1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include "sched.h" 10 11 #include <linux/nospec.h> 12 13 #include <linux/kcov.h> 14 #include <linux/scs.h> 15 16 #include <asm/switch_to.h> 17 #include <asm/tlb.h> 18 19 #include "../workqueue_internal.h" 20 #include "../../fs/io-wq.h" 21 #include "../smpboot.h" 22 23 #include "pelt.h" 24 #include "smp.h" 25 26 #define CREATE_TRACE_POINTS 27 #include <trace/events/sched.h> 28 29 /* 30 * Export tracepoints that act as a bare tracehook (ie: have no trace event 31 * associated with them) to allow external modules to probe them. 32 */ 33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 39 40 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 41 42 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL) 43 /* 44 * Debugging: various feature bits 45 * 46 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 47 * sysctl_sched_features, defined in sched.h, to allow constants propagation 48 * at compile time and compiler optimization based on features default. 49 */ 50 #define SCHED_FEAT(name, enabled) \ 51 (1UL << __SCHED_FEAT_##name) * enabled | 52 const_debug unsigned int sysctl_sched_features = 53 #include "features.h" 54 0; 55 #undef SCHED_FEAT 56 #endif 57 58 /* 59 * Number of tasks to iterate in a single balance run. 60 * Limited because this is done with IRQs disabled. 61 */ 62 const_debug unsigned int sysctl_sched_nr_migrate = 32; 63 64 /* 65 * period over which we measure -rt task CPU usage in us. 66 * default: 1s 67 */ 68 unsigned int sysctl_sched_rt_period = 1000000; 69 70 __read_mostly int scheduler_running; 71 72 /* 73 * part of the period that we allow rt tasks to run in us. 74 * default: 0.95s 75 */ 76 int sysctl_sched_rt_runtime = 950000; 77 78 /* 79 * __task_rq_lock - lock the rq @p resides on. 80 */ 81 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 82 __acquires(rq->lock) 83 { 84 struct rq *rq; 85 86 lockdep_assert_held(&p->pi_lock); 87 88 for (;;) { 89 rq = task_rq(p); 90 raw_spin_lock(&rq->lock); 91 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 92 rq_pin_lock(rq, rf); 93 return rq; 94 } 95 raw_spin_unlock(&rq->lock); 96 97 while (unlikely(task_on_rq_migrating(p))) 98 cpu_relax(); 99 } 100 } 101 102 /* 103 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 104 */ 105 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 106 __acquires(p->pi_lock) 107 __acquires(rq->lock) 108 { 109 struct rq *rq; 110 111 for (;;) { 112 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 113 rq = task_rq(p); 114 raw_spin_lock(&rq->lock); 115 /* 116 * move_queued_task() task_rq_lock() 117 * 118 * ACQUIRE (rq->lock) 119 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 120 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 121 * [S] ->cpu = new_cpu [L] task_rq() 122 * [L] ->on_rq 123 * RELEASE (rq->lock) 124 * 125 * If we observe the old CPU in task_rq_lock(), the acquire of 126 * the old rq->lock will fully serialize against the stores. 127 * 128 * If we observe the new CPU in task_rq_lock(), the address 129 * dependency headed by '[L] rq = task_rq()' and the acquire 130 * will pair with the WMB to ensure we then also see migrating. 131 */ 132 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 133 rq_pin_lock(rq, rf); 134 return rq; 135 } 136 raw_spin_unlock(&rq->lock); 137 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 138 139 while (unlikely(task_on_rq_migrating(p))) 140 cpu_relax(); 141 } 142 } 143 144 /* 145 * RQ-clock updating methods: 146 */ 147 148 static void update_rq_clock_task(struct rq *rq, s64 delta) 149 { 150 /* 151 * In theory, the compile should just see 0 here, and optimize out the call 152 * to sched_rt_avg_update. But I don't trust it... 153 */ 154 s64 __maybe_unused steal = 0, irq_delta = 0; 155 156 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 157 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 158 159 /* 160 * Since irq_time is only updated on {soft,}irq_exit, we might run into 161 * this case when a previous update_rq_clock() happened inside a 162 * {soft,}irq region. 163 * 164 * When this happens, we stop ->clock_task and only update the 165 * prev_irq_time stamp to account for the part that fit, so that a next 166 * update will consume the rest. This ensures ->clock_task is 167 * monotonic. 168 * 169 * It does however cause some slight miss-attribution of {soft,}irq 170 * time, a more accurate solution would be to update the irq_time using 171 * the current rq->clock timestamp, except that would require using 172 * atomic ops. 173 */ 174 if (irq_delta > delta) 175 irq_delta = delta; 176 177 rq->prev_irq_time += irq_delta; 178 delta -= irq_delta; 179 #endif 180 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 181 if (static_key_false((¶virt_steal_rq_enabled))) { 182 steal = paravirt_steal_clock(cpu_of(rq)); 183 steal -= rq->prev_steal_time_rq; 184 185 if (unlikely(steal > delta)) 186 steal = delta; 187 188 rq->prev_steal_time_rq += steal; 189 delta -= steal; 190 } 191 #endif 192 193 rq->clock_task += delta; 194 195 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 196 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 197 update_irq_load_avg(rq, irq_delta + steal); 198 #endif 199 update_rq_clock_pelt(rq, delta); 200 } 201 202 void update_rq_clock(struct rq *rq) 203 { 204 s64 delta; 205 206 lockdep_assert_held(&rq->lock); 207 208 if (rq->clock_update_flags & RQCF_ACT_SKIP) 209 return; 210 211 #ifdef CONFIG_SCHED_DEBUG 212 if (sched_feat(WARN_DOUBLE_CLOCK)) 213 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 214 rq->clock_update_flags |= RQCF_UPDATED; 215 #endif 216 217 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 218 if (delta < 0) 219 return; 220 rq->clock += delta; 221 update_rq_clock_task(rq, delta); 222 } 223 224 static inline void 225 rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func) 226 { 227 csd->flags = 0; 228 csd->func = func; 229 csd->info = rq; 230 } 231 232 #ifdef CONFIG_SCHED_HRTICK 233 /* 234 * Use HR-timers to deliver accurate preemption points. 235 */ 236 237 static void hrtick_clear(struct rq *rq) 238 { 239 if (hrtimer_active(&rq->hrtick_timer)) 240 hrtimer_cancel(&rq->hrtick_timer); 241 } 242 243 /* 244 * High-resolution timer tick. 245 * Runs from hardirq context with interrupts disabled. 246 */ 247 static enum hrtimer_restart hrtick(struct hrtimer *timer) 248 { 249 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 250 struct rq_flags rf; 251 252 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 253 254 rq_lock(rq, &rf); 255 update_rq_clock(rq); 256 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 257 rq_unlock(rq, &rf); 258 259 return HRTIMER_NORESTART; 260 } 261 262 #ifdef CONFIG_SMP 263 264 static void __hrtick_restart(struct rq *rq) 265 { 266 struct hrtimer *timer = &rq->hrtick_timer; 267 268 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 269 } 270 271 /* 272 * called from hardirq (IPI) context 273 */ 274 static void __hrtick_start(void *arg) 275 { 276 struct rq *rq = arg; 277 struct rq_flags rf; 278 279 rq_lock(rq, &rf); 280 __hrtick_restart(rq); 281 rq_unlock(rq, &rf); 282 } 283 284 /* 285 * Called to set the hrtick timer state. 286 * 287 * called with rq->lock held and irqs disabled 288 */ 289 void hrtick_start(struct rq *rq, u64 delay) 290 { 291 struct hrtimer *timer = &rq->hrtick_timer; 292 ktime_t time; 293 s64 delta; 294 295 /* 296 * Don't schedule slices shorter than 10000ns, that just 297 * doesn't make sense and can cause timer DoS. 298 */ 299 delta = max_t(s64, delay, 10000LL); 300 time = ktime_add_ns(timer->base->get_time(), delta); 301 302 hrtimer_set_expires(timer, time); 303 304 if (rq == this_rq()) 305 __hrtick_restart(rq); 306 else 307 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 308 } 309 310 #else 311 /* 312 * Called to set the hrtick timer state. 313 * 314 * called with rq->lock held and irqs disabled 315 */ 316 void hrtick_start(struct rq *rq, u64 delay) 317 { 318 /* 319 * Don't schedule slices shorter than 10000ns, that just 320 * doesn't make sense. Rely on vruntime for fairness. 321 */ 322 delay = max_t(u64, delay, 10000LL); 323 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 324 HRTIMER_MODE_REL_PINNED_HARD); 325 } 326 327 #endif /* CONFIG_SMP */ 328 329 static void hrtick_rq_init(struct rq *rq) 330 { 331 #ifdef CONFIG_SMP 332 rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start); 333 #endif 334 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 335 rq->hrtick_timer.function = hrtick; 336 } 337 #else /* CONFIG_SCHED_HRTICK */ 338 static inline void hrtick_clear(struct rq *rq) 339 { 340 } 341 342 static inline void hrtick_rq_init(struct rq *rq) 343 { 344 } 345 #endif /* CONFIG_SCHED_HRTICK */ 346 347 /* 348 * cmpxchg based fetch_or, macro so it works for different integer types 349 */ 350 #define fetch_or(ptr, mask) \ 351 ({ \ 352 typeof(ptr) _ptr = (ptr); \ 353 typeof(mask) _mask = (mask); \ 354 typeof(*_ptr) _old, _val = *_ptr; \ 355 \ 356 for (;;) { \ 357 _old = cmpxchg(_ptr, _val, _val | _mask); \ 358 if (_old == _val) \ 359 break; \ 360 _val = _old; \ 361 } \ 362 _old; \ 363 }) 364 365 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 366 /* 367 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 368 * this avoids any races wrt polling state changes and thereby avoids 369 * spurious IPIs. 370 */ 371 static bool set_nr_and_not_polling(struct task_struct *p) 372 { 373 struct thread_info *ti = task_thread_info(p); 374 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 375 } 376 377 /* 378 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 379 * 380 * If this returns true, then the idle task promises to call 381 * sched_ttwu_pending() and reschedule soon. 382 */ 383 static bool set_nr_if_polling(struct task_struct *p) 384 { 385 struct thread_info *ti = task_thread_info(p); 386 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 387 388 for (;;) { 389 if (!(val & _TIF_POLLING_NRFLAG)) 390 return false; 391 if (val & _TIF_NEED_RESCHED) 392 return true; 393 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 394 if (old == val) 395 break; 396 val = old; 397 } 398 return true; 399 } 400 401 #else 402 static bool set_nr_and_not_polling(struct task_struct *p) 403 { 404 set_tsk_need_resched(p); 405 return true; 406 } 407 408 #ifdef CONFIG_SMP 409 static bool set_nr_if_polling(struct task_struct *p) 410 { 411 return false; 412 } 413 #endif 414 #endif 415 416 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 417 { 418 struct wake_q_node *node = &task->wake_q; 419 420 /* 421 * Atomically grab the task, if ->wake_q is !nil already it means 422 * its already queued (either by us or someone else) and will get the 423 * wakeup due to that. 424 * 425 * In order to ensure that a pending wakeup will observe our pending 426 * state, even in the failed case, an explicit smp_mb() must be used. 427 */ 428 smp_mb__before_atomic(); 429 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 430 return false; 431 432 /* 433 * The head is context local, there can be no concurrency. 434 */ 435 *head->lastp = node; 436 head->lastp = &node->next; 437 return true; 438 } 439 440 /** 441 * wake_q_add() - queue a wakeup for 'later' waking. 442 * @head: the wake_q_head to add @task to 443 * @task: the task to queue for 'later' wakeup 444 * 445 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 446 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 447 * instantly. 448 * 449 * This function must be used as-if it were wake_up_process(); IOW the task 450 * must be ready to be woken at this location. 451 */ 452 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 453 { 454 if (__wake_q_add(head, task)) 455 get_task_struct(task); 456 } 457 458 /** 459 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 460 * @head: the wake_q_head to add @task to 461 * @task: the task to queue for 'later' wakeup 462 * 463 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 464 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 465 * instantly. 466 * 467 * This function must be used as-if it were wake_up_process(); IOW the task 468 * must be ready to be woken at this location. 469 * 470 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 471 * that already hold reference to @task can call the 'safe' version and trust 472 * wake_q to do the right thing depending whether or not the @task is already 473 * queued for wakeup. 474 */ 475 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 476 { 477 if (!__wake_q_add(head, task)) 478 put_task_struct(task); 479 } 480 481 void wake_up_q(struct wake_q_head *head) 482 { 483 struct wake_q_node *node = head->first; 484 485 while (node != WAKE_Q_TAIL) { 486 struct task_struct *task; 487 488 task = container_of(node, struct task_struct, wake_q); 489 BUG_ON(!task); 490 /* Task can safely be re-inserted now: */ 491 node = node->next; 492 task->wake_q.next = NULL; 493 494 /* 495 * wake_up_process() executes a full barrier, which pairs with 496 * the queueing in wake_q_add() so as not to miss wakeups. 497 */ 498 wake_up_process(task); 499 put_task_struct(task); 500 } 501 } 502 503 /* 504 * resched_curr - mark rq's current task 'to be rescheduled now'. 505 * 506 * On UP this means the setting of the need_resched flag, on SMP it 507 * might also involve a cross-CPU call to trigger the scheduler on 508 * the target CPU. 509 */ 510 void resched_curr(struct rq *rq) 511 { 512 struct task_struct *curr = rq->curr; 513 int cpu; 514 515 lockdep_assert_held(&rq->lock); 516 517 if (test_tsk_need_resched(curr)) 518 return; 519 520 cpu = cpu_of(rq); 521 522 if (cpu == smp_processor_id()) { 523 set_tsk_need_resched(curr); 524 set_preempt_need_resched(); 525 return; 526 } 527 528 if (set_nr_and_not_polling(curr)) 529 smp_send_reschedule(cpu); 530 else 531 trace_sched_wake_idle_without_ipi(cpu); 532 } 533 534 void resched_cpu(int cpu) 535 { 536 struct rq *rq = cpu_rq(cpu); 537 unsigned long flags; 538 539 raw_spin_lock_irqsave(&rq->lock, flags); 540 if (cpu_online(cpu) || cpu == smp_processor_id()) 541 resched_curr(rq); 542 raw_spin_unlock_irqrestore(&rq->lock, flags); 543 } 544 545 #ifdef CONFIG_SMP 546 #ifdef CONFIG_NO_HZ_COMMON 547 /* 548 * In the semi idle case, use the nearest busy CPU for migrating timers 549 * from an idle CPU. This is good for power-savings. 550 * 551 * We don't do similar optimization for completely idle system, as 552 * selecting an idle CPU will add more delays to the timers than intended 553 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 554 */ 555 int get_nohz_timer_target(void) 556 { 557 int i, cpu = smp_processor_id(), default_cpu = -1; 558 struct sched_domain *sd; 559 560 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) { 561 if (!idle_cpu(cpu)) 562 return cpu; 563 default_cpu = cpu; 564 } 565 566 rcu_read_lock(); 567 for_each_domain(cpu, sd) { 568 for_each_cpu_and(i, sched_domain_span(sd), 569 housekeeping_cpumask(HK_FLAG_TIMER)) { 570 if (cpu == i) 571 continue; 572 573 if (!idle_cpu(i)) { 574 cpu = i; 575 goto unlock; 576 } 577 } 578 } 579 580 if (default_cpu == -1) 581 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 582 cpu = default_cpu; 583 unlock: 584 rcu_read_unlock(); 585 return cpu; 586 } 587 588 /* 589 * When add_timer_on() enqueues a timer into the timer wheel of an 590 * idle CPU then this timer might expire before the next timer event 591 * which is scheduled to wake up that CPU. In case of a completely 592 * idle system the next event might even be infinite time into the 593 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 594 * leaves the inner idle loop so the newly added timer is taken into 595 * account when the CPU goes back to idle and evaluates the timer 596 * wheel for the next timer event. 597 */ 598 static void wake_up_idle_cpu(int cpu) 599 { 600 struct rq *rq = cpu_rq(cpu); 601 602 if (cpu == smp_processor_id()) 603 return; 604 605 if (set_nr_and_not_polling(rq->idle)) 606 smp_send_reschedule(cpu); 607 else 608 trace_sched_wake_idle_without_ipi(cpu); 609 } 610 611 static bool wake_up_full_nohz_cpu(int cpu) 612 { 613 /* 614 * We just need the target to call irq_exit() and re-evaluate 615 * the next tick. The nohz full kick at least implies that. 616 * If needed we can still optimize that later with an 617 * empty IRQ. 618 */ 619 if (cpu_is_offline(cpu)) 620 return true; /* Don't try to wake offline CPUs. */ 621 if (tick_nohz_full_cpu(cpu)) { 622 if (cpu != smp_processor_id() || 623 tick_nohz_tick_stopped()) 624 tick_nohz_full_kick_cpu(cpu); 625 return true; 626 } 627 628 return false; 629 } 630 631 /* 632 * Wake up the specified CPU. If the CPU is going offline, it is the 633 * caller's responsibility to deal with the lost wakeup, for example, 634 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 635 */ 636 void wake_up_nohz_cpu(int cpu) 637 { 638 if (!wake_up_full_nohz_cpu(cpu)) 639 wake_up_idle_cpu(cpu); 640 } 641 642 static void nohz_csd_func(void *info) 643 { 644 struct rq *rq = info; 645 int cpu = cpu_of(rq); 646 unsigned int flags; 647 648 /* 649 * Release the rq::nohz_csd. 650 */ 651 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 652 WARN_ON(!(flags & NOHZ_KICK_MASK)); 653 654 rq->idle_balance = idle_cpu(cpu); 655 if (rq->idle_balance && !need_resched()) { 656 rq->nohz_idle_balance = flags; 657 raise_softirq_irqoff(SCHED_SOFTIRQ); 658 } 659 } 660 661 #endif /* CONFIG_NO_HZ_COMMON */ 662 663 #ifdef CONFIG_NO_HZ_FULL 664 bool sched_can_stop_tick(struct rq *rq) 665 { 666 int fifo_nr_running; 667 668 /* Deadline tasks, even if single, need the tick */ 669 if (rq->dl.dl_nr_running) 670 return false; 671 672 /* 673 * If there are more than one RR tasks, we need the tick to effect the 674 * actual RR behaviour. 675 */ 676 if (rq->rt.rr_nr_running) { 677 if (rq->rt.rr_nr_running == 1) 678 return true; 679 else 680 return false; 681 } 682 683 /* 684 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 685 * forced preemption between FIFO tasks. 686 */ 687 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 688 if (fifo_nr_running) 689 return true; 690 691 /* 692 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 693 * if there's more than one we need the tick for involuntary 694 * preemption. 695 */ 696 if (rq->nr_running > 1) 697 return false; 698 699 return true; 700 } 701 #endif /* CONFIG_NO_HZ_FULL */ 702 #endif /* CONFIG_SMP */ 703 704 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 705 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 706 /* 707 * Iterate task_group tree rooted at *from, calling @down when first entering a 708 * node and @up when leaving it for the final time. 709 * 710 * Caller must hold rcu_lock or sufficient equivalent. 711 */ 712 int walk_tg_tree_from(struct task_group *from, 713 tg_visitor down, tg_visitor up, void *data) 714 { 715 struct task_group *parent, *child; 716 int ret; 717 718 parent = from; 719 720 down: 721 ret = (*down)(parent, data); 722 if (ret) 723 goto out; 724 list_for_each_entry_rcu(child, &parent->children, siblings) { 725 parent = child; 726 goto down; 727 728 up: 729 continue; 730 } 731 ret = (*up)(parent, data); 732 if (ret || parent == from) 733 goto out; 734 735 child = parent; 736 parent = parent->parent; 737 if (parent) 738 goto up; 739 out: 740 return ret; 741 } 742 743 int tg_nop(struct task_group *tg, void *data) 744 { 745 return 0; 746 } 747 #endif 748 749 static void set_load_weight(struct task_struct *p, bool update_load) 750 { 751 int prio = p->static_prio - MAX_RT_PRIO; 752 struct load_weight *load = &p->se.load; 753 754 /* 755 * SCHED_IDLE tasks get minimal weight: 756 */ 757 if (task_has_idle_policy(p)) { 758 load->weight = scale_load(WEIGHT_IDLEPRIO); 759 load->inv_weight = WMULT_IDLEPRIO; 760 return; 761 } 762 763 /* 764 * SCHED_OTHER tasks have to update their load when changing their 765 * weight 766 */ 767 if (update_load && p->sched_class == &fair_sched_class) { 768 reweight_task(p, prio); 769 } else { 770 load->weight = scale_load(sched_prio_to_weight[prio]); 771 load->inv_weight = sched_prio_to_wmult[prio]; 772 } 773 } 774 775 #ifdef CONFIG_UCLAMP_TASK 776 /* 777 * Serializes updates of utilization clamp values 778 * 779 * The (slow-path) user-space triggers utilization clamp value updates which 780 * can require updates on (fast-path) scheduler's data structures used to 781 * support enqueue/dequeue operations. 782 * While the per-CPU rq lock protects fast-path update operations, user-space 783 * requests are serialized using a mutex to reduce the risk of conflicting 784 * updates or API abuses. 785 */ 786 static DEFINE_MUTEX(uclamp_mutex); 787 788 /* Max allowed minimum utilization */ 789 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 790 791 /* Max allowed maximum utilization */ 792 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 793 794 /* All clamps are required to be less or equal than these values */ 795 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 796 797 /* Integer rounded range for each bucket */ 798 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 799 800 #define for_each_clamp_id(clamp_id) \ 801 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 802 803 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 804 { 805 return clamp_value / UCLAMP_BUCKET_DELTA; 806 } 807 808 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value) 809 { 810 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value); 811 } 812 813 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 814 { 815 if (clamp_id == UCLAMP_MIN) 816 return 0; 817 return SCHED_CAPACITY_SCALE; 818 } 819 820 static inline void uclamp_se_set(struct uclamp_se *uc_se, 821 unsigned int value, bool user_defined) 822 { 823 uc_se->value = value; 824 uc_se->bucket_id = uclamp_bucket_id(value); 825 uc_se->user_defined = user_defined; 826 } 827 828 static inline unsigned int 829 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 830 unsigned int clamp_value) 831 { 832 /* 833 * Avoid blocked utilization pushing up the frequency when we go 834 * idle (which drops the max-clamp) by retaining the last known 835 * max-clamp. 836 */ 837 if (clamp_id == UCLAMP_MAX) { 838 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 839 return clamp_value; 840 } 841 842 return uclamp_none(UCLAMP_MIN); 843 } 844 845 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 846 unsigned int clamp_value) 847 { 848 /* Reset max-clamp retention only on idle exit */ 849 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 850 return; 851 852 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 853 } 854 855 static inline 856 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 857 unsigned int clamp_value) 858 { 859 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 860 int bucket_id = UCLAMP_BUCKETS - 1; 861 862 /* 863 * Since both min and max clamps are max aggregated, find the 864 * top most bucket with tasks in. 865 */ 866 for ( ; bucket_id >= 0; bucket_id--) { 867 if (!bucket[bucket_id].tasks) 868 continue; 869 return bucket[bucket_id].value; 870 } 871 872 /* No tasks -- default clamp values */ 873 return uclamp_idle_value(rq, clamp_id, clamp_value); 874 } 875 876 static inline struct uclamp_se 877 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 878 { 879 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 880 #ifdef CONFIG_UCLAMP_TASK_GROUP 881 struct uclamp_se uc_max; 882 883 /* 884 * Tasks in autogroups or root task group will be 885 * restricted by system defaults. 886 */ 887 if (task_group_is_autogroup(task_group(p))) 888 return uc_req; 889 if (task_group(p) == &root_task_group) 890 return uc_req; 891 892 uc_max = task_group(p)->uclamp[clamp_id]; 893 if (uc_req.value > uc_max.value || !uc_req.user_defined) 894 return uc_max; 895 #endif 896 897 return uc_req; 898 } 899 900 /* 901 * The effective clamp bucket index of a task depends on, by increasing 902 * priority: 903 * - the task specific clamp value, when explicitly requested from userspace 904 * - the task group effective clamp value, for tasks not either in the root 905 * group or in an autogroup 906 * - the system default clamp value, defined by the sysadmin 907 */ 908 static inline struct uclamp_se 909 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 910 { 911 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 912 struct uclamp_se uc_max = uclamp_default[clamp_id]; 913 914 /* System default restrictions always apply */ 915 if (unlikely(uc_req.value > uc_max.value)) 916 return uc_max; 917 918 return uc_req; 919 } 920 921 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 922 { 923 struct uclamp_se uc_eff; 924 925 /* Task currently refcounted: use back-annotated (effective) value */ 926 if (p->uclamp[clamp_id].active) 927 return (unsigned long)p->uclamp[clamp_id].value; 928 929 uc_eff = uclamp_eff_get(p, clamp_id); 930 931 return (unsigned long)uc_eff.value; 932 } 933 934 /* 935 * When a task is enqueued on a rq, the clamp bucket currently defined by the 936 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 937 * updates the rq's clamp value if required. 938 * 939 * Tasks can have a task-specific value requested from user-space, track 940 * within each bucket the maximum value for tasks refcounted in it. 941 * This "local max aggregation" allows to track the exact "requested" value 942 * for each bucket when all its RUNNABLE tasks require the same clamp. 943 */ 944 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 945 enum uclamp_id clamp_id) 946 { 947 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 948 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 949 struct uclamp_bucket *bucket; 950 951 lockdep_assert_held(&rq->lock); 952 953 /* Update task effective clamp */ 954 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 955 956 bucket = &uc_rq->bucket[uc_se->bucket_id]; 957 bucket->tasks++; 958 uc_se->active = true; 959 960 uclamp_idle_reset(rq, clamp_id, uc_se->value); 961 962 /* 963 * Local max aggregation: rq buckets always track the max 964 * "requested" clamp value of its RUNNABLE tasks. 965 */ 966 if (bucket->tasks == 1 || uc_se->value > bucket->value) 967 bucket->value = uc_se->value; 968 969 if (uc_se->value > READ_ONCE(uc_rq->value)) 970 WRITE_ONCE(uc_rq->value, uc_se->value); 971 } 972 973 /* 974 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 975 * is released. If this is the last task reference counting the rq's max 976 * active clamp value, then the rq's clamp value is updated. 977 * 978 * Both refcounted tasks and rq's cached clamp values are expected to be 979 * always valid. If it's detected they are not, as defensive programming, 980 * enforce the expected state and warn. 981 */ 982 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 983 enum uclamp_id clamp_id) 984 { 985 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 986 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 987 struct uclamp_bucket *bucket; 988 unsigned int bkt_clamp; 989 unsigned int rq_clamp; 990 991 lockdep_assert_held(&rq->lock); 992 993 bucket = &uc_rq->bucket[uc_se->bucket_id]; 994 SCHED_WARN_ON(!bucket->tasks); 995 if (likely(bucket->tasks)) 996 bucket->tasks--; 997 uc_se->active = false; 998 999 /* 1000 * Keep "local max aggregation" simple and accept to (possibly) 1001 * overboost some RUNNABLE tasks in the same bucket. 1002 * The rq clamp bucket value is reset to its base value whenever 1003 * there are no more RUNNABLE tasks refcounting it. 1004 */ 1005 if (likely(bucket->tasks)) 1006 return; 1007 1008 rq_clamp = READ_ONCE(uc_rq->value); 1009 /* 1010 * Defensive programming: this should never happen. If it happens, 1011 * e.g. due to future modification, warn and fixup the expected value. 1012 */ 1013 SCHED_WARN_ON(bucket->value > rq_clamp); 1014 if (bucket->value >= rq_clamp) { 1015 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1016 WRITE_ONCE(uc_rq->value, bkt_clamp); 1017 } 1018 } 1019 1020 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1021 { 1022 enum uclamp_id clamp_id; 1023 1024 if (unlikely(!p->sched_class->uclamp_enabled)) 1025 return; 1026 1027 for_each_clamp_id(clamp_id) 1028 uclamp_rq_inc_id(rq, p, clamp_id); 1029 1030 /* Reset clamp idle holding when there is one RUNNABLE task */ 1031 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1032 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1033 } 1034 1035 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1036 { 1037 enum uclamp_id clamp_id; 1038 1039 if (unlikely(!p->sched_class->uclamp_enabled)) 1040 return; 1041 1042 for_each_clamp_id(clamp_id) 1043 uclamp_rq_dec_id(rq, p, clamp_id); 1044 } 1045 1046 static inline void 1047 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id) 1048 { 1049 struct rq_flags rf; 1050 struct rq *rq; 1051 1052 /* 1053 * Lock the task and the rq where the task is (or was) queued. 1054 * 1055 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1056 * price to pay to safely serialize util_{min,max} updates with 1057 * enqueues, dequeues and migration operations. 1058 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1059 */ 1060 rq = task_rq_lock(p, &rf); 1061 1062 /* 1063 * Setting the clamp bucket is serialized by task_rq_lock(). 1064 * If the task is not yet RUNNABLE and its task_struct is not 1065 * affecting a valid clamp bucket, the next time it's enqueued, 1066 * it will already see the updated clamp bucket value. 1067 */ 1068 if (p->uclamp[clamp_id].active) { 1069 uclamp_rq_dec_id(rq, p, clamp_id); 1070 uclamp_rq_inc_id(rq, p, clamp_id); 1071 } 1072 1073 task_rq_unlock(rq, p, &rf); 1074 } 1075 1076 #ifdef CONFIG_UCLAMP_TASK_GROUP 1077 static inline void 1078 uclamp_update_active_tasks(struct cgroup_subsys_state *css, 1079 unsigned int clamps) 1080 { 1081 enum uclamp_id clamp_id; 1082 struct css_task_iter it; 1083 struct task_struct *p; 1084 1085 css_task_iter_start(css, 0, &it); 1086 while ((p = css_task_iter_next(&it))) { 1087 for_each_clamp_id(clamp_id) { 1088 if ((0x1 << clamp_id) & clamps) 1089 uclamp_update_active(p, clamp_id); 1090 } 1091 } 1092 css_task_iter_end(&it); 1093 } 1094 1095 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1096 static void uclamp_update_root_tg(void) 1097 { 1098 struct task_group *tg = &root_task_group; 1099 1100 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1101 sysctl_sched_uclamp_util_min, false); 1102 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1103 sysctl_sched_uclamp_util_max, false); 1104 1105 rcu_read_lock(); 1106 cpu_util_update_eff(&root_task_group.css); 1107 rcu_read_unlock(); 1108 } 1109 #else 1110 static void uclamp_update_root_tg(void) { } 1111 #endif 1112 1113 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1114 void *buffer, size_t *lenp, loff_t *ppos) 1115 { 1116 bool update_root_tg = false; 1117 int old_min, old_max; 1118 int result; 1119 1120 mutex_lock(&uclamp_mutex); 1121 old_min = sysctl_sched_uclamp_util_min; 1122 old_max = sysctl_sched_uclamp_util_max; 1123 1124 result = proc_dointvec(table, write, buffer, lenp, ppos); 1125 if (result) 1126 goto undo; 1127 if (!write) 1128 goto done; 1129 1130 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1131 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) { 1132 result = -EINVAL; 1133 goto undo; 1134 } 1135 1136 if (old_min != sysctl_sched_uclamp_util_min) { 1137 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1138 sysctl_sched_uclamp_util_min, false); 1139 update_root_tg = true; 1140 } 1141 if (old_max != sysctl_sched_uclamp_util_max) { 1142 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1143 sysctl_sched_uclamp_util_max, false); 1144 update_root_tg = true; 1145 } 1146 1147 if (update_root_tg) 1148 uclamp_update_root_tg(); 1149 1150 /* 1151 * We update all RUNNABLE tasks only when task groups are in use. 1152 * Otherwise, keep it simple and do just a lazy update at each next 1153 * task enqueue time. 1154 */ 1155 1156 goto done; 1157 1158 undo: 1159 sysctl_sched_uclamp_util_min = old_min; 1160 sysctl_sched_uclamp_util_max = old_max; 1161 done: 1162 mutex_unlock(&uclamp_mutex); 1163 1164 return result; 1165 } 1166 1167 static int uclamp_validate(struct task_struct *p, 1168 const struct sched_attr *attr) 1169 { 1170 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value; 1171 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value; 1172 1173 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) 1174 lower_bound = attr->sched_util_min; 1175 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) 1176 upper_bound = attr->sched_util_max; 1177 1178 if (lower_bound > upper_bound) 1179 return -EINVAL; 1180 if (upper_bound > SCHED_CAPACITY_SCALE) 1181 return -EINVAL; 1182 1183 return 0; 1184 } 1185 1186 static void __setscheduler_uclamp(struct task_struct *p, 1187 const struct sched_attr *attr) 1188 { 1189 enum uclamp_id clamp_id; 1190 1191 /* 1192 * On scheduling class change, reset to default clamps for tasks 1193 * without a task-specific value. 1194 */ 1195 for_each_clamp_id(clamp_id) { 1196 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1197 unsigned int clamp_value = uclamp_none(clamp_id); 1198 1199 /* Keep using defined clamps across class changes */ 1200 if (uc_se->user_defined) 1201 continue; 1202 1203 /* By default, RT tasks always get 100% boost */ 1204 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1205 clamp_value = uclamp_none(UCLAMP_MAX); 1206 1207 uclamp_se_set(uc_se, clamp_value, false); 1208 } 1209 1210 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1211 return; 1212 1213 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1214 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1215 attr->sched_util_min, true); 1216 } 1217 1218 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1219 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1220 attr->sched_util_max, true); 1221 } 1222 } 1223 1224 static void uclamp_fork(struct task_struct *p) 1225 { 1226 enum uclamp_id clamp_id; 1227 1228 for_each_clamp_id(clamp_id) 1229 p->uclamp[clamp_id].active = false; 1230 1231 if (likely(!p->sched_reset_on_fork)) 1232 return; 1233 1234 for_each_clamp_id(clamp_id) { 1235 uclamp_se_set(&p->uclamp_req[clamp_id], 1236 uclamp_none(clamp_id), false); 1237 } 1238 } 1239 1240 static void __init init_uclamp(void) 1241 { 1242 struct uclamp_se uc_max = {}; 1243 enum uclamp_id clamp_id; 1244 int cpu; 1245 1246 mutex_init(&uclamp_mutex); 1247 1248 for_each_possible_cpu(cpu) { 1249 memset(&cpu_rq(cpu)->uclamp, 0, 1250 sizeof(struct uclamp_rq)*UCLAMP_CNT); 1251 cpu_rq(cpu)->uclamp_flags = 0; 1252 } 1253 1254 for_each_clamp_id(clamp_id) { 1255 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1256 uclamp_none(clamp_id), false); 1257 } 1258 1259 /* System defaults allow max clamp values for both indexes */ 1260 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1261 for_each_clamp_id(clamp_id) { 1262 uclamp_default[clamp_id] = uc_max; 1263 #ifdef CONFIG_UCLAMP_TASK_GROUP 1264 root_task_group.uclamp_req[clamp_id] = uc_max; 1265 root_task_group.uclamp[clamp_id] = uc_max; 1266 #endif 1267 } 1268 } 1269 1270 #else /* CONFIG_UCLAMP_TASK */ 1271 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1272 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1273 static inline int uclamp_validate(struct task_struct *p, 1274 const struct sched_attr *attr) 1275 { 1276 return -EOPNOTSUPP; 1277 } 1278 static void __setscheduler_uclamp(struct task_struct *p, 1279 const struct sched_attr *attr) { } 1280 static inline void uclamp_fork(struct task_struct *p) { } 1281 static inline void init_uclamp(void) { } 1282 #endif /* CONFIG_UCLAMP_TASK */ 1283 1284 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1285 { 1286 if (!(flags & ENQUEUE_NOCLOCK)) 1287 update_rq_clock(rq); 1288 1289 if (!(flags & ENQUEUE_RESTORE)) { 1290 sched_info_queued(rq, p); 1291 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 1292 } 1293 1294 uclamp_rq_inc(rq, p); 1295 p->sched_class->enqueue_task(rq, p, flags); 1296 } 1297 1298 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1299 { 1300 if (!(flags & DEQUEUE_NOCLOCK)) 1301 update_rq_clock(rq); 1302 1303 if (!(flags & DEQUEUE_SAVE)) { 1304 sched_info_dequeued(rq, p); 1305 psi_dequeue(p, flags & DEQUEUE_SLEEP); 1306 } 1307 1308 uclamp_rq_dec(rq, p); 1309 p->sched_class->dequeue_task(rq, p, flags); 1310 } 1311 1312 void activate_task(struct rq *rq, struct task_struct *p, int flags) 1313 { 1314 enqueue_task(rq, p, flags); 1315 1316 p->on_rq = TASK_ON_RQ_QUEUED; 1317 } 1318 1319 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 1320 { 1321 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 1322 1323 dequeue_task(rq, p, flags); 1324 } 1325 1326 /* 1327 * __normal_prio - return the priority that is based on the static prio 1328 */ 1329 static inline int __normal_prio(struct task_struct *p) 1330 { 1331 return p->static_prio; 1332 } 1333 1334 /* 1335 * Calculate the expected normal priority: i.e. priority 1336 * without taking RT-inheritance into account. Might be 1337 * boosted by interactivity modifiers. Changes upon fork, 1338 * setprio syscalls, and whenever the interactivity 1339 * estimator recalculates. 1340 */ 1341 static inline int normal_prio(struct task_struct *p) 1342 { 1343 int prio; 1344 1345 if (task_has_dl_policy(p)) 1346 prio = MAX_DL_PRIO-1; 1347 else if (task_has_rt_policy(p)) 1348 prio = MAX_RT_PRIO-1 - p->rt_priority; 1349 else 1350 prio = __normal_prio(p); 1351 return prio; 1352 } 1353 1354 /* 1355 * Calculate the current priority, i.e. the priority 1356 * taken into account by the scheduler. This value might 1357 * be boosted by RT tasks, or might be boosted by 1358 * interactivity modifiers. Will be RT if the task got 1359 * RT-boosted. If not then it returns p->normal_prio. 1360 */ 1361 static int effective_prio(struct task_struct *p) 1362 { 1363 p->normal_prio = normal_prio(p); 1364 /* 1365 * If we are RT tasks or we were boosted to RT priority, 1366 * keep the priority unchanged. Otherwise, update priority 1367 * to the normal priority: 1368 */ 1369 if (!rt_prio(p->prio)) 1370 return p->normal_prio; 1371 return p->prio; 1372 } 1373 1374 /** 1375 * task_curr - is this task currently executing on a CPU? 1376 * @p: the task in question. 1377 * 1378 * Return: 1 if the task is currently executing. 0 otherwise. 1379 */ 1380 inline int task_curr(const struct task_struct *p) 1381 { 1382 return cpu_curr(task_cpu(p)) == p; 1383 } 1384 1385 /* 1386 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 1387 * use the balance_callback list if you want balancing. 1388 * 1389 * this means any call to check_class_changed() must be followed by a call to 1390 * balance_callback(). 1391 */ 1392 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1393 const struct sched_class *prev_class, 1394 int oldprio) 1395 { 1396 if (prev_class != p->sched_class) { 1397 if (prev_class->switched_from) 1398 prev_class->switched_from(rq, p); 1399 1400 p->sched_class->switched_to(rq, p); 1401 } else if (oldprio != p->prio || dl_task(p)) 1402 p->sched_class->prio_changed(rq, p, oldprio); 1403 } 1404 1405 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1406 { 1407 const struct sched_class *class; 1408 1409 if (p->sched_class == rq->curr->sched_class) { 1410 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1411 } else { 1412 for_each_class(class) { 1413 if (class == rq->curr->sched_class) 1414 break; 1415 if (class == p->sched_class) { 1416 resched_curr(rq); 1417 break; 1418 } 1419 } 1420 } 1421 1422 /* 1423 * A queue event has occurred, and we're going to schedule. In 1424 * this case, we can save a useless back to back clock update. 1425 */ 1426 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1427 rq_clock_skip_update(rq); 1428 } 1429 1430 #ifdef CONFIG_SMP 1431 1432 /* 1433 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 1434 * __set_cpus_allowed_ptr() and select_fallback_rq(). 1435 */ 1436 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 1437 { 1438 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 1439 return false; 1440 1441 if (is_per_cpu_kthread(p)) 1442 return cpu_online(cpu); 1443 1444 return cpu_active(cpu); 1445 } 1446 1447 /* 1448 * This is how migration works: 1449 * 1450 * 1) we invoke migration_cpu_stop() on the target CPU using 1451 * stop_one_cpu(). 1452 * 2) stopper starts to run (implicitly forcing the migrated thread 1453 * off the CPU) 1454 * 3) it checks whether the migrated task is still in the wrong runqueue. 1455 * 4) if it's in the wrong runqueue then the migration thread removes 1456 * it and puts it into the right queue. 1457 * 5) stopper completes and stop_one_cpu() returns and the migration 1458 * is done. 1459 */ 1460 1461 /* 1462 * move_queued_task - move a queued task to new rq. 1463 * 1464 * Returns (locked) new rq. Old rq's lock is released. 1465 */ 1466 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 1467 struct task_struct *p, int new_cpu) 1468 { 1469 lockdep_assert_held(&rq->lock); 1470 1471 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 1472 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 1473 set_task_cpu(p, new_cpu); 1474 rq_unlock(rq, rf); 1475 1476 rq = cpu_rq(new_cpu); 1477 1478 rq_lock(rq, rf); 1479 BUG_ON(task_cpu(p) != new_cpu); 1480 enqueue_task(rq, p, 0); 1481 p->on_rq = TASK_ON_RQ_QUEUED; 1482 check_preempt_curr(rq, p, 0); 1483 1484 return rq; 1485 } 1486 1487 struct migration_arg { 1488 struct task_struct *task; 1489 int dest_cpu; 1490 }; 1491 1492 /* 1493 * Move (not current) task off this CPU, onto the destination CPU. We're doing 1494 * this because either it can't run here any more (set_cpus_allowed() 1495 * away from this CPU, or CPU going down), or because we're 1496 * attempting to rebalance this task on exec (sched_exec). 1497 * 1498 * So we race with normal scheduler movements, but that's OK, as long 1499 * as the task is no longer on this CPU. 1500 */ 1501 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 1502 struct task_struct *p, int dest_cpu) 1503 { 1504 /* Affinity changed (again). */ 1505 if (!is_cpu_allowed(p, dest_cpu)) 1506 return rq; 1507 1508 update_rq_clock(rq); 1509 rq = move_queued_task(rq, rf, p, dest_cpu); 1510 1511 return rq; 1512 } 1513 1514 /* 1515 * migration_cpu_stop - this will be executed by a highprio stopper thread 1516 * and performs thread migration by bumping thread off CPU then 1517 * 'pushing' onto another runqueue. 1518 */ 1519 static int migration_cpu_stop(void *data) 1520 { 1521 struct migration_arg *arg = data; 1522 struct task_struct *p = arg->task; 1523 struct rq *rq = this_rq(); 1524 struct rq_flags rf; 1525 1526 /* 1527 * The original target CPU might have gone down and we might 1528 * be on another CPU but it doesn't matter. 1529 */ 1530 local_irq_disable(); 1531 /* 1532 * We need to explicitly wake pending tasks before running 1533 * __migrate_task() such that we will not miss enforcing cpus_ptr 1534 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1535 */ 1536 flush_smp_call_function_from_idle(); 1537 1538 raw_spin_lock(&p->pi_lock); 1539 rq_lock(rq, &rf); 1540 /* 1541 * If task_rq(p) != rq, it cannot be migrated here, because we're 1542 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1543 * we're holding p->pi_lock. 1544 */ 1545 if (task_rq(p) == rq) { 1546 if (task_on_rq_queued(p)) 1547 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1548 else 1549 p->wake_cpu = arg->dest_cpu; 1550 } 1551 rq_unlock(rq, &rf); 1552 raw_spin_unlock(&p->pi_lock); 1553 1554 local_irq_enable(); 1555 return 0; 1556 } 1557 1558 /* 1559 * sched_class::set_cpus_allowed must do the below, but is not required to 1560 * actually call this function. 1561 */ 1562 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1563 { 1564 cpumask_copy(&p->cpus_mask, new_mask); 1565 p->nr_cpus_allowed = cpumask_weight(new_mask); 1566 } 1567 1568 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1569 { 1570 struct rq *rq = task_rq(p); 1571 bool queued, running; 1572 1573 lockdep_assert_held(&p->pi_lock); 1574 1575 queued = task_on_rq_queued(p); 1576 running = task_current(rq, p); 1577 1578 if (queued) { 1579 /* 1580 * Because __kthread_bind() calls this on blocked tasks without 1581 * holding rq->lock. 1582 */ 1583 lockdep_assert_held(&rq->lock); 1584 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1585 } 1586 if (running) 1587 put_prev_task(rq, p); 1588 1589 p->sched_class->set_cpus_allowed(p, new_mask); 1590 1591 if (queued) 1592 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1593 if (running) 1594 set_next_task(rq, p); 1595 } 1596 1597 /* 1598 * Change a given task's CPU affinity. Migrate the thread to a 1599 * proper CPU and schedule it away if the CPU it's executing on 1600 * is removed from the allowed bitmask. 1601 * 1602 * NOTE: the caller must have a valid reference to the task, the 1603 * task must not exit() & deallocate itself prematurely. The 1604 * call is not atomic; no spinlocks may be held. 1605 */ 1606 static int __set_cpus_allowed_ptr(struct task_struct *p, 1607 const struct cpumask *new_mask, bool check) 1608 { 1609 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1610 unsigned int dest_cpu; 1611 struct rq_flags rf; 1612 struct rq *rq; 1613 int ret = 0; 1614 1615 rq = task_rq_lock(p, &rf); 1616 update_rq_clock(rq); 1617 1618 if (p->flags & PF_KTHREAD) { 1619 /* 1620 * Kernel threads are allowed on online && !active CPUs 1621 */ 1622 cpu_valid_mask = cpu_online_mask; 1623 } 1624 1625 /* 1626 * Must re-check here, to close a race against __kthread_bind(), 1627 * sched_setaffinity() is not guaranteed to observe the flag. 1628 */ 1629 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1630 ret = -EINVAL; 1631 goto out; 1632 } 1633 1634 if (cpumask_equal(&p->cpus_mask, new_mask)) 1635 goto out; 1636 1637 /* 1638 * Picking a ~random cpu helps in cases where we are changing affinity 1639 * for groups of tasks (ie. cpuset), so that load balancing is not 1640 * immediately required to distribute the tasks within their new mask. 1641 */ 1642 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 1643 if (dest_cpu >= nr_cpu_ids) { 1644 ret = -EINVAL; 1645 goto out; 1646 } 1647 1648 do_set_cpus_allowed(p, new_mask); 1649 1650 if (p->flags & PF_KTHREAD) { 1651 /* 1652 * For kernel threads that do indeed end up on online && 1653 * !active we want to ensure they are strict per-CPU threads. 1654 */ 1655 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1656 !cpumask_intersects(new_mask, cpu_active_mask) && 1657 p->nr_cpus_allowed != 1); 1658 } 1659 1660 /* Can the task run on the task's current CPU? If so, we're done */ 1661 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1662 goto out; 1663 1664 if (task_running(rq, p) || p->state == TASK_WAKING) { 1665 struct migration_arg arg = { p, dest_cpu }; 1666 /* Need help from migration thread: drop lock and wait. */ 1667 task_rq_unlock(rq, p, &rf); 1668 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1669 return 0; 1670 } else if (task_on_rq_queued(p)) { 1671 /* 1672 * OK, since we're going to drop the lock immediately 1673 * afterwards anyway. 1674 */ 1675 rq = move_queued_task(rq, &rf, p, dest_cpu); 1676 } 1677 out: 1678 task_rq_unlock(rq, p, &rf); 1679 1680 return ret; 1681 } 1682 1683 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1684 { 1685 return __set_cpus_allowed_ptr(p, new_mask, false); 1686 } 1687 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1688 1689 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1690 { 1691 #ifdef CONFIG_SCHED_DEBUG 1692 /* 1693 * We should never call set_task_cpu() on a blocked task, 1694 * ttwu() will sort out the placement. 1695 */ 1696 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1697 !p->on_rq); 1698 1699 /* 1700 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1701 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1702 * time relying on p->on_rq. 1703 */ 1704 WARN_ON_ONCE(p->state == TASK_RUNNING && 1705 p->sched_class == &fair_sched_class && 1706 (p->on_rq && !task_on_rq_migrating(p))); 1707 1708 #ifdef CONFIG_LOCKDEP 1709 /* 1710 * The caller should hold either p->pi_lock or rq->lock, when changing 1711 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1712 * 1713 * sched_move_task() holds both and thus holding either pins the cgroup, 1714 * see task_group(). 1715 * 1716 * Furthermore, all task_rq users should acquire both locks, see 1717 * task_rq_lock(). 1718 */ 1719 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1720 lockdep_is_held(&task_rq(p)->lock))); 1721 #endif 1722 /* 1723 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1724 */ 1725 WARN_ON_ONCE(!cpu_online(new_cpu)); 1726 #endif 1727 1728 trace_sched_migrate_task(p, new_cpu); 1729 1730 if (task_cpu(p) != new_cpu) { 1731 if (p->sched_class->migrate_task_rq) 1732 p->sched_class->migrate_task_rq(p, new_cpu); 1733 p->se.nr_migrations++; 1734 rseq_migrate(p); 1735 perf_event_task_migrate(p); 1736 } 1737 1738 __set_task_cpu(p, new_cpu); 1739 } 1740 1741 #ifdef CONFIG_NUMA_BALANCING 1742 static void __migrate_swap_task(struct task_struct *p, int cpu) 1743 { 1744 if (task_on_rq_queued(p)) { 1745 struct rq *src_rq, *dst_rq; 1746 struct rq_flags srf, drf; 1747 1748 src_rq = task_rq(p); 1749 dst_rq = cpu_rq(cpu); 1750 1751 rq_pin_lock(src_rq, &srf); 1752 rq_pin_lock(dst_rq, &drf); 1753 1754 deactivate_task(src_rq, p, 0); 1755 set_task_cpu(p, cpu); 1756 activate_task(dst_rq, p, 0); 1757 check_preempt_curr(dst_rq, p, 0); 1758 1759 rq_unpin_lock(dst_rq, &drf); 1760 rq_unpin_lock(src_rq, &srf); 1761 1762 } else { 1763 /* 1764 * Task isn't running anymore; make it appear like we migrated 1765 * it before it went to sleep. This means on wakeup we make the 1766 * previous CPU our target instead of where it really is. 1767 */ 1768 p->wake_cpu = cpu; 1769 } 1770 } 1771 1772 struct migration_swap_arg { 1773 struct task_struct *src_task, *dst_task; 1774 int src_cpu, dst_cpu; 1775 }; 1776 1777 static int migrate_swap_stop(void *data) 1778 { 1779 struct migration_swap_arg *arg = data; 1780 struct rq *src_rq, *dst_rq; 1781 int ret = -EAGAIN; 1782 1783 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1784 return -EAGAIN; 1785 1786 src_rq = cpu_rq(arg->src_cpu); 1787 dst_rq = cpu_rq(arg->dst_cpu); 1788 1789 double_raw_lock(&arg->src_task->pi_lock, 1790 &arg->dst_task->pi_lock); 1791 double_rq_lock(src_rq, dst_rq); 1792 1793 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1794 goto unlock; 1795 1796 if (task_cpu(arg->src_task) != arg->src_cpu) 1797 goto unlock; 1798 1799 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 1800 goto unlock; 1801 1802 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 1803 goto unlock; 1804 1805 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1806 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1807 1808 ret = 0; 1809 1810 unlock: 1811 double_rq_unlock(src_rq, dst_rq); 1812 raw_spin_unlock(&arg->dst_task->pi_lock); 1813 raw_spin_unlock(&arg->src_task->pi_lock); 1814 1815 return ret; 1816 } 1817 1818 /* 1819 * Cross migrate two tasks 1820 */ 1821 int migrate_swap(struct task_struct *cur, struct task_struct *p, 1822 int target_cpu, int curr_cpu) 1823 { 1824 struct migration_swap_arg arg; 1825 int ret = -EINVAL; 1826 1827 arg = (struct migration_swap_arg){ 1828 .src_task = cur, 1829 .src_cpu = curr_cpu, 1830 .dst_task = p, 1831 .dst_cpu = target_cpu, 1832 }; 1833 1834 if (arg.src_cpu == arg.dst_cpu) 1835 goto out; 1836 1837 /* 1838 * These three tests are all lockless; this is OK since all of them 1839 * will be re-checked with proper locks held further down the line. 1840 */ 1841 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1842 goto out; 1843 1844 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 1845 goto out; 1846 1847 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 1848 goto out; 1849 1850 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1851 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1852 1853 out: 1854 return ret; 1855 } 1856 #endif /* CONFIG_NUMA_BALANCING */ 1857 1858 /* 1859 * wait_task_inactive - wait for a thread to unschedule. 1860 * 1861 * If @match_state is nonzero, it's the @p->state value just checked and 1862 * not expected to change. If it changes, i.e. @p might have woken up, 1863 * then return zero. When we succeed in waiting for @p to be off its CPU, 1864 * we return a positive number (its total switch count). If a second call 1865 * a short while later returns the same number, the caller can be sure that 1866 * @p has remained unscheduled the whole time. 1867 * 1868 * The caller must ensure that the task *will* unschedule sometime soon, 1869 * else this function might spin for a *long* time. This function can't 1870 * be called with interrupts off, or it may introduce deadlock with 1871 * smp_call_function() if an IPI is sent by the same process we are 1872 * waiting to become inactive. 1873 */ 1874 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1875 { 1876 int running, queued; 1877 struct rq_flags rf; 1878 unsigned long ncsw; 1879 struct rq *rq; 1880 1881 for (;;) { 1882 /* 1883 * We do the initial early heuristics without holding 1884 * any task-queue locks at all. We'll only try to get 1885 * the runqueue lock when things look like they will 1886 * work out! 1887 */ 1888 rq = task_rq(p); 1889 1890 /* 1891 * If the task is actively running on another CPU 1892 * still, just relax and busy-wait without holding 1893 * any locks. 1894 * 1895 * NOTE! Since we don't hold any locks, it's not 1896 * even sure that "rq" stays as the right runqueue! 1897 * But we don't care, since "task_running()" will 1898 * return false if the runqueue has changed and p 1899 * is actually now running somewhere else! 1900 */ 1901 while (task_running(rq, p)) { 1902 if (match_state && unlikely(p->state != match_state)) 1903 return 0; 1904 cpu_relax(); 1905 } 1906 1907 /* 1908 * Ok, time to look more closely! We need the rq 1909 * lock now, to be *sure*. If we're wrong, we'll 1910 * just go back and repeat. 1911 */ 1912 rq = task_rq_lock(p, &rf); 1913 trace_sched_wait_task(p); 1914 running = task_running(rq, p); 1915 queued = task_on_rq_queued(p); 1916 ncsw = 0; 1917 if (!match_state || p->state == match_state) 1918 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1919 task_rq_unlock(rq, p, &rf); 1920 1921 /* 1922 * If it changed from the expected state, bail out now. 1923 */ 1924 if (unlikely(!ncsw)) 1925 break; 1926 1927 /* 1928 * Was it really running after all now that we 1929 * checked with the proper locks actually held? 1930 * 1931 * Oops. Go back and try again.. 1932 */ 1933 if (unlikely(running)) { 1934 cpu_relax(); 1935 continue; 1936 } 1937 1938 /* 1939 * It's not enough that it's not actively running, 1940 * it must be off the runqueue _entirely_, and not 1941 * preempted! 1942 * 1943 * So if it was still runnable (but just not actively 1944 * running right now), it's preempted, and we should 1945 * yield - it could be a while. 1946 */ 1947 if (unlikely(queued)) { 1948 ktime_t to = NSEC_PER_SEC / HZ; 1949 1950 set_current_state(TASK_UNINTERRUPTIBLE); 1951 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1952 continue; 1953 } 1954 1955 /* 1956 * Ahh, all good. It wasn't running, and it wasn't 1957 * runnable, which means that it will never become 1958 * running in the future either. We're all done! 1959 */ 1960 break; 1961 } 1962 1963 return ncsw; 1964 } 1965 1966 /*** 1967 * kick_process - kick a running thread to enter/exit the kernel 1968 * @p: the to-be-kicked thread 1969 * 1970 * Cause a process which is running on another CPU to enter 1971 * kernel-mode, without any delay. (to get signals handled.) 1972 * 1973 * NOTE: this function doesn't have to take the runqueue lock, 1974 * because all it wants to ensure is that the remote task enters 1975 * the kernel. If the IPI races and the task has been migrated 1976 * to another CPU then no harm is done and the purpose has been 1977 * achieved as well. 1978 */ 1979 void kick_process(struct task_struct *p) 1980 { 1981 int cpu; 1982 1983 preempt_disable(); 1984 cpu = task_cpu(p); 1985 if ((cpu != smp_processor_id()) && task_curr(p)) 1986 smp_send_reschedule(cpu); 1987 preempt_enable(); 1988 } 1989 EXPORT_SYMBOL_GPL(kick_process); 1990 1991 /* 1992 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 1993 * 1994 * A few notes on cpu_active vs cpu_online: 1995 * 1996 * - cpu_active must be a subset of cpu_online 1997 * 1998 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 1999 * see __set_cpus_allowed_ptr(). At this point the newly online 2000 * CPU isn't yet part of the sched domains, and balancing will not 2001 * see it. 2002 * 2003 * - on CPU-down we clear cpu_active() to mask the sched domains and 2004 * avoid the load balancer to place new tasks on the to be removed 2005 * CPU. Existing tasks will remain running there and will be taken 2006 * off. 2007 * 2008 * This means that fallback selection must not select !active CPUs. 2009 * And can assume that any active CPU must be online. Conversely 2010 * select_task_rq() below may allow selection of !active CPUs in order 2011 * to satisfy the above rules. 2012 */ 2013 static int select_fallback_rq(int cpu, struct task_struct *p) 2014 { 2015 int nid = cpu_to_node(cpu); 2016 const struct cpumask *nodemask = NULL; 2017 enum { cpuset, possible, fail } state = cpuset; 2018 int dest_cpu; 2019 2020 /* 2021 * If the node that the CPU is on has been offlined, cpu_to_node() 2022 * will return -1. There is no CPU on the node, and we should 2023 * select the CPU on the other node. 2024 */ 2025 if (nid != -1) { 2026 nodemask = cpumask_of_node(nid); 2027 2028 /* Look for allowed, online CPU in same node. */ 2029 for_each_cpu(dest_cpu, nodemask) { 2030 if (!cpu_active(dest_cpu)) 2031 continue; 2032 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr)) 2033 return dest_cpu; 2034 } 2035 } 2036 2037 for (;;) { 2038 /* Any allowed, online CPU? */ 2039 for_each_cpu(dest_cpu, p->cpus_ptr) { 2040 if (!is_cpu_allowed(p, dest_cpu)) 2041 continue; 2042 2043 goto out; 2044 } 2045 2046 /* No more Mr. Nice Guy. */ 2047 switch (state) { 2048 case cpuset: 2049 if (IS_ENABLED(CONFIG_CPUSETS)) { 2050 cpuset_cpus_allowed_fallback(p); 2051 state = possible; 2052 break; 2053 } 2054 /* Fall-through */ 2055 case possible: 2056 do_set_cpus_allowed(p, cpu_possible_mask); 2057 state = fail; 2058 break; 2059 2060 case fail: 2061 BUG(); 2062 break; 2063 } 2064 } 2065 2066 out: 2067 if (state != cpuset) { 2068 /* 2069 * Don't tell them about moving exiting tasks or 2070 * kernel threads (both mm NULL), since they never 2071 * leave kernel. 2072 */ 2073 if (p->mm && printk_ratelimit()) { 2074 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 2075 task_pid_nr(p), p->comm, cpu); 2076 } 2077 } 2078 2079 return dest_cpu; 2080 } 2081 2082 /* 2083 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 2084 */ 2085 static inline 2086 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 2087 { 2088 lockdep_assert_held(&p->pi_lock); 2089 2090 if (p->nr_cpus_allowed > 1) 2091 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 2092 else 2093 cpu = cpumask_any(p->cpus_ptr); 2094 2095 /* 2096 * In order not to call set_task_cpu() on a blocking task we need 2097 * to rely on ttwu() to place the task on a valid ->cpus_ptr 2098 * CPU. 2099 * 2100 * Since this is common to all placement strategies, this lives here. 2101 * 2102 * [ this allows ->select_task() to simply return task_cpu(p) and 2103 * not worry about this generic constraint ] 2104 */ 2105 if (unlikely(!is_cpu_allowed(p, cpu))) 2106 cpu = select_fallback_rq(task_cpu(p), p); 2107 2108 return cpu; 2109 } 2110 2111 void sched_set_stop_task(int cpu, struct task_struct *stop) 2112 { 2113 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 2114 struct task_struct *old_stop = cpu_rq(cpu)->stop; 2115 2116 if (stop) { 2117 /* 2118 * Make it appear like a SCHED_FIFO task, its something 2119 * userspace knows about and won't get confused about. 2120 * 2121 * Also, it will make PI more or less work without too 2122 * much confusion -- but then, stop work should not 2123 * rely on PI working anyway. 2124 */ 2125 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 2126 2127 stop->sched_class = &stop_sched_class; 2128 } 2129 2130 cpu_rq(cpu)->stop = stop; 2131 2132 if (old_stop) { 2133 /* 2134 * Reset it back to a normal scheduling class so that 2135 * it can die in pieces. 2136 */ 2137 old_stop->sched_class = &rt_sched_class; 2138 } 2139 } 2140 2141 #else 2142 2143 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 2144 const struct cpumask *new_mask, bool check) 2145 { 2146 return set_cpus_allowed_ptr(p, new_mask); 2147 } 2148 2149 #endif /* CONFIG_SMP */ 2150 2151 static void 2152 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 2153 { 2154 struct rq *rq; 2155 2156 if (!schedstat_enabled()) 2157 return; 2158 2159 rq = this_rq(); 2160 2161 #ifdef CONFIG_SMP 2162 if (cpu == rq->cpu) { 2163 __schedstat_inc(rq->ttwu_local); 2164 __schedstat_inc(p->se.statistics.nr_wakeups_local); 2165 } else { 2166 struct sched_domain *sd; 2167 2168 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 2169 rcu_read_lock(); 2170 for_each_domain(rq->cpu, sd) { 2171 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 2172 __schedstat_inc(sd->ttwu_wake_remote); 2173 break; 2174 } 2175 } 2176 rcu_read_unlock(); 2177 } 2178 2179 if (wake_flags & WF_MIGRATED) 2180 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 2181 #endif /* CONFIG_SMP */ 2182 2183 __schedstat_inc(rq->ttwu_count); 2184 __schedstat_inc(p->se.statistics.nr_wakeups); 2185 2186 if (wake_flags & WF_SYNC) 2187 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 2188 } 2189 2190 /* 2191 * Mark the task runnable and perform wakeup-preemption. 2192 */ 2193 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 2194 struct rq_flags *rf) 2195 { 2196 check_preempt_curr(rq, p, wake_flags); 2197 p->state = TASK_RUNNING; 2198 trace_sched_wakeup(p); 2199 2200 #ifdef CONFIG_SMP 2201 if (p->sched_class->task_woken) { 2202 /* 2203 * Our task @p is fully woken up and running; so its safe to 2204 * drop the rq->lock, hereafter rq is only used for statistics. 2205 */ 2206 rq_unpin_lock(rq, rf); 2207 p->sched_class->task_woken(rq, p); 2208 rq_repin_lock(rq, rf); 2209 } 2210 2211 if (rq->idle_stamp) { 2212 u64 delta = rq_clock(rq) - rq->idle_stamp; 2213 u64 max = 2*rq->max_idle_balance_cost; 2214 2215 update_avg(&rq->avg_idle, delta); 2216 2217 if (rq->avg_idle > max) 2218 rq->avg_idle = max; 2219 2220 rq->idle_stamp = 0; 2221 } 2222 #endif 2223 } 2224 2225 static void 2226 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 2227 struct rq_flags *rf) 2228 { 2229 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 2230 2231 lockdep_assert_held(&rq->lock); 2232 2233 if (p->sched_contributes_to_load) 2234 rq->nr_uninterruptible--; 2235 2236 #ifdef CONFIG_SMP 2237 if (wake_flags & WF_MIGRATED) 2238 en_flags |= ENQUEUE_MIGRATED; 2239 #endif 2240 2241 activate_task(rq, p, en_flags); 2242 ttwu_do_wakeup(rq, p, wake_flags, rf); 2243 } 2244 2245 /* 2246 * Called in case the task @p isn't fully descheduled from its runqueue, 2247 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 2248 * since all we need to do is flip p->state to TASK_RUNNING, since 2249 * the task is still ->on_rq. 2250 */ 2251 static int ttwu_remote(struct task_struct *p, int wake_flags) 2252 { 2253 struct rq_flags rf; 2254 struct rq *rq; 2255 int ret = 0; 2256 2257 rq = __task_rq_lock(p, &rf); 2258 if (task_on_rq_queued(p)) { 2259 /* check_preempt_curr() may use rq clock */ 2260 update_rq_clock(rq); 2261 ttwu_do_wakeup(rq, p, wake_flags, &rf); 2262 ret = 1; 2263 } 2264 __task_rq_unlock(rq, &rf); 2265 2266 return ret; 2267 } 2268 2269 #ifdef CONFIG_SMP 2270 void sched_ttwu_pending(void *arg) 2271 { 2272 struct llist_node *llist = arg; 2273 struct rq *rq = this_rq(); 2274 struct task_struct *p, *t; 2275 struct rq_flags rf; 2276 2277 if (!llist) 2278 return; 2279 2280 /* 2281 * rq::ttwu_pending racy indication of out-standing wakeups. 2282 * Races such that false-negatives are possible, since they 2283 * are shorter lived that false-positives would be. 2284 */ 2285 WRITE_ONCE(rq->ttwu_pending, 0); 2286 2287 rq_lock_irqsave(rq, &rf); 2288 update_rq_clock(rq); 2289 2290 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 2291 if (WARN_ON_ONCE(p->on_cpu)) 2292 smp_cond_load_acquire(&p->on_cpu, !VAL); 2293 2294 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 2295 set_task_cpu(p, cpu_of(rq)); 2296 2297 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 2298 } 2299 2300 rq_unlock_irqrestore(rq, &rf); 2301 } 2302 2303 void send_call_function_single_ipi(int cpu) 2304 { 2305 struct rq *rq = cpu_rq(cpu); 2306 2307 if (!set_nr_if_polling(rq->idle)) 2308 arch_send_call_function_single_ipi(cpu); 2309 else 2310 trace_sched_wake_idle_without_ipi(cpu); 2311 } 2312 2313 /* 2314 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 2315 * necessary. The wakee CPU on receipt of the IPI will queue the task 2316 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 2317 * of the wakeup instead of the waker. 2318 */ 2319 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 2320 { 2321 struct rq *rq = cpu_rq(cpu); 2322 2323 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 2324 2325 WRITE_ONCE(rq->ttwu_pending, 1); 2326 __smp_call_single_queue(cpu, &p->wake_entry.llist); 2327 } 2328 2329 void wake_up_if_idle(int cpu) 2330 { 2331 struct rq *rq = cpu_rq(cpu); 2332 struct rq_flags rf; 2333 2334 rcu_read_lock(); 2335 2336 if (!is_idle_task(rcu_dereference(rq->curr))) 2337 goto out; 2338 2339 if (set_nr_if_polling(rq->idle)) { 2340 trace_sched_wake_idle_without_ipi(cpu); 2341 } else { 2342 rq_lock_irqsave(rq, &rf); 2343 if (is_idle_task(rq->curr)) 2344 smp_send_reschedule(cpu); 2345 /* Else CPU is not idle, do nothing here: */ 2346 rq_unlock_irqrestore(rq, &rf); 2347 } 2348 2349 out: 2350 rcu_read_unlock(); 2351 } 2352 2353 bool cpus_share_cache(int this_cpu, int that_cpu) 2354 { 2355 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 2356 } 2357 2358 static inline bool ttwu_queue_cond(int cpu, int wake_flags) 2359 { 2360 /* 2361 * If the CPU does not share cache, then queue the task on the 2362 * remote rqs wakelist to avoid accessing remote data. 2363 */ 2364 if (!cpus_share_cache(smp_processor_id(), cpu)) 2365 return true; 2366 2367 /* 2368 * If the task is descheduling and the only running task on the 2369 * CPU then use the wakelist to offload the task activation to 2370 * the soon-to-be-idle CPU as the current CPU is likely busy. 2371 * nr_running is checked to avoid unnecessary task stacking. 2372 */ 2373 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1) 2374 return true; 2375 2376 return false; 2377 } 2378 2379 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 2380 { 2381 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) { 2382 if (WARN_ON_ONCE(cpu == smp_processor_id())) 2383 return false; 2384 2385 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 2386 __ttwu_queue_wakelist(p, cpu, wake_flags); 2387 return true; 2388 } 2389 2390 return false; 2391 } 2392 #endif /* CONFIG_SMP */ 2393 2394 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 2395 { 2396 struct rq *rq = cpu_rq(cpu); 2397 struct rq_flags rf; 2398 2399 #if defined(CONFIG_SMP) 2400 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 2401 return; 2402 #endif 2403 2404 rq_lock(rq, &rf); 2405 update_rq_clock(rq); 2406 ttwu_do_activate(rq, p, wake_flags, &rf); 2407 rq_unlock(rq, &rf); 2408 } 2409 2410 /* 2411 * Notes on Program-Order guarantees on SMP systems. 2412 * 2413 * MIGRATION 2414 * 2415 * The basic program-order guarantee on SMP systems is that when a task [t] 2416 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 2417 * execution on its new CPU [c1]. 2418 * 2419 * For migration (of runnable tasks) this is provided by the following means: 2420 * 2421 * A) UNLOCK of the rq(c0)->lock scheduling out task t 2422 * B) migration for t is required to synchronize *both* rq(c0)->lock and 2423 * rq(c1)->lock (if not at the same time, then in that order). 2424 * C) LOCK of the rq(c1)->lock scheduling in task 2425 * 2426 * Release/acquire chaining guarantees that B happens after A and C after B. 2427 * Note: the CPU doing B need not be c0 or c1 2428 * 2429 * Example: 2430 * 2431 * CPU0 CPU1 CPU2 2432 * 2433 * LOCK rq(0)->lock 2434 * sched-out X 2435 * sched-in Y 2436 * UNLOCK rq(0)->lock 2437 * 2438 * LOCK rq(0)->lock // orders against CPU0 2439 * dequeue X 2440 * UNLOCK rq(0)->lock 2441 * 2442 * LOCK rq(1)->lock 2443 * enqueue X 2444 * UNLOCK rq(1)->lock 2445 * 2446 * LOCK rq(1)->lock // orders against CPU2 2447 * sched-out Z 2448 * sched-in X 2449 * UNLOCK rq(1)->lock 2450 * 2451 * 2452 * BLOCKING -- aka. SLEEP + WAKEUP 2453 * 2454 * For blocking we (obviously) need to provide the same guarantee as for 2455 * migration. However the means are completely different as there is no lock 2456 * chain to provide order. Instead we do: 2457 * 2458 * 1) smp_store_release(X->on_cpu, 0) 2459 * 2) smp_cond_load_acquire(!X->on_cpu) 2460 * 2461 * Example: 2462 * 2463 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 2464 * 2465 * LOCK rq(0)->lock LOCK X->pi_lock 2466 * dequeue X 2467 * sched-out X 2468 * smp_store_release(X->on_cpu, 0); 2469 * 2470 * smp_cond_load_acquire(&X->on_cpu, !VAL); 2471 * X->state = WAKING 2472 * set_task_cpu(X,2) 2473 * 2474 * LOCK rq(2)->lock 2475 * enqueue X 2476 * X->state = RUNNING 2477 * UNLOCK rq(2)->lock 2478 * 2479 * LOCK rq(2)->lock // orders against CPU1 2480 * sched-out Z 2481 * sched-in X 2482 * UNLOCK rq(2)->lock 2483 * 2484 * UNLOCK X->pi_lock 2485 * UNLOCK rq(0)->lock 2486 * 2487 * 2488 * However, for wakeups there is a second guarantee we must provide, namely we 2489 * must ensure that CONDITION=1 done by the caller can not be reordered with 2490 * accesses to the task state; see try_to_wake_up() and set_current_state(). 2491 */ 2492 2493 /** 2494 * try_to_wake_up - wake up a thread 2495 * @p: the thread to be awakened 2496 * @state: the mask of task states that can be woken 2497 * @wake_flags: wake modifier flags (WF_*) 2498 * 2499 * If (@state & @p->state) @p->state = TASK_RUNNING. 2500 * 2501 * If the task was not queued/runnable, also place it back on a runqueue. 2502 * 2503 * Atomic against schedule() which would dequeue a task, also see 2504 * set_current_state(). 2505 * 2506 * This function executes a full memory barrier before accessing the task 2507 * state; see set_current_state(). 2508 * 2509 * Return: %true if @p->state changes (an actual wakeup was done), 2510 * %false otherwise. 2511 */ 2512 static int 2513 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 2514 { 2515 unsigned long flags; 2516 int cpu, success = 0; 2517 2518 preempt_disable(); 2519 if (p == current) { 2520 /* 2521 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 2522 * == smp_processor_id()'. Together this means we can special 2523 * case the whole 'p->on_rq && ttwu_remote()' case below 2524 * without taking any locks. 2525 * 2526 * In particular: 2527 * - we rely on Program-Order guarantees for all the ordering, 2528 * - we're serialized against set_special_state() by virtue of 2529 * it disabling IRQs (this allows not taking ->pi_lock). 2530 */ 2531 if (!(p->state & state)) 2532 goto out; 2533 2534 success = 1; 2535 trace_sched_waking(p); 2536 p->state = TASK_RUNNING; 2537 trace_sched_wakeup(p); 2538 goto out; 2539 } 2540 2541 /* 2542 * If we are going to wake up a thread waiting for CONDITION we 2543 * need to ensure that CONDITION=1 done by the caller can not be 2544 * reordered with p->state check below. This pairs with mb() in 2545 * set_current_state() the waiting thread does. 2546 */ 2547 raw_spin_lock_irqsave(&p->pi_lock, flags); 2548 smp_mb__after_spinlock(); 2549 if (!(p->state & state)) 2550 goto unlock; 2551 2552 trace_sched_waking(p); 2553 2554 /* We're going to change ->state: */ 2555 success = 1; 2556 2557 /* 2558 * Ensure we load p->on_rq _after_ p->state, otherwise it would 2559 * be possible to, falsely, observe p->on_rq == 0 and get stuck 2560 * in smp_cond_load_acquire() below. 2561 * 2562 * sched_ttwu_pending() try_to_wake_up() 2563 * STORE p->on_rq = 1 LOAD p->state 2564 * UNLOCK rq->lock 2565 * 2566 * __schedule() (switch to task 'p') 2567 * LOCK rq->lock smp_rmb(); 2568 * smp_mb__after_spinlock(); 2569 * UNLOCK rq->lock 2570 * 2571 * [task p] 2572 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 2573 * 2574 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2575 * __schedule(). See the comment for smp_mb__after_spinlock(). 2576 * 2577 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 2578 */ 2579 smp_rmb(); 2580 if (READ_ONCE(p->on_rq) && ttwu_remote(p, wake_flags)) 2581 goto unlock; 2582 2583 if (p->in_iowait) { 2584 delayacct_blkio_end(p); 2585 atomic_dec(&task_rq(p)->nr_iowait); 2586 } 2587 2588 #ifdef CONFIG_SMP 2589 /* 2590 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2591 * possible to, falsely, observe p->on_cpu == 0. 2592 * 2593 * One must be running (->on_cpu == 1) in order to remove oneself 2594 * from the runqueue. 2595 * 2596 * __schedule() (switch to task 'p') try_to_wake_up() 2597 * STORE p->on_cpu = 1 LOAD p->on_rq 2598 * UNLOCK rq->lock 2599 * 2600 * __schedule() (put 'p' to sleep) 2601 * LOCK rq->lock smp_rmb(); 2602 * smp_mb__after_spinlock(); 2603 * STORE p->on_rq = 0 LOAD p->on_cpu 2604 * 2605 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2606 * __schedule(). See the comment for smp_mb__after_spinlock(). 2607 * 2608 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 2609 * schedule()'s deactivate_task() has 'happened' and p will no longer 2610 * care about it's own p->state. See the comment in __schedule(). 2611 */ 2612 smp_acquire__after_ctrl_dep(); 2613 2614 /* 2615 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 2616 * == 0), which means we need to do an enqueue, change p->state to 2617 * TASK_WAKING such that we can unlock p->pi_lock before doing the 2618 * enqueue, such as ttwu_queue_wakelist(). 2619 */ 2620 p->state = TASK_WAKING; 2621 2622 /* 2623 * If the owning (remote) CPU is still in the middle of schedule() with 2624 * this task as prev, considering queueing p on the remote CPUs wake_list 2625 * which potentially sends an IPI instead of spinning on p->on_cpu to 2626 * let the waker make forward progress. This is safe because IRQs are 2627 * disabled and the IPI will deliver after on_cpu is cleared. 2628 * 2629 * Ensure we load task_cpu(p) after p->on_cpu: 2630 * 2631 * set_task_cpu(p, cpu); 2632 * STORE p->cpu = @cpu 2633 * __schedule() (switch to task 'p') 2634 * LOCK rq->lock 2635 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 2636 * STORE p->on_cpu = 1 LOAD p->cpu 2637 * 2638 * to ensure we observe the correct CPU on which the task is currently 2639 * scheduling. 2640 */ 2641 if (smp_load_acquire(&p->on_cpu) && 2642 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU)) 2643 goto unlock; 2644 2645 /* 2646 * If the owning (remote) CPU is still in the middle of schedule() with 2647 * this task as prev, wait until its done referencing the task. 2648 * 2649 * Pairs with the smp_store_release() in finish_task(). 2650 * 2651 * This ensures that tasks getting woken will be fully ordered against 2652 * their previous state and preserve Program Order. 2653 */ 2654 smp_cond_load_acquire(&p->on_cpu, !VAL); 2655 2656 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2657 if (task_cpu(p) != cpu) { 2658 wake_flags |= WF_MIGRATED; 2659 psi_ttwu_dequeue(p); 2660 set_task_cpu(p, cpu); 2661 } 2662 #else 2663 cpu = task_cpu(p); 2664 #endif /* CONFIG_SMP */ 2665 2666 ttwu_queue(p, cpu, wake_flags); 2667 unlock: 2668 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2669 out: 2670 if (success) 2671 ttwu_stat(p, task_cpu(p), wake_flags); 2672 preempt_enable(); 2673 2674 return success; 2675 } 2676 2677 /** 2678 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state 2679 * @p: Process for which the function is to be invoked. 2680 * @func: Function to invoke. 2681 * @arg: Argument to function. 2682 * 2683 * If the specified task can be quickly locked into a definite state 2684 * (either sleeping or on a given runqueue), arrange to keep it in that 2685 * state while invoking @func(@arg). This function can use ->on_rq and 2686 * task_curr() to work out what the state is, if required. Given that 2687 * @func can be invoked with a runqueue lock held, it had better be quite 2688 * lightweight. 2689 * 2690 * Returns: 2691 * @false if the task slipped out from under the locks. 2692 * @true if the task was locked onto a runqueue or is sleeping. 2693 * However, @func can override this by returning @false. 2694 */ 2695 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg) 2696 { 2697 bool ret = false; 2698 struct rq_flags rf; 2699 struct rq *rq; 2700 2701 lockdep_assert_irqs_enabled(); 2702 raw_spin_lock_irq(&p->pi_lock); 2703 if (p->on_rq) { 2704 rq = __task_rq_lock(p, &rf); 2705 if (task_rq(p) == rq) 2706 ret = func(p, arg); 2707 rq_unlock(rq, &rf); 2708 } else { 2709 switch (p->state) { 2710 case TASK_RUNNING: 2711 case TASK_WAKING: 2712 break; 2713 default: 2714 smp_rmb(); // See smp_rmb() comment in try_to_wake_up(). 2715 if (!p->on_rq) 2716 ret = func(p, arg); 2717 } 2718 } 2719 raw_spin_unlock_irq(&p->pi_lock); 2720 return ret; 2721 } 2722 2723 /** 2724 * wake_up_process - Wake up a specific process 2725 * @p: The process to be woken up. 2726 * 2727 * Attempt to wake up the nominated process and move it to the set of runnable 2728 * processes. 2729 * 2730 * Return: 1 if the process was woken up, 0 if it was already running. 2731 * 2732 * This function executes a full memory barrier before accessing the task state. 2733 */ 2734 int wake_up_process(struct task_struct *p) 2735 { 2736 return try_to_wake_up(p, TASK_NORMAL, 0); 2737 } 2738 EXPORT_SYMBOL(wake_up_process); 2739 2740 int wake_up_state(struct task_struct *p, unsigned int state) 2741 { 2742 return try_to_wake_up(p, state, 0); 2743 } 2744 2745 /* 2746 * Perform scheduler related setup for a newly forked process p. 2747 * p is forked by current. 2748 * 2749 * __sched_fork() is basic setup used by init_idle() too: 2750 */ 2751 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2752 { 2753 p->on_rq = 0; 2754 2755 p->se.on_rq = 0; 2756 p->se.exec_start = 0; 2757 p->se.sum_exec_runtime = 0; 2758 p->se.prev_sum_exec_runtime = 0; 2759 p->se.nr_migrations = 0; 2760 p->se.vruntime = 0; 2761 INIT_LIST_HEAD(&p->se.group_node); 2762 2763 #ifdef CONFIG_FAIR_GROUP_SCHED 2764 p->se.cfs_rq = NULL; 2765 #endif 2766 2767 #ifdef CONFIG_SCHEDSTATS 2768 /* Even if schedstat is disabled, there should not be garbage */ 2769 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2770 #endif 2771 2772 RB_CLEAR_NODE(&p->dl.rb_node); 2773 init_dl_task_timer(&p->dl); 2774 init_dl_inactive_task_timer(&p->dl); 2775 __dl_clear_params(p); 2776 2777 INIT_LIST_HEAD(&p->rt.run_list); 2778 p->rt.timeout = 0; 2779 p->rt.time_slice = sched_rr_timeslice; 2780 p->rt.on_rq = 0; 2781 p->rt.on_list = 0; 2782 2783 #ifdef CONFIG_PREEMPT_NOTIFIERS 2784 INIT_HLIST_HEAD(&p->preempt_notifiers); 2785 #endif 2786 2787 #ifdef CONFIG_COMPACTION 2788 p->capture_control = NULL; 2789 #endif 2790 init_numa_balancing(clone_flags, p); 2791 #ifdef CONFIG_SMP 2792 p->wake_entry.u_flags = CSD_TYPE_TTWU; 2793 #endif 2794 } 2795 2796 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2797 2798 #ifdef CONFIG_NUMA_BALANCING 2799 2800 void set_numabalancing_state(bool enabled) 2801 { 2802 if (enabled) 2803 static_branch_enable(&sched_numa_balancing); 2804 else 2805 static_branch_disable(&sched_numa_balancing); 2806 } 2807 2808 #ifdef CONFIG_PROC_SYSCTL 2809 int sysctl_numa_balancing(struct ctl_table *table, int write, 2810 void *buffer, size_t *lenp, loff_t *ppos) 2811 { 2812 struct ctl_table t; 2813 int err; 2814 int state = static_branch_likely(&sched_numa_balancing); 2815 2816 if (write && !capable(CAP_SYS_ADMIN)) 2817 return -EPERM; 2818 2819 t = *table; 2820 t.data = &state; 2821 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2822 if (err < 0) 2823 return err; 2824 if (write) 2825 set_numabalancing_state(state); 2826 return err; 2827 } 2828 #endif 2829 #endif 2830 2831 #ifdef CONFIG_SCHEDSTATS 2832 2833 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2834 static bool __initdata __sched_schedstats = false; 2835 2836 static void set_schedstats(bool enabled) 2837 { 2838 if (enabled) 2839 static_branch_enable(&sched_schedstats); 2840 else 2841 static_branch_disable(&sched_schedstats); 2842 } 2843 2844 void force_schedstat_enabled(void) 2845 { 2846 if (!schedstat_enabled()) { 2847 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2848 static_branch_enable(&sched_schedstats); 2849 } 2850 } 2851 2852 static int __init setup_schedstats(char *str) 2853 { 2854 int ret = 0; 2855 if (!str) 2856 goto out; 2857 2858 /* 2859 * This code is called before jump labels have been set up, so we can't 2860 * change the static branch directly just yet. Instead set a temporary 2861 * variable so init_schedstats() can do it later. 2862 */ 2863 if (!strcmp(str, "enable")) { 2864 __sched_schedstats = true; 2865 ret = 1; 2866 } else if (!strcmp(str, "disable")) { 2867 __sched_schedstats = false; 2868 ret = 1; 2869 } 2870 out: 2871 if (!ret) 2872 pr_warn("Unable to parse schedstats=\n"); 2873 2874 return ret; 2875 } 2876 __setup("schedstats=", setup_schedstats); 2877 2878 static void __init init_schedstats(void) 2879 { 2880 set_schedstats(__sched_schedstats); 2881 } 2882 2883 #ifdef CONFIG_PROC_SYSCTL 2884 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 2885 size_t *lenp, loff_t *ppos) 2886 { 2887 struct ctl_table t; 2888 int err; 2889 int state = static_branch_likely(&sched_schedstats); 2890 2891 if (write && !capable(CAP_SYS_ADMIN)) 2892 return -EPERM; 2893 2894 t = *table; 2895 t.data = &state; 2896 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2897 if (err < 0) 2898 return err; 2899 if (write) 2900 set_schedstats(state); 2901 return err; 2902 } 2903 #endif /* CONFIG_PROC_SYSCTL */ 2904 #else /* !CONFIG_SCHEDSTATS */ 2905 static inline void init_schedstats(void) {} 2906 #endif /* CONFIG_SCHEDSTATS */ 2907 2908 /* 2909 * fork()/clone()-time setup: 2910 */ 2911 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2912 { 2913 unsigned long flags; 2914 2915 __sched_fork(clone_flags, p); 2916 /* 2917 * We mark the process as NEW here. This guarantees that 2918 * nobody will actually run it, and a signal or other external 2919 * event cannot wake it up and insert it on the runqueue either. 2920 */ 2921 p->state = TASK_NEW; 2922 2923 /* 2924 * Make sure we do not leak PI boosting priority to the child. 2925 */ 2926 p->prio = current->normal_prio; 2927 2928 uclamp_fork(p); 2929 2930 /* 2931 * Revert to default priority/policy on fork if requested. 2932 */ 2933 if (unlikely(p->sched_reset_on_fork)) { 2934 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2935 p->policy = SCHED_NORMAL; 2936 p->static_prio = NICE_TO_PRIO(0); 2937 p->rt_priority = 0; 2938 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2939 p->static_prio = NICE_TO_PRIO(0); 2940 2941 p->prio = p->normal_prio = __normal_prio(p); 2942 set_load_weight(p, false); 2943 2944 /* 2945 * We don't need the reset flag anymore after the fork. It has 2946 * fulfilled its duty: 2947 */ 2948 p->sched_reset_on_fork = 0; 2949 } 2950 2951 if (dl_prio(p->prio)) 2952 return -EAGAIN; 2953 else if (rt_prio(p->prio)) 2954 p->sched_class = &rt_sched_class; 2955 else 2956 p->sched_class = &fair_sched_class; 2957 2958 init_entity_runnable_average(&p->se); 2959 2960 /* 2961 * The child is not yet in the pid-hash so no cgroup attach races, 2962 * and the cgroup is pinned to this child due to cgroup_fork() 2963 * is ran before sched_fork(). 2964 * 2965 * Silence PROVE_RCU. 2966 */ 2967 raw_spin_lock_irqsave(&p->pi_lock, flags); 2968 rseq_migrate(p); 2969 /* 2970 * We're setting the CPU for the first time, we don't migrate, 2971 * so use __set_task_cpu(). 2972 */ 2973 __set_task_cpu(p, smp_processor_id()); 2974 if (p->sched_class->task_fork) 2975 p->sched_class->task_fork(p); 2976 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2977 2978 #ifdef CONFIG_SCHED_INFO 2979 if (likely(sched_info_on())) 2980 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2981 #endif 2982 #if defined(CONFIG_SMP) 2983 p->on_cpu = 0; 2984 #endif 2985 init_task_preempt_count(p); 2986 #ifdef CONFIG_SMP 2987 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2988 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2989 #endif 2990 return 0; 2991 } 2992 2993 unsigned long to_ratio(u64 period, u64 runtime) 2994 { 2995 if (runtime == RUNTIME_INF) 2996 return BW_UNIT; 2997 2998 /* 2999 * Doing this here saves a lot of checks in all 3000 * the calling paths, and returning zero seems 3001 * safe for them anyway. 3002 */ 3003 if (period == 0) 3004 return 0; 3005 3006 return div64_u64(runtime << BW_SHIFT, period); 3007 } 3008 3009 /* 3010 * wake_up_new_task - wake up a newly created task for the first time. 3011 * 3012 * This function will do some initial scheduler statistics housekeeping 3013 * that must be done for every newly created context, then puts the task 3014 * on the runqueue and wakes it. 3015 */ 3016 void wake_up_new_task(struct task_struct *p) 3017 { 3018 struct rq_flags rf; 3019 struct rq *rq; 3020 3021 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 3022 p->state = TASK_RUNNING; 3023 #ifdef CONFIG_SMP 3024 /* 3025 * Fork balancing, do it here and not earlier because: 3026 * - cpus_ptr can change in the fork path 3027 * - any previously selected CPU might disappear through hotplug 3028 * 3029 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 3030 * as we're not fully set-up yet. 3031 */ 3032 p->recent_used_cpu = task_cpu(p); 3033 rseq_migrate(p); 3034 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 3035 #endif 3036 rq = __task_rq_lock(p, &rf); 3037 update_rq_clock(rq); 3038 post_init_entity_util_avg(p); 3039 3040 activate_task(rq, p, ENQUEUE_NOCLOCK); 3041 trace_sched_wakeup_new(p); 3042 check_preempt_curr(rq, p, WF_FORK); 3043 #ifdef CONFIG_SMP 3044 if (p->sched_class->task_woken) { 3045 /* 3046 * Nothing relies on rq->lock after this, so its fine to 3047 * drop it. 3048 */ 3049 rq_unpin_lock(rq, &rf); 3050 p->sched_class->task_woken(rq, p); 3051 rq_repin_lock(rq, &rf); 3052 } 3053 #endif 3054 task_rq_unlock(rq, p, &rf); 3055 } 3056 3057 #ifdef CONFIG_PREEMPT_NOTIFIERS 3058 3059 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 3060 3061 void preempt_notifier_inc(void) 3062 { 3063 static_branch_inc(&preempt_notifier_key); 3064 } 3065 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 3066 3067 void preempt_notifier_dec(void) 3068 { 3069 static_branch_dec(&preempt_notifier_key); 3070 } 3071 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 3072 3073 /** 3074 * preempt_notifier_register - tell me when current is being preempted & rescheduled 3075 * @notifier: notifier struct to register 3076 */ 3077 void preempt_notifier_register(struct preempt_notifier *notifier) 3078 { 3079 if (!static_branch_unlikely(&preempt_notifier_key)) 3080 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 3081 3082 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 3083 } 3084 EXPORT_SYMBOL_GPL(preempt_notifier_register); 3085 3086 /** 3087 * preempt_notifier_unregister - no longer interested in preemption notifications 3088 * @notifier: notifier struct to unregister 3089 * 3090 * This is *not* safe to call from within a preemption notifier. 3091 */ 3092 void preempt_notifier_unregister(struct preempt_notifier *notifier) 3093 { 3094 hlist_del(¬ifier->link); 3095 } 3096 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 3097 3098 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 3099 { 3100 struct preempt_notifier *notifier; 3101 3102 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3103 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 3104 } 3105 3106 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3107 { 3108 if (static_branch_unlikely(&preempt_notifier_key)) 3109 __fire_sched_in_preempt_notifiers(curr); 3110 } 3111 3112 static void 3113 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 3114 struct task_struct *next) 3115 { 3116 struct preempt_notifier *notifier; 3117 3118 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3119 notifier->ops->sched_out(notifier, next); 3120 } 3121 3122 static __always_inline void 3123 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3124 struct task_struct *next) 3125 { 3126 if (static_branch_unlikely(&preempt_notifier_key)) 3127 __fire_sched_out_preempt_notifiers(curr, next); 3128 } 3129 3130 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 3131 3132 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3133 { 3134 } 3135 3136 static inline void 3137 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3138 struct task_struct *next) 3139 { 3140 } 3141 3142 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 3143 3144 static inline void prepare_task(struct task_struct *next) 3145 { 3146 #ifdef CONFIG_SMP 3147 /* 3148 * Claim the task as running, we do this before switching to it 3149 * such that any running task will have this set. 3150 */ 3151 next->on_cpu = 1; 3152 #endif 3153 } 3154 3155 static inline void finish_task(struct task_struct *prev) 3156 { 3157 #ifdef CONFIG_SMP 3158 /* 3159 * After ->on_cpu is cleared, the task can be moved to a different CPU. 3160 * We must ensure this doesn't happen until the switch is completely 3161 * finished. 3162 * 3163 * In particular, the load of prev->state in finish_task_switch() must 3164 * happen before this. 3165 * 3166 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 3167 */ 3168 smp_store_release(&prev->on_cpu, 0); 3169 #endif 3170 } 3171 3172 static inline void 3173 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 3174 { 3175 /* 3176 * Since the runqueue lock will be released by the next 3177 * task (which is an invalid locking op but in the case 3178 * of the scheduler it's an obvious special-case), so we 3179 * do an early lockdep release here: 3180 */ 3181 rq_unpin_lock(rq, rf); 3182 spin_release(&rq->lock.dep_map, _THIS_IP_); 3183 #ifdef CONFIG_DEBUG_SPINLOCK 3184 /* this is a valid case when another task releases the spinlock */ 3185 rq->lock.owner = next; 3186 #endif 3187 } 3188 3189 static inline void finish_lock_switch(struct rq *rq) 3190 { 3191 /* 3192 * If we are tracking spinlock dependencies then we have to 3193 * fix up the runqueue lock - which gets 'carried over' from 3194 * prev into current: 3195 */ 3196 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 3197 raw_spin_unlock_irq(&rq->lock); 3198 } 3199 3200 /* 3201 * NOP if the arch has not defined these: 3202 */ 3203 3204 #ifndef prepare_arch_switch 3205 # define prepare_arch_switch(next) do { } while (0) 3206 #endif 3207 3208 #ifndef finish_arch_post_lock_switch 3209 # define finish_arch_post_lock_switch() do { } while (0) 3210 #endif 3211 3212 /** 3213 * prepare_task_switch - prepare to switch tasks 3214 * @rq: the runqueue preparing to switch 3215 * @prev: the current task that is being switched out 3216 * @next: the task we are going to switch to. 3217 * 3218 * This is called with the rq lock held and interrupts off. It must 3219 * be paired with a subsequent finish_task_switch after the context 3220 * switch. 3221 * 3222 * prepare_task_switch sets up locking and calls architecture specific 3223 * hooks. 3224 */ 3225 static inline void 3226 prepare_task_switch(struct rq *rq, struct task_struct *prev, 3227 struct task_struct *next) 3228 { 3229 kcov_prepare_switch(prev); 3230 sched_info_switch(rq, prev, next); 3231 perf_event_task_sched_out(prev, next); 3232 rseq_preempt(prev); 3233 fire_sched_out_preempt_notifiers(prev, next); 3234 prepare_task(next); 3235 prepare_arch_switch(next); 3236 } 3237 3238 /** 3239 * finish_task_switch - clean up after a task-switch 3240 * @prev: the thread we just switched away from. 3241 * 3242 * finish_task_switch must be called after the context switch, paired 3243 * with a prepare_task_switch call before the context switch. 3244 * finish_task_switch will reconcile locking set up by prepare_task_switch, 3245 * and do any other architecture-specific cleanup actions. 3246 * 3247 * Note that we may have delayed dropping an mm in context_switch(). If 3248 * so, we finish that here outside of the runqueue lock. (Doing it 3249 * with the lock held can cause deadlocks; see schedule() for 3250 * details.) 3251 * 3252 * The context switch have flipped the stack from under us and restored the 3253 * local variables which were saved when this task called schedule() in the 3254 * past. prev == current is still correct but we need to recalculate this_rq 3255 * because prev may have moved to another CPU. 3256 */ 3257 static struct rq *finish_task_switch(struct task_struct *prev) 3258 __releases(rq->lock) 3259 { 3260 struct rq *rq = this_rq(); 3261 struct mm_struct *mm = rq->prev_mm; 3262 long prev_state; 3263 3264 /* 3265 * The previous task will have left us with a preempt_count of 2 3266 * because it left us after: 3267 * 3268 * schedule() 3269 * preempt_disable(); // 1 3270 * __schedule() 3271 * raw_spin_lock_irq(&rq->lock) // 2 3272 * 3273 * Also, see FORK_PREEMPT_COUNT. 3274 */ 3275 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 3276 "corrupted preempt_count: %s/%d/0x%x\n", 3277 current->comm, current->pid, preempt_count())) 3278 preempt_count_set(FORK_PREEMPT_COUNT); 3279 3280 rq->prev_mm = NULL; 3281 3282 /* 3283 * A task struct has one reference for the use as "current". 3284 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 3285 * schedule one last time. The schedule call will never return, and 3286 * the scheduled task must drop that reference. 3287 * 3288 * We must observe prev->state before clearing prev->on_cpu (in 3289 * finish_task), otherwise a concurrent wakeup can get prev 3290 * running on another CPU and we could rave with its RUNNING -> DEAD 3291 * transition, resulting in a double drop. 3292 */ 3293 prev_state = prev->state; 3294 vtime_task_switch(prev); 3295 perf_event_task_sched_in(prev, current); 3296 finish_task(prev); 3297 finish_lock_switch(rq); 3298 finish_arch_post_lock_switch(); 3299 kcov_finish_switch(current); 3300 3301 fire_sched_in_preempt_notifiers(current); 3302 /* 3303 * When switching through a kernel thread, the loop in 3304 * membarrier_{private,global}_expedited() may have observed that 3305 * kernel thread and not issued an IPI. It is therefore possible to 3306 * schedule between user->kernel->user threads without passing though 3307 * switch_mm(). Membarrier requires a barrier after storing to 3308 * rq->curr, before returning to userspace, so provide them here: 3309 * 3310 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 3311 * provided by mmdrop(), 3312 * - a sync_core for SYNC_CORE. 3313 */ 3314 if (mm) { 3315 membarrier_mm_sync_core_before_usermode(mm); 3316 mmdrop(mm); 3317 } 3318 if (unlikely(prev_state == TASK_DEAD)) { 3319 if (prev->sched_class->task_dead) 3320 prev->sched_class->task_dead(prev); 3321 3322 /* 3323 * Remove function-return probe instances associated with this 3324 * task and put them back on the free list. 3325 */ 3326 kprobe_flush_task(prev); 3327 3328 /* Task is done with its stack. */ 3329 put_task_stack(prev); 3330 3331 put_task_struct_rcu_user(prev); 3332 } 3333 3334 tick_nohz_task_switch(); 3335 return rq; 3336 } 3337 3338 #ifdef CONFIG_SMP 3339 3340 /* rq->lock is NOT held, but preemption is disabled */ 3341 static void __balance_callback(struct rq *rq) 3342 { 3343 struct callback_head *head, *next; 3344 void (*func)(struct rq *rq); 3345 unsigned long flags; 3346 3347 raw_spin_lock_irqsave(&rq->lock, flags); 3348 head = rq->balance_callback; 3349 rq->balance_callback = NULL; 3350 while (head) { 3351 func = (void (*)(struct rq *))head->func; 3352 next = head->next; 3353 head->next = NULL; 3354 head = next; 3355 3356 func(rq); 3357 } 3358 raw_spin_unlock_irqrestore(&rq->lock, flags); 3359 } 3360 3361 static inline void balance_callback(struct rq *rq) 3362 { 3363 if (unlikely(rq->balance_callback)) 3364 __balance_callback(rq); 3365 } 3366 3367 #else 3368 3369 static inline void balance_callback(struct rq *rq) 3370 { 3371 } 3372 3373 #endif 3374 3375 /** 3376 * schedule_tail - first thing a freshly forked thread must call. 3377 * @prev: the thread we just switched away from. 3378 */ 3379 asmlinkage __visible void schedule_tail(struct task_struct *prev) 3380 __releases(rq->lock) 3381 { 3382 struct rq *rq; 3383 3384 /* 3385 * New tasks start with FORK_PREEMPT_COUNT, see there and 3386 * finish_task_switch() for details. 3387 * 3388 * finish_task_switch() will drop rq->lock() and lower preempt_count 3389 * and the preempt_enable() will end up enabling preemption (on 3390 * PREEMPT_COUNT kernels). 3391 */ 3392 3393 rq = finish_task_switch(prev); 3394 balance_callback(rq); 3395 preempt_enable(); 3396 3397 if (current->set_child_tid) 3398 put_user(task_pid_vnr(current), current->set_child_tid); 3399 3400 calculate_sigpending(); 3401 } 3402 3403 /* 3404 * context_switch - switch to the new MM and the new thread's register state. 3405 */ 3406 static __always_inline struct rq * 3407 context_switch(struct rq *rq, struct task_struct *prev, 3408 struct task_struct *next, struct rq_flags *rf) 3409 { 3410 prepare_task_switch(rq, prev, next); 3411 3412 /* 3413 * For paravirt, this is coupled with an exit in switch_to to 3414 * combine the page table reload and the switch backend into 3415 * one hypercall. 3416 */ 3417 arch_start_context_switch(prev); 3418 3419 /* 3420 * kernel -> kernel lazy + transfer active 3421 * user -> kernel lazy + mmgrab() active 3422 * 3423 * kernel -> user switch + mmdrop() active 3424 * user -> user switch 3425 */ 3426 if (!next->mm) { // to kernel 3427 enter_lazy_tlb(prev->active_mm, next); 3428 3429 next->active_mm = prev->active_mm; 3430 if (prev->mm) // from user 3431 mmgrab(prev->active_mm); 3432 else 3433 prev->active_mm = NULL; 3434 } else { // to user 3435 membarrier_switch_mm(rq, prev->active_mm, next->mm); 3436 /* 3437 * sys_membarrier() requires an smp_mb() between setting 3438 * rq->curr / membarrier_switch_mm() and returning to userspace. 3439 * 3440 * The below provides this either through switch_mm(), or in 3441 * case 'prev->active_mm == next->mm' through 3442 * finish_task_switch()'s mmdrop(). 3443 */ 3444 switch_mm_irqs_off(prev->active_mm, next->mm, next); 3445 3446 if (!prev->mm) { // from kernel 3447 /* will mmdrop() in finish_task_switch(). */ 3448 rq->prev_mm = prev->active_mm; 3449 prev->active_mm = NULL; 3450 } 3451 } 3452 3453 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3454 3455 prepare_lock_switch(rq, next, rf); 3456 3457 /* Here we just switch the register state and the stack. */ 3458 switch_to(prev, next, prev); 3459 barrier(); 3460 3461 return finish_task_switch(prev); 3462 } 3463 3464 /* 3465 * nr_running and nr_context_switches: 3466 * 3467 * externally visible scheduler statistics: current number of runnable 3468 * threads, total number of context switches performed since bootup. 3469 */ 3470 unsigned long nr_running(void) 3471 { 3472 unsigned long i, sum = 0; 3473 3474 for_each_online_cpu(i) 3475 sum += cpu_rq(i)->nr_running; 3476 3477 return sum; 3478 } 3479 3480 /* 3481 * Check if only the current task is running on the CPU. 3482 * 3483 * Caution: this function does not check that the caller has disabled 3484 * preemption, thus the result might have a time-of-check-to-time-of-use 3485 * race. The caller is responsible to use it correctly, for example: 3486 * 3487 * - from a non-preemptible section (of course) 3488 * 3489 * - from a thread that is bound to a single CPU 3490 * 3491 * - in a loop with very short iterations (e.g. a polling loop) 3492 */ 3493 bool single_task_running(void) 3494 { 3495 return raw_rq()->nr_running == 1; 3496 } 3497 EXPORT_SYMBOL(single_task_running); 3498 3499 unsigned long long nr_context_switches(void) 3500 { 3501 int i; 3502 unsigned long long sum = 0; 3503 3504 for_each_possible_cpu(i) 3505 sum += cpu_rq(i)->nr_switches; 3506 3507 return sum; 3508 } 3509 3510 /* 3511 * Consumers of these two interfaces, like for example the cpuidle menu 3512 * governor, are using nonsensical data. Preferring shallow idle state selection 3513 * for a CPU that has IO-wait which might not even end up running the task when 3514 * it does become runnable. 3515 */ 3516 3517 unsigned long nr_iowait_cpu(int cpu) 3518 { 3519 return atomic_read(&cpu_rq(cpu)->nr_iowait); 3520 } 3521 3522 /* 3523 * IO-wait accounting, and how its mostly bollocks (on SMP). 3524 * 3525 * The idea behind IO-wait account is to account the idle time that we could 3526 * have spend running if it were not for IO. That is, if we were to improve the 3527 * storage performance, we'd have a proportional reduction in IO-wait time. 3528 * 3529 * This all works nicely on UP, where, when a task blocks on IO, we account 3530 * idle time as IO-wait, because if the storage were faster, it could've been 3531 * running and we'd not be idle. 3532 * 3533 * This has been extended to SMP, by doing the same for each CPU. This however 3534 * is broken. 3535 * 3536 * Imagine for instance the case where two tasks block on one CPU, only the one 3537 * CPU will have IO-wait accounted, while the other has regular idle. Even 3538 * though, if the storage were faster, both could've ran at the same time, 3539 * utilising both CPUs. 3540 * 3541 * This means, that when looking globally, the current IO-wait accounting on 3542 * SMP is a lower bound, by reason of under accounting. 3543 * 3544 * Worse, since the numbers are provided per CPU, they are sometimes 3545 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 3546 * associated with any one particular CPU, it can wake to another CPU than it 3547 * blocked on. This means the per CPU IO-wait number is meaningless. 3548 * 3549 * Task CPU affinities can make all that even more 'interesting'. 3550 */ 3551 3552 unsigned long nr_iowait(void) 3553 { 3554 unsigned long i, sum = 0; 3555 3556 for_each_possible_cpu(i) 3557 sum += nr_iowait_cpu(i); 3558 3559 return sum; 3560 } 3561 3562 #ifdef CONFIG_SMP 3563 3564 /* 3565 * sched_exec - execve() is a valuable balancing opportunity, because at 3566 * this point the task has the smallest effective memory and cache footprint. 3567 */ 3568 void sched_exec(void) 3569 { 3570 struct task_struct *p = current; 3571 unsigned long flags; 3572 int dest_cpu; 3573 3574 raw_spin_lock_irqsave(&p->pi_lock, flags); 3575 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 3576 if (dest_cpu == smp_processor_id()) 3577 goto unlock; 3578 3579 if (likely(cpu_active(dest_cpu))) { 3580 struct migration_arg arg = { p, dest_cpu }; 3581 3582 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3583 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 3584 return; 3585 } 3586 unlock: 3587 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3588 } 3589 3590 #endif 3591 3592 DEFINE_PER_CPU(struct kernel_stat, kstat); 3593 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3594 3595 EXPORT_PER_CPU_SYMBOL(kstat); 3596 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3597 3598 /* 3599 * The function fair_sched_class.update_curr accesses the struct curr 3600 * and its field curr->exec_start; when called from task_sched_runtime(), 3601 * we observe a high rate of cache misses in practice. 3602 * Prefetching this data results in improved performance. 3603 */ 3604 static inline void prefetch_curr_exec_start(struct task_struct *p) 3605 { 3606 #ifdef CONFIG_FAIR_GROUP_SCHED 3607 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3608 #else 3609 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3610 #endif 3611 prefetch(curr); 3612 prefetch(&curr->exec_start); 3613 } 3614 3615 /* 3616 * Return accounted runtime for the task. 3617 * In case the task is currently running, return the runtime plus current's 3618 * pending runtime that have not been accounted yet. 3619 */ 3620 unsigned long long task_sched_runtime(struct task_struct *p) 3621 { 3622 struct rq_flags rf; 3623 struct rq *rq; 3624 u64 ns; 3625 3626 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3627 /* 3628 * 64-bit doesn't need locks to atomically read a 64-bit value. 3629 * So we have a optimization chance when the task's delta_exec is 0. 3630 * Reading ->on_cpu is racy, but this is ok. 3631 * 3632 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3633 * If we race with it entering CPU, unaccounted time is 0. This is 3634 * indistinguishable from the read occurring a few cycles earlier. 3635 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3636 * been accounted, so we're correct here as well. 3637 */ 3638 if (!p->on_cpu || !task_on_rq_queued(p)) 3639 return p->se.sum_exec_runtime; 3640 #endif 3641 3642 rq = task_rq_lock(p, &rf); 3643 /* 3644 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3645 * project cycles that may never be accounted to this 3646 * thread, breaking clock_gettime(). 3647 */ 3648 if (task_current(rq, p) && task_on_rq_queued(p)) { 3649 prefetch_curr_exec_start(p); 3650 update_rq_clock(rq); 3651 p->sched_class->update_curr(rq); 3652 } 3653 ns = p->se.sum_exec_runtime; 3654 task_rq_unlock(rq, p, &rf); 3655 3656 return ns; 3657 } 3658 3659 DEFINE_PER_CPU(unsigned long, thermal_pressure); 3660 3661 void arch_set_thermal_pressure(struct cpumask *cpus, 3662 unsigned long th_pressure) 3663 { 3664 int cpu; 3665 3666 for_each_cpu(cpu, cpus) 3667 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure); 3668 } 3669 3670 /* 3671 * This function gets called by the timer code, with HZ frequency. 3672 * We call it with interrupts disabled. 3673 */ 3674 void scheduler_tick(void) 3675 { 3676 int cpu = smp_processor_id(); 3677 struct rq *rq = cpu_rq(cpu); 3678 struct task_struct *curr = rq->curr; 3679 struct rq_flags rf; 3680 unsigned long thermal_pressure; 3681 3682 arch_scale_freq_tick(); 3683 sched_clock_tick(); 3684 3685 rq_lock(rq, &rf); 3686 3687 update_rq_clock(rq); 3688 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 3689 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 3690 curr->sched_class->task_tick(rq, curr, 0); 3691 calc_global_load_tick(rq); 3692 psi_task_tick(rq); 3693 3694 rq_unlock(rq, &rf); 3695 3696 perf_event_task_tick(); 3697 3698 #ifdef CONFIG_SMP 3699 rq->idle_balance = idle_cpu(cpu); 3700 trigger_load_balance(rq); 3701 #endif 3702 } 3703 3704 #ifdef CONFIG_NO_HZ_FULL 3705 3706 struct tick_work { 3707 int cpu; 3708 atomic_t state; 3709 struct delayed_work work; 3710 }; 3711 /* Values for ->state, see diagram below. */ 3712 #define TICK_SCHED_REMOTE_OFFLINE 0 3713 #define TICK_SCHED_REMOTE_OFFLINING 1 3714 #define TICK_SCHED_REMOTE_RUNNING 2 3715 3716 /* 3717 * State diagram for ->state: 3718 * 3719 * 3720 * TICK_SCHED_REMOTE_OFFLINE 3721 * | ^ 3722 * | | 3723 * | | sched_tick_remote() 3724 * | | 3725 * | | 3726 * +--TICK_SCHED_REMOTE_OFFLINING 3727 * | ^ 3728 * | | 3729 * sched_tick_start() | | sched_tick_stop() 3730 * | | 3731 * V | 3732 * TICK_SCHED_REMOTE_RUNNING 3733 * 3734 * 3735 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 3736 * and sched_tick_start() are happy to leave the state in RUNNING. 3737 */ 3738 3739 static struct tick_work __percpu *tick_work_cpu; 3740 3741 static void sched_tick_remote(struct work_struct *work) 3742 { 3743 struct delayed_work *dwork = to_delayed_work(work); 3744 struct tick_work *twork = container_of(dwork, struct tick_work, work); 3745 int cpu = twork->cpu; 3746 struct rq *rq = cpu_rq(cpu); 3747 struct task_struct *curr; 3748 struct rq_flags rf; 3749 u64 delta; 3750 int os; 3751 3752 /* 3753 * Handle the tick only if it appears the remote CPU is running in full 3754 * dynticks mode. The check is racy by nature, but missing a tick or 3755 * having one too much is no big deal because the scheduler tick updates 3756 * statistics and checks timeslices in a time-independent way, regardless 3757 * of when exactly it is running. 3758 */ 3759 if (!tick_nohz_tick_stopped_cpu(cpu)) 3760 goto out_requeue; 3761 3762 rq_lock_irq(rq, &rf); 3763 curr = rq->curr; 3764 if (cpu_is_offline(cpu)) 3765 goto out_unlock; 3766 3767 update_rq_clock(rq); 3768 3769 if (!is_idle_task(curr)) { 3770 /* 3771 * Make sure the next tick runs within a reasonable 3772 * amount of time. 3773 */ 3774 delta = rq_clock_task(rq) - curr->se.exec_start; 3775 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 3776 } 3777 curr->sched_class->task_tick(rq, curr, 0); 3778 3779 calc_load_nohz_remote(rq); 3780 out_unlock: 3781 rq_unlock_irq(rq, &rf); 3782 out_requeue: 3783 3784 /* 3785 * Run the remote tick once per second (1Hz). This arbitrary 3786 * frequency is large enough to avoid overload but short enough 3787 * to keep scheduler internal stats reasonably up to date. But 3788 * first update state to reflect hotplug activity if required. 3789 */ 3790 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 3791 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 3792 if (os == TICK_SCHED_REMOTE_RUNNING) 3793 queue_delayed_work(system_unbound_wq, dwork, HZ); 3794 } 3795 3796 static void sched_tick_start(int cpu) 3797 { 3798 int os; 3799 struct tick_work *twork; 3800 3801 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3802 return; 3803 3804 WARN_ON_ONCE(!tick_work_cpu); 3805 3806 twork = per_cpu_ptr(tick_work_cpu, cpu); 3807 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 3808 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 3809 if (os == TICK_SCHED_REMOTE_OFFLINE) { 3810 twork->cpu = cpu; 3811 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 3812 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 3813 } 3814 } 3815 3816 #ifdef CONFIG_HOTPLUG_CPU 3817 static void sched_tick_stop(int cpu) 3818 { 3819 struct tick_work *twork; 3820 int os; 3821 3822 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3823 return; 3824 3825 WARN_ON_ONCE(!tick_work_cpu); 3826 3827 twork = per_cpu_ptr(tick_work_cpu, cpu); 3828 /* There cannot be competing actions, but don't rely on stop-machine. */ 3829 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 3830 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 3831 /* Don't cancel, as this would mess up the state machine. */ 3832 } 3833 #endif /* CONFIG_HOTPLUG_CPU */ 3834 3835 int __init sched_tick_offload_init(void) 3836 { 3837 tick_work_cpu = alloc_percpu(struct tick_work); 3838 BUG_ON(!tick_work_cpu); 3839 return 0; 3840 } 3841 3842 #else /* !CONFIG_NO_HZ_FULL */ 3843 static inline void sched_tick_start(int cpu) { } 3844 static inline void sched_tick_stop(int cpu) { } 3845 #endif 3846 3847 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3848 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 3849 /* 3850 * If the value passed in is equal to the current preempt count 3851 * then we just disabled preemption. Start timing the latency. 3852 */ 3853 static inline void preempt_latency_start(int val) 3854 { 3855 if (preempt_count() == val) { 3856 unsigned long ip = get_lock_parent_ip(); 3857 #ifdef CONFIG_DEBUG_PREEMPT 3858 current->preempt_disable_ip = ip; 3859 #endif 3860 trace_preempt_off(CALLER_ADDR0, ip); 3861 } 3862 } 3863 3864 void preempt_count_add(int val) 3865 { 3866 #ifdef CONFIG_DEBUG_PREEMPT 3867 /* 3868 * Underflow? 3869 */ 3870 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3871 return; 3872 #endif 3873 __preempt_count_add(val); 3874 #ifdef CONFIG_DEBUG_PREEMPT 3875 /* 3876 * Spinlock count overflowing soon? 3877 */ 3878 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3879 PREEMPT_MASK - 10); 3880 #endif 3881 preempt_latency_start(val); 3882 } 3883 EXPORT_SYMBOL(preempt_count_add); 3884 NOKPROBE_SYMBOL(preempt_count_add); 3885 3886 /* 3887 * If the value passed in equals to the current preempt count 3888 * then we just enabled preemption. Stop timing the latency. 3889 */ 3890 static inline void preempt_latency_stop(int val) 3891 { 3892 if (preempt_count() == val) 3893 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3894 } 3895 3896 void preempt_count_sub(int val) 3897 { 3898 #ifdef CONFIG_DEBUG_PREEMPT 3899 /* 3900 * Underflow? 3901 */ 3902 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3903 return; 3904 /* 3905 * Is the spinlock portion underflowing? 3906 */ 3907 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3908 !(preempt_count() & PREEMPT_MASK))) 3909 return; 3910 #endif 3911 3912 preempt_latency_stop(val); 3913 __preempt_count_sub(val); 3914 } 3915 EXPORT_SYMBOL(preempt_count_sub); 3916 NOKPROBE_SYMBOL(preempt_count_sub); 3917 3918 #else 3919 static inline void preempt_latency_start(int val) { } 3920 static inline void preempt_latency_stop(int val) { } 3921 #endif 3922 3923 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3924 { 3925 #ifdef CONFIG_DEBUG_PREEMPT 3926 return p->preempt_disable_ip; 3927 #else 3928 return 0; 3929 #endif 3930 } 3931 3932 /* 3933 * Print scheduling while atomic bug: 3934 */ 3935 static noinline void __schedule_bug(struct task_struct *prev) 3936 { 3937 /* Save this before calling printk(), since that will clobber it */ 3938 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3939 3940 if (oops_in_progress) 3941 return; 3942 3943 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3944 prev->comm, prev->pid, preempt_count()); 3945 3946 debug_show_held_locks(prev); 3947 print_modules(); 3948 if (irqs_disabled()) 3949 print_irqtrace_events(prev); 3950 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3951 && in_atomic_preempt_off()) { 3952 pr_err("Preemption disabled at:"); 3953 print_ip_sym(KERN_ERR, preempt_disable_ip); 3954 } 3955 if (panic_on_warn) 3956 panic("scheduling while atomic\n"); 3957 3958 dump_stack(); 3959 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3960 } 3961 3962 /* 3963 * Various schedule()-time debugging checks and statistics: 3964 */ 3965 static inline void schedule_debug(struct task_struct *prev, bool preempt) 3966 { 3967 #ifdef CONFIG_SCHED_STACK_END_CHECK 3968 if (task_stack_end_corrupted(prev)) 3969 panic("corrupted stack end detected inside scheduler\n"); 3970 3971 if (task_scs_end_corrupted(prev)) 3972 panic("corrupted shadow stack detected inside scheduler\n"); 3973 #endif 3974 3975 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 3976 if (!preempt && prev->state && prev->non_block_count) { 3977 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 3978 prev->comm, prev->pid, prev->non_block_count); 3979 dump_stack(); 3980 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3981 } 3982 #endif 3983 3984 if (unlikely(in_atomic_preempt_off())) { 3985 __schedule_bug(prev); 3986 preempt_count_set(PREEMPT_DISABLED); 3987 } 3988 rcu_sleep_check(); 3989 3990 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3991 3992 schedstat_inc(this_rq()->sched_count); 3993 } 3994 3995 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 3996 struct rq_flags *rf) 3997 { 3998 #ifdef CONFIG_SMP 3999 const struct sched_class *class; 4000 /* 4001 * We must do the balancing pass before put_prev_task(), such 4002 * that when we release the rq->lock the task is in the same 4003 * state as before we took rq->lock. 4004 * 4005 * We can terminate the balance pass as soon as we know there is 4006 * a runnable task of @class priority or higher. 4007 */ 4008 for_class_range(class, prev->sched_class, &idle_sched_class) { 4009 if (class->balance(rq, prev, rf)) 4010 break; 4011 } 4012 #endif 4013 4014 put_prev_task(rq, prev); 4015 } 4016 4017 /* 4018 * Pick up the highest-prio task: 4019 */ 4020 static inline struct task_struct * 4021 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 4022 { 4023 const struct sched_class *class; 4024 struct task_struct *p; 4025 4026 /* 4027 * Optimization: we know that if all tasks are in the fair class we can 4028 * call that function directly, but only if the @prev task wasn't of a 4029 * higher scheduling class, because otherwise those loose the 4030 * opportunity to pull in more work from other CPUs. 4031 */ 4032 if (likely((prev->sched_class == &idle_sched_class || 4033 prev->sched_class == &fair_sched_class) && 4034 rq->nr_running == rq->cfs.h_nr_running)) { 4035 4036 p = pick_next_task_fair(rq, prev, rf); 4037 if (unlikely(p == RETRY_TASK)) 4038 goto restart; 4039 4040 /* Assumes fair_sched_class->next == idle_sched_class */ 4041 if (!p) { 4042 put_prev_task(rq, prev); 4043 p = pick_next_task_idle(rq); 4044 } 4045 4046 return p; 4047 } 4048 4049 restart: 4050 put_prev_task_balance(rq, prev, rf); 4051 4052 for_each_class(class) { 4053 p = class->pick_next_task(rq); 4054 if (p) 4055 return p; 4056 } 4057 4058 /* The idle class should always have a runnable task: */ 4059 BUG(); 4060 } 4061 4062 /* 4063 * __schedule() is the main scheduler function. 4064 * 4065 * The main means of driving the scheduler and thus entering this function are: 4066 * 4067 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 4068 * 4069 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 4070 * paths. For example, see arch/x86/entry_64.S. 4071 * 4072 * To drive preemption between tasks, the scheduler sets the flag in timer 4073 * interrupt handler scheduler_tick(). 4074 * 4075 * 3. Wakeups don't really cause entry into schedule(). They add a 4076 * task to the run-queue and that's it. 4077 * 4078 * Now, if the new task added to the run-queue preempts the current 4079 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 4080 * called on the nearest possible occasion: 4081 * 4082 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 4083 * 4084 * - in syscall or exception context, at the next outmost 4085 * preempt_enable(). (this might be as soon as the wake_up()'s 4086 * spin_unlock()!) 4087 * 4088 * - in IRQ context, return from interrupt-handler to 4089 * preemptible context 4090 * 4091 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 4092 * then at the next: 4093 * 4094 * - cond_resched() call 4095 * - explicit schedule() call 4096 * - return from syscall or exception to user-space 4097 * - return from interrupt-handler to user-space 4098 * 4099 * WARNING: must be called with preemption disabled! 4100 */ 4101 static void __sched notrace __schedule(bool preempt) 4102 { 4103 struct task_struct *prev, *next; 4104 unsigned long *switch_count; 4105 unsigned long prev_state; 4106 struct rq_flags rf; 4107 struct rq *rq; 4108 int cpu; 4109 4110 cpu = smp_processor_id(); 4111 rq = cpu_rq(cpu); 4112 prev = rq->curr; 4113 4114 schedule_debug(prev, preempt); 4115 4116 if (sched_feat(HRTICK)) 4117 hrtick_clear(rq); 4118 4119 local_irq_disable(); 4120 rcu_note_context_switch(preempt); 4121 4122 /* See deactivate_task() below. */ 4123 prev_state = prev->state; 4124 4125 /* 4126 * Make sure that signal_pending_state()->signal_pending() below 4127 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 4128 * done by the caller to avoid the race with signal_wake_up(): 4129 * 4130 * __set_current_state(@state) signal_wake_up() 4131 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 4132 * wake_up_state(p, state) 4133 * LOCK rq->lock LOCK p->pi_state 4134 * smp_mb__after_spinlock() smp_mb__after_spinlock() 4135 * if (signal_pending_state()) if (p->state & @state) 4136 * 4137 * Also, the membarrier system call requires a full memory barrier 4138 * after coming from user-space, before storing to rq->curr. 4139 */ 4140 rq_lock(rq, &rf); 4141 smp_mb__after_spinlock(); 4142 4143 /* Promote REQ to ACT */ 4144 rq->clock_update_flags <<= 1; 4145 update_rq_clock(rq); 4146 4147 switch_count = &prev->nivcsw; 4148 /* 4149 * We must re-load prev->state in case ttwu_remote() changed it 4150 * before we acquired rq->lock. 4151 */ 4152 if (!preempt && prev_state && prev_state == prev->state) { 4153 if (signal_pending_state(prev_state, prev)) { 4154 prev->state = TASK_RUNNING; 4155 } else { 4156 prev->sched_contributes_to_load = 4157 (prev_state & TASK_UNINTERRUPTIBLE) && 4158 !(prev_state & TASK_NOLOAD) && 4159 !(prev->flags & PF_FROZEN); 4160 4161 if (prev->sched_contributes_to_load) 4162 rq->nr_uninterruptible++; 4163 4164 /* 4165 * __schedule() ttwu() 4166 * prev_state = prev->state; if (READ_ONCE(p->on_rq) && ...) 4167 * LOCK rq->lock goto out; 4168 * smp_mb__after_spinlock(); smp_acquire__after_ctrl_dep(); 4169 * p->on_rq = 0; p->state = TASK_WAKING; 4170 * 4171 * After this, schedule() must not care about p->state any more. 4172 */ 4173 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 4174 4175 if (prev->in_iowait) { 4176 atomic_inc(&rq->nr_iowait); 4177 delayacct_blkio_start(); 4178 } 4179 } 4180 switch_count = &prev->nvcsw; 4181 } 4182 4183 next = pick_next_task(rq, prev, &rf); 4184 clear_tsk_need_resched(prev); 4185 clear_preempt_need_resched(); 4186 4187 if (likely(prev != next)) { 4188 rq->nr_switches++; 4189 /* 4190 * RCU users of rcu_dereference(rq->curr) may not see 4191 * changes to task_struct made by pick_next_task(). 4192 */ 4193 RCU_INIT_POINTER(rq->curr, next); 4194 /* 4195 * The membarrier system call requires each architecture 4196 * to have a full memory barrier after updating 4197 * rq->curr, before returning to user-space. 4198 * 4199 * Here are the schemes providing that barrier on the 4200 * various architectures: 4201 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 4202 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 4203 * - finish_lock_switch() for weakly-ordered 4204 * architectures where spin_unlock is a full barrier, 4205 * - switch_to() for arm64 (weakly-ordered, spin_unlock 4206 * is a RELEASE barrier), 4207 */ 4208 ++*switch_count; 4209 4210 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 4211 4212 trace_sched_switch(preempt, prev, next); 4213 4214 /* Also unlocks the rq: */ 4215 rq = context_switch(rq, prev, next, &rf); 4216 } else { 4217 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 4218 rq_unlock_irq(rq, &rf); 4219 } 4220 4221 balance_callback(rq); 4222 } 4223 4224 void __noreturn do_task_dead(void) 4225 { 4226 /* Causes final put_task_struct in finish_task_switch(): */ 4227 set_special_state(TASK_DEAD); 4228 4229 /* Tell freezer to ignore us: */ 4230 current->flags |= PF_NOFREEZE; 4231 4232 __schedule(false); 4233 BUG(); 4234 4235 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 4236 for (;;) 4237 cpu_relax(); 4238 } 4239 4240 static inline void sched_submit_work(struct task_struct *tsk) 4241 { 4242 if (!tsk->state) 4243 return; 4244 4245 /* 4246 * If a worker went to sleep, notify and ask workqueue whether 4247 * it wants to wake up a task to maintain concurrency. 4248 * As this function is called inside the schedule() context, 4249 * we disable preemption to avoid it calling schedule() again 4250 * in the possible wakeup of a kworker and because wq_worker_sleeping() 4251 * requires it. 4252 */ 4253 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 4254 preempt_disable(); 4255 if (tsk->flags & PF_WQ_WORKER) 4256 wq_worker_sleeping(tsk); 4257 else 4258 io_wq_worker_sleeping(tsk); 4259 preempt_enable_no_resched(); 4260 } 4261 4262 if (tsk_is_pi_blocked(tsk)) 4263 return; 4264 4265 /* 4266 * If we are going to sleep and we have plugged IO queued, 4267 * make sure to submit it to avoid deadlocks. 4268 */ 4269 if (blk_needs_flush_plug(tsk)) 4270 blk_schedule_flush_plug(tsk); 4271 } 4272 4273 static void sched_update_worker(struct task_struct *tsk) 4274 { 4275 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 4276 if (tsk->flags & PF_WQ_WORKER) 4277 wq_worker_running(tsk); 4278 else 4279 io_wq_worker_running(tsk); 4280 } 4281 } 4282 4283 asmlinkage __visible void __sched schedule(void) 4284 { 4285 struct task_struct *tsk = current; 4286 4287 sched_submit_work(tsk); 4288 do { 4289 preempt_disable(); 4290 __schedule(false); 4291 sched_preempt_enable_no_resched(); 4292 } while (need_resched()); 4293 sched_update_worker(tsk); 4294 } 4295 EXPORT_SYMBOL(schedule); 4296 4297 /* 4298 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 4299 * state (have scheduled out non-voluntarily) by making sure that all 4300 * tasks have either left the run queue or have gone into user space. 4301 * As idle tasks do not do either, they must not ever be preempted 4302 * (schedule out non-voluntarily). 4303 * 4304 * schedule_idle() is similar to schedule_preempt_disable() except that it 4305 * never enables preemption because it does not call sched_submit_work(). 4306 */ 4307 void __sched schedule_idle(void) 4308 { 4309 /* 4310 * As this skips calling sched_submit_work(), which the idle task does 4311 * regardless because that function is a nop when the task is in a 4312 * TASK_RUNNING state, make sure this isn't used someplace that the 4313 * current task can be in any other state. Note, idle is always in the 4314 * TASK_RUNNING state. 4315 */ 4316 WARN_ON_ONCE(current->state); 4317 do { 4318 __schedule(false); 4319 } while (need_resched()); 4320 } 4321 4322 #ifdef CONFIG_CONTEXT_TRACKING 4323 asmlinkage __visible void __sched schedule_user(void) 4324 { 4325 /* 4326 * If we come here after a random call to set_need_resched(), 4327 * or we have been woken up remotely but the IPI has not yet arrived, 4328 * we haven't yet exited the RCU idle mode. Do it here manually until 4329 * we find a better solution. 4330 * 4331 * NB: There are buggy callers of this function. Ideally we 4332 * should warn if prev_state != CONTEXT_USER, but that will trigger 4333 * too frequently to make sense yet. 4334 */ 4335 enum ctx_state prev_state = exception_enter(); 4336 schedule(); 4337 exception_exit(prev_state); 4338 } 4339 #endif 4340 4341 /** 4342 * schedule_preempt_disabled - called with preemption disabled 4343 * 4344 * Returns with preemption disabled. Note: preempt_count must be 1 4345 */ 4346 void __sched schedule_preempt_disabled(void) 4347 { 4348 sched_preempt_enable_no_resched(); 4349 schedule(); 4350 preempt_disable(); 4351 } 4352 4353 static void __sched notrace preempt_schedule_common(void) 4354 { 4355 do { 4356 /* 4357 * Because the function tracer can trace preempt_count_sub() 4358 * and it also uses preempt_enable/disable_notrace(), if 4359 * NEED_RESCHED is set, the preempt_enable_notrace() called 4360 * by the function tracer will call this function again and 4361 * cause infinite recursion. 4362 * 4363 * Preemption must be disabled here before the function 4364 * tracer can trace. Break up preempt_disable() into two 4365 * calls. One to disable preemption without fear of being 4366 * traced. The other to still record the preemption latency, 4367 * which can also be traced by the function tracer. 4368 */ 4369 preempt_disable_notrace(); 4370 preempt_latency_start(1); 4371 __schedule(true); 4372 preempt_latency_stop(1); 4373 preempt_enable_no_resched_notrace(); 4374 4375 /* 4376 * Check again in case we missed a preemption opportunity 4377 * between schedule and now. 4378 */ 4379 } while (need_resched()); 4380 } 4381 4382 #ifdef CONFIG_PREEMPTION 4383 /* 4384 * This is the entry point to schedule() from in-kernel preemption 4385 * off of preempt_enable. 4386 */ 4387 asmlinkage __visible void __sched notrace preempt_schedule(void) 4388 { 4389 /* 4390 * If there is a non-zero preempt_count or interrupts are disabled, 4391 * we do not want to preempt the current task. Just return.. 4392 */ 4393 if (likely(!preemptible())) 4394 return; 4395 4396 preempt_schedule_common(); 4397 } 4398 NOKPROBE_SYMBOL(preempt_schedule); 4399 EXPORT_SYMBOL(preempt_schedule); 4400 4401 /** 4402 * preempt_schedule_notrace - preempt_schedule called by tracing 4403 * 4404 * The tracing infrastructure uses preempt_enable_notrace to prevent 4405 * recursion and tracing preempt enabling caused by the tracing 4406 * infrastructure itself. But as tracing can happen in areas coming 4407 * from userspace or just about to enter userspace, a preempt enable 4408 * can occur before user_exit() is called. This will cause the scheduler 4409 * to be called when the system is still in usermode. 4410 * 4411 * To prevent this, the preempt_enable_notrace will use this function 4412 * instead of preempt_schedule() to exit user context if needed before 4413 * calling the scheduler. 4414 */ 4415 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 4416 { 4417 enum ctx_state prev_ctx; 4418 4419 if (likely(!preemptible())) 4420 return; 4421 4422 do { 4423 /* 4424 * Because the function tracer can trace preempt_count_sub() 4425 * and it also uses preempt_enable/disable_notrace(), if 4426 * NEED_RESCHED is set, the preempt_enable_notrace() called 4427 * by the function tracer will call this function again and 4428 * cause infinite recursion. 4429 * 4430 * Preemption must be disabled here before the function 4431 * tracer can trace. Break up preempt_disable() into two 4432 * calls. One to disable preemption without fear of being 4433 * traced. The other to still record the preemption latency, 4434 * which can also be traced by the function tracer. 4435 */ 4436 preempt_disable_notrace(); 4437 preempt_latency_start(1); 4438 /* 4439 * Needs preempt disabled in case user_exit() is traced 4440 * and the tracer calls preempt_enable_notrace() causing 4441 * an infinite recursion. 4442 */ 4443 prev_ctx = exception_enter(); 4444 __schedule(true); 4445 exception_exit(prev_ctx); 4446 4447 preempt_latency_stop(1); 4448 preempt_enable_no_resched_notrace(); 4449 } while (need_resched()); 4450 } 4451 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 4452 4453 #endif /* CONFIG_PREEMPTION */ 4454 4455 /* 4456 * This is the entry point to schedule() from kernel preemption 4457 * off of irq context. 4458 * Note, that this is called and return with irqs disabled. This will 4459 * protect us against recursive calling from irq. 4460 */ 4461 asmlinkage __visible void __sched preempt_schedule_irq(void) 4462 { 4463 enum ctx_state prev_state; 4464 4465 /* Catch callers which need to be fixed */ 4466 BUG_ON(preempt_count() || !irqs_disabled()); 4467 4468 prev_state = exception_enter(); 4469 4470 do { 4471 preempt_disable(); 4472 local_irq_enable(); 4473 __schedule(true); 4474 local_irq_disable(); 4475 sched_preempt_enable_no_resched(); 4476 } while (need_resched()); 4477 4478 exception_exit(prev_state); 4479 } 4480 4481 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 4482 void *key) 4483 { 4484 return try_to_wake_up(curr->private, mode, wake_flags); 4485 } 4486 EXPORT_SYMBOL(default_wake_function); 4487 4488 #ifdef CONFIG_RT_MUTEXES 4489 4490 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 4491 { 4492 if (pi_task) 4493 prio = min(prio, pi_task->prio); 4494 4495 return prio; 4496 } 4497 4498 static inline int rt_effective_prio(struct task_struct *p, int prio) 4499 { 4500 struct task_struct *pi_task = rt_mutex_get_top_task(p); 4501 4502 return __rt_effective_prio(pi_task, prio); 4503 } 4504 4505 /* 4506 * rt_mutex_setprio - set the current priority of a task 4507 * @p: task to boost 4508 * @pi_task: donor task 4509 * 4510 * This function changes the 'effective' priority of a task. It does 4511 * not touch ->normal_prio like __setscheduler(). 4512 * 4513 * Used by the rt_mutex code to implement priority inheritance 4514 * logic. Call site only calls if the priority of the task changed. 4515 */ 4516 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 4517 { 4518 int prio, oldprio, queued, running, queue_flag = 4519 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4520 const struct sched_class *prev_class; 4521 struct rq_flags rf; 4522 struct rq *rq; 4523 4524 /* XXX used to be waiter->prio, not waiter->task->prio */ 4525 prio = __rt_effective_prio(pi_task, p->normal_prio); 4526 4527 /* 4528 * If nothing changed; bail early. 4529 */ 4530 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 4531 return; 4532 4533 rq = __task_rq_lock(p, &rf); 4534 update_rq_clock(rq); 4535 /* 4536 * Set under pi_lock && rq->lock, such that the value can be used under 4537 * either lock. 4538 * 4539 * Note that there is loads of tricky to make this pointer cache work 4540 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 4541 * ensure a task is de-boosted (pi_task is set to NULL) before the 4542 * task is allowed to run again (and can exit). This ensures the pointer 4543 * points to a blocked task -- which guaratees the task is present. 4544 */ 4545 p->pi_top_task = pi_task; 4546 4547 /* 4548 * For FIFO/RR we only need to set prio, if that matches we're done. 4549 */ 4550 if (prio == p->prio && !dl_prio(prio)) 4551 goto out_unlock; 4552 4553 /* 4554 * Idle task boosting is a nono in general. There is one 4555 * exception, when PREEMPT_RT and NOHZ is active: 4556 * 4557 * The idle task calls get_next_timer_interrupt() and holds 4558 * the timer wheel base->lock on the CPU and another CPU wants 4559 * to access the timer (probably to cancel it). We can safely 4560 * ignore the boosting request, as the idle CPU runs this code 4561 * with interrupts disabled and will complete the lock 4562 * protected section without being interrupted. So there is no 4563 * real need to boost. 4564 */ 4565 if (unlikely(p == rq->idle)) { 4566 WARN_ON(p != rq->curr); 4567 WARN_ON(p->pi_blocked_on); 4568 goto out_unlock; 4569 } 4570 4571 trace_sched_pi_setprio(p, pi_task); 4572 oldprio = p->prio; 4573 4574 if (oldprio == prio) 4575 queue_flag &= ~DEQUEUE_MOVE; 4576 4577 prev_class = p->sched_class; 4578 queued = task_on_rq_queued(p); 4579 running = task_current(rq, p); 4580 if (queued) 4581 dequeue_task(rq, p, queue_flag); 4582 if (running) 4583 put_prev_task(rq, p); 4584 4585 /* 4586 * Boosting condition are: 4587 * 1. -rt task is running and holds mutex A 4588 * --> -dl task blocks on mutex A 4589 * 4590 * 2. -dl task is running and holds mutex A 4591 * --> -dl task blocks on mutex A and could preempt the 4592 * running task 4593 */ 4594 if (dl_prio(prio)) { 4595 if (!dl_prio(p->normal_prio) || 4596 (pi_task && dl_prio(pi_task->prio) && 4597 dl_entity_preempt(&pi_task->dl, &p->dl))) { 4598 p->dl.dl_boosted = 1; 4599 queue_flag |= ENQUEUE_REPLENISH; 4600 } else 4601 p->dl.dl_boosted = 0; 4602 p->sched_class = &dl_sched_class; 4603 } else if (rt_prio(prio)) { 4604 if (dl_prio(oldprio)) 4605 p->dl.dl_boosted = 0; 4606 if (oldprio < prio) 4607 queue_flag |= ENQUEUE_HEAD; 4608 p->sched_class = &rt_sched_class; 4609 } else { 4610 if (dl_prio(oldprio)) 4611 p->dl.dl_boosted = 0; 4612 if (rt_prio(oldprio)) 4613 p->rt.timeout = 0; 4614 p->sched_class = &fair_sched_class; 4615 } 4616 4617 p->prio = prio; 4618 4619 if (queued) 4620 enqueue_task(rq, p, queue_flag); 4621 if (running) 4622 set_next_task(rq, p); 4623 4624 check_class_changed(rq, p, prev_class, oldprio); 4625 out_unlock: 4626 /* Avoid rq from going away on us: */ 4627 preempt_disable(); 4628 __task_rq_unlock(rq, &rf); 4629 4630 balance_callback(rq); 4631 preempt_enable(); 4632 } 4633 #else 4634 static inline int rt_effective_prio(struct task_struct *p, int prio) 4635 { 4636 return prio; 4637 } 4638 #endif 4639 4640 void set_user_nice(struct task_struct *p, long nice) 4641 { 4642 bool queued, running; 4643 int old_prio; 4644 struct rq_flags rf; 4645 struct rq *rq; 4646 4647 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 4648 return; 4649 /* 4650 * We have to be careful, if called from sys_setpriority(), 4651 * the task might be in the middle of scheduling on another CPU. 4652 */ 4653 rq = task_rq_lock(p, &rf); 4654 update_rq_clock(rq); 4655 4656 /* 4657 * The RT priorities are set via sched_setscheduler(), but we still 4658 * allow the 'normal' nice value to be set - but as expected 4659 * it wont have any effect on scheduling until the task is 4660 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 4661 */ 4662 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4663 p->static_prio = NICE_TO_PRIO(nice); 4664 goto out_unlock; 4665 } 4666 queued = task_on_rq_queued(p); 4667 running = task_current(rq, p); 4668 if (queued) 4669 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 4670 if (running) 4671 put_prev_task(rq, p); 4672 4673 p->static_prio = NICE_TO_PRIO(nice); 4674 set_load_weight(p, true); 4675 old_prio = p->prio; 4676 p->prio = effective_prio(p); 4677 4678 if (queued) 4679 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 4680 if (running) 4681 set_next_task(rq, p); 4682 4683 /* 4684 * If the task increased its priority or is running and 4685 * lowered its priority, then reschedule its CPU: 4686 */ 4687 p->sched_class->prio_changed(rq, p, old_prio); 4688 4689 out_unlock: 4690 task_rq_unlock(rq, p, &rf); 4691 } 4692 EXPORT_SYMBOL(set_user_nice); 4693 4694 /* 4695 * can_nice - check if a task can reduce its nice value 4696 * @p: task 4697 * @nice: nice value 4698 */ 4699 int can_nice(const struct task_struct *p, const int nice) 4700 { 4701 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 4702 int nice_rlim = nice_to_rlimit(nice); 4703 4704 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 4705 capable(CAP_SYS_NICE)); 4706 } 4707 4708 #ifdef __ARCH_WANT_SYS_NICE 4709 4710 /* 4711 * sys_nice - change the priority of the current process. 4712 * @increment: priority increment 4713 * 4714 * sys_setpriority is a more generic, but much slower function that 4715 * does similar things. 4716 */ 4717 SYSCALL_DEFINE1(nice, int, increment) 4718 { 4719 long nice, retval; 4720 4721 /* 4722 * Setpriority might change our priority at the same moment. 4723 * We don't have to worry. Conceptually one call occurs first 4724 * and we have a single winner. 4725 */ 4726 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 4727 nice = task_nice(current) + increment; 4728 4729 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 4730 if (increment < 0 && !can_nice(current, nice)) 4731 return -EPERM; 4732 4733 retval = security_task_setnice(current, nice); 4734 if (retval) 4735 return retval; 4736 4737 set_user_nice(current, nice); 4738 return 0; 4739 } 4740 4741 #endif 4742 4743 /** 4744 * task_prio - return the priority value of a given task. 4745 * @p: the task in question. 4746 * 4747 * Return: The priority value as seen by users in /proc. 4748 * RT tasks are offset by -200. Normal tasks are centered 4749 * around 0, value goes from -16 to +15. 4750 */ 4751 int task_prio(const struct task_struct *p) 4752 { 4753 return p->prio - MAX_RT_PRIO; 4754 } 4755 4756 /** 4757 * idle_cpu - is a given CPU idle currently? 4758 * @cpu: the processor in question. 4759 * 4760 * Return: 1 if the CPU is currently idle. 0 otherwise. 4761 */ 4762 int idle_cpu(int cpu) 4763 { 4764 struct rq *rq = cpu_rq(cpu); 4765 4766 if (rq->curr != rq->idle) 4767 return 0; 4768 4769 if (rq->nr_running) 4770 return 0; 4771 4772 #ifdef CONFIG_SMP 4773 if (rq->ttwu_pending) 4774 return 0; 4775 #endif 4776 4777 return 1; 4778 } 4779 4780 /** 4781 * available_idle_cpu - is a given CPU idle for enqueuing work. 4782 * @cpu: the CPU in question. 4783 * 4784 * Return: 1 if the CPU is currently idle. 0 otherwise. 4785 */ 4786 int available_idle_cpu(int cpu) 4787 { 4788 if (!idle_cpu(cpu)) 4789 return 0; 4790 4791 if (vcpu_is_preempted(cpu)) 4792 return 0; 4793 4794 return 1; 4795 } 4796 4797 /** 4798 * idle_task - return the idle task for a given CPU. 4799 * @cpu: the processor in question. 4800 * 4801 * Return: The idle task for the CPU @cpu. 4802 */ 4803 struct task_struct *idle_task(int cpu) 4804 { 4805 return cpu_rq(cpu)->idle; 4806 } 4807 4808 /** 4809 * find_process_by_pid - find a process with a matching PID value. 4810 * @pid: the pid in question. 4811 * 4812 * The task of @pid, if found. %NULL otherwise. 4813 */ 4814 static struct task_struct *find_process_by_pid(pid_t pid) 4815 { 4816 return pid ? find_task_by_vpid(pid) : current; 4817 } 4818 4819 /* 4820 * sched_setparam() passes in -1 for its policy, to let the functions 4821 * it calls know not to change it. 4822 */ 4823 #define SETPARAM_POLICY -1 4824 4825 static void __setscheduler_params(struct task_struct *p, 4826 const struct sched_attr *attr) 4827 { 4828 int policy = attr->sched_policy; 4829 4830 if (policy == SETPARAM_POLICY) 4831 policy = p->policy; 4832 4833 p->policy = policy; 4834 4835 if (dl_policy(policy)) 4836 __setparam_dl(p, attr); 4837 else if (fair_policy(policy)) 4838 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4839 4840 /* 4841 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4842 * !rt_policy. Always setting this ensures that things like 4843 * getparam()/getattr() don't report silly values for !rt tasks. 4844 */ 4845 p->rt_priority = attr->sched_priority; 4846 p->normal_prio = normal_prio(p); 4847 set_load_weight(p, true); 4848 } 4849 4850 /* Actually do priority change: must hold pi & rq lock. */ 4851 static void __setscheduler(struct rq *rq, struct task_struct *p, 4852 const struct sched_attr *attr, bool keep_boost) 4853 { 4854 /* 4855 * If params can't change scheduling class changes aren't allowed 4856 * either. 4857 */ 4858 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS) 4859 return; 4860 4861 __setscheduler_params(p, attr); 4862 4863 /* 4864 * Keep a potential priority boosting if called from 4865 * sched_setscheduler(). 4866 */ 4867 p->prio = normal_prio(p); 4868 if (keep_boost) 4869 p->prio = rt_effective_prio(p, p->prio); 4870 4871 if (dl_prio(p->prio)) 4872 p->sched_class = &dl_sched_class; 4873 else if (rt_prio(p->prio)) 4874 p->sched_class = &rt_sched_class; 4875 else 4876 p->sched_class = &fair_sched_class; 4877 } 4878 4879 /* 4880 * Check the target process has a UID that matches the current process's: 4881 */ 4882 static bool check_same_owner(struct task_struct *p) 4883 { 4884 const struct cred *cred = current_cred(), *pcred; 4885 bool match; 4886 4887 rcu_read_lock(); 4888 pcred = __task_cred(p); 4889 match = (uid_eq(cred->euid, pcred->euid) || 4890 uid_eq(cred->euid, pcred->uid)); 4891 rcu_read_unlock(); 4892 return match; 4893 } 4894 4895 static int __sched_setscheduler(struct task_struct *p, 4896 const struct sched_attr *attr, 4897 bool user, bool pi) 4898 { 4899 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4900 MAX_RT_PRIO - 1 - attr->sched_priority; 4901 int retval, oldprio, oldpolicy = -1, queued, running; 4902 int new_effective_prio, policy = attr->sched_policy; 4903 const struct sched_class *prev_class; 4904 struct rq_flags rf; 4905 int reset_on_fork; 4906 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4907 struct rq *rq; 4908 4909 /* The pi code expects interrupts enabled */ 4910 BUG_ON(pi && in_interrupt()); 4911 recheck: 4912 /* Double check policy once rq lock held: */ 4913 if (policy < 0) { 4914 reset_on_fork = p->sched_reset_on_fork; 4915 policy = oldpolicy = p->policy; 4916 } else { 4917 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4918 4919 if (!valid_policy(policy)) 4920 return -EINVAL; 4921 } 4922 4923 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4924 return -EINVAL; 4925 4926 /* 4927 * Valid priorities for SCHED_FIFO and SCHED_RR are 4928 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4929 * SCHED_BATCH and SCHED_IDLE is 0. 4930 */ 4931 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4932 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4933 return -EINVAL; 4934 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4935 (rt_policy(policy) != (attr->sched_priority != 0))) 4936 return -EINVAL; 4937 4938 /* 4939 * Allow unprivileged RT tasks to decrease priority: 4940 */ 4941 if (user && !capable(CAP_SYS_NICE)) { 4942 if (fair_policy(policy)) { 4943 if (attr->sched_nice < task_nice(p) && 4944 !can_nice(p, attr->sched_nice)) 4945 return -EPERM; 4946 } 4947 4948 if (rt_policy(policy)) { 4949 unsigned long rlim_rtprio = 4950 task_rlimit(p, RLIMIT_RTPRIO); 4951 4952 /* Can't set/change the rt policy: */ 4953 if (policy != p->policy && !rlim_rtprio) 4954 return -EPERM; 4955 4956 /* Can't increase priority: */ 4957 if (attr->sched_priority > p->rt_priority && 4958 attr->sched_priority > rlim_rtprio) 4959 return -EPERM; 4960 } 4961 4962 /* 4963 * Can't set/change SCHED_DEADLINE policy at all for now 4964 * (safest behavior); in the future we would like to allow 4965 * unprivileged DL tasks to increase their relative deadline 4966 * or reduce their runtime (both ways reducing utilization) 4967 */ 4968 if (dl_policy(policy)) 4969 return -EPERM; 4970 4971 /* 4972 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4973 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4974 */ 4975 if (task_has_idle_policy(p) && !idle_policy(policy)) { 4976 if (!can_nice(p, task_nice(p))) 4977 return -EPERM; 4978 } 4979 4980 /* Can't change other user's priorities: */ 4981 if (!check_same_owner(p)) 4982 return -EPERM; 4983 4984 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4985 if (p->sched_reset_on_fork && !reset_on_fork) 4986 return -EPERM; 4987 } 4988 4989 if (user) { 4990 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4991 return -EINVAL; 4992 4993 retval = security_task_setscheduler(p); 4994 if (retval) 4995 return retval; 4996 } 4997 4998 /* Update task specific "requested" clamps */ 4999 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 5000 retval = uclamp_validate(p, attr); 5001 if (retval) 5002 return retval; 5003 } 5004 5005 if (pi) 5006 cpuset_read_lock(); 5007 5008 /* 5009 * Make sure no PI-waiters arrive (or leave) while we are 5010 * changing the priority of the task: 5011 * 5012 * To be able to change p->policy safely, the appropriate 5013 * runqueue lock must be held. 5014 */ 5015 rq = task_rq_lock(p, &rf); 5016 update_rq_clock(rq); 5017 5018 /* 5019 * Changing the policy of the stop threads its a very bad idea: 5020 */ 5021 if (p == rq->stop) { 5022 retval = -EINVAL; 5023 goto unlock; 5024 } 5025 5026 /* 5027 * If not changing anything there's no need to proceed further, 5028 * but store a possible modification of reset_on_fork. 5029 */ 5030 if (unlikely(policy == p->policy)) { 5031 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 5032 goto change; 5033 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 5034 goto change; 5035 if (dl_policy(policy) && dl_param_changed(p, attr)) 5036 goto change; 5037 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 5038 goto change; 5039 5040 p->sched_reset_on_fork = reset_on_fork; 5041 retval = 0; 5042 goto unlock; 5043 } 5044 change: 5045 5046 if (user) { 5047 #ifdef CONFIG_RT_GROUP_SCHED 5048 /* 5049 * Do not allow realtime tasks into groups that have no runtime 5050 * assigned. 5051 */ 5052 if (rt_bandwidth_enabled() && rt_policy(policy) && 5053 task_group(p)->rt_bandwidth.rt_runtime == 0 && 5054 !task_group_is_autogroup(task_group(p))) { 5055 retval = -EPERM; 5056 goto unlock; 5057 } 5058 #endif 5059 #ifdef CONFIG_SMP 5060 if (dl_bandwidth_enabled() && dl_policy(policy) && 5061 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 5062 cpumask_t *span = rq->rd->span; 5063 5064 /* 5065 * Don't allow tasks with an affinity mask smaller than 5066 * the entire root_domain to become SCHED_DEADLINE. We 5067 * will also fail if there's no bandwidth available. 5068 */ 5069 if (!cpumask_subset(span, p->cpus_ptr) || 5070 rq->rd->dl_bw.bw == 0) { 5071 retval = -EPERM; 5072 goto unlock; 5073 } 5074 } 5075 #endif 5076 } 5077 5078 /* Re-check policy now with rq lock held: */ 5079 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 5080 policy = oldpolicy = -1; 5081 task_rq_unlock(rq, p, &rf); 5082 if (pi) 5083 cpuset_read_unlock(); 5084 goto recheck; 5085 } 5086 5087 /* 5088 * If setscheduling to SCHED_DEADLINE (or changing the parameters 5089 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 5090 * is available. 5091 */ 5092 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 5093 retval = -EBUSY; 5094 goto unlock; 5095 } 5096 5097 p->sched_reset_on_fork = reset_on_fork; 5098 oldprio = p->prio; 5099 5100 if (pi) { 5101 /* 5102 * Take priority boosted tasks into account. If the new 5103 * effective priority is unchanged, we just store the new 5104 * normal parameters and do not touch the scheduler class and 5105 * the runqueue. This will be done when the task deboost 5106 * itself. 5107 */ 5108 new_effective_prio = rt_effective_prio(p, newprio); 5109 if (new_effective_prio == oldprio) 5110 queue_flags &= ~DEQUEUE_MOVE; 5111 } 5112 5113 queued = task_on_rq_queued(p); 5114 running = task_current(rq, p); 5115 if (queued) 5116 dequeue_task(rq, p, queue_flags); 5117 if (running) 5118 put_prev_task(rq, p); 5119 5120 prev_class = p->sched_class; 5121 5122 __setscheduler(rq, p, attr, pi); 5123 __setscheduler_uclamp(p, attr); 5124 5125 if (queued) { 5126 /* 5127 * We enqueue to tail when the priority of a task is 5128 * increased (user space view). 5129 */ 5130 if (oldprio < p->prio) 5131 queue_flags |= ENQUEUE_HEAD; 5132 5133 enqueue_task(rq, p, queue_flags); 5134 } 5135 if (running) 5136 set_next_task(rq, p); 5137 5138 check_class_changed(rq, p, prev_class, oldprio); 5139 5140 /* Avoid rq from going away on us: */ 5141 preempt_disable(); 5142 task_rq_unlock(rq, p, &rf); 5143 5144 if (pi) { 5145 cpuset_read_unlock(); 5146 rt_mutex_adjust_pi(p); 5147 } 5148 5149 /* Run balance callbacks after we've adjusted the PI chain: */ 5150 balance_callback(rq); 5151 preempt_enable(); 5152 5153 return 0; 5154 5155 unlock: 5156 task_rq_unlock(rq, p, &rf); 5157 if (pi) 5158 cpuset_read_unlock(); 5159 return retval; 5160 } 5161 5162 static int _sched_setscheduler(struct task_struct *p, int policy, 5163 const struct sched_param *param, bool check) 5164 { 5165 struct sched_attr attr = { 5166 .sched_policy = policy, 5167 .sched_priority = param->sched_priority, 5168 .sched_nice = PRIO_TO_NICE(p->static_prio), 5169 }; 5170 5171 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 5172 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 5173 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 5174 policy &= ~SCHED_RESET_ON_FORK; 5175 attr.sched_policy = policy; 5176 } 5177 5178 return __sched_setscheduler(p, &attr, check, true); 5179 } 5180 /** 5181 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 5182 * @p: the task in question. 5183 * @policy: new policy. 5184 * @param: structure containing the new RT priority. 5185 * 5186 * Return: 0 on success. An error code otherwise. 5187 * 5188 * NOTE that the task may be already dead. 5189 */ 5190 int sched_setscheduler(struct task_struct *p, int policy, 5191 const struct sched_param *param) 5192 { 5193 return _sched_setscheduler(p, policy, param, true); 5194 } 5195 EXPORT_SYMBOL_GPL(sched_setscheduler); 5196 5197 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 5198 { 5199 return __sched_setscheduler(p, attr, true, true); 5200 } 5201 EXPORT_SYMBOL_GPL(sched_setattr); 5202 5203 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 5204 { 5205 return __sched_setscheduler(p, attr, false, true); 5206 } 5207 5208 /** 5209 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 5210 * @p: the task in question. 5211 * @policy: new policy. 5212 * @param: structure containing the new RT priority. 5213 * 5214 * Just like sched_setscheduler, only don't bother checking if the 5215 * current context has permission. For example, this is needed in 5216 * stop_machine(): we create temporary high priority worker threads, 5217 * but our caller might not have that capability. 5218 * 5219 * Return: 0 on success. An error code otherwise. 5220 */ 5221 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 5222 const struct sched_param *param) 5223 { 5224 return _sched_setscheduler(p, policy, param, false); 5225 } 5226 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 5227 5228 static int 5229 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 5230 { 5231 struct sched_param lparam; 5232 struct task_struct *p; 5233 int retval; 5234 5235 if (!param || pid < 0) 5236 return -EINVAL; 5237 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 5238 return -EFAULT; 5239 5240 rcu_read_lock(); 5241 retval = -ESRCH; 5242 p = find_process_by_pid(pid); 5243 if (likely(p)) 5244 get_task_struct(p); 5245 rcu_read_unlock(); 5246 5247 if (likely(p)) { 5248 retval = sched_setscheduler(p, policy, &lparam); 5249 put_task_struct(p); 5250 } 5251 5252 return retval; 5253 } 5254 5255 /* 5256 * Mimics kernel/events/core.c perf_copy_attr(). 5257 */ 5258 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 5259 { 5260 u32 size; 5261 int ret; 5262 5263 /* Zero the full structure, so that a short copy will be nice: */ 5264 memset(attr, 0, sizeof(*attr)); 5265 5266 ret = get_user(size, &uattr->size); 5267 if (ret) 5268 return ret; 5269 5270 /* ABI compatibility quirk: */ 5271 if (!size) 5272 size = SCHED_ATTR_SIZE_VER0; 5273 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 5274 goto err_size; 5275 5276 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 5277 if (ret) { 5278 if (ret == -E2BIG) 5279 goto err_size; 5280 return ret; 5281 } 5282 5283 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 5284 size < SCHED_ATTR_SIZE_VER1) 5285 return -EINVAL; 5286 5287 /* 5288 * XXX: Do we want to be lenient like existing syscalls; or do we want 5289 * to be strict and return an error on out-of-bounds values? 5290 */ 5291 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 5292 5293 return 0; 5294 5295 err_size: 5296 put_user(sizeof(*attr), &uattr->size); 5297 return -E2BIG; 5298 } 5299 5300 /** 5301 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 5302 * @pid: the pid in question. 5303 * @policy: new policy. 5304 * @param: structure containing the new RT priority. 5305 * 5306 * Return: 0 on success. An error code otherwise. 5307 */ 5308 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 5309 { 5310 if (policy < 0) 5311 return -EINVAL; 5312 5313 return do_sched_setscheduler(pid, policy, param); 5314 } 5315 5316 /** 5317 * sys_sched_setparam - set/change the RT priority of a thread 5318 * @pid: the pid in question. 5319 * @param: structure containing the new RT priority. 5320 * 5321 * Return: 0 on success. An error code otherwise. 5322 */ 5323 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 5324 { 5325 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 5326 } 5327 5328 /** 5329 * sys_sched_setattr - same as above, but with extended sched_attr 5330 * @pid: the pid in question. 5331 * @uattr: structure containing the extended parameters. 5332 * @flags: for future extension. 5333 */ 5334 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 5335 unsigned int, flags) 5336 { 5337 struct sched_attr attr; 5338 struct task_struct *p; 5339 int retval; 5340 5341 if (!uattr || pid < 0 || flags) 5342 return -EINVAL; 5343 5344 retval = sched_copy_attr(uattr, &attr); 5345 if (retval) 5346 return retval; 5347 5348 if ((int)attr.sched_policy < 0) 5349 return -EINVAL; 5350 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 5351 attr.sched_policy = SETPARAM_POLICY; 5352 5353 rcu_read_lock(); 5354 retval = -ESRCH; 5355 p = find_process_by_pid(pid); 5356 if (likely(p)) 5357 get_task_struct(p); 5358 rcu_read_unlock(); 5359 5360 if (likely(p)) { 5361 retval = sched_setattr(p, &attr); 5362 put_task_struct(p); 5363 } 5364 5365 return retval; 5366 } 5367 5368 /** 5369 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 5370 * @pid: the pid in question. 5371 * 5372 * Return: On success, the policy of the thread. Otherwise, a negative error 5373 * code. 5374 */ 5375 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 5376 { 5377 struct task_struct *p; 5378 int retval; 5379 5380 if (pid < 0) 5381 return -EINVAL; 5382 5383 retval = -ESRCH; 5384 rcu_read_lock(); 5385 p = find_process_by_pid(pid); 5386 if (p) { 5387 retval = security_task_getscheduler(p); 5388 if (!retval) 5389 retval = p->policy 5390 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 5391 } 5392 rcu_read_unlock(); 5393 return retval; 5394 } 5395 5396 /** 5397 * sys_sched_getparam - get the RT priority of a thread 5398 * @pid: the pid in question. 5399 * @param: structure containing the RT priority. 5400 * 5401 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 5402 * code. 5403 */ 5404 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 5405 { 5406 struct sched_param lp = { .sched_priority = 0 }; 5407 struct task_struct *p; 5408 int retval; 5409 5410 if (!param || pid < 0) 5411 return -EINVAL; 5412 5413 rcu_read_lock(); 5414 p = find_process_by_pid(pid); 5415 retval = -ESRCH; 5416 if (!p) 5417 goto out_unlock; 5418 5419 retval = security_task_getscheduler(p); 5420 if (retval) 5421 goto out_unlock; 5422 5423 if (task_has_rt_policy(p)) 5424 lp.sched_priority = p->rt_priority; 5425 rcu_read_unlock(); 5426 5427 /* 5428 * This one might sleep, we cannot do it with a spinlock held ... 5429 */ 5430 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 5431 5432 return retval; 5433 5434 out_unlock: 5435 rcu_read_unlock(); 5436 return retval; 5437 } 5438 5439 /* 5440 * Copy the kernel size attribute structure (which might be larger 5441 * than what user-space knows about) to user-space. 5442 * 5443 * Note that all cases are valid: user-space buffer can be larger or 5444 * smaller than the kernel-space buffer. The usual case is that both 5445 * have the same size. 5446 */ 5447 static int 5448 sched_attr_copy_to_user(struct sched_attr __user *uattr, 5449 struct sched_attr *kattr, 5450 unsigned int usize) 5451 { 5452 unsigned int ksize = sizeof(*kattr); 5453 5454 if (!access_ok(uattr, usize)) 5455 return -EFAULT; 5456 5457 /* 5458 * sched_getattr() ABI forwards and backwards compatibility: 5459 * 5460 * If usize == ksize then we just copy everything to user-space and all is good. 5461 * 5462 * If usize < ksize then we only copy as much as user-space has space for, 5463 * this keeps ABI compatibility as well. We skip the rest. 5464 * 5465 * If usize > ksize then user-space is using a newer version of the ABI, 5466 * which part the kernel doesn't know about. Just ignore it - tooling can 5467 * detect the kernel's knowledge of attributes from the attr->size value 5468 * which is set to ksize in this case. 5469 */ 5470 kattr->size = min(usize, ksize); 5471 5472 if (copy_to_user(uattr, kattr, kattr->size)) 5473 return -EFAULT; 5474 5475 return 0; 5476 } 5477 5478 /** 5479 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 5480 * @pid: the pid in question. 5481 * @uattr: structure containing the extended parameters. 5482 * @usize: sizeof(attr) for fwd/bwd comp. 5483 * @flags: for future extension. 5484 */ 5485 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 5486 unsigned int, usize, unsigned int, flags) 5487 { 5488 struct sched_attr kattr = { }; 5489 struct task_struct *p; 5490 int retval; 5491 5492 if (!uattr || pid < 0 || usize > PAGE_SIZE || 5493 usize < SCHED_ATTR_SIZE_VER0 || flags) 5494 return -EINVAL; 5495 5496 rcu_read_lock(); 5497 p = find_process_by_pid(pid); 5498 retval = -ESRCH; 5499 if (!p) 5500 goto out_unlock; 5501 5502 retval = security_task_getscheduler(p); 5503 if (retval) 5504 goto out_unlock; 5505 5506 kattr.sched_policy = p->policy; 5507 if (p->sched_reset_on_fork) 5508 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 5509 if (task_has_dl_policy(p)) 5510 __getparam_dl(p, &kattr); 5511 else if (task_has_rt_policy(p)) 5512 kattr.sched_priority = p->rt_priority; 5513 else 5514 kattr.sched_nice = task_nice(p); 5515 5516 #ifdef CONFIG_UCLAMP_TASK 5517 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 5518 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 5519 #endif 5520 5521 rcu_read_unlock(); 5522 5523 return sched_attr_copy_to_user(uattr, &kattr, usize); 5524 5525 out_unlock: 5526 rcu_read_unlock(); 5527 return retval; 5528 } 5529 5530 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 5531 { 5532 cpumask_var_t cpus_allowed, new_mask; 5533 struct task_struct *p; 5534 int retval; 5535 5536 rcu_read_lock(); 5537 5538 p = find_process_by_pid(pid); 5539 if (!p) { 5540 rcu_read_unlock(); 5541 return -ESRCH; 5542 } 5543 5544 /* Prevent p going away */ 5545 get_task_struct(p); 5546 rcu_read_unlock(); 5547 5548 if (p->flags & PF_NO_SETAFFINITY) { 5549 retval = -EINVAL; 5550 goto out_put_task; 5551 } 5552 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 5553 retval = -ENOMEM; 5554 goto out_put_task; 5555 } 5556 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 5557 retval = -ENOMEM; 5558 goto out_free_cpus_allowed; 5559 } 5560 retval = -EPERM; 5561 if (!check_same_owner(p)) { 5562 rcu_read_lock(); 5563 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 5564 rcu_read_unlock(); 5565 goto out_free_new_mask; 5566 } 5567 rcu_read_unlock(); 5568 } 5569 5570 retval = security_task_setscheduler(p); 5571 if (retval) 5572 goto out_free_new_mask; 5573 5574 5575 cpuset_cpus_allowed(p, cpus_allowed); 5576 cpumask_and(new_mask, in_mask, cpus_allowed); 5577 5578 /* 5579 * Since bandwidth control happens on root_domain basis, 5580 * if admission test is enabled, we only admit -deadline 5581 * tasks allowed to run on all the CPUs in the task's 5582 * root_domain. 5583 */ 5584 #ifdef CONFIG_SMP 5585 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 5586 rcu_read_lock(); 5587 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 5588 retval = -EBUSY; 5589 rcu_read_unlock(); 5590 goto out_free_new_mask; 5591 } 5592 rcu_read_unlock(); 5593 } 5594 #endif 5595 again: 5596 retval = __set_cpus_allowed_ptr(p, new_mask, true); 5597 5598 if (!retval) { 5599 cpuset_cpus_allowed(p, cpus_allowed); 5600 if (!cpumask_subset(new_mask, cpus_allowed)) { 5601 /* 5602 * We must have raced with a concurrent cpuset 5603 * update. Just reset the cpus_allowed to the 5604 * cpuset's cpus_allowed 5605 */ 5606 cpumask_copy(new_mask, cpus_allowed); 5607 goto again; 5608 } 5609 } 5610 out_free_new_mask: 5611 free_cpumask_var(new_mask); 5612 out_free_cpus_allowed: 5613 free_cpumask_var(cpus_allowed); 5614 out_put_task: 5615 put_task_struct(p); 5616 return retval; 5617 } 5618 5619 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 5620 struct cpumask *new_mask) 5621 { 5622 if (len < cpumask_size()) 5623 cpumask_clear(new_mask); 5624 else if (len > cpumask_size()) 5625 len = cpumask_size(); 5626 5627 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 5628 } 5629 5630 /** 5631 * sys_sched_setaffinity - set the CPU affinity of a process 5632 * @pid: pid of the process 5633 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 5634 * @user_mask_ptr: user-space pointer to the new CPU mask 5635 * 5636 * Return: 0 on success. An error code otherwise. 5637 */ 5638 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 5639 unsigned long __user *, user_mask_ptr) 5640 { 5641 cpumask_var_t new_mask; 5642 int retval; 5643 5644 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 5645 return -ENOMEM; 5646 5647 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 5648 if (retval == 0) 5649 retval = sched_setaffinity(pid, new_mask); 5650 free_cpumask_var(new_mask); 5651 return retval; 5652 } 5653 5654 long sched_getaffinity(pid_t pid, struct cpumask *mask) 5655 { 5656 struct task_struct *p; 5657 unsigned long flags; 5658 int retval; 5659 5660 rcu_read_lock(); 5661 5662 retval = -ESRCH; 5663 p = find_process_by_pid(pid); 5664 if (!p) 5665 goto out_unlock; 5666 5667 retval = security_task_getscheduler(p); 5668 if (retval) 5669 goto out_unlock; 5670 5671 raw_spin_lock_irqsave(&p->pi_lock, flags); 5672 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 5673 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5674 5675 out_unlock: 5676 rcu_read_unlock(); 5677 5678 return retval; 5679 } 5680 5681 /** 5682 * sys_sched_getaffinity - get the CPU affinity of a process 5683 * @pid: pid of the process 5684 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 5685 * @user_mask_ptr: user-space pointer to hold the current CPU mask 5686 * 5687 * Return: size of CPU mask copied to user_mask_ptr on success. An 5688 * error code otherwise. 5689 */ 5690 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 5691 unsigned long __user *, user_mask_ptr) 5692 { 5693 int ret; 5694 cpumask_var_t mask; 5695 5696 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 5697 return -EINVAL; 5698 if (len & (sizeof(unsigned long)-1)) 5699 return -EINVAL; 5700 5701 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 5702 return -ENOMEM; 5703 5704 ret = sched_getaffinity(pid, mask); 5705 if (ret == 0) { 5706 unsigned int retlen = min(len, cpumask_size()); 5707 5708 if (copy_to_user(user_mask_ptr, mask, retlen)) 5709 ret = -EFAULT; 5710 else 5711 ret = retlen; 5712 } 5713 free_cpumask_var(mask); 5714 5715 return ret; 5716 } 5717 5718 /** 5719 * sys_sched_yield - yield the current processor to other threads. 5720 * 5721 * This function yields the current CPU to other tasks. If there are no 5722 * other threads running on this CPU then this function will return. 5723 * 5724 * Return: 0. 5725 */ 5726 static void do_sched_yield(void) 5727 { 5728 struct rq_flags rf; 5729 struct rq *rq; 5730 5731 rq = this_rq_lock_irq(&rf); 5732 5733 schedstat_inc(rq->yld_count); 5734 current->sched_class->yield_task(rq); 5735 5736 /* 5737 * Since we are going to call schedule() anyway, there's 5738 * no need to preempt or enable interrupts: 5739 */ 5740 preempt_disable(); 5741 rq_unlock(rq, &rf); 5742 sched_preempt_enable_no_resched(); 5743 5744 schedule(); 5745 } 5746 5747 SYSCALL_DEFINE0(sched_yield) 5748 { 5749 do_sched_yield(); 5750 return 0; 5751 } 5752 5753 #ifndef CONFIG_PREEMPTION 5754 int __sched _cond_resched(void) 5755 { 5756 if (should_resched(0)) { 5757 preempt_schedule_common(); 5758 return 1; 5759 } 5760 rcu_all_qs(); 5761 return 0; 5762 } 5763 EXPORT_SYMBOL(_cond_resched); 5764 #endif 5765 5766 /* 5767 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 5768 * call schedule, and on return reacquire the lock. 5769 * 5770 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 5771 * operations here to prevent schedule() from being called twice (once via 5772 * spin_unlock(), once by hand). 5773 */ 5774 int __cond_resched_lock(spinlock_t *lock) 5775 { 5776 int resched = should_resched(PREEMPT_LOCK_OFFSET); 5777 int ret = 0; 5778 5779 lockdep_assert_held(lock); 5780 5781 if (spin_needbreak(lock) || resched) { 5782 spin_unlock(lock); 5783 if (resched) 5784 preempt_schedule_common(); 5785 else 5786 cpu_relax(); 5787 ret = 1; 5788 spin_lock(lock); 5789 } 5790 return ret; 5791 } 5792 EXPORT_SYMBOL(__cond_resched_lock); 5793 5794 /** 5795 * yield - yield the current processor to other threads. 5796 * 5797 * Do not ever use this function, there's a 99% chance you're doing it wrong. 5798 * 5799 * The scheduler is at all times free to pick the calling task as the most 5800 * eligible task to run, if removing the yield() call from your code breaks 5801 * it, its already broken. 5802 * 5803 * Typical broken usage is: 5804 * 5805 * while (!event) 5806 * yield(); 5807 * 5808 * where one assumes that yield() will let 'the other' process run that will 5809 * make event true. If the current task is a SCHED_FIFO task that will never 5810 * happen. Never use yield() as a progress guarantee!! 5811 * 5812 * If you want to use yield() to wait for something, use wait_event(). 5813 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5814 * If you still want to use yield(), do not! 5815 */ 5816 void __sched yield(void) 5817 { 5818 set_current_state(TASK_RUNNING); 5819 do_sched_yield(); 5820 } 5821 EXPORT_SYMBOL(yield); 5822 5823 /** 5824 * yield_to - yield the current processor to another thread in 5825 * your thread group, or accelerate that thread toward the 5826 * processor it's on. 5827 * @p: target task 5828 * @preempt: whether task preemption is allowed or not 5829 * 5830 * It's the caller's job to ensure that the target task struct 5831 * can't go away on us before we can do any checks. 5832 * 5833 * Return: 5834 * true (>0) if we indeed boosted the target task. 5835 * false (0) if we failed to boost the target. 5836 * -ESRCH if there's no task to yield to. 5837 */ 5838 int __sched yield_to(struct task_struct *p, bool preempt) 5839 { 5840 struct task_struct *curr = current; 5841 struct rq *rq, *p_rq; 5842 unsigned long flags; 5843 int yielded = 0; 5844 5845 local_irq_save(flags); 5846 rq = this_rq(); 5847 5848 again: 5849 p_rq = task_rq(p); 5850 /* 5851 * If we're the only runnable task on the rq and target rq also 5852 * has only one task, there's absolutely no point in yielding. 5853 */ 5854 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5855 yielded = -ESRCH; 5856 goto out_irq; 5857 } 5858 5859 double_rq_lock(rq, p_rq); 5860 if (task_rq(p) != p_rq) { 5861 double_rq_unlock(rq, p_rq); 5862 goto again; 5863 } 5864 5865 if (!curr->sched_class->yield_to_task) 5866 goto out_unlock; 5867 5868 if (curr->sched_class != p->sched_class) 5869 goto out_unlock; 5870 5871 if (task_running(p_rq, p) || p->state) 5872 goto out_unlock; 5873 5874 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5875 if (yielded) { 5876 schedstat_inc(rq->yld_count); 5877 /* 5878 * Make p's CPU reschedule; pick_next_entity takes care of 5879 * fairness. 5880 */ 5881 if (preempt && rq != p_rq) 5882 resched_curr(p_rq); 5883 } 5884 5885 out_unlock: 5886 double_rq_unlock(rq, p_rq); 5887 out_irq: 5888 local_irq_restore(flags); 5889 5890 if (yielded > 0) 5891 schedule(); 5892 5893 return yielded; 5894 } 5895 EXPORT_SYMBOL_GPL(yield_to); 5896 5897 int io_schedule_prepare(void) 5898 { 5899 int old_iowait = current->in_iowait; 5900 5901 current->in_iowait = 1; 5902 blk_schedule_flush_plug(current); 5903 5904 return old_iowait; 5905 } 5906 5907 void io_schedule_finish(int token) 5908 { 5909 current->in_iowait = token; 5910 } 5911 5912 /* 5913 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5914 * that process accounting knows that this is a task in IO wait state. 5915 */ 5916 long __sched io_schedule_timeout(long timeout) 5917 { 5918 int token; 5919 long ret; 5920 5921 token = io_schedule_prepare(); 5922 ret = schedule_timeout(timeout); 5923 io_schedule_finish(token); 5924 5925 return ret; 5926 } 5927 EXPORT_SYMBOL(io_schedule_timeout); 5928 5929 void __sched io_schedule(void) 5930 { 5931 int token; 5932 5933 token = io_schedule_prepare(); 5934 schedule(); 5935 io_schedule_finish(token); 5936 } 5937 EXPORT_SYMBOL(io_schedule); 5938 5939 /** 5940 * sys_sched_get_priority_max - return maximum RT priority. 5941 * @policy: scheduling class. 5942 * 5943 * Return: On success, this syscall returns the maximum 5944 * rt_priority that can be used by a given scheduling class. 5945 * On failure, a negative error code is returned. 5946 */ 5947 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5948 { 5949 int ret = -EINVAL; 5950 5951 switch (policy) { 5952 case SCHED_FIFO: 5953 case SCHED_RR: 5954 ret = MAX_USER_RT_PRIO-1; 5955 break; 5956 case SCHED_DEADLINE: 5957 case SCHED_NORMAL: 5958 case SCHED_BATCH: 5959 case SCHED_IDLE: 5960 ret = 0; 5961 break; 5962 } 5963 return ret; 5964 } 5965 5966 /** 5967 * sys_sched_get_priority_min - return minimum RT priority. 5968 * @policy: scheduling class. 5969 * 5970 * Return: On success, this syscall returns the minimum 5971 * rt_priority that can be used by a given scheduling class. 5972 * On failure, a negative error code is returned. 5973 */ 5974 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5975 { 5976 int ret = -EINVAL; 5977 5978 switch (policy) { 5979 case SCHED_FIFO: 5980 case SCHED_RR: 5981 ret = 1; 5982 break; 5983 case SCHED_DEADLINE: 5984 case SCHED_NORMAL: 5985 case SCHED_BATCH: 5986 case SCHED_IDLE: 5987 ret = 0; 5988 } 5989 return ret; 5990 } 5991 5992 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5993 { 5994 struct task_struct *p; 5995 unsigned int time_slice; 5996 struct rq_flags rf; 5997 struct rq *rq; 5998 int retval; 5999 6000 if (pid < 0) 6001 return -EINVAL; 6002 6003 retval = -ESRCH; 6004 rcu_read_lock(); 6005 p = find_process_by_pid(pid); 6006 if (!p) 6007 goto out_unlock; 6008 6009 retval = security_task_getscheduler(p); 6010 if (retval) 6011 goto out_unlock; 6012 6013 rq = task_rq_lock(p, &rf); 6014 time_slice = 0; 6015 if (p->sched_class->get_rr_interval) 6016 time_slice = p->sched_class->get_rr_interval(rq, p); 6017 task_rq_unlock(rq, p, &rf); 6018 6019 rcu_read_unlock(); 6020 jiffies_to_timespec64(time_slice, t); 6021 return 0; 6022 6023 out_unlock: 6024 rcu_read_unlock(); 6025 return retval; 6026 } 6027 6028 /** 6029 * sys_sched_rr_get_interval - return the default timeslice of a process. 6030 * @pid: pid of the process. 6031 * @interval: userspace pointer to the timeslice value. 6032 * 6033 * this syscall writes the default timeslice value of a given process 6034 * into the user-space timespec buffer. A value of '0' means infinity. 6035 * 6036 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 6037 * an error code. 6038 */ 6039 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 6040 struct __kernel_timespec __user *, interval) 6041 { 6042 struct timespec64 t; 6043 int retval = sched_rr_get_interval(pid, &t); 6044 6045 if (retval == 0) 6046 retval = put_timespec64(&t, interval); 6047 6048 return retval; 6049 } 6050 6051 #ifdef CONFIG_COMPAT_32BIT_TIME 6052 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 6053 struct old_timespec32 __user *, interval) 6054 { 6055 struct timespec64 t; 6056 int retval = sched_rr_get_interval(pid, &t); 6057 6058 if (retval == 0) 6059 retval = put_old_timespec32(&t, interval); 6060 return retval; 6061 } 6062 #endif 6063 6064 void sched_show_task(struct task_struct *p) 6065 { 6066 unsigned long free = 0; 6067 int ppid; 6068 6069 if (!try_get_task_stack(p)) 6070 return; 6071 6072 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 6073 6074 if (p->state == TASK_RUNNING) 6075 printk(KERN_CONT " running task "); 6076 #ifdef CONFIG_DEBUG_STACK_USAGE 6077 free = stack_not_used(p); 6078 #endif 6079 ppid = 0; 6080 rcu_read_lock(); 6081 if (pid_alive(p)) 6082 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 6083 rcu_read_unlock(); 6084 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 6085 task_pid_nr(p), ppid, 6086 (unsigned long)task_thread_info(p)->flags); 6087 6088 print_worker_info(KERN_INFO, p); 6089 show_stack(p, NULL, KERN_INFO); 6090 put_task_stack(p); 6091 } 6092 EXPORT_SYMBOL_GPL(sched_show_task); 6093 6094 static inline bool 6095 state_filter_match(unsigned long state_filter, struct task_struct *p) 6096 { 6097 /* no filter, everything matches */ 6098 if (!state_filter) 6099 return true; 6100 6101 /* filter, but doesn't match */ 6102 if (!(p->state & state_filter)) 6103 return false; 6104 6105 /* 6106 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 6107 * TASK_KILLABLE). 6108 */ 6109 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 6110 return false; 6111 6112 return true; 6113 } 6114 6115 6116 void show_state_filter(unsigned long state_filter) 6117 { 6118 struct task_struct *g, *p; 6119 6120 #if BITS_PER_LONG == 32 6121 printk(KERN_INFO 6122 " task PC stack pid father\n"); 6123 #else 6124 printk(KERN_INFO 6125 " task PC stack pid father\n"); 6126 #endif 6127 rcu_read_lock(); 6128 for_each_process_thread(g, p) { 6129 /* 6130 * reset the NMI-timeout, listing all files on a slow 6131 * console might take a lot of time: 6132 * Also, reset softlockup watchdogs on all CPUs, because 6133 * another CPU might be blocked waiting for us to process 6134 * an IPI. 6135 */ 6136 touch_nmi_watchdog(); 6137 touch_all_softlockup_watchdogs(); 6138 if (state_filter_match(state_filter, p)) 6139 sched_show_task(p); 6140 } 6141 6142 #ifdef CONFIG_SCHED_DEBUG 6143 if (!state_filter) 6144 sysrq_sched_debug_show(); 6145 #endif 6146 rcu_read_unlock(); 6147 /* 6148 * Only show locks if all tasks are dumped: 6149 */ 6150 if (!state_filter) 6151 debug_show_all_locks(); 6152 } 6153 6154 /** 6155 * init_idle - set up an idle thread for a given CPU 6156 * @idle: task in question 6157 * @cpu: CPU the idle task belongs to 6158 * 6159 * NOTE: this function does not set the idle thread's NEED_RESCHED 6160 * flag, to make booting more robust. 6161 */ 6162 void init_idle(struct task_struct *idle, int cpu) 6163 { 6164 struct rq *rq = cpu_rq(cpu); 6165 unsigned long flags; 6166 6167 __sched_fork(0, idle); 6168 6169 raw_spin_lock_irqsave(&idle->pi_lock, flags); 6170 raw_spin_lock(&rq->lock); 6171 6172 idle->state = TASK_RUNNING; 6173 idle->se.exec_start = sched_clock(); 6174 idle->flags |= PF_IDLE; 6175 6176 scs_task_reset(idle); 6177 kasan_unpoison_task_stack(idle); 6178 6179 #ifdef CONFIG_SMP 6180 /* 6181 * Its possible that init_idle() gets called multiple times on a task, 6182 * in that case do_set_cpus_allowed() will not do the right thing. 6183 * 6184 * And since this is boot we can forgo the serialization. 6185 */ 6186 set_cpus_allowed_common(idle, cpumask_of(cpu)); 6187 #endif 6188 /* 6189 * We're having a chicken and egg problem, even though we are 6190 * holding rq->lock, the CPU isn't yet set to this CPU so the 6191 * lockdep check in task_group() will fail. 6192 * 6193 * Similar case to sched_fork(). / Alternatively we could 6194 * use task_rq_lock() here and obtain the other rq->lock. 6195 * 6196 * Silence PROVE_RCU 6197 */ 6198 rcu_read_lock(); 6199 __set_task_cpu(idle, cpu); 6200 rcu_read_unlock(); 6201 6202 rq->idle = idle; 6203 rcu_assign_pointer(rq->curr, idle); 6204 idle->on_rq = TASK_ON_RQ_QUEUED; 6205 #ifdef CONFIG_SMP 6206 idle->on_cpu = 1; 6207 #endif 6208 raw_spin_unlock(&rq->lock); 6209 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 6210 6211 /* Set the preempt count _outside_ the spinlocks! */ 6212 init_idle_preempt_count(idle, cpu); 6213 6214 /* 6215 * The idle tasks have their own, simple scheduling class: 6216 */ 6217 idle->sched_class = &idle_sched_class; 6218 ftrace_graph_init_idle_task(idle, cpu); 6219 vtime_init_idle(idle, cpu); 6220 #ifdef CONFIG_SMP 6221 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 6222 #endif 6223 } 6224 6225 #ifdef CONFIG_SMP 6226 6227 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 6228 const struct cpumask *trial) 6229 { 6230 int ret = 1; 6231 6232 if (!cpumask_weight(cur)) 6233 return ret; 6234 6235 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 6236 6237 return ret; 6238 } 6239 6240 int task_can_attach(struct task_struct *p, 6241 const struct cpumask *cs_cpus_allowed) 6242 { 6243 int ret = 0; 6244 6245 /* 6246 * Kthreads which disallow setaffinity shouldn't be moved 6247 * to a new cpuset; we don't want to change their CPU 6248 * affinity and isolating such threads by their set of 6249 * allowed nodes is unnecessary. Thus, cpusets are not 6250 * applicable for such threads. This prevents checking for 6251 * success of set_cpus_allowed_ptr() on all attached tasks 6252 * before cpus_mask may be changed. 6253 */ 6254 if (p->flags & PF_NO_SETAFFINITY) { 6255 ret = -EINVAL; 6256 goto out; 6257 } 6258 6259 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 6260 cs_cpus_allowed)) 6261 ret = dl_task_can_attach(p, cs_cpus_allowed); 6262 6263 out: 6264 return ret; 6265 } 6266 6267 bool sched_smp_initialized __read_mostly; 6268 6269 #ifdef CONFIG_NUMA_BALANCING 6270 /* Migrate current task p to target_cpu */ 6271 int migrate_task_to(struct task_struct *p, int target_cpu) 6272 { 6273 struct migration_arg arg = { p, target_cpu }; 6274 int curr_cpu = task_cpu(p); 6275 6276 if (curr_cpu == target_cpu) 6277 return 0; 6278 6279 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 6280 return -EINVAL; 6281 6282 /* TODO: This is not properly updating schedstats */ 6283 6284 trace_sched_move_numa(p, curr_cpu, target_cpu); 6285 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 6286 } 6287 6288 /* 6289 * Requeue a task on a given node and accurately track the number of NUMA 6290 * tasks on the runqueues 6291 */ 6292 void sched_setnuma(struct task_struct *p, int nid) 6293 { 6294 bool queued, running; 6295 struct rq_flags rf; 6296 struct rq *rq; 6297 6298 rq = task_rq_lock(p, &rf); 6299 queued = task_on_rq_queued(p); 6300 running = task_current(rq, p); 6301 6302 if (queued) 6303 dequeue_task(rq, p, DEQUEUE_SAVE); 6304 if (running) 6305 put_prev_task(rq, p); 6306 6307 p->numa_preferred_nid = nid; 6308 6309 if (queued) 6310 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 6311 if (running) 6312 set_next_task(rq, p); 6313 task_rq_unlock(rq, p, &rf); 6314 } 6315 #endif /* CONFIG_NUMA_BALANCING */ 6316 6317 #ifdef CONFIG_HOTPLUG_CPU 6318 /* 6319 * Ensure that the idle task is using init_mm right before its CPU goes 6320 * offline. 6321 */ 6322 void idle_task_exit(void) 6323 { 6324 struct mm_struct *mm = current->active_mm; 6325 6326 BUG_ON(cpu_online(smp_processor_id())); 6327 BUG_ON(current != this_rq()->idle); 6328 6329 if (mm != &init_mm) { 6330 switch_mm(mm, &init_mm, current); 6331 finish_arch_post_lock_switch(); 6332 } 6333 6334 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 6335 } 6336 6337 /* 6338 * Since this CPU is going 'away' for a while, fold any nr_active delta 6339 * we might have. Assumes we're called after migrate_tasks() so that the 6340 * nr_active count is stable. We need to take the teardown thread which 6341 * is calling this into account, so we hand in adjust = 1 to the load 6342 * calculation. 6343 * 6344 * Also see the comment "Global load-average calculations". 6345 */ 6346 static void calc_load_migrate(struct rq *rq) 6347 { 6348 long delta = calc_load_fold_active(rq, 1); 6349 if (delta) 6350 atomic_long_add(delta, &calc_load_tasks); 6351 } 6352 6353 static struct task_struct *__pick_migrate_task(struct rq *rq) 6354 { 6355 const struct sched_class *class; 6356 struct task_struct *next; 6357 6358 for_each_class(class) { 6359 next = class->pick_next_task(rq); 6360 if (next) { 6361 next->sched_class->put_prev_task(rq, next); 6362 return next; 6363 } 6364 } 6365 6366 /* The idle class should always have a runnable task */ 6367 BUG(); 6368 } 6369 6370 /* 6371 * Migrate all tasks from the rq, sleeping tasks will be migrated by 6372 * try_to_wake_up()->select_task_rq(). 6373 * 6374 * Called with rq->lock held even though we'er in stop_machine() and 6375 * there's no concurrency possible, we hold the required locks anyway 6376 * because of lock validation efforts. 6377 */ 6378 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 6379 { 6380 struct rq *rq = dead_rq; 6381 struct task_struct *next, *stop = rq->stop; 6382 struct rq_flags orf = *rf; 6383 int dest_cpu; 6384 6385 /* 6386 * Fudge the rq selection such that the below task selection loop 6387 * doesn't get stuck on the currently eligible stop task. 6388 * 6389 * We're currently inside stop_machine() and the rq is either stuck 6390 * in the stop_machine_cpu_stop() loop, or we're executing this code, 6391 * either way we should never end up calling schedule() until we're 6392 * done here. 6393 */ 6394 rq->stop = NULL; 6395 6396 /* 6397 * put_prev_task() and pick_next_task() sched 6398 * class method both need to have an up-to-date 6399 * value of rq->clock[_task] 6400 */ 6401 update_rq_clock(rq); 6402 6403 for (;;) { 6404 /* 6405 * There's this thread running, bail when that's the only 6406 * remaining thread: 6407 */ 6408 if (rq->nr_running == 1) 6409 break; 6410 6411 next = __pick_migrate_task(rq); 6412 6413 /* 6414 * Rules for changing task_struct::cpus_mask are holding 6415 * both pi_lock and rq->lock, such that holding either 6416 * stabilizes the mask. 6417 * 6418 * Drop rq->lock is not quite as disastrous as it usually is 6419 * because !cpu_active at this point, which means load-balance 6420 * will not interfere. Also, stop-machine. 6421 */ 6422 rq_unlock(rq, rf); 6423 raw_spin_lock(&next->pi_lock); 6424 rq_relock(rq, rf); 6425 6426 /* 6427 * Since we're inside stop-machine, _nothing_ should have 6428 * changed the task, WARN if weird stuff happened, because in 6429 * that case the above rq->lock drop is a fail too. 6430 */ 6431 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 6432 raw_spin_unlock(&next->pi_lock); 6433 continue; 6434 } 6435 6436 /* Find suitable destination for @next, with force if needed. */ 6437 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 6438 rq = __migrate_task(rq, rf, next, dest_cpu); 6439 if (rq != dead_rq) { 6440 rq_unlock(rq, rf); 6441 rq = dead_rq; 6442 *rf = orf; 6443 rq_relock(rq, rf); 6444 } 6445 raw_spin_unlock(&next->pi_lock); 6446 } 6447 6448 rq->stop = stop; 6449 } 6450 #endif /* CONFIG_HOTPLUG_CPU */ 6451 6452 void set_rq_online(struct rq *rq) 6453 { 6454 if (!rq->online) { 6455 const struct sched_class *class; 6456 6457 cpumask_set_cpu(rq->cpu, rq->rd->online); 6458 rq->online = 1; 6459 6460 for_each_class(class) { 6461 if (class->rq_online) 6462 class->rq_online(rq); 6463 } 6464 } 6465 } 6466 6467 void set_rq_offline(struct rq *rq) 6468 { 6469 if (rq->online) { 6470 const struct sched_class *class; 6471 6472 for_each_class(class) { 6473 if (class->rq_offline) 6474 class->rq_offline(rq); 6475 } 6476 6477 cpumask_clear_cpu(rq->cpu, rq->rd->online); 6478 rq->online = 0; 6479 } 6480 } 6481 6482 /* 6483 * used to mark begin/end of suspend/resume: 6484 */ 6485 static int num_cpus_frozen; 6486 6487 /* 6488 * Update cpusets according to cpu_active mask. If cpusets are 6489 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6490 * around partition_sched_domains(). 6491 * 6492 * If we come here as part of a suspend/resume, don't touch cpusets because we 6493 * want to restore it back to its original state upon resume anyway. 6494 */ 6495 static void cpuset_cpu_active(void) 6496 { 6497 if (cpuhp_tasks_frozen) { 6498 /* 6499 * num_cpus_frozen tracks how many CPUs are involved in suspend 6500 * resume sequence. As long as this is not the last online 6501 * operation in the resume sequence, just build a single sched 6502 * domain, ignoring cpusets. 6503 */ 6504 partition_sched_domains(1, NULL, NULL); 6505 if (--num_cpus_frozen) 6506 return; 6507 /* 6508 * This is the last CPU online operation. So fall through and 6509 * restore the original sched domains by considering the 6510 * cpuset configurations. 6511 */ 6512 cpuset_force_rebuild(); 6513 } 6514 cpuset_update_active_cpus(); 6515 } 6516 6517 static int cpuset_cpu_inactive(unsigned int cpu) 6518 { 6519 if (!cpuhp_tasks_frozen) { 6520 if (dl_cpu_busy(cpu)) 6521 return -EBUSY; 6522 cpuset_update_active_cpus(); 6523 } else { 6524 num_cpus_frozen++; 6525 partition_sched_domains(1, NULL, NULL); 6526 } 6527 return 0; 6528 } 6529 6530 int sched_cpu_activate(unsigned int cpu) 6531 { 6532 struct rq *rq = cpu_rq(cpu); 6533 struct rq_flags rf; 6534 6535 #ifdef CONFIG_SCHED_SMT 6536 /* 6537 * When going up, increment the number of cores with SMT present. 6538 */ 6539 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 6540 static_branch_inc_cpuslocked(&sched_smt_present); 6541 #endif 6542 set_cpu_active(cpu, true); 6543 6544 if (sched_smp_initialized) { 6545 sched_domains_numa_masks_set(cpu); 6546 cpuset_cpu_active(); 6547 } 6548 6549 /* 6550 * Put the rq online, if not already. This happens: 6551 * 6552 * 1) In the early boot process, because we build the real domains 6553 * after all CPUs have been brought up. 6554 * 6555 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 6556 * domains. 6557 */ 6558 rq_lock_irqsave(rq, &rf); 6559 if (rq->rd) { 6560 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 6561 set_rq_online(rq); 6562 } 6563 rq_unlock_irqrestore(rq, &rf); 6564 6565 return 0; 6566 } 6567 6568 int sched_cpu_deactivate(unsigned int cpu) 6569 { 6570 int ret; 6571 6572 set_cpu_active(cpu, false); 6573 /* 6574 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 6575 * users of this state to go away such that all new such users will 6576 * observe it. 6577 * 6578 * Do sync before park smpboot threads to take care the rcu boost case. 6579 */ 6580 synchronize_rcu(); 6581 6582 #ifdef CONFIG_SCHED_SMT 6583 /* 6584 * When going down, decrement the number of cores with SMT present. 6585 */ 6586 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 6587 static_branch_dec_cpuslocked(&sched_smt_present); 6588 #endif 6589 6590 if (!sched_smp_initialized) 6591 return 0; 6592 6593 ret = cpuset_cpu_inactive(cpu); 6594 if (ret) { 6595 set_cpu_active(cpu, true); 6596 return ret; 6597 } 6598 sched_domains_numa_masks_clear(cpu); 6599 return 0; 6600 } 6601 6602 static void sched_rq_cpu_starting(unsigned int cpu) 6603 { 6604 struct rq *rq = cpu_rq(cpu); 6605 6606 rq->calc_load_update = calc_load_update; 6607 update_max_interval(); 6608 } 6609 6610 int sched_cpu_starting(unsigned int cpu) 6611 { 6612 sched_rq_cpu_starting(cpu); 6613 sched_tick_start(cpu); 6614 return 0; 6615 } 6616 6617 #ifdef CONFIG_HOTPLUG_CPU 6618 int sched_cpu_dying(unsigned int cpu) 6619 { 6620 struct rq *rq = cpu_rq(cpu); 6621 struct rq_flags rf; 6622 6623 /* Handle pending wakeups and then migrate everything off */ 6624 sched_tick_stop(cpu); 6625 6626 rq_lock_irqsave(rq, &rf); 6627 if (rq->rd) { 6628 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 6629 set_rq_offline(rq); 6630 } 6631 migrate_tasks(rq, &rf); 6632 BUG_ON(rq->nr_running != 1); 6633 rq_unlock_irqrestore(rq, &rf); 6634 6635 calc_load_migrate(rq); 6636 update_max_interval(); 6637 nohz_balance_exit_idle(rq); 6638 hrtick_clear(rq); 6639 return 0; 6640 } 6641 #endif 6642 6643 void __init sched_init_smp(void) 6644 { 6645 sched_init_numa(); 6646 6647 /* 6648 * There's no userspace yet to cause hotplug operations; hence all the 6649 * CPU masks are stable and all blatant races in the below code cannot 6650 * happen. 6651 */ 6652 mutex_lock(&sched_domains_mutex); 6653 sched_init_domains(cpu_active_mask); 6654 mutex_unlock(&sched_domains_mutex); 6655 6656 /* Move init over to a non-isolated CPU */ 6657 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 6658 BUG(); 6659 sched_init_granularity(); 6660 6661 init_sched_rt_class(); 6662 init_sched_dl_class(); 6663 6664 sched_smp_initialized = true; 6665 } 6666 6667 static int __init migration_init(void) 6668 { 6669 sched_cpu_starting(smp_processor_id()); 6670 return 0; 6671 } 6672 early_initcall(migration_init); 6673 6674 #else 6675 void __init sched_init_smp(void) 6676 { 6677 sched_init_granularity(); 6678 } 6679 #endif /* CONFIG_SMP */ 6680 6681 int in_sched_functions(unsigned long addr) 6682 { 6683 return in_lock_functions(addr) || 6684 (addr >= (unsigned long)__sched_text_start 6685 && addr < (unsigned long)__sched_text_end); 6686 } 6687 6688 #ifdef CONFIG_CGROUP_SCHED 6689 /* 6690 * Default task group. 6691 * Every task in system belongs to this group at bootup. 6692 */ 6693 struct task_group root_task_group; 6694 LIST_HEAD(task_groups); 6695 6696 /* Cacheline aligned slab cache for task_group */ 6697 static struct kmem_cache *task_group_cache __read_mostly; 6698 #endif 6699 6700 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6701 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 6702 6703 void __init sched_init(void) 6704 { 6705 unsigned long ptr = 0; 6706 int i; 6707 6708 wait_bit_init(); 6709 6710 #ifdef CONFIG_FAIR_GROUP_SCHED 6711 ptr += 2 * nr_cpu_ids * sizeof(void **); 6712 #endif 6713 #ifdef CONFIG_RT_GROUP_SCHED 6714 ptr += 2 * nr_cpu_ids * sizeof(void **); 6715 #endif 6716 if (ptr) { 6717 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 6718 6719 #ifdef CONFIG_FAIR_GROUP_SCHED 6720 root_task_group.se = (struct sched_entity **)ptr; 6721 ptr += nr_cpu_ids * sizeof(void **); 6722 6723 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6724 ptr += nr_cpu_ids * sizeof(void **); 6725 6726 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6727 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6728 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6729 #ifdef CONFIG_RT_GROUP_SCHED 6730 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6731 ptr += nr_cpu_ids * sizeof(void **); 6732 6733 root_task_group.rt_rq = (struct rt_rq **)ptr; 6734 ptr += nr_cpu_ids * sizeof(void **); 6735 6736 #endif /* CONFIG_RT_GROUP_SCHED */ 6737 } 6738 #ifdef CONFIG_CPUMASK_OFFSTACK 6739 for_each_possible_cpu(i) { 6740 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 6741 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6742 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 6743 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6744 } 6745 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6746 6747 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 6748 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 6749 6750 #ifdef CONFIG_SMP 6751 init_defrootdomain(); 6752 #endif 6753 6754 #ifdef CONFIG_RT_GROUP_SCHED 6755 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6756 global_rt_period(), global_rt_runtime()); 6757 #endif /* CONFIG_RT_GROUP_SCHED */ 6758 6759 #ifdef CONFIG_CGROUP_SCHED 6760 task_group_cache = KMEM_CACHE(task_group, 0); 6761 6762 list_add(&root_task_group.list, &task_groups); 6763 INIT_LIST_HEAD(&root_task_group.children); 6764 INIT_LIST_HEAD(&root_task_group.siblings); 6765 autogroup_init(&init_task); 6766 #endif /* CONFIG_CGROUP_SCHED */ 6767 6768 for_each_possible_cpu(i) { 6769 struct rq *rq; 6770 6771 rq = cpu_rq(i); 6772 raw_spin_lock_init(&rq->lock); 6773 rq->nr_running = 0; 6774 rq->calc_load_active = 0; 6775 rq->calc_load_update = jiffies + LOAD_FREQ; 6776 init_cfs_rq(&rq->cfs); 6777 init_rt_rq(&rq->rt); 6778 init_dl_rq(&rq->dl); 6779 #ifdef CONFIG_FAIR_GROUP_SCHED 6780 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6781 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 6782 /* 6783 * How much CPU bandwidth does root_task_group get? 6784 * 6785 * In case of task-groups formed thr' the cgroup filesystem, it 6786 * gets 100% of the CPU resources in the system. This overall 6787 * system CPU resource is divided among the tasks of 6788 * root_task_group and its child task-groups in a fair manner, 6789 * based on each entity's (task or task-group's) weight 6790 * (se->load.weight). 6791 * 6792 * In other words, if root_task_group has 10 tasks of weight 6793 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6794 * then A0's share of the CPU resource is: 6795 * 6796 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6797 * 6798 * We achieve this by letting root_task_group's tasks sit 6799 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6800 */ 6801 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6802 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6803 6804 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6805 #ifdef CONFIG_RT_GROUP_SCHED 6806 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6807 #endif 6808 #ifdef CONFIG_SMP 6809 rq->sd = NULL; 6810 rq->rd = NULL; 6811 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6812 rq->balance_callback = NULL; 6813 rq->active_balance = 0; 6814 rq->next_balance = jiffies; 6815 rq->push_cpu = 0; 6816 rq->cpu = i; 6817 rq->online = 0; 6818 rq->idle_stamp = 0; 6819 rq->avg_idle = 2*sysctl_sched_migration_cost; 6820 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6821 6822 INIT_LIST_HEAD(&rq->cfs_tasks); 6823 6824 rq_attach_root(rq, &def_root_domain); 6825 #ifdef CONFIG_NO_HZ_COMMON 6826 rq->last_blocked_load_update_tick = jiffies; 6827 atomic_set(&rq->nohz_flags, 0); 6828 6829 rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func); 6830 #endif 6831 #endif /* CONFIG_SMP */ 6832 hrtick_rq_init(rq); 6833 atomic_set(&rq->nr_iowait, 0); 6834 } 6835 6836 set_load_weight(&init_task, false); 6837 6838 /* 6839 * The boot idle thread does lazy MMU switching as well: 6840 */ 6841 mmgrab(&init_mm); 6842 enter_lazy_tlb(&init_mm, current); 6843 6844 /* 6845 * Make us the idle thread. Technically, schedule() should not be 6846 * called from this thread, however somewhere below it might be, 6847 * but because we are the idle thread, we just pick up running again 6848 * when this runqueue becomes "idle". 6849 */ 6850 init_idle(current, smp_processor_id()); 6851 6852 calc_load_update = jiffies + LOAD_FREQ; 6853 6854 #ifdef CONFIG_SMP 6855 idle_thread_set_boot_cpu(); 6856 #endif 6857 init_sched_fair_class(); 6858 6859 init_schedstats(); 6860 6861 psi_init(); 6862 6863 init_uclamp(); 6864 6865 scheduler_running = 1; 6866 } 6867 6868 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6869 static inline int preempt_count_equals(int preempt_offset) 6870 { 6871 int nested = preempt_count() + rcu_preempt_depth(); 6872 6873 return (nested == preempt_offset); 6874 } 6875 6876 void __might_sleep(const char *file, int line, int preempt_offset) 6877 { 6878 /* 6879 * Blocking primitives will set (and therefore destroy) current->state, 6880 * since we will exit with TASK_RUNNING make sure we enter with it, 6881 * otherwise we will destroy state. 6882 */ 6883 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6884 "do not call blocking ops when !TASK_RUNNING; " 6885 "state=%lx set at [<%p>] %pS\n", 6886 current->state, 6887 (void *)current->task_state_change, 6888 (void *)current->task_state_change); 6889 6890 ___might_sleep(file, line, preempt_offset); 6891 } 6892 EXPORT_SYMBOL(__might_sleep); 6893 6894 void ___might_sleep(const char *file, int line, int preempt_offset) 6895 { 6896 /* Ratelimiting timestamp: */ 6897 static unsigned long prev_jiffy; 6898 6899 unsigned long preempt_disable_ip; 6900 6901 /* WARN_ON_ONCE() by default, no rate limit required: */ 6902 rcu_sleep_check(); 6903 6904 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6905 !is_idle_task(current) && !current->non_block_count) || 6906 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6907 oops_in_progress) 6908 return; 6909 6910 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6911 return; 6912 prev_jiffy = jiffies; 6913 6914 /* Save this before calling printk(), since that will clobber it: */ 6915 preempt_disable_ip = get_preempt_disable_ip(current); 6916 6917 printk(KERN_ERR 6918 "BUG: sleeping function called from invalid context at %s:%d\n", 6919 file, line); 6920 printk(KERN_ERR 6921 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 6922 in_atomic(), irqs_disabled(), current->non_block_count, 6923 current->pid, current->comm); 6924 6925 if (task_stack_end_corrupted(current)) 6926 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6927 6928 debug_show_held_locks(current); 6929 if (irqs_disabled()) 6930 print_irqtrace_events(current); 6931 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6932 && !preempt_count_equals(preempt_offset)) { 6933 pr_err("Preemption disabled at:"); 6934 print_ip_sym(KERN_ERR, preempt_disable_ip); 6935 } 6936 dump_stack(); 6937 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6938 } 6939 EXPORT_SYMBOL(___might_sleep); 6940 6941 void __cant_sleep(const char *file, int line, int preempt_offset) 6942 { 6943 static unsigned long prev_jiffy; 6944 6945 if (irqs_disabled()) 6946 return; 6947 6948 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 6949 return; 6950 6951 if (preempt_count() > preempt_offset) 6952 return; 6953 6954 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6955 return; 6956 prev_jiffy = jiffies; 6957 6958 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 6959 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6960 in_atomic(), irqs_disabled(), 6961 current->pid, current->comm); 6962 6963 debug_show_held_locks(current); 6964 dump_stack(); 6965 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6966 } 6967 EXPORT_SYMBOL_GPL(__cant_sleep); 6968 #endif 6969 6970 #ifdef CONFIG_MAGIC_SYSRQ 6971 void normalize_rt_tasks(void) 6972 { 6973 struct task_struct *g, *p; 6974 struct sched_attr attr = { 6975 .sched_policy = SCHED_NORMAL, 6976 }; 6977 6978 read_lock(&tasklist_lock); 6979 for_each_process_thread(g, p) { 6980 /* 6981 * Only normalize user tasks: 6982 */ 6983 if (p->flags & PF_KTHREAD) 6984 continue; 6985 6986 p->se.exec_start = 0; 6987 schedstat_set(p->se.statistics.wait_start, 0); 6988 schedstat_set(p->se.statistics.sleep_start, 0); 6989 schedstat_set(p->se.statistics.block_start, 0); 6990 6991 if (!dl_task(p) && !rt_task(p)) { 6992 /* 6993 * Renice negative nice level userspace 6994 * tasks back to 0: 6995 */ 6996 if (task_nice(p) < 0) 6997 set_user_nice(p, 0); 6998 continue; 6999 } 7000 7001 __sched_setscheduler(p, &attr, false, false); 7002 } 7003 read_unlock(&tasklist_lock); 7004 } 7005 7006 #endif /* CONFIG_MAGIC_SYSRQ */ 7007 7008 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7009 /* 7010 * These functions are only useful for the IA64 MCA handling, or kdb. 7011 * 7012 * They can only be called when the whole system has been 7013 * stopped - every CPU needs to be quiescent, and no scheduling 7014 * activity can take place. Using them for anything else would 7015 * be a serious bug, and as a result, they aren't even visible 7016 * under any other configuration. 7017 */ 7018 7019 /** 7020 * curr_task - return the current task for a given CPU. 7021 * @cpu: the processor in question. 7022 * 7023 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7024 * 7025 * Return: The current task for @cpu. 7026 */ 7027 struct task_struct *curr_task(int cpu) 7028 { 7029 return cpu_curr(cpu); 7030 } 7031 7032 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7033 7034 #ifdef CONFIG_IA64 7035 /** 7036 * ia64_set_curr_task - set the current task for a given CPU. 7037 * @cpu: the processor in question. 7038 * @p: the task pointer to set. 7039 * 7040 * Description: This function must only be used when non-maskable interrupts 7041 * are serviced on a separate stack. It allows the architecture to switch the 7042 * notion of the current task on a CPU in a non-blocking manner. This function 7043 * must be called with all CPU's synchronized, and interrupts disabled, the 7044 * and caller must save the original value of the current task (see 7045 * curr_task() above) and restore that value before reenabling interrupts and 7046 * re-starting the system. 7047 * 7048 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7049 */ 7050 void ia64_set_curr_task(int cpu, struct task_struct *p) 7051 { 7052 cpu_curr(cpu) = p; 7053 } 7054 7055 #endif 7056 7057 #ifdef CONFIG_CGROUP_SCHED 7058 /* task_group_lock serializes the addition/removal of task groups */ 7059 static DEFINE_SPINLOCK(task_group_lock); 7060 7061 static inline void alloc_uclamp_sched_group(struct task_group *tg, 7062 struct task_group *parent) 7063 { 7064 #ifdef CONFIG_UCLAMP_TASK_GROUP 7065 enum uclamp_id clamp_id; 7066 7067 for_each_clamp_id(clamp_id) { 7068 uclamp_se_set(&tg->uclamp_req[clamp_id], 7069 uclamp_none(clamp_id), false); 7070 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 7071 } 7072 #endif 7073 } 7074 7075 static void sched_free_group(struct task_group *tg) 7076 { 7077 free_fair_sched_group(tg); 7078 free_rt_sched_group(tg); 7079 autogroup_free(tg); 7080 kmem_cache_free(task_group_cache, tg); 7081 } 7082 7083 /* allocate runqueue etc for a new task group */ 7084 struct task_group *sched_create_group(struct task_group *parent) 7085 { 7086 struct task_group *tg; 7087 7088 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 7089 if (!tg) 7090 return ERR_PTR(-ENOMEM); 7091 7092 if (!alloc_fair_sched_group(tg, parent)) 7093 goto err; 7094 7095 if (!alloc_rt_sched_group(tg, parent)) 7096 goto err; 7097 7098 alloc_uclamp_sched_group(tg, parent); 7099 7100 return tg; 7101 7102 err: 7103 sched_free_group(tg); 7104 return ERR_PTR(-ENOMEM); 7105 } 7106 7107 void sched_online_group(struct task_group *tg, struct task_group *parent) 7108 { 7109 unsigned long flags; 7110 7111 spin_lock_irqsave(&task_group_lock, flags); 7112 list_add_rcu(&tg->list, &task_groups); 7113 7114 /* Root should already exist: */ 7115 WARN_ON(!parent); 7116 7117 tg->parent = parent; 7118 INIT_LIST_HEAD(&tg->children); 7119 list_add_rcu(&tg->siblings, &parent->children); 7120 spin_unlock_irqrestore(&task_group_lock, flags); 7121 7122 online_fair_sched_group(tg); 7123 } 7124 7125 /* rcu callback to free various structures associated with a task group */ 7126 static void sched_free_group_rcu(struct rcu_head *rhp) 7127 { 7128 /* Now it should be safe to free those cfs_rqs: */ 7129 sched_free_group(container_of(rhp, struct task_group, rcu)); 7130 } 7131 7132 void sched_destroy_group(struct task_group *tg) 7133 { 7134 /* Wait for possible concurrent references to cfs_rqs complete: */ 7135 call_rcu(&tg->rcu, sched_free_group_rcu); 7136 } 7137 7138 void sched_offline_group(struct task_group *tg) 7139 { 7140 unsigned long flags; 7141 7142 /* End participation in shares distribution: */ 7143 unregister_fair_sched_group(tg); 7144 7145 spin_lock_irqsave(&task_group_lock, flags); 7146 list_del_rcu(&tg->list); 7147 list_del_rcu(&tg->siblings); 7148 spin_unlock_irqrestore(&task_group_lock, flags); 7149 } 7150 7151 static void sched_change_group(struct task_struct *tsk, int type) 7152 { 7153 struct task_group *tg; 7154 7155 /* 7156 * All callers are synchronized by task_rq_lock(); we do not use RCU 7157 * which is pointless here. Thus, we pass "true" to task_css_check() 7158 * to prevent lockdep warnings. 7159 */ 7160 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7161 struct task_group, css); 7162 tg = autogroup_task_group(tsk, tg); 7163 tsk->sched_task_group = tg; 7164 7165 #ifdef CONFIG_FAIR_GROUP_SCHED 7166 if (tsk->sched_class->task_change_group) 7167 tsk->sched_class->task_change_group(tsk, type); 7168 else 7169 #endif 7170 set_task_rq(tsk, task_cpu(tsk)); 7171 } 7172 7173 /* 7174 * Change task's runqueue when it moves between groups. 7175 * 7176 * The caller of this function should have put the task in its new group by 7177 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 7178 * its new group. 7179 */ 7180 void sched_move_task(struct task_struct *tsk) 7181 { 7182 int queued, running, queue_flags = 7183 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7184 struct rq_flags rf; 7185 struct rq *rq; 7186 7187 rq = task_rq_lock(tsk, &rf); 7188 update_rq_clock(rq); 7189 7190 running = task_current(rq, tsk); 7191 queued = task_on_rq_queued(tsk); 7192 7193 if (queued) 7194 dequeue_task(rq, tsk, queue_flags); 7195 if (running) 7196 put_prev_task(rq, tsk); 7197 7198 sched_change_group(tsk, TASK_MOVE_GROUP); 7199 7200 if (queued) 7201 enqueue_task(rq, tsk, queue_flags); 7202 if (running) { 7203 set_next_task(rq, tsk); 7204 /* 7205 * After changing group, the running task may have joined a 7206 * throttled one but it's still the running task. Trigger a 7207 * resched to make sure that task can still run. 7208 */ 7209 resched_curr(rq); 7210 } 7211 7212 task_rq_unlock(rq, tsk, &rf); 7213 } 7214 7215 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7216 { 7217 return css ? container_of(css, struct task_group, css) : NULL; 7218 } 7219 7220 static struct cgroup_subsys_state * 7221 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7222 { 7223 struct task_group *parent = css_tg(parent_css); 7224 struct task_group *tg; 7225 7226 if (!parent) { 7227 /* This is early initialization for the top cgroup */ 7228 return &root_task_group.css; 7229 } 7230 7231 tg = sched_create_group(parent); 7232 if (IS_ERR(tg)) 7233 return ERR_PTR(-ENOMEM); 7234 7235 return &tg->css; 7236 } 7237 7238 /* Expose task group only after completing cgroup initialization */ 7239 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7240 { 7241 struct task_group *tg = css_tg(css); 7242 struct task_group *parent = css_tg(css->parent); 7243 7244 if (parent) 7245 sched_online_group(tg, parent); 7246 7247 #ifdef CONFIG_UCLAMP_TASK_GROUP 7248 /* Propagate the effective uclamp value for the new group */ 7249 cpu_util_update_eff(css); 7250 #endif 7251 7252 return 0; 7253 } 7254 7255 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 7256 { 7257 struct task_group *tg = css_tg(css); 7258 7259 sched_offline_group(tg); 7260 } 7261 7262 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7263 { 7264 struct task_group *tg = css_tg(css); 7265 7266 /* 7267 * Relies on the RCU grace period between css_released() and this. 7268 */ 7269 sched_free_group(tg); 7270 } 7271 7272 /* 7273 * This is called before wake_up_new_task(), therefore we really only 7274 * have to set its group bits, all the other stuff does not apply. 7275 */ 7276 static void cpu_cgroup_fork(struct task_struct *task) 7277 { 7278 struct rq_flags rf; 7279 struct rq *rq; 7280 7281 rq = task_rq_lock(task, &rf); 7282 7283 update_rq_clock(rq); 7284 sched_change_group(task, TASK_SET_GROUP); 7285 7286 task_rq_unlock(rq, task, &rf); 7287 } 7288 7289 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 7290 { 7291 struct task_struct *task; 7292 struct cgroup_subsys_state *css; 7293 int ret = 0; 7294 7295 cgroup_taskset_for_each(task, css, tset) { 7296 #ifdef CONFIG_RT_GROUP_SCHED 7297 if (!sched_rt_can_attach(css_tg(css), task)) 7298 return -EINVAL; 7299 #endif 7300 /* 7301 * Serialize against wake_up_new_task() such that if its 7302 * running, we're sure to observe its full state. 7303 */ 7304 raw_spin_lock_irq(&task->pi_lock); 7305 /* 7306 * Avoid calling sched_move_task() before wake_up_new_task() 7307 * has happened. This would lead to problems with PELT, due to 7308 * move wanting to detach+attach while we're not attached yet. 7309 */ 7310 if (task->state == TASK_NEW) 7311 ret = -EINVAL; 7312 raw_spin_unlock_irq(&task->pi_lock); 7313 7314 if (ret) 7315 break; 7316 } 7317 return ret; 7318 } 7319 7320 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 7321 { 7322 struct task_struct *task; 7323 struct cgroup_subsys_state *css; 7324 7325 cgroup_taskset_for_each(task, css, tset) 7326 sched_move_task(task); 7327 } 7328 7329 #ifdef CONFIG_UCLAMP_TASK_GROUP 7330 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 7331 { 7332 struct cgroup_subsys_state *top_css = css; 7333 struct uclamp_se *uc_parent = NULL; 7334 struct uclamp_se *uc_se = NULL; 7335 unsigned int eff[UCLAMP_CNT]; 7336 enum uclamp_id clamp_id; 7337 unsigned int clamps; 7338 7339 css_for_each_descendant_pre(css, top_css) { 7340 uc_parent = css_tg(css)->parent 7341 ? css_tg(css)->parent->uclamp : NULL; 7342 7343 for_each_clamp_id(clamp_id) { 7344 /* Assume effective clamps matches requested clamps */ 7345 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 7346 /* Cap effective clamps with parent's effective clamps */ 7347 if (uc_parent && 7348 eff[clamp_id] > uc_parent[clamp_id].value) { 7349 eff[clamp_id] = uc_parent[clamp_id].value; 7350 } 7351 } 7352 /* Ensure protection is always capped by limit */ 7353 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 7354 7355 /* Propagate most restrictive effective clamps */ 7356 clamps = 0x0; 7357 uc_se = css_tg(css)->uclamp; 7358 for_each_clamp_id(clamp_id) { 7359 if (eff[clamp_id] == uc_se[clamp_id].value) 7360 continue; 7361 uc_se[clamp_id].value = eff[clamp_id]; 7362 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 7363 clamps |= (0x1 << clamp_id); 7364 } 7365 if (!clamps) { 7366 css = css_rightmost_descendant(css); 7367 continue; 7368 } 7369 7370 /* Immediately update descendants RUNNABLE tasks */ 7371 uclamp_update_active_tasks(css, clamps); 7372 } 7373 } 7374 7375 /* 7376 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 7377 * C expression. Since there is no way to convert a macro argument (N) into a 7378 * character constant, use two levels of macros. 7379 */ 7380 #define _POW10(exp) ((unsigned int)1e##exp) 7381 #define POW10(exp) _POW10(exp) 7382 7383 struct uclamp_request { 7384 #define UCLAMP_PERCENT_SHIFT 2 7385 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 7386 s64 percent; 7387 u64 util; 7388 int ret; 7389 }; 7390 7391 static inline struct uclamp_request 7392 capacity_from_percent(char *buf) 7393 { 7394 struct uclamp_request req = { 7395 .percent = UCLAMP_PERCENT_SCALE, 7396 .util = SCHED_CAPACITY_SCALE, 7397 .ret = 0, 7398 }; 7399 7400 buf = strim(buf); 7401 if (strcmp(buf, "max")) { 7402 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 7403 &req.percent); 7404 if (req.ret) 7405 return req; 7406 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 7407 req.ret = -ERANGE; 7408 return req; 7409 } 7410 7411 req.util = req.percent << SCHED_CAPACITY_SHIFT; 7412 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 7413 } 7414 7415 return req; 7416 } 7417 7418 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 7419 size_t nbytes, loff_t off, 7420 enum uclamp_id clamp_id) 7421 { 7422 struct uclamp_request req; 7423 struct task_group *tg; 7424 7425 req = capacity_from_percent(buf); 7426 if (req.ret) 7427 return req.ret; 7428 7429 mutex_lock(&uclamp_mutex); 7430 rcu_read_lock(); 7431 7432 tg = css_tg(of_css(of)); 7433 if (tg->uclamp_req[clamp_id].value != req.util) 7434 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 7435 7436 /* 7437 * Because of not recoverable conversion rounding we keep track of the 7438 * exact requested value 7439 */ 7440 tg->uclamp_pct[clamp_id] = req.percent; 7441 7442 /* Update effective clamps to track the most restrictive value */ 7443 cpu_util_update_eff(of_css(of)); 7444 7445 rcu_read_unlock(); 7446 mutex_unlock(&uclamp_mutex); 7447 7448 return nbytes; 7449 } 7450 7451 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 7452 char *buf, size_t nbytes, 7453 loff_t off) 7454 { 7455 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 7456 } 7457 7458 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 7459 char *buf, size_t nbytes, 7460 loff_t off) 7461 { 7462 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 7463 } 7464 7465 static inline void cpu_uclamp_print(struct seq_file *sf, 7466 enum uclamp_id clamp_id) 7467 { 7468 struct task_group *tg; 7469 u64 util_clamp; 7470 u64 percent; 7471 u32 rem; 7472 7473 rcu_read_lock(); 7474 tg = css_tg(seq_css(sf)); 7475 util_clamp = tg->uclamp_req[clamp_id].value; 7476 rcu_read_unlock(); 7477 7478 if (util_clamp == SCHED_CAPACITY_SCALE) { 7479 seq_puts(sf, "max\n"); 7480 return; 7481 } 7482 7483 percent = tg->uclamp_pct[clamp_id]; 7484 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 7485 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 7486 } 7487 7488 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 7489 { 7490 cpu_uclamp_print(sf, UCLAMP_MIN); 7491 return 0; 7492 } 7493 7494 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 7495 { 7496 cpu_uclamp_print(sf, UCLAMP_MAX); 7497 return 0; 7498 } 7499 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 7500 7501 #ifdef CONFIG_FAIR_GROUP_SCHED 7502 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 7503 struct cftype *cftype, u64 shareval) 7504 { 7505 if (shareval > scale_load_down(ULONG_MAX)) 7506 shareval = MAX_SHARES; 7507 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 7508 } 7509 7510 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 7511 struct cftype *cft) 7512 { 7513 struct task_group *tg = css_tg(css); 7514 7515 return (u64) scale_load_down(tg->shares); 7516 } 7517 7518 #ifdef CONFIG_CFS_BANDWIDTH 7519 static DEFINE_MUTEX(cfs_constraints_mutex); 7520 7521 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7522 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7523 /* More than 203 days if BW_SHIFT equals 20. */ 7524 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 7525 7526 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7527 7528 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7529 { 7530 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7531 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7532 7533 if (tg == &root_task_group) 7534 return -EINVAL; 7535 7536 /* 7537 * Ensure we have at some amount of bandwidth every period. This is 7538 * to prevent reaching a state of large arrears when throttled via 7539 * entity_tick() resulting in prolonged exit starvation. 7540 */ 7541 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7542 return -EINVAL; 7543 7544 /* 7545 * Likewise, bound things on the otherside by preventing insane quota 7546 * periods. This also allows us to normalize in computing quota 7547 * feasibility. 7548 */ 7549 if (period > max_cfs_quota_period) 7550 return -EINVAL; 7551 7552 /* 7553 * Bound quota to defend quota against overflow during bandwidth shift. 7554 */ 7555 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 7556 return -EINVAL; 7557 7558 /* 7559 * Prevent race between setting of cfs_rq->runtime_enabled and 7560 * unthrottle_offline_cfs_rqs(). 7561 */ 7562 get_online_cpus(); 7563 mutex_lock(&cfs_constraints_mutex); 7564 ret = __cfs_schedulable(tg, period, quota); 7565 if (ret) 7566 goto out_unlock; 7567 7568 runtime_enabled = quota != RUNTIME_INF; 7569 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7570 /* 7571 * If we need to toggle cfs_bandwidth_used, off->on must occur 7572 * before making related changes, and on->off must occur afterwards 7573 */ 7574 if (runtime_enabled && !runtime_was_enabled) 7575 cfs_bandwidth_usage_inc(); 7576 raw_spin_lock_irq(&cfs_b->lock); 7577 cfs_b->period = ns_to_ktime(period); 7578 cfs_b->quota = quota; 7579 7580 __refill_cfs_bandwidth_runtime(cfs_b); 7581 7582 /* Restart the period timer (if active) to handle new period expiry: */ 7583 if (runtime_enabled) 7584 start_cfs_bandwidth(cfs_b); 7585 7586 raw_spin_unlock_irq(&cfs_b->lock); 7587 7588 for_each_online_cpu(i) { 7589 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7590 struct rq *rq = cfs_rq->rq; 7591 struct rq_flags rf; 7592 7593 rq_lock_irq(rq, &rf); 7594 cfs_rq->runtime_enabled = runtime_enabled; 7595 cfs_rq->runtime_remaining = 0; 7596 7597 if (cfs_rq->throttled) 7598 unthrottle_cfs_rq(cfs_rq); 7599 rq_unlock_irq(rq, &rf); 7600 } 7601 if (runtime_was_enabled && !runtime_enabled) 7602 cfs_bandwidth_usage_dec(); 7603 out_unlock: 7604 mutex_unlock(&cfs_constraints_mutex); 7605 put_online_cpus(); 7606 7607 return ret; 7608 } 7609 7610 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7611 { 7612 u64 quota, period; 7613 7614 period = ktime_to_ns(tg->cfs_bandwidth.period); 7615 if (cfs_quota_us < 0) 7616 quota = RUNTIME_INF; 7617 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 7618 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7619 else 7620 return -EINVAL; 7621 7622 return tg_set_cfs_bandwidth(tg, period, quota); 7623 } 7624 7625 static long tg_get_cfs_quota(struct task_group *tg) 7626 { 7627 u64 quota_us; 7628 7629 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7630 return -1; 7631 7632 quota_us = tg->cfs_bandwidth.quota; 7633 do_div(quota_us, NSEC_PER_USEC); 7634 7635 return quota_us; 7636 } 7637 7638 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7639 { 7640 u64 quota, period; 7641 7642 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 7643 return -EINVAL; 7644 7645 period = (u64)cfs_period_us * NSEC_PER_USEC; 7646 quota = tg->cfs_bandwidth.quota; 7647 7648 return tg_set_cfs_bandwidth(tg, period, quota); 7649 } 7650 7651 static long tg_get_cfs_period(struct task_group *tg) 7652 { 7653 u64 cfs_period_us; 7654 7655 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7656 do_div(cfs_period_us, NSEC_PER_USEC); 7657 7658 return cfs_period_us; 7659 } 7660 7661 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 7662 struct cftype *cft) 7663 { 7664 return tg_get_cfs_quota(css_tg(css)); 7665 } 7666 7667 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 7668 struct cftype *cftype, s64 cfs_quota_us) 7669 { 7670 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 7671 } 7672 7673 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 7674 struct cftype *cft) 7675 { 7676 return tg_get_cfs_period(css_tg(css)); 7677 } 7678 7679 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 7680 struct cftype *cftype, u64 cfs_period_us) 7681 { 7682 return tg_set_cfs_period(css_tg(css), cfs_period_us); 7683 } 7684 7685 struct cfs_schedulable_data { 7686 struct task_group *tg; 7687 u64 period, quota; 7688 }; 7689 7690 /* 7691 * normalize group quota/period to be quota/max_period 7692 * note: units are usecs 7693 */ 7694 static u64 normalize_cfs_quota(struct task_group *tg, 7695 struct cfs_schedulable_data *d) 7696 { 7697 u64 quota, period; 7698 7699 if (tg == d->tg) { 7700 period = d->period; 7701 quota = d->quota; 7702 } else { 7703 period = tg_get_cfs_period(tg); 7704 quota = tg_get_cfs_quota(tg); 7705 } 7706 7707 /* note: these should typically be equivalent */ 7708 if (quota == RUNTIME_INF || quota == -1) 7709 return RUNTIME_INF; 7710 7711 return to_ratio(period, quota); 7712 } 7713 7714 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7715 { 7716 struct cfs_schedulable_data *d = data; 7717 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7718 s64 quota = 0, parent_quota = -1; 7719 7720 if (!tg->parent) { 7721 quota = RUNTIME_INF; 7722 } else { 7723 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7724 7725 quota = normalize_cfs_quota(tg, d); 7726 parent_quota = parent_b->hierarchical_quota; 7727 7728 /* 7729 * Ensure max(child_quota) <= parent_quota. On cgroup2, 7730 * always take the min. On cgroup1, only inherit when no 7731 * limit is set: 7732 */ 7733 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 7734 quota = min(quota, parent_quota); 7735 } else { 7736 if (quota == RUNTIME_INF) 7737 quota = parent_quota; 7738 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7739 return -EINVAL; 7740 } 7741 } 7742 cfs_b->hierarchical_quota = quota; 7743 7744 return 0; 7745 } 7746 7747 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7748 { 7749 int ret; 7750 struct cfs_schedulable_data data = { 7751 .tg = tg, 7752 .period = period, 7753 .quota = quota, 7754 }; 7755 7756 if (quota != RUNTIME_INF) { 7757 do_div(data.period, NSEC_PER_USEC); 7758 do_div(data.quota, NSEC_PER_USEC); 7759 } 7760 7761 rcu_read_lock(); 7762 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7763 rcu_read_unlock(); 7764 7765 return ret; 7766 } 7767 7768 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 7769 { 7770 struct task_group *tg = css_tg(seq_css(sf)); 7771 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7772 7773 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 7774 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 7775 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 7776 7777 if (schedstat_enabled() && tg != &root_task_group) { 7778 u64 ws = 0; 7779 int i; 7780 7781 for_each_possible_cpu(i) 7782 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 7783 7784 seq_printf(sf, "wait_sum %llu\n", ws); 7785 } 7786 7787 return 0; 7788 } 7789 #endif /* CONFIG_CFS_BANDWIDTH */ 7790 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7791 7792 #ifdef CONFIG_RT_GROUP_SCHED 7793 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 7794 struct cftype *cft, s64 val) 7795 { 7796 return sched_group_set_rt_runtime(css_tg(css), val); 7797 } 7798 7799 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 7800 struct cftype *cft) 7801 { 7802 return sched_group_rt_runtime(css_tg(css)); 7803 } 7804 7805 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 7806 struct cftype *cftype, u64 rt_period_us) 7807 { 7808 return sched_group_set_rt_period(css_tg(css), rt_period_us); 7809 } 7810 7811 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 7812 struct cftype *cft) 7813 { 7814 return sched_group_rt_period(css_tg(css)); 7815 } 7816 #endif /* CONFIG_RT_GROUP_SCHED */ 7817 7818 static struct cftype cpu_legacy_files[] = { 7819 #ifdef CONFIG_FAIR_GROUP_SCHED 7820 { 7821 .name = "shares", 7822 .read_u64 = cpu_shares_read_u64, 7823 .write_u64 = cpu_shares_write_u64, 7824 }, 7825 #endif 7826 #ifdef CONFIG_CFS_BANDWIDTH 7827 { 7828 .name = "cfs_quota_us", 7829 .read_s64 = cpu_cfs_quota_read_s64, 7830 .write_s64 = cpu_cfs_quota_write_s64, 7831 }, 7832 { 7833 .name = "cfs_period_us", 7834 .read_u64 = cpu_cfs_period_read_u64, 7835 .write_u64 = cpu_cfs_period_write_u64, 7836 }, 7837 { 7838 .name = "stat", 7839 .seq_show = cpu_cfs_stat_show, 7840 }, 7841 #endif 7842 #ifdef CONFIG_RT_GROUP_SCHED 7843 { 7844 .name = "rt_runtime_us", 7845 .read_s64 = cpu_rt_runtime_read, 7846 .write_s64 = cpu_rt_runtime_write, 7847 }, 7848 { 7849 .name = "rt_period_us", 7850 .read_u64 = cpu_rt_period_read_uint, 7851 .write_u64 = cpu_rt_period_write_uint, 7852 }, 7853 #endif 7854 #ifdef CONFIG_UCLAMP_TASK_GROUP 7855 { 7856 .name = "uclamp.min", 7857 .flags = CFTYPE_NOT_ON_ROOT, 7858 .seq_show = cpu_uclamp_min_show, 7859 .write = cpu_uclamp_min_write, 7860 }, 7861 { 7862 .name = "uclamp.max", 7863 .flags = CFTYPE_NOT_ON_ROOT, 7864 .seq_show = cpu_uclamp_max_show, 7865 .write = cpu_uclamp_max_write, 7866 }, 7867 #endif 7868 { } /* Terminate */ 7869 }; 7870 7871 static int cpu_extra_stat_show(struct seq_file *sf, 7872 struct cgroup_subsys_state *css) 7873 { 7874 #ifdef CONFIG_CFS_BANDWIDTH 7875 { 7876 struct task_group *tg = css_tg(css); 7877 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7878 u64 throttled_usec; 7879 7880 throttled_usec = cfs_b->throttled_time; 7881 do_div(throttled_usec, NSEC_PER_USEC); 7882 7883 seq_printf(sf, "nr_periods %d\n" 7884 "nr_throttled %d\n" 7885 "throttled_usec %llu\n", 7886 cfs_b->nr_periods, cfs_b->nr_throttled, 7887 throttled_usec); 7888 } 7889 #endif 7890 return 0; 7891 } 7892 7893 #ifdef CONFIG_FAIR_GROUP_SCHED 7894 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 7895 struct cftype *cft) 7896 { 7897 struct task_group *tg = css_tg(css); 7898 u64 weight = scale_load_down(tg->shares); 7899 7900 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 7901 } 7902 7903 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 7904 struct cftype *cft, u64 weight) 7905 { 7906 /* 7907 * cgroup weight knobs should use the common MIN, DFL and MAX 7908 * values which are 1, 100 and 10000 respectively. While it loses 7909 * a bit of range on both ends, it maps pretty well onto the shares 7910 * value used by scheduler and the round-trip conversions preserve 7911 * the original value over the entire range. 7912 */ 7913 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 7914 return -ERANGE; 7915 7916 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 7917 7918 return sched_group_set_shares(css_tg(css), scale_load(weight)); 7919 } 7920 7921 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 7922 struct cftype *cft) 7923 { 7924 unsigned long weight = scale_load_down(css_tg(css)->shares); 7925 int last_delta = INT_MAX; 7926 int prio, delta; 7927 7928 /* find the closest nice value to the current weight */ 7929 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 7930 delta = abs(sched_prio_to_weight[prio] - weight); 7931 if (delta >= last_delta) 7932 break; 7933 last_delta = delta; 7934 } 7935 7936 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 7937 } 7938 7939 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 7940 struct cftype *cft, s64 nice) 7941 { 7942 unsigned long weight; 7943 int idx; 7944 7945 if (nice < MIN_NICE || nice > MAX_NICE) 7946 return -ERANGE; 7947 7948 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 7949 idx = array_index_nospec(idx, 40); 7950 weight = sched_prio_to_weight[idx]; 7951 7952 return sched_group_set_shares(css_tg(css), scale_load(weight)); 7953 } 7954 #endif 7955 7956 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 7957 long period, long quota) 7958 { 7959 if (quota < 0) 7960 seq_puts(sf, "max"); 7961 else 7962 seq_printf(sf, "%ld", quota); 7963 7964 seq_printf(sf, " %ld\n", period); 7965 } 7966 7967 /* caller should put the current value in *@periodp before calling */ 7968 static int __maybe_unused cpu_period_quota_parse(char *buf, 7969 u64 *periodp, u64 *quotap) 7970 { 7971 char tok[21]; /* U64_MAX */ 7972 7973 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 7974 return -EINVAL; 7975 7976 *periodp *= NSEC_PER_USEC; 7977 7978 if (sscanf(tok, "%llu", quotap)) 7979 *quotap *= NSEC_PER_USEC; 7980 else if (!strcmp(tok, "max")) 7981 *quotap = RUNTIME_INF; 7982 else 7983 return -EINVAL; 7984 7985 return 0; 7986 } 7987 7988 #ifdef CONFIG_CFS_BANDWIDTH 7989 static int cpu_max_show(struct seq_file *sf, void *v) 7990 { 7991 struct task_group *tg = css_tg(seq_css(sf)); 7992 7993 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 7994 return 0; 7995 } 7996 7997 static ssize_t cpu_max_write(struct kernfs_open_file *of, 7998 char *buf, size_t nbytes, loff_t off) 7999 { 8000 struct task_group *tg = css_tg(of_css(of)); 8001 u64 period = tg_get_cfs_period(tg); 8002 u64 quota; 8003 int ret; 8004 8005 ret = cpu_period_quota_parse(buf, &period, "a); 8006 if (!ret) 8007 ret = tg_set_cfs_bandwidth(tg, period, quota); 8008 return ret ?: nbytes; 8009 } 8010 #endif 8011 8012 static struct cftype cpu_files[] = { 8013 #ifdef CONFIG_FAIR_GROUP_SCHED 8014 { 8015 .name = "weight", 8016 .flags = CFTYPE_NOT_ON_ROOT, 8017 .read_u64 = cpu_weight_read_u64, 8018 .write_u64 = cpu_weight_write_u64, 8019 }, 8020 { 8021 .name = "weight.nice", 8022 .flags = CFTYPE_NOT_ON_ROOT, 8023 .read_s64 = cpu_weight_nice_read_s64, 8024 .write_s64 = cpu_weight_nice_write_s64, 8025 }, 8026 #endif 8027 #ifdef CONFIG_CFS_BANDWIDTH 8028 { 8029 .name = "max", 8030 .flags = CFTYPE_NOT_ON_ROOT, 8031 .seq_show = cpu_max_show, 8032 .write = cpu_max_write, 8033 }, 8034 #endif 8035 #ifdef CONFIG_UCLAMP_TASK_GROUP 8036 { 8037 .name = "uclamp.min", 8038 .flags = CFTYPE_NOT_ON_ROOT, 8039 .seq_show = cpu_uclamp_min_show, 8040 .write = cpu_uclamp_min_write, 8041 }, 8042 { 8043 .name = "uclamp.max", 8044 .flags = CFTYPE_NOT_ON_ROOT, 8045 .seq_show = cpu_uclamp_max_show, 8046 .write = cpu_uclamp_max_write, 8047 }, 8048 #endif 8049 { } /* terminate */ 8050 }; 8051 8052 struct cgroup_subsys cpu_cgrp_subsys = { 8053 .css_alloc = cpu_cgroup_css_alloc, 8054 .css_online = cpu_cgroup_css_online, 8055 .css_released = cpu_cgroup_css_released, 8056 .css_free = cpu_cgroup_css_free, 8057 .css_extra_stat_show = cpu_extra_stat_show, 8058 .fork = cpu_cgroup_fork, 8059 .can_attach = cpu_cgroup_can_attach, 8060 .attach = cpu_cgroup_attach, 8061 .legacy_cftypes = cpu_legacy_files, 8062 .dfl_cftypes = cpu_files, 8063 .early_init = true, 8064 .threaded = true, 8065 }; 8066 8067 #endif /* CONFIG_CGROUP_SCHED */ 8068 8069 void dump_cpu_task(int cpu) 8070 { 8071 pr_info("Task dump for CPU %d:\n", cpu); 8072 sched_show_task(cpu_curr(cpu)); 8073 } 8074 8075 /* 8076 * Nice levels are multiplicative, with a gentle 10% change for every 8077 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 8078 * nice 1, it will get ~10% less CPU time than another CPU-bound task 8079 * that remained on nice 0. 8080 * 8081 * The "10% effect" is relative and cumulative: from _any_ nice level, 8082 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 8083 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 8084 * If a task goes up by ~10% and another task goes down by ~10% then 8085 * the relative distance between them is ~25%.) 8086 */ 8087 const int sched_prio_to_weight[40] = { 8088 /* -20 */ 88761, 71755, 56483, 46273, 36291, 8089 /* -15 */ 29154, 23254, 18705, 14949, 11916, 8090 /* -10 */ 9548, 7620, 6100, 4904, 3906, 8091 /* -5 */ 3121, 2501, 1991, 1586, 1277, 8092 /* 0 */ 1024, 820, 655, 526, 423, 8093 /* 5 */ 335, 272, 215, 172, 137, 8094 /* 10 */ 110, 87, 70, 56, 45, 8095 /* 15 */ 36, 29, 23, 18, 15, 8096 }; 8097 8098 /* 8099 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 8100 * 8101 * In cases where the weight does not change often, we can use the 8102 * precalculated inverse to speed up arithmetics by turning divisions 8103 * into multiplications: 8104 */ 8105 const u32 sched_prio_to_wmult[40] = { 8106 /* -20 */ 48388, 59856, 76040, 92818, 118348, 8107 /* -15 */ 147320, 184698, 229616, 287308, 360437, 8108 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 8109 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 8110 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 8111 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 8112 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 8113 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 8114 }; 8115 8116 #undef CREATE_TRACE_POINTS 8117