xref: /linux/kernel/sched/core.c (revision 940d4113f3306e07a1f86541489b686d1a979d54)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74 #include <linux/init_task.h>
75 #include <linux/binfmts.h>
76 #include <linux/context_tracking.h>
77 #include <linux/compiler.h>
78 
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 #include <asm/irq_regs.h>
82 #include <asm/mutex.h>
83 #ifdef CONFIG_PARAVIRT
84 #include <asm/paravirt.h>
85 #endif
86 
87 #include "sched.h"
88 #include "../workqueue_internal.h"
89 #include "../smpboot.h"
90 
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/sched.h>
93 
94 DEFINE_MUTEX(sched_domains_mutex);
95 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96 
97 static void update_rq_clock_task(struct rq *rq, s64 delta);
98 
99 void update_rq_clock(struct rq *rq)
100 {
101 	s64 delta;
102 
103 	lockdep_assert_held(&rq->lock);
104 
105 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
106 		return;
107 
108 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
109 	if (delta < 0)
110 		return;
111 	rq->clock += delta;
112 	update_rq_clock_task(rq, delta);
113 }
114 
115 /*
116  * Debugging: various feature bits
117  */
118 
119 #define SCHED_FEAT(name, enabled)	\
120 	(1UL << __SCHED_FEAT_##name) * enabled |
121 
122 const_debug unsigned int sysctl_sched_features =
123 #include "features.h"
124 	0;
125 
126 #undef SCHED_FEAT
127 
128 #ifdef CONFIG_SCHED_DEBUG
129 #define SCHED_FEAT(name, enabled)	\
130 	#name ,
131 
132 static const char * const sched_feat_names[] = {
133 #include "features.h"
134 };
135 
136 #undef SCHED_FEAT
137 
138 static int sched_feat_show(struct seq_file *m, void *v)
139 {
140 	int i;
141 
142 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
143 		if (!(sysctl_sched_features & (1UL << i)))
144 			seq_puts(m, "NO_");
145 		seq_printf(m, "%s ", sched_feat_names[i]);
146 	}
147 	seq_puts(m, "\n");
148 
149 	return 0;
150 }
151 
152 #ifdef HAVE_JUMP_LABEL
153 
154 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
155 #define jump_label_key__false STATIC_KEY_INIT_FALSE
156 
157 #define SCHED_FEAT(name, enabled)	\
158 	jump_label_key__##enabled ,
159 
160 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
161 #include "features.h"
162 };
163 
164 #undef SCHED_FEAT
165 
166 static void sched_feat_disable(int i)
167 {
168 	static_key_disable(&sched_feat_keys[i]);
169 }
170 
171 static void sched_feat_enable(int i)
172 {
173 	static_key_enable(&sched_feat_keys[i]);
174 }
175 #else
176 static void sched_feat_disable(int i) { };
177 static void sched_feat_enable(int i) { };
178 #endif /* HAVE_JUMP_LABEL */
179 
180 static int sched_feat_set(char *cmp)
181 {
182 	int i;
183 	int neg = 0;
184 
185 	if (strncmp(cmp, "NO_", 3) == 0) {
186 		neg = 1;
187 		cmp += 3;
188 	}
189 
190 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
191 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
192 			if (neg) {
193 				sysctl_sched_features &= ~(1UL << i);
194 				sched_feat_disable(i);
195 			} else {
196 				sysctl_sched_features |= (1UL << i);
197 				sched_feat_enable(i);
198 			}
199 			break;
200 		}
201 	}
202 
203 	return i;
204 }
205 
206 static ssize_t
207 sched_feat_write(struct file *filp, const char __user *ubuf,
208 		size_t cnt, loff_t *ppos)
209 {
210 	char buf[64];
211 	char *cmp;
212 	int i;
213 	struct inode *inode;
214 
215 	if (cnt > 63)
216 		cnt = 63;
217 
218 	if (copy_from_user(&buf, ubuf, cnt))
219 		return -EFAULT;
220 
221 	buf[cnt] = 0;
222 	cmp = strstrip(buf);
223 
224 	/* Ensure the static_key remains in a consistent state */
225 	inode = file_inode(filp);
226 	inode_lock(inode);
227 	i = sched_feat_set(cmp);
228 	inode_unlock(inode);
229 	if (i == __SCHED_FEAT_NR)
230 		return -EINVAL;
231 
232 	*ppos += cnt;
233 
234 	return cnt;
235 }
236 
237 static int sched_feat_open(struct inode *inode, struct file *filp)
238 {
239 	return single_open(filp, sched_feat_show, NULL);
240 }
241 
242 static const struct file_operations sched_feat_fops = {
243 	.open		= sched_feat_open,
244 	.write		= sched_feat_write,
245 	.read		= seq_read,
246 	.llseek		= seq_lseek,
247 	.release	= single_release,
248 };
249 
250 static __init int sched_init_debug(void)
251 {
252 	debugfs_create_file("sched_features", 0644, NULL, NULL,
253 			&sched_feat_fops);
254 
255 	return 0;
256 }
257 late_initcall(sched_init_debug);
258 #endif /* CONFIG_SCHED_DEBUG */
259 
260 /*
261  * Number of tasks to iterate in a single balance run.
262  * Limited because this is done with IRQs disabled.
263  */
264 const_debug unsigned int sysctl_sched_nr_migrate = 32;
265 
266 /*
267  * period over which we average the RT time consumption, measured
268  * in ms.
269  *
270  * default: 1s
271  */
272 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
273 
274 /*
275  * period over which we measure -rt task cpu usage in us.
276  * default: 1s
277  */
278 unsigned int sysctl_sched_rt_period = 1000000;
279 
280 __read_mostly int scheduler_running;
281 
282 /*
283  * part of the period that we allow rt tasks to run in us.
284  * default: 0.95s
285  */
286 int sysctl_sched_rt_runtime = 950000;
287 
288 /* cpus with isolated domains */
289 cpumask_var_t cpu_isolated_map;
290 
291 /*
292  * this_rq_lock - lock this runqueue and disable interrupts.
293  */
294 static struct rq *this_rq_lock(void)
295 	__acquires(rq->lock)
296 {
297 	struct rq *rq;
298 
299 	local_irq_disable();
300 	rq = this_rq();
301 	raw_spin_lock(&rq->lock);
302 
303 	return rq;
304 }
305 
306 #ifdef CONFIG_SCHED_HRTICK
307 /*
308  * Use HR-timers to deliver accurate preemption points.
309  */
310 
311 static void hrtick_clear(struct rq *rq)
312 {
313 	if (hrtimer_active(&rq->hrtick_timer))
314 		hrtimer_cancel(&rq->hrtick_timer);
315 }
316 
317 /*
318  * High-resolution timer tick.
319  * Runs from hardirq context with interrupts disabled.
320  */
321 static enum hrtimer_restart hrtick(struct hrtimer *timer)
322 {
323 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
324 
325 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
326 
327 	raw_spin_lock(&rq->lock);
328 	update_rq_clock(rq);
329 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
330 	raw_spin_unlock(&rq->lock);
331 
332 	return HRTIMER_NORESTART;
333 }
334 
335 #ifdef CONFIG_SMP
336 
337 static void __hrtick_restart(struct rq *rq)
338 {
339 	struct hrtimer *timer = &rq->hrtick_timer;
340 
341 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
342 }
343 
344 /*
345  * called from hardirq (IPI) context
346  */
347 static void __hrtick_start(void *arg)
348 {
349 	struct rq *rq = arg;
350 
351 	raw_spin_lock(&rq->lock);
352 	__hrtick_restart(rq);
353 	rq->hrtick_csd_pending = 0;
354 	raw_spin_unlock(&rq->lock);
355 }
356 
357 /*
358  * Called to set the hrtick timer state.
359  *
360  * called with rq->lock held and irqs disabled
361  */
362 void hrtick_start(struct rq *rq, u64 delay)
363 {
364 	struct hrtimer *timer = &rq->hrtick_timer;
365 	ktime_t time;
366 	s64 delta;
367 
368 	/*
369 	 * Don't schedule slices shorter than 10000ns, that just
370 	 * doesn't make sense and can cause timer DoS.
371 	 */
372 	delta = max_t(s64, delay, 10000LL);
373 	time = ktime_add_ns(timer->base->get_time(), delta);
374 
375 	hrtimer_set_expires(timer, time);
376 
377 	if (rq == this_rq()) {
378 		__hrtick_restart(rq);
379 	} else if (!rq->hrtick_csd_pending) {
380 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
381 		rq->hrtick_csd_pending = 1;
382 	}
383 }
384 
385 static int
386 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
387 {
388 	int cpu = (int)(long)hcpu;
389 
390 	switch (action) {
391 	case CPU_UP_CANCELED:
392 	case CPU_UP_CANCELED_FROZEN:
393 	case CPU_DOWN_PREPARE:
394 	case CPU_DOWN_PREPARE_FROZEN:
395 	case CPU_DEAD:
396 	case CPU_DEAD_FROZEN:
397 		hrtick_clear(cpu_rq(cpu));
398 		return NOTIFY_OK;
399 	}
400 
401 	return NOTIFY_DONE;
402 }
403 
404 static __init void init_hrtick(void)
405 {
406 	hotcpu_notifier(hotplug_hrtick, 0);
407 }
408 #else
409 /*
410  * Called to set the hrtick timer state.
411  *
412  * called with rq->lock held and irqs disabled
413  */
414 void hrtick_start(struct rq *rq, u64 delay)
415 {
416 	/*
417 	 * Don't schedule slices shorter than 10000ns, that just
418 	 * doesn't make sense. Rely on vruntime for fairness.
419 	 */
420 	delay = max_t(u64, delay, 10000LL);
421 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
422 		      HRTIMER_MODE_REL_PINNED);
423 }
424 
425 static inline void init_hrtick(void)
426 {
427 }
428 #endif /* CONFIG_SMP */
429 
430 static void init_rq_hrtick(struct rq *rq)
431 {
432 #ifdef CONFIG_SMP
433 	rq->hrtick_csd_pending = 0;
434 
435 	rq->hrtick_csd.flags = 0;
436 	rq->hrtick_csd.func = __hrtick_start;
437 	rq->hrtick_csd.info = rq;
438 #endif
439 
440 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
441 	rq->hrtick_timer.function = hrtick;
442 }
443 #else	/* CONFIG_SCHED_HRTICK */
444 static inline void hrtick_clear(struct rq *rq)
445 {
446 }
447 
448 static inline void init_rq_hrtick(struct rq *rq)
449 {
450 }
451 
452 static inline void init_hrtick(void)
453 {
454 }
455 #endif	/* CONFIG_SCHED_HRTICK */
456 
457 /*
458  * cmpxchg based fetch_or, macro so it works for different integer types
459  */
460 #define fetch_or(ptr, val)						\
461 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
462  	for (;;) {							\
463  		__old = cmpxchg((ptr), __val, __val | (val));		\
464  		if (__old == __val)					\
465  			break;						\
466  		__val = __old;						\
467  	}								\
468  	__old;								\
469 })
470 
471 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
472 /*
473  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
474  * this avoids any races wrt polling state changes and thereby avoids
475  * spurious IPIs.
476  */
477 static bool set_nr_and_not_polling(struct task_struct *p)
478 {
479 	struct thread_info *ti = task_thread_info(p);
480 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
481 }
482 
483 /*
484  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
485  *
486  * If this returns true, then the idle task promises to call
487  * sched_ttwu_pending() and reschedule soon.
488  */
489 static bool set_nr_if_polling(struct task_struct *p)
490 {
491 	struct thread_info *ti = task_thread_info(p);
492 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
493 
494 	for (;;) {
495 		if (!(val & _TIF_POLLING_NRFLAG))
496 			return false;
497 		if (val & _TIF_NEED_RESCHED)
498 			return true;
499 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
500 		if (old == val)
501 			break;
502 		val = old;
503 	}
504 	return true;
505 }
506 
507 #else
508 static bool set_nr_and_not_polling(struct task_struct *p)
509 {
510 	set_tsk_need_resched(p);
511 	return true;
512 }
513 
514 #ifdef CONFIG_SMP
515 static bool set_nr_if_polling(struct task_struct *p)
516 {
517 	return false;
518 }
519 #endif
520 #endif
521 
522 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
523 {
524 	struct wake_q_node *node = &task->wake_q;
525 
526 	/*
527 	 * Atomically grab the task, if ->wake_q is !nil already it means
528 	 * its already queued (either by us or someone else) and will get the
529 	 * wakeup due to that.
530 	 *
531 	 * This cmpxchg() implies a full barrier, which pairs with the write
532 	 * barrier implied by the wakeup in wake_up_list().
533 	 */
534 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
535 		return;
536 
537 	get_task_struct(task);
538 
539 	/*
540 	 * The head is context local, there can be no concurrency.
541 	 */
542 	*head->lastp = node;
543 	head->lastp = &node->next;
544 }
545 
546 void wake_up_q(struct wake_q_head *head)
547 {
548 	struct wake_q_node *node = head->first;
549 
550 	while (node != WAKE_Q_TAIL) {
551 		struct task_struct *task;
552 
553 		task = container_of(node, struct task_struct, wake_q);
554 		BUG_ON(!task);
555 		/* task can safely be re-inserted now */
556 		node = node->next;
557 		task->wake_q.next = NULL;
558 
559 		/*
560 		 * wake_up_process() implies a wmb() to pair with the queueing
561 		 * in wake_q_add() so as not to miss wakeups.
562 		 */
563 		wake_up_process(task);
564 		put_task_struct(task);
565 	}
566 }
567 
568 /*
569  * resched_curr - mark rq's current task 'to be rescheduled now'.
570  *
571  * On UP this means the setting of the need_resched flag, on SMP it
572  * might also involve a cross-CPU call to trigger the scheduler on
573  * the target CPU.
574  */
575 void resched_curr(struct rq *rq)
576 {
577 	struct task_struct *curr = rq->curr;
578 	int cpu;
579 
580 	lockdep_assert_held(&rq->lock);
581 
582 	if (test_tsk_need_resched(curr))
583 		return;
584 
585 	cpu = cpu_of(rq);
586 
587 	if (cpu == smp_processor_id()) {
588 		set_tsk_need_resched(curr);
589 		set_preempt_need_resched();
590 		return;
591 	}
592 
593 	if (set_nr_and_not_polling(curr))
594 		smp_send_reschedule(cpu);
595 	else
596 		trace_sched_wake_idle_without_ipi(cpu);
597 }
598 
599 void resched_cpu(int cpu)
600 {
601 	struct rq *rq = cpu_rq(cpu);
602 	unsigned long flags;
603 
604 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
605 		return;
606 	resched_curr(rq);
607 	raw_spin_unlock_irqrestore(&rq->lock, flags);
608 }
609 
610 #ifdef CONFIG_SMP
611 #ifdef CONFIG_NO_HZ_COMMON
612 /*
613  * In the semi idle case, use the nearest busy cpu for migrating timers
614  * from an idle cpu.  This is good for power-savings.
615  *
616  * We don't do similar optimization for completely idle system, as
617  * selecting an idle cpu will add more delays to the timers than intended
618  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
619  */
620 int get_nohz_timer_target(void)
621 {
622 	int i, cpu = smp_processor_id();
623 	struct sched_domain *sd;
624 
625 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
626 		return cpu;
627 
628 	rcu_read_lock();
629 	for_each_domain(cpu, sd) {
630 		for_each_cpu(i, sched_domain_span(sd)) {
631 			if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
632 				cpu = i;
633 				goto unlock;
634 			}
635 		}
636 	}
637 
638 	if (!is_housekeeping_cpu(cpu))
639 		cpu = housekeeping_any_cpu();
640 unlock:
641 	rcu_read_unlock();
642 	return cpu;
643 }
644 /*
645  * When add_timer_on() enqueues a timer into the timer wheel of an
646  * idle CPU then this timer might expire before the next timer event
647  * which is scheduled to wake up that CPU. In case of a completely
648  * idle system the next event might even be infinite time into the
649  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
650  * leaves the inner idle loop so the newly added timer is taken into
651  * account when the CPU goes back to idle and evaluates the timer
652  * wheel for the next timer event.
653  */
654 static void wake_up_idle_cpu(int cpu)
655 {
656 	struct rq *rq = cpu_rq(cpu);
657 
658 	if (cpu == smp_processor_id())
659 		return;
660 
661 	if (set_nr_and_not_polling(rq->idle))
662 		smp_send_reschedule(cpu);
663 	else
664 		trace_sched_wake_idle_without_ipi(cpu);
665 }
666 
667 static bool wake_up_full_nohz_cpu(int cpu)
668 {
669 	/*
670 	 * We just need the target to call irq_exit() and re-evaluate
671 	 * the next tick. The nohz full kick at least implies that.
672 	 * If needed we can still optimize that later with an
673 	 * empty IRQ.
674 	 */
675 	if (tick_nohz_full_cpu(cpu)) {
676 		if (cpu != smp_processor_id() ||
677 		    tick_nohz_tick_stopped())
678 			tick_nohz_full_kick_cpu(cpu);
679 		return true;
680 	}
681 
682 	return false;
683 }
684 
685 void wake_up_nohz_cpu(int cpu)
686 {
687 	if (!wake_up_full_nohz_cpu(cpu))
688 		wake_up_idle_cpu(cpu);
689 }
690 
691 static inline bool got_nohz_idle_kick(void)
692 {
693 	int cpu = smp_processor_id();
694 
695 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
696 		return false;
697 
698 	if (idle_cpu(cpu) && !need_resched())
699 		return true;
700 
701 	/*
702 	 * We can't run Idle Load Balance on this CPU for this time so we
703 	 * cancel it and clear NOHZ_BALANCE_KICK
704 	 */
705 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
706 	return false;
707 }
708 
709 #else /* CONFIG_NO_HZ_COMMON */
710 
711 static inline bool got_nohz_idle_kick(void)
712 {
713 	return false;
714 }
715 
716 #endif /* CONFIG_NO_HZ_COMMON */
717 
718 #ifdef CONFIG_NO_HZ_FULL
719 bool sched_can_stop_tick(void)
720 {
721 	/*
722 	 * FIFO realtime policy runs the highest priority task. Other runnable
723 	 * tasks are of a lower priority. The scheduler tick does nothing.
724 	 */
725 	if (current->policy == SCHED_FIFO)
726 		return true;
727 
728 	/*
729 	 * Round-robin realtime tasks time slice with other tasks at the same
730 	 * realtime priority. Is this task the only one at this priority?
731 	 */
732 	if (current->policy == SCHED_RR) {
733 		struct sched_rt_entity *rt_se = &current->rt;
734 
735 		return list_is_singular(&rt_se->run_list);
736 	}
737 
738 	/*
739 	 * More than one running task need preemption.
740 	 * nr_running update is assumed to be visible
741 	 * after IPI is sent from wakers.
742 	 */
743 	if (this_rq()->nr_running > 1)
744 		return false;
745 
746 	return true;
747 }
748 #endif /* CONFIG_NO_HZ_FULL */
749 
750 void sched_avg_update(struct rq *rq)
751 {
752 	s64 period = sched_avg_period();
753 
754 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
755 		/*
756 		 * Inline assembly required to prevent the compiler
757 		 * optimising this loop into a divmod call.
758 		 * See __iter_div_u64_rem() for another example of this.
759 		 */
760 		asm("" : "+rm" (rq->age_stamp));
761 		rq->age_stamp += period;
762 		rq->rt_avg /= 2;
763 	}
764 }
765 
766 #endif /* CONFIG_SMP */
767 
768 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
769 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
770 /*
771  * Iterate task_group tree rooted at *from, calling @down when first entering a
772  * node and @up when leaving it for the final time.
773  *
774  * Caller must hold rcu_lock or sufficient equivalent.
775  */
776 int walk_tg_tree_from(struct task_group *from,
777 			     tg_visitor down, tg_visitor up, void *data)
778 {
779 	struct task_group *parent, *child;
780 	int ret;
781 
782 	parent = from;
783 
784 down:
785 	ret = (*down)(parent, data);
786 	if (ret)
787 		goto out;
788 	list_for_each_entry_rcu(child, &parent->children, siblings) {
789 		parent = child;
790 		goto down;
791 
792 up:
793 		continue;
794 	}
795 	ret = (*up)(parent, data);
796 	if (ret || parent == from)
797 		goto out;
798 
799 	child = parent;
800 	parent = parent->parent;
801 	if (parent)
802 		goto up;
803 out:
804 	return ret;
805 }
806 
807 int tg_nop(struct task_group *tg, void *data)
808 {
809 	return 0;
810 }
811 #endif
812 
813 static void set_load_weight(struct task_struct *p)
814 {
815 	int prio = p->static_prio - MAX_RT_PRIO;
816 	struct load_weight *load = &p->se.load;
817 
818 	/*
819 	 * SCHED_IDLE tasks get minimal weight:
820 	 */
821 	if (idle_policy(p->policy)) {
822 		load->weight = scale_load(WEIGHT_IDLEPRIO);
823 		load->inv_weight = WMULT_IDLEPRIO;
824 		return;
825 	}
826 
827 	load->weight = scale_load(sched_prio_to_weight[prio]);
828 	load->inv_weight = sched_prio_to_wmult[prio];
829 }
830 
831 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
832 {
833 	update_rq_clock(rq);
834 	if (!(flags & ENQUEUE_RESTORE))
835 		sched_info_queued(rq, p);
836 	p->sched_class->enqueue_task(rq, p, flags);
837 }
838 
839 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
840 {
841 	update_rq_clock(rq);
842 	if (!(flags & DEQUEUE_SAVE))
843 		sched_info_dequeued(rq, p);
844 	p->sched_class->dequeue_task(rq, p, flags);
845 }
846 
847 void activate_task(struct rq *rq, struct task_struct *p, int flags)
848 {
849 	if (task_contributes_to_load(p))
850 		rq->nr_uninterruptible--;
851 
852 	enqueue_task(rq, p, flags);
853 }
854 
855 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
856 {
857 	if (task_contributes_to_load(p))
858 		rq->nr_uninterruptible++;
859 
860 	dequeue_task(rq, p, flags);
861 }
862 
863 static void update_rq_clock_task(struct rq *rq, s64 delta)
864 {
865 /*
866  * In theory, the compile should just see 0 here, and optimize out the call
867  * to sched_rt_avg_update. But I don't trust it...
868  */
869 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 	s64 steal = 0, irq_delta = 0;
871 #endif
872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
873 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
874 
875 	/*
876 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 	 * this case when a previous update_rq_clock() happened inside a
878 	 * {soft,}irq region.
879 	 *
880 	 * When this happens, we stop ->clock_task and only update the
881 	 * prev_irq_time stamp to account for the part that fit, so that a next
882 	 * update will consume the rest. This ensures ->clock_task is
883 	 * monotonic.
884 	 *
885 	 * It does however cause some slight miss-attribution of {soft,}irq
886 	 * time, a more accurate solution would be to update the irq_time using
887 	 * the current rq->clock timestamp, except that would require using
888 	 * atomic ops.
889 	 */
890 	if (irq_delta > delta)
891 		irq_delta = delta;
892 
893 	rq->prev_irq_time += irq_delta;
894 	delta -= irq_delta;
895 #endif
896 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 	if (static_key_false((&paravirt_steal_rq_enabled))) {
898 		steal = paravirt_steal_clock(cpu_of(rq));
899 		steal -= rq->prev_steal_time_rq;
900 
901 		if (unlikely(steal > delta))
902 			steal = delta;
903 
904 		rq->prev_steal_time_rq += steal;
905 		delta -= steal;
906 	}
907 #endif
908 
909 	rq->clock_task += delta;
910 
911 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
912 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
913 		sched_rt_avg_update(rq, irq_delta + steal);
914 #endif
915 }
916 
917 void sched_set_stop_task(int cpu, struct task_struct *stop)
918 {
919 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
920 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
921 
922 	if (stop) {
923 		/*
924 		 * Make it appear like a SCHED_FIFO task, its something
925 		 * userspace knows about and won't get confused about.
926 		 *
927 		 * Also, it will make PI more or less work without too
928 		 * much confusion -- but then, stop work should not
929 		 * rely on PI working anyway.
930 		 */
931 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
932 
933 		stop->sched_class = &stop_sched_class;
934 	}
935 
936 	cpu_rq(cpu)->stop = stop;
937 
938 	if (old_stop) {
939 		/*
940 		 * Reset it back to a normal scheduling class so that
941 		 * it can die in pieces.
942 		 */
943 		old_stop->sched_class = &rt_sched_class;
944 	}
945 }
946 
947 /*
948  * __normal_prio - return the priority that is based on the static prio
949  */
950 static inline int __normal_prio(struct task_struct *p)
951 {
952 	return p->static_prio;
953 }
954 
955 /*
956  * Calculate the expected normal priority: i.e. priority
957  * without taking RT-inheritance into account. Might be
958  * boosted by interactivity modifiers. Changes upon fork,
959  * setprio syscalls, and whenever the interactivity
960  * estimator recalculates.
961  */
962 static inline int normal_prio(struct task_struct *p)
963 {
964 	int prio;
965 
966 	if (task_has_dl_policy(p))
967 		prio = MAX_DL_PRIO-1;
968 	else if (task_has_rt_policy(p))
969 		prio = MAX_RT_PRIO-1 - p->rt_priority;
970 	else
971 		prio = __normal_prio(p);
972 	return prio;
973 }
974 
975 /*
976  * Calculate the current priority, i.e. the priority
977  * taken into account by the scheduler. This value might
978  * be boosted by RT tasks, or might be boosted by
979  * interactivity modifiers. Will be RT if the task got
980  * RT-boosted. If not then it returns p->normal_prio.
981  */
982 static int effective_prio(struct task_struct *p)
983 {
984 	p->normal_prio = normal_prio(p);
985 	/*
986 	 * If we are RT tasks or we were boosted to RT priority,
987 	 * keep the priority unchanged. Otherwise, update priority
988 	 * to the normal priority:
989 	 */
990 	if (!rt_prio(p->prio))
991 		return p->normal_prio;
992 	return p->prio;
993 }
994 
995 /**
996  * task_curr - is this task currently executing on a CPU?
997  * @p: the task in question.
998  *
999  * Return: 1 if the task is currently executing. 0 otherwise.
1000  */
1001 inline int task_curr(const struct task_struct *p)
1002 {
1003 	return cpu_curr(task_cpu(p)) == p;
1004 }
1005 
1006 /*
1007  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1008  * use the balance_callback list if you want balancing.
1009  *
1010  * this means any call to check_class_changed() must be followed by a call to
1011  * balance_callback().
1012  */
1013 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1014 				       const struct sched_class *prev_class,
1015 				       int oldprio)
1016 {
1017 	if (prev_class != p->sched_class) {
1018 		if (prev_class->switched_from)
1019 			prev_class->switched_from(rq, p);
1020 
1021 		p->sched_class->switched_to(rq, p);
1022 	} else if (oldprio != p->prio || dl_task(p))
1023 		p->sched_class->prio_changed(rq, p, oldprio);
1024 }
1025 
1026 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1027 {
1028 	const struct sched_class *class;
1029 
1030 	if (p->sched_class == rq->curr->sched_class) {
1031 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1032 	} else {
1033 		for_each_class(class) {
1034 			if (class == rq->curr->sched_class)
1035 				break;
1036 			if (class == p->sched_class) {
1037 				resched_curr(rq);
1038 				break;
1039 			}
1040 		}
1041 	}
1042 
1043 	/*
1044 	 * A queue event has occurred, and we're going to schedule.  In
1045 	 * this case, we can save a useless back to back clock update.
1046 	 */
1047 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1048 		rq_clock_skip_update(rq, true);
1049 }
1050 
1051 #ifdef CONFIG_SMP
1052 /*
1053  * This is how migration works:
1054  *
1055  * 1) we invoke migration_cpu_stop() on the target CPU using
1056  *    stop_one_cpu().
1057  * 2) stopper starts to run (implicitly forcing the migrated thread
1058  *    off the CPU)
1059  * 3) it checks whether the migrated task is still in the wrong runqueue.
1060  * 4) if it's in the wrong runqueue then the migration thread removes
1061  *    it and puts it into the right queue.
1062  * 5) stopper completes and stop_one_cpu() returns and the migration
1063  *    is done.
1064  */
1065 
1066 /*
1067  * move_queued_task - move a queued task to new rq.
1068  *
1069  * Returns (locked) new rq. Old rq's lock is released.
1070  */
1071 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1072 {
1073 	lockdep_assert_held(&rq->lock);
1074 
1075 	p->on_rq = TASK_ON_RQ_MIGRATING;
1076 	dequeue_task(rq, p, 0);
1077 	set_task_cpu(p, new_cpu);
1078 	raw_spin_unlock(&rq->lock);
1079 
1080 	rq = cpu_rq(new_cpu);
1081 
1082 	raw_spin_lock(&rq->lock);
1083 	BUG_ON(task_cpu(p) != new_cpu);
1084 	enqueue_task(rq, p, 0);
1085 	p->on_rq = TASK_ON_RQ_QUEUED;
1086 	check_preempt_curr(rq, p, 0);
1087 
1088 	return rq;
1089 }
1090 
1091 struct migration_arg {
1092 	struct task_struct *task;
1093 	int dest_cpu;
1094 };
1095 
1096 /*
1097  * Move (not current) task off this cpu, onto dest cpu. We're doing
1098  * this because either it can't run here any more (set_cpus_allowed()
1099  * away from this CPU, or CPU going down), or because we're
1100  * attempting to rebalance this task on exec (sched_exec).
1101  *
1102  * So we race with normal scheduler movements, but that's OK, as long
1103  * as the task is no longer on this CPU.
1104  */
1105 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1106 {
1107 	if (unlikely(!cpu_active(dest_cpu)))
1108 		return rq;
1109 
1110 	/* Affinity changed (again). */
1111 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1112 		return rq;
1113 
1114 	rq = move_queued_task(rq, p, dest_cpu);
1115 
1116 	return rq;
1117 }
1118 
1119 /*
1120  * migration_cpu_stop - this will be executed by a highprio stopper thread
1121  * and performs thread migration by bumping thread off CPU then
1122  * 'pushing' onto another runqueue.
1123  */
1124 static int migration_cpu_stop(void *data)
1125 {
1126 	struct migration_arg *arg = data;
1127 	struct task_struct *p = arg->task;
1128 	struct rq *rq = this_rq();
1129 
1130 	/*
1131 	 * The original target cpu might have gone down and we might
1132 	 * be on another cpu but it doesn't matter.
1133 	 */
1134 	local_irq_disable();
1135 	/*
1136 	 * We need to explicitly wake pending tasks before running
1137 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1138 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1139 	 */
1140 	sched_ttwu_pending();
1141 
1142 	raw_spin_lock(&p->pi_lock);
1143 	raw_spin_lock(&rq->lock);
1144 	/*
1145 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1146 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1147 	 * we're holding p->pi_lock.
1148 	 */
1149 	if (task_rq(p) == rq && task_on_rq_queued(p))
1150 		rq = __migrate_task(rq, p, arg->dest_cpu);
1151 	raw_spin_unlock(&rq->lock);
1152 	raw_spin_unlock(&p->pi_lock);
1153 
1154 	local_irq_enable();
1155 	return 0;
1156 }
1157 
1158 /*
1159  * sched_class::set_cpus_allowed must do the below, but is not required to
1160  * actually call this function.
1161  */
1162 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1163 {
1164 	cpumask_copy(&p->cpus_allowed, new_mask);
1165 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1166 }
1167 
1168 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1169 {
1170 	struct rq *rq = task_rq(p);
1171 	bool queued, running;
1172 
1173 	lockdep_assert_held(&p->pi_lock);
1174 
1175 	queued = task_on_rq_queued(p);
1176 	running = task_current(rq, p);
1177 
1178 	if (queued) {
1179 		/*
1180 		 * Because __kthread_bind() calls this on blocked tasks without
1181 		 * holding rq->lock.
1182 		 */
1183 		lockdep_assert_held(&rq->lock);
1184 		dequeue_task(rq, p, DEQUEUE_SAVE);
1185 	}
1186 	if (running)
1187 		put_prev_task(rq, p);
1188 
1189 	p->sched_class->set_cpus_allowed(p, new_mask);
1190 
1191 	if (running)
1192 		p->sched_class->set_curr_task(rq);
1193 	if (queued)
1194 		enqueue_task(rq, p, ENQUEUE_RESTORE);
1195 }
1196 
1197 /*
1198  * Change a given task's CPU affinity. Migrate the thread to a
1199  * proper CPU and schedule it away if the CPU it's executing on
1200  * is removed from the allowed bitmask.
1201  *
1202  * NOTE: the caller must have a valid reference to the task, the
1203  * task must not exit() & deallocate itself prematurely. The
1204  * call is not atomic; no spinlocks may be held.
1205  */
1206 static int __set_cpus_allowed_ptr(struct task_struct *p,
1207 				  const struct cpumask *new_mask, bool check)
1208 {
1209 	unsigned long flags;
1210 	struct rq *rq;
1211 	unsigned int dest_cpu;
1212 	int ret = 0;
1213 
1214 	rq = task_rq_lock(p, &flags);
1215 
1216 	/*
1217 	 * Must re-check here, to close a race against __kthread_bind(),
1218 	 * sched_setaffinity() is not guaranteed to observe the flag.
1219 	 */
1220 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1221 		ret = -EINVAL;
1222 		goto out;
1223 	}
1224 
1225 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1226 		goto out;
1227 
1228 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1229 		ret = -EINVAL;
1230 		goto out;
1231 	}
1232 
1233 	do_set_cpus_allowed(p, new_mask);
1234 
1235 	/* Can the task run on the task's current CPU? If so, we're done */
1236 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1237 		goto out;
1238 
1239 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1240 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1241 		struct migration_arg arg = { p, dest_cpu };
1242 		/* Need help from migration thread: drop lock and wait. */
1243 		task_rq_unlock(rq, p, &flags);
1244 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1245 		tlb_migrate_finish(p->mm);
1246 		return 0;
1247 	} else if (task_on_rq_queued(p)) {
1248 		/*
1249 		 * OK, since we're going to drop the lock immediately
1250 		 * afterwards anyway.
1251 		 */
1252 		lockdep_unpin_lock(&rq->lock);
1253 		rq = move_queued_task(rq, p, dest_cpu);
1254 		lockdep_pin_lock(&rq->lock);
1255 	}
1256 out:
1257 	task_rq_unlock(rq, p, &flags);
1258 
1259 	return ret;
1260 }
1261 
1262 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1263 {
1264 	return __set_cpus_allowed_ptr(p, new_mask, false);
1265 }
1266 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1267 
1268 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1269 {
1270 #ifdef CONFIG_SCHED_DEBUG
1271 	/*
1272 	 * We should never call set_task_cpu() on a blocked task,
1273 	 * ttwu() will sort out the placement.
1274 	 */
1275 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1276 			!p->on_rq);
1277 
1278 	/*
1279 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1280 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1281 	 * time relying on p->on_rq.
1282 	 */
1283 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1284 		     p->sched_class == &fair_sched_class &&
1285 		     (p->on_rq && !task_on_rq_migrating(p)));
1286 
1287 #ifdef CONFIG_LOCKDEP
1288 	/*
1289 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1290 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1291 	 *
1292 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1293 	 * see task_group().
1294 	 *
1295 	 * Furthermore, all task_rq users should acquire both locks, see
1296 	 * task_rq_lock().
1297 	 */
1298 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1299 				      lockdep_is_held(&task_rq(p)->lock)));
1300 #endif
1301 #endif
1302 
1303 	trace_sched_migrate_task(p, new_cpu);
1304 
1305 	if (task_cpu(p) != new_cpu) {
1306 		if (p->sched_class->migrate_task_rq)
1307 			p->sched_class->migrate_task_rq(p);
1308 		p->se.nr_migrations++;
1309 		perf_event_task_migrate(p);
1310 	}
1311 
1312 	__set_task_cpu(p, new_cpu);
1313 }
1314 
1315 static void __migrate_swap_task(struct task_struct *p, int cpu)
1316 {
1317 	if (task_on_rq_queued(p)) {
1318 		struct rq *src_rq, *dst_rq;
1319 
1320 		src_rq = task_rq(p);
1321 		dst_rq = cpu_rq(cpu);
1322 
1323 		p->on_rq = TASK_ON_RQ_MIGRATING;
1324 		deactivate_task(src_rq, p, 0);
1325 		set_task_cpu(p, cpu);
1326 		activate_task(dst_rq, p, 0);
1327 		p->on_rq = TASK_ON_RQ_QUEUED;
1328 		check_preempt_curr(dst_rq, p, 0);
1329 	} else {
1330 		/*
1331 		 * Task isn't running anymore; make it appear like we migrated
1332 		 * it before it went to sleep. This means on wakeup we make the
1333 		 * previous cpu our targer instead of where it really is.
1334 		 */
1335 		p->wake_cpu = cpu;
1336 	}
1337 }
1338 
1339 struct migration_swap_arg {
1340 	struct task_struct *src_task, *dst_task;
1341 	int src_cpu, dst_cpu;
1342 };
1343 
1344 static int migrate_swap_stop(void *data)
1345 {
1346 	struct migration_swap_arg *arg = data;
1347 	struct rq *src_rq, *dst_rq;
1348 	int ret = -EAGAIN;
1349 
1350 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1351 		return -EAGAIN;
1352 
1353 	src_rq = cpu_rq(arg->src_cpu);
1354 	dst_rq = cpu_rq(arg->dst_cpu);
1355 
1356 	double_raw_lock(&arg->src_task->pi_lock,
1357 			&arg->dst_task->pi_lock);
1358 	double_rq_lock(src_rq, dst_rq);
1359 
1360 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1361 		goto unlock;
1362 
1363 	if (task_cpu(arg->src_task) != arg->src_cpu)
1364 		goto unlock;
1365 
1366 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1367 		goto unlock;
1368 
1369 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1370 		goto unlock;
1371 
1372 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1373 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1374 
1375 	ret = 0;
1376 
1377 unlock:
1378 	double_rq_unlock(src_rq, dst_rq);
1379 	raw_spin_unlock(&arg->dst_task->pi_lock);
1380 	raw_spin_unlock(&arg->src_task->pi_lock);
1381 
1382 	return ret;
1383 }
1384 
1385 /*
1386  * Cross migrate two tasks
1387  */
1388 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1389 {
1390 	struct migration_swap_arg arg;
1391 	int ret = -EINVAL;
1392 
1393 	arg = (struct migration_swap_arg){
1394 		.src_task = cur,
1395 		.src_cpu = task_cpu(cur),
1396 		.dst_task = p,
1397 		.dst_cpu = task_cpu(p),
1398 	};
1399 
1400 	if (arg.src_cpu == arg.dst_cpu)
1401 		goto out;
1402 
1403 	/*
1404 	 * These three tests are all lockless; this is OK since all of them
1405 	 * will be re-checked with proper locks held further down the line.
1406 	 */
1407 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1408 		goto out;
1409 
1410 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1411 		goto out;
1412 
1413 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1414 		goto out;
1415 
1416 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1417 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1418 
1419 out:
1420 	return ret;
1421 }
1422 
1423 /*
1424  * wait_task_inactive - wait for a thread to unschedule.
1425  *
1426  * If @match_state is nonzero, it's the @p->state value just checked and
1427  * not expected to change.  If it changes, i.e. @p might have woken up,
1428  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1429  * we return a positive number (its total switch count).  If a second call
1430  * a short while later returns the same number, the caller can be sure that
1431  * @p has remained unscheduled the whole time.
1432  *
1433  * The caller must ensure that the task *will* unschedule sometime soon,
1434  * else this function might spin for a *long* time. This function can't
1435  * be called with interrupts off, or it may introduce deadlock with
1436  * smp_call_function() if an IPI is sent by the same process we are
1437  * waiting to become inactive.
1438  */
1439 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1440 {
1441 	unsigned long flags;
1442 	int running, queued;
1443 	unsigned long ncsw;
1444 	struct rq *rq;
1445 
1446 	for (;;) {
1447 		/*
1448 		 * We do the initial early heuristics without holding
1449 		 * any task-queue locks at all. We'll only try to get
1450 		 * the runqueue lock when things look like they will
1451 		 * work out!
1452 		 */
1453 		rq = task_rq(p);
1454 
1455 		/*
1456 		 * If the task is actively running on another CPU
1457 		 * still, just relax and busy-wait without holding
1458 		 * any locks.
1459 		 *
1460 		 * NOTE! Since we don't hold any locks, it's not
1461 		 * even sure that "rq" stays as the right runqueue!
1462 		 * But we don't care, since "task_running()" will
1463 		 * return false if the runqueue has changed and p
1464 		 * is actually now running somewhere else!
1465 		 */
1466 		while (task_running(rq, p)) {
1467 			if (match_state && unlikely(p->state != match_state))
1468 				return 0;
1469 			cpu_relax();
1470 		}
1471 
1472 		/*
1473 		 * Ok, time to look more closely! We need the rq
1474 		 * lock now, to be *sure*. If we're wrong, we'll
1475 		 * just go back and repeat.
1476 		 */
1477 		rq = task_rq_lock(p, &flags);
1478 		trace_sched_wait_task(p);
1479 		running = task_running(rq, p);
1480 		queued = task_on_rq_queued(p);
1481 		ncsw = 0;
1482 		if (!match_state || p->state == match_state)
1483 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1484 		task_rq_unlock(rq, p, &flags);
1485 
1486 		/*
1487 		 * If it changed from the expected state, bail out now.
1488 		 */
1489 		if (unlikely(!ncsw))
1490 			break;
1491 
1492 		/*
1493 		 * Was it really running after all now that we
1494 		 * checked with the proper locks actually held?
1495 		 *
1496 		 * Oops. Go back and try again..
1497 		 */
1498 		if (unlikely(running)) {
1499 			cpu_relax();
1500 			continue;
1501 		}
1502 
1503 		/*
1504 		 * It's not enough that it's not actively running,
1505 		 * it must be off the runqueue _entirely_, and not
1506 		 * preempted!
1507 		 *
1508 		 * So if it was still runnable (but just not actively
1509 		 * running right now), it's preempted, and we should
1510 		 * yield - it could be a while.
1511 		 */
1512 		if (unlikely(queued)) {
1513 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1514 
1515 			set_current_state(TASK_UNINTERRUPTIBLE);
1516 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1517 			continue;
1518 		}
1519 
1520 		/*
1521 		 * Ahh, all good. It wasn't running, and it wasn't
1522 		 * runnable, which means that it will never become
1523 		 * running in the future either. We're all done!
1524 		 */
1525 		break;
1526 	}
1527 
1528 	return ncsw;
1529 }
1530 
1531 /***
1532  * kick_process - kick a running thread to enter/exit the kernel
1533  * @p: the to-be-kicked thread
1534  *
1535  * Cause a process which is running on another CPU to enter
1536  * kernel-mode, without any delay. (to get signals handled.)
1537  *
1538  * NOTE: this function doesn't have to take the runqueue lock,
1539  * because all it wants to ensure is that the remote task enters
1540  * the kernel. If the IPI races and the task has been migrated
1541  * to another CPU then no harm is done and the purpose has been
1542  * achieved as well.
1543  */
1544 void kick_process(struct task_struct *p)
1545 {
1546 	int cpu;
1547 
1548 	preempt_disable();
1549 	cpu = task_cpu(p);
1550 	if ((cpu != smp_processor_id()) && task_curr(p))
1551 		smp_send_reschedule(cpu);
1552 	preempt_enable();
1553 }
1554 EXPORT_SYMBOL_GPL(kick_process);
1555 
1556 /*
1557  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1558  */
1559 static int select_fallback_rq(int cpu, struct task_struct *p)
1560 {
1561 	int nid = cpu_to_node(cpu);
1562 	const struct cpumask *nodemask = NULL;
1563 	enum { cpuset, possible, fail } state = cpuset;
1564 	int dest_cpu;
1565 
1566 	/*
1567 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1568 	 * will return -1. There is no cpu on the node, and we should
1569 	 * select the cpu on the other node.
1570 	 */
1571 	if (nid != -1) {
1572 		nodemask = cpumask_of_node(nid);
1573 
1574 		/* Look for allowed, online CPU in same node. */
1575 		for_each_cpu(dest_cpu, nodemask) {
1576 			if (!cpu_online(dest_cpu))
1577 				continue;
1578 			if (!cpu_active(dest_cpu))
1579 				continue;
1580 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1581 				return dest_cpu;
1582 		}
1583 	}
1584 
1585 	for (;;) {
1586 		/* Any allowed, online CPU? */
1587 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1588 			if (!cpu_online(dest_cpu))
1589 				continue;
1590 			if (!cpu_active(dest_cpu))
1591 				continue;
1592 			goto out;
1593 		}
1594 
1595 		/* No more Mr. Nice Guy. */
1596 		switch (state) {
1597 		case cpuset:
1598 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1599 				cpuset_cpus_allowed_fallback(p);
1600 				state = possible;
1601 				break;
1602 			}
1603 			/* fall-through */
1604 		case possible:
1605 			do_set_cpus_allowed(p, cpu_possible_mask);
1606 			state = fail;
1607 			break;
1608 
1609 		case fail:
1610 			BUG();
1611 			break;
1612 		}
1613 	}
1614 
1615 out:
1616 	if (state != cpuset) {
1617 		/*
1618 		 * Don't tell them about moving exiting tasks or
1619 		 * kernel threads (both mm NULL), since they never
1620 		 * leave kernel.
1621 		 */
1622 		if (p->mm && printk_ratelimit()) {
1623 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1624 					task_pid_nr(p), p->comm, cpu);
1625 		}
1626 	}
1627 
1628 	return dest_cpu;
1629 }
1630 
1631 /*
1632  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1633  */
1634 static inline
1635 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1636 {
1637 	lockdep_assert_held(&p->pi_lock);
1638 
1639 	if (p->nr_cpus_allowed > 1)
1640 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1641 
1642 	/*
1643 	 * In order not to call set_task_cpu() on a blocking task we need
1644 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1645 	 * cpu.
1646 	 *
1647 	 * Since this is common to all placement strategies, this lives here.
1648 	 *
1649 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1650 	 *   not worry about this generic constraint ]
1651 	 */
1652 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1653 		     !cpu_online(cpu)))
1654 		cpu = select_fallback_rq(task_cpu(p), p);
1655 
1656 	return cpu;
1657 }
1658 
1659 static void update_avg(u64 *avg, u64 sample)
1660 {
1661 	s64 diff = sample - *avg;
1662 	*avg += diff >> 3;
1663 }
1664 
1665 #else
1666 
1667 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1668 					 const struct cpumask *new_mask, bool check)
1669 {
1670 	return set_cpus_allowed_ptr(p, new_mask);
1671 }
1672 
1673 #endif /* CONFIG_SMP */
1674 
1675 static void
1676 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1677 {
1678 #ifdef CONFIG_SCHEDSTATS
1679 	struct rq *rq = this_rq();
1680 
1681 #ifdef CONFIG_SMP
1682 	int this_cpu = smp_processor_id();
1683 
1684 	if (cpu == this_cpu) {
1685 		schedstat_inc(rq, ttwu_local);
1686 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1687 	} else {
1688 		struct sched_domain *sd;
1689 
1690 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1691 		rcu_read_lock();
1692 		for_each_domain(this_cpu, sd) {
1693 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1694 				schedstat_inc(sd, ttwu_wake_remote);
1695 				break;
1696 			}
1697 		}
1698 		rcu_read_unlock();
1699 	}
1700 
1701 	if (wake_flags & WF_MIGRATED)
1702 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1703 
1704 #endif /* CONFIG_SMP */
1705 
1706 	schedstat_inc(rq, ttwu_count);
1707 	schedstat_inc(p, se.statistics.nr_wakeups);
1708 
1709 	if (wake_flags & WF_SYNC)
1710 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1711 
1712 #endif /* CONFIG_SCHEDSTATS */
1713 }
1714 
1715 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1716 {
1717 	activate_task(rq, p, en_flags);
1718 	p->on_rq = TASK_ON_RQ_QUEUED;
1719 
1720 	/* if a worker is waking up, notify workqueue */
1721 	if (p->flags & PF_WQ_WORKER)
1722 		wq_worker_waking_up(p, cpu_of(rq));
1723 }
1724 
1725 /*
1726  * Mark the task runnable and perform wakeup-preemption.
1727  */
1728 static void
1729 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1730 {
1731 	check_preempt_curr(rq, p, wake_flags);
1732 	p->state = TASK_RUNNING;
1733 	trace_sched_wakeup(p);
1734 
1735 #ifdef CONFIG_SMP
1736 	if (p->sched_class->task_woken) {
1737 		/*
1738 		 * Our task @p is fully woken up and running; so its safe to
1739 		 * drop the rq->lock, hereafter rq is only used for statistics.
1740 		 */
1741 		lockdep_unpin_lock(&rq->lock);
1742 		p->sched_class->task_woken(rq, p);
1743 		lockdep_pin_lock(&rq->lock);
1744 	}
1745 
1746 	if (rq->idle_stamp) {
1747 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1748 		u64 max = 2*rq->max_idle_balance_cost;
1749 
1750 		update_avg(&rq->avg_idle, delta);
1751 
1752 		if (rq->avg_idle > max)
1753 			rq->avg_idle = max;
1754 
1755 		rq->idle_stamp = 0;
1756 	}
1757 #endif
1758 }
1759 
1760 static void
1761 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1762 {
1763 	lockdep_assert_held(&rq->lock);
1764 
1765 #ifdef CONFIG_SMP
1766 	if (p->sched_contributes_to_load)
1767 		rq->nr_uninterruptible--;
1768 #endif
1769 
1770 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1771 	ttwu_do_wakeup(rq, p, wake_flags);
1772 }
1773 
1774 /*
1775  * Called in case the task @p isn't fully descheduled from its runqueue,
1776  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1777  * since all we need to do is flip p->state to TASK_RUNNING, since
1778  * the task is still ->on_rq.
1779  */
1780 static int ttwu_remote(struct task_struct *p, int wake_flags)
1781 {
1782 	struct rq *rq;
1783 	int ret = 0;
1784 
1785 	rq = __task_rq_lock(p);
1786 	if (task_on_rq_queued(p)) {
1787 		/* check_preempt_curr() may use rq clock */
1788 		update_rq_clock(rq);
1789 		ttwu_do_wakeup(rq, p, wake_flags);
1790 		ret = 1;
1791 	}
1792 	__task_rq_unlock(rq);
1793 
1794 	return ret;
1795 }
1796 
1797 #ifdef CONFIG_SMP
1798 void sched_ttwu_pending(void)
1799 {
1800 	struct rq *rq = this_rq();
1801 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1802 	struct task_struct *p;
1803 	unsigned long flags;
1804 
1805 	if (!llist)
1806 		return;
1807 
1808 	raw_spin_lock_irqsave(&rq->lock, flags);
1809 	lockdep_pin_lock(&rq->lock);
1810 
1811 	while (llist) {
1812 		p = llist_entry(llist, struct task_struct, wake_entry);
1813 		llist = llist_next(llist);
1814 		ttwu_do_activate(rq, p, 0);
1815 	}
1816 
1817 	lockdep_unpin_lock(&rq->lock);
1818 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1819 }
1820 
1821 void scheduler_ipi(void)
1822 {
1823 	/*
1824 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1825 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1826 	 * this IPI.
1827 	 */
1828 	preempt_fold_need_resched();
1829 
1830 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1831 		return;
1832 
1833 	/*
1834 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1835 	 * traditionally all their work was done from the interrupt return
1836 	 * path. Now that we actually do some work, we need to make sure
1837 	 * we do call them.
1838 	 *
1839 	 * Some archs already do call them, luckily irq_enter/exit nest
1840 	 * properly.
1841 	 *
1842 	 * Arguably we should visit all archs and update all handlers,
1843 	 * however a fair share of IPIs are still resched only so this would
1844 	 * somewhat pessimize the simple resched case.
1845 	 */
1846 	irq_enter();
1847 	sched_ttwu_pending();
1848 
1849 	/*
1850 	 * Check if someone kicked us for doing the nohz idle load balance.
1851 	 */
1852 	if (unlikely(got_nohz_idle_kick())) {
1853 		this_rq()->idle_balance = 1;
1854 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1855 	}
1856 	irq_exit();
1857 }
1858 
1859 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1860 {
1861 	struct rq *rq = cpu_rq(cpu);
1862 
1863 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1864 		if (!set_nr_if_polling(rq->idle))
1865 			smp_send_reschedule(cpu);
1866 		else
1867 			trace_sched_wake_idle_without_ipi(cpu);
1868 	}
1869 }
1870 
1871 void wake_up_if_idle(int cpu)
1872 {
1873 	struct rq *rq = cpu_rq(cpu);
1874 	unsigned long flags;
1875 
1876 	rcu_read_lock();
1877 
1878 	if (!is_idle_task(rcu_dereference(rq->curr)))
1879 		goto out;
1880 
1881 	if (set_nr_if_polling(rq->idle)) {
1882 		trace_sched_wake_idle_without_ipi(cpu);
1883 	} else {
1884 		raw_spin_lock_irqsave(&rq->lock, flags);
1885 		if (is_idle_task(rq->curr))
1886 			smp_send_reschedule(cpu);
1887 		/* Else cpu is not in idle, do nothing here */
1888 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1889 	}
1890 
1891 out:
1892 	rcu_read_unlock();
1893 }
1894 
1895 bool cpus_share_cache(int this_cpu, int that_cpu)
1896 {
1897 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1898 }
1899 #endif /* CONFIG_SMP */
1900 
1901 static void ttwu_queue(struct task_struct *p, int cpu)
1902 {
1903 	struct rq *rq = cpu_rq(cpu);
1904 
1905 #if defined(CONFIG_SMP)
1906 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1907 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1908 		ttwu_queue_remote(p, cpu);
1909 		return;
1910 	}
1911 #endif
1912 
1913 	raw_spin_lock(&rq->lock);
1914 	lockdep_pin_lock(&rq->lock);
1915 	ttwu_do_activate(rq, p, 0);
1916 	lockdep_unpin_lock(&rq->lock);
1917 	raw_spin_unlock(&rq->lock);
1918 }
1919 
1920 /*
1921  * Notes on Program-Order guarantees on SMP systems.
1922  *
1923  *  MIGRATION
1924  *
1925  * The basic program-order guarantee on SMP systems is that when a task [t]
1926  * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1927  * execution on its new cpu [c1].
1928  *
1929  * For migration (of runnable tasks) this is provided by the following means:
1930  *
1931  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1932  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1933  *     rq(c1)->lock (if not at the same time, then in that order).
1934  *  C) LOCK of the rq(c1)->lock scheduling in task
1935  *
1936  * Transitivity guarantees that B happens after A and C after B.
1937  * Note: we only require RCpc transitivity.
1938  * Note: the cpu doing B need not be c0 or c1
1939  *
1940  * Example:
1941  *
1942  *   CPU0            CPU1            CPU2
1943  *
1944  *   LOCK rq(0)->lock
1945  *   sched-out X
1946  *   sched-in Y
1947  *   UNLOCK rq(0)->lock
1948  *
1949  *                                   LOCK rq(0)->lock // orders against CPU0
1950  *                                   dequeue X
1951  *                                   UNLOCK rq(0)->lock
1952  *
1953  *                                   LOCK rq(1)->lock
1954  *                                   enqueue X
1955  *                                   UNLOCK rq(1)->lock
1956  *
1957  *                   LOCK rq(1)->lock // orders against CPU2
1958  *                   sched-out Z
1959  *                   sched-in X
1960  *                   UNLOCK rq(1)->lock
1961  *
1962  *
1963  *  BLOCKING -- aka. SLEEP + WAKEUP
1964  *
1965  * For blocking we (obviously) need to provide the same guarantee as for
1966  * migration. However the means are completely different as there is no lock
1967  * chain to provide order. Instead we do:
1968  *
1969  *   1) smp_store_release(X->on_cpu, 0)
1970  *   2) smp_cond_acquire(!X->on_cpu)
1971  *
1972  * Example:
1973  *
1974  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1975  *
1976  *   LOCK rq(0)->lock LOCK X->pi_lock
1977  *   dequeue X
1978  *   sched-out X
1979  *   smp_store_release(X->on_cpu, 0);
1980  *
1981  *                    smp_cond_acquire(!X->on_cpu);
1982  *                    X->state = WAKING
1983  *                    set_task_cpu(X,2)
1984  *
1985  *                    LOCK rq(2)->lock
1986  *                    enqueue X
1987  *                    X->state = RUNNING
1988  *                    UNLOCK rq(2)->lock
1989  *
1990  *                                          LOCK rq(2)->lock // orders against CPU1
1991  *                                          sched-out Z
1992  *                                          sched-in X
1993  *                                          UNLOCK rq(2)->lock
1994  *
1995  *                    UNLOCK X->pi_lock
1996  *   UNLOCK rq(0)->lock
1997  *
1998  *
1999  * However; for wakeups there is a second guarantee we must provide, namely we
2000  * must observe the state that lead to our wakeup. That is, not only must our
2001  * task observe its own prior state, it must also observe the stores prior to
2002  * its wakeup.
2003  *
2004  * This means that any means of doing remote wakeups must order the CPU doing
2005  * the wakeup against the CPU the task is going to end up running on. This,
2006  * however, is already required for the regular Program-Order guarantee above,
2007  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
2008  *
2009  */
2010 
2011 /**
2012  * try_to_wake_up - wake up a thread
2013  * @p: the thread to be awakened
2014  * @state: the mask of task states that can be woken
2015  * @wake_flags: wake modifier flags (WF_*)
2016  *
2017  * Put it on the run-queue if it's not already there. The "current"
2018  * thread is always on the run-queue (except when the actual
2019  * re-schedule is in progress), and as such you're allowed to do
2020  * the simpler "current->state = TASK_RUNNING" to mark yourself
2021  * runnable without the overhead of this.
2022  *
2023  * Return: %true if @p was woken up, %false if it was already running.
2024  * or @state didn't match @p's state.
2025  */
2026 static int
2027 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2028 {
2029 	unsigned long flags;
2030 	int cpu, success = 0;
2031 
2032 	/*
2033 	 * If we are going to wake up a thread waiting for CONDITION we
2034 	 * need to ensure that CONDITION=1 done by the caller can not be
2035 	 * reordered with p->state check below. This pairs with mb() in
2036 	 * set_current_state() the waiting thread does.
2037 	 */
2038 	smp_mb__before_spinlock();
2039 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2040 	if (!(p->state & state))
2041 		goto out;
2042 
2043 	trace_sched_waking(p);
2044 
2045 	success = 1; /* we're going to change ->state */
2046 	cpu = task_cpu(p);
2047 
2048 	if (p->on_rq && ttwu_remote(p, wake_flags))
2049 		goto stat;
2050 
2051 #ifdef CONFIG_SMP
2052 	/*
2053 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2054 	 * possible to, falsely, observe p->on_cpu == 0.
2055 	 *
2056 	 * One must be running (->on_cpu == 1) in order to remove oneself
2057 	 * from the runqueue.
2058 	 *
2059 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2060 	 *      UNLOCK rq->lock
2061 	 *			RMB
2062 	 *      LOCK   rq->lock
2063 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2064 	 *
2065 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2066 	 * from the consecutive calls to schedule(); the first switching to our
2067 	 * task, the second putting it to sleep.
2068 	 */
2069 	smp_rmb();
2070 
2071 	/*
2072 	 * If the owning (remote) cpu is still in the middle of schedule() with
2073 	 * this task as prev, wait until its done referencing the task.
2074 	 *
2075 	 * Pairs with the smp_store_release() in finish_lock_switch().
2076 	 *
2077 	 * This ensures that tasks getting woken will be fully ordered against
2078 	 * their previous state and preserve Program Order.
2079 	 */
2080 	smp_cond_acquire(!p->on_cpu);
2081 
2082 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2083 	p->state = TASK_WAKING;
2084 
2085 	if (p->sched_class->task_waking)
2086 		p->sched_class->task_waking(p);
2087 
2088 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2089 	if (task_cpu(p) != cpu) {
2090 		wake_flags |= WF_MIGRATED;
2091 		set_task_cpu(p, cpu);
2092 	}
2093 #endif /* CONFIG_SMP */
2094 
2095 	ttwu_queue(p, cpu);
2096 stat:
2097 	ttwu_stat(p, cpu, wake_flags);
2098 out:
2099 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2100 
2101 	return success;
2102 }
2103 
2104 /**
2105  * try_to_wake_up_local - try to wake up a local task with rq lock held
2106  * @p: the thread to be awakened
2107  *
2108  * Put @p on the run-queue if it's not already there. The caller must
2109  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2110  * the current task.
2111  */
2112 static void try_to_wake_up_local(struct task_struct *p)
2113 {
2114 	struct rq *rq = task_rq(p);
2115 
2116 	if (WARN_ON_ONCE(rq != this_rq()) ||
2117 	    WARN_ON_ONCE(p == current))
2118 		return;
2119 
2120 	lockdep_assert_held(&rq->lock);
2121 
2122 	if (!raw_spin_trylock(&p->pi_lock)) {
2123 		/*
2124 		 * This is OK, because current is on_cpu, which avoids it being
2125 		 * picked for load-balance and preemption/IRQs are still
2126 		 * disabled avoiding further scheduler activity on it and we've
2127 		 * not yet picked a replacement task.
2128 		 */
2129 		lockdep_unpin_lock(&rq->lock);
2130 		raw_spin_unlock(&rq->lock);
2131 		raw_spin_lock(&p->pi_lock);
2132 		raw_spin_lock(&rq->lock);
2133 		lockdep_pin_lock(&rq->lock);
2134 	}
2135 
2136 	if (!(p->state & TASK_NORMAL))
2137 		goto out;
2138 
2139 	trace_sched_waking(p);
2140 
2141 	if (!task_on_rq_queued(p))
2142 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2143 
2144 	ttwu_do_wakeup(rq, p, 0);
2145 	ttwu_stat(p, smp_processor_id(), 0);
2146 out:
2147 	raw_spin_unlock(&p->pi_lock);
2148 }
2149 
2150 /**
2151  * wake_up_process - Wake up a specific process
2152  * @p: The process to be woken up.
2153  *
2154  * Attempt to wake up the nominated process and move it to the set of runnable
2155  * processes.
2156  *
2157  * Return: 1 if the process was woken up, 0 if it was already running.
2158  *
2159  * It may be assumed that this function implies a write memory barrier before
2160  * changing the task state if and only if any tasks are woken up.
2161  */
2162 int wake_up_process(struct task_struct *p)
2163 {
2164 	return try_to_wake_up(p, TASK_NORMAL, 0);
2165 }
2166 EXPORT_SYMBOL(wake_up_process);
2167 
2168 int wake_up_state(struct task_struct *p, unsigned int state)
2169 {
2170 	return try_to_wake_up(p, state, 0);
2171 }
2172 
2173 /*
2174  * This function clears the sched_dl_entity static params.
2175  */
2176 void __dl_clear_params(struct task_struct *p)
2177 {
2178 	struct sched_dl_entity *dl_se = &p->dl;
2179 
2180 	dl_se->dl_runtime = 0;
2181 	dl_se->dl_deadline = 0;
2182 	dl_se->dl_period = 0;
2183 	dl_se->flags = 0;
2184 	dl_se->dl_bw = 0;
2185 
2186 	dl_se->dl_throttled = 0;
2187 	dl_se->dl_new = 1;
2188 	dl_se->dl_yielded = 0;
2189 }
2190 
2191 /*
2192  * Perform scheduler related setup for a newly forked process p.
2193  * p is forked by current.
2194  *
2195  * __sched_fork() is basic setup used by init_idle() too:
2196  */
2197 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2198 {
2199 	p->on_rq			= 0;
2200 
2201 	p->se.on_rq			= 0;
2202 	p->se.exec_start		= 0;
2203 	p->se.sum_exec_runtime		= 0;
2204 	p->se.prev_sum_exec_runtime	= 0;
2205 	p->se.nr_migrations		= 0;
2206 	p->se.vruntime			= 0;
2207 	INIT_LIST_HEAD(&p->se.group_node);
2208 
2209 #ifdef CONFIG_FAIR_GROUP_SCHED
2210 	p->se.cfs_rq			= NULL;
2211 #endif
2212 
2213 #ifdef CONFIG_SCHEDSTATS
2214 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2215 #endif
2216 
2217 	RB_CLEAR_NODE(&p->dl.rb_node);
2218 	init_dl_task_timer(&p->dl);
2219 	__dl_clear_params(p);
2220 
2221 	INIT_LIST_HEAD(&p->rt.run_list);
2222 
2223 #ifdef CONFIG_PREEMPT_NOTIFIERS
2224 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2225 #endif
2226 
2227 #ifdef CONFIG_NUMA_BALANCING
2228 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2229 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2230 		p->mm->numa_scan_seq = 0;
2231 	}
2232 
2233 	if (clone_flags & CLONE_VM)
2234 		p->numa_preferred_nid = current->numa_preferred_nid;
2235 	else
2236 		p->numa_preferred_nid = -1;
2237 
2238 	p->node_stamp = 0ULL;
2239 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2240 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2241 	p->numa_work.next = &p->numa_work;
2242 	p->numa_faults = NULL;
2243 	p->last_task_numa_placement = 0;
2244 	p->last_sum_exec_runtime = 0;
2245 
2246 	p->numa_group = NULL;
2247 #endif /* CONFIG_NUMA_BALANCING */
2248 }
2249 
2250 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2251 
2252 #ifdef CONFIG_NUMA_BALANCING
2253 
2254 void set_numabalancing_state(bool enabled)
2255 {
2256 	if (enabled)
2257 		static_branch_enable(&sched_numa_balancing);
2258 	else
2259 		static_branch_disable(&sched_numa_balancing);
2260 }
2261 
2262 #ifdef CONFIG_PROC_SYSCTL
2263 int sysctl_numa_balancing(struct ctl_table *table, int write,
2264 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2265 {
2266 	struct ctl_table t;
2267 	int err;
2268 	int state = static_branch_likely(&sched_numa_balancing);
2269 
2270 	if (write && !capable(CAP_SYS_ADMIN))
2271 		return -EPERM;
2272 
2273 	t = *table;
2274 	t.data = &state;
2275 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2276 	if (err < 0)
2277 		return err;
2278 	if (write)
2279 		set_numabalancing_state(state);
2280 	return err;
2281 }
2282 #endif
2283 #endif
2284 
2285 /*
2286  * fork()/clone()-time setup:
2287  */
2288 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2289 {
2290 	unsigned long flags;
2291 	int cpu = get_cpu();
2292 
2293 	__sched_fork(clone_flags, p);
2294 	/*
2295 	 * We mark the process as running here. This guarantees that
2296 	 * nobody will actually run it, and a signal or other external
2297 	 * event cannot wake it up and insert it on the runqueue either.
2298 	 */
2299 	p->state = TASK_RUNNING;
2300 
2301 	/*
2302 	 * Make sure we do not leak PI boosting priority to the child.
2303 	 */
2304 	p->prio = current->normal_prio;
2305 
2306 	/*
2307 	 * Revert to default priority/policy on fork if requested.
2308 	 */
2309 	if (unlikely(p->sched_reset_on_fork)) {
2310 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2311 			p->policy = SCHED_NORMAL;
2312 			p->static_prio = NICE_TO_PRIO(0);
2313 			p->rt_priority = 0;
2314 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2315 			p->static_prio = NICE_TO_PRIO(0);
2316 
2317 		p->prio = p->normal_prio = __normal_prio(p);
2318 		set_load_weight(p);
2319 
2320 		/*
2321 		 * We don't need the reset flag anymore after the fork. It has
2322 		 * fulfilled its duty:
2323 		 */
2324 		p->sched_reset_on_fork = 0;
2325 	}
2326 
2327 	if (dl_prio(p->prio)) {
2328 		put_cpu();
2329 		return -EAGAIN;
2330 	} else if (rt_prio(p->prio)) {
2331 		p->sched_class = &rt_sched_class;
2332 	} else {
2333 		p->sched_class = &fair_sched_class;
2334 	}
2335 
2336 	if (p->sched_class->task_fork)
2337 		p->sched_class->task_fork(p);
2338 
2339 	/*
2340 	 * The child is not yet in the pid-hash so no cgroup attach races,
2341 	 * and the cgroup is pinned to this child due to cgroup_fork()
2342 	 * is ran before sched_fork().
2343 	 *
2344 	 * Silence PROVE_RCU.
2345 	 */
2346 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2347 	set_task_cpu(p, cpu);
2348 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2349 
2350 #ifdef CONFIG_SCHED_INFO
2351 	if (likely(sched_info_on()))
2352 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2353 #endif
2354 #if defined(CONFIG_SMP)
2355 	p->on_cpu = 0;
2356 #endif
2357 	init_task_preempt_count(p);
2358 #ifdef CONFIG_SMP
2359 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2360 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2361 #endif
2362 
2363 	put_cpu();
2364 	return 0;
2365 }
2366 
2367 unsigned long to_ratio(u64 period, u64 runtime)
2368 {
2369 	if (runtime == RUNTIME_INF)
2370 		return 1ULL << 20;
2371 
2372 	/*
2373 	 * Doing this here saves a lot of checks in all
2374 	 * the calling paths, and returning zero seems
2375 	 * safe for them anyway.
2376 	 */
2377 	if (period == 0)
2378 		return 0;
2379 
2380 	return div64_u64(runtime << 20, period);
2381 }
2382 
2383 #ifdef CONFIG_SMP
2384 inline struct dl_bw *dl_bw_of(int i)
2385 {
2386 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2387 			 "sched RCU must be held");
2388 	return &cpu_rq(i)->rd->dl_bw;
2389 }
2390 
2391 static inline int dl_bw_cpus(int i)
2392 {
2393 	struct root_domain *rd = cpu_rq(i)->rd;
2394 	int cpus = 0;
2395 
2396 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2397 			 "sched RCU must be held");
2398 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2399 		cpus++;
2400 
2401 	return cpus;
2402 }
2403 #else
2404 inline struct dl_bw *dl_bw_of(int i)
2405 {
2406 	return &cpu_rq(i)->dl.dl_bw;
2407 }
2408 
2409 static inline int dl_bw_cpus(int i)
2410 {
2411 	return 1;
2412 }
2413 #endif
2414 
2415 /*
2416  * We must be sure that accepting a new task (or allowing changing the
2417  * parameters of an existing one) is consistent with the bandwidth
2418  * constraints. If yes, this function also accordingly updates the currently
2419  * allocated bandwidth to reflect the new situation.
2420  *
2421  * This function is called while holding p's rq->lock.
2422  *
2423  * XXX we should delay bw change until the task's 0-lag point, see
2424  * __setparam_dl().
2425  */
2426 static int dl_overflow(struct task_struct *p, int policy,
2427 		       const struct sched_attr *attr)
2428 {
2429 
2430 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2431 	u64 period = attr->sched_period ?: attr->sched_deadline;
2432 	u64 runtime = attr->sched_runtime;
2433 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2434 	int cpus, err = -1;
2435 
2436 	if (new_bw == p->dl.dl_bw)
2437 		return 0;
2438 
2439 	/*
2440 	 * Either if a task, enters, leave, or stays -deadline but changes
2441 	 * its parameters, we may need to update accordingly the total
2442 	 * allocated bandwidth of the container.
2443 	 */
2444 	raw_spin_lock(&dl_b->lock);
2445 	cpus = dl_bw_cpus(task_cpu(p));
2446 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2447 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2448 		__dl_add(dl_b, new_bw);
2449 		err = 0;
2450 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2451 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2452 		__dl_clear(dl_b, p->dl.dl_bw);
2453 		__dl_add(dl_b, new_bw);
2454 		err = 0;
2455 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2456 		__dl_clear(dl_b, p->dl.dl_bw);
2457 		err = 0;
2458 	}
2459 	raw_spin_unlock(&dl_b->lock);
2460 
2461 	return err;
2462 }
2463 
2464 extern void init_dl_bw(struct dl_bw *dl_b);
2465 
2466 /*
2467  * wake_up_new_task - wake up a newly created task for the first time.
2468  *
2469  * This function will do some initial scheduler statistics housekeeping
2470  * that must be done for every newly created context, then puts the task
2471  * on the runqueue and wakes it.
2472  */
2473 void wake_up_new_task(struct task_struct *p)
2474 {
2475 	unsigned long flags;
2476 	struct rq *rq;
2477 
2478 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2479 	/* Initialize new task's runnable average */
2480 	init_entity_runnable_average(&p->se);
2481 #ifdef CONFIG_SMP
2482 	/*
2483 	 * Fork balancing, do it here and not earlier because:
2484 	 *  - cpus_allowed can change in the fork path
2485 	 *  - any previously selected cpu might disappear through hotplug
2486 	 */
2487 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2488 #endif
2489 
2490 	rq = __task_rq_lock(p);
2491 	activate_task(rq, p, 0);
2492 	p->on_rq = TASK_ON_RQ_QUEUED;
2493 	trace_sched_wakeup_new(p);
2494 	check_preempt_curr(rq, p, WF_FORK);
2495 #ifdef CONFIG_SMP
2496 	if (p->sched_class->task_woken) {
2497 		/*
2498 		 * Nothing relies on rq->lock after this, so its fine to
2499 		 * drop it.
2500 		 */
2501 		lockdep_unpin_lock(&rq->lock);
2502 		p->sched_class->task_woken(rq, p);
2503 		lockdep_pin_lock(&rq->lock);
2504 	}
2505 #endif
2506 	task_rq_unlock(rq, p, &flags);
2507 }
2508 
2509 #ifdef CONFIG_PREEMPT_NOTIFIERS
2510 
2511 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2512 
2513 void preempt_notifier_inc(void)
2514 {
2515 	static_key_slow_inc(&preempt_notifier_key);
2516 }
2517 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2518 
2519 void preempt_notifier_dec(void)
2520 {
2521 	static_key_slow_dec(&preempt_notifier_key);
2522 }
2523 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2524 
2525 /**
2526  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2527  * @notifier: notifier struct to register
2528  */
2529 void preempt_notifier_register(struct preempt_notifier *notifier)
2530 {
2531 	if (!static_key_false(&preempt_notifier_key))
2532 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2533 
2534 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2535 }
2536 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2537 
2538 /**
2539  * preempt_notifier_unregister - no longer interested in preemption notifications
2540  * @notifier: notifier struct to unregister
2541  *
2542  * This is *not* safe to call from within a preemption notifier.
2543  */
2544 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2545 {
2546 	hlist_del(&notifier->link);
2547 }
2548 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2549 
2550 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2551 {
2552 	struct preempt_notifier *notifier;
2553 
2554 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2555 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2556 }
2557 
2558 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2559 {
2560 	if (static_key_false(&preempt_notifier_key))
2561 		__fire_sched_in_preempt_notifiers(curr);
2562 }
2563 
2564 static void
2565 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2566 				   struct task_struct *next)
2567 {
2568 	struct preempt_notifier *notifier;
2569 
2570 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2571 		notifier->ops->sched_out(notifier, next);
2572 }
2573 
2574 static __always_inline void
2575 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2576 				 struct task_struct *next)
2577 {
2578 	if (static_key_false(&preempt_notifier_key))
2579 		__fire_sched_out_preempt_notifiers(curr, next);
2580 }
2581 
2582 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2583 
2584 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2585 {
2586 }
2587 
2588 static inline void
2589 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2590 				 struct task_struct *next)
2591 {
2592 }
2593 
2594 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2595 
2596 /**
2597  * prepare_task_switch - prepare to switch tasks
2598  * @rq: the runqueue preparing to switch
2599  * @prev: the current task that is being switched out
2600  * @next: the task we are going to switch to.
2601  *
2602  * This is called with the rq lock held and interrupts off. It must
2603  * be paired with a subsequent finish_task_switch after the context
2604  * switch.
2605  *
2606  * prepare_task_switch sets up locking and calls architecture specific
2607  * hooks.
2608  */
2609 static inline void
2610 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2611 		    struct task_struct *next)
2612 {
2613 	sched_info_switch(rq, prev, next);
2614 	perf_event_task_sched_out(prev, next);
2615 	fire_sched_out_preempt_notifiers(prev, next);
2616 	prepare_lock_switch(rq, next);
2617 	prepare_arch_switch(next);
2618 }
2619 
2620 /**
2621  * finish_task_switch - clean up after a task-switch
2622  * @prev: the thread we just switched away from.
2623  *
2624  * finish_task_switch must be called after the context switch, paired
2625  * with a prepare_task_switch call before the context switch.
2626  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2627  * and do any other architecture-specific cleanup actions.
2628  *
2629  * Note that we may have delayed dropping an mm in context_switch(). If
2630  * so, we finish that here outside of the runqueue lock. (Doing it
2631  * with the lock held can cause deadlocks; see schedule() for
2632  * details.)
2633  *
2634  * The context switch have flipped the stack from under us and restored the
2635  * local variables which were saved when this task called schedule() in the
2636  * past. prev == current is still correct but we need to recalculate this_rq
2637  * because prev may have moved to another CPU.
2638  */
2639 static struct rq *finish_task_switch(struct task_struct *prev)
2640 	__releases(rq->lock)
2641 {
2642 	struct rq *rq = this_rq();
2643 	struct mm_struct *mm = rq->prev_mm;
2644 	long prev_state;
2645 
2646 	/*
2647 	 * The previous task will have left us with a preempt_count of 2
2648 	 * because it left us after:
2649 	 *
2650 	 *	schedule()
2651 	 *	  preempt_disable();			// 1
2652 	 *	  __schedule()
2653 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2654 	 *
2655 	 * Also, see FORK_PREEMPT_COUNT.
2656 	 */
2657 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2658 		      "corrupted preempt_count: %s/%d/0x%x\n",
2659 		      current->comm, current->pid, preempt_count()))
2660 		preempt_count_set(FORK_PREEMPT_COUNT);
2661 
2662 	rq->prev_mm = NULL;
2663 
2664 	/*
2665 	 * A task struct has one reference for the use as "current".
2666 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2667 	 * schedule one last time. The schedule call will never return, and
2668 	 * the scheduled task must drop that reference.
2669 	 *
2670 	 * We must observe prev->state before clearing prev->on_cpu (in
2671 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2672 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2673 	 * transition, resulting in a double drop.
2674 	 */
2675 	prev_state = prev->state;
2676 	vtime_task_switch(prev);
2677 	perf_event_task_sched_in(prev, current);
2678 	finish_lock_switch(rq, prev);
2679 	finish_arch_post_lock_switch();
2680 
2681 	fire_sched_in_preempt_notifiers(current);
2682 	if (mm)
2683 		mmdrop(mm);
2684 	if (unlikely(prev_state == TASK_DEAD)) {
2685 		if (prev->sched_class->task_dead)
2686 			prev->sched_class->task_dead(prev);
2687 
2688 		/*
2689 		 * Remove function-return probe instances associated with this
2690 		 * task and put them back on the free list.
2691 		 */
2692 		kprobe_flush_task(prev);
2693 		put_task_struct(prev);
2694 	}
2695 
2696 	tick_nohz_task_switch();
2697 	return rq;
2698 }
2699 
2700 #ifdef CONFIG_SMP
2701 
2702 /* rq->lock is NOT held, but preemption is disabled */
2703 static void __balance_callback(struct rq *rq)
2704 {
2705 	struct callback_head *head, *next;
2706 	void (*func)(struct rq *rq);
2707 	unsigned long flags;
2708 
2709 	raw_spin_lock_irqsave(&rq->lock, flags);
2710 	head = rq->balance_callback;
2711 	rq->balance_callback = NULL;
2712 	while (head) {
2713 		func = (void (*)(struct rq *))head->func;
2714 		next = head->next;
2715 		head->next = NULL;
2716 		head = next;
2717 
2718 		func(rq);
2719 	}
2720 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2721 }
2722 
2723 static inline void balance_callback(struct rq *rq)
2724 {
2725 	if (unlikely(rq->balance_callback))
2726 		__balance_callback(rq);
2727 }
2728 
2729 #else
2730 
2731 static inline void balance_callback(struct rq *rq)
2732 {
2733 }
2734 
2735 #endif
2736 
2737 /**
2738  * schedule_tail - first thing a freshly forked thread must call.
2739  * @prev: the thread we just switched away from.
2740  */
2741 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2742 	__releases(rq->lock)
2743 {
2744 	struct rq *rq;
2745 
2746 	/*
2747 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2748 	 * finish_task_switch() for details.
2749 	 *
2750 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2751 	 * and the preempt_enable() will end up enabling preemption (on
2752 	 * PREEMPT_COUNT kernels).
2753 	 */
2754 
2755 	rq = finish_task_switch(prev);
2756 	balance_callback(rq);
2757 	preempt_enable();
2758 
2759 	if (current->set_child_tid)
2760 		put_user(task_pid_vnr(current), current->set_child_tid);
2761 }
2762 
2763 /*
2764  * context_switch - switch to the new MM and the new thread's register state.
2765  */
2766 static inline struct rq *
2767 context_switch(struct rq *rq, struct task_struct *prev,
2768 	       struct task_struct *next)
2769 {
2770 	struct mm_struct *mm, *oldmm;
2771 
2772 	prepare_task_switch(rq, prev, next);
2773 
2774 	mm = next->mm;
2775 	oldmm = prev->active_mm;
2776 	/*
2777 	 * For paravirt, this is coupled with an exit in switch_to to
2778 	 * combine the page table reload and the switch backend into
2779 	 * one hypercall.
2780 	 */
2781 	arch_start_context_switch(prev);
2782 
2783 	if (!mm) {
2784 		next->active_mm = oldmm;
2785 		atomic_inc(&oldmm->mm_count);
2786 		enter_lazy_tlb(oldmm, next);
2787 	} else
2788 		switch_mm(oldmm, mm, next);
2789 
2790 	if (!prev->mm) {
2791 		prev->active_mm = NULL;
2792 		rq->prev_mm = oldmm;
2793 	}
2794 	/*
2795 	 * Since the runqueue lock will be released by the next
2796 	 * task (which is an invalid locking op but in the case
2797 	 * of the scheduler it's an obvious special-case), so we
2798 	 * do an early lockdep release here:
2799 	 */
2800 	lockdep_unpin_lock(&rq->lock);
2801 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2802 
2803 	/* Here we just switch the register state and the stack. */
2804 	switch_to(prev, next, prev);
2805 	barrier();
2806 
2807 	return finish_task_switch(prev);
2808 }
2809 
2810 /*
2811  * nr_running and nr_context_switches:
2812  *
2813  * externally visible scheduler statistics: current number of runnable
2814  * threads, total number of context switches performed since bootup.
2815  */
2816 unsigned long nr_running(void)
2817 {
2818 	unsigned long i, sum = 0;
2819 
2820 	for_each_online_cpu(i)
2821 		sum += cpu_rq(i)->nr_running;
2822 
2823 	return sum;
2824 }
2825 
2826 /*
2827  * Check if only the current task is running on the cpu.
2828  *
2829  * Caution: this function does not check that the caller has disabled
2830  * preemption, thus the result might have a time-of-check-to-time-of-use
2831  * race.  The caller is responsible to use it correctly, for example:
2832  *
2833  * - from a non-preemptable section (of course)
2834  *
2835  * - from a thread that is bound to a single CPU
2836  *
2837  * - in a loop with very short iterations (e.g. a polling loop)
2838  */
2839 bool single_task_running(void)
2840 {
2841 	return raw_rq()->nr_running == 1;
2842 }
2843 EXPORT_SYMBOL(single_task_running);
2844 
2845 unsigned long long nr_context_switches(void)
2846 {
2847 	int i;
2848 	unsigned long long sum = 0;
2849 
2850 	for_each_possible_cpu(i)
2851 		sum += cpu_rq(i)->nr_switches;
2852 
2853 	return sum;
2854 }
2855 
2856 unsigned long nr_iowait(void)
2857 {
2858 	unsigned long i, sum = 0;
2859 
2860 	for_each_possible_cpu(i)
2861 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2862 
2863 	return sum;
2864 }
2865 
2866 unsigned long nr_iowait_cpu(int cpu)
2867 {
2868 	struct rq *this = cpu_rq(cpu);
2869 	return atomic_read(&this->nr_iowait);
2870 }
2871 
2872 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2873 {
2874 	struct rq *rq = this_rq();
2875 	*nr_waiters = atomic_read(&rq->nr_iowait);
2876 	*load = rq->load.weight;
2877 }
2878 
2879 #ifdef CONFIG_SMP
2880 
2881 /*
2882  * sched_exec - execve() is a valuable balancing opportunity, because at
2883  * this point the task has the smallest effective memory and cache footprint.
2884  */
2885 void sched_exec(void)
2886 {
2887 	struct task_struct *p = current;
2888 	unsigned long flags;
2889 	int dest_cpu;
2890 
2891 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2892 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2893 	if (dest_cpu == smp_processor_id())
2894 		goto unlock;
2895 
2896 	if (likely(cpu_active(dest_cpu))) {
2897 		struct migration_arg arg = { p, dest_cpu };
2898 
2899 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2900 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2901 		return;
2902 	}
2903 unlock:
2904 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2905 }
2906 
2907 #endif
2908 
2909 DEFINE_PER_CPU(struct kernel_stat, kstat);
2910 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2911 
2912 EXPORT_PER_CPU_SYMBOL(kstat);
2913 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2914 
2915 /*
2916  * Return accounted runtime for the task.
2917  * In case the task is currently running, return the runtime plus current's
2918  * pending runtime that have not been accounted yet.
2919  */
2920 unsigned long long task_sched_runtime(struct task_struct *p)
2921 {
2922 	unsigned long flags;
2923 	struct rq *rq;
2924 	u64 ns;
2925 
2926 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2927 	/*
2928 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2929 	 * So we have a optimization chance when the task's delta_exec is 0.
2930 	 * Reading ->on_cpu is racy, but this is ok.
2931 	 *
2932 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2933 	 * If we race with it entering cpu, unaccounted time is 0. This is
2934 	 * indistinguishable from the read occurring a few cycles earlier.
2935 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2936 	 * been accounted, so we're correct here as well.
2937 	 */
2938 	if (!p->on_cpu || !task_on_rq_queued(p))
2939 		return p->se.sum_exec_runtime;
2940 #endif
2941 
2942 	rq = task_rq_lock(p, &flags);
2943 	/*
2944 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2945 	 * project cycles that may never be accounted to this
2946 	 * thread, breaking clock_gettime().
2947 	 */
2948 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2949 		update_rq_clock(rq);
2950 		p->sched_class->update_curr(rq);
2951 	}
2952 	ns = p->se.sum_exec_runtime;
2953 	task_rq_unlock(rq, p, &flags);
2954 
2955 	return ns;
2956 }
2957 
2958 /*
2959  * This function gets called by the timer code, with HZ frequency.
2960  * We call it with interrupts disabled.
2961  */
2962 void scheduler_tick(void)
2963 {
2964 	int cpu = smp_processor_id();
2965 	struct rq *rq = cpu_rq(cpu);
2966 	struct task_struct *curr = rq->curr;
2967 
2968 	sched_clock_tick();
2969 
2970 	raw_spin_lock(&rq->lock);
2971 	update_rq_clock(rq);
2972 	curr->sched_class->task_tick(rq, curr, 0);
2973 	update_cpu_load_active(rq);
2974 	calc_global_load_tick(rq);
2975 	raw_spin_unlock(&rq->lock);
2976 
2977 	perf_event_task_tick();
2978 
2979 #ifdef CONFIG_SMP
2980 	rq->idle_balance = idle_cpu(cpu);
2981 	trigger_load_balance(rq);
2982 #endif
2983 	rq_last_tick_reset(rq);
2984 }
2985 
2986 #ifdef CONFIG_NO_HZ_FULL
2987 /**
2988  * scheduler_tick_max_deferment
2989  *
2990  * Keep at least one tick per second when a single
2991  * active task is running because the scheduler doesn't
2992  * yet completely support full dynticks environment.
2993  *
2994  * This makes sure that uptime, CFS vruntime, load
2995  * balancing, etc... continue to move forward, even
2996  * with a very low granularity.
2997  *
2998  * Return: Maximum deferment in nanoseconds.
2999  */
3000 u64 scheduler_tick_max_deferment(void)
3001 {
3002 	struct rq *rq = this_rq();
3003 	unsigned long next, now = READ_ONCE(jiffies);
3004 
3005 	next = rq->last_sched_tick + HZ;
3006 
3007 	if (time_before_eq(next, now))
3008 		return 0;
3009 
3010 	return jiffies_to_nsecs(next - now);
3011 }
3012 #endif
3013 
3014 notrace unsigned long get_parent_ip(unsigned long addr)
3015 {
3016 	if (in_lock_functions(addr)) {
3017 		addr = CALLER_ADDR2;
3018 		if (in_lock_functions(addr))
3019 			addr = CALLER_ADDR3;
3020 	}
3021 	return addr;
3022 }
3023 
3024 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3025 				defined(CONFIG_PREEMPT_TRACER))
3026 
3027 void preempt_count_add(int val)
3028 {
3029 #ifdef CONFIG_DEBUG_PREEMPT
3030 	/*
3031 	 * Underflow?
3032 	 */
3033 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3034 		return;
3035 #endif
3036 	__preempt_count_add(val);
3037 #ifdef CONFIG_DEBUG_PREEMPT
3038 	/*
3039 	 * Spinlock count overflowing soon?
3040 	 */
3041 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3042 				PREEMPT_MASK - 10);
3043 #endif
3044 	if (preempt_count() == val) {
3045 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
3046 #ifdef CONFIG_DEBUG_PREEMPT
3047 		current->preempt_disable_ip = ip;
3048 #endif
3049 		trace_preempt_off(CALLER_ADDR0, ip);
3050 	}
3051 }
3052 EXPORT_SYMBOL(preempt_count_add);
3053 NOKPROBE_SYMBOL(preempt_count_add);
3054 
3055 void preempt_count_sub(int val)
3056 {
3057 #ifdef CONFIG_DEBUG_PREEMPT
3058 	/*
3059 	 * Underflow?
3060 	 */
3061 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3062 		return;
3063 	/*
3064 	 * Is the spinlock portion underflowing?
3065 	 */
3066 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3067 			!(preempt_count() & PREEMPT_MASK)))
3068 		return;
3069 #endif
3070 
3071 	if (preempt_count() == val)
3072 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3073 	__preempt_count_sub(val);
3074 }
3075 EXPORT_SYMBOL(preempt_count_sub);
3076 NOKPROBE_SYMBOL(preempt_count_sub);
3077 
3078 #endif
3079 
3080 /*
3081  * Print scheduling while atomic bug:
3082  */
3083 static noinline void __schedule_bug(struct task_struct *prev)
3084 {
3085 	if (oops_in_progress)
3086 		return;
3087 
3088 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3089 		prev->comm, prev->pid, preempt_count());
3090 
3091 	debug_show_held_locks(prev);
3092 	print_modules();
3093 	if (irqs_disabled())
3094 		print_irqtrace_events(prev);
3095 #ifdef CONFIG_DEBUG_PREEMPT
3096 	if (in_atomic_preempt_off()) {
3097 		pr_err("Preemption disabled at:");
3098 		print_ip_sym(current->preempt_disable_ip);
3099 		pr_cont("\n");
3100 	}
3101 #endif
3102 	dump_stack();
3103 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3104 }
3105 
3106 /*
3107  * Various schedule()-time debugging checks and statistics:
3108  */
3109 static inline void schedule_debug(struct task_struct *prev)
3110 {
3111 #ifdef CONFIG_SCHED_STACK_END_CHECK
3112 	BUG_ON(task_stack_end_corrupted(prev));
3113 #endif
3114 
3115 	if (unlikely(in_atomic_preempt_off())) {
3116 		__schedule_bug(prev);
3117 		preempt_count_set(PREEMPT_DISABLED);
3118 	}
3119 	rcu_sleep_check();
3120 
3121 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3122 
3123 	schedstat_inc(this_rq(), sched_count);
3124 }
3125 
3126 /*
3127  * Pick up the highest-prio task:
3128  */
3129 static inline struct task_struct *
3130 pick_next_task(struct rq *rq, struct task_struct *prev)
3131 {
3132 	const struct sched_class *class = &fair_sched_class;
3133 	struct task_struct *p;
3134 
3135 	/*
3136 	 * Optimization: we know that if all tasks are in
3137 	 * the fair class we can call that function directly:
3138 	 */
3139 	if (likely(prev->sched_class == class &&
3140 		   rq->nr_running == rq->cfs.h_nr_running)) {
3141 		p = fair_sched_class.pick_next_task(rq, prev);
3142 		if (unlikely(p == RETRY_TASK))
3143 			goto again;
3144 
3145 		/* assumes fair_sched_class->next == idle_sched_class */
3146 		if (unlikely(!p))
3147 			p = idle_sched_class.pick_next_task(rq, prev);
3148 
3149 		return p;
3150 	}
3151 
3152 again:
3153 	for_each_class(class) {
3154 		p = class->pick_next_task(rq, prev);
3155 		if (p) {
3156 			if (unlikely(p == RETRY_TASK))
3157 				goto again;
3158 			return p;
3159 		}
3160 	}
3161 
3162 	BUG(); /* the idle class will always have a runnable task */
3163 }
3164 
3165 /*
3166  * __schedule() is the main scheduler function.
3167  *
3168  * The main means of driving the scheduler and thus entering this function are:
3169  *
3170  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3171  *
3172  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3173  *      paths. For example, see arch/x86/entry_64.S.
3174  *
3175  *      To drive preemption between tasks, the scheduler sets the flag in timer
3176  *      interrupt handler scheduler_tick().
3177  *
3178  *   3. Wakeups don't really cause entry into schedule(). They add a
3179  *      task to the run-queue and that's it.
3180  *
3181  *      Now, if the new task added to the run-queue preempts the current
3182  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3183  *      called on the nearest possible occasion:
3184  *
3185  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3186  *
3187  *         - in syscall or exception context, at the next outmost
3188  *           preempt_enable(). (this might be as soon as the wake_up()'s
3189  *           spin_unlock()!)
3190  *
3191  *         - in IRQ context, return from interrupt-handler to
3192  *           preemptible context
3193  *
3194  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3195  *         then at the next:
3196  *
3197  *          - cond_resched() call
3198  *          - explicit schedule() call
3199  *          - return from syscall or exception to user-space
3200  *          - return from interrupt-handler to user-space
3201  *
3202  * WARNING: must be called with preemption disabled!
3203  */
3204 static void __sched notrace __schedule(bool preempt)
3205 {
3206 	struct task_struct *prev, *next;
3207 	unsigned long *switch_count;
3208 	struct rq *rq;
3209 	int cpu;
3210 
3211 	cpu = smp_processor_id();
3212 	rq = cpu_rq(cpu);
3213 	prev = rq->curr;
3214 
3215 	/*
3216 	 * do_exit() calls schedule() with preemption disabled as an exception;
3217 	 * however we must fix that up, otherwise the next task will see an
3218 	 * inconsistent (higher) preempt count.
3219 	 *
3220 	 * It also avoids the below schedule_debug() test from complaining
3221 	 * about this.
3222 	 */
3223 	if (unlikely(prev->state == TASK_DEAD))
3224 		preempt_enable_no_resched_notrace();
3225 
3226 	schedule_debug(prev);
3227 
3228 	if (sched_feat(HRTICK))
3229 		hrtick_clear(rq);
3230 
3231 	local_irq_disable();
3232 	rcu_note_context_switch();
3233 
3234 	/*
3235 	 * Make sure that signal_pending_state()->signal_pending() below
3236 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3237 	 * done by the caller to avoid the race with signal_wake_up().
3238 	 */
3239 	smp_mb__before_spinlock();
3240 	raw_spin_lock(&rq->lock);
3241 	lockdep_pin_lock(&rq->lock);
3242 
3243 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3244 
3245 	switch_count = &prev->nivcsw;
3246 	if (!preempt && prev->state) {
3247 		if (unlikely(signal_pending_state(prev->state, prev))) {
3248 			prev->state = TASK_RUNNING;
3249 		} else {
3250 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3251 			prev->on_rq = 0;
3252 
3253 			/*
3254 			 * If a worker went to sleep, notify and ask workqueue
3255 			 * whether it wants to wake up a task to maintain
3256 			 * concurrency.
3257 			 */
3258 			if (prev->flags & PF_WQ_WORKER) {
3259 				struct task_struct *to_wakeup;
3260 
3261 				to_wakeup = wq_worker_sleeping(prev, cpu);
3262 				if (to_wakeup)
3263 					try_to_wake_up_local(to_wakeup);
3264 			}
3265 		}
3266 		switch_count = &prev->nvcsw;
3267 	}
3268 
3269 	if (task_on_rq_queued(prev))
3270 		update_rq_clock(rq);
3271 
3272 	next = pick_next_task(rq, prev);
3273 	clear_tsk_need_resched(prev);
3274 	clear_preempt_need_resched();
3275 	rq->clock_skip_update = 0;
3276 
3277 	if (likely(prev != next)) {
3278 		rq->nr_switches++;
3279 		rq->curr = next;
3280 		++*switch_count;
3281 
3282 		trace_sched_switch(preempt, prev, next);
3283 		rq = context_switch(rq, prev, next); /* unlocks the rq */
3284 		cpu = cpu_of(rq);
3285 	} else {
3286 		lockdep_unpin_lock(&rq->lock);
3287 		raw_spin_unlock_irq(&rq->lock);
3288 	}
3289 
3290 	balance_callback(rq);
3291 }
3292 
3293 static inline void sched_submit_work(struct task_struct *tsk)
3294 {
3295 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3296 		return;
3297 	/*
3298 	 * If we are going to sleep and we have plugged IO queued,
3299 	 * make sure to submit it to avoid deadlocks.
3300 	 */
3301 	if (blk_needs_flush_plug(tsk))
3302 		blk_schedule_flush_plug(tsk);
3303 }
3304 
3305 asmlinkage __visible void __sched schedule(void)
3306 {
3307 	struct task_struct *tsk = current;
3308 
3309 	sched_submit_work(tsk);
3310 	do {
3311 		preempt_disable();
3312 		__schedule(false);
3313 		sched_preempt_enable_no_resched();
3314 	} while (need_resched());
3315 }
3316 EXPORT_SYMBOL(schedule);
3317 
3318 #ifdef CONFIG_CONTEXT_TRACKING
3319 asmlinkage __visible void __sched schedule_user(void)
3320 {
3321 	/*
3322 	 * If we come here after a random call to set_need_resched(),
3323 	 * or we have been woken up remotely but the IPI has not yet arrived,
3324 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3325 	 * we find a better solution.
3326 	 *
3327 	 * NB: There are buggy callers of this function.  Ideally we
3328 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3329 	 * too frequently to make sense yet.
3330 	 */
3331 	enum ctx_state prev_state = exception_enter();
3332 	schedule();
3333 	exception_exit(prev_state);
3334 }
3335 #endif
3336 
3337 /**
3338  * schedule_preempt_disabled - called with preemption disabled
3339  *
3340  * Returns with preemption disabled. Note: preempt_count must be 1
3341  */
3342 void __sched schedule_preempt_disabled(void)
3343 {
3344 	sched_preempt_enable_no_resched();
3345 	schedule();
3346 	preempt_disable();
3347 }
3348 
3349 static void __sched notrace preempt_schedule_common(void)
3350 {
3351 	do {
3352 		preempt_disable_notrace();
3353 		__schedule(true);
3354 		preempt_enable_no_resched_notrace();
3355 
3356 		/*
3357 		 * Check again in case we missed a preemption opportunity
3358 		 * between schedule and now.
3359 		 */
3360 	} while (need_resched());
3361 }
3362 
3363 #ifdef CONFIG_PREEMPT
3364 /*
3365  * this is the entry point to schedule() from in-kernel preemption
3366  * off of preempt_enable. Kernel preemptions off return from interrupt
3367  * occur there and call schedule directly.
3368  */
3369 asmlinkage __visible void __sched notrace preempt_schedule(void)
3370 {
3371 	/*
3372 	 * If there is a non-zero preempt_count or interrupts are disabled,
3373 	 * we do not want to preempt the current task. Just return..
3374 	 */
3375 	if (likely(!preemptible()))
3376 		return;
3377 
3378 	preempt_schedule_common();
3379 }
3380 NOKPROBE_SYMBOL(preempt_schedule);
3381 EXPORT_SYMBOL(preempt_schedule);
3382 
3383 /**
3384  * preempt_schedule_notrace - preempt_schedule called by tracing
3385  *
3386  * The tracing infrastructure uses preempt_enable_notrace to prevent
3387  * recursion and tracing preempt enabling caused by the tracing
3388  * infrastructure itself. But as tracing can happen in areas coming
3389  * from userspace or just about to enter userspace, a preempt enable
3390  * can occur before user_exit() is called. This will cause the scheduler
3391  * to be called when the system is still in usermode.
3392  *
3393  * To prevent this, the preempt_enable_notrace will use this function
3394  * instead of preempt_schedule() to exit user context if needed before
3395  * calling the scheduler.
3396  */
3397 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3398 {
3399 	enum ctx_state prev_ctx;
3400 
3401 	if (likely(!preemptible()))
3402 		return;
3403 
3404 	do {
3405 		preempt_disable_notrace();
3406 		/*
3407 		 * Needs preempt disabled in case user_exit() is traced
3408 		 * and the tracer calls preempt_enable_notrace() causing
3409 		 * an infinite recursion.
3410 		 */
3411 		prev_ctx = exception_enter();
3412 		__schedule(true);
3413 		exception_exit(prev_ctx);
3414 
3415 		preempt_enable_no_resched_notrace();
3416 	} while (need_resched());
3417 }
3418 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3419 
3420 #endif /* CONFIG_PREEMPT */
3421 
3422 /*
3423  * this is the entry point to schedule() from kernel preemption
3424  * off of irq context.
3425  * Note, that this is called and return with irqs disabled. This will
3426  * protect us against recursive calling from irq.
3427  */
3428 asmlinkage __visible void __sched preempt_schedule_irq(void)
3429 {
3430 	enum ctx_state prev_state;
3431 
3432 	/* Catch callers which need to be fixed */
3433 	BUG_ON(preempt_count() || !irqs_disabled());
3434 
3435 	prev_state = exception_enter();
3436 
3437 	do {
3438 		preempt_disable();
3439 		local_irq_enable();
3440 		__schedule(true);
3441 		local_irq_disable();
3442 		sched_preempt_enable_no_resched();
3443 	} while (need_resched());
3444 
3445 	exception_exit(prev_state);
3446 }
3447 
3448 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3449 			  void *key)
3450 {
3451 	return try_to_wake_up(curr->private, mode, wake_flags);
3452 }
3453 EXPORT_SYMBOL(default_wake_function);
3454 
3455 #ifdef CONFIG_RT_MUTEXES
3456 
3457 /*
3458  * rt_mutex_setprio - set the current priority of a task
3459  * @p: task
3460  * @prio: prio value (kernel-internal form)
3461  *
3462  * This function changes the 'effective' priority of a task. It does
3463  * not touch ->normal_prio like __setscheduler().
3464  *
3465  * Used by the rt_mutex code to implement priority inheritance
3466  * logic. Call site only calls if the priority of the task changed.
3467  */
3468 void rt_mutex_setprio(struct task_struct *p, int prio)
3469 {
3470 	int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE;
3471 	struct rq *rq;
3472 	const struct sched_class *prev_class;
3473 
3474 	BUG_ON(prio > MAX_PRIO);
3475 
3476 	rq = __task_rq_lock(p);
3477 
3478 	/*
3479 	 * Idle task boosting is a nono in general. There is one
3480 	 * exception, when PREEMPT_RT and NOHZ is active:
3481 	 *
3482 	 * The idle task calls get_next_timer_interrupt() and holds
3483 	 * the timer wheel base->lock on the CPU and another CPU wants
3484 	 * to access the timer (probably to cancel it). We can safely
3485 	 * ignore the boosting request, as the idle CPU runs this code
3486 	 * with interrupts disabled and will complete the lock
3487 	 * protected section without being interrupted. So there is no
3488 	 * real need to boost.
3489 	 */
3490 	if (unlikely(p == rq->idle)) {
3491 		WARN_ON(p != rq->curr);
3492 		WARN_ON(p->pi_blocked_on);
3493 		goto out_unlock;
3494 	}
3495 
3496 	trace_sched_pi_setprio(p, prio);
3497 	oldprio = p->prio;
3498 	prev_class = p->sched_class;
3499 	queued = task_on_rq_queued(p);
3500 	running = task_current(rq, p);
3501 	if (queued)
3502 		dequeue_task(rq, p, DEQUEUE_SAVE);
3503 	if (running)
3504 		put_prev_task(rq, p);
3505 
3506 	/*
3507 	 * Boosting condition are:
3508 	 * 1. -rt task is running and holds mutex A
3509 	 *      --> -dl task blocks on mutex A
3510 	 *
3511 	 * 2. -dl task is running and holds mutex A
3512 	 *      --> -dl task blocks on mutex A and could preempt the
3513 	 *          running task
3514 	 */
3515 	if (dl_prio(prio)) {
3516 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3517 		if (!dl_prio(p->normal_prio) ||
3518 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3519 			p->dl.dl_boosted = 1;
3520 			enqueue_flag |= ENQUEUE_REPLENISH;
3521 		} else
3522 			p->dl.dl_boosted = 0;
3523 		p->sched_class = &dl_sched_class;
3524 	} else if (rt_prio(prio)) {
3525 		if (dl_prio(oldprio))
3526 			p->dl.dl_boosted = 0;
3527 		if (oldprio < prio)
3528 			enqueue_flag |= ENQUEUE_HEAD;
3529 		p->sched_class = &rt_sched_class;
3530 	} else {
3531 		if (dl_prio(oldprio))
3532 			p->dl.dl_boosted = 0;
3533 		if (rt_prio(oldprio))
3534 			p->rt.timeout = 0;
3535 		p->sched_class = &fair_sched_class;
3536 	}
3537 
3538 	p->prio = prio;
3539 
3540 	if (running)
3541 		p->sched_class->set_curr_task(rq);
3542 	if (queued)
3543 		enqueue_task(rq, p, enqueue_flag);
3544 
3545 	check_class_changed(rq, p, prev_class, oldprio);
3546 out_unlock:
3547 	preempt_disable(); /* avoid rq from going away on us */
3548 	__task_rq_unlock(rq);
3549 
3550 	balance_callback(rq);
3551 	preempt_enable();
3552 }
3553 #endif
3554 
3555 void set_user_nice(struct task_struct *p, long nice)
3556 {
3557 	int old_prio, delta, queued;
3558 	unsigned long flags;
3559 	struct rq *rq;
3560 
3561 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3562 		return;
3563 	/*
3564 	 * We have to be careful, if called from sys_setpriority(),
3565 	 * the task might be in the middle of scheduling on another CPU.
3566 	 */
3567 	rq = task_rq_lock(p, &flags);
3568 	/*
3569 	 * The RT priorities are set via sched_setscheduler(), but we still
3570 	 * allow the 'normal' nice value to be set - but as expected
3571 	 * it wont have any effect on scheduling until the task is
3572 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3573 	 */
3574 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3575 		p->static_prio = NICE_TO_PRIO(nice);
3576 		goto out_unlock;
3577 	}
3578 	queued = task_on_rq_queued(p);
3579 	if (queued)
3580 		dequeue_task(rq, p, DEQUEUE_SAVE);
3581 
3582 	p->static_prio = NICE_TO_PRIO(nice);
3583 	set_load_weight(p);
3584 	old_prio = p->prio;
3585 	p->prio = effective_prio(p);
3586 	delta = p->prio - old_prio;
3587 
3588 	if (queued) {
3589 		enqueue_task(rq, p, ENQUEUE_RESTORE);
3590 		/*
3591 		 * If the task increased its priority or is running and
3592 		 * lowered its priority, then reschedule its CPU:
3593 		 */
3594 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3595 			resched_curr(rq);
3596 	}
3597 out_unlock:
3598 	task_rq_unlock(rq, p, &flags);
3599 }
3600 EXPORT_SYMBOL(set_user_nice);
3601 
3602 /*
3603  * can_nice - check if a task can reduce its nice value
3604  * @p: task
3605  * @nice: nice value
3606  */
3607 int can_nice(const struct task_struct *p, const int nice)
3608 {
3609 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3610 	int nice_rlim = nice_to_rlimit(nice);
3611 
3612 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3613 		capable(CAP_SYS_NICE));
3614 }
3615 
3616 #ifdef __ARCH_WANT_SYS_NICE
3617 
3618 /*
3619  * sys_nice - change the priority of the current process.
3620  * @increment: priority increment
3621  *
3622  * sys_setpriority is a more generic, but much slower function that
3623  * does similar things.
3624  */
3625 SYSCALL_DEFINE1(nice, int, increment)
3626 {
3627 	long nice, retval;
3628 
3629 	/*
3630 	 * Setpriority might change our priority at the same moment.
3631 	 * We don't have to worry. Conceptually one call occurs first
3632 	 * and we have a single winner.
3633 	 */
3634 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3635 	nice = task_nice(current) + increment;
3636 
3637 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3638 	if (increment < 0 && !can_nice(current, nice))
3639 		return -EPERM;
3640 
3641 	retval = security_task_setnice(current, nice);
3642 	if (retval)
3643 		return retval;
3644 
3645 	set_user_nice(current, nice);
3646 	return 0;
3647 }
3648 
3649 #endif
3650 
3651 /**
3652  * task_prio - return the priority value of a given task.
3653  * @p: the task in question.
3654  *
3655  * Return: The priority value as seen by users in /proc.
3656  * RT tasks are offset by -200. Normal tasks are centered
3657  * around 0, value goes from -16 to +15.
3658  */
3659 int task_prio(const struct task_struct *p)
3660 {
3661 	return p->prio - MAX_RT_PRIO;
3662 }
3663 
3664 /**
3665  * idle_cpu - is a given cpu idle currently?
3666  * @cpu: the processor in question.
3667  *
3668  * Return: 1 if the CPU is currently idle. 0 otherwise.
3669  */
3670 int idle_cpu(int cpu)
3671 {
3672 	struct rq *rq = cpu_rq(cpu);
3673 
3674 	if (rq->curr != rq->idle)
3675 		return 0;
3676 
3677 	if (rq->nr_running)
3678 		return 0;
3679 
3680 #ifdef CONFIG_SMP
3681 	if (!llist_empty(&rq->wake_list))
3682 		return 0;
3683 #endif
3684 
3685 	return 1;
3686 }
3687 
3688 /**
3689  * idle_task - return the idle task for a given cpu.
3690  * @cpu: the processor in question.
3691  *
3692  * Return: The idle task for the cpu @cpu.
3693  */
3694 struct task_struct *idle_task(int cpu)
3695 {
3696 	return cpu_rq(cpu)->idle;
3697 }
3698 
3699 /**
3700  * find_process_by_pid - find a process with a matching PID value.
3701  * @pid: the pid in question.
3702  *
3703  * The task of @pid, if found. %NULL otherwise.
3704  */
3705 static struct task_struct *find_process_by_pid(pid_t pid)
3706 {
3707 	return pid ? find_task_by_vpid(pid) : current;
3708 }
3709 
3710 /*
3711  * This function initializes the sched_dl_entity of a newly becoming
3712  * SCHED_DEADLINE task.
3713  *
3714  * Only the static values are considered here, the actual runtime and the
3715  * absolute deadline will be properly calculated when the task is enqueued
3716  * for the first time with its new policy.
3717  */
3718 static void
3719 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3720 {
3721 	struct sched_dl_entity *dl_se = &p->dl;
3722 
3723 	dl_se->dl_runtime = attr->sched_runtime;
3724 	dl_se->dl_deadline = attr->sched_deadline;
3725 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3726 	dl_se->flags = attr->sched_flags;
3727 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3728 
3729 	/*
3730 	 * Changing the parameters of a task is 'tricky' and we're not doing
3731 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3732 	 *
3733 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3734 	 * point. This would include retaining the task_struct until that time
3735 	 * and change dl_overflow() to not immediately decrement the current
3736 	 * amount.
3737 	 *
3738 	 * Instead we retain the current runtime/deadline and let the new
3739 	 * parameters take effect after the current reservation period lapses.
3740 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3741 	 * before the current scheduling deadline.
3742 	 *
3743 	 * We can still have temporary overloads because we do not delay the
3744 	 * change in bandwidth until that time; so admission control is
3745 	 * not on the safe side. It does however guarantee tasks will never
3746 	 * consume more than promised.
3747 	 */
3748 }
3749 
3750 /*
3751  * sched_setparam() passes in -1 for its policy, to let the functions
3752  * it calls know not to change it.
3753  */
3754 #define SETPARAM_POLICY	-1
3755 
3756 static void __setscheduler_params(struct task_struct *p,
3757 		const struct sched_attr *attr)
3758 {
3759 	int policy = attr->sched_policy;
3760 
3761 	if (policy == SETPARAM_POLICY)
3762 		policy = p->policy;
3763 
3764 	p->policy = policy;
3765 
3766 	if (dl_policy(policy))
3767 		__setparam_dl(p, attr);
3768 	else if (fair_policy(policy))
3769 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3770 
3771 	/*
3772 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3773 	 * !rt_policy. Always setting this ensures that things like
3774 	 * getparam()/getattr() don't report silly values for !rt tasks.
3775 	 */
3776 	p->rt_priority = attr->sched_priority;
3777 	p->normal_prio = normal_prio(p);
3778 	set_load_weight(p);
3779 }
3780 
3781 /* Actually do priority change: must hold pi & rq lock. */
3782 static void __setscheduler(struct rq *rq, struct task_struct *p,
3783 			   const struct sched_attr *attr, bool keep_boost)
3784 {
3785 	__setscheduler_params(p, attr);
3786 
3787 	/*
3788 	 * Keep a potential priority boosting if called from
3789 	 * sched_setscheduler().
3790 	 */
3791 	if (keep_boost)
3792 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3793 	else
3794 		p->prio = normal_prio(p);
3795 
3796 	if (dl_prio(p->prio))
3797 		p->sched_class = &dl_sched_class;
3798 	else if (rt_prio(p->prio))
3799 		p->sched_class = &rt_sched_class;
3800 	else
3801 		p->sched_class = &fair_sched_class;
3802 }
3803 
3804 static void
3805 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3806 {
3807 	struct sched_dl_entity *dl_se = &p->dl;
3808 
3809 	attr->sched_priority = p->rt_priority;
3810 	attr->sched_runtime = dl_se->dl_runtime;
3811 	attr->sched_deadline = dl_se->dl_deadline;
3812 	attr->sched_period = dl_se->dl_period;
3813 	attr->sched_flags = dl_se->flags;
3814 }
3815 
3816 /*
3817  * This function validates the new parameters of a -deadline task.
3818  * We ask for the deadline not being zero, and greater or equal
3819  * than the runtime, as well as the period of being zero or
3820  * greater than deadline. Furthermore, we have to be sure that
3821  * user parameters are above the internal resolution of 1us (we
3822  * check sched_runtime only since it is always the smaller one) and
3823  * below 2^63 ns (we have to check both sched_deadline and
3824  * sched_period, as the latter can be zero).
3825  */
3826 static bool
3827 __checkparam_dl(const struct sched_attr *attr)
3828 {
3829 	/* deadline != 0 */
3830 	if (attr->sched_deadline == 0)
3831 		return false;
3832 
3833 	/*
3834 	 * Since we truncate DL_SCALE bits, make sure we're at least
3835 	 * that big.
3836 	 */
3837 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3838 		return false;
3839 
3840 	/*
3841 	 * Since we use the MSB for wrap-around and sign issues, make
3842 	 * sure it's not set (mind that period can be equal to zero).
3843 	 */
3844 	if (attr->sched_deadline & (1ULL << 63) ||
3845 	    attr->sched_period & (1ULL << 63))
3846 		return false;
3847 
3848 	/* runtime <= deadline <= period (if period != 0) */
3849 	if ((attr->sched_period != 0 &&
3850 	     attr->sched_period < attr->sched_deadline) ||
3851 	    attr->sched_deadline < attr->sched_runtime)
3852 		return false;
3853 
3854 	return true;
3855 }
3856 
3857 /*
3858  * check the target process has a UID that matches the current process's
3859  */
3860 static bool check_same_owner(struct task_struct *p)
3861 {
3862 	const struct cred *cred = current_cred(), *pcred;
3863 	bool match;
3864 
3865 	rcu_read_lock();
3866 	pcred = __task_cred(p);
3867 	match = (uid_eq(cred->euid, pcred->euid) ||
3868 		 uid_eq(cred->euid, pcred->uid));
3869 	rcu_read_unlock();
3870 	return match;
3871 }
3872 
3873 static bool dl_param_changed(struct task_struct *p,
3874 		const struct sched_attr *attr)
3875 {
3876 	struct sched_dl_entity *dl_se = &p->dl;
3877 
3878 	if (dl_se->dl_runtime != attr->sched_runtime ||
3879 		dl_se->dl_deadline != attr->sched_deadline ||
3880 		dl_se->dl_period != attr->sched_period ||
3881 		dl_se->flags != attr->sched_flags)
3882 		return true;
3883 
3884 	return false;
3885 }
3886 
3887 static int __sched_setscheduler(struct task_struct *p,
3888 				const struct sched_attr *attr,
3889 				bool user, bool pi)
3890 {
3891 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3892 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3893 	int retval, oldprio, oldpolicy = -1, queued, running;
3894 	int new_effective_prio, policy = attr->sched_policy;
3895 	unsigned long flags;
3896 	const struct sched_class *prev_class;
3897 	struct rq *rq;
3898 	int reset_on_fork;
3899 
3900 	/* may grab non-irq protected spin_locks */
3901 	BUG_ON(in_interrupt());
3902 recheck:
3903 	/* double check policy once rq lock held */
3904 	if (policy < 0) {
3905 		reset_on_fork = p->sched_reset_on_fork;
3906 		policy = oldpolicy = p->policy;
3907 	} else {
3908 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3909 
3910 		if (!valid_policy(policy))
3911 			return -EINVAL;
3912 	}
3913 
3914 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3915 		return -EINVAL;
3916 
3917 	/*
3918 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3919 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3920 	 * SCHED_BATCH and SCHED_IDLE is 0.
3921 	 */
3922 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3923 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3924 		return -EINVAL;
3925 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3926 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3927 		return -EINVAL;
3928 
3929 	/*
3930 	 * Allow unprivileged RT tasks to decrease priority:
3931 	 */
3932 	if (user && !capable(CAP_SYS_NICE)) {
3933 		if (fair_policy(policy)) {
3934 			if (attr->sched_nice < task_nice(p) &&
3935 			    !can_nice(p, attr->sched_nice))
3936 				return -EPERM;
3937 		}
3938 
3939 		if (rt_policy(policy)) {
3940 			unsigned long rlim_rtprio =
3941 					task_rlimit(p, RLIMIT_RTPRIO);
3942 
3943 			/* can't set/change the rt policy */
3944 			if (policy != p->policy && !rlim_rtprio)
3945 				return -EPERM;
3946 
3947 			/* can't increase priority */
3948 			if (attr->sched_priority > p->rt_priority &&
3949 			    attr->sched_priority > rlim_rtprio)
3950 				return -EPERM;
3951 		}
3952 
3953 		 /*
3954 		  * Can't set/change SCHED_DEADLINE policy at all for now
3955 		  * (safest behavior); in the future we would like to allow
3956 		  * unprivileged DL tasks to increase their relative deadline
3957 		  * or reduce their runtime (both ways reducing utilization)
3958 		  */
3959 		if (dl_policy(policy))
3960 			return -EPERM;
3961 
3962 		/*
3963 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3964 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3965 		 */
3966 		if (idle_policy(p->policy) && !idle_policy(policy)) {
3967 			if (!can_nice(p, task_nice(p)))
3968 				return -EPERM;
3969 		}
3970 
3971 		/* can't change other user's priorities */
3972 		if (!check_same_owner(p))
3973 			return -EPERM;
3974 
3975 		/* Normal users shall not reset the sched_reset_on_fork flag */
3976 		if (p->sched_reset_on_fork && !reset_on_fork)
3977 			return -EPERM;
3978 	}
3979 
3980 	if (user) {
3981 		retval = security_task_setscheduler(p);
3982 		if (retval)
3983 			return retval;
3984 	}
3985 
3986 	/*
3987 	 * make sure no PI-waiters arrive (or leave) while we are
3988 	 * changing the priority of the task:
3989 	 *
3990 	 * To be able to change p->policy safely, the appropriate
3991 	 * runqueue lock must be held.
3992 	 */
3993 	rq = task_rq_lock(p, &flags);
3994 
3995 	/*
3996 	 * Changing the policy of the stop threads its a very bad idea
3997 	 */
3998 	if (p == rq->stop) {
3999 		task_rq_unlock(rq, p, &flags);
4000 		return -EINVAL;
4001 	}
4002 
4003 	/*
4004 	 * If not changing anything there's no need to proceed further,
4005 	 * but store a possible modification of reset_on_fork.
4006 	 */
4007 	if (unlikely(policy == p->policy)) {
4008 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4009 			goto change;
4010 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4011 			goto change;
4012 		if (dl_policy(policy) && dl_param_changed(p, attr))
4013 			goto change;
4014 
4015 		p->sched_reset_on_fork = reset_on_fork;
4016 		task_rq_unlock(rq, p, &flags);
4017 		return 0;
4018 	}
4019 change:
4020 
4021 	if (user) {
4022 #ifdef CONFIG_RT_GROUP_SCHED
4023 		/*
4024 		 * Do not allow realtime tasks into groups that have no runtime
4025 		 * assigned.
4026 		 */
4027 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4028 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4029 				!task_group_is_autogroup(task_group(p))) {
4030 			task_rq_unlock(rq, p, &flags);
4031 			return -EPERM;
4032 		}
4033 #endif
4034 #ifdef CONFIG_SMP
4035 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
4036 			cpumask_t *span = rq->rd->span;
4037 
4038 			/*
4039 			 * Don't allow tasks with an affinity mask smaller than
4040 			 * the entire root_domain to become SCHED_DEADLINE. We
4041 			 * will also fail if there's no bandwidth available.
4042 			 */
4043 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4044 			    rq->rd->dl_bw.bw == 0) {
4045 				task_rq_unlock(rq, p, &flags);
4046 				return -EPERM;
4047 			}
4048 		}
4049 #endif
4050 	}
4051 
4052 	/* recheck policy now with rq lock held */
4053 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4054 		policy = oldpolicy = -1;
4055 		task_rq_unlock(rq, p, &flags);
4056 		goto recheck;
4057 	}
4058 
4059 	/*
4060 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4061 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4062 	 * is available.
4063 	 */
4064 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4065 		task_rq_unlock(rq, p, &flags);
4066 		return -EBUSY;
4067 	}
4068 
4069 	p->sched_reset_on_fork = reset_on_fork;
4070 	oldprio = p->prio;
4071 
4072 	if (pi) {
4073 		/*
4074 		 * Take priority boosted tasks into account. If the new
4075 		 * effective priority is unchanged, we just store the new
4076 		 * normal parameters and do not touch the scheduler class and
4077 		 * the runqueue. This will be done when the task deboost
4078 		 * itself.
4079 		 */
4080 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4081 		if (new_effective_prio == oldprio) {
4082 			__setscheduler_params(p, attr);
4083 			task_rq_unlock(rq, p, &flags);
4084 			return 0;
4085 		}
4086 	}
4087 
4088 	queued = task_on_rq_queued(p);
4089 	running = task_current(rq, p);
4090 	if (queued)
4091 		dequeue_task(rq, p, DEQUEUE_SAVE);
4092 	if (running)
4093 		put_prev_task(rq, p);
4094 
4095 	prev_class = p->sched_class;
4096 	__setscheduler(rq, p, attr, pi);
4097 
4098 	if (running)
4099 		p->sched_class->set_curr_task(rq);
4100 	if (queued) {
4101 		int enqueue_flags = ENQUEUE_RESTORE;
4102 		/*
4103 		 * We enqueue to tail when the priority of a task is
4104 		 * increased (user space view).
4105 		 */
4106 		if (oldprio <= p->prio)
4107 			enqueue_flags |= ENQUEUE_HEAD;
4108 
4109 		enqueue_task(rq, p, enqueue_flags);
4110 	}
4111 
4112 	check_class_changed(rq, p, prev_class, oldprio);
4113 	preempt_disable(); /* avoid rq from going away on us */
4114 	task_rq_unlock(rq, p, &flags);
4115 
4116 	if (pi)
4117 		rt_mutex_adjust_pi(p);
4118 
4119 	/*
4120 	 * Run balance callbacks after we've adjusted the PI chain.
4121 	 */
4122 	balance_callback(rq);
4123 	preempt_enable();
4124 
4125 	return 0;
4126 }
4127 
4128 static int _sched_setscheduler(struct task_struct *p, int policy,
4129 			       const struct sched_param *param, bool check)
4130 {
4131 	struct sched_attr attr = {
4132 		.sched_policy   = policy,
4133 		.sched_priority = param->sched_priority,
4134 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4135 	};
4136 
4137 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4138 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4139 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4140 		policy &= ~SCHED_RESET_ON_FORK;
4141 		attr.sched_policy = policy;
4142 	}
4143 
4144 	return __sched_setscheduler(p, &attr, check, true);
4145 }
4146 /**
4147  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4148  * @p: the task in question.
4149  * @policy: new policy.
4150  * @param: structure containing the new RT priority.
4151  *
4152  * Return: 0 on success. An error code otherwise.
4153  *
4154  * NOTE that the task may be already dead.
4155  */
4156 int sched_setscheduler(struct task_struct *p, int policy,
4157 		       const struct sched_param *param)
4158 {
4159 	return _sched_setscheduler(p, policy, param, true);
4160 }
4161 EXPORT_SYMBOL_GPL(sched_setscheduler);
4162 
4163 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4164 {
4165 	return __sched_setscheduler(p, attr, true, true);
4166 }
4167 EXPORT_SYMBOL_GPL(sched_setattr);
4168 
4169 /**
4170  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4171  * @p: the task in question.
4172  * @policy: new policy.
4173  * @param: structure containing the new RT priority.
4174  *
4175  * Just like sched_setscheduler, only don't bother checking if the
4176  * current context has permission.  For example, this is needed in
4177  * stop_machine(): we create temporary high priority worker threads,
4178  * but our caller might not have that capability.
4179  *
4180  * Return: 0 on success. An error code otherwise.
4181  */
4182 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4183 			       const struct sched_param *param)
4184 {
4185 	return _sched_setscheduler(p, policy, param, false);
4186 }
4187 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4188 
4189 static int
4190 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4191 {
4192 	struct sched_param lparam;
4193 	struct task_struct *p;
4194 	int retval;
4195 
4196 	if (!param || pid < 0)
4197 		return -EINVAL;
4198 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4199 		return -EFAULT;
4200 
4201 	rcu_read_lock();
4202 	retval = -ESRCH;
4203 	p = find_process_by_pid(pid);
4204 	if (p != NULL)
4205 		retval = sched_setscheduler(p, policy, &lparam);
4206 	rcu_read_unlock();
4207 
4208 	return retval;
4209 }
4210 
4211 /*
4212  * Mimics kernel/events/core.c perf_copy_attr().
4213  */
4214 static int sched_copy_attr(struct sched_attr __user *uattr,
4215 			   struct sched_attr *attr)
4216 {
4217 	u32 size;
4218 	int ret;
4219 
4220 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4221 		return -EFAULT;
4222 
4223 	/*
4224 	 * zero the full structure, so that a short copy will be nice.
4225 	 */
4226 	memset(attr, 0, sizeof(*attr));
4227 
4228 	ret = get_user(size, &uattr->size);
4229 	if (ret)
4230 		return ret;
4231 
4232 	if (size > PAGE_SIZE)	/* silly large */
4233 		goto err_size;
4234 
4235 	if (!size)		/* abi compat */
4236 		size = SCHED_ATTR_SIZE_VER0;
4237 
4238 	if (size < SCHED_ATTR_SIZE_VER0)
4239 		goto err_size;
4240 
4241 	/*
4242 	 * If we're handed a bigger struct than we know of,
4243 	 * ensure all the unknown bits are 0 - i.e. new
4244 	 * user-space does not rely on any kernel feature
4245 	 * extensions we dont know about yet.
4246 	 */
4247 	if (size > sizeof(*attr)) {
4248 		unsigned char __user *addr;
4249 		unsigned char __user *end;
4250 		unsigned char val;
4251 
4252 		addr = (void __user *)uattr + sizeof(*attr);
4253 		end  = (void __user *)uattr + size;
4254 
4255 		for (; addr < end; addr++) {
4256 			ret = get_user(val, addr);
4257 			if (ret)
4258 				return ret;
4259 			if (val)
4260 				goto err_size;
4261 		}
4262 		size = sizeof(*attr);
4263 	}
4264 
4265 	ret = copy_from_user(attr, uattr, size);
4266 	if (ret)
4267 		return -EFAULT;
4268 
4269 	/*
4270 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4271 	 * to be strict and return an error on out-of-bounds values?
4272 	 */
4273 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4274 
4275 	return 0;
4276 
4277 err_size:
4278 	put_user(sizeof(*attr), &uattr->size);
4279 	return -E2BIG;
4280 }
4281 
4282 /**
4283  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4284  * @pid: the pid in question.
4285  * @policy: new policy.
4286  * @param: structure containing the new RT priority.
4287  *
4288  * Return: 0 on success. An error code otherwise.
4289  */
4290 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4291 		struct sched_param __user *, param)
4292 {
4293 	/* negative values for policy are not valid */
4294 	if (policy < 0)
4295 		return -EINVAL;
4296 
4297 	return do_sched_setscheduler(pid, policy, param);
4298 }
4299 
4300 /**
4301  * sys_sched_setparam - set/change the RT priority of a thread
4302  * @pid: the pid in question.
4303  * @param: structure containing the new RT priority.
4304  *
4305  * Return: 0 on success. An error code otherwise.
4306  */
4307 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4308 {
4309 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4310 }
4311 
4312 /**
4313  * sys_sched_setattr - same as above, but with extended sched_attr
4314  * @pid: the pid in question.
4315  * @uattr: structure containing the extended parameters.
4316  * @flags: for future extension.
4317  */
4318 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4319 			       unsigned int, flags)
4320 {
4321 	struct sched_attr attr;
4322 	struct task_struct *p;
4323 	int retval;
4324 
4325 	if (!uattr || pid < 0 || flags)
4326 		return -EINVAL;
4327 
4328 	retval = sched_copy_attr(uattr, &attr);
4329 	if (retval)
4330 		return retval;
4331 
4332 	if ((int)attr.sched_policy < 0)
4333 		return -EINVAL;
4334 
4335 	rcu_read_lock();
4336 	retval = -ESRCH;
4337 	p = find_process_by_pid(pid);
4338 	if (p != NULL)
4339 		retval = sched_setattr(p, &attr);
4340 	rcu_read_unlock();
4341 
4342 	return retval;
4343 }
4344 
4345 /**
4346  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4347  * @pid: the pid in question.
4348  *
4349  * Return: On success, the policy of the thread. Otherwise, a negative error
4350  * code.
4351  */
4352 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4353 {
4354 	struct task_struct *p;
4355 	int retval;
4356 
4357 	if (pid < 0)
4358 		return -EINVAL;
4359 
4360 	retval = -ESRCH;
4361 	rcu_read_lock();
4362 	p = find_process_by_pid(pid);
4363 	if (p) {
4364 		retval = security_task_getscheduler(p);
4365 		if (!retval)
4366 			retval = p->policy
4367 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4368 	}
4369 	rcu_read_unlock();
4370 	return retval;
4371 }
4372 
4373 /**
4374  * sys_sched_getparam - get the RT priority of a thread
4375  * @pid: the pid in question.
4376  * @param: structure containing the RT priority.
4377  *
4378  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4379  * code.
4380  */
4381 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4382 {
4383 	struct sched_param lp = { .sched_priority = 0 };
4384 	struct task_struct *p;
4385 	int retval;
4386 
4387 	if (!param || pid < 0)
4388 		return -EINVAL;
4389 
4390 	rcu_read_lock();
4391 	p = find_process_by_pid(pid);
4392 	retval = -ESRCH;
4393 	if (!p)
4394 		goto out_unlock;
4395 
4396 	retval = security_task_getscheduler(p);
4397 	if (retval)
4398 		goto out_unlock;
4399 
4400 	if (task_has_rt_policy(p))
4401 		lp.sched_priority = p->rt_priority;
4402 	rcu_read_unlock();
4403 
4404 	/*
4405 	 * This one might sleep, we cannot do it with a spinlock held ...
4406 	 */
4407 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4408 
4409 	return retval;
4410 
4411 out_unlock:
4412 	rcu_read_unlock();
4413 	return retval;
4414 }
4415 
4416 static int sched_read_attr(struct sched_attr __user *uattr,
4417 			   struct sched_attr *attr,
4418 			   unsigned int usize)
4419 {
4420 	int ret;
4421 
4422 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4423 		return -EFAULT;
4424 
4425 	/*
4426 	 * If we're handed a smaller struct than we know of,
4427 	 * ensure all the unknown bits are 0 - i.e. old
4428 	 * user-space does not get uncomplete information.
4429 	 */
4430 	if (usize < sizeof(*attr)) {
4431 		unsigned char *addr;
4432 		unsigned char *end;
4433 
4434 		addr = (void *)attr + usize;
4435 		end  = (void *)attr + sizeof(*attr);
4436 
4437 		for (; addr < end; addr++) {
4438 			if (*addr)
4439 				return -EFBIG;
4440 		}
4441 
4442 		attr->size = usize;
4443 	}
4444 
4445 	ret = copy_to_user(uattr, attr, attr->size);
4446 	if (ret)
4447 		return -EFAULT;
4448 
4449 	return 0;
4450 }
4451 
4452 /**
4453  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4454  * @pid: the pid in question.
4455  * @uattr: structure containing the extended parameters.
4456  * @size: sizeof(attr) for fwd/bwd comp.
4457  * @flags: for future extension.
4458  */
4459 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4460 		unsigned int, size, unsigned int, flags)
4461 {
4462 	struct sched_attr attr = {
4463 		.size = sizeof(struct sched_attr),
4464 	};
4465 	struct task_struct *p;
4466 	int retval;
4467 
4468 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4469 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4470 		return -EINVAL;
4471 
4472 	rcu_read_lock();
4473 	p = find_process_by_pid(pid);
4474 	retval = -ESRCH;
4475 	if (!p)
4476 		goto out_unlock;
4477 
4478 	retval = security_task_getscheduler(p);
4479 	if (retval)
4480 		goto out_unlock;
4481 
4482 	attr.sched_policy = p->policy;
4483 	if (p->sched_reset_on_fork)
4484 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4485 	if (task_has_dl_policy(p))
4486 		__getparam_dl(p, &attr);
4487 	else if (task_has_rt_policy(p))
4488 		attr.sched_priority = p->rt_priority;
4489 	else
4490 		attr.sched_nice = task_nice(p);
4491 
4492 	rcu_read_unlock();
4493 
4494 	retval = sched_read_attr(uattr, &attr, size);
4495 	return retval;
4496 
4497 out_unlock:
4498 	rcu_read_unlock();
4499 	return retval;
4500 }
4501 
4502 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4503 {
4504 	cpumask_var_t cpus_allowed, new_mask;
4505 	struct task_struct *p;
4506 	int retval;
4507 
4508 	rcu_read_lock();
4509 
4510 	p = find_process_by_pid(pid);
4511 	if (!p) {
4512 		rcu_read_unlock();
4513 		return -ESRCH;
4514 	}
4515 
4516 	/* Prevent p going away */
4517 	get_task_struct(p);
4518 	rcu_read_unlock();
4519 
4520 	if (p->flags & PF_NO_SETAFFINITY) {
4521 		retval = -EINVAL;
4522 		goto out_put_task;
4523 	}
4524 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4525 		retval = -ENOMEM;
4526 		goto out_put_task;
4527 	}
4528 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4529 		retval = -ENOMEM;
4530 		goto out_free_cpus_allowed;
4531 	}
4532 	retval = -EPERM;
4533 	if (!check_same_owner(p)) {
4534 		rcu_read_lock();
4535 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4536 			rcu_read_unlock();
4537 			goto out_free_new_mask;
4538 		}
4539 		rcu_read_unlock();
4540 	}
4541 
4542 	retval = security_task_setscheduler(p);
4543 	if (retval)
4544 		goto out_free_new_mask;
4545 
4546 
4547 	cpuset_cpus_allowed(p, cpus_allowed);
4548 	cpumask_and(new_mask, in_mask, cpus_allowed);
4549 
4550 	/*
4551 	 * Since bandwidth control happens on root_domain basis,
4552 	 * if admission test is enabled, we only admit -deadline
4553 	 * tasks allowed to run on all the CPUs in the task's
4554 	 * root_domain.
4555 	 */
4556 #ifdef CONFIG_SMP
4557 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4558 		rcu_read_lock();
4559 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4560 			retval = -EBUSY;
4561 			rcu_read_unlock();
4562 			goto out_free_new_mask;
4563 		}
4564 		rcu_read_unlock();
4565 	}
4566 #endif
4567 again:
4568 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4569 
4570 	if (!retval) {
4571 		cpuset_cpus_allowed(p, cpus_allowed);
4572 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4573 			/*
4574 			 * We must have raced with a concurrent cpuset
4575 			 * update. Just reset the cpus_allowed to the
4576 			 * cpuset's cpus_allowed
4577 			 */
4578 			cpumask_copy(new_mask, cpus_allowed);
4579 			goto again;
4580 		}
4581 	}
4582 out_free_new_mask:
4583 	free_cpumask_var(new_mask);
4584 out_free_cpus_allowed:
4585 	free_cpumask_var(cpus_allowed);
4586 out_put_task:
4587 	put_task_struct(p);
4588 	return retval;
4589 }
4590 
4591 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4592 			     struct cpumask *new_mask)
4593 {
4594 	if (len < cpumask_size())
4595 		cpumask_clear(new_mask);
4596 	else if (len > cpumask_size())
4597 		len = cpumask_size();
4598 
4599 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4600 }
4601 
4602 /**
4603  * sys_sched_setaffinity - set the cpu affinity of a process
4604  * @pid: pid of the process
4605  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4606  * @user_mask_ptr: user-space pointer to the new cpu mask
4607  *
4608  * Return: 0 on success. An error code otherwise.
4609  */
4610 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4611 		unsigned long __user *, user_mask_ptr)
4612 {
4613 	cpumask_var_t new_mask;
4614 	int retval;
4615 
4616 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4617 		return -ENOMEM;
4618 
4619 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4620 	if (retval == 0)
4621 		retval = sched_setaffinity(pid, new_mask);
4622 	free_cpumask_var(new_mask);
4623 	return retval;
4624 }
4625 
4626 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4627 {
4628 	struct task_struct *p;
4629 	unsigned long flags;
4630 	int retval;
4631 
4632 	rcu_read_lock();
4633 
4634 	retval = -ESRCH;
4635 	p = find_process_by_pid(pid);
4636 	if (!p)
4637 		goto out_unlock;
4638 
4639 	retval = security_task_getscheduler(p);
4640 	if (retval)
4641 		goto out_unlock;
4642 
4643 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4644 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4645 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4646 
4647 out_unlock:
4648 	rcu_read_unlock();
4649 
4650 	return retval;
4651 }
4652 
4653 /**
4654  * sys_sched_getaffinity - get the cpu affinity of a process
4655  * @pid: pid of the process
4656  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4657  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4658  *
4659  * Return: 0 on success. An error code otherwise.
4660  */
4661 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4662 		unsigned long __user *, user_mask_ptr)
4663 {
4664 	int ret;
4665 	cpumask_var_t mask;
4666 
4667 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4668 		return -EINVAL;
4669 	if (len & (sizeof(unsigned long)-1))
4670 		return -EINVAL;
4671 
4672 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4673 		return -ENOMEM;
4674 
4675 	ret = sched_getaffinity(pid, mask);
4676 	if (ret == 0) {
4677 		size_t retlen = min_t(size_t, len, cpumask_size());
4678 
4679 		if (copy_to_user(user_mask_ptr, mask, retlen))
4680 			ret = -EFAULT;
4681 		else
4682 			ret = retlen;
4683 	}
4684 	free_cpumask_var(mask);
4685 
4686 	return ret;
4687 }
4688 
4689 /**
4690  * sys_sched_yield - yield the current processor to other threads.
4691  *
4692  * This function yields the current CPU to other tasks. If there are no
4693  * other threads running on this CPU then this function will return.
4694  *
4695  * Return: 0.
4696  */
4697 SYSCALL_DEFINE0(sched_yield)
4698 {
4699 	struct rq *rq = this_rq_lock();
4700 
4701 	schedstat_inc(rq, yld_count);
4702 	current->sched_class->yield_task(rq);
4703 
4704 	/*
4705 	 * Since we are going to call schedule() anyway, there's
4706 	 * no need to preempt or enable interrupts:
4707 	 */
4708 	__release(rq->lock);
4709 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4710 	do_raw_spin_unlock(&rq->lock);
4711 	sched_preempt_enable_no_resched();
4712 
4713 	schedule();
4714 
4715 	return 0;
4716 }
4717 
4718 int __sched _cond_resched(void)
4719 {
4720 	if (should_resched(0)) {
4721 		preempt_schedule_common();
4722 		return 1;
4723 	}
4724 	return 0;
4725 }
4726 EXPORT_SYMBOL(_cond_resched);
4727 
4728 /*
4729  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4730  * call schedule, and on return reacquire the lock.
4731  *
4732  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4733  * operations here to prevent schedule() from being called twice (once via
4734  * spin_unlock(), once by hand).
4735  */
4736 int __cond_resched_lock(spinlock_t *lock)
4737 {
4738 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4739 	int ret = 0;
4740 
4741 	lockdep_assert_held(lock);
4742 
4743 	if (spin_needbreak(lock) || resched) {
4744 		spin_unlock(lock);
4745 		if (resched)
4746 			preempt_schedule_common();
4747 		else
4748 			cpu_relax();
4749 		ret = 1;
4750 		spin_lock(lock);
4751 	}
4752 	return ret;
4753 }
4754 EXPORT_SYMBOL(__cond_resched_lock);
4755 
4756 int __sched __cond_resched_softirq(void)
4757 {
4758 	BUG_ON(!in_softirq());
4759 
4760 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4761 		local_bh_enable();
4762 		preempt_schedule_common();
4763 		local_bh_disable();
4764 		return 1;
4765 	}
4766 	return 0;
4767 }
4768 EXPORT_SYMBOL(__cond_resched_softirq);
4769 
4770 /**
4771  * yield - yield the current processor to other threads.
4772  *
4773  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4774  *
4775  * The scheduler is at all times free to pick the calling task as the most
4776  * eligible task to run, if removing the yield() call from your code breaks
4777  * it, its already broken.
4778  *
4779  * Typical broken usage is:
4780  *
4781  * while (!event)
4782  * 	yield();
4783  *
4784  * where one assumes that yield() will let 'the other' process run that will
4785  * make event true. If the current task is a SCHED_FIFO task that will never
4786  * happen. Never use yield() as a progress guarantee!!
4787  *
4788  * If you want to use yield() to wait for something, use wait_event().
4789  * If you want to use yield() to be 'nice' for others, use cond_resched().
4790  * If you still want to use yield(), do not!
4791  */
4792 void __sched yield(void)
4793 {
4794 	set_current_state(TASK_RUNNING);
4795 	sys_sched_yield();
4796 }
4797 EXPORT_SYMBOL(yield);
4798 
4799 /**
4800  * yield_to - yield the current processor to another thread in
4801  * your thread group, or accelerate that thread toward the
4802  * processor it's on.
4803  * @p: target task
4804  * @preempt: whether task preemption is allowed or not
4805  *
4806  * It's the caller's job to ensure that the target task struct
4807  * can't go away on us before we can do any checks.
4808  *
4809  * Return:
4810  *	true (>0) if we indeed boosted the target task.
4811  *	false (0) if we failed to boost the target.
4812  *	-ESRCH if there's no task to yield to.
4813  */
4814 int __sched yield_to(struct task_struct *p, bool preempt)
4815 {
4816 	struct task_struct *curr = current;
4817 	struct rq *rq, *p_rq;
4818 	unsigned long flags;
4819 	int yielded = 0;
4820 
4821 	local_irq_save(flags);
4822 	rq = this_rq();
4823 
4824 again:
4825 	p_rq = task_rq(p);
4826 	/*
4827 	 * If we're the only runnable task on the rq and target rq also
4828 	 * has only one task, there's absolutely no point in yielding.
4829 	 */
4830 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4831 		yielded = -ESRCH;
4832 		goto out_irq;
4833 	}
4834 
4835 	double_rq_lock(rq, p_rq);
4836 	if (task_rq(p) != p_rq) {
4837 		double_rq_unlock(rq, p_rq);
4838 		goto again;
4839 	}
4840 
4841 	if (!curr->sched_class->yield_to_task)
4842 		goto out_unlock;
4843 
4844 	if (curr->sched_class != p->sched_class)
4845 		goto out_unlock;
4846 
4847 	if (task_running(p_rq, p) || p->state)
4848 		goto out_unlock;
4849 
4850 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4851 	if (yielded) {
4852 		schedstat_inc(rq, yld_count);
4853 		/*
4854 		 * Make p's CPU reschedule; pick_next_entity takes care of
4855 		 * fairness.
4856 		 */
4857 		if (preempt && rq != p_rq)
4858 			resched_curr(p_rq);
4859 	}
4860 
4861 out_unlock:
4862 	double_rq_unlock(rq, p_rq);
4863 out_irq:
4864 	local_irq_restore(flags);
4865 
4866 	if (yielded > 0)
4867 		schedule();
4868 
4869 	return yielded;
4870 }
4871 EXPORT_SYMBOL_GPL(yield_to);
4872 
4873 /*
4874  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4875  * that process accounting knows that this is a task in IO wait state.
4876  */
4877 long __sched io_schedule_timeout(long timeout)
4878 {
4879 	int old_iowait = current->in_iowait;
4880 	struct rq *rq;
4881 	long ret;
4882 
4883 	current->in_iowait = 1;
4884 	blk_schedule_flush_plug(current);
4885 
4886 	delayacct_blkio_start();
4887 	rq = raw_rq();
4888 	atomic_inc(&rq->nr_iowait);
4889 	ret = schedule_timeout(timeout);
4890 	current->in_iowait = old_iowait;
4891 	atomic_dec(&rq->nr_iowait);
4892 	delayacct_blkio_end();
4893 
4894 	return ret;
4895 }
4896 EXPORT_SYMBOL(io_schedule_timeout);
4897 
4898 /**
4899  * sys_sched_get_priority_max - return maximum RT priority.
4900  * @policy: scheduling class.
4901  *
4902  * Return: On success, this syscall returns the maximum
4903  * rt_priority that can be used by a given scheduling class.
4904  * On failure, a negative error code is returned.
4905  */
4906 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4907 {
4908 	int ret = -EINVAL;
4909 
4910 	switch (policy) {
4911 	case SCHED_FIFO:
4912 	case SCHED_RR:
4913 		ret = MAX_USER_RT_PRIO-1;
4914 		break;
4915 	case SCHED_DEADLINE:
4916 	case SCHED_NORMAL:
4917 	case SCHED_BATCH:
4918 	case SCHED_IDLE:
4919 		ret = 0;
4920 		break;
4921 	}
4922 	return ret;
4923 }
4924 
4925 /**
4926  * sys_sched_get_priority_min - return minimum RT priority.
4927  * @policy: scheduling class.
4928  *
4929  * Return: On success, this syscall returns the minimum
4930  * rt_priority that can be used by a given scheduling class.
4931  * On failure, a negative error code is returned.
4932  */
4933 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4934 {
4935 	int ret = -EINVAL;
4936 
4937 	switch (policy) {
4938 	case SCHED_FIFO:
4939 	case SCHED_RR:
4940 		ret = 1;
4941 		break;
4942 	case SCHED_DEADLINE:
4943 	case SCHED_NORMAL:
4944 	case SCHED_BATCH:
4945 	case SCHED_IDLE:
4946 		ret = 0;
4947 	}
4948 	return ret;
4949 }
4950 
4951 /**
4952  * sys_sched_rr_get_interval - return the default timeslice of a process.
4953  * @pid: pid of the process.
4954  * @interval: userspace pointer to the timeslice value.
4955  *
4956  * this syscall writes the default timeslice value of a given process
4957  * into the user-space timespec buffer. A value of '0' means infinity.
4958  *
4959  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4960  * an error code.
4961  */
4962 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4963 		struct timespec __user *, interval)
4964 {
4965 	struct task_struct *p;
4966 	unsigned int time_slice;
4967 	unsigned long flags;
4968 	struct rq *rq;
4969 	int retval;
4970 	struct timespec t;
4971 
4972 	if (pid < 0)
4973 		return -EINVAL;
4974 
4975 	retval = -ESRCH;
4976 	rcu_read_lock();
4977 	p = find_process_by_pid(pid);
4978 	if (!p)
4979 		goto out_unlock;
4980 
4981 	retval = security_task_getscheduler(p);
4982 	if (retval)
4983 		goto out_unlock;
4984 
4985 	rq = task_rq_lock(p, &flags);
4986 	time_slice = 0;
4987 	if (p->sched_class->get_rr_interval)
4988 		time_slice = p->sched_class->get_rr_interval(rq, p);
4989 	task_rq_unlock(rq, p, &flags);
4990 
4991 	rcu_read_unlock();
4992 	jiffies_to_timespec(time_slice, &t);
4993 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4994 	return retval;
4995 
4996 out_unlock:
4997 	rcu_read_unlock();
4998 	return retval;
4999 }
5000 
5001 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5002 
5003 void sched_show_task(struct task_struct *p)
5004 {
5005 	unsigned long free = 0;
5006 	int ppid;
5007 	unsigned long state = p->state;
5008 
5009 	if (state)
5010 		state = __ffs(state) + 1;
5011 	printk(KERN_INFO "%-15.15s %c", p->comm,
5012 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5013 #if BITS_PER_LONG == 32
5014 	if (state == TASK_RUNNING)
5015 		printk(KERN_CONT " running  ");
5016 	else
5017 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5018 #else
5019 	if (state == TASK_RUNNING)
5020 		printk(KERN_CONT "  running task    ");
5021 	else
5022 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5023 #endif
5024 #ifdef CONFIG_DEBUG_STACK_USAGE
5025 	free = stack_not_used(p);
5026 #endif
5027 	ppid = 0;
5028 	rcu_read_lock();
5029 	if (pid_alive(p))
5030 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5031 	rcu_read_unlock();
5032 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5033 		task_pid_nr(p), ppid,
5034 		(unsigned long)task_thread_info(p)->flags);
5035 
5036 	print_worker_info(KERN_INFO, p);
5037 	show_stack(p, NULL);
5038 }
5039 
5040 void show_state_filter(unsigned long state_filter)
5041 {
5042 	struct task_struct *g, *p;
5043 
5044 #if BITS_PER_LONG == 32
5045 	printk(KERN_INFO
5046 		"  task                PC stack   pid father\n");
5047 #else
5048 	printk(KERN_INFO
5049 		"  task                        PC stack   pid father\n");
5050 #endif
5051 	rcu_read_lock();
5052 	for_each_process_thread(g, p) {
5053 		/*
5054 		 * reset the NMI-timeout, listing all files on a slow
5055 		 * console might take a lot of time:
5056 		 */
5057 		touch_nmi_watchdog();
5058 		if (!state_filter || (p->state & state_filter))
5059 			sched_show_task(p);
5060 	}
5061 
5062 	touch_all_softlockup_watchdogs();
5063 
5064 #ifdef CONFIG_SCHED_DEBUG
5065 	sysrq_sched_debug_show();
5066 #endif
5067 	rcu_read_unlock();
5068 	/*
5069 	 * Only show locks if all tasks are dumped:
5070 	 */
5071 	if (!state_filter)
5072 		debug_show_all_locks();
5073 }
5074 
5075 void init_idle_bootup_task(struct task_struct *idle)
5076 {
5077 	idle->sched_class = &idle_sched_class;
5078 }
5079 
5080 /**
5081  * init_idle - set up an idle thread for a given CPU
5082  * @idle: task in question
5083  * @cpu: cpu the idle task belongs to
5084  *
5085  * NOTE: this function does not set the idle thread's NEED_RESCHED
5086  * flag, to make booting more robust.
5087  */
5088 void init_idle(struct task_struct *idle, int cpu)
5089 {
5090 	struct rq *rq = cpu_rq(cpu);
5091 	unsigned long flags;
5092 
5093 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5094 	raw_spin_lock(&rq->lock);
5095 
5096 	__sched_fork(0, idle);
5097 	idle->state = TASK_RUNNING;
5098 	idle->se.exec_start = sched_clock();
5099 
5100 	kasan_unpoison_task_stack(idle);
5101 
5102 #ifdef CONFIG_SMP
5103 	/*
5104 	 * Its possible that init_idle() gets called multiple times on a task,
5105 	 * in that case do_set_cpus_allowed() will not do the right thing.
5106 	 *
5107 	 * And since this is boot we can forgo the serialization.
5108 	 */
5109 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5110 #endif
5111 	/*
5112 	 * We're having a chicken and egg problem, even though we are
5113 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5114 	 * lockdep check in task_group() will fail.
5115 	 *
5116 	 * Similar case to sched_fork(). / Alternatively we could
5117 	 * use task_rq_lock() here and obtain the other rq->lock.
5118 	 *
5119 	 * Silence PROVE_RCU
5120 	 */
5121 	rcu_read_lock();
5122 	__set_task_cpu(idle, cpu);
5123 	rcu_read_unlock();
5124 
5125 	rq->curr = rq->idle = idle;
5126 	idle->on_rq = TASK_ON_RQ_QUEUED;
5127 #ifdef CONFIG_SMP
5128 	idle->on_cpu = 1;
5129 #endif
5130 	raw_spin_unlock(&rq->lock);
5131 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5132 
5133 	/* Set the preempt count _outside_ the spinlocks! */
5134 	init_idle_preempt_count(idle, cpu);
5135 
5136 	/*
5137 	 * The idle tasks have their own, simple scheduling class:
5138 	 */
5139 	idle->sched_class = &idle_sched_class;
5140 	ftrace_graph_init_idle_task(idle, cpu);
5141 	vtime_init_idle(idle, cpu);
5142 #ifdef CONFIG_SMP
5143 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5144 #endif
5145 }
5146 
5147 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5148 			      const struct cpumask *trial)
5149 {
5150 	int ret = 1, trial_cpus;
5151 	struct dl_bw *cur_dl_b;
5152 	unsigned long flags;
5153 
5154 	if (!cpumask_weight(cur))
5155 		return ret;
5156 
5157 	rcu_read_lock_sched();
5158 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5159 	trial_cpus = cpumask_weight(trial);
5160 
5161 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5162 	if (cur_dl_b->bw != -1 &&
5163 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5164 		ret = 0;
5165 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5166 	rcu_read_unlock_sched();
5167 
5168 	return ret;
5169 }
5170 
5171 int task_can_attach(struct task_struct *p,
5172 		    const struct cpumask *cs_cpus_allowed)
5173 {
5174 	int ret = 0;
5175 
5176 	/*
5177 	 * Kthreads which disallow setaffinity shouldn't be moved
5178 	 * to a new cpuset; we don't want to change their cpu
5179 	 * affinity and isolating such threads by their set of
5180 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5181 	 * applicable for such threads.  This prevents checking for
5182 	 * success of set_cpus_allowed_ptr() on all attached tasks
5183 	 * before cpus_allowed may be changed.
5184 	 */
5185 	if (p->flags & PF_NO_SETAFFINITY) {
5186 		ret = -EINVAL;
5187 		goto out;
5188 	}
5189 
5190 #ifdef CONFIG_SMP
5191 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5192 					      cs_cpus_allowed)) {
5193 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5194 							cs_cpus_allowed);
5195 		struct dl_bw *dl_b;
5196 		bool overflow;
5197 		int cpus;
5198 		unsigned long flags;
5199 
5200 		rcu_read_lock_sched();
5201 		dl_b = dl_bw_of(dest_cpu);
5202 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5203 		cpus = dl_bw_cpus(dest_cpu);
5204 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5205 		if (overflow)
5206 			ret = -EBUSY;
5207 		else {
5208 			/*
5209 			 * We reserve space for this task in the destination
5210 			 * root_domain, as we can't fail after this point.
5211 			 * We will free resources in the source root_domain
5212 			 * later on (see set_cpus_allowed_dl()).
5213 			 */
5214 			__dl_add(dl_b, p->dl.dl_bw);
5215 		}
5216 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5217 		rcu_read_unlock_sched();
5218 
5219 	}
5220 #endif
5221 out:
5222 	return ret;
5223 }
5224 
5225 #ifdef CONFIG_SMP
5226 
5227 #ifdef CONFIG_NUMA_BALANCING
5228 /* Migrate current task p to target_cpu */
5229 int migrate_task_to(struct task_struct *p, int target_cpu)
5230 {
5231 	struct migration_arg arg = { p, target_cpu };
5232 	int curr_cpu = task_cpu(p);
5233 
5234 	if (curr_cpu == target_cpu)
5235 		return 0;
5236 
5237 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5238 		return -EINVAL;
5239 
5240 	/* TODO: This is not properly updating schedstats */
5241 
5242 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5243 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5244 }
5245 
5246 /*
5247  * Requeue a task on a given node and accurately track the number of NUMA
5248  * tasks on the runqueues
5249  */
5250 void sched_setnuma(struct task_struct *p, int nid)
5251 {
5252 	struct rq *rq;
5253 	unsigned long flags;
5254 	bool queued, running;
5255 
5256 	rq = task_rq_lock(p, &flags);
5257 	queued = task_on_rq_queued(p);
5258 	running = task_current(rq, p);
5259 
5260 	if (queued)
5261 		dequeue_task(rq, p, DEQUEUE_SAVE);
5262 	if (running)
5263 		put_prev_task(rq, p);
5264 
5265 	p->numa_preferred_nid = nid;
5266 
5267 	if (running)
5268 		p->sched_class->set_curr_task(rq);
5269 	if (queued)
5270 		enqueue_task(rq, p, ENQUEUE_RESTORE);
5271 	task_rq_unlock(rq, p, &flags);
5272 }
5273 #endif /* CONFIG_NUMA_BALANCING */
5274 
5275 #ifdef CONFIG_HOTPLUG_CPU
5276 /*
5277  * Ensures that the idle task is using init_mm right before its cpu goes
5278  * offline.
5279  */
5280 void idle_task_exit(void)
5281 {
5282 	struct mm_struct *mm = current->active_mm;
5283 
5284 	BUG_ON(cpu_online(smp_processor_id()));
5285 
5286 	if (mm != &init_mm) {
5287 		switch_mm(mm, &init_mm, current);
5288 		finish_arch_post_lock_switch();
5289 	}
5290 	mmdrop(mm);
5291 }
5292 
5293 /*
5294  * Since this CPU is going 'away' for a while, fold any nr_active delta
5295  * we might have. Assumes we're called after migrate_tasks() so that the
5296  * nr_active count is stable.
5297  *
5298  * Also see the comment "Global load-average calculations".
5299  */
5300 static void calc_load_migrate(struct rq *rq)
5301 {
5302 	long delta = calc_load_fold_active(rq);
5303 	if (delta)
5304 		atomic_long_add(delta, &calc_load_tasks);
5305 }
5306 
5307 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5308 {
5309 }
5310 
5311 static const struct sched_class fake_sched_class = {
5312 	.put_prev_task = put_prev_task_fake,
5313 };
5314 
5315 static struct task_struct fake_task = {
5316 	/*
5317 	 * Avoid pull_{rt,dl}_task()
5318 	 */
5319 	.prio = MAX_PRIO + 1,
5320 	.sched_class = &fake_sched_class,
5321 };
5322 
5323 /*
5324  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5325  * try_to_wake_up()->select_task_rq().
5326  *
5327  * Called with rq->lock held even though we'er in stop_machine() and
5328  * there's no concurrency possible, we hold the required locks anyway
5329  * because of lock validation efforts.
5330  */
5331 static void migrate_tasks(struct rq *dead_rq)
5332 {
5333 	struct rq *rq = dead_rq;
5334 	struct task_struct *next, *stop = rq->stop;
5335 	int dest_cpu;
5336 
5337 	/*
5338 	 * Fudge the rq selection such that the below task selection loop
5339 	 * doesn't get stuck on the currently eligible stop task.
5340 	 *
5341 	 * We're currently inside stop_machine() and the rq is either stuck
5342 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5343 	 * either way we should never end up calling schedule() until we're
5344 	 * done here.
5345 	 */
5346 	rq->stop = NULL;
5347 
5348 	/*
5349 	 * put_prev_task() and pick_next_task() sched
5350 	 * class method both need to have an up-to-date
5351 	 * value of rq->clock[_task]
5352 	 */
5353 	update_rq_clock(rq);
5354 
5355 	for (;;) {
5356 		/*
5357 		 * There's this thread running, bail when that's the only
5358 		 * remaining thread.
5359 		 */
5360 		if (rq->nr_running == 1)
5361 			break;
5362 
5363 		/*
5364 		 * pick_next_task assumes pinned rq->lock.
5365 		 */
5366 		lockdep_pin_lock(&rq->lock);
5367 		next = pick_next_task(rq, &fake_task);
5368 		BUG_ON(!next);
5369 		next->sched_class->put_prev_task(rq, next);
5370 
5371 		/*
5372 		 * Rules for changing task_struct::cpus_allowed are holding
5373 		 * both pi_lock and rq->lock, such that holding either
5374 		 * stabilizes the mask.
5375 		 *
5376 		 * Drop rq->lock is not quite as disastrous as it usually is
5377 		 * because !cpu_active at this point, which means load-balance
5378 		 * will not interfere. Also, stop-machine.
5379 		 */
5380 		lockdep_unpin_lock(&rq->lock);
5381 		raw_spin_unlock(&rq->lock);
5382 		raw_spin_lock(&next->pi_lock);
5383 		raw_spin_lock(&rq->lock);
5384 
5385 		/*
5386 		 * Since we're inside stop-machine, _nothing_ should have
5387 		 * changed the task, WARN if weird stuff happened, because in
5388 		 * that case the above rq->lock drop is a fail too.
5389 		 */
5390 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5391 			raw_spin_unlock(&next->pi_lock);
5392 			continue;
5393 		}
5394 
5395 		/* Find suitable destination for @next, with force if needed. */
5396 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5397 
5398 		rq = __migrate_task(rq, next, dest_cpu);
5399 		if (rq != dead_rq) {
5400 			raw_spin_unlock(&rq->lock);
5401 			rq = dead_rq;
5402 			raw_spin_lock(&rq->lock);
5403 		}
5404 		raw_spin_unlock(&next->pi_lock);
5405 	}
5406 
5407 	rq->stop = stop;
5408 }
5409 #endif /* CONFIG_HOTPLUG_CPU */
5410 
5411 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5412 
5413 static struct ctl_table sd_ctl_dir[] = {
5414 	{
5415 		.procname	= "sched_domain",
5416 		.mode		= 0555,
5417 	},
5418 	{}
5419 };
5420 
5421 static struct ctl_table sd_ctl_root[] = {
5422 	{
5423 		.procname	= "kernel",
5424 		.mode		= 0555,
5425 		.child		= sd_ctl_dir,
5426 	},
5427 	{}
5428 };
5429 
5430 static struct ctl_table *sd_alloc_ctl_entry(int n)
5431 {
5432 	struct ctl_table *entry =
5433 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5434 
5435 	return entry;
5436 }
5437 
5438 static void sd_free_ctl_entry(struct ctl_table **tablep)
5439 {
5440 	struct ctl_table *entry;
5441 
5442 	/*
5443 	 * In the intermediate directories, both the child directory and
5444 	 * procname are dynamically allocated and could fail but the mode
5445 	 * will always be set. In the lowest directory the names are
5446 	 * static strings and all have proc handlers.
5447 	 */
5448 	for (entry = *tablep; entry->mode; entry++) {
5449 		if (entry->child)
5450 			sd_free_ctl_entry(&entry->child);
5451 		if (entry->proc_handler == NULL)
5452 			kfree(entry->procname);
5453 	}
5454 
5455 	kfree(*tablep);
5456 	*tablep = NULL;
5457 }
5458 
5459 static int min_load_idx = 0;
5460 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5461 
5462 static void
5463 set_table_entry(struct ctl_table *entry,
5464 		const char *procname, void *data, int maxlen,
5465 		umode_t mode, proc_handler *proc_handler,
5466 		bool load_idx)
5467 {
5468 	entry->procname = procname;
5469 	entry->data = data;
5470 	entry->maxlen = maxlen;
5471 	entry->mode = mode;
5472 	entry->proc_handler = proc_handler;
5473 
5474 	if (load_idx) {
5475 		entry->extra1 = &min_load_idx;
5476 		entry->extra2 = &max_load_idx;
5477 	}
5478 }
5479 
5480 static struct ctl_table *
5481 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5482 {
5483 	struct ctl_table *table = sd_alloc_ctl_entry(14);
5484 
5485 	if (table == NULL)
5486 		return NULL;
5487 
5488 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5489 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5490 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5491 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5492 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5493 		sizeof(int), 0644, proc_dointvec_minmax, true);
5494 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5495 		sizeof(int), 0644, proc_dointvec_minmax, true);
5496 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5497 		sizeof(int), 0644, proc_dointvec_minmax, true);
5498 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5499 		sizeof(int), 0644, proc_dointvec_minmax, true);
5500 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5501 		sizeof(int), 0644, proc_dointvec_minmax, true);
5502 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5503 		sizeof(int), 0644, proc_dointvec_minmax, false);
5504 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5505 		sizeof(int), 0644, proc_dointvec_minmax, false);
5506 	set_table_entry(&table[9], "cache_nice_tries",
5507 		&sd->cache_nice_tries,
5508 		sizeof(int), 0644, proc_dointvec_minmax, false);
5509 	set_table_entry(&table[10], "flags", &sd->flags,
5510 		sizeof(int), 0644, proc_dointvec_minmax, false);
5511 	set_table_entry(&table[11], "max_newidle_lb_cost",
5512 		&sd->max_newidle_lb_cost,
5513 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5514 	set_table_entry(&table[12], "name", sd->name,
5515 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5516 	/* &table[13] is terminator */
5517 
5518 	return table;
5519 }
5520 
5521 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5522 {
5523 	struct ctl_table *entry, *table;
5524 	struct sched_domain *sd;
5525 	int domain_num = 0, i;
5526 	char buf[32];
5527 
5528 	for_each_domain(cpu, sd)
5529 		domain_num++;
5530 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5531 	if (table == NULL)
5532 		return NULL;
5533 
5534 	i = 0;
5535 	for_each_domain(cpu, sd) {
5536 		snprintf(buf, 32, "domain%d", i);
5537 		entry->procname = kstrdup(buf, GFP_KERNEL);
5538 		entry->mode = 0555;
5539 		entry->child = sd_alloc_ctl_domain_table(sd);
5540 		entry++;
5541 		i++;
5542 	}
5543 	return table;
5544 }
5545 
5546 static struct ctl_table_header *sd_sysctl_header;
5547 static void register_sched_domain_sysctl(void)
5548 {
5549 	int i, cpu_num = num_possible_cpus();
5550 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5551 	char buf[32];
5552 
5553 	WARN_ON(sd_ctl_dir[0].child);
5554 	sd_ctl_dir[0].child = entry;
5555 
5556 	if (entry == NULL)
5557 		return;
5558 
5559 	for_each_possible_cpu(i) {
5560 		snprintf(buf, 32, "cpu%d", i);
5561 		entry->procname = kstrdup(buf, GFP_KERNEL);
5562 		entry->mode = 0555;
5563 		entry->child = sd_alloc_ctl_cpu_table(i);
5564 		entry++;
5565 	}
5566 
5567 	WARN_ON(sd_sysctl_header);
5568 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5569 }
5570 
5571 /* may be called multiple times per register */
5572 static void unregister_sched_domain_sysctl(void)
5573 {
5574 	unregister_sysctl_table(sd_sysctl_header);
5575 	sd_sysctl_header = NULL;
5576 	if (sd_ctl_dir[0].child)
5577 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5578 }
5579 #else
5580 static void register_sched_domain_sysctl(void)
5581 {
5582 }
5583 static void unregister_sched_domain_sysctl(void)
5584 {
5585 }
5586 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5587 
5588 static void set_rq_online(struct rq *rq)
5589 {
5590 	if (!rq->online) {
5591 		const struct sched_class *class;
5592 
5593 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5594 		rq->online = 1;
5595 
5596 		for_each_class(class) {
5597 			if (class->rq_online)
5598 				class->rq_online(rq);
5599 		}
5600 	}
5601 }
5602 
5603 static void set_rq_offline(struct rq *rq)
5604 {
5605 	if (rq->online) {
5606 		const struct sched_class *class;
5607 
5608 		for_each_class(class) {
5609 			if (class->rq_offline)
5610 				class->rq_offline(rq);
5611 		}
5612 
5613 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5614 		rq->online = 0;
5615 	}
5616 }
5617 
5618 /*
5619  * migration_call - callback that gets triggered when a CPU is added.
5620  * Here we can start up the necessary migration thread for the new CPU.
5621  */
5622 static int
5623 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5624 {
5625 	int cpu = (long)hcpu;
5626 	unsigned long flags;
5627 	struct rq *rq = cpu_rq(cpu);
5628 
5629 	switch (action & ~CPU_TASKS_FROZEN) {
5630 
5631 	case CPU_UP_PREPARE:
5632 		rq->calc_load_update = calc_load_update;
5633 		break;
5634 
5635 	case CPU_ONLINE:
5636 		/* Update our root-domain */
5637 		raw_spin_lock_irqsave(&rq->lock, flags);
5638 		if (rq->rd) {
5639 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5640 
5641 			set_rq_online(rq);
5642 		}
5643 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5644 		break;
5645 
5646 #ifdef CONFIG_HOTPLUG_CPU
5647 	case CPU_DYING:
5648 		sched_ttwu_pending();
5649 		/* Update our root-domain */
5650 		raw_spin_lock_irqsave(&rq->lock, flags);
5651 		if (rq->rd) {
5652 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5653 			set_rq_offline(rq);
5654 		}
5655 		migrate_tasks(rq);
5656 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5657 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5658 		break;
5659 
5660 	case CPU_DEAD:
5661 		calc_load_migrate(rq);
5662 		break;
5663 #endif
5664 	}
5665 
5666 	update_max_interval();
5667 
5668 	return NOTIFY_OK;
5669 }
5670 
5671 /*
5672  * Register at high priority so that task migration (migrate_all_tasks)
5673  * happens before everything else.  This has to be lower priority than
5674  * the notifier in the perf_event subsystem, though.
5675  */
5676 static struct notifier_block migration_notifier = {
5677 	.notifier_call = migration_call,
5678 	.priority = CPU_PRI_MIGRATION,
5679 };
5680 
5681 static void set_cpu_rq_start_time(void)
5682 {
5683 	int cpu = smp_processor_id();
5684 	struct rq *rq = cpu_rq(cpu);
5685 	rq->age_stamp = sched_clock_cpu(cpu);
5686 }
5687 
5688 static int sched_cpu_active(struct notifier_block *nfb,
5689 				      unsigned long action, void *hcpu)
5690 {
5691 	int cpu = (long)hcpu;
5692 
5693 	switch (action & ~CPU_TASKS_FROZEN) {
5694 	case CPU_STARTING:
5695 		set_cpu_rq_start_time();
5696 		return NOTIFY_OK;
5697 
5698 	case CPU_ONLINE:
5699 		/*
5700 		 * At this point a starting CPU has marked itself as online via
5701 		 * set_cpu_online(). But it might not yet have marked itself
5702 		 * as active, which is essential from here on.
5703 		 */
5704 		set_cpu_active(cpu, true);
5705 		stop_machine_unpark(cpu);
5706 		return NOTIFY_OK;
5707 
5708 	case CPU_DOWN_FAILED:
5709 		set_cpu_active(cpu, true);
5710 		return NOTIFY_OK;
5711 
5712 	default:
5713 		return NOTIFY_DONE;
5714 	}
5715 }
5716 
5717 static int sched_cpu_inactive(struct notifier_block *nfb,
5718 					unsigned long action, void *hcpu)
5719 {
5720 	switch (action & ~CPU_TASKS_FROZEN) {
5721 	case CPU_DOWN_PREPARE:
5722 		set_cpu_active((long)hcpu, false);
5723 		return NOTIFY_OK;
5724 	default:
5725 		return NOTIFY_DONE;
5726 	}
5727 }
5728 
5729 static int __init migration_init(void)
5730 {
5731 	void *cpu = (void *)(long)smp_processor_id();
5732 	int err;
5733 
5734 	/* Initialize migration for the boot CPU */
5735 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5736 	BUG_ON(err == NOTIFY_BAD);
5737 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5738 	register_cpu_notifier(&migration_notifier);
5739 
5740 	/* Register cpu active notifiers */
5741 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5742 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5743 
5744 	return 0;
5745 }
5746 early_initcall(migration_init);
5747 
5748 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5749 
5750 #ifdef CONFIG_SCHED_DEBUG
5751 
5752 static __read_mostly int sched_debug_enabled;
5753 
5754 static int __init sched_debug_setup(char *str)
5755 {
5756 	sched_debug_enabled = 1;
5757 
5758 	return 0;
5759 }
5760 early_param("sched_debug", sched_debug_setup);
5761 
5762 static inline bool sched_debug(void)
5763 {
5764 	return sched_debug_enabled;
5765 }
5766 
5767 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5768 				  struct cpumask *groupmask)
5769 {
5770 	struct sched_group *group = sd->groups;
5771 
5772 	cpumask_clear(groupmask);
5773 
5774 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5775 
5776 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5777 		printk("does not load-balance\n");
5778 		if (sd->parent)
5779 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5780 					" has parent");
5781 		return -1;
5782 	}
5783 
5784 	printk(KERN_CONT "span %*pbl level %s\n",
5785 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5786 
5787 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5788 		printk(KERN_ERR "ERROR: domain->span does not contain "
5789 				"CPU%d\n", cpu);
5790 	}
5791 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5792 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5793 				" CPU%d\n", cpu);
5794 	}
5795 
5796 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5797 	do {
5798 		if (!group) {
5799 			printk("\n");
5800 			printk(KERN_ERR "ERROR: group is NULL\n");
5801 			break;
5802 		}
5803 
5804 		if (!cpumask_weight(sched_group_cpus(group))) {
5805 			printk(KERN_CONT "\n");
5806 			printk(KERN_ERR "ERROR: empty group\n");
5807 			break;
5808 		}
5809 
5810 		if (!(sd->flags & SD_OVERLAP) &&
5811 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5812 			printk(KERN_CONT "\n");
5813 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5814 			break;
5815 		}
5816 
5817 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5818 
5819 		printk(KERN_CONT " %*pbl",
5820 		       cpumask_pr_args(sched_group_cpus(group)));
5821 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5822 			printk(KERN_CONT " (cpu_capacity = %d)",
5823 				group->sgc->capacity);
5824 		}
5825 
5826 		group = group->next;
5827 	} while (group != sd->groups);
5828 	printk(KERN_CONT "\n");
5829 
5830 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5831 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5832 
5833 	if (sd->parent &&
5834 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5835 		printk(KERN_ERR "ERROR: parent span is not a superset "
5836 			"of domain->span\n");
5837 	return 0;
5838 }
5839 
5840 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5841 {
5842 	int level = 0;
5843 
5844 	if (!sched_debug_enabled)
5845 		return;
5846 
5847 	if (!sd) {
5848 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5849 		return;
5850 	}
5851 
5852 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5853 
5854 	for (;;) {
5855 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5856 			break;
5857 		level++;
5858 		sd = sd->parent;
5859 		if (!sd)
5860 			break;
5861 	}
5862 }
5863 #else /* !CONFIG_SCHED_DEBUG */
5864 # define sched_domain_debug(sd, cpu) do { } while (0)
5865 static inline bool sched_debug(void)
5866 {
5867 	return false;
5868 }
5869 #endif /* CONFIG_SCHED_DEBUG */
5870 
5871 static int sd_degenerate(struct sched_domain *sd)
5872 {
5873 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5874 		return 1;
5875 
5876 	/* Following flags need at least 2 groups */
5877 	if (sd->flags & (SD_LOAD_BALANCE |
5878 			 SD_BALANCE_NEWIDLE |
5879 			 SD_BALANCE_FORK |
5880 			 SD_BALANCE_EXEC |
5881 			 SD_SHARE_CPUCAPACITY |
5882 			 SD_SHARE_PKG_RESOURCES |
5883 			 SD_SHARE_POWERDOMAIN)) {
5884 		if (sd->groups != sd->groups->next)
5885 			return 0;
5886 	}
5887 
5888 	/* Following flags don't use groups */
5889 	if (sd->flags & (SD_WAKE_AFFINE))
5890 		return 0;
5891 
5892 	return 1;
5893 }
5894 
5895 static int
5896 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5897 {
5898 	unsigned long cflags = sd->flags, pflags = parent->flags;
5899 
5900 	if (sd_degenerate(parent))
5901 		return 1;
5902 
5903 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5904 		return 0;
5905 
5906 	/* Flags needing groups don't count if only 1 group in parent */
5907 	if (parent->groups == parent->groups->next) {
5908 		pflags &= ~(SD_LOAD_BALANCE |
5909 				SD_BALANCE_NEWIDLE |
5910 				SD_BALANCE_FORK |
5911 				SD_BALANCE_EXEC |
5912 				SD_SHARE_CPUCAPACITY |
5913 				SD_SHARE_PKG_RESOURCES |
5914 				SD_PREFER_SIBLING |
5915 				SD_SHARE_POWERDOMAIN);
5916 		if (nr_node_ids == 1)
5917 			pflags &= ~SD_SERIALIZE;
5918 	}
5919 	if (~cflags & pflags)
5920 		return 0;
5921 
5922 	return 1;
5923 }
5924 
5925 static void free_rootdomain(struct rcu_head *rcu)
5926 {
5927 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5928 
5929 	cpupri_cleanup(&rd->cpupri);
5930 	cpudl_cleanup(&rd->cpudl);
5931 	free_cpumask_var(rd->dlo_mask);
5932 	free_cpumask_var(rd->rto_mask);
5933 	free_cpumask_var(rd->online);
5934 	free_cpumask_var(rd->span);
5935 	kfree(rd);
5936 }
5937 
5938 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5939 {
5940 	struct root_domain *old_rd = NULL;
5941 	unsigned long flags;
5942 
5943 	raw_spin_lock_irqsave(&rq->lock, flags);
5944 
5945 	if (rq->rd) {
5946 		old_rd = rq->rd;
5947 
5948 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5949 			set_rq_offline(rq);
5950 
5951 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5952 
5953 		/*
5954 		 * If we dont want to free the old_rd yet then
5955 		 * set old_rd to NULL to skip the freeing later
5956 		 * in this function:
5957 		 */
5958 		if (!atomic_dec_and_test(&old_rd->refcount))
5959 			old_rd = NULL;
5960 	}
5961 
5962 	atomic_inc(&rd->refcount);
5963 	rq->rd = rd;
5964 
5965 	cpumask_set_cpu(rq->cpu, rd->span);
5966 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5967 		set_rq_online(rq);
5968 
5969 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5970 
5971 	if (old_rd)
5972 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5973 }
5974 
5975 static int init_rootdomain(struct root_domain *rd)
5976 {
5977 	memset(rd, 0, sizeof(*rd));
5978 
5979 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5980 		goto out;
5981 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5982 		goto free_span;
5983 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5984 		goto free_online;
5985 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5986 		goto free_dlo_mask;
5987 
5988 	init_dl_bw(&rd->dl_bw);
5989 	if (cpudl_init(&rd->cpudl) != 0)
5990 		goto free_dlo_mask;
5991 
5992 	if (cpupri_init(&rd->cpupri) != 0)
5993 		goto free_rto_mask;
5994 	return 0;
5995 
5996 free_rto_mask:
5997 	free_cpumask_var(rd->rto_mask);
5998 free_dlo_mask:
5999 	free_cpumask_var(rd->dlo_mask);
6000 free_online:
6001 	free_cpumask_var(rd->online);
6002 free_span:
6003 	free_cpumask_var(rd->span);
6004 out:
6005 	return -ENOMEM;
6006 }
6007 
6008 /*
6009  * By default the system creates a single root-domain with all cpus as
6010  * members (mimicking the global state we have today).
6011  */
6012 struct root_domain def_root_domain;
6013 
6014 static void init_defrootdomain(void)
6015 {
6016 	init_rootdomain(&def_root_domain);
6017 
6018 	atomic_set(&def_root_domain.refcount, 1);
6019 }
6020 
6021 static struct root_domain *alloc_rootdomain(void)
6022 {
6023 	struct root_domain *rd;
6024 
6025 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6026 	if (!rd)
6027 		return NULL;
6028 
6029 	if (init_rootdomain(rd) != 0) {
6030 		kfree(rd);
6031 		return NULL;
6032 	}
6033 
6034 	return rd;
6035 }
6036 
6037 static void free_sched_groups(struct sched_group *sg, int free_sgc)
6038 {
6039 	struct sched_group *tmp, *first;
6040 
6041 	if (!sg)
6042 		return;
6043 
6044 	first = sg;
6045 	do {
6046 		tmp = sg->next;
6047 
6048 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
6049 			kfree(sg->sgc);
6050 
6051 		kfree(sg);
6052 		sg = tmp;
6053 	} while (sg != first);
6054 }
6055 
6056 static void free_sched_domain(struct rcu_head *rcu)
6057 {
6058 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6059 
6060 	/*
6061 	 * If its an overlapping domain it has private groups, iterate and
6062 	 * nuke them all.
6063 	 */
6064 	if (sd->flags & SD_OVERLAP) {
6065 		free_sched_groups(sd->groups, 1);
6066 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
6067 		kfree(sd->groups->sgc);
6068 		kfree(sd->groups);
6069 	}
6070 	kfree(sd);
6071 }
6072 
6073 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6074 {
6075 	call_rcu(&sd->rcu, free_sched_domain);
6076 }
6077 
6078 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6079 {
6080 	for (; sd; sd = sd->parent)
6081 		destroy_sched_domain(sd, cpu);
6082 }
6083 
6084 /*
6085  * Keep a special pointer to the highest sched_domain that has
6086  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6087  * allows us to avoid some pointer chasing select_idle_sibling().
6088  *
6089  * Also keep a unique ID per domain (we use the first cpu number in
6090  * the cpumask of the domain), this allows us to quickly tell if
6091  * two cpus are in the same cache domain, see cpus_share_cache().
6092  */
6093 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6094 DEFINE_PER_CPU(int, sd_llc_size);
6095 DEFINE_PER_CPU(int, sd_llc_id);
6096 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
6097 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
6098 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
6099 
6100 static void update_top_cache_domain(int cpu)
6101 {
6102 	struct sched_domain *sd;
6103 	struct sched_domain *busy_sd = NULL;
6104 	int id = cpu;
6105 	int size = 1;
6106 
6107 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6108 	if (sd) {
6109 		id = cpumask_first(sched_domain_span(sd));
6110 		size = cpumask_weight(sched_domain_span(sd));
6111 		busy_sd = sd->parent; /* sd_busy */
6112 	}
6113 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
6114 
6115 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6116 	per_cpu(sd_llc_size, cpu) = size;
6117 	per_cpu(sd_llc_id, cpu) = id;
6118 
6119 	sd = lowest_flag_domain(cpu, SD_NUMA);
6120 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6121 
6122 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6123 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6124 }
6125 
6126 /*
6127  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6128  * hold the hotplug lock.
6129  */
6130 static void
6131 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6132 {
6133 	struct rq *rq = cpu_rq(cpu);
6134 	struct sched_domain *tmp;
6135 
6136 	/* Remove the sched domains which do not contribute to scheduling. */
6137 	for (tmp = sd; tmp; ) {
6138 		struct sched_domain *parent = tmp->parent;
6139 		if (!parent)
6140 			break;
6141 
6142 		if (sd_parent_degenerate(tmp, parent)) {
6143 			tmp->parent = parent->parent;
6144 			if (parent->parent)
6145 				parent->parent->child = tmp;
6146 			/*
6147 			 * Transfer SD_PREFER_SIBLING down in case of a
6148 			 * degenerate parent; the spans match for this
6149 			 * so the property transfers.
6150 			 */
6151 			if (parent->flags & SD_PREFER_SIBLING)
6152 				tmp->flags |= SD_PREFER_SIBLING;
6153 			destroy_sched_domain(parent, cpu);
6154 		} else
6155 			tmp = tmp->parent;
6156 	}
6157 
6158 	if (sd && sd_degenerate(sd)) {
6159 		tmp = sd;
6160 		sd = sd->parent;
6161 		destroy_sched_domain(tmp, cpu);
6162 		if (sd)
6163 			sd->child = NULL;
6164 	}
6165 
6166 	sched_domain_debug(sd, cpu);
6167 
6168 	rq_attach_root(rq, rd);
6169 	tmp = rq->sd;
6170 	rcu_assign_pointer(rq->sd, sd);
6171 	destroy_sched_domains(tmp, cpu);
6172 
6173 	update_top_cache_domain(cpu);
6174 }
6175 
6176 /* Setup the mask of cpus configured for isolated domains */
6177 static int __init isolated_cpu_setup(char *str)
6178 {
6179 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6180 	cpulist_parse(str, cpu_isolated_map);
6181 	return 1;
6182 }
6183 
6184 __setup("isolcpus=", isolated_cpu_setup);
6185 
6186 struct s_data {
6187 	struct sched_domain ** __percpu sd;
6188 	struct root_domain	*rd;
6189 };
6190 
6191 enum s_alloc {
6192 	sa_rootdomain,
6193 	sa_sd,
6194 	sa_sd_storage,
6195 	sa_none,
6196 };
6197 
6198 /*
6199  * Build an iteration mask that can exclude certain CPUs from the upwards
6200  * domain traversal.
6201  *
6202  * Asymmetric node setups can result in situations where the domain tree is of
6203  * unequal depth, make sure to skip domains that already cover the entire
6204  * range.
6205  *
6206  * In that case build_sched_domains() will have terminated the iteration early
6207  * and our sibling sd spans will be empty. Domains should always include the
6208  * cpu they're built on, so check that.
6209  *
6210  */
6211 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6212 {
6213 	const struct cpumask *span = sched_domain_span(sd);
6214 	struct sd_data *sdd = sd->private;
6215 	struct sched_domain *sibling;
6216 	int i;
6217 
6218 	for_each_cpu(i, span) {
6219 		sibling = *per_cpu_ptr(sdd->sd, i);
6220 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6221 			continue;
6222 
6223 		cpumask_set_cpu(i, sched_group_mask(sg));
6224 	}
6225 }
6226 
6227 /*
6228  * Return the canonical balance cpu for this group, this is the first cpu
6229  * of this group that's also in the iteration mask.
6230  */
6231 int group_balance_cpu(struct sched_group *sg)
6232 {
6233 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6234 }
6235 
6236 static int
6237 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6238 {
6239 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6240 	const struct cpumask *span = sched_domain_span(sd);
6241 	struct cpumask *covered = sched_domains_tmpmask;
6242 	struct sd_data *sdd = sd->private;
6243 	struct sched_domain *sibling;
6244 	int i;
6245 
6246 	cpumask_clear(covered);
6247 
6248 	for_each_cpu(i, span) {
6249 		struct cpumask *sg_span;
6250 
6251 		if (cpumask_test_cpu(i, covered))
6252 			continue;
6253 
6254 		sibling = *per_cpu_ptr(sdd->sd, i);
6255 
6256 		/* See the comment near build_group_mask(). */
6257 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6258 			continue;
6259 
6260 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6261 				GFP_KERNEL, cpu_to_node(cpu));
6262 
6263 		if (!sg)
6264 			goto fail;
6265 
6266 		sg_span = sched_group_cpus(sg);
6267 		if (sibling->child)
6268 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6269 		else
6270 			cpumask_set_cpu(i, sg_span);
6271 
6272 		cpumask_or(covered, covered, sg_span);
6273 
6274 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6275 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6276 			build_group_mask(sd, sg);
6277 
6278 		/*
6279 		 * Initialize sgc->capacity such that even if we mess up the
6280 		 * domains and no possible iteration will get us here, we won't
6281 		 * die on a /0 trap.
6282 		 */
6283 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6284 
6285 		/*
6286 		 * Make sure the first group of this domain contains the
6287 		 * canonical balance cpu. Otherwise the sched_domain iteration
6288 		 * breaks. See update_sg_lb_stats().
6289 		 */
6290 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6291 		    group_balance_cpu(sg) == cpu)
6292 			groups = sg;
6293 
6294 		if (!first)
6295 			first = sg;
6296 		if (last)
6297 			last->next = sg;
6298 		last = sg;
6299 		last->next = first;
6300 	}
6301 	sd->groups = groups;
6302 
6303 	return 0;
6304 
6305 fail:
6306 	free_sched_groups(first, 0);
6307 
6308 	return -ENOMEM;
6309 }
6310 
6311 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6312 {
6313 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6314 	struct sched_domain *child = sd->child;
6315 
6316 	if (child)
6317 		cpu = cpumask_first(sched_domain_span(child));
6318 
6319 	if (sg) {
6320 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6321 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6322 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6323 	}
6324 
6325 	return cpu;
6326 }
6327 
6328 /*
6329  * build_sched_groups will build a circular linked list of the groups
6330  * covered by the given span, and will set each group's ->cpumask correctly,
6331  * and ->cpu_capacity to 0.
6332  *
6333  * Assumes the sched_domain tree is fully constructed
6334  */
6335 static int
6336 build_sched_groups(struct sched_domain *sd, int cpu)
6337 {
6338 	struct sched_group *first = NULL, *last = NULL;
6339 	struct sd_data *sdd = sd->private;
6340 	const struct cpumask *span = sched_domain_span(sd);
6341 	struct cpumask *covered;
6342 	int i;
6343 
6344 	get_group(cpu, sdd, &sd->groups);
6345 	atomic_inc(&sd->groups->ref);
6346 
6347 	if (cpu != cpumask_first(span))
6348 		return 0;
6349 
6350 	lockdep_assert_held(&sched_domains_mutex);
6351 	covered = sched_domains_tmpmask;
6352 
6353 	cpumask_clear(covered);
6354 
6355 	for_each_cpu(i, span) {
6356 		struct sched_group *sg;
6357 		int group, j;
6358 
6359 		if (cpumask_test_cpu(i, covered))
6360 			continue;
6361 
6362 		group = get_group(i, sdd, &sg);
6363 		cpumask_setall(sched_group_mask(sg));
6364 
6365 		for_each_cpu(j, span) {
6366 			if (get_group(j, sdd, NULL) != group)
6367 				continue;
6368 
6369 			cpumask_set_cpu(j, covered);
6370 			cpumask_set_cpu(j, sched_group_cpus(sg));
6371 		}
6372 
6373 		if (!first)
6374 			first = sg;
6375 		if (last)
6376 			last->next = sg;
6377 		last = sg;
6378 	}
6379 	last->next = first;
6380 
6381 	return 0;
6382 }
6383 
6384 /*
6385  * Initialize sched groups cpu_capacity.
6386  *
6387  * cpu_capacity indicates the capacity of sched group, which is used while
6388  * distributing the load between different sched groups in a sched domain.
6389  * Typically cpu_capacity for all the groups in a sched domain will be same
6390  * unless there are asymmetries in the topology. If there are asymmetries,
6391  * group having more cpu_capacity will pickup more load compared to the
6392  * group having less cpu_capacity.
6393  */
6394 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6395 {
6396 	struct sched_group *sg = sd->groups;
6397 
6398 	WARN_ON(!sg);
6399 
6400 	do {
6401 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6402 		sg = sg->next;
6403 	} while (sg != sd->groups);
6404 
6405 	if (cpu != group_balance_cpu(sg))
6406 		return;
6407 
6408 	update_group_capacity(sd, cpu);
6409 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6410 }
6411 
6412 /*
6413  * Initializers for schedule domains
6414  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6415  */
6416 
6417 static int default_relax_domain_level = -1;
6418 int sched_domain_level_max;
6419 
6420 static int __init setup_relax_domain_level(char *str)
6421 {
6422 	if (kstrtoint(str, 0, &default_relax_domain_level))
6423 		pr_warn("Unable to set relax_domain_level\n");
6424 
6425 	return 1;
6426 }
6427 __setup("relax_domain_level=", setup_relax_domain_level);
6428 
6429 static void set_domain_attribute(struct sched_domain *sd,
6430 				 struct sched_domain_attr *attr)
6431 {
6432 	int request;
6433 
6434 	if (!attr || attr->relax_domain_level < 0) {
6435 		if (default_relax_domain_level < 0)
6436 			return;
6437 		else
6438 			request = default_relax_domain_level;
6439 	} else
6440 		request = attr->relax_domain_level;
6441 	if (request < sd->level) {
6442 		/* turn off idle balance on this domain */
6443 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6444 	} else {
6445 		/* turn on idle balance on this domain */
6446 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6447 	}
6448 }
6449 
6450 static void __sdt_free(const struct cpumask *cpu_map);
6451 static int __sdt_alloc(const struct cpumask *cpu_map);
6452 
6453 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6454 				 const struct cpumask *cpu_map)
6455 {
6456 	switch (what) {
6457 	case sa_rootdomain:
6458 		if (!atomic_read(&d->rd->refcount))
6459 			free_rootdomain(&d->rd->rcu); /* fall through */
6460 	case sa_sd:
6461 		free_percpu(d->sd); /* fall through */
6462 	case sa_sd_storage:
6463 		__sdt_free(cpu_map); /* fall through */
6464 	case sa_none:
6465 		break;
6466 	}
6467 }
6468 
6469 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6470 						   const struct cpumask *cpu_map)
6471 {
6472 	memset(d, 0, sizeof(*d));
6473 
6474 	if (__sdt_alloc(cpu_map))
6475 		return sa_sd_storage;
6476 	d->sd = alloc_percpu(struct sched_domain *);
6477 	if (!d->sd)
6478 		return sa_sd_storage;
6479 	d->rd = alloc_rootdomain();
6480 	if (!d->rd)
6481 		return sa_sd;
6482 	return sa_rootdomain;
6483 }
6484 
6485 /*
6486  * NULL the sd_data elements we've used to build the sched_domain and
6487  * sched_group structure so that the subsequent __free_domain_allocs()
6488  * will not free the data we're using.
6489  */
6490 static void claim_allocations(int cpu, struct sched_domain *sd)
6491 {
6492 	struct sd_data *sdd = sd->private;
6493 
6494 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6495 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6496 
6497 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6498 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6499 
6500 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6501 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6502 }
6503 
6504 #ifdef CONFIG_NUMA
6505 static int sched_domains_numa_levels;
6506 enum numa_topology_type sched_numa_topology_type;
6507 static int *sched_domains_numa_distance;
6508 int sched_max_numa_distance;
6509 static struct cpumask ***sched_domains_numa_masks;
6510 static int sched_domains_curr_level;
6511 #endif
6512 
6513 /*
6514  * SD_flags allowed in topology descriptions.
6515  *
6516  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6517  * SD_SHARE_PKG_RESOURCES - describes shared caches
6518  * SD_NUMA                - describes NUMA topologies
6519  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6520  *
6521  * Odd one out:
6522  * SD_ASYM_PACKING        - describes SMT quirks
6523  */
6524 #define TOPOLOGY_SD_FLAGS		\
6525 	(SD_SHARE_CPUCAPACITY |		\
6526 	 SD_SHARE_PKG_RESOURCES |	\
6527 	 SD_NUMA |			\
6528 	 SD_ASYM_PACKING |		\
6529 	 SD_SHARE_POWERDOMAIN)
6530 
6531 static struct sched_domain *
6532 sd_init(struct sched_domain_topology_level *tl, int cpu)
6533 {
6534 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6535 	int sd_weight, sd_flags = 0;
6536 
6537 #ifdef CONFIG_NUMA
6538 	/*
6539 	 * Ugly hack to pass state to sd_numa_mask()...
6540 	 */
6541 	sched_domains_curr_level = tl->numa_level;
6542 #endif
6543 
6544 	sd_weight = cpumask_weight(tl->mask(cpu));
6545 
6546 	if (tl->sd_flags)
6547 		sd_flags = (*tl->sd_flags)();
6548 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6549 			"wrong sd_flags in topology description\n"))
6550 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6551 
6552 	*sd = (struct sched_domain){
6553 		.min_interval		= sd_weight,
6554 		.max_interval		= 2*sd_weight,
6555 		.busy_factor		= 32,
6556 		.imbalance_pct		= 125,
6557 
6558 		.cache_nice_tries	= 0,
6559 		.busy_idx		= 0,
6560 		.idle_idx		= 0,
6561 		.newidle_idx		= 0,
6562 		.wake_idx		= 0,
6563 		.forkexec_idx		= 0,
6564 
6565 		.flags			= 1*SD_LOAD_BALANCE
6566 					| 1*SD_BALANCE_NEWIDLE
6567 					| 1*SD_BALANCE_EXEC
6568 					| 1*SD_BALANCE_FORK
6569 					| 0*SD_BALANCE_WAKE
6570 					| 1*SD_WAKE_AFFINE
6571 					| 0*SD_SHARE_CPUCAPACITY
6572 					| 0*SD_SHARE_PKG_RESOURCES
6573 					| 0*SD_SERIALIZE
6574 					| 0*SD_PREFER_SIBLING
6575 					| 0*SD_NUMA
6576 					| sd_flags
6577 					,
6578 
6579 		.last_balance		= jiffies,
6580 		.balance_interval	= sd_weight,
6581 		.smt_gain		= 0,
6582 		.max_newidle_lb_cost	= 0,
6583 		.next_decay_max_lb_cost	= jiffies,
6584 #ifdef CONFIG_SCHED_DEBUG
6585 		.name			= tl->name,
6586 #endif
6587 	};
6588 
6589 	/*
6590 	 * Convert topological properties into behaviour.
6591 	 */
6592 
6593 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6594 		sd->flags |= SD_PREFER_SIBLING;
6595 		sd->imbalance_pct = 110;
6596 		sd->smt_gain = 1178; /* ~15% */
6597 
6598 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6599 		sd->imbalance_pct = 117;
6600 		sd->cache_nice_tries = 1;
6601 		sd->busy_idx = 2;
6602 
6603 #ifdef CONFIG_NUMA
6604 	} else if (sd->flags & SD_NUMA) {
6605 		sd->cache_nice_tries = 2;
6606 		sd->busy_idx = 3;
6607 		sd->idle_idx = 2;
6608 
6609 		sd->flags |= SD_SERIALIZE;
6610 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6611 			sd->flags &= ~(SD_BALANCE_EXEC |
6612 				       SD_BALANCE_FORK |
6613 				       SD_WAKE_AFFINE);
6614 		}
6615 
6616 #endif
6617 	} else {
6618 		sd->flags |= SD_PREFER_SIBLING;
6619 		sd->cache_nice_tries = 1;
6620 		sd->busy_idx = 2;
6621 		sd->idle_idx = 1;
6622 	}
6623 
6624 	sd->private = &tl->data;
6625 
6626 	return sd;
6627 }
6628 
6629 /*
6630  * Topology list, bottom-up.
6631  */
6632 static struct sched_domain_topology_level default_topology[] = {
6633 #ifdef CONFIG_SCHED_SMT
6634 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6635 #endif
6636 #ifdef CONFIG_SCHED_MC
6637 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6638 #endif
6639 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6640 	{ NULL, },
6641 };
6642 
6643 static struct sched_domain_topology_level *sched_domain_topology =
6644 	default_topology;
6645 
6646 #define for_each_sd_topology(tl)			\
6647 	for (tl = sched_domain_topology; tl->mask; tl++)
6648 
6649 void set_sched_topology(struct sched_domain_topology_level *tl)
6650 {
6651 	sched_domain_topology = tl;
6652 }
6653 
6654 #ifdef CONFIG_NUMA
6655 
6656 static const struct cpumask *sd_numa_mask(int cpu)
6657 {
6658 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6659 }
6660 
6661 static void sched_numa_warn(const char *str)
6662 {
6663 	static int done = false;
6664 	int i,j;
6665 
6666 	if (done)
6667 		return;
6668 
6669 	done = true;
6670 
6671 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6672 
6673 	for (i = 0; i < nr_node_ids; i++) {
6674 		printk(KERN_WARNING "  ");
6675 		for (j = 0; j < nr_node_ids; j++)
6676 			printk(KERN_CONT "%02d ", node_distance(i,j));
6677 		printk(KERN_CONT "\n");
6678 	}
6679 	printk(KERN_WARNING "\n");
6680 }
6681 
6682 bool find_numa_distance(int distance)
6683 {
6684 	int i;
6685 
6686 	if (distance == node_distance(0, 0))
6687 		return true;
6688 
6689 	for (i = 0; i < sched_domains_numa_levels; i++) {
6690 		if (sched_domains_numa_distance[i] == distance)
6691 			return true;
6692 	}
6693 
6694 	return false;
6695 }
6696 
6697 /*
6698  * A system can have three types of NUMA topology:
6699  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6700  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6701  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6702  *
6703  * The difference between a glueless mesh topology and a backplane
6704  * topology lies in whether communication between not directly
6705  * connected nodes goes through intermediary nodes (where programs
6706  * could run), or through backplane controllers. This affects
6707  * placement of programs.
6708  *
6709  * The type of topology can be discerned with the following tests:
6710  * - If the maximum distance between any nodes is 1 hop, the system
6711  *   is directly connected.
6712  * - If for two nodes A and B, located N > 1 hops away from each other,
6713  *   there is an intermediary node C, which is < N hops away from both
6714  *   nodes A and B, the system is a glueless mesh.
6715  */
6716 static void init_numa_topology_type(void)
6717 {
6718 	int a, b, c, n;
6719 
6720 	n = sched_max_numa_distance;
6721 
6722 	if (sched_domains_numa_levels <= 1) {
6723 		sched_numa_topology_type = NUMA_DIRECT;
6724 		return;
6725 	}
6726 
6727 	for_each_online_node(a) {
6728 		for_each_online_node(b) {
6729 			/* Find two nodes furthest removed from each other. */
6730 			if (node_distance(a, b) < n)
6731 				continue;
6732 
6733 			/* Is there an intermediary node between a and b? */
6734 			for_each_online_node(c) {
6735 				if (node_distance(a, c) < n &&
6736 				    node_distance(b, c) < n) {
6737 					sched_numa_topology_type =
6738 							NUMA_GLUELESS_MESH;
6739 					return;
6740 				}
6741 			}
6742 
6743 			sched_numa_topology_type = NUMA_BACKPLANE;
6744 			return;
6745 		}
6746 	}
6747 }
6748 
6749 static void sched_init_numa(void)
6750 {
6751 	int next_distance, curr_distance = node_distance(0, 0);
6752 	struct sched_domain_topology_level *tl;
6753 	int level = 0;
6754 	int i, j, k;
6755 
6756 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6757 	if (!sched_domains_numa_distance)
6758 		return;
6759 
6760 	/*
6761 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6762 	 * unique distances in the node_distance() table.
6763 	 *
6764 	 * Assumes node_distance(0,j) includes all distances in
6765 	 * node_distance(i,j) in order to avoid cubic time.
6766 	 */
6767 	next_distance = curr_distance;
6768 	for (i = 0; i < nr_node_ids; i++) {
6769 		for (j = 0; j < nr_node_ids; j++) {
6770 			for (k = 0; k < nr_node_ids; k++) {
6771 				int distance = node_distance(i, k);
6772 
6773 				if (distance > curr_distance &&
6774 				    (distance < next_distance ||
6775 				     next_distance == curr_distance))
6776 					next_distance = distance;
6777 
6778 				/*
6779 				 * While not a strong assumption it would be nice to know
6780 				 * about cases where if node A is connected to B, B is not
6781 				 * equally connected to A.
6782 				 */
6783 				if (sched_debug() && node_distance(k, i) != distance)
6784 					sched_numa_warn("Node-distance not symmetric");
6785 
6786 				if (sched_debug() && i && !find_numa_distance(distance))
6787 					sched_numa_warn("Node-0 not representative");
6788 			}
6789 			if (next_distance != curr_distance) {
6790 				sched_domains_numa_distance[level++] = next_distance;
6791 				sched_domains_numa_levels = level;
6792 				curr_distance = next_distance;
6793 			} else break;
6794 		}
6795 
6796 		/*
6797 		 * In case of sched_debug() we verify the above assumption.
6798 		 */
6799 		if (!sched_debug())
6800 			break;
6801 	}
6802 
6803 	if (!level)
6804 		return;
6805 
6806 	/*
6807 	 * 'level' contains the number of unique distances, excluding the
6808 	 * identity distance node_distance(i,i).
6809 	 *
6810 	 * The sched_domains_numa_distance[] array includes the actual distance
6811 	 * numbers.
6812 	 */
6813 
6814 	/*
6815 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6816 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6817 	 * the array will contain less then 'level' members. This could be
6818 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6819 	 * in other functions.
6820 	 *
6821 	 * We reset it to 'level' at the end of this function.
6822 	 */
6823 	sched_domains_numa_levels = 0;
6824 
6825 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6826 	if (!sched_domains_numa_masks)
6827 		return;
6828 
6829 	/*
6830 	 * Now for each level, construct a mask per node which contains all
6831 	 * cpus of nodes that are that many hops away from us.
6832 	 */
6833 	for (i = 0; i < level; i++) {
6834 		sched_domains_numa_masks[i] =
6835 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6836 		if (!sched_domains_numa_masks[i])
6837 			return;
6838 
6839 		for (j = 0; j < nr_node_ids; j++) {
6840 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6841 			if (!mask)
6842 				return;
6843 
6844 			sched_domains_numa_masks[i][j] = mask;
6845 
6846 			for_each_node(k) {
6847 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6848 					continue;
6849 
6850 				cpumask_or(mask, mask, cpumask_of_node(k));
6851 			}
6852 		}
6853 	}
6854 
6855 	/* Compute default topology size */
6856 	for (i = 0; sched_domain_topology[i].mask; i++);
6857 
6858 	tl = kzalloc((i + level + 1) *
6859 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6860 	if (!tl)
6861 		return;
6862 
6863 	/*
6864 	 * Copy the default topology bits..
6865 	 */
6866 	for (i = 0; sched_domain_topology[i].mask; i++)
6867 		tl[i] = sched_domain_topology[i];
6868 
6869 	/*
6870 	 * .. and append 'j' levels of NUMA goodness.
6871 	 */
6872 	for (j = 0; j < level; i++, j++) {
6873 		tl[i] = (struct sched_domain_topology_level){
6874 			.mask = sd_numa_mask,
6875 			.sd_flags = cpu_numa_flags,
6876 			.flags = SDTL_OVERLAP,
6877 			.numa_level = j,
6878 			SD_INIT_NAME(NUMA)
6879 		};
6880 	}
6881 
6882 	sched_domain_topology = tl;
6883 
6884 	sched_domains_numa_levels = level;
6885 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6886 
6887 	init_numa_topology_type();
6888 }
6889 
6890 static void sched_domains_numa_masks_set(int cpu)
6891 {
6892 	int i, j;
6893 	int node = cpu_to_node(cpu);
6894 
6895 	for (i = 0; i < sched_domains_numa_levels; i++) {
6896 		for (j = 0; j < nr_node_ids; j++) {
6897 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6898 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6899 		}
6900 	}
6901 }
6902 
6903 static void sched_domains_numa_masks_clear(int cpu)
6904 {
6905 	int i, j;
6906 	for (i = 0; i < sched_domains_numa_levels; i++) {
6907 		for (j = 0; j < nr_node_ids; j++)
6908 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6909 	}
6910 }
6911 
6912 /*
6913  * Update sched_domains_numa_masks[level][node] array when new cpus
6914  * are onlined.
6915  */
6916 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6917 					   unsigned long action,
6918 					   void *hcpu)
6919 {
6920 	int cpu = (long)hcpu;
6921 
6922 	switch (action & ~CPU_TASKS_FROZEN) {
6923 	case CPU_ONLINE:
6924 		sched_domains_numa_masks_set(cpu);
6925 		break;
6926 
6927 	case CPU_DEAD:
6928 		sched_domains_numa_masks_clear(cpu);
6929 		break;
6930 
6931 	default:
6932 		return NOTIFY_DONE;
6933 	}
6934 
6935 	return NOTIFY_OK;
6936 }
6937 #else
6938 static inline void sched_init_numa(void)
6939 {
6940 }
6941 
6942 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6943 					   unsigned long action,
6944 					   void *hcpu)
6945 {
6946 	return 0;
6947 }
6948 #endif /* CONFIG_NUMA */
6949 
6950 static int __sdt_alloc(const struct cpumask *cpu_map)
6951 {
6952 	struct sched_domain_topology_level *tl;
6953 	int j;
6954 
6955 	for_each_sd_topology(tl) {
6956 		struct sd_data *sdd = &tl->data;
6957 
6958 		sdd->sd = alloc_percpu(struct sched_domain *);
6959 		if (!sdd->sd)
6960 			return -ENOMEM;
6961 
6962 		sdd->sg = alloc_percpu(struct sched_group *);
6963 		if (!sdd->sg)
6964 			return -ENOMEM;
6965 
6966 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6967 		if (!sdd->sgc)
6968 			return -ENOMEM;
6969 
6970 		for_each_cpu(j, cpu_map) {
6971 			struct sched_domain *sd;
6972 			struct sched_group *sg;
6973 			struct sched_group_capacity *sgc;
6974 
6975 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6976 					GFP_KERNEL, cpu_to_node(j));
6977 			if (!sd)
6978 				return -ENOMEM;
6979 
6980 			*per_cpu_ptr(sdd->sd, j) = sd;
6981 
6982 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6983 					GFP_KERNEL, cpu_to_node(j));
6984 			if (!sg)
6985 				return -ENOMEM;
6986 
6987 			sg->next = sg;
6988 
6989 			*per_cpu_ptr(sdd->sg, j) = sg;
6990 
6991 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6992 					GFP_KERNEL, cpu_to_node(j));
6993 			if (!sgc)
6994 				return -ENOMEM;
6995 
6996 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6997 		}
6998 	}
6999 
7000 	return 0;
7001 }
7002 
7003 static void __sdt_free(const struct cpumask *cpu_map)
7004 {
7005 	struct sched_domain_topology_level *tl;
7006 	int j;
7007 
7008 	for_each_sd_topology(tl) {
7009 		struct sd_data *sdd = &tl->data;
7010 
7011 		for_each_cpu(j, cpu_map) {
7012 			struct sched_domain *sd;
7013 
7014 			if (sdd->sd) {
7015 				sd = *per_cpu_ptr(sdd->sd, j);
7016 				if (sd && (sd->flags & SD_OVERLAP))
7017 					free_sched_groups(sd->groups, 0);
7018 				kfree(*per_cpu_ptr(sdd->sd, j));
7019 			}
7020 
7021 			if (sdd->sg)
7022 				kfree(*per_cpu_ptr(sdd->sg, j));
7023 			if (sdd->sgc)
7024 				kfree(*per_cpu_ptr(sdd->sgc, j));
7025 		}
7026 		free_percpu(sdd->sd);
7027 		sdd->sd = NULL;
7028 		free_percpu(sdd->sg);
7029 		sdd->sg = NULL;
7030 		free_percpu(sdd->sgc);
7031 		sdd->sgc = NULL;
7032 	}
7033 }
7034 
7035 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7036 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7037 		struct sched_domain *child, int cpu)
7038 {
7039 	struct sched_domain *sd = sd_init(tl, cpu);
7040 	if (!sd)
7041 		return child;
7042 
7043 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7044 	if (child) {
7045 		sd->level = child->level + 1;
7046 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
7047 		child->parent = sd;
7048 		sd->child = child;
7049 
7050 		if (!cpumask_subset(sched_domain_span(child),
7051 				    sched_domain_span(sd))) {
7052 			pr_err("BUG: arch topology borken\n");
7053 #ifdef CONFIG_SCHED_DEBUG
7054 			pr_err("     the %s domain not a subset of the %s domain\n",
7055 					child->name, sd->name);
7056 #endif
7057 			/* Fixup, ensure @sd has at least @child cpus. */
7058 			cpumask_or(sched_domain_span(sd),
7059 				   sched_domain_span(sd),
7060 				   sched_domain_span(child));
7061 		}
7062 
7063 	}
7064 	set_domain_attribute(sd, attr);
7065 
7066 	return sd;
7067 }
7068 
7069 /*
7070  * Build sched domains for a given set of cpus and attach the sched domains
7071  * to the individual cpus
7072  */
7073 static int build_sched_domains(const struct cpumask *cpu_map,
7074 			       struct sched_domain_attr *attr)
7075 {
7076 	enum s_alloc alloc_state;
7077 	struct sched_domain *sd;
7078 	struct s_data d;
7079 	int i, ret = -ENOMEM;
7080 
7081 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7082 	if (alloc_state != sa_rootdomain)
7083 		goto error;
7084 
7085 	/* Set up domains for cpus specified by the cpu_map. */
7086 	for_each_cpu(i, cpu_map) {
7087 		struct sched_domain_topology_level *tl;
7088 
7089 		sd = NULL;
7090 		for_each_sd_topology(tl) {
7091 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
7092 			if (tl == sched_domain_topology)
7093 				*per_cpu_ptr(d.sd, i) = sd;
7094 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7095 				sd->flags |= SD_OVERLAP;
7096 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7097 				break;
7098 		}
7099 	}
7100 
7101 	/* Build the groups for the domains */
7102 	for_each_cpu(i, cpu_map) {
7103 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7104 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
7105 			if (sd->flags & SD_OVERLAP) {
7106 				if (build_overlap_sched_groups(sd, i))
7107 					goto error;
7108 			} else {
7109 				if (build_sched_groups(sd, i))
7110 					goto error;
7111 			}
7112 		}
7113 	}
7114 
7115 	/* Calculate CPU capacity for physical packages and nodes */
7116 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
7117 		if (!cpumask_test_cpu(i, cpu_map))
7118 			continue;
7119 
7120 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7121 			claim_allocations(i, sd);
7122 			init_sched_groups_capacity(i, sd);
7123 		}
7124 	}
7125 
7126 	/* Attach the domains */
7127 	rcu_read_lock();
7128 	for_each_cpu(i, cpu_map) {
7129 		sd = *per_cpu_ptr(d.sd, i);
7130 		cpu_attach_domain(sd, d.rd, i);
7131 	}
7132 	rcu_read_unlock();
7133 
7134 	ret = 0;
7135 error:
7136 	__free_domain_allocs(&d, alloc_state, cpu_map);
7137 	return ret;
7138 }
7139 
7140 static cpumask_var_t *doms_cur;	/* current sched domains */
7141 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
7142 static struct sched_domain_attr *dattr_cur;
7143 				/* attribues of custom domains in 'doms_cur' */
7144 
7145 /*
7146  * Special case: If a kmalloc of a doms_cur partition (array of
7147  * cpumask) fails, then fallback to a single sched domain,
7148  * as determined by the single cpumask fallback_doms.
7149  */
7150 static cpumask_var_t fallback_doms;
7151 
7152 /*
7153  * arch_update_cpu_topology lets virtualized architectures update the
7154  * cpu core maps. It is supposed to return 1 if the topology changed
7155  * or 0 if it stayed the same.
7156  */
7157 int __weak arch_update_cpu_topology(void)
7158 {
7159 	return 0;
7160 }
7161 
7162 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7163 {
7164 	int i;
7165 	cpumask_var_t *doms;
7166 
7167 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7168 	if (!doms)
7169 		return NULL;
7170 	for (i = 0; i < ndoms; i++) {
7171 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7172 			free_sched_domains(doms, i);
7173 			return NULL;
7174 		}
7175 	}
7176 	return doms;
7177 }
7178 
7179 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7180 {
7181 	unsigned int i;
7182 	for (i = 0; i < ndoms; i++)
7183 		free_cpumask_var(doms[i]);
7184 	kfree(doms);
7185 }
7186 
7187 /*
7188  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7189  * For now this just excludes isolated cpus, but could be used to
7190  * exclude other special cases in the future.
7191  */
7192 static int init_sched_domains(const struct cpumask *cpu_map)
7193 {
7194 	int err;
7195 
7196 	arch_update_cpu_topology();
7197 	ndoms_cur = 1;
7198 	doms_cur = alloc_sched_domains(ndoms_cur);
7199 	if (!doms_cur)
7200 		doms_cur = &fallback_doms;
7201 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7202 	err = build_sched_domains(doms_cur[0], NULL);
7203 	register_sched_domain_sysctl();
7204 
7205 	return err;
7206 }
7207 
7208 /*
7209  * Detach sched domains from a group of cpus specified in cpu_map
7210  * These cpus will now be attached to the NULL domain
7211  */
7212 static void detach_destroy_domains(const struct cpumask *cpu_map)
7213 {
7214 	int i;
7215 
7216 	rcu_read_lock();
7217 	for_each_cpu(i, cpu_map)
7218 		cpu_attach_domain(NULL, &def_root_domain, i);
7219 	rcu_read_unlock();
7220 }
7221 
7222 /* handle null as "default" */
7223 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7224 			struct sched_domain_attr *new, int idx_new)
7225 {
7226 	struct sched_domain_attr tmp;
7227 
7228 	/* fast path */
7229 	if (!new && !cur)
7230 		return 1;
7231 
7232 	tmp = SD_ATTR_INIT;
7233 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7234 			new ? (new + idx_new) : &tmp,
7235 			sizeof(struct sched_domain_attr));
7236 }
7237 
7238 /*
7239  * Partition sched domains as specified by the 'ndoms_new'
7240  * cpumasks in the array doms_new[] of cpumasks. This compares
7241  * doms_new[] to the current sched domain partitioning, doms_cur[].
7242  * It destroys each deleted domain and builds each new domain.
7243  *
7244  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7245  * The masks don't intersect (don't overlap.) We should setup one
7246  * sched domain for each mask. CPUs not in any of the cpumasks will
7247  * not be load balanced. If the same cpumask appears both in the
7248  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7249  * it as it is.
7250  *
7251  * The passed in 'doms_new' should be allocated using
7252  * alloc_sched_domains.  This routine takes ownership of it and will
7253  * free_sched_domains it when done with it. If the caller failed the
7254  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7255  * and partition_sched_domains() will fallback to the single partition
7256  * 'fallback_doms', it also forces the domains to be rebuilt.
7257  *
7258  * If doms_new == NULL it will be replaced with cpu_online_mask.
7259  * ndoms_new == 0 is a special case for destroying existing domains,
7260  * and it will not create the default domain.
7261  *
7262  * Call with hotplug lock held
7263  */
7264 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7265 			     struct sched_domain_attr *dattr_new)
7266 {
7267 	int i, j, n;
7268 	int new_topology;
7269 
7270 	mutex_lock(&sched_domains_mutex);
7271 
7272 	/* always unregister in case we don't destroy any domains */
7273 	unregister_sched_domain_sysctl();
7274 
7275 	/* Let architecture update cpu core mappings. */
7276 	new_topology = arch_update_cpu_topology();
7277 
7278 	n = doms_new ? ndoms_new : 0;
7279 
7280 	/* Destroy deleted domains */
7281 	for (i = 0; i < ndoms_cur; i++) {
7282 		for (j = 0; j < n && !new_topology; j++) {
7283 			if (cpumask_equal(doms_cur[i], doms_new[j])
7284 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7285 				goto match1;
7286 		}
7287 		/* no match - a current sched domain not in new doms_new[] */
7288 		detach_destroy_domains(doms_cur[i]);
7289 match1:
7290 		;
7291 	}
7292 
7293 	n = ndoms_cur;
7294 	if (doms_new == NULL) {
7295 		n = 0;
7296 		doms_new = &fallback_doms;
7297 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7298 		WARN_ON_ONCE(dattr_new);
7299 	}
7300 
7301 	/* Build new domains */
7302 	for (i = 0; i < ndoms_new; i++) {
7303 		for (j = 0; j < n && !new_topology; j++) {
7304 			if (cpumask_equal(doms_new[i], doms_cur[j])
7305 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7306 				goto match2;
7307 		}
7308 		/* no match - add a new doms_new */
7309 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7310 match2:
7311 		;
7312 	}
7313 
7314 	/* Remember the new sched domains */
7315 	if (doms_cur != &fallback_doms)
7316 		free_sched_domains(doms_cur, ndoms_cur);
7317 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7318 	doms_cur = doms_new;
7319 	dattr_cur = dattr_new;
7320 	ndoms_cur = ndoms_new;
7321 
7322 	register_sched_domain_sysctl();
7323 
7324 	mutex_unlock(&sched_domains_mutex);
7325 }
7326 
7327 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7328 
7329 /*
7330  * Update cpusets according to cpu_active mask.  If cpusets are
7331  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7332  * around partition_sched_domains().
7333  *
7334  * If we come here as part of a suspend/resume, don't touch cpusets because we
7335  * want to restore it back to its original state upon resume anyway.
7336  */
7337 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7338 			     void *hcpu)
7339 {
7340 	switch (action) {
7341 	case CPU_ONLINE_FROZEN:
7342 	case CPU_DOWN_FAILED_FROZEN:
7343 
7344 		/*
7345 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7346 		 * resume sequence. As long as this is not the last online
7347 		 * operation in the resume sequence, just build a single sched
7348 		 * domain, ignoring cpusets.
7349 		 */
7350 		num_cpus_frozen--;
7351 		if (likely(num_cpus_frozen)) {
7352 			partition_sched_domains(1, NULL, NULL);
7353 			break;
7354 		}
7355 
7356 		/*
7357 		 * This is the last CPU online operation. So fall through and
7358 		 * restore the original sched domains by considering the
7359 		 * cpuset configurations.
7360 		 */
7361 
7362 	case CPU_ONLINE:
7363 		cpuset_update_active_cpus(true);
7364 		break;
7365 	default:
7366 		return NOTIFY_DONE;
7367 	}
7368 	return NOTIFY_OK;
7369 }
7370 
7371 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7372 			       void *hcpu)
7373 {
7374 	unsigned long flags;
7375 	long cpu = (long)hcpu;
7376 	struct dl_bw *dl_b;
7377 	bool overflow;
7378 	int cpus;
7379 
7380 	switch (action) {
7381 	case CPU_DOWN_PREPARE:
7382 		rcu_read_lock_sched();
7383 		dl_b = dl_bw_of(cpu);
7384 
7385 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7386 		cpus = dl_bw_cpus(cpu);
7387 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7388 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7389 
7390 		rcu_read_unlock_sched();
7391 
7392 		if (overflow)
7393 			return notifier_from_errno(-EBUSY);
7394 		cpuset_update_active_cpus(false);
7395 		break;
7396 	case CPU_DOWN_PREPARE_FROZEN:
7397 		num_cpus_frozen++;
7398 		partition_sched_domains(1, NULL, NULL);
7399 		break;
7400 	default:
7401 		return NOTIFY_DONE;
7402 	}
7403 	return NOTIFY_OK;
7404 }
7405 
7406 void __init sched_init_smp(void)
7407 {
7408 	cpumask_var_t non_isolated_cpus;
7409 
7410 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7411 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7412 
7413 	sched_init_numa();
7414 
7415 	/*
7416 	 * There's no userspace yet to cause hotplug operations; hence all the
7417 	 * cpu masks are stable and all blatant races in the below code cannot
7418 	 * happen.
7419 	 */
7420 	mutex_lock(&sched_domains_mutex);
7421 	init_sched_domains(cpu_active_mask);
7422 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7423 	if (cpumask_empty(non_isolated_cpus))
7424 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7425 	mutex_unlock(&sched_domains_mutex);
7426 
7427 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7428 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7429 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7430 
7431 	init_hrtick();
7432 
7433 	/* Move init over to a non-isolated CPU */
7434 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7435 		BUG();
7436 	sched_init_granularity();
7437 	free_cpumask_var(non_isolated_cpus);
7438 
7439 	init_sched_rt_class();
7440 	init_sched_dl_class();
7441 }
7442 #else
7443 void __init sched_init_smp(void)
7444 {
7445 	sched_init_granularity();
7446 }
7447 #endif /* CONFIG_SMP */
7448 
7449 int in_sched_functions(unsigned long addr)
7450 {
7451 	return in_lock_functions(addr) ||
7452 		(addr >= (unsigned long)__sched_text_start
7453 		&& addr < (unsigned long)__sched_text_end);
7454 }
7455 
7456 #ifdef CONFIG_CGROUP_SCHED
7457 /*
7458  * Default task group.
7459  * Every task in system belongs to this group at bootup.
7460  */
7461 struct task_group root_task_group;
7462 LIST_HEAD(task_groups);
7463 
7464 /* Cacheline aligned slab cache for task_group */
7465 static struct kmem_cache *task_group_cache __read_mostly;
7466 #endif
7467 
7468 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7469 
7470 void __init sched_init(void)
7471 {
7472 	int i, j;
7473 	unsigned long alloc_size = 0, ptr;
7474 
7475 #ifdef CONFIG_FAIR_GROUP_SCHED
7476 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7477 #endif
7478 #ifdef CONFIG_RT_GROUP_SCHED
7479 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7480 #endif
7481 	if (alloc_size) {
7482 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7483 
7484 #ifdef CONFIG_FAIR_GROUP_SCHED
7485 		root_task_group.se = (struct sched_entity **)ptr;
7486 		ptr += nr_cpu_ids * sizeof(void **);
7487 
7488 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7489 		ptr += nr_cpu_ids * sizeof(void **);
7490 
7491 #endif /* CONFIG_FAIR_GROUP_SCHED */
7492 #ifdef CONFIG_RT_GROUP_SCHED
7493 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7494 		ptr += nr_cpu_ids * sizeof(void **);
7495 
7496 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7497 		ptr += nr_cpu_ids * sizeof(void **);
7498 
7499 #endif /* CONFIG_RT_GROUP_SCHED */
7500 	}
7501 #ifdef CONFIG_CPUMASK_OFFSTACK
7502 	for_each_possible_cpu(i) {
7503 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7504 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7505 	}
7506 #endif /* CONFIG_CPUMASK_OFFSTACK */
7507 
7508 	init_rt_bandwidth(&def_rt_bandwidth,
7509 			global_rt_period(), global_rt_runtime());
7510 	init_dl_bandwidth(&def_dl_bandwidth,
7511 			global_rt_period(), global_rt_runtime());
7512 
7513 #ifdef CONFIG_SMP
7514 	init_defrootdomain();
7515 #endif
7516 
7517 #ifdef CONFIG_RT_GROUP_SCHED
7518 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7519 			global_rt_period(), global_rt_runtime());
7520 #endif /* CONFIG_RT_GROUP_SCHED */
7521 
7522 #ifdef CONFIG_CGROUP_SCHED
7523 	task_group_cache = KMEM_CACHE(task_group, 0);
7524 
7525 	list_add(&root_task_group.list, &task_groups);
7526 	INIT_LIST_HEAD(&root_task_group.children);
7527 	INIT_LIST_HEAD(&root_task_group.siblings);
7528 	autogroup_init(&init_task);
7529 #endif /* CONFIG_CGROUP_SCHED */
7530 
7531 	for_each_possible_cpu(i) {
7532 		struct rq *rq;
7533 
7534 		rq = cpu_rq(i);
7535 		raw_spin_lock_init(&rq->lock);
7536 		rq->nr_running = 0;
7537 		rq->calc_load_active = 0;
7538 		rq->calc_load_update = jiffies + LOAD_FREQ;
7539 		init_cfs_rq(&rq->cfs);
7540 		init_rt_rq(&rq->rt);
7541 		init_dl_rq(&rq->dl);
7542 #ifdef CONFIG_FAIR_GROUP_SCHED
7543 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7544 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7545 		/*
7546 		 * How much cpu bandwidth does root_task_group get?
7547 		 *
7548 		 * In case of task-groups formed thr' the cgroup filesystem, it
7549 		 * gets 100% of the cpu resources in the system. This overall
7550 		 * system cpu resource is divided among the tasks of
7551 		 * root_task_group and its child task-groups in a fair manner,
7552 		 * based on each entity's (task or task-group's) weight
7553 		 * (se->load.weight).
7554 		 *
7555 		 * In other words, if root_task_group has 10 tasks of weight
7556 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7557 		 * then A0's share of the cpu resource is:
7558 		 *
7559 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7560 		 *
7561 		 * We achieve this by letting root_task_group's tasks sit
7562 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7563 		 */
7564 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7565 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7566 #endif /* CONFIG_FAIR_GROUP_SCHED */
7567 
7568 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7569 #ifdef CONFIG_RT_GROUP_SCHED
7570 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7571 #endif
7572 
7573 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7574 			rq->cpu_load[j] = 0;
7575 
7576 		rq->last_load_update_tick = jiffies;
7577 
7578 #ifdef CONFIG_SMP
7579 		rq->sd = NULL;
7580 		rq->rd = NULL;
7581 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7582 		rq->balance_callback = NULL;
7583 		rq->active_balance = 0;
7584 		rq->next_balance = jiffies;
7585 		rq->push_cpu = 0;
7586 		rq->cpu = i;
7587 		rq->online = 0;
7588 		rq->idle_stamp = 0;
7589 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7590 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7591 
7592 		INIT_LIST_HEAD(&rq->cfs_tasks);
7593 
7594 		rq_attach_root(rq, &def_root_domain);
7595 #ifdef CONFIG_NO_HZ_COMMON
7596 		rq->nohz_flags = 0;
7597 #endif
7598 #ifdef CONFIG_NO_HZ_FULL
7599 		rq->last_sched_tick = 0;
7600 #endif
7601 #endif
7602 		init_rq_hrtick(rq);
7603 		atomic_set(&rq->nr_iowait, 0);
7604 	}
7605 
7606 	set_load_weight(&init_task);
7607 
7608 #ifdef CONFIG_PREEMPT_NOTIFIERS
7609 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7610 #endif
7611 
7612 	/*
7613 	 * The boot idle thread does lazy MMU switching as well:
7614 	 */
7615 	atomic_inc(&init_mm.mm_count);
7616 	enter_lazy_tlb(&init_mm, current);
7617 
7618 	/*
7619 	 * During early bootup we pretend to be a normal task:
7620 	 */
7621 	current->sched_class = &fair_sched_class;
7622 
7623 	/*
7624 	 * Make us the idle thread. Technically, schedule() should not be
7625 	 * called from this thread, however somewhere below it might be,
7626 	 * but because we are the idle thread, we just pick up running again
7627 	 * when this runqueue becomes "idle".
7628 	 */
7629 	init_idle(current, smp_processor_id());
7630 
7631 	calc_load_update = jiffies + LOAD_FREQ;
7632 
7633 #ifdef CONFIG_SMP
7634 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7635 	/* May be allocated at isolcpus cmdline parse time */
7636 	if (cpu_isolated_map == NULL)
7637 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7638 	idle_thread_set_boot_cpu();
7639 	set_cpu_rq_start_time();
7640 #endif
7641 	init_sched_fair_class();
7642 
7643 	scheduler_running = 1;
7644 }
7645 
7646 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7647 static inline int preempt_count_equals(int preempt_offset)
7648 {
7649 	int nested = preempt_count() + rcu_preempt_depth();
7650 
7651 	return (nested == preempt_offset);
7652 }
7653 
7654 void __might_sleep(const char *file, int line, int preempt_offset)
7655 {
7656 	/*
7657 	 * Blocking primitives will set (and therefore destroy) current->state,
7658 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7659 	 * otherwise we will destroy state.
7660 	 */
7661 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7662 			"do not call blocking ops when !TASK_RUNNING; "
7663 			"state=%lx set at [<%p>] %pS\n",
7664 			current->state,
7665 			(void *)current->task_state_change,
7666 			(void *)current->task_state_change);
7667 
7668 	___might_sleep(file, line, preempt_offset);
7669 }
7670 EXPORT_SYMBOL(__might_sleep);
7671 
7672 void ___might_sleep(const char *file, int line, int preempt_offset)
7673 {
7674 	static unsigned long prev_jiffy;	/* ratelimiting */
7675 
7676 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7677 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7678 	     !is_idle_task(current)) ||
7679 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7680 		return;
7681 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7682 		return;
7683 	prev_jiffy = jiffies;
7684 
7685 	printk(KERN_ERR
7686 		"BUG: sleeping function called from invalid context at %s:%d\n",
7687 			file, line);
7688 	printk(KERN_ERR
7689 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7690 			in_atomic(), irqs_disabled(),
7691 			current->pid, current->comm);
7692 
7693 	if (task_stack_end_corrupted(current))
7694 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7695 
7696 	debug_show_held_locks(current);
7697 	if (irqs_disabled())
7698 		print_irqtrace_events(current);
7699 #ifdef CONFIG_DEBUG_PREEMPT
7700 	if (!preempt_count_equals(preempt_offset)) {
7701 		pr_err("Preemption disabled at:");
7702 		print_ip_sym(current->preempt_disable_ip);
7703 		pr_cont("\n");
7704 	}
7705 #endif
7706 	dump_stack();
7707 }
7708 EXPORT_SYMBOL(___might_sleep);
7709 #endif
7710 
7711 #ifdef CONFIG_MAGIC_SYSRQ
7712 void normalize_rt_tasks(void)
7713 {
7714 	struct task_struct *g, *p;
7715 	struct sched_attr attr = {
7716 		.sched_policy = SCHED_NORMAL,
7717 	};
7718 
7719 	read_lock(&tasklist_lock);
7720 	for_each_process_thread(g, p) {
7721 		/*
7722 		 * Only normalize user tasks:
7723 		 */
7724 		if (p->flags & PF_KTHREAD)
7725 			continue;
7726 
7727 		p->se.exec_start		= 0;
7728 #ifdef CONFIG_SCHEDSTATS
7729 		p->se.statistics.wait_start	= 0;
7730 		p->se.statistics.sleep_start	= 0;
7731 		p->se.statistics.block_start	= 0;
7732 #endif
7733 
7734 		if (!dl_task(p) && !rt_task(p)) {
7735 			/*
7736 			 * Renice negative nice level userspace
7737 			 * tasks back to 0:
7738 			 */
7739 			if (task_nice(p) < 0)
7740 				set_user_nice(p, 0);
7741 			continue;
7742 		}
7743 
7744 		__sched_setscheduler(p, &attr, false, false);
7745 	}
7746 	read_unlock(&tasklist_lock);
7747 }
7748 
7749 #endif /* CONFIG_MAGIC_SYSRQ */
7750 
7751 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7752 /*
7753  * These functions are only useful for the IA64 MCA handling, or kdb.
7754  *
7755  * They can only be called when the whole system has been
7756  * stopped - every CPU needs to be quiescent, and no scheduling
7757  * activity can take place. Using them for anything else would
7758  * be a serious bug, and as a result, they aren't even visible
7759  * under any other configuration.
7760  */
7761 
7762 /**
7763  * curr_task - return the current task for a given cpu.
7764  * @cpu: the processor in question.
7765  *
7766  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7767  *
7768  * Return: The current task for @cpu.
7769  */
7770 struct task_struct *curr_task(int cpu)
7771 {
7772 	return cpu_curr(cpu);
7773 }
7774 
7775 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7776 
7777 #ifdef CONFIG_IA64
7778 /**
7779  * set_curr_task - set the current task for a given cpu.
7780  * @cpu: the processor in question.
7781  * @p: the task pointer to set.
7782  *
7783  * Description: This function must only be used when non-maskable interrupts
7784  * are serviced on a separate stack. It allows the architecture to switch the
7785  * notion of the current task on a cpu in a non-blocking manner. This function
7786  * must be called with all CPU's synchronized, and interrupts disabled, the
7787  * and caller must save the original value of the current task (see
7788  * curr_task() above) and restore that value before reenabling interrupts and
7789  * re-starting the system.
7790  *
7791  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7792  */
7793 void set_curr_task(int cpu, struct task_struct *p)
7794 {
7795 	cpu_curr(cpu) = p;
7796 }
7797 
7798 #endif
7799 
7800 #ifdef CONFIG_CGROUP_SCHED
7801 /* task_group_lock serializes the addition/removal of task groups */
7802 static DEFINE_SPINLOCK(task_group_lock);
7803 
7804 static void free_sched_group(struct task_group *tg)
7805 {
7806 	free_fair_sched_group(tg);
7807 	free_rt_sched_group(tg);
7808 	autogroup_free(tg);
7809 	kmem_cache_free(task_group_cache, tg);
7810 }
7811 
7812 /* allocate runqueue etc for a new task group */
7813 struct task_group *sched_create_group(struct task_group *parent)
7814 {
7815 	struct task_group *tg;
7816 
7817 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7818 	if (!tg)
7819 		return ERR_PTR(-ENOMEM);
7820 
7821 	if (!alloc_fair_sched_group(tg, parent))
7822 		goto err;
7823 
7824 	if (!alloc_rt_sched_group(tg, parent))
7825 		goto err;
7826 
7827 	return tg;
7828 
7829 err:
7830 	free_sched_group(tg);
7831 	return ERR_PTR(-ENOMEM);
7832 }
7833 
7834 void sched_online_group(struct task_group *tg, struct task_group *parent)
7835 {
7836 	unsigned long flags;
7837 
7838 	spin_lock_irqsave(&task_group_lock, flags);
7839 	list_add_rcu(&tg->list, &task_groups);
7840 
7841 	WARN_ON(!parent); /* root should already exist */
7842 
7843 	tg->parent = parent;
7844 	INIT_LIST_HEAD(&tg->children);
7845 	list_add_rcu(&tg->siblings, &parent->children);
7846 	spin_unlock_irqrestore(&task_group_lock, flags);
7847 }
7848 
7849 /* rcu callback to free various structures associated with a task group */
7850 static void free_sched_group_rcu(struct rcu_head *rhp)
7851 {
7852 	/* now it should be safe to free those cfs_rqs */
7853 	free_sched_group(container_of(rhp, struct task_group, rcu));
7854 }
7855 
7856 /* Destroy runqueue etc associated with a task group */
7857 void sched_destroy_group(struct task_group *tg)
7858 {
7859 	/* wait for possible concurrent references to cfs_rqs complete */
7860 	call_rcu(&tg->rcu, free_sched_group_rcu);
7861 }
7862 
7863 void sched_offline_group(struct task_group *tg)
7864 {
7865 	unsigned long flags;
7866 	int i;
7867 
7868 	/* end participation in shares distribution */
7869 	for_each_possible_cpu(i)
7870 		unregister_fair_sched_group(tg, i);
7871 
7872 	spin_lock_irqsave(&task_group_lock, flags);
7873 	list_del_rcu(&tg->list);
7874 	list_del_rcu(&tg->siblings);
7875 	spin_unlock_irqrestore(&task_group_lock, flags);
7876 }
7877 
7878 /* change task's runqueue when it moves between groups.
7879  *	The caller of this function should have put the task in its new group
7880  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7881  *	reflect its new group.
7882  */
7883 void sched_move_task(struct task_struct *tsk)
7884 {
7885 	struct task_group *tg;
7886 	int queued, running;
7887 	unsigned long flags;
7888 	struct rq *rq;
7889 
7890 	rq = task_rq_lock(tsk, &flags);
7891 
7892 	running = task_current(rq, tsk);
7893 	queued = task_on_rq_queued(tsk);
7894 
7895 	if (queued)
7896 		dequeue_task(rq, tsk, DEQUEUE_SAVE);
7897 	if (unlikely(running))
7898 		put_prev_task(rq, tsk);
7899 
7900 	/*
7901 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7902 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7903 	 * to prevent lockdep warnings.
7904 	 */
7905 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7906 			  struct task_group, css);
7907 	tg = autogroup_task_group(tsk, tg);
7908 	tsk->sched_task_group = tg;
7909 
7910 #ifdef CONFIG_FAIR_GROUP_SCHED
7911 	if (tsk->sched_class->task_move_group)
7912 		tsk->sched_class->task_move_group(tsk);
7913 	else
7914 #endif
7915 		set_task_rq(tsk, task_cpu(tsk));
7916 
7917 	if (unlikely(running))
7918 		tsk->sched_class->set_curr_task(rq);
7919 	if (queued)
7920 		enqueue_task(rq, tsk, ENQUEUE_RESTORE);
7921 
7922 	task_rq_unlock(rq, tsk, &flags);
7923 }
7924 #endif /* CONFIG_CGROUP_SCHED */
7925 
7926 #ifdef CONFIG_RT_GROUP_SCHED
7927 /*
7928  * Ensure that the real time constraints are schedulable.
7929  */
7930 static DEFINE_MUTEX(rt_constraints_mutex);
7931 
7932 /* Must be called with tasklist_lock held */
7933 static inline int tg_has_rt_tasks(struct task_group *tg)
7934 {
7935 	struct task_struct *g, *p;
7936 
7937 	/*
7938 	 * Autogroups do not have RT tasks; see autogroup_create().
7939 	 */
7940 	if (task_group_is_autogroup(tg))
7941 		return 0;
7942 
7943 	for_each_process_thread(g, p) {
7944 		if (rt_task(p) && task_group(p) == tg)
7945 			return 1;
7946 	}
7947 
7948 	return 0;
7949 }
7950 
7951 struct rt_schedulable_data {
7952 	struct task_group *tg;
7953 	u64 rt_period;
7954 	u64 rt_runtime;
7955 };
7956 
7957 static int tg_rt_schedulable(struct task_group *tg, void *data)
7958 {
7959 	struct rt_schedulable_data *d = data;
7960 	struct task_group *child;
7961 	unsigned long total, sum = 0;
7962 	u64 period, runtime;
7963 
7964 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7965 	runtime = tg->rt_bandwidth.rt_runtime;
7966 
7967 	if (tg == d->tg) {
7968 		period = d->rt_period;
7969 		runtime = d->rt_runtime;
7970 	}
7971 
7972 	/*
7973 	 * Cannot have more runtime than the period.
7974 	 */
7975 	if (runtime > period && runtime != RUNTIME_INF)
7976 		return -EINVAL;
7977 
7978 	/*
7979 	 * Ensure we don't starve existing RT tasks.
7980 	 */
7981 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7982 		return -EBUSY;
7983 
7984 	total = to_ratio(period, runtime);
7985 
7986 	/*
7987 	 * Nobody can have more than the global setting allows.
7988 	 */
7989 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7990 		return -EINVAL;
7991 
7992 	/*
7993 	 * The sum of our children's runtime should not exceed our own.
7994 	 */
7995 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7996 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7997 		runtime = child->rt_bandwidth.rt_runtime;
7998 
7999 		if (child == d->tg) {
8000 			period = d->rt_period;
8001 			runtime = d->rt_runtime;
8002 		}
8003 
8004 		sum += to_ratio(period, runtime);
8005 	}
8006 
8007 	if (sum > total)
8008 		return -EINVAL;
8009 
8010 	return 0;
8011 }
8012 
8013 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8014 {
8015 	int ret;
8016 
8017 	struct rt_schedulable_data data = {
8018 		.tg = tg,
8019 		.rt_period = period,
8020 		.rt_runtime = runtime,
8021 	};
8022 
8023 	rcu_read_lock();
8024 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8025 	rcu_read_unlock();
8026 
8027 	return ret;
8028 }
8029 
8030 static int tg_set_rt_bandwidth(struct task_group *tg,
8031 		u64 rt_period, u64 rt_runtime)
8032 {
8033 	int i, err = 0;
8034 
8035 	/*
8036 	 * Disallowing the root group RT runtime is BAD, it would disallow the
8037 	 * kernel creating (and or operating) RT threads.
8038 	 */
8039 	if (tg == &root_task_group && rt_runtime == 0)
8040 		return -EINVAL;
8041 
8042 	/* No period doesn't make any sense. */
8043 	if (rt_period == 0)
8044 		return -EINVAL;
8045 
8046 	mutex_lock(&rt_constraints_mutex);
8047 	read_lock(&tasklist_lock);
8048 	err = __rt_schedulable(tg, rt_period, rt_runtime);
8049 	if (err)
8050 		goto unlock;
8051 
8052 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8053 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8054 	tg->rt_bandwidth.rt_runtime = rt_runtime;
8055 
8056 	for_each_possible_cpu(i) {
8057 		struct rt_rq *rt_rq = tg->rt_rq[i];
8058 
8059 		raw_spin_lock(&rt_rq->rt_runtime_lock);
8060 		rt_rq->rt_runtime = rt_runtime;
8061 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
8062 	}
8063 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8064 unlock:
8065 	read_unlock(&tasklist_lock);
8066 	mutex_unlock(&rt_constraints_mutex);
8067 
8068 	return err;
8069 }
8070 
8071 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8072 {
8073 	u64 rt_runtime, rt_period;
8074 
8075 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8076 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8077 	if (rt_runtime_us < 0)
8078 		rt_runtime = RUNTIME_INF;
8079 
8080 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8081 }
8082 
8083 static long sched_group_rt_runtime(struct task_group *tg)
8084 {
8085 	u64 rt_runtime_us;
8086 
8087 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8088 		return -1;
8089 
8090 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8091 	do_div(rt_runtime_us, NSEC_PER_USEC);
8092 	return rt_runtime_us;
8093 }
8094 
8095 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8096 {
8097 	u64 rt_runtime, rt_period;
8098 
8099 	rt_period = rt_period_us * NSEC_PER_USEC;
8100 	rt_runtime = tg->rt_bandwidth.rt_runtime;
8101 
8102 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8103 }
8104 
8105 static long sched_group_rt_period(struct task_group *tg)
8106 {
8107 	u64 rt_period_us;
8108 
8109 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8110 	do_div(rt_period_us, NSEC_PER_USEC);
8111 	return rt_period_us;
8112 }
8113 #endif /* CONFIG_RT_GROUP_SCHED */
8114 
8115 #ifdef CONFIG_RT_GROUP_SCHED
8116 static int sched_rt_global_constraints(void)
8117 {
8118 	int ret = 0;
8119 
8120 	mutex_lock(&rt_constraints_mutex);
8121 	read_lock(&tasklist_lock);
8122 	ret = __rt_schedulable(NULL, 0, 0);
8123 	read_unlock(&tasklist_lock);
8124 	mutex_unlock(&rt_constraints_mutex);
8125 
8126 	return ret;
8127 }
8128 
8129 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8130 {
8131 	/* Don't accept realtime tasks when there is no way for them to run */
8132 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8133 		return 0;
8134 
8135 	return 1;
8136 }
8137 
8138 #else /* !CONFIG_RT_GROUP_SCHED */
8139 static int sched_rt_global_constraints(void)
8140 {
8141 	unsigned long flags;
8142 	int i, ret = 0;
8143 
8144 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8145 	for_each_possible_cpu(i) {
8146 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8147 
8148 		raw_spin_lock(&rt_rq->rt_runtime_lock);
8149 		rt_rq->rt_runtime = global_rt_runtime();
8150 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
8151 	}
8152 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8153 
8154 	return ret;
8155 }
8156 #endif /* CONFIG_RT_GROUP_SCHED */
8157 
8158 static int sched_dl_global_validate(void)
8159 {
8160 	u64 runtime = global_rt_runtime();
8161 	u64 period = global_rt_period();
8162 	u64 new_bw = to_ratio(period, runtime);
8163 	struct dl_bw *dl_b;
8164 	int cpu, ret = 0;
8165 	unsigned long flags;
8166 
8167 	/*
8168 	 * Here we want to check the bandwidth not being set to some
8169 	 * value smaller than the currently allocated bandwidth in
8170 	 * any of the root_domains.
8171 	 *
8172 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8173 	 * cycling on root_domains... Discussion on different/better
8174 	 * solutions is welcome!
8175 	 */
8176 	for_each_possible_cpu(cpu) {
8177 		rcu_read_lock_sched();
8178 		dl_b = dl_bw_of(cpu);
8179 
8180 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8181 		if (new_bw < dl_b->total_bw)
8182 			ret = -EBUSY;
8183 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8184 
8185 		rcu_read_unlock_sched();
8186 
8187 		if (ret)
8188 			break;
8189 	}
8190 
8191 	return ret;
8192 }
8193 
8194 static void sched_dl_do_global(void)
8195 {
8196 	u64 new_bw = -1;
8197 	struct dl_bw *dl_b;
8198 	int cpu;
8199 	unsigned long flags;
8200 
8201 	def_dl_bandwidth.dl_period = global_rt_period();
8202 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
8203 
8204 	if (global_rt_runtime() != RUNTIME_INF)
8205 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8206 
8207 	/*
8208 	 * FIXME: As above...
8209 	 */
8210 	for_each_possible_cpu(cpu) {
8211 		rcu_read_lock_sched();
8212 		dl_b = dl_bw_of(cpu);
8213 
8214 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8215 		dl_b->bw = new_bw;
8216 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8217 
8218 		rcu_read_unlock_sched();
8219 	}
8220 }
8221 
8222 static int sched_rt_global_validate(void)
8223 {
8224 	if (sysctl_sched_rt_period <= 0)
8225 		return -EINVAL;
8226 
8227 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8228 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8229 		return -EINVAL;
8230 
8231 	return 0;
8232 }
8233 
8234 static void sched_rt_do_global(void)
8235 {
8236 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
8237 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8238 }
8239 
8240 int sched_rt_handler(struct ctl_table *table, int write,
8241 		void __user *buffer, size_t *lenp,
8242 		loff_t *ppos)
8243 {
8244 	int old_period, old_runtime;
8245 	static DEFINE_MUTEX(mutex);
8246 	int ret;
8247 
8248 	mutex_lock(&mutex);
8249 	old_period = sysctl_sched_rt_period;
8250 	old_runtime = sysctl_sched_rt_runtime;
8251 
8252 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8253 
8254 	if (!ret && write) {
8255 		ret = sched_rt_global_validate();
8256 		if (ret)
8257 			goto undo;
8258 
8259 		ret = sched_dl_global_validate();
8260 		if (ret)
8261 			goto undo;
8262 
8263 		ret = sched_rt_global_constraints();
8264 		if (ret)
8265 			goto undo;
8266 
8267 		sched_rt_do_global();
8268 		sched_dl_do_global();
8269 	}
8270 	if (0) {
8271 undo:
8272 		sysctl_sched_rt_period = old_period;
8273 		sysctl_sched_rt_runtime = old_runtime;
8274 	}
8275 	mutex_unlock(&mutex);
8276 
8277 	return ret;
8278 }
8279 
8280 int sched_rr_handler(struct ctl_table *table, int write,
8281 		void __user *buffer, size_t *lenp,
8282 		loff_t *ppos)
8283 {
8284 	int ret;
8285 	static DEFINE_MUTEX(mutex);
8286 
8287 	mutex_lock(&mutex);
8288 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8289 	/* make sure that internally we keep jiffies */
8290 	/* also, writing zero resets timeslice to default */
8291 	if (!ret && write) {
8292 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8293 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8294 	}
8295 	mutex_unlock(&mutex);
8296 	return ret;
8297 }
8298 
8299 #ifdef CONFIG_CGROUP_SCHED
8300 
8301 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8302 {
8303 	return css ? container_of(css, struct task_group, css) : NULL;
8304 }
8305 
8306 static struct cgroup_subsys_state *
8307 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8308 {
8309 	struct task_group *parent = css_tg(parent_css);
8310 	struct task_group *tg;
8311 
8312 	if (!parent) {
8313 		/* This is early initialization for the top cgroup */
8314 		return &root_task_group.css;
8315 	}
8316 
8317 	tg = sched_create_group(parent);
8318 	if (IS_ERR(tg))
8319 		return ERR_PTR(-ENOMEM);
8320 
8321 	return &tg->css;
8322 }
8323 
8324 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8325 {
8326 	struct task_group *tg = css_tg(css);
8327 	struct task_group *parent = css_tg(css->parent);
8328 
8329 	if (parent)
8330 		sched_online_group(tg, parent);
8331 	return 0;
8332 }
8333 
8334 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8335 {
8336 	struct task_group *tg = css_tg(css);
8337 
8338 	sched_destroy_group(tg);
8339 }
8340 
8341 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8342 {
8343 	struct task_group *tg = css_tg(css);
8344 
8345 	sched_offline_group(tg);
8346 }
8347 
8348 static void cpu_cgroup_fork(struct task_struct *task)
8349 {
8350 	sched_move_task(task);
8351 }
8352 
8353 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8354 {
8355 	struct task_struct *task;
8356 	struct cgroup_subsys_state *css;
8357 
8358 	cgroup_taskset_for_each(task, css, tset) {
8359 #ifdef CONFIG_RT_GROUP_SCHED
8360 		if (!sched_rt_can_attach(css_tg(css), task))
8361 			return -EINVAL;
8362 #else
8363 		/* We don't support RT-tasks being in separate groups */
8364 		if (task->sched_class != &fair_sched_class)
8365 			return -EINVAL;
8366 #endif
8367 	}
8368 	return 0;
8369 }
8370 
8371 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8372 {
8373 	struct task_struct *task;
8374 	struct cgroup_subsys_state *css;
8375 
8376 	cgroup_taskset_for_each(task, css, tset)
8377 		sched_move_task(task);
8378 }
8379 
8380 #ifdef CONFIG_FAIR_GROUP_SCHED
8381 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8382 				struct cftype *cftype, u64 shareval)
8383 {
8384 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8385 }
8386 
8387 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8388 			       struct cftype *cft)
8389 {
8390 	struct task_group *tg = css_tg(css);
8391 
8392 	return (u64) scale_load_down(tg->shares);
8393 }
8394 
8395 #ifdef CONFIG_CFS_BANDWIDTH
8396 static DEFINE_MUTEX(cfs_constraints_mutex);
8397 
8398 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8399 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8400 
8401 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8402 
8403 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8404 {
8405 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8406 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8407 
8408 	if (tg == &root_task_group)
8409 		return -EINVAL;
8410 
8411 	/*
8412 	 * Ensure we have at some amount of bandwidth every period.  This is
8413 	 * to prevent reaching a state of large arrears when throttled via
8414 	 * entity_tick() resulting in prolonged exit starvation.
8415 	 */
8416 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8417 		return -EINVAL;
8418 
8419 	/*
8420 	 * Likewise, bound things on the otherside by preventing insane quota
8421 	 * periods.  This also allows us to normalize in computing quota
8422 	 * feasibility.
8423 	 */
8424 	if (period > max_cfs_quota_period)
8425 		return -EINVAL;
8426 
8427 	/*
8428 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8429 	 * unthrottle_offline_cfs_rqs().
8430 	 */
8431 	get_online_cpus();
8432 	mutex_lock(&cfs_constraints_mutex);
8433 	ret = __cfs_schedulable(tg, period, quota);
8434 	if (ret)
8435 		goto out_unlock;
8436 
8437 	runtime_enabled = quota != RUNTIME_INF;
8438 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8439 	/*
8440 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8441 	 * before making related changes, and on->off must occur afterwards
8442 	 */
8443 	if (runtime_enabled && !runtime_was_enabled)
8444 		cfs_bandwidth_usage_inc();
8445 	raw_spin_lock_irq(&cfs_b->lock);
8446 	cfs_b->period = ns_to_ktime(period);
8447 	cfs_b->quota = quota;
8448 
8449 	__refill_cfs_bandwidth_runtime(cfs_b);
8450 	/* restart the period timer (if active) to handle new period expiry */
8451 	if (runtime_enabled)
8452 		start_cfs_bandwidth(cfs_b);
8453 	raw_spin_unlock_irq(&cfs_b->lock);
8454 
8455 	for_each_online_cpu(i) {
8456 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8457 		struct rq *rq = cfs_rq->rq;
8458 
8459 		raw_spin_lock_irq(&rq->lock);
8460 		cfs_rq->runtime_enabled = runtime_enabled;
8461 		cfs_rq->runtime_remaining = 0;
8462 
8463 		if (cfs_rq->throttled)
8464 			unthrottle_cfs_rq(cfs_rq);
8465 		raw_spin_unlock_irq(&rq->lock);
8466 	}
8467 	if (runtime_was_enabled && !runtime_enabled)
8468 		cfs_bandwidth_usage_dec();
8469 out_unlock:
8470 	mutex_unlock(&cfs_constraints_mutex);
8471 	put_online_cpus();
8472 
8473 	return ret;
8474 }
8475 
8476 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8477 {
8478 	u64 quota, period;
8479 
8480 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8481 	if (cfs_quota_us < 0)
8482 		quota = RUNTIME_INF;
8483 	else
8484 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8485 
8486 	return tg_set_cfs_bandwidth(tg, period, quota);
8487 }
8488 
8489 long tg_get_cfs_quota(struct task_group *tg)
8490 {
8491 	u64 quota_us;
8492 
8493 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8494 		return -1;
8495 
8496 	quota_us = tg->cfs_bandwidth.quota;
8497 	do_div(quota_us, NSEC_PER_USEC);
8498 
8499 	return quota_us;
8500 }
8501 
8502 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8503 {
8504 	u64 quota, period;
8505 
8506 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8507 	quota = tg->cfs_bandwidth.quota;
8508 
8509 	return tg_set_cfs_bandwidth(tg, period, quota);
8510 }
8511 
8512 long tg_get_cfs_period(struct task_group *tg)
8513 {
8514 	u64 cfs_period_us;
8515 
8516 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8517 	do_div(cfs_period_us, NSEC_PER_USEC);
8518 
8519 	return cfs_period_us;
8520 }
8521 
8522 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8523 				  struct cftype *cft)
8524 {
8525 	return tg_get_cfs_quota(css_tg(css));
8526 }
8527 
8528 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8529 				   struct cftype *cftype, s64 cfs_quota_us)
8530 {
8531 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8532 }
8533 
8534 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8535 				   struct cftype *cft)
8536 {
8537 	return tg_get_cfs_period(css_tg(css));
8538 }
8539 
8540 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8541 				    struct cftype *cftype, u64 cfs_period_us)
8542 {
8543 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8544 }
8545 
8546 struct cfs_schedulable_data {
8547 	struct task_group *tg;
8548 	u64 period, quota;
8549 };
8550 
8551 /*
8552  * normalize group quota/period to be quota/max_period
8553  * note: units are usecs
8554  */
8555 static u64 normalize_cfs_quota(struct task_group *tg,
8556 			       struct cfs_schedulable_data *d)
8557 {
8558 	u64 quota, period;
8559 
8560 	if (tg == d->tg) {
8561 		period = d->period;
8562 		quota = d->quota;
8563 	} else {
8564 		period = tg_get_cfs_period(tg);
8565 		quota = tg_get_cfs_quota(tg);
8566 	}
8567 
8568 	/* note: these should typically be equivalent */
8569 	if (quota == RUNTIME_INF || quota == -1)
8570 		return RUNTIME_INF;
8571 
8572 	return to_ratio(period, quota);
8573 }
8574 
8575 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8576 {
8577 	struct cfs_schedulable_data *d = data;
8578 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8579 	s64 quota = 0, parent_quota = -1;
8580 
8581 	if (!tg->parent) {
8582 		quota = RUNTIME_INF;
8583 	} else {
8584 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8585 
8586 		quota = normalize_cfs_quota(tg, d);
8587 		parent_quota = parent_b->hierarchical_quota;
8588 
8589 		/*
8590 		 * ensure max(child_quota) <= parent_quota, inherit when no
8591 		 * limit is set
8592 		 */
8593 		if (quota == RUNTIME_INF)
8594 			quota = parent_quota;
8595 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8596 			return -EINVAL;
8597 	}
8598 	cfs_b->hierarchical_quota = quota;
8599 
8600 	return 0;
8601 }
8602 
8603 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8604 {
8605 	int ret;
8606 	struct cfs_schedulable_data data = {
8607 		.tg = tg,
8608 		.period = period,
8609 		.quota = quota,
8610 	};
8611 
8612 	if (quota != RUNTIME_INF) {
8613 		do_div(data.period, NSEC_PER_USEC);
8614 		do_div(data.quota, NSEC_PER_USEC);
8615 	}
8616 
8617 	rcu_read_lock();
8618 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8619 	rcu_read_unlock();
8620 
8621 	return ret;
8622 }
8623 
8624 static int cpu_stats_show(struct seq_file *sf, void *v)
8625 {
8626 	struct task_group *tg = css_tg(seq_css(sf));
8627 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8628 
8629 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8630 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8631 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8632 
8633 	return 0;
8634 }
8635 #endif /* CONFIG_CFS_BANDWIDTH */
8636 #endif /* CONFIG_FAIR_GROUP_SCHED */
8637 
8638 #ifdef CONFIG_RT_GROUP_SCHED
8639 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8640 				struct cftype *cft, s64 val)
8641 {
8642 	return sched_group_set_rt_runtime(css_tg(css), val);
8643 }
8644 
8645 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8646 			       struct cftype *cft)
8647 {
8648 	return sched_group_rt_runtime(css_tg(css));
8649 }
8650 
8651 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8652 				    struct cftype *cftype, u64 rt_period_us)
8653 {
8654 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8655 }
8656 
8657 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8658 				   struct cftype *cft)
8659 {
8660 	return sched_group_rt_period(css_tg(css));
8661 }
8662 #endif /* CONFIG_RT_GROUP_SCHED */
8663 
8664 static struct cftype cpu_files[] = {
8665 #ifdef CONFIG_FAIR_GROUP_SCHED
8666 	{
8667 		.name = "shares",
8668 		.read_u64 = cpu_shares_read_u64,
8669 		.write_u64 = cpu_shares_write_u64,
8670 	},
8671 #endif
8672 #ifdef CONFIG_CFS_BANDWIDTH
8673 	{
8674 		.name = "cfs_quota_us",
8675 		.read_s64 = cpu_cfs_quota_read_s64,
8676 		.write_s64 = cpu_cfs_quota_write_s64,
8677 	},
8678 	{
8679 		.name = "cfs_period_us",
8680 		.read_u64 = cpu_cfs_period_read_u64,
8681 		.write_u64 = cpu_cfs_period_write_u64,
8682 	},
8683 	{
8684 		.name = "stat",
8685 		.seq_show = cpu_stats_show,
8686 	},
8687 #endif
8688 #ifdef CONFIG_RT_GROUP_SCHED
8689 	{
8690 		.name = "rt_runtime_us",
8691 		.read_s64 = cpu_rt_runtime_read,
8692 		.write_s64 = cpu_rt_runtime_write,
8693 	},
8694 	{
8695 		.name = "rt_period_us",
8696 		.read_u64 = cpu_rt_period_read_uint,
8697 		.write_u64 = cpu_rt_period_write_uint,
8698 	},
8699 #endif
8700 	{ }	/* terminate */
8701 };
8702 
8703 struct cgroup_subsys cpu_cgrp_subsys = {
8704 	.css_alloc	= cpu_cgroup_css_alloc,
8705 	.css_free	= cpu_cgroup_css_free,
8706 	.css_online	= cpu_cgroup_css_online,
8707 	.css_offline	= cpu_cgroup_css_offline,
8708 	.fork		= cpu_cgroup_fork,
8709 	.can_attach	= cpu_cgroup_can_attach,
8710 	.attach		= cpu_cgroup_attach,
8711 	.legacy_cftypes	= cpu_files,
8712 	.early_init	= 1,
8713 };
8714 
8715 #endif	/* CONFIG_CGROUP_SCHED */
8716 
8717 void dump_cpu_task(int cpu)
8718 {
8719 	pr_info("Task dump for CPU %d:\n", cpu);
8720 	sched_show_task(cpu_curr(cpu));
8721 }
8722 
8723 /*
8724  * Nice levels are multiplicative, with a gentle 10% change for every
8725  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8726  * nice 1, it will get ~10% less CPU time than another CPU-bound task
8727  * that remained on nice 0.
8728  *
8729  * The "10% effect" is relative and cumulative: from _any_ nice level,
8730  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8731  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8732  * If a task goes up by ~10% and another task goes down by ~10% then
8733  * the relative distance between them is ~25%.)
8734  */
8735 const int sched_prio_to_weight[40] = {
8736  /* -20 */     88761,     71755,     56483,     46273,     36291,
8737  /* -15 */     29154,     23254,     18705,     14949,     11916,
8738  /* -10 */      9548,      7620,      6100,      4904,      3906,
8739  /*  -5 */      3121,      2501,      1991,      1586,      1277,
8740  /*   0 */      1024,       820,       655,       526,       423,
8741  /*   5 */       335,       272,       215,       172,       137,
8742  /*  10 */       110,        87,        70,        56,        45,
8743  /*  15 */        36,        29,        23,        18,        15,
8744 };
8745 
8746 /*
8747  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8748  *
8749  * In cases where the weight does not change often, we can use the
8750  * precalculated inverse to speed up arithmetics by turning divisions
8751  * into multiplications:
8752  */
8753 const u32 sched_prio_to_wmult[40] = {
8754  /* -20 */     48388,     59856,     76040,     92818,    118348,
8755  /* -15 */    147320,    184698,    229616,    287308,    360437,
8756  /* -10 */    449829,    563644,    704093,    875809,   1099582,
8757  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8758  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8759  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8760  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8761  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8762 };
8763