xref: /linux/kernel/sched/core.c (revision 87c34ed3aba9249cb06d1a1f100cd3618f29268c)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 
76 #include <asm/switch_to.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79 #include <asm/mutex.h>
80 #ifdef CONFIG_PARAVIRT
81 #include <asm/paravirt.h>
82 #endif
83 
84 #include "sched.h"
85 #include "../workqueue_sched.h"
86 
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/sched.h>
89 
90 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
91 {
92 	unsigned long delta;
93 	ktime_t soft, hard, now;
94 
95 	for (;;) {
96 		if (hrtimer_active(period_timer))
97 			break;
98 
99 		now = hrtimer_cb_get_time(period_timer);
100 		hrtimer_forward(period_timer, now, period);
101 
102 		soft = hrtimer_get_softexpires(period_timer);
103 		hard = hrtimer_get_expires(period_timer);
104 		delta = ktime_to_ns(ktime_sub(hard, soft));
105 		__hrtimer_start_range_ns(period_timer, soft, delta,
106 					 HRTIMER_MODE_ABS_PINNED, 0);
107 	}
108 }
109 
110 DEFINE_MUTEX(sched_domains_mutex);
111 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
112 
113 static void update_rq_clock_task(struct rq *rq, s64 delta);
114 
115 void update_rq_clock(struct rq *rq)
116 {
117 	s64 delta;
118 
119 	if (rq->skip_clock_update > 0)
120 		return;
121 
122 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
123 	rq->clock += delta;
124 	update_rq_clock_task(rq, delta);
125 }
126 
127 /*
128  * Debugging: various feature bits
129  */
130 
131 #define SCHED_FEAT(name, enabled)	\
132 	(1UL << __SCHED_FEAT_##name) * enabled |
133 
134 const_debug unsigned int sysctl_sched_features =
135 #include "features.h"
136 	0;
137 
138 #undef SCHED_FEAT
139 
140 #ifdef CONFIG_SCHED_DEBUG
141 #define SCHED_FEAT(name, enabled)	\
142 	#name ,
143 
144 static __read_mostly char *sched_feat_names[] = {
145 #include "features.h"
146 	NULL
147 };
148 
149 #undef SCHED_FEAT
150 
151 static int sched_feat_show(struct seq_file *m, void *v)
152 {
153 	int i;
154 
155 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
156 		if (!(sysctl_sched_features & (1UL << i)))
157 			seq_puts(m, "NO_");
158 		seq_printf(m, "%s ", sched_feat_names[i]);
159 	}
160 	seq_puts(m, "\n");
161 
162 	return 0;
163 }
164 
165 #ifdef HAVE_JUMP_LABEL
166 
167 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
168 #define jump_label_key__false STATIC_KEY_INIT_FALSE
169 
170 #define SCHED_FEAT(name, enabled)	\
171 	jump_label_key__##enabled ,
172 
173 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 #include "features.h"
175 };
176 
177 #undef SCHED_FEAT
178 
179 static void sched_feat_disable(int i)
180 {
181 	if (static_key_enabled(&sched_feat_keys[i]))
182 		static_key_slow_dec(&sched_feat_keys[i]);
183 }
184 
185 static void sched_feat_enable(int i)
186 {
187 	if (!static_key_enabled(&sched_feat_keys[i]))
188 		static_key_slow_inc(&sched_feat_keys[i]);
189 }
190 #else
191 static void sched_feat_disable(int i) { };
192 static void sched_feat_enable(int i) { };
193 #endif /* HAVE_JUMP_LABEL */
194 
195 static ssize_t
196 sched_feat_write(struct file *filp, const char __user *ubuf,
197 		size_t cnt, loff_t *ppos)
198 {
199 	char buf[64];
200 	char *cmp;
201 	int neg = 0;
202 	int i;
203 
204 	if (cnt > 63)
205 		cnt = 63;
206 
207 	if (copy_from_user(&buf, ubuf, cnt))
208 		return -EFAULT;
209 
210 	buf[cnt] = 0;
211 	cmp = strstrip(buf);
212 
213 	if (strncmp(cmp, "NO_", 3) == 0) {
214 		neg = 1;
215 		cmp += 3;
216 	}
217 
218 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220 			if (neg) {
221 				sysctl_sched_features &= ~(1UL << i);
222 				sched_feat_disable(i);
223 			} else {
224 				sysctl_sched_features |= (1UL << i);
225 				sched_feat_enable(i);
226 			}
227 			break;
228 		}
229 	}
230 
231 	if (i == __SCHED_FEAT_NR)
232 		return -EINVAL;
233 
234 	*ppos += cnt;
235 
236 	return cnt;
237 }
238 
239 static int sched_feat_open(struct inode *inode, struct file *filp)
240 {
241 	return single_open(filp, sched_feat_show, NULL);
242 }
243 
244 static const struct file_operations sched_feat_fops = {
245 	.open		= sched_feat_open,
246 	.write		= sched_feat_write,
247 	.read		= seq_read,
248 	.llseek		= seq_lseek,
249 	.release	= single_release,
250 };
251 
252 static __init int sched_init_debug(void)
253 {
254 	debugfs_create_file("sched_features", 0644, NULL, NULL,
255 			&sched_feat_fops);
256 
257 	return 0;
258 }
259 late_initcall(sched_init_debug);
260 #endif /* CONFIG_SCHED_DEBUG */
261 
262 /*
263  * Number of tasks to iterate in a single balance run.
264  * Limited because this is done with IRQs disabled.
265  */
266 const_debug unsigned int sysctl_sched_nr_migrate = 32;
267 
268 /*
269  * period over which we average the RT time consumption, measured
270  * in ms.
271  *
272  * default: 1s
273  */
274 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275 
276 /*
277  * period over which we measure -rt task cpu usage in us.
278  * default: 1s
279  */
280 unsigned int sysctl_sched_rt_period = 1000000;
281 
282 __read_mostly int scheduler_running;
283 
284 /*
285  * part of the period that we allow rt tasks to run in us.
286  * default: 0.95s
287  */
288 int sysctl_sched_rt_runtime = 950000;
289 
290 
291 
292 /*
293  * __task_rq_lock - lock the rq @p resides on.
294  */
295 static inline struct rq *__task_rq_lock(struct task_struct *p)
296 	__acquires(rq->lock)
297 {
298 	struct rq *rq;
299 
300 	lockdep_assert_held(&p->pi_lock);
301 
302 	for (;;) {
303 		rq = task_rq(p);
304 		raw_spin_lock(&rq->lock);
305 		if (likely(rq == task_rq(p)))
306 			return rq;
307 		raw_spin_unlock(&rq->lock);
308 	}
309 }
310 
311 /*
312  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
313  */
314 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315 	__acquires(p->pi_lock)
316 	__acquires(rq->lock)
317 {
318 	struct rq *rq;
319 
320 	for (;;) {
321 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322 		rq = task_rq(p);
323 		raw_spin_lock(&rq->lock);
324 		if (likely(rq == task_rq(p)))
325 			return rq;
326 		raw_spin_unlock(&rq->lock);
327 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
328 	}
329 }
330 
331 static void __task_rq_unlock(struct rq *rq)
332 	__releases(rq->lock)
333 {
334 	raw_spin_unlock(&rq->lock);
335 }
336 
337 static inline void
338 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339 	__releases(rq->lock)
340 	__releases(p->pi_lock)
341 {
342 	raw_spin_unlock(&rq->lock);
343 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
344 }
345 
346 /*
347  * this_rq_lock - lock this runqueue and disable interrupts.
348  */
349 static struct rq *this_rq_lock(void)
350 	__acquires(rq->lock)
351 {
352 	struct rq *rq;
353 
354 	local_irq_disable();
355 	rq = this_rq();
356 	raw_spin_lock(&rq->lock);
357 
358 	return rq;
359 }
360 
361 #ifdef CONFIG_SCHED_HRTICK
362 /*
363  * Use HR-timers to deliver accurate preemption points.
364  *
365  * Its all a bit involved since we cannot program an hrt while holding the
366  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367  * reschedule event.
368  *
369  * When we get rescheduled we reprogram the hrtick_timer outside of the
370  * rq->lock.
371  */
372 
373 static void hrtick_clear(struct rq *rq)
374 {
375 	if (hrtimer_active(&rq->hrtick_timer))
376 		hrtimer_cancel(&rq->hrtick_timer);
377 }
378 
379 /*
380  * High-resolution timer tick.
381  * Runs from hardirq context with interrupts disabled.
382  */
383 static enum hrtimer_restart hrtick(struct hrtimer *timer)
384 {
385 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386 
387 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388 
389 	raw_spin_lock(&rq->lock);
390 	update_rq_clock(rq);
391 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392 	raw_spin_unlock(&rq->lock);
393 
394 	return HRTIMER_NORESTART;
395 }
396 
397 #ifdef CONFIG_SMP
398 /*
399  * called from hardirq (IPI) context
400  */
401 static void __hrtick_start(void *arg)
402 {
403 	struct rq *rq = arg;
404 
405 	raw_spin_lock(&rq->lock);
406 	hrtimer_restart(&rq->hrtick_timer);
407 	rq->hrtick_csd_pending = 0;
408 	raw_spin_unlock(&rq->lock);
409 }
410 
411 /*
412  * Called to set the hrtick timer state.
413  *
414  * called with rq->lock held and irqs disabled
415  */
416 void hrtick_start(struct rq *rq, u64 delay)
417 {
418 	struct hrtimer *timer = &rq->hrtick_timer;
419 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420 
421 	hrtimer_set_expires(timer, time);
422 
423 	if (rq == this_rq()) {
424 		hrtimer_restart(timer);
425 	} else if (!rq->hrtick_csd_pending) {
426 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 		rq->hrtick_csd_pending = 1;
428 	}
429 }
430 
431 static int
432 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433 {
434 	int cpu = (int)(long)hcpu;
435 
436 	switch (action) {
437 	case CPU_UP_CANCELED:
438 	case CPU_UP_CANCELED_FROZEN:
439 	case CPU_DOWN_PREPARE:
440 	case CPU_DOWN_PREPARE_FROZEN:
441 	case CPU_DEAD:
442 	case CPU_DEAD_FROZEN:
443 		hrtick_clear(cpu_rq(cpu));
444 		return NOTIFY_OK;
445 	}
446 
447 	return NOTIFY_DONE;
448 }
449 
450 static __init void init_hrtick(void)
451 {
452 	hotcpu_notifier(hotplug_hrtick, 0);
453 }
454 #else
455 /*
456  * Called to set the hrtick timer state.
457  *
458  * called with rq->lock held and irqs disabled
459  */
460 void hrtick_start(struct rq *rq, u64 delay)
461 {
462 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463 			HRTIMER_MODE_REL_PINNED, 0);
464 }
465 
466 static inline void init_hrtick(void)
467 {
468 }
469 #endif /* CONFIG_SMP */
470 
471 static void init_rq_hrtick(struct rq *rq)
472 {
473 #ifdef CONFIG_SMP
474 	rq->hrtick_csd_pending = 0;
475 
476 	rq->hrtick_csd.flags = 0;
477 	rq->hrtick_csd.func = __hrtick_start;
478 	rq->hrtick_csd.info = rq;
479 #endif
480 
481 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 	rq->hrtick_timer.function = hrtick;
483 }
484 #else	/* CONFIG_SCHED_HRTICK */
485 static inline void hrtick_clear(struct rq *rq)
486 {
487 }
488 
489 static inline void init_rq_hrtick(struct rq *rq)
490 {
491 }
492 
493 static inline void init_hrtick(void)
494 {
495 }
496 #endif	/* CONFIG_SCHED_HRTICK */
497 
498 /*
499  * resched_task - mark a task 'to be rescheduled now'.
500  *
501  * On UP this means the setting of the need_resched flag, on SMP it
502  * might also involve a cross-CPU call to trigger the scheduler on
503  * the target CPU.
504  */
505 #ifdef CONFIG_SMP
506 
507 #ifndef tsk_is_polling
508 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509 #endif
510 
511 void resched_task(struct task_struct *p)
512 {
513 	int cpu;
514 
515 	assert_raw_spin_locked(&task_rq(p)->lock);
516 
517 	if (test_tsk_need_resched(p))
518 		return;
519 
520 	set_tsk_need_resched(p);
521 
522 	cpu = task_cpu(p);
523 	if (cpu == smp_processor_id())
524 		return;
525 
526 	/* NEED_RESCHED must be visible before we test polling */
527 	smp_mb();
528 	if (!tsk_is_polling(p))
529 		smp_send_reschedule(cpu);
530 }
531 
532 void resched_cpu(int cpu)
533 {
534 	struct rq *rq = cpu_rq(cpu);
535 	unsigned long flags;
536 
537 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538 		return;
539 	resched_task(cpu_curr(cpu));
540 	raw_spin_unlock_irqrestore(&rq->lock, flags);
541 }
542 
543 #ifdef CONFIG_NO_HZ
544 /*
545  * In the semi idle case, use the nearest busy cpu for migrating timers
546  * from an idle cpu.  This is good for power-savings.
547  *
548  * We don't do similar optimization for completely idle system, as
549  * selecting an idle cpu will add more delays to the timers than intended
550  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551  */
552 int get_nohz_timer_target(void)
553 {
554 	int cpu = smp_processor_id();
555 	int i;
556 	struct sched_domain *sd;
557 
558 	rcu_read_lock();
559 	for_each_domain(cpu, sd) {
560 		for_each_cpu(i, sched_domain_span(sd)) {
561 			if (!idle_cpu(i)) {
562 				cpu = i;
563 				goto unlock;
564 			}
565 		}
566 	}
567 unlock:
568 	rcu_read_unlock();
569 	return cpu;
570 }
571 /*
572  * When add_timer_on() enqueues a timer into the timer wheel of an
573  * idle CPU then this timer might expire before the next timer event
574  * which is scheduled to wake up that CPU. In case of a completely
575  * idle system the next event might even be infinite time into the
576  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577  * leaves the inner idle loop so the newly added timer is taken into
578  * account when the CPU goes back to idle and evaluates the timer
579  * wheel for the next timer event.
580  */
581 void wake_up_idle_cpu(int cpu)
582 {
583 	struct rq *rq = cpu_rq(cpu);
584 
585 	if (cpu == smp_processor_id())
586 		return;
587 
588 	/*
589 	 * This is safe, as this function is called with the timer
590 	 * wheel base lock of (cpu) held. When the CPU is on the way
591 	 * to idle and has not yet set rq->curr to idle then it will
592 	 * be serialized on the timer wheel base lock and take the new
593 	 * timer into account automatically.
594 	 */
595 	if (rq->curr != rq->idle)
596 		return;
597 
598 	/*
599 	 * We can set TIF_RESCHED on the idle task of the other CPU
600 	 * lockless. The worst case is that the other CPU runs the
601 	 * idle task through an additional NOOP schedule()
602 	 */
603 	set_tsk_need_resched(rq->idle);
604 
605 	/* NEED_RESCHED must be visible before we test polling */
606 	smp_mb();
607 	if (!tsk_is_polling(rq->idle))
608 		smp_send_reschedule(cpu);
609 }
610 
611 static inline bool got_nohz_idle_kick(void)
612 {
613 	int cpu = smp_processor_id();
614 	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 }
616 
617 #else /* CONFIG_NO_HZ */
618 
619 static inline bool got_nohz_idle_kick(void)
620 {
621 	return false;
622 }
623 
624 #endif /* CONFIG_NO_HZ */
625 
626 void sched_avg_update(struct rq *rq)
627 {
628 	s64 period = sched_avg_period();
629 
630 	while ((s64)(rq->clock - rq->age_stamp) > period) {
631 		/*
632 		 * Inline assembly required to prevent the compiler
633 		 * optimising this loop into a divmod call.
634 		 * See __iter_div_u64_rem() for another example of this.
635 		 */
636 		asm("" : "+rm" (rq->age_stamp));
637 		rq->age_stamp += period;
638 		rq->rt_avg /= 2;
639 	}
640 }
641 
642 #else /* !CONFIG_SMP */
643 void resched_task(struct task_struct *p)
644 {
645 	assert_raw_spin_locked(&task_rq(p)->lock);
646 	set_tsk_need_resched(p);
647 }
648 #endif /* CONFIG_SMP */
649 
650 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652 /*
653  * Iterate task_group tree rooted at *from, calling @down when first entering a
654  * node and @up when leaving it for the final time.
655  *
656  * Caller must hold rcu_lock or sufficient equivalent.
657  */
658 int walk_tg_tree_from(struct task_group *from,
659 			     tg_visitor down, tg_visitor up, void *data)
660 {
661 	struct task_group *parent, *child;
662 	int ret;
663 
664 	parent = from;
665 
666 down:
667 	ret = (*down)(parent, data);
668 	if (ret)
669 		goto out;
670 	list_for_each_entry_rcu(child, &parent->children, siblings) {
671 		parent = child;
672 		goto down;
673 
674 up:
675 		continue;
676 	}
677 	ret = (*up)(parent, data);
678 	if (ret || parent == from)
679 		goto out;
680 
681 	child = parent;
682 	parent = parent->parent;
683 	if (parent)
684 		goto up;
685 out:
686 	return ret;
687 }
688 
689 int tg_nop(struct task_group *tg, void *data)
690 {
691 	return 0;
692 }
693 #endif
694 
695 void update_cpu_load(struct rq *this_rq);
696 
697 static void set_load_weight(struct task_struct *p)
698 {
699 	int prio = p->static_prio - MAX_RT_PRIO;
700 	struct load_weight *load = &p->se.load;
701 
702 	/*
703 	 * SCHED_IDLE tasks get minimal weight:
704 	 */
705 	if (p->policy == SCHED_IDLE) {
706 		load->weight = scale_load(WEIGHT_IDLEPRIO);
707 		load->inv_weight = WMULT_IDLEPRIO;
708 		return;
709 	}
710 
711 	load->weight = scale_load(prio_to_weight[prio]);
712 	load->inv_weight = prio_to_wmult[prio];
713 }
714 
715 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
716 {
717 	update_rq_clock(rq);
718 	sched_info_queued(p);
719 	p->sched_class->enqueue_task(rq, p, flags);
720 }
721 
722 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
723 {
724 	update_rq_clock(rq);
725 	sched_info_dequeued(p);
726 	p->sched_class->dequeue_task(rq, p, flags);
727 }
728 
729 void activate_task(struct rq *rq, struct task_struct *p, int flags)
730 {
731 	if (task_contributes_to_load(p))
732 		rq->nr_uninterruptible--;
733 
734 	enqueue_task(rq, p, flags);
735 }
736 
737 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
738 {
739 	if (task_contributes_to_load(p))
740 		rq->nr_uninterruptible++;
741 
742 	dequeue_task(rq, p, flags);
743 }
744 
745 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
746 
747 /*
748  * There are no locks covering percpu hardirq/softirq time.
749  * They are only modified in account_system_vtime, on corresponding CPU
750  * with interrupts disabled. So, writes are safe.
751  * They are read and saved off onto struct rq in update_rq_clock().
752  * This may result in other CPU reading this CPU's irq time and can
753  * race with irq/account_system_vtime on this CPU. We would either get old
754  * or new value with a side effect of accounting a slice of irq time to wrong
755  * task when irq is in progress while we read rq->clock. That is a worthy
756  * compromise in place of having locks on each irq in account_system_time.
757  */
758 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
759 static DEFINE_PER_CPU(u64, cpu_softirq_time);
760 
761 static DEFINE_PER_CPU(u64, irq_start_time);
762 static int sched_clock_irqtime;
763 
764 void enable_sched_clock_irqtime(void)
765 {
766 	sched_clock_irqtime = 1;
767 }
768 
769 void disable_sched_clock_irqtime(void)
770 {
771 	sched_clock_irqtime = 0;
772 }
773 
774 #ifndef CONFIG_64BIT
775 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
776 
777 static inline void irq_time_write_begin(void)
778 {
779 	__this_cpu_inc(irq_time_seq.sequence);
780 	smp_wmb();
781 }
782 
783 static inline void irq_time_write_end(void)
784 {
785 	smp_wmb();
786 	__this_cpu_inc(irq_time_seq.sequence);
787 }
788 
789 static inline u64 irq_time_read(int cpu)
790 {
791 	u64 irq_time;
792 	unsigned seq;
793 
794 	do {
795 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
796 		irq_time = per_cpu(cpu_softirq_time, cpu) +
797 			   per_cpu(cpu_hardirq_time, cpu);
798 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
799 
800 	return irq_time;
801 }
802 #else /* CONFIG_64BIT */
803 static inline void irq_time_write_begin(void)
804 {
805 }
806 
807 static inline void irq_time_write_end(void)
808 {
809 }
810 
811 static inline u64 irq_time_read(int cpu)
812 {
813 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
814 }
815 #endif /* CONFIG_64BIT */
816 
817 /*
818  * Called before incrementing preempt_count on {soft,}irq_enter
819  * and before decrementing preempt_count on {soft,}irq_exit.
820  */
821 void account_system_vtime(struct task_struct *curr)
822 {
823 	unsigned long flags;
824 	s64 delta;
825 	int cpu;
826 
827 	if (!sched_clock_irqtime)
828 		return;
829 
830 	local_irq_save(flags);
831 
832 	cpu = smp_processor_id();
833 	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
834 	__this_cpu_add(irq_start_time, delta);
835 
836 	irq_time_write_begin();
837 	/*
838 	 * We do not account for softirq time from ksoftirqd here.
839 	 * We want to continue accounting softirq time to ksoftirqd thread
840 	 * in that case, so as not to confuse scheduler with a special task
841 	 * that do not consume any time, but still wants to run.
842 	 */
843 	if (hardirq_count())
844 		__this_cpu_add(cpu_hardirq_time, delta);
845 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
846 		__this_cpu_add(cpu_softirq_time, delta);
847 
848 	irq_time_write_end();
849 	local_irq_restore(flags);
850 }
851 EXPORT_SYMBOL_GPL(account_system_vtime);
852 
853 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
854 
855 #ifdef CONFIG_PARAVIRT
856 static inline u64 steal_ticks(u64 steal)
857 {
858 	if (unlikely(steal > NSEC_PER_SEC))
859 		return div_u64(steal, TICK_NSEC);
860 
861 	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
862 }
863 #endif
864 
865 static void update_rq_clock_task(struct rq *rq, s64 delta)
866 {
867 /*
868  * In theory, the compile should just see 0 here, and optimize out the call
869  * to sched_rt_avg_update. But I don't trust it...
870  */
871 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
872 	s64 steal = 0, irq_delta = 0;
873 #endif
874 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
875 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
876 
877 	/*
878 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
879 	 * this case when a previous update_rq_clock() happened inside a
880 	 * {soft,}irq region.
881 	 *
882 	 * When this happens, we stop ->clock_task and only update the
883 	 * prev_irq_time stamp to account for the part that fit, so that a next
884 	 * update will consume the rest. This ensures ->clock_task is
885 	 * monotonic.
886 	 *
887 	 * It does however cause some slight miss-attribution of {soft,}irq
888 	 * time, a more accurate solution would be to update the irq_time using
889 	 * the current rq->clock timestamp, except that would require using
890 	 * atomic ops.
891 	 */
892 	if (irq_delta > delta)
893 		irq_delta = delta;
894 
895 	rq->prev_irq_time += irq_delta;
896 	delta -= irq_delta;
897 #endif
898 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
899 	if (static_key_false((&paravirt_steal_rq_enabled))) {
900 		u64 st;
901 
902 		steal = paravirt_steal_clock(cpu_of(rq));
903 		steal -= rq->prev_steal_time_rq;
904 
905 		if (unlikely(steal > delta))
906 			steal = delta;
907 
908 		st = steal_ticks(steal);
909 		steal = st * TICK_NSEC;
910 
911 		rq->prev_steal_time_rq += steal;
912 
913 		delta -= steal;
914 	}
915 #endif
916 
917 	rq->clock_task += delta;
918 
919 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
920 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
921 		sched_rt_avg_update(rq, irq_delta + steal);
922 #endif
923 }
924 
925 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
926 static int irqtime_account_hi_update(void)
927 {
928 	u64 *cpustat = kcpustat_this_cpu->cpustat;
929 	unsigned long flags;
930 	u64 latest_ns;
931 	int ret = 0;
932 
933 	local_irq_save(flags);
934 	latest_ns = this_cpu_read(cpu_hardirq_time);
935 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
936 		ret = 1;
937 	local_irq_restore(flags);
938 	return ret;
939 }
940 
941 static int irqtime_account_si_update(void)
942 {
943 	u64 *cpustat = kcpustat_this_cpu->cpustat;
944 	unsigned long flags;
945 	u64 latest_ns;
946 	int ret = 0;
947 
948 	local_irq_save(flags);
949 	latest_ns = this_cpu_read(cpu_softirq_time);
950 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
951 		ret = 1;
952 	local_irq_restore(flags);
953 	return ret;
954 }
955 
956 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
957 
958 #define sched_clock_irqtime	(0)
959 
960 #endif
961 
962 void sched_set_stop_task(int cpu, struct task_struct *stop)
963 {
964 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
965 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
966 
967 	if (stop) {
968 		/*
969 		 * Make it appear like a SCHED_FIFO task, its something
970 		 * userspace knows about and won't get confused about.
971 		 *
972 		 * Also, it will make PI more or less work without too
973 		 * much confusion -- but then, stop work should not
974 		 * rely on PI working anyway.
975 		 */
976 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
977 
978 		stop->sched_class = &stop_sched_class;
979 	}
980 
981 	cpu_rq(cpu)->stop = stop;
982 
983 	if (old_stop) {
984 		/*
985 		 * Reset it back to a normal scheduling class so that
986 		 * it can die in pieces.
987 		 */
988 		old_stop->sched_class = &rt_sched_class;
989 	}
990 }
991 
992 /*
993  * __normal_prio - return the priority that is based on the static prio
994  */
995 static inline int __normal_prio(struct task_struct *p)
996 {
997 	return p->static_prio;
998 }
999 
1000 /*
1001  * Calculate the expected normal priority: i.e. priority
1002  * without taking RT-inheritance into account. Might be
1003  * boosted by interactivity modifiers. Changes upon fork,
1004  * setprio syscalls, and whenever the interactivity
1005  * estimator recalculates.
1006  */
1007 static inline int normal_prio(struct task_struct *p)
1008 {
1009 	int prio;
1010 
1011 	if (task_has_rt_policy(p))
1012 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1013 	else
1014 		prio = __normal_prio(p);
1015 	return prio;
1016 }
1017 
1018 /*
1019  * Calculate the current priority, i.e. the priority
1020  * taken into account by the scheduler. This value might
1021  * be boosted by RT tasks, or might be boosted by
1022  * interactivity modifiers. Will be RT if the task got
1023  * RT-boosted. If not then it returns p->normal_prio.
1024  */
1025 static int effective_prio(struct task_struct *p)
1026 {
1027 	p->normal_prio = normal_prio(p);
1028 	/*
1029 	 * If we are RT tasks or we were boosted to RT priority,
1030 	 * keep the priority unchanged. Otherwise, update priority
1031 	 * to the normal priority:
1032 	 */
1033 	if (!rt_prio(p->prio))
1034 		return p->normal_prio;
1035 	return p->prio;
1036 }
1037 
1038 /**
1039  * task_curr - is this task currently executing on a CPU?
1040  * @p: the task in question.
1041  */
1042 inline int task_curr(const struct task_struct *p)
1043 {
1044 	return cpu_curr(task_cpu(p)) == p;
1045 }
1046 
1047 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1048 				       const struct sched_class *prev_class,
1049 				       int oldprio)
1050 {
1051 	if (prev_class != p->sched_class) {
1052 		if (prev_class->switched_from)
1053 			prev_class->switched_from(rq, p);
1054 		p->sched_class->switched_to(rq, p);
1055 	} else if (oldprio != p->prio)
1056 		p->sched_class->prio_changed(rq, p, oldprio);
1057 }
1058 
1059 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1060 {
1061 	const struct sched_class *class;
1062 
1063 	if (p->sched_class == rq->curr->sched_class) {
1064 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1065 	} else {
1066 		for_each_class(class) {
1067 			if (class == rq->curr->sched_class)
1068 				break;
1069 			if (class == p->sched_class) {
1070 				resched_task(rq->curr);
1071 				break;
1072 			}
1073 		}
1074 	}
1075 
1076 	/*
1077 	 * A queue event has occurred, and we're going to schedule.  In
1078 	 * this case, we can save a useless back to back clock update.
1079 	 */
1080 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1081 		rq->skip_clock_update = 1;
1082 }
1083 
1084 #ifdef CONFIG_SMP
1085 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1086 {
1087 #ifdef CONFIG_SCHED_DEBUG
1088 	/*
1089 	 * We should never call set_task_cpu() on a blocked task,
1090 	 * ttwu() will sort out the placement.
1091 	 */
1092 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1093 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1094 
1095 #ifdef CONFIG_LOCKDEP
1096 	/*
1097 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1098 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1099 	 *
1100 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1101 	 * see set_task_rq().
1102 	 *
1103 	 * Furthermore, all task_rq users should acquire both locks, see
1104 	 * task_rq_lock().
1105 	 */
1106 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1107 				      lockdep_is_held(&task_rq(p)->lock)));
1108 #endif
1109 #endif
1110 
1111 	trace_sched_migrate_task(p, new_cpu);
1112 
1113 	if (task_cpu(p) != new_cpu) {
1114 		p->se.nr_migrations++;
1115 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1116 	}
1117 
1118 	__set_task_cpu(p, new_cpu);
1119 }
1120 
1121 struct migration_arg {
1122 	struct task_struct *task;
1123 	int dest_cpu;
1124 };
1125 
1126 static int migration_cpu_stop(void *data);
1127 
1128 /*
1129  * wait_task_inactive - wait for a thread to unschedule.
1130  *
1131  * If @match_state is nonzero, it's the @p->state value just checked and
1132  * not expected to change.  If it changes, i.e. @p might have woken up,
1133  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1134  * we return a positive number (its total switch count).  If a second call
1135  * a short while later returns the same number, the caller can be sure that
1136  * @p has remained unscheduled the whole time.
1137  *
1138  * The caller must ensure that the task *will* unschedule sometime soon,
1139  * else this function might spin for a *long* time. This function can't
1140  * be called with interrupts off, or it may introduce deadlock with
1141  * smp_call_function() if an IPI is sent by the same process we are
1142  * waiting to become inactive.
1143  */
1144 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1145 {
1146 	unsigned long flags;
1147 	int running, on_rq;
1148 	unsigned long ncsw;
1149 	struct rq *rq;
1150 
1151 	for (;;) {
1152 		/*
1153 		 * We do the initial early heuristics without holding
1154 		 * any task-queue locks at all. We'll only try to get
1155 		 * the runqueue lock when things look like they will
1156 		 * work out!
1157 		 */
1158 		rq = task_rq(p);
1159 
1160 		/*
1161 		 * If the task is actively running on another CPU
1162 		 * still, just relax and busy-wait without holding
1163 		 * any locks.
1164 		 *
1165 		 * NOTE! Since we don't hold any locks, it's not
1166 		 * even sure that "rq" stays as the right runqueue!
1167 		 * But we don't care, since "task_running()" will
1168 		 * return false if the runqueue has changed and p
1169 		 * is actually now running somewhere else!
1170 		 */
1171 		while (task_running(rq, p)) {
1172 			if (match_state && unlikely(p->state != match_state))
1173 				return 0;
1174 			cpu_relax();
1175 		}
1176 
1177 		/*
1178 		 * Ok, time to look more closely! We need the rq
1179 		 * lock now, to be *sure*. If we're wrong, we'll
1180 		 * just go back and repeat.
1181 		 */
1182 		rq = task_rq_lock(p, &flags);
1183 		trace_sched_wait_task(p);
1184 		running = task_running(rq, p);
1185 		on_rq = p->on_rq;
1186 		ncsw = 0;
1187 		if (!match_state || p->state == match_state)
1188 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1189 		task_rq_unlock(rq, p, &flags);
1190 
1191 		/*
1192 		 * If it changed from the expected state, bail out now.
1193 		 */
1194 		if (unlikely(!ncsw))
1195 			break;
1196 
1197 		/*
1198 		 * Was it really running after all now that we
1199 		 * checked with the proper locks actually held?
1200 		 *
1201 		 * Oops. Go back and try again..
1202 		 */
1203 		if (unlikely(running)) {
1204 			cpu_relax();
1205 			continue;
1206 		}
1207 
1208 		/*
1209 		 * It's not enough that it's not actively running,
1210 		 * it must be off the runqueue _entirely_, and not
1211 		 * preempted!
1212 		 *
1213 		 * So if it was still runnable (but just not actively
1214 		 * running right now), it's preempted, and we should
1215 		 * yield - it could be a while.
1216 		 */
1217 		if (unlikely(on_rq)) {
1218 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1219 
1220 			set_current_state(TASK_UNINTERRUPTIBLE);
1221 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1222 			continue;
1223 		}
1224 
1225 		/*
1226 		 * Ahh, all good. It wasn't running, and it wasn't
1227 		 * runnable, which means that it will never become
1228 		 * running in the future either. We're all done!
1229 		 */
1230 		break;
1231 	}
1232 
1233 	return ncsw;
1234 }
1235 
1236 /***
1237  * kick_process - kick a running thread to enter/exit the kernel
1238  * @p: the to-be-kicked thread
1239  *
1240  * Cause a process which is running on another CPU to enter
1241  * kernel-mode, without any delay. (to get signals handled.)
1242  *
1243  * NOTE: this function doesn't have to take the runqueue lock,
1244  * because all it wants to ensure is that the remote task enters
1245  * the kernel. If the IPI races and the task has been migrated
1246  * to another CPU then no harm is done and the purpose has been
1247  * achieved as well.
1248  */
1249 void kick_process(struct task_struct *p)
1250 {
1251 	int cpu;
1252 
1253 	preempt_disable();
1254 	cpu = task_cpu(p);
1255 	if ((cpu != smp_processor_id()) && task_curr(p))
1256 		smp_send_reschedule(cpu);
1257 	preempt_enable();
1258 }
1259 EXPORT_SYMBOL_GPL(kick_process);
1260 #endif /* CONFIG_SMP */
1261 
1262 #ifdef CONFIG_SMP
1263 /*
1264  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1265  */
1266 static int select_fallback_rq(int cpu, struct task_struct *p)
1267 {
1268 	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1269 	enum { cpuset, possible, fail } state = cpuset;
1270 	int dest_cpu;
1271 
1272 	/* Look for allowed, online CPU in same node. */
1273 	for_each_cpu_mask(dest_cpu, *nodemask) {
1274 		if (!cpu_online(dest_cpu))
1275 			continue;
1276 		if (!cpu_active(dest_cpu))
1277 			continue;
1278 		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1279 			return dest_cpu;
1280 	}
1281 
1282 	for (;;) {
1283 		/* Any allowed, online CPU? */
1284 		for_each_cpu_mask(dest_cpu, *tsk_cpus_allowed(p)) {
1285 			if (!cpu_online(dest_cpu))
1286 				continue;
1287 			if (!cpu_active(dest_cpu))
1288 				continue;
1289 			goto out;
1290 		}
1291 
1292 		switch (state) {
1293 		case cpuset:
1294 			/* No more Mr. Nice Guy. */
1295 			cpuset_cpus_allowed_fallback(p);
1296 			state = possible;
1297 			break;
1298 
1299 		case possible:
1300 			do_set_cpus_allowed(p, cpu_possible_mask);
1301 			state = fail;
1302 			break;
1303 
1304 		case fail:
1305 			BUG();
1306 			break;
1307 		}
1308 	}
1309 
1310 out:
1311 	if (state != cpuset) {
1312 		/*
1313 		 * Don't tell them about moving exiting tasks or
1314 		 * kernel threads (both mm NULL), since they never
1315 		 * leave kernel.
1316 		 */
1317 		if (p->mm && printk_ratelimit()) {
1318 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1319 					task_pid_nr(p), p->comm, cpu);
1320 		}
1321 	}
1322 
1323 	return dest_cpu;
1324 }
1325 
1326 /*
1327  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1328  */
1329 static inline
1330 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1331 {
1332 	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1333 
1334 	/*
1335 	 * In order not to call set_task_cpu() on a blocking task we need
1336 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1337 	 * cpu.
1338 	 *
1339 	 * Since this is common to all placement strategies, this lives here.
1340 	 *
1341 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1342 	 *   not worry about this generic constraint ]
1343 	 */
1344 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1345 		     !cpu_online(cpu)))
1346 		cpu = select_fallback_rq(task_cpu(p), p);
1347 
1348 	return cpu;
1349 }
1350 
1351 static void update_avg(u64 *avg, u64 sample)
1352 {
1353 	s64 diff = sample - *avg;
1354 	*avg += diff >> 3;
1355 }
1356 #endif
1357 
1358 static void
1359 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1360 {
1361 #ifdef CONFIG_SCHEDSTATS
1362 	struct rq *rq = this_rq();
1363 
1364 #ifdef CONFIG_SMP
1365 	int this_cpu = smp_processor_id();
1366 
1367 	if (cpu == this_cpu) {
1368 		schedstat_inc(rq, ttwu_local);
1369 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1370 	} else {
1371 		struct sched_domain *sd;
1372 
1373 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1374 		rcu_read_lock();
1375 		for_each_domain(this_cpu, sd) {
1376 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1377 				schedstat_inc(sd, ttwu_wake_remote);
1378 				break;
1379 			}
1380 		}
1381 		rcu_read_unlock();
1382 	}
1383 
1384 	if (wake_flags & WF_MIGRATED)
1385 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1386 
1387 #endif /* CONFIG_SMP */
1388 
1389 	schedstat_inc(rq, ttwu_count);
1390 	schedstat_inc(p, se.statistics.nr_wakeups);
1391 
1392 	if (wake_flags & WF_SYNC)
1393 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1394 
1395 #endif /* CONFIG_SCHEDSTATS */
1396 }
1397 
1398 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1399 {
1400 	activate_task(rq, p, en_flags);
1401 	p->on_rq = 1;
1402 
1403 	/* if a worker is waking up, notify workqueue */
1404 	if (p->flags & PF_WQ_WORKER)
1405 		wq_worker_waking_up(p, cpu_of(rq));
1406 }
1407 
1408 /*
1409  * Mark the task runnable and perform wakeup-preemption.
1410  */
1411 static void
1412 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1413 {
1414 	trace_sched_wakeup(p, true);
1415 	check_preempt_curr(rq, p, wake_flags);
1416 
1417 	p->state = TASK_RUNNING;
1418 #ifdef CONFIG_SMP
1419 	if (p->sched_class->task_woken)
1420 		p->sched_class->task_woken(rq, p);
1421 
1422 	if (rq->idle_stamp) {
1423 		u64 delta = rq->clock - rq->idle_stamp;
1424 		u64 max = 2*sysctl_sched_migration_cost;
1425 
1426 		if (delta > max)
1427 			rq->avg_idle = max;
1428 		else
1429 			update_avg(&rq->avg_idle, delta);
1430 		rq->idle_stamp = 0;
1431 	}
1432 #endif
1433 }
1434 
1435 static void
1436 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1437 {
1438 #ifdef CONFIG_SMP
1439 	if (p->sched_contributes_to_load)
1440 		rq->nr_uninterruptible--;
1441 #endif
1442 
1443 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1444 	ttwu_do_wakeup(rq, p, wake_flags);
1445 }
1446 
1447 /*
1448  * Called in case the task @p isn't fully descheduled from its runqueue,
1449  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1450  * since all we need to do is flip p->state to TASK_RUNNING, since
1451  * the task is still ->on_rq.
1452  */
1453 static int ttwu_remote(struct task_struct *p, int wake_flags)
1454 {
1455 	struct rq *rq;
1456 	int ret = 0;
1457 
1458 	rq = __task_rq_lock(p);
1459 	if (p->on_rq) {
1460 		ttwu_do_wakeup(rq, p, wake_flags);
1461 		ret = 1;
1462 	}
1463 	__task_rq_unlock(rq);
1464 
1465 	return ret;
1466 }
1467 
1468 #ifdef CONFIG_SMP
1469 static void sched_ttwu_pending(void)
1470 {
1471 	struct rq *rq = this_rq();
1472 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1473 	struct task_struct *p;
1474 
1475 	raw_spin_lock(&rq->lock);
1476 
1477 	while (llist) {
1478 		p = llist_entry(llist, struct task_struct, wake_entry);
1479 		llist = llist_next(llist);
1480 		ttwu_do_activate(rq, p, 0);
1481 	}
1482 
1483 	raw_spin_unlock(&rq->lock);
1484 }
1485 
1486 void scheduler_ipi(void)
1487 {
1488 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1489 		return;
1490 
1491 	/*
1492 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1493 	 * traditionally all their work was done from the interrupt return
1494 	 * path. Now that we actually do some work, we need to make sure
1495 	 * we do call them.
1496 	 *
1497 	 * Some archs already do call them, luckily irq_enter/exit nest
1498 	 * properly.
1499 	 *
1500 	 * Arguably we should visit all archs and update all handlers,
1501 	 * however a fair share of IPIs are still resched only so this would
1502 	 * somewhat pessimize the simple resched case.
1503 	 */
1504 	irq_enter();
1505 	sched_ttwu_pending();
1506 
1507 	/*
1508 	 * Check if someone kicked us for doing the nohz idle load balance.
1509 	 */
1510 	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1511 		this_rq()->idle_balance = 1;
1512 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1513 	}
1514 	irq_exit();
1515 }
1516 
1517 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1518 {
1519 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1520 		smp_send_reschedule(cpu);
1521 }
1522 
1523 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1524 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1525 {
1526 	struct rq *rq;
1527 	int ret = 0;
1528 
1529 	rq = __task_rq_lock(p);
1530 	if (p->on_cpu) {
1531 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1532 		ttwu_do_wakeup(rq, p, wake_flags);
1533 		ret = 1;
1534 	}
1535 	__task_rq_unlock(rq);
1536 
1537 	return ret;
1538 
1539 }
1540 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1541 
1542 bool cpus_share_cache(int this_cpu, int that_cpu)
1543 {
1544 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1545 }
1546 #endif /* CONFIG_SMP */
1547 
1548 static void ttwu_queue(struct task_struct *p, int cpu)
1549 {
1550 	struct rq *rq = cpu_rq(cpu);
1551 
1552 #if defined(CONFIG_SMP)
1553 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1554 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1555 		ttwu_queue_remote(p, cpu);
1556 		return;
1557 	}
1558 #endif
1559 
1560 	raw_spin_lock(&rq->lock);
1561 	ttwu_do_activate(rq, p, 0);
1562 	raw_spin_unlock(&rq->lock);
1563 }
1564 
1565 /**
1566  * try_to_wake_up - wake up a thread
1567  * @p: the thread to be awakened
1568  * @state: the mask of task states that can be woken
1569  * @wake_flags: wake modifier flags (WF_*)
1570  *
1571  * Put it on the run-queue if it's not already there. The "current"
1572  * thread is always on the run-queue (except when the actual
1573  * re-schedule is in progress), and as such you're allowed to do
1574  * the simpler "current->state = TASK_RUNNING" to mark yourself
1575  * runnable without the overhead of this.
1576  *
1577  * Returns %true if @p was woken up, %false if it was already running
1578  * or @state didn't match @p's state.
1579  */
1580 static int
1581 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1582 {
1583 	unsigned long flags;
1584 	int cpu, success = 0;
1585 
1586 	smp_wmb();
1587 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1588 	if (!(p->state & state))
1589 		goto out;
1590 
1591 	success = 1; /* we're going to change ->state */
1592 	cpu = task_cpu(p);
1593 
1594 	if (p->on_rq && ttwu_remote(p, wake_flags))
1595 		goto stat;
1596 
1597 #ifdef CONFIG_SMP
1598 	/*
1599 	 * If the owning (remote) cpu is still in the middle of schedule() with
1600 	 * this task as prev, wait until its done referencing the task.
1601 	 */
1602 	while (p->on_cpu) {
1603 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1604 		/*
1605 		 * In case the architecture enables interrupts in
1606 		 * context_switch(), we cannot busy wait, since that
1607 		 * would lead to deadlocks when an interrupt hits and
1608 		 * tries to wake up @prev. So bail and do a complete
1609 		 * remote wakeup.
1610 		 */
1611 		if (ttwu_activate_remote(p, wake_flags))
1612 			goto stat;
1613 #else
1614 		cpu_relax();
1615 #endif
1616 	}
1617 	/*
1618 	 * Pairs with the smp_wmb() in finish_lock_switch().
1619 	 */
1620 	smp_rmb();
1621 
1622 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1623 	p->state = TASK_WAKING;
1624 
1625 	if (p->sched_class->task_waking)
1626 		p->sched_class->task_waking(p);
1627 
1628 	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1629 	if (task_cpu(p) != cpu) {
1630 		wake_flags |= WF_MIGRATED;
1631 		set_task_cpu(p, cpu);
1632 	}
1633 #endif /* CONFIG_SMP */
1634 
1635 	ttwu_queue(p, cpu);
1636 stat:
1637 	ttwu_stat(p, cpu, wake_flags);
1638 out:
1639 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1640 
1641 	return success;
1642 }
1643 
1644 /**
1645  * try_to_wake_up_local - try to wake up a local task with rq lock held
1646  * @p: the thread to be awakened
1647  *
1648  * Put @p on the run-queue if it's not already there. The caller must
1649  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1650  * the current task.
1651  */
1652 static void try_to_wake_up_local(struct task_struct *p)
1653 {
1654 	struct rq *rq = task_rq(p);
1655 
1656 	BUG_ON(rq != this_rq());
1657 	BUG_ON(p == current);
1658 	lockdep_assert_held(&rq->lock);
1659 
1660 	if (!raw_spin_trylock(&p->pi_lock)) {
1661 		raw_spin_unlock(&rq->lock);
1662 		raw_spin_lock(&p->pi_lock);
1663 		raw_spin_lock(&rq->lock);
1664 	}
1665 
1666 	if (!(p->state & TASK_NORMAL))
1667 		goto out;
1668 
1669 	if (!p->on_rq)
1670 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1671 
1672 	ttwu_do_wakeup(rq, p, 0);
1673 	ttwu_stat(p, smp_processor_id(), 0);
1674 out:
1675 	raw_spin_unlock(&p->pi_lock);
1676 }
1677 
1678 /**
1679  * wake_up_process - Wake up a specific process
1680  * @p: The process to be woken up.
1681  *
1682  * Attempt to wake up the nominated process and move it to the set of runnable
1683  * processes.  Returns 1 if the process was woken up, 0 if it was already
1684  * running.
1685  *
1686  * It may be assumed that this function implies a write memory barrier before
1687  * changing the task state if and only if any tasks are woken up.
1688  */
1689 int wake_up_process(struct task_struct *p)
1690 {
1691 	return try_to_wake_up(p, TASK_ALL, 0);
1692 }
1693 EXPORT_SYMBOL(wake_up_process);
1694 
1695 int wake_up_state(struct task_struct *p, unsigned int state)
1696 {
1697 	return try_to_wake_up(p, state, 0);
1698 }
1699 
1700 /*
1701  * Perform scheduler related setup for a newly forked process p.
1702  * p is forked by current.
1703  *
1704  * __sched_fork() is basic setup used by init_idle() too:
1705  */
1706 static void __sched_fork(struct task_struct *p)
1707 {
1708 	p->on_rq			= 0;
1709 
1710 	p->se.on_rq			= 0;
1711 	p->se.exec_start		= 0;
1712 	p->se.sum_exec_runtime		= 0;
1713 	p->se.prev_sum_exec_runtime	= 0;
1714 	p->se.nr_migrations		= 0;
1715 	p->se.vruntime			= 0;
1716 	INIT_LIST_HEAD(&p->se.group_node);
1717 
1718 #ifdef CONFIG_SCHEDSTATS
1719 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1720 #endif
1721 
1722 	INIT_LIST_HEAD(&p->rt.run_list);
1723 
1724 #ifdef CONFIG_PREEMPT_NOTIFIERS
1725 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1726 #endif
1727 }
1728 
1729 /*
1730  * fork()/clone()-time setup:
1731  */
1732 void sched_fork(struct task_struct *p)
1733 {
1734 	unsigned long flags;
1735 	int cpu = get_cpu();
1736 
1737 	__sched_fork(p);
1738 	/*
1739 	 * We mark the process as running here. This guarantees that
1740 	 * nobody will actually run it, and a signal or other external
1741 	 * event cannot wake it up and insert it on the runqueue either.
1742 	 */
1743 	p->state = TASK_RUNNING;
1744 
1745 	/*
1746 	 * Make sure we do not leak PI boosting priority to the child.
1747 	 */
1748 	p->prio = current->normal_prio;
1749 
1750 	/*
1751 	 * Revert to default priority/policy on fork if requested.
1752 	 */
1753 	if (unlikely(p->sched_reset_on_fork)) {
1754 		if (task_has_rt_policy(p)) {
1755 			p->policy = SCHED_NORMAL;
1756 			p->static_prio = NICE_TO_PRIO(0);
1757 			p->rt_priority = 0;
1758 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1759 			p->static_prio = NICE_TO_PRIO(0);
1760 
1761 		p->prio = p->normal_prio = __normal_prio(p);
1762 		set_load_weight(p);
1763 
1764 		/*
1765 		 * We don't need the reset flag anymore after the fork. It has
1766 		 * fulfilled its duty:
1767 		 */
1768 		p->sched_reset_on_fork = 0;
1769 	}
1770 
1771 	if (!rt_prio(p->prio))
1772 		p->sched_class = &fair_sched_class;
1773 
1774 	if (p->sched_class->task_fork)
1775 		p->sched_class->task_fork(p);
1776 
1777 	/*
1778 	 * The child is not yet in the pid-hash so no cgroup attach races,
1779 	 * and the cgroup is pinned to this child due to cgroup_fork()
1780 	 * is ran before sched_fork().
1781 	 *
1782 	 * Silence PROVE_RCU.
1783 	 */
1784 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1785 	set_task_cpu(p, cpu);
1786 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1787 
1788 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1789 	if (likely(sched_info_on()))
1790 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1791 #endif
1792 #if defined(CONFIG_SMP)
1793 	p->on_cpu = 0;
1794 #endif
1795 #ifdef CONFIG_PREEMPT_COUNT
1796 	/* Want to start with kernel preemption disabled. */
1797 	task_thread_info(p)->preempt_count = 1;
1798 #endif
1799 #ifdef CONFIG_SMP
1800 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1801 #endif
1802 
1803 	put_cpu();
1804 }
1805 
1806 /*
1807  * wake_up_new_task - wake up a newly created task for the first time.
1808  *
1809  * This function will do some initial scheduler statistics housekeeping
1810  * that must be done for every newly created context, then puts the task
1811  * on the runqueue and wakes it.
1812  */
1813 void wake_up_new_task(struct task_struct *p)
1814 {
1815 	unsigned long flags;
1816 	struct rq *rq;
1817 
1818 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1819 #ifdef CONFIG_SMP
1820 	/*
1821 	 * Fork balancing, do it here and not earlier because:
1822 	 *  - cpus_allowed can change in the fork path
1823 	 *  - any previously selected cpu might disappear through hotplug
1824 	 */
1825 	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1826 #endif
1827 
1828 	rq = __task_rq_lock(p);
1829 	activate_task(rq, p, 0);
1830 	p->on_rq = 1;
1831 	trace_sched_wakeup_new(p, true);
1832 	check_preempt_curr(rq, p, WF_FORK);
1833 #ifdef CONFIG_SMP
1834 	if (p->sched_class->task_woken)
1835 		p->sched_class->task_woken(rq, p);
1836 #endif
1837 	task_rq_unlock(rq, p, &flags);
1838 }
1839 
1840 #ifdef CONFIG_PREEMPT_NOTIFIERS
1841 
1842 /**
1843  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1844  * @notifier: notifier struct to register
1845  */
1846 void preempt_notifier_register(struct preempt_notifier *notifier)
1847 {
1848 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1849 }
1850 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1851 
1852 /**
1853  * preempt_notifier_unregister - no longer interested in preemption notifications
1854  * @notifier: notifier struct to unregister
1855  *
1856  * This is safe to call from within a preemption notifier.
1857  */
1858 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1859 {
1860 	hlist_del(&notifier->link);
1861 }
1862 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1863 
1864 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1865 {
1866 	struct preempt_notifier *notifier;
1867 	struct hlist_node *node;
1868 
1869 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1870 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1871 }
1872 
1873 static void
1874 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1875 				 struct task_struct *next)
1876 {
1877 	struct preempt_notifier *notifier;
1878 	struct hlist_node *node;
1879 
1880 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1881 		notifier->ops->sched_out(notifier, next);
1882 }
1883 
1884 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1885 
1886 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1887 {
1888 }
1889 
1890 static void
1891 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1892 				 struct task_struct *next)
1893 {
1894 }
1895 
1896 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1897 
1898 /**
1899  * prepare_task_switch - prepare to switch tasks
1900  * @rq: the runqueue preparing to switch
1901  * @prev: the current task that is being switched out
1902  * @next: the task we are going to switch to.
1903  *
1904  * This is called with the rq lock held and interrupts off. It must
1905  * be paired with a subsequent finish_task_switch after the context
1906  * switch.
1907  *
1908  * prepare_task_switch sets up locking and calls architecture specific
1909  * hooks.
1910  */
1911 static inline void
1912 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1913 		    struct task_struct *next)
1914 {
1915 	sched_info_switch(prev, next);
1916 	perf_event_task_sched_out(prev, next);
1917 	fire_sched_out_preempt_notifiers(prev, next);
1918 	prepare_lock_switch(rq, next);
1919 	prepare_arch_switch(next);
1920 	trace_sched_switch(prev, next);
1921 }
1922 
1923 /**
1924  * finish_task_switch - clean up after a task-switch
1925  * @rq: runqueue associated with task-switch
1926  * @prev: the thread we just switched away from.
1927  *
1928  * finish_task_switch must be called after the context switch, paired
1929  * with a prepare_task_switch call before the context switch.
1930  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1931  * and do any other architecture-specific cleanup actions.
1932  *
1933  * Note that we may have delayed dropping an mm in context_switch(). If
1934  * so, we finish that here outside of the runqueue lock. (Doing it
1935  * with the lock held can cause deadlocks; see schedule() for
1936  * details.)
1937  */
1938 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1939 	__releases(rq->lock)
1940 {
1941 	struct mm_struct *mm = rq->prev_mm;
1942 	long prev_state;
1943 
1944 	rq->prev_mm = NULL;
1945 
1946 	/*
1947 	 * A task struct has one reference for the use as "current".
1948 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1949 	 * schedule one last time. The schedule call will never return, and
1950 	 * the scheduled task must drop that reference.
1951 	 * The test for TASK_DEAD must occur while the runqueue locks are
1952 	 * still held, otherwise prev could be scheduled on another cpu, die
1953 	 * there before we look at prev->state, and then the reference would
1954 	 * be dropped twice.
1955 	 *		Manfred Spraul <manfred@colorfullife.com>
1956 	 */
1957 	prev_state = prev->state;
1958 	finish_arch_switch(prev);
1959 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1960 	local_irq_disable();
1961 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1962 	perf_event_task_sched_in(prev, current);
1963 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1964 	local_irq_enable();
1965 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1966 	finish_lock_switch(rq, prev);
1967 
1968 	fire_sched_in_preempt_notifiers(current);
1969 	if (mm)
1970 		mmdrop(mm);
1971 	if (unlikely(prev_state == TASK_DEAD)) {
1972 		/*
1973 		 * Remove function-return probe instances associated with this
1974 		 * task and put them back on the free list.
1975 		 */
1976 		kprobe_flush_task(prev);
1977 		put_task_struct(prev);
1978 	}
1979 }
1980 
1981 #ifdef CONFIG_SMP
1982 
1983 /* assumes rq->lock is held */
1984 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1985 {
1986 	if (prev->sched_class->pre_schedule)
1987 		prev->sched_class->pre_schedule(rq, prev);
1988 }
1989 
1990 /* rq->lock is NOT held, but preemption is disabled */
1991 static inline void post_schedule(struct rq *rq)
1992 {
1993 	if (rq->post_schedule) {
1994 		unsigned long flags;
1995 
1996 		raw_spin_lock_irqsave(&rq->lock, flags);
1997 		if (rq->curr->sched_class->post_schedule)
1998 			rq->curr->sched_class->post_schedule(rq);
1999 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2000 
2001 		rq->post_schedule = 0;
2002 	}
2003 }
2004 
2005 #else
2006 
2007 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2008 {
2009 }
2010 
2011 static inline void post_schedule(struct rq *rq)
2012 {
2013 }
2014 
2015 #endif
2016 
2017 /**
2018  * schedule_tail - first thing a freshly forked thread must call.
2019  * @prev: the thread we just switched away from.
2020  */
2021 asmlinkage void schedule_tail(struct task_struct *prev)
2022 	__releases(rq->lock)
2023 {
2024 	struct rq *rq = this_rq();
2025 
2026 	finish_task_switch(rq, prev);
2027 
2028 	/*
2029 	 * FIXME: do we need to worry about rq being invalidated by the
2030 	 * task_switch?
2031 	 */
2032 	post_schedule(rq);
2033 
2034 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2035 	/* In this case, finish_task_switch does not reenable preemption */
2036 	preempt_enable();
2037 #endif
2038 	if (current->set_child_tid)
2039 		put_user(task_pid_vnr(current), current->set_child_tid);
2040 }
2041 
2042 /*
2043  * context_switch - switch to the new MM and the new
2044  * thread's register state.
2045  */
2046 static inline void
2047 context_switch(struct rq *rq, struct task_struct *prev,
2048 	       struct task_struct *next)
2049 {
2050 	struct mm_struct *mm, *oldmm;
2051 
2052 	prepare_task_switch(rq, prev, next);
2053 
2054 	mm = next->mm;
2055 	oldmm = prev->active_mm;
2056 	/*
2057 	 * For paravirt, this is coupled with an exit in switch_to to
2058 	 * combine the page table reload and the switch backend into
2059 	 * one hypercall.
2060 	 */
2061 	arch_start_context_switch(prev);
2062 
2063 	if (!mm) {
2064 		next->active_mm = oldmm;
2065 		atomic_inc(&oldmm->mm_count);
2066 		enter_lazy_tlb(oldmm, next);
2067 	} else
2068 		switch_mm(oldmm, mm, next);
2069 
2070 	if (!prev->mm) {
2071 		prev->active_mm = NULL;
2072 		rq->prev_mm = oldmm;
2073 	}
2074 	/*
2075 	 * Since the runqueue lock will be released by the next
2076 	 * task (which is an invalid locking op but in the case
2077 	 * of the scheduler it's an obvious special-case), so we
2078 	 * do an early lockdep release here:
2079 	 */
2080 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2081 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2082 #endif
2083 
2084 	/* Here we just switch the register state and the stack. */
2085 	switch_to(prev, next, prev);
2086 
2087 	barrier();
2088 	/*
2089 	 * this_rq must be evaluated again because prev may have moved
2090 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2091 	 * frame will be invalid.
2092 	 */
2093 	finish_task_switch(this_rq(), prev);
2094 }
2095 
2096 /*
2097  * nr_running, nr_uninterruptible and nr_context_switches:
2098  *
2099  * externally visible scheduler statistics: current number of runnable
2100  * threads, current number of uninterruptible-sleeping threads, total
2101  * number of context switches performed since bootup.
2102  */
2103 unsigned long nr_running(void)
2104 {
2105 	unsigned long i, sum = 0;
2106 
2107 	for_each_online_cpu(i)
2108 		sum += cpu_rq(i)->nr_running;
2109 
2110 	return sum;
2111 }
2112 
2113 unsigned long nr_uninterruptible(void)
2114 {
2115 	unsigned long i, sum = 0;
2116 
2117 	for_each_possible_cpu(i)
2118 		sum += cpu_rq(i)->nr_uninterruptible;
2119 
2120 	/*
2121 	 * Since we read the counters lockless, it might be slightly
2122 	 * inaccurate. Do not allow it to go below zero though:
2123 	 */
2124 	if (unlikely((long)sum < 0))
2125 		sum = 0;
2126 
2127 	return sum;
2128 }
2129 
2130 unsigned long long nr_context_switches(void)
2131 {
2132 	int i;
2133 	unsigned long long sum = 0;
2134 
2135 	for_each_possible_cpu(i)
2136 		sum += cpu_rq(i)->nr_switches;
2137 
2138 	return sum;
2139 }
2140 
2141 unsigned long nr_iowait(void)
2142 {
2143 	unsigned long i, sum = 0;
2144 
2145 	for_each_possible_cpu(i)
2146 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2147 
2148 	return sum;
2149 }
2150 
2151 unsigned long nr_iowait_cpu(int cpu)
2152 {
2153 	struct rq *this = cpu_rq(cpu);
2154 	return atomic_read(&this->nr_iowait);
2155 }
2156 
2157 unsigned long this_cpu_load(void)
2158 {
2159 	struct rq *this = this_rq();
2160 	return this->cpu_load[0];
2161 }
2162 
2163 
2164 /* Variables and functions for calc_load */
2165 static atomic_long_t calc_load_tasks;
2166 static unsigned long calc_load_update;
2167 unsigned long avenrun[3];
2168 EXPORT_SYMBOL(avenrun);
2169 
2170 static long calc_load_fold_active(struct rq *this_rq)
2171 {
2172 	long nr_active, delta = 0;
2173 
2174 	nr_active = this_rq->nr_running;
2175 	nr_active += (long) this_rq->nr_uninterruptible;
2176 
2177 	if (nr_active != this_rq->calc_load_active) {
2178 		delta = nr_active - this_rq->calc_load_active;
2179 		this_rq->calc_load_active = nr_active;
2180 	}
2181 
2182 	return delta;
2183 }
2184 
2185 static unsigned long
2186 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2187 {
2188 	load *= exp;
2189 	load += active * (FIXED_1 - exp);
2190 	load += 1UL << (FSHIFT - 1);
2191 	return load >> FSHIFT;
2192 }
2193 
2194 #ifdef CONFIG_NO_HZ
2195 /*
2196  * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2197  *
2198  * When making the ILB scale, we should try to pull this in as well.
2199  */
2200 static atomic_long_t calc_load_tasks_idle;
2201 
2202 void calc_load_account_idle(struct rq *this_rq)
2203 {
2204 	long delta;
2205 
2206 	delta = calc_load_fold_active(this_rq);
2207 	if (delta)
2208 		atomic_long_add(delta, &calc_load_tasks_idle);
2209 }
2210 
2211 static long calc_load_fold_idle(void)
2212 {
2213 	long delta = 0;
2214 
2215 	/*
2216 	 * Its got a race, we don't care...
2217 	 */
2218 	if (atomic_long_read(&calc_load_tasks_idle))
2219 		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2220 
2221 	return delta;
2222 }
2223 
2224 /**
2225  * fixed_power_int - compute: x^n, in O(log n) time
2226  *
2227  * @x:         base of the power
2228  * @frac_bits: fractional bits of @x
2229  * @n:         power to raise @x to.
2230  *
2231  * By exploiting the relation between the definition of the natural power
2232  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2233  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2234  * (where: n_i \elem {0, 1}, the binary vector representing n),
2235  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2236  * of course trivially computable in O(log_2 n), the length of our binary
2237  * vector.
2238  */
2239 static unsigned long
2240 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2241 {
2242 	unsigned long result = 1UL << frac_bits;
2243 
2244 	if (n) for (;;) {
2245 		if (n & 1) {
2246 			result *= x;
2247 			result += 1UL << (frac_bits - 1);
2248 			result >>= frac_bits;
2249 		}
2250 		n >>= 1;
2251 		if (!n)
2252 			break;
2253 		x *= x;
2254 		x += 1UL << (frac_bits - 1);
2255 		x >>= frac_bits;
2256 	}
2257 
2258 	return result;
2259 }
2260 
2261 /*
2262  * a1 = a0 * e + a * (1 - e)
2263  *
2264  * a2 = a1 * e + a * (1 - e)
2265  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2266  *    = a0 * e^2 + a * (1 - e) * (1 + e)
2267  *
2268  * a3 = a2 * e + a * (1 - e)
2269  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2270  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2271  *
2272  *  ...
2273  *
2274  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2275  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2276  *    = a0 * e^n + a * (1 - e^n)
2277  *
2278  * [1] application of the geometric series:
2279  *
2280  *              n         1 - x^(n+1)
2281  *     S_n := \Sum x^i = -------------
2282  *             i=0          1 - x
2283  */
2284 static unsigned long
2285 calc_load_n(unsigned long load, unsigned long exp,
2286 	    unsigned long active, unsigned int n)
2287 {
2288 
2289 	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2290 }
2291 
2292 /*
2293  * NO_HZ can leave us missing all per-cpu ticks calling
2294  * calc_load_account_active(), but since an idle CPU folds its delta into
2295  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2296  * in the pending idle delta if our idle period crossed a load cycle boundary.
2297  *
2298  * Once we've updated the global active value, we need to apply the exponential
2299  * weights adjusted to the number of cycles missed.
2300  */
2301 static void calc_global_nohz(void)
2302 {
2303 	long delta, active, n;
2304 
2305 	/*
2306 	 * If we crossed a calc_load_update boundary, make sure to fold
2307 	 * any pending idle changes, the respective CPUs might have
2308 	 * missed the tick driven calc_load_account_active() update
2309 	 * due to NO_HZ.
2310 	 */
2311 	delta = calc_load_fold_idle();
2312 	if (delta)
2313 		atomic_long_add(delta, &calc_load_tasks);
2314 
2315 	/*
2316 	 * It could be the one fold was all it took, we done!
2317 	 */
2318 	if (time_before(jiffies, calc_load_update + 10))
2319 		return;
2320 
2321 	/*
2322 	 * Catch-up, fold however many we are behind still
2323 	 */
2324 	delta = jiffies - calc_load_update - 10;
2325 	n = 1 + (delta / LOAD_FREQ);
2326 
2327 	active = atomic_long_read(&calc_load_tasks);
2328 	active = active > 0 ? active * FIXED_1 : 0;
2329 
2330 	avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2331 	avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2332 	avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2333 
2334 	calc_load_update += n * LOAD_FREQ;
2335 }
2336 #else
2337 void calc_load_account_idle(struct rq *this_rq)
2338 {
2339 }
2340 
2341 static inline long calc_load_fold_idle(void)
2342 {
2343 	return 0;
2344 }
2345 
2346 static void calc_global_nohz(void)
2347 {
2348 }
2349 #endif
2350 
2351 /**
2352  * get_avenrun - get the load average array
2353  * @loads:	pointer to dest load array
2354  * @offset:	offset to add
2355  * @shift:	shift count to shift the result left
2356  *
2357  * These values are estimates at best, so no need for locking.
2358  */
2359 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2360 {
2361 	loads[0] = (avenrun[0] + offset) << shift;
2362 	loads[1] = (avenrun[1] + offset) << shift;
2363 	loads[2] = (avenrun[2] + offset) << shift;
2364 }
2365 
2366 /*
2367  * calc_load - update the avenrun load estimates 10 ticks after the
2368  * CPUs have updated calc_load_tasks.
2369  */
2370 void calc_global_load(unsigned long ticks)
2371 {
2372 	long active;
2373 
2374 	if (time_before(jiffies, calc_load_update + 10))
2375 		return;
2376 
2377 	active = atomic_long_read(&calc_load_tasks);
2378 	active = active > 0 ? active * FIXED_1 : 0;
2379 
2380 	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2381 	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2382 	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2383 
2384 	calc_load_update += LOAD_FREQ;
2385 
2386 	/*
2387 	 * Account one period with whatever state we found before
2388 	 * folding in the nohz state and ageing the entire idle period.
2389 	 *
2390 	 * This avoids loosing a sample when we go idle between
2391 	 * calc_load_account_active() (10 ticks ago) and now and thus
2392 	 * under-accounting.
2393 	 */
2394 	calc_global_nohz();
2395 }
2396 
2397 /*
2398  * Called from update_cpu_load() to periodically update this CPU's
2399  * active count.
2400  */
2401 static void calc_load_account_active(struct rq *this_rq)
2402 {
2403 	long delta;
2404 
2405 	if (time_before(jiffies, this_rq->calc_load_update))
2406 		return;
2407 
2408 	delta  = calc_load_fold_active(this_rq);
2409 	delta += calc_load_fold_idle();
2410 	if (delta)
2411 		atomic_long_add(delta, &calc_load_tasks);
2412 
2413 	this_rq->calc_load_update += LOAD_FREQ;
2414 }
2415 
2416 /*
2417  * The exact cpuload at various idx values, calculated at every tick would be
2418  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2419  *
2420  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2421  * on nth tick when cpu may be busy, then we have:
2422  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2423  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2424  *
2425  * decay_load_missed() below does efficient calculation of
2426  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2427  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2428  *
2429  * The calculation is approximated on a 128 point scale.
2430  * degrade_zero_ticks is the number of ticks after which load at any
2431  * particular idx is approximated to be zero.
2432  * degrade_factor is a precomputed table, a row for each load idx.
2433  * Each column corresponds to degradation factor for a power of two ticks,
2434  * based on 128 point scale.
2435  * Example:
2436  * row 2, col 3 (=12) says that the degradation at load idx 2 after
2437  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2438  *
2439  * With this power of 2 load factors, we can degrade the load n times
2440  * by looking at 1 bits in n and doing as many mult/shift instead of
2441  * n mult/shifts needed by the exact degradation.
2442  */
2443 #define DEGRADE_SHIFT		7
2444 static const unsigned char
2445 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2446 static const unsigned char
2447 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2448 					{0, 0, 0, 0, 0, 0, 0, 0},
2449 					{64, 32, 8, 0, 0, 0, 0, 0},
2450 					{96, 72, 40, 12, 1, 0, 0},
2451 					{112, 98, 75, 43, 15, 1, 0},
2452 					{120, 112, 98, 76, 45, 16, 2} };
2453 
2454 /*
2455  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2456  * would be when CPU is idle and so we just decay the old load without
2457  * adding any new load.
2458  */
2459 static unsigned long
2460 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2461 {
2462 	int j = 0;
2463 
2464 	if (!missed_updates)
2465 		return load;
2466 
2467 	if (missed_updates >= degrade_zero_ticks[idx])
2468 		return 0;
2469 
2470 	if (idx == 1)
2471 		return load >> missed_updates;
2472 
2473 	while (missed_updates) {
2474 		if (missed_updates % 2)
2475 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2476 
2477 		missed_updates >>= 1;
2478 		j++;
2479 	}
2480 	return load;
2481 }
2482 
2483 /*
2484  * Update rq->cpu_load[] statistics. This function is usually called every
2485  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2486  * every tick. We fix it up based on jiffies.
2487  */
2488 void update_cpu_load(struct rq *this_rq)
2489 {
2490 	unsigned long this_load = this_rq->load.weight;
2491 	unsigned long curr_jiffies = jiffies;
2492 	unsigned long pending_updates;
2493 	int i, scale;
2494 
2495 	this_rq->nr_load_updates++;
2496 
2497 	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
2498 	if (curr_jiffies == this_rq->last_load_update_tick)
2499 		return;
2500 
2501 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2502 	this_rq->last_load_update_tick = curr_jiffies;
2503 
2504 	/* Update our load: */
2505 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2506 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2507 		unsigned long old_load, new_load;
2508 
2509 		/* scale is effectively 1 << i now, and >> i divides by scale */
2510 
2511 		old_load = this_rq->cpu_load[i];
2512 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2513 		new_load = this_load;
2514 		/*
2515 		 * Round up the averaging division if load is increasing. This
2516 		 * prevents us from getting stuck on 9 if the load is 10, for
2517 		 * example.
2518 		 */
2519 		if (new_load > old_load)
2520 			new_load += scale - 1;
2521 
2522 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2523 	}
2524 
2525 	sched_avg_update(this_rq);
2526 }
2527 
2528 static void update_cpu_load_active(struct rq *this_rq)
2529 {
2530 	update_cpu_load(this_rq);
2531 
2532 	calc_load_account_active(this_rq);
2533 }
2534 
2535 #ifdef CONFIG_SMP
2536 
2537 /*
2538  * sched_exec - execve() is a valuable balancing opportunity, because at
2539  * this point the task has the smallest effective memory and cache footprint.
2540  */
2541 void sched_exec(void)
2542 {
2543 	struct task_struct *p = current;
2544 	unsigned long flags;
2545 	int dest_cpu;
2546 
2547 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2548 	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2549 	if (dest_cpu == smp_processor_id())
2550 		goto unlock;
2551 
2552 	if (likely(cpu_active(dest_cpu))) {
2553 		struct migration_arg arg = { p, dest_cpu };
2554 
2555 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2556 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2557 		return;
2558 	}
2559 unlock:
2560 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2561 }
2562 
2563 #endif
2564 
2565 DEFINE_PER_CPU(struct kernel_stat, kstat);
2566 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2567 
2568 EXPORT_PER_CPU_SYMBOL(kstat);
2569 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2570 
2571 /*
2572  * Return any ns on the sched_clock that have not yet been accounted in
2573  * @p in case that task is currently running.
2574  *
2575  * Called with task_rq_lock() held on @rq.
2576  */
2577 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2578 {
2579 	u64 ns = 0;
2580 
2581 	if (task_current(rq, p)) {
2582 		update_rq_clock(rq);
2583 		ns = rq->clock_task - p->se.exec_start;
2584 		if ((s64)ns < 0)
2585 			ns = 0;
2586 	}
2587 
2588 	return ns;
2589 }
2590 
2591 unsigned long long task_delta_exec(struct task_struct *p)
2592 {
2593 	unsigned long flags;
2594 	struct rq *rq;
2595 	u64 ns = 0;
2596 
2597 	rq = task_rq_lock(p, &flags);
2598 	ns = do_task_delta_exec(p, rq);
2599 	task_rq_unlock(rq, p, &flags);
2600 
2601 	return ns;
2602 }
2603 
2604 /*
2605  * Return accounted runtime for the task.
2606  * In case the task is currently running, return the runtime plus current's
2607  * pending runtime that have not been accounted yet.
2608  */
2609 unsigned long long task_sched_runtime(struct task_struct *p)
2610 {
2611 	unsigned long flags;
2612 	struct rq *rq;
2613 	u64 ns = 0;
2614 
2615 	rq = task_rq_lock(p, &flags);
2616 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2617 	task_rq_unlock(rq, p, &flags);
2618 
2619 	return ns;
2620 }
2621 
2622 #ifdef CONFIG_CGROUP_CPUACCT
2623 struct cgroup_subsys cpuacct_subsys;
2624 struct cpuacct root_cpuacct;
2625 #endif
2626 
2627 static inline void task_group_account_field(struct task_struct *p, int index,
2628 					    u64 tmp)
2629 {
2630 #ifdef CONFIG_CGROUP_CPUACCT
2631 	struct kernel_cpustat *kcpustat;
2632 	struct cpuacct *ca;
2633 #endif
2634 	/*
2635 	 * Since all updates are sure to touch the root cgroup, we
2636 	 * get ourselves ahead and touch it first. If the root cgroup
2637 	 * is the only cgroup, then nothing else should be necessary.
2638 	 *
2639 	 */
2640 	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2641 
2642 #ifdef CONFIG_CGROUP_CPUACCT
2643 	if (unlikely(!cpuacct_subsys.active))
2644 		return;
2645 
2646 	rcu_read_lock();
2647 	ca = task_ca(p);
2648 	while (ca && (ca != &root_cpuacct)) {
2649 		kcpustat = this_cpu_ptr(ca->cpustat);
2650 		kcpustat->cpustat[index] += tmp;
2651 		ca = parent_ca(ca);
2652 	}
2653 	rcu_read_unlock();
2654 #endif
2655 }
2656 
2657 
2658 /*
2659  * Account user cpu time to a process.
2660  * @p: the process that the cpu time gets accounted to
2661  * @cputime: the cpu time spent in user space since the last update
2662  * @cputime_scaled: cputime scaled by cpu frequency
2663  */
2664 void account_user_time(struct task_struct *p, cputime_t cputime,
2665 		       cputime_t cputime_scaled)
2666 {
2667 	int index;
2668 
2669 	/* Add user time to process. */
2670 	p->utime += cputime;
2671 	p->utimescaled += cputime_scaled;
2672 	account_group_user_time(p, cputime);
2673 
2674 	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2675 
2676 	/* Add user time to cpustat. */
2677 	task_group_account_field(p, index, (__force u64) cputime);
2678 
2679 	/* Account for user time used */
2680 	acct_update_integrals(p);
2681 }
2682 
2683 /*
2684  * Account guest cpu time to a process.
2685  * @p: the process that the cpu time gets accounted to
2686  * @cputime: the cpu time spent in virtual machine since the last update
2687  * @cputime_scaled: cputime scaled by cpu frequency
2688  */
2689 static void account_guest_time(struct task_struct *p, cputime_t cputime,
2690 			       cputime_t cputime_scaled)
2691 {
2692 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2693 
2694 	/* Add guest time to process. */
2695 	p->utime += cputime;
2696 	p->utimescaled += cputime_scaled;
2697 	account_group_user_time(p, cputime);
2698 	p->gtime += cputime;
2699 
2700 	/* Add guest time to cpustat. */
2701 	if (TASK_NICE(p) > 0) {
2702 		cpustat[CPUTIME_NICE] += (__force u64) cputime;
2703 		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2704 	} else {
2705 		cpustat[CPUTIME_USER] += (__force u64) cputime;
2706 		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2707 	}
2708 }
2709 
2710 /*
2711  * Account system cpu time to a process and desired cpustat field
2712  * @p: the process that the cpu time gets accounted to
2713  * @cputime: the cpu time spent in kernel space since the last update
2714  * @cputime_scaled: cputime scaled by cpu frequency
2715  * @target_cputime64: pointer to cpustat field that has to be updated
2716  */
2717 static inline
2718 void __account_system_time(struct task_struct *p, cputime_t cputime,
2719 			cputime_t cputime_scaled, int index)
2720 {
2721 	/* Add system time to process. */
2722 	p->stime += cputime;
2723 	p->stimescaled += cputime_scaled;
2724 	account_group_system_time(p, cputime);
2725 
2726 	/* Add system time to cpustat. */
2727 	task_group_account_field(p, index, (__force u64) cputime);
2728 
2729 	/* Account for system time used */
2730 	acct_update_integrals(p);
2731 }
2732 
2733 /*
2734  * Account system cpu time to a process.
2735  * @p: the process that the cpu time gets accounted to
2736  * @hardirq_offset: the offset to subtract from hardirq_count()
2737  * @cputime: the cpu time spent in kernel space since the last update
2738  * @cputime_scaled: cputime scaled by cpu frequency
2739  */
2740 void account_system_time(struct task_struct *p, int hardirq_offset,
2741 			 cputime_t cputime, cputime_t cputime_scaled)
2742 {
2743 	int index;
2744 
2745 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2746 		account_guest_time(p, cputime, cputime_scaled);
2747 		return;
2748 	}
2749 
2750 	if (hardirq_count() - hardirq_offset)
2751 		index = CPUTIME_IRQ;
2752 	else if (in_serving_softirq())
2753 		index = CPUTIME_SOFTIRQ;
2754 	else
2755 		index = CPUTIME_SYSTEM;
2756 
2757 	__account_system_time(p, cputime, cputime_scaled, index);
2758 }
2759 
2760 /*
2761  * Account for involuntary wait time.
2762  * @cputime: the cpu time spent in involuntary wait
2763  */
2764 void account_steal_time(cputime_t cputime)
2765 {
2766 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2767 
2768 	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2769 }
2770 
2771 /*
2772  * Account for idle time.
2773  * @cputime: the cpu time spent in idle wait
2774  */
2775 void account_idle_time(cputime_t cputime)
2776 {
2777 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2778 	struct rq *rq = this_rq();
2779 
2780 	if (atomic_read(&rq->nr_iowait) > 0)
2781 		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2782 	else
2783 		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2784 }
2785 
2786 static __always_inline bool steal_account_process_tick(void)
2787 {
2788 #ifdef CONFIG_PARAVIRT
2789 	if (static_key_false(&paravirt_steal_enabled)) {
2790 		u64 steal, st = 0;
2791 
2792 		steal = paravirt_steal_clock(smp_processor_id());
2793 		steal -= this_rq()->prev_steal_time;
2794 
2795 		st = steal_ticks(steal);
2796 		this_rq()->prev_steal_time += st * TICK_NSEC;
2797 
2798 		account_steal_time(st);
2799 		return st;
2800 	}
2801 #endif
2802 	return false;
2803 }
2804 
2805 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2806 
2807 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2808 /*
2809  * Account a tick to a process and cpustat
2810  * @p: the process that the cpu time gets accounted to
2811  * @user_tick: is the tick from userspace
2812  * @rq: the pointer to rq
2813  *
2814  * Tick demultiplexing follows the order
2815  * - pending hardirq update
2816  * - pending softirq update
2817  * - user_time
2818  * - idle_time
2819  * - system time
2820  *   - check for guest_time
2821  *   - else account as system_time
2822  *
2823  * Check for hardirq is done both for system and user time as there is
2824  * no timer going off while we are on hardirq and hence we may never get an
2825  * opportunity to update it solely in system time.
2826  * p->stime and friends are only updated on system time and not on irq
2827  * softirq as those do not count in task exec_runtime any more.
2828  */
2829 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2830 						struct rq *rq)
2831 {
2832 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2833 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2834 
2835 	if (steal_account_process_tick())
2836 		return;
2837 
2838 	if (irqtime_account_hi_update()) {
2839 		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2840 	} else if (irqtime_account_si_update()) {
2841 		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2842 	} else if (this_cpu_ksoftirqd() == p) {
2843 		/*
2844 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
2845 		 * So, we have to handle it separately here.
2846 		 * Also, p->stime needs to be updated for ksoftirqd.
2847 		 */
2848 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2849 					CPUTIME_SOFTIRQ);
2850 	} else if (user_tick) {
2851 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2852 	} else if (p == rq->idle) {
2853 		account_idle_time(cputime_one_jiffy);
2854 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
2855 		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2856 	} else {
2857 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2858 					CPUTIME_SYSTEM);
2859 	}
2860 }
2861 
2862 static void irqtime_account_idle_ticks(int ticks)
2863 {
2864 	int i;
2865 	struct rq *rq = this_rq();
2866 
2867 	for (i = 0; i < ticks; i++)
2868 		irqtime_account_process_tick(current, 0, rq);
2869 }
2870 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2871 static void irqtime_account_idle_ticks(int ticks) {}
2872 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2873 						struct rq *rq) {}
2874 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2875 
2876 /*
2877  * Account a single tick of cpu time.
2878  * @p: the process that the cpu time gets accounted to
2879  * @user_tick: indicates if the tick is a user or a system tick
2880  */
2881 void account_process_tick(struct task_struct *p, int user_tick)
2882 {
2883 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2884 	struct rq *rq = this_rq();
2885 
2886 	if (sched_clock_irqtime) {
2887 		irqtime_account_process_tick(p, user_tick, rq);
2888 		return;
2889 	}
2890 
2891 	if (steal_account_process_tick())
2892 		return;
2893 
2894 	if (user_tick)
2895 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2896 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2897 		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2898 				    one_jiffy_scaled);
2899 	else
2900 		account_idle_time(cputime_one_jiffy);
2901 }
2902 
2903 /*
2904  * Account multiple ticks of steal time.
2905  * @p: the process from which the cpu time has been stolen
2906  * @ticks: number of stolen ticks
2907  */
2908 void account_steal_ticks(unsigned long ticks)
2909 {
2910 	account_steal_time(jiffies_to_cputime(ticks));
2911 }
2912 
2913 /*
2914  * Account multiple ticks of idle time.
2915  * @ticks: number of stolen ticks
2916  */
2917 void account_idle_ticks(unsigned long ticks)
2918 {
2919 
2920 	if (sched_clock_irqtime) {
2921 		irqtime_account_idle_ticks(ticks);
2922 		return;
2923 	}
2924 
2925 	account_idle_time(jiffies_to_cputime(ticks));
2926 }
2927 
2928 #endif
2929 
2930 /*
2931  * Use precise platform statistics if available:
2932  */
2933 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
2934 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2935 {
2936 	*ut = p->utime;
2937 	*st = p->stime;
2938 }
2939 
2940 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2941 {
2942 	struct task_cputime cputime;
2943 
2944 	thread_group_cputime(p, &cputime);
2945 
2946 	*ut = cputime.utime;
2947 	*st = cputime.stime;
2948 }
2949 #else
2950 
2951 #ifndef nsecs_to_cputime
2952 # define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
2953 #endif
2954 
2955 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2956 {
2957 	cputime_t rtime, utime = p->utime, total = utime + p->stime;
2958 
2959 	/*
2960 	 * Use CFS's precise accounting:
2961 	 */
2962 	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2963 
2964 	if (total) {
2965 		u64 temp = (__force u64) rtime;
2966 
2967 		temp *= (__force u64) utime;
2968 		do_div(temp, (__force u32) total);
2969 		utime = (__force cputime_t) temp;
2970 	} else
2971 		utime = rtime;
2972 
2973 	/*
2974 	 * Compare with previous values, to keep monotonicity:
2975 	 */
2976 	p->prev_utime = max(p->prev_utime, utime);
2977 	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2978 
2979 	*ut = p->prev_utime;
2980 	*st = p->prev_stime;
2981 }
2982 
2983 /*
2984  * Must be called with siglock held.
2985  */
2986 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2987 {
2988 	struct signal_struct *sig = p->signal;
2989 	struct task_cputime cputime;
2990 	cputime_t rtime, utime, total;
2991 
2992 	thread_group_cputime(p, &cputime);
2993 
2994 	total = cputime.utime + cputime.stime;
2995 	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2996 
2997 	if (total) {
2998 		u64 temp = (__force u64) rtime;
2999 
3000 		temp *= (__force u64) cputime.utime;
3001 		do_div(temp, (__force u32) total);
3002 		utime = (__force cputime_t) temp;
3003 	} else
3004 		utime = rtime;
3005 
3006 	sig->prev_utime = max(sig->prev_utime, utime);
3007 	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3008 
3009 	*ut = sig->prev_utime;
3010 	*st = sig->prev_stime;
3011 }
3012 #endif
3013 
3014 /*
3015  * This function gets called by the timer code, with HZ frequency.
3016  * We call it with interrupts disabled.
3017  */
3018 void scheduler_tick(void)
3019 {
3020 	int cpu = smp_processor_id();
3021 	struct rq *rq = cpu_rq(cpu);
3022 	struct task_struct *curr = rq->curr;
3023 
3024 	sched_clock_tick();
3025 
3026 	raw_spin_lock(&rq->lock);
3027 	update_rq_clock(rq);
3028 	update_cpu_load_active(rq);
3029 	curr->sched_class->task_tick(rq, curr, 0);
3030 	raw_spin_unlock(&rq->lock);
3031 
3032 	perf_event_task_tick();
3033 
3034 #ifdef CONFIG_SMP
3035 	rq->idle_balance = idle_cpu(cpu);
3036 	trigger_load_balance(rq, cpu);
3037 #endif
3038 }
3039 
3040 notrace unsigned long get_parent_ip(unsigned long addr)
3041 {
3042 	if (in_lock_functions(addr)) {
3043 		addr = CALLER_ADDR2;
3044 		if (in_lock_functions(addr))
3045 			addr = CALLER_ADDR3;
3046 	}
3047 	return addr;
3048 }
3049 
3050 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3051 				defined(CONFIG_PREEMPT_TRACER))
3052 
3053 void __kprobes add_preempt_count(int val)
3054 {
3055 #ifdef CONFIG_DEBUG_PREEMPT
3056 	/*
3057 	 * Underflow?
3058 	 */
3059 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3060 		return;
3061 #endif
3062 	preempt_count() += val;
3063 #ifdef CONFIG_DEBUG_PREEMPT
3064 	/*
3065 	 * Spinlock count overflowing soon?
3066 	 */
3067 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3068 				PREEMPT_MASK - 10);
3069 #endif
3070 	if (preempt_count() == val)
3071 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3072 }
3073 EXPORT_SYMBOL(add_preempt_count);
3074 
3075 void __kprobes sub_preempt_count(int val)
3076 {
3077 #ifdef CONFIG_DEBUG_PREEMPT
3078 	/*
3079 	 * Underflow?
3080 	 */
3081 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3082 		return;
3083 	/*
3084 	 * Is the spinlock portion underflowing?
3085 	 */
3086 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3087 			!(preempt_count() & PREEMPT_MASK)))
3088 		return;
3089 #endif
3090 
3091 	if (preempt_count() == val)
3092 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3093 	preempt_count() -= val;
3094 }
3095 EXPORT_SYMBOL(sub_preempt_count);
3096 
3097 #endif
3098 
3099 /*
3100  * Print scheduling while atomic bug:
3101  */
3102 static noinline void __schedule_bug(struct task_struct *prev)
3103 {
3104 	struct pt_regs *regs = get_irq_regs();
3105 
3106 	if (oops_in_progress)
3107 		return;
3108 
3109 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3110 		prev->comm, prev->pid, preempt_count());
3111 
3112 	debug_show_held_locks(prev);
3113 	print_modules();
3114 	if (irqs_disabled())
3115 		print_irqtrace_events(prev);
3116 
3117 	if (regs)
3118 		show_regs(regs);
3119 	else
3120 		dump_stack();
3121 }
3122 
3123 /*
3124  * Various schedule()-time debugging checks and statistics:
3125  */
3126 static inline void schedule_debug(struct task_struct *prev)
3127 {
3128 	/*
3129 	 * Test if we are atomic. Since do_exit() needs to call into
3130 	 * schedule() atomically, we ignore that path for now.
3131 	 * Otherwise, whine if we are scheduling when we should not be.
3132 	 */
3133 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3134 		__schedule_bug(prev);
3135 	rcu_sleep_check();
3136 
3137 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3138 
3139 	schedstat_inc(this_rq(), sched_count);
3140 }
3141 
3142 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3143 {
3144 	if (prev->on_rq || rq->skip_clock_update < 0)
3145 		update_rq_clock(rq);
3146 	prev->sched_class->put_prev_task(rq, prev);
3147 }
3148 
3149 /*
3150  * Pick up the highest-prio task:
3151  */
3152 static inline struct task_struct *
3153 pick_next_task(struct rq *rq)
3154 {
3155 	const struct sched_class *class;
3156 	struct task_struct *p;
3157 
3158 	/*
3159 	 * Optimization: we know that if all tasks are in
3160 	 * the fair class we can call that function directly:
3161 	 */
3162 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3163 		p = fair_sched_class.pick_next_task(rq);
3164 		if (likely(p))
3165 			return p;
3166 	}
3167 
3168 	for_each_class(class) {
3169 		p = class->pick_next_task(rq);
3170 		if (p)
3171 			return p;
3172 	}
3173 
3174 	BUG(); /* the idle class will always have a runnable task */
3175 }
3176 
3177 /*
3178  * __schedule() is the main scheduler function.
3179  */
3180 static void __sched __schedule(void)
3181 {
3182 	struct task_struct *prev, *next;
3183 	unsigned long *switch_count;
3184 	struct rq *rq;
3185 	int cpu;
3186 
3187 need_resched:
3188 	preempt_disable();
3189 	cpu = smp_processor_id();
3190 	rq = cpu_rq(cpu);
3191 	rcu_note_context_switch(cpu);
3192 	prev = rq->curr;
3193 
3194 	schedule_debug(prev);
3195 
3196 	if (sched_feat(HRTICK))
3197 		hrtick_clear(rq);
3198 
3199 	raw_spin_lock_irq(&rq->lock);
3200 
3201 	switch_count = &prev->nivcsw;
3202 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3203 		if (unlikely(signal_pending_state(prev->state, prev))) {
3204 			prev->state = TASK_RUNNING;
3205 		} else {
3206 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3207 			prev->on_rq = 0;
3208 
3209 			/*
3210 			 * If a worker went to sleep, notify and ask workqueue
3211 			 * whether it wants to wake up a task to maintain
3212 			 * concurrency.
3213 			 */
3214 			if (prev->flags & PF_WQ_WORKER) {
3215 				struct task_struct *to_wakeup;
3216 
3217 				to_wakeup = wq_worker_sleeping(prev, cpu);
3218 				if (to_wakeup)
3219 					try_to_wake_up_local(to_wakeup);
3220 			}
3221 		}
3222 		switch_count = &prev->nvcsw;
3223 	}
3224 
3225 	pre_schedule(rq, prev);
3226 
3227 	if (unlikely(!rq->nr_running))
3228 		idle_balance(cpu, rq);
3229 
3230 	put_prev_task(rq, prev);
3231 	next = pick_next_task(rq);
3232 	clear_tsk_need_resched(prev);
3233 	rq->skip_clock_update = 0;
3234 
3235 	if (likely(prev != next)) {
3236 		rq->nr_switches++;
3237 		rq->curr = next;
3238 		++*switch_count;
3239 
3240 		context_switch(rq, prev, next); /* unlocks the rq */
3241 		/*
3242 		 * The context switch have flipped the stack from under us
3243 		 * and restored the local variables which were saved when
3244 		 * this task called schedule() in the past. prev == current
3245 		 * is still correct, but it can be moved to another cpu/rq.
3246 		 */
3247 		cpu = smp_processor_id();
3248 		rq = cpu_rq(cpu);
3249 	} else
3250 		raw_spin_unlock_irq(&rq->lock);
3251 
3252 	post_schedule(rq);
3253 
3254 	sched_preempt_enable_no_resched();
3255 	if (need_resched())
3256 		goto need_resched;
3257 }
3258 
3259 static inline void sched_submit_work(struct task_struct *tsk)
3260 {
3261 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3262 		return;
3263 	/*
3264 	 * If we are going to sleep and we have plugged IO queued,
3265 	 * make sure to submit it to avoid deadlocks.
3266 	 */
3267 	if (blk_needs_flush_plug(tsk))
3268 		blk_schedule_flush_plug(tsk);
3269 }
3270 
3271 asmlinkage void __sched schedule(void)
3272 {
3273 	struct task_struct *tsk = current;
3274 
3275 	sched_submit_work(tsk);
3276 	__schedule();
3277 }
3278 EXPORT_SYMBOL(schedule);
3279 
3280 /**
3281  * schedule_preempt_disabled - called with preemption disabled
3282  *
3283  * Returns with preemption disabled. Note: preempt_count must be 1
3284  */
3285 void __sched schedule_preempt_disabled(void)
3286 {
3287 	sched_preempt_enable_no_resched();
3288 	schedule();
3289 	preempt_disable();
3290 }
3291 
3292 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3293 
3294 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3295 {
3296 	if (lock->owner != owner)
3297 		return false;
3298 
3299 	/*
3300 	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3301 	 * lock->owner still matches owner, if that fails, owner might
3302 	 * point to free()d memory, if it still matches, the rcu_read_lock()
3303 	 * ensures the memory stays valid.
3304 	 */
3305 	barrier();
3306 
3307 	return owner->on_cpu;
3308 }
3309 
3310 /*
3311  * Look out! "owner" is an entirely speculative pointer
3312  * access and not reliable.
3313  */
3314 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3315 {
3316 	if (!sched_feat(OWNER_SPIN))
3317 		return 0;
3318 
3319 	rcu_read_lock();
3320 	while (owner_running(lock, owner)) {
3321 		if (need_resched())
3322 			break;
3323 
3324 		arch_mutex_cpu_relax();
3325 	}
3326 	rcu_read_unlock();
3327 
3328 	/*
3329 	 * We break out the loop above on need_resched() and when the
3330 	 * owner changed, which is a sign for heavy contention. Return
3331 	 * success only when lock->owner is NULL.
3332 	 */
3333 	return lock->owner == NULL;
3334 }
3335 #endif
3336 
3337 #ifdef CONFIG_PREEMPT
3338 /*
3339  * this is the entry point to schedule() from in-kernel preemption
3340  * off of preempt_enable. Kernel preemptions off return from interrupt
3341  * occur there and call schedule directly.
3342  */
3343 asmlinkage void __sched notrace preempt_schedule(void)
3344 {
3345 	struct thread_info *ti = current_thread_info();
3346 
3347 	/*
3348 	 * If there is a non-zero preempt_count or interrupts are disabled,
3349 	 * we do not want to preempt the current task. Just return..
3350 	 */
3351 	if (likely(ti->preempt_count || irqs_disabled()))
3352 		return;
3353 
3354 	do {
3355 		add_preempt_count_notrace(PREEMPT_ACTIVE);
3356 		__schedule();
3357 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3358 
3359 		/*
3360 		 * Check again in case we missed a preemption opportunity
3361 		 * between schedule and now.
3362 		 */
3363 		barrier();
3364 	} while (need_resched());
3365 }
3366 EXPORT_SYMBOL(preempt_schedule);
3367 
3368 /*
3369  * this is the entry point to schedule() from kernel preemption
3370  * off of irq context.
3371  * Note, that this is called and return with irqs disabled. This will
3372  * protect us against recursive calling from irq.
3373  */
3374 asmlinkage void __sched preempt_schedule_irq(void)
3375 {
3376 	struct thread_info *ti = current_thread_info();
3377 
3378 	/* Catch callers which need to be fixed */
3379 	BUG_ON(ti->preempt_count || !irqs_disabled());
3380 
3381 	do {
3382 		add_preempt_count(PREEMPT_ACTIVE);
3383 		local_irq_enable();
3384 		__schedule();
3385 		local_irq_disable();
3386 		sub_preempt_count(PREEMPT_ACTIVE);
3387 
3388 		/*
3389 		 * Check again in case we missed a preemption opportunity
3390 		 * between schedule and now.
3391 		 */
3392 		barrier();
3393 	} while (need_resched());
3394 }
3395 
3396 #endif /* CONFIG_PREEMPT */
3397 
3398 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3399 			  void *key)
3400 {
3401 	return try_to_wake_up(curr->private, mode, wake_flags);
3402 }
3403 EXPORT_SYMBOL(default_wake_function);
3404 
3405 /*
3406  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3407  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3408  * number) then we wake all the non-exclusive tasks and one exclusive task.
3409  *
3410  * There are circumstances in which we can try to wake a task which has already
3411  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3412  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3413  */
3414 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3415 			int nr_exclusive, int wake_flags, void *key)
3416 {
3417 	wait_queue_t *curr, *next;
3418 
3419 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3420 		unsigned flags = curr->flags;
3421 
3422 		if (curr->func(curr, mode, wake_flags, key) &&
3423 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3424 			break;
3425 	}
3426 }
3427 
3428 /**
3429  * __wake_up - wake up threads blocked on a waitqueue.
3430  * @q: the waitqueue
3431  * @mode: which threads
3432  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3433  * @key: is directly passed to the wakeup function
3434  *
3435  * It may be assumed that this function implies a write memory barrier before
3436  * changing the task state if and only if any tasks are woken up.
3437  */
3438 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3439 			int nr_exclusive, void *key)
3440 {
3441 	unsigned long flags;
3442 
3443 	spin_lock_irqsave(&q->lock, flags);
3444 	__wake_up_common(q, mode, nr_exclusive, 0, key);
3445 	spin_unlock_irqrestore(&q->lock, flags);
3446 }
3447 EXPORT_SYMBOL(__wake_up);
3448 
3449 /*
3450  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3451  */
3452 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3453 {
3454 	__wake_up_common(q, mode, nr, 0, NULL);
3455 }
3456 EXPORT_SYMBOL_GPL(__wake_up_locked);
3457 
3458 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3459 {
3460 	__wake_up_common(q, mode, 1, 0, key);
3461 }
3462 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3463 
3464 /**
3465  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3466  * @q: the waitqueue
3467  * @mode: which threads
3468  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3469  * @key: opaque value to be passed to wakeup targets
3470  *
3471  * The sync wakeup differs that the waker knows that it will schedule
3472  * away soon, so while the target thread will be woken up, it will not
3473  * be migrated to another CPU - ie. the two threads are 'synchronized'
3474  * with each other. This can prevent needless bouncing between CPUs.
3475  *
3476  * On UP it can prevent extra preemption.
3477  *
3478  * It may be assumed that this function implies a write memory barrier before
3479  * changing the task state if and only if any tasks are woken up.
3480  */
3481 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3482 			int nr_exclusive, void *key)
3483 {
3484 	unsigned long flags;
3485 	int wake_flags = WF_SYNC;
3486 
3487 	if (unlikely(!q))
3488 		return;
3489 
3490 	if (unlikely(!nr_exclusive))
3491 		wake_flags = 0;
3492 
3493 	spin_lock_irqsave(&q->lock, flags);
3494 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3495 	spin_unlock_irqrestore(&q->lock, flags);
3496 }
3497 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3498 
3499 /*
3500  * __wake_up_sync - see __wake_up_sync_key()
3501  */
3502 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3503 {
3504 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3505 }
3506 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3507 
3508 /**
3509  * complete: - signals a single thread waiting on this completion
3510  * @x:  holds the state of this particular completion
3511  *
3512  * This will wake up a single thread waiting on this completion. Threads will be
3513  * awakened in the same order in which they were queued.
3514  *
3515  * See also complete_all(), wait_for_completion() and related routines.
3516  *
3517  * It may be assumed that this function implies a write memory barrier before
3518  * changing the task state if and only if any tasks are woken up.
3519  */
3520 void complete(struct completion *x)
3521 {
3522 	unsigned long flags;
3523 
3524 	spin_lock_irqsave(&x->wait.lock, flags);
3525 	x->done++;
3526 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3527 	spin_unlock_irqrestore(&x->wait.lock, flags);
3528 }
3529 EXPORT_SYMBOL(complete);
3530 
3531 /**
3532  * complete_all: - signals all threads waiting on this completion
3533  * @x:  holds the state of this particular completion
3534  *
3535  * This will wake up all threads waiting on this particular completion event.
3536  *
3537  * It may be assumed that this function implies a write memory barrier before
3538  * changing the task state if and only if any tasks are woken up.
3539  */
3540 void complete_all(struct completion *x)
3541 {
3542 	unsigned long flags;
3543 
3544 	spin_lock_irqsave(&x->wait.lock, flags);
3545 	x->done += UINT_MAX/2;
3546 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3547 	spin_unlock_irqrestore(&x->wait.lock, flags);
3548 }
3549 EXPORT_SYMBOL(complete_all);
3550 
3551 static inline long __sched
3552 do_wait_for_common(struct completion *x, long timeout, int state)
3553 {
3554 	if (!x->done) {
3555 		DECLARE_WAITQUEUE(wait, current);
3556 
3557 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3558 		do {
3559 			if (signal_pending_state(state, current)) {
3560 				timeout = -ERESTARTSYS;
3561 				break;
3562 			}
3563 			__set_current_state(state);
3564 			spin_unlock_irq(&x->wait.lock);
3565 			timeout = schedule_timeout(timeout);
3566 			spin_lock_irq(&x->wait.lock);
3567 		} while (!x->done && timeout);
3568 		__remove_wait_queue(&x->wait, &wait);
3569 		if (!x->done)
3570 			return timeout;
3571 	}
3572 	x->done--;
3573 	return timeout ?: 1;
3574 }
3575 
3576 static long __sched
3577 wait_for_common(struct completion *x, long timeout, int state)
3578 {
3579 	might_sleep();
3580 
3581 	spin_lock_irq(&x->wait.lock);
3582 	timeout = do_wait_for_common(x, timeout, state);
3583 	spin_unlock_irq(&x->wait.lock);
3584 	return timeout;
3585 }
3586 
3587 /**
3588  * wait_for_completion: - waits for completion of a task
3589  * @x:  holds the state of this particular completion
3590  *
3591  * This waits to be signaled for completion of a specific task. It is NOT
3592  * interruptible and there is no timeout.
3593  *
3594  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3595  * and interrupt capability. Also see complete().
3596  */
3597 void __sched wait_for_completion(struct completion *x)
3598 {
3599 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3600 }
3601 EXPORT_SYMBOL(wait_for_completion);
3602 
3603 /**
3604  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3605  * @x:  holds the state of this particular completion
3606  * @timeout:  timeout value in jiffies
3607  *
3608  * This waits for either a completion of a specific task to be signaled or for a
3609  * specified timeout to expire. The timeout is in jiffies. It is not
3610  * interruptible.
3611  *
3612  * The return value is 0 if timed out, and positive (at least 1, or number of
3613  * jiffies left till timeout) if completed.
3614  */
3615 unsigned long __sched
3616 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3617 {
3618 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3619 }
3620 EXPORT_SYMBOL(wait_for_completion_timeout);
3621 
3622 /**
3623  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3624  * @x:  holds the state of this particular completion
3625  *
3626  * This waits for completion of a specific task to be signaled. It is
3627  * interruptible.
3628  *
3629  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3630  */
3631 int __sched wait_for_completion_interruptible(struct completion *x)
3632 {
3633 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3634 	if (t == -ERESTARTSYS)
3635 		return t;
3636 	return 0;
3637 }
3638 EXPORT_SYMBOL(wait_for_completion_interruptible);
3639 
3640 /**
3641  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3642  * @x:  holds the state of this particular completion
3643  * @timeout:  timeout value in jiffies
3644  *
3645  * This waits for either a completion of a specific task to be signaled or for a
3646  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3647  *
3648  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3649  * positive (at least 1, or number of jiffies left till timeout) if completed.
3650  */
3651 long __sched
3652 wait_for_completion_interruptible_timeout(struct completion *x,
3653 					  unsigned long timeout)
3654 {
3655 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3656 }
3657 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3658 
3659 /**
3660  * wait_for_completion_killable: - waits for completion of a task (killable)
3661  * @x:  holds the state of this particular completion
3662  *
3663  * This waits to be signaled for completion of a specific task. It can be
3664  * interrupted by a kill signal.
3665  *
3666  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3667  */
3668 int __sched wait_for_completion_killable(struct completion *x)
3669 {
3670 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3671 	if (t == -ERESTARTSYS)
3672 		return t;
3673 	return 0;
3674 }
3675 EXPORT_SYMBOL(wait_for_completion_killable);
3676 
3677 /**
3678  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3679  * @x:  holds the state of this particular completion
3680  * @timeout:  timeout value in jiffies
3681  *
3682  * This waits for either a completion of a specific task to be
3683  * signaled or for a specified timeout to expire. It can be
3684  * interrupted by a kill signal. The timeout is in jiffies.
3685  *
3686  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3687  * positive (at least 1, or number of jiffies left till timeout) if completed.
3688  */
3689 long __sched
3690 wait_for_completion_killable_timeout(struct completion *x,
3691 				     unsigned long timeout)
3692 {
3693 	return wait_for_common(x, timeout, TASK_KILLABLE);
3694 }
3695 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3696 
3697 /**
3698  *	try_wait_for_completion - try to decrement a completion without blocking
3699  *	@x:	completion structure
3700  *
3701  *	Returns: 0 if a decrement cannot be done without blocking
3702  *		 1 if a decrement succeeded.
3703  *
3704  *	If a completion is being used as a counting completion,
3705  *	attempt to decrement the counter without blocking. This
3706  *	enables us to avoid waiting if the resource the completion
3707  *	is protecting is not available.
3708  */
3709 bool try_wait_for_completion(struct completion *x)
3710 {
3711 	unsigned long flags;
3712 	int ret = 1;
3713 
3714 	spin_lock_irqsave(&x->wait.lock, flags);
3715 	if (!x->done)
3716 		ret = 0;
3717 	else
3718 		x->done--;
3719 	spin_unlock_irqrestore(&x->wait.lock, flags);
3720 	return ret;
3721 }
3722 EXPORT_SYMBOL(try_wait_for_completion);
3723 
3724 /**
3725  *	completion_done - Test to see if a completion has any waiters
3726  *	@x:	completion structure
3727  *
3728  *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3729  *		 1 if there are no waiters.
3730  *
3731  */
3732 bool completion_done(struct completion *x)
3733 {
3734 	unsigned long flags;
3735 	int ret = 1;
3736 
3737 	spin_lock_irqsave(&x->wait.lock, flags);
3738 	if (!x->done)
3739 		ret = 0;
3740 	spin_unlock_irqrestore(&x->wait.lock, flags);
3741 	return ret;
3742 }
3743 EXPORT_SYMBOL(completion_done);
3744 
3745 static long __sched
3746 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3747 {
3748 	unsigned long flags;
3749 	wait_queue_t wait;
3750 
3751 	init_waitqueue_entry(&wait, current);
3752 
3753 	__set_current_state(state);
3754 
3755 	spin_lock_irqsave(&q->lock, flags);
3756 	__add_wait_queue(q, &wait);
3757 	spin_unlock(&q->lock);
3758 	timeout = schedule_timeout(timeout);
3759 	spin_lock_irq(&q->lock);
3760 	__remove_wait_queue(q, &wait);
3761 	spin_unlock_irqrestore(&q->lock, flags);
3762 
3763 	return timeout;
3764 }
3765 
3766 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3767 {
3768 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3769 }
3770 EXPORT_SYMBOL(interruptible_sleep_on);
3771 
3772 long __sched
3773 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3774 {
3775 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3776 }
3777 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3778 
3779 void __sched sleep_on(wait_queue_head_t *q)
3780 {
3781 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3782 }
3783 EXPORT_SYMBOL(sleep_on);
3784 
3785 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3786 {
3787 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3788 }
3789 EXPORT_SYMBOL(sleep_on_timeout);
3790 
3791 #ifdef CONFIG_RT_MUTEXES
3792 
3793 /*
3794  * rt_mutex_setprio - set the current priority of a task
3795  * @p: task
3796  * @prio: prio value (kernel-internal form)
3797  *
3798  * This function changes the 'effective' priority of a task. It does
3799  * not touch ->normal_prio like __setscheduler().
3800  *
3801  * Used by the rt_mutex code to implement priority inheritance logic.
3802  */
3803 void rt_mutex_setprio(struct task_struct *p, int prio)
3804 {
3805 	int oldprio, on_rq, running;
3806 	struct rq *rq;
3807 	const struct sched_class *prev_class;
3808 
3809 	BUG_ON(prio < 0 || prio > MAX_PRIO);
3810 
3811 	rq = __task_rq_lock(p);
3812 
3813 	/*
3814 	 * Idle task boosting is a nono in general. There is one
3815 	 * exception, when PREEMPT_RT and NOHZ is active:
3816 	 *
3817 	 * The idle task calls get_next_timer_interrupt() and holds
3818 	 * the timer wheel base->lock on the CPU and another CPU wants
3819 	 * to access the timer (probably to cancel it). We can safely
3820 	 * ignore the boosting request, as the idle CPU runs this code
3821 	 * with interrupts disabled and will complete the lock
3822 	 * protected section without being interrupted. So there is no
3823 	 * real need to boost.
3824 	 */
3825 	if (unlikely(p == rq->idle)) {
3826 		WARN_ON(p != rq->curr);
3827 		WARN_ON(p->pi_blocked_on);
3828 		goto out_unlock;
3829 	}
3830 
3831 	trace_sched_pi_setprio(p, prio);
3832 	oldprio = p->prio;
3833 	prev_class = p->sched_class;
3834 	on_rq = p->on_rq;
3835 	running = task_current(rq, p);
3836 	if (on_rq)
3837 		dequeue_task(rq, p, 0);
3838 	if (running)
3839 		p->sched_class->put_prev_task(rq, p);
3840 
3841 	if (rt_prio(prio))
3842 		p->sched_class = &rt_sched_class;
3843 	else
3844 		p->sched_class = &fair_sched_class;
3845 
3846 	p->prio = prio;
3847 
3848 	if (running)
3849 		p->sched_class->set_curr_task(rq);
3850 	if (on_rq)
3851 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3852 
3853 	check_class_changed(rq, p, prev_class, oldprio);
3854 out_unlock:
3855 	__task_rq_unlock(rq);
3856 }
3857 #endif
3858 void set_user_nice(struct task_struct *p, long nice)
3859 {
3860 	int old_prio, delta, on_rq;
3861 	unsigned long flags;
3862 	struct rq *rq;
3863 
3864 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3865 		return;
3866 	/*
3867 	 * We have to be careful, if called from sys_setpriority(),
3868 	 * the task might be in the middle of scheduling on another CPU.
3869 	 */
3870 	rq = task_rq_lock(p, &flags);
3871 	/*
3872 	 * The RT priorities are set via sched_setscheduler(), but we still
3873 	 * allow the 'normal' nice value to be set - but as expected
3874 	 * it wont have any effect on scheduling until the task is
3875 	 * SCHED_FIFO/SCHED_RR:
3876 	 */
3877 	if (task_has_rt_policy(p)) {
3878 		p->static_prio = NICE_TO_PRIO(nice);
3879 		goto out_unlock;
3880 	}
3881 	on_rq = p->on_rq;
3882 	if (on_rq)
3883 		dequeue_task(rq, p, 0);
3884 
3885 	p->static_prio = NICE_TO_PRIO(nice);
3886 	set_load_weight(p);
3887 	old_prio = p->prio;
3888 	p->prio = effective_prio(p);
3889 	delta = p->prio - old_prio;
3890 
3891 	if (on_rq) {
3892 		enqueue_task(rq, p, 0);
3893 		/*
3894 		 * If the task increased its priority or is running and
3895 		 * lowered its priority, then reschedule its CPU:
3896 		 */
3897 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3898 			resched_task(rq->curr);
3899 	}
3900 out_unlock:
3901 	task_rq_unlock(rq, p, &flags);
3902 }
3903 EXPORT_SYMBOL(set_user_nice);
3904 
3905 /*
3906  * can_nice - check if a task can reduce its nice value
3907  * @p: task
3908  * @nice: nice value
3909  */
3910 int can_nice(const struct task_struct *p, const int nice)
3911 {
3912 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3913 	int nice_rlim = 20 - nice;
3914 
3915 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3916 		capable(CAP_SYS_NICE));
3917 }
3918 
3919 #ifdef __ARCH_WANT_SYS_NICE
3920 
3921 /*
3922  * sys_nice - change the priority of the current process.
3923  * @increment: priority increment
3924  *
3925  * sys_setpriority is a more generic, but much slower function that
3926  * does similar things.
3927  */
3928 SYSCALL_DEFINE1(nice, int, increment)
3929 {
3930 	long nice, retval;
3931 
3932 	/*
3933 	 * Setpriority might change our priority at the same moment.
3934 	 * We don't have to worry. Conceptually one call occurs first
3935 	 * and we have a single winner.
3936 	 */
3937 	if (increment < -40)
3938 		increment = -40;
3939 	if (increment > 40)
3940 		increment = 40;
3941 
3942 	nice = TASK_NICE(current) + increment;
3943 	if (nice < -20)
3944 		nice = -20;
3945 	if (nice > 19)
3946 		nice = 19;
3947 
3948 	if (increment < 0 && !can_nice(current, nice))
3949 		return -EPERM;
3950 
3951 	retval = security_task_setnice(current, nice);
3952 	if (retval)
3953 		return retval;
3954 
3955 	set_user_nice(current, nice);
3956 	return 0;
3957 }
3958 
3959 #endif
3960 
3961 /**
3962  * task_prio - return the priority value of a given task.
3963  * @p: the task in question.
3964  *
3965  * This is the priority value as seen by users in /proc.
3966  * RT tasks are offset by -200. Normal tasks are centered
3967  * around 0, value goes from -16 to +15.
3968  */
3969 int task_prio(const struct task_struct *p)
3970 {
3971 	return p->prio - MAX_RT_PRIO;
3972 }
3973 
3974 /**
3975  * task_nice - return the nice value of a given task.
3976  * @p: the task in question.
3977  */
3978 int task_nice(const struct task_struct *p)
3979 {
3980 	return TASK_NICE(p);
3981 }
3982 EXPORT_SYMBOL(task_nice);
3983 
3984 /**
3985  * idle_cpu - is a given cpu idle currently?
3986  * @cpu: the processor in question.
3987  */
3988 int idle_cpu(int cpu)
3989 {
3990 	struct rq *rq = cpu_rq(cpu);
3991 
3992 	if (rq->curr != rq->idle)
3993 		return 0;
3994 
3995 	if (rq->nr_running)
3996 		return 0;
3997 
3998 #ifdef CONFIG_SMP
3999 	if (!llist_empty(&rq->wake_list))
4000 		return 0;
4001 #endif
4002 
4003 	return 1;
4004 }
4005 
4006 /**
4007  * idle_task - return the idle task for a given cpu.
4008  * @cpu: the processor in question.
4009  */
4010 struct task_struct *idle_task(int cpu)
4011 {
4012 	return cpu_rq(cpu)->idle;
4013 }
4014 
4015 /**
4016  * find_process_by_pid - find a process with a matching PID value.
4017  * @pid: the pid in question.
4018  */
4019 static struct task_struct *find_process_by_pid(pid_t pid)
4020 {
4021 	return pid ? find_task_by_vpid(pid) : current;
4022 }
4023 
4024 /* Actually do priority change: must hold rq lock. */
4025 static void
4026 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4027 {
4028 	p->policy = policy;
4029 	p->rt_priority = prio;
4030 	p->normal_prio = normal_prio(p);
4031 	/* we are holding p->pi_lock already */
4032 	p->prio = rt_mutex_getprio(p);
4033 	if (rt_prio(p->prio))
4034 		p->sched_class = &rt_sched_class;
4035 	else
4036 		p->sched_class = &fair_sched_class;
4037 	set_load_weight(p);
4038 }
4039 
4040 /*
4041  * check the target process has a UID that matches the current process's
4042  */
4043 static bool check_same_owner(struct task_struct *p)
4044 {
4045 	const struct cred *cred = current_cred(), *pcred;
4046 	bool match;
4047 
4048 	rcu_read_lock();
4049 	pcred = __task_cred(p);
4050 	if (cred->user->user_ns == pcred->user->user_ns)
4051 		match = (cred->euid == pcred->euid ||
4052 			 cred->euid == pcred->uid);
4053 	else
4054 		match = false;
4055 	rcu_read_unlock();
4056 	return match;
4057 }
4058 
4059 static int __sched_setscheduler(struct task_struct *p, int policy,
4060 				const struct sched_param *param, bool user)
4061 {
4062 	int retval, oldprio, oldpolicy = -1, on_rq, running;
4063 	unsigned long flags;
4064 	const struct sched_class *prev_class;
4065 	struct rq *rq;
4066 	int reset_on_fork;
4067 
4068 	/* may grab non-irq protected spin_locks */
4069 	BUG_ON(in_interrupt());
4070 recheck:
4071 	/* double check policy once rq lock held */
4072 	if (policy < 0) {
4073 		reset_on_fork = p->sched_reset_on_fork;
4074 		policy = oldpolicy = p->policy;
4075 	} else {
4076 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4077 		policy &= ~SCHED_RESET_ON_FORK;
4078 
4079 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
4080 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4081 				policy != SCHED_IDLE)
4082 			return -EINVAL;
4083 	}
4084 
4085 	/*
4086 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4087 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4088 	 * SCHED_BATCH and SCHED_IDLE is 0.
4089 	 */
4090 	if (param->sched_priority < 0 ||
4091 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4092 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4093 		return -EINVAL;
4094 	if (rt_policy(policy) != (param->sched_priority != 0))
4095 		return -EINVAL;
4096 
4097 	/*
4098 	 * Allow unprivileged RT tasks to decrease priority:
4099 	 */
4100 	if (user && !capable(CAP_SYS_NICE)) {
4101 		if (rt_policy(policy)) {
4102 			unsigned long rlim_rtprio =
4103 					task_rlimit(p, RLIMIT_RTPRIO);
4104 
4105 			/* can't set/change the rt policy */
4106 			if (policy != p->policy && !rlim_rtprio)
4107 				return -EPERM;
4108 
4109 			/* can't increase priority */
4110 			if (param->sched_priority > p->rt_priority &&
4111 			    param->sched_priority > rlim_rtprio)
4112 				return -EPERM;
4113 		}
4114 
4115 		/*
4116 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4117 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4118 		 */
4119 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4120 			if (!can_nice(p, TASK_NICE(p)))
4121 				return -EPERM;
4122 		}
4123 
4124 		/* can't change other user's priorities */
4125 		if (!check_same_owner(p))
4126 			return -EPERM;
4127 
4128 		/* Normal users shall not reset the sched_reset_on_fork flag */
4129 		if (p->sched_reset_on_fork && !reset_on_fork)
4130 			return -EPERM;
4131 	}
4132 
4133 	if (user) {
4134 		retval = security_task_setscheduler(p);
4135 		if (retval)
4136 			return retval;
4137 	}
4138 
4139 	/*
4140 	 * make sure no PI-waiters arrive (or leave) while we are
4141 	 * changing the priority of the task:
4142 	 *
4143 	 * To be able to change p->policy safely, the appropriate
4144 	 * runqueue lock must be held.
4145 	 */
4146 	rq = task_rq_lock(p, &flags);
4147 
4148 	/*
4149 	 * Changing the policy of the stop threads its a very bad idea
4150 	 */
4151 	if (p == rq->stop) {
4152 		task_rq_unlock(rq, p, &flags);
4153 		return -EINVAL;
4154 	}
4155 
4156 	/*
4157 	 * If not changing anything there's no need to proceed further:
4158 	 */
4159 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4160 			param->sched_priority == p->rt_priority))) {
4161 
4162 		__task_rq_unlock(rq);
4163 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4164 		return 0;
4165 	}
4166 
4167 #ifdef CONFIG_RT_GROUP_SCHED
4168 	if (user) {
4169 		/*
4170 		 * Do not allow realtime tasks into groups that have no runtime
4171 		 * assigned.
4172 		 */
4173 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4174 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4175 				!task_group_is_autogroup(task_group(p))) {
4176 			task_rq_unlock(rq, p, &flags);
4177 			return -EPERM;
4178 		}
4179 	}
4180 #endif
4181 
4182 	/* recheck policy now with rq lock held */
4183 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4184 		policy = oldpolicy = -1;
4185 		task_rq_unlock(rq, p, &flags);
4186 		goto recheck;
4187 	}
4188 	on_rq = p->on_rq;
4189 	running = task_current(rq, p);
4190 	if (on_rq)
4191 		dequeue_task(rq, p, 0);
4192 	if (running)
4193 		p->sched_class->put_prev_task(rq, p);
4194 
4195 	p->sched_reset_on_fork = reset_on_fork;
4196 
4197 	oldprio = p->prio;
4198 	prev_class = p->sched_class;
4199 	__setscheduler(rq, p, policy, param->sched_priority);
4200 
4201 	if (running)
4202 		p->sched_class->set_curr_task(rq);
4203 	if (on_rq)
4204 		enqueue_task(rq, p, 0);
4205 
4206 	check_class_changed(rq, p, prev_class, oldprio);
4207 	task_rq_unlock(rq, p, &flags);
4208 
4209 	rt_mutex_adjust_pi(p);
4210 
4211 	return 0;
4212 }
4213 
4214 /**
4215  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4216  * @p: the task in question.
4217  * @policy: new policy.
4218  * @param: structure containing the new RT priority.
4219  *
4220  * NOTE that the task may be already dead.
4221  */
4222 int sched_setscheduler(struct task_struct *p, int policy,
4223 		       const struct sched_param *param)
4224 {
4225 	return __sched_setscheduler(p, policy, param, true);
4226 }
4227 EXPORT_SYMBOL_GPL(sched_setscheduler);
4228 
4229 /**
4230  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4231  * @p: the task in question.
4232  * @policy: new policy.
4233  * @param: structure containing the new RT priority.
4234  *
4235  * Just like sched_setscheduler, only don't bother checking if the
4236  * current context has permission.  For example, this is needed in
4237  * stop_machine(): we create temporary high priority worker threads,
4238  * but our caller might not have that capability.
4239  */
4240 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4241 			       const struct sched_param *param)
4242 {
4243 	return __sched_setscheduler(p, policy, param, false);
4244 }
4245 
4246 static int
4247 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4248 {
4249 	struct sched_param lparam;
4250 	struct task_struct *p;
4251 	int retval;
4252 
4253 	if (!param || pid < 0)
4254 		return -EINVAL;
4255 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4256 		return -EFAULT;
4257 
4258 	rcu_read_lock();
4259 	retval = -ESRCH;
4260 	p = find_process_by_pid(pid);
4261 	if (p != NULL)
4262 		retval = sched_setscheduler(p, policy, &lparam);
4263 	rcu_read_unlock();
4264 
4265 	return retval;
4266 }
4267 
4268 /**
4269  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4270  * @pid: the pid in question.
4271  * @policy: new policy.
4272  * @param: structure containing the new RT priority.
4273  */
4274 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4275 		struct sched_param __user *, param)
4276 {
4277 	/* negative values for policy are not valid */
4278 	if (policy < 0)
4279 		return -EINVAL;
4280 
4281 	return do_sched_setscheduler(pid, policy, param);
4282 }
4283 
4284 /**
4285  * sys_sched_setparam - set/change the RT priority of a thread
4286  * @pid: the pid in question.
4287  * @param: structure containing the new RT priority.
4288  */
4289 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4290 {
4291 	return do_sched_setscheduler(pid, -1, param);
4292 }
4293 
4294 /**
4295  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4296  * @pid: the pid in question.
4297  */
4298 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4299 {
4300 	struct task_struct *p;
4301 	int retval;
4302 
4303 	if (pid < 0)
4304 		return -EINVAL;
4305 
4306 	retval = -ESRCH;
4307 	rcu_read_lock();
4308 	p = find_process_by_pid(pid);
4309 	if (p) {
4310 		retval = security_task_getscheduler(p);
4311 		if (!retval)
4312 			retval = p->policy
4313 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4314 	}
4315 	rcu_read_unlock();
4316 	return retval;
4317 }
4318 
4319 /**
4320  * sys_sched_getparam - get the RT priority of a thread
4321  * @pid: the pid in question.
4322  * @param: structure containing the RT priority.
4323  */
4324 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4325 {
4326 	struct sched_param lp;
4327 	struct task_struct *p;
4328 	int retval;
4329 
4330 	if (!param || pid < 0)
4331 		return -EINVAL;
4332 
4333 	rcu_read_lock();
4334 	p = find_process_by_pid(pid);
4335 	retval = -ESRCH;
4336 	if (!p)
4337 		goto out_unlock;
4338 
4339 	retval = security_task_getscheduler(p);
4340 	if (retval)
4341 		goto out_unlock;
4342 
4343 	lp.sched_priority = p->rt_priority;
4344 	rcu_read_unlock();
4345 
4346 	/*
4347 	 * This one might sleep, we cannot do it with a spinlock held ...
4348 	 */
4349 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4350 
4351 	return retval;
4352 
4353 out_unlock:
4354 	rcu_read_unlock();
4355 	return retval;
4356 }
4357 
4358 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4359 {
4360 	cpumask_var_t cpus_allowed, new_mask;
4361 	struct task_struct *p;
4362 	int retval;
4363 
4364 	get_online_cpus();
4365 	rcu_read_lock();
4366 
4367 	p = find_process_by_pid(pid);
4368 	if (!p) {
4369 		rcu_read_unlock();
4370 		put_online_cpus();
4371 		return -ESRCH;
4372 	}
4373 
4374 	/* Prevent p going away */
4375 	get_task_struct(p);
4376 	rcu_read_unlock();
4377 
4378 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4379 		retval = -ENOMEM;
4380 		goto out_put_task;
4381 	}
4382 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4383 		retval = -ENOMEM;
4384 		goto out_free_cpus_allowed;
4385 	}
4386 	retval = -EPERM;
4387 	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4388 		goto out_unlock;
4389 
4390 	retval = security_task_setscheduler(p);
4391 	if (retval)
4392 		goto out_unlock;
4393 
4394 	cpuset_cpus_allowed(p, cpus_allowed);
4395 	cpumask_and(new_mask, in_mask, cpus_allowed);
4396 again:
4397 	retval = set_cpus_allowed_ptr(p, new_mask);
4398 
4399 	if (!retval) {
4400 		cpuset_cpus_allowed(p, cpus_allowed);
4401 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4402 			/*
4403 			 * We must have raced with a concurrent cpuset
4404 			 * update. Just reset the cpus_allowed to the
4405 			 * cpuset's cpus_allowed
4406 			 */
4407 			cpumask_copy(new_mask, cpus_allowed);
4408 			goto again;
4409 		}
4410 	}
4411 out_unlock:
4412 	free_cpumask_var(new_mask);
4413 out_free_cpus_allowed:
4414 	free_cpumask_var(cpus_allowed);
4415 out_put_task:
4416 	put_task_struct(p);
4417 	put_online_cpus();
4418 	return retval;
4419 }
4420 
4421 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4422 			     struct cpumask *new_mask)
4423 {
4424 	if (len < cpumask_size())
4425 		cpumask_clear(new_mask);
4426 	else if (len > cpumask_size())
4427 		len = cpumask_size();
4428 
4429 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4430 }
4431 
4432 /**
4433  * sys_sched_setaffinity - set the cpu affinity of a process
4434  * @pid: pid of the process
4435  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4436  * @user_mask_ptr: user-space pointer to the new cpu mask
4437  */
4438 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4439 		unsigned long __user *, user_mask_ptr)
4440 {
4441 	cpumask_var_t new_mask;
4442 	int retval;
4443 
4444 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4445 		return -ENOMEM;
4446 
4447 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4448 	if (retval == 0)
4449 		retval = sched_setaffinity(pid, new_mask);
4450 	free_cpumask_var(new_mask);
4451 	return retval;
4452 }
4453 
4454 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4455 {
4456 	struct task_struct *p;
4457 	unsigned long flags;
4458 	int retval;
4459 
4460 	get_online_cpus();
4461 	rcu_read_lock();
4462 
4463 	retval = -ESRCH;
4464 	p = find_process_by_pid(pid);
4465 	if (!p)
4466 		goto out_unlock;
4467 
4468 	retval = security_task_getscheduler(p);
4469 	if (retval)
4470 		goto out_unlock;
4471 
4472 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4473 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4474 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4475 
4476 out_unlock:
4477 	rcu_read_unlock();
4478 	put_online_cpus();
4479 
4480 	return retval;
4481 }
4482 
4483 /**
4484  * sys_sched_getaffinity - get the cpu affinity of a process
4485  * @pid: pid of the process
4486  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4487  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4488  */
4489 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4490 		unsigned long __user *, user_mask_ptr)
4491 {
4492 	int ret;
4493 	cpumask_var_t mask;
4494 
4495 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4496 		return -EINVAL;
4497 	if (len & (sizeof(unsigned long)-1))
4498 		return -EINVAL;
4499 
4500 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4501 		return -ENOMEM;
4502 
4503 	ret = sched_getaffinity(pid, mask);
4504 	if (ret == 0) {
4505 		size_t retlen = min_t(size_t, len, cpumask_size());
4506 
4507 		if (copy_to_user(user_mask_ptr, mask, retlen))
4508 			ret = -EFAULT;
4509 		else
4510 			ret = retlen;
4511 	}
4512 	free_cpumask_var(mask);
4513 
4514 	return ret;
4515 }
4516 
4517 /**
4518  * sys_sched_yield - yield the current processor to other threads.
4519  *
4520  * This function yields the current CPU to other tasks. If there are no
4521  * other threads running on this CPU then this function will return.
4522  */
4523 SYSCALL_DEFINE0(sched_yield)
4524 {
4525 	struct rq *rq = this_rq_lock();
4526 
4527 	schedstat_inc(rq, yld_count);
4528 	current->sched_class->yield_task(rq);
4529 
4530 	/*
4531 	 * Since we are going to call schedule() anyway, there's
4532 	 * no need to preempt or enable interrupts:
4533 	 */
4534 	__release(rq->lock);
4535 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4536 	do_raw_spin_unlock(&rq->lock);
4537 	sched_preempt_enable_no_resched();
4538 
4539 	schedule();
4540 
4541 	return 0;
4542 }
4543 
4544 static inline int should_resched(void)
4545 {
4546 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4547 }
4548 
4549 static void __cond_resched(void)
4550 {
4551 	add_preempt_count(PREEMPT_ACTIVE);
4552 	__schedule();
4553 	sub_preempt_count(PREEMPT_ACTIVE);
4554 }
4555 
4556 int __sched _cond_resched(void)
4557 {
4558 	if (should_resched()) {
4559 		__cond_resched();
4560 		return 1;
4561 	}
4562 	return 0;
4563 }
4564 EXPORT_SYMBOL(_cond_resched);
4565 
4566 /*
4567  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4568  * call schedule, and on return reacquire the lock.
4569  *
4570  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4571  * operations here to prevent schedule() from being called twice (once via
4572  * spin_unlock(), once by hand).
4573  */
4574 int __cond_resched_lock(spinlock_t *lock)
4575 {
4576 	int resched = should_resched();
4577 	int ret = 0;
4578 
4579 	lockdep_assert_held(lock);
4580 
4581 	if (spin_needbreak(lock) || resched) {
4582 		spin_unlock(lock);
4583 		if (resched)
4584 			__cond_resched();
4585 		else
4586 			cpu_relax();
4587 		ret = 1;
4588 		spin_lock(lock);
4589 	}
4590 	return ret;
4591 }
4592 EXPORT_SYMBOL(__cond_resched_lock);
4593 
4594 int __sched __cond_resched_softirq(void)
4595 {
4596 	BUG_ON(!in_softirq());
4597 
4598 	if (should_resched()) {
4599 		local_bh_enable();
4600 		__cond_resched();
4601 		local_bh_disable();
4602 		return 1;
4603 	}
4604 	return 0;
4605 }
4606 EXPORT_SYMBOL(__cond_resched_softirq);
4607 
4608 /**
4609  * yield - yield the current processor to other threads.
4610  *
4611  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4612  *
4613  * The scheduler is at all times free to pick the calling task as the most
4614  * eligible task to run, if removing the yield() call from your code breaks
4615  * it, its already broken.
4616  *
4617  * Typical broken usage is:
4618  *
4619  * while (!event)
4620  * 	yield();
4621  *
4622  * where one assumes that yield() will let 'the other' process run that will
4623  * make event true. If the current task is a SCHED_FIFO task that will never
4624  * happen. Never use yield() as a progress guarantee!!
4625  *
4626  * If you want to use yield() to wait for something, use wait_event().
4627  * If you want to use yield() to be 'nice' for others, use cond_resched().
4628  * If you still want to use yield(), do not!
4629  */
4630 void __sched yield(void)
4631 {
4632 	set_current_state(TASK_RUNNING);
4633 	sys_sched_yield();
4634 }
4635 EXPORT_SYMBOL(yield);
4636 
4637 /**
4638  * yield_to - yield the current processor to another thread in
4639  * your thread group, or accelerate that thread toward the
4640  * processor it's on.
4641  * @p: target task
4642  * @preempt: whether task preemption is allowed or not
4643  *
4644  * It's the caller's job to ensure that the target task struct
4645  * can't go away on us before we can do any checks.
4646  *
4647  * Returns true if we indeed boosted the target task.
4648  */
4649 bool __sched yield_to(struct task_struct *p, bool preempt)
4650 {
4651 	struct task_struct *curr = current;
4652 	struct rq *rq, *p_rq;
4653 	unsigned long flags;
4654 	bool yielded = 0;
4655 
4656 	local_irq_save(flags);
4657 	rq = this_rq();
4658 
4659 again:
4660 	p_rq = task_rq(p);
4661 	double_rq_lock(rq, p_rq);
4662 	while (task_rq(p) != p_rq) {
4663 		double_rq_unlock(rq, p_rq);
4664 		goto again;
4665 	}
4666 
4667 	if (!curr->sched_class->yield_to_task)
4668 		goto out;
4669 
4670 	if (curr->sched_class != p->sched_class)
4671 		goto out;
4672 
4673 	if (task_running(p_rq, p) || p->state)
4674 		goto out;
4675 
4676 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4677 	if (yielded) {
4678 		schedstat_inc(rq, yld_count);
4679 		/*
4680 		 * Make p's CPU reschedule; pick_next_entity takes care of
4681 		 * fairness.
4682 		 */
4683 		if (preempt && rq != p_rq)
4684 			resched_task(p_rq->curr);
4685 	} else {
4686 		/*
4687 		 * We might have set it in task_yield_fair(), but are
4688 		 * not going to schedule(), so don't want to skip
4689 		 * the next update.
4690 		 */
4691 		rq->skip_clock_update = 0;
4692 	}
4693 
4694 out:
4695 	double_rq_unlock(rq, p_rq);
4696 	local_irq_restore(flags);
4697 
4698 	if (yielded)
4699 		schedule();
4700 
4701 	return yielded;
4702 }
4703 EXPORT_SYMBOL_GPL(yield_to);
4704 
4705 /*
4706  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4707  * that process accounting knows that this is a task in IO wait state.
4708  */
4709 void __sched io_schedule(void)
4710 {
4711 	struct rq *rq = raw_rq();
4712 
4713 	delayacct_blkio_start();
4714 	atomic_inc(&rq->nr_iowait);
4715 	blk_flush_plug(current);
4716 	current->in_iowait = 1;
4717 	schedule();
4718 	current->in_iowait = 0;
4719 	atomic_dec(&rq->nr_iowait);
4720 	delayacct_blkio_end();
4721 }
4722 EXPORT_SYMBOL(io_schedule);
4723 
4724 long __sched io_schedule_timeout(long timeout)
4725 {
4726 	struct rq *rq = raw_rq();
4727 	long ret;
4728 
4729 	delayacct_blkio_start();
4730 	atomic_inc(&rq->nr_iowait);
4731 	blk_flush_plug(current);
4732 	current->in_iowait = 1;
4733 	ret = schedule_timeout(timeout);
4734 	current->in_iowait = 0;
4735 	atomic_dec(&rq->nr_iowait);
4736 	delayacct_blkio_end();
4737 	return ret;
4738 }
4739 
4740 /**
4741  * sys_sched_get_priority_max - return maximum RT priority.
4742  * @policy: scheduling class.
4743  *
4744  * this syscall returns the maximum rt_priority that can be used
4745  * by a given scheduling class.
4746  */
4747 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4748 {
4749 	int ret = -EINVAL;
4750 
4751 	switch (policy) {
4752 	case SCHED_FIFO:
4753 	case SCHED_RR:
4754 		ret = MAX_USER_RT_PRIO-1;
4755 		break;
4756 	case SCHED_NORMAL:
4757 	case SCHED_BATCH:
4758 	case SCHED_IDLE:
4759 		ret = 0;
4760 		break;
4761 	}
4762 	return ret;
4763 }
4764 
4765 /**
4766  * sys_sched_get_priority_min - return minimum RT priority.
4767  * @policy: scheduling class.
4768  *
4769  * this syscall returns the minimum rt_priority that can be used
4770  * by a given scheduling class.
4771  */
4772 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4773 {
4774 	int ret = -EINVAL;
4775 
4776 	switch (policy) {
4777 	case SCHED_FIFO:
4778 	case SCHED_RR:
4779 		ret = 1;
4780 		break;
4781 	case SCHED_NORMAL:
4782 	case SCHED_BATCH:
4783 	case SCHED_IDLE:
4784 		ret = 0;
4785 	}
4786 	return ret;
4787 }
4788 
4789 /**
4790  * sys_sched_rr_get_interval - return the default timeslice of a process.
4791  * @pid: pid of the process.
4792  * @interval: userspace pointer to the timeslice value.
4793  *
4794  * this syscall writes the default timeslice value of a given process
4795  * into the user-space timespec buffer. A value of '0' means infinity.
4796  */
4797 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4798 		struct timespec __user *, interval)
4799 {
4800 	struct task_struct *p;
4801 	unsigned int time_slice;
4802 	unsigned long flags;
4803 	struct rq *rq;
4804 	int retval;
4805 	struct timespec t;
4806 
4807 	if (pid < 0)
4808 		return -EINVAL;
4809 
4810 	retval = -ESRCH;
4811 	rcu_read_lock();
4812 	p = find_process_by_pid(pid);
4813 	if (!p)
4814 		goto out_unlock;
4815 
4816 	retval = security_task_getscheduler(p);
4817 	if (retval)
4818 		goto out_unlock;
4819 
4820 	rq = task_rq_lock(p, &flags);
4821 	time_slice = p->sched_class->get_rr_interval(rq, p);
4822 	task_rq_unlock(rq, p, &flags);
4823 
4824 	rcu_read_unlock();
4825 	jiffies_to_timespec(time_slice, &t);
4826 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4827 	return retval;
4828 
4829 out_unlock:
4830 	rcu_read_unlock();
4831 	return retval;
4832 }
4833 
4834 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4835 
4836 void sched_show_task(struct task_struct *p)
4837 {
4838 	unsigned long free = 0;
4839 	unsigned state;
4840 
4841 	state = p->state ? __ffs(p->state) + 1 : 0;
4842 	printk(KERN_INFO "%-15.15s %c", p->comm,
4843 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4844 #if BITS_PER_LONG == 32
4845 	if (state == TASK_RUNNING)
4846 		printk(KERN_CONT " running  ");
4847 	else
4848 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4849 #else
4850 	if (state == TASK_RUNNING)
4851 		printk(KERN_CONT "  running task    ");
4852 	else
4853 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4854 #endif
4855 #ifdef CONFIG_DEBUG_STACK_USAGE
4856 	free = stack_not_used(p);
4857 #endif
4858 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4859 		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4860 		(unsigned long)task_thread_info(p)->flags);
4861 
4862 	show_stack(p, NULL);
4863 }
4864 
4865 void show_state_filter(unsigned long state_filter)
4866 {
4867 	struct task_struct *g, *p;
4868 
4869 #if BITS_PER_LONG == 32
4870 	printk(KERN_INFO
4871 		"  task                PC stack   pid father\n");
4872 #else
4873 	printk(KERN_INFO
4874 		"  task                        PC stack   pid father\n");
4875 #endif
4876 	rcu_read_lock();
4877 	do_each_thread(g, p) {
4878 		/*
4879 		 * reset the NMI-timeout, listing all files on a slow
4880 		 * console might take a lot of time:
4881 		 */
4882 		touch_nmi_watchdog();
4883 		if (!state_filter || (p->state & state_filter))
4884 			sched_show_task(p);
4885 	} while_each_thread(g, p);
4886 
4887 	touch_all_softlockup_watchdogs();
4888 
4889 #ifdef CONFIG_SCHED_DEBUG
4890 	sysrq_sched_debug_show();
4891 #endif
4892 	rcu_read_unlock();
4893 	/*
4894 	 * Only show locks if all tasks are dumped:
4895 	 */
4896 	if (!state_filter)
4897 		debug_show_all_locks();
4898 }
4899 
4900 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4901 {
4902 	idle->sched_class = &idle_sched_class;
4903 }
4904 
4905 /**
4906  * init_idle - set up an idle thread for a given CPU
4907  * @idle: task in question
4908  * @cpu: cpu the idle task belongs to
4909  *
4910  * NOTE: this function does not set the idle thread's NEED_RESCHED
4911  * flag, to make booting more robust.
4912  */
4913 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4914 {
4915 	struct rq *rq = cpu_rq(cpu);
4916 	unsigned long flags;
4917 
4918 	raw_spin_lock_irqsave(&rq->lock, flags);
4919 
4920 	__sched_fork(idle);
4921 	idle->state = TASK_RUNNING;
4922 	idle->se.exec_start = sched_clock();
4923 
4924 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4925 	/*
4926 	 * We're having a chicken and egg problem, even though we are
4927 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4928 	 * lockdep check in task_group() will fail.
4929 	 *
4930 	 * Similar case to sched_fork(). / Alternatively we could
4931 	 * use task_rq_lock() here and obtain the other rq->lock.
4932 	 *
4933 	 * Silence PROVE_RCU
4934 	 */
4935 	rcu_read_lock();
4936 	__set_task_cpu(idle, cpu);
4937 	rcu_read_unlock();
4938 
4939 	rq->curr = rq->idle = idle;
4940 #if defined(CONFIG_SMP)
4941 	idle->on_cpu = 1;
4942 #endif
4943 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4944 
4945 	/* Set the preempt count _outside_ the spinlocks! */
4946 	task_thread_info(idle)->preempt_count = 0;
4947 
4948 	/*
4949 	 * The idle tasks have their own, simple scheduling class:
4950 	 */
4951 	idle->sched_class = &idle_sched_class;
4952 	ftrace_graph_init_idle_task(idle, cpu);
4953 #if defined(CONFIG_SMP)
4954 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4955 #endif
4956 }
4957 
4958 #ifdef CONFIG_SMP
4959 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4960 {
4961 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4962 		p->sched_class->set_cpus_allowed(p, new_mask);
4963 
4964 	cpumask_copy(&p->cpus_allowed, new_mask);
4965 	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4966 }
4967 
4968 /*
4969  * This is how migration works:
4970  *
4971  * 1) we invoke migration_cpu_stop() on the target CPU using
4972  *    stop_one_cpu().
4973  * 2) stopper starts to run (implicitly forcing the migrated thread
4974  *    off the CPU)
4975  * 3) it checks whether the migrated task is still in the wrong runqueue.
4976  * 4) if it's in the wrong runqueue then the migration thread removes
4977  *    it and puts it into the right queue.
4978  * 5) stopper completes and stop_one_cpu() returns and the migration
4979  *    is done.
4980  */
4981 
4982 /*
4983  * Change a given task's CPU affinity. Migrate the thread to a
4984  * proper CPU and schedule it away if the CPU it's executing on
4985  * is removed from the allowed bitmask.
4986  *
4987  * NOTE: the caller must have a valid reference to the task, the
4988  * task must not exit() & deallocate itself prematurely. The
4989  * call is not atomic; no spinlocks may be held.
4990  */
4991 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4992 {
4993 	unsigned long flags;
4994 	struct rq *rq;
4995 	unsigned int dest_cpu;
4996 	int ret = 0;
4997 
4998 	rq = task_rq_lock(p, &flags);
4999 
5000 	if (cpumask_equal(&p->cpus_allowed, new_mask))
5001 		goto out;
5002 
5003 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5004 		ret = -EINVAL;
5005 		goto out;
5006 	}
5007 
5008 	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5009 		ret = -EINVAL;
5010 		goto out;
5011 	}
5012 
5013 	do_set_cpus_allowed(p, new_mask);
5014 
5015 	/* Can the task run on the task's current CPU? If so, we're done */
5016 	if (cpumask_test_cpu(task_cpu(p), new_mask))
5017 		goto out;
5018 
5019 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5020 	if (p->on_rq) {
5021 		struct migration_arg arg = { p, dest_cpu };
5022 		/* Need help from migration thread: drop lock and wait. */
5023 		task_rq_unlock(rq, p, &flags);
5024 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5025 		tlb_migrate_finish(p->mm);
5026 		return 0;
5027 	}
5028 out:
5029 	task_rq_unlock(rq, p, &flags);
5030 
5031 	return ret;
5032 }
5033 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5034 
5035 /*
5036  * Move (not current) task off this cpu, onto dest cpu. We're doing
5037  * this because either it can't run here any more (set_cpus_allowed()
5038  * away from this CPU, or CPU going down), or because we're
5039  * attempting to rebalance this task on exec (sched_exec).
5040  *
5041  * So we race with normal scheduler movements, but that's OK, as long
5042  * as the task is no longer on this CPU.
5043  *
5044  * Returns non-zero if task was successfully migrated.
5045  */
5046 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5047 {
5048 	struct rq *rq_dest, *rq_src;
5049 	int ret = 0;
5050 
5051 	if (unlikely(!cpu_active(dest_cpu)))
5052 		return ret;
5053 
5054 	rq_src = cpu_rq(src_cpu);
5055 	rq_dest = cpu_rq(dest_cpu);
5056 
5057 	raw_spin_lock(&p->pi_lock);
5058 	double_rq_lock(rq_src, rq_dest);
5059 	/* Already moved. */
5060 	if (task_cpu(p) != src_cpu)
5061 		goto done;
5062 	/* Affinity changed (again). */
5063 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5064 		goto fail;
5065 
5066 	/*
5067 	 * If we're not on a rq, the next wake-up will ensure we're
5068 	 * placed properly.
5069 	 */
5070 	if (p->on_rq) {
5071 		dequeue_task(rq_src, p, 0);
5072 		set_task_cpu(p, dest_cpu);
5073 		enqueue_task(rq_dest, p, 0);
5074 		check_preempt_curr(rq_dest, p, 0);
5075 	}
5076 done:
5077 	ret = 1;
5078 fail:
5079 	double_rq_unlock(rq_src, rq_dest);
5080 	raw_spin_unlock(&p->pi_lock);
5081 	return ret;
5082 }
5083 
5084 /*
5085  * migration_cpu_stop - this will be executed by a highprio stopper thread
5086  * and performs thread migration by bumping thread off CPU then
5087  * 'pushing' onto another runqueue.
5088  */
5089 static int migration_cpu_stop(void *data)
5090 {
5091 	struct migration_arg *arg = data;
5092 
5093 	/*
5094 	 * The original target cpu might have gone down and we might
5095 	 * be on another cpu but it doesn't matter.
5096 	 */
5097 	local_irq_disable();
5098 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5099 	local_irq_enable();
5100 	return 0;
5101 }
5102 
5103 #ifdef CONFIG_HOTPLUG_CPU
5104 
5105 /*
5106  * Ensures that the idle task is using init_mm right before its cpu goes
5107  * offline.
5108  */
5109 void idle_task_exit(void)
5110 {
5111 	struct mm_struct *mm = current->active_mm;
5112 
5113 	BUG_ON(cpu_online(smp_processor_id()));
5114 
5115 	if (mm != &init_mm)
5116 		switch_mm(mm, &init_mm, current);
5117 	mmdrop(mm);
5118 }
5119 
5120 /*
5121  * While a dead CPU has no uninterruptible tasks queued at this point,
5122  * it might still have a nonzero ->nr_uninterruptible counter, because
5123  * for performance reasons the counter is not stricly tracking tasks to
5124  * their home CPUs. So we just add the counter to another CPU's counter,
5125  * to keep the global sum constant after CPU-down:
5126  */
5127 static void migrate_nr_uninterruptible(struct rq *rq_src)
5128 {
5129 	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5130 
5131 	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5132 	rq_src->nr_uninterruptible = 0;
5133 }
5134 
5135 /*
5136  * remove the tasks which were accounted by rq from calc_load_tasks.
5137  */
5138 static void calc_global_load_remove(struct rq *rq)
5139 {
5140 	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5141 	rq->calc_load_active = 0;
5142 }
5143 
5144 /*
5145  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5146  * try_to_wake_up()->select_task_rq().
5147  *
5148  * Called with rq->lock held even though we'er in stop_machine() and
5149  * there's no concurrency possible, we hold the required locks anyway
5150  * because of lock validation efforts.
5151  */
5152 static void migrate_tasks(unsigned int dead_cpu)
5153 {
5154 	struct rq *rq = cpu_rq(dead_cpu);
5155 	struct task_struct *next, *stop = rq->stop;
5156 	int dest_cpu;
5157 
5158 	/*
5159 	 * Fudge the rq selection such that the below task selection loop
5160 	 * doesn't get stuck on the currently eligible stop task.
5161 	 *
5162 	 * We're currently inside stop_machine() and the rq is either stuck
5163 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5164 	 * either way we should never end up calling schedule() until we're
5165 	 * done here.
5166 	 */
5167 	rq->stop = NULL;
5168 
5169 	/* Ensure any throttled groups are reachable by pick_next_task */
5170 	unthrottle_offline_cfs_rqs(rq);
5171 
5172 	for ( ; ; ) {
5173 		/*
5174 		 * There's this thread running, bail when that's the only
5175 		 * remaining thread.
5176 		 */
5177 		if (rq->nr_running == 1)
5178 			break;
5179 
5180 		next = pick_next_task(rq);
5181 		BUG_ON(!next);
5182 		next->sched_class->put_prev_task(rq, next);
5183 
5184 		/* Find suitable destination for @next, with force if needed. */
5185 		dest_cpu = select_fallback_rq(dead_cpu, next);
5186 		raw_spin_unlock(&rq->lock);
5187 
5188 		__migrate_task(next, dead_cpu, dest_cpu);
5189 
5190 		raw_spin_lock(&rq->lock);
5191 	}
5192 
5193 	rq->stop = stop;
5194 }
5195 
5196 #endif /* CONFIG_HOTPLUG_CPU */
5197 
5198 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5199 
5200 static struct ctl_table sd_ctl_dir[] = {
5201 	{
5202 		.procname	= "sched_domain",
5203 		.mode		= 0555,
5204 	},
5205 	{}
5206 };
5207 
5208 static struct ctl_table sd_ctl_root[] = {
5209 	{
5210 		.procname	= "kernel",
5211 		.mode		= 0555,
5212 		.child		= sd_ctl_dir,
5213 	},
5214 	{}
5215 };
5216 
5217 static struct ctl_table *sd_alloc_ctl_entry(int n)
5218 {
5219 	struct ctl_table *entry =
5220 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5221 
5222 	return entry;
5223 }
5224 
5225 static void sd_free_ctl_entry(struct ctl_table **tablep)
5226 {
5227 	struct ctl_table *entry;
5228 
5229 	/*
5230 	 * In the intermediate directories, both the child directory and
5231 	 * procname are dynamically allocated and could fail but the mode
5232 	 * will always be set. In the lowest directory the names are
5233 	 * static strings and all have proc handlers.
5234 	 */
5235 	for (entry = *tablep; entry->mode; entry++) {
5236 		if (entry->child)
5237 			sd_free_ctl_entry(&entry->child);
5238 		if (entry->proc_handler == NULL)
5239 			kfree(entry->procname);
5240 	}
5241 
5242 	kfree(*tablep);
5243 	*tablep = NULL;
5244 }
5245 
5246 static void
5247 set_table_entry(struct ctl_table *entry,
5248 		const char *procname, void *data, int maxlen,
5249 		umode_t mode, proc_handler *proc_handler)
5250 {
5251 	entry->procname = procname;
5252 	entry->data = data;
5253 	entry->maxlen = maxlen;
5254 	entry->mode = mode;
5255 	entry->proc_handler = proc_handler;
5256 }
5257 
5258 static struct ctl_table *
5259 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5260 {
5261 	struct ctl_table *table = sd_alloc_ctl_entry(13);
5262 
5263 	if (table == NULL)
5264 		return NULL;
5265 
5266 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5267 		sizeof(long), 0644, proc_doulongvec_minmax);
5268 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5269 		sizeof(long), 0644, proc_doulongvec_minmax);
5270 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5271 		sizeof(int), 0644, proc_dointvec_minmax);
5272 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5273 		sizeof(int), 0644, proc_dointvec_minmax);
5274 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5275 		sizeof(int), 0644, proc_dointvec_minmax);
5276 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5277 		sizeof(int), 0644, proc_dointvec_minmax);
5278 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5279 		sizeof(int), 0644, proc_dointvec_minmax);
5280 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5281 		sizeof(int), 0644, proc_dointvec_minmax);
5282 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5283 		sizeof(int), 0644, proc_dointvec_minmax);
5284 	set_table_entry(&table[9], "cache_nice_tries",
5285 		&sd->cache_nice_tries,
5286 		sizeof(int), 0644, proc_dointvec_minmax);
5287 	set_table_entry(&table[10], "flags", &sd->flags,
5288 		sizeof(int), 0644, proc_dointvec_minmax);
5289 	set_table_entry(&table[11], "name", sd->name,
5290 		CORENAME_MAX_SIZE, 0444, proc_dostring);
5291 	/* &table[12] is terminator */
5292 
5293 	return table;
5294 }
5295 
5296 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5297 {
5298 	struct ctl_table *entry, *table;
5299 	struct sched_domain *sd;
5300 	int domain_num = 0, i;
5301 	char buf[32];
5302 
5303 	for_each_domain(cpu, sd)
5304 		domain_num++;
5305 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5306 	if (table == NULL)
5307 		return NULL;
5308 
5309 	i = 0;
5310 	for_each_domain(cpu, sd) {
5311 		snprintf(buf, 32, "domain%d", i);
5312 		entry->procname = kstrdup(buf, GFP_KERNEL);
5313 		entry->mode = 0555;
5314 		entry->child = sd_alloc_ctl_domain_table(sd);
5315 		entry++;
5316 		i++;
5317 	}
5318 	return table;
5319 }
5320 
5321 static struct ctl_table_header *sd_sysctl_header;
5322 static void register_sched_domain_sysctl(void)
5323 {
5324 	int i, cpu_num = num_possible_cpus();
5325 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5326 	char buf[32];
5327 
5328 	WARN_ON(sd_ctl_dir[0].child);
5329 	sd_ctl_dir[0].child = entry;
5330 
5331 	if (entry == NULL)
5332 		return;
5333 
5334 	for_each_possible_cpu(i) {
5335 		snprintf(buf, 32, "cpu%d", i);
5336 		entry->procname = kstrdup(buf, GFP_KERNEL);
5337 		entry->mode = 0555;
5338 		entry->child = sd_alloc_ctl_cpu_table(i);
5339 		entry++;
5340 	}
5341 
5342 	WARN_ON(sd_sysctl_header);
5343 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5344 }
5345 
5346 /* may be called multiple times per register */
5347 static void unregister_sched_domain_sysctl(void)
5348 {
5349 	if (sd_sysctl_header)
5350 		unregister_sysctl_table(sd_sysctl_header);
5351 	sd_sysctl_header = NULL;
5352 	if (sd_ctl_dir[0].child)
5353 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5354 }
5355 #else
5356 static void register_sched_domain_sysctl(void)
5357 {
5358 }
5359 static void unregister_sched_domain_sysctl(void)
5360 {
5361 }
5362 #endif
5363 
5364 static void set_rq_online(struct rq *rq)
5365 {
5366 	if (!rq->online) {
5367 		const struct sched_class *class;
5368 
5369 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5370 		rq->online = 1;
5371 
5372 		for_each_class(class) {
5373 			if (class->rq_online)
5374 				class->rq_online(rq);
5375 		}
5376 	}
5377 }
5378 
5379 static void set_rq_offline(struct rq *rq)
5380 {
5381 	if (rq->online) {
5382 		const struct sched_class *class;
5383 
5384 		for_each_class(class) {
5385 			if (class->rq_offline)
5386 				class->rq_offline(rq);
5387 		}
5388 
5389 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5390 		rq->online = 0;
5391 	}
5392 }
5393 
5394 /*
5395  * migration_call - callback that gets triggered when a CPU is added.
5396  * Here we can start up the necessary migration thread for the new CPU.
5397  */
5398 static int __cpuinit
5399 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5400 {
5401 	int cpu = (long)hcpu;
5402 	unsigned long flags;
5403 	struct rq *rq = cpu_rq(cpu);
5404 
5405 	switch (action & ~CPU_TASKS_FROZEN) {
5406 
5407 	case CPU_UP_PREPARE:
5408 		rq->calc_load_update = calc_load_update;
5409 		break;
5410 
5411 	case CPU_ONLINE:
5412 		/* Update our root-domain */
5413 		raw_spin_lock_irqsave(&rq->lock, flags);
5414 		if (rq->rd) {
5415 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5416 
5417 			set_rq_online(rq);
5418 		}
5419 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5420 		break;
5421 
5422 #ifdef CONFIG_HOTPLUG_CPU
5423 	case CPU_DYING:
5424 		sched_ttwu_pending();
5425 		/* Update our root-domain */
5426 		raw_spin_lock_irqsave(&rq->lock, flags);
5427 		if (rq->rd) {
5428 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5429 			set_rq_offline(rq);
5430 		}
5431 		migrate_tasks(cpu);
5432 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5433 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5434 
5435 		migrate_nr_uninterruptible(rq);
5436 		calc_global_load_remove(rq);
5437 		break;
5438 #endif
5439 	}
5440 
5441 	update_max_interval();
5442 
5443 	return NOTIFY_OK;
5444 }
5445 
5446 /*
5447  * Register at high priority so that task migration (migrate_all_tasks)
5448  * happens before everything else.  This has to be lower priority than
5449  * the notifier in the perf_event subsystem, though.
5450  */
5451 static struct notifier_block __cpuinitdata migration_notifier = {
5452 	.notifier_call = migration_call,
5453 	.priority = CPU_PRI_MIGRATION,
5454 };
5455 
5456 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5457 				      unsigned long action, void *hcpu)
5458 {
5459 	switch (action & ~CPU_TASKS_FROZEN) {
5460 	case CPU_STARTING:
5461 	case CPU_DOWN_FAILED:
5462 		set_cpu_active((long)hcpu, true);
5463 		return NOTIFY_OK;
5464 	default:
5465 		return NOTIFY_DONE;
5466 	}
5467 }
5468 
5469 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5470 					unsigned long action, void *hcpu)
5471 {
5472 	switch (action & ~CPU_TASKS_FROZEN) {
5473 	case CPU_DOWN_PREPARE:
5474 		set_cpu_active((long)hcpu, false);
5475 		return NOTIFY_OK;
5476 	default:
5477 		return NOTIFY_DONE;
5478 	}
5479 }
5480 
5481 static int __init migration_init(void)
5482 {
5483 	void *cpu = (void *)(long)smp_processor_id();
5484 	int err;
5485 
5486 	/* Initialize migration for the boot CPU */
5487 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5488 	BUG_ON(err == NOTIFY_BAD);
5489 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5490 	register_cpu_notifier(&migration_notifier);
5491 
5492 	/* Register cpu active notifiers */
5493 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5494 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5495 
5496 	return 0;
5497 }
5498 early_initcall(migration_init);
5499 #endif
5500 
5501 #ifdef CONFIG_SMP
5502 
5503 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5504 
5505 #ifdef CONFIG_SCHED_DEBUG
5506 
5507 static __read_mostly int sched_domain_debug_enabled;
5508 
5509 static int __init sched_domain_debug_setup(char *str)
5510 {
5511 	sched_domain_debug_enabled = 1;
5512 
5513 	return 0;
5514 }
5515 early_param("sched_debug", sched_domain_debug_setup);
5516 
5517 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5518 				  struct cpumask *groupmask)
5519 {
5520 	struct sched_group *group = sd->groups;
5521 	char str[256];
5522 
5523 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5524 	cpumask_clear(groupmask);
5525 
5526 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5527 
5528 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5529 		printk("does not load-balance\n");
5530 		if (sd->parent)
5531 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5532 					" has parent");
5533 		return -1;
5534 	}
5535 
5536 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5537 
5538 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5539 		printk(KERN_ERR "ERROR: domain->span does not contain "
5540 				"CPU%d\n", cpu);
5541 	}
5542 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5543 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5544 				" CPU%d\n", cpu);
5545 	}
5546 
5547 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5548 	do {
5549 		if (!group) {
5550 			printk("\n");
5551 			printk(KERN_ERR "ERROR: group is NULL\n");
5552 			break;
5553 		}
5554 
5555 		if (!group->sgp->power) {
5556 			printk(KERN_CONT "\n");
5557 			printk(KERN_ERR "ERROR: domain->cpu_power not "
5558 					"set\n");
5559 			break;
5560 		}
5561 
5562 		if (!cpumask_weight(sched_group_cpus(group))) {
5563 			printk(KERN_CONT "\n");
5564 			printk(KERN_ERR "ERROR: empty group\n");
5565 			break;
5566 		}
5567 
5568 		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5569 			printk(KERN_CONT "\n");
5570 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5571 			break;
5572 		}
5573 
5574 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5575 
5576 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5577 
5578 		printk(KERN_CONT " %s", str);
5579 		if (group->sgp->power != SCHED_POWER_SCALE) {
5580 			printk(KERN_CONT " (cpu_power = %d)",
5581 				group->sgp->power);
5582 		}
5583 
5584 		group = group->next;
5585 	} while (group != sd->groups);
5586 	printk(KERN_CONT "\n");
5587 
5588 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5589 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5590 
5591 	if (sd->parent &&
5592 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5593 		printk(KERN_ERR "ERROR: parent span is not a superset "
5594 			"of domain->span\n");
5595 	return 0;
5596 }
5597 
5598 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5599 {
5600 	int level = 0;
5601 
5602 	if (!sched_domain_debug_enabled)
5603 		return;
5604 
5605 	if (!sd) {
5606 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5607 		return;
5608 	}
5609 
5610 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5611 
5612 	for (;;) {
5613 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5614 			break;
5615 		level++;
5616 		sd = sd->parent;
5617 		if (!sd)
5618 			break;
5619 	}
5620 }
5621 #else /* !CONFIG_SCHED_DEBUG */
5622 # define sched_domain_debug(sd, cpu) do { } while (0)
5623 #endif /* CONFIG_SCHED_DEBUG */
5624 
5625 static int sd_degenerate(struct sched_domain *sd)
5626 {
5627 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5628 		return 1;
5629 
5630 	/* Following flags need at least 2 groups */
5631 	if (sd->flags & (SD_LOAD_BALANCE |
5632 			 SD_BALANCE_NEWIDLE |
5633 			 SD_BALANCE_FORK |
5634 			 SD_BALANCE_EXEC |
5635 			 SD_SHARE_CPUPOWER |
5636 			 SD_SHARE_PKG_RESOURCES)) {
5637 		if (sd->groups != sd->groups->next)
5638 			return 0;
5639 	}
5640 
5641 	/* Following flags don't use groups */
5642 	if (sd->flags & (SD_WAKE_AFFINE))
5643 		return 0;
5644 
5645 	return 1;
5646 }
5647 
5648 static int
5649 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5650 {
5651 	unsigned long cflags = sd->flags, pflags = parent->flags;
5652 
5653 	if (sd_degenerate(parent))
5654 		return 1;
5655 
5656 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5657 		return 0;
5658 
5659 	/* Flags needing groups don't count if only 1 group in parent */
5660 	if (parent->groups == parent->groups->next) {
5661 		pflags &= ~(SD_LOAD_BALANCE |
5662 				SD_BALANCE_NEWIDLE |
5663 				SD_BALANCE_FORK |
5664 				SD_BALANCE_EXEC |
5665 				SD_SHARE_CPUPOWER |
5666 				SD_SHARE_PKG_RESOURCES);
5667 		if (nr_node_ids == 1)
5668 			pflags &= ~SD_SERIALIZE;
5669 	}
5670 	if (~cflags & pflags)
5671 		return 0;
5672 
5673 	return 1;
5674 }
5675 
5676 static void free_rootdomain(struct rcu_head *rcu)
5677 {
5678 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5679 
5680 	cpupri_cleanup(&rd->cpupri);
5681 	free_cpumask_var(rd->rto_mask);
5682 	free_cpumask_var(rd->online);
5683 	free_cpumask_var(rd->span);
5684 	kfree(rd);
5685 }
5686 
5687 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5688 {
5689 	struct root_domain *old_rd = NULL;
5690 	unsigned long flags;
5691 
5692 	raw_spin_lock_irqsave(&rq->lock, flags);
5693 
5694 	if (rq->rd) {
5695 		old_rd = rq->rd;
5696 
5697 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5698 			set_rq_offline(rq);
5699 
5700 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5701 
5702 		/*
5703 		 * If we dont want to free the old_rt yet then
5704 		 * set old_rd to NULL to skip the freeing later
5705 		 * in this function:
5706 		 */
5707 		if (!atomic_dec_and_test(&old_rd->refcount))
5708 			old_rd = NULL;
5709 	}
5710 
5711 	atomic_inc(&rd->refcount);
5712 	rq->rd = rd;
5713 
5714 	cpumask_set_cpu(rq->cpu, rd->span);
5715 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5716 		set_rq_online(rq);
5717 
5718 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5719 
5720 	if (old_rd)
5721 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5722 }
5723 
5724 static int init_rootdomain(struct root_domain *rd)
5725 {
5726 	memset(rd, 0, sizeof(*rd));
5727 
5728 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5729 		goto out;
5730 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5731 		goto free_span;
5732 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5733 		goto free_online;
5734 
5735 	if (cpupri_init(&rd->cpupri) != 0)
5736 		goto free_rto_mask;
5737 	return 0;
5738 
5739 free_rto_mask:
5740 	free_cpumask_var(rd->rto_mask);
5741 free_online:
5742 	free_cpumask_var(rd->online);
5743 free_span:
5744 	free_cpumask_var(rd->span);
5745 out:
5746 	return -ENOMEM;
5747 }
5748 
5749 /*
5750  * By default the system creates a single root-domain with all cpus as
5751  * members (mimicking the global state we have today).
5752  */
5753 struct root_domain def_root_domain;
5754 
5755 static void init_defrootdomain(void)
5756 {
5757 	init_rootdomain(&def_root_domain);
5758 
5759 	atomic_set(&def_root_domain.refcount, 1);
5760 }
5761 
5762 static struct root_domain *alloc_rootdomain(void)
5763 {
5764 	struct root_domain *rd;
5765 
5766 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5767 	if (!rd)
5768 		return NULL;
5769 
5770 	if (init_rootdomain(rd) != 0) {
5771 		kfree(rd);
5772 		return NULL;
5773 	}
5774 
5775 	return rd;
5776 }
5777 
5778 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5779 {
5780 	struct sched_group *tmp, *first;
5781 
5782 	if (!sg)
5783 		return;
5784 
5785 	first = sg;
5786 	do {
5787 		tmp = sg->next;
5788 
5789 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5790 			kfree(sg->sgp);
5791 
5792 		kfree(sg);
5793 		sg = tmp;
5794 	} while (sg != first);
5795 }
5796 
5797 static void free_sched_domain(struct rcu_head *rcu)
5798 {
5799 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5800 
5801 	/*
5802 	 * If its an overlapping domain it has private groups, iterate and
5803 	 * nuke them all.
5804 	 */
5805 	if (sd->flags & SD_OVERLAP) {
5806 		free_sched_groups(sd->groups, 1);
5807 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5808 		kfree(sd->groups->sgp);
5809 		kfree(sd->groups);
5810 	}
5811 	kfree(sd);
5812 }
5813 
5814 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5815 {
5816 	call_rcu(&sd->rcu, free_sched_domain);
5817 }
5818 
5819 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5820 {
5821 	for (; sd; sd = sd->parent)
5822 		destroy_sched_domain(sd, cpu);
5823 }
5824 
5825 /*
5826  * Keep a special pointer to the highest sched_domain that has
5827  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5828  * allows us to avoid some pointer chasing select_idle_sibling().
5829  *
5830  * Also keep a unique ID per domain (we use the first cpu number in
5831  * the cpumask of the domain), this allows us to quickly tell if
5832  * two cpus are in the same cache domain, see cpus_share_cache().
5833  */
5834 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5835 DEFINE_PER_CPU(int, sd_llc_id);
5836 
5837 static void update_top_cache_domain(int cpu)
5838 {
5839 	struct sched_domain *sd;
5840 	int id = cpu;
5841 
5842 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5843 	if (sd)
5844 		id = cpumask_first(sched_domain_span(sd));
5845 
5846 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5847 	per_cpu(sd_llc_id, cpu) = id;
5848 }
5849 
5850 /*
5851  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5852  * hold the hotplug lock.
5853  */
5854 static void
5855 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5856 {
5857 	struct rq *rq = cpu_rq(cpu);
5858 	struct sched_domain *tmp;
5859 
5860 	/* Remove the sched domains which do not contribute to scheduling. */
5861 	for (tmp = sd; tmp; ) {
5862 		struct sched_domain *parent = tmp->parent;
5863 		if (!parent)
5864 			break;
5865 
5866 		if (sd_parent_degenerate(tmp, parent)) {
5867 			tmp->parent = parent->parent;
5868 			if (parent->parent)
5869 				parent->parent->child = tmp;
5870 			destroy_sched_domain(parent, cpu);
5871 		} else
5872 			tmp = tmp->parent;
5873 	}
5874 
5875 	if (sd && sd_degenerate(sd)) {
5876 		tmp = sd;
5877 		sd = sd->parent;
5878 		destroy_sched_domain(tmp, cpu);
5879 		if (sd)
5880 			sd->child = NULL;
5881 	}
5882 
5883 	sched_domain_debug(sd, cpu);
5884 
5885 	rq_attach_root(rq, rd);
5886 	tmp = rq->sd;
5887 	rcu_assign_pointer(rq->sd, sd);
5888 	destroy_sched_domains(tmp, cpu);
5889 
5890 	update_top_cache_domain(cpu);
5891 }
5892 
5893 /* cpus with isolated domains */
5894 static cpumask_var_t cpu_isolated_map;
5895 
5896 /* Setup the mask of cpus configured for isolated domains */
5897 static int __init isolated_cpu_setup(char *str)
5898 {
5899 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5900 	cpulist_parse(str, cpu_isolated_map);
5901 	return 1;
5902 }
5903 
5904 __setup("isolcpus=", isolated_cpu_setup);
5905 
5906 #ifdef CONFIG_NUMA
5907 
5908 /**
5909  * find_next_best_node - find the next node to include in a sched_domain
5910  * @node: node whose sched_domain we're building
5911  * @used_nodes: nodes already in the sched_domain
5912  *
5913  * Find the next node to include in a given scheduling domain. Simply
5914  * finds the closest node not already in the @used_nodes map.
5915  *
5916  * Should use nodemask_t.
5917  */
5918 static int find_next_best_node(int node, nodemask_t *used_nodes)
5919 {
5920 	int i, n, val, min_val, best_node = -1;
5921 
5922 	min_val = INT_MAX;
5923 
5924 	for (i = 0; i < nr_node_ids; i++) {
5925 		/* Start at @node */
5926 		n = (node + i) % nr_node_ids;
5927 
5928 		if (!nr_cpus_node(n))
5929 			continue;
5930 
5931 		/* Skip already used nodes */
5932 		if (node_isset(n, *used_nodes))
5933 			continue;
5934 
5935 		/* Simple min distance search */
5936 		val = node_distance(node, n);
5937 
5938 		if (val < min_val) {
5939 			min_val = val;
5940 			best_node = n;
5941 		}
5942 	}
5943 
5944 	if (best_node != -1)
5945 		node_set(best_node, *used_nodes);
5946 	return best_node;
5947 }
5948 
5949 /**
5950  * sched_domain_node_span - get a cpumask for a node's sched_domain
5951  * @node: node whose cpumask we're constructing
5952  * @span: resulting cpumask
5953  *
5954  * Given a node, construct a good cpumask for its sched_domain to span. It
5955  * should be one that prevents unnecessary balancing, but also spreads tasks
5956  * out optimally.
5957  */
5958 static void sched_domain_node_span(int node, struct cpumask *span)
5959 {
5960 	nodemask_t used_nodes;
5961 	int i;
5962 
5963 	cpumask_clear(span);
5964 	nodes_clear(used_nodes);
5965 
5966 	cpumask_or(span, span, cpumask_of_node(node));
5967 	node_set(node, used_nodes);
5968 
5969 	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5970 		int next_node = find_next_best_node(node, &used_nodes);
5971 		if (next_node < 0)
5972 			break;
5973 		cpumask_or(span, span, cpumask_of_node(next_node));
5974 	}
5975 }
5976 
5977 static const struct cpumask *cpu_node_mask(int cpu)
5978 {
5979 	lockdep_assert_held(&sched_domains_mutex);
5980 
5981 	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5982 
5983 	return sched_domains_tmpmask;
5984 }
5985 
5986 static const struct cpumask *cpu_allnodes_mask(int cpu)
5987 {
5988 	return cpu_possible_mask;
5989 }
5990 #endif /* CONFIG_NUMA */
5991 
5992 static const struct cpumask *cpu_cpu_mask(int cpu)
5993 {
5994 	return cpumask_of_node(cpu_to_node(cpu));
5995 }
5996 
5997 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5998 
5999 struct sd_data {
6000 	struct sched_domain **__percpu sd;
6001 	struct sched_group **__percpu sg;
6002 	struct sched_group_power **__percpu sgp;
6003 };
6004 
6005 struct s_data {
6006 	struct sched_domain ** __percpu sd;
6007 	struct root_domain	*rd;
6008 };
6009 
6010 enum s_alloc {
6011 	sa_rootdomain,
6012 	sa_sd,
6013 	sa_sd_storage,
6014 	sa_none,
6015 };
6016 
6017 struct sched_domain_topology_level;
6018 
6019 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6020 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6021 
6022 #define SDTL_OVERLAP	0x01
6023 
6024 struct sched_domain_topology_level {
6025 	sched_domain_init_f init;
6026 	sched_domain_mask_f mask;
6027 	int		    flags;
6028 	struct sd_data      data;
6029 };
6030 
6031 static int
6032 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6033 {
6034 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6035 	const struct cpumask *span = sched_domain_span(sd);
6036 	struct cpumask *covered = sched_domains_tmpmask;
6037 	struct sd_data *sdd = sd->private;
6038 	struct sched_domain *child;
6039 	int i;
6040 
6041 	cpumask_clear(covered);
6042 
6043 	for_each_cpu(i, span) {
6044 		struct cpumask *sg_span;
6045 
6046 		if (cpumask_test_cpu(i, covered))
6047 			continue;
6048 
6049 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6050 				GFP_KERNEL, cpu_to_node(cpu));
6051 
6052 		if (!sg)
6053 			goto fail;
6054 
6055 		sg_span = sched_group_cpus(sg);
6056 
6057 		child = *per_cpu_ptr(sdd->sd, i);
6058 		if (child->child) {
6059 			child = child->child;
6060 			cpumask_copy(sg_span, sched_domain_span(child));
6061 		} else
6062 			cpumask_set_cpu(i, sg_span);
6063 
6064 		cpumask_or(covered, covered, sg_span);
6065 
6066 		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
6067 		atomic_inc(&sg->sgp->ref);
6068 
6069 		if (cpumask_test_cpu(cpu, sg_span))
6070 			groups = sg;
6071 
6072 		if (!first)
6073 			first = sg;
6074 		if (last)
6075 			last->next = sg;
6076 		last = sg;
6077 		last->next = first;
6078 	}
6079 	sd->groups = groups;
6080 
6081 	return 0;
6082 
6083 fail:
6084 	free_sched_groups(first, 0);
6085 
6086 	return -ENOMEM;
6087 }
6088 
6089 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6090 {
6091 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6092 	struct sched_domain *child = sd->child;
6093 
6094 	if (child)
6095 		cpu = cpumask_first(sched_domain_span(child));
6096 
6097 	if (sg) {
6098 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6099 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6100 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6101 	}
6102 
6103 	return cpu;
6104 }
6105 
6106 /*
6107  * build_sched_groups will build a circular linked list of the groups
6108  * covered by the given span, and will set each group's ->cpumask correctly,
6109  * and ->cpu_power to 0.
6110  *
6111  * Assumes the sched_domain tree is fully constructed
6112  */
6113 static int
6114 build_sched_groups(struct sched_domain *sd, int cpu)
6115 {
6116 	struct sched_group *first = NULL, *last = NULL;
6117 	struct sd_data *sdd = sd->private;
6118 	const struct cpumask *span = sched_domain_span(sd);
6119 	struct cpumask *covered;
6120 	int i;
6121 
6122 	get_group(cpu, sdd, &sd->groups);
6123 	atomic_inc(&sd->groups->ref);
6124 
6125 	if (cpu != cpumask_first(sched_domain_span(sd)))
6126 		return 0;
6127 
6128 	lockdep_assert_held(&sched_domains_mutex);
6129 	covered = sched_domains_tmpmask;
6130 
6131 	cpumask_clear(covered);
6132 
6133 	for_each_cpu(i, span) {
6134 		struct sched_group *sg;
6135 		int group = get_group(i, sdd, &sg);
6136 		int j;
6137 
6138 		if (cpumask_test_cpu(i, covered))
6139 			continue;
6140 
6141 		cpumask_clear(sched_group_cpus(sg));
6142 		sg->sgp->power = 0;
6143 
6144 		for_each_cpu(j, span) {
6145 			if (get_group(j, sdd, NULL) != group)
6146 				continue;
6147 
6148 			cpumask_set_cpu(j, covered);
6149 			cpumask_set_cpu(j, sched_group_cpus(sg));
6150 		}
6151 
6152 		if (!first)
6153 			first = sg;
6154 		if (last)
6155 			last->next = sg;
6156 		last = sg;
6157 	}
6158 	last->next = first;
6159 
6160 	return 0;
6161 }
6162 
6163 /*
6164  * Initialize sched groups cpu_power.
6165  *
6166  * cpu_power indicates the capacity of sched group, which is used while
6167  * distributing the load between different sched groups in a sched domain.
6168  * Typically cpu_power for all the groups in a sched domain will be same unless
6169  * there are asymmetries in the topology. If there are asymmetries, group
6170  * having more cpu_power will pickup more load compared to the group having
6171  * less cpu_power.
6172  */
6173 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6174 {
6175 	struct sched_group *sg = sd->groups;
6176 
6177 	WARN_ON(!sd || !sg);
6178 
6179 	do {
6180 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6181 		sg = sg->next;
6182 	} while (sg != sd->groups);
6183 
6184 	if (cpu != group_first_cpu(sg))
6185 		return;
6186 
6187 	update_group_power(sd, cpu);
6188 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6189 }
6190 
6191 int __weak arch_sd_sibling_asym_packing(void)
6192 {
6193        return 0*SD_ASYM_PACKING;
6194 }
6195 
6196 /*
6197  * Initializers for schedule domains
6198  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6199  */
6200 
6201 #ifdef CONFIG_SCHED_DEBUG
6202 # define SD_INIT_NAME(sd, type)		sd->name = #type
6203 #else
6204 # define SD_INIT_NAME(sd, type)		do { } while (0)
6205 #endif
6206 
6207 #define SD_INIT_FUNC(type)						\
6208 static noinline struct sched_domain *					\
6209 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
6210 {									\
6211 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
6212 	*sd = SD_##type##_INIT;						\
6213 	SD_INIT_NAME(sd, type);						\
6214 	sd->private = &tl->data;					\
6215 	return sd;							\
6216 }
6217 
6218 SD_INIT_FUNC(CPU)
6219 #ifdef CONFIG_NUMA
6220  SD_INIT_FUNC(ALLNODES)
6221  SD_INIT_FUNC(NODE)
6222 #endif
6223 #ifdef CONFIG_SCHED_SMT
6224  SD_INIT_FUNC(SIBLING)
6225 #endif
6226 #ifdef CONFIG_SCHED_MC
6227  SD_INIT_FUNC(MC)
6228 #endif
6229 #ifdef CONFIG_SCHED_BOOK
6230  SD_INIT_FUNC(BOOK)
6231 #endif
6232 
6233 static int default_relax_domain_level = -1;
6234 int sched_domain_level_max;
6235 
6236 static int __init setup_relax_domain_level(char *str)
6237 {
6238 	unsigned long val;
6239 
6240 	val = simple_strtoul(str, NULL, 0);
6241 	if (val < sched_domain_level_max)
6242 		default_relax_domain_level = val;
6243 
6244 	return 1;
6245 }
6246 __setup("relax_domain_level=", setup_relax_domain_level);
6247 
6248 static void set_domain_attribute(struct sched_domain *sd,
6249 				 struct sched_domain_attr *attr)
6250 {
6251 	int request;
6252 
6253 	if (!attr || attr->relax_domain_level < 0) {
6254 		if (default_relax_domain_level < 0)
6255 			return;
6256 		else
6257 			request = default_relax_domain_level;
6258 	} else
6259 		request = attr->relax_domain_level;
6260 	if (request < sd->level) {
6261 		/* turn off idle balance on this domain */
6262 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6263 	} else {
6264 		/* turn on idle balance on this domain */
6265 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6266 	}
6267 }
6268 
6269 static void __sdt_free(const struct cpumask *cpu_map);
6270 static int __sdt_alloc(const struct cpumask *cpu_map);
6271 
6272 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6273 				 const struct cpumask *cpu_map)
6274 {
6275 	switch (what) {
6276 	case sa_rootdomain:
6277 		if (!atomic_read(&d->rd->refcount))
6278 			free_rootdomain(&d->rd->rcu); /* fall through */
6279 	case sa_sd:
6280 		free_percpu(d->sd); /* fall through */
6281 	case sa_sd_storage:
6282 		__sdt_free(cpu_map); /* fall through */
6283 	case sa_none:
6284 		break;
6285 	}
6286 }
6287 
6288 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6289 						   const struct cpumask *cpu_map)
6290 {
6291 	memset(d, 0, sizeof(*d));
6292 
6293 	if (__sdt_alloc(cpu_map))
6294 		return sa_sd_storage;
6295 	d->sd = alloc_percpu(struct sched_domain *);
6296 	if (!d->sd)
6297 		return sa_sd_storage;
6298 	d->rd = alloc_rootdomain();
6299 	if (!d->rd)
6300 		return sa_sd;
6301 	return sa_rootdomain;
6302 }
6303 
6304 /*
6305  * NULL the sd_data elements we've used to build the sched_domain and
6306  * sched_group structure so that the subsequent __free_domain_allocs()
6307  * will not free the data we're using.
6308  */
6309 static void claim_allocations(int cpu, struct sched_domain *sd)
6310 {
6311 	struct sd_data *sdd = sd->private;
6312 
6313 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6314 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6315 
6316 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6317 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6318 
6319 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6320 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6321 }
6322 
6323 #ifdef CONFIG_SCHED_SMT
6324 static const struct cpumask *cpu_smt_mask(int cpu)
6325 {
6326 	return topology_thread_cpumask(cpu);
6327 }
6328 #endif
6329 
6330 /*
6331  * Topology list, bottom-up.
6332  */
6333 static struct sched_domain_topology_level default_topology[] = {
6334 #ifdef CONFIG_SCHED_SMT
6335 	{ sd_init_SIBLING, cpu_smt_mask, },
6336 #endif
6337 #ifdef CONFIG_SCHED_MC
6338 	{ sd_init_MC, cpu_coregroup_mask, },
6339 #endif
6340 #ifdef CONFIG_SCHED_BOOK
6341 	{ sd_init_BOOK, cpu_book_mask, },
6342 #endif
6343 	{ sd_init_CPU, cpu_cpu_mask, },
6344 #ifdef CONFIG_NUMA
6345 	{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6346 	{ sd_init_ALLNODES, cpu_allnodes_mask, },
6347 #endif
6348 	{ NULL, },
6349 };
6350 
6351 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6352 
6353 static int __sdt_alloc(const struct cpumask *cpu_map)
6354 {
6355 	struct sched_domain_topology_level *tl;
6356 	int j;
6357 
6358 	for (tl = sched_domain_topology; tl->init; tl++) {
6359 		struct sd_data *sdd = &tl->data;
6360 
6361 		sdd->sd = alloc_percpu(struct sched_domain *);
6362 		if (!sdd->sd)
6363 			return -ENOMEM;
6364 
6365 		sdd->sg = alloc_percpu(struct sched_group *);
6366 		if (!sdd->sg)
6367 			return -ENOMEM;
6368 
6369 		sdd->sgp = alloc_percpu(struct sched_group_power *);
6370 		if (!sdd->sgp)
6371 			return -ENOMEM;
6372 
6373 		for_each_cpu(j, cpu_map) {
6374 			struct sched_domain *sd;
6375 			struct sched_group *sg;
6376 			struct sched_group_power *sgp;
6377 
6378 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6379 					GFP_KERNEL, cpu_to_node(j));
6380 			if (!sd)
6381 				return -ENOMEM;
6382 
6383 			*per_cpu_ptr(sdd->sd, j) = sd;
6384 
6385 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6386 					GFP_KERNEL, cpu_to_node(j));
6387 			if (!sg)
6388 				return -ENOMEM;
6389 
6390 			*per_cpu_ptr(sdd->sg, j) = sg;
6391 
6392 			sgp = kzalloc_node(sizeof(struct sched_group_power),
6393 					GFP_KERNEL, cpu_to_node(j));
6394 			if (!sgp)
6395 				return -ENOMEM;
6396 
6397 			*per_cpu_ptr(sdd->sgp, j) = sgp;
6398 		}
6399 	}
6400 
6401 	return 0;
6402 }
6403 
6404 static void __sdt_free(const struct cpumask *cpu_map)
6405 {
6406 	struct sched_domain_topology_level *tl;
6407 	int j;
6408 
6409 	for (tl = sched_domain_topology; tl->init; tl++) {
6410 		struct sd_data *sdd = &tl->data;
6411 
6412 		for_each_cpu(j, cpu_map) {
6413 			struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6414 			if (sd && (sd->flags & SD_OVERLAP))
6415 				free_sched_groups(sd->groups, 0);
6416 			kfree(*per_cpu_ptr(sdd->sd, j));
6417 			kfree(*per_cpu_ptr(sdd->sg, j));
6418 			kfree(*per_cpu_ptr(sdd->sgp, j));
6419 		}
6420 		free_percpu(sdd->sd);
6421 		free_percpu(sdd->sg);
6422 		free_percpu(sdd->sgp);
6423 	}
6424 }
6425 
6426 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6427 		struct s_data *d, const struct cpumask *cpu_map,
6428 		struct sched_domain_attr *attr, struct sched_domain *child,
6429 		int cpu)
6430 {
6431 	struct sched_domain *sd = tl->init(tl, cpu);
6432 	if (!sd)
6433 		return child;
6434 
6435 	set_domain_attribute(sd, attr);
6436 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6437 	if (child) {
6438 		sd->level = child->level + 1;
6439 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6440 		child->parent = sd;
6441 	}
6442 	sd->child = child;
6443 
6444 	return sd;
6445 }
6446 
6447 /*
6448  * Build sched domains for a given set of cpus and attach the sched domains
6449  * to the individual cpus
6450  */
6451 static int build_sched_domains(const struct cpumask *cpu_map,
6452 			       struct sched_domain_attr *attr)
6453 {
6454 	enum s_alloc alloc_state = sa_none;
6455 	struct sched_domain *sd;
6456 	struct s_data d;
6457 	int i, ret = -ENOMEM;
6458 
6459 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6460 	if (alloc_state != sa_rootdomain)
6461 		goto error;
6462 
6463 	/* Set up domains for cpus specified by the cpu_map. */
6464 	for_each_cpu(i, cpu_map) {
6465 		struct sched_domain_topology_level *tl;
6466 
6467 		sd = NULL;
6468 		for (tl = sched_domain_topology; tl->init; tl++) {
6469 			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6470 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6471 				sd->flags |= SD_OVERLAP;
6472 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6473 				break;
6474 		}
6475 
6476 		while (sd->child)
6477 			sd = sd->child;
6478 
6479 		*per_cpu_ptr(d.sd, i) = sd;
6480 	}
6481 
6482 	/* Build the groups for the domains */
6483 	for_each_cpu(i, cpu_map) {
6484 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6485 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6486 			if (sd->flags & SD_OVERLAP) {
6487 				if (build_overlap_sched_groups(sd, i))
6488 					goto error;
6489 			} else {
6490 				if (build_sched_groups(sd, i))
6491 					goto error;
6492 			}
6493 		}
6494 	}
6495 
6496 	/* Calculate CPU power for physical packages and nodes */
6497 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6498 		if (!cpumask_test_cpu(i, cpu_map))
6499 			continue;
6500 
6501 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6502 			claim_allocations(i, sd);
6503 			init_sched_groups_power(i, sd);
6504 		}
6505 	}
6506 
6507 	/* Attach the domains */
6508 	rcu_read_lock();
6509 	for_each_cpu(i, cpu_map) {
6510 		sd = *per_cpu_ptr(d.sd, i);
6511 		cpu_attach_domain(sd, d.rd, i);
6512 	}
6513 	rcu_read_unlock();
6514 
6515 	ret = 0;
6516 error:
6517 	__free_domain_allocs(&d, alloc_state, cpu_map);
6518 	return ret;
6519 }
6520 
6521 static cpumask_var_t *doms_cur;	/* current sched domains */
6522 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6523 static struct sched_domain_attr *dattr_cur;
6524 				/* attribues of custom domains in 'doms_cur' */
6525 
6526 /*
6527  * Special case: If a kmalloc of a doms_cur partition (array of
6528  * cpumask) fails, then fallback to a single sched domain,
6529  * as determined by the single cpumask fallback_doms.
6530  */
6531 static cpumask_var_t fallback_doms;
6532 
6533 /*
6534  * arch_update_cpu_topology lets virtualized architectures update the
6535  * cpu core maps. It is supposed to return 1 if the topology changed
6536  * or 0 if it stayed the same.
6537  */
6538 int __attribute__((weak)) arch_update_cpu_topology(void)
6539 {
6540 	return 0;
6541 }
6542 
6543 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6544 {
6545 	int i;
6546 	cpumask_var_t *doms;
6547 
6548 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6549 	if (!doms)
6550 		return NULL;
6551 	for (i = 0; i < ndoms; i++) {
6552 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6553 			free_sched_domains(doms, i);
6554 			return NULL;
6555 		}
6556 	}
6557 	return doms;
6558 }
6559 
6560 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6561 {
6562 	unsigned int i;
6563 	for (i = 0; i < ndoms; i++)
6564 		free_cpumask_var(doms[i]);
6565 	kfree(doms);
6566 }
6567 
6568 /*
6569  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6570  * For now this just excludes isolated cpus, but could be used to
6571  * exclude other special cases in the future.
6572  */
6573 static int init_sched_domains(const struct cpumask *cpu_map)
6574 {
6575 	int err;
6576 
6577 	arch_update_cpu_topology();
6578 	ndoms_cur = 1;
6579 	doms_cur = alloc_sched_domains(ndoms_cur);
6580 	if (!doms_cur)
6581 		doms_cur = &fallback_doms;
6582 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6583 	dattr_cur = NULL;
6584 	err = build_sched_domains(doms_cur[0], NULL);
6585 	register_sched_domain_sysctl();
6586 
6587 	return err;
6588 }
6589 
6590 /*
6591  * Detach sched domains from a group of cpus specified in cpu_map
6592  * These cpus will now be attached to the NULL domain
6593  */
6594 static void detach_destroy_domains(const struct cpumask *cpu_map)
6595 {
6596 	int i;
6597 
6598 	rcu_read_lock();
6599 	for_each_cpu(i, cpu_map)
6600 		cpu_attach_domain(NULL, &def_root_domain, i);
6601 	rcu_read_unlock();
6602 }
6603 
6604 /* handle null as "default" */
6605 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6606 			struct sched_domain_attr *new, int idx_new)
6607 {
6608 	struct sched_domain_attr tmp;
6609 
6610 	/* fast path */
6611 	if (!new && !cur)
6612 		return 1;
6613 
6614 	tmp = SD_ATTR_INIT;
6615 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6616 			new ? (new + idx_new) : &tmp,
6617 			sizeof(struct sched_domain_attr));
6618 }
6619 
6620 /*
6621  * Partition sched domains as specified by the 'ndoms_new'
6622  * cpumasks in the array doms_new[] of cpumasks. This compares
6623  * doms_new[] to the current sched domain partitioning, doms_cur[].
6624  * It destroys each deleted domain and builds each new domain.
6625  *
6626  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6627  * The masks don't intersect (don't overlap.) We should setup one
6628  * sched domain for each mask. CPUs not in any of the cpumasks will
6629  * not be load balanced. If the same cpumask appears both in the
6630  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6631  * it as it is.
6632  *
6633  * The passed in 'doms_new' should be allocated using
6634  * alloc_sched_domains.  This routine takes ownership of it and will
6635  * free_sched_domains it when done with it. If the caller failed the
6636  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6637  * and partition_sched_domains() will fallback to the single partition
6638  * 'fallback_doms', it also forces the domains to be rebuilt.
6639  *
6640  * If doms_new == NULL it will be replaced with cpu_online_mask.
6641  * ndoms_new == 0 is a special case for destroying existing domains,
6642  * and it will not create the default domain.
6643  *
6644  * Call with hotplug lock held
6645  */
6646 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6647 			     struct sched_domain_attr *dattr_new)
6648 {
6649 	int i, j, n;
6650 	int new_topology;
6651 
6652 	mutex_lock(&sched_domains_mutex);
6653 
6654 	/* always unregister in case we don't destroy any domains */
6655 	unregister_sched_domain_sysctl();
6656 
6657 	/* Let architecture update cpu core mappings. */
6658 	new_topology = arch_update_cpu_topology();
6659 
6660 	n = doms_new ? ndoms_new : 0;
6661 
6662 	/* Destroy deleted domains */
6663 	for (i = 0; i < ndoms_cur; i++) {
6664 		for (j = 0; j < n && !new_topology; j++) {
6665 			if (cpumask_equal(doms_cur[i], doms_new[j])
6666 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6667 				goto match1;
6668 		}
6669 		/* no match - a current sched domain not in new doms_new[] */
6670 		detach_destroy_domains(doms_cur[i]);
6671 match1:
6672 		;
6673 	}
6674 
6675 	if (doms_new == NULL) {
6676 		ndoms_cur = 0;
6677 		doms_new = &fallback_doms;
6678 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6679 		WARN_ON_ONCE(dattr_new);
6680 	}
6681 
6682 	/* Build new domains */
6683 	for (i = 0; i < ndoms_new; i++) {
6684 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6685 			if (cpumask_equal(doms_new[i], doms_cur[j])
6686 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6687 				goto match2;
6688 		}
6689 		/* no match - add a new doms_new */
6690 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6691 match2:
6692 		;
6693 	}
6694 
6695 	/* Remember the new sched domains */
6696 	if (doms_cur != &fallback_doms)
6697 		free_sched_domains(doms_cur, ndoms_cur);
6698 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6699 	doms_cur = doms_new;
6700 	dattr_cur = dattr_new;
6701 	ndoms_cur = ndoms_new;
6702 
6703 	register_sched_domain_sysctl();
6704 
6705 	mutex_unlock(&sched_domains_mutex);
6706 }
6707 
6708 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6709 static void reinit_sched_domains(void)
6710 {
6711 	get_online_cpus();
6712 
6713 	/* Destroy domains first to force the rebuild */
6714 	partition_sched_domains(0, NULL, NULL);
6715 
6716 	rebuild_sched_domains();
6717 	put_online_cpus();
6718 }
6719 
6720 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6721 {
6722 	unsigned int level = 0;
6723 
6724 	if (sscanf(buf, "%u", &level) != 1)
6725 		return -EINVAL;
6726 
6727 	/*
6728 	 * level is always be positive so don't check for
6729 	 * level < POWERSAVINGS_BALANCE_NONE which is 0
6730 	 * What happens on 0 or 1 byte write,
6731 	 * need to check for count as well?
6732 	 */
6733 
6734 	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6735 		return -EINVAL;
6736 
6737 	if (smt)
6738 		sched_smt_power_savings = level;
6739 	else
6740 		sched_mc_power_savings = level;
6741 
6742 	reinit_sched_domains();
6743 
6744 	return count;
6745 }
6746 
6747 #ifdef CONFIG_SCHED_MC
6748 static ssize_t sched_mc_power_savings_show(struct device *dev,
6749 					   struct device_attribute *attr,
6750 					   char *buf)
6751 {
6752 	return sprintf(buf, "%u\n", sched_mc_power_savings);
6753 }
6754 static ssize_t sched_mc_power_savings_store(struct device *dev,
6755 					    struct device_attribute *attr,
6756 					    const char *buf, size_t count)
6757 {
6758 	return sched_power_savings_store(buf, count, 0);
6759 }
6760 static DEVICE_ATTR(sched_mc_power_savings, 0644,
6761 		   sched_mc_power_savings_show,
6762 		   sched_mc_power_savings_store);
6763 #endif
6764 
6765 #ifdef CONFIG_SCHED_SMT
6766 static ssize_t sched_smt_power_savings_show(struct device *dev,
6767 					    struct device_attribute *attr,
6768 					    char *buf)
6769 {
6770 	return sprintf(buf, "%u\n", sched_smt_power_savings);
6771 }
6772 static ssize_t sched_smt_power_savings_store(struct device *dev,
6773 					    struct device_attribute *attr,
6774 					     const char *buf, size_t count)
6775 {
6776 	return sched_power_savings_store(buf, count, 1);
6777 }
6778 static DEVICE_ATTR(sched_smt_power_savings, 0644,
6779 		   sched_smt_power_savings_show,
6780 		   sched_smt_power_savings_store);
6781 #endif
6782 
6783 int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6784 {
6785 	int err = 0;
6786 
6787 #ifdef CONFIG_SCHED_SMT
6788 	if (smt_capable())
6789 		err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6790 #endif
6791 #ifdef CONFIG_SCHED_MC
6792 	if (!err && mc_capable())
6793 		err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6794 #endif
6795 	return err;
6796 }
6797 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6798 
6799 /*
6800  * Update cpusets according to cpu_active mask.  If cpusets are
6801  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6802  * around partition_sched_domains().
6803  */
6804 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6805 			     void *hcpu)
6806 {
6807 	switch (action & ~CPU_TASKS_FROZEN) {
6808 	case CPU_ONLINE:
6809 	case CPU_DOWN_FAILED:
6810 		cpuset_update_active_cpus();
6811 		return NOTIFY_OK;
6812 	default:
6813 		return NOTIFY_DONE;
6814 	}
6815 }
6816 
6817 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6818 			       void *hcpu)
6819 {
6820 	switch (action & ~CPU_TASKS_FROZEN) {
6821 	case CPU_DOWN_PREPARE:
6822 		cpuset_update_active_cpus();
6823 		return NOTIFY_OK;
6824 	default:
6825 		return NOTIFY_DONE;
6826 	}
6827 }
6828 
6829 void __init sched_init_smp(void)
6830 {
6831 	cpumask_var_t non_isolated_cpus;
6832 
6833 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6834 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6835 
6836 	get_online_cpus();
6837 	mutex_lock(&sched_domains_mutex);
6838 	init_sched_domains(cpu_active_mask);
6839 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6840 	if (cpumask_empty(non_isolated_cpus))
6841 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6842 	mutex_unlock(&sched_domains_mutex);
6843 	put_online_cpus();
6844 
6845 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6846 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6847 
6848 	/* RT runtime code needs to handle some hotplug events */
6849 	hotcpu_notifier(update_runtime, 0);
6850 
6851 	init_hrtick();
6852 
6853 	/* Move init over to a non-isolated CPU */
6854 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6855 		BUG();
6856 	sched_init_granularity();
6857 	free_cpumask_var(non_isolated_cpus);
6858 
6859 	init_sched_rt_class();
6860 }
6861 #else
6862 void __init sched_init_smp(void)
6863 {
6864 	sched_init_granularity();
6865 }
6866 #endif /* CONFIG_SMP */
6867 
6868 const_debug unsigned int sysctl_timer_migration = 1;
6869 
6870 int in_sched_functions(unsigned long addr)
6871 {
6872 	return in_lock_functions(addr) ||
6873 		(addr >= (unsigned long)__sched_text_start
6874 		&& addr < (unsigned long)__sched_text_end);
6875 }
6876 
6877 #ifdef CONFIG_CGROUP_SCHED
6878 struct task_group root_task_group;
6879 #endif
6880 
6881 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6882 
6883 void __init sched_init(void)
6884 {
6885 	int i, j;
6886 	unsigned long alloc_size = 0, ptr;
6887 
6888 #ifdef CONFIG_FAIR_GROUP_SCHED
6889 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6890 #endif
6891 #ifdef CONFIG_RT_GROUP_SCHED
6892 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6893 #endif
6894 #ifdef CONFIG_CPUMASK_OFFSTACK
6895 	alloc_size += num_possible_cpus() * cpumask_size();
6896 #endif
6897 	if (alloc_size) {
6898 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6899 
6900 #ifdef CONFIG_FAIR_GROUP_SCHED
6901 		root_task_group.se = (struct sched_entity **)ptr;
6902 		ptr += nr_cpu_ids * sizeof(void **);
6903 
6904 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6905 		ptr += nr_cpu_ids * sizeof(void **);
6906 
6907 #endif /* CONFIG_FAIR_GROUP_SCHED */
6908 #ifdef CONFIG_RT_GROUP_SCHED
6909 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6910 		ptr += nr_cpu_ids * sizeof(void **);
6911 
6912 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6913 		ptr += nr_cpu_ids * sizeof(void **);
6914 
6915 #endif /* CONFIG_RT_GROUP_SCHED */
6916 #ifdef CONFIG_CPUMASK_OFFSTACK
6917 		for_each_possible_cpu(i) {
6918 			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6919 			ptr += cpumask_size();
6920 		}
6921 #endif /* CONFIG_CPUMASK_OFFSTACK */
6922 	}
6923 
6924 #ifdef CONFIG_SMP
6925 	init_defrootdomain();
6926 #endif
6927 
6928 	init_rt_bandwidth(&def_rt_bandwidth,
6929 			global_rt_period(), global_rt_runtime());
6930 
6931 #ifdef CONFIG_RT_GROUP_SCHED
6932 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6933 			global_rt_period(), global_rt_runtime());
6934 #endif /* CONFIG_RT_GROUP_SCHED */
6935 
6936 #ifdef CONFIG_CGROUP_SCHED
6937 	list_add(&root_task_group.list, &task_groups);
6938 	INIT_LIST_HEAD(&root_task_group.children);
6939 	INIT_LIST_HEAD(&root_task_group.siblings);
6940 	autogroup_init(&init_task);
6941 
6942 #endif /* CONFIG_CGROUP_SCHED */
6943 
6944 #ifdef CONFIG_CGROUP_CPUACCT
6945 	root_cpuacct.cpustat = &kernel_cpustat;
6946 	root_cpuacct.cpuusage = alloc_percpu(u64);
6947 	/* Too early, not expected to fail */
6948 	BUG_ON(!root_cpuacct.cpuusage);
6949 #endif
6950 	for_each_possible_cpu(i) {
6951 		struct rq *rq;
6952 
6953 		rq = cpu_rq(i);
6954 		raw_spin_lock_init(&rq->lock);
6955 		rq->nr_running = 0;
6956 		rq->calc_load_active = 0;
6957 		rq->calc_load_update = jiffies + LOAD_FREQ;
6958 		init_cfs_rq(&rq->cfs);
6959 		init_rt_rq(&rq->rt, rq);
6960 #ifdef CONFIG_FAIR_GROUP_SCHED
6961 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6962 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6963 		/*
6964 		 * How much cpu bandwidth does root_task_group get?
6965 		 *
6966 		 * In case of task-groups formed thr' the cgroup filesystem, it
6967 		 * gets 100% of the cpu resources in the system. This overall
6968 		 * system cpu resource is divided among the tasks of
6969 		 * root_task_group and its child task-groups in a fair manner,
6970 		 * based on each entity's (task or task-group's) weight
6971 		 * (se->load.weight).
6972 		 *
6973 		 * In other words, if root_task_group has 10 tasks of weight
6974 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6975 		 * then A0's share of the cpu resource is:
6976 		 *
6977 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6978 		 *
6979 		 * We achieve this by letting root_task_group's tasks sit
6980 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6981 		 */
6982 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6983 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6984 #endif /* CONFIG_FAIR_GROUP_SCHED */
6985 
6986 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6987 #ifdef CONFIG_RT_GROUP_SCHED
6988 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6989 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6990 #endif
6991 
6992 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6993 			rq->cpu_load[j] = 0;
6994 
6995 		rq->last_load_update_tick = jiffies;
6996 
6997 #ifdef CONFIG_SMP
6998 		rq->sd = NULL;
6999 		rq->rd = NULL;
7000 		rq->cpu_power = SCHED_POWER_SCALE;
7001 		rq->post_schedule = 0;
7002 		rq->active_balance = 0;
7003 		rq->next_balance = jiffies;
7004 		rq->push_cpu = 0;
7005 		rq->cpu = i;
7006 		rq->online = 0;
7007 		rq->idle_stamp = 0;
7008 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7009 
7010 		INIT_LIST_HEAD(&rq->cfs_tasks);
7011 
7012 		rq_attach_root(rq, &def_root_domain);
7013 #ifdef CONFIG_NO_HZ
7014 		rq->nohz_flags = 0;
7015 #endif
7016 #endif
7017 		init_rq_hrtick(rq);
7018 		atomic_set(&rq->nr_iowait, 0);
7019 	}
7020 
7021 	set_load_weight(&init_task);
7022 
7023 #ifdef CONFIG_PREEMPT_NOTIFIERS
7024 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7025 #endif
7026 
7027 #ifdef CONFIG_RT_MUTEXES
7028 	plist_head_init(&init_task.pi_waiters);
7029 #endif
7030 
7031 	/*
7032 	 * The boot idle thread does lazy MMU switching as well:
7033 	 */
7034 	atomic_inc(&init_mm.mm_count);
7035 	enter_lazy_tlb(&init_mm, current);
7036 
7037 	/*
7038 	 * Make us the idle thread. Technically, schedule() should not be
7039 	 * called from this thread, however somewhere below it might be,
7040 	 * but because we are the idle thread, we just pick up running again
7041 	 * when this runqueue becomes "idle".
7042 	 */
7043 	init_idle(current, smp_processor_id());
7044 
7045 	calc_load_update = jiffies + LOAD_FREQ;
7046 
7047 	/*
7048 	 * During early bootup we pretend to be a normal task:
7049 	 */
7050 	current->sched_class = &fair_sched_class;
7051 
7052 #ifdef CONFIG_SMP
7053 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7054 	/* May be allocated at isolcpus cmdline parse time */
7055 	if (cpu_isolated_map == NULL)
7056 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7057 #endif
7058 	init_sched_fair_class();
7059 
7060 	scheduler_running = 1;
7061 }
7062 
7063 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7064 static inline int preempt_count_equals(int preempt_offset)
7065 {
7066 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7067 
7068 	return (nested == preempt_offset);
7069 }
7070 
7071 void __might_sleep(const char *file, int line, int preempt_offset)
7072 {
7073 	static unsigned long prev_jiffy;	/* ratelimiting */
7074 
7075 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7076 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7077 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7078 		return;
7079 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7080 		return;
7081 	prev_jiffy = jiffies;
7082 
7083 	printk(KERN_ERR
7084 		"BUG: sleeping function called from invalid context at %s:%d\n",
7085 			file, line);
7086 	printk(KERN_ERR
7087 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7088 			in_atomic(), irqs_disabled(),
7089 			current->pid, current->comm);
7090 
7091 	debug_show_held_locks(current);
7092 	if (irqs_disabled())
7093 		print_irqtrace_events(current);
7094 	dump_stack();
7095 }
7096 EXPORT_SYMBOL(__might_sleep);
7097 #endif
7098 
7099 #ifdef CONFIG_MAGIC_SYSRQ
7100 static void normalize_task(struct rq *rq, struct task_struct *p)
7101 {
7102 	const struct sched_class *prev_class = p->sched_class;
7103 	int old_prio = p->prio;
7104 	int on_rq;
7105 
7106 	on_rq = p->on_rq;
7107 	if (on_rq)
7108 		dequeue_task(rq, p, 0);
7109 	__setscheduler(rq, p, SCHED_NORMAL, 0);
7110 	if (on_rq) {
7111 		enqueue_task(rq, p, 0);
7112 		resched_task(rq->curr);
7113 	}
7114 
7115 	check_class_changed(rq, p, prev_class, old_prio);
7116 }
7117 
7118 void normalize_rt_tasks(void)
7119 {
7120 	struct task_struct *g, *p;
7121 	unsigned long flags;
7122 	struct rq *rq;
7123 
7124 	read_lock_irqsave(&tasklist_lock, flags);
7125 	do_each_thread(g, p) {
7126 		/*
7127 		 * Only normalize user tasks:
7128 		 */
7129 		if (!p->mm)
7130 			continue;
7131 
7132 		p->se.exec_start		= 0;
7133 #ifdef CONFIG_SCHEDSTATS
7134 		p->se.statistics.wait_start	= 0;
7135 		p->se.statistics.sleep_start	= 0;
7136 		p->se.statistics.block_start	= 0;
7137 #endif
7138 
7139 		if (!rt_task(p)) {
7140 			/*
7141 			 * Renice negative nice level userspace
7142 			 * tasks back to 0:
7143 			 */
7144 			if (TASK_NICE(p) < 0 && p->mm)
7145 				set_user_nice(p, 0);
7146 			continue;
7147 		}
7148 
7149 		raw_spin_lock(&p->pi_lock);
7150 		rq = __task_rq_lock(p);
7151 
7152 		normalize_task(rq, p);
7153 
7154 		__task_rq_unlock(rq);
7155 		raw_spin_unlock(&p->pi_lock);
7156 	} while_each_thread(g, p);
7157 
7158 	read_unlock_irqrestore(&tasklist_lock, flags);
7159 }
7160 
7161 #endif /* CONFIG_MAGIC_SYSRQ */
7162 
7163 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7164 /*
7165  * These functions are only useful for the IA64 MCA handling, or kdb.
7166  *
7167  * They can only be called when the whole system has been
7168  * stopped - every CPU needs to be quiescent, and no scheduling
7169  * activity can take place. Using them for anything else would
7170  * be a serious bug, and as a result, they aren't even visible
7171  * under any other configuration.
7172  */
7173 
7174 /**
7175  * curr_task - return the current task for a given cpu.
7176  * @cpu: the processor in question.
7177  *
7178  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7179  */
7180 struct task_struct *curr_task(int cpu)
7181 {
7182 	return cpu_curr(cpu);
7183 }
7184 
7185 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7186 
7187 #ifdef CONFIG_IA64
7188 /**
7189  * set_curr_task - set the current task for a given cpu.
7190  * @cpu: the processor in question.
7191  * @p: the task pointer to set.
7192  *
7193  * Description: This function must only be used when non-maskable interrupts
7194  * are serviced on a separate stack. It allows the architecture to switch the
7195  * notion of the current task on a cpu in a non-blocking manner. This function
7196  * must be called with all CPU's synchronized, and interrupts disabled, the
7197  * and caller must save the original value of the current task (see
7198  * curr_task() above) and restore that value before reenabling interrupts and
7199  * re-starting the system.
7200  *
7201  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7202  */
7203 void set_curr_task(int cpu, struct task_struct *p)
7204 {
7205 	cpu_curr(cpu) = p;
7206 }
7207 
7208 #endif
7209 
7210 #ifdef CONFIG_CGROUP_SCHED
7211 /* task_group_lock serializes the addition/removal of task groups */
7212 static DEFINE_SPINLOCK(task_group_lock);
7213 
7214 static void free_sched_group(struct task_group *tg)
7215 {
7216 	free_fair_sched_group(tg);
7217 	free_rt_sched_group(tg);
7218 	autogroup_free(tg);
7219 	kfree(tg);
7220 }
7221 
7222 /* allocate runqueue etc for a new task group */
7223 struct task_group *sched_create_group(struct task_group *parent)
7224 {
7225 	struct task_group *tg;
7226 	unsigned long flags;
7227 
7228 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7229 	if (!tg)
7230 		return ERR_PTR(-ENOMEM);
7231 
7232 	if (!alloc_fair_sched_group(tg, parent))
7233 		goto err;
7234 
7235 	if (!alloc_rt_sched_group(tg, parent))
7236 		goto err;
7237 
7238 	spin_lock_irqsave(&task_group_lock, flags);
7239 	list_add_rcu(&tg->list, &task_groups);
7240 
7241 	WARN_ON(!parent); /* root should already exist */
7242 
7243 	tg->parent = parent;
7244 	INIT_LIST_HEAD(&tg->children);
7245 	list_add_rcu(&tg->siblings, &parent->children);
7246 	spin_unlock_irqrestore(&task_group_lock, flags);
7247 
7248 	return tg;
7249 
7250 err:
7251 	free_sched_group(tg);
7252 	return ERR_PTR(-ENOMEM);
7253 }
7254 
7255 /* rcu callback to free various structures associated with a task group */
7256 static void free_sched_group_rcu(struct rcu_head *rhp)
7257 {
7258 	/* now it should be safe to free those cfs_rqs */
7259 	free_sched_group(container_of(rhp, struct task_group, rcu));
7260 }
7261 
7262 /* Destroy runqueue etc associated with a task group */
7263 void sched_destroy_group(struct task_group *tg)
7264 {
7265 	unsigned long flags;
7266 	int i;
7267 
7268 	/* end participation in shares distribution */
7269 	for_each_possible_cpu(i)
7270 		unregister_fair_sched_group(tg, i);
7271 
7272 	spin_lock_irqsave(&task_group_lock, flags);
7273 	list_del_rcu(&tg->list);
7274 	list_del_rcu(&tg->siblings);
7275 	spin_unlock_irqrestore(&task_group_lock, flags);
7276 
7277 	/* wait for possible concurrent references to cfs_rqs complete */
7278 	call_rcu(&tg->rcu, free_sched_group_rcu);
7279 }
7280 
7281 /* change task's runqueue when it moves between groups.
7282  *	The caller of this function should have put the task in its new group
7283  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7284  *	reflect its new group.
7285  */
7286 void sched_move_task(struct task_struct *tsk)
7287 {
7288 	int on_rq, running;
7289 	unsigned long flags;
7290 	struct rq *rq;
7291 
7292 	rq = task_rq_lock(tsk, &flags);
7293 
7294 	running = task_current(rq, tsk);
7295 	on_rq = tsk->on_rq;
7296 
7297 	if (on_rq)
7298 		dequeue_task(rq, tsk, 0);
7299 	if (unlikely(running))
7300 		tsk->sched_class->put_prev_task(rq, tsk);
7301 
7302 #ifdef CONFIG_FAIR_GROUP_SCHED
7303 	if (tsk->sched_class->task_move_group)
7304 		tsk->sched_class->task_move_group(tsk, on_rq);
7305 	else
7306 #endif
7307 		set_task_rq(tsk, task_cpu(tsk));
7308 
7309 	if (unlikely(running))
7310 		tsk->sched_class->set_curr_task(rq);
7311 	if (on_rq)
7312 		enqueue_task(rq, tsk, 0);
7313 
7314 	task_rq_unlock(rq, tsk, &flags);
7315 }
7316 #endif /* CONFIG_CGROUP_SCHED */
7317 
7318 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7319 static unsigned long to_ratio(u64 period, u64 runtime)
7320 {
7321 	if (runtime == RUNTIME_INF)
7322 		return 1ULL << 20;
7323 
7324 	return div64_u64(runtime << 20, period);
7325 }
7326 #endif
7327 
7328 #ifdef CONFIG_RT_GROUP_SCHED
7329 /*
7330  * Ensure that the real time constraints are schedulable.
7331  */
7332 static DEFINE_MUTEX(rt_constraints_mutex);
7333 
7334 /* Must be called with tasklist_lock held */
7335 static inline int tg_has_rt_tasks(struct task_group *tg)
7336 {
7337 	struct task_struct *g, *p;
7338 
7339 	do_each_thread(g, p) {
7340 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7341 			return 1;
7342 	} while_each_thread(g, p);
7343 
7344 	return 0;
7345 }
7346 
7347 struct rt_schedulable_data {
7348 	struct task_group *tg;
7349 	u64 rt_period;
7350 	u64 rt_runtime;
7351 };
7352 
7353 static int tg_rt_schedulable(struct task_group *tg, void *data)
7354 {
7355 	struct rt_schedulable_data *d = data;
7356 	struct task_group *child;
7357 	unsigned long total, sum = 0;
7358 	u64 period, runtime;
7359 
7360 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7361 	runtime = tg->rt_bandwidth.rt_runtime;
7362 
7363 	if (tg == d->tg) {
7364 		period = d->rt_period;
7365 		runtime = d->rt_runtime;
7366 	}
7367 
7368 	/*
7369 	 * Cannot have more runtime than the period.
7370 	 */
7371 	if (runtime > period && runtime != RUNTIME_INF)
7372 		return -EINVAL;
7373 
7374 	/*
7375 	 * Ensure we don't starve existing RT tasks.
7376 	 */
7377 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7378 		return -EBUSY;
7379 
7380 	total = to_ratio(period, runtime);
7381 
7382 	/*
7383 	 * Nobody can have more than the global setting allows.
7384 	 */
7385 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7386 		return -EINVAL;
7387 
7388 	/*
7389 	 * The sum of our children's runtime should not exceed our own.
7390 	 */
7391 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7392 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7393 		runtime = child->rt_bandwidth.rt_runtime;
7394 
7395 		if (child == d->tg) {
7396 			period = d->rt_period;
7397 			runtime = d->rt_runtime;
7398 		}
7399 
7400 		sum += to_ratio(period, runtime);
7401 	}
7402 
7403 	if (sum > total)
7404 		return -EINVAL;
7405 
7406 	return 0;
7407 }
7408 
7409 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7410 {
7411 	int ret;
7412 
7413 	struct rt_schedulable_data data = {
7414 		.tg = tg,
7415 		.rt_period = period,
7416 		.rt_runtime = runtime,
7417 	};
7418 
7419 	rcu_read_lock();
7420 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7421 	rcu_read_unlock();
7422 
7423 	return ret;
7424 }
7425 
7426 static int tg_set_rt_bandwidth(struct task_group *tg,
7427 		u64 rt_period, u64 rt_runtime)
7428 {
7429 	int i, err = 0;
7430 
7431 	mutex_lock(&rt_constraints_mutex);
7432 	read_lock(&tasklist_lock);
7433 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7434 	if (err)
7435 		goto unlock;
7436 
7437 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7438 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7439 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7440 
7441 	for_each_possible_cpu(i) {
7442 		struct rt_rq *rt_rq = tg->rt_rq[i];
7443 
7444 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7445 		rt_rq->rt_runtime = rt_runtime;
7446 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7447 	}
7448 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7449 unlock:
7450 	read_unlock(&tasklist_lock);
7451 	mutex_unlock(&rt_constraints_mutex);
7452 
7453 	return err;
7454 }
7455 
7456 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7457 {
7458 	u64 rt_runtime, rt_period;
7459 
7460 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7461 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7462 	if (rt_runtime_us < 0)
7463 		rt_runtime = RUNTIME_INF;
7464 
7465 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7466 }
7467 
7468 long sched_group_rt_runtime(struct task_group *tg)
7469 {
7470 	u64 rt_runtime_us;
7471 
7472 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7473 		return -1;
7474 
7475 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7476 	do_div(rt_runtime_us, NSEC_PER_USEC);
7477 	return rt_runtime_us;
7478 }
7479 
7480 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7481 {
7482 	u64 rt_runtime, rt_period;
7483 
7484 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7485 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7486 
7487 	if (rt_period == 0)
7488 		return -EINVAL;
7489 
7490 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7491 }
7492 
7493 long sched_group_rt_period(struct task_group *tg)
7494 {
7495 	u64 rt_period_us;
7496 
7497 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7498 	do_div(rt_period_us, NSEC_PER_USEC);
7499 	return rt_period_us;
7500 }
7501 
7502 static int sched_rt_global_constraints(void)
7503 {
7504 	u64 runtime, period;
7505 	int ret = 0;
7506 
7507 	if (sysctl_sched_rt_period <= 0)
7508 		return -EINVAL;
7509 
7510 	runtime = global_rt_runtime();
7511 	period = global_rt_period();
7512 
7513 	/*
7514 	 * Sanity check on the sysctl variables.
7515 	 */
7516 	if (runtime > period && runtime != RUNTIME_INF)
7517 		return -EINVAL;
7518 
7519 	mutex_lock(&rt_constraints_mutex);
7520 	read_lock(&tasklist_lock);
7521 	ret = __rt_schedulable(NULL, 0, 0);
7522 	read_unlock(&tasklist_lock);
7523 	mutex_unlock(&rt_constraints_mutex);
7524 
7525 	return ret;
7526 }
7527 
7528 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7529 {
7530 	/* Don't accept realtime tasks when there is no way for them to run */
7531 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7532 		return 0;
7533 
7534 	return 1;
7535 }
7536 
7537 #else /* !CONFIG_RT_GROUP_SCHED */
7538 static int sched_rt_global_constraints(void)
7539 {
7540 	unsigned long flags;
7541 	int i;
7542 
7543 	if (sysctl_sched_rt_period <= 0)
7544 		return -EINVAL;
7545 
7546 	/*
7547 	 * There's always some RT tasks in the root group
7548 	 * -- migration, kstopmachine etc..
7549 	 */
7550 	if (sysctl_sched_rt_runtime == 0)
7551 		return -EBUSY;
7552 
7553 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7554 	for_each_possible_cpu(i) {
7555 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7556 
7557 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7558 		rt_rq->rt_runtime = global_rt_runtime();
7559 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7560 	}
7561 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7562 
7563 	return 0;
7564 }
7565 #endif /* CONFIG_RT_GROUP_SCHED */
7566 
7567 int sched_rt_handler(struct ctl_table *table, int write,
7568 		void __user *buffer, size_t *lenp,
7569 		loff_t *ppos)
7570 {
7571 	int ret;
7572 	int old_period, old_runtime;
7573 	static DEFINE_MUTEX(mutex);
7574 
7575 	mutex_lock(&mutex);
7576 	old_period = sysctl_sched_rt_period;
7577 	old_runtime = sysctl_sched_rt_runtime;
7578 
7579 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7580 
7581 	if (!ret && write) {
7582 		ret = sched_rt_global_constraints();
7583 		if (ret) {
7584 			sysctl_sched_rt_period = old_period;
7585 			sysctl_sched_rt_runtime = old_runtime;
7586 		} else {
7587 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7588 			def_rt_bandwidth.rt_period =
7589 				ns_to_ktime(global_rt_period());
7590 		}
7591 	}
7592 	mutex_unlock(&mutex);
7593 
7594 	return ret;
7595 }
7596 
7597 #ifdef CONFIG_CGROUP_SCHED
7598 
7599 /* return corresponding task_group object of a cgroup */
7600 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7601 {
7602 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7603 			    struct task_group, css);
7604 }
7605 
7606 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7607 {
7608 	struct task_group *tg, *parent;
7609 
7610 	if (!cgrp->parent) {
7611 		/* This is early initialization for the top cgroup */
7612 		return &root_task_group.css;
7613 	}
7614 
7615 	parent = cgroup_tg(cgrp->parent);
7616 	tg = sched_create_group(parent);
7617 	if (IS_ERR(tg))
7618 		return ERR_PTR(-ENOMEM);
7619 
7620 	return &tg->css;
7621 }
7622 
7623 static void cpu_cgroup_destroy(struct cgroup *cgrp)
7624 {
7625 	struct task_group *tg = cgroup_tg(cgrp);
7626 
7627 	sched_destroy_group(tg);
7628 }
7629 
7630 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7631 				 struct cgroup_taskset *tset)
7632 {
7633 	struct task_struct *task;
7634 
7635 	cgroup_taskset_for_each(task, cgrp, tset) {
7636 #ifdef CONFIG_RT_GROUP_SCHED
7637 		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7638 			return -EINVAL;
7639 #else
7640 		/* We don't support RT-tasks being in separate groups */
7641 		if (task->sched_class != &fair_sched_class)
7642 			return -EINVAL;
7643 #endif
7644 	}
7645 	return 0;
7646 }
7647 
7648 static void cpu_cgroup_attach(struct cgroup *cgrp,
7649 			      struct cgroup_taskset *tset)
7650 {
7651 	struct task_struct *task;
7652 
7653 	cgroup_taskset_for_each(task, cgrp, tset)
7654 		sched_move_task(task);
7655 }
7656 
7657 static void
7658 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7659 		struct task_struct *task)
7660 {
7661 	/*
7662 	 * cgroup_exit() is called in the copy_process() failure path.
7663 	 * Ignore this case since the task hasn't ran yet, this avoids
7664 	 * trying to poke a half freed task state from generic code.
7665 	 */
7666 	if (!(task->flags & PF_EXITING))
7667 		return;
7668 
7669 	sched_move_task(task);
7670 }
7671 
7672 #ifdef CONFIG_FAIR_GROUP_SCHED
7673 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7674 				u64 shareval)
7675 {
7676 	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7677 }
7678 
7679 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7680 {
7681 	struct task_group *tg = cgroup_tg(cgrp);
7682 
7683 	return (u64) scale_load_down(tg->shares);
7684 }
7685 
7686 #ifdef CONFIG_CFS_BANDWIDTH
7687 static DEFINE_MUTEX(cfs_constraints_mutex);
7688 
7689 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7690 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7691 
7692 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7693 
7694 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7695 {
7696 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7697 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7698 
7699 	if (tg == &root_task_group)
7700 		return -EINVAL;
7701 
7702 	/*
7703 	 * Ensure we have at some amount of bandwidth every period.  This is
7704 	 * to prevent reaching a state of large arrears when throttled via
7705 	 * entity_tick() resulting in prolonged exit starvation.
7706 	 */
7707 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7708 		return -EINVAL;
7709 
7710 	/*
7711 	 * Likewise, bound things on the otherside by preventing insane quota
7712 	 * periods.  This also allows us to normalize in computing quota
7713 	 * feasibility.
7714 	 */
7715 	if (period > max_cfs_quota_period)
7716 		return -EINVAL;
7717 
7718 	mutex_lock(&cfs_constraints_mutex);
7719 	ret = __cfs_schedulable(tg, period, quota);
7720 	if (ret)
7721 		goto out_unlock;
7722 
7723 	runtime_enabled = quota != RUNTIME_INF;
7724 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7725 	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7726 	raw_spin_lock_irq(&cfs_b->lock);
7727 	cfs_b->period = ns_to_ktime(period);
7728 	cfs_b->quota = quota;
7729 
7730 	__refill_cfs_bandwidth_runtime(cfs_b);
7731 	/* restart the period timer (if active) to handle new period expiry */
7732 	if (runtime_enabled && cfs_b->timer_active) {
7733 		/* force a reprogram */
7734 		cfs_b->timer_active = 0;
7735 		__start_cfs_bandwidth(cfs_b);
7736 	}
7737 	raw_spin_unlock_irq(&cfs_b->lock);
7738 
7739 	for_each_possible_cpu(i) {
7740 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7741 		struct rq *rq = cfs_rq->rq;
7742 
7743 		raw_spin_lock_irq(&rq->lock);
7744 		cfs_rq->runtime_enabled = runtime_enabled;
7745 		cfs_rq->runtime_remaining = 0;
7746 
7747 		if (cfs_rq->throttled)
7748 			unthrottle_cfs_rq(cfs_rq);
7749 		raw_spin_unlock_irq(&rq->lock);
7750 	}
7751 out_unlock:
7752 	mutex_unlock(&cfs_constraints_mutex);
7753 
7754 	return ret;
7755 }
7756 
7757 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7758 {
7759 	u64 quota, period;
7760 
7761 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7762 	if (cfs_quota_us < 0)
7763 		quota = RUNTIME_INF;
7764 	else
7765 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7766 
7767 	return tg_set_cfs_bandwidth(tg, period, quota);
7768 }
7769 
7770 long tg_get_cfs_quota(struct task_group *tg)
7771 {
7772 	u64 quota_us;
7773 
7774 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7775 		return -1;
7776 
7777 	quota_us = tg->cfs_bandwidth.quota;
7778 	do_div(quota_us, NSEC_PER_USEC);
7779 
7780 	return quota_us;
7781 }
7782 
7783 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7784 {
7785 	u64 quota, period;
7786 
7787 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7788 	quota = tg->cfs_bandwidth.quota;
7789 
7790 	return tg_set_cfs_bandwidth(tg, period, quota);
7791 }
7792 
7793 long tg_get_cfs_period(struct task_group *tg)
7794 {
7795 	u64 cfs_period_us;
7796 
7797 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7798 	do_div(cfs_period_us, NSEC_PER_USEC);
7799 
7800 	return cfs_period_us;
7801 }
7802 
7803 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7804 {
7805 	return tg_get_cfs_quota(cgroup_tg(cgrp));
7806 }
7807 
7808 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7809 				s64 cfs_quota_us)
7810 {
7811 	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7812 }
7813 
7814 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7815 {
7816 	return tg_get_cfs_period(cgroup_tg(cgrp));
7817 }
7818 
7819 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7820 				u64 cfs_period_us)
7821 {
7822 	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7823 }
7824 
7825 struct cfs_schedulable_data {
7826 	struct task_group *tg;
7827 	u64 period, quota;
7828 };
7829 
7830 /*
7831  * normalize group quota/period to be quota/max_period
7832  * note: units are usecs
7833  */
7834 static u64 normalize_cfs_quota(struct task_group *tg,
7835 			       struct cfs_schedulable_data *d)
7836 {
7837 	u64 quota, period;
7838 
7839 	if (tg == d->tg) {
7840 		period = d->period;
7841 		quota = d->quota;
7842 	} else {
7843 		period = tg_get_cfs_period(tg);
7844 		quota = tg_get_cfs_quota(tg);
7845 	}
7846 
7847 	/* note: these should typically be equivalent */
7848 	if (quota == RUNTIME_INF || quota == -1)
7849 		return RUNTIME_INF;
7850 
7851 	return to_ratio(period, quota);
7852 }
7853 
7854 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7855 {
7856 	struct cfs_schedulable_data *d = data;
7857 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7858 	s64 quota = 0, parent_quota = -1;
7859 
7860 	if (!tg->parent) {
7861 		quota = RUNTIME_INF;
7862 	} else {
7863 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7864 
7865 		quota = normalize_cfs_quota(tg, d);
7866 		parent_quota = parent_b->hierarchal_quota;
7867 
7868 		/*
7869 		 * ensure max(child_quota) <= parent_quota, inherit when no
7870 		 * limit is set
7871 		 */
7872 		if (quota == RUNTIME_INF)
7873 			quota = parent_quota;
7874 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7875 			return -EINVAL;
7876 	}
7877 	cfs_b->hierarchal_quota = quota;
7878 
7879 	return 0;
7880 }
7881 
7882 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7883 {
7884 	int ret;
7885 	struct cfs_schedulable_data data = {
7886 		.tg = tg,
7887 		.period = period,
7888 		.quota = quota,
7889 	};
7890 
7891 	if (quota != RUNTIME_INF) {
7892 		do_div(data.period, NSEC_PER_USEC);
7893 		do_div(data.quota, NSEC_PER_USEC);
7894 	}
7895 
7896 	rcu_read_lock();
7897 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7898 	rcu_read_unlock();
7899 
7900 	return ret;
7901 }
7902 
7903 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7904 		struct cgroup_map_cb *cb)
7905 {
7906 	struct task_group *tg = cgroup_tg(cgrp);
7907 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7908 
7909 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7910 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7911 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7912 
7913 	return 0;
7914 }
7915 #endif /* CONFIG_CFS_BANDWIDTH */
7916 #endif /* CONFIG_FAIR_GROUP_SCHED */
7917 
7918 #ifdef CONFIG_RT_GROUP_SCHED
7919 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7920 				s64 val)
7921 {
7922 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7923 }
7924 
7925 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7926 {
7927 	return sched_group_rt_runtime(cgroup_tg(cgrp));
7928 }
7929 
7930 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7931 		u64 rt_period_us)
7932 {
7933 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7934 }
7935 
7936 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7937 {
7938 	return sched_group_rt_period(cgroup_tg(cgrp));
7939 }
7940 #endif /* CONFIG_RT_GROUP_SCHED */
7941 
7942 static struct cftype cpu_files[] = {
7943 #ifdef CONFIG_FAIR_GROUP_SCHED
7944 	{
7945 		.name = "shares",
7946 		.read_u64 = cpu_shares_read_u64,
7947 		.write_u64 = cpu_shares_write_u64,
7948 	},
7949 #endif
7950 #ifdef CONFIG_CFS_BANDWIDTH
7951 	{
7952 		.name = "cfs_quota_us",
7953 		.read_s64 = cpu_cfs_quota_read_s64,
7954 		.write_s64 = cpu_cfs_quota_write_s64,
7955 	},
7956 	{
7957 		.name = "cfs_period_us",
7958 		.read_u64 = cpu_cfs_period_read_u64,
7959 		.write_u64 = cpu_cfs_period_write_u64,
7960 	},
7961 	{
7962 		.name = "stat",
7963 		.read_map = cpu_stats_show,
7964 	},
7965 #endif
7966 #ifdef CONFIG_RT_GROUP_SCHED
7967 	{
7968 		.name = "rt_runtime_us",
7969 		.read_s64 = cpu_rt_runtime_read,
7970 		.write_s64 = cpu_rt_runtime_write,
7971 	},
7972 	{
7973 		.name = "rt_period_us",
7974 		.read_u64 = cpu_rt_period_read_uint,
7975 		.write_u64 = cpu_rt_period_write_uint,
7976 	},
7977 #endif
7978 };
7979 
7980 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7981 {
7982 	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7983 }
7984 
7985 struct cgroup_subsys cpu_cgroup_subsys = {
7986 	.name		= "cpu",
7987 	.create		= cpu_cgroup_create,
7988 	.destroy	= cpu_cgroup_destroy,
7989 	.can_attach	= cpu_cgroup_can_attach,
7990 	.attach		= cpu_cgroup_attach,
7991 	.exit		= cpu_cgroup_exit,
7992 	.populate	= cpu_cgroup_populate,
7993 	.subsys_id	= cpu_cgroup_subsys_id,
7994 	.early_init	= 1,
7995 };
7996 
7997 #endif	/* CONFIG_CGROUP_SCHED */
7998 
7999 #ifdef CONFIG_CGROUP_CPUACCT
8000 
8001 /*
8002  * CPU accounting code for task groups.
8003  *
8004  * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8005  * (balbir@in.ibm.com).
8006  */
8007 
8008 /* create a new cpu accounting group */
8009 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8010 {
8011 	struct cpuacct *ca;
8012 
8013 	if (!cgrp->parent)
8014 		return &root_cpuacct.css;
8015 
8016 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8017 	if (!ca)
8018 		goto out;
8019 
8020 	ca->cpuusage = alloc_percpu(u64);
8021 	if (!ca->cpuusage)
8022 		goto out_free_ca;
8023 
8024 	ca->cpustat = alloc_percpu(struct kernel_cpustat);
8025 	if (!ca->cpustat)
8026 		goto out_free_cpuusage;
8027 
8028 	return &ca->css;
8029 
8030 out_free_cpuusage:
8031 	free_percpu(ca->cpuusage);
8032 out_free_ca:
8033 	kfree(ca);
8034 out:
8035 	return ERR_PTR(-ENOMEM);
8036 }
8037 
8038 /* destroy an existing cpu accounting group */
8039 static void cpuacct_destroy(struct cgroup *cgrp)
8040 {
8041 	struct cpuacct *ca = cgroup_ca(cgrp);
8042 
8043 	free_percpu(ca->cpustat);
8044 	free_percpu(ca->cpuusage);
8045 	kfree(ca);
8046 }
8047 
8048 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8049 {
8050 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8051 	u64 data;
8052 
8053 #ifndef CONFIG_64BIT
8054 	/*
8055 	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8056 	 */
8057 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8058 	data = *cpuusage;
8059 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8060 #else
8061 	data = *cpuusage;
8062 #endif
8063 
8064 	return data;
8065 }
8066 
8067 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8068 {
8069 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8070 
8071 #ifndef CONFIG_64BIT
8072 	/*
8073 	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8074 	 */
8075 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8076 	*cpuusage = val;
8077 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8078 #else
8079 	*cpuusage = val;
8080 #endif
8081 }
8082 
8083 /* return total cpu usage (in nanoseconds) of a group */
8084 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8085 {
8086 	struct cpuacct *ca = cgroup_ca(cgrp);
8087 	u64 totalcpuusage = 0;
8088 	int i;
8089 
8090 	for_each_present_cpu(i)
8091 		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8092 
8093 	return totalcpuusage;
8094 }
8095 
8096 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8097 								u64 reset)
8098 {
8099 	struct cpuacct *ca = cgroup_ca(cgrp);
8100 	int err = 0;
8101 	int i;
8102 
8103 	if (reset) {
8104 		err = -EINVAL;
8105 		goto out;
8106 	}
8107 
8108 	for_each_present_cpu(i)
8109 		cpuacct_cpuusage_write(ca, i, 0);
8110 
8111 out:
8112 	return err;
8113 }
8114 
8115 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8116 				   struct seq_file *m)
8117 {
8118 	struct cpuacct *ca = cgroup_ca(cgroup);
8119 	u64 percpu;
8120 	int i;
8121 
8122 	for_each_present_cpu(i) {
8123 		percpu = cpuacct_cpuusage_read(ca, i);
8124 		seq_printf(m, "%llu ", (unsigned long long) percpu);
8125 	}
8126 	seq_printf(m, "\n");
8127 	return 0;
8128 }
8129 
8130 static const char *cpuacct_stat_desc[] = {
8131 	[CPUACCT_STAT_USER] = "user",
8132 	[CPUACCT_STAT_SYSTEM] = "system",
8133 };
8134 
8135 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8136 			      struct cgroup_map_cb *cb)
8137 {
8138 	struct cpuacct *ca = cgroup_ca(cgrp);
8139 	int cpu;
8140 	s64 val = 0;
8141 
8142 	for_each_online_cpu(cpu) {
8143 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8144 		val += kcpustat->cpustat[CPUTIME_USER];
8145 		val += kcpustat->cpustat[CPUTIME_NICE];
8146 	}
8147 	val = cputime64_to_clock_t(val);
8148 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8149 
8150 	val = 0;
8151 	for_each_online_cpu(cpu) {
8152 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8153 		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8154 		val += kcpustat->cpustat[CPUTIME_IRQ];
8155 		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8156 	}
8157 
8158 	val = cputime64_to_clock_t(val);
8159 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8160 
8161 	return 0;
8162 }
8163 
8164 static struct cftype files[] = {
8165 	{
8166 		.name = "usage",
8167 		.read_u64 = cpuusage_read,
8168 		.write_u64 = cpuusage_write,
8169 	},
8170 	{
8171 		.name = "usage_percpu",
8172 		.read_seq_string = cpuacct_percpu_seq_read,
8173 	},
8174 	{
8175 		.name = "stat",
8176 		.read_map = cpuacct_stats_show,
8177 	},
8178 };
8179 
8180 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8181 {
8182 	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8183 }
8184 
8185 /*
8186  * charge this task's execution time to its accounting group.
8187  *
8188  * called with rq->lock held.
8189  */
8190 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8191 {
8192 	struct cpuacct *ca;
8193 	int cpu;
8194 
8195 	if (unlikely(!cpuacct_subsys.active))
8196 		return;
8197 
8198 	cpu = task_cpu(tsk);
8199 
8200 	rcu_read_lock();
8201 
8202 	ca = task_ca(tsk);
8203 
8204 	for (; ca; ca = parent_ca(ca)) {
8205 		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8206 		*cpuusage += cputime;
8207 	}
8208 
8209 	rcu_read_unlock();
8210 }
8211 
8212 struct cgroup_subsys cpuacct_subsys = {
8213 	.name = "cpuacct",
8214 	.create = cpuacct_create,
8215 	.destroy = cpuacct_destroy,
8216 	.populate = cpuacct_populate,
8217 	.subsys_id = cpuacct_subsys_id,
8218 };
8219 #endif	/* CONFIG_CGROUP_CPUACCT */
8220