1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 76 #include <asm/switch_to.h> 77 #include <asm/tlb.h> 78 #include <asm/irq_regs.h> 79 #include <asm/mutex.h> 80 #ifdef CONFIG_PARAVIRT 81 #include <asm/paravirt.h> 82 #endif 83 84 #include "sched.h" 85 #include "../workqueue_sched.h" 86 87 #define CREATE_TRACE_POINTS 88 #include <trace/events/sched.h> 89 90 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 91 { 92 unsigned long delta; 93 ktime_t soft, hard, now; 94 95 for (;;) { 96 if (hrtimer_active(period_timer)) 97 break; 98 99 now = hrtimer_cb_get_time(period_timer); 100 hrtimer_forward(period_timer, now, period); 101 102 soft = hrtimer_get_softexpires(period_timer); 103 hard = hrtimer_get_expires(period_timer); 104 delta = ktime_to_ns(ktime_sub(hard, soft)); 105 __hrtimer_start_range_ns(period_timer, soft, delta, 106 HRTIMER_MODE_ABS_PINNED, 0); 107 } 108 } 109 110 DEFINE_MUTEX(sched_domains_mutex); 111 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 112 113 static void update_rq_clock_task(struct rq *rq, s64 delta); 114 115 void update_rq_clock(struct rq *rq) 116 { 117 s64 delta; 118 119 if (rq->skip_clock_update > 0) 120 return; 121 122 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 123 rq->clock += delta; 124 update_rq_clock_task(rq, delta); 125 } 126 127 /* 128 * Debugging: various feature bits 129 */ 130 131 #define SCHED_FEAT(name, enabled) \ 132 (1UL << __SCHED_FEAT_##name) * enabled | 133 134 const_debug unsigned int sysctl_sched_features = 135 #include "features.h" 136 0; 137 138 #undef SCHED_FEAT 139 140 #ifdef CONFIG_SCHED_DEBUG 141 #define SCHED_FEAT(name, enabled) \ 142 #name , 143 144 static __read_mostly char *sched_feat_names[] = { 145 #include "features.h" 146 NULL 147 }; 148 149 #undef SCHED_FEAT 150 151 static int sched_feat_show(struct seq_file *m, void *v) 152 { 153 int i; 154 155 for (i = 0; i < __SCHED_FEAT_NR; i++) { 156 if (!(sysctl_sched_features & (1UL << i))) 157 seq_puts(m, "NO_"); 158 seq_printf(m, "%s ", sched_feat_names[i]); 159 } 160 seq_puts(m, "\n"); 161 162 return 0; 163 } 164 165 #ifdef HAVE_JUMP_LABEL 166 167 #define jump_label_key__true STATIC_KEY_INIT_TRUE 168 #define jump_label_key__false STATIC_KEY_INIT_FALSE 169 170 #define SCHED_FEAT(name, enabled) \ 171 jump_label_key__##enabled , 172 173 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 174 #include "features.h" 175 }; 176 177 #undef SCHED_FEAT 178 179 static void sched_feat_disable(int i) 180 { 181 if (static_key_enabled(&sched_feat_keys[i])) 182 static_key_slow_dec(&sched_feat_keys[i]); 183 } 184 185 static void sched_feat_enable(int i) 186 { 187 if (!static_key_enabled(&sched_feat_keys[i])) 188 static_key_slow_inc(&sched_feat_keys[i]); 189 } 190 #else 191 static void sched_feat_disable(int i) { }; 192 static void sched_feat_enable(int i) { }; 193 #endif /* HAVE_JUMP_LABEL */ 194 195 static ssize_t 196 sched_feat_write(struct file *filp, const char __user *ubuf, 197 size_t cnt, loff_t *ppos) 198 { 199 char buf[64]; 200 char *cmp; 201 int neg = 0; 202 int i; 203 204 if (cnt > 63) 205 cnt = 63; 206 207 if (copy_from_user(&buf, ubuf, cnt)) 208 return -EFAULT; 209 210 buf[cnt] = 0; 211 cmp = strstrip(buf); 212 213 if (strncmp(cmp, "NO_", 3) == 0) { 214 neg = 1; 215 cmp += 3; 216 } 217 218 for (i = 0; i < __SCHED_FEAT_NR; i++) { 219 if (strcmp(cmp, sched_feat_names[i]) == 0) { 220 if (neg) { 221 sysctl_sched_features &= ~(1UL << i); 222 sched_feat_disable(i); 223 } else { 224 sysctl_sched_features |= (1UL << i); 225 sched_feat_enable(i); 226 } 227 break; 228 } 229 } 230 231 if (i == __SCHED_FEAT_NR) 232 return -EINVAL; 233 234 *ppos += cnt; 235 236 return cnt; 237 } 238 239 static int sched_feat_open(struct inode *inode, struct file *filp) 240 { 241 return single_open(filp, sched_feat_show, NULL); 242 } 243 244 static const struct file_operations sched_feat_fops = { 245 .open = sched_feat_open, 246 .write = sched_feat_write, 247 .read = seq_read, 248 .llseek = seq_lseek, 249 .release = single_release, 250 }; 251 252 static __init int sched_init_debug(void) 253 { 254 debugfs_create_file("sched_features", 0644, NULL, NULL, 255 &sched_feat_fops); 256 257 return 0; 258 } 259 late_initcall(sched_init_debug); 260 #endif /* CONFIG_SCHED_DEBUG */ 261 262 /* 263 * Number of tasks to iterate in a single balance run. 264 * Limited because this is done with IRQs disabled. 265 */ 266 const_debug unsigned int sysctl_sched_nr_migrate = 32; 267 268 /* 269 * period over which we average the RT time consumption, measured 270 * in ms. 271 * 272 * default: 1s 273 */ 274 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 275 276 /* 277 * period over which we measure -rt task cpu usage in us. 278 * default: 1s 279 */ 280 unsigned int sysctl_sched_rt_period = 1000000; 281 282 __read_mostly int scheduler_running; 283 284 /* 285 * part of the period that we allow rt tasks to run in us. 286 * default: 0.95s 287 */ 288 int sysctl_sched_rt_runtime = 950000; 289 290 291 292 /* 293 * __task_rq_lock - lock the rq @p resides on. 294 */ 295 static inline struct rq *__task_rq_lock(struct task_struct *p) 296 __acquires(rq->lock) 297 { 298 struct rq *rq; 299 300 lockdep_assert_held(&p->pi_lock); 301 302 for (;;) { 303 rq = task_rq(p); 304 raw_spin_lock(&rq->lock); 305 if (likely(rq == task_rq(p))) 306 return rq; 307 raw_spin_unlock(&rq->lock); 308 } 309 } 310 311 /* 312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 313 */ 314 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 315 __acquires(p->pi_lock) 316 __acquires(rq->lock) 317 { 318 struct rq *rq; 319 320 for (;;) { 321 raw_spin_lock_irqsave(&p->pi_lock, *flags); 322 rq = task_rq(p); 323 raw_spin_lock(&rq->lock); 324 if (likely(rq == task_rq(p))) 325 return rq; 326 raw_spin_unlock(&rq->lock); 327 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 328 } 329 } 330 331 static void __task_rq_unlock(struct rq *rq) 332 __releases(rq->lock) 333 { 334 raw_spin_unlock(&rq->lock); 335 } 336 337 static inline void 338 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 339 __releases(rq->lock) 340 __releases(p->pi_lock) 341 { 342 raw_spin_unlock(&rq->lock); 343 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 344 } 345 346 /* 347 * this_rq_lock - lock this runqueue and disable interrupts. 348 */ 349 static struct rq *this_rq_lock(void) 350 __acquires(rq->lock) 351 { 352 struct rq *rq; 353 354 local_irq_disable(); 355 rq = this_rq(); 356 raw_spin_lock(&rq->lock); 357 358 return rq; 359 } 360 361 #ifdef CONFIG_SCHED_HRTICK 362 /* 363 * Use HR-timers to deliver accurate preemption points. 364 * 365 * Its all a bit involved since we cannot program an hrt while holding the 366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a 367 * reschedule event. 368 * 369 * When we get rescheduled we reprogram the hrtick_timer outside of the 370 * rq->lock. 371 */ 372 373 static void hrtick_clear(struct rq *rq) 374 { 375 if (hrtimer_active(&rq->hrtick_timer)) 376 hrtimer_cancel(&rq->hrtick_timer); 377 } 378 379 /* 380 * High-resolution timer tick. 381 * Runs from hardirq context with interrupts disabled. 382 */ 383 static enum hrtimer_restart hrtick(struct hrtimer *timer) 384 { 385 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 386 387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 388 389 raw_spin_lock(&rq->lock); 390 update_rq_clock(rq); 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 392 raw_spin_unlock(&rq->lock); 393 394 return HRTIMER_NORESTART; 395 } 396 397 #ifdef CONFIG_SMP 398 /* 399 * called from hardirq (IPI) context 400 */ 401 static void __hrtick_start(void *arg) 402 { 403 struct rq *rq = arg; 404 405 raw_spin_lock(&rq->lock); 406 hrtimer_restart(&rq->hrtick_timer); 407 rq->hrtick_csd_pending = 0; 408 raw_spin_unlock(&rq->lock); 409 } 410 411 /* 412 * Called to set the hrtick timer state. 413 * 414 * called with rq->lock held and irqs disabled 415 */ 416 void hrtick_start(struct rq *rq, u64 delay) 417 { 418 struct hrtimer *timer = &rq->hrtick_timer; 419 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 420 421 hrtimer_set_expires(timer, time); 422 423 if (rq == this_rq()) { 424 hrtimer_restart(timer); 425 } else if (!rq->hrtick_csd_pending) { 426 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); 427 rq->hrtick_csd_pending = 1; 428 } 429 } 430 431 static int 432 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 433 { 434 int cpu = (int)(long)hcpu; 435 436 switch (action) { 437 case CPU_UP_CANCELED: 438 case CPU_UP_CANCELED_FROZEN: 439 case CPU_DOWN_PREPARE: 440 case CPU_DOWN_PREPARE_FROZEN: 441 case CPU_DEAD: 442 case CPU_DEAD_FROZEN: 443 hrtick_clear(cpu_rq(cpu)); 444 return NOTIFY_OK; 445 } 446 447 return NOTIFY_DONE; 448 } 449 450 static __init void init_hrtick(void) 451 { 452 hotcpu_notifier(hotplug_hrtick, 0); 453 } 454 #else 455 /* 456 * Called to set the hrtick timer state. 457 * 458 * called with rq->lock held and irqs disabled 459 */ 460 void hrtick_start(struct rq *rq, u64 delay) 461 { 462 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 463 HRTIMER_MODE_REL_PINNED, 0); 464 } 465 466 static inline void init_hrtick(void) 467 { 468 } 469 #endif /* CONFIG_SMP */ 470 471 static void init_rq_hrtick(struct rq *rq) 472 { 473 #ifdef CONFIG_SMP 474 rq->hrtick_csd_pending = 0; 475 476 rq->hrtick_csd.flags = 0; 477 rq->hrtick_csd.func = __hrtick_start; 478 rq->hrtick_csd.info = rq; 479 #endif 480 481 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 482 rq->hrtick_timer.function = hrtick; 483 } 484 #else /* CONFIG_SCHED_HRTICK */ 485 static inline void hrtick_clear(struct rq *rq) 486 { 487 } 488 489 static inline void init_rq_hrtick(struct rq *rq) 490 { 491 } 492 493 static inline void init_hrtick(void) 494 { 495 } 496 #endif /* CONFIG_SCHED_HRTICK */ 497 498 /* 499 * resched_task - mark a task 'to be rescheduled now'. 500 * 501 * On UP this means the setting of the need_resched flag, on SMP it 502 * might also involve a cross-CPU call to trigger the scheduler on 503 * the target CPU. 504 */ 505 #ifdef CONFIG_SMP 506 507 #ifndef tsk_is_polling 508 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) 509 #endif 510 511 void resched_task(struct task_struct *p) 512 { 513 int cpu; 514 515 assert_raw_spin_locked(&task_rq(p)->lock); 516 517 if (test_tsk_need_resched(p)) 518 return; 519 520 set_tsk_need_resched(p); 521 522 cpu = task_cpu(p); 523 if (cpu == smp_processor_id()) 524 return; 525 526 /* NEED_RESCHED must be visible before we test polling */ 527 smp_mb(); 528 if (!tsk_is_polling(p)) 529 smp_send_reschedule(cpu); 530 } 531 532 void resched_cpu(int cpu) 533 { 534 struct rq *rq = cpu_rq(cpu); 535 unsigned long flags; 536 537 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 538 return; 539 resched_task(cpu_curr(cpu)); 540 raw_spin_unlock_irqrestore(&rq->lock, flags); 541 } 542 543 #ifdef CONFIG_NO_HZ 544 /* 545 * In the semi idle case, use the nearest busy cpu for migrating timers 546 * from an idle cpu. This is good for power-savings. 547 * 548 * We don't do similar optimization for completely idle system, as 549 * selecting an idle cpu will add more delays to the timers than intended 550 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 551 */ 552 int get_nohz_timer_target(void) 553 { 554 int cpu = smp_processor_id(); 555 int i; 556 struct sched_domain *sd; 557 558 rcu_read_lock(); 559 for_each_domain(cpu, sd) { 560 for_each_cpu(i, sched_domain_span(sd)) { 561 if (!idle_cpu(i)) { 562 cpu = i; 563 goto unlock; 564 } 565 } 566 } 567 unlock: 568 rcu_read_unlock(); 569 return cpu; 570 } 571 /* 572 * When add_timer_on() enqueues a timer into the timer wheel of an 573 * idle CPU then this timer might expire before the next timer event 574 * which is scheduled to wake up that CPU. In case of a completely 575 * idle system the next event might even be infinite time into the 576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 577 * leaves the inner idle loop so the newly added timer is taken into 578 * account when the CPU goes back to idle and evaluates the timer 579 * wheel for the next timer event. 580 */ 581 void wake_up_idle_cpu(int cpu) 582 { 583 struct rq *rq = cpu_rq(cpu); 584 585 if (cpu == smp_processor_id()) 586 return; 587 588 /* 589 * This is safe, as this function is called with the timer 590 * wheel base lock of (cpu) held. When the CPU is on the way 591 * to idle and has not yet set rq->curr to idle then it will 592 * be serialized on the timer wheel base lock and take the new 593 * timer into account automatically. 594 */ 595 if (rq->curr != rq->idle) 596 return; 597 598 /* 599 * We can set TIF_RESCHED on the idle task of the other CPU 600 * lockless. The worst case is that the other CPU runs the 601 * idle task through an additional NOOP schedule() 602 */ 603 set_tsk_need_resched(rq->idle); 604 605 /* NEED_RESCHED must be visible before we test polling */ 606 smp_mb(); 607 if (!tsk_is_polling(rq->idle)) 608 smp_send_reschedule(cpu); 609 } 610 611 static inline bool got_nohz_idle_kick(void) 612 { 613 int cpu = smp_processor_id(); 614 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 615 } 616 617 #else /* CONFIG_NO_HZ */ 618 619 static inline bool got_nohz_idle_kick(void) 620 { 621 return false; 622 } 623 624 #endif /* CONFIG_NO_HZ */ 625 626 void sched_avg_update(struct rq *rq) 627 { 628 s64 period = sched_avg_period(); 629 630 while ((s64)(rq->clock - rq->age_stamp) > period) { 631 /* 632 * Inline assembly required to prevent the compiler 633 * optimising this loop into a divmod call. 634 * See __iter_div_u64_rem() for another example of this. 635 */ 636 asm("" : "+rm" (rq->age_stamp)); 637 rq->age_stamp += period; 638 rq->rt_avg /= 2; 639 } 640 } 641 642 #else /* !CONFIG_SMP */ 643 void resched_task(struct task_struct *p) 644 { 645 assert_raw_spin_locked(&task_rq(p)->lock); 646 set_tsk_need_resched(p); 647 } 648 #endif /* CONFIG_SMP */ 649 650 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 651 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 652 /* 653 * Iterate task_group tree rooted at *from, calling @down when first entering a 654 * node and @up when leaving it for the final time. 655 * 656 * Caller must hold rcu_lock or sufficient equivalent. 657 */ 658 int walk_tg_tree_from(struct task_group *from, 659 tg_visitor down, tg_visitor up, void *data) 660 { 661 struct task_group *parent, *child; 662 int ret; 663 664 parent = from; 665 666 down: 667 ret = (*down)(parent, data); 668 if (ret) 669 goto out; 670 list_for_each_entry_rcu(child, &parent->children, siblings) { 671 parent = child; 672 goto down; 673 674 up: 675 continue; 676 } 677 ret = (*up)(parent, data); 678 if (ret || parent == from) 679 goto out; 680 681 child = parent; 682 parent = parent->parent; 683 if (parent) 684 goto up; 685 out: 686 return ret; 687 } 688 689 int tg_nop(struct task_group *tg, void *data) 690 { 691 return 0; 692 } 693 #endif 694 695 void update_cpu_load(struct rq *this_rq); 696 697 static void set_load_weight(struct task_struct *p) 698 { 699 int prio = p->static_prio - MAX_RT_PRIO; 700 struct load_weight *load = &p->se.load; 701 702 /* 703 * SCHED_IDLE tasks get minimal weight: 704 */ 705 if (p->policy == SCHED_IDLE) { 706 load->weight = scale_load(WEIGHT_IDLEPRIO); 707 load->inv_weight = WMULT_IDLEPRIO; 708 return; 709 } 710 711 load->weight = scale_load(prio_to_weight[prio]); 712 load->inv_weight = prio_to_wmult[prio]; 713 } 714 715 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 716 { 717 update_rq_clock(rq); 718 sched_info_queued(p); 719 p->sched_class->enqueue_task(rq, p, flags); 720 } 721 722 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 723 { 724 update_rq_clock(rq); 725 sched_info_dequeued(p); 726 p->sched_class->dequeue_task(rq, p, flags); 727 } 728 729 void activate_task(struct rq *rq, struct task_struct *p, int flags) 730 { 731 if (task_contributes_to_load(p)) 732 rq->nr_uninterruptible--; 733 734 enqueue_task(rq, p, flags); 735 } 736 737 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 738 { 739 if (task_contributes_to_load(p)) 740 rq->nr_uninterruptible++; 741 742 dequeue_task(rq, p, flags); 743 } 744 745 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 746 747 /* 748 * There are no locks covering percpu hardirq/softirq time. 749 * They are only modified in account_system_vtime, on corresponding CPU 750 * with interrupts disabled. So, writes are safe. 751 * They are read and saved off onto struct rq in update_rq_clock(). 752 * This may result in other CPU reading this CPU's irq time and can 753 * race with irq/account_system_vtime on this CPU. We would either get old 754 * or new value with a side effect of accounting a slice of irq time to wrong 755 * task when irq is in progress while we read rq->clock. That is a worthy 756 * compromise in place of having locks on each irq in account_system_time. 757 */ 758 static DEFINE_PER_CPU(u64, cpu_hardirq_time); 759 static DEFINE_PER_CPU(u64, cpu_softirq_time); 760 761 static DEFINE_PER_CPU(u64, irq_start_time); 762 static int sched_clock_irqtime; 763 764 void enable_sched_clock_irqtime(void) 765 { 766 sched_clock_irqtime = 1; 767 } 768 769 void disable_sched_clock_irqtime(void) 770 { 771 sched_clock_irqtime = 0; 772 } 773 774 #ifndef CONFIG_64BIT 775 static DEFINE_PER_CPU(seqcount_t, irq_time_seq); 776 777 static inline void irq_time_write_begin(void) 778 { 779 __this_cpu_inc(irq_time_seq.sequence); 780 smp_wmb(); 781 } 782 783 static inline void irq_time_write_end(void) 784 { 785 smp_wmb(); 786 __this_cpu_inc(irq_time_seq.sequence); 787 } 788 789 static inline u64 irq_time_read(int cpu) 790 { 791 u64 irq_time; 792 unsigned seq; 793 794 do { 795 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); 796 irq_time = per_cpu(cpu_softirq_time, cpu) + 797 per_cpu(cpu_hardirq_time, cpu); 798 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); 799 800 return irq_time; 801 } 802 #else /* CONFIG_64BIT */ 803 static inline void irq_time_write_begin(void) 804 { 805 } 806 807 static inline void irq_time_write_end(void) 808 { 809 } 810 811 static inline u64 irq_time_read(int cpu) 812 { 813 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); 814 } 815 #endif /* CONFIG_64BIT */ 816 817 /* 818 * Called before incrementing preempt_count on {soft,}irq_enter 819 * and before decrementing preempt_count on {soft,}irq_exit. 820 */ 821 void account_system_vtime(struct task_struct *curr) 822 { 823 unsigned long flags; 824 s64 delta; 825 int cpu; 826 827 if (!sched_clock_irqtime) 828 return; 829 830 local_irq_save(flags); 831 832 cpu = smp_processor_id(); 833 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); 834 __this_cpu_add(irq_start_time, delta); 835 836 irq_time_write_begin(); 837 /* 838 * We do not account for softirq time from ksoftirqd here. 839 * We want to continue accounting softirq time to ksoftirqd thread 840 * in that case, so as not to confuse scheduler with a special task 841 * that do not consume any time, but still wants to run. 842 */ 843 if (hardirq_count()) 844 __this_cpu_add(cpu_hardirq_time, delta); 845 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) 846 __this_cpu_add(cpu_softirq_time, delta); 847 848 irq_time_write_end(); 849 local_irq_restore(flags); 850 } 851 EXPORT_SYMBOL_GPL(account_system_vtime); 852 853 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 854 855 #ifdef CONFIG_PARAVIRT 856 static inline u64 steal_ticks(u64 steal) 857 { 858 if (unlikely(steal > NSEC_PER_SEC)) 859 return div_u64(steal, TICK_NSEC); 860 861 return __iter_div_u64_rem(steal, TICK_NSEC, &steal); 862 } 863 #endif 864 865 static void update_rq_clock_task(struct rq *rq, s64 delta) 866 { 867 /* 868 * In theory, the compile should just see 0 here, and optimize out the call 869 * to sched_rt_avg_update. But I don't trust it... 870 */ 871 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 872 s64 steal = 0, irq_delta = 0; 873 #endif 874 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 875 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 876 877 /* 878 * Since irq_time is only updated on {soft,}irq_exit, we might run into 879 * this case when a previous update_rq_clock() happened inside a 880 * {soft,}irq region. 881 * 882 * When this happens, we stop ->clock_task and only update the 883 * prev_irq_time stamp to account for the part that fit, so that a next 884 * update will consume the rest. This ensures ->clock_task is 885 * monotonic. 886 * 887 * It does however cause some slight miss-attribution of {soft,}irq 888 * time, a more accurate solution would be to update the irq_time using 889 * the current rq->clock timestamp, except that would require using 890 * atomic ops. 891 */ 892 if (irq_delta > delta) 893 irq_delta = delta; 894 895 rq->prev_irq_time += irq_delta; 896 delta -= irq_delta; 897 #endif 898 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 899 if (static_key_false((¶virt_steal_rq_enabled))) { 900 u64 st; 901 902 steal = paravirt_steal_clock(cpu_of(rq)); 903 steal -= rq->prev_steal_time_rq; 904 905 if (unlikely(steal > delta)) 906 steal = delta; 907 908 st = steal_ticks(steal); 909 steal = st * TICK_NSEC; 910 911 rq->prev_steal_time_rq += steal; 912 913 delta -= steal; 914 } 915 #endif 916 917 rq->clock_task += delta; 918 919 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 920 if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) 921 sched_rt_avg_update(rq, irq_delta + steal); 922 #endif 923 } 924 925 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 926 static int irqtime_account_hi_update(void) 927 { 928 u64 *cpustat = kcpustat_this_cpu->cpustat; 929 unsigned long flags; 930 u64 latest_ns; 931 int ret = 0; 932 933 local_irq_save(flags); 934 latest_ns = this_cpu_read(cpu_hardirq_time); 935 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) 936 ret = 1; 937 local_irq_restore(flags); 938 return ret; 939 } 940 941 static int irqtime_account_si_update(void) 942 { 943 u64 *cpustat = kcpustat_this_cpu->cpustat; 944 unsigned long flags; 945 u64 latest_ns; 946 int ret = 0; 947 948 local_irq_save(flags); 949 latest_ns = this_cpu_read(cpu_softirq_time); 950 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) 951 ret = 1; 952 local_irq_restore(flags); 953 return ret; 954 } 955 956 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 957 958 #define sched_clock_irqtime (0) 959 960 #endif 961 962 void sched_set_stop_task(int cpu, struct task_struct *stop) 963 { 964 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 965 struct task_struct *old_stop = cpu_rq(cpu)->stop; 966 967 if (stop) { 968 /* 969 * Make it appear like a SCHED_FIFO task, its something 970 * userspace knows about and won't get confused about. 971 * 972 * Also, it will make PI more or less work without too 973 * much confusion -- but then, stop work should not 974 * rely on PI working anyway. 975 */ 976 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 977 978 stop->sched_class = &stop_sched_class; 979 } 980 981 cpu_rq(cpu)->stop = stop; 982 983 if (old_stop) { 984 /* 985 * Reset it back to a normal scheduling class so that 986 * it can die in pieces. 987 */ 988 old_stop->sched_class = &rt_sched_class; 989 } 990 } 991 992 /* 993 * __normal_prio - return the priority that is based on the static prio 994 */ 995 static inline int __normal_prio(struct task_struct *p) 996 { 997 return p->static_prio; 998 } 999 1000 /* 1001 * Calculate the expected normal priority: i.e. priority 1002 * without taking RT-inheritance into account. Might be 1003 * boosted by interactivity modifiers. Changes upon fork, 1004 * setprio syscalls, and whenever the interactivity 1005 * estimator recalculates. 1006 */ 1007 static inline int normal_prio(struct task_struct *p) 1008 { 1009 int prio; 1010 1011 if (task_has_rt_policy(p)) 1012 prio = MAX_RT_PRIO-1 - p->rt_priority; 1013 else 1014 prio = __normal_prio(p); 1015 return prio; 1016 } 1017 1018 /* 1019 * Calculate the current priority, i.e. the priority 1020 * taken into account by the scheduler. This value might 1021 * be boosted by RT tasks, or might be boosted by 1022 * interactivity modifiers. Will be RT if the task got 1023 * RT-boosted. If not then it returns p->normal_prio. 1024 */ 1025 static int effective_prio(struct task_struct *p) 1026 { 1027 p->normal_prio = normal_prio(p); 1028 /* 1029 * If we are RT tasks or we were boosted to RT priority, 1030 * keep the priority unchanged. Otherwise, update priority 1031 * to the normal priority: 1032 */ 1033 if (!rt_prio(p->prio)) 1034 return p->normal_prio; 1035 return p->prio; 1036 } 1037 1038 /** 1039 * task_curr - is this task currently executing on a CPU? 1040 * @p: the task in question. 1041 */ 1042 inline int task_curr(const struct task_struct *p) 1043 { 1044 return cpu_curr(task_cpu(p)) == p; 1045 } 1046 1047 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1048 const struct sched_class *prev_class, 1049 int oldprio) 1050 { 1051 if (prev_class != p->sched_class) { 1052 if (prev_class->switched_from) 1053 prev_class->switched_from(rq, p); 1054 p->sched_class->switched_to(rq, p); 1055 } else if (oldprio != p->prio) 1056 p->sched_class->prio_changed(rq, p, oldprio); 1057 } 1058 1059 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1060 { 1061 const struct sched_class *class; 1062 1063 if (p->sched_class == rq->curr->sched_class) { 1064 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1065 } else { 1066 for_each_class(class) { 1067 if (class == rq->curr->sched_class) 1068 break; 1069 if (class == p->sched_class) { 1070 resched_task(rq->curr); 1071 break; 1072 } 1073 } 1074 } 1075 1076 /* 1077 * A queue event has occurred, and we're going to schedule. In 1078 * this case, we can save a useless back to back clock update. 1079 */ 1080 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 1081 rq->skip_clock_update = 1; 1082 } 1083 1084 #ifdef CONFIG_SMP 1085 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1086 { 1087 #ifdef CONFIG_SCHED_DEBUG 1088 /* 1089 * We should never call set_task_cpu() on a blocked task, 1090 * ttwu() will sort out the placement. 1091 */ 1092 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1093 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); 1094 1095 #ifdef CONFIG_LOCKDEP 1096 /* 1097 * The caller should hold either p->pi_lock or rq->lock, when changing 1098 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1099 * 1100 * sched_move_task() holds both and thus holding either pins the cgroup, 1101 * see set_task_rq(). 1102 * 1103 * Furthermore, all task_rq users should acquire both locks, see 1104 * task_rq_lock(). 1105 */ 1106 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1107 lockdep_is_held(&task_rq(p)->lock))); 1108 #endif 1109 #endif 1110 1111 trace_sched_migrate_task(p, new_cpu); 1112 1113 if (task_cpu(p) != new_cpu) { 1114 p->se.nr_migrations++; 1115 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 1116 } 1117 1118 __set_task_cpu(p, new_cpu); 1119 } 1120 1121 struct migration_arg { 1122 struct task_struct *task; 1123 int dest_cpu; 1124 }; 1125 1126 static int migration_cpu_stop(void *data); 1127 1128 /* 1129 * wait_task_inactive - wait for a thread to unschedule. 1130 * 1131 * If @match_state is nonzero, it's the @p->state value just checked and 1132 * not expected to change. If it changes, i.e. @p might have woken up, 1133 * then return zero. When we succeed in waiting for @p to be off its CPU, 1134 * we return a positive number (its total switch count). If a second call 1135 * a short while later returns the same number, the caller can be sure that 1136 * @p has remained unscheduled the whole time. 1137 * 1138 * The caller must ensure that the task *will* unschedule sometime soon, 1139 * else this function might spin for a *long* time. This function can't 1140 * be called with interrupts off, or it may introduce deadlock with 1141 * smp_call_function() if an IPI is sent by the same process we are 1142 * waiting to become inactive. 1143 */ 1144 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1145 { 1146 unsigned long flags; 1147 int running, on_rq; 1148 unsigned long ncsw; 1149 struct rq *rq; 1150 1151 for (;;) { 1152 /* 1153 * We do the initial early heuristics without holding 1154 * any task-queue locks at all. We'll only try to get 1155 * the runqueue lock when things look like they will 1156 * work out! 1157 */ 1158 rq = task_rq(p); 1159 1160 /* 1161 * If the task is actively running on another CPU 1162 * still, just relax and busy-wait without holding 1163 * any locks. 1164 * 1165 * NOTE! Since we don't hold any locks, it's not 1166 * even sure that "rq" stays as the right runqueue! 1167 * But we don't care, since "task_running()" will 1168 * return false if the runqueue has changed and p 1169 * is actually now running somewhere else! 1170 */ 1171 while (task_running(rq, p)) { 1172 if (match_state && unlikely(p->state != match_state)) 1173 return 0; 1174 cpu_relax(); 1175 } 1176 1177 /* 1178 * Ok, time to look more closely! We need the rq 1179 * lock now, to be *sure*. If we're wrong, we'll 1180 * just go back and repeat. 1181 */ 1182 rq = task_rq_lock(p, &flags); 1183 trace_sched_wait_task(p); 1184 running = task_running(rq, p); 1185 on_rq = p->on_rq; 1186 ncsw = 0; 1187 if (!match_state || p->state == match_state) 1188 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1189 task_rq_unlock(rq, p, &flags); 1190 1191 /* 1192 * If it changed from the expected state, bail out now. 1193 */ 1194 if (unlikely(!ncsw)) 1195 break; 1196 1197 /* 1198 * Was it really running after all now that we 1199 * checked with the proper locks actually held? 1200 * 1201 * Oops. Go back and try again.. 1202 */ 1203 if (unlikely(running)) { 1204 cpu_relax(); 1205 continue; 1206 } 1207 1208 /* 1209 * It's not enough that it's not actively running, 1210 * it must be off the runqueue _entirely_, and not 1211 * preempted! 1212 * 1213 * So if it was still runnable (but just not actively 1214 * running right now), it's preempted, and we should 1215 * yield - it could be a while. 1216 */ 1217 if (unlikely(on_rq)) { 1218 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1219 1220 set_current_state(TASK_UNINTERRUPTIBLE); 1221 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1222 continue; 1223 } 1224 1225 /* 1226 * Ahh, all good. It wasn't running, and it wasn't 1227 * runnable, which means that it will never become 1228 * running in the future either. We're all done! 1229 */ 1230 break; 1231 } 1232 1233 return ncsw; 1234 } 1235 1236 /*** 1237 * kick_process - kick a running thread to enter/exit the kernel 1238 * @p: the to-be-kicked thread 1239 * 1240 * Cause a process which is running on another CPU to enter 1241 * kernel-mode, without any delay. (to get signals handled.) 1242 * 1243 * NOTE: this function doesn't have to take the runqueue lock, 1244 * because all it wants to ensure is that the remote task enters 1245 * the kernel. If the IPI races and the task has been migrated 1246 * to another CPU then no harm is done and the purpose has been 1247 * achieved as well. 1248 */ 1249 void kick_process(struct task_struct *p) 1250 { 1251 int cpu; 1252 1253 preempt_disable(); 1254 cpu = task_cpu(p); 1255 if ((cpu != smp_processor_id()) && task_curr(p)) 1256 smp_send_reschedule(cpu); 1257 preempt_enable(); 1258 } 1259 EXPORT_SYMBOL_GPL(kick_process); 1260 #endif /* CONFIG_SMP */ 1261 1262 #ifdef CONFIG_SMP 1263 /* 1264 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1265 */ 1266 static int select_fallback_rq(int cpu, struct task_struct *p) 1267 { 1268 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); 1269 enum { cpuset, possible, fail } state = cpuset; 1270 int dest_cpu; 1271 1272 /* Look for allowed, online CPU in same node. */ 1273 for_each_cpu_mask(dest_cpu, *nodemask) { 1274 if (!cpu_online(dest_cpu)) 1275 continue; 1276 if (!cpu_active(dest_cpu)) 1277 continue; 1278 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1279 return dest_cpu; 1280 } 1281 1282 for (;;) { 1283 /* Any allowed, online CPU? */ 1284 for_each_cpu_mask(dest_cpu, *tsk_cpus_allowed(p)) { 1285 if (!cpu_online(dest_cpu)) 1286 continue; 1287 if (!cpu_active(dest_cpu)) 1288 continue; 1289 goto out; 1290 } 1291 1292 switch (state) { 1293 case cpuset: 1294 /* No more Mr. Nice Guy. */ 1295 cpuset_cpus_allowed_fallback(p); 1296 state = possible; 1297 break; 1298 1299 case possible: 1300 do_set_cpus_allowed(p, cpu_possible_mask); 1301 state = fail; 1302 break; 1303 1304 case fail: 1305 BUG(); 1306 break; 1307 } 1308 } 1309 1310 out: 1311 if (state != cpuset) { 1312 /* 1313 * Don't tell them about moving exiting tasks or 1314 * kernel threads (both mm NULL), since they never 1315 * leave kernel. 1316 */ 1317 if (p->mm && printk_ratelimit()) { 1318 printk_sched("process %d (%s) no longer affine to cpu%d\n", 1319 task_pid_nr(p), p->comm, cpu); 1320 } 1321 } 1322 1323 return dest_cpu; 1324 } 1325 1326 /* 1327 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1328 */ 1329 static inline 1330 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) 1331 { 1332 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); 1333 1334 /* 1335 * In order not to call set_task_cpu() on a blocking task we need 1336 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1337 * cpu. 1338 * 1339 * Since this is common to all placement strategies, this lives here. 1340 * 1341 * [ this allows ->select_task() to simply return task_cpu(p) and 1342 * not worry about this generic constraint ] 1343 */ 1344 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1345 !cpu_online(cpu))) 1346 cpu = select_fallback_rq(task_cpu(p), p); 1347 1348 return cpu; 1349 } 1350 1351 static void update_avg(u64 *avg, u64 sample) 1352 { 1353 s64 diff = sample - *avg; 1354 *avg += diff >> 3; 1355 } 1356 #endif 1357 1358 static void 1359 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1360 { 1361 #ifdef CONFIG_SCHEDSTATS 1362 struct rq *rq = this_rq(); 1363 1364 #ifdef CONFIG_SMP 1365 int this_cpu = smp_processor_id(); 1366 1367 if (cpu == this_cpu) { 1368 schedstat_inc(rq, ttwu_local); 1369 schedstat_inc(p, se.statistics.nr_wakeups_local); 1370 } else { 1371 struct sched_domain *sd; 1372 1373 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1374 rcu_read_lock(); 1375 for_each_domain(this_cpu, sd) { 1376 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1377 schedstat_inc(sd, ttwu_wake_remote); 1378 break; 1379 } 1380 } 1381 rcu_read_unlock(); 1382 } 1383 1384 if (wake_flags & WF_MIGRATED) 1385 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1386 1387 #endif /* CONFIG_SMP */ 1388 1389 schedstat_inc(rq, ttwu_count); 1390 schedstat_inc(p, se.statistics.nr_wakeups); 1391 1392 if (wake_flags & WF_SYNC) 1393 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1394 1395 #endif /* CONFIG_SCHEDSTATS */ 1396 } 1397 1398 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1399 { 1400 activate_task(rq, p, en_flags); 1401 p->on_rq = 1; 1402 1403 /* if a worker is waking up, notify workqueue */ 1404 if (p->flags & PF_WQ_WORKER) 1405 wq_worker_waking_up(p, cpu_of(rq)); 1406 } 1407 1408 /* 1409 * Mark the task runnable and perform wakeup-preemption. 1410 */ 1411 static void 1412 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1413 { 1414 trace_sched_wakeup(p, true); 1415 check_preempt_curr(rq, p, wake_flags); 1416 1417 p->state = TASK_RUNNING; 1418 #ifdef CONFIG_SMP 1419 if (p->sched_class->task_woken) 1420 p->sched_class->task_woken(rq, p); 1421 1422 if (rq->idle_stamp) { 1423 u64 delta = rq->clock - rq->idle_stamp; 1424 u64 max = 2*sysctl_sched_migration_cost; 1425 1426 if (delta > max) 1427 rq->avg_idle = max; 1428 else 1429 update_avg(&rq->avg_idle, delta); 1430 rq->idle_stamp = 0; 1431 } 1432 #endif 1433 } 1434 1435 static void 1436 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1437 { 1438 #ifdef CONFIG_SMP 1439 if (p->sched_contributes_to_load) 1440 rq->nr_uninterruptible--; 1441 #endif 1442 1443 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1444 ttwu_do_wakeup(rq, p, wake_flags); 1445 } 1446 1447 /* 1448 * Called in case the task @p isn't fully descheduled from its runqueue, 1449 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1450 * since all we need to do is flip p->state to TASK_RUNNING, since 1451 * the task is still ->on_rq. 1452 */ 1453 static int ttwu_remote(struct task_struct *p, int wake_flags) 1454 { 1455 struct rq *rq; 1456 int ret = 0; 1457 1458 rq = __task_rq_lock(p); 1459 if (p->on_rq) { 1460 ttwu_do_wakeup(rq, p, wake_flags); 1461 ret = 1; 1462 } 1463 __task_rq_unlock(rq); 1464 1465 return ret; 1466 } 1467 1468 #ifdef CONFIG_SMP 1469 static void sched_ttwu_pending(void) 1470 { 1471 struct rq *rq = this_rq(); 1472 struct llist_node *llist = llist_del_all(&rq->wake_list); 1473 struct task_struct *p; 1474 1475 raw_spin_lock(&rq->lock); 1476 1477 while (llist) { 1478 p = llist_entry(llist, struct task_struct, wake_entry); 1479 llist = llist_next(llist); 1480 ttwu_do_activate(rq, p, 0); 1481 } 1482 1483 raw_spin_unlock(&rq->lock); 1484 } 1485 1486 void scheduler_ipi(void) 1487 { 1488 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1489 return; 1490 1491 /* 1492 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1493 * traditionally all their work was done from the interrupt return 1494 * path. Now that we actually do some work, we need to make sure 1495 * we do call them. 1496 * 1497 * Some archs already do call them, luckily irq_enter/exit nest 1498 * properly. 1499 * 1500 * Arguably we should visit all archs and update all handlers, 1501 * however a fair share of IPIs are still resched only so this would 1502 * somewhat pessimize the simple resched case. 1503 */ 1504 irq_enter(); 1505 sched_ttwu_pending(); 1506 1507 /* 1508 * Check if someone kicked us for doing the nohz idle load balance. 1509 */ 1510 if (unlikely(got_nohz_idle_kick() && !need_resched())) { 1511 this_rq()->idle_balance = 1; 1512 raise_softirq_irqoff(SCHED_SOFTIRQ); 1513 } 1514 irq_exit(); 1515 } 1516 1517 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1518 { 1519 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) 1520 smp_send_reschedule(cpu); 1521 } 1522 1523 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1524 static int ttwu_activate_remote(struct task_struct *p, int wake_flags) 1525 { 1526 struct rq *rq; 1527 int ret = 0; 1528 1529 rq = __task_rq_lock(p); 1530 if (p->on_cpu) { 1531 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1532 ttwu_do_wakeup(rq, p, wake_flags); 1533 ret = 1; 1534 } 1535 __task_rq_unlock(rq); 1536 1537 return ret; 1538 1539 } 1540 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1541 1542 bool cpus_share_cache(int this_cpu, int that_cpu) 1543 { 1544 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1545 } 1546 #endif /* CONFIG_SMP */ 1547 1548 static void ttwu_queue(struct task_struct *p, int cpu) 1549 { 1550 struct rq *rq = cpu_rq(cpu); 1551 1552 #if defined(CONFIG_SMP) 1553 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1554 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1555 ttwu_queue_remote(p, cpu); 1556 return; 1557 } 1558 #endif 1559 1560 raw_spin_lock(&rq->lock); 1561 ttwu_do_activate(rq, p, 0); 1562 raw_spin_unlock(&rq->lock); 1563 } 1564 1565 /** 1566 * try_to_wake_up - wake up a thread 1567 * @p: the thread to be awakened 1568 * @state: the mask of task states that can be woken 1569 * @wake_flags: wake modifier flags (WF_*) 1570 * 1571 * Put it on the run-queue if it's not already there. The "current" 1572 * thread is always on the run-queue (except when the actual 1573 * re-schedule is in progress), and as such you're allowed to do 1574 * the simpler "current->state = TASK_RUNNING" to mark yourself 1575 * runnable without the overhead of this. 1576 * 1577 * Returns %true if @p was woken up, %false if it was already running 1578 * or @state didn't match @p's state. 1579 */ 1580 static int 1581 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1582 { 1583 unsigned long flags; 1584 int cpu, success = 0; 1585 1586 smp_wmb(); 1587 raw_spin_lock_irqsave(&p->pi_lock, flags); 1588 if (!(p->state & state)) 1589 goto out; 1590 1591 success = 1; /* we're going to change ->state */ 1592 cpu = task_cpu(p); 1593 1594 if (p->on_rq && ttwu_remote(p, wake_flags)) 1595 goto stat; 1596 1597 #ifdef CONFIG_SMP 1598 /* 1599 * If the owning (remote) cpu is still in the middle of schedule() with 1600 * this task as prev, wait until its done referencing the task. 1601 */ 1602 while (p->on_cpu) { 1603 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1604 /* 1605 * In case the architecture enables interrupts in 1606 * context_switch(), we cannot busy wait, since that 1607 * would lead to deadlocks when an interrupt hits and 1608 * tries to wake up @prev. So bail and do a complete 1609 * remote wakeup. 1610 */ 1611 if (ttwu_activate_remote(p, wake_flags)) 1612 goto stat; 1613 #else 1614 cpu_relax(); 1615 #endif 1616 } 1617 /* 1618 * Pairs with the smp_wmb() in finish_lock_switch(). 1619 */ 1620 smp_rmb(); 1621 1622 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1623 p->state = TASK_WAKING; 1624 1625 if (p->sched_class->task_waking) 1626 p->sched_class->task_waking(p); 1627 1628 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); 1629 if (task_cpu(p) != cpu) { 1630 wake_flags |= WF_MIGRATED; 1631 set_task_cpu(p, cpu); 1632 } 1633 #endif /* CONFIG_SMP */ 1634 1635 ttwu_queue(p, cpu); 1636 stat: 1637 ttwu_stat(p, cpu, wake_flags); 1638 out: 1639 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1640 1641 return success; 1642 } 1643 1644 /** 1645 * try_to_wake_up_local - try to wake up a local task with rq lock held 1646 * @p: the thread to be awakened 1647 * 1648 * Put @p on the run-queue if it's not already there. The caller must 1649 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1650 * the current task. 1651 */ 1652 static void try_to_wake_up_local(struct task_struct *p) 1653 { 1654 struct rq *rq = task_rq(p); 1655 1656 BUG_ON(rq != this_rq()); 1657 BUG_ON(p == current); 1658 lockdep_assert_held(&rq->lock); 1659 1660 if (!raw_spin_trylock(&p->pi_lock)) { 1661 raw_spin_unlock(&rq->lock); 1662 raw_spin_lock(&p->pi_lock); 1663 raw_spin_lock(&rq->lock); 1664 } 1665 1666 if (!(p->state & TASK_NORMAL)) 1667 goto out; 1668 1669 if (!p->on_rq) 1670 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1671 1672 ttwu_do_wakeup(rq, p, 0); 1673 ttwu_stat(p, smp_processor_id(), 0); 1674 out: 1675 raw_spin_unlock(&p->pi_lock); 1676 } 1677 1678 /** 1679 * wake_up_process - Wake up a specific process 1680 * @p: The process to be woken up. 1681 * 1682 * Attempt to wake up the nominated process and move it to the set of runnable 1683 * processes. Returns 1 if the process was woken up, 0 if it was already 1684 * running. 1685 * 1686 * It may be assumed that this function implies a write memory barrier before 1687 * changing the task state if and only if any tasks are woken up. 1688 */ 1689 int wake_up_process(struct task_struct *p) 1690 { 1691 return try_to_wake_up(p, TASK_ALL, 0); 1692 } 1693 EXPORT_SYMBOL(wake_up_process); 1694 1695 int wake_up_state(struct task_struct *p, unsigned int state) 1696 { 1697 return try_to_wake_up(p, state, 0); 1698 } 1699 1700 /* 1701 * Perform scheduler related setup for a newly forked process p. 1702 * p is forked by current. 1703 * 1704 * __sched_fork() is basic setup used by init_idle() too: 1705 */ 1706 static void __sched_fork(struct task_struct *p) 1707 { 1708 p->on_rq = 0; 1709 1710 p->se.on_rq = 0; 1711 p->se.exec_start = 0; 1712 p->se.sum_exec_runtime = 0; 1713 p->se.prev_sum_exec_runtime = 0; 1714 p->se.nr_migrations = 0; 1715 p->se.vruntime = 0; 1716 INIT_LIST_HEAD(&p->se.group_node); 1717 1718 #ifdef CONFIG_SCHEDSTATS 1719 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1720 #endif 1721 1722 INIT_LIST_HEAD(&p->rt.run_list); 1723 1724 #ifdef CONFIG_PREEMPT_NOTIFIERS 1725 INIT_HLIST_HEAD(&p->preempt_notifiers); 1726 #endif 1727 } 1728 1729 /* 1730 * fork()/clone()-time setup: 1731 */ 1732 void sched_fork(struct task_struct *p) 1733 { 1734 unsigned long flags; 1735 int cpu = get_cpu(); 1736 1737 __sched_fork(p); 1738 /* 1739 * We mark the process as running here. This guarantees that 1740 * nobody will actually run it, and a signal or other external 1741 * event cannot wake it up and insert it on the runqueue either. 1742 */ 1743 p->state = TASK_RUNNING; 1744 1745 /* 1746 * Make sure we do not leak PI boosting priority to the child. 1747 */ 1748 p->prio = current->normal_prio; 1749 1750 /* 1751 * Revert to default priority/policy on fork if requested. 1752 */ 1753 if (unlikely(p->sched_reset_on_fork)) { 1754 if (task_has_rt_policy(p)) { 1755 p->policy = SCHED_NORMAL; 1756 p->static_prio = NICE_TO_PRIO(0); 1757 p->rt_priority = 0; 1758 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1759 p->static_prio = NICE_TO_PRIO(0); 1760 1761 p->prio = p->normal_prio = __normal_prio(p); 1762 set_load_weight(p); 1763 1764 /* 1765 * We don't need the reset flag anymore after the fork. It has 1766 * fulfilled its duty: 1767 */ 1768 p->sched_reset_on_fork = 0; 1769 } 1770 1771 if (!rt_prio(p->prio)) 1772 p->sched_class = &fair_sched_class; 1773 1774 if (p->sched_class->task_fork) 1775 p->sched_class->task_fork(p); 1776 1777 /* 1778 * The child is not yet in the pid-hash so no cgroup attach races, 1779 * and the cgroup is pinned to this child due to cgroup_fork() 1780 * is ran before sched_fork(). 1781 * 1782 * Silence PROVE_RCU. 1783 */ 1784 raw_spin_lock_irqsave(&p->pi_lock, flags); 1785 set_task_cpu(p, cpu); 1786 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1787 1788 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1789 if (likely(sched_info_on())) 1790 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1791 #endif 1792 #if defined(CONFIG_SMP) 1793 p->on_cpu = 0; 1794 #endif 1795 #ifdef CONFIG_PREEMPT_COUNT 1796 /* Want to start with kernel preemption disabled. */ 1797 task_thread_info(p)->preempt_count = 1; 1798 #endif 1799 #ifdef CONFIG_SMP 1800 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1801 #endif 1802 1803 put_cpu(); 1804 } 1805 1806 /* 1807 * wake_up_new_task - wake up a newly created task for the first time. 1808 * 1809 * This function will do some initial scheduler statistics housekeeping 1810 * that must be done for every newly created context, then puts the task 1811 * on the runqueue and wakes it. 1812 */ 1813 void wake_up_new_task(struct task_struct *p) 1814 { 1815 unsigned long flags; 1816 struct rq *rq; 1817 1818 raw_spin_lock_irqsave(&p->pi_lock, flags); 1819 #ifdef CONFIG_SMP 1820 /* 1821 * Fork balancing, do it here and not earlier because: 1822 * - cpus_allowed can change in the fork path 1823 * - any previously selected cpu might disappear through hotplug 1824 */ 1825 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0)); 1826 #endif 1827 1828 rq = __task_rq_lock(p); 1829 activate_task(rq, p, 0); 1830 p->on_rq = 1; 1831 trace_sched_wakeup_new(p, true); 1832 check_preempt_curr(rq, p, WF_FORK); 1833 #ifdef CONFIG_SMP 1834 if (p->sched_class->task_woken) 1835 p->sched_class->task_woken(rq, p); 1836 #endif 1837 task_rq_unlock(rq, p, &flags); 1838 } 1839 1840 #ifdef CONFIG_PREEMPT_NOTIFIERS 1841 1842 /** 1843 * preempt_notifier_register - tell me when current is being preempted & rescheduled 1844 * @notifier: notifier struct to register 1845 */ 1846 void preempt_notifier_register(struct preempt_notifier *notifier) 1847 { 1848 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 1849 } 1850 EXPORT_SYMBOL_GPL(preempt_notifier_register); 1851 1852 /** 1853 * preempt_notifier_unregister - no longer interested in preemption notifications 1854 * @notifier: notifier struct to unregister 1855 * 1856 * This is safe to call from within a preemption notifier. 1857 */ 1858 void preempt_notifier_unregister(struct preempt_notifier *notifier) 1859 { 1860 hlist_del(¬ifier->link); 1861 } 1862 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 1863 1864 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1865 { 1866 struct preempt_notifier *notifier; 1867 struct hlist_node *node; 1868 1869 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 1870 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 1871 } 1872 1873 static void 1874 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1875 struct task_struct *next) 1876 { 1877 struct preempt_notifier *notifier; 1878 struct hlist_node *node; 1879 1880 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 1881 notifier->ops->sched_out(notifier, next); 1882 } 1883 1884 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 1885 1886 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1887 { 1888 } 1889 1890 static void 1891 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1892 struct task_struct *next) 1893 { 1894 } 1895 1896 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 1897 1898 /** 1899 * prepare_task_switch - prepare to switch tasks 1900 * @rq: the runqueue preparing to switch 1901 * @prev: the current task that is being switched out 1902 * @next: the task we are going to switch to. 1903 * 1904 * This is called with the rq lock held and interrupts off. It must 1905 * be paired with a subsequent finish_task_switch after the context 1906 * switch. 1907 * 1908 * prepare_task_switch sets up locking and calls architecture specific 1909 * hooks. 1910 */ 1911 static inline void 1912 prepare_task_switch(struct rq *rq, struct task_struct *prev, 1913 struct task_struct *next) 1914 { 1915 sched_info_switch(prev, next); 1916 perf_event_task_sched_out(prev, next); 1917 fire_sched_out_preempt_notifiers(prev, next); 1918 prepare_lock_switch(rq, next); 1919 prepare_arch_switch(next); 1920 trace_sched_switch(prev, next); 1921 } 1922 1923 /** 1924 * finish_task_switch - clean up after a task-switch 1925 * @rq: runqueue associated with task-switch 1926 * @prev: the thread we just switched away from. 1927 * 1928 * finish_task_switch must be called after the context switch, paired 1929 * with a prepare_task_switch call before the context switch. 1930 * finish_task_switch will reconcile locking set up by prepare_task_switch, 1931 * and do any other architecture-specific cleanup actions. 1932 * 1933 * Note that we may have delayed dropping an mm in context_switch(). If 1934 * so, we finish that here outside of the runqueue lock. (Doing it 1935 * with the lock held can cause deadlocks; see schedule() for 1936 * details.) 1937 */ 1938 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 1939 __releases(rq->lock) 1940 { 1941 struct mm_struct *mm = rq->prev_mm; 1942 long prev_state; 1943 1944 rq->prev_mm = NULL; 1945 1946 /* 1947 * A task struct has one reference for the use as "current". 1948 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 1949 * schedule one last time. The schedule call will never return, and 1950 * the scheduled task must drop that reference. 1951 * The test for TASK_DEAD must occur while the runqueue locks are 1952 * still held, otherwise prev could be scheduled on another cpu, die 1953 * there before we look at prev->state, and then the reference would 1954 * be dropped twice. 1955 * Manfred Spraul <manfred@colorfullife.com> 1956 */ 1957 prev_state = prev->state; 1958 finish_arch_switch(prev); 1959 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1960 local_irq_disable(); 1961 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1962 perf_event_task_sched_in(prev, current); 1963 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1964 local_irq_enable(); 1965 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1966 finish_lock_switch(rq, prev); 1967 1968 fire_sched_in_preempt_notifiers(current); 1969 if (mm) 1970 mmdrop(mm); 1971 if (unlikely(prev_state == TASK_DEAD)) { 1972 /* 1973 * Remove function-return probe instances associated with this 1974 * task and put them back on the free list. 1975 */ 1976 kprobe_flush_task(prev); 1977 put_task_struct(prev); 1978 } 1979 } 1980 1981 #ifdef CONFIG_SMP 1982 1983 /* assumes rq->lock is held */ 1984 static inline void pre_schedule(struct rq *rq, struct task_struct *prev) 1985 { 1986 if (prev->sched_class->pre_schedule) 1987 prev->sched_class->pre_schedule(rq, prev); 1988 } 1989 1990 /* rq->lock is NOT held, but preemption is disabled */ 1991 static inline void post_schedule(struct rq *rq) 1992 { 1993 if (rq->post_schedule) { 1994 unsigned long flags; 1995 1996 raw_spin_lock_irqsave(&rq->lock, flags); 1997 if (rq->curr->sched_class->post_schedule) 1998 rq->curr->sched_class->post_schedule(rq); 1999 raw_spin_unlock_irqrestore(&rq->lock, flags); 2000 2001 rq->post_schedule = 0; 2002 } 2003 } 2004 2005 #else 2006 2007 static inline void pre_schedule(struct rq *rq, struct task_struct *p) 2008 { 2009 } 2010 2011 static inline void post_schedule(struct rq *rq) 2012 { 2013 } 2014 2015 #endif 2016 2017 /** 2018 * schedule_tail - first thing a freshly forked thread must call. 2019 * @prev: the thread we just switched away from. 2020 */ 2021 asmlinkage void schedule_tail(struct task_struct *prev) 2022 __releases(rq->lock) 2023 { 2024 struct rq *rq = this_rq(); 2025 2026 finish_task_switch(rq, prev); 2027 2028 /* 2029 * FIXME: do we need to worry about rq being invalidated by the 2030 * task_switch? 2031 */ 2032 post_schedule(rq); 2033 2034 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 2035 /* In this case, finish_task_switch does not reenable preemption */ 2036 preempt_enable(); 2037 #endif 2038 if (current->set_child_tid) 2039 put_user(task_pid_vnr(current), current->set_child_tid); 2040 } 2041 2042 /* 2043 * context_switch - switch to the new MM and the new 2044 * thread's register state. 2045 */ 2046 static inline void 2047 context_switch(struct rq *rq, struct task_struct *prev, 2048 struct task_struct *next) 2049 { 2050 struct mm_struct *mm, *oldmm; 2051 2052 prepare_task_switch(rq, prev, next); 2053 2054 mm = next->mm; 2055 oldmm = prev->active_mm; 2056 /* 2057 * For paravirt, this is coupled with an exit in switch_to to 2058 * combine the page table reload and the switch backend into 2059 * one hypercall. 2060 */ 2061 arch_start_context_switch(prev); 2062 2063 if (!mm) { 2064 next->active_mm = oldmm; 2065 atomic_inc(&oldmm->mm_count); 2066 enter_lazy_tlb(oldmm, next); 2067 } else 2068 switch_mm(oldmm, mm, next); 2069 2070 if (!prev->mm) { 2071 prev->active_mm = NULL; 2072 rq->prev_mm = oldmm; 2073 } 2074 /* 2075 * Since the runqueue lock will be released by the next 2076 * task (which is an invalid locking op but in the case 2077 * of the scheduler it's an obvious special-case), so we 2078 * do an early lockdep release here: 2079 */ 2080 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 2081 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2082 #endif 2083 2084 /* Here we just switch the register state and the stack. */ 2085 switch_to(prev, next, prev); 2086 2087 barrier(); 2088 /* 2089 * this_rq must be evaluated again because prev may have moved 2090 * CPUs since it called schedule(), thus the 'rq' on its stack 2091 * frame will be invalid. 2092 */ 2093 finish_task_switch(this_rq(), prev); 2094 } 2095 2096 /* 2097 * nr_running, nr_uninterruptible and nr_context_switches: 2098 * 2099 * externally visible scheduler statistics: current number of runnable 2100 * threads, current number of uninterruptible-sleeping threads, total 2101 * number of context switches performed since bootup. 2102 */ 2103 unsigned long nr_running(void) 2104 { 2105 unsigned long i, sum = 0; 2106 2107 for_each_online_cpu(i) 2108 sum += cpu_rq(i)->nr_running; 2109 2110 return sum; 2111 } 2112 2113 unsigned long nr_uninterruptible(void) 2114 { 2115 unsigned long i, sum = 0; 2116 2117 for_each_possible_cpu(i) 2118 sum += cpu_rq(i)->nr_uninterruptible; 2119 2120 /* 2121 * Since we read the counters lockless, it might be slightly 2122 * inaccurate. Do not allow it to go below zero though: 2123 */ 2124 if (unlikely((long)sum < 0)) 2125 sum = 0; 2126 2127 return sum; 2128 } 2129 2130 unsigned long long nr_context_switches(void) 2131 { 2132 int i; 2133 unsigned long long sum = 0; 2134 2135 for_each_possible_cpu(i) 2136 sum += cpu_rq(i)->nr_switches; 2137 2138 return sum; 2139 } 2140 2141 unsigned long nr_iowait(void) 2142 { 2143 unsigned long i, sum = 0; 2144 2145 for_each_possible_cpu(i) 2146 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2147 2148 return sum; 2149 } 2150 2151 unsigned long nr_iowait_cpu(int cpu) 2152 { 2153 struct rq *this = cpu_rq(cpu); 2154 return atomic_read(&this->nr_iowait); 2155 } 2156 2157 unsigned long this_cpu_load(void) 2158 { 2159 struct rq *this = this_rq(); 2160 return this->cpu_load[0]; 2161 } 2162 2163 2164 /* Variables and functions for calc_load */ 2165 static atomic_long_t calc_load_tasks; 2166 static unsigned long calc_load_update; 2167 unsigned long avenrun[3]; 2168 EXPORT_SYMBOL(avenrun); 2169 2170 static long calc_load_fold_active(struct rq *this_rq) 2171 { 2172 long nr_active, delta = 0; 2173 2174 nr_active = this_rq->nr_running; 2175 nr_active += (long) this_rq->nr_uninterruptible; 2176 2177 if (nr_active != this_rq->calc_load_active) { 2178 delta = nr_active - this_rq->calc_load_active; 2179 this_rq->calc_load_active = nr_active; 2180 } 2181 2182 return delta; 2183 } 2184 2185 static unsigned long 2186 calc_load(unsigned long load, unsigned long exp, unsigned long active) 2187 { 2188 load *= exp; 2189 load += active * (FIXED_1 - exp); 2190 load += 1UL << (FSHIFT - 1); 2191 return load >> FSHIFT; 2192 } 2193 2194 #ifdef CONFIG_NO_HZ 2195 /* 2196 * For NO_HZ we delay the active fold to the next LOAD_FREQ update. 2197 * 2198 * When making the ILB scale, we should try to pull this in as well. 2199 */ 2200 static atomic_long_t calc_load_tasks_idle; 2201 2202 void calc_load_account_idle(struct rq *this_rq) 2203 { 2204 long delta; 2205 2206 delta = calc_load_fold_active(this_rq); 2207 if (delta) 2208 atomic_long_add(delta, &calc_load_tasks_idle); 2209 } 2210 2211 static long calc_load_fold_idle(void) 2212 { 2213 long delta = 0; 2214 2215 /* 2216 * Its got a race, we don't care... 2217 */ 2218 if (atomic_long_read(&calc_load_tasks_idle)) 2219 delta = atomic_long_xchg(&calc_load_tasks_idle, 0); 2220 2221 return delta; 2222 } 2223 2224 /** 2225 * fixed_power_int - compute: x^n, in O(log n) time 2226 * 2227 * @x: base of the power 2228 * @frac_bits: fractional bits of @x 2229 * @n: power to raise @x to. 2230 * 2231 * By exploiting the relation between the definition of the natural power 2232 * function: x^n := x*x*...*x (x multiplied by itself for n times), and 2233 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, 2234 * (where: n_i \elem {0, 1}, the binary vector representing n), 2235 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is 2236 * of course trivially computable in O(log_2 n), the length of our binary 2237 * vector. 2238 */ 2239 static unsigned long 2240 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) 2241 { 2242 unsigned long result = 1UL << frac_bits; 2243 2244 if (n) for (;;) { 2245 if (n & 1) { 2246 result *= x; 2247 result += 1UL << (frac_bits - 1); 2248 result >>= frac_bits; 2249 } 2250 n >>= 1; 2251 if (!n) 2252 break; 2253 x *= x; 2254 x += 1UL << (frac_bits - 1); 2255 x >>= frac_bits; 2256 } 2257 2258 return result; 2259 } 2260 2261 /* 2262 * a1 = a0 * e + a * (1 - e) 2263 * 2264 * a2 = a1 * e + a * (1 - e) 2265 * = (a0 * e + a * (1 - e)) * e + a * (1 - e) 2266 * = a0 * e^2 + a * (1 - e) * (1 + e) 2267 * 2268 * a3 = a2 * e + a * (1 - e) 2269 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) 2270 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) 2271 * 2272 * ... 2273 * 2274 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] 2275 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) 2276 * = a0 * e^n + a * (1 - e^n) 2277 * 2278 * [1] application of the geometric series: 2279 * 2280 * n 1 - x^(n+1) 2281 * S_n := \Sum x^i = ------------- 2282 * i=0 1 - x 2283 */ 2284 static unsigned long 2285 calc_load_n(unsigned long load, unsigned long exp, 2286 unsigned long active, unsigned int n) 2287 { 2288 2289 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); 2290 } 2291 2292 /* 2293 * NO_HZ can leave us missing all per-cpu ticks calling 2294 * calc_load_account_active(), but since an idle CPU folds its delta into 2295 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold 2296 * in the pending idle delta if our idle period crossed a load cycle boundary. 2297 * 2298 * Once we've updated the global active value, we need to apply the exponential 2299 * weights adjusted to the number of cycles missed. 2300 */ 2301 static void calc_global_nohz(void) 2302 { 2303 long delta, active, n; 2304 2305 /* 2306 * If we crossed a calc_load_update boundary, make sure to fold 2307 * any pending idle changes, the respective CPUs might have 2308 * missed the tick driven calc_load_account_active() update 2309 * due to NO_HZ. 2310 */ 2311 delta = calc_load_fold_idle(); 2312 if (delta) 2313 atomic_long_add(delta, &calc_load_tasks); 2314 2315 /* 2316 * It could be the one fold was all it took, we done! 2317 */ 2318 if (time_before(jiffies, calc_load_update + 10)) 2319 return; 2320 2321 /* 2322 * Catch-up, fold however many we are behind still 2323 */ 2324 delta = jiffies - calc_load_update - 10; 2325 n = 1 + (delta / LOAD_FREQ); 2326 2327 active = atomic_long_read(&calc_load_tasks); 2328 active = active > 0 ? active * FIXED_1 : 0; 2329 2330 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); 2331 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); 2332 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); 2333 2334 calc_load_update += n * LOAD_FREQ; 2335 } 2336 #else 2337 void calc_load_account_idle(struct rq *this_rq) 2338 { 2339 } 2340 2341 static inline long calc_load_fold_idle(void) 2342 { 2343 return 0; 2344 } 2345 2346 static void calc_global_nohz(void) 2347 { 2348 } 2349 #endif 2350 2351 /** 2352 * get_avenrun - get the load average array 2353 * @loads: pointer to dest load array 2354 * @offset: offset to add 2355 * @shift: shift count to shift the result left 2356 * 2357 * These values are estimates at best, so no need for locking. 2358 */ 2359 void get_avenrun(unsigned long *loads, unsigned long offset, int shift) 2360 { 2361 loads[0] = (avenrun[0] + offset) << shift; 2362 loads[1] = (avenrun[1] + offset) << shift; 2363 loads[2] = (avenrun[2] + offset) << shift; 2364 } 2365 2366 /* 2367 * calc_load - update the avenrun load estimates 10 ticks after the 2368 * CPUs have updated calc_load_tasks. 2369 */ 2370 void calc_global_load(unsigned long ticks) 2371 { 2372 long active; 2373 2374 if (time_before(jiffies, calc_load_update + 10)) 2375 return; 2376 2377 active = atomic_long_read(&calc_load_tasks); 2378 active = active > 0 ? active * FIXED_1 : 0; 2379 2380 avenrun[0] = calc_load(avenrun[0], EXP_1, active); 2381 avenrun[1] = calc_load(avenrun[1], EXP_5, active); 2382 avenrun[2] = calc_load(avenrun[2], EXP_15, active); 2383 2384 calc_load_update += LOAD_FREQ; 2385 2386 /* 2387 * Account one period with whatever state we found before 2388 * folding in the nohz state and ageing the entire idle period. 2389 * 2390 * This avoids loosing a sample when we go idle between 2391 * calc_load_account_active() (10 ticks ago) and now and thus 2392 * under-accounting. 2393 */ 2394 calc_global_nohz(); 2395 } 2396 2397 /* 2398 * Called from update_cpu_load() to periodically update this CPU's 2399 * active count. 2400 */ 2401 static void calc_load_account_active(struct rq *this_rq) 2402 { 2403 long delta; 2404 2405 if (time_before(jiffies, this_rq->calc_load_update)) 2406 return; 2407 2408 delta = calc_load_fold_active(this_rq); 2409 delta += calc_load_fold_idle(); 2410 if (delta) 2411 atomic_long_add(delta, &calc_load_tasks); 2412 2413 this_rq->calc_load_update += LOAD_FREQ; 2414 } 2415 2416 /* 2417 * The exact cpuload at various idx values, calculated at every tick would be 2418 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load 2419 * 2420 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called 2421 * on nth tick when cpu may be busy, then we have: 2422 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2423 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load 2424 * 2425 * decay_load_missed() below does efficient calculation of 2426 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2427 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load 2428 * 2429 * The calculation is approximated on a 128 point scale. 2430 * degrade_zero_ticks is the number of ticks after which load at any 2431 * particular idx is approximated to be zero. 2432 * degrade_factor is a precomputed table, a row for each load idx. 2433 * Each column corresponds to degradation factor for a power of two ticks, 2434 * based on 128 point scale. 2435 * Example: 2436 * row 2, col 3 (=12) says that the degradation at load idx 2 after 2437 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). 2438 * 2439 * With this power of 2 load factors, we can degrade the load n times 2440 * by looking at 1 bits in n and doing as many mult/shift instead of 2441 * n mult/shifts needed by the exact degradation. 2442 */ 2443 #define DEGRADE_SHIFT 7 2444 static const unsigned char 2445 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 2446 static const unsigned char 2447 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 2448 {0, 0, 0, 0, 0, 0, 0, 0}, 2449 {64, 32, 8, 0, 0, 0, 0, 0}, 2450 {96, 72, 40, 12, 1, 0, 0}, 2451 {112, 98, 75, 43, 15, 1, 0}, 2452 {120, 112, 98, 76, 45, 16, 2} }; 2453 2454 /* 2455 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 2456 * would be when CPU is idle and so we just decay the old load without 2457 * adding any new load. 2458 */ 2459 static unsigned long 2460 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 2461 { 2462 int j = 0; 2463 2464 if (!missed_updates) 2465 return load; 2466 2467 if (missed_updates >= degrade_zero_ticks[idx]) 2468 return 0; 2469 2470 if (idx == 1) 2471 return load >> missed_updates; 2472 2473 while (missed_updates) { 2474 if (missed_updates % 2) 2475 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 2476 2477 missed_updates >>= 1; 2478 j++; 2479 } 2480 return load; 2481 } 2482 2483 /* 2484 * Update rq->cpu_load[] statistics. This function is usually called every 2485 * scheduler tick (TICK_NSEC). With tickless idle this will not be called 2486 * every tick. We fix it up based on jiffies. 2487 */ 2488 void update_cpu_load(struct rq *this_rq) 2489 { 2490 unsigned long this_load = this_rq->load.weight; 2491 unsigned long curr_jiffies = jiffies; 2492 unsigned long pending_updates; 2493 int i, scale; 2494 2495 this_rq->nr_load_updates++; 2496 2497 /* Avoid repeated calls on same jiffy, when moving in and out of idle */ 2498 if (curr_jiffies == this_rq->last_load_update_tick) 2499 return; 2500 2501 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2502 this_rq->last_load_update_tick = curr_jiffies; 2503 2504 /* Update our load: */ 2505 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 2506 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 2507 unsigned long old_load, new_load; 2508 2509 /* scale is effectively 1 << i now, and >> i divides by scale */ 2510 2511 old_load = this_rq->cpu_load[i]; 2512 old_load = decay_load_missed(old_load, pending_updates - 1, i); 2513 new_load = this_load; 2514 /* 2515 * Round up the averaging division if load is increasing. This 2516 * prevents us from getting stuck on 9 if the load is 10, for 2517 * example. 2518 */ 2519 if (new_load > old_load) 2520 new_load += scale - 1; 2521 2522 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 2523 } 2524 2525 sched_avg_update(this_rq); 2526 } 2527 2528 static void update_cpu_load_active(struct rq *this_rq) 2529 { 2530 update_cpu_load(this_rq); 2531 2532 calc_load_account_active(this_rq); 2533 } 2534 2535 #ifdef CONFIG_SMP 2536 2537 /* 2538 * sched_exec - execve() is a valuable balancing opportunity, because at 2539 * this point the task has the smallest effective memory and cache footprint. 2540 */ 2541 void sched_exec(void) 2542 { 2543 struct task_struct *p = current; 2544 unsigned long flags; 2545 int dest_cpu; 2546 2547 raw_spin_lock_irqsave(&p->pi_lock, flags); 2548 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0); 2549 if (dest_cpu == smp_processor_id()) 2550 goto unlock; 2551 2552 if (likely(cpu_active(dest_cpu))) { 2553 struct migration_arg arg = { p, dest_cpu }; 2554 2555 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2556 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2557 return; 2558 } 2559 unlock: 2560 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2561 } 2562 2563 #endif 2564 2565 DEFINE_PER_CPU(struct kernel_stat, kstat); 2566 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2567 2568 EXPORT_PER_CPU_SYMBOL(kstat); 2569 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2570 2571 /* 2572 * Return any ns on the sched_clock that have not yet been accounted in 2573 * @p in case that task is currently running. 2574 * 2575 * Called with task_rq_lock() held on @rq. 2576 */ 2577 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2578 { 2579 u64 ns = 0; 2580 2581 if (task_current(rq, p)) { 2582 update_rq_clock(rq); 2583 ns = rq->clock_task - p->se.exec_start; 2584 if ((s64)ns < 0) 2585 ns = 0; 2586 } 2587 2588 return ns; 2589 } 2590 2591 unsigned long long task_delta_exec(struct task_struct *p) 2592 { 2593 unsigned long flags; 2594 struct rq *rq; 2595 u64 ns = 0; 2596 2597 rq = task_rq_lock(p, &flags); 2598 ns = do_task_delta_exec(p, rq); 2599 task_rq_unlock(rq, p, &flags); 2600 2601 return ns; 2602 } 2603 2604 /* 2605 * Return accounted runtime for the task. 2606 * In case the task is currently running, return the runtime plus current's 2607 * pending runtime that have not been accounted yet. 2608 */ 2609 unsigned long long task_sched_runtime(struct task_struct *p) 2610 { 2611 unsigned long flags; 2612 struct rq *rq; 2613 u64 ns = 0; 2614 2615 rq = task_rq_lock(p, &flags); 2616 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2617 task_rq_unlock(rq, p, &flags); 2618 2619 return ns; 2620 } 2621 2622 #ifdef CONFIG_CGROUP_CPUACCT 2623 struct cgroup_subsys cpuacct_subsys; 2624 struct cpuacct root_cpuacct; 2625 #endif 2626 2627 static inline void task_group_account_field(struct task_struct *p, int index, 2628 u64 tmp) 2629 { 2630 #ifdef CONFIG_CGROUP_CPUACCT 2631 struct kernel_cpustat *kcpustat; 2632 struct cpuacct *ca; 2633 #endif 2634 /* 2635 * Since all updates are sure to touch the root cgroup, we 2636 * get ourselves ahead and touch it first. If the root cgroup 2637 * is the only cgroup, then nothing else should be necessary. 2638 * 2639 */ 2640 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp; 2641 2642 #ifdef CONFIG_CGROUP_CPUACCT 2643 if (unlikely(!cpuacct_subsys.active)) 2644 return; 2645 2646 rcu_read_lock(); 2647 ca = task_ca(p); 2648 while (ca && (ca != &root_cpuacct)) { 2649 kcpustat = this_cpu_ptr(ca->cpustat); 2650 kcpustat->cpustat[index] += tmp; 2651 ca = parent_ca(ca); 2652 } 2653 rcu_read_unlock(); 2654 #endif 2655 } 2656 2657 2658 /* 2659 * Account user cpu time to a process. 2660 * @p: the process that the cpu time gets accounted to 2661 * @cputime: the cpu time spent in user space since the last update 2662 * @cputime_scaled: cputime scaled by cpu frequency 2663 */ 2664 void account_user_time(struct task_struct *p, cputime_t cputime, 2665 cputime_t cputime_scaled) 2666 { 2667 int index; 2668 2669 /* Add user time to process. */ 2670 p->utime += cputime; 2671 p->utimescaled += cputime_scaled; 2672 account_group_user_time(p, cputime); 2673 2674 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 2675 2676 /* Add user time to cpustat. */ 2677 task_group_account_field(p, index, (__force u64) cputime); 2678 2679 /* Account for user time used */ 2680 acct_update_integrals(p); 2681 } 2682 2683 /* 2684 * Account guest cpu time to a process. 2685 * @p: the process that the cpu time gets accounted to 2686 * @cputime: the cpu time spent in virtual machine since the last update 2687 * @cputime_scaled: cputime scaled by cpu frequency 2688 */ 2689 static void account_guest_time(struct task_struct *p, cputime_t cputime, 2690 cputime_t cputime_scaled) 2691 { 2692 u64 *cpustat = kcpustat_this_cpu->cpustat; 2693 2694 /* Add guest time to process. */ 2695 p->utime += cputime; 2696 p->utimescaled += cputime_scaled; 2697 account_group_user_time(p, cputime); 2698 p->gtime += cputime; 2699 2700 /* Add guest time to cpustat. */ 2701 if (TASK_NICE(p) > 0) { 2702 cpustat[CPUTIME_NICE] += (__force u64) cputime; 2703 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; 2704 } else { 2705 cpustat[CPUTIME_USER] += (__force u64) cputime; 2706 cpustat[CPUTIME_GUEST] += (__force u64) cputime; 2707 } 2708 } 2709 2710 /* 2711 * Account system cpu time to a process and desired cpustat field 2712 * @p: the process that the cpu time gets accounted to 2713 * @cputime: the cpu time spent in kernel space since the last update 2714 * @cputime_scaled: cputime scaled by cpu frequency 2715 * @target_cputime64: pointer to cpustat field that has to be updated 2716 */ 2717 static inline 2718 void __account_system_time(struct task_struct *p, cputime_t cputime, 2719 cputime_t cputime_scaled, int index) 2720 { 2721 /* Add system time to process. */ 2722 p->stime += cputime; 2723 p->stimescaled += cputime_scaled; 2724 account_group_system_time(p, cputime); 2725 2726 /* Add system time to cpustat. */ 2727 task_group_account_field(p, index, (__force u64) cputime); 2728 2729 /* Account for system time used */ 2730 acct_update_integrals(p); 2731 } 2732 2733 /* 2734 * Account system cpu time to a process. 2735 * @p: the process that the cpu time gets accounted to 2736 * @hardirq_offset: the offset to subtract from hardirq_count() 2737 * @cputime: the cpu time spent in kernel space since the last update 2738 * @cputime_scaled: cputime scaled by cpu frequency 2739 */ 2740 void account_system_time(struct task_struct *p, int hardirq_offset, 2741 cputime_t cputime, cputime_t cputime_scaled) 2742 { 2743 int index; 2744 2745 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 2746 account_guest_time(p, cputime, cputime_scaled); 2747 return; 2748 } 2749 2750 if (hardirq_count() - hardirq_offset) 2751 index = CPUTIME_IRQ; 2752 else if (in_serving_softirq()) 2753 index = CPUTIME_SOFTIRQ; 2754 else 2755 index = CPUTIME_SYSTEM; 2756 2757 __account_system_time(p, cputime, cputime_scaled, index); 2758 } 2759 2760 /* 2761 * Account for involuntary wait time. 2762 * @cputime: the cpu time spent in involuntary wait 2763 */ 2764 void account_steal_time(cputime_t cputime) 2765 { 2766 u64 *cpustat = kcpustat_this_cpu->cpustat; 2767 2768 cpustat[CPUTIME_STEAL] += (__force u64) cputime; 2769 } 2770 2771 /* 2772 * Account for idle time. 2773 * @cputime: the cpu time spent in idle wait 2774 */ 2775 void account_idle_time(cputime_t cputime) 2776 { 2777 u64 *cpustat = kcpustat_this_cpu->cpustat; 2778 struct rq *rq = this_rq(); 2779 2780 if (atomic_read(&rq->nr_iowait) > 0) 2781 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; 2782 else 2783 cpustat[CPUTIME_IDLE] += (__force u64) cputime; 2784 } 2785 2786 static __always_inline bool steal_account_process_tick(void) 2787 { 2788 #ifdef CONFIG_PARAVIRT 2789 if (static_key_false(¶virt_steal_enabled)) { 2790 u64 steal, st = 0; 2791 2792 steal = paravirt_steal_clock(smp_processor_id()); 2793 steal -= this_rq()->prev_steal_time; 2794 2795 st = steal_ticks(steal); 2796 this_rq()->prev_steal_time += st * TICK_NSEC; 2797 2798 account_steal_time(st); 2799 return st; 2800 } 2801 #endif 2802 return false; 2803 } 2804 2805 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 2806 2807 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2808 /* 2809 * Account a tick to a process and cpustat 2810 * @p: the process that the cpu time gets accounted to 2811 * @user_tick: is the tick from userspace 2812 * @rq: the pointer to rq 2813 * 2814 * Tick demultiplexing follows the order 2815 * - pending hardirq update 2816 * - pending softirq update 2817 * - user_time 2818 * - idle_time 2819 * - system time 2820 * - check for guest_time 2821 * - else account as system_time 2822 * 2823 * Check for hardirq is done both for system and user time as there is 2824 * no timer going off while we are on hardirq and hence we may never get an 2825 * opportunity to update it solely in system time. 2826 * p->stime and friends are only updated on system time and not on irq 2827 * softirq as those do not count in task exec_runtime any more. 2828 */ 2829 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 2830 struct rq *rq) 2831 { 2832 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 2833 u64 *cpustat = kcpustat_this_cpu->cpustat; 2834 2835 if (steal_account_process_tick()) 2836 return; 2837 2838 if (irqtime_account_hi_update()) { 2839 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy; 2840 } else if (irqtime_account_si_update()) { 2841 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy; 2842 } else if (this_cpu_ksoftirqd() == p) { 2843 /* 2844 * ksoftirqd time do not get accounted in cpu_softirq_time. 2845 * So, we have to handle it separately here. 2846 * Also, p->stime needs to be updated for ksoftirqd. 2847 */ 2848 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 2849 CPUTIME_SOFTIRQ); 2850 } else if (user_tick) { 2851 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 2852 } else if (p == rq->idle) { 2853 account_idle_time(cputime_one_jiffy); 2854 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 2855 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); 2856 } else { 2857 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 2858 CPUTIME_SYSTEM); 2859 } 2860 } 2861 2862 static void irqtime_account_idle_ticks(int ticks) 2863 { 2864 int i; 2865 struct rq *rq = this_rq(); 2866 2867 for (i = 0; i < ticks; i++) 2868 irqtime_account_process_tick(current, 0, rq); 2869 } 2870 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 2871 static void irqtime_account_idle_ticks(int ticks) {} 2872 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 2873 struct rq *rq) {} 2874 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 2875 2876 /* 2877 * Account a single tick of cpu time. 2878 * @p: the process that the cpu time gets accounted to 2879 * @user_tick: indicates if the tick is a user or a system tick 2880 */ 2881 void account_process_tick(struct task_struct *p, int user_tick) 2882 { 2883 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 2884 struct rq *rq = this_rq(); 2885 2886 if (sched_clock_irqtime) { 2887 irqtime_account_process_tick(p, user_tick, rq); 2888 return; 2889 } 2890 2891 if (steal_account_process_tick()) 2892 return; 2893 2894 if (user_tick) 2895 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 2896 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 2897 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, 2898 one_jiffy_scaled); 2899 else 2900 account_idle_time(cputime_one_jiffy); 2901 } 2902 2903 /* 2904 * Account multiple ticks of steal time. 2905 * @p: the process from which the cpu time has been stolen 2906 * @ticks: number of stolen ticks 2907 */ 2908 void account_steal_ticks(unsigned long ticks) 2909 { 2910 account_steal_time(jiffies_to_cputime(ticks)); 2911 } 2912 2913 /* 2914 * Account multiple ticks of idle time. 2915 * @ticks: number of stolen ticks 2916 */ 2917 void account_idle_ticks(unsigned long ticks) 2918 { 2919 2920 if (sched_clock_irqtime) { 2921 irqtime_account_idle_ticks(ticks); 2922 return; 2923 } 2924 2925 account_idle_time(jiffies_to_cputime(ticks)); 2926 } 2927 2928 #endif 2929 2930 /* 2931 * Use precise platform statistics if available: 2932 */ 2933 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 2934 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2935 { 2936 *ut = p->utime; 2937 *st = p->stime; 2938 } 2939 2940 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2941 { 2942 struct task_cputime cputime; 2943 2944 thread_group_cputime(p, &cputime); 2945 2946 *ut = cputime.utime; 2947 *st = cputime.stime; 2948 } 2949 #else 2950 2951 #ifndef nsecs_to_cputime 2952 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) 2953 #endif 2954 2955 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2956 { 2957 cputime_t rtime, utime = p->utime, total = utime + p->stime; 2958 2959 /* 2960 * Use CFS's precise accounting: 2961 */ 2962 rtime = nsecs_to_cputime(p->se.sum_exec_runtime); 2963 2964 if (total) { 2965 u64 temp = (__force u64) rtime; 2966 2967 temp *= (__force u64) utime; 2968 do_div(temp, (__force u32) total); 2969 utime = (__force cputime_t) temp; 2970 } else 2971 utime = rtime; 2972 2973 /* 2974 * Compare with previous values, to keep monotonicity: 2975 */ 2976 p->prev_utime = max(p->prev_utime, utime); 2977 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime); 2978 2979 *ut = p->prev_utime; 2980 *st = p->prev_stime; 2981 } 2982 2983 /* 2984 * Must be called with siglock held. 2985 */ 2986 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2987 { 2988 struct signal_struct *sig = p->signal; 2989 struct task_cputime cputime; 2990 cputime_t rtime, utime, total; 2991 2992 thread_group_cputime(p, &cputime); 2993 2994 total = cputime.utime + cputime.stime; 2995 rtime = nsecs_to_cputime(cputime.sum_exec_runtime); 2996 2997 if (total) { 2998 u64 temp = (__force u64) rtime; 2999 3000 temp *= (__force u64) cputime.utime; 3001 do_div(temp, (__force u32) total); 3002 utime = (__force cputime_t) temp; 3003 } else 3004 utime = rtime; 3005 3006 sig->prev_utime = max(sig->prev_utime, utime); 3007 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime); 3008 3009 *ut = sig->prev_utime; 3010 *st = sig->prev_stime; 3011 } 3012 #endif 3013 3014 /* 3015 * This function gets called by the timer code, with HZ frequency. 3016 * We call it with interrupts disabled. 3017 */ 3018 void scheduler_tick(void) 3019 { 3020 int cpu = smp_processor_id(); 3021 struct rq *rq = cpu_rq(cpu); 3022 struct task_struct *curr = rq->curr; 3023 3024 sched_clock_tick(); 3025 3026 raw_spin_lock(&rq->lock); 3027 update_rq_clock(rq); 3028 update_cpu_load_active(rq); 3029 curr->sched_class->task_tick(rq, curr, 0); 3030 raw_spin_unlock(&rq->lock); 3031 3032 perf_event_task_tick(); 3033 3034 #ifdef CONFIG_SMP 3035 rq->idle_balance = idle_cpu(cpu); 3036 trigger_load_balance(rq, cpu); 3037 #endif 3038 } 3039 3040 notrace unsigned long get_parent_ip(unsigned long addr) 3041 { 3042 if (in_lock_functions(addr)) { 3043 addr = CALLER_ADDR2; 3044 if (in_lock_functions(addr)) 3045 addr = CALLER_ADDR3; 3046 } 3047 return addr; 3048 } 3049 3050 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3051 defined(CONFIG_PREEMPT_TRACER)) 3052 3053 void __kprobes add_preempt_count(int val) 3054 { 3055 #ifdef CONFIG_DEBUG_PREEMPT 3056 /* 3057 * Underflow? 3058 */ 3059 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3060 return; 3061 #endif 3062 preempt_count() += val; 3063 #ifdef CONFIG_DEBUG_PREEMPT 3064 /* 3065 * Spinlock count overflowing soon? 3066 */ 3067 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3068 PREEMPT_MASK - 10); 3069 #endif 3070 if (preempt_count() == val) 3071 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 3072 } 3073 EXPORT_SYMBOL(add_preempt_count); 3074 3075 void __kprobes sub_preempt_count(int val) 3076 { 3077 #ifdef CONFIG_DEBUG_PREEMPT 3078 /* 3079 * Underflow? 3080 */ 3081 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3082 return; 3083 /* 3084 * Is the spinlock portion underflowing? 3085 */ 3086 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3087 !(preempt_count() & PREEMPT_MASK))) 3088 return; 3089 #endif 3090 3091 if (preempt_count() == val) 3092 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 3093 preempt_count() -= val; 3094 } 3095 EXPORT_SYMBOL(sub_preempt_count); 3096 3097 #endif 3098 3099 /* 3100 * Print scheduling while atomic bug: 3101 */ 3102 static noinline void __schedule_bug(struct task_struct *prev) 3103 { 3104 struct pt_regs *regs = get_irq_regs(); 3105 3106 if (oops_in_progress) 3107 return; 3108 3109 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3110 prev->comm, prev->pid, preempt_count()); 3111 3112 debug_show_held_locks(prev); 3113 print_modules(); 3114 if (irqs_disabled()) 3115 print_irqtrace_events(prev); 3116 3117 if (regs) 3118 show_regs(regs); 3119 else 3120 dump_stack(); 3121 } 3122 3123 /* 3124 * Various schedule()-time debugging checks and statistics: 3125 */ 3126 static inline void schedule_debug(struct task_struct *prev) 3127 { 3128 /* 3129 * Test if we are atomic. Since do_exit() needs to call into 3130 * schedule() atomically, we ignore that path for now. 3131 * Otherwise, whine if we are scheduling when we should not be. 3132 */ 3133 if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) 3134 __schedule_bug(prev); 3135 rcu_sleep_check(); 3136 3137 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3138 3139 schedstat_inc(this_rq(), sched_count); 3140 } 3141 3142 static void put_prev_task(struct rq *rq, struct task_struct *prev) 3143 { 3144 if (prev->on_rq || rq->skip_clock_update < 0) 3145 update_rq_clock(rq); 3146 prev->sched_class->put_prev_task(rq, prev); 3147 } 3148 3149 /* 3150 * Pick up the highest-prio task: 3151 */ 3152 static inline struct task_struct * 3153 pick_next_task(struct rq *rq) 3154 { 3155 const struct sched_class *class; 3156 struct task_struct *p; 3157 3158 /* 3159 * Optimization: we know that if all tasks are in 3160 * the fair class we can call that function directly: 3161 */ 3162 if (likely(rq->nr_running == rq->cfs.h_nr_running)) { 3163 p = fair_sched_class.pick_next_task(rq); 3164 if (likely(p)) 3165 return p; 3166 } 3167 3168 for_each_class(class) { 3169 p = class->pick_next_task(rq); 3170 if (p) 3171 return p; 3172 } 3173 3174 BUG(); /* the idle class will always have a runnable task */ 3175 } 3176 3177 /* 3178 * __schedule() is the main scheduler function. 3179 */ 3180 static void __sched __schedule(void) 3181 { 3182 struct task_struct *prev, *next; 3183 unsigned long *switch_count; 3184 struct rq *rq; 3185 int cpu; 3186 3187 need_resched: 3188 preempt_disable(); 3189 cpu = smp_processor_id(); 3190 rq = cpu_rq(cpu); 3191 rcu_note_context_switch(cpu); 3192 prev = rq->curr; 3193 3194 schedule_debug(prev); 3195 3196 if (sched_feat(HRTICK)) 3197 hrtick_clear(rq); 3198 3199 raw_spin_lock_irq(&rq->lock); 3200 3201 switch_count = &prev->nivcsw; 3202 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 3203 if (unlikely(signal_pending_state(prev->state, prev))) { 3204 prev->state = TASK_RUNNING; 3205 } else { 3206 deactivate_task(rq, prev, DEQUEUE_SLEEP); 3207 prev->on_rq = 0; 3208 3209 /* 3210 * If a worker went to sleep, notify and ask workqueue 3211 * whether it wants to wake up a task to maintain 3212 * concurrency. 3213 */ 3214 if (prev->flags & PF_WQ_WORKER) { 3215 struct task_struct *to_wakeup; 3216 3217 to_wakeup = wq_worker_sleeping(prev, cpu); 3218 if (to_wakeup) 3219 try_to_wake_up_local(to_wakeup); 3220 } 3221 } 3222 switch_count = &prev->nvcsw; 3223 } 3224 3225 pre_schedule(rq, prev); 3226 3227 if (unlikely(!rq->nr_running)) 3228 idle_balance(cpu, rq); 3229 3230 put_prev_task(rq, prev); 3231 next = pick_next_task(rq); 3232 clear_tsk_need_resched(prev); 3233 rq->skip_clock_update = 0; 3234 3235 if (likely(prev != next)) { 3236 rq->nr_switches++; 3237 rq->curr = next; 3238 ++*switch_count; 3239 3240 context_switch(rq, prev, next); /* unlocks the rq */ 3241 /* 3242 * The context switch have flipped the stack from under us 3243 * and restored the local variables which were saved when 3244 * this task called schedule() in the past. prev == current 3245 * is still correct, but it can be moved to another cpu/rq. 3246 */ 3247 cpu = smp_processor_id(); 3248 rq = cpu_rq(cpu); 3249 } else 3250 raw_spin_unlock_irq(&rq->lock); 3251 3252 post_schedule(rq); 3253 3254 sched_preempt_enable_no_resched(); 3255 if (need_resched()) 3256 goto need_resched; 3257 } 3258 3259 static inline void sched_submit_work(struct task_struct *tsk) 3260 { 3261 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3262 return; 3263 /* 3264 * If we are going to sleep and we have plugged IO queued, 3265 * make sure to submit it to avoid deadlocks. 3266 */ 3267 if (blk_needs_flush_plug(tsk)) 3268 blk_schedule_flush_plug(tsk); 3269 } 3270 3271 asmlinkage void __sched schedule(void) 3272 { 3273 struct task_struct *tsk = current; 3274 3275 sched_submit_work(tsk); 3276 __schedule(); 3277 } 3278 EXPORT_SYMBOL(schedule); 3279 3280 /** 3281 * schedule_preempt_disabled - called with preemption disabled 3282 * 3283 * Returns with preemption disabled. Note: preempt_count must be 1 3284 */ 3285 void __sched schedule_preempt_disabled(void) 3286 { 3287 sched_preempt_enable_no_resched(); 3288 schedule(); 3289 preempt_disable(); 3290 } 3291 3292 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 3293 3294 static inline bool owner_running(struct mutex *lock, struct task_struct *owner) 3295 { 3296 if (lock->owner != owner) 3297 return false; 3298 3299 /* 3300 * Ensure we emit the owner->on_cpu, dereference _after_ checking 3301 * lock->owner still matches owner, if that fails, owner might 3302 * point to free()d memory, if it still matches, the rcu_read_lock() 3303 * ensures the memory stays valid. 3304 */ 3305 barrier(); 3306 3307 return owner->on_cpu; 3308 } 3309 3310 /* 3311 * Look out! "owner" is an entirely speculative pointer 3312 * access and not reliable. 3313 */ 3314 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) 3315 { 3316 if (!sched_feat(OWNER_SPIN)) 3317 return 0; 3318 3319 rcu_read_lock(); 3320 while (owner_running(lock, owner)) { 3321 if (need_resched()) 3322 break; 3323 3324 arch_mutex_cpu_relax(); 3325 } 3326 rcu_read_unlock(); 3327 3328 /* 3329 * We break out the loop above on need_resched() and when the 3330 * owner changed, which is a sign for heavy contention. Return 3331 * success only when lock->owner is NULL. 3332 */ 3333 return lock->owner == NULL; 3334 } 3335 #endif 3336 3337 #ifdef CONFIG_PREEMPT 3338 /* 3339 * this is the entry point to schedule() from in-kernel preemption 3340 * off of preempt_enable. Kernel preemptions off return from interrupt 3341 * occur there and call schedule directly. 3342 */ 3343 asmlinkage void __sched notrace preempt_schedule(void) 3344 { 3345 struct thread_info *ti = current_thread_info(); 3346 3347 /* 3348 * If there is a non-zero preempt_count or interrupts are disabled, 3349 * we do not want to preempt the current task. Just return.. 3350 */ 3351 if (likely(ti->preempt_count || irqs_disabled())) 3352 return; 3353 3354 do { 3355 add_preempt_count_notrace(PREEMPT_ACTIVE); 3356 __schedule(); 3357 sub_preempt_count_notrace(PREEMPT_ACTIVE); 3358 3359 /* 3360 * Check again in case we missed a preemption opportunity 3361 * between schedule and now. 3362 */ 3363 barrier(); 3364 } while (need_resched()); 3365 } 3366 EXPORT_SYMBOL(preempt_schedule); 3367 3368 /* 3369 * this is the entry point to schedule() from kernel preemption 3370 * off of irq context. 3371 * Note, that this is called and return with irqs disabled. This will 3372 * protect us against recursive calling from irq. 3373 */ 3374 asmlinkage void __sched preempt_schedule_irq(void) 3375 { 3376 struct thread_info *ti = current_thread_info(); 3377 3378 /* Catch callers which need to be fixed */ 3379 BUG_ON(ti->preempt_count || !irqs_disabled()); 3380 3381 do { 3382 add_preempt_count(PREEMPT_ACTIVE); 3383 local_irq_enable(); 3384 __schedule(); 3385 local_irq_disable(); 3386 sub_preempt_count(PREEMPT_ACTIVE); 3387 3388 /* 3389 * Check again in case we missed a preemption opportunity 3390 * between schedule and now. 3391 */ 3392 barrier(); 3393 } while (need_resched()); 3394 } 3395 3396 #endif /* CONFIG_PREEMPT */ 3397 3398 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3399 void *key) 3400 { 3401 return try_to_wake_up(curr->private, mode, wake_flags); 3402 } 3403 EXPORT_SYMBOL(default_wake_function); 3404 3405 /* 3406 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 3407 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 3408 * number) then we wake all the non-exclusive tasks and one exclusive task. 3409 * 3410 * There are circumstances in which we can try to wake a task which has already 3411 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 3412 * zero in this (rare) case, and we handle it by continuing to scan the queue. 3413 */ 3414 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, 3415 int nr_exclusive, int wake_flags, void *key) 3416 { 3417 wait_queue_t *curr, *next; 3418 3419 list_for_each_entry_safe(curr, next, &q->task_list, task_list) { 3420 unsigned flags = curr->flags; 3421 3422 if (curr->func(curr, mode, wake_flags, key) && 3423 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 3424 break; 3425 } 3426 } 3427 3428 /** 3429 * __wake_up - wake up threads blocked on a waitqueue. 3430 * @q: the waitqueue 3431 * @mode: which threads 3432 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3433 * @key: is directly passed to the wakeup function 3434 * 3435 * It may be assumed that this function implies a write memory barrier before 3436 * changing the task state if and only if any tasks are woken up. 3437 */ 3438 void __wake_up(wait_queue_head_t *q, unsigned int mode, 3439 int nr_exclusive, void *key) 3440 { 3441 unsigned long flags; 3442 3443 spin_lock_irqsave(&q->lock, flags); 3444 __wake_up_common(q, mode, nr_exclusive, 0, key); 3445 spin_unlock_irqrestore(&q->lock, flags); 3446 } 3447 EXPORT_SYMBOL(__wake_up); 3448 3449 /* 3450 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 3451 */ 3452 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) 3453 { 3454 __wake_up_common(q, mode, nr, 0, NULL); 3455 } 3456 EXPORT_SYMBOL_GPL(__wake_up_locked); 3457 3458 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) 3459 { 3460 __wake_up_common(q, mode, 1, 0, key); 3461 } 3462 EXPORT_SYMBOL_GPL(__wake_up_locked_key); 3463 3464 /** 3465 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 3466 * @q: the waitqueue 3467 * @mode: which threads 3468 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3469 * @key: opaque value to be passed to wakeup targets 3470 * 3471 * The sync wakeup differs that the waker knows that it will schedule 3472 * away soon, so while the target thread will be woken up, it will not 3473 * be migrated to another CPU - ie. the two threads are 'synchronized' 3474 * with each other. This can prevent needless bouncing between CPUs. 3475 * 3476 * On UP it can prevent extra preemption. 3477 * 3478 * It may be assumed that this function implies a write memory barrier before 3479 * changing the task state if and only if any tasks are woken up. 3480 */ 3481 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, 3482 int nr_exclusive, void *key) 3483 { 3484 unsigned long flags; 3485 int wake_flags = WF_SYNC; 3486 3487 if (unlikely(!q)) 3488 return; 3489 3490 if (unlikely(!nr_exclusive)) 3491 wake_flags = 0; 3492 3493 spin_lock_irqsave(&q->lock, flags); 3494 __wake_up_common(q, mode, nr_exclusive, wake_flags, key); 3495 spin_unlock_irqrestore(&q->lock, flags); 3496 } 3497 EXPORT_SYMBOL_GPL(__wake_up_sync_key); 3498 3499 /* 3500 * __wake_up_sync - see __wake_up_sync_key() 3501 */ 3502 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) 3503 { 3504 __wake_up_sync_key(q, mode, nr_exclusive, NULL); 3505 } 3506 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 3507 3508 /** 3509 * complete: - signals a single thread waiting on this completion 3510 * @x: holds the state of this particular completion 3511 * 3512 * This will wake up a single thread waiting on this completion. Threads will be 3513 * awakened in the same order in which they were queued. 3514 * 3515 * See also complete_all(), wait_for_completion() and related routines. 3516 * 3517 * It may be assumed that this function implies a write memory barrier before 3518 * changing the task state if and only if any tasks are woken up. 3519 */ 3520 void complete(struct completion *x) 3521 { 3522 unsigned long flags; 3523 3524 spin_lock_irqsave(&x->wait.lock, flags); 3525 x->done++; 3526 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); 3527 spin_unlock_irqrestore(&x->wait.lock, flags); 3528 } 3529 EXPORT_SYMBOL(complete); 3530 3531 /** 3532 * complete_all: - signals all threads waiting on this completion 3533 * @x: holds the state of this particular completion 3534 * 3535 * This will wake up all threads waiting on this particular completion event. 3536 * 3537 * It may be assumed that this function implies a write memory barrier before 3538 * changing the task state if and only if any tasks are woken up. 3539 */ 3540 void complete_all(struct completion *x) 3541 { 3542 unsigned long flags; 3543 3544 spin_lock_irqsave(&x->wait.lock, flags); 3545 x->done += UINT_MAX/2; 3546 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); 3547 spin_unlock_irqrestore(&x->wait.lock, flags); 3548 } 3549 EXPORT_SYMBOL(complete_all); 3550 3551 static inline long __sched 3552 do_wait_for_common(struct completion *x, long timeout, int state) 3553 { 3554 if (!x->done) { 3555 DECLARE_WAITQUEUE(wait, current); 3556 3557 __add_wait_queue_tail_exclusive(&x->wait, &wait); 3558 do { 3559 if (signal_pending_state(state, current)) { 3560 timeout = -ERESTARTSYS; 3561 break; 3562 } 3563 __set_current_state(state); 3564 spin_unlock_irq(&x->wait.lock); 3565 timeout = schedule_timeout(timeout); 3566 spin_lock_irq(&x->wait.lock); 3567 } while (!x->done && timeout); 3568 __remove_wait_queue(&x->wait, &wait); 3569 if (!x->done) 3570 return timeout; 3571 } 3572 x->done--; 3573 return timeout ?: 1; 3574 } 3575 3576 static long __sched 3577 wait_for_common(struct completion *x, long timeout, int state) 3578 { 3579 might_sleep(); 3580 3581 spin_lock_irq(&x->wait.lock); 3582 timeout = do_wait_for_common(x, timeout, state); 3583 spin_unlock_irq(&x->wait.lock); 3584 return timeout; 3585 } 3586 3587 /** 3588 * wait_for_completion: - waits for completion of a task 3589 * @x: holds the state of this particular completion 3590 * 3591 * This waits to be signaled for completion of a specific task. It is NOT 3592 * interruptible and there is no timeout. 3593 * 3594 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout 3595 * and interrupt capability. Also see complete(). 3596 */ 3597 void __sched wait_for_completion(struct completion *x) 3598 { 3599 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 3600 } 3601 EXPORT_SYMBOL(wait_for_completion); 3602 3603 /** 3604 * wait_for_completion_timeout: - waits for completion of a task (w/timeout) 3605 * @x: holds the state of this particular completion 3606 * @timeout: timeout value in jiffies 3607 * 3608 * This waits for either a completion of a specific task to be signaled or for a 3609 * specified timeout to expire. The timeout is in jiffies. It is not 3610 * interruptible. 3611 * 3612 * The return value is 0 if timed out, and positive (at least 1, or number of 3613 * jiffies left till timeout) if completed. 3614 */ 3615 unsigned long __sched 3616 wait_for_completion_timeout(struct completion *x, unsigned long timeout) 3617 { 3618 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); 3619 } 3620 EXPORT_SYMBOL(wait_for_completion_timeout); 3621 3622 /** 3623 * wait_for_completion_interruptible: - waits for completion of a task (w/intr) 3624 * @x: holds the state of this particular completion 3625 * 3626 * This waits for completion of a specific task to be signaled. It is 3627 * interruptible. 3628 * 3629 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3630 */ 3631 int __sched wait_for_completion_interruptible(struct completion *x) 3632 { 3633 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); 3634 if (t == -ERESTARTSYS) 3635 return t; 3636 return 0; 3637 } 3638 EXPORT_SYMBOL(wait_for_completion_interruptible); 3639 3640 /** 3641 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) 3642 * @x: holds the state of this particular completion 3643 * @timeout: timeout value in jiffies 3644 * 3645 * This waits for either a completion of a specific task to be signaled or for a 3646 * specified timeout to expire. It is interruptible. The timeout is in jiffies. 3647 * 3648 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3649 * positive (at least 1, or number of jiffies left till timeout) if completed. 3650 */ 3651 long __sched 3652 wait_for_completion_interruptible_timeout(struct completion *x, 3653 unsigned long timeout) 3654 { 3655 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); 3656 } 3657 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); 3658 3659 /** 3660 * wait_for_completion_killable: - waits for completion of a task (killable) 3661 * @x: holds the state of this particular completion 3662 * 3663 * This waits to be signaled for completion of a specific task. It can be 3664 * interrupted by a kill signal. 3665 * 3666 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3667 */ 3668 int __sched wait_for_completion_killable(struct completion *x) 3669 { 3670 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); 3671 if (t == -ERESTARTSYS) 3672 return t; 3673 return 0; 3674 } 3675 EXPORT_SYMBOL(wait_for_completion_killable); 3676 3677 /** 3678 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) 3679 * @x: holds the state of this particular completion 3680 * @timeout: timeout value in jiffies 3681 * 3682 * This waits for either a completion of a specific task to be 3683 * signaled or for a specified timeout to expire. It can be 3684 * interrupted by a kill signal. The timeout is in jiffies. 3685 * 3686 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3687 * positive (at least 1, or number of jiffies left till timeout) if completed. 3688 */ 3689 long __sched 3690 wait_for_completion_killable_timeout(struct completion *x, 3691 unsigned long timeout) 3692 { 3693 return wait_for_common(x, timeout, TASK_KILLABLE); 3694 } 3695 EXPORT_SYMBOL(wait_for_completion_killable_timeout); 3696 3697 /** 3698 * try_wait_for_completion - try to decrement a completion without blocking 3699 * @x: completion structure 3700 * 3701 * Returns: 0 if a decrement cannot be done without blocking 3702 * 1 if a decrement succeeded. 3703 * 3704 * If a completion is being used as a counting completion, 3705 * attempt to decrement the counter without blocking. This 3706 * enables us to avoid waiting if the resource the completion 3707 * is protecting is not available. 3708 */ 3709 bool try_wait_for_completion(struct completion *x) 3710 { 3711 unsigned long flags; 3712 int ret = 1; 3713 3714 spin_lock_irqsave(&x->wait.lock, flags); 3715 if (!x->done) 3716 ret = 0; 3717 else 3718 x->done--; 3719 spin_unlock_irqrestore(&x->wait.lock, flags); 3720 return ret; 3721 } 3722 EXPORT_SYMBOL(try_wait_for_completion); 3723 3724 /** 3725 * completion_done - Test to see if a completion has any waiters 3726 * @x: completion structure 3727 * 3728 * Returns: 0 if there are waiters (wait_for_completion() in progress) 3729 * 1 if there are no waiters. 3730 * 3731 */ 3732 bool completion_done(struct completion *x) 3733 { 3734 unsigned long flags; 3735 int ret = 1; 3736 3737 spin_lock_irqsave(&x->wait.lock, flags); 3738 if (!x->done) 3739 ret = 0; 3740 spin_unlock_irqrestore(&x->wait.lock, flags); 3741 return ret; 3742 } 3743 EXPORT_SYMBOL(completion_done); 3744 3745 static long __sched 3746 sleep_on_common(wait_queue_head_t *q, int state, long timeout) 3747 { 3748 unsigned long flags; 3749 wait_queue_t wait; 3750 3751 init_waitqueue_entry(&wait, current); 3752 3753 __set_current_state(state); 3754 3755 spin_lock_irqsave(&q->lock, flags); 3756 __add_wait_queue(q, &wait); 3757 spin_unlock(&q->lock); 3758 timeout = schedule_timeout(timeout); 3759 spin_lock_irq(&q->lock); 3760 __remove_wait_queue(q, &wait); 3761 spin_unlock_irqrestore(&q->lock, flags); 3762 3763 return timeout; 3764 } 3765 3766 void __sched interruptible_sleep_on(wait_queue_head_t *q) 3767 { 3768 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3769 } 3770 EXPORT_SYMBOL(interruptible_sleep_on); 3771 3772 long __sched 3773 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) 3774 { 3775 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); 3776 } 3777 EXPORT_SYMBOL(interruptible_sleep_on_timeout); 3778 3779 void __sched sleep_on(wait_queue_head_t *q) 3780 { 3781 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3782 } 3783 EXPORT_SYMBOL(sleep_on); 3784 3785 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) 3786 { 3787 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); 3788 } 3789 EXPORT_SYMBOL(sleep_on_timeout); 3790 3791 #ifdef CONFIG_RT_MUTEXES 3792 3793 /* 3794 * rt_mutex_setprio - set the current priority of a task 3795 * @p: task 3796 * @prio: prio value (kernel-internal form) 3797 * 3798 * This function changes the 'effective' priority of a task. It does 3799 * not touch ->normal_prio like __setscheduler(). 3800 * 3801 * Used by the rt_mutex code to implement priority inheritance logic. 3802 */ 3803 void rt_mutex_setprio(struct task_struct *p, int prio) 3804 { 3805 int oldprio, on_rq, running; 3806 struct rq *rq; 3807 const struct sched_class *prev_class; 3808 3809 BUG_ON(prio < 0 || prio > MAX_PRIO); 3810 3811 rq = __task_rq_lock(p); 3812 3813 /* 3814 * Idle task boosting is a nono in general. There is one 3815 * exception, when PREEMPT_RT and NOHZ is active: 3816 * 3817 * The idle task calls get_next_timer_interrupt() and holds 3818 * the timer wheel base->lock on the CPU and another CPU wants 3819 * to access the timer (probably to cancel it). We can safely 3820 * ignore the boosting request, as the idle CPU runs this code 3821 * with interrupts disabled and will complete the lock 3822 * protected section without being interrupted. So there is no 3823 * real need to boost. 3824 */ 3825 if (unlikely(p == rq->idle)) { 3826 WARN_ON(p != rq->curr); 3827 WARN_ON(p->pi_blocked_on); 3828 goto out_unlock; 3829 } 3830 3831 trace_sched_pi_setprio(p, prio); 3832 oldprio = p->prio; 3833 prev_class = p->sched_class; 3834 on_rq = p->on_rq; 3835 running = task_current(rq, p); 3836 if (on_rq) 3837 dequeue_task(rq, p, 0); 3838 if (running) 3839 p->sched_class->put_prev_task(rq, p); 3840 3841 if (rt_prio(prio)) 3842 p->sched_class = &rt_sched_class; 3843 else 3844 p->sched_class = &fair_sched_class; 3845 3846 p->prio = prio; 3847 3848 if (running) 3849 p->sched_class->set_curr_task(rq); 3850 if (on_rq) 3851 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); 3852 3853 check_class_changed(rq, p, prev_class, oldprio); 3854 out_unlock: 3855 __task_rq_unlock(rq); 3856 } 3857 #endif 3858 void set_user_nice(struct task_struct *p, long nice) 3859 { 3860 int old_prio, delta, on_rq; 3861 unsigned long flags; 3862 struct rq *rq; 3863 3864 if (TASK_NICE(p) == nice || nice < -20 || nice > 19) 3865 return; 3866 /* 3867 * We have to be careful, if called from sys_setpriority(), 3868 * the task might be in the middle of scheduling on another CPU. 3869 */ 3870 rq = task_rq_lock(p, &flags); 3871 /* 3872 * The RT priorities are set via sched_setscheduler(), but we still 3873 * allow the 'normal' nice value to be set - but as expected 3874 * it wont have any effect on scheduling until the task is 3875 * SCHED_FIFO/SCHED_RR: 3876 */ 3877 if (task_has_rt_policy(p)) { 3878 p->static_prio = NICE_TO_PRIO(nice); 3879 goto out_unlock; 3880 } 3881 on_rq = p->on_rq; 3882 if (on_rq) 3883 dequeue_task(rq, p, 0); 3884 3885 p->static_prio = NICE_TO_PRIO(nice); 3886 set_load_weight(p); 3887 old_prio = p->prio; 3888 p->prio = effective_prio(p); 3889 delta = p->prio - old_prio; 3890 3891 if (on_rq) { 3892 enqueue_task(rq, p, 0); 3893 /* 3894 * If the task increased its priority or is running and 3895 * lowered its priority, then reschedule its CPU: 3896 */ 3897 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3898 resched_task(rq->curr); 3899 } 3900 out_unlock: 3901 task_rq_unlock(rq, p, &flags); 3902 } 3903 EXPORT_SYMBOL(set_user_nice); 3904 3905 /* 3906 * can_nice - check if a task can reduce its nice value 3907 * @p: task 3908 * @nice: nice value 3909 */ 3910 int can_nice(const struct task_struct *p, const int nice) 3911 { 3912 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3913 int nice_rlim = 20 - nice; 3914 3915 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3916 capable(CAP_SYS_NICE)); 3917 } 3918 3919 #ifdef __ARCH_WANT_SYS_NICE 3920 3921 /* 3922 * sys_nice - change the priority of the current process. 3923 * @increment: priority increment 3924 * 3925 * sys_setpriority is a more generic, but much slower function that 3926 * does similar things. 3927 */ 3928 SYSCALL_DEFINE1(nice, int, increment) 3929 { 3930 long nice, retval; 3931 3932 /* 3933 * Setpriority might change our priority at the same moment. 3934 * We don't have to worry. Conceptually one call occurs first 3935 * and we have a single winner. 3936 */ 3937 if (increment < -40) 3938 increment = -40; 3939 if (increment > 40) 3940 increment = 40; 3941 3942 nice = TASK_NICE(current) + increment; 3943 if (nice < -20) 3944 nice = -20; 3945 if (nice > 19) 3946 nice = 19; 3947 3948 if (increment < 0 && !can_nice(current, nice)) 3949 return -EPERM; 3950 3951 retval = security_task_setnice(current, nice); 3952 if (retval) 3953 return retval; 3954 3955 set_user_nice(current, nice); 3956 return 0; 3957 } 3958 3959 #endif 3960 3961 /** 3962 * task_prio - return the priority value of a given task. 3963 * @p: the task in question. 3964 * 3965 * This is the priority value as seen by users in /proc. 3966 * RT tasks are offset by -200. Normal tasks are centered 3967 * around 0, value goes from -16 to +15. 3968 */ 3969 int task_prio(const struct task_struct *p) 3970 { 3971 return p->prio - MAX_RT_PRIO; 3972 } 3973 3974 /** 3975 * task_nice - return the nice value of a given task. 3976 * @p: the task in question. 3977 */ 3978 int task_nice(const struct task_struct *p) 3979 { 3980 return TASK_NICE(p); 3981 } 3982 EXPORT_SYMBOL(task_nice); 3983 3984 /** 3985 * idle_cpu - is a given cpu idle currently? 3986 * @cpu: the processor in question. 3987 */ 3988 int idle_cpu(int cpu) 3989 { 3990 struct rq *rq = cpu_rq(cpu); 3991 3992 if (rq->curr != rq->idle) 3993 return 0; 3994 3995 if (rq->nr_running) 3996 return 0; 3997 3998 #ifdef CONFIG_SMP 3999 if (!llist_empty(&rq->wake_list)) 4000 return 0; 4001 #endif 4002 4003 return 1; 4004 } 4005 4006 /** 4007 * idle_task - return the idle task for a given cpu. 4008 * @cpu: the processor in question. 4009 */ 4010 struct task_struct *idle_task(int cpu) 4011 { 4012 return cpu_rq(cpu)->idle; 4013 } 4014 4015 /** 4016 * find_process_by_pid - find a process with a matching PID value. 4017 * @pid: the pid in question. 4018 */ 4019 static struct task_struct *find_process_by_pid(pid_t pid) 4020 { 4021 return pid ? find_task_by_vpid(pid) : current; 4022 } 4023 4024 /* Actually do priority change: must hold rq lock. */ 4025 static void 4026 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) 4027 { 4028 p->policy = policy; 4029 p->rt_priority = prio; 4030 p->normal_prio = normal_prio(p); 4031 /* we are holding p->pi_lock already */ 4032 p->prio = rt_mutex_getprio(p); 4033 if (rt_prio(p->prio)) 4034 p->sched_class = &rt_sched_class; 4035 else 4036 p->sched_class = &fair_sched_class; 4037 set_load_weight(p); 4038 } 4039 4040 /* 4041 * check the target process has a UID that matches the current process's 4042 */ 4043 static bool check_same_owner(struct task_struct *p) 4044 { 4045 const struct cred *cred = current_cred(), *pcred; 4046 bool match; 4047 4048 rcu_read_lock(); 4049 pcred = __task_cred(p); 4050 if (cred->user->user_ns == pcred->user->user_ns) 4051 match = (cred->euid == pcred->euid || 4052 cred->euid == pcred->uid); 4053 else 4054 match = false; 4055 rcu_read_unlock(); 4056 return match; 4057 } 4058 4059 static int __sched_setscheduler(struct task_struct *p, int policy, 4060 const struct sched_param *param, bool user) 4061 { 4062 int retval, oldprio, oldpolicy = -1, on_rq, running; 4063 unsigned long flags; 4064 const struct sched_class *prev_class; 4065 struct rq *rq; 4066 int reset_on_fork; 4067 4068 /* may grab non-irq protected spin_locks */ 4069 BUG_ON(in_interrupt()); 4070 recheck: 4071 /* double check policy once rq lock held */ 4072 if (policy < 0) { 4073 reset_on_fork = p->sched_reset_on_fork; 4074 policy = oldpolicy = p->policy; 4075 } else { 4076 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); 4077 policy &= ~SCHED_RESET_ON_FORK; 4078 4079 if (policy != SCHED_FIFO && policy != SCHED_RR && 4080 policy != SCHED_NORMAL && policy != SCHED_BATCH && 4081 policy != SCHED_IDLE) 4082 return -EINVAL; 4083 } 4084 4085 /* 4086 * Valid priorities for SCHED_FIFO and SCHED_RR are 4087 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4088 * SCHED_BATCH and SCHED_IDLE is 0. 4089 */ 4090 if (param->sched_priority < 0 || 4091 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || 4092 (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) 4093 return -EINVAL; 4094 if (rt_policy(policy) != (param->sched_priority != 0)) 4095 return -EINVAL; 4096 4097 /* 4098 * Allow unprivileged RT tasks to decrease priority: 4099 */ 4100 if (user && !capable(CAP_SYS_NICE)) { 4101 if (rt_policy(policy)) { 4102 unsigned long rlim_rtprio = 4103 task_rlimit(p, RLIMIT_RTPRIO); 4104 4105 /* can't set/change the rt policy */ 4106 if (policy != p->policy && !rlim_rtprio) 4107 return -EPERM; 4108 4109 /* can't increase priority */ 4110 if (param->sched_priority > p->rt_priority && 4111 param->sched_priority > rlim_rtprio) 4112 return -EPERM; 4113 } 4114 4115 /* 4116 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4117 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4118 */ 4119 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 4120 if (!can_nice(p, TASK_NICE(p))) 4121 return -EPERM; 4122 } 4123 4124 /* can't change other user's priorities */ 4125 if (!check_same_owner(p)) 4126 return -EPERM; 4127 4128 /* Normal users shall not reset the sched_reset_on_fork flag */ 4129 if (p->sched_reset_on_fork && !reset_on_fork) 4130 return -EPERM; 4131 } 4132 4133 if (user) { 4134 retval = security_task_setscheduler(p); 4135 if (retval) 4136 return retval; 4137 } 4138 4139 /* 4140 * make sure no PI-waiters arrive (or leave) while we are 4141 * changing the priority of the task: 4142 * 4143 * To be able to change p->policy safely, the appropriate 4144 * runqueue lock must be held. 4145 */ 4146 rq = task_rq_lock(p, &flags); 4147 4148 /* 4149 * Changing the policy of the stop threads its a very bad idea 4150 */ 4151 if (p == rq->stop) { 4152 task_rq_unlock(rq, p, &flags); 4153 return -EINVAL; 4154 } 4155 4156 /* 4157 * If not changing anything there's no need to proceed further: 4158 */ 4159 if (unlikely(policy == p->policy && (!rt_policy(policy) || 4160 param->sched_priority == p->rt_priority))) { 4161 4162 __task_rq_unlock(rq); 4163 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4164 return 0; 4165 } 4166 4167 #ifdef CONFIG_RT_GROUP_SCHED 4168 if (user) { 4169 /* 4170 * Do not allow realtime tasks into groups that have no runtime 4171 * assigned. 4172 */ 4173 if (rt_bandwidth_enabled() && rt_policy(policy) && 4174 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4175 !task_group_is_autogroup(task_group(p))) { 4176 task_rq_unlock(rq, p, &flags); 4177 return -EPERM; 4178 } 4179 } 4180 #endif 4181 4182 /* recheck policy now with rq lock held */ 4183 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4184 policy = oldpolicy = -1; 4185 task_rq_unlock(rq, p, &flags); 4186 goto recheck; 4187 } 4188 on_rq = p->on_rq; 4189 running = task_current(rq, p); 4190 if (on_rq) 4191 dequeue_task(rq, p, 0); 4192 if (running) 4193 p->sched_class->put_prev_task(rq, p); 4194 4195 p->sched_reset_on_fork = reset_on_fork; 4196 4197 oldprio = p->prio; 4198 prev_class = p->sched_class; 4199 __setscheduler(rq, p, policy, param->sched_priority); 4200 4201 if (running) 4202 p->sched_class->set_curr_task(rq); 4203 if (on_rq) 4204 enqueue_task(rq, p, 0); 4205 4206 check_class_changed(rq, p, prev_class, oldprio); 4207 task_rq_unlock(rq, p, &flags); 4208 4209 rt_mutex_adjust_pi(p); 4210 4211 return 0; 4212 } 4213 4214 /** 4215 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4216 * @p: the task in question. 4217 * @policy: new policy. 4218 * @param: structure containing the new RT priority. 4219 * 4220 * NOTE that the task may be already dead. 4221 */ 4222 int sched_setscheduler(struct task_struct *p, int policy, 4223 const struct sched_param *param) 4224 { 4225 return __sched_setscheduler(p, policy, param, true); 4226 } 4227 EXPORT_SYMBOL_GPL(sched_setscheduler); 4228 4229 /** 4230 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4231 * @p: the task in question. 4232 * @policy: new policy. 4233 * @param: structure containing the new RT priority. 4234 * 4235 * Just like sched_setscheduler, only don't bother checking if the 4236 * current context has permission. For example, this is needed in 4237 * stop_machine(): we create temporary high priority worker threads, 4238 * but our caller might not have that capability. 4239 */ 4240 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4241 const struct sched_param *param) 4242 { 4243 return __sched_setscheduler(p, policy, param, false); 4244 } 4245 4246 static int 4247 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4248 { 4249 struct sched_param lparam; 4250 struct task_struct *p; 4251 int retval; 4252 4253 if (!param || pid < 0) 4254 return -EINVAL; 4255 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4256 return -EFAULT; 4257 4258 rcu_read_lock(); 4259 retval = -ESRCH; 4260 p = find_process_by_pid(pid); 4261 if (p != NULL) 4262 retval = sched_setscheduler(p, policy, &lparam); 4263 rcu_read_unlock(); 4264 4265 return retval; 4266 } 4267 4268 /** 4269 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4270 * @pid: the pid in question. 4271 * @policy: new policy. 4272 * @param: structure containing the new RT priority. 4273 */ 4274 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4275 struct sched_param __user *, param) 4276 { 4277 /* negative values for policy are not valid */ 4278 if (policy < 0) 4279 return -EINVAL; 4280 4281 return do_sched_setscheduler(pid, policy, param); 4282 } 4283 4284 /** 4285 * sys_sched_setparam - set/change the RT priority of a thread 4286 * @pid: the pid in question. 4287 * @param: structure containing the new RT priority. 4288 */ 4289 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4290 { 4291 return do_sched_setscheduler(pid, -1, param); 4292 } 4293 4294 /** 4295 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4296 * @pid: the pid in question. 4297 */ 4298 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4299 { 4300 struct task_struct *p; 4301 int retval; 4302 4303 if (pid < 0) 4304 return -EINVAL; 4305 4306 retval = -ESRCH; 4307 rcu_read_lock(); 4308 p = find_process_by_pid(pid); 4309 if (p) { 4310 retval = security_task_getscheduler(p); 4311 if (!retval) 4312 retval = p->policy 4313 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4314 } 4315 rcu_read_unlock(); 4316 return retval; 4317 } 4318 4319 /** 4320 * sys_sched_getparam - get the RT priority of a thread 4321 * @pid: the pid in question. 4322 * @param: structure containing the RT priority. 4323 */ 4324 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4325 { 4326 struct sched_param lp; 4327 struct task_struct *p; 4328 int retval; 4329 4330 if (!param || pid < 0) 4331 return -EINVAL; 4332 4333 rcu_read_lock(); 4334 p = find_process_by_pid(pid); 4335 retval = -ESRCH; 4336 if (!p) 4337 goto out_unlock; 4338 4339 retval = security_task_getscheduler(p); 4340 if (retval) 4341 goto out_unlock; 4342 4343 lp.sched_priority = p->rt_priority; 4344 rcu_read_unlock(); 4345 4346 /* 4347 * This one might sleep, we cannot do it with a spinlock held ... 4348 */ 4349 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4350 4351 return retval; 4352 4353 out_unlock: 4354 rcu_read_unlock(); 4355 return retval; 4356 } 4357 4358 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4359 { 4360 cpumask_var_t cpus_allowed, new_mask; 4361 struct task_struct *p; 4362 int retval; 4363 4364 get_online_cpus(); 4365 rcu_read_lock(); 4366 4367 p = find_process_by_pid(pid); 4368 if (!p) { 4369 rcu_read_unlock(); 4370 put_online_cpus(); 4371 return -ESRCH; 4372 } 4373 4374 /* Prevent p going away */ 4375 get_task_struct(p); 4376 rcu_read_unlock(); 4377 4378 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4379 retval = -ENOMEM; 4380 goto out_put_task; 4381 } 4382 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4383 retval = -ENOMEM; 4384 goto out_free_cpus_allowed; 4385 } 4386 retval = -EPERM; 4387 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE)) 4388 goto out_unlock; 4389 4390 retval = security_task_setscheduler(p); 4391 if (retval) 4392 goto out_unlock; 4393 4394 cpuset_cpus_allowed(p, cpus_allowed); 4395 cpumask_and(new_mask, in_mask, cpus_allowed); 4396 again: 4397 retval = set_cpus_allowed_ptr(p, new_mask); 4398 4399 if (!retval) { 4400 cpuset_cpus_allowed(p, cpus_allowed); 4401 if (!cpumask_subset(new_mask, cpus_allowed)) { 4402 /* 4403 * We must have raced with a concurrent cpuset 4404 * update. Just reset the cpus_allowed to the 4405 * cpuset's cpus_allowed 4406 */ 4407 cpumask_copy(new_mask, cpus_allowed); 4408 goto again; 4409 } 4410 } 4411 out_unlock: 4412 free_cpumask_var(new_mask); 4413 out_free_cpus_allowed: 4414 free_cpumask_var(cpus_allowed); 4415 out_put_task: 4416 put_task_struct(p); 4417 put_online_cpus(); 4418 return retval; 4419 } 4420 4421 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4422 struct cpumask *new_mask) 4423 { 4424 if (len < cpumask_size()) 4425 cpumask_clear(new_mask); 4426 else if (len > cpumask_size()) 4427 len = cpumask_size(); 4428 4429 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4430 } 4431 4432 /** 4433 * sys_sched_setaffinity - set the cpu affinity of a process 4434 * @pid: pid of the process 4435 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4436 * @user_mask_ptr: user-space pointer to the new cpu mask 4437 */ 4438 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4439 unsigned long __user *, user_mask_ptr) 4440 { 4441 cpumask_var_t new_mask; 4442 int retval; 4443 4444 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4445 return -ENOMEM; 4446 4447 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4448 if (retval == 0) 4449 retval = sched_setaffinity(pid, new_mask); 4450 free_cpumask_var(new_mask); 4451 return retval; 4452 } 4453 4454 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4455 { 4456 struct task_struct *p; 4457 unsigned long flags; 4458 int retval; 4459 4460 get_online_cpus(); 4461 rcu_read_lock(); 4462 4463 retval = -ESRCH; 4464 p = find_process_by_pid(pid); 4465 if (!p) 4466 goto out_unlock; 4467 4468 retval = security_task_getscheduler(p); 4469 if (retval) 4470 goto out_unlock; 4471 4472 raw_spin_lock_irqsave(&p->pi_lock, flags); 4473 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); 4474 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4475 4476 out_unlock: 4477 rcu_read_unlock(); 4478 put_online_cpus(); 4479 4480 return retval; 4481 } 4482 4483 /** 4484 * sys_sched_getaffinity - get the cpu affinity of a process 4485 * @pid: pid of the process 4486 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4487 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4488 */ 4489 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4490 unsigned long __user *, user_mask_ptr) 4491 { 4492 int ret; 4493 cpumask_var_t mask; 4494 4495 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4496 return -EINVAL; 4497 if (len & (sizeof(unsigned long)-1)) 4498 return -EINVAL; 4499 4500 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4501 return -ENOMEM; 4502 4503 ret = sched_getaffinity(pid, mask); 4504 if (ret == 0) { 4505 size_t retlen = min_t(size_t, len, cpumask_size()); 4506 4507 if (copy_to_user(user_mask_ptr, mask, retlen)) 4508 ret = -EFAULT; 4509 else 4510 ret = retlen; 4511 } 4512 free_cpumask_var(mask); 4513 4514 return ret; 4515 } 4516 4517 /** 4518 * sys_sched_yield - yield the current processor to other threads. 4519 * 4520 * This function yields the current CPU to other tasks. If there are no 4521 * other threads running on this CPU then this function will return. 4522 */ 4523 SYSCALL_DEFINE0(sched_yield) 4524 { 4525 struct rq *rq = this_rq_lock(); 4526 4527 schedstat_inc(rq, yld_count); 4528 current->sched_class->yield_task(rq); 4529 4530 /* 4531 * Since we are going to call schedule() anyway, there's 4532 * no need to preempt or enable interrupts: 4533 */ 4534 __release(rq->lock); 4535 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4536 do_raw_spin_unlock(&rq->lock); 4537 sched_preempt_enable_no_resched(); 4538 4539 schedule(); 4540 4541 return 0; 4542 } 4543 4544 static inline int should_resched(void) 4545 { 4546 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); 4547 } 4548 4549 static void __cond_resched(void) 4550 { 4551 add_preempt_count(PREEMPT_ACTIVE); 4552 __schedule(); 4553 sub_preempt_count(PREEMPT_ACTIVE); 4554 } 4555 4556 int __sched _cond_resched(void) 4557 { 4558 if (should_resched()) { 4559 __cond_resched(); 4560 return 1; 4561 } 4562 return 0; 4563 } 4564 EXPORT_SYMBOL(_cond_resched); 4565 4566 /* 4567 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4568 * call schedule, and on return reacquire the lock. 4569 * 4570 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4571 * operations here to prevent schedule() from being called twice (once via 4572 * spin_unlock(), once by hand). 4573 */ 4574 int __cond_resched_lock(spinlock_t *lock) 4575 { 4576 int resched = should_resched(); 4577 int ret = 0; 4578 4579 lockdep_assert_held(lock); 4580 4581 if (spin_needbreak(lock) || resched) { 4582 spin_unlock(lock); 4583 if (resched) 4584 __cond_resched(); 4585 else 4586 cpu_relax(); 4587 ret = 1; 4588 spin_lock(lock); 4589 } 4590 return ret; 4591 } 4592 EXPORT_SYMBOL(__cond_resched_lock); 4593 4594 int __sched __cond_resched_softirq(void) 4595 { 4596 BUG_ON(!in_softirq()); 4597 4598 if (should_resched()) { 4599 local_bh_enable(); 4600 __cond_resched(); 4601 local_bh_disable(); 4602 return 1; 4603 } 4604 return 0; 4605 } 4606 EXPORT_SYMBOL(__cond_resched_softirq); 4607 4608 /** 4609 * yield - yield the current processor to other threads. 4610 * 4611 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4612 * 4613 * The scheduler is at all times free to pick the calling task as the most 4614 * eligible task to run, if removing the yield() call from your code breaks 4615 * it, its already broken. 4616 * 4617 * Typical broken usage is: 4618 * 4619 * while (!event) 4620 * yield(); 4621 * 4622 * where one assumes that yield() will let 'the other' process run that will 4623 * make event true. If the current task is a SCHED_FIFO task that will never 4624 * happen. Never use yield() as a progress guarantee!! 4625 * 4626 * If you want to use yield() to wait for something, use wait_event(). 4627 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4628 * If you still want to use yield(), do not! 4629 */ 4630 void __sched yield(void) 4631 { 4632 set_current_state(TASK_RUNNING); 4633 sys_sched_yield(); 4634 } 4635 EXPORT_SYMBOL(yield); 4636 4637 /** 4638 * yield_to - yield the current processor to another thread in 4639 * your thread group, or accelerate that thread toward the 4640 * processor it's on. 4641 * @p: target task 4642 * @preempt: whether task preemption is allowed or not 4643 * 4644 * It's the caller's job to ensure that the target task struct 4645 * can't go away on us before we can do any checks. 4646 * 4647 * Returns true if we indeed boosted the target task. 4648 */ 4649 bool __sched yield_to(struct task_struct *p, bool preempt) 4650 { 4651 struct task_struct *curr = current; 4652 struct rq *rq, *p_rq; 4653 unsigned long flags; 4654 bool yielded = 0; 4655 4656 local_irq_save(flags); 4657 rq = this_rq(); 4658 4659 again: 4660 p_rq = task_rq(p); 4661 double_rq_lock(rq, p_rq); 4662 while (task_rq(p) != p_rq) { 4663 double_rq_unlock(rq, p_rq); 4664 goto again; 4665 } 4666 4667 if (!curr->sched_class->yield_to_task) 4668 goto out; 4669 4670 if (curr->sched_class != p->sched_class) 4671 goto out; 4672 4673 if (task_running(p_rq, p) || p->state) 4674 goto out; 4675 4676 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4677 if (yielded) { 4678 schedstat_inc(rq, yld_count); 4679 /* 4680 * Make p's CPU reschedule; pick_next_entity takes care of 4681 * fairness. 4682 */ 4683 if (preempt && rq != p_rq) 4684 resched_task(p_rq->curr); 4685 } else { 4686 /* 4687 * We might have set it in task_yield_fair(), but are 4688 * not going to schedule(), so don't want to skip 4689 * the next update. 4690 */ 4691 rq->skip_clock_update = 0; 4692 } 4693 4694 out: 4695 double_rq_unlock(rq, p_rq); 4696 local_irq_restore(flags); 4697 4698 if (yielded) 4699 schedule(); 4700 4701 return yielded; 4702 } 4703 EXPORT_SYMBOL_GPL(yield_to); 4704 4705 /* 4706 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4707 * that process accounting knows that this is a task in IO wait state. 4708 */ 4709 void __sched io_schedule(void) 4710 { 4711 struct rq *rq = raw_rq(); 4712 4713 delayacct_blkio_start(); 4714 atomic_inc(&rq->nr_iowait); 4715 blk_flush_plug(current); 4716 current->in_iowait = 1; 4717 schedule(); 4718 current->in_iowait = 0; 4719 atomic_dec(&rq->nr_iowait); 4720 delayacct_blkio_end(); 4721 } 4722 EXPORT_SYMBOL(io_schedule); 4723 4724 long __sched io_schedule_timeout(long timeout) 4725 { 4726 struct rq *rq = raw_rq(); 4727 long ret; 4728 4729 delayacct_blkio_start(); 4730 atomic_inc(&rq->nr_iowait); 4731 blk_flush_plug(current); 4732 current->in_iowait = 1; 4733 ret = schedule_timeout(timeout); 4734 current->in_iowait = 0; 4735 atomic_dec(&rq->nr_iowait); 4736 delayacct_blkio_end(); 4737 return ret; 4738 } 4739 4740 /** 4741 * sys_sched_get_priority_max - return maximum RT priority. 4742 * @policy: scheduling class. 4743 * 4744 * this syscall returns the maximum rt_priority that can be used 4745 * by a given scheduling class. 4746 */ 4747 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4748 { 4749 int ret = -EINVAL; 4750 4751 switch (policy) { 4752 case SCHED_FIFO: 4753 case SCHED_RR: 4754 ret = MAX_USER_RT_PRIO-1; 4755 break; 4756 case SCHED_NORMAL: 4757 case SCHED_BATCH: 4758 case SCHED_IDLE: 4759 ret = 0; 4760 break; 4761 } 4762 return ret; 4763 } 4764 4765 /** 4766 * sys_sched_get_priority_min - return minimum RT priority. 4767 * @policy: scheduling class. 4768 * 4769 * this syscall returns the minimum rt_priority that can be used 4770 * by a given scheduling class. 4771 */ 4772 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4773 { 4774 int ret = -EINVAL; 4775 4776 switch (policy) { 4777 case SCHED_FIFO: 4778 case SCHED_RR: 4779 ret = 1; 4780 break; 4781 case SCHED_NORMAL: 4782 case SCHED_BATCH: 4783 case SCHED_IDLE: 4784 ret = 0; 4785 } 4786 return ret; 4787 } 4788 4789 /** 4790 * sys_sched_rr_get_interval - return the default timeslice of a process. 4791 * @pid: pid of the process. 4792 * @interval: userspace pointer to the timeslice value. 4793 * 4794 * this syscall writes the default timeslice value of a given process 4795 * into the user-space timespec buffer. A value of '0' means infinity. 4796 */ 4797 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4798 struct timespec __user *, interval) 4799 { 4800 struct task_struct *p; 4801 unsigned int time_slice; 4802 unsigned long flags; 4803 struct rq *rq; 4804 int retval; 4805 struct timespec t; 4806 4807 if (pid < 0) 4808 return -EINVAL; 4809 4810 retval = -ESRCH; 4811 rcu_read_lock(); 4812 p = find_process_by_pid(pid); 4813 if (!p) 4814 goto out_unlock; 4815 4816 retval = security_task_getscheduler(p); 4817 if (retval) 4818 goto out_unlock; 4819 4820 rq = task_rq_lock(p, &flags); 4821 time_slice = p->sched_class->get_rr_interval(rq, p); 4822 task_rq_unlock(rq, p, &flags); 4823 4824 rcu_read_unlock(); 4825 jiffies_to_timespec(time_slice, &t); 4826 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4827 return retval; 4828 4829 out_unlock: 4830 rcu_read_unlock(); 4831 return retval; 4832 } 4833 4834 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4835 4836 void sched_show_task(struct task_struct *p) 4837 { 4838 unsigned long free = 0; 4839 unsigned state; 4840 4841 state = p->state ? __ffs(p->state) + 1 : 0; 4842 printk(KERN_INFO "%-15.15s %c", p->comm, 4843 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4844 #if BITS_PER_LONG == 32 4845 if (state == TASK_RUNNING) 4846 printk(KERN_CONT " running "); 4847 else 4848 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4849 #else 4850 if (state == TASK_RUNNING) 4851 printk(KERN_CONT " running task "); 4852 else 4853 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4854 #endif 4855 #ifdef CONFIG_DEBUG_STACK_USAGE 4856 free = stack_not_used(p); 4857 #endif 4858 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4859 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)), 4860 (unsigned long)task_thread_info(p)->flags); 4861 4862 show_stack(p, NULL); 4863 } 4864 4865 void show_state_filter(unsigned long state_filter) 4866 { 4867 struct task_struct *g, *p; 4868 4869 #if BITS_PER_LONG == 32 4870 printk(KERN_INFO 4871 " task PC stack pid father\n"); 4872 #else 4873 printk(KERN_INFO 4874 " task PC stack pid father\n"); 4875 #endif 4876 rcu_read_lock(); 4877 do_each_thread(g, p) { 4878 /* 4879 * reset the NMI-timeout, listing all files on a slow 4880 * console might take a lot of time: 4881 */ 4882 touch_nmi_watchdog(); 4883 if (!state_filter || (p->state & state_filter)) 4884 sched_show_task(p); 4885 } while_each_thread(g, p); 4886 4887 touch_all_softlockup_watchdogs(); 4888 4889 #ifdef CONFIG_SCHED_DEBUG 4890 sysrq_sched_debug_show(); 4891 #endif 4892 rcu_read_unlock(); 4893 /* 4894 * Only show locks if all tasks are dumped: 4895 */ 4896 if (!state_filter) 4897 debug_show_all_locks(); 4898 } 4899 4900 void __cpuinit init_idle_bootup_task(struct task_struct *idle) 4901 { 4902 idle->sched_class = &idle_sched_class; 4903 } 4904 4905 /** 4906 * init_idle - set up an idle thread for a given CPU 4907 * @idle: task in question 4908 * @cpu: cpu the idle task belongs to 4909 * 4910 * NOTE: this function does not set the idle thread's NEED_RESCHED 4911 * flag, to make booting more robust. 4912 */ 4913 void __cpuinit init_idle(struct task_struct *idle, int cpu) 4914 { 4915 struct rq *rq = cpu_rq(cpu); 4916 unsigned long flags; 4917 4918 raw_spin_lock_irqsave(&rq->lock, flags); 4919 4920 __sched_fork(idle); 4921 idle->state = TASK_RUNNING; 4922 idle->se.exec_start = sched_clock(); 4923 4924 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4925 /* 4926 * We're having a chicken and egg problem, even though we are 4927 * holding rq->lock, the cpu isn't yet set to this cpu so the 4928 * lockdep check in task_group() will fail. 4929 * 4930 * Similar case to sched_fork(). / Alternatively we could 4931 * use task_rq_lock() here and obtain the other rq->lock. 4932 * 4933 * Silence PROVE_RCU 4934 */ 4935 rcu_read_lock(); 4936 __set_task_cpu(idle, cpu); 4937 rcu_read_unlock(); 4938 4939 rq->curr = rq->idle = idle; 4940 #if defined(CONFIG_SMP) 4941 idle->on_cpu = 1; 4942 #endif 4943 raw_spin_unlock_irqrestore(&rq->lock, flags); 4944 4945 /* Set the preempt count _outside_ the spinlocks! */ 4946 task_thread_info(idle)->preempt_count = 0; 4947 4948 /* 4949 * The idle tasks have their own, simple scheduling class: 4950 */ 4951 idle->sched_class = &idle_sched_class; 4952 ftrace_graph_init_idle_task(idle, cpu); 4953 #if defined(CONFIG_SMP) 4954 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4955 #endif 4956 } 4957 4958 #ifdef CONFIG_SMP 4959 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4960 { 4961 if (p->sched_class && p->sched_class->set_cpus_allowed) 4962 p->sched_class->set_cpus_allowed(p, new_mask); 4963 4964 cpumask_copy(&p->cpus_allowed, new_mask); 4965 p->rt.nr_cpus_allowed = cpumask_weight(new_mask); 4966 } 4967 4968 /* 4969 * This is how migration works: 4970 * 4971 * 1) we invoke migration_cpu_stop() on the target CPU using 4972 * stop_one_cpu(). 4973 * 2) stopper starts to run (implicitly forcing the migrated thread 4974 * off the CPU) 4975 * 3) it checks whether the migrated task is still in the wrong runqueue. 4976 * 4) if it's in the wrong runqueue then the migration thread removes 4977 * it and puts it into the right queue. 4978 * 5) stopper completes and stop_one_cpu() returns and the migration 4979 * is done. 4980 */ 4981 4982 /* 4983 * Change a given task's CPU affinity. Migrate the thread to a 4984 * proper CPU and schedule it away if the CPU it's executing on 4985 * is removed from the allowed bitmask. 4986 * 4987 * NOTE: the caller must have a valid reference to the task, the 4988 * task must not exit() & deallocate itself prematurely. The 4989 * call is not atomic; no spinlocks may be held. 4990 */ 4991 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4992 { 4993 unsigned long flags; 4994 struct rq *rq; 4995 unsigned int dest_cpu; 4996 int ret = 0; 4997 4998 rq = task_rq_lock(p, &flags); 4999 5000 if (cpumask_equal(&p->cpus_allowed, new_mask)) 5001 goto out; 5002 5003 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 5004 ret = -EINVAL; 5005 goto out; 5006 } 5007 5008 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) { 5009 ret = -EINVAL; 5010 goto out; 5011 } 5012 5013 do_set_cpus_allowed(p, new_mask); 5014 5015 /* Can the task run on the task's current CPU? If so, we're done */ 5016 if (cpumask_test_cpu(task_cpu(p), new_mask)) 5017 goto out; 5018 5019 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 5020 if (p->on_rq) { 5021 struct migration_arg arg = { p, dest_cpu }; 5022 /* Need help from migration thread: drop lock and wait. */ 5023 task_rq_unlock(rq, p, &flags); 5024 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 5025 tlb_migrate_finish(p->mm); 5026 return 0; 5027 } 5028 out: 5029 task_rq_unlock(rq, p, &flags); 5030 5031 return ret; 5032 } 5033 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 5034 5035 /* 5036 * Move (not current) task off this cpu, onto dest cpu. We're doing 5037 * this because either it can't run here any more (set_cpus_allowed() 5038 * away from this CPU, or CPU going down), or because we're 5039 * attempting to rebalance this task on exec (sched_exec). 5040 * 5041 * So we race with normal scheduler movements, but that's OK, as long 5042 * as the task is no longer on this CPU. 5043 * 5044 * Returns non-zero if task was successfully migrated. 5045 */ 5046 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 5047 { 5048 struct rq *rq_dest, *rq_src; 5049 int ret = 0; 5050 5051 if (unlikely(!cpu_active(dest_cpu))) 5052 return ret; 5053 5054 rq_src = cpu_rq(src_cpu); 5055 rq_dest = cpu_rq(dest_cpu); 5056 5057 raw_spin_lock(&p->pi_lock); 5058 double_rq_lock(rq_src, rq_dest); 5059 /* Already moved. */ 5060 if (task_cpu(p) != src_cpu) 5061 goto done; 5062 /* Affinity changed (again). */ 5063 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 5064 goto fail; 5065 5066 /* 5067 * If we're not on a rq, the next wake-up will ensure we're 5068 * placed properly. 5069 */ 5070 if (p->on_rq) { 5071 dequeue_task(rq_src, p, 0); 5072 set_task_cpu(p, dest_cpu); 5073 enqueue_task(rq_dest, p, 0); 5074 check_preempt_curr(rq_dest, p, 0); 5075 } 5076 done: 5077 ret = 1; 5078 fail: 5079 double_rq_unlock(rq_src, rq_dest); 5080 raw_spin_unlock(&p->pi_lock); 5081 return ret; 5082 } 5083 5084 /* 5085 * migration_cpu_stop - this will be executed by a highprio stopper thread 5086 * and performs thread migration by bumping thread off CPU then 5087 * 'pushing' onto another runqueue. 5088 */ 5089 static int migration_cpu_stop(void *data) 5090 { 5091 struct migration_arg *arg = data; 5092 5093 /* 5094 * The original target cpu might have gone down and we might 5095 * be on another cpu but it doesn't matter. 5096 */ 5097 local_irq_disable(); 5098 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 5099 local_irq_enable(); 5100 return 0; 5101 } 5102 5103 #ifdef CONFIG_HOTPLUG_CPU 5104 5105 /* 5106 * Ensures that the idle task is using init_mm right before its cpu goes 5107 * offline. 5108 */ 5109 void idle_task_exit(void) 5110 { 5111 struct mm_struct *mm = current->active_mm; 5112 5113 BUG_ON(cpu_online(smp_processor_id())); 5114 5115 if (mm != &init_mm) 5116 switch_mm(mm, &init_mm, current); 5117 mmdrop(mm); 5118 } 5119 5120 /* 5121 * While a dead CPU has no uninterruptible tasks queued at this point, 5122 * it might still have a nonzero ->nr_uninterruptible counter, because 5123 * for performance reasons the counter is not stricly tracking tasks to 5124 * their home CPUs. So we just add the counter to another CPU's counter, 5125 * to keep the global sum constant after CPU-down: 5126 */ 5127 static void migrate_nr_uninterruptible(struct rq *rq_src) 5128 { 5129 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); 5130 5131 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; 5132 rq_src->nr_uninterruptible = 0; 5133 } 5134 5135 /* 5136 * remove the tasks which were accounted by rq from calc_load_tasks. 5137 */ 5138 static void calc_global_load_remove(struct rq *rq) 5139 { 5140 atomic_long_sub(rq->calc_load_active, &calc_load_tasks); 5141 rq->calc_load_active = 0; 5142 } 5143 5144 /* 5145 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5146 * try_to_wake_up()->select_task_rq(). 5147 * 5148 * Called with rq->lock held even though we'er in stop_machine() and 5149 * there's no concurrency possible, we hold the required locks anyway 5150 * because of lock validation efforts. 5151 */ 5152 static void migrate_tasks(unsigned int dead_cpu) 5153 { 5154 struct rq *rq = cpu_rq(dead_cpu); 5155 struct task_struct *next, *stop = rq->stop; 5156 int dest_cpu; 5157 5158 /* 5159 * Fudge the rq selection such that the below task selection loop 5160 * doesn't get stuck on the currently eligible stop task. 5161 * 5162 * We're currently inside stop_machine() and the rq is either stuck 5163 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5164 * either way we should never end up calling schedule() until we're 5165 * done here. 5166 */ 5167 rq->stop = NULL; 5168 5169 /* Ensure any throttled groups are reachable by pick_next_task */ 5170 unthrottle_offline_cfs_rqs(rq); 5171 5172 for ( ; ; ) { 5173 /* 5174 * There's this thread running, bail when that's the only 5175 * remaining thread. 5176 */ 5177 if (rq->nr_running == 1) 5178 break; 5179 5180 next = pick_next_task(rq); 5181 BUG_ON(!next); 5182 next->sched_class->put_prev_task(rq, next); 5183 5184 /* Find suitable destination for @next, with force if needed. */ 5185 dest_cpu = select_fallback_rq(dead_cpu, next); 5186 raw_spin_unlock(&rq->lock); 5187 5188 __migrate_task(next, dead_cpu, dest_cpu); 5189 5190 raw_spin_lock(&rq->lock); 5191 } 5192 5193 rq->stop = stop; 5194 } 5195 5196 #endif /* CONFIG_HOTPLUG_CPU */ 5197 5198 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 5199 5200 static struct ctl_table sd_ctl_dir[] = { 5201 { 5202 .procname = "sched_domain", 5203 .mode = 0555, 5204 }, 5205 {} 5206 }; 5207 5208 static struct ctl_table sd_ctl_root[] = { 5209 { 5210 .procname = "kernel", 5211 .mode = 0555, 5212 .child = sd_ctl_dir, 5213 }, 5214 {} 5215 }; 5216 5217 static struct ctl_table *sd_alloc_ctl_entry(int n) 5218 { 5219 struct ctl_table *entry = 5220 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 5221 5222 return entry; 5223 } 5224 5225 static void sd_free_ctl_entry(struct ctl_table **tablep) 5226 { 5227 struct ctl_table *entry; 5228 5229 /* 5230 * In the intermediate directories, both the child directory and 5231 * procname are dynamically allocated and could fail but the mode 5232 * will always be set. In the lowest directory the names are 5233 * static strings and all have proc handlers. 5234 */ 5235 for (entry = *tablep; entry->mode; entry++) { 5236 if (entry->child) 5237 sd_free_ctl_entry(&entry->child); 5238 if (entry->proc_handler == NULL) 5239 kfree(entry->procname); 5240 } 5241 5242 kfree(*tablep); 5243 *tablep = NULL; 5244 } 5245 5246 static void 5247 set_table_entry(struct ctl_table *entry, 5248 const char *procname, void *data, int maxlen, 5249 umode_t mode, proc_handler *proc_handler) 5250 { 5251 entry->procname = procname; 5252 entry->data = data; 5253 entry->maxlen = maxlen; 5254 entry->mode = mode; 5255 entry->proc_handler = proc_handler; 5256 } 5257 5258 static struct ctl_table * 5259 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5260 { 5261 struct ctl_table *table = sd_alloc_ctl_entry(13); 5262 5263 if (table == NULL) 5264 return NULL; 5265 5266 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5267 sizeof(long), 0644, proc_doulongvec_minmax); 5268 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5269 sizeof(long), 0644, proc_doulongvec_minmax); 5270 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5271 sizeof(int), 0644, proc_dointvec_minmax); 5272 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5273 sizeof(int), 0644, proc_dointvec_minmax); 5274 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5275 sizeof(int), 0644, proc_dointvec_minmax); 5276 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5277 sizeof(int), 0644, proc_dointvec_minmax); 5278 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5279 sizeof(int), 0644, proc_dointvec_minmax); 5280 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5281 sizeof(int), 0644, proc_dointvec_minmax); 5282 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5283 sizeof(int), 0644, proc_dointvec_minmax); 5284 set_table_entry(&table[9], "cache_nice_tries", 5285 &sd->cache_nice_tries, 5286 sizeof(int), 0644, proc_dointvec_minmax); 5287 set_table_entry(&table[10], "flags", &sd->flags, 5288 sizeof(int), 0644, proc_dointvec_minmax); 5289 set_table_entry(&table[11], "name", sd->name, 5290 CORENAME_MAX_SIZE, 0444, proc_dostring); 5291 /* &table[12] is terminator */ 5292 5293 return table; 5294 } 5295 5296 static ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5297 { 5298 struct ctl_table *entry, *table; 5299 struct sched_domain *sd; 5300 int domain_num = 0, i; 5301 char buf[32]; 5302 5303 for_each_domain(cpu, sd) 5304 domain_num++; 5305 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5306 if (table == NULL) 5307 return NULL; 5308 5309 i = 0; 5310 for_each_domain(cpu, sd) { 5311 snprintf(buf, 32, "domain%d", i); 5312 entry->procname = kstrdup(buf, GFP_KERNEL); 5313 entry->mode = 0555; 5314 entry->child = sd_alloc_ctl_domain_table(sd); 5315 entry++; 5316 i++; 5317 } 5318 return table; 5319 } 5320 5321 static struct ctl_table_header *sd_sysctl_header; 5322 static void register_sched_domain_sysctl(void) 5323 { 5324 int i, cpu_num = num_possible_cpus(); 5325 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5326 char buf[32]; 5327 5328 WARN_ON(sd_ctl_dir[0].child); 5329 sd_ctl_dir[0].child = entry; 5330 5331 if (entry == NULL) 5332 return; 5333 5334 for_each_possible_cpu(i) { 5335 snprintf(buf, 32, "cpu%d", i); 5336 entry->procname = kstrdup(buf, GFP_KERNEL); 5337 entry->mode = 0555; 5338 entry->child = sd_alloc_ctl_cpu_table(i); 5339 entry++; 5340 } 5341 5342 WARN_ON(sd_sysctl_header); 5343 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5344 } 5345 5346 /* may be called multiple times per register */ 5347 static void unregister_sched_domain_sysctl(void) 5348 { 5349 if (sd_sysctl_header) 5350 unregister_sysctl_table(sd_sysctl_header); 5351 sd_sysctl_header = NULL; 5352 if (sd_ctl_dir[0].child) 5353 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5354 } 5355 #else 5356 static void register_sched_domain_sysctl(void) 5357 { 5358 } 5359 static void unregister_sched_domain_sysctl(void) 5360 { 5361 } 5362 #endif 5363 5364 static void set_rq_online(struct rq *rq) 5365 { 5366 if (!rq->online) { 5367 const struct sched_class *class; 5368 5369 cpumask_set_cpu(rq->cpu, rq->rd->online); 5370 rq->online = 1; 5371 5372 for_each_class(class) { 5373 if (class->rq_online) 5374 class->rq_online(rq); 5375 } 5376 } 5377 } 5378 5379 static void set_rq_offline(struct rq *rq) 5380 { 5381 if (rq->online) { 5382 const struct sched_class *class; 5383 5384 for_each_class(class) { 5385 if (class->rq_offline) 5386 class->rq_offline(rq); 5387 } 5388 5389 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5390 rq->online = 0; 5391 } 5392 } 5393 5394 /* 5395 * migration_call - callback that gets triggered when a CPU is added. 5396 * Here we can start up the necessary migration thread for the new CPU. 5397 */ 5398 static int __cpuinit 5399 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5400 { 5401 int cpu = (long)hcpu; 5402 unsigned long flags; 5403 struct rq *rq = cpu_rq(cpu); 5404 5405 switch (action & ~CPU_TASKS_FROZEN) { 5406 5407 case CPU_UP_PREPARE: 5408 rq->calc_load_update = calc_load_update; 5409 break; 5410 5411 case CPU_ONLINE: 5412 /* Update our root-domain */ 5413 raw_spin_lock_irqsave(&rq->lock, flags); 5414 if (rq->rd) { 5415 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5416 5417 set_rq_online(rq); 5418 } 5419 raw_spin_unlock_irqrestore(&rq->lock, flags); 5420 break; 5421 5422 #ifdef CONFIG_HOTPLUG_CPU 5423 case CPU_DYING: 5424 sched_ttwu_pending(); 5425 /* Update our root-domain */ 5426 raw_spin_lock_irqsave(&rq->lock, flags); 5427 if (rq->rd) { 5428 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5429 set_rq_offline(rq); 5430 } 5431 migrate_tasks(cpu); 5432 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5433 raw_spin_unlock_irqrestore(&rq->lock, flags); 5434 5435 migrate_nr_uninterruptible(rq); 5436 calc_global_load_remove(rq); 5437 break; 5438 #endif 5439 } 5440 5441 update_max_interval(); 5442 5443 return NOTIFY_OK; 5444 } 5445 5446 /* 5447 * Register at high priority so that task migration (migrate_all_tasks) 5448 * happens before everything else. This has to be lower priority than 5449 * the notifier in the perf_event subsystem, though. 5450 */ 5451 static struct notifier_block __cpuinitdata migration_notifier = { 5452 .notifier_call = migration_call, 5453 .priority = CPU_PRI_MIGRATION, 5454 }; 5455 5456 static int __cpuinit sched_cpu_active(struct notifier_block *nfb, 5457 unsigned long action, void *hcpu) 5458 { 5459 switch (action & ~CPU_TASKS_FROZEN) { 5460 case CPU_STARTING: 5461 case CPU_DOWN_FAILED: 5462 set_cpu_active((long)hcpu, true); 5463 return NOTIFY_OK; 5464 default: 5465 return NOTIFY_DONE; 5466 } 5467 } 5468 5469 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, 5470 unsigned long action, void *hcpu) 5471 { 5472 switch (action & ~CPU_TASKS_FROZEN) { 5473 case CPU_DOWN_PREPARE: 5474 set_cpu_active((long)hcpu, false); 5475 return NOTIFY_OK; 5476 default: 5477 return NOTIFY_DONE; 5478 } 5479 } 5480 5481 static int __init migration_init(void) 5482 { 5483 void *cpu = (void *)(long)smp_processor_id(); 5484 int err; 5485 5486 /* Initialize migration for the boot CPU */ 5487 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5488 BUG_ON(err == NOTIFY_BAD); 5489 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5490 register_cpu_notifier(&migration_notifier); 5491 5492 /* Register cpu active notifiers */ 5493 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5494 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5495 5496 return 0; 5497 } 5498 early_initcall(migration_init); 5499 #endif 5500 5501 #ifdef CONFIG_SMP 5502 5503 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5504 5505 #ifdef CONFIG_SCHED_DEBUG 5506 5507 static __read_mostly int sched_domain_debug_enabled; 5508 5509 static int __init sched_domain_debug_setup(char *str) 5510 { 5511 sched_domain_debug_enabled = 1; 5512 5513 return 0; 5514 } 5515 early_param("sched_debug", sched_domain_debug_setup); 5516 5517 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5518 struct cpumask *groupmask) 5519 { 5520 struct sched_group *group = sd->groups; 5521 char str[256]; 5522 5523 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5524 cpumask_clear(groupmask); 5525 5526 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5527 5528 if (!(sd->flags & SD_LOAD_BALANCE)) { 5529 printk("does not load-balance\n"); 5530 if (sd->parent) 5531 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5532 " has parent"); 5533 return -1; 5534 } 5535 5536 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5537 5538 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5539 printk(KERN_ERR "ERROR: domain->span does not contain " 5540 "CPU%d\n", cpu); 5541 } 5542 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5543 printk(KERN_ERR "ERROR: domain->groups does not contain" 5544 " CPU%d\n", cpu); 5545 } 5546 5547 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5548 do { 5549 if (!group) { 5550 printk("\n"); 5551 printk(KERN_ERR "ERROR: group is NULL\n"); 5552 break; 5553 } 5554 5555 if (!group->sgp->power) { 5556 printk(KERN_CONT "\n"); 5557 printk(KERN_ERR "ERROR: domain->cpu_power not " 5558 "set\n"); 5559 break; 5560 } 5561 5562 if (!cpumask_weight(sched_group_cpus(group))) { 5563 printk(KERN_CONT "\n"); 5564 printk(KERN_ERR "ERROR: empty group\n"); 5565 break; 5566 } 5567 5568 if (cpumask_intersects(groupmask, sched_group_cpus(group))) { 5569 printk(KERN_CONT "\n"); 5570 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5571 break; 5572 } 5573 5574 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5575 5576 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5577 5578 printk(KERN_CONT " %s", str); 5579 if (group->sgp->power != SCHED_POWER_SCALE) { 5580 printk(KERN_CONT " (cpu_power = %d)", 5581 group->sgp->power); 5582 } 5583 5584 group = group->next; 5585 } while (group != sd->groups); 5586 printk(KERN_CONT "\n"); 5587 5588 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5589 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5590 5591 if (sd->parent && 5592 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5593 printk(KERN_ERR "ERROR: parent span is not a superset " 5594 "of domain->span\n"); 5595 return 0; 5596 } 5597 5598 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5599 { 5600 int level = 0; 5601 5602 if (!sched_domain_debug_enabled) 5603 return; 5604 5605 if (!sd) { 5606 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5607 return; 5608 } 5609 5610 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5611 5612 for (;;) { 5613 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5614 break; 5615 level++; 5616 sd = sd->parent; 5617 if (!sd) 5618 break; 5619 } 5620 } 5621 #else /* !CONFIG_SCHED_DEBUG */ 5622 # define sched_domain_debug(sd, cpu) do { } while (0) 5623 #endif /* CONFIG_SCHED_DEBUG */ 5624 5625 static int sd_degenerate(struct sched_domain *sd) 5626 { 5627 if (cpumask_weight(sched_domain_span(sd)) == 1) 5628 return 1; 5629 5630 /* Following flags need at least 2 groups */ 5631 if (sd->flags & (SD_LOAD_BALANCE | 5632 SD_BALANCE_NEWIDLE | 5633 SD_BALANCE_FORK | 5634 SD_BALANCE_EXEC | 5635 SD_SHARE_CPUPOWER | 5636 SD_SHARE_PKG_RESOURCES)) { 5637 if (sd->groups != sd->groups->next) 5638 return 0; 5639 } 5640 5641 /* Following flags don't use groups */ 5642 if (sd->flags & (SD_WAKE_AFFINE)) 5643 return 0; 5644 5645 return 1; 5646 } 5647 5648 static int 5649 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5650 { 5651 unsigned long cflags = sd->flags, pflags = parent->flags; 5652 5653 if (sd_degenerate(parent)) 5654 return 1; 5655 5656 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5657 return 0; 5658 5659 /* Flags needing groups don't count if only 1 group in parent */ 5660 if (parent->groups == parent->groups->next) { 5661 pflags &= ~(SD_LOAD_BALANCE | 5662 SD_BALANCE_NEWIDLE | 5663 SD_BALANCE_FORK | 5664 SD_BALANCE_EXEC | 5665 SD_SHARE_CPUPOWER | 5666 SD_SHARE_PKG_RESOURCES); 5667 if (nr_node_ids == 1) 5668 pflags &= ~SD_SERIALIZE; 5669 } 5670 if (~cflags & pflags) 5671 return 0; 5672 5673 return 1; 5674 } 5675 5676 static void free_rootdomain(struct rcu_head *rcu) 5677 { 5678 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5679 5680 cpupri_cleanup(&rd->cpupri); 5681 free_cpumask_var(rd->rto_mask); 5682 free_cpumask_var(rd->online); 5683 free_cpumask_var(rd->span); 5684 kfree(rd); 5685 } 5686 5687 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5688 { 5689 struct root_domain *old_rd = NULL; 5690 unsigned long flags; 5691 5692 raw_spin_lock_irqsave(&rq->lock, flags); 5693 5694 if (rq->rd) { 5695 old_rd = rq->rd; 5696 5697 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5698 set_rq_offline(rq); 5699 5700 cpumask_clear_cpu(rq->cpu, old_rd->span); 5701 5702 /* 5703 * If we dont want to free the old_rt yet then 5704 * set old_rd to NULL to skip the freeing later 5705 * in this function: 5706 */ 5707 if (!atomic_dec_and_test(&old_rd->refcount)) 5708 old_rd = NULL; 5709 } 5710 5711 atomic_inc(&rd->refcount); 5712 rq->rd = rd; 5713 5714 cpumask_set_cpu(rq->cpu, rd->span); 5715 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5716 set_rq_online(rq); 5717 5718 raw_spin_unlock_irqrestore(&rq->lock, flags); 5719 5720 if (old_rd) 5721 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5722 } 5723 5724 static int init_rootdomain(struct root_domain *rd) 5725 { 5726 memset(rd, 0, sizeof(*rd)); 5727 5728 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5729 goto out; 5730 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5731 goto free_span; 5732 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5733 goto free_online; 5734 5735 if (cpupri_init(&rd->cpupri) != 0) 5736 goto free_rto_mask; 5737 return 0; 5738 5739 free_rto_mask: 5740 free_cpumask_var(rd->rto_mask); 5741 free_online: 5742 free_cpumask_var(rd->online); 5743 free_span: 5744 free_cpumask_var(rd->span); 5745 out: 5746 return -ENOMEM; 5747 } 5748 5749 /* 5750 * By default the system creates a single root-domain with all cpus as 5751 * members (mimicking the global state we have today). 5752 */ 5753 struct root_domain def_root_domain; 5754 5755 static void init_defrootdomain(void) 5756 { 5757 init_rootdomain(&def_root_domain); 5758 5759 atomic_set(&def_root_domain.refcount, 1); 5760 } 5761 5762 static struct root_domain *alloc_rootdomain(void) 5763 { 5764 struct root_domain *rd; 5765 5766 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5767 if (!rd) 5768 return NULL; 5769 5770 if (init_rootdomain(rd) != 0) { 5771 kfree(rd); 5772 return NULL; 5773 } 5774 5775 return rd; 5776 } 5777 5778 static void free_sched_groups(struct sched_group *sg, int free_sgp) 5779 { 5780 struct sched_group *tmp, *first; 5781 5782 if (!sg) 5783 return; 5784 5785 first = sg; 5786 do { 5787 tmp = sg->next; 5788 5789 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) 5790 kfree(sg->sgp); 5791 5792 kfree(sg); 5793 sg = tmp; 5794 } while (sg != first); 5795 } 5796 5797 static void free_sched_domain(struct rcu_head *rcu) 5798 { 5799 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5800 5801 /* 5802 * If its an overlapping domain it has private groups, iterate and 5803 * nuke them all. 5804 */ 5805 if (sd->flags & SD_OVERLAP) { 5806 free_sched_groups(sd->groups, 1); 5807 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5808 kfree(sd->groups->sgp); 5809 kfree(sd->groups); 5810 } 5811 kfree(sd); 5812 } 5813 5814 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5815 { 5816 call_rcu(&sd->rcu, free_sched_domain); 5817 } 5818 5819 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5820 { 5821 for (; sd; sd = sd->parent) 5822 destroy_sched_domain(sd, cpu); 5823 } 5824 5825 /* 5826 * Keep a special pointer to the highest sched_domain that has 5827 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5828 * allows us to avoid some pointer chasing select_idle_sibling(). 5829 * 5830 * Also keep a unique ID per domain (we use the first cpu number in 5831 * the cpumask of the domain), this allows us to quickly tell if 5832 * two cpus are in the same cache domain, see cpus_share_cache(). 5833 */ 5834 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5835 DEFINE_PER_CPU(int, sd_llc_id); 5836 5837 static void update_top_cache_domain(int cpu) 5838 { 5839 struct sched_domain *sd; 5840 int id = cpu; 5841 5842 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5843 if (sd) 5844 id = cpumask_first(sched_domain_span(sd)); 5845 5846 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5847 per_cpu(sd_llc_id, cpu) = id; 5848 } 5849 5850 /* 5851 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5852 * hold the hotplug lock. 5853 */ 5854 static void 5855 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5856 { 5857 struct rq *rq = cpu_rq(cpu); 5858 struct sched_domain *tmp; 5859 5860 /* Remove the sched domains which do not contribute to scheduling. */ 5861 for (tmp = sd; tmp; ) { 5862 struct sched_domain *parent = tmp->parent; 5863 if (!parent) 5864 break; 5865 5866 if (sd_parent_degenerate(tmp, parent)) { 5867 tmp->parent = parent->parent; 5868 if (parent->parent) 5869 parent->parent->child = tmp; 5870 destroy_sched_domain(parent, cpu); 5871 } else 5872 tmp = tmp->parent; 5873 } 5874 5875 if (sd && sd_degenerate(sd)) { 5876 tmp = sd; 5877 sd = sd->parent; 5878 destroy_sched_domain(tmp, cpu); 5879 if (sd) 5880 sd->child = NULL; 5881 } 5882 5883 sched_domain_debug(sd, cpu); 5884 5885 rq_attach_root(rq, rd); 5886 tmp = rq->sd; 5887 rcu_assign_pointer(rq->sd, sd); 5888 destroy_sched_domains(tmp, cpu); 5889 5890 update_top_cache_domain(cpu); 5891 } 5892 5893 /* cpus with isolated domains */ 5894 static cpumask_var_t cpu_isolated_map; 5895 5896 /* Setup the mask of cpus configured for isolated domains */ 5897 static int __init isolated_cpu_setup(char *str) 5898 { 5899 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5900 cpulist_parse(str, cpu_isolated_map); 5901 return 1; 5902 } 5903 5904 __setup("isolcpus=", isolated_cpu_setup); 5905 5906 #ifdef CONFIG_NUMA 5907 5908 /** 5909 * find_next_best_node - find the next node to include in a sched_domain 5910 * @node: node whose sched_domain we're building 5911 * @used_nodes: nodes already in the sched_domain 5912 * 5913 * Find the next node to include in a given scheduling domain. Simply 5914 * finds the closest node not already in the @used_nodes map. 5915 * 5916 * Should use nodemask_t. 5917 */ 5918 static int find_next_best_node(int node, nodemask_t *used_nodes) 5919 { 5920 int i, n, val, min_val, best_node = -1; 5921 5922 min_val = INT_MAX; 5923 5924 for (i = 0; i < nr_node_ids; i++) { 5925 /* Start at @node */ 5926 n = (node + i) % nr_node_ids; 5927 5928 if (!nr_cpus_node(n)) 5929 continue; 5930 5931 /* Skip already used nodes */ 5932 if (node_isset(n, *used_nodes)) 5933 continue; 5934 5935 /* Simple min distance search */ 5936 val = node_distance(node, n); 5937 5938 if (val < min_val) { 5939 min_val = val; 5940 best_node = n; 5941 } 5942 } 5943 5944 if (best_node != -1) 5945 node_set(best_node, *used_nodes); 5946 return best_node; 5947 } 5948 5949 /** 5950 * sched_domain_node_span - get a cpumask for a node's sched_domain 5951 * @node: node whose cpumask we're constructing 5952 * @span: resulting cpumask 5953 * 5954 * Given a node, construct a good cpumask for its sched_domain to span. It 5955 * should be one that prevents unnecessary balancing, but also spreads tasks 5956 * out optimally. 5957 */ 5958 static void sched_domain_node_span(int node, struct cpumask *span) 5959 { 5960 nodemask_t used_nodes; 5961 int i; 5962 5963 cpumask_clear(span); 5964 nodes_clear(used_nodes); 5965 5966 cpumask_or(span, span, cpumask_of_node(node)); 5967 node_set(node, used_nodes); 5968 5969 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { 5970 int next_node = find_next_best_node(node, &used_nodes); 5971 if (next_node < 0) 5972 break; 5973 cpumask_or(span, span, cpumask_of_node(next_node)); 5974 } 5975 } 5976 5977 static const struct cpumask *cpu_node_mask(int cpu) 5978 { 5979 lockdep_assert_held(&sched_domains_mutex); 5980 5981 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask); 5982 5983 return sched_domains_tmpmask; 5984 } 5985 5986 static const struct cpumask *cpu_allnodes_mask(int cpu) 5987 { 5988 return cpu_possible_mask; 5989 } 5990 #endif /* CONFIG_NUMA */ 5991 5992 static const struct cpumask *cpu_cpu_mask(int cpu) 5993 { 5994 return cpumask_of_node(cpu_to_node(cpu)); 5995 } 5996 5997 int sched_smt_power_savings = 0, sched_mc_power_savings = 0; 5998 5999 struct sd_data { 6000 struct sched_domain **__percpu sd; 6001 struct sched_group **__percpu sg; 6002 struct sched_group_power **__percpu sgp; 6003 }; 6004 6005 struct s_data { 6006 struct sched_domain ** __percpu sd; 6007 struct root_domain *rd; 6008 }; 6009 6010 enum s_alloc { 6011 sa_rootdomain, 6012 sa_sd, 6013 sa_sd_storage, 6014 sa_none, 6015 }; 6016 6017 struct sched_domain_topology_level; 6018 6019 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); 6020 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 6021 6022 #define SDTL_OVERLAP 0x01 6023 6024 struct sched_domain_topology_level { 6025 sched_domain_init_f init; 6026 sched_domain_mask_f mask; 6027 int flags; 6028 struct sd_data data; 6029 }; 6030 6031 static int 6032 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 6033 { 6034 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 6035 const struct cpumask *span = sched_domain_span(sd); 6036 struct cpumask *covered = sched_domains_tmpmask; 6037 struct sd_data *sdd = sd->private; 6038 struct sched_domain *child; 6039 int i; 6040 6041 cpumask_clear(covered); 6042 6043 for_each_cpu(i, span) { 6044 struct cpumask *sg_span; 6045 6046 if (cpumask_test_cpu(i, covered)) 6047 continue; 6048 6049 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6050 GFP_KERNEL, cpu_to_node(cpu)); 6051 6052 if (!sg) 6053 goto fail; 6054 6055 sg_span = sched_group_cpus(sg); 6056 6057 child = *per_cpu_ptr(sdd->sd, i); 6058 if (child->child) { 6059 child = child->child; 6060 cpumask_copy(sg_span, sched_domain_span(child)); 6061 } else 6062 cpumask_set_cpu(i, sg_span); 6063 6064 cpumask_or(covered, covered, sg_span); 6065 6066 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span)); 6067 atomic_inc(&sg->sgp->ref); 6068 6069 if (cpumask_test_cpu(cpu, sg_span)) 6070 groups = sg; 6071 6072 if (!first) 6073 first = sg; 6074 if (last) 6075 last->next = sg; 6076 last = sg; 6077 last->next = first; 6078 } 6079 sd->groups = groups; 6080 6081 return 0; 6082 6083 fail: 6084 free_sched_groups(first, 0); 6085 6086 return -ENOMEM; 6087 } 6088 6089 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 6090 { 6091 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6092 struct sched_domain *child = sd->child; 6093 6094 if (child) 6095 cpu = cpumask_first(sched_domain_span(child)); 6096 6097 if (sg) { 6098 *sg = *per_cpu_ptr(sdd->sg, cpu); 6099 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); 6100 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ 6101 } 6102 6103 return cpu; 6104 } 6105 6106 /* 6107 * build_sched_groups will build a circular linked list of the groups 6108 * covered by the given span, and will set each group's ->cpumask correctly, 6109 * and ->cpu_power to 0. 6110 * 6111 * Assumes the sched_domain tree is fully constructed 6112 */ 6113 static int 6114 build_sched_groups(struct sched_domain *sd, int cpu) 6115 { 6116 struct sched_group *first = NULL, *last = NULL; 6117 struct sd_data *sdd = sd->private; 6118 const struct cpumask *span = sched_domain_span(sd); 6119 struct cpumask *covered; 6120 int i; 6121 6122 get_group(cpu, sdd, &sd->groups); 6123 atomic_inc(&sd->groups->ref); 6124 6125 if (cpu != cpumask_first(sched_domain_span(sd))) 6126 return 0; 6127 6128 lockdep_assert_held(&sched_domains_mutex); 6129 covered = sched_domains_tmpmask; 6130 6131 cpumask_clear(covered); 6132 6133 for_each_cpu(i, span) { 6134 struct sched_group *sg; 6135 int group = get_group(i, sdd, &sg); 6136 int j; 6137 6138 if (cpumask_test_cpu(i, covered)) 6139 continue; 6140 6141 cpumask_clear(sched_group_cpus(sg)); 6142 sg->sgp->power = 0; 6143 6144 for_each_cpu(j, span) { 6145 if (get_group(j, sdd, NULL) != group) 6146 continue; 6147 6148 cpumask_set_cpu(j, covered); 6149 cpumask_set_cpu(j, sched_group_cpus(sg)); 6150 } 6151 6152 if (!first) 6153 first = sg; 6154 if (last) 6155 last->next = sg; 6156 last = sg; 6157 } 6158 last->next = first; 6159 6160 return 0; 6161 } 6162 6163 /* 6164 * Initialize sched groups cpu_power. 6165 * 6166 * cpu_power indicates the capacity of sched group, which is used while 6167 * distributing the load between different sched groups in a sched domain. 6168 * Typically cpu_power for all the groups in a sched domain will be same unless 6169 * there are asymmetries in the topology. If there are asymmetries, group 6170 * having more cpu_power will pickup more load compared to the group having 6171 * less cpu_power. 6172 */ 6173 static void init_sched_groups_power(int cpu, struct sched_domain *sd) 6174 { 6175 struct sched_group *sg = sd->groups; 6176 6177 WARN_ON(!sd || !sg); 6178 6179 do { 6180 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6181 sg = sg->next; 6182 } while (sg != sd->groups); 6183 6184 if (cpu != group_first_cpu(sg)) 6185 return; 6186 6187 update_group_power(sd, cpu); 6188 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); 6189 } 6190 6191 int __weak arch_sd_sibling_asym_packing(void) 6192 { 6193 return 0*SD_ASYM_PACKING; 6194 } 6195 6196 /* 6197 * Initializers for schedule domains 6198 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6199 */ 6200 6201 #ifdef CONFIG_SCHED_DEBUG 6202 # define SD_INIT_NAME(sd, type) sd->name = #type 6203 #else 6204 # define SD_INIT_NAME(sd, type) do { } while (0) 6205 #endif 6206 6207 #define SD_INIT_FUNC(type) \ 6208 static noinline struct sched_domain * \ 6209 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ 6210 { \ 6211 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ 6212 *sd = SD_##type##_INIT; \ 6213 SD_INIT_NAME(sd, type); \ 6214 sd->private = &tl->data; \ 6215 return sd; \ 6216 } 6217 6218 SD_INIT_FUNC(CPU) 6219 #ifdef CONFIG_NUMA 6220 SD_INIT_FUNC(ALLNODES) 6221 SD_INIT_FUNC(NODE) 6222 #endif 6223 #ifdef CONFIG_SCHED_SMT 6224 SD_INIT_FUNC(SIBLING) 6225 #endif 6226 #ifdef CONFIG_SCHED_MC 6227 SD_INIT_FUNC(MC) 6228 #endif 6229 #ifdef CONFIG_SCHED_BOOK 6230 SD_INIT_FUNC(BOOK) 6231 #endif 6232 6233 static int default_relax_domain_level = -1; 6234 int sched_domain_level_max; 6235 6236 static int __init setup_relax_domain_level(char *str) 6237 { 6238 unsigned long val; 6239 6240 val = simple_strtoul(str, NULL, 0); 6241 if (val < sched_domain_level_max) 6242 default_relax_domain_level = val; 6243 6244 return 1; 6245 } 6246 __setup("relax_domain_level=", setup_relax_domain_level); 6247 6248 static void set_domain_attribute(struct sched_domain *sd, 6249 struct sched_domain_attr *attr) 6250 { 6251 int request; 6252 6253 if (!attr || attr->relax_domain_level < 0) { 6254 if (default_relax_domain_level < 0) 6255 return; 6256 else 6257 request = default_relax_domain_level; 6258 } else 6259 request = attr->relax_domain_level; 6260 if (request < sd->level) { 6261 /* turn off idle balance on this domain */ 6262 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6263 } else { 6264 /* turn on idle balance on this domain */ 6265 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6266 } 6267 } 6268 6269 static void __sdt_free(const struct cpumask *cpu_map); 6270 static int __sdt_alloc(const struct cpumask *cpu_map); 6271 6272 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6273 const struct cpumask *cpu_map) 6274 { 6275 switch (what) { 6276 case sa_rootdomain: 6277 if (!atomic_read(&d->rd->refcount)) 6278 free_rootdomain(&d->rd->rcu); /* fall through */ 6279 case sa_sd: 6280 free_percpu(d->sd); /* fall through */ 6281 case sa_sd_storage: 6282 __sdt_free(cpu_map); /* fall through */ 6283 case sa_none: 6284 break; 6285 } 6286 } 6287 6288 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6289 const struct cpumask *cpu_map) 6290 { 6291 memset(d, 0, sizeof(*d)); 6292 6293 if (__sdt_alloc(cpu_map)) 6294 return sa_sd_storage; 6295 d->sd = alloc_percpu(struct sched_domain *); 6296 if (!d->sd) 6297 return sa_sd_storage; 6298 d->rd = alloc_rootdomain(); 6299 if (!d->rd) 6300 return sa_sd; 6301 return sa_rootdomain; 6302 } 6303 6304 /* 6305 * NULL the sd_data elements we've used to build the sched_domain and 6306 * sched_group structure so that the subsequent __free_domain_allocs() 6307 * will not free the data we're using. 6308 */ 6309 static void claim_allocations(int cpu, struct sched_domain *sd) 6310 { 6311 struct sd_data *sdd = sd->private; 6312 6313 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6314 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6315 6316 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6317 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6318 6319 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) 6320 *per_cpu_ptr(sdd->sgp, cpu) = NULL; 6321 } 6322 6323 #ifdef CONFIG_SCHED_SMT 6324 static const struct cpumask *cpu_smt_mask(int cpu) 6325 { 6326 return topology_thread_cpumask(cpu); 6327 } 6328 #endif 6329 6330 /* 6331 * Topology list, bottom-up. 6332 */ 6333 static struct sched_domain_topology_level default_topology[] = { 6334 #ifdef CONFIG_SCHED_SMT 6335 { sd_init_SIBLING, cpu_smt_mask, }, 6336 #endif 6337 #ifdef CONFIG_SCHED_MC 6338 { sd_init_MC, cpu_coregroup_mask, }, 6339 #endif 6340 #ifdef CONFIG_SCHED_BOOK 6341 { sd_init_BOOK, cpu_book_mask, }, 6342 #endif 6343 { sd_init_CPU, cpu_cpu_mask, }, 6344 #ifdef CONFIG_NUMA 6345 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, }, 6346 { sd_init_ALLNODES, cpu_allnodes_mask, }, 6347 #endif 6348 { NULL, }, 6349 }; 6350 6351 static struct sched_domain_topology_level *sched_domain_topology = default_topology; 6352 6353 static int __sdt_alloc(const struct cpumask *cpu_map) 6354 { 6355 struct sched_domain_topology_level *tl; 6356 int j; 6357 6358 for (tl = sched_domain_topology; tl->init; tl++) { 6359 struct sd_data *sdd = &tl->data; 6360 6361 sdd->sd = alloc_percpu(struct sched_domain *); 6362 if (!sdd->sd) 6363 return -ENOMEM; 6364 6365 sdd->sg = alloc_percpu(struct sched_group *); 6366 if (!sdd->sg) 6367 return -ENOMEM; 6368 6369 sdd->sgp = alloc_percpu(struct sched_group_power *); 6370 if (!sdd->sgp) 6371 return -ENOMEM; 6372 6373 for_each_cpu(j, cpu_map) { 6374 struct sched_domain *sd; 6375 struct sched_group *sg; 6376 struct sched_group_power *sgp; 6377 6378 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6379 GFP_KERNEL, cpu_to_node(j)); 6380 if (!sd) 6381 return -ENOMEM; 6382 6383 *per_cpu_ptr(sdd->sd, j) = sd; 6384 6385 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6386 GFP_KERNEL, cpu_to_node(j)); 6387 if (!sg) 6388 return -ENOMEM; 6389 6390 *per_cpu_ptr(sdd->sg, j) = sg; 6391 6392 sgp = kzalloc_node(sizeof(struct sched_group_power), 6393 GFP_KERNEL, cpu_to_node(j)); 6394 if (!sgp) 6395 return -ENOMEM; 6396 6397 *per_cpu_ptr(sdd->sgp, j) = sgp; 6398 } 6399 } 6400 6401 return 0; 6402 } 6403 6404 static void __sdt_free(const struct cpumask *cpu_map) 6405 { 6406 struct sched_domain_topology_level *tl; 6407 int j; 6408 6409 for (tl = sched_domain_topology; tl->init; tl++) { 6410 struct sd_data *sdd = &tl->data; 6411 6412 for_each_cpu(j, cpu_map) { 6413 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j); 6414 if (sd && (sd->flags & SD_OVERLAP)) 6415 free_sched_groups(sd->groups, 0); 6416 kfree(*per_cpu_ptr(sdd->sd, j)); 6417 kfree(*per_cpu_ptr(sdd->sg, j)); 6418 kfree(*per_cpu_ptr(sdd->sgp, j)); 6419 } 6420 free_percpu(sdd->sd); 6421 free_percpu(sdd->sg); 6422 free_percpu(sdd->sgp); 6423 } 6424 } 6425 6426 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6427 struct s_data *d, const struct cpumask *cpu_map, 6428 struct sched_domain_attr *attr, struct sched_domain *child, 6429 int cpu) 6430 { 6431 struct sched_domain *sd = tl->init(tl, cpu); 6432 if (!sd) 6433 return child; 6434 6435 set_domain_attribute(sd, attr); 6436 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6437 if (child) { 6438 sd->level = child->level + 1; 6439 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6440 child->parent = sd; 6441 } 6442 sd->child = child; 6443 6444 return sd; 6445 } 6446 6447 /* 6448 * Build sched domains for a given set of cpus and attach the sched domains 6449 * to the individual cpus 6450 */ 6451 static int build_sched_domains(const struct cpumask *cpu_map, 6452 struct sched_domain_attr *attr) 6453 { 6454 enum s_alloc alloc_state = sa_none; 6455 struct sched_domain *sd; 6456 struct s_data d; 6457 int i, ret = -ENOMEM; 6458 6459 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6460 if (alloc_state != sa_rootdomain) 6461 goto error; 6462 6463 /* Set up domains for cpus specified by the cpu_map. */ 6464 for_each_cpu(i, cpu_map) { 6465 struct sched_domain_topology_level *tl; 6466 6467 sd = NULL; 6468 for (tl = sched_domain_topology; tl->init; tl++) { 6469 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); 6470 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6471 sd->flags |= SD_OVERLAP; 6472 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6473 break; 6474 } 6475 6476 while (sd->child) 6477 sd = sd->child; 6478 6479 *per_cpu_ptr(d.sd, i) = sd; 6480 } 6481 6482 /* Build the groups for the domains */ 6483 for_each_cpu(i, cpu_map) { 6484 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6485 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6486 if (sd->flags & SD_OVERLAP) { 6487 if (build_overlap_sched_groups(sd, i)) 6488 goto error; 6489 } else { 6490 if (build_sched_groups(sd, i)) 6491 goto error; 6492 } 6493 } 6494 } 6495 6496 /* Calculate CPU power for physical packages and nodes */ 6497 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6498 if (!cpumask_test_cpu(i, cpu_map)) 6499 continue; 6500 6501 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6502 claim_allocations(i, sd); 6503 init_sched_groups_power(i, sd); 6504 } 6505 } 6506 6507 /* Attach the domains */ 6508 rcu_read_lock(); 6509 for_each_cpu(i, cpu_map) { 6510 sd = *per_cpu_ptr(d.sd, i); 6511 cpu_attach_domain(sd, d.rd, i); 6512 } 6513 rcu_read_unlock(); 6514 6515 ret = 0; 6516 error: 6517 __free_domain_allocs(&d, alloc_state, cpu_map); 6518 return ret; 6519 } 6520 6521 static cpumask_var_t *doms_cur; /* current sched domains */ 6522 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6523 static struct sched_domain_attr *dattr_cur; 6524 /* attribues of custom domains in 'doms_cur' */ 6525 6526 /* 6527 * Special case: If a kmalloc of a doms_cur partition (array of 6528 * cpumask) fails, then fallback to a single sched domain, 6529 * as determined by the single cpumask fallback_doms. 6530 */ 6531 static cpumask_var_t fallback_doms; 6532 6533 /* 6534 * arch_update_cpu_topology lets virtualized architectures update the 6535 * cpu core maps. It is supposed to return 1 if the topology changed 6536 * or 0 if it stayed the same. 6537 */ 6538 int __attribute__((weak)) arch_update_cpu_topology(void) 6539 { 6540 return 0; 6541 } 6542 6543 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6544 { 6545 int i; 6546 cpumask_var_t *doms; 6547 6548 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6549 if (!doms) 6550 return NULL; 6551 for (i = 0; i < ndoms; i++) { 6552 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6553 free_sched_domains(doms, i); 6554 return NULL; 6555 } 6556 } 6557 return doms; 6558 } 6559 6560 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6561 { 6562 unsigned int i; 6563 for (i = 0; i < ndoms; i++) 6564 free_cpumask_var(doms[i]); 6565 kfree(doms); 6566 } 6567 6568 /* 6569 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6570 * For now this just excludes isolated cpus, but could be used to 6571 * exclude other special cases in the future. 6572 */ 6573 static int init_sched_domains(const struct cpumask *cpu_map) 6574 { 6575 int err; 6576 6577 arch_update_cpu_topology(); 6578 ndoms_cur = 1; 6579 doms_cur = alloc_sched_domains(ndoms_cur); 6580 if (!doms_cur) 6581 doms_cur = &fallback_doms; 6582 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6583 dattr_cur = NULL; 6584 err = build_sched_domains(doms_cur[0], NULL); 6585 register_sched_domain_sysctl(); 6586 6587 return err; 6588 } 6589 6590 /* 6591 * Detach sched domains from a group of cpus specified in cpu_map 6592 * These cpus will now be attached to the NULL domain 6593 */ 6594 static void detach_destroy_domains(const struct cpumask *cpu_map) 6595 { 6596 int i; 6597 6598 rcu_read_lock(); 6599 for_each_cpu(i, cpu_map) 6600 cpu_attach_domain(NULL, &def_root_domain, i); 6601 rcu_read_unlock(); 6602 } 6603 6604 /* handle null as "default" */ 6605 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6606 struct sched_domain_attr *new, int idx_new) 6607 { 6608 struct sched_domain_attr tmp; 6609 6610 /* fast path */ 6611 if (!new && !cur) 6612 return 1; 6613 6614 tmp = SD_ATTR_INIT; 6615 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6616 new ? (new + idx_new) : &tmp, 6617 sizeof(struct sched_domain_attr)); 6618 } 6619 6620 /* 6621 * Partition sched domains as specified by the 'ndoms_new' 6622 * cpumasks in the array doms_new[] of cpumasks. This compares 6623 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6624 * It destroys each deleted domain and builds each new domain. 6625 * 6626 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6627 * The masks don't intersect (don't overlap.) We should setup one 6628 * sched domain for each mask. CPUs not in any of the cpumasks will 6629 * not be load balanced. If the same cpumask appears both in the 6630 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6631 * it as it is. 6632 * 6633 * The passed in 'doms_new' should be allocated using 6634 * alloc_sched_domains. This routine takes ownership of it and will 6635 * free_sched_domains it when done with it. If the caller failed the 6636 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6637 * and partition_sched_domains() will fallback to the single partition 6638 * 'fallback_doms', it also forces the domains to be rebuilt. 6639 * 6640 * If doms_new == NULL it will be replaced with cpu_online_mask. 6641 * ndoms_new == 0 is a special case for destroying existing domains, 6642 * and it will not create the default domain. 6643 * 6644 * Call with hotplug lock held 6645 */ 6646 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6647 struct sched_domain_attr *dattr_new) 6648 { 6649 int i, j, n; 6650 int new_topology; 6651 6652 mutex_lock(&sched_domains_mutex); 6653 6654 /* always unregister in case we don't destroy any domains */ 6655 unregister_sched_domain_sysctl(); 6656 6657 /* Let architecture update cpu core mappings. */ 6658 new_topology = arch_update_cpu_topology(); 6659 6660 n = doms_new ? ndoms_new : 0; 6661 6662 /* Destroy deleted domains */ 6663 for (i = 0; i < ndoms_cur; i++) { 6664 for (j = 0; j < n && !new_topology; j++) { 6665 if (cpumask_equal(doms_cur[i], doms_new[j]) 6666 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6667 goto match1; 6668 } 6669 /* no match - a current sched domain not in new doms_new[] */ 6670 detach_destroy_domains(doms_cur[i]); 6671 match1: 6672 ; 6673 } 6674 6675 if (doms_new == NULL) { 6676 ndoms_cur = 0; 6677 doms_new = &fallback_doms; 6678 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6679 WARN_ON_ONCE(dattr_new); 6680 } 6681 6682 /* Build new domains */ 6683 for (i = 0; i < ndoms_new; i++) { 6684 for (j = 0; j < ndoms_cur && !new_topology; j++) { 6685 if (cpumask_equal(doms_new[i], doms_cur[j]) 6686 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6687 goto match2; 6688 } 6689 /* no match - add a new doms_new */ 6690 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6691 match2: 6692 ; 6693 } 6694 6695 /* Remember the new sched domains */ 6696 if (doms_cur != &fallback_doms) 6697 free_sched_domains(doms_cur, ndoms_cur); 6698 kfree(dattr_cur); /* kfree(NULL) is safe */ 6699 doms_cur = doms_new; 6700 dattr_cur = dattr_new; 6701 ndoms_cur = ndoms_new; 6702 6703 register_sched_domain_sysctl(); 6704 6705 mutex_unlock(&sched_domains_mutex); 6706 } 6707 6708 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) 6709 static void reinit_sched_domains(void) 6710 { 6711 get_online_cpus(); 6712 6713 /* Destroy domains first to force the rebuild */ 6714 partition_sched_domains(0, NULL, NULL); 6715 6716 rebuild_sched_domains(); 6717 put_online_cpus(); 6718 } 6719 6720 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) 6721 { 6722 unsigned int level = 0; 6723 6724 if (sscanf(buf, "%u", &level) != 1) 6725 return -EINVAL; 6726 6727 /* 6728 * level is always be positive so don't check for 6729 * level < POWERSAVINGS_BALANCE_NONE which is 0 6730 * What happens on 0 or 1 byte write, 6731 * need to check for count as well? 6732 */ 6733 6734 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) 6735 return -EINVAL; 6736 6737 if (smt) 6738 sched_smt_power_savings = level; 6739 else 6740 sched_mc_power_savings = level; 6741 6742 reinit_sched_domains(); 6743 6744 return count; 6745 } 6746 6747 #ifdef CONFIG_SCHED_MC 6748 static ssize_t sched_mc_power_savings_show(struct device *dev, 6749 struct device_attribute *attr, 6750 char *buf) 6751 { 6752 return sprintf(buf, "%u\n", sched_mc_power_savings); 6753 } 6754 static ssize_t sched_mc_power_savings_store(struct device *dev, 6755 struct device_attribute *attr, 6756 const char *buf, size_t count) 6757 { 6758 return sched_power_savings_store(buf, count, 0); 6759 } 6760 static DEVICE_ATTR(sched_mc_power_savings, 0644, 6761 sched_mc_power_savings_show, 6762 sched_mc_power_savings_store); 6763 #endif 6764 6765 #ifdef CONFIG_SCHED_SMT 6766 static ssize_t sched_smt_power_savings_show(struct device *dev, 6767 struct device_attribute *attr, 6768 char *buf) 6769 { 6770 return sprintf(buf, "%u\n", sched_smt_power_savings); 6771 } 6772 static ssize_t sched_smt_power_savings_store(struct device *dev, 6773 struct device_attribute *attr, 6774 const char *buf, size_t count) 6775 { 6776 return sched_power_savings_store(buf, count, 1); 6777 } 6778 static DEVICE_ATTR(sched_smt_power_savings, 0644, 6779 sched_smt_power_savings_show, 6780 sched_smt_power_savings_store); 6781 #endif 6782 6783 int __init sched_create_sysfs_power_savings_entries(struct device *dev) 6784 { 6785 int err = 0; 6786 6787 #ifdef CONFIG_SCHED_SMT 6788 if (smt_capable()) 6789 err = device_create_file(dev, &dev_attr_sched_smt_power_savings); 6790 #endif 6791 #ifdef CONFIG_SCHED_MC 6792 if (!err && mc_capable()) 6793 err = device_create_file(dev, &dev_attr_sched_mc_power_savings); 6794 #endif 6795 return err; 6796 } 6797 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ 6798 6799 /* 6800 * Update cpusets according to cpu_active mask. If cpusets are 6801 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6802 * around partition_sched_domains(). 6803 */ 6804 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6805 void *hcpu) 6806 { 6807 switch (action & ~CPU_TASKS_FROZEN) { 6808 case CPU_ONLINE: 6809 case CPU_DOWN_FAILED: 6810 cpuset_update_active_cpus(); 6811 return NOTIFY_OK; 6812 default: 6813 return NOTIFY_DONE; 6814 } 6815 } 6816 6817 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6818 void *hcpu) 6819 { 6820 switch (action & ~CPU_TASKS_FROZEN) { 6821 case CPU_DOWN_PREPARE: 6822 cpuset_update_active_cpus(); 6823 return NOTIFY_OK; 6824 default: 6825 return NOTIFY_DONE; 6826 } 6827 } 6828 6829 void __init sched_init_smp(void) 6830 { 6831 cpumask_var_t non_isolated_cpus; 6832 6833 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6834 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6835 6836 get_online_cpus(); 6837 mutex_lock(&sched_domains_mutex); 6838 init_sched_domains(cpu_active_mask); 6839 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6840 if (cpumask_empty(non_isolated_cpus)) 6841 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6842 mutex_unlock(&sched_domains_mutex); 6843 put_online_cpus(); 6844 6845 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6846 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6847 6848 /* RT runtime code needs to handle some hotplug events */ 6849 hotcpu_notifier(update_runtime, 0); 6850 6851 init_hrtick(); 6852 6853 /* Move init over to a non-isolated CPU */ 6854 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6855 BUG(); 6856 sched_init_granularity(); 6857 free_cpumask_var(non_isolated_cpus); 6858 6859 init_sched_rt_class(); 6860 } 6861 #else 6862 void __init sched_init_smp(void) 6863 { 6864 sched_init_granularity(); 6865 } 6866 #endif /* CONFIG_SMP */ 6867 6868 const_debug unsigned int sysctl_timer_migration = 1; 6869 6870 int in_sched_functions(unsigned long addr) 6871 { 6872 return in_lock_functions(addr) || 6873 (addr >= (unsigned long)__sched_text_start 6874 && addr < (unsigned long)__sched_text_end); 6875 } 6876 6877 #ifdef CONFIG_CGROUP_SCHED 6878 struct task_group root_task_group; 6879 #endif 6880 6881 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask); 6882 6883 void __init sched_init(void) 6884 { 6885 int i, j; 6886 unsigned long alloc_size = 0, ptr; 6887 6888 #ifdef CONFIG_FAIR_GROUP_SCHED 6889 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6890 #endif 6891 #ifdef CONFIG_RT_GROUP_SCHED 6892 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6893 #endif 6894 #ifdef CONFIG_CPUMASK_OFFSTACK 6895 alloc_size += num_possible_cpus() * cpumask_size(); 6896 #endif 6897 if (alloc_size) { 6898 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6899 6900 #ifdef CONFIG_FAIR_GROUP_SCHED 6901 root_task_group.se = (struct sched_entity **)ptr; 6902 ptr += nr_cpu_ids * sizeof(void **); 6903 6904 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6905 ptr += nr_cpu_ids * sizeof(void **); 6906 6907 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6908 #ifdef CONFIG_RT_GROUP_SCHED 6909 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6910 ptr += nr_cpu_ids * sizeof(void **); 6911 6912 root_task_group.rt_rq = (struct rt_rq **)ptr; 6913 ptr += nr_cpu_ids * sizeof(void **); 6914 6915 #endif /* CONFIG_RT_GROUP_SCHED */ 6916 #ifdef CONFIG_CPUMASK_OFFSTACK 6917 for_each_possible_cpu(i) { 6918 per_cpu(load_balance_tmpmask, i) = (void *)ptr; 6919 ptr += cpumask_size(); 6920 } 6921 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6922 } 6923 6924 #ifdef CONFIG_SMP 6925 init_defrootdomain(); 6926 #endif 6927 6928 init_rt_bandwidth(&def_rt_bandwidth, 6929 global_rt_period(), global_rt_runtime()); 6930 6931 #ifdef CONFIG_RT_GROUP_SCHED 6932 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6933 global_rt_period(), global_rt_runtime()); 6934 #endif /* CONFIG_RT_GROUP_SCHED */ 6935 6936 #ifdef CONFIG_CGROUP_SCHED 6937 list_add(&root_task_group.list, &task_groups); 6938 INIT_LIST_HEAD(&root_task_group.children); 6939 INIT_LIST_HEAD(&root_task_group.siblings); 6940 autogroup_init(&init_task); 6941 6942 #endif /* CONFIG_CGROUP_SCHED */ 6943 6944 #ifdef CONFIG_CGROUP_CPUACCT 6945 root_cpuacct.cpustat = &kernel_cpustat; 6946 root_cpuacct.cpuusage = alloc_percpu(u64); 6947 /* Too early, not expected to fail */ 6948 BUG_ON(!root_cpuacct.cpuusage); 6949 #endif 6950 for_each_possible_cpu(i) { 6951 struct rq *rq; 6952 6953 rq = cpu_rq(i); 6954 raw_spin_lock_init(&rq->lock); 6955 rq->nr_running = 0; 6956 rq->calc_load_active = 0; 6957 rq->calc_load_update = jiffies + LOAD_FREQ; 6958 init_cfs_rq(&rq->cfs); 6959 init_rt_rq(&rq->rt, rq); 6960 #ifdef CONFIG_FAIR_GROUP_SCHED 6961 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6962 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6963 /* 6964 * How much cpu bandwidth does root_task_group get? 6965 * 6966 * In case of task-groups formed thr' the cgroup filesystem, it 6967 * gets 100% of the cpu resources in the system. This overall 6968 * system cpu resource is divided among the tasks of 6969 * root_task_group and its child task-groups in a fair manner, 6970 * based on each entity's (task or task-group's) weight 6971 * (se->load.weight). 6972 * 6973 * In other words, if root_task_group has 10 tasks of weight 6974 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6975 * then A0's share of the cpu resource is: 6976 * 6977 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6978 * 6979 * We achieve this by letting root_task_group's tasks sit 6980 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6981 */ 6982 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6983 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6984 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6985 6986 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6987 #ifdef CONFIG_RT_GROUP_SCHED 6988 INIT_LIST_HEAD(&rq->leaf_rt_rq_list); 6989 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6990 #endif 6991 6992 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6993 rq->cpu_load[j] = 0; 6994 6995 rq->last_load_update_tick = jiffies; 6996 6997 #ifdef CONFIG_SMP 6998 rq->sd = NULL; 6999 rq->rd = NULL; 7000 rq->cpu_power = SCHED_POWER_SCALE; 7001 rq->post_schedule = 0; 7002 rq->active_balance = 0; 7003 rq->next_balance = jiffies; 7004 rq->push_cpu = 0; 7005 rq->cpu = i; 7006 rq->online = 0; 7007 rq->idle_stamp = 0; 7008 rq->avg_idle = 2*sysctl_sched_migration_cost; 7009 7010 INIT_LIST_HEAD(&rq->cfs_tasks); 7011 7012 rq_attach_root(rq, &def_root_domain); 7013 #ifdef CONFIG_NO_HZ 7014 rq->nohz_flags = 0; 7015 #endif 7016 #endif 7017 init_rq_hrtick(rq); 7018 atomic_set(&rq->nr_iowait, 0); 7019 } 7020 7021 set_load_weight(&init_task); 7022 7023 #ifdef CONFIG_PREEMPT_NOTIFIERS 7024 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7025 #endif 7026 7027 #ifdef CONFIG_RT_MUTEXES 7028 plist_head_init(&init_task.pi_waiters); 7029 #endif 7030 7031 /* 7032 * The boot idle thread does lazy MMU switching as well: 7033 */ 7034 atomic_inc(&init_mm.mm_count); 7035 enter_lazy_tlb(&init_mm, current); 7036 7037 /* 7038 * Make us the idle thread. Technically, schedule() should not be 7039 * called from this thread, however somewhere below it might be, 7040 * but because we are the idle thread, we just pick up running again 7041 * when this runqueue becomes "idle". 7042 */ 7043 init_idle(current, smp_processor_id()); 7044 7045 calc_load_update = jiffies + LOAD_FREQ; 7046 7047 /* 7048 * During early bootup we pretend to be a normal task: 7049 */ 7050 current->sched_class = &fair_sched_class; 7051 7052 #ifdef CONFIG_SMP 7053 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7054 /* May be allocated at isolcpus cmdline parse time */ 7055 if (cpu_isolated_map == NULL) 7056 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7057 #endif 7058 init_sched_fair_class(); 7059 7060 scheduler_running = 1; 7061 } 7062 7063 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7064 static inline int preempt_count_equals(int preempt_offset) 7065 { 7066 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7067 7068 return (nested == preempt_offset); 7069 } 7070 7071 void __might_sleep(const char *file, int line, int preempt_offset) 7072 { 7073 static unsigned long prev_jiffy; /* ratelimiting */ 7074 7075 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7076 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || 7077 system_state != SYSTEM_RUNNING || oops_in_progress) 7078 return; 7079 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7080 return; 7081 prev_jiffy = jiffies; 7082 7083 printk(KERN_ERR 7084 "BUG: sleeping function called from invalid context at %s:%d\n", 7085 file, line); 7086 printk(KERN_ERR 7087 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7088 in_atomic(), irqs_disabled(), 7089 current->pid, current->comm); 7090 7091 debug_show_held_locks(current); 7092 if (irqs_disabled()) 7093 print_irqtrace_events(current); 7094 dump_stack(); 7095 } 7096 EXPORT_SYMBOL(__might_sleep); 7097 #endif 7098 7099 #ifdef CONFIG_MAGIC_SYSRQ 7100 static void normalize_task(struct rq *rq, struct task_struct *p) 7101 { 7102 const struct sched_class *prev_class = p->sched_class; 7103 int old_prio = p->prio; 7104 int on_rq; 7105 7106 on_rq = p->on_rq; 7107 if (on_rq) 7108 dequeue_task(rq, p, 0); 7109 __setscheduler(rq, p, SCHED_NORMAL, 0); 7110 if (on_rq) { 7111 enqueue_task(rq, p, 0); 7112 resched_task(rq->curr); 7113 } 7114 7115 check_class_changed(rq, p, prev_class, old_prio); 7116 } 7117 7118 void normalize_rt_tasks(void) 7119 { 7120 struct task_struct *g, *p; 7121 unsigned long flags; 7122 struct rq *rq; 7123 7124 read_lock_irqsave(&tasklist_lock, flags); 7125 do_each_thread(g, p) { 7126 /* 7127 * Only normalize user tasks: 7128 */ 7129 if (!p->mm) 7130 continue; 7131 7132 p->se.exec_start = 0; 7133 #ifdef CONFIG_SCHEDSTATS 7134 p->se.statistics.wait_start = 0; 7135 p->se.statistics.sleep_start = 0; 7136 p->se.statistics.block_start = 0; 7137 #endif 7138 7139 if (!rt_task(p)) { 7140 /* 7141 * Renice negative nice level userspace 7142 * tasks back to 0: 7143 */ 7144 if (TASK_NICE(p) < 0 && p->mm) 7145 set_user_nice(p, 0); 7146 continue; 7147 } 7148 7149 raw_spin_lock(&p->pi_lock); 7150 rq = __task_rq_lock(p); 7151 7152 normalize_task(rq, p); 7153 7154 __task_rq_unlock(rq); 7155 raw_spin_unlock(&p->pi_lock); 7156 } while_each_thread(g, p); 7157 7158 read_unlock_irqrestore(&tasklist_lock, flags); 7159 } 7160 7161 #endif /* CONFIG_MAGIC_SYSRQ */ 7162 7163 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7164 /* 7165 * These functions are only useful for the IA64 MCA handling, or kdb. 7166 * 7167 * They can only be called when the whole system has been 7168 * stopped - every CPU needs to be quiescent, and no scheduling 7169 * activity can take place. Using them for anything else would 7170 * be a serious bug, and as a result, they aren't even visible 7171 * under any other configuration. 7172 */ 7173 7174 /** 7175 * curr_task - return the current task for a given cpu. 7176 * @cpu: the processor in question. 7177 * 7178 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7179 */ 7180 struct task_struct *curr_task(int cpu) 7181 { 7182 return cpu_curr(cpu); 7183 } 7184 7185 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7186 7187 #ifdef CONFIG_IA64 7188 /** 7189 * set_curr_task - set the current task for a given cpu. 7190 * @cpu: the processor in question. 7191 * @p: the task pointer to set. 7192 * 7193 * Description: This function must only be used when non-maskable interrupts 7194 * are serviced on a separate stack. It allows the architecture to switch the 7195 * notion of the current task on a cpu in a non-blocking manner. This function 7196 * must be called with all CPU's synchronized, and interrupts disabled, the 7197 * and caller must save the original value of the current task (see 7198 * curr_task() above) and restore that value before reenabling interrupts and 7199 * re-starting the system. 7200 * 7201 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7202 */ 7203 void set_curr_task(int cpu, struct task_struct *p) 7204 { 7205 cpu_curr(cpu) = p; 7206 } 7207 7208 #endif 7209 7210 #ifdef CONFIG_CGROUP_SCHED 7211 /* task_group_lock serializes the addition/removal of task groups */ 7212 static DEFINE_SPINLOCK(task_group_lock); 7213 7214 static void free_sched_group(struct task_group *tg) 7215 { 7216 free_fair_sched_group(tg); 7217 free_rt_sched_group(tg); 7218 autogroup_free(tg); 7219 kfree(tg); 7220 } 7221 7222 /* allocate runqueue etc for a new task group */ 7223 struct task_group *sched_create_group(struct task_group *parent) 7224 { 7225 struct task_group *tg; 7226 unsigned long flags; 7227 7228 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7229 if (!tg) 7230 return ERR_PTR(-ENOMEM); 7231 7232 if (!alloc_fair_sched_group(tg, parent)) 7233 goto err; 7234 7235 if (!alloc_rt_sched_group(tg, parent)) 7236 goto err; 7237 7238 spin_lock_irqsave(&task_group_lock, flags); 7239 list_add_rcu(&tg->list, &task_groups); 7240 7241 WARN_ON(!parent); /* root should already exist */ 7242 7243 tg->parent = parent; 7244 INIT_LIST_HEAD(&tg->children); 7245 list_add_rcu(&tg->siblings, &parent->children); 7246 spin_unlock_irqrestore(&task_group_lock, flags); 7247 7248 return tg; 7249 7250 err: 7251 free_sched_group(tg); 7252 return ERR_PTR(-ENOMEM); 7253 } 7254 7255 /* rcu callback to free various structures associated with a task group */ 7256 static void free_sched_group_rcu(struct rcu_head *rhp) 7257 { 7258 /* now it should be safe to free those cfs_rqs */ 7259 free_sched_group(container_of(rhp, struct task_group, rcu)); 7260 } 7261 7262 /* Destroy runqueue etc associated with a task group */ 7263 void sched_destroy_group(struct task_group *tg) 7264 { 7265 unsigned long flags; 7266 int i; 7267 7268 /* end participation in shares distribution */ 7269 for_each_possible_cpu(i) 7270 unregister_fair_sched_group(tg, i); 7271 7272 spin_lock_irqsave(&task_group_lock, flags); 7273 list_del_rcu(&tg->list); 7274 list_del_rcu(&tg->siblings); 7275 spin_unlock_irqrestore(&task_group_lock, flags); 7276 7277 /* wait for possible concurrent references to cfs_rqs complete */ 7278 call_rcu(&tg->rcu, free_sched_group_rcu); 7279 } 7280 7281 /* change task's runqueue when it moves between groups. 7282 * The caller of this function should have put the task in its new group 7283 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7284 * reflect its new group. 7285 */ 7286 void sched_move_task(struct task_struct *tsk) 7287 { 7288 int on_rq, running; 7289 unsigned long flags; 7290 struct rq *rq; 7291 7292 rq = task_rq_lock(tsk, &flags); 7293 7294 running = task_current(rq, tsk); 7295 on_rq = tsk->on_rq; 7296 7297 if (on_rq) 7298 dequeue_task(rq, tsk, 0); 7299 if (unlikely(running)) 7300 tsk->sched_class->put_prev_task(rq, tsk); 7301 7302 #ifdef CONFIG_FAIR_GROUP_SCHED 7303 if (tsk->sched_class->task_move_group) 7304 tsk->sched_class->task_move_group(tsk, on_rq); 7305 else 7306 #endif 7307 set_task_rq(tsk, task_cpu(tsk)); 7308 7309 if (unlikely(running)) 7310 tsk->sched_class->set_curr_task(rq); 7311 if (on_rq) 7312 enqueue_task(rq, tsk, 0); 7313 7314 task_rq_unlock(rq, tsk, &flags); 7315 } 7316 #endif /* CONFIG_CGROUP_SCHED */ 7317 7318 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) 7319 static unsigned long to_ratio(u64 period, u64 runtime) 7320 { 7321 if (runtime == RUNTIME_INF) 7322 return 1ULL << 20; 7323 7324 return div64_u64(runtime << 20, period); 7325 } 7326 #endif 7327 7328 #ifdef CONFIG_RT_GROUP_SCHED 7329 /* 7330 * Ensure that the real time constraints are schedulable. 7331 */ 7332 static DEFINE_MUTEX(rt_constraints_mutex); 7333 7334 /* Must be called with tasklist_lock held */ 7335 static inline int tg_has_rt_tasks(struct task_group *tg) 7336 { 7337 struct task_struct *g, *p; 7338 7339 do_each_thread(g, p) { 7340 if (rt_task(p) && task_rq(p)->rt.tg == tg) 7341 return 1; 7342 } while_each_thread(g, p); 7343 7344 return 0; 7345 } 7346 7347 struct rt_schedulable_data { 7348 struct task_group *tg; 7349 u64 rt_period; 7350 u64 rt_runtime; 7351 }; 7352 7353 static int tg_rt_schedulable(struct task_group *tg, void *data) 7354 { 7355 struct rt_schedulable_data *d = data; 7356 struct task_group *child; 7357 unsigned long total, sum = 0; 7358 u64 period, runtime; 7359 7360 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7361 runtime = tg->rt_bandwidth.rt_runtime; 7362 7363 if (tg == d->tg) { 7364 period = d->rt_period; 7365 runtime = d->rt_runtime; 7366 } 7367 7368 /* 7369 * Cannot have more runtime than the period. 7370 */ 7371 if (runtime > period && runtime != RUNTIME_INF) 7372 return -EINVAL; 7373 7374 /* 7375 * Ensure we don't starve existing RT tasks. 7376 */ 7377 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7378 return -EBUSY; 7379 7380 total = to_ratio(period, runtime); 7381 7382 /* 7383 * Nobody can have more than the global setting allows. 7384 */ 7385 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7386 return -EINVAL; 7387 7388 /* 7389 * The sum of our children's runtime should not exceed our own. 7390 */ 7391 list_for_each_entry_rcu(child, &tg->children, siblings) { 7392 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7393 runtime = child->rt_bandwidth.rt_runtime; 7394 7395 if (child == d->tg) { 7396 period = d->rt_period; 7397 runtime = d->rt_runtime; 7398 } 7399 7400 sum += to_ratio(period, runtime); 7401 } 7402 7403 if (sum > total) 7404 return -EINVAL; 7405 7406 return 0; 7407 } 7408 7409 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7410 { 7411 int ret; 7412 7413 struct rt_schedulable_data data = { 7414 .tg = tg, 7415 .rt_period = period, 7416 .rt_runtime = runtime, 7417 }; 7418 7419 rcu_read_lock(); 7420 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7421 rcu_read_unlock(); 7422 7423 return ret; 7424 } 7425 7426 static int tg_set_rt_bandwidth(struct task_group *tg, 7427 u64 rt_period, u64 rt_runtime) 7428 { 7429 int i, err = 0; 7430 7431 mutex_lock(&rt_constraints_mutex); 7432 read_lock(&tasklist_lock); 7433 err = __rt_schedulable(tg, rt_period, rt_runtime); 7434 if (err) 7435 goto unlock; 7436 7437 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7438 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7439 tg->rt_bandwidth.rt_runtime = rt_runtime; 7440 7441 for_each_possible_cpu(i) { 7442 struct rt_rq *rt_rq = tg->rt_rq[i]; 7443 7444 raw_spin_lock(&rt_rq->rt_runtime_lock); 7445 rt_rq->rt_runtime = rt_runtime; 7446 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7447 } 7448 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7449 unlock: 7450 read_unlock(&tasklist_lock); 7451 mutex_unlock(&rt_constraints_mutex); 7452 7453 return err; 7454 } 7455 7456 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7457 { 7458 u64 rt_runtime, rt_period; 7459 7460 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7461 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7462 if (rt_runtime_us < 0) 7463 rt_runtime = RUNTIME_INF; 7464 7465 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7466 } 7467 7468 long sched_group_rt_runtime(struct task_group *tg) 7469 { 7470 u64 rt_runtime_us; 7471 7472 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7473 return -1; 7474 7475 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7476 do_div(rt_runtime_us, NSEC_PER_USEC); 7477 return rt_runtime_us; 7478 } 7479 7480 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7481 { 7482 u64 rt_runtime, rt_period; 7483 7484 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7485 rt_runtime = tg->rt_bandwidth.rt_runtime; 7486 7487 if (rt_period == 0) 7488 return -EINVAL; 7489 7490 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7491 } 7492 7493 long sched_group_rt_period(struct task_group *tg) 7494 { 7495 u64 rt_period_us; 7496 7497 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7498 do_div(rt_period_us, NSEC_PER_USEC); 7499 return rt_period_us; 7500 } 7501 7502 static int sched_rt_global_constraints(void) 7503 { 7504 u64 runtime, period; 7505 int ret = 0; 7506 7507 if (sysctl_sched_rt_period <= 0) 7508 return -EINVAL; 7509 7510 runtime = global_rt_runtime(); 7511 period = global_rt_period(); 7512 7513 /* 7514 * Sanity check on the sysctl variables. 7515 */ 7516 if (runtime > period && runtime != RUNTIME_INF) 7517 return -EINVAL; 7518 7519 mutex_lock(&rt_constraints_mutex); 7520 read_lock(&tasklist_lock); 7521 ret = __rt_schedulable(NULL, 0, 0); 7522 read_unlock(&tasklist_lock); 7523 mutex_unlock(&rt_constraints_mutex); 7524 7525 return ret; 7526 } 7527 7528 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7529 { 7530 /* Don't accept realtime tasks when there is no way for them to run */ 7531 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7532 return 0; 7533 7534 return 1; 7535 } 7536 7537 #else /* !CONFIG_RT_GROUP_SCHED */ 7538 static int sched_rt_global_constraints(void) 7539 { 7540 unsigned long flags; 7541 int i; 7542 7543 if (sysctl_sched_rt_period <= 0) 7544 return -EINVAL; 7545 7546 /* 7547 * There's always some RT tasks in the root group 7548 * -- migration, kstopmachine etc.. 7549 */ 7550 if (sysctl_sched_rt_runtime == 0) 7551 return -EBUSY; 7552 7553 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7554 for_each_possible_cpu(i) { 7555 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7556 7557 raw_spin_lock(&rt_rq->rt_runtime_lock); 7558 rt_rq->rt_runtime = global_rt_runtime(); 7559 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7560 } 7561 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7562 7563 return 0; 7564 } 7565 #endif /* CONFIG_RT_GROUP_SCHED */ 7566 7567 int sched_rt_handler(struct ctl_table *table, int write, 7568 void __user *buffer, size_t *lenp, 7569 loff_t *ppos) 7570 { 7571 int ret; 7572 int old_period, old_runtime; 7573 static DEFINE_MUTEX(mutex); 7574 7575 mutex_lock(&mutex); 7576 old_period = sysctl_sched_rt_period; 7577 old_runtime = sysctl_sched_rt_runtime; 7578 7579 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7580 7581 if (!ret && write) { 7582 ret = sched_rt_global_constraints(); 7583 if (ret) { 7584 sysctl_sched_rt_period = old_period; 7585 sysctl_sched_rt_runtime = old_runtime; 7586 } else { 7587 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7588 def_rt_bandwidth.rt_period = 7589 ns_to_ktime(global_rt_period()); 7590 } 7591 } 7592 mutex_unlock(&mutex); 7593 7594 return ret; 7595 } 7596 7597 #ifdef CONFIG_CGROUP_SCHED 7598 7599 /* return corresponding task_group object of a cgroup */ 7600 static inline struct task_group *cgroup_tg(struct cgroup *cgrp) 7601 { 7602 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), 7603 struct task_group, css); 7604 } 7605 7606 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp) 7607 { 7608 struct task_group *tg, *parent; 7609 7610 if (!cgrp->parent) { 7611 /* This is early initialization for the top cgroup */ 7612 return &root_task_group.css; 7613 } 7614 7615 parent = cgroup_tg(cgrp->parent); 7616 tg = sched_create_group(parent); 7617 if (IS_ERR(tg)) 7618 return ERR_PTR(-ENOMEM); 7619 7620 return &tg->css; 7621 } 7622 7623 static void cpu_cgroup_destroy(struct cgroup *cgrp) 7624 { 7625 struct task_group *tg = cgroup_tg(cgrp); 7626 7627 sched_destroy_group(tg); 7628 } 7629 7630 static int cpu_cgroup_can_attach(struct cgroup *cgrp, 7631 struct cgroup_taskset *tset) 7632 { 7633 struct task_struct *task; 7634 7635 cgroup_taskset_for_each(task, cgrp, tset) { 7636 #ifdef CONFIG_RT_GROUP_SCHED 7637 if (!sched_rt_can_attach(cgroup_tg(cgrp), task)) 7638 return -EINVAL; 7639 #else 7640 /* We don't support RT-tasks being in separate groups */ 7641 if (task->sched_class != &fair_sched_class) 7642 return -EINVAL; 7643 #endif 7644 } 7645 return 0; 7646 } 7647 7648 static void cpu_cgroup_attach(struct cgroup *cgrp, 7649 struct cgroup_taskset *tset) 7650 { 7651 struct task_struct *task; 7652 7653 cgroup_taskset_for_each(task, cgrp, tset) 7654 sched_move_task(task); 7655 } 7656 7657 static void 7658 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, 7659 struct task_struct *task) 7660 { 7661 /* 7662 * cgroup_exit() is called in the copy_process() failure path. 7663 * Ignore this case since the task hasn't ran yet, this avoids 7664 * trying to poke a half freed task state from generic code. 7665 */ 7666 if (!(task->flags & PF_EXITING)) 7667 return; 7668 7669 sched_move_task(task); 7670 } 7671 7672 #ifdef CONFIG_FAIR_GROUP_SCHED 7673 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7674 u64 shareval) 7675 { 7676 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval)); 7677 } 7678 7679 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) 7680 { 7681 struct task_group *tg = cgroup_tg(cgrp); 7682 7683 return (u64) scale_load_down(tg->shares); 7684 } 7685 7686 #ifdef CONFIG_CFS_BANDWIDTH 7687 static DEFINE_MUTEX(cfs_constraints_mutex); 7688 7689 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7690 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7691 7692 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7693 7694 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7695 { 7696 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7697 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7698 7699 if (tg == &root_task_group) 7700 return -EINVAL; 7701 7702 /* 7703 * Ensure we have at some amount of bandwidth every period. This is 7704 * to prevent reaching a state of large arrears when throttled via 7705 * entity_tick() resulting in prolonged exit starvation. 7706 */ 7707 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7708 return -EINVAL; 7709 7710 /* 7711 * Likewise, bound things on the otherside by preventing insane quota 7712 * periods. This also allows us to normalize in computing quota 7713 * feasibility. 7714 */ 7715 if (period > max_cfs_quota_period) 7716 return -EINVAL; 7717 7718 mutex_lock(&cfs_constraints_mutex); 7719 ret = __cfs_schedulable(tg, period, quota); 7720 if (ret) 7721 goto out_unlock; 7722 7723 runtime_enabled = quota != RUNTIME_INF; 7724 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7725 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled); 7726 raw_spin_lock_irq(&cfs_b->lock); 7727 cfs_b->period = ns_to_ktime(period); 7728 cfs_b->quota = quota; 7729 7730 __refill_cfs_bandwidth_runtime(cfs_b); 7731 /* restart the period timer (if active) to handle new period expiry */ 7732 if (runtime_enabled && cfs_b->timer_active) { 7733 /* force a reprogram */ 7734 cfs_b->timer_active = 0; 7735 __start_cfs_bandwidth(cfs_b); 7736 } 7737 raw_spin_unlock_irq(&cfs_b->lock); 7738 7739 for_each_possible_cpu(i) { 7740 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7741 struct rq *rq = cfs_rq->rq; 7742 7743 raw_spin_lock_irq(&rq->lock); 7744 cfs_rq->runtime_enabled = runtime_enabled; 7745 cfs_rq->runtime_remaining = 0; 7746 7747 if (cfs_rq->throttled) 7748 unthrottle_cfs_rq(cfs_rq); 7749 raw_spin_unlock_irq(&rq->lock); 7750 } 7751 out_unlock: 7752 mutex_unlock(&cfs_constraints_mutex); 7753 7754 return ret; 7755 } 7756 7757 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7758 { 7759 u64 quota, period; 7760 7761 period = ktime_to_ns(tg->cfs_bandwidth.period); 7762 if (cfs_quota_us < 0) 7763 quota = RUNTIME_INF; 7764 else 7765 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7766 7767 return tg_set_cfs_bandwidth(tg, period, quota); 7768 } 7769 7770 long tg_get_cfs_quota(struct task_group *tg) 7771 { 7772 u64 quota_us; 7773 7774 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7775 return -1; 7776 7777 quota_us = tg->cfs_bandwidth.quota; 7778 do_div(quota_us, NSEC_PER_USEC); 7779 7780 return quota_us; 7781 } 7782 7783 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7784 { 7785 u64 quota, period; 7786 7787 period = (u64)cfs_period_us * NSEC_PER_USEC; 7788 quota = tg->cfs_bandwidth.quota; 7789 7790 return tg_set_cfs_bandwidth(tg, period, quota); 7791 } 7792 7793 long tg_get_cfs_period(struct task_group *tg) 7794 { 7795 u64 cfs_period_us; 7796 7797 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7798 do_div(cfs_period_us, NSEC_PER_USEC); 7799 7800 return cfs_period_us; 7801 } 7802 7803 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft) 7804 { 7805 return tg_get_cfs_quota(cgroup_tg(cgrp)); 7806 } 7807 7808 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype, 7809 s64 cfs_quota_us) 7810 { 7811 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us); 7812 } 7813 7814 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft) 7815 { 7816 return tg_get_cfs_period(cgroup_tg(cgrp)); 7817 } 7818 7819 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7820 u64 cfs_period_us) 7821 { 7822 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us); 7823 } 7824 7825 struct cfs_schedulable_data { 7826 struct task_group *tg; 7827 u64 period, quota; 7828 }; 7829 7830 /* 7831 * normalize group quota/period to be quota/max_period 7832 * note: units are usecs 7833 */ 7834 static u64 normalize_cfs_quota(struct task_group *tg, 7835 struct cfs_schedulable_data *d) 7836 { 7837 u64 quota, period; 7838 7839 if (tg == d->tg) { 7840 period = d->period; 7841 quota = d->quota; 7842 } else { 7843 period = tg_get_cfs_period(tg); 7844 quota = tg_get_cfs_quota(tg); 7845 } 7846 7847 /* note: these should typically be equivalent */ 7848 if (quota == RUNTIME_INF || quota == -1) 7849 return RUNTIME_INF; 7850 7851 return to_ratio(period, quota); 7852 } 7853 7854 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7855 { 7856 struct cfs_schedulable_data *d = data; 7857 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7858 s64 quota = 0, parent_quota = -1; 7859 7860 if (!tg->parent) { 7861 quota = RUNTIME_INF; 7862 } else { 7863 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7864 7865 quota = normalize_cfs_quota(tg, d); 7866 parent_quota = parent_b->hierarchal_quota; 7867 7868 /* 7869 * ensure max(child_quota) <= parent_quota, inherit when no 7870 * limit is set 7871 */ 7872 if (quota == RUNTIME_INF) 7873 quota = parent_quota; 7874 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7875 return -EINVAL; 7876 } 7877 cfs_b->hierarchal_quota = quota; 7878 7879 return 0; 7880 } 7881 7882 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7883 { 7884 int ret; 7885 struct cfs_schedulable_data data = { 7886 .tg = tg, 7887 .period = period, 7888 .quota = quota, 7889 }; 7890 7891 if (quota != RUNTIME_INF) { 7892 do_div(data.period, NSEC_PER_USEC); 7893 do_div(data.quota, NSEC_PER_USEC); 7894 } 7895 7896 rcu_read_lock(); 7897 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7898 rcu_read_unlock(); 7899 7900 return ret; 7901 } 7902 7903 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft, 7904 struct cgroup_map_cb *cb) 7905 { 7906 struct task_group *tg = cgroup_tg(cgrp); 7907 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7908 7909 cb->fill(cb, "nr_periods", cfs_b->nr_periods); 7910 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); 7911 cb->fill(cb, "throttled_time", cfs_b->throttled_time); 7912 7913 return 0; 7914 } 7915 #endif /* CONFIG_CFS_BANDWIDTH */ 7916 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7917 7918 #ifdef CONFIG_RT_GROUP_SCHED 7919 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, 7920 s64 val) 7921 { 7922 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); 7923 } 7924 7925 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) 7926 { 7927 return sched_group_rt_runtime(cgroup_tg(cgrp)); 7928 } 7929 7930 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, 7931 u64 rt_period_us) 7932 { 7933 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); 7934 } 7935 7936 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) 7937 { 7938 return sched_group_rt_period(cgroup_tg(cgrp)); 7939 } 7940 #endif /* CONFIG_RT_GROUP_SCHED */ 7941 7942 static struct cftype cpu_files[] = { 7943 #ifdef CONFIG_FAIR_GROUP_SCHED 7944 { 7945 .name = "shares", 7946 .read_u64 = cpu_shares_read_u64, 7947 .write_u64 = cpu_shares_write_u64, 7948 }, 7949 #endif 7950 #ifdef CONFIG_CFS_BANDWIDTH 7951 { 7952 .name = "cfs_quota_us", 7953 .read_s64 = cpu_cfs_quota_read_s64, 7954 .write_s64 = cpu_cfs_quota_write_s64, 7955 }, 7956 { 7957 .name = "cfs_period_us", 7958 .read_u64 = cpu_cfs_period_read_u64, 7959 .write_u64 = cpu_cfs_period_write_u64, 7960 }, 7961 { 7962 .name = "stat", 7963 .read_map = cpu_stats_show, 7964 }, 7965 #endif 7966 #ifdef CONFIG_RT_GROUP_SCHED 7967 { 7968 .name = "rt_runtime_us", 7969 .read_s64 = cpu_rt_runtime_read, 7970 .write_s64 = cpu_rt_runtime_write, 7971 }, 7972 { 7973 .name = "rt_period_us", 7974 .read_u64 = cpu_rt_period_read_uint, 7975 .write_u64 = cpu_rt_period_write_uint, 7976 }, 7977 #endif 7978 }; 7979 7980 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) 7981 { 7982 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); 7983 } 7984 7985 struct cgroup_subsys cpu_cgroup_subsys = { 7986 .name = "cpu", 7987 .create = cpu_cgroup_create, 7988 .destroy = cpu_cgroup_destroy, 7989 .can_attach = cpu_cgroup_can_attach, 7990 .attach = cpu_cgroup_attach, 7991 .exit = cpu_cgroup_exit, 7992 .populate = cpu_cgroup_populate, 7993 .subsys_id = cpu_cgroup_subsys_id, 7994 .early_init = 1, 7995 }; 7996 7997 #endif /* CONFIG_CGROUP_SCHED */ 7998 7999 #ifdef CONFIG_CGROUP_CPUACCT 8000 8001 /* 8002 * CPU accounting code for task groups. 8003 * 8004 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh 8005 * (balbir@in.ibm.com). 8006 */ 8007 8008 /* create a new cpu accounting group */ 8009 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp) 8010 { 8011 struct cpuacct *ca; 8012 8013 if (!cgrp->parent) 8014 return &root_cpuacct.css; 8015 8016 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 8017 if (!ca) 8018 goto out; 8019 8020 ca->cpuusage = alloc_percpu(u64); 8021 if (!ca->cpuusage) 8022 goto out_free_ca; 8023 8024 ca->cpustat = alloc_percpu(struct kernel_cpustat); 8025 if (!ca->cpustat) 8026 goto out_free_cpuusage; 8027 8028 return &ca->css; 8029 8030 out_free_cpuusage: 8031 free_percpu(ca->cpuusage); 8032 out_free_ca: 8033 kfree(ca); 8034 out: 8035 return ERR_PTR(-ENOMEM); 8036 } 8037 8038 /* destroy an existing cpu accounting group */ 8039 static void cpuacct_destroy(struct cgroup *cgrp) 8040 { 8041 struct cpuacct *ca = cgroup_ca(cgrp); 8042 8043 free_percpu(ca->cpustat); 8044 free_percpu(ca->cpuusage); 8045 kfree(ca); 8046 } 8047 8048 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) 8049 { 8050 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8051 u64 data; 8052 8053 #ifndef CONFIG_64BIT 8054 /* 8055 * Take rq->lock to make 64-bit read safe on 32-bit platforms. 8056 */ 8057 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 8058 data = *cpuusage; 8059 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 8060 #else 8061 data = *cpuusage; 8062 #endif 8063 8064 return data; 8065 } 8066 8067 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) 8068 { 8069 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8070 8071 #ifndef CONFIG_64BIT 8072 /* 8073 * Take rq->lock to make 64-bit write safe on 32-bit platforms. 8074 */ 8075 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 8076 *cpuusage = val; 8077 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 8078 #else 8079 *cpuusage = val; 8080 #endif 8081 } 8082 8083 /* return total cpu usage (in nanoseconds) of a group */ 8084 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) 8085 { 8086 struct cpuacct *ca = cgroup_ca(cgrp); 8087 u64 totalcpuusage = 0; 8088 int i; 8089 8090 for_each_present_cpu(i) 8091 totalcpuusage += cpuacct_cpuusage_read(ca, i); 8092 8093 return totalcpuusage; 8094 } 8095 8096 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, 8097 u64 reset) 8098 { 8099 struct cpuacct *ca = cgroup_ca(cgrp); 8100 int err = 0; 8101 int i; 8102 8103 if (reset) { 8104 err = -EINVAL; 8105 goto out; 8106 } 8107 8108 for_each_present_cpu(i) 8109 cpuacct_cpuusage_write(ca, i, 0); 8110 8111 out: 8112 return err; 8113 } 8114 8115 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, 8116 struct seq_file *m) 8117 { 8118 struct cpuacct *ca = cgroup_ca(cgroup); 8119 u64 percpu; 8120 int i; 8121 8122 for_each_present_cpu(i) { 8123 percpu = cpuacct_cpuusage_read(ca, i); 8124 seq_printf(m, "%llu ", (unsigned long long) percpu); 8125 } 8126 seq_printf(m, "\n"); 8127 return 0; 8128 } 8129 8130 static const char *cpuacct_stat_desc[] = { 8131 [CPUACCT_STAT_USER] = "user", 8132 [CPUACCT_STAT_SYSTEM] = "system", 8133 }; 8134 8135 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, 8136 struct cgroup_map_cb *cb) 8137 { 8138 struct cpuacct *ca = cgroup_ca(cgrp); 8139 int cpu; 8140 s64 val = 0; 8141 8142 for_each_online_cpu(cpu) { 8143 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8144 val += kcpustat->cpustat[CPUTIME_USER]; 8145 val += kcpustat->cpustat[CPUTIME_NICE]; 8146 } 8147 val = cputime64_to_clock_t(val); 8148 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val); 8149 8150 val = 0; 8151 for_each_online_cpu(cpu) { 8152 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8153 val += kcpustat->cpustat[CPUTIME_SYSTEM]; 8154 val += kcpustat->cpustat[CPUTIME_IRQ]; 8155 val += kcpustat->cpustat[CPUTIME_SOFTIRQ]; 8156 } 8157 8158 val = cputime64_to_clock_t(val); 8159 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val); 8160 8161 return 0; 8162 } 8163 8164 static struct cftype files[] = { 8165 { 8166 .name = "usage", 8167 .read_u64 = cpuusage_read, 8168 .write_u64 = cpuusage_write, 8169 }, 8170 { 8171 .name = "usage_percpu", 8172 .read_seq_string = cpuacct_percpu_seq_read, 8173 }, 8174 { 8175 .name = "stat", 8176 .read_map = cpuacct_stats_show, 8177 }, 8178 }; 8179 8180 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) 8181 { 8182 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); 8183 } 8184 8185 /* 8186 * charge this task's execution time to its accounting group. 8187 * 8188 * called with rq->lock held. 8189 */ 8190 void cpuacct_charge(struct task_struct *tsk, u64 cputime) 8191 { 8192 struct cpuacct *ca; 8193 int cpu; 8194 8195 if (unlikely(!cpuacct_subsys.active)) 8196 return; 8197 8198 cpu = task_cpu(tsk); 8199 8200 rcu_read_lock(); 8201 8202 ca = task_ca(tsk); 8203 8204 for (; ca; ca = parent_ca(ca)) { 8205 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8206 *cpuusage += cputime; 8207 } 8208 8209 rcu_read_unlock(); 8210 } 8211 8212 struct cgroup_subsys cpuacct_subsys = { 8213 .name = "cpuacct", 8214 .create = cpuacct_create, 8215 .destroy = cpuacct_destroy, 8216 .populate = cpuacct_populate, 8217 .subsys_id = cpuacct_subsys_id, 8218 }; 8219 #endif /* CONFIG_CGROUP_CPUACCT */ 8220