1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/kasan.h> 30 #include <linux/mm.h> 31 #include <linux/module.h> 32 #include <linux/nmi.h> 33 #include <linux/init.h> 34 #include <linux/uaccess.h> 35 #include <linux/highmem.h> 36 #include <asm/mmu_context.h> 37 #include <linux/interrupt.h> 38 #include <linux/capability.h> 39 #include <linux/completion.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/debug_locks.h> 42 #include <linux/perf_event.h> 43 #include <linux/security.h> 44 #include <linux/notifier.h> 45 #include <linux/profile.h> 46 #include <linux/freezer.h> 47 #include <linux/vmalloc.h> 48 #include <linux/blkdev.h> 49 #include <linux/delay.h> 50 #include <linux/pid_namespace.h> 51 #include <linux/smp.h> 52 #include <linux/threads.h> 53 #include <linux/timer.h> 54 #include <linux/rcupdate.h> 55 #include <linux/cpu.h> 56 #include <linux/cpuset.h> 57 #include <linux/percpu.h> 58 #include <linux/proc_fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/sysctl.h> 61 #include <linux/syscalls.h> 62 #include <linux/times.h> 63 #include <linux/tsacct_kern.h> 64 #include <linux/kprobes.h> 65 #include <linux/delayacct.h> 66 #include <linux/unistd.h> 67 #include <linux/pagemap.h> 68 #include <linux/hrtimer.h> 69 #include <linux/tick.h> 70 #include <linux/debugfs.h> 71 #include <linux/ctype.h> 72 #include <linux/ftrace.h> 73 #include <linux/slab.h> 74 #include <linux/init_task.h> 75 #include <linux/binfmts.h> 76 #include <linux/context_tracking.h> 77 #include <linux/compiler.h> 78 79 #include <asm/switch_to.h> 80 #include <asm/tlb.h> 81 #include <asm/irq_regs.h> 82 #include <asm/mutex.h> 83 #ifdef CONFIG_PARAVIRT 84 #include <asm/paravirt.h> 85 #endif 86 87 #include "sched.h" 88 #include "../workqueue_internal.h" 89 #include "../smpboot.h" 90 91 #define CREATE_TRACE_POINTS 92 #include <trace/events/sched.h> 93 94 DEFINE_MUTEX(sched_domains_mutex); 95 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 96 97 static void update_rq_clock_task(struct rq *rq, s64 delta); 98 99 void update_rq_clock(struct rq *rq) 100 { 101 s64 delta; 102 103 lockdep_assert_held(&rq->lock); 104 105 if (rq->clock_skip_update & RQCF_ACT_SKIP) 106 return; 107 108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 109 if (delta < 0) 110 return; 111 rq->clock += delta; 112 update_rq_clock_task(rq, delta); 113 } 114 115 /* 116 * Debugging: various feature bits 117 */ 118 119 #define SCHED_FEAT(name, enabled) \ 120 (1UL << __SCHED_FEAT_##name) * enabled | 121 122 const_debug unsigned int sysctl_sched_features = 123 #include "features.h" 124 0; 125 126 #undef SCHED_FEAT 127 128 #ifdef CONFIG_SCHED_DEBUG 129 #define SCHED_FEAT(name, enabled) \ 130 #name , 131 132 static const char * const sched_feat_names[] = { 133 #include "features.h" 134 }; 135 136 #undef SCHED_FEAT 137 138 static int sched_feat_show(struct seq_file *m, void *v) 139 { 140 int i; 141 142 for (i = 0; i < __SCHED_FEAT_NR; i++) { 143 if (!(sysctl_sched_features & (1UL << i))) 144 seq_puts(m, "NO_"); 145 seq_printf(m, "%s ", sched_feat_names[i]); 146 } 147 seq_puts(m, "\n"); 148 149 return 0; 150 } 151 152 #ifdef HAVE_JUMP_LABEL 153 154 #define jump_label_key__true STATIC_KEY_INIT_TRUE 155 #define jump_label_key__false STATIC_KEY_INIT_FALSE 156 157 #define SCHED_FEAT(name, enabled) \ 158 jump_label_key__##enabled , 159 160 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 161 #include "features.h" 162 }; 163 164 #undef SCHED_FEAT 165 166 static void sched_feat_disable(int i) 167 { 168 static_key_disable(&sched_feat_keys[i]); 169 } 170 171 static void sched_feat_enable(int i) 172 { 173 static_key_enable(&sched_feat_keys[i]); 174 } 175 #else 176 static void sched_feat_disable(int i) { }; 177 static void sched_feat_enable(int i) { }; 178 #endif /* HAVE_JUMP_LABEL */ 179 180 static int sched_feat_set(char *cmp) 181 { 182 int i; 183 int neg = 0; 184 185 if (strncmp(cmp, "NO_", 3) == 0) { 186 neg = 1; 187 cmp += 3; 188 } 189 190 for (i = 0; i < __SCHED_FEAT_NR; i++) { 191 if (strcmp(cmp, sched_feat_names[i]) == 0) { 192 if (neg) { 193 sysctl_sched_features &= ~(1UL << i); 194 sched_feat_disable(i); 195 } else { 196 sysctl_sched_features |= (1UL << i); 197 sched_feat_enable(i); 198 } 199 break; 200 } 201 } 202 203 return i; 204 } 205 206 static ssize_t 207 sched_feat_write(struct file *filp, const char __user *ubuf, 208 size_t cnt, loff_t *ppos) 209 { 210 char buf[64]; 211 char *cmp; 212 int i; 213 struct inode *inode; 214 215 if (cnt > 63) 216 cnt = 63; 217 218 if (copy_from_user(&buf, ubuf, cnt)) 219 return -EFAULT; 220 221 buf[cnt] = 0; 222 cmp = strstrip(buf); 223 224 /* Ensure the static_key remains in a consistent state */ 225 inode = file_inode(filp); 226 inode_lock(inode); 227 i = sched_feat_set(cmp); 228 inode_unlock(inode); 229 if (i == __SCHED_FEAT_NR) 230 return -EINVAL; 231 232 *ppos += cnt; 233 234 return cnt; 235 } 236 237 static int sched_feat_open(struct inode *inode, struct file *filp) 238 { 239 return single_open(filp, sched_feat_show, NULL); 240 } 241 242 static const struct file_operations sched_feat_fops = { 243 .open = sched_feat_open, 244 .write = sched_feat_write, 245 .read = seq_read, 246 .llseek = seq_lseek, 247 .release = single_release, 248 }; 249 250 static __init int sched_init_debug(void) 251 { 252 debugfs_create_file("sched_features", 0644, NULL, NULL, 253 &sched_feat_fops); 254 255 return 0; 256 } 257 late_initcall(sched_init_debug); 258 #endif /* CONFIG_SCHED_DEBUG */ 259 260 /* 261 * Number of tasks to iterate in a single balance run. 262 * Limited because this is done with IRQs disabled. 263 */ 264 const_debug unsigned int sysctl_sched_nr_migrate = 32; 265 266 /* 267 * period over which we average the RT time consumption, measured 268 * in ms. 269 * 270 * default: 1s 271 */ 272 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 273 274 /* 275 * period over which we measure -rt task cpu usage in us. 276 * default: 1s 277 */ 278 unsigned int sysctl_sched_rt_period = 1000000; 279 280 __read_mostly int scheduler_running; 281 282 /* 283 * part of the period that we allow rt tasks to run in us. 284 * default: 0.95s 285 */ 286 int sysctl_sched_rt_runtime = 950000; 287 288 /* cpus with isolated domains */ 289 cpumask_var_t cpu_isolated_map; 290 291 /* 292 * this_rq_lock - lock this runqueue and disable interrupts. 293 */ 294 static struct rq *this_rq_lock(void) 295 __acquires(rq->lock) 296 { 297 struct rq *rq; 298 299 local_irq_disable(); 300 rq = this_rq(); 301 raw_spin_lock(&rq->lock); 302 303 return rq; 304 } 305 306 #ifdef CONFIG_SCHED_HRTICK 307 /* 308 * Use HR-timers to deliver accurate preemption points. 309 */ 310 311 static void hrtick_clear(struct rq *rq) 312 { 313 if (hrtimer_active(&rq->hrtick_timer)) 314 hrtimer_cancel(&rq->hrtick_timer); 315 } 316 317 /* 318 * High-resolution timer tick. 319 * Runs from hardirq context with interrupts disabled. 320 */ 321 static enum hrtimer_restart hrtick(struct hrtimer *timer) 322 { 323 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 324 325 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 326 327 raw_spin_lock(&rq->lock); 328 update_rq_clock(rq); 329 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 330 raw_spin_unlock(&rq->lock); 331 332 return HRTIMER_NORESTART; 333 } 334 335 #ifdef CONFIG_SMP 336 337 static void __hrtick_restart(struct rq *rq) 338 { 339 struct hrtimer *timer = &rq->hrtick_timer; 340 341 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 342 } 343 344 /* 345 * called from hardirq (IPI) context 346 */ 347 static void __hrtick_start(void *arg) 348 { 349 struct rq *rq = arg; 350 351 raw_spin_lock(&rq->lock); 352 __hrtick_restart(rq); 353 rq->hrtick_csd_pending = 0; 354 raw_spin_unlock(&rq->lock); 355 } 356 357 /* 358 * Called to set the hrtick timer state. 359 * 360 * called with rq->lock held and irqs disabled 361 */ 362 void hrtick_start(struct rq *rq, u64 delay) 363 { 364 struct hrtimer *timer = &rq->hrtick_timer; 365 ktime_t time; 366 s64 delta; 367 368 /* 369 * Don't schedule slices shorter than 10000ns, that just 370 * doesn't make sense and can cause timer DoS. 371 */ 372 delta = max_t(s64, delay, 10000LL); 373 time = ktime_add_ns(timer->base->get_time(), delta); 374 375 hrtimer_set_expires(timer, time); 376 377 if (rq == this_rq()) { 378 __hrtick_restart(rq); 379 } else if (!rq->hrtick_csd_pending) { 380 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 381 rq->hrtick_csd_pending = 1; 382 } 383 } 384 385 static int 386 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 387 { 388 int cpu = (int)(long)hcpu; 389 390 switch (action) { 391 case CPU_UP_CANCELED: 392 case CPU_UP_CANCELED_FROZEN: 393 case CPU_DOWN_PREPARE: 394 case CPU_DOWN_PREPARE_FROZEN: 395 case CPU_DEAD: 396 case CPU_DEAD_FROZEN: 397 hrtick_clear(cpu_rq(cpu)); 398 return NOTIFY_OK; 399 } 400 401 return NOTIFY_DONE; 402 } 403 404 static __init void init_hrtick(void) 405 { 406 hotcpu_notifier(hotplug_hrtick, 0); 407 } 408 #else 409 /* 410 * Called to set the hrtick timer state. 411 * 412 * called with rq->lock held and irqs disabled 413 */ 414 void hrtick_start(struct rq *rq, u64 delay) 415 { 416 /* 417 * Don't schedule slices shorter than 10000ns, that just 418 * doesn't make sense. Rely on vruntime for fairness. 419 */ 420 delay = max_t(u64, delay, 10000LL); 421 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 422 HRTIMER_MODE_REL_PINNED); 423 } 424 425 static inline void init_hrtick(void) 426 { 427 } 428 #endif /* CONFIG_SMP */ 429 430 static void init_rq_hrtick(struct rq *rq) 431 { 432 #ifdef CONFIG_SMP 433 rq->hrtick_csd_pending = 0; 434 435 rq->hrtick_csd.flags = 0; 436 rq->hrtick_csd.func = __hrtick_start; 437 rq->hrtick_csd.info = rq; 438 #endif 439 440 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 441 rq->hrtick_timer.function = hrtick; 442 } 443 #else /* CONFIG_SCHED_HRTICK */ 444 static inline void hrtick_clear(struct rq *rq) 445 { 446 } 447 448 static inline void init_rq_hrtick(struct rq *rq) 449 { 450 } 451 452 static inline void init_hrtick(void) 453 { 454 } 455 #endif /* CONFIG_SCHED_HRTICK */ 456 457 /* 458 * cmpxchg based fetch_or, macro so it works for different integer types 459 */ 460 #define fetch_or(ptr, val) \ 461 ({ typeof(*(ptr)) __old, __val = *(ptr); \ 462 for (;;) { \ 463 __old = cmpxchg((ptr), __val, __val | (val)); \ 464 if (__old == __val) \ 465 break; \ 466 __val = __old; \ 467 } \ 468 __old; \ 469 }) 470 471 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 472 /* 473 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 474 * this avoids any races wrt polling state changes and thereby avoids 475 * spurious IPIs. 476 */ 477 static bool set_nr_and_not_polling(struct task_struct *p) 478 { 479 struct thread_info *ti = task_thread_info(p); 480 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 481 } 482 483 /* 484 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 485 * 486 * If this returns true, then the idle task promises to call 487 * sched_ttwu_pending() and reschedule soon. 488 */ 489 static bool set_nr_if_polling(struct task_struct *p) 490 { 491 struct thread_info *ti = task_thread_info(p); 492 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 493 494 for (;;) { 495 if (!(val & _TIF_POLLING_NRFLAG)) 496 return false; 497 if (val & _TIF_NEED_RESCHED) 498 return true; 499 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 500 if (old == val) 501 break; 502 val = old; 503 } 504 return true; 505 } 506 507 #else 508 static bool set_nr_and_not_polling(struct task_struct *p) 509 { 510 set_tsk_need_resched(p); 511 return true; 512 } 513 514 #ifdef CONFIG_SMP 515 static bool set_nr_if_polling(struct task_struct *p) 516 { 517 return false; 518 } 519 #endif 520 #endif 521 522 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 523 { 524 struct wake_q_node *node = &task->wake_q; 525 526 /* 527 * Atomically grab the task, if ->wake_q is !nil already it means 528 * its already queued (either by us or someone else) and will get the 529 * wakeup due to that. 530 * 531 * This cmpxchg() implies a full barrier, which pairs with the write 532 * barrier implied by the wakeup in wake_up_list(). 533 */ 534 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 535 return; 536 537 get_task_struct(task); 538 539 /* 540 * The head is context local, there can be no concurrency. 541 */ 542 *head->lastp = node; 543 head->lastp = &node->next; 544 } 545 546 void wake_up_q(struct wake_q_head *head) 547 { 548 struct wake_q_node *node = head->first; 549 550 while (node != WAKE_Q_TAIL) { 551 struct task_struct *task; 552 553 task = container_of(node, struct task_struct, wake_q); 554 BUG_ON(!task); 555 /* task can safely be re-inserted now */ 556 node = node->next; 557 task->wake_q.next = NULL; 558 559 /* 560 * wake_up_process() implies a wmb() to pair with the queueing 561 * in wake_q_add() so as not to miss wakeups. 562 */ 563 wake_up_process(task); 564 put_task_struct(task); 565 } 566 } 567 568 /* 569 * resched_curr - mark rq's current task 'to be rescheduled now'. 570 * 571 * On UP this means the setting of the need_resched flag, on SMP it 572 * might also involve a cross-CPU call to trigger the scheduler on 573 * the target CPU. 574 */ 575 void resched_curr(struct rq *rq) 576 { 577 struct task_struct *curr = rq->curr; 578 int cpu; 579 580 lockdep_assert_held(&rq->lock); 581 582 if (test_tsk_need_resched(curr)) 583 return; 584 585 cpu = cpu_of(rq); 586 587 if (cpu == smp_processor_id()) { 588 set_tsk_need_resched(curr); 589 set_preempt_need_resched(); 590 return; 591 } 592 593 if (set_nr_and_not_polling(curr)) 594 smp_send_reschedule(cpu); 595 else 596 trace_sched_wake_idle_without_ipi(cpu); 597 } 598 599 void resched_cpu(int cpu) 600 { 601 struct rq *rq = cpu_rq(cpu); 602 unsigned long flags; 603 604 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 605 return; 606 resched_curr(rq); 607 raw_spin_unlock_irqrestore(&rq->lock, flags); 608 } 609 610 #ifdef CONFIG_SMP 611 #ifdef CONFIG_NO_HZ_COMMON 612 /* 613 * In the semi idle case, use the nearest busy cpu for migrating timers 614 * from an idle cpu. This is good for power-savings. 615 * 616 * We don't do similar optimization for completely idle system, as 617 * selecting an idle cpu will add more delays to the timers than intended 618 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 619 */ 620 int get_nohz_timer_target(void) 621 { 622 int i, cpu = smp_processor_id(); 623 struct sched_domain *sd; 624 625 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu)) 626 return cpu; 627 628 rcu_read_lock(); 629 for_each_domain(cpu, sd) { 630 for_each_cpu(i, sched_domain_span(sd)) { 631 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) { 632 cpu = i; 633 goto unlock; 634 } 635 } 636 } 637 638 if (!is_housekeeping_cpu(cpu)) 639 cpu = housekeeping_any_cpu(); 640 unlock: 641 rcu_read_unlock(); 642 return cpu; 643 } 644 /* 645 * When add_timer_on() enqueues a timer into the timer wheel of an 646 * idle CPU then this timer might expire before the next timer event 647 * which is scheduled to wake up that CPU. In case of a completely 648 * idle system the next event might even be infinite time into the 649 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 650 * leaves the inner idle loop so the newly added timer is taken into 651 * account when the CPU goes back to idle and evaluates the timer 652 * wheel for the next timer event. 653 */ 654 static void wake_up_idle_cpu(int cpu) 655 { 656 struct rq *rq = cpu_rq(cpu); 657 658 if (cpu == smp_processor_id()) 659 return; 660 661 if (set_nr_and_not_polling(rq->idle)) 662 smp_send_reschedule(cpu); 663 else 664 trace_sched_wake_idle_without_ipi(cpu); 665 } 666 667 static bool wake_up_full_nohz_cpu(int cpu) 668 { 669 /* 670 * We just need the target to call irq_exit() and re-evaluate 671 * the next tick. The nohz full kick at least implies that. 672 * If needed we can still optimize that later with an 673 * empty IRQ. 674 */ 675 if (tick_nohz_full_cpu(cpu)) { 676 if (cpu != smp_processor_id() || 677 tick_nohz_tick_stopped()) 678 tick_nohz_full_kick_cpu(cpu); 679 return true; 680 } 681 682 return false; 683 } 684 685 void wake_up_nohz_cpu(int cpu) 686 { 687 if (!wake_up_full_nohz_cpu(cpu)) 688 wake_up_idle_cpu(cpu); 689 } 690 691 static inline bool got_nohz_idle_kick(void) 692 { 693 int cpu = smp_processor_id(); 694 695 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 696 return false; 697 698 if (idle_cpu(cpu) && !need_resched()) 699 return true; 700 701 /* 702 * We can't run Idle Load Balance on this CPU for this time so we 703 * cancel it and clear NOHZ_BALANCE_KICK 704 */ 705 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 706 return false; 707 } 708 709 #else /* CONFIG_NO_HZ_COMMON */ 710 711 static inline bool got_nohz_idle_kick(void) 712 { 713 return false; 714 } 715 716 #endif /* CONFIG_NO_HZ_COMMON */ 717 718 #ifdef CONFIG_NO_HZ_FULL 719 bool sched_can_stop_tick(void) 720 { 721 /* 722 * FIFO realtime policy runs the highest priority task. Other runnable 723 * tasks are of a lower priority. The scheduler tick does nothing. 724 */ 725 if (current->policy == SCHED_FIFO) 726 return true; 727 728 /* 729 * Round-robin realtime tasks time slice with other tasks at the same 730 * realtime priority. Is this task the only one at this priority? 731 */ 732 if (current->policy == SCHED_RR) { 733 struct sched_rt_entity *rt_se = ¤t->rt; 734 735 return list_is_singular(&rt_se->run_list); 736 } 737 738 /* 739 * More than one running task need preemption. 740 * nr_running update is assumed to be visible 741 * after IPI is sent from wakers. 742 */ 743 if (this_rq()->nr_running > 1) 744 return false; 745 746 return true; 747 } 748 #endif /* CONFIG_NO_HZ_FULL */ 749 750 void sched_avg_update(struct rq *rq) 751 { 752 s64 period = sched_avg_period(); 753 754 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 755 /* 756 * Inline assembly required to prevent the compiler 757 * optimising this loop into a divmod call. 758 * See __iter_div_u64_rem() for another example of this. 759 */ 760 asm("" : "+rm" (rq->age_stamp)); 761 rq->age_stamp += period; 762 rq->rt_avg /= 2; 763 } 764 } 765 766 #endif /* CONFIG_SMP */ 767 768 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 769 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 770 /* 771 * Iterate task_group tree rooted at *from, calling @down when first entering a 772 * node and @up when leaving it for the final time. 773 * 774 * Caller must hold rcu_lock or sufficient equivalent. 775 */ 776 int walk_tg_tree_from(struct task_group *from, 777 tg_visitor down, tg_visitor up, void *data) 778 { 779 struct task_group *parent, *child; 780 int ret; 781 782 parent = from; 783 784 down: 785 ret = (*down)(parent, data); 786 if (ret) 787 goto out; 788 list_for_each_entry_rcu(child, &parent->children, siblings) { 789 parent = child; 790 goto down; 791 792 up: 793 continue; 794 } 795 ret = (*up)(parent, data); 796 if (ret || parent == from) 797 goto out; 798 799 child = parent; 800 parent = parent->parent; 801 if (parent) 802 goto up; 803 out: 804 return ret; 805 } 806 807 int tg_nop(struct task_group *tg, void *data) 808 { 809 return 0; 810 } 811 #endif 812 813 static void set_load_weight(struct task_struct *p) 814 { 815 int prio = p->static_prio - MAX_RT_PRIO; 816 struct load_weight *load = &p->se.load; 817 818 /* 819 * SCHED_IDLE tasks get minimal weight: 820 */ 821 if (idle_policy(p->policy)) { 822 load->weight = scale_load(WEIGHT_IDLEPRIO); 823 load->inv_weight = WMULT_IDLEPRIO; 824 return; 825 } 826 827 load->weight = scale_load(sched_prio_to_weight[prio]); 828 load->inv_weight = sched_prio_to_wmult[prio]; 829 } 830 831 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 832 { 833 update_rq_clock(rq); 834 if (!(flags & ENQUEUE_RESTORE)) 835 sched_info_queued(rq, p); 836 p->sched_class->enqueue_task(rq, p, flags); 837 } 838 839 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 840 { 841 update_rq_clock(rq); 842 if (!(flags & DEQUEUE_SAVE)) 843 sched_info_dequeued(rq, p); 844 p->sched_class->dequeue_task(rq, p, flags); 845 } 846 847 void activate_task(struct rq *rq, struct task_struct *p, int flags) 848 { 849 if (task_contributes_to_load(p)) 850 rq->nr_uninterruptible--; 851 852 enqueue_task(rq, p, flags); 853 } 854 855 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 856 { 857 if (task_contributes_to_load(p)) 858 rq->nr_uninterruptible++; 859 860 dequeue_task(rq, p, flags); 861 } 862 863 static void update_rq_clock_task(struct rq *rq, s64 delta) 864 { 865 /* 866 * In theory, the compile should just see 0 here, and optimize out the call 867 * to sched_rt_avg_update. But I don't trust it... 868 */ 869 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 870 s64 steal = 0, irq_delta = 0; 871 #endif 872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 874 875 /* 876 * Since irq_time is only updated on {soft,}irq_exit, we might run into 877 * this case when a previous update_rq_clock() happened inside a 878 * {soft,}irq region. 879 * 880 * When this happens, we stop ->clock_task and only update the 881 * prev_irq_time stamp to account for the part that fit, so that a next 882 * update will consume the rest. This ensures ->clock_task is 883 * monotonic. 884 * 885 * It does however cause some slight miss-attribution of {soft,}irq 886 * time, a more accurate solution would be to update the irq_time using 887 * the current rq->clock timestamp, except that would require using 888 * atomic ops. 889 */ 890 if (irq_delta > delta) 891 irq_delta = delta; 892 893 rq->prev_irq_time += irq_delta; 894 delta -= irq_delta; 895 #endif 896 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 897 if (static_key_false((¶virt_steal_rq_enabled))) { 898 steal = paravirt_steal_clock(cpu_of(rq)); 899 steal -= rq->prev_steal_time_rq; 900 901 if (unlikely(steal > delta)) 902 steal = delta; 903 904 rq->prev_steal_time_rq += steal; 905 delta -= steal; 906 } 907 #endif 908 909 rq->clock_task += delta; 910 911 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 912 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 913 sched_rt_avg_update(rq, irq_delta + steal); 914 #endif 915 } 916 917 void sched_set_stop_task(int cpu, struct task_struct *stop) 918 { 919 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 920 struct task_struct *old_stop = cpu_rq(cpu)->stop; 921 922 if (stop) { 923 /* 924 * Make it appear like a SCHED_FIFO task, its something 925 * userspace knows about and won't get confused about. 926 * 927 * Also, it will make PI more or less work without too 928 * much confusion -- but then, stop work should not 929 * rely on PI working anyway. 930 */ 931 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 932 933 stop->sched_class = &stop_sched_class; 934 } 935 936 cpu_rq(cpu)->stop = stop; 937 938 if (old_stop) { 939 /* 940 * Reset it back to a normal scheduling class so that 941 * it can die in pieces. 942 */ 943 old_stop->sched_class = &rt_sched_class; 944 } 945 } 946 947 /* 948 * __normal_prio - return the priority that is based on the static prio 949 */ 950 static inline int __normal_prio(struct task_struct *p) 951 { 952 return p->static_prio; 953 } 954 955 /* 956 * Calculate the expected normal priority: i.e. priority 957 * without taking RT-inheritance into account. Might be 958 * boosted by interactivity modifiers. Changes upon fork, 959 * setprio syscalls, and whenever the interactivity 960 * estimator recalculates. 961 */ 962 static inline int normal_prio(struct task_struct *p) 963 { 964 int prio; 965 966 if (task_has_dl_policy(p)) 967 prio = MAX_DL_PRIO-1; 968 else if (task_has_rt_policy(p)) 969 prio = MAX_RT_PRIO-1 - p->rt_priority; 970 else 971 prio = __normal_prio(p); 972 return prio; 973 } 974 975 /* 976 * Calculate the current priority, i.e. the priority 977 * taken into account by the scheduler. This value might 978 * be boosted by RT tasks, or might be boosted by 979 * interactivity modifiers. Will be RT if the task got 980 * RT-boosted. If not then it returns p->normal_prio. 981 */ 982 static int effective_prio(struct task_struct *p) 983 { 984 p->normal_prio = normal_prio(p); 985 /* 986 * If we are RT tasks or we were boosted to RT priority, 987 * keep the priority unchanged. Otherwise, update priority 988 * to the normal priority: 989 */ 990 if (!rt_prio(p->prio)) 991 return p->normal_prio; 992 return p->prio; 993 } 994 995 /** 996 * task_curr - is this task currently executing on a CPU? 997 * @p: the task in question. 998 * 999 * Return: 1 if the task is currently executing. 0 otherwise. 1000 */ 1001 inline int task_curr(const struct task_struct *p) 1002 { 1003 return cpu_curr(task_cpu(p)) == p; 1004 } 1005 1006 /* 1007 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 1008 * use the balance_callback list if you want balancing. 1009 * 1010 * this means any call to check_class_changed() must be followed by a call to 1011 * balance_callback(). 1012 */ 1013 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1014 const struct sched_class *prev_class, 1015 int oldprio) 1016 { 1017 if (prev_class != p->sched_class) { 1018 if (prev_class->switched_from) 1019 prev_class->switched_from(rq, p); 1020 1021 p->sched_class->switched_to(rq, p); 1022 } else if (oldprio != p->prio || dl_task(p)) 1023 p->sched_class->prio_changed(rq, p, oldprio); 1024 } 1025 1026 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1027 { 1028 const struct sched_class *class; 1029 1030 if (p->sched_class == rq->curr->sched_class) { 1031 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1032 } else { 1033 for_each_class(class) { 1034 if (class == rq->curr->sched_class) 1035 break; 1036 if (class == p->sched_class) { 1037 resched_curr(rq); 1038 break; 1039 } 1040 } 1041 } 1042 1043 /* 1044 * A queue event has occurred, and we're going to schedule. In 1045 * this case, we can save a useless back to back clock update. 1046 */ 1047 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1048 rq_clock_skip_update(rq, true); 1049 } 1050 1051 #ifdef CONFIG_SMP 1052 /* 1053 * This is how migration works: 1054 * 1055 * 1) we invoke migration_cpu_stop() on the target CPU using 1056 * stop_one_cpu(). 1057 * 2) stopper starts to run (implicitly forcing the migrated thread 1058 * off the CPU) 1059 * 3) it checks whether the migrated task is still in the wrong runqueue. 1060 * 4) if it's in the wrong runqueue then the migration thread removes 1061 * it and puts it into the right queue. 1062 * 5) stopper completes and stop_one_cpu() returns and the migration 1063 * is done. 1064 */ 1065 1066 /* 1067 * move_queued_task - move a queued task to new rq. 1068 * 1069 * Returns (locked) new rq. Old rq's lock is released. 1070 */ 1071 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu) 1072 { 1073 lockdep_assert_held(&rq->lock); 1074 1075 p->on_rq = TASK_ON_RQ_MIGRATING; 1076 dequeue_task(rq, p, 0); 1077 set_task_cpu(p, new_cpu); 1078 raw_spin_unlock(&rq->lock); 1079 1080 rq = cpu_rq(new_cpu); 1081 1082 raw_spin_lock(&rq->lock); 1083 BUG_ON(task_cpu(p) != new_cpu); 1084 enqueue_task(rq, p, 0); 1085 p->on_rq = TASK_ON_RQ_QUEUED; 1086 check_preempt_curr(rq, p, 0); 1087 1088 return rq; 1089 } 1090 1091 struct migration_arg { 1092 struct task_struct *task; 1093 int dest_cpu; 1094 }; 1095 1096 /* 1097 * Move (not current) task off this cpu, onto dest cpu. We're doing 1098 * this because either it can't run here any more (set_cpus_allowed() 1099 * away from this CPU, or CPU going down), or because we're 1100 * attempting to rebalance this task on exec (sched_exec). 1101 * 1102 * So we race with normal scheduler movements, but that's OK, as long 1103 * as the task is no longer on this CPU. 1104 */ 1105 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu) 1106 { 1107 if (unlikely(!cpu_active(dest_cpu))) 1108 return rq; 1109 1110 /* Affinity changed (again). */ 1111 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1112 return rq; 1113 1114 rq = move_queued_task(rq, p, dest_cpu); 1115 1116 return rq; 1117 } 1118 1119 /* 1120 * migration_cpu_stop - this will be executed by a highprio stopper thread 1121 * and performs thread migration by bumping thread off CPU then 1122 * 'pushing' onto another runqueue. 1123 */ 1124 static int migration_cpu_stop(void *data) 1125 { 1126 struct migration_arg *arg = data; 1127 struct task_struct *p = arg->task; 1128 struct rq *rq = this_rq(); 1129 1130 /* 1131 * The original target cpu might have gone down and we might 1132 * be on another cpu but it doesn't matter. 1133 */ 1134 local_irq_disable(); 1135 /* 1136 * We need to explicitly wake pending tasks before running 1137 * __migrate_task() such that we will not miss enforcing cpus_allowed 1138 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1139 */ 1140 sched_ttwu_pending(); 1141 1142 raw_spin_lock(&p->pi_lock); 1143 raw_spin_lock(&rq->lock); 1144 /* 1145 * If task_rq(p) != rq, it cannot be migrated here, because we're 1146 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1147 * we're holding p->pi_lock. 1148 */ 1149 if (task_rq(p) == rq && task_on_rq_queued(p)) 1150 rq = __migrate_task(rq, p, arg->dest_cpu); 1151 raw_spin_unlock(&rq->lock); 1152 raw_spin_unlock(&p->pi_lock); 1153 1154 local_irq_enable(); 1155 return 0; 1156 } 1157 1158 /* 1159 * sched_class::set_cpus_allowed must do the below, but is not required to 1160 * actually call this function. 1161 */ 1162 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1163 { 1164 cpumask_copy(&p->cpus_allowed, new_mask); 1165 p->nr_cpus_allowed = cpumask_weight(new_mask); 1166 } 1167 1168 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1169 { 1170 struct rq *rq = task_rq(p); 1171 bool queued, running; 1172 1173 lockdep_assert_held(&p->pi_lock); 1174 1175 queued = task_on_rq_queued(p); 1176 running = task_current(rq, p); 1177 1178 if (queued) { 1179 /* 1180 * Because __kthread_bind() calls this on blocked tasks without 1181 * holding rq->lock. 1182 */ 1183 lockdep_assert_held(&rq->lock); 1184 dequeue_task(rq, p, DEQUEUE_SAVE); 1185 } 1186 if (running) 1187 put_prev_task(rq, p); 1188 1189 p->sched_class->set_cpus_allowed(p, new_mask); 1190 1191 if (running) 1192 p->sched_class->set_curr_task(rq); 1193 if (queued) 1194 enqueue_task(rq, p, ENQUEUE_RESTORE); 1195 } 1196 1197 /* 1198 * Change a given task's CPU affinity. Migrate the thread to a 1199 * proper CPU and schedule it away if the CPU it's executing on 1200 * is removed from the allowed bitmask. 1201 * 1202 * NOTE: the caller must have a valid reference to the task, the 1203 * task must not exit() & deallocate itself prematurely. The 1204 * call is not atomic; no spinlocks may be held. 1205 */ 1206 static int __set_cpus_allowed_ptr(struct task_struct *p, 1207 const struct cpumask *new_mask, bool check) 1208 { 1209 unsigned long flags; 1210 struct rq *rq; 1211 unsigned int dest_cpu; 1212 int ret = 0; 1213 1214 rq = task_rq_lock(p, &flags); 1215 1216 /* 1217 * Must re-check here, to close a race against __kthread_bind(), 1218 * sched_setaffinity() is not guaranteed to observe the flag. 1219 */ 1220 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1221 ret = -EINVAL; 1222 goto out; 1223 } 1224 1225 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1226 goto out; 1227 1228 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 1229 ret = -EINVAL; 1230 goto out; 1231 } 1232 1233 do_set_cpus_allowed(p, new_mask); 1234 1235 /* Can the task run on the task's current CPU? If so, we're done */ 1236 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1237 goto out; 1238 1239 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 1240 if (task_running(rq, p) || p->state == TASK_WAKING) { 1241 struct migration_arg arg = { p, dest_cpu }; 1242 /* Need help from migration thread: drop lock and wait. */ 1243 task_rq_unlock(rq, p, &flags); 1244 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1245 tlb_migrate_finish(p->mm); 1246 return 0; 1247 } else if (task_on_rq_queued(p)) { 1248 /* 1249 * OK, since we're going to drop the lock immediately 1250 * afterwards anyway. 1251 */ 1252 lockdep_unpin_lock(&rq->lock); 1253 rq = move_queued_task(rq, p, dest_cpu); 1254 lockdep_pin_lock(&rq->lock); 1255 } 1256 out: 1257 task_rq_unlock(rq, p, &flags); 1258 1259 return ret; 1260 } 1261 1262 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1263 { 1264 return __set_cpus_allowed_ptr(p, new_mask, false); 1265 } 1266 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1267 1268 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1269 { 1270 #ifdef CONFIG_SCHED_DEBUG 1271 /* 1272 * We should never call set_task_cpu() on a blocked task, 1273 * ttwu() will sort out the placement. 1274 */ 1275 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1276 !p->on_rq); 1277 1278 /* 1279 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1280 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1281 * time relying on p->on_rq. 1282 */ 1283 WARN_ON_ONCE(p->state == TASK_RUNNING && 1284 p->sched_class == &fair_sched_class && 1285 (p->on_rq && !task_on_rq_migrating(p))); 1286 1287 #ifdef CONFIG_LOCKDEP 1288 /* 1289 * The caller should hold either p->pi_lock or rq->lock, when changing 1290 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1291 * 1292 * sched_move_task() holds both and thus holding either pins the cgroup, 1293 * see task_group(). 1294 * 1295 * Furthermore, all task_rq users should acquire both locks, see 1296 * task_rq_lock(). 1297 */ 1298 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1299 lockdep_is_held(&task_rq(p)->lock))); 1300 #endif 1301 #endif 1302 1303 trace_sched_migrate_task(p, new_cpu); 1304 1305 if (task_cpu(p) != new_cpu) { 1306 if (p->sched_class->migrate_task_rq) 1307 p->sched_class->migrate_task_rq(p); 1308 p->se.nr_migrations++; 1309 perf_event_task_migrate(p); 1310 } 1311 1312 __set_task_cpu(p, new_cpu); 1313 } 1314 1315 static void __migrate_swap_task(struct task_struct *p, int cpu) 1316 { 1317 if (task_on_rq_queued(p)) { 1318 struct rq *src_rq, *dst_rq; 1319 1320 src_rq = task_rq(p); 1321 dst_rq = cpu_rq(cpu); 1322 1323 p->on_rq = TASK_ON_RQ_MIGRATING; 1324 deactivate_task(src_rq, p, 0); 1325 set_task_cpu(p, cpu); 1326 activate_task(dst_rq, p, 0); 1327 p->on_rq = TASK_ON_RQ_QUEUED; 1328 check_preempt_curr(dst_rq, p, 0); 1329 } else { 1330 /* 1331 * Task isn't running anymore; make it appear like we migrated 1332 * it before it went to sleep. This means on wakeup we make the 1333 * previous cpu our targer instead of where it really is. 1334 */ 1335 p->wake_cpu = cpu; 1336 } 1337 } 1338 1339 struct migration_swap_arg { 1340 struct task_struct *src_task, *dst_task; 1341 int src_cpu, dst_cpu; 1342 }; 1343 1344 static int migrate_swap_stop(void *data) 1345 { 1346 struct migration_swap_arg *arg = data; 1347 struct rq *src_rq, *dst_rq; 1348 int ret = -EAGAIN; 1349 1350 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1351 return -EAGAIN; 1352 1353 src_rq = cpu_rq(arg->src_cpu); 1354 dst_rq = cpu_rq(arg->dst_cpu); 1355 1356 double_raw_lock(&arg->src_task->pi_lock, 1357 &arg->dst_task->pi_lock); 1358 double_rq_lock(src_rq, dst_rq); 1359 1360 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1361 goto unlock; 1362 1363 if (task_cpu(arg->src_task) != arg->src_cpu) 1364 goto unlock; 1365 1366 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1367 goto unlock; 1368 1369 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1370 goto unlock; 1371 1372 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1373 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1374 1375 ret = 0; 1376 1377 unlock: 1378 double_rq_unlock(src_rq, dst_rq); 1379 raw_spin_unlock(&arg->dst_task->pi_lock); 1380 raw_spin_unlock(&arg->src_task->pi_lock); 1381 1382 return ret; 1383 } 1384 1385 /* 1386 * Cross migrate two tasks 1387 */ 1388 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1389 { 1390 struct migration_swap_arg arg; 1391 int ret = -EINVAL; 1392 1393 arg = (struct migration_swap_arg){ 1394 .src_task = cur, 1395 .src_cpu = task_cpu(cur), 1396 .dst_task = p, 1397 .dst_cpu = task_cpu(p), 1398 }; 1399 1400 if (arg.src_cpu == arg.dst_cpu) 1401 goto out; 1402 1403 /* 1404 * These three tests are all lockless; this is OK since all of them 1405 * will be re-checked with proper locks held further down the line. 1406 */ 1407 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1408 goto out; 1409 1410 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1411 goto out; 1412 1413 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1414 goto out; 1415 1416 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1417 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1418 1419 out: 1420 return ret; 1421 } 1422 1423 /* 1424 * wait_task_inactive - wait for a thread to unschedule. 1425 * 1426 * If @match_state is nonzero, it's the @p->state value just checked and 1427 * not expected to change. If it changes, i.e. @p might have woken up, 1428 * then return zero. When we succeed in waiting for @p to be off its CPU, 1429 * we return a positive number (its total switch count). If a second call 1430 * a short while later returns the same number, the caller can be sure that 1431 * @p has remained unscheduled the whole time. 1432 * 1433 * The caller must ensure that the task *will* unschedule sometime soon, 1434 * else this function might spin for a *long* time. This function can't 1435 * be called with interrupts off, or it may introduce deadlock with 1436 * smp_call_function() if an IPI is sent by the same process we are 1437 * waiting to become inactive. 1438 */ 1439 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1440 { 1441 unsigned long flags; 1442 int running, queued; 1443 unsigned long ncsw; 1444 struct rq *rq; 1445 1446 for (;;) { 1447 /* 1448 * We do the initial early heuristics without holding 1449 * any task-queue locks at all. We'll only try to get 1450 * the runqueue lock when things look like they will 1451 * work out! 1452 */ 1453 rq = task_rq(p); 1454 1455 /* 1456 * If the task is actively running on another CPU 1457 * still, just relax and busy-wait without holding 1458 * any locks. 1459 * 1460 * NOTE! Since we don't hold any locks, it's not 1461 * even sure that "rq" stays as the right runqueue! 1462 * But we don't care, since "task_running()" will 1463 * return false if the runqueue has changed and p 1464 * is actually now running somewhere else! 1465 */ 1466 while (task_running(rq, p)) { 1467 if (match_state && unlikely(p->state != match_state)) 1468 return 0; 1469 cpu_relax(); 1470 } 1471 1472 /* 1473 * Ok, time to look more closely! We need the rq 1474 * lock now, to be *sure*. If we're wrong, we'll 1475 * just go back and repeat. 1476 */ 1477 rq = task_rq_lock(p, &flags); 1478 trace_sched_wait_task(p); 1479 running = task_running(rq, p); 1480 queued = task_on_rq_queued(p); 1481 ncsw = 0; 1482 if (!match_state || p->state == match_state) 1483 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1484 task_rq_unlock(rq, p, &flags); 1485 1486 /* 1487 * If it changed from the expected state, bail out now. 1488 */ 1489 if (unlikely(!ncsw)) 1490 break; 1491 1492 /* 1493 * Was it really running after all now that we 1494 * checked with the proper locks actually held? 1495 * 1496 * Oops. Go back and try again.. 1497 */ 1498 if (unlikely(running)) { 1499 cpu_relax(); 1500 continue; 1501 } 1502 1503 /* 1504 * It's not enough that it's not actively running, 1505 * it must be off the runqueue _entirely_, and not 1506 * preempted! 1507 * 1508 * So if it was still runnable (but just not actively 1509 * running right now), it's preempted, and we should 1510 * yield - it could be a while. 1511 */ 1512 if (unlikely(queued)) { 1513 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1514 1515 set_current_state(TASK_UNINTERRUPTIBLE); 1516 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1517 continue; 1518 } 1519 1520 /* 1521 * Ahh, all good. It wasn't running, and it wasn't 1522 * runnable, which means that it will never become 1523 * running in the future either. We're all done! 1524 */ 1525 break; 1526 } 1527 1528 return ncsw; 1529 } 1530 1531 /*** 1532 * kick_process - kick a running thread to enter/exit the kernel 1533 * @p: the to-be-kicked thread 1534 * 1535 * Cause a process which is running on another CPU to enter 1536 * kernel-mode, without any delay. (to get signals handled.) 1537 * 1538 * NOTE: this function doesn't have to take the runqueue lock, 1539 * because all it wants to ensure is that the remote task enters 1540 * the kernel. If the IPI races and the task has been migrated 1541 * to another CPU then no harm is done and the purpose has been 1542 * achieved as well. 1543 */ 1544 void kick_process(struct task_struct *p) 1545 { 1546 int cpu; 1547 1548 preempt_disable(); 1549 cpu = task_cpu(p); 1550 if ((cpu != smp_processor_id()) && task_curr(p)) 1551 smp_send_reschedule(cpu); 1552 preempt_enable(); 1553 } 1554 EXPORT_SYMBOL_GPL(kick_process); 1555 1556 /* 1557 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1558 */ 1559 static int select_fallback_rq(int cpu, struct task_struct *p) 1560 { 1561 int nid = cpu_to_node(cpu); 1562 const struct cpumask *nodemask = NULL; 1563 enum { cpuset, possible, fail } state = cpuset; 1564 int dest_cpu; 1565 1566 /* 1567 * If the node that the cpu is on has been offlined, cpu_to_node() 1568 * will return -1. There is no cpu on the node, and we should 1569 * select the cpu on the other node. 1570 */ 1571 if (nid != -1) { 1572 nodemask = cpumask_of_node(nid); 1573 1574 /* Look for allowed, online CPU in same node. */ 1575 for_each_cpu(dest_cpu, nodemask) { 1576 if (!cpu_online(dest_cpu)) 1577 continue; 1578 if (!cpu_active(dest_cpu)) 1579 continue; 1580 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1581 return dest_cpu; 1582 } 1583 } 1584 1585 for (;;) { 1586 /* Any allowed, online CPU? */ 1587 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1588 if (!cpu_online(dest_cpu)) 1589 continue; 1590 if (!cpu_active(dest_cpu)) 1591 continue; 1592 goto out; 1593 } 1594 1595 /* No more Mr. Nice Guy. */ 1596 switch (state) { 1597 case cpuset: 1598 if (IS_ENABLED(CONFIG_CPUSETS)) { 1599 cpuset_cpus_allowed_fallback(p); 1600 state = possible; 1601 break; 1602 } 1603 /* fall-through */ 1604 case possible: 1605 do_set_cpus_allowed(p, cpu_possible_mask); 1606 state = fail; 1607 break; 1608 1609 case fail: 1610 BUG(); 1611 break; 1612 } 1613 } 1614 1615 out: 1616 if (state != cpuset) { 1617 /* 1618 * Don't tell them about moving exiting tasks or 1619 * kernel threads (both mm NULL), since they never 1620 * leave kernel. 1621 */ 1622 if (p->mm && printk_ratelimit()) { 1623 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1624 task_pid_nr(p), p->comm, cpu); 1625 } 1626 } 1627 1628 return dest_cpu; 1629 } 1630 1631 /* 1632 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1633 */ 1634 static inline 1635 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1636 { 1637 lockdep_assert_held(&p->pi_lock); 1638 1639 if (p->nr_cpus_allowed > 1) 1640 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1641 1642 /* 1643 * In order not to call set_task_cpu() on a blocking task we need 1644 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1645 * cpu. 1646 * 1647 * Since this is common to all placement strategies, this lives here. 1648 * 1649 * [ this allows ->select_task() to simply return task_cpu(p) and 1650 * not worry about this generic constraint ] 1651 */ 1652 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1653 !cpu_online(cpu))) 1654 cpu = select_fallback_rq(task_cpu(p), p); 1655 1656 return cpu; 1657 } 1658 1659 static void update_avg(u64 *avg, u64 sample) 1660 { 1661 s64 diff = sample - *avg; 1662 *avg += diff >> 3; 1663 } 1664 1665 #else 1666 1667 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1668 const struct cpumask *new_mask, bool check) 1669 { 1670 return set_cpus_allowed_ptr(p, new_mask); 1671 } 1672 1673 #endif /* CONFIG_SMP */ 1674 1675 static void 1676 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1677 { 1678 #ifdef CONFIG_SCHEDSTATS 1679 struct rq *rq = this_rq(); 1680 1681 #ifdef CONFIG_SMP 1682 int this_cpu = smp_processor_id(); 1683 1684 if (cpu == this_cpu) { 1685 schedstat_inc(rq, ttwu_local); 1686 schedstat_inc(p, se.statistics.nr_wakeups_local); 1687 } else { 1688 struct sched_domain *sd; 1689 1690 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1691 rcu_read_lock(); 1692 for_each_domain(this_cpu, sd) { 1693 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1694 schedstat_inc(sd, ttwu_wake_remote); 1695 break; 1696 } 1697 } 1698 rcu_read_unlock(); 1699 } 1700 1701 if (wake_flags & WF_MIGRATED) 1702 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1703 1704 #endif /* CONFIG_SMP */ 1705 1706 schedstat_inc(rq, ttwu_count); 1707 schedstat_inc(p, se.statistics.nr_wakeups); 1708 1709 if (wake_flags & WF_SYNC) 1710 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1711 1712 #endif /* CONFIG_SCHEDSTATS */ 1713 } 1714 1715 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1716 { 1717 activate_task(rq, p, en_flags); 1718 p->on_rq = TASK_ON_RQ_QUEUED; 1719 1720 /* if a worker is waking up, notify workqueue */ 1721 if (p->flags & PF_WQ_WORKER) 1722 wq_worker_waking_up(p, cpu_of(rq)); 1723 } 1724 1725 /* 1726 * Mark the task runnable and perform wakeup-preemption. 1727 */ 1728 static void 1729 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1730 { 1731 check_preempt_curr(rq, p, wake_flags); 1732 p->state = TASK_RUNNING; 1733 trace_sched_wakeup(p); 1734 1735 #ifdef CONFIG_SMP 1736 if (p->sched_class->task_woken) { 1737 /* 1738 * Our task @p is fully woken up and running; so its safe to 1739 * drop the rq->lock, hereafter rq is only used for statistics. 1740 */ 1741 lockdep_unpin_lock(&rq->lock); 1742 p->sched_class->task_woken(rq, p); 1743 lockdep_pin_lock(&rq->lock); 1744 } 1745 1746 if (rq->idle_stamp) { 1747 u64 delta = rq_clock(rq) - rq->idle_stamp; 1748 u64 max = 2*rq->max_idle_balance_cost; 1749 1750 update_avg(&rq->avg_idle, delta); 1751 1752 if (rq->avg_idle > max) 1753 rq->avg_idle = max; 1754 1755 rq->idle_stamp = 0; 1756 } 1757 #endif 1758 } 1759 1760 static void 1761 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1762 { 1763 lockdep_assert_held(&rq->lock); 1764 1765 #ifdef CONFIG_SMP 1766 if (p->sched_contributes_to_load) 1767 rq->nr_uninterruptible--; 1768 #endif 1769 1770 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1771 ttwu_do_wakeup(rq, p, wake_flags); 1772 } 1773 1774 /* 1775 * Called in case the task @p isn't fully descheduled from its runqueue, 1776 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1777 * since all we need to do is flip p->state to TASK_RUNNING, since 1778 * the task is still ->on_rq. 1779 */ 1780 static int ttwu_remote(struct task_struct *p, int wake_flags) 1781 { 1782 struct rq *rq; 1783 int ret = 0; 1784 1785 rq = __task_rq_lock(p); 1786 if (task_on_rq_queued(p)) { 1787 /* check_preempt_curr() may use rq clock */ 1788 update_rq_clock(rq); 1789 ttwu_do_wakeup(rq, p, wake_flags); 1790 ret = 1; 1791 } 1792 __task_rq_unlock(rq); 1793 1794 return ret; 1795 } 1796 1797 #ifdef CONFIG_SMP 1798 void sched_ttwu_pending(void) 1799 { 1800 struct rq *rq = this_rq(); 1801 struct llist_node *llist = llist_del_all(&rq->wake_list); 1802 struct task_struct *p; 1803 unsigned long flags; 1804 1805 if (!llist) 1806 return; 1807 1808 raw_spin_lock_irqsave(&rq->lock, flags); 1809 lockdep_pin_lock(&rq->lock); 1810 1811 while (llist) { 1812 p = llist_entry(llist, struct task_struct, wake_entry); 1813 llist = llist_next(llist); 1814 ttwu_do_activate(rq, p, 0); 1815 } 1816 1817 lockdep_unpin_lock(&rq->lock); 1818 raw_spin_unlock_irqrestore(&rq->lock, flags); 1819 } 1820 1821 void scheduler_ipi(void) 1822 { 1823 /* 1824 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1825 * TIF_NEED_RESCHED remotely (for the first time) will also send 1826 * this IPI. 1827 */ 1828 preempt_fold_need_resched(); 1829 1830 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1831 return; 1832 1833 /* 1834 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1835 * traditionally all their work was done from the interrupt return 1836 * path. Now that we actually do some work, we need to make sure 1837 * we do call them. 1838 * 1839 * Some archs already do call them, luckily irq_enter/exit nest 1840 * properly. 1841 * 1842 * Arguably we should visit all archs and update all handlers, 1843 * however a fair share of IPIs are still resched only so this would 1844 * somewhat pessimize the simple resched case. 1845 */ 1846 irq_enter(); 1847 sched_ttwu_pending(); 1848 1849 /* 1850 * Check if someone kicked us for doing the nohz idle load balance. 1851 */ 1852 if (unlikely(got_nohz_idle_kick())) { 1853 this_rq()->idle_balance = 1; 1854 raise_softirq_irqoff(SCHED_SOFTIRQ); 1855 } 1856 irq_exit(); 1857 } 1858 1859 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1860 { 1861 struct rq *rq = cpu_rq(cpu); 1862 1863 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1864 if (!set_nr_if_polling(rq->idle)) 1865 smp_send_reschedule(cpu); 1866 else 1867 trace_sched_wake_idle_without_ipi(cpu); 1868 } 1869 } 1870 1871 void wake_up_if_idle(int cpu) 1872 { 1873 struct rq *rq = cpu_rq(cpu); 1874 unsigned long flags; 1875 1876 rcu_read_lock(); 1877 1878 if (!is_idle_task(rcu_dereference(rq->curr))) 1879 goto out; 1880 1881 if (set_nr_if_polling(rq->idle)) { 1882 trace_sched_wake_idle_without_ipi(cpu); 1883 } else { 1884 raw_spin_lock_irqsave(&rq->lock, flags); 1885 if (is_idle_task(rq->curr)) 1886 smp_send_reschedule(cpu); 1887 /* Else cpu is not in idle, do nothing here */ 1888 raw_spin_unlock_irqrestore(&rq->lock, flags); 1889 } 1890 1891 out: 1892 rcu_read_unlock(); 1893 } 1894 1895 bool cpus_share_cache(int this_cpu, int that_cpu) 1896 { 1897 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1898 } 1899 #endif /* CONFIG_SMP */ 1900 1901 static void ttwu_queue(struct task_struct *p, int cpu) 1902 { 1903 struct rq *rq = cpu_rq(cpu); 1904 1905 #if defined(CONFIG_SMP) 1906 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1907 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1908 ttwu_queue_remote(p, cpu); 1909 return; 1910 } 1911 #endif 1912 1913 raw_spin_lock(&rq->lock); 1914 lockdep_pin_lock(&rq->lock); 1915 ttwu_do_activate(rq, p, 0); 1916 lockdep_unpin_lock(&rq->lock); 1917 raw_spin_unlock(&rq->lock); 1918 } 1919 1920 /* 1921 * Notes on Program-Order guarantees on SMP systems. 1922 * 1923 * MIGRATION 1924 * 1925 * The basic program-order guarantee on SMP systems is that when a task [t] 1926 * migrates, all its activity on its old cpu [c0] happens-before any subsequent 1927 * execution on its new cpu [c1]. 1928 * 1929 * For migration (of runnable tasks) this is provided by the following means: 1930 * 1931 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1932 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1933 * rq(c1)->lock (if not at the same time, then in that order). 1934 * C) LOCK of the rq(c1)->lock scheduling in task 1935 * 1936 * Transitivity guarantees that B happens after A and C after B. 1937 * Note: we only require RCpc transitivity. 1938 * Note: the cpu doing B need not be c0 or c1 1939 * 1940 * Example: 1941 * 1942 * CPU0 CPU1 CPU2 1943 * 1944 * LOCK rq(0)->lock 1945 * sched-out X 1946 * sched-in Y 1947 * UNLOCK rq(0)->lock 1948 * 1949 * LOCK rq(0)->lock // orders against CPU0 1950 * dequeue X 1951 * UNLOCK rq(0)->lock 1952 * 1953 * LOCK rq(1)->lock 1954 * enqueue X 1955 * UNLOCK rq(1)->lock 1956 * 1957 * LOCK rq(1)->lock // orders against CPU2 1958 * sched-out Z 1959 * sched-in X 1960 * UNLOCK rq(1)->lock 1961 * 1962 * 1963 * BLOCKING -- aka. SLEEP + WAKEUP 1964 * 1965 * For blocking we (obviously) need to provide the same guarantee as for 1966 * migration. However the means are completely different as there is no lock 1967 * chain to provide order. Instead we do: 1968 * 1969 * 1) smp_store_release(X->on_cpu, 0) 1970 * 2) smp_cond_acquire(!X->on_cpu) 1971 * 1972 * Example: 1973 * 1974 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1975 * 1976 * LOCK rq(0)->lock LOCK X->pi_lock 1977 * dequeue X 1978 * sched-out X 1979 * smp_store_release(X->on_cpu, 0); 1980 * 1981 * smp_cond_acquire(!X->on_cpu); 1982 * X->state = WAKING 1983 * set_task_cpu(X,2) 1984 * 1985 * LOCK rq(2)->lock 1986 * enqueue X 1987 * X->state = RUNNING 1988 * UNLOCK rq(2)->lock 1989 * 1990 * LOCK rq(2)->lock // orders against CPU1 1991 * sched-out Z 1992 * sched-in X 1993 * UNLOCK rq(2)->lock 1994 * 1995 * UNLOCK X->pi_lock 1996 * UNLOCK rq(0)->lock 1997 * 1998 * 1999 * However; for wakeups there is a second guarantee we must provide, namely we 2000 * must observe the state that lead to our wakeup. That is, not only must our 2001 * task observe its own prior state, it must also observe the stores prior to 2002 * its wakeup. 2003 * 2004 * This means that any means of doing remote wakeups must order the CPU doing 2005 * the wakeup against the CPU the task is going to end up running on. This, 2006 * however, is already required for the regular Program-Order guarantee above, 2007 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire). 2008 * 2009 */ 2010 2011 /** 2012 * try_to_wake_up - wake up a thread 2013 * @p: the thread to be awakened 2014 * @state: the mask of task states that can be woken 2015 * @wake_flags: wake modifier flags (WF_*) 2016 * 2017 * Put it on the run-queue if it's not already there. The "current" 2018 * thread is always on the run-queue (except when the actual 2019 * re-schedule is in progress), and as such you're allowed to do 2020 * the simpler "current->state = TASK_RUNNING" to mark yourself 2021 * runnable without the overhead of this. 2022 * 2023 * Return: %true if @p was woken up, %false if it was already running. 2024 * or @state didn't match @p's state. 2025 */ 2026 static int 2027 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 2028 { 2029 unsigned long flags; 2030 int cpu, success = 0; 2031 2032 /* 2033 * If we are going to wake up a thread waiting for CONDITION we 2034 * need to ensure that CONDITION=1 done by the caller can not be 2035 * reordered with p->state check below. This pairs with mb() in 2036 * set_current_state() the waiting thread does. 2037 */ 2038 smp_mb__before_spinlock(); 2039 raw_spin_lock_irqsave(&p->pi_lock, flags); 2040 if (!(p->state & state)) 2041 goto out; 2042 2043 trace_sched_waking(p); 2044 2045 success = 1; /* we're going to change ->state */ 2046 cpu = task_cpu(p); 2047 2048 if (p->on_rq && ttwu_remote(p, wake_flags)) 2049 goto stat; 2050 2051 #ifdef CONFIG_SMP 2052 /* 2053 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2054 * possible to, falsely, observe p->on_cpu == 0. 2055 * 2056 * One must be running (->on_cpu == 1) in order to remove oneself 2057 * from the runqueue. 2058 * 2059 * [S] ->on_cpu = 1; [L] ->on_rq 2060 * UNLOCK rq->lock 2061 * RMB 2062 * LOCK rq->lock 2063 * [S] ->on_rq = 0; [L] ->on_cpu 2064 * 2065 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 2066 * from the consecutive calls to schedule(); the first switching to our 2067 * task, the second putting it to sleep. 2068 */ 2069 smp_rmb(); 2070 2071 /* 2072 * If the owning (remote) cpu is still in the middle of schedule() with 2073 * this task as prev, wait until its done referencing the task. 2074 * 2075 * Pairs with the smp_store_release() in finish_lock_switch(). 2076 * 2077 * This ensures that tasks getting woken will be fully ordered against 2078 * their previous state and preserve Program Order. 2079 */ 2080 smp_cond_acquire(!p->on_cpu); 2081 2082 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2083 p->state = TASK_WAKING; 2084 2085 if (p->sched_class->task_waking) 2086 p->sched_class->task_waking(p); 2087 2088 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2089 if (task_cpu(p) != cpu) { 2090 wake_flags |= WF_MIGRATED; 2091 set_task_cpu(p, cpu); 2092 } 2093 #endif /* CONFIG_SMP */ 2094 2095 ttwu_queue(p, cpu); 2096 stat: 2097 ttwu_stat(p, cpu, wake_flags); 2098 out: 2099 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2100 2101 return success; 2102 } 2103 2104 /** 2105 * try_to_wake_up_local - try to wake up a local task with rq lock held 2106 * @p: the thread to be awakened 2107 * 2108 * Put @p on the run-queue if it's not already there. The caller must 2109 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2110 * the current task. 2111 */ 2112 static void try_to_wake_up_local(struct task_struct *p) 2113 { 2114 struct rq *rq = task_rq(p); 2115 2116 if (WARN_ON_ONCE(rq != this_rq()) || 2117 WARN_ON_ONCE(p == current)) 2118 return; 2119 2120 lockdep_assert_held(&rq->lock); 2121 2122 if (!raw_spin_trylock(&p->pi_lock)) { 2123 /* 2124 * This is OK, because current is on_cpu, which avoids it being 2125 * picked for load-balance and preemption/IRQs are still 2126 * disabled avoiding further scheduler activity on it and we've 2127 * not yet picked a replacement task. 2128 */ 2129 lockdep_unpin_lock(&rq->lock); 2130 raw_spin_unlock(&rq->lock); 2131 raw_spin_lock(&p->pi_lock); 2132 raw_spin_lock(&rq->lock); 2133 lockdep_pin_lock(&rq->lock); 2134 } 2135 2136 if (!(p->state & TASK_NORMAL)) 2137 goto out; 2138 2139 trace_sched_waking(p); 2140 2141 if (!task_on_rq_queued(p)) 2142 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 2143 2144 ttwu_do_wakeup(rq, p, 0); 2145 ttwu_stat(p, smp_processor_id(), 0); 2146 out: 2147 raw_spin_unlock(&p->pi_lock); 2148 } 2149 2150 /** 2151 * wake_up_process - Wake up a specific process 2152 * @p: The process to be woken up. 2153 * 2154 * Attempt to wake up the nominated process and move it to the set of runnable 2155 * processes. 2156 * 2157 * Return: 1 if the process was woken up, 0 if it was already running. 2158 * 2159 * It may be assumed that this function implies a write memory barrier before 2160 * changing the task state if and only if any tasks are woken up. 2161 */ 2162 int wake_up_process(struct task_struct *p) 2163 { 2164 return try_to_wake_up(p, TASK_NORMAL, 0); 2165 } 2166 EXPORT_SYMBOL(wake_up_process); 2167 2168 int wake_up_state(struct task_struct *p, unsigned int state) 2169 { 2170 return try_to_wake_up(p, state, 0); 2171 } 2172 2173 /* 2174 * This function clears the sched_dl_entity static params. 2175 */ 2176 void __dl_clear_params(struct task_struct *p) 2177 { 2178 struct sched_dl_entity *dl_se = &p->dl; 2179 2180 dl_se->dl_runtime = 0; 2181 dl_se->dl_deadline = 0; 2182 dl_se->dl_period = 0; 2183 dl_se->flags = 0; 2184 dl_se->dl_bw = 0; 2185 2186 dl_se->dl_throttled = 0; 2187 dl_se->dl_new = 1; 2188 dl_se->dl_yielded = 0; 2189 } 2190 2191 /* 2192 * Perform scheduler related setup for a newly forked process p. 2193 * p is forked by current. 2194 * 2195 * __sched_fork() is basic setup used by init_idle() too: 2196 */ 2197 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2198 { 2199 p->on_rq = 0; 2200 2201 p->se.on_rq = 0; 2202 p->se.exec_start = 0; 2203 p->se.sum_exec_runtime = 0; 2204 p->se.prev_sum_exec_runtime = 0; 2205 p->se.nr_migrations = 0; 2206 p->se.vruntime = 0; 2207 INIT_LIST_HEAD(&p->se.group_node); 2208 2209 #ifdef CONFIG_FAIR_GROUP_SCHED 2210 p->se.cfs_rq = NULL; 2211 #endif 2212 2213 #ifdef CONFIG_SCHEDSTATS 2214 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2215 #endif 2216 2217 RB_CLEAR_NODE(&p->dl.rb_node); 2218 init_dl_task_timer(&p->dl); 2219 __dl_clear_params(p); 2220 2221 INIT_LIST_HEAD(&p->rt.run_list); 2222 2223 #ifdef CONFIG_PREEMPT_NOTIFIERS 2224 INIT_HLIST_HEAD(&p->preempt_notifiers); 2225 #endif 2226 2227 #ifdef CONFIG_NUMA_BALANCING 2228 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2229 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2230 p->mm->numa_scan_seq = 0; 2231 } 2232 2233 if (clone_flags & CLONE_VM) 2234 p->numa_preferred_nid = current->numa_preferred_nid; 2235 else 2236 p->numa_preferred_nid = -1; 2237 2238 p->node_stamp = 0ULL; 2239 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2240 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2241 p->numa_work.next = &p->numa_work; 2242 p->numa_faults = NULL; 2243 p->last_task_numa_placement = 0; 2244 p->last_sum_exec_runtime = 0; 2245 2246 p->numa_group = NULL; 2247 #endif /* CONFIG_NUMA_BALANCING */ 2248 } 2249 2250 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2251 2252 #ifdef CONFIG_NUMA_BALANCING 2253 2254 void set_numabalancing_state(bool enabled) 2255 { 2256 if (enabled) 2257 static_branch_enable(&sched_numa_balancing); 2258 else 2259 static_branch_disable(&sched_numa_balancing); 2260 } 2261 2262 #ifdef CONFIG_PROC_SYSCTL 2263 int sysctl_numa_balancing(struct ctl_table *table, int write, 2264 void __user *buffer, size_t *lenp, loff_t *ppos) 2265 { 2266 struct ctl_table t; 2267 int err; 2268 int state = static_branch_likely(&sched_numa_balancing); 2269 2270 if (write && !capable(CAP_SYS_ADMIN)) 2271 return -EPERM; 2272 2273 t = *table; 2274 t.data = &state; 2275 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2276 if (err < 0) 2277 return err; 2278 if (write) 2279 set_numabalancing_state(state); 2280 return err; 2281 } 2282 #endif 2283 #endif 2284 2285 /* 2286 * fork()/clone()-time setup: 2287 */ 2288 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2289 { 2290 unsigned long flags; 2291 int cpu = get_cpu(); 2292 2293 __sched_fork(clone_flags, p); 2294 /* 2295 * We mark the process as running here. This guarantees that 2296 * nobody will actually run it, and a signal or other external 2297 * event cannot wake it up and insert it on the runqueue either. 2298 */ 2299 p->state = TASK_RUNNING; 2300 2301 /* 2302 * Make sure we do not leak PI boosting priority to the child. 2303 */ 2304 p->prio = current->normal_prio; 2305 2306 /* 2307 * Revert to default priority/policy on fork if requested. 2308 */ 2309 if (unlikely(p->sched_reset_on_fork)) { 2310 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2311 p->policy = SCHED_NORMAL; 2312 p->static_prio = NICE_TO_PRIO(0); 2313 p->rt_priority = 0; 2314 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2315 p->static_prio = NICE_TO_PRIO(0); 2316 2317 p->prio = p->normal_prio = __normal_prio(p); 2318 set_load_weight(p); 2319 2320 /* 2321 * We don't need the reset flag anymore after the fork. It has 2322 * fulfilled its duty: 2323 */ 2324 p->sched_reset_on_fork = 0; 2325 } 2326 2327 if (dl_prio(p->prio)) { 2328 put_cpu(); 2329 return -EAGAIN; 2330 } else if (rt_prio(p->prio)) { 2331 p->sched_class = &rt_sched_class; 2332 } else { 2333 p->sched_class = &fair_sched_class; 2334 } 2335 2336 if (p->sched_class->task_fork) 2337 p->sched_class->task_fork(p); 2338 2339 /* 2340 * The child is not yet in the pid-hash so no cgroup attach races, 2341 * and the cgroup is pinned to this child due to cgroup_fork() 2342 * is ran before sched_fork(). 2343 * 2344 * Silence PROVE_RCU. 2345 */ 2346 raw_spin_lock_irqsave(&p->pi_lock, flags); 2347 set_task_cpu(p, cpu); 2348 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2349 2350 #ifdef CONFIG_SCHED_INFO 2351 if (likely(sched_info_on())) 2352 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2353 #endif 2354 #if defined(CONFIG_SMP) 2355 p->on_cpu = 0; 2356 #endif 2357 init_task_preempt_count(p); 2358 #ifdef CONFIG_SMP 2359 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2360 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2361 #endif 2362 2363 put_cpu(); 2364 return 0; 2365 } 2366 2367 unsigned long to_ratio(u64 period, u64 runtime) 2368 { 2369 if (runtime == RUNTIME_INF) 2370 return 1ULL << 20; 2371 2372 /* 2373 * Doing this here saves a lot of checks in all 2374 * the calling paths, and returning zero seems 2375 * safe for them anyway. 2376 */ 2377 if (period == 0) 2378 return 0; 2379 2380 return div64_u64(runtime << 20, period); 2381 } 2382 2383 #ifdef CONFIG_SMP 2384 inline struct dl_bw *dl_bw_of(int i) 2385 { 2386 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2387 "sched RCU must be held"); 2388 return &cpu_rq(i)->rd->dl_bw; 2389 } 2390 2391 static inline int dl_bw_cpus(int i) 2392 { 2393 struct root_domain *rd = cpu_rq(i)->rd; 2394 int cpus = 0; 2395 2396 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2397 "sched RCU must be held"); 2398 for_each_cpu_and(i, rd->span, cpu_active_mask) 2399 cpus++; 2400 2401 return cpus; 2402 } 2403 #else 2404 inline struct dl_bw *dl_bw_of(int i) 2405 { 2406 return &cpu_rq(i)->dl.dl_bw; 2407 } 2408 2409 static inline int dl_bw_cpus(int i) 2410 { 2411 return 1; 2412 } 2413 #endif 2414 2415 /* 2416 * We must be sure that accepting a new task (or allowing changing the 2417 * parameters of an existing one) is consistent with the bandwidth 2418 * constraints. If yes, this function also accordingly updates the currently 2419 * allocated bandwidth to reflect the new situation. 2420 * 2421 * This function is called while holding p's rq->lock. 2422 * 2423 * XXX we should delay bw change until the task's 0-lag point, see 2424 * __setparam_dl(). 2425 */ 2426 static int dl_overflow(struct task_struct *p, int policy, 2427 const struct sched_attr *attr) 2428 { 2429 2430 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2431 u64 period = attr->sched_period ?: attr->sched_deadline; 2432 u64 runtime = attr->sched_runtime; 2433 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2434 int cpus, err = -1; 2435 2436 if (new_bw == p->dl.dl_bw) 2437 return 0; 2438 2439 /* 2440 * Either if a task, enters, leave, or stays -deadline but changes 2441 * its parameters, we may need to update accordingly the total 2442 * allocated bandwidth of the container. 2443 */ 2444 raw_spin_lock(&dl_b->lock); 2445 cpus = dl_bw_cpus(task_cpu(p)); 2446 if (dl_policy(policy) && !task_has_dl_policy(p) && 2447 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2448 __dl_add(dl_b, new_bw); 2449 err = 0; 2450 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2451 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2452 __dl_clear(dl_b, p->dl.dl_bw); 2453 __dl_add(dl_b, new_bw); 2454 err = 0; 2455 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2456 __dl_clear(dl_b, p->dl.dl_bw); 2457 err = 0; 2458 } 2459 raw_spin_unlock(&dl_b->lock); 2460 2461 return err; 2462 } 2463 2464 extern void init_dl_bw(struct dl_bw *dl_b); 2465 2466 /* 2467 * wake_up_new_task - wake up a newly created task for the first time. 2468 * 2469 * This function will do some initial scheduler statistics housekeeping 2470 * that must be done for every newly created context, then puts the task 2471 * on the runqueue and wakes it. 2472 */ 2473 void wake_up_new_task(struct task_struct *p) 2474 { 2475 unsigned long flags; 2476 struct rq *rq; 2477 2478 raw_spin_lock_irqsave(&p->pi_lock, flags); 2479 /* Initialize new task's runnable average */ 2480 init_entity_runnable_average(&p->se); 2481 #ifdef CONFIG_SMP 2482 /* 2483 * Fork balancing, do it here and not earlier because: 2484 * - cpus_allowed can change in the fork path 2485 * - any previously selected cpu might disappear through hotplug 2486 */ 2487 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2488 #endif 2489 2490 rq = __task_rq_lock(p); 2491 activate_task(rq, p, 0); 2492 p->on_rq = TASK_ON_RQ_QUEUED; 2493 trace_sched_wakeup_new(p); 2494 check_preempt_curr(rq, p, WF_FORK); 2495 #ifdef CONFIG_SMP 2496 if (p->sched_class->task_woken) { 2497 /* 2498 * Nothing relies on rq->lock after this, so its fine to 2499 * drop it. 2500 */ 2501 lockdep_unpin_lock(&rq->lock); 2502 p->sched_class->task_woken(rq, p); 2503 lockdep_pin_lock(&rq->lock); 2504 } 2505 #endif 2506 task_rq_unlock(rq, p, &flags); 2507 } 2508 2509 #ifdef CONFIG_PREEMPT_NOTIFIERS 2510 2511 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE; 2512 2513 void preempt_notifier_inc(void) 2514 { 2515 static_key_slow_inc(&preempt_notifier_key); 2516 } 2517 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2518 2519 void preempt_notifier_dec(void) 2520 { 2521 static_key_slow_dec(&preempt_notifier_key); 2522 } 2523 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2524 2525 /** 2526 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2527 * @notifier: notifier struct to register 2528 */ 2529 void preempt_notifier_register(struct preempt_notifier *notifier) 2530 { 2531 if (!static_key_false(&preempt_notifier_key)) 2532 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2533 2534 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2535 } 2536 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2537 2538 /** 2539 * preempt_notifier_unregister - no longer interested in preemption notifications 2540 * @notifier: notifier struct to unregister 2541 * 2542 * This is *not* safe to call from within a preemption notifier. 2543 */ 2544 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2545 { 2546 hlist_del(¬ifier->link); 2547 } 2548 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2549 2550 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2551 { 2552 struct preempt_notifier *notifier; 2553 2554 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2555 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2556 } 2557 2558 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2559 { 2560 if (static_key_false(&preempt_notifier_key)) 2561 __fire_sched_in_preempt_notifiers(curr); 2562 } 2563 2564 static void 2565 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2566 struct task_struct *next) 2567 { 2568 struct preempt_notifier *notifier; 2569 2570 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2571 notifier->ops->sched_out(notifier, next); 2572 } 2573 2574 static __always_inline void 2575 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2576 struct task_struct *next) 2577 { 2578 if (static_key_false(&preempt_notifier_key)) 2579 __fire_sched_out_preempt_notifiers(curr, next); 2580 } 2581 2582 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2583 2584 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2585 { 2586 } 2587 2588 static inline void 2589 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2590 struct task_struct *next) 2591 { 2592 } 2593 2594 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2595 2596 /** 2597 * prepare_task_switch - prepare to switch tasks 2598 * @rq: the runqueue preparing to switch 2599 * @prev: the current task that is being switched out 2600 * @next: the task we are going to switch to. 2601 * 2602 * This is called with the rq lock held and interrupts off. It must 2603 * be paired with a subsequent finish_task_switch after the context 2604 * switch. 2605 * 2606 * prepare_task_switch sets up locking and calls architecture specific 2607 * hooks. 2608 */ 2609 static inline void 2610 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2611 struct task_struct *next) 2612 { 2613 sched_info_switch(rq, prev, next); 2614 perf_event_task_sched_out(prev, next); 2615 fire_sched_out_preempt_notifiers(prev, next); 2616 prepare_lock_switch(rq, next); 2617 prepare_arch_switch(next); 2618 } 2619 2620 /** 2621 * finish_task_switch - clean up after a task-switch 2622 * @prev: the thread we just switched away from. 2623 * 2624 * finish_task_switch must be called after the context switch, paired 2625 * with a prepare_task_switch call before the context switch. 2626 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2627 * and do any other architecture-specific cleanup actions. 2628 * 2629 * Note that we may have delayed dropping an mm in context_switch(). If 2630 * so, we finish that here outside of the runqueue lock. (Doing it 2631 * with the lock held can cause deadlocks; see schedule() for 2632 * details.) 2633 * 2634 * The context switch have flipped the stack from under us and restored the 2635 * local variables which were saved when this task called schedule() in the 2636 * past. prev == current is still correct but we need to recalculate this_rq 2637 * because prev may have moved to another CPU. 2638 */ 2639 static struct rq *finish_task_switch(struct task_struct *prev) 2640 __releases(rq->lock) 2641 { 2642 struct rq *rq = this_rq(); 2643 struct mm_struct *mm = rq->prev_mm; 2644 long prev_state; 2645 2646 /* 2647 * The previous task will have left us with a preempt_count of 2 2648 * because it left us after: 2649 * 2650 * schedule() 2651 * preempt_disable(); // 1 2652 * __schedule() 2653 * raw_spin_lock_irq(&rq->lock) // 2 2654 * 2655 * Also, see FORK_PREEMPT_COUNT. 2656 */ 2657 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2658 "corrupted preempt_count: %s/%d/0x%x\n", 2659 current->comm, current->pid, preempt_count())) 2660 preempt_count_set(FORK_PREEMPT_COUNT); 2661 2662 rq->prev_mm = NULL; 2663 2664 /* 2665 * A task struct has one reference for the use as "current". 2666 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2667 * schedule one last time. The schedule call will never return, and 2668 * the scheduled task must drop that reference. 2669 * 2670 * We must observe prev->state before clearing prev->on_cpu (in 2671 * finish_lock_switch), otherwise a concurrent wakeup can get prev 2672 * running on another CPU and we could rave with its RUNNING -> DEAD 2673 * transition, resulting in a double drop. 2674 */ 2675 prev_state = prev->state; 2676 vtime_task_switch(prev); 2677 perf_event_task_sched_in(prev, current); 2678 finish_lock_switch(rq, prev); 2679 finish_arch_post_lock_switch(); 2680 2681 fire_sched_in_preempt_notifiers(current); 2682 if (mm) 2683 mmdrop(mm); 2684 if (unlikely(prev_state == TASK_DEAD)) { 2685 if (prev->sched_class->task_dead) 2686 prev->sched_class->task_dead(prev); 2687 2688 /* 2689 * Remove function-return probe instances associated with this 2690 * task and put them back on the free list. 2691 */ 2692 kprobe_flush_task(prev); 2693 put_task_struct(prev); 2694 } 2695 2696 tick_nohz_task_switch(); 2697 return rq; 2698 } 2699 2700 #ifdef CONFIG_SMP 2701 2702 /* rq->lock is NOT held, but preemption is disabled */ 2703 static void __balance_callback(struct rq *rq) 2704 { 2705 struct callback_head *head, *next; 2706 void (*func)(struct rq *rq); 2707 unsigned long flags; 2708 2709 raw_spin_lock_irqsave(&rq->lock, flags); 2710 head = rq->balance_callback; 2711 rq->balance_callback = NULL; 2712 while (head) { 2713 func = (void (*)(struct rq *))head->func; 2714 next = head->next; 2715 head->next = NULL; 2716 head = next; 2717 2718 func(rq); 2719 } 2720 raw_spin_unlock_irqrestore(&rq->lock, flags); 2721 } 2722 2723 static inline void balance_callback(struct rq *rq) 2724 { 2725 if (unlikely(rq->balance_callback)) 2726 __balance_callback(rq); 2727 } 2728 2729 #else 2730 2731 static inline void balance_callback(struct rq *rq) 2732 { 2733 } 2734 2735 #endif 2736 2737 /** 2738 * schedule_tail - first thing a freshly forked thread must call. 2739 * @prev: the thread we just switched away from. 2740 */ 2741 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2742 __releases(rq->lock) 2743 { 2744 struct rq *rq; 2745 2746 /* 2747 * New tasks start with FORK_PREEMPT_COUNT, see there and 2748 * finish_task_switch() for details. 2749 * 2750 * finish_task_switch() will drop rq->lock() and lower preempt_count 2751 * and the preempt_enable() will end up enabling preemption (on 2752 * PREEMPT_COUNT kernels). 2753 */ 2754 2755 rq = finish_task_switch(prev); 2756 balance_callback(rq); 2757 preempt_enable(); 2758 2759 if (current->set_child_tid) 2760 put_user(task_pid_vnr(current), current->set_child_tid); 2761 } 2762 2763 /* 2764 * context_switch - switch to the new MM and the new thread's register state. 2765 */ 2766 static inline struct rq * 2767 context_switch(struct rq *rq, struct task_struct *prev, 2768 struct task_struct *next) 2769 { 2770 struct mm_struct *mm, *oldmm; 2771 2772 prepare_task_switch(rq, prev, next); 2773 2774 mm = next->mm; 2775 oldmm = prev->active_mm; 2776 /* 2777 * For paravirt, this is coupled with an exit in switch_to to 2778 * combine the page table reload and the switch backend into 2779 * one hypercall. 2780 */ 2781 arch_start_context_switch(prev); 2782 2783 if (!mm) { 2784 next->active_mm = oldmm; 2785 atomic_inc(&oldmm->mm_count); 2786 enter_lazy_tlb(oldmm, next); 2787 } else 2788 switch_mm(oldmm, mm, next); 2789 2790 if (!prev->mm) { 2791 prev->active_mm = NULL; 2792 rq->prev_mm = oldmm; 2793 } 2794 /* 2795 * Since the runqueue lock will be released by the next 2796 * task (which is an invalid locking op but in the case 2797 * of the scheduler it's an obvious special-case), so we 2798 * do an early lockdep release here: 2799 */ 2800 lockdep_unpin_lock(&rq->lock); 2801 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2802 2803 /* Here we just switch the register state and the stack. */ 2804 switch_to(prev, next, prev); 2805 barrier(); 2806 2807 return finish_task_switch(prev); 2808 } 2809 2810 /* 2811 * nr_running and nr_context_switches: 2812 * 2813 * externally visible scheduler statistics: current number of runnable 2814 * threads, total number of context switches performed since bootup. 2815 */ 2816 unsigned long nr_running(void) 2817 { 2818 unsigned long i, sum = 0; 2819 2820 for_each_online_cpu(i) 2821 sum += cpu_rq(i)->nr_running; 2822 2823 return sum; 2824 } 2825 2826 /* 2827 * Check if only the current task is running on the cpu. 2828 * 2829 * Caution: this function does not check that the caller has disabled 2830 * preemption, thus the result might have a time-of-check-to-time-of-use 2831 * race. The caller is responsible to use it correctly, for example: 2832 * 2833 * - from a non-preemptable section (of course) 2834 * 2835 * - from a thread that is bound to a single CPU 2836 * 2837 * - in a loop with very short iterations (e.g. a polling loop) 2838 */ 2839 bool single_task_running(void) 2840 { 2841 return raw_rq()->nr_running == 1; 2842 } 2843 EXPORT_SYMBOL(single_task_running); 2844 2845 unsigned long long nr_context_switches(void) 2846 { 2847 int i; 2848 unsigned long long sum = 0; 2849 2850 for_each_possible_cpu(i) 2851 sum += cpu_rq(i)->nr_switches; 2852 2853 return sum; 2854 } 2855 2856 unsigned long nr_iowait(void) 2857 { 2858 unsigned long i, sum = 0; 2859 2860 for_each_possible_cpu(i) 2861 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2862 2863 return sum; 2864 } 2865 2866 unsigned long nr_iowait_cpu(int cpu) 2867 { 2868 struct rq *this = cpu_rq(cpu); 2869 return atomic_read(&this->nr_iowait); 2870 } 2871 2872 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2873 { 2874 struct rq *rq = this_rq(); 2875 *nr_waiters = atomic_read(&rq->nr_iowait); 2876 *load = rq->load.weight; 2877 } 2878 2879 #ifdef CONFIG_SMP 2880 2881 /* 2882 * sched_exec - execve() is a valuable balancing opportunity, because at 2883 * this point the task has the smallest effective memory and cache footprint. 2884 */ 2885 void sched_exec(void) 2886 { 2887 struct task_struct *p = current; 2888 unsigned long flags; 2889 int dest_cpu; 2890 2891 raw_spin_lock_irqsave(&p->pi_lock, flags); 2892 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2893 if (dest_cpu == smp_processor_id()) 2894 goto unlock; 2895 2896 if (likely(cpu_active(dest_cpu))) { 2897 struct migration_arg arg = { p, dest_cpu }; 2898 2899 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2900 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2901 return; 2902 } 2903 unlock: 2904 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2905 } 2906 2907 #endif 2908 2909 DEFINE_PER_CPU(struct kernel_stat, kstat); 2910 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2911 2912 EXPORT_PER_CPU_SYMBOL(kstat); 2913 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2914 2915 /* 2916 * Return accounted runtime for the task. 2917 * In case the task is currently running, return the runtime plus current's 2918 * pending runtime that have not been accounted yet. 2919 */ 2920 unsigned long long task_sched_runtime(struct task_struct *p) 2921 { 2922 unsigned long flags; 2923 struct rq *rq; 2924 u64 ns; 2925 2926 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2927 /* 2928 * 64-bit doesn't need locks to atomically read a 64bit value. 2929 * So we have a optimization chance when the task's delta_exec is 0. 2930 * Reading ->on_cpu is racy, but this is ok. 2931 * 2932 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2933 * If we race with it entering cpu, unaccounted time is 0. This is 2934 * indistinguishable from the read occurring a few cycles earlier. 2935 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2936 * been accounted, so we're correct here as well. 2937 */ 2938 if (!p->on_cpu || !task_on_rq_queued(p)) 2939 return p->se.sum_exec_runtime; 2940 #endif 2941 2942 rq = task_rq_lock(p, &flags); 2943 /* 2944 * Must be ->curr _and_ ->on_rq. If dequeued, we would 2945 * project cycles that may never be accounted to this 2946 * thread, breaking clock_gettime(). 2947 */ 2948 if (task_current(rq, p) && task_on_rq_queued(p)) { 2949 update_rq_clock(rq); 2950 p->sched_class->update_curr(rq); 2951 } 2952 ns = p->se.sum_exec_runtime; 2953 task_rq_unlock(rq, p, &flags); 2954 2955 return ns; 2956 } 2957 2958 /* 2959 * This function gets called by the timer code, with HZ frequency. 2960 * We call it with interrupts disabled. 2961 */ 2962 void scheduler_tick(void) 2963 { 2964 int cpu = smp_processor_id(); 2965 struct rq *rq = cpu_rq(cpu); 2966 struct task_struct *curr = rq->curr; 2967 2968 sched_clock_tick(); 2969 2970 raw_spin_lock(&rq->lock); 2971 update_rq_clock(rq); 2972 curr->sched_class->task_tick(rq, curr, 0); 2973 update_cpu_load_active(rq); 2974 calc_global_load_tick(rq); 2975 raw_spin_unlock(&rq->lock); 2976 2977 perf_event_task_tick(); 2978 2979 #ifdef CONFIG_SMP 2980 rq->idle_balance = idle_cpu(cpu); 2981 trigger_load_balance(rq); 2982 #endif 2983 rq_last_tick_reset(rq); 2984 } 2985 2986 #ifdef CONFIG_NO_HZ_FULL 2987 /** 2988 * scheduler_tick_max_deferment 2989 * 2990 * Keep at least one tick per second when a single 2991 * active task is running because the scheduler doesn't 2992 * yet completely support full dynticks environment. 2993 * 2994 * This makes sure that uptime, CFS vruntime, load 2995 * balancing, etc... continue to move forward, even 2996 * with a very low granularity. 2997 * 2998 * Return: Maximum deferment in nanoseconds. 2999 */ 3000 u64 scheduler_tick_max_deferment(void) 3001 { 3002 struct rq *rq = this_rq(); 3003 unsigned long next, now = READ_ONCE(jiffies); 3004 3005 next = rq->last_sched_tick + HZ; 3006 3007 if (time_before_eq(next, now)) 3008 return 0; 3009 3010 return jiffies_to_nsecs(next - now); 3011 } 3012 #endif 3013 3014 notrace unsigned long get_parent_ip(unsigned long addr) 3015 { 3016 if (in_lock_functions(addr)) { 3017 addr = CALLER_ADDR2; 3018 if (in_lock_functions(addr)) 3019 addr = CALLER_ADDR3; 3020 } 3021 return addr; 3022 } 3023 3024 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3025 defined(CONFIG_PREEMPT_TRACER)) 3026 3027 void preempt_count_add(int val) 3028 { 3029 #ifdef CONFIG_DEBUG_PREEMPT 3030 /* 3031 * Underflow? 3032 */ 3033 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3034 return; 3035 #endif 3036 __preempt_count_add(val); 3037 #ifdef CONFIG_DEBUG_PREEMPT 3038 /* 3039 * Spinlock count overflowing soon? 3040 */ 3041 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3042 PREEMPT_MASK - 10); 3043 #endif 3044 if (preempt_count() == val) { 3045 unsigned long ip = get_parent_ip(CALLER_ADDR1); 3046 #ifdef CONFIG_DEBUG_PREEMPT 3047 current->preempt_disable_ip = ip; 3048 #endif 3049 trace_preempt_off(CALLER_ADDR0, ip); 3050 } 3051 } 3052 EXPORT_SYMBOL(preempt_count_add); 3053 NOKPROBE_SYMBOL(preempt_count_add); 3054 3055 void preempt_count_sub(int val) 3056 { 3057 #ifdef CONFIG_DEBUG_PREEMPT 3058 /* 3059 * Underflow? 3060 */ 3061 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3062 return; 3063 /* 3064 * Is the spinlock portion underflowing? 3065 */ 3066 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3067 !(preempt_count() & PREEMPT_MASK))) 3068 return; 3069 #endif 3070 3071 if (preempt_count() == val) 3072 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 3073 __preempt_count_sub(val); 3074 } 3075 EXPORT_SYMBOL(preempt_count_sub); 3076 NOKPROBE_SYMBOL(preempt_count_sub); 3077 3078 #endif 3079 3080 /* 3081 * Print scheduling while atomic bug: 3082 */ 3083 static noinline void __schedule_bug(struct task_struct *prev) 3084 { 3085 if (oops_in_progress) 3086 return; 3087 3088 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3089 prev->comm, prev->pid, preempt_count()); 3090 3091 debug_show_held_locks(prev); 3092 print_modules(); 3093 if (irqs_disabled()) 3094 print_irqtrace_events(prev); 3095 #ifdef CONFIG_DEBUG_PREEMPT 3096 if (in_atomic_preempt_off()) { 3097 pr_err("Preemption disabled at:"); 3098 print_ip_sym(current->preempt_disable_ip); 3099 pr_cont("\n"); 3100 } 3101 #endif 3102 dump_stack(); 3103 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3104 } 3105 3106 /* 3107 * Various schedule()-time debugging checks and statistics: 3108 */ 3109 static inline void schedule_debug(struct task_struct *prev) 3110 { 3111 #ifdef CONFIG_SCHED_STACK_END_CHECK 3112 BUG_ON(task_stack_end_corrupted(prev)); 3113 #endif 3114 3115 if (unlikely(in_atomic_preempt_off())) { 3116 __schedule_bug(prev); 3117 preempt_count_set(PREEMPT_DISABLED); 3118 } 3119 rcu_sleep_check(); 3120 3121 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3122 3123 schedstat_inc(this_rq(), sched_count); 3124 } 3125 3126 /* 3127 * Pick up the highest-prio task: 3128 */ 3129 static inline struct task_struct * 3130 pick_next_task(struct rq *rq, struct task_struct *prev) 3131 { 3132 const struct sched_class *class = &fair_sched_class; 3133 struct task_struct *p; 3134 3135 /* 3136 * Optimization: we know that if all tasks are in 3137 * the fair class we can call that function directly: 3138 */ 3139 if (likely(prev->sched_class == class && 3140 rq->nr_running == rq->cfs.h_nr_running)) { 3141 p = fair_sched_class.pick_next_task(rq, prev); 3142 if (unlikely(p == RETRY_TASK)) 3143 goto again; 3144 3145 /* assumes fair_sched_class->next == idle_sched_class */ 3146 if (unlikely(!p)) 3147 p = idle_sched_class.pick_next_task(rq, prev); 3148 3149 return p; 3150 } 3151 3152 again: 3153 for_each_class(class) { 3154 p = class->pick_next_task(rq, prev); 3155 if (p) { 3156 if (unlikely(p == RETRY_TASK)) 3157 goto again; 3158 return p; 3159 } 3160 } 3161 3162 BUG(); /* the idle class will always have a runnable task */ 3163 } 3164 3165 /* 3166 * __schedule() is the main scheduler function. 3167 * 3168 * The main means of driving the scheduler and thus entering this function are: 3169 * 3170 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3171 * 3172 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3173 * paths. For example, see arch/x86/entry_64.S. 3174 * 3175 * To drive preemption between tasks, the scheduler sets the flag in timer 3176 * interrupt handler scheduler_tick(). 3177 * 3178 * 3. Wakeups don't really cause entry into schedule(). They add a 3179 * task to the run-queue and that's it. 3180 * 3181 * Now, if the new task added to the run-queue preempts the current 3182 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3183 * called on the nearest possible occasion: 3184 * 3185 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3186 * 3187 * - in syscall or exception context, at the next outmost 3188 * preempt_enable(). (this might be as soon as the wake_up()'s 3189 * spin_unlock()!) 3190 * 3191 * - in IRQ context, return from interrupt-handler to 3192 * preemptible context 3193 * 3194 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3195 * then at the next: 3196 * 3197 * - cond_resched() call 3198 * - explicit schedule() call 3199 * - return from syscall or exception to user-space 3200 * - return from interrupt-handler to user-space 3201 * 3202 * WARNING: must be called with preemption disabled! 3203 */ 3204 static void __sched notrace __schedule(bool preempt) 3205 { 3206 struct task_struct *prev, *next; 3207 unsigned long *switch_count; 3208 struct rq *rq; 3209 int cpu; 3210 3211 cpu = smp_processor_id(); 3212 rq = cpu_rq(cpu); 3213 prev = rq->curr; 3214 3215 /* 3216 * do_exit() calls schedule() with preemption disabled as an exception; 3217 * however we must fix that up, otherwise the next task will see an 3218 * inconsistent (higher) preempt count. 3219 * 3220 * It also avoids the below schedule_debug() test from complaining 3221 * about this. 3222 */ 3223 if (unlikely(prev->state == TASK_DEAD)) 3224 preempt_enable_no_resched_notrace(); 3225 3226 schedule_debug(prev); 3227 3228 if (sched_feat(HRTICK)) 3229 hrtick_clear(rq); 3230 3231 local_irq_disable(); 3232 rcu_note_context_switch(); 3233 3234 /* 3235 * Make sure that signal_pending_state()->signal_pending() below 3236 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3237 * done by the caller to avoid the race with signal_wake_up(). 3238 */ 3239 smp_mb__before_spinlock(); 3240 raw_spin_lock(&rq->lock); 3241 lockdep_pin_lock(&rq->lock); 3242 3243 rq->clock_skip_update <<= 1; /* promote REQ to ACT */ 3244 3245 switch_count = &prev->nivcsw; 3246 if (!preempt && prev->state) { 3247 if (unlikely(signal_pending_state(prev->state, prev))) { 3248 prev->state = TASK_RUNNING; 3249 } else { 3250 deactivate_task(rq, prev, DEQUEUE_SLEEP); 3251 prev->on_rq = 0; 3252 3253 /* 3254 * If a worker went to sleep, notify and ask workqueue 3255 * whether it wants to wake up a task to maintain 3256 * concurrency. 3257 */ 3258 if (prev->flags & PF_WQ_WORKER) { 3259 struct task_struct *to_wakeup; 3260 3261 to_wakeup = wq_worker_sleeping(prev, cpu); 3262 if (to_wakeup) 3263 try_to_wake_up_local(to_wakeup); 3264 } 3265 } 3266 switch_count = &prev->nvcsw; 3267 } 3268 3269 if (task_on_rq_queued(prev)) 3270 update_rq_clock(rq); 3271 3272 next = pick_next_task(rq, prev); 3273 clear_tsk_need_resched(prev); 3274 clear_preempt_need_resched(); 3275 rq->clock_skip_update = 0; 3276 3277 if (likely(prev != next)) { 3278 rq->nr_switches++; 3279 rq->curr = next; 3280 ++*switch_count; 3281 3282 trace_sched_switch(preempt, prev, next); 3283 rq = context_switch(rq, prev, next); /* unlocks the rq */ 3284 cpu = cpu_of(rq); 3285 } else { 3286 lockdep_unpin_lock(&rq->lock); 3287 raw_spin_unlock_irq(&rq->lock); 3288 } 3289 3290 balance_callback(rq); 3291 } 3292 3293 static inline void sched_submit_work(struct task_struct *tsk) 3294 { 3295 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3296 return; 3297 /* 3298 * If we are going to sleep and we have plugged IO queued, 3299 * make sure to submit it to avoid deadlocks. 3300 */ 3301 if (blk_needs_flush_plug(tsk)) 3302 blk_schedule_flush_plug(tsk); 3303 } 3304 3305 asmlinkage __visible void __sched schedule(void) 3306 { 3307 struct task_struct *tsk = current; 3308 3309 sched_submit_work(tsk); 3310 do { 3311 preempt_disable(); 3312 __schedule(false); 3313 sched_preempt_enable_no_resched(); 3314 } while (need_resched()); 3315 } 3316 EXPORT_SYMBOL(schedule); 3317 3318 #ifdef CONFIG_CONTEXT_TRACKING 3319 asmlinkage __visible void __sched schedule_user(void) 3320 { 3321 /* 3322 * If we come here after a random call to set_need_resched(), 3323 * or we have been woken up remotely but the IPI has not yet arrived, 3324 * we haven't yet exited the RCU idle mode. Do it here manually until 3325 * we find a better solution. 3326 * 3327 * NB: There are buggy callers of this function. Ideally we 3328 * should warn if prev_state != CONTEXT_USER, but that will trigger 3329 * too frequently to make sense yet. 3330 */ 3331 enum ctx_state prev_state = exception_enter(); 3332 schedule(); 3333 exception_exit(prev_state); 3334 } 3335 #endif 3336 3337 /** 3338 * schedule_preempt_disabled - called with preemption disabled 3339 * 3340 * Returns with preemption disabled. Note: preempt_count must be 1 3341 */ 3342 void __sched schedule_preempt_disabled(void) 3343 { 3344 sched_preempt_enable_no_resched(); 3345 schedule(); 3346 preempt_disable(); 3347 } 3348 3349 static void __sched notrace preempt_schedule_common(void) 3350 { 3351 do { 3352 preempt_disable_notrace(); 3353 __schedule(true); 3354 preempt_enable_no_resched_notrace(); 3355 3356 /* 3357 * Check again in case we missed a preemption opportunity 3358 * between schedule and now. 3359 */ 3360 } while (need_resched()); 3361 } 3362 3363 #ifdef CONFIG_PREEMPT 3364 /* 3365 * this is the entry point to schedule() from in-kernel preemption 3366 * off of preempt_enable. Kernel preemptions off return from interrupt 3367 * occur there and call schedule directly. 3368 */ 3369 asmlinkage __visible void __sched notrace preempt_schedule(void) 3370 { 3371 /* 3372 * If there is a non-zero preempt_count or interrupts are disabled, 3373 * we do not want to preempt the current task. Just return.. 3374 */ 3375 if (likely(!preemptible())) 3376 return; 3377 3378 preempt_schedule_common(); 3379 } 3380 NOKPROBE_SYMBOL(preempt_schedule); 3381 EXPORT_SYMBOL(preempt_schedule); 3382 3383 /** 3384 * preempt_schedule_notrace - preempt_schedule called by tracing 3385 * 3386 * The tracing infrastructure uses preempt_enable_notrace to prevent 3387 * recursion and tracing preempt enabling caused by the tracing 3388 * infrastructure itself. But as tracing can happen in areas coming 3389 * from userspace or just about to enter userspace, a preempt enable 3390 * can occur before user_exit() is called. This will cause the scheduler 3391 * to be called when the system is still in usermode. 3392 * 3393 * To prevent this, the preempt_enable_notrace will use this function 3394 * instead of preempt_schedule() to exit user context if needed before 3395 * calling the scheduler. 3396 */ 3397 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3398 { 3399 enum ctx_state prev_ctx; 3400 3401 if (likely(!preemptible())) 3402 return; 3403 3404 do { 3405 preempt_disable_notrace(); 3406 /* 3407 * Needs preempt disabled in case user_exit() is traced 3408 * and the tracer calls preempt_enable_notrace() causing 3409 * an infinite recursion. 3410 */ 3411 prev_ctx = exception_enter(); 3412 __schedule(true); 3413 exception_exit(prev_ctx); 3414 3415 preempt_enable_no_resched_notrace(); 3416 } while (need_resched()); 3417 } 3418 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3419 3420 #endif /* CONFIG_PREEMPT */ 3421 3422 /* 3423 * this is the entry point to schedule() from kernel preemption 3424 * off of irq context. 3425 * Note, that this is called and return with irqs disabled. This will 3426 * protect us against recursive calling from irq. 3427 */ 3428 asmlinkage __visible void __sched preempt_schedule_irq(void) 3429 { 3430 enum ctx_state prev_state; 3431 3432 /* Catch callers which need to be fixed */ 3433 BUG_ON(preempt_count() || !irqs_disabled()); 3434 3435 prev_state = exception_enter(); 3436 3437 do { 3438 preempt_disable(); 3439 local_irq_enable(); 3440 __schedule(true); 3441 local_irq_disable(); 3442 sched_preempt_enable_no_resched(); 3443 } while (need_resched()); 3444 3445 exception_exit(prev_state); 3446 } 3447 3448 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3449 void *key) 3450 { 3451 return try_to_wake_up(curr->private, mode, wake_flags); 3452 } 3453 EXPORT_SYMBOL(default_wake_function); 3454 3455 #ifdef CONFIG_RT_MUTEXES 3456 3457 /* 3458 * rt_mutex_setprio - set the current priority of a task 3459 * @p: task 3460 * @prio: prio value (kernel-internal form) 3461 * 3462 * This function changes the 'effective' priority of a task. It does 3463 * not touch ->normal_prio like __setscheduler(). 3464 * 3465 * Used by the rt_mutex code to implement priority inheritance 3466 * logic. Call site only calls if the priority of the task changed. 3467 */ 3468 void rt_mutex_setprio(struct task_struct *p, int prio) 3469 { 3470 int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE; 3471 struct rq *rq; 3472 const struct sched_class *prev_class; 3473 3474 BUG_ON(prio > MAX_PRIO); 3475 3476 rq = __task_rq_lock(p); 3477 3478 /* 3479 * Idle task boosting is a nono in general. There is one 3480 * exception, when PREEMPT_RT and NOHZ is active: 3481 * 3482 * The idle task calls get_next_timer_interrupt() and holds 3483 * the timer wheel base->lock on the CPU and another CPU wants 3484 * to access the timer (probably to cancel it). We can safely 3485 * ignore the boosting request, as the idle CPU runs this code 3486 * with interrupts disabled and will complete the lock 3487 * protected section without being interrupted. So there is no 3488 * real need to boost. 3489 */ 3490 if (unlikely(p == rq->idle)) { 3491 WARN_ON(p != rq->curr); 3492 WARN_ON(p->pi_blocked_on); 3493 goto out_unlock; 3494 } 3495 3496 trace_sched_pi_setprio(p, prio); 3497 oldprio = p->prio; 3498 prev_class = p->sched_class; 3499 queued = task_on_rq_queued(p); 3500 running = task_current(rq, p); 3501 if (queued) 3502 dequeue_task(rq, p, DEQUEUE_SAVE); 3503 if (running) 3504 put_prev_task(rq, p); 3505 3506 /* 3507 * Boosting condition are: 3508 * 1. -rt task is running and holds mutex A 3509 * --> -dl task blocks on mutex A 3510 * 3511 * 2. -dl task is running and holds mutex A 3512 * --> -dl task blocks on mutex A and could preempt the 3513 * running task 3514 */ 3515 if (dl_prio(prio)) { 3516 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3517 if (!dl_prio(p->normal_prio) || 3518 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3519 p->dl.dl_boosted = 1; 3520 enqueue_flag |= ENQUEUE_REPLENISH; 3521 } else 3522 p->dl.dl_boosted = 0; 3523 p->sched_class = &dl_sched_class; 3524 } else if (rt_prio(prio)) { 3525 if (dl_prio(oldprio)) 3526 p->dl.dl_boosted = 0; 3527 if (oldprio < prio) 3528 enqueue_flag |= ENQUEUE_HEAD; 3529 p->sched_class = &rt_sched_class; 3530 } else { 3531 if (dl_prio(oldprio)) 3532 p->dl.dl_boosted = 0; 3533 if (rt_prio(oldprio)) 3534 p->rt.timeout = 0; 3535 p->sched_class = &fair_sched_class; 3536 } 3537 3538 p->prio = prio; 3539 3540 if (running) 3541 p->sched_class->set_curr_task(rq); 3542 if (queued) 3543 enqueue_task(rq, p, enqueue_flag); 3544 3545 check_class_changed(rq, p, prev_class, oldprio); 3546 out_unlock: 3547 preempt_disable(); /* avoid rq from going away on us */ 3548 __task_rq_unlock(rq); 3549 3550 balance_callback(rq); 3551 preempt_enable(); 3552 } 3553 #endif 3554 3555 void set_user_nice(struct task_struct *p, long nice) 3556 { 3557 int old_prio, delta, queued; 3558 unsigned long flags; 3559 struct rq *rq; 3560 3561 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3562 return; 3563 /* 3564 * We have to be careful, if called from sys_setpriority(), 3565 * the task might be in the middle of scheduling on another CPU. 3566 */ 3567 rq = task_rq_lock(p, &flags); 3568 /* 3569 * The RT priorities are set via sched_setscheduler(), but we still 3570 * allow the 'normal' nice value to be set - but as expected 3571 * it wont have any effect on scheduling until the task is 3572 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3573 */ 3574 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3575 p->static_prio = NICE_TO_PRIO(nice); 3576 goto out_unlock; 3577 } 3578 queued = task_on_rq_queued(p); 3579 if (queued) 3580 dequeue_task(rq, p, DEQUEUE_SAVE); 3581 3582 p->static_prio = NICE_TO_PRIO(nice); 3583 set_load_weight(p); 3584 old_prio = p->prio; 3585 p->prio = effective_prio(p); 3586 delta = p->prio - old_prio; 3587 3588 if (queued) { 3589 enqueue_task(rq, p, ENQUEUE_RESTORE); 3590 /* 3591 * If the task increased its priority or is running and 3592 * lowered its priority, then reschedule its CPU: 3593 */ 3594 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3595 resched_curr(rq); 3596 } 3597 out_unlock: 3598 task_rq_unlock(rq, p, &flags); 3599 } 3600 EXPORT_SYMBOL(set_user_nice); 3601 3602 /* 3603 * can_nice - check if a task can reduce its nice value 3604 * @p: task 3605 * @nice: nice value 3606 */ 3607 int can_nice(const struct task_struct *p, const int nice) 3608 { 3609 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3610 int nice_rlim = nice_to_rlimit(nice); 3611 3612 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3613 capable(CAP_SYS_NICE)); 3614 } 3615 3616 #ifdef __ARCH_WANT_SYS_NICE 3617 3618 /* 3619 * sys_nice - change the priority of the current process. 3620 * @increment: priority increment 3621 * 3622 * sys_setpriority is a more generic, but much slower function that 3623 * does similar things. 3624 */ 3625 SYSCALL_DEFINE1(nice, int, increment) 3626 { 3627 long nice, retval; 3628 3629 /* 3630 * Setpriority might change our priority at the same moment. 3631 * We don't have to worry. Conceptually one call occurs first 3632 * and we have a single winner. 3633 */ 3634 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3635 nice = task_nice(current) + increment; 3636 3637 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3638 if (increment < 0 && !can_nice(current, nice)) 3639 return -EPERM; 3640 3641 retval = security_task_setnice(current, nice); 3642 if (retval) 3643 return retval; 3644 3645 set_user_nice(current, nice); 3646 return 0; 3647 } 3648 3649 #endif 3650 3651 /** 3652 * task_prio - return the priority value of a given task. 3653 * @p: the task in question. 3654 * 3655 * Return: The priority value as seen by users in /proc. 3656 * RT tasks are offset by -200. Normal tasks are centered 3657 * around 0, value goes from -16 to +15. 3658 */ 3659 int task_prio(const struct task_struct *p) 3660 { 3661 return p->prio - MAX_RT_PRIO; 3662 } 3663 3664 /** 3665 * idle_cpu - is a given cpu idle currently? 3666 * @cpu: the processor in question. 3667 * 3668 * Return: 1 if the CPU is currently idle. 0 otherwise. 3669 */ 3670 int idle_cpu(int cpu) 3671 { 3672 struct rq *rq = cpu_rq(cpu); 3673 3674 if (rq->curr != rq->idle) 3675 return 0; 3676 3677 if (rq->nr_running) 3678 return 0; 3679 3680 #ifdef CONFIG_SMP 3681 if (!llist_empty(&rq->wake_list)) 3682 return 0; 3683 #endif 3684 3685 return 1; 3686 } 3687 3688 /** 3689 * idle_task - return the idle task for a given cpu. 3690 * @cpu: the processor in question. 3691 * 3692 * Return: The idle task for the cpu @cpu. 3693 */ 3694 struct task_struct *idle_task(int cpu) 3695 { 3696 return cpu_rq(cpu)->idle; 3697 } 3698 3699 /** 3700 * find_process_by_pid - find a process with a matching PID value. 3701 * @pid: the pid in question. 3702 * 3703 * The task of @pid, if found. %NULL otherwise. 3704 */ 3705 static struct task_struct *find_process_by_pid(pid_t pid) 3706 { 3707 return pid ? find_task_by_vpid(pid) : current; 3708 } 3709 3710 /* 3711 * This function initializes the sched_dl_entity of a newly becoming 3712 * SCHED_DEADLINE task. 3713 * 3714 * Only the static values are considered here, the actual runtime and the 3715 * absolute deadline will be properly calculated when the task is enqueued 3716 * for the first time with its new policy. 3717 */ 3718 static void 3719 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3720 { 3721 struct sched_dl_entity *dl_se = &p->dl; 3722 3723 dl_se->dl_runtime = attr->sched_runtime; 3724 dl_se->dl_deadline = attr->sched_deadline; 3725 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3726 dl_se->flags = attr->sched_flags; 3727 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3728 3729 /* 3730 * Changing the parameters of a task is 'tricky' and we're not doing 3731 * the correct thing -- also see task_dead_dl() and switched_from_dl(). 3732 * 3733 * What we SHOULD do is delay the bandwidth release until the 0-lag 3734 * point. This would include retaining the task_struct until that time 3735 * and change dl_overflow() to not immediately decrement the current 3736 * amount. 3737 * 3738 * Instead we retain the current runtime/deadline and let the new 3739 * parameters take effect after the current reservation period lapses. 3740 * This is safe (albeit pessimistic) because the 0-lag point is always 3741 * before the current scheduling deadline. 3742 * 3743 * We can still have temporary overloads because we do not delay the 3744 * change in bandwidth until that time; so admission control is 3745 * not on the safe side. It does however guarantee tasks will never 3746 * consume more than promised. 3747 */ 3748 } 3749 3750 /* 3751 * sched_setparam() passes in -1 for its policy, to let the functions 3752 * it calls know not to change it. 3753 */ 3754 #define SETPARAM_POLICY -1 3755 3756 static void __setscheduler_params(struct task_struct *p, 3757 const struct sched_attr *attr) 3758 { 3759 int policy = attr->sched_policy; 3760 3761 if (policy == SETPARAM_POLICY) 3762 policy = p->policy; 3763 3764 p->policy = policy; 3765 3766 if (dl_policy(policy)) 3767 __setparam_dl(p, attr); 3768 else if (fair_policy(policy)) 3769 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3770 3771 /* 3772 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3773 * !rt_policy. Always setting this ensures that things like 3774 * getparam()/getattr() don't report silly values for !rt tasks. 3775 */ 3776 p->rt_priority = attr->sched_priority; 3777 p->normal_prio = normal_prio(p); 3778 set_load_weight(p); 3779 } 3780 3781 /* Actually do priority change: must hold pi & rq lock. */ 3782 static void __setscheduler(struct rq *rq, struct task_struct *p, 3783 const struct sched_attr *attr, bool keep_boost) 3784 { 3785 __setscheduler_params(p, attr); 3786 3787 /* 3788 * Keep a potential priority boosting if called from 3789 * sched_setscheduler(). 3790 */ 3791 if (keep_boost) 3792 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p)); 3793 else 3794 p->prio = normal_prio(p); 3795 3796 if (dl_prio(p->prio)) 3797 p->sched_class = &dl_sched_class; 3798 else if (rt_prio(p->prio)) 3799 p->sched_class = &rt_sched_class; 3800 else 3801 p->sched_class = &fair_sched_class; 3802 } 3803 3804 static void 3805 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3806 { 3807 struct sched_dl_entity *dl_se = &p->dl; 3808 3809 attr->sched_priority = p->rt_priority; 3810 attr->sched_runtime = dl_se->dl_runtime; 3811 attr->sched_deadline = dl_se->dl_deadline; 3812 attr->sched_period = dl_se->dl_period; 3813 attr->sched_flags = dl_se->flags; 3814 } 3815 3816 /* 3817 * This function validates the new parameters of a -deadline task. 3818 * We ask for the deadline not being zero, and greater or equal 3819 * than the runtime, as well as the period of being zero or 3820 * greater than deadline. Furthermore, we have to be sure that 3821 * user parameters are above the internal resolution of 1us (we 3822 * check sched_runtime only since it is always the smaller one) and 3823 * below 2^63 ns (we have to check both sched_deadline and 3824 * sched_period, as the latter can be zero). 3825 */ 3826 static bool 3827 __checkparam_dl(const struct sched_attr *attr) 3828 { 3829 /* deadline != 0 */ 3830 if (attr->sched_deadline == 0) 3831 return false; 3832 3833 /* 3834 * Since we truncate DL_SCALE bits, make sure we're at least 3835 * that big. 3836 */ 3837 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3838 return false; 3839 3840 /* 3841 * Since we use the MSB for wrap-around and sign issues, make 3842 * sure it's not set (mind that period can be equal to zero). 3843 */ 3844 if (attr->sched_deadline & (1ULL << 63) || 3845 attr->sched_period & (1ULL << 63)) 3846 return false; 3847 3848 /* runtime <= deadline <= period (if period != 0) */ 3849 if ((attr->sched_period != 0 && 3850 attr->sched_period < attr->sched_deadline) || 3851 attr->sched_deadline < attr->sched_runtime) 3852 return false; 3853 3854 return true; 3855 } 3856 3857 /* 3858 * check the target process has a UID that matches the current process's 3859 */ 3860 static bool check_same_owner(struct task_struct *p) 3861 { 3862 const struct cred *cred = current_cred(), *pcred; 3863 bool match; 3864 3865 rcu_read_lock(); 3866 pcred = __task_cred(p); 3867 match = (uid_eq(cred->euid, pcred->euid) || 3868 uid_eq(cred->euid, pcred->uid)); 3869 rcu_read_unlock(); 3870 return match; 3871 } 3872 3873 static bool dl_param_changed(struct task_struct *p, 3874 const struct sched_attr *attr) 3875 { 3876 struct sched_dl_entity *dl_se = &p->dl; 3877 3878 if (dl_se->dl_runtime != attr->sched_runtime || 3879 dl_se->dl_deadline != attr->sched_deadline || 3880 dl_se->dl_period != attr->sched_period || 3881 dl_se->flags != attr->sched_flags) 3882 return true; 3883 3884 return false; 3885 } 3886 3887 static int __sched_setscheduler(struct task_struct *p, 3888 const struct sched_attr *attr, 3889 bool user, bool pi) 3890 { 3891 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 3892 MAX_RT_PRIO - 1 - attr->sched_priority; 3893 int retval, oldprio, oldpolicy = -1, queued, running; 3894 int new_effective_prio, policy = attr->sched_policy; 3895 unsigned long flags; 3896 const struct sched_class *prev_class; 3897 struct rq *rq; 3898 int reset_on_fork; 3899 3900 /* may grab non-irq protected spin_locks */ 3901 BUG_ON(in_interrupt()); 3902 recheck: 3903 /* double check policy once rq lock held */ 3904 if (policy < 0) { 3905 reset_on_fork = p->sched_reset_on_fork; 3906 policy = oldpolicy = p->policy; 3907 } else { 3908 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3909 3910 if (!valid_policy(policy)) 3911 return -EINVAL; 3912 } 3913 3914 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3915 return -EINVAL; 3916 3917 /* 3918 * Valid priorities for SCHED_FIFO and SCHED_RR are 3919 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3920 * SCHED_BATCH and SCHED_IDLE is 0. 3921 */ 3922 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 3923 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 3924 return -EINVAL; 3925 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 3926 (rt_policy(policy) != (attr->sched_priority != 0))) 3927 return -EINVAL; 3928 3929 /* 3930 * Allow unprivileged RT tasks to decrease priority: 3931 */ 3932 if (user && !capable(CAP_SYS_NICE)) { 3933 if (fair_policy(policy)) { 3934 if (attr->sched_nice < task_nice(p) && 3935 !can_nice(p, attr->sched_nice)) 3936 return -EPERM; 3937 } 3938 3939 if (rt_policy(policy)) { 3940 unsigned long rlim_rtprio = 3941 task_rlimit(p, RLIMIT_RTPRIO); 3942 3943 /* can't set/change the rt policy */ 3944 if (policy != p->policy && !rlim_rtprio) 3945 return -EPERM; 3946 3947 /* can't increase priority */ 3948 if (attr->sched_priority > p->rt_priority && 3949 attr->sched_priority > rlim_rtprio) 3950 return -EPERM; 3951 } 3952 3953 /* 3954 * Can't set/change SCHED_DEADLINE policy at all for now 3955 * (safest behavior); in the future we would like to allow 3956 * unprivileged DL tasks to increase their relative deadline 3957 * or reduce their runtime (both ways reducing utilization) 3958 */ 3959 if (dl_policy(policy)) 3960 return -EPERM; 3961 3962 /* 3963 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3964 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3965 */ 3966 if (idle_policy(p->policy) && !idle_policy(policy)) { 3967 if (!can_nice(p, task_nice(p))) 3968 return -EPERM; 3969 } 3970 3971 /* can't change other user's priorities */ 3972 if (!check_same_owner(p)) 3973 return -EPERM; 3974 3975 /* Normal users shall not reset the sched_reset_on_fork flag */ 3976 if (p->sched_reset_on_fork && !reset_on_fork) 3977 return -EPERM; 3978 } 3979 3980 if (user) { 3981 retval = security_task_setscheduler(p); 3982 if (retval) 3983 return retval; 3984 } 3985 3986 /* 3987 * make sure no PI-waiters arrive (or leave) while we are 3988 * changing the priority of the task: 3989 * 3990 * To be able to change p->policy safely, the appropriate 3991 * runqueue lock must be held. 3992 */ 3993 rq = task_rq_lock(p, &flags); 3994 3995 /* 3996 * Changing the policy of the stop threads its a very bad idea 3997 */ 3998 if (p == rq->stop) { 3999 task_rq_unlock(rq, p, &flags); 4000 return -EINVAL; 4001 } 4002 4003 /* 4004 * If not changing anything there's no need to proceed further, 4005 * but store a possible modification of reset_on_fork. 4006 */ 4007 if (unlikely(policy == p->policy)) { 4008 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4009 goto change; 4010 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4011 goto change; 4012 if (dl_policy(policy) && dl_param_changed(p, attr)) 4013 goto change; 4014 4015 p->sched_reset_on_fork = reset_on_fork; 4016 task_rq_unlock(rq, p, &flags); 4017 return 0; 4018 } 4019 change: 4020 4021 if (user) { 4022 #ifdef CONFIG_RT_GROUP_SCHED 4023 /* 4024 * Do not allow realtime tasks into groups that have no runtime 4025 * assigned. 4026 */ 4027 if (rt_bandwidth_enabled() && rt_policy(policy) && 4028 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4029 !task_group_is_autogroup(task_group(p))) { 4030 task_rq_unlock(rq, p, &flags); 4031 return -EPERM; 4032 } 4033 #endif 4034 #ifdef CONFIG_SMP 4035 if (dl_bandwidth_enabled() && dl_policy(policy)) { 4036 cpumask_t *span = rq->rd->span; 4037 4038 /* 4039 * Don't allow tasks with an affinity mask smaller than 4040 * the entire root_domain to become SCHED_DEADLINE. We 4041 * will also fail if there's no bandwidth available. 4042 */ 4043 if (!cpumask_subset(span, &p->cpus_allowed) || 4044 rq->rd->dl_bw.bw == 0) { 4045 task_rq_unlock(rq, p, &flags); 4046 return -EPERM; 4047 } 4048 } 4049 #endif 4050 } 4051 4052 /* recheck policy now with rq lock held */ 4053 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4054 policy = oldpolicy = -1; 4055 task_rq_unlock(rq, p, &flags); 4056 goto recheck; 4057 } 4058 4059 /* 4060 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4061 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4062 * is available. 4063 */ 4064 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 4065 task_rq_unlock(rq, p, &flags); 4066 return -EBUSY; 4067 } 4068 4069 p->sched_reset_on_fork = reset_on_fork; 4070 oldprio = p->prio; 4071 4072 if (pi) { 4073 /* 4074 * Take priority boosted tasks into account. If the new 4075 * effective priority is unchanged, we just store the new 4076 * normal parameters and do not touch the scheduler class and 4077 * the runqueue. This will be done when the task deboost 4078 * itself. 4079 */ 4080 new_effective_prio = rt_mutex_get_effective_prio(p, newprio); 4081 if (new_effective_prio == oldprio) { 4082 __setscheduler_params(p, attr); 4083 task_rq_unlock(rq, p, &flags); 4084 return 0; 4085 } 4086 } 4087 4088 queued = task_on_rq_queued(p); 4089 running = task_current(rq, p); 4090 if (queued) 4091 dequeue_task(rq, p, DEQUEUE_SAVE); 4092 if (running) 4093 put_prev_task(rq, p); 4094 4095 prev_class = p->sched_class; 4096 __setscheduler(rq, p, attr, pi); 4097 4098 if (running) 4099 p->sched_class->set_curr_task(rq); 4100 if (queued) { 4101 int enqueue_flags = ENQUEUE_RESTORE; 4102 /* 4103 * We enqueue to tail when the priority of a task is 4104 * increased (user space view). 4105 */ 4106 if (oldprio <= p->prio) 4107 enqueue_flags |= ENQUEUE_HEAD; 4108 4109 enqueue_task(rq, p, enqueue_flags); 4110 } 4111 4112 check_class_changed(rq, p, prev_class, oldprio); 4113 preempt_disable(); /* avoid rq from going away on us */ 4114 task_rq_unlock(rq, p, &flags); 4115 4116 if (pi) 4117 rt_mutex_adjust_pi(p); 4118 4119 /* 4120 * Run balance callbacks after we've adjusted the PI chain. 4121 */ 4122 balance_callback(rq); 4123 preempt_enable(); 4124 4125 return 0; 4126 } 4127 4128 static int _sched_setscheduler(struct task_struct *p, int policy, 4129 const struct sched_param *param, bool check) 4130 { 4131 struct sched_attr attr = { 4132 .sched_policy = policy, 4133 .sched_priority = param->sched_priority, 4134 .sched_nice = PRIO_TO_NICE(p->static_prio), 4135 }; 4136 4137 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4138 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4139 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4140 policy &= ~SCHED_RESET_ON_FORK; 4141 attr.sched_policy = policy; 4142 } 4143 4144 return __sched_setscheduler(p, &attr, check, true); 4145 } 4146 /** 4147 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4148 * @p: the task in question. 4149 * @policy: new policy. 4150 * @param: structure containing the new RT priority. 4151 * 4152 * Return: 0 on success. An error code otherwise. 4153 * 4154 * NOTE that the task may be already dead. 4155 */ 4156 int sched_setscheduler(struct task_struct *p, int policy, 4157 const struct sched_param *param) 4158 { 4159 return _sched_setscheduler(p, policy, param, true); 4160 } 4161 EXPORT_SYMBOL_GPL(sched_setscheduler); 4162 4163 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4164 { 4165 return __sched_setscheduler(p, attr, true, true); 4166 } 4167 EXPORT_SYMBOL_GPL(sched_setattr); 4168 4169 /** 4170 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4171 * @p: the task in question. 4172 * @policy: new policy. 4173 * @param: structure containing the new RT priority. 4174 * 4175 * Just like sched_setscheduler, only don't bother checking if the 4176 * current context has permission. For example, this is needed in 4177 * stop_machine(): we create temporary high priority worker threads, 4178 * but our caller might not have that capability. 4179 * 4180 * Return: 0 on success. An error code otherwise. 4181 */ 4182 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4183 const struct sched_param *param) 4184 { 4185 return _sched_setscheduler(p, policy, param, false); 4186 } 4187 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4188 4189 static int 4190 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4191 { 4192 struct sched_param lparam; 4193 struct task_struct *p; 4194 int retval; 4195 4196 if (!param || pid < 0) 4197 return -EINVAL; 4198 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4199 return -EFAULT; 4200 4201 rcu_read_lock(); 4202 retval = -ESRCH; 4203 p = find_process_by_pid(pid); 4204 if (p != NULL) 4205 retval = sched_setscheduler(p, policy, &lparam); 4206 rcu_read_unlock(); 4207 4208 return retval; 4209 } 4210 4211 /* 4212 * Mimics kernel/events/core.c perf_copy_attr(). 4213 */ 4214 static int sched_copy_attr(struct sched_attr __user *uattr, 4215 struct sched_attr *attr) 4216 { 4217 u32 size; 4218 int ret; 4219 4220 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4221 return -EFAULT; 4222 4223 /* 4224 * zero the full structure, so that a short copy will be nice. 4225 */ 4226 memset(attr, 0, sizeof(*attr)); 4227 4228 ret = get_user(size, &uattr->size); 4229 if (ret) 4230 return ret; 4231 4232 if (size > PAGE_SIZE) /* silly large */ 4233 goto err_size; 4234 4235 if (!size) /* abi compat */ 4236 size = SCHED_ATTR_SIZE_VER0; 4237 4238 if (size < SCHED_ATTR_SIZE_VER0) 4239 goto err_size; 4240 4241 /* 4242 * If we're handed a bigger struct than we know of, 4243 * ensure all the unknown bits are 0 - i.e. new 4244 * user-space does not rely on any kernel feature 4245 * extensions we dont know about yet. 4246 */ 4247 if (size > sizeof(*attr)) { 4248 unsigned char __user *addr; 4249 unsigned char __user *end; 4250 unsigned char val; 4251 4252 addr = (void __user *)uattr + sizeof(*attr); 4253 end = (void __user *)uattr + size; 4254 4255 for (; addr < end; addr++) { 4256 ret = get_user(val, addr); 4257 if (ret) 4258 return ret; 4259 if (val) 4260 goto err_size; 4261 } 4262 size = sizeof(*attr); 4263 } 4264 4265 ret = copy_from_user(attr, uattr, size); 4266 if (ret) 4267 return -EFAULT; 4268 4269 /* 4270 * XXX: do we want to be lenient like existing syscalls; or do we want 4271 * to be strict and return an error on out-of-bounds values? 4272 */ 4273 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4274 4275 return 0; 4276 4277 err_size: 4278 put_user(sizeof(*attr), &uattr->size); 4279 return -E2BIG; 4280 } 4281 4282 /** 4283 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4284 * @pid: the pid in question. 4285 * @policy: new policy. 4286 * @param: structure containing the new RT priority. 4287 * 4288 * Return: 0 on success. An error code otherwise. 4289 */ 4290 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4291 struct sched_param __user *, param) 4292 { 4293 /* negative values for policy are not valid */ 4294 if (policy < 0) 4295 return -EINVAL; 4296 4297 return do_sched_setscheduler(pid, policy, param); 4298 } 4299 4300 /** 4301 * sys_sched_setparam - set/change the RT priority of a thread 4302 * @pid: the pid in question. 4303 * @param: structure containing the new RT priority. 4304 * 4305 * Return: 0 on success. An error code otherwise. 4306 */ 4307 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4308 { 4309 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4310 } 4311 4312 /** 4313 * sys_sched_setattr - same as above, but with extended sched_attr 4314 * @pid: the pid in question. 4315 * @uattr: structure containing the extended parameters. 4316 * @flags: for future extension. 4317 */ 4318 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4319 unsigned int, flags) 4320 { 4321 struct sched_attr attr; 4322 struct task_struct *p; 4323 int retval; 4324 4325 if (!uattr || pid < 0 || flags) 4326 return -EINVAL; 4327 4328 retval = sched_copy_attr(uattr, &attr); 4329 if (retval) 4330 return retval; 4331 4332 if ((int)attr.sched_policy < 0) 4333 return -EINVAL; 4334 4335 rcu_read_lock(); 4336 retval = -ESRCH; 4337 p = find_process_by_pid(pid); 4338 if (p != NULL) 4339 retval = sched_setattr(p, &attr); 4340 rcu_read_unlock(); 4341 4342 return retval; 4343 } 4344 4345 /** 4346 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4347 * @pid: the pid in question. 4348 * 4349 * Return: On success, the policy of the thread. Otherwise, a negative error 4350 * code. 4351 */ 4352 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4353 { 4354 struct task_struct *p; 4355 int retval; 4356 4357 if (pid < 0) 4358 return -EINVAL; 4359 4360 retval = -ESRCH; 4361 rcu_read_lock(); 4362 p = find_process_by_pid(pid); 4363 if (p) { 4364 retval = security_task_getscheduler(p); 4365 if (!retval) 4366 retval = p->policy 4367 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4368 } 4369 rcu_read_unlock(); 4370 return retval; 4371 } 4372 4373 /** 4374 * sys_sched_getparam - get the RT priority of a thread 4375 * @pid: the pid in question. 4376 * @param: structure containing the RT priority. 4377 * 4378 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4379 * code. 4380 */ 4381 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4382 { 4383 struct sched_param lp = { .sched_priority = 0 }; 4384 struct task_struct *p; 4385 int retval; 4386 4387 if (!param || pid < 0) 4388 return -EINVAL; 4389 4390 rcu_read_lock(); 4391 p = find_process_by_pid(pid); 4392 retval = -ESRCH; 4393 if (!p) 4394 goto out_unlock; 4395 4396 retval = security_task_getscheduler(p); 4397 if (retval) 4398 goto out_unlock; 4399 4400 if (task_has_rt_policy(p)) 4401 lp.sched_priority = p->rt_priority; 4402 rcu_read_unlock(); 4403 4404 /* 4405 * This one might sleep, we cannot do it with a spinlock held ... 4406 */ 4407 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4408 4409 return retval; 4410 4411 out_unlock: 4412 rcu_read_unlock(); 4413 return retval; 4414 } 4415 4416 static int sched_read_attr(struct sched_attr __user *uattr, 4417 struct sched_attr *attr, 4418 unsigned int usize) 4419 { 4420 int ret; 4421 4422 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4423 return -EFAULT; 4424 4425 /* 4426 * If we're handed a smaller struct than we know of, 4427 * ensure all the unknown bits are 0 - i.e. old 4428 * user-space does not get uncomplete information. 4429 */ 4430 if (usize < sizeof(*attr)) { 4431 unsigned char *addr; 4432 unsigned char *end; 4433 4434 addr = (void *)attr + usize; 4435 end = (void *)attr + sizeof(*attr); 4436 4437 for (; addr < end; addr++) { 4438 if (*addr) 4439 return -EFBIG; 4440 } 4441 4442 attr->size = usize; 4443 } 4444 4445 ret = copy_to_user(uattr, attr, attr->size); 4446 if (ret) 4447 return -EFAULT; 4448 4449 return 0; 4450 } 4451 4452 /** 4453 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4454 * @pid: the pid in question. 4455 * @uattr: structure containing the extended parameters. 4456 * @size: sizeof(attr) for fwd/bwd comp. 4457 * @flags: for future extension. 4458 */ 4459 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4460 unsigned int, size, unsigned int, flags) 4461 { 4462 struct sched_attr attr = { 4463 .size = sizeof(struct sched_attr), 4464 }; 4465 struct task_struct *p; 4466 int retval; 4467 4468 if (!uattr || pid < 0 || size > PAGE_SIZE || 4469 size < SCHED_ATTR_SIZE_VER0 || flags) 4470 return -EINVAL; 4471 4472 rcu_read_lock(); 4473 p = find_process_by_pid(pid); 4474 retval = -ESRCH; 4475 if (!p) 4476 goto out_unlock; 4477 4478 retval = security_task_getscheduler(p); 4479 if (retval) 4480 goto out_unlock; 4481 4482 attr.sched_policy = p->policy; 4483 if (p->sched_reset_on_fork) 4484 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4485 if (task_has_dl_policy(p)) 4486 __getparam_dl(p, &attr); 4487 else if (task_has_rt_policy(p)) 4488 attr.sched_priority = p->rt_priority; 4489 else 4490 attr.sched_nice = task_nice(p); 4491 4492 rcu_read_unlock(); 4493 4494 retval = sched_read_attr(uattr, &attr, size); 4495 return retval; 4496 4497 out_unlock: 4498 rcu_read_unlock(); 4499 return retval; 4500 } 4501 4502 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4503 { 4504 cpumask_var_t cpus_allowed, new_mask; 4505 struct task_struct *p; 4506 int retval; 4507 4508 rcu_read_lock(); 4509 4510 p = find_process_by_pid(pid); 4511 if (!p) { 4512 rcu_read_unlock(); 4513 return -ESRCH; 4514 } 4515 4516 /* Prevent p going away */ 4517 get_task_struct(p); 4518 rcu_read_unlock(); 4519 4520 if (p->flags & PF_NO_SETAFFINITY) { 4521 retval = -EINVAL; 4522 goto out_put_task; 4523 } 4524 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4525 retval = -ENOMEM; 4526 goto out_put_task; 4527 } 4528 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4529 retval = -ENOMEM; 4530 goto out_free_cpus_allowed; 4531 } 4532 retval = -EPERM; 4533 if (!check_same_owner(p)) { 4534 rcu_read_lock(); 4535 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4536 rcu_read_unlock(); 4537 goto out_free_new_mask; 4538 } 4539 rcu_read_unlock(); 4540 } 4541 4542 retval = security_task_setscheduler(p); 4543 if (retval) 4544 goto out_free_new_mask; 4545 4546 4547 cpuset_cpus_allowed(p, cpus_allowed); 4548 cpumask_and(new_mask, in_mask, cpus_allowed); 4549 4550 /* 4551 * Since bandwidth control happens on root_domain basis, 4552 * if admission test is enabled, we only admit -deadline 4553 * tasks allowed to run on all the CPUs in the task's 4554 * root_domain. 4555 */ 4556 #ifdef CONFIG_SMP 4557 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4558 rcu_read_lock(); 4559 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4560 retval = -EBUSY; 4561 rcu_read_unlock(); 4562 goto out_free_new_mask; 4563 } 4564 rcu_read_unlock(); 4565 } 4566 #endif 4567 again: 4568 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4569 4570 if (!retval) { 4571 cpuset_cpus_allowed(p, cpus_allowed); 4572 if (!cpumask_subset(new_mask, cpus_allowed)) { 4573 /* 4574 * We must have raced with a concurrent cpuset 4575 * update. Just reset the cpus_allowed to the 4576 * cpuset's cpus_allowed 4577 */ 4578 cpumask_copy(new_mask, cpus_allowed); 4579 goto again; 4580 } 4581 } 4582 out_free_new_mask: 4583 free_cpumask_var(new_mask); 4584 out_free_cpus_allowed: 4585 free_cpumask_var(cpus_allowed); 4586 out_put_task: 4587 put_task_struct(p); 4588 return retval; 4589 } 4590 4591 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4592 struct cpumask *new_mask) 4593 { 4594 if (len < cpumask_size()) 4595 cpumask_clear(new_mask); 4596 else if (len > cpumask_size()) 4597 len = cpumask_size(); 4598 4599 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4600 } 4601 4602 /** 4603 * sys_sched_setaffinity - set the cpu affinity of a process 4604 * @pid: pid of the process 4605 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4606 * @user_mask_ptr: user-space pointer to the new cpu mask 4607 * 4608 * Return: 0 on success. An error code otherwise. 4609 */ 4610 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4611 unsigned long __user *, user_mask_ptr) 4612 { 4613 cpumask_var_t new_mask; 4614 int retval; 4615 4616 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4617 return -ENOMEM; 4618 4619 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4620 if (retval == 0) 4621 retval = sched_setaffinity(pid, new_mask); 4622 free_cpumask_var(new_mask); 4623 return retval; 4624 } 4625 4626 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4627 { 4628 struct task_struct *p; 4629 unsigned long flags; 4630 int retval; 4631 4632 rcu_read_lock(); 4633 4634 retval = -ESRCH; 4635 p = find_process_by_pid(pid); 4636 if (!p) 4637 goto out_unlock; 4638 4639 retval = security_task_getscheduler(p); 4640 if (retval) 4641 goto out_unlock; 4642 4643 raw_spin_lock_irqsave(&p->pi_lock, flags); 4644 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4645 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4646 4647 out_unlock: 4648 rcu_read_unlock(); 4649 4650 return retval; 4651 } 4652 4653 /** 4654 * sys_sched_getaffinity - get the cpu affinity of a process 4655 * @pid: pid of the process 4656 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4657 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4658 * 4659 * Return: 0 on success. An error code otherwise. 4660 */ 4661 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4662 unsigned long __user *, user_mask_ptr) 4663 { 4664 int ret; 4665 cpumask_var_t mask; 4666 4667 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4668 return -EINVAL; 4669 if (len & (sizeof(unsigned long)-1)) 4670 return -EINVAL; 4671 4672 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4673 return -ENOMEM; 4674 4675 ret = sched_getaffinity(pid, mask); 4676 if (ret == 0) { 4677 size_t retlen = min_t(size_t, len, cpumask_size()); 4678 4679 if (copy_to_user(user_mask_ptr, mask, retlen)) 4680 ret = -EFAULT; 4681 else 4682 ret = retlen; 4683 } 4684 free_cpumask_var(mask); 4685 4686 return ret; 4687 } 4688 4689 /** 4690 * sys_sched_yield - yield the current processor to other threads. 4691 * 4692 * This function yields the current CPU to other tasks. If there are no 4693 * other threads running on this CPU then this function will return. 4694 * 4695 * Return: 0. 4696 */ 4697 SYSCALL_DEFINE0(sched_yield) 4698 { 4699 struct rq *rq = this_rq_lock(); 4700 4701 schedstat_inc(rq, yld_count); 4702 current->sched_class->yield_task(rq); 4703 4704 /* 4705 * Since we are going to call schedule() anyway, there's 4706 * no need to preempt or enable interrupts: 4707 */ 4708 __release(rq->lock); 4709 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4710 do_raw_spin_unlock(&rq->lock); 4711 sched_preempt_enable_no_resched(); 4712 4713 schedule(); 4714 4715 return 0; 4716 } 4717 4718 int __sched _cond_resched(void) 4719 { 4720 if (should_resched(0)) { 4721 preempt_schedule_common(); 4722 return 1; 4723 } 4724 return 0; 4725 } 4726 EXPORT_SYMBOL(_cond_resched); 4727 4728 /* 4729 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4730 * call schedule, and on return reacquire the lock. 4731 * 4732 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4733 * operations here to prevent schedule() from being called twice (once via 4734 * spin_unlock(), once by hand). 4735 */ 4736 int __cond_resched_lock(spinlock_t *lock) 4737 { 4738 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4739 int ret = 0; 4740 4741 lockdep_assert_held(lock); 4742 4743 if (spin_needbreak(lock) || resched) { 4744 spin_unlock(lock); 4745 if (resched) 4746 preempt_schedule_common(); 4747 else 4748 cpu_relax(); 4749 ret = 1; 4750 spin_lock(lock); 4751 } 4752 return ret; 4753 } 4754 EXPORT_SYMBOL(__cond_resched_lock); 4755 4756 int __sched __cond_resched_softirq(void) 4757 { 4758 BUG_ON(!in_softirq()); 4759 4760 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { 4761 local_bh_enable(); 4762 preempt_schedule_common(); 4763 local_bh_disable(); 4764 return 1; 4765 } 4766 return 0; 4767 } 4768 EXPORT_SYMBOL(__cond_resched_softirq); 4769 4770 /** 4771 * yield - yield the current processor to other threads. 4772 * 4773 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4774 * 4775 * The scheduler is at all times free to pick the calling task as the most 4776 * eligible task to run, if removing the yield() call from your code breaks 4777 * it, its already broken. 4778 * 4779 * Typical broken usage is: 4780 * 4781 * while (!event) 4782 * yield(); 4783 * 4784 * where one assumes that yield() will let 'the other' process run that will 4785 * make event true. If the current task is a SCHED_FIFO task that will never 4786 * happen. Never use yield() as a progress guarantee!! 4787 * 4788 * If you want to use yield() to wait for something, use wait_event(). 4789 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4790 * If you still want to use yield(), do not! 4791 */ 4792 void __sched yield(void) 4793 { 4794 set_current_state(TASK_RUNNING); 4795 sys_sched_yield(); 4796 } 4797 EXPORT_SYMBOL(yield); 4798 4799 /** 4800 * yield_to - yield the current processor to another thread in 4801 * your thread group, or accelerate that thread toward the 4802 * processor it's on. 4803 * @p: target task 4804 * @preempt: whether task preemption is allowed or not 4805 * 4806 * It's the caller's job to ensure that the target task struct 4807 * can't go away on us before we can do any checks. 4808 * 4809 * Return: 4810 * true (>0) if we indeed boosted the target task. 4811 * false (0) if we failed to boost the target. 4812 * -ESRCH if there's no task to yield to. 4813 */ 4814 int __sched yield_to(struct task_struct *p, bool preempt) 4815 { 4816 struct task_struct *curr = current; 4817 struct rq *rq, *p_rq; 4818 unsigned long flags; 4819 int yielded = 0; 4820 4821 local_irq_save(flags); 4822 rq = this_rq(); 4823 4824 again: 4825 p_rq = task_rq(p); 4826 /* 4827 * If we're the only runnable task on the rq and target rq also 4828 * has only one task, there's absolutely no point in yielding. 4829 */ 4830 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4831 yielded = -ESRCH; 4832 goto out_irq; 4833 } 4834 4835 double_rq_lock(rq, p_rq); 4836 if (task_rq(p) != p_rq) { 4837 double_rq_unlock(rq, p_rq); 4838 goto again; 4839 } 4840 4841 if (!curr->sched_class->yield_to_task) 4842 goto out_unlock; 4843 4844 if (curr->sched_class != p->sched_class) 4845 goto out_unlock; 4846 4847 if (task_running(p_rq, p) || p->state) 4848 goto out_unlock; 4849 4850 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4851 if (yielded) { 4852 schedstat_inc(rq, yld_count); 4853 /* 4854 * Make p's CPU reschedule; pick_next_entity takes care of 4855 * fairness. 4856 */ 4857 if (preempt && rq != p_rq) 4858 resched_curr(p_rq); 4859 } 4860 4861 out_unlock: 4862 double_rq_unlock(rq, p_rq); 4863 out_irq: 4864 local_irq_restore(flags); 4865 4866 if (yielded > 0) 4867 schedule(); 4868 4869 return yielded; 4870 } 4871 EXPORT_SYMBOL_GPL(yield_to); 4872 4873 /* 4874 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4875 * that process accounting knows that this is a task in IO wait state. 4876 */ 4877 long __sched io_schedule_timeout(long timeout) 4878 { 4879 int old_iowait = current->in_iowait; 4880 struct rq *rq; 4881 long ret; 4882 4883 current->in_iowait = 1; 4884 blk_schedule_flush_plug(current); 4885 4886 delayacct_blkio_start(); 4887 rq = raw_rq(); 4888 atomic_inc(&rq->nr_iowait); 4889 ret = schedule_timeout(timeout); 4890 current->in_iowait = old_iowait; 4891 atomic_dec(&rq->nr_iowait); 4892 delayacct_blkio_end(); 4893 4894 return ret; 4895 } 4896 EXPORT_SYMBOL(io_schedule_timeout); 4897 4898 /** 4899 * sys_sched_get_priority_max - return maximum RT priority. 4900 * @policy: scheduling class. 4901 * 4902 * Return: On success, this syscall returns the maximum 4903 * rt_priority that can be used by a given scheduling class. 4904 * On failure, a negative error code is returned. 4905 */ 4906 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4907 { 4908 int ret = -EINVAL; 4909 4910 switch (policy) { 4911 case SCHED_FIFO: 4912 case SCHED_RR: 4913 ret = MAX_USER_RT_PRIO-1; 4914 break; 4915 case SCHED_DEADLINE: 4916 case SCHED_NORMAL: 4917 case SCHED_BATCH: 4918 case SCHED_IDLE: 4919 ret = 0; 4920 break; 4921 } 4922 return ret; 4923 } 4924 4925 /** 4926 * sys_sched_get_priority_min - return minimum RT priority. 4927 * @policy: scheduling class. 4928 * 4929 * Return: On success, this syscall returns the minimum 4930 * rt_priority that can be used by a given scheduling class. 4931 * On failure, a negative error code is returned. 4932 */ 4933 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4934 { 4935 int ret = -EINVAL; 4936 4937 switch (policy) { 4938 case SCHED_FIFO: 4939 case SCHED_RR: 4940 ret = 1; 4941 break; 4942 case SCHED_DEADLINE: 4943 case SCHED_NORMAL: 4944 case SCHED_BATCH: 4945 case SCHED_IDLE: 4946 ret = 0; 4947 } 4948 return ret; 4949 } 4950 4951 /** 4952 * sys_sched_rr_get_interval - return the default timeslice of a process. 4953 * @pid: pid of the process. 4954 * @interval: userspace pointer to the timeslice value. 4955 * 4956 * this syscall writes the default timeslice value of a given process 4957 * into the user-space timespec buffer. A value of '0' means infinity. 4958 * 4959 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 4960 * an error code. 4961 */ 4962 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4963 struct timespec __user *, interval) 4964 { 4965 struct task_struct *p; 4966 unsigned int time_slice; 4967 unsigned long flags; 4968 struct rq *rq; 4969 int retval; 4970 struct timespec t; 4971 4972 if (pid < 0) 4973 return -EINVAL; 4974 4975 retval = -ESRCH; 4976 rcu_read_lock(); 4977 p = find_process_by_pid(pid); 4978 if (!p) 4979 goto out_unlock; 4980 4981 retval = security_task_getscheduler(p); 4982 if (retval) 4983 goto out_unlock; 4984 4985 rq = task_rq_lock(p, &flags); 4986 time_slice = 0; 4987 if (p->sched_class->get_rr_interval) 4988 time_slice = p->sched_class->get_rr_interval(rq, p); 4989 task_rq_unlock(rq, p, &flags); 4990 4991 rcu_read_unlock(); 4992 jiffies_to_timespec(time_slice, &t); 4993 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4994 return retval; 4995 4996 out_unlock: 4997 rcu_read_unlock(); 4998 return retval; 4999 } 5000 5001 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 5002 5003 void sched_show_task(struct task_struct *p) 5004 { 5005 unsigned long free = 0; 5006 int ppid; 5007 unsigned long state = p->state; 5008 5009 if (state) 5010 state = __ffs(state) + 1; 5011 printk(KERN_INFO "%-15.15s %c", p->comm, 5012 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 5013 #if BITS_PER_LONG == 32 5014 if (state == TASK_RUNNING) 5015 printk(KERN_CONT " running "); 5016 else 5017 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 5018 #else 5019 if (state == TASK_RUNNING) 5020 printk(KERN_CONT " running task "); 5021 else 5022 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 5023 #endif 5024 #ifdef CONFIG_DEBUG_STACK_USAGE 5025 free = stack_not_used(p); 5026 #endif 5027 ppid = 0; 5028 rcu_read_lock(); 5029 if (pid_alive(p)) 5030 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5031 rcu_read_unlock(); 5032 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5033 task_pid_nr(p), ppid, 5034 (unsigned long)task_thread_info(p)->flags); 5035 5036 print_worker_info(KERN_INFO, p); 5037 show_stack(p, NULL); 5038 } 5039 5040 void show_state_filter(unsigned long state_filter) 5041 { 5042 struct task_struct *g, *p; 5043 5044 #if BITS_PER_LONG == 32 5045 printk(KERN_INFO 5046 " task PC stack pid father\n"); 5047 #else 5048 printk(KERN_INFO 5049 " task PC stack pid father\n"); 5050 #endif 5051 rcu_read_lock(); 5052 for_each_process_thread(g, p) { 5053 /* 5054 * reset the NMI-timeout, listing all files on a slow 5055 * console might take a lot of time: 5056 */ 5057 touch_nmi_watchdog(); 5058 if (!state_filter || (p->state & state_filter)) 5059 sched_show_task(p); 5060 } 5061 5062 touch_all_softlockup_watchdogs(); 5063 5064 #ifdef CONFIG_SCHED_DEBUG 5065 sysrq_sched_debug_show(); 5066 #endif 5067 rcu_read_unlock(); 5068 /* 5069 * Only show locks if all tasks are dumped: 5070 */ 5071 if (!state_filter) 5072 debug_show_all_locks(); 5073 } 5074 5075 void init_idle_bootup_task(struct task_struct *idle) 5076 { 5077 idle->sched_class = &idle_sched_class; 5078 } 5079 5080 /** 5081 * init_idle - set up an idle thread for a given CPU 5082 * @idle: task in question 5083 * @cpu: cpu the idle task belongs to 5084 * 5085 * NOTE: this function does not set the idle thread's NEED_RESCHED 5086 * flag, to make booting more robust. 5087 */ 5088 void init_idle(struct task_struct *idle, int cpu) 5089 { 5090 struct rq *rq = cpu_rq(cpu); 5091 unsigned long flags; 5092 5093 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5094 raw_spin_lock(&rq->lock); 5095 5096 __sched_fork(0, idle); 5097 idle->state = TASK_RUNNING; 5098 idle->se.exec_start = sched_clock(); 5099 5100 kasan_unpoison_task_stack(idle); 5101 5102 #ifdef CONFIG_SMP 5103 /* 5104 * Its possible that init_idle() gets called multiple times on a task, 5105 * in that case do_set_cpus_allowed() will not do the right thing. 5106 * 5107 * And since this is boot we can forgo the serialization. 5108 */ 5109 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5110 #endif 5111 /* 5112 * We're having a chicken and egg problem, even though we are 5113 * holding rq->lock, the cpu isn't yet set to this cpu so the 5114 * lockdep check in task_group() will fail. 5115 * 5116 * Similar case to sched_fork(). / Alternatively we could 5117 * use task_rq_lock() here and obtain the other rq->lock. 5118 * 5119 * Silence PROVE_RCU 5120 */ 5121 rcu_read_lock(); 5122 __set_task_cpu(idle, cpu); 5123 rcu_read_unlock(); 5124 5125 rq->curr = rq->idle = idle; 5126 idle->on_rq = TASK_ON_RQ_QUEUED; 5127 #ifdef CONFIG_SMP 5128 idle->on_cpu = 1; 5129 #endif 5130 raw_spin_unlock(&rq->lock); 5131 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5132 5133 /* Set the preempt count _outside_ the spinlocks! */ 5134 init_idle_preempt_count(idle, cpu); 5135 5136 /* 5137 * The idle tasks have their own, simple scheduling class: 5138 */ 5139 idle->sched_class = &idle_sched_class; 5140 ftrace_graph_init_idle_task(idle, cpu); 5141 vtime_init_idle(idle, cpu); 5142 #ifdef CONFIG_SMP 5143 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5144 #endif 5145 } 5146 5147 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5148 const struct cpumask *trial) 5149 { 5150 int ret = 1, trial_cpus; 5151 struct dl_bw *cur_dl_b; 5152 unsigned long flags; 5153 5154 if (!cpumask_weight(cur)) 5155 return ret; 5156 5157 rcu_read_lock_sched(); 5158 cur_dl_b = dl_bw_of(cpumask_any(cur)); 5159 trial_cpus = cpumask_weight(trial); 5160 5161 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 5162 if (cur_dl_b->bw != -1 && 5163 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 5164 ret = 0; 5165 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 5166 rcu_read_unlock_sched(); 5167 5168 return ret; 5169 } 5170 5171 int task_can_attach(struct task_struct *p, 5172 const struct cpumask *cs_cpus_allowed) 5173 { 5174 int ret = 0; 5175 5176 /* 5177 * Kthreads which disallow setaffinity shouldn't be moved 5178 * to a new cpuset; we don't want to change their cpu 5179 * affinity and isolating such threads by their set of 5180 * allowed nodes is unnecessary. Thus, cpusets are not 5181 * applicable for such threads. This prevents checking for 5182 * success of set_cpus_allowed_ptr() on all attached tasks 5183 * before cpus_allowed may be changed. 5184 */ 5185 if (p->flags & PF_NO_SETAFFINITY) { 5186 ret = -EINVAL; 5187 goto out; 5188 } 5189 5190 #ifdef CONFIG_SMP 5191 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5192 cs_cpus_allowed)) { 5193 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 5194 cs_cpus_allowed); 5195 struct dl_bw *dl_b; 5196 bool overflow; 5197 int cpus; 5198 unsigned long flags; 5199 5200 rcu_read_lock_sched(); 5201 dl_b = dl_bw_of(dest_cpu); 5202 raw_spin_lock_irqsave(&dl_b->lock, flags); 5203 cpus = dl_bw_cpus(dest_cpu); 5204 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 5205 if (overflow) 5206 ret = -EBUSY; 5207 else { 5208 /* 5209 * We reserve space for this task in the destination 5210 * root_domain, as we can't fail after this point. 5211 * We will free resources in the source root_domain 5212 * later on (see set_cpus_allowed_dl()). 5213 */ 5214 __dl_add(dl_b, p->dl.dl_bw); 5215 } 5216 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5217 rcu_read_unlock_sched(); 5218 5219 } 5220 #endif 5221 out: 5222 return ret; 5223 } 5224 5225 #ifdef CONFIG_SMP 5226 5227 #ifdef CONFIG_NUMA_BALANCING 5228 /* Migrate current task p to target_cpu */ 5229 int migrate_task_to(struct task_struct *p, int target_cpu) 5230 { 5231 struct migration_arg arg = { p, target_cpu }; 5232 int curr_cpu = task_cpu(p); 5233 5234 if (curr_cpu == target_cpu) 5235 return 0; 5236 5237 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 5238 return -EINVAL; 5239 5240 /* TODO: This is not properly updating schedstats */ 5241 5242 trace_sched_move_numa(p, curr_cpu, target_cpu); 5243 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5244 } 5245 5246 /* 5247 * Requeue a task on a given node and accurately track the number of NUMA 5248 * tasks on the runqueues 5249 */ 5250 void sched_setnuma(struct task_struct *p, int nid) 5251 { 5252 struct rq *rq; 5253 unsigned long flags; 5254 bool queued, running; 5255 5256 rq = task_rq_lock(p, &flags); 5257 queued = task_on_rq_queued(p); 5258 running = task_current(rq, p); 5259 5260 if (queued) 5261 dequeue_task(rq, p, DEQUEUE_SAVE); 5262 if (running) 5263 put_prev_task(rq, p); 5264 5265 p->numa_preferred_nid = nid; 5266 5267 if (running) 5268 p->sched_class->set_curr_task(rq); 5269 if (queued) 5270 enqueue_task(rq, p, ENQUEUE_RESTORE); 5271 task_rq_unlock(rq, p, &flags); 5272 } 5273 #endif /* CONFIG_NUMA_BALANCING */ 5274 5275 #ifdef CONFIG_HOTPLUG_CPU 5276 /* 5277 * Ensures that the idle task is using init_mm right before its cpu goes 5278 * offline. 5279 */ 5280 void idle_task_exit(void) 5281 { 5282 struct mm_struct *mm = current->active_mm; 5283 5284 BUG_ON(cpu_online(smp_processor_id())); 5285 5286 if (mm != &init_mm) { 5287 switch_mm(mm, &init_mm, current); 5288 finish_arch_post_lock_switch(); 5289 } 5290 mmdrop(mm); 5291 } 5292 5293 /* 5294 * Since this CPU is going 'away' for a while, fold any nr_active delta 5295 * we might have. Assumes we're called after migrate_tasks() so that the 5296 * nr_active count is stable. 5297 * 5298 * Also see the comment "Global load-average calculations". 5299 */ 5300 static void calc_load_migrate(struct rq *rq) 5301 { 5302 long delta = calc_load_fold_active(rq); 5303 if (delta) 5304 atomic_long_add(delta, &calc_load_tasks); 5305 } 5306 5307 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5308 { 5309 } 5310 5311 static const struct sched_class fake_sched_class = { 5312 .put_prev_task = put_prev_task_fake, 5313 }; 5314 5315 static struct task_struct fake_task = { 5316 /* 5317 * Avoid pull_{rt,dl}_task() 5318 */ 5319 .prio = MAX_PRIO + 1, 5320 .sched_class = &fake_sched_class, 5321 }; 5322 5323 /* 5324 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5325 * try_to_wake_up()->select_task_rq(). 5326 * 5327 * Called with rq->lock held even though we'er in stop_machine() and 5328 * there's no concurrency possible, we hold the required locks anyway 5329 * because of lock validation efforts. 5330 */ 5331 static void migrate_tasks(struct rq *dead_rq) 5332 { 5333 struct rq *rq = dead_rq; 5334 struct task_struct *next, *stop = rq->stop; 5335 int dest_cpu; 5336 5337 /* 5338 * Fudge the rq selection such that the below task selection loop 5339 * doesn't get stuck on the currently eligible stop task. 5340 * 5341 * We're currently inside stop_machine() and the rq is either stuck 5342 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5343 * either way we should never end up calling schedule() until we're 5344 * done here. 5345 */ 5346 rq->stop = NULL; 5347 5348 /* 5349 * put_prev_task() and pick_next_task() sched 5350 * class method both need to have an up-to-date 5351 * value of rq->clock[_task] 5352 */ 5353 update_rq_clock(rq); 5354 5355 for (;;) { 5356 /* 5357 * There's this thread running, bail when that's the only 5358 * remaining thread. 5359 */ 5360 if (rq->nr_running == 1) 5361 break; 5362 5363 /* 5364 * pick_next_task assumes pinned rq->lock. 5365 */ 5366 lockdep_pin_lock(&rq->lock); 5367 next = pick_next_task(rq, &fake_task); 5368 BUG_ON(!next); 5369 next->sched_class->put_prev_task(rq, next); 5370 5371 /* 5372 * Rules for changing task_struct::cpus_allowed are holding 5373 * both pi_lock and rq->lock, such that holding either 5374 * stabilizes the mask. 5375 * 5376 * Drop rq->lock is not quite as disastrous as it usually is 5377 * because !cpu_active at this point, which means load-balance 5378 * will not interfere. Also, stop-machine. 5379 */ 5380 lockdep_unpin_lock(&rq->lock); 5381 raw_spin_unlock(&rq->lock); 5382 raw_spin_lock(&next->pi_lock); 5383 raw_spin_lock(&rq->lock); 5384 5385 /* 5386 * Since we're inside stop-machine, _nothing_ should have 5387 * changed the task, WARN if weird stuff happened, because in 5388 * that case the above rq->lock drop is a fail too. 5389 */ 5390 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5391 raw_spin_unlock(&next->pi_lock); 5392 continue; 5393 } 5394 5395 /* Find suitable destination for @next, with force if needed. */ 5396 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5397 5398 rq = __migrate_task(rq, next, dest_cpu); 5399 if (rq != dead_rq) { 5400 raw_spin_unlock(&rq->lock); 5401 rq = dead_rq; 5402 raw_spin_lock(&rq->lock); 5403 } 5404 raw_spin_unlock(&next->pi_lock); 5405 } 5406 5407 rq->stop = stop; 5408 } 5409 #endif /* CONFIG_HOTPLUG_CPU */ 5410 5411 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 5412 5413 static struct ctl_table sd_ctl_dir[] = { 5414 { 5415 .procname = "sched_domain", 5416 .mode = 0555, 5417 }, 5418 {} 5419 }; 5420 5421 static struct ctl_table sd_ctl_root[] = { 5422 { 5423 .procname = "kernel", 5424 .mode = 0555, 5425 .child = sd_ctl_dir, 5426 }, 5427 {} 5428 }; 5429 5430 static struct ctl_table *sd_alloc_ctl_entry(int n) 5431 { 5432 struct ctl_table *entry = 5433 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 5434 5435 return entry; 5436 } 5437 5438 static void sd_free_ctl_entry(struct ctl_table **tablep) 5439 { 5440 struct ctl_table *entry; 5441 5442 /* 5443 * In the intermediate directories, both the child directory and 5444 * procname are dynamically allocated and could fail but the mode 5445 * will always be set. In the lowest directory the names are 5446 * static strings and all have proc handlers. 5447 */ 5448 for (entry = *tablep; entry->mode; entry++) { 5449 if (entry->child) 5450 sd_free_ctl_entry(&entry->child); 5451 if (entry->proc_handler == NULL) 5452 kfree(entry->procname); 5453 } 5454 5455 kfree(*tablep); 5456 *tablep = NULL; 5457 } 5458 5459 static int min_load_idx = 0; 5460 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 5461 5462 static void 5463 set_table_entry(struct ctl_table *entry, 5464 const char *procname, void *data, int maxlen, 5465 umode_t mode, proc_handler *proc_handler, 5466 bool load_idx) 5467 { 5468 entry->procname = procname; 5469 entry->data = data; 5470 entry->maxlen = maxlen; 5471 entry->mode = mode; 5472 entry->proc_handler = proc_handler; 5473 5474 if (load_idx) { 5475 entry->extra1 = &min_load_idx; 5476 entry->extra2 = &max_load_idx; 5477 } 5478 } 5479 5480 static struct ctl_table * 5481 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5482 { 5483 struct ctl_table *table = sd_alloc_ctl_entry(14); 5484 5485 if (table == NULL) 5486 return NULL; 5487 5488 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5489 sizeof(long), 0644, proc_doulongvec_minmax, false); 5490 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5491 sizeof(long), 0644, proc_doulongvec_minmax, false); 5492 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5493 sizeof(int), 0644, proc_dointvec_minmax, true); 5494 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5495 sizeof(int), 0644, proc_dointvec_minmax, true); 5496 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5497 sizeof(int), 0644, proc_dointvec_minmax, true); 5498 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5499 sizeof(int), 0644, proc_dointvec_minmax, true); 5500 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5501 sizeof(int), 0644, proc_dointvec_minmax, true); 5502 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5503 sizeof(int), 0644, proc_dointvec_minmax, false); 5504 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5505 sizeof(int), 0644, proc_dointvec_minmax, false); 5506 set_table_entry(&table[9], "cache_nice_tries", 5507 &sd->cache_nice_tries, 5508 sizeof(int), 0644, proc_dointvec_minmax, false); 5509 set_table_entry(&table[10], "flags", &sd->flags, 5510 sizeof(int), 0644, proc_dointvec_minmax, false); 5511 set_table_entry(&table[11], "max_newidle_lb_cost", 5512 &sd->max_newidle_lb_cost, 5513 sizeof(long), 0644, proc_doulongvec_minmax, false); 5514 set_table_entry(&table[12], "name", sd->name, 5515 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 5516 /* &table[13] is terminator */ 5517 5518 return table; 5519 } 5520 5521 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5522 { 5523 struct ctl_table *entry, *table; 5524 struct sched_domain *sd; 5525 int domain_num = 0, i; 5526 char buf[32]; 5527 5528 for_each_domain(cpu, sd) 5529 domain_num++; 5530 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5531 if (table == NULL) 5532 return NULL; 5533 5534 i = 0; 5535 for_each_domain(cpu, sd) { 5536 snprintf(buf, 32, "domain%d", i); 5537 entry->procname = kstrdup(buf, GFP_KERNEL); 5538 entry->mode = 0555; 5539 entry->child = sd_alloc_ctl_domain_table(sd); 5540 entry++; 5541 i++; 5542 } 5543 return table; 5544 } 5545 5546 static struct ctl_table_header *sd_sysctl_header; 5547 static void register_sched_domain_sysctl(void) 5548 { 5549 int i, cpu_num = num_possible_cpus(); 5550 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5551 char buf[32]; 5552 5553 WARN_ON(sd_ctl_dir[0].child); 5554 sd_ctl_dir[0].child = entry; 5555 5556 if (entry == NULL) 5557 return; 5558 5559 for_each_possible_cpu(i) { 5560 snprintf(buf, 32, "cpu%d", i); 5561 entry->procname = kstrdup(buf, GFP_KERNEL); 5562 entry->mode = 0555; 5563 entry->child = sd_alloc_ctl_cpu_table(i); 5564 entry++; 5565 } 5566 5567 WARN_ON(sd_sysctl_header); 5568 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5569 } 5570 5571 /* may be called multiple times per register */ 5572 static void unregister_sched_domain_sysctl(void) 5573 { 5574 unregister_sysctl_table(sd_sysctl_header); 5575 sd_sysctl_header = NULL; 5576 if (sd_ctl_dir[0].child) 5577 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5578 } 5579 #else 5580 static void register_sched_domain_sysctl(void) 5581 { 5582 } 5583 static void unregister_sched_domain_sysctl(void) 5584 { 5585 } 5586 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */ 5587 5588 static void set_rq_online(struct rq *rq) 5589 { 5590 if (!rq->online) { 5591 const struct sched_class *class; 5592 5593 cpumask_set_cpu(rq->cpu, rq->rd->online); 5594 rq->online = 1; 5595 5596 for_each_class(class) { 5597 if (class->rq_online) 5598 class->rq_online(rq); 5599 } 5600 } 5601 } 5602 5603 static void set_rq_offline(struct rq *rq) 5604 { 5605 if (rq->online) { 5606 const struct sched_class *class; 5607 5608 for_each_class(class) { 5609 if (class->rq_offline) 5610 class->rq_offline(rq); 5611 } 5612 5613 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5614 rq->online = 0; 5615 } 5616 } 5617 5618 /* 5619 * migration_call - callback that gets triggered when a CPU is added. 5620 * Here we can start up the necessary migration thread for the new CPU. 5621 */ 5622 static int 5623 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5624 { 5625 int cpu = (long)hcpu; 5626 unsigned long flags; 5627 struct rq *rq = cpu_rq(cpu); 5628 5629 switch (action & ~CPU_TASKS_FROZEN) { 5630 5631 case CPU_UP_PREPARE: 5632 rq->calc_load_update = calc_load_update; 5633 break; 5634 5635 case CPU_ONLINE: 5636 /* Update our root-domain */ 5637 raw_spin_lock_irqsave(&rq->lock, flags); 5638 if (rq->rd) { 5639 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5640 5641 set_rq_online(rq); 5642 } 5643 raw_spin_unlock_irqrestore(&rq->lock, flags); 5644 break; 5645 5646 #ifdef CONFIG_HOTPLUG_CPU 5647 case CPU_DYING: 5648 sched_ttwu_pending(); 5649 /* Update our root-domain */ 5650 raw_spin_lock_irqsave(&rq->lock, flags); 5651 if (rq->rd) { 5652 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5653 set_rq_offline(rq); 5654 } 5655 migrate_tasks(rq); 5656 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5657 raw_spin_unlock_irqrestore(&rq->lock, flags); 5658 break; 5659 5660 case CPU_DEAD: 5661 calc_load_migrate(rq); 5662 break; 5663 #endif 5664 } 5665 5666 update_max_interval(); 5667 5668 return NOTIFY_OK; 5669 } 5670 5671 /* 5672 * Register at high priority so that task migration (migrate_all_tasks) 5673 * happens before everything else. This has to be lower priority than 5674 * the notifier in the perf_event subsystem, though. 5675 */ 5676 static struct notifier_block migration_notifier = { 5677 .notifier_call = migration_call, 5678 .priority = CPU_PRI_MIGRATION, 5679 }; 5680 5681 static void set_cpu_rq_start_time(void) 5682 { 5683 int cpu = smp_processor_id(); 5684 struct rq *rq = cpu_rq(cpu); 5685 rq->age_stamp = sched_clock_cpu(cpu); 5686 } 5687 5688 static int sched_cpu_active(struct notifier_block *nfb, 5689 unsigned long action, void *hcpu) 5690 { 5691 int cpu = (long)hcpu; 5692 5693 switch (action & ~CPU_TASKS_FROZEN) { 5694 case CPU_STARTING: 5695 set_cpu_rq_start_time(); 5696 return NOTIFY_OK; 5697 5698 case CPU_ONLINE: 5699 /* 5700 * At this point a starting CPU has marked itself as online via 5701 * set_cpu_online(). But it might not yet have marked itself 5702 * as active, which is essential from here on. 5703 */ 5704 set_cpu_active(cpu, true); 5705 stop_machine_unpark(cpu); 5706 return NOTIFY_OK; 5707 5708 case CPU_DOWN_FAILED: 5709 set_cpu_active(cpu, true); 5710 return NOTIFY_OK; 5711 5712 default: 5713 return NOTIFY_DONE; 5714 } 5715 } 5716 5717 static int sched_cpu_inactive(struct notifier_block *nfb, 5718 unsigned long action, void *hcpu) 5719 { 5720 switch (action & ~CPU_TASKS_FROZEN) { 5721 case CPU_DOWN_PREPARE: 5722 set_cpu_active((long)hcpu, false); 5723 return NOTIFY_OK; 5724 default: 5725 return NOTIFY_DONE; 5726 } 5727 } 5728 5729 static int __init migration_init(void) 5730 { 5731 void *cpu = (void *)(long)smp_processor_id(); 5732 int err; 5733 5734 /* Initialize migration for the boot CPU */ 5735 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5736 BUG_ON(err == NOTIFY_BAD); 5737 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5738 register_cpu_notifier(&migration_notifier); 5739 5740 /* Register cpu active notifiers */ 5741 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5742 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5743 5744 return 0; 5745 } 5746 early_initcall(migration_init); 5747 5748 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5749 5750 #ifdef CONFIG_SCHED_DEBUG 5751 5752 static __read_mostly int sched_debug_enabled; 5753 5754 static int __init sched_debug_setup(char *str) 5755 { 5756 sched_debug_enabled = 1; 5757 5758 return 0; 5759 } 5760 early_param("sched_debug", sched_debug_setup); 5761 5762 static inline bool sched_debug(void) 5763 { 5764 return sched_debug_enabled; 5765 } 5766 5767 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5768 struct cpumask *groupmask) 5769 { 5770 struct sched_group *group = sd->groups; 5771 5772 cpumask_clear(groupmask); 5773 5774 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5775 5776 if (!(sd->flags & SD_LOAD_BALANCE)) { 5777 printk("does not load-balance\n"); 5778 if (sd->parent) 5779 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5780 " has parent"); 5781 return -1; 5782 } 5783 5784 printk(KERN_CONT "span %*pbl level %s\n", 5785 cpumask_pr_args(sched_domain_span(sd)), sd->name); 5786 5787 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5788 printk(KERN_ERR "ERROR: domain->span does not contain " 5789 "CPU%d\n", cpu); 5790 } 5791 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5792 printk(KERN_ERR "ERROR: domain->groups does not contain" 5793 " CPU%d\n", cpu); 5794 } 5795 5796 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5797 do { 5798 if (!group) { 5799 printk("\n"); 5800 printk(KERN_ERR "ERROR: group is NULL\n"); 5801 break; 5802 } 5803 5804 if (!cpumask_weight(sched_group_cpus(group))) { 5805 printk(KERN_CONT "\n"); 5806 printk(KERN_ERR "ERROR: empty group\n"); 5807 break; 5808 } 5809 5810 if (!(sd->flags & SD_OVERLAP) && 5811 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5812 printk(KERN_CONT "\n"); 5813 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5814 break; 5815 } 5816 5817 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5818 5819 printk(KERN_CONT " %*pbl", 5820 cpumask_pr_args(sched_group_cpus(group))); 5821 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5822 printk(KERN_CONT " (cpu_capacity = %d)", 5823 group->sgc->capacity); 5824 } 5825 5826 group = group->next; 5827 } while (group != sd->groups); 5828 printk(KERN_CONT "\n"); 5829 5830 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5831 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5832 5833 if (sd->parent && 5834 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5835 printk(KERN_ERR "ERROR: parent span is not a superset " 5836 "of domain->span\n"); 5837 return 0; 5838 } 5839 5840 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5841 { 5842 int level = 0; 5843 5844 if (!sched_debug_enabled) 5845 return; 5846 5847 if (!sd) { 5848 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5849 return; 5850 } 5851 5852 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5853 5854 for (;;) { 5855 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5856 break; 5857 level++; 5858 sd = sd->parent; 5859 if (!sd) 5860 break; 5861 } 5862 } 5863 #else /* !CONFIG_SCHED_DEBUG */ 5864 # define sched_domain_debug(sd, cpu) do { } while (0) 5865 static inline bool sched_debug(void) 5866 { 5867 return false; 5868 } 5869 #endif /* CONFIG_SCHED_DEBUG */ 5870 5871 static int sd_degenerate(struct sched_domain *sd) 5872 { 5873 if (cpumask_weight(sched_domain_span(sd)) == 1) 5874 return 1; 5875 5876 /* Following flags need at least 2 groups */ 5877 if (sd->flags & (SD_LOAD_BALANCE | 5878 SD_BALANCE_NEWIDLE | 5879 SD_BALANCE_FORK | 5880 SD_BALANCE_EXEC | 5881 SD_SHARE_CPUCAPACITY | 5882 SD_SHARE_PKG_RESOURCES | 5883 SD_SHARE_POWERDOMAIN)) { 5884 if (sd->groups != sd->groups->next) 5885 return 0; 5886 } 5887 5888 /* Following flags don't use groups */ 5889 if (sd->flags & (SD_WAKE_AFFINE)) 5890 return 0; 5891 5892 return 1; 5893 } 5894 5895 static int 5896 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5897 { 5898 unsigned long cflags = sd->flags, pflags = parent->flags; 5899 5900 if (sd_degenerate(parent)) 5901 return 1; 5902 5903 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5904 return 0; 5905 5906 /* Flags needing groups don't count if only 1 group in parent */ 5907 if (parent->groups == parent->groups->next) { 5908 pflags &= ~(SD_LOAD_BALANCE | 5909 SD_BALANCE_NEWIDLE | 5910 SD_BALANCE_FORK | 5911 SD_BALANCE_EXEC | 5912 SD_SHARE_CPUCAPACITY | 5913 SD_SHARE_PKG_RESOURCES | 5914 SD_PREFER_SIBLING | 5915 SD_SHARE_POWERDOMAIN); 5916 if (nr_node_ids == 1) 5917 pflags &= ~SD_SERIALIZE; 5918 } 5919 if (~cflags & pflags) 5920 return 0; 5921 5922 return 1; 5923 } 5924 5925 static void free_rootdomain(struct rcu_head *rcu) 5926 { 5927 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5928 5929 cpupri_cleanup(&rd->cpupri); 5930 cpudl_cleanup(&rd->cpudl); 5931 free_cpumask_var(rd->dlo_mask); 5932 free_cpumask_var(rd->rto_mask); 5933 free_cpumask_var(rd->online); 5934 free_cpumask_var(rd->span); 5935 kfree(rd); 5936 } 5937 5938 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5939 { 5940 struct root_domain *old_rd = NULL; 5941 unsigned long flags; 5942 5943 raw_spin_lock_irqsave(&rq->lock, flags); 5944 5945 if (rq->rd) { 5946 old_rd = rq->rd; 5947 5948 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5949 set_rq_offline(rq); 5950 5951 cpumask_clear_cpu(rq->cpu, old_rd->span); 5952 5953 /* 5954 * If we dont want to free the old_rd yet then 5955 * set old_rd to NULL to skip the freeing later 5956 * in this function: 5957 */ 5958 if (!atomic_dec_and_test(&old_rd->refcount)) 5959 old_rd = NULL; 5960 } 5961 5962 atomic_inc(&rd->refcount); 5963 rq->rd = rd; 5964 5965 cpumask_set_cpu(rq->cpu, rd->span); 5966 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5967 set_rq_online(rq); 5968 5969 raw_spin_unlock_irqrestore(&rq->lock, flags); 5970 5971 if (old_rd) 5972 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5973 } 5974 5975 static int init_rootdomain(struct root_domain *rd) 5976 { 5977 memset(rd, 0, sizeof(*rd)); 5978 5979 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 5980 goto out; 5981 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 5982 goto free_span; 5983 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5984 goto free_online; 5985 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5986 goto free_dlo_mask; 5987 5988 init_dl_bw(&rd->dl_bw); 5989 if (cpudl_init(&rd->cpudl) != 0) 5990 goto free_dlo_mask; 5991 5992 if (cpupri_init(&rd->cpupri) != 0) 5993 goto free_rto_mask; 5994 return 0; 5995 5996 free_rto_mask: 5997 free_cpumask_var(rd->rto_mask); 5998 free_dlo_mask: 5999 free_cpumask_var(rd->dlo_mask); 6000 free_online: 6001 free_cpumask_var(rd->online); 6002 free_span: 6003 free_cpumask_var(rd->span); 6004 out: 6005 return -ENOMEM; 6006 } 6007 6008 /* 6009 * By default the system creates a single root-domain with all cpus as 6010 * members (mimicking the global state we have today). 6011 */ 6012 struct root_domain def_root_domain; 6013 6014 static void init_defrootdomain(void) 6015 { 6016 init_rootdomain(&def_root_domain); 6017 6018 atomic_set(&def_root_domain.refcount, 1); 6019 } 6020 6021 static struct root_domain *alloc_rootdomain(void) 6022 { 6023 struct root_domain *rd; 6024 6025 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 6026 if (!rd) 6027 return NULL; 6028 6029 if (init_rootdomain(rd) != 0) { 6030 kfree(rd); 6031 return NULL; 6032 } 6033 6034 return rd; 6035 } 6036 6037 static void free_sched_groups(struct sched_group *sg, int free_sgc) 6038 { 6039 struct sched_group *tmp, *first; 6040 6041 if (!sg) 6042 return; 6043 6044 first = sg; 6045 do { 6046 tmp = sg->next; 6047 6048 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 6049 kfree(sg->sgc); 6050 6051 kfree(sg); 6052 sg = tmp; 6053 } while (sg != first); 6054 } 6055 6056 static void free_sched_domain(struct rcu_head *rcu) 6057 { 6058 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 6059 6060 /* 6061 * If its an overlapping domain it has private groups, iterate and 6062 * nuke them all. 6063 */ 6064 if (sd->flags & SD_OVERLAP) { 6065 free_sched_groups(sd->groups, 1); 6066 } else if (atomic_dec_and_test(&sd->groups->ref)) { 6067 kfree(sd->groups->sgc); 6068 kfree(sd->groups); 6069 } 6070 kfree(sd); 6071 } 6072 6073 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 6074 { 6075 call_rcu(&sd->rcu, free_sched_domain); 6076 } 6077 6078 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 6079 { 6080 for (; sd; sd = sd->parent) 6081 destroy_sched_domain(sd, cpu); 6082 } 6083 6084 /* 6085 * Keep a special pointer to the highest sched_domain that has 6086 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 6087 * allows us to avoid some pointer chasing select_idle_sibling(). 6088 * 6089 * Also keep a unique ID per domain (we use the first cpu number in 6090 * the cpumask of the domain), this allows us to quickly tell if 6091 * two cpus are in the same cache domain, see cpus_share_cache(). 6092 */ 6093 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 6094 DEFINE_PER_CPU(int, sd_llc_size); 6095 DEFINE_PER_CPU(int, sd_llc_id); 6096 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 6097 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 6098 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 6099 6100 static void update_top_cache_domain(int cpu) 6101 { 6102 struct sched_domain *sd; 6103 struct sched_domain *busy_sd = NULL; 6104 int id = cpu; 6105 int size = 1; 6106 6107 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 6108 if (sd) { 6109 id = cpumask_first(sched_domain_span(sd)); 6110 size = cpumask_weight(sched_domain_span(sd)); 6111 busy_sd = sd->parent; /* sd_busy */ 6112 } 6113 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 6114 6115 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 6116 per_cpu(sd_llc_size, cpu) = size; 6117 per_cpu(sd_llc_id, cpu) = id; 6118 6119 sd = lowest_flag_domain(cpu, SD_NUMA); 6120 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 6121 6122 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 6123 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 6124 } 6125 6126 /* 6127 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 6128 * hold the hotplug lock. 6129 */ 6130 static void 6131 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 6132 { 6133 struct rq *rq = cpu_rq(cpu); 6134 struct sched_domain *tmp; 6135 6136 /* Remove the sched domains which do not contribute to scheduling. */ 6137 for (tmp = sd; tmp; ) { 6138 struct sched_domain *parent = tmp->parent; 6139 if (!parent) 6140 break; 6141 6142 if (sd_parent_degenerate(tmp, parent)) { 6143 tmp->parent = parent->parent; 6144 if (parent->parent) 6145 parent->parent->child = tmp; 6146 /* 6147 * Transfer SD_PREFER_SIBLING down in case of a 6148 * degenerate parent; the spans match for this 6149 * so the property transfers. 6150 */ 6151 if (parent->flags & SD_PREFER_SIBLING) 6152 tmp->flags |= SD_PREFER_SIBLING; 6153 destroy_sched_domain(parent, cpu); 6154 } else 6155 tmp = tmp->parent; 6156 } 6157 6158 if (sd && sd_degenerate(sd)) { 6159 tmp = sd; 6160 sd = sd->parent; 6161 destroy_sched_domain(tmp, cpu); 6162 if (sd) 6163 sd->child = NULL; 6164 } 6165 6166 sched_domain_debug(sd, cpu); 6167 6168 rq_attach_root(rq, rd); 6169 tmp = rq->sd; 6170 rcu_assign_pointer(rq->sd, sd); 6171 destroy_sched_domains(tmp, cpu); 6172 6173 update_top_cache_domain(cpu); 6174 } 6175 6176 /* Setup the mask of cpus configured for isolated domains */ 6177 static int __init isolated_cpu_setup(char *str) 6178 { 6179 alloc_bootmem_cpumask_var(&cpu_isolated_map); 6180 cpulist_parse(str, cpu_isolated_map); 6181 return 1; 6182 } 6183 6184 __setup("isolcpus=", isolated_cpu_setup); 6185 6186 struct s_data { 6187 struct sched_domain ** __percpu sd; 6188 struct root_domain *rd; 6189 }; 6190 6191 enum s_alloc { 6192 sa_rootdomain, 6193 sa_sd, 6194 sa_sd_storage, 6195 sa_none, 6196 }; 6197 6198 /* 6199 * Build an iteration mask that can exclude certain CPUs from the upwards 6200 * domain traversal. 6201 * 6202 * Asymmetric node setups can result in situations where the domain tree is of 6203 * unequal depth, make sure to skip domains that already cover the entire 6204 * range. 6205 * 6206 * In that case build_sched_domains() will have terminated the iteration early 6207 * and our sibling sd spans will be empty. Domains should always include the 6208 * cpu they're built on, so check that. 6209 * 6210 */ 6211 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 6212 { 6213 const struct cpumask *span = sched_domain_span(sd); 6214 struct sd_data *sdd = sd->private; 6215 struct sched_domain *sibling; 6216 int i; 6217 6218 for_each_cpu(i, span) { 6219 sibling = *per_cpu_ptr(sdd->sd, i); 6220 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6221 continue; 6222 6223 cpumask_set_cpu(i, sched_group_mask(sg)); 6224 } 6225 } 6226 6227 /* 6228 * Return the canonical balance cpu for this group, this is the first cpu 6229 * of this group that's also in the iteration mask. 6230 */ 6231 int group_balance_cpu(struct sched_group *sg) 6232 { 6233 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 6234 } 6235 6236 static int 6237 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 6238 { 6239 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 6240 const struct cpumask *span = sched_domain_span(sd); 6241 struct cpumask *covered = sched_domains_tmpmask; 6242 struct sd_data *sdd = sd->private; 6243 struct sched_domain *sibling; 6244 int i; 6245 6246 cpumask_clear(covered); 6247 6248 for_each_cpu(i, span) { 6249 struct cpumask *sg_span; 6250 6251 if (cpumask_test_cpu(i, covered)) 6252 continue; 6253 6254 sibling = *per_cpu_ptr(sdd->sd, i); 6255 6256 /* See the comment near build_group_mask(). */ 6257 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6258 continue; 6259 6260 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6261 GFP_KERNEL, cpu_to_node(cpu)); 6262 6263 if (!sg) 6264 goto fail; 6265 6266 sg_span = sched_group_cpus(sg); 6267 if (sibling->child) 6268 cpumask_copy(sg_span, sched_domain_span(sibling->child)); 6269 else 6270 cpumask_set_cpu(i, sg_span); 6271 6272 cpumask_or(covered, covered, sg_span); 6273 6274 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 6275 if (atomic_inc_return(&sg->sgc->ref) == 1) 6276 build_group_mask(sd, sg); 6277 6278 /* 6279 * Initialize sgc->capacity such that even if we mess up the 6280 * domains and no possible iteration will get us here, we won't 6281 * die on a /0 trap. 6282 */ 6283 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 6284 6285 /* 6286 * Make sure the first group of this domain contains the 6287 * canonical balance cpu. Otherwise the sched_domain iteration 6288 * breaks. See update_sg_lb_stats(). 6289 */ 6290 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 6291 group_balance_cpu(sg) == cpu) 6292 groups = sg; 6293 6294 if (!first) 6295 first = sg; 6296 if (last) 6297 last->next = sg; 6298 last = sg; 6299 last->next = first; 6300 } 6301 sd->groups = groups; 6302 6303 return 0; 6304 6305 fail: 6306 free_sched_groups(first, 0); 6307 6308 return -ENOMEM; 6309 } 6310 6311 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 6312 { 6313 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6314 struct sched_domain *child = sd->child; 6315 6316 if (child) 6317 cpu = cpumask_first(sched_domain_span(child)); 6318 6319 if (sg) { 6320 *sg = *per_cpu_ptr(sdd->sg, cpu); 6321 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 6322 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 6323 } 6324 6325 return cpu; 6326 } 6327 6328 /* 6329 * build_sched_groups will build a circular linked list of the groups 6330 * covered by the given span, and will set each group's ->cpumask correctly, 6331 * and ->cpu_capacity to 0. 6332 * 6333 * Assumes the sched_domain tree is fully constructed 6334 */ 6335 static int 6336 build_sched_groups(struct sched_domain *sd, int cpu) 6337 { 6338 struct sched_group *first = NULL, *last = NULL; 6339 struct sd_data *sdd = sd->private; 6340 const struct cpumask *span = sched_domain_span(sd); 6341 struct cpumask *covered; 6342 int i; 6343 6344 get_group(cpu, sdd, &sd->groups); 6345 atomic_inc(&sd->groups->ref); 6346 6347 if (cpu != cpumask_first(span)) 6348 return 0; 6349 6350 lockdep_assert_held(&sched_domains_mutex); 6351 covered = sched_domains_tmpmask; 6352 6353 cpumask_clear(covered); 6354 6355 for_each_cpu(i, span) { 6356 struct sched_group *sg; 6357 int group, j; 6358 6359 if (cpumask_test_cpu(i, covered)) 6360 continue; 6361 6362 group = get_group(i, sdd, &sg); 6363 cpumask_setall(sched_group_mask(sg)); 6364 6365 for_each_cpu(j, span) { 6366 if (get_group(j, sdd, NULL) != group) 6367 continue; 6368 6369 cpumask_set_cpu(j, covered); 6370 cpumask_set_cpu(j, sched_group_cpus(sg)); 6371 } 6372 6373 if (!first) 6374 first = sg; 6375 if (last) 6376 last->next = sg; 6377 last = sg; 6378 } 6379 last->next = first; 6380 6381 return 0; 6382 } 6383 6384 /* 6385 * Initialize sched groups cpu_capacity. 6386 * 6387 * cpu_capacity indicates the capacity of sched group, which is used while 6388 * distributing the load between different sched groups in a sched domain. 6389 * Typically cpu_capacity for all the groups in a sched domain will be same 6390 * unless there are asymmetries in the topology. If there are asymmetries, 6391 * group having more cpu_capacity will pickup more load compared to the 6392 * group having less cpu_capacity. 6393 */ 6394 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 6395 { 6396 struct sched_group *sg = sd->groups; 6397 6398 WARN_ON(!sg); 6399 6400 do { 6401 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6402 sg = sg->next; 6403 } while (sg != sd->groups); 6404 6405 if (cpu != group_balance_cpu(sg)) 6406 return; 6407 6408 update_group_capacity(sd, cpu); 6409 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); 6410 } 6411 6412 /* 6413 * Initializers for schedule domains 6414 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6415 */ 6416 6417 static int default_relax_domain_level = -1; 6418 int sched_domain_level_max; 6419 6420 static int __init setup_relax_domain_level(char *str) 6421 { 6422 if (kstrtoint(str, 0, &default_relax_domain_level)) 6423 pr_warn("Unable to set relax_domain_level\n"); 6424 6425 return 1; 6426 } 6427 __setup("relax_domain_level=", setup_relax_domain_level); 6428 6429 static void set_domain_attribute(struct sched_domain *sd, 6430 struct sched_domain_attr *attr) 6431 { 6432 int request; 6433 6434 if (!attr || attr->relax_domain_level < 0) { 6435 if (default_relax_domain_level < 0) 6436 return; 6437 else 6438 request = default_relax_domain_level; 6439 } else 6440 request = attr->relax_domain_level; 6441 if (request < sd->level) { 6442 /* turn off idle balance on this domain */ 6443 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6444 } else { 6445 /* turn on idle balance on this domain */ 6446 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6447 } 6448 } 6449 6450 static void __sdt_free(const struct cpumask *cpu_map); 6451 static int __sdt_alloc(const struct cpumask *cpu_map); 6452 6453 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6454 const struct cpumask *cpu_map) 6455 { 6456 switch (what) { 6457 case sa_rootdomain: 6458 if (!atomic_read(&d->rd->refcount)) 6459 free_rootdomain(&d->rd->rcu); /* fall through */ 6460 case sa_sd: 6461 free_percpu(d->sd); /* fall through */ 6462 case sa_sd_storage: 6463 __sdt_free(cpu_map); /* fall through */ 6464 case sa_none: 6465 break; 6466 } 6467 } 6468 6469 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6470 const struct cpumask *cpu_map) 6471 { 6472 memset(d, 0, sizeof(*d)); 6473 6474 if (__sdt_alloc(cpu_map)) 6475 return sa_sd_storage; 6476 d->sd = alloc_percpu(struct sched_domain *); 6477 if (!d->sd) 6478 return sa_sd_storage; 6479 d->rd = alloc_rootdomain(); 6480 if (!d->rd) 6481 return sa_sd; 6482 return sa_rootdomain; 6483 } 6484 6485 /* 6486 * NULL the sd_data elements we've used to build the sched_domain and 6487 * sched_group structure so that the subsequent __free_domain_allocs() 6488 * will not free the data we're using. 6489 */ 6490 static void claim_allocations(int cpu, struct sched_domain *sd) 6491 { 6492 struct sd_data *sdd = sd->private; 6493 6494 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6495 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6496 6497 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6498 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6499 6500 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 6501 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 6502 } 6503 6504 #ifdef CONFIG_NUMA 6505 static int sched_domains_numa_levels; 6506 enum numa_topology_type sched_numa_topology_type; 6507 static int *sched_domains_numa_distance; 6508 int sched_max_numa_distance; 6509 static struct cpumask ***sched_domains_numa_masks; 6510 static int sched_domains_curr_level; 6511 #endif 6512 6513 /* 6514 * SD_flags allowed in topology descriptions. 6515 * 6516 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6517 * SD_SHARE_PKG_RESOURCES - describes shared caches 6518 * SD_NUMA - describes NUMA topologies 6519 * SD_SHARE_POWERDOMAIN - describes shared power domain 6520 * 6521 * Odd one out: 6522 * SD_ASYM_PACKING - describes SMT quirks 6523 */ 6524 #define TOPOLOGY_SD_FLAGS \ 6525 (SD_SHARE_CPUCAPACITY | \ 6526 SD_SHARE_PKG_RESOURCES | \ 6527 SD_NUMA | \ 6528 SD_ASYM_PACKING | \ 6529 SD_SHARE_POWERDOMAIN) 6530 6531 static struct sched_domain * 6532 sd_init(struct sched_domain_topology_level *tl, int cpu) 6533 { 6534 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6535 int sd_weight, sd_flags = 0; 6536 6537 #ifdef CONFIG_NUMA 6538 /* 6539 * Ugly hack to pass state to sd_numa_mask()... 6540 */ 6541 sched_domains_curr_level = tl->numa_level; 6542 #endif 6543 6544 sd_weight = cpumask_weight(tl->mask(cpu)); 6545 6546 if (tl->sd_flags) 6547 sd_flags = (*tl->sd_flags)(); 6548 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6549 "wrong sd_flags in topology description\n")) 6550 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6551 6552 *sd = (struct sched_domain){ 6553 .min_interval = sd_weight, 6554 .max_interval = 2*sd_weight, 6555 .busy_factor = 32, 6556 .imbalance_pct = 125, 6557 6558 .cache_nice_tries = 0, 6559 .busy_idx = 0, 6560 .idle_idx = 0, 6561 .newidle_idx = 0, 6562 .wake_idx = 0, 6563 .forkexec_idx = 0, 6564 6565 .flags = 1*SD_LOAD_BALANCE 6566 | 1*SD_BALANCE_NEWIDLE 6567 | 1*SD_BALANCE_EXEC 6568 | 1*SD_BALANCE_FORK 6569 | 0*SD_BALANCE_WAKE 6570 | 1*SD_WAKE_AFFINE 6571 | 0*SD_SHARE_CPUCAPACITY 6572 | 0*SD_SHARE_PKG_RESOURCES 6573 | 0*SD_SERIALIZE 6574 | 0*SD_PREFER_SIBLING 6575 | 0*SD_NUMA 6576 | sd_flags 6577 , 6578 6579 .last_balance = jiffies, 6580 .balance_interval = sd_weight, 6581 .smt_gain = 0, 6582 .max_newidle_lb_cost = 0, 6583 .next_decay_max_lb_cost = jiffies, 6584 #ifdef CONFIG_SCHED_DEBUG 6585 .name = tl->name, 6586 #endif 6587 }; 6588 6589 /* 6590 * Convert topological properties into behaviour. 6591 */ 6592 6593 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6594 sd->flags |= SD_PREFER_SIBLING; 6595 sd->imbalance_pct = 110; 6596 sd->smt_gain = 1178; /* ~15% */ 6597 6598 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6599 sd->imbalance_pct = 117; 6600 sd->cache_nice_tries = 1; 6601 sd->busy_idx = 2; 6602 6603 #ifdef CONFIG_NUMA 6604 } else if (sd->flags & SD_NUMA) { 6605 sd->cache_nice_tries = 2; 6606 sd->busy_idx = 3; 6607 sd->idle_idx = 2; 6608 6609 sd->flags |= SD_SERIALIZE; 6610 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6611 sd->flags &= ~(SD_BALANCE_EXEC | 6612 SD_BALANCE_FORK | 6613 SD_WAKE_AFFINE); 6614 } 6615 6616 #endif 6617 } else { 6618 sd->flags |= SD_PREFER_SIBLING; 6619 sd->cache_nice_tries = 1; 6620 sd->busy_idx = 2; 6621 sd->idle_idx = 1; 6622 } 6623 6624 sd->private = &tl->data; 6625 6626 return sd; 6627 } 6628 6629 /* 6630 * Topology list, bottom-up. 6631 */ 6632 static struct sched_domain_topology_level default_topology[] = { 6633 #ifdef CONFIG_SCHED_SMT 6634 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6635 #endif 6636 #ifdef CONFIG_SCHED_MC 6637 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6638 #endif 6639 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6640 { NULL, }, 6641 }; 6642 6643 static struct sched_domain_topology_level *sched_domain_topology = 6644 default_topology; 6645 6646 #define for_each_sd_topology(tl) \ 6647 for (tl = sched_domain_topology; tl->mask; tl++) 6648 6649 void set_sched_topology(struct sched_domain_topology_level *tl) 6650 { 6651 sched_domain_topology = tl; 6652 } 6653 6654 #ifdef CONFIG_NUMA 6655 6656 static const struct cpumask *sd_numa_mask(int cpu) 6657 { 6658 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6659 } 6660 6661 static void sched_numa_warn(const char *str) 6662 { 6663 static int done = false; 6664 int i,j; 6665 6666 if (done) 6667 return; 6668 6669 done = true; 6670 6671 printk(KERN_WARNING "ERROR: %s\n\n", str); 6672 6673 for (i = 0; i < nr_node_ids; i++) { 6674 printk(KERN_WARNING " "); 6675 for (j = 0; j < nr_node_ids; j++) 6676 printk(KERN_CONT "%02d ", node_distance(i,j)); 6677 printk(KERN_CONT "\n"); 6678 } 6679 printk(KERN_WARNING "\n"); 6680 } 6681 6682 bool find_numa_distance(int distance) 6683 { 6684 int i; 6685 6686 if (distance == node_distance(0, 0)) 6687 return true; 6688 6689 for (i = 0; i < sched_domains_numa_levels; i++) { 6690 if (sched_domains_numa_distance[i] == distance) 6691 return true; 6692 } 6693 6694 return false; 6695 } 6696 6697 /* 6698 * A system can have three types of NUMA topology: 6699 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 6700 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 6701 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 6702 * 6703 * The difference between a glueless mesh topology and a backplane 6704 * topology lies in whether communication between not directly 6705 * connected nodes goes through intermediary nodes (where programs 6706 * could run), or through backplane controllers. This affects 6707 * placement of programs. 6708 * 6709 * The type of topology can be discerned with the following tests: 6710 * - If the maximum distance between any nodes is 1 hop, the system 6711 * is directly connected. 6712 * - If for two nodes A and B, located N > 1 hops away from each other, 6713 * there is an intermediary node C, which is < N hops away from both 6714 * nodes A and B, the system is a glueless mesh. 6715 */ 6716 static void init_numa_topology_type(void) 6717 { 6718 int a, b, c, n; 6719 6720 n = sched_max_numa_distance; 6721 6722 if (sched_domains_numa_levels <= 1) { 6723 sched_numa_topology_type = NUMA_DIRECT; 6724 return; 6725 } 6726 6727 for_each_online_node(a) { 6728 for_each_online_node(b) { 6729 /* Find two nodes furthest removed from each other. */ 6730 if (node_distance(a, b) < n) 6731 continue; 6732 6733 /* Is there an intermediary node between a and b? */ 6734 for_each_online_node(c) { 6735 if (node_distance(a, c) < n && 6736 node_distance(b, c) < n) { 6737 sched_numa_topology_type = 6738 NUMA_GLUELESS_MESH; 6739 return; 6740 } 6741 } 6742 6743 sched_numa_topology_type = NUMA_BACKPLANE; 6744 return; 6745 } 6746 } 6747 } 6748 6749 static void sched_init_numa(void) 6750 { 6751 int next_distance, curr_distance = node_distance(0, 0); 6752 struct sched_domain_topology_level *tl; 6753 int level = 0; 6754 int i, j, k; 6755 6756 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6757 if (!sched_domains_numa_distance) 6758 return; 6759 6760 /* 6761 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6762 * unique distances in the node_distance() table. 6763 * 6764 * Assumes node_distance(0,j) includes all distances in 6765 * node_distance(i,j) in order to avoid cubic time. 6766 */ 6767 next_distance = curr_distance; 6768 for (i = 0; i < nr_node_ids; i++) { 6769 for (j = 0; j < nr_node_ids; j++) { 6770 for (k = 0; k < nr_node_ids; k++) { 6771 int distance = node_distance(i, k); 6772 6773 if (distance > curr_distance && 6774 (distance < next_distance || 6775 next_distance == curr_distance)) 6776 next_distance = distance; 6777 6778 /* 6779 * While not a strong assumption it would be nice to know 6780 * about cases where if node A is connected to B, B is not 6781 * equally connected to A. 6782 */ 6783 if (sched_debug() && node_distance(k, i) != distance) 6784 sched_numa_warn("Node-distance not symmetric"); 6785 6786 if (sched_debug() && i && !find_numa_distance(distance)) 6787 sched_numa_warn("Node-0 not representative"); 6788 } 6789 if (next_distance != curr_distance) { 6790 sched_domains_numa_distance[level++] = next_distance; 6791 sched_domains_numa_levels = level; 6792 curr_distance = next_distance; 6793 } else break; 6794 } 6795 6796 /* 6797 * In case of sched_debug() we verify the above assumption. 6798 */ 6799 if (!sched_debug()) 6800 break; 6801 } 6802 6803 if (!level) 6804 return; 6805 6806 /* 6807 * 'level' contains the number of unique distances, excluding the 6808 * identity distance node_distance(i,i). 6809 * 6810 * The sched_domains_numa_distance[] array includes the actual distance 6811 * numbers. 6812 */ 6813 6814 /* 6815 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6816 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6817 * the array will contain less then 'level' members. This could be 6818 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6819 * in other functions. 6820 * 6821 * We reset it to 'level' at the end of this function. 6822 */ 6823 sched_domains_numa_levels = 0; 6824 6825 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6826 if (!sched_domains_numa_masks) 6827 return; 6828 6829 /* 6830 * Now for each level, construct a mask per node which contains all 6831 * cpus of nodes that are that many hops away from us. 6832 */ 6833 for (i = 0; i < level; i++) { 6834 sched_domains_numa_masks[i] = 6835 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6836 if (!sched_domains_numa_masks[i]) 6837 return; 6838 6839 for (j = 0; j < nr_node_ids; j++) { 6840 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6841 if (!mask) 6842 return; 6843 6844 sched_domains_numa_masks[i][j] = mask; 6845 6846 for_each_node(k) { 6847 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6848 continue; 6849 6850 cpumask_or(mask, mask, cpumask_of_node(k)); 6851 } 6852 } 6853 } 6854 6855 /* Compute default topology size */ 6856 for (i = 0; sched_domain_topology[i].mask; i++); 6857 6858 tl = kzalloc((i + level + 1) * 6859 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6860 if (!tl) 6861 return; 6862 6863 /* 6864 * Copy the default topology bits.. 6865 */ 6866 for (i = 0; sched_domain_topology[i].mask; i++) 6867 tl[i] = sched_domain_topology[i]; 6868 6869 /* 6870 * .. and append 'j' levels of NUMA goodness. 6871 */ 6872 for (j = 0; j < level; i++, j++) { 6873 tl[i] = (struct sched_domain_topology_level){ 6874 .mask = sd_numa_mask, 6875 .sd_flags = cpu_numa_flags, 6876 .flags = SDTL_OVERLAP, 6877 .numa_level = j, 6878 SD_INIT_NAME(NUMA) 6879 }; 6880 } 6881 6882 sched_domain_topology = tl; 6883 6884 sched_domains_numa_levels = level; 6885 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 6886 6887 init_numa_topology_type(); 6888 } 6889 6890 static void sched_domains_numa_masks_set(int cpu) 6891 { 6892 int i, j; 6893 int node = cpu_to_node(cpu); 6894 6895 for (i = 0; i < sched_domains_numa_levels; i++) { 6896 for (j = 0; j < nr_node_ids; j++) { 6897 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6898 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6899 } 6900 } 6901 } 6902 6903 static void sched_domains_numa_masks_clear(int cpu) 6904 { 6905 int i, j; 6906 for (i = 0; i < sched_domains_numa_levels; i++) { 6907 for (j = 0; j < nr_node_ids; j++) 6908 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6909 } 6910 } 6911 6912 /* 6913 * Update sched_domains_numa_masks[level][node] array when new cpus 6914 * are onlined. 6915 */ 6916 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6917 unsigned long action, 6918 void *hcpu) 6919 { 6920 int cpu = (long)hcpu; 6921 6922 switch (action & ~CPU_TASKS_FROZEN) { 6923 case CPU_ONLINE: 6924 sched_domains_numa_masks_set(cpu); 6925 break; 6926 6927 case CPU_DEAD: 6928 sched_domains_numa_masks_clear(cpu); 6929 break; 6930 6931 default: 6932 return NOTIFY_DONE; 6933 } 6934 6935 return NOTIFY_OK; 6936 } 6937 #else 6938 static inline void sched_init_numa(void) 6939 { 6940 } 6941 6942 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6943 unsigned long action, 6944 void *hcpu) 6945 { 6946 return 0; 6947 } 6948 #endif /* CONFIG_NUMA */ 6949 6950 static int __sdt_alloc(const struct cpumask *cpu_map) 6951 { 6952 struct sched_domain_topology_level *tl; 6953 int j; 6954 6955 for_each_sd_topology(tl) { 6956 struct sd_data *sdd = &tl->data; 6957 6958 sdd->sd = alloc_percpu(struct sched_domain *); 6959 if (!sdd->sd) 6960 return -ENOMEM; 6961 6962 sdd->sg = alloc_percpu(struct sched_group *); 6963 if (!sdd->sg) 6964 return -ENOMEM; 6965 6966 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6967 if (!sdd->sgc) 6968 return -ENOMEM; 6969 6970 for_each_cpu(j, cpu_map) { 6971 struct sched_domain *sd; 6972 struct sched_group *sg; 6973 struct sched_group_capacity *sgc; 6974 6975 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6976 GFP_KERNEL, cpu_to_node(j)); 6977 if (!sd) 6978 return -ENOMEM; 6979 6980 *per_cpu_ptr(sdd->sd, j) = sd; 6981 6982 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6983 GFP_KERNEL, cpu_to_node(j)); 6984 if (!sg) 6985 return -ENOMEM; 6986 6987 sg->next = sg; 6988 6989 *per_cpu_ptr(sdd->sg, j) = sg; 6990 6991 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6992 GFP_KERNEL, cpu_to_node(j)); 6993 if (!sgc) 6994 return -ENOMEM; 6995 6996 *per_cpu_ptr(sdd->sgc, j) = sgc; 6997 } 6998 } 6999 7000 return 0; 7001 } 7002 7003 static void __sdt_free(const struct cpumask *cpu_map) 7004 { 7005 struct sched_domain_topology_level *tl; 7006 int j; 7007 7008 for_each_sd_topology(tl) { 7009 struct sd_data *sdd = &tl->data; 7010 7011 for_each_cpu(j, cpu_map) { 7012 struct sched_domain *sd; 7013 7014 if (sdd->sd) { 7015 sd = *per_cpu_ptr(sdd->sd, j); 7016 if (sd && (sd->flags & SD_OVERLAP)) 7017 free_sched_groups(sd->groups, 0); 7018 kfree(*per_cpu_ptr(sdd->sd, j)); 7019 } 7020 7021 if (sdd->sg) 7022 kfree(*per_cpu_ptr(sdd->sg, j)); 7023 if (sdd->sgc) 7024 kfree(*per_cpu_ptr(sdd->sgc, j)); 7025 } 7026 free_percpu(sdd->sd); 7027 sdd->sd = NULL; 7028 free_percpu(sdd->sg); 7029 sdd->sg = NULL; 7030 free_percpu(sdd->sgc); 7031 sdd->sgc = NULL; 7032 } 7033 } 7034 7035 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 7036 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 7037 struct sched_domain *child, int cpu) 7038 { 7039 struct sched_domain *sd = sd_init(tl, cpu); 7040 if (!sd) 7041 return child; 7042 7043 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 7044 if (child) { 7045 sd->level = child->level + 1; 7046 sched_domain_level_max = max(sched_domain_level_max, sd->level); 7047 child->parent = sd; 7048 sd->child = child; 7049 7050 if (!cpumask_subset(sched_domain_span(child), 7051 sched_domain_span(sd))) { 7052 pr_err("BUG: arch topology borken\n"); 7053 #ifdef CONFIG_SCHED_DEBUG 7054 pr_err(" the %s domain not a subset of the %s domain\n", 7055 child->name, sd->name); 7056 #endif 7057 /* Fixup, ensure @sd has at least @child cpus. */ 7058 cpumask_or(sched_domain_span(sd), 7059 sched_domain_span(sd), 7060 sched_domain_span(child)); 7061 } 7062 7063 } 7064 set_domain_attribute(sd, attr); 7065 7066 return sd; 7067 } 7068 7069 /* 7070 * Build sched domains for a given set of cpus and attach the sched domains 7071 * to the individual cpus 7072 */ 7073 static int build_sched_domains(const struct cpumask *cpu_map, 7074 struct sched_domain_attr *attr) 7075 { 7076 enum s_alloc alloc_state; 7077 struct sched_domain *sd; 7078 struct s_data d; 7079 int i, ret = -ENOMEM; 7080 7081 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 7082 if (alloc_state != sa_rootdomain) 7083 goto error; 7084 7085 /* Set up domains for cpus specified by the cpu_map. */ 7086 for_each_cpu(i, cpu_map) { 7087 struct sched_domain_topology_level *tl; 7088 7089 sd = NULL; 7090 for_each_sd_topology(tl) { 7091 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 7092 if (tl == sched_domain_topology) 7093 *per_cpu_ptr(d.sd, i) = sd; 7094 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 7095 sd->flags |= SD_OVERLAP; 7096 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 7097 break; 7098 } 7099 } 7100 7101 /* Build the groups for the domains */ 7102 for_each_cpu(i, cpu_map) { 7103 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 7104 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 7105 if (sd->flags & SD_OVERLAP) { 7106 if (build_overlap_sched_groups(sd, i)) 7107 goto error; 7108 } else { 7109 if (build_sched_groups(sd, i)) 7110 goto error; 7111 } 7112 } 7113 } 7114 7115 /* Calculate CPU capacity for physical packages and nodes */ 7116 for (i = nr_cpumask_bits-1; i >= 0; i--) { 7117 if (!cpumask_test_cpu(i, cpu_map)) 7118 continue; 7119 7120 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 7121 claim_allocations(i, sd); 7122 init_sched_groups_capacity(i, sd); 7123 } 7124 } 7125 7126 /* Attach the domains */ 7127 rcu_read_lock(); 7128 for_each_cpu(i, cpu_map) { 7129 sd = *per_cpu_ptr(d.sd, i); 7130 cpu_attach_domain(sd, d.rd, i); 7131 } 7132 rcu_read_unlock(); 7133 7134 ret = 0; 7135 error: 7136 __free_domain_allocs(&d, alloc_state, cpu_map); 7137 return ret; 7138 } 7139 7140 static cpumask_var_t *doms_cur; /* current sched domains */ 7141 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 7142 static struct sched_domain_attr *dattr_cur; 7143 /* attribues of custom domains in 'doms_cur' */ 7144 7145 /* 7146 * Special case: If a kmalloc of a doms_cur partition (array of 7147 * cpumask) fails, then fallback to a single sched domain, 7148 * as determined by the single cpumask fallback_doms. 7149 */ 7150 static cpumask_var_t fallback_doms; 7151 7152 /* 7153 * arch_update_cpu_topology lets virtualized architectures update the 7154 * cpu core maps. It is supposed to return 1 if the topology changed 7155 * or 0 if it stayed the same. 7156 */ 7157 int __weak arch_update_cpu_topology(void) 7158 { 7159 return 0; 7160 } 7161 7162 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 7163 { 7164 int i; 7165 cpumask_var_t *doms; 7166 7167 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 7168 if (!doms) 7169 return NULL; 7170 for (i = 0; i < ndoms; i++) { 7171 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 7172 free_sched_domains(doms, i); 7173 return NULL; 7174 } 7175 } 7176 return doms; 7177 } 7178 7179 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 7180 { 7181 unsigned int i; 7182 for (i = 0; i < ndoms; i++) 7183 free_cpumask_var(doms[i]); 7184 kfree(doms); 7185 } 7186 7187 /* 7188 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 7189 * For now this just excludes isolated cpus, but could be used to 7190 * exclude other special cases in the future. 7191 */ 7192 static int init_sched_domains(const struct cpumask *cpu_map) 7193 { 7194 int err; 7195 7196 arch_update_cpu_topology(); 7197 ndoms_cur = 1; 7198 doms_cur = alloc_sched_domains(ndoms_cur); 7199 if (!doms_cur) 7200 doms_cur = &fallback_doms; 7201 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 7202 err = build_sched_domains(doms_cur[0], NULL); 7203 register_sched_domain_sysctl(); 7204 7205 return err; 7206 } 7207 7208 /* 7209 * Detach sched domains from a group of cpus specified in cpu_map 7210 * These cpus will now be attached to the NULL domain 7211 */ 7212 static void detach_destroy_domains(const struct cpumask *cpu_map) 7213 { 7214 int i; 7215 7216 rcu_read_lock(); 7217 for_each_cpu(i, cpu_map) 7218 cpu_attach_domain(NULL, &def_root_domain, i); 7219 rcu_read_unlock(); 7220 } 7221 7222 /* handle null as "default" */ 7223 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 7224 struct sched_domain_attr *new, int idx_new) 7225 { 7226 struct sched_domain_attr tmp; 7227 7228 /* fast path */ 7229 if (!new && !cur) 7230 return 1; 7231 7232 tmp = SD_ATTR_INIT; 7233 return !memcmp(cur ? (cur + idx_cur) : &tmp, 7234 new ? (new + idx_new) : &tmp, 7235 sizeof(struct sched_domain_attr)); 7236 } 7237 7238 /* 7239 * Partition sched domains as specified by the 'ndoms_new' 7240 * cpumasks in the array doms_new[] of cpumasks. This compares 7241 * doms_new[] to the current sched domain partitioning, doms_cur[]. 7242 * It destroys each deleted domain and builds each new domain. 7243 * 7244 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 7245 * The masks don't intersect (don't overlap.) We should setup one 7246 * sched domain for each mask. CPUs not in any of the cpumasks will 7247 * not be load balanced. If the same cpumask appears both in the 7248 * current 'doms_cur' domains and in the new 'doms_new', we can leave 7249 * it as it is. 7250 * 7251 * The passed in 'doms_new' should be allocated using 7252 * alloc_sched_domains. This routine takes ownership of it and will 7253 * free_sched_domains it when done with it. If the caller failed the 7254 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 7255 * and partition_sched_domains() will fallback to the single partition 7256 * 'fallback_doms', it also forces the domains to be rebuilt. 7257 * 7258 * If doms_new == NULL it will be replaced with cpu_online_mask. 7259 * ndoms_new == 0 is a special case for destroying existing domains, 7260 * and it will not create the default domain. 7261 * 7262 * Call with hotplug lock held 7263 */ 7264 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 7265 struct sched_domain_attr *dattr_new) 7266 { 7267 int i, j, n; 7268 int new_topology; 7269 7270 mutex_lock(&sched_domains_mutex); 7271 7272 /* always unregister in case we don't destroy any domains */ 7273 unregister_sched_domain_sysctl(); 7274 7275 /* Let architecture update cpu core mappings. */ 7276 new_topology = arch_update_cpu_topology(); 7277 7278 n = doms_new ? ndoms_new : 0; 7279 7280 /* Destroy deleted domains */ 7281 for (i = 0; i < ndoms_cur; i++) { 7282 for (j = 0; j < n && !new_topology; j++) { 7283 if (cpumask_equal(doms_cur[i], doms_new[j]) 7284 && dattrs_equal(dattr_cur, i, dattr_new, j)) 7285 goto match1; 7286 } 7287 /* no match - a current sched domain not in new doms_new[] */ 7288 detach_destroy_domains(doms_cur[i]); 7289 match1: 7290 ; 7291 } 7292 7293 n = ndoms_cur; 7294 if (doms_new == NULL) { 7295 n = 0; 7296 doms_new = &fallback_doms; 7297 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 7298 WARN_ON_ONCE(dattr_new); 7299 } 7300 7301 /* Build new domains */ 7302 for (i = 0; i < ndoms_new; i++) { 7303 for (j = 0; j < n && !new_topology; j++) { 7304 if (cpumask_equal(doms_new[i], doms_cur[j]) 7305 && dattrs_equal(dattr_new, i, dattr_cur, j)) 7306 goto match2; 7307 } 7308 /* no match - add a new doms_new */ 7309 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 7310 match2: 7311 ; 7312 } 7313 7314 /* Remember the new sched domains */ 7315 if (doms_cur != &fallback_doms) 7316 free_sched_domains(doms_cur, ndoms_cur); 7317 kfree(dattr_cur); /* kfree(NULL) is safe */ 7318 doms_cur = doms_new; 7319 dattr_cur = dattr_new; 7320 ndoms_cur = ndoms_new; 7321 7322 register_sched_domain_sysctl(); 7323 7324 mutex_unlock(&sched_domains_mutex); 7325 } 7326 7327 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 7328 7329 /* 7330 * Update cpusets according to cpu_active mask. If cpusets are 7331 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7332 * around partition_sched_domains(). 7333 * 7334 * If we come here as part of a suspend/resume, don't touch cpusets because we 7335 * want to restore it back to its original state upon resume anyway. 7336 */ 7337 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 7338 void *hcpu) 7339 { 7340 switch (action) { 7341 case CPU_ONLINE_FROZEN: 7342 case CPU_DOWN_FAILED_FROZEN: 7343 7344 /* 7345 * num_cpus_frozen tracks how many CPUs are involved in suspend 7346 * resume sequence. As long as this is not the last online 7347 * operation in the resume sequence, just build a single sched 7348 * domain, ignoring cpusets. 7349 */ 7350 num_cpus_frozen--; 7351 if (likely(num_cpus_frozen)) { 7352 partition_sched_domains(1, NULL, NULL); 7353 break; 7354 } 7355 7356 /* 7357 * This is the last CPU online operation. So fall through and 7358 * restore the original sched domains by considering the 7359 * cpuset configurations. 7360 */ 7361 7362 case CPU_ONLINE: 7363 cpuset_update_active_cpus(true); 7364 break; 7365 default: 7366 return NOTIFY_DONE; 7367 } 7368 return NOTIFY_OK; 7369 } 7370 7371 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 7372 void *hcpu) 7373 { 7374 unsigned long flags; 7375 long cpu = (long)hcpu; 7376 struct dl_bw *dl_b; 7377 bool overflow; 7378 int cpus; 7379 7380 switch (action) { 7381 case CPU_DOWN_PREPARE: 7382 rcu_read_lock_sched(); 7383 dl_b = dl_bw_of(cpu); 7384 7385 raw_spin_lock_irqsave(&dl_b->lock, flags); 7386 cpus = dl_bw_cpus(cpu); 7387 overflow = __dl_overflow(dl_b, cpus, 0, 0); 7388 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7389 7390 rcu_read_unlock_sched(); 7391 7392 if (overflow) 7393 return notifier_from_errno(-EBUSY); 7394 cpuset_update_active_cpus(false); 7395 break; 7396 case CPU_DOWN_PREPARE_FROZEN: 7397 num_cpus_frozen++; 7398 partition_sched_domains(1, NULL, NULL); 7399 break; 7400 default: 7401 return NOTIFY_DONE; 7402 } 7403 return NOTIFY_OK; 7404 } 7405 7406 void __init sched_init_smp(void) 7407 { 7408 cpumask_var_t non_isolated_cpus; 7409 7410 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 7411 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 7412 7413 sched_init_numa(); 7414 7415 /* 7416 * There's no userspace yet to cause hotplug operations; hence all the 7417 * cpu masks are stable and all blatant races in the below code cannot 7418 * happen. 7419 */ 7420 mutex_lock(&sched_domains_mutex); 7421 init_sched_domains(cpu_active_mask); 7422 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 7423 if (cpumask_empty(non_isolated_cpus)) 7424 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 7425 mutex_unlock(&sched_domains_mutex); 7426 7427 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 7428 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 7429 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 7430 7431 init_hrtick(); 7432 7433 /* Move init over to a non-isolated CPU */ 7434 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 7435 BUG(); 7436 sched_init_granularity(); 7437 free_cpumask_var(non_isolated_cpus); 7438 7439 init_sched_rt_class(); 7440 init_sched_dl_class(); 7441 } 7442 #else 7443 void __init sched_init_smp(void) 7444 { 7445 sched_init_granularity(); 7446 } 7447 #endif /* CONFIG_SMP */ 7448 7449 int in_sched_functions(unsigned long addr) 7450 { 7451 return in_lock_functions(addr) || 7452 (addr >= (unsigned long)__sched_text_start 7453 && addr < (unsigned long)__sched_text_end); 7454 } 7455 7456 #ifdef CONFIG_CGROUP_SCHED 7457 /* 7458 * Default task group. 7459 * Every task in system belongs to this group at bootup. 7460 */ 7461 struct task_group root_task_group; 7462 LIST_HEAD(task_groups); 7463 7464 /* Cacheline aligned slab cache for task_group */ 7465 static struct kmem_cache *task_group_cache __read_mostly; 7466 #endif 7467 7468 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 7469 7470 void __init sched_init(void) 7471 { 7472 int i, j; 7473 unsigned long alloc_size = 0, ptr; 7474 7475 #ifdef CONFIG_FAIR_GROUP_SCHED 7476 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7477 #endif 7478 #ifdef CONFIG_RT_GROUP_SCHED 7479 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7480 #endif 7481 if (alloc_size) { 7482 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7483 7484 #ifdef CONFIG_FAIR_GROUP_SCHED 7485 root_task_group.se = (struct sched_entity **)ptr; 7486 ptr += nr_cpu_ids * sizeof(void **); 7487 7488 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7489 ptr += nr_cpu_ids * sizeof(void **); 7490 7491 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7492 #ifdef CONFIG_RT_GROUP_SCHED 7493 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7494 ptr += nr_cpu_ids * sizeof(void **); 7495 7496 root_task_group.rt_rq = (struct rt_rq **)ptr; 7497 ptr += nr_cpu_ids * sizeof(void **); 7498 7499 #endif /* CONFIG_RT_GROUP_SCHED */ 7500 } 7501 #ifdef CONFIG_CPUMASK_OFFSTACK 7502 for_each_possible_cpu(i) { 7503 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 7504 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7505 } 7506 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7507 7508 init_rt_bandwidth(&def_rt_bandwidth, 7509 global_rt_period(), global_rt_runtime()); 7510 init_dl_bandwidth(&def_dl_bandwidth, 7511 global_rt_period(), global_rt_runtime()); 7512 7513 #ifdef CONFIG_SMP 7514 init_defrootdomain(); 7515 #endif 7516 7517 #ifdef CONFIG_RT_GROUP_SCHED 7518 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7519 global_rt_period(), global_rt_runtime()); 7520 #endif /* CONFIG_RT_GROUP_SCHED */ 7521 7522 #ifdef CONFIG_CGROUP_SCHED 7523 task_group_cache = KMEM_CACHE(task_group, 0); 7524 7525 list_add(&root_task_group.list, &task_groups); 7526 INIT_LIST_HEAD(&root_task_group.children); 7527 INIT_LIST_HEAD(&root_task_group.siblings); 7528 autogroup_init(&init_task); 7529 #endif /* CONFIG_CGROUP_SCHED */ 7530 7531 for_each_possible_cpu(i) { 7532 struct rq *rq; 7533 7534 rq = cpu_rq(i); 7535 raw_spin_lock_init(&rq->lock); 7536 rq->nr_running = 0; 7537 rq->calc_load_active = 0; 7538 rq->calc_load_update = jiffies + LOAD_FREQ; 7539 init_cfs_rq(&rq->cfs); 7540 init_rt_rq(&rq->rt); 7541 init_dl_rq(&rq->dl); 7542 #ifdef CONFIG_FAIR_GROUP_SCHED 7543 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7544 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7545 /* 7546 * How much cpu bandwidth does root_task_group get? 7547 * 7548 * In case of task-groups formed thr' the cgroup filesystem, it 7549 * gets 100% of the cpu resources in the system. This overall 7550 * system cpu resource is divided among the tasks of 7551 * root_task_group and its child task-groups in a fair manner, 7552 * based on each entity's (task or task-group's) weight 7553 * (se->load.weight). 7554 * 7555 * In other words, if root_task_group has 10 tasks of weight 7556 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7557 * then A0's share of the cpu resource is: 7558 * 7559 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7560 * 7561 * We achieve this by letting root_task_group's tasks sit 7562 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7563 */ 7564 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7565 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7566 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7567 7568 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7569 #ifdef CONFIG_RT_GROUP_SCHED 7570 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7571 #endif 7572 7573 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7574 rq->cpu_load[j] = 0; 7575 7576 rq->last_load_update_tick = jiffies; 7577 7578 #ifdef CONFIG_SMP 7579 rq->sd = NULL; 7580 rq->rd = NULL; 7581 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 7582 rq->balance_callback = NULL; 7583 rq->active_balance = 0; 7584 rq->next_balance = jiffies; 7585 rq->push_cpu = 0; 7586 rq->cpu = i; 7587 rq->online = 0; 7588 rq->idle_stamp = 0; 7589 rq->avg_idle = 2*sysctl_sched_migration_cost; 7590 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7591 7592 INIT_LIST_HEAD(&rq->cfs_tasks); 7593 7594 rq_attach_root(rq, &def_root_domain); 7595 #ifdef CONFIG_NO_HZ_COMMON 7596 rq->nohz_flags = 0; 7597 #endif 7598 #ifdef CONFIG_NO_HZ_FULL 7599 rq->last_sched_tick = 0; 7600 #endif 7601 #endif 7602 init_rq_hrtick(rq); 7603 atomic_set(&rq->nr_iowait, 0); 7604 } 7605 7606 set_load_weight(&init_task); 7607 7608 #ifdef CONFIG_PREEMPT_NOTIFIERS 7609 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7610 #endif 7611 7612 /* 7613 * The boot idle thread does lazy MMU switching as well: 7614 */ 7615 atomic_inc(&init_mm.mm_count); 7616 enter_lazy_tlb(&init_mm, current); 7617 7618 /* 7619 * During early bootup we pretend to be a normal task: 7620 */ 7621 current->sched_class = &fair_sched_class; 7622 7623 /* 7624 * Make us the idle thread. Technically, schedule() should not be 7625 * called from this thread, however somewhere below it might be, 7626 * but because we are the idle thread, we just pick up running again 7627 * when this runqueue becomes "idle". 7628 */ 7629 init_idle(current, smp_processor_id()); 7630 7631 calc_load_update = jiffies + LOAD_FREQ; 7632 7633 #ifdef CONFIG_SMP 7634 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7635 /* May be allocated at isolcpus cmdline parse time */ 7636 if (cpu_isolated_map == NULL) 7637 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7638 idle_thread_set_boot_cpu(); 7639 set_cpu_rq_start_time(); 7640 #endif 7641 init_sched_fair_class(); 7642 7643 scheduler_running = 1; 7644 } 7645 7646 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7647 static inline int preempt_count_equals(int preempt_offset) 7648 { 7649 int nested = preempt_count() + rcu_preempt_depth(); 7650 7651 return (nested == preempt_offset); 7652 } 7653 7654 void __might_sleep(const char *file, int line, int preempt_offset) 7655 { 7656 /* 7657 * Blocking primitives will set (and therefore destroy) current->state, 7658 * since we will exit with TASK_RUNNING make sure we enter with it, 7659 * otherwise we will destroy state. 7660 */ 7661 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 7662 "do not call blocking ops when !TASK_RUNNING; " 7663 "state=%lx set at [<%p>] %pS\n", 7664 current->state, 7665 (void *)current->task_state_change, 7666 (void *)current->task_state_change); 7667 7668 ___might_sleep(file, line, preempt_offset); 7669 } 7670 EXPORT_SYMBOL(__might_sleep); 7671 7672 void ___might_sleep(const char *file, int line, int preempt_offset) 7673 { 7674 static unsigned long prev_jiffy; /* ratelimiting */ 7675 7676 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7677 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7678 !is_idle_task(current)) || 7679 system_state != SYSTEM_RUNNING || oops_in_progress) 7680 return; 7681 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7682 return; 7683 prev_jiffy = jiffies; 7684 7685 printk(KERN_ERR 7686 "BUG: sleeping function called from invalid context at %s:%d\n", 7687 file, line); 7688 printk(KERN_ERR 7689 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7690 in_atomic(), irqs_disabled(), 7691 current->pid, current->comm); 7692 7693 if (task_stack_end_corrupted(current)) 7694 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 7695 7696 debug_show_held_locks(current); 7697 if (irqs_disabled()) 7698 print_irqtrace_events(current); 7699 #ifdef CONFIG_DEBUG_PREEMPT 7700 if (!preempt_count_equals(preempt_offset)) { 7701 pr_err("Preemption disabled at:"); 7702 print_ip_sym(current->preempt_disable_ip); 7703 pr_cont("\n"); 7704 } 7705 #endif 7706 dump_stack(); 7707 } 7708 EXPORT_SYMBOL(___might_sleep); 7709 #endif 7710 7711 #ifdef CONFIG_MAGIC_SYSRQ 7712 void normalize_rt_tasks(void) 7713 { 7714 struct task_struct *g, *p; 7715 struct sched_attr attr = { 7716 .sched_policy = SCHED_NORMAL, 7717 }; 7718 7719 read_lock(&tasklist_lock); 7720 for_each_process_thread(g, p) { 7721 /* 7722 * Only normalize user tasks: 7723 */ 7724 if (p->flags & PF_KTHREAD) 7725 continue; 7726 7727 p->se.exec_start = 0; 7728 #ifdef CONFIG_SCHEDSTATS 7729 p->se.statistics.wait_start = 0; 7730 p->se.statistics.sleep_start = 0; 7731 p->se.statistics.block_start = 0; 7732 #endif 7733 7734 if (!dl_task(p) && !rt_task(p)) { 7735 /* 7736 * Renice negative nice level userspace 7737 * tasks back to 0: 7738 */ 7739 if (task_nice(p) < 0) 7740 set_user_nice(p, 0); 7741 continue; 7742 } 7743 7744 __sched_setscheduler(p, &attr, false, false); 7745 } 7746 read_unlock(&tasklist_lock); 7747 } 7748 7749 #endif /* CONFIG_MAGIC_SYSRQ */ 7750 7751 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7752 /* 7753 * These functions are only useful for the IA64 MCA handling, or kdb. 7754 * 7755 * They can only be called when the whole system has been 7756 * stopped - every CPU needs to be quiescent, and no scheduling 7757 * activity can take place. Using them for anything else would 7758 * be a serious bug, and as a result, they aren't even visible 7759 * under any other configuration. 7760 */ 7761 7762 /** 7763 * curr_task - return the current task for a given cpu. 7764 * @cpu: the processor in question. 7765 * 7766 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7767 * 7768 * Return: The current task for @cpu. 7769 */ 7770 struct task_struct *curr_task(int cpu) 7771 { 7772 return cpu_curr(cpu); 7773 } 7774 7775 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7776 7777 #ifdef CONFIG_IA64 7778 /** 7779 * set_curr_task - set the current task for a given cpu. 7780 * @cpu: the processor in question. 7781 * @p: the task pointer to set. 7782 * 7783 * Description: This function must only be used when non-maskable interrupts 7784 * are serviced on a separate stack. It allows the architecture to switch the 7785 * notion of the current task on a cpu in a non-blocking manner. This function 7786 * must be called with all CPU's synchronized, and interrupts disabled, the 7787 * and caller must save the original value of the current task (see 7788 * curr_task() above) and restore that value before reenabling interrupts and 7789 * re-starting the system. 7790 * 7791 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7792 */ 7793 void set_curr_task(int cpu, struct task_struct *p) 7794 { 7795 cpu_curr(cpu) = p; 7796 } 7797 7798 #endif 7799 7800 #ifdef CONFIG_CGROUP_SCHED 7801 /* task_group_lock serializes the addition/removal of task groups */ 7802 static DEFINE_SPINLOCK(task_group_lock); 7803 7804 static void free_sched_group(struct task_group *tg) 7805 { 7806 free_fair_sched_group(tg); 7807 free_rt_sched_group(tg); 7808 autogroup_free(tg); 7809 kmem_cache_free(task_group_cache, tg); 7810 } 7811 7812 /* allocate runqueue etc for a new task group */ 7813 struct task_group *sched_create_group(struct task_group *parent) 7814 { 7815 struct task_group *tg; 7816 7817 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 7818 if (!tg) 7819 return ERR_PTR(-ENOMEM); 7820 7821 if (!alloc_fair_sched_group(tg, parent)) 7822 goto err; 7823 7824 if (!alloc_rt_sched_group(tg, parent)) 7825 goto err; 7826 7827 return tg; 7828 7829 err: 7830 free_sched_group(tg); 7831 return ERR_PTR(-ENOMEM); 7832 } 7833 7834 void sched_online_group(struct task_group *tg, struct task_group *parent) 7835 { 7836 unsigned long flags; 7837 7838 spin_lock_irqsave(&task_group_lock, flags); 7839 list_add_rcu(&tg->list, &task_groups); 7840 7841 WARN_ON(!parent); /* root should already exist */ 7842 7843 tg->parent = parent; 7844 INIT_LIST_HEAD(&tg->children); 7845 list_add_rcu(&tg->siblings, &parent->children); 7846 spin_unlock_irqrestore(&task_group_lock, flags); 7847 } 7848 7849 /* rcu callback to free various structures associated with a task group */ 7850 static void free_sched_group_rcu(struct rcu_head *rhp) 7851 { 7852 /* now it should be safe to free those cfs_rqs */ 7853 free_sched_group(container_of(rhp, struct task_group, rcu)); 7854 } 7855 7856 /* Destroy runqueue etc associated with a task group */ 7857 void sched_destroy_group(struct task_group *tg) 7858 { 7859 /* wait for possible concurrent references to cfs_rqs complete */ 7860 call_rcu(&tg->rcu, free_sched_group_rcu); 7861 } 7862 7863 void sched_offline_group(struct task_group *tg) 7864 { 7865 unsigned long flags; 7866 int i; 7867 7868 /* end participation in shares distribution */ 7869 for_each_possible_cpu(i) 7870 unregister_fair_sched_group(tg, i); 7871 7872 spin_lock_irqsave(&task_group_lock, flags); 7873 list_del_rcu(&tg->list); 7874 list_del_rcu(&tg->siblings); 7875 spin_unlock_irqrestore(&task_group_lock, flags); 7876 } 7877 7878 /* change task's runqueue when it moves between groups. 7879 * The caller of this function should have put the task in its new group 7880 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7881 * reflect its new group. 7882 */ 7883 void sched_move_task(struct task_struct *tsk) 7884 { 7885 struct task_group *tg; 7886 int queued, running; 7887 unsigned long flags; 7888 struct rq *rq; 7889 7890 rq = task_rq_lock(tsk, &flags); 7891 7892 running = task_current(rq, tsk); 7893 queued = task_on_rq_queued(tsk); 7894 7895 if (queued) 7896 dequeue_task(rq, tsk, DEQUEUE_SAVE); 7897 if (unlikely(running)) 7898 put_prev_task(rq, tsk); 7899 7900 /* 7901 * All callers are synchronized by task_rq_lock(); we do not use RCU 7902 * which is pointless here. Thus, we pass "true" to task_css_check() 7903 * to prevent lockdep warnings. 7904 */ 7905 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7906 struct task_group, css); 7907 tg = autogroup_task_group(tsk, tg); 7908 tsk->sched_task_group = tg; 7909 7910 #ifdef CONFIG_FAIR_GROUP_SCHED 7911 if (tsk->sched_class->task_move_group) 7912 tsk->sched_class->task_move_group(tsk); 7913 else 7914 #endif 7915 set_task_rq(tsk, task_cpu(tsk)); 7916 7917 if (unlikely(running)) 7918 tsk->sched_class->set_curr_task(rq); 7919 if (queued) 7920 enqueue_task(rq, tsk, ENQUEUE_RESTORE); 7921 7922 task_rq_unlock(rq, tsk, &flags); 7923 } 7924 #endif /* CONFIG_CGROUP_SCHED */ 7925 7926 #ifdef CONFIG_RT_GROUP_SCHED 7927 /* 7928 * Ensure that the real time constraints are schedulable. 7929 */ 7930 static DEFINE_MUTEX(rt_constraints_mutex); 7931 7932 /* Must be called with tasklist_lock held */ 7933 static inline int tg_has_rt_tasks(struct task_group *tg) 7934 { 7935 struct task_struct *g, *p; 7936 7937 /* 7938 * Autogroups do not have RT tasks; see autogroup_create(). 7939 */ 7940 if (task_group_is_autogroup(tg)) 7941 return 0; 7942 7943 for_each_process_thread(g, p) { 7944 if (rt_task(p) && task_group(p) == tg) 7945 return 1; 7946 } 7947 7948 return 0; 7949 } 7950 7951 struct rt_schedulable_data { 7952 struct task_group *tg; 7953 u64 rt_period; 7954 u64 rt_runtime; 7955 }; 7956 7957 static int tg_rt_schedulable(struct task_group *tg, void *data) 7958 { 7959 struct rt_schedulable_data *d = data; 7960 struct task_group *child; 7961 unsigned long total, sum = 0; 7962 u64 period, runtime; 7963 7964 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7965 runtime = tg->rt_bandwidth.rt_runtime; 7966 7967 if (tg == d->tg) { 7968 period = d->rt_period; 7969 runtime = d->rt_runtime; 7970 } 7971 7972 /* 7973 * Cannot have more runtime than the period. 7974 */ 7975 if (runtime > period && runtime != RUNTIME_INF) 7976 return -EINVAL; 7977 7978 /* 7979 * Ensure we don't starve existing RT tasks. 7980 */ 7981 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7982 return -EBUSY; 7983 7984 total = to_ratio(period, runtime); 7985 7986 /* 7987 * Nobody can have more than the global setting allows. 7988 */ 7989 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7990 return -EINVAL; 7991 7992 /* 7993 * The sum of our children's runtime should not exceed our own. 7994 */ 7995 list_for_each_entry_rcu(child, &tg->children, siblings) { 7996 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7997 runtime = child->rt_bandwidth.rt_runtime; 7998 7999 if (child == d->tg) { 8000 period = d->rt_period; 8001 runtime = d->rt_runtime; 8002 } 8003 8004 sum += to_ratio(period, runtime); 8005 } 8006 8007 if (sum > total) 8008 return -EINVAL; 8009 8010 return 0; 8011 } 8012 8013 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 8014 { 8015 int ret; 8016 8017 struct rt_schedulable_data data = { 8018 .tg = tg, 8019 .rt_period = period, 8020 .rt_runtime = runtime, 8021 }; 8022 8023 rcu_read_lock(); 8024 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 8025 rcu_read_unlock(); 8026 8027 return ret; 8028 } 8029 8030 static int tg_set_rt_bandwidth(struct task_group *tg, 8031 u64 rt_period, u64 rt_runtime) 8032 { 8033 int i, err = 0; 8034 8035 /* 8036 * Disallowing the root group RT runtime is BAD, it would disallow the 8037 * kernel creating (and or operating) RT threads. 8038 */ 8039 if (tg == &root_task_group && rt_runtime == 0) 8040 return -EINVAL; 8041 8042 /* No period doesn't make any sense. */ 8043 if (rt_period == 0) 8044 return -EINVAL; 8045 8046 mutex_lock(&rt_constraints_mutex); 8047 read_lock(&tasklist_lock); 8048 err = __rt_schedulable(tg, rt_period, rt_runtime); 8049 if (err) 8050 goto unlock; 8051 8052 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 8053 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 8054 tg->rt_bandwidth.rt_runtime = rt_runtime; 8055 8056 for_each_possible_cpu(i) { 8057 struct rt_rq *rt_rq = tg->rt_rq[i]; 8058 8059 raw_spin_lock(&rt_rq->rt_runtime_lock); 8060 rt_rq->rt_runtime = rt_runtime; 8061 raw_spin_unlock(&rt_rq->rt_runtime_lock); 8062 } 8063 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 8064 unlock: 8065 read_unlock(&tasklist_lock); 8066 mutex_unlock(&rt_constraints_mutex); 8067 8068 return err; 8069 } 8070 8071 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 8072 { 8073 u64 rt_runtime, rt_period; 8074 8075 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 8076 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 8077 if (rt_runtime_us < 0) 8078 rt_runtime = RUNTIME_INF; 8079 8080 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 8081 } 8082 8083 static long sched_group_rt_runtime(struct task_group *tg) 8084 { 8085 u64 rt_runtime_us; 8086 8087 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 8088 return -1; 8089 8090 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 8091 do_div(rt_runtime_us, NSEC_PER_USEC); 8092 return rt_runtime_us; 8093 } 8094 8095 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 8096 { 8097 u64 rt_runtime, rt_period; 8098 8099 rt_period = rt_period_us * NSEC_PER_USEC; 8100 rt_runtime = tg->rt_bandwidth.rt_runtime; 8101 8102 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 8103 } 8104 8105 static long sched_group_rt_period(struct task_group *tg) 8106 { 8107 u64 rt_period_us; 8108 8109 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 8110 do_div(rt_period_us, NSEC_PER_USEC); 8111 return rt_period_us; 8112 } 8113 #endif /* CONFIG_RT_GROUP_SCHED */ 8114 8115 #ifdef CONFIG_RT_GROUP_SCHED 8116 static int sched_rt_global_constraints(void) 8117 { 8118 int ret = 0; 8119 8120 mutex_lock(&rt_constraints_mutex); 8121 read_lock(&tasklist_lock); 8122 ret = __rt_schedulable(NULL, 0, 0); 8123 read_unlock(&tasklist_lock); 8124 mutex_unlock(&rt_constraints_mutex); 8125 8126 return ret; 8127 } 8128 8129 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 8130 { 8131 /* Don't accept realtime tasks when there is no way for them to run */ 8132 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 8133 return 0; 8134 8135 return 1; 8136 } 8137 8138 #else /* !CONFIG_RT_GROUP_SCHED */ 8139 static int sched_rt_global_constraints(void) 8140 { 8141 unsigned long flags; 8142 int i, ret = 0; 8143 8144 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 8145 for_each_possible_cpu(i) { 8146 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 8147 8148 raw_spin_lock(&rt_rq->rt_runtime_lock); 8149 rt_rq->rt_runtime = global_rt_runtime(); 8150 raw_spin_unlock(&rt_rq->rt_runtime_lock); 8151 } 8152 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 8153 8154 return ret; 8155 } 8156 #endif /* CONFIG_RT_GROUP_SCHED */ 8157 8158 static int sched_dl_global_validate(void) 8159 { 8160 u64 runtime = global_rt_runtime(); 8161 u64 period = global_rt_period(); 8162 u64 new_bw = to_ratio(period, runtime); 8163 struct dl_bw *dl_b; 8164 int cpu, ret = 0; 8165 unsigned long flags; 8166 8167 /* 8168 * Here we want to check the bandwidth not being set to some 8169 * value smaller than the currently allocated bandwidth in 8170 * any of the root_domains. 8171 * 8172 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 8173 * cycling on root_domains... Discussion on different/better 8174 * solutions is welcome! 8175 */ 8176 for_each_possible_cpu(cpu) { 8177 rcu_read_lock_sched(); 8178 dl_b = dl_bw_of(cpu); 8179 8180 raw_spin_lock_irqsave(&dl_b->lock, flags); 8181 if (new_bw < dl_b->total_bw) 8182 ret = -EBUSY; 8183 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 8184 8185 rcu_read_unlock_sched(); 8186 8187 if (ret) 8188 break; 8189 } 8190 8191 return ret; 8192 } 8193 8194 static void sched_dl_do_global(void) 8195 { 8196 u64 new_bw = -1; 8197 struct dl_bw *dl_b; 8198 int cpu; 8199 unsigned long flags; 8200 8201 def_dl_bandwidth.dl_period = global_rt_period(); 8202 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 8203 8204 if (global_rt_runtime() != RUNTIME_INF) 8205 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 8206 8207 /* 8208 * FIXME: As above... 8209 */ 8210 for_each_possible_cpu(cpu) { 8211 rcu_read_lock_sched(); 8212 dl_b = dl_bw_of(cpu); 8213 8214 raw_spin_lock_irqsave(&dl_b->lock, flags); 8215 dl_b->bw = new_bw; 8216 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 8217 8218 rcu_read_unlock_sched(); 8219 } 8220 } 8221 8222 static int sched_rt_global_validate(void) 8223 { 8224 if (sysctl_sched_rt_period <= 0) 8225 return -EINVAL; 8226 8227 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 8228 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 8229 return -EINVAL; 8230 8231 return 0; 8232 } 8233 8234 static void sched_rt_do_global(void) 8235 { 8236 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 8237 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 8238 } 8239 8240 int sched_rt_handler(struct ctl_table *table, int write, 8241 void __user *buffer, size_t *lenp, 8242 loff_t *ppos) 8243 { 8244 int old_period, old_runtime; 8245 static DEFINE_MUTEX(mutex); 8246 int ret; 8247 8248 mutex_lock(&mutex); 8249 old_period = sysctl_sched_rt_period; 8250 old_runtime = sysctl_sched_rt_runtime; 8251 8252 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8253 8254 if (!ret && write) { 8255 ret = sched_rt_global_validate(); 8256 if (ret) 8257 goto undo; 8258 8259 ret = sched_dl_global_validate(); 8260 if (ret) 8261 goto undo; 8262 8263 ret = sched_rt_global_constraints(); 8264 if (ret) 8265 goto undo; 8266 8267 sched_rt_do_global(); 8268 sched_dl_do_global(); 8269 } 8270 if (0) { 8271 undo: 8272 sysctl_sched_rt_period = old_period; 8273 sysctl_sched_rt_runtime = old_runtime; 8274 } 8275 mutex_unlock(&mutex); 8276 8277 return ret; 8278 } 8279 8280 int sched_rr_handler(struct ctl_table *table, int write, 8281 void __user *buffer, size_t *lenp, 8282 loff_t *ppos) 8283 { 8284 int ret; 8285 static DEFINE_MUTEX(mutex); 8286 8287 mutex_lock(&mutex); 8288 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8289 /* make sure that internally we keep jiffies */ 8290 /* also, writing zero resets timeslice to default */ 8291 if (!ret && write) { 8292 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 8293 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 8294 } 8295 mutex_unlock(&mutex); 8296 return ret; 8297 } 8298 8299 #ifdef CONFIG_CGROUP_SCHED 8300 8301 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8302 { 8303 return css ? container_of(css, struct task_group, css) : NULL; 8304 } 8305 8306 static struct cgroup_subsys_state * 8307 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8308 { 8309 struct task_group *parent = css_tg(parent_css); 8310 struct task_group *tg; 8311 8312 if (!parent) { 8313 /* This is early initialization for the top cgroup */ 8314 return &root_task_group.css; 8315 } 8316 8317 tg = sched_create_group(parent); 8318 if (IS_ERR(tg)) 8319 return ERR_PTR(-ENOMEM); 8320 8321 return &tg->css; 8322 } 8323 8324 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 8325 { 8326 struct task_group *tg = css_tg(css); 8327 struct task_group *parent = css_tg(css->parent); 8328 8329 if (parent) 8330 sched_online_group(tg, parent); 8331 return 0; 8332 } 8333 8334 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8335 { 8336 struct task_group *tg = css_tg(css); 8337 8338 sched_destroy_group(tg); 8339 } 8340 8341 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 8342 { 8343 struct task_group *tg = css_tg(css); 8344 8345 sched_offline_group(tg); 8346 } 8347 8348 static void cpu_cgroup_fork(struct task_struct *task) 8349 { 8350 sched_move_task(task); 8351 } 8352 8353 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 8354 { 8355 struct task_struct *task; 8356 struct cgroup_subsys_state *css; 8357 8358 cgroup_taskset_for_each(task, css, tset) { 8359 #ifdef CONFIG_RT_GROUP_SCHED 8360 if (!sched_rt_can_attach(css_tg(css), task)) 8361 return -EINVAL; 8362 #else 8363 /* We don't support RT-tasks being in separate groups */ 8364 if (task->sched_class != &fair_sched_class) 8365 return -EINVAL; 8366 #endif 8367 } 8368 return 0; 8369 } 8370 8371 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 8372 { 8373 struct task_struct *task; 8374 struct cgroup_subsys_state *css; 8375 8376 cgroup_taskset_for_each(task, css, tset) 8377 sched_move_task(task); 8378 } 8379 8380 #ifdef CONFIG_FAIR_GROUP_SCHED 8381 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8382 struct cftype *cftype, u64 shareval) 8383 { 8384 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8385 } 8386 8387 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8388 struct cftype *cft) 8389 { 8390 struct task_group *tg = css_tg(css); 8391 8392 return (u64) scale_load_down(tg->shares); 8393 } 8394 8395 #ifdef CONFIG_CFS_BANDWIDTH 8396 static DEFINE_MUTEX(cfs_constraints_mutex); 8397 8398 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8399 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8400 8401 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8402 8403 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8404 { 8405 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8406 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8407 8408 if (tg == &root_task_group) 8409 return -EINVAL; 8410 8411 /* 8412 * Ensure we have at some amount of bandwidth every period. This is 8413 * to prevent reaching a state of large arrears when throttled via 8414 * entity_tick() resulting in prolonged exit starvation. 8415 */ 8416 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8417 return -EINVAL; 8418 8419 /* 8420 * Likewise, bound things on the otherside by preventing insane quota 8421 * periods. This also allows us to normalize in computing quota 8422 * feasibility. 8423 */ 8424 if (period > max_cfs_quota_period) 8425 return -EINVAL; 8426 8427 /* 8428 * Prevent race between setting of cfs_rq->runtime_enabled and 8429 * unthrottle_offline_cfs_rqs(). 8430 */ 8431 get_online_cpus(); 8432 mutex_lock(&cfs_constraints_mutex); 8433 ret = __cfs_schedulable(tg, period, quota); 8434 if (ret) 8435 goto out_unlock; 8436 8437 runtime_enabled = quota != RUNTIME_INF; 8438 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8439 /* 8440 * If we need to toggle cfs_bandwidth_used, off->on must occur 8441 * before making related changes, and on->off must occur afterwards 8442 */ 8443 if (runtime_enabled && !runtime_was_enabled) 8444 cfs_bandwidth_usage_inc(); 8445 raw_spin_lock_irq(&cfs_b->lock); 8446 cfs_b->period = ns_to_ktime(period); 8447 cfs_b->quota = quota; 8448 8449 __refill_cfs_bandwidth_runtime(cfs_b); 8450 /* restart the period timer (if active) to handle new period expiry */ 8451 if (runtime_enabled) 8452 start_cfs_bandwidth(cfs_b); 8453 raw_spin_unlock_irq(&cfs_b->lock); 8454 8455 for_each_online_cpu(i) { 8456 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 8457 struct rq *rq = cfs_rq->rq; 8458 8459 raw_spin_lock_irq(&rq->lock); 8460 cfs_rq->runtime_enabled = runtime_enabled; 8461 cfs_rq->runtime_remaining = 0; 8462 8463 if (cfs_rq->throttled) 8464 unthrottle_cfs_rq(cfs_rq); 8465 raw_spin_unlock_irq(&rq->lock); 8466 } 8467 if (runtime_was_enabled && !runtime_enabled) 8468 cfs_bandwidth_usage_dec(); 8469 out_unlock: 8470 mutex_unlock(&cfs_constraints_mutex); 8471 put_online_cpus(); 8472 8473 return ret; 8474 } 8475 8476 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 8477 { 8478 u64 quota, period; 8479 8480 period = ktime_to_ns(tg->cfs_bandwidth.period); 8481 if (cfs_quota_us < 0) 8482 quota = RUNTIME_INF; 8483 else 8484 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 8485 8486 return tg_set_cfs_bandwidth(tg, period, quota); 8487 } 8488 8489 long tg_get_cfs_quota(struct task_group *tg) 8490 { 8491 u64 quota_us; 8492 8493 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8494 return -1; 8495 8496 quota_us = tg->cfs_bandwidth.quota; 8497 do_div(quota_us, NSEC_PER_USEC); 8498 8499 return quota_us; 8500 } 8501 8502 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8503 { 8504 u64 quota, period; 8505 8506 period = (u64)cfs_period_us * NSEC_PER_USEC; 8507 quota = tg->cfs_bandwidth.quota; 8508 8509 return tg_set_cfs_bandwidth(tg, period, quota); 8510 } 8511 8512 long tg_get_cfs_period(struct task_group *tg) 8513 { 8514 u64 cfs_period_us; 8515 8516 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8517 do_div(cfs_period_us, NSEC_PER_USEC); 8518 8519 return cfs_period_us; 8520 } 8521 8522 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 8523 struct cftype *cft) 8524 { 8525 return tg_get_cfs_quota(css_tg(css)); 8526 } 8527 8528 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 8529 struct cftype *cftype, s64 cfs_quota_us) 8530 { 8531 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 8532 } 8533 8534 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8535 struct cftype *cft) 8536 { 8537 return tg_get_cfs_period(css_tg(css)); 8538 } 8539 8540 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8541 struct cftype *cftype, u64 cfs_period_us) 8542 { 8543 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8544 } 8545 8546 struct cfs_schedulable_data { 8547 struct task_group *tg; 8548 u64 period, quota; 8549 }; 8550 8551 /* 8552 * normalize group quota/period to be quota/max_period 8553 * note: units are usecs 8554 */ 8555 static u64 normalize_cfs_quota(struct task_group *tg, 8556 struct cfs_schedulable_data *d) 8557 { 8558 u64 quota, period; 8559 8560 if (tg == d->tg) { 8561 period = d->period; 8562 quota = d->quota; 8563 } else { 8564 period = tg_get_cfs_period(tg); 8565 quota = tg_get_cfs_quota(tg); 8566 } 8567 8568 /* note: these should typically be equivalent */ 8569 if (quota == RUNTIME_INF || quota == -1) 8570 return RUNTIME_INF; 8571 8572 return to_ratio(period, quota); 8573 } 8574 8575 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8576 { 8577 struct cfs_schedulable_data *d = data; 8578 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8579 s64 quota = 0, parent_quota = -1; 8580 8581 if (!tg->parent) { 8582 quota = RUNTIME_INF; 8583 } else { 8584 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8585 8586 quota = normalize_cfs_quota(tg, d); 8587 parent_quota = parent_b->hierarchical_quota; 8588 8589 /* 8590 * ensure max(child_quota) <= parent_quota, inherit when no 8591 * limit is set 8592 */ 8593 if (quota == RUNTIME_INF) 8594 quota = parent_quota; 8595 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8596 return -EINVAL; 8597 } 8598 cfs_b->hierarchical_quota = quota; 8599 8600 return 0; 8601 } 8602 8603 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8604 { 8605 int ret; 8606 struct cfs_schedulable_data data = { 8607 .tg = tg, 8608 .period = period, 8609 .quota = quota, 8610 }; 8611 8612 if (quota != RUNTIME_INF) { 8613 do_div(data.period, NSEC_PER_USEC); 8614 do_div(data.quota, NSEC_PER_USEC); 8615 } 8616 8617 rcu_read_lock(); 8618 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8619 rcu_read_unlock(); 8620 8621 return ret; 8622 } 8623 8624 static int cpu_stats_show(struct seq_file *sf, void *v) 8625 { 8626 struct task_group *tg = css_tg(seq_css(sf)); 8627 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8628 8629 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8630 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8631 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8632 8633 return 0; 8634 } 8635 #endif /* CONFIG_CFS_BANDWIDTH */ 8636 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8637 8638 #ifdef CONFIG_RT_GROUP_SCHED 8639 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8640 struct cftype *cft, s64 val) 8641 { 8642 return sched_group_set_rt_runtime(css_tg(css), val); 8643 } 8644 8645 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8646 struct cftype *cft) 8647 { 8648 return sched_group_rt_runtime(css_tg(css)); 8649 } 8650 8651 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8652 struct cftype *cftype, u64 rt_period_us) 8653 { 8654 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8655 } 8656 8657 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8658 struct cftype *cft) 8659 { 8660 return sched_group_rt_period(css_tg(css)); 8661 } 8662 #endif /* CONFIG_RT_GROUP_SCHED */ 8663 8664 static struct cftype cpu_files[] = { 8665 #ifdef CONFIG_FAIR_GROUP_SCHED 8666 { 8667 .name = "shares", 8668 .read_u64 = cpu_shares_read_u64, 8669 .write_u64 = cpu_shares_write_u64, 8670 }, 8671 #endif 8672 #ifdef CONFIG_CFS_BANDWIDTH 8673 { 8674 .name = "cfs_quota_us", 8675 .read_s64 = cpu_cfs_quota_read_s64, 8676 .write_s64 = cpu_cfs_quota_write_s64, 8677 }, 8678 { 8679 .name = "cfs_period_us", 8680 .read_u64 = cpu_cfs_period_read_u64, 8681 .write_u64 = cpu_cfs_period_write_u64, 8682 }, 8683 { 8684 .name = "stat", 8685 .seq_show = cpu_stats_show, 8686 }, 8687 #endif 8688 #ifdef CONFIG_RT_GROUP_SCHED 8689 { 8690 .name = "rt_runtime_us", 8691 .read_s64 = cpu_rt_runtime_read, 8692 .write_s64 = cpu_rt_runtime_write, 8693 }, 8694 { 8695 .name = "rt_period_us", 8696 .read_u64 = cpu_rt_period_read_uint, 8697 .write_u64 = cpu_rt_period_write_uint, 8698 }, 8699 #endif 8700 { } /* terminate */ 8701 }; 8702 8703 struct cgroup_subsys cpu_cgrp_subsys = { 8704 .css_alloc = cpu_cgroup_css_alloc, 8705 .css_free = cpu_cgroup_css_free, 8706 .css_online = cpu_cgroup_css_online, 8707 .css_offline = cpu_cgroup_css_offline, 8708 .fork = cpu_cgroup_fork, 8709 .can_attach = cpu_cgroup_can_attach, 8710 .attach = cpu_cgroup_attach, 8711 .legacy_cftypes = cpu_files, 8712 .early_init = 1, 8713 }; 8714 8715 #endif /* CONFIG_CGROUP_SCHED */ 8716 8717 void dump_cpu_task(int cpu) 8718 { 8719 pr_info("Task dump for CPU %d:\n", cpu); 8720 sched_show_task(cpu_curr(cpu)); 8721 } 8722 8723 /* 8724 * Nice levels are multiplicative, with a gentle 10% change for every 8725 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 8726 * nice 1, it will get ~10% less CPU time than another CPU-bound task 8727 * that remained on nice 0. 8728 * 8729 * The "10% effect" is relative and cumulative: from _any_ nice level, 8730 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 8731 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 8732 * If a task goes up by ~10% and another task goes down by ~10% then 8733 * the relative distance between them is ~25%.) 8734 */ 8735 const int sched_prio_to_weight[40] = { 8736 /* -20 */ 88761, 71755, 56483, 46273, 36291, 8737 /* -15 */ 29154, 23254, 18705, 14949, 11916, 8738 /* -10 */ 9548, 7620, 6100, 4904, 3906, 8739 /* -5 */ 3121, 2501, 1991, 1586, 1277, 8740 /* 0 */ 1024, 820, 655, 526, 423, 8741 /* 5 */ 335, 272, 215, 172, 137, 8742 /* 10 */ 110, 87, 70, 56, 45, 8743 /* 15 */ 36, 29, 23, 18, 15, 8744 }; 8745 8746 /* 8747 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 8748 * 8749 * In cases where the weight does not change often, we can use the 8750 * precalculated inverse to speed up arithmetics by turning divisions 8751 * into multiplications: 8752 */ 8753 const u32 sched_prio_to_wmult[40] = { 8754 /* -20 */ 48388, 59856, 76040, 92818, 118348, 8755 /* -15 */ 147320, 184698, 229616, 287308, 360437, 8756 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 8757 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 8758 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 8759 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 8760 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 8761 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 8762 }; 8763