1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include <linux/highmem.h> 10 #include <linux/hrtimer_api.h> 11 #include <linux/ktime_api.h> 12 #include <linux/sched/signal.h> 13 #include <linux/syscalls_api.h> 14 #include <linux/debug_locks.h> 15 #include <linux/prefetch.h> 16 #include <linux/capability.h> 17 #include <linux/pgtable_api.h> 18 #include <linux/wait_bit.h> 19 #include <linux/jiffies.h> 20 #include <linux/spinlock_api.h> 21 #include <linux/cpumask_api.h> 22 #include <linux/lockdep_api.h> 23 #include <linux/hardirq.h> 24 #include <linux/softirq.h> 25 #include <linux/refcount_api.h> 26 #include <linux/topology.h> 27 #include <linux/sched/clock.h> 28 #include <linux/sched/cond_resched.h> 29 #include <linux/sched/cputime.h> 30 #include <linux/sched/debug.h> 31 #include <linux/sched/hotplug.h> 32 #include <linux/sched/init.h> 33 #include <linux/sched/isolation.h> 34 #include <linux/sched/loadavg.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/nohz.h> 37 #include <linux/sched/rseq_api.h> 38 #include <linux/sched/rt.h> 39 40 #include <linux/blkdev.h> 41 #include <linux/context_tracking.h> 42 #include <linux/cpuset.h> 43 #include <linux/delayacct.h> 44 #include <linux/init_task.h> 45 #include <linux/interrupt.h> 46 #include <linux/ioprio.h> 47 #include <linux/kallsyms.h> 48 #include <linux/kcov.h> 49 #include <linux/kprobes.h> 50 #include <linux/llist_api.h> 51 #include <linux/mmu_context.h> 52 #include <linux/mmzone.h> 53 #include <linux/mutex_api.h> 54 #include <linux/nmi.h> 55 #include <linux/nospec.h> 56 #include <linux/perf_event_api.h> 57 #include <linux/profile.h> 58 #include <linux/psi.h> 59 #include <linux/rcuwait_api.h> 60 #include <linux/sched/wake_q.h> 61 #include <linux/scs.h> 62 #include <linux/slab.h> 63 #include <linux/syscalls.h> 64 #include <linux/vtime.h> 65 #include <linux/wait_api.h> 66 #include <linux/workqueue_api.h> 67 68 #ifdef CONFIG_PREEMPT_DYNAMIC 69 # ifdef CONFIG_GENERIC_ENTRY 70 # include <linux/entry-common.h> 71 # endif 72 #endif 73 74 #include <uapi/linux/sched/types.h> 75 76 #include <asm/irq_regs.h> 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 80 #define CREATE_TRACE_POINTS 81 #include <linux/sched/rseq_api.h> 82 #include <trace/events/sched.h> 83 #undef CREATE_TRACE_POINTS 84 85 #include "sched.h" 86 #include "stats.h" 87 #include "autogroup.h" 88 89 #include "autogroup.h" 90 #include "pelt.h" 91 #include "smp.h" 92 #include "stats.h" 93 94 #include "../workqueue_internal.h" 95 #include "../../io_uring/io-wq.h" 96 #include "../smpboot.h" 97 98 /* 99 * Export tracepoints that act as a bare tracehook (ie: have no trace event 100 * associated with them) to allow external modules to probe them. 101 */ 102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 113 114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 115 116 #ifdef CONFIG_SCHED_DEBUG 117 /* 118 * Debugging: various feature bits 119 * 120 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 121 * sysctl_sched_features, defined in sched.h, to allow constants propagation 122 * at compile time and compiler optimization based on features default. 123 */ 124 #define SCHED_FEAT(name, enabled) \ 125 (1UL << __SCHED_FEAT_##name) * enabled | 126 const_debug unsigned int sysctl_sched_features = 127 #include "features.h" 128 0; 129 #undef SCHED_FEAT 130 131 /* 132 * Print a warning if need_resched is set for the given duration (if 133 * LATENCY_WARN is enabled). 134 * 135 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 136 * per boot. 137 */ 138 __read_mostly int sysctl_resched_latency_warn_ms = 100; 139 __read_mostly int sysctl_resched_latency_warn_once = 1; 140 #endif /* CONFIG_SCHED_DEBUG */ 141 142 /* 143 * Number of tasks to iterate in a single balance run. 144 * Limited because this is done with IRQs disabled. 145 */ 146 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 147 148 __read_mostly int scheduler_running; 149 150 #ifdef CONFIG_SCHED_CORE 151 152 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 153 154 /* kernel prio, less is more */ 155 static inline int __task_prio(struct task_struct *p) 156 { 157 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 158 return -2; 159 160 if (rt_prio(p->prio)) /* includes deadline */ 161 return p->prio; /* [-1, 99] */ 162 163 if (p->sched_class == &idle_sched_class) 164 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 165 166 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 167 } 168 169 /* 170 * l(a,b) 171 * le(a,b) := !l(b,a) 172 * g(a,b) := l(b,a) 173 * ge(a,b) := !l(a,b) 174 */ 175 176 /* real prio, less is less */ 177 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 178 { 179 180 int pa = __task_prio(a), pb = __task_prio(b); 181 182 if (-pa < -pb) 183 return true; 184 185 if (-pb < -pa) 186 return false; 187 188 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 189 return !dl_time_before(a->dl.deadline, b->dl.deadline); 190 191 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 192 return cfs_prio_less(a, b, in_fi); 193 194 return false; 195 } 196 197 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b) 198 { 199 if (a->core_cookie < b->core_cookie) 200 return true; 201 202 if (a->core_cookie > b->core_cookie) 203 return false; 204 205 /* flip prio, so high prio is leftmost */ 206 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 207 return true; 208 209 return false; 210 } 211 212 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 213 214 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 215 { 216 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 217 } 218 219 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 220 { 221 const struct task_struct *p = __node_2_sc(node); 222 unsigned long cookie = (unsigned long)key; 223 224 if (cookie < p->core_cookie) 225 return -1; 226 227 if (cookie > p->core_cookie) 228 return 1; 229 230 return 0; 231 } 232 233 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 234 { 235 rq->core->core_task_seq++; 236 237 if (!p->core_cookie) 238 return; 239 240 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 241 } 242 243 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 244 { 245 rq->core->core_task_seq++; 246 247 if (sched_core_enqueued(p)) { 248 rb_erase(&p->core_node, &rq->core_tree); 249 RB_CLEAR_NODE(&p->core_node); 250 } 251 252 /* 253 * Migrating the last task off the cpu, with the cpu in forced idle 254 * state. Reschedule to create an accounting edge for forced idle, 255 * and re-examine whether the core is still in forced idle state. 256 */ 257 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 258 rq->core->core_forceidle_count && rq->curr == rq->idle) 259 resched_curr(rq); 260 } 261 262 /* 263 * Find left-most (aka, highest priority) task matching @cookie. 264 */ 265 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 266 { 267 struct rb_node *node; 268 269 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 270 /* 271 * The idle task always matches any cookie! 272 */ 273 if (!node) 274 return idle_sched_class.pick_task(rq); 275 276 return __node_2_sc(node); 277 } 278 279 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 280 { 281 struct rb_node *node = &p->core_node; 282 283 node = rb_next(node); 284 if (!node) 285 return NULL; 286 287 p = container_of(node, struct task_struct, core_node); 288 if (p->core_cookie != cookie) 289 return NULL; 290 291 return p; 292 } 293 294 /* 295 * Magic required such that: 296 * 297 * raw_spin_rq_lock(rq); 298 * ... 299 * raw_spin_rq_unlock(rq); 300 * 301 * ends up locking and unlocking the _same_ lock, and all CPUs 302 * always agree on what rq has what lock. 303 * 304 * XXX entirely possible to selectively enable cores, don't bother for now. 305 */ 306 307 static DEFINE_MUTEX(sched_core_mutex); 308 static atomic_t sched_core_count; 309 static struct cpumask sched_core_mask; 310 311 static void sched_core_lock(int cpu, unsigned long *flags) 312 { 313 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 314 int t, i = 0; 315 316 local_irq_save(*flags); 317 for_each_cpu(t, smt_mask) 318 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 319 } 320 321 static void sched_core_unlock(int cpu, unsigned long *flags) 322 { 323 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 324 int t; 325 326 for_each_cpu(t, smt_mask) 327 raw_spin_unlock(&cpu_rq(t)->__lock); 328 local_irq_restore(*flags); 329 } 330 331 static void __sched_core_flip(bool enabled) 332 { 333 unsigned long flags; 334 int cpu, t; 335 336 cpus_read_lock(); 337 338 /* 339 * Toggle the online cores, one by one. 340 */ 341 cpumask_copy(&sched_core_mask, cpu_online_mask); 342 for_each_cpu(cpu, &sched_core_mask) { 343 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 344 345 sched_core_lock(cpu, &flags); 346 347 for_each_cpu(t, smt_mask) 348 cpu_rq(t)->core_enabled = enabled; 349 350 cpu_rq(cpu)->core->core_forceidle_start = 0; 351 352 sched_core_unlock(cpu, &flags); 353 354 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 355 } 356 357 /* 358 * Toggle the offline CPUs. 359 */ 360 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 361 cpu_rq(cpu)->core_enabled = enabled; 362 363 cpus_read_unlock(); 364 } 365 366 static void sched_core_assert_empty(void) 367 { 368 int cpu; 369 370 for_each_possible_cpu(cpu) 371 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 372 } 373 374 static void __sched_core_enable(void) 375 { 376 static_branch_enable(&__sched_core_enabled); 377 /* 378 * Ensure all previous instances of raw_spin_rq_*lock() have finished 379 * and future ones will observe !sched_core_disabled(). 380 */ 381 synchronize_rcu(); 382 __sched_core_flip(true); 383 sched_core_assert_empty(); 384 } 385 386 static void __sched_core_disable(void) 387 { 388 sched_core_assert_empty(); 389 __sched_core_flip(false); 390 static_branch_disable(&__sched_core_enabled); 391 } 392 393 void sched_core_get(void) 394 { 395 if (atomic_inc_not_zero(&sched_core_count)) 396 return; 397 398 mutex_lock(&sched_core_mutex); 399 if (!atomic_read(&sched_core_count)) 400 __sched_core_enable(); 401 402 smp_mb__before_atomic(); 403 atomic_inc(&sched_core_count); 404 mutex_unlock(&sched_core_mutex); 405 } 406 407 static void __sched_core_put(struct work_struct *work) 408 { 409 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 410 __sched_core_disable(); 411 mutex_unlock(&sched_core_mutex); 412 } 413 } 414 415 void sched_core_put(void) 416 { 417 static DECLARE_WORK(_work, __sched_core_put); 418 419 /* 420 * "There can be only one" 421 * 422 * Either this is the last one, or we don't actually need to do any 423 * 'work'. If it is the last *again*, we rely on 424 * WORK_STRUCT_PENDING_BIT. 425 */ 426 if (!atomic_add_unless(&sched_core_count, -1, 1)) 427 schedule_work(&_work); 428 } 429 430 #else /* !CONFIG_SCHED_CORE */ 431 432 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 433 static inline void 434 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 435 436 #endif /* CONFIG_SCHED_CORE */ 437 438 /* 439 * Serialization rules: 440 * 441 * Lock order: 442 * 443 * p->pi_lock 444 * rq->lock 445 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 446 * 447 * rq1->lock 448 * rq2->lock where: rq1 < rq2 449 * 450 * Regular state: 451 * 452 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 453 * local CPU's rq->lock, it optionally removes the task from the runqueue and 454 * always looks at the local rq data structures to find the most eligible task 455 * to run next. 456 * 457 * Task enqueue is also under rq->lock, possibly taken from another CPU. 458 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 459 * the local CPU to avoid bouncing the runqueue state around [ see 460 * ttwu_queue_wakelist() ] 461 * 462 * Task wakeup, specifically wakeups that involve migration, are horribly 463 * complicated to avoid having to take two rq->locks. 464 * 465 * Special state: 466 * 467 * System-calls and anything external will use task_rq_lock() which acquires 468 * both p->pi_lock and rq->lock. As a consequence the state they change is 469 * stable while holding either lock: 470 * 471 * - sched_setaffinity()/ 472 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 473 * - set_user_nice(): p->se.load, p->*prio 474 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 475 * p->se.load, p->rt_priority, 476 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 477 * - sched_setnuma(): p->numa_preferred_nid 478 * - sched_move_task(): p->sched_task_group 479 * - uclamp_update_active() p->uclamp* 480 * 481 * p->state <- TASK_*: 482 * 483 * is changed locklessly using set_current_state(), __set_current_state() or 484 * set_special_state(), see their respective comments, or by 485 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 486 * concurrent self. 487 * 488 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 489 * 490 * is set by activate_task() and cleared by deactivate_task(), under 491 * rq->lock. Non-zero indicates the task is runnable, the special 492 * ON_RQ_MIGRATING state is used for migration without holding both 493 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 494 * 495 * p->on_cpu <- { 0, 1 }: 496 * 497 * is set by prepare_task() and cleared by finish_task() such that it will be 498 * set before p is scheduled-in and cleared after p is scheduled-out, both 499 * under rq->lock. Non-zero indicates the task is running on its CPU. 500 * 501 * [ The astute reader will observe that it is possible for two tasks on one 502 * CPU to have ->on_cpu = 1 at the same time. ] 503 * 504 * task_cpu(p): is changed by set_task_cpu(), the rules are: 505 * 506 * - Don't call set_task_cpu() on a blocked task: 507 * 508 * We don't care what CPU we're not running on, this simplifies hotplug, 509 * the CPU assignment of blocked tasks isn't required to be valid. 510 * 511 * - for try_to_wake_up(), called under p->pi_lock: 512 * 513 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 514 * 515 * - for migration called under rq->lock: 516 * [ see task_on_rq_migrating() in task_rq_lock() ] 517 * 518 * o move_queued_task() 519 * o detach_task() 520 * 521 * - for migration called under double_rq_lock(): 522 * 523 * o __migrate_swap_task() 524 * o push_rt_task() / pull_rt_task() 525 * o push_dl_task() / pull_dl_task() 526 * o dl_task_offline_migration() 527 * 528 */ 529 530 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 531 { 532 raw_spinlock_t *lock; 533 534 /* Matches synchronize_rcu() in __sched_core_enable() */ 535 preempt_disable(); 536 if (sched_core_disabled()) { 537 raw_spin_lock_nested(&rq->__lock, subclass); 538 /* preempt_count *MUST* be > 1 */ 539 preempt_enable_no_resched(); 540 return; 541 } 542 543 for (;;) { 544 lock = __rq_lockp(rq); 545 raw_spin_lock_nested(lock, subclass); 546 if (likely(lock == __rq_lockp(rq))) { 547 /* preempt_count *MUST* be > 1 */ 548 preempt_enable_no_resched(); 549 return; 550 } 551 raw_spin_unlock(lock); 552 } 553 } 554 555 bool raw_spin_rq_trylock(struct rq *rq) 556 { 557 raw_spinlock_t *lock; 558 bool ret; 559 560 /* Matches synchronize_rcu() in __sched_core_enable() */ 561 preempt_disable(); 562 if (sched_core_disabled()) { 563 ret = raw_spin_trylock(&rq->__lock); 564 preempt_enable(); 565 return ret; 566 } 567 568 for (;;) { 569 lock = __rq_lockp(rq); 570 ret = raw_spin_trylock(lock); 571 if (!ret || (likely(lock == __rq_lockp(rq)))) { 572 preempt_enable(); 573 return ret; 574 } 575 raw_spin_unlock(lock); 576 } 577 } 578 579 void raw_spin_rq_unlock(struct rq *rq) 580 { 581 raw_spin_unlock(rq_lockp(rq)); 582 } 583 584 #ifdef CONFIG_SMP 585 /* 586 * double_rq_lock - safely lock two runqueues 587 */ 588 void double_rq_lock(struct rq *rq1, struct rq *rq2) 589 { 590 lockdep_assert_irqs_disabled(); 591 592 if (rq_order_less(rq2, rq1)) 593 swap(rq1, rq2); 594 595 raw_spin_rq_lock(rq1); 596 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 597 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 598 599 double_rq_clock_clear_update(rq1, rq2); 600 } 601 #endif 602 603 /* 604 * __task_rq_lock - lock the rq @p resides on. 605 */ 606 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 607 __acquires(rq->lock) 608 { 609 struct rq *rq; 610 611 lockdep_assert_held(&p->pi_lock); 612 613 for (;;) { 614 rq = task_rq(p); 615 raw_spin_rq_lock(rq); 616 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 617 rq_pin_lock(rq, rf); 618 return rq; 619 } 620 raw_spin_rq_unlock(rq); 621 622 while (unlikely(task_on_rq_migrating(p))) 623 cpu_relax(); 624 } 625 } 626 627 /* 628 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 629 */ 630 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 631 __acquires(p->pi_lock) 632 __acquires(rq->lock) 633 { 634 struct rq *rq; 635 636 for (;;) { 637 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 638 rq = task_rq(p); 639 raw_spin_rq_lock(rq); 640 /* 641 * move_queued_task() task_rq_lock() 642 * 643 * ACQUIRE (rq->lock) 644 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 645 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 646 * [S] ->cpu = new_cpu [L] task_rq() 647 * [L] ->on_rq 648 * RELEASE (rq->lock) 649 * 650 * If we observe the old CPU in task_rq_lock(), the acquire of 651 * the old rq->lock will fully serialize against the stores. 652 * 653 * If we observe the new CPU in task_rq_lock(), the address 654 * dependency headed by '[L] rq = task_rq()' and the acquire 655 * will pair with the WMB to ensure we then also see migrating. 656 */ 657 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 658 rq_pin_lock(rq, rf); 659 return rq; 660 } 661 raw_spin_rq_unlock(rq); 662 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 663 664 while (unlikely(task_on_rq_migrating(p))) 665 cpu_relax(); 666 } 667 } 668 669 /* 670 * RQ-clock updating methods: 671 */ 672 673 static void update_rq_clock_task(struct rq *rq, s64 delta) 674 { 675 /* 676 * In theory, the compile should just see 0 here, and optimize out the call 677 * to sched_rt_avg_update. But I don't trust it... 678 */ 679 s64 __maybe_unused steal = 0, irq_delta = 0; 680 681 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 682 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 683 684 /* 685 * Since irq_time is only updated on {soft,}irq_exit, we might run into 686 * this case when a previous update_rq_clock() happened inside a 687 * {soft,}irq region. 688 * 689 * When this happens, we stop ->clock_task and only update the 690 * prev_irq_time stamp to account for the part that fit, so that a next 691 * update will consume the rest. This ensures ->clock_task is 692 * monotonic. 693 * 694 * It does however cause some slight miss-attribution of {soft,}irq 695 * time, a more accurate solution would be to update the irq_time using 696 * the current rq->clock timestamp, except that would require using 697 * atomic ops. 698 */ 699 if (irq_delta > delta) 700 irq_delta = delta; 701 702 rq->prev_irq_time += irq_delta; 703 delta -= irq_delta; 704 #endif 705 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 706 if (static_key_false((¶virt_steal_rq_enabled))) { 707 steal = paravirt_steal_clock(cpu_of(rq)); 708 steal -= rq->prev_steal_time_rq; 709 710 if (unlikely(steal > delta)) 711 steal = delta; 712 713 rq->prev_steal_time_rq += steal; 714 delta -= steal; 715 } 716 #endif 717 718 rq->clock_task += delta; 719 720 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 721 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 722 update_irq_load_avg(rq, irq_delta + steal); 723 #endif 724 update_rq_clock_pelt(rq, delta); 725 } 726 727 void update_rq_clock(struct rq *rq) 728 { 729 s64 delta; 730 731 lockdep_assert_rq_held(rq); 732 733 if (rq->clock_update_flags & RQCF_ACT_SKIP) 734 return; 735 736 #ifdef CONFIG_SCHED_DEBUG 737 if (sched_feat(WARN_DOUBLE_CLOCK)) 738 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 739 rq->clock_update_flags |= RQCF_UPDATED; 740 #endif 741 742 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 743 if (delta < 0) 744 return; 745 rq->clock += delta; 746 update_rq_clock_task(rq, delta); 747 } 748 749 #ifdef CONFIG_SCHED_HRTICK 750 /* 751 * Use HR-timers to deliver accurate preemption points. 752 */ 753 754 static void hrtick_clear(struct rq *rq) 755 { 756 if (hrtimer_active(&rq->hrtick_timer)) 757 hrtimer_cancel(&rq->hrtick_timer); 758 } 759 760 /* 761 * High-resolution timer tick. 762 * Runs from hardirq context with interrupts disabled. 763 */ 764 static enum hrtimer_restart hrtick(struct hrtimer *timer) 765 { 766 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 767 struct rq_flags rf; 768 769 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 770 771 rq_lock(rq, &rf); 772 update_rq_clock(rq); 773 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 774 rq_unlock(rq, &rf); 775 776 return HRTIMER_NORESTART; 777 } 778 779 #ifdef CONFIG_SMP 780 781 static void __hrtick_restart(struct rq *rq) 782 { 783 struct hrtimer *timer = &rq->hrtick_timer; 784 ktime_t time = rq->hrtick_time; 785 786 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 787 } 788 789 /* 790 * called from hardirq (IPI) context 791 */ 792 static void __hrtick_start(void *arg) 793 { 794 struct rq *rq = arg; 795 struct rq_flags rf; 796 797 rq_lock(rq, &rf); 798 __hrtick_restart(rq); 799 rq_unlock(rq, &rf); 800 } 801 802 /* 803 * Called to set the hrtick timer state. 804 * 805 * called with rq->lock held and irqs disabled 806 */ 807 void hrtick_start(struct rq *rq, u64 delay) 808 { 809 struct hrtimer *timer = &rq->hrtick_timer; 810 s64 delta; 811 812 /* 813 * Don't schedule slices shorter than 10000ns, that just 814 * doesn't make sense and can cause timer DoS. 815 */ 816 delta = max_t(s64, delay, 10000LL); 817 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 818 819 if (rq == this_rq()) 820 __hrtick_restart(rq); 821 else 822 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 823 } 824 825 #else 826 /* 827 * Called to set the hrtick timer state. 828 * 829 * called with rq->lock held and irqs disabled 830 */ 831 void hrtick_start(struct rq *rq, u64 delay) 832 { 833 /* 834 * Don't schedule slices shorter than 10000ns, that just 835 * doesn't make sense. Rely on vruntime for fairness. 836 */ 837 delay = max_t(u64, delay, 10000LL); 838 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 839 HRTIMER_MODE_REL_PINNED_HARD); 840 } 841 842 #endif /* CONFIG_SMP */ 843 844 static void hrtick_rq_init(struct rq *rq) 845 { 846 #ifdef CONFIG_SMP 847 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 848 #endif 849 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 850 rq->hrtick_timer.function = hrtick; 851 } 852 #else /* CONFIG_SCHED_HRTICK */ 853 static inline void hrtick_clear(struct rq *rq) 854 { 855 } 856 857 static inline void hrtick_rq_init(struct rq *rq) 858 { 859 } 860 #endif /* CONFIG_SCHED_HRTICK */ 861 862 /* 863 * cmpxchg based fetch_or, macro so it works for different integer types 864 */ 865 #define fetch_or(ptr, mask) \ 866 ({ \ 867 typeof(ptr) _ptr = (ptr); \ 868 typeof(mask) _mask = (mask); \ 869 typeof(*_ptr) _val = *_ptr; \ 870 \ 871 do { \ 872 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 873 _val; \ 874 }) 875 876 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 877 /* 878 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 879 * this avoids any races wrt polling state changes and thereby avoids 880 * spurious IPIs. 881 */ 882 static inline bool set_nr_and_not_polling(struct task_struct *p) 883 { 884 struct thread_info *ti = task_thread_info(p); 885 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 886 } 887 888 /* 889 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 890 * 891 * If this returns true, then the idle task promises to call 892 * sched_ttwu_pending() and reschedule soon. 893 */ 894 static bool set_nr_if_polling(struct task_struct *p) 895 { 896 struct thread_info *ti = task_thread_info(p); 897 typeof(ti->flags) val = READ_ONCE(ti->flags); 898 899 for (;;) { 900 if (!(val & _TIF_POLLING_NRFLAG)) 901 return false; 902 if (val & _TIF_NEED_RESCHED) 903 return true; 904 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)) 905 break; 906 } 907 return true; 908 } 909 910 #else 911 static inline bool set_nr_and_not_polling(struct task_struct *p) 912 { 913 set_tsk_need_resched(p); 914 return true; 915 } 916 917 #ifdef CONFIG_SMP 918 static inline bool set_nr_if_polling(struct task_struct *p) 919 { 920 return false; 921 } 922 #endif 923 #endif 924 925 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 926 { 927 struct wake_q_node *node = &task->wake_q; 928 929 /* 930 * Atomically grab the task, if ->wake_q is !nil already it means 931 * it's already queued (either by us or someone else) and will get the 932 * wakeup due to that. 933 * 934 * In order to ensure that a pending wakeup will observe our pending 935 * state, even in the failed case, an explicit smp_mb() must be used. 936 */ 937 smp_mb__before_atomic(); 938 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 939 return false; 940 941 /* 942 * The head is context local, there can be no concurrency. 943 */ 944 *head->lastp = node; 945 head->lastp = &node->next; 946 return true; 947 } 948 949 /** 950 * wake_q_add() - queue a wakeup for 'later' waking. 951 * @head: the wake_q_head to add @task to 952 * @task: the task to queue for 'later' wakeup 953 * 954 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 955 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 956 * instantly. 957 * 958 * This function must be used as-if it were wake_up_process(); IOW the task 959 * must be ready to be woken at this location. 960 */ 961 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 962 { 963 if (__wake_q_add(head, task)) 964 get_task_struct(task); 965 } 966 967 /** 968 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 969 * @head: the wake_q_head to add @task to 970 * @task: the task to queue for 'later' wakeup 971 * 972 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 973 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 974 * instantly. 975 * 976 * This function must be used as-if it were wake_up_process(); IOW the task 977 * must be ready to be woken at this location. 978 * 979 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 980 * that already hold reference to @task can call the 'safe' version and trust 981 * wake_q to do the right thing depending whether or not the @task is already 982 * queued for wakeup. 983 */ 984 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 985 { 986 if (!__wake_q_add(head, task)) 987 put_task_struct(task); 988 } 989 990 void wake_up_q(struct wake_q_head *head) 991 { 992 struct wake_q_node *node = head->first; 993 994 while (node != WAKE_Q_TAIL) { 995 struct task_struct *task; 996 997 task = container_of(node, struct task_struct, wake_q); 998 /* Task can safely be re-inserted now: */ 999 node = node->next; 1000 task->wake_q.next = NULL; 1001 1002 /* 1003 * wake_up_process() executes a full barrier, which pairs with 1004 * the queueing in wake_q_add() so as not to miss wakeups. 1005 */ 1006 wake_up_process(task); 1007 put_task_struct(task); 1008 } 1009 } 1010 1011 /* 1012 * resched_curr - mark rq's current task 'to be rescheduled now'. 1013 * 1014 * On UP this means the setting of the need_resched flag, on SMP it 1015 * might also involve a cross-CPU call to trigger the scheduler on 1016 * the target CPU. 1017 */ 1018 void resched_curr(struct rq *rq) 1019 { 1020 struct task_struct *curr = rq->curr; 1021 int cpu; 1022 1023 lockdep_assert_rq_held(rq); 1024 1025 if (test_tsk_need_resched(curr)) 1026 return; 1027 1028 cpu = cpu_of(rq); 1029 1030 if (cpu == smp_processor_id()) { 1031 set_tsk_need_resched(curr); 1032 set_preempt_need_resched(); 1033 return; 1034 } 1035 1036 if (set_nr_and_not_polling(curr)) 1037 smp_send_reschedule(cpu); 1038 else 1039 trace_sched_wake_idle_without_ipi(cpu); 1040 } 1041 1042 void resched_cpu(int cpu) 1043 { 1044 struct rq *rq = cpu_rq(cpu); 1045 unsigned long flags; 1046 1047 raw_spin_rq_lock_irqsave(rq, flags); 1048 if (cpu_online(cpu) || cpu == smp_processor_id()) 1049 resched_curr(rq); 1050 raw_spin_rq_unlock_irqrestore(rq, flags); 1051 } 1052 1053 #ifdef CONFIG_SMP 1054 #ifdef CONFIG_NO_HZ_COMMON 1055 /* 1056 * In the semi idle case, use the nearest busy CPU for migrating timers 1057 * from an idle CPU. This is good for power-savings. 1058 * 1059 * We don't do similar optimization for completely idle system, as 1060 * selecting an idle CPU will add more delays to the timers than intended 1061 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 1062 */ 1063 int get_nohz_timer_target(void) 1064 { 1065 int i, cpu = smp_processor_id(), default_cpu = -1; 1066 struct sched_domain *sd; 1067 const struct cpumask *hk_mask; 1068 1069 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1070 if (!idle_cpu(cpu)) 1071 return cpu; 1072 default_cpu = cpu; 1073 } 1074 1075 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1076 1077 rcu_read_lock(); 1078 for_each_domain(cpu, sd) { 1079 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1080 if (cpu == i) 1081 continue; 1082 1083 if (!idle_cpu(i)) { 1084 cpu = i; 1085 goto unlock; 1086 } 1087 } 1088 } 1089 1090 if (default_cpu == -1) 1091 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1092 cpu = default_cpu; 1093 unlock: 1094 rcu_read_unlock(); 1095 return cpu; 1096 } 1097 1098 /* 1099 * When add_timer_on() enqueues a timer into the timer wheel of an 1100 * idle CPU then this timer might expire before the next timer event 1101 * which is scheduled to wake up that CPU. In case of a completely 1102 * idle system the next event might even be infinite time into the 1103 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1104 * leaves the inner idle loop so the newly added timer is taken into 1105 * account when the CPU goes back to idle and evaluates the timer 1106 * wheel for the next timer event. 1107 */ 1108 static void wake_up_idle_cpu(int cpu) 1109 { 1110 struct rq *rq = cpu_rq(cpu); 1111 1112 if (cpu == smp_processor_id()) 1113 return; 1114 1115 if (set_nr_and_not_polling(rq->idle)) 1116 smp_send_reschedule(cpu); 1117 else 1118 trace_sched_wake_idle_without_ipi(cpu); 1119 } 1120 1121 static bool wake_up_full_nohz_cpu(int cpu) 1122 { 1123 /* 1124 * We just need the target to call irq_exit() and re-evaluate 1125 * the next tick. The nohz full kick at least implies that. 1126 * If needed we can still optimize that later with an 1127 * empty IRQ. 1128 */ 1129 if (cpu_is_offline(cpu)) 1130 return true; /* Don't try to wake offline CPUs. */ 1131 if (tick_nohz_full_cpu(cpu)) { 1132 if (cpu != smp_processor_id() || 1133 tick_nohz_tick_stopped()) 1134 tick_nohz_full_kick_cpu(cpu); 1135 return true; 1136 } 1137 1138 return false; 1139 } 1140 1141 /* 1142 * Wake up the specified CPU. If the CPU is going offline, it is the 1143 * caller's responsibility to deal with the lost wakeup, for example, 1144 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1145 */ 1146 void wake_up_nohz_cpu(int cpu) 1147 { 1148 if (!wake_up_full_nohz_cpu(cpu)) 1149 wake_up_idle_cpu(cpu); 1150 } 1151 1152 static void nohz_csd_func(void *info) 1153 { 1154 struct rq *rq = info; 1155 int cpu = cpu_of(rq); 1156 unsigned int flags; 1157 1158 /* 1159 * Release the rq::nohz_csd. 1160 */ 1161 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1162 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1163 1164 rq->idle_balance = idle_cpu(cpu); 1165 if (rq->idle_balance && !need_resched()) { 1166 rq->nohz_idle_balance = flags; 1167 raise_softirq_irqoff(SCHED_SOFTIRQ); 1168 } 1169 } 1170 1171 #endif /* CONFIG_NO_HZ_COMMON */ 1172 1173 #ifdef CONFIG_NO_HZ_FULL 1174 bool sched_can_stop_tick(struct rq *rq) 1175 { 1176 int fifo_nr_running; 1177 1178 /* Deadline tasks, even if single, need the tick */ 1179 if (rq->dl.dl_nr_running) 1180 return false; 1181 1182 /* 1183 * If there are more than one RR tasks, we need the tick to affect the 1184 * actual RR behaviour. 1185 */ 1186 if (rq->rt.rr_nr_running) { 1187 if (rq->rt.rr_nr_running == 1) 1188 return true; 1189 else 1190 return false; 1191 } 1192 1193 /* 1194 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1195 * forced preemption between FIFO tasks. 1196 */ 1197 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1198 if (fifo_nr_running) 1199 return true; 1200 1201 /* 1202 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1203 * if there's more than one we need the tick for involuntary 1204 * preemption. 1205 */ 1206 if (rq->nr_running > 1) 1207 return false; 1208 1209 return true; 1210 } 1211 #endif /* CONFIG_NO_HZ_FULL */ 1212 #endif /* CONFIG_SMP */ 1213 1214 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1215 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1216 /* 1217 * Iterate task_group tree rooted at *from, calling @down when first entering a 1218 * node and @up when leaving it for the final time. 1219 * 1220 * Caller must hold rcu_lock or sufficient equivalent. 1221 */ 1222 int walk_tg_tree_from(struct task_group *from, 1223 tg_visitor down, tg_visitor up, void *data) 1224 { 1225 struct task_group *parent, *child; 1226 int ret; 1227 1228 parent = from; 1229 1230 down: 1231 ret = (*down)(parent, data); 1232 if (ret) 1233 goto out; 1234 list_for_each_entry_rcu(child, &parent->children, siblings) { 1235 parent = child; 1236 goto down; 1237 1238 up: 1239 continue; 1240 } 1241 ret = (*up)(parent, data); 1242 if (ret || parent == from) 1243 goto out; 1244 1245 child = parent; 1246 parent = parent->parent; 1247 if (parent) 1248 goto up; 1249 out: 1250 return ret; 1251 } 1252 1253 int tg_nop(struct task_group *tg, void *data) 1254 { 1255 return 0; 1256 } 1257 #endif 1258 1259 static void set_load_weight(struct task_struct *p, bool update_load) 1260 { 1261 int prio = p->static_prio - MAX_RT_PRIO; 1262 struct load_weight *load = &p->se.load; 1263 1264 /* 1265 * SCHED_IDLE tasks get minimal weight: 1266 */ 1267 if (task_has_idle_policy(p)) { 1268 load->weight = scale_load(WEIGHT_IDLEPRIO); 1269 load->inv_weight = WMULT_IDLEPRIO; 1270 return; 1271 } 1272 1273 /* 1274 * SCHED_OTHER tasks have to update their load when changing their 1275 * weight 1276 */ 1277 if (update_load && p->sched_class == &fair_sched_class) { 1278 reweight_task(p, prio); 1279 } else { 1280 load->weight = scale_load(sched_prio_to_weight[prio]); 1281 load->inv_weight = sched_prio_to_wmult[prio]; 1282 } 1283 } 1284 1285 #ifdef CONFIG_UCLAMP_TASK 1286 /* 1287 * Serializes updates of utilization clamp values 1288 * 1289 * The (slow-path) user-space triggers utilization clamp value updates which 1290 * can require updates on (fast-path) scheduler's data structures used to 1291 * support enqueue/dequeue operations. 1292 * While the per-CPU rq lock protects fast-path update operations, user-space 1293 * requests are serialized using a mutex to reduce the risk of conflicting 1294 * updates or API abuses. 1295 */ 1296 static DEFINE_MUTEX(uclamp_mutex); 1297 1298 /* Max allowed minimum utilization */ 1299 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1300 1301 /* Max allowed maximum utilization */ 1302 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1303 1304 /* 1305 * By default RT tasks run at the maximum performance point/capacity of the 1306 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1307 * SCHED_CAPACITY_SCALE. 1308 * 1309 * This knob allows admins to change the default behavior when uclamp is being 1310 * used. In battery powered devices, particularly, running at the maximum 1311 * capacity and frequency will increase energy consumption and shorten the 1312 * battery life. 1313 * 1314 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1315 * 1316 * This knob will not override the system default sched_util_clamp_min defined 1317 * above. 1318 */ 1319 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1320 1321 /* All clamps are required to be less or equal than these values */ 1322 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1323 1324 /* 1325 * This static key is used to reduce the uclamp overhead in the fast path. It 1326 * primarily disables the call to uclamp_rq_{inc, dec}() in 1327 * enqueue/dequeue_task(). 1328 * 1329 * This allows users to continue to enable uclamp in their kernel config with 1330 * minimum uclamp overhead in the fast path. 1331 * 1332 * As soon as userspace modifies any of the uclamp knobs, the static key is 1333 * enabled, since we have an actual users that make use of uclamp 1334 * functionality. 1335 * 1336 * The knobs that would enable this static key are: 1337 * 1338 * * A task modifying its uclamp value with sched_setattr(). 1339 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1340 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1341 */ 1342 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1343 1344 /* Integer rounded range for each bucket */ 1345 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 1346 1347 #define for_each_clamp_id(clamp_id) \ 1348 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 1349 1350 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 1351 { 1352 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 1353 } 1354 1355 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 1356 { 1357 if (clamp_id == UCLAMP_MIN) 1358 return 0; 1359 return SCHED_CAPACITY_SCALE; 1360 } 1361 1362 static inline void uclamp_se_set(struct uclamp_se *uc_se, 1363 unsigned int value, bool user_defined) 1364 { 1365 uc_se->value = value; 1366 uc_se->bucket_id = uclamp_bucket_id(value); 1367 uc_se->user_defined = user_defined; 1368 } 1369 1370 static inline unsigned int 1371 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1372 unsigned int clamp_value) 1373 { 1374 /* 1375 * Avoid blocked utilization pushing up the frequency when we go 1376 * idle (which drops the max-clamp) by retaining the last known 1377 * max-clamp. 1378 */ 1379 if (clamp_id == UCLAMP_MAX) { 1380 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1381 return clamp_value; 1382 } 1383 1384 return uclamp_none(UCLAMP_MIN); 1385 } 1386 1387 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1388 unsigned int clamp_value) 1389 { 1390 /* Reset max-clamp retention only on idle exit */ 1391 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1392 return; 1393 1394 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 1395 } 1396 1397 static inline 1398 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1399 unsigned int clamp_value) 1400 { 1401 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1402 int bucket_id = UCLAMP_BUCKETS - 1; 1403 1404 /* 1405 * Since both min and max clamps are max aggregated, find the 1406 * top most bucket with tasks in. 1407 */ 1408 for ( ; bucket_id >= 0; bucket_id--) { 1409 if (!bucket[bucket_id].tasks) 1410 continue; 1411 return bucket[bucket_id].value; 1412 } 1413 1414 /* No tasks -- default clamp values */ 1415 return uclamp_idle_value(rq, clamp_id, clamp_value); 1416 } 1417 1418 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1419 { 1420 unsigned int default_util_min; 1421 struct uclamp_se *uc_se; 1422 1423 lockdep_assert_held(&p->pi_lock); 1424 1425 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1426 1427 /* Only sync if user didn't override the default */ 1428 if (uc_se->user_defined) 1429 return; 1430 1431 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1432 uclamp_se_set(uc_se, default_util_min, false); 1433 } 1434 1435 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1436 { 1437 struct rq_flags rf; 1438 struct rq *rq; 1439 1440 if (!rt_task(p)) 1441 return; 1442 1443 /* Protect updates to p->uclamp_* */ 1444 rq = task_rq_lock(p, &rf); 1445 __uclamp_update_util_min_rt_default(p); 1446 task_rq_unlock(rq, p, &rf); 1447 } 1448 1449 static inline struct uclamp_se 1450 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1451 { 1452 /* Copy by value as we could modify it */ 1453 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1454 #ifdef CONFIG_UCLAMP_TASK_GROUP 1455 unsigned int tg_min, tg_max, value; 1456 1457 /* 1458 * Tasks in autogroups or root task group will be 1459 * restricted by system defaults. 1460 */ 1461 if (task_group_is_autogroup(task_group(p))) 1462 return uc_req; 1463 if (task_group(p) == &root_task_group) 1464 return uc_req; 1465 1466 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1467 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1468 value = uc_req.value; 1469 value = clamp(value, tg_min, tg_max); 1470 uclamp_se_set(&uc_req, value, false); 1471 #endif 1472 1473 return uc_req; 1474 } 1475 1476 /* 1477 * The effective clamp bucket index of a task depends on, by increasing 1478 * priority: 1479 * - the task specific clamp value, when explicitly requested from userspace 1480 * - the task group effective clamp value, for tasks not either in the root 1481 * group or in an autogroup 1482 * - the system default clamp value, defined by the sysadmin 1483 */ 1484 static inline struct uclamp_se 1485 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1486 { 1487 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1488 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1489 1490 /* System default restrictions always apply */ 1491 if (unlikely(uc_req.value > uc_max.value)) 1492 return uc_max; 1493 1494 return uc_req; 1495 } 1496 1497 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1498 { 1499 struct uclamp_se uc_eff; 1500 1501 /* Task currently refcounted: use back-annotated (effective) value */ 1502 if (p->uclamp[clamp_id].active) 1503 return (unsigned long)p->uclamp[clamp_id].value; 1504 1505 uc_eff = uclamp_eff_get(p, clamp_id); 1506 1507 return (unsigned long)uc_eff.value; 1508 } 1509 1510 /* 1511 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1512 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1513 * updates the rq's clamp value if required. 1514 * 1515 * Tasks can have a task-specific value requested from user-space, track 1516 * within each bucket the maximum value for tasks refcounted in it. 1517 * This "local max aggregation" allows to track the exact "requested" value 1518 * for each bucket when all its RUNNABLE tasks require the same clamp. 1519 */ 1520 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1521 enum uclamp_id clamp_id) 1522 { 1523 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1524 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1525 struct uclamp_bucket *bucket; 1526 1527 lockdep_assert_rq_held(rq); 1528 1529 /* Update task effective clamp */ 1530 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1531 1532 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1533 bucket->tasks++; 1534 uc_se->active = true; 1535 1536 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1537 1538 /* 1539 * Local max aggregation: rq buckets always track the max 1540 * "requested" clamp value of its RUNNABLE tasks. 1541 */ 1542 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1543 bucket->value = uc_se->value; 1544 1545 if (uc_se->value > READ_ONCE(uc_rq->value)) 1546 WRITE_ONCE(uc_rq->value, uc_se->value); 1547 } 1548 1549 /* 1550 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1551 * is released. If this is the last task reference counting the rq's max 1552 * active clamp value, then the rq's clamp value is updated. 1553 * 1554 * Both refcounted tasks and rq's cached clamp values are expected to be 1555 * always valid. If it's detected they are not, as defensive programming, 1556 * enforce the expected state and warn. 1557 */ 1558 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1559 enum uclamp_id clamp_id) 1560 { 1561 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1562 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1563 struct uclamp_bucket *bucket; 1564 unsigned int bkt_clamp; 1565 unsigned int rq_clamp; 1566 1567 lockdep_assert_rq_held(rq); 1568 1569 /* 1570 * If sched_uclamp_used was enabled after task @p was enqueued, 1571 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1572 * 1573 * In this case the uc_se->active flag should be false since no uclamp 1574 * accounting was performed at enqueue time and we can just return 1575 * here. 1576 * 1577 * Need to be careful of the following enqueue/dequeue ordering 1578 * problem too 1579 * 1580 * enqueue(taskA) 1581 * // sched_uclamp_used gets enabled 1582 * enqueue(taskB) 1583 * dequeue(taskA) 1584 * // Must not decrement bucket->tasks here 1585 * dequeue(taskB) 1586 * 1587 * where we could end up with stale data in uc_se and 1588 * bucket[uc_se->bucket_id]. 1589 * 1590 * The following check here eliminates the possibility of such race. 1591 */ 1592 if (unlikely(!uc_se->active)) 1593 return; 1594 1595 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1596 1597 SCHED_WARN_ON(!bucket->tasks); 1598 if (likely(bucket->tasks)) 1599 bucket->tasks--; 1600 1601 uc_se->active = false; 1602 1603 /* 1604 * Keep "local max aggregation" simple and accept to (possibly) 1605 * overboost some RUNNABLE tasks in the same bucket. 1606 * The rq clamp bucket value is reset to its base value whenever 1607 * there are no more RUNNABLE tasks refcounting it. 1608 */ 1609 if (likely(bucket->tasks)) 1610 return; 1611 1612 rq_clamp = READ_ONCE(uc_rq->value); 1613 /* 1614 * Defensive programming: this should never happen. If it happens, 1615 * e.g. due to future modification, warn and fixup the expected value. 1616 */ 1617 SCHED_WARN_ON(bucket->value > rq_clamp); 1618 if (bucket->value >= rq_clamp) { 1619 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1620 WRITE_ONCE(uc_rq->value, bkt_clamp); 1621 } 1622 } 1623 1624 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1625 { 1626 enum uclamp_id clamp_id; 1627 1628 /* 1629 * Avoid any overhead until uclamp is actually used by the userspace. 1630 * 1631 * The condition is constructed such that a NOP is generated when 1632 * sched_uclamp_used is disabled. 1633 */ 1634 if (!static_branch_unlikely(&sched_uclamp_used)) 1635 return; 1636 1637 if (unlikely(!p->sched_class->uclamp_enabled)) 1638 return; 1639 1640 for_each_clamp_id(clamp_id) 1641 uclamp_rq_inc_id(rq, p, clamp_id); 1642 1643 /* Reset clamp idle holding when there is one RUNNABLE task */ 1644 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1645 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1646 } 1647 1648 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1649 { 1650 enum uclamp_id clamp_id; 1651 1652 /* 1653 * Avoid any overhead until uclamp is actually used by the userspace. 1654 * 1655 * The condition is constructed such that a NOP is generated when 1656 * sched_uclamp_used is disabled. 1657 */ 1658 if (!static_branch_unlikely(&sched_uclamp_used)) 1659 return; 1660 1661 if (unlikely(!p->sched_class->uclamp_enabled)) 1662 return; 1663 1664 for_each_clamp_id(clamp_id) 1665 uclamp_rq_dec_id(rq, p, clamp_id); 1666 } 1667 1668 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1669 enum uclamp_id clamp_id) 1670 { 1671 if (!p->uclamp[clamp_id].active) 1672 return; 1673 1674 uclamp_rq_dec_id(rq, p, clamp_id); 1675 uclamp_rq_inc_id(rq, p, clamp_id); 1676 1677 /* 1678 * Make sure to clear the idle flag if we've transiently reached 0 1679 * active tasks on rq. 1680 */ 1681 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1682 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1683 } 1684 1685 static inline void 1686 uclamp_update_active(struct task_struct *p) 1687 { 1688 enum uclamp_id clamp_id; 1689 struct rq_flags rf; 1690 struct rq *rq; 1691 1692 /* 1693 * Lock the task and the rq where the task is (or was) queued. 1694 * 1695 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1696 * price to pay to safely serialize util_{min,max} updates with 1697 * enqueues, dequeues and migration operations. 1698 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1699 */ 1700 rq = task_rq_lock(p, &rf); 1701 1702 /* 1703 * Setting the clamp bucket is serialized by task_rq_lock(). 1704 * If the task is not yet RUNNABLE and its task_struct is not 1705 * affecting a valid clamp bucket, the next time it's enqueued, 1706 * it will already see the updated clamp bucket value. 1707 */ 1708 for_each_clamp_id(clamp_id) 1709 uclamp_rq_reinc_id(rq, p, clamp_id); 1710 1711 task_rq_unlock(rq, p, &rf); 1712 } 1713 1714 #ifdef CONFIG_UCLAMP_TASK_GROUP 1715 static inline void 1716 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1717 { 1718 struct css_task_iter it; 1719 struct task_struct *p; 1720 1721 css_task_iter_start(css, 0, &it); 1722 while ((p = css_task_iter_next(&it))) 1723 uclamp_update_active(p); 1724 css_task_iter_end(&it); 1725 } 1726 1727 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1728 #endif 1729 1730 #ifdef CONFIG_SYSCTL 1731 #ifdef CONFIG_UCLAMP_TASK 1732 #ifdef CONFIG_UCLAMP_TASK_GROUP 1733 static void uclamp_update_root_tg(void) 1734 { 1735 struct task_group *tg = &root_task_group; 1736 1737 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1738 sysctl_sched_uclamp_util_min, false); 1739 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1740 sysctl_sched_uclamp_util_max, false); 1741 1742 rcu_read_lock(); 1743 cpu_util_update_eff(&root_task_group.css); 1744 rcu_read_unlock(); 1745 } 1746 #else 1747 static void uclamp_update_root_tg(void) { } 1748 #endif 1749 1750 static void uclamp_sync_util_min_rt_default(void) 1751 { 1752 struct task_struct *g, *p; 1753 1754 /* 1755 * copy_process() sysctl_uclamp 1756 * uclamp_min_rt = X; 1757 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1758 * // link thread smp_mb__after_spinlock() 1759 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1760 * sched_post_fork() for_each_process_thread() 1761 * __uclamp_sync_rt() __uclamp_sync_rt() 1762 * 1763 * Ensures that either sched_post_fork() will observe the new 1764 * uclamp_min_rt or for_each_process_thread() will observe the new 1765 * task. 1766 */ 1767 read_lock(&tasklist_lock); 1768 smp_mb__after_spinlock(); 1769 read_unlock(&tasklist_lock); 1770 1771 rcu_read_lock(); 1772 for_each_process_thread(g, p) 1773 uclamp_update_util_min_rt_default(p); 1774 rcu_read_unlock(); 1775 } 1776 1777 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1778 void *buffer, size_t *lenp, loff_t *ppos) 1779 { 1780 bool update_root_tg = false; 1781 int old_min, old_max, old_min_rt; 1782 int result; 1783 1784 mutex_lock(&uclamp_mutex); 1785 old_min = sysctl_sched_uclamp_util_min; 1786 old_max = sysctl_sched_uclamp_util_max; 1787 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1788 1789 result = proc_dointvec(table, write, buffer, lenp, ppos); 1790 if (result) 1791 goto undo; 1792 if (!write) 1793 goto done; 1794 1795 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1796 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1797 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1798 1799 result = -EINVAL; 1800 goto undo; 1801 } 1802 1803 if (old_min != sysctl_sched_uclamp_util_min) { 1804 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1805 sysctl_sched_uclamp_util_min, false); 1806 update_root_tg = true; 1807 } 1808 if (old_max != sysctl_sched_uclamp_util_max) { 1809 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1810 sysctl_sched_uclamp_util_max, false); 1811 update_root_tg = true; 1812 } 1813 1814 if (update_root_tg) { 1815 static_branch_enable(&sched_uclamp_used); 1816 uclamp_update_root_tg(); 1817 } 1818 1819 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1820 static_branch_enable(&sched_uclamp_used); 1821 uclamp_sync_util_min_rt_default(); 1822 } 1823 1824 /* 1825 * We update all RUNNABLE tasks only when task groups are in use. 1826 * Otherwise, keep it simple and do just a lazy update at each next 1827 * task enqueue time. 1828 */ 1829 1830 goto done; 1831 1832 undo: 1833 sysctl_sched_uclamp_util_min = old_min; 1834 sysctl_sched_uclamp_util_max = old_max; 1835 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1836 done: 1837 mutex_unlock(&uclamp_mutex); 1838 1839 return result; 1840 } 1841 #endif 1842 #endif 1843 1844 static int uclamp_validate(struct task_struct *p, 1845 const struct sched_attr *attr) 1846 { 1847 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1848 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1849 1850 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1851 util_min = attr->sched_util_min; 1852 1853 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1854 return -EINVAL; 1855 } 1856 1857 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1858 util_max = attr->sched_util_max; 1859 1860 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1861 return -EINVAL; 1862 } 1863 1864 if (util_min != -1 && util_max != -1 && util_min > util_max) 1865 return -EINVAL; 1866 1867 /* 1868 * We have valid uclamp attributes; make sure uclamp is enabled. 1869 * 1870 * We need to do that here, because enabling static branches is a 1871 * blocking operation which obviously cannot be done while holding 1872 * scheduler locks. 1873 */ 1874 static_branch_enable(&sched_uclamp_used); 1875 1876 return 0; 1877 } 1878 1879 static bool uclamp_reset(const struct sched_attr *attr, 1880 enum uclamp_id clamp_id, 1881 struct uclamp_se *uc_se) 1882 { 1883 /* Reset on sched class change for a non user-defined clamp value. */ 1884 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1885 !uc_se->user_defined) 1886 return true; 1887 1888 /* Reset on sched_util_{min,max} == -1. */ 1889 if (clamp_id == UCLAMP_MIN && 1890 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1891 attr->sched_util_min == -1) { 1892 return true; 1893 } 1894 1895 if (clamp_id == UCLAMP_MAX && 1896 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1897 attr->sched_util_max == -1) { 1898 return true; 1899 } 1900 1901 return false; 1902 } 1903 1904 static void __setscheduler_uclamp(struct task_struct *p, 1905 const struct sched_attr *attr) 1906 { 1907 enum uclamp_id clamp_id; 1908 1909 for_each_clamp_id(clamp_id) { 1910 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1911 unsigned int value; 1912 1913 if (!uclamp_reset(attr, clamp_id, uc_se)) 1914 continue; 1915 1916 /* 1917 * RT by default have a 100% boost value that could be modified 1918 * at runtime. 1919 */ 1920 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1921 value = sysctl_sched_uclamp_util_min_rt_default; 1922 else 1923 value = uclamp_none(clamp_id); 1924 1925 uclamp_se_set(uc_se, value, false); 1926 1927 } 1928 1929 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1930 return; 1931 1932 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1933 attr->sched_util_min != -1) { 1934 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1935 attr->sched_util_min, true); 1936 } 1937 1938 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1939 attr->sched_util_max != -1) { 1940 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1941 attr->sched_util_max, true); 1942 } 1943 } 1944 1945 static void uclamp_fork(struct task_struct *p) 1946 { 1947 enum uclamp_id clamp_id; 1948 1949 /* 1950 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1951 * as the task is still at its early fork stages. 1952 */ 1953 for_each_clamp_id(clamp_id) 1954 p->uclamp[clamp_id].active = false; 1955 1956 if (likely(!p->sched_reset_on_fork)) 1957 return; 1958 1959 for_each_clamp_id(clamp_id) { 1960 uclamp_se_set(&p->uclamp_req[clamp_id], 1961 uclamp_none(clamp_id), false); 1962 } 1963 } 1964 1965 static void uclamp_post_fork(struct task_struct *p) 1966 { 1967 uclamp_update_util_min_rt_default(p); 1968 } 1969 1970 static void __init init_uclamp_rq(struct rq *rq) 1971 { 1972 enum uclamp_id clamp_id; 1973 struct uclamp_rq *uc_rq = rq->uclamp; 1974 1975 for_each_clamp_id(clamp_id) { 1976 uc_rq[clamp_id] = (struct uclamp_rq) { 1977 .value = uclamp_none(clamp_id) 1978 }; 1979 } 1980 1981 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 1982 } 1983 1984 static void __init init_uclamp(void) 1985 { 1986 struct uclamp_se uc_max = {}; 1987 enum uclamp_id clamp_id; 1988 int cpu; 1989 1990 for_each_possible_cpu(cpu) 1991 init_uclamp_rq(cpu_rq(cpu)); 1992 1993 for_each_clamp_id(clamp_id) { 1994 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1995 uclamp_none(clamp_id), false); 1996 } 1997 1998 /* System defaults allow max clamp values for both indexes */ 1999 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2000 for_each_clamp_id(clamp_id) { 2001 uclamp_default[clamp_id] = uc_max; 2002 #ifdef CONFIG_UCLAMP_TASK_GROUP 2003 root_task_group.uclamp_req[clamp_id] = uc_max; 2004 root_task_group.uclamp[clamp_id] = uc_max; 2005 #endif 2006 } 2007 } 2008 2009 #else /* CONFIG_UCLAMP_TASK */ 2010 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 2011 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2012 static inline int uclamp_validate(struct task_struct *p, 2013 const struct sched_attr *attr) 2014 { 2015 return -EOPNOTSUPP; 2016 } 2017 static void __setscheduler_uclamp(struct task_struct *p, 2018 const struct sched_attr *attr) { } 2019 static inline void uclamp_fork(struct task_struct *p) { } 2020 static inline void uclamp_post_fork(struct task_struct *p) { } 2021 static inline void init_uclamp(void) { } 2022 #endif /* CONFIG_UCLAMP_TASK */ 2023 2024 bool sched_task_on_rq(struct task_struct *p) 2025 { 2026 return task_on_rq_queued(p); 2027 } 2028 2029 unsigned long get_wchan(struct task_struct *p) 2030 { 2031 unsigned long ip = 0; 2032 unsigned int state; 2033 2034 if (!p || p == current) 2035 return 0; 2036 2037 /* Only get wchan if task is blocked and we can keep it that way. */ 2038 raw_spin_lock_irq(&p->pi_lock); 2039 state = READ_ONCE(p->__state); 2040 smp_rmb(); /* see try_to_wake_up() */ 2041 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2042 ip = __get_wchan(p); 2043 raw_spin_unlock_irq(&p->pi_lock); 2044 2045 return ip; 2046 } 2047 2048 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2049 { 2050 if (!(flags & ENQUEUE_NOCLOCK)) 2051 update_rq_clock(rq); 2052 2053 if (!(flags & ENQUEUE_RESTORE)) { 2054 sched_info_enqueue(rq, p); 2055 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 2056 } 2057 2058 uclamp_rq_inc(rq, p); 2059 p->sched_class->enqueue_task(rq, p, flags); 2060 2061 if (sched_core_enabled(rq)) 2062 sched_core_enqueue(rq, p); 2063 } 2064 2065 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2066 { 2067 if (sched_core_enabled(rq)) 2068 sched_core_dequeue(rq, p, flags); 2069 2070 if (!(flags & DEQUEUE_NOCLOCK)) 2071 update_rq_clock(rq); 2072 2073 if (!(flags & DEQUEUE_SAVE)) { 2074 sched_info_dequeue(rq, p); 2075 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2076 } 2077 2078 uclamp_rq_dec(rq, p); 2079 p->sched_class->dequeue_task(rq, p, flags); 2080 } 2081 2082 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2083 { 2084 enqueue_task(rq, p, flags); 2085 2086 p->on_rq = TASK_ON_RQ_QUEUED; 2087 } 2088 2089 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2090 { 2091 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 2092 2093 dequeue_task(rq, p, flags); 2094 } 2095 2096 static inline int __normal_prio(int policy, int rt_prio, int nice) 2097 { 2098 int prio; 2099 2100 if (dl_policy(policy)) 2101 prio = MAX_DL_PRIO - 1; 2102 else if (rt_policy(policy)) 2103 prio = MAX_RT_PRIO - 1 - rt_prio; 2104 else 2105 prio = NICE_TO_PRIO(nice); 2106 2107 return prio; 2108 } 2109 2110 /* 2111 * Calculate the expected normal priority: i.e. priority 2112 * without taking RT-inheritance into account. Might be 2113 * boosted by interactivity modifiers. Changes upon fork, 2114 * setprio syscalls, and whenever the interactivity 2115 * estimator recalculates. 2116 */ 2117 static inline int normal_prio(struct task_struct *p) 2118 { 2119 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); 2120 } 2121 2122 /* 2123 * Calculate the current priority, i.e. the priority 2124 * taken into account by the scheduler. This value might 2125 * be boosted by RT tasks, or might be boosted by 2126 * interactivity modifiers. Will be RT if the task got 2127 * RT-boosted. If not then it returns p->normal_prio. 2128 */ 2129 static int effective_prio(struct task_struct *p) 2130 { 2131 p->normal_prio = normal_prio(p); 2132 /* 2133 * If we are RT tasks or we were boosted to RT priority, 2134 * keep the priority unchanged. Otherwise, update priority 2135 * to the normal priority: 2136 */ 2137 if (!rt_prio(p->prio)) 2138 return p->normal_prio; 2139 return p->prio; 2140 } 2141 2142 /** 2143 * task_curr - is this task currently executing on a CPU? 2144 * @p: the task in question. 2145 * 2146 * Return: 1 if the task is currently executing. 0 otherwise. 2147 */ 2148 inline int task_curr(const struct task_struct *p) 2149 { 2150 return cpu_curr(task_cpu(p)) == p; 2151 } 2152 2153 /* 2154 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2155 * use the balance_callback list if you want balancing. 2156 * 2157 * this means any call to check_class_changed() must be followed by a call to 2158 * balance_callback(). 2159 */ 2160 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 2161 const struct sched_class *prev_class, 2162 int oldprio) 2163 { 2164 if (prev_class != p->sched_class) { 2165 if (prev_class->switched_from) 2166 prev_class->switched_from(rq, p); 2167 2168 p->sched_class->switched_to(rq, p); 2169 } else if (oldprio != p->prio || dl_task(p)) 2170 p->sched_class->prio_changed(rq, p, oldprio); 2171 } 2172 2173 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 2174 { 2175 if (p->sched_class == rq->curr->sched_class) 2176 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 2177 else if (sched_class_above(p->sched_class, rq->curr->sched_class)) 2178 resched_curr(rq); 2179 2180 /* 2181 * A queue event has occurred, and we're going to schedule. In 2182 * this case, we can save a useless back to back clock update. 2183 */ 2184 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2185 rq_clock_skip_update(rq); 2186 } 2187 2188 #ifdef CONFIG_SMP 2189 2190 static void 2191 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 2192 2193 static int __set_cpus_allowed_ptr(struct task_struct *p, 2194 const struct cpumask *new_mask, 2195 u32 flags); 2196 2197 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2198 { 2199 if (likely(!p->migration_disabled)) 2200 return; 2201 2202 if (p->cpus_ptr != &p->cpus_mask) 2203 return; 2204 2205 /* 2206 * Violates locking rules! see comment in __do_set_cpus_allowed(). 2207 */ 2208 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE); 2209 } 2210 2211 void migrate_disable(void) 2212 { 2213 struct task_struct *p = current; 2214 2215 if (p->migration_disabled) { 2216 p->migration_disabled++; 2217 return; 2218 } 2219 2220 preempt_disable(); 2221 this_rq()->nr_pinned++; 2222 p->migration_disabled = 1; 2223 preempt_enable(); 2224 } 2225 EXPORT_SYMBOL_GPL(migrate_disable); 2226 2227 void migrate_enable(void) 2228 { 2229 struct task_struct *p = current; 2230 2231 if (p->migration_disabled > 1) { 2232 p->migration_disabled--; 2233 return; 2234 } 2235 2236 if (WARN_ON_ONCE(!p->migration_disabled)) 2237 return; 2238 2239 /* 2240 * Ensure stop_task runs either before or after this, and that 2241 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2242 */ 2243 preempt_disable(); 2244 if (p->cpus_ptr != &p->cpus_mask) 2245 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE); 2246 /* 2247 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2248 * regular cpus_mask, otherwise things that race (eg. 2249 * select_fallback_rq) get confused. 2250 */ 2251 barrier(); 2252 p->migration_disabled = 0; 2253 this_rq()->nr_pinned--; 2254 preempt_enable(); 2255 } 2256 EXPORT_SYMBOL_GPL(migrate_enable); 2257 2258 static inline bool rq_has_pinned_tasks(struct rq *rq) 2259 { 2260 return rq->nr_pinned; 2261 } 2262 2263 /* 2264 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2265 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2266 */ 2267 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2268 { 2269 /* When not in the task's cpumask, no point in looking further. */ 2270 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2271 return false; 2272 2273 /* migrate_disabled() must be allowed to finish. */ 2274 if (is_migration_disabled(p)) 2275 return cpu_online(cpu); 2276 2277 /* Non kernel threads are not allowed during either online or offline. */ 2278 if (!(p->flags & PF_KTHREAD)) 2279 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2280 2281 /* KTHREAD_IS_PER_CPU is always allowed. */ 2282 if (kthread_is_per_cpu(p)) 2283 return cpu_online(cpu); 2284 2285 /* Regular kernel threads don't get to stay during offline. */ 2286 if (cpu_dying(cpu)) 2287 return false; 2288 2289 /* But are allowed during online. */ 2290 return cpu_online(cpu); 2291 } 2292 2293 /* 2294 * This is how migration works: 2295 * 2296 * 1) we invoke migration_cpu_stop() on the target CPU using 2297 * stop_one_cpu(). 2298 * 2) stopper starts to run (implicitly forcing the migrated thread 2299 * off the CPU) 2300 * 3) it checks whether the migrated task is still in the wrong runqueue. 2301 * 4) if it's in the wrong runqueue then the migration thread removes 2302 * it and puts it into the right queue. 2303 * 5) stopper completes and stop_one_cpu() returns and the migration 2304 * is done. 2305 */ 2306 2307 /* 2308 * move_queued_task - move a queued task to new rq. 2309 * 2310 * Returns (locked) new rq. Old rq's lock is released. 2311 */ 2312 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2313 struct task_struct *p, int new_cpu) 2314 { 2315 lockdep_assert_rq_held(rq); 2316 2317 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2318 set_task_cpu(p, new_cpu); 2319 rq_unlock(rq, rf); 2320 2321 rq = cpu_rq(new_cpu); 2322 2323 rq_lock(rq, rf); 2324 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2325 activate_task(rq, p, 0); 2326 check_preempt_curr(rq, p, 0); 2327 2328 return rq; 2329 } 2330 2331 struct migration_arg { 2332 struct task_struct *task; 2333 int dest_cpu; 2334 struct set_affinity_pending *pending; 2335 }; 2336 2337 /* 2338 * @refs: number of wait_for_completion() 2339 * @stop_pending: is @stop_work in use 2340 */ 2341 struct set_affinity_pending { 2342 refcount_t refs; 2343 unsigned int stop_pending; 2344 struct completion done; 2345 struct cpu_stop_work stop_work; 2346 struct migration_arg arg; 2347 }; 2348 2349 /* 2350 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2351 * this because either it can't run here any more (set_cpus_allowed() 2352 * away from this CPU, or CPU going down), or because we're 2353 * attempting to rebalance this task on exec (sched_exec). 2354 * 2355 * So we race with normal scheduler movements, but that's OK, as long 2356 * as the task is no longer on this CPU. 2357 */ 2358 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2359 struct task_struct *p, int dest_cpu) 2360 { 2361 /* Affinity changed (again). */ 2362 if (!is_cpu_allowed(p, dest_cpu)) 2363 return rq; 2364 2365 update_rq_clock(rq); 2366 rq = move_queued_task(rq, rf, p, dest_cpu); 2367 2368 return rq; 2369 } 2370 2371 /* 2372 * migration_cpu_stop - this will be executed by a highprio stopper thread 2373 * and performs thread migration by bumping thread off CPU then 2374 * 'pushing' onto another runqueue. 2375 */ 2376 static int migration_cpu_stop(void *data) 2377 { 2378 struct migration_arg *arg = data; 2379 struct set_affinity_pending *pending = arg->pending; 2380 struct task_struct *p = arg->task; 2381 struct rq *rq = this_rq(); 2382 bool complete = false; 2383 struct rq_flags rf; 2384 2385 /* 2386 * The original target CPU might have gone down and we might 2387 * be on another CPU but it doesn't matter. 2388 */ 2389 local_irq_save(rf.flags); 2390 /* 2391 * We need to explicitly wake pending tasks before running 2392 * __migrate_task() such that we will not miss enforcing cpus_ptr 2393 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2394 */ 2395 flush_smp_call_function_queue(); 2396 2397 raw_spin_lock(&p->pi_lock); 2398 rq_lock(rq, &rf); 2399 2400 /* 2401 * If we were passed a pending, then ->stop_pending was set, thus 2402 * p->migration_pending must have remained stable. 2403 */ 2404 WARN_ON_ONCE(pending && pending != p->migration_pending); 2405 2406 /* 2407 * If task_rq(p) != rq, it cannot be migrated here, because we're 2408 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2409 * we're holding p->pi_lock. 2410 */ 2411 if (task_rq(p) == rq) { 2412 if (is_migration_disabled(p)) 2413 goto out; 2414 2415 if (pending) { 2416 p->migration_pending = NULL; 2417 complete = true; 2418 2419 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2420 goto out; 2421 } 2422 2423 if (task_on_rq_queued(p)) 2424 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2425 else 2426 p->wake_cpu = arg->dest_cpu; 2427 2428 /* 2429 * XXX __migrate_task() can fail, at which point we might end 2430 * up running on a dodgy CPU, AFAICT this can only happen 2431 * during CPU hotplug, at which point we'll get pushed out 2432 * anyway, so it's probably not a big deal. 2433 */ 2434 2435 } else if (pending) { 2436 /* 2437 * This happens when we get migrated between migrate_enable()'s 2438 * preempt_enable() and scheduling the stopper task. At that 2439 * point we're a regular task again and not current anymore. 2440 * 2441 * A !PREEMPT kernel has a giant hole here, which makes it far 2442 * more likely. 2443 */ 2444 2445 /* 2446 * The task moved before the stopper got to run. We're holding 2447 * ->pi_lock, so the allowed mask is stable - if it got 2448 * somewhere allowed, we're done. 2449 */ 2450 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2451 p->migration_pending = NULL; 2452 complete = true; 2453 goto out; 2454 } 2455 2456 /* 2457 * When migrate_enable() hits a rq mis-match we can't reliably 2458 * determine is_migration_disabled() and so have to chase after 2459 * it. 2460 */ 2461 WARN_ON_ONCE(!pending->stop_pending); 2462 task_rq_unlock(rq, p, &rf); 2463 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2464 &pending->arg, &pending->stop_work); 2465 return 0; 2466 } 2467 out: 2468 if (pending) 2469 pending->stop_pending = false; 2470 task_rq_unlock(rq, p, &rf); 2471 2472 if (complete) 2473 complete_all(&pending->done); 2474 2475 return 0; 2476 } 2477 2478 int push_cpu_stop(void *arg) 2479 { 2480 struct rq *lowest_rq = NULL, *rq = this_rq(); 2481 struct task_struct *p = arg; 2482 2483 raw_spin_lock_irq(&p->pi_lock); 2484 raw_spin_rq_lock(rq); 2485 2486 if (task_rq(p) != rq) 2487 goto out_unlock; 2488 2489 if (is_migration_disabled(p)) { 2490 p->migration_flags |= MDF_PUSH; 2491 goto out_unlock; 2492 } 2493 2494 p->migration_flags &= ~MDF_PUSH; 2495 2496 if (p->sched_class->find_lock_rq) 2497 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2498 2499 if (!lowest_rq) 2500 goto out_unlock; 2501 2502 // XXX validate p is still the highest prio task 2503 if (task_rq(p) == rq) { 2504 deactivate_task(rq, p, 0); 2505 set_task_cpu(p, lowest_rq->cpu); 2506 activate_task(lowest_rq, p, 0); 2507 resched_curr(lowest_rq); 2508 } 2509 2510 double_unlock_balance(rq, lowest_rq); 2511 2512 out_unlock: 2513 rq->push_busy = false; 2514 raw_spin_rq_unlock(rq); 2515 raw_spin_unlock_irq(&p->pi_lock); 2516 2517 put_task_struct(p); 2518 return 0; 2519 } 2520 2521 /* 2522 * sched_class::set_cpus_allowed must do the below, but is not required to 2523 * actually call this function. 2524 */ 2525 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2526 { 2527 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2528 p->cpus_ptr = new_mask; 2529 return; 2530 } 2531 2532 cpumask_copy(&p->cpus_mask, new_mask); 2533 p->nr_cpus_allowed = cpumask_weight(new_mask); 2534 } 2535 2536 static void 2537 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2538 { 2539 struct rq *rq = task_rq(p); 2540 bool queued, running; 2541 2542 /* 2543 * This here violates the locking rules for affinity, since we're only 2544 * supposed to change these variables while holding both rq->lock and 2545 * p->pi_lock. 2546 * 2547 * HOWEVER, it magically works, because ttwu() is the only code that 2548 * accesses these variables under p->pi_lock and only does so after 2549 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2550 * before finish_task(). 2551 * 2552 * XXX do further audits, this smells like something putrid. 2553 */ 2554 if (flags & SCA_MIGRATE_DISABLE) 2555 SCHED_WARN_ON(!p->on_cpu); 2556 else 2557 lockdep_assert_held(&p->pi_lock); 2558 2559 queued = task_on_rq_queued(p); 2560 running = task_current(rq, p); 2561 2562 if (queued) { 2563 /* 2564 * Because __kthread_bind() calls this on blocked tasks without 2565 * holding rq->lock. 2566 */ 2567 lockdep_assert_rq_held(rq); 2568 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2569 } 2570 if (running) 2571 put_prev_task(rq, p); 2572 2573 p->sched_class->set_cpus_allowed(p, new_mask, flags); 2574 2575 if (queued) 2576 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2577 if (running) 2578 set_next_task(rq, p); 2579 } 2580 2581 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2582 { 2583 __do_set_cpus_allowed(p, new_mask, 0); 2584 } 2585 2586 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2587 int node) 2588 { 2589 if (!src->user_cpus_ptr) 2590 return 0; 2591 2592 dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node); 2593 if (!dst->user_cpus_ptr) 2594 return -ENOMEM; 2595 2596 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2597 return 0; 2598 } 2599 2600 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2601 { 2602 struct cpumask *user_mask = NULL; 2603 2604 swap(p->user_cpus_ptr, user_mask); 2605 2606 return user_mask; 2607 } 2608 2609 void release_user_cpus_ptr(struct task_struct *p) 2610 { 2611 kfree(clear_user_cpus_ptr(p)); 2612 } 2613 2614 /* 2615 * This function is wildly self concurrent; here be dragons. 2616 * 2617 * 2618 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2619 * designated task is enqueued on an allowed CPU. If that task is currently 2620 * running, we have to kick it out using the CPU stopper. 2621 * 2622 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2623 * Consider: 2624 * 2625 * Initial conditions: P0->cpus_mask = [0, 1] 2626 * 2627 * P0@CPU0 P1 2628 * 2629 * migrate_disable(); 2630 * <preempted> 2631 * set_cpus_allowed_ptr(P0, [1]); 2632 * 2633 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2634 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2635 * This means we need the following scheme: 2636 * 2637 * P0@CPU0 P1 2638 * 2639 * migrate_disable(); 2640 * <preempted> 2641 * set_cpus_allowed_ptr(P0, [1]); 2642 * <blocks> 2643 * <resumes> 2644 * migrate_enable(); 2645 * __set_cpus_allowed_ptr(); 2646 * <wakes local stopper> 2647 * `--> <woken on migration completion> 2648 * 2649 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2650 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2651 * task p are serialized by p->pi_lock, which we can leverage: the one that 2652 * should come into effect at the end of the Migrate-Disable region is the last 2653 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2654 * but we still need to properly signal those waiting tasks at the appropriate 2655 * moment. 2656 * 2657 * This is implemented using struct set_affinity_pending. The first 2658 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2659 * setup an instance of that struct and install it on the targeted task_struct. 2660 * Any and all further callers will reuse that instance. Those then wait for 2661 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2662 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2663 * 2664 * 2665 * (1) In the cases covered above. There is one more where the completion is 2666 * signaled within affine_move_task() itself: when a subsequent affinity request 2667 * occurs after the stopper bailed out due to the targeted task still being 2668 * Migrate-Disable. Consider: 2669 * 2670 * Initial conditions: P0->cpus_mask = [0, 1] 2671 * 2672 * CPU0 P1 P2 2673 * <P0> 2674 * migrate_disable(); 2675 * <preempted> 2676 * set_cpus_allowed_ptr(P0, [1]); 2677 * <blocks> 2678 * <migration/0> 2679 * migration_cpu_stop() 2680 * is_migration_disabled() 2681 * <bails> 2682 * set_cpus_allowed_ptr(P0, [0, 1]); 2683 * <signal completion> 2684 * <awakes> 2685 * 2686 * Note that the above is safe vs a concurrent migrate_enable(), as any 2687 * pending affinity completion is preceded by an uninstallation of 2688 * p->migration_pending done with p->pi_lock held. 2689 */ 2690 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2691 int dest_cpu, unsigned int flags) 2692 { 2693 struct set_affinity_pending my_pending = { }, *pending = NULL; 2694 bool stop_pending, complete = false; 2695 2696 /* Can the task run on the task's current CPU? If so, we're done */ 2697 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2698 struct task_struct *push_task = NULL; 2699 2700 if ((flags & SCA_MIGRATE_ENABLE) && 2701 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2702 rq->push_busy = true; 2703 push_task = get_task_struct(p); 2704 } 2705 2706 /* 2707 * If there are pending waiters, but no pending stop_work, 2708 * then complete now. 2709 */ 2710 pending = p->migration_pending; 2711 if (pending && !pending->stop_pending) { 2712 p->migration_pending = NULL; 2713 complete = true; 2714 } 2715 2716 task_rq_unlock(rq, p, rf); 2717 2718 if (push_task) { 2719 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2720 p, &rq->push_work); 2721 } 2722 2723 if (complete) 2724 complete_all(&pending->done); 2725 2726 return 0; 2727 } 2728 2729 if (!(flags & SCA_MIGRATE_ENABLE)) { 2730 /* serialized by p->pi_lock */ 2731 if (!p->migration_pending) { 2732 /* Install the request */ 2733 refcount_set(&my_pending.refs, 1); 2734 init_completion(&my_pending.done); 2735 my_pending.arg = (struct migration_arg) { 2736 .task = p, 2737 .dest_cpu = dest_cpu, 2738 .pending = &my_pending, 2739 }; 2740 2741 p->migration_pending = &my_pending; 2742 } else { 2743 pending = p->migration_pending; 2744 refcount_inc(&pending->refs); 2745 /* 2746 * Affinity has changed, but we've already installed a 2747 * pending. migration_cpu_stop() *must* see this, else 2748 * we risk a completion of the pending despite having a 2749 * task on a disallowed CPU. 2750 * 2751 * Serialized by p->pi_lock, so this is safe. 2752 */ 2753 pending->arg.dest_cpu = dest_cpu; 2754 } 2755 } 2756 pending = p->migration_pending; 2757 /* 2758 * - !MIGRATE_ENABLE: 2759 * we'll have installed a pending if there wasn't one already. 2760 * 2761 * - MIGRATE_ENABLE: 2762 * we're here because the current CPU isn't matching anymore, 2763 * the only way that can happen is because of a concurrent 2764 * set_cpus_allowed_ptr() call, which should then still be 2765 * pending completion. 2766 * 2767 * Either way, we really should have a @pending here. 2768 */ 2769 if (WARN_ON_ONCE(!pending)) { 2770 task_rq_unlock(rq, p, rf); 2771 return -EINVAL; 2772 } 2773 2774 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2775 /* 2776 * MIGRATE_ENABLE gets here because 'p == current', but for 2777 * anything else we cannot do is_migration_disabled(), punt 2778 * and have the stopper function handle it all race-free. 2779 */ 2780 stop_pending = pending->stop_pending; 2781 if (!stop_pending) 2782 pending->stop_pending = true; 2783 2784 if (flags & SCA_MIGRATE_ENABLE) 2785 p->migration_flags &= ~MDF_PUSH; 2786 2787 task_rq_unlock(rq, p, rf); 2788 2789 if (!stop_pending) { 2790 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2791 &pending->arg, &pending->stop_work); 2792 } 2793 2794 if (flags & SCA_MIGRATE_ENABLE) 2795 return 0; 2796 } else { 2797 2798 if (!is_migration_disabled(p)) { 2799 if (task_on_rq_queued(p)) 2800 rq = move_queued_task(rq, rf, p, dest_cpu); 2801 2802 if (!pending->stop_pending) { 2803 p->migration_pending = NULL; 2804 complete = true; 2805 } 2806 } 2807 task_rq_unlock(rq, p, rf); 2808 2809 if (complete) 2810 complete_all(&pending->done); 2811 } 2812 2813 wait_for_completion(&pending->done); 2814 2815 if (refcount_dec_and_test(&pending->refs)) 2816 wake_up_var(&pending->refs); /* No UaF, just an address */ 2817 2818 /* 2819 * Block the original owner of &pending until all subsequent callers 2820 * have seen the completion and decremented the refcount 2821 */ 2822 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2823 2824 /* ARGH */ 2825 WARN_ON_ONCE(my_pending.stop_pending); 2826 2827 return 0; 2828 } 2829 2830 /* 2831 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2832 */ 2833 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2834 const struct cpumask *new_mask, 2835 u32 flags, 2836 struct rq *rq, 2837 struct rq_flags *rf) 2838 __releases(rq->lock) 2839 __releases(p->pi_lock) 2840 { 2841 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2842 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2843 bool kthread = p->flags & PF_KTHREAD; 2844 struct cpumask *user_mask = NULL; 2845 unsigned int dest_cpu; 2846 int ret = 0; 2847 2848 update_rq_clock(rq); 2849 2850 if (kthread || is_migration_disabled(p)) { 2851 /* 2852 * Kernel threads are allowed on online && !active CPUs, 2853 * however, during cpu-hot-unplug, even these might get pushed 2854 * away if not KTHREAD_IS_PER_CPU. 2855 * 2856 * Specifically, migration_disabled() tasks must not fail the 2857 * cpumask_any_and_distribute() pick below, esp. so on 2858 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2859 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2860 */ 2861 cpu_valid_mask = cpu_online_mask; 2862 } 2863 2864 if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) { 2865 ret = -EINVAL; 2866 goto out; 2867 } 2868 2869 /* 2870 * Must re-check here, to close a race against __kthread_bind(), 2871 * sched_setaffinity() is not guaranteed to observe the flag. 2872 */ 2873 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2874 ret = -EINVAL; 2875 goto out; 2876 } 2877 2878 if (!(flags & SCA_MIGRATE_ENABLE)) { 2879 if (cpumask_equal(&p->cpus_mask, new_mask)) 2880 goto out; 2881 2882 if (WARN_ON_ONCE(p == current && 2883 is_migration_disabled(p) && 2884 !cpumask_test_cpu(task_cpu(p), new_mask))) { 2885 ret = -EBUSY; 2886 goto out; 2887 } 2888 } 2889 2890 /* 2891 * Picking a ~random cpu helps in cases where we are changing affinity 2892 * for groups of tasks (ie. cpuset), so that load balancing is not 2893 * immediately required to distribute the tasks within their new mask. 2894 */ 2895 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 2896 if (dest_cpu >= nr_cpu_ids) { 2897 ret = -EINVAL; 2898 goto out; 2899 } 2900 2901 __do_set_cpus_allowed(p, new_mask, flags); 2902 2903 if (flags & SCA_USER) 2904 user_mask = clear_user_cpus_ptr(p); 2905 2906 ret = affine_move_task(rq, p, rf, dest_cpu, flags); 2907 2908 kfree(user_mask); 2909 2910 return ret; 2911 2912 out: 2913 task_rq_unlock(rq, p, rf); 2914 2915 return ret; 2916 } 2917 2918 /* 2919 * Change a given task's CPU affinity. Migrate the thread to a 2920 * proper CPU and schedule it away if the CPU it's executing on 2921 * is removed from the allowed bitmask. 2922 * 2923 * NOTE: the caller must have a valid reference to the task, the 2924 * task must not exit() & deallocate itself prematurely. The 2925 * call is not atomic; no spinlocks may be held. 2926 */ 2927 static int __set_cpus_allowed_ptr(struct task_struct *p, 2928 const struct cpumask *new_mask, u32 flags) 2929 { 2930 struct rq_flags rf; 2931 struct rq *rq; 2932 2933 rq = task_rq_lock(p, &rf); 2934 return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf); 2935 } 2936 2937 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 2938 { 2939 return __set_cpus_allowed_ptr(p, new_mask, 0); 2940 } 2941 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 2942 2943 /* 2944 * Change a given task's CPU affinity to the intersection of its current 2945 * affinity mask and @subset_mask, writing the resulting mask to @new_mask 2946 * and pointing @p->user_cpus_ptr to a copy of the old mask. 2947 * If the resulting mask is empty, leave the affinity unchanged and return 2948 * -EINVAL. 2949 */ 2950 static int restrict_cpus_allowed_ptr(struct task_struct *p, 2951 struct cpumask *new_mask, 2952 const struct cpumask *subset_mask) 2953 { 2954 struct cpumask *user_mask = NULL; 2955 struct rq_flags rf; 2956 struct rq *rq; 2957 int err; 2958 2959 if (!p->user_cpus_ptr) { 2960 user_mask = kmalloc(cpumask_size(), GFP_KERNEL); 2961 if (!user_mask) 2962 return -ENOMEM; 2963 } 2964 2965 rq = task_rq_lock(p, &rf); 2966 2967 /* 2968 * Forcefully restricting the affinity of a deadline task is 2969 * likely to cause problems, so fail and noisily override the 2970 * mask entirely. 2971 */ 2972 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 2973 err = -EPERM; 2974 goto err_unlock; 2975 } 2976 2977 if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) { 2978 err = -EINVAL; 2979 goto err_unlock; 2980 } 2981 2982 /* 2983 * We're about to butcher the task affinity, so keep track of what 2984 * the user asked for in case we're able to restore it later on. 2985 */ 2986 if (user_mask) { 2987 cpumask_copy(user_mask, p->cpus_ptr); 2988 p->user_cpus_ptr = user_mask; 2989 } 2990 2991 return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf); 2992 2993 err_unlock: 2994 task_rq_unlock(rq, p, &rf); 2995 kfree(user_mask); 2996 return err; 2997 } 2998 2999 /* 3000 * Restrict the CPU affinity of task @p so that it is a subset of 3001 * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the 3002 * old affinity mask. If the resulting mask is empty, we warn and walk 3003 * up the cpuset hierarchy until we find a suitable mask. 3004 */ 3005 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3006 { 3007 cpumask_var_t new_mask; 3008 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3009 3010 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3011 3012 /* 3013 * __migrate_task() can fail silently in the face of concurrent 3014 * offlining of the chosen destination CPU, so take the hotplug 3015 * lock to ensure that the migration succeeds. 3016 */ 3017 cpus_read_lock(); 3018 if (!cpumask_available(new_mask)) 3019 goto out_set_mask; 3020 3021 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3022 goto out_free_mask; 3023 3024 /* 3025 * We failed to find a valid subset of the affinity mask for the 3026 * task, so override it based on its cpuset hierarchy. 3027 */ 3028 cpuset_cpus_allowed(p, new_mask); 3029 override_mask = new_mask; 3030 3031 out_set_mask: 3032 if (printk_ratelimit()) { 3033 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3034 task_pid_nr(p), p->comm, 3035 cpumask_pr_args(override_mask)); 3036 } 3037 3038 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3039 out_free_mask: 3040 cpus_read_unlock(); 3041 free_cpumask_var(new_mask); 3042 } 3043 3044 static int 3045 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask); 3046 3047 /* 3048 * Restore the affinity of a task @p which was previously restricted by a 3049 * call to force_compatible_cpus_allowed_ptr(). This will clear (and free) 3050 * @p->user_cpus_ptr. 3051 * 3052 * It is the caller's responsibility to serialise this with any calls to 3053 * force_compatible_cpus_allowed_ptr(@p). 3054 */ 3055 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3056 { 3057 struct cpumask *user_mask = p->user_cpus_ptr; 3058 unsigned long flags; 3059 3060 /* 3061 * Try to restore the old affinity mask. If this fails, then 3062 * we free the mask explicitly to avoid it being inherited across 3063 * a subsequent fork(). 3064 */ 3065 if (!user_mask || !__sched_setaffinity(p, user_mask)) 3066 return; 3067 3068 raw_spin_lock_irqsave(&p->pi_lock, flags); 3069 user_mask = clear_user_cpus_ptr(p); 3070 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3071 3072 kfree(user_mask); 3073 } 3074 3075 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3076 { 3077 #ifdef CONFIG_SCHED_DEBUG 3078 unsigned int state = READ_ONCE(p->__state); 3079 3080 /* 3081 * We should never call set_task_cpu() on a blocked task, 3082 * ttwu() will sort out the placement. 3083 */ 3084 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3085 3086 /* 3087 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3088 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3089 * time relying on p->on_rq. 3090 */ 3091 WARN_ON_ONCE(state == TASK_RUNNING && 3092 p->sched_class == &fair_sched_class && 3093 (p->on_rq && !task_on_rq_migrating(p))); 3094 3095 #ifdef CONFIG_LOCKDEP 3096 /* 3097 * The caller should hold either p->pi_lock or rq->lock, when changing 3098 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3099 * 3100 * sched_move_task() holds both and thus holding either pins the cgroup, 3101 * see task_group(). 3102 * 3103 * Furthermore, all task_rq users should acquire both locks, see 3104 * task_rq_lock(). 3105 */ 3106 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3107 lockdep_is_held(__rq_lockp(task_rq(p))))); 3108 #endif 3109 /* 3110 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3111 */ 3112 WARN_ON_ONCE(!cpu_online(new_cpu)); 3113 3114 WARN_ON_ONCE(is_migration_disabled(p)); 3115 #endif 3116 3117 trace_sched_migrate_task(p, new_cpu); 3118 3119 if (task_cpu(p) != new_cpu) { 3120 if (p->sched_class->migrate_task_rq) 3121 p->sched_class->migrate_task_rq(p, new_cpu); 3122 p->se.nr_migrations++; 3123 rseq_migrate(p); 3124 perf_event_task_migrate(p); 3125 } 3126 3127 __set_task_cpu(p, new_cpu); 3128 } 3129 3130 #ifdef CONFIG_NUMA_BALANCING 3131 static void __migrate_swap_task(struct task_struct *p, int cpu) 3132 { 3133 if (task_on_rq_queued(p)) { 3134 struct rq *src_rq, *dst_rq; 3135 struct rq_flags srf, drf; 3136 3137 src_rq = task_rq(p); 3138 dst_rq = cpu_rq(cpu); 3139 3140 rq_pin_lock(src_rq, &srf); 3141 rq_pin_lock(dst_rq, &drf); 3142 3143 deactivate_task(src_rq, p, 0); 3144 set_task_cpu(p, cpu); 3145 activate_task(dst_rq, p, 0); 3146 check_preempt_curr(dst_rq, p, 0); 3147 3148 rq_unpin_lock(dst_rq, &drf); 3149 rq_unpin_lock(src_rq, &srf); 3150 3151 } else { 3152 /* 3153 * Task isn't running anymore; make it appear like we migrated 3154 * it before it went to sleep. This means on wakeup we make the 3155 * previous CPU our target instead of where it really is. 3156 */ 3157 p->wake_cpu = cpu; 3158 } 3159 } 3160 3161 struct migration_swap_arg { 3162 struct task_struct *src_task, *dst_task; 3163 int src_cpu, dst_cpu; 3164 }; 3165 3166 static int migrate_swap_stop(void *data) 3167 { 3168 struct migration_swap_arg *arg = data; 3169 struct rq *src_rq, *dst_rq; 3170 int ret = -EAGAIN; 3171 3172 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3173 return -EAGAIN; 3174 3175 src_rq = cpu_rq(arg->src_cpu); 3176 dst_rq = cpu_rq(arg->dst_cpu); 3177 3178 double_raw_lock(&arg->src_task->pi_lock, 3179 &arg->dst_task->pi_lock); 3180 double_rq_lock(src_rq, dst_rq); 3181 3182 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3183 goto unlock; 3184 3185 if (task_cpu(arg->src_task) != arg->src_cpu) 3186 goto unlock; 3187 3188 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3189 goto unlock; 3190 3191 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3192 goto unlock; 3193 3194 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3195 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3196 3197 ret = 0; 3198 3199 unlock: 3200 double_rq_unlock(src_rq, dst_rq); 3201 raw_spin_unlock(&arg->dst_task->pi_lock); 3202 raw_spin_unlock(&arg->src_task->pi_lock); 3203 3204 return ret; 3205 } 3206 3207 /* 3208 * Cross migrate two tasks 3209 */ 3210 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3211 int target_cpu, int curr_cpu) 3212 { 3213 struct migration_swap_arg arg; 3214 int ret = -EINVAL; 3215 3216 arg = (struct migration_swap_arg){ 3217 .src_task = cur, 3218 .src_cpu = curr_cpu, 3219 .dst_task = p, 3220 .dst_cpu = target_cpu, 3221 }; 3222 3223 if (arg.src_cpu == arg.dst_cpu) 3224 goto out; 3225 3226 /* 3227 * These three tests are all lockless; this is OK since all of them 3228 * will be re-checked with proper locks held further down the line. 3229 */ 3230 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3231 goto out; 3232 3233 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3234 goto out; 3235 3236 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3237 goto out; 3238 3239 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3240 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3241 3242 out: 3243 return ret; 3244 } 3245 #endif /* CONFIG_NUMA_BALANCING */ 3246 3247 /* 3248 * wait_task_inactive - wait for a thread to unschedule. 3249 * 3250 * Wait for the thread to block in any of the states set in @match_state. 3251 * If it changes, i.e. @p might have woken up, then return zero. When we 3252 * succeed in waiting for @p to be off its CPU, we return a positive number 3253 * (its total switch count). If a second call a short while later returns the 3254 * same number, the caller can be sure that @p has remained unscheduled the 3255 * whole time. 3256 * 3257 * The caller must ensure that the task *will* unschedule sometime soon, 3258 * else this function might spin for a *long* time. This function can't 3259 * be called with interrupts off, or it may introduce deadlock with 3260 * smp_call_function() if an IPI is sent by the same process we are 3261 * waiting to become inactive. 3262 */ 3263 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 3264 { 3265 int running, queued; 3266 struct rq_flags rf; 3267 unsigned long ncsw; 3268 struct rq *rq; 3269 3270 for (;;) { 3271 /* 3272 * We do the initial early heuristics without holding 3273 * any task-queue locks at all. We'll only try to get 3274 * the runqueue lock when things look like they will 3275 * work out! 3276 */ 3277 rq = task_rq(p); 3278 3279 /* 3280 * If the task is actively running on another CPU 3281 * still, just relax and busy-wait without holding 3282 * any locks. 3283 * 3284 * NOTE! Since we don't hold any locks, it's not 3285 * even sure that "rq" stays as the right runqueue! 3286 * But we don't care, since "task_on_cpu()" will 3287 * return false if the runqueue has changed and p 3288 * is actually now running somewhere else! 3289 */ 3290 while (task_on_cpu(rq, p)) { 3291 if (!(READ_ONCE(p->__state) & match_state)) 3292 return 0; 3293 cpu_relax(); 3294 } 3295 3296 /* 3297 * Ok, time to look more closely! We need the rq 3298 * lock now, to be *sure*. If we're wrong, we'll 3299 * just go back and repeat. 3300 */ 3301 rq = task_rq_lock(p, &rf); 3302 trace_sched_wait_task(p); 3303 running = task_on_cpu(rq, p); 3304 queued = task_on_rq_queued(p); 3305 ncsw = 0; 3306 if (READ_ONCE(p->__state) & match_state) 3307 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 3308 task_rq_unlock(rq, p, &rf); 3309 3310 /* 3311 * If it changed from the expected state, bail out now. 3312 */ 3313 if (unlikely(!ncsw)) 3314 break; 3315 3316 /* 3317 * Was it really running after all now that we 3318 * checked with the proper locks actually held? 3319 * 3320 * Oops. Go back and try again.. 3321 */ 3322 if (unlikely(running)) { 3323 cpu_relax(); 3324 continue; 3325 } 3326 3327 /* 3328 * It's not enough that it's not actively running, 3329 * it must be off the runqueue _entirely_, and not 3330 * preempted! 3331 * 3332 * So if it was still runnable (but just not actively 3333 * running right now), it's preempted, and we should 3334 * yield - it could be a while. 3335 */ 3336 if (unlikely(queued)) { 3337 ktime_t to = NSEC_PER_SEC / HZ; 3338 3339 set_current_state(TASK_UNINTERRUPTIBLE); 3340 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 3341 continue; 3342 } 3343 3344 /* 3345 * Ahh, all good. It wasn't running, and it wasn't 3346 * runnable, which means that it will never become 3347 * running in the future either. We're all done! 3348 */ 3349 break; 3350 } 3351 3352 return ncsw; 3353 } 3354 3355 /*** 3356 * kick_process - kick a running thread to enter/exit the kernel 3357 * @p: the to-be-kicked thread 3358 * 3359 * Cause a process which is running on another CPU to enter 3360 * kernel-mode, without any delay. (to get signals handled.) 3361 * 3362 * NOTE: this function doesn't have to take the runqueue lock, 3363 * because all it wants to ensure is that the remote task enters 3364 * the kernel. If the IPI races and the task has been migrated 3365 * to another CPU then no harm is done and the purpose has been 3366 * achieved as well. 3367 */ 3368 void kick_process(struct task_struct *p) 3369 { 3370 int cpu; 3371 3372 preempt_disable(); 3373 cpu = task_cpu(p); 3374 if ((cpu != smp_processor_id()) && task_curr(p)) 3375 smp_send_reschedule(cpu); 3376 preempt_enable(); 3377 } 3378 EXPORT_SYMBOL_GPL(kick_process); 3379 3380 /* 3381 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3382 * 3383 * A few notes on cpu_active vs cpu_online: 3384 * 3385 * - cpu_active must be a subset of cpu_online 3386 * 3387 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3388 * see __set_cpus_allowed_ptr(). At this point the newly online 3389 * CPU isn't yet part of the sched domains, and balancing will not 3390 * see it. 3391 * 3392 * - on CPU-down we clear cpu_active() to mask the sched domains and 3393 * avoid the load balancer to place new tasks on the to be removed 3394 * CPU. Existing tasks will remain running there and will be taken 3395 * off. 3396 * 3397 * This means that fallback selection must not select !active CPUs. 3398 * And can assume that any active CPU must be online. Conversely 3399 * select_task_rq() below may allow selection of !active CPUs in order 3400 * to satisfy the above rules. 3401 */ 3402 static int select_fallback_rq(int cpu, struct task_struct *p) 3403 { 3404 int nid = cpu_to_node(cpu); 3405 const struct cpumask *nodemask = NULL; 3406 enum { cpuset, possible, fail } state = cpuset; 3407 int dest_cpu; 3408 3409 /* 3410 * If the node that the CPU is on has been offlined, cpu_to_node() 3411 * will return -1. There is no CPU on the node, and we should 3412 * select the CPU on the other node. 3413 */ 3414 if (nid != -1) { 3415 nodemask = cpumask_of_node(nid); 3416 3417 /* Look for allowed, online CPU in same node. */ 3418 for_each_cpu(dest_cpu, nodemask) { 3419 if (is_cpu_allowed(p, dest_cpu)) 3420 return dest_cpu; 3421 } 3422 } 3423 3424 for (;;) { 3425 /* Any allowed, online CPU? */ 3426 for_each_cpu(dest_cpu, p->cpus_ptr) { 3427 if (!is_cpu_allowed(p, dest_cpu)) 3428 continue; 3429 3430 goto out; 3431 } 3432 3433 /* No more Mr. Nice Guy. */ 3434 switch (state) { 3435 case cpuset: 3436 if (cpuset_cpus_allowed_fallback(p)) { 3437 state = possible; 3438 break; 3439 } 3440 fallthrough; 3441 case possible: 3442 /* 3443 * XXX When called from select_task_rq() we only 3444 * hold p->pi_lock and again violate locking order. 3445 * 3446 * More yuck to audit. 3447 */ 3448 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3449 state = fail; 3450 break; 3451 case fail: 3452 BUG(); 3453 break; 3454 } 3455 } 3456 3457 out: 3458 if (state != cpuset) { 3459 /* 3460 * Don't tell them about moving exiting tasks or 3461 * kernel threads (both mm NULL), since they never 3462 * leave kernel. 3463 */ 3464 if (p->mm && printk_ratelimit()) { 3465 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3466 task_pid_nr(p), p->comm, cpu); 3467 } 3468 } 3469 3470 return dest_cpu; 3471 } 3472 3473 /* 3474 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3475 */ 3476 static inline 3477 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3478 { 3479 lockdep_assert_held(&p->pi_lock); 3480 3481 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3482 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3483 else 3484 cpu = cpumask_any(p->cpus_ptr); 3485 3486 /* 3487 * In order not to call set_task_cpu() on a blocking task we need 3488 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3489 * CPU. 3490 * 3491 * Since this is common to all placement strategies, this lives here. 3492 * 3493 * [ this allows ->select_task() to simply return task_cpu(p) and 3494 * not worry about this generic constraint ] 3495 */ 3496 if (unlikely(!is_cpu_allowed(p, cpu))) 3497 cpu = select_fallback_rq(task_cpu(p), p); 3498 3499 return cpu; 3500 } 3501 3502 void sched_set_stop_task(int cpu, struct task_struct *stop) 3503 { 3504 static struct lock_class_key stop_pi_lock; 3505 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3506 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3507 3508 if (stop) { 3509 /* 3510 * Make it appear like a SCHED_FIFO task, its something 3511 * userspace knows about and won't get confused about. 3512 * 3513 * Also, it will make PI more or less work without too 3514 * much confusion -- but then, stop work should not 3515 * rely on PI working anyway. 3516 */ 3517 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3518 3519 stop->sched_class = &stop_sched_class; 3520 3521 /* 3522 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3523 * adjust the effective priority of a task. As a result, 3524 * rt_mutex_setprio() can trigger (RT) balancing operations, 3525 * which can then trigger wakeups of the stop thread to push 3526 * around the current task. 3527 * 3528 * The stop task itself will never be part of the PI-chain, it 3529 * never blocks, therefore that ->pi_lock recursion is safe. 3530 * Tell lockdep about this by placing the stop->pi_lock in its 3531 * own class. 3532 */ 3533 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3534 } 3535 3536 cpu_rq(cpu)->stop = stop; 3537 3538 if (old_stop) { 3539 /* 3540 * Reset it back to a normal scheduling class so that 3541 * it can die in pieces. 3542 */ 3543 old_stop->sched_class = &rt_sched_class; 3544 } 3545 } 3546 3547 #else /* CONFIG_SMP */ 3548 3549 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 3550 const struct cpumask *new_mask, 3551 u32 flags) 3552 { 3553 return set_cpus_allowed_ptr(p, new_mask); 3554 } 3555 3556 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3557 3558 static inline bool rq_has_pinned_tasks(struct rq *rq) 3559 { 3560 return false; 3561 } 3562 3563 #endif /* !CONFIG_SMP */ 3564 3565 static void 3566 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3567 { 3568 struct rq *rq; 3569 3570 if (!schedstat_enabled()) 3571 return; 3572 3573 rq = this_rq(); 3574 3575 #ifdef CONFIG_SMP 3576 if (cpu == rq->cpu) { 3577 __schedstat_inc(rq->ttwu_local); 3578 __schedstat_inc(p->stats.nr_wakeups_local); 3579 } else { 3580 struct sched_domain *sd; 3581 3582 __schedstat_inc(p->stats.nr_wakeups_remote); 3583 rcu_read_lock(); 3584 for_each_domain(rq->cpu, sd) { 3585 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3586 __schedstat_inc(sd->ttwu_wake_remote); 3587 break; 3588 } 3589 } 3590 rcu_read_unlock(); 3591 } 3592 3593 if (wake_flags & WF_MIGRATED) 3594 __schedstat_inc(p->stats.nr_wakeups_migrate); 3595 #endif /* CONFIG_SMP */ 3596 3597 __schedstat_inc(rq->ttwu_count); 3598 __schedstat_inc(p->stats.nr_wakeups); 3599 3600 if (wake_flags & WF_SYNC) 3601 __schedstat_inc(p->stats.nr_wakeups_sync); 3602 } 3603 3604 /* 3605 * Mark the task runnable and perform wakeup-preemption. 3606 */ 3607 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 3608 struct rq_flags *rf) 3609 { 3610 check_preempt_curr(rq, p, wake_flags); 3611 WRITE_ONCE(p->__state, TASK_RUNNING); 3612 trace_sched_wakeup(p); 3613 3614 #ifdef CONFIG_SMP 3615 if (p->sched_class->task_woken) { 3616 /* 3617 * Our task @p is fully woken up and running; so it's safe to 3618 * drop the rq->lock, hereafter rq is only used for statistics. 3619 */ 3620 rq_unpin_lock(rq, rf); 3621 p->sched_class->task_woken(rq, p); 3622 rq_repin_lock(rq, rf); 3623 } 3624 3625 if (rq->idle_stamp) { 3626 u64 delta = rq_clock(rq) - rq->idle_stamp; 3627 u64 max = 2*rq->max_idle_balance_cost; 3628 3629 update_avg(&rq->avg_idle, delta); 3630 3631 if (rq->avg_idle > max) 3632 rq->avg_idle = max; 3633 3634 rq->wake_stamp = jiffies; 3635 rq->wake_avg_idle = rq->avg_idle / 2; 3636 3637 rq->idle_stamp = 0; 3638 } 3639 #endif 3640 } 3641 3642 static void 3643 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3644 struct rq_flags *rf) 3645 { 3646 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3647 3648 lockdep_assert_rq_held(rq); 3649 3650 if (p->sched_contributes_to_load) 3651 rq->nr_uninterruptible--; 3652 3653 #ifdef CONFIG_SMP 3654 if (wake_flags & WF_MIGRATED) 3655 en_flags |= ENQUEUE_MIGRATED; 3656 else 3657 #endif 3658 if (p->in_iowait) { 3659 delayacct_blkio_end(p); 3660 atomic_dec(&task_rq(p)->nr_iowait); 3661 } 3662 3663 activate_task(rq, p, en_flags); 3664 ttwu_do_wakeup(rq, p, wake_flags, rf); 3665 } 3666 3667 /* 3668 * Consider @p being inside a wait loop: 3669 * 3670 * for (;;) { 3671 * set_current_state(TASK_UNINTERRUPTIBLE); 3672 * 3673 * if (CONDITION) 3674 * break; 3675 * 3676 * schedule(); 3677 * } 3678 * __set_current_state(TASK_RUNNING); 3679 * 3680 * between set_current_state() and schedule(). In this case @p is still 3681 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3682 * an atomic manner. 3683 * 3684 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3685 * then schedule() must still happen and p->state can be changed to 3686 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3687 * need to do a full wakeup with enqueue. 3688 * 3689 * Returns: %true when the wakeup is done, 3690 * %false otherwise. 3691 */ 3692 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3693 { 3694 struct rq_flags rf; 3695 struct rq *rq; 3696 int ret = 0; 3697 3698 rq = __task_rq_lock(p, &rf); 3699 if (task_on_rq_queued(p)) { 3700 /* check_preempt_curr() may use rq clock */ 3701 update_rq_clock(rq); 3702 ttwu_do_wakeup(rq, p, wake_flags, &rf); 3703 ret = 1; 3704 } 3705 __task_rq_unlock(rq, &rf); 3706 3707 return ret; 3708 } 3709 3710 #ifdef CONFIG_SMP 3711 void sched_ttwu_pending(void *arg) 3712 { 3713 struct llist_node *llist = arg; 3714 struct rq *rq = this_rq(); 3715 struct task_struct *p, *t; 3716 struct rq_flags rf; 3717 3718 if (!llist) 3719 return; 3720 3721 /* 3722 * rq::ttwu_pending racy indication of out-standing wakeups. 3723 * Races such that false-negatives are possible, since they 3724 * are shorter lived that false-positives would be. 3725 */ 3726 WRITE_ONCE(rq->ttwu_pending, 0); 3727 3728 rq_lock_irqsave(rq, &rf); 3729 update_rq_clock(rq); 3730 3731 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3732 if (WARN_ON_ONCE(p->on_cpu)) 3733 smp_cond_load_acquire(&p->on_cpu, !VAL); 3734 3735 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3736 set_task_cpu(p, cpu_of(rq)); 3737 3738 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3739 } 3740 3741 rq_unlock_irqrestore(rq, &rf); 3742 } 3743 3744 void send_call_function_single_ipi(int cpu) 3745 { 3746 struct rq *rq = cpu_rq(cpu); 3747 3748 if (!set_nr_if_polling(rq->idle)) 3749 arch_send_call_function_single_ipi(cpu); 3750 else 3751 trace_sched_wake_idle_without_ipi(cpu); 3752 } 3753 3754 /* 3755 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3756 * necessary. The wakee CPU on receipt of the IPI will queue the task 3757 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3758 * of the wakeup instead of the waker. 3759 */ 3760 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3761 { 3762 struct rq *rq = cpu_rq(cpu); 3763 3764 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3765 3766 WRITE_ONCE(rq->ttwu_pending, 1); 3767 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3768 } 3769 3770 void wake_up_if_idle(int cpu) 3771 { 3772 struct rq *rq = cpu_rq(cpu); 3773 struct rq_flags rf; 3774 3775 rcu_read_lock(); 3776 3777 if (!is_idle_task(rcu_dereference(rq->curr))) 3778 goto out; 3779 3780 rq_lock_irqsave(rq, &rf); 3781 if (is_idle_task(rq->curr)) 3782 resched_curr(rq); 3783 /* Else CPU is not idle, do nothing here: */ 3784 rq_unlock_irqrestore(rq, &rf); 3785 3786 out: 3787 rcu_read_unlock(); 3788 } 3789 3790 bool cpus_share_cache(int this_cpu, int that_cpu) 3791 { 3792 if (this_cpu == that_cpu) 3793 return true; 3794 3795 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3796 } 3797 3798 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3799 { 3800 /* 3801 * Do not complicate things with the async wake_list while the CPU is 3802 * in hotplug state. 3803 */ 3804 if (!cpu_active(cpu)) 3805 return false; 3806 3807 /* Ensure the task will still be allowed to run on the CPU. */ 3808 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3809 return false; 3810 3811 /* 3812 * If the CPU does not share cache, then queue the task on the 3813 * remote rqs wakelist to avoid accessing remote data. 3814 */ 3815 if (!cpus_share_cache(smp_processor_id(), cpu)) 3816 return true; 3817 3818 if (cpu == smp_processor_id()) 3819 return false; 3820 3821 /* 3822 * If the wakee cpu is idle, or the task is descheduling and the 3823 * only running task on the CPU, then use the wakelist to offload 3824 * the task activation to the idle (or soon-to-be-idle) CPU as 3825 * the current CPU is likely busy. nr_running is checked to 3826 * avoid unnecessary task stacking. 3827 * 3828 * Note that we can only get here with (wakee) p->on_rq=0, 3829 * p->on_cpu can be whatever, we've done the dequeue, so 3830 * the wakee has been accounted out of ->nr_running. 3831 */ 3832 if (!cpu_rq(cpu)->nr_running) 3833 return true; 3834 3835 return false; 3836 } 3837 3838 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3839 { 3840 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3841 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3842 __ttwu_queue_wakelist(p, cpu, wake_flags); 3843 return true; 3844 } 3845 3846 return false; 3847 } 3848 3849 #else /* !CONFIG_SMP */ 3850 3851 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3852 { 3853 return false; 3854 } 3855 3856 #endif /* CONFIG_SMP */ 3857 3858 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3859 { 3860 struct rq *rq = cpu_rq(cpu); 3861 struct rq_flags rf; 3862 3863 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3864 return; 3865 3866 rq_lock(rq, &rf); 3867 update_rq_clock(rq); 3868 ttwu_do_activate(rq, p, wake_flags, &rf); 3869 rq_unlock(rq, &rf); 3870 } 3871 3872 /* 3873 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3874 * 3875 * The caller holds p::pi_lock if p != current or has preemption 3876 * disabled when p == current. 3877 * 3878 * The rules of PREEMPT_RT saved_state: 3879 * 3880 * The related locking code always holds p::pi_lock when updating 3881 * p::saved_state, which means the code is fully serialized in both cases. 3882 * 3883 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other 3884 * bits set. This allows to distinguish all wakeup scenarios. 3885 */ 3886 static __always_inline 3887 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3888 { 3889 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3890 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3891 state != TASK_RTLOCK_WAIT); 3892 } 3893 3894 if (READ_ONCE(p->__state) & state) { 3895 *success = 1; 3896 return true; 3897 } 3898 3899 #ifdef CONFIG_PREEMPT_RT 3900 /* 3901 * Saved state preserves the task state across blocking on 3902 * an RT lock. If the state matches, set p::saved_state to 3903 * TASK_RUNNING, but do not wake the task because it waits 3904 * for a lock wakeup. Also indicate success because from 3905 * the regular waker's point of view this has succeeded. 3906 * 3907 * After acquiring the lock the task will restore p::__state 3908 * from p::saved_state which ensures that the regular 3909 * wakeup is not lost. The restore will also set 3910 * p::saved_state to TASK_RUNNING so any further tests will 3911 * not result in false positives vs. @success 3912 */ 3913 if (p->saved_state & state) { 3914 p->saved_state = TASK_RUNNING; 3915 *success = 1; 3916 } 3917 #endif 3918 return false; 3919 } 3920 3921 /* 3922 * Notes on Program-Order guarantees on SMP systems. 3923 * 3924 * MIGRATION 3925 * 3926 * The basic program-order guarantee on SMP systems is that when a task [t] 3927 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3928 * execution on its new CPU [c1]. 3929 * 3930 * For migration (of runnable tasks) this is provided by the following means: 3931 * 3932 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3933 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3934 * rq(c1)->lock (if not at the same time, then in that order). 3935 * C) LOCK of the rq(c1)->lock scheduling in task 3936 * 3937 * Release/acquire chaining guarantees that B happens after A and C after B. 3938 * Note: the CPU doing B need not be c0 or c1 3939 * 3940 * Example: 3941 * 3942 * CPU0 CPU1 CPU2 3943 * 3944 * LOCK rq(0)->lock 3945 * sched-out X 3946 * sched-in Y 3947 * UNLOCK rq(0)->lock 3948 * 3949 * LOCK rq(0)->lock // orders against CPU0 3950 * dequeue X 3951 * UNLOCK rq(0)->lock 3952 * 3953 * LOCK rq(1)->lock 3954 * enqueue X 3955 * UNLOCK rq(1)->lock 3956 * 3957 * LOCK rq(1)->lock // orders against CPU2 3958 * sched-out Z 3959 * sched-in X 3960 * UNLOCK rq(1)->lock 3961 * 3962 * 3963 * BLOCKING -- aka. SLEEP + WAKEUP 3964 * 3965 * For blocking we (obviously) need to provide the same guarantee as for 3966 * migration. However the means are completely different as there is no lock 3967 * chain to provide order. Instead we do: 3968 * 3969 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3970 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3971 * 3972 * Example: 3973 * 3974 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 3975 * 3976 * LOCK rq(0)->lock LOCK X->pi_lock 3977 * dequeue X 3978 * sched-out X 3979 * smp_store_release(X->on_cpu, 0); 3980 * 3981 * smp_cond_load_acquire(&X->on_cpu, !VAL); 3982 * X->state = WAKING 3983 * set_task_cpu(X,2) 3984 * 3985 * LOCK rq(2)->lock 3986 * enqueue X 3987 * X->state = RUNNING 3988 * UNLOCK rq(2)->lock 3989 * 3990 * LOCK rq(2)->lock // orders against CPU1 3991 * sched-out Z 3992 * sched-in X 3993 * UNLOCK rq(2)->lock 3994 * 3995 * UNLOCK X->pi_lock 3996 * UNLOCK rq(0)->lock 3997 * 3998 * 3999 * However, for wakeups there is a second guarantee we must provide, namely we 4000 * must ensure that CONDITION=1 done by the caller can not be reordered with 4001 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4002 */ 4003 4004 /** 4005 * try_to_wake_up - wake up a thread 4006 * @p: the thread to be awakened 4007 * @state: the mask of task states that can be woken 4008 * @wake_flags: wake modifier flags (WF_*) 4009 * 4010 * Conceptually does: 4011 * 4012 * If (@state & @p->state) @p->state = TASK_RUNNING. 4013 * 4014 * If the task was not queued/runnable, also place it back on a runqueue. 4015 * 4016 * This function is atomic against schedule() which would dequeue the task. 4017 * 4018 * It issues a full memory barrier before accessing @p->state, see the comment 4019 * with set_current_state(). 4020 * 4021 * Uses p->pi_lock to serialize against concurrent wake-ups. 4022 * 4023 * Relies on p->pi_lock stabilizing: 4024 * - p->sched_class 4025 * - p->cpus_ptr 4026 * - p->sched_task_group 4027 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4028 * 4029 * Tries really hard to only take one task_rq(p)->lock for performance. 4030 * Takes rq->lock in: 4031 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4032 * - ttwu_queue() -- new rq, for enqueue of the task; 4033 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4034 * 4035 * As a consequence we race really badly with just about everything. See the 4036 * many memory barriers and their comments for details. 4037 * 4038 * Return: %true if @p->state changes (an actual wakeup was done), 4039 * %false otherwise. 4040 */ 4041 static int 4042 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4043 { 4044 unsigned long flags; 4045 int cpu, success = 0; 4046 4047 preempt_disable(); 4048 if (p == current) { 4049 /* 4050 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4051 * == smp_processor_id()'. Together this means we can special 4052 * case the whole 'p->on_rq && ttwu_runnable()' case below 4053 * without taking any locks. 4054 * 4055 * In particular: 4056 * - we rely on Program-Order guarantees for all the ordering, 4057 * - we're serialized against set_special_state() by virtue of 4058 * it disabling IRQs (this allows not taking ->pi_lock). 4059 */ 4060 if (!ttwu_state_match(p, state, &success)) 4061 goto out; 4062 4063 trace_sched_waking(p); 4064 WRITE_ONCE(p->__state, TASK_RUNNING); 4065 trace_sched_wakeup(p); 4066 goto out; 4067 } 4068 4069 /* 4070 * If we are going to wake up a thread waiting for CONDITION we 4071 * need to ensure that CONDITION=1 done by the caller can not be 4072 * reordered with p->state check below. This pairs with smp_store_mb() 4073 * in set_current_state() that the waiting thread does. 4074 */ 4075 raw_spin_lock_irqsave(&p->pi_lock, flags); 4076 smp_mb__after_spinlock(); 4077 if (!ttwu_state_match(p, state, &success)) 4078 goto unlock; 4079 4080 trace_sched_waking(p); 4081 4082 /* 4083 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4084 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4085 * in smp_cond_load_acquire() below. 4086 * 4087 * sched_ttwu_pending() try_to_wake_up() 4088 * STORE p->on_rq = 1 LOAD p->state 4089 * UNLOCK rq->lock 4090 * 4091 * __schedule() (switch to task 'p') 4092 * LOCK rq->lock smp_rmb(); 4093 * smp_mb__after_spinlock(); 4094 * UNLOCK rq->lock 4095 * 4096 * [task p] 4097 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4098 * 4099 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4100 * __schedule(). See the comment for smp_mb__after_spinlock(). 4101 * 4102 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 4103 */ 4104 smp_rmb(); 4105 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4106 goto unlock; 4107 4108 #ifdef CONFIG_SMP 4109 /* 4110 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4111 * possible to, falsely, observe p->on_cpu == 0. 4112 * 4113 * One must be running (->on_cpu == 1) in order to remove oneself 4114 * from the runqueue. 4115 * 4116 * __schedule() (switch to task 'p') try_to_wake_up() 4117 * STORE p->on_cpu = 1 LOAD p->on_rq 4118 * UNLOCK rq->lock 4119 * 4120 * __schedule() (put 'p' to sleep) 4121 * LOCK rq->lock smp_rmb(); 4122 * smp_mb__after_spinlock(); 4123 * STORE p->on_rq = 0 LOAD p->on_cpu 4124 * 4125 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4126 * __schedule(). See the comment for smp_mb__after_spinlock(). 4127 * 4128 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4129 * schedule()'s deactivate_task() has 'happened' and p will no longer 4130 * care about it's own p->state. See the comment in __schedule(). 4131 */ 4132 smp_acquire__after_ctrl_dep(); 4133 4134 /* 4135 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4136 * == 0), which means we need to do an enqueue, change p->state to 4137 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4138 * enqueue, such as ttwu_queue_wakelist(). 4139 */ 4140 WRITE_ONCE(p->__state, TASK_WAKING); 4141 4142 /* 4143 * If the owning (remote) CPU is still in the middle of schedule() with 4144 * this task as prev, considering queueing p on the remote CPUs wake_list 4145 * which potentially sends an IPI instead of spinning on p->on_cpu to 4146 * let the waker make forward progress. This is safe because IRQs are 4147 * disabled and the IPI will deliver after on_cpu is cleared. 4148 * 4149 * Ensure we load task_cpu(p) after p->on_cpu: 4150 * 4151 * set_task_cpu(p, cpu); 4152 * STORE p->cpu = @cpu 4153 * __schedule() (switch to task 'p') 4154 * LOCK rq->lock 4155 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4156 * STORE p->on_cpu = 1 LOAD p->cpu 4157 * 4158 * to ensure we observe the correct CPU on which the task is currently 4159 * scheduling. 4160 */ 4161 if (smp_load_acquire(&p->on_cpu) && 4162 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4163 goto unlock; 4164 4165 /* 4166 * If the owning (remote) CPU is still in the middle of schedule() with 4167 * this task as prev, wait until it's done referencing the task. 4168 * 4169 * Pairs with the smp_store_release() in finish_task(). 4170 * 4171 * This ensures that tasks getting woken will be fully ordered against 4172 * their previous state and preserve Program Order. 4173 */ 4174 smp_cond_load_acquire(&p->on_cpu, !VAL); 4175 4176 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4177 if (task_cpu(p) != cpu) { 4178 if (p->in_iowait) { 4179 delayacct_blkio_end(p); 4180 atomic_dec(&task_rq(p)->nr_iowait); 4181 } 4182 4183 wake_flags |= WF_MIGRATED; 4184 psi_ttwu_dequeue(p); 4185 set_task_cpu(p, cpu); 4186 } 4187 #else 4188 cpu = task_cpu(p); 4189 #endif /* CONFIG_SMP */ 4190 4191 ttwu_queue(p, cpu, wake_flags); 4192 unlock: 4193 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4194 out: 4195 if (success) 4196 ttwu_stat(p, task_cpu(p), wake_flags); 4197 preempt_enable(); 4198 4199 return success; 4200 } 4201 4202 /** 4203 * task_call_func - Invoke a function on task in fixed state 4204 * @p: Process for which the function is to be invoked, can be @current. 4205 * @func: Function to invoke. 4206 * @arg: Argument to function. 4207 * 4208 * Fix the task in it's current state by avoiding wakeups and or rq operations 4209 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4210 * to work out what the state is, if required. Given that @func can be invoked 4211 * with a runqueue lock held, it had better be quite lightweight. 4212 * 4213 * Returns: 4214 * Whatever @func returns 4215 */ 4216 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4217 { 4218 struct rq *rq = NULL; 4219 unsigned int state; 4220 struct rq_flags rf; 4221 int ret; 4222 4223 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4224 4225 state = READ_ONCE(p->__state); 4226 4227 /* 4228 * Ensure we load p->on_rq after p->__state, otherwise it would be 4229 * possible to, falsely, observe p->on_rq == 0. 4230 * 4231 * See try_to_wake_up() for a longer comment. 4232 */ 4233 smp_rmb(); 4234 4235 /* 4236 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4237 * the task is blocked. Make sure to check @state since ttwu() can drop 4238 * locks at the end, see ttwu_queue_wakelist(). 4239 */ 4240 if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq) 4241 rq = __task_rq_lock(p, &rf); 4242 4243 /* 4244 * At this point the task is pinned; either: 4245 * - blocked and we're holding off wakeups (pi->lock) 4246 * - woken, and we're holding off enqueue (rq->lock) 4247 * - queued, and we're holding off schedule (rq->lock) 4248 * - running, and we're holding off de-schedule (rq->lock) 4249 * 4250 * The called function (@func) can use: task_curr(), p->on_rq and 4251 * p->__state to differentiate between these states. 4252 */ 4253 ret = func(p, arg); 4254 4255 if (rq) 4256 rq_unlock(rq, &rf); 4257 4258 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4259 return ret; 4260 } 4261 4262 /** 4263 * cpu_curr_snapshot - Return a snapshot of the currently running task 4264 * @cpu: The CPU on which to snapshot the task. 4265 * 4266 * Returns the task_struct pointer of the task "currently" running on 4267 * the specified CPU. If the same task is running on that CPU throughout, 4268 * the return value will be a pointer to that task's task_struct structure. 4269 * If the CPU did any context switches even vaguely concurrently with the 4270 * execution of this function, the return value will be a pointer to the 4271 * task_struct structure of a randomly chosen task that was running on 4272 * that CPU somewhere around the time that this function was executing. 4273 * 4274 * If the specified CPU was offline, the return value is whatever it 4275 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4276 * task, but there is no guarantee. Callers wishing a useful return 4277 * value must take some action to ensure that the specified CPU remains 4278 * online throughout. 4279 * 4280 * This function executes full memory barriers before and after fetching 4281 * the pointer, which permits the caller to confine this function's fetch 4282 * with respect to the caller's accesses to other shared variables. 4283 */ 4284 struct task_struct *cpu_curr_snapshot(int cpu) 4285 { 4286 struct task_struct *t; 4287 4288 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4289 t = rcu_dereference(cpu_curr(cpu)); 4290 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4291 return t; 4292 } 4293 4294 /** 4295 * wake_up_process - Wake up a specific process 4296 * @p: The process to be woken up. 4297 * 4298 * Attempt to wake up the nominated process and move it to the set of runnable 4299 * processes. 4300 * 4301 * Return: 1 if the process was woken up, 0 if it was already running. 4302 * 4303 * This function executes a full memory barrier before accessing the task state. 4304 */ 4305 int wake_up_process(struct task_struct *p) 4306 { 4307 return try_to_wake_up(p, TASK_NORMAL, 0); 4308 } 4309 EXPORT_SYMBOL(wake_up_process); 4310 4311 int wake_up_state(struct task_struct *p, unsigned int state) 4312 { 4313 return try_to_wake_up(p, state, 0); 4314 } 4315 4316 /* 4317 * Perform scheduler related setup for a newly forked process p. 4318 * p is forked by current. 4319 * 4320 * __sched_fork() is basic setup used by init_idle() too: 4321 */ 4322 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4323 { 4324 p->on_rq = 0; 4325 4326 p->se.on_rq = 0; 4327 p->se.exec_start = 0; 4328 p->se.sum_exec_runtime = 0; 4329 p->se.prev_sum_exec_runtime = 0; 4330 p->se.nr_migrations = 0; 4331 p->se.vruntime = 0; 4332 INIT_LIST_HEAD(&p->se.group_node); 4333 4334 #ifdef CONFIG_FAIR_GROUP_SCHED 4335 p->se.cfs_rq = NULL; 4336 #endif 4337 4338 #ifdef CONFIG_SCHEDSTATS 4339 /* Even if schedstat is disabled, there should not be garbage */ 4340 memset(&p->stats, 0, sizeof(p->stats)); 4341 #endif 4342 4343 RB_CLEAR_NODE(&p->dl.rb_node); 4344 init_dl_task_timer(&p->dl); 4345 init_dl_inactive_task_timer(&p->dl); 4346 __dl_clear_params(p); 4347 4348 INIT_LIST_HEAD(&p->rt.run_list); 4349 p->rt.timeout = 0; 4350 p->rt.time_slice = sched_rr_timeslice; 4351 p->rt.on_rq = 0; 4352 p->rt.on_list = 0; 4353 4354 #ifdef CONFIG_PREEMPT_NOTIFIERS 4355 INIT_HLIST_HEAD(&p->preempt_notifiers); 4356 #endif 4357 4358 #ifdef CONFIG_COMPACTION 4359 p->capture_control = NULL; 4360 #endif 4361 init_numa_balancing(clone_flags, p); 4362 #ifdef CONFIG_SMP 4363 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4364 p->migration_pending = NULL; 4365 #endif 4366 } 4367 4368 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4369 4370 #ifdef CONFIG_NUMA_BALANCING 4371 4372 int sysctl_numa_balancing_mode; 4373 4374 static void __set_numabalancing_state(bool enabled) 4375 { 4376 if (enabled) 4377 static_branch_enable(&sched_numa_balancing); 4378 else 4379 static_branch_disable(&sched_numa_balancing); 4380 } 4381 4382 void set_numabalancing_state(bool enabled) 4383 { 4384 if (enabled) 4385 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4386 else 4387 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4388 __set_numabalancing_state(enabled); 4389 } 4390 4391 #ifdef CONFIG_PROC_SYSCTL 4392 int sysctl_numa_balancing(struct ctl_table *table, int write, 4393 void *buffer, size_t *lenp, loff_t *ppos) 4394 { 4395 struct ctl_table t; 4396 int err; 4397 int state = sysctl_numa_balancing_mode; 4398 4399 if (write && !capable(CAP_SYS_ADMIN)) 4400 return -EPERM; 4401 4402 t = *table; 4403 t.data = &state; 4404 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4405 if (err < 0) 4406 return err; 4407 if (write) { 4408 sysctl_numa_balancing_mode = state; 4409 __set_numabalancing_state(state); 4410 } 4411 return err; 4412 } 4413 #endif 4414 #endif 4415 4416 #ifdef CONFIG_SCHEDSTATS 4417 4418 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4419 4420 static void set_schedstats(bool enabled) 4421 { 4422 if (enabled) 4423 static_branch_enable(&sched_schedstats); 4424 else 4425 static_branch_disable(&sched_schedstats); 4426 } 4427 4428 void force_schedstat_enabled(void) 4429 { 4430 if (!schedstat_enabled()) { 4431 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4432 static_branch_enable(&sched_schedstats); 4433 } 4434 } 4435 4436 static int __init setup_schedstats(char *str) 4437 { 4438 int ret = 0; 4439 if (!str) 4440 goto out; 4441 4442 if (!strcmp(str, "enable")) { 4443 set_schedstats(true); 4444 ret = 1; 4445 } else if (!strcmp(str, "disable")) { 4446 set_schedstats(false); 4447 ret = 1; 4448 } 4449 out: 4450 if (!ret) 4451 pr_warn("Unable to parse schedstats=\n"); 4452 4453 return ret; 4454 } 4455 __setup("schedstats=", setup_schedstats); 4456 4457 #ifdef CONFIG_PROC_SYSCTL 4458 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4459 size_t *lenp, loff_t *ppos) 4460 { 4461 struct ctl_table t; 4462 int err; 4463 int state = static_branch_likely(&sched_schedstats); 4464 4465 if (write && !capable(CAP_SYS_ADMIN)) 4466 return -EPERM; 4467 4468 t = *table; 4469 t.data = &state; 4470 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4471 if (err < 0) 4472 return err; 4473 if (write) 4474 set_schedstats(state); 4475 return err; 4476 } 4477 #endif /* CONFIG_PROC_SYSCTL */ 4478 #endif /* CONFIG_SCHEDSTATS */ 4479 4480 #ifdef CONFIG_SYSCTL 4481 static struct ctl_table sched_core_sysctls[] = { 4482 #ifdef CONFIG_SCHEDSTATS 4483 { 4484 .procname = "sched_schedstats", 4485 .data = NULL, 4486 .maxlen = sizeof(unsigned int), 4487 .mode = 0644, 4488 .proc_handler = sysctl_schedstats, 4489 .extra1 = SYSCTL_ZERO, 4490 .extra2 = SYSCTL_ONE, 4491 }, 4492 #endif /* CONFIG_SCHEDSTATS */ 4493 #ifdef CONFIG_UCLAMP_TASK 4494 { 4495 .procname = "sched_util_clamp_min", 4496 .data = &sysctl_sched_uclamp_util_min, 4497 .maxlen = sizeof(unsigned int), 4498 .mode = 0644, 4499 .proc_handler = sysctl_sched_uclamp_handler, 4500 }, 4501 { 4502 .procname = "sched_util_clamp_max", 4503 .data = &sysctl_sched_uclamp_util_max, 4504 .maxlen = sizeof(unsigned int), 4505 .mode = 0644, 4506 .proc_handler = sysctl_sched_uclamp_handler, 4507 }, 4508 { 4509 .procname = "sched_util_clamp_min_rt_default", 4510 .data = &sysctl_sched_uclamp_util_min_rt_default, 4511 .maxlen = sizeof(unsigned int), 4512 .mode = 0644, 4513 .proc_handler = sysctl_sched_uclamp_handler, 4514 }, 4515 #endif /* CONFIG_UCLAMP_TASK */ 4516 {} 4517 }; 4518 static int __init sched_core_sysctl_init(void) 4519 { 4520 register_sysctl_init("kernel", sched_core_sysctls); 4521 return 0; 4522 } 4523 late_initcall(sched_core_sysctl_init); 4524 #endif /* CONFIG_SYSCTL */ 4525 4526 /* 4527 * fork()/clone()-time setup: 4528 */ 4529 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4530 { 4531 __sched_fork(clone_flags, p); 4532 /* 4533 * We mark the process as NEW here. This guarantees that 4534 * nobody will actually run it, and a signal or other external 4535 * event cannot wake it up and insert it on the runqueue either. 4536 */ 4537 p->__state = TASK_NEW; 4538 4539 /* 4540 * Make sure we do not leak PI boosting priority to the child. 4541 */ 4542 p->prio = current->normal_prio; 4543 4544 uclamp_fork(p); 4545 4546 /* 4547 * Revert to default priority/policy on fork if requested. 4548 */ 4549 if (unlikely(p->sched_reset_on_fork)) { 4550 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4551 p->policy = SCHED_NORMAL; 4552 p->static_prio = NICE_TO_PRIO(0); 4553 p->rt_priority = 0; 4554 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4555 p->static_prio = NICE_TO_PRIO(0); 4556 4557 p->prio = p->normal_prio = p->static_prio; 4558 set_load_weight(p, false); 4559 4560 /* 4561 * We don't need the reset flag anymore after the fork. It has 4562 * fulfilled its duty: 4563 */ 4564 p->sched_reset_on_fork = 0; 4565 } 4566 4567 if (dl_prio(p->prio)) 4568 return -EAGAIN; 4569 else if (rt_prio(p->prio)) 4570 p->sched_class = &rt_sched_class; 4571 else 4572 p->sched_class = &fair_sched_class; 4573 4574 init_entity_runnable_average(&p->se); 4575 4576 4577 #ifdef CONFIG_SCHED_INFO 4578 if (likely(sched_info_on())) 4579 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4580 #endif 4581 #if defined(CONFIG_SMP) 4582 p->on_cpu = 0; 4583 #endif 4584 init_task_preempt_count(p); 4585 #ifdef CONFIG_SMP 4586 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4587 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4588 #endif 4589 return 0; 4590 } 4591 4592 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4593 { 4594 unsigned long flags; 4595 4596 /* 4597 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4598 * required yet, but lockdep gets upset if rules are violated. 4599 */ 4600 raw_spin_lock_irqsave(&p->pi_lock, flags); 4601 #ifdef CONFIG_CGROUP_SCHED 4602 if (1) { 4603 struct task_group *tg; 4604 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4605 struct task_group, css); 4606 tg = autogroup_task_group(p, tg); 4607 p->sched_task_group = tg; 4608 } 4609 #endif 4610 rseq_migrate(p); 4611 /* 4612 * We're setting the CPU for the first time, we don't migrate, 4613 * so use __set_task_cpu(). 4614 */ 4615 __set_task_cpu(p, smp_processor_id()); 4616 if (p->sched_class->task_fork) 4617 p->sched_class->task_fork(p); 4618 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4619 } 4620 4621 void sched_post_fork(struct task_struct *p) 4622 { 4623 uclamp_post_fork(p); 4624 } 4625 4626 unsigned long to_ratio(u64 period, u64 runtime) 4627 { 4628 if (runtime == RUNTIME_INF) 4629 return BW_UNIT; 4630 4631 /* 4632 * Doing this here saves a lot of checks in all 4633 * the calling paths, and returning zero seems 4634 * safe for them anyway. 4635 */ 4636 if (period == 0) 4637 return 0; 4638 4639 return div64_u64(runtime << BW_SHIFT, period); 4640 } 4641 4642 /* 4643 * wake_up_new_task - wake up a newly created task for the first time. 4644 * 4645 * This function will do some initial scheduler statistics housekeeping 4646 * that must be done for every newly created context, then puts the task 4647 * on the runqueue and wakes it. 4648 */ 4649 void wake_up_new_task(struct task_struct *p) 4650 { 4651 struct rq_flags rf; 4652 struct rq *rq; 4653 4654 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4655 WRITE_ONCE(p->__state, TASK_RUNNING); 4656 #ifdef CONFIG_SMP 4657 /* 4658 * Fork balancing, do it here and not earlier because: 4659 * - cpus_ptr can change in the fork path 4660 * - any previously selected CPU might disappear through hotplug 4661 * 4662 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4663 * as we're not fully set-up yet. 4664 */ 4665 p->recent_used_cpu = task_cpu(p); 4666 rseq_migrate(p); 4667 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4668 #endif 4669 rq = __task_rq_lock(p, &rf); 4670 update_rq_clock(rq); 4671 post_init_entity_util_avg(p); 4672 4673 activate_task(rq, p, ENQUEUE_NOCLOCK); 4674 trace_sched_wakeup_new(p); 4675 check_preempt_curr(rq, p, WF_FORK); 4676 #ifdef CONFIG_SMP 4677 if (p->sched_class->task_woken) { 4678 /* 4679 * Nothing relies on rq->lock after this, so it's fine to 4680 * drop it. 4681 */ 4682 rq_unpin_lock(rq, &rf); 4683 p->sched_class->task_woken(rq, p); 4684 rq_repin_lock(rq, &rf); 4685 } 4686 #endif 4687 task_rq_unlock(rq, p, &rf); 4688 } 4689 4690 #ifdef CONFIG_PREEMPT_NOTIFIERS 4691 4692 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4693 4694 void preempt_notifier_inc(void) 4695 { 4696 static_branch_inc(&preempt_notifier_key); 4697 } 4698 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4699 4700 void preempt_notifier_dec(void) 4701 { 4702 static_branch_dec(&preempt_notifier_key); 4703 } 4704 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4705 4706 /** 4707 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4708 * @notifier: notifier struct to register 4709 */ 4710 void preempt_notifier_register(struct preempt_notifier *notifier) 4711 { 4712 if (!static_branch_unlikely(&preempt_notifier_key)) 4713 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4714 4715 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4716 } 4717 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4718 4719 /** 4720 * preempt_notifier_unregister - no longer interested in preemption notifications 4721 * @notifier: notifier struct to unregister 4722 * 4723 * This is *not* safe to call from within a preemption notifier. 4724 */ 4725 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4726 { 4727 hlist_del(¬ifier->link); 4728 } 4729 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4730 4731 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4732 { 4733 struct preempt_notifier *notifier; 4734 4735 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4736 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4737 } 4738 4739 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4740 { 4741 if (static_branch_unlikely(&preempt_notifier_key)) 4742 __fire_sched_in_preempt_notifiers(curr); 4743 } 4744 4745 static void 4746 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4747 struct task_struct *next) 4748 { 4749 struct preempt_notifier *notifier; 4750 4751 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4752 notifier->ops->sched_out(notifier, next); 4753 } 4754 4755 static __always_inline void 4756 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4757 struct task_struct *next) 4758 { 4759 if (static_branch_unlikely(&preempt_notifier_key)) 4760 __fire_sched_out_preempt_notifiers(curr, next); 4761 } 4762 4763 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4764 4765 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4766 { 4767 } 4768 4769 static inline void 4770 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4771 struct task_struct *next) 4772 { 4773 } 4774 4775 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4776 4777 static inline void prepare_task(struct task_struct *next) 4778 { 4779 #ifdef CONFIG_SMP 4780 /* 4781 * Claim the task as running, we do this before switching to it 4782 * such that any running task will have this set. 4783 * 4784 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4785 * its ordering comment. 4786 */ 4787 WRITE_ONCE(next->on_cpu, 1); 4788 #endif 4789 } 4790 4791 static inline void finish_task(struct task_struct *prev) 4792 { 4793 #ifdef CONFIG_SMP 4794 /* 4795 * This must be the very last reference to @prev from this CPU. After 4796 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4797 * must ensure this doesn't happen until the switch is completely 4798 * finished. 4799 * 4800 * In particular, the load of prev->state in finish_task_switch() must 4801 * happen before this. 4802 * 4803 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4804 */ 4805 smp_store_release(&prev->on_cpu, 0); 4806 #endif 4807 } 4808 4809 #ifdef CONFIG_SMP 4810 4811 static void do_balance_callbacks(struct rq *rq, struct callback_head *head) 4812 { 4813 void (*func)(struct rq *rq); 4814 struct callback_head *next; 4815 4816 lockdep_assert_rq_held(rq); 4817 4818 while (head) { 4819 func = (void (*)(struct rq *))head->func; 4820 next = head->next; 4821 head->next = NULL; 4822 head = next; 4823 4824 func(rq); 4825 } 4826 } 4827 4828 static void balance_push(struct rq *rq); 4829 4830 /* 4831 * balance_push_callback is a right abuse of the callback interface and plays 4832 * by significantly different rules. 4833 * 4834 * Where the normal balance_callback's purpose is to be ran in the same context 4835 * that queued it (only later, when it's safe to drop rq->lock again), 4836 * balance_push_callback is specifically targeted at __schedule(). 4837 * 4838 * This abuse is tolerated because it places all the unlikely/odd cases behind 4839 * a single test, namely: rq->balance_callback == NULL. 4840 */ 4841 struct callback_head balance_push_callback = { 4842 .next = NULL, 4843 .func = (void (*)(struct callback_head *))balance_push, 4844 }; 4845 4846 static inline struct callback_head * 4847 __splice_balance_callbacks(struct rq *rq, bool split) 4848 { 4849 struct callback_head *head = rq->balance_callback; 4850 4851 if (likely(!head)) 4852 return NULL; 4853 4854 lockdep_assert_rq_held(rq); 4855 /* 4856 * Must not take balance_push_callback off the list when 4857 * splice_balance_callbacks() and balance_callbacks() are not 4858 * in the same rq->lock section. 4859 * 4860 * In that case it would be possible for __schedule() to interleave 4861 * and observe the list empty. 4862 */ 4863 if (split && head == &balance_push_callback) 4864 head = NULL; 4865 else 4866 rq->balance_callback = NULL; 4867 4868 return head; 4869 } 4870 4871 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4872 { 4873 return __splice_balance_callbacks(rq, true); 4874 } 4875 4876 static void __balance_callbacks(struct rq *rq) 4877 { 4878 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 4879 } 4880 4881 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4882 { 4883 unsigned long flags; 4884 4885 if (unlikely(head)) { 4886 raw_spin_rq_lock_irqsave(rq, flags); 4887 do_balance_callbacks(rq, head); 4888 raw_spin_rq_unlock_irqrestore(rq, flags); 4889 } 4890 } 4891 4892 #else 4893 4894 static inline void __balance_callbacks(struct rq *rq) 4895 { 4896 } 4897 4898 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4899 { 4900 return NULL; 4901 } 4902 4903 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4904 { 4905 } 4906 4907 #endif 4908 4909 static inline void 4910 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4911 { 4912 /* 4913 * Since the runqueue lock will be released by the next 4914 * task (which is an invalid locking op but in the case 4915 * of the scheduler it's an obvious special-case), so we 4916 * do an early lockdep release here: 4917 */ 4918 rq_unpin_lock(rq, rf); 4919 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 4920 #ifdef CONFIG_DEBUG_SPINLOCK 4921 /* this is a valid case when another task releases the spinlock */ 4922 rq_lockp(rq)->owner = next; 4923 #endif 4924 } 4925 4926 static inline void finish_lock_switch(struct rq *rq) 4927 { 4928 /* 4929 * If we are tracking spinlock dependencies then we have to 4930 * fix up the runqueue lock - which gets 'carried over' from 4931 * prev into current: 4932 */ 4933 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 4934 __balance_callbacks(rq); 4935 raw_spin_rq_unlock_irq(rq); 4936 } 4937 4938 /* 4939 * NOP if the arch has not defined these: 4940 */ 4941 4942 #ifndef prepare_arch_switch 4943 # define prepare_arch_switch(next) do { } while (0) 4944 #endif 4945 4946 #ifndef finish_arch_post_lock_switch 4947 # define finish_arch_post_lock_switch() do { } while (0) 4948 #endif 4949 4950 static inline void kmap_local_sched_out(void) 4951 { 4952 #ifdef CONFIG_KMAP_LOCAL 4953 if (unlikely(current->kmap_ctrl.idx)) 4954 __kmap_local_sched_out(); 4955 #endif 4956 } 4957 4958 static inline void kmap_local_sched_in(void) 4959 { 4960 #ifdef CONFIG_KMAP_LOCAL 4961 if (unlikely(current->kmap_ctrl.idx)) 4962 __kmap_local_sched_in(); 4963 #endif 4964 } 4965 4966 /** 4967 * prepare_task_switch - prepare to switch tasks 4968 * @rq: the runqueue preparing to switch 4969 * @prev: the current task that is being switched out 4970 * @next: the task we are going to switch to. 4971 * 4972 * This is called with the rq lock held and interrupts off. It must 4973 * be paired with a subsequent finish_task_switch after the context 4974 * switch. 4975 * 4976 * prepare_task_switch sets up locking and calls architecture specific 4977 * hooks. 4978 */ 4979 static inline void 4980 prepare_task_switch(struct rq *rq, struct task_struct *prev, 4981 struct task_struct *next) 4982 { 4983 kcov_prepare_switch(prev); 4984 sched_info_switch(rq, prev, next); 4985 perf_event_task_sched_out(prev, next); 4986 rseq_preempt(prev); 4987 fire_sched_out_preempt_notifiers(prev, next); 4988 kmap_local_sched_out(); 4989 prepare_task(next); 4990 prepare_arch_switch(next); 4991 } 4992 4993 /** 4994 * finish_task_switch - clean up after a task-switch 4995 * @prev: the thread we just switched away from. 4996 * 4997 * finish_task_switch must be called after the context switch, paired 4998 * with a prepare_task_switch call before the context switch. 4999 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5000 * and do any other architecture-specific cleanup actions. 5001 * 5002 * Note that we may have delayed dropping an mm in context_switch(). If 5003 * so, we finish that here outside of the runqueue lock. (Doing it 5004 * with the lock held can cause deadlocks; see schedule() for 5005 * details.) 5006 * 5007 * The context switch have flipped the stack from under us and restored the 5008 * local variables which were saved when this task called schedule() in the 5009 * past. prev == current is still correct but we need to recalculate this_rq 5010 * because prev may have moved to another CPU. 5011 */ 5012 static struct rq *finish_task_switch(struct task_struct *prev) 5013 __releases(rq->lock) 5014 { 5015 struct rq *rq = this_rq(); 5016 struct mm_struct *mm = rq->prev_mm; 5017 unsigned int prev_state; 5018 5019 /* 5020 * The previous task will have left us with a preempt_count of 2 5021 * because it left us after: 5022 * 5023 * schedule() 5024 * preempt_disable(); // 1 5025 * __schedule() 5026 * raw_spin_lock_irq(&rq->lock) // 2 5027 * 5028 * Also, see FORK_PREEMPT_COUNT. 5029 */ 5030 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5031 "corrupted preempt_count: %s/%d/0x%x\n", 5032 current->comm, current->pid, preempt_count())) 5033 preempt_count_set(FORK_PREEMPT_COUNT); 5034 5035 rq->prev_mm = NULL; 5036 5037 /* 5038 * A task struct has one reference for the use as "current". 5039 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5040 * schedule one last time. The schedule call will never return, and 5041 * the scheduled task must drop that reference. 5042 * 5043 * We must observe prev->state before clearing prev->on_cpu (in 5044 * finish_task), otherwise a concurrent wakeup can get prev 5045 * running on another CPU and we could rave with its RUNNING -> DEAD 5046 * transition, resulting in a double drop. 5047 */ 5048 prev_state = READ_ONCE(prev->__state); 5049 vtime_task_switch(prev); 5050 perf_event_task_sched_in(prev, current); 5051 finish_task(prev); 5052 tick_nohz_task_switch(); 5053 finish_lock_switch(rq); 5054 finish_arch_post_lock_switch(); 5055 kcov_finish_switch(current); 5056 /* 5057 * kmap_local_sched_out() is invoked with rq::lock held and 5058 * interrupts disabled. There is no requirement for that, but the 5059 * sched out code does not have an interrupt enabled section. 5060 * Restoring the maps on sched in does not require interrupts being 5061 * disabled either. 5062 */ 5063 kmap_local_sched_in(); 5064 5065 fire_sched_in_preempt_notifiers(current); 5066 /* 5067 * When switching through a kernel thread, the loop in 5068 * membarrier_{private,global}_expedited() may have observed that 5069 * kernel thread and not issued an IPI. It is therefore possible to 5070 * schedule between user->kernel->user threads without passing though 5071 * switch_mm(). Membarrier requires a barrier after storing to 5072 * rq->curr, before returning to userspace, so provide them here: 5073 * 5074 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5075 * provided by mmdrop(), 5076 * - a sync_core for SYNC_CORE. 5077 */ 5078 if (mm) { 5079 membarrier_mm_sync_core_before_usermode(mm); 5080 mmdrop_sched(mm); 5081 } 5082 if (unlikely(prev_state == TASK_DEAD)) { 5083 if (prev->sched_class->task_dead) 5084 prev->sched_class->task_dead(prev); 5085 5086 /* Task is done with its stack. */ 5087 put_task_stack(prev); 5088 5089 put_task_struct_rcu_user(prev); 5090 } 5091 5092 return rq; 5093 } 5094 5095 /** 5096 * schedule_tail - first thing a freshly forked thread must call. 5097 * @prev: the thread we just switched away from. 5098 */ 5099 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5100 __releases(rq->lock) 5101 { 5102 /* 5103 * New tasks start with FORK_PREEMPT_COUNT, see there and 5104 * finish_task_switch() for details. 5105 * 5106 * finish_task_switch() will drop rq->lock() and lower preempt_count 5107 * and the preempt_enable() will end up enabling preemption (on 5108 * PREEMPT_COUNT kernels). 5109 */ 5110 5111 finish_task_switch(prev); 5112 preempt_enable(); 5113 5114 if (current->set_child_tid) 5115 put_user(task_pid_vnr(current), current->set_child_tid); 5116 5117 calculate_sigpending(); 5118 } 5119 5120 /* 5121 * context_switch - switch to the new MM and the new thread's register state. 5122 */ 5123 static __always_inline struct rq * 5124 context_switch(struct rq *rq, struct task_struct *prev, 5125 struct task_struct *next, struct rq_flags *rf) 5126 { 5127 prepare_task_switch(rq, prev, next); 5128 5129 /* 5130 * For paravirt, this is coupled with an exit in switch_to to 5131 * combine the page table reload and the switch backend into 5132 * one hypercall. 5133 */ 5134 arch_start_context_switch(prev); 5135 5136 /* 5137 * kernel -> kernel lazy + transfer active 5138 * user -> kernel lazy + mmgrab() active 5139 * 5140 * kernel -> user switch + mmdrop() active 5141 * user -> user switch 5142 */ 5143 if (!next->mm) { // to kernel 5144 enter_lazy_tlb(prev->active_mm, next); 5145 5146 next->active_mm = prev->active_mm; 5147 if (prev->mm) // from user 5148 mmgrab(prev->active_mm); 5149 else 5150 prev->active_mm = NULL; 5151 } else { // to user 5152 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5153 /* 5154 * sys_membarrier() requires an smp_mb() between setting 5155 * rq->curr / membarrier_switch_mm() and returning to userspace. 5156 * 5157 * The below provides this either through switch_mm(), or in 5158 * case 'prev->active_mm == next->mm' through 5159 * finish_task_switch()'s mmdrop(). 5160 */ 5161 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5162 5163 if (!prev->mm) { // from kernel 5164 /* will mmdrop() in finish_task_switch(). */ 5165 rq->prev_mm = prev->active_mm; 5166 prev->active_mm = NULL; 5167 } 5168 } 5169 5170 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 5171 5172 prepare_lock_switch(rq, next, rf); 5173 5174 /* Here we just switch the register state and the stack. */ 5175 switch_to(prev, next, prev); 5176 barrier(); 5177 5178 return finish_task_switch(prev); 5179 } 5180 5181 /* 5182 * nr_running and nr_context_switches: 5183 * 5184 * externally visible scheduler statistics: current number of runnable 5185 * threads, total number of context switches performed since bootup. 5186 */ 5187 unsigned int nr_running(void) 5188 { 5189 unsigned int i, sum = 0; 5190 5191 for_each_online_cpu(i) 5192 sum += cpu_rq(i)->nr_running; 5193 5194 return sum; 5195 } 5196 5197 /* 5198 * Check if only the current task is running on the CPU. 5199 * 5200 * Caution: this function does not check that the caller has disabled 5201 * preemption, thus the result might have a time-of-check-to-time-of-use 5202 * race. The caller is responsible to use it correctly, for example: 5203 * 5204 * - from a non-preemptible section (of course) 5205 * 5206 * - from a thread that is bound to a single CPU 5207 * 5208 * - in a loop with very short iterations (e.g. a polling loop) 5209 */ 5210 bool single_task_running(void) 5211 { 5212 return raw_rq()->nr_running == 1; 5213 } 5214 EXPORT_SYMBOL(single_task_running); 5215 5216 unsigned long long nr_context_switches(void) 5217 { 5218 int i; 5219 unsigned long long sum = 0; 5220 5221 for_each_possible_cpu(i) 5222 sum += cpu_rq(i)->nr_switches; 5223 5224 return sum; 5225 } 5226 5227 /* 5228 * Consumers of these two interfaces, like for example the cpuidle menu 5229 * governor, are using nonsensical data. Preferring shallow idle state selection 5230 * for a CPU that has IO-wait which might not even end up running the task when 5231 * it does become runnable. 5232 */ 5233 5234 unsigned int nr_iowait_cpu(int cpu) 5235 { 5236 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5237 } 5238 5239 /* 5240 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5241 * 5242 * The idea behind IO-wait account is to account the idle time that we could 5243 * have spend running if it were not for IO. That is, if we were to improve the 5244 * storage performance, we'd have a proportional reduction in IO-wait time. 5245 * 5246 * This all works nicely on UP, where, when a task blocks on IO, we account 5247 * idle time as IO-wait, because if the storage were faster, it could've been 5248 * running and we'd not be idle. 5249 * 5250 * This has been extended to SMP, by doing the same for each CPU. This however 5251 * is broken. 5252 * 5253 * Imagine for instance the case where two tasks block on one CPU, only the one 5254 * CPU will have IO-wait accounted, while the other has regular idle. Even 5255 * though, if the storage were faster, both could've ran at the same time, 5256 * utilising both CPUs. 5257 * 5258 * This means, that when looking globally, the current IO-wait accounting on 5259 * SMP is a lower bound, by reason of under accounting. 5260 * 5261 * Worse, since the numbers are provided per CPU, they are sometimes 5262 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5263 * associated with any one particular CPU, it can wake to another CPU than it 5264 * blocked on. This means the per CPU IO-wait number is meaningless. 5265 * 5266 * Task CPU affinities can make all that even more 'interesting'. 5267 */ 5268 5269 unsigned int nr_iowait(void) 5270 { 5271 unsigned int i, sum = 0; 5272 5273 for_each_possible_cpu(i) 5274 sum += nr_iowait_cpu(i); 5275 5276 return sum; 5277 } 5278 5279 #ifdef CONFIG_SMP 5280 5281 /* 5282 * sched_exec - execve() is a valuable balancing opportunity, because at 5283 * this point the task has the smallest effective memory and cache footprint. 5284 */ 5285 void sched_exec(void) 5286 { 5287 struct task_struct *p = current; 5288 unsigned long flags; 5289 int dest_cpu; 5290 5291 raw_spin_lock_irqsave(&p->pi_lock, flags); 5292 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5293 if (dest_cpu == smp_processor_id()) 5294 goto unlock; 5295 5296 if (likely(cpu_active(dest_cpu))) { 5297 struct migration_arg arg = { p, dest_cpu }; 5298 5299 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5300 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5301 return; 5302 } 5303 unlock: 5304 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5305 } 5306 5307 #endif 5308 5309 DEFINE_PER_CPU(struct kernel_stat, kstat); 5310 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5311 5312 EXPORT_PER_CPU_SYMBOL(kstat); 5313 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5314 5315 /* 5316 * The function fair_sched_class.update_curr accesses the struct curr 5317 * and its field curr->exec_start; when called from task_sched_runtime(), 5318 * we observe a high rate of cache misses in practice. 5319 * Prefetching this data results in improved performance. 5320 */ 5321 static inline void prefetch_curr_exec_start(struct task_struct *p) 5322 { 5323 #ifdef CONFIG_FAIR_GROUP_SCHED 5324 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 5325 #else 5326 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 5327 #endif 5328 prefetch(curr); 5329 prefetch(&curr->exec_start); 5330 } 5331 5332 /* 5333 * Return accounted runtime for the task. 5334 * In case the task is currently running, return the runtime plus current's 5335 * pending runtime that have not been accounted yet. 5336 */ 5337 unsigned long long task_sched_runtime(struct task_struct *p) 5338 { 5339 struct rq_flags rf; 5340 struct rq *rq; 5341 u64 ns; 5342 5343 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5344 /* 5345 * 64-bit doesn't need locks to atomically read a 64-bit value. 5346 * So we have a optimization chance when the task's delta_exec is 0. 5347 * Reading ->on_cpu is racy, but this is ok. 5348 * 5349 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5350 * If we race with it entering CPU, unaccounted time is 0. This is 5351 * indistinguishable from the read occurring a few cycles earlier. 5352 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5353 * been accounted, so we're correct here as well. 5354 */ 5355 if (!p->on_cpu || !task_on_rq_queued(p)) 5356 return p->se.sum_exec_runtime; 5357 #endif 5358 5359 rq = task_rq_lock(p, &rf); 5360 /* 5361 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5362 * project cycles that may never be accounted to this 5363 * thread, breaking clock_gettime(). 5364 */ 5365 if (task_current(rq, p) && task_on_rq_queued(p)) { 5366 prefetch_curr_exec_start(p); 5367 update_rq_clock(rq); 5368 p->sched_class->update_curr(rq); 5369 } 5370 ns = p->se.sum_exec_runtime; 5371 task_rq_unlock(rq, p, &rf); 5372 5373 return ns; 5374 } 5375 5376 #ifdef CONFIG_SCHED_DEBUG 5377 static u64 cpu_resched_latency(struct rq *rq) 5378 { 5379 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5380 u64 resched_latency, now = rq_clock(rq); 5381 static bool warned_once; 5382 5383 if (sysctl_resched_latency_warn_once && warned_once) 5384 return 0; 5385 5386 if (!need_resched() || !latency_warn_ms) 5387 return 0; 5388 5389 if (system_state == SYSTEM_BOOTING) 5390 return 0; 5391 5392 if (!rq->last_seen_need_resched_ns) { 5393 rq->last_seen_need_resched_ns = now; 5394 rq->ticks_without_resched = 0; 5395 return 0; 5396 } 5397 5398 rq->ticks_without_resched++; 5399 resched_latency = now - rq->last_seen_need_resched_ns; 5400 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5401 return 0; 5402 5403 warned_once = true; 5404 5405 return resched_latency; 5406 } 5407 5408 static int __init setup_resched_latency_warn_ms(char *str) 5409 { 5410 long val; 5411 5412 if ((kstrtol(str, 0, &val))) { 5413 pr_warn("Unable to set resched_latency_warn_ms\n"); 5414 return 1; 5415 } 5416 5417 sysctl_resched_latency_warn_ms = val; 5418 return 1; 5419 } 5420 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5421 #else 5422 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5423 #endif /* CONFIG_SCHED_DEBUG */ 5424 5425 /* 5426 * This function gets called by the timer code, with HZ frequency. 5427 * We call it with interrupts disabled. 5428 */ 5429 void scheduler_tick(void) 5430 { 5431 int cpu = smp_processor_id(); 5432 struct rq *rq = cpu_rq(cpu); 5433 struct task_struct *curr = rq->curr; 5434 struct rq_flags rf; 5435 unsigned long thermal_pressure; 5436 u64 resched_latency; 5437 5438 arch_scale_freq_tick(); 5439 sched_clock_tick(); 5440 5441 rq_lock(rq, &rf); 5442 5443 update_rq_clock(rq); 5444 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 5445 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 5446 curr->sched_class->task_tick(rq, curr, 0); 5447 if (sched_feat(LATENCY_WARN)) 5448 resched_latency = cpu_resched_latency(rq); 5449 calc_global_load_tick(rq); 5450 sched_core_tick(rq); 5451 5452 rq_unlock(rq, &rf); 5453 5454 if (sched_feat(LATENCY_WARN) && resched_latency) 5455 resched_latency_warn(cpu, resched_latency); 5456 5457 perf_event_task_tick(); 5458 5459 #ifdef CONFIG_SMP 5460 rq->idle_balance = idle_cpu(cpu); 5461 trigger_load_balance(rq); 5462 #endif 5463 } 5464 5465 #ifdef CONFIG_NO_HZ_FULL 5466 5467 struct tick_work { 5468 int cpu; 5469 atomic_t state; 5470 struct delayed_work work; 5471 }; 5472 /* Values for ->state, see diagram below. */ 5473 #define TICK_SCHED_REMOTE_OFFLINE 0 5474 #define TICK_SCHED_REMOTE_OFFLINING 1 5475 #define TICK_SCHED_REMOTE_RUNNING 2 5476 5477 /* 5478 * State diagram for ->state: 5479 * 5480 * 5481 * TICK_SCHED_REMOTE_OFFLINE 5482 * | ^ 5483 * | | 5484 * | | sched_tick_remote() 5485 * | | 5486 * | | 5487 * +--TICK_SCHED_REMOTE_OFFLINING 5488 * | ^ 5489 * | | 5490 * sched_tick_start() | | sched_tick_stop() 5491 * | | 5492 * V | 5493 * TICK_SCHED_REMOTE_RUNNING 5494 * 5495 * 5496 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5497 * and sched_tick_start() are happy to leave the state in RUNNING. 5498 */ 5499 5500 static struct tick_work __percpu *tick_work_cpu; 5501 5502 static void sched_tick_remote(struct work_struct *work) 5503 { 5504 struct delayed_work *dwork = to_delayed_work(work); 5505 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5506 int cpu = twork->cpu; 5507 struct rq *rq = cpu_rq(cpu); 5508 struct task_struct *curr; 5509 struct rq_flags rf; 5510 u64 delta; 5511 int os; 5512 5513 /* 5514 * Handle the tick only if it appears the remote CPU is running in full 5515 * dynticks mode. The check is racy by nature, but missing a tick or 5516 * having one too much is no big deal because the scheduler tick updates 5517 * statistics and checks timeslices in a time-independent way, regardless 5518 * of when exactly it is running. 5519 */ 5520 if (!tick_nohz_tick_stopped_cpu(cpu)) 5521 goto out_requeue; 5522 5523 rq_lock_irq(rq, &rf); 5524 curr = rq->curr; 5525 if (cpu_is_offline(cpu)) 5526 goto out_unlock; 5527 5528 update_rq_clock(rq); 5529 5530 if (!is_idle_task(curr)) { 5531 /* 5532 * Make sure the next tick runs within a reasonable 5533 * amount of time. 5534 */ 5535 delta = rq_clock_task(rq) - curr->se.exec_start; 5536 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5537 } 5538 curr->sched_class->task_tick(rq, curr, 0); 5539 5540 calc_load_nohz_remote(rq); 5541 out_unlock: 5542 rq_unlock_irq(rq, &rf); 5543 out_requeue: 5544 5545 /* 5546 * Run the remote tick once per second (1Hz). This arbitrary 5547 * frequency is large enough to avoid overload but short enough 5548 * to keep scheduler internal stats reasonably up to date. But 5549 * first update state to reflect hotplug activity if required. 5550 */ 5551 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5552 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5553 if (os == TICK_SCHED_REMOTE_RUNNING) 5554 queue_delayed_work(system_unbound_wq, dwork, HZ); 5555 } 5556 5557 static void sched_tick_start(int cpu) 5558 { 5559 int os; 5560 struct tick_work *twork; 5561 5562 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5563 return; 5564 5565 WARN_ON_ONCE(!tick_work_cpu); 5566 5567 twork = per_cpu_ptr(tick_work_cpu, cpu); 5568 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5569 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5570 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5571 twork->cpu = cpu; 5572 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5573 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5574 } 5575 } 5576 5577 #ifdef CONFIG_HOTPLUG_CPU 5578 static void sched_tick_stop(int cpu) 5579 { 5580 struct tick_work *twork; 5581 int os; 5582 5583 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5584 return; 5585 5586 WARN_ON_ONCE(!tick_work_cpu); 5587 5588 twork = per_cpu_ptr(tick_work_cpu, cpu); 5589 /* There cannot be competing actions, but don't rely on stop-machine. */ 5590 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5591 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5592 /* Don't cancel, as this would mess up the state machine. */ 5593 } 5594 #endif /* CONFIG_HOTPLUG_CPU */ 5595 5596 int __init sched_tick_offload_init(void) 5597 { 5598 tick_work_cpu = alloc_percpu(struct tick_work); 5599 BUG_ON(!tick_work_cpu); 5600 return 0; 5601 } 5602 5603 #else /* !CONFIG_NO_HZ_FULL */ 5604 static inline void sched_tick_start(int cpu) { } 5605 static inline void sched_tick_stop(int cpu) { } 5606 #endif 5607 5608 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5609 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5610 /* 5611 * If the value passed in is equal to the current preempt count 5612 * then we just disabled preemption. Start timing the latency. 5613 */ 5614 static inline void preempt_latency_start(int val) 5615 { 5616 if (preempt_count() == val) { 5617 unsigned long ip = get_lock_parent_ip(); 5618 #ifdef CONFIG_DEBUG_PREEMPT 5619 current->preempt_disable_ip = ip; 5620 #endif 5621 trace_preempt_off(CALLER_ADDR0, ip); 5622 } 5623 } 5624 5625 void preempt_count_add(int val) 5626 { 5627 #ifdef CONFIG_DEBUG_PREEMPT 5628 /* 5629 * Underflow? 5630 */ 5631 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5632 return; 5633 #endif 5634 __preempt_count_add(val); 5635 #ifdef CONFIG_DEBUG_PREEMPT 5636 /* 5637 * Spinlock count overflowing soon? 5638 */ 5639 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5640 PREEMPT_MASK - 10); 5641 #endif 5642 preempt_latency_start(val); 5643 } 5644 EXPORT_SYMBOL(preempt_count_add); 5645 NOKPROBE_SYMBOL(preempt_count_add); 5646 5647 /* 5648 * If the value passed in equals to the current preempt count 5649 * then we just enabled preemption. Stop timing the latency. 5650 */ 5651 static inline void preempt_latency_stop(int val) 5652 { 5653 if (preempt_count() == val) 5654 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5655 } 5656 5657 void preempt_count_sub(int val) 5658 { 5659 #ifdef CONFIG_DEBUG_PREEMPT 5660 /* 5661 * Underflow? 5662 */ 5663 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5664 return; 5665 /* 5666 * Is the spinlock portion underflowing? 5667 */ 5668 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5669 !(preempt_count() & PREEMPT_MASK))) 5670 return; 5671 #endif 5672 5673 preempt_latency_stop(val); 5674 __preempt_count_sub(val); 5675 } 5676 EXPORT_SYMBOL(preempt_count_sub); 5677 NOKPROBE_SYMBOL(preempt_count_sub); 5678 5679 #else 5680 static inline void preempt_latency_start(int val) { } 5681 static inline void preempt_latency_stop(int val) { } 5682 #endif 5683 5684 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5685 { 5686 #ifdef CONFIG_DEBUG_PREEMPT 5687 return p->preempt_disable_ip; 5688 #else 5689 return 0; 5690 #endif 5691 } 5692 5693 /* 5694 * Print scheduling while atomic bug: 5695 */ 5696 static noinline void __schedule_bug(struct task_struct *prev) 5697 { 5698 /* Save this before calling printk(), since that will clobber it */ 5699 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5700 5701 if (oops_in_progress) 5702 return; 5703 5704 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5705 prev->comm, prev->pid, preempt_count()); 5706 5707 debug_show_held_locks(prev); 5708 print_modules(); 5709 if (irqs_disabled()) 5710 print_irqtrace_events(prev); 5711 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 5712 && in_atomic_preempt_off()) { 5713 pr_err("Preemption disabled at:"); 5714 print_ip_sym(KERN_ERR, preempt_disable_ip); 5715 } 5716 if (panic_on_warn) 5717 panic("scheduling while atomic\n"); 5718 5719 dump_stack(); 5720 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5721 } 5722 5723 /* 5724 * Various schedule()-time debugging checks and statistics: 5725 */ 5726 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5727 { 5728 #ifdef CONFIG_SCHED_STACK_END_CHECK 5729 if (task_stack_end_corrupted(prev)) 5730 panic("corrupted stack end detected inside scheduler\n"); 5731 5732 if (task_scs_end_corrupted(prev)) 5733 panic("corrupted shadow stack detected inside scheduler\n"); 5734 #endif 5735 5736 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5737 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5738 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5739 prev->comm, prev->pid, prev->non_block_count); 5740 dump_stack(); 5741 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5742 } 5743 #endif 5744 5745 if (unlikely(in_atomic_preempt_off())) { 5746 __schedule_bug(prev); 5747 preempt_count_set(PREEMPT_DISABLED); 5748 } 5749 rcu_sleep_check(); 5750 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5751 5752 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5753 5754 schedstat_inc(this_rq()->sched_count); 5755 } 5756 5757 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5758 struct rq_flags *rf) 5759 { 5760 #ifdef CONFIG_SMP 5761 const struct sched_class *class; 5762 /* 5763 * We must do the balancing pass before put_prev_task(), such 5764 * that when we release the rq->lock the task is in the same 5765 * state as before we took rq->lock. 5766 * 5767 * We can terminate the balance pass as soon as we know there is 5768 * a runnable task of @class priority or higher. 5769 */ 5770 for_class_range(class, prev->sched_class, &idle_sched_class) { 5771 if (class->balance(rq, prev, rf)) 5772 break; 5773 } 5774 #endif 5775 5776 put_prev_task(rq, prev); 5777 } 5778 5779 /* 5780 * Pick up the highest-prio task: 5781 */ 5782 static inline struct task_struct * 5783 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5784 { 5785 const struct sched_class *class; 5786 struct task_struct *p; 5787 5788 /* 5789 * Optimization: we know that if all tasks are in the fair class we can 5790 * call that function directly, but only if the @prev task wasn't of a 5791 * higher scheduling class, because otherwise those lose the 5792 * opportunity to pull in more work from other CPUs. 5793 */ 5794 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5795 rq->nr_running == rq->cfs.h_nr_running)) { 5796 5797 p = pick_next_task_fair(rq, prev, rf); 5798 if (unlikely(p == RETRY_TASK)) 5799 goto restart; 5800 5801 /* Assume the next prioritized class is idle_sched_class */ 5802 if (!p) { 5803 put_prev_task(rq, prev); 5804 p = pick_next_task_idle(rq); 5805 } 5806 5807 return p; 5808 } 5809 5810 restart: 5811 put_prev_task_balance(rq, prev, rf); 5812 5813 for_each_class(class) { 5814 p = class->pick_next_task(rq); 5815 if (p) 5816 return p; 5817 } 5818 5819 BUG(); /* The idle class should always have a runnable task. */ 5820 } 5821 5822 #ifdef CONFIG_SCHED_CORE 5823 static inline bool is_task_rq_idle(struct task_struct *t) 5824 { 5825 return (task_rq(t)->idle == t); 5826 } 5827 5828 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5829 { 5830 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5831 } 5832 5833 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5834 { 5835 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5836 return true; 5837 5838 return a->core_cookie == b->core_cookie; 5839 } 5840 5841 static inline struct task_struct *pick_task(struct rq *rq) 5842 { 5843 const struct sched_class *class; 5844 struct task_struct *p; 5845 5846 for_each_class(class) { 5847 p = class->pick_task(rq); 5848 if (p) 5849 return p; 5850 } 5851 5852 BUG(); /* The idle class should always have a runnable task. */ 5853 } 5854 5855 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5856 5857 static void queue_core_balance(struct rq *rq); 5858 5859 static struct task_struct * 5860 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5861 { 5862 struct task_struct *next, *p, *max = NULL; 5863 const struct cpumask *smt_mask; 5864 bool fi_before = false; 5865 bool core_clock_updated = (rq == rq->core); 5866 unsigned long cookie; 5867 int i, cpu, occ = 0; 5868 struct rq *rq_i; 5869 bool need_sync; 5870 5871 if (!sched_core_enabled(rq)) 5872 return __pick_next_task(rq, prev, rf); 5873 5874 cpu = cpu_of(rq); 5875 5876 /* Stopper task is switching into idle, no need core-wide selection. */ 5877 if (cpu_is_offline(cpu)) { 5878 /* 5879 * Reset core_pick so that we don't enter the fastpath when 5880 * coming online. core_pick would already be migrated to 5881 * another cpu during offline. 5882 */ 5883 rq->core_pick = NULL; 5884 return __pick_next_task(rq, prev, rf); 5885 } 5886 5887 /* 5888 * If there were no {en,de}queues since we picked (IOW, the task 5889 * pointers are all still valid), and we haven't scheduled the last 5890 * pick yet, do so now. 5891 * 5892 * rq->core_pick can be NULL if no selection was made for a CPU because 5893 * it was either offline or went offline during a sibling's core-wide 5894 * selection. In this case, do a core-wide selection. 5895 */ 5896 if (rq->core->core_pick_seq == rq->core->core_task_seq && 5897 rq->core->core_pick_seq != rq->core_sched_seq && 5898 rq->core_pick) { 5899 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 5900 5901 next = rq->core_pick; 5902 if (next != prev) { 5903 put_prev_task(rq, prev); 5904 set_next_task(rq, next); 5905 } 5906 5907 rq->core_pick = NULL; 5908 goto out; 5909 } 5910 5911 put_prev_task_balance(rq, prev, rf); 5912 5913 smt_mask = cpu_smt_mask(cpu); 5914 need_sync = !!rq->core->core_cookie; 5915 5916 /* reset state */ 5917 rq->core->core_cookie = 0UL; 5918 if (rq->core->core_forceidle_count) { 5919 if (!core_clock_updated) { 5920 update_rq_clock(rq->core); 5921 core_clock_updated = true; 5922 } 5923 sched_core_account_forceidle(rq); 5924 /* reset after accounting force idle */ 5925 rq->core->core_forceidle_start = 0; 5926 rq->core->core_forceidle_count = 0; 5927 rq->core->core_forceidle_occupation = 0; 5928 need_sync = true; 5929 fi_before = true; 5930 } 5931 5932 /* 5933 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 5934 * 5935 * @task_seq guards the task state ({en,de}queues) 5936 * @pick_seq is the @task_seq we did a selection on 5937 * @sched_seq is the @pick_seq we scheduled 5938 * 5939 * However, preemptions can cause multiple picks on the same task set. 5940 * 'Fix' this by also increasing @task_seq for every pick. 5941 */ 5942 rq->core->core_task_seq++; 5943 5944 /* 5945 * Optimize for common case where this CPU has no cookies 5946 * and there are no cookied tasks running on siblings. 5947 */ 5948 if (!need_sync) { 5949 next = pick_task(rq); 5950 if (!next->core_cookie) { 5951 rq->core_pick = NULL; 5952 /* 5953 * For robustness, update the min_vruntime_fi for 5954 * unconstrained picks as well. 5955 */ 5956 WARN_ON_ONCE(fi_before); 5957 task_vruntime_update(rq, next, false); 5958 goto out_set_next; 5959 } 5960 } 5961 5962 /* 5963 * For each thread: do the regular task pick and find the max prio task 5964 * amongst them. 5965 * 5966 * Tie-break prio towards the current CPU 5967 */ 5968 for_each_cpu_wrap(i, smt_mask, cpu) { 5969 rq_i = cpu_rq(i); 5970 5971 /* 5972 * Current cpu always has its clock updated on entrance to 5973 * pick_next_task(). If the current cpu is not the core, 5974 * the core may also have been updated above. 5975 */ 5976 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 5977 update_rq_clock(rq_i); 5978 5979 p = rq_i->core_pick = pick_task(rq_i); 5980 if (!max || prio_less(max, p, fi_before)) 5981 max = p; 5982 } 5983 5984 cookie = rq->core->core_cookie = max->core_cookie; 5985 5986 /* 5987 * For each thread: try and find a runnable task that matches @max or 5988 * force idle. 5989 */ 5990 for_each_cpu(i, smt_mask) { 5991 rq_i = cpu_rq(i); 5992 p = rq_i->core_pick; 5993 5994 if (!cookie_equals(p, cookie)) { 5995 p = NULL; 5996 if (cookie) 5997 p = sched_core_find(rq_i, cookie); 5998 if (!p) 5999 p = idle_sched_class.pick_task(rq_i); 6000 } 6001 6002 rq_i->core_pick = p; 6003 6004 if (p == rq_i->idle) { 6005 if (rq_i->nr_running) { 6006 rq->core->core_forceidle_count++; 6007 if (!fi_before) 6008 rq->core->core_forceidle_seq++; 6009 } 6010 } else { 6011 occ++; 6012 } 6013 } 6014 6015 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6016 rq->core->core_forceidle_start = rq_clock(rq->core); 6017 rq->core->core_forceidle_occupation = occ; 6018 } 6019 6020 rq->core->core_pick_seq = rq->core->core_task_seq; 6021 next = rq->core_pick; 6022 rq->core_sched_seq = rq->core->core_pick_seq; 6023 6024 /* Something should have been selected for current CPU */ 6025 WARN_ON_ONCE(!next); 6026 6027 /* 6028 * Reschedule siblings 6029 * 6030 * NOTE: L1TF -- at this point we're no longer running the old task and 6031 * sending an IPI (below) ensures the sibling will no longer be running 6032 * their task. This ensures there is no inter-sibling overlap between 6033 * non-matching user state. 6034 */ 6035 for_each_cpu(i, smt_mask) { 6036 rq_i = cpu_rq(i); 6037 6038 /* 6039 * An online sibling might have gone offline before a task 6040 * could be picked for it, or it might be offline but later 6041 * happen to come online, but its too late and nothing was 6042 * picked for it. That's Ok - it will pick tasks for itself, 6043 * so ignore it. 6044 */ 6045 if (!rq_i->core_pick) 6046 continue; 6047 6048 /* 6049 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6050 * fi_before fi update? 6051 * 0 0 1 6052 * 0 1 1 6053 * 1 0 1 6054 * 1 1 0 6055 */ 6056 if (!(fi_before && rq->core->core_forceidle_count)) 6057 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6058 6059 rq_i->core_pick->core_occupation = occ; 6060 6061 if (i == cpu) { 6062 rq_i->core_pick = NULL; 6063 continue; 6064 } 6065 6066 /* Did we break L1TF mitigation requirements? */ 6067 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6068 6069 if (rq_i->curr == rq_i->core_pick) { 6070 rq_i->core_pick = NULL; 6071 continue; 6072 } 6073 6074 resched_curr(rq_i); 6075 } 6076 6077 out_set_next: 6078 set_next_task(rq, next); 6079 out: 6080 if (rq->core->core_forceidle_count && next == rq->idle) 6081 queue_core_balance(rq); 6082 6083 return next; 6084 } 6085 6086 static bool try_steal_cookie(int this, int that) 6087 { 6088 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6089 struct task_struct *p; 6090 unsigned long cookie; 6091 bool success = false; 6092 6093 local_irq_disable(); 6094 double_rq_lock(dst, src); 6095 6096 cookie = dst->core->core_cookie; 6097 if (!cookie) 6098 goto unlock; 6099 6100 if (dst->curr != dst->idle) 6101 goto unlock; 6102 6103 p = sched_core_find(src, cookie); 6104 if (p == src->idle) 6105 goto unlock; 6106 6107 do { 6108 if (p == src->core_pick || p == src->curr) 6109 goto next; 6110 6111 if (!is_cpu_allowed(p, this)) 6112 goto next; 6113 6114 if (p->core_occupation > dst->idle->core_occupation) 6115 goto next; 6116 6117 deactivate_task(src, p, 0); 6118 set_task_cpu(p, this); 6119 activate_task(dst, p, 0); 6120 6121 resched_curr(dst); 6122 6123 success = true; 6124 break; 6125 6126 next: 6127 p = sched_core_next(p, cookie); 6128 } while (p); 6129 6130 unlock: 6131 double_rq_unlock(dst, src); 6132 local_irq_enable(); 6133 6134 return success; 6135 } 6136 6137 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6138 { 6139 int i; 6140 6141 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) { 6142 if (i == cpu) 6143 continue; 6144 6145 if (need_resched()) 6146 break; 6147 6148 if (try_steal_cookie(cpu, i)) 6149 return true; 6150 } 6151 6152 return false; 6153 } 6154 6155 static void sched_core_balance(struct rq *rq) 6156 { 6157 struct sched_domain *sd; 6158 int cpu = cpu_of(rq); 6159 6160 preempt_disable(); 6161 rcu_read_lock(); 6162 raw_spin_rq_unlock_irq(rq); 6163 for_each_domain(cpu, sd) { 6164 if (need_resched()) 6165 break; 6166 6167 if (steal_cookie_task(cpu, sd)) 6168 break; 6169 } 6170 raw_spin_rq_lock_irq(rq); 6171 rcu_read_unlock(); 6172 preempt_enable(); 6173 } 6174 6175 static DEFINE_PER_CPU(struct callback_head, core_balance_head); 6176 6177 static void queue_core_balance(struct rq *rq) 6178 { 6179 if (!sched_core_enabled(rq)) 6180 return; 6181 6182 if (!rq->core->core_cookie) 6183 return; 6184 6185 if (!rq->nr_running) /* not forced idle */ 6186 return; 6187 6188 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6189 } 6190 6191 static void sched_core_cpu_starting(unsigned int cpu) 6192 { 6193 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6194 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6195 unsigned long flags; 6196 int t; 6197 6198 sched_core_lock(cpu, &flags); 6199 6200 WARN_ON_ONCE(rq->core != rq); 6201 6202 /* if we're the first, we'll be our own leader */ 6203 if (cpumask_weight(smt_mask) == 1) 6204 goto unlock; 6205 6206 /* find the leader */ 6207 for_each_cpu(t, smt_mask) { 6208 if (t == cpu) 6209 continue; 6210 rq = cpu_rq(t); 6211 if (rq->core == rq) { 6212 core_rq = rq; 6213 break; 6214 } 6215 } 6216 6217 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6218 goto unlock; 6219 6220 /* install and validate core_rq */ 6221 for_each_cpu(t, smt_mask) { 6222 rq = cpu_rq(t); 6223 6224 if (t == cpu) 6225 rq->core = core_rq; 6226 6227 WARN_ON_ONCE(rq->core != core_rq); 6228 } 6229 6230 unlock: 6231 sched_core_unlock(cpu, &flags); 6232 } 6233 6234 static void sched_core_cpu_deactivate(unsigned int cpu) 6235 { 6236 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6237 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6238 unsigned long flags; 6239 int t; 6240 6241 sched_core_lock(cpu, &flags); 6242 6243 /* if we're the last man standing, nothing to do */ 6244 if (cpumask_weight(smt_mask) == 1) { 6245 WARN_ON_ONCE(rq->core != rq); 6246 goto unlock; 6247 } 6248 6249 /* if we're not the leader, nothing to do */ 6250 if (rq->core != rq) 6251 goto unlock; 6252 6253 /* find a new leader */ 6254 for_each_cpu(t, smt_mask) { 6255 if (t == cpu) 6256 continue; 6257 core_rq = cpu_rq(t); 6258 break; 6259 } 6260 6261 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6262 goto unlock; 6263 6264 /* copy the shared state to the new leader */ 6265 core_rq->core_task_seq = rq->core_task_seq; 6266 core_rq->core_pick_seq = rq->core_pick_seq; 6267 core_rq->core_cookie = rq->core_cookie; 6268 core_rq->core_forceidle_count = rq->core_forceidle_count; 6269 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6270 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6271 6272 /* 6273 * Accounting edge for forced idle is handled in pick_next_task(). 6274 * Don't need another one here, since the hotplug thread shouldn't 6275 * have a cookie. 6276 */ 6277 core_rq->core_forceidle_start = 0; 6278 6279 /* install new leader */ 6280 for_each_cpu(t, smt_mask) { 6281 rq = cpu_rq(t); 6282 rq->core = core_rq; 6283 } 6284 6285 unlock: 6286 sched_core_unlock(cpu, &flags); 6287 } 6288 6289 static inline void sched_core_cpu_dying(unsigned int cpu) 6290 { 6291 struct rq *rq = cpu_rq(cpu); 6292 6293 if (rq->core != rq) 6294 rq->core = rq; 6295 } 6296 6297 #else /* !CONFIG_SCHED_CORE */ 6298 6299 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6300 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6301 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6302 6303 static struct task_struct * 6304 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6305 { 6306 return __pick_next_task(rq, prev, rf); 6307 } 6308 6309 #endif /* CONFIG_SCHED_CORE */ 6310 6311 /* 6312 * Constants for the sched_mode argument of __schedule(). 6313 * 6314 * The mode argument allows RT enabled kernels to differentiate a 6315 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6316 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6317 * optimize the AND operation out and just check for zero. 6318 */ 6319 #define SM_NONE 0x0 6320 #define SM_PREEMPT 0x1 6321 #define SM_RTLOCK_WAIT 0x2 6322 6323 #ifndef CONFIG_PREEMPT_RT 6324 # define SM_MASK_PREEMPT (~0U) 6325 #else 6326 # define SM_MASK_PREEMPT SM_PREEMPT 6327 #endif 6328 6329 /* 6330 * __schedule() is the main scheduler function. 6331 * 6332 * The main means of driving the scheduler and thus entering this function are: 6333 * 6334 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6335 * 6336 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6337 * paths. For example, see arch/x86/entry_64.S. 6338 * 6339 * To drive preemption between tasks, the scheduler sets the flag in timer 6340 * interrupt handler scheduler_tick(). 6341 * 6342 * 3. Wakeups don't really cause entry into schedule(). They add a 6343 * task to the run-queue and that's it. 6344 * 6345 * Now, if the new task added to the run-queue preempts the current 6346 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6347 * called on the nearest possible occasion: 6348 * 6349 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6350 * 6351 * - in syscall or exception context, at the next outmost 6352 * preempt_enable(). (this might be as soon as the wake_up()'s 6353 * spin_unlock()!) 6354 * 6355 * - in IRQ context, return from interrupt-handler to 6356 * preemptible context 6357 * 6358 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6359 * then at the next: 6360 * 6361 * - cond_resched() call 6362 * - explicit schedule() call 6363 * - return from syscall or exception to user-space 6364 * - return from interrupt-handler to user-space 6365 * 6366 * WARNING: must be called with preemption disabled! 6367 */ 6368 static void __sched notrace __schedule(unsigned int sched_mode) 6369 { 6370 struct task_struct *prev, *next; 6371 unsigned long *switch_count; 6372 unsigned long prev_state; 6373 struct rq_flags rf; 6374 struct rq *rq; 6375 int cpu; 6376 6377 cpu = smp_processor_id(); 6378 rq = cpu_rq(cpu); 6379 prev = rq->curr; 6380 6381 schedule_debug(prev, !!sched_mode); 6382 6383 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6384 hrtick_clear(rq); 6385 6386 local_irq_disable(); 6387 rcu_note_context_switch(!!sched_mode); 6388 6389 /* 6390 * Make sure that signal_pending_state()->signal_pending() below 6391 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6392 * done by the caller to avoid the race with signal_wake_up(): 6393 * 6394 * __set_current_state(@state) signal_wake_up() 6395 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6396 * wake_up_state(p, state) 6397 * LOCK rq->lock LOCK p->pi_state 6398 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6399 * if (signal_pending_state()) if (p->state & @state) 6400 * 6401 * Also, the membarrier system call requires a full memory barrier 6402 * after coming from user-space, before storing to rq->curr. 6403 */ 6404 rq_lock(rq, &rf); 6405 smp_mb__after_spinlock(); 6406 6407 /* Promote REQ to ACT */ 6408 rq->clock_update_flags <<= 1; 6409 update_rq_clock(rq); 6410 6411 switch_count = &prev->nivcsw; 6412 6413 /* 6414 * We must load prev->state once (task_struct::state is volatile), such 6415 * that we form a control dependency vs deactivate_task() below. 6416 */ 6417 prev_state = READ_ONCE(prev->__state); 6418 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6419 if (signal_pending_state(prev_state, prev)) { 6420 WRITE_ONCE(prev->__state, TASK_RUNNING); 6421 } else { 6422 prev->sched_contributes_to_load = 6423 (prev_state & TASK_UNINTERRUPTIBLE) && 6424 !(prev_state & TASK_NOLOAD) && 6425 !(prev_state & TASK_FROZEN); 6426 6427 if (prev->sched_contributes_to_load) 6428 rq->nr_uninterruptible++; 6429 6430 /* 6431 * __schedule() ttwu() 6432 * prev_state = prev->state; if (p->on_rq && ...) 6433 * if (prev_state) goto out; 6434 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6435 * p->state = TASK_WAKING 6436 * 6437 * Where __schedule() and ttwu() have matching control dependencies. 6438 * 6439 * After this, schedule() must not care about p->state any more. 6440 */ 6441 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6442 6443 if (prev->in_iowait) { 6444 atomic_inc(&rq->nr_iowait); 6445 delayacct_blkio_start(); 6446 } 6447 } 6448 switch_count = &prev->nvcsw; 6449 } 6450 6451 next = pick_next_task(rq, prev, &rf); 6452 clear_tsk_need_resched(prev); 6453 clear_preempt_need_resched(); 6454 #ifdef CONFIG_SCHED_DEBUG 6455 rq->last_seen_need_resched_ns = 0; 6456 #endif 6457 6458 if (likely(prev != next)) { 6459 rq->nr_switches++; 6460 /* 6461 * RCU users of rcu_dereference(rq->curr) may not see 6462 * changes to task_struct made by pick_next_task(). 6463 */ 6464 RCU_INIT_POINTER(rq->curr, next); 6465 /* 6466 * The membarrier system call requires each architecture 6467 * to have a full memory barrier after updating 6468 * rq->curr, before returning to user-space. 6469 * 6470 * Here are the schemes providing that barrier on the 6471 * various architectures: 6472 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 6473 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 6474 * - finish_lock_switch() for weakly-ordered 6475 * architectures where spin_unlock is a full barrier, 6476 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6477 * is a RELEASE barrier), 6478 */ 6479 ++*switch_count; 6480 6481 migrate_disable_switch(rq, prev); 6482 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6483 6484 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); 6485 6486 /* Also unlocks the rq: */ 6487 rq = context_switch(rq, prev, next, &rf); 6488 } else { 6489 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 6490 6491 rq_unpin_lock(rq, &rf); 6492 __balance_callbacks(rq); 6493 raw_spin_rq_unlock_irq(rq); 6494 } 6495 } 6496 6497 void __noreturn do_task_dead(void) 6498 { 6499 /* Causes final put_task_struct in finish_task_switch(): */ 6500 set_special_state(TASK_DEAD); 6501 6502 /* Tell freezer to ignore us: */ 6503 current->flags |= PF_NOFREEZE; 6504 6505 __schedule(SM_NONE); 6506 BUG(); 6507 6508 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6509 for (;;) 6510 cpu_relax(); 6511 } 6512 6513 static inline void sched_submit_work(struct task_struct *tsk) 6514 { 6515 unsigned int task_flags; 6516 6517 if (task_is_running(tsk)) 6518 return; 6519 6520 task_flags = tsk->flags; 6521 /* 6522 * If a worker goes to sleep, notify and ask workqueue whether it 6523 * wants to wake up a task to maintain concurrency. 6524 */ 6525 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6526 if (task_flags & PF_WQ_WORKER) 6527 wq_worker_sleeping(tsk); 6528 else 6529 io_wq_worker_sleeping(tsk); 6530 } 6531 6532 /* 6533 * spinlock and rwlock must not flush block requests. This will 6534 * deadlock if the callback attempts to acquire a lock which is 6535 * already acquired. 6536 */ 6537 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6538 6539 /* 6540 * If we are going to sleep and we have plugged IO queued, 6541 * make sure to submit it to avoid deadlocks. 6542 */ 6543 blk_flush_plug(tsk->plug, true); 6544 } 6545 6546 static void sched_update_worker(struct task_struct *tsk) 6547 { 6548 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6549 if (tsk->flags & PF_WQ_WORKER) 6550 wq_worker_running(tsk); 6551 else 6552 io_wq_worker_running(tsk); 6553 } 6554 } 6555 6556 asmlinkage __visible void __sched schedule(void) 6557 { 6558 struct task_struct *tsk = current; 6559 6560 sched_submit_work(tsk); 6561 do { 6562 preempt_disable(); 6563 __schedule(SM_NONE); 6564 sched_preempt_enable_no_resched(); 6565 } while (need_resched()); 6566 sched_update_worker(tsk); 6567 } 6568 EXPORT_SYMBOL(schedule); 6569 6570 /* 6571 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6572 * state (have scheduled out non-voluntarily) by making sure that all 6573 * tasks have either left the run queue or have gone into user space. 6574 * As idle tasks do not do either, they must not ever be preempted 6575 * (schedule out non-voluntarily). 6576 * 6577 * schedule_idle() is similar to schedule_preempt_disable() except that it 6578 * never enables preemption because it does not call sched_submit_work(). 6579 */ 6580 void __sched schedule_idle(void) 6581 { 6582 /* 6583 * As this skips calling sched_submit_work(), which the idle task does 6584 * regardless because that function is a nop when the task is in a 6585 * TASK_RUNNING state, make sure this isn't used someplace that the 6586 * current task can be in any other state. Note, idle is always in the 6587 * TASK_RUNNING state. 6588 */ 6589 WARN_ON_ONCE(current->__state); 6590 do { 6591 __schedule(SM_NONE); 6592 } while (need_resched()); 6593 } 6594 6595 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6596 asmlinkage __visible void __sched schedule_user(void) 6597 { 6598 /* 6599 * If we come here after a random call to set_need_resched(), 6600 * or we have been woken up remotely but the IPI has not yet arrived, 6601 * we haven't yet exited the RCU idle mode. Do it here manually until 6602 * we find a better solution. 6603 * 6604 * NB: There are buggy callers of this function. Ideally we 6605 * should warn if prev_state != CONTEXT_USER, but that will trigger 6606 * too frequently to make sense yet. 6607 */ 6608 enum ctx_state prev_state = exception_enter(); 6609 schedule(); 6610 exception_exit(prev_state); 6611 } 6612 #endif 6613 6614 /** 6615 * schedule_preempt_disabled - called with preemption disabled 6616 * 6617 * Returns with preemption disabled. Note: preempt_count must be 1 6618 */ 6619 void __sched schedule_preempt_disabled(void) 6620 { 6621 sched_preempt_enable_no_resched(); 6622 schedule(); 6623 preempt_disable(); 6624 } 6625 6626 #ifdef CONFIG_PREEMPT_RT 6627 void __sched notrace schedule_rtlock(void) 6628 { 6629 do { 6630 preempt_disable(); 6631 __schedule(SM_RTLOCK_WAIT); 6632 sched_preempt_enable_no_resched(); 6633 } while (need_resched()); 6634 } 6635 NOKPROBE_SYMBOL(schedule_rtlock); 6636 #endif 6637 6638 static void __sched notrace preempt_schedule_common(void) 6639 { 6640 do { 6641 /* 6642 * Because the function tracer can trace preempt_count_sub() 6643 * and it also uses preempt_enable/disable_notrace(), if 6644 * NEED_RESCHED is set, the preempt_enable_notrace() called 6645 * by the function tracer will call this function again and 6646 * cause infinite recursion. 6647 * 6648 * Preemption must be disabled here before the function 6649 * tracer can trace. Break up preempt_disable() into two 6650 * calls. One to disable preemption without fear of being 6651 * traced. The other to still record the preemption latency, 6652 * which can also be traced by the function tracer. 6653 */ 6654 preempt_disable_notrace(); 6655 preempt_latency_start(1); 6656 __schedule(SM_PREEMPT); 6657 preempt_latency_stop(1); 6658 preempt_enable_no_resched_notrace(); 6659 6660 /* 6661 * Check again in case we missed a preemption opportunity 6662 * between schedule and now. 6663 */ 6664 } while (need_resched()); 6665 } 6666 6667 #ifdef CONFIG_PREEMPTION 6668 /* 6669 * This is the entry point to schedule() from in-kernel preemption 6670 * off of preempt_enable. 6671 */ 6672 asmlinkage __visible void __sched notrace preempt_schedule(void) 6673 { 6674 /* 6675 * If there is a non-zero preempt_count or interrupts are disabled, 6676 * we do not want to preempt the current task. Just return.. 6677 */ 6678 if (likely(!preemptible())) 6679 return; 6680 preempt_schedule_common(); 6681 } 6682 NOKPROBE_SYMBOL(preempt_schedule); 6683 EXPORT_SYMBOL(preempt_schedule); 6684 6685 #ifdef CONFIG_PREEMPT_DYNAMIC 6686 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6687 #ifndef preempt_schedule_dynamic_enabled 6688 #define preempt_schedule_dynamic_enabled preempt_schedule 6689 #define preempt_schedule_dynamic_disabled NULL 6690 #endif 6691 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6692 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6693 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6694 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6695 void __sched notrace dynamic_preempt_schedule(void) 6696 { 6697 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6698 return; 6699 preempt_schedule(); 6700 } 6701 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6702 EXPORT_SYMBOL(dynamic_preempt_schedule); 6703 #endif 6704 #endif 6705 6706 /** 6707 * preempt_schedule_notrace - preempt_schedule called by tracing 6708 * 6709 * The tracing infrastructure uses preempt_enable_notrace to prevent 6710 * recursion and tracing preempt enabling caused by the tracing 6711 * infrastructure itself. But as tracing can happen in areas coming 6712 * from userspace or just about to enter userspace, a preempt enable 6713 * can occur before user_exit() is called. This will cause the scheduler 6714 * to be called when the system is still in usermode. 6715 * 6716 * To prevent this, the preempt_enable_notrace will use this function 6717 * instead of preempt_schedule() to exit user context if needed before 6718 * calling the scheduler. 6719 */ 6720 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6721 { 6722 enum ctx_state prev_ctx; 6723 6724 if (likely(!preemptible())) 6725 return; 6726 6727 do { 6728 /* 6729 * Because the function tracer can trace preempt_count_sub() 6730 * and it also uses preempt_enable/disable_notrace(), if 6731 * NEED_RESCHED is set, the preempt_enable_notrace() called 6732 * by the function tracer will call this function again and 6733 * cause infinite recursion. 6734 * 6735 * Preemption must be disabled here before the function 6736 * tracer can trace. Break up preempt_disable() into two 6737 * calls. One to disable preemption without fear of being 6738 * traced. The other to still record the preemption latency, 6739 * which can also be traced by the function tracer. 6740 */ 6741 preempt_disable_notrace(); 6742 preempt_latency_start(1); 6743 /* 6744 * Needs preempt disabled in case user_exit() is traced 6745 * and the tracer calls preempt_enable_notrace() causing 6746 * an infinite recursion. 6747 */ 6748 prev_ctx = exception_enter(); 6749 __schedule(SM_PREEMPT); 6750 exception_exit(prev_ctx); 6751 6752 preempt_latency_stop(1); 6753 preempt_enable_no_resched_notrace(); 6754 } while (need_resched()); 6755 } 6756 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6757 6758 #ifdef CONFIG_PREEMPT_DYNAMIC 6759 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6760 #ifndef preempt_schedule_notrace_dynamic_enabled 6761 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6762 #define preempt_schedule_notrace_dynamic_disabled NULL 6763 #endif 6764 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6765 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6766 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6767 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6768 void __sched notrace dynamic_preempt_schedule_notrace(void) 6769 { 6770 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6771 return; 6772 preempt_schedule_notrace(); 6773 } 6774 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6775 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6776 #endif 6777 #endif 6778 6779 #endif /* CONFIG_PREEMPTION */ 6780 6781 /* 6782 * This is the entry point to schedule() from kernel preemption 6783 * off of irq context. 6784 * Note, that this is called and return with irqs disabled. This will 6785 * protect us against recursive calling from irq. 6786 */ 6787 asmlinkage __visible void __sched preempt_schedule_irq(void) 6788 { 6789 enum ctx_state prev_state; 6790 6791 /* Catch callers which need to be fixed */ 6792 BUG_ON(preempt_count() || !irqs_disabled()); 6793 6794 prev_state = exception_enter(); 6795 6796 do { 6797 preempt_disable(); 6798 local_irq_enable(); 6799 __schedule(SM_PREEMPT); 6800 local_irq_disable(); 6801 sched_preempt_enable_no_resched(); 6802 } while (need_resched()); 6803 6804 exception_exit(prev_state); 6805 } 6806 6807 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6808 void *key) 6809 { 6810 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 6811 return try_to_wake_up(curr->private, mode, wake_flags); 6812 } 6813 EXPORT_SYMBOL(default_wake_function); 6814 6815 static void __setscheduler_prio(struct task_struct *p, int prio) 6816 { 6817 if (dl_prio(prio)) 6818 p->sched_class = &dl_sched_class; 6819 else if (rt_prio(prio)) 6820 p->sched_class = &rt_sched_class; 6821 else 6822 p->sched_class = &fair_sched_class; 6823 6824 p->prio = prio; 6825 } 6826 6827 #ifdef CONFIG_RT_MUTEXES 6828 6829 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 6830 { 6831 if (pi_task) 6832 prio = min(prio, pi_task->prio); 6833 6834 return prio; 6835 } 6836 6837 static inline int rt_effective_prio(struct task_struct *p, int prio) 6838 { 6839 struct task_struct *pi_task = rt_mutex_get_top_task(p); 6840 6841 return __rt_effective_prio(pi_task, prio); 6842 } 6843 6844 /* 6845 * rt_mutex_setprio - set the current priority of a task 6846 * @p: task to boost 6847 * @pi_task: donor task 6848 * 6849 * This function changes the 'effective' priority of a task. It does 6850 * not touch ->normal_prio like __setscheduler(). 6851 * 6852 * Used by the rt_mutex code to implement priority inheritance 6853 * logic. Call site only calls if the priority of the task changed. 6854 */ 6855 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 6856 { 6857 int prio, oldprio, queued, running, queue_flag = 6858 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6859 const struct sched_class *prev_class; 6860 struct rq_flags rf; 6861 struct rq *rq; 6862 6863 /* XXX used to be waiter->prio, not waiter->task->prio */ 6864 prio = __rt_effective_prio(pi_task, p->normal_prio); 6865 6866 /* 6867 * If nothing changed; bail early. 6868 */ 6869 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 6870 return; 6871 6872 rq = __task_rq_lock(p, &rf); 6873 update_rq_clock(rq); 6874 /* 6875 * Set under pi_lock && rq->lock, such that the value can be used under 6876 * either lock. 6877 * 6878 * Note that there is loads of tricky to make this pointer cache work 6879 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 6880 * ensure a task is de-boosted (pi_task is set to NULL) before the 6881 * task is allowed to run again (and can exit). This ensures the pointer 6882 * points to a blocked task -- which guarantees the task is present. 6883 */ 6884 p->pi_top_task = pi_task; 6885 6886 /* 6887 * For FIFO/RR we only need to set prio, if that matches we're done. 6888 */ 6889 if (prio == p->prio && !dl_prio(prio)) 6890 goto out_unlock; 6891 6892 /* 6893 * Idle task boosting is a nono in general. There is one 6894 * exception, when PREEMPT_RT and NOHZ is active: 6895 * 6896 * The idle task calls get_next_timer_interrupt() and holds 6897 * the timer wheel base->lock on the CPU and another CPU wants 6898 * to access the timer (probably to cancel it). We can safely 6899 * ignore the boosting request, as the idle CPU runs this code 6900 * with interrupts disabled and will complete the lock 6901 * protected section without being interrupted. So there is no 6902 * real need to boost. 6903 */ 6904 if (unlikely(p == rq->idle)) { 6905 WARN_ON(p != rq->curr); 6906 WARN_ON(p->pi_blocked_on); 6907 goto out_unlock; 6908 } 6909 6910 trace_sched_pi_setprio(p, pi_task); 6911 oldprio = p->prio; 6912 6913 if (oldprio == prio) 6914 queue_flag &= ~DEQUEUE_MOVE; 6915 6916 prev_class = p->sched_class; 6917 queued = task_on_rq_queued(p); 6918 running = task_current(rq, p); 6919 if (queued) 6920 dequeue_task(rq, p, queue_flag); 6921 if (running) 6922 put_prev_task(rq, p); 6923 6924 /* 6925 * Boosting condition are: 6926 * 1. -rt task is running and holds mutex A 6927 * --> -dl task blocks on mutex A 6928 * 6929 * 2. -dl task is running and holds mutex A 6930 * --> -dl task blocks on mutex A and could preempt the 6931 * running task 6932 */ 6933 if (dl_prio(prio)) { 6934 if (!dl_prio(p->normal_prio) || 6935 (pi_task && dl_prio(pi_task->prio) && 6936 dl_entity_preempt(&pi_task->dl, &p->dl))) { 6937 p->dl.pi_se = pi_task->dl.pi_se; 6938 queue_flag |= ENQUEUE_REPLENISH; 6939 } else { 6940 p->dl.pi_se = &p->dl; 6941 } 6942 } else if (rt_prio(prio)) { 6943 if (dl_prio(oldprio)) 6944 p->dl.pi_se = &p->dl; 6945 if (oldprio < prio) 6946 queue_flag |= ENQUEUE_HEAD; 6947 } else { 6948 if (dl_prio(oldprio)) 6949 p->dl.pi_se = &p->dl; 6950 if (rt_prio(oldprio)) 6951 p->rt.timeout = 0; 6952 } 6953 6954 __setscheduler_prio(p, prio); 6955 6956 if (queued) 6957 enqueue_task(rq, p, queue_flag); 6958 if (running) 6959 set_next_task(rq, p); 6960 6961 check_class_changed(rq, p, prev_class, oldprio); 6962 out_unlock: 6963 /* Avoid rq from going away on us: */ 6964 preempt_disable(); 6965 6966 rq_unpin_lock(rq, &rf); 6967 __balance_callbacks(rq); 6968 raw_spin_rq_unlock(rq); 6969 6970 preempt_enable(); 6971 } 6972 #else 6973 static inline int rt_effective_prio(struct task_struct *p, int prio) 6974 { 6975 return prio; 6976 } 6977 #endif 6978 6979 void set_user_nice(struct task_struct *p, long nice) 6980 { 6981 bool queued, running; 6982 int old_prio; 6983 struct rq_flags rf; 6984 struct rq *rq; 6985 6986 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 6987 return; 6988 /* 6989 * We have to be careful, if called from sys_setpriority(), 6990 * the task might be in the middle of scheduling on another CPU. 6991 */ 6992 rq = task_rq_lock(p, &rf); 6993 update_rq_clock(rq); 6994 6995 /* 6996 * The RT priorities are set via sched_setscheduler(), but we still 6997 * allow the 'normal' nice value to be set - but as expected 6998 * it won't have any effect on scheduling until the task is 6999 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 7000 */ 7001 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 7002 p->static_prio = NICE_TO_PRIO(nice); 7003 goto out_unlock; 7004 } 7005 queued = task_on_rq_queued(p); 7006 running = task_current(rq, p); 7007 if (queued) 7008 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 7009 if (running) 7010 put_prev_task(rq, p); 7011 7012 p->static_prio = NICE_TO_PRIO(nice); 7013 set_load_weight(p, true); 7014 old_prio = p->prio; 7015 p->prio = effective_prio(p); 7016 7017 if (queued) 7018 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7019 if (running) 7020 set_next_task(rq, p); 7021 7022 /* 7023 * If the task increased its priority or is running and 7024 * lowered its priority, then reschedule its CPU: 7025 */ 7026 p->sched_class->prio_changed(rq, p, old_prio); 7027 7028 out_unlock: 7029 task_rq_unlock(rq, p, &rf); 7030 } 7031 EXPORT_SYMBOL(set_user_nice); 7032 7033 /* 7034 * is_nice_reduction - check if nice value is an actual reduction 7035 * 7036 * Similar to can_nice() but does not perform a capability check. 7037 * 7038 * @p: task 7039 * @nice: nice value 7040 */ 7041 static bool is_nice_reduction(const struct task_struct *p, const int nice) 7042 { 7043 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 7044 int nice_rlim = nice_to_rlimit(nice); 7045 7046 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); 7047 } 7048 7049 /* 7050 * can_nice - check if a task can reduce its nice value 7051 * @p: task 7052 * @nice: nice value 7053 */ 7054 int can_nice(const struct task_struct *p, const int nice) 7055 { 7056 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); 7057 } 7058 7059 #ifdef __ARCH_WANT_SYS_NICE 7060 7061 /* 7062 * sys_nice - change the priority of the current process. 7063 * @increment: priority increment 7064 * 7065 * sys_setpriority is a more generic, but much slower function that 7066 * does similar things. 7067 */ 7068 SYSCALL_DEFINE1(nice, int, increment) 7069 { 7070 long nice, retval; 7071 7072 /* 7073 * Setpriority might change our priority at the same moment. 7074 * We don't have to worry. Conceptually one call occurs first 7075 * and we have a single winner. 7076 */ 7077 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 7078 nice = task_nice(current) + increment; 7079 7080 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 7081 if (increment < 0 && !can_nice(current, nice)) 7082 return -EPERM; 7083 7084 retval = security_task_setnice(current, nice); 7085 if (retval) 7086 return retval; 7087 7088 set_user_nice(current, nice); 7089 return 0; 7090 } 7091 7092 #endif 7093 7094 /** 7095 * task_prio - return the priority value of a given task. 7096 * @p: the task in question. 7097 * 7098 * Return: The priority value as seen by users in /proc. 7099 * 7100 * sched policy return value kernel prio user prio/nice 7101 * 7102 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 7103 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 7104 * deadline -101 -1 0 7105 */ 7106 int task_prio(const struct task_struct *p) 7107 { 7108 return p->prio - MAX_RT_PRIO; 7109 } 7110 7111 /** 7112 * idle_cpu - is a given CPU idle currently? 7113 * @cpu: the processor in question. 7114 * 7115 * Return: 1 if the CPU is currently idle. 0 otherwise. 7116 */ 7117 int idle_cpu(int cpu) 7118 { 7119 struct rq *rq = cpu_rq(cpu); 7120 7121 if (rq->curr != rq->idle) 7122 return 0; 7123 7124 if (rq->nr_running) 7125 return 0; 7126 7127 #ifdef CONFIG_SMP 7128 if (rq->ttwu_pending) 7129 return 0; 7130 #endif 7131 7132 return 1; 7133 } 7134 7135 /** 7136 * available_idle_cpu - is a given CPU idle for enqueuing work. 7137 * @cpu: the CPU in question. 7138 * 7139 * Return: 1 if the CPU is currently idle. 0 otherwise. 7140 */ 7141 int available_idle_cpu(int cpu) 7142 { 7143 if (!idle_cpu(cpu)) 7144 return 0; 7145 7146 if (vcpu_is_preempted(cpu)) 7147 return 0; 7148 7149 return 1; 7150 } 7151 7152 /** 7153 * idle_task - return the idle task for a given CPU. 7154 * @cpu: the processor in question. 7155 * 7156 * Return: The idle task for the CPU @cpu. 7157 */ 7158 struct task_struct *idle_task(int cpu) 7159 { 7160 return cpu_rq(cpu)->idle; 7161 } 7162 7163 #ifdef CONFIG_SMP 7164 /* 7165 * This function computes an effective utilization for the given CPU, to be 7166 * used for frequency selection given the linear relation: f = u * f_max. 7167 * 7168 * The scheduler tracks the following metrics: 7169 * 7170 * cpu_util_{cfs,rt,dl,irq}() 7171 * cpu_bw_dl() 7172 * 7173 * Where the cfs,rt and dl util numbers are tracked with the same metric and 7174 * synchronized windows and are thus directly comparable. 7175 * 7176 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 7177 * which excludes things like IRQ and steal-time. These latter are then accrued 7178 * in the irq utilization. 7179 * 7180 * The DL bandwidth number otoh is not a measured metric but a value computed 7181 * based on the task model parameters and gives the minimal utilization 7182 * required to meet deadlines. 7183 */ 7184 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 7185 enum cpu_util_type type, 7186 struct task_struct *p) 7187 { 7188 unsigned long dl_util, util, irq, max; 7189 struct rq *rq = cpu_rq(cpu); 7190 7191 max = arch_scale_cpu_capacity(cpu); 7192 7193 if (!uclamp_is_used() && 7194 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 7195 return max; 7196 } 7197 7198 /* 7199 * Early check to see if IRQ/steal time saturates the CPU, can be 7200 * because of inaccuracies in how we track these -- see 7201 * update_irq_load_avg(). 7202 */ 7203 irq = cpu_util_irq(rq); 7204 if (unlikely(irq >= max)) 7205 return max; 7206 7207 /* 7208 * Because the time spend on RT/DL tasks is visible as 'lost' time to 7209 * CFS tasks and we use the same metric to track the effective 7210 * utilization (PELT windows are synchronized) we can directly add them 7211 * to obtain the CPU's actual utilization. 7212 * 7213 * CFS and RT utilization can be boosted or capped, depending on 7214 * utilization clamp constraints requested by currently RUNNABLE 7215 * tasks. 7216 * When there are no CFS RUNNABLE tasks, clamps are released and 7217 * frequency will be gracefully reduced with the utilization decay. 7218 */ 7219 util = util_cfs + cpu_util_rt(rq); 7220 if (type == FREQUENCY_UTIL) 7221 util = uclamp_rq_util_with(rq, util, p); 7222 7223 dl_util = cpu_util_dl(rq); 7224 7225 /* 7226 * For frequency selection we do not make cpu_util_dl() a permanent part 7227 * of this sum because we want to use cpu_bw_dl() later on, but we need 7228 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 7229 * that we select f_max when there is no idle time. 7230 * 7231 * NOTE: numerical errors or stop class might cause us to not quite hit 7232 * saturation when we should -- something for later. 7233 */ 7234 if (util + dl_util >= max) 7235 return max; 7236 7237 /* 7238 * OTOH, for energy computation we need the estimated running time, so 7239 * include util_dl and ignore dl_bw. 7240 */ 7241 if (type == ENERGY_UTIL) 7242 util += dl_util; 7243 7244 /* 7245 * There is still idle time; further improve the number by using the 7246 * irq metric. Because IRQ/steal time is hidden from the task clock we 7247 * need to scale the task numbers: 7248 * 7249 * max - irq 7250 * U' = irq + --------- * U 7251 * max 7252 */ 7253 util = scale_irq_capacity(util, irq, max); 7254 util += irq; 7255 7256 /* 7257 * Bandwidth required by DEADLINE must always be granted while, for 7258 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 7259 * to gracefully reduce the frequency when no tasks show up for longer 7260 * periods of time. 7261 * 7262 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 7263 * bw_dl as requested freq. However, cpufreq is not yet ready for such 7264 * an interface. So, we only do the latter for now. 7265 */ 7266 if (type == FREQUENCY_UTIL) 7267 util += cpu_bw_dl(rq); 7268 7269 return min(max, util); 7270 } 7271 7272 unsigned long sched_cpu_util(int cpu) 7273 { 7274 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL); 7275 } 7276 #endif /* CONFIG_SMP */ 7277 7278 /** 7279 * find_process_by_pid - find a process with a matching PID value. 7280 * @pid: the pid in question. 7281 * 7282 * The task of @pid, if found. %NULL otherwise. 7283 */ 7284 static struct task_struct *find_process_by_pid(pid_t pid) 7285 { 7286 return pid ? find_task_by_vpid(pid) : current; 7287 } 7288 7289 /* 7290 * sched_setparam() passes in -1 for its policy, to let the functions 7291 * it calls know not to change it. 7292 */ 7293 #define SETPARAM_POLICY -1 7294 7295 static void __setscheduler_params(struct task_struct *p, 7296 const struct sched_attr *attr) 7297 { 7298 int policy = attr->sched_policy; 7299 7300 if (policy == SETPARAM_POLICY) 7301 policy = p->policy; 7302 7303 p->policy = policy; 7304 7305 if (dl_policy(policy)) 7306 __setparam_dl(p, attr); 7307 else if (fair_policy(policy)) 7308 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 7309 7310 /* 7311 * __sched_setscheduler() ensures attr->sched_priority == 0 when 7312 * !rt_policy. Always setting this ensures that things like 7313 * getparam()/getattr() don't report silly values for !rt tasks. 7314 */ 7315 p->rt_priority = attr->sched_priority; 7316 p->normal_prio = normal_prio(p); 7317 set_load_weight(p, true); 7318 } 7319 7320 /* 7321 * Check the target process has a UID that matches the current process's: 7322 */ 7323 static bool check_same_owner(struct task_struct *p) 7324 { 7325 const struct cred *cred = current_cred(), *pcred; 7326 bool match; 7327 7328 rcu_read_lock(); 7329 pcred = __task_cred(p); 7330 match = (uid_eq(cred->euid, pcred->euid) || 7331 uid_eq(cred->euid, pcred->uid)); 7332 rcu_read_unlock(); 7333 return match; 7334 } 7335 7336 /* 7337 * Allow unprivileged RT tasks to decrease priority. 7338 * Only issue a capable test if needed and only once to avoid an audit 7339 * event on permitted non-privileged operations: 7340 */ 7341 static int user_check_sched_setscheduler(struct task_struct *p, 7342 const struct sched_attr *attr, 7343 int policy, int reset_on_fork) 7344 { 7345 if (fair_policy(policy)) { 7346 if (attr->sched_nice < task_nice(p) && 7347 !is_nice_reduction(p, attr->sched_nice)) 7348 goto req_priv; 7349 } 7350 7351 if (rt_policy(policy)) { 7352 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); 7353 7354 /* Can't set/change the rt policy: */ 7355 if (policy != p->policy && !rlim_rtprio) 7356 goto req_priv; 7357 7358 /* Can't increase priority: */ 7359 if (attr->sched_priority > p->rt_priority && 7360 attr->sched_priority > rlim_rtprio) 7361 goto req_priv; 7362 } 7363 7364 /* 7365 * Can't set/change SCHED_DEADLINE policy at all for now 7366 * (safest behavior); in the future we would like to allow 7367 * unprivileged DL tasks to increase their relative deadline 7368 * or reduce their runtime (both ways reducing utilization) 7369 */ 7370 if (dl_policy(policy)) 7371 goto req_priv; 7372 7373 /* 7374 * Treat SCHED_IDLE as nice 20. Only allow a switch to 7375 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 7376 */ 7377 if (task_has_idle_policy(p) && !idle_policy(policy)) { 7378 if (!is_nice_reduction(p, task_nice(p))) 7379 goto req_priv; 7380 } 7381 7382 /* Can't change other user's priorities: */ 7383 if (!check_same_owner(p)) 7384 goto req_priv; 7385 7386 /* Normal users shall not reset the sched_reset_on_fork flag: */ 7387 if (p->sched_reset_on_fork && !reset_on_fork) 7388 goto req_priv; 7389 7390 return 0; 7391 7392 req_priv: 7393 if (!capable(CAP_SYS_NICE)) 7394 return -EPERM; 7395 7396 return 0; 7397 } 7398 7399 static int __sched_setscheduler(struct task_struct *p, 7400 const struct sched_attr *attr, 7401 bool user, bool pi) 7402 { 7403 int oldpolicy = -1, policy = attr->sched_policy; 7404 int retval, oldprio, newprio, queued, running; 7405 const struct sched_class *prev_class; 7406 struct callback_head *head; 7407 struct rq_flags rf; 7408 int reset_on_fork; 7409 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7410 struct rq *rq; 7411 7412 /* The pi code expects interrupts enabled */ 7413 BUG_ON(pi && in_interrupt()); 7414 recheck: 7415 /* Double check policy once rq lock held: */ 7416 if (policy < 0) { 7417 reset_on_fork = p->sched_reset_on_fork; 7418 policy = oldpolicy = p->policy; 7419 } else { 7420 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 7421 7422 if (!valid_policy(policy)) 7423 return -EINVAL; 7424 } 7425 7426 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 7427 return -EINVAL; 7428 7429 /* 7430 * Valid priorities for SCHED_FIFO and SCHED_RR are 7431 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 7432 * SCHED_BATCH and SCHED_IDLE is 0. 7433 */ 7434 if (attr->sched_priority > MAX_RT_PRIO-1) 7435 return -EINVAL; 7436 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 7437 (rt_policy(policy) != (attr->sched_priority != 0))) 7438 return -EINVAL; 7439 7440 if (user) { 7441 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); 7442 if (retval) 7443 return retval; 7444 7445 if (attr->sched_flags & SCHED_FLAG_SUGOV) 7446 return -EINVAL; 7447 7448 retval = security_task_setscheduler(p); 7449 if (retval) 7450 return retval; 7451 } 7452 7453 /* Update task specific "requested" clamps */ 7454 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 7455 retval = uclamp_validate(p, attr); 7456 if (retval) 7457 return retval; 7458 } 7459 7460 if (pi) 7461 cpuset_read_lock(); 7462 7463 /* 7464 * Make sure no PI-waiters arrive (or leave) while we are 7465 * changing the priority of the task: 7466 * 7467 * To be able to change p->policy safely, the appropriate 7468 * runqueue lock must be held. 7469 */ 7470 rq = task_rq_lock(p, &rf); 7471 update_rq_clock(rq); 7472 7473 /* 7474 * Changing the policy of the stop threads its a very bad idea: 7475 */ 7476 if (p == rq->stop) { 7477 retval = -EINVAL; 7478 goto unlock; 7479 } 7480 7481 /* 7482 * If not changing anything there's no need to proceed further, 7483 * but store a possible modification of reset_on_fork. 7484 */ 7485 if (unlikely(policy == p->policy)) { 7486 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 7487 goto change; 7488 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 7489 goto change; 7490 if (dl_policy(policy) && dl_param_changed(p, attr)) 7491 goto change; 7492 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 7493 goto change; 7494 7495 p->sched_reset_on_fork = reset_on_fork; 7496 retval = 0; 7497 goto unlock; 7498 } 7499 change: 7500 7501 if (user) { 7502 #ifdef CONFIG_RT_GROUP_SCHED 7503 /* 7504 * Do not allow realtime tasks into groups that have no runtime 7505 * assigned. 7506 */ 7507 if (rt_bandwidth_enabled() && rt_policy(policy) && 7508 task_group(p)->rt_bandwidth.rt_runtime == 0 && 7509 !task_group_is_autogroup(task_group(p))) { 7510 retval = -EPERM; 7511 goto unlock; 7512 } 7513 #endif 7514 #ifdef CONFIG_SMP 7515 if (dl_bandwidth_enabled() && dl_policy(policy) && 7516 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 7517 cpumask_t *span = rq->rd->span; 7518 7519 /* 7520 * Don't allow tasks with an affinity mask smaller than 7521 * the entire root_domain to become SCHED_DEADLINE. We 7522 * will also fail if there's no bandwidth available. 7523 */ 7524 if (!cpumask_subset(span, p->cpus_ptr) || 7525 rq->rd->dl_bw.bw == 0) { 7526 retval = -EPERM; 7527 goto unlock; 7528 } 7529 } 7530 #endif 7531 } 7532 7533 /* Re-check policy now with rq lock held: */ 7534 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 7535 policy = oldpolicy = -1; 7536 task_rq_unlock(rq, p, &rf); 7537 if (pi) 7538 cpuset_read_unlock(); 7539 goto recheck; 7540 } 7541 7542 /* 7543 * If setscheduling to SCHED_DEADLINE (or changing the parameters 7544 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 7545 * is available. 7546 */ 7547 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 7548 retval = -EBUSY; 7549 goto unlock; 7550 } 7551 7552 p->sched_reset_on_fork = reset_on_fork; 7553 oldprio = p->prio; 7554 7555 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); 7556 if (pi) { 7557 /* 7558 * Take priority boosted tasks into account. If the new 7559 * effective priority is unchanged, we just store the new 7560 * normal parameters and do not touch the scheduler class and 7561 * the runqueue. This will be done when the task deboost 7562 * itself. 7563 */ 7564 newprio = rt_effective_prio(p, newprio); 7565 if (newprio == oldprio) 7566 queue_flags &= ~DEQUEUE_MOVE; 7567 } 7568 7569 queued = task_on_rq_queued(p); 7570 running = task_current(rq, p); 7571 if (queued) 7572 dequeue_task(rq, p, queue_flags); 7573 if (running) 7574 put_prev_task(rq, p); 7575 7576 prev_class = p->sched_class; 7577 7578 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { 7579 __setscheduler_params(p, attr); 7580 __setscheduler_prio(p, newprio); 7581 } 7582 __setscheduler_uclamp(p, attr); 7583 7584 if (queued) { 7585 /* 7586 * We enqueue to tail when the priority of a task is 7587 * increased (user space view). 7588 */ 7589 if (oldprio < p->prio) 7590 queue_flags |= ENQUEUE_HEAD; 7591 7592 enqueue_task(rq, p, queue_flags); 7593 } 7594 if (running) 7595 set_next_task(rq, p); 7596 7597 check_class_changed(rq, p, prev_class, oldprio); 7598 7599 /* Avoid rq from going away on us: */ 7600 preempt_disable(); 7601 head = splice_balance_callbacks(rq); 7602 task_rq_unlock(rq, p, &rf); 7603 7604 if (pi) { 7605 cpuset_read_unlock(); 7606 rt_mutex_adjust_pi(p); 7607 } 7608 7609 /* Run balance callbacks after we've adjusted the PI chain: */ 7610 balance_callbacks(rq, head); 7611 preempt_enable(); 7612 7613 return 0; 7614 7615 unlock: 7616 task_rq_unlock(rq, p, &rf); 7617 if (pi) 7618 cpuset_read_unlock(); 7619 return retval; 7620 } 7621 7622 static int _sched_setscheduler(struct task_struct *p, int policy, 7623 const struct sched_param *param, bool check) 7624 { 7625 struct sched_attr attr = { 7626 .sched_policy = policy, 7627 .sched_priority = param->sched_priority, 7628 .sched_nice = PRIO_TO_NICE(p->static_prio), 7629 }; 7630 7631 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 7632 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 7633 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7634 policy &= ~SCHED_RESET_ON_FORK; 7635 attr.sched_policy = policy; 7636 } 7637 7638 return __sched_setscheduler(p, &attr, check, true); 7639 } 7640 /** 7641 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 7642 * @p: the task in question. 7643 * @policy: new policy. 7644 * @param: structure containing the new RT priority. 7645 * 7646 * Use sched_set_fifo(), read its comment. 7647 * 7648 * Return: 0 on success. An error code otherwise. 7649 * 7650 * NOTE that the task may be already dead. 7651 */ 7652 int sched_setscheduler(struct task_struct *p, int policy, 7653 const struct sched_param *param) 7654 { 7655 return _sched_setscheduler(p, policy, param, true); 7656 } 7657 7658 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 7659 { 7660 return __sched_setscheduler(p, attr, true, true); 7661 } 7662 7663 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 7664 { 7665 return __sched_setscheduler(p, attr, false, true); 7666 } 7667 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 7668 7669 /** 7670 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 7671 * @p: the task in question. 7672 * @policy: new policy. 7673 * @param: structure containing the new RT priority. 7674 * 7675 * Just like sched_setscheduler, only don't bother checking if the 7676 * current context has permission. For example, this is needed in 7677 * stop_machine(): we create temporary high priority worker threads, 7678 * but our caller might not have that capability. 7679 * 7680 * Return: 0 on success. An error code otherwise. 7681 */ 7682 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 7683 const struct sched_param *param) 7684 { 7685 return _sched_setscheduler(p, policy, param, false); 7686 } 7687 7688 /* 7689 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 7690 * incapable of resource management, which is the one thing an OS really should 7691 * be doing. 7692 * 7693 * This is of course the reason it is limited to privileged users only. 7694 * 7695 * Worse still; it is fundamentally impossible to compose static priority 7696 * workloads. You cannot take two correctly working static prio workloads 7697 * and smash them together and still expect them to work. 7698 * 7699 * For this reason 'all' FIFO tasks the kernel creates are basically at: 7700 * 7701 * MAX_RT_PRIO / 2 7702 * 7703 * The administrator _MUST_ configure the system, the kernel simply doesn't 7704 * know enough information to make a sensible choice. 7705 */ 7706 void sched_set_fifo(struct task_struct *p) 7707 { 7708 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 7709 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7710 } 7711 EXPORT_SYMBOL_GPL(sched_set_fifo); 7712 7713 /* 7714 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 7715 */ 7716 void sched_set_fifo_low(struct task_struct *p) 7717 { 7718 struct sched_param sp = { .sched_priority = 1 }; 7719 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7720 } 7721 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 7722 7723 void sched_set_normal(struct task_struct *p, int nice) 7724 { 7725 struct sched_attr attr = { 7726 .sched_policy = SCHED_NORMAL, 7727 .sched_nice = nice, 7728 }; 7729 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 7730 } 7731 EXPORT_SYMBOL_GPL(sched_set_normal); 7732 7733 static int 7734 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 7735 { 7736 struct sched_param lparam; 7737 struct task_struct *p; 7738 int retval; 7739 7740 if (!param || pid < 0) 7741 return -EINVAL; 7742 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 7743 return -EFAULT; 7744 7745 rcu_read_lock(); 7746 retval = -ESRCH; 7747 p = find_process_by_pid(pid); 7748 if (likely(p)) 7749 get_task_struct(p); 7750 rcu_read_unlock(); 7751 7752 if (likely(p)) { 7753 retval = sched_setscheduler(p, policy, &lparam); 7754 put_task_struct(p); 7755 } 7756 7757 return retval; 7758 } 7759 7760 /* 7761 * Mimics kernel/events/core.c perf_copy_attr(). 7762 */ 7763 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 7764 { 7765 u32 size; 7766 int ret; 7767 7768 /* Zero the full structure, so that a short copy will be nice: */ 7769 memset(attr, 0, sizeof(*attr)); 7770 7771 ret = get_user(size, &uattr->size); 7772 if (ret) 7773 return ret; 7774 7775 /* ABI compatibility quirk: */ 7776 if (!size) 7777 size = SCHED_ATTR_SIZE_VER0; 7778 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 7779 goto err_size; 7780 7781 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 7782 if (ret) { 7783 if (ret == -E2BIG) 7784 goto err_size; 7785 return ret; 7786 } 7787 7788 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 7789 size < SCHED_ATTR_SIZE_VER1) 7790 return -EINVAL; 7791 7792 /* 7793 * XXX: Do we want to be lenient like existing syscalls; or do we want 7794 * to be strict and return an error on out-of-bounds values? 7795 */ 7796 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 7797 7798 return 0; 7799 7800 err_size: 7801 put_user(sizeof(*attr), &uattr->size); 7802 return -E2BIG; 7803 } 7804 7805 static void get_params(struct task_struct *p, struct sched_attr *attr) 7806 { 7807 if (task_has_dl_policy(p)) 7808 __getparam_dl(p, attr); 7809 else if (task_has_rt_policy(p)) 7810 attr->sched_priority = p->rt_priority; 7811 else 7812 attr->sched_nice = task_nice(p); 7813 } 7814 7815 /** 7816 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 7817 * @pid: the pid in question. 7818 * @policy: new policy. 7819 * @param: structure containing the new RT priority. 7820 * 7821 * Return: 0 on success. An error code otherwise. 7822 */ 7823 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 7824 { 7825 if (policy < 0) 7826 return -EINVAL; 7827 7828 return do_sched_setscheduler(pid, policy, param); 7829 } 7830 7831 /** 7832 * sys_sched_setparam - set/change the RT priority of a thread 7833 * @pid: the pid in question. 7834 * @param: structure containing the new RT priority. 7835 * 7836 * Return: 0 on success. An error code otherwise. 7837 */ 7838 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 7839 { 7840 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 7841 } 7842 7843 /** 7844 * sys_sched_setattr - same as above, but with extended sched_attr 7845 * @pid: the pid in question. 7846 * @uattr: structure containing the extended parameters. 7847 * @flags: for future extension. 7848 */ 7849 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 7850 unsigned int, flags) 7851 { 7852 struct sched_attr attr; 7853 struct task_struct *p; 7854 int retval; 7855 7856 if (!uattr || pid < 0 || flags) 7857 return -EINVAL; 7858 7859 retval = sched_copy_attr(uattr, &attr); 7860 if (retval) 7861 return retval; 7862 7863 if ((int)attr.sched_policy < 0) 7864 return -EINVAL; 7865 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 7866 attr.sched_policy = SETPARAM_POLICY; 7867 7868 rcu_read_lock(); 7869 retval = -ESRCH; 7870 p = find_process_by_pid(pid); 7871 if (likely(p)) 7872 get_task_struct(p); 7873 rcu_read_unlock(); 7874 7875 if (likely(p)) { 7876 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) 7877 get_params(p, &attr); 7878 retval = sched_setattr(p, &attr); 7879 put_task_struct(p); 7880 } 7881 7882 return retval; 7883 } 7884 7885 /** 7886 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 7887 * @pid: the pid in question. 7888 * 7889 * Return: On success, the policy of the thread. Otherwise, a negative error 7890 * code. 7891 */ 7892 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 7893 { 7894 struct task_struct *p; 7895 int retval; 7896 7897 if (pid < 0) 7898 return -EINVAL; 7899 7900 retval = -ESRCH; 7901 rcu_read_lock(); 7902 p = find_process_by_pid(pid); 7903 if (p) { 7904 retval = security_task_getscheduler(p); 7905 if (!retval) 7906 retval = p->policy 7907 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 7908 } 7909 rcu_read_unlock(); 7910 return retval; 7911 } 7912 7913 /** 7914 * sys_sched_getparam - get the RT priority of a thread 7915 * @pid: the pid in question. 7916 * @param: structure containing the RT priority. 7917 * 7918 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 7919 * code. 7920 */ 7921 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 7922 { 7923 struct sched_param lp = { .sched_priority = 0 }; 7924 struct task_struct *p; 7925 int retval; 7926 7927 if (!param || pid < 0) 7928 return -EINVAL; 7929 7930 rcu_read_lock(); 7931 p = find_process_by_pid(pid); 7932 retval = -ESRCH; 7933 if (!p) 7934 goto out_unlock; 7935 7936 retval = security_task_getscheduler(p); 7937 if (retval) 7938 goto out_unlock; 7939 7940 if (task_has_rt_policy(p)) 7941 lp.sched_priority = p->rt_priority; 7942 rcu_read_unlock(); 7943 7944 /* 7945 * This one might sleep, we cannot do it with a spinlock held ... 7946 */ 7947 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 7948 7949 return retval; 7950 7951 out_unlock: 7952 rcu_read_unlock(); 7953 return retval; 7954 } 7955 7956 /* 7957 * Copy the kernel size attribute structure (which might be larger 7958 * than what user-space knows about) to user-space. 7959 * 7960 * Note that all cases are valid: user-space buffer can be larger or 7961 * smaller than the kernel-space buffer. The usual case is that both 7962 * have the same size. 7963 */ 7964 static int 7965 sched_attr_copy_to_user(struct sched_attr __user *uattr, 7966 struct sched_attr *kattr, 7967 unsigned int usize) 7968 { 7969 unsigned int ksize = sizeof(*kattr); 7970 7971 if (!access_ok(uattr, usize)) 7972 return -EFAULT; 7973 7974 /* 7975 * sched_getattr() ABI forwards and backwards compatibility: 7976 * 7977 * If usize == ksize then we just copy everything to user-space and all is good. 7978 * 7979 * If usize < ksize then we only copy as much as user-space has space for, 7980 * this keeps ABI compatibility as well. We skip the rest. 7981 * 7982 * If usize > ksize then user-space is using a newer version of the ABI, 7983 * which part the kernel doesn't know about. Just ignore it - tooling can 7984 * detect the kernel's knowledge of attributes from the attr->size value 7985 * which is set to ksize in this case. 7986 */ 7987 kattr->size = min(usize, ksize); 7988 7989 if (copy_to_user(uattr, kattr, kattr->size)) 7990 return -EFAULT; 7991 7992 return 0; 7993 } 7994 7995 /** 7996 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 7997 * @pid: the pid in question. 7998 * @uattr: structure containing the extended parameters. 7999 * @usize: sizeof(attr) for fwd/bwd comp. 8000 * @flags: for future extension. 8001 */ 8002 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 8003 unsigned int, usize, unsigned int, flags) 8004 { 8005 struct sched_attr kattr = { }; 8006 struct task_struct *p; 8007 int retval; 8008 8009 if (!uattr || pid < 0 || usize > PAGE_SIZE || 8010 usize < SCHED_ATTR_SIZE_VER0 || flags) 8011 return -EINVAL; 8012 8013 rcu_read_lock(); 8014 p = find_process_by_pid(pid); 8015 retval = -ESRCH; 8016 if (!p) 8017 goto out_unlock; 8018 8019 retval = security_task_getscheduler(p); 8020 if (retval) 8021 goto out_unlock; 8022 8023 kattr.sched_policy = p->policy; 8024 if (p->sched_reset_on_fork) 8025 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 8026 get_params(p, &kattr); 8027 kattr.sched_flags &= SCHED_FLAG_ALL; 8028 8029 #ifdef CONFIG_UCLAMP_TASK 8030 /* 8031 * This could race with another potential updater, but this is fine 8032 * because it'll correctly read the old or the new value. We don't need 8033 * to guarantee who wins the race as long as it doesn't return garbage. 8034 */ 8035 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 8036 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 8037 #endif 8038 8039 rcu_read_unlock(); 8040 8041 return sched_attr_copy_to_user(uattr, &kattr, usize); 8042 8043 out_unlock: 8044 rcu_read_unlock(); 8045 return retval; 8046 } 8047 8048 #ifdef CONFIG_SMP 8049 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 8050 { 8051 int ret = 0; 8052 8053 /* 8054 * If the task isn't a deadline task or admission control is 8055 * disabled then we don't care about affinity changes. 8056 */ 8057 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) 8058 return 0; 8059 8060 /* 8061 * Since bandwidth control happens on root_domain basis, 8062 * if admission test is enabled, we only admit -deadline 8063 * tasks allowed to run on all the CPUs in the task's 8064 * root_domain. 8065 */ 8066 rcu_read_lock(); 8067 if (!cpumask_subset(task_rq(p)->rd->span, mask)) 8068 ret = -EBUSY; 8069 rcu_read_unlock(); 8070 return ret; 8071 } 8072 #endif 8073 8074 static int 8075 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask) 8076 { 8077 int retval; 8078 cpumask_var_t cpus_allowed, new_mask; 8079 8080 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) 8081 return -ENOMEM; 8082 8083 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 8084 retval = -ENOMEM; 8085 goto out_free_cpus_allowed; 8086 } 8087 8088 cpuset_cpus_allowed(p, cpus_allowed); 8089 cpumask_and(new_mask, mask, cpus_allowed); 8090 8091 retval = dl_task_check_affinity(p, new_mask); 8092 if (retval) 8093 goto out_free_new_mask; 8094 again: 8095 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER); 8096 if (retval) 8097 goto out_free_new_mask; 8098 8099 cpuset_cpus_allowed(p, cpus_allowed); 8100 if (!cpumask_subset(new_mask, cpus_allowed)) { 8101 /* 8102 * We must have raced with a concurrent cpuset update. 8103 * Just reset the cpumask to the cpuset's cpus_allowed. 8104 */ 8105 cpumask_copy(new_mask, cpus_allowed); 8106 goto again; 8107 } 8108 8109 out_free_new_mask: 8110 free_cpumask_var(new_mask); 8111 out_free_cpus_allowed: 8112 free_cpumask_var(cpus_allowed); 8113 return retval; 8114 } 8115 8116 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 8117 { 8118 struct task_struct *p; 8119 int retval; 8120 8121 rcu_read_lock(); 8122 8123 p = find_process_by_pid(pid); 8124 if (!p) { 8125 rcu_read_unlock(); 8126 return -ESRCH; 8127 } 8128 8129 /* Prevent p going away */ 8130 get_task_struct(p); 8131 rcu_read_unlock(); 8132 8133 if (p->flags & PF_NO_SETAFFINITY) { 8134 retval = -EINVAL; 8135 goto out_put_task; 8136 } 8137 8138 if (!check_same_owner(p)) { 8139 rcu_read_lock(); 8140 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 8141 rcu_read_unlock(); 8142 retval = -EPERM; 8143 goto out_put_task; 8144 } 8145 rcu_read_unlock(); 8146 } 8147 8148 retval = security_task_setscheduler(p); 8149 if (retval) 8150 goto out_put_task; 8151 8152 retval = __sched_setaffinity(p, in_mask); 8153 out_put_task: 8154 put_task_struct(p); 8155 return retval; 8156 } 8157 8158 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 8159 struct cpumask *new_mask) 8160 { 8161 if (len < cpumask_size()) 8162 cpumask_clear(new_mask); 8163 else if (len > cpumask_size()) 8164 len = cpumask_size(); 8165 8166 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 8167 } 8168 8169 /** 8170 * sys_sched_setaffinity - set the CPU affinity of a process 8171 * @pid: pid of the process 8172 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8173 * @user_mask_ptr: user-space pointer to the new CPU mask 8174 * 8175 * Return: 0 on success. An error code otherwise. 8176 */ 8177 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 8178 unsigned long __user *, user_mask_ptr) 8179 { 8180 cpumask_var_t new_mask; 8181 int retval; 8182 8183 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 8184 return -ENOMEM; 8185 8186 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 8187 if (retval == 0) 8188 retval = sched_setaffinity(pid, new_mask); 8189 free_cpumask_var(new_mask); 8190 return retval; 8191 } 8192 8193 long sched_getaffinity(pid_t pid, struct cpumask *mask) 8194 { 8195 struct task_struct *p; 8196 unsigned long flags; 8197 int retval; 8198 8199 rcu_read_lock(); 8200 8201 retval = -ESRCH; 8202 p = find_process_by_pid(pid); 8203 if (!p) 8204 goto out_unlock; 8205 8206 retval = security_task_getscheduler(p); 8207 if (retval) 8208 goto out_unlock; 8209 8210 raw_spin_lock_irqsave(&p->pi_lock, flags); 8211 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 8212 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 8213 8214 out_unlock: 8215 rcu_read_unlock(); 8216 8217 return retval; 8218 } 8219 8220 /** 8221 * sys_sched_getaffinity - get the CPU affinity of a process 8222 * @pid: pid of the process 8223 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8224 * @user_mask_ptr: user-space pointer to hold the current CPU mask 8225 * 8226 * Return: size of CPU mask copied to user_mask_ptr on success. An 8227 * error code otherwise. 8228 */ 8229 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 8230 unsigned long __user *, user_mask_ptr) 8231 { 8232 int ret; 8233 cpumask_var_t mask; 8234 8235 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 8236 return -EINVAL; 8237 if (len & (sizeof(unsigned long)-1)) 8238 return -EINVAL; 8239 8240 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 8241 return -ENOMEM; 8242 8243 ret = sched_getaffinity(pid, mask); 8244 if (ret == 0) { 8245 unsigned int retlen = min(len, cpumask_size()); 8246 8247 if (copy_to_user(user_mask_ptr, mask, retlen)) 8248 ret = -EFAULT; 8249 else 8250 ret = retlen; 8251 } 8252 free_cpumask_var(mask); 8253 8254 return ret; 8255 } 8256 8257 static void do_sched_yield(void) 8258 { 8259 struct rq_flags rf; 8260 struct rq *rq; 8261 8262 rq = this_rq_lock_irq(&rf); 8263 8264 schedstat_inc(rq->yld_count); 8265 current->sched_class->yield_task(rq); 8266 8267 preempt_disable(); 8268 rq_unlock_irq(rq, &rf); 8269 sched_preempt_enable_no_resched(); 8270 8271 schedule(); 8272 } 8273 8274 /** 8275 * sys_sched_yield - yield the current processor to other threads. 8276 * 8277 * This function yields the current CPU to other tasks. If there are no 8278 * other threads running on this CPU then this function will return. 8279 * 8280 * Return: 0. 8281 */ 8282 SYSCALL_DEFINE0(sched_yield) 8283 { 8284 do_sched_yield(); 8285 return 0; 8286 } 8287 8288 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 8289 int __sched __cond_resched(void) 8290 { 8291 if (should_resched(0)) { 8292 preempt_schedule_common(); 8293 return 1; 8294 } 8295 /* 8296 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 8297 * whether the current CPU is in an RCU read-side critical section, 8298 * so the tick can report quiescent states even for CPUs looping 8299 * in kernel context. In contrast, in non-preemptible kernels, 8300 * RCU readers leave no in-memory hints, which means that CPU-bound 8301 * processes executing in kernel context might never report an 8302 * RCU quiescent state. Therefore, the following code causes 8303 * cond_resched() to report a quiescent state, but only when RCU 8304 * is in urgent need of one. 8305 */ 8306 #ifndef CONFIG_PREEMPT_RCU 8307 rcu_all_qs(); 8308 #endif 8309 return 0; 8310 } 8311 EXPORT_SYMBOL(__cond_resched); 8312 #endif 8313 8314 #ifdef CONFIG_PREEMPT_DYNAMIC 8315 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8316 #define cond_resched_dynamic_enabled __cond_resched 8317 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 8318 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 8319 EXPORT_STATIC_CALL_TRAMP(cond_resched); 8320 8321 #define might_resched_dynamic_enabled __cond_resched 8322 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 8323 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 8324 EXPORT_STATIC_CALL_TRAMP(might_resched); 8325 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8326 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 8327 int __sched dynamic_cond_resched(void) 8328 { 8329 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 8330 return 0; 8331 return __cond_resched(); 8332 } 8333 EXPORT_SYMBOL(dynamic_cond_resched); 8334 8335 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 8336 int __sched dynamic_might_resched(void) 8337 { 8338 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 8339 return 0; 8340 return __cond_resched(); 8341 } 8342 EXPORT_SYMBOL(dynamic_might_resched); 8343 #endif 8344 #endif 8345 8346 /* 8347 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 8348 * call schedule, and on return reacquire the lock. 8349 * 8350 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 8351 * operations here to prevent schedule() from being called twice (once via 8352 * spin_unlock(), once by hand). 8353 */ 8354 int __cond_resched_lock(spinlock_t *lock) 8355 { 8356 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8357 int ret = 0; 8358 8359 lockdep_assert_held(lock); 8360 8361 if (spin_needbreak(lock) || resched) { 8362 spin_unlock(lock); 8363 if (!_cond_resched()) 8364 cpu_relax(); 8365 ret = 1; 8366 spin_lock(lock); 8367 } 8368 return ret; 8369 } 8370 EXPORT_SYMBOL(__cond_resched_lock); 8371 8372 int __cond_resched_rwlock_read(rwlock_t *lock) 8373 { 8374 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8375 int ret = 0; 8376 8377 lockdep_assert_held_read(lock); 8378 8379 if (rwlock_needbreak(lock) || resched) { 8380 read_unlock(lock); 8381 if (!_cond_resched()) 8382 cpu_relax(); 8383 ret = 1; 8384 read_lock(lock); 8385 } 8386 return ret; 8387 } 8388 EXPORT_SYMBOL(__cond_resched_rwlock_read); 8389 8390 int __cond_resched_rwlock_write(rwlock_t *lock) 8391 { 8392 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8393 int ret = 0; 8394 8395 lockdep_assert_held_write(lock); 8396 8397 if (rwlock_needbreak(lock) || resched) { 8398 write_unlock(lock); 8399 if (!_cond_resched()) 8400 cpu_relax(); 8401 ret = 1; 8402 write_lock(lock); 8403 } 8404 return ret; 8405 } 8406 EXPORT_SYMBOL(__cond_resched_rwlock_write); 8407 8408 #ifdef CONFIG_PREEMPT_DYNAMIC 8409 8410 #ifdef CONFIG_GENERIC_ENTRY 8411 #include <linux/entry-common.h> 8412 #endif 8413 8414 /* 8415 * SC:cond_resched 8416 * SC:might_resched 8417 * SC:preempt_schedule 8418 * SC:preempt_schedule_notrace 8419 * SC:irqentry_exit_cond_resched 8420 * 8421 * 8422 * NONE: 8423 * cond_resched <- __cond_resched 8424 * might_resched <- RET0 8425 * preempt_schedule <- NOP 8426 * preempt_schedule_notrace <- NOP 8427 * irqentry_exit_cond_resched <- NOP 8428 * 8429 * VOLUNTARY: 8430 * cond_resched <- __cond_resched 8431 * might_resched <- __cond_resched 8432 * preempt_schedule <- NOP 8433 * preempt_schedule_notrace <- NOP 8434 * irqentry_exit_cond_resched <- NOP 8435 * 8436 * FULL: 8437 * cond_resched <- RET0 8438 * might_resched <- RET0 8439 * preempt_schedule <- preempt_schedule 8440 * preempt_schedule_notrace <- preempt_schedule_notrace 8441 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 8442 */ 8443 8444 enum { 8445 preempt_dynamic_undefined = -1, 8446 preempt_dynamic_none, 8447 preempt_dynamic_voluntary, 8448 preempt_dynamic_full, 8449 }; 8450 8451 int preempt_dynamic_mode = preempt_dynamic_undefined; 8452 8453 int sched_dynamic_mode(const char *str) 8454 { 8455 if (!strcmp(str, "none")) 8456 return preempt_dynamic_none; 8457 8458 if (!strcmp(str, "voluntary")) 8459 return preempt_dynamic_voluntary; 8460 8461 if (!strcmp(str, "full")) 8462 return preempt_dynamic_full; 8463 8464 return -EINVAL; 8465 } 8466 8467 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8468 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 8469 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 8470 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8471 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) 8472 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) 8473 #else 8474 #error "Unsupported PREEMPT_DYNAMIC mechanism" 8475 #endif 8476 8477 void sched_dynamic_update(int mode) 8478 { 8479 /* 8480 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 8481 * the ZERO state, which is invalid. 8482 */ 8483 preempt_dynamic_enable(cond_resched); 8484 preempt_dynamic_enable(might_resched); 8485 preempt_dynamic_enable(preempt_schedule); 8486 preempt_dynamic_enable(preempt_schedule_notrace); 8487 preempt_dynamic_enable(irqentry_exit_cond_resched); 8488 8489 switch (mode) { 8490 case preempt_dynamic_none: 8491 preempt_dynamic_enable(cond_resched); 8492 preempt_dynamic_disable(might_resched); 8493 preempt_dynamic_disable(preempt_schedule); 8494 preempt_dynamic_disable(preempt_schedule_notrace); 8495 preempt_dynamic_disable(irqentry_exit_cond_resched); 8496 pr_info("Dynamic Preempt: none\n"); 8497 break; 8498 8499 case preempt_dynamic_voluntary: 8500 preempt_dynamic_enable(cond_resched); 8501 preempt_dynamic_enable(might_resched); 8502 preempt_dynamic_disable(preempt_schedule); 8503 preempt_dynamic_disable(preempt_schedule_notrace); 8504 preempt_dynamic_disable(irqentry_exit_cond_resched); 8505 pr_info("Dynamic Preempt: voluntary\n"); 8506 break; 8507 8508 case preempt_dynamic_full: 8509 preempt_dynamic_disable(cond_resched); 8510 preempt_dynamic_disable(might_resched); 8511 preempt_dynamic_enable(preempt_schedule); 8512 preempt_dynamic_enable(preempt_schedule_notrace); 8513 preempt_dynamic_enable(irqentry_exit_cond_resched); 8514 pr_info("Dynamic Preempt: full\n"); 8515 break; 8516 } 8517 8518 preempt_dynamic_mode = mode; 8519 } 8520 8521 static int __init setup_preempt_mode(char *str) 8522 { 8523 int mode = sched_dynamic_mode(str); 8524 if (mode < 0) { 8525 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 8526 return 0; 8527 } 8528 8529 sched_dynamic_update(mode); 8530 return 1; 8531 } 8532 __setup("preempt=", setup_preempt_mode); 8533 8534 static void __init preempt_dynamic_init(void) 8535 { 8536 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 8537 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 8538 sched_dynamic_update(preempt_dynamic_none); 8539 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 8540 sched_dynamic_update(preempt_dynamic_voluntary); 8541 } else { 8542 /* Default static call setting, nothing to do */ 8543 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 8544 preempt_dynamic_mode = preempt_dynamic_full; 8545 pr_info("Dynamic Preempt: full\n"); 8546 } 8547 } 8548 } 8549 8550 #define PREEMPT_MODEL_ACCESSOR(mode) \ 8551 bool preempt_model_##mode(void) \ 8552 { \ 8553 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 8554 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 8555 } \ 8556 EXPORT_SYMBOL_GPL(preempt_model_##mode) 8557 8558 PREEMPT_MODEL_ACCESSOR(none); 8559 PREEMPT_MODEL_ACCESSOR(voluntary); 8560 PREEMPT_MODEL_ACCESSOR(full); 8561 8562 #else /* !CONFIG_PREEMPT_DYNAMIC */ 8563 8564 static inline void preempt_dynamic_init(void) { } 8565 8566 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */ 8567 8568 /** 8569 * yield - yield the current processor to other threads. 8570 * 8571 * Do not ever use this function, there's a 99% chance you're doing it wrong. 8572 * 8573 * The scheduler is at all times free to pick the calling task as the most 8574 * eligible task to run, if removing the yield() call from your code breaks 8575 * it, it's already broken. 8576 * 8577 * Typical broken usage is: 8578 * 8579 * while (!event) 8580 * yield(); 8581 * 8582 * where one assumes that yield() will let 'the other' process run that will 8583 * make event true. If the current task is a SCHED_FIFO task that will never 8584 * happen. Never use yield() as a progress guarantee!! 8585 * 8586 * If you want to use yield() to wait for something, use wait_event(). 8587 * If you want to use yield() to be 'nice' for others, use cond_resched(). 8588 * If you still want to use yield(), do not! 8589 */ 8590 void __sched yield(void) 8591 { 8592 set_current_state(TASK_RUNNING); 8593 do_sched_yield(); 8594 } 8595 EXPORT_SYMBOL(yield); 8596 8597 /** 8598 * yield_to - yield the current processor to another thread in 8599 * your thread group, or accelerate that thread toward the 8600 * processor it's on. 8601 * @p: target task 8602 * @preempt: whether task preemption is allowed or not 8603 * 8604 * It's the caller's job to ensure that the target task struct 8605 * can't go away on us before we can do any checks. 8606 * 8607 * Return: 8608 * true (>0) if we indeed boosted the target task. 8609 * false (0) if we failed to boost the target. 8610 * -ESRCH if there's no task to yield to. 8611 */ 8612 int __sched yield_to(struct task_struct *p, bool preempt) 8613 { 8614 struct task_struct *curr = current; 8615 struct rq *rq, *p_rq; 8616 unsigned long flags; 8617 int yielded = 0; 8618 8619 local_irq_save(flags); 8620 rq = this_rq(); 8621 8622 again: 8623 p_rq = task_rq(p); 8624 /* 8625 * If we're the only runnable task on the rq and target rq also 8626 * has only one task, there's absolutely no point in yielding. 8627 */ 8628 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 8629 yielded = -ESRCH; 8630 goto out_irq; 8631 } 8632 8633 double_rq_lock(rq, p_rq); 8634 if (task_rq(p) != p_rq) { 8635 double_rq_unlock(rq, p_rq); 8636 goto again; 8637 } 8638 8639 if (!curr->sched_class->yield_to_task) 8640 goto out_unlock; 8641 8642 if (curr->sched_class != p->sched_class) 8643 goto out_unlock; 8644 8645 if (task_on_cpu(p_rq, p) || !task_is_running(p)) 8646 goto out_unlock; 8647 8648 yielded = curr->sched_class->yield_to_task(rq, p); 8649 if (yielded) { 8650 schedstat_inc(rq->yld_count); 8651 /* 8652 * Make p's CPU reschedule; pick_next_entity takes care of 8653 * fairness. 8654 */ 8655 if (preempt && rq != p_rq) 8656 resched_curr(p_rq); 8657 } 8658 8659 out_unlock: 8660 double_rq_unlock(rq, p_rq); 8661 out_irq: 8662 local_irq_restore(flags); 8663 8664 if (yielded > 0) 8665 schedule(); 8666 8667 return yielded; 8668 } 8669 EXPORT_SYMBOL_GPL(yield_to); 8670 8671 int io_schedule_prepare(void) 8672 { 8673 int old_iowait = current->in_iowait; 8674 8675 current->in_iowait = 1; 8676 blk_flush_plug(current->plug, true); 8677 return old_iowait; 8678 } 8679 8680 void io_schedule_finish(int token) 8681 { 8682 current->in_iowait = token; 8683 } 8684 8685 /* 8686 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 8687 * that process accounting knows that this is a task in IO wait state. 8688 */ 8689 long __sched io_schedule_timeout(long timeout) 8690 { 8691 int token; 8692 long ret; 8693 8694 token = io_schedule_prepare(); 8695 ret = schedule_timeout(timeout); 8696 io_schedule_finish(token); 8697 8698 return ret; 8699 } 8700 EXPORT_SYMBOL(io_schedule_timeout); 8701 8702 void __sched io_schedule(void) 8703 { 8704 int token; 8705 8706 token = io_schedule_prepare(); 8707 schedule(); 8708 io_schedule_finish(token); 8709 } 8710 EXPORT_SYMBOL(io_schedule); 8711 8712 /** 8713 * sys_sched_get_priority_max - return maximum RT priority. 8714 * @policy: scheduling class. 8715 * 8716 * Return: On success, this syscall returns the maximum 8717 * rt_priority that can be used by a given scheduling class. 8718 * On failure, a negative error code is returned. 8719 */ 8720 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 8721 { 8722 int ret = -EINVAL; 8723 8724 switch (policy) { 8725 case SCHED_FIFO: 8726 case SCHED_RR: 8727 ret = MAX_RT_PRIO-1; 8728 break; 8729 case SCHED_DEADLINE: 8730 case SCHED_NORMAL: 8731 case SCHED_BATCH: 8732 case SCHED_IDLE: 8733 ret = 0; 8734 break; 8735 } 8736 return ret; 8737 } 8738 8739 /** 8740 * sys_sched_get_priority_min - return minimum RT priority. 8741 * @policy: scheduling class. 8742 * 8743 * Return: On success, this syscall returns the minimum 8744 * rt_priority that can be used by a given scheduling class. 8745 * On failure, a negative error code is returned. 8746 */ 8747 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 8748 { 8749 int ret = -EINVAL; 8750 8751 switch (policy) { 8752 case SCHED_FIFO: 8753 case SCHED_RR: 8754 ret = 1; 8755 break; 8756 case SCHED_DEADLINE: 8757 case SCHED_NORMAL: 8758 case SCHED_BATCH: 8759 case SCHED_IDLE: 8760 ret = 0; 8761 } 8762 return ret; 8763 } 8764 8765 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 8766 { 8767 struct task_struct *p; 8768 unsigned int time_slice; 8769 struct rq_flags rf; 8770 struct rq *rq; 8771 int retval; 8772 8773 if (pid < 0) 8774 return -EINVAL; 8775 8776 retval = -ESRCH; 8777 rcu_read_lock(); 8778 p = find_process_by_pid(pid); 8779 if (!p) 8780 goto out_unlock; 8781 8782 retval = security_task_getscheduler(p); 8783 if (retval) 8784 goto out_unlock; 8785 8786 rq = task_rq_lock(p, &rf); 8787 time_slice = 0; 8788 if (p->sched_class->get_rr_interval) 8789 time_slice = p->sched_class->get_rr_interval(rq, p); 8790 task_rq_unlock(rq, p, &rf); 8791 8792 rcu_read_unlock(); 8793 jiffies_to_timespec64(time_slice, t); 8794 return 0; 8795 8796 out_unlock: 8797 rcu_read_unlock(); 8798 return retval; 8799 } 8800 8801 /** 8802 * sys_sched_rr_get_interval - return the default timeslice of a process. 8803 * @pid: pid of the process. 8804 * @interval: userspace pointer to the timeslice value. 8805 * 8806 * this syscall writes the default timeslice value of a given process 8807 * into the user-space timespec buffer. A value of '0' means infinity. 8808 * 8809 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 8810 * an error code. 8811 */ 8812 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 8813 struct __kernel_timespec __user *, interval) 8814 { 8815 struct timespec64 t; 8816 int retval = sched_rr_get_interval(pid, &t); 8817 8818 if (retval == 0) 8819 retval = put_timespec64(&t, interval); 8820 8821 return retval; 8822 } 8823 8824 #ifdef CONFIG_COMPAT_32BIT_TIME 8825 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 8826 struct old_timespec32 __user *, interval) 8827 { 8828 struct timespec64 t; 8829 int retval = sched_rr_get_interval(pid, &t); 8830 8831 if (retval == 0) 8832 retval = put_old_timespec32(&t, interval); 8833 return retval; 8834 } 8835 #endif 8836 8837 void sched_show_task(struct task_struct *p) 8838 { 8839 unsigned long free = 0; 8840 int ppid; 8841 8842 if (!try_get_task_stack(p)) 8843 return; 8844 8845 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 8846 8847 if (task_is_running(p)) 8848 pr_cont(" running task "); 8849 #ifdef CONFIG_DEBUG_STACK_USAGE 8850 free = stack_not_used(p); 8851 #endif 8852 ppid = 0; 8853 rcu_read_lock(); 8854 if (pid_alive(p)) 8855 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 8856 rcu_read_unlock(); 8857 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n", 8858 free, task_pid_nr(p), ppid, 8859 read_task_thread_flags(p)); 8860 8861 print_worker_info(KERN_INFO, p); 8862 print_stop_info(KERN_INFO, p); 8863 show_stack(p, NULL, KERN_INFO); 8864 put_task_stack(p); 8865 } 8866 EXPORT_SYMBOL_GPL(sched_show_task); 8867 8868 static inline bool 8869 state_filter_match(unsigned long state_filter, struct task_struct *p) 8870 { 8871 unsigned int state = READ_ONCE(p->__state); 8872 8873 /* no filter, everything matches */ 8874 if (!state_filter) 8875 return true; 8876 8877 /* filter, but doesn't match */ 8878 if (!(state & state_filter)) 8879 return false; 8880 8881 /* 8882 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 8883 * TASK_KILLABLE). 8884 */ 8885 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 8886 return false; 8887 8888 return true; 8889 } 8890 8891 8892 void show_state_filter(unsigned int state_filter) 8893 { 8894 struct task_struct *g, *p; 8895 8896 rcu_read_lock(); 8897 for_each_process_thread(g, p) { 8898 /* 8899 * reset the NMI-timeout, listing all files on a slow 8900 * console might take a lot of time: 8901 * Also, reset softlockup watchdogs on all CPUs, because 8902 * another CPU might be blocked waiting for us to process 8903 * an IPI. 8904 */ 8905 touch_nmi_watchdog(); 8906 touch_all_softlockup_watchdogs(); 8907 if (state_filter_match(state_filter, p)) 8908 sched_show_task(p); 8909 } 8910 8911 #ifdef CONFIG_SCHED_DEBUG 8912 if (!state_filter) 8913 sysrq_sched_debug_show(); 8914 #endif 8915 rcu_read_unlock(); 8916 /* 8917 * Only show locks if all tasks are dumped: 8918 */ 8919 if (!state_filter) 8920 debug_show_all_locks(); 8921 } 8922 8923 /** 8924 * init_idle - set up an idle thread for a given CPU 8925 * @idle: task in question 8926 * @cpu: CPU the idle task belongs to 8927 * 8928 * NOTE: this function does not set the idle thread's NEED_RESCHED 8929 * flag, to make booting more robust. 8930 */ 8931 void __init init_idle(struct task_struct *idle, int cpu) 8932 { 8933 struct rq *rq = cpu_rq(cpu); 8934 unsigned long flags; 8935 8936 __sched_fork(0, idle); 8937 8938 raw_spin_lock_irqsave(&idle->pi_lock, flags); 8939 raw_spin_rq_lock(rq); 8940 8941 idle->__state = TASK_RUNNING; 8942 idle->se.exec_start = sched_clock(); 8943 /* 8944 * PF_KTHREAD should already be set at this point; regardless, make it 8945 * look like a proper per-CPU kthread. 8946 */ 8947 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY; 8948 kthread_set_per_cpu(idle, cpu); 8949 8950 #ifdef CONFIG_SMP 8951 /* 8952 * It's possible that init_idle() gets called multiple times on a task, 8953 * in that case do_set_cpus_allowed() will not do the right thing. 8954 * 8955 * And since this is boot we can forgo the serialization. 8956 */ 8957 set_cpus_allowed_common(idle, cpumask_of(cpu), 0); 8958 #endif 8959 /* 8960 * We're having a chicken and egg problem, even though we are 8961 * holding rq->lock, the CPU isn't yet set to this CPU so the 8962 * lockdep check in task_group() will fail. 8963 * 8964 * Similar case to sched_fork(). / Alternatively we could 8965 * use task_rq_lock() here and obtain the other rq->lock. 8966 * 8967 * Silence PROVE_RCU 8968 */ 8969 rcu_read_lock(); 8970 __set_task_cpu(idle, cpu); 8971 rcu_read_unlock(); 8972 8973 rq->idle = idle; 8974 rcu_assign_pointer(rq->curr, idle); 8975 idle->on_rq = TASK_ON_RQ_QUEUED; 8976 #ifdef CONFIG_SMP 8977 idle->on_cpu = 1; 8978 #endif 8979 raw_spin_rq_unlock(rq); 8980 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 8981 8982 /* Set the preempt count _outside_ the spinlocks! */ 8983 init_idle_preempt_count(idle, cpu); 8984 8985 /* 8986 * The idle tasks have their own, simple scheduling class: 8987 */ 8988 idle->sched_class = &idle_sched_class; 8989 ftrace_graph_init_idle_task(idle, cpu); 8990 vtime_init_idle(idle, cpu); 8991 #ifdef CONFIG_SMP 8992 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 8993 #endif 8994 } 8995 8996 #ifdef CONFIG_SMP 8997 8998 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 8999 const struct cpumask *trial) 9000 { 9001 int ret = 1; 9002 9003 if (cpumask_empty(cur)) 9004 return ret; 9005 9006 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 9007 9008 return ret; 9009 } 9010 9011 int task_can_attach(struct task_struct *p, 9012 const struct cpumask *cs_effective_cpus) 9013 { 9014 int ret = 0; 9015 9016 /* 9017 * Kthreads which disallow setaffinity shouldn't be moved 9018 * to a new cpuset; we don't want to change their CPU 9019 * affinity and isolating such threads by their set of 9020 * allowed nodes is unnecessary. Thus, cpusets are not 9021 * applicable for such threads. This prevents checking for 9022 * success of set_cpus_allowed_ptr() on all attached tasks 9023 * before cpus_mask may be changed. 9024 */ 9025 if (p->flags & PF_NO_SETAFFINITY) { 9026 ret = -EINVAL; 9027 goto out; 9028 } 9029 9030 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 9031 cs_effective_cpus)) { 9032 int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus); 9033 9034 if (unlikely(cpu >= nr_cpu_ids)) 9035 return -EINVAL; 9036 ret = dl_cpu_busy(cpu, p); 9037 } 9038 9039 out: 9040 return ret; 9041 } 9042 9043 bool sched_smp_initialized __read_mostly; 9044 9045 #ifdef CONFIG_NUMA_BALANCING 9046 /* Migrate current task p to target_cpu */ 9047 int migrate_task_to(struct task_struct *p, int target_cpu) 9048 { 9049 struct migration_arg arg = { p, target_cpu }; 9050 int curr_cpu = task_cpu(p); 9051 9052 if (curr_cpu == target_cpu) 9053 return 0; 9054 9055 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 9056 return -EINVAL; 9057 9058 /* TODO: This is not properly updating schedstats */ 9059 9060 trace_sched_move_numa(p, curr_cpu, target_cpu); 9061 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 9062 } 9063 9064 /* 9065 * Requeue a task on a given node and accurately track the number of NUMA 9066 * tasks on the runqueues 9067 */ 9068 void sched_setnuma(struct task_struct *p, int nid) 9069 { 9070 bool queued, running; 9071 struct rq_flags rf; 9072 struct rq *rq; 9073 9074 rq = task_rq_lock(p, &rf); 9075 queued = task_on_rq_queued(p); 9076 running = task_current(rq, p); 9077 9078 if (queued) 9079 dequeue_task(rq, p, DEQUEUE_SAVE); 9080 if (running) 9081 put_prev_task(rq, p); 9082 9083 p->numa_preferred_nid = nid; 9084 9085 if (queued) 9086 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 9087 if (running) 9088 set_next_task(rq, p); 9089 task_rq_unlock(rq, p, &rf); 9090 } 9091 #endif /* CONFIG_NUMA_BALANCING */ 9092 9093 #ifdef CONFIG_HOTPLUG_CPU 9094 /* 9095 * Ensure that the idle task is using init_mm right before its CPU goes 9096 * offline. 9097 */ 9098 void idle_task_exit(void) 9099 { 9100 struct mm_struct *mm = current->active_mm; 9101 9102 BUG_ON(cpu_online(smp_processor_id())); 9103 BUG_ON(current != this_rq()->idle); 9104 9105 if (mm != &init_mm) { 9106 switch_mm(mm, &init_mm, current); 9107 finish_arch_post_lock_switch(); 9108 } 9109 9110 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 9111 } 9112 9113 static int __balance_push_cpu_stop(void *arg) 9114 { 9115 struct task_struct *p = arg; 9116 struct rq *rq = this_rq(); 9117 struct rq_flags rf; 9118 int cpu; 9119 9120 raw_spin_lock_irq(&p->pi_lock); 9121 rq_lock(rq, &rf); 9122 9123 update_rq_clock(rq); 9124 9125 if (task_rq(p) == rq && task_on_rq_queued(p)) { 9126 cpu = select_fallback_rq(rq->cpu, p); 9127 rq = __migrate_task(rq, &rf, p, cpu); 9128 } 9129 9130 rq_unlock(rq, &rf); 9131 raw_spin_unlock_irq(&p->pi_lock); 9132 9133 put_task_struct(p); 9134 9135 return 0; 9136 } 9137 9138 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 9139 9140 /* 9141 * Ensure we only run per-cpu kthreads once the CPU goes !active. 9142 * 9143 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 9144 * effective when the hotplug motion is down. 9145 */ 9146 static void balance_push(struct rq *rq) 9147 { 9148 struct task_struct *push_task = rq->curr; 9149 9150 lockdep_assert_rq_held(rq); 9151 9152 /* 9153 * Ensure the thing is persistent until balance_push_set(.on = false); 9154 */ 9155 rq->balance_callback = &balance_push_callback; 9156 9157 /* 9158 * Only active while going offline and when invoked on the outgoing 9159 * CPU. 9160 */ 9161 if (!cpu_dying(rq->cpu) || rq != this_rq()) 9162 return; 9163 9164 /* 9165 * Both the cpu-hotplug and stop task are in this case and are 9166 * required to complete the hotplug process. 9167 */ 9168 if (kthread_is_per_cpu(push_task) || 9169 is_migration_disabled(push_task)) { 9170 9171 /* 9172 * If this is the idle task on the outgoing CPU try to wake 9173 * up the hotplug control thread which might wait for the 9174 * last task to vanish. The rcuwait_active() check is 9175 * accurate here because the waiter is pinned on this CPU 9176 * and can't obviously be running in parallel. 9177 * 9178 * On RT kernels this also has to check whether there are 9179 * pinned and scheduled out tasks on the runqueue. They 9180 * need to leave the migrate disabled section first. 9181 */ 9182 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 9183 rcuwait_active(&rq->hotplug_wait)) { 9184 raw_spin_rq_unlock(rq); 9185 rcuwait_wake_up(&rq->hotplug_wait); 9186 raw_spin_rq_lock(rq); 9187 } 9188 return; 9189 } 9190 9191 get_task_struct(push_task); 9192 /* 9193 * Temporarily drop rq->lock such that we can wake-up the stop task. 9194 * Both preemption and IRQs are still disabled. 9195 */ 9196 raw_spin_rq_unlock(rq); 9197 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 9198 this_cpu_ptr(&push_work)); 9199 /* 9200 * At this point need_resched() is true and we'll take the loop in 9201 * schedule(). The next pick is obviously going to be the stop task 9202 * which kthread_is_per_cpu() and will push this task away. 9203 */ 9204 raw_spin_rq_lock(rq); 9205 } 9206 9207 static void balance_push_set(int cpu, bool on) 9208 { 9209 struct rq *rq = cpu_rq(cpu); 9210 struct rq_flags rf; 9211 9212 rq_lock_irqsave(rq, &rf); 9213 if (on) { 9214 WARN_ON_ONCE(rq->balance_callback); 9215 rq->balance_callback = &balance_push_callback; 9216 } else if (rq->balance_callback == &balance_push_callback) { 9217 rq->balance_callback = NULL; 9218 } 9219 rq_unlock_irqrestore(rq, &rf); 9220 } 9221 9222 /* 9223 * Invoked from a CPUs hotplug control thread after the CPU has been marked 9224 * inactive. All tasks which are not per CPU kernel threads are either 9225 * pushed off this CPU now via balance_push() or placed on a different CPU 9226 * during wakeup. Wait until the CPU is quiescent. 9227 */ 9228 static void balance_hotplug_wait(void) 9229 { 9230 struct rq *rq = this_rq(); 9231 9232 rcuwait_wait_event(&rq->hotplug_wait, 9233 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 9234 TASK_UNINTERRUPTIBLE); 9235 } 9236 9237 #else 9238 9239 static inline void balance_push(struct rq *rq) 9240 { 9241 } 9242 9243 static inline void balance_push_set(int cpu, bool on) 9244 { 9245 } 9246 9247 static inline void balance_hotplug_wait(void) 9248 { 9249 } 9250 9251 #endif /* CONFIG_HOTPLUG_CPU */ 9252 9253 void set_rq_online(struct rq *rq) 9254 { 9255 if (!rq->online) { 9256 const struct sched_class *class; 9257 9258 cpumask_set_cpu(rq->cpu, rq->rd->online); 9259 rq->online = 1; 9260 9261 for_each_class(class) { 9262 if (class->rq_online) 9263 class->rq_online(rq); 9264 } 9265 } 9266 } 9267 9268 void set_rq_offline(struct rq *rq) 9269 { 9270 if (rq->online) { 9271 const struct sched_class *class; 9272 9273 for_each_class(class) { 9274 if (class->rq_offline) 9275 class->rq_offline(rq); 9276 } 9277 9278 cpumask_clear_cpu(rq->cpu, rq->rd->online); 9279 rq->online = 0; 9280 } 9281 } 9282 9283 /* 9284 * used to mark begin/end of suspend/resume: 9285 */ 9286 static int num_cpus_frozen; 9287 9288 /* 9289 * Update cpusets according to cpu_active mask. If cpusets are 9290 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 9291 * around partition_sched_domains(). 9292 * 9293 * If we come here as part of a suspend/resume, don't touch cpusets because we 9294 * want to restore it back to its original state upon resume anyway. 9295 */ 9296 static void cpuset_cpu_active(void) 9297 { 9298 if (cpuhp_tasks_frozen) { 9299 /* 9300 * num_cpus_frozen tracks how many CPUs are involved in suspend 9301 * resume sequence. As long as this is not the last online 9302 * operation in the resume sequence, just build a single sched 9303 * domain, ignoring cpusets. 9304 */ 9305 partition_sched_domains(1, NULL, NULL); 9306 if (--num_cpus_frozen) 9307 return; 9308 /* 9309 * This is the last CPU online operation. So fall through and 9310 * restore the original sched domains by considering the 9311 * cpuset configurations. 9312 */ 9313 cpuset_force_rebuild(); 9314 } 9315 cpuset_update_active_cpus(); 9316 } 9317 9318 static int cpuset_cpu_inactive(unsigned int cpu) 9319 { 9320 if (!cpuhp_tasks_frozen) { 9321 int ret = dl_cpu_busy(cpu, NULL); 9322 9323 if (ret) 9324 return ret; 9325 cpuset_update_active_cpus(); 9326 } else { 9327 num_cpus_frozen++; 9328 partition_sched_domains(1, NULL, NULL); 9329 } 9330 return 0; 9331 } 9332 9333 int sched_cpu_activate(unsigned int cpu) 9334 { 9335 struct rq *rq = cpu_rq(cpu); 9336 struct rq_flags rf; 9337 9338 /* 9339 * Clear the balance_push callback and prepare to schedule 9340 * regular tasks. 9341 */ 9342 balance_push_set(cpu, false); 9343 9344 #ifdef CONFIG_SCHED_SMT 9345 /* 9346 * When going up, increment the number of cores with SMT present. 9347 */ 9348 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9349 static_branch_inc_cpuslocked(&sched_smt_present); 9350 #endif 9351 set_cpu_active(cpu, true); 9352 9353 if (sched_smp_initialized) { 9354 sched_update_numa(cpu, true); 9355 sched_domains_numa_masks_set(cpu); 9356 cpuset_cpu_active(); 9357 } 9358 9359 /* 9360 * Put the rq online, if not already. This happens: 9361 * 9362 * 1) In the early boot process, because we build the real domains 9363 * after all CPUs have been brought up. 9364 * 9365 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 9366 * domains. 9367 */ 9368 rq_lock_irqsave(rq, &rf); 9369 if (rq->rd) { 9370 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9371 set_rq_online(rq); 9372 } 9373 rq_unlock_irqrestore(rq, &rf); 9374 9375 return 0; 9376 } 9377 9378 int sched_cpu_deactivate(unsigned int cpu) 9379 { 9380 struct rq *rq = cpu_rq(cpu); 9381 struct rq_flags rf; 9382 int ret; 9383 9384 /* 9385 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 9386 * load balancing when not active 9387 */ 9388 nohz_balance_exit_idle(rq); 9389 9390 set_cpu_active(cpu, false); 9391 9392 /* 9393 * From this point forward, this CPU will refuse to run any task that 9394 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 9395 * push those tasks away until this gets cleared, see 9396 * sched_cpu_dying(). 9397 */ 9398 balance_push_set(cpu, true); 9399 9400 /* 9401 * We've cleared cpu_active_mask / set balance_push, wait for all 9402 * preempt-disabled and RCU users of this state to go away such that 9403 * all new such users will observe it. 9404 * 9405 * Specifically, we rely on ttwu to no longer target this CPU, see 9406 * ttwu_queue_cond() and is_cpu_allowed(). 9407 * 9408 * Do sync before park smpboot threads to take care the rcu boost case. 9409 */ 9410 synchronize_rcu(); 9411 9412 rq_lock_irqsave(rq, &rf); 9413 if (rq->rd) { 9414 update_rq_clock(rq); 9415 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9416 set_rq_offline(rq); 9417 } 9418 rq_unlock_irqrestore(rq, &rf); 9419 9420 #ifdef CONFIG_SCHED_SMT 9421 /* 9422 * When going down, decrement the number of cores with SMT present. 9423 */ 9424 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9425 static_branch_dec_cpuslocked(&sched_smt_present); 9426 9427 sched_core_cpu_deactivate(cpu); 9428 #endif 9429 9430 if (!sched_smp_initialized) 9431 return 0; 9432 9433 sched_update_numa(cpu, false); 9434 ret = cpuset_cpu_inactive(cpu); 9435 if (ret) { 9436 balance_push_set(cpu, false); 9437 set_cpu_active(cpu, true); 9438 sched_update_numa(cpu, true); 9439 return ret; 9440 } 9441 sched_domains_numa_masks_clear(cpu); 9442 return 0; 9443 } 9444 9445 static void sched_rq_cpu_starting(unsigned int cpu) 9446 { 9447 struct rq *rq = cpu_rq(cpu); 9448 9449 rq->calc_load_update = calc_load_update; 9450 update_max_interval(); 9451 } 9452 9453 int sched_cpu_starting(unsigned int cpu) 9454 { 9455 sched_core_cpu_starting(cpu); 9456 sched_rq_cpu_starting(cpu); 9457 sched_tick_start(cpu); 9458 return 0; 9459 } 9460 9461 #ifdef CONFIG_HOTPLUG_CPU 9462 9463 /* 9464 * Invoked immediately before the stopper thread is invoked to bring the 9465 * CPU down completely. At this point all per CPU kthreads except the 9466 * hotplug thread (current) and the stopper thread (inactive) have been 9467 * either parked or have been unbound from the outgoing CPU. Ensure that 9468 * any of those which might be on the way out are gone. 9469 * 9470 * If after this point a bound task is being woken on this CPU then the 9471 * responsible hotplug callback has failed to do it's job. 9472 * sched_cpu_dying() will catch it with the appropriate fireworks. 9473 */ 9474 int sched_cpu_wait_empty(unsigned int cpu) 9475 { 9476 balance_hotplug_wait(); 9477 return 0; 9478 } 9479 9480 /* 9481 * Since this CPU is going 'away' for a while, fold any nr_active delta we 9482 * might have. Called from the CPU stopper task after ensuring that the 9483 * stopper is the last running task on the CPU, so nr_active count is 9484 * stable. We need to take the teardown thread which is calling this into 9485 * account, so we hand in adjust = 1 to the load calculation. 9486 * 9487 * Also see the comment "Global load-average calculations". 9488 */ 9489 static void calc_load_migrate(struct rq *rq) 9490 { 9491 long delta = calc_load_fold_active(rq, 1); 9492 9493 if (delta) 9494 atomic_long_add(delta, &calc_load_tasks); 9495 } 9496 9497 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 9498 { 9499 struct task_struct *g, *p; 9500 int cpu = cpu_of(rq); 9501 9502 lockdep_assert_rq_held(rq); 9503 9504 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 9505 for_each_process_thread(g, p) { 9506 if (task_cpu(p) != cpu) 9507 continue; 9508 9509 if (!task_on_rq_queued(p)) 9510 continue; 9511 9512 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 9513 } 9514 } 9515 9516 int sched_cpu_dying(unsigned int cpu) 9517 { 9518 struct rq *rq = cpu_rq(cpu); 9519 struct rq_flags rf; 9520 9521 /* Handle pending wakeups and then migrate everything off */ 9522 sched_tick_stop(cpu); 9523 9524 rq_lock_irqsave(rq, &rf); 9525 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 9526 WARN(true, "Dying CPU not properly vacated!"); 9527 dump_rq_tasks(rq, KERN_WARNING); 9528 } 9529 rq_unlock_irqrestore(rq, &rf); 9530 9531 calc_load_migrate(rq); 9532 update_max_interval(); 9533 hrtick_clear(rq); 9534 sched_core_cpu_dying(cpu); 9535 return 0; 9536 } 9537 #endif 9538 9539 void __init sched_init_smp(void) 9540 { 9541 sched_init_numa(NUMA_NO_NODE); 9542 9543 /* 9544 * There's no userspace yet to cause hotplug operations; hence all the 9545 * CPU masks are stable and all blatant races in the below code cannot 9546 * happen. 9547 */ 9548 mutex_lock(&sched_domains_mutex); 9549 sched_init_domains(cpu_active_mask); 9550 mutex_unlock(&sched_domains_mutex); 9551 9552 /* Move init over to a non-isolated CPU */ 9553 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 9554 BUG(); 9555 current->flags &= ~PF_NO_SETAFFINITY; 9556 sched_init_granularity(); 9557 9558 init_sched_rt_class(); 9559 init_sched_dl_class(); 9560 9561 sched_smp_initialized = true; 9562 } 9563 9564 static int __init migration_init(void) 9565 { 9566 sched_cpu_starting(smp_processor_id()); 9567 return 0; 9568 } 9569 early_initcall(migration_init); 9570 9571 #else 9572 void __init sched_init_smp(void) 9573 { 9574 sched_init_granularity(); 9575 } 9576 #endif /* CONFIG_SMP */ 9577 9578 int in_sched_functions(unsigned long addr) 9579 { 9580 return in_lock_functions(addr) || 9581 (addr >= (unsigned long)__sched_text_start 9582 && addr < (unsigned long)__sched_text_end); 9583 } 9584 9585 #ifdef CONFIG_CGROUP_SCHED 9586 /* 9587 * Default task group. 9588 * Every task in system belongs to this group at bootup. 9589 */ 9590 struct task_group root_task_group; 9591 LIST_HEAD(task_groups); 9592 9593 /* Cacheline aligned slab cache for task_group */ 9594 static struct kmem_cache *task_group_cache __read_mostly; 9595 #endif 9596 9597 void __init sched_init(void) 9598 { 9599 unsigned long ptr = 0; 9600 int i; 9601 9602 /* Make sure the linker didn't screw up */ 9603 BUG_ON(&idle_sched_class != &fair_sched_class + 1 || 9604 &fair_sched_class != &rt_sched_class + 1 || 9605 &rt_sched_class != &dl_sched_class + 1); 9606 #ifdef CONFIG_SMP 9607 BUG_ON(&dl_sched_class != &stop_sched_class + 1); 9608 #endif 9609 9610 wait_bit_init(); 9611 9612 #ifdef CONFIG_FAIR_GROUP_SCHED 9613 ptr += 2 * nr_cpu_ids * sizeof(void **); 9614 #endif 9615 #ifdef CONFIG_RT_GROUP_SCHED 9616 ptr += 2 * nr_cpu_ids * sizeof(void **); 9617 #endif 9618 if (ptr) { 9619 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 9620 9621 #ifdef CONFIG_FAIR_GROUP_SCHED 9622 root_task_group.se = (struct sched_entity **)ptr; 9623 ptr += nr_cpu_ids * sizeof(void **); 9624 9625 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 9626 ptr += nr_cpu_ids * sizeof(void **); 9627 9628 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 9629 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 9630 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9631 #ifdef CONFIG_RT_GROUP_SCHED 9632 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 9633 ptr += nr_cpu_ids * sizeof(void **); 9634 9635 root_task_group.rt_rq = (struct rt_rq **)ptr; 9636 ptr += nr_cpu_ids * sizeof(void **); 9637 9638 #endif /* CONFIG_RT_GROUP_SCHED */ 9639 } 9640 9641 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 9642 9643 #ifdef CONFIG_SMP 9644 init_defrootdomain(); 9645 #endif 9646 9647 #ifdef CONFIG_RT_GROUP_SCHED 9648 init_rt_bandwidth(&root_task_group.rt_bandwidth, 9649 global_rt_period(), global_rt_runtime()); 9650 #endif /* CONFIG_RT_GROUP_SCHED */ 9651 9652 #ifdef CONFIG_CGROUP_SCHED 9653 task_group_cache = KMEM_CACHE(task_group, 0); 9654 9655 list_add(&root_task_group.list, &task_groups); 9656 INIT_LIST_HEAD(&root_task_group.children); 9657 INIT_LIST_HEAD(&root_task_group.siblings); 9658 autogroup_init(&init_task); 9659 #endif /* CONFIG_CGROUP_SCHED */ 9660 9661 for_each_possible_cpu(i) { 9662 struct rq *rq; 9663 9664 rq = cpu_rq(i); 9665 raw_spin_lock_init(&rq->__lock); 9666 rq->nr_running = 0; 9667 rq->calc_load_active = 0; 9668 rq->calc_load_update = jiffies + LOAD_FREQ; 9669 init_cfs_rq(&rq->cfs); 9670 init_rt_rq(&rq->rt); 9671 init_dl_rq(&rq->dl); 9672 #ifdef CONFIG_FAIR_GROUP_SCHED 9673 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 9674 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 9675 /* 9676 * How much CPU bandwidth does root_task_group get? 9677 * 9678 * In case of task-groups formed thr' the cgroup filesystem, it 9679 * gets 100% of the CPU resources in the system. This overall 9680 * system CPU resource is divided among the tasks of 9681 * root_task_group and its child task-groups in a fair manner, 9682 * based on each entity's (task or task-group's) weight 9683 * (se->load.weight). 9684 * 9685 * In other words, if root_task_group has 10 tasks of weight 9686 * 1024) and two child groups A0 and A1 (of weight 1024 each), 9687 * then A0's share of the CPU resource is: 9688 * 9689 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 9690 * 9691 * We achieve this by letting root_task_group's tasks sit 9692 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 9693 */ 9694 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 9695 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9696 9697 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 9698 #ifdef CONFIG_RT_GROUP_SCHED 9699 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 9700 #endif 9701 #ifdef CONFIG_SMP 9702 rq->sd = NULL; 9703 rq->rd = NULL; 9704 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 9705 rq->balance_callback = &balance_push_callback; 9706 rq->active_balance = 0; 9707 rq->next_balance = jiffies; 9708 rq->push_cpu = 0; 9709 rq->cpu = i; 9710 rq->online = 0; 9711 rq->idle_stamp = 0; 9712 rq->avg_idle = 2*sysctl_sched_migration_cost; 9713 rq->wake_stamp = jiffies; 9714 rq->wake_avg_idle = rq->avg_idle; 9715 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 9716 9717 INIT_LIST_HEAD(&rq->cfs_tasks); 9718 9719 rq_attach_root(rq, &def_root_domain); 9720 #ifdef CONFIG_NO_HZ_COMMON 9721 rq->last_blocked_load_update_tick = jiffies; 9722 atomic_set(&rq->nohz_flags, 0); 9723 9724 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 9725 #endif 9726 #ifdef CONFIG_HOTPLUG_CPU 9727 rcuwait_init(&rq->hotplug_wait); 9728 #endif 9729 #endif /* CONFIG_SMP */ 9730 hrtick_rq_init(rq); 9731 atomic_set(&rq->nr_iowait, 0); 9732 9733 #ifdef CONFIG_SCHED_CORE 9734 rq->core = rq; 9735 rq->core_pick = NULL; 9736 rq->core_enabled = 0; 9737 rq->core_tree = RB_ROOT; 9738 rq->core_forceidle_count = 0; 9739 rq->core_forceidle_occupation = 0; 9740 rq->core_forceidle_start = 0; 9741 9742 rq->core_cookie = 0UL; 9743 #endif 9744 } 9745 9746 set_load_weight(&init_task, false); 9747 9748 /* 9749 * The boot idle thread does lazy MMU switching as well: 9750 */ 9751 mmgrab(&init_mm); 9752 enter_lazy_tlb(&init_mm, current); 9753 9754 /* 9755 * The idle task doesn't need the kthread struct to function, but it 9756 * is dressed up as a per-CPU kthread and thus needs to play the part 9757 * if we want to avoid special-casing it in code that deals with per-CPU 9758 * kthreads. 9759 */ 9760 WARN_ON(!set_kthread_struct(current)); 9761 9762 /* 9763 * Make us the idle thread. Technically, schedule() should not be 9764 * called from this thread, however somewhere below it might be, 9765 * but because we are the idle thread, we just pick up running again 9766 * when this runqueue becomes "idle". 9767 */ 9768 init_idle(current, smp_processor_id()); 9769 9770 calc_load_update = jiffies + LOAD_FREQ; 9771 9772 #ifdef CONFIG_SMP 9773 idle_thread_set_boot_cpu(); 9774 balance_push_set(smp_processor_id(), false); 9775 #endif 9776 init_sched_fair_class(); 9777 9778 psi_init(); 9779 9780 init_uclamp(); 9781 9782 preempt_dynamic_init(); 9783 9784 scheduler_running = 1; 9785 } 9786 9787 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 9788 9789 void __might_sleep(const char *file, int line) 9790 { 9791 unsigned int state = get_current_state(); 9792 /* 9793 * Blocking primitives will set (and therefore destroy) current->state, 9794 * since we will exit with TASK_RUNNING make sure we enter with it, 9795 * otherwise we will destroy state. 9796 */ 9797 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 9798 "do not call blocking ops when !TASK_RUNNING; " 9799 "state=%x set at [<%p>] %pS\n", state, 9800 (void *)current->task_state_change, 9801 (void *)current->task_state_change); 9802 9803 __might_resched(file, line, 0); 9804 } 9805 EXPORT_SYMBOL(__might_sleep); 9806 9807 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 9808 { 9809 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 9810 return; 9811 9812 if (preempt_count() == preempt_offset) 9813 return; 9814 9815 pr_err("Preemption disabled at:"); 9816 print_ip_sym(KERN_ERR, ip); 9817 } 9818 9819 static inline bool resched_offsets_ok(unsigned int offsets) 9820 { 9821 unsigned int nested = preempt_count(); 9822 9823 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 9824 9825 return nested == offsets; 9826 } 9827 9828 void __might_resched(const char *file, int line, unsigned int offsets) 9829 { 9830 /* Ratelimiting timestamp: */ 9831 static unsigned long prev_jiffy; 9832 9833 unsigned long preempt_disable_ip; 9834 9835 /* WARN_ON_ONCE() by default, no rate limit required: */ 9836 rcu_sleep_check(); 9837 9838 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 9839 !is_idle_task(current) && !current->non_block_count) || 9840 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 9841 oops_in_progress) 9842 return; 9843 9844 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9845 return; 9846 prev_jiffy = jiffies; 9847 9848 /* Save this before calling printk(), since that will clobber it: */ 9849 preempt_disable_ip = get_preempt_disable_ip(current); 9850 9851 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 9852 file, line); 9853 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 9854 in_atomic(), irqs_disabled(), current->non_block_count, 9855 current->pid, current->comm); 9856 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 9857 offsets & MIGHT_RESCHED_PREEMPT_MASK); 9858 9859 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 9860 pr_err("RCU nest depth: %d, expected: %u\n", 9861 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 9862 } 9863 9864 if (task_stack_end_corrupted(current)) 9865 pr_emerg("Thread overran stack, or stack corrupted\n"); 9866 9867 debug_show_held_locks(current); 9868 if (irqs_disabled()) 9869 print_irqtrace_events(current); 9870 9871 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 9872 preempt_disable_ip); 9873 9874 dump_stack(); 9875 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9876 } 9877 EXPORT_SYMBOL(__might_resched); 9878 9879 void __cant_sleep(const char *file, int line, int preempt_offset) 9880 { 9881 static unsigned long prev_jiffy; 9882 9883 if (irqs_disabled()) 9884 return; 9885 9886 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9887 return; 9888 9889 if (preempt_count() > preempt_offset) 9890 return; 9891 9892 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9893 return; 9894 prev_jiffy = jiffies; 9895 9896 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 9897 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 9898 in_atomic(), irqs_disabled(), 9899 current->pid, current->comm); 9900 9901 debug_show_held_locks(current); 9902 dump_stack(); 9903 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9904 } 9905 EXPORT_SYMBOL_GPL(__cant_sleep); 9906 9907 #ifdef CONFIG_SMP 9908 void __cant_migrate(const char *file, int line) 9909 { 9910 static unsigned long prev_jiffy; 9911 9912 if (irqs_disabled()) 9913 return; 9914 9915 if (is_migration_disabled(current)) 9916 return; 9917 9918 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9919 return; 9920 9921 if (preempt_count() > 0) 9922 return; 9923 9924 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9925 return; 9926 prev_jiffy = jiffies; 9927 9928 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 9929 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 9930 in_atomic(), irqs_disabled(), is_migration_disabled(current), 9931 current->pid, current->comm); 9932 9933 debug_show_held_locks(current); 9934 dump_stack(); 9935 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9936 } 9937 EXPORT_SYMBOL_GPL(__cant_migrate); 9938 #endif 9939 #endif 9940 9941 #ifdef CONFIG_MAGIC_SYSRQ 9942 void normalize_rt_tasks(void) 9943 { 9944 struct task_struct *g, *p; 9945 struct sched_attr attr = { 9946 .sched_policy = SCHED_NORMAL, 9947 }; 9948 9949 read_lock(&tasklist_lock); 9950 for_each_process_thread(g, p) { 9951 /* 9952 * Only normalize user tasks: 9953 */ 9954 if (p->flags & PF_KTHREAD) 9955 continue; 9956 9957 p->se.exec_start = 0; 9958 schedstat_set(p->stats.wait_start, 0); 9959 schedstat_set(p->stats.sleep_start, 0); 9960 schedstat_set(p->stats.block_start, 0); 9961 9962 if (!dl_task(p) && !rt_task(p)) { 9963 /* 9964 * Renice negative nice level userspace 9965 * tasks back to 0: 9966 */ 9967 if (task_nice(p) < 0) 9968 set_user_nice(p, 0); 9969 continue; 9970 } 9971 9972 __sched_setscheduler(p, &attr, false, false); 9973 } 9974 read_unlock(&tasklist_lock); 9975 } 9976 9977 #endif /* CONFIG_MAGIC_SYSRQ */ 9978 9979 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 9980 /* 9981 * These functions are only useful for the IA64 MCA handling, or kdb. 9982 * 9983 * They can only be called when the whole system has been 9984 * stopped - every CPU needs to be quiescent, and no scheduling 9985 * activity can take place. Using them for anything else would 9986 * be a serious bug, and as a result, they aren't even visible 9987 * under any other configuration. 9988 */ 9989 9990 /** 9991 * curr_task - return the current task for a given CPU. 9992 * @cpu: the processor in question. 9993 * 9994 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 9995 * 9996 * Return: The current task for @cpu. 9997 */ 9998 struct task_struct *curr_task(int cpu) 9999 { 10000 return cpu_curr(cpu); 10001 } 10002 10003 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 10004 10005 #ifdef CONFIG_IA64 10006 /** 10007 * ia64_set_curr_task - set the current task for a given CPU. 10008 * @cpu: the processor in question. 10009 * @p: the task pointer to set. 10010 * 10011 * Description: This function must only be used when non-maskable interrupts 10012 * are serviced on a separate stack. It allows the architecture to switch the 10013 * notion of the current task on a CPU in a non-blocking manner. This function 10014 * must be called with all CPU's synchronized, and interrupts disabled, the 10015 * and caller must save the original value of the current task (see 10016 * curr_task() above) and restore that value before reenabling interrupts and 10017 * re-starting the system. 10018 * 10019 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10020 */ 10021 void ia64_set_curr_task(int cpu, struct task_struct *p) 10022 { 10023 cpu_curr(cpu) = p; 10024 } 10025 10026 #endif 10027 10028 #ifdef CONFIG_CGROUP_SCHED 10029 /* task_group_lock serializes the addition/removal of task groups */ 10030 static DEFINE_SPINLOCK(task_group_lock); 10031 10032 static inline void alloc_uclamp_sched_group(struct task_group *tg, 10033 struct task_group *parent) 10034 { 10035 #ifdef CONFIG_UCLAMP_TASK_GROUP 10036 enum uclamp_id clamp_id; 10037 10038 for_each_clamp_id(clamp_id) { 10039 uclamp_se_set(&tg->uclamp_req[clamp_id], 10040 uclamp_none(clamp_id), false); 10041 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 10042 } 10043 #endif 10044 } 10045 10046 static void sched_free_group(struct task_group *tg) 10047 { 10048 free_fair_sched_group(tg); 10049 free_rt_sched_group(tg); 10050 autogroup_free(tg); 10051 kmem_cache_free(task_group_cache, tg); 10052 } 10053 10054 static void sched_free_group_rcu(struct rcu_head *rcu) 10055 { 10056 sched_free_group(container_of(rcu, struct task_group, rcu)); 10057 } 10058 10059 static void sched_unregister_group(struct task_group *tg) 10060 { 10061 unregister_fair_sched_group(tg); 10062 unregister_rt_sched_group(tg); 10063 /* 10064 * We have to wait for yet another RCU grace period to expire, as 10065 * print_cfs_stats() might run concurrently. 10066 */ 10067 call_rcu(&tg->rcu, sched_free_group_rcu); 10068 } 10069 10070 /* allocate runqueue etc for a new task group */ 10071 struct task_group *sched_create_group(struct task_group *parent) 10072 { 10073 struct task_group *tg; 10074 10075 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 10076 if (!tg) 10077 return ERR_PTR(-ENOMEM); 10078 10079 if (!alloc_fair_sched_group(tg, parent)) 10080 goto err; 10081 10082 if (!alloc_rt_sched_group(tg, parent)) 10083 goto err; 10084 10085 alloc_uclamp_sched_group(tg, parent); 10086 10087 return tg; 10088 10089 err: 10090 sched_free_group(tg); 10091 return ERR_PTR(-ENOMEM); 10092 } 10093 10094 void sched_online_group(struct task_group *tg, struct task_group *parent) 10095 { 10096 unsigned long flags; 10097 10098 spin_lock_irqsave(&task_group_lock, flags); 10099 list_add_rcu(&tg->list, &task_groups); 10100 10101 /* Root should already exist: */ 10102 WARN_ON(!parent); 10103 10104 tg->parent = parent; 10105 INIT_LIST_HEAD(&tg->children); 10106 list_add_rcu(&tg->siblings, &parent->children); 10107 spin_unlock_irqrestore(&task_group_lock, flags); 10108 10109 online_fair_sched_group(tg); 10110 } 10111 10112 /* rcu callback to free various structures associated with a task group */ 10113 static void sched_unregister_group_rcu(struct rcu_head *rhp) 10114 { 10115 /* Now it should be safe to free those cfs_rqs: */ 10116 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 10117 } 10118 10119 void sched_destroy_group(struct task_group *tg) 10120 { 10121 /* Wait for possible concurrent references to cfs_rqs complete: */ 10122 call_rcu(&tg->rcu, sched_unregister_group_rcu); 10123 } 10124 10125 void sched_release_group(struct task_group *tg) 10126 { 10127 unsigned long flags; 10128 10129 /* 10130 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 10131 * sched_cfs_period_timer()). 10132 * 10133 * For this to be effective, we have to wait for all pending users of 10134 * this task group to leave their RCU critical section to ensure no new 10135 * user will see our dying task group any more. Specifically ensure 10136 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 10137 * 10138 * We therefore defer calling unregister_fair_sched_group() to 10139 * sched_unregister_group() which is guarantied to get called only after the 10140 * current RCU grace period has expired. 10141 */ 10142 spin_lock_irqsave(&task_group_lock, flags); 10143 list_del_rcu(&tg->list); 10144 list_del_rcu(&tg->siblings); 10145 spin_unlock_irqrestore(&task_group_lock, flags); 10146 } 10147 10148 static void sched_change_group(struct task_struct *tsk) 10149 { 10150 struct task_group *tg; 10151 10152 /* 10153 * All callers are synchronized by task_rq_lock(); we do not use RCU 10154 * which is pointless here. Thus, we pass "true" to task_css_check() 10155 * to prevent lockdep warnings. 10156 */ 10157 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 10158 struct task_group, css); 10159 tg = autogroup_task_group(tsk, tg); 10160 tsk->sched_task_group = tg; 10161 10162 #ifdef CONFIG_FAIR_GROUP_SCHED 10163 if (tsk->sched_class->task_change_group) 10164 tsk->sched_class->task_change_group(tsk); 10165 else 10166 #endif 10167 set_task_rq(tsk, task_cpu(tsk)); 10168 } 10169 10170 /* 10171 * Change task's runqueue when it moves between groups. 10172 * 10173 * The caller of this function should have put the task in its new group by 10174 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 10175 * its new group. 10176 */ 10177 void sched_move_task(struct task_struct *tsk) 10178 { 10179 int queued, running, queue_flags = 10180 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 10181 struct rq_flags rf; 10182 struct rq *rq; 10183 10184 rq = task_rq_lock(tsk, &rf); 10185 update_rq_clock(rq); 10186 10187 running = task_current(rq, tsk); 10188 queued = task_on_rq_queued(tsk); 10189 10190 if (queued) 10191 dequeue_task(rq, tsk, queue_flags); 10192 if (running) 10193 put_prev_task(rq, tsk); 10194 10195 sched_change_group(tsk); 10196 10197 if (queued) 10198 enqueue_task(rq, tsk, queue_flags); 10199 if (running) { 10200 set_next_task(rq, tsk); 10201 /* 10202 * After changing group, the running task may have joined a 10203 * throttled one but it's still the running task. Trigger a 10204 * resched to make sure that task can still run. 10205 */ 10206 resched_curr(rq); 10207 } 10208 10209 task_rq_unlock(rq, tsk, &rf); 10210 } 10211 10212 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 10213 { 10214 return css ? container_of(css, struct task_group, css) : NULL; 10215 } 10216 10217 static struct cgroup_subsys_state * 10218 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10219 { 10220 struct task_group *parent = css_tg(parent_css); 10221 struct task_group *tg; 10222 10223 if (!parent) { 10224 /* This is early initialization for the top cgroup */ 10225 return &root_task_group.css; 10226 } 10227 10228 tg = sched_create_group(parent); 10229 if (IS_ERR(tg)) 10230 return ERR_PTR(-ENOMEM); 10231 10232 return &tg->css; 10233 } 10234 10235 /* Expose task group only after completing cgroup initialization */ 10236 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 10237 { 10238 struct task_group *tg = css_tg(css); 10239 struct task_group *parent = css_tg(css->parent); 10240 10241 if (parent) 10242 sched_online_group(tg, parent); 10243 10244 #ifdef CONFIG_UCLAMP_TASK_GROUP 10245 /* Propagate the effective uclamp value for the new group */ 10246 mutex_lock(&uclamp_mutex); 10247 rcu_read_lock(); 10248 cpu_util_update_eff(css); 10249 rcu_read_unlock(); 10250 mutex_unlock(&uclamp_mutex); 10251 #endif 10252 10253 return 0; 10254 } 10255 10256 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 10257 { 10258 struct task_group *tg = css_tg(css); 10259 10260 sched_release_group(tg); 10261 } 10262 10263 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 10264 { 10265 struct task_group *tg = css_tg(css); 10266 10267 /* 10268 * Relies on the RCU grace period between css_released() and this. 10269 */ 10270 sched_unregister_group(tg); 10271 } 10272 10273 #ifdef CONFIG_RT_GROUP_SCHED 10274 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 10275 { 10276 struct task_struct *task; 10277 struct cgroup_subsys_state *css; 10278 10279 cgroup_taskset_for_each(task, css, tset) { 10280 if (!sched_rt_can_attach(css_tg(css), task)) 10281 return -EINVAL; 10282 } 10283 return 0; 10284 } 10285 #endif 10286 10287 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 10288 { 10289 struct task_struct *task; 10290 struct cgroup_subsys_state *css; 10291 10292 cgroup_taskset_for_each(task, css, tset) 10293 sched_move_task(task); 10294 } 10295 10296 #ifdef CONFIG_UCLAMP_TASK_GROUP 10297 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 10298 { 10299 struct cgroup_subsys_state *top_css = css; 10300 struct uclamp_se *uc_parent = NULL; 10301 struct uclamp_se *uc_se = NULL; 10302 unsigned int eff[UCLAMP_CNT]; 10303 enum uclamp_id clamp_id; 10304 unsigned int clamps; 10305 10306 lockdep_assert_held(&uclamp_mutex); 10307 SCHED_WARN_ON(!rcu_read_lock_held()); 10308 10309 css_for_each_descendant_pre(css, top_css) { 10310 uc_parent = css_tg(css)->parent 10311 ? css_tg(css)->parent->uclamp : NULL; 10312 10313 for_each_clamp_id(clamp_id) { 10314 /* Assume effective clamps matches requested clamps */ 10315 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 10316 /* Cap effective clamps with parent's effective clamps */ 10317 if (uc_parent && 10318 eff[clamp_id] > uc_parent[clamp_id].value) { 10319 eff[clamp_id] = uc_parent[clamp_id].value; 10320 } 10321 } 10322 /* Ensure protection is always capped by limit */ 10323 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 10324 10325 /* Propagate most restrictive effective clamps */ 10326 clamps = 0x0; 10327 uc_se = css_tg(css)->uclamp; 10328 for_each_clamp_id(clamp_id) { 10329 if (eff[clamp_id] == uc_se[clamp_id].value) 10330 continue; 10331 uc_se[clamp_id].value = eff[clamp_id]; 10332 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 10333 clamps |= (0x1 << clamp_id); 10334 } 10335 if (!clamps) { 10336 css = css_rightmost_descendant(css); 10337 continue; 10338 } 10339 10340 /* Immediately update descendants RUNNABLE tasks */ 10341 uclamp_update_active_tasks(css); 10342 } 10343 } 10344 10345 /* 10346 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 10347 * C expression. Since there is no way to convert a macro argument (N) into a 10348 * character constant, use two levels of macros. 10349 */ 10350 #define _POW10(exp) ((unsigned int)1e##exp) 10351 #define POW10(exp) _POW10(exp) 10352 10353 struct uclamp_request { 10354 #define UCLAMP_PERCENT_SHIFT 2 10355 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 10356 s64 percent; 10357 u64 util; 10358 int ret; 10359 }; 10360 10361 static inline struct uclamp_request 10362 capacity_from_percent(char *buf) 10363 { 10364 struct uclamp_request req = { 10365 .percent = UCLAMP_PERCENT_SCALE, 10366 .util = SCHED_CAPACITY_SCALE, 10367 .ret = 0, 10368 }; 10369 10370 buf = strim(buf); 10371 if (strcmp(buf, "max")) { 10372 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 10373 &req.percent); 10374 if (req.ret) 10375 return req; 10376 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 10377 req.ret = -ERANGE; 10378 return req; 10379 } 10380 10381 req.util = req.percent << SCHED_CAPACITY_SHIFT; 10382 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 10383 } 10384 10385 return req; 10386 } 10387 10388 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 10389 size_t nbytes, loff_t off, 10390 enum uclamp_id clamp_id) 10391 { 10392 struct uclamp_request req; 10393 struct task_group *tg; 10394 10395 req = capacity_from_percent(buf); 10396 if (req.ret) 10397 return req.ret; 10398 10399 static_branch_enable(&sched_uclamp_used); 10400 10401 mutex_lock(&uclamp_mutex); 10402 rcu_read_lock(); 10403 10404 tg = css_tg(of_css(of)); 10405 if (tg->uclamp_req[clamp_id].value != req.util) 10406 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 10407 10408 /* 10409 * Because of not recoverable conversion rounding we keep track of the 10410 * exact requested value 10411 */ 10412 tg->uclamp_pct[clamp_id] = req.percent; 10413 10414 /* Update effective clamps to track the most restrictive value */ 10415 cpu_util_update_eff(of_css(of)); 10416 10417 rcu_read_unlock(); 10418 mutex_unlock(&uclamp_mutex); 10419 10420 return nbytes; 10421 } 10422 10423 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 10424 char *buf, size_t nbytes, 10425 loff_t off) 10426 { 10427 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 10428 } 10429 10430 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 10431 char *buf, size_t nbytes, 10432 loff_t off) 10433 { 10434 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 10435 } 10436 10437 static inline void cpu_uclamp_print(struct seq_file *sf, 10438 enum uclamp_id clamp_id) 10439 { 10440 struct task_group *tg; 10441 u64 util_clamp; 10442 u64 percent; 10443 u32 rem; 10444 10445 rcu_read_lock(); 10446 tg = css_tg(seq_css(sf)); 10447 util_clamp = tg->uclamp_req[clamp_id].value; 10448 rcu_read_unlock(); 10449 10450 if (util_clamp == SCHED_CAPACITY_SCALE) { 10451 seq_puts(sf, "max\n"); 10452 return; 10453 } 10454 10455 percent = tg->uclamp_pct[clamp_id]; 10456 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 10457 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 10458 } 10459 10460 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 10461 { 10462 cpu_uclamp_print(sf, UCLAMP_MIN); 10463 return 0; 10464 } 10465 10466 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 10467 { 10468 cpu_uclamp_print(sf, UCLAMP_MAX); 10469 return 0; 10470 } 10471 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10472 10473 #ifdef CONFIG_FAIR_GROUP_SCHED 10474 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 10475 struct cftype *cftype, u64 shareval) 10476 { 10477 if (shareval > scale_load_down(ULONG_MAX)) 10478 shareval = MAX_SHARES; 10479 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 10480 } 10481 10482 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 10483 struct cftype *cft) 10484 { 10485 struct task_group *tg = css_tg(css); 10486 10487 return (u64) scale_load_down(tg->shares); 10488 } 10489 10490 #ifdef CONFIG_CFS_BANDWIDTH 10491 static DEFINE_MUTEX(cfs_constraints_mutex); 10492 10493 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 10494 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 10495 /* More than 203 days if BW_SHIFT equals 20. */ 10496 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 10497 10498 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 10499 10500 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 10501 u64 burst) 10502 { 10503 int i, ret = 0, runtime_enabled, runtime_was_enabled; 10504 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10505 10506 if (tg == &root_task_group) 10507 return -EINVAL; 10508 10509 /* 10510 * Ensure we have at some amount of bandwidth every period. This is 10511 * to prevent reaching a state of large arrears when throttled via 10512 * entity_tick() resulting in prolonged exit starvation. 10513 */ 10514 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 10515 return -EINVAL; 10516 10517 /* 10518 * Likewise, bound things on the other side by preventing insane quota 10519 * periods. This also allows us to normalize in computing quota 10520 * feasibility. 10521 */ 10522 if (period > max_cfs_quota_period) 10523 return -EINVAL; 10524 10525 /* 10526 * Bound quota to defend quota against overflow during bandwidth shift. 10527 */ 10528 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 10529 return -EINVAL; 10530 10531 if (quota != RUNTIME_INF && (burst > quota || 10532 burst + quota > max_cfs_runtime)) 10533 return -EINVAL; 10534 10535 /* 10536 * Prevent race between setting of cfs_rq->runtime_enabled and 10537 * unthrottle_offline_cfs_rqs(). 10538 */ 10539 cpus_read_lock(); 10540 mutex_lock(&cfs_constraints_mutex); 10541 ret = __cfs_schedulable(tg, period, quota); 10542 if (ret) 10543 goto out_unlock; 10544 10545 runtime_enabled = quota != RUNTIME_INF; 10546 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 10547 /* 10548 * If we need to toggle cfs_bandwidth_used, off->on must occur 10549 * before making related changes, and on->off must occur afterwards 10550 */ 10551 if (runtime_enabled && !runtime_was_enabled) 10552 cfs_bandwidth_usage_inc(); 10553 raw_spin_lock_irq(&cfs_b->lock); 10554 cfs_b->period = ns_to_ktime(period); 10555 cfs_b->quota = quota; 10556 cfs_b->burst = burst; 10557 10558 __refill_cfs_bandwidth_runtime(cfs_b); 10559 10560 /* Restart the period timer (if active) to handle new period expiry: */ 10561 if (runtime_enabled) 10562 start_cfs_bandwidth(cfs_b); 10563 10564 raw_spin_unlock_irq(&cfs_b->lock); 10565 10566 for_each_online_cpu(i) { 10567 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 10568 struct rq *rq = cfs_rq->rq; 10569 struct rq_flags rf; 10570 10571 rq_lock_irq(rq, &rf); 10572 cfs_rq->runtime_enabled = runtime_enabled; 10573 cfs_rq->runtime_remaining = 0; 10574 10575 if (cfs_rq->throttled) 10576 unthrottle_cfs_rq(cfs_rq); 10577 rq_unlock_irq(rq, &rf); 10578 } 10579 if (runtime_was_enabled && !runtime_enabled) 10580 cfs_bandwidth_usage_dec(); 10581 out_unlock: 10582 mutex_unlock(&cfs_constraints_mutex); 10583 cpus_read_unlock(); 10584 10585 return ret; 10586 } 10587 10588 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 10589 { 10590 u64 quota, period, burst; 10591 10592 period = ktime_to_ns(tg->cfs_bandwidth.period); 10593 burst = tg->cfs_bandwidth.burst; 10594 if (cfs_quota_us < 0) 10595 quota = RUNTIME_INF; 10596 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 10597 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 10598 else 10599 return -EINVAL; 10600 10601 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10602 } 10603 10604 static long tg_get_cfs_quota(struct task_group *tg) 10605 { 10606 u64 quota_us; 10607 10608 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 10609 return -1; 10610 10611 quota_us = tg->cfs_bandwidth.quota; 10612 do_div(quota_us, NSEC_PER_USEC); 10613 10614 return quota_us; 10615 } 10616 10617 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 10618 { 10619 u64 quota, period, burst; 10620 10621 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 10622 return -EINVAL; 10623 10624 period = (u64)cfs_period_us * NSEC_PER_USEC; 10625 quota = tg->cfs_bandwidth.quota; 10626 burst = tg->cfs_bandwidth.burst; 10627 10628 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10629 } 10630 10631 static long tg_get_cfs_period(struct task_group *tg) 10632 { 10633 u64 cfs_period_us; 10634 10635 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 10636 do_div(cfs_period_us, NSEC_PER_USEC); 10637 10638 return cfs_period_us; 10639 } 10640 10641 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 10642 { 10643 u64 quota, period, burst; 10644 10645 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 10646 return -EINVAL; 10647 10648 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 10649 period = ktime_to_ns(tg->cfs_bandwidth.period); 10650 quota = tg->cfs_bandwidth.quota; 10651 10652 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10653 } 10654 10655 static long tg_get_cfs_burst(struct task_group *tg) 10656 { 10657 u64 burst_us; 10658 10659 burst_us = tg->cfs_bandwidth.burst; 10660 do_div(burst_us, NSEC_PER_USEC); 10661 10662 return burst_us; 10663 } 10664 10665 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 10666 struct cftype *cft) 10667 { 10668 return tg_get_cfs_quota(css_tg(css)); 10669 } 10670 10671 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 10672 struct cftype *cftype, s64 cfs_quota_us) 10673 { 10674 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 10675 } 10676 10677 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 10678 struct cftype *cft) 10679 { 10680 return tg_get_cfs_period(css_tg(css)); 10681 } 10682 10683 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 10684 struct cftype *cftype, u64 cfs_period_us) 10685 { 10686 return tg_set_cfs_period(css_tg(css), cfs_period_us); 10687 } 10688 10689 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 10690 struct cftype *cft) 10691 { 10692 return tg_get_cfs_burst(css_tg(css)); 10693 } 10694 10695 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 10696 struct cftype *cftype, u64 cfs_burst_us) 10697 { 10698 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 10699 } 10700 10701 struct cfs_schedulable_data { 10702 struct task_group *tg; 10703 u64 period, quota; 10704 }; 10705 10706 /* 10707 * normalize group quota/period to be quota/max_period 10708 * note: units are usecs 10709 */ 10710 static u64 normalize_cfs_quota(struct task_group *tg, 10711 struct cfs_schedulable_data *d) 10712 { 10713 u64 quota, period; 10714 10715 if (tg == d->tg) { 10716 period = d->period; 10717 quota = d->quota; 10718 } else { 10719 period = tg_get_cfs_period(tg); 10720 quota = tg_get_cfs_quota(tg); 10721 } 10722 10723 /* note: these should typically be equivalent */ 10724 if (quota == RUNTIME_INF || quota == -1) 10725 return RUNTIME_INF; 10726 10727 return to_ratio(period, quota); 10728 } 10729 10730 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 10731 { 10732 struct cfs_schedulable_data *d = data; 10733 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10734 s64 quota = 0, parent_quota = -1; 10735 10736 if (!tg->parent) { 10737 quota = RUNTIME_INF; 10738 } else { 10739 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 10740 10741 quota = normalize_cfs_quota(tg, d); 10742 parent_quota = parent_b->hierarchical_quota; 10743 10744 /* 10745 * Ensure max(child_quota) <= parent_quota. On cgroup2, 10746 * always take the min. On cgroup1, only inherit when no 10747 * limit is set: 10748 */ 10749 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 10750 quota = min(quota, parent_quota); 10751 } else { 10752 if (quota == RUNTIME_INF) 10753 quota = parent_quota; 10754 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 10755 return -EINVAL; 10756 } 10757 } 10758 cfs_b->hierarchical_quota = quota; 10759 10760 return 0; 10761 } 10762 10763 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 10764 { 10765 int ret; 10766 struct cfs_schedulable_data data = { 10767 .tg = tg, 10768 .period = period, 10769 .quota = quota, 10770 }; 10771 10772 if (quota != RUNTIME_INF) { 10773 do_div(data.period, NSEC_PER_USEC); 10774 do_div(data.quota, NSEC_PER_USEC); 10775 } 10776 10777 rcu_read_lock(); 10778 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 10779 rcu_read_unlock(); 10780 10781 return ret; 10782 } 10783 10784 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 10785 { 10786 struct task_group *tg = css_tg(seq_css(sf)); 10787 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10788 10789 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 10790 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 10791 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 10792 10793 if (schedstat_enabled() && tg != &root_task_group) { 10794 struct sched_statistics *stats; 10795 u64 ws = 0; 10796 int i; 10797 10798 for_each_possible_cpu(i) { 10799 stats = __schedstats_from_se(tg->se[i]); 10800 ws += schedstat_val(stats->wait_sum); 10801 } 10802 10803 seq_printf(sf, "wait_sum %llu\n", ws); 10804 } 10805 10806 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 10807 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 10808 10809 return 0; 10810 } 10811 #endif /* CONFIG_CFS_BANDWIDTH */ 10812 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10813 10814 #ifdef CONFIG_RT_GROUP_SCHED 10815 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 10816 struct cftype *cft, s64 val) 10817 { 10818 return sched_group_set_rt_runtime(css_tg(css), val); 10819 } 10820 10821 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 10822 struct cftype *cft) 10823 { 10824 return sched_group_rt_runtime(css_tg(css)); 10825 } 10826 10827 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 10828 struct cftype *cftype, u64 rt_period_us) 10829 { 10830 return sched_group_set_rt_period(css_tg(css), rt_period_us); 10831 } 10832 10833 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 10834 struct cftype *cft) 10835 { 10836 return sched_group_rt_period(css_tg(css)); 10837 } 10838 #endif /* CONFIG_RT_GROUP_SCHED */ 10839 10840 #ifdef CONFIG_FAIR_GROUP_SCHED 10841 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 10842 struct cftype *cft) 10843 { 10844 return css_tg(css)->idle; 10845 } 10846 10847 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 10848 struct cftype *cft, s64 idle) 10849 { 10850 return sched_group_set_idle(css_tg(css), idle); 10851 } 10852 #endif 10853 10854 static struct cftype cpu_legacy_files[] = { 10855 #ifdef CONFIG_FAIR_GROUP_SCHED 10856 { 10857 .name = "shares", 10858 .read_u64 = cpu_shares_read_u64, 10859 .write_u64 = cpu_shares_write_u64, 10860 }, 10861 { 10862 .name = "idle", 10863 .read_s64 = cpu_idle_read_s64, 10864 .write_s64 = cpu_idle_write_s64, 10865 }, 10866 #endif 10867 #ifdef CONFIG_CFS_BANDWIDTH 10868 { 10869 .name = "cfs_quota_us", 10870 .read_s64 = cpu_cfs_quota_read_s64, 10871 .write_s64 = cpu_cfs_quota_write_s64, 10872 }, 10873 { 10874 .name = "cfs_period_us", 10875 .read_u64 = cpu_cfs_period_read_u64, 10876 .write_u64 = cpu_cfs_period_write_u64, 10877 }, 10878 { 10879 .name = "cfs_burst_us", 10880 .read_u64 = cpu_cfs_burst_read_u64, 10881 .write_u64 = cpu_cfs_burst_write_u64, 10882 }, 10883 { 10884 .name = "stat", 10885 .seq_show = cpu_cfs_stat_show, 10886 }, 10887 #endif 10888 #ifdef CONFIG_RT_GROUP_SCHED 10889 { 10890 .name = "rt_runtime_us", 10891 .read_s64 = cpu_rt_runtime_read, 10892 .write_s64 = cpu_rt_runtime_write, 10893 }, 10894 { 10895 .name = "rt_period_us", 10896 .read_u64 = cpu_rt_period_read_uint, 10897 .write_u64 = cpu_rt_period_write_uint, 10898 }, 10899 #endif 10900 #ifdef CONFIG_UCLAMP_TASK_GROUP 10901 { 10902 .name = "uclamp.min", 10903 .flags = CFTYPE_NOT_ON_ROOT, 10904 .seq_show = cpu_uclamp_min_show, 10905 .write = cpu_uclamp_min_write, 10906 }, 10907 { 10908 .name = "uclamp.max", 10909 .flags = CFTYPE_NOT_ON_ROOT, 10910 .seq_show = cpu_uclamp_max_show, 10911 .write = cpu_uclamp_max_write, 10912 }, 10913 #endif 10914 { } /* Terminate */ 10915 }; 10916 10917 static int cpu_extra_stat_show(struct seq_file *sf, 10918 struct cgroup_subsys_state *css) 10919 { 10920 #ifdef CONFIG_CFS_BANDWIDTH 10921 { 10922 struct task_group *tg = css_tg(css); 10923 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10924 u64 throttled_usec, burst_usec; 10925 10926 throttled_usec = cfs_b->throttled_time; 10927 do_div(throttled_usec, NSEC_PER_USEC); 10928 burst_usec = cfs_b->burst_time; 10929 do_div(burst_usec, NSEC_PER_USEC); 10930 10931 seq_printf(sf, "nr_periods %d\n" 10932 "nr_throttled %d\n" 10933 "throttled_usec %llu\n" 10934 "nr_bursts %d\n" 10935 "burst_usec %llu\n", 10936 cfs_b->nr_periods, cfs_b->nr_throttled, 10937 throttled_usec, cfs_b->nr_burst, burst_usec); 10938 } 10939 #endif 10940 return 0; 10941 } 10942 10943 #ifdef CONFIG_FAIR_GROUP_SCHED 10944 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 10945 struct cftype *cft) 10946 { 10947 struct task_group *tg = css_tg(css); 10948 u64 weight = scale_load_down(tg->shares); 10949 10950 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 10951 } 10952 10953 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 10954 struct cftype *cft, u64 weight) 10955 { 10956 /* 10957 * cgroup weight knobs should use the common MIN, DFL and MAX 10958 * values which are 1, 100 and 10000 respectively. While it loses 10959 * a bit of range on both ends, it maps pretty well onto the shares 10960 * value used by scheduler and the round-trip conversions preserve 10961 * the original value over the entire range. 10962 */ 10963 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 10964 return -ERANGE; 10965 10966 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 10967 10968 return sched_group_set_shares(css_tg(css), scale_load(weight)); 10969 } 10970 10971 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 10972 struct cftype *cft) 10973 { 10974 unsigned long weight = scale_load_down(css_tg(css)->shares); 10975 int last_delta = INT_MAX; 10976 int prio, delta; 10977 10978 /* find the closest nice value to the current weight */ 10979 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 10980 delta = abs(sched_prio_to_weight[prio] - weight); 10981 if (delta >= last_delta) 10982 break; 10983 last_delta = delta; 10984 } 10985 10986 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 10987 } 10988 10989 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 10990 struct cftype *cft, s64 nice) 10991 { 10992 unsigned long weight; 10993 int idx; 10994 10995 if (nice < MIN_NICE || nice > MAX_NICE) 10996 return -ERANGE; 10997 10998 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 10999 idx = array_index_nospec(idx, 40); 11000 weight = sched_prio_to_weight[idx]; 11001 11002 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11003 } 11004 #endif 11005 11006 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 11007 long period, long quota) 11008 { 11009 if (quota < 0) 11010 seq_puts(sf, "max"); 11011 else 11012 seq_printf(sf, "%ld", quota); 11013 11014 seq_printf(sf, " %ld\n", period); 11015 } 11016 11017 /* caller should put the current value in *@periodp before calling */ 11018 static int __maybe_unused cpu_period_quota_parse(char *buf, 11019 u64 *periodp, u64 *quotap) 11020 { 11021 char tok[21]; /* U64_MAX */ 11022 11023 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 11024 return -EINVAL; 11025 11026 *periodp *= NSEC_PER_USEC; 11027 11028 if (sscanf(tok, "%llu", quotap)) 11029 *quotap *= NSEC_PER_USEC; 11030 else if (!strcmp(tok, "max")) 11031 *quotap = RUNTIME_INF; 11032 else 11033 return -EINVAL; 11034 11035 return 0; 11036 } 11037 11038 #ifdef CONFIG_CFS_BANDWIDTH 11039 static int cpu_max_show(struct seq_file *sf, void *v) 11040 { 11041 struct task_group *tg = css_tg(seq_css(sf)); 11042 11043 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 11044 return 0; 11045 } 11046 11047 static ssize_t cpu_max_write(struct kernfs_open_file *of, 11048 char *buf, size_t nbytes, loff_t off) 11049 { 11050 struct task_group *tg = css_tg(of_css(of)); 11051 u64 period = tg_get_cfs_period(tg); 11052 u64 burst = tg_get_cfs_burst(tg); 11053 u64 quota; 11054 int ret; 11055 11056 ret = cpu_period_quota_parse(buf, &period, "a); 11057 if (!ret) 11058 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 11059 return ret ?: nbytes; 11060 } 11061 #endif 11062 11063 static struct cftype cpu_files[] = { 11064 #ifdef CONFIG_FAIR_GROUP_SCHED 11065 { 11066 .name = "weight", 11067 .flags = CFTYPE_NOT_ON_ROOT, 11068 .read_u64 = cpu_weight_read_u64, 11069 .write_u64 = cpu_weight_write_u64, 11070 }, 11071 { 11072 .name = "weight.nice", 11073 .flags = CFTYPE_NOT_ON_ROOT, 11074 .read_s64 = cpu_weight_nice_read_s64, 11075 .write_s64 = cpu_weight_nice_write_s64, 11076 }, 11077 { 11078 .name = "idle", 11079 .flags = CFTYPE_NOT_ON_ROOT, 11080 .read_s64 = cpu_idle_read_s64, 11081 .write_s64 = cpu_idle_write_s64, 11082 }, 11083 #endif 11084 #ifdef CONFIG_CFS_BANDWIDTH 11085 { 11086 .name = "max", 11087 .flags = CFTYPE_NOT_ON_ROOT, 11088 .seq_show = cpu_max_show, 11089 .write = cpu_max_write, 11090 }, 11091 { 11092 .name = "max.burst", 11093 .flags = CFTYPE_NOT_ON_ROOT, 11094 .read_u64 = cpu_cfs_burst_read_u64, 11095 .write_u64 = cpu_cfs_burst_write_u64, 11096 }, 11097 #endif 11098 #ifdef CONFIG_UCLAMP_TASK_GROUP 11099 { 11100 .name = "uclamp.min", 11101 .flags = CFTYPE_NOT_ON_ROOT, 11102 .seq_show = cpu_uclamp_min_show, 11103 .write = cpu_uclamp_min_write, 11104 }, 11105 { 11106 .name = "uclamp.max", 11107 .flags = CFTYPE_NOT_ON_ROOT, 11108 .seq_show = cpu_uclamp_max_show, 11109 .write = cpu_uclamp_max_write, 11110 }, 11111 #endif 11112 { } /* terminate */ 11113 }; 11114 11115 struct cgroup_subsys cpu_cgrp_subsys = { 11116 .css_alloc = cpu_cgroup_css_alloc, 11117 .css_online = cpu_cgroup_css_online, 11118 .css_released = cpu_cgroup_css_released, 11119 .css_free = cpu_cgroup_css_free, 11120 .css_extra_stat_show = cpu_extra_stat_show, 11121 #ifdef CONFIG_RT_GROUP_SCHED 11122 .can_attach = cpu_cgroup_can_attach, 11123 #endif 11124 .attach = cpu_cgroup_attach, 11125 .legacy_cftypes = cpu_legacy_files, 11126 .dfl_cftypes = cpu_files, 11127 .early_init = true, 11128 .threaded = true, 11129 }; 11130 11131 #endif /* CONFIG_CGROUP_SCHED */ 11132 11133 void dump_cpu_task(int cpu) 11134 { 11135 if (cpu == smp_processor_id() && in_hardirq()) { 11136 struct pt_regs *regs; 11137 11138 regs = get_irq_regs(); 11139 if (regs) { 11140 show_regs(regs); 11141 return; 11142 } 11143 } 11144 11145 if (trigger_single_cpu_backtrace(cpu)) 11146 return; 11147 11148 pr_info("Task dump for CPU %d:\n", cpu); 11149 sched_show_task(cpu_curr(cpu)); 11150 } 11151 11152 /* 11153 * Nice levels are multiplicative, with a gentle 10% change for every 11154 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 11155 * nice 1, it will get ~10% less CPU time than another CPU-bound task 11156 * that remained on nice 0. 11157 * 11158 * The "10% effect" is relative and cumulative: from _any_ nice level, 11159 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 11160 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 11161 * If a task goes up by ~10% and another task goes down by ~10% then 11162 * the relative distance between them is ~25%.) 11163 */ 11164 const int sched_prio_to_weight[40] = { 11165 /* -20 */ 88761, 71755, 56483, 46273, 36291, 11166 /* -15 */ 29154, 23254, 18705, 14949, 11916, 11167 /* -10 */ 9548, 7620, 6100, 4904, 3906, 11168 /* -5 */ 3121, 2501, 1991, 1586, 1277, 11169 /* 0 */ 1024, 820, 655, 526, 423, 11170 /* 5 */ 335, 272, 215, 172, 137, 11171 /* 10 */ 110, 87, 70, 56, 45, 11172 /* 15 */ 36, 29, 23, 18, 15, 11173 }; 11174 11175 /* 11176 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 11177 * 11178 * In cases where the weight does not change often, we can use the 11179 * precalculated inverse to speed up arithmetics by turning divisions 11180 * into multiplications: 11181 */ 11182 const u32 sched_prio_to_wmult[40] = { 11183 /* -20 */ 48388, 59856, 76040, 92818, 118348, 11184 /* -15 */ 147320, 184698, 229616, 287308, 360437, 11185 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 11186 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 11187 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 11188 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 11189 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 11190 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 11191 }; 11192 11193 void call_trace_sched_update_nr_running(struct rq *rq, int count) 11194 { 11195 trace_sched_update_nr_running_tp(rq, count); 11196 } 11197