1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel CPU scheduler code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #include <linux/highmem.h> 11 #include <linux/hrtimer_api.h> 12 #include <linux/ktime_api.h> 13 #include <linux/sched/signal.h> 14 #include <linux/syscalls_api.h> 15 #include <linux/debug_locks.h> 16 #include <linux/prefetch.h> 17 #include <linux/capability.h> 18 #include <linux/pgtable_api.h> 19 #include <linux/wait_bit.h> 20 #include <linux/jiffies.h> 21 #include <linux/spinlock_api.h> 22 #include <linux/cpumask_api.h> 23 #include <linux/lockdep_api.h> 24 #include <linux/hardirq.h> 25 #include <linux/softirq.h> 26 #include <linux/refcount_api.h> 27 #include <linux/topology.h> 28 #include <linux/sched/clock.h> 29 #include <linux/sched/cond_resched.h> 30 #include <linux/sched/cputime.h> 31 #include <linux/sched/debug.h> 32 #include <linux/sched/hotplug.h> 33 #include <linux/sched/init.h> 34 #include <linux/sched/isolation.h> 35 #include <linux/sched/loadavg.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/nohz.h> 38 #include <linux/sched/rseq_api.h> 39 #include <linux/sched/rt.h> 40 41 #include <linux/blkdev.h> 42 #include <linux/context_tracking.h> 43 #include <linux/cpuset.h> 44 #include <linux/delayacct.h> 45 #include <linux/init_task.h> 46 #include <linux/interrupt.h> 47 #include <linux/ioprio.h> 48 #include <linux/kallsyms.h> 49 #include <linux/kcov.h> 50 #include <linux/kprobes.h> 51 #include <linux/llist_api.h> 52 #include <linux/mmu_context.h> 53 #include <linux/mmzone.h> 54 #include <linux/mutex_api.h> 55 #include <linux/nmi.h> 56 #include <linux/nospec.h> 57 #include <linux/perf_event_api.h> 58 #include <linux/profile.h> 59 #include <linux/psi.h> 60 #include <linux/rcuwait_api.h> 61 #include <linux/rseq.h> 62 #include <linux/sched/wake_q.h> 63 #include <linux/scs.h> 64 #include <linux/slab.h> 65 #include <linux/syscalls.h> 66 #include <linux/vtime.h> 67 #include <linux/wait_api.h> 68 #include <linux/workqueue_api.h> 69 #include <linux/livepatch_sched.h> 70 71 #ifdef CONFIG_PREEMPT_DYNAMIC 72 # ifdef CONFIG_GENERIC_ENTRY 73 # include <linux/entry-common.h> 74 # endif 75 #endif 76 77 #include <uapi/linux/sched/types.h> 78 79 #include <asm/irq_regs.h> 80 #include <asm/switch_to.h> 81 #include <asm/tlb.h> 82 83 #define CREATE_TRACE_POINTS 84 #include <linux/sched/rseq_api.h> 85 #include <trace/events/sched.h> 86 #include <trace/events/ipi.h> 87 #undef CREATE_TRACE_POINTS 88 89 #include "sched.h" 90 #include "stats.h" 91 92 #include "autogroup.h" 93 #include "pelt.h" 94 #include "smp.h" 95 96 #include "../workqueue_internal.h" 97 #include "../../io_uring/io-wq.h" 98 #include "../smpboot.h" 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 102 103 /* 104 * Export tracepoints that act as a bare tracehook (ie: have no trace event 105 * associated with them) to allow external modules to probe them. 106 */ 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 119 120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 121 122 /* 123 * Debugging: various feature bits 124 * 125 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 126 * sysctl_sched_features, defined in sched.h, to allow constants propagation 127 * at compile time and compiler optimization based on features default. 128 */ 129 #define SCHED_FEAT(name, enabled) \ 130 (1UL << __SCHED_FEAT_##name) * enabled | 131 __read_mostly unsigned int sysctl_sched_features = 132 #include "features.h" 133 0; 134 #undef SCHED_FEAT 135 136 /* 137 * Print a warning if need_resched is set for the given duration (if 138 * LATENCY_WARN is enabled). 139 * 140 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 141 * per boot. 142 */ 143 __read_mostly int sysctl_resched_latency_warn_ms = 100; 144 __read_mostly int sysctl_resched_latency_warn_once = 1; 145 146 /* 147 * Number of tasks to iterate in a single balance run. 148 * Limited because this is done with IRQs disabled. 149 */ 150 __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 151 152 __read_mostly int scheduler_running; 153 154 #ifdef CONFIG_SCHED_CORE 155 156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 157 158 /* kernel prio, less is more */ 159 static inline int __task_prio(const struct task_struct *p) 160 { 161 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 162 return -2; 163 164 if (p->dl_server) 165 return -1; /* deadline */ 166 167 if (rt_or_dl_prio(p->prio)) 168 return p->prio; /* [-1, 99] */ 169 170 if (p->sched_class == &idle_sched_class) 171 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 172 173 if (task_on_scx(p)) 174 return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ 175 176 return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ 177 } 178 179 /* 180 * l(a,b) 181 * le(a,b) := !l(b,a) 182 * g(a,b) := l(b,a) 183 * ge(a,b) := !l(a,b) 184 */ 185 186 /* real prio, less is less */ 187 static inline bool prio_less(const struct task_struct *a, 188 const struct task_struct *b, bool in_fi) 189 { 190 191 int pa = __task_prio(a), pb = __task_prio(b); 192 193 if (-pa < -pb) 194 return true; 195 196 if (-pb < -pa) 197 return false; 198 199 if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */ 200 const struct sched_dl_entity *a_dl, *b_dl; 201 202 a_dl = &a->dl; 203 /* 204 * Since,'a' and 'b' can be CFS tasks served by DL server, 205 * __task_prio() can return -1 (for DL) even for those. In that 206 * case, get to the dl_server's DL entity. 207 */ 208 if (a->dl_server) 209 a_dl = a->dl_server; 210 211 b_dl = &b->dl; 212 if (b->dl_server) 213 b_dl = b->dl_server; 214 215 return !dl_time_before(a_dl->deadline, b_dl->deadline); 216 } 217 218 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 219 return cfs_prio_less(a, b, in_fi); 220 221 #ifdef CONFIG_SCHED_CLASS_EXT 222 if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */ 223 return scx_prio_less(a, b, in_fi); 224 #endif 225 226 return false; 227 } 228 229 static inline bool __sched_core_less(const struct task_struct *a, 230 const struct task_struct *b) 231 { 232 if (a->core_cookie < b->core_cookie) 233 return true; 234 235 if (a->core_cookie > b->core_cookie) 236 return false; 237 238 /* flip prio, so high prio is leftmost */ 239 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 240 return true; 241 242 return false; 243 } 244 245 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 246 247 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 248 { 249 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 250 } 251 252 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 253 { 254 const struct task_struct *p = __node_2_sc(node); 255 unsigned long cookie = (unsigned long)key; 256 257 if (cookie < p->core_cookie) 258 return -1; 259 260 if (cookie > p->core_cookie) 261 return 1; 262 263 return 0; 264 } 265 266 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 267 { 268 if (p->se.sched_delayed) 269 return; 270 271 rq->core->core_task_seq++; 272 273 if (!p->core_cookie) 274 return; 275 276 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 277 } 278 279 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 280 { 281 if (p->se.sched_delayed) 282 return; 283 284 rq->core->core_task_seq++; 285 286 if (sched_core_enqueued(p)) { 287 rb_erase(&p->core_node, &rq->core_tree); 288 RB_CLEAR_NODE(&p->core_node); 289 } 290 291 /* 292 * Migrating the last task off the cpu, with the cpu in forced idle 293 * state. Reschedule to create an accounting edge for forced idle, 294 * and re-examine whether the core is still in forced idle state. 295 */ 296 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 297 rq->core->core_forceidle_count && rq->curr == rq->idle) 298 resched_curr(rq); 299 } 300 301 static int sched_task_is_throttled(struct task_struct *p, int cpu) 302 { 303 if (p->sched_class->task_is_throttled) 304 return p->sched_class->task_is_throttled(p, cpu); 305 306 return 0; 307 } 308 309 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 310 { 311 struct rb_node *node = &p->core_node; 312 int cpu = task_cpu(p); 313 314 do { 315 node = rb_next(node); 316 if (!node) 317 return NULL; 318 319 p = __node_2_sc(node); 320 if (p->core_cookie != cookie) 321 return NULL; 322 323 } while (sched_task_is_throttled(p, cpu)); 324 325 return p; 326 } 327 328 /* 329 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 330 * If no suitable task is found, NULL will be returned. 331 */ 332 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 333 { 334 struct task_struct *p; 335 struct rb_node *node; 336 337 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 338 if (!node) 339 return NULL; 340 341 p = __node_2_sc(node); 342 if (!sched_task_is_throttled(p, rq->cpu)) 343 return p; 344 345 return sched_core_next(p, cookie); 346 } 347 348 /* 349 * Magic required such that: 350 * 351 * raw_spin_rq_lock(rq); 352 * ... 353 * raw_spin_rq_unlock(rq); 354 * 355 * ends up locking and unlocking the _same_ lock, and all CPUs 356 * always agree on what rq has what lock. 357 * 358 * XXX entirely possible to selectively enable cores, don't bother for now. 359 */ 360 361 static DEFINE_MUTEX(sched_core_mutex); 362 static atomic_t sched_core_count; 363 static struct cpumask sched_core_mask; 364 365 static void sched_core_lock(int cpu, unsigned long *flags) 366 { 367 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 368 int t, i = 0; 369 370 local_irq_save(*flags); 371 for_each_cpu(t, smt_mask) 372 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 373 } 374 375 static void sched_core_unlock(int cpu, unsigned long *flags) 376 { 377 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 378 int t; 379 380 for_each_cpu(t, smt_mask) 381 raw_spin_unlock(&cpu_rq(t)->__lock); 382 local_irq_restore(*flags); 383 } 384 385 static void __sched_core_flip(bool enabled) 386 { 387 unsigned long flags; 388 int cpu, t; 389 390 cpus_read_lock(); 391 392 /* 393 * Toggle the online cores, one by one. 394 */ 395 cpumask_copy(&sched_core_mask, cpu_online_mask); 396 for_each_cpu(cpu, &sched_core_mask) { 397 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 398 399 sched_core_lock(cpu, &flags); 400 401 for_each_cpu(t, smt_mask) 402 cpu_rq(t)->core_enabled = enabled; 403 404 cpu_rq(cpu)->core->core_forceidle_start = 0; 405 406 sched_core_unlock(cpu, &flags); 407 408 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 409 } 410 411 /* 412 * Toggle the offline CPUs. 413 */ 414 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 415 cpu_rq(cpu)->core_enabled = enabled; 416 417 cpus_read_unlock(); 418 } 419 420 static void sched_core_assert_empty(void) 421 { 422 int cpu; 423 424 for_each_possible_cpu(cpu) 425 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 426 } 427 428 static void __sched_core_enable(void) 429 { 430 static_branch_enable(&__sched_core_enabled); 431 /* 432 * Ensure all previous instances of raw_spin_rq_*lock() have finished 433 * and future ones will observe !sched_core_disabled(). 434 */ 435 synchronize_rcu(); 436 __sched_core_flip(true); 437 sched_core_assert_empty(); 438 } 439 440 static void __sched_core_disable(void) 441 { 442 sched_core_assert_empty(); 443 __sched_core_flip(false); 444 static_branch_disable(&__sched_core_enabled); 445 } 446 447 void sched_core_get(void) 448 { 449 if (atomic_inc_not_zero(&sched_core_count)) 450 return; 451 452 mutex_lock(&sched_core_mutex); 453 if (!atomic_read(&sched_core_count)) 454 __sched_core_enable(); 455 456 smp_mb__before_atomic(); 457 atomic_inc(&sched_core_count); 458 mutex_unlock(&sched_core_mutex); 459 } 460 461 static void __sched_core_put(struct work_struct *work) 462 { 463 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 464 __sched_core_disable(); 465 mutex_unlock(&sched_core_mutex); 466 } 467 } 468 469 void sched_core_put(void) 470 { 471 static DECLARE_WORK(_work, __sched_core_put); 472 473 /* 474 * "There can be only one" 475 * 476 * Either this is the last one, or we don't actually need to do any 477 * 'work'. If it is the last *again*, we rely on 478 * WORK_STRUCT_PENDING_BIT. 479 */ 480 if (!atomic_add_unless(&sched_core_count, -1, 1)) 481 schedule_work(&_work); 482 } 483 484 #else /* !CONFIG_SCHED_CORE: */ 485 486 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 487 static inline void 488 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 489 490 #endif /* !CONFIG_SCHED_CORE */ 491 492 /* need a wrapper since we may need to trace from modules */ 493 EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp); 494 495 /* Call via the helper macro trace_set_current_state. */ 496 void __trace_set_current_state(int state_value) 497 { 498 trace_sched_set_state_tp(current, state_value); 499 } 500 EXPORT_SYMBOL(__trace_set_current_state); 501 502 /* 503 * Serialization rules: 504 * 505 * Lock order: 506 * 507 * p->pi_lock 508 * rq->lock 509 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 510 * 511 * rq1->lock 512 * rq2->lock where: rq1 < rq2 513 * 514 * Regular state: 515 * 516 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 517 * local CPU's rq->lock, it optionally removes the task from the runqueue and 518 * always looks at the local rq data structures to find the most eligible task 519 * to run next. 520 * 521 * Task enqueue is also under rq->lock, possibly taken from another CPU. 522 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 523 * the local CPU to avoid bouncing the runqueue state around [ see 524 * ttwu_queue_wakelist() ] 525 * 526 * Task wakeup, specifically wakeups that involve migration, are horribly 527 * complicated to avoid having to take two rq->locks. 528 * 529 * Special state: 530 * 531 * System-calls and anything external will use task_rq_lock() which acquires 532 * both p->pi_lock and rq->lock. As a consequence the state they change is 533 * stable while holding either lock: 534 * 535 * - sched_setaffinity()/ 536 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 537 * - set_user_nice(): p->se.load, p->*prio 538 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 539 * p->se.load, p->rt_priority, 540 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 541 * - sched_setnuma(): p->numa_preferred_nid 542 * - sched_move_task(): p->sched_task_group 543 * - uclamp_update_active() p->uclamp* 544 * 545 * p->state <- TASK_*: 546 * 547 * is changed locklessly using set_current_state(), __set_current_state() or 548 * set_special_state(), see their respective comments, or by 549 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 550 * concurrent self. 551 * 552 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 553 * 554 * is set by activate_task() and cleared by deactivate_task(), under 555 * rq->lock. Non-zero indicates the task is runnable, the special 556 * ON_RQ_MIGRATING state is used for migration without holding both 557 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 558 * 559 * Additionally it is possible to be ->on_rq but still be considered not 560 * runnable when p->se.sched_delayed is true. These tasks are on the runqueue 561 * but will be dequeued as soon as they get picked again. See the 562 * task_is_runnable() helper. 563 * 564 * p->on_cpu <- { 0, 1 }: 565 * 566 * is set by prepare_task() and cleared by finish_task() such that it will be 567 * set before p is scheduled-in and cleared after p is scheduled-out, both 568 * under rq->lock. Non-zero indicates the task is running on its CPU. 569 * 570 * [ The astute reader will observe that it is possible for two tasks on one 571 * CPU to have ->on_cpu = 1 at the same time. ] 572 * 573 * task_cpu(p): is changed by set_task_cpu(), the rules are: 574 * 575 * - Don't call set_task_cpu() on a blocked task: 576 * 577 * We don't care what CPU we're not running on, this simplifies hotplug, 578 * the CPU assignment of blocked tasks isn't required to be valid. 579 * 580 * - for try_to_wake_up(), called under p->pi_lock: 581 * 582 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 583 * 584 * - for migration called under rq->lock: 585 * [ see task_on_rq_migrating() in task_rq_lock() ] 586 * 587 * o move_queued_task() 588 * o detach_task() 589 * 590 * - for migration called under double_rq_lock(): 591 * 592 * o __migrate_swap_task() 593 * o push_rt_task() / pull_rt_task() 594 * o push_dl_task() / pull_dl_task() 595 * o dl_task_offline_migration() 596 * 597 */ 598 599 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 600 { 601 raw_spinlock_t *lock; 602 603 /* Matches synchronize_rcu() in __sched_core_enable() */ 604 preempt_disable(); 605 if (sched_core_disabled()) { 606 raw_spin_lock_nested(&rq->__lock, subclass); 607 /* preempt_count *MUST* be > 1 */ 608 preempt_enable_no_resched(); 609 return; 610 } 611 612 for (;;) { 613 lock = __rq_lockp(rq); 614 raw_spin_lock_nested(lock, subclass); 615 if (likely(lock == __rq_lockp(rq))) { 616 /* preempt_count *MUST* be > 1 */ 617 preempt_enable_no_resched(); 618 return; 619 } 620 raw_spin_unlock(lock); 621 } 622 } 623 624 bool raw_spin_rq_trylock(struct rq *rq) 625 { 626 raw_spinlock_t *lock; 627 bool ret; 628 629 /* Matches synchronize_rcu() in __sched_core_enable() */ 630 preempt_disable(); 631 if (sched_core_disabled()) { 632 ret = raw_spin_trylock(&rq->__lock); 633 preempt_enable(); 634 return ret; 635 } 636 637 for (;;) { 638 lock = __rq_lockp(rq); 639 ret = raw_spin_trylock(lock); 640 if (!ret || (likely(lock == __rq_lockp(rq)))) { 641 preempt_enable(); 642 return ret; 643 } 644 raw_spin_unlock(lock); 645 } 646 } 647 648 void raw_spin_rq_unlock(struct rq *rq) 649 { 650 raw_spin_unlock(rq_lockp(rq)); 651 } 652 653 /* 654 * double_rq_lock - safely lock two runqueues 655 */ 656 void double_rq_lock(struct rq *rq1, struct rq *rq2) 657 { 658 lockdep_assert_irqs_disabled(); 659 660 if (rq_order_less(rq2, rq1)) 661 swap(rq1, rq2); 662 663 raw_spin_rq_lock(rq1); 664 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 665 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 666 667 double_rq_clock_clear_update(rq1, rq2); 668 } 669 670 /* 671 * __task_rq_lock - lock the rq @p resides on. 672 */ 673 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 674 __acquires(rq->lock) 675 { 676 struct rq *rq; 677 678 lockdep_assert_held(&p->pi_lock); 679 680 for (;;) { 681 rq = task_rq(p); 682 raw_spin_rq_lock(rq); 683 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 684 rq_pin_lock(rq, rf); 685 return rq; 686 } 687 raw_spin_rq_unlock(rq); 688 689 while (unlikely(task_on_rq_migrating(p))) 690 cpu_relax(); 691 } 692 } 693 694 /* 695 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 696 */ 697 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 698 __acquires(p->pi_lock) 699 __acquires(rq->lock) 700 { 701 struct rq *rq; 702 703 for (;;) { 704 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 705 rq = task_rq(p); 706 raw_spin_rq_lock(rq); 707 /* 708 * move_queued_task() task_rq_lock() 709 * 710 * ACQUIRE (rq->lock) 711 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 712 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 713 * [S] ->cpu = new_cpu [L] task_rq() 714 * [L] ->on_rq 715 * RELEASE (rq->lock) 716 * 717 * If we observe the old CPU in task_rq_lock(), the acquire of 718 * the old rq->lock will fully serialize against the stores. 719 * 720 * If we observe the new CPU in task_rq_lock(), the address 721 * dependency headed by '[L] rq = task_rq()' and the acquire 722 * will pair with the WMB to ensure we then also see migrating. 723 */ 724 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 725 rq_pin_lock(rq, rf); 726 return rq; 727 } 728 raw_spin_rq_unlock(rq); 729 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 730 731 while (unlikely(task_on_rq_migrating(p))) 732 cpu_relax(); 733 } 734 } 735 736 /* 737 * RQ-clock updating methods: 738 */ 739 740 static void update_rq_clock_task(struct rq *rq, s64 delta) 741 { 742 /* 743 * In theory, the compile should just see 0 here, and optimize out the call 744 * to sched_rt_avg_update. But I don't trust it... 745 */ 746 s64 __maybe_unused steal = 0, irq_delta = 0; 747 748 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 749 if (irqtime_enabled()) { 750 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 751 752 /* 753 * Since irq_time is only updated on {soft,}irq_exit, we might run into 754 * this case when a previous update_rq_clock() happened inside a 755 * {soft,}IRQ region. 756 * 757 * When this happens, we stop ->clock_task and only update the 758 * prev_irq_time stamp to account for the part that fit, so that a next 759 * update will consume the rest. This ensures ->clock_task is 760 * monotonic. 761 * 762 * It does however cause some slight miss-attribution of {soft,}IRQ 763 * time, a more accurate solution would be to update the irq_time using 764 * the current rq->clock timestamp, except that would require using 765 * atomic ops. 766 */ 767 if (irq_delta > delta) 768 irq_delta = delta; 769 770 rq->prev_irq_time += irq_delta; 771 delta -= irq_delta; 772 delayacct_irq(rq->curr, irq_delta); 773 } 774 #endif 775 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 776 if (static_key_false((¶virt_steal_rq_enabled))) { 777 u64 prev_steal; 778 779 steal = prev_steal = paravirt_steal_clock(cpu_of(rq)); 780 steal -= rq->prev_steal_time_rq; 781 782 if (unlikely(steal > delta)) 783 steal = delta; 784 785 rq->prev_steal_time_rq = prev_steal; 786 delta -= steal; 787 } 788 #endif 789 790 rq->clock_task += delta; 791 792 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 793 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 794 update_irq_load_avg(rq, irq_delta + steal); 795 #endif 796 update_rq_clock_pelt(rq, delta); 797 } 798 799 void update_rq_clock(struct rq *rq) 800 { 801 s64 delta; 802 u64 clock; 803 804 lockdep_assert_rq_held(rq); 805 806 if (rq->clock_update_flags & RQCF_ACT_SKIP) 807 return; 808 809 if (sched_feat(WARN_DOUBLE_CLOCK)) 810 WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED); 811 rq->clock_update_flags |= RQCF_UPDATED; 812 813 clock = sched_clock_cpu(cpu_of(rq)); 814 scx_rq_clock_update(rq, clock); 815 816 delta = clock - rq->clock; 817 if (delta < 0) 818 return; 819 rq->clock += delta; 820 821 update_rq_clock_task(rq, delta); 822 } 823 824 #ifdef CONFIG_SCHED_HRTICK 825 /* 826 * Use HR-timers to deliver accurate preemption points. 827 */ 828 829 static void hrtick_clear(struct rq *rq) 830 { 831 if (hrtimer_active(&rq->hrtick_timer)) 832 hrtimer_cancel(&rq->hrtick_timer); 833 } 834 835 /* 836 * High-resolution timer tick. 837 * Runs from hardirq context with interrupts disabled. 838 */ 839 static enum hrtimer_restart hrtick(struct hrtimer *timer) 840 { 841 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 842 struct rq_flags rf; 843 844 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 845 846 rq_lock(rq, &rf); 847 update_rq_clock(rq); 848 rq->donor->sched_class->task_tick(rq, rq->curr, 1); 849 rq_unlock(rq, &rf); 850 851 return HRTIMER_NORESTART; 852 } 853 854 static void __hrtick_restart(struct rq *rq) 855 { 856 struct hrtimer *timer = &rq->hrtick_timer; 857 ktime_t time = rq->hrtick_time; 858 859 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 860 } 861 862 /* 863 * called from hardirq (IPI) context 864 */ 865 static void __hrtick_start(void *arg) 866 { 867 struct rq *rq = arg; 868 struct rq_flags rf; 869 870 rq_lock(rq, &rf); 871 __hrtick_restart(rq); 872 rq_unlock(rq, &rf); 873 } 874 875 /* 876 * Called to set the hrtick timer state. 877 * 878 * called with rq->lock held and IRQs disabled 879 */ 880 void hrtick_start(struct rq *rq, u64 delay) 881 { 882 struct hrtimer *timer = &rq->hrtick_timer; 883 s64 delta; 884 885 /* 886 * Don't schedule slices shorter than 10000ns, that just 887 * doesn't make sense and can cause timer DoS. 888 */ 889 delta = max_t(s64, delay, 10000LL); 890 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 891 892 if (rq == this_rq()) 893 __hrtick_restart(rq); 894 else 895 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 896 } 897 898 static void hrtick_rq_init(struct rq *rq) 899 { 900 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 901 hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 902 } 903 #else /* !CONFIG_SCHED_HRTICK: */ 904 static inline void hrtick_clear(struct rq *rq) 905 { 906 } 907 908 static inline void hrtick_rq_init(struct rq *rq) 909 { 910 } 911 #endif /* !CONFIG_SCHED_HRTICK */ 912 913 /* 914 * try_cmpxchg based fetch_or() macro so it works for different integer types: 915 */ 916 #define fetch_or(ptr, mask) \ 917 ({ \ 918 typeof(ptr) _ptr = (ptr); \ 919 typeof(mask) _mask = (mask); \ 920 typeof(*_ptr) _val = *_ptr; \ 921 \ 922 do { \ 923 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 924 _val; \ 925 }) 926 927 #ifdef TIF_POLLING_NRFLAG 928 /* 929 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 930 * this avoids any races wrt polling state changes and thereby avoids 931 * spurious IPIs. 932 */ 933 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 934 { 935 return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG); 936 } 937 938 /* 939 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 940 * 941 * If this returns true, then the idle task promises to call 942 * sched_ttwu_pending() and reschedule soon. 943 */ 944 static bool set_nr_if_polling(struct task_struct *p) 945 { 946 struct thread_info *ti = task_thread_info(p); 947 typeof(ti->flags) val = READ_ONCE(ti->flags); 948 949 do { 950 if (!(val & _TIF_POLLING_NRFLAG)) 951 return false; 952 if (val & _TIF_NEED_RESCHED) 953 return true; 954 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 955 956 return true; 957 } 958 959 #else 960 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 961 { 962 set_ti_thread_flag(ti, tif); 963 return true; 964 } 965 966 static inline bool set_nr_if_polling(struct task_struct *p) 967 { 968 return false; 969 } 970 #endif 971 972 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 973 { 974 struct wake_q_node *node = &task->wake_q; 975 976 /* 977 * Atomically grab the task, if ->wake_q is !nil already it means 978 * it's already queued (either by us or someone else) and will get the 979 * wakeup due to that. 980 * 981 * In order to ensure that a pending wakeup will observe our pending 982 * state, even in the failed case, an explicit smp_mb() must be used. 983 */ 984 smp_mb__before_atomic(); 985 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 986 return false; 987 988 /* 989 * The head is context local, there can be no concurrency. 990 */ 991 *head->lastp = node; 992 head->lastp = &node->next; 993 return true; 994 } 995 996 /** 997 * wake_q_add() - queue a wakeup for 'later' waking. 998 * @head: the wake_q_head to add @task to 999 * @task: the task to queue for 'later' wakeup 1000 * 1001 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1002 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1003 * instantly. 1004 * 1005 * This function must be used as-if it were wake_up_process(); IOW the task 1006 * must be ready to be woken at this location. 1007 */ 1008 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 1009 { 1010 if (__wake_q_add(head, task)) 1011 get_task_struct(task); 1012 } 1013 1014 /** 1015 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 1016 * @head: the wake_q_head to add @task to 1017 * @task: the task to queue for 'later' wakeup 1018 * 1019 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1020 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1021 * instantly. 1022 * 1023 * This function must be used as-if it were wake_up_process(); IOW the task 1024 * must be ready to be woken at this location. 1025 * 1026 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1027 * that already hold reference to @task can call the 'safe' version and trust 1028 * wake_q to do the right thing depending whether or not the @task is already 1029 * queued for wakeup. 1030 */ 1031 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1032 { 1033 if (!__wake_q_add(head, task)) 1034 put_task_struct(task); 1035 } 1036 1037 void wake_up_q(struct wake_q_head *head) 1038 { 1039 struct wake_q_node *node = head->first; 1040 1041 while (node != WAKE_Q_TAIL) { 1042 struct task_struct *task; 1043 1044 task = container_of(node, struct task_struct, wake_q); 1045 node = node->next; 1046 /* pairs with cmpxchg_relaxed() in __wake_q_add() */ 1047 WRITE_ONCE(task->wake_q.next, NULL); 1048 /* Task can safely be re-inserted now. */ 1049 1050 /* 1051 * wake_up_process() executes a full barrier, which pairs with 1052 * the queueing in wake_q_add() so as not to miss wakeups. 1053 */ 1054 wake_up_process(task); 1055 put_task_struct(task); 1056 } 1057 } 1058 1059 /* 1060 * resched_curr - mark rq's current task 'to be rescheduled now'. 1061 * 1062 * On UP this means the setting of the need_resched flag, on SMP it 1063 * might also involve a cross-CPU call to trigger the scheduler on 1064 * the target CPU. 1065 */ 1066 static void __resched_curr(struct rq *rq, int tif) 1067 { 1068 struct task_struct *curr = rq->curr; 1069 struct thread_info *cti = task_thread_info(curr); 1070 int cpu; 1071 1072 lockdep_assert_rq_held(rq); 1073 1074 /* 1075 * Always immediately preempt the idle task; no point in delaying doing 1076 * actual work. 1077 */ 1078 if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY) 1079 tif = TIF_NEED_RESCHED; 1080 1081 if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED)) 1082 return; 1083 1084 cpu = cpu_of(rq); 1085 1086 if (cpu == smp_processor_id()) { 1087 set_ti_thread_flag(cti, tif); 1088 if (tif == TIF_NEED_RESCHED) 1089 set_preempt_need_resched(); 1090 return; 1091 } 1092 1093 if (set_nr_and_not_polling(cti, tif)) { 1094 if (tif == TIF_NEED_RESCHED) 1095 smp_send_reschedule(cpu); 1096 } else { 1097 trace_sched_wake_idle_without_ipi(cpu); 1098 } 1099 } 1100 1101 void resched_curr(struct rq *rq) 1102 { 1103 __resched_curr(rq, TIF_NEED_RESCHED); 1104 } 1105 1106 #ifdef CONFIG_PREEMPT_DYNAMIC 1107 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy); 1108 static __always_inline bool dynamic_preempt_lazy(void) 1109 { 1110 return static_branch_unlikely(&sk_dynamic_preempt_lazy); 1111 } 1112 #else 1113 static __always_inline bool dynamic_preempt_lazy(void) 1114 { 1115 return IS_ENABLED(CONFIG_PREEMPT_LAZY); 1116 } 1117 #endif 1118 1119 static __always_inline int get_lazy_tif_bit(void) 1120 { 1121 if (dynamic_preempt_lazy()) 1122 return TIF_NEED_RESCHED_LAZY; 1123 1124 return TIF_NEED_RESCHED; 1125 } 1126 1127 void resched_curr_lazy(struct rq *rq) 1128 { 1129 __resched_curr(rq, get_lazy_tif_bit()); 1130 } 1131 1132 void resched_cpu(int cpu) 1133 { 1134 struct rq *rq = cpu_rq(cpu); 1135 unsigned long flags; 1136 1137 raw_spin_rq_lock_irqsave(rq, flags); 1138 if (cpu_online(cpu) || cpu == smp_processor_id()) 1139 resched_curr(rq); 1140 raw_spin_rq_unlock_irqrestore(rq, flags); 1141 } 1142 1143 #ifdef CONFIG_NO_HZ_COMMON 1144 /* 1145 * In the semi idle case, use the nearest busy CPU for migrating timers 1146 * from an idle CPU. This is good for power-savings. 1147 * 1148 * We don't do similar optimization for completely idle system, as 1149 * selecting an idle CPU will add more delays to the timers than intended 1150 * (as that CPU's timer base may not be up to date wrt jiffies etc). 1151 */ 1152 int get_nohz_timer_target(void) 1153 { 1154 int i, cpu = smp_processor_id(), default_cpu = -1; 1155 struct sched_domain *sd; 1156 const struct cpumask *hk_mask; 1157 1158 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) { 1159 if (!idle_cpu(cpu)) 1160 return cpu; 1161 default_cpu = cpu; 1162 } 1163 1164 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 1165 1166 guard(rcu)(); 1167 1168 for_each_domain(cpu, sd) { 1169 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1170 if (cpu == i) 1171 continue; 1172 1173 if (!idle_cpu(i)) 1174 return i; 1175 } 1176 } 1177 1178 if (default_cpu == -1) 1179 default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE); 1180 1181 return default_cpu; 1182 } 1183 1184 /* 1185 * When add_timer_on() enqueues a timer into the timer wheel of an 1186 * idle CPU then this timer might expire before the next timer event 1187 * which is scheduled to wake up that CPU. In case of a completely 1188 * idle system the next event might even be infinite time into the 1189 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1190 * leaves the inner idle loop so the newly added timer is taken into 1191 * account when the CPU goes back to idle and evaluates the timer 1192 * wheel for the next timer event. 1193 */ 1194 static void wake_up_idle_cpu(int cpu) 1195 { 1196 struct rq *rq = cpu_rq(cpu); 1197 1198 if (cpu == smp_processor_id()) 1199 return; 1200 1201 /* 1202 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling 1203 * part of the idle loop. This forces an exit from the idle loop 1204 * and a round trip to schedule(). Now this could be optimized 1205 * because a simple new idle loop iteration is enough to 1206 * re-evaluate the next tick. Provided some re-ordering of tick 1207 * nohz functions that would need to follow TIF_NR_POLLING 1208 * clearing: 1209 * 1210 * - On most architectures, a simple fetch_or on ti::flags with a 1211 * "0" value would be enough to know if an IPI needs to be sent. 1212 * 1213 * - x86 needs to perform a last need_resched() check between 1214 * monitor and mwait which doesn't take timers into account. 1215 * There a dedicated TIF_TIMER flag would be required to 1216 * fetch_or here and be checked along with TIF_NEED_RESCHED 1217 * before mwait(). 1218 * 1219 * However, remote timer enqueue is not such a frequent event 1220 * and testing of the above solutions didn't appear to report 1221 * much benefits. 1222 */ 1223 if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED)) 1224 smp_send_reschedule(cpu); 1225 else 1226 trace_sched_wake_idle_without_ipi(cpu); 1227 } 1228 1229 static bool wake_up_full_nohz_cpu(int cpu) 1230 { 1231 /* 1232 * We just need the target to call irq_exit() and re-evaluate 1233 * the next tick. The nohz full kick at least implies that. 1234 * If needed we can still optimize that later with an 1235 * empty IRQ. 1236 */ 1237 if (cpu_is_offline(cpu)) 1238 return true; /* Don't try to wake offline CPUs. */ 1239 if (tick_nohz_full_cpu(cpu)) { 1240 if (cpu != smp_processor_id() || 1241 tick_nohz_tick_stopped()) 1242 tick_nohz_full_kick_cpu(cpu); 1243 return true; 1244 } 1245 1246 return false; 1247 } 1248 1249 /* 1250 * Wake up the specified CPU. If the CPU is going offline, it is the 1251 * caller's responsibility to deal with the lost wakeup, for example, 1252 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1253 */ 1254 void wake_up_nohz_cpu(int cpu) 1255 { 1256 if (!wake_up_full_nohz_cpu(cpu)) 1257 wake_up_idle_cpu(cpu); 1258 } 1259 1260 static void nohz_csd_func(void *info) 1261 { 1262 struct rq *rq = info; 1263 int cpu = cpu_of(rq); 1264 unsigned int flags; 1265 1266 /* 1267 * Release the rq::nohz_csd. 1268 */ 1269 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1270 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1271 1272 rq->idle_balance = idle_cpu(cpu); 1273 if (rq->idle_balance) { 1274 rq->nohz_idle_balance = flags; 1275 __raise_softirq_irqoff(SCHED_SOFTIRQ); 1276 } 1277 } 1278 1279 #endif /* CONFIG_NO_HZ_COMMON */ 1280 1281 #ifdef CONFIG_NO_HZ_FULL 1282 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1283 { 1284 if (rq->nr_running != 1) 1285 return false; 1286 1287 if (p->sched_class != &fair_sched_class) 1288 return false; 1289 1290 if (!task_on_rq_queued(p)) 1291 return false; 1292 1293 return true; 1294 } 1295 1296 bool sched_can_stop_tick(struct rq *rq) 1297 { 1298 int fifo_nr_running; 1299 1300 /* Deadline tasks, even if single, need the tick */ 1301 if (rq->dl.dl_nr_running) 1302 return false; 1303 1304 /* 1305 * If there are more than one RR tasks, we need the tick to affect the 1306 * actual RR behaviour. 1307 */ 1308 if (rq->rt.rr_nr_running) { 1309 if (rq->rt.rr_nr_running == 1) 1310 return true; 1311 else 1312 return false; 1313 } 1314 1315 /* 1316 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1317 * forced preemption between FIFO tasks. 1318 */ 1319 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1320 if (fifo_nr_running) 1321 return true; 1322 1323 /* 1324 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks 1325 * left. For CFS, if there's more than one we need the tick for 1326 * involuntary preemption. For SCX, ask. 1327 */ 1328 if (scx_enabled() && !scx_can_stop_tick(rq)) 1329 return false; 1330 1331 if (rq->cfs.h_nr_queued > 1) 1332 return false; 1333 1334 /* 1335 * If there is one task and it has CFS runtime bandwidth constraints 1336 * and it's on the cpu now we don't want to stop the tick. 1337 * This check prevents clearing the bit if a newly enqueued task here is 1338 * dequeued by migrating while the constrained task continues to run. 1339 * E.g. going from 2->1 without going through pick_next_task(). 1340 */ 1341 if (__need_bw_check(rq, rq->curr)) { 1342 if (cfs_task_bw_constrained(rq->curr)) 1343 return false; 1344 } 1345 1346 return true; 1347 } 1348 #endif /* CONFIG_NO_HZ_FULL */ 1349 1350 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_FAIR_GROUP_SCHED) 1351 /* 1352 * Iterate task_group tree rooted at *from, calling @down when first entering a 1353 * node and @up when leaving it for the final time. 1354 * 1355 * Caller must hold rcu_lock or sufficient equivalent. 1356 */ 1357 int walk_tg_tree_from(struct task_group *from, 1358 tg_visitor down, tg_visitor up, void *data) 1359 { 1360 struct task_group *parent, *child; 1361 int ret; 1362 1363 parent = from; 1364 1365 down: 1366 ret = (*down)(parent, data); 1367 if (ret) 1368 goto out; 1369 list_for_each_entry_rcu(child, &parent->children, siblings) { 1370 parent = child; 1371 goto down; 1372 1373 up: 1374 continue; 1375 } 1376 ret = (*up)(parent, data); 1377 if (ret || parent == from) 1378 goto out; 1379 1380 child = parent; 1381 parent = parent->parent; 1382 if (parent) 1383 goto up; 1384 out: 1385 return ret; 1386 } 1387 1388 int tg_nop(struct task_group *tg, void *data) 1389 { 1390 return 0; 1391 } 1392 #endif 1393 1394 void set_load_weight(struct task_struct *p, bool update_load) 1395 { 1396 int prio = p->static_prio - MAX_RT_PRIO; 1397 struct load_weight lw; 1398 1399 if (task_has_idle_policy(p)) { 1400 lw.weight = scale_load(WEIGHT_IDLEPRIO); 1401 lw.inv_weight = WMULT_IDLEPRIO; 1402 } else { 1403 lw.weight = scale_load(sched_prio_to_weight[prio]); 1404 lw.inv_weight = sched_prio_to_wmult[prio]; 1405 } 1406 1407 /* 1408 * SCHED_OTHER tasks have to update their load when changing their 1409 * weight 1410 */ 1411 if (update_load && p->sched_class->reweight_task) 1412 p->sched_class->reweight_task(task_rq(p), p, &lw); 1413 else 1414 p->se.load = lw; 1415 } 1416 1417 #ifdef CONFIG_UCLAMP_TASK 1418 /* 1419 * Serializes updates of utilization clamp values 1420 * 1421 * The (slow-path) user-space triggers utilization clamp value updates which 1422 * can require updates on (fast-path) scheduler's data structures used to 1423 * support enqueue/dequeue operations. 1424 * While the per-CPU rq lock protects fast-path update operations, user-space 1425 * requests are serialized using a mutex to reduce the risk of conflicting 1426 * updates or API abuses. 1427 */ 1428 static __maybe_unused DEFINE_MUTEX(uclamp_mutex); 1429 1430 /* Max allowed minimum utilization */ 1431 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1432 1433 /* Max allowed maximum utilization */ 1434 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1435 1436 /* 1437 * By default RT tasks run at the maximum performance point/capacity of the 1438 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1439 * SCHED_CAPACITY_SCALE. 1440 * 1441 * This knob allows admins to change the default behavior when uclamp is being 1442 * used. In battery powered devices, particularly, running at the maximum 1443 * capacity and frequency will increase energy consumption and shorten the 1444 * battery life. 1445 * 1446 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1447 * 1448 * This knob will not override the system default sched_util_clamp_min defined 1449 * above. 1450 */ 1451 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1452 1453 /* All clamps are required to be less or equal than these values */ 1454 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1455 1456 /* 1457 * This static key is used to reduce the uclamp overhead in the fast path. It 1458 * primarily disables the call to uclamp_rq_{inc, dec}() in 1459 * enqueue/dequeue_task(). 1460 * 1461 * This allows users to continue to enable uclamp in their kernel config with 1462 * minimum uclamp overhead in the fast path. 1463 * 1464 * As soon as userspace modifies any of the uclamp knobs, the static key is 1465 * enabled, since we have an actual users that make use of uclamp 1466 * functionality. 1467 * 1468 * The knobs that would enable this static key are: 1469 * 1470 * * A task modifying its uclamp value with sched_setattr(). 1471 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1472 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1473 */ 1474 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1475 1476 static inline unsigned int 1477 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1478 unsigned int clamp_value) 1479 { 1480 /* 1481 * Avoid blocked utilization pushing up the frequency when we go 1482 * idle (which drops the max-clamp) by retaining the last known 1483 * max-clamp. 1484 */ 1485 if (clamp_id == UCLAMP_MAX) { 1486 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1487 return clamp_value; 1488 } 1489 1490 return uclamp_none(UCLAMP_MIN); 1491 } 1492 1493 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1494 unsigned int clamp_value) 1495 { 1496 /* Reset max-clamp retention only on idle exit */ 1497 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1498 return; 1499 1500 uclamp_rq_set(rq, clamp_id, clamp_value); 1501 } 1502 1503 static inline 1504 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1505 unsigned int clamp_value) 1506 { 1507 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1508 int bucket_id = UCLAMP_BUCKETS - 1; 1509 1510 /* 1511 * Since both min and max clamps are max aggregated, find the 1512 * top most bucket with tasks in. 1513 */ 1514 for ( ; bucket_id >= 0; bucket_id--) { 1515 if (!bucket[bucket_id].tasks) 1516 continue; 1517 return bucket[bucket_id].value; 1518 } 1519 1520 /* No tasks -- default clamp values */ 1521 return uclamp_idle_value(rq, clamp_id, clamp_value); 1522 } 1523 1524 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1525 { 1526 unsigned int default_util_min; 1527 struct uclamp_se *uc_se; 1528 1529 lockdep_assert_held(&p->pi_lock); 1530 1531 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1532 1533 /* Only sync if user didn't override the default */ 1534 if (uc_se->user_defined) 1535 return; 1536 1537 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1538 uclamp_se_set(uc_se, default_util_min, false); 1539 } 1540 1541 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1542 { 1543 if (!rt_task(p)) 1544 return; 1545 1546 /* Protect updates to p->uclamp_* */ 1547 guard(task_rq_lock)(p); 1548 __uclamp_update_util_min_rt_default(p); 1549 } 1550 1551 static inline struct uclamp_se 1552 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1553 { 1554 /* Copy by value as we could modify it */ 1555 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1556 #ifdef CONFIG_UCLAMP_TASK_GROUP 1557 unsigned int tg_min, tg_max, value; 1558 1559 /* 1560 * Tasks in autogroups or root task group will be 1561 * restricted by system defaults. 1562 */ 1563 if (task_group_is_autogroup(task_group(p))) 1564 return uc_req; 1565 if (task_group(p) == &root_task_group) 1566 return uc_req; 1567 1568 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1569 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1570 value = uc_req.value; 1571 value = clamp(value, tg_min, tg_max); 1572 uclamp_se_set(&uc_req, value, false); 1573 #endif 1574 1575 return uc_req; 1576 } 1577 1578 /* 1579 * The effective clamp bucket index of a task depends on, by increasing 1580 * priority: 1581 * - the task specific clamp value, when explicitly requested from userspace 1582 * - the task group effective clamp value, for tasks not either in the root 1583 * group or in an autogroup 1584 * - the system default clamp value, defined by the sysadmin 1585 */ 1586 static inline struct uclamp_se 1587 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1588 { 1589 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1590 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1591 1592 /* System default restrictions always apply */ 1593 if (unlikely(uc_req.value > uc_max.value)) 1594 return uc_max; 1595 1596 return uc_req; 1597 } 1598 1599 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1600 { 1601 struct uclamp_se uc_eff; 1602 1603 /* Task currently refcounted: use back-annotated (effective) value */ 1604 if (p->uclamp[clamp_id].active) 1605 return (unsigned long)p->uclamp[clamp_id].value; 1606 1607 uc_eff = uclamp_eff_get(p, clamp_id); 1608 1609 return (unsigned long)uc_eff.value; 1610 } 1611 1612 /* 1613 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1614 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1615 * updates the rq's clamp value if required. 1616 * 1617 * Tasks can have a task-specific value requested from user-space, track 1618 * within each bucket the maximum value for tasks refcounted in it. 1619 * This "local max aggregation" allows to track the exact "requested" value 1620 * for each bucket when all its RUNNABLE tasks require the same clamp. 1621 */ 1622 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1623 enum uclamp_id clamp_id) 1624 { 1625 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1626 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1627 struct uclamp_bucket *bucket; 1628 1629 lockdep_assert_rq_held(rq); 1630 1631 /* Update task effective clamp */ 1632 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1633 1634 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1635 bucket->tasks++; 1636 uc_se->active = true; 1637 1638 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1639 1640 /* 1641 * Local max aggregation: rq buckets always track the max 1642 * "requested" clamp value of its RUNNABLE tasks. 1643 */ 1644 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1645 bucket->value = uc_se->value; 1646 1647 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1648 uclamp_rq_set(rq, clamp_id, uc_se->value); 1649 } 1650 1651 /* 1652 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1653 * is released. If this is the last task reference counting the rq's max 1654 * active clamp value, then the rq's clamp value is updated. 1655 * 1656 * Both refcounted tasks and rq's cached clamp values are expected to be 1657 * always valid. If it's detected they are not, as defensive programming, 1658 * enforce the expected state and warn. 1659 */ 1660 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1661 enum uclamp_id clamp_id) 1662 { 1663 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1664 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1665 struct uclamp_bucket *bucket; 1666 unsigned int bkt_clamp; 1667 unsigned int rq_clamp; 1668 1669 lockdep_assert_rq_held(rq); 1670 1671 /* 1672 * If sched_uclamp_used was enabled after task @p was enqueued, 1673 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1674 * 1675 * In this case the uc_se->active flag should be false since no uclamp 1676 * accounting was performed at enqueue time and we can just return 1677 * here. 1678 * 1679 * Need to be careful of the following enqueue/dequeue ordering 1680 * problem too 1681 * 1682 * enqueue(taskA) 1683 * // sched_uclamp_used gets enabled 1684 * enqueue(taskB) 1685 * dequeue(taskA) 1686 * // Must not decrement bucket->tasks here 1687 * dequeue(taskB) 1688 * 1689 * where we could end up with stale data in uc_se and 1690 * bucket[uc_se->bucket_id]. 1691 * 1692 * The following check here eliminates the possibility of such race. 1693 */ 1694 if (unlikely(!uc_se->active)) 1695 return; 1696 1697 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1698 1699 WARN_ON_ONCE(!bucket->tasks); 1700 if (likely(bucket->tasks)) 1701 bucket->tasks--; 1702 1703 uc_se->active = false; 1704 1705 /* 1706 * Keep "local max aggregation" simple and accept to (possibly) 1707 * overboost some RUNNABLE tasks in the same bucket. 1708 * The rq clamp bucket value is reset to its base value whenever 1709 * there are no more RUNNABLE tasks refcounting it. 1710 */ 1711 if (likely(bucket->tasks)) 1712 return; 1713 1714 rq_clamp = uclamp_rq_get(rq, clamp_id); 1715 /* 1716 * Defensive programming: this should never happen. If it happens, 1717 * e.g. due to future modification, warn and fix up the expected value. 1718 */ 1719 WARN_ON_ONCE(bucket->value > rq_clamp); 1720 if (bucket->value >= rq_clamp) { 1721 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1722 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1723 } 1724 } 1725 1726 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) 1727 { 1728 enum uclamp_id clamp_id; 1729 1730 /* 1731 * Avoid any overhead until uclamp is actually used by the userspace. 1732 * 1733 * The condition is constructed such that a NOP is generated when 1734 * sched_uclamp_used is disabled. 1735 */ 1736 if (!uclamp_is_used()) 1737 return; 1738 1739 if (unlikely(!p->sched_class->uclamp_enabled)) 1740 return; 1741 1742 /* Only inc the delayed task which being woken up. */ 1743 if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED)) 1744 return; 1745 1746 for_each_clamp_id(clamp_id) 1747 uclamp_rq_inc_id(rq, p, clamp_id); 1748 1749 /* Reset clamp idle holding when there is one RUNNABLE task */ 1750 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1751 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1752 } 1753 1754 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1755 { 1756 enum uclamp_id clamp_id; 1757 1758 /* 1759 * Avoid any overhead until uclamp is actually used by the userspace. 1760 * 1761 * The condition is constructed such that a NOP is generated when 1762 * sched_uclamp_used is disabled. 1763 */ 1764 if (!uclamp_is_used()) 1765 return; 1766 1767 if (unlikely(!p->sched_class->uclamp_enabled)) 1768 return; 1769 1770 if (p->se.sched_delayed) 1771 return; 1772 1773 for_each_clamp_id(clamp_id) 1774 uclamp_rq_dec_id(rq, p, clamp_id); 1775 } 1776 1777 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1778 enum uclamp_id clamp_id) 1779 { 1780 if (!p->uclamp[clamp_id].active) 1781 return; 1782 1783 uclamp_rq_dec_id(rq, p, clamp_id); 1784 uclamp_rq_inc_id(rq, p, clamp_id); 1785 1786 /* 1787 * Make sure to clear the idle flag if we've transiently reached 0 1788 * active tasks on rq. 1789 */ 1790 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1791 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1792 } 1793 1794 static inline void 1795 uclamp_update_active(struct task_struct *p) 1796 { 1797 enum uclamp_id clamp_id; 1798 struct rq_flags rf; 1799 struct rq *rq; 1800 1801 /* 1802 * Lock the task and the rq where the task is (or was) queued. 1803 * 1804 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1805 * price to pay to safely serialize util_{min,max} updates with 1806 * enqueues, dequeues and migration operations. 1807 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1808 */ 1809 rq = task_rq_lock(p, &rf); 1810 1811 /* 1812 * Setting the clamp bucket is serialized by task_rq_lock(). 1813 * If the task is not yet RUNNABLE and its task_struct is not 1814 * affecting a valid clamp bucket, the next time it's enqueued, 1815 * it will already see the updated clamp bucket value. 1816 */ 1817 for_each_clamp_id(clamp_id) 1818 uclamp_rq_reinc_id(rq, p, clamp_id); 1819 1820 task_rq_unlock(rq, p, &rf); 1821 } 1822 1823 #ifdef CONFIG_UCLAMP_TASK_GROUP 1824 static inline void 1825 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1826 { 1827 struct css_task_iter it; 1828 struct task_struct *p; 1829 1830 css_task_iter_start(css, 0, &it); 1831 while ((p = css_task_iter_next(&it))) 1832 uclamp_update_active(p); 1833 css_task_iter_end(&it); 1834 } 1835 1836 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1837 #endif 1838 1839 #ifdef CONFIG_SYSCTL 1840 #ifdef CONFIG_UCLAMP_TASK_GROUP 1841 static void uclamp_update_root_tg(void) 1842 { 1843 struct task_group *tg = &root_task_group; 1844 1845 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1846 sysctl_sched_uclamp_util_min, false); 1847 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1848 sysctl_sched_uclamp_util_max, false); 1849 1850 guard(rcu)(); 1851 cpu_util_update_eff(&root_task_group.css); 1852 } 1853 #else 1854 static void uclamp_update_root_tg(void) { } 1855 #endif 1856 1857 static void uclamp_sync_util_min_rt_default(void) 1858 { 1859 struct task_struct *g, *p; 1860 1861 /* 1862 * copy_process() sysctl_uclamp 1863 * uclamp_min_rt = X; 1864 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1865 * // link thread smp_mb__after_spinlock() 1866 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1867 * sched_post_fork() for_each_process_thread() 1868 * __uclamp_sync_rt() __uclamp_sync_rt() 1869 * 1870 * Ensures that either sched_post_fork() will observe the new 1871 * uclamp_min_rt or for_each_process_thread() will observe the new 1872 * task. 1873 */ 1874 read_lock(&tasklist_lock); 1875 smp_mb__after_spinlock(); 1876 read_unlock(&tasklist_lock); 1877 1878 guard(rcu)(); 1879 for_each_process_thread(g, p) 1880 uclamp_update_util_min_rt_default(p); 1881 } 1882 1883 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write, 1884 void *buffer, size_t *lenp, loff_t *ppos) 1885 { 1886 bool update_root_tg = false; 1887 int old_min, old_max, old_min_rt; 1888 int result; 1889 1890 guard(mutex)(&uclamp_mutex); 1891 1892 old_min = sysctl_sched_uclamp_util_min; 1893 old_max = sysctl_sched_uclamp_util_max; 1894 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1895 1896 result = proc_dointvec(table, write, buffer, lenp, ppos); 1897 if (result) 1898 goto undo; 1899 if (!write) 1900 return 0; 1901 1902 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1903 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1904 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1905 1906 result = -EINVAL; 1907 goto undo; 1908 } 1909 1910 if (old_min != sysctl_sched_uclamp_util_min) { 1911 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1912 sysctl_sched_uclamp_util_min, false); 1913 update_root_tg = true; 1914 } 1915 if (old_max != sysctl_sched_uclamp_util_max) { 1916 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1917 sysctl_sched_uclamp_util_max, false); 1918 update_root_tg = true; 1919 } 1920 1921 if (update_root_tg) { 1922 sched_uclamp_enable(); 1923 uclamp_update_root_tg(); 1924 } 1925 1926 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1927 sched_uclamp_enable(); 1928 uclamp_sync_util_min_rt_default(); 1929 } 1930 1931 /* 1932 * We update all RUNNABLE tasks only when task groups are in use. 1933 * Otherwise, keep it simple and do just a lazy update at each next 1934 * task enqueue time. 1935 */ 1936 return 0; 1937 1938 undo: 1939 sysctl_sched_uclamp_util_min = old_min; 1940 sysctl_sched_uclamp_util_max = old_max; 1941 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1942 return result; 1943 } 1944 #endif /* CONFIG_SYSCTL */ 1945 1946 static void uclamp_fork(struct task_struct *p) 1947 { 1948 enum uclamp_id clamp_id; 1949 1950 /* 1951 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1952 * as the task is still at its early fork stages. 1953 */ 1954 for_each_clamp_id(clamp_id) 1955 p->uclamp[clamp_id].active = false; 1956 1957 if (likely(!p->sched_reset_on_fork)) 1958 return; 1959 1960 for_each_clamp_id(clamp_id) { 1961 uclamp_se_set(&p->uclamp_req[clamp_id], 1962 uclamp_none(clamp_id), false); 1963 } 1964 } 1965 1966 static void uclamp_post_fork(struct task_struct *p) 1967 { 1968 uclamp_update_util_min_rt_default(p); 1969 } 1970 1971 static void __init init_uclamp_rq(struct rq *rq) 1972 { 1973 enum uclamp_id clamp_id; 1974 struct uclamp_rq *uc_rq = rq->uclamp; 1975 1976 for_each_clamp_id(clamp_id) { 1977 uc_rq[clamp_id] = (struct uclamp_rq) { 1978 .value = uclamp_none(clamp_id) 1979 }; 1980 } 1981 1982 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 1983 } 1984 1985 static void __init init_uclamp(void) 1986 { 1987 struct uclamp_se uc_max = {}; 1988 enum uclamp_id clamp_id; 1989 int cpu; 1990 1991 for_each_possible_cpu(cpu) 1992 init_uclamp_rq(cpu_rq(cpu)); 1993 1994 for_each_clamp_id(clamp_id) { 1995 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1996 uclamp_none(clamp_id), false); 1997 } 1998 1999 /* System defaults allow max clamp values for both indexes */ 2000 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2001 for_each_clamp_id(clamp_id) { 2002 uclamp_default[clamp_id] = uc_max; 2003 #ifdef CONFIG_UCLAMP_TASK_GROUP 2004 root_task_group.uclamp_req[clamp_id] = uc_max; 2005 root_task_group.uclamp[clamp_id] = uc_max; 2006 #endif 2007 } 2008 } 2009 2010 #else /* !CONFIG_UCLAMP_TASK: */ 2011 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { } 2012 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2013 static inline void uclamp_fork(struct task_struct *p) { } 2014 static inline void uclamp_post_fork(struct task_struct *p) { } 2015 static inline void init_uclamp(void) { } 2016 #endif /* !CONFIG_UCLAMP_TASK */ 2017 2018 bool sched_task_on_rq(struct task_struct *p) 2019 { 2020 return task_on_rq_queued(p); 2021 } 2022 2023 unsigned long get_wchan(struct task_struct *p) 2024 { 2025 unsigned long ip = 0; 2026 unsigned int state; 2027 2028 if (!p || p == current) 2029 return 0; 2030 2031 /* Only get wchan if task is blocked and we can keep it that way. */ 2032 raw_spin_lock_irq(&p->pi_lock); 2033 state = READ_ONCE(p->__state); 2034 smp_rmb(); /* see try_to_wake_up() */ 2035 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2036 ip = __get_wchan(p); 2037 raw_spin_unlock_irq(&p->pi_lock); 2038 2039 return ip; 2040 } 2041 2042 void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2043 { 2044 if (!(flags & ENQUEUE_NOCLOCK)) 2045 update_rq_clock(rq); 2046 2047 /* 2048 * Can be before ->enqueue_task() because uclamp considers the 2049 * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared 2050 * in ->enqueue_task(). 2051 */ 2052 uclamp_rq_inc(rq, p, flags); 2053 2054 p->sched_class->enqueue_task(rq, p, flags); 2055 2056 psi_enqueue(p, flags); 2057 2058 if (!(flags & ENQUEUE_RESTORE)) 2059 sched_info_enqueue(rq, p); 2060 2061 if (sched_core_enabled(rq)) 2062 sched_core_enqueue(rq, p); 2063 } 2064 2065 /* 2066 * Must only return false when DEQUEUE_SLEEP. 2067 */ 2068 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2069 { 2070 if (sched_core_enabled(rq)) 2071 sched_core_dequeue(rq, p, flags); 2072 2073 if (!(flags & DEQUEUE_NOCLOCK)) 2074 update_rq_clock(rq); 2075 2076 if (!(flags & DEQUEUE_SAVE)) 2077 sched_info_dequeue(rq, p); 2078 2079 psi_dequeue(p, flags); 2080 2081 /* 2082 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail' 2083 * and mark the task ->sched_delayed. 2084 */ 2085 uclamp_rq_dec(rq, p); 2086 return p->sched_class->dequeue_task(rq, p, flags); 2087 } 2088 2089 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2090 { 2091 if (task_on_rq_migrating(p)) 2092 flags |= ENQUEUE_MIGRATED; 2093 if (flags & ENQUEUE_MIGRATED) 2094 sched_mm_cid_migrate_to(rq, p); 2095 2096 enqueue_task(rq, p, flags); 2097 2098 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); 2099 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2100 } 2101 2102 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2103 { 2104 WARN_ON_ONCE(flags & DEQUEUE_SLEEP); 2105 2106 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 2107 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2108 2109 /* 2110 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before* 2111 * dequeue_task() and cleared *after* enqueue_task(). 2112 */ 2113 2114 dequeue_task(rq, p, flags); 2115 } 2116 2117 static void block_task(struct rq *rq, struct task_struct *p, int flags) 2118 { 2119 if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags)) 2120 __block_task(rq, p); 2121 } 2122 2123 /** 2124 * task_curr - is this task currently executing on a CPU? 2125 * @p: the task in question. 2126 * 2127 * Return: 1 if the task is currently executing. 0 otherwise. 2128 */ 2129 inline int task_curr(const struct task_struct *p) 2130 { 2131 return cpu_curr(task_cpu(p)) == p; 2132 } 2133 2134 /* 2135 * ->switching_to() is called with the pi_lock and rq_lock held and must not 2136 * mess with locking. 2137 */ 2138 void check_class_changing(struct rq *rq, struct task_struct *p, 2139 const struct sched_class *prev_class) 2140 { 2141 if (prev_class != p->sched_class && p->sched_class->switching_to) 2142 p->sched_class->switching_to(rq, p); 2143 } 2144 2145 /* 2146 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2147 * use the balance_callback list if you want balancing. 2148 * 2149 * this means any call to check_class_changed() must be followed by a call to 2150 * balance_callback(). 2151 */ 2152 void check_class_changed(struct rq *rq, struct task_struct *p, 2153 const struct sched_class *prev_class, 2154 int oldprio) 2155 { 2156 if (prev_class != p->sched_class) { 2157 if (prev_class->switched_from) 2158 prev_class->switched_from(rq, p); 2159 2160 p->sched_class->switched_to(rq, p); 2161 } else if (oldprio != p->prio || dl_task(p)) 2162 p->sched_class->prio_changed(rq, p, oldprio); 2163 } 2164 2165 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2166 { 2167 struct task_struct *donor = rq->donor; 2168 2169 if (p->sched_class == donor->sched_class) 2170 donor->sched_class->wakeup_preempt(rq, p, flags); 2171 else if (sched_class_above(p->sched_class, donor->sched_class)) 2172 resched_curr(rq); 2173 2174 /* 2175 * A queue event has occurred, and we're going to schedule. In 2176 * this case, we can save a useless back to back clock update. 2177 */ 2178 if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr)) 2179 rq_clock_skip_update(rq); 2180 } 2181 2182 static __always_inline 2183 int __task_state_match(struct task_struct *p, unsigned int state) 2184 { 2185 if (READ_ONCE(p->__state) & state) 2186 return 1; 2187 2188 if (READ_ONCE(p->saved_state) & state) 2189 return -1; 2190 2191 return 0; 2192 } 2193 2194 static __always_inline 2195 int task_state_match(struct task_struct *p, unsigned int state) 2196 { 2197 /* 2198 * Serialize against current_save_and_set_rtlock_wait_state(), 2199 * current_restore_rtlock_saved_state(), and __refrigerator(). 2200 */ 2201 guard(raw_spinlock_irq)(&p->pi_lock); 2202 return __task_state_match(p, state); 2203 } 2204 2205 /* 2206 * wait_task_inactive - wait for a thread to unschedule. 2207 * 2208 * Wait for the thread to block in any of the states set in @match_state. 2209 * If it changes, i.e. @p might have woken up, then return zero. When we 2210 * succeed in waiting for @p to be off its CPU, we return a positive number 2211 * (its total switch count). If a second call a short while later returns the 2212 * same number, the caller can be sure that @p has remained unscheduled the 2213 * whole time. 2214 * 2215 * The caller must ensure that the task *will* unschedule sometime soon, 2216 * else this function might spin for a *long* time. This function can't 2217 * be called with interrupts off, or it may introduce deadlock with 2218 * smp_call_function() if an IPI is sent by the same process we are 2219 * waiting to become inactive. 2220 */ 2221 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2222 { 2223 int running, queued, match; 2224 struct rq_flags rf; 2225 unsigned long ncsw; 2226 struct rq *rq; 2227 2228 for (;;) { 2229 /* 2230 * We do the initial early heuristics without holding 2231 * any task-queue locks at all. We'll only try to get 2232 * the runqueue lock when things look like they will 2233 * work out! 2234 */ 2235 rq = task_rq(p); 2236 2237 /* 2238 * If the task is actively running on another CPU 2239 * still, just relax and busy-wait without holding 2240 * any locks. 2241 * 2242 * NOTE! Since we don't hold any locks, it's not 2243 * even sure that "rq" stays as the right runqueue! 2244 * But we don't care, since "task_on_cpu()" will 2245 * return false if the runqueue has changed and p 2246 * is actually now running somewhere else! 2247 */ 2248 while (task_on_cpu(rq, p)) { 2249 if (!task_state_match(p, match_state)) 2250 return 0; 2251 cpu_relax(); 2252 } 2253 2254 /* 2255 * Ok, time to look more closely! We need the rq 2256 * lock now, to be *sure*. If we're wrong, we'll 2257 * just go back and repeat. 2258 */ 2259 rq = task_rq_lock(p, &rf); 2260 /* 2261 * If task is sched_delayed, force dequeue it, to avoid always 2262 * hitting the tick timeout in the queued case 2263 */ 2264 if (p->se.sched_delayed) 2265 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 2266 trace_sched_wait_task(p); 2267 running = task_on_cpu(rq, p); 2268 queued = task_on_rq_queued(p); 2269 ncsw = 0; 2270 if ((match = __task_state_match(p, match_state))) { 2271 /* 2272 * When matching on p->saved_state, consider this task 2273 * still queued so it will wait. 2274 */ 2275 if (match < 0) 2276 queued = 1; 2277 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2278 } 2279 task_rq_unlock(rq, p, &rf); 2280 2281 /* 2282 * If it changed from the expected state, bail out now. 2283 */ 2284 if (unlikely(!ncsw)) 2285 break; 2286 2287 /* 2288 * Was it really running after all now that we 2289 * checked with the proper locks actually held? 2290 * 2291 * Oops. Go back and try again.. 2292 */ 2293 if (unlikely(running)) { 2294 cpu_relax(); 2295 continue; 2296 } 2297 2298 /* 2299 * It's not enough that it's not actively running, 2300 * it must be off the runqueue _entirely_, and not 2301 * preempted! 2302 * 2303 * So if it was still runnable (but just not actively 2304 * running right now), it's preempted, and we should 2305 * yield - it could be a while. 2306 */ 2307 if (unlikely(queued)) { 2308 ktime_t to = NSEC_PER_SEC / HZ; 2309 2310 set_current_state(TASK_UNINTERRUPTIBLE); 2311 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2312 continue; 2313 } 2314 2315 /* 2316 * Ahh, all good. It wasn't running, and it wasn't 2317 * runnable, which means that it will never become 2318 * running in the future either. We're all done! 2319 */ 2320 break; 2321 } 2322 2323 return ncsw; 2324 } 2325 2326 static void 2327 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2328 2329 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2330 { 2331 struct affinity_context ac = { 2332 .new_mask = cpumask_of(rq->cpu), 2333 .flags = SCA_MIGRATE_DISABLE, 2334 }; 2335 2336 if (likely(!p->migration_disabled)) 2337 return; 2338 2339 if (p->cpus_ptr != &p->cpus_mask) 2340 return; 2341 2342 /* 2343 * Violates locking rules! See comment in __do_set_cpus_allowed(). 2344 */ 2345 __do_set_cpus_allowed(p, &ac); 2346 } 2347 2348 void migrate_disable(void) 2349 { 2350 struct task_struct *p = current; 2351 2352 if (p->migration_disabled) { 2353 #ifdef CONFIG_DEBUG_PREEMPT 2354 /* 2355 *Warn about overflow half-way through the range. 2356 */ 2357 WARN_ON_ONCE((s16)p->migration_disabled < 0); 2358 #endif 2359 p->migration_disabled++; 2360 return; 2361 } 2362 2363 guard(preempt)(); 2364 this_rq()->nr_pinned++; 2365 p->migration_disabled = 1; 2366 } 2367 EXPORT_SYMBOL_GPL(migrate_disable); 2368 2369 void migrate_enable(void) 2370 { 2371 struct task_struct *p = current; 2372 struct affinity_context ac = { 2373 .new_mask = &p->cpus_mask, 2374 .flags = SCA_MIGRATE_ENABLE, 2375 }; 2376 2377 #ifdef CONFIG_DEBUG_PREEMPT 2378 /* 2379 * Check both overflow from migrate_disable() and superfluous 2380 * migrate_enable(). 2381 */ 2382 if (WARN_ON_ONCE((s16)p->migration_disabled <= 0)) 2383 return; 2384 #endif 2385 2386 if (p->migration_disabled > 1) { 2387 p->migration_disabled--; 2388 return; 2389 } 2390 2391 /* 2392 * Ensure stop_task runs either before or after this, and that 2393 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2394 */ 2395 guard(preempt)(); 2396 if (p->cpus_ptr != &p->cpus_mask) 2397 __set_cpus_allowed_ptr(p, &ac); 2398 /* 2399 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2400 * regular cpus_mask, otherwise things that race (eg. 2401 * select_fallback_rq) get confused. 2402 */ 2403 barrier(); 2404 p->migration_disabled = 0; 2405 this_rq()->nr_pinned--; 2406 } 2407 EXPORT_SYMBOL_GPL(migrate_enable); 2408 2409 static inline bool rq_has_pinned_tasks(struct rq *rq) 2410 { 2411 return rq->nr_pinned; 2412 } 2413 2414 /* 2415 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2416 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2417 */ 2418 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2419 { 2420 /* When not in the task's cpumask, no point in looking further. */ 2421 if (!task_allowed_on_cpu(p, cpu)) 2422 return false; 2423 2424 /* migrate_disabled() must be allowed to finish. */ 2425 if (is_migration_disabled(p)) 2426 return cpu_online(cpu); 2427 2428 /* Non kernel threads are not allowed during either online or offline. */ 2429 if (!(p->flags & PF_KTHREAD)) 2430 return cpu_active(cpu); 2431 2432 /* KTHREAD_IS_PER_CPU is always allowed. */ 2433 if (kthread_is_per_cpu(p)) 2434 return cpu_online(cpu); 2435 2436 /* Regular kernel threads don't get to stay during offline. */ 2437 if (cpu_dying(cpu)) 2438 return false; 2439 2440 /* But are allowed during online. */ 2441 return cpu_online(cpu); 2442 } 2443 2444 /* 2445 * This is how migration works: 2446 * 2447 * 1) we invoke migration_cpu_stop() on the target CPU using 2448 * stop_one_cpu(). 2449 * 2) stopper starts to run (implicitly forcing the migrated thread 2450 * off the CPU) 2451 * 3) it checks whether the migrated task is still in the wrong runqueue. 2452 * 4) if it's in the wrong runqueue then the migration thread removes 2453 * it and puts it into the right queue. 2454 * 5) stopper completes and stop_one_cpu() returns and the migration 2455 * is done. 2456 */ 2457 2458 /* 2459 * move_queued_task - move a queued task to new rq. 2460 * 2461 * Returns (locked) new rq. Old rq's lock is released. 2462 */ 2463 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2464 struct task_struct *p, int new_cpu) 2465 { 2466 lockdep_assert_rq_held(rq); 2467 2468 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2469 set_task_cpu(p, new_cpu); 2470 rq_unlock(rq, rf); 2471 2472 rq = cpu_rq(new_cpu); 2473 2474 rq_lock(rq, rf); 2475 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2476 activate_task(rq, p, 0); 2477 wakeup_preempt(rq, p, 0); 2478 2479 return rq; 2480 } 2481 2482 struct migration_arg { 2483 struct task_struct *task; 2484 int dest_cpu; 2485 struct set_affinity_pending *pending; 2486 }; 2487 2488 /* 2489 * @refs: number of wait_for_completion() 2490 * @stop_pending: is @stop_work in use 2491 */ 2492 struct set_affinity_pending { 2493 refcount_t refs; 2494 unsigned int stop_pending; 2495 struct completion done; 2496 struct cpu_stop_work stop_work; 2497 struct migration_arg arg; 2498 }; 2499 2500 /* 2501 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2502 * this because either it can't run here any more (set_cpus_allowed() 2503 * away from this CPU, or CPU going down), or because we're 2504 * attempting to rebalance this task on exec (sched_exec). 2505 * 2506 * So we race with normal scheduler movements, but that's OK, as long 2507 * as the task is no longer on this CPU. 2508 */ 2509 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2510 struct task_struct *p, int dest_cpu) 2511 { 2512 /* Affinity changed (again). */ 2513 if (!is_cpu_allowed(p, dest_cpu)) 2514 return rq; 2515 2516 rq = move_queued_task(rq, rf, p, dest_cpu); 2517 2518 return rq; 2519 } 2520 2521 /* 2522 * migration_cpu_stop - this will be executed by a high-prio stopper thread 2523 * and performs thread migration by bumping thread off CPU then 2524 * 'pushing' onto another runqueue. 2525 */ 2526 static int migration_cpu_stop(void *data) 2527 { 2528 struct migration_arg *arg = data; 2529 struct set_affinity_pending *pending = arg->pending; 2530 struct task_struct *p = arg->task; 2531 struct rq *rq = this_rq(); 2532 bool complete = false; 2533 struct rq_flags rf; 2534 2535 /* 2536 * The original target CPU might have gone down and we might 2537 * be on another CPU but it doesn't matter. 2538 */ 2539 local_irq_save(rf.flags); 2540 /* 2541 * We need to explicitly wake pending tasks before running 2542 * __migrate_task() such that we will not miss enforcing cpus_ptr 2543 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2544 */ 2545 flush_smp_call_function_queue(); 2546 2547 raw_spin_lock(&p->pi_lock); 2548 rq_lock(rq, &rf); 2549 2550 /* 2551 * If we were passed a pending, then ->stop_pending was set, thus 2552 * p->migration_pending must have remained stable. 2553 */ 2554 WARN_ON_ONCE(pending && pending != p->migration_pending); 2555 2556 /* 2557 * If task_rq(p) != rq, it cannot be migrated here, because we're 2558 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2559 * we're holding p->pi_lock. 2560 */ 2561 if (task_rq(p) == rq) { 2562 if (is_migration_disabled(p)) 2563 goto out; 2564 2565 if (pending) { 2566 p->migration_pending = NULL; 2567 complete = true; 2568 2569 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2570 goto out; 2571 } 2572 2573 if (task_on_rq_queued(p)) { 2574 update_rq_clock(rq); 2575 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2576 } else { 2577 p->wake_cpu = arg->dest_cpu; 2578 } 2579 2580 /* 2581 * XXX __migrate_task() can fail, at which point we might end 2582 * up running on a dodgy CPU, AFAICT this can only happen 2583 * during CPU hotplug, at which point we'll get pushed out 2584 * anyway, so it's probably not a big deal. 2585 */ 2586 2587 } else if (pending) { 2588 /* 2589 * This happens when we get migrated between migrate_enable()'s 2590 * preempt_enable() and scheduling the stopper task. At that 2591 * point we're a regular task again and not current anymore. 2592 * 2593 * A !PREEMPT kernel has a giant hole here, which makes it far 2594 * more likely. 2595 */ 2596 2597 /* 2598 * The task moved before the stopper got to run. We're holding 2599 * ->pi_lock, so the allowed mask is stable - if it got 2600 * somewhere allowed, we're done. 2601 */ 2602 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2603 p->migration_pending = NULL; 2604 complete = true; 2605 goto out; 2606 } 2607 2608 /* 2609 * When migrate_enable() hits a rq mis-match we can't reliably 2610 * determine is_migration_disabled() and so have to chase after 2611 * it. 2612 */ 2613 WARN_ON_ONCE(!pending->stop_pending); 2614 preempt_disable(); 2615 task_rq_unlock(rq, p, &rf); 2616 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2617 &pending->arg, &pending->stop_work); 2618 preempt_enable(); 2619 return 0; 2620 } 2621 out: 2622 if (pending) 2623 pending->stop_pending = false; 2624 task_rq_unlock(rq, p, &rf); 2625 2626 if (complete) 2627 complete_all(&pending->done); 2628 2629 return 0; 2630 } 2631 2632 int push_cpu_stop(void *arg) 2633 { 2634 struct rq *lowest_rq = NULL, *rq = this_rq(); 2635 struct task_struct *p = arg; 2636 2637 raw_spin_lock_irq(&p->pi_lock); 2638 raw_spin_rq_lock(rq); 2639 2640 if (task_rq(p) != rq) 2641 goto out_unlock; 2642 2643 if (is_migration_disabled(p)) { 2644 p->migration_flags |= MDF_PUSH; 2645 goto out_unlock; 2646 } 2647 2648 p->migration_flags &= ~MDF_PUSH; 2649 2650 if (p->sched_class->find_lock_rq) 2651 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2652 2653 if (!lowest_rq) 2654 goto out_unlock; 2655 2656 // XXX validate p is still the highest prio task 2657 if (task_rq(p) == rq) { 2658 move_queued_task_locked(rq, lowest_rq, p); 2659 resched_curr(lowest_rq); 2660 } 2661 2662 double_unlock_balance(rq, lowest_rq); 2663 2664 out_unlock: 2665 rq->push_busy = false; 2666 raw_spin_rq_unlock(rq); 2667 raw_spin_unlock_irq(&p->pi_lock); 2668 2669 put_task_struct(p); 2670 return 0; 2671 } 2672 2673 /* 2674 * sched_class::set_cpus_allowed must do the below, but is not required to 2675 * actually call this function. 2676 */ 2677 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2678 { 2679 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2680 p->cpus_ptr = ctx->new_mask; 2681 return; 2682 } 2683 2684 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2685 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2686 2687 /* 2688 * Swap in a new user_cpus_ptr if SCA_USER flag set 2689 */ 2690 if (ctx->flags & SCA_USER) 2691 swap(p->user_cpus_ptr, ctx->user_mask); 2692 } 2693 2694 static void 2695 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2696 { 2697 struct rq *rq = task_rq(p); 2698 bool queued, running; 2699 2700 /* 2701 * This here violates the locking rules for affinity, since we're only 2702 * supposed to change these variables while holding both rq->lock and 2703 * p->pi_lock. 2704 * 2705 * HOWEVER, it magically works, because ttwu() is the only code that 2706 * accesses these variables under p->pi_lock and only does so after 2707 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2708 * before finish_task(). 2709 * 2710 * XXX do further audits, this smells like something putrid. 2711 */ 2712 if (ctx->flags & SCA_MIGRATE_DISABLE) 2713 WARN_ON_ONCE(!p->on_cpu); 2714 else 2715 lockdep_assert_held(&p->pi_lock); 2716 2717 queued = task_on_rq_queued(p); 2718 running = task_current_donor(rq, p); 2719 2720 if (queued) { 2721 /* 2722 * Because __kthread_bind() calls this on blocked tasks without 2723 * holding rq->lock. 2724 */ 2725 lockdep_assert_rq_held(rq); 2726 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2727 } 2728 if (running) 2729 put_prev_task(rq, p); 2730 2731 p->sched_class->set_cpus_allowed(p, ctx); 2732 mm_set_cpus_allowed(p->mm, ctx->new_mask); 2733 2734 if (queued) 2735 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2736 if (running) 2737 set_next_task(rq, p); 2738 } 2739 2740 /* 2741 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2742 * affinity (if any) should be destroyed too. 2743 */ 2744 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2745 { 2746 struct affinity_context ac = { 2747 .new_mask = new_mask, 2748 .user_mask = NULL, 2749 .flags = SCA_USER, /* clear the user requested mask */ 2750 }; 2751 union cpumask_rcuhead { 2752 cpumask_t cpumask; 2753 struct rcu_head rcu; 2754 }; 2755 2756 __do_set_cpus_allowed(p, &ac); 2757 2758 /* 2759 * Because this is called with p->pi_lock held, it is not possible 2760 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2761 * kfree_rcu(). 2762 */ 2763 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2764 } 2765 2766 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2767 int node) 2768 { 2769 cpumask_t *user_mask; 2770 unsigned long flags; 2771 2772 /* 2773 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2774 * may differ by now due to racing. 2775 */ 2776 dst->user_cpus_ptr = NULL; 2777 2778 /* 2779 * This check is racy and losing the race is a valid situation. 2780 * It is not worth the extra overhead of taking the pi_lock on 2781 * every fork/clone. 2782 */ 2783 if (data_race(!src->user_cpus_ptr)) 2784 return 0; 2785 2786 user_mask = alloc_user_cpus_ptr(node); 2787 if (!user_mask) 2788 return -ENOMEM; 2789 2790 /* 2791 * Use pi_lock to protect content of user_cpus_ptr 2792 * 2793 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2794 * do_set_cpus_allowed(). 2795 */ 2796 raw_spin_lock_irqsave(&src->pi_lock, flags); 2797 if (src->user_cpus_ptr) { 2798 swap(dst->user_cpus_ptr, user_mask); 2799 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2800 } 2801 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2802 2803 if (unlikely(user_mask)) 2804 kfree(user_mask); 2805 2806 return 0; 2807 } 2808 2809 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2810 { 2811 struct cpumask *user_mask = NULL; 2812 2813 swap(p->user_cpus_ptr, user_mask); 2814 2815 return user_mask; 2816 } 2817 2818 void release_user_cpus_ptr(struct task_struct *p) 2819 { 2820 kfree(clear_user_cpus_ptr(p)); 2821 } 2822 2823 /* 2824 * This function is wildly self concurrent; here be dragons. 2825 * 2826 * 2827 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2828 * designated task is enqueued on an allowed CPU. If that task is currently 2829 * running, we have to kick it out using the CPU stopper. 2830 * 2831 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2832 * Consider: 2833 * 2834 * Initial conditions: P0->cpus_mask = [0, 1] 2835 * 2836 * P0@CPU0 P1 2837 * 2838 * migrate_disable(); 2839 * <preempted> 2840 * set_cpus_allowed_ptr(P0, [1]); 2841 * 2842 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2843 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2844 * This means we need the following scheme: 2845 * 2846 * P0@CPU0 P1 2847 * 2848 * migrate_disable(); 2849 * <preempted> 2850 * set_cpus_allowed_ptr(P0, [1]); 2851 * <blocks> 2852 * <resumes> 2853 * migrate_enable(); 2854 * __set_cpus_allowed_ptr(); 2855 * <wakes local stopper> 2856 * `--> <woken on migration completion> 2857 * 2858 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2859 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2860 * task p are serialized by p->pi_lock, which we can leverage: the one that 2861 * should come into effect at the end of the Migrate-Disable region is the last 2862 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2863 * but we still need to properly signal those waiting tasks at the appropriate 2864 * moment. 2865 * 2866 * This is implemented using struct set_affinity_pending. The first 2867 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2868 * setup an instance of that struct and install it on the targeted task_struct. 2869 * Any and all further callers will reuse that instance. Those then wait for 2870 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2871 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2872 * 2873 * 2874 * (1) In the cases covered above. There is one more where the completion is 2875 * signaled within affine_move_task() itself: when a subsequent affinity request 2876 * occurs after the stopper bailed out due to the targeted task still being 2877 * Migrate-Disable. Consider: 2878 * 2879 * Initial conditions: P0->cpus_mask = [0, 1] 2880 * 2881 * CPU0 P1 P2 2882 * <P0> 2883 * migrate_disable(); 2884 * <preempted> 2885 * set_cpus_allowed_ptr(P0, [1]); 2886 * <blocks> 2887 * <migration/0> 2888 * migration_cpu_stop() 2889 * is_migration_disabled() 2890 * <bails> 2891 * set_cpus_allowed_ptr(P0, [0, 1]); 2892 * <signal completion> 2893 * <awakes> 2894 * 2895 * Note that the above is safe vs a concurrent migrate_enable(), as any 2896 * pending affinity completion is preceded by an uninstallation of 2897 * p->migration_pending done with p->pi_lock held. 2898 */ 2899 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2900 int dest_cpu, unsigned int flags) 2901 __releases(rq->lock) 2902 __releases(p->pi_lock) 2903 { 2904 struct set_affinity_pending my_pending = { }, *pending = NULL; 2905 bool stop_pending, complete = false; 2906 2907 /* Can the task run on the task's current CPU? If so, we're done */ 2908 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2909 struct task_struct *push_task = NULL; 2910 2911 if ((flags & SCA_MIGRATE_ENABLE) && 2912 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2913 rq->push_busy = true; 2914 push_task = get_task_struct(p); 2915 } 2916 2917 /* 2918 * If there are pending waiters, but no pending stop_work, 2919 * then complete now. 2920 */ 2921 pending = p->migration_pending; 2922 if (pending && !pending->stop_pending) { 2923 p->migration_pending = NULL; 2924 complete = true; 2925 } 2926 2927 preempt_disable(); 2928 task_rq_unlock(rq, p, rf); 2929 if (push_task) { 2930 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2931 p, &rq->push_work); 2932 } 2933 preempt_enable(); 2934 2935 if (complete) 2936 complete_all(&pending->done); 2937 2938 return 0; 2939 } 2940 2941 if (!(flags & SCA_MIGRATE_ENABLE)) { 2942 /* serialized by p->pi_lock */ 2943 if (!p->migration_pending) { 2944 /* Install the request */ 2945 refcount_set(&my_pending.refs, 1); 2946 init_completion(&my_pending.done); 2947 my_pending.arg = (struct migration_arg) { 2948 .task = p, 2949 .dest_cpu = dest_cpu, 2950 .pending = &my_pending, 2951 }; 2952 2953 p->migration_pending = &my_pending; 2954 } else { 2955 pending = p->migration_pending; 2956 refcount_inc(&pending->refs); 2957 /* 2958 * Affinity has changed, but we've already installed a 2959 * pending. migration_cpu_stop() *must* see this, else 2960 * we risk a completion of the pending despite having a 2961 * task on a disallowed CPU. 2962 * 2963 * Serialized by p->pi_lock, so this is safe. 2964 */ 2965 pending->arg.dest_cpu = dest_cpu; 2966 } 2967 } 2968 pending = p->migration_pending; 2969 /* 2970 * - !MIGRATE_ENABLE: 2971 * we'll have installed a pending if there wasn't one already. 2972 * 2973 * - MIGRATE_ENABLE: 2974 * we're here because the current CPU isn't matching anymore, 2975 * the only way that can happen is because of a concurrent 2976 * set_cpus_allowed_ptr() call, which should then still be 2977 * pending completion. 2978 * 2979 * Either way, we really should have a @pending here. 2980 */ 2981 if (WARN_ON_ONCE(!pending)) { 2982 task_rq_unlock(rq, p, rf); 2983 return -EINVAL; 2984 } 2985 2986 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2987 /* 2988 * MIGRATE_ENABLE gets here because 'p == current', but for 2989 * anything else we cannot do is_migration_disabled(), punt 2990 * and have the stopper function handle it all race-free. 2991 */ 2992 stop_pending = pending->stop_pending; 2993 if (!stop_pending) 2994 pending->stop_pending = true; 2995 2996 if (flags & SCA_MIGRATE_ENABLE) 2997 p->migration_flags &= ~MDF_PUSH; 2998 2999 preempt_disable(); 3000 task_rq_unlock(rq, p, rf); 3001 if (!stop_pending) { 3002 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 3003 &pending->arg, &pending->stop_work); 3004 } 3005 preempt_enable(); 3006 3007 if (flags & SCA_MIGRATE_ENABLE) 3008 return 0; 3009 } else { 3010 3011 if (!is_migration_disabled(p)) { 3012 if (task_on_rq_queued(p)) 3013 rq = move_queued_task(rq, rf, p, dest_cpu); 3014 3015 if (!pending->stop_pending) { 3016 p->migration_pending = NULL; 3017 complete = true; 3018 } 3019 } 3020 task_rq_unlock(rq, p, rf); 3021 3022 if (complete) 3023 complete_all(&pending->done); 3024 } 3025 3026 wait_for_completion(&pending->done); 3027 3028 if (refcount_dec_and_test(&pending->refs)) 3029 wake_up_var(&pending->refs); /* No UaF, just an address */ 3030 3031 /* 3032 * Block the original owner of &pending until all subsequent callers 3033 * have seen the completion and decremented the refcount 3034 */ 3035 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 3036 3037 /* ARGH */ 3038 WARN_ON_ONCE(my_pending.stop_pending); 3039 3040 return 0; 3041 } 3042 3043 /* 3044 * Called with both p->pi_lock and rq->lock held; drops both before returning. 3045 */ 3046 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 3047 struct affinity_context *ctx, 3048 struct rq *rq, 3049 struct rq_flags *rf) 3050 __releases(rq->lock) 3051 __releases(p->pi_lock) 3052 { 3053 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 3054 const struct cpumask *cpu_valid_mask = cpu_active_mask; 3055 bool kthread = p->flags & PF_KTHREAD; 3056 unsigned int dest_cpu; 3057 int ret = 0; 3058 3059 update_rq_clock(rq); 3060 3061 if (kthread || is_migration_disabled(p)) { 3062 /* 3063 * Kernel threads are allowed on online && !active CPUs, 3064 * however, during cpu-hot-unplug, even these might get pushed 3065 * away if not KTHREAD_IS_PER_CPU. 3066 * 3067 * Specifically, migration_disabled() tasks must not fail the 3068 * cpumask_any_and_distribute() pick below, esp. so on 3069 * SCA_MIGRATE_ENABLE, otherwise we'll not call 3070 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 3071 */ 3072 cpu_valid_mask = cpu_online_mask; 3073 } 3074 3075 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 3076 ret = -EINVAL; 3077 goto out; 3078 } 3079 3080 /* 3081 * Must re-check here, to close a race against __kthread_bind(), 3082 * sched_setaffinity() is not guaranteed to observe the flag. 3083 */ 3084 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 3085 ret = -EINVAL; 3086 goto out; 3087 } 3088 3089 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 3090 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 3091 if (ctx->flags & SCA_USER) 3092 swap(p->user_cpus_ptr, ctx->user_mask); 3093 goto out; 3094 } 3095 3096 if (WARN_ON_ONCE(p == current && 3097 is_migration_disabled(p) && 3098 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 3099 ret = -EBUSY; 3100 goto out; 3101 } 3102 } 3103 3104 /* 3105 * Picking a ~random cpu helps in cases where we are changing affinity 3106 * for groups of tasks (ie. cpuset), so that load balancing is not 3107 * immediately required to distribute the tasks within their new mask. 3108 */ 3109 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 3110 if (dest_cpu >= nr_cpu_ids) { 3111 ret = -EINVAL; 3112 goto out; 3113 } 3114 3115 __do_set_cpus_allowed(p, ctx); 3116 3117 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3118 3119 out: 3120 task_rq_unlock(rq, p, rf); 3121 3122 return ret; 3123 } 3124 3125 /* 3126 * Change a given task's CPU affinity. Migrate the thread to a 3127 * proper CPU and schedule it away if the CPU it's executing on 3128 * is removed from the allowed bitmask. 3129 * 3130 * NOTE: the caller must have a valid reference to the task, the 3131 * task must not exit() & deallocate itself prematurely. The 3132 * call is not atomic; no spinlocks may be held. 3133 */ 3134 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) 3135 { 3136 struct rq_flags rf; 3137 struct rq *rq; 3138 3139 rq = task_rq_lock(p, &rf); 3140 /* 3141 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3142 * flags are set. 3143 */ 3144 if (p->user_cpus_ptr && 3145 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3146 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3147 ctx->new_mask = rq->scratch_mask; 3148 3149 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3150 } 3151 3152 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3153 { 3154 struct affinity_context ac = { 3155 .new_mask = new_mask, 3156 .flags = 0, 3157 }; 3158 3159 return __set_cpus_allowed_ptr(p, &ac); 3160 } 3161 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3162 3163 /* 3164 * Change a given task's CPU affinity to the intersection of its current 3165 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3166 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3167 * affinity or use cpu_online_mask instead. 3168 * 3169 * If the resulting mask is empty, leave the affinity unchanged and return 3170 * -EINVAL. 3171 */ 3172 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3173 struct cpumask *new_mask, 3174 const struct cpumask *subset_mask) 3175 { 3176 struct affinity_context ac = { 3177 .new_mask = new_mask, 3178 .flags = 0, 3179 }; 3180 struct rq_flags rf; 3181 struct rq *rq; 3182 int err; 3183 3184 rq = task_rq_lock(p, &rf); 3185 3186 /* 3187 * Forcefully restricting the affinity of a deadline task is 3188 * likely to cause problems, so fail and noisily override the 3189 * mask entirely. 3190 */ 3191 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3192 err = -EPERM; 3193 goto err_unlock; 3194 } 3195 3196 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3197 err = -EINVAL; 3198 goto err_unlock; 3199 } 3200 3201 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3202 3203 err_unlock: 3204 task_rq_unlock(rq, p, &rf); 3205 return err; 3206 } 3207 3208 /* 3209 * Restrict the CPU affinity of task @p so that it is a subset of 3210 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3211 * old affinity mask. If the resulting mask is empty, we warn and walk 3212 * up the cpuset hierarchy until we find a suitable mask. 3213 */ 3214 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3215 { 3216 cpumask_var_t new_mask; 3217 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3218 3219 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3220 3221 /* 3222 * __migrate_task() can fail silently in the face of concurrent 3223 * offlining of the chosen destination CPU, so take the hotplug 3224 * lock to ensure that the migration succeeds. 3225 */ 3226 cpus_read_lock(); 3227 if (!cpumask_available(new_mask)) 3228 goto out_set_mask; 3229 3230 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3231 goto out_free_mask; 3232 3233 /* 3234 * We failed to find a valid subset of the affinity mask for the 3235 * task, so override it based on its cpuset hierarchy. 3236 */ 3237 cpuset_cpus_allowed(p, new_mask); 3238 override_mask = new_mask; 3239 3240 out_set_mask: 3241 if (printk_ratelimit()) { 3242 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3243 task_pid_nr(p), p->comm, 3244 cpumask_pr_args(override_mask)); 3245 } 3246 3247 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3248 out_free_mask: 3249 cpus_read_unlock(); 3250 free_cpumask_var(new_mask); 3251 } 3252 3253 /* 3254 * Restore the affinity of a task @p which was previously restricted by a 3255 * call to force_compatible_cpus_allowed_ptr(). 3256 * 3257 * It is the caller's responsibility to serialise this with any calls to 3258 * force_compatible_cpus_allowed_ptr(@p). 3259 */ 3260 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3261 { 3262 struct affinity_context ac = { 3263 .new_mask = task_user_cpus(p), 3264 .flags = 0, 3265 }; 3266 int ret; 3267 3268 /* 3269 * Try to restore the old affinity mask with __sched_setaffinity(). 3270 * Cpuset masking will be done there too. 3271 */ 3272 ret = __sched_setaffinity(p, &ac); 3273 WARN_ON_ONCE(ret); 3274 } 3275 3276 #ifdef CONFIG_SMP 3277 3278 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3279 { 3280 unsigned int state = READ_ONCE(p->__state); 3281 3282 /* 3283 * We should never call set_task_cpu() on a blocked task, 3284 * ttwu() will sort out the placement. 3285 */ 3286 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3287 3288 /* 3289 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3290 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3291 * time relying on p->on_rq. 3292 */ 3293 WARN_ON_ONCE(state == TASK_RUNNING && 3294 p->sched_class == &fair_sched_class && 3295 (p->on_rq && !task_on_rq_migrating(p))); 3296 3297 #ifdef CONFIG_LOCKDEP 3298 /* 3299 * The caller should hold either p->pi_lock or rq->lock, when changing 3300 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3301 * 3302 * sched_move_task() holds both and thus holding either pins the cgroup, 3303 * see task_group(). 3304 * 3305 * Furthermore, all task_rq users should acquire both locks, see 3306 * task_rq_lock(). 3307 */ 3308 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3309 lockdep_is_held(__rq_lockp(task_rq(p))))); 3310 #endif 3311 /* 3312 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3313 */ 3314 WARN_ON_ONCE(!cpu_online(new_cpu)); 3315 3316 WARN_ON_ONCE(is_migration_disabled(p)); 3317 3318 trace_sched_migrate_task(p, new_cpu); 3319 3320 if (task_cpu(p) != new_cpu) { 3321 if (p->sched_class->migrate_task_rq) 3322 p->sched_class->migrate_task_rq(p, new_cpu); 3323 p->se.nr_migrations++; 3324 rseq_migrate(p); 3325 sched_mm_cid_migrate_from(p); 3326 perf_event_task_migrate(p); 3327 } 3328 3329 __set_task_cpu(p, new_cpu); 3330 } 3331 #endif /* CONFIG_SMP */ 3332 3333 #ifdef CONFIG_NUMA_BALANCING 3334 static void __migrate_swap_task(struct task_struct *p, int cpu) 3335 { 3336 if (task_on_rq_queued(p)) { 3337 struct rq *src_rq, *dst_rq; 3338 struct rq_flags srf, drf; 3339 3340 src_rq = task_rq(p); 3341 dst_rq = cpu_rq(cpu); 3342 3343 rq_pin_lock(src_rq, &srf); 3344 rq_pin_lock(dst_rq, &drf); 3345 3346 move_queued_task_locked(src_rq, dst_rq, p); 3347 wakeup_preempt(dst_rq, p, 0); 3348 3349 rq_unpin_lock(dst_rq, &drf); 3350 rq_unpin_lock(src_rq, &srf); 3351 3352 } else { 3353 /* 3354 * Task isn't running anymore; make it appear like we migrated 3355 * it before it went to sleep. This means on wakeup we make the 3356 * previous CPU our target instead of where it really is. 3357 */ 3358 p->wake_cpu = cpu; 3359 } 3360 } 3361 3362 struct migration_swap_arg { 3363 struct task_struct *src_task, *dst_task; 3364 int src_cpu, dst_cpu; 3365 }; 3366 3367 static int migrate_swap_stop(void *data) 3368 { 3369 struct migration_swap_arg *arg = data; 3370 struct rq *src_rq, *dst_rq; 3371 3372 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3373 return -EAGAIN; 3374 3375 src_rq = cpu_rq(arg->src_cpu); 3376 dst_rq = cpu_rq(arg->dst_cpu); 3377 3378 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3379 guard(double_rq_lock)(src_rq, dst_rq); 3380 3381 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3382 return -EAGAIN; 3383 3384 if (task_cpu(arg->src_task) != arg->src_cpu) 3385 return -EAGAIN; 3386 3387 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3388 return -EAGAIN; 3389 3390 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3391 return -EAGAIN; 3392 3393 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3394 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3395 3396 return 0; 3397 } 3398 3399 /* 3400 * Cross migrate two tasks 3401 */ 3402 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3403 int target_cpu, int curr_cpu) 3404 { 3405 struct migration_swap_arg arg; 3406 int ret = -EINVAL; 3407 3408 arg = (struct migration_swap_arg){ 3409 .src_task = cur, 3410 .src_cpu = curr_cpu, 3411 .dst_task = p, 3412 .dst_cpu = target_cpu, 3413 }; 3414 3415 if (arg.src_cpu == arg.dst_cpu) 3416 goto out; 3417 3418 /* 3419 * These three tests are all lockless; this is OK since all of them 3420 * will be re-checked with proper locks held further down the line. 3421 */ 3422 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3423 goto out; 3424 3425 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3426 goto out; 3427 3428 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3429 goto out; 3430 3431 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3432 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3433 3434 out: 3435 return ret; 3436 } 3437 #endif /* CONFIG_NUMA_BALANCING */ 3438 3439 /*** 3440 * kick_process - kick a running thread to enter/exit the kernel 3441 * @p: the to-be-kicked thread 3442 * 3443 * Cause a process which is running on another CPU to enter 3444 * kernel-mode, without any delay. (to get signals handled.) 3445 * 3446 * NOTE: this function doesn't have to take the runqueue lock, 3447 * because all it wants to ensure is that the remote task enters 3448 * the kernel. If the IPI races and the task has been migrated 3449 * to another CPU then no harm is done and the purpose has been 3450 * achieved as well. 3451 */ 3452 void kick_process(struct task_struct *p) 3453 { 3454 guard(preempt)(); 3455 int cpu = task_cpu(p); 3456 3457 if ((cpu != smp_processor_id()) && task_curr(p)) 3458 smp_send_reschedule(cpu); 3459 } 3460 EXPORT_SYMBOL_GPL(kick_process); 3461 3462 /* 3463 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3464 * 3465 * A few notes on cpu_active vs cpu_online: 3466 * 3467 * - cpu_active must be a subset of cpu_online 3468 * 3469 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3470 * see __set_cpus_allowed_ptr(). At this point the newly online 3471 * CPU isn't yet part of the sched domains, and balancing will not 3472 * see it. 3473 * 3474 * - on CPU-down we clear cpu_active() to mask the sched domains and 3475 * avoid the load balancer to place new tasks on the to be removed 3476 * CPU. Existing tasks will remain running there and will be taken 3477 * off. 3478 * 3479 * This means that fallback selection must not select !active CPUs. 3480 * And can assume that any active CPU must be online. Conversely 3481 * select_task_rq() below may allow selection of !active CPUs in order 3482 * to satisfy the above rules. 3483 */ 3484 static int select_fallback_rq(int cpu, struct task_struct *p) 3485 { 3486 int nid = cpu_to_node(cpu); 3487 const struct cpumask *nodemask = NULL; 3488 enum { cpuset, possible, fail } state = cpuset; 3489 int dest_cpu; 3490 3491 /* 3492 * If the node that the CPU is on has been offlined, cpu_to_node() 3493 * will return -1. There is no CPU on the node, and we should 3494 * select the CPU on the other node. 3495 */ 3496 if (nid != -1) { 3497 nodemask = cpumask_of_node(nid); 3498 3499 /* Look for allowed, online CPU in same node. */ 3500 for_each_cpu(dest_cpu, nodemask) { 3501 if (is_cpu_allowed(p, dest_cpu)) 3502 return dest_cpu; 3503 } 3504 } 3505 3506 for (;;) { 3507 /* Any allowed, online CPU? */ 3508 for_each_cpu(dest_cpu, p->cpus_ptr) { 3509 if (!is_cpu_allowed(p, dest_cpu)) 3510 continue; 3511 3512 goto out; 3513 } 3514 3515 /* No more Mr. Nice Guy. */ 3516 switch (state) { 3517 case cpuset: 3518 if (cpuset_cpus_allowed_fallback(p)) { 3519 state = possible; 3520 break; 3521 } 3522 fallthrough; 3523 case possible: 3524 /* 3525 * XXX When called from select_task_rq() we only 3526 * hold p->pi_lock and again violate locking order. 3527 * 3528 * More yuck to audit. 3529 */ 3530 do_set_cpus_allowed(p, task_cpu_fallback_mask(p)); 3531 state = fail; 3532 break; 3533 case fail: 3534 BUG(); 3535 break; 3536 } 3537 } 3538 3539 out: 3540 if (state != cpuset) { 3541 /* 3542 * Don't tell them about moving exiting tasks or 3543 * kernel threads (both mm NULL), since they never 3544 * leave kernel. 3545 */ 3546 if (p->mm && printk_ratelimit()) { 3547 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3548 task_pid_nr(p), p->comm, cpu); 3549 } 3550 } 3551 3552 return dest_cpu; 3553 } 3554 3555 /* 3556 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3557 */ 3558 static inline 3559 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags) 3560 { 3561 lockdep_assert_held(&p->pi_lock); 3562 3563 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) { 3564 cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags); 3565 *wake_flags |= WF_RQ_SELECTED; 3566 } else { 3567 cpu = cpumask_any(p->cpus_ptr); 3568 } 3569 3570 /* 3571 * In order not to call set_task_cpu() on a blocking task we need 3572 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3573 * CPU. 3574 * 3575 * Since this is common to all placement strategies, this lives here. 3576 * 3577 * [ this allows ->select_task() to simply return task_cpu(p) and 3578 * not worry about this generic constraint ] 3579 */ 3580 if (unlikely(!is_cpu_allowed(p, cpu))) 3581 cpu = select_fallback_rq(task_cpu(p), p); 3582 3583 return cpu; 3584 } 3585 3586 void sched_set_stop_task(int cpu, struct task_struct *stop) 3587 { 3588 static struct lock_class_key stop_pi_lock; 3589 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3590 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3591 3592 if (stop) { 3593 /* 3594 * Make it appear like a SCHED_FIFO task, its something 3595 * userspace knows about and won't get confused about. 3596 * 3597 * Also, it will make PI more or less work without too 3598 * much confusion -- but then, stop work should not 3599 * rely on PI working anyway. 3600 */ 3601 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3602 3603 stop->sched_class = &stop_sched_class; 3604 3605 /* 3606 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3607 * adjust the effective priority of a task. As a result, 3608 * rt_mutex_setprio() can trigger (RT) balancing operations, 3609 * which can then trigger wakeups of the stop thread to push 3610 * around the current task. 3611 * 3612 * The stop task itself will never be part of the PI-chain, it 3613 * never blocks, therefore that ->pi_lock recursion is safe. 3614 * Tell lockdep about this by placing the stop->pi_lock in its 3615 * own class. 3616 */ 3617 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3618 } 3619 3620 cpu_rq(cpu)->stop = stop; 3621 3622 if (old_stop) { 3623 /* 3624 * Reset it back to a normal scheduling class so that 3625 * it can die in pieces. 3626 */ 3627 old_stop->sched_class = &rt_sched_class; 3628 } 3629 } 3630 3631 static void 3632 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3633 { 3634 struct rq *rq; 3635 3636 if (!schedstat_enabled()) 3637 return; 3638 3639 rq = this_rq(); 3640 3641 if (cpu == rq->cpu) { 3642 __schedstat_inc(rq->ttwu_local); 3643 __schedstat_inc(p->stats.nr_wakeups_local); 3644 } else { 3645 struct sched_domain *sd; 3646 3647 __schedstat_inc(p->stats.nr_wakeups_remote); 3648 3649 guard(rcu)(); 3650 for_each_domain(rq->cpu, sd) { 3651 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3652 __schedstat_inc(sd->ttwu_wake_remote); 3653 break; 3654 } 3655 } 3656 } 3657 3658 if (wake_flags & WF_MIGRATED) 3659 __schedstat_inc(p->stats.nr_wakeups_migrate); 3660 3661 __schedstat_inc(rq->ttwu_count); 3662 __schedstat_inc(p->stats.nr_wakeups); 3663 3664 if (wake_flags & WF_SYNC) 3665 __schedstat_inc(p->stats.nr_wakeups_sync); 3666 } 3667 3668 /* 3669 * Mark the task runnable. 3670 */ 3671 static inline void ttwu_do_wakeup(struct task_struct *p) 3672 { 3673 WRITE_ONCE(p->__state, TASK_RUNNING); 3674 trace_sched_wakeup(p); 3675 } 3676 3677 static void 3678 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3679 struct rq_flags *rf) 3680 { 3681 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3682 3683 lockdep_assert_rq_held(rq); 3684 3685 if (p->sched_contributes_to_load) 3686 rq->nr_uninterruptible--; 3687 3688 if (wake_flags & WF_RQ_SELECTED) 3689 en_flags |= ENQUEUE_RQ_SELECTED; 3690 if (wake_flags & WF_MIGRATED) 3691 en_flags |= ENQUEUE_MIGRATED; 3692 else 3693 if (p->in_iowait) { 3694 delayacct_blkio_end(p); 3695 atomic_dec(&task_rq(p)->nr_iowait); 3696 } 3697 3698 activate_task(rq, p, en_flags); 3699 wakeup_preempt(rq, p, wake_flags); 3700 3701 ttwu_do_wakeup(p); 3702 3703 if (p->sched_class->task_woken) { 3704 /* 3705 * Our task @p is fully woken up and running; so it's safe to 3706 * drop the rq->lock, hereafter rq is only used for statistics. 3707 */ 3708 rq_unpin_lock(rq, rf); 3709 p->sched_class->task_woken(rq, p); 3710 rq_repin_lock(rq, rf); 3711 } 3712 3713 if (rq->idle_stamp) { 3714 u64 delta = rq_clock(rq) - rq->idle_stamp; 3715 u64 max = 2*rq->max_idle_balance_cost; 3716 3717 update_avg(&rq->avg_idle, delta); 3718 3719 if (rq->avg_idle > max) 3720 rq->avg_idle = max; 3721 3722 rq->idle_stamp = 0; 3723 } 3724 } 3725 3726 /* 3727 * Consider @p being inside a wait loop: 3728 * 3729 * for (;;) { 3730 * set_current_state(TASK_UNINTERRUPTIBLE); 3731 * 3732 * if (CONDITION) 3733 * break; 3734 * 3735 * schedule(); 3736 * } 3737 * __set_current_state(TASK_RUNNING); 3738 * 3739 * between set_current_state() and schedule(). In this case @p is still 3740 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3741 * an atomic manner. 3742 * 3743 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3744 * then schedule() must still happen and p->state can be changed to 3745 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3746 * need to do a full wakeup with enqueue. 3747 * 3748 * Returns: %true when the wakeup is done, 3749 * %false otherwise. 3750 */ 3751 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3752 { 3753 struct rq_flags rf; 3754 struct rq *rq; 3755 int ret = 0; 3756 3757 rq = __task_rq_lock(p, &rf); 3758 if (task_on_rq_queued(p)) { 3759 update_rq_clock(rq); 3760 if (p->se.sched_delayed) 3761 enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED); 3762 if (!task_on_cpu(rq, p)) { 3763 /* 3764 * When on_rq && !on_cpu the task is preempted, see if 3765 * it should preempt the task that is current now. 3766 */ 3767 wakeup_preempt(rq, p, wake_flags); 3768 } 3769 ttwu_do_wakeup(p); 3770 ret = 1; 3771 } 3772 __task_rq_unlock(rq, &rf); 3773 3774 return ret; 3775 } 3776 3777 void sched_ttwu_pending(void *arg) 3778 { 3779 struct llist_node *llist = arg; 3780 struct rq *rq = this_rq(); 3781 struct task_struct *p, *t; 3782 struct rq_flags rf; 3783 3784 if (!llist) 3785 return; 3786 3787 rq_lock_irqsave(rq, &rf); 3788 update_rq_clock(rq); 3789 3790 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3791 if (WARN_ON_ONCE(p->on_cpu)) 3792 smp_cond_load_acquire(&p->on_cpu, !VAL); 3793 3794 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3795 set_task_cpu(p, cpu_of(rq)); 3796 3797 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3798 } 3799 3800 /* 3801 * Must be after enqueueing at least once task such that 3802 * idle_cpu() does not observe a false-negative -- if it does, 3803 * it is possible for select_idle_siblings() to stack a number 3804 * of tasks on this CPU during that window. 3805 * 3806 * It is OK to clear ttwu_pending when another task pending. 3807 * We will receive IPI after local IRQ enabled and then enqueue it. 3808 * Since now nr_running > 0, idle_cpu() will always get correct result. 3809 */ 3810 WRITE_ONCE(rq->ttwu_pending, 0); 3811 rq_unlock_irqrestore(rq, &rf); 3812 } 3813 3814 /* 3815 * Prepare the scene for sending an IPI for a remote smp_call 3816 * 3817 * Returns true if the caller can proceed with sending the IPI. 3818 * Returns false otherwise. 3819 */ 3820 bool call_function_single_prep_ipi(int cpu) 3821 { 3822 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3823 trace_sched_wake_idle_without_ipi(cpu); 3824 return false; 3825 } 3826 3827 return true; 3828 } 3829 3830 /* 3831 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3832 * necessary. The wakee CPU on receipt of the IPI will queue the task 3833 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3834 * of the wakeup instead of the waker. 3835 */ 3836 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3837 { 3838 struct rq *rq = cpu_rq(cpu); 3839 3840 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3841 3842 WRITE_ONCE(rq->ttwu_pending, 1); 3843 #ifdef CONFIG_SMP 3844 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3845 #endif 3846 } 3847 3848 void wake_up_if_idle(int cpu) 3849 { 3850 struct rq *rq = cpu_rq(cpu); 3851 3852 guard(rcu)(); 3853 if (is_idle_task(rcu_dereference(rq->curr))) { 3854 guard(rq_lock_irqsave)(rq); 3855 if (is_idle_task(rq->curr)) 3856 resched_curr(rq); 3857 } 3858 } 3859 3860 bool cpus_equal_capacity(int this_cpu, int that_cpu) 3861 { 3862 if (!sched_asym_cpucap_active()) 3863 return true; 3864 3865 if (this_cpu == that_cpu) 3866 return true; 3867 3868 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); 3869 } 3870 3871 bool cpus_share_cache(int this_cpu, int that_cpu) 3872 { 3873 if (this_cpu == that_cpu) 3874 return true; 3875 3876 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3877 } 3878 3879 /* 3880 * Whether CPUs are share cache resources, which means LLC on non-cluster 3881 * machines and LLC tag or L2 on machines with clusters. 3882 */ 3883 bool cpus_share_resources(int this_cpu, int that_cpu) 3884 { 3885 if (this_cpu == that_cpu) 3886 return true; 3887 3888 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3889 } 3890 3891 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3892 { 3893 /* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */ 3894 if (!scx_allow_ttwu_queue(p)) 3895 return false; 3896 3897 #ifdef CONFIG_SMP 3898 if (p->sched_class == &stop_sched_class) 3899 return false; 3900 #endif 3901 3902 /* 3903 * Do not complicate things with the async wake_list while the CPU is 3904 * in hotplug state. 3905 */ 3906 if (!cpu_active(cpu)) 3907 return false; 3908 3909 /* Ensure the task will still be allowed to run on the CPU. */ 3910 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3911 return false; 3912 3913 /* 3914 * If the CPU does not share cache, then queue the task on the 3915 * remote rqs wakelist to avoid accessing remote data. 3916 */ 3917 if (!cpus_share_cache(smp_processor_id(), cpu)) 3918 return true; 3919 3920 if (cpu == smp_processor_id()) 3921 return false; 3922 3923 /* 3924 * If the wakee cpu is idle, or the task is descheduling and the 3925 * only running task on the CPU, then use the wakelist to offload 3926 * the task activation to the idle (or soon-to-be-idle) CPU as 3927 * the current CPU is likely busy. nr_running is checked to 3928 * avoid unnecessary task stacking. 3929 * 3930 * Note that we can only get here with (wakee) p->on_rq=0, 3931 * p->on_cpu can be whatever, we've done the dequeue, so 3932 * the wakee has been accounted out of ->nr_running. 3933 */ 3934 if (!cpu_rq(cpu)->nr_running) 3935 return true; 3936 3937 return false; 3938 } 3939 3940 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3941 { 3942 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3943 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3944 __ttwu_queue_wakelist(p, cpu, wake_flags); 3945 return true; 3946 } 3947 3948 return false; 3949 } 3950 3951 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3952 { 3953 struct rq *rq = cpu_rq(cpu); 3954 struct rq_flags rf; 3955 3956 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3957 return; 3958 3959 rq_lock(rq, &rf); 3960 update_rq_clock(rq); 3961 ttwu_do_activate(rq, p, wake_flags, &rf); 3962 rq_unlock(rq, &rf); 3963 } 3964 3965 /* 3966 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3967 * 3968 * The caller holds p::pi_lock if p != current or has preemption 3969 * disabled when p == current. 3970 * 3971 * The rules of saved_state: 3972 * 3973 * The related locking code always holds p::pi_lock when updating 3974 * p::saved_state, which means the code is fully serialized in both cases. 3975 * 3976 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 3977 * No other bits set. This allows to distinguish all wakeup scenarios. 3978 * 3979 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 3980 * allows us to prevent early wakeup of tasks before they can be run on 3981 * asymmetric ISA architectures (eg ARMv9). 3982 */ 3983 static __always_inline 3984 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3985 { 3986 int match; 3987 3988 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3989 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3990 state != TASK_RTLOCK_WAIT); 3991 } 3992 3993 *success = !!(match = __task_state_match(p, state)); 3994 3995 /* 3996 * Saved state preserves the task state across blocking on 3997 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 3998 * set p::saved_state to TASK_RUNNING, but do not wake the task 3999 * because it waits for a lock wakeup or __thaw_task(). Also 4000 * indicate success because from the regular waker's point of 4001 * view this has succeeded. 4002 * 4003 * After acquiring the lock the task will restore p::__state 4004 * from p::saved_state which ensures that the regular 4005 * wakeup is not lost. The restore will also set 4006 * p::saved_state to TASK_RUNNING so any further tests will 4007 * not result in false positives vs. @success 4008 */ 4009 if (match < 0) 4010 p->saved_state = TASK_RUNNING; 4011 4012 return match > 0; 4013 } 4014 4015 /* 4016 * Notes on Program-Order guarantees on SMP systems. 4017 * 4018 * MIGRATION 4019 * 4020 * The basic program-order guarantee on SMP systems is that when a task [t] 4021 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 4022 * execution on its new CPU [c1]. 4023 * 4024 * For migration (of runnable tasks) this is provided by the following means: 4025 * 4026 * A) UNLOCK of the rq(c0)->lock scheduling out task t 4027 * B) migration for t is required to synchronize *both* rq(c0)->lock and 4028 * rq(c1)->lock (if not at the same time, then in that order). 4029 * C) LOCK of the rq(c1)->lock scheduling in task 4030 * 4031 * Release/acquire chaining guarantees that B happens after A and C after B. 4032 * Note: the CPU doing B need not be c0 or c1 4033 * 4034 * Example: 4035 * 4036 * CPU0 CPU1 CPU2 4037 * 4038 * LOCK rq(0)->lock 4039 * sched-out X 4040 * sched-in Y 4041 * UNLOCK rq(0)->lock 4042 * 4043 * LOCK rq(0)->lock // orders against CPU0 4044 * dequeue X 4045 * UNLOCK rq(0)->lock 4046 * 4047 * LOCK rq(1)->lock 4048 * enqueue X 4049 * UNLOCK rq(1)->lock 4050 * 4051 * LOCK rq(1)->lock // orders against CPU2 4052 * sched-out Z 4053 * sched-in X 4054 * UNLOCK rq(1)->lock 4055 * 4056 * 4057 * BLOCKING -- aka. SLEEP + WAKEUP 4058 * 4059 * For blocking we (obviously) need to provide the same guarantee as for 4060 * migration. However the means are completely different as there is no lock 4061 * chain to provide order. Instead we do: 4062 * 4063 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 4064 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 4065 * 4066 * Example: 4067 * 4068 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4069 * 4070 * LOCK rq(0)->lock LOCK X->pi_lock 4071 * dequeue X 4072 * sched-out X 4073 * smp_store_release(X->on_cpu, 0); 4074 * 4075 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4076 * X->state = WAKING 4077 * set_task_cpu(X,2) 4078 * 4079 * LOCK rq(2)->lock 4080 * enqueue X 4081 * X->state = RUNNING 4082 * UNLOCK rq(2)->lock 4083 * 4084 * LOCK rq(2)->lock // orders against CPU1 4085 * sched-out Z 4086 * sched-in X 4087 * UNLOCK rq(2)->lock 4088 * 4089 * UNLOCK X->pi_lock 4090 * UNLOCK rq(0)->lock 4091 * 4092 * 4093 * However, for wakeups there is a second guarantee we must provide, namely we 4094 * must ensure that CONDITION=1 done by the caller can not be reordered with 4095 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4096 */ 4097 4098 /** 4099 * try_to_wake_up - wake up a thread 4100 * @p: the thread to be awakened 4101 * @state: the mask of task states that can be woken 4102 * @wake_flags: wake modifier flags (WF_*) 4103 * 4104 * Conceptually does: 4105 * 4106 * If (@state & @p->state) @p->state = TASK_RUNNING. 4107 * 4108 * If the task was not queued/runnable, also place it back on a runqueue. 4109 * 4110 * This function is atomic against schedule() which would dequeue the task. 4111 * 4112 * It issues a full memory barrier before accessing @p->state, see the comment 4113 * with set_current_state(). 4114 * 4115 * Uses p->pi_lock to serialize against concurrent wake-ups. 4116 * 4117 * Relies on p->pi_lock stabilizing: 4118 * - p->sched_class 4119 * - p->cpus_ptr 4120 * - p->sched_task_group 4121 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4122 * 4123 * Tries really hard to only take one task_rq(p)->lock for performance. 4124 * Takes rq->lock in: 4125 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4126 * - ttwu_queue() -- new rq, for enqueue of the task; 4127 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4128 * 4129 * As a consequence we race really badly with just about everything. See the 4130 * many memory barriers and their comments for details. 4131 * 4132 * Return: %true if @p->state changes (an actual wakeup was done), 4133 * %false otherwise. 4134 */ 4135 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4136 { 4137 guard(preempt)(); 4138 int cpu, success = 0; 4139 4140 wake_flags |= WF_TTWU; 4141 4142 if (p == current) { 4143 /* 4144 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4145 * == smp_processor_id()'. Together this means we can special 4146 * case the whole 'p->on_rq && ttwu_runnable()' case below 4147 * without taking any locks. 4148 * 4149 * Specifically, given current runs ttwu() we must be before 4150 * schedule()'s block_task(), as such this must not observe 4151 * sched_delayed. 4152 * 4153 * In particular: 4154 * - we rely on Program-Order guarantees for all the ordering, 4155 * - we're serialized against set_special_state() by virtue of 4156 * it disabling IRQs (this allows not taking ->pi_lock). 4157 */ 4158 WARN_ON_ONCE(p->se.sched_delayed); 4159 if (!ttwu_state_match(p, state, &success)) 4160 goto out; 4161 4162 trace_sched_waking(p); 4163 ttwu_do_wakeup(p); 4164 goto out; 4165 } 4166 4167 /* 4168 * If we are going to wake up a thread waiting for CONDITION we 4169 * need to ensure that CONDITION=1 done by the caller can not be 4170 * reordered with p->state check below. This pairs with smp_store_mb() 4171 * in set_current_state() that the waiting thread does. 4172 */ 4173 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4174 smp_mb__after_spinlock(); 4175 if (!ttwu_state_match(p, state, &success)) 4176 break; 4177 4178 trace_sched_waking(p); 4179 4180 /* 4181 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4182 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4183 * in smp_cond_load_acquire() below. 4184 * 4185 * sched_ttwu_pending() try_to_wake_up() 4186 * STORE p->on_rq = 1 LOAD p->state 4187 * UNLOCK rq->lock 4188 * 4189 * __schedule() (switch to task 'p') 4190 * LOCK rq->lock smp_rmb(); 4191 * smp_mb__after_spinlock(); 4192 * UNLOCK rq->lock 4193 * 4194 * [task p] 4195 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4196 * 4197 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4198 * __schedule(). See the comment for smp_mb__after_spinlock(). 4199 * 4200 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4201 */ 4202 smp_rmb(); 4203 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4204 break; 4205 4206 /* 4207 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4208 * possible to, falsely, observe p->on_cpu == 0. 4209 * 4210 * One must be running (->on_cpu == 1) in order to remove oneself 4211 * from the runqueue. 4212 * 4213 * __schedule() (switch to task 'p') try_to_wake_up() 4214 * STORE p->on_cpu = 1 LOAD p->on_rq 4215 * UNLOCK rq->lock 4216 * 4217 * __schedule() (put 'p' to sleep) 4218 * LOCK rq->lock smp_rmb(); 4219 * smp_mb__after_spinlock(); 4220 * STORE p->on_rq = 0 LOAD p->on_cpu 4221 * 4222 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4223 * __schedule(). See the comment for smp_mb__after_spinlock(). 4224 * 4225 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4226 * schedule()'s deactivate_task() has 'happened' and p will no longer 4227 * care about it's own p->state. See the comment in __schedule(). 4228 */ 4229 smp_acquire__after_ctrl_dep(); 4230 4231 /* 4232 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4233 * == 0), which means we need to do an enqueue, change p->state to 4234 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4235 * enqueue, such as ttwu_queue_wakelist(). 4236 */ 4237 WRITE_ONCE(p->__state, TASK_WAKING); 4238 4239 /* 4240 * If the owning (remote) CPU is still in the middle of schedule() with 4241 * this task as prev, considering queueing p on the remote CPUs wake_list 4242 * which potentially sends an IPI instead of spinning on p->on_cpu to 4243 * let the waker make forward progress. This is safe because IRQs are 4244 * disabled and the IPI will deliver after on_cpu is cleared. 4245 * 4246 * Ensure we load task_cpu(p) after p->on_cpu: 4247 * 4248 * set_task_cpu(p, cpu); 4249 * STORE p->cpu = @cpu 4250 * __schedule() (switch to task 'p') 4251 * LOCK rq->lock 4252 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4253 * STORE p->on_cpu = 1 LOAD p->cpu 4254 * 4255 * to ensure we observe the correct CPU on which the task is currently 4256 * scheduling. 4257 */ 4258 if (smp_load_acquire(&p->on_cpu) && 4259 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4260 break; 4261 4262 /* 4263 * If the owning (remote) CPU is still in the middle of schedule() with 4264 * this task as prev, wait until it's done referencing the task. 4265 * 4266 * Pairs with the smp_store_release() in finish_task(). 4267 * 4268 * This ensures that tasks getting woken will be fully ordered against 4269 * their previous state and preserve Program Order. 4270 */ 4271 smp_cond_load_acquire(&p->on_cpu, !VAL); 4272 4273 cpu = select_task_rq(p, p->wake_cpu, &wake_flags); 4274 if (task_cpu(p) != cpu) { 4275 if (p->in_iowait) { 4276 delayacct_blkio_end(p); 4277 atomic_dec(&task_rq(p)->nr_iowait); 4278 } 4279 4280 wake_flags |= WF_MIGRATED; 4281 psi_ttwu_dequeue(p); 4282 set_task_cpu(p, cpu); 4283 } 4284 4285 ttwu_queue(p, cpu, wake_flags); 4286 } 4287 out: 4288 if (success) 4289 ttwu_stat(p, task_cpu(p), wake_flags); 4290 4291 return success; 4292 } 4293 4294 static bool __task_needs_rq_lock(struct task_struct *p) 4295 { 4296 unsigned int state = READ_ONCE(p->__state); 4297 4298 /* 4299 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4300 * the task is blocked. Make sure to check @state since ttwu() can drop 4301 * locks at the end, see ttwu_queue_wakelist(). 4302 */ 4303 if (state == TASK_RUNNING || state == TASK_WAKING) 4304 return true; 4305 4306 /* 4307 * Ensure we load p->on_rq after p->__state, otherwise it would be 4308 * possible to, falsely, observe p->on_rq == 0. 4309 * 4310 * See try_to_wake_up() for a longer comment. 4311 */ 4312 smp_rmb(); 4313 if (p->on_rq) 4314 return true; 4315 4316 /* 4317 * Ensure the task has finished __schedule() and will not be referenced 4318 * anymore. Again, see try_to_wake_up() for a longer comment. 4319 */ 4320 smp_rmb(); 4321 smp_cond_load_acquire(&p->on_cpu, !VAL); 4322 4323 return false; 4324 } 4325 4326 /** 4327 * task_call_func - Invoke a function on task in fixed state 4328 * @p: Process for which the function is to be invoked, can be @current. 4329 * @func: Function to invoke. 4330 * @arg: Argument to function. 4331 * 4332 * Fix the task in it's current state by avoiding wakeups and or rq operations 4333 * and call @func(@arg) on it. This function can use task_is_runnable() and 4334 * task_curr() to work out what the state is, if required. Given that @func 4335 * can be invoked with a runqueue lock held, it had better be quite 4336 * lightweight. 4337 * 4338 * Returns: 4339 * Whatever @func returns 4340 */ 4341 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4342 { 4343 struct rq *rq = NULL; 4344 struct rq_flags rf; 4345 int ret; 4346 4347 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4348 4349 if (__task_needs_rq_lock(p)) 4350 rq = __task_rq_lock(p, &rf); 4351 4352 /* 4353 * At this point the task is pinned; either: 4354 * - blocked and we're holding off wakeups (pi->lock) 4355 * - woken, and we're holding off enqueue (rq->lock) 4356 * - queued, and we're holding off schedule (rq->lock) 4357 * - running, and we're holding off de-schedule (rq->lock) 4358 * 4359 * The called function (@func) can use: task_curr(), p->on_rq and 4360 * p->__state to differentiate between these states. 4361 */ 4362 ret = func(p, arg); 4363 4364 if (rq) 4365 rq_unlock(rq, &rf); 4366 4367 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4368 return ret; 4369 } 4370 4371 /** 4372 * cpu_curr_snapshot - Return a snapshot of the currently running task 4373 * @cpu: The CPU on which to snapshot the task. 4374 * 4375 * Returns the task_struct pointer of the task "currently" running on 4376 * the specified CPU. 4377 * 4378 * If the specified CPU was offline, the return value is whatever it 4379 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4380 * task, but there is no guarantee. Callers wishing a useful return 4381 * value must take some action to ensure that the specified CPU remains 4382 * online throughout. 4383 * 4384 * This function executes full memory barriers before and after fetching 4385 * the pointer, which permits the caller to confine this function's fetch 4386 * with respect to the caller's accesses to other shared variables. 4387 */ 4388 struct task_struct *cpu_curr_snapshot(int cpu) 4389 { 4390 struct rq *rq = cpu_rq(cpu); 4391 struct task_struct *t; 4392 struct rq_flags rf; 4393 4394 rq_lock_irqsave(rq, &rf); 4395 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */ 4396 t = rcu_dereference(cpu_curr(cpu)); 4397 rq_unlock_irqrestore(rq, &rf); 4398 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4399 4400 return t; 4401 } 4402 4403 /** 4404 * wake_up_process - Wake up a specific process 4405 * @p: The process to be woken up. 4406 * 4407 * Attempt to wake up the nominated process and move it to the set of runnable 4408 * processes. 4409 * 4410 * Return: 1 if the process was woken up, 0 if it was already running. 4411 * 4412 * This function executes a full memory barrier before accessing the task state. 4413 */ 4414 int wake_up_process(struct task_struct *p) 4415 { 4416 return try_to_wake_up(p, TASK_NORMAL, 0); 4417 } 4418 EXPORT_SYMBOL(wake_up_process); 4419 4420 int wake_up_state(struct task_struct *p, unsigned int state) 4421 { 4422 return try_to_wake_up(p, state, 0); 4423 } 4424 4425 /* 4426 * Perform scheduler related setup for a newly forked process p. 4427 * p is forked by current. 4428 * 4429 * __sched_fork() is basic setup which is also used by sched_init() to 4430 * initialize the boot CPU's idle task. 4431 */ 4432 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4433 { 4434 p->on_rq = 0; 4435 4436 p->se.on_rq = 0; 4437 p->se.exec_start = 0; 4438 p->se.sum_exec_runtime = 0; 4439 p->se.prev_sum_exec_runtime = 0; 4440 p->se.nr_migrations = 0; 4441 p->se.vruntime = 0; 4442 p->se.vlag = 0; 4443 INIT_LIST_HEAD(&p->se.group_node); 4444 4445 /* A delayed task cannot be in clone(). */ 4446 WARN_ON_ONCE(p->se.sched_delayed); 4447 4448 #ifdef CONFIG_FAIR_GROUP_SCHED 4449 p->se.cfs_rq = NULL; 4450 #endif 4451 4452 #ifdef CONFIG_SCHEDSTATS 4453 /* Even if schedstat is disabled, there should not be garbage */ 4454 memset(&p->stats, 0, sizeof(p->stats)); 4455 #endif 4456 4457 init_dl_entity(&p->dl); 4458 4459 INIT_LIST_HEAD(&p->rt.run_list); 4460 p->rt.timeout = 0; 4461 p->rt.time_slice = sched_rr_timeslice; 4462 p->rt.on_rq = 0; 4463 p->rt.on_list = 0; 4464 4465 #ifdef CONFIG_SCHED_CLASS_EXT 4466 init_scx_entity(&p->scx); 4467 #endif 4468 4469 #ifdef CONFIG_PREEMPT_NOTIFIERS 4470 INIT_HLIST_HEAD(&p->preempt_notifiers); 4471 #endif 4472 4473 #ifdef CONFIG_COMPACTION 4474 p->capture_control = NULL; 4475 #endif 4476 init_numa_balancing(clone_flags, p); 4477 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4478 p->migration_pending = NULL; 4479 init_sched_mm_cid(p); 4480 } 4481 4482 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4483 4484 #ifdef CONFIG_NUMA_BALANCING 4485 4486 int sysctl_numa_balancing_mode; 4487 4488 static void __set_numabalancing_state(bool enabled) 4489 { 4490 if (enabled) 4491 static_branch_enable(&sched_numa_balancing); 4492 else 4493 static_branch_disable(&sched_numa_balancing); 4494 } 4495 4496 void set_numabalancing_state(bool enabled) 4497 { 4498 if (enabled) 4499 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4500 else 4501 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4502 __set_numabalancing_state(enabled); 4503 } 4504 4505 #ifdef CONFIG_PROC_SYSCTL 4506 static void reset_memory_tiering(void) 4507 { 4508 struct pglist_data *pgdat; 4509 4510 for_each_online_pgdat(pgdat) { 4511 pgdat->nbp_threshold = 0; 4512 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4513 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4514 } 4515 } 4516 4517 static int sysctl_numa_balancing(const struct ctl_table *table, int write, 4518 void *buffer, size_t *lenp, loff_t *ppos) 4519 { 4520 struct ctl_table t; 4521 int err; 4522 int state = sysctl_numa_balancing_mode; 4523 4524 if (write && !capable(CAP_SYS_ADMIN)) 4525 return -EPERM; 4526 4527 t = *table; 4528 t.data = &state; 4529 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4530 if (err < 0) 4531 return err; 4532 if (write) { 4533 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4534 (state & NUMA_BALANCING_MEMORY_TIERING)) 4535 reset_memory_tiering(); 4536 sysctl_numa_balancing_mode = state; 4537 __set_numabalancing_state(state); 4538 } 4539 return err; 4540 } 4541 #endif /* CONFIG_PROC_SYSCTL */ 4542 #endif /* CONFIG_NUMA_BALANCING */ 4543 4544 #ifdef CONFIG_SCHEDSTATS 4545 4546 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4547 4548 static void set_schedstats(bool enabled) 4549 { 4550 if (enabled) 4551 static_branch_enable(&sched_schedstats); 4552 else 4553 static_branch_disable(&sched_schedstats); 4554 } 4555 4556 void force_schedstat_enabled(void) 4557 { 4558 if (!schedstat_enabled()) { 4559 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4560 static_branch_enable(&sched_schedstats); 4561 } 4562 } 4563 4564 static int __init setup_schedstats(char *str) 4565 { 4566 int ret = 0; 4567 if (!str) 4568 goto out; 4569 4570 if (!strcmp(str, "enable")) { 4571 set_schedstats(true); 4572 ret = 1; 4573 } else if (!strcmp(str, "disable")) { 4574 set_schedstats(false); 4575 ret = 1; 4576 } 4577 out: 4578 if (!ret) 4579 pr_warn("Unable to parse schedstats=\n"); 4580 4581 return ret; 4582 } 4583 __setup("schedstats=", setup_schedstats); 4584 4585 #ifdef CONFIG_PROC_SYSCTL 4586 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer, 4587 size_t *lenp, loff_t *ppos) 4588 { 4589 struct ctl_table t; 4590 int err; 4591 int state = static_branch_likely(&sched_schedstats); 4592 4593 if (write && !capable(CAP_SYS_ADMIN)) 4594 return -EPERM; 4595 4596 t = *table; 4597 t.data = &state; 4598 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4599 if (err < 0) 4600 return err; 4601 if (write) 4602 set_schedstats(state); 4603 return err; 4604 } 4605 #endif /* CONFIG_PROC_SYSCTL */ 4606 #endif /* CONFIG_SCHEDSTATS */ 4607 4608 #ifdef CONFIG_SYSCTL 4609 static const struct ctl_table sched_core_sysctls[] = { 4610 #ifdef CONFIG_SCHEDSTATS 4611 { 4612 .procname = "sched_schedstats", 4613 .data = NULL, 4614 .maxlen = sizeof(unsigned int), 4615 .mode = 0644, 4616 .proc_handler = sysctl_schedstats, 4617 .extra1 = SYSCTL_ZERO, 4618 .extra2 = SYSCTL_ONE, 4619 }, 4620 #endif /* CONFIG_SCHEDSTATS */ 4621 #ifdef CONFIG_UCLAMP_TASK 4622 { 4623 .procname = "sched_util_clamp_min", 4624 .data = &sysctl_sched_uclamp_util_min, 4625 .maxlen = sizeof(unsigned int), 4626 .mode = 0644, 4627 .proc_handler = sysctl_sched_uclamp_handler, 4628 }, 4629 { 4630 .procname = "sched_util_clamp_max", 4631 .data = &sysctl_sched_uclamp_util_max, 4632 .maxlen = sizeof(unsigned int), 4633 .mode = 0644, 4634 .proc_handler = sysctl_sched_uclamp_handler, 4635 }, 4636 { 4637 .procname = "sched_util_clamp_min_rt_default", 4638 .data = &sysctl_sched_uclamp_util_min_rt_default, 4639 .maxlen = sizeof(unsigned int), 4640 .mode = 0644, 4641 .proc_handler = sysctl_sched_uclamp_handler, 4642 }, 4643 #endif /* CONFIG_UCLAMP_TASK */ 4644 #ifdef CONFIG_NUMA_BALANCING 4645 { 4646 .procname = "numa_balancing", 4647 .data = NULL, /* filled in by handler */ 4648 .maxlen = sizeof(unsigned int), 4649 .mode = 0644, 4650 .proc_handler = sysctl_numa_balancing, 4651 .extra1 = SYSCTL_ZERO, 4652 .extra2 = SYSCTL_FOUR, 4653 }, 4654 #endif /* CONFIG_NUMA_BALANCING */ 4655 }; 4656 static int __init sched_core_sysctl_init(void) 4657 { 4658 register_sysctl_init("kernel", sched_core_sysctls); 4659 return 0; 4660 } 4661 late_initcall(sched_core_sysctl_init); 4662 #endif /* CONFIG_SYSCTL */ 4663 4664 /* 4665 * fork()/clone()-time setup: 4666 */ 4667 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4668 { 4669 __sched_fork(clone_flags, p); 4670 /* 4671 * We mark the process as NEW here. This guarantees that 4672 * nobody will actually run it, and a signal or other external 4673 * event cannot wake it up and insert it on the runqueue either. 4674 */ 4675 p->__state = TASK_NEW; 4676 4677 /* 4678 * Make sure we do not leak PI boosting priority to the child. 4679 */ 4680 p->prio = current->normal_prio; 4681 4682 uclamp_fork(p); 4683 4684 /* 4685 * Revert to default priority/policy on fork if requested. 4686 */ 4687 if (unlikely(p->sched_reset_on_fork)) { 4688 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4689 p->policy = SCHED_NORMAL; 4690 p->static_prio = NICE_TO_PRIO(0); 4691 p->rt_priority = 0; 4692 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4693 p->static_prio = NICE_TO_PRIO(0); 4694 4695 p->prio = p->normal_prio = p->static_prio; 4696 set_load_weight(p, false); 4697 p->se.custom_slice = 0; 4698 p->se.slice = sysctl_sched_base_slice; 4699 4700 /* 4701 * We don't need the reset flag anymore after the fork. It has 4702 * fulfilled its duty: 4703 */ 4704 p->sched_reset_on_fork = 0; 4705 } 4706 4707 if (dl_prio(p->prio)) 4708 return -EAGAIN; 4709 4710 scx_pre_fork(p); 4711 4712 if (rt_prio(p->prio)) { 4713 p->sched_class = &rt_sched_class; 4714 #ifdef CONFIG_SCHED_CLASS_EXT 4715 } else if (task_should_scx(p->policy)) { 4716 p->sched_class = &ext_sched_class; 4717 #endif 4718 } else { 4719 p->sched_class = &fair_sched_class; 4720 } 4721 4722 init_entity_runnable_average(&p->se); 4723 4724 4725 #ifdef CONFIG_SCHED_INFO 4726 if (likely(sched_info_on())) 4727 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4728 #endif 4729 p->on_cpu = 0; 4730 init_task_preempt_count(p); 4731 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4732 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4733 4734 return 0; 4735 } 4736 4737 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4738 { 4739 unsigned long flags; 4740 4741 /* 4742 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4743 * required yet, but lockdep gets upset if rules are violated. 4744 */ 4745 raw_spin_lock_irqsave(&p->pi_lock, flags); 4746 #ifdef CONFIG_CGROUP_SCHED 4747 if (1) { 4748 struct task_group *tg; 4749 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4750 struct task_group, css); 4751 tg = autogroup_task_group(p, tg); 4752 p->sched_task_group = tg; 4753 } 4754 #endif 4755 rseq_migrate(p); 4756 /* 4757 * We're setting the CPU for the first time, we don't migrate, 4758 * so use __set_task_cpu(). 4759 */ 4760 __set_task_cpu(p, smp_processor_id()); 4761 if (p->sched_class->task_fork) 4762 p->sched_class->task_fork(p); 4763 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4764 4765 return scx_fork(p); 4766 } 4767 4768 void sched_cancel_fork(struct task_struct *p) 4769 { 4770 scx_cancel_fork(p); 4771 } 4772 4773 void sched_post_fork(struct task_struct *p) 4774 { 4775 uclamp_post_fork(p); 4776 scx_post_fork(p); 4777 } 4778 4779 unsigned long to_ratio(u64 period, u64 runtime) 4780 { 4781 if (runtime == RUNTIME_INF) 4782 return BW_UNIT; 4783 4784 /* 4785 * Doing this here saves a lot of checks in all 4786 * the calling paths, and returning zero seems 4787 * safe for them anyway. 4788 */ 4789 if (period == 0) 4790 return 0; 4791 4792 return div64_u64(runtime << BW_SHIFT, period); 4793 } 4794 4795 /* 4796 * wake_up_new_task - wake up a newly created task for the first time. 4797 * 4798 * This function will do some initial scheduler statistics housekeeping 4799 * that must be done for every newly created context, then puts the task 4800 * on the runqueue and wakes it. 4801 */ 4802 void wake_up_new_task(struct task_struct *p) 4803 { 4804 struct rq_flags rf; 4805 struct rq *rq; 4806 int wake_flags = WF_FORK; 4807 4808 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4809 WRITE_ONCE(p->__state, TASK_RUNNING); 4810 /* 4811 * Fork balancing, do it here and not earlier because: 4812 * - cpus_ptr can change in the fork path 4813 * - any previously selected CPU might disappear through hotplug 4814 * 4815 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4816 * as we're not fully set-up yet. 4817 */ 4818 p->recent_used_cpu = task_cpu(p); 4819 rseq_migrate(p); 4820 __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags)); 4821 rq = __task_rq_lock(p, &rf); 4822 update_rq_clock(rq); 4823 post_init_entity_util_avg(p); 4824 4825 activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL); 4826 trace_sched_wakeup_new(p); 4827 wakeup_preempt(rq, p, wake_flags); 4828 if (p->sched_class->task_woken) { 4829 /* 4830 * Nothing relies on rq->lock after this, so it's fine to 4831 * drop it. 4832 */ 4833 rq_unpin_lock(rq, &rf); 4834 p->sched_class->task_woken(rq, p); 4835 rq_repin_lock(rq, &rf); 4836 } 4837 task_rq_unlock(rq, p, &rf); 4838 } 4839 4840 #ifdef CONFIG_PREEMPT_NOTIFIERS 4841 4842 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4843 4844 void preempt_notifier_inc(void) 4845 { 4846 static_branch_inc(&preempt_notifier_key); 4847 } 4848 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4849 4850 void preempt_notifier_dec(void) 4851 { 4852 static_branch_dec(&preempt_notifier_key); 4853 } 4854 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4855 4856 /** 4857 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4858 * @notifier: notifier struct to register 4859 */ 4860 void preempt_notifier_register(struct preempt_notifier *notifier) 4861 { 4862 if (!static_branch_unlikely(&preempt_notifier_key)) 4863 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4864 4865 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4866 } 4867 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4868 4869 /** 4870 * preempt_notifier_unregister - no longer interested in preemption notifications 4871 * @notifier: notifier struct to unregister 4872 * 4873 * This is *not* safe to call from within a preemption notifier. 4874 */ 4875 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4876 { 4877 hlist_del(¬ifier->link); 4878 } 4879 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4880 4881 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4882 { 4883 struct preempt_notifier *notifier; 4884 4885 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4886 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4887 } 4888 4889 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4890 { 4891 if (static_branch_unlikely(&preempt_notifier_key)) 4892 __fire_sched_in_preempt_notifiers(curr); 4893 } 4894 4895 static void 4896 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4897 struct task_struct *next) 4898 { 4899 struct preempt_notifier *notifier; 4900 4901 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4902 notifier->ops->sched_out(notifier, next); 4903 } 4904 4905 static __always_inline void 4906 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4907 struct task_struct *next) 4908 { 4909 if (static_branch_unlikely(&preempt_notifier_key)) 4910 __fire_sched_out_preempt_notifiers(curr, next); 4911 } 4912 4913 #else /* !CONFIG_PREEMPT_NOTIFIERS: */ 4914 4915 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4916 { 4917 } 4918 4919 static inline void 4920 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4921 struct task_struct *next) 4922 { 4923 } 4924 4925 #endif /* !CONFIG_PREEMPT_NOTIFIERS */ 4926 4927 static inline void prepare_task(struct task_struct *next) 4928 { 4929 /* 4930 * Claim the task as running, we do this before switching to it 4931 * such that any running task will have this set. 4932 * 4933 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4934 * its ordering comment. 4935 */ 4936 WRITE_ONCE(next->on_cpu, 1); 4937 } 4938 4939 static inline void finish_task(struct task_struct *prev) 4940 { 4941 /* 4942 * This must be the very last reference to @prev from this CPU. After 4943 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4944 * must ensure this doesn't happen until the switch is completely 4945 * finished. 4946 * 4947 * In particular, the load of prev->state in finish_task_switch() must 4948 * happen before this. 4949 * 4950 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4951 */ 4952 smp_store_release(&prev->on_cpu, 0); 4953 } 4954 4955 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 4956 { 4957 void (*func)(struct rq *rq); 4958 struct balance_callback *next; 4959 4960 lockdep_assert_rq_held(rq); 4961 4962 while (head) { 4963 func = (void (*)(struct rq *))head->func; 4964 next = head->next; 4965 head->next = NULL; 4966 head = next; 4967 4968 func(rq); 4969 } 4970 } 4971 4972 static void balance_push(struct rq *rq); 4973 4974 /* 4975 * balance_push_callback is a right abuse of the callback interface and plays 4976 * by significantly different rules. 4977 * 4978 * Where the normal balance_callback's purpose is to be ran in the same context 4979 * that queued it (only later, when it's safe to drop rq->lock again), 4980 * balance_push_callback is specifically targeted at __schedule(). 4981 * 4982 * This abuse is tolerated because it places all the unlikely/odd cases behind 4983 * a single test, namely: rq->balance_callback == NULL. 4984 */ 4985 struct balance_callback balance_push_callback = { 4986 .next = NULL, 4987 .func = balance_push, 4988 }; 4989 4990 static inline struct balance_callback * 4991 __splice_balance_callbacks(struct rq *rq, bool split) 4992 { 4993 struct balance_callback *head = rq->balance_callback; 4994 4995 if (likely(!head)) 4996 return NULL; 4997 4998 lockdep_assert_rq_held(rq); 4999 /* 5000 * Must not take balance_push_callback off the list when 5001 * splice_balance_callbacks() and balance_callbacks() are not 5002 * in the same rq->lock section. 5003 * 5004 * In that case it would be possible for __schedule() to interleave 5005 * and observe the list empty. 5006 */ 5007 if (split && head == &balance_push_callback) 5008 head = NULL; 5009 else 5010 rq->balance_callback = NULL; 5011 5012 return head; 5013 } 5014 5015 struct balance_callback *splice_balance_callbacks(struct rq *rq) 5016 { 5017 return __splice_balance_callbacks(rq, true); 5018 } 5019 5020 static void __balance_callbacks(struct rq *rq) 5021 { 5022 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 5023 } 5024 5025 void balance_callbacks(struct rq *rq, struct balance_callback *head) 5026 { 5027 unsigned long flags; 5028 5029 if (unlikely(head)) { 5030 raw_spin_rq_lock_irqsave(rq, flags); 5031 do_balance_callbacks(rq, head); 5032 raw_spin_rq_unlock_irqrestore(rq, flags); 5033 } 5034 } 5035 5036 static inline void 5037 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 5038 { 5039 /* 5040 * Since the runqueue lock will be released by the next 5041 * task (which is an invalid locking op but in the case 5042 * of the scheduler it's an obvious special-case), so we 5043 * do an early lockdep release here: 5044 */ 5045 rq_unpin_lock(rq, rf); 5046 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 5047 #ifdef CONFIG_DEBUG_SPINLOCK 5048 /* this is a valid case when another task releases the spinlock */ 5049 rq_lockp(rq)->owner = next; 5050 #endif 5051 } 5052 5053 static inline void finish_lock_switch(struct rq *rq) 5054 { 5055 /* 5056 * If we are tracking spinlock dependencies then we have to 5057 * fix up the runqueue lock - which gets 'carried over' from 5058 * prev into current: 5059 */ 5060 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5061 __balance_callbacks(rq); 5062 raw_spin_rq_unlock_irq(rq); 5063 } 5064 5065 /* 5066 * NOP if the arch has not defined these: 5067 */ 5068 5069 #ifndef prepare_arch_switch 5070 # define prepare_arch_switch(next) do { } while (0) 5071 #endif 5072 5073 #ifndef finish_arch_post_lock_switch 5074 # define finish_arch_post_lock_switch() do { } while (0) 5075 #endif 5076 5077 static inline void kmap_local_sched_out(void) 5078 { 5079 #ifdef CONFIG_KMAP_LOCAL 5080 if (unlikely(current->kmap_ctrl.idx)) 5081 __kmap_local_sched_out(); 5082 #endif 5083 } 5084 5085 static inline void kmap_local_sched_in(void) 5086 { 5087 #ifdef CONFIG_KMAP_LOCAL 5088 if (unlikely(current->kmap_ctrl.idx)) 5089 __kmap_local_sched_in(); 5090 #endif 5091 } 5092 5093 /** 5094 * prepare_task_switch - prepare to switch tasks 5095 * @rq: the runqueue preparing to switch 5096 * @prev: the current task that is being switched out 5097 * @next: the task we are going to switch to. 5098 * 5099 * This is called with the rq lock held and interrupts off. It must 5100 * be paired with a subsequent finish_task_switch after the context 5101 * switch. 5102 * 5103 * prepare_task_switch sets up locking and calls architecture specific 5104 * hooks. 5105 */ 5106 static inline void 5107 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5108 struct task_struct *next) 5109 { 5110 kcov_prepare_switch(prev); 5111 sched_info_switch(rq, prev, next); 5112 perf_event_task_sched_out(prev, next); 5113 rseq_preempt(prev); 5114 fire_sched_out_preempt_notifiers(prev, next); 5115 kmap_local_sched_out(); 5116 prepare_task(next); 5117 prepare_arch_switch(next); 5118 } 5119 5120 /** 5121 * finish_task_switch - clean up after a task-switch 5122 * @prev: the thread we just switched away from. 5123 * 5124 * finish_task_switch must be called after the context switch, paired 5125 * with a prepare_task_switch call before the context switch. 5126 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5127 * and do any other architecture-specific cleanup actions. 5128 * 5129 * Note that we may have delayed dropping an mm in context_switch(). If 5130 * so, we finish that here outside of the runqueue lock. (Doing it 5131 * with the lock held can cause deadlocks; see schedule() for 5132 * details.) 5133 * 5134 * The context switch have flipped the stack from under us and restored the 5135 * local variables which were saved when this task called schedule() in the 5136 * past. 'prev == current' is still correct but we need to recalculate this_rq 5137 * because prev may have moved to another CPU. 5138 */ 5139 static struct rq *finish_task_switch(struct task_struct *prev) 5140 __releases(rq->lock) 5141 { 5142 struct rq *rq = this_rq(); 5143 struct mm_struct *mm = rq->prev_mm; 5144 unsigned int prev_state; 5145 5146 /* 5147 * The previous task will have left us with a preempt_count of 2 5148 * because it left us after: 5149 * 5150 * schedule() 5151 * preempt_disable(); // 1 5152 * __schedule() 5153 * raw_spin_lock_irq(&rq->lock) // 2 5154 * 5155 * Also, see FORK_PREEMPT_COUNT. 5156 */ 5157 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5158 "corrupted preempt_count: %s/%d/0x%x\n", 5159 current->comm, current->pid, preempt_count())) 5160 preempt_count_set(FORK_PREEMPT_COUNT); 5161 5162 rq->prev_mm = NULL; 5163 5164 /* 5165 * A task struct has one reference for the use as "current". 5166 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5167 * schedule one last time. The schedule call will never return, and 5168 * the scheduled task must drop that reference. 5169 * 5170 * We must observe prev->state before clearing prev->on_cpu (in 5171 * finish_task), otherwise a concurrent wakeup can get prev 5172 * running on another CPU and we could rave with its RUNNING -> DEAD 5173 * transition, resulting in a double drop. 5174 */ 5175 prev_state = READ_ONCE(prev->__state); 5176 vtime_task_switch(prev); 5177 perf_event_task_sched_in(prev, current); 5178 finish_task(prev); 5179 tick_nohz_task_switch(); 5180 finish_lock_switch(rq); 5181 finish_arch_post_lock_switch(); 5182 kcov_finish_switch(current); 5183 /* 5184 * kmap_local_sched_out() is invoked with rq::lock held and 5185 * interrupts disabled. There is no requirement for that, but the 5186 * sched out code does not have an interrupt enabled section. 5187 * Restoring the maps on sched in does not require interrupts being 5188 * disabled either. 5189 */ 5190 kmap_local_sched_in(); 5191 5192 fire_sched_in_preempt_notifiers(current); 5193 /* 5194 * When switching through a kernel thread, the loop in 5195 * membarrier_{private,global}_expedited() may have observed that 5196 * kernel thread and not issued an IPI. It is therefore possible to 5197 * schedule between user->kernel->user threads without passing though 5198 * switch_mm(). Membarrier requires a barrier after storing to 5199 * rq->curr, before returning to userspace, so provide them here: 5200 * 5201 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5202 * provided by mmdrop_lazy_tlb(), 5203 * - a sync_core for SYNC_CORE. 5204 */ 5205 if (mm) { 5206 membarrier_mm_sync_core_before_usermode(mm); 5207 mmdrop_lazy_tlb_sched(mm); 5208 } 5209 5210 if (unlikely(prev_state == TASK_DEAD)) { 5211 if (prev->sched_class->task_dead) 5212 prev->sched_class->task_dead(prev); 5213 5214 /* Task is done with its stack. */ 5215 put_task_stack(prev); 5216 5217 put_task_struct_rcu_user(prev); 5218 } 5219 5220 return rq; 5221 } 5222 5223 /** 5224 * schedule_tail - first thing a freshly forked thread must call. 5225 * @prev: the thread we just switched away from. 5226 */ 5227 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5228 __releases(rq->lock) 5229 { 5230 /* 5231 * New tasks start with FORK_PREEMPT_COUNT, see there and 5232 * finish_task_switch() for details. 5233 * 5234 * finish_task_switch() will drop rq->lock() and lower preempt_count 5235 * and the preempt_enable() will end up enabling preemption (on 5236 * PREEMPT_COUNT kernels). 5237 */ 5238 5239 finish_task_switch(prev); 5240 /* 5241 * This is a special case: the newly created task has just 5242 * switched the context for the first time. It is returning from 5243 * schedule for the first time in this path. 5244 */ 5245 trace_sched_exit_tp(true, CALLER_ADDR0); 5246 preempt_enable(); 5247 5248 if (current->set_child_tid) 5249 put_user(task_pid_vnr(current), current->set_child_tid); 5250 5251 calculate_sigpending(); 5252 } 5253 5254 /* 5255 * context_switch - switch to the new MM and the new thread's register state. 5256 */ 5257 static __always_inline struct rq * 5258 context_switch(struct rq *rq, struct task_struct *prev, 5259 struct task_struct *next, struct rq_flags *rf) 5260 { 5261 prepare_task_switch(rq, prev, next); 5262 5263 /* 5264 * For paravirt, this is coupled with an exit in switch_to to 5265 * combine the page table reload and the switch backend into 5266 * one hypercall. 5267 */ 5268 arch_start_context_switch(prev); 5269 5270 /* 5271 * kernel -> kernel lazy + transfer active 5272 * user -> kernel lazy + mmgrab_lazy_tlb() active 5273 * 5274 * kernel -> user switch + mmdrop_lazy_tlb() active 5275 * user -> user switch 5276 * 5277 * switch_mm_cid() needs to be updated if the barriers provided 5278 * by context_switch() are modified. 5279 */ 5280 if (!next->mm) { // to kernel 5281 enter_lazy_tlb(prev->active_mm, next); 5282 5283 next->active_mm = prev->active_mm; 5284 if (prev->mm) // from user 5285 mmgrab_lazy_tlb(prev->active_mm); 5286 else 5287 prev->active_mm = NULL; 5288 } else { // to user 5289 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5290 /* 5291 * sys_membarrier() requires an smp_mb() between setting 5292 * rq->curr / membarrier_switch_mm() and returning to userspace. 5293 * 5294 * The below provides this either through switch_mm(), or in 5295 * case 'prev->active_mm == next->mm' through 5296 * finish_task_switch()'s mmdrop(). 5297 */ 5298 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5299 lru_gen_use_mm(next->mm); 5300 5301 if (!prev->mm) { // from kernel 5302 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5303 rq->prev_mm = prev->active_mm; 5304 prev->active_mm = NULL; 5305 } 5306 } 5307 5308 /* switch_mm_cid() requires the memory barriers above. */ 5309 switch_mm_cid(rq, prev, next); 5310 5311 prepare_lock_switch(rq, next, rf); 5312 5313 /* Here we just switch the register state and the stack. */ 5314 switch_to(prev, next, prev); 5315 barrier(); 5316 5317 return finish_task_switch(prev); 5318 } 5319 5320 /* 5321 * nr_running and nr_context_switches: 5322 * 5323 * externally visible scheduler statistics: current number of runnable 5324 * threads, total number of context switches performed since bootup. 5325 */ 5326 unsigned int nr_running(void) 5327 { 5328 unsigned int i, sum = 0; 5329 5330 for_each_online_cpu(i) 5331 sum += cpu_rq(i)->nr_running; 5332 5333 return sum; 5334 } 5335 5336 /* 5337 * Check if only the current task is running on the CPU. 5338 * 5339 * Caution: this function does not check that the caller has disabled 5340 * preemption, thus the result might have a time-of-check-to-time-of-use 5341 * race. The caller is responsible to use it correctly, for example: 5342 * 5343 * - from a non-preemptible section (of course) 5344 * 5345 * - from a thread that is bound to a single CPU 5346 * 5347 * - in a loop with very short iterations (e.g. a polling loop) 5348 */ 5349 bool single_task_running(void) 5350 { 5351 return raw_rq()->nr_running == 1; 5352 } 5353 EXPORT_SYMBOL(single_task_running); 5354 5355 unsigned long long nr_context_switches_cpu(int cpu) 5356 { 5357 return cpu_rq(cpu)->nr_switches; 5358 } 5359 5360 unsigned long long nr_context_switches(void) 5361 { 5362 int i; 5363 unsigned long long sum = 0; 5364 5365 for_each_possible_cpu(i) 5366 sum += cpu_rq(i)->nr_switches; 5367 5368 return sum; 5369 } 5370 5371 /* 5372 * Consumers of these two interfaces, like for example the cpuidle menu 5373 * governor, are using nonsensical data. Preferring shallow idle state selection 5374 * for a CPU that has IO-wait which might not even end up running the task when 5375 * it does become runnable. 5376 */ 5377 5378 unsigned int nr_iowait_cpu(int cpu) 5379 { 5380 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5381 } 5382 5383 /* 5384 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5385 * 5386 * The idea behind IO-wait account is to account the idle time that we could 5387 * have spend running if it were not for IO. That is, if we were to improve the 5388 * storage performance, we'd have a proportional reduction in IO-wait time. 5389 * 5390 * This all works nicely on UP, where, when a task blocks on IO, we account 5391 * idle time as IO-wait, because if the storage were faster, it could've been 5392 * running and we'd not be idle. 5393 * 5394 * This has been extended to SMP, by doing the same for each CPU. This however 5395 * is broken. 5396 * 5397 * Imagine for instance the case where two tasks block on one CPU, only the one 5398 * CPU will have IO-wait accounted, while the other has regular idle. Even 5399 * though, if the storage were faster, both could've ran at the same time, 5400 * utilising both CPUs. 5401 * 5402 * This means, that when looking globally, the current IO-wait accounting on 5403 * SMP is a lower bound, by reason of under accounting. 5404 * 5405 * Worse, since the numbers are provided per CPU, they are sometimes 5406 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5407 * associated with any one particular CPU, it can wake to another CPU than it 5408 * blocked on. This means the per CPU IO-wait number is meaningless. 5409 * 5410 * Task CPU affinities can make all that even more 'interesting'. 5411 */ 5412 5413 unsigned int nr_iowait(void) 5414 { 5415 unsigned int i, sum = 0; 5416 5417 for_each_possible_cpu(i) 5418 sum += nr_iowait_cpu(i); 5419 5420 return sum; 5421 } 5422 5423 /* 5424 * sched_exec - execve() is a valuable balancing opportunity, because at 5425 * this point the task has the smallest effective memory and cache footprint. 5426 */ 5427 void sched_exec(void) 5428 { 5429 struct task_struct *p = current; 5430 struct migration_arg arg; 5431 int dest_cpu; 5432 5433 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5434 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5435 if (dest_cpu == smp_processor_id()) 5436 return; 5437 5438 if (unlikely(!cpu_active(dest_cpu))) 5439 return; 5440 5441 arg = (struct migration_arg){ p, dest_cpu }; 5442 } 5443 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5444 } 5445 5446 DEFINE_PER_CPU(struct kernel_stat, kstat); 5447 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5448 5449 EXPORT_PER_CPU_SYMBOL(kstat); 5450 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5451 5452 /* 5453 * The function fair_sched_class.update_curr accesses the struct curr 5454 * and its field curr->exec_start; when called from task_sched_runtime(), 5455 * we observe a high rate of cache misses in practice. 5456 * Prefetching this data results in improved performance. 5457 */ 5458 static inline void prefetch_curr_exec_start(struct task_struct *p) 5459 { 5460 #ifdef CONFIG_FAIR_GROUP_SCHED 5461 struct sched_entity *curr = p->se.cfs_rq->curr; 5462 #else 5463 struct sched_entity *curr = task_rq(p)->cfs.curr; 5464 #endif 5465 prefetch(curr); 5466 prefetch(&curr->exec_start); 5467 } 5468 5469 /* 5470 * Return accounted runtime for the task. 5471 * In case the task is currently running, return the runtime plus current's 5472 * pending runtime that have not been accounted yet. 5473 */ 5474 unsigned long long task_sched_runtime(struct task_struct *p) 5475 { 5476 struct rq_flags rf; 5477 struct rq *rq; 5478 u64 ns; 5479 5480 #ifdef CONFIG_64BIT 5481 /* 5482 * 64-bit doesn't need locks to atomically read a 64-bit value. 5483 * So we have a optimization chance when the task's delta_exec is 0. 5484 * Reading ->on_cpu is racy, but this is OK. 5485 * 5486 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5487 * If we race with it entering CPU, unaccounted time is 0. This is 5488 * indistinguishable from the read occurring a few cycles earlier. 5489 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5490 * been accounted, so we're correct here as well. 5491 */ 5492 if (!p->on_cpu || !task_on_rq_queued(p)) 5493 return p->se.sum_exec_runtime; 5494 #endif 5495 5496 rq = task_rq_lock(p, &rf); 5497 /* 5498 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5499 * project cycles that may never be accounted to this 5500 * thread, breaking clock_gettime(). 5501 */ 5502 if (task_current_donor(rq, p) && task_on_rq_queued(p)) { 5503 prefetch_curr_exec_start(p); 5504 update_rq_clock(rq); 5505 p->sched_class->update_curr(rq); 5506 } 5507 ns = p->se.sum_exec_runtime; 5508 task_rq_unlock(rq, p, &rf); 5509 5510 return ns; 5511 } 5512 5513 static u64 cpu_resched_latency(struct rq *rq) 5514 { 5515 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5516 u64 resched_latency, now = rq_clock(rq); 5517 static bool warned_once; 5518 5519 if (sysctl_resched_latency_warn_once && warned_once) 5520 return 0; 5521 5522 if (!need_resched() || !latency_warn_ms) 5523 return 0; 5524 5525 if (system_state == SYSTEM_BOOTING) 5526 return 0; 5527 5528 if (!rq->last_seen_need_resched_ns) { 5529 rq->last_seen_need_resched_ns = now; 5530 rq->ticks_without_resched = 0; 5531 return 0; 5532 } 5533 5534 rq->ticks_without_resched++; 5535 resched_latency = now - rq->last_seen_need_resched_ns; 5536 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5537 return 0; 5538 5539 warned_once = true; 5540 5541 return resched_latency; 5542 } 5543 5544 static int __init setup_resched_latency_warn_ms(char *str) 5545 { 5546 long val; 5547 5548 if ((kstrtol(str, 0, &val))) { 5549 pr_warn("Unable to set resched_latency_warn_ms\n"); 5550 return 1; 5551 } 5552 5553 sysctl_resched_latency_warn_ms = val; 5554 return 1; 5555 } 5556 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5557 5558 /* 5559 * This function gets called by the timer code, with HZ frequency. 5560 * We call it with interrupts disabled. 5561 */ 5562 void sched_tick(void) 5563 { 5564 int cpu = smp_processor_id(); 5565 struct rq *rq = cpu_rq(cpu); 5566 /* accounting goes to the donor task */ 5567 struct task_struct *donor; 5568 struct rq_flags rf; 5569 unsigned long hw_pressure; 5570 u64 resched_latency; 5571 5572 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5573 arch_scale_freq_tick(); 5574 5575 sched_clock_tick(); 5576 5577 rq_lock(rq, &rf); 5578 donor = rq->donor; 5579 5580 psi_account_irqtime(rq, donor, NULL); 5581 5582 update_rq_clock(rq); 5583 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 5584 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); 5585 5586 if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY)) 5587 resched_curr(rq); 5588 5589 donor->sched_class->task_tick(rq, donor, 0); 5590 if (sched_feat(LATENCY_WARN)) 5591 resched_latency = cpu_resched_latency(rq); 5592 calc_global_load_tick(rq); 5593 sched_core_tick(rq); 5594 task_tick_mm_cid(rq, donor); 5595 scx_tick(rq); 5596 5597 rq_unlock(rq, &rf); 5598 5599 if (sched_feat(LATENCY_WARN) && resched_latency) 5600 resched_latency_warn(cpu, resched_latency); 5601 5602 perf_event_task_tick(); 5603 5604 if (donor->flags & PF_WQ_WORKER) 5605 wq_worker_tick(donor); 5606 5607 if (!scx_switched_all()) { 5608 rq->idle_balance = idle_cpu(cpu); 5609 sched_balance_trigger(rq); 5610 } 5611 } 5612 5613 #ifdef CONFIG_NO_HZ_FULL 5614 5615 struct tick_work { 5616 int cpu; 5617 atomic_t state; 5618 struct delayed_work work; 5619 }; 5620 /* Values for ->state, see diagram below. */ 5621 #define TICK_SCHED_REMOTE_OFFLINE 0 5622 #define TICK_SCHED_REMOTE_OFFLINING 1 5623 #define TICK_SCHED_REMOTE_RUNNING 2 5624 5625 /* 5626 * State diagram for ->state: 5627 * 5628 * 5629 * TICK_SCHED_REMOTE_OFFLINE 5630 * | ^ 5631 * | | 5632 * | | sched_tick_remote() 5633 * | | 5634 * | | 5635 * +--TICK_SCHED_REMOTE_OFFLINING 5636 * | ^ 5637 * | | 5638 * sched_tick_start() | | sched_tick_stop() 5639 * | | 5640 * V | 5641 * TICK_SCHED_REMOTE_RUNNING 5642 * 5643 * 5644 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5645 * and sched_tick_start() are happy to leave the state in RUNNING. 5646 */ 5647 5648 static struct tick_work __percpu *tick_work_cpu; 5649 5650 static void sched_tick_remote(struct work_struct *work) 5651 { 5652 struct delayed_work *dwork = to_delayed_work(work); 5653 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5654 int cpu = twork->cpu; 5655 struct rq *rq = cpu_rq(cpu); 5656 int os; 5657 5658 /* 5659 * Handle the tick only if it appears the remote CPU is running in full 5660 * dynticks mode. The check is racy by nature, but missing a tick or 5661 * having one too much is no big deal because the scheduler tick updates 5662 * statistics and checks timeslices in a time-independent way, regardless 5663 * of when exactly it is running. 5664 */ 5665 if (tick_nohz_tick_stopped_cpu(cpu)) { 5666 guard(rq_lock_irq)(rq); 5667 struct task_struct *curr = rq->curr; 5668 5669 if (cpu_online(cpu)) { 5670 /* 5671 * Since this is a remote tick for full dynticks mode, 5672 * we are always sure that there is no proxy (only a 5673 * single task is running). 5674 */ 5675 WARN_ON_ONCE(rq->curr != rq->donor); 5676 update_rq_clock(rq); 5677 5678 if (!is_idle_task(curr)) { 5679 /* 5680 * Make sure the next tick runs within a 5681 * reasonable amount of time. 5682 */ 5683 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5684 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5685 } 5686 curr->sched_class->task_tick(rq, curr, 0); 5687 5688 calc_load_nohz_remote(rq); 5689 } 5690 } 5691 5692 /* 5693 * Run the remote tick once per second (1Hz). This arbitrary 5694 * frequency is large enough to avoid overload but short enough 5695 * to keep scheduler internal stats reasonably up to date. But 5696 * first update state to reflect hotplug activity if required. 5697 */ 5698 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5699 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5700 if (os == TICK_SCHED_REMOTE_RUNNING) 5701 queue_delayed_work(system_unbound_wq, dwork, HZ); 5702 } 5703 5704 static void sched_tick_start(int cpu) 5705 { 5706 int os; 5707 struct tick_work *twork; 5708 5709 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5710 return; 5711 5712 WARN_ON_ONCE(!tick_work_cpu); 5713 5714 twork = per_cpu_ptr(tick_work_cpu, cpu); 5715 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5716 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5717 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5718 twork->cpu = cpu; 5719 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5720 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5721 } 5722 } 5723 5724 #ifdef CONFIG_HOTPLUG_CPU 5725 static void sched_tick_stop(int cpu) 5726 { 5727 struct tick_work *twork; 5728 int os; 5729 5730 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5731 return; 5732 5733 WARN_ON_ONCE(!tick_work_cpu); 5734 5735 twork = per_cpu_ptr(tick_work_cpu, cpu); 5736 /* There cannot be competing actions, but don't rely on stop-machine. */ 5737 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5738 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5739 /* Don't cancel, as this would mess up the state machine. */ 5740 } 5741 #endif /* CONFIG_HOTPLUG_CPU */ 5742 5743 int __init sched_tick_offload_init(void) 5744 { 5745 tick_work_cpu = alloc_percpu(struct tick_work); 5746 BUG_ON(!tick_work_cpu); 5747 return 0; 5748 } 5749 5750 #else /* !CONFIG_NO_HZ_FULL: */ 5751 static inline void sched_tick_start(int cpu) { } 5752 static inline void sched_tick_stop(int cpu) { } 5753 #endif /* !CONFIG_NO_HZ_FULL */ 5754 5755 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5756 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5757 /* 5758 * If the value passed in is equal to the current preempt count 5759 * then we just disabled preemption. Start timing the latency. 5760 */ 5761 static inline void preempt_latency_start(int val) 5762 { 5763 if (preempt_count() == val) { 5764 unsigned long ip = get_lock_parent_ip(); 5765 #ifdef CONFIG_DEBUG_PREEMPT 5766 current->preempt_disable_ip = ip; 5767 #endif 5768 trace_preempt_off(CALLER_ADDR0, ip); 5769 } 5770 } 5771 5772 void preempt_count_add(int val) 5773 { 5774 #ifdef CONFIG_DEBUG_PREEMPT 5775 /* 5776 * Underflow? 5777 */ 5778 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5779 return; 5780 #endif 5781 __preempt_count_add(val); 5782 #ifdef CONFIG_DEBUG_PREEMPT 5783 /* 5784 * Spinlock count overflowing soon? 5785 */ 5786 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5787 PREEMPT_MASK - 10); 5788 #endif 5789 preempt_latency_start(val); 5790 } 5791 EXPORT_SYMBOL(preempt_count_add); 5792 NOKPROBE_SYMBOL(preempt_count_add); 5793 5794 /* 5795 * If the value passed in equals to the current preempt count 5796 * then we just enabled preemption. Stop timing the latency. 5797 */ 5798 static inline void preempt_latency_stop(int val) 5799 { 5800 if (preempt_count() == val) 5801 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5802 } 5803 5804 void preempt_count_sub(int val) 5805 { 5806 #ifdef CONFIG_DEBUG_PREEMPT 5807 /* 5808 * Underflow? 5809 */ 5810 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5811 return; 5812 /* 5813 * Is the spinlock portion underflowing? 5814 */ 5815 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5816 !(preempt_count() & PREEMPT_MASK))) 5817 return; 5818 #endif 5819 5820 preempt_latency_stop(val); 5821 __preempt_count_sub(val); 5822 } 5823 EXPORT_SYMBOL(preempt_count_sub); 5824 NOKPROBE_SYMBOL(preempt_count_sub); 5825 5826 #else 5827 static inline void preempt_latency_start(int val) { } 5828 static inline void preempt_latency_stop(int val) { } 5829 #endif 5830 5831 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5832 { 5833 #ifdef CONFIG_DEBUG_PREEMPT 5834 return p->preempt_disable_ip; 5835 #else 5836 return 0; 5837 #endif 5838 } 5839 5840 /* 5841 * Print scheduling while atomic bug: 5842 */ 5843 static noinline void __schedule_bug(struct task_struct *prev) 5844 { 5845 /* Save this before calling printk(), since that will clobber it */ 5846 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5847 5848 if (oops_in_progress) 5849 return; 5850 5851 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5852 prev->comm, prev->pid, preempt_count()); 5853 5854 debug_show_held_locks(prev); 5855 print_modules(); 5856 if (irqs_disabled()) 5857 print_irqtrace_events(prev); 5858 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5859 pr_err("Preemption disabled at:"); 5860 print_ip_sym(KERN_ERR, preempt_disable_ip); 5861 } 5862 check_panic_on_warn("scheduling while atomic"); 5863 5864 dump_stack(); 5865 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5866 } 5867 5868 /* 5869 * Various schedule()-time debugging checks and statistics: 5870 */ 5871 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5872 { 5873 #ifdef CONFIG_SCHED_STACK_END_CHECK 5874 if (task_stack_end_corrupted(prev)) 5875 panic("corrupted stack end detected inside scheduler\n"); 5876 5877 if (task_scs_end_corrupted(prev)) 5878 panic("corrupted shadow stack detected inside scheduler\n"); 5879 #endif 5880 5881 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5882 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5883 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5884 prev->comm, prev->pid, prev->non_block_count); 5885 dump_stack(); 5886 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5887 } 5888 #endif 5889 5890 if (unlikely(in_atomic_preempt_off())) { 5891 __schedule_bug(prev); 5892 preempt_count_set(PREEMPT_DISABLED); 5893 } 5894 rcu_sleep_check(); 5895 WARN_ON_ONCE(ct_state() == CT_STATE_USER); 5896 5897 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5898 5899 schedstat_inc(this_rq()->sched_count); 5900 } 5901 5902 static void prev_balance(struct rq *rq, struct task_struct *prev, 5903 struct rq_flags *rf) 5904 { 5905 const struct sched_class *start_class = prev->sched_class; 5906 const struct sched_class *class; 5907 5908 #ifdef CONFIG_SCHED_CLASS_EXT 5909 /* 5910 * SCX requires a balance() call before every pick_task() including when 5911 * waking up from SCHED_IDLE. If @start_class is below SCX, start from 5912 * SCX instead. Also, set a flag to detect missing balance() call. 5913 */ 5914 if (scx_enabled()) { 5915 rq->scx.flags |= SCX_RQ_BAL_PENDING; 5916 if (sched_class_above(&ext_sched_class, start_class)) 5917 start_class = &ext_sched_class; 5918 } 5919 #endif 5920 5921 /* 5922 * We must do the balancing pass before put_prev_task(), such 5923 * that when we release the rq->lock the task is in the same 5924 * state as before we took rq->lock. 5925 * 5926 * We can terminate the balance pass as soon as we know there is 5927 * a runnable task of @class priority or higher. 5928 */ 5929 for_active_class_range(class, start_class, &idle_sched_class) { 5930 if (class->balance && class->balance(rq, prev, rf)) 5931 break; 5932 } 5933 } 5934 5935 /* 5936 * Pick up the highest-prio task: 5937 */ 5938 static inline struct task_struct * 5939 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5940 { 5941 const struct sched_class *class; 5942 struct task_struct *p; 5943 5944 rq->dl_server = NULL; 5945 5946 if (scx_enabled()) 5947 goto restart; 5948 5949 /* 5950 * Optimization: we know that if all tasks are in the fair class we can 5951 * call that function directly, but only if the @prev task wasn't of a 5952 * higher scheduling class, because otherwise those lose the 5953 * opportunity to pull in more work from other CPUs. 5954 */ 5955 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5956 rq->nr_running == rq->cfs.h_nr_queued)) { 5957 5958 p = pick_next_task_fair(rq, prev, rf); 5959 if (unlikely(p == RETRY_TASK)) 5960 goto restart; 5961 5962 /* Assume the next prioritized class is idle_sched_class */ 5963 if (!p) { 5964 p = pick_task_idle(rq); 5965 put_prev_set_next_task(rq, prev, p); 5966 } 5967 5968 return p; 5969 } 5970 5971 restart: 5972 prev_balance(rq, prev, rf); 5973 5974 for_each_active_class(class) { 5975 if (class->pick_next_task) { 5976 p = class->pick_next_task(rq, prev); 5977 if (p) 5978 return p; 5979 } else { 5980 p = class->pick_task(rq); 5981 if (p) { 5982 put_prev_set_next_task(rq, prev, p); 5983 return p; 5984 } 5985 } 5986 } 5987 5988 BUG(); /* The idle class should always have a runnable task. */ 5989 } 5990 5991 #ifdef CONFIG_SCHED_CORE 5992 static inline bool is_task_rq_idle(struct task_struct *t) 5993 { 5994 return (task_rq(t)->idle == t); 5995 } 5996 5997 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5998 { 5999 return is_task_rq_idle(a) || (a->core_cookie == cookie); 6000 } 6001 6002 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 6003 { 6004 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 6005 return true; 6006 6007 return a->core_cookie == b->core_cookie; 6008 } 6009 6010 static inline struct task_struct *pick_task(struct rq *rq) 6011 { 6012 const struct sched_class *class; 6013 struct task_struct *p; 6014 6015 rq->dl_server = NULL; 6016 6017 for_each_active_class(class) { 6018 p = class->pick_task(rq); 6019 if (p) 6020 return p; 6021 } 6022 6023 BUG(); /* The idle class should always have a runnable task. */ 6024 } 6025 6026 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 6027 6028 static void queue_core_balance(struct rq *rq); 6029 6030 static struct task_struct * 6031 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6032 { 6033 struct task_struct *next, *p, *max = NULL; 6034 const struct cpumask *smt_mask; 6035 bool fi_before = false; 6036 bool core_clock_updated = (rq == rq->core); 6037 unsigned long cookie; 6038 int i, cpu, occ = 0; 6039 struct rq *rq_i; 6040 bool need_sync; 6041 6042 if (!sched_core_enabled(rq)) 6043 return __pick_next_task(rq, prev, rf); 6044 6045 cpu = cpu_of(rq); 6046 6047 /* Stopper task is switching into idle, no need core-wide selection. */ 6048 if (cpu_is_offline(cpu)) { 6049 /* 6050 * Reset core_pick so that we don't enter the fastpath when 6051 * coming online. core_pick would already be migrated to 6052 * another cpu during offline. 6053 */ 6054 rq->core_pick = NULL; 6055 rq->core_dl_server = NULL; 6056 return __pick_next_task(rq, prev, rf); 6057 } 6058 6059 /* 6060 * If there were no {en,de}queues since we picked (IOW, the task 6061 * pointers are all still valid), and we haven't scheduled the last 6062 * pick yet, do so now. 6063 * 6064 * rq->core_pick can be NULL if no selection was made for a CPU because 6065 * it was either offline or went offline during a sibling's core-wide 6066 * selection. In this case, do a core-wide selection. 6067 */ 6068 if (rq->core->core_pick_seq == rq->core->core_task_seq && 6069 rq->core->core_pick_seq != rq->core_sched_seq && 6070 rq->core_pick) { 6071 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6072 6073 next = rq->core_pick; 6074 rq->dl_server = rq->core_dl_server; 6075 rq->core_pick = NULL; 6076 rq->core_dl_server = NULL; 6077 goto out_set_next; 6078 } 6079 6080 prev_balance(rq, prev, rf); 6081 6082 smt_mask = cpu_smt_mask(cpu); 6083 need_sync = !!rq->core->core_cookie; 6084 6085 /* reset state */ 6086 rq->core->core_cookie = 0UL; 6087 if (rq->core->core_forceidle_count) { 6088 if (!core_clock_updated) { 6089 update_rq_clock(rq->core); 6090 core_clock_updated = true; 6091 } 6092 sched_core_account_forceidle(rq); 6093 /* reset after accounting force idle */ 6094 rq->core->core_forceidle_start = 0; 6095 rq->core->core_forceidle_count = 0; 6096 rq->core->core_forceidle_occupation = 0; 6097 need_sync = true; 6098 fi_before = true; 6099 } 6100 6101 /* 6102 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6103 * 6104 * @task_seq guards the task state ({en,de}queues) 6105 * @pick_seq is the @task_seq we did a selection on 6106 * @sched_seq is the @pick_seq we scheduled 6107 * 6108 * However, preemptions can cause multiple picks on the same task set. 6109 * 'Fix' this by also increasing @task_seq for every pick. 6110 */ 6111 rq->core->core_task_seq++; 6112 6113 /* 6114 * Optimize for common case where this CPU has no cookies 6115 * and there are no cookied tasks running on siblings. 6116 */ 6117 if (!need_sync) { 6118 next = pick_task(rq); 6119 if (!next->core_cookie) { 6120 rq->core_pick = NULL; 6121 rq->core_dl_server = NULL; 6122 /* 6123 * For robustness, update the min_vruntime_fi for 6124 * unconstrained picks as well. 6125 */ 6126 WARN_ON_ONCE(fi_before); 6127 task_vruntime_update(rq, next, false); 6128 goto out_set_next; 6129 } 6130 } 6131 6132 /* 6133 * For each thread: do the regular task pick and find the max prio task 6134 * amongst them. 6135 * 6136 * Tie-break prio towards the current CPU 6137 */ 6138 for_each_cpu_wrap(i, smt_mask, cpu) { 6139 rq_i = cpu_rq(i); 6140 6141 /* 6142 * Current cpu always has its clock updated on entrance to 6143 * pick_next_task(). If the current cpu is not the core, 6144 * the core may also have been updated above. 6145 */ 6146 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6147 update_rq_clock(rq_i); 6148 6149 rq_i->core_pick = p = pick_task(rq_i); 6150 rq_i->core_dl_server = rq_i->dl_server; 6151 6152 if (!max || prio_less(max, p, fi_before)) 6153 max = p; 6154 } 6155 6156 cookie = rq->core->core_cookie = max->core_cookie; 6157 6158 /* 6159 * For each thread: try and find a runnable task that matches @max or 6160 * force idle. 6161 */ 6162 for_each_cpu(i, smt_mask) { 6163 rq_i = cpu_rq(i); 6164 p = rq_i->core_pick; 6165 6166 if (!cookie_equals(p, cookie)) { 6167 p = NULL; 6168 if (cookie) 6169 p = sched_core_find(rq_i, cookie); 6170 if (!p) 6171 p = idle_sched_class.pick_task(rq_i); 6172 } 6173 6174 rq_i->core_pick = p; 6175 rq_i->core_dl_server = NULL; 6176 6177 if (p == rq_i->idle) { 6178 if (rq_i->nr_running) { 6179 rq->core->core_forceidle_count++; 6180 if (!fi_before) 6181 rq->core->core_forceidle_seq++; 6182 } 6183 } else { 6184 occ++; 6185 } 6186 } 6187 6188 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6189 rq->core->core_forceidle_start = rq_clock(rq->core); 6190 rq->core->core_forceidle_occupation = occ; 6191 } 6192 6193 rq->core->core_pick_seq = rq->core->core_task_seq; 6194 next = rq->core_pick; 6195 rq->core_sched_seq = rq->core->core_pick_seq; 6196 6197 /* Something should have been selected for current CPU */ 6198 WARN_ON_ONCE(!next); 6199 6200 /* 6201 * Reschedule siblings 6202 * 6203 * NOTE: L1TF -- at this point we're no longer running the old task and 6204 * sending an IPI (below) ensures the sibling will no longer be running 6205 * their task. This ensures there is no inter-sibling overlap between 6206 * non-matching user state. 6207 */ 6208 for_each_cpu(i, smt_mask) { 6209 rq_i = cpu_rq(i); 6210 6211 /* 6212 * An online sibling might have gone offline before a task 6213 * could be picked for it, or it might be offline but later 6214 * happen to come online, but its too late and nothing was 6215 * picked for it. That's Ok - it will pick tasks for itself, 6216 * so ignore it. 6217 */ 6218 if (!rq_i->core_pick) 6219 continue; 6220 6221 /* 6222 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6223 * fi_before fi update? 6224 * 0 0 1 6225 * 0 1 1 6226 * 1 0 1 6227 * 1 1 0 6228 */ 6229 if (!(fi_before && rq->core->core_forceidle_count)) 6230 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6231 6232 rq_i->core_pick->core_occupation = occ; 6233 6234 if (i == cpu) { 6235 rq_i->core_pick = NULL; 6236 rq_i->core_dl_server = NULL; 6237 continue; 6238 } 6239 6240 /* Did we break L1TF mitigation requirements? */ 6241 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6242 6243 if (rq_i->curr == rq_i->core_pick) { 6244 rq_i->core_pick = NULL; 6245 rq_i->core_dl_server = NULL; 6246 continue; 6247 } 6248 6249 resched_curr(rq_i); 6250 } 6251 6252 out_set_next: 6253 put_prev_set_next_task(rq, prev, next); 6254 if (rq->core->core_forceidle_count && next == rq->idle) 6255 queue_core_balance(rq); 6256 6257 return next; 6258 } 6259 6260 static bool try_steal_cookie(int this, int that) 6261 { 6262 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6263 struct task_struct *p; 6264 unsigned long cookie; 6265 bool success = false; 6266 6267 guard(irq)(); 6268 guard(double_rq_lock)(dst, src); 6269 6270 cookie = dst->core->core_cookie; 6271 if (!cookie) 6272 return false; 6273 6274 if (dst->curr != dst->idle) 6275 return false; 6276 6277 p = sched_core_find(src, cookie); 6278 if (!p) 6279 return false; 6280 6281 do { 6282 if (p == src->core_pick || p == src->curr) 6283 goto next; 6284 6285 if (!is_cpu_allowed(p, this)) 6286 goto next; 6287 6288 if (p->core_occupation > dst->idle->core_occupation) 6289 goto next; 6290 /* 6291 * sched_core_find() and sched_core_next() will ensure 6292 * that task @p is not throttled now, we also need to 6293 * check whether the runqueue of the destination CPU is 6294 * being throttled. 6295 */ 6296 if (sched_task_is_throttled(p, this)) 6297 goto next; 6298 6299 move_queued_task_locked(src, dst, p); 6300 resched_curr(dst); 6301 6302 success = true; 6303 break; 6304 6305 next: 6306 p = sched_core_next(p, cookie); 6307 } while (p); 6308 6309 return success; 6310 } 6311 6312 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6313 { 6314 int i; 6315 6316 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6317 if (i == cpu) 6318 continue; 6319 6320 if (need_resched()) 6321 break; 6322 6323 if (try_steal_cookie(cpu, i)) 6324 return true; 6325 } 6326 6327 return false; 6328 } 6329 6330 static void sched_core_balance(struct rq *rq) 6331 { 6332 struct sched_domain *sd; 6333 int cpu = cpu_of(rq); 6334 6335 guard(preempt)(); 6336 guard(rcu)(); 6337 6338 raw_spin_rq_unlock_irq(rq); 6339 for_each_domain(cpu, sd) { 6340 if (need_resched()) 6341 break; 6342 6343 if (steal_cookie_task(cpu, sd)) 6344 break; 6345 } 6346 raw_spin_rq_lock_irq(rq); 6347 } 6348 6349 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6350 6351 static void queue_core_balance(struct rq *rq) 6352 { 6353 if (!sched_core_enabled(rq)) 6354 return; 6355 6356 if (!rq->core->core_cookie) 6357 return; 6358 6359 if (!rq->nr_running) /* not forced idle */ 6360 return; 6361 6362 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6363 } 6364 6365 DEFINE_LOCK_GUARD_1(core_lock, int, 6366 sched_core_lock(*_T->lock, &_T->flags), 6367 sched_core_unlock(*_T->lock, &_T->flags), 6368 unsigned long flags) 6369 6370 static void sched_core_cpu_starting(unsigned int cpu) 6371 { 6372 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6373 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6374 int t; 6375 6376 guard(core_lock)(&cpu); 6377 6378 WARN_ON_ONCE(rq->core != rq); 6379 6380 /* if we're the first, we'll be our own leader */ 6381 if (cpumask_weight(smt_mask) == 1) 6382 return; 6383 6384 /* find the leader */ 6385 for_each_cpu(t, smt_mask) { 6386 if (t == cpu) 6387 continue; 6388 rq = cpu_rq(t); 6389 if (rq->core == rq) { 6390 core_rq = rq; 6391 break; 6392 } 6393 } 6394 6395 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6396 return; 6397 6398 /* install and validate core_rq */ 6399 for_each_cpu(t, smt_mask) { 6400 rq = cpu_rq(t); 6401 6402 if (t == cpu) 6403 rq->core = core_rq; 6404 6405 WARN_ON_ONCE(rq->core != core_rq); 6406 } 6407 } 6408 6409 static void sched_core_cpu_deactivate(unsigned int cpu) 6410 { 6411 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6412 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6413 int t; 6414 6415 guard(core_lock)(&cpu); 6416 6417 /* if we're the last man standing, nothing to do */ 6418 if (cpumask_weight(smt_mask) == 1) { 6419 WARN_ON_ONCE(rq->core != rq); 6420 return; 6421 } 6422 6423 /* if we're not the leader, nothing to do */ 6424 if (rq->core != rq) 6425 return; 6426 6427 /* find a new leader */ 6428 for_each_cpu(t, smt_mask) { 6429 if (t == cpu) 6430 continue; 6431 core_rq = cpu_rq(t); 6432 break; 6433 } 6434 6435 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6436 return; 6437 6438 /* copy the shared state to the new leader */ 6439 core_rq->core_task_seq = rq->core_task_seq; 6440 core_rq->core_pick_seq = rq->core_pick_seq; 6441 core_rq->core_cookie = rq->core_cookie; 6442 core_rq->core_forceidle_count = rq->core_forceidle_count; 6443 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6444 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6445 6446 /* 6447 * Accounting edge for forced idle is handled in pick_next_task(). 6448 * Don't need another one here, since the hotplug thread shouldn't 6449 * have a cookie. 6450 */ 6451 core_rq->core_forceidle_start = 0; 6452 6453 /* install new leader */ 6454 for_each_cpu(t, smt_mask) { 6455 rq = cpu_rq(t); 6456 rq->core = core_rq; 6457 } 6458 } 6459 6460 static inline void sched_core_cpu_dying(unsigned int cpu) 6461 { 6462 struct rq *rq = cpu_rq(cpu); 6463 6464 if (rq->core != rq) 6465 rq->core = rq; 6466 } 6467 6468 #else /* !CONFIG_SCHED_CORE: */ 6469 6470 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6471 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6472 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6473 6474 static struct task_struct * 6475 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6476 { 6477 return __pick_next_task(rq, prev, rf); 6478 } 6479 6480 #endif /* !CONFIG_SCHED_CORE */ 6481 6482 /* 6483 * Constants for the sched_mode argument of __schedule(). 6484 * 6485 * The mode argument allows RT enabled kernels to differentiate a 6486 * preemption from blocking on an 'sleeping' spin/rwlock. 6487 */ 6488 #define SM_IDLE (-1) 6489 #define SM_NONE 0 6490 #define SM_PREEMPT 1 6491 #define SM_RTLOCK_WAIT 2 6492 6493 /* 6494 * Helper function for __schedule() 6495 * 6496 * If a task does not have signals pending, deactivate it 6497 * Otherwise marks the task's __state as RUNNING 6498 */ 6499 static bool try_to_block_task(struct rq *rq, struct task_struct *p, 6500 unsigned long *task_state_p) 6501 { 6502 unsigned long task_state = *task_state_p; 6503 int flags = DEQUEUE_NOCLOCK; 6504 6505 if (signal_pending_state(task_state, p)) { 6506 WRITE_ONCE(p->__state, TASK_RUNNING); 6507 *task_state_p = TASK_RUNNING; 6508 return false; 6509 } 6510 6511 p->sched_contributes_to_load = 6512 (task_state & TASK_UNINTERRUPTIBLE) && 6513 !(task_state & TASK_NOLOAD) && 6514 !(task_state & TASK_FROZEN); 6515 6516 if (unlikely(is_special_task_state(task_state))) 6517 flags |= DEQUEUE_SPECIAL; 6518 6519 /* 6520 * __schedule() ttwu() 6521 * prev_state = prev->state; if (p->on_rq && ...) 6522 * if (prev_state) goto out; 6523 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6524 * p->state = TASK_WAKING 6525 * 6526 * Where __schedule() and ttwu() have matching control dependencies. 6527 * 6528 * After this, schedule() must not care about p->state any more. 6529 */ 6530 block_task(rq, p, flags); 6531 return true; 6532 } 6533 6534 /* 6535 * __schedule() is the main scheduler function. 6536 * 6537 * The main means of driving the scheduler and thus entering this function are: 6538 * 6539 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6540 * 6541 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6542 * paths. For example, see arch/x86/entry_64.S. 6543 * 6544 * To drive preemption between tasks, the scheduler sets the flag in timer 6545 * interrupt handler sched_tick(). 6546 * 6547 * 3. Wakeups don't really cause entry into schedule(). They add a 6548 * task to the run-queue and that's it. 6549 * 6550 * Now, if the new task added to the run-queue preempts the current 6551 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6552 * called on the nearest possible occasion: 6553 * 6554 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6555 * 6556 * - in syscall or exception context, at the next outmost 6557 * preempt_enable(). (this might be as soon as the wake_up()'s 6558 * spin_unlock()!) 6559 * 6560 * - in IRQ context, return from interrupt-handler to 6561 * preemptible context 6562 * 6563 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6564 * then at the next: 6565 * 6566 * - cond_resched() call 6567 * - explicit schedule() call 6568 * - return from syscall or exception to user-space 6569 * - return from interrupt-handler to user-space 6570 * 6571 * WARNING: must be called with preemption disabled! 6572 */ 6573 static void __sched notrace __schedule(int sched_mode) 6574 { 6575 struct task_struct *prev, *next; 6576 /* 6577 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted 6578 * as a preemption by schedule_debug() and RCU. 6579 */ 6580 bool preempt = sched_mode > SM_NONE; 6581 bool is_switch = false; 6582 unsigned long *switch_count; 6583 unsigned long prev_state; 6584 struct rq_flags rf; 6585 struct rq *rq; 6586 int cpu; 6587 6588 trace_sched_entry_tp(preempt, CALLER_ADDR0); 6589 6590 cpu = smp_processor_id(); 6591 rq = cpu_rq(cpu); 6592 prev = rq->curr; 6593 6594 schedule_debug(prev, preempt); 6595 6596 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6597 hrtick_clear(rq); 6598 6599 klp_sched_try_switch(prev); 6600 6601 local_irq_disable(); 6602 rcu_note_context_switch(preempt); 6603 6604 /* 6605 * Make sure that signal_pending_state()->signal_pending() below 6606 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6607 * done by the caller to avoid the race with signal_wake_up(): 6608 * 6609 * __set_current_state(@state) signal_wake_up() 6610 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6611 * wake_up_state(p, state) 6612 * LOCK rq->lock LOCK p->pi_state 6613 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6614 * if (signal_pending_state()) if (p->state & @state) 6615 * 6616 * Also, the membarrier system call requires a full memory barrier 6617 * after coming from user-space, before storing to rq->curr; this 6618 * barrier matches a full barrier in the proximity of the membarrier 6619 * system call exit. 6620 */ 6621 rq_lock(rq, &rf); 6622 smp_mb__after_spinlock(); 6623 6624 /* Promote REQ to ACT */ 6625 rq->clock_update_flags <<= 1; 6626 update_rq_clock(rq); 6627 rq->clock_update_flags = RQCF_UPDATED; 6628 6629 switch_count = &prev->nivcsw; 6630 6631 /* Task state changes only considers SM_PREEMPT as preemption */ 6632 preempt = sched_mode == SM_PREEMPT; 6633 6634 /* 6635 * We must load prev->state once (task_struct::state is volatile), such 6636 * that we form a control dependency vs deactivate_task() below. 6637 */ 6638 prev_state = READ_ONCE(prev->__state); 6639 if (sched_mode == SM_IDLE) { 6640 /* SCX must consult the BPF scheduler to tell if rq is empty */ 6641 if (!rq->nr_running && !scx_enabled()) { 6642 next = prev; 6643 goto picked; 6644 } 6645 } else if (!preempt && prev_state) { 6646 try_to_block_task(rq, prev, &prev_state); 6647 switch_count = &prev->nvcsw; 6648 } 6649 6650 next = pick_next_task(rq, prev, &rf); 6651 rq_set_donor(rq, next); 6652 picked: 6653 clear_tsk_need_resched(prev); 6654 clear_preempt_need_resched(); 6655 rq->last_seen_need_resched_ns = 0; 6656 6657 is_switch = prev != next; 6658 if (likely(is_switch)) { 6659 rq->nr_switches++; 6660 /* 6661 * RCU users of rcu_dereference(rq->curr) may not see 6662 * changes to task_struct made by pick_next_task(). 6663 */ 6664 RCU_INIT_POINTER(rq->curr, next); 6665 /* 6666 * The membarrier system call requires each architecture 6667 * to have a full memory barrier after updating 6668 * rq->curr, before returning to user-space. 6669 * 6670 * Here are the schemes providing that barrier on the 6671 * various architectures: 6672 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, 6673 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() 6674 * on PowerPC and on RISC-V. 6675 * - finish_lock_switch() for weakly-ordered 6676 * architectures where spin_unlock is a full barrier, 6677 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6678 * is a RELEASE barrier), 6679 * 6680 * The barrier matches a full barrier in the proximity of 6681 * the membarrier system call entry. 6682 * 6683 * On RISC-V, this barrier pairing is also needed for the 6684 * SYNC_CORE command when switching between processes, cf. 6685 * the inline comments in membarrier_arch_switch_mm(). 6686 */ 6687 ++*switch_count; 6688 6689 migrate_disable_switch(rq, prev); 6690 psi_account_irqtime(rq, prev, next); 6691 psi_sched_switch(prev, next, !task_on_rq_queued(prev) || 6692 prev->se.sched_delayed); 6693 6694 trace_sched_switch(preempt, prev, next, prev_state); 6695 6696 /* Also unlocks the rq: */ 6697 rq = context_switch(rq, prev, next, &rf); 6698 } else { 6699 rq_unpin_lock(rq, &rf); 6700 __balance_callbacks(rq); 6701 raw_spin_rq_unlock_irq(rq); 6702 } 6703 trace_sched_exit_tp(is_switch, CALLER_ADDR0); 6704 } 6705 6706 void __noreturn do_task_dead(void) 6707 { 6708 /* Causes final put_task_struct in finish_task_switch(): */ 6709 set_special_state(TASK_DEAD); 6710 6711 /* Tell freezer to ignore us: */ 6712 current->flags |= PF_NOFREEZE; 6713 6714 __schedule(SM_NONE); 6715 BUG(); 6716 6717 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6718 for (;;) 6719 cpu_relax(); 6720 } 6721 6722 static inline void sched_submit_work(struct task_struct *tsk) 6723 { 6724 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6725 unsigned int task_flags; 6726 6727 /* 6728 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6729 * will use a blocking primitive -- which would lead to recursion. 6730 */ 6731 lock_map_acquire_try(&sched_map); 6732 6733 task_flags = tsk->flags; 6734 /* 6735 * If a worker goes to sleep, notify and ask workqueue whether it 6736 * wants to wake up a task to maintain concurrency. 6737 */ 6738 if (task_flags & PF_WQ_WORKER) 6739 wq_worker_sleeping(tsk); 6740 else if (task_flags & PF_IO_WORKER) 6741 io_wq_worker_sleeping(tsk); 6742 6743 /* 6744 * spinlock and rwlock must not flush block requests. This will 6745 * deadlock if the callback attempts to acquire a lock which is 6746 * already acquired. 6747 */ 6748 WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT); 6749 6750 /* 6751 * If we are going to sleep and we have plugged IO queued, 6752 * make sure to submit it to avoid deadlocks. 6753 */ 6754 blk_flush_plug(tsk->plug, true); 6755 6756 lock_map_release(&sched_map); 6757 } 6758 6759 static void sched_update_worker(struct task_struct *tsk) 6760 { 6761 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { 6762 if (tsk->flags & PF_BLOCK_TS) 6763 blk_plug_invalidate_ts(tsk); 6764 if (tsk->flags & PF_WQ_WORKER) 6765 wq_worker_running(tsk); 6766 else if (tsk->flags & PF_IO_WORKER) 6767 io_wq_worker_running(tsk); 6768 } 6769 } 6770 6771 static __always_inline void __schedule_loop(int sched_mode) 6772 { 6773 do { 6774 preempt_disable(); 6775 __schedule(sched_mode); 6776 sched_preempt_enable_no_resched(); 6777 } while (need_resched()); 6778 } 6779 6780 asmlinkage __visible void __sched schedule(void) 6781 { 6782 struct task_struct *tsk = current; 6783 6784 #ifdef CONFIG_RT_MUTEXES 6785 lockdep_assert(!tsk->sched_rt_mutex); 6786 #endif 6787 6788 if (!task_is_running(tsk)) 6789 sched_submit_work(tsk); 6790 __schedule_loop(SM_NONE); 6791 sched_update_worker(tsk); 6792 } 6793 EXPORT_SYMBOL(schedule); 6794 6795 /* 6796 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6797 * state (have scheduled out non-voluntarily) by making sure that all 6798 * tasks have either left the run queue or have gone into user space. 6799 * As idle tasks do not do either, they must not ever be preempted 6800 * (schedule out non-voluntarily). 6801 * 6802 * schedule_idle() is similar to schedule_preempt_disable() except that it 6803 * never enables preemption because it does not call sched_submit_work(). 6804 */ 6805 void __sched schedule_idle(void) 6806 { 6807 /* 6808 * As this skips calling sched_submit_work(), which the idle task does 6809 * regardless because that function is a NOP when the task is in a 6810 * TASK_RUNNING state, make sure this isn't used someplace that the 6811 * current task can be in any other state. Note, idle is always in the 6812 * TASK_RUNNING state. 6813 */ 6814 WARN_ON_ONCE(current->__state); 6815 do { 6816 __schedule(SM_IDLE); 6817 } while (need_resched()); 6818 } 6819 6820 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6821 asmlinkage __visible void __sched schedule_user(void) 6822 { 6823 /* 6824 * If we come here after a random call to set_need_resched(), 6825 * or we have been woken up remotely but the IPI has not yet arrived, 6826 * we haven't yet exited the RCU idle mode. Do it here manually until 6827 * we find a better solution. 6828 * 6829 * NB: There are buggy callers of this function. Ideally we 6830 * should warn if prev_state != CT_STATE_USER, but that will trigger 6831 * too frequently to make sense yet. 6832 */ 6833 enum ctx_state prev_state = exception_enter(); 6834 schedule(); 6835 exception_exit(prev_state); 6836 } 6837 #endif 6838 6839 /** 6840 * schedule_preempt_disabled - called with preemption disabled 6841 * 6842 * Returns with preemption disabled. Note: preempt_count must be 1 6843 */ 6844 void __sched schedule_preempt_disabled(void) 6845 { 6846 sched_preempt_enable_no_resched(); 6847 schedule(); 6848 preempt_disable(); 6849 } 6850 6851 #ifdef CONFIG_PREEMPT_RT 6852 void __sched notrace schedule_rtlock(void) 6853 { 6854 __schedule_loop(SM_RTLOCK_WAIT); 6855 } 6856 NOKPROBE_SYMBOL(schedule_rtlock); 6857 #endif 6858 6859 static void __sched notrace preempt_schedule_common(void) 6860 { 6861 do { 6862 /* 6863 * Because the function tracer can trace preempt_count_sub() 6864 * and it also uses preempt_enable/disable_notrace(), if 6865 * NEED_RESCHED is set, the preempt_enable_notrace() called 6866 * by the function tracer will call this function again and 6867 * cause infinite recursion. 6868 * 6869 * Preemption must be disabled here before the function 6870 * tracer can trace. Break up preempt_disable() into two 6871 * calls. One to disable preemption without fear of being 6872 * traced. The other to still record the preemption latency, 6873 * which can also be traced by the function tracer. 6874 */ 6875 preempt_disable_notrace(); 6876 preempt_latency_start(1); 6877 __schedule(SM_PREEMPT); 6878 preempt_latency_stop(1); 6879 preempt_enable_no_resched_notrace(); 6880 6881 /* 6882 * Check again in case we missed a preemption opportunity 6883 * between schedule and now. 6884 */ 6885 } while (need_resched()); 6886 } 6887 6888 #ifdef CONFIG_PREEMPTION 6889 /* 6890 * This is the entry point to schedule() from in-kernel preemption 6891 * off of preempt_enable. 6892 */ 6893 asmlinkage __visible void __sched notrace preempt_schedule(void) 6894 { 6895 /* 6896 * If there is a non-zero preempt_count or interrupts are disabled, 6897 * we do not want to preempt the current task. Just return.. 6898 */ 6899 if (likely(!preemptible())) 6900 return; 6901 preempt_schedule_common(); 6902 } 6903 NOKPROBE_SYMBOL(preempt_schedule); 6904 EXPORT_SYMBOL(preempt_schedule); 6905 6906 #ifdef CONFIG_PREEMPT_DYNAMIC 6907 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 6908 # ifndef preempt_schedule_dynamic_enabled 6909 # define preempt_schedule_dynamic_enabled preempt_schedule 6910 # define preempt_schedule_dynamic_disabled NULL 6911 # endif 6912 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6913 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6914 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6915 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6916 void __sched notrace dynamic_preempt_schedule(void) 6917 { 6918 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6919 return; 6920 preempt_schedule(); 6921 } 6922 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6923 EXPORT_SYMBOL(dynamic_preempt_schedule); 6924 # endif 6925 #endif /* CONFIG_PREEMPT_DYNAMIC */ 6926 6927 /** 6928 * preempt_schedule_notrace - preempt_schedule called by tracing 6929 * 6930 * The tracing infrastructure uses preempt_enable_notrace to prevent 6931 * recursion and tracing preempt enabling caused by the tracing 6932 * infrastructure itself. But as tracing can happen in areas coming 6933 * from userspace or just about to enter userspace, a preempt enable 6934 * can occur before user_exit() is called. This will cause the scheduler 6935 * to be called when the system is still in usermode. 6936 * 6937 * To prevent this, the preempt_enable_notrace will use this function 6938 * instead of preempt_schedule() to exit user context if needed before 6939 * calling the scheduler. 6940 */ 6941 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6942 { 6943 enum ctx_state prev_ctx; 6944 6945 if (likely(!preemptible())) 6946 return; 6947 6948 do { 6949 /* 6950 * Because the function tracer can trace preempt_count_sub() 6951 * and it also uses preempt_enable/disable_notrace(), if 6952 * NEED_RESCHED is set, the preempt_enable_notrace() called 6953 * by the function tracer will call this function again and 6954 * cause infinite recursion. 6955 * 6956 * Preemption must be disabled here before the function 6957 * tracer can trace. Break up preempt_disable() into two 6958 * calls. One to disable preemption without fear of being 6959 * traced. The other to still record the preemption latency, 6960 * which can also be traced by the function tracer. 6961 */ 6962 preempt_disable_notrace(); 6963 preempt_latency_start(1); 6964 /* 6965 * Needs preempt disabled in case user_exit() is traced 6966 * and the tracer calls preempt_enable_notrace() causing 6967 * an infinite recursion. 6968 */ 6969 prev_ctx = exception_enter(); 6970 __schedule(SM_PREEMPT); 6971 exception_exit(prev_ctx); 6972 6973 preempt_latency_stop(1); 6974 preempt_enable_no_resched_notrace(); 6975 } while (need_resched()); 6976 } 6977 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6978 6979 #ifdef CONFIG_PREEMPT_DYNAMIC 6980 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6981 # ifndef preempt_schedule_notrace_dynamic_enabled 6982 # define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6983 # define preempt_schedule_notrace_dynamic_disabled NULL 6984 # endif 6985 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6986 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6987 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6988 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6989 void __sched notrace dynamic_preempt_schedule_notrace(void) 6990 { 6991 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6992 return; 6993 preempt_schedule_notrace(); 6994 } 6995 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6996 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6997 # endif 6998 #endif 6999 7000 #endif /* CONFIG_PREEMPTION */ 7001 7002 /* 7003 * This is the entry point to schedule() from kernel preemption 7004 * off of IRQ context. 7005 * Note, that this is called and return with IRQs disabled. This will 7006 * protect us against recursive calling from IRQ contexts. 7007 */ 7008 asmlinkage __visible void __sched preempt_schedule_irq(void) 7009 { 7010 enum ctx_state prev_state; 7011 7012 /* Catch callers which need to be fixed */ 7013 BUG_ON(preempt_count() || !irqs_disabled()); 7014 7015 prev_state = exception_enter(); 7016 7017 do { 7018 preempt_disable(); 7019 local_irq_enable(); 7020 __schedule(SM_PREEMPT); 7021 local_irq_disable(); 7022 sched_preempt_enable_no_resched(); 7023 } while (need_resched()); 7024 7025 exception_exit(prev_state); 7026 } 7027 7028 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 7029 void *key) 7030 { 7031 WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 7032 return try_to_wake_up(curr->private, mode, wake_flags); 7033 } 7034 EXPORT_SYMBOL(default_wake_function); 7035 7036 const struct sched_class *__setscheduler_class(int policy, int prio) 7037 { 7038 if (dl_prio(prio)) 7039 return &dl_sched_class; 7040 7041 if (rt_prio(prio)) 7042 return &rt_sched_class; 7043 7044 #ifdef CONFIG_SCHED_CLASS_EXT 7045 if (task_should_scx(policy)) 7046 return &ext_sched_class; 7047 #endif 7048 7049 return &fair_sched_class; 7050 } 7051 7052 #ifdef CONFIG_RT_MUTEXES 7053 7054 /* 7055 * Would be more useful with typeof()/auto_type but they don't mix with 7056 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 7057 * name such that if someone were to implement this function we get to compare 7058 * notes. 7059 */ 7060 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 7061 7062 void rt_mutex_pre_schedule(void) 7063 { 7064 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 7065 sched_submit_work(current); 7066 } 7067 7068 void rt_mutex_schedule(void) 7069 { 7070 lockdep_assert(current->sched_rt_mutex); 7071 __schedule_loop(SM_NONE); 7072 } 7073 7074 void rt_mutex_post_schedule(void) 7075 { 7076 sched_update_worker(current); 7077 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 7078 } 7079 7080 /* 7081 * rt_mutex_setprio - set the current priority of a task 7082 * @p: task to boost 7083 * @pi_task: donor task 7084 * 7085 * This function changes the 'effective' priority of a task. It does 7086 * not touch ->normal_prio like __setscheduler(). 7087 * 7088 * Used by the rt_mutex code to implement priority inheritance 7089 * logic. Call site only calls if the priority of the task changed. 7090 */ 7091 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 7092 { 7093 int prio, oldprio, queued, running, queue_flag = 7094 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7095 const struct sched_class *prev_class, *next_class; 7096 struct rq_flags rf; 7097 struct rq *rq; 7098 7099 /* XXX used to be waiter->prio, not waiter->task->prio */ 7100 prio = __rt_effective_prio(pi_task, p->normal_prio); 7101 7102 /* 7103 * If nothing changed; bail early. 7104 */ 7105 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7106 return; 7107 7108 rq = __task_rq_lock(p, &rf); 7109 update_rq_clock(rq); 7110 /* 7111 * Set under pi_lock && rq->lock, such that the value can be used under 7112 * either lock. 7113 * 7114 * Note that there is loads of tricky to make this pointer cache work 7115 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7116 * ensure a task is de-boosted (pi_task is set to NULL) before the 7117 * task is allowed to run again (and can exit). This ensures the pointer 7118 * points to a blocked task -- which guarantees the task is present. 7119 */ 7120 p->pi_top_task = pi_task; 7121 7122 /* 7123 * For FIFO/RR we only need to set prio, if that matches we're done. 7124 */ 7125 if (prio == p->prio && !dl_prio(prio)) 7126 goto out_unlock; 7127 7128 /* 7129 * Idle task boosting is a no-no in general. There is one 7130 * exception, when PREEMPT_RT and NOHZ is active: 7131 * 7132 * The idle task calls get_next_timer_interrupt() and holds 7133 * the timer wheel base->lock on the CPU and another CPU wants 7134 * to access the timer (probably to cancel it). We can safely 7135 * ignore the boosting request, as the idle CPU runs this code 7136 * with interrupts disabled and will complete the lock 7137 * protected section without being interrupted. So there is no 7138 * real need to boost. 7139 */ 7140 if (unlikely(p == rq->idle)) { 7141 WARN_ON(p != rq->curr); 7142 WARN_ON(p->pi_blocked_on); 7143 goto out_unlock; 7144 } 7145 7146 trace_sched_pi_setprio(p, pi_task); 7147 oldprio = p->prio; 7148 7149 if (oldprio == prio) 7150 queue_flag &= ~DEQUEUE_MOVE; 7151 7152 prev_class = p->sched_class; 7153 next_class = __setscheduler_class(p->policy, prio); 7154 7155 if (prev_class != next_class && p->se.sched_delayed) 7156 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK); 7157 7158 queued = task_on_rq_queued(p); 7159 running = task_current_donor(rq, p); 7160 if (queued) 7161 dequeue_task(rq, p, queue_flag); 7162 if (running) 7163 put_prev_task(rq, p); 7164 7165 /* 7166 * Boosting condition are: 7167 * 1. -rt task is running and holds mutex A 7168 * --> -dl task blocks on mutex A 7169 * 7170 * 2. -dl task is running and holds mutex A 7171 * --> -dl task blocks on mutex A and could preempt the 7172 * running task 7173 */ 7174 if (dl_prio(prio)) { 7175 if (!dl_prio(p->normal_prio) || 7176 (pi_task && dl_prio(pi_task->prio) && 7177 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7178 p->dl.pi_se = pi_task->dl.pi_se; 7179 queue_flag |= ENQUEUE_REPLENISH; 7180 } else { 7181 p->dl.pi_se = &p->dl; 7182 } 7183 } else if (rt_prio(prio)) { 7184 if (dl_prio(oldprio)) 7185 p->dl.pi_se = &p->dl; 7186 if (oldprio < prio) 7187 queue_flag |= ENQUEUE_HEAD; 7188 } else { 7189 if (dl_prio(oldprio)) 7190 p->dl.pi_se = &p->dl; 7191 if (rt_prio(oldprio)) 7192 p->rt.timeout = 0; 7193 } 7194 7195 p->sched_class = next_class; 7196 p->prio = prio; 7197 7198 check_class_changing(rq, p, prev_class); 7199 7200 if (queued) 7201 enqueue_task(rq, p, queue_flag); 7202 if (running) 7203 set_next_task(rq, p); 7204 7205 check_class_changed(rq, p, prev_class, oldprio); 7206 out_unlock: 7207 /* Avoid rq from going away on us: */ 7208 preempt_disable(); 7209 7210 rq_unpin_lock(rq, &rf); 7211 __balance_callbacks(rq); 7212 raw_spin_rq_unlock(rq); 7213 7214 preempt_enable(); 7215 } 7216 #endif /* CONFIG_RT_MUTEXES */ 7217 7218 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7219 int __sched __cond_resched(void) 7220 { 7221 if (should_resched(0) && !irqs_disabled()) { 7222 preempt_schedule_common(); 7223 return 1; 7224 } 7225 /* 7226 * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick 7227 * whether the current CPU is in an RCU read-side critical section, 7228 * so the tick can report quiescent states even for CPUs looping 7229 * in kernel context. In contrast, in non-preemptible kernels, 7230 * RCU readers leave no in-memory hints, which means that CPU-bound 7231 * processes executing in kernel context might never report an 7232 * RCU quiescent state. Therefore, the following code causes 7233 * cond_resched() to report a quiescent state, but only when RCU 7234 * is in urgent need of one. 7235 * A third case, preemptible, but non-PREEMPT_RCU provides for 7236 * urgently needed quiescent states via rcu_flavor_sched_clock_irq(). 7237 */ 7238 #ifndef CONFIG_PREEMPT_RCU 7239 rcu_all_qs(); 7240 #endif 7241 return 0; 7242 } 7243 EXPORT_SYMBOL(__cond_resched); 7244 #endif 7245 7246 #ifdef CONFIG_PREEMPT_DYNAMIC 7247 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7248 # define cond_resched_dynamic_enabled __cond_resched 7249 # define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 7250 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7251 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7252 7253 # define might_resched_dynamic_enabled __cond_resched 7254 # define might_resched_dynamic_disabled ((void *)&__static_call_return0) 7255 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7256 EXPORT_STATIC_CALL_TRAMP(might_resched); 7257 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7258 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 7259 int __sched dynamic_cond_resched(void) 7260 { 7261 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 7262 return 0; 7263 return __cond_resched(); 7264 } 7265 EXPORT_SYMBOL(dynamic_cond_resched); 7266 7267 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 7268 int __sched dynamic_might_resched(void) 7269 { 7270 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 7271 return 0; 7272 return __cond_resched(); 7273 } 7274 EXPORT_SYMBOL(dynamic_might_resched); 7275 # endif 7276 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7277 7278 /* 7279 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7280 * call schedule, and on return reacquire the lock. 7281 * 7282 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7283 * operations here to prevent schedule() from being called twice (once via 7284 * spin_unlock(), once by hand). 7285 */ 7286 int __cond_resched_lock(spinlock_t *lock) 7287 { 7288 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7289 int ret = 0; 7290 7291 lockdep_assert_held(lock); 7292 7293 if (spin_needbreak(lock) || resched) { 7294 spin_unlock(lock); 7295 if (!_cond_resched()) 7296 cpu_relax(); 7297 ret = 1; 7298 spin_lock(lock); 7299 } 7300 return ret; 7301 } 7302 EXPORT_SYMBOL(__cond_resched_lock); 7303 7304 int __cond_resched_rwlock_read(rwlock_t *lock) 7305 { 7306 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7307 int ret = 0; 7308 7309 lockdep_assert_held_read(lock); 7310 7311 if (rwlock_needbreak(lock) || resched) { 7312 read_unlock(lock); 7313 if (!_cond_resched()) 7314 cpu_relax(); 7315 ret = 1; 7316 read_lock(lock); 7317 } 7318 return ret; 7319 } 7320 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7321 7322 int __cond_resched_rwlock_write(rwlock_t *lock) 7323 { 7324 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7325 int ret = 0; 7326 7327 lockdep_assert_held_write(lock); 7328 7329 if (rwlock_needbreak(lock) || resched) { 7330 write_unlock(lock); 7331 if (!_cond_resched()) 7332 cpu_relax(); 7333 ret = 1; 7334 write_lock(lock); 7335 } 7336 return ret; 7337 } 7338 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7339 7340 #ifdef CONFIG_PREEMPT_DYNAMIC 7341 7342 # ifdef CONFIG_GENERIC_ENTRY 7343 # include <linux/entry-common.h> 7344 # endif 7345 7346 /* 7347 * SC:cond_resched 7348 * SC:might_resched 7349 * SC:preempt_schedule 7350 * SC:preempt_schedule_notrace 7351 * SC:irqentry_exit_cond_resched 7352 * 7353 * 7354 * NONE: 7355 * cond_resched <- __cond_resched 7356 * might_resched <- RET0 7357 * preempt_schedule <- NOP 7358 * preempt_schedule_notrace <- NOP 7359 * irqentry_exit_cond_resched <- NOP 7360 * dynamic_preempt_lazy <- false 7361 * 7362 * VOLUNTARY: 7363 * cond_resched <- __cond_resched 7364 * might_resched <- __cond_resched 7365 * preempt_schedule <- NOP 7366 * preempt_schedule_notrace <- NOP 7367 * irqentry_exit_cond_resched <- NOP 7368 * dynamic_preempt_lazy <- false 7369 * 7370 * FULL: 7371 * cond_resched <- RET0 7372 * might_resched <- RET0 7373 * preempt_schedule <- preempt_schedule 7374 * preempt_schedule_notrace <- preempt_schedule_notrace 7375 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7376 * dynamic_preempt_lazy <- false 7377 * 7378 * LAZY: 7379 * cond_resched <- RET0 7380 * might_resched <- RET0 7381 * preempt_schedule <- preempt_schedule 7382 * preempt_schedule_notrace <- preempt_schedule_notrace 7383 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7384 * dynamic_preempt_lazy <- true 7385 */ 7386 7387 enum { 7388 preempt_dynamic_undefined = -1, 7389 preempt_dynamic_none, 7390 preempt_dynamic_voluntary, 7391 preempt_dynamic_full, 7392 preempt_dynamic_lazy, 7393 }; 7394 7395 int preempt_dynamic_mode = preempt_dynamic_undefined; 7396 7397 int sched_dynamic_mode(const char *str) 7398 { 7399 # ifndef CONFIG_PREEMPT_RT 7400 if (!strcmp(str, "none")) 7401 return preempt_dynamic_none; 7402 7403 if (!strcmp(str, "voluntary")) 7404 return preempt_dynamic_voluntary; 7405 # endif 7406 7407 if (!strcmp(str, "full")) 7408 return preempt_dynamic_full; 7409 7410 # ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY 7411 if (!strcmp(str, "lazy")) 7412 return preempt_dynamic_lazy; 7413 # endif 7414 7415 return -EINVAL; 7416 } 7417 7418 # define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key) 7419 # define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key) 7420 7421 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7422 # define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 7423 # define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 7424 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7425 # define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f) 7426 # define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f) 7427 # else 7428 # error "Unsupported PREEMPT_DYNAMIC mechanism" 7429 # endif 7430 7431 static DEFINE_MUTEX(sched_dynamic_mutex); 7432 7433 static void __sched_dynamic_update(int mode) 7434 { 7435 /* 7436 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 7437 * the ZERO state, which is invalid. 7438 */ 7439 preempt_dynamic_enable(cond_resched); 7440 preempt_dynamic_enable(might_resched); 7441 preempt_dynamic_enable(preempt_schedule); 7442 preempt_dynamic_enable(preempt_schedule_notrace); 7443 preempt_dynamic_enable(irqentry_exit_cond_resched); 7444 preempt_dynamic_key_disable(preempt_lazy); 7445 7446 switch (mode) { 7447 case preempt_dynamic_none: 7448 preempt_dynamic_enable(cond_resched); 7449 preempt_dynamic_disable(might_resched); 7450 preempt_dynamic_disable(preempt_schedule); 7451 preempt_dynamic_disable(preempt_schedule_notrace); 7452 preempt_dynamic_disable(irqentry_exit_cond_resched); 7453 preempt_dynamic_key_disable(preempt_lazy); 7454 if (mode != preempt_dynamic_mode) 7455 pr_info("Dynamic Preempt: none\n"); 7456 break; 7457 7458 case preempt_dynamic_voluntary: 7459 preempt_dynamic_enable(cond_resched); 7460 preempt_dynamic_enable(might_resched); 7461 preempt_dynamic_disable(preempt_schedule); 7462 preempt_dynamic_disable(preempt_schedule_notrace); 7463 preempt_dynamic_disable(irqentry_exit_cond_resched); 7464 preempt_dynamic_key_disable(preempt_lazy); 7465 if (mode != preempt_dynamic_mode) 7466 pr_info("Dynamic Preempt: voluntary\n"); 7467 break; 7468 7469 case preempt_dynamic_full: 7470 preempt_dynamic_disable(cond_resched); 7471 preempt_dynamic_disable(might_resched); 7472 preempt_dynamic_enable(preempt_schedule); 7473 preempt_dynamic_enable(preempt_schedule_notrace); 7474 preempt_dynamic_enable(irqentry_exit_cond_resched); 7475 preempt_dynamic_key_disable(preempt_lazy); 7476 if (mode != preempt_dynamic_mode) 7477 pr_info("Dynamic Preempt: full\n"); 7478 break; 7479 7480 case preempt_dynamic_lazy: 7481 preempt_dynamic_disable(cond_resched); 7482 preempt_dynamic_disable(might_resched); 7483 preempt_dynamic_enable(preempt_schedule); 7484 preempt_dynamic_enable(preempt_schedule_notrace); 7485 preempt_dynamic_enable(irqentry_exit_cond_resched); 7486 preempt_dynamic_key_enable(preempt_lazy); 7487 if (mode != preempt_dynamic_mode) 7488 pr_info("Dynamic Preempt: lazy\n"); 7489 break; 7490 } 7491 7492 preempt_dynamic_mode = mode; 7493 } 7494 7495 void sched_dynamic_update(int mode) 7496 { 7497 mutex_lock(&sched_dynamic_mutex); 7498 __sched_dynamic_update(mode); 7499 mutex_unlock(&sched_dynamic_mutex); 7500 } 7501 7502 static int __init setup_preempt_mode(char *str) 7503 { 7504 int mode = sched_dynamic_mode(str); 7505 if (mode < 0) { 7506 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 7507 return 0; 7508 } 7509 7510 sched_dynamic_update(mode); 7511 return 1; 7512 } 7513 __setup("preempt=", setup_preempt_mode); 7514 7515 static void __init preempt_dynamic_init(void) 7516 { 7517 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 7518 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 7519 sched_dynamic_update(preempt_dynamic_none); 7520 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 7521 sched_dynamic_update(preempt_dynamic_voluntary); 7522 } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7523 sched_dynamic_update(preempt_dynamic_lazy); 7524 } else { 7525 /* Default static call setting, nothing to do */ 7526 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 7527 preempt_dynamic_mode = preempt_dynamic_full; 7528 pr_info("Dynamic Preempt: full\n"); 7529 } 7530 } 7531 } 7532 7533 # define PREEMPT_MODEL_ACCESSOR(mode) \ 7534 bool preempt_model_##mode(void) \ 7535 { \ 7536 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 7537 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 7538 } \ 7539 EXPORT_SYMBOL_GPL(preempt_model_##mode) 7540 7541 PREEMPT_MODEL_ACCESSOR(none); 7542 PREEMPT_MODEL_ACCESSOR(voluntary); 7543 PREEMPT_MODEL_ACCESSOR(full); 7544 PREEMPT_MODEL_ACCESSOR(lazy); 7545 7546 #else /* !CONFIG_PREEMPT_DYNAMIC: */ 7547 7548 #define preempt_dynamic_mode -1 7549 7550 static inline void preempt_dynamic_init(void) { } 7551 7552 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7553 7554 const char *preempt_modes[] = { 7555 "none", "voluntary", "full", "lazy", NULL, 7556 }; 7557 7558 const char *preempt_model_str(void) 7559 { 7560 bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) && 7561 (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) || 7562 IS_ENABLED(CONFIG_PREEMPT_LAZY)); 7563 static char buf[128]; 7564 7565 if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) { 7566 struct seq_buf s; 7567 7568 seq_buf_init(&s, buf, sizeof(buf)); 7569 seq_buf_puts(&s, "PREEMPT"); 7570 7571 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 7572 seq_buf_printf(&s, "%sRT%s", 7573 brace ? "_{" : "_", 7574 brace ? "," : ""); 7575 7576 if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) { 7577 seq_buf_printf(&s, "(%s)%s", 7578 preempt_dynamic_mode >= 0 ? 7579 preempt_modes[preempt_dynamic_mode] : "undef", 7580 brace ? "}" : ""); 7581 return seq_buf_str(&s); 7582 } 7583 7584 if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7585 seq_buf_printf(&s, "LAZY%s", 7586 brace ? "}" : ""); 7587 return seq_buf_str(&s); 7588 } 7589 7590 return seq_buf_str(&s); 7591 } 7592 7593 if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD)) 7594 return "VOLUNTARY"; 7595 7596 return "NONE"; 7597 } 7598 7599 int io_schedule_prepare(void) 7600 { 7601 int old_iowait = current->in_iowait; 7602 7603 current->in_iowait = 1; 7604 blk_flush_plug(current->plug, true); 7605 return old_iowait; 7606 } 7607 7608 void io_schedule_finish(int token) 7609 { 7610 current->in_iowait = token; 7611 } 7612 7613 /* 7614 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7615 * that process accounting knows that this is a task in IO wait state. 7616 */ 7617 long __sched io_schedule_timeout(long timeout) 7618 { 7619 int token; 7620 long ret; 7621 7622 token = io_schedule_prepare(); 7623 ret = schedule_timeout(timeout); 7624 io_schedule_finish(token); 7625 7626 return ret; 7627 } 7628 EXPORT_SYMBOL(io_schedule_timeout); 7629 7630 void __sched io_schedule(void) 7631 { 7632 int token; 7633 7634 token = io_schedule_prepare(); 7635 schedule(); 7636 io_schedule_finish(token); 7637 } 7638 EXPORT_SYMBOL(io_schedule); 7639 7640 void sched_show_task(struct task_struct *p) 7641 { 7642 unsigned long free; 7643 int ppid; 7644 7645 if (!try_get_task_stack(p)) 7646 return; 7647 7648 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7649 7650 if (task_is_running(p)) 7651 pr_cont(" running task "); 7652 free = stack_not_used(p); 7653 ppid = 0; 7654 rcu_read_lock(); 7655 if (pid_alive(p)) 7656 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7657 rcu_read_unlock(); 7658 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n", 7659 free, task_pid_nr(p), task_tgid_nr(p), 7660 ppid, p->flags, read_task_thread_flags(p)); 7661 7662 print_worker_info(KERN_INFO, p); 7663 print_stop_info(KERN_INFO, p); 7664 print_scx_info(KERN_INFO, p); 7665 show_stack(p, NULL, KERN_INFO); 7666 put_task_stack(p); 7667 } 7668 EXPORT_SYMBOL_GPL(sched_show_task); 7669 7670 static inline bool 7671 state_filter_match(unsigned long state_filter, struct task_struct *p) 7672 { 7673 unsigned int state = READ_ONCE(p->__state); 7674 7675 /* no filter, everything matches */ 7676 if (!state_filter) 7677 return true; 7678 7679 /* filter, but doesn't match */ 7680 if (!(state & state_filter)) 7681 return false; 7682 7683 /* 7684 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7685 * TASK_KILLABLE). 7686 */ 7687 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 7688 return false; 7689 7690 return true; 7691 } 7692 7693 7694 void show_state_filter(unsigned int state_filter) 7695 { 7696 struct task_struct *g, *p; 7697 7698 rcu_read_lock(); 7699 for_each_process_thread(g, p) { 7700 /* 7701 * reset the NMI-timeout, listing all files on a slow 7702 * console might take a lot of time: 7703 * Also, reset softlockup watchdogs on all CPUs, because 7704 * another CPU might be blocked waiting for us to process 7705 * an IPI. 7706 */ 7707 touch_nmi_watchdog(); 7708 touch_all_softlockup_watchdogs(); 7709 if (state_filter_match(state_filter, p)) 7710 sched_show_task(p); 7711 } 7712 7713 if (!state_filter) 7714 sysrq_sched_debug_show(); 7715 7716 rcu_read_unlock(); 7717 /* 7718 * Only show locks if all tasks are dumped: 7719 */ 7720 if (!state_filter) 7721 debug_show_all_locks(); 7722 } 7723 7724 /** 7725 * init_idle - set up an idle thread for a given CPU 7726 * @idle: task in question 7727 * @cpu: CPU the idle task belongs to 7728 * 7729 * NOTE: this function does not set the idle thread's NEED_RESCHED 7730 * flag, to make booting more robust. 7731 */ 7732 void __init init_idle(struct task_struct *idle, int cpu) 7733 { 7734 struct affinity_context ac = (struct affinity_context) { 7735 .new_mask = cpumask_of(cpu), 7736 .flags = 0, 7737 }; 7738 struct rq *rq = cpu_rq(cpu); 7739 unsigned long flags; 7740 7741 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7742 raw_spin_rq_lock(rq); 7743 7744 idle->__state = TASK_RUNNING; 7745 idle->se.exec_start = sched_clock(); 7746 /* 7747 * PF_KTHREAD should already be set at this point; regardless, make it 7748 * look like a proper per-CPU kthread. 7749 */ 7750 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 7751 kthread_set_per_cpu(idle, cpu); 7752 7753 /* 7754 * No validation and serialization required at boot time and for 7755 * setting up the idle tasks of not yet online CPUs. 7756 */ 7757 set_cpus_allowed_common(idle, &ac); 7758 /* 7759 * We're having a chicken and egg problem, even though we are 7760 * holding rq->lock, the CPU isn't yet set to this CPU so the 7761 * lockdep check in task_group() will fail. 7762 * 7763 * Similar case to sched_fork(). / Alternatively we could 7764 * use task_rq_lock() here and obtain the other rq->lock. 7765 * 7766 * Silence PROVE_RCU 7767 */ 7768 rcu_read_lock(); 7769 __set_task_cpu(idle, cpu); 7770 rcu_read_unlock(); 7771 7772 rq->idle = idle; 7773 rq_set_donor(rq, idle); 7774 rcu_assign_pointer(rq->curr, idle); 7775 idle->on_rq = TASK_ON_RQ_QUEUED; 7776 idle->on_cpu = 1; 7777 raw_spin_rq_unlock(rq); 7778 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7779 7780 /* Set the preempt count _outside_ the spinlocks! */ 7781 init_idle_preempt_count(idle, cpu); 7782 7783 /* 7784 * The idle tasks have their own, simple scheduling class: 7785 */ 7786 idle->sched_class = &idle_sched_class; 7787 ftrace_graph_init_idle_task(idle, cpu); 7788 vtime_init_idle(idle, cpu); 7789 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7790 } 7791 7792 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7793 const struct cpumask *trial) 7794 { 7795 int ret = 1; 7796 7797 if (cpumask_empty(cur)) 7798 return ret; 7799 7800 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7801 7802 return ret; 7803 } 7804 7805 int task_can_attach(struct task_struct *p) 7806 { 7807 int ret = 0; 7808 7809 /* 7810 * Kthreads which disallow setaffinity shouldn't be moved 7811 * to a new cpuset; we don't want to change their CPU 7812 * affinity and isolating such threads by their set of 7813 * allowed nodes is unnecessary. Thus, cpusets are not 7814 * applicable for such threads. This prevents checking for 7815 * success of set_cpus_allowed_ptr() on all attached tasks 7816 * before cpus_mask may be changed. 7817 */ 7818 if (p->flags & PF_NO_SETAFFINITY) 7819 ret = -EINVAL; 7820 7821 return ret; 7822 } 7823 7824 bool sched_smp_initialized __read_mostly; 7825 7826 #ifdef CONFIG_NUMA_BALANCING 7827 /* Migrate current task p to target_cpu */ 7828 int migrate_task_to(struct task_struct *p, int target_cpu) 7829 { 7830 struct migration_arg arg = { p, target_cpu }; 7831 int curr_cpu = task_cpu(p); 7832 7833 if (curr_cpu == target_cpu) 7834 return 0; 7835 7836 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7837 return -EINVAL; 7838 7839 /* TODO: This is not properly updating schedstats */ 7840 7841 trace_sched_move_numa(p, curr_cpu, target_cpu); 7842 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7843 } 7844 7845 /* 7846 * Requeue a task on a given node and accurately track the number of NUMA 7847 * tasks on the runqueues 7848 */ 7849 void sched_setnuma(struct task_struct *p, int nid) 7850 { 7851 bool queued, running; 7852 struct rq_flags rf; 7853 struct rq *rq; 7854 7855 rq = task_rq_lock(p, &rf); 7856 queued = task_on_rq_queued(p); 7857 running = task_current_donor(rq, p); 7858 7859 if (queued) 7860 dequeue_task(rq, p, DEQUEUE_SAVE); 7861 if (running) 7862 put_prev_task(rq, p); 7863 7864 p->numa_preferred_nid = nid; 7865 7866 if (queued) 7867 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7868 if (running) 7869 set_next_task(rq, p); 7870 task_rq_unlock(rq, p, &rf); 7871 } 7872 #endif /* CONFIG_NUMA_BALANCING */ 7873 7874 #ifdef CONFIG_HOTPLUG_CPU 7875 /* 7876 * Invoked on the outgoing CPU in context of the CPU hotplug thread 7877 * after ensuring that there are no user space tasks left on the CPU. 7878 * 7879 * If there is a lazy mm in use on the hotplug thread, drop it and 7880 * switch to init_mm. 7881 * 7882 * The reference count on init_mm is dropped in finish_cpu(). 7883 */ 7884 static void sched_force_init_mm(void) 7885 { 7886 struct mm_struct *mm = current->active_mm; 7887 7888 if (mm != &init_mm) { 7889 mmgrab_lazy_tlb(&init_mm); 7890 local_irq_disable(); 7891 current->active_mm = &init_mm; 7892 switch_mm_irqs_off(mm, &init_mm, current); 7893 local_irq_enable(); 7894 finish_arch_post_lock_switch(); 7895 mmdrop_lazy_tlb(mm); 7896 } 7897 7898 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 7899 } 7900 7901 static int __balance_push_cpu_stop(void *arg) 7902 { 7903 struct task_struct *p = arg; 7904 struct rq *rq = this_rq(); 7905 struct rq_flags rf; 7906 int cpu; 7907 7908 raw_spin_lock_irq(&p->pi_lock); 7909 rq_lock(rq, &rf); 7910 7911 update_rq_clock(rq); 7912 7913 if (task_rq(p) == rq && task_on_rq_queued(p)) { 7914 cpu = select_fallback_rq(rq->cpu, p); 7915 rq = __migrate_task(rq, &rf, p, cpu); 7916 } 7917 7918 rq_unlock(rq, &rf); 7919 raw_spin_unlock_irq(&p->pi_lock); 7920 7921 put_task_struct(p); 7922 7923 return 0; 7924 } 7925 7926 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 7927 7928 /* 7929 * Ensure we only run per-cpu kthreads once the CPU goes !active. 7930 * 7931 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 7932 * effective when the hotplug motion is down. 7933 */ 7934 static void balance_push(struct rq *rq) 7935 { 7936 struct task_struct *push_task = rq->curr; 7937 7938 lockdep_assert_rq_held(rq); 7939 7940 /* 7941 * Ensure the thing is persistent until balance_push_set(.on = false); 7942 */ 7943 rq->balance_callback = &balance_push_callback; 7944 7945 /* 7946 * Only active while going offline and when invoked on the outgoing 7947 * CPU. 7948 */ 7949 if (!cpu_dying(rq->cpu) || rq != this_rq()) 7950 return; 7951 7952 /* 7953 * Both the cpu-hotplug and stop task are in this case and are 7954 * required to complete the hotplug process. 7955 */ 7956 if (kthread_is_per_cpu(push_task) || 7957 is_migration_disabled(push_task)) { 7958 7959 /* 7960 * If this is the idle task on the outgoing CPU try to wake 7961 * up the hotplug control thread which might wait for the 7962 * last task to vanish. The rcuwait_active() check is 7963 * accurate here because the waiter is pinned on this CPU 7964 * and can't obviously be running in parallel. 7965 * 7966 * On RT kernels this also has to check whether there are 7967 * pinned and scheduled out tasks on the runqueue. They 7968 * need to leave the migrate disabled section first. 7969 */ 7970 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 7971 rcuwait_active(&rq->hotplug_wait)) { 7972 raw_spin_rq_unlock(rq); 7973 rcuwait_wake_up(&rq->hotplug_wait); 7974 raw_spin_rq_lock(rq); 7975 } 7976 return; 7977 } 7978 7979 get_task_struct(push_task); 7980 /* 7981 * Temporarily drop rq->lock such that we can wake-up the stop task. 7982 * Both preemption and IRQs are still disabled. 7983 */ 7984 preempt_disable(); 7985 raw_spin_rq_unlock(rq); 7986 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 7987 this_cpu_ptr(&push_work)); 7988 preempt_enable(); 7989 /* 7990 * At this point need_resched() is true and we'll take the loop in 7991 * schedule(). The next pick is obviously going to be the stop task 7992 * which kthread_is_per_cpu() and will push this task away. 7993 */ 7994 raw_spin_rq_lock(rq); 7995 } 7996 7997 static void balance_push_set(int cpu, bool on) 7998 { 7999 struct rq *rq = cpu_rq(cpu); 8000 struct rq_flags rf; 8001 8002 rq_lock_irqsave(rq, &rf); 8003 if (on) { 8004 WARN_ON_ONCE(rq->balance_callback); 8005 rq->balance_callback = &balance_push_callback; 8006 } else if (rq->balance_callback == &balance_push_callback) { 8007 rq->balance_callback = NULL; 8008 } 8009 rq_unlock_irqrestore(rq, &rf); 8010 } 8011 8012 /* 8013 * Invoked from a CPUs hotplug control thread after the CPU has been marked 8014 * inactive. All tasks which are not per CPU kernel threads are either 8015 * pushed off this CPU now via balance_push() or placed on a different CPU 8016 * during wakeup. Wait until the CPU is quiescent. 8017 */ 8018 static void balance_hotplug_wait(void) 8019 { 8020 struct rq *rq = this_rq(); 8021 8022 rcuwait_wait_event(&rq->hotplug_wait, 8023 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 8024 TASK_UNINTERRUPTIBLE); 8025 } 8026 8027 #else /* !CONFIG_HOTPLUG_CPU: */ 8028 8029 static inline void balance_push(struct rq *rq) 8030 { 8031 } 8032 8033 static inline void balance_push_set(int cpu, bool on) 8034 { 8035 } 8036 8037 static inline void balance_hotplug_wait(void) 8038 { 8039 } 8040 8041 #endif /* !CONFIG_HOTPLUG_CPU */ 8042 8043 void set_rq_online(struct rq *rq) 8044 { 8045 if (!rq->online) { 8046 const struct sched_class *class; 8047 8048 cpumask_set_cpu(rq->cpu, rq->rd->online); 8049 rq->online = 1; 8050 8051 for_each_class(class) { 8052 if (class->rq_online) 8053 class->rq_online(rq); 8054 } 8055 } 8056 } 8057 8058 void set_rq_offline(struct rq *rq) 8059 { 8060 if (rq->online) { 8061 const struct sched_class *class; 8062 8063 update_rq_clock(rq); 8064 for_each_class(class) { 8065 if (class->rq_offline) 8066 class->rq_offline(rq); 8067 } 8068 8069 cpumask_clear_cpu(rq->cpu, rq->rd->online); 8070 rq->online = 0; 8071 } 8072 } 8073 8074 static inline void sched_set_rq_online(struct rq *rq, int cpu) 8075 { 8076 struct rq_flags rf; 8077 8078 rq_lock_irqsave(rq, &rf); 8079 if (rq->rd) { 8080 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8081 set_rq_online(rq); 8082 } 8083 rq_unlock_irqrestore(rq, &rf); 8084 } 8085 8086 static inline void sched_set_rq_offline(struct rq *rq, int cpu) 8087 { 8088 struct rq_flags rf; 8089 8090 rq_lock_irqsave(rq, &rf); 8091 if (rq->rd) { 8092 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8093 set_rq_offline(rq); 8094 } 8095 rq_unlock_irqrestore(rq, &rf); 8096 } 8097 8098 /* 8099 * used to mark begin/end of suspend/resume: 8100 */ 8101 static int num_cpus_frozen; 8102 8103 /* 8104 * Update cpusets according to cpu_active mask. If cpusets are 8105 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 8106 * around partition_sched_domains(). 8107 * 8108 * If we come here as part of a suspend/resume, don't touch cpusets because we 8109 * want to restore it back to its original state upon resume anyway. 8110 */ 8111 static void cpuset_cpu_active(void) 8112 { 8113 if (cpuhp_tasks_frozen) { 8114 /* 8115 * num_cpus_frozen tracks how many CPUs are involved in suspend 8116 * resume sequence. As long as this is not the last online 8117 * operation in the resume sequence, just build a single sched 8118 * domain, ignoring cpusets. 8119 */ 8120 cpuset_reset_sched_domains(); 8121 if (--num_cpus_frozen) 8122 return; 8123 /* 8124 * This is the last CPU online operation. So fall through and 8125 * restore the original sched domains by considering the 8126 * cpuset configurations. 8127 */ 8128 cpuset_force_rebuild(); 8129 } 8130 cpuset_update_active_cpus(); 8131 } 8132 8133 static void cpuset_cpu_inactive(unsigned int cpu) 8134 { 8135 if (!cpuhp_tasks_frozen) { 8136 cpuset_update_active_cpus(); 8137 } else { 8138 num_cpus_frozen++; 8139 cpuset_reset_sched_domains(); 8140 } 8141 } 8142 8143 static inline void sched_smt_present_inc(int cpu) 8144 { 8145 #ifdef CONFIG_SCHED_SMT 8146 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8147 static_branch_inc_cpuslocked(&sched_smt_present); 8148 #endif 8149 } 8150 8151 static inline void sched_smt_present_dec(int cpu) 8152 { 8153 #ifdef CONFIG_SCHED_SMT 8154 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8155 static_branch_dec_cpuslocked(&sched_smt_present); 8156 #endif 8157 } 8158 8159 int sched_cpu_activate(unsigned int cpu) 8160 { 8161 struct rq *rq = cpu_rq(cpu); 8162 8163 /* 8164 * Clear the balance_push callback and prepare to schedule 8165 * regular tasks. 8166 */ 8167 balance_push_set(cpu, false); 8168 8169 /* 8170 * When going up, increment the number of cores with SMT present. 8171 */ 8172 sched_smt_present_inc(cpu); 8173 set_cpu_active(cpu, true); 8174 8175 if (sched_smp_initialized) { 8176 sched_update_numa(cpu, true); 8177 sched_domains_numa_masks_set(cpu); 8178 cpuset_cpu_active(); 8179 } 8180 8181 scx_rq_activate(rq); 8182 8183 /* 8184 * Put the rq online, if not already. This happens: 8185 * 8186 * 1) In the early boot process, because we build the real domains 8187 * after all CPUs have been brought up. 8188 * 8189 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 8190 * domains. 8191 */ 8192 sched_set_rq_online(rq, cpu); 8193 8194 return 0; 8195 } 8196 8197 int sched_cpu_deactivate(unsigned int cpu) 8198 { 8199 struct rq *rq = cpu_rq(cpu); 8200 int ret; 8201 8202 ret = dl_bw_deactivate(cpu); 8203 8204 if (ret) 8205 return ret; 8206 8207 /* 8208 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 8209 * load balancing when not active 8210 */ 8211 nohz_balance_exit_idle(rq); 8212 8213 set_cpu_active(cpu, false); 8214 8215 /* 8216 * From this point forward, this CPU will refuse to run any task that 8217 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8218 * push those tasks away until this gets cleared, see 8219 * sched_cpu_dying(). 8220 */ 8221 balance_push_set(cpu, true); 8222 8223 /* 8224 * We've cleared cpu_active_mask / set balance_push, wait for all 8225 * preempt-disabled and RCU users of this state to go away such that 8226 * all new such users will observe it. 8227 * 8228 * Specifically, we rely on ttwu to no longer target this CPU, see 8229 * ttwu_queue_cond() and is_cpu_allowed(). 8230 * 8231 * Do sync before park smpboot threads to take care the RCU boost case. 8232 */ 8233 synchronize_rcu(); 8234 8235 sched_set_rq_offline(rq, cpu); 8236 8237 scx_rq_deactivate(rq); 8238 8239 /* 8240 * When going down, decrement the number of cores with SMT present. 8241 */ 8242 sched_smt_present_dec(cpu); 8243 8244 #ifdef CONFIG_SCHED_SMT 8245 sched_core_cpu_deactivate(cpu); 8246 #endif 8247 8248 if (!sched_smp_initialized) 8249 return 0; 8250 8251 sched_update_numa(cpu, false); 8252 cpuset_cpu_inactive(cpu); 8253 sched_domains_numa_masks_clear(cpu); 8254 return 0; 8255 } 8256 8257 static void sched_rq_cpu_starting(unsigned int cpu) 8258 { 8259 struct rq *rq = cpu_rq(cpu); 8260 8261 rq->calc_load_update = calc_load_update; 8262 update_max_interval(); 8263 } 8264 8265 int sched_cpu_starting(unsigned int cpu) 8266 { 8267 sched_core_cpu_starting(cpu); 8268 sched_rq_cpu_starting(cpu); 8269 sched_tick_start(cpu); 8270 return 0; 8271 } 8272 8273 #ifdef CONFIG_HOTPLUG_CPU 8274 8275 /* 8276 * Invoked immediately before the stopper thread is invoked to bring the 8277 * CPU down completely. At this point all per CPU kthreads except the 8278 * hotplug thread (current) and the stopper thread (inactive) have been 8279 * either parked or have been unbound from the outgoing CPU. Ensure that 8280 * any of those which might be on the way out are gone. 8281 * 8282 * If after this point a bound task is being woken on this CPU then the 8283 * responsible hotplug callback has failed to do it's job. 8284 * sched_cpu_dying() will catch it with the appropriate fireworks. 8285 */ 8286 int sched_cpu_wait_empty(unsigned int cpu) 8287 { 8288 balance_hotplug_wait(); 8289 sched_force_init_mm(); 8290 return 0; 8291 } 8292 8293 /* 8294 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8295 * might have. Called from the CPU stopper task after ensuring that the 8296 * stopper is the last running task on the CPU, so nr_active count is 8297 * stable. We need to take the tear-down thread which is calling this into 8298 * account, so we hand in adjust = 1 to the load calculation. 8299 * 8300 * Also see the comment "Global load-average calculations". 8301 */ 8302 static void calc_load_migrate(struct rq *rq) 8303 { 8304 long delta = calc_load_fold_active(rq, 1); 8305 8306 if (delta) 8307 atomic_long_add(delta, &calc_load_tasks); 8308 } 8309 8310 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8311 { 8312 struct task_struct *g, *p; 8313 int cpu = cpu_of(rq); 8314 8315 lockdep_assert_rq_held(rq); 8316 8317 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8318 for_each_process_thread(g, p) { 8319 if (task_cpu(p) != cpu) 8320 continue; 8321 8322 if (!task_on_rq_queued(p)) 8323 continue; 8324 8325 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8326 } 8327 } 8328 8329 int sched_cpu_dying(unsigned int cpu) 8330 { 8331 struct rq *rq = cpu_rq(cpu); 8332 struct rq_flags rf; 8333 8334 /* Handle pending wakeups and then migrate everything off */ 8335 sched_tick_stop(cpu); 8336 8337 rq_lock_irqsave(rq, &rf); 8338 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8339 WARN(true, "Dying CPU not properly vacated!"); 8340 dump_rq_tasks(rq, KERN_WARNING); 8341 } 8342 rq_unlock_irqrestore(rq, &rf); 8343 8344 calc_load_migrate(rq); 8345 update_max_interval(); 8346 hrtick_clear(rq); 8347 sched_core_cpu_dying(cpu); 8348 return 0; 8349 } 8350 #endif /* CONFIG_HOTPLUG_CPU */ 8351 8352 void __init sched_init_smp(void) 8353 { 8354 sched_init_numa(NUMA_NO_NODE); 8355 8356 /* 8357 * There's no userspace yet to cause hotplug operations; hence all the 8358 * CPU masks are stable and all blatant races in the below code cannot 8359 * happen. 8360 */ 8361 sched_domains_mutex_lock(); 8362 sched_init_domains(cpu_active_mask); 8363 sched_domains_mutex_unlock(); 8364 8365 /* Move init over to a non-isolated CPU */ 8366 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 8367 BUG(); 8368 current->flags &= ~PF_NO_SETAFFINITY; 8369 sched_init_granularity(); 8370 8371 init_sched_rt_class(); 8372 init_sched_dl_class(); 8373 8374 sched_init_dl_servers(); 8375 8376 sched_smp_initialized = true; 8377 } 8378 8379 static int __init migration_init(void) 8380 { 8381 sched_cpu_starting(smp_processor_id()); 8382 return 0; 8383 } 8384 early_initcall(migration_init); 8385 8386 int in_sched_functions(unsigned long addr) 8387 { 8388 return in_lock_functions(addr) || 8389 (addr >= (unsigned long)__sched_text_start 8390 && addr < (unsigned long)__sched_text_end); 8391 } 8392 8393 #ifdef CONFIG_CGROUP_SCHED 8394 /* 8395 * Default task group. 8396 * Every task in system belongs to this group at bootup. 8397 */ 8398 struct task_group root_task_group; 8399 LIST_HEAD(task_groups); 8400 8401 /* Cacheline aligned slab cache for task_group */ 8402 static struct kmem_cache *task_group_cache __ro_after_init; 8403 #endif 8404 8405 void __init sched_init(void) 8406 { 8407 unsigned long ptr = 0; 8408 int i; 8409 8410 /* Make sure the linker didn't screw up */ 8411 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); 8412 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); 8413 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); 8414 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); 8415 #ifdef CONFIG_SCHED_CLASS_EXT 8416 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); 8417 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); 8418 #endif 8419 8420 wait_bit_init(); 8421 8422 #ifdef CONFIG_FAIR_GROUP_SCHED 8423 ptr += 2 * nr_cpu_ids * sizeof(void **); 8424 #endif 8425 #ifdef CONFIG_RT_GROUP_SCHED 8426 ptr += 2 * nr_cpu_ids * sizeof(void **); 8427 #endif 8428 if (ptr) { 8429 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8430 8431 #ifdef CONFIG_FAIR_GROUP_SCHED 8432 root_task_group.se = (struct sched_entity **)ptr; 8433 ptr += nr_cpu_ids * sizeof(void **); 8434 8435 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8436 ptr += nr_cpu_ids * sizeof(void **); 8437 8438 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8439 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 8440 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8441 #ifdef CONFIG_EXT_GROUP_SCHED 8442 scx_tg_init(&root_task_group); 8443 #endif /* CONFIG_EXT_GROUP_SCHED */ 8444 #ifdef CONFIG_RT_GROUP_SCHED 8445 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8446 ptr += nr_cpu_ids * sizeof(void **); 8447 8448 root_task_group.rt_rq = (struct rt_rq **)ptr; 8449 ptr += nr_cpu_ids * sizeof(void **); 8450 8451 #endif /* CONFIG_RT_GROUP_SCHED */ 8452 } 8453 8454 init_defrootdomain(); 8455 8456 #ifdef CONFIG_RT_GROUP_SCHED 8457 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8458 global_rt_period(), global_rt_runtime()); 8459 #endif /* CONFIG_RT_GROUP_SCHED */ 8460 8461 #ifdef CONFIG_CGROUP_SCHED 8462 task_group_cache = KMEM_CACHE(task_group, 0); 8463 8464 list_add(&root_task_group.list, &task_groups); 8465 INIT_LIST_HEAD(&root_task_group.children); 8466 INIT_LIST_HEAD(&root_task_group.siblings); 8467 autogroup_init(&init_task); 8468 #endif /* CONFIG_CGROUP_SCHED */ 8469 8470 for_each_possible_cpu(i) { 8471 struct rq *rq; 8472 8473 rq = cpu_rq(i); 8474 raw_spin_lock_init(&rq->__lock); 8475 rq->nr_running = 0; 8476 rq->calc_load_active = 0; 8477 rq->calc_load_update = jiffies + LOAD_FREQ; 8478 init_cfs_rq(&rq->cfs); 8479 init_rt_rq(&rq->rt); 8480 init_dl_rq(&rq->dl); 8481 #ifdef CONFIG_FAIR_GROUP_SCHED 8482 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8483 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8484 /* 8485 * How much CPU bandwidth does root_task_group get? 8486 * 8487 * In case of task-groups formed through the cgroup filesystem, it 8488 * gets 100% of the CPU resources in the system. This overall 8489 * system CPU resource is divided among the tasks of 8490 * root_task_group and its child task-groups in a fair manner, 8491 * based on each entity's (task or task-group's) weight 8492 * (se->load.weight). 8493 * 8494 * In other words, if root_task_group has 10 tasks of weight 8495 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8496 * then A0's share of the CPU resource is: 8497 * 8498 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8499 * 8500 * We achieve this by letting root_task_group's tasks sit 8501 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8502 */ 8503 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8504 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8505 8506 #ifdef CONFIG_RT_GROUP_SCHED 8507 /* 8508 * This is required for init cpu because rt.c:__enable_runtime() 8509 * starts working after scheduler_running, which is not the case 8510 * yet. 8511 */ 8512 rq->rt.rt_runtime = global_rt_runtime(); 8513 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8514 #endif 8515 rq->sd = NULL; 8516 rq->rd = NULL; 8517 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 8518 rq->balance_callback = &balance_push_callback; 8519 rq->active_balance = 0; 8520 rq->next_balance = jiffies; 8521 rq->push_cpu = 0; 8522 rq->cpu = i; 8523 rq->online = 0; 8524 rq->idle_stamp = 0; 8525 rq->avg_idle = 2*sysctl_sched_migration_cost; 8526 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8527 8528 INIT_LIST_HEAD(&rq->cfs_tasks); 8529 8530 rq_attach_root(rq, &def_root_domain); 8531 #ifdef CONFIG_NO_HZ_COMMON 8532 rq->last_blocked_load_update_tick = jiffies; 8533 atomic_set(&rq->nohz_flags, 0); 8534 8535 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8536 #endif 8537 #ifdef CONFIG_HOTPLUG_CPU 8538 rcuwait_init(&rq->hotplug_wait); 8539 #endif 8540 hrtick_rq_init(rq); 8541 atomic_set(&rq->nr_iowait, 0); 8542 fair_server_init(rq); 8543 8544 #ifdef CONFIG_SCHED_CORE 8545 rq->core = rq; 8546 rq->core_pick = NULL; 8547 rq->core_dl_server = NULL; 8548 rq->core_enabled = 0; 8549 rq->core_tree = RB_ROOT; 8550 rq->core_forceidle_count = 0; 8551 rq->core_forceidle_occupation = 0; 8552 rq->core_forceidle_start = 0; 8553 8554 rq->core_cookie = 0UL; 8555 #endif 8556 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 8557 } 8558 8559 set_load_weight(&init_task, false); 8560 init_task.se.slice = sysctl_sched_base_slice, 8561 8562 /* 8563 * The boot idle thread does lazy MMU switching as well: 8564 */ 8565 mmgrab_lazy_tlb(&init_mm); 8566 enter_lazy_tlb(&init_mm, current); 8567 8568 /* 8569 * The idle task doesn't need the kthread struct to function, but it 8570 * is dressed up as a per-CPU kthread and thus needs to play the part 8571 * if we want to avoid special-casing it in code that deals with per-CPU 8572 * kthreads. 8573 */ 8574 WARN_ON(!set_kthread_struct(current)); 8575 8576 /* 8577 * Make us the idle thread. Technically, schedule() should not be 8578 * called from this thread, however somewhere below it might be, 8579 * but because we are the idle thread, we just pick up running again 8580 * when this runqueue becomes "idle". 8581 */ 8582 __sched_fork(0, current); 8583 init_idle(current, smp_processor_id()); 8584 8585 calc_load_update = jiffies + LOAD_FREQ; 8586 8587 idle_thread_set_boot_cpu(); 8588 8589 balance_push_set(smp_processor_id(), false); 8590 init_sched_fair_class(); 8591 init_sched_ext_class(); 8592 8593 psi_init(); 8594 8595 init_uclamp(); 8596 8597 preempt_dynamic_init(); 8598 8599 scheduler_running = 1; 8600 } 8601 8602 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8603 8604 void __might_sleep(const char *file, int line) 8605 { 8606 unsigned int state = get_current_state(); 8607 /* 8608 * Blocking primitives will set (and therefore destroy) current->state, 8609 * since we will exit with TASK_RUNNING make sure we enter with it, 8610 * otherwise we will destroy state. 8611 */ 8612 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 8613 "do not call blocking ops when !TASK_RUNNING; " 8614 "state=%x set at [<%p>] %pS\n", state, 8615 (void *)current->task_state_change, 8616 (void *)current->task_state_change); 8617 8618 __might_resched(file, line, 0); 8619 } 8620 EXPORT_SYMBOL(__might_sleep); 8621 8622 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 8623 { 8624 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 8625 return; 8626 8627 if (preempt_count() == preempt_offset) 8628 return; 8629 8630 pr_err("Preemption disabled at:"); 8631 print_ip_sym(KERN_ERR, ip); 8632 } 8633 8634 static inline bool resched_offsets_ok(unsigned int offsets) 8635 { 8636 unsigned int nested = preempt_count(); 8637 8638 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 8639 8640 return nested == offsets; 8641 } 8642 8643 void __might_resched(const char *file, int line, unsigned int offsets) 8644 { 8645 /* Ratelimiting timestamp: */ 8646 static unsigned long prev_jiffy; 8647 8648 unsigned long preempt_disable_ip; 8649 8650 /* WARN_ON_ONCE() by default, no rate limit required: */ 8651 rcu_sleep_check(); 8652 8653 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 8654 !is_idle_task(current) && !current->non_block_count) || 8655 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8656 oops_in_progress) 8657 return; 8658 8659 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8660 return; 8661 prev_jiffy = jiffies; 8662 8663 /* Save this before calling printk(), since that will clobber it: */ 8664 preempt_disable_ip = get_preempt_disable_ip(current); 8665 8666 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 8667 file, line); 8668 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8669 in_atomic(), irqs_disabled(), current->non_block_count, 8670 current->pid, current->comm); 8671 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 8672 offsets & MIGHT_RESCHED_PREEMPT_MASK); 8673 8674 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 8675 pr_err("RCU nest depth: %d, expected: %u\n", 8676 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 8677 } 8678 8679 if (task_stack_end_corrupted(current)) 8680 pr_emerg("Thread overran stack, or stack corrupted\n"); 8681 8682 debug_show_held_locks(current); 8683 if (irqs_disabled()) 8684 print_irqtrace_events(current); 8685 8686 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 8687 preempt_disable_ip); 8688 8689 dump_stack(); 8690 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8691 } 8692 EXPORT_SYMBOL(__might_resched); 8693 8694 void __cant_sleep(const char *file, int line, int preempt_offset) 8695 { 8696 static unsigned long prev_jiffy; 8697 8698 if (irqs_disabled()) 8699 return; 8700 8701 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8702 return; 8703 8704 if (preempt_count() > preempt_offset) 8705 return; 8706 8707 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8708 return; 8709 prev_jiffy = jiffies; 8710 8711 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8712 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8713 in_atomic(), irqs_disabled(), 8714 current->pid, current->comm); 8715 8716 debug_show_held_locks(current); 8717 dump_stack(); 8718 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8719 } 8720 EXPORT_SYMBOL_GPL(__cant_sleep); 8721 8722 # ifdef CONFIG_SMP 8723 void __cant_migrate(const char *file, int line) 8724 { 8725 static unsigned long prev_jiffy; 8726 8727 if (irqs_disabled()) 8728 return; 8729 8730 if (is_migration_disabled(current)) 8731 return; 8732 8733 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8734 return; 8735 8736 if (preempt_count() > 0) 8737 return; 8738 8739 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8740 return; 8741 prev_jiffy = jiffies; 8742 8743 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8744 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8745 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8746 current->pid, current->comm); 8747 8748 debug_show_held_locks(current); 8749 dump_stack(); 8750 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8751 } 8752 EXPORT_SYMBOL_GPL(__cant_migrate); 8753 # endif /* CONFIG_SMP */ 8754 #endif /* CONFIG_DEBUG_ATOMIC_SLEEP */ 8755 8756 #ifdef CONFIG_MAGIC_SYSRQ 8757 void normalize_rt_tasks(void) 8758 { 8759 struct task_struct *g, *p; 8760 struct sched_attr attr = { 8761 .sched_policy = SCHED_NORMAL, 8762 }; 8763 8764 read_lock(&tasklist_lock); 8765 for_each_process_thread(g, p) { 8766 /* 8767 * Only normalize user tasks: 8768 */ 8769 if (p->flags & PF_KTHREAD) 8770 continue; 8771 8772 p->se.exec_start = 0; 8773 schedstat_set(p->stats.wait_start, 0); 8774 schedstat_set(p->stats.sleep_start, 0); 8775 schedstat_set(p->stats.block_start, 0); 8776 8777 if (!rt_or_dl_task(p)) { 8778 /* 8779 * Renice negative nice level userspace 8780 * tasks back to 0: 8781 */ 8782 if (task_nice(p) < 0) 8783 set_user_nice(p, 0); 8784 continue; 8785 } 8786 8787 __sched_setscheduler(p, &attr, false, false); 8788 } 8789 read_unlock(&tasklist_lock); 8790 } 8791 8792 #endif /* CONFIG_MAGIC_SYSRQ */ 8793 8794 #ifdef CONFIG_KGDB_KDB 8795 /* 8796 * These functions are only useful for KDB. 8797 * 8798 * They can only be called when the whole system has been 8799 * stopped - every CPU needs to be quiescent, and no scheduling 8800 * activity can take place. Using them for anything else would 8801 * be a serious bug, and as a result, they aren't even visible 8802 * under any other configuration. 8803 */ 8804 8805 /** 8806 * curr_task - return the current task for a given CPU. 8807 * @cpu: the processor in question. 8808 * 8809 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8810 * 8811 * Return: The current task for @cpu. 8812 */ 8813 struct task_struct *curr_task(int cpu) 8814 { 8815 return cpu_curr(cpu); 8816 } 8817 8818 #endif /* CONFIG_KGDB_KDB */ 8819 8820 #ifdef CONFIG_CGROUP_SCHED 8821 /* task_group_lock serializes the addition/removal of task groups */ 8822 static DEFINE_SPINLOCK(task_group_lock); 8823 8824 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8825 struct task_group *parent) 8826 { 8827 #ifdef CONFIG_UCLAMP_TASK_GROUP 8828 enum uclamp_id clamp_id; 8829 8830 for_each_clamp_id(clamp_id) { 8831 uclamp_se_set(&tg->uclamp_req[clamp_id], 8832 uclamp_none(clamp_id), false); 8833 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8834 } 8835 #endif 8836 } 8837 8838 static void sched_free_group(struct task_group *tg) 8839 { 8840 free_fair_sched_group(tg); 8841 free_rt_sched_group(tg); 8842 autogroup_free(tg); 8843 kmem_cache_free(task_group_cache, tg); 8844 } 8845 8846 static void sched_free_group_rcu(struct rcu_head *rcu) 8847 { 8848 sched_free_group(container_of(rcu, struct task_group, rcu)); 8849 } 8850 8851 static void sched_unregister_group(struct task_group *tg) 8852 { 8853 unregister_fair_sched_group(tg); 8854 unregister_rt_sched_group(tg); 8855 /* 8856 * We have to wait for yet another RCU grace period to expire, as 8857 * print_cfs_stats() might run concurrently. 8858 */ 8859 call_rcu(&tg->rcu, sched_free_group_rcu); 8860 } 8861 8862 /* allocate runqueue etc for a new task group */ 8863 struct task_group *sched_create_group(struct task_group *parent) 8864 { 8865 struct task_group *tg; 8866 8867 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 8868 if (!tg) 8869 return ERR_PTR(-ENOMEM); 8870 8871 if (!alloc_fair_sched_group(tg, parent)) 8872 goto err; 8873 8874 if (!alloc_rt_sched_group(tg, parent)) 8875 goto err; 8876 8877 scx_tg_init(tg); 8878 alloc_uclamp_sched_group(tg, parent); 8879 8880 return tg; 8881 8882 err: 8883 sched_free_group(tg); 8884 return ERR_PTR(-ENOMEM); 8885 } 8886 8887 void sched_online_group(struct task_group *tg, struct task_group *parent) 8888 { 8889 unsigned long flags; 8890 8891 spin_lock_irqsave(&task_group_lock, flags); 8892 list_add_tail_rcu(&tg->list, &task_groups); 8893 8894 /* Root should already exist: */ 8895 WARN_ON(!parent); 8896 8897 tg->parent = parent; 8898 INIT_LIST_HEAD(&tg->children); 8899 list_add_rcu(&tg->siblings, &parent->children); 8900 spin_unlock_irqrestore(&task_group_lock, flags); 8901 8902 online_fair_sched_group(tg); 8903 } 8904 8905 /* RCU callback to free various structures associated with a task group */ 8906 static void sched_unregister_group_rcu(struct rcu_head *rhp) 8907 { 8908 /* Now it should be safe to free those cfs_rqs: */ 8909 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 8910 } 8911 8912 void sched_destroy_group(struct task_group *tg) 8913 { 8914 /* Wait for possible concurrent references to cfs_rqs complete: */ 8915 call_rcu(&tg->rcu, sched_unregister_group_rcu); 8916 } 8917 8918 void sched_release_group(struct task_group *tg) 8919 { 8920 unsigned long flags; 8921 8922 /* 8923 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 8924 * sched_cfs_period_timer()). 8925 * 8926 * For this to be effective, we have to wait for all pending users of 8927 * this task group to leave their RCU critical section to ensure no new 8928 * user will see our dying task group any more. Specifically ensure 8929 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 8930 * 8931 * We therefore defer calling unregister_fair_sched_group() to 8932 * sched_unregister_group() which is guarantied to get called only after the 8933 * current RCU grace period has expired. 8934 */ 8935 spin_lock_irqsave(&task_group_lock, flags); 8936 list_del_rcu(&tg->list); 8937 list_del_rcu(&tg->siblings); 8938 spin_unlock_irqrestore(&task_group_lock, flags); 8939 } 8940 8941 static void sched_change_group(struct task_struct *tsk) 8942 { 8943 struct task_group *tg; 8944 8945 /* 8946 * All callers are synchronized by task_rq_lock(); we do not use RCU 8947 * which is pointless here. Thus, we pass "true" to task_css_check() 8948 * to prevent lockdep warnings. 8949 */ 8950 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 8951 struct task_group, css); 8952 tg = autogroup_task_group(tsk, tg); 8953 tsk->sched_task_group = tg; 8954 8955 #ifdef CONFIG_FAIR_GROUP_SCHED 8956 if (tsk->sched_class->task_change_group) 8957 tsk->sched_class->task_change_group(tsk); 8958 else 8959 #endif 8960 set_task_rq(tsk, task_cpu(tsk)); 8961 } 8962 8963 /* 8964 * Change task's runqueue when it moves between groups. 8965 * 8966 * The caller of this function should have put the task in its new group by 8967 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 8968 * its new group. 8969 */ 8970 void sched_move_task(struct task_struct *tsk, bool for_autogroup) 8971 { 8972 int queued, running, queue_flags = 8973 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 8974 struct rq *rq; 8975 8976 CLASS(task_rq_lock, rq_guard)(tsk); 8977 rq = rq_guard.rq; 8978 8979 update_rq_clock(rq); 8980 8981 running = task_current_donor(rq, tsk); 8982 queued = task_on_rq_queued(tsk); 8983 8984 if (queued) 8985 dequeue_task(rq, tsk, queue_flags); 8986 if (running) 8987 put_prev_task(rq, tsk); 8988 8989 sched_change_group(tsk); 8990 if (!for_autogroup) 8991 scx_cgroup_move_task(tsk); 8992 8993 if (queued) 8994 enqueue_task(rq, tsk, queue_flags); 8995 if (running) { 8996 set_next_task(rq, tsk); 8997 /* 8998 * After changing group, the running task may have joined a 8999 * throttled one but it's still the running task. Trigger a 9000 * resched to make sure that task can still run. 9001 */ 9002 resched_curr(rq); 9003 } 9004 } 9005 9006 static struct cgroup_subsys_state * 9007 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9008 { 9009 struct task_group *parent = css_tg(parent_css); 9010 struct task_group *tg; 9011 9012 if (!parent) { 9013 /* This is early initialization for the top cgroup */ 9014 return &root_task_group.css; 9015 } 9016 9017 tg = sched_create_group(parent); 9018 if (IS_ERR(tg)) 9019 return ERR_PTR(-ENOMEM); 9020 9021 return &tg->css; 9022 } 9023 9024 /* Expose task group only after completing cgroup initialization */ 9025 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 9026 { 9027 struct task_group *tg = css_tg(css); 9028 struct task_group *parent = css_tg(css->parent); 9029 int ret; 9030 9031 ret = scx_tg_online(tg); 9032 if (ret) 9033 return ret; 9034 9035 if (parent) 9036 sched_online_group(tg, parent); 9037 9038 #ifdef CONFIG_UCLAMP_TASK_GROUP 9039 /* Propagate the effective uclamp value for the new group */ 9040 guard(mutex)(&uclamp_mutex); 9041 guard(rcu)(); 9042 cpu_util_update_eff(css); 9043 #endif 9044 9045 return 0; 9046 } 9047 9048 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 9049 { 9050 struct task_group *tg = css_tg(css); 9051 9052 scx_tg_offline(tg); 9053 } 9054 9055 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 9056 { 9057 struct task_group *tg = css_tg(css); 9058 9059 sched_release_group(tg); 9060 } 9061 9062 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 9063 { 9064 struct task_group *tg = css_tg(css); 9065 9066 /* 9067 * Relies on the RCU grace period between css_released() and this. 9068 */ 9069 sched_unregister_group(tg); 9070 } 9071 9072 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 9073 { 9074 #ifdef CONFIG_RT_GROUP_SCHED 9075 struct task_struct *task; 9076 struct cgroup_subsys_state *css; 9077 9078 if (!rt_group_sched_enabled()) 9079 goto scx_check; 9080 9081 cgroup_taskset_for_each(task, css, tset) { 9082 if (!sched_rt_can_attach(css_tg(css), task)) 9083 return -EINVAL; 9084 } 9085 scx_check: 9086 #endif /* CONFIG_RT_GROUP_SCHED */ 9087 return scx_cgroup_can_attach(tset); 9088 } 9089 9090 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 9091 { 9092 struct task_struct *task; 9093 struct cgroup_subsys_state *css; 9094 9095 cgroup_taskset_for_each(task, css, tset) 9096 sched_move_task(task, false); 9097 9098 scx_cgroup_finish_attach(); 9099 } 9100 9101 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset) 9102 { 9103 scx_cgroup_cancel_attach(tset); 9104 } 9105 9106 #ifdef CONFIG_UCLAMP_TASK_GROUP 9107 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 9108 { 9109 struct cgroup_subsys_state *top_css = css; 9110 struct uclamp_se *uc_parent = NULL; 9111 struct uclamp_se *uc_se = NULL; 9112 unsigned int eff[UCLAMP_CNT]; 9113 enum uclamp_id clamp_id; 9114 unsigned int clamps; 9115 9116 lockdep_assert_held(&uclamp_mutex); 9117 WARN_ON_ONCE(!rcu_read_lock_held()); 9118 9119 css_for_each_descendant_pre(css, top_css) { 9120 uc_parent = css_tg(css)->parent 9121 ? css_tg(css)->parent->uclamp : NULL; 9122 9123 for_each_clamp_id(clamp_id) { 9124 /* Assume effective clamps matches requested clamps */ 9125 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 9126 /* Cap effective clamps with parent's effective clamps */ 9127 if (uc_parent && 9128 eff[clamp_id] > uc_parent[clamp_id].value) { 9129 eff[clamp_id] = uc_parent[clamp_id].value; 9130 } 9131 } 9132 /* Ensure protection is always capped by limit */ 9133 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 9134 9135 /* Propagate most restrictive effective clamps */ 9136 clamps = 0x0; 9137 uc_se = css_tg(css)->uclamp; 9138 for_each_clamp_id(clamp_id) { 9139 if (eff[clamp_id] == uc_se[clamp_id].value) 9140 continue; 9141 uc_se[clamp_id].value = eff[clamp_id]; 9142 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 9143 clamps |= (0x1 << clamp_id); 9144 } 9145 if (!clamps) { 9146 css = css_rightmost_descendant(css); 9147 continue; 9148 } 9149 9150 /* Immediately update descendants RUNNABLE tasks */ 9151 uclamp_update_active_tasks(css); 9152 } 9153 } 9154 9155 /* 9156 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 9157 * C expression. Since there is no way to convert a macro argument (N) into a 9158 * character constant, use two levels of macros. 9159 */ 9160 #define _POW10(exp) ((unsigned int)1e##exp) 9161 #define POW10(exp) _POW10(exp) 9162 9163 struct uclamp_request { 9164 #define UCLAMP_PERCENT_SHIFT 2 9165 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 9166 s64 percent; 9167 u64 util; 9168 int ret; 9169 }; 9170 9171 static inline struct uclamp_request 9172 capacity_from_percent(char *buf) 9173 { 9174 struct uclamp_request req = { 9175 .percent = UCLAMP_PERCENT_SCALE, 9176 .util = SCHED_CAPACITY_SCALE, 9177 .ret = 0, 9178 }; 9179 9180 buf = strim(buf); 9181 if (strcmp(buf, "max")) { 9182 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 9183 &req.percent); 9184 if (req.ret) 9185 return req; 9186 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 9187 req.ret = -ERANGE; 9188 return req; 9189 } 9190 9191 req.util = req.percent << SCHED_CAPACITY_SHIFT; 9192 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 9193 } 9194 9195 return req; 9196 } 9197 9198 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 9199 size_t nbytes, loff_t off, 9200 enum uclamp_id clamp_id) 9201 { 9202 struct uclamp_request req; 9203 struct task_group *tg; 9204 9205 req = capacity_from_percent(buf); 9206 if (req.ret) 9207 return req.ret; 9208 9209 sched_uclamp_enable(); 9210 9211 guard(mutex)(&uclamp_mutex); 9212 guard(rcu)(); 9213 9214 tg = css_tg(of_css(of)); 9215 if (tg->uclamp_req[clamp_id].value != req.util) 9216 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 9217 9218 /* 9219 * Because of not recoverable conversion rounding we keep track of the 9220 * exact requested value 9221 */ 9222 tg->uclamp_pct[clamp_id] = req.percent; 9223 9224 /* Update effective clamps to track the most restrictive value */ 9225 cpu_util_update_eff(of_css(of)); 9226 9227 return nbytes; 9228 } 9229 9230 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9231 char *buf, size_t nbytes, 9232 loff_t off) 9233 { 9234 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9235 } 9236 9237 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9238 char *buf, size_t nbytes, 9239 loff_t off) 9240 { 9241 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9242 } 9243 9244 static inline void cpu_uclamp_print(struct seq_file *sf, 9245 enum uclamp_id clamp_id) 9246 { 9247 struct task_group *tg; 9248 u64 util_clamp; 9249 u64 percent; 9250 u32 rem; 9251 9252 scoped_guard (rcu) { 9253 tg = css_tg(seq_css(sf)); 9254 util_clamp = tg->uclamp_req[clamp_id].value; 9255 } 9256 9257 if (util_clamp == SCHED_CAPACITY_SCALE) { 9258 seq_puts(sf, "max\n"); 9259 return; 9260 } 9261 9262 percent = tg->uclamp_pct[clamp_id]; 9263 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9264 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9265 } 9266 9267 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9268 { 9269 cpu_uclamp_print(sf, UCLAMP_MIN); 9270 return 0; 9271 } 9272 9273 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9274 { 9275 cpu_uclamp_print(sf, UCLAMP_MAX); 9276 return 0; 9277 } 9278 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9279 9280 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9281 static unsigned long tg_weight(struct task_group *tg) 9282 { 9283 #ifdef CONFIG_FAIR_GROUP_SCHED 9284 return scale_load_down(tg->shares); 9285 #else 9286 return sched_weight_from_cgroup(tg->scx_weight); 9287 #endif 9288 } 9289 9290 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9291 struct cftype *cftype, u64 shareval) 9292 { 9293 int ret; 9294 9295 if (shareval > scale_load_down(ULONG_MAX)) 9296 shareval = MAX_SHARES; 9297 ret = sched_group_set_shares(css_tg(css), scale_load(shareval)); 9298 if (!ret) 9299 scx_group_set_weight(css_tg(css), 9300 sched_weight_to_cgroup(shareval)); 9301 return ret; 9302 } 9303 9304 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9305 struct cftype *cft) 9306 { 9307 return tg_weight(css_tg(css)); 9308 } 9309 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9310 9311 #ifdef CONFIG_CFS_BANDWIDTH 9312 static DEFINE_MUTEX(cfs_constraints_mutex); 9313 9314 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9315 9316 static int tg_set_cfs_bandwidth(struct task_group *tg, 9317 u64 period_us, u64 quota_us, u64 burst_us) 9318 { 9319 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9320 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9321 u64 period, quota, burst; 9322 9323 period = (u64)period_us * NSEC_PER_USEC; 9324 9325 if (quota_us == RUNTIME_INF) 9326 quota = RUNTIME_INF; 9327 else 9328 quota = (u64)quota_us * NSEC_PER_USEC; 9329 9330 burst = (u64)burst_us * NSEC_PER_USEC; 9331 9332 /* 9333 * Prevent race between setting of cfs_rq->runtime_enabled and 9334 * unthrottle_offline_cfs_rqs(). 9335 */ 9336 guard(cpus_read_lock)(); 9337 guard(mutex)(&cfs_constraints_mutex); 9338 9339 ret = __cfs_schedulable(tg, period, quota); 9340 if (ret) 9341 return ret; 9342 9343 runtime_enabled = quota != RUNTIME_INF; 9344 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9345 /* 9346 * If we need to toggle cfs_bandwidth_used, off->on must occur 9347 * before making related changes, and on->off must occur afterwards 9348 */ 9349 if (runtime_enabled && !runtime_was_enabled) 9350 cfs_bandwidth_usage_inc(); 9351 9352 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 9353 cfs_b->period = ns_to_ktime(period); 9354 cfs_b->quota = quota; 9355 cfs_b->burst = burst; 9356 9357 __refill_cfs_bandwidth_runtime(cfs_b); 9358 9359 /* 9360 * Restart the period timer (if active) to handle new 9361 * period expiry: 9362 */ 9363 if (runtime_enabled) 9364 start_cfs_bandwidth(cfs_b); 9365 } 9366 9367 for_each_online_cpu(i) { 9368 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9369 struct rq *rq = cfs_rq->rq; 9370 9371 guard(rq_lock_irq)(rq); 9372 cfs_rq->runtime_enabled = runtime_enabled; 9373 cfs_rq->runtime_remaining = 0; 9374 9375 if (cfs_rq->throttled) 9376 unthrottle_cfs_rq(cfs_rq); 9377 } 9378 9379 if (runtime_was_enabled && !runtime_enabled) 9380 cfs_bandwidth_usage_dec(); 9381 9382 return 0; 9383 } 9384 9385 static u64 tg_get_cfs_period(struct task_group *tg) 9386 { 9387 u64 cfs_period_us; 9388 9389 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9390 do_div(cfs_period_us, NSEC_PER_USEC); 9391 9392 return cfs_period_us; 9393 } 9394 9395 static u64 tg_get_cfs_quota(struct task_group *tg) 9396 { 9397 u64 quota_us; 9398 9399 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9400 return RUNTIME_INF; 9401 9402 quota_us = tg->cfs_bandwidth.quota; 9403 do_div(quota_us, NSEC_PER_USEC); 9404 9405 return quota_us; 9406 } 9407 9408 static u64 tg_get_cfs_burst(struct task_group *tg) 9409 { 9410 u64 burst_us; 9411 9412 burst_us = tg->cfs_bandwidth.burst; 9413 do_div(burst_us, NSEC_PER_USEC); 9414 9415 return burst_us; 9416 } 9417 9418 struct cfs_schedulable_data { 9419 struct task_group *tg; 9420 u64 period, quota; 9421 }; 9422 9423 /* 9424 * normalize group quota/period to be quota/max_period 9425 * note: units are usecs 9426 */ 9427 static u64 normalize_cfs_quota(struct task_group *tg, 9428 struct cfs_schedulable_data *d) 9429 { 9430 u64 quota, period; 9431 9432 if (tg == d->tg) { 9433 period = d->period; 9434 quota = d->quota; 9435 } else { 9436 period = tg_get_cfs_period(tg); 9437 quota = tg_get_cfs_quota(tg); 9438 } 9439 9440 /* note: these should typically be equivalent */ 9441 if (quota == RUNTIME_INF || quota == -1) 9442 return RUNTIME_INF; 9443 9444 return to_ratio(period, quota); 9445 } 9446 9447 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9448 { 9449 struct cfs_schedulable_data *d = data; 9450 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9451 s64 quota = 0, parent_quota = -1; 9452 9453 if (!tg->parent) { 9454 quota = RUNTIME_INF; 9455 } else { 9456 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9457 9458 quota = normalize_cfs_quota(tg, d); 9459 parent_quota = parent_b->hierarchical_quota; 9460 9461 /* 9462 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9463 * always take the non-RUNTIME_INF min. On cgroup1, only 9464 * inherit when no limit is set. In both cases this is used 9465 * by the scheduler to determine if a given CFS task has a 9466 * bandwidth constraint at some higher level. 9467 */ 9468 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9469 if (quota == RUNTIME_INF) 9470 quota = parent_quota; 9471 else if (parent_quota != RUNTIME_INF) 9472 quota = min(quota, parent_quota); 9473 } else { 9474 if (quota == RUNTIME_INF) 9475 quota = parent_quota; 9476 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9477 return -EINVAL; 9478 } 9479 } 9480 cfs_b->hierarchical_quota = quota; 9481 9482 return 0; 9483 } 9484 9485 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9486 { 9487 struct cfs_schedulable_data data = { 9488 .tg = tg, 9489 .period = period, 9490 .quota = quota, 9491 }; 9492 9493 if (quota != RUNTIME_INF) { 9494 do_div(data.period, NSEC_PER_USEC); 9495 do_div(data.quota, NSEC_PER_USEC); 9496 } 9497 9498 guard(rcu)(); 9499 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9500 } 9501 9502 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9503 { 9504 struct task_group *tg = css_tg(seq_css(sf)); 9505 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9506 9507 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9508 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9509 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9510 9511 if (schedstat_enabled() && tg != &root_task_group) { 9512 struct sched_statistics *stats; 9513 u64 ws = 0; 9514 int i; 9515 9516 for_each_possible_cpu(i) { 9517 stats = __schedstats_from_se(tg->se[i]); 9518 ws += schedstat_val(stats->wait_sum); 9519 } 9520 9521 seq_printf(sf, "wait_sum %llu\n", ws); 9522 } 9523 9524 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 9525 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 9526 9527 return 0; 9528 } 9529 9530 static u64 throttled_time_self(struct task_group *tg) 9531 { 9532 int i; 9533 u64 total = 0; 9534 9535 for_each_possible_cpu(i) { 9536 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 9537 } 9538 9539 return total; 9540 } 9541 9542 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 9543 { 9544 struct task_group *tg = css_tg(seq_css(sf)); 9545 9546 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 9547 9548 return 0; 9549 } 9550 9551 const u64 max_bw_quota_period_us = 1 * USEC_PER_SEC; /* 1s */ 9552 static const u64 min_bw_quota_period_us = 1 * USEC_PER_MSEC; /* 1ms */ 9553 /* More than 203 days if BW_SHIFT equals 20. */ 9554 static const u64 max_bw_runtime_us = MAX_BW; 9555 9556 static void tg_bandwidth(struct task_group *tg, 9557 u64 *period_us_p, u64 *quota_us_p, u64 *burst_us_p) 9558 { 9559 if (period_us_p) 9560 *period_us_p = tg_get_cfs_period(tg); 9561 if (quota_us_p) 9562 *quota_us_p = tg_get_cfs_quota(tg); 9563 if (burst_us_p) 9564 *burst_us_p = tg_get_cfs_burst(tg); 9565 } 9566 9567 static u64 cpu_period_read_u64(struct cgroup_subsys_state *css, 9568 struct cftype *cft) 9569 { 9570 u64 period_us; 9571 9572 tg_bandwidth(css_tg(css), &period_us, NULL, NULL); 9573 return period_us; 9574 } 9575 9576 static int tg_set_bandwidth(struct task_group *tg, 9577 u64 period_us, u64 quota_us, u64 burst_us) 9578 { 9579 const u64 max_usec = U64_MAX / NSEC_PER_USEC; 9580 9581 if (tg == &root_task_group) 9582 return -EINVAL; 9583 9584 /* Values should survive translation to nsec */ 9585 if (period_us > max_usec || 9586 (quota_us != RUNTIME_INF && quota_us > max_usec) || 9587 burst_us > max_usec) 9588 return -EINVAL; 9589 9590 /* 9591 * Ensure we have some amount of bandwidth every period. This is to 9592 * prevent reaching a state of large arrears when throttled via 9593 * entity_tick() resulting in prolonged exit starvation. 9594 */ 9595 if (quota_us < min_bw_quota_period_us || 9596 period_us < min_bw_quota_period_us) 9597 return -EINVAL; 9598 9599 /* 9600 * Likewise, bound things on the other side by preventing insane quota 9601 * periods. This also allows us to normalize in computing quota 9602 * feasibility. 9603 */ 9604 if (period_us > max_bw_quota_period_us) 9605 return -EINVAL; 9606 9607 /* 9608 * Bound quota to defend quota against overflow during bandwidth shift. 9609 */ 9610 if (quota_us != RUNTIME_INF && quota_us > max_bw_runtime_us) 9611 return -EINVAL; 9612 9613 if (quota_us != RUNTIME_INF && (burst_us > quota_us || 9614 burst_us + quota_us > max_bw_runtime_us)) 9615 return -EINVAL; 9616 9617 return tg_set_cfs_bandwidth(tg, period_us, quota_us, burst_us); 9618 } 9619 9620 static s64 cpu_quota_read_s64(struct cgroup_subsys_state *css, 9621 struct cftype *cft) 9622 { 9623 u64 quota_us; 9624 9625 tg_bandwidth(css_tg(css), NULL, "a_us, NULL); 9626 return quota_us; /* (s64)RUNTIME_INF becomes -1 */ 9627 } 9628 9629 static u64 cpu_burst_read_u64(struct cgroup_subsys_state *css, 9630 struct cftype *cft) 9631 { 9632 u64 burst_us; 9633 9634 tg_bandwidth(css_tg(css), NULL, NULL, &burst_us); 9635 return burst_us; 9636 } 9637 9638 static int cpu_period_write_u64(struct cgroup_subsys_state *css, 9639 struct cftype *cftype, u64 period_us) 9640 { 9641 struct task_group *tg = css_tg(css); 9642 u64 quota_us, burst_us; 9643 9644 tg_bandwidth(tg, NULL, "a_us, &burst_us); 9645 return tg_set_bandwidth(tg, period_us, quota_us, burst_us); 9646 } 9647 9648 static int cpu_quota_write_s64(struct cgroup_subsys_state *css, 9649 struct cftype *cftype, s64 quota_us) 9650 { 9651 struct task_group *tg = css_tg(css); 9652 u64 period_us, burst_us; 9653 9654 if (quota_us < 0) 9655 quota_us = RUNTIME_INF; 9656 9657 tg_bandwidth(tg, &period_us, NULL, &burst_us); 9658 return tg_set_bandwidth(tg, period_us, quota_us, burst_us); 9659 } 9660 9661 static int cpu_burst_write_u64(struct cgroup_subsys_state *css, 9662 struct cftype *cftype, u64 burst_us) 9663 { 9664 struct task_group *tg = css_tg(css); 9665 u64 period_us, quota_us; 9666 9667 tg_bandwidth(tg, &period_us, "a_us, NULL); 9668 return tg_set_bandwidth(tg, period_us, quota_us, burst_us); 9669 } 9670 #endif /* CONFIG_CFS_BANDWIDTH */ 9671 9672 #ifdef CONFIG_RT_GROUP_SCHED 9673 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9674 struct cftype *cft, s64 val) 9675 { 9676 return sched_group_set_rt_runtime(css_tg(css), val); 9677 } 9678 9679 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9680 struct cftype *cft) 9681 { 9682 return sched_group_rt_runtime(css_tg(css)); 9683 } 9684 9685 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9686 struct cftype *cftype, u64 rt_period_us) 9687 { 9688 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9689 } 9690 9691 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9692 struct cftype *cft) 9693 { 9694 return sched_group_rt_period(css_tg(css)); 9695 } 9696 #endif /* CONFIG_RT_GROUP_SCHED */ 9697 9698 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9699 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 9700 struct cftype *cft) 9701 { 9702 return css_tg(css)->idle; 9703 } 9704 9705 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 9706 struct cftype *cft, s64 idle) 9707 { 9708 int ret; 9709 9710 ret = sched_group_set_idle(css_tg(css), idle); 9711 if (!ret) 9712 scx_group_set_idle(css_tg(css), idle); 9713 return ret; 9714 } 9715 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9716 9717 static struct cftype cpu_legacy_files[] = { 9718 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9719 { 9720 .name = "shares", 9721 .read_u64 = cpu_shares_read_u64, 9722 .write_u64 = cpu_shares_write_u64, 9723 }, 9724 { 9725 .name = "idle", 9726 .read_s64 = cpu_idle_read_s64, 9727 .write_s64 = cpu_idle_write_s64, 9728 }, 9729 #endif 9730 #ifdef CONFIG_CFS_BANDWIDTH 9731 { 9732 .name = "cfs_period_us", 9733 .read_u64 = cpu_period_read_u64, 9734 .write_u64 = cpu_period_write_u64, 9735 }, 9736 { 9737 .name = "cfs_quota_us", 9738 .read_s64 = cpu_quota_read_s64, 9739 .write_s64 = cpu_quota_write_s64, 9740 }, 9741 { 9742 .name = "cfs_burst_us", 9743 .read_u64 = cpu_burst_read_u64, 9744 .write_u64 = cpu_burst_write_u64, 9745 }, 9746 { 9747 .name = "stat", 9748 .seq_show = cpu_cfs_stat_show, 9749 }, 9750 { 9751 .name = "stat.local", 9752 .seq_show = cpu_cfs_local_stat_show, 9753 }, 9754 #endif 9755 #ifdef CONFIG_UCLAMP_TASK_GROUP 9756 { 9757 .name = "uclamp.min", 9758 .flags = CFTYPE_NOT_ON_ROOT, 9759 .seq_show = cpu_uclamp_min_show, 9760 .write = cpu_uclamp_min_write, 9761 }, 9762 { 9763 .name = "uclamp.max", 9764 .flags = CFTYPE_NOT_ON_ROOT, 9765 .seq_show = cpu_uclamp_max_show, 9766 .write = cpu_uclamp_max_write, 9767 }, 9768 #endif 9769 { } /* Terminate */ 9770 }; 9771 9772 #ifdef CONFIG_RT_GROUP_SCHED 9773 static struct cftype rt_group_files[] = { 9774 { 9775 .name = "rt_runtime_us", 9776 .read_s64 = cpu_rt_runtime_read, 9777 .write_s64 = cpu_rt_runtime_write, 9778 }, 9779 { 9780 .name = "rt_period_us", 9781 .read_u64 = cpu_rt_period_read_uint, 9782 .write_u64 = cpu_rt_period_write_uint, 9783 }, 9784 { } /* Terminate */ 9785 }; 9786 9787 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED 9788 DEFINE_STATIC_KEY_FALSE(rt_group_sched); 9789 # else 9790 DEFINE_STATIC_KEY_TRUE(rt_group_sched); 9791 # endif 9792 9793 static int __init setup_rt_group_sched(char *str) 9794 { 9795 long val; 9796 9797 if (kstrtol(str, 0, &val) || val < 0 || val > 1) { 9798 pr_warn("Unable to set rt_group_sched\n"); 9799 return 1; 9800 } 9801 if (val) 9802 static_branch_enable(&rt_group_sched); 9803 else 9804 static_branch_disable(&rt_group_sched); 9805 9806 return 1; 9807 } 9808 __setup("rt_group_sched=", setup_rt_group_sched); 9809 9810 static int __init cpu_rt_group_init(void) 9811 { 9812 if (!rt_group_sched_enabled()) 9813 return 0; 9814 9815 WARN_ON(cgroup_add_legacy_cftypes(&cpu_cgrp_subsys, rt_group_files)); 9816 return 0; 9817 } 9818 subsys_initcall(cpu_rt_group_init); 9819 #endif /* CONFIG_RT_GROUP_SCHED */ 9820 9821 static int cpu_extra_stat_show(struct seq_file *sf, 9822 struct cgroup_subsys_state *css) 9823 { 9824 #ifdef CONFIG_CFS_BANDWIDTH 9825 { 9826 struct task_group *tg = css_tg(css); 9827 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9828 u64 throttled_usec, burst_usec; 9829 9830 throttled_usec = cfs_b->throttled_time; 9831 do_div(throttled_usec, NSEC_PER_USEC); 9832 burst_usec = cfs_b->burst_time; 9833 do_div(burst_usec, NSEC_PER_USEC); 9834 9835 seq_printf(sf, "nr_periods %d\n" 9836 "nr_throttled %d\n" 9837 "throttled_usec %llu\n" 9838 "nr_bursts %d\n" 9839 "burst_usec %llu\n", 9840 cfs_b->nr_periods, cfs_b->nr_throttled, 9841 throttled_usec, cfs_b->nr_burst, burst_usec); 9842 } 9843 #endif /* CONFIG_CFS_BANDWIDTH */ 9844 return 0; 9845 } 9846 9847 static int cpu_local_stat_show(struct seq_file *sf, 9848 struct cgroup_subsys_state *css) 9849 { 9850 #ifdef CONFIG_CFS_BANDWIDTH 9851 { 9852 struct task_group *tg = css_tg(css); 9853 u64 throttled_self_usec; 9854 9855 throttled_self_usec = throttled_time_self(tg); 9856 do_div(throttled_self_usec, NSEC_PER_USEC); 9857 9858 seq_printf(sf, "throttled_usec %llu\n", 9859 throttled_self_usec); 9860 } 9861 #endif 9862 return 0; 9863 } 9864 9865 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9866 9867 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 9868 struct cftype *cft) 9869 { 9870 return sched_weight_to_cgroup(tg_weight(css_tg(css))); 9871 } 9872 9873 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 9874 struct cftype *cft, u64 cgrp_weight) 9875 { 9876 unsigned long weight; 9877 int ret; 9878 9879 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) 9880 return -ERANGE; 9881 9882 weight = sched_weight_from_cgroup(cgrp_weight); 9883 9884 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 9885 if (!ret) 9886 scx_group_set_weight(css_tg(css), cgrp_weight); 9887 return ret; 9888 } 9889 9890 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 9891 struct cftype *cft) 9892 { 9893 unsigned long weight = tg_weight(css_tg(css)); 9894 int last_delta = INT_MAX; 9895 int prio, delta; 9896 9897 /* find the closest nice value to the current weight */ 9898 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 9899 delta = abs(sched_prio_to_weight[prio] - weight); 9900 if (delta >= last_delta) 9901 break; 9902 last_delta = delta; 9903 } 9904 9905 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 9906 } 9907 9908 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 9909 struct cftype *cft, s64 nice) 9910 { 9911 unsigned long weight; 9912 int idx, ret; 9913 9914 if (nice < MIN_NICE || nice > MAX_NICE) 9915 return -ERANGE; 9916 9917 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 9918 idx = array_index_nospec(idx, 40); 9919 weight = sched_prio_to_weight[idx]; 9920 9921 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 9922 if (!ret) 9923 scx_group_set_weight(css_tg(css), 9924 sched_weight_to_cgroup(weight)); 9925 return ret; 9926 } 9927 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9928 9929 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 9930 long period, long quota) 9931 { 9932 if (quota < 0) 9933 seq_puts(sf, "max"); 9934 else 9935 seq_printf(sf, "%ld", quota); 9936 9937 seq_printf(sf, " %ld\n", period); 9938 } 9939 9940 /* caller should put the current value in *@periodp before calling */ 9941 static int __maybe_unused cpu_period_quota_parse(char *buf, u64 *period_us_p, 9942 u64 *quota_us_p) 9943 { 9944 char tok[21]; /* U64_MAX */ 9945 9946 if (sscanf(buf, "%20s %llu", tok, period_us_p) < 1) 9947 return -EINVAL; 9948 9949 if (sscanf(tok, "%llu", quota_us_p) < 1) { 9950 if (!strcmp(tok, "max")) 9951 *quota_us_p = RUNTIME_INF; 9952 else 9953 return -EINVAL; 9954 } 9955 9956 return 0; 9957 } 9958 9959 #ifdef CONFIG_CFS_BANDWIDTH 9960 static int cpu_max_show(struct seq_file *sf, void *v) 9961 { 9962 struct task_group *tg = css_tg(seq_css(sf)); 9963 u64 period_us, quota_us; 9964 9965 tg_bandwidth(tg, &period_us, "a_us, NULL); 9966 cpu_period_quota_print(sf, period_us, quota_us); 9967 return 0; 9968 } 9969 9970 static ssize_t cpu_max_write(struct kernfs_open_file *of, 9971 char *buf, size_t nbytes, loff_t off) 9972 { 9973 struct task_group *tg = css_tg(of_css(of)); 9974 u64 period_us, quota_us, burst_us; 9975 int ret; 9976 9977 tg_bandwidth(tg, &period_us, NULL, &burst_us); 9978 ret = cpu_period_quota_parse(buf, &period_us, "a_us); 9979 if (!ret) 9980 ret = tg_set_bandwidth(tg, period_us, quota_us, burst_us); 9981 return ret ?: nbytes; 9982 } 9983 #endif /* CONFIG_CFS_BANDWIDTH */ 9984 9985 static struct cftype cpu_files[] = { 9986 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9987 { 9988 .name = "weight", 9989 .flags = CFTYPE_NOT_ON_ROOT, 9990 .read_u64 = cpu_weight_read_u64, 9991 .write_u64 = cpu_weight_write_u64, 9992 }, 9993 { 9994 .name = "weight.nice", 9995 .flags = CFTYPE_NOT_ON_ROOT, 9996 .read_s64 = cpu_weight_nice_read_s64, 9997 .write_s64 = cpu_weight_nice_write_s64, 9998 }, 9999 { 10000 .name = "idle", 10001 .flags = CFTYPE_NOT_ON_ROOT, 10002 .read_s64 = cpu_idle_read_s64, 10003 .write_s64 = cpu_idle_write_s64, 10004 }, 10005 #endif 10006 #ifdef CONFIG_CFS_BANDWIDTH 10007 { 10008 .name = "max", 10009 .flags = CFTYPE_NOT_ON_ROOT, 10010 .seq_show = cpu_max_show, 10011 .write = cpu_max_write, 10012 }, 10013 { 10014 .name = "max.burst", 10015 .flags = CFTYPE_NOT_ON_ROOT, 10016 .read_u64 = cpu_burst_read_u64, 10017 .write_u64 = cpu_burst_write_u64, 10018 }, 10019 #endif /* CONFIG_CFS_BANDWIDTH */ 10020 #ifdef CONFIG_UCLAMP_TASK_GROUP 10021 { 10022 .name = "uclamp.min", 10023 .flags = CFTYPE_NOT_ON_ROOT, 10024 .seq_show = cpu_uclamp_min_show, 10025 .write = cpu_uclamp_min_write, 10026 }, 10027 { 10028 .name = "uclamp.max", 10029 .flags = CFTYPE_NOT_ON_ROOT, 10030 .seq_show = cpu_uclamp_max_show, 10031 .write = cpu_uclamp_max_write, 10032 }, 10033 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10034 { } /* terminate */ 10035 }; 10036 10037 struct cgroup_subsys cpu_cgrp_subsys = { 10038 .css_alloc = cpu_cgroup_css_alloc, 10039 .css_online = cpu_cgroup_css_online, 10040 .css_offline = cpu_cgroup_css_offline, 10041 .css_released = cpu_cgroup_css_released, 10042 .css_free = cpu_cgroup_css_free, 10043 .css_extra_stat_show = cpu_extra_stat_show, 10044 .css_local_stat_show = cpu_local_stat_show, 10045 .can_attach = cpu_cgroup_can_attach, 10046 .attach = cpu_cgroup_attach, 10047 .cancel_attach = cpu_cgroup_cancel_attach, 10048 .legacy_cftypes = cpu_legacy_files, 10049 .dfl_cftypes = cpu_files, 10050 .early_init = true, 10051 .threaded = true, 10052 }; 10053 10054 #endif /* CONFIG_CGROUP_SCHED */ 10055 10056 void dump_cpu_task(int cpu) 10057 { 10058 if (in_hardirq() && cpu == smp_processor_id()) { 10059 struct pt_regs *regs; 10060 10061 regs = get_irq_regs(); 10062 if (regs) { 10063 show_regs(regs); 10064 return; 10065 } 10066 } 10067 10068 if (trigger_single_cpu_backtrace(cpu)) 10069 return; 10070 10071 pr_info("Task dump for CPU %d:\n", cpu); 10072 sched_show_task(cpu_curr(cpu)); 10073 } 10074 10075 /* 10076 * Nice levels are multiplicative, with a gentle 10% change for every 10077 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 10078 * nice 1, it will get ~10% less CPU time than another CPU-bound task 10079 * that remained on nice 0. 10080 * 10081 * The "10% effect" is relative and cumulative: from _any_ nice level, 10082 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 10083 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 10084 * If a task goes up by ~10% and another task goes down by ~10% then 10085 * the relative distance between them is ~25%.) 10086 */ 10087 const int sched_prio_to_weight[40] = { 10088 /* -20 */ 88761, 71755, 56483, 46273, 36291, 10089 /* -15 */ 29154, 23254, 18705, 14949, 11916, 10090 /* -10 */ 9548, 7620, 6100, 4904, 3906, 10091 /* -5 */ 3121, 2501, 1991, 1586, 1277, 10092 /* 0 */ 1024, 820, 655, 526, 423, 10093 /* 5 */ 335, 272, 215, 172, 137, 10094 /* 10 */ 110, 87, 70, 56, 45, 10095 /* 15 */ 36, 29, 23, 18, 15, 10096 }; 10097 10098 /* 10099 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. 10100 * 10101 * In cases where the weight does not change often, we can use the 10102 * pre-calculated inverse to speed up arithmetics by turning divisions 10103 * into multiplications: 10104 */ 10105 const u32 sched_prio_to_wmult[40] = { 10106 /* -20 */ 48388, 59856, 76040, 92818, 118348, 10107 /* -15 */ 147320, 184698, 229616, 287308, 360437, 10108 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 10109 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 10110 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 10111 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 10112 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 10113 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 10114 }; 10115 10116 void call_trace_sched_update_nr_running(struct rq *rq, int count) 10117 { 10118 trace_sched_update_nr_running_tp(rq, count); 10119 } 10120 10121 #ifdef CONFIG_SCHED_MM_CID 10122 10123 /* 10124 * @cid_lock: Guarantee forward-progress of cid allocation. 10125 * 10126 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock 10127 * is only used when contention is detected by the lock-free allocation so 10128 * forward progress can be guaranteed. 10129 */ 10130 DEFINE_RAW_SPINLOCK(cid_lock); 10131 10132 /* 10133 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. 10134 * 10135 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is 10136 * detected, it is set to 1 to ensure that all newly coming allocations are 10137 * serialized by @cid_lock until the allocation which detected contention 10138 * completes and sets @use_cid_lock back to 0. This guarantees forward progress 10139 * of a cid allocation. 10140 */ 10141 int use_cid_lock; 10142 10143 /* 10144 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid 10145 * concurrently with respect to the execution of the source runqueue context 10146 * switch. 10147 * 10148 * There is one basic properties we want to guarantee here: 10149 * 10150 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively 10151 * used by a task. That would lead to concurrent allocation of the cid and 10152 * userspace corruption. 10153 * 10154 * Provide this guarantee by introducing a Dekker memory ordering to guarantee 10155 * that a pair of loads observe at least one of a pair of stores, which can be 10156 * shown as: 10157 * 10158 * X = Y = 0 10159 * 10160 * w[X]=1 w[Y]=1 10161 * MB MB 10162 * r[Y]=y r[X]=x 10163 * 10164 * Which guarantees that x==0 && y==0 is impossible. But rather than using 10165 * values 0 and 1, this algorithm cares about specific state transitions of the 10166 * runqueue current task (as updated by the scheduler context switch), and the 10167 * per-mm/cpu cid value. 10168 * 10169 * Let's introduce task (Y) which has task->mm == mm and task (N) which has 10170 * task->mm != mm for the rest of the discussion. There are two scheduler state 10171 * transitions on context switch we care about: 10172 * 10173 * (TSA) Store to rq->curr with transition from (N) to (Y) 10174 * 10175 * (TSB) Store to rq->curr with transition from (Y) to (N) 10176 * 10177 * On the remote-clear side, there is one transition we care about: 10178 * 10179 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag 10180 * 10181 * There is also a transition to UNSET state which can be performed from all 10182 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which 10183 * guarantees that only a single thread will succeed: 10184 * 10185 * (TMB) cmpxchg to *pcpu_cid to mark UNSET 10186 * 10187 * Just to be clear, what we do _not_ want to happen is a transition to UNSET 10188 * when a thread is actively using the cid (property (1)). 10189 * 10190 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. 10191 * 10192 * Scenario A) (TSA)+(TMA) (from next task perspective) 10193 * 10194 * CPU0 CPU1 10195 * 10196 * Context switch CS-1 Remote-clear 10197 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) 10198 * (implied barrier after cmpxchg) 10199 * - switch_mm_cid() 10200 * - memory barrier (see switch_mm_cid() 10201 * comment explaining how this barrier 10202 * is combined with other scheduler 10203 * barriers) 10204 * - mm_cid_get (next) 10205 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) 10206 * 10207 * This Dekker ensures that either task (Y) is observed by the 10208 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are 10209 * observed. 10210 * 10211 * If task (Y) store is observed by rcu_dereference(), it means that there is 10212 * still an active task on the cpu. Remote-clear will therefore not transition 10213 * to UNSET, which fulfills property (1). 10214 * 10215 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), 10216 * it will move its state to UNSET, which clears the percpu cid perhaps 10217 * uselessly (which is not an issue for correctness). Because task (Y) is not 10218 * observed, CPU1 can move ahead to set the state to UNSET. Because moving 10219 * state to UNSET is done with a cmpxchg expecting that the old state has the 10220 * LAZY flag set, only one thread will successfully UNSET. 10221 * 10222 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 10223 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and 10224 * CPU1 will observe task (Y) and do nothing more, which is fine. 10225 * 10226 * What we are effectively preventing with this Dekker is a scenario where 10227 * neither LAZY flag nor store (Y) are observed, which would fail property (1) 10228 * because this would UNSET a cid which is actively used. 10229 */ 10230 10231 void sched_mm_cid_migrate_from(struct task_struct *t) 10232 { 10233 t->migrate_from_cpu = task_cpu(t); 10234 } 10235 10236 static 10237 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, 10238 struct task_struct *t, 10239 struct mm_cid *src_pcpu_cid) 10240 { 10241 struct mm_struct *mm = t->mm; 10242 struct task_struct *src_task; 10243 int src_cid, last_mm_cid; 10244 10245 if (!mm) 10246 return -1; 10247 10248 last_mm_cid = t->last_mm_cid; 10249 /* 10250 * If the migrated task has no last cid, or if the current 10251 * task on src rq uses the cid, it means the source cid does not need 10252 * to be moved to the destination cpu. 10253 */ 10254 if (last_mm_cid == -1) 10255 return -1; 10256 src_cid = READ_ONCE(src_pcpu_cid->cid); 10257 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) 10258 return -1; 10259 10260 /* 10261 * If we observe an active task using the mm on this rq, it means we 10262 * are not the last task to be migrated from this cpu for this mm, so 10263 * there is no need to move src_cid to the destination cpu. 10264 */ 10265 guard(rcu)(); 10266 src_task = rcu_dereference(src_rq->curr); 10267 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10268 t->last_mm_cid = -1; 10269 return -1; 10270 } 10271 10272 return src_cid; 10273 } 10274 10275 static 10276 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, 10277 struct task_struct *t, 10278 struct mm_cid *src_pcpu_cid, 10279 int src_cid) 10280 { 10281 struct task_struct *src_task; 10282 struct mm_struct *mm = t->mm; 10283 int lazy_cid; 10284 10285 if (src_cid == -1) 10286 return -1; 10287 10288 /* 10289 * Attempt to clear the source cpu cid to move it to the destination 10290 * cpu. 10291 */ 10292 lazy_cid = mm_cid_set_lazy_put(src_cid); 10293 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) 10294 return -1; 10295 10296 /* 10297 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10298 * rq->curr->mm matches the scheduler barrier in context_switch() 10299 * between store to rq->curr and load of prev and next task's 10300 * per-mm/cpu cid. 10301 * 10302 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10303 * rq->curr->mm_cid_active matches the barrier in 10304 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10305 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10306 * load of per-mm/cpu cid. 10307 */ 10308 10309 /* 10310 * If we observe an active task using the mm on this rq after setting 10311 * the lazy-put flag, this task will be responsible for transitioning 10312 * from lazy-put flag set to MM_CID_UNSET. 10313 */ 10314 scoped_guard (rcu) { 10315 src_task = rcu_dereference(src_rq->curr); 10316 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10317 /* 10318 * We observed an active task for this mm, there is therefore 10319 * no point in moving this cid to the destination cpu. 10320 */ 10321 t->last_mm_cid = -1; 10322 return -1; 10323 } 10324 } 10325 10326 /* 10327 * The src_cid is unused, so it can be unset. 10328 */ 10329 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10330 return -1; 10331 WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET); 10332 return src_cid; 10333 } 10334 10335 /* 10336 * Migration to dst cpu. Called with dst_rq lock held. 10337 * Interrupts are disabled, which keeps the window of cid ownership without the 10338 * source rq lock held small. 10339 */ 10340 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) 10341 { 10342 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; 10343 struct mm_struct *mm = t->mm; 10344 int src_cid, src_cpu; 10345 bool dst_cid_is_set; 10346 struct rq *src_rq; 10347 10348 lockdep_assert_rq_held(dst_rq); 10349 10350 if (!mm) 10351 return; 10352 src_cpu = t->migrate_from_cpu; 10353 if (src_cpu == -1) { 10354 t->last_mm_cid = -1; 10355 return; 10356 } 10357 /* 10358 * Move the src cid if the dst cid is unset. This keeps id 10359 * allocation closest to 0 in cases where few threads migrate around 10360 * many CPUs. 10361 * 10362 * If destination cid or recent cid is already set, we may have 10363 * to just clear the src cid to ensure compactness in frequent 10364 * migrations scenarios. 10365 * 10366 * It is not useful to clear the src cid when the number of threads is 10367 * greater or equal to the number of allowed CPUs, because user-space 10368 * can expect that the number of allowed cids can reach the number of 10369 * allowed CPUs. 10370 */ 10371 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); 10372 dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) || 10373 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid)); 10374 if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed)) 10375 return; 10376 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); 10377 src_rq = cpu_rq(src_cpu); 10378 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); 10379 if (src_cid == -1) 10380 return; 10381 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, 10382 src_cid); 10383 if (src_cid == -1) 10384 return; 10385 if (dst_cid_is_set) { 10386 __mm_cid_put(mm, src_cid); 10387 return; 10388 } 10389 /* Move src_cid to dst cpu. */ 10390 mm_cid_snapshot_time(dst_rq, mm); 10391 WRITE_ONCE(dst_pcpu_cid->cid, src_cid); 10392 WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid); 10393 } 10394 10395 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, 10396 int cpu) 10397 { 10398 struct rq *rq = cpu_rq(cpu); 10399 struct task_struct *t; 10400 int cid, lazy_cid; 10401 10402 cid = READ_ONCE(pcpu_cid->cid); 10403 if (!mm_cid_is_valid(cid)) 10404 return; 10405 10406 /* 10407 * Clear the cpu cid if it is set to keep cid allocation compact. If 10408 * there happens to be other tasks left on the source cpu using this 10409 * mm, the next task using this mm will reallocate its cid on context 10410 * switch. 10411 */ 10412 lazy_cid = mm_cid_set_lazy_put(cid); 10413 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) 10414 return; 10415 10416 /* 10417 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10418 * rq->curr->mm matches the scheduler barrier in context_switch() 10419 * between store to rq->curr and load of prev and next task's 10420 * per-mm/cpu cid. 10421 * 10422 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10423 * rq->curr->mm_cid_active matches the barrier in 10424 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10425 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10426 * load of per-mm/cpu cid. 10427 */ 10428 10429 /* 10430 * If we observe an active task using the mm on this rq after setting 10431 * the lazy-put flag, that task will be responsible for transitioning 10432 * from lazy-put flag set to MM_CID_UNSET. 10433 */ 10434 scoped_guard (rcu) { 10435 t = rcu_dereference(rq->curr); 10436 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) 10437 return; 10438 } 10439 10440 /* 10441 * The cid is unused, so it can be unset. 10442 * Disable interrupts to keep the window of cid ownership without rq 10443 * lock small. 10444 */ 10445 scoped_guard (irqsave) { 10446 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10447 __mm_cid_put(mm, cid); 10448 } 10449 } 10450 10451 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) 10452 { 10453 struct rq *rq = cpu_rq(cpu); 10454 struct mm_cid *pcpu_cid; 10455 struct task_struct *curr; 10456 u64 rq_clock; 10457 10458 /* 10459 * rq->clock load is racy on 32-bit but one spurious clear once in a 10460 * while is irrelevant. 10461 */ 10462 rq_clock = READ_ONCE(rq->clock); 10463 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10464 10465 /* 10466 * In order to take care of infrequently scheduled tasks, bump the time 10467 * snapshot associated with this cid if an active task using the mm is 10468 * observed on this rq. 10469 */ 10470 scoped_guard (rcu) { 10471 curr = rcu_dereference(rq->curr); 10472 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { 10473 WRITE_ONCE(pcpu_cid->time, rq_clock); 10474 return; 10475 } 10476 } 10477 10478 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) 10479 return; 10480 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10481 } 10482 10483 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, 10484 int weight) 10485 { 10486 struct mm_cid *pcpu_cid; 10487 int cid; 10488 10489 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10490 cid = READ_ONCE(pcpu_cid->cid); 10491 if (!mm_cid_is_valid(cid) || cid < weight) 10492 return; 10493 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10494 } 10495 10496 static void task_mm_cid_work(struct callback_head *work) 10497 { 10498 unsigned long now = jiffies, old_scan, next_scan; 10499 struct task_struct *t = current; 10500 struct cpumask *cidmask; 10501 struct mm_struct *mm; 10502 int weight, cpu; 10503 10504 WARN_ON_ONCE(t != container_of(work, struct task_struct, cid_work)); 10505 10506 work->next = work; /* Prevent double-add */ 10507 if (t->flags & PF_EXITING) 10508 return; 10509 mm = t->mm; 10510 if (!mm) 10511 return; 10512 old_scan = READ_ONCE(mm->mm_cid_next_scan); 10513 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10514 if (!old_scan) { 10515 unsigned long res; 10516 10517 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); 10518 if (res != old_scan) 10519 old_scan = res; 10520 else 10521 old_scan = next_scan; 10522 } 10523 if (time_before(now, old_scan)) 10524 return; 10525 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) 10526 return; 10527 cidmask = mm_cidmask(mm); 10528 /* Clear cids that were not recently used. */ 10529 for_each_possible_cpu(cpu) 10530 sched_mm_cid_remote_clear_old(mm, cpu); 10531 weight = cpumask_weight(cidmask); 10532 /* 10533 * Clear cids that are greater or equal to the cidmask weight to 10534 * recompact it. 10535 */ 10536 for_each_possible_cpu(cpu) 10537 sched_mm_cid_remote_clear_weight(mm, cpu, weight); 10538 } 10539 10540 void init_sched_mm_cid(struct task_struct *t) 10541 { 10542 struct mm_struct *mm = t->mm; 10543 int mm_users = 0; 10544 10545 if (mm) { 10546 mm_users = atomic_read(&mm->mm_users); 10547 if (mm_users == 1) 10548 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10549 } 10550 t->cid_work.next = &t->cid_work; /* Protect against double add */ 10551 init_task_work(&t->cid_work, task_mm_cid_work); 10552 } 10553 10554 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) 10555 { 10556 struct callback_head *work = &curr->cid_work; 10557 unsigned long now = jiffies; 10558 10559 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || 10560 work->next != work) 10561 return; 10562 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) 10563 return; 10564 10565 /* No page allocation under rq lock */ 10566 task_work_add(curr, work, TWA_RESUME); 10567 } 10568 10569 void sched_mm_cid_exit_signals(struct task_struct *t) 10570 { 10571 struct mm_struct *mm = t->mm; 10572 struct rq *rq; 10573 10574 if (!mm) 10575 return; 10576 10577 preempt_disable(); 10578 rq = this_rq(); 10579 guard(rq_lock_irqsave)(rq); 10580 preempt_enable_no_resched(); /* holding spinlock */ 10581 WRITE_ONCE(t->mm_cid_active, 0); 10582 /* 10583 * Store t->mm_cid_active before loading per-mm/cpu cid. 10584 * Matches barrier in sched_mm_cid_remote_clear_old(). 10585 */ 10586 smp_mb(); 10587 mm_cid_put(mm); 10588 t->last_mm_cid = t->mm_cid = -1; 10589 } 10590 10591 void sched_mm_cid_before_execve(struct task_struct *t) 10592 { 10593 struct mm_struct *mm = t->mm; 10594 struct rq *rq; 10595 10596 if (!mm) 10597 return; 10598 10599 preempt_disable(); 10600 rq = this_rq(); 10601 guard(rq_lock_irqsave)(rq); 10602 preempt_enable_no_resched(); /* holding spinlock */ 10603 WRITE_ONCE(t->mm_cid_active, 0); 10604 /* 10605 * Store t->mm_cid_active before loading per-mm/cpu cid. 10606 * Matches barrier in sched_mm_cid_remote_clear_old(). 10607 */ 10608 smp_mb(); 10609 mm_cid_put(mm); 10610 t->last_mm_cid = t->mm_cid = -1; 10611 } 10612 10613 void sched_mm_cid_after_execve(struct task_struct *t) 10614 { 10615 struct mm_struct *mm = t->mm; 10616 struct rq *rq; 10617 10618 if (!mm) 10619 return; 10620 10621 preempt_disable(); 10622 rq = this_rq(); 10623 scoped_guard (rq_lock_irqsave, rq) { 10624 preempt_enable_no_resched(); /* holding spinlock */ 10625 WRITE_ONCE(t->mm_cid_active, 1); 10626 /* 10627 * Store t->mm_cid_active before loading per-mm/cpu cid. 10628 * Matches barrier in sched_mm_cid_remote_clear_old(). 10629 */ 10630 smp_mb(); 10631 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm); 10632 } 10633 } 10634 10635 void sched_mm_cid_fork(struct task_struct *t) 10636 { 10637 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 10638 t->mm_cid_active = 1; 10639 } 10640 #endif /* CONFIG_SCHED_MM_CID */ 10641 10642 #ifdef CONFIG_SCHED_CLASS_EXT 10643 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 10644 struct sched_enq_and_set_ctx *ctx) 10645 { 10646 struct rq *rq = task_rq(p); 10647 10648 lockdep_assert_rq_held(rq); 10649 10650 *ctx = (struct sched_enq_and_set_ctx){ 10651 .p = p, 10652 .queue_flags = queue_flags, 10653 .queued = task_on_rq_queued(p), 10654 .running = task_current(rq, p), 10655 }; 10656 10657 update_rq_clock(rq); 10658 if (ctx->queued) 10659 dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK); 10660 if (ctx->running) 10661 put_prev_task(rq, p); 10662 } 10663 10664 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx) 10665 { 10666 struct rq *rq = task_rq(ctx->p); 10667 10668 lockdep_assert_rq_held(rq); 10669 10670 if (ctx->queued) 10671 enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK); 10672 if (ctx->running) 10673 set_next_task(rq, ctx->p); 10674 } 10675 #endif /* CONFIG_SCHED_CLASS_EXT */ 10676