xref: /linux/kernel/sched/core.c (revision 83439a0f1ce6a592f95e41338320b5f01b98a356)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 #  include <linux/entry-common.h>
71 # endif
72 #endif
73 
74 #include <uapi/linux/sched/types.h>
75 
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #undef CREATE_TRACE_POINTS
84 
85 #include "sched.h"
86 #include "stats.h"
87 #include "autogroup.h"
88 
89 #include "autogroup.h"
90 #include "pelt.h"
91 #include "smp.h"
92 #include "stats.h"
93 
94 #include "../workqueue_internal.h"
95 #include "../../io_uring/io-wq.h"
96 #include "../smpboot.h"
97 
98 /*
99  * Export tracepoints that act as a bare tracehook (ie: have no trace event
100  * associated with them) to allow external modules to probe them.
101  */
102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
113 
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 
116 #ifdef CONFIG_SCHED_DEBUG
117 /*
118  * Debugging: various feature bits
119  *
120  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
121  * sysctl_sched_features, defined in sched.h, to allow constants propagation
122  * at compile time and compiler optimization based on features default.
123  */
124 #define SCHED_FEAT(name, enabled)	\
125 	(1UL << __SCHED_FEAT_##name) * enabled |
126 const_debug unsigned int sysctl_sched_features =
127 #include "features.h"
128 	0;
129 #undef SCHED_FEAT
130 
131 /*
132  * Print a warning if need_resched is set for the given duration (if
133  * LATENCY_WARN is enabled).
134  *
135  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
136  * per boot.
137  */
138 __read_mostly int sysctl_resched_latency_warn_ms = 100;
139 __read_mostly int sysctl_resched_latency_warn_once = 1;
140 #endif /* CONFIG_SCHED_DEBUG */
141 
142 /*
143  * Number of tasks to iterate in a single balance run.
144  * Limited because this is done with IRQs disabled.
145  */
146 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
147 
148 __read_mostly int scheduler_running;
149 
150 #ifdef CONFIG_SCHED_CORE
151 
152 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
153 
154 /* kernel prio, less is more */
155 static inline int __task_prio(struct task_struct *p)
156 {
157 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
158 		return -2;
159 
160 	if (rt_prio(p->prio)) /* includes deadline */
161 		return p->prio; /* [-1, 99] */
162 
163 	if (p->sched_class == &idle_sched_class)
164 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
165 
166 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
167 }
168 
169 /*
170  * l(a,b)
171  * le(a,b) := !l(b,a)
172  * g(a,b)  := l(b,a)
173  * ge(a,b) := !l(a,b)
174  */
175 
176 /* real prio, less is less */
177 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
178 {
179 
180 	int pa = __task_prio(a), pb = __task_prio(b);
181 
182 	if (-pa < -pb)
183 		return true;
184 
185 	if (-pb < -pa)
186 		return false;
187 
188 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
189 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
190 
191 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
192 		return cfs_prio_less(a, b, in_fi);
193 
194 	return false;
195 }
196 
197 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
198 {
199 	if (a->core_cookie < b->core_cookie)
200 		return true;
201 
202 	if (a->core_cookie > b->core_cookie)
203 		return false;
204 
205 	/* flip prio, so high prio is leftmost */
206 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
207 		return true;
208 
209 	return false;
210 }
211 
212 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
213 
214 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
215 {
216 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
217 }
218 
219 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
220 {
221 	const struct task_struct *p = __node_2_sc(node);
222 	unsigned long cookie = (unsigned long)key;
223 
224 	if (cookie < p->core_cookie)
225 		return -1;
226 
227 	if (cookie > p->core_cookie)
228 		return 1;
229 
230 	return 0;
231 }
232 
233 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
234 {
235 	rq->core->core_task_seq++;
236 
237 	if (!p->core_cookie)
238 		return;
239 
240 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
241 }
242 
243 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
244 {
245 	rq->core->core_task_seq++;
246 
247 	if (sched_core_enqueued(p)) {
248 		rb_erase(&p->core_node, &rq->core_tree);
249 		RB_CLEAR_NODE(&p->core_node);
250 	}
251 
252 	/*
253 	 * Migrating the last task off the cpu, with the cpu in forced idle
254 	 * state. Reschedule to create an accounting edge for forced idle,
255 	 * and re-examine whether the core is still in forced idle state.
256 	 */
257 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
258 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
259 		resched_curr(rq);
260 }
261 
262 /*
263  * Find left-most (aka, highest priority) task matching @cookie.
264  */
265 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
266 {
267 	struct rb_node *node;
268 
269 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
270 	/*
271 	 * The idle task always matches any cookie!
272 	 */
273 	if (!node)
274 		return idle_sched_class.pick_task(rq);
275 
276 	return __node_2_sc(node);
277 }
278 
279 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
280 {
281 	struct rb_node *node = &p->core_node;
282 
283 	node = rb_next(node);
284 	if (!node)
285 		return NULL;
286 
287 	p = container_of(node, struct task_struct, core_node);
288 	if (p->core_cookie != cookie)
289 		return NULL;
290 
291 	return p;
292 }
293 
294 /*
295  * Magic required such that:
296  *
297  *	raw_spin_rq_lock(rq);
298  *	...
299  *	raw_spin_rq_unlock(rq);
300  *
301  * ends up locking and unlocking the _same_ lock, and all CPUs
302  * always agree on what rq has what lock.
303  *
304  * XXX entirely possible to selectively enable cores, don't bother for now.
305  */
306 
307 static DEFINE_MUTEX(sched_core_mutex);
308 static atomic_t sched_core_count;
309 static struct cpumask sched_core_mask;
310 
311 static void sched_core_lock(int cpu, unsigned long *flags)
312 {
313 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
314 	int t, i = 0;
315 
316 	local_irq_save(*flags);
317 	for_each_cpu(t, smt_mask)
318 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
319 }
320 
321 static void sched_core_unlock(int cpu, unsigned long *flags)
322 {
323 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
324 	int t;
325 
326 	for_each_cpu(t, smt_mask)
327 		raw_spin_unlock(&cpu_rq(t)->__lock);
328 	local_irq_restore(*flags);
329 }
330 
331 static void __sched_core_flip(bool enabled)
332 {
333 	unsigned long flags;
334 	int cpu, t;
335 
336 	cpus_read_lock();
337 
338 	/*
339 	 * Toggle the online cores, one by one.
340 	 */
341 	cpumask_copy(&sched_core_mask, cpu_online_mask);
342 	for_each_cpu(cpu, &sched_core_mask) {
343 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
344 
345 		sched_core_lock(cpu, &flags);
346 
347 		for_each_cpu(t, smt_mask)
348 			cpu_rq(t)->core_enabled = enabled;
349 
350 		cpu_rq(cpu)->core->core_forceidle_start = 0;
351 
352 		sched_core_unlock(cpu, &flags);
353 
354 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
355 	}
356 
357 	/*
358 	 * Toggle the offline CPUs.
359 	 */
360 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
361 		cpu_rq(cpu)->core_enabled = enabled;
362 
363 	cpus_read_unlock();
364 }
365 
366 static void sched_core_assert_empty(void)
367 {
368 	int cpu;
369 
370 	for_each_possible_cpu(cpu)
371 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
372 }
373 
374 static void __sched_core_enable(void)
375 {
376 	static_branch_enable(&__sched_core_enabled);
377 	/*
378 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
379 	 * and future ones will observe !sched_core_disabled().
380 	 */
381 	synchronize_rcu();
382 	__sched_core_flip(true);
383 	sched_core_assert_empty();
384 }
385 
386 static void __sched_core_disable(void)
387 {
388 	sched_core_assert_empty();
389 	__sched_core_flip(false);
390 	static_branch_disable(&__sched_core_enabled);
391 }
392 
393 void sched_core_get(void)
394 {
395 	if (atomic_inc_not_zero(&sched_core_count))
396 		return;
397 
398 	mutex_lock(&sched_core_mutex);
399 	if (!atomic_read(&sched_core_count))
400 		__sched_core_enable();
401 
402 	smp_mb__before_atomic();
403 	atomic_inc(&sched_core_count);
404 	mutex_unlock(&sched_core_mutex);
405 }
406 
407 static void __sched_core_put(struct work_struct *work)
408 {
409 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
410 		__sched_core_disable();
411 		mutex_unlock(&sched_core_mutex);
412 	}
413 }
414 
415 void sched_core_put(void)
416 {
417 	static DECLARE_WORK(_work, __sched_core_put);
418 
419 	/*
420 	 * "There can be only one"
421 	 *
422 	 * Either this is the last one, or we don't actually need to do any
423 	 * 'work'. If it is the last *again*, we rely on
424 	 * WORK_STRUCT_PENDING_BIT.
425 	 */
426 	if (!atomic_add_unless(&sched_core_count, -1, 1))
427 		schedule_work(&_work);
428 }
429 
430 #else /* !CONFIG_SCHED_CORE */
431 
432 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
433 static inline void
434 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
435 
436 #endif /* CONFIG_SCHED_CORE */
437 
438 /*
439  * Serialization rules:
440  *
441  * Lock order:
442  *
443  *   p->pi_lock
444  *     rq->lock
445  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
446  *
447  *  rq1->lock
448  *    rq2->lock  where: rq1 < rq2
449  *
450  * Regular state:
451  *
452  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
453  * local CPU's rq->lock, it optionally removes the task from the runqueue and
454  * always looks at the local rq data structures to find the most eligible task
455  * to run next.
456  *
457  * Task enqueue is also under rq->lock, possibly taken from another CPU.
458  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
459  * the local CPU to avoid bouncing the runqueue state around [ see
460  * ttwu_queue_wakelist() ]
461  *
462  * Task wakeup, specifically wakeups that involve migration, are horribly
463  * complicated to avoid having to take two rq->locks.
464  *
465  * Special state:
466  *
467  * System-calls and anything external will use task_rq_lock() which acquires
468  * both p->pi_lock and rq->lock. As a consequence the state they change is
469  * stable while holding either lock:
470  *
471  *  - sched_setaffinity()/
472  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
473  *  - set_user_nice():		p->se.load, p->*prio
474  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
475  *				p->se.load, p->rt_priority,
476  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
477  *  - sched_setnuma():		p->numa_preferred_nid
478  *  - sched_move_task():	p->sched_task_group
479  *  - uclamp_update_active()	p->uclamp*
480  *
481  * p->state <- TASK_*:
482  *
483  *   is changed locklessly using set_current_state(), __set_current_state() or
484  *   set_special_state(), see their respective comments, or by
485  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
486  *   concurrent self.
487  *
488  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
489  *
490  *   is set by activate_task() and cleared by deactivate_task(), under
491  *   rq->lock. Non-zero indicates the task is runnable, the special
492  *   ON_RQ_MIGRATING state is used for migration without holding both
493  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
494  *
495  * p->on_cpu <- { 0, 1 }:
496  *
497  *   is set by prepare_task() and cleared by finish_task() such that it will be
498  *   set before p is scheduled-in and cleared after p is scheduled-out, both
499  *   under rq->lock. Non-zero indicates the task is running on its CPU.
500  *
501  *   [ The astute reader will observe that it is possible for two tasks on one
502  *     CPU to have ->on_cpu = 1 at the same time. ]
503  *
504  * task_cpu(p): is changed by set_task_cpu(), the rules are:
505  *
506  *  - Don't call set_task_cpu() on a blocked task:
507  *
508  *    We don't care what CPU we're not running on, this simplifies hotplug,
509  *    the CPU assignment of blocked tasks isn't required to be valid.
510  *
511  *  - for try_to_wake_up(), called under p->pi_lock:
512  *
513  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
514  *
515  *  - for migration called under rq->lock:
516  *    [ see task_on_rq_migrating() in task_rq_lock() ]
517  *
518  *    o move_queued_task()
519  *    o detach_task()
520  *
521  *  - for migration called under double_rq_lock():
522  *
523  *    o __migrate_swap_task()
524  *    o push_rt_task() / pull_rt_task()
525  *    o push_dl_task() / pull_dl_task()
526  *    o dl_task_offline_migration()
527  *
528  */
529 
530 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
531 {
532 	raw_spinlock_t *lock;
533 
534 	/* Matches synchronize_rcu() in __sched_core_enable() */
535 	preempt_disable();
536 	if (sched_core_disabled()) {
537 		raw_spin_lock_nested(&rq->__lock, subclass);
538 		/* preempt_count *MUST* be > 1 */
539 		preempt_enable_no_resched();
540 		return;
541 	}
542 
543 	for (;;) {
544 		lock = __rq_lockp(rq);
545 		raw_spin_lock_nested(lock, subclass);
546 		if (likely(lock == __rq_lockp(rq))) {
547 			/* preempt_count *MUST* be > 1 */
548 			preempt_enable_no_resched();
549 			return;
550 		}
551 		raw_spin_unlock(lock);
552 	}
553 }
554 
555 bool raw_spin_rq_trylock(struct rq *rq)
556 {
557 	raw_spinlock_t *lock;
558 	bool ret;
559 
560 	/* Matches synchronize_rcu() in __sched_core_enable() */
561 	preempt_disable();
562 	if (sched_core_disabled()) {
563 		ret = raw_spin_trylock(&rq->__lock);
564 		preempt_enable();
565 		return ret;
566 	}
567 
568 	for (;;) {
569 		lock = __rq_lockp(rq);
570 		ret = raw_spin_trylock(lock);
571 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
572 			preempt_enable();
573 			return ret;
574 		}
575 		raw_spin_unlock(lock);
576 	}
577 }
578 
579 void raw_spin_rq_unlock(struct rq *rq)
580 {
581 	raw_spin_unlock(rq_lockp(rq));
582 }
583 
584 #ifdef CONFIG_SMP
585 /*
586  * double_rq_lock - safely lock two runqueues
587  */
588 void double_rq_lock(struct rq *rq1, struct rq *rq2)
589 {
590 	lockdep_assert_irqs_disabled();
591 
592 	if (rq_order_less(rq2, rq1))
593 		swap(rq1, rq2);
594 
595 	raw_spin_rq_lock(rq1);
596 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
597 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
598 
599 	double_rq_clock_clear_update(rq1, rq2);
600 }
601 #endif
602 
603 /*
604  * __task_rq_lock - lock the rq @p resides on.
605  */
606 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
607 	__acquires(rq->lock)
608 {
609 	struct rq *rq;
610 
611 	lockdep_assert_held(&p->pi_lock);
612 
613 	for (;;) {
614 		rq = task_rq(p);
615 		raw_spin_rq_lock(rq);
616 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
617 			rq_pin_lock(rq, rf);
618 			return rq;
619 		}
620 		raw_spin_rq_unlock(rq);
621 
622 		while (unlikely(task_on_rq_migrating(p)))
623 			cpu_relax();
624 	}
625 }
626 
627 /*
628  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
629  */
630 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
631 	__acquires(p->pi_lock)
632 	__acquires(rq->lock)
633 {
634 	struct rq *rq;
635 
636 	for (;;) {
637 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
638 		rq = task_rq(p);
639 		raw_spin_rq_lock(rq);
640 		/*
641 		 *	move_queued_task()		task_rq_lock()
642 		 *
643 		 *	ACQUIRE (rq->lock)
644 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
645 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
646 		 *	[S] ->cpu = new_cpu		[L] task_rq()
647 		 *					[L] ->on_rq
648 		 *	RELEASE (rq->lock)
649 		 *
650 		 * If we observe the old CPU in task_rq_lock(), the acquire of
651 		 * the old rq->lock will fully serialize against the stores.
652 		 *
653 		 * If we observe the new CPU in task_rq_lock(), the address
654 		 * dependency headed by '[L] rq = task_rq()' and the acquire
655 		 * will pair with the WMB to ensure we then also see migrating.
656 		 */
657 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
658 			rq_pin_lock(rq, rf);
659 			return rq;
660 		}
661 		raw_spin_rq_unlock(rq);
662 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
663 
664 		while (unlikely(task_on_rq_migrating(p)))
665 			cpu_relax();
666 	}
667 }
668 
669 /*
670  * RQ-clock updating methods:
671  */
672 
673 static void update_rq_clock_task(struct rq *rq, s64 delta)
674 {
675 /*
676  * In theory, the compile should just see 0 here, and optimize out the call
677  * to sched_rt_avg_update. But I don't trust it...
678  */
679 	s64 __maybe_unused steal = 0, irq_delta = 0;
680 
681 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
682 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
683 
684 	/*
685 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
686 	 * this case when a previous update_rq_clock() happened inside a
687 	 * {soft,}irq region.
688 	 *
689 	 * When this happens, we stop ->clock_task and only update the
690 	 * prev_irq_time stamp to account for the part that fit, so that a next
691 	 * update will consume the rest. This ensures ->clock_task is
692 	 * monotonic.
693 	 *
694 	 * It does however cause some slight miss-attribution of {soft,}irq
695 	 * time, a more accurate solution would be to update the irq_time using
696 	 * the current rq->clock timestamp, except that would require using
697 	 * atomic ops.
698 	 */
699 	if (irq_delta > delta)
700 		irq_delta = delta;
701 
702 	rq->prev_irq_time += irq_delta;
703 	delta -= irq_delta;
704 #endif
705 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
706 	if (static_key_false((&paravirt_steal_rq_enabled))) {
707 		steal = paravirt_steal_clock(cpu_of(rq));
708 		steal -= rq->prev_steal_time_rq;
709 
710 		if (unlikely(steal > delta))
711 			steal = delta;
712 
713 		rq->prev_steal_time_rq += steal;
714 		delta -= steal;
715 	}
716 #endif
717 
718 	rq->clock_task += delta;
719 
720 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
721 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
722 		update_irq_load_avg(rq, irq_delta + steal);
723 #endif
724 	update_rq_clock_pelt(rq, delta);
725 }
726 
727 void update_rq_clock(struct rq *rq)
728 {
729 	s64 delta;
730 
731 	lockdep_assert_rq_held(rq);
732 
733 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
734 		return;
735 
736 #ifdef CONFIG_SCHED_DEBUG
737 	if (sched_feat(WARN_DOUBLE_CLOCK))
738 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
739 	rq->clock_update_flags |= RQCF_UPDATED;
740 #endif
741 
742 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
743 	if (delta < 0)
744 		return;
745 	rq->clock += delta;
746 	update_rq_clock_task(rq, delta);
747 }
748 
749 #ifdef CONFIG_SCHED_HRTICK
750 /*
751  * Use HR-timers to deliver accurate preemption points.
752  */
753 
754 static void hrtick_clear(struct rq *rq)
755 {
756 	if (hrtimer_active(&rq->hrtick_timer))
757 		hrtimer_cancel(&rq->hrtick_timer);
758 }
759 
760 /*
761  * High-resolution timer tick.
762  * Runs from hardirq context with interrupts disabled.
763  */
764 static enum hrtimer_restart hrtick(struct hrtimer *timer)
765 {
766 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
767 	struct rq_flags rf;
768 
769 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
770 
771 	rq_lock(rq, &rf);
772 	update_rq_clock(rq);
773 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
774 	rq_unlock(rq, &rf);
775 
776 	return HRTIMER_NORESTART;
777 }
778 
779 #ifdef CONFIG_SMP
780 
781 static void __hrtick_restart(struct rq *rq)
782 {
783 	struct hrtimer *timer = &rq->hrtick_timer;
784 	ktime_t time = rq->hrtick_time;
785 
786 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
787 }
788 
789 /*
790  * called from hardirq (IPI) context
791  */
792 static void __hrtick_start(void *arg)
793 {
794 	struct rq *rq = arg;
795 	struct rq_flags rf;
796 
797 	rq_lock(rq, &rf);
798 	__hrtick_restart(rq);
799 	rq_unlock(rq, &rf);
800 }
801 
802 /*
803  * Called to set the hrtick timer state.
804  *
805  * called with rq->lock held and irqs disabled
806  */
807 void hrtick_start(struct rq *rq, u64 delay)
808 {
809 	struct hrtimer *timer = &rq->hrtick_timer;
810 	s64 delta;
811 
812 	/*
813 	 * Don't schedule slices shorter than 10000ns, that just
814 	 * doesn't make sense and can cause timer DoS.
815 	 */
816 	delta = max_t(s64, delay, 10000LL);
817 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
818 
819 	if (rq == this_rq())
820 		__hrtick_restart(rq);
821 	else
822 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
823 }
824 
825 #else
826 /*
827  * Called to set the hrtick timer state.
828  *
829  * called with rq->lock held and irqs disabled
830  */
831 void hrtick_start(struct rq *rq, u64 delay)
832 {
833 	/*
834 	 * Don't schedule slices shorter than 10000ns, that just
835 	 * doesn't make sense. Rely on vruntime for fairness.
836 	 */
837 	delay = max_t(u64, delay, 10000LL);
838 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
839 		      HRTIMER_MODE_REL_PINNED_HARD);
840 }
841 
842 #endif /* CONFIG_SMP */
843 
844 static void hrtick_rq_init(struct rq *rq)
845 {
846 #ifdef CONFIG_SMP
847 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
848 #endif
849 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
850 	rq->hrtick_timer.function = hrtick;
851 }
852 #else	/* CONFIG_SCHED_HRTICK */
853 static inline void hrtick_clear(struct rq *rq)
854 {
855 }
856 
857 static inline void hrtick_rq_init(struct rq *rq)
858 {
859 }
860 #endif	/* CONFIG_SCHED_HRTICK */
861 
862 /*
863  * cmpxchg based fetch_or, macro so it works for different integer types
864  */
865 #define fetch_or(ptr, mask)						\
866 	({								\
867 		typeof(ptr) _ptr = (ptr);				\
868 		typeof(mask) _mask = (mask);				\
869 		typeof(*_ptr) _val = *_ptr;				\
870 									\
871 		do {							\
872 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
873 	_val;								\
874 })
875 
876 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
877 /*
878  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
879  * this avoids any races wrt polling state changes and thereby avoids
880  * spurious IPIs.
881  */
882 static inline bool set_nr_and_not_polling(struct task_struct *p)
883 {
884 	struct thread_info *ti = task_thread_info(p);
885 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
886 }
887 
888 /*
889  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
890  *
891  * If this returns true, then the idle task promises to call
892  * sched_ttwu_pending() and reschedule soon.
893  */
894 static bool set_nr_if_polling(struct task_struct *p)
895 {
896 	struct thread_info *ti = task_thread_info(p);
897 	typeof(ti->flags) val = READ_ONCE(ti->flags);
898 
899 	for (;;) {
900 		if (!(val & _TIF_POLLING_NRFLAG))
901 			return false;
902 		if (val & _TIF_NEED_RESCHED)
903 			return true;
904 		if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
905 			break;
906 	}
907 	return true;
908 }
909 
910 #else
911 static inline bool set_nr_and_not_polling(struct task_struct *p)
912 {
913 	set_tsk_need_resched(p);
914 	return true;
915 }
916 
917 #ifdef CONFIG_SMP
918 static inline bool set_nr_if_polling(struct task_struct *p)
919 {
920 	return false;
921 }
922 #endif
923 #endif
924 
925 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
926 {
927 	struct wake_q_node *node = &task->wake_q;
928 
929 	/*
930 	 * Atomically grab the task, if ->wake_q is !nil already it means
931 	 * it's already queued (either by us or someone else) and will get the
932 	 * wakeup due to that.
933 	 *
934 	 * In order to ensure that a pending wakeup will observe our pending
935 	 * state, even in the failed case, an explicit smp_mb() must be used.
936 	 */
937 	smp_mb__before_atomic();
938 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
939 		return false;
940 
941 	/*
942 	 * The head is context local, there can be no concurrency.
943 	 */
944 	*head->lastp = node;
945 	head->lastp = &node->next;
946 	return true;
947 }
948 
949 /**
950  * wake_q_add() - queue a wakeup for 'later' waking.
951  * @head: the wake_q_head to add @task to
952  * @task: the task to queue for 'later' wakeup
953  *
954  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
955  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
956  * instantly.
957  *
958  * This function must be used as-if it were wake_up_process(); IOW the task
959  * must be ready to be woken at this location.
960  */
961 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
962 {
963 	if (__wake_q_add(head, task))
964 		get_task_struct(task);
965 }
966 
967 /**
968  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
969  * @head: the wake_q_head to add @task to
970  * @task: the task to queue for 'later' wakeup
971  *
972  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
973  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
974  * instantly.
975  *
976  * This function must be used as-if it were wake_up_process(); IOW the task
977  * must be ready to be woken at this location.
978  *
979  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
980  * that already hold reference to @task can call the 'safe' version and trust
981  * wake_q to do the right thing depending whether or not the @task is already
982  * queued for wakeup.
983  */
984 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
985 {
986 	if (!__wake_q_add(head, task))
987 		put_task_struct(task);
988 }
989 
990 void wake_up_q(struct wake_q_head *head)
991 {
992 	struct wake_q_node *node = head->first;
993 
994 	while (node != WAKE_Q_TAIL) {
995 		struct task_struct *task;
996 
997 		task = container_of(node, struct task_struct, wake_q);
998 		/* Task can safely be re-inserted now: */
999 		node = node->next;
1000 		task->wake_q.next = NULL;
1001 
1002 		/*
1003 		 * wake_up_process() executes a full barrier, which pairs with
1004 		 * the queueing in wake_q_add() so as not to miss wakeups.
1005 		 */
1006 		wake_up_process(task);
1007 		put_task_struct(task);
1008 	}
1009 }
1010 
1011 /*
1012  * resched_curr - mark rq's current task 'to be rescheduled now'.
1013  *
1014  * On UP this means the setting of the need_resched flag, on SMP it
1015  * might also involve a cross-CPU call to trigger the scheduler on
1016  * the target CPU.
1017  */
1018 void resched_curr(struct rq *rq)
1019 {
1020 	struct task_struct *curr = rq->curr;
1021 	int cpu;
1022 
1023 	lockdep_assert_rq_held(rq);
1024 
1025 	if (test_tsk_need_resched(curr))
1026 		return;
1027 
1028 	cpu = cpu_of(rq);
1029 
1030 	if (cpu == smp_processor_id()) {
1031 		set_tsk_need_resched(curr);
1032 		set_preempt_need_resched();
1033 		return;
1034 	}
1035 
1036 	if (set_nr_and_not_polling(curr))
1037 		smp_send_reschedule(cpu);
1038 	else
1039 		trace_sched_wake_idle_without_ipi(cpu);
1040 }
1041 
1042 void resched_cpu(int cpu)
1043 {
1044 	struct rq *rq = cpu_rq(cpu);
1045 	unsigned long flags;
1046 
1047 	raw_spin_rq_lock_irqsave(rq, flags);
1048 	if (cpu_online(cpu) || cpu == smp_processor_id())
1049 		resched_curr(rq);
1050 	raw_spin_rq_unlock_irqrestore(rq, flags);
1051 }
1052 
1053 #ifdef CONFIG_SMP
1054 #ifdef CONFIG_NO_HZ_COMMON
1055 /*
1056  * In the semi idle case, use the nearest busy CPU for migrating timers
1057  * from an idle CPU.  This is good for power-savings.
1058  *
1059  * We don't do similar optimization for completely idle system, as
1060  * selecting an idle CPU will add more delays to the timers than intended
1061  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1062  */
1063 int get_nohz_timer_target(void)
1064 {
1065 	int i, cpu = smp_processor_id(), default_cpu = -1;
1066 	struct sched_domain *sd;
1067 	const struct cpumask *hk_mask;
1068 
1069 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1070 		if (!idle_cpu(cpu))
1071 			return cpu;
1072 		default_cpu = cpu;
1073 	}
1074 
1075 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1076 
1077 	rcu_read_lock();
1078 	for_each_domain(cpu, sd) {
1079 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1080 			if (cpu == i)
1081 				continue;
1082 
1083 			if (!idle_cpu(i)) {
1084 				cpu = i;
1085 				goto unlock;
1086 			}
1087 		}
1088 	}
1089 
1090 	if (default_cpu == -1)
1091 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1092 	cpu = default_cpu;
1093 unlock:
1094 	rcu_read_unlock();
1095 	return cpu;
1096 }
1097 
1098 /*
1099  * When add_timer_on() enqueues a timer into the timer wheel of an
1100  * idle CPU then this timer might expire before the next timer event
1101  * which is scheduled to wake up that CPU. In case of a completely
1102  * idle system the next event might even be infinite time into the
1103  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1104  * leaves the inner idle loop so the newly added timer is taken into
1105  * account when the CPU goes back to idle and evaluates the timer
1106  * wheel for the next timer event.
1107  */
1108 static void wake_up_idle_cpu(int cpu)
1109 {
1110 	struct rq *rq = cpu_rq(cpu);
1111 
1112 	if (cpu == smp_processor_id())
1113 		return;
1114 
1115 	if (set_nr_and_not_polling(rq->idle))
1116 		smp_send_reschedule(cpu);
1117 	else
1118 		trace_sched_wake_idle_without_ipi(cpu);
1119 }
1120 
1121 static bool wake_up_full_nohz_cpu(int cpu)
1122 {
1123 	/*
1124 	 * We just need the target to call irq_exit() and re-evaluate
1125 	 * the next tick. The nohz full kick at least implies that.
1126 	 * If needed we can still optimize that later with an
1127 	 * empty IRQ.
1128 	 */
1129 	if (cpu_is_offline(cpu))
1130 		return true;  /* Don't try to wake offline CPUs. */
1131 	if (tick_nohz_full_cpu(cpu)) {
1132 		if (cpu != smp_processor_id() ||
1133 		    tick_nohz_tick_stopped())
1134 			tick_nohz_full_kick_cpu(cpu);
1135 		return true;
1136 	}
1137 
1138 	return false;
1139 }
1140 
1141 /*
1142  * Wake up the specified CPU.  If the CPU is going offline, it is the
1143  * caller's responsibility to deal with the lost wakeup, for example,
1144  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1145  */
1146 void wake_up_nohz_cpu(int cpu)
1147 {
1148 	if (!wake_up_full_nohz_cpu(cpu))
1149 		wake_up_idle_cpu(cpu);
1150 }
1151 
1152 static void nohz_csd_func(void *info)
1153 {
1154 	struct rq *rq = info;
1155 	int cpu = cpu_of(rq);
1156 	unsigned int flags;
1157 
1158 	/*
1159 	 * Release the rq::nohz_csd.
1160 	 */
1161 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1162 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1163 
1164 	rq->idle_balance = idle_cpu(cpu);
1165 	if (rq->idle_balance && !need_resched()) {
1166 		rq->nohz_idle_balance = flags;
1167 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1168 	}
1169 }
1170 
1171 #endif /* CONFIG_NO_HZ_COMMON */
1172 
1173 #ifdef CONFIG_NO_HZ_FULL
1174 bool sched_can_stop_tick(struct rq *rq)
1175 {
1176 	int fifo_nr_running;
1177 
1178 	/* Deadline tasks, even if single, need the tick */
1179 	if (rq->dl.dl_nr_running)
1180 		return false;
1181 
1182 	/*
1183 	 * If there are more than one RR tasks, we need the tick to affect the
1184 	 * actual RR behaviour.
1185 	 */
1186 	if (rq->rt.rr_nr_running) {
1187 		if (rq->rt.rr_nr_running == 1)
1188 			return true;
1189 		else
1190 			return false;
1191 	}
1192 
1193 	/*
1194 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1195 	 * forced preemption between FIFO tasks.
1196 	 */
1197 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1198 	if (fifo_nr_running)
1199 		return true;
1200 
1201 	/*
1202 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1203 	 * if there's more than one we need the tick for involuntary
1204 	 * preemption.
1205 	 */
1206 	if (rq->nr_running > 1)
1207 		return false;
1208 
1209 	return true;
1210 }
1211 #endif /* CONFIG_NO_HZ_FULL */
1212 #endif /* CONFIG_SMP */
1213 
1214 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1215 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1216 /*
1217  * Iterate task_group tree rooted at *from, calling @down when first entering a
1218  * node and @up when leaving it for the final time.
1219  *
1220  * Caller must hold rcu_lock or sufficient equivalent.
1221  */
1222 int walk_tg_tree_from(struct task_group *from,
1223 			     tg_visitor down, tg_visitor up, void *data)
1224 {
1225 	struct task_group *parent, *child;
1226 	int ret;
1227 
1228 	parent = from;
1229 
1230 down:
1231 	ret = (*down)(parent, data);
1232 	if (ret)
1233 		goto out;
1234 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1235 		parent = child;
1236 		goto down;
1237 
1238 up:
1239 		continue;
1240 	}
1241 	ret = (*up)(parent, data);
1242 	if (ret || parent == from)
1243 		goto out;
1244 
1245 	child = parent;
1246 	parent = parent->parent;
1247 	if (parent)
1248 		goto up;
1249 out:
1250 	return ret;
1251 }
1252 
1253 int tg_nop(struct task_group *tg, void *data)
1254 {
1255 	return 0;
1256 }
1257 #endif
1258 
1259 static void set_load_weight(struct task_struct *p, bool update_load)
1260 {
1261 	int prio = p->static_prio - MAX_RT_PRIO;
1262 	struct load_weight *load = &p->se.load;
1263 
1264 	/*
1265 	 * SCHED_IDLE tasks get minimal weight:
1266 	 */
1267 	if (task_has_idle_policy(p)) {
1268 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1269 		load->inv_weight = WMULT_IDLEPRIO;
1270 		return;
1271 	}
1272 
1273 	/*
1274 	 * SCHED_OTHER tasks have to update their load when changing their
1275 	 * weight
1276 	 */
1277 	if (update_load && p->sched_class == &fair_sched_class) {
1278 		reweight_task(p, prio);
1279 	} else {
1280 		load->weight = scale_load(sched_prio_to_weight[prio]);
1281 		load->inv_weight = sched_prio_to_wmult[prio];
1282 	}
1283 }
1284 
1285 #ifdef CONFIG_UCLAMP_TASK
1286 /*
1287  * Serializes updates of utilization clamp values
1288  *
1289  * The (slow-path) user-space triggers utilization clamp value updates which
1290  * can require updates on (fast-path) scheduler's data structures used to
1291  * support enqueue/dequeue operations.
1292  * While the per-CPU rq lock protects fast-path update operations, user-space
1293  * requests are serialized using a mutex to reduce the risk of conflicting
1294  * updates or API abuses.
1295  */
1296 static DEFINE_MUTEX(uclamp_mutex);
1297 
1298 /* Max allowed minimum utilization */
1299 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1300 
1301 /* Max allowed maximum utilization */
1302 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1303 
1304 /*
1305  * By default RT tasks run at the maximum performance point/capacity of the
1306  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1307  * SCHED_CAPACITY_SCALE.
1308  *
1309  * This knob allows admins to change the default behavior when uclamp is being
1310  * used. In battery powered devices, particularly, running at the maximum
1311  * capacity and frequency will increase energy consumption and shorten the
1312  * battery life.
1313  *
1314  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1315  *
1316  * This knob will not override the system default sched_util_clamp_min defined
1317  * above.
1318  */
1319 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1320 
1321 /* All clamps are required to be less or equal than these values */
1322 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1323 
1324 /*
1325  * This static key is used to reduce the uclamp overhead in the fast path. It
1326  * primarily disables the call to uclamp_rq_{inc, dec}() in
1327  * enqueue/dequeue_task().
1328  *
1329  * This allows users to continue to enable uclamp in their kernel config with
1330  * minimum uclamp overhead in the fast path.
1331  *
1332  * As soon as userspace modifies any of the uclamp knobs, the static key is
1333  * enabled, since we have an actual users that make use of uclamp
1334  * functionality.
1335  *
1336  * The knobs that would enable this static key are:
1337  *
1338  *   * A task modifying its uclamp value with sched_setattr().
1339  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1340  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1341  */
1342 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1343 
1344 /* Integer rounded range for each bucket */
1345 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1346 
1347 #define for_each_clamp_id(clamp_id) \
1348 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1349 
1350 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1351 {
1352 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1353 }
1354 
1355 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1356 {
1357 	if (clamp_id == UCLAMP_MIN)
1358 		return 0;
1359 	return SCHED_CAPACITY_SCALE;
1360 }
1361 
1362 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1363 				 unsigned int value, bool user_defined)
1364 {
1365 	uc_se->value = value;
1366 	uc_se->bucket_id = uclamp_bucket_id(value);
1367 	uc_se->user_defined = user_defined;
1368 }
1369 
1370 static inline unsigned int
1371 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1372 		  unsigned int clamp_value)
1373 {
1374 	/*
1375 	 * Avoid blocked utilization pushing up the frequency when we go
1376 	 * idle (which drops the max-clamp) by retaining the last known
1377 	 * max-clamp.
1378 	 */
1379 	if (clamp_id == UCLAMP_MAX) {
1380 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1381 		return clamp_value;
1382 	}
1383 
1384 	return uclamp_none(UCLAMP_MIN);
1385 }
1386 
1387 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1388 				     unsigned int clamp_value)
1389 {
1390 	/* Reset max-clamp retention only on idle exit */
1391 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1392 		return;
1393 
1394 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1395 }
1396 
1397 static inline
1398 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1399 				   unsigned int clamp_value)
1400 {
1401 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1402 	int bucket_id = UCLAMP_BUCKETS - 1;
1403 
1404 	/*
1405 	 * Since both min and max clamps are max aggregated, find the
1406 	 * top most bucket with tasks in.
1407 	 */
1408 	for ( ; bucket_id >= 0; bucket_id--) {
1409 		if (!bucket[bucket_id].tasks)
1410 			continue;
1411 		return bucket[bucket_id].value;
1412 	}
1413 
1414 	/* No tasks -- default clamp values */
1415 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1416 }
1417 
1418 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1419 {
1420 	unsigned int default_util_min;
1421 	struct uclamp_se *uc_se;
1422 
1423 	lockdep_assert_held(&p->pi_lock);
1424 
1425 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1426 
1427 	/* Only sync if user didn't override the default */
1428 	if (uc_se->user_defined)
1429 		return;
1430 
1431 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1432 	uclamp_se_set(uc_se, default_util_min, false);
1433 }
1434 
1435 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1436 {
1437 	struct rq_flags rf;
1438 	struct rq *rq;
1439 
1440 	if (!rt_task(p))
1441 		return;
1442 
1443 	/* Protect updates to p->uclamp_* */
1444 	rq = task_rq_lock(p, &rf);
1445 	__uclamp_update_util_min_rt_default(p);
1446 	task_rq_unlock(rq, p, &rf);
1447 }
1448 
1449 static inline struct uclamp_se
1450 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1451 {
1452 	/* Copy by value as we could modify it */
1453 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1454 #ifdef CONFIG_UCLAMP_TASK_GROUP
1455 	unsigned int tg_min, tg_max, value;
1456 
1457 	/*
1458 	 * Tasks in autogroups or root task group will be
1459 	 * restricted by system defaults.
1460 	 */
1461 	if (task_group_is_autogroup(task_group(p)))
1462 		return uc_req;
1463 	if (task_group(p) == &root_task_group)
1464 		return uc_req;
1465 
1466 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1467 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1468 	value = uc_req.value;
1469 	value = clamp(value, tg_min, tg_max);
1470 	uclamp_se_set(&uc_req, value, false);
1471 #endif
1472 
1473 	return uc_req;
1474 }
1475 
1476 /*
1477  * The effective clamp bucket index of a task depends on, by increasing
1478  * priority:
1479  * - the task specific clamp value, when explicitly requested from userspace
1480  * - the task group effective clamp value, for tasks not either in the root
1481  *   group or in an autogroup
1482  * - the system default clamp value, defined by the sysadmin
1483  */
1484 static inline struct uclamp_se
1485 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1486 {
1487 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1488 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1489 
1490 	/* System default restrictions always apply */
1491 	if (unlikely(uc_req.value > uc_max.value))
1492 		return uc_max;
1493 
1494 	return uc_req;
1495 }
1496 
1497 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1498 {
1499 	struct uclamp_se uc_eff;
1500 
1501 	/* Task currently refcounted: use back-annotated (effective) value */
1502 	if (p->uclamp[clamp_id].active)
1503 		return (unsigned long)p->uclamp[clamp_id].value;
1504 
1505 	uc_eff = uclamp_eff_get(p, clamp_id);
1506 
1507 	return (unsigned long)uc_eff.value;
1508 }
1509 
1510 /*
1511  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1512  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1513  * updates the rq's clamp value if required.
1514  *
1515  * Tasks can have a task-specific value requested from user-space, track
1516  * within each bucket the maximum value for tasks refcounted in it.
1517  * This "local max aggregation" allows to track the exact "requested" value
1518  * for each bucket when all its RUNNABLE tasks require the same clamp.
1519  */
1520 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1521 				    enum uclamp_id clamp_id)
1522 {
1523 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1524 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1525 	struct uclamp_bucket *bucket;
1526 
1527 	lockdep_assert_rq_held(rq);
1528 
1529 	/* Update task effective clamp */
1530 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1531 
1532 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1533 	bucket->tasks++;
1534 	uc_se->active = true;
1535 
1536 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1537 
1538 	/*
1539 	 * Local max aggregation: rq buckets always track the max
1540 	 * "requested" clamp value of its RUNNABLE tasks.
1541 	 */
1542 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1543 		bucket->value = uc_se->value;
1544 
1545 	if (uc_se->value > READ_ONCE(uc_rq->value))
1546 		WRITE_ONCE(uc_rq->value, uc_se->value);
1547 }
1548 
1549 /*
1550  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1551  * is released. If this is the last task reference counting the rq's max
1552  * active clamp value, then the rq's clamp value is updated.
1553  *
1554  * Both refcounted tasks and rq's cached clamp values are expected to be
1555  * always valid. If it's detected they are not, as defensive programming,
1556  * enforce the expected state and warn.
1557  */
1558 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1559 				    enum uclamp_id clamp_id)
1560 {
1561 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1562 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1563 	struct uclamp_bucket *bucket;
1564 	unsigned int bkt_clamp;
1565 	unsigned int rq_clamp;
1566 
1567 	lockdep_assert_rq_held(rq);
1568 
1569 	/*
1570 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1571 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1572 	 *
1573 	 * In this case the uc_se->active flag should be false since no uclamp
1574 	 * accounting was performed at enqueue time and we can just return
1575 	 * here.
1576 	 *
1577 	 * Need to be careful of the following enqueue/dequeue ordering
1578 	 * problem too
1579 	 *
1580 	 *	enqueue(taskA)
1581 	 *	// sched_uclamp_used gets enabled
1582 	 *	enqueue(taskB)
1583 	 *	dequeue(taskA)
1584 	 *	// Must not decrement bucket->tasks here
1585 	 *	dequeue(taskB)
1586 	 *
1587 	 * where we could end up with stale data in uc_se and
1588 	 * bucket[uc_se->bucket_id].
1589 	 *
1590 	 * The following check here eliminates the possibility of such race.
1591 	 */
1592 	if (unlikely(!uc_se->active))
1593 		return;
1594 
1595 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1596 
1597 	SCHED_WARN_ON(!bucket->tasks);
1598 	if (likely(bucket->tasks))
1599 		bucket->tasks--;
1600 
1601 	uc_se->active = false;
1602 
1603 	/*
1604 	 * Keep "local max aggregation" simple and accept to (possibly)
1605 	 * overboost some RUNNABLE tasks in the same bucket.
1606 	 * The rq clamp bucket value is reset to its base value whenever
1607 	 * there are no more RUNNABLE tasks refcounting it.
1608 	 */
1609 	if (likely(bucket->tasks))
1610 		return;
1611 
1612 	rq_clamp = READ_ONCE(uc_rq->value);
1613 	/*
1614 	 * Defensive programming: this should never happen. If it happens,
1615 	 * e.g. due to future modification, warn and fixup the expected value.
1616 	 */
1617 	SCHED_WARN_ON(bucket->value > rq_clamp);
1618 	if (bucket->value >= rq_clamp) {
1619 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1620 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1621 	}
1622 }
1623 
1624 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1625 {
1626 	enum uclamp_id clamp_id;
1627 
1628 	/*
1629 	 * Avoid any overhead until uclamp is actually used by the userspace.
1630 	 *
1631 	 * The condition is constructed such that a NOP is generated when
1632 	 * sched_uclamp_used is disabled.
1633 	 */
1634 	if (!static_branch_unlikely(&sched_uclamp_used))
1635 		return;
1636 
1637 	if (unlikely(!p->sched_class->uclamp_enabled))
1638 		return;
1639 
1640 	for_each_clamp_id(clamp_id)
1641 		uclamp_rq_inc_id(rq, p, clamp_id);
1642 
1643 	/* Reset clamp idle holding when there is one RUNNABLE task */
1644 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1645 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1646 }
1647 
1648 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1649 {
1650 	enum uclamp_id clamp_id;
1651 
1652 	/*
1653 	 * Avoid any overhead until uclamp is actually used by the userspace.
1654 	 *
1655 	 * The condition is constructed such that a NOP is generated when
1656 	 * sched_uclamp_used is disabled.
1657 	 */
1658 	if (!static_branch_unlikely(&sched_uclamp_used))
1659 		return;
1660 
1661 	if (unlikely(!p->sched_class->uclamp_enabled))
1662 		return;
1663 
1664 	for_each_clamp_id(clamp_id)
1665 		uclamp_rq_dec_id(rq, p, clamp_id);
1666 }
1667 
1668 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1669 				      enum uclamp_id clamp_id)
1670 {
1671 	if (!p->uclamp[clamp_id].active)
1672 		return;
1673 
1674 	uclamp_rq_dec_id(rq, p, clamp_id);
1675 	uclamp_rq_inc_id(rq, p, clamp_id);
1676 
1677 	/*
1678 	 * Make sure to clear the idle flag if we've transiently reached 0
1679 	 * active tasks on rq.
1680 	 */
1681 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1682 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1683 }
1684 
1685 static inline void
1686 uclamp_update_active(struct task_struct *p)
1687 {
1688 	enum uclamp_id clamp_id;
1689 	struct rq_flags rf;
1690 	struct rq *rq;
1691 
1692 	/*
1693 	 * Lock the task and the rq where the task is (or was) queued.
1694 	 *
1695 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1696 	 * price to pay to safely serialize util_{min,max} updates with
1697 	 * enqueues, dequeues and migration operations.
1698 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1699 	 */
1700 	rq = task_rq_lock(p, &rf);
1701 
1702 	/*
1703 	 * Setting the clamp bucket is serialized by task_rq_lock().
1704 	 * If the task is not yet RUNNABLE and its task_struct is not
1705 	 * affecting a valid clamp bucket, the next time it's enqueued,
1706 	 * it will already see the updated clamp bucket value.
1707 	 */
1708 	for_each_clamp_id(clamp_id)
1709 		uclamp_rq_reinc_id(rq, p, clamp_id);
1710 
1711 	task_rq_unlock(rq, p, &rf);
1712 }
1713 
1714 #ifdef CONFIG_UCLAMP_TASK_GROUP
1715 static inline void
1716 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1717 {
1718 	struct css_task_iter it;
1719 	struct task_struct *p;
1720 
1721 	css_task_iter_start(css, 0, &it);
1722 	while ((p = css_task_iter_next(&it)))
1723 		uclamp_update_active(p);
1724 	css_task_iter_end(&it);
1725 }
1726 
1727 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1728 #endif
1729 
1730 #ifdef CONFIG_SYSCTL
1731 #ifdef CONFIG_UCLAMP_TASK
1732 #ifdef CONFIG_UCLAMP_TASK_GROUP
1733 static void uclamp_update_root_tg(void)
1734 {
1735 	struct task_group *tg = &root_task_group;
1736 
1737 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1738 		      sysctl_sched_uclamp_util_min, false);
1739 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1740 		      sysctl_sched_uclamp_util_max, false);
1741 
1742 	rcu_read_lock();
1743 	cpu_util_update_eff(&root_task_group.css);
1744 	rcu_read_unlock();
1745 }
1746 #else
1747 static void uclamp_update_root_tg(void) { }
1748 #endif
1749 
1750 static void uclamp_sync_util_min_rt_default(void)
1751 {
1752 	struct task_struct *g, *p;
1753 
1754 	/*
1755 	 * copy_process()			sysctl_uclamp
1756 	 *					  uclamp_min_rt = X;
1757 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1758 	 *   // link thread			  smp_mb__after_spinlock()
1759 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1760 	 *   sched_post_fork()			  for_each_process_thread()
1761 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1762 	 *
1763 	 * Ensures that either sched_post_fork() will observe the new
1764 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1765 	 * task.
1766 	 */
1767 	read_lock(&tasklist_lock);
1768 	smp_mb__after_spinlock();
1769 	read_unlock(&tasklist_lock);
1770 
1771 	rcu_read_lock();
1772 	for_each_process_thread(g, p)
1773 		uclamp_update_util_min_rt_default(p);
1774 	rcu_read_unlock();
1775 }
1776 
1777 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1778 				void *buffer, size_t *lenp, loff_t *ppos)
1779 {
1780 	bool update_root_tg = false;
1781 	int old_min, old_max, old_min_rt;
1782 	int result;
1783 
1784 	mutex_lock(&uclamp_mutex);
1785 	old_min = sysctl_sched_uclamp_util_min;
1786 	old_max = sysctl_sched_uclamp_util_max;
1787 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1788 
1789 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1790 	if (result)
1791 		goto undo;
1792 	if (!write)
1793 		goto done;
1794 
1795 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1796 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1797 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1798 
1799 		result = -EINVAL;
1800 		goto undo;
1801 	}
1802 
1803 	if (old_min != sysctl_sched_uclamp_util_min) {
1804 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1805 			      sysctl_sched_uclamp_util_min, false);
1806 		update_root_tg = true;
1807 	}
1808 	if (old_max != sysctl_sched_uclamp_util_max) {
1809 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1810 			      sysctl_sched_uclamp_util_max, false);
1811 		update_root_tg = true;
1812 	}
1813 
1814 	if (update_root_tg) {
1815 		static_branch_enable(&sched_uclamp_used);
1816 		uclamp_update_root_tg();
1817 	}
1818 
1819 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1820 		static_branch_enable(&sched_uclamp_used);
1821 		uclamp_sync_util_min_rt_default();
1822 	}
1823 
1824 	/*
1825 	 * We update all RUNNABLE tasks only when task groups are in use.
1826 	 * Otherwise, keep it simple and do just a lazy update at each next
1827 	 * task enqueue time.
1828 	 */
1829 
1830 	goto done;
1831 
1832 undo:
1833 	sysctl_sched_uclamp_util_min = old_min;
1834 	sysctl_sched_uclamp_util_max = old_max;
1835 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1836 done:
1837 	mutex_unlock(&uclamp_mutex);
1838 
1839 	return result;
1840 }
1841 #endif
1842 #endif
1843 
1844 static int uclamp_validate(struct task_struct *p,
1845 			   const struct sched_attr *attr)
1846 {
1847 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1848 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1849 
1850 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1851 		util_min = attr->sched_util_min;
1852 
1853 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1854 			return -EINVAL;
1855 	}
1856 
1857 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1858 		util_max = attr->sched_util_max;
1859 
1860 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1861 			return -EINVAL;
1862 	}
1863 
1864 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1865 		return -EINVAL;
1866 
1867 	/*
1868 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1869 	 *
1870 	 * We need to do that here, because enabling static branches is a
1871 	 * blocking operation which obviously cannot be done while holding
1872 	 * scheduler locks.
1873 	 */
1874 	static_branch_enable(&sched_uclamp_used);
1875 
1876 	return 0;
1877 }
1878 
1879 static bool uclamp_reset(const struct sched_attr *attr,
1880 			 enum uclamp_id clamp_id,
1881 			 struct uclamp_se *uc_se)
1882 {
1883 	/* Reset on sched class change for a non user-defined clamp value. */
1884 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1885 	    !uc_se->user_defined)
1886 		return true;
1887 
1888 	/* Reset on sched_util_{min,max} == -1. */
1889 	if (clamp_id == UCLAMP_MIN &&
1890 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1891 	    attr->sched_util_min == -1) {
1892 		return true;
1893 	}
1894 
1895 	if (clamp_id == UCLAMP_MAX &&
1896 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1897 	    attr->sched_util_max == -1) {
1898 		return true;
1899 	}
1900 
1901 	return false;
1902 }
1903 
1904 static void __setscheduler_uclamp(struct task_struct *p,
1905 				  const struct sched_attr *attr)
1906 {
1907 	enum uclamp_id clamp_id;
1908 
1909 	for_each_clamp_id(clamp_id) {
1910 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1911 		unsigned int value;
1912 
1913 		if (!uclamp_reset(attr, clamp_id, uc_se))
1914 			continue;
1915 
1916 		/*
1917 		 * RT by default have a 100% boost value that could be modified
1918 		 * at runtime.
1919 		 */
1920 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1921 			value = sysctl_sched_uclamp_util_min_rt_default;
1922 		else
1923 			value = uclamp_none(clamp_id);
1924 
1925 		uclamp_se_set(uc_se, value, false);
1926 
1927 	}
1928 
1929 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1930 		return;
1931 
1932 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1933 	    attr->sched_util_min != -1) {
1934 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1935 			      attr->sched_util_min, true);
1936 	}
1937 
1938 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1939 	    attr->sched_util_max != -1) {
1940 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1941 			      attr->sched_util_max, true);
1942 	}
1943 }
1944 
1945 static void uclamp_fork(struct task_struct *p)
1946 {
1947 	enum uclamp_id clamp_id;
1948 
1949 	/*
1950 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1951 	 * as the task is still at its early fork stages.
1952 	 */
1953 	for_each_clamp_id(clamp_id)
1954 		p->uclamp[clamp_id].active = false;
1955 
1956 	if (likely(!p->sched_reset_on_fork))
1957 		return;
1958 
1959 	for_each_clamp_id(clamp_id) {
1960 		uclamp_se_set(&p->uclamp_req[clamp_id],
1961 			      uclamp_none(clamp_id), false);
1962 	}
1963 }
1964 
1965 static void uclamp_post_fork(struct task_struct *p)
1966 {
1967 	uclamp_update_util_min_rt_default(p);
1968 }
1969 
1970 static void __init init_uclamp_rq(struct rq *rq)
1971 {
1972 	enum uclamp_id clamp_id;
1973 	struct uclamp_rq *uc_rq = rq->uclamp;
1974 
1975 	for_each_clamp_id(clamp_id) {
1976 		uc_rq[clamp_id] = (struct uclamp_rq) {
1977 			.value = uclamp_none(clamp_id)
1978 		};
1979 	}
1980 
1981 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1982 }
1983 
1984 static void __init init_uclamp(void)
1985 {
1986 	struct uclamp_se uc_max = {};
1987 	enum uclamp_id clamp_id;
1988 	int cpu;
1989 
1990 	for_each_possible_cpu(cpu)
1991 		init_uclamp_rq(cpu_rq(cpu));
1992 
1993 	for_each_clamp_id(clamp_id) {
1994 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1995 			      uclamp_none(clamp_id), false);
1996 	}
1997 
1998 	/* System defaults allow max clamp values for both indexes */
1999 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2000 	for_each_clamp_id(clamp_id) {
2001 		uclamp_default[clamp_id] = uc_max;
2002 #ifdef CONFIG_UCLAMP_TASK_GROUP
2003 		root_task_group.uclamp_req[clamp_id] = uc_max;
2004 		root_task_group.uclamp[clamp_id] = uc_max;
2005 #endif
2006 	}
2007 }
2008 
2009 #else /* CONFIG_UCLAMP_TASK */
2010 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2011 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2012 static inline int uclamp_validate(struct task_struct *p,
2013 				  const struct sched_attr *attr)
2014 {
2015 	return -EOPNOTSUPP;
2016 }
2017 static void __setscheduler_uclamp(struct task_struct *p,
2018 				  const struct sched_attr *attr) { }
2019 static inline void uclamp_fork(struct task_struct *p) { }
2020 static inline void uclamp_post_fork(struct task_struct *p) { }
2021 static inline void init_uclamp(void) { }
2022 #endif /* CONFIG_UCLAMP_TASK */
2023 
2024 bool sched_task_on_rq(struct task_struct *p)
2025 {
2026 	return task_on_rq_queued(p);
2027 }
2028 
2029 unsigned long get_wchan(struct task_struct *p)
2030 {
2031 	unsigned long ip = 0;
2032 	unsigned int state;
2033 
2034 	if (!p || p == current)
2035 		return 0;
2036 
2037 	/* Only get wchan if task is blocked and we can keep it that way. */
2038 	raw_spin_lock_irq(&p->pi_lock);
2039 	state = READ_ONCE(p->__state);
2040 	smp_rmb(); /* see try_to_wake_up() */
2041 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2042 		ip = __get_wchan(p);
2043 	raw_spin_unlock_irq(&p->pi_lock);
2044 
2045 	return ip;
2046 }
2047 
2048 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2049 {
2050 	if (!(flags & ENQUEUE_NOCLOCK))
2051 		update_rq_clock(rq);
2052 
2053 	if (!(flags & ENQUEUE_RESTORE)) {
2054 		sched_info_enqueue(rq, p);
2055 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
2056 	}
2057 
2058 	uclamp_rq_inc(rq, p);
2059 	p->sched_class->enqueue_task(rq, p, flags);
2060 
2061 	if (sched_core_enabled(rq))
2062 		sched_core_enqueue(rq, p);
2063 }
2064 
2065 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2066 {
2067 	if (sched_core_enabled(rq))
2068 		sched_core_dequeue(rq, p, flags);
2069 
2070 	if (!(flags & DEQUEUE_NOCLOCK))
2071 		update_rq_clock(rq);
2072 
2073 	if (!(flags & DEQUEUE_SAVE)) {
2074 		sched_info_dequeue(rq, p);
2075 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2076 	}
2077 
2078 	uclamp_rq_dec(rq, p);
2079 	p->sched_class->dequeue_task(rq, p, flags);
2080 }
2081 
2082 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2083 {
2084 	enqueue_task(rq, p, flags);
2085 
2086 	p->on_rq = TASK_ON_RQ_QUEUED;
2087 }
2088 
2089 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2090 {
2091 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2092 
2093 	dequeue_task(rq, p, flags);
2094 }
2095 
2096 static inline int __normal_prio(int policy, int rt_prio, int nice)
2097 {
2098 	int prio;
2099 
2100 	if (dl_policy(policy))
2101 		prio = MAX_DL_PRIO - 1;
2102 	else if (rt_policy(policy))
2103 		prio = MAX_RT_PRIO - 1 - rt_prio;
2104 	else
2105 		prio = NICE_TO_PRIO(nice);
2106 
2107 	return prio;
2108 }
2109 
2110 /*
2111  * Calculate the expected normal priority: i.e. priority
2112  * without taking RT-inheritance into account. Might be
2113  * boosted by interactivity modifiers. Changes upon fork,
2114  * setprio syscalls, and whenever the interactivity
2115  * estimator recalculates.
2116  */
2117 static inline int normal_prio(struct task_struct *p)
2118 {
2119 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2120 }
2121 
2122 /*
2123  * Calculate the current priority, i.e. the priority
2124  * taken into account by the scheduler. This value might
2125  * be boosted by RT tasks, or might be boosted by
2126  * interactivity modifiers. Will be RT if the task got
2127  * RT-boosted. If not then it returns p->normal_prio.
2128  */
2129 static int effective_prio(struct task_struct *p)
2130 {
2131 	p->normal_prio = normal_prio(p);
2132 	/*
2133 	 * If we are RT tasks or we were boosted to RT priority,
2134 	 * keep the priority unchanged. Otherwise, update priority
2135 	 * to the normal priority:
2136 	 */
2137 	if (!rt_prio(p->prio))
2138 		return p->normal_prio;
2139 	return p->prio;
2140 }
2141 
2142 /**
2143  * task_curr - is this task currently executing on a CPU?
2144  * @p: the task in question.
2145  *
2146  * Return: 1 if the task is currently executing. 0 otherwise.
2147  */
2148 inline int task_curr(const struct task_struct *p)
2149 {
2150 	return cpu_curr(task_cpu(p)) == p;
2151 }
2152 
2153 /*
2154  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2155  * use the balance_callback list if you want balancing.
2156  *
2157  * this means any call to check_class_changed() must be followed by a call to
2158  * balance_callback().
2159  */
2160 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2161 				       const struct sched_class *prev_class,
2162 				       int oldprio)
2163 {
2164 	if (prev_class != p->sched_class) {
2165 		if (prev_class->switched_from)
2166 			prev_class->switched_from(rq, p);
2167 
2168 		p->sched_class->switched_to(rq, p);
2169 	} else if (oldprio != p->prio || dl_task(p))
2170 		p->sched_class->prio_changed(rq, p, oldprio);
2171 }
2172 
2173 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2174 {
2175 	if (p->sched_class == rq->curr->sched_class)
2176 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2177 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2178 		resched_curr(rq);
2179 
2180 	/*
2181 	 * A queue event has occurred, and we're going to schedule.  In
2182 	 * this case, we can save a useless back to back clock update.
2183 	 */
2184 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2185 		rq_clock_skip_update(rq);
2186 }
2187 
2188 #ifdef CONFIG_SMP
2189 
2190 static void
2191 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2192 
2193 static int __set_cpus_allowed_ptr(struct task_struct *p,
2194 				  const struct cpumask *new_mask,
2195 				  u32 flags);
2196 
2197 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2198 {
2199 	if (likely(!p->migration_disabled))
2200 		return;
2201 
2202 	if (p->cpus_ptr != &p->cpus_mask)
2203 		return;
2204 
2205 	/*
2206 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2207 	 */
2208 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2209 }
2210 
2211 void migrate_disable(void)
2212 {
2213 	struct task_struct *p = current;
2214 
2215 	if (p->migration_disabled) {
2216 		p->migration_disabled++;
2217 		return;
2218 	}
2219 
2220 	preempt_disable();
2221 	this_rq()->nr_pinned++;
2222 	p->migration_disabled = 1;
2223 	preempt_enable();
2224 }
2225 EXPORT_SYMBOL_GPL(migrate_disable);
2226 
2227 void migrate_enable(void)
2228 {
2229 	struct task_struct *p = current;
2230 
2231 	if (p->migration_disabled > 1) {
2232 		p->migration_disabled--;
2233 		return;
2234 	}
2235 
2236 	if (WARN_ON_ONCE(!p->migration_disabled))
2237 		return;
2238 
2239 	/*
2240 	 * Ensure stop_task runs either before or after this, and that
2241 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2242 	 */
2243 	preempt_disable();
2244 	if (p->cpus_ptr != &p->cpus_mask)
2245 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2246 	/*
2247 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2248 	 * regular cpus_mask, otherwise things that race (eg.
2249 	 * select_fallback_rq) get confused.
2250 	 */
2251 	barrier();
2252 	p->migration_disabled = 0;
2253 	this_rq()->nr_pinned--;
2254 	preempt_enable();
2255 }
2256 EXPORT_SYMBOL_GPL(migrate_enable);
2257 
2258 static inline bool rq_has_pinned_tasks(struct rq *rq)
2259 {
2260 	return rq->nr_pinned;
2261 }
2262 
2263 /*
2264  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2265  * __set_cpus_allowed_ptr() and select_fallback_rq().
2266  */
2267 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2268 {
2269 	/* When not in the task's cpumask, no point in looking further. */
2270 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2271 		return false;
2272 
2273 	/* migrate_disabled() must be allowed to finish. */
2274 	if (is_migration_disabled(p))
2275 		return cpu_online(cpu);
2276 
2277 	/* Non kernel threads are not allowed during either online or offline. */
2278 	if (!(p->flags & PF_KTHREAD))
2279 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2280 
2281 	/* KTHREAD_IS_PER_CPU is always allowed. */
2282 	if (kthread_is_per_cpu(p))
2283 		return cpu_online(cpu);
2284 
2285 	/* Regular kernel threads don't get to stay during offline. */
2286 	if (cpu_dying(cpu))
2287 		return false;
2288 
2289 	/* But are allowed during online. */
2290 	return cpu_online(cpu);
2291 }
2292 
2293 /*
2294  * This is how migration works:
2295  *
2296  * 1) we invoke migration_cpu_stop() on the target CPU using
2297  *    stop_one_cpu().
2298  * 2) stopper starts to run (implicitly forcing the migrated thread
2299  *    off the CPU)
2300  * 3) it checks whether the migrated task is still in the wrong runqueue.
2301  * 4) if it's in the wrong runqueue then the migration thread removes
2302  *    it and puts it into the right queue.
2303  * 5) stopper completes and stop_one_cpu() returns and the migration
2304  *    is done.
2305  */
2306 
2307 /*
2308  * move_queued_task - move a queued task to new rq.
2309  *
2310  * Returns (locked) new rq. Old rq's lock is released.
2311  */
2312 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2313 				   struct task_struct *p, int new_cpu)
2314 {
2315 	lockdep_assert_rq_held(rq);
2316 
2317 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2318 	set_task_cpu(p, new_cpu);
2319 	rq_unlock(rq, rf);
2320 
2321 	rq = cpu_rq(new_cpu);
2322 
2323 	rq_lock(rq, rf);
2324 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2325 	activate_task(rq, p, 0);
2326 	check_preempt_curr(rq, p, 0);
2327 
2328 	return rq;
2329 }
2330 
2331 struct migration_arg {
2332 	struct task_struct		*task;
2333 	int				dest_cpu;
2334 	struct set_affinity_pending	*pending;
2335 };
2336 
2337 /*
2338  * @refs: number of wait_for_completion()
2339  * @stop_pending: is @stop_work in use
2340  */
2341 struct set_affinity_pending {
2342 	refcount_t		refs;
2343 	unsigned int		stop_pending;
2344 	struct completion	done;
2345 	struct cpu_stop_work	stop_work;
2346 	struct migration_arg	arg;
2347 };
2348 
2349 /*
2350  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2351  * this because either it can't run here any more (set_cpus_allowed()
2352  * away from this CPU, or CPU going down), or because we're
2353  * attempting to rebalance this task on exec (sched_exec).
2354  *
2355  * So we race with normal scheduler movements, but that's OK, as long
2356  * as the task is no longer on this CPU.
2357  */
2358 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2359 				 struct task_struct *p, int dest_cpu)
2360 {
2361 	/* Affinity changed (again). */
2362 	if (!is_cpu_allowed(p, dest_cpu))
2363 		return rq;
2364 
2365 	update_rq_clock(rq);
2366 	rq = move_queued_task(rq, rf, p, dest_cpu);
2367 
2368 	return rq;
2369 }
2370 
2371 /*
2372  * migration_cpu_stop - this will be executed by a highprio stopper thread
2373  * and performs thread migration by bumping thread off CPU then
2374  * 'pushing' onto another runqueue.
2375  */
2376 static int migration_cpu_stop(void *data)
2377 {
2378 	struct migration_arg *arg = data;
2379 	struct set_affinity_pending *pending = arg->pending;
2380 	struct task_struct *p = arg->task;
2381 	struct rq *rq = this_rq();
2382 	bool complete = false;
2383 	struct rq_flags rf;
2384 
2385 	/*
2386 	 * The original target CPU might have gone down and we might
2387 	 * be on another CPU but it doesn't matter.
2388 	 */
2389 	local_irq_save(rf.flags);
2390 	/*
2391 	 * We need to explicitly wake pending tasks before running
2392 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2393 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2394 	 */
2395 	flush_smp_call_function_queue();
2396 
2397 	raw_spin_lock(&p->pi_lock);
2398 	rq_lock(rq, &rf);
2399 
2400 	/*
2401 	 * If we were passed a pending, then ->stop_pending was set, thus
2402 	 * p->migration_pending must have remained stable.
2403 	 */
2404 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2405 
2406 	/*
2407 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2408 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2409 	 * we're holding p->pi_lock.
2410 	 */
2411 	if (task_rq(p) == rq) {
2412 		if (is_migration_disabled(p))
2413 			goto out;
2414 
2415 		if (pending) {
2416 			p->migration_pending = NULL;
2417 			complete = true;
2418 
2419 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2420 				goto out;
2421 		}
2422 
2423 		if (task_on_rq_queued(p))
2424 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2425 		else
2426 			p->wake_cpu = arg->dest_cpu;
2427 
2428 		/*
2429 		 * XXX __migrate_task() can fail, at which point we might end
2430 		 * up running on a dodgy CPU, AFAICT this can only happen
2431 		 * during CPU hotplug, at which point we'll get pushed out
2432 		 * anyway, so it's probably not a big deal.
2433 		 */
2434 
2435 	} else if (pending) {
2436 		/*
2437 		 * This happens when we get migrated between migrate_enable()'s
2438 		 * preempt_enable() and scheduling the stopper task. At that
2439 		 * point we're a regular task again and not current anymore.
2440 		 *
2441 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2442 		 * more likely.
2443 		 */
2444 
2445 		/*
2446 		 * The task moved before the stopper got to run. We're holding
2447 		 * ->pi_lock, so the allowed mask is stable - if it got
2448 		 * somewhere allowed, we're done.
2449 		 */
2450 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2451 			p->migration_pending = NULL;
2452 			complete = true;
2453 			goto out;
2454 		}
2455 
2456 		/*
2457 		 * When migrate_enable() hits a rq mis-match we can't reliably
2458 		 * determine is_migration_disabled() and so have to chase after
2459 		 * it.
2460 		 */
2461 		WARN_ON_ONCE(!pending->stop_pending);
2462 		task_rq_unlock(rq, p, &rf);
2463 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2464 				    &pending->arg, &pending->stop_work);
2465 		return 0;
2466 	}
2467 out:
2468 	if (pending)
2469 		pending->stop_pending = false;
2470 	task_rq_unlock(rq, p, &rf);
2471 
2472 	if (complete)
2473 		complete_all(&pending->done);
2474 
2475 	return 0;
2476 }
2477 
2478 int push_cpu_stop(void *arg)
2479 {
2480 	struct rq *lowest_rq = NULL, *rq = this_rq();
2481 	struct task_struct *p = arg;
2482 
2483 	raw_spin_lock_irq(&p->pi_lock);
2484 	raw_spin_rq_lock(rq);
2485 
2486 	if (task_rq(p) != rq)
2487 		goto out_unlock;
2488 
2489 	if (is_migration_disabled(p)) {
2490 		p->migration_flags |= MDF_PUSH;
2491 		goto out_unlock;
2492 	}
2493 
2494 	p->migration_flags &= ~MDF_PUSH;
2495 
2496 	if (p->sched_class->find_lock_rq)
2497 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2498 
2499 	if (!lowest_rq)
2500 		goto out_unlock;
2501 
2502 	// XXX validate p is still the highest prio task
2503 	if (task_rq(p) == rq) {
2504 		deactivate_task(rq, p, 0);
2505 		set_task_cpu(p, lowest_rq->cpu);
2506 		activate_task(lowest_rq, p, 0);
2507 		resched_curr(lowest_rq);
2508 	}
2509 
2510 	double_unlock_balance(rq, lowest_rq);
2511 
2512 out_unlock:
2513 	rq->push_busy = false;
2514 	raw_spin_rq_unlock(rq);
2515 	raw_spin_unlock_irq(&p->pi_lock);
2516 
2517 	put_task_struct(p);
2518 	return 0;
2519 }
2520 
2521 /*
2522  * sched_class::set_cpus_allowed must do the below, but is not required to
2523  * actually call this function.
2524  */
2525 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2526 {
2527 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2528 		p->cpus_ptr = new_mask;
2529 		return;
2530 	}
2531 
2532 	cpumask_copy(&p->cpus_mask, new_mask);
2533 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2534 }
2535 
2536 static void
2537 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2538 {
2539 	struct rq *rq = task_rq(p);
2540 	bool queued, running;
2541 
2542 	/*
2543 	 * This here violates the locking rules for affinity, since we're only
2544 	 * supposed to change these variables while holding both rq->lock and
2545 	 * p->pi_lock.
2546 	 *
2547 	 * HOWEVER, it magically works, because ttwu() is the only code that
2548 	 * accesses these variables under p->pi_lock and only does so after
2549 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2550 	 * before finish_task().
2551 	 *
2552 	 * XXX do further audits, this smells like something putrid.
2553 	 */
2554 	if (flags & SCA_MIGRATE_DISABLE)
2555 		SCHED_WARN_ON(!p->on_cpu);
2556 	else
2557 		lockdep_assert_held(&p->pi_lock);
2558 
2559 	queued = task_on_rq_queued(p);
2560 	running = task_current(rq, p);
2561 
2562 	if (queued) {
2563 		/*
2564 		 * Because __kthread_bind() calls this on blocked tasks without
2565 		 * holding rq->lock.
2566 		 */
2567 		lockdep_assert_rq_held(rq);
2568 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2569 	}
2570 	if (running)
2571 		put_prev_task(rq, p);
2572 
2573 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2574 
2575 	if (queued)
2576 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2577 	if (running)
2578 		set_next_task(rq, p);
2579 }
2580 
2581 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2582 {
2583 	__do_set_cpus_allowed(p, new_mask, 0);
2584 }
2585 
2586 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2587 		      int node)
2588 {
2589 	if (!src->user_cpus_ptr)
2590 		return 0;
2591 
2592 	dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2593 	if (!dst->user_cpus_ptr)
2594 		return -ENOMEM;
2595 
2596 	cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2597 	return 0;
2598 }
2599 
2600 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2601 {
2602 	struct cpumask *user_mask = NULL;
2603 
2604 	swap(p->user_cpus_ptr, user_mask);
2605 
2606 	return user_mask;
2607 }
2608 
2609 void release_user_cpus_ptr(struct task_struct *p)
2610 {
2611 	kfree(clear_user_cpus_ptr(p));
2612 }
2613 
2614 /*
2615  * This function is wildly self concurrent; here be dragons.
2616  *
2617  *
2618  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2619  * designated task is enqueued on an allowed CPU. If that task is currently
2620  * running, we have to kick it out using the CPU stopper.
2621  *
2622  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2623  * Consider:
2624  *
2625  *     Initial conditions: P0->cpus_mask = [0, 1]
2626  *
2627  *     P0@CPU0                  P1
2628  *
2629  *     migrate_disable();
2630  *     <preempted>
2631  *                              set_cpus_allowed_ptr(P0, [1]);
2632  *
2633  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2634  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2635  * This means we need the following scheme:
2636  *
2637  *     P0@CPU0                  P1
2638  *
2639  *     migrate_disable();
2640  *     <preempted>
2641  *                              set_cpus_allowed_ptr(P0, [1]);
2642  *                                <blocks>
2643  *     <resumes>
2644  *     migrate_enable();
2645  *       __set_cpus_allowed_ptr();
2646  *       <wakes local stopper>
2647  *                         `--> <woken on migration completion>
2648  *
2649  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2650  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2651  * task p are serialized by p->pi_lock, which we can leverage: the one that
2652  * should come into effect at the end of the Migrate-Disable region is the last
2653  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2654  * but we still need to properly signal those waiting tasks at the appropriate
2655  * moment.
2656  *
2657  * This is implemented using struct set_affinity_pending. The first
2658  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2659  * setup an instance of that struct and install it on the targeted task_struct.
2660  * Any and all further callers will reuse that instance. Those then wait for
2661  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2662  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2663  *
2664  *
2665  * (1) In the cases covered above. There is one more where the completion is
2666  * signaled within affine_move_task() itself: when a subsequent affinity request
2667  * occurs after the stopper bailed out due to the targeted task still being
2668  * Migrate-Disable. Consider:
2669  *
2670  *     Initial conditions: P0->cpus_mask = [0, 1]
2671  *
2672  *     CPU0		  P1				P2
2673  *     <P0>
2674  *       migrate_disable();
2675  *       <preempted>
2676  *                        set_cpus_allowed_ptr(P0, [1]);
2677  *                          <blocks>
2678  *     <migration/0>
2679  *       migration_cpu_stop()
2680  *         is_migration_disabled()
2681  *           <bails>
2682  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2683  *                                                         <signal completion>
2684  *                          <awakes>
2685  *
2686  * Note that the above is safe vs a concurrent migrate_enable(), as any
2687  * pending affinity completion is preceded by an uninstallation of
2688  * p->migration_pending done with p->pi_lock held.
2689  */
2690 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2691 			    int dest_cpu, unsigned int flags)
2692 {
2693 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2694 	bool stop_pending, complete = false;
2695 
2696 	/* Can the task run on the task's current CPU? If so, we're done */
2697 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2698 		struct task_struct *push_task = NULL;
2699 
2700 		if ((flags & SCA_MIGRATE_ENABLE) &&
2701 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2702 			rq->push_busy = true;
2703 			push_task = get_task_struct(p);
2704 		}
2705 
2706 		/*
2707 		 * If there are pending waiters, but no pending stop_work,
2708 		 * then complete now.
2709 		 */
2710 		pending = p->migration_pending;
2711 		if (pending && !pending->stop_pending) {
2712 			p->migration_pending = NULL;
2713 			complete = true;
2714 		}
2715 
2716 		task_rq_unlock(rq, p, rf);
2717 
2718 		if (push_task) {
2719 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2720 					    p, &rq->push_work);
2721 		}
2722 
2723 		if (complete)
2724 			complete_all(&pending->done);
2725 
2726 		return 0;
2727 	}
2728 
2729 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2730 		/* serialized by p->pi_lock */
2731 		if (!p->migration_pending) {
2732 			/* Install the request */
2733 			refcount_set(&my_pending.refs, 1);
2734 			init_completion(&my_pending.done);
2735 			my_pending.arg = (struct migration_arg) {
2736 				.task = p,
2737 				.dest_cpu = dest_cpu,
2738 				.pending = &my_pending,
2739 			};
2740 
2741 			p->migration_pending = &my_pending;
2742 		} else {
2743 			pending = p->migration_pending;
2744 			refcount_inc(&pending->refs);
2745 			/*
2746 			 * Affinity has changed, but we've already installed a
2747 			 * pending. migration_cpu_stop() *must* see this, else
2748 			 * we risk a completion of the pending despite having a
2749 			 * task on a disallowed CPU.
2750 			 *
2751 			 * Serialized by p->pi_lock, so this is safe.
2752 			 */
2753 			pending->arg.dest_cpu = dest_cpu;
2754 		}
2755 	}
2756 	pending = p->migration_pending;
2757 	/*
2758 	 * - !MIGRATE_ENABLE:
2759 	 *   we'll have installed a pending if there wasn't one already.
2760 	 *
2761 	 * - MIGRATE_ENABLE:
2762 	 *   we're here because the current CPU isn't matching anymore,
2763 	 *   the only way that can happen is because of a concurrent
2764 	 *   set_cpus_allowed_ptr() call, which should then still be
2765 	 *   pending completion.
2766 	 *
2767 	 * Either way, we really should have a @pending here.
2768 	 */
2769 	if (WARN_ON_ONCE(!pending)) {
2770 		task_rq_unlock(rq, p, rf);
2771 		return -EINVAL;
2772 	}
2773 
2774 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2775 		/*
2776 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2777 		 * anything else we cannot do is_migration_disabled(), punt
2778 		 * and have the stopper function handle it all race-free.
2779 		 */
2780 		stop_pending = pending->stop_pending;
2781 		if (!stop_pending)
2782 			pending->stop_pending = true;
2783 
2784 		if (flags & SCA_MIGRATE_ENABLE)
2785 			p->migration_flags &= ~MDF_PUSH;
2786 
2787 		task_rq_unlock(rq, p, rf);
2788 
2789 		if (!stop_pending) {
2790 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2791 					    &pending->arg, &pending->stop_work);
2792 		}
2793 
2794 		if (flags & SCA_MIGRATE_ENABLE)
2795 			return 0;
2796 	} else {
2797 
2798 		if (!is_migration_disabled(p)) {
2799 			if (task_on_rq_queued(p))
2800 				rq = move_queued_task(rq, rf, p, dest_cpu);
2801 
2802 			if (!pending->stop_pending) {
2803 				p->migration_pending = NULL;
2804 				complete = true;
2805 			}
2806 		}
2807 		task_rq_unlock(rq, p, rf);
2808 
2809 		if (complete)
2810 			complete_all(&pending->done);
2811 	}
2812 
2813 	wait_for_completion(&pending->done);
2814 
2815 	if (refcount_dec_and_test(&pending->refs))
2816 		wake_up_var(&pending->refs); /* No UaF, just an address */
2817 
2818 	/*
2819 	 * Block the original owner of &pending until all subsequent callers
2820 	 * have seen the completion and decremented the refcount
2821 	 */
2822 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2823 
2824 	/* ARGH */
2825 	WARN_ON_ONCE(my_pending.stop_pending);
2826 
2827 	return 0;
2828 }
2829 
2830 /*
2831  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2832  */
2833 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2834 					 const struct cpumask *new_mask,
2835 					 u32 flags,
2836 					 struct rq *rq,
2837 					 struct rq_flags *rf)
2838 	__releases(rq->lock)
2839 	__releases(p->pi_lock)
2840 {
2841 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2842 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2843 	bool kthread = p->flags & PF_KTHREAD;
2844 	struct cpumask *user_mask = NULL;
2845 	unsigned int dest_cpu;
2846 	int ret = 0;
2847 
2848 	update_rq_clock(rq);
2849 
2850 	if (kthread || is_migration_disabled(p)) {
2851 		/*
2852 		 * Kernel threads are allowed on online && !active CPUs,
2853 		 * however, during cpu-hot-unplug, even these might get pushed
2854 		 * away if not KTHREAD_IS_PER_CPU.
2855 		 *
2856 		 * Specifically, migration_disabled() tasks must not fail the
2857 		 * cpumask_any_and_distribute() pick below, esp. so on
2858 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2859 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2860 		 */
2861 		cpu_valid_mask = cpu_online_mask;
2862 	}
2863 
2864 	if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
2865 		ret = -EINVAL;
2866 		goto out;
2867 	}
2868 
2869 	/*
2870 	 * Must re-check here, to close a race against __kthread_bind(),
2871 	 * sched_setaffinity() is not guaranteed to observe the flag.
2872 	 */
2873 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2874 		ret = -EINVAL;
2875 		goto out;
2876 	}
2877 
2878 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2879 		if (cpumask_equal(&p->cpus_mask, new_mask))
2880 			goto out;
2881 
2882 		if (WARN_ON_ONCE(p == current &&
2883 				 is_migration_disabled(p) &&
2884 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2885 			ret = -EBUSY;
2886 			goto out;
2887 		}
2888 	}
2889 
2890 	/*
2891 	 * Picking a ~random cpu helps in cases where we are changing affinity
2892 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2893 	 * immediately required to distribute the tasks within their new mask.
2894 	 */
2895 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2896 	if (dest_cpu >= nr_cpu_ids) {
2897 		ret = -EINVAL;
2898 		goto out;
2899 	}
2900 
2901 	__do_set_cpus_allowed(p, new_mask, flags);
2902 
2903 	if (flags & SCA_USER)
2904 		user_mask = clear_user_cpus_ptr(p);
2905 
2906 	ret = affine_move_task(rq, p, rf, dest_cpu, flags);
2907 
2908 	kfree(user_mask);
2909 
2910 	return ret;
2911 
2912 out:
2913 	task_rq_unlock(rq, p, rf);
2914 
2915 	return ret;
2916 }
2917 
2918 /*
2919  * Change a given task's CPU affinity. Migrate the thread to a
2920  * proper CPU and schedule it away if the CPU it's executing on
2921  * is removed from the allowed bitmask.
2922  *
2923  * NOTE: the caller must have a valid reference to the task, the
2924  * task must not exit() & deallocate itself prematurely. The
2925  * call is not atomic; no spinlocks may be held.
2926  */
2927 static int __set_cpus_allowed_ptr(struct task_struct *p,
2928 				  const struct cpumask *new_mask, u32 flags)
2929 {
2930 	struct rq_flags rf;
2931 	struct rq *rq;
2932 
2933 	rq = task_rq_lock(p, &rf);
2934 	return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
2935 }
2936 
2937 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2938 {
2939 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2940 }
2941 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2942 
2943 /*
2944  * Change a given task's CPU affinity to the intersection of its current
2945  * affinity mask and @subset_mask, writing the resulting mask to @new_mask
2946  * and pointing @p->user_cpus_ptr to a copy of the old mask.
2947  * If the resulting mask is empty, leave the affinity unchanged and return
2948  * -EINVAL.
2949  */
2950 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2951 				     struct cpumask *new_mask,
2952 				     const struct cpumask *subset_mask)
2953 {
2954 	struct cpumask *user_mask = NULL;
2955 	struct rq_flags rf;
2956 	struct rq *rq;
2957 	int err;
2958 
2959 	if (!p->user_cpus_ptr) {
2960 		user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
2961 		if (!user_mask)
2962 			return -ENOMEM;
2963 	}
2964 
2965 	rq = task_rq_lock(p, &rf);
2966 
2967 	/*
2968 	 * Forcefully restricting the affinity of a deadline task is
2969 	 * likely to cause problems, so fail and noisily override the
2970 	 * mask entirely.
2971 	 */
2972 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
2973 		err = -EPERM;
2974 		goto err_unlock;
2975 	}
2976 
2977 	if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
2978 		err = -EINVAL;
2979 		goto err_unlock;
2980 	}
2981 
2982 	/*
2983 	 * We're about to butcher the task affinity, so keep track of what
2984 	 * the user asked for in case we're able to restore it later on.
2985 	 */
2986 	if (user_mask) {
2987 		cpumask_copy(user_mask, p->cpus_ptr);
2988 		p->user_cpus_ptr = user_mask;
2989 	}
2990 
2991 	return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
2992 
2993 err_unlock:
2994 	task_rq_unlock(rq, p, &rf);
2995 	kfree(user_mask);
2996 	return err;
2997 }
2998 
2999 /*
3000  * Restrict the CPU affinity of task @p so that it is a subset of
3001  * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
3002  * old affinity mask. If the resulting mask is empty, we warn and walk
3003  * up the cpuset hierarchy until we find a suitable mask.
3004  */
3005 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3006 {
3007 	cpumask_var_t new_mask;
3008 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3009 
3010 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3011 
3012 	/*
3013 	 * __migrate_task() can fail silently in the face of concurrent
3014 	 * offlining of the chosen destination CPU, so take the hotplug
3015 	 * lock to ensure that the migration succeeds.
3016 	 */
3017 	cpus_read_lock();
3018 	if (!cpumask_available(new_mask))
3019 		goto out_set_mask;
3020 
3021 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3022 		goto out_free_mask;
3023 
3024 	/*
3025 	 * We failed to find a valid subset of the affinity mask for the
3026 	 * task, so override it based on its cpuset hierarchy.
3027 	 */
3028 	cpuset_cpus_allowed(p, new_mask);
3029 	override_mask = new_mask;
3030 
3031 out_set_mask:
3032 	if (printk_ratelimit()) {
3033 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3034 				task_pid_nr(p), p->comm,
3035 				cpumask_pr_args(override_mask));
3036 	}
3037 
3038 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3039 out_free_mask:
3040 	cpus_read_unlock();
3041 	free_cpumask_var(new_mask);
3042 }
3043 
3044 static int
3045 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
3046 
3047 /*
3048  * Restore the affinity of a task @p which was previously restricted by a
3049  * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
3050  * @p->user_cpus_ptr.
3051  *
3052  * It is the caller's responsibility to serialise this with any calls to
3053  * force_compatible_cpus_allowed_ptr(@p).
3054  */
3055 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3056 {
3057 	struct cpumask *user_mask = p->user_cpus_ptr;
3058 	unsigned long flags;
3059 
3060 	/*
3061 	 * Try to restore the old affinity mask. If this fails, then
3062 	 * we free the mask explicitly to avoid it being inherited across
3063 	 * a subsequent fork().
3064 	 */
3065 	if (!user_mask || !__sched_setaffinity(p, user_mask))
3066 		return;
3067 
3068 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3069 	user_mask = clear_user_cpus_ptr(p);
3070 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3071 
3072 	kfree(user_mask);
3073 }
3074 
3075 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3076 {
3077 #ifdef CONFIG_SCHED_DEBUG
3078 	unsigned int state = READ_ONCE(p->__state);
3079 
3080 	/*
3081 	 * We should never call set_task_cpu() on a blocked task,
3082 	 * ttwu() will sort out the placement.
3083 	 */
3084 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3085 
3086 	/*
3087 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3088 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3089 	 * time relying on p->on_rq.
3090 	 */
3091 	WARN_ON_ONCE(state == TASK_RUNNING &&
3092 		     p->sched_class == &fair_sched_class &&
3093 		     (p->on_rq && !task_on_rq_migrating(p)));
3094 
3095 #ifdef CONFIG_LOCKDEP
3096 	/*
3097 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3098 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3099 	 *
3100 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3101 	 * see task_group().
3102 	 *
3103 	 * Furthermore, all task_rq users should acquire both locks, see
3104 	 * task_rq_lock().
3105 	 */
3106 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3107 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3108 #endif
3109 	/*
3110 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3111 	 */
3112 	WARN_ON_ONCE(!cpu_online(new_cpu));
3113 
3114 	WARN_ON_ONCE(is_migration_disabled(p));
3115 #endif
3116 
3117 	trace_sched_migrate_task(p, new_cpu);
3118 
3119 	if (task_cpu(p) != new_cpu) {
3120 		if (p->sched_class->migrate_task_rq)
3121 			p->sched_class->migrate_task_rq(p, new_cpu);
3122 		p->se.nr_migrations++;
3123 		rseq_migrate(p);
3124 		perf_event_task_migrate(p);
3125 	}
3126 
3127 	__set_task_cpu(p, new_cpu);
3128 }
3129 
3130 #ifdef CONFIG_NUMA_BALANCING
3131 static void __migrate_swap_task(struct task_struct *p, int cpu)
3132 {
3133 	if (task_on_rq_queued(p)) {
3134 		struct rq *src_rq, *dst_rq;
3135 		struct rq_flags srf, drf;
3136 
3137 		src_rq = task_rq(p);
3138 		dst_rq = cpu_rq(cpu);
3139 
3140 		rq_pin_lock(src_rq, &srf);
3141 		rq_pin_lock(dst_rq, &drf);
3142 
3143 		deactivate_task(src_rq, p, 0);
3144 		set_task_cpu(p, cpu);
3145 		activate_task(dst_rq, p, 0);
3146 		check_preempt_curr(dst_rq, p, 0);
3147 
3148 		rq_unpin_lock(dst_rq, &drf);
3149 		rq_unpin_lock(src_rq, &srf);
3150 
3151 	} else {
3152 		/*
3153 		 * Task isn't running anymore; make it appear like we migrated
3154 		 * it before it went to sleep. This means on wakeup we make the
3155 		 * previous CPU our target instead of where it really is.
3156 		 */
3157 		p->wake_cpu = cpu;
3158 	}
3159 }
3160 
3161 struct migration_swap_arg {
3162 	struct task_struct *src_task, *dst_task;
3163 	int src_cpu, dst_cpu;
3164 };
3165 
3166 static int migrate_swap_stop(void *data)
3167 {
3168 	struct migration_swap_arg *arg = data;
3169 	struct rq *src_rq, *dst_rq;
3170 	int ret = -EAGAIN;
3171 
3172 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3173 		return -EAGAIN;
3174 
3175 	src_rq = cpu_rq(arg->src_cpu);
3176 	dst_rq = cpu_rq(arg->dst_cpu);
3177 
3178 	double_raw_lock(&arg->src_task->pi_lock,
3179 			&arg->dst_task->pi_lock);
3180 	double_rq_lock(src_rq, dst_rq);
3181 
3182 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3183 		goto unlock;
3184 
3185 	if (task_cpu(arg->src_task) != arg->src_cpu)
3186 		goto unlock;
3187 
3188 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3189 		goto unlock;
3190 
3191 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3192 		goto unlock;
3193 
3194 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3195 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3196 
3197 	ret = 0;
3198 
3199 unlock:
3200 	double_rq_unlock(src_rq, dst_rq);
3201 	raw_spin_unlock(&arg->dst_task->pi_lock);
3202 	raw_spin_unlock(&arg->src_task->pi_lock);
3203 
3204 	return ret;
3205 }
3206 
3207 /*
3208  * Cross migrate two tasks
3209  */
3210 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3211 		int target_cpu, int curr_cpu)
3212 {
3213 	struct migration_swap_arg arg;
3214 	int ret = -EINVAL;
3215 
3216 	arg = (struct migration_swap_arg){
3217 		.src_task = cur,
3218 		.src_cpu = curr_cpu,
3219 		.dst_task = p,
3220 		.dst_cpu = target_cpu,
3221 	};
3222 
3223 	if (arg.src_cpu == arg.dst_cpu)
3224 		goto out;
3225 
3226 	/*
3227 	 * These three tests are all lockless; this is OK since all of them
3228 	 * will be re-checked with proper locks held further down the line.
3229 	 */
3230 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3231 		goto out;
3232 
3233 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3234 		goto out;
3235 
3236 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3237 		goto out;
3238 
3239 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3240 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3241 
3242 out:
3243 	return ret;
3244 }
3245 #endif /* CONFIG_NUMA_BALANCING */
3246 
3247 /*
3248  * wait_task_inactive - wait for a thread to unschedule.
3249  *
3250  * Wait for the thread to block in any of the states set in @match_state.
3251  * If it changes, i.e. @p might have woken up, then return zero.  When we
3252  * succeed in waiting for @p to be off its CPU, we return a positive number
3253  * (its total switch count).  If a second call a short while later returns the
3254  * same number, the caller can be sure that @p has remained unscheduled the
3255  * whole time.
3256  *
3257  * The caller must ensure that the task *will* unschedule sometime soon,
3258  * else this function might spin for a *long* time. This function can't
3259  * be called with interrupts off, or it may introduce deadlock with
3260  * smp_call_function() if an IPI is sent by the same process we are
3261  * waiting to become inactive.
3262  */
3263 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3264 {
3265 	int running, queued;
3266 	struct rq_flags rf;
3267 	unsigned long ncsw;
3268 	struct rq *rq;
3269 
3270 	for (;;) {
3271 		/*
3272 		 * We do the initial early heuristics without holding
3273 		 * any task-queue locks at all. We'll only try to get
3274 		 * the runqueue lock when things look like they will
3275 		 * work out!
3276 		 */
3277 		rq = task_rq(p);
3278 
3279 		/*
3280 		 * If the task is actively running on another CPU
3281 		 * still, just relax and busy-wait without holding
3282 		 * any locks.
3283 		 *
3284 		 * NOTE! Since we don't hold any locks, it's not
3285 		 * even sure that "rq" stays as the right runqueue!
3286 		 * But we don't care, since "task_on_cpu()" will
3287 		 * return false if the runqueue has changed and p
3288 		 * is actually now running somewhere else!
3289 		 */
3290 		while (task_on_cpu(rq, p)) {
3291 			if (!(READ_ONCE(p->__state) & match_state))
3292 				return 0;
3293 			cpu_relax();
3294 		}
3295 
3296 		/*
3297 		 * Ok, time to look more closely! We need the rq
3298 		 * lock now, to be *sure*. If we're wrong, we'll
3299 		 * just go back and repeat.
3300 		 */
3301 		rq = task_rq_lock(p, &rf);
3302 		trace_sched_wait_task(p);
3303 		running = task_on_cpu(rq, p);
3304 		queued = task_on_rq_queued(p);
3305 		ncsw = 0;
3306 		if (READ_ONCE(p->__state) & match_state)
3307 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3308 		task_rq_unlock(rq, p, &rf);
3309 
3310 		/*
3311 		 * If it changed from the expected state, bail out now.
3312 		 */
3313 		if (unlikely(!ncsw))
3314 			break;
3315 
3316 		/*
3317 		 * Was it really running after all now that we
3318 		 * checked with the proper locks actually held?
3319 		 *
3320 		 * Oops. Go back and try again..
3321 		 */
3322 		if (unlikely(running)) {
3323 			cpu_relax();
3324 			continue;
3325 		}
3326 
3327 		/*
3328 		 * It's not enough that it's not actively running,
3329 		 * it must be off the runqueue _entirely_, and not
3330 		 * preempted!
3331 		 *
3332 		 * So if it was still runnable (but just not actively
3333 		 * running right now), it's preempted, and we should
3334 		 * yield - it could be a while.
3335 		 */
3336 		if (unlikely(queued)) {
3337 			ktime_t to = NSEC_PER_SEC / HZ;
3338 
3339 			set_current_state(TASK_UNINTERRUPTIBLE);
3340 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3341 			continue;
3342 		}
3343 
3344 		/*
3345 		 * Ahh, all good. It wasn't running, and it wasn't
3346 		 * runnable, which means that it will never become
3347 		 * running in the future either. We're all done!
3348 		 */
3349 		break;
3350 	}
3351 
3352 	return ncsw;
3353 }
3354 
3355 /***
3356  * kick_process - kick a running thread to enter/exit the kernel
3357  * @p: the to-be-kicked thread
3358  *
3359  * Cause a process which is running on another CPU to enter
3360  * kernel-mode, without any delay. (to get signals handled.)
3361  *
3362  * NOTE: this function doesn't have to take the runqueue lock,
3363  * because all it wants to ensure is that the remote task enters
3364  * the kernel. If the IPI races and the task has been migrated
3365  * to another CPU then no harm is done and the purpose has been
3366  * achieved as well.
3367  */
3368 void kick_process(struct task_struct *p)
3369 {
3370 	int cpu;
3371 
3372 	preempt_disable();
3373 	cpu = task_cpu(p);
3374 	if ((cpu != smp_processor_id()) && task_curr(p))
3375 		smp_send_reschedule(cpu);
3376 	preempt_enable();
3377 }
3378 EXPORT_SYMBOL_GPL(kick_process);
3379 
3380 /*
3381  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3382  *
3383  * A few notes on cpu_active vs cpu_online:
3384  *
3385  *  - cpu_active must be a subset of cpu_online
3386  *
3387  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3388  *    see __set_cpus_allowed_ptr(). At this point the newly online
3389  *    CPU isn't yet part of the sched domains, and balancing will not
3390  *    see it.
3391  *
3392  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3393  *    avoid the load balancer to place new tasks on the to be removed
3394  *    CPU. Existing tasks will remain running there and will be taken
3395  *    off.
3396  *
3397  * This means that fallback selection must not select !active CPUs.
3398  * And can assume that any active CPU must be online. Conversely
3399  * select_task_rq() below may allow selection of !active CPUs in order
3400  * to satisfy the above rules.
3401  */
3402 static int select_fallback_rq(int cpu, struct task_struct *p)
3403 {
3404 	int nid = cpu_to_node(cpu);
3405 	const struct cpumask *nodemask = NULL;
3406 	enum { cpuset, possible, fail } state = cpuset;
3407 	int dest_cpu;
3408 
3409 	/*
3410 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3411 	 * will return -1. There is no CPU on the node, and we should
3412 	 * select the CPU on the other node.
3413 	 */
3414 	if (nid != -1) {
3415 		nodemask = cpumask_of_node(nid);
3416 
3417 		/* Look for allowed, online CPU in same node. */
3418 		for_each_cpu(dest_cpu, nodemask) {
3419 			if (is_cpu_allowed(p, dest_cpu))
3420 				return dest_cpu;
3421 		}
3422 	}
3423 
3424 	for (;;) {
3425 		/* Any allowed, online CPU? */
3426 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3427 			if (!is_cpu_allowed(p, dest_cpu))
3428 				continue;
3429 
3430 			goto out;
3431 		}
3432 
3433 		/* No more Mr. Nice Guy. */
3434 		switch (state) {
3435 		case cpuset:
3436 			if (cpuset_cpus_allowed_fallback(p)) {
3437 				state = possible;
3438 				break;
3439 			}
3440 			fallthrough;
3441 		case possible:
3442 			/*
3443 			 * XXX When called from select_task_rq() we only
3444 			 * hold p->pi_lock and again violate locking order.
3445 			 *
3446 			 * More yuck to audit.
3447 			 */
3448 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3449 			state = fail;
3450 			break;
3451 		case fail:
3452 			BUG();
3453 			break;
3454 		}
3455 	}
3456 
3457 out:
3458 	if (state != cpuset) {
3459 		/*
3460 		 * Don't tell them about moving exiting tasks or
3461 		 * kernel threads (both mm NULL), since they never
3462 		 * leave kernel.
3463 		 */
3464 		if (p->mm && printk_ratelimit()) {
3465 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3466 					task_pid_nr(p), p->comm, cpu);
3467 		}
3468 	}
3469 
3470 	return dest_cpu;
3471 }
3472 
3473 /*
3474  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3475  */
3476 static inline
3477 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3478 {
3479 	lockdep_assert_held(&p->pi_lock);
3480 
3481 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3482 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3483 	else
3484 		cpu = cpumask_any(p->cpus_ptr);
3485 
3486 	/*
3487 	 * In order not to call set_task_cpu() on a blocking task we need
3488 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3489 	 * CPU.
3490 	 *
3491 	 * Since this is common to all placement strategies, this lives here.
3492 	 *
3493 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3494 	 *   not worry about this generic constraint ]
3495 	 */
3496 	if (unlikely(!is_cpu_allowed(p, cpu)))
3497 		cpu = select_fallback_rq(task_cpu(p), p);
3498 
3499 	return cpu;
3500 }
3501 
3502 void sched_set_stop_task(int cpu, struct task_struct *stop)
3503 {
3504 	static struct lock_class_key stop_pi_lock;
3505 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3506 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3507 
3508 	if (stop) {
3509 		/*
3510 		 * Make it appear like a SCHED_FIFO task, its something
3511 		 * userspace knows about and won't get confused about.
3512 		 *
3513 		 * Also, it will make PI more or less work without too
3514 		 * much confusion -- but then, stop work should not
3515 		 * rely on PI working anyway.
3516 		 */
3517 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3518 
3519 		stop->sched_class = &stop_sched_class;
3520 
3521 		/*
3522 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3523 		 * adjust the effective priority of a task. As a result,
3524 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3525 		 * which can then trigger wakeups of the stop thread to push
3526 		 * around the current task.
3527 		 *
3528 		 * The stop task itself will never be part of the PI-chain, it
3529 		 * never blocks, therefore that ->pi_lock recursion is safe.
3530 		 * Tell lockdep about this by placing the stop->pi_lock in its
3531 		 * own class.
3532 		 */
3533 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3534 	}
3535 
3536 	cpu_rq(cpu)->stop = stop;
3537 
3538 	if (old_stop) {
3539 		/*
3540 		 * Reset it back to a normal scheduling class so that
3541 		 * it can die in pieces.
3542 		 */
3543 		old_stop->sched_class = &rt_sched_class;
3544 	}
3545 }
3546 
3547 #else /* CONFIG_SMP */
3548 
3549 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3550 					 const struct cpumask *new_mask,
3551 					 u32 flags)
3552 {
3553 	return set_cpus_allowed_ptr(p, new_mask);
3554 }
3555 
3556 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3557 
3558 static inline bool rq_has_pinned_tasks(struct rq *rq)
3559 {
3560 	return false;
3561 }
3562 
3563 #endif /* !CONFIG_SMP */
3564 
3565 static void
3566 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3567 {
3568 	struct rq *rq;
3569 
3570 	if (!schedstat_enabled())
3571 		return;
3572 
3573 	rq = this_rq();
3574 
3575 #ifdef CONFIG_SMP
3576 	if (cpu == rq->cpu) {
3577 		__schedstat_inc(rq->ttwu_local);
3578 		__schedstat_inc(p->stats.nr_wakeups_local);
3579 	} else {
3580 		struct sched_domain *sd;
3581 
3582 		__schedstat_inc(p->stats.nr_wakeups_remote);
3583 		rcu_read_lock();
3584 		for_each_domain(rq->cpu, sd) {
3585 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3586 				__schedstat_inc(sd->ttwu_wake_remote);
3587 				break;
3588 			}
3589 		}
3590 		rcu_read_unlock();
3591 	}
3592 
3593 	if (wake_flags & WF_MIGRATED)
3594 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3595 #endif /* CONFIG_SMP */
3596 
3597 	__schedstat_inc(rq->ttwu_count);
3598 	__schedstat_inc(p->stats.nr_wakeups);
3599 
3600 	if (wake_flags & WF_SYNC)
3601 		__schedstat_inc(p->stats.nr_wakeups_sync);
3602 }
3603 
3604 /*
3605  * Mark the task runnable and perform wakeup-preemption.
3606  */
3607 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3608 			   struct rq_flags *rf)
3609 {
3610 	check_preempt_curr(rq, p, wake_flags);
3611 	WRITE_ONCE(p->__state, TASK_RUNNING);
3612 	trace_sched_wakeup(p);
3613 
3614 #ifdef CONFIG_SMP
3615 	if (p->sched_class->task_woken) {
3616 		/*
3617 		 * Our task @p is fully woken up and running; so it's safe to
3618 		 * drop the rq->lock, hereafter rq is only used for statistics.
3619 		 */
3620 		rq_unpin_lock(rq, rf);
3621 		p->sched_class->task_woken(rq, p);
3622 		rq_repin_lock(rq, rf);
3623 	}
3624 
3625 	if (rq->idle_stamp) {
3626 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3627 		u64 max = 2*rq->max_idle_balance_cost;
3628 
3629 		update_avg(&rq->avg_idle, delta);
3630 
3631 		if (rq->avg_idle > max)
3632 			rq->avg_idle = max;
3633 
3634 		rq->wake_stamp = jiffies;
3635 		rq->wake_avg_idle = rq->avg_idle / 2;
3636 
3637 		rq->idle_stamp = 0;
3638 	}
3639 #endif
3640 }
3641 
3642 static void
3643 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3644 		 struct rq_flags *rf)
3645 {
3646 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3647 
3648 	lockdep_assert_rq_held(rq);
3649 
3650 	if (p->sched_contributes_to_load)
3651 		rq->nr_uninterruptible--;
3652 
3653 #ifdef CONFIG_SMP
3654 	if (wake_flags & WF_MIGRATED)
3655 		en_flags |= ENQUEUE_MIGRATED;
3656 	else
3657 #endif
3658 	if (p->in_iowait) {
3659 		delayacct_blkio_end(p);
3660 		atomic_dec(&task_rq(p)->nr_iowait);
3661 	}
3662 
3663 	activate_task(rq, p, en_flags);
3664 	ttwu_do_wakeup(rq, p, wake_flags, rf);
3665 }
3666 
3667 /*
3668  * Consider @p being inside a wait loop:
3669  *
3670  *   for (;;) {
3671  *      set_current_state(TASK_UNINTERRUPTIBLE);
3672  *
3673  *      if (CONDITION)
3674  *         break;
3675  *
3676  *      schedule();
3677  *   }
3678  *   __set_current_state(TASK_RUNNING);
3679  *
3680  * between set_current_state() and schedule(). In this case @p is still
3681  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3682  * an atomic manner.
3683  *
3684  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3685  * then schedule() must still happen and p->state can be changed to
3686  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3687  * need to do a full wakeup with enqueue.
3688  *
3689  * Returns: %true when the wakeup is done,
3690  *          %false otherwise.
3691  */
3692 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3693 {
3694 	struct rq_flags rf;
3695 	struct rq *rq;
3696 	int ret = 0;
3697 
3698 	rq = __task_rq_lock(p, &rf);
3699 	if (task_on_rq_queued(p)) {
3700 		/* check_preempt_curr() may use rq clock */
3701 		update_rq_clock(rq);
3702 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3703 		ret = 1;
3704 	}
3705 	__task_rq_unlock(rq, &rf);
3706 
3707 	return ret;
3708 }
3709 
3710 #ifdef CONFIG_SMP
3711 void sched_ttwu_pending(void *arg)
3712 {
3713 	struct llist_node *llist = arg;
3714 	struct rq *rq = this_rq();
3715 	struct task_struct *p, *t;
3716 	struct rq_flags rf;
3717 
3718 	if (!llist)
3719 		return;
3720 
3721 	/*
3722 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3723 	 * Races such that false-negatives are possible, since they
3724 	 * are shorter lived that false-positives would be.
3725 	 */
3726 	WRITE_ONCE(rq->ttwu_pending, 0);
3727 
3728 	rq_lock_irqsave(rq, &rf);
3729 	update_rq_clock(rq);
3730 
3731 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3732 		if (WARN_ON_ONCE(p->on_cpu))
3733 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3734 
3735 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3736 			set_task_cpu(p, cpu_of(rq));
3737 
3738 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3739 	}
3740 
3741 	rq_unlock_irqrestore(rq, &rf);
3742 }
3743 
3744 void send_call_function_single_ipi(int cpu)
3745 {
3746 	struct rq *rq = cpu_rq(cpu);
3747 
3748 	if (!set_nr_if_polling(rq->idle))
3749 		arch_send_call_function_single_ipi(cpu);
3750 	else
3751 		trace_sched_wake_idle_without_ipi(cpu);
3752 }
3753 
3754 /*
3755  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3756  * necessary. The wakee CPU on receipt of the IPI will queue the task
3757  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3758  * of the wakeup instead of the waker.
3759  */
3760 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3761 {
3762 	struct rq *rq = cpu_rq(cpu);
3763 
3764 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3765 
3766 	WRITE_ONCE(rq->ttwu_pending, 1);
3767 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3768 }
3769 
3770 void wake_up_if_idle(int cpu)
3771 {
3772 	struct rq *rq = cpu_rq(cpu);
3773 	struct rq_flags rf;
3774 
3775 	rcu_read_lock();
3776 
3777 	if (!is_idle_task(rcu_dereference(rq->curr)))
3778 		goto out;
3779 
3780 	rq_lock_irqsave(rq, &rf);
3781 	if (is_idle_task(rq->curr))
3782 		resched_curr(rq);
3783 	/* Else CPU is not idle, do nothing here: */
3784 	rq_unlock_irqrestore(rq, &rf);
3785 
3786 out:
3787 	rcu_read_unlock();
3788 }
3789 
3790 bool cpus_share_cache(int this_cpu, int that_cpu)
3791 {
3792 	if (this_cpu == that_cpu)
3793 		return true;
3794 
3795 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3796 }
3797 
3798 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3799 {
3800 	/*
3801 	 * Do not complicate things with the async wake_list while the CPU is
3802 	 * in hotplug state.
3803 	 */
3804 	if (!cpu_active(cpu))
3805 		return false;
3806 
3807 	/* Ensure the task will still be allowed to run on the CPU. */
3808 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3809 		return false;
3810 
3811 	/*
3812 	 * If the CPU does not share cache, then queue the task on the
3813 	 * remote rqs wakelist to avoid accessing remote data.
3814 	 */
3815 	if (!cpus_share_cache(smp_processor_id(), cpu))
3816 		return true;
3817 
3818 	if (cpu == smp_processor_id())
3819 		return false;
3820 
3821 	/*
3822 	 * If the wakee cpu is idle, or the task is descheduling and the
3823 	 * only running task on the CPU, then use the wakelist to offload
3824 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3825 	 * the current CPU is likely busy. nr_running is checked to
3826 	 * avoid unnecessary task stacking.
3827 	 *
3828 	 * Note that we can only get here with (wakee) p->on_rq=0,
3829 	 * p->on_cpu can be whatever, we've done the dequeue, so
3830 	 * the wakee has been accounted out of ->nr_running.
3831 	 */
3832 	if (!cpu_rq(cpu)->nr_running)
3833 		return true;
3834 
3835 	return false;
3836 }
3837 
3838 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3839 {
3840 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3841 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3842 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3843 		return true;
3844 	}
3845 
3846 	return false;
3847 }
3848 
3849 #else /* !CONFIG_SMP */
3850 
3851 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3852 {
3853 	return false;
3854 }
3855 
3856 #endif /* CONFIG_SMP */
3857 
3858 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3859 {
3860 	struct rq *rq = cpu_rq(cpu);
3861 	struct rq_flags rf;
3862 
3863 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3864 		return;
3865 
3866 	rq_lock(rq, &rf);
3867 	update_rq_clock(rq);
3868 	ttwu_do_activate(rq, p, wake_flags, &rf);
3869 	rq_unlock(rq, &rf);
3870 }
3871 
3872 /*
3873  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3874  *
3875  * The caller holds p::pi_lock if p != current or has preemption
3876  * disabled when p == current.
3877  *
3878  * The rules of PREEMPT_RT saved_state:
3879  *
3880  *   The related locking code always holds p::pi_lock when updating
3881  *   p::saved_state, which means the code is fully serialized in both cases.
3882  *
3883  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3884  *   bits set. This allows to distinguish all wakeup scenarios.
3885  */
3886 static __always_inline
3887 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3888 {
3889 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3890 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3891 			     state != TASK_RTLOCK_WAIT);
3892 	}
3893 
3894 	if (READ_ONCE(p->__state) & state) {
3895 		*success = 1;
3896 		return true;
3897 	}
3898 
3899 #ifdef CONFIG_PREEMPT_RT
3900 	/*
3901 	 * Saved state preserves the task state across blocking on
3902 	 * an RT lock.  If the state matches, set p::saved_state to
3903 	 * TASK_RUNNING, but do not wake the task because it waits
3904 	 * for a lock wakeup. Also indicate success because from
3905 	 * the regular waker's point of view this has succeeded.
3906 	 *
3907 	 * After acquiring the lock the task will restore p::__state
3908 	 * from p::saved_state which ensures that the regular
3909 	 * wakeup is not lost. The restore will also set
3910 	 * p::saved_state to TASK_RUNNING so any further tests will
3911 	 * not result in false positives vs. @success
3912 	 */
3913 	if (p->saved_state & state) {
3914 		p->saved_state = TASK_RUNNING;
3915 		*success = 1;
3916 	}
3917 #endif
3918 	return false;
3919 }
3920 
3921 /*
3922  * Notes on Program-Order guarantees on SMP systems.
3923  *
3924  *  MIGRATION
3925  *
3926  * The basic program-order guarantee on SMP systems is that when a task [t]
3927  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3928  * execution on its new CPU [c1].
3929  *
3930  * For migration (of runnable tasks) this is provided by the following means:
3931  *
3932  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3933  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3934  *     rq(c1)->lock (if not at the same time, then in that order).
3935  *  C) LOCK of the rq(c1)->lock scheduling in task
3936  *
3937  * Release/acquire chaining guarantees that B happens after A and C after B.
3938  * Note: the CPU doing B need not be c0 or c1
3939  *
3940  * Example:
3941  *
3942  *   CPU0            CPU1            CPU2
3943  *
3944  *   LOCK rq(0)->lock
3945  *   sched-out X
3946  *   sched-in Y
3947  *   UNLOCK rq(0)->lock
3948  *
3949  *                                   LOCK rq(0)->lock // orders against CPU0
3950  *                                   dequeue X
3951  *                                   UNLOCK rq(0)->lock
3952  *
3953  *                                   LOCK rq(1)->lock
3954  *                                   enqueue X
3955  *                                   UNLOCK rq(1)->lock
3956  *
3957  *                   LOCK rq(1)->lock // orders against CPU2
3958  *                   sched-out Z
3959  *                   sched-in X
3960  *                   UNLOCK rq(1)->lock
3961  *
3962  *
3963  *  BLOCKING -- aka. SLEEP + WAKEUP
3964  *
3965  * For blocking we (obviously) need to provide the same guarantee as for
3966  * migration. However the means are completely different as there is no lock
3967  * chain to provide order. Instead we do:
3968  *
3969  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3970  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3971  *
3972  * Example:
3973  *
3974  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3975  *
3976  *   LOCK rq(0)->lock LOCK X->pi_lock
3977  *   dequeue X
3978  *   sched-out X
3979  *   smp_store_release(X->on_cpu, 0);
3980  *
3981  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3982  *                    X->state = WAKING
3983  *                    set_task_cpu(X,2)
3984  *
3985  *                    LOCK rq(2)->lock
3986  *                    enqueue X
3987  *                    X->state = RUNNING
3988  *                    UNLOCK rq(2)->lock
3989  *
3990  *                                          LOCK rq(2)->lock // orders against CPU1
3991  *                                          sched-out Z
3992  *                                          sched-in X
3993  *                                          UNLOCK rq(2)->lock
3994  *
3995  *                    UNLOCK X->pi_lock
3996  *   UNLOCK rq(0)->lock
3997  *
3998  *
3999  * However, for wakeups there is a second guarantee we must provide, namely we
4000  * must ensure that CONDITION=1 done by the caller can not be reordered with
4001  * accesses to the task state; see try_to_wake_up() and set_current_state().
4002  */
4003 
4004 /**
4005  * try_to_wake_up - wake up a thread
4006  * @p: the thread to be awakened
4007  * @state: the mask of task states that can be woken
4008  * @wake_flags: wake modifier flags (WF_*)
4009  *
4010  * Conceptually does:
4011  *
4012  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4013  *
4014  * If the task was not queued/runnable, also place it back on a runqueue.
4015  *
4016  * This function is atomic against schedule() which would dequeue the task.
4017  *
4018  * It issues a full memory barrier before accessing @p->state, see the comment
4019  * with set_current_state().
4020  *
4021  * Uses p->pi_lock to serialize against concurrent wake-ups.
4022  *
4023  * Relies on p->pi_lock stabilizing:
4024  *  - p->sched_class
4025  *  - p->cpus_ptr
4026  *  - p->sched_task_group
4027  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4028  *
4029  * Tries really hard to only take one task_rq(p)->lock for performance.
4030  * Takes rq->lock in:
4031  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4032  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4033  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4034  *
4035  * As a consequence we race really badly with just about everything. See the
4036  * many memory barriers and their comments for details.
4037  *
4038  * Return: %true if @p->state changes (an actual wakeup was done),
4039  *	   %false otherwise.
4040  */
4041 static int
4042 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4043 {
4044 	unsigned long flags;
4045 	int cpu, success = 0;
4046 
4047 	preempt_disable();
4048 	if (p == current) {
4049 		/*
4050 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4051 		 * == smp_processor_id()'. Together this means we can special
4052 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4053 		 * without taking any locks.
4054 		 *
4055 		 * In particular:
4056 		 *  - we rely on Program-Order guarantees for all the ordering,
4057 		 *  - we're serialized against set_special_state() by virtue of
4058 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4059 		 */
4060 		if (!ttwu_state_match(p, state, &success))
4061 			goto out;
4062 
4063 		trace_sched_waking(p);
4064 		WRITE_ONCE(p->__state, TASK_RUNNING);
4065 		trace_sched_wakeup(p);
4066 		goto out;
4067 	}
4068 
4069 	/*
4070 	 * If we are going to wake up a thread waiting for CONDITION we
4071 	 * need to ensure that CONDITION=1 done by the caller can not be
4072 	 * reordered with p->state check below. This pairs with smp_store_mb()
4073 	 * in set_current_state() that the waiting thread does.
4074 	 */
4075 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4076 	smp_mb__after_spinlock();
4077 	if (!ttwu_state_match(p, state, &success))
4078 		goto unlock;
4079 
4080 	trace_sched_waking(p);
4081 
4082 	/*
4083 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4084 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4085 	 * in smp_cond_load_acquire() below.
4086 	 *
4087 	 * sched_ttwu_pending()			try_to_wake_up()
4088 	 *   STORE p->on_rq = 1			  LOAD p->state
4089 	 *   UNLOCK rq->lock
4090 	 *
4091 	 * __schedule() (switch to task 'p')
4092 	 *   LOCK rq->lock			  smp_rmb();
4093 	 *   smp_mb__after_spinlock();
4094 	 *   UNLOCK rq->lock
4095 	 *
4096 	 * [task p]
4097 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4098 	 *
4099 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4100 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4101 	 *
4102 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4103 	 */
4104 	smp_rmb();
4105 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4106 		goto unlock;
4107 
4108 #ifdef CONFIG_SMP
4109 	/*
4110 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4111 	 * possible to, falsely, observe p->on_cpu == 0.
4112 	 *
4113 	 * One must be running (->on_cpu == 1) in order to remove oneself
4114 	 * from the runqueue.
4115 	 *
4116 	 * __schedule() (switch to task 'p')	try_to_wake_up()
4117 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4118 	 *   UNLOCK rq->lock
4119 	 *
4120 	 * __schedule() (put 'p' to sleep)
4121 	 *   LOCK rq->lock			  smp_rmb();
4122 	 *   smp_mb__after_spinlock();
4123 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4124 	 *
4125 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4126 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4127 	 *
4128 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4129 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
4130 	 * care about it's own p->state. See the comment in __schedule().
4131 	 */
4132 	smp_acquire__after_ctrl_dep();
4133 
4134 	/*
4135 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4136 	 * == 0), which means we need to do an enqueue, change p->state to
4137 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4138 	 * enqueue, such as ttwu_queue_wakelist().
4139 	 */
4140 	WRITE_ONCE(p->__state, TASK_WAKING);
4141 
4142 	/*
4143 	 * If the owning (remote) CPU is still in the middle of schedule() with
4144 	 * this task as prev, considering queueing p on the remote CPUs wake_list
4145 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
4146 	 * let the waker make forward progress. This is safe because IRQs are
4147 	 * disabled and the IPI will deliver after on_cpu is cleared.
4148 	 *
4149 	 * Ensure we load task_cpu(p) after p->on_cpu:
4150 	 *
4151 	 * set_task_cpu(p, cpu);
4152 	 *   STORE p->cpu = @cpu
4153 	 * __schedule() (switch to task 'p')
4154 	 *   LOCK rq->lock
4155 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4156 	 *   STORE p->on_cpu = 1		LOAD p->cpu
4157 	 *
4158 	 * to ensure we observe the correct CPU on which the task is currently
4159 	 * scheduling.
4160 	 */
4161 	if (smp_load_acquire(&p->on_cpu) &&
4162 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4163 		goto unlock;
4164 
4165 	/*
4166 	 * If the owning (remote) CPU is still in the middle of schedule() with
4167 	 * this task as prev, wait until it's done referencing the task.
4168 	 *
4169 	 * Pairs with the smp_store_release() in finish_task().
4170 	 *
4171 	 * This ensures that tasks getting woken will be fully ordered against
4172 	 * their previous state and preserve Program Order.
4173 	 */
4174 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4175 
4176 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4177 	if (task_cpu(p) != cpu) {
4178 		if (p->in_iowait) {
4179 			delayacct_blkio_end(p);
4180 			atomic_dec(&task_rq(p)->nr_iowait);
4181 		}
4182 
4183 		wake_flags |= WF_MIGRATED;
4184 		psi_ttwu_dequeue(p);
4185 		set_task_cpu(p, cpu);
4186 	}
4187 #else
4188 	cpu = task_cpu(p);
4189 #endif /* CONFIG_SMP */
4190 
4191 	ttwu_queue(p, cpu, wake_flags);
4192 unlock:
4193 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4194 out:
4195 	if (success)
4196 		ttwu_stat(p, task_cpu(p), wake_flags);
4197 	preempt_enable();
4198 
4199 	return success;
4200 }
4201 
4202 /**
4203  * task_call_func - Invoke a function on task in fixed state
4204  * @p: Process for which the function is to be invoked, can be @current.
4205  * @func: Function to invoke.
4206  * @arg: Argument to function.
4207  *
4208  * Fix the task in it's current state by avoiding wakeups and or rq operations
4209  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4210  * to work out what the state is, if required.  Given that @func can be invoked
4211  * with a runqueue lock held, it had better be quite lightweight.
4212  *
4213  * Returns:
4214  *   Whatever @func returns
4215  */
4216 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4217 {
4218 	struct rq *rq = NULL;
4219 	unsigned int state;
4220 	struct rq_flags rf;
4221 	int ret;
4222 
4223 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4224 
4225 	state = READ_ONCE(p->__state);
4226 
4227 	/*
4228 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4229 	 * possible to, falsely, observe p->on_rq == 0.
4230 	 *
4231 	 * See try_to_wake_up() for a longer comment.
4232 	 */
4233 	smp_rmb();
4234 
4235 	/*
4236 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4237 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4238 	 * locks at the end, see ttwu_queue_wakelist().
4239 	 */
4240 	if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq)
4241 		rq = __task_rq_lock(p, &rf);
4242 
4243 	/*
4244 	 * At this point the task is pinned; either:
4245 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4246 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4247 	 *  - queued, and we're holding off schedule	 (rq->lock)
4248 	 *  - running, and we're holding off de-schedule (rq->lock)
4249 	 *
4250 	 * The called function (@func) can use: task_curr(), p->on_rq and
4251 	 * p->__state to differentiate between these states.
4252 	 */
4253 	ret = func(p, arg);
4254 
4255 	if (rq)
4256 		rq_unlock(rq, &rf);
4257 
4258 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4259 	return ret;
4260 }
4261 
4262 /**
4263  * cpu_curr_snapshot - Return a snapshot of the currently running task
4264  * @cpu: The CPU on which to snapshot the task.
4265  *
4266  * Returns the task_struct pointer of the task "currently" running on
4267  * the specified CPU.  If the same task is running on that CPU throughout,
4268  * the return value will be a pointer to that task's task_struct structure.
4269  * If the CPU did any context switches even vaguely concurrently with the
4270  * execution of this function, the return value will be a pointer to the
4271  * task_struct structure of a randomly chosen task that was running on
4272  * that CPU somewhere around the time that this function was executing.
4273  *
4274  * If the specified CPU was offline, the return value is whatever it
4275  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4276  * task, but there is no guarantee.  Callers wishing a useful return
4277  * value must take some action to ensure that the specified CPU remains
4278  * online throughout.
4279  *
4280  * This function executes full memory barriers before and after fetching
4281  * the pointer, which permits the caller to confine this function's fetch
4282  * with respect to the caller's accesses to other shared variables.
4283  */
4284 struct task_struct *cpu_curr_snapshot(int cpu)
4285 {
4286 	struct task_struct *t;
4287 
4288 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4289 	t = rcu_dereference(cpu_curr(cpu));
4290 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4291 	return t;
4292 }
4293 
4294 /**
4295  * wake_up_process - Wake up a specific process
4296  * @p: The process to be woken up.
4297  *
4298  * Attempt to wake up the nominated process and move it to the set of runnable
4299  * processes.
4300  *
4301  * Return: 1 if the process was woken up, 0 if it was already running.
4302  *
4303  * This function executes a full memory barrier before accessing the task state.
4304  */
4305 int wake_up_process(struct task_struct *p)
4306 {
4307 	return try_to_wake_up(p, TASK_NORMAL, 0);
4308 }
4309 EXPORT_SYMBOL(wake_up_process);
4310 
4311 int wake_up_state(struct task_struct *p, unsigned int state)
4312 {
4313 	return try_to_wake_up(p, state, 0);
4314 }
4315 
4316 /*
4317  * Perform scheduler related setup for a newly forked process p.
4318  * p is forked by current.
4319  *
4320  * __sched_fork() is basic setup used by init_idle() too:
4321  */
4322 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4323 {
4324 	p->on_rq			= 0;
4325 
4326 	p->se.on_rq			= 0;
4327 	p->se.exec_start		= 0;
4328 	p->se.sum_exec_runtime		= 0;
4329 	p->se.prev_sum_exec_runtime	= 0;
4330 	p->se.nr_migrations		= 0;
4331 	p->se.vruntime			= 0;
4332 	INIT_LIST_HEAD(&p->se.group_node);
4333 
4334 #ifdef CONFIG_FAIR_GROUP_SCHED
4335 	p->se.cfs_rq			= NULL;
4336 #endif
4337 
4338 #ifdef CONFIG_SCHEDSTATS
4339 	/* Even if schedstat is disabled, there should not be garbage */
4340 	memset(&p->stats, 0, sizeof(p->stats));
4341 #endif
4342 
4343 	RB_CLEAR_NODE(&p->dl.rb_node);
4344 	init_dl_task_timer(&p->dl);
4345 	init_dl_inactive_task_timer(&p->dl);
4346 	__dl_clear_params(p);
4347 
4348 	INIT_LIST_HEAD(&p->rt.run_list);
4349 	p->rt.timeout		= 0;
4350 	p->rt.time_slice	= sched_rr_timeslice;
4351 	p->rt.on_rq		= 0;
4352 	p->rt.on_list		= 0;
4353 
4354 #ifdef CONFIG_PREEMPT_NOTIFIERS
4355 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4356 #endif
4357 
4358 #ifdef CONFIG_COMPACTION
4359 	p->capture_control = NULL;
4360 #endif
4361 	init_numa_balancing(clone_flags, p);
4362 #ifdef CONFIG_SMP
4363 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4364 	p->migration_pending = NULL;
4365 #endif
4366 }
4367 
4368 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4369 
4370 #ifdef CONFIG_NUMA_BALANCING
4371 
4372 int sysctl_numa_balancing_mode;
4373 
4374 static void __set_numabalancing_state(bool enabled)
4375 {
4376 	if (enabled)
4377 		static_branch_enable(&sched_numa_balancing);
4378 	else
4379 		static_branch_disable(&sched_numa_balancing);
4380 }
4381 
4382 void set_numabalancing_state(bool enabled)
4383 {
4384 	if (enabled)
4385 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4386 	else
4387 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4388 	__set_numabalancing_state(enabled);
4389 }
4390 
4391 #ifdef CONFIG_PROC_SYSCTL
4392 int sysctl_numa_balancing(struct ctl_table *table, int write,
4393 			  void *buffer, size_t *lenp, loff_t *ppos)
4394 {
4395 	struct ctl_table t;
4396 	int err;
4397 	int state = sysctl_numa_balancing_mode;
4398 
4399 	if (write && !capable(CAP_SYS_ADMIN))
4400 		return -EPERM;
4401 
4402 	t = *table;
4403 	t.data = &state;
4404 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4405 	if (err < 0)
4406 		return err;
4407 	if (write) {
4408 		sysctl_numa_balancing_mode = state;
4409 		__set_numabalancing_state(state);
4410 	}
4411 	return err;
4412 }
4413 #endif
4414 #endif
4415 
4416 #ifdef CONFIG_SCHEDSTATS
4417 
4418 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4419 
4420 static void set_schedstats(bool enabled)
4421 {
4422 	if (enabled)
4423 		static_branch_enable(&sched_schedstats);
4424 	else
4425 		static_branch_disable(&sched_schedstats);
4426 }
4427 
4428 void force_schedstat_enabled(void)
4429 {
4430 	if (!schedstat_enabled()) {
4431 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4432 		static_branch_enable(&sched_schedstats);
4433 	}
4434 }
4435 
4436 static int __init setup_schedstats(char *str)
4437 {
4438 	int ret = 0;
4439 	if (!str)
4440 		goto out;
4441 
4442 	if (!strcmp(str, "enable")) {
4443 		set_schedstats(true);
4444 		ret = 1;
4445 	} else if (!strcmp(str, "disable")) {
4446 		set_schedstats(false);
4447 		ret = 1;
4448 	}
4449 out:
4450 	if (!ret)
4451 		pr_warn("Unable to parse schedstats=\n");
4452 
4453 	return ret;
4454 }
4455 __setup("schedstats=", setup_schedstats);
4456 
4457 #ifdef CONFIG_PROC_SYSCTL
4458 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4459 		size_t *lenp, loff_t *ppos)
4460 {
4461 	struct ctl_table t;
4462 	int err;
4463 	int state = static_branch_likely(&sched_schedstats);
4464 
4465 	if (write && !capable(CAP_SYS_ADMIN))
4466 		return -EPERM;
4467 
4468 	t = *table;
4469 	t.data = &state;
4470 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4471 	if (err < 0)
4472 		return err;
4473 	if (write)
4474 		set_schedstats(state);
4475 	return err;
4476 }
4477 #endif /* CONFIG_PROC_SYSCTL */
4478 #endif /* CONFIG_SCHEDSTATS */
4479 
4480 #ifdef CONFIG_SYSCTL
4481 static struct ctl_table sched_core_sysctls[] = {
4482 #ifdef CONFIG_SCHEDSTATS
4483 	{
4484 		.procname       = "sched_schedstats",
4485 		.data           = NULL,
4486 		.maxlen         = sizeof(unsigned int),
4487 		.mode           = 0644,
4488 		.proc_handler   = sysctl_schedstats,
4489 		.extra1         = SYSCTL_ZERO,
4490 		.extra2         = SYSCTL_ONE,
4491 	},
4492 #endif /* CONFIG_SCHEDSTATS */
4493 #ifdef CONFIG_UCLAMP_TASK
4494 	{
4495 		.procname       = "sched_util_clamp_min",
4496 		.data           = &sysctl_sched_uclamp_util_min,
4497 		.maxlen         = sizeof(unsigned int),
4498 		.mode           = 0644,
4499 		.proc_handler   = sysctl_sched_uclamp_handler,
4500 	},
4501 	{
4502 		.procname       = "sched_util_clamp_max",
4503 		.data           = &sysctl_sched_uclamp_util_max,
4504 		.maxlen         = sizeof(unsigned int),
4505 		.mode           = 0644,
4506 		.proc_handler   = sysctl_sched_uclamp_handler,
4507 	},
4508 	{
4509 		.procname       = "sched_util_clamp_min_rt_default",
4510 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4511 		.maxlen         = sizeof(unsigned int),
4512 		.mode           = 0644,
4513 		.proc_handler   = sysctl_sched_uclamp_handler,
4514 	},
4515 #endif /* CONFIG_UCLAMP_TASK */
4516 	{}
4517 };
4518 static int __init sched_core_sysctl_init(void)
4519 {
4520 	register_sysctl_init("kernel", sched_core_sysctls);
4521 	return 0;
4522 }
4523 late_initcall(sched_core_sysctl_init);
4524 #endif /* CONFIG_SYSCTL */
4525 
4526 /*
4527  * fork()/clone()-time setup:
4528  */
4529 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4530 {
4531 	__sched_fork(clone_flags, p);
4532 	/*
4533 	 * We mark the process as NEW here. This guarantees that
4534 	 * nobody will actually run it, and a signal or other external
4535 	 * event cannot wake it up and insert it on the runqueue either.
4536 	 */
4537 	p->__state = TASK_NEW;
4538 
4539 	/*
4540 	 * Make sure we do not leak PI boosting priority to the child.
4541 	 */
4542 	p->prio = current->normal_prio;
4543 
4544 	uclamp_fork(p);
4545 
4546 	/*
4547 	 * Revert to default priority/policy on fork if requested.
4548 	 */
4549 	if (unlikely(p->sched_reset_on_fork)) {
4550 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4551 			p->policy = SCHED_NORMAL;
4552 			p->static_prio = NICE_TO_PRIO(0);
4553 			p->rt_priority = 0;
4554 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4555 			p->static_prio = NICE_TO_PRIO(0);
4556 
4557 		p->prio = p->normal_prio = p->static_prio;
4558 		set_load_weight(p, false);
4559 
4560 		/*
4561 		 * We don't need the reset flag anymore after the fork. It has
4562 		 * fulfilled its duty:
4563 		 */
4564 		p->sched_reset_on_fork = 0;
4565 	}
4566 
4567 	if (dl_prio(p->prio))
4568 		return -EAGAIN;
4569 	else if (rt_prio(p->prio))
4570 		p->sched_class = &rt_sched_class;
4571 	else
4572 		p->sched_class = &fair_sched_class;
4573 
4574 	init_entity_runnable_average(&p->se);
4575 
4576 
4577 #ifdef CONFIG_SCHED_INFO
4578 	if (likely(sched_info_on()))
4579 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4580 #endif
4581 #if defined(CONFIG_SMP)
4582 	p->on_cpu = 0;
4583 #endif
4584 	init_task_preempt_count(p);
4585 #ifdef CONFIG_SMP
4586 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4587 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4588 #endif
4589 	return 0;
4590 }
4591 
4592 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4593 {
4594 	unsigned long flags;
4595 
4596 	/*
4597 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4598 	 * required yet, but lockdep gets upset if rules are violated.
4599 	 */
4600 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4601 #ifdef CONFIG_CGROUP_SCHED
4602 	if (1) {
4603 		struct task_group *tg;
4604 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4605 				  struct task_group, css);
4606 		tg = autogroup_task_group(p, tg);
4607 		p->sched_task_group = tg;
4608 	}
4609 #endif
4610 	rseq_migrate(p);
4611 	/*
4612 	 * We're setting the CPU for the first time, we don't migrate,
4613 	 * so use __set_task_cpu().
4614 	 */
4615 	__set_task_cpu(p, smp_processor_id());
4616 	if (p->sched_class->task_fork)
4617 		p->sched_class->task_fork(p);
4618 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4619 }
4620 
4621 void sched_post_fork(struct task_struct *p)
4622 {
4623 	uclamp_post_fork(p);
4624 }
4625 
4626 unsigned long to_ratio(u64 period, u64 runtime)
4627 {
4628 	if (runtime == RUNTIME_INF)
4629 		return BW_UNIT;
4630 
4631 	/*
4632 	 * Doing this here saves a lot of checks in all
4633 	 * the calling paths, and returning zero seems
4634 	 * safe for them anyway.
4635 	 */
4636 	if (period == 0)
4637 		return 0;
4638 
4639 	return div64_u64(runtime << BW_SHIFT, period);
4640 }
4641 
4642 /*
4643  * wake_up_new_task - wake up a newly created task for the first time.
4644  *
4645  * This function will do some initial scheduler statistics housekeeping
4646  * that must be done for every newly created context, then puts the task
4647  * on the runqueue and wakes it.
4648  */
4649 void wake_up_new_task(struct task_struct *p)
4650 {
4651 	struct rq_flags rf;
4652 	struct rq *rq;
4653 
4654 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4655 	WRITE_ONCE(p->__state, TASK_RUNNING);
4656 #ifdef CONFIG_SMP
4657 	/*
4658 	 * Fork balancing, do it here and not earlier because:
4659 	 *  - cpus_ptr can change in the fork path
4660 	 *  - any previously selected CPU might disappear through hotplug
4661 	 *
4662 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4663 	 * as we're not fully set-up yet.
4664 	 */
4665 	p->recent_used_cpu = task_cpu(p);
4666 	rseq_migrate(p);
4667 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4668 #endif
4669 	rq = __task_rq_lock(p, &rf);
4670 	update_rq_clock(rq);
4671 	post_init_entity_util_avg(p);
4672 
4673 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4674 	trace_sched_wakeup_new(p);
4675 	check_preempt_curr(rq, p, WF_FORK);
4676 #ifdef CONFIG_SMP
4677 	if (p->sched_class->task_woken) {
4678 		/*
4679 		 * Nothing relies on rq->lock after this, so it's fine to
4680 		 * drop it.
4681 		 */
4682 		rq_unpin_lock(rq, &rf);
4683 		p->sched_class->task_woken(rq, p);
4684 		rq_repin_lock(rq, &rf);
4685 	}
4686 #endif
4687 	task_rq_unlock(rq, p, &rf);
4688 }
4689 
4690 #ifdef CONFIG_PREEMPT_NOTIFIERS
4691 
4692 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4693 
4694 void preempt_notifier_inc(void)
4695 {
4696 	static_branch_inc(&preempt_notifier_key);
4697 }
4698 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4699 
4700 void preempt_notifier_dec(void)
4701 {
4702 	static_branch_dec(&preempt_notifier_key);
4703 }
4704 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4705 
4706 /**
4707  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4708  * @notifier: notifier struct to register
4709  */
4710 void preempt_notifier_register(struct preempt_notifier *notifier)
4711 {
4712 	if (!static_branch_unlikely(&preempt_notifier_key))
4713 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4714 
4715 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4716 }
4717 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4718 
4719 /**
4720  * preempt_notifier_unregister - no longer interested in preemption notifications
4721  * @notifier: notifier struct to unregister
4722  *
4723  * This is *not* safe to call from within a preemption notifier.
4724  */
4725 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4726 {
4727 	hlist_del(&notifier->link);
4728 }
4729 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4730 
4731 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4732 {
4733 	struct preempt_notifier *notifier;
4734 
4735 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4736 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4737 }
4738 
4739 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4740 {
4741 	if (static_branch_unlikely(&preempt_notifier_key))
4742 		__fire_sched_in_preempt_notifiers(curr);
4743 }
4744 
4745 static void
4746 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4747 				   struct task_struct *next)
4748 {
4749 	struct preempt_notifier *notifier;
4750 
4751 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4752 		notifier->ops->sched_out(notifier, next);
4753 }
4754 
4755 static __always_inline void
4756 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4757 				 struct task_struct *next)
4758 {
4759 	if (static_branch_unlikely(&preempt_notifier_key))
4760 		__fire_sched_out_preempt_notifiers(curr, next);
4761 }
4762 
4763 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4764 
4765 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4766 {
4767 }
4768 
4769 static inline void
4770 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4771 				 struct task_struct *next)
4772 {
4773 }
4774 
4775 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4776 
4777 static inline void prepare_task(struct task_struct *next)
4778 {
4779 #ifdef CONFIG_SMP
4780 	/*
4781 	 * Claim the task as running, we do this before switching to it
4782 	 * such that any running task will have this set.
4783 	 *
4784 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4785 	 * its ordering comment.
4786 	 */
4787 	WRITE_ONCE(next->on_cpu, 1);
4788 #endif
4789 }
4790 
4791 static inline void finish_task(struct task_struct *prev)
4792 {
4793 #ifdef CONFIG_SMP
4794 	/*
4795 	 * This must be the very last reference to @prev from this CPU. After
4796 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4797 	 * must ensure this doesn't happen until the switch is completely
4798 	 * finished.
4799 	 *
4800 	 * In particular, the load of prev->state in finish_task_switch() must
4801 	 * happen before this.
4802 	 *
4803 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4804 	 */
4805 	smp_store_release(&prev->on_cpu, 0);
4806 #endif
4807 }
4808 
4809 #ifdef CONFIG_SMP
4810 
4811 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4812 {
4813 	void (*func)(struct rq *rq);
4814 	struct callback_head *next;
4815 
4816 	lockdep_assert_rq_held(rq);
4817 
4818 	while (head) {
4819 		func = (void (*)(struct rq *))head->func;
4820 		next = head->next;
4821 		head->next = NULL;
4822 		head = next;
4823 
4824 		func(rq);
4825 	}
4826 }
4827 
4828 static void balance_push(struct rq *rq);
4829 
4830 /*
4831  * balance_push_callback is a right abuse of the callback interface and plays
4832  * by significantly different rules.
4833  *
4834  * Where the normal balance_callback's purpose is to be ran in the same context
4835  * that queued it (only later, when it's safe to drop rq->lock again),
4836  * balance_push_callback is specifically targeted at __schedule().
4837  *
4838  * This abuse is tolerated because it places all the unlikely/odd cases behind
4839  * a single test, namely: rq->balance_callback == NULL.
4840  */
4841 struct callback_head balance_push_callback = {
4842 	.next = NULL,
4843 	.func = (void (*)(struct callback_head *))balance_push,
4844 };
4845 
4846 static inline struct callback_head *
4847 __splice_balance_callbacks(struct rq *rq, bool split)
4848 {
4849 	struct callback_head *head = rq->balance_callback;
4850 
4851 	if (likely(!head))
4852 		return NULL;
4853 
4854 	lockdep_assert_rq_held(rq);
4855 	/*
4856 	 * Must not take balance_push_callback off the list when
4857 	 * splice_balance_callbacks() and balance_callbacks() are not
4858 	 * in the same rq->lock section.
4859 	 *
4860 	 * In that case it would be possible for __schedule() to interleave
4861 	 * and observe the list empty.
4862 	 */
4863 	if (split && head == &balance_push_callback)
4864 		head = NULL;
4865 	else
4866 		rq->balance_callback = NULL;
4867 
4868 	return head;
4869 }
4870 
4871 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4872 {
4873 	return __splice_balance_callbacks(rq, true);
4874 }
4875 
4876 static void __balance_callbacks(struct rq *rq)
4877 {
4878 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
4879 }
4880 
4881 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4882 {
4883 	unsigned long flags;
4884 
4885 	if (unlikely(head)) {
4886 		raw_spin_rq_lock_irqsave(rq, flags);
4887 		do_balance_callbacks(rq, head);
4888 		raw_spin_rq_unlock_irqrestore(rq, flags);
4889 	}
4890 }
4891 
4892 #else
4893 
4894 static inline void __balance_callbacks(struct rq *rq)
4895 {
4896 }
4897 
4898 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4899 {
4900 	return NULL;
4901 }
4902 
4903 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4904 {
4905 }
4906 
4907 #endif
4908 
4909 static inline void
4910 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4911 {
4912 	/*
4913 	 * Since the runqueue lock will be released by the next
4914 	 * task (which is an invalid locking op but in the case
4915 	 * of the scheduler it's an obvious special-case), so we
4916 	 * do an early lockdep release here:
4917 	 */
4918 	rq_unpin_lock(rq, rf);
4919 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4920 #ifdef CONFIG_DEBUG_SPINLOCK
4921 	/* this is a valid case when another task releases the spinlock */
4922 	rq_lockp(rq)->owner = next;
4923 #endif
4924 }
4925 
4926 static inline void finish_lock_switch(struct rq *rq)
4927 {
4928 	/*
4929 	 * If we are tracking spinlock dependencies then we have to
4930 	 * fix up the runqueue lock - which gets 'carried over' from
4931 	 * prev into current:
4932 	 */
4933 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4934 	__balance_callbacks(rq);
4935 	raw_spin_rq_unlock_irq(rq);
4936 }
4937 
4938 /*
4939  * NOP if the arch has not defined these:
4940  */
4941 
4942 #ifndef prepare_arch_switch
4943 # define prepare_arch_switch(next)	do { } while (0)
4944 #endif
4945 
4946 #ifndef finish_arch_post_lock_switch
4947 # define finish_arch_post_lock_switch()	do { } while (0)
4948 #endif
4949 
4950 static inline void kmap_local_sched_out(void)
4951 {
4952 #ifdef CONFIG_KMAP_LOCAL
4953 	if (unlikely(current->kmap_ctrl.idx))
4954 		__kmap_local_sched_out();
4955 #endif
4956 }
4957 
4958 static inline void kmap_local_sched_in(void)
4959 {
4960 #ifdef CONFIG_KMAP_LOCAL
4961 	if (unlikely(current->kmap_ctrl.idx))
4962 		__kmap_local_sched_in();
4963 #endif
4964 }
4965 
4966 /**
4967  * prepare_task_switch - prepare to switch tasks
4968  * @rq: the runqueue preparing to switch
4969  * @prev: the current task that is being switched out
4970  * @next: the task we are going to switch to.
4971  *
4972  * This is called with the rq lock held and interrupts off. It must
4973  * be paired with a subsequent finish_task_switch after the context
4974  * switch.
4975  *
4976  * prepare_task_switch sets up locking and calls architecture specific
4977  * hooks.
4978  */
4979 static inline void
4980 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4981 		    struct task_struct *next)
4982 {
4983 	kcov_prepare_switch(prev);
4984 	sched_info_switch(rq, prev, next);
4985 	perf_event_task_sched_out(prev, next);
4986 	rseq_preempt(prev);
4987 	fire_sched_out_preempt_notifiers(prev, next);
4988 	kmap_local_sched_out();
4989 	prepare_task(next);
4990 	prepare_arch_switch(next);
4991 }
4992 
4993 /**
4994  * finish_task_switch - clean up after a task-switch
4995  * @prev: the thread we just switched away from.
4996  *
4997  * finish_task_switch must be called after the context switch, paired
4998  * with a prepare_task_switch call before the context switch.
4999  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5000  * and do any other architecture-specific cleanup actions.
5001  *
5002  * Note that we may have delayed dropping an mm in context_switch(). If
5003  * so, we finish that here outside of the runqueue lock. (Doing it
5004  * with the lock held can cause deadlocks; see schedule() for
5005  * details.)
5006  *
5007  * The context switch have flipped the stack from under us and restored the
5008  * local variables which were saved when this task called schedule() in the
5009  * past. prev == current is still correct but we need to recalculate this_rq
5010  * because prev may have moved to another CPU.
5011  */
5012 static struct rq *finish_task_switch(struct task_struct *prev)
5013 	__releases(rq->lock)
5014 {
5015 	struct rq *rq = this_rq();
5016 	struct mm_struct *mm = rq->prev_mm;
5017 	unsigned int prev_state;
5018 
5019 	/*
5020 	 * The previous task will have left us with a preempt_count of 2
5021 	 * because it left us after:
5022 	 *
5023 	 *	schedule()
5024 	 *	  preempt_disable();			// 1
5025 	 *	  __schedule()
5026 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5027 	 *
5028 	 * Also, see FORK_PREEMPT_COUNT.
5029 	 */
5030 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5031 		      "corrupted preempt_count: %s/%d/0x%x\n",
5032 		      current->comm, current->pid, preempt_count()))
5033 		preempt_count_set(FORK_PREEMPT_COUNT);
5034 
5035 	rq->prev_mm = NULL;
5036 
5037 	/*
5038 	 * A task struct has one reference for the use as "current".
5039 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5040 	 * schedule one last time. The schedule call will never return, and
5041 	 * the scheduled task must drop that reference.
5042 	 *
5043 	 * We must observe prev->state before clearing prev->on_cpu (in
5044 	 * finish_task), otherwise a concurrent wakeup can get prev
5045 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5046 	 * transition, resulting in a double drop.
5047 	 */
5048 	prev_state = READ_ONCE(prev->__state);
5049 	vtime_task_switch(prev);
5050 	perf_event_task_sched_in(prev, current);
5051 	finish_task(prev);
5052 	tick_nohz_task_switch();
5053 	finish_lock_switch(rq);
5054 	finish_arch_post_lock_switch();
5055 	kcov_finish_switch(current);
5056 	/*
5057 	 * kmap_local_sched_out() is invoked with rq::lock held and
5058 	 * interrupts disabled. There is no requirement for that, but the
5059 	 * sched out code does not have an interrupt enabled section.
5060 	 * Restoring the maps on sched in does not require interrupts being
5061 	 * disabled either.
5062 	 */
5063 	kmap_local_sched_in();
5064 
5065 	fire_sched_in_preempt_notifiers(current);
5066 	/*
5067 	 * When switching through a kernel thread, the loop in
5068 	 * membarrier_{private,global}_expedited() may have observed that
5069 	 * kernel thread and not issued an IPI. It is therefore possible to
5070 	 * schedule between user->kernel->user threads without passing though
5071 	 * switch_mm(). Membarrier requires a barrier after storing to
5072 	 * rq->curr, before returning to userspace, so provide them here:
5073 	 *
5074 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5075 	 *   provided by mmdrop(),
5076 	 * - a sync_core for SYNC_CORE.
5077 	 */
5078 	if (mm) {
5079 		membarrier_mm_sync_core_before_usermode(mm);
5080 		mmdrop_sched(mm);
5081 	}
5082 	if (unlikely(prev_state == TASK_DEAD)) {
5083 		if (prev->sched_class->task_dead)
5084 			prev->sched_class->task_dead(prev);
5085 
5086 		/* Task is done with its stack. */
5087 		put_task_stack(prev);
5088 
5089 		put_task_struct_rcu_user(prev);
5090 	}
5091 
5092 	return rq;
5093 }
5094 
5095 /**
5096  * schedule_tail - first thing a freshly forked thread must call.
5097  * @prev: the thread we just switched away from.
5098  */
5099 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5100 	__releases(rq->lock)
5101 {
5102 	/*
5103 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5104 	 * finish_task_switch() for details.
5105 	 *
5106 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5107 	 * and the preempt_enable() will end up enabling preemption (on
5108 	 * PREEMPT_COUNT kernels).
5109 	 */
5110 
5111 	finish_task_switch(prev);
5112 	preempt_enable();
5113 
5114 	if (current->set_child_tid)
5115 		put_user(task_pid_vnr(current), current->set_child_tid);
5116 
5117 	calculate_sigpending();
5118 }
5119 
5120 /*
5121  * context_switch - switch to the new MM and the new thread's register state.
5122  */
5123 static __always_inline struct rq *
5124 context_switch(struct rq *rq, struct task_struct *prev,
5125 	       struct task_struct *next, struct rq_flags *rf)
5126 {
5127 	prepare_task_switch(rq, prev, next);
5128 
5129 	/*
5130 	 * For paravirt, this is coupled with an exit in switch_to to
5131 	 * combine the page table reload and the switch backend into
5132 	 * one hypercall.
5133 	 */
5134 	arch_start_context_switch(prev);
5135 
5136 	/*
5137 	 * kernel -> kernel   lazy + transfer active
5138 	 *   user -> kernel   lazy + mmgrab() active
5139 	 *
5140 	 * kernel ->   user   switch + mmdrop() active
5141 	 *   user ->   user   switch
5142 	 */
5143 	if (!next->mm) {                                // to kernel
5144 		enter_lazy_tlb(prev->active_mm, next);
5145 
5146 		next->active_mm = prev->active_mm;
5147 		if (prev->mm)                           // from user
5148 			mmgrab(prev->active_mm);
5149 		else
5150 			prev->active_mm = NULL;
5151 	} else {                                        // to user
5152 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5153 		/*
5154 		 * sys_membarrier() requires an smp_mb() between setting
5155 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5156 		 *
5157 		 * The below provides this either through switch_mm(), or in
5158 		 * case 'prev->active_mm == next->mm' through
5159 		 * finish_task_switch()'s mmdrop().
5160 		 */
5161 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5162 
5163 		if (!prev->mm) {                        // from kernel
5164 			/* will mmdrop() in finish_task_switch(). */
5165 			rq->prev_mm = prev->active_mm;
5166 			prev->active_mm = NULL;
5167 		}
5168 	}
5169 
5170 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5171 
5172 	prepare_lock_switch(rq, next, rf);
5173 
5174 	/* Here we just switch the register state and the stack. */
5175 	switch_to(prev, next, prev);
5176 	barrier();
5177 
5178 	return finish_task_switch(prev);
5179 }
5180 
5181 /*
5182  * nr_running and nr_context_switches:
5183  *
5184  * externally visible scheduler statistics: current number of runnable
5185  * threads, total number of context switches performed since bootup.
5186  */
5187 unsigned int nr_running(void)
5188 {
5189 	unsigned int i, sum = 0;
5190 
5191 	for_each_online_cpu(i)
5192 		sum += cpu_rq(i)->nr_running;
5193 
5194 	return sum;
5195 }
5196 
5197 /*
5198  * Check if only the current task is running on the CPU.
5199  *
5200  * Caution: this function does not check that the caller has disabled
5201  * preemption, thus the result might have a time-of-check-to-time-of-use
5202  * race.  The caller is responsible to use it correctly, for example:
5203  *
5204  * - from a non-preemptible section (of course)
5205  *
5206  * - from a thread that is bound to a single CPU
5207  *
5208  * - in a loop with very short iterations (e.g. a polling loop)
5209  */
5210 bool single_task_running(void)
5211 {
5212 	return raw_rq()->nr_running == 1;
5213 }
5214 EXPORT_SYMBOL(single_task_running);
5215 
5216 unsigned long long nr_context_switches(void)
5217 {
5218 	int i;
5219 	unsigned long long sum = 0;
5220 
5221 	for_each_possible_cpu(i)
5222 		sum += cpu_rq(i)->nr_switches;
5223 
5224 	return sum;
5225 }
5226 
5227 /*
5228  * Consumers of these two interfaces, like for example the cpuidle menu
5229  * governor, are using nonsensical data. Preferring shallow idle state selection
5230  * for a CPU that has IO-wait which might not even end up running the task when
5231  * it does become runnable.
5232  */
5233 
5234 unsigned int nr_iowait_cpu(int cpu)
5235 {
5236 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5237 }
5238 
5239 /*
5240  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5241  *
5242  * The idea behind IO-wait account is to account the idle time that we could
5243  * have spend running if it were not for IO. That is, if we were to improve the
5244  * storage performance, we'd have a proportional reduction in IO-wait time.
5245  *
5246  * This all works nicely on UP, where, when a task blocks on IO, we account
5247  * idle time as IO-wait, because if the storage were faster, it could've been
5248  * running and we'd not be idle.
5249  *
5250  * This has been extended to SMP, by doing the same for each CPU. This however
5251  * is broken.
5252  *
5253  * Imagine for instance the case where two tasks block on one CPU, only the one
5254  * CPU will have IO-wait accounted, while the other has regular idle. Even
5255  * though, if the storage were faster, both could've ran at the same time,
5256  * utilising both CPUs.
5257  *
5258  * This means, that when looking globally, the current IO-wait accounting on
5259  * SMP is a lower bound, by reason of under accounting.
5260  *
5261  * Worse, since the numbers are provided per CPU, they are sometimes
5262  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5263  * associated with any one particular CPU, it can wake to another CPU than it
5264  * blocked on. This means the per CPU IO-wait number is meaningless.
5265  *
5266  * Task CPU affinities can make all that even more 'interesting'.
5267  */
5268 
5269 unsigned int nr_iowait(void)
5270 {
5271 	unsigned int i, sum = 0;
5272 
5273 	for_each_possible_cpu(i)
5274 		sum += nr_iowait_cpu(i);
5275 
5276 	return sum;
5277 }
5278 
5279 #ifdef CONFIG_SMP
5280 
5281 /*
5282  * sched_exec - execve() is a valuable balancing opportunity, because at
5283  * this point the task has the smallest effective memory and cache footprint.
5284  */
5285 void sched_exec(void)
5286 {
5287 	struct task_struct *p = current;
5288 	unsigned long flags;
5289 	int dest_cpu;
5290 
5291 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5292 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5293 	if (dest_cpu == smp_processor_id())
5294 		goto unlock;
5295 
5296 	if (likely(cpu_active(dest_cpu))) {
5297 		struct migration_arg arg = { p, dest_cpu };
5298 
5299 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5300 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5301 		return;
5302 	}
5303 unlock:
5304 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5305 }
5306 
5307 #endif
5308 
5309 DEFINE_PER_CPU(struct kernel_stat, kstat);
5310 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5311 
5312 EXPORT_PER_CPU_SYMBOL(kstat);
5313 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5314 
5315 /*
5316  * The function fair_sched_class.update_curr accesses the struct curr
5317  * and its field curr->exec_start; when called from task_sched_runtime(),
5318  * we observe a high rate of cache misses in practice.
5319  * Prefetching this data results in improved performance.
5320  */
5321 static inline void prefetch_curr_exec_start(struct task_struct *p)
5322 {
5323 #ifdef CONFIG_FAIR_GROUP_SCHED
5324 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5325 #else
5326 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5327 #endif
5328 	prefetch(curr);
5329 	prefetch(&curr->exec_start);
5330 }
5331 
5332 /*
5333  * Return accounted runtime for the task.
5334  * In case the task is currently running, return the runtime plus current's
5335  * pending runtime that have not been accounted yet.
5336  */
5337 unsigned long long task_sched_runtime(struct task_struct *p)
5338 {
5339 	struct rq_flags rf;
5340 	struct rq *rq;
5341 	u64 ns;
5342 
5343 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5344 	/*
5345 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5346 	 * So we have a optimization chance when the task's delta_exec is 0.
5347 	 * Reading ->on_cpu is racy, but this is ok.
5348 	 *
5349 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5350 	 * If we race with it entering CPU, unaccounted time is 0. This is
5351 	 * indistinguishable from the read occurring a few cycles earlier.
5352 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5353 	 * been accounted, so we're correct here as well.
5354 	 */
5355 	if (!p->on_cpu || !task_on_rq_queued(p))
5356 		return p->se.sum_exec_runtime;
5357 #endif
5358 
5359 	rq = task_rq_lock(p, &rf);
5360 	/*
5361 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5362 	 * project cycles that may never be accounted to this
5363 	 * thread, breaking clock_gettime().
5364 	 */
5365 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5366 		prefetch_curr_exec_start(p);
5367 		update_rq_clock(rq);
5368 		p->sched_class->update_curr(rq);
5369 	}
5370 	ns = p->se.sum_exec_runtime;
5371 	task_rq_unlock(rq, p, &rf);
5372 
5373 	return ns;
5374 }
5375 
5376 #ifdef CONFIG_SCHED_DEBUG
5377 static u64 cpu_resched_latency(struct rq *rq)
5378 {
5379 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5380 	u64 resched_latency, now = rq_clock(rq);
5381 	static bool warned_once;
5382 
5383 	if (sysctl_resched_latency_warn_once && warned_once)
5384 		return 0;
5385 
5386 	if (!need_resched() || !latency_warn_ms)
5387 		return 0;
5388 
5389 	if (system_state == SYSTEM_BOOTING)
5390 		return 0;
5391 
5392 	if (!rq->last_seen_need_resched_ns) {
5393 		rq->last_seen_need_resched_ns = now;
5394 		rq->ticks_without_resched = 0;
5395 		return 0;
5396 	}
5397 
5398 	rq->ticks_without_resched++;
5399 	resched_latency = now - rq->last_seen_need_resched_ns;
5400 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5401 		return 0;
5402 
5403 	warned_once = true;
5404 
5405 	return resched_latency;
5406 }
5407 
5408 static int __init setup_resched_latency_warn_ms(char *str)
5409 {
5410 	long val;
5411 
5412 	if ((kstrtol(str, 0, &val))) {
5413 		pr_warn("Unable to set resched_latency_warn_ms\n");
5414 		return 1;
5415 	}
5416 
5417 	sysctl_resched_latency_warn_ms = val;
5418 	return 1;
5419 }
5420 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5421 #else
5422 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5423 #endif /* CONFIG_SCHED_DEBUG */
5424 
5425 /*
5426  * This function gets called by the timer code, with HZ frequency.
5427  * We call it with interrupts disabled.
5428  */
5429 void scheduler_tick(void)
5430 {
5431 	int cpu = smp_processor_id();
5432 	struct rq *rq = cpu_rq(cpu);
5433 	struct task_struct *curr = rq->curr;
5434 	struct rq_flags rf;
5435 	unsigned long thermal_pressure;
5436 	u64 resched_latency;
5437 
5438 	arch_scale_freq_tick();
5439 	sched_clock_tick();
5440 
5441 	rq_lock(rq, &rf);
5442 
5443 	update_rq_clock(rq);
5444 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5445 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5446 	curr->sched_class->task_tick(rq, curr, 0);
5447 	if (sched_feat(LATENCY_WARN))
5448 		resched_latency = cpu_resched_latency(rq);
5449 	calc_global_load_tick(rq);
5450 	sched_core_tick(rq);
5451 
5452 	rq_unlock(rq, &rf);
5453 
5454 	if (sched_feat(LATENCY_WARN) && resched_latency)
5455 		resched_latency_warn(cpu, resched_latency);
5456 
5457 	perf_event_task_tick();
5458 
5459 #ifdef CONFIG_SMP
5460 	rq->idle_balance = idle_cpu(cpu);
5461 	trigger_load_balance(rq);
5462 #endif
5463 }
5464 
5465 #ifdef CONFIG_NO_HZ_FULL
5466 
5467 struct tick_work {
5468 	int			cpu;
5469 	atomic_t		state;
5470 	struct delayed_work	work;
5471 };
5472 /* Values for ->state, see diagram below. */
5473 #define TICK_SCHED_REMOTE_OFFLINE	0
5474 #define TICK_SCHED_REMOTE_OFFLINING	1
5475 #define TICK_SCHED_REMOTE_RUNNING	2
5476 
5477 /*
5478  * State diagram for ->state:
5479  *
5480  *
5481  *          TICK_SCHED_REMOTE_OFFLINE
5482  *                    |   ^
5483  *                    |   |
5484  *                    |   | sched_tick_remote()
5485  *                    |   |
5486  *                    |   |
5487  *                    +--TICK_SCHED_REMOTE_OFFLINING
5488  *                    |   ^
5489  *                    |   |
5490  * sched_tick_start() |   | sched_tick_stop()
5491  *                    |   |
5492  *                    V   |
5493  *          TICK_SCHED_REMOTE_RUNNING
5494  *
5495  *
5496  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5497  * and sched_tick_start() are happy to leave the state in RUNNING.
5498  */
5499 
5500 static struct tick_work __percpu *tick_work_cpu;
5501 
5502 static void sched_tick_remote(struct work_struct *work)
5503 {
5504 	struct delayed_work *dwork = to_delayed_work(work);
5505 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5506 	int cpu = twork->cpu;
5507 	struct rq *rq = cpu_rq(cpu);
5508 	struct task_struct *curr;
5509 	struct rq_flags rf;
5510 	u64 delta;
5511 	int os;
5512 
5513 	/*
5514 	 * Handle the tick only if it appears the remote CPU is running in full
5515 	 * dynticks mode. The check is racy by nature, but missing a tick or
5516 	 * having one too much is no big deal because the scheduler tick updates
5517 	 * statistics and checks timeslices in a time-independent way, regardless
5518 	 * of when exactly it is running.
5519 	 */
5520 	if (!tick_nohz_tick_stopped_cpu(cpu))
5521 		goto out_requeue;
5522 
5523 	rq_lock_irq(rq, &rf);
5524 	curr = rq->curr;
5525 	if (cpu_is_offline(cpu))
5526 		goto out_unlock;
5527 
5528 	update_rq_clock(rq);
5529 
5530 	if (!is_idle_task(curr)) {
5531 		/*
5532 		 * Make sure the next tick runs within a reasonable
5533 		 * amount of time.
5534 		 */
5535 		delta = rq_clock_task(rq) - curr->se.exec_start;
5536 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5537 	}
5538 	curr->sched_class->task_tick(rq, curr, 0);
5539 
5540 	calc_load_nohz_remote(rq);
5541 out_unlock:
5542 	rq_unlock_irq(rq, &rf);
5543 out_requeue:
5544 
5545 	/*
5546 	 * Run the remote tick once per second (1Hz). This arbitrary
5547 	 * frequency is large enough to avoid overload but short enough
5548 	 * to keep scheduler internal stats reasonably up to date.  But
5549 	 * first update state to reflect hotplug activity if required.
5550 	 */
5551 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5552 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5553 	if (os == TICK_SCHED_REMOTE_RUNNING)
5554 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5555 }
5556 
5557 static void sched_tick_start(int cpu)
5558 {
5559 	int os;
5560 	struct tick_work *twork;
5561 
5562 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5563 		return;
5564 
5565 	WARN_ON_ONCE(!tick_work_cpu);
5566 
5567 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5568 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5569 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5570 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5571 		twork->cpu = cpu;
5572 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5573 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5574 	}
5575 }
5576 
5577 #ifdef CONFIG_HOTPLUG_CPU
5578 static void sched_tick_stop(int cpu)
5579 {
5580 	struct tick_work *twork;
5581 	int os;
5582 
5583 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5584 		return;
5585 
5586 	WARN_ON_ONCE(!tick_work_cpu);
5587 
5588 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5589 	/* There cannot be competing actions, but don't rely on stop-machine. */
5590 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5591 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5592 	/* Don't cancel, as this would mess up the state machine. */
5593 }
5594 #endif /* CONFIG_HOTPLUG_CPU */
5595 
5596 int __init sched_tick_offload_init(void)
5597 {
5598 	tick_work_cpu = alloc_percpu(struct tick_work);
5599 	BUG_ON(!tick_work_cpu);
5600 	return 0;
5601 }
5602 
5603 #else /* !CONFIG_NO_HZ_FULL */
5604 static inline void sched_tick_start(int cpu) { }
5605 static inline void sched_tick_stop(int cpu) { }
5606 #endif
5607 
5608 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5609 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5610 /*
5611  * If the value passed in is equal to the current preempt count
5612  * then we just disabled preemption. Start timing the latency.
5613  */
5614 static inline void preempt_latency_start(int val)
5615 {
5616 	if (preempt_count() == val) {
5617 		unsigned long ip = get_lock_parent_ip();
5618 #ifdef CONFIG_DEBUG_PREEMPT
5619 		current->preempt_disable_ip = ip;
5620 #endif
5621 		trace_preempt_off(CALLER_ADDR0, ip);
5622 	}
5623 }
5624 
5625 void preempt_count_add(int val)
5626 {
5627 #ifdef CONFIG_DEBUG_PREEMPT
5628 	/*
5629 	 * Underflow?
5630 	 */
5631 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5632 		return;
5633 #endif
5634 	__preempt_count_add(val);
5635 #ifdef CONFIG_DEBUG_PREEMPT
5636 	/*
5637 	 * Spinlock count overflowing soon?
5638 	 */
5639 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5640 				PREEMPT_MASK - 10);
5641 #endif
5642 	preempt_latency_start(val);
5643 }
5644 EXPORT_SYMBOL(preempt_count_add);
5645 NOKPROBE_SYMBOL(preempt_count_add);
5646 
5647 /*
5648  * If the value passed in equals to the current preempt count
5649  * then we just enabled preemption. Stop timing the latency.
5650  */
5651 static inline void preempt_latency_stop(int val)
5652 {
5653 	if (preempt_count() == val)
5654 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5655 }
5656 
5657 void preempt_count_sub(int val)
5658 {
5659 #ifdef CONFIG_DEBUG_PREEMPT
5660 	/*
5661 	 * Underflow?
5662 	 */
5663 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5664 		return;
5665 	/*
5666 	 * Is the spinlock portion underflowing?
5667 	 */
5668 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5669 			!(preempt_count() & PREEMPT_MASK)))
5670 		return;
5671 #endif
5672 
5673 	preempt_latency_stop(val);
5674 	__preempt_count_sub(val);
5675 }
5676 EXPORT_SYMBOL(preempt_count_sub);
5677 NOKPROBE_SYMBOL(preempt_count_sub);
5678 
5679 #else
5680 static inline void preempt_latency_start(int val) { }
5681 static inline void preempt_latency_stop(int val) { }
5682 #endif
5683 
5684 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5685 {
5686 #ifdef CONFIG_DEBUG_PREEMPT
5687 	return p->preempt_disable_ip;
5688 #else
5689 	return 0;
5690 #endif
5691 }
5692 
5693 /*
5694  * Print scheduling while atomic bug:
5695  */
5696 static noinline void __schedule_bug(struct task_struct *prev)
5697 {
5698 	/* Save this before calling printk(), since that will clobber it */
5699 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5700 
5701 	if (oops_in_progress)
5702 		return;
5703 
5704 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5705 		prev->comm, prev->pid, preempt_count());
5706 
5707 	debug_show_held_locks(prev);
5708 	print_modules();
5709 	if (irqs_disabled())
5710 		print_irqtrace_events(prev);
5711 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5712 	    && in_atomic_preempt_off()) {
5713 		pr_err("Preemption disabled at:");
5714 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5715 	}
5716 	if (panic_on_warn)
5717 		panic("scheduling while atomic\n");
5718 
5719 	dump_stack();
5720 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5721 }
5722 
5723 /*
5724  * Various schedule()-time debugging checks and statistics:
5725  */
5726 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5727 {
5728 #ifdef CONFIG_SCHED_STACK_END_CHECK
5729 	if (task_stack_end_corrupted(prev))
5730 		panic("corrupted stack end detected inside scheduler\n");
5731 
5732 	if (task_scs_end_corrupted(prev))
5733 		panic("corrupted shadow stack detected inside scheduler\n");
5734 #endif
5735 
5736 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5737 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5738 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5739 			prev->comm, prev->pid, prev->non_block_count);
5740 		dump_stack();
5741 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5742 	}
5743 #endif
5744 
5745 	if (unlikely(in_atomic_preempt_off())) {
5746 		__schedule_bug(prev);
5747 		preempt_count_set(PREEMPT_DISABLED);
5748 	}
5749 	rcu_sleep_check();
5750 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5751 
5752 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5753 
5754 	schedstat_inc(this_rq()->sched_count);
5755 }
5756 
5757 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5758 				  struct rq_flags *rf)
5759 {
5760 #ifdef CONFIG_SMP
5761 	const struct sched_class *class;
5762 	/*
5763 	 * We must do the balancing pass before put_prev_task(), such
5764 	 * that when we release the rq->lock the task is in the same
5765 	 * state as before we took rq->lock.
5766 	 *
5767 	 * We can terminate the balance pass as soon as we know there is
5768 	 * a runnable task of @class priority or higher.
5769 	 */
5770 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5771 		if (class->balance(rq, prev, rf))
5772 			break;
5773 	}
5774 #endif
5775 
5776 	put_prev_task(rq, prev);
5777 }
5778 
5779 /*
5780  * Pick up the highest-prio task:
5781  */
5782 static inline struct task_struct *
5783 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5784 {
5785 	const struct sched_class *class;
5786 	struct task_struct *p;
5787 
5788 	/*
5789 	 * Optimization: we know that if all tasks are in the fair class we can
5790 	 * call that function directly, but only if the @prev task wasn't of a
5791 	 * higher scheduling class, because otherwise those lose the
5792 	 * opportunity to pull in more work from other CPUs.
5793 	 */
5794 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5795 		   rq->nr_running == rq->cfs.h_nr_running)) {
5796 
5797 		p = pick_next_task_fair(rq, prev, rf);
5798 		if (unlikely(p == RETRY_TASK))
5799 			goto restart;
5800 
5801 		/* Assume the next prioritized class is idle_sched_class */
5802 		if (!p) {
5803 			put_prev_task(rq, prev);
5804 			p = pick_next_task_idle(rq);
5805 		}
5806 
5807 		return p;
5808 	}
5809 
5810 restart:
5811 	put_prev_task_balance(rq, prev, rf);
5812 
5813 	for_each_class(class) {
5814 		p = class->pick_next_task(rq);
5815 		if (p)
5816 			return p;
5817 	}
5818 
5819 	BUG(); /* The idle class should always have a runnable task. */
5820 }
5821 
5822 #ifdef CONFIG_SCHED_CORE
5823 static inline bool is_task_rq_idle(struct task_struct *t)
5824 {
5825 	return (task_rq(t)->idle == t);
5826 }
5827 
5828 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5829 {
5830 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5831 }
5832 
5833 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5834 {
5835 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5836 		return true;
5837 
5838 	return a->core_cookie == b->core_cookie;
5839 }
5840 
5841 static inline struct task_struct *pick_task(struct rq *rq)
5842 {
5843 	const struct sched_class *class;
5844 	struct task_struct *p;
5845 
5846 	for_each_class(class) {
5847 		p = class->pick_task(rq);
5848 		if (p)
5849 			return p;
5850 	}
5851 
5852 	BUG(); /* The idle class should always have a runnable task. */
5853 }
5854 
5855 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5856 
5857 static void queue_core_balance(struct rq *rq);
5858 
5859 static struct task_struct *
5860 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5861 {
5862 	struct task_struct *next, *p, *max = NULL;
5863 	const struct cpumask *smt_mask;
5864 	bool fi_before = false;
5865 	bool core_clock_updated = (rq == rq->core);
5866 	unsigned long cookie;
5867 	int i, cpu, occ = 0;
5868 	struct rq *rq_i;
5869 	bool need_sync;
5870 
5871 	if (!sched_core_enabled(rq))
5872 		return __pick_next_task(rq, prev, rf);
5873 
5874 	cpu = cpu_of(rq);
5875 
5876 	/* Stopper task is switching into idle, no need core-wide selection. */
5877 	if (cpu_is_offline(cpu)) {
5878 		/*
5879 		 * Reset core_pick so that we don't enter the fastpath when
5880 		 * coming online. core_pick would already be migrated to
5881 		 * another cpu during offline.
5882 		 */
5883 		rq->core_pick = NULL;
5884 		return __pick_next_task(rq, prev, rf);
5885 	}
5886 
5887 	/*
5888 	 * If there were no {en,de}queues since we picked (IOW, the task
5889 	 * pointers are all still valid), and we haven't scheduled the last
5890 	 * pick yet, do so now.
5891 	 *
5892 	 * rq->core_pick can be NULL if no selection was made for a CPU because
5893 	 * it was either offline or went offline during a sibling's core-wide
5894 	 * selection. In this case, do a core-wide selection.
5895 	 */
5896 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5897 	    rq->core->core_pick_seq != rq->core_sched_seq &&
5898 	    rq->core_pick) {
5899 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5900 
5901 		next = rq->core_pick;
5902 		if (next != prev) {
5903 			put_prev_task(rq, prev);
5904 			set_next_task(rq, next);
5905 		}
5906 
5907 		rq->core_pick = NULL;
5908 		goto out;
5909 	}
5910 
5911 	put_prev_task_balance(rq, prev, rf);
5912 
5913 	smt_mask = cpu_smt_mask(cpu);
5914 	need_sync = !!rq->core->core_cookie;
5915 
5916 	/* reset state */
5917 	rq->core->core_cookie = 0UL;
5918 	if (rq->core->core_forceidle_count) {
5919 		if (!core_clock_updated) {
5920 			update_rq_clock(rq->core);
5921 			core_clock_updated = true;
5922 		}
5923 		sched_core_account_forceidle(rq);
5924 		/* reset after accounting force idle */
5925 		rq->core->core_forceidle_start = 0;
5926 		rq->core->core_forceidle_count = 0;
5927 		rq->core->core_forceidle_occupation = 0;
5928 		need_sync = true;
5929 		fi_before = true;
5930 	}
5931 
5932 	/*
5933 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5934 	 *
5935 	 * @task_seq guards the task state ({en,de}queues)
5936 	 * @pick_seq is the @task_seq we did a selection on
5937 	 * @sched_seq is the @pick_seq we scheduled
5938 	 *
5939 	 * However, preemptions can cause multiple picks on the same task set.
5940 	 * 'Fix' this by also increasing @task_seq for every pick.
5941 	 */
5942 	rq->core->core_task_seq++;
5943 
5944 	/*
5945 	 * Optimize for common case where this CPU has no cookies
5946 	 * and there are no cookied tasks running on siblings.
5947 	 */
5948 	if (!need_sync) {
5949 		next = pick_task(rq);
5950 		if (!next->core_cookie) {
5951 			rq->core_pick = NULL;
5952 			/*
5953 			 * For robustness, update the min_vruntime_fi for
5954 			 * unconstrained picks as well.
5955 			 */
5956 			WARN_ON_ONCE(fi_before);
5957 			task_vruntime_update(rq, next, false);
5958 			goto out_set_next;
5959 		}
5960 	}
5961 
5962 	/*
5963 	 * For each thread: do the regular task pick and find the max prio task
5964 	 * amongst them.
5965 	 *
5966 	 * Tie-break prio towards the current CPU
5967 	 */
5968 	for_each_cpu_wrap(i, smt_mask, cpu) {
5969 		rq_i = cpu_rq(i);
5970 
5971 		/*
5972 		 * Current cpu always has its clock updated on entrance to
5973 		 * pick_next_task(). If the current cpu is not the core,
5974 		 * the core may also have been updated above.
5975 		 */
5976 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
5977 			update_rq_clock(rq_i);
5978 
5979 		p = rq_i->core_pick = pick_task(rq_i);
5980 		if (!max || prio_less(max, p, fi_before))
5981 			max = p;
5982 	}
5983 
5984 	cookie = rq->core->core_cookie = max->core_cookie;
5985 
5986 	/*
5987 	 * For each thread: try and find a runnable task that matches @max or
5988 	 * force idle.
5989 	 */
5990 	for_each_cpu(i, smt_mask) {
5991 		rq_i = cpu_rq(i);
5992 		p = rq_i->core_pick;
5993 
5994 		if (!cookie_equals(p, cookie)) {
5995 			p = NULL;
5996 			if (cookie)
5997 				p = sched_core_find(rq_i, cookie);
5998 			if (!p)
5999 				p = idle_sched_class.pick_task(rq_i);
6000 		}
6001 
6002 		rq_i->core_pick = p;
6003 
6004 		if (p == rq_i->idle) {
6005 			if (rq_i->nr_running) {
6006 				rq->core->core_forceidle_count++;
6007 				if (!fi_before)
6008 					rq->core->core_forceidle_seq++;
6009 			}
6010 		} else {
6011 			occ++;
6012 		}
6013 	}
6014 
6015 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6016 		rq->core->core_forceidle_start = rq_clock(rq->core);
6017 		rq->core->core_forceidle_occupation = occ;
6018 	}
6019 
6020 	rq->core->core_pick_seq = rq->core->core_task_seq;
6021 	next = rq->core_pick;
6022 	rq->core_sched_seq = rq->core->core_pick_seq;
6023 
6024 	/* Something should have been selected for current CPU */
6025 	WARN_ON_ONCE(!next);
6026 
6027 	/*
6028 	 * Reschedule siblings
6029 	 *
6030 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6031 	 * sending an IPI (below) ensures the sibling will no longer be running
6032 	 * their task. This ensures there is no inter-sibling overlap between
6033 	 * non-matching user state.
6034 	 */
6035 	for_each_cpu(i, smt_mask) {
6036 		rq_i = cpu_rq(i);
6037 
6038 		/*
6039 		 * An online sibling might have gone offline before a task
6040 		 * could be picked for it, or it might be offline but later
6041 		 * happen to come online, but its too late and nothing was
6042 		 * picked for it.  That's Ok - it will pick tasks for itself,
6043 		 * so ignore it.
6044 		 */
6045 		if (!rq_i->core_pick)
6046 			continue;
6047 
6048 		/*
6049 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6050 		 * fi_before     fi      update?
6051 		 *  0            0       1
6052 		 *  0            1       1
6053 		 *  1            0       1
6054 		 *  1            1       0
6055 		 */
6056 		if (!(fi_before && rq->core->core_forceidle_count))
6057 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6058 
6059 		rq_i->core_pick->core_occupation = occ;
6060 
6061 		if (i == cpu) {
6062 			rq_i->core_pick = NULL;
6063 			continue;
6064 		}
6065 
6066 		/* Did we break L1TF mitigation requirements? */
6067 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6068 
6069 		if (rq_i->curr == rq_i->core_pick) {
6070 			rq_i->core_pick = NULL;
6071 			continue;
6072 		}
6073 
6074 		resched_curr(rq_i);
6075 	}
6076 
6077 out_set_next:
6078 	set_next_task(rq, next);
6079 out:
6080 	if (rq->core->core_forceidle_count && next == rq->idle)
6081 		queue_core_balance(rq);
6082 
6083 	return next;
6084 }
6085 
6086 static bool try_steal_cookie(int this, int that)
6087 {
6088 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6089 	struct task_struct *p;
6090 	unsigned long cookie;
6091 	bool success = false;
6092 
6093 	local_irq_disable();
6094 	double_rq_lock(dst, src);
6095 
6096 	cookie = dst->core->core_cookie;
6097 	if (!cookie)
6098 		goto unlock;
6099 
6100 	if (dst->curr != dst->idle)
6101 		goto unlock;
6102 
6103 	p = sched_core_find(src, cookie);
6104 	if (p == src->idle)
6105 		goto unlock;
6106 
6107 	do {
6108 		if (p == src->core_pick || p == src->curr)
6109 			goto next;
6110 
6111 		if (!is_cpu_allowed(p, this))
6112 			goto next;
6113 
6114 		if (p->core_occupation > dst->idle->core_occupation)
6115 			goto next;
6116 
6117 		deactivate_task(src, p, 0);
6118 		set_task_cpu(p, this);
6119 		activate_task(dst, p, 0);
6120 
6121 		resched_curr(dst);
6122 
6123 		success = true;
6124 		break;
6125 
6126 next:
6127 		p = sched_core_next(p, cookie);
6128 	} while (p);
6129 
6130 unlock:
6131 	double_rq_unlock(dst, src);
6132 	local_irq_enable();
6133 
6134 	return success;
6135 }
6136 
6137 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6138 {
6139 	int i;
6140 
6141 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
6142 		if (i == cpu)
6143 			continue;
6144 
6145 		if (need_resched())
6146 			break;
6147 
6148 		if (try_steal_cookie(cpu, i))
6149 			return true;
6150 	}
6151 
6152 	return false;
6153 }
6154 
6155 static void sched_core_balance(struct rq *rq)
6156 {
6157 	struct sched_domain *sd;
6158 	int cpu = cpu_of(rq);
6159 
6160 	preempt_disable();
6161 	rcu_read_lock();
6162 	raw_spin_rq_unlock_irq(rq);
6163 	for_each_domain(cpu, sd) {
6164 		if (need_resched())
6165 			break;
6166 
6167 		if (steal_cookie_task(cpu, sd))
6168 			break;
6169 	}
6170 	raw_spin_rq_lock_irq(rq);
6171 	rcu_read_unlock();
6172 	preempt_enable();
6173 }
6174 
6175 static DEFINE_PER_CPU(struct callback_head, core_balance_head);
6176 
6177 static void queue_core_balance(struct rq *rq)
6178 {
6179 	if (!sched_core_enabled(rq))
6180 		return;
6181 
6182 	if (!rq->core->core_cookie)
6183 		return;
6184 
6185 	if (!rq->nr_running) /* not forced idle */
6186 		return;
6187 
6188 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6189 }
6190 
6191 static void sched_core_cpu_starting(unsigned int cpu)
6192 {
6193 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6194 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6195 	unsigned long flags;
6196 	int t;
6197 
6198 	sched_core_lock(cpu, &flags);
6199 
6200 	WARN_ON_ONCE(rq->core != rq);
6201 
6202 	/* if we're the first, we'll be our own leader */
6203 	if (cpumask_weight(smt_mask) == 1)
6204 		goto unlock;
6205 
6206 	/* find the leader */
6207 	for_each_cpu(t, smt_mask) {
6208 		if (t == cpu)
6209 			continue;
6210 		rq = cpu_rq(t);
6211 		if (rq->core == rq) {
6212 			core_rq = rq;
6213 			break;
6214 		}
6215 	}
6216 
6217 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6218 		goto unlock;
6219 
6220 	/* install and validate core_rq */
6221 	for_each_cpu(t, smt_mask) {
6222 		rq = cpu_rq(t);
6223 
6224 		if (t == cpu)
6225 			rq->core = core_rq;
6226 
6227 		WARN_ON_ONCE(rq->core != core_rq);
6228 	}
6229 
6230 unlock:
6231 	sched_core_unlock(cpu, &flags);
6232 }
6233 
6234 static void sched_core_cpu_deactivate(unsigned int cpu)
6235 {
6236 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6237 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6238 	unsigned long flags;
6239 	int t;
6240 
6241 	sched_core_lock(cpu, &flags);
6242 
6243 	/* if we're the last man standing, nothing to do */
6244 	if (cpumask_weight(smt_mask) == 1) {
6245 		WARN_ON_ONCE(rq->core != rq);
6246 		goto unlock;
6247 	}
6248 
6249 	/* if we're not the leader, nothing to do */
6250 	if (rq->core != rq)
6251 		goto unlock;
6252 
6253 	/* find a new leader */
6254 	for_each_cpu(t, smt_mask) {
6255 		if (t == cpu)
6256 			continue;
6257 		core_rq = cpu_rq(t);
6258 		break;
6259 	}
6260 
6261 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6262 		goto unlock;
6263 
6264 	/* copy the shared state to the new leader */
6265 	core_rq->core_task_seq             = rq->core_task_seq;
6266 	core_rq->core_pick_seq             = rq->core_pick_seq;
6267 	core_rq->core_cookie               = rq->core_cookie;
6268 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6269 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6270 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6271 
6272 	/*
6273 	 * Accounting edge for forced idle is handled in pick_next_task().
6274 	 * Don't need another one here, since the hotplug thread shouldn't
6275 	 * have a cookie.
6276 	 */
6277 	core_rq->core_forceidle_start = 0;
6278 
6279 	/* install new leader */
6280 	for_each_cpu(t, smt_mask) {
6281 		rq = cpu_rq(t);
6282 		rq->core = core_rq;
6283 	}
6284 
6285 unlock:
6286 	sched_core_unlock(cpu, &flags);
6287 }
6288 
6289 static inline void sched_core_cpu_dying(unsigned int cpu)
6290 {
6291 	struct rq *rq = cpu_rq(cpu);
6292 
6293 	if (rq->core != rq)
6294 		rq->core = rq;
6295 }
6296 
6297 #else /* !CONFIG_SCHED_CORE */
6298 
6299 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6300 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6301 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6302 
6303 static struct task_struct *
6304 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6305 {
6306 	return __pick_next_task(rq, prev, rf);
6307 }
6308 
6309 #endif /* CONFIG_SCHED_CORE */
6310 
6311 /*
6312  * Constants for the sched_mode argument of __schedule().
6313  *
6314  * The mode argument allows RT enabled kernels to differentiate a
6315  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6316  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6317  * optimize the AND operation out and just check for zero.
6318  */
6319 #define SM_NONE			0x0
6320 #define SM_PREEMPT		0x1
6321 #define SM_RTLOCK_WAIT		0x2
6322 
6323 #ifndef CONFIG_PREEMPT_RT
6324 # define SM_MASK_PREEMPT	(~0U)
6325 #else
6326 # define SM_MASK_PREEMPT	SM_PREEMPT
6327 #endif
6328 
6329 /*
6330  * __schedule() is the main scheduler function.
6331  *
6332  * The main means of driving the scheduler and thus entering this function are:
6333  *
6334  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6335  *
6336  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6337  *      paths. For example, see arch/x86/entry_64.S.
6338  *
6339  *      To drive preemption between tasks, the scheduler sets the flag in timer
6340  *      interrupt handler scheduler_tick().
6341  *
6342  *   3. Wakeups don't really cause entry into schedule(). They add a
6343  *      task to the run-queue and that's it.
6344  *
6345  *      Now, if the new task added to the run-queue preempts the current
6346  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6347  *      called on the nearest possible occasion:
6348  *
6349  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6350  *
6351  *         - in syscall or exception context, at the next outmost
6352  *           preempt_enable(). (this might be as soon as the wake_up()'s
6353  *           spin_unlock()!)
6354  *
6355  *         - in IRQ context, return from interrupt-handler to
6356  *           preemptible context
6357  *
6358  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6359  *         then at the next:
6360  *
6361  *          - cond_resched() call
6362  *          - explicit schedule() call
6363  *          - return from syscall or exception to user-space
6364  *          - return from interrupt-handler to user-space
6365  *
6366  * WARNING: must be called with preemption disabled!
6367  */
6368 static void __sched notrace __schedule(unsigned int sched_mode)
6369 {
6370 	struct task_struct *prev, *next;
6371 	unsigned long *switch_count;
6372 	unsigned long prev_state;
6373 	struct rq_flags rf;
6374 	struct rq *rq;
6375 	int cpu;
6376 
6377 	cpu = smp_processor_id();
6378 	rq = cpu_rq(cpu);
6379 	prev = rq->curr;
6380 
6381 	schedule_debug(prev, !!sched_mode);
6382 
6383 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6384 		hrtick_clear(rq);
6385 
6386 	local_irq_disable();
6387 	rcu_note_context_switch(!!sched_mode);
6388 
6389 	/*
6390 	 * Make sure that signal_pending_state()->signal_pending() below
6391 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6392 	 * done by the caller to avoid the race with signal_wake_up():
6393 	 *
6394 	 * __set_current_state(@state)		signal_wake_up()
6395 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6396 	 *					  wake_up_state(p, state)
6397 	 *   LOCK rq->lock			    LOCK p->pi_state
6398 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6399 	 *     if (signal_pending_state())	    if (p->state & @state)
6400 	 *
6401 	 * Also, the membarrier system call requires a full memory barrier
6402 	 * after coming from user-space, before storing to rq->curr.
6403 	 */
6404 	rq_lock(rq, &rf);
6405 	smp_mb__after_spinlock();
6406 
6407 	/* Promote REQ to ACT */
6408 	rq->clock_update_flags <<= 1;
6409 	update_rq_clock(rq);
6410 
6411 	switch_count = &prev->nivcsw;
6412 
6413 	/*
6414 	 * We must load prev->state once (task_struct::state is volatile), such
6415 	 * that we form a control dependency vs deactivate_task() below.
6416 	 */
6417 	prev_state = READ_ONCE(prev->__state);
6418 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6419 		if (signal_pending_state(prev_state, prev)) {
6420 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6421 		} else {
6422 			prev->sched_contributes_to_load =
6423 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6424 				!(prev_state & TASK_NOLOAD) &&
6425 				!(prev_state & TASK_FROZEN);
6426 
6427 			if (prev->sched_contributes_to_load)
6428 				rq->nr_uninterruptible++;
6429 
6430 			/*
6431 			 * __schedule()			ttwu()
6432 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6433 			 *   if (prev_state)		    goto out;
6434 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6435 			 *				  p->state = TASK_WAKING
6436 			 *
6437 			 * Where __schedule() and ttwu() have matching control dependencies.
6438 			 *
6439 			 * After this, schedule() must not care about p->state any more.
6440 			 */
6441 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6442 
6443 			if (prev->in_iowait) {
6444 				atomic_inc(&rq->nr_iowait);
6445 				delayacct_blkio_start();
6446 			}
6447 		}
6448 		switch_count = &prev->nvcsw;
6449 	}
6450 
6451 	next = pick_next_task(rq, prev, &rf);
6452 	clear_tsk_need_resched(prev);
6453 	clear_preempt_need_resched();
6454 #ifdef CONFIG_SCHED_DEBUG
6455 	rq->last_seen_need_resched_ns = 0;
6456 #endif
6457 
6458 	if (likely(prev != next)) {
6459 		rq->nr_switches++;
6460 		/*
6461 		 * RCU users of rcu_dereference(rq->curr) may not see
6462 		 * changes to task_struct made by pick_next_task().
6463 		 */
6464 		RCU_INIT_POINTER(rq->curr, next);
6465 		/*
6466 		 * The membarrier system call requires each architecture
6467 		 * to have a full memory barrier after updating
6468 		 * rq->curr, before returning to user-space.
6469 		 *
6470 		 * Here are the schemes providing that barrier on the
6471 		 * various architectures:
6472 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6473 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6474 		 * - finish_lock_switch() for weakly-ordered
6475 		 *   architectures where spin_unlock is a full barrier,
6476 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6477 		 *   is a RELEASE barrier),
6478 		 */
6479 		++*switch_count;
6480 
6481 		migrate_disable_switch(rq, prev);
6482 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6483 
6484 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6485 
6486 		/* Also unlocks the rq: */
6487 		rq = context_switch(rq, prev, next, &rf);
6488 	} else {
6489 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6490 
6491 		rq_unpin_lock(rq, &rf);
6492 		__balance_callbacks(rq);
6493 		raw_spin_rq_unlock_irq(rq);
6494 	}
6495 }
6496 
6497 void __noreturn do_task_dead(void)
6498 {
6499 	/* Causes final put_task_struct in finish_task_switch(): */
6500 	set_special_state(TASK_DEAD);
6501 
6502 	/* Tell freezer to ignore us: */
6503 	current->flags |= PF_NOFREEZE;
6504 
6505 	__schedule(SM_NONE);
6506 	BUG();
6507 
6508 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6509 	for (;;)
6510 		cpu_relax();
6511 }
6512 
6513 static inline void sched_submit_work(struct task_struct *tsk)
6514 {
6515 	unsigned int task_flags;
6516 
6517 	if (task_is_running(tsk))
6518 		return;
6519 
6520 	task_flags = tsk->flags;
6521 	/*
6522 	 * If a worker goes to sleep, notify and ask workqueue whether it
6523 	 * wants to wake up a task to maintain concurrency.
6524 	 */
6525 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6526 		if (task_flags & PF_WQ_WORKER)
6527 			wq_worker_sleeping(tsk);
6528 		else
6529 			io_wq_worker_sleeping(tsk);
6530 	}
6531 
6532 	/*
6533 	 * spinlock and rwlock must not flush block requests.  This will
6534 	 * deadlock if the callback attempts to acquire a lock which is
6535 	 * already acquired.
6536 	 */
6537 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6538 
6539 	/*
6540 	 * If we are going to sleep and we have plugged IO queued,
6541 	 * make sure to submit it to avoid deadlocks.
6542 	 */
6543 	blk_flush_plug(tsk->plug, true);
6544 }
6545 
6546 static void sched_update_worker(struct task_struct *tsk)
6547 {
6548 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6549 		if (tsk->flags & PF_WQ_WORKER)
6550 			wq_worker_running(tsk);
6551 		else
6552 			io_wq_worker_running(tsk);
6553 	}
6554 }
6555 
6556 asmlinkage __visible void __sched schedule(void)
6557 {
6558 	struct task_struct *tsk = current;
6559 
6560 	sched_submit_work(tsk);
6561 	do {
6562 		preempt_disable();
6563 		__schedule(SM_NONE);
6564 		sched_preempt_enable_no_resched();
6565 	} while (need_resched());
6566 	sched_update_worker(tsk);
6567 }
6568 EXPORT_SYMBOL(schedule);
6569 
6570 /*
6571  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6572  * state (have scheduled out non-voluntarily) by making sure that all
6573  * tasks have either left the run queue or have gone into user space.
6574  * As idle tasks do not do either, they must not ever be preempted
6575  * (schedule out non-voluntarily).
6576  *
6577  * schedule_idle() is similar to schedule_preempt_disable() except that it
6578  * never enables preemption because it does not call sched_submit_work().
6579  */
6580 void __sched schedule_idle(void)
6581 {
6582 	/*
6583 	 * As this skips calling sched_submit_work(), which the idle task does
6584 	 * regardless because that function is a nop when the task is in a
6585 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6586 	 * current task can be in any other state. Note, idle is always in the
6587 	 * TASK_RUNNING state.
6588 	 */
6589 	WARN_ON_ONCE(current->__state);
6590 	do {
6591 		__schedule(SM_NONE);
6592 	} while (need_resched());
6593 }
6594 
6595 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6596 asmlinkage __visible void __sched schedule_user(void)
6597 {
6598 	/*
6599 	 * If we come here after a random call to set_need_resched(),
6600 	 * or we have been woken up remotely but the IPI has not yet arrived,
6601 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6602 	 * we find a better solution.
6603 	 *
6604 	 * NB: There are buggy callers of this function.  Ideally we
6605 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6606 	 * too frequently to make sense yet.
6607 	 */
6608 	enum ctx_state prev_state = exception_enter();
6609 	schedule();
6610 	exception_exit(prev_state);
6611 }
6612 #endif
6613 
6614 /**
6615  * schedule_preempt_disabled - called with preemption disabled
6616  *
6617  * Returns with preemption disabled. Note: preempt_count must be 1
6618  */
6619 void __sched schedule_preempt_disabled(void)
6620 {
6621 	sched_preempt_enable_no_resched();
6622 	schedule();
6623 	preempt_disable();
6624 }
6625 
6626 #ifdef CONFIG_PREEMPT_RT
6627 void __sched notrace schedule_rtlock(void)
6628 {
6629 	do {
6630 		preempt_disable();
6631 		__schedule(SM_RTLOCK_WAIT);
6632 		sched_preempt_enable_no_resched();
6633 	} while (need_resched());
6634 }
6635 NOKPROBE_SYMBOL(schedule_rtlock);
6636 #endif
6637 
6638 static void __sched notrace preempt_schedule_common(void)
6639 {
6640 	do {
6641 		/*
6642 		 * Because the function tracer can trace preempt_count_sub()
6643 		 * and it also uses preempt_enable/disable_notrace(), if
6644 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6645 		 * by the function tracer will call this function again and
6646 		 * cause infinite recursion.
6647 		 *
6648 		 * Preemption must be disabled here before the function
6649 		 * tracer can trace. Break up preempt_disable() into two
6650 		 * calls. One to disable preemption without fear of being
6651 		 * traced. The other to still record the preemption latency,
6652 		 * which can also be traced by the function tracer.
6653 		 */
6654 		preempt_disable_notrace();
6655 		preempt_latency_start(1);
6656 		__schedule(SM_PREEMPT);
6657 		preempt_latency_stop(1);
6658 		preempt_enable_no_resched_notrace();
6659 
6660 		/*
6661 		 * Check again in case we missed a preemption opportunity
6662 		 * between schedule and now.
6663 		 */
6664 	} while (need_resched());
6665 }
6666 
6667 #ifdef CONFIG_PREEMPTION
6668 /*
6669  * This is the entry point to schedule() from in-kernel preemption
6670  * off of preempt_enable.
6671  */
6672 asmlinkage __visible void __sched notrace preempt_schedule(void)
6673 {
6674 	/*
6675 	 * If there is a non-zero preempt_count or interrupts are disabled,
6676 	 * we do not want to preempt the current task. Just return..
6677 	 */
6678 	if (likely(!preemptible()))
6679 		return;
6680 	preempt_schedule_common();
6681 }
6682 NOKPROBE_SYMBOL(preempt_schedule);
6683 EXPORT_SYMBOL(preempt_schedule);
6684 
6685 #ifdef CONFIG_PREEMPT_DYNAMIC
6686 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6687 #ifndef preempt_schedule_dynamic_enabled
6688 #define preempt_schedule_dynamic_enabled	preempt_schedule
6689 #define preempt_schedule_dynamic_disabled	NULL
6690 #endif
6691 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6692 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6693 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6694 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6695 void __sched notrace dynamic_preempt_schedule(void)
6696 {
6697 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6698 		return;
6699 	preempt_schedule();
6700 }
6701 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6702 EXPORT_SYMBOL(dynamic_preempt_schedule);
6703 #endif
6704 #endif
6705 
6706 /**
6707  * preempt_schedule_notrace - preempt_schedule called by tracing
6708  *
6709  * The tracing infrastructure uses preempt_enable_notrace to prevent
6710  * recursion and tracing preempt enabling caused by the tracing
6711  * infrastructure itself. But as tracing can happen in areas coming
6712  * from userspace or just about to enter userspace, a preempt enable
6713  * can occur before user_exit() is called. This will cause the scheduler
6714  * to be called when the system is still in usermode.
6715  *
6716  * To prevent this, the preempt_enable_notrace will use this function
6717  * instead of preempt_schedule() to exit user context if needed before
6718  * calling the scheduler.
6719  */
6720 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6721 {
6722 	enum ctx_state prev_ctx;
6723 
6724 	if (likely(!preemptible()))
6725 		return;
6726 
6727 	do {
6728 		/*
6729 		 * Because the function tracer can trace preempt_count_sub()
6730 		 * and it also uses preempt_enable/disable_notrace(), if
6731 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6732 		 * by the function tracer will call this function again and
6733 		 * cause infinite recursion.
6734 		 *
6735 		 * Preemption must be disabled here before the function
6736 		 * tracer can trace. Break up preempt_disable() into two
6737 		 * calls. One to disable preemption without fear of being
6738 		 * traced. The other to still record the preemption latency,
6739 		 * which can also be traced by the function tracer.
6740 		 */
6741 		preempt_disable_notrace();
6742 		preempt_latency_start(1);
6743 		/*
6744 		 * Needs preempt disabled in case user_exit() is traced
6745 		 * and the tracer calls preempt_enable_notrace() causing
6746 		 * an infinite recursion.
6747 		 */
6748 		prev_ctx = exception_enter();
6749 		__schedule(SM_PREEMPT);
6750 		exception_exit(prev_ctx);
6751 
6752 		preempt_latency_stop(1);
6753 		preempt_enable_no_resched_notrace();
6754 	} while (need_resched());
6755 }
6756 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6757 
6758 #ifdef CONFIG_PREEMPT_DYNAMIC
6759 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6760 #ifndef preempt_schedule_notrace_dynamic_enabled
6761 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6762 #define preempt_schedule_notrace_dynamic_disabled	NULL
6763 #endif
6764 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6765 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6766 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6767 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6768 void __sched notrace dynamic_preempt_schedule_notrace(void)
6769 {
6770 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6771 		return;
6772 	preempt_schedule_notrace();
6773 }
6774 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6775 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6776 #endif
6777 #endif
6778 
6779 #endif /* CONFIG_PREEMPTION */
6780 
6781 /*
6782  * This is the entry point to schedule() from kernel preemption
6783  * off of irq context.
6784  * Note, that this is called and return with irqs disabled. This will
6785  * protect us against recursive calling from irq.
6786  */
6787 asmlinkage __visible void __sched preempt_schedule_irq(void)
6788 {
6789 	enum ctx_state prev_state;
6790 
6791 	/* Catch callers which need to be fixed */
6792 	BUG_ON(preempt_count() || !irqs_disabled());
6793 
6794 	prev_state = exception_enter();
6795 
6796 	do {
6797 		preempt_disable();
6798 		local_irq_enable();
6799 		__schedule(SM_PREEMPT);
6800 		local_irq_disable();
6801 		sched_preempt_enable_no_resched();
6802 	} while (need_resched());
6803 
6804 	exception_exit(prev_state);
6805 }
6806 
6807 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6808 			  void *key)
6809 {
6810 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6811 	return try_to_wake_up(curr->private, mode, wake_flags);
6812 }
6813 EXPORT_SYMBOL(default_wake_function);
6814 
6815 static void __setscheduler_prio(struct task_struct *p, int prio)
6816 {
6817 	if (dl_prio(prio))
6818 		p->sched_class = &dl_sched_class;
6819 	else if (rt_prio(prio))
6820 		p->sched_class = &rt_sched_class;
6821 	else
6822 		p->sched_class = &fair_sched_class;
6823 
6824 	p->prio = prio;
6825 }
6826 
6827 #ifdef CONFIG_RT_MUTEXES
6828 
6829 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6830 {
6831 	if (pi_task)
6832 		prio = min(prio, pi_task->prio);
6833 
6834 	return prio;
6835 }
6836 
6837 static inline int rt_effective_prio(struct task_struct *p, int prio)
6838 {
6839 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
6840 
6841 	return __rt_effective_prio(pi_task, prio);
6842 }
6843 
6844 /*
6845  * rt_mutex_setprio - set the current priority of a task
6846  * @p: task to boost
6847  * @pi_task: donor task
6848  *
6849  * This function changes the 'effective' priority of a task. It does
6850  * not touch ->normal_prio like __setscheduler().
6851  *
6852  * Used by the rt_mutex code to implement priority inheritance
6853  * logic. Call site only calls if the priority of the task changed.
6854  */
6855 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6856 {
6857 	int prio, oldprio, queued, running, queue_flag =
6858 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6859 	const struct sched_class *prev_class;
6860 	struct rq_flags rf;
6861 	struct rq *rq;
6862 
6863 	/* XXX used to be waiter->prio, not waiter->task->prio */
6864 	prio = __rt_effective_prio(pi_task, p->normal_prio);
6865 
6866 	/*
6867 	 * If nothing changed; bail early.
6868 	 */
6869 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6870 		return;
6871 
6872 	rq = __task_rq_lock(p, &rf);
6873 	update_rq_clock(rq);
6874 	/*
6875 	 * Set under pi_lock && rq->lock, such that the value can be used under
6876 	 * either lock.
6877 	 *
6878 	 * Note that there is loads of tricky to make this pointer cache work
6879 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6880 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
6881 	 * task is allowed to run again (and can exit). This ensures the pointer
6882 	 * points to a blocked task -- which guarantees the task is present.
6883 	 */
6884 	p->pi_top_task = pi_task;
6885 
6886 	/*
6887 	 * For FIFO/RR we only need to set prio, if that matches we're done.
6888 	 */
6889 	if (prio == p->prio && !dl_prio(prio))
6890 		goto out_unlock;
6891 
6892 	/*
6893 	 * Idle task boosting is a nono in general. There is one
6894 	 * exception, when PREEMPT_RT and NOHZ is active:
6895 	 *
6896 	 * The idle task calls get_next_timer_interrupt() and holds
6897 	 * the timer wheel base->lock on the CPU and another CPU wants
6898 	 * to access the timer (probably to cancel it). We can safely
6899 	 * ignore the boosting request, as the idle CPU runs this code
6900 	 * with interrupts disabled and will complete the lock
6901 	 * protected section without being interrupted. So there is no
6902 	 * real need to boost.
6903 	 */
6904 	if (unlikely(p == rq->idle)) {
6905 		WARN_ON(p != rq->curr);
6906 		WARN_ON(p->pi_blocked_on);
6907 		goto out_unlock;
6908 	}
6909 
6910 	trace_sched_pi_setprio(p, pi_task);
6911 	oldprio = p->prio;
6912 
6913 	if (oldprio == prio)
6914 		queue_flag &= ~DEQUEUE_MOVE;
6915 
6916 	prev_class = p->sched_class;
6917 	queued = task_on_rq_queued(p);
6918 	running = task_current(rq, p);
6919 	if (queued)
6920 		dequeue_task(rq, p, queue_flag);
6921 	if (running)
6922 		put_prev_task(rq, p);
6923 
6924 	/*
6925 	 * Boosting condition are:
6926 	 * 1. -rt task is running and holds mutex A
6927 	 *      --> -dl task blocks on mutex A
6928 	 *
6929 	 * 2. -dl task is running and holds mutex A
6930 	 *      --> -dl task blocks on mutex A and could preempt the
6931 	 *          running task
6932 	 */
6933 	if (dl_prio(prio)) {
6934 		if (!dl_prio(p->normal_prio) ||
6935 		    (pi_task && dl_prio(pi_task->prio) &&
6936 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
6937 			p->dl.pi_se = pi_task->dl.pi_se;
6938 			queue_flag |= ENQUEUE_REPLENISH;
6939 		} else {
6940 			p->dl.pi_se = &p->dl;
6941 		}
6942 	} else if (rt_prio(prio)) {
6943 		if (dl_prio(oldprio))
6944 			p->dl.pi_se = &p->dl;
6945 		if (oldprio < prio)
6946 			queue_flag |= ENQUEUE_HEAD;
6947 	} else {
6948 		if (dl_prio(oldprio))
6949 			p->dl.pi_se = &p->dl;
6950 		if (rt_prio(oldprio))
6951 			p->rt.timeout = 0;
6952 	}
6953 
6954 	__setscheduler_prio(p, prio);
6955 
6956 	if (queued)
6957 		enqueue_task(rq, p, queue_flag);
6958 	if (running)
6959 		set_next_task(rq, p);
6960 
6961 	check_class_changed(rq, p, prev_class, oldprio);
6962 out_unlock:
6963 	/* Avoid rq from going away on us: */
6964 	preempt_disable();
6965 
6966 	rq_unpin_lock(rq, &rf);
6967 	__balance_callbacks(rq);
6968 	raw_spin_rq_unlock(rq);
6969 
6970 	preempt_enable();
6971 }
6972 #else
6973 static inline int rt_effective_prio(struct task_struct *p, int prio)
6974 {
6975 	return prio;
6976 }
6977 #endif
6978 
6979 void set_user_nice(struct task_struct *p, long nice)
6980 {
6981 	bool queued, running;
6982 	int old_prio;
6983 	struct rq_flags rf;
6984 	struct rq *rq;
6985 
6986 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
6987 		return;
6988 	/*
6989 	 * We have to be careful, if called from sys_setpriority(),
6990 	 * the task might be in the middle of scheduling on another CPU.
6991 	 */
6992 	rq = task_rq_lock(p, &rf);
6993 	update_rq_clock(rq);
6994 
6995 	/*
6996 	 * The RT priorities are set via sched_setscheduler(), but we still
6997 	 * allow the 'normal' nice value to be set - but as expected
6998 	 * it won't have any effect on scheduling until the task is
6999 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7000 	 */
7001 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7002 		p->static_prio = NICE_TO_PRIO(nice);
7003 		goto out_unlock;
7004 	}
7005 	queued = task_on_rq_queued(p);
7006 	running = task_current(rq, p);
7007 	if (queued)
7008 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7009 	if (running)
7010 		put_prev_task(rq, p);
7011 
7012 	p->static_prio = NICE_TO_PRIO(nice);
7013 	set_load_weight(p, true);
7014 	old_prio = p->prio;
7015 	p->prio = effective_prio(p);
7016 
7017 	if (queued)
7018 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7019 	if (running)
7020 		set_next_task(rq, p);
7021 
7022 	/*
7023 	 * If the task increased its priority or is running and
7024 	 * lowered its priority, then reschedule its CPU:
7025 	 */
7026 	p->sched_class->prio_changed(rq, p, old_prio);
7027 
7028 out_unlock:
7029 	task_rq_unlock(rq, p, &rf);
7030 }
7031 EXPORT_SYMBOL(set_user_nice);
7032 
7033 /*
7034  * is_nice_reduction - check if nice value is an actual reduction
7035  *
7036  * Similar to can_nice() but does not perform a capability check.
7037  *
7038  * @p: task
7039  * @nice: nice value
7040  */
7041 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7042 {
7043 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7044 	int nice_rlim = nice_to_rlimit(nice);
7045 
7046 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7047 }
7048 
7049 /*
7050  * can_nice - check if a task can reduce its nice value
7051  * @p: task
7052  * @nice: nice value
7053  */
7054 int can_nice(const struct task_struct *p, const int nice)
7055 {
7056 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7057 }
7058 
7059 #ifdef __ARCH_WANT_SYS_NICE
7060 
7061 /*
7062  * sys_nice - change the priority of the current process.
7063  * @increment: priority increment
7064  *
7065  * sys_setpriority is a more generic, but much slower function that
7066  * does similar things.
7067  */
7068 SYSCALL_DEFINE1(nice, int, increment)
7069 {
7070 	long nice, retval;
7071 
7072 	/*
7073 	 * Setpriority might change our priority at the same moment.
7074 	 * We don't have to worry. Conceptually one call occurs first
7075 	 * and we have a single winner.
7076 	 */
7077 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7078 	nice = task_nice(current) + increment;
7079 
7080 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7081 	if (increment < 0 && !can_nice(current, nice))
7082 		return -EPERM;
7083 
7084 	retval = security_task_setnice(current, nice);
7085 	if (retval)
7086 		return retval;
7087 
7088 	set_user_nice(current, nice);
7089 	return 0;
7090 }
7091 
7092 #endif
7093 
7094 /**
7095  * task_prio - return the priority value of a given task.
7096  * @p: the task in question.
7097  *
7098  * Return: The priority value as seen by users in /proc.
7099  *
7100  * sched policy         return value   kernel prio    user prio/nice
7101  *
7102  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7103  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7104  * deadline                     -101             -1           0
7105  */
7106 int task_prio(const struct task_struct *p)
7107 {
7108 	return p->prio - MAX_RT_PRIO;
7109 }
7110 
7111 /**
7112  * idle_cpu - is a given CPU idle currently?
7113  * @cpu: the processor in question.
7114  *
7115  * Return: 1 if the CPU is currently idle. 0 otherwise.
7116  */
7117 int idle_cpu(int cpu)
7118 {
7119 	struct rq *rq = cpu_rq(cpu);
7120 
7121 	if (rq->curr != rq->idle)
7122 		return 0;
7123 
7124 	if (rq->nr_running)
7125 		return 0;
7126 
7127 #ifdef CONFIG_SMP
7128 	if (rq->ttwu_pending)
7129 		return 0;
7130 #endif
7131 
7132 	return 1;
7133 }
7134 
7135 /**
7136  * available_idle_cpu - is a given CPU idle for enqueuing work.
7137  * @cpu: the CPU in question.
7138  *
7139  * Return: 1 if the CPU is currently idle. 0 otherwise.
7140  */
7141 int available_idle_cpu(int cpu)
7142 {
7143 	if (!idle_cpu(cpu))
7144 		return 0;
7145 
7146 	if (vcpu_is_preempted(cpu))
7147 		return 0;
7148 
7149 	return 1;
7150 }
7151 
7152 /**
7153  * idle_task - return the idle task for a given CPU.
7154  * @cpu: the processor in question.
7155  *
7156  * Return: The idle task for the CPU @cpu.
7157  */
7158 struct task_struct *idle_task(int cpu)
7159 {
7160 	return cpu_rq(cpu)->idle;
7161 }
7162 
7163 #ifdef CONFIG_SMP
7164 /*
7165  * This function computes an effective utilization for the given CPU, to be
7166  * used for frequency selection given the linear relation: f = u * f_max.
7167  *
7168  * The scheduler tracks the following metrics:
7169  *
7170  *   cpu_util_{cfs,rt,dl,irq}()
7171  *   cpu_bw_dl()
7172  *
7173  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7174  * synchronized windows and are thus directly comparable.
7175  *
7176  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7177  * which excludes things like IRQ and steal-time. These latter are then accrued
7178  * in the irq utilization.
7179  *
7180  * The DL bandwidth number otoh is not a measured metric but a value computed
7181  * based on the task model parameters and gives the minimal utilization
7182  * required to meet deadlines.
7183  */
7184 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7185 				 enum cpu_util_type type,
7186 				 struct task_struct *p)
7187 {
7188 	unsigned long dl_util, util, irq, max;
7189 	struct rq *rq = cpu_rq(cpu);
7190 
7191 	max = arch_scale_cpu_capacity(cpu);
7192 
7193 	if (!uclamp_is_used() &&
7194 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7195 		return max;
7196 	}
7197 
7198 	/*
7199 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7200 	 * because of inaccuracies in how we track these -- see
7201 	 * update_irq_load_avg().
7202 	 */
7203 	irq = cpu_util_irq(rq);
7204 	if (unlikely(irq >= max))
7205 		return max;
7206 
7207 	/*
7208 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7209 	 * CFS tasks and we use the same metric to track the effective
7210 	 * utilization (PELT windows are synchronized) we can directly add them
7211 	 * to obtain the CPU's actual utilization.
7212 	 *
7213 	 * CFS and RT utilization can be boosted or capped, depending on
7214 	 * utilization clamp constraints requested by currently RUNNABLE
7215 	 * tasks.
7216 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7217 	 * frequency will be gracefully reduced with the utilization decay.
7218 	 */
7219 	util = util_cfs + cpu_util_rt(rq);
7220 	if (type == FREQUENCY_UTIL)
7221 		util = uclamp_rq_util_with(rq, util, p);
7222 
7223 	dl_util = cpu_util_dl(rq);
7224 
7225 	/*
7226 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7227 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7228 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7229 	 * that we select f_max when there is no idle time.
7230 	 *
7231 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7232 	 * saturation when we should -- something for later.
7233 	 */
7234 	if (util + dl_util >= max)
7235 		return max;
7236 
7237 	/*
7238 	 * OTOH, for energy computation we need the estimated running time, so
7239 	 * include util_dl and ignore dl_bw.
7240 	 */
7241 	if (type == ENERGY_UTIL)
7242 		util += dl_util;
7243 
7244 	/*
7245 	 * There is still idle time; further improve the number by using the
7246 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7247 	 * need to scale the task numbers:
7248 	 *
7249 	 *              max - irq
7250 	 *   U' = irq + --------- * U
7251 	 *                 max
7252 	 */
7253 	util = scale_irq_capacity(util, irq, max);
7254 	util += irq;
7255 
7256 	/*
7257 	 * Bandwidth required by DEADLINE must always be granted while, for
7258 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7259 	 * to gracefully reduce the frequency when no tasks show up for longer
7260 	 * periods of time.
7261 	 *
7262 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7263 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7264 	 * an interface. So, we only do the latter for now.
7265 	 */
7266 	if (type == FREQUENCY_UTIL)
7267 		util += cpu_bw_dl(rq);
7268 
7269 	return min(max, util);
7270 }
7271 
7272 unsigned long sched_cpu_util(int cpu)
7273 {
7274 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7275 }
7276 #endif /* CONFIG_SMP */
7277 
7278 /**
7279  * find_process_by_pid - find a process with a matching PID value.
7280  * @pid: the pid in question.
7281  *
7282  * The task of @pid, if found. %NULL otherwise.
7283  */
7284 static struct task_struct *find_process_by_pid(pid_t pid)
7285 {
7286 	return pid ? find_task_by_vpid(pid) : current;
7287 }
7288 
7289 /*
7290  * sched_setparam() passes in -1 for its policy, to let the functions
7291  * it calls know not to change it.
7292  */
7293 #define SETPARAM_POLICY	-1
7294 
7295 static void __setscheduler_params(struct task_struct *p,
7296 		const struct sched_attr *attr)
7297 {
7298 	int policy = attr->sched_policy;
7299 
7300 	if (policy == SETPARAM_POLICY)
7301 		policy = p->policy;
7302 
7303 	p->policy = policy;
7304 
7305 	if (dl_policy(policy))
7306 		__setparam_dl(p, attr);
7307 	else if (fair_policy(policy))
7308 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7309 
7310 	/*
7311 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7312 	 * !rt_policy. Always setting this ensures that things like
7313 	 * getparam()/getattr() don't report silly values for !rt tasks.
7314 	 */
7315 	p->rt_priority = attr->sched_priority;
7316 	p->normal_prio = normal_prio(p);
7317 	set_load_weight(p, true);
7318 }
7319 
7320 /*
7321  * Check the target process has a UID that matches the current process's:
7322  */
7323 static bool check_same_owner(struct task_struct *p)
7324 {
7325 	const struct cred *cred = current_cred(), *pcred;
7326 	bool match;
7327 
7328 	rcu_read_lock();
7329 	pcred = __task_cred(p);
7330 	match = (uid_eq(cred->euid, pcred->euid) ||
7331 		 uid_eq(cred->euid, pcred->uid));
7332 	rcu_read_unlock();
7333 	return match;
7334 }
7335 
7336 /*
7337  * Allow unprivileged RT tasks to decrease priority.
7338  * Only issue a capable test if needed and only once to avoid an audit
7339  * event on permitted non-privileged operations:
7340  */
7341 static int user_check_sched_setscheduler(struct task_struct *p,
7342 					 const struct sched_attr *attr,
7343 					 int policy, int reset_on_fork)
7344 {
7345 	if (fair_policy(policy)) {
7346 		if (attr->sched_nice < task_nice(p) &&
7347 		    !is_nice_reduction(p, attr->sched_nice))
7348 			goto req_priv;
7349 	}
7350 
7351 	if (rt_policy(policy)) {
7352 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7353 
7354 		/* Can't set/change the rt policy: */
7355 		if (policy != p->policy && !rlim_rtprio)
7356 			goto req_priv;
7357 
7358 		/* Can't increase priority: */
7359 		if (attr->sched_priority > p->rt_priority &&
7360 		    attr->sched_priority > rlim_rtprio)
7361 			goto req_priv;
7362 	}
7363 
7364 	/*
7365 	 * Can't set/change SCHED_DEADLINE policy at all for now
7366 	 * (safest behavior); in the future we would like to allow
7367 	 * unprivileged DL tasks to increase their relative deadline
7368 	 * or reduce their runtime (both ways reducing utilization)
7369 	 */
7370 	if (dl_policy(policy))
7371 		goto req_priv;
7372 
7373 	/*
7374 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7375 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7376 	 */
7377 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7378 		if (!is_nice_reduction(p, task_nice(p)))
7379 			goto req_priv;
7380 	}
7381 
7382 	/* Can't change other user's priorities: */
7383 	if (!check_same_owner(p))
7384 		goto req_priv;
7385 
7386 	/* Normal users shall not reset the sched_reset_on_fork flag: */
7387 	if (p->sched_reset_on_fork && !reset_on_fork)
7388 		goto req_priv;
7389 
7390 	return 0;
7391 
7392 req_priv:
7393 	if (!capable(CAP_SYS_NICE))
7394 		return -EPERM;
7395 
7396 	return 0;
7397 }
7398 
7399 static int __sched_setscheduler(struct task_struct *p,
7400 				const struct sched_attr *attr,
7401 				bool user, bool pi)
7402 {
7403 	int oldpolicy = -1, policy = attr->sched_policy;
7404 	int retval, oldprio, newprio, queued, running;
7405 	const struct sched_class *prev_class;
7406 	struct callback_head *head;
7407 	struct rq_flags rf;
7408 	int reset_on_fork;
7409 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7410 	struct rq *rq;
7411 
7412 	/* The pi code expects interrupts enabled */
7413 	BUG_ON(pi && in_interrupt());
7414 recheck:
7415 	/* Double check policy once rq lock held: */
7416 	if (policy < 0) {
7417 		reset_on_fork = p->sched_reset_on_fork;
7418 		policy = oldpolicy = p->policy;
7419 	} else {
7420 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7421 
7422 		if (!valid_policy(policy))
7423 			return -EINVAL;
7424 	}
7425 
7426 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7427 		return -EINVAL;
7428 
7429 	/*
7430 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7431 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7432 	 * SCHED_BATCH and SCHED_IDLE is 0.
7433 	 */
7434 	if (attr->sched_priority > MAX_RT_PRIO-1)
7435 		return -EINVAL;
7436 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7437 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7438 		return -EINVAL;
7439 
7440 	if (user) {
7441 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7442 		if (retval)
7443 			return retval;
7444 
7445 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7446 			return -EINVAL;
7447 
7448 		retval = security_task_setscheduler(p);
7449 		if (retval)
7450 			return retval;
7451 	}
7452 
7453 	/* Update task specific "requested" clamps */
7454 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7455 		retval = uclamp_validate(p, attr);
7456 		if (retval)
7457 			return retval;
7458 	}
7459 
7460 	if (pi)
7461 		cpuset_read_lock();
7462 
7463 	/*
7464 	 * Make sure no PI-waiters arrive (or leave) while we are
7465 	 * changing the priority of the task:
7466 	 *
7467 	 * To be able to change p->policy safely, the appropriate
7468 	 * runqueue lock must be held.
7469 	 */
7470 	rq = task_rq_lock(p, &rf);
7471 	update_rq_clock(rq);
7472 
7473 	/*
7474 	 * Changing the policy of the stop threads its a very bad idea:
7475 	 */
7476 	if (p == rq->stop) {
7477 		retval = -EINVAL;
7478 		goto unlock;
7479 	}
7480 
7481 	/*
7482 	 * If not changing anything there's no need to proceed further,
7483 	 * but store a possible modification of reset_on_fork.
7484 	 */
7485 	if (unlikely(policy == p->policy)) {
7486 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7487 			goto change;
7488 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7489 			goto change;
7490 		if (dl_policy(policy) && dl_param_changed(p, attr))
7491 			goto change;
7492 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7493 			goto change;
7494 
7495 		p->sched_reset_on_fork = reset_on_fork;
7496 		retval = 0;
7497 		goto unlock;
7498 	}
7499 change:
7500 
7501 	if (user) {
7502 #ifdef CONFIG_RT_GROUP_SCHED
7503 		/*
7504 		 * Do not allow realtime tasks into groups that have no runtime
7505 		 * assigned.
7506 		 */
7507 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7508 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7509 				!task_group_is_autogroup(task_group(p))) {
7510 			retval = -EPERM;
7511 			goto unlock;
7512 		}
7513 #endif
7514 #ifdef CONFIG_SMP
7515 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7516 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7517 			cpumask_t *span = rq->rd->span;
7518 
7519 			/*
7520 			 * Don't allow tasks with an affinity mask smaller than
7521 			 * the entire root_domain to become SCHED_DEADLINE. We
7522 			 * will also fail if there's no bandwidth available.
7523 			 */
7524 			if (!cpumask_subset(span, p->cpus_ptr) ||
7525 			    rq->rd->dl_bw.bw == 0) {
7526 				retval = -EPERM;
7527 				goto unlock;
7528 			}
7529 		}
7530 #endif
7531 	}
7532 
7533 	/* Re-check policy now with rq lock held: */
7534 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7535 		policy = oldpolicy = -1;
7536 		task_rq_unlock(rq, p, &rf);
7537 		if (pi)
7538 			cpuset_read_unlock();
7539 		goto recheck;
7540 	}
7541 
7542 	/*
7543 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7544 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7545 	 * is available.
7546 	 */
7547 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7548 		retval = -EBUSY;
7549 		goto unlock;
7550 	}
7551 
7552 	p->sched_reset_on_fork = reset_on_fork;
7553 	oldprio = p->prio;
7554 
7555 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7556 	if (pi) {
7557 		/*
7558 		 * Take priority boosted tasks into account. If the new
7559 		 * effective priority is unchanged, we just store the new
7560 		 * normal parameters and do not touch the scheduler class and
7561 		 * the runqueue. This will be done when the task deboost
7562 		 * itself.
7563 		 */
7564 		newprio = rt_effective_prio(p, newprio);
7565 		if (newprio == oldprio)
7566 			queue_flags &= ~DEQUEUE_MOVE;
7567 	}
7568 
7569 	queued = task_on_rq_queued(p);
7570 	running = task_current(rq, p);
7571 	if (queued)
7572 		dequeue_task(rq, p, queue_flags);
7573 	if (running)
7574 		put_prev_task(rq, p);
7575 
7576 	prev_class = p->sched_class;
7577 
7578 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7579 		__setscheduler_params(p, attr);
7580 		__setscheduler_prio(p, newprio);
7581 	}
7582 	__setscheduler_uclamp(p, attr);
7583 
7584 	if (queued) {
7585 		/*
7586 		 * We enqueue to tail when the priority of a task is
7587 		 * increased (user space view).
7588 		 */
7589 		if (oldprio < p->prio)
7590 			queue_flags |= ENQUEUE_HEAD;
7591 
7592 		enqueue_task(rq, p, queue_flags);
7593 	}
7594 	if (running)
7595 		set_next_task(rq, p);
7596 
7597 	check_class_changed(rq, p, prev_class, oldprio);
7598 
7599 	/* Avoid rq from going away on us: */
7600 	preempt_disable();
7601 	head = splice_balance_callbacks(rq);
7602 	task_rq_unlock(rq, p, &rf);
7603 
7604 	if (pi) {
7605 		cpuset_read_unlock();
7606 		rt_mutex_adjust_pi(p);
7607 	}
7608 
7609 	/* Run balance callbacks after we've adjusted the PI chain: */
7610 	balance_callbacks(rq, head);
7611 	preempt_enable();
7612 
7613 	return 0;
7614 
7615 unlock:
7616 	task_rq_unlock(rq, p, &rf);
7617 	if (pi)
7618 		cpuset_read_unlock();
7619 	return retval;
7620 }
7621 
7622 static int _sched_setscheduler(struct task_struct *p, int policy,
7623 			       const struct sched_param *param, bool check)
7624 {
7625 	struct sched_attr attr = {
7626 		.sched_policy   = policy,
7627 		.sched_priority = param->sched_priority,
7628 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7629 	};
7630 
7631 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7632 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7633 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7634 		policy &= ~SCHED_RESET_ON_FORK;
7635 		attr.sched_policy = policy;
7636 	}
7637 
7638 	return __sched_setscheduler(p, &attr, check, true);
7639 }
7640 /**
7641  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7642  * @p: the task in question.
7643  * @policy: new policy.
7644  * @param: structure containing the new RT priority.
7645  *
7646  * Use sched_set_fifo(), read its comment.
7647  *
7648  * Return: 0 on success. An error code otherwise.
7649  *
7650  * NOTE that the task may be already dead.
7651  */
7652 int sched_setscheduler(struct task_struct *p, int policy,
7653 		       const struct sched_param *param)
7654 {
7655 	return _sched_setscheduler(p, policy, param, true);
7656 }
7657 
7658 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7659 {
7660 	return __sched_setscheduler(p, attr, true, true);
7661 }
7662 
7663 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7664 {
7665 	return __sched_setscheduler(p, attr, false, true);
7666 }
7667 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7668 
7669 /**
7670  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7671  * @p: the task in question.
7672  * @policy: new policy.
7673  * @param: structure containing the new RT priority.
7674  *
7675  * Just like sched_setscheduler, only don't bother checking if the
7676  * current context has permission.  For example, this is needed in
7677  * stop_machine(): we create temporary high priority worker threads,
7678  * but our caller might not have that capability.
7679  *
7680  * Return: 0 on success. An error code otherwise.
7681  */
7682 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7683 			       const struct sched_param *param)
7684 {
7685 	return _sched_setscheduler(p, policy, param, false);
7686 }
7687 
7688 /*
7689  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7690  * incapable of resource management, which is the one thing an OS really should
7691  * be doing.
7692  *
7693  * This is of course the reason it is limited to privileged users only.
7694  *
7695  * Worse still; it is fundamentally impossible to compose static priority
7696  * workloads. You cannot take two correctly working static prio workloads
7697  * and smash them together and still expect them to work.
7698  *
7699  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7700  *
7701  *   MAX_RT_PRIO / 2
7702  *
7703  * The administrator _MUST_ configure the system, the kernel simply doesn't
7704  * know enough information to make a sensible choice.
7705  */
7706 void sched_set_fifo(struct task_struct *p)
7707 {
7708 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7709 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7710 }
7711 EXPORT_SYMBOL_GPL(sched_set_fifo);
7712 
7713 /*
7714  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7715  */
7716 void sched_set_fifo_low(struct task_struct *p)
7717 {
7718 	struct sched_param sp = { .sched_priority = 1 };
7719 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7720 }
7721 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7722 
7723 void sched_set_normal(struct task_struct *p, int nice)
7724 {
7725 	struct sched_attr attr = {
7726 		.sched_policy = SCHED_NORMAL,
7727 		.sched_nice = nice,
7728 	};
7729 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7730 }
7731 EXPORT_SYMBOL_GPL(sched_set_normal);
7732 
7733 static int
7734 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7735 {
7736 	struct sched_param lparam;
7737 	struct task_struct *p;
7738 	int retval;
7739 
7740 	if (!param || pid < 0)
7741 		return -EINVAL;
7742 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7743 		return -EFAULT;
7744 
7745 	rcu_read_lock();
7746 	retval = -ESRCH;
7747 	p = find_process_by_pid(pid);
7748 	if (likely(p))
7749 		get_task_struct(p);
7750 	rcu_read_unlock();
7751 
7752 	if (likely(p)) {
7753 		retval = sched_setscheduler(p, policy, &lparam);
7754 		put_task_struct(p);
7755 	}
7756 
7757 	return retval;
7758 }
7759 
7760 /*
7761  * Mimics kernel/events/core.c perf_copy_attr().
7762  */
7763 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7764 {
7765 	u32 size;
7766 	int ret;
7767 
7768 	/* Zero the full structure, so that a short copy will be nice: */
7769 	memset(attr, 0, sizeof(*attr));
7770 
7771 	ret = get_user(size, &uattr->size);
7772 	if (ret)
7773 		return ret;
7774 
7775 	/* ABI compatibility quirk: */
7776 	if (!size)
7777 		size = SCHED_ATTR_SIZE_VER0;
7778 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7779 		goto err_size;
7780 
7781 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7782 	if (ret) {
7783 		if (ret == -E2BIG)
7784 			goto err_size;
7785 		return ret;
7786 	}
7787 
7788 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7789 	    size < SCHED_ATTR_SIZE_VER1)
7790 		return -EINVAL;
7791 
7792 	/*
7793 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
7794 	 * to be strict and return an error on out-of-bounds values?
7795 	 */
7796 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7797 
7798 	return 0;
7799 
7800 err_size:
7801 	put_user(sizeof(*attr), &uattr->size);
7802 	return -E2BIG;
7803 }
7804 
7805 static void get_params(struct task_struct *p, struct sched_attr *attr)
7806 {
7807 	if (task_has_dl_policy(p))
7808 		__getparam_dl(p, attr);
7809 	else if (task_has_rt_policy(p))
7810 		attr->sched_priority = p->rt_priority;
7811 	else
7812 		attr->sched_nice = task_nice(p);
7813 }
7814 
7815 /**
7816  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7817  * @pid: the pid in question.
7818  * @policy: new policy.
7819  * @param: structure containing the new RT priority.
7820  *
7821  * Return: 0 on success. An error code otherwise.
7822  */
7823 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7824 {
7825 	if (policy < 0)
7826 		return -EINVAL;
7827 
7828 	return do_sched_setscheduler(pid, policy, param);
7829 }
7830 
7831 /**
7832  * sys_sched_setparam - set/change the RT priority of a thread
7833  * @pid: the pid in question.
7834  * @param: structure containing the new RT priority.
7835  *
7836  * Return: 0 on success. An error code otherwise.
7837  */
7838 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7839 {
7840 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7841 }
7842 
7843 /**
7844  * sys_sched_setattr - same as above, but with extended sched_attr
7845  * @pid: the pid in question.
7846  * @uattr: structure containing the extended parameters.
7847  * @flags: for future extension.
7848  */
7849 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7850 			       unsigned int, flags)
7851 {
7852 	struct sched_attr attr;
7853 	struct task_struct *p;
7854 	int retval;
7855 
7856 	if (!uattr || pid < 0 || flags)
7857 		return -EINVAL;
7858 
7859 	retval = sched_copy_attr(uattr, &attr);
7860 	if (retval)
7861 		return retval;
7862 
7863 	if ((int)attr.sched_policy < 0)
7864 		return -EINVAL;
7865 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7866 		attr.sched_policy = SETPARAM_POLICY;
7867 
7868 	rcu_read_lock();
7869 	retval = -ESRCH;
7870 	p = find_process_by_pid(pid);
7871 	if (likely(p))
7872 		get_task_struct(p);
7873 	rcu_read_unlock();
7874 
7875 	if (likely(p)) {
7876 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7877 			get_params(p, &attr);
7878 		retval = sched_setattr(p, &attr);
7879 		put_task_struct(p);
7880 	}
7881 
7882 	return retval;
7883 }
7884 
7885 /**
7886  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7887  * @pid: the pid in question.
7888  *
7889  * Return: On success, the policy of the thread. Otherwise, a negative error
7890  * code.
7891  */
7892 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7893 {
7894 	struct task_struct *p;
7895 	int retval;
7896 
7897 	if (pid < 0)
7898 		return -EINVAL;
7899 
7900 	retval = -ESRCH;
7901 	rcu_read_lock();
7902 	p = find_process_by_pid(pid);
7903 	if (p) {
7904 		retval = security_task_getscheduler(p);
7905 		if (!retval)
7906 			retval = p->policy
7907 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7908 	}
7909 	rcu_read_unlock();
7910 	return retval;
7911 }
7912 
7913 /**
7914  * sys_sched_getparam - get the RT priority of a thread
7915  * @pid: the pid in question.
7916  * @param: structure containing the RT priority.
7917  *
7918  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7919  * code.
7920  */
7921 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7922 {
7923 	struct sched_param lp = { .sched_priority = 0 };
7924 	struct task_struct *p;
7925 	int retval;
7926 
7927 	if (!param || pid < 0)
7928 		return -EINVAL;
7929 
7930 	rcu_read_lock();
7931 	p = find_process_by_pid(pid);
7932 	retval = -ESRCH;
7933 	if (!p)
7934 		goto out_unlock;
7935 
7936 	retval = security_task_getscheduler(p);
7937 	if (retval)
7938 		goto out_unlock;
7939 
7940 	if (task_has_rt_policy(p))
7941 		lp.sched_priority = p->rt_priority;
7942 	rcu_read_unlock();
7943 
7944 	/*
7945 	 * This one might sleep, we cannot do it with a spinlock held ...
7946 	 */
7947 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7948 
7949 	return retval;
7950 
7951 out_unlock:
7952 	rcu_read_unlock();
7953 	return retval;
7954 }
7955 
7956 /*
7957  * Copy the kernel size attribute structure (which might be larger
7958  * than what user-space knows about) to user-space.
7959  *
7960  * Note that all cases are valid: user-space buffer can be larger or
7961  * smaller than the kernel-space buffer. The usual case is that both
7962  * have the same size.
7963  */
7964 static int
7965 sched_attr_copy_to_user(struct sched_attr __user *uattr,
7966 			struct sched_attr *kattr,
7967 			unsigned int usize)
7968 {
7969 	unsigned int ksize = sizeof(*kattr);
7970 
7971 	if (!access_ok(uattr, usize))
7972 		return -EFAULT;
7973 
7974 	/*
7975 	 * sched_getattr() ABI forwards and backwards compatibility:
7976 	 *
7977 	 * If usize == ksize then we just copy everything to user-space and all is good.
7978 	 *
7979 	 * If usize < ksize then we only copy as much as user-space has space for,
7980 	 * this keeps ABI compatibility as well. We skip the rest.
7981 	 *
7982 	 * If usize > ksize then user-space is using a newer version of the ABI,
7983 	 * which part the kernel doesn't know about. Just ignore it - tooling can
7984 	 * detect the kernel's knowledge of attributes from the attr->size value
7985 	 * which is set to ksize in this case.
7986 	 */
7987 	kattr->size = min(usize, ksize);
7988 
7989 	if (copy_to_user(uattr, kattr, kattr->size))
7990 		return -EFAULT;
7991 
7992 	return 0;
7993 }
7994 
7995 /**
7996  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
7997  * @pid: the pid in question.
7998  * @uattr: structure containing the extended parameters.
7999  * @usize: sizeof(attr) for fwd/bwd comp.
8000  * @flags: for future extension.
8001  */
8002 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8003 		unsigned int, usize, unsigned int, flags)
8004 {
8005 	struct sched_attr kattr = { };
8006 	struct task_struct *p;
8007 	int retval;
8008 
8009 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8010 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8011 		return -EINVAL;
8012 
8013 	rcu_read_lock();
8014 	p = find_process_by_pid(pid);
8015 	retval = -ESRCH;
8016 	if (!p)
8017 		goto out_unlock;
8018 
8019 	retval = security_task_getscheduler(p);
8020 	if (retval)
8021 		goto out_unlock;
8022 
8023 	kattr.sched_policy = p->policy;
8024 	if (p->sched_reset_on_fork)
8025 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8026 	get_params(p, &kattr);
8027 	kattr.sched_flags &= SCHED_FLAG_ALL;
8028 
8029 #ifdef CONFIG_UCLAMP_TASK
8030 	/*
8031 	 * This could race with another potential updater, but this is fine
8032 	 * because it'll correctly read the old or the new value. We don't need
8033 	 * to guarantee who wins the race as long as it doesn't return garbage.
8034 	 */
8035 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8036 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8037 #endif
8038 
8039 	rcu_read_unlock();
8040 
8041 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8042 
8043 out_unlock:
8044 	rcu_read_unlock();
8045 	return retval;
8046 }
8047 
8048 #ifdef CONFIG_SMP
8049 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8050 {
8051 	int ret = 0;
8052 
8053 	/*
8054 	 * If the task isn't a deadline task or admission control is
8055 	 * disabled then we don't care about affinity changes.
8056 	 */
8057 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8058 		return 0;
8059 
8060 	/*
8061 	 * Since bandwidth control happens on root_domain basis,
8062 	 * if admission test is enabled, we only admit -deadline
8063 	 * tasks allowed to run on all the CPUs in the task's
8064 	 * root_domain.
8065 	 */
8066 	rcu_read_lock();
8067 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8068 		ret = -EBUSY;
8069 	rcu_read_unlock();
8070 	return ret;
8071 }
8072 #endif
8073 
8074 static int
8075 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
8076 {
8077 	int retval;
8078 	cpumask_var_t cpus_allowed, new_mask;
8079 
8080 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8081 		return -ENOMEM;
8082 
8083 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8084 		retval = -ENOMEM;
8085 		goto out_free_cpus_allowed;
8086 	}
8087 
8088 	cpuset_cpus_allowed(p, cpus_allowed);
8089 	cpumask_and(new_mask, mask, cpus_allowed);
8090 
8091 	retval = dl_task_check_affinity(p, new_mask);
8092 	if (retval)
8093 		goto out_free_new_mask;
8094 again:
8095 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
8096 	if (retval)
8097 		goto out_free_new_mask;
8098 
8099 	cpuset_cpus_allowed(p, cpus_allowed);
8100 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8101 		/*
8102 		 * We must have raced with a concurrent cpuset update.
8103 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8104 		 */
8105 		cpumask_copy(new_mask, cpus_allowed);
8106 		goto again;
8107 	}
8108 
8109 out_free_new_mask:
8110 	free_cpumask_var(new_mask);
8111 out_free_cpus_allowed:
8112 	free_cpumask_var(cpus_allowed);
8113 	return retval;
8114 }
8115 
8116 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8117 {
8118 	struct task_struct *p;
8119 	int retval;
8120 
8121 	rcu_read_lock();
8122 
8123 	p = find_process_by_pid(pid);
8124 	if (!p) {
8125 		rcu_read_unlock();
8126 		return -ESRCH;
8127 	}
8128 
8129 	/* Prevent p going away */
8130 	get_task_struct(p);
8131 	rcu_read_unlock();
8132 
8133 	if (p->flags & PF_NO_SETAFFINITY) {
8134 		retval = -EINVAL;
8135 		goto out_put_task;
8136 	}
8137 
8138 	if (!check_same_owner(p)) {
8139 		rcu_read_lock();
8140 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8141 			rcu_read_unlock();
8142 			retval = -EPERM;
8143 			goto out_put_task;
8144 		}
8145 		rcu_read_unlock();
8146 	}
8147 
8148 	retval = security_task_setscheduler(p);
8149 	if (retval)
8150 		goto out_put_task;
8151 
8152 	retval = __sched_setaffinity(p, in_mask);
8153 out_put_task:
8154 	put_task_struct(p);
8155 	return retval;
8156 }
8157 
8158 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8159 			     struct cpumask *new_mask)
8160 {
8161 	if (len < cpumask_size())
8162 		cpumask_clear(new_mask);
8163 	else if (len > cpumask_size())
8164 		len = cpumask_size();
8165 
8166 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8167 }
8168 
8169 /**
8170  * sys_sched_setaffinity - set the CPU affinity of a process
8171  * @pid: pid of the process
8172  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8173  * @user_mask_ptr: user-space pointer to the new CPU mask
8174  *
8175  * Return: 0 on success. An error code otherwise.
8176  */
8177 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8178 		unsigned long __user *, user_mask_ptr)
8179 {
8180 	cpumask_var_t new_mask;
8181 	int retval;
8182 
8183 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8184 		return -ENOMEM;
8185 
8186 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8187 	if (retval == 0)
8188 		retval = sched_setaffinity(pid, new_mask);
8189 	free_cpumask_var(new_mask);
8190 	return retval;
8191 }
8192 
8193 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8194 {
8195 	struct task_struct *p;
8196 	unsigned long flags;
8197 	int retval;
8198 
8199 	rcu_read_lock();
8200 
8201 	retval = -ESRCH;
8202 	p = find_process_by_pid(pid);
8203 	if (!p)
8204 		goto out_unlock;
8205 
8206 	retval = security_task_getscheduler(p);
8207 	if (retval)
8208 		goto out_unlock;
8209 
8210 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8211 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8212 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8213 
8214 out_unlock:
8215 	rcu_read_unlock();
8216 
8217 	return retval;
8218 }
8219 
8220 /**
8221  * sys_sched_getaffinity - get the CPU affinity of a process
8222  * @pid: pid of the process
8223  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8224  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8225  *
8226  * Return: size of CPU mask copied to user_mask_ptr on success. An
8227  * error code otherwise.
8228  */
8229 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8230 		unsigned long __user *, user_mask_ptr)
8231 {
8232 	int ret;
8233 	cpumask_var_t mask;
8234 
8235 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8236 		return -EINVAL;
8237 	if (len & (sizeof(unsigned long)-1))
8238 		return -EINVAL;
8239 
8240 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8241 		return -ENOMEM;
8242 
8243 	ret = sched_getaffinity(pid, mask);
8244 	if (ret == 0) {
8245 		unsigned int retlen = min(len, cpumask_size());
8246 
8247 		if (copy_to_user(user_mask_ptr, mask, retlen))
8248 			ret = -EFAULT;
8249 		else
8250 			ret = retlen;
8251 	}
8252 	free_cpumask_var(mask);
8253 
8254 	return ret;
8255 }
8256 
8257 static void do_sched_yield(void)
8258 {
8259 	struct rq_flags rf;
8260 	struct rq *rq;
8261 
8262 	rq = this_rq_lock_irq(&rf);
8263 
8264 	schedstat_inc(rq->yld_count);
8265 	current->sched_class->yield_task(rq);
8266 
8267 	preempt_disable();
8268 	rq_unlock_irq(rq, &rf);
8269 	sched_preempt_enable_no_resched();
8270 
8271 	schedule();
8272 }
8273 
8274 /**
8275  * sys_sched_yield - yield the current processor to other threads.
8276  *
8277  * This function yields the current CPU to other tasks. If there are no
8278  * other threads running on this CPU then this function will return.
8279  *
8280  * Return: 0.
8281  */
8282 SYSCALL_DEFINE0(sched_yield)
8283 {
8284 	do_sched_yield();
8285 	return 0;
8286 }
8287 
8288 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8289 int __sched __cond_resched(void)
8290 {
8291 	if (should_resched(0)) {
8292 		preempt_schedule_common();
8293 		return 1;
8294 	}
8295 	/*
8296 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8297 	 * whether the current CPU is in an RCU read-side critical section,
8298 	 * so the tick can report quiescent states even for CPUs looping
8299 	 * in kernel context.  In contrast, in non-preemptible kernels,
8300 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8301 	 * processes executing in kernel context might never report an
8302 	 * RCU quiescent state.  Therefore, the following code causes
8303 	 * cond_resched() to report a quiescent state, but only when RCU
8304 	 * is in urgent need of one.
8305 	 */
8306 #ifndef CONFIG_PREEMPT_RCU
8307 	rcu_all_qs();
8308 #endif
8309 	return 0;
8310 }
8311 EXPORT_SYMBOL(__cond_resched);
8312 #endif
8313 
8314 #ifdef CONFIG_PREEMPT_DYNAMIC
8315 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8316 #define cond_resched_dynamic_enabled	__cond_resched
8317 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8318 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8319 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8320 
8321 #define might_resched_dynamic_enabled	__cond_resched
8322 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8323 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8324 EXPORT_STATIC_CALL_TRAMP(might_resched);
8325 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8326 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8327 int __sched dynamic_cond_resched(void)
8328 {
8329 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8330 		return 0;
8331 	return __cond_resched();
8332 }
8333 EXPORT_SYMBOL(dynamic_cond_resched);
8334 
8335 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8336 int __sched dynamic_might_resched(void)
8337 {
8338 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8339 		return 0;
8340 	return __cond_resched();
8341 }
8342 EXPORT_SYMBOL(dynamic_might_resched);
8343 #endif
8344 #endif
8345 
8346 /*
8347  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8348  * call schedule, and on return reacquire the lock.
8349  *
8350  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8351  * operations here to prevent schedule() from being called twice (once via
8352  * spin_unlock(), once by hand).
8353  */
8354 int __cond_resched_lock(spinlock_t *lock)
8355 {
8356 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8357 	int ret = 0;
8358 
8359 	lockdep_assert_held(lock);
8360 
8361 	if (spin_needbreak(lock) || resched) {
8362 		spin_unlock(lock);
8363 		if (!_cond_resched())
8364 			cpu_relax();
8365 		ret = 1;
8366 		spin_lock(lock);
8367 	}
8368 	return ret;
8369 }
8370 EXPORT_SYMBOL(__cond_resched_lock);
8371 
8372 int __cond_resched_rwlock_read(rwlock_t *lock)
8373 {
8374 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8375 	int ret = 0;
8376 
8377 	lockdep_assert_held_read(lock);
8378 
8379 	if (rwlock_needbreak(lock) || resched) {
8380 		read_unlock(lock);
8381 		if (!_cond_resched())
8382 			cpu_relax();
8383 		ret = 1;
8384 		read_lock(lock);
8385 	}
8386 	return ret;
8387 }
8388 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8389 
8390 int __cond_resched_rwlock_write(rwlock_t *lock)
8391 {
8392 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8393 	int ret = 0;
8394 
8395 	lockdep_assert_held_write(lock);
8396 
8397 	if (rwlock_needbreak(lock) || resched) {
8398 		write_unlock(lock);
8399 		if (!_cond_resched())
8400 			cpu_relax();
8401 		ret = 1;
8402 		write_lock(lock);
8403 	}
8404 	return ret;
8405 }
8406 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8407 
8408 #ifdef CONFIG_PREEMPT_DYNAMIC
8409 
8410 #ifdef CONFIG_GENERIC_ENTRY
8411 #include <linux/entry-common.h>
8412 #endif
8413 
8414 /*
8415  * SC:cond_resched
8416  * SC:might_resched
8417  * SC:preempt_schedule
8418  * SC:preempt_schedule_notrace
8419  * SC:irqentry_exit_cond_resched
8420  *
8421  *
8422  * NONE:
8423  *   cond_resched               <- __cond_resched
8424  *   might_resched              <- RET0
8425  *   preempt_schedule           <- NOP
8426  *   preempt_schedule_notrace   <- NOP
8427  *   irqentry_exit_cond_resched <- NOP
8428  *
8429  * VOLUNTARY:
8430  *   cond_resched               <- __cond_resched
8431  *   might_resched              <- __cond_resched
8432  *   preempt_schedule           <- NOP
8433  *   preempt_schedule_notrace   <- NOP
8434  *   irqentry_exit_cond_resched <- NOP
8435  *
8436  * FULL:
8437  *   cond_resched               <- RET0
8438  *   might_resched              <- RET0
8439  *   preempt_schedule           <- preempt_schedule
8440  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8441  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8442  */
8443 
8444 enum {
8445 	preempt_dynamic_undefined = -1,
8446 	preempt_dynamic_none,
8447 	preempt_dynamic_voluntary,
8448 	preempt_dynamic_full,
8449 };
8450 
8451 int preempt_dynamic_mode = preempt_dynamic_undefined;
8452 
8453 int sched_dynamic_mode(const char *str)
8454 {
8455 	if (!strcmp(str, "none"))
8456 		return preempt_dynamic_none;
8457 
8458 	if (!strcmp(str, "voluntary"))
8459 		return preempt_dynamic_voluntary;
8460 
8461 	if (!strcmp(str, "full"))
8462 		return preempt_dynamic_full;
8463 
8464 	return -EINVAL;
8465 }
8466 
8467 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8468 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8469 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8470 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8471 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8472 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8473 #else
8474 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8475 #endif
8476 
8477 void sched_dynamic_update(int mode)
8478 {
8479 	/*
8480 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8481 	 * the ZERO state, which is invalid.
8482 	 */
8483 	preempt_dynamic_enable(cond_resched);
8484 	preempt_dynamic_enable(might_resched);
8485 	preempt_dynamic_enable(preempt_schedule);
8486 	preempt_dynamic_enable(preempt_schedule_notrace);
8487 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8488 
8489 	switch (mode) {
8490 	case preempt_dynamic_none:
8491 		preempt_dynamic_enable(cond_resched);
8492 		preempt_dynamic_disable(might_resched);
8493 		preempt_dynamic_disable(preempt_schedule);
8494 		preempt_dynamic_disable(preempt_schedule_notrace);
8495 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8496 		pr_info("Dynamic Preempt: none\n");
8497 		break;
8498 
8499 	case preempt_dynamic_voluntary:
8500 		preempt_dynamic_enable(cond_resched);
8501 		preempt_dynamic_enable(might_resched);
8502 		preempt_dynamic_disable(preempt_schedule);
8503 		preempt_dynamic_disable(preempt_schedule_notrace);
8504 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8505 		pr_info("Dynamic Preempt: voluntary\n");
8506 		break;
8507 
8508 	case preempt_dynamic_full:
8509 		preempt_dynamic_disable(cond_resched);
8510 		preempt_dynamic_disable(might_resched);
8511 		preempt_dynamic_enable(preempt_schedule);
8512 		preempt_dynamic_enable(preempt_schedule_notrace);
8513 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8514 		pr_info("Dynamic Preempt: full\n");
8515 		break;
8516 	}
8517 
8518 	preempt_dynamic_mode = mode;
8519 }
8520 
8521 static int __init setup_preempt_mode(char *str)
8522 {
8523 	int mode = sched_dynamic_mode(str);
8524 	if (mode < 0) {
8525 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8526 		return 0;
8527 	}
8528 
8529 	sched_dynamic_update(mode);
8530 	return 1;
8531 }
8532 __setup("preempt=", setup_preempt_mode);
8533 
8534 static void __init preempt_dynamic_init(void)
8535 {
8536 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8537 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8538 			sched_dynamic_update(preempt_dynamic_none);
8539 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8540 			sched_dynamic_update(preempt_dynamic_voluntary);
8541 		} else {
8542 			/* Default static call setting, nothing to do */
8543 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8544 			preempt_dynamic_mode = preempt_dynamic_full;
8545 			pr_info("Dynamic Preempt: full\n");
8546 		}
8547 	}
8548 }
8549 
8550 #define PREEMPT_MODEL_ACCESSOR(mode) \
8551 	bool preempt_model_##mode(void)						 \
8552 	{									 \
8553 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8554 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8555 	}									 \
8556 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8557 
8558 PREEMPT_MODEL_ACCESSOR(none);
8559 PREEMPT_MODEL_ACCESSOR(voluntary);
8560 PREEMPT_MODEL_ACCESSOR(full);
8561 
8562 #else /* !CONFIG_PREEMPT_DYNAMIC */
8563 
8564 static inline void preempt_dynamic_init(void) { }
8565 
8566 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8567 
8568 /**
8569  * yield - yield the current processor to other threads.
8570  *
8571  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8572  *
8573  * The scheduler is at all times free to pick the calling task as the most
8574  * eligible task to run, if removing the yield() call from your code breaks
8575  * it, it's already broken.
8576  *
8577  * Typical broken usage is:
8578  *
8579  * while (!event)
8580  *	yield();
8581  *
8582  * where one assumes that yield() will let 'the other' process run that will
8583  * make event true. If the current task is a SCHED_FIFO task that will never
8584  * happen. Never use yield() as a progress guarantee!!
8585  *
8586  * If you want to use yield() to wait for something, use wait_event().
8587  * If you want to use yield() to be 'nice' for others, use cond_resched().
8588  * If you still want to use yield(), do not!
8589  */
8590 void __sched yield(void)
8591 {
8592 	set_current_state(TASK_RUNNING);
8593 	do_sched_yield();
8594 }
8595 EXPORT_SYMBOL(yield);
8596 
8597 /**
8598  * yield_to - yield the current processor to another thread in
8599  * your thread group, or accelerate that thread toward the
8600  * processor it's on.
8601  * @p: target task
8602  * @preempt: whether task preemption is allowed or not
8603  *
8604  * It's the caller's job to ensure that the target task struct
8605  * can't go away on us before we can do any checks.
8606  *
8607  * Return:
8608  *	true (>0) if we indeed boosted the target task.
8609  *	false (0) if we failed to boost the target.
8610  *	-ESRCH if there's no task to yield to.
8611  */
8612 int __sched yield_to(struct task_struct *p, bool preempt)
8613 {
8614 	struct task_struct *curr = current;
8615 	struct rq *rq, *p_rq;
8616 	unsigned long flags;
8617 	int yielded = 0;
8618 
8619 	local_irq_save(flags);
8620 	rq = this_rq();
8621 
8622 again:
8623 	p_rq = task_rq(p);
8624 	/*
8625 	 * If we're the only runnable task on the rq and target rq also
8626 	 * has only one task, there's absolutely no point in yielding.
8627 	 */
8628 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8629 		yielded = -ESRCH;
8630 		goto out_irq;
8631 	}
8632 
8633 	double_rq_lock(rq, p_rq);
8634 	if (task_rq(p) != p_rq) {
8635 		double_rq_unlock(rq, p_rq);
8636 		goto again;
8637 	}
8638 
8639 	if (!curr->sched_class->yield_to_task)
8640 		goto out_unlock;
8641 
8642 	if (curr->sched_class != p->sched_class)
8643 		goto out_unlock;
8644 
8645 	if (task_on_cpu(p_rq, p) || !task_is_running(p))
8646 		goto out_unlock;
8647 
8648 	yielded = curr->sched_class->yield_to_task(rq, p);
8649 	if (yielded) {
8650 		schedstat_inc(rq->yld_count);
8651 		/*
8652 		 * Make p's CPU reschedule; pick_next_entity takes care of
8653 		 * fairness.
8654 		 */
8655 		if (preempt && rq != p_rq)
8656 			resched_curr(p_rq);
8657 	}
8658 
8659 out_unlock:
8660 	double_rq_unlock(rq, p_rq);
8661 out_irq:
8662 	local_irq_restore(flags);
8663 
8664 	if (yielded > 0)
8665 		schedule();
8666 
8667 	return yielded;
8668 }
8669 EXPORT_SYMBOL_GPL(yield_to);
8670 
8671 int io_schedule_prepare(void)
8672 {
8673 	int old_iowait = current->in_iowait;
8674 
8675 	current->in_iowait = 1;
8676 	blk_flush_plug(current->plug, true);
8677 	return old_iowait;
8678 }
8679 
8680 void io_schedule_finish(int token)
8681 {
8682 	current->in_iowait = token;
8683 }
8684 
8685 /*
8686  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8687  * that process accounting knows that this is a task in IO wait state.
8688  */
8689 long __sched io_schedule_timeout(long timeout)
8690 {
8691 	int token;
8692 	long ret;
8693 
8694 	token = io_schedule_prepare();
8695 	ret = schedule_timeout(timeout);
8696 	io_schedule_finish(token);
8697 
8698 	return ret;
8699 }
8700 EXPORT_SYMBOL(io_schedule_timeout);
8701 
8702 void __sched io_schedule(void)
8703 {
8704 	int token;
8705 
8706 	token = io_schedule_prepare();
8707 	schedule();
8708 	io_schedule_finish(token);
8709 }
8710 EXPORT_SYMBOL(io_schedule);
8711 
8712 /**
8713  * sys_sched_get_priority_max - return maximum RT priority.
8714  * @policy: scheduling class.
8715  *
8716  * Return: On success, this syscall returns the maximum
8717  * rt_priority that can be used by a given scheduling class.
8718  * On failure, a negative error code is returned.
8719  */
8720 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8721 {
8722 	int ret = -EINVAL;
8723 
8724 	switch (policy) {
8725 	case SCHED_FIFO:
8726 	case SCHED_RR:
8727 		ret = MAX_RT_PRIO-1;
8728 		break;
8729 	case SCHED_DEADLINE:
8730 	case SCHED_NORMAL:
8731 	case SCHED_BATCH:
8732 	case SCHED_IDLE:
8733 		ret = 0;
8734 		break;
8735 	}
8736 	return ret;
8737 }
8738 
8739 /**
8740  * sys_sched_get_priority_min - return minimum RT priority.
8741  * @policy: scheduling class.
8742  *
8743  * Return: On success, this syscall returns the minimum
8744  * rt_priority that can be used by a given scheduling class.
8745  * On failure, a negative error code is returned.
8746  */
8747 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8748 {
8749 	int ret = -EINVAL;
8750 
8751 	switch (policy) {
8752 	case SCHED_FIFO:
8753 	case SCHED_RR:
8754 		ret = 1;
8755 		break;
8756 	case SCHED_DEADLINE:
8757 	case SCHED_NORMAL:
8758 	case SCHED_BATCH:
8759 	case SCHED_IDLE:
8760 		ret = 0;
8761 	}
8762 	return ret;
8763 }
8764 
8765 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8766 {
8767 	struct task_struct *p;
8768 	unsigned int time_slice;
8769 	struct rq_flags rf;
8770 	struct rq *rq;
8771 	int retval;
8772 
8773 	if (pid < 0)
8774 		return -EINVAL;
8775 
8776 	retval = -ESRCH;
8777 	rcu_read_lock();
8778 	p = find_process_by_pid(pid);
8779 	if (!p)
8780 		goto out_unlock;
8781 
8782 	retval = security_task_getscheduler(p);
8783 	if (retval)
8784 		goto out_unlock;
8785 
8786 	rq = task_rq_lock(p, &rf);
8787 	time_slice = 0;
8788 	if (p->sched_class->get_rr_interval)
8789 		time_slice = p->sched_class->get_rr_interval(rq, p);
8790 	task_rq_unlock(rq, p, &rf);
8791 
8792 	rcu_read_unlock();
8793 	jiffies_to_timespec64(time_slice, t);
8794 	return 0;
8795 
8796 out_unlock:
8797 	rcu_read_unlock();
8798 	return retval;
8799 }
8800 
8801 /**
8802  * sys_sched_rr_get_interval - return the default timeslice of a process.
8803  * @pid: pid of the process.
8804  * @interval: userspace pointer to the timeslice value.
8805  *
8806  * this syscall writes the default timeslice value of a given process
8807  * into the user-space timespec buffer. A value of '0' means infinity.
8808  *
8809  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8810  * an error code.
8811  */
8812 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8813 		struct __kernel_timespec __user *, interval)
8814 {
8815 	struct timespec64 t;
8816 	int retval = sched_rr_get_interval(pid, &t);
8817 
8818 	if (retval == 0)
8819 		retval = put_timespec64(&t, interval);
8820 
8821 	return retval;
8822 }
8823 
8824 #ifdef CONFIG_COMPAT_32BIT_TIME
8825 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8826 		struct old_timespec32 __user *, interval)
8827 {
8828 	struct timespec64 t;
8829 	int retval = sched_rr_get_interval(pid, &t);
8830 
8831 	if (retval == 0)
8832 		retval = put_old_timespec32(&t, interval);
8833 	return retval;
8834 }
8835 #endif
8836 
8837 void sched_show_task(struct task_struct *p)
8838 {
8839 	unsigned long free = 0;
8840 	int ppid;
8841 
8842 	if (!try_get_task_stack(p))
8843 		return;
8844 
8845 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8846 
8847 	if (task_is_running(p))
8848 		pr_cont("  running task    ");
8849 #ifdef CONFIG_DEBUG_STACK_USAGE
8850 	free = stack_not_used(p);
8851 #endif
8852 	ppid = 0;
8853 	rcu_read_lock();
8854 	if (pid_alive(p))
8855 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
8856 	rcu_read_unlock();
8857 	pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
8858 		free, task_pid_nr(p), ppid,
8859 		read_task_thread_flags(p));
8860 
8861 	print_worker_info(KERN_INFO, p);
8862 	print_stop_info(KERN_INFO, p);
8863 	show_stack(p, NULL, KERN_INFO);
8864 	put_task_stack(p);
8865 }
8866 EXPORT_SYMBOL_GPL(sched_show_task);
8867 
8868 static inline bool
8869 state_filter_match(unsigned long state_filter, struct task_struct *p)
8870 {
8871 	unsigned int state = READ_ONCE(p->__state);
8872 
8873 	/* no filter, everything matches */
8874 	if (!state_filter)
8875 		return true;
8876 
8877 	/* filter, but doesn't match */
8878 	if (!(state & state_filter))
8879 		return false;
8880 
8881 	/*
8882 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8883 	 * TASK_KILLABLE).
8884 	 */
8885 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
8886 		return false;
8887 
8888 	return true;
8889 }
8890 
8891 
8892 void show_state_filter(unsigned int state_filter)
8893 {
8894 	struct task_struct *g, *p;
8895 
8896 	rcu_read_lock();
8897 	for_each_process_thread(g, p) {
8898 		/*
8899 		 * reset the NMI-timeout, listing all files on a slow
8900 		 * console might take a lot of time:
8901 		 * Also, reset softlockup watchdogs on all CPUs, because
8902 		 * another CPU might be blocked waiting for us to process
8903 		 * an IPI.
8904 		 */
8905 		touch_nmi_watchdog();
8906 		touch_all_softlockup_watchdogs();
8907 		if (state_filter_match(state_filter, p))
8908 			sched_show_task(p);
8909 	}
8910 
8911 #ifdef CONFIG_SCHED_DEBUG
8912 	if (!state_filter)
8913 		sysrq_sched_debug_show();
8914 #endif
8915 	rcu_read_unlock();
8916 	/*
8917 	 * Only show locks if all tasks are dumped:
8918 	 */
8919 	if (!state_filter)
8920 		debug_show_all_locks();
8921 }
8922 
8923 /**
8924  * init_idle - set up an idle thread for a given CPU
8925  * @idle: task in question
8926  * @cpu: CPU the idle task belongs to
8927  *
8928  * NOTE: this function does not set the idle thread's NEED_RESCHED
8929  * flag, to make booting more robust.
8930  */
8931 void __init init_idle(struct task_struct *idle, int cpu)
8932 {
8933 	struct rq *rq = cpu_rq(cpu);
8934 	unsigned long flags;
8935 
8936 	__sched_fork(0, idle);
8937 
8938 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
8939 	raw_spin_rq_lock(rq);
8940 
8941 	idle->__state = TASK_RUNNING;
8942 	idle->se.exec_start = sched_clock();
8943 	/*
8944 	 * PF_KTHREAD should already be set at this point; regardless, make it
8945 	 * look like a proper per-CPU kthread.
8946 	 */
8947 	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8948 	kthread_set_per_cpu(idle, cpu);
8949 
8950 #ifdef CONFIG_SMP
8951 	/*
8952 	 * It's possible that init_idle() gets called multiple times on a task,
8953 	 * in that case do_set_cpus_allowed() will not do the right thing.
8954 	 *
8955 	 * And since this is boot we can forgo the serialization.
8956 	 */
8957 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8958 #endif
8959 	/*
8960 	 * We're having a chicken and egg problem, even though we are
8961 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
8962 	 * lockdep check in task_group() will fail.
8963 	 *
8964 	 * Similar case to sched_fork(). / Alternatively we could
8965 	 * use task_rq_lock() here and obtain the other rq->lock.
8966 	 *
8967 	 * Silence PROVE_RCU
8968 	 */
8969 	rcu_read_lock();
8970 	__set_task_cpu(idle, cpu);
8971 	rcu_read_unlock();
8972 
8973 	rq->idle = idle;
8974 	rcu_assign_pointer(rq->curr, idle);
8975 	idle->on_rq = TASK_ON_RQ_QUEUED;
8976 #ifdef CONFIG_SMP
8977 	idle->on_cpu = 1;
8978 #endif
8979 	raw_spin_rq_unlock(rq);
8980 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8981 
8982 	/* Set the preempt count _outside_ the spinlocks! */
8983 	init_idle_preempt_count(idle, cpu);
8984 
8985 	/*
8986 	 * The idle tasks have their own, simple scheduling class:
8987 	 */
8988 	idle->sched_class = &idle_sched_class;
8989 	ftrace_graph_init_idle_task(idle, cpu);
8990 	vtime_init_idle(idle, cpu);
8991 #ifdef CONFIG_SMP
8992 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8993 #endif
8994 }
8995 
8996 #ifdef CONFIG_SMP
8997 
8998 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8999 			      const struct cpumask *trial)
9000 {
9001 	int ret = 1;
9002 
9003 	if (cpumask_empty(cur))
9004 		return ret;
9005 
9006 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9007 
9008 	return ret;
9009 }
9010 
9011 int task_can_attach(struct task_struct *p,
9012 		    const struct cpumask *cs_effective_cpus)
9013 {
9014 	int ret = 0;
9015 
9016 	/*
9017 	 * Kthreads which disallow setaffinity shouldn't be moved
9018 	 * to a new cpuset; we don't want to change their CPU
9019 	 * affinity and isolating such threads by their set of
9020 	 * allowed nodes is unnecessary.  Thus, cpusets are not
9021 	 * applicable for such threads.  This prevents checking for
9022 	 * success of set_cpus_allowed_ptr() on all attached tasks
9023 	 * before cpus_mask may be changed.
9024 	 */
9025 	if (p->flags & PF_NO_SETAFFINITY) {
9026 		ret = -EINVAL;
9027 		goto out;
9028 	}
9029 
9030 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
9031 					      cs_effective_cpus)) {
9032 		int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus);
9033 
9034 		if (unlikely(cpu >= nr_cpu_ids))
9035 			return -EINVAL;
9036 		ret = dl_cpu_busy(cpu, p);
9037 	}
9038 
9039 out:
9040 	return ret;
9041 }
9042 
9043 bool sched_smp_initialized __read_mostly;
9044 
9045 #ifdef CONFIG_NUMA_BALANCING
9046 /* Migrate current task p to target_cpu */
9047 int migrate_task_to(struct task_struct *p, int target_cpu)
9048 {
9049 	struct migration_arg arg = { p, target_cpu };
9050 	int curr_cpu = task_cpu(p);
9051 
9052 	if (curr_cpu == target_cpu)
9053 		return 0;
9054 
9055 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9056 		return -EINVAL;
9057 
9058 	/* TODO: This is not properly updating schedstats */
9059 
9060 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9061 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9062 }
9063 
9064 /*
9065  * Requeue a task on a given node and accurately track the number of NUMA
9066  * tasks on the runqueues
9067  */
9068 void sched_setnuma(struct task_struct *p, int nid)
9069 {
9070 	bool queued, running;
9071 	struct rq_flags rf;
9072 	struct rq *rq;
9073 
9074 	rq = task_rq_lock(p, &rf);
9075 	queued = task_on_rq_queued(p);
9076 	running = task_current(rq, p);
9077 
9078 	if (queued)
9079 		dequeue_task(rq, p, DEQUEUE_SAVE);
9080 	if (running)
9081 		put_prev_task(rq, p);
9082 
9083 	p->numa_preferred_nid = nid;
9084 
9085 	if (queued)
9086 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9087 	if (running)
9088 		set_next_task(rq, p);
9089 	task_rq_unlock(rq, p, &rf);
9090 }
9091 #endif /* CONFIG_NUMA_BALANCING */
9092 
9093 #ifdef CONFIG_HOTPLUG_CPU
9094 /*
9095  * Ensure that the idle task is using init_mm right before its CPU goes
9096  * offline.
9097  */
9098 void idle_task_exit(void)
9099 {
9100 	struct mm_struct *mm = current->active_mm;
9101 
9102 	BUG_ON(cpu_online(smp_processor_id()));
9103 	BUG_ON(current != this_rq()->idle);
9104 
9105 	if (mm != &init_mm) {
9106 		switch_mm(mm, &init_mm, current);
9107 		finish_arch_post_lock_switch();
9108 	}
9109 
9110 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9111 }
9112 
9113 static int __balance_push_cpu_stop(void *arg)
9114 {
9115 	struct task_struct *p = arg;
9116 	struct rq *rq = this_rq();
9117 	struct rq_flags rf;
9118 	int cpu;
9119 
9120 	raw_spin_lock_irq(&p->pi_lock);
9121 	rq_lock(rq, &rf);
9122 
9123 	update_rq_clock(rq);
9124 
9125 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9126 		cpu = select_fallback_rq(rq->cpu, p);
9127 		rq = __migrate_task(rq, &rf, p, cpu);
9128 	}
9129 
9130 	rq_unlock(rq, &rf);
9131 	raw_spin_unlock_irq(&p->pi_lock);
9132 
9133 	put_task_struct(p);
9134 
9135 	return 0;
9136 }
9137 
9138 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9139 
9140 /*
9141  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9142  *
9143  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9144  * effective when the hotplug motion is down.
9145  */
9146 static void balance_push(struct rq *rq)
9147 {
9148 	struct task_struct *push_task = rq->curr;
9149 
9150 	lockdep_assert_rq_held(rq);
9151 
9152 	/*
9153 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9154 	 */
9155 	rq->balance_callback = &balance_push_callback;
9156 
9157 	/*
9158 	 * Only active while going offline and when invoked on the outgoing
9159 	 * CPU.
9160 	 */
9161 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9162 		return;
9163 
9164 	/*
9165 	 * Both the cpu-hotplug and stop task are in this case and are
9166 	 * required to complete the hotplug process.
9167 	 */
9168 	if (kthread_is_per_cpu(push_task) ||
9169 	    is_migration_disabled(push_task)) {
9170 
9171 		/*
9172 		 * If this is the idle task on the outgoing CPU try to wake
9173 		 * up the hotplug control thread which might wait for the
9174 		 * last task to vanish. The rcuwait_active() check is
9175 		 * accurate here because the waiter is pinned on this CPU
9176 		 * and can't obviously be running in parallel.
9177 		 *
9178 		 * On RT kernels this also has to check whether there are
9179 		 * pinned and scheduled out tasks on the runqueue. They
9180 		 * need to leave the migrate disabled section first.
9181 		 */
9182 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9183 		    rcuwait_active(&rq->hotplug_wait)) {
9184 			raw_spin_rq_unlock(rq);
9185 			rcuwait_wake_up(&rq->hotplug_wait);
9186 			raw_spin_rq_lock(rq);
9187 		}
9188 		return;
9189 	}
9190 
9191 	get_task_struct(push_task);
9192 	/*
9193 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9194 	 * Both preemption and IRQs are still disabled.
9195 	 */
9196 	raw_spin_rq_unlock(rq);
9197 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9198 			    this_cpu_ptr(&push_work));
9199 	/*
9200 	 * At this point need_resched() is true and we'll take the loop in
9201 	 * schedule(). The next pick is obviously going to be the stop task
9202 	 * which kthread_is_per_cpu() and will push this task away.
9203 	 */
9204 	raw_spin_rq_lock(rq);
9205 }
9206 
9207 static void balance_push_set(int cpu, bool on)
9208 {
9209 	struct rq *rq = cpu_rq(cpu);
9210 	struct rq_flags rf;
9211 
9212 	rq_lock_irqsave(rq, &rf);
9213 	if (on) {
9214 		WARN_ON_ONCE(rq->balance_callback);
9215 		rq->balance_callback = &balance_push_callback;
9216 	} else if (rq->balance_callback == &balance_push_callback) {
9217 		rq->balance_callback = NULL;
9218 	}
9219 	rq_unlock_irqrestore(rq, &rf);
9220 }
9221 
9222 /*
9223  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9224  * inactive. All tasks which are not per CPU kernel threads are either
9225  * pushed off this CPU now via balance_push() or placed on a different CPU
9226  * during wakeup. Wait until the CPU is quiescent.
9227  */
9228 static void balance_hotplug_wait(void)
9229 {
9230 	struct rq *rq = this_rq();
9231 
9232 	rcuwait_wait_event(&rq->hotplug_wait,
9233 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9234 			   TASK_UNINTERRUPTIBLE);
9235 }
9236 
9237 #else
9238 
9239 static inline void balance_push(struct rq *rq)
9240 {
9241 }
9242 
9243 static inline void balance_push_set(int cpu, bool on)
9244 {
9245 }
9246 
9247 static inline void balance_hotplug_wait(void)
9248 {
9249 }
9250 
9251 #endif /* CONFIG_HOTPLUG_CPU */
9252 
9253 void set_rq_online(struct rq *rq)
9254 {
9255 	if (!rq->online) {
9256 		const struct sched_class *class;
9257 
9258 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9259 		rq->online = 1;
9260 
9261 		for_each_class(class) {
9262 			if (class->rq_online)
9263 				class->rq_online(rq);
9264 		}
9265 	}
9266 }
9267 
9268 void set_rq_offline(struct rq *rq)
9269 {
9270 	if (rq->online) {
9271 		const struct sched_class *class;
9272 
9273 		for_each_class(class) {
9274 			if (class->rq_offline)
9275 				class->rq_offline(rq);
9276 		}
9277 
9278 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9279 		rq->online = 0;
9280 	}
9281 }
9282 
9283 /*
9284  * used to mark begin/end of suspend/resume:
9285  */
9286 static int num_cpus_frozen;
9287 
9288 /*
9289  * Update cpusets according to cpu_active mask.  If cpusets are
9290  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9291  * around partition_sched_domains().
9292  *
9293  * If we come here as part of a suspend/resume, don't touch cpusets because we
9294  * want to restore it back to its original state upon resume anyway.
9295  */
9296 static void cpuset_cpu_active(void)
9297 {
9298 	if (cpuhp_tasks_frozen) {
9299 		/*
9300 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9301 		 * resume sequence. As long as this is not the last online
9302 		 * operation in the resume sequence, just build a single sched
9303 		 * domain, ignoring cpusets.
9304 		 */
9305 		partition_sched_domains(1, NULL, NULL);
9306 		if (--num_cpus_frozen)
9307 			return;
9308 		/*
9309 		 * This is the last CPU online operation. So fall through and
9310 		 * restore the original sched domains by considering the
9311 		 * cpuset configurations.
9312 		 */
9313 		cpuset_force_rebuild();
9314 	}
9315 	cpuset_update_active_cpus();
9316 }
9317 
9318 static int cpuset_cpu_inactive(unsigned int cpu)
9319 {
9320 	if (!cpuhp_tasks_frozen) {
9321 		int ret = dl_cpu_busy(cpu, NULL);
9322 
9323 		if (ret)
9324 			return ret;
9325 		cpuset_update_active_cpus();
9326 	} else {
9327 		num_cpus_frozen++;
9328 		partition_sched_domains(1, NULL, NULL);
9329 	}
9330 	return 0;
9331 }
9332 
9333 int sched_cpu_activate(unsigned int cpu)
9334 {
9335 	struct rq *rq = cpu_rq(cpu);
9336 	struct rq_flags rf;
9337 
9338 	/*
9339 	 * Clear the balance_push callback and prepare to schedule
9340 	 * regular tasks.
9341 	 */
9342 	balance_push_set(cpu, false);
9343 
9344 #ifdef CONFIG_SCHED_SMT
9345 	/*
9346 	 * When going up, increment the number of cores with SMT present.
9347 	 */
9348 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9349 		static_branch_inc_cpuslocked(&sched_smt_present);
9350 #endif
9351 	set_cpu_active(cpu, true);
9352 
9353 	if (sched_smp_initialized) {
9354 		sched_update_numa(cpu, true);
9355 		sched_domains_numa_masks_set(cpu);
9356 		cpuset_cpu_active();
9357 	}
9358 
9359 	/*
9360 	 * Put the rq online, if not already. This happens:
9361 	 *
9362 	 * 1) In the early boot process, because we build the real domains
9363 	 *    after all CPUs have been brought up.
9364 	 *
9365 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9366 	 *    domains.
9367 	 */
9368 	rq_lock_irqsave(rq, &rf);
9369 	if (rq->rd) {
9370 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9371 		set_rq_online(rq);
9372 	}
9373 	rq_unlock_irqrestore(rq, &rf);
9374 
9375 	return 0;
9376 }
9377 
9378 int sched_cpu_deactivate(unsigned int cpu)
9379 {
9380 	struct rq *rq = cpu_rq(cpu);
9381 	struct rq_flags rf;
9382 	int ret;
9383 
9384 	/*
9385 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9386 	 * load balancing when not active
9387 	 */
9388 	nohz_balance_exit_idle(rq);
9389 
9390 	set_cpu_active(cpu, false);
9391 
9392 	/*
9393 	 * From this point forward, this CPU will refuse to run any task that
9394 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9395 	 * push those tasks away until this gets cleared, see
9396 	 * sched_cpu_dying().
9397 	 */
9398 	balance_push_set(cpu, true);
9399 
9400 	/*
9401 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9402 	 * preempt-disabled and RCU users of this state to go away such that
9403 	 * all new such users will observe it.
9404 	 *
9405 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9406 	 * ttwu_queue_cond() and is_cpu_allowed().
9407 	 *
9408 	 * Do sync before park smpboot threads to take care the rcu boost case.
9409 	 */
9410 	synchronize_rcu();
9411 
9412 	rq_lock_irqsave(rq, &rf);
9413 	if (rq->rd) {
9414 		update_rq_clock(rq);
9415 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9416 		set_rq_offline(rq);
9417 	}
9418 	rq_unlock_irqrestore(rq, &rf);
9419 
9420 #ifdef CONFIG_SCHED_SMT
9421 	/*
9422 	 * When going down, decrement the number of cores with SMT present.
9423 	 */
9424 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9425 		static_branch_dec_cpuslocked(&sched_smt_present);
9426 
9427 	sched_core_cpu_deactivate(cpu);
9428 #endif
9429 
9430 	if (!sched_smp_initialized)
9431 		return 0;
9432 
9433 	sched_update_numa(cpu, false);
9434 	ret = cpuset_cpu_inactive(cpu);
9435 	if (ret) {
9436 		balance_push_set(cpu, false);
9437 		set_cpu_active(cpu, true);
9438 		sched_update_numa(cpu, true);
9439 		return ret;
9440 	}
9441 	sched_domains_numa_masks_clear(cpu);
9442 	return 0;
9443 }
9444 
9445 static void sched_rq_cpu_starting(unsigned int cpu)
9446 {
9447 	struct rq *rq = cpu_rq(cpu);
9448 
9449 	rq->calc_load_update = calc_load_update;
9450 	update_max_interval();
9451 }
9452 
9453 int sched_cpu_starting(unsigned int cpu)
9454 {
9455 	sched_core_cpu_starting(cpu);
9456 	sched_rq_cpu_starting(cpu);
9457 	sched_tick_start(cpu);
9458 	return 0;
9459 }
9460 
9461 #ifdef CONFIG_HOTPLUG_CPU
9462 
9463 /*
9464  * Invoked immediately before the stopper thread is invoked to bring the
9465  * CPU down completely. At this point all per CPU kthreads except the
9466  * hotplug thread (current) and the stopper thread (inactive) have been
9467  * either parked or have been unbound from the outgoing CPU. Ensure that
9468  * any of those which might be on the way out are gone.
9469  *
9470  * If after this point a bound task is being woken on this CPU then the
9471  * responsible hotplug callback has failed to do it's job.
9472  * sched_cpu_dying() will catch it with the appropriate fireworks.
9473  */
9474 int sched_cpu_wait_empty(unsigned int cpu)
9475 {
9476 	balance_hotplug_wait();
9477 	return 0;
9478 }
9479 
9480 /*
9481  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9482  * might have. Called from the CPU stopper task after ensuring that the
9483  * stopper is the last running task on the CPU, so nr_active count is
9484  * stable. We need to take the teardown thread which is calling this into
9485  * account, so we hand in adjust = 1 to the load calculation.
9486  *
9487  * Also see the comment "Global load-average calculations".
9488  */
9489 static void calc_load_migrate(struct rq *rq)
9490 {
9491 	long delta = calc_load_fold_active(rq, 1);
9492 
9493 	if (delta)
9494 		atomic_long_add(delta, &calc_load_tasks);
9495 }
9496 
9497 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9498 {
9499 	struct task_struct *g, *p;
9500 	int cpu = cpu_of(rq);
9501 
9502 	lockdep_assert_rq_held(rq);
9503 
9504 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9505 	for_each_process_thread(g, p) {
9506 		if (task_cpu(p) != cpu)
9507 			continue;
9508 
9509 		if (!task_on_rq_queued(p))
9510 			continue;
9511 
9512 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9513 	}
9514 }
9515 
9516 int sched_cpu_dying(unsigned int cpu)
9517 {
9518 	struct rq *rq = cpu_rq(cpu);
9519 	struct rq_flags rf;
9520 
9521 	/* Handle pending wakeups and then migrate everything off */
9522 	sched_tick_stop(cpu);
9523 
9524 	rq_lock_irqsave(rq, &rf);
9525 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9526 		WARN(true, "Dying CPU not properly vacated!");
9527 		dump_rq_tasks(rq, KERN_WARNING);
9528 	}
9529 	rq_unlock_irqrestore(rq, &rf);
9530 
9531 	calc_load_migrate(rq);
9532 	update_max_interval();
9533 	hrtick_clear(rq);
9534 	sched_core_cpu_dying(cpu);
9535 	return 0;
9536 }
9537 #endif
9538 
9539 void __init sched_init_smp(void)
9540 {
9541 	sched_init_numa(NUMA_NO_NODE);
9542 
9543 	/*
9544 	 * There's no userspace yet to cause hotplug operations; hence all the
9545 	 * CPU masks are stable and all blatant races in the below code cannot
9546 	 * happen.
9547 	 */
9548 	mutex_lock(&sched_domains_mutex);
9549 	sched_init_domains(cpu_active_mask);
9550 	mutex_unlock(&sched_domains_mutex);
9551 
9552 	/* Move init over to a non-isolated CPU */
9553 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9554 		BUG();
9555 	current->flags &= ~PF_NO_SETAFFINITY;
9556 	sched_init_granularity();
9557 
9558 	init_sched_rt_class();
9559 	init_sched_dl_class();
9560 
9561 	sched_smp_initialized = true;
9562 }
9563 
9564 static int __init migration_init(void)
9565 {
9566 	sched_cpu_starting(smp_processor_id());
9567 	return 0;
9568 }
9569 early_initcall(migration_init);
9570 
9571 #else
9572 void __init sched_init_smp(void)
9573 {
9574 	sched_init_granularity();
9575 }
9576 #endif /* CONFIG_SMP */
9577 
9578 int in_sched_functions(unsigned long addr)
9579 {
9580 	return in_lock_functions(addr) ||
9581 		(addr >= (unsigned long)__sched_text_start
9582 		&& addr < (unsigned long)__sched_text_end);
9583 }
9584 
9585 #ifdef CONFIG_CGROUP_SCHED
9586 /*
9587  * Default task group.
9588  * Every task in system belongs to this group at bootup.
9589  */
9590 struct task_group root_task_group;
9591 LIST_HEAD(task_groups);
9592 
9593 /* Cacheline aligned slab cache for task_group */
9594 static struct kmem_cache *task_group_cache __read_mostly;
9595 #endif
9596 
9597 void __init sched_init(void)
9598 {
9599 	unsigned long ptr = 0;
9600 	int i;
9601 
9602 	/* Make sure the linker didn't screw up */
9603 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9604 	       &fair_sched_class != &rt_sched_class + 1 ||
9605 	       &rt_sched_class   != &dl_sched_class + 1);
9606 #ifdef CONFIG_SMP
9607 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9608 #endif
9609 
9610 	wait_bit_init();
9611 
9612 #ifdef CONFIG_FAIR_GROUP_SCHED
9613 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9614 #endif
9615 #ifdef CONFIG_RT_GROUP_SCHED
9616 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9617 #endif
9618 	if (ptr) {
9619 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9620 
9621 #ifdef CONFIG_FAIR_GROUP_SCHED
9622 		root_task_group.se = (struct sched_entity **)ptr;
9623 		ptr += nr_cpu_ids * sizeof(void **);
9624 
9625 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9626 		ptr += nr_cpu_ids * sizeof(void **);
9627 
9628 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9629 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9630 #endif /* CONFIG_FAIR_GROUP_SCHED */
9631 #ifdef CONFIG_RT_GROUP_SCHED
9632 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9633 		ptr += nr_cpu_ids * sizeof(void **);
9634 
9635 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9636 		ptr += nr_cpu_ids * sizeof(void **);
9637 
9638 #endif /* CONFIG_RT_GROUP_SCHED */
9639 	}
9640 
9641 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9642 
9643 #ifdef CONFIG_SMP
9644 	init_defrootdomain();
9645 #endif
9646 
9647 #ifdef CONFIG_RT_GROUP_SCHED
9648 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9649 			global_rt_period(), global_rt_runtime());
9650 #endif /* CONFIG_RT_GROUP_SCHED */
9651 
9652 #ifdef CONFIG_CGROUP_SCHED
9653 	task_group_cache = KMEM_CACHE(task_group, 0);
9654 
9655 	list_add(&root_task_group.list, &task_groups);
9656 	INIT_LIST_HEAD(&root_task_group.children);
9657 	INIT_LIST_HEAD(&root_task_group.siblings);
9658 	autogroup_init(&init_task);
9659 #endif /* CONFIG_CGROUP_SCHED */
9660 
9661 	for_each_possible_cpu(i) {
9662 		struct rq *rq;
9663 
9664 		rq = cpu_rq(i);
9665 		raw_spin_lock_init(&rq->__lock);
9666 		rq->nr_running = 0;
9667 		rq->calc_load_active = 0;
9668 		rq->calc_load_update = jiffies + LOAD_FREQ;
9669 		init_cfs_rq(&rq->cfs);
9670 		init_rt_rq(&rq->rt);
9671 		init_dl_rq(&rq->dl);
9672 #ifdef CONFIG_FAIR_GROUP_SCHED
9673 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9674 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9675 		/*
9676 		 * How much CPU bandwidth does root_task_group get?
9677 		 *
9678 		 * In case of task-groups formed thr' the cgroup filesystem, it
9679 		 * gets 100% of the CPU resources in the system. This overall
9680 		 * system CPU resource is divided among the tasks of
9681 		 * root_task_group and its child task-groups in a fair manner,
9682 		 * based on each entity's (task or task-group's) weight
9683 		 * (se->load.weight).
9684 		 *
9685 		 * In other words, if root_task_group has 10 tasks of weight
9686 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9687 		 * then A0's share of the CPU resource is:
9688 		 *
9689 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9690 		 *
9691 		 * We achieve this by letting root_task_group's tasks sit
9692 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9693 		 */
9694 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9695 #endif /* CONFIG_FAIR_GROUP_SCHED */
9696 
9697 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9698 #ifdef CONFIG_RT_GROUP_SCHED
9699 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9700 #endif
9701 #ifdef CONFIG_SMP
9702 		rq->sd = NULL;
9703 		rq->rd = NULL;
9704 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9705 		rq->balance_callback = &balance_push_callback;
9706 		rq->active_balance = 0;
9707 		rq->next_balance = jiffies;
9708 		rq->push_cpu = 0;
9709 		rq->cpu = i;
9710 		rq->online = 0;
9711 		rq->idle_stamp = 0;
9712 		rq->avg_idle = 2*sysctl_sched_migration_cost;
9713 		rq->wake_stamp = jiffies;
9714 		rq->wake_avg_idle = rq->avg_idle;
9715 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9716 
9717 		INIT_LIST_HEAD(&rq->cfs_tasks);
9718 
9719 		rq_attach_root(rq, &def_root_domain);
9720 #ifdef CONFIG_NO_HZ_COMMON
9721 		rq->last_blocked_load_update_tick = jiffies;
9722 		atomic_set(&rq->nohz_flags, 0);
9723 
9724 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9725 #endif
9726 #ifdef CONFIG_HOTPLUG_CPU
9727 		rcuwait_init(&rq->hotplug_wait);
9728 #endif
9729 #endif /* CONFIG_SMP */
9730 		hrtick_rq_init(rq);
9731 		atomic_set(&rq->nr_iowait, 0);
9732 
9733 #ifdef CONFIG_SCHED_CORE
9734 		rq->core = rq;
9735 		rq->core_pick = NULL;
9736 		rq->core_enabled = 0;
9737 		rq->core_tree = RB_ROOT;
9738 		rq->core_forceidle_count = 0;
9739 		rq->core_forceidle_occupation = 0;
9740 		rq->core_forceidle_start = 0;
9741 
9742 		rq->core_cookie = 0UL;
9743 #endif
9744 	}
9745 
9746 	set_load_weight(&init_task, false);
9747 
9748 	/*
9749 	 * The boot idle thread does lazy MMU switching as well:
9750 	 */
9751 	mmgrab(&init_mm);
9752 	enter_lazy_tlb(&init_mm, current);
9753 
9754 	/*
9755 	 * The idle task doesn't need the kthread struct to function, but it
9756 	 * is dressed up as a per-CPU kthread and thus needs to play the part
9757 	 * if we want to avoid special-casing it in code that deals with per-CPU
9758 	 * kthreads.
9759 	 */
9760 	WARN_ON(!set_kthread_struct(current));
9761 
9762 	/*
9763 	 * Make us the idle thread. Technically, schedule() should not be
9764 	 * called from this thread, however somewhere below it might be,
9765 	 * but because we are the idle thread, we just pick up running again
9766 	 * when this runqueue becomes "idle".
9767 	 */
9768 	init_idle(current, smp_processor_id());
9769 
9770 	calc_load_update = jiffies + LOAD_FREQ;
9771 
9772 #ifdef CONFIG_SMP
9773 	idle_thread_set_boot_cpu();
9774 	balance_push_set(smp_processor_id(), false);
9775 #endif
9776 	init_sched_fair_class();
9777 
9778 	psi_init();
9779 
9780 	init_uclamp();
9781 
9782 	preempt_dynamic_init();
9783 
9784 	scheduler_running = 1;
9785 }
9786 
9787 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9788 
9789 void __might_sleep(const char *file, int line)
9790 {
9791 	unsigned int state = get_current_state();
9792 	/*
9793 	 * Blocking primitives will set (and therefore destroy) current->state,
9794 	 * since we will exit with TASK_RUNNING make sure we enter with it,
9795 	 * otherwise we will destroy state.
9796 	 */
9797 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9798 			"do not call blocking ops when !TASK_RUNNING; "
9799 			"state=%x set at [<%p>] %pS\n", state,
9800 			(void *)current->task_state_change,
9801 			(void *)current->task_state_change);
9802 
9803 	__might_resched(file, line, 0);
9804 }
9805 EXPORT_SYMBOL(__might_sleep);
9806 
9807 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
9808 {
9809 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
9810 		return;
9811 
9812 	if (preempt_count() == preempt_offset)
9813 		return;
9814 
9815 	pr_err("Preemption disabled at:");
9816 	print_ip_sym(KERN_ERR, ip);
9817 }
9818 
9819 static inline bool resched_offsets_ok(unsigned int offsets)
9820 {
9821 	unsigned int nested = preempt_count();
9822 
9823 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
9824 
9825 	return nested == offsets;
9826 }
9827 
9828 void __might_resched(const char *file, int line, unsigned int offsets)
9829 {
9830 	/* Ratelimiting timestamp: */
9831 	static unsigned long prev_jiffy;
9832 
9833 	unsigned long preempt_disable_ip;
9834 
9835 	/* WARN_ON_ONCE() by default, no rate limit required: */
9836 	rcu_sleep_check();
9837 
9838 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
9839 	     !is_idle_task(current) && !current->non_block_count) ||
9840 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9841 	    oops_in_progress)
9842 		return;
9843 
9844 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9845 		return;
9846 	prev_jiffy = jiffies;
9847 
9848 	/* Save this before calling printk(), since that will clobber it: */
9849 	preempt_disable_ip = get_preempt_disable_ip(current);
9850 
9851 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9852 	       file, line);
9853 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9854 	       in_atomic(), irqs_disabled(), current->non_block_count,
9855 	       current->pid, current->comm);
9856 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
9857 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
9858 
9859 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
9860 		pr_err("RCU nest depth: %d, expected: %u\n",
9861 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
9862 	}
9863 
9864 	if (task_stack_end_corrupted(current))
9865 		pr_emerg("Thread overran stack, or stack corrupted\n");
9866 
9867 	debug_show_held_locks(current);
9868 	if (irqs_disabled())
9869 		print_irqtrace_events(current);
9870 
9871 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
9872 				 preempt_disable_ip);
9873 
9874 	dump_stack();
9875 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9876 }
9877 EXPORT_SYMBOL(__might_resched);
9878 
9879 void __cant_sleep(const char *file, int line, int preempt_offset)
9880 {
9881 	static unsigned long prev_jiffy;
9882 
9883 	if (irqs_disabled())
9884 		return;
9885 
9886 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9887 		return;
9888 
9889 	if (preempt_count() > preempt_offset)
9890 		return;
9891 
9892 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9893 		return;
9894 	prev_jiffy = jiffies;
9895 
9896 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9897 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9898 			in_atomic(), irqs_disabled(),
9899 			current->pid, current->comm);
9900 
9901 	debug_show_held_locks(current);
9902 	dump_stack();
9903 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9904 }
9905 EXPORT_SYMBOL_GPL(__cant_sleep);
9906 
9907 #ifdef CONFIG_SMP
9908 void __cant_migrate(const char *file, int line)
9909 {
9910 	static unsigned long prev_jiffy;
9911 
9912 	if (irqs_disabled())
9913 		return;
9914 
9915 	if (is_migration_disabled(current))
9916 		return;
9917 
9918 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9919 		return;
9920 
9921 	if (preempt_count() > 0)
9922 		return;
9923 
9924 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9925 		return;
9926 	prev_jiffy = jiffies;
9927 
9928 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9929 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9930 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
9931 	       current->pid, current->comm);
9932 
9933 	debug_show_held_locks(current);
9934 	dump_stack();
9935 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9936 }
9937 EXPORT_SYMBOL_GPL(__cant_migrate);
9938 #endif
9939 #endif
9940 
9941 #ifdef CONFIG_MAGIC_SYSRQ
9942 void normalize_rt_tasks(void)
9943 {
9944 	struct task_struct *g, *p;
9945 	struct sched_attr attr = {
9946 		.sched_policy = SCHED_NORMAL,
9947 	};
9948 
9949 	read_lock(&tasklist_lock);
9950 	for_each_process_thread(g, p) {
9951 		/*
9952 		 * Only normalize user tasks:
9953 		 */
9954 		if (p->flags & PF_KTHREAD)
9955 			continue;
9956 
9957 		p->se.exec_start = 0;
9958 		schedstat_set(p->stats.wait_start,  0);
9959 		schedstat_set(p->stats.sleep_start, 0);
9960 		schedstat_set(p->stats.block_start, 0);
9961 
9962 		if (!dl_task(p) && !rt_task(p)) {
9963 			/*
9964 			 * Renice negative nice level userspace
9965 			 * tasks back to 0:
9966 			 */
9967 			if (task_nice(p) < 0)
9968 				set_user_nice(p, 0);
9969 			continue;
9970 		}
9971 
9972 		__sched_setscheduler(p, &attr, false, false);
9973 	}
9974 	read_unlock(&tasklist_lock);
9975 }
9976 
9977 #endif /* CONFIG_MAGIC_SYSRQ */
9978 
9979 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
9980 /*
9981  * These functions are only useful for the IA64 MCA handling, or kdb.
9982  *
9983  * They can only be called when the whole system has been
9984  * stopped - every CPU needs to be quiescent, and no scheduling
9985  * activity can take place. Using them for anything else would
9986  * be a serious bug, and as a result, they aren't even visible
9987  * under any other configuration.
9988  */
9989 
9990 /**
9991  * curr_task - return the current task for a given CPU.
9992  * @cpu: the processor in question.
9993  *
9994  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9995  *
9996  * Return: The current task for @cpu.
9997  */
9998 struct task_struct *curr_task(int cpu)
9999 {
10000 	return cpu_curr(cpu);
10001 }
10002 
10003 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10004 
10005 #ifdef CONFIG_IA64
10006 /**
10007  * ia64_set_curr_task - set the current task for a given CPU.
10008  * @cpu: the processor in question.
10009  * @p: the task pointer to set.
10010  *
10011  * Description: This function must only be used when non-maskable interrupts
10012  * are serviced on a separate stack. It allows the architecture to switch the
10013  * notion of the current task on a CPU in a non-blocking manner. This function
10014  * must be called with all CPU's synchronized, and interrupts disabled, the
10015  * and caller must save the original value of the current task (see
10016  * curr_task() above) and restore that value before reenabling interrupts and
10017  * re-starting the system.
10018  *
10019  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10020  */
10021 void ia64_set_curr_task(int cpu, struct task_struct *p)
10022 {
10023 	cpu_curr(cpu) = p;
10024 }
10025 
10026 #endif
10027 
10028 #ifdef CONFIG_CGROUP_SCHED
10029 /* task_group_lock serializes the addition/removal of task groups */
10030 static DEFINE_SPINLOCK(task_group_lock);
10031 
10032 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10033 					    struct task_group *parent)
10034 {
10035 #ifdef CONFIG_UCLAMP_TASK_GROUP
10036 	enum uclamp_id clamp_id;
10037 
10038 	for_each_clamp_id(clamp_id) {
10039 		uclamp_se_set(&tg->uclamp_req[clamp_id],
10040 			      uclamp_none(clamp_id), false);
10041 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10042 	}
10043 #endif
10044 }
10045 
10046 static void sched_free_group(struct task_group *tg)
10047 {
10048 	free_fair_sched_group(tg);
10049 	free_rt_sched_group(tg);
10050 	autogroup_free(tg);
10051 	kmem_cache_free(task_group_cache, tg);
10052 }
10053 
10054 static void sched_free_group_rcu(struct rcu_head *rcu)
10055 {
10056 	sched_free_group(container_of(rcu, struct task_group, rcu));
10057 }
10058 
10059 static void sched_unregister_group(struct task_group *tg)
10060 {
10061 	unregister_fair_sched_group(tg);
10062 	unregister_rt_sched_group(tg);
10063 	/*
10064 	 * We have to wait for yet another RCU grace period to expire, as
10065 	 * print_cfs_stats() might run concurrently.
10066 	 */
10067 	call_rcu(&tg->rcu, sched_free_group_rcu);
10068 }
10069 
10070 /* allocate runqueue etc for a new task group */
10071 struct task_group *sched_create_group(struct task_group *parent)
10072 {
10073 	struct task_group *tg;
10074 
10075 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10076 	if (!tg)
10077 		return ERR_PTR(-ENOMEM);
10078 
10079 	if (!alloc_fair_sched_group(tg, parent))
10080 		goto err;
10081 
10082 	if (!alloc_rt_sched_group(tg, parent))
10083 		goto err;
10084 
10085 	alloc_uclamp_sched_group(tg, parent);
10086 
10087 	return tg;
10088 
10089 err:
10090 	sched_free_group(tg);
10091 	return ERR_PTR(-ENOMEM);
10092 }
10093 
10094 void sched_online_group(struct task_group *tg, struct task_group *parent)
10095 {
10096 	unsigned long flags;
10097 
10098 	spin_lock_irqsave(&task_group_lock, flags);
10099 	list_add_rcu(&tg->list, &task_groups);
10100 
10101 	/* Root should already exist: */
10102 	WARN_ON(!parent);
10103 
10104 	tg->parent = parent;
10105 	INIT_LIST_HEAD(&tg->children);
10106 	list_add_rcu(&tg->siblings, &parent->children);
10107 	spin_unlock_irqrestore(&task_group_lock, flags);
10108 
10109 	online_fair_sched_group(tg);
10110 }
10111 
10112 /* rcu callback to free various structures associated with a task group */
10113 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10114 {
10115 	/* Now it should be safe to free those cfs_rqs: */
10116 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10117 }
10118 
10119 void sched_destroy_group(struct task_group *tg)
10120 {
10121 	/* Wait for possible concurrent references to cfs_rqs complete: */
10122 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10123 }
10124 
10125 void sched_release_group(struct task_group *tg)
10126 {
10127 	unsigned long flags;
10128 
10129 	/*
10130 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10131 	 * sched_cfs_period_timer()).
10132 	 *
10133 	 * For this to be effective, we have to wait for all pending users of
10134 	 * this task group to leave their RCU critical section to ensure no new
10135 	 * user will see our dying task group any more. Specifically ensure
10136 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10137 	 *
10138 	 * We therefore defer calling unregister_fair_sched_group() to
10139 	 * sched_unregister_group() which is guarantied to get called only after the
10140 	 * current RCU grace period has expired.
10141 	 */
10142 	spin_lock_irqsave(&task_group_lock, flags);
10143 	list_del_rcu(&tg->list);
10144 	list_del_rcu(&tg->siblings);
10145 	spin_unlock_irqrestore(&task_group_lock, flags);
10146 }
10147 
10148 static void sched_change_group(struct task_struct *tsk)
10149 {
10150 	struct task_group *tg;
10151 
10152 	/*
10153 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10154 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10155 	 * to prevent lockdep warnings.
10156 	 */
10157 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10158 			  struct task_group, css);
10159 	tg = autogroup_task_group(tsk, tg);
10160 	tsk->sched_task_group = tg;
10161 
10162 #ifdef CONFIG_FAIR_GROUP_SCHED
10163 	if (tsk->sched_class->task_change_group)
10164 		tsk->sched_class->task_change_group(tsk);
10165 	else
10166 #endif
10167 		set_task_rq(tsk, task_cpu(tsk));
10168 }
10169 
10170 /*
10171  * Change task's runqueue when it moves between groups.
10172  *
10173  * The caller of this function should have put the task in its new group by
10174  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10175  * its new group.
10176  */
10177 void sched_move_task(struct task_struct *tsk)
10178 {
10179 	int queued, running, queue_flags =
10180 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10181 	struct rq_flags rf;
10182 	struct rq *rq;
10183 
10184 	rq = task_rq_lock(tsk, &rf);
10185 	update_rq_clock(rq);
10186 
10187 	running = task_current(rq, tsk);
10188 	queued = task_on_rq_queued(tsk);
10189 
10190 	if (queued)
10191 		dequeue_task(rq, tsk, queue_flags);
10192 	if (running)
10193 		put_prev_task(rq, tsk);
10194 
10195 	sched_change_group(tsk);
10196 
10197 	if (queued)
10198 		enqueue_task(rq, tsk, queue_flags);
10199 	if (running) {
10200 		set_next_task(rq, tsk);
10201 		/*
10202 		 * After changing group, the running task may have joined a
10203 		 * throttled one but it's still the running task. Trigger a
10204 		 * resched to make sure that task can still run.
10205 		 */
10206 		resched_curr(rq);
10207 	}
10208 
10209 	task_rq_unlock(rq, tsk, &rf);
10210 }
10211 
10212 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10213 {
10214 	return css ? container_of(css, struct task_group, css) : NULL;
10215 }
10216 
10217 static struct cgroup_subsys_state *
10218 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10219 {
10220 	struct task_group *parent = css_tg(parent_css);
10221 	struct task_group *tg;
10222 
10223 	if (!parent) {
10224 		/* This is early initialization for the top cgroup */
10225 		return &root_task_group.css;
10226 	}
10227 
10228 	tg = sched_create_group(parent);
10229 	if (IS_ERR(tg))
10230 		return ERR_PTR(-ENOMEM);
10231 
10232 	return &tg->css;
10233 }
10234 
10235 /* Expose task group only after completing cgroup initialization */
10236 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10237 {
10238 	struct task_group *tg = css_tg(css);
10239 	struct task_group *parent = css_tg(css->parent);
10240 
10241 	if (parent)
10242 		sched_online_group(tg, parent);
10243 
10244 #ifdef CONFIG_UCLAMP_TASK_GROUP
10245 	/* Propagate the effective uclamp value for the new group */
10246 	mutex_lock(&uclamp_mutex);
10247 	rcu_read_lock();
10248 	cpu_util_update_eff(css);
10249 	rcu_read_unlock();
10250 	mutex_unlock(&uclamp_mutex);
10251 #endif
10252 
10253 	return 0;
10254 }
10255 
10256 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10257 {
10258 	struct task_group *tg = css_tg(css);
10259 
10260 	sched_release_group(tg);
10261 }
10262 
10263 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10264 {
10265 	struct task_group *tg = css_tg(css);
10266 
10267 	/*
10268 	 * Relies on the RCU grace period between css_released() and this.
10269 	 */
10270 	sched_unregister_group(tg);
10271 }
10272 
10273 #ifdef CONFIG_RT_GROUP_SCHED
10274 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10275 {
10276 	struct task_struct *task;
10277 	struct cgroup_subsys_state *css;
10278 
10279 	cgroup_taskset_for_each(task, css, tset) {
10280 		if (!sched_rt_can_attach(css_tg(css), task))
10281 			return -EINVAL;
10282 	}
10283 	return 0;
10284 }
10285 #endif
10286 
10287 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10288 {
10289 	struct task_struct *task;
10290 	struct cgroup_subsys_state *css;
10291 
10292 	cgroup_taskset_for_each(task, css, tset)
10293 		sched_move_task(task);
10294 }
10295 
10296 #ifdef CONFIG_UCLAMP_TASK_GROUP
10297 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10298 {
10299 	struct cgroup_subsys_state *top_css = css;
10300 	struct uclamp_se *uc_parent = NULL;
10301 	struct uclamp_se *uc_se = NULL;
10302 	unsigned int eff[UCLAMP_CNT];
10303 	enum uclamp_id clamp_id;
10304 	unsigned int clamps;
10305 
10306 	lockdep_assert_held(&uclamp_mutex);
10307 	SCHED_WARN_ON(!rcu_read_lock_held());
10308 
10309 	css_for_each_descendant_pre(css, top_css) {
10310 		uc_parent = css_tg(css)->parent
10311 			? css_tg(css)->parent->uclamp : NULL;
10312 
10313 		for_each_clamp_id(clamp_id) {
10314 			/* Assume effective clamps matches requested clamps */
10315 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10316 			/* Cap effective clamps with parent's effective clamps */
10317 			if (uc_parent &&
10318 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10319 				eff[clamp_id] = uc_parent[clamp_id].value;
10320 			}
10321 		}
10322 		/* Ensure protection is always capped by limit */
10323 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10324 
10325 		/* Propagate most restrictive effective clamps */
10326 		clamps = 0x0;
10327 		uc_se = css_tg(css)->uclamp;
10328 		for_each_clamp_id(clamp_id) {
10329 			if (eff[clamp_id] == uc_se[clamp_id].value)
10330 				continue;
10331 			uc_se[clamp_id].value = eff[clamp_id];
10332 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10333 			clamps |= (0x1 << clamp_id);
10334 		}
10335 		if (!clamps) {
10336 			css = css_rightmost_descendant(css);
10337 			continue;
10338 		}
10339 
10340 		/* Immediately update descendants RUNNABLE tasks */
10341 		uclamp_update_active_tasks(css);
10342 	}
10343 }
10344 
10345 /*
10346  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10347  * C expression. Since there is no way to convert a macro argument (N) into a
10348  * character constant, use two levels of macros.
10349  */
10350 #define _POW10(exp) ((unsigned int)1e##exp)
10351 #define POW10(exp) _POW10(exp)
10352 
10353 struct uclamp_request {
10354 #define UCLAMP_PERCENT_SHIFT	2
10355 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10356 	s64 percent;
10357 	u64 util;
10358 	int ret;
10359 };
10360 
10361 static inline struct uclamp_request
10362 capacity_from_percent(char *buf)
10363 {
10364 	struct uclamp_request req = {
10365 		.percent = UCLAMP_PERCENT_SCALE,
10366 		.util = SCHED_CAPACITY_SCALE,
10367 		.ret = 0,
10368 	};
10369 
10370 	buf = strim(buf);
10371 	if (strcmp(buf, "max")) {
10372 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10373 					     &req.percent);
10374 		if (req.ret)
10375 			return req;
10376 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10377 			req.ret = -ERANGE;
10378 			return req;
10379 		}
10380 
10381 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10382 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10383 	}
10384 
10385 	return req;
10386 }
10387 
10388 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10389 				size_t nbytes, loff_t off,
10390 				enum uclamp_id clamp_id)
10391 {
10392 	struct uclamp_request req;
10393 	struct task_group *tg;
10394 
10395 	req = capacity_from_percent(buf);
10396 	if (req.ret)
10397 		return req.ret;
10398 
10399 	static_branch_enable(&sched_uclamp_used);
10400 
10401 	mutex_lock(&uclamp_mutex);
10402 	rcu_read_lock();
10403 
10404 	tg = css_tg(of_css(of));
10405 	if (tg->uclamp_req[clamp_id].value != req.util)
10406 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10407 
10408 	/*
10409 	 * Because of not recoverable conversion rounding we keep track of the
10410 	 * exact requested value
10411 	 */
10412 	tg->uclamp_pct[clamp_id] = req.percent;
10413 
10414 	/* Update effective clamps to track the most restrictive value */
10415 	cpu_util_update_eff(of_css(of));
10416 
10417 	rcu_read_unlock();
10418 	mutex_unlock(&uclamp_mutex);
10419 
10420 	return nbytes;
10421 }
10422 
10423 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10424 				    char *buf, size_t nbytes,
10425 				    loff_t off)
10426 {
10427 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10428 }
10429 
10430 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10431 				    char *buf, size_t nbytes,
10432 				    loff_t off)
10433 {
10434 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10435 }
10436 
10437 static inline void cpu_uclamp_print(struct seq_file *sf,
10438 				    enum uclamp_id clamp_id)
10439 {
10440 	struct task_group *tg;
10441 	u64 util_clamp;
10442 	u64 percent;
10443 	u32 rem;
10444 
10445 	rcu_read_lock();
10446 	tg = css_tg(seq_css(sf));
10447 	util_clamp = tg->uclamp_req[clamp_id].value;
10448 	rcu_read_unlock();
10449 
10450 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10451 		seq_puts(sf, "max\n");
10452 		return;
10453 	}
10454 
10455 	percent = tg->uclamp_pct[clamp_id];
10456 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10457 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10458 }
10459 
10460 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10461 {
10462 	cpu_uclamp_print(sf, UCLAMP_MIN);
10463 	return 0;
10464 }
10465 
10466 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10467 {
10468 	cpu_uclamp_print(sf, UCLAMP_MAX);
10469 	return 0;
10470 }
10471 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10472 
10473 #ifdef CONFIG_FAIR_GROUP_SCHED
10474 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10475 				struct cftype *cftype, u64 shareval)
10476 {
10477 	if (shareval > scale_load_down(ULONG_MAX))
10478 		shareval = MAX_SHARES;
10479 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10480 }
10481 
10482 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10483 			       struct cftype *cft)
10484 {
10485 	struct task_group *tg = css_tg(css);
10486 
10487 	return (u64) scale_load_down(tg->shares);
10488 }
10489 
10490 #ifdef CONFIG_CFS_BANDWIDTH
10491 static DEFINE_MUTEX(cfs_constraints_mutex);
10492 
10493 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10494 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10495 /* More than 203 days if BW_SHIFT equals 20. */
10496 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10497 
10498 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10499 
10500 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10501 				u64 burst)
10502 {
10503 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10504 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10505 
10506 	if (tg == &root_task_group)
10507 		return -EINVAL;
10508 
10509 	/*
10510 	 * Ensure we have at some amount of bandwidth every period.  This is
10511 	 * to prevent reaching a state of large arrears when throttled via
10512 	 * entity_tick() resulting in prolonged exit starvation.
10513 	 */
10514 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10515 		return -EINVAL;
10516 
10517 	/*
10518 	 * Likewise, bound things on the other side by preventing insane quota
10519 	 * periods.  This also allows us to normalize in computing quota
10520 	 * feasibility.
10521 	 */
10522 	if (period > max_cfs_quota_period)
10523 		return -EINVAL;
10524 
10525 	/*
10526 	 * Bound quota to defend quota against overflow during bandwidth shift.
10527 	 */
10528 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10529 		return -EINVAL;
10530 
10531 	if (quota != RUNTIME_INF && (burst > quota ||
10532 				     burst + quota > max_cfs_runtime))
10533 		return -EINVAL;
10534 
10535 	/*
10536 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10537 	 * unthrottle_offline_cfs_rqs().
10538 	 */
10539 	cpus_read_lock();
10540 	mutex_lock(&cfs_constraints_mutex);
10541 	ret = __cfs_schedulable(tg, period, quota);
10542 	if (ret)
10543 		goto out_unlock;
10544 
10545 	runtime_enabled = quota != RUNTIME_INF;
10546 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10547 	/*
10548 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10549 	 * before making related changes, and on->off must occur afterwards
10550 	 */
10551 	if (runtime_enabled && !runtime_was_enabled)
10552 		cfs_bandwidth_usage_inc();
10553 	raw_spin_lock_irq(&cfs_b->lock);
10554 	cfs_b->period = ns_to_ktime(period);
10555 	cfs_b->quota = quota;
10556 	cfs_b->burst = burst;
10557 
10558 	__refill_cfs_bandwidth_runtime(cfs_b);
10559 
10560 	/* Restart the period timer (if active) to handle new period expiry: */
10561 	if (runtime_enabled)
10562 		start_cfs_bandwidth(cfs_b);
10563 
10564 	raw_spin_unlock_irq(&cfs_b->lock);
10565 
10566 	for_each_online_cpu(i) {
10567 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10568 		struct rq *rq = cfs_rq->rq;
10569 		struct rq_flags rf;
10570 
10571 		rq_lock_irq(rq, &rf);
10572 		cfs_rq->runtime_enabled = runtime_enabled;
10573 		cfs_rq->runtime_remaining = 0;
10574 
10575 		if (cfs_rq->throttled)
10576 			unthrottle_cfs_rq(cfs_rq);
10577 		rq_unlock_irq(rq, &rf);
10578 	}
10579 	if (runtime_was_enabled && !runtime_enabled)
10580 		cfs_bandwidth_usage_dec();
10581 out_unlock:
10582 	mutex_unlock(&cfs_constraints_mutex);
10583 	cpus_read_unlock();
10584 
10585 	return ret;
10586 }
10587 
10588 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10589 {
10590 	u64 quota, period, burst;
10591 
10592 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10593 	burst = tg->cfs_bandwidth.burst;
10594 	if (cfs_quota_us < 0)
10595 		quota = RUNTIME_INF;
10596 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10597 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10598 	else
10599 		return -EINVAL;
10600 
10601 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10602 }
10603 
10604 static long tg_get_cfs_quota(struct task_group *tg)
10605 {
10606 	u64 quota_us;
10607 
10608 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10609 		return -1;
10610 
10611 	quota_us = tg->cfs_bandwidth.quota;
10612 	do_div(quota_us, NSEC_PER_USEC);
10613 
10614 	return quota_us;
10615 }
10616 
10617 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10618 {
10619 	u64 quota, period, burst;
10620 
10621 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10622 		return -EINVAL;
10623 
10624 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10625 	quota = tg->cfs_bandwidth.quota;
10626 	burst = tg->cfs_bandwidth.burst;
10627 
10628 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10629 }
10630 
10631 static long tg_get_cfs_period(struct task_group *tg)
10632 {
10633 	u64 cfs_period_us;
10634 
10635 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10636 	do_div(cfs_period_us, NSEC_PER_USEC);
10637 
10638 	return cfs_period_us;
10639 }
10640 
10641 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10642 {
10643 	u64 quota, period, burst;
10644 
10645 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10646 		return -EINVAL;
10647 
10648 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10649 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10650 	quota = tg->cfs_bandwidth.quota;
10651 
10652 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10653 }
10654 
10655 static long tg_get_cfs_burst(struct task_group *tg)
10656 {
10657 	u64 burst_us;
10658 
10659 	burst_us = tg->cfs_bandwidth.burst;
10660 	do_div(burst_us, NSEC_PER_USEC);
10661 
10662 	return burst_us;
10663 }
10664 
10665 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10666 				  struct cftype *cft)
10667 {
10668 	return tg_get_cfs_quota(css_tg(css));
10669 }
10670 
10671 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10672 				   struct cftype *cftype, s64 cfs_quota_us)
10673 {
10674 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10675 }
10676 
10677 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10678 				   struct cftype *cft)
10679 {
10680 	return tg_get_cfs_period(css_tg(css));
10681 }
10682 
10683 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10684 				    struct cftype *cftype, u64 cfs_period_us)
10685 {
10686 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10687 }
10688 
10689 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10690 				  struct cftype *cft)
10691 {
10692 	return tg_get_cfs_burst(css_tg(css));
10693 }
10694 
10695 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10696 				   struct cftype *cftype, u64 cfs_burst_us)
10697 {
10698 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10699 }
10700 
10701 struct cfs_schedulable_data {
10702 	struct task_group *tg;
10703 	u64 period, quota;
10704 };
10705 
10706 /*
10707  * normalize group quota/period to be quota/max_period
10708  * note: units are usecs
10709  */
10710 static u64 normalize_cfs_quota(struct task_group *tg,
10711 			       struct cfs_schedulable_data *d)
10712 {
10713 	u64 quota, period;
10714 
10715 	if (tg == d->tg) {
10716 		period = d->period;
10717 		quota = d->quota;
10718 	} else {
10719 		period = tg_get_cfs_period(tg);
10720 		quota = tg_get_cfs_quota(tg);
10721 	}
10722 
10723 	/* note: these should typically be equivalent */
10724 	if (quota == RUNTIME_INF || quota == -1)
10725 		return RUNTIME_INF;
10726 
10727 	return to_ratio(period, quota);
10728 }
10729 
10730 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10731 {
10732 	struct cfs_schedulable_data *d = data;
10733 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10734 	s64 quota = 0, parent_quota = -1;
10735 
10736 	if (!tg->parent) {
10737 		quota = RUNTIME_INF;
10738 	} else {
10739 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10740 
10741 		quota = normalize_cfs_quota(tg, d);
10742 		parent_quota = parent_b->hierarchical_quota;
10743 
10744 		/*
10745 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10746 		 * always take the min.  On cgroup1, only inherit when no
10747 		 * limit is set:
10748 		 */
10749 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10750 			quota = min(quota, parent_quota);
10751 		} else {
10752 			if (quota == RUNTIME_INF)
10753 				quota = parent_quota;
10754 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10755 				return -EINVAL;
10756 		}
10757 	}
10758 	cfs_b->hierarchical_quota = quota;
10759 
10760 	return 0;
10761 }
10762 
10763 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10764 {
10765 	int ret;
10766 	struct cfs_schedulable_data data = {
10767 		.tg = tg,
10768 		.period = period,
10769 		.quota = quota,
10770 	};
10771 
10772 	if (quota != RUNTIME_INF) {
10773 		do_div(data.period, NSEC_PER_USEC);
10774 		do_div(data.quota, NSEC_PER_USEC);
10775 	}
10776 
10777 	rcu_read_lock();
10778 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10779 	rcu_read_unlock();
10780 
10781 	return ret;
10782 }
10783 
10784 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10785 {
10786 	struct task_group *tg = css_tg(seq_css(sf));
10787 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10788 
10789 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10790 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10791 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10792 
10793 	if (schedstat_enabled() && tg != &root_task_group) {
10794 		struct sched_statistics *stats;
10795 		u64 ws = 0;
10796 		int i;
10797 
10798 		for_each_possible_cpu(i) {
10799 			stats = __schedstats_from_se(tg->se[i]);
10800 			ws += schedstat_val(stats->wait_sum);
10801 		}
10802 
10803 		seq_printf(sf, "wait_sum %llu\n", ws);
10804 	}
10805 
10806 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10807 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10808 
10809 	return 0;
10810 }
10811 #endif /* CONFIG_CFS_BANDWIDTH */
10812 #endif /* CONFIG_FAIR_GROUP_SCHED */
10813 
10814 #ifdef CONFIG_RT_GROUP_SCHED
10815 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10816 				struct cftype *cft, s64 val)
10817 {
10818 	return sched_group_set_rt_runtime(css_tg(css), val);
10819 }
10820 
10821 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10822 			       struct cftype *cft)
10823 {
10824 	return sched_group_rt_runtime(css_tg(css));
10825 }
10826 
10827 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10828 				    struct cftype *cftype, u64 rt_period_us)
10829 {
10830 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
10831 }
10832 
10833 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10834 				   struct cftype *cft)
10835 {
10836 	return sched_group_rt_period(css_tg(css));
10837 }
10838 #endif /* CONFIG_RT_GROUP_SCHED */
10839 
10840 #ifdef CONFIG_FAIR_GROUP_SCHED
10841 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10842 			       struct cftype *cft)
10843 {
10844 	return css_tg(css)->idle;
10845 }
10846 
10847 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10848 				struct cftype *cft, s64 idle)
10849 {
10850 	return sched_group_set_idle(css_tg(css), idle);
10851 }
10852 #endif
10853 
10854 static struct cftype cpu_legacy_files[] = {
10855 #ifdef CONFIG_FAIR_GROUP_SCHED
10856 	{
10857 		.name = "shares",
10858 		.read_u64 = cpu_shares_read_u64,
10859 		.write_u64 = cpu_shares_write_u64,
10860 	},
10861 	{
10862 		.name = "idle",
10863 		.read_s64 = cpu_idle_read_s64,
10864 		.write_s64 = cpu_idle_write_s64,
10865 	},
10866 #endif
10867 #ifdef CONFIG_CFS_BANDWIDTH
10868 	{
10869 		.name = "cfs_quota_us",
10870 		.read_s64 = cpu_cfs_quota_read_s64,
10871 		.write_s64 = cpu_cfs_quota_write_s64,
10872 	},
10873 	{
10874 		.name = "cfs_period_us",
10875 		.read_u64 = cpu_cfs_period_read_u64,
10876 		.write_u64 = cpu_cfs_period_write_u64,
10877 	},
10878 	{
10879 		.name = "cfs_burst_us",
10880 		.read_u64 = cpu_cfs_burst_read_u64,
10881 		.write_u64 = cpu_cfs_burst_write_u64,
10882 	},
10883 	{
10884 		.name = "stat",
10885 		.seq_show = cpu_cfs_stat_show,
10886 	},
10887 #endif
10888 #ifdef CONFIG_RT_GROUP_SCHED
10889 	{
10890 		.name = "rt_runtime_us",
10891 		.read_s64 = cpu_rt_runtime_read,
10892 		.write_s64 = cpu_rt_runtime_write,
10893 	},
10894 	{
10895 		.name = "rt_period_us",
10896 		.read_u64 = cpu_rt_period_read_uint,
10897 		.write_u64 = cpu_rt_period_write_uint,
10898 	},
10899 #endif
10900 #ifdef CONFIG_UCLAMP_TASK_GROUP
10901 	{
10902 		.name = "uclamp.min",
10903 		.flags = CFTYPE_NOT_ON_ROOT,
10904 		.seq_show = cpu_uclamp_min_show,
10905 		.write = cpu_uclamp_min_write,
10906 	},
10907 	{
10908 		.name = "uclamp.max",
10909 		.flags = CFTYPE_NOT_ON_ROOT,
10910 		.seq_show = cpu_uclamp_max_show,
10911 		.write = cpu_uclamp_max_write,
10912 	},
10913 #endif
10914 	{ }	/* Terminate */
10915 };
10916 
10917 static int cpu_extra_stat_show(struct seq_file *sf,
10918 			       struct cgroup_subsys_state *css)
10919 {
10920 #ifdef CONFIG_CFS_BANDWIDTH
10921 	{
10922 		struct task_group *tg = css_tg(css);
10923 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10924 		u64 throttled_usec, burst_usec;
10925 
10926 		throttled_usec = cfs_b->throttled_time;
10927 		do_div(throttled_usec, NSEC_PER_USEC);
10928 		burst_usec = cfs_b->burst_time;
10929 		do_div(burst_usec, NSEC_PER_USEC);
10930 
10931 		seq_printf(sf, "nr_periods %d\n"
10932 			   "nr_throttled %d\n"
10933 			   "throttled_usec %llu\n"
10934 			   "nr_bursts %d\n"
10935 			   "burst_usec %llu\n",
10936 			   cfs_b->nr_periods, cfs_b->nr_throttled,
10937 			   throttled_usec, cfs_b->nr_burst, burst_usec);
10938 	}
10939 #endif
10940 	return 0;
10941 }
10942 
10943 #ifdef CONFIG_FAIR_GROUP_SCHED
10944 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10945 			       struct cftype *cft)
10946 {
10947 	struct task_group *tg = css_tg(css);
10948 	u64 weight = scale_load_down(tg->shares);
10949 
10950 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10951 }
10952 
10953 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10954 				struct cftype *cft, u64 weight)
10955 {
10956 	/*
10957 	 * cgroup weight knobs should use the common MIN, DFL and MAX
10958 	 * values which are 1, 100 and 10000 respectively.  While it loses
10959 	 * a bit of range on both ends, it maps pretty well onto the shares
10960 	 * value used by scheduler and the round-trip conversions preserve
10961 	 * the original value over the entire range.
10962 	 */
10963 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10964 		return -ERANGE;
10965 
10966 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10967 
10968 	return sched_group_set_shares(css_tg(css), scale_load(weight));
10969 }
10970 
10971 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10972 				    struct cftype *cft)
10973 {
10974 	unsigned long weight = scale_load_down(css_tg(css)->shares);
10975 	int last_delta = INT_MAX;
10976 	int prio, delta;
10977 
10978 	/* find the closest nice value to the current weight */
10979 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10980 		delta = abs(sched_prio_to_weight[prio] - weight);
10981 		if (delta >= last_delta)
10982 			break;
10983 		last_delta = delta;
10984 	}
10985 
10986 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10987 }
10988 
10989 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10990 				     struct cftype *cft, s64 nice)
10991 {
10992 	unsigned long weight;
10993 	int idx;
10994 
10995 	if (nice < MIN_NICE || nice > MAX_NICE)
10996 		return -ERANGE;
10997 
10998 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10999 	idx = array_index_nospec(idx, 40);
11000 	weight = sched_prio_to_weight[idx];
11001 
11002 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11003 }
11004 #endif
11005 
11006 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11007 						  long period, long quota)
11008 {
11009 	if (quota < 0)
11010 		seq_puts(sf, "max");
11011 	else
11012 		seq_printf(sf, "%ld", quota);
11013 
11014 	seq_printf(sf, " %ld\n", period);
11015 }
11016 
11017 /* caller should put the current value in *@periodp before calling */
11018 static int __maybe_unused cpu_period_quota_parse(char *buf,
11019 						 u64 *periodp, u64 *quotap)
11020 {
11021 	char tok[21];	/* U64_MAX */
11022 
11023 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11024 		return -EINVAL;
11025 
11026 	*periodp *= NSEC_PER_USEC;
11027 
11028 	if (sscanf(tok, "%llu", quotap))
11029 		*quotap *= NSEC_PER_USEC;
11030 	else if (!strcmp(tok, "max"))
11031 		*quotap = RUNTIME_INF;
11032 	else
11033 		return -EINVAL;
11034 
11035 	return 0;
11036 }
11037 
11038 #ifdef CONFIG_CFS_BANDWIDTH
11039 static int cpu_max_show(struct seq_file *sf, void *v)
11040 {
11041 	struct task_group *tg = css_tg(seq_css(sf));
11042 
11043 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11044 	return 0;
11045 }
11046 
11047 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11048 			     char *buf, size_t nbytes, loff_t off)
11049 {
11050 	struct task_group *tg = css_tg(of_css(of));
11051 	u64 period = tg_get_cfs_period(tg);
11052 	u64 burst = tg_get_cfs_burst(tg);
11053 	u64 quota;
11054 	int ret;
11055 
11056 	ret = cpu_period_quota_parse(buf, &period, &quota);
11057 	if (!ret)
11058 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11059 	return ret ?: nbytes;
11060 }
11061 #endif
11062 
11063 static struct cftype cpu_files[] = {
11064 #ifdef CONFIG_FAIR_GROUP_SCHED
11065 	{
11066 		.name = "weight",
11067 		.flags = CFTYPE_NOT_ON_ROOT,
11068 		.read_u64 = cpu_weight_read_u64,
11069 		.write_u64 = cpu_weight_write_u64,
11070 	},
11071 	{
11072 		.name = "weight.nice",
11073 		.flags = CFTYPE_NOT_ON_ROOT,
11074 		.read_s64 = cpu_weight_nice_read_s64,
11075 		.write_s64 = cpu_weight_nice_write_s64,
11076 	},
11077 	{
11078 		.name = "idle",
11079 		.flags = CFTYPE_NOT_ON_ROOT,
11080 		.read_s64 = cpu_idle_read_s64,
11081 		.write_s64 = cpu_idle_write_s64,
11082 	},
11083 #endif
11084 #ifdef CONFIG_CFS_BANDWIDTH
11085 	{
11086 		.name = "max",
11087 		.flags = CFTYPE_NOT_ON_ROOT,
11088 		.seq_show = cpu_max_show,
11089 		.write = cpu_max_write,
11090 	},
11091 	{
11092 		.name = "max.burst",
11093 		.flags = CFTYPE_NOT_ON_ROOT,
11094 		.read_u64 = cpu_cfs_burst_read_u64,
11095 		.write_u64 = cpu_cfs_burst_write_u64,
11096 	},
11097 #endif
11098 #ifdef CONFIG_UCLAMP_TASK_GROUP
11099 	{
11100 		.name = "uclamp.min",
11101 		.flags = CFTYPE_NOT_ON_ROOT,
11102 		.seq_show = cpu_uclamp_min_show,
11103 		.write = cpu_uclamp_min_write,
11104 	},
11105 	{
11106 		.name = "uclamp.max",
11107 		.flags = CFTYPE_NOT_ON_ROOT,
11108 		.seq_show = cpu_uclamp_max_show,
11109 		.write = cpu_uclamp_max_write,
11110 	},
11111 #endif
11112 	{ }	/* terminate */
11113 };
11114 
11115 struct cgroup_subsys cpu_cgrp_subsys = {
11116 	.css_alloc	= cpu_cgroup_css_alloc,
11117 	.css_online	= cpu_cgroup_css_online,
11118 	.css_released	= cpu_cgroup_css_released,
11119 	.css_free	= cpu_cgroup_css_free,
11120 	.css_extra_stat_show = cpu_extra_stat_show,
11121 #ifdef CONFIG_RT_GROUP_SCHED
11122 	.can_attach	= cpu_cgroup_can_attach,
11123 #endif
11124 	.attach		= cpu_cgroup_attach,
11125 	.legacy_cftypes	= cpu_legacy_files,
11126 	.dfl_cftypes	= cpu_files,
11127 	.early_init	= true,
11128 	.threaded	= true,
11129 };
11130 
11131 #endif	/* CONFIG_CGROUP_SCHED */
11132 
11133 void dump_cpu_task(int cpu)
11134 {
11135 	if (cpu == smp_processor_id() && in_hardirq()) {
11136 		struct pt_regs *regs;
11137 
11138 		regs = get_irq_regs();
11139 		if (regs) {
11140 			show_regs(regs);
11141 			return;
11142 		}
11143 	}
11144 
11145 	if (trigger_single_cpu_backtrace(cpu))
11146 		return;
11147 
11148 	pr_info("Task dump for CPU %d:\n", cpu);
11149 	sched_show_task(cpu_curr(cpu));
11150 }
11151 
11152 /*
11153  * Nice levels are multiplicative, with a gentle 10% change for every
11154  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11155  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11156  * that remained on nice 0.
11157  *
11158  * The "10% effect" is relative and cumulative: from _any_ nice level,
11159  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11160  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11161  * If a task goes up by ~10% and another task goes down by ~10% then
11162  * the relative distance between them is ~25%.)
11163  */
11164 const int sched_prio_to_weight[40] = {
11165  /* -20 */     88761,     71755,     56483,     46273,     36291,
11166  /* -15 */     29154,     23254,     18705,     14949,     11916,
11167  /* -10 */      9548,      7620,      6100,      4904,      3906,
11168  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11169  /*   0 */      1024,       820,       655,       526,       423,
11170  /*   5 */       335,       272,       215,       172,       137,
11171  /*  10 */       110,        87,        70,        56,        45,
11172  /*  15 */        36,        29,        23,        18,        15,
11173 };
11174 
11175 /*
11176  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11177  *
11178  * In cases where the weight does not change often, we can use the
11179  * precalculated inverse to speed up arithmetics by turning divisions
11180  * into multiplications:
11181  */
11182 const u32 sched_prio_to_wmult[40] = {
11183  /* -20 */     48388,     59856,     76040,     92818,    118348,
11184  /* -15 */    147320,    184698,    229616,    287308,    360437,
11185  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11186  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11187  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11188  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11189  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11190  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11191 };
11192 
11193 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11194 {
11195         trace_sched_update_nr_running_tp(rq, count);
11196 }
11197