9537 cpu_uclamp_print(sf, UCLAMP_MIN); 9538 return 0; 9539 } 9540 9541 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9542 { 9543 cpu_uclamp_print(sf, UCLAMP_MAX); 9544 return 0; 9545 } 9546 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9547 9548 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9549 static unsigned long tg_weight(struct task_group *tg) 9550 { 9551 #ifdef CONFIG_FAIR_GROUP_SCHED 9552 return scale_load_down(tg->shares); 9553 #else 9554 return sched_weight_from_cgroup(tg->scx_weight); 9555 #endif 9556 } 9557 9558 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9559 struct cftype *cftype, u64 shareval) 9560 { 9561 int ret; 9562 9563 if (shareval > scale_load_down(ULONG_MAX)) 9564 shareval = MAX_SHARES; 9565 ret = sched_group_set_shares(css_tg(css), scale_load(shareval)); 9566 if (!ret) 9567 scx_group_set_weight(css_tg(css), 9568 sched_weight_to_cgroup(shareval)); 9569 return ret; 9570 } 9571 9572 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9573 struct cftype *cft) 9574 { 9575 return tg_weight(css_tg(css)); 9576 } 9577 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9578 9579 #ifdef CONFIG_CFS_BANDWIDTH 9580 static DEFINE_MUTEX(cfs_constraints_mutex); 9581 9582 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9583 9584 static int tg_set_cfs_bandwidth(struct task_group *tg, 9585 u64 period_us, u64 quota_us, u64 burst_us) 9586 { 9587 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9588 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9589 u64 period, quota, burst; 9590 9591 period = (u64)period_us * NSEC_PER_USEC; 9592 9593 if (quota_us == RUNTIME_INF) 9594 quota = RUNTIME_INF; 9595 else 9596 quota = (u64)quota_us * NSEC_PER_USEC; 9597 9598 burst = (u64)burst_us * NSEC_PER_USEC; 9599 9600 /* 9601 * Prevent race between setting of cfs_rq->runtime_enabled and 9602 * unthrottle_offline_cfs_rqs(). 9603 */ 9604 guard(cpus_read_lock)(); 9605 guard(mutex)(&cfs_constraints_mutex); 9606 9607 ret = __cfs_schedulable(tg, period, quota); 9608 if (ret) 9609 return ret; 9610 9611 runtime_enabled = quota != RUNTIME_INF; 9612 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9613 /* 9614 * If we need to toggle cfs_bandwidth_used, off->on must occur 9615 * before making related changes, and on->off must occur afterwards 9616 */ 9617 if (runtime_enabled && !runtime_was_enabled) 9618 cfs_bandwidth_usage_inc(); 9619 9620 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 9621 cfs_b->period = ns_to_ktime(period); 9622 cfs_b->quota = quota; 9623 cfs_b->burst = burst; 9624 9625 __refill_cfs_bandwidth_runtime(cfs_b); 9626 9627 /* 9628 * Restart the period timer (if active) to handle new 9629 * period expiry: 9630 */ 9631 if (runtime_enabled) 9632 start_cfs_bandwidth(cfs_b); 9633 } 9634 9635 for_each_online_cpu(i) { 9636 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9637 struct rq *rq = cfs_rq->rq; 9638 9639 guard(rq_lock_irq)(rq); 9640 cfs_rq->runtime_enabled = runtime_enabled; 9641 cfs_rq->runtime_remaining = 0; 9642 9643 if (cfs_rq->throttled) 9644 unthrottle_cfs_rq(cfs_rq); 9645 } 9646 9647 if (runtime_was_enabled && !runtime_enabled) 9648 cfs_bandwidth_usage_dec(); 9649 9650 return 0; 9651 } 9652 9653 static u64 tg_get_cfs_period(struct task_group *tg) 9654 { 9655 u64 cfs_period_us; 9656 9657 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9658 do_div(cfs_period_us, NSEC_PER_USEC); 9659 9660 return cfs_period_us; 9661 } 9662 9663 static u64 tg_get_cfs_quota(struct task_group *tg) 9664 { 9665 u64 quota_us; 9666 9667 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9668 return RUNTIME_INF; 9669 9670 quota_us = tg->cfs_bandwidth.quota; 9671 do_div(quota_us, NSEC_PER_USEC); 9672 9673 return quota_us; 9674 } 9675 9676 static u64 tg_get_cfs_burst(struct task_group *tg) 9677 { 9678 u64 burst_us; 9679 9680 burst_us = tg->cfs_bandwidth.burst; 9681 do_div(burst_us, NSEC_PER_USEC); 9682 9683 return burst_us; 9684 } 9685 9686 struct cfs_schedulable_data { 9687 struct task_group *tg; 9688 u64 period, quota; 9689 }; 9690 9691 /* 9692 * normalize group quota/period to be quota/max_period 9693 * note: units are usecs 9694 */ 9695 static u64 normalize_cfs_quota(struct task_group *tg, 9696 struct cfs_schedulable_data *d) 9697 { 9698 u64 quota, period; 9699 9700 if (tg == d->tg) { 9701 period = d->period; 9702 quota = d->quota; 9703 } else { 9704 period = tg_get_cfs_period(tg); 9705 quota = tg_get_cfs_quota(tg); 9706 } 9707 9708 /* note: these should typically be equivalent */ 9709 if (quota == RUNTIME_INF || quota == -1) 9710 return RUNTIME_INF; 9711 9712 return to_ratio(period, quota); 9713 } 9714 9715 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9716 { 9717 struct cfs_schedulable_data *d = data; 9718 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9719 s64 quota = 0, parent_quota = -1; 9720 9721 if (!tg->parent) { 9722 quota = RUNTIME_INF; 9723 } else { 9724 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9725 9726 quota = normalize_cfs_quota(tg, d); 9727 parent_quota = parent_b->hierarchical_quota; 9728 9729 /* 9730 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9731 * always take the non-RUNTIME_INF min. On cgroup1, only 9732 * inherit when no limit is set. In both cases this is used 9733 * by the scheduler to determine if a given CFS task has a 9734 * bandwidth constraint at some higher level. 9735 */ 9736 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9737 if (quota == RUNTIME_INF) 9738 quota = parent_quota; 9739 else if (parent_quota != RUNTIME_INF) 9740 quota = min(quota, parent_quota); 9741 } else { 9742 if (quota == RUNTIME_INF) 9743 quota = parent_quota; 9744 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9745 return -EINVAL; 9746 } 9747 } 9748 cfs_b->hierarchical_quota = quota; 9749 9750 return 0; 9751 } 9752 9753 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9754 { 9755 struct cfs_schedulable_data data = { 9756 .tg = tg, 9757 .period = period, 9758 .quota = quota, 9759 }; 9760 9761 if (quota != RUNTIME_INF) { 9762 do_div(data.period, NSEC_PER_USEC); 9763 do_div(data.quota, NSEC_PER_USEC); 9764 } 9765 9766 guard(rcu)(); 9767 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9768 } 9769 9770 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9771 { 9772 struct task_group *tg = css_tg(seq_css(sf)); 9773 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9774 9775 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9776 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9777 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9778 9779 if (schedstat_enabled() && tg != &root_task_group) { 9780 struct sched_statistics *stats; 9781 u64 ws = 0; 9782 int i; 9783 9784 for_each_possible_cpu(i) { 9785 stats = __schedstats_from_se(tg->se[i]); 9786 ws += schedstat_val(stats->wait_sum); 9787 } 9788 9789 seq_printf(sf, "wait_sum %llu\n", ws); 9790 } 9791 9792 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 9793 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 9794 9795 return 0; 9796 } 9797 9798 static u64 throttled_time_self(struct task_group *tg) 9799 { 9800 int i; 9801 u64 total = 0; 9802 9803 for_each_possible_cpu(i) { 9804 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 9805 } 9806 9807 return total; 9808 } 9809 9810 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 9811 { 9812 struct task_group *tg = css_tg(seq_css(sf)); 9813 9814 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 9815 9816 return 0; 9817 } 9818 #endif /* CONFIG_CFS_BANDWIDTH */ 9819 9820 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 9821 const u64 max_bw_quota_period_us = 1 * USEC_PER_SEC; /* 1s */ 9822 static const u64 min_bw_quota_period_us = 1 * USEC_PER_MSEC; /* 1ms */ 9823 /* More than 203 days if BW_SHIFT equals 20. */ 9824 static const u64 max_bw_runtime_us = MAX_BW; 9825 9826 static void tg_bandwidth(struct task_group *tg, 9827 u64 *period_us_p, u64 *quota_us_p, u64 *burst_us_p) 9828 { 9829 #ifdef CONFIG_CFS_BANDWIDTH 9830 if (period_us_p) 9831 *period_us_p = tg_get_cfs_period(tg); 9832 if (quota_us_p) 9833 *quota_us_p = tg_get_cfs_quota(tg); 9834 if (burst_us_p) 9835 *burst_us_p = tg_get_cfs_burst(tg); 9836 #else /* !CONFIG_CFS_BANDWIDTH */ 9837 if (period_us_p) 9838 *period_us_p = tg->scx.bw_period_us; 9839 if (quota_us_p) 9840 *quota_us_p = tg->scx.bw_quota_us; 9841 if (burst_us_p) 9842 *burst_us_p = tg->scx.bw_burst_us; 9843 #endif /* CONFIG_CFS_BANDWIDTH */ 9844 } 9845 9846 static u64 cpu_period_read_u64(struct cgroup_subsys_state *css, 9847 struct cftype *cft) 9848 { 9849 u64 period_us; 9850 9851 tg_bandwidth(css_tg(css), &period_us, NULL, NULL); 9852 return period_us; 9853 } 9854 9855 static int tg_set_bandwidth(struct task_group *tg, 9856 u64 period_us, u64 quota_us, u64 burst_us) 9857 { 9858 const u64 max_usec = U64_MAX / NSEC_PER_USEC; 9859 int ret = 0; 9860 9861 if (tg == &root_task_group) 9862 return -EINVAL; 9863 9864 /* Values should survive translation to nsec */ 9865 if (period_us > max_usec || 9866 (quota_us != RUNTIME_INF && quota_us > max_usec) || 9867 burst_us > max_usec) 9868 return -EINVAL; 9869 9870 /* 9871 * Ensure we have some amount of bandwidth every period. This is to 9872 * prevent reaching a state of large arrears when throttled via 9873 * entity_tick() resulting in prolonged exit starvation. 9874 */ 9875 if (quota_us < min_bw_quota_period_us || 9876 period_us < min_bw_quota_period_us) 9877 return -EINVAL; 9878 9879 /* 9880 * Likewise, bound things on the other side by preventing insane quota 9881 * periods. This also allows us to normalize in computing quota 9882 * feasibility. 9883 */ 9884 if (period_us > max_bw_quota_period_us) 9885 return -EINVAL; 9886 9887 /* 9888 * Bound quota to defend quota against overflow during bandwidth shift. 9889 */ 9890 if (quota_us != RUNTIME_INF && quota_us > max_bw_runtime_us) 9891 return -EINVAL; 9892 9893 if (quota_us != RUNTIME_INF && (burst_us > quota_us || 9894 burst_us + quota_us > max_bw_runtime_us)) 9895 return -EINVAL; 9896 9897 #ifdef CONFIG_CFS_BANDWIDTH 9898 ret = tg_set_cfs_bandwidth(tg, period_us, quota_us, burst_us); 9899 #endif /* CONFIG_CFS_BANDWIDTH */ 9900 if (!ret) 9901 scx_group_set_bandwidth(tg, period_us, quota_us, burst_us); 9902 return ret; 9903 } 9904 9905 static s64 cpu_quota_read_s64(struct cgroup_subsys_state *css, 9906 struct cftype *cft) 9907 { 9908 u64 quota_us; 9909 9910 tg_bandwidth(css_tg(css), NULL, "a_us, NULL); 9911 return quota_us; /* (s64)RUNTIME_INF becomes -1 */ 9912 } 9913 9914 static u64 cpu_burst_read_u64(struct cgroup_subsys_state *css, 9915 struct cftype *cft) 9916 { 9917 u64 burst_us; 9918 9919 tg_bandwidth(css_tg(css), NULL, NULL, &burst_us); 9920 return burst_us; 9921 } 9922 9923 static int cpu_period_write_u64(struct cgroup_subsys_state *css, 9924 struct cftype *cftype, u64 period_us) 9925 { 9926 struct task_group *tg = css_tg(css); 9927 u64 quota_us, burst_us; 9928 9929 tg_bandwidth(tg, NULL, "a_us, &burst_us); 9930 return tg_set_bandwidth(tg, period_us, quota_us, burst_us); 9931 } 9932 9933 static int cpu_quota_write_s64(struct cgroup_subsys_state *css, 9934 struct cftype *cftype, s64 quota_us) 9935 { 9936 struct task_group *tg = css_tg(css); 9937 u64 period_us, burst_us; 9938 9939 if (quota_us < 0) 9940 quota_us = RUNTIME_INF; 9941 9942 tg_bandwidth(tg, &period_us, NULL, &burst_us); 9943 return tg_set_bandwidth(tg, period_us, quota_us, burst_us); 9944 } 9945 9946 static int cpu_burst_write_u64(struct cgroup_subsys_state *css, 9947 struct cftype *cftype, u64 burst_us) 9948 { 9949 struct task_group *tg = css_tg(css); 9950 u64 period_us, quota_us; 9951 9952 tg_bandwidth(tg, &period_us, "a_us, NULL); 9953 return tg_set_bandwidth(tg, period_us, quota_us, burst_us); 9954 } 9955 #endif /* CONFIG_GROUP_SCHED_BANDWIDTH */ 9956 9957 #ifdef CONFIG_RT_GROUP_SCHED 9958 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9959 struct cftype *cft, s64 val) 9960 { 9961 return sched_group_set_rt_runtime(css_tg(css), val); 9962 } 9963 9964 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9965 struct cftype *cft) 9966 { 9967 return sched_group_rt_runtime(css_tg(css)); 9968 } 9969 9970 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9971 struct cftype *cftype, u64 rt_period_us) 9972 { 9973 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9974 } 9975 9976 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9977 struct cftype *cft) 9978 { 9979 return sched_group_rt_period(css_tg(css)); 9980 } 9981 #endif /* CONFIG_RT_GROUP_SCHED */ 9982 9983 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9984 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 9985 struct cftype *cft) 9986 { 9987 return css_tg(css)->idle; 9988 } 9989 9990 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 9991 struct cftype *cft, s64 idle) 9992 { 9993 int ret; 9994 9995 ret = sched_group_set_idle(css_tg(css), idle); 9996 if (!ret) 9997 scx_group_set_idle(css_tg(css), idle); 9998 return ret; 9999 } 10000 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 10001 10002 static struct cftype cpu_legacy_files[] = { 10003 #ifdef CONFIG_GROUP_SCHED_WEIGHT 10004 { 10005 .name = "shares", 10006 .read_u64 = cpu_shares_read_u64, 10007 .write_u64 = cpu_shares_write_u64, 10008 }, 10009 { 10010 .name = "idle", 10011 .read_s64 = cpu_idle_read_s64, 10012 .write_s64 = cpu_idle_write_s64, 10013 }, 10014 #endif 10015 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 10016 { 10017 .name = "cfs_period_us", 10018 .read_u64 = cpu_period_read_u64, 10019 .write_u64 = cpu_period_write_u64, 10020 }, 10021 { 10022 .name = "cfs_quota_us", 10023 .read_s64 = cpu_quota_read_s64, 10024 .write_s64 = cpu_quota_write_s64, 10025 }, 10026 { 10027 .name = "cfs_burst_us", 10028 .read_u64 = cpu_burst_read_u64, 10029 .write_u64 = cpu_burst_write_u64, 10030 }, 10031 #endif 10032 #ifdef CONFIG_CFS_BANDWIDTH 10033 { 10034 .name = "stat", 10035 .seq_show = cpu_cfs_stat_show, 10036 }, 10037 { 10038 .name = "stat.local", 10039 .seq_show = cpu_cfs_local_stat_show, 10040 }, 10041 #endif 10042 #ifdef CONFIG_UCLAMP_TASK_GROUP 10043 { 10044 .name = "uclamp.min", 10045 .flags = CFTYPE_NOT_ON_ROOT, 10046 .seq_show = cpu_uclamp_min_show, 10047 .write = cpu_uclamp_min_write, 10048 }, 10049 { 10050 .name = "uclamp.max", 10051 .flags = CFTYPE_NOT_ON_ROOT, 10052 .seq_show = cpu_uclamp_max_show, 10053 .write = cpu_uclamp_max_write, 10054 }, 10055 #endif 10056 { } /* Terminate */ 10057 }; 10058 10059 #ifdef CONFIG_RT_GROUP_SCHED 10060 static struct cftype rt_group_files[] = { 10061 { 10062 .name = "rt_runtime_us", 10063 .read_s64 = cpu_rt_runtime_read, 10064 .write_s64 = cpu_rt_runtime_write, 10065 }, 10066 { 10067 .name = "rt_period_us", 10068 .read_u64 = cpu_rt_period_read_uint, 10069 .write_u64 = cpu_rt_period_write_uint, 10070 }, 10071 { } /* Terminate */ 10072 }; 10073 10074 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED 10075 DEFINE_STATIC_KEY_FALSE(rt_group_sched); 10076 # else 10077 DEFINE_STATIC_KEY_TRUE(rt_group_sched); 10078 # endif 10079 10080 static int __init setup_rt_group_sched(char *str) 10081 { 10082 long val; 10083 10084 if (kstrtol(str, 0, &val) || val < 0 || val > 1) { 10085 pr_warn("Unable to set rt_group_sched\n"); 10086 return 1; 10087 } 10088 if (val) 10089 static_branch_enable(&rt_group_sched); 10090 else 10091 static_branch_disable(&rt_group_sched); 10092 10093 return 1; 10094 } 10095 __setup("rt_group_sched=", setup_rt_group_sched); 10096 10097 static int __init cpu_rt_group_init(void) 10098 { 10099 if (!rt_group_sched_enabled()) 10100 return 0; 10101 10102 WARN_ON(cgroup_add_legacy_cftypes(&cpu_cgrp_subsys, rt_group_files)); 10103 return 0; 10104 } 10105 subsys_initcall(cpu_rt_group_init); 10106 #endif /* CONFIG_RT_GROUP_SCHED */ 10107 10108 static int cpu_extra_stat_show(struct seq_file *sf, 10109 struct cgroup_subsys_state *css) 10110 { 10111 #ifdef CONFIG_CFS_BANDWIDTH 10112 { 10113 struct task_group *tg = css_tg(css); 10114 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10115 u64 throttled_usec, burst_usec; 10116 10117 throttled_usec = cfs_b->throttled_time; 10118 do_div(throttled_usec, NSEC_PER_USEC); 10119 burst_usec = cfs_b->burst_time; 10120 do_div(burst_usec, NSEC_PER_USEC); 10121 10122 seq_printf(sf, "nr_periods %d\n" 10123 "nr_throttled %d\n" 10124 "throttled_usec %llu\n" 10125 "nr_bursts %d\n" 10126 "burst_usec %llu\n", 10127 cfs_b->nr_periods, cfs_b->nr_throttled, 10128 throttled_usec, cfs_b->nr_burst, burst_usec); 10129 } 10130 #endif /* CONFIG_CFS_BANDWIDTH */ 10131 return 0; 10132 } 10133 10134 static int cpu_local_stat_show(struct seq_file *sf, 10135 struct cgroup_subsys_state *css) 10136 { 10137 #ifdef CONFIG_CFS_BANDWIDTH 10138 { 10139 struct task_group *tg = css_tg(css); 10140 u64 throttled_self_usec; 10141 10142 throttled_self_usec = throttled_time_self(tg); 10143 do_div(throttled_self_usec, NSEC_PER_USEC); 10144 10145 seq_printf(sf, "throttled_usec %llu\n", 10146 throttled_self_usec); 10147 } 10148 #endif 10149 return 0; 10150 } 10151 10152 #ifdef CONFIG_GROUP_SCHED_WEIGHT 10153 10154 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 10155 struct cftype *cft) 10156 { 10157 return sched_weight_to_cgroup(tg_weight(css_tg(css))); 10158 } 10159 10160 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 10161 struct cftype *cft, u64 cgrp_weight) 10162 { 10163 unsigned long weight; 10164 int ret; 10165 10166 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) 10167 return -ERANGE; 10168 10169 weight = sched_weight_from_cgroup(cgrp_weight); 10170 10171 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 10172 if (!ret) 10173 scx_group_set_weight(css_tg(css), cgrp_weight); 10174 return ret; 10175 } 10176 10177 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 10178 struct cftype *cft) 10179 { 10180 unsigned long weight = tg_weight(css_tg(css)); 10181 int last_delta = INT_MAX; 10182 int prio, delta; 10183 10184 /* find the closest nice value to the current weight */ 10185 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 10186 delta = abs(sched_prio_to_weight[prio] - weight); 10187 if (delta >= last_delta) 10188 break; 10189 last_delta = delta; 10190 } 10191 10192 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 10193 } 10194 10195 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 10196 struct cftype *cft, s64 nice) 10197 { 10198 unsigned long weight; 10199 int idx, ret; 10200 10201 if (nice < MIN_NICE || nice > MAX_NICE) 10202 return -ERANGE; 10203 10204 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 10205 idx = array_index_nospec(idx, 40); 10206 weight = sched_prio_to_weight[idx]; 10207 10208 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 10209 if (!ret) 10210 scx_group_set_weight(css_tg(css), 10211 sched_weight_to_cgroup(weight)); 10212 return ret; 10213 } 10214 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 10215 10216 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 10217 long period, long quota) 10218 { 10219 if (quota < 0) 10220 seq_puts(sf, "max"); 10221 else 10222 seq_printf(sf, "%ld", quota); 10223 10224 seq_printf(sf, " %ld\n", period); 10225 } 10226 10227 /* caller should put the current value in *@periodp before calling */ 10228 static int __maybe_unused cpu_period_quota_parse(char *buf, u64 *period_us_p, 10229 u64 *quota_us_p) 10230 { 10231 char tok[21]; /* U64_MAX */ 10232 10233 if (sscanf(buf, "%20s %llu", tok, period_us_p) < 1) 10234 return -EINVAL; 10235 10236 if (sscanf(tok, "%llu", quota_us_p) < 1) { 10237 if (!strcmp(tok, "max")) 10238 *quota_us_p = RUNTIME_INF; 10239 else 10240 return -EINVAL; 10241 } 10242 10243 return 0; 10244 } 10245 10246 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 10247 static int cpu_max_show(struct seq_file *sf, void *v) 10248 { 10249 struct task_group *tg = css_tg(seq_css(sf)); 10250 u64 period_us, quota_us; 10251 10252 tg_bandwidth(tg, &period_us, "a_us, NULL); 10253 cpu_period_quota_print(sf, period_us, quota_us); 10254 return 0; 10255 } 10256 10257 static ssize_t cpu_max_write(struct kernfs_open_file *of, 10258 char *buf, size_t nbytes, loff_t off) 10259 { 10260 struct task_group *tg = css_tg(of_css(of)); 10261 u64 period_us, quota_us, burst_us; 10262 int ret; 10263 10264 tg_bandwidth(tg, &period_us, NULL, &burst_us); 10265 ret = cpu_period_quota_parse(buf, &period_us, "a_us); 10266 if (!ret) 10267 ret = tg_set_bandwidth(tg, period_us, quota_us, burst_us); 10268 return ret ?: nbytes; 10269 } 10270 #endif /* CONFIG_CFS_BANDWIDTH */ 10271 10272 static struct cftype cpu_files[] = { 10273 #ifdef CONFIG_GROUP_SCHED_WEIGHT 10274 { 10275 .name = "weight", 10276 .flags = CFTYPE_NOT_ON_ROOT, 10277 .read_u64 = cpu_weight_read_u64, 10278 .write_u64 = cpu_weight_write_u64, 10279 }, 10280 { 10281 .name = "weight.nice", 10282 .flags = CFTYPE_NOT_ON_ROOT, 10283 .read_s64 = cpu_weight_nice_read_s64, 10284 .write_s64 = cpu_weight_nice_write_s64, 10285 }, 10286 { 10287 .name = "idle", 10288 .flags = CFTYPE_NOT_ON_ROOT, 10289 .read_s64 = cpu_idle_read_s64, 10290 .write_s64 = cpu_idle_write_s64, 10291 }, 10292 #endif 10293 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 10294 { 10295 .name = "max", 10296 .flags = CFTYPE_NOT_ON_ROOT, 10297 .seq_show = cpu_max_show, 10298 .write = cpu_max_write, 10299 }, 10300 { 10301 .name = "max.burst", 10302 .flags = CFTYPE_NOT_ON_ROOT, 10303 .read_u64 = cpu_burst_read_u64, 10304 .write_u64 = cpu_burst_write_u64, 10305 }, 10306 #endif /* CONFIG_CFS_BANDWIDTH */ 10307 #ifdef CONFIG_UCLAMP_TASK_GROUP 10308 { 10309 .name = "uclamp.min", 10310 .flags = CFTYPE_NOT_ON_ROOT, 10311 .seq_show = cpu_uclamp_min_show, 10312 .write = cpu_uclamp_min_write, 10313 }, 10314 { 10315 .name = "uclamp.max", 10316 .flags = CFTYPE_NOT_ON_ROOT, 10317 .seq_show = cpu_uclamp_max_show, 10318 .write = cpu_uclamp_max_write, 10319 }, 10320 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10321 { } /* terminate */ 10322 }; 10323 10324 struct cgroup_subsys cpu_cgrp_subsys = { 10325 .css_alloc = cpu_cgroup_css_alloc, 10326 .css_online = cpu_cgroup_css_online, 10327 .css_offline = cpu_cgroup_css_offline, 10328 .css_released = cpu_cgroup_css_released, 10329 .css_free = cpu_cgroup_css_free, 10330 .css_extra_stat_show = cpu_extra_stat_show, 10331 .css_local_stat_show = cpu_local_stat_show, 10332 .can_attach = cpu_cgroup_can_attach, 10333 .attach = cpu_cgroup_attach, 10334 .cancel_attach = cpu_cgroup_cancel_attach, 10335 .legacy_cftypes = cpu_legacy_files, 10336 .dfl_cftypes = cpu_files, 10337 .early_init = true, 10338 .threaded = true, 10339 }; 10340 10341 #endif /* CONFIG_CGROUP_SCHED */ 10342 10343 void dump_cpu_task(int cpu) 10344 { 10345 if (in_hardirq() && cpu == smp_processor_id()) { 10346 struct pt_regs *regs; 10347 10348 regs = get_irq_regs(); 10349 if (regs) { 10350 show_regs(regs); 10351 return; 10352 } 10353 } 10354 10355 if (trigger_single_cpu_backtrace(cpu)) 10356 return; 10357 10358 pr_info("Task dump for CPU %d:\n", cpu); 10359 sched_show_task(cpu_curr(cpu)); 10360 } 10361 10362 /* 10363 * Nice levels are multiplicative, with a gentle 10% change for every 10364 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 10365 * nice 1, it will get ~10% less CPU time than another CPU-bound task 10366 * that remained on nice 0. 10367 * 10368 * The "10% effect" is relative and cumulative: from _any_ nice level, 10369 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 10370 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 10371 * If a task goes up by ~10% and another task goes down by ~10% then 10372 * the relative distance between them is ~25%.) 10373 */ 10374 const int sched_prio_to_weight[40] = { 10375 /* -20 */ 88761, 71755, 56483, 46273, 36291, 10376 /* -15 */ 29154, 23254, 18705, 14949, 11916, 10377 /* -10 */ 9548, 7620, 6100, 4904, 3906, 10378 /* -5 */ 3121, 2501, 1991, 1586, 1277, 10379 /* 0 */ 1024, 820, 655, 526, 423, 10380 /* 5 */ 335, 272, 215, 172, 137, 10381 /* 10 */ 110, 87, 70, 56, 45, 10382 /* 15 */ 36, 29, 23, 18, 15, 10383 }; 10384 10385 /* 10386 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. 10387 * 10388 * In cases where the weight does not change often, we can use the 10389 * pre-calculated inverse to speed up arithmetics by turning divisions 10390 * into multiplications: 10391 */ 10392 const u32 sched_prio_to_wmult[40] = { 10393 /* -20 */ 48388, 59856, 76040, 92818, 118348, 10394 /* -15 */ 147320, 184698, 229616, 287308, 360437, 10395 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 10396 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 10397 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 10398 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 10399 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 10400 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 10401 }; 10402 10403 void call_trace_sched_update_nr_running(struct rq *rq, int count) 10404 { 10405 trace_sched_update_nr_running_tp(rq, count); 10406 } 10407 10408 #ifdef CONFIG_SCHED_MM_CID 10409 10410 /* 10411 * @cid_lock: Guarantee forward-progress of cid allocation. 10412 * 10413 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock 10414 * is only used when contention is detected by the lock-free allocation so 10415 * forward progress can be guaranteed. 10416 */ 10417 DEFINE_RAW_SPINLOCK(cid_lock); 10418 10419 /* 10420 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. 10421 * 10422 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is 10423 * detected, it is set to 1 to ensure that all newly coming allocations are 10424 * serialized by @cid_lock until the allocation which detected contention 10425 * completes and sets @use_cid_lock back to 0. This guarantees forward progress 10426 * of a cid allocation. 10427 */ 10428 int use_cid_lock; 10429 10430 /* 10431 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid 10432 * concurrently with respect to the execution of the source runqueue context 10433 * switch. 10434 * 10435 * There is one basic properties we want to guarantee here: 10436 * 10437 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively 10438 * used by a task. That would lead to concurrent allocation of the cid and 10439 * userspace corruption. 10440 * 10441 * Provide this guarantee by introducing a Dekker memory ordering to guarantee 10442 * that a pair of loads observe at least one of a pair of stores, which can be 10443 * shown as: 10444 * 10445 * X = Y = 0 10446 * 10447 * w[X]=1 w[Y]=1 10448 * MB MB 10449 * r[Y]=y r[X]=x 10450 * 10451 * Which guarantees that x==0 && y==0 is impossible. But rather than using 10452 * values 0 and 1, this algorithm cares about specific state transitions of the 10453 * runqueue current task (as updated by the scheduler context switch), and the 10454 * per-mm/cpu cid value. 10455 * 10456 * Let's introduce task (Y) which has task->mm == mm and task (N) which has 10457 * task->mm != mm for the rest of the discussion. There are two scheduler state 10458 * transitions on context switch we care about: 10459 * 10460 * (TSA) Store to rq->curr with transition from (N) to (Y) 10461 * 10462 * (TSB) Store to rq->curr with transition from (Y) to (N) 10463 * 10464 * On the remote-clear side, there is one transition we care about: 10465 * 10466 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag 10467 * 10468 * There is also a transition to UNSET state which can be performed from all 10469 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which 10470 * guarantees that only a single thread will succeed: 10471 * 10472 * (TMB) cmpxchg to *pcpu_cid to mark UNSET 10473 * 10474 * Just to be clear, what we do _not_ want to happen is a transition to UNSET 10475 * when a thread is actively using the cid (property (1)). 10476 * 10477 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. 10478 * 10479 * Scenario A) (TSA)+(TMA) (from next task perspective) 10480 * 10481 * CPU0 CPU1 10482 * 10483 * Context switch CS-1 Remote-clear 10484 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) 10485 * (implied barrier after cmpxchg) 10486 * - switch_mm_cid() 10487 * - memory barrier (see switch_mm_cid() 10488 * comment explaining how this barrier 10489 * is combined with other scheduler 10490 * barriers) 10491 * - mm_cid_get (next) 10492 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) 10493 * 10494 * This Dekker ensures that either task (Y) is observed by the 10495 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are 10496 * observed. 10497 * 10498 * If task (Y) store is observed by rcu_dereference(), it means that there is 10499 * still an active task on the cpu. Remote-clear will therefore not transition 10500 * to UNSET, which fulfills property (1). 10501 * 10502 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), 10503 * it will move its state to UNSET, which clears the percpu cid perhaps 10504 * uselessly (which is not an issue for correctness). Because task (Y) is not 10505 * observed, CPU1 can move ahead to set the state to UNSET. Because moving 10506 * state to UNSET is done with a cmpxchg expecting that the old state has the 10507 * LAZY flag set, only one thread will successfully UNSET. 10508 * 10509 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 10510 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and 10511 * CPU1 will observe task (Y) and do nothing more, which is fine. 10512 * 10513 * What we are effectively preventing with this Dekker is a scenario where 10514 * neither LAZY flag nor store (Y) are observed, which would fail property (1) 10515 * because this would UNSET a cid which is actively used. 10516 */ 10517 10518 void sched_mm_cid_migrate_from(struct task_struct *t) 10519 { 10520 t->migrate_from_cpu = task_cpu(t); 10521 } 10522 10523 static 10524 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, 10525 struct task_struct *t, 10526 struct mm_cid *src_pcpu_cid) 10527 { 10528 struct mm_struct *mm = t->mm; 10529 struct task_struct *src_task; 10530 int src_cid, last_mm_cid; 10531 10532 if (!mm) 10533 return -1; 10534 10535 last_mm_cid = t->last_mm_cid; 10536 /* 10537 * If the migrated task has no last cid, or if the current 10538 * task on src rq uses the cid, it means the source cid does not need 10539 * to be moved to the destination cpu. 10540 */ 10541 if (last_mm_cid == -1) 10542 return -1; 10543 src_cid = READ_ONCE(src_pcpu_cid->cid); 10544 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) 10545 return -1; 10546 10547 /* 10548 * If we observe an active task using the mm on this rq, it means we 10549 * are not the last task to be migrated from this cpu for this mm, so 10550 * there is no need to move src_cid to the destination cpu. 10551 */ 10552 guard(rcu)(); 10553 src_task = rcu_dereference(src_rq->curr); 10554 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10555 t->last_mm_cid = -1; 10556 return -1; 10557 } 10558 10559 return src_cid; 10560 } 10561 10562 static 10563 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, 10564 struct task_struct *t, 10565 struct mm_cid *src_pcpu_cid, 10566 int src_cid) 10567 { 10568 struct task_struct *src_task; 10569 struct mm_struct *mm = t->mm; 10570 int lazy_cid; 10571 10572 if (src_cid == -1) 10573 return -1; 10574 10575 /* 10576 * Attempt to clear the source cpu cid to move it to the destination 10577 * cpu. 10578 */ 10579 lazy_cid = mm_cid_set_lazy_put(src_cid); 10580 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) 10581 return -1; 10582 10583 /* 10584 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10585 * rq->curr->mm matches the scheduler barrier in context_switch() 10586 * between store to rq->curr and load of prev and next task's 10587 * per-mm/cpu cid. 10588 * 10589 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10590 * rq->curr->mm_cid_active matches the barrier in 10591 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10592 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10593 * load of per-mm/cpu cid. 10594 */ 10595 10596 /* 10597 * If we observe an active task using the mm on this rq after setting 10598 * the lazy-put flag, this task will be responsible for transitioning 10599 * from lazy-put flag set to MM_CID_UNSET. 10600 */ 10601 scoped_guard (rcu) { 10602 src_task = rcu_dereference(src_rq->curr); 10603 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10604 /* 10605 * We observed an active task for this mm, there is therefore 10606 * no point in moving this cid to the destination cpu. 10607 */ 10608 t->last_mm_cid = -1; 10609 return -1; 10610 } 10611 } 10612 10613 /* 10614 * The src_cid is unused, so it can be unset. 10615 */ 10616 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10617 return -1; 10618 WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET); 10619 return src_cid; 10620 } 10621 10622 /* 10623 * Migration to dst cpu. Called with dst_rq lock held. 10624 * Interrupts are disabled, which keeps the window of cid ownership without the 10625 * source rq lock held small. 10626 */ 10627 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) 10628 { 10629 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; 10630 struct mm_struct *mm = t->mm; 10631 int src_cid, src_cpu; 10632 bool dst_cid_is_set; 10633 struct rq *src_rq; 10634 10635 lockdep_assert_rq_held(dst_rq); 10636 10637 if (!mm) 10638 return; 10639 src_cpu = t->migrate_from_cpu; 10640 if (src_cpu == -1) { 10641 t->last_mm_cid = -1; 10642 return; 10643 } 10644 /* 10645 * Move the src cid if the dst cid is unset. This keeps id 10646 * allocation closest to 0 in cases where few threads migrate around 10647 * many CPUs. 10648 * 10649 * If destination cid or recent cid is already set, we may have 10650 * to just clear the src cid to ensure compactness in frequent 10651 * migrations scenarios. 10652 * 10653 * It is not useful to clear the src cid when the number of threads is 10654 * greater or equal to the number of allowed CPUs, because user-space 10655 * can expect that the number of allowed cids can reach the number of 10656 * allowed CPUs. 10657 */ 10658 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); 10659 dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) || 10660 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid)); 10661 if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed)) 10662 return; 10663 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); 10664 src_rq = cpu_rq(src_cpu); 10665 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); 10666 if (src_cid == -1) 10667 return; 10668 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, 10669 src_cid); 10670 if (src_cid == -1) 10671 return; 10672 if (dst_cid_is_set) { 10673 __mm_cid_put(mm, src_cid); 10674 return; 10675 } 10676 /* Move src_cid to dst cpu. */ 10677 mm_cid_snapshot_time(dst_rq, mm); 10678 WRITE_ONCE(dst_pcpu_cid->cid, src_cid); 10679 WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid); 10680 } 10681 10682 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, 10683 int cpu) 10684 { 10685 struct rq *rq = cpu_rq(cpu); 10686 struct task_struct *t; 10687 int cid, lazy_cid; 10688 10689 cid = READ_ONCE(pcpu_cid->cid); 10690 if (!mm_cid_is_valid(cid)) 10691 return; 10692 10693 /* 10694 * Clear the cpu cid if it is set to keep cid allocation compact. If 10695 * there happens to be other tasks left on the source cpu using this 10696 * mm, the next task using this mm will reallocate its cid on context 10697 * switch. 10698 */ 10699 lazy_cid = mm_cid_set_lazy_put(cid); 10700 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) 10701 return; 10702 10703 /* 10704 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10705 * rq->curr->mm matches the scheduler barrier in context_switch() 10706 * between store to rq->curr and load of prev and next task's 10707 * per-mm/cpu cid. 10708 * 10709 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10710 * rq->curr->mm_cid_active matches the barrier in 10711 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10712 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10713 * load of per-mm/cpu cid. 10714 */ 10715 10716 /* 10717 * If we observe an active task using the mm on this rq after setting 10718 * the lazy-put flag, that task will be responsible for transitioning 10719 * from lazy-put flag set to MM_CID_UNSET. 10720 */ 10721 scoped_guard (rcu) { 10722 t = rcu_dereference(rq->curr); 10723 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) 10724 return; 10725 } 10726 10727 /* 10728 * The cid is unused, so it can be unset. 10729 * Disable interrupts to keep the window of cid ownership without rq 10730 * lock small. 10731 */ 10732 scoped_guard (irqsave) { 10733 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10734 __mm_cid_put(mm, cid); 10735 } 10736 } 10737 10738 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) 10739 { 10740 struct rq *rq = cpu_rq(cpu); 10741 struct mm_cid *pcpu_cid; 10742 struct task_struct *curr; 10743 u64 rq_clock; 10744 10745 /* 10746 * rq->clock load is racy on 32-bit but one spurious clear once in a 10747 * while is irrelevant. 10748 */ 10749 rq_clock = READ_ONCE(rq->clock); 10750 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10751 10752 /* 10753 * In order to take care of infrequently scheduled tasks, bump the time 10754 * snapshot associated with this cid if an active task using the mm is 10755 * observed on this rq. 10756 */ 10757 scoped_guard (rcu) { 10758 curr = rcu_dereference(rq->curr); 10759 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { 10760 WRITE_ONCE(pcpu_cid->time, rq_clock); 10761 return; 10762 } 10763 } 10764 10765 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) 10766 return; 10767 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10768 } 10769 10770 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, 10771 int weight) 10772 { 10773 struct mm_cid *pcpu_cid; 10774 int cid; 10775 10776 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10777 cid = READ_ONCE(pcpu_cid->cid); 10778 if (!mm_cid_is_valid(cid) || cid < weight) 10779 return; 10780 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10781 } 10782 10783 static void task_mm_cid_work(struct callback_head *work) 10784 { 10785 unsigned long now = jiffies, old_scan, next_scan; 10786 struct task_struct *t = current; 10787 struct cpumask *cidmask; 10788 struct mm_struct *mm; 10789 int weight, cpu; 10790 10791 WARN_ON_ONCE(t != container_of(work, struct task_struct, cid_work)); 10792 10793 work->next = work; /* Prevent double-add */ 10794 if (t->flags & PF_EXITING) 10795 return; 10796 mm = t->mm; 10797 if (!mm) 10798 return; 10799 old_scan = READ_ONCE(mm->mm_cid_next_scan); 10800 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10801 if (!old_scan) { 10802 unsigned long res; 10803 10804 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); 10805 if (res != old_scan) 10806 old_scan = res; 10807 else 10808 old_scan = next_scan; 10809 } 10810 if (time_before(now, old_scan)) 10811 return; 10812 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) 10813 return; 10814 cidmask = mm_cidmask(mm); 10815 /* Clear cids that were not recently used. */ 10816 for_each_possible_cpu(cpu) 10817 sched_mm_cid_remote_clear_old(mm, cpu); 10818 weight = cpumask_weight(cidmask); 10819 /* 10820 * Clear cids that are greater or equal to the cidmask weight to 10821 * recompact it. 10822 */ 10823 for_each_possible_cpu(cpu) 10824 sched_mm_cid_remote_clear_weight(mm, cpu, weight); 10825 } 10826 10827 void init_sched_mm_cid(struct task_struct *t) 10828 { 10829 struct mm_struct *mm = t->mm; 10830 int mm_users = 0; 10831 10832 if (mm) { 10833 mm_users = atomic_read(&mm->mm_users); 10834 if (mm_users == 1) 10835 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10836 } 10837 t->cid_work.next = &t->cid_work; /* Protect against double add */ 10838 init_task_work(&t->cid_work, task_mm_cid_work); 10839 } 10840 10841 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) 10842 { 10843 struct callback_head *work = &curr->cid_work; 10844 unsigned long now = jiffies; 10845 10846 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || 10847 work->next != work) 10848 return; 10849 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) 10850 return; 10851 10852 /* No page allocation under rq lock */ 10853 task_work_add(curr, work, TWA_RESUME); 10854 } 10855 10856 void sched_mm_cid_exit_signals(struct task_struct *t) 10857 { 10858 struct mm_struct *mm = t->mm; 10859 struct rq *rq; 10860 10861 if (!mm) 10862 return; 10863 10864 preempt_disable(); 10865 rq = this_rq(); 10866 guard(rq_lock_irqsave)(rq); 10867 preempt_enable_no_resched(); /* holding spinlock */ 10868 WRITE_ONCE(t->mm_cid_active, 0); 10869 /* 10870 * Store t->mm_cid_active before loading per-mm/cpu cid. 10871 * Matches barrier in sched_mm_cid_remote_clear_old(). 10872 */ 10873 smp_mb(); 10874 mm_cid_put(mm); 10875 t->last_mm_cid = t->mm_cid = -1; 10876 } 10877 10878 void sched_mm_cid_before_execve(struct task_struct *t) 10879 { 10880 struct mm_struct *mm = t->mm; 10881 struct rq *rq; 10882 10883 if (!mm) 10884 return; 10885 10886 preempt_disable(); 10887 rq = this_rq(); 10888 guard(rq_lock_irqsave)(rq); 10889 preempt_enable_no_resched(); /* holding spinlock */ 10890 WRITE_ONCE(t->mm_cid_active, 0); 10891 /* 10892 * Store t->mm_cid_active before loading per-mm/cpu cid. 10893 * Matches barrier in sched_mm_cid_remote_clear_old(). 10894 */ 10895 smp_mb(); 10896 mm_cid_put(mm); 10897 t->last_mm_cid = t->mm_cid = -1; 10898 } 10899 10900 void sched_mm_cid_after_execve(struct task_struct *t) 10901 { 10902 struct mm_struct *mm = t->mm; 10903 struct rq *rq; 10904 10905 if (!mm) 10906 return; 10907 10908 preempt_disable(); 10909 rq = this_rq(); 10910 scoped_guard (rq_lock_irqsave, rq) { 10911 preempt_enable_no_resched(); /* holding spinlock */ 10912 WRITE_ONCE(t->mm_cid_active, 1); 10913 /* 10914 * Store t->mm_cid_active before loading per-mm/cpu cid. 10915 * Matches barrier in sched_mm_cid_remote_clear_old(). 10916 */ 10917 smp_mb(); 10918 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm); 10919 } 10920 } 10921 10922 void sched_mm_cid_fork(struct task_struct *t) 10923 { 10924 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 10925 t->mm_cid_active = 1; 10926 } 10927 #endif /* CONFIG_SCHED_MM_CID */ 10928 10929 #ifdef CONFIG_SCHED_CLASS_EXT 10930 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 10931 struct sched_enq_and_set_ctx *ctx) 10932 { 10933 struct rq *rq = task_rq(p); 10934 10935 lockdep_assert_rq_held(rq); 10936 10937 *ctx = (struct sched_enq_and_set_ctx){ 10938 .p = p, 10939 .queue_flags = queue_flags, 10940 .queued = task_on_rq_queued(p), 10941 .running = task_current(rq, p), 10942 }; 10943 10944 update_rq_clock(rq); 10945 if (ctx->queued) 10946 dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK); 10947 if (ctx->running) 10948 put_prev_task(rq, p); 10949 } 10950 10951 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx) 10952 { 10953 struct rq *rq = task_rq(ctx->p); 10954 10955 lockdep_assert_rq_held(rq); 10956 10957 if (ctx->queued) 10958 enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK); 10959 if (ctx->running) 10960 set_next_task(rq, ctx->p); 10961 } 10962 #endif /* CONFIG_SCHED_CLASS_EXT */ 10963