xref: /linux/kernel/sched/core.c (revision 8195136669661fdfe54e9a8923c33b31c92fc1da)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel CPU scheduler code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #include <linux/highmem.h>
11 #include <linux/hrtimer_api.h>
12 #include <linux/ktime_api.h>
13 #include <linux/sched/signal.h>
14 #include <linux/syscalls_api.h>
15 #include <linux/debug_locks.h>
16 #include <linux/prefetch.h>
17 #include <linux/capability.h>
18 #include <linux/pgtable_api.h>
19 #include <linux/wait_bit.h>
20 #include <linux/jiffies.h>
21 #include <linux/spinlock_api.h>
22 #include <linux/cpumask_api.h>
23 #include <linux/lockdep_api.h>
24 #include <linux/hardirq.h>
25 #include <linux/softirq.h>
26 #include <linux/refcount_api.h>
27 #include <linux/topology.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/cond_resched.h>
30 #include <linux/sched/cputime.h>
31 #include <linux/sched/debug.h>
32 #include <linux/sched/hotplug.h>
33 #include <linux/sched/init.h>
34 #include <linux/sched/isolation.h>
35 #include <linux/sched/loadavg.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/nohz.h>
38 #include <linux/sched/rseq_api.h>
39 #include <linux/sched/rt.h>
40 
41 #include <linux/blkdev.h>
42 #include <linux/context_tracking.h>
43 #include <linux/cpuset.h>
44 #include <linux/delayacct.h>
45 #include <linux/init_task.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioprio.h>
48 #include <linux/kallsyms.h>
49 #include <linux/kcov.h>
50 #include <linux/kprobes.h>
51 #include <linux/llist_api.h>
52 #include <linux/mmu_context.h>
53 #include <linux/mmzone.h>
54 #include <linux/mutex_api.h>
55 #include <linux/nmi.h>
56 #include <linux/nospec.h>
57 #include <linux/perf_event_api.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcuwait_api.h>
61 #include <linux/rseq.h>
62 #include <linux/sched/wake_q.h>
63 #include <linux/scs.h>
64 #include <linux/slab.h>
65 #include <linux/syscalls.h>
66 #include <linux/vtime.h>
67 #include <linux/wait_api.h>
68 #include <linux/workqueue_api.h>
69 
70 #ifdef CONFIG_PREEMPT_DYNAMIC
71 # ifdef CONFIG_GENERIC_ENTRY
72 #  include <linux/entry-common.h>
73 # endif
74 #endif
75 
76 #include <uapi/linux/sched/types.h>
77 
78 #include <asm/irq_regs.h>
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 
82 #define CREATE_TRACE_POINTS
83 #include <linux/sched/rseq_api.h>
84 #include <trace/events/sched.h>
85 #include <trace/events/ipi.h>
86 #undef CREATE_TRACE_POINTS
87 
88 #include "sched.h"
89 #include "stats.h"
90 
91 #include "autogroup.h"
92 #include "pelt.h"
93 #include "smp.h"
94 #include "stats.h"
95 
96 #include "../workqueue_internal.h"
97 #include "../../io_uring/io-wq.h"
98 #include "../smpboot.h"
99 
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
102 
103 /*
104  * Export tracepoints that act as a bare tracehook (ie: have no trace event
105  * associated with them) to allow external modules to probe them.
106  */
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
119 
120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
121 
122 #ifdef CONFIG_SCHED_DEBUG
123 /*
124  * Debugging: various feature bits
125  *
126  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
127  * sysctl_sched_features, defined in sched.h, to allow constants propagation
128  * at compile time and compiler optimization based on features default.
129  */
130 #define SCHED_FEAT(name, enabled)	\
131 	(1UL << __SCHED_FEAT_##name) * enabled |
132 const_debug unsigned int sysctl_sched_features =
133 #include "features.h"
134 	0;
135 #undef SCHED_FEAT
136 
137 /*
138  * Print a warning if need_resched is set for the given duration (if
139  * LATENCY_WARN is enabled).
140  *
141  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
142  * per boot.
143  */
144 __read_mostly int sysctl_resched_latency_warn_ms = 100;
145 __read_mostly int sysctl_resched_latency_warn_once = 1;
146 #endif /* CONFIG_SCHED_DEBUG */
147 
148 /*
149  * Number of tasks to iterate in a single balance run.
150  * Limited because this is done with IRQs disabled.
151  */
152 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
153 
154 __read_mostly int scheduler_running;
155 
156 #ifdef CONFIG_SCHED_CORE
157 
158 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
159 
160 /* kernel prio, less is more */
161 static inline int __task_prio(const struct task_struct *p)
162 {
163 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
164 		return -2;
165 
166 	if (p->dl_server)
167 		return -1; /* deadline */
168 
169 	if (rt_or_dl_prio(p->prio))
170 		return p->prio; /* [-1, 99] */
171 
172 	if (p->sched_class == &idle_sched_class)
173 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
174 
175 	if (task_on_scx(p))
176 		return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
177 
178 	return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
179 }
180 
181 /*
182  * l(a,b)
183  * le(a,b) := !l(b,a)
184  * g(a,b)  := l(b,a)
185  * ge(a,b) := !l(a,b)
186  */
187 
188 /* real prio, less is less */
189 static inline bool prio_less(const struct task_struct *a,
190 			     const struct task_struct *b, bool in_fi)
191 {
192 
193 	int pa = __task_prio(a), pb = __task_prio(b);
194 
195 	if (-pa < -pb)
196 		return true;
197 
198 	if (-pb < -pa)
199 		return false;
200 
201 	if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
202 		const struct sched_dl_entity *a_dl, *b_dl;
203 
204 		a_dl = &a->dl;
205 		/*
206 		 * Since,'a' and 'b' can be CFS tasks served by DL server,
207 		 * __task_prio() can return -1 (for DL) even for those. In that
208 		 * case, get to the dl_server's DL entity.
209 		 */
210 		if (a->dl_server)
211 			a_dl = a->dl_server;
212 
213 		b_dl = &b->dl;
214 		if (b->dl_server)
215 			b_dl = b->dl_server;
216 
217 		return !dl_time_before(a_dl->deadline, b_dl->deadline);
218 	}
219 
220 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
221 		return cfs_prio_less(a, b, in_fi);
222 
223 #ifdef CONFIG_SCHED_CLASS_EXT
224 	if (pa == MAX_RT_PRIO + MAX_NICE + 1)	/* ext */
225 		return scx_prio_less(a, b, in_fi);
226 #endif
227 
228 	return false;
229 }
230 
231 static inline bool __sched_core_less(const struct task_struct *a,
232 				     const struct task_struct *b)
233 {
234 	if (a->core_cookie < b->core_cookie)
235 		return true;
236 
237 	if (a->core_cookie > b->core_cookie)
238 		return false;
239 
240 	/* flip prio, so high prio is leftmost */
241 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
242 		return true;
243 
244 	return false;
245 }
246 
247 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
248 
249 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
250 {
251 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
252 }
253 
254 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
255 {
256 	const struct task_struct *p = __node_2_sc(node);
257 	unsigned long cookie = (unsigned long)key;
258 
259 	if (cookie < p->core_cookie)
260 		return -1;
261 
262 	if (cookie > p->core_cookie)
263 		return 1;
264 
265 	return 0;
266 }
267 
268 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
269 {
270 	rq->core->core_task_seq++;
271 
272 	if (!p->core_cookie)
273 		return;
274 
275 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
276 }
277 
278 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
279 {
280 	rq->core->core_task_seq++;
281 
282 	if (sched_core_enqueued(p)) {
283 		rb_erase(&p->core_node, &rq->core_tree);
284 		RB_CLEAR_NODE(&p->core_node);
285 	}
286 
287 	/*
288 	 * Migrating the last task off the cpu, with the cpu in forced idle
289 	 * state. Reschedule to create an accounting edge for forced idle,
290 	 * and re-examine whether the core is still in forced idle state.
291 	 */
292 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
293 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
294 		resched_curr(rq);
295 }
296 
297 static int sched_task_is_throttled(struct task_struct *p, int cpu)
298 {
299 	if (p->sched_class->task_is_throttled)
300 		return p->sched_class->task_is_throttled(p, cpu);
301 
302 	return 0;
303 }
304 
305 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
306 {
307 	struct rb_node *node = &p->core_node;
308 	int cpu = task_cpu(p);
309 
310 	do {
311 		node = rb_next(node);
312 		if (!node)
313 			return NULL;
314 
315 		p = __node_2_sc(node);
316 		if (p->core_cookie != cookie)
317 			return NULL;
318 
319 	} while (sched_task_is_throttled(p, cpu));
320 
321 	return p;
322 }
323 
324 /*
325  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
326  * If no suitable task is found, NULL will be returned.
327  */
328 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
329 {
330 	struct task_struct *p;
331 	struct rb_node *node;
332 
333 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
334 	if (!node)
335 		return NULL;
336 
337 	p = __node_2_sc(node);
338 	if (!sched_task_is_throttled(p, rq->cpu))
339 		return p;
340 
341 	return sched_core_next(p, cookie);
342 }
343 
344 /*
345  * Magic required such that:
346  *
347  *	raw_spin_rq_lock(rq);
348  *	...
349  *	raw_spin_rq_unlock(rq);
350  *
351  * ends up locking and unlocking the _same_ lock, and all CPUs
352  * always agree on what rq has what lock.
353  *
354  * XXX entirely possible to selectively enable cores, don't bother for now.
355  */
356 
357 static DEFINE_MUTEX(sched_core_mutex);
358 static atomic_t sched_core_count;
359 static struct cpumask sched_core_mask;
360 
361 static void sched_core_lock(int cpu, unsigned long *flags)
362 {
363 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
364 	int t, i = 0;
365 
366 	local_irq_save(*flags);
367 	for_each_cpu(t, smt_mask)
368 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
369 }
370 
371 static void sched_core_unlock(int cpu, unsigned long *flags)
372 {
373 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
374 	int t;
375 
376 	for_each_cpu(t, smt_mask)
377 		raw_spin_unlock(&cpu_rq(t)->__lock);
378 	local_irq_restore(*flags);
379 }
380 
381 static void __sched_core_flip(bool enabled)
382 {
383 	unsigned long flags;
384 	int cpu, t;
385 
386 	cpus_read_lock();
387 
388 	/*
389 	 * Toggle the online cores, one by one.
390 	 */
391 	cpumask_copy(&sched_core_mask, cpu_online_mask);
392 	for_each_cpu(cpu, &sched_core_mask) {
393 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
394 
395 		sched_core_lock(cpu, &flags);
396 
397 		for_each_cpu(t, smt_mask)
398 			cpu_rq(t)->core_enabled = enabled;
399 
400 		cpu_rq(cpu)->core->core_forceidle_start = 0;
401 
402 		sched_core_unlock(cpu, &flags);
403 
404 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
405 	}
406 
407 	/*
408 	 * Toggle the offline CPUs.
409 	 */
410 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
411 		cpu_rq(cpu)->core_enabled = enabled;
412 
413 	cpus_read_unlock();
414 }
415 
416 static void sched_core_assert_empty(void)
417 {
418 	int cpu;
419 
420 	for_each_possible_cpu(cpu)
421 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
422 }
423 
424 static void __sched_core_enable(void)
425 {
426 	static_branch_enable(&__sched_core_enabled);
427 	/*
428 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
429 	 * and future ones will observe !sched_core_disabled().
430 	 */
431 	synchronize_rcu();
432 	__sched_core_flip(true);
433 	sched_core_assert_empty();
434 }
435 
436 static void __sched_core_disable(void)
437 {
438 	sched_core_assert_empty();
439 	__sched_core_flip(false);
440 	static_branch_disable(&__sched_core_enabled);
441 }
442 
443 void sched_core_get(void)
444 {
445 	if (atomic_inc_not_zero(&sched_core_count))
446 		return;
447 
448 	mutex_lock(&sched_core_mutex);
449 	if (!atomic_read(&sched_core_count))
450 		__sched_core_enable();
451 
452 	smp_mb__before_atomic();
453 	atomic_inc(&sched_core_count);
454 	mutex_unlock(&sched_core_mutex);
455 }
456 
457 static void __sched_core_put(struct work_struct *work)
458 {
459 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
460 		__sched_core_disable();
461 		mutex_unlock(&sched_core_mutex);
462 	}
463 }
464 
465 void sched_core_put(void)
466 {
467 	static DECLARE_WORK(_work, __sched_core_put);
468 
469 	/*
470 	 * "There can be only one"
471 	 *
472 	 * Either this is the last one, or we don't actually need to do any
473 	 * 'work'. If it is the last *again*, we rely on
474 	 * WORK_STRUCT_PENDING_BIT.
475 	 */
476 	if (!atomic_add_unless(&sched_core_count, -1, 1))
477 		schedule_work(&_work);
478 }
479 
480 #else /* !CONFIG_SCHED_CORE */
481 
482 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
483 static inline void
484 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
485 
486 #endif /* CONFIG_SCHED_CORE */
487 
488 /*
489  * Serialization rules:
490  *
491  * Lock order:
492  *
493  *   p->pi_lock
494  *     rq->lock
495  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
496  *
497  *  rq1->lock
498  *    rq2->lock  where: rq1 < rq2
499  *
500  * Regular state:
501  *
502  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
503  * local CPU's rq->lock, it optionally removes the task from the runqueue and
504  * always looks at the local rq data structures to find the most eligible task
505  * to run next.
506  *
507  * Task enqueue is also under rq->lock, possibly taken from another CPU.
508  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
509  * the local CPU to avoid bouncing the runqueue state around [ see
510  * ttwu_queue_wakelist() ]
511  *
512  * Task wakeup, specifically wakeups that involve migration, are horribly
513  * complicated to avoid having to take two rq->locks.
514  *
515  * Special state:
516  *
517  * System-calls and anything external will use task_rq_lock() which acquires
518  * both p->pi_lock and rq->lock. As a consequence the state they change is
519  * stable while holding either lock:
520  *
521  *  - sched_setaffinity()/
522  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
523  *  - set_user_nice():		p->se.load, p->*prio
524  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
525  *				p->se.load, p->rt_priority,
526  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
527  *  - sched_setnuma():		p->numa_preferred_nid
528  *  - sched_move_task():	p->sched_task_group
529  *  - uclamp_update_active()	p->uclamp*
530  *
531  * p->state <- TASK_*:
532  *
533  *   is changed locklessly using set_current_state(), __set_current_state() or
534  *   set_special_state(), see their respective comments, or by
535  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
536  *   concurrent self.
537  *
538  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
539  *
540  *   is set by activate_task() and cleared by deactivate_task(), under
541  *   rq->lock. Non-zero indicates the task is runnable, the special
542  *   ON_RQ_MIGRATING state is used for migration without holding both
543  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
544  *
545  * p->on_cpu <- { 0, 1 }:
546  *
547  *   is set by prepare_task() and cleared by finish_task() such that it will be
548  *   set before p is scheduled-in and cleared after p is scheduled-out, both
549  *   under rq->lock. Non-zero indicates the task is running on its CPU.
550  *
551  *   [ The astute reader will observe that it is possible for two tasks on one
552  *     CPU to have ->on_cpu = 1 at the same time. ]
553  *
554  * task_cpu(p): is changed by set_task_cpu(), the rules are:
555  *
556  *  - Don't call set_task_cpu() on a blocked task:
557  *
558  *    We don't care what CPU we're not running on, this simplifies hotplug,
559  *    the CPU assignment of blocked tasks isn't required to be valid.
560  *
561  *  - for try_to_wake_up(), called under p->pi_lock:
562  *
563  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
564  *
565  *  - for migration called under rq->lock:
566  *    [ see task_on_rq_migrating() in task_rq_lock() ]
567  *
568  *    o move_queued_task()
569  *    o detach_task()
570  *
571  *  - for migration called under double_rq_lock():
572  *
573  *    o __migrate_swap_task()
574  *    o push_rt_task() / pull_rt_task()
575  *    o push_dl_task() / pull_dl_task()
576  *    o dl_task_offline_migration()
577  *
578  */
579 
580 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
581 {
582 	raw_spinlock_t *lock;
583 
584 	/* Matches synchronize_rcu() in __sched_core_enable() */
585 	preempt_disable();
586 	if (sched_core_disabled()) {
587 		raw_spin_lock_nested(&rq->__lock, subclass);
588 		/* preempt_count *MUST* be > 1 */
589 		preempt_enable_no_resched();
590 		return;
591 	}
592 
593 	for (;;) {
594 		lock = __rq_lockp(rq);
595 		raw_spin_lock_nested(lock, subclass);
596 		if (likely(lock == __rq_lockp(rq))) {
597 			/* preempt_count *MUST* be > 1 */
598 			preempt_enable_no_resched();
599 			return;
600 		}
601 		raw_spin_unlock(lock);
602 	}
603 }
604 
605 bool raw_spin_rq_trylock(struct rq *rq)
606 {
607 	raw_spinlock_t *lock;
608 	bool ret;
609 
610 	/* Matches synchronize_rcu() in __sched_core_enable() */
611 	preempt_disable();
612 	if (sched_core_disabled()) {
613 		ret = raw_spin_trylock(&rq->__lock);
614 		preempt_enable();
615 		return ret;
616 	}
617 
618 	for (;;) {
619 		lock = __rq_lockp(rq);
620 		ret = raw_spin_trylock(lock);
621 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
622 			preempt_enable();
623 			return ret;
624 		}
625 		raw_spin_unlock(lock);
626 	}
627 }
628 
629 void raw_spin_rq_unlock(struct rq *rq)
630 {
631 	raw_spin_unlock(rq_lockp(rq));
632 }
633 
634 #ifdef CONFIG_SMP
635 /*
636  * double_rq_lock - safely lock two runqueues
637  */
638 void double_rq_lock(struct rq *rq1, struct rq *rq2)
639 {
640 	lockdep_assert_irqs_disabled();
641 
642 	if (rq_order_less(rq2, rq1))
643 		swap(rq1, rq2);
644 
645 	raw_spin_rq_lock(rq1);
646 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
647 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
648 
649 	double_rq_clock_clear_update(rq1, rq2);
650 }
651 #endif
652 
653 /*
654  * __task_rq_lock - lock the rq @p resides on.
655  */
656 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
657 	__acquires(rq->lock)
658 {
659 	struct rq *rq;
660 
661 	lockdep_assert_held(&p->pi_lock);
662 
663 	for (;;) {
664 		rq = task_rq(p);
665 		raw_spin_rq_lock(rq);
666 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
667 			rq_pin_lock(rq, rf);
668 			return rq;
669 		}
670 		raw_spin_rq_unlock(rq);
671 
672 		while (unlikely(task_on_rq_migrating(p)))
673 			cpu_relax();
674 	}
675 }
676 
677 /*
678  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
679  */
680 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
681 	__acquires(p->pi_lock)
682 	__acquires(rq->lock)
683 {
684 	struct rq *rq;
685 
686 	for (;;) {
687 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
688 		rq = task_rq(p);
689 		raw_spin_rq_lock(rq);
690 		/*
691 		 *	move_queued_task()		task_rq_lock()
692 		 *
693 		 *	ACQUIRE (rq->lock)
694 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
695 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
696 		 *	[S] ->cpu = new_cpu		[L] task_rq()
697 		 *					[L] ->on_rq
698 		 *	RELEASE (rq->lock)
699 		 *
700 		 * If we observe the old CPU in task_rq_lock(), the acquire of
701 		 * the old rq->lock will fully serialize against the stores.
702 		 *
703 		 * If we observe the new CPU in task_rq_lock(), the address
704 		 * dependency headed by '[L] rq = task_rq()' and the acquire
705 		 * will pair with the WMB to ensure we then also see migrating.
706 		 */
707 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
708 			rq_pin_lock(rq, rf);
709 			return rq;
710 		}
711 		raw_spin_rq_unlock(rq);
712 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
713 
714 		while (unlikely(task_on_rq_migrating(p)))
715 			cpu_relax();
716 	}
717 }
718 
719 /*
720  * RQ-clock updating methods:
721  */
722 
723 static void update_rq_clock_task(struct rq *rq, s64 delta)
724 {
725 /*
726  * In theory, the compile should just see 0 here, and optimize out the call
727  * to sched_rt_avg_update. But I don't trust it...
728  */
729 	s64 __maybe_unused steal = 0, irq_delta = 0;
730 
731 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
732 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
733 
734 	/*
735 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
736 	 * this case when a previous update_rq_clock() happened inside a
737 	 * {soft,}IRQ region.
738 	 *
739 	 * When this happens, we stop ->clock_task and only update the
740 	 * prev_irq_time stamp to account for the part that fit, so that a next
741 	 * update will consume the rest. This ensures ->clock_task is
742 	 * monotonic.
743 	 *
744 	 * It does however cause some slight miss-attribution of {soft,}IRQ
745 	 * time, a more accurate solution would be to update the irq_time using
746 	 * the current rq->clock timestamp, except that would require using
747 	 * atomic ops.
748 	 */
749 	if (irq_delta > delta)
750 		irq_delta = delta;
751 
752 	rq->prev_irq_time += irq_delta;
753 	delta -= irq_delta;
754 	delayacct_irq(rq->curr, irq_delta);
755 #endif
756 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
757 	if (static_key_false((&paravirt_steal_rq_enabled))) {
758 		steal = paravirt_steal_clock(cpu_of(rq));
759 		steal -= rq->prev_steal_time_rq;
760 
761 		if (unlikely(steal > delta))
762 			steal = delta;
763 
764 		rq->prev_steal_time_rq += steal;
765 		delta -= steal;
766 	}
767 #endif
768 
769 	rq->clock_task += delta;
770 
771 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
772 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
773 		update_irq_load_avg(rq, irq_delta + steal);
774 #endif
775 	update_rq_clock_pelt(rq, delta);
776 }
777 
778 void update_rq_clock(struct rq *rq)
779 {
780 	s64 delta;
781 
782 	lockdep_assert_rq_held(rq);
783 
784 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
785 		return;
786 
787 #ifdef CONFIG_SCHED_DEBUG
788 	if (sched_feat(WARN_DOUBLE_CLOCK))
789 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
790 	rq->clock_update_flags |= RQCF_UPDATED;
791 #endif
792 
793 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
794 	if (delta < 0)
795 		return;
796 	rq->clock += delta;
797 	update_rq_clock_task(rq, delta);
798 }
799 
800 #ifdef CONFIG_SCHED_HRTICK
801 /*
802  * Use HR-timers to deliver accurate preemption points.
803  */
804 
805 static void hrtick_clear(struct rq *rq)
806 {
807 	if (hrtimer_active(&rq->hrtick_timer))
808 		hrtimer_cancel(&rq->hrtick_timer);
809 }
810 
811 /*
812  * High-resolution timer tick.
813  * Runs from hardirq context with interrupts disabled.
814  */
815 static enum hrtimer_restart hrtick(struct hrtimer *timer)
816 {
817 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
818 	struct rq_flags rf;
819 
820 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
821 
822 	rq_lock(rq, &rf);
823 	update_rq_clock(rq);
824 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
825 	rq_unlock(rq, &rf);
826 
827 	return HRTIMER_NORESTART;
828 }
829 
830 #ifdef CONFIG_SMP
831 
832 static void __hrtick_restart(struct rq *rq)
833 {
834 	struct hrtimer *timer = &rq->hrtick_timer;
835 	ktime_t time = rq->hrtick_time;
836 
837 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
838 }
839 
840 /*
841  * called from hardirq (IPI) context
842  */
843 static void __hrtick_start(void *arg)
844 {
845 	struct rq *rq = arg;
846 	struct rq_flags rf;
847 
848 	rq_lock(rq, &rf);
849 	__hrtick_restart(rq);
850 	rq_unlock(rq, &rf);
851 }
852 
853 /*
854  * Called to set the hrtick timer state.
855  *
856  * called with rq->lock held and IRQs disabled
857  */
858 void hrtick_start(struct rq *rq, u64 delay)
859 {
860 	struct hrtimer *timer = &rq->hrtick_timer;
861 	s64 delta;
862 
863 	/*
864 	 * Don't schedule slices shorter than 10000ns, that just
865 	 * doesn't make sense and can cause timer DoS.
866 	 */
867 	delta = max_t(s64, delay, 10000LL);
868 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
869 
870 	if (rq == this_rq())
871 		__hrtick_restart(rq);
872 	else
873 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
874 }
875 
876 #else
877 /*
878  * Called to set the hrtick timer state.
879  *
880  * called with rq->lock held and IRQs disabled
881  */
882 void hrtick_start(struct rq *rq, u64 delay)
883 {
884 	/*
885 	 * Don't schedule slices shorter than 10000ns, that just
886 	 * doesn't make sense. Rely on vruntime for fairness.
887 	 */
888 	delay = max_t(u64, delay, 10000LL);
889 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
890 		      HRTIMER_MODE_REL_PINNED_HARD);
891 }
892 
893 #endif /* CONFIG_SMP */
894 
895 static void hrtick_rq_init(struct rq *rq)
896 {
897 #ifdef CONFIG_SMP
898 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
899 #endif
900 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
901 	rq->hrtick_timer.function = hrtick;
902 }
903 #else	/* CONFIG_SCHED_HRTICK */
904 static inline void hrtick_clear(struct rq *rq)
905 {
906 }
907 
908 static inline void hrtick_rq_init(struct rq *rq)
909 {
910 }
911 #endif	/* CONFIG_SCHED_HRTICK */
912 
913 /*
914  * try_cmpxchg based fetch_or() macro so it works for different integer types:
915  */
916 #define fetch_or(ptr, mask)						\
917 	({								\
918 		typeof(ptr) _ptr = (ptr);				\
919 		typeof(mask) _mask = (mask);				\
920 		typeof(*_ptr) _val = *_ptr;				\
921 									\
922 		do {							\
923 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
924 	_val;								\
925 })
926 
927 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
928 /*
929  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
930  * this avoids any races wrt polling state changes and thereby avoids
931  * spurious IPIs.
932  */
933 static inline bool set_nr_and_not_polling(struct task_struct *p)
934 {
935 	struct thread_info *ti = task_thread_info(p);
936 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
937 }
938 
939 /*
940  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
941  *
942  * If this returns true, then the idle task promises to call
943  * sched_ttwu_pending() and reschedule soon.
944  */
945 static bool set_nr_if_polling(struct task_struct *p)
946 {
947 	struct thread_info *ti = task_thread_info(p);
948 	typeof(ti->flags) val = READ_ONCE(ti->flags);
949 
950 	do {
951 		if (!(val & _TIF_POLLING_NRFLAG))
952 			return false;
953 		if (val & _TIF_NEED_RESCHED)
954 			return true;
955 	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
956 
957 	return true;
958 }
959 
960 #else
961 static inline bool set_nr_and_not_polling(struct task_struct *p)
962 {
963 	set_tsk_need_resched(p);
964 	return true;
965 }
966 
967 #ifdef CONFIG_SMP
968 static inline bool set_nr_if_polling(struct task_struct *p)
969 {
970 	return false;
971 }
972 #endif
973 #endif
974 
975 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
976 {
977 	struct wake_q_node *node = &task->wake_q;
978 
979 	/*
980 	 * Atomically grab the task, if ->wake_q is !nil already it means
981 	 * it's already queued (either by us or someone else) and will get the
982 	 * wakeup due to that.
983 	 *
984 	 * In order to ensure that a pending wakeup will observe our pending
985 	 * state, even in the failed case, an explicit smp_mb() must be used.
986 	 */
987 	smp_mb__before_atomic();
988 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
989 		return false;
990 
991 	/*
992 	 * The head is context local, there can be no concurrency.
993 	 */
994 	*head->lastp = node;
995 	head->lastp = &node->next;
996 	return true;
997 }
998 
999 /**
1000  * wake_q_add() - queue a wakeup for 'later' waking.
1001  * @head: the wake_q_head to add @task to
1002  * @task: the task to queue for 'later' wakeup
1003  *
1004  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1005  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1006  * instantly.
1007  *
1008  * This function must be used as-if it were wake_up_process(); IOW the task
1009  * must be ready to be woken at this location.
1010  */
1011 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1012 {
1013 	if (__wake_q_add(head, task))
1014 		get_task_struct(task);
1015 }
1016 
1017 /**
1018  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1019  * @head: the wake_q_head to add @task to
1020  * @task: the task to queue for 'later' wakeup
1021  *
1022  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1023  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1024  * instantly.
1025  *
1026  * This function must be used as-if it were wake_up_process(); IOW the task
1027  * must be ready to be woken at this location.
1028  *
1029  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1030  * that already hold reference to @task can call the 'safe' version and trust
1031  * wake_q to do the right thing depending whether or not the @task is already
1032  * queued for wakeup.
1033  */
1034 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1035 {
1036 	if (!__wake_q_add(head, task))
1037 		put_task_struct(task);
1038 }
1039 
1040 void wake_up_q(struct wake_q_head *head)
1041 {
1042 	struct wake_q_node *node = head->first;
1043 
1044 	while (node != WAKE_Q_TAIL) {
1045 		struct task_struct *task;
1046 
1047 		task = container_of(node, struct task_struct, wake_q);
1048 		/* Task can safely be re-inserted now: */
1049 		node = node->next;
1050 		task->wake_q.next = NULL;
1051 
1052 		/*
1053 		 * wake_up_process() executes a full barrier, which pairs with
1054 		 * the queueing in wake_q_add() so as not to miss wakeups.
1055 		 */
1056 		wake_up_process(task);
1057 		put_task_struct(task);
1058 	}
1059 }
1060 
1061 /*
1062  * resched_curr - mark rq's current task 'to be rescheduled now'.
1063  *
1064  * On UP this means the setting of the need_resched flag, on SMP it
1065  * might also involve a cross-CPU call to trigger the scheduler on
1066  * the target CPU.
1067  */
1068 void resched_curr(struct rq *rq)
1069 {
1070 	struct task_struct *curr = rq->curr;
1071 	int cpu;
1072 
1073 	lockdep_assert_rq_held(rq);
1074 
1075 	if (test_tsk_need_resched(curr))
1076 		return;
1077 
1078 	cpu = cpu_of(rq);
1079 
1080 	if (cpu == smp_processor_id()) {
1081 		set_tsk_need_resched(curr);
1082 		set_preempt_need_resched();
1083 		return;
1084 	}
1085 
1086 	if (set_nr_and_not_polling(curr))
1087 		smp_send_reschedule(cpu);
1088 	else
1089 		trace_sched_wake_idle_without_ipi(cpu);
1090 }
1091 
1092 void resched_cpu(int cpu)
1093 {
1094 	struct rq *rq = cpu_rq(cpu);
1095 	unsigned long flags;
1096 
1097 	raw_spin_rq_lock_irqsave(rq, flags);
1098 	if (cpu_online(cpu) || cpu == smp_processor_id())
1099 		resched_curr(rq);
1100 	raw_spin_rq_unlock_irqrestore(rq, flags);
1101 }
1102 
1103 #ifdef CONFIG_SMP
1104 #ifdef CONFIG_NO_HZ_COMMON
1105 /*
1106  * In the semi idle case, use the nearest busy CPU for migrating timers
1107  * from an idle CPU.  This is good for power-savings.
1108  *
1109  * We don't do similar optimization for completely idle system, as
1110  * selecting an idle CPU will add more delays to the timers than intended
1111  * (as that CPU's timer base may not be up to date wrt jiffies etc).
1112  */
1113 int get_nohz_timer_target(void)
1114 {
1115 	int i, cpu = smp_processor_id(), default_cpu = -1;
1116 	struct sched_domain *sd;
1117 	const struct cpumask *hk_mask;
1118 
1119 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1120 		if (!idle_cpu(cpu))
1121 			return cpu;
1122 		default_cpu = cpu;
1123 	}
1124 
1125 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1126 
1127 	guard(rcu)();
1128 
1129 	for_each_domain(cpu, sd) {
1130 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1131 			if (cpu == i)
1132 				continue;
1133 
1134 			if (!idle_cpu(i))
1135 				return i;
1136 		}
1137 	}
1138 
1139 	if (default_cpu == -1)
1140 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1141 
1142 	return default_cpu;
1143 }
1144 
1145 /*
1146  * When add_timer_on() enqueues a timer into the timer wheel of an
1147  * idle CPU then this timer might expire before the next timer event
1148  * which is scheduled to wake up that CPU. In case of a completely
1149  * idle system the next event might even be infinite time into the
1150  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1151  * leaves the inner idle loop so the newly added timer is taken into
1152  * account when the CPU goes back to idle and evaluates the timer
1153  * wheel for the next timer event.
1154  */
1155 static void wake_up_idle_cpu(int cpu)
1156 {
1157 	struct rq *rq = cpu_rq(cpu);
1158 
1159 	if (cpu == smp_processor_id())
1160 		return;
1161 
1162 	/*
1163 	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1164 	 * part of the idle loop. This forces an exit from the idle loop
1165 	 * and a round trip to schedule(). Now this could be optimized
1166 	 * because a simple new idle loop iteration is enough to
1167 	 * re-evaluate the next tick. Provided some re-ordering of tick
1168 	 * nohz functions that would need to follow TIF_NR_POLLING
1169 	 * clearing:
1170 	 *
1171 	 * - On most architectures, a simple fetch_or on ti::flags with a
1172 	 *   "0" value would be enough to know if an IPI needs to be sent.
1173 	 *
1174 	 * - x86 needs to perform a last need_resched() check between
1175 	 *   monitor and mwait which doesn't take timers into account.
1176 	 *   There a dedicated TIF_TIMER flag would be required to
1177 	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1178 	 *   before mwait().
1179 	 *
1180 	 * However, remote timer enqueue is not such a frequent event
1181 	 * and testing of the above solutions didn't appear to report
1182 	 * much benefits.
1183 	 */
1184 	if (set_nr_and_not_polling(rq->idle))
1185 		smp_send_reschedule(cpu);
1186 	else
1187 		trace_sched_wake_idle_without_ipi(cpu);
1188 }
1189 
1190 static bool wake_up_full_nohz_cpu(int cpu)
1191 {
1192 	/*
1193 	 * We just need the target to call irq_exit() and re-evaluate
1194 	 * the next tick. The nohz full kick at least implies that.
1195 	 * If needed we can still optimize that later with an
1196 	 * empty IRQ.
1197 	 */
1198 	if (cpu_is_offline(cpu))
1199 		return true;  /* Don't try to wake offline CPUs. */
1200 	if (tick_nohz_full_cpu(cpu)) {
1201 		if (cpu != smp_processor_id() ||
1202 		    tick_nohz_tick_stopped())
1203 			tick_nohz_full_kick_cpu(cpu);
1204 		return true;
1205 	}
1206 
1207 	return false;
1208 }
1209 
1210 /*
1211  * Wake up the specified CPU.  If the CPU is going offline, it is the
1212  * caller's responsibility to deal with the lost wakeup, for example,
1213  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1214  */
1215 void wake_up_nohz_cpu(int cpu)
1216 {
1217 	if (!wake_up_full_nohz_cpu(cpu))
1218 		wake_up_idle_cpu(cpu);
1219 }
1220 
1221 static void nohz_csd_func(void *info)
1222 {
1223 	struct rq *rq = info;
1224 	int cpu = cpu_of(rq);
1225 	unsigned int flags;
1226 
1227 	/*
1228 	 * Release the rq::nohz_csd.
1229 	 */
1230 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1231 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1232 
1233 	rq->idle_balance = idle_cpu(cpu);
1234 	if (rq->idle_balance && !need_resched()) {
1235 		rq->nohz_idle_balance = flags;
1236 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1237 	}
1238 }
1239 
1240 #endif /* CONFIG_NO_HZ_COMMON */
1241 
1242 #ifdef CONFIG_NO_HZ_FULL
1243 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1244 {
1245 	if (rq->nr_running != 1)
1246 		return false;
1247 
1248 	if (p->sched_class != &fair_sched_class)
1249 		return false;
1250 
1251 	if (!task_on_rq_queued(p))
1252 		return false;
1253 
1254 	return true;
1255 }
1256 
1257 bool sched_can_stop_tick(struct rq *rq)
1258 {
1259 	int fifo_nr_running;
1260 
1261 	/* Deadline tasks, even if single, need the tick */
1262 	if (rq->dl.dl_nr_running)
1263 		return false;
1264 
1265 	/*
1266 	 * If there are more than one RR tasks, we need the tick to affect the
1267 	 * actual RR behaviour.
1268 	 */
1269 	if (rq->rt.rr_nr_running) {
1270 		if (rq->rt.rr_nr_running == 1)
1271 			return true;
1272 		else
1273 			return false;
1274 	}
1275 
1276 	/*
1277 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1278 	 * forced preemption between FIFO tasks.
1279 	 */
1280 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1281 	if (fifo_nr_running)
1282 		return true;
1283 
1284 	/*
1285 	 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
1286 	 * left. For CFS, if there's more than one we need the tick for
1287 	 * involuntary preemption. For SCX, ask.
1288 	 */
1289 	if (scx_enabled() && !scx_can_stop_tick(rq))
1290 		return false;
1291 
1292 	if (rq->cfs.nr_running > 1)
1293 		return false;
1294 
1295 	/*
1296 	 * If there is one task and it has CFS runtime bandwidth constraints
1297 	 * and it's on the cpu now we don't want to stop the tick.
1298 	 * This check prevents clearing the bit if a newly enqueued task here is
1299 	 * dequeued by migrating while the constrained task continues to run.
1300 	 * E.g. going from 2->1 without going through pick_next_task().
1301 	 */
1302 	if (__need_bw_check(rq, rq->curr)) {
1303 		if (cfs_task_bw_constrained(rq->curr))
1304 			return false;
1305 	}
1306 
1307 	return true;
1308 }
1309 #endif /* CONFIG_NO_HZ_FULL */
1310 #endif /* CONFIG_SMP */
1311 
1312 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1313 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1314 /*
1315  * Iterate task_group tree rooted at *from, calling @down when first entering a
1316  * node and @up when leaving it for the final time.
1317  *
1318  * Caller must hold rcu_lock or sufficient equivalent.
1319  */
1320 int walk_tg_tree_from(struct task_group *from,
1321 			     tg_visitor down, tg_visitor up, void *data)
1322 {
1323 	struct task_group *parent, *child;
1324 	int ret;
1325 
1326 	parent = from;
1327 
1328 down:
1329 	ret = (*down)(parent, data);
1330 	if (ret)
1331 		goto out;
1332 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1333 		parent = child;
1334 		goto down;
1335 
1336 up:
1337 		continue;
1338 	}
1339 	ret = (*up)(parent, data);
1340 	if (ret || parent == from)
1341 		goto out;
1342 
1343 	child = parent;
1344 	parent = parent->parent;
1345 	if (parent)
1346 		goto up;
1347 out:
1348 	return ret;
1349 }
1350 
1351 int tg_nop(struct task_group *tg, void *data)
1352 {
1353 	return 0;
1354 }
1355 #endif
1356 
1357 void set_load_weight(struct task_struct *p, bool update_load)
1358 {
1359 	int prio = p->static_prio - MAX_RT_PRIO;
1360 	struct load_weight lw;
1361 
1362 	if (task_has_idle_policy(p)) {
1363 		lw.weight = scale_load(WEIGHT_IDLEPRIO);
1364 		lw.inv_weight = WMULT_IDLEPRIO;
1365 	} else {
1366 		lw.weight = scale_load(sched_prio_to_weight[prio]);
1367 		lw.inv_weight = sched_prio_to_wmult[prio];
1368 	}
1369 
1370 	/*
1371 	 * SCHED_OTHER tasks have to update their load when changing their
1372 	 * weight
1373 	 */
1374 	if (update_load && p->sched_class->reweight_task)
1375 		p->sched_class->reweight_task(task_rq(p), p, &lw);
1376 	else
1377 		p->se.load = lw;
1378 }
1379 
1380 #ifdef CONFIG_UCLAMP_TASK
1381 /*
1382  * Serializes updates of utilization clamp values
1383  *
1384  * The (slow-path) user-space triggers utilization clamp value updates which
1385  * can require updates on (fast-path) scheduler's data structures used to
1386  * support enqueue/dequeue operations.
1387  * While the per-CPU rq lock protects fast-path update operations, user-space
1388  * requests are serialized using a mutex to reduce the risk of conflicting
1389  * updates or API abuses.
1390  */
1391 static DEFINE_MUTEX(uclamp_mutex);
1392 
1393 /* Max allowed minimum utilization */
1394 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1395 
1396 /* Max allowed maximum utilization */
1397 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1398 
1399 /*
1400  * By default RT tasks run at the maximum performance point/capacity of the
1401  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1402  * SCHED_CAPACITY_SCALE.
1403  *
1404  * This knob allows admins to change the default behavior when uclamp is being
1405  * used. In battery powered devices, particularly, running at the maximum
1406  * capacity and frequency will increase energy consumption and shorten the
1407  * battery life.
1408  *
1409  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1410  *
1411  * This knob will not override the system default sched_util_clamp_min defined
1412  * above.
1413  */
1414 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1415 
1416 /* All clamps are required to be less or equal than these values */
1417 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1418 
1419 /*
1420  * This static key is used to reduce the uclamp overhead in the fast path. It
1421  * primarily disables the call to uclamp_rq_{inc, dec}() in
1422  * enqueue/dequeue_task().
1423  *
1424  * This allows users to continue to enable uclamp in their kernel config with
1425  * minimum uclamp overhead in the fast path.
1426  *
1427  * As soon as userspace modifies any of the uclamp knobs, the static key is
1428  * enabled, since we have an actual users that make use of uclamp
1429  * functionality.
1430  *
1431  * The knobs that would enable this static key are:
1432  *
1433  *   * A task modifying its uclamp value with sched_setattr().
1434  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1435  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1436  */
1437 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1438 
1439 static inline unsigned int
1440 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1441 		  unsigned int clamp_value)
1442 {
1443 	/*
1444 	 * Avoid blocked utilization pushing up the frequency when we go
1445 	 * idle (which drops the max-clamp) by retaining the last known
1446 	 * max-clamp.
1447 	 */
1448 	if (clamp_id == UCLAMP_MAX) {
1449 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1450 		return clamp_value;
1451 	}
1452 
1453 	return uclamp_none(UCLAMP_MIN);
1454 }
1455 
1456 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1457 				     unsigned int clamp_value)
1458 {
1459 	/* Reset max-clamp retention only on idle exit */
1460 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1461 		return;
1462 
1463 	uclamp_rq_set(rq, clamp_id, clamp_value);
1464 }
1465 
1466 static inline
1467 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1468 				   unsigned int clamp_value)
1469 {
1470 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1471 	int bucket_id = UCLAMP_BUCKETS - 1;
1472 
1473 	/*
1474 	 * Since both min and max clamps are max aggregated, find the
1475 	 * top most bucket with tasks in.
1476 	 */
1477 	for ( ; bucket_id >= 0; bucket_id--) {
1478 		if (!bucket[bucket_id].tasks)
1479 			continue;
1480 		return bucket[bucket_id].value;
1481 	}
1482 
1483 	/* No tasks -- default clamp values */
1484 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1485 }
1486 
1487 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1488 {
1489 	unsigned int default_util_min;
1490 	struct uclamp_se *uc_se;
1491 
1492 	lockdep_assert_held(&p->pi_lock);
1493 
1494 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1495 
1496 	/* Only sync if user didn't override the default */
1497 	if (uc_se->user_defined)
1498 		return;
1499 
1500 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1501 	uclamp_se_set(uc_se, default_util_min, false);
1502 }
1503 
1504 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1505 {
1506 	if (!rt_task(p))
1507 		return;
1508 
1509 	/* Protect updates to p->uclamp_* */
1510 	guard(task_rq_lock)(p);
1511 	__uclamp_update_util_min_rt_default(p);
1512 }
1513 
1514 static inline struct uclamp_se
1515 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1516 {
1517 	/* Copy by value as we could modify it */
1518 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1519 #ifdef CONFIG_UCLAMP_TASK_GROUP
1520 	unsigned int tg_min, tg_max, value;
1521 
1522 	/*
1523 	 * Tasks in autogroups or root task group will be
1524 	 * restricted by system defaults.
1525 	 */
1526 	if (task_group_is_autogroup(task_group(p)))
1527 		return uc_req;
1528 	if (task_group(p) == &root_task_group)
1529 		return uc_req;
1530 
1531 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1532 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1533 	value = uc_req.value;
1534 	value = clamp(value, tg_min, tg_max);
1535 	uclamp_se_set(&uc_req, value, false);
1536 #endif
1537 
1538 	return uc_req;
1539 }
1540 
1541 /*
1542  * The effective clamp bucket index of a task depends on, by increasing
1543  * priority:
1544  * - the task specific clamp value, when explicitly requested from userspace
1545  * - the task group effective clamp value, for tasks not either in the root
1546  *   group or in an autogroup
1547  * - the system default clamp value, defined by the sysadmin
1548  */
1549 static inline struct uclamp_se
1550 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1551 {
1552 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1553 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1554 
1555 	/* System default restrictions always apply */
1556 	if (unlikely(uc_req.value > uc_max.value))
1557 		return uc_max;
1558 
1559 	return uc_req;
1560 }
1561 
1562 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1563 {
1564 	struct uclamp_se uc_eff;
1565 
1566 	/* Task currently refcounted: use back-annotated (effective) value */
1567 	if (p->uclamp[clamp_id].active)
1568 		return (unsigned long)p->uclamp[clamp_id].value;
1569 
1570 	uc_eff = uclamp_eff_get(p, clamp_id);
1571 
1572 	return (unsigned long)uc_eff.value;
1573 }
1574 
1575 /*
1576  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1577  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1578  * updates the rq's clamp value if required.
1579  *
1580  * Tasks can have a task-specific value requested from user-space, track
1581  * within each bucket the maximum value for tasks refcounted in it.
1582  * This "local max aggregation" allows to track the exact "requested" value
1583  * for each bucket when all its RUNNABLE tasks require the same clamp.
1584  */
1585 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1586 				    enum uclamp_id clamp_id)
1587 {
1588 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1589 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1590 	struct uclamp_bucket *bucket;
1591 
1592 	lockdep_assert_rq_held(rq);
1593 
1594 	/* Update task effective clamp */
1595 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1596 
1597 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1598 	bucket->tasks++;
1599 	uc_se->active = true;
1600 
1601 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1602 
1603 	/*
1604 	 * Local max aggregation: rq buckets always track the max
1605 	 * "requested" clamp value of its RUNNABLE tasks.
1606 	 */
1607 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1608 		bucket->value = uc_se->value;
1609 
1610 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1611 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1612 }
1613 
1614 /*
1615  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1616  * is released. If this is the last task reference counting the rq's max
1617  * active clamp value, then the rq's clamp value is updated.
1618  *
1619  * Both refcounted tasks and rq's cached clamp values are expected to be
1620  * always valid. If it's detected they are not, as defensive programming,
1621  * enforce the expected state and warn.
1622  */
1623 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1624 				    enum uclamp_id clamp_id)
1625 {
1626 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1627 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1628 	struct uclamp_bucket *bucket;
1629 	unsigned int bkt_clamp;
1630 	unsigned int rq_clamp;
1631 
1632 	lockdep_assert_rq_held(rq);
1633 
1634 	/*
1635 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1636 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1637 	 *
1638 	 * In this case the uc_se->active flag should be false since no uclamp
1639 	 * accounting was performed at enqueue time and we can just return
1640 	 * here.
1641 	 *
1642 	 * Need to be careful of the following enqueue/dequeue ordering
1643 	 * problem too
1644 	 *
1645 	 *	enqueue(taskA)
1646 	 *	// sched_uclamp_used gets enabled
1647 	 *	enqueue(taskB)
1648 	 *	dequeue(taskA)
1649 	 *	// Must not decrement bucket->tasks here
1650 	 *	dequeue(taskB)
1651 	 *
1652 	 * where we could end up with stale data in uc_se and
1653 	 * bucket[uc_se->bucket_id].
1654 	 *
1655 	 * The following check here eliminates the possibility of such race.
1656 	 */
1657 	if (unlikely(!uc_se->active))
1658 		return;
1659 
1660 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1661 
1662 	SCHED_WARN_ON(!bucket->tasks);
1663 	if (likely(bucket->tasks))
1664 		bucket->tasks--;
1665 
1666 	uc_se->active = false;
1667 
1668 	/*
1669 	 * Keep "local max aggregation" simple and accept to (possibly)
1670 	 * overboost some RUNNABLE tasks in the same bucket.
1671 	 * The rq clamp bucket value is reset to its base value whenever
1672 	 * there are no more RUNNABLE tasks refcounting it.
1673 	 */
1674 	if (likely(bucket->tasks))
1675 		return;
1676 
1677 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1678 	/*
1679 	 * Defensive programming: this should never happen. If it happens,
1680 	 * e.g. due to future modification, warn and fix up the expected value.
1681 	 */
1682 	SCHED_WARN_ON(bucket->value > rq_clamp);
1683 	if (bucket->value >= rq_clamp) {
1684 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1685 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1686 	}
1687 }
1688 
1689 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1690 {
1691 	enum uclamp_id clamp_id;
1692 
1693 	/*
1694 	 * Avoid any overhead until uclamp is actually used by the userspace.
1695 	 *
1696 	 * The condition is constructed such that a NOP is generated when
1697 	 * sched_uclamp_used is disabled.
1698 	 */
1699 	if (!static_branch_unlikely(&sched_uclamp_used))
1700 		return;
1701 
1702 	if (unlikely(!p->sched_class->uclamp_enabled))
1703 		return;
1704 
1705 	if (p->se.sched_delayed)
1706 		return;
1707 
1708 	for_each_clamp_id(clamp_id)
1709 		uclamp_rq_inc_id(rq, p, clamp_id);
1710 
1711 	/* Reset clamp idle holding when there is one RUNNABLE task */
1712 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1713 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1714 }
1715 
1716 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1717 {
1718 	enum uclamp_id clamp_id;
1719 
1720 	/*
1721 	 * Avoid any overhead until uclamp is actually used by the userspace.
1722 	 *
1723 	 * The condition is constructed such that a NOP is generated when
1724 	 * sched_uclamp_used is disabled.
1725 	 */
1726 	if (!static_branch_unlikely(&sched_uclamp_used))
1727 		return;
1728 
1729 	if (unlikely(!p->sched_class->uclamp_enabled))
1730 		return;
1731 
1732 	if (p->se.sched_delayed)
1733 		return;
1734 
1735 	for_each_clamp_id(clamp_id)
1736 		uclamp_rq_dec_id(rq, p, clamp_id);
1737 }
1738 
1739 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1740 				      enum uclamp_id clamp_id)
1741 {
1742 	if (!p->uclamp[clamp_id].active)
1743 		return;
1744 
1745 	uclamp_rq_dec_id(rq, p, clamp_id);
1746 	uclamp_rq_inc_id(rq, p, clamp_id);
1747 
1748 	/*
1749 	 * Make sure to clear the idle flag if we've transiently reached 0
1750 	 * active tasks on rq.
1751 	 */
1752 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1753 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1754 }
1755 
1756 static inline void
1757 uclamp_update_active(struct task_struct *p)
1758 {
1759 	enum uclamp_id clamp_id;
1760 	struct rq_flags rf;
1761 	struct rq *rq;
1762 
1763 	/*
1764 	 * Lock the task and the rq where the task is (or was) queued.
1765 	 *
1766 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1767 	 * price to pay to safely serialize util_{min,max} updates with
1768 	 * enqueues, dequeues and migration operations.
1769 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1770 	 */
1771 	rq = task_rq_lock(p, &rf);
1772 
1773 	/*
1774 	 * Setting the clamp bucket is serialized by task_rq_lock().
1775 	 * If the task is not yet RUNNABLE and its task_struct is not
1776 	 * affecting a valid clamp bucket, the next time it's enqueued,
1777 	 * it will already see the updated clamp bucket value.
1778 	 */
1779 	for_each_clamp_id(clamp_id)
1780 		uclamp_rq_reinc_id(rq, p, clamp_id);
1781 
1782 	task_rq_unlock(rq, p, &rf);
1783 }
1784 
1785 #ifdef CONFIG_UCLAMP_TASK_GROUP
1786 static inline void
1787 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1788 {
1789 	struct css_task_iter it;
1790 	struct task_struct *p;
1791 
1792 	css_task_iter_start(css, 0, &it);
1793 	while ((p = css_task_iter_next(&it)))
1794 		uclamp_update_active(p);
1795 	css_task_iter_end(&it);
1796 }
1797 
1798 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1799 #endif
1800 
1801 #ifdef CONFIG_SYSCTL
1802 #ifdef CONFIG_UCLAMP_TASK_GROUP
1803 static void uclamp_update_root_tg(void)
1804 {
1805 	struct task_group *tg = &root_task_group;
1806 
1807 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1808 		      sysctl_sched_uclamp_util_min, false);
1809 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1810 		      sysctl_sched_uclamp_util_max, false);
1811 
1812 	guard(rcu)();
1813 	cpu_util_update_eff(&root_task_group.css);
1814 }
1815 #else
1816 static void uclamp_update_root_tg(void) { }
1817 #endif
1818 
1819 static void uclamp_sync_util_min_rt_default(void)
1820 {
1821 	struct task_struct *g, *p;
1822 
1823 	/*
1824 	 * copy_process()			sysctl_uclamp
1825 	 *					  uclamp_min_rt = X;
1826 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1827 	 *   // link thread			  smp_mb__after_spinlock()
1828 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1829 	 *   sched_post_fork()			  for_each_process_thread()
1830 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1831 	 *
1832 	 * Ensures that either sched_post_fork() will observe the new
1833 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1834 	 * task.
1835 	 */
1836 	read_lock(&tasklist_lock);
1837 	smp_mb__after_spinlock();
1838 	read_unlock(&tasklist_lock);
1839 
1840 	guard(rcu)();
1841 	for_each_process_thread(g, p)
1842 		uclamp_update_util_min_rt_default(p);
1843 }
1844 
1845 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1846 				void *buffer, size_t *lenp, loff_t *ppos)
1847 {
1848 	bool update_root_tg = false;
1849 	int old_min, old_max, old_min_rt;
1850 	int result;
1851 
1852 	guard(mutex)(&uclamp_mutex);
1853 
1854 	old_min = sysctl_sched_uclamp_util_min;
1855 	old_max = sysctl_sched_uclamp_util_max;
1856 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1857 
1858 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1859 	if (result)
1860 		goto undo;
1861 	if (!write)
1862 		return 0;
1863 
1864 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1865 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1866 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1867 
1868 		result = -EINVAL;
1869 		goto undo;
1870 	}
1871 
1872 	if (old_min != sysctl_sched_uclamp_util_min) {
1873 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1874 			      sysctl_sched_uclamp_util_min, false);
1875 		update_root_tg = true;
1876 	}
1877 	if (old_max != sysctl_sched_uclamp_util_max) {
1878 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1879 			      sysctl_sched_uclamp_util_max, false);
1880 		update_root_tg = true;
1881 	}
1882 
1883 	if (update_root_tg) {
1884 		static_branch_enable(&sched_uclamp_used);
1885 		uclamp_update_root_tg();
1886 	}
1887 
1888 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1889 		static_branch_enable(&sched_uclamp_used);
1890 		uclamp_sync_util_min_rt_default();
1891 	}
1892 
1893 	/*
1894 	 * We update all RUNNABLE tasks only when task groups are in use.
1895 	 * Otherwise, keep it simple and do just a lazy update at each next
1896 	 * task enqueue time.
1897 	 */
1898 	return 0;
1899 
1900 undo:
1901 	sysctl_sched_uclamp_util_min = old_min;
1902 	sysctl_sched_uclamp_util_max = old_max;
1903 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1904 	return result;
1905 }
1906 #endif
1907 
1908 static void uclamp_fork(struct task_struct *p)
1909 {
1910 	enum uclamp_id clamp_id;
1911 
1912 	/*
1913 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1914 	 * as the task is still at its early fork stages.
1915 	 */
1916 	for_each_clamp_id(clamp_id)
1917 		p->uclamp[clamp_id].active = false;
1918 
1919 	if (likely(!p->sched_reset_on_fork))
1920 		return;
1921 
1922 	for_each_clamp_id(clamp_id) {
1923 		uclamp_se_set(&p->uclamp_req[clamp_id],
1924 			      uclamp_none(clamp_id), false);
1925 	}
1926 }
1927 
1928 static void uclamp_post_fork(struct task_struct *p)
1929 {
1930 	uclamp_update_util_min_rt_default(p);
1931 }
1932 
1933 static void __init init_uclamp_rq(struct rq *rq)
1934 {
1935 	enum uclamp_id clamp_id;
1936 	struct uclamp_rq *uc_rq = rq->uclamp;
1937 
1938 	for_each_clamp_id(clamp_id) {
1939 		uc_rq[clamp_id] = (struct uclamp_rq) {
1940 			.value = uclamp_none(clamp_id)
1941 		};
1942 	}
1943 
1944 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1945 }
1946 
1947 static void __init init_uclamp(void)
1948 {
1949 	struct uclamp_se uc_max = {};
1950 	enum uclamp_id clamp_id;
1951 	int cpu;
1952 
1953 	for_each_possible_cpu(cpu)
1954 		init_uclamp_rq(cpu_rq(cpu));
1955 
1956 	for_each_clamp_id(clamp_id) {
1957 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1958 			      uclamp_none(clamp_id), false);
1959 	}
1960 
1961 	/* System defaults allow max clamp values for both indexes */
1962 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1963 	for_each_clamp_id(clamp_id) {
1964 		uclamp_default[clamp_id] = uc_max;
1965 #ifdef CONFIG_UCLAMP_TASK_GROUP
1966 		root_task_group.uclamp_req[clamp_id] = uc_max;
1967 		root_task_group.uclamp[clamp_id] = uc_max;
1968 #endif
1969 	}
1970 }
1971 
1972 #else /* !CONFIG_UCLAMP_TASK */
1973 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1974 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1975 static inline void uclamp_fork(struct task_struct *p) { }
1976 static inline void uclamp_post_fork(struct task_struct *p) { }
1977 static inline void init_uclamp(void) { }
1978 #endif /* CONFIG_UCLAMP_TASK */
1979 
1980 bool sched_task_on_rq(struct task_struct *p)
1981 {
1982 	return task_on_rq_queued(p);
1983 }
1984 
1985 unsigned long get_wchan(struct task_struct *p)
1986 {
1987 	unsigned long ip = 0;
1988 	unsigned int state;
1989 
1990 	if (!p || p == current)
1991 		return 0;
1992 
1993 	/* Only get wchan if task is blocked and we can keep it that way. */
1994 	raw_spin_lock_irq(&p->pi_lock);
1995 	state = READ_ONCE(p->__state);
1996 	smp_rmb(); /* see try_to_wake_up() */
1997 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
1998 		ip = __get_wchan(p);
1999 	raw_spin_unlock_irq(&p->pi_lock);
2000 
2001 	return ip;
2002 }
2003 
2004 void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2005 {
2006 	if (!(flags & ENQUEUE_NOCLOCK))
2007 		update_rq_clock(rq);
2008 
2009 	if (!(flags & ENQUEUE_RESTORE)) {
2010 		sched_info_enqueue(rq, p);
2011 		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2012 	}
2013 
2014 	p->sched_class->enqueue_task(rq, p, flags);
2015 	/*
2016 	 * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear
2017 	 * ->sched_delayed.
2018 	 */
2019 	uclamp_rq_inc(rq, p);
2020 
2021 	if (sched_core_enabled(rq))
2022 		sched_core_enqueue(rq, p);
2023 }
2024 
2025 /*
2026  * Must only return false when DEQUEUE_SLEEP.
2027  */
2028 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2029 {
2030 	if (sched_core_enabled(rq))
2031 		sched_core_dequeue(rq, p, flags);
2032 
2033 	if (!(flags & DEQUEUE_NOCLOCK))
2034 		update_rq_clock(rq);
2035 
2036 	if (!(flags & DEQUEUE_SAVE)) {
2037 		sched_info_dequeue(rq, p);
2038 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2039 	}
2040 
2041 	/*
2042 	 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
2043 	 * and mark the task ->sched_delayed.
2044 	 */
2045 	uclamp_rq_dec(rq, p);
2046 	return p->sched_class->dequeue_task(rq, p, flags);
2047 }
2048 
2049 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2050 {
2051 	if (task_on_rq_migrating(p))
2052 		flags |= ENQUEUE_MIGRATED;
2053 	if (flags & ENQUEUE_MIGRATED)
2054 		sched_mm_cid_migrate_to(rq, p);
2055 
2056 	enqueue_task(rq, p, flags);
2057 
2058 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2059 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2060 }
2061 
2062 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2063 {
2064 	SCHED_WARN_ON(flags & DEQUEUE_SLEEP);
2065 
2066 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
2067 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2068 
2069 	/*
2070 	 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
2071 	 * dequeue_task() and cleared *after* enqueue_task().
2072 	 */
2073 
2074 	dequeue_task(rq, p, flags);
2075 }
2076 
2077 static void block_task(struct rq *rq, struct task_struct *p, int flags)
2078 {
2079 	if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
2080 		__block_task(rq, p);
2081 }
2082 
2083 /**
2084  * task_curr - is this task currently executing on a CPU?
2085  * @p: the task in question.
2086  *
2087  * Return: 1 if the task is currently executing. 0 otherwise.
2088  */
2089 inline int task_curr(const struct task_struct *p)
2090 {
2091 	return cpu_curr(task_cpu(p)) == p;
2092 }
2093 
2094 /*
2095  * ->switching_to() is called with the pi_lock and rq_lock held and must not
2096  * mess with locking.
2097  */
2098 void check_class_changing(struct rq *rq, struct task_struct *p,
2099 			  const struct sched_class *prev_class)
2100 {
2101 	if (prev_class != p->sched_class && p->sched_class->switching_to)
2102 		p->sched_class->switching_to(rq, p);
2103 }
2104 
2105 /*
2106  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2107  * use the balance_callback list if you want balancing.
2108  *
2109  * this means any call to check_class_changed() must be followed by a call to
2110  * balance_callback().
2111  */
2112 void check_class_changed(struct rq *rq, struct task_struct *p,
2113 			 const struct sched_class *prev_class,
2114 			 int oldprio)
2115 {
2116 	if (prev_class != p->sched_class) {
2117 		if (prev_class->switched_from)
2118 			prev_class->switched_from(rq, p);
2119 
2120 		p->sched_class->switched_to(rq, p);
2121 	} else if (oldprio != p->prio || dl_task(p))
2122 		p->sched_class->prio_changed(rq, p, oldprio);
2123 }
2124 
2125 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2126 {
2127 	if (p->sched_class == rq->curr->sched_class)
2128 		rq->curr->sched_class->wakeup_preempt(rq, p, flags);
2129 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2130 		resched_curr(rq);
2131 
2132 	/*
2133 	 * A queue event has occurred, and we're going to schedule.  In
2134 	 * this case, we can save a useless back to back clock update.
2135 	 */
2136 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2137 		rq_clock_skip_update(rq);
2138 }
2139 
2140 static __always_inline
2141 int __task_state_match(struct task_struct *p, unsigned int state)
2142 {
2143 	if (READ_ONCE(p->__state) & state)
2144 		return 1;
2145 
2146 	if (READ_ONCE(p->saved_state) & state)
2147 		return -1;
2148 
2149 	return 0;
2150 }
2151 
2152 static __always_inline
2153 int task_state_match(struct task_struct *p, unsigned int state)
2154 {
2155 	/*
2156 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2157 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2158 	 */
2159 	guard(raw_spinlock_irq)(&p->pi_lock);
2160 	return __task_state_match(p, state);
2161 }
2162 
2163 /*
2164  * wait_task_inactive - wait for a thread to unschedule.
2165  *
2166  * Wait for the thread to block in any of the states set in @match_state.
2167  * If it changes, i.e. @p might have woken up, then return zero.  When we
2168  * succeed in waiting for @p to be off its CPU, we return a positive number
2169  * (its total switch count).  If a second call a short while later returns the
2170  * same number, the caller can be sure that @p has remained unscheduled the
2171  * whole time.
2172  *
2173  * The caller must ensure that the task *will* unschedule sometime soon,
2174  * else this function might spin for a *long* time. This function can't
2175  * be called with interrupts off, or it may introduce deadlock with
2176  * smp_call_function() if an IPI is sent by the same process we are
2177  * waiting to become inactive.
2178  */
2179 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2180 {
2181 	int running, queued, match;
2182 	struct rq_flags rf;
2183 	unsigned long ncsw;
2184 	struct rq *rq;
2185 
2186 	for (;;) {
2187 		/*
2188 		 * We do the initial early heuristics without holding
2189 		 * any task-queue locks at all. We'll only try to get
2190 		 * the runqueue lock when things look like they will
2191 		 * work out!
2192 		 */
2193 		rq = task_rq(p);
2194 
2195 		/*
2196 		 * If the task is actively running on another CPU
2197 		 * still, just relax and busy-wait without holding
2198 		 * any locks.
2199 		 *
2200 		 * NOTE! Since we don't hold any locks, it's not
2201 		 * even sure that "rq" stays as the right runqueue!
2202 		 * But we don't care, since "task_on_cpu()" will
2203 		 * return false if the runqueue has changed and p
2204 		 * is actually now running somewhere else!
2205 		 */
2206 		while (task_on_cpu(rq, p)) {
2207 			if (!task_state_match(p, match_state))
2208 				return 0;
2209 			cpu_relax();
2210 		}
2211 
2212 		/*
2213 		 * Ok, time to look more closely! We need the rq
2214 		 * lock now, to be *sure*. If we're wrong, we'll
2215 		 * just go back and repeat.
2216 		 */
2217 		rq = task_rq_lock(p, &rf);
2218 		trace_sched_wait_task(p);
2219 		running = task_on_cpu(rq, p);
2220 		queued = task_on_rq_queued(p);
2221 		ncsw = 0;
2222 		if ((match = __task_state_match(p, match_state))) {
2223 			/*
2224 			 * When matching on p->saved_state, consider this task
2225 			 * still queued so it will wait.
2226 			 */
2227 			if (match < 0)
2228 				queued = 1;
2229 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2230 		}
2231 		task_rq_unlock(rq, p, &rf);
2232 
2233 		/*
2234 		 * If it changed from the expected state, bail out now.
2235 		 */
2236 		if (unlikely(!ncsw))
2237 			break;
2238 
2239 		/*
2240 		 * Was it really running after all now that we
2241 		 * checked with the proper locks actually held?
2242 		 *
2243 		 * Oops. Go back and try again..
2244 		 */
2245 		if (unlikely(running)) {
2246 			cpu_relax();
2247 			continue;
2248 		}
2249 
2250 		/*
2251 		 * It's not enough that it's not actively running,
2252 		 * it must be off the runqueue _entirely_, and not
2253 		 * preempted!
2254 		 *
2255 		 * So if it was still runnable (but just not actively
2256 		 * running right now), it's preempted, and we should
2257 		 * yield - it could be a while.
2258 		 */
2259 		if (unlikely(queued)) {
2260 			ktime_t to = NSEC_PER_SEC / HZ;
2261 
2262 			set_current_state(TASK_UNINTERRUPTIBLE);
2263 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2264 			continue;
2265 		}
2266 
2267 		/*
2268 		 * Ahh, all good. It wasn't running, and it wasn't
2269 		 * runnable, which means that it will never become
2270 		 * running in the future either. We're all done!
2271 		 */
2272 		break;
2273 	}
2274 
2275 	return ncsw;
2276 }
2277 
2278 #ifdef CONFIG_SMP
2279 
2280 static void
2281 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2282 
2283 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2284 {
2285 	struct affinity_context ac = {
2286 		.new_mask  = cpumask_of(rq->cpu),
2287 		.flags     = SCA_MIGRATE_DISABLE,
2288 	};
2289 
2290 	if (likely(!p->migration_disabled))
2291 		return;
2292 
2293 	if (p->cpus_ptr != &p->cpus_mask)
2294 		return;
2295 
2296 	/*
2297 	 * Violates locking rules! See comment in __do_set_cpus_allowed().
2298 	 */
2299 	__do_set_cpus_allowed(p, &ac);
2300 }
2301 
2302 void migrate_disable(void)
2303 {
2304 	struct task_struct *p = current;
2305 
2306 	if (p->migration_disabled) {
2307 #ifdef CONFIG_DEBUG_PREEMPT
2308 		/*
2309 		 *Warn about overflow half-way through the range.
2310 		 */
2311 		WARN_ON_ONCE((s16)p->migration_disabled < 0);
2312 #endif
2313 		p->migration_disabled++;
2314 		return;
2315 	}
2316 
2317 	guard(preempt)();
2318 	this_rq()->nr_pinned++;
2319 	p->migration_disabled = 1;
2320 }
2321 EXPORT_SYMBOL_GPL(migrate_disable);
2322 
2323 void migrate_enable(void)
2324 {
2325 	struct task_struct *p = current;
2326 	struct affinity_context ac = {
2327 		.new_mask  = &p->cpus_mask,
2328 		.flags     = SCA_MIGRATE_ENABLE,
2329 	};
2330 
2331 #ifdef CONFIG_DEBUG_PREEMPT
2332 	/*
2333 	 * Check both overflow from migrate_disable() and superfluous
2334 	 * migrate_enable().
2335 	 */
2336 	if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
2337 		return;
2338 #endif
2339 
2340 	if (p->migration_disabled > 1) {
2341 		p->migration_disabled--;
2342 		return;
2343 	}
2344 
2345 	/*
2346 	 * Ensure stop_task runs either before or after this, and that
2347 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2348 	 */
2349 	guard(preempt)();
2350 	if (p->cpus_ptr != &p->cpus_mask)
2351 		__set_cpus_allowed_ptr(p, &ac);
2352 	/*
2353 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2354 	 * regular cpus_mask, otherwise things that race (eg.
2355 	 * select_fallback_rq) get confused.
2356 	 */
2357 	barrier();
2358 	p->migration_disabled = 0;
2359 	this_rq()->nr_pinned--;
2360 }
2361 EXPORT_SYMBOL_GPL(migrate_enable);
2362 
2363 static inline bool rq_has_pinned_tasks(struct rq *rq)
2364 {
2365 	return rq->nr_pinned;
2366 }
2367 
2368 /*
2369  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2370  * __set_cpus_allowed_ptr() and select_fallback_rq().
2371  */
2372 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2373 {
2374 	/* When not in the task's cpumask, no point in looking further. */
2375 	if (!task_allowed_on_cpu(p, cpu))
2376 		return false;
2377 
2378 	/* migrate_disabled() must be allowed to finish. */
2379 	if (is_migration_disabled(p))
2380 		return cpu_online(cpu);
2381 
2382 	/* Non kernel threads are not allowed during either online or offline. */
2383 	if (!(p->flags & PF_KTHREAD))
2384 		return cpu_active(cpu);
2385 
2386 	/* KTHREAD_IS_PER_CPU is always allowed. */
2387 	if (kthread_is_per_cpu(p))
2388 		return cpu_online(cpu);
2389 
2390 	/* Regular kernel threads don't get to stay during offline. */
2391 	if (cpu_dying(cpu))
2392 		return false;
2393 
2394 	/* But are allowed during online. */
2395 	return cpu_online(cpu);
2396 }
2397 
2398 /*
2399  * This is how migration works:
2400  *
2401  * 1) we invoke migration_cpu_stop() on the target CPU using
2402  *    stop_one_cpu().
2403  * 2) stopper starts to run (implicitly forcing the migrated thread
2404  *    off the CPU)
2405  * 3) it checks whether the migrated task is still in the wrong runqueue.
2406  * 4) if it's in the wrong runqueue then the migration thread removes
2407  *    it and puts it into the right queue.
2408  * 5) stopper completes and stop_one_cpu() returns and the migration
2409  *    is done.
2410  */
2411 
2412 /*
2413  * move_queued_task - move a queued task to new rq.
2414  *
2415  * Returns (locked) new rq. Old rq's lock is released.
2416  */
2417 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2418 				   struct task_struct *p, int new_cpu)
2419 {
2420 	lockdep_assert_rq_held(rq);
2421 
2422 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2423 	set_task_cpu(p, new_cpu);
2424 	rq_unlock(rq, rf);
2425 
2426 	rq = cpu_rq(new_cpu);
2427 
2428 	rq_lock(rq, rf);
2429 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2430 	activate_task(rq, p, 0);
2431 	wakeup_preempt(rq, p, 0);
2432 
2433 	return rq;
2434 }
2435 
2436 struct migration_arg {
2437 	struct task_struct		*task;
2438 	int				dest_cpu;
2439 	struct set_affinity_pending	*pending;
2440 };
2441 
2442 /*
2443  * @refs: number of wait_for_completion()
2444  * @stop_pending: is @stop_work in use
2445  */
2446 struct set_affinity_pending {
2447 	refcount_t		refs;
2448 	unsigned int		stop_pending;
2449 	struct completion	done;
2450 	struct cpu_stop_work	stop_work;
2451 	struct migration_arg	arg;
2452 };
2453 
2454 /*
2455  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2456  * this because either it can't run here any more (set_cpus_allowed()
2457  * away from this CPU, or CPU going down), or because we're
2458  * attempting to rebalance this task on exec (sched_exec).
2459  *
2460  * So we race with normal scheduler movements, but that's OK, as long
2461  * as the task is no longer on this CPU.
2462  */
2463 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2464 				 struct task_struct *p, int dest_cpu)
2465 {
2466 	/* Affinity changed (again). */
2467 	if (!is_cpu_allowed(p, dest_cpu))
2468 		return rq;
2469 
2470 	rq = move_queued_task(rq, rf, p, dest_cpu);
2471 
2472 	return rq;
2473 }
2474 
2475 /*
2476  * migration_cpu_stop - this will be executed by a high-prio stopper thread
2477  * and performs thread migration by bumping thread off CPU then
2478  * 'pushing' onto another runqueue.
2479  */
2480 static int migration_cpu_stop(void *data)
2481 {
2482 	struct migration_arg *arg = data;
2483 	struct set_affinity_pending *pending = arg->pending;
2484 	struct task_struct *p = arg->task;
2485 	struct rq *rq = this_rq();
2486 	bool complete = false;
2487 	struct rq_flags rf;
2488 
2489 	/*
2490 	 * The original target CPU might have gone down and we might
2491 	 * be on another CPU but it doesn't matter.
2492 	 */
2493 	local_irq_save(rf.flags);
2494 	/*
2495 	 * We need to explicitly wake pending tasks before running
2496 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2497 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2498 	 */
2499 	flush_smp_call_function_queue();
2500 
2501 	raw_spin_lock(&p->pi_lock);
2502 	rq_lock(rq, &rf);
2503 
2504 	/*
2505 	 * If we were passed a pending, then ->stop_pending was set, thus
2506 	 * p->migration_pending must have remained stable.
2507 	 */
2508 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2509 
2510 	/*
2511 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2512 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2513 	 * we're holding p->pi_lock.
2514 	 */
2515 	if (task_rq(p) == rq) {
2516 		if (is_migration_disabled(p))
2517 			goto out;
2518 
2519 		if (pending) {
2520 			p->migration_pending = NULL;
2521 			complete = true;
2522 
2523 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2524 				goto out;
2525 		}
2526 
2527 		if (task_on_rq_queued(p)) {
2528 			update_rq_clock(rq);
2529 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2530 		} else {
2531 			p->wake_cpu = arg->dest_cpu;
2532 		}
2533 
2534 		/*
2535 		 * XXX __migrate_task() can fail, at which point we might end
2536 		 * up running on a dodgy CPU, AFAICT this can only happen
2537 		 * during CPU hotplug, at which point we'll get pushed out
2538 		 * anyway, so it's probably not a big deal.
2539 		 */
2540 
2541 	} else if (pending) {
2542 		/*
2543 		 * This happens when we get migrated between migrate_enable()'s
2544 		 * preempt_enable() and scheduling the stopper task. At that
2545 		 * point we're a regular task again and not current anymore.
2546 		 *
2547 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2548 		 * more likely.
2549 		 */
2550 
2551 		/*
2552 		 * The task moved before the stopper got to run. We're holding
2553 		 * ->pi_lock, so the allowed mask is stable - if it got
2554 		 * somewhere allowed, we're done.
2555 		 */
2556 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2557 			p->migration_pending = NULL;
2558 			complete = true;
2559 			goto out;
2560 		}
2561 
2562 		/*
2563 		 * When migrate_enable() hits a rq mis-match we can't reliably
2564 		 * determine is_migration_disabled() and so have to chase after
2565 		 * it.
2566 		 */
2567 		WARN_ON_ONCE(!pending->stop_pending);
2568 		preempt_disable();
2569 		task_rq_unlock(rq, p, &rf);
2570 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2571 				    &pending->arg, &pending->stop_work);
2572 		preempt_enable();
2573 		return 0;
2574 	}
2575 out:
2576 	if (pending)
2577 		pending->stop_pending = false;
2578 	task_rq_unlock(rq, p, &rf);
2579 
2580 	if (complete)
2581 		complete_all(&pending->done);
2582 
2583 	return 0;
2584 }
2585 
2586 int push_cpu_stop(void *arg)
2587 {
2588 	struct rq *lowest_rq = NULL, *rq = this_rq();
2589 	struct task_struct *p = arg;
2590 
2591 	raw_spin_lock_irq(&p->pi_lock);
2592 	raw_spin_rq_lock(rq);
2593 
2594 	if (task_rq(p) != rq)
2595 		goto out_unlock;
2596 
2597 	if (is_migration_disabled(p)) {
2598 		p->migration_flags |= MDF_PUSH;
2599 		goto out_unlock;
2600 	}
2601 
2602 	p->migration_flags &= ~MDF_PUSH;
2603 
2604 	if (p->sched_class->find_lock_rq)
2605 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2606 
2607 	if (!lowest_rq)
2608 		goto out_unlock;
2609 
2610 	// XXX validate p is still the highest prio task
2611 	if (task_rq(p) == rq) {
2612 		deactivate_task(rq, p, 0);
2613 		set_task_cpu(p, lowest_rq->cpu);
2614 		activate_task(lowest_rq, p, 0);
2615 		resched_curr(lowest_rq);
2616 	}
2617 
2618 	double_unlock_balance(rq, lowest_rq);
2619 
2620 out_unlock:
2621 	rq->push_busy = false;
2622 	raw_spin_rq_unlock(rq);
2623 	raw_spin_unlock_irq(&p->pi_lock);
2624 
2625 	put_task_struct(p);
2626 	return 0;
2627 }
2628 
2629 /*
2630  * sched_class::set_cpus_allowed must do the below, but is not required to
2631  * actually call this function.
2632  */
2633 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2634 {
2635 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2636 		p->cpus_ptr = ctx->new_mask;
2637 		return;
2638 	}
2639 
2640 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2641 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2642 
2643 	/*
2644 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2645 	 */
2646 	if (ctx->flags & SCA_USER)
2647 		swap(p->user_cpus_ptr, ctx->user_mask);
2648 }
2649 
2650 static void
2651 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2652 {
2653 	struct rq *rq = task_rq(p);
2654 	bool queued, running;
2655 
2656 	/*
2657 	 * This here violates the locking rules for affinity, since we're only
2658 	 * supposed to change these variables while holding both rq->lock and
2659 	 * p->pi_lock.
2660 	 *
2661 	 * HOWEVER, it magically works, because ttwu() is the only code that
2662 	 * accesses these variables under p->pi_lock and only does so after
2663 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2664 	 * before finish_task().
2665 	 *
2666 	 * XXX do further audits, this smells like something putrid.
2667 	 */
2668 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2669 		SCHED_WARN_ON(!p->on_cpu);
2670 	else
2671 		lockdep_assert_held(&p->pi_lock);
2672 
2673 	queued = task_on_rq_queued(p);
2674 	running = task_current(rq, p);
2675 
2676 	if (queued) {
2677 		/*
2678 		 * Because __kthread_bind() calls this on blocked tasks without
2679 		 * holding rq->lock.
2680 		 */
2681 		lockdep_assert_rq_held(rq);
2682 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2683 	}
2684 	if (running)
2685 		put_prev_task(rq, p);
2686 
2687 	p->sched_class->set_cpus_allowed(p, ctx);
2688 
2689 	if (queued)
2690 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2691 	if (running)
2692 		set_next_task(rq, p);
2693 }
2694 
2695 /*
2696  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2697  * affinity (if any) should be destroyed too.
2698  */
2699 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2700 {
2701 	struct affinity_context ac = {
2702 		.new_mask  = new_mask,
2703 		.user_mask = NULL,
2704 		.flags     = SCA_USER,	/* clear the user requested mask */
2705 	};
2706 	union cpumask_rcuhead {
2707 		cpumask_t cpumask;
2708 		struct rcu_head rcu;
2709 	};
2710 
2711 	__do_set_cpus_allowed(p, &ac);
2712 
2713 	/*
2714 	 * Because this is called with p->pi_lock held, it is not possible
2715 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2716 	 * kfree_rcu().
2717 	 */
2718 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2719 }
2720 
2721 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2722 		      int node)
2723 {
2724 	cpumask_t *user_mask;
2725 	unsigned long flags;
2726 
2727 	/*
2728 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2729 	 * may differ by now due to racing.
2730 	 */
2731 	dst->user_cpus_ptr = NULL;
2732 
2733 	/*
2734 	 * This check is racy and losing the race is a valid situation.
2735 	 * It is not worth the extra overhead of taking the pi_lock on
2736 	 * every fork/clone.
2737 	 */
2738 	if (data_race(!src->user_cpus_ptr))
2739 		return 0;
2740 
2741 	user_mask = alloc_user_cpus_ptr(node);
2742 	if (!user_mask)
2743 		return -ENOMEM;
2744 
2745 	/*
2746 	 * Use pi_lock to protect content of user_cpus_ptr
2747 	 *
2748 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2749 	 * do_set_cpus_allowed().
2750 	 */
2751 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2752 	if (src->user_cpus_ptr) {
2753 		swap(dst->user_cpus_ptr, user_mask);
2754 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2755 	}
2756 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2757 
2758 	if (unlikely(user_mask))
2759 		kfree(user_mask);
2760 
2761 	return 0;
2762 }
2763 
2764 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2765 {
2766 	struct cpumask *user_mask = NULL;
2767 
2768 	swap(p->user_cpus_ptr, user_mask);
2769 
2770 	return user_mask;
2771 }
2772 
2773 void release_user_cpus_ptr(struct task_struct *p)
2774 {
2775 	kfree(clear_user_cpus_ptr(p));
2776 }
2777 
2778 /*
2779  * This function is wildly self concurrent; here be dragons.
2780  *
2781  *
2782  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2783  * designated task is enqueued on an allowed CPU. If that task is currently
2784  * running, we have to kick it out using the CPU stopper.
2785  *
2786  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2787  * Consider:
2788  *
2789  *     Initial conditions: P0->cpus_mask = [0, 1]
2790  *
2791  *     P0@CPU0                  P1
2792  *
2793  *     migrate_disable();
2794  *     <preempted>
2795  *                              set_cpus_allowed_ptr(P0, [1]);
2796  *
2797  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2798  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2799  * This means we need the following scheme:
2800  *
2801  *     P0@CPU0                  P1
2802  *
2803  *     migrate_disable();
2804  *     <preempted>
2805  *                              set_cpus_allowed_ptr(P0, [1]);
2806  *                                <blocks>
2807  *     <resumes>
2808  *     migrate_enable();
2809  *       __set_cpus_allowed_ptr();
2810  *       <wakes local stopper>
2811  *                         `--> <woken on migration completion>
2812  *
2813  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2814  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2815  * task p are serialized by p->pi_lock, which we can leverage: the one that
2816  * should come into effect at the end of the Migrate-Disable region is the last
2817  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2818  * but we still need to properly signal those waiting tasks at the appropriate
2819  * moment.
2820  *
2821  * This is implemented using struct set_affinity_pending. The first
2822  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2823  * setup an instance of that struct and install it on the targeted task_struct.
2824  * Any and all further callers will reuse that instance. Those then wait for
2825  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2826  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2827  *
2828  *
2829  * (1) In the cases covered above. There is one more where the completion is
2830  * signaled within affine_move_task() itself: when a subsequent affinity request
2831  * occurs after the stopper bailed out due to the targeted task still being
2832  * Migrate-Disable. Consider:
2833  *
2834  *     Initial conditions: P0->cpus_mask = [0, 1]
2835  *
2836  *     CPU0		  P1				P2
2837  *     <P0>
2838  *       migrate_disable();
2839  *       <preempted>
2840  *                        set_cpus_allowed_ptr(P0, [1]);
2841  *                          <blocks>
2842  *     <migration/0>
2843  *       migration_cpu_stop()
2844  *         is_migration_disabled()
2845  *           <bails>
2846  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2847  *                                                         <signal completion>
2848  *                          <awakes>
2849  *
2850  * Note that the above is safe vs a concurrent migrate_enable(), as any
2851  * pending affinity completion is preceded by an uninstallation of
2852  * p->migration_pending done with p->pi_lock held.
2853  */
2854 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2855 			    int dest_cpu, unsigned int flags)
2856 	__releases(rq->lock)
2857 	__releases(p->pi_lock)
2858 {
2859 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2860 	bool stop_pending, complete = false;
2861 
2862 	/* Can the task run on the task's current CPU? If so, we're done */
2863 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2864 		struct task_struct *push_task = NULL;
2865 
2866 		if ((flags & SCA_MIGRATE_ENABLE) &&
2867 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2868 			rq->push_busy = true;
2869 			push_task = get_task_struct(p);
2870 		}
2871 
2872 		/*
2873 		 * If there are pending waiters, but no pending stop_work,
2874 		 * then complete now.
2875 		 */
2876 		pending = p->migration_pending;
2877 		if (pending && !pending->stop_pending) {
2878 			p->migration_pending = NULL;
2879 			complete = true;
2880 		}
2881 
2882 		preempt_disable();
2883 		task_rq_unlock(rq, p, rf);
2884 		if (push_task) {
2885 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2886 					    p, &rq->push_work);
2887 		}
2888 		preempt_enable();
2889 
2890 		if (complete)
2891 			complete_all(&pending->done);
2892 
2893 		return 0;
2894 	}
2895 
2896 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2897 		/* serialized by p->pi_lock */
2898 		if (!p->migration_pending) {
2899 			/* Install the request */
2900 			refcount_set(&my_pending.refs, 1);
2901 			init_completion(&my_pending.done);
2902 			my_pending.arg = (struct migration_arg) {
2903 				.task = p,
2904 				.dest_cpu = dest_cpu,
2905 				.pending = &my_pending,
2906 			};
2907 
2908 			p->migration_pending = &my_pending;
2909 		} else {
2910 			pending = p->migration_pending;
2911 			refcount_inc(&pending->refs);
2912 			/*
2913 			 * Affinity has changed, but we've already installed a
2914 			 * pending. migration_cpu_stop() *must* see this, else
2915 			 * we risk a completion of the pending despite having a
2916 			 * task on a disallowed CPU.
2917 			 *
2918 			 * Serialized by p->pi_lock, so this is safe.
2919 			 */
2920 			pending->arg.dest_cpu = dest_cpu;
2921 		}
2922 	}
2923 	pending = p->migration_pending;
2924 	/*
2925 	 * - !MIGRATE_ENABLE:
2926 	 *   we'll have installed a pending if there wasn't one already.
2927 	 *
2928 	 * - MIGRATE_ENABLE:
2929 	 *   we're here because the current CPU isn't matching anymore,
2930 	 *   the only way that can happen is because of a concurrent
2931 	 *   set_cpus_allowed_ptr() call, which should then still be
2932 	 *   pending completion.
2933 	 *
2934 	 * Either way, we really should have a @pending here.
2935 	 */
2936 	if (WARN_ON_ONCE(!pending)) {
2937 		task_rq_unlock(rq, p, rf);
2938 		return -EINVAL;
2939 	}
2940 
2941 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2942 		/*
2943 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2944 		 * anything else we cannot do is_migration_disabled(), punt
2945 		 * and have the stopper function handle it all race-free.
2946 		 */
2947 		stop_pending = pending->stop_pending;
2948 		if (!stop_pending)
2949 			pending->stop_pending = true;
2950 
2951 		if (flags & SCA_MIGRATE_ENABLE)
2952 			p->migration_flags &= ~MDF_PUSH;
2953 
2954 		preempt_disable();
2955 		task_rq_unlock(rq, p, rf);
2956 		if (!stop_pending) {
2957 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2958 					    &pending->arg, &pending->stop_work);
2959 		}
2960 		preempt_enable();
2961 
2962 		if (flags & SCA_MIGRATE_ENABLE)
2963 			return 0;
2964 	} else {
2965 
2966 		if (!is_migration_disabled(p)) {
2967 			if (task_on_rq_queued(p))
2968 				rq = move_queued_task(rq, rf, p, dest_cpu);
2969 
2970 			if (!pending->stop_pending) {
2971 				p->migration_pending = NULL;
2972 				complete = true;
2973 			}
2974 		}
2975 		task_rq_unlock(rq, p, rf);
2976 
2977 		if (complete)
2978 			complete_all(&pending->done);
2979 	}
2980 
2981 	wait_for_completion(&pending->done);
2982 
2983 	if (refcount_dec_and_test(&pending->refs))
2984 		wake_up_var(&pending->refs); /* No UaF, just an address */
2985 
2986 	/*
2987 	 * Block the original owner of &pending until all subsequent callers
2988 	 * have seen the completion and decremented the refcount
2989 	 */
2990 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2991 
2992 	/* ARGH */
2993 	WARN_ON_ONCE(my_pending.stop_pending);
2994 
2995 	return 0;
2996 }
2997 
2998 /*
2999  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3000  */
3001 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3002 					 struct affinity_context *ctx,
3003 					 struct rq *rq,
3004 					 struct rq_flags *rf)
3005 	__releases(rq->lock)
3006 	__releases(p->pi_lock)
3007 {
3008 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3009 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3010 	bool kthread = p->flags & PF_KTHREAD;
3011 	unsigned int dest_cpu;
3012 	int ret = 0;
3013 
3014 	update_rq_clock(rq);
3015 
3016 	if (kthread || is_migration_disabled(p)) {
3017 		/*
3018 		 * Kernel threads are allowed on online && !active CPUs,
3019 		 * however, during cpu-hot-unplug, even these might get pushed
3020 		 * away if not KTHREAD_IS_PER_CPU.
3021 		 *
3022 		 * Specifically, migration_disabled() tasks must not fail the
3023 		 * cpumask_any_and_distribute() pick below, esp. so on
3024 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3025 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3026 		 */
3027 		cpu_valid_mask = cpu_online_mask;
3028 	}
3029 
3030 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3031 		ret = -EINVAL;
3032 		goto out;
3033 	}
3034 
3035 	/*
3036 	 * Must re-check here, to close a race against __kthread_bind(),
3037 	 * sched_setaffinity() is not guaranteed to observe the flag.
3038 	 */
3039 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3040 		ret = -EINVAL;
3041 		goto out;
3042 	}
3043 
3044 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3045 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3046 			if (ctx->flags & SCA_USER)
3047 				swap(p->user_cpus_ptr, ctx->user_mask);
3048 			goto out;
3049 		}
3050 
3051 		if (WARN_ON_ONCE(p == current &&
3052 				 is_migration_disabled(p) &&
3053 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3054 			ret = -EBUSY;
3055 			goto out;
3056 		}
3057 	}
3058 
3059 	/*
3060 	 * Picking a ~random cpu helps in cases where we are changing affinity
3061 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3062 	 * immediately required to distribute the tasks within their new mask.
3063 	 */
3064 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3065 	if (dest_cpu >= nr_cpu_ids) {
3066 		ret = -EINVAL;
3067 		goto out;
3068 	}
3069 
3070 	__do_set_cpus_allowed(p, ctx);
3071 
3072 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3073 
3074 out:
3075 	task_rq_unlock(rq, p, rf);
3076 
3077 	return ret;
3078 }
3079 
3080 /*
3081  * Change a given task's CPU affinity. Migrate the thread to a
3082  * proper CPU and schedule it away if the CPU it's executing on
3083  * is removed from the allowed bitmask.
3084  *
3085  * NOTE: the caller must have a valid reference to the task, the
3086  * task must not exit() & deallocate itself prematurely. The
3087  * call is not atomic; no spinlocks may be held.
3088  */
3089 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3090 {
3091 	struct rq_flags rf;
3092 	struct rq *rq;
3093 
3094 	rq = task_rq_lock(p, &rf);
3095 	/*
3096 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3097 	 * flags are set.
3098 	 */
3099 	if (p->user_cpus_ptr &&
3100 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3101 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3102 		ctx->new_mask = rq->scratch_mask;
3103 
3104 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3105 }
3106 
3107 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3108 {
3109 	struct affinity_context ac = {
3110 		.new_mask  = new_mask,
3111 		.flags     = 0,
3112 	};
3113 
3114 	return __set_cpus_allowed_ptr(p, &ac);
3115 }
3116 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3117 
3118 /*
3119  * Change a given task's CPU affinity to the intersection of its current
3120  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3121  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3122  * affinity or use cpu_online_mask instead.
3123  *
3124  * If the resulting mask is empty, leave the affinity unchanged and return
3125  * -EINVAL.
3126  */
3127 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3128 				     struct cpumask *new_mask,
3129 				     const struct cpumask *subset_mask)
3130 {
3131 	struct affinity_context ac = {
3132 		.new_mask  = new_mask,
3133 		.flags     = 0,
3134 	};
3135 	struct rq_flags rf;
3136 	struct rq *rq;
3137 	int err;
3138 
3139 	rq = task_rq_lock(p, &rf);
3140 
3141 	/*
3142 	 * Forcefully restricting the affinity of a deadline task is
3143 	 * likely to cause problems, so fail and noisily override the
3144 	 * mask entirely.
3145 	 */
3146 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3147 		err = -EPERM;
3148 		goto err_unlock;
3149 	}
3150 
3151 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3152 		err = -EINVAL;
3153 		goto err_unlock;
3154 	}
3155 
3156 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3157 
3158 err_unlock:
3159 	task_rq_unlock(rq, p, &rf);
3160 	return err;
3161 }
3162 
3163 /*
3164  * Restrict the CPU affinity of task @p so that it is a subset of
3165  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3166  * old affinity mask. If the resulting mask is empty, we warn and walk
3167  * up the cpuset hierarchy until we find a suitable mask.
3168  */
3169 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3170 {
3171 	cpumask_var_t new_mask;
3172 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3173 
3174 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3175 
3176 	/*
3177 	 * __migrate_task() can fail silently in the face of concurrent
3178 	 * offlining of the chosen destination CPU, so take the hotplug
3179 	 * lock to ensure that the migration succeeds.
3180 	 */
3181 	cpus_read_lock();
3182 	if (!cpumask_available(new_mask))
3183 		goto out_set_mask;
3184 
3185 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3186 		goto out_free_mask;
3187 
3188 	/*
3189 	 * We failed to find a valid subset of the affinity mask for the
3190 	 * task, so override it based on its cpuset hierarchy.
3191 	 */
3192 	cpuset_cpus_allowed(p, new_mask);
3193 	override_mask = new_mask;
3194 
3195 out_set_mask:
3196 	if (printk_ratelimit()) {
3197 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3198 				task_pid_nr(p), p->comm,
3199 				cpumask_pr_args(override_mask));
3200 	}
3201 
3202 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3203 out_free_mask:
3204 	cpus_read_unlock();
3205 	free_cpumask_var(new_mask);
3206 }
3207 
3208 /*
3209  * Restore the affinity of a task @p which was previously restricted by a
3210  * call to force_compatible_cpus_allowed_ptr().
3211  *
3212  * It is the caller's responsibility to serialise this with any calls to
3213  * force_compatible_cpus_allowed_ptr(@p).
3214  */
3215 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3216 {
3217 	struct affinity_context ac = {
3218 		.new_mask  = task_user_cpus(p),
3219 		.flags     = 0,
3220 	};
3221 	int ret;
3222 
3223 	/*
3224 	 * Try to restore the old affinity mask with __sched_setaffinity().
3225 	 * Cpuset masking will be done there too.
3226 	 */
3227 	ret = __sched_setaffinity(p, &ac);
3228 	WARN_ON_ONCE(ret);
3229 }
3230 
3231 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3232 {
3233 #ifdef CONFIG_SCHED_DEBUG
3234 	unsigned int state = READ_ONCE(p->__state);
3235 
3236 	/*
3237 	 * We should never call set_task_cpu() on a blocked task,
3238 	 * ttwu() will sort out the placement.
3239 	 */
3240 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3241 
3242 	/*
3243 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3244 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3245 	 * time relying on p->on_rq.
3246 	 */
3247 	WARN_ON_ONCE(state == TASK_RUNNING &&
3248 		     p->sched_class == &fair_sched_class &&
3249 		     (p->on_rq && !task_on_rq_migrating(p)));
3250 
3251 #ifdef CONFIG_LOCKDEP
3252 	/*
3253 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3254 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3255 	 *
3256 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3257 	 * see task_group().
3258 	 *
3259 	 * Furthermore, all task_rq users should acquire both locks, see
3260 	 * task_rq_lock().
3261 	 */
3262 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3263 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3264 #endif
3265 	/*
3266 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3267 	 */
3268 	WARN_ON_ONCE(!cpu_online(new_cpu));
3269 
3270 	WARN_ON_ONCE(is_migration_disabled(p));
3271 #endif
3272 
3273 	trace_sched_migrate_task(p, new_cpu);
3274 
3275 	if (task_cpu(p) != new_cpu) {
3276 		if (p->sched_class->migrate_task_rq)
3277 			p->sched_class->migrate_task_rq(p, new_cpu);
3278 		p->se.nr_migrations++;
3279 		rseq_migrate(p);
3280 		sched_mm_cid_migrate_from(p);
3281 		perf_event_task_migrate(p);
3282 	}
3283 
3284 	__set_task_cpu(p, new_cpu);
3285 }
3286 
3287 #ifdef CONFIG_NUMA_BALANCING
3288 static void __migrate_swap_task(struct task_struct *p, int cpu)
3289 {
3290 	if (task_on_rq_queued(p)) {
3291 		struct rq *src_rq, *dst_rq;
3292 		struct rq_flags srf, drf;
3293 
3294 		src_rq = task_rq(p);
3295 		dst_rq = cpu_rq(cpu);
3296 
3297 		rq_pin_lock(src_rq, &srf);
3298 		rq_pin_lock(dst_rq, &drf);
3299 
3300 		deactivate_task(src_rq, p, 0);
3301 		set_task_cpu(p, cpu);
3302 		activate_task(dst_rq, p, 0);
3303 		wakeup_preempt(dst_rq, p, 0);
3304 
3305 		rq_unpin_lock(dst_rq, &drf);
3306 		rq_unpin_lock(src_rq, &srf);
3307 
3308 	} else {
3309 		/*
3310 		 * Task isn't running anymore; make it appear like we migrated
3311 		 * it before it went to sleep. This means on wakeup we make the
3312 		 * previous CPU our target instead of where it really is.
3313 		 */
3314 		p->wake_cpu = cpu;
3315 	}
3316 }
3317 
3318 struct migration_swap_arg {
3319 	struct task_struct *src_task, *dst_task;
3320 	int src_cpu, dst_cpu;
3321 };
3322 
3323 static int migrate_swap_stop(void *data)
3324 {
3325 	struct migration_swap_arg *arg = data;
3326 	struct rq *src_rq, *dst_rq;
3327 
3328 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3329 		return -EAGAIN;
3330 
3331 	src_rq = cpu_rq(arg->src_cpu);
3332 	dst_rq = cpu_rq(arg->dst_cpu);
3333 
3334 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3335 	guard(double_rq_lock)(src_rq, dst_rq);
3336 
3337 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3338 		return -EAGAIN;
3339 
3340 	if (task_cpu(arg->src_task) != arg->src_cpu)
3341 		return -EAGAIN;
3342 
3343 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3344 		return -EAGAIN;
3345 
3346 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3347 		return -EAGAIN;
3348 
3349 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3350 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3351 
3352 	return 0;
3353 }
3354 
3355 /*
3356  * Cross migrate two tasks
3357  */
3358 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3359 		int target_cpu, int curr_cpu)
3360 {
3361 	struct migration_swap_arg arg;
3362 	int ret = -EINVAL;
3363 
3364 	arg = (struct migration_swap_arg){
3365 		.src_task = cur,
3366 		.src_cpu = curr_cpu,
3367 		.dst_task = p,
3368 		.dst_cpu = target_cpu,
3369 	};
3370 
3371 	if (arg.src_cpu == arg.dst_cpu)
3372 		goto out;
3373 
3374 	/*
3375 	 * These three tests are all lockless; this is OK since all of them
3376 	 * will be re-checked with proper locks held further down the line.
3377 	 */
3378 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3379 		goto out;
3380 
3381 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3382 		goto out;
3383 
3384 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3385 		goto out;
3386 
3387 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3388 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3389 
3390 out:
3391 	return ret;
3392 }
3393 #endif /* CONFIG_NUMA_BALANCING */
3394 
3395 /***
3396  * kick_process - kick a running thread to enter/exit the kernel
3397  * @p: the to-be-kicked thread
3398  *
3399  * Cause a process which is running on another CPU to enter
3400  * kernel-mode, without any delay. (to get signals handled.)
3401  *
3402  * NOTE: this function doesn't have to take the runqueue lock,
3403  * because all it wants to ensure is that the remote task enters
3404  * the kernel. If the IPI races and the task has been migrated
3405  * to another CPU then no harm is done and the purpose has been
3406  * achieved as well.
3407  */
3408 void kick_process(struct task_struct *p)
3409 {
3410 	guard(preempt)();
3411 	int cpu = task_cpu(p);
3412 
3413 	if ((cpu != smp_processor_id()) && task_curr(p))
3414 		smp_send_reschedule(cpu);
3415 }
3416 EXPORT_SYMBOL_GPL(kick_process);
3417 
3418 /*
3419  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3420  *
3421  * A few notes on cpu_active vs cpu_online:
3422  *
3423  *  - cpu_active must be a subset of cpu_online
3424  *
3425  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3426  *    see __set_cpus_allowed_ptr(). At this point the newly online
3427  *    CPU isn't yet part of the sched domains, and balancing will not
3428  *    see it.
3429  *
3430  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3431  *    avoid the load balancer to place new tasks on the to be removed
3432  *    CPU. Existing tasks will remain running there and will be taken
3433  *    off.
3434  *
3435  * This means that fallback selection must not select !active CPUs.
3436  * And can assume that any active CPU must be online. Conversely
3437  * select_task_rq() below may allow selection of !active CPUs in order
3438  * to satisfy the above rules.
3439  */
3440 static int select_fallback_rq(int cpu, struct task_struct *p)
3441 {
3442 	int nid = cpu_to_node(cpu);
3443 	const struct cpumask *nodemask = NULL;
3444 	enum { cpuset, possible, fail } state = cpuset;
3445 	int dest_cpu;
3446 
3447 	/*
3448 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3449 	 * will return -1. There is no CPU on the node, and we should
3450 	 * select the CPU on the other node.
3451 	 */
3452 	if (nid != -1) {
3453 		nodemask = cpumask_of_node(nid);
3454 
3455 		/* Look for allowed, online CPU in same node. */
3456 		for_each_cpu(dest_cpu, nodemask) {
3457 			if (is_cpu_allowed(p, dest_cpu))
3458 				return dest_cpu;
3459 		}
3460 	}
3461 
3462 	for (;;) {
3463 		/* Any allowed, online CPU? */
3464 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3465 			if (!is_cpu_allowed(p, dest_cpu))
3466 				continue;
3467 
3468 			goto out;
3469 		}
3470 
3471 		/* No more Mr. Nice Guy. */
3472 		switch (state) {
3473 		case cpuset:
3474 			if (cpuset_cpus_allowed_fallback(p)) {
3475 				state = possible;
3476 				break;
3477 			}
3478 			fallthrough;
3479 		case possible:
3480 			/*
3481 			 * XXX When called from select_task_rq() we only
3482 			 * hold p->pi_lock and again violate locking order.
3483 			 *
3484 			 * More yuck to audit.
3485 			 */
3486 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3487 			state = fail;
3488 			break;
3489 		case fail:
3490 			BUG();
3491 			break;
3492 		}
3493 	}
3494 
3495 out:
3496 	if (state != cpuset) {
3497 		/*
3498 		 * Don't tell them about moving exiting tasks or
3499 		 * kernel threads (both mm NULL), since they never
3500 		 * leave kernel.
3501 		 */
3502 		if (p->mm && printk_ratelimit()) {
3503 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3504 					task_pid_nr(p), p->comm, cpu);
3505 		}
3506 	}
3507 
3508 	return dest_cpu;
3509 }
3510 
3511 /*
3512  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3513  */
3514 static inline
3515 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3516 {
3517 	lockdep_assert_held(&p->pi_lock);
3518 
3519 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3520 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3521 	else
3522 		cpu = cpumask_any(p->cpus_ptr);
3523 
3524 	/*
3525 	 * In order not to call set_task_cpu() on a blocking task we need
3526 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3527 	 * CPU.
3528 	 *
3529 	 * Since this is common to all placement strategies, this lives here.
3530 	 *
3531 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3532 	 *   not worry about this generic constraint ]
3533 	 */
3534 	if (unlikely(!is_cpu_allowed(p, cpu)))
3535 		cpu = select_fallback_rq(task_cpu(p), p);
3536 
3537 	return cpu;
3538 }
3539 
3540 void sched_set_stop_task(int cpu, struct task_struct *stop)
3541 {
3542 	static struct lock_class_key stop_pi_lock;
3543 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3544 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3545 
3546 	if (stop) {
3547 		/*
3548 		 * Make it appear like a SCHED_FIFO task, its something
3549 		 * userspace knows about and won't get confused about.
3550 		 *
3551 		 * Also, it will make PI more or less work without too
3552 		 * much confusion -- but then, stop work should not
3553 		 * rely on PI working anyway.
3554 		 */
3555 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3556 
3557 		stop->sched_class = &stop_sched_class;
3558 
3559 		/*
3560 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3561 		 * adjust the effective priority of a task. As a result,
3562 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3563 		 * which can then trigger wakeups of the stop thread to push
3564 		 * around the current task.
3565 		 *
3566 		 * The stop task itself will never be part of the PI-chain, it
3567 		 * never blocks, therefore that ->pi_lock recursion is safe.
3568 		 * Tell lockdep about this by placing the stop->pi_lock in its
3569 		 * own class.
3570 		 */
3571 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3572 	}
3573 
3574 	cpu_rq(cpu)->stop = stop;
3575 
3576 	if (old_stop) {
3577 		/*
3578 		 * Reset it back to a normal scheduling class so that
3579 		 * it can die in pieces.
3580 		 */
3581 		old_stop->sched_class = &rt_sched_class;
3582 	}
3583 }
3584 
3585 #else /* CONFIG_SMP */
3586 
3587 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3588 
3589 static inline bool rq_has_pinned_tasks(struct rq *rq)
3590 {
3591 	return false;
3592 }
3593 
3594 #endif /* !CONFIG_SMP */
3595 
3596 static void
3597 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3598 {
3599 	struct rq *rq;
3600 
3601 	if (!schedstat_enabled())
3602 		return;
3603 
3604 	rq = this_rq();
3605 
3606 #ifdef CONFIG_SMP
3607 	if (cpu == rq->cpu) {
3608 		__schedstat_inc(rq->ttwu_local);
3609 		__schedstat_inc(p->stats.nr_wakeups_local);
3610 	} else {
3611 		struct sched_domain *sd;
3612 
3613 		__schedstat_inc(p->stats.nr_wakeups_remote);
3614 
3615 		guard(rcu)();
3616 		for_each_domain(rq->cpu, sd) {
3617 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3618 				__schedstat_inc(sd->ttwu_wake_remote);
3619 				break;
3620 			}
3621 		}
3622 	}
3623 
3624 	if (wake_flags & WF_MIGRATED)
3625 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3626 #endif /* CONFIG_SMP */
3627 
3628 	__schedstat_inc(rq->ttwu_count);
3629 	__schedstat_inc(p->stats.nr_wakeups);
3630 
3631 	if (wake_flags & WF_SYNC)
3632 		__schedstat_inc(p->stats.nr_wakeups_sync);
3633 }
3634 
3635 /*
3636  * Mark the task runnable.
3637  */
3638 static inline void ttwu_do_wakeup(struct task_struct *p)
3639 {
3640 	WRITE_ONCE(p->__state, TASK_RUNNING);
3641 	trace_sched_wakeup(p);
3642 }
3643 
3644 static void
3645 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3646 		 struct rq_flags *rf)
3647 {
3648 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3649 
3650 	lockdep_assert_rq_held(rq);
3651 
3652 	if (p->sched_contributes_to_load)
3653 		rq->nr_uninterruptible--;
3654 
3655 #ifdef CONFIG_SMP
3656 	if (wake_flags & WF_MIGRATED)
3657 		en_flags |= ENQUEUE_MIGRATED;
3658 	else
3659 #endif
3660 	if (p->in_iowait) {
3661 		delayacct_blkio_end(p);
3662 		atomic_dec(&task_rq(p)->nr_iowait);
3663 	}
3664 
3665 	activate_task(rq, p, en_flags);
3666 	wakeup_preempt(rq, p, wake_flags);
3667 
3668 	ttwu_do_wakeup(p);
3669 
3670 #ifdef CONFIG_SMP
3671 	if (p->sched_class->task_woken) {
3672 		/*
3673 		 * Our task @p is fully woken up and running; so it's safe to
3674 		 * drop the rq->lock, hereafter rq is only used for statistics.
3675 		 */
3676 		rq_unpin_lock(rq, rf);
3677 		p->sched_class->task_woken(rq, p);
3678 		rq_repin_lock(rq, rf);
3679 	}
3680 
3681 	if (rq->idle_stamp) {
3682 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3683 		u64 max = 2*rq->max_idle_balance_cost;
3684 
3685 		update_avg(&rq->avg_idle, delta);
3686 
3687 		if (rq->avg_idle > max)
3688 			rq->avg_idle = max;
3689 
3690 		rq->idle_stamp = 0;
3691 	}
3692 #endif
3693 }
3694 
3695 /*
3696  * Consider @p being inside a wait loop:
3697  *
3698  *   for (;;) {
3699  *      set_current_state(TASK_UNINTERRUPTIBLE);
3700  *
3701  *      if (CONDITION)
3702  *         break;
3703  *
3704  *      schedule();
3705  *   }
3706  *   __set_current_state(TASK_RUNNING);
3707  *
3708  * between set_current_state() and schedule(). In this case @p is still
3709  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3710  * an atomic manner.
3711  *
3712  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3713  * then schedule() must still happen and p->state can be changed to
3714  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3715  * need to do a full wakeup with enqueue.
3716  *
3717  * Returns: %true when the wakeup is done,
3718  *          %false otherwise.
3719  */
3720 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3721 {
3722 	struct rq_flags rf;
3723 	struct rq *rq;
3724 	int ret = 0;
3725 
3726 	rq = __task_rq_lock(p, &rf);
3727 	if (task_on_rq_queued(p)) {
3728 		update_rq_clock(rq);
3729 		if (p->se.sched_delayed)
3730 			enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
3731 		if (!task_on_cpu(rq, p)) {
3732 			/*
3733 			 * When on_rq && !on_cpu the task is preempted, see if
3734 			 * it should preempt the task that is current now.
3735 			 */
3736 			wakeup_preempt(rq, p, wake_flags);
3737 		}
3738 		ttwu_do_wakeup(p);
3739 		ret = 1;
3740 	}
3741 	__task_rq_unlock(rq, &rf);
3742 
3743 	return ret;
3744 }
3745 
3746 #ifdef CONFIG_SMP
3747 void sched_ttwu_pending(void *arg)
3748 {
3749 	struct llist_node *llist = arg;
3750 	struct rq *rq = this_rq();
3751 	struct task_struct *p, *t;
3752 	struct rq_flags rf;
3753 
3754 	if (!llist)
3755 		return;
3756 
3757 	rq_lock_irqsave(rq, &rf);
3758 	update_rq_clock(rq);
3759 
3760 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3761 		if (WARN_ON_ONCE(p->on_cpu))
3762 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3763 
3764 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3765 			set_task_cpu(p, cpu_of(rq));
3766 
3767 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3768 	}
3769 
3770 	/*
3771 	 * Must be after enqueueing at least once task such that
3772 	 * idle_cpu() does not observe a false-negative -- if it does,
3773 	 * it is possible for select_idle_siblings() to stack a number
3774 	 * of tasks on this CPU during that window.
3775 	 *
3776 	 * It is OK to clear ttwu_pending when another task pending.
3777 	 * We will receive IPI after local IRQ enabled and then enqueue it.
3778 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3779 	 */
3780 	WRITE_ONCE(rq->ttwu_pending, 0);
3781 	rq_unlock_irqrestore(rq, &rf);
3782 }
3783 
3784 /*
3785  * Prepare the scene for sending an IPI for a remote smp_call
3786  *
3787  * Returns true if the caller can proceed with sending the IPI.
3788  * Returns false otherwise.
3789  */
3790 bool call_function_single_prep_ipi(int cpu)
3791 {
3792 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3793 		trace_sched_wake_idle_without_ipi(cpu);
3794 		return false;
3795 	}
3796 
3797 	return true;
3798 }
3799 
3800 /*
3801  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3802  * necessary. The wakee CPU on receipt of the IPI will queue the task
3803  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3804  * of the wakeup instead of the waker.
3805  */
3806 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3807 {
3808 	struct rq *rq = cpu_rq(cpu);
3809 
3810 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3811 
3812 	WRITE_ONCE(rq->ttwu_pending, 1);
3813 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3814 }
3815 
3816 void wake_up_if_idle(int cpu)
3817 {
3818 	struct rq *rq = cpu_rq(cpu);
3819 
3820 	guard(rcu)();
3821 	if (is_idle_task(rcu_dereference(rq->curr))) {
3822 		guard(rq_lock_irqsave)(rq);
3823 		if (is_idle_task(rq->curr))
3824 			resched_curr(rq);
3825 	}
3826 }
3827 
3828 bool cpus_equal_capacity(int this_cpu, int that_cpu)
3829 {
3830 	if (!sched_asym_cpucap_active())
3831 		return true;
3832 
3833 	if (this_cpu == that_cpu)
3834 		return true;
3835 
3836 	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3837 }
3838 
3839 bool cpus_share_cache(int this_cpu, int that_cpu)
3840 {
3841 	if (this_cpu == that_cpu)
3842 		return true;
3843 
3844 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3845 }
3846 
3847 /*
3848  * Whether CPUs are share cache resources, which means LLC on non-cluster
3849  * machines and LLC tag or L2 on machines with clusters.
3850  */
3851 bool cpus_share_resources(int this_cpu, int that_cpu)
3852 {
3853 	if (this_cpu == that_cpu)
3854 		return true;
3855 
3856 	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3857 }
3858 
3859 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3860 {
3861 	/*
3862 	 * The BPF scheduler may depend on select_task_rq() being invoked during
3863 	 * wakeups. In addition, @p may end up executing on a different CPU
3864 	 * regardless of what happens in the wakeup path making the ttwu_queue
3865 	 * optimization less meaningful. Skip if on SCX.
3866 	 */
3867 	if (task_on_scx(p))
3868 		return false;
3869 
3870 	/*
3871 	 * Do not complicate things with the async wake_list while the CPU is
3872 	 * in hotplug state.
3873 	 */
3874 	if (!cpu_active(cpu))
3875 		return false;
3876 
3877 	/* Ensure the task will still be allowed to run on the CPU. */
3878 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3879 		return false;
3880 
3881 	/*
3882 	 * If the CPU does not share cache, then queue the task on the
3883 	 * remote rqs wakelist to avoid accessing remote data.
3884 	 */
3885 	if (!cpus_share_cache(smp_processor_id(), cpu))
3886 		return true;
3887 
3888 	if (cpu == smp_processor_id())
3889 		return false;
3890 
3891 	/*
3892 	 * If the wakee cpu is idle, or the task is descheduling and the
3893 	 * only running task on the CPU, then use the wakelist to offload
3894 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3895 	 * the current CPU is likely busy. nr_running is checked to
3896 	 * avoid unnecessary task stacking.
3897 	 *
3898 	 * Note that we can only get here with (wakee) p->on_rq=0,
3899 	 * p->on_cpu can be whatever, we've done the dequeue, so
3900 	 * the wakee has been accounted out of ->nr_running.
3901 	 */
3902 	if (!cpu_rq(cpu)->nr_running)
3903 		return true;
3904 
3905 	return false;
3906 }
3907 
3908 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3909 {
3910 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3911 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3912 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3913 		return true;
3914 	}
3915 
3916 	return false;
3917 }
3918 
3919 #else /* !CONFIG_SMP */
3920 
3921 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3922 {
3923 	return false;
3924 }
3925 
3926 #endif /* CONFIG_SMP */
3927 
3928 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3929 {
3930 	struct rq *rq = cpu_rq(cpu);
3931 	struct rq_flags rf;
3932 
3933 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3934 		return;
3935 
3936 	rq_lock(rq, &rf);
3937 	update_rq_clock(rq);
3938 	ttwu_do_activate(rq, p, wake_flags, &rf);
3939 	rq_unlock(rq, &rf);
3940 }
3941 
3942 /*
3943  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3944  *
3945  * The caller holds p::pi_lock if p != current or has preemption
3946  * disabled when p == current.
3947  *
3948  * The rules of saved_state:
3949  *
3950  *   The related locking code always holds p::pi_lock when updating
3951  *   p::saved_state, which means the code is fully serialized in both cases.
3952  *
3953  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
3954  *   No other bits set. This allows to distinguish all wakeup scenarios.
3955  *
3956  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
3957  *   allows us to prevent early wakeup of tasks before they can be run on
3958  *   asymmetric ISA architectures (eg ARMv9).
3959  */
3960 static __always_inline
3961 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3962 {
3963 	int match;
3964 
3965 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3966 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3967 			     state != TASK_RTLOCK_WAIT);
3968 	}
3969 
3970 	*success = !!(match = __task_state_match(p, state));
3971 
3972 	/*
3973 	 * Saved state preserves the task state across blocking on
3974 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
3975 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
3976 	 * because it waits for a lock wakeup or __thaw_task(). Also
3977 	 * indicate success because from the regular waker's point of
3978 	 * view this has succeeded.
3979 	 *
3980 	 * After acquiring the lock the task will restore p::__state
3981 	 * from p::saved_state which ensures that the regular
3982 	 * wakeup is not lost. The restore will also set
3983 	 * p::saved_state to TASK_RUNNING so any further tests will
3984 	 * not result in false positives vs. @success
3985 	 */
3986 	if (match < 0)
3987 		p->saved_state = TASK_RUNNING;
3988 
3989 	return match > 0;
3990 }
3991 
3992 /*
3993  * Notes on Program-Order guarantees on SMP systems.
3994  *
3995  *  MIGRATION
3996  *
3997  * The basic program-order guarantee on SMP systems is that when a task [t]
3998  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3999  * execution on its new CPU [c1].
4000  *
4001  * For migration (of runnable tasks) this is provided by the following means:
4002  *
4003  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4004  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4005  *     rq(c1)->lock (if not at the same time, then in that order).
4006  *  C) LOCK of the rq(c1)->lock scheduling in task
4007  *
4008  * Release/acquire chaining guarantees that B happens after A and C after B.
4009  * Note: the CPU doing B need not be c0 or c1
4010  *
4011  * Example:
4012  *
4013  *   CPU0            CPU1            CPU2
4014  *
4015  *   LOCK rq(0)->lock
4016  *   sched-out X
4017  *   sched-in Y
4018  *   UNLOCK rq(0)->lock
4019  *
4020  *                                   LOCK rq(0)->lock // orders against CPU0
4021  *                                   dequeue X
4022  *                                   UNLOCK rq(0)->lock
4023  *
4024  *                                   LOCK rq(1)->lock
4025  *                                   enqueue X
4026  *                                   UNLOCK rq(1)->lock
4027  *
4028  *                   LOCK rq(1)->lock // orders against CPU2
4029  *                   sched-out Z
4030  *                   sched-in X
4031  *                   UNLOCK rq(1)->lock
4032  *
4033  *
4034  *  BLOCKING -- aka. SLEEP + WAKEUP
4035  *
4036  * For blocking we (obviously) need to provide the same guarantee as for
4037  * migration. However the means are completely different as there is no lock
4038  * chain to provide order. Instead we do:
4039  *
4040  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4041  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4042  *
4043  * Example:
4044  *
4045  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4046  *
4047  *   LOCK rq(0)->lock LOCK X->pi_lock
4048  *   dequeue X
4049  *   sched-out X
4050  *   smp_store_release(X->on_cpu, 0);
4051  *
4052  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4053  *                    X->state = WAKING
4054  *                    set_task_cpu(X,2)
4055  *
4056  *                    LOCK rq(2)->lock
4057  *                    enqueue X
4058  *                    X->state = RUNNING
4059  *                    UNLOCK rq(2)->lock
4060  *
4061  *                                          LOCK rq(2)->lock // orders against CPU1
4062  *                                          sched-out Z
4063  *                                          sched-in X
4064  *                                          UNLOCK rq(2)->lock
4065  *
4066  *                    UNLOCK X->pi_lock
4067  *   UNLOCK rq(0)->lock
4068  *
4069  *
4070  * However, for wakeups there is a second guarantee we must provide, namely we
4071  * must ensure that CONDITION=1 done by the caller can not be reordered with
4072  * accesses to the task state; see try_to_wake_up() and set_current_state().
4073  */
4074 
4075 /**
4076  * try_to_wake_up - wake up a thread
4077  * @p: the thread to be awakened
4078  * @state: the mask of task states that can be woken
4079  * @wake_flags: wake modifier flags (WF_*)
4080  *
4081  * Conceptually does:
4082  *
4083  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4084  *
4085  * If the task was not queued/runnable, also place it back on a runqueue.
4086  *
4087  * This function is atomic against schedule() which would dequeue the task.
4088  *
4089  * It issues a full memory barrier before accessing @p->state, see the comment
4090  * with set_current_state().
4091  *
4092  * Uses p->pi_lock to serialize against concurrent wake-ups.
4093  *
4094  * Relies on p->pi_lock stabilizing:
4095  *  - p->sched_class
4096  *  - p->cpus_ptr
4097  *  - p->sched_task_group
4098  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4099  *
4100  * Tries really hard to only take one task_rq(p)->lock for performance.
4101  * Takes rq->lock in:
4102  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4103  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4104  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4105  *
4106  * As a consequence we race really badly with just about everything. See the
4107  * many memory barriers and their comments for details.
4108  *
4109  * Return: %true if @p->state changes (an actual wakeup was done),
4110  *	   %false otherwise.
4111  */
4112 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4113 {
4114 	guard(preempt)();
4115 	int cpu, success = 0;
4116 
4117 	if (p == current) {
4118 		/*
4119 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4120 		 * == smp_processor_id()'. Together this means we can special
4121 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4122 		 * without taking any locks.
4123 		 *
4124 		 * Specifically, given current runs ttwu() we must be before
4125 		 * schedule()'s block_task(), as such this must not observe
4126 		 * sched_delayed.
4127 		 *
4128 		 * In particular:
4129 		 *  - we rely on Program-Order guarantees for all the ordering,
4130 		 *  - we're serialized against set_special_state() by virtue of
4131 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4132 		 */
4133 		SCHED_WARN_ON(p->se.sched_delayed);
4134 		if (!ttwu_state_match(p, state, &success))
4135 			goto out;
4136 
4137 		trace_sched_waking(p);
4138 		ttwu_do_wakeup(p);
4139 		goto out;
4140 	}
4141 
4142 	/*
4143 	 * If we are going to wake up a thread waiting for CONDITION we
4144 	 * need to ensure that CONDITION=1 done by the caller can not be
4145 	 * reordered with p->state check below. This pairs with smp_store_mb()
4146 	 * in set_current_state() that the waiting thread does.
4147 	 */
4148 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4149 		smp_mb__after_spinlock();
4150 		if (!ttwu_state_match(p, state, &success))
4151 			break;
4152 
4153 		trace_sched_waking(p);
4154 
4155 		/*
4156 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4157 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4158 		 * in smp_cond_load_acquire() below.
4159 		 *
4160 		 * sched_ttwu_pending()			try_to_wake_up()
4161 		 *   STORE p->on_rq = 1			  LOAD p->state
4162 		 *   UNLOCK rq->lock
4163 		 *
4164 		 * __schedule() (switch to task 'p')
4165 		 *   LOCK rq->lock			  smp_rmb();
4166 		 *   smp_mb__after_spinlock();
4167 		 *   UNLOCK rq->lock
4168 		 *
4169 		 * [task p]
4170 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4171 		 *
4172 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4173 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4174 		 *
4175 		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4176 		 */
4177 		smp_rmb();
4178 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4179 			break;
4180 
4181 #ifdef CONFIG_SMP
4182 		/*
4183 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4184 		 * possible to, falsely, observe p->on_cpu == 0.
4185 		 *
4186 		 * One must be running (->on_cpu == 1) in order to remove oneself
4187 		 * from the runqueue.
4188 		 *
4189 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4190 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4191 		 *   UNLOCK rq->lock
4192 		 *
4193 		 * __schedule() (put 'p' to sleep)
4194 		 *   LOCK rq->lock			  smp_rmb();
4195 		 *   smp_mb__after_spinlock();
4196 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4197 		 *
4198 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4199 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4200 		 *
4201 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4202 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4203 		 * care about it's own p->state. See the comment in __schedule().
4204 		 */
4205 		smp_acquire__after_ctrl_dep();
4206 
4207 		/*
4208 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4209 		 * == 0), which means we need to do an enqueue, change p->state to
4210 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4211 		 * enqueue, such as ttwu_queue_wakelist().
4212 		 */
4213 		WRITE_ONCE(p->__state, TASK_WAKING);
4214 
4215 		/*
4216 		 * If the owning (remote) CPU is still in the middle of schedule() with
4217 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4218 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4219 		 * let the waker make forward progress. This is safe because IRQs are
4220 		 * disabled and the IPI will deliver after on_cpu is cleared.
4221 		 *
4222 		 * Ensure we load task_cpu(p) after p->on_cpu:
4223 		 *
4224 		 * set_task_cpu(p, cpu);
4225 		 *   STORE p->cpu = @cpu
4226 		 * __schedule() (switch to task 'p')
4227 		 *   LOCK rq->lock
4228 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4229 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4230 		 *
4231 		 * to ensure we observe the correct CPU on which the task is currently
4232 		 * scheduling.
4233 		 */
4234 		if (smp_load_acquire(&p->on_cpu) &&
4235 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4236 			break;
4237 
4238 		/*
4239 		 * If the owning (remote) CPU is still in the middle of schedule() with
4240 		 * this task as prev, wait until it's done referencing the task.
4241 		 *
4242 		 * Pairs with the smp_store_release() in finish_task().
4243 		 *
4244 		 * This ensures that tasks getting woken will be fully ordered against
4245 		 * their previous state and preserve Program Order.
4246 		 */
4247 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4248 
4249 		cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4250 		if (task_cpu(p) != cpu) {
4251 			if (p->in_iowait) {
4252 				delayacct_blkio_end(p);
4253 				atomic_dec(&task_rq(p)->nr_iowait);
4254 			}
4255 
4256 			wake_flags |= WF_MIGRATED;
4257 			psi_ttwu_dequeue(p);
4258 			set_task_cpu(p, cpu);
4259 		}
4260 #else
4261 		cpu = task_cpu(p);
4262 #endif /* CONFIG_SMP */
4263 
4264 		ttwu_queue(p, cpu, wake_flags);
4265 	}
4266 out:
4267 	if (success)
4268 		ttwu_stat(p, task_cpu(p), wake_flags);
4269 
4270 	return success;
4271 }
4272 
4273 static bool __task_needs_rq_lock(struct task_struct *p)
4274 {
4275 	unsigned int state = READ_ONCE(p->__state);
4276 
4277 	/*
4278 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4279 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4280 	 * locks at the end, see ttwu_queue_wakelist().
4281 	 */
4282 	if (state == TASK_RUNNING || state == TASK_WAKING)
4283 		return true;
4284 
4285 	/*
4286 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4287 	 * possible to, falsely, observe p->on_rq == 0.
4288 	 *
4289 	 * See try_to_wake_up() for a longer comment.
4290 	 */
4291 	smp_rmb();
4292 	if (p->on_rq)
4293 		return true;
4294 
4295 #ifdef CONFIG_SMP
4296 	/*
4297 	 * Ensure the task has finished __schedule() and will not be referenced
4298 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4299 	 */
4300 	smp_rmb();
4301 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4302 #endif
4303 
4304 	return false;
4305 }
4306 
4307 /**
4308  * task_call_func - Invoke a function on task in fixed state
4309  * @p: Process for which the function is to be invoked, can be @current.
4310  * @func: Function to invoke.
4311  * @arg: Argument to function.
4312  *
4313  * Fix the task in it's current state by avoiding wakeups and or rq operations
4314  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4315  * to work out what the state is, if required.  Given that @func can be invoked
4316  * with a runqueue lock held, it had better be quite lightweight.
4317  *
4318  * Returns:
4319  *   Whatever @func returns
4320  */
4321 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4322 {
4323 	struct rq *rq = NULL;
4324 	struct rq_flags rf;
4325 	int ret;
4326 
4327 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4328 
4329 	if (__task_needs_rq_lock(p))
4330 		rq = __task_rq_lock(p, &rf);
4331 
4332 	/*
4333 	 * At this point the task is pinned; either:
4334 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4335 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4336 	 *  - queued, and we're holding off schedule	 (rq->lock)
4337 	 *  - running, and we're holding off de-schedule (rq->lock)
4338 	 *
4339 	 * The called function (@func) can use: task_curr(), p->on_rq and
4340 	 * p->__state to differentiate between these states.
4341 	 */
4342 	ret = func(p, arg);
4343 
4344 	if (rq)
4345 		rq_unlock(rq, &rf);
4346 
4347 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4348 	return ret;
4349 }
4350 
4351 /**
4352  * cpu_curr_snapshot - Return a snapshot of the currently running task
4353  * @cpu: The CPU on which to snapshot the task.
4354  *
4355  * Returns the task_struct pointer of the task "currently" running on
4356  * the specified CPU.
4357  *
4358  * If the specified CPU was offline, the return value is whatever it
4359  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4360  * task, but there is no guarantee.  Callers wishing a useful return
4361  * value must take some action to ensure that the specified CPU remains
4362  * online throughout.
4363  *
4364  * This function executes full memory barriers before and after fetching
4365  * the pointer, which permits the caller to confine this function's fetch
4366  * with respect to the caller's accesses to other shared variables.
4367  */
4368 struct task_struct *cpu_curr_snapshot(int cpu)
4369 {
4370 	struct rq *rq = cpu_rq(cpu);
4371 	struct task_struct *t;
4372 	struct rq_flags rf;
4373 
4374 	rq_lock_irqsave(rq, &rf);
4375 	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4376 	t = rcu_dereference(cpu_curr(cpu));
4377 	rq_unlock_irqrestore(rq, &rf);
4378 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4379 
4380 	return t;
4381 }
4382 
4383 /**
4384  * wake_up_process - Wake up a specific process
4385  * @p: The process to be woken up.
4386  *
4387  * Attempt to wake up the nominated process and move it to the set of runnable
4388  * processes.
4389  *
4390  * Return: 1 if the process was woken up, 0 if it was already running.
4391  *
4392  * This function executes a full memory barrier before accessing the task state.
4393  */
4394 int wake_up_process(struct task_struct *p)
4395 {
4396 	return try_to_wake_up(p, TASK_NORMAL, 0);
4397 }
4398 EXPORT_SYMBOL(wake_up_process);
4399 
4400 int wake_up_state(struct task_struct *p, unsigned int state)
4401 {
4402 	return try_to_wake_up(p, state, 0);
4403 }
4404 
4405 /*
4406  * Perform scheduler related setup for a newly forked process p.
4407  * p is forked by current.
4408  *
4409  * __sched_fork() is basic setup used by init_idle() too:
4410  */
4411 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4412 {
4413 	p->on_rq			= 0;
4414 
4415 	p->se.on_rq			= 0;
4416 	p->se.exec_start		= 0;
4417 	p->se.sum_exec_runtime		= 0;
4418 	p->se.prev_sum_exec_runtime	= 0;
4419 	p->se.nr_migrations		= 0;
4420 	p->se.vruntime			= 0;
4421 	p->se.vlag			= 0;
4422 	INIT_LIST_HEAD(&p->se.group_node);
4423 
4424 	/* A delayed task cannot be in clone(). */
4425 	SCHED_WARN_ON(p->se.sched_delayed);
4426 
4427 #ifdef CONFIG_FAIR_GROUP_SCHED
4428 	p->se.cfs_rq			= NULL;
4429 #endif
4430 
4431 #ifdef CONFIG_SCHEDSTATS
4432 	/* Even if schedstat is disabled, there should not be garbage */
4433 	memset(&p->stats, 0, sizeof(p->stats));
4434 #endif
4435 
4436 	init_dl_entity(&p->dl);
4437 
4438 	INIT_LIST_HEAD(&p->rt.run_list);
4439 	p->rt.timeout		= 0;
4440 	p->rt.time_slice	= sched_rr_timeslice;
4441 	p->rt.on_rq		= 0;
4442 	p->rt.on_list		= 0;
4443 
4444 #ifdef CONFIG_SCHED_CLASS_EXT
4445 	init_scx_entity(&p->scx);
4446 #endif
4447 
4448 #ifdef CONFIG_PREEMPT_NOTIFIERS
4449 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4450 #endif
4451 
4452 #ifdef CONFIG_COMPACTION
4453 	p->capture_control = NULL;
4454 #endif
4455 	init_numa_balancing(clone_flags, p);
4456 #ifdef CONFIG_SMP
4457 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4458 	p->migration_pending = NULL;
4459 #endif
4460 	init_sched_mm_cid(p);
4461 }
4462 
4463 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4464 
4465 #ifdef CONFIG_NUMA_BALANCING
4466 
4467 int sysctl_numa_balancing_mode;
4468 
4469 static void __set_numabalancing_state(bool enabled)
4470 {
4471 	if (enabled)
4472 		static_branch_enable(&sched_numa_balancing);
4473 	else
4474 		static_branch_disable(&sched_numa_balancing);
4475 }
4476 
4477 void set_numabalancing_state(bool enabled)
4478 {
4479 	if (enabled)
4480 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4481 	else
4482 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4483 	__set_numabalancing_state(enabled);
4484 }
4485 
4486 #ifdef CONFIG_PROC_SYSCTL
4487 static void reset_memory_tiering(void)
4488 {
4489 	struct pglist_data *pgdat;
4490 
4491 	for_each_online_pgdat(pgdat) {
4492 		pgdat->nbp_threshold = 0;
4493 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4494 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4495 	}
4496 }
4497 
4498 static int sysctl_numa_balancing(const struct ctl_table *table, int write,
4499 			  void *buffer, size_t *lenp, loff_t *ppos)
4500 {
4501 	struct ctl_table t;
4502 	int err;
4503 	int state = sysctl_numa_balancing_mode;
4504 
4505 	if (write && !capable(CAP_SYS_ADMIN))
4506 		return -EPERM;
4507 
4508 	t = *table;
4509 	t.data = &state;
4510 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4511 	if (err < 0)
4512 		return err;
4513 	if (write) {
4514 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4515 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4516 			reset_memory_tiering();
4517 		sysctl_numa_balancing_mode = state;
4518 		__set_numabalancing_state(state);
4519 	}
4520 	return err;
4521 }
4522 #endif
4523 #endif
4524 
4525 #ifdef CONFIG_SCHEDSTATS
4526 
4527 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4528 
4529 static void set_schedstats(bool enabled)
4530 {
4531 	if (enabled)
4532 		static_branch_enable(&sched_schedstats);
4533 	else
4534 		static_branch_disable(&sched_schedstats);
4535 }
4536 
4537 void force_schedstat_enabled(void)
4538 {
4539 	if (!schedstat_enabled()) {
4540 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4541 		static_branch_enable(&sched_schedstats);
4542 	}
4543 }
4544 
4545 static int __init setup_schedstats(char *str)
4546 {
4547 	int ret = 0;
4548 	if (!str)
4549 		goto out;
4550 
4551 	if (!strcmp(str, "enable")) {
4552 		set_schedstats(true);
4553 		ret = 1;
4554 	} else if (!strcmp(str, "disable")) {
4555 		set_schedstats(false);
4556 		ret = 1;
4557 	}
4558 out:
4559 	if (!ret)
4560 		pr_warn("Unable to parse schedstats=\n");
4561 
4562 	return ret;
4563 }
4564 __setup("schedstats=", setup_schedstats);
4565 
4566 #ifdef CONFIG_PROC_SYSCTL
4567 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
4568 		size_t *lenp, loff_t *ppos)
4569 {
4570 	struct ctl_table t;
4571 	int err;
4572 	int state = static_branch_likely(&sched_schedstats);
4573 
4574 	if (write && !capable(CAP_SYS_ADMIN))
4575 		return -EPERM;
4576 
4577 	t = *table;
4578 	t.data = &state;
4579 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4580 	if (err < 0)
4581 		return err;
4582 	if (write)
4583 		set_schedstats(state);
4584 	return err;
4585 }
4586 #endif /* CONFIG_PROC_SYSCTL */
4587 #endif /* CONFIG_SCHEDSTATS */
4588 
4589 #ifdef CONFIG_SYSCTL
4590 static struct ctl_table sched_core_sysctls[] = {
4591 #ifdef CONFIG_SCHEDSTATS
4592 	{
4593 		.procname       = "sched_schedstats",
4594 		.data           = NULL,
4595 		.maxlen         = sizeof(unsigned int),
4596 		.mode           = 0644,
4597 		.proc_handler   = sysctl_schedstats,
4598 		.extra1         = SYSCTL_ZERO,
4599 		.extra2         = SYSCTL_ONE,
4600 	},
4601 #endif /* CONFIG_SCHEDSTATS */
4602 #ifdef CONFIG_UCLAMP_TASK
4603 	{
4604 		.procname       = "sched_util_clamp_min",
4605 		.data           = &sysctl_sched_uclamp_util_min,
4606 		.maxlen         = sizeof(unsigned int),
4607 		.mode           = 0644,
4608 		.proc_handler   = sysctl_sched_uclamp_handler,
4609 	},
4610 	{
4611 		.procname       = "sched_util_clamp_max",
4612 		.data           = &sysctl_sched_uclamp_util_max,
4613 		.maxlen         = sizeof(unsigned int),
4614 		.mode           = 0644,
4615 		.proc_handler   = sysctl_sched_uclamp_handler,
4616 	},
4617 	{
4618 		.procname       = "sched_util_clamp_min_rt_default",
4619 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4620 		.maxlen         = sizeof(unsigned int),
4621 		.mode           = 0644,
4622 		.proc_handler   = sysctl_sched_uclamp_handler,
4623 	},
4624 #endif /* CONFIG_UCLAMP_TASK */
4625 #ifdef CONFIG_NUMA_BALANCING
4626 	{
4627 		.procname	= "numa_balancing",
4628 		.data		= NULL, /* filled in by handler */
4629 		.maxlen		= sizeof(unsigned int),
4630 		.mode		= 0644,
4631 		.proc_handler	= sysctl_numa_balancing,
4632 		.extra1		= SYSCTL_ZERO,
4633 		.extra2		= SYSCTL_FOUR,
4634 	},
4635 #endif /* CONFIG_NUMA_BALANCING */
4636 };
4637 static int __init sched_core_sysctl_init(void)
4638 {
4639 	register_sysctl_init("kernel", sched_core_sysctls);
4640 	return 0;
4641 }
4642 late_initcall(sched_core_sysctl_init);
4643 #endif /* CONFIG_SYSCTL */
4644 
4645 /*
4646  * fork()/clone()-time setup:
4647  */
4648 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4649 {
4650 	__sched_fork(clone_flags, p);
4651 	/*
4652 	 * We mark the process as NEW here. This guarantees that
4653 	 * nobody will actually run it, and a signal or other external
4654 	 * event cannot wake it up and insert it on the runqueue either.
4655 	 */
4656 	p->__state = TASK_NEW;
4657 
4658 	/*
4659 	 * Make sure we do not leak PI boosting priority to the child.
4660 	 */
4661 	p->prio = current->normal_prio;
4662 
4663 	uclamp_fork(p);
4664 
4665 	/*
4666 	 * Revert to default priority/policy on fork if requested.
4667 	 */
4668 	if (unlikely(p->sched_reset_on_fork)) {
4669 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4670 			p->policy = SCHED_NORMAL;
4671 			p->static_prio = NICE_TO_PRIO(0);
4672 			p->rt_priority = 0;
4673 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4674 			p->static_prio = NICE_TO_PRIO(0);
4675 
4676 		p->prio = p->normal_prio = p->static_prio;
4677 		set_load_weight(p, false);
4678 		p->se.custom_slice = 0;
4679 		p->se.slice = sysctl_sched_base_slice;
4680 
4681 		/*
4682 		 * We don't need the reset flag anymore after the fork. It has
4683 		 * fulfilled its duty:
4684 		 */
4685 		p->sched_reset_on_fork = 0;
4686 	}
4687 
4688 	if (dl_prio(p->prio))
4689 		return -EAGAIN;
4690 
4691 	scx_pre_fork(p);
4692 
4693 	if (rt_prio(p->prio)) {
4694 		p->sched_class = &rt_sched_class;
4695 #ifdef CONFIG_SCHED_CLASS_EXT
4696 	} else if (task_should_scx(p)) {
4697 		p->sched_class = &ext_sched_class;
4698 #endif
4699 	} else {
4700 		p->sched_class = &fair_sched_class;
4701 	}
4702 
4703 	init_entity_runnable_average(&p->se);
4704 
4705 
4706 #ifdef CONFIG_SCHED_INFO
4707 	if (likely(sched_info_on()))
4708 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4709 #endif
4710 #if defined(CONFIG_SMP)
4711 	p->on_cpu = 0;
4712 #endif
4713 	init_task_preempt_count(p);
4714 #ifdef CONFIG_SMP
4715 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4716 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4717 #endif
4718 	return 0;
4719 }
4720 
4721 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4722 {
4723 	unsigned long flags;
4724 
4725 	/*
4726 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4727 	 * required yet, but lockdep gets upset if rules are violated.
4728 	 */
4729 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4730 #ifdef CONFIG_CGROUP_SCHED
4731 	if (1) {
4732 		struct task_group *tg;
4733 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4734 				  struct task_group, css);
4735 		tg = autogroup_task_group(p, tg);
4736 		p->sched_task_group = tg;
4737 	}
4738 #endif
4739 	rseq_migrate(p);
4740 	/*
4741 	 * We're setting the CPU for the first time, we don't migrate,
4742 	 * so use __set_task_cpu().
4743 	 */
4744 	__set_task_cpu(p, smp_processor_id());
4745 	if (p->sched_class->task_fork)
4746 		p->sched_class->task_fork(p);
4747 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4748 
4749 	return scx_fork(p);
4750 }
4751 
4752 void sched_cancel_fork(struct task_struct *p)
4753 {
4754 	scx_cancel_fork(p);
4755 }
4756 
4757 void sched_post_fork(struct task_struct *p)
4758 {
4759 	uclamp_post_fork(p);
4760 	scx_post_fork(p);
4761 }
4762 
4763 unsigned long to_ratio(u64 period, u64 runtime)
4764 {
4765 	if (runtime == RUNTIME_INF)
4766 		return BW_UNIT;
4767 
4768 	/*
4769 	 * Doing this here saves a lot of checks in all
4770 	 * the calling paths, and returning zero seems
4771 	 * safe for them anyway.
4772 	 */
4773 	if (period == 0)
4774 		return 0;
4775 
4776 	return div64_u64(runtime << BW_SHIFT, period);
4777 }
4778 
4779 /*
4780  * wake_up_new_task - wake up a newly created task for the first time.
4781  *
4782  * This function will do some initial scheduler statistics housekeeping
4783  * that must be done for every newly created context, then puts the task
4784  * on the runqueue and wakes it.
4785  */
4786 void wake_up_new_task(struct task_struct *p)
4787 {
4788 	struct rq_flags rf;
4789 	struct rq *rq;
4790 
4791 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4792 	WRITE_ONCE(p->__state, TASK_RUNNING);
4793 #ifdef CONFIG_SMP
4794 	/*
4795 	 * Fork balancing, do it here and not earlier because:
4796 	 *  - cpus_ptr can change in the fork path
4797 	 *  - any previously selected CPU might disappear through hotplug
4798 	 *
4799 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4800 	 * as we're not fully set-up yet.
4801 	 */
4802 	p->recent_used_cpu = task_cpu(p);
4803 	rseq_migrate(p);
4804 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4805 #endif
4806 	rq = __task_rq_lock(p, &rf);
4807 	update_rq_clock(rq);
4808 	post_init_entity_util_avg(p);
4809 
4810 	activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
4811 	trace_sched_wakeup_new(p);
4812 	wakeup_preempt(rq, p, WF_FORK);
4813 #ifdef CONFIG_SMP
4814 	if (p->sched_class->task_woken) {
4815 		/*
4816 		 * Nothing relies on rq->lock after this, so it's fine to
4817 		 * drop it.
4818 		 */
4819 		rq_unpin_lock(rq, &rf);
4820 		p->sched_class->task_woken(rq, p);
4821 		rq_repin_lock(rq, &rf);
4822 	}
4823 #endif
4824 	task_rq_unlock(rq, p, &rf);
4825 }
4826 
4827 #ifdef CONFIG_PREEMPT_NOTIFIERS
4828 
4829 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4830 
4831 void preempt_notifier_inc(void)
4832 {
4833 	static_branch_inc(&preempt_notifier_key);
4834 }
4835 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4836 
4837 void preempt_notifier_dec(void)
4838 {
4839 	static_branch_dec(&preempt_notifier_key);
4840 }
4841 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4842 
4843 /**
4844  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4845  * @notifier: notifier struct to register
4846  */
4847 void preempt_notifier_register(struct preempt_notifier *notifier)
4848 {
4849 	if (!static_branch_unlikely(&preempt_notifier_key))
4850 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4851 
4852 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4853 }
4854 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4855 
4856 /**
4857  * preempt_notifier_unregister - no longer interested in preemption notifications
4858  * @notifier: notifier struct to unregister
4859  *
4860  * This is *not* safe to call from within a preemption notifier.
4861  */
4862 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4863 {
4864 	hlist_del(&notifier->link);
4865 }
4866 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4867 
4868 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4869 {
4870 	struct preempt_notifier *notifier;
4871 
4872 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4873 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4874 }
4875 
4876 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4877 {
4878 	if (static_branch_unlikely(&preempt_notifier_key))
4879 		__fire_sched_in_preempt_notifiers(curr);
4880 }
4881 
4882 static void
4883 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4884 				   struct task_struct *next)
4885 {
4886 	struct preempt_notifier *notifier;
4887 
4888 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4889 		notifier->ops->sched_out(notifier, next);
4890 }
4891 
4892 static __always_inline void
4893 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4894 				 struct task_struct *next)
4895 {
4896 	if (static_branch_unlikely(&preempt_notifier_key))
4897 		__fire_sched_out_preempt_notifiers(curr, next);
4898 }
4899 
4900 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4901 
4902 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4903 {
4904 }
4905 
4906 static inline void
4907 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4908 				 struct task_struct *next)
4909 {
4910 }
4911 
4912 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4913 
4914 static inline void prepare_task(struct task_struct *next)
4915 {
4916 #ifdef CONFIG_SMP
4917 	/*
4918 	 * Claim the task as running, we do this before switching to it
4919 	 * such that any running task will have this set.
4920 	 *
4921 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4922 	 * its ordering comment.
4923 	 */
4924 	WRITE_ONCE(next->on_cpu, 1);
4925 #endif
4926 }
4927 
4928 static inline void finish_task(struct task_struct *prev)
4929 {
4930 #ifdef CONFIG_SMP
4931 	/*
4932 	 * This must be the very last reference to @prev from this CPU. After
4933 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4934 	 * must ensure this doesn't happen until the switch is completely
4935 	 * finished.
4936 	 *
4937 	 * In particular, the load of prev->state in finish_task_switch() must
4938 	 * happen before this.
4939 	 *
4940 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4941 	 */
4942 	smp_store_release(&prev->on_cpu, 0);
4943 #endif
4944 }
4945 
4946 #ifdef CONFIG_SMP
4947 
4948 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
4949 {
4950 	void (*func)(struct rq *rq);
4951 	struct balance_callback *next;
4952 
4953 	lockdep_assert_rq_held(rq);
4954 
4955 	while (head) {
4956 		func = (void (*)(struct rq *))head->func;
4957 		next = head->next;
4958 		head->next = NULL;
4959 		head = next;
4960 
4961 		func(rq);
4962 	}
4963 }
4964 
4965 static void balance_push(struct rq *rq);
4966 
4967 /*
4968  * balance_push_callback is a right abuse of the callback interface and plays
4969  * by significantly different rules.
4970  *
4971  * Where the normal balance_callback's purpose is to be ran in the same context
4972  * that queued it (only later, when it's safe to drop rq->lock again),
4973  * balance_push_callback is specifically targeted at __schedule().
4974  *
4975  * This abuse is tolerated because it places all the unlikely/odd cases behind
4976  * a single test, namely: rq->balance_callback == NULL.
4977  */
4978 struct balance_callback balance_push_callback = {
4979 	.next = NULL,
4980 	.func = balance_push,
4981 };
4982 
4983 static inline struct balance_callback *
4984 __splice_balance_callbacks(struct rq *rq, bool split)
4985 {
4986 	struct balance_callback *head = rq->balance_callback;
4987 
4988 	if (likely(!head))
4989 		return NULL;
4990 
4991 	lockdep_assert_rq_held(rq);
4992 	/*
4993 	 * Must not take balance_push_callback off the list when
4994 	 * splice_balance_callbacks() and balance_callbacks() are not
4995 	 * in the same rq->lock section.
4996 	 *
4997 	 * In that case it would be possible for __schedule() to interleave
4998 	 * and observe the list empty.
4999 	 */
5000 	if (split && head == &balance_push_callback)
5001 		head = NULL;
5002 	else
5003 		rq->balance_callback = NULL;
5004 
5005 	return head;
5006 }
5007 
5008 struct balance_callback *splice_balance_callbacks(struct rq *rq)
5009 {
5010 	return __splice_balance_callbacks(rq, true);
5011 }
5012 
5013 static void __balance_callbacks(struct rq *rq)
5014 {
5015 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5016 }
5017 
5018 void balance_callbacks(struct rq *rq, struct balance_callback *head)
5019 {
5020 	unsigned long flags;
5021 
5022 	if (unlikely(head)) {
5023 		raw_spin_rq_lock_irqsave(rq, flags);
5024 		do_balance_callbacks(rq, head);
5025 		raw_spin_rq_unlock_irqrestore(rq, flags);
5026 	}
5027 }
5028 
5029 #else
5030 
5031 static inline void __balance_callbacks(struct rq *rq)
5032 {
5033 }
5034 
5035 #endif
5036 
5037 static inline void
5038 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5039 {
5040 	/*
5041 	 * Since the runqueue lock will be released by the next
5042 	 * task (which is an invalid locking op but in the case
5043 	 * of the scheduler it's an obvious special-case), so we
5044 	 * do an early lockdep release here:
5045 	 */
5046 	rq_unpin_lock(rq, rf);
5047 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5048 #ifdef CONFIG_DEBUG_SPINLOCK
5049 	/* this is a valid case when another task releases the spinlock */
5050 	rq_lockp(rq)->owner = next;
5051 #endif
5052 }
5053 
5054 static inline void finish_lock_switch(struct rq *rq)
5055 {
5056 	/*
5057 	 * If we are tracking spinlock dependencies then we have to
5058 	 * fix up the runqueue lock - which gets 'carried over' from
5059 	 * prev into current:
5060 	 */
5061 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5062 	__balance_callbacks(rq);
5063 	raw_spin_rq_unlock_irq(rq);
5064 }
5065 
5066 /*
5067  * NOP if the arch has not defined these:
5068  */
5069 
5070 #ifndef prepare_arch_switch
5071 # define prepare_arch_switch(next)	do { } while (0)
5072 #endif
5073 
5074 #ifndef finish_arch_post_lock_switch
5075 # define finish_arch_post_lock_switch()	do { } while (0)
5076 #endif
5077 
5078 static inline void kmap_local_sched_out(void)
5079 {
5080 #ifdef CONFIG_KMAP_LOCAL
5081 	if (unlikely(current->kmap_ctrl.idx))
5082 		__kmap_local_sched_out();
5083 #endif
5084 }
5085 
5086 static inline void kmap_local_sched_in(void)
5087 {
5088 #ifdef CONFIG_KMAP_LOCAL
5089 	if (unlikely(current->kmap_ctrl.idx))
5090 		__kmap_local_sched_in();
5091 #endif
5092 }
5093 
5094 /**
5095  * prepare_task_switch - prepare to switch tasks
5096  * @rq: the runqueue preparing to switch
5097  * @prev: the current task that is being switched out
5098  * @next: the task we are going to switch to.
5099  *
5100  * This is called with the rq lock held and interrupts off. It must
5101  * be paired with a subsequent finish_task_switch after the context
5102  * switch.
5103  *
5104  * prepare_task_switch sets up locking and calls architecture specific
5105  * hooks.
5106  */
5107 static inline void
5108 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5109 		    struct task_struct *next)
5110 {
5111 	kcov_prepare_switch(prev);
5112 	sched_info_switch(rq, prev, next);
5113 	perf_event_task_sched_out(prev, next);
5114 	rseq_preempt(prev);
5115 	fire_sched_out_preempt_notifiers(prev, next);
5116 	kmap_local_sched_out();
5117 	prepare_task(next);
5118 	prepare_arch_switch(next);
5119 }
5120 
5121 /**
5122  * finish_task_switch - clean up after a task-switch
5123  * @prev: the thread we just switched away from.
5124  *
5125  * finish_task_switch must be called after the context switch, paired
5126  * with a prepare_task_switch call before the context switch.
5127  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5128  * and do any other architecture-specific cleanup actions.
5129  *
5130  * Note that we may have delayed dropping an mm in context_switch(). If
5131  * so, we finish that here outside of the runqueue lock. (Doing it
5132  * with the lock held can cause deadlocks; see schedule() for
5133  * details.)
5134  *
5135  * The context switch have flipped the stack from under us and restored the
5136  * local variables which were saved when this task called schedule() in the
5137  * past. 'prev == current' is still correct but we need to recalculate this_rq
5138  * because prev may have moved to another CPU.
5139  */
5140 static struct rq *finish_task_switch(struct task_struct *prev)
5141 	__releases(rq->lock)
5142 {
5143 	struct rq *rq = this_rq();
5144 	struct mm_struct *mm = rq->prev_mm;
5145 	unsigned int prev_state;
5146 
5147 	/*
5148 	 * The previous task will have left us with a preempt_count of 2
5149 	 * because it left us after:
5150 	 *
5151 	 *	schedule()
5152 	 *	  preempt_disable();			// 1
5153 	 *	  __schedule()
5154 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5155 	 *
5156 	 * Also, see FORK_PREEMPT_COUNT.
5157 	 */
5158 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5159 		      "corrupted preempt_count: %s/%d/0x%x\n",
5160 		      current->comm, current->pid, preempt_count()))
5161 		preempt_count_set(FORK_PREEMPT_COUNT);
5162 
5163 	rq->prev_mm = NULL;
5164 
5165 	/*
5166 	 * A task struct has one reference for the use as "current".
5167 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5168 	 * schedule one last time. The schedule call will never return, and
5169 	 * the scheduled task must drop that reference.
5170 	 *
5171 	 * We must observe prev->state before clearing prev->on_cpu (in
5172 	 * finish_task), otherwise a concurrent wakeup can get prev
5173 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5174 	 * transition, resulting in a double drop.
5175 	 */
5176 	prev_state = READ_ONCE(prev->__state);
5177 	vtime_task_switch(prev);
5178 	perf_event_task_sched_in(prev, current);
5179 	finish_task(prev);
5180 	tick_nohz_task_switch();
5181 	finish_lock_switch(rq);
5182 	finish_arch_post_lock_switch();
5183 	kcov_finish_switch(current);
5184 	/*
5185 	 * kmap_local_sched_out() is invoked with rq::lock held and
5186 	 * interrupts disabled. There is no requirement for that, but the
5187 	 * sched out code does not have an interrupt enabled section.
5188 	 * Restoring the maps on sched in does not require interrupts being
5189 	 * disabled either.
5190 	 */
5191 	kmap_local_sched_in();
5192 
5193 	fire_sched_in_preempt_notifiers(current);
5194 	/*
5195 	 * When switching through a kernel thread, the loop in
5196 	 * membarrier_{private,global}_expedited() may have observed that
5197 	 * kernel thread and not issued an IPI. It is therefore possible to
5198 	 * schedule between user->kernel->user threads without passing though
5199 	 * switch_mm(). Membarrier requires a barrier after storing to
5200 	 * rq->curr, before returning to userspace, so provide them here:
5201 	 *
5202 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5203 	 *   provided by mmdrop_lazy_tlb(),
5204 	 * - a sync_core for SYNC_CORE.
5205 	 */
5206 	if (mm) {
5207 		membarrier_mm_sync_core_before_usermode(mm);
5208 		mmdrop_lazy_tlb_sched(mm);
5209 	}
5210 
5211 	if (unlikely(prev_state == TASK_DEAD)) {
5212 		if (prev->sched_class->task_dead)
5213 			prev->sched_class->task_dead(prev);
5214 
5215 		/* Task is done with its stack. */
5216 		put_task_stack(prev);
5217 
5218 		put_task_struct_rcu_user(prev);
5219 	}
5220 
5221 	return rq;
5222 }
5223 
5224 /**
5225  * schedule_tail - first thing a freshly forked thread must call.
5226  * @prev: the thread we just switched away from.
5227  */
5228 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5229 	__releases(rq->lock)
5230 {
5231 	/*
5232 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5233 	 * finish_task_switch() for details.
5234 	 *
5235 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5236 	 * and the preempt_enable() will end up enabling preemption (on
5237 	 * PREEMPT_COUNT kernels).
5238 	 */
5239 
5240 	finish_task_switch(prev);
5241 	preempt_enable();
5242 
5243 	if (current->set_child_tid)
5244 		put_user(task_pid_vnr(current), current->set_child_tid);
5245 
5246 	calculate_sigpending();
5247 }
5248 
5249 /*
5250  * context_switch - switch to the new MM and the new thread's register state.
5251  */
5252 static __always_inline struct rq *
5253 context_switch(struct rq *rq, struct task_struct *prev,
5254 	       struct task_struct *next, struct rq_flags *rf)
5255 {
5256 	prepare_task_switch(rq, prev, next);
5257 
5258 	/*
5259 	 * For paravirt, this is coupled with an exit in switch_to to
5260 	 * combine the page table reload and the switch backend into
5261 	 * one hypercall.
5262 	 */
5263 	arch_start_context_switch(prev);
5264 
5265 	/*
5266 	 * kernel -> kernel   lazy + transfer active
5267 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5268 	 *
5269 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5270 	 *   user ->   user   switch
5271 	 *
5272 	 * switch_mm_cid() needs to be updated if the barriers provided
5273 	 * by context_switch() are modified.
5274 	 */
5275 	if (!next->mm) {                                // to kernel
5276 		enter_lazy_tlb(prev->active_mm, next);
5277 
5278 		next->active_mm = prev->active_mm;
5279 		if (prev->mm)                           // from user
5280 			mmgrab_lazy_tlb(prev->active_mm);
5281 		else
5282 			prev->active_mm = NULL;
5283 	} else {                                        // to user
5284 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5285 		/*
5286 		 * sys_membarrier() requires an smp_mb() between setting
5287 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5288 		 *
5289 		 * The below provides this either through switch_mm(), or in
5290 		 * case 'prev->active_mm == next->mm' through
5291 		 * finish_task_switch()'s mmdrop().
5292 		 */
5293 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5294 		lru_gen_use_mm(next->mm);
5295 
5296 		if (!prev->mm) {                        // from kernel
5297 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5298 			rq->prev_mm = prev->active_mm;
5299 			prev->active_mm = NULL;
5300 		}
5301 	}
5302 
5303 	/* switch_mm_cid() requires the memory barriers above. */
5304 	switch_mm_cid(rq, prev, next);
5305 
5306 	prepare_lock_switch(rq, next, rf);
5307 
5308 	/* Here we just switch the register state and the stack. */
5309 	switch_to(prev, next, prev);
5310 	barrier();
5311 
5312 	return finish_task_switch(prev);
5313 }
5314 
5315 /*
5316  * nr_running and nr_context_switches:
5317  *
5318  * externally visible scheduler statistics: current number of runnable
5319  * threads, total number of context switches performed since bootup.
5320  */
5321 unsigned int nr_running(void)
5322 {
5323 	unsigned int i, sum = 0;
5324 
5325 	for_each_online_cpu(i)
5326 		sum += cpu_rq(i)->nr_running;
5327 
5328 	return sum;
5329 }
5330 
5331 /*
5332  * Check if only the current task is running on the CPU.
5333  *
5334  * Caution: this function does not check that the caller has disabled
5335  * preemption, thus the result might have a time-of-check-to-time-of-use
5336  * race.  The caller is responsible to use it correctly, for example:
5337  *
5338  * - from a non-preemptible section (of course)
5339  *
5340  * - from a thread that is bound to a single CPU
5341  *
5342  * - in a loop with very short iterations (e.g. a polling loop)
5343  */
5344 bool single_task_running(void)
5345 {
5346 	return raw_rq()->nr_running == 1;
5347 }
5348 EXPORT_SYMBOL(single_task_running);
5349 
5350 unsigned long long nr_context_switches_cpu(int cpu)
5351 {
5352 	return cpu_rq(cpu)->nr_switches;
5353 }
5354 
5355 unsigned long long nr_context_switches(void)
5356 {
5357 	int i;
5358 	unsigned long long sum = 0;
5359 
5360 	for_each_possible_cpu(i)
5361 		sum += cpu_rq(i)->nr_switches;
5362 
5363 	return sum;
5364 }
5365 
5366 /*
5367  * Consumers of these two interfaces, like for example the cpuidle menu
5368  * governor, are using nonsensical data. Preferring shallow idle state selection
5369  * for a CPU that has IO-wait which might not even end up running the task when
5370  * it does become runnable.
5371  */
5372 
5373 unsigned int nr_iowait_cpu(int cpu)
5374 {
5375 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5376 }
5377 
5378 /*
5379  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5380  *
5381  * The idea behind IO-wait account is to account the idle time that we could
5382  * have spend running if it were not for IO. That is, if we were to improve the
5383  * storage performance, we'd have a proportional reduction in IO-wait time.
5384  *
5385  * This all works nicely on UP, where, when a task blocks on IO, we account
5386  * idle time as IO-wait, because if the storage were faster, it could've been
5387  * running and we'd not be idle.
5388  *
5389  * This has been extended to SMP, by doing the same for each CPU. This however
5390  * is broken.
5391  *
5392  * Imagine for instance the case where two tasks block on one CPU, only the one
5393  * CPU will have IO-wait accounted, while the other has regular idle. Even
5394  * though, if the storage were faster, both could've ran at the same time,
5395  * utilising both CPUs.
5396  *
5397  * This means, that when looking globally, the current IO-wait accounting on
5398  * SMP is a lower bound, by reason of under accounting.
5399  *
5400  * Worse, since the numbers are provided per CPU, they are sometimes
5401  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5402  * associated with any one particular CPU, it can wake to another CPU than it
5403  * blocked on. This means the per CPU IO-wait number is meaningless.
5404  *
5405  * Task CPU affinities can make all that even more 'interesting'.
5406  */
5407 
5408 unsigned int nr_iowait(void)
5409 {
5410 	unsigned int i, sum = 0;
5411 
5412 	for_each_possible_cpu(i)
5413 		sum += nr_iowait_cpu(i);
5414 
5415 	return sum;
5416 }
5417 
5418 #ifdef CONFIG_SMP
5419 
5420 /*
5421  * sched_exec - execve() is a valuable balancing opportunity, because at
5422  * this point the task has the smallest effective memory and cache footprint.
5423  */
5424 void sched_exec(void)
5425 {
5426 	struct task_struct *p = current;
5427 	struct migration_arg arg;
5428 	int dest_cpu;
5429 
5430 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5431 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5432 		if (dest_cpu == smp_processor_id())
5433 			return;
5434 
5435 		if (unlikely(!cpu_active(dest_cpu)))
5436 			return;
5437 
5438 		arg = (struct migration_arg){ p, dest_cpu };
5439 	}
5440 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5441 }
5442 
5443 #endif
5444 
5445 DEFINE_PER_CPU(struct kernel_stat, kstat);
5446 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5447 
5448 EXPORT_PER_CPU_SYMBOL(kstat);
5449 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5450 
5451 /*
5452  * The function fair_sched_class.update_curr accesses the struct curr
5453  * and its field curr->exec_start; when called from task_sched_runtime(),
5454  * we observe a high rate of cache misses in practice.
5455  * Prefetching this data results in improved performance.
5456  */
5457 static inline void prefetch_curr_exec_start(struct task_struct *p)
5458 {
5459 #ifdef CONFIG_FAIR_GROUP_SCHED
5460 	struct sched_entity *curr = p->se.cfs_rq->curr;
5461 #else
5462 	struct sched_entity *curr = task_rq(p)->cfs.curr;
5463 #endif
5464 	prefetch(curr);
5465 	prefetch(&curr->exec_start);
5466 }
5467 
5468 /*
5469  * Return accounted runtime for the task.
5470  * In case the task is currently running, return the runtime plus current's
5471  * pending runtime that have not been accounted yet.
5472  */
5473 unsigned long long task_sched_runtime(struct task_struct *p)
5474 {
5475 	struct rq_flags rf;
5476 	struct rq *rq;
5477 	u64 ns;
5478 
5479 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5480 	/*
5481 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5482 	 * So we have a optimization chance when the task's delta_exec is 0.
5483 	 * Reading ->on_cpu is racy, but this is OK.
5484 	 *
5485 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5486 	 * If we race with it entering CPU, unaccounted time is 0. This is
5487 	 * indistinguishable from the read occurring a few cycles earlier.
5488 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5489 	 * been accounted, so we're correct here as well.
5490 	 */
5491 	if (!p->on_cpu || !task_on_rq_queued(p))
5492 		return p->se.sum_exec_runtime;
5493 #endif
5494 
5495 	rq = task_rq_lock(p, &rf);
5496 	/*
5497 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5498 	 * project cycles that may never be accounted to this
5499 	 * thread, breaking clock_gettime().
5500 	 */
5501 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5502 		prefetch_curr_exec_start(p);
5503 		update_rq_clock(rq);
5504 		p->sched_class->update_curr(rq);
5505 	}
5506 	ns = p->se.sum_exec_runtime;
5507 	task_rq_unlock(rq, p, &rf);
5508 
5509 	return ns;
5510 }
5511 
5512 #ifdef CONFIG_SCHED_DEBUG
5513 static u64 cpu_resched_latency(struct rq *rq)
5514 {
5515 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5516 	u64 resched_latency, now = rq_clock(rq);
5517 	static bool warned_once;
5518 
5519 	if (sysctl_resched_latency_warn_once && warned_once)
5520 		return 0;
5521 
5522 	if (!need_resched() || !latency_warn_ms)
5523 		return 0;
5524 
5525 	if (system_state == SYSTEM_BOOTING)
5526 		return 0;
5527 
5528 	if (!rq->last_seen_need_resched_ns) {
5529 		rq->last_seen_need_resched_ns = now;
5530 		rq->ticks_without_resched = 0;
5531 		return 0;
5532 	}
5533 
5534 	rq->ticks_without_resched++;
5535 	resched_latency = now - rq->last_seen_need_resched_ns;
5536 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5537 		return 0;
5538 
5539 	warned_once = true;
5540 
5541 	return resched_latency;
5542 }
5543 
5544 static int __init setup_resched_latency_warn_ms(char *str)
5545 {
5546 	long val;
5547 
5548 	if ((kstrtol(str, 0, &val))) {
5549 		pr_warn("Unable to set resched_latency_warn_ms\n");
5550 		return 1;
5551 	}
5552 
5553 	sysctl_resched_latency_warn_ms = val;
5554 	return 1;
5555 }
5556 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5557 #else
5558 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5559 #endif /* CONFIG_SCHED_DEBUG */
5560 
5561 /*
5562  * This function gets called by the timer code, with HZ frequency.
5563  * We call it with interrupts disabled.
5564  */
5565 void sched_tick(void)
5566 {
5567 	int cpu = smp_processor_id();
5568 	struct rq *rq = cpu_rq(cpu);
5569 	struct task_struct *curr;
5570 	struct rq_flags rf;
5571 	unsigned long hw_pressure;
5572 	u64 resched_latency;
5573 
5574 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5575 		arch_scale_freq_tick();
5576 
5577 	sched_clock_tick();
5578 
5579 	rq_lock(rq, &rf);
5580 
5581 	curr = rq->curr;
5582 	psi_account_irqtime(rq, curr, NULL);
5583 
5584 	update_rq_clock(rq);
5585 	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
5586 	update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
5587 	curr->sched_class->task_tick(rq, curr, 0);
5588 	if (sched_feat(LATENCY_WARN))
5589 		resched_latency = cpu_resched_latency(rq);
5590 	calc_global_load_tick(rq);
5591 	sched_core_tick(rq);
5592 	task_tick_mm_cid(rq, curr);
5593 	scx_tick(rq);
5594 
5595 	rq_unlock(rq, &rf);
5596 
5597 	if (sched_feat(LATENCY_WARN) && resched_latency)
5598 		resched_latency_warn(cpu, resched_latency);
5599 
5600 	perf_event_task_tick();
5601 
5602 	if (curr->flags & PF_WQ_WORKER)
5603 		wq_worker_tick(curr);
5604 
5605 #ifdef CONFIG_SMP
5606 	if (!scx_switched_all()) {
5607 		rq->idle_balance = idle_cpu(cpu);
5608 		sched_balance_trigger(rq);
5609 	}
5610 #endif
5611 }
5612 
5613 #ifdef CONFIG_NO_HZ_FULL
5614 
5615 struct tick_work {
5616 	int			cpu;
5617 	atomic_t		state;
5618 	struct delayed_work	work;
5619 };
5620 /* Values for ->state, see diagram below. */
5621 #define TICK_SCHED_REMOTE_OFFLINE	0
5622 #define TICK_SCHED_REMOTE_OFFLINING	1
5623 #define TICK_SCHED_REMOTE_RUNNING	2
5624 
5625 /*
5626  * State diagram for ->state:
5627  *
5628  *
5629  *          TICK_SCHED_REMOTE_OFFLINE
5630  *                    |   ^
5631  *                    |   |
5632  *                    |   | sched_tick_remote()
5633  *                    |   |
5634  *                    |   |
5635  *                    +--TICK_SCHED_REMOTE_OFFLINING
5636  *                    |   ^
5637  *                    |   |
5638  * sched_tick_start() |   | sched_tick_stop()
5639  *                    |   |
5640  *                    V   |
5641  *          TICK_SCHED_REMOTE_RUNNING
5642  *
5643  *
5644  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5645  * and sched_tick_start() are happy to leave the state in RUNNING.
5646  */
5647 
5648 static struct tick_work __percpu *tick_work_cpu;
5649 
5650 static void sched_tick_remote(struct work_struct *work)
5651 {
5652 	struct delayed_work *dwork = to_delayed_work(work);
5653 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5654 	int cpu = twork->cpu;
5655 	struct rq *rq = cpu_rq(cpu);
5656 	int os;
5657 
5658 	/*
5659 	 * Handle the tick only if it appears the remote CPU is running in full
5660 	 * dynticks mode. The check is racy by nature, but missing a tick or
5661 	 * having one too much is no big deal because the scheduler tick updates
5662 	 * statistics and checks timeslices in a time-independent way, regardless
5663 	 * of when exactly it is running.
5664 	 */
5665 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5666 		guard(rq_lock_irq)(rq);
5667 		struct task_struct *curr = rq->curr;
5668 
5669 		if (cpu_online(cpu)) {
5670 			update_rq_clock(rq);
5671 
5672 			if (!is_idle_task(curr)) {
5673 				/*
5674 				 * Make sure the next tick runs within a
5675 				 * reasonable amount of time.
5676 				 */
5677 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5678 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5679 			}
5680 			curr->sched_class->task_tick(rq, curr, 0);
5681 
5682 			calc_load_nohz_remote(rq);
5683 		}
5684 	}
5685 
5686 	/*
5687 	 * Run the remote tick once per second (1Hz). This arbitrary
5688 	 * frequency is large enough to avoid overload but short enough
5689 	 * to keep scheduler internal stats reasonably up to date.  But
5690 	 * first update state to reflect hotplug activity if required.
5691 	 */
5692 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5693 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5694 	if (os == TICK_SCHED_REMOTE_RUNNING)
5695 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5696 }
5697 
5698 static void sched_tick_start(int cpu)
5699 {
5700 	int os;
5701 	struct tick_work *twork;
5702 
5703 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5704 		return;
5705 
5706 	WARN_ON_ONCE(!tick_work_cpu);
5707 
5708 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5709 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5710 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5711 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5712 		twork->cpu = cpu;
5713 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5714 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5715 	}
5716 }
5717 
5718 #ifdef CONFIG_HOTPLUG_CPU
5719 static void sched_tick_stop(int cpu)
5720 {
5721 	struct tick_work *twork;
5722 	int os;
5723 
5724 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5725 		return;
5726 
5727 	WARN_ON_ONCE(!tick_work_cpu);
5728 
5729 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5730 	/* There cannot be competing actions, but don't rely on stop-machine. */
5731 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5732 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5733 	/* Don't cancel, as this would mess up the state machine. */
5734 }
5735 #endif /* CONFIG_HOTPLUG_CPU */
5736 
5737 int __init sched_tick_offload_init(void)
5738 {
5739 	tick_work_cpu = alloc_percpu(struct tick_work);
5740 	BUG_ON(!tick_work_cpu);
5741 	return 0;
5742 }
5743 
5744 #else /* !CONFIG_NO_HZ_FULL */
5745 static inline void sched_tick_start(int cpu) { }
5746 static inline void sched_tick_stop(int cpu) { }
5747 #endif
5748 
5749 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5750 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5751 /*
5752  * If the value passed in is equal to the current preempt count
5753  * then we just disabled preemption. Start timing the latency.
5754  */
5755 static inline void preempt_latency_start(int val)
5756 {
5757 	if (preempt_count() == val) {
5758 		unsigned long ip = get_lock_parent_ip();
5759 #ifdef CONFIG_DEBUG_PREEMPT
5760 		current->preempt_disable_ip = ip;
5761 #endif
5762 		trace_preempt_off(CALLER_ADDR0, ip);
5763 	}
5764 }
5765 
5766 void preempt_count_add(int val)
5767 {
5768 #ifdef CONFIG_DEBUG_PREEMPT
5769 	/*
5770 	 * Underflow?
5771 	 */
5772 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5773 		return;
5774 #endif
5775 	__preempt_count_add(val);
5776 #ifdef CONFIG_DEBUG_PREEMPT
5777 	/*
5778 	 * Spinlock count overflowing soon?
5779 	 */
5780 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5781 				PREEMPT_MASK - 10);
5782 #endif
5783 	preempt_latency_start(val);
5784 }
5785 EXPORT_SYMBOL(preempt_count_add);
5786 NOKPROBE_SYMBOL(preempt_count_add);
5787 
5788 /*
5789  * If the value passed in equals to the current preempt count
5790  * then we just enabled preemption. Stop timing the latency.
5791  */
5792 static inline void preempt_latency_stop(int val)
5793 {
5794 	if (preempt_count() == val)
5795 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5796 }
5797 
5798 void preempt_count_sub(int val)
5799 {
5800 #ifdef CONFIG_DEBUG_PREEMPT
5801 	/*
5802 	 * Underflow?
5803 	 */
5804 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5805 		return;
5806 	/*
5807 	 * Is the spinlock portion underflowing?
5808 	 */
5809 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5810 			!(preempt_count() & PREEMPT_MASK)))
5811 		return;
5812 #endif
5813 
5814 	preempt_latency_stop(val);
5815 	__preempt_count_sub(val);
5816 }
5817 EXPORT_SYMBOL(preempt_count_sub);
5818 NOKPROBE_SYMBOL(preempt_count_sub);
5819 
5820 #else
5821 static inline void preempt_latency_start(int val) { }
5822 static inline void preempt_latency_stop(int val) { }
5823 #endif
5824 
5825 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5826 {
5827 #ifdef CONFIG_DEBUG_PREEMPT
5828 	return p->preempt_disable_ip;
5829 #else
5830 	return 0;
5831 #endif
5832 }
5833 
5834 /*
5835  * Print scheduling while atomic bug:
5836  */
5837 static noinline void __schedule_bug(struct task_struct *prev)
5838 {
5839 	/* Save this before calling printk(), since that will clobber it */
5840 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5841 
5842 	if (oops_in_progress)
5843 		return;
5844 
5845 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5846 		prev->comm, prev->pid, preempt_count());
5847 
5848 	debug_show_held_locks(prev);
5849 	print_modules();
5850 	if (irqs_disabled())
5851 		print_irqtrace_events(prev);
5852 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5853 		pr_err("Preemption disabled at:");
5854 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5855 	}
5856 	check_panic_on_warn("scheduling while atomic");
5857 
5858 	dump_stack();
5859 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5860 }
5861 
5862 /*
5863  * Various schedule()-time debugging checks and statistics:
5864  */
5865 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5866 {
5867 #ifdef CONFIG_SCHED_STACK_END_CHECK
5868 	if (task_stack_end_corrupted(prev))
5869 		panic("corrupted stack end detected inside scheduler\n");
5870 
5871 	if (task_scs_end_corrupted(prev))
5872 		panic("corrupted shadow stack detected inside scheduler\n");
5873 #endif
5874 
5875 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5876 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5877 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5878 			prev->comm, prev->pid, prev->non_block_count);
5879 		dump_stack();
5880 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5881 	}
5882 #endif
5883 
5884 	if (unlikely(in_atomic_preempt_off())) {
5885 		__schedule_bug(prev);
5886 		preempt_count_set(PREEMPT_DISABLED);
5887 	}
5888 	rcu_sleep_check();
5889 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5890 
5891 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5892 
5893 	schedstat_inc(this_rq()->sched_count);
5894 }
5895 
5896 static void prev_balance(struct rq *rq, struct task_struct *prev,
5897 			 struct rq_flags *rf)
5898 {
5899 	const struct sched_class *start_class = prev->sched_class;
5900 	const struct sched_class *class;
5901 
5902 #ifdef CONFIG_SCHED_CLASS_EXT
5903 	/*
5904 	 * SCX requires a balance() call before every pick_next_task() including
5905 	 * when waking up from SCHED_IDLE. If @start_class is below SCX, start
5906 	 * from SCX instead.
5907 	 */
5908 	if (scx_enabled() && sched_class_above(&ext_sched_class, start_class))
5909 		start_class = &ext_sched_class;
5910 #endif
5911 
5912 	/*
5913 	 * We must do the balancing pass before put_prev_task(), such
5914 	 * that when we release the rq->lock the task is in the same
5915 	 * state as before we took rq->lock.
5916 	 *
5917 	 * We can terminate the balance pass as soon as we know there is
5918 	 * a runnable task of @class priority or higher.
5919 	 */
5920 	for_active_class_range(class, start_class, &idle_sched_class) {
5921 		if (class->balance && class->balance(rq, prev, rf))
5922 			break;
5923 	}
5924 }
5925 
5926 /*
5927  * Pick up the highest-prio task:
5928  */
5929 static inline struct task_struct *
5930 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5931 {
5932 	const struct sched_class *class;
5933 	struct task_struct *p;
5934 
5935 	rq->dl_server = NULL;
5936 
5937 	if (scx_enabled())
5938 		goto restart;
5939 
5940 	/*
5941 	 * Optimization: we know that if all tasks are in the fair class we can
5942 	 * call that function directly, but only if the @prev task wasn't of a
5943 	 * higher scheduling class, because otherwise those lose the
5944 	 * opportunity to pull in more work from other CPUs.
5945 	 */
5946 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5947 		   rq->nr_running == rq->cfs.h_nr_running)) {
5948 
5949 		p = pick_next_task_fair(rq, prev, rf);
5950 		if (unlikely(p == RETRY_TASK))
5951 			goto restart;
5952 
5953 		/* Assume the next prioritized class is idle_sched_class */
5954 		if (!p) {
5955 			p = pick_task_idle(rq);
5956 			put_prev_set_next_task(rq, prev, p);
5957 		}
5958 
5959 		return p;
5960 	}
5961 
5962 restart:
5963 	prev_balance(rq, prev, rf);
5964 
5965 	for_each_active_class(class) {
5966 		if (class->pick_next_task) {
5967 			p = class->pick_next_task(rq, prev);
5968 			if (p)
5969 				return p;
5970 		} else {
5971 			p = class->pick_task(rq);
5972 			if (p) {
5973 				put_prev_set_next_task(rq, prev, p);
5974 				return p;
5975 			}
5976 		}
5977 	}
5978 
5979 	BUG(); /* The idle class should always have a runnable task. */
5980 }
5981 
5982 #ifdef CONFIG_SCHED_CORE
5983 static inline bool is_task_rq_idle(struct task_struct *t)
5984 {
5985 	return (task_rq(t)->idle == t);
5986 }
5987 
5988 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5989 {
5990 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5991 }
5992 
5993 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5994 {
5995 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5996 		return true;
5997 
5998 	return a->core_cookie == b->core_cookie;
5999 }
6000 
6001 static inline struct task_struct *pick_task(struct rq *rq)
6002 {
6003 	const struct sched_class *class;
6004 	struct task_struct *p;
6005 
6006 	rq->dl_server = NULL;
6007 
6008 	for_each_active_class(class) {
6009 		p = class->pick_task(rq);
6010 		if (p)
6011 			return p;
6012 	}
6013 
6014 	BUG(); /* The idle class should always have a runnable task. */
6015 }
6016 
6017 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6018 
6019 static void queue_core_balance(struct rq *rq);
6020 
6021 static struct task_struct *
6022 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6023 {
6024 	struct task_struct *next, *p, *max = NULL;
6025 	const struct cpumask *smt_mask;
6026 	bool fi_before = false;
6027 	bool core_clock_updated = (rq == rq->core);
6028 	unsigned long cookie;
6029 	int i, cpu, occ = 0;
6030 	struct rq *rq_i;
6031 	bool need_sync;
6032 
6033 	if (!sched_core_enabled(rq))
6034 		return __pick_next_task(rq, prev, rf);
6035 
6036 	cpu = cpu_of(rq);
6037 
6038 	/* Stopper task is switching into idle, no need core-wide selection. */
6039 	if (cpu_is_offline(cpu)) {
6040 		/*
6041 		 * Reset core_pick so that we don't enter the fastpath when
6042 		 * coming online. core_pick would already be migrated to
6043 		 * another cpu during offline.
6044 		 */
6045 		rq->core_pick = NULL;
6046 		rq->core_dl_server = NULL;
6047 		return __pick_next_task(rq, prev, rf);
6048 	}
6049 
6050 	/*
6051 	 * If there were no {en,de}queues since we picked (IOW, the task
6052 	 * pointers are all still valid), and we haven't scheduled the last
6053 	 * pick yet, do so now.
6054 	 *
6055 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6056 	 * it was either offline or went offline during a sibling's core-wide
6057 	 * selection. In this case, do a core-wide selection.
6058 	 */
6059 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6060 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6061 	    rq->core_pick) {
6062 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6063 
6064 		next = rq->core_pick;
6065 		rq->dl_server = rq->core_dl_server;
6066 		rq->core_pick = NULL;
6067 		rq->core_dl_server = NULL;
6068 		goto out_set_next;
6069 	}
6070 
6071 	prev_balance(rq, prev, rf);
6072 
6073 	smt_mask = cpu_smt_mask(cpu);
6074 	need_sync = !!rq->core->core_cookie;
6075 
6076 	/* reset state */
6077 	rq->core->core_cookie = 0UL;
6078 	if (rq->core->core_forceidle_count) {
6079 		if (!core_clock_updated) {
6080 			update_rq_clock(rq->core);
6081 			core_clock_updated = true;
6082 		}
6083 		sched_core_account_forceidle(rq);
6084 		/* reset after accounting force idle */
6085 		rq->core->core_forceidle_start = 0;
6086 		rq->core->core_forceidle_count = 0;
6087 		rq->core->core_forceidle_occupation = 0;
6088 		need_sync = true;
6089 		fi_before = true;
6090 	}
6091 
6092 	/*
6093 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6094 	 *
6095 	 * @task_seq guards the task state ({en,de}queues)
6096 	 * @pick_seq is the @task_seq we did a selection on
6097 	 * @sched_seq is the @pick_seq we scheduled
6098 	 *
6099 	 * However, preemptions can cause multiple picks on the same task set.
6100 	 * 'Fix' this by also increasing @task_seq for every pick.
6101 	 */
6102 	rq->core->core_task_seq++;
6103 
6104 	/*
6105 	 * Optimize for common case where this CPU has no cookies
6106 	 * and there are no cookied tasks running on siblings.
6107 	 */
6108 	if (!need_sync) {
6109 		next = pick_task(rq);
6110 		if (!next->core_cookie) {
6111 			rq->core_pick = NULL;
6112 			rq->core_dl_server = NULL;
6113 			/*
6114 			 * For robustness, update the min_vruntime_fi for
6115 			 * unconstrained picks as well.
6116 			 */
6117 			WARN_ON_ONCE(fi_before);
6118 			task_vruntime_update(rq, next, false);
6119 			goto out_set_next;
6120 		}
6121 	}
6122 
6123 	/*
6124 	 * For each thread: do the regular task pick and find the max prio task
6125 	 * amongst them.
6126 	 *
6127 	 * Tie-break prio towards the current CPU
6128 	 */
6129 	for_each_cpu_wrap(i, smt_mask, cpu) {
6130 		rq_i = cpu_rq(i);
6131 
6132 		/*
6133 		 * Current cpu always has its clock updated on entrance to
6134 		 * pick_next_task(). If the current cpu is not the core,
6135 		 * the core may also have been updated above.
6136 		 */
6137 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6138 			update_rq_clock(rq_i);
6139 
6140 		rq_i->core_pick = p = pick_task(rq_i);
6141 		rq_i->core_dl_server = rq_i->dl_server;
6142 
6143 		if (!max || prio_less(max, p, fi_before))
6144 			max = p;
6145 	}
6146 
6147 	cookie = rq->core->core_cookie = max->core_cookie;
6148 
6149 	/*
6150 	 * For each thread: try and find a runnable task that matches @max or
6151 	 * force idle.
6152 	 */
6153 	for_each_cpu(i, smt_mask) {
6154 		rq_i = cpu_rq(i);
6155 		p = rq_i->core_pick;
6156 
6157 		if (!cookie_equals(p, cookie)) {
6158 			p = NULL;
6159 			if (cookie)
6160 				p = sched_core_find(rq_i, cookie);
6161 			if (!p)
6162 				p = idle_sched_class.pick_task(rq_i);
6163 		}
6164 
6165 		rq_i->core_pick = p;
6166 		rq_i->core_dl_server = NULL;
6167 
6168 		if (p == rq_i->idle) {
6169 			if (rq_i->nr_running) {
6170 				rq->core->core_forceidle_count++;
6171 				if (!fi_before)
6172 					rq->core->core_forceidle_seq++;
6173 			}
6174 		} else {
6175 			occ++;
6176 		}
6177 	}
6178 
6179 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6180 		rq->core->core_forceidle_start = rq_clock(rq->core);
6181 		rq->core->core_forceidle_occupation = occ;
6182 	}
6183 
6184 	rq->core->core_pick_seq = rq->core->core_task_seq;
6185 	next = rq->core_pick;
6186 	rq->core_sched_seq = rq->core->core_pick_seq;
6187 
6188 	/* Something should have been selected for current CPU */
6189 	WARN_ON_ONCE(!next);
6190 
6191 	/*
6192 	 * Reschedule siblings
6193 	 *
6194 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6195 	 * sending an IPI (below) ensures the sibling will no longer be running
6196 	 * their task. This ensures there is no inter-sibling overlap between
6197 	 * non-matching user state.
6198 	 */
6199 	for_each_cpu(i, smt_mask) {
6200 		rq_i = cpu_rq(i);
6201 
6202 		/*
6203 		 * An online sibling might have gone offline before a task
6204 		 * could be picked for it, or it might be offline but later
6205 		 * happen to come online, but its too late and nothing was
6206 		 * picked for it.  That's Ok - it will pick tasks for itself,
6207 		 * so ignore it.
6208 		 */
6209 		if (!rq_i->core_pick)
6210 			continue;
6211 
6212 		/*
6213 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6214 		 * fi_before     fi      update?
6215 		 *  0            0       1
6216 		 *  0            1       1
6217 		 *  1            0       1
6218 		 *  1            1       0
6219 		 */
6220 		if (!(fi_before && rq->core->core_forceidle_count))
6221 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6222 
6223 		rq_i->core_pick->core_occupation = occ;
6224 
6225 		if (i == cpu) {
6226 			rq_i->core_pick = NULL;
6227 			rq_i->core_dl_server = NULL;
6228 			continue;
6229 		}
6230 
6231 		/* Did we break L1TF mitigation requirements? */
6232 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6233 
6234 		if (rq_i->curr == rq_i->core_pick) {
6235 			rq_i->core_pick = NULL;
6236 			rq_i->core_dl_server = NULL;
6237 			continue;
6238 		}
6239 
6240 		resched_curr(rq_i);
6241 	}
6242 
6243 out_set_next:
6244 	put_prev_set_next_task(rq, prev, next);
6245 	if (rq->core->core_forceidle_count && next == rq->idle)
6246 		queue_core_balance(rq);
6247 
6248 	return next;
6249 }
6250 
6251 static bool try_steal_cookie(int this, int that)
6252 {
6253 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6254 	struct task_struct *p;
6255 	unsigned long cookie;
6256 	bool success = false;
6257 
6258 	guard(irq)();
6259 	guard(double_rq_lock)(dst, src);
6260 
6261 	cookie = dst->core->core_cookie;
6262 	if (!cookie)
6263 		return false;
6264 
6265 	if (dst->curr != dst->idle)
6266 		return false;
6267 
6268 	p = sched_core_find(src, cookie);
6269 	if (!p)
6270 		return false;
6271 
6272 	do {
6273 		if (p == src->core_pick || p == src->curr)
6274 			goto next;
6275 
6276 		if (!is_cpu_allowed(p, this))
6277 			goto next;
6278 
6279 		if (p->core_occupation > dst->idle->core_occupation)
6280 			goto next;
6281 		/*
6282 		 * sched_core_find() and sched_core_next() will ensure
6283 		 * that task @p is not throttled now, we also need to
6284 		 * check whether the runqueue of the destination CPU is
6285 		 * being throttled.
6286 		 */
6287 		if (sched_task_is_throttled(p, this))
6288 			goto next;
6289 
6290 		deactivate_task(src, p, 0);
6291 		set_task_cpu(p, this);
6292 		activate_task(dst, p, 0);
6293 
6294 		resched_curr(dst);
6295 
6296 		success = true;
6297 		break;
6298 
6299 next:
6300 		p = sched_core_next(p, cookie);
6301 	} while (p);
6302 
6303 	return success;
6304 }
6305 
6306 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6307 {
6308 	int i;
6309 
6310 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6311 		if (i == cpu)
6312 			continue;
6313 
6314 		if (need_resched())
6315 			break;
6316 
6317 		if (try_steal_cookie(cpu, i))
6318 			return true;
6319 	}
6320 
6321 	return false;
6322 }
6323 
6324 static void sched_core_balance(struct rq *rq)
6325 {
6326 	struct sched_domain *sd;
6327 	int cpu = cpu_of(rq);
6328 
6329 	guard(preempt)();
6330 	guard(rcu)();
6331 
6332 	raw_spin_rq_unlock_irq(rq);
6333 	for_each_domain(cpu, sd) {
6334 		if (need_resched())
6335 			break;
6336 
6337 		if (steal_cookie_task(cpu, sd))
6338 			break;
6339 	}
6340 	raw_spin_rq_lock_irq(rq);
6341 }
6342 
6343 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6344 
6345 static void queue_core_balance(struct rq *rq)
6346 {
6347 	if (!sched_core_enabled(rq))
6348 		return;
6349 
6350 	if (!rq->core->core_cookie)
6351 		return;
6352 
6353 	if (!rq->nr_running) /* not forced idle */
6354 		return;
6355 
6356 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6357 }
6358 
6359 DEFINE_LOCK_GUARD_1(core_lock, int,
6360 		    sched_core_lock(*_T->lock, &_T->flags),
6361 		    sched_core_unlock(*_T->lock, &_T->flags),
6362 		    unsigned long flags)
6363 
6364 static void sched_core_cpu_starting(unsigned int cpu)
6365 {
6366 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6367 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6368 	int t;
6369 
6370 	guard(core_lock)(&cpu);
6371 
6372 	WARN_ON_ONCE(rq->core != rq);
6373 
6374 	/* if we're the first, we'll be our own leader */
6375 	if (cpumask_weight(smt_mask) == 1)
6376 		return;
6377 
6378 	/* find the leader */
6379 	for_each_cpu(t, smt_mask) {
6380 		if (t == cpu)
6381 			continue;
6382 		rq = cpu_rq(t);
6383 		if (rq->core == rq) {
6384 			core_rq = rq;
6385 			break;
6386 		}
6387 	}
6388 
6389 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6390 		return;
6391 
6392 	/* install and validate core_rq */
6393 	for_each_cpu(t, smt_mask) {
6394 		rq = cpu_rq(t);
6395 
6396 		if (t == cpu)
6397 			rq->core = core_rq;
6398 
6399 		WARN_ON_ONCE(rq->core != core_rq);
6400 	}
6401 }
6402 
6403 static void sched_core_cpu_deactivate(unsigned int cpu)
6404 {
6405 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6406 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6407 	int t;
6408 
6409 	guard(core_lock)(&cpu);
6410 
6411 	/* if we're the last man standing, nothing to do */
6412 	if (cpumask_weight(smt_mask) == 1) {
6413 		WARN_ON_ONCE(rq->core != rq);
6414 		return;
6415 	}
6416 
6417 	/* if we're not the leader, nothing to do */
6418 	if (rq->core != rq)
6419 		return;
6420 
6421 	/* find a new leader */
6422 	for_each_cpu(t, smt_mask) {
6423 		if (t == cpu)
6424 			continue;
6425 		core_rq = cpu_rq(t);
6426 		break;
6427 	}
6428 
6429 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6430 		return;
6431 
6432 	/* copy the shared state to the new leader */
6433 	core_rq->core_task_seq             = rq->core_task_seq;
6434 	core_rq->core_pick_seq             = rq->core_pick_seq;
6435 	core_rq->core_cookie               = rq->core_cookie;
6436 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6437 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6438 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6439 
6440 	/*
6441 	 * Accounting edge for forced idle is handled in pick_next_task().
6442 	 * Don't need another one here, since the hotplug thread shouldn't
6443 	 * have a cookie.
6444 	 */
6445 	core_rq->core_forceidle_start = 0;
6446 
6447 	/* install new leader */
6448 	for_each_cpu(t, smt_mask) {
6449 		rq = cpu_rq(t);
6450 		rq->core = core_rq;
6451 	}
6452 }
6453 
6454 static inline void sched_core_cpu_dying(unsigned int cpu)
6455 {
6456 	struct rq *rq = cpu_rq(cpu);
6457 
6458 	if (rq->core != rq)
6459 		rq->core = rq;
6460 }
6461 
6462 #else /* !CONFIG_SCHED_CORE */
6463 
6464 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6465 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6466 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6467 
6468 static struct task_struct *
6469 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6470 {
6471 	return __pick_next_task(rq, prev, rf);
6472 }
6473 
6474 #endif /* CONFIG_SCHED_CORE */
6475 
6476 /*
6477  * Constants for the sched_mode argument of __schedule().
6478  *
6479  * The mode argument allows RT enabled kernels to differentiate a
6480  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6481  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6482  * optimize the AND operation out and just check for zero.
6483  */
6484 #define SM_NONE			0x0
6485 #define SM_PREEMPT		0x1
6486 #define SM_RTLOCK_WAIT		0x2
6487 
6488 #ifndef CONFIG_PREEMPT_RT
6489 # define SM_MASK_PREEMPT	(~0U)
6490 #else
6491 # define SM_MASK_PREEMPT	SM_PREEMPT
6492 #endif
6493 
6494 /*
6495  * __schedule() is the main scheduler function.
6496  *
6497  * The main means of driving the scheduler and thus entering this function are:
6498  *
6499  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6500  *
6501  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6502  *      paths. For example, see arch/x86/entry_64.S.
6503  *
6504  *      To drive preemption between tasks, the scheduler sets the flag in timer
6505  *      interrupt handler sched_tick().
6506  *
6507  *   3. Wakeups don't really cause entry into schedule(). They add a
6508  *      task to the run-queue and that's it.
6509  *
6510  *      Now, if the new task added to the run-queue preempts the current
6511  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6512  *      called on the nearest possible occasion:
6513  *
6514  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6515  *
6516  *         - in syscall or exception context, at the next outmost
6517  *           preempt_enable(). (this might be as soon as the wake_up()'s
6518  *           spin_unlock()!)
6519  *
6520  *         - in IRQ context, return from interrupt-handler to
6521  *           preemptible context
6522  *
6523  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6524  *         then at the next:
6525  *
6526  *          - cond_resched() call
6527  *          - explicit schedule() call
6528  *          - return from syscall or exception to user-space
6529  *          - return from interrupt-handler to user-space
6530  *
6531  * WARNING: must be called with preemption disabled!
6532  */
6533 static void __sched notrace __schedule(unsigned int sched_mode)
6534 {
6535 	struct task_struct *prev, *next;
6536 	unsigned long *switch_count;
6537 	unsigned long prev_state;
6538 	struct rq_flags rf;
6539 	struct rq *rq;
6540 	int cpu;
6541 
6542 	cpu = smp_processor_id();
6543 	rq = cpu_rq(cpu);
6544 	prev = rq->curr;
6545 
6546 	schedule_debug(prev, !!sched_mode);
6547 
6548 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6549 		hrtick_clear(rq);
6550 
6551 	local_irq_disable();
6552 	rcu_note_context_switch(!!sched_mode);
6553 
6554 	/*
6555 	 * Make sure that signal_pending_state()->signal_pending() below
6556 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6557 	 * done by the caller to avoid the race with signal_wake_up():
6558 	 *
6559 	 * __set_current_state(@state)		signal_wake_up()
6560 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6561 	 *					  wake_up_state(p, state)
6562 	 *   LOCK rq->lock			    LOCK p->pi_state
6563 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6564 	 *     if (signal_pending_state())	    if (p->state & @state)
6565 	 *
6566 	 * Also, the membarrier system call requires a full memory barrier
6567 	 * after coming from user-space, before storing to rq->curr; this
6568 	 * barrier matches a full barrier in the proximity of the membarrier
6569 	 * system call exit.
6570 	 */
6571 	rq_lock(rq, &rf);
6572 	smp_mb__after_spinlock();
6573 
6574 	/* Promote REQ to ACT */
6575 	rq->clock_update_flags <<= 1;
6576 	update_rq_clock(rq);
6577 	rq->clock_update_flags = RQCF_UPDATED;
6578 
6579 	switch_count = &prev->nivcsw;
6580 
6581 	/*
6582 	 * We must load prev->state once (task_struct::state is volatile), such
6583 	 * that we form a control dependency vs deactivate_task() below.
6584 	 */
6585 	prev_state = READ_ONCE(prev->__state);
6586 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6587 		if (signal_pending_state(prev_state, prev)) {
6588 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6589 		} else {
6590 			int flags = DEQUEUE_NOCLOCK;
6591 
6592 			prev->sched_contributes_to_load =
6593 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6594 				!(prev_state & TASK_NOLOAD) &&
6595 				!(prev_state & TASK_FROZEN);
6596 
6597 			if (unlikely(is_special_task_state(prev_state)))
6598 				flags |= DEQUEUE_SPECIAL;
6599 
6600 			/*
6601 			 * __schedule()			ttwu()
6602 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6603 			 *   if (prev_state)		    goto out;
6604 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6605 			 *				  p->state = TASK_WAKING
6606 			 *
6607 			 * Where __schedule() and ttwu() have matching control dependencies.
6608 			 *
6609 			 * After this, schedule() must not care about p->state any more.
6610 			 */
6611 			block_task(rq, prev, flags);
6612 		}
6613 		switch_count = &prev->nvcsw;
6614 	}
6615 
6616 	next = pick_next_task(rq, prev, &rf);
6617 	clear_tsk_need_resched(prev);
6618 	clear_preempt_need_resched();
6619 #ifdef CONFIG_SCHED_DEBUG
6620 	rq->last_seen_need_resched_ns = 0;
6621 #endif
6622 
6623 	if (likely(prev != next)) {
6624 		rq->nr_switches++;
6625 		/*
6626 		 * RCU users of rcu_dereference(rq->curr) may not see
6627 		 * changes to task_struct made by pick_next_task().
6628 		 */
6629 		RCU_INIT_POINTER(rq->curr, next);
6630 		/*
6631 		 * The membarrier system call requires each architecture
6632 		 * to have a full memory barrier after updating
6633 		 * rq->curr, before returning to user-space.
6634 		 *
6635 		 * Here are the schemes providing that barrier on the
6636 		 * various architectures:
6637 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6638 		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
6639 		 *   on PowerPC and on RISC-V.
6640 		 * - finish_lock_switch() for weakly-ordered
6641 		 *   architectures where spin_unlock is a full barrier,
6642 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6643 		 *   is a RELEASE barrier),
6644 		 *
6645 		 * The barrier matches a full barrier in the proximity of
6646 		 * the membarrier system call entry.
6647 		 *
6648 		 * On RISC-V, this barrier pairing is also needed for the
6649 		 * SYNC_CORE command when switching between processes, cf.
6650 		 * the inline comments in membarrier_arch_switch_mm().
6651 		 */
6652 		++*switch_count;
6653 
6654 		migrate_disable_switch(rq, prev);
6655 		psi_account_irqtime(rq, prev, next);
6656 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6657 
6658 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6659 
6660 		/* Also unlocks the rq: */
6661 		rq = context_switch(rq, prev, next, &rf);
6662 	} else {
6663 		rq_unpin_lock(rq, &rf);
6664 		__balance_callbacks(rq);
6665 		raw_spin_rq_unlock_irq(rq);
6666 	}
6667 }
6668 
6669 void __noreturn do_task_dead(void)
6670 {
6671 	/* Causes final put_task_struct in finish_task_switch(): */
6672 	set_special_state(TASK_DEAD);
6673 
6674 	/* Tell freezer to ignore us: */
6675 	current->flags |= PF_NOFREEZE;
6676 
6677 	__schedule(SM_NONE);
6678 	BUG();
6679 
6680 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6681 	for (;;)
6682 		cpu_relax();
6683 }
6684 
6685 static inline void sched_submit_work(struct task_struct *tsk)
6686 {
6687 	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6688 	unsigned int task_flags;
6689 
6690 	/*
6691 	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6692 	 * will use a blocking primitive -- which would lead to recursion.
6693 	 */
6694 	lock_map_acquire_try(&sched_map);
6695 
6696 	task_flags = tsk->flags;
6697 	/*
6698 	 * If a worker goes to sleep, notify and ask workqueue whether it
6699 	 * wants to wake up a task to maintain concurrency.
6700 	 */
6701 	if (task_flags & PF_WQ_WORKER)
6702 		wq_worker_sleeping(tsk);
6703 	else if (task_flags & PF_IO_WORKER)
6704 		io_wq_worker_sleeping(tsk);
6705 
6706 	/*
6707 	 * spinlock and rwlock must not flush block requests.  This will
6708 	 * deadlock if the callback attempts to acquire a lock which is
6709 	 * already acquired.
6710 	 */
6711 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6712 
6713 	/*
6714 	 * If we are going to sleep and we have plugged IO queued,
6715 	 * make sure to submit it to avoid deadlocks.
6716 	 */
6717 	blk_flush_plug(tsk->plug, true);
6718 
6719 	lock_map_release(&sched_map);
6720 }
6721 
6722 static void sched_update_worker(struct task_struct *tsk)
6723 {
6724 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
6725 		if (tsk->flags & PF_BLOCK_TS)
6726 			blk_plug_invalidate_ts(tsk);
6727 		if (tsk->flags & PF_WQ_WORKER)
6728 			wq_worker_running(tsk);
6729 		else if (tsk->flags & PF_IO_WORKER)
6730 			io_wq_worker_running(tsk);
6731 	}
6732 }
6733 
6734 static __always_inline void __schedule_loop(unsigned int sched_mode)
6735 {
6736 	do {
6737 		preempt_disable();
6738 		__schedule(sched_mode);
6739 		sched_preempt_enable_no_resched();
6740 	} while (need_resched());
6741 }
6742 
6743 asmlinkage __visible void __sched schedule(void)
6744 {
6745 	struct task_struct *tsk = current;
6746 
6747 #ifdef CONFIG_RT_MUTEXES
6748 	lockdep_assert(!tsk->sched_rt_mutex);
6749 #endif
6750 
6751 	if (!task_is_running(tsk))
6752 		sched_submit_work(tsk);
6753 	__schedule_loop(SM_NONE);
6754 	sched_update_worker(tsk);
6755 }
6756 EXPORT_SYMBOL(schedule);
6757 
6758 /*
6759  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6760  * state (have scheduled out non-voluntarily) by making sure that all
6761  * tasks have either left the run queue or have gone into user space.
6762  * As idle tasks do not do either, they must not ever be preempted
6763  * (schedule out non-voluntarily).
6764  *
6765  * schedule_idle() is similar to schedule_preempt_disable() except that it
6766  * never enables preemption because it does not call sched_submit_work().
6767  */
6768 void __sched schedule_idle(void)
6769 {
6770 	/*
6771 	 * As this skips calling sched_submit_work(), which the idle task does
6772 	 * regardless because that function is a NOP when the task is in a
6773 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6774 	 * current task can be in any other state. Note, idle is always in the
6775 	 * TASK_RUNNING state.
6776 	 */
6777 	WARN_ON_ONCE(current->__state);
6778 	do {
6779 		__schedule(SM_NONE);
6780 	} while (need_resched());
6781 }
6782 
6783 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6784 asmlinkage __visible void __sched schedule_user(void)
6785 {
6786 	/*
6787 	 * If we come here after a random call to set_need_resched(),
6788 	 * or we have been woken up remotely but the IPI has not yet arrived,
6789 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6790 	 * we find a better solution.
6791 	 *
6792 	 * NB: There are buggy callers of this function.  Ideally we
6793 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6794 	 * too frequently to make sense yet.
6795 	 */
6796 	enum ctx_state prev_state = exception_enter();
6797 	schedule();
6798 	exception_exit(prev_state);
6799 }
6800 #endif
6801 
6802 /**
6803  * schedule_preempt_disabled - called with preemption disabled
6804  *
6805  * Returns with preemption disabled. Note: preempt_count must be 1
6806  */
6807 void __sched schedule_preempt_disabled(void)
6808 {
6809 	sched_preempt_enable_no_resched();
6810 	schedule();
6811 	preempt_disable();
6812 }
6813 
6814 #ifdef CONFIG_PREEMPT_RT
6815 void __sched notrace schedule_rtlock(void)
6816 {
6817 	__schedule_loop(SM_RTLOCK_WAIT);
6818 }
6819 NOKPROBE_SYMBOL(schedule_rtlock);
6820 #endif
6821 
6822 static void __sched notrace preempt_schedule_common(void)
6823 {
6824 	do {
6825 		/*
6826 		 * Because the function tracer can trace preempt_count_sub()
6827 		 * and it also uses preempt_enable/disable_notrace(), if
6828 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6829 		 * by the function tracer will call this function again and
6830 		 * cause infinite recursion.
6831 		 *
6832 		 * Preemption must be disabled here before the function
6833 		 * tracer can trace. Break up preempt_disable() into two
6834 		 * calls. One to disable preemption without fear of being
6835 		 * traced. The other to still record the preemption latency,
6836 		 * which can also be traced by the function tracer.
6837 		 */
6838 		preempt_disable_notrace();
6839 		preempt_latency_start(1);
6840 		__schedule(SM_PREEMPT);
6841 		preempt_latency_stop(1);
6842 		preempt_enable_no_resched_notrace();
6843 
6844 		/*
6845 		 * Check again in case we missed a preemption opportunity
6846 		 * between schedule and now.
6847 		 */
6848 	} while (need_resched());
6849 }
6850 
6851 #ifdef CONFIG_PREEMPTION
6852 /*
6853  * This is the entry point to schedule() from in-kernel preemption
6854  * off of preempt_enable.
6855  */
6856 asmlinkage __visible void __sched notrace preempt_schedule(void)
6857 {
6858 	/*
6859 	 * If there is a non-zero preempt_count or interrupts are disabled,
6860 	 * we do not want to preempt the current task. Just return..
6861 	 */
6862 	if (likely(!preemptible()))
6863 		return;
6864 	preempt_schedule_common();
6865 }
6866 NOKPROBE_SYMBOL(preempt_schedule);
6867 EXPORT_SYMBOL(preempt_schedule);
6868 
6869 #ifdef CONFIG_PREEMPT_DYNAMIC
6870 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6871 #ifndef preempt_schedule_dynamic_enabled
6872 #define preempt_schedule_dynamic_enabled	preempt_schedule
6873 #define preempt_schedule_dynamic_disabled	NULL
6874 #endif
6875 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6876 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6877 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6878 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6879 void __sched notrace dynamic_preempt_schedule(void)
6880 {
6881 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6882 		return;
6883 	preempt_schedule();
6884 }
6885 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6886 EXPORT_SYMBOL(dynamic_preempt_schedule);
6887 #endif
6888 #endif
6889 
6890 /**
6891  * preempt_schedule_notrace - preempt_schedule called by tracing
6892  *
6893  * The tracing infrastructure uses preempt_enable_notrace to prevent
6894  * recursion and tracing preempt enabling caused by the tracing
6895  * infrastructure itself. But as tracing can happen in areas coming
6896  * from userspace or just about to enter userspace, a preempt enable
6897  * can occur before user_exit() is called. This will cause the scheduler
6898  * to be called when the system is still in usermode.
6899  *
6900  * To prevent this, the preempt_enable_notrace will use this function
6901  * instead of preempt_schedule() to exit user context if needed before
6902  * calling the scheduler.
6903  */
6904 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6905 {
6906 	enum ctx_state prev_ctx;
6907 
6908 	if (likely(!preemptible()))
6909 		return;
6910 
6911 	do {
6912 		/*
6913 		 * Because the function tracer can trace preempt_count_sub()
6914 		 * and it also uses preempt_enable/disable_notrace(), if
6915 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6916 		 * by the function tracer will call this function again and
6917 		 * cause infinite recursion.
6918 		 *
6919 		 * Preemption must be disabled here before the function
6920 		 * tracer can trace. Break up preempt_disable() into two
6921 		 * calls. One to disable preemption without fear of being
6922 		 * traced. The other to still record the preemption latency,
6923 		 * which can also be traced by the function tracer.
6924 		 */
6925 		preempt_disable_notrace();
6926 		preempt_latency_start(1);
6927 		/*
6928 		 * Needs preempt disabled in case user_exit() is traced
6929 		 * and the tracer calls preempt_enable_notrace() causing
6930 		 * an infinite recursion.
6931 		 */
6932 		prev_ctx = exception_enter();
6933 		__schedule(SM_PREEMPT);
6934 		exception_exit(prev_ctx);
6935 
6936 		preempt_latency_stop(1);
6937 		preempt_enable_no_resched_notrace();
6938 	} while (need_resched());
6939 }
6940 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6941 
6942 #ifdef CONFIG_PREEMPT_DYNAMIC
6943 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6944 #ifndef preempt_schedule_notrace_dynamic_enabled
6945 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6946 #define preempt_schedule_notrace_dynamic_disabled	NULL
6947 #endif
6948 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6949 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6950 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6951 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6952 void __sched notrace dynamic_preempt_schedule_notrace(void)
6953 {
6954 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6955 		return;
6956 	preempt_schedule_notrace();
6957 }
6958 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6959 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6960 #endif
6961 #endif
6962 
6963 #endif /* CONFIG_PREEMPTION */
6964 
6965 /*
6966  * This is the entry point to schedule() from kernel preemption
6967  * off of IRQ context.
6968  * Note, that this is called and return with IRQs disabled. This will
6969  * protect us against recursive calling from IRQ contexts.
6970  */
6971 asmlinkage __visible void __sched preempt_schedule_irq(void)
6972 {
6973 	enum ctx_state prev_state;
6974 
6975 	/* Catch callers which need to be fixed */
6976 	BUG_ON(preempt_count() || !irqs_disabled());
6977 
6978 	prev_state = exception_enter();
6979 
6980 	do {
6981 		preempt_disable();
6982 		local_irq_enable();
6983 		__schedule(SM_PREEMPT);
6984 		local_irq_disable();
6985 		sched_preempt_enable_no_resched();
6986 	} while (need_resched());
6987 
6988 	exception_exit(prev_state);
6989 }
6990 
6991 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6992 			  void *key)
6993 {
6994 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
6995 	return try_to_wake_up(curr->private, mode, wake_flags);
6996 }
6997 EXPORT_SYMBOL(default_wake_function);
6998 
6999 void __setscheduler_prio(struct task_struct *p, int prio)
7000 {
7001 	if (dl_prio(prio))
7002 		p->sched_class = &dl_sched_class;
7003 	else if (rt_prio(prio))
7004 		p->sched_class = &rt_sched_class;
7005 #ifdef CONFIG_SCHED_CLASS_EXT
7006 	else if (task_should_scx(p))
7007 		p->sched_class = &ext_sched_class;
7008 #endif
7009 	else
7010 		p->sched_class = &fair_sched_class;
7011 
7012 	p->prio = prio;
7013 }
7014 
7015 #ifdef CONFIG_RT_MUTEXES
7016 
7017 /*
7018  * Would be more useful with typeof()/auto_type but they don't mix with
7019  * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7020  * name such that if someone were to implement this function we get to compare
7021  * notes.
7022  */
7023 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7024 
7025 void rt_mutex_pre_schedule(void)
7026 {
7027 	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7028 	sched_submit_work(current);
7029 }
7030 
7031 void rt_mutex_schedule(void)
7032 {
7033 	lockdep_assert(current->sched_rt_mutex);
7034 	__schedule_loop(SM_NONE);
7035 }
7036 
7037 void rt_mutex_post_schedule(void)
7038 {
7039 	sched_update_worker(current);
7040 	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7041 }
7042 
7043 /*
7044  * rt_mutex_setprio - set the current priority of a task
7045  * @p: task to boost
7046  * @pi_task: donor task
7047  *
7048  * This function changes the 'effective' priority of a task. It does
7049  * not touch ->normal_prio like __setscheduler().
7050  *
7051  * Used by the rt_mutex code to implement priority inheritance
7052  * logic. Call site only calls if the priority of the task changed.
7053  */
7054 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7055 {
7056 	int prio, oldprio, queued, running, queue_flag =
7057 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7058 	const struct sched_class *prev_class;
7059 	struct rq_flags rf;
7060 	struct rq *rq;
7061 
7062 	/* XXX used to be waiter->prio, not waiter->task->prio */
7063 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7064 
7065 	/*
7066 	 * If nothing changed; bail early.
7067 	 */
7068 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7069 		return;
7070 
7071 	rq = __task_rq_lock(p, &rf);
7072 	update_rq_clock(rq);
7073 	/*
7074 	 * Set under pi_lock && rq->lock, such that the value can be used under
7075 	 * either lock.
7076 	 *
7077 	 * Note that there is loads of tricky to make this pointer cache work
7078 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7079 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7080 	 * task is allowed to run again (and can exit). This ensures the pointer
7081 	 * points to a blocked task -- which guarantees the task is present.
7082 	 */
7083 	p->pi_top_task = pi_task;
7084 
7085 	/*
7086 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7087 	 */
7088 	if (prio == p->prio && !dl_prio(prio))
7089 		goto out_unlock;
7090 
7091 	/*
7092 	 * Idle task boosting is a no-no in general. There is one
7093 	 * exception, when PREEMPT_RT and NOHZ is active:
7094 	 *
7095 	 * The idle task calls get_next_timer_interrupt() and holds
7096 	 * the timer wheel base->lock on the CPU and another CPU wants
7097 	 * to access the timer (probably to cancel it). We can safely
7098 	 * ignore the boosting request, as the idle CPU runs this code
7099 	 * with interrupts disabled and will complete the lock
7100 	 * protected section without being interrupted. So there is no
7101 	 * real need to boost.
7102 	 */
7103 	if (unlikely(p == rq->idle)) {
7104 		WARN_ON(p != rq->curr);
7105 		WARN_ON(p->pi_blocked_on);
7106 		goto out_unlock;
7107 	}
7108 
7109 	trace_sched_pi_setprio(p, pi_task);
7110 	oldprio = p->prio;
7111 
7112 	if (oldprio == prio)
7113 		queue_flag &= ~DEQUEUE_MOVE;
7114 
7115 	prev_class = p->sched_class;
7116 	queued = task_on_rq_queued(p);
7117 	running = task_current(rq, p);
7118 	if (queued)
7119 		dequeue_task(rq, p, queue_flag);
7120 	if (running)
7121 		put_prev_task(rq, p);
7122 
7123 	/*
7124 	 * Boosting condition are:
7125 	 * 1. -rt task is running and holds mutex A
7126 	 *      --> -dl task blocks on mutex A
7127 	 *
7128 	 * 2. -dl task is running and holds mutex A
7129 	 *      --> -dl task blocks on mutex A and could preempt the
7130 	 *          running task
7131 	 */
7132 	if (dl_prio(prio)) {
7133 		if (!dl_prio(p->normal_prio) ||
7134 		    (pi_task && dl_prio(pi_task->prio) &&
7135 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7136 			p->dl.pi_se = pi_task->dl.pi_se;
7137 			queue_flag |= ENQUEUE_REPLENISH;
7138 		} else {
7139 			p->dl.pi_se = &p->dl;
7140 		}
7141 	} else if (rt_prio(prio)) {
7142 		if (dl_prio(oldprio))
7143 			p->dl.pi_se = &p->dl;
7144 		if (oldprio < prio)
7145 			queue_flag |= ENQUEUE_HEAD;
7146 	} else {
7147 		if (dl_prio(oldprio))
7148 			p->dl.pi_se = &p->dl;
7149 		if (rt_prio(oldprio))
7150 			p->rt.timeout = 0;
7151 	}
7152 
7153 	__setscheduler_prio(p, prio);
7154 	check_class_changing(rq, p, prev_class);
7155 
7156 	if (queued)
7157 		enqueue_task(rq, p, queue_flag);
7158 	if (running)
7159 		set_next_task(rq, p);
7160 
7161 	check_class_changed(rq, p, prev_class, oldprio);
7162 out_unlock:
7163 	/* Avoid rq from going away on us: */
7164 	preempt_disable();
7165 
7166 	rq_unpin_lock(rq, &rf);
7167 	__balance_callbacks(rq);
7168 	raw_spin_rq_unlock(rq);
7169 
7170 	preempt_enable();
7171 }
7172 #endif
7173 
7174 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7175 int __sched __cond_resched(void)
7176 {
7177 	if (should_resched(0)) {
7178 		preempt_schedule_common();
7179 		return 1;
7180 	}
7181 	/*
7182 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
7183 	 * whether the current CPU is in an RCU read-side critical section,
7184 	 * so the tick can report quiescent states even for CPUs looping
7185 	 * in kernel context.  In contrast, in non-preemptible kernels,
7186 	 * RCU readers leave no in-memory hints, which means that CPU-bound
7187 	 * processes executing in kernel context might never report an
7188 	 * RCU quiescent state.  Therefore, the following code causes
7189 	 * cond_resched() to report a quiescent state, but only when RCU
7190 	 * is in urgent need of one.
7191 	 */
7192 #ifndef CONFIG_PREEMPT_RCU
7193 	rcu_all_qs();
7194 #endif
7195 	return 0;
7196 }
7197 EXPORT_SYMBOL(__cond_resched);
7198 #endif
7199 
7200 #ifdef CONFIG_PREEMPT_DYNAMIC
7201 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7202 #define cond_resched_dynamic_enabled	__cond_resched
7203 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
7204 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7205 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7206 
7207 #define might_resched_dynamic_enabled	__cond_resched
7208 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
7209 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7210 EXPORT_STATIC_CALL_TRAMP(might_resched);
7211 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7212 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
7213 int __sched dynamic_cond_resched(void)
7214 {
7215 	klp_sched_try_switch();
7216 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
7217 		return 0;
7218 	return __cond_resched();
7219 }
7220 EXPORT_SYMBOL(dynamic_cond_resched);
7221 
7222 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
7223 int __sched dynamic_might_resched(void)
7224 {
7225 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
7226 		return 0;
7227 	return __cond_resched();
7228 }
7229 EXPORT_SYMBOL(dynamic_might_resched);
7230 #endif
7231 #endif
7232 
7233 /*
7234  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7235  * call schedule, and on return reacquire the lock.
7236  *
7237  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7238  * operations here to prevent schedule() from being called twice (once via
7239  * spin_unlock(), once by hand).
7240  */
7241 int __cond_resched_lock(spinlock_t *lock)
7242 {
7243 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7244 	int ret = 0;
7245 
7246 	lockdep_assert_held(lock);
7247 
7248 	if (spin_needbreak(lock) || resched) {
7249 		spin_unlock(lock);
7250 		if (!_cond_resched())
7251 			cpu_relax();
7252 		ret = 1;
7253 		spin_lock(lock);
7254 	}
7255 	return ret;
7256 }
7257 EXPORT_SYMBOL(__cond_resched_lock);
7258 
7259 int __cond_resched_rwlock_read(rwlock_t *lock)
7260 {
7261 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7262 	int ret = 0;
7263 
7264 	lockdep_assert_held_read(lock);
7265 
7266 	if (rwlock_needbreak(lock) || resched) {
7267 		read_unlock(lock);
7268 		if (!_cond_resched())
7269 			cpu_relax();
7270 		ret = 1;
7271 		read_lock(lock);
7272 	}
7273 	return ret;
7274 }
7275 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7276 
7277 int __cond_resched_rwlock_write(rwlock_t *lock)
7278 {
7279 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7280 	int ret = 0;
7281 
7282 	lockdep_assert_held_write(lock);
7283 
7284 	if (rwlock_needbreak(lock) || resched) {
7285 		write_unlock(lock);
7286 		if (!_cond_resched())
7287 			cpu_relax();
7288 		ret = 1;
7289 		write_lock(lock);
7290 	}
7291 	return ret;
7292 }
7293 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7294 
7295 #ifdef CONFIG_PREEMPT_DYNAMIC
7296 
7297 #ifdef CONFIG_GENERIC_ENTRY
7298 #include <linux/entry-common.h>
7299 #endif
7300 
7301 /*
7302  * SC:cond_resched
7303  * SC:might_resched
7304  * SC:preempt_schedule
7305  * SC:preempt_schedule_notrace
7306  * SC:irqentry_exit_cond_resched
7307  *
7308  *
7309  * NONE:
7310  *   cond_resched               <- __cond_resched
7311  *   might_resched              <- RET0
7312  *   preempt_schedule           <- NOP
7313  *   preempt_schedule_notrace   <- NOP
7314  *   irqentry_exit_cond_resched <- NOP
7315  *
7316  * VOLUNTARY:
7317  *   cond_resched               <- __cond_resched
7318  *   might_resched              <- __cond_resched
7319  *   preempt_schedule           <- NOP
7320  *   preempt_schedule_notrace   <- NOP
7321  *   irqentry_exit_cond_resched <- NOP
7322  *
7323  * FULL:
7324  *   cond_resched               <- RET0
7325  *   might_resched              <- RET0
7326  *   preempt_schedule           <- preempt_schedule
7327  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7328  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7329  */
7330 
7331 enum {
7332 	preempt_dynamic_undefined = -1,
7333 	preempt_dynamic_none,
7334 	preempt_dynamic_voluntary,
7335 	preempt_dynamic_full,
7336 };
7337 
7338 int preempt_dynamic_mode = preempt_dynamic_undefined;
7339 
7340 int sched_dynamic_mode(const char *str)
7341 {
7342 	if (!strcmp(str, "none"))
7343 		return preempt_dynamic_none;
7344 
7345 	if (!strcmp(str, "voluntary"))
7346 		return preempt_dynamic_voluntary;
7347 
7348 	if (!strcmp(str, "full"))
7349 		return preempt_dynamic_full;
7350 
7351 	return -EINVAL;
7352 }
7353 
7354 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7355 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
7356 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
7357 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7358 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
7359 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
7360 #else
7361 #error "Unsupported PREEMPT_DYNAMIC mechanism"
7362 #endif
7363 
7364 static DEFINE_MUTEX(sched_dynamic_mutex);
7365 static bool klp_override;
7366 
7367 static void __sched_dynamic_update(int mode)
7368 {
7369 	/*
7370 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
7371 	 * the ZERO state, which is invalid.
7372 	 */
7373 	if (!klp_override)
7374 		preempt_dynamic_enable(cond_resched);
7375 	preempt_dynamic_enable(might_resched);
7376 	preempt_dynamic_enable(preempt_schedule);
7377 	preempt_dynamic_enable(preempt_schedule_notrace);
7378 	preempt_dynamic_enable(irqentry_exit_cond_resched);
7379 
7380 	switch (mode) {
7381 	case preempt_dynamic_none:
7382 		if (!klp_override)
7383 			preempt_dynamic_enable(cond_resched);
7384 		preempt_dynamic_disable(might_resched);
7385 		preempt_dynamic_disable(preempt_schedule);
7386 		preempt_dynamic_disable(preempt_schedule_notrace);
7387 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7388 		if (mode != preempt_dynamic_mode)
7389 			pr_info("Dynamic Preempt: none\n");
7390 		break;
7391 
7392 	case preempt_dynamic_voluntary:
7393 		if (!klp_override)
7394 			preempt_dynamic_enable(cond_resched);
7395 		preempt_dynamic_enable(might_resched);
7396 		preempt_dynamic_disable(preempt_schedule);
7397 		preempt_dynamic_disable(preempt_schedule_notrace);
7398 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7399 		if (mode != preempt_dynamic_mode)
7400 			pr_info("Dynamic Preempt: voluntary\n");
7401 		break;
7402 
7403 	case preempt_dynamic_full:
7404 		if (!klp_override)
7405 			preempt_dynamic_disable(cond_resched);
7406 		preempt_dynamic_disable(might_resched);
7407 		preempt_dynamic_enable(preempt_schedule);
7408 		preempt_dynamic_enable(preempt_schedule_notrace);
7409 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7410 		if (mode != preempt_dynamic_mode)
7411 			pr_info("Dynamic Preempt: full\n");
7412 		break;
7413 	}
7414 
7415 	preempt_dynamic_mode = mode;
7416 }
7417 
7418 void sched_dynamic_update(int mode)
7419 {
7420 	mutex_lock(&sched_dynamic_mutex);
7421 	__sched_dynamic_update(mode);
7422 	mutex_unlock(&sched_dynamic_mutex);
7423 }
7424 
7425 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
7426 
7427 static int klp_cond_resched(void)
7428 {
7429 	__klp_sched_try_switch();
7430 	return __cond_resched();
7431 }
7432 
7433 void sched_dynamic_klp_enable(void)
7434 {
7435 	mutex_lock(&sched_dynamic_mutex);
7436 
7437 	klp_override = true;
7438 	static_call_update(cond_resched, klp_cond_resched);
7439 
7440 	mutex_unlock(&sched_dynamic_mutex);
7441 }
7442 
7443 void sched_dynamic_klp_disable(void)
7444 {
7445 	mutex_lock(&sched_dynamic_mutex);
7446 
7447 	klp_override = false;
7448 	__sched_dynamic_update(preempt_dynamic_mode);
7449 
7450 	mutex_unlock(&sched_dynamic_mutex);
7451 }
7452 
7453 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
7454 
7455 static int __init setup_preempt_mode(char *str)
7456 {
7457 	int mode = sched_dynamic_mode(str);
7458 	if (mode < 0) {
7459 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
7460 		return 0;
7461 	}
7462 
7463 	sched_dynamic_update(mode);
7464 	return 1;
7465 }
7466 __setup("preempt=", setup_preempt_mode);
7467 
7468 static void __init preempt_dynamic_init(void)
7469 {
7470 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
7471 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
7472 			sched_dynamic_update(preempt_dynamic_none);
7473 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
7474 			sched_dynamic_update(preempt_dynamic_voluntary);
7475 		} else {
7476 			/* Default static call setting, nothing to do */
7477 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
7478 			preempt_dynamic_mode = preempt_dynamic_full;
7479 			pr_info("Dynamic Preempt: full\n");
7480 		}
7481 	}
7482 }
7483 
7484 #define PREEMPT_MODEL_ACCESSOR(mode) \
7485 	bool preempt_model_##mode(void)						 \
7486 	{									 \
7487 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
7488 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
7489 	}									 \
7490 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
7491 
7492 PREEMPT_MODEL_ACCESSOR(none);
7493 PREEMPT_MODEL_ACCESSOR(voluntary);
7494 PREEMPT_MODEL_ACCESSOR(full);
7495 
7496 #else /* !CONFIG_PREEMPT_DYNAMIC: */
7497 
7498 static inline void preempt_dynamic_init(void) { }
7499 
7500 #endif /* CONFIG_PREEMPT_DYNAMIC */
7501 
7502 int io_schedule_prepare(void)
7503 {
7504 	int old_iowait = current->in_iowait;
7505 
7506 	current->in_iowait = 1;
7507 	blk_flush_plug(current->plug, true);
7508 	return old_iowait;
7509 }
7510 
7511 void io_schedule_finish(int token)
7512 {
7513 	current->in_iowait = token;
7514 }
7515 
7516 /*
7517  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7518  * that process accounting knows that this is a task in IO wait state.
7519  */
7520 long __sched io_schedule_timeout(long timeout)
7521 {
7522 	int token;
7523 	long ret;
7524 
7525 	token = io_schedule_prepare();
7526 	ret = schedule_timeout(timeout);
7527 	io_schedule_finish(token);
7528 
7529 	return ret;
7530 }
7531 EXPORT_SYMBOL(io_schedule_timeout);
7532 
7533 void __sched io_schedule(void)
7534 {
7535 	int token;
7536 
7537 	token = io_schedule_prepare();
7538 	schedule();
7539 	io_schedule_finish(token);
7540 }
7541 EXPORT_SYMBOL(io_schedule);
7542 
7543 void sched_show_task(struct task_struct *p)
7544 {
7545 	unsigned long free = 0;
7546 	int ppid;
7547 
7548 	if (!try_get_task_stack(p))
7549 		return;
7550 
7551 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7552 
7553 	if (task_is_running(p))
7554 		pr_cont("  running task    ");
7555 #ifdef CONFIG_DEBUG_STACK_USAGE
7556 	free = stack_not_used(p);
7557 #endif
7558 	ppid = 0;
7559 	rcu_read_lock();
7560 	if (pid_alive(p))
7561 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7562 	rcu_read_unlock();
7563 	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
7564 		free, task_pid_nr(p), task_tgid_nr(p),
7565 		ppid, read_task_thread_flags(p));
7566 
7567 	print_worker_info(KERN_INFO, p);
7568 	print_stop_info(KERN_INFO, p);
7569 	print_scx_info(KERN_INFO, p);
7570 	show_stack(p, NULL, KERN_INFO);
7571 	put_task_stack(p);
7572 }
7573 EXPORT_SYMBOL_GPL(sched_show_task);
7574 
7575 static inline bool
7576 state_filter_match(unsigned long state_filter, struct task_struct *p)
7577 {
7578 	unsigned int state = READ_ONCE(p->__state);
7579 
7580 	/* no filter, everything matches */
7581 	if (!state_filter)
7582 		return true;
7583 
7584 	/* filter, but doesn't match */
7585 	if (!(state & state_filter))
7586 		return false;
7587 
7588 	/*
7589 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7590 	 * TASK_KILLABLE).
7591 	 */
7592 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
7593 		return false;
7594 
7595 	return true;
7596 }
7597 
7598 
7599 void show_state_filter(unsigned int state_filter)
7600 {
7601 	struct task_struct *g, *p;
7602 
7603 	rcu_read_lock();
7604 	for_each_process_thread(g, p) {
7605 		/*
7606 		 * reset the NMI-timeout, listing all files on a slow
7607 		 * console might take a lot of time:
7608 		 * Also, reset softlockup watchdogs on all CPUs, because
7609 		 * another CPU might be blocked waiting for us to process
7610 		 * an IPI.
7611 		 */
7612 		touch_nmi_watchdog();
7613 		touch_all_softlockup_watchdogs();
7614 		if (state_filter_match(state_filter, p))
7615 			sched_show_task(p);
7616 	}
7617 
7618 #ifdef CONFIG_SCHED_DEBUG
7619 	if (!state_filter)
7620 		sysrq_sched_debug_show();
7621 #endif
7622 	rcu_read_unlock();
7623 	/*
7624 	 * Only show locks if all tasks are dumped:
7625 	 */
7626 	if (!state_filter)
7627 		debug_show_all_locks();
7628 }
7629 
7630 /**
7631  * init_idle - set up an idle thread for a given CPU
7632  * @idle: task in question
7633  * @cpu: CPU the idle task belongs to
7634  *
7635  * NOTE: this function does not set the idle thread's NEED_RESCHED
7636  * flag, to make booting more robust.
7637  */
7638 void __init init_idle(struct task_struct *idle, int cpu)
7639 {
7640 #ifdef CONFIG_SMP
7641 	struct affinity_context ac = (struct affinity_context) {
7642 		.new_mask  = cpumask_of(cpu),
7643 		.flags     = 0,
7644 	};
7645 #endif
7646 	struct rq *rq = cpu_rq(cpu);
7647 	unsigned long flags;
7648 
7649 	__sched_fork(0, idle);
7650 
7651 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7652 	raw_spin_rq_lock(rq);
7653 
7654 	idle->__state = TASK_RUNNING;
7655 	idle->se.exec_start = sched_clock();
7656 	/*
7657 	 * PF_KTHREAD should already be set at this point; regardless, make it
7658 	 * look like a proper per-CPU kthread.
7659 	 */
7660 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
7661 	kthread_set_per_cpu(idle, cpu);
7662 
7663 #ifdef CONFIG_SMP
7664 	/*
7665 	 * It's possible that init_idle() gets called multiple times on a task,
7666 	 * in that case do_set_cpus_allowed() will not do the right thing.
7667 	 *
7668 	 * And since this is boot we can forgo the serialization.
7669 	 */
7670 	set_cpus_allowed_common(idle, &ac);
7671 #endif
7672 	/*
7673 	 * We're having a chicken and egg problem, even though we are
7674 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7675 	 * lockdep check in task_group() will fail.
7676 	 *
7677 	 * Similar case to sched_fork(). / Alternatively we could
7678 	 * use task_rq_lock() here and obtain the other rq->lock.
7679 	 *
7680 	 * Silence PROVE_RCU
7681 	 */
7682 	rcu_read_lock();
7683 	__set_task_cpu(idle, cpu);
7684 	rcu_read_unlock();
7685 
7686 	rq->idle = idle;
7687 	rcu_assign_pointer(rq->curr, idle);
7688 	idle->on_rq = TASK_ON_RQ_QUEUED;
7689 #ifdef CONFIG_SMP
7690 	idle->on_cpu = 1;
7691 #endif
7692 	raw_spin_rq_unlock(rq);
7693 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7694 
7695 	/* Set the preempt count _outside_ the spinlocks! */
7696 	init_idle_preempt_count(idle, cpu);
7697 
7698 	/*
7699 	 * The idle tasks have their own, simple scheduling class:
7700 	 */
7701 	idle->sched_class = &idle_sched_class;
7702 	ftrace_graph_init_idle_task(idle, cpu);
7703 	vtime_init_idle(idle, cpu);
7704 #ifdef CONFIG_SMP
7705 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7706 #endif
7707 }
7708 
7709 #ifdef CONFIG_SMP
7710 
7711 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7712 			      const struct cpumask *trial)
7713 {
7714 	int ret = 1;
7715 
7716 	if (cpumask_empty(cur))
7717 		return ret;
7718 
7719 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7720 
7721 	return ret;
7722 }
7723 
7724 int task_can_attach(struct task_struct *p)
7725 {
7726 	int ret = 0;
7727 
7728 	/*
7729 	 * Kthreads which disallow setaffinity shouldn't be moved
7730 	 * to a new cpuset; we don't want to change their CPU
7731 	 * affinity and isolating such threads by their set of
7732 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7733 	 * applicable for such threads.  This prevents checking for
7734 	 * success of set_cpus_allowed_ptr() on all attached tasks
7735 	 * before cpus_mask may be changed.
7736 	 */
7737 	if (p->flags & PF_NO_SETAFFINITY)
7738 		ret = -EINVAL;
7739 
7740 	return ret;
7741 }
7742 
7743 bool sched_smp_initialized __read_mostly;
7744 
7745 #ifdef CONFIG_NUMA_BALANCING
7746 /* Migrate current task p to target_cpu */
7747 int migrate_task_to(struct task_struct *p, int target_cpu)
7748 {
7749 	struct migration_arg arg = { p, target_cpu };
7750 	int curr_cpu = task_cpu(p);
7751 
7752 	if (curr_cpu == target_cpu)
7753 		return 0;
7754 
7755 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7756 		return -EINVAL;
7757 
7758 	/* TODO: This is not properly updating schedstats */
7759 
7760 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7761 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7762 }
7763 
7764 /*
7765  * Requeue a task on a given node and accurately track the number of NUMA
7766  * tasks on the runqueues
7767  */
7768 void sched_setnuma(struct task_struct *p, int nid)
7769 {
7770 	bool queued, running;
7771 	struct rq_flags rf;
7772 	struct rq *rq;
7773 
7774 	rq = task_rq_lock(p, &rf);
7775 	queued = task_on_rq_queued(p);
7776 	running = task_current(rq, p);
7777 
7778 	if (queued)
7779 		dequeue_task(rq, p, DEQUEUE_SAVE);
7780 	if (running)
7781 		put_prev_task(rq, p);
7782 
7783 	p->numa_preferred_nid = nid;
7784 
7785 	if (queued)
7786 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7787 	if (running)
7788 		set_next_task(rq, p);
7789 	task_rq_unlock(rq, p, &rf);
7790 }
7791 #endif /* CONFIG_NUMA_BALANCING */
7792 
7793 #ifdef CONFIG_HOTPLUG_CPU
7794 /*
7795  * Ensure that the idle task is using init_mm right before its CPU goes
7796  * offline.
7797  */
7798 void idle_task_exit(void)
7799 {
7800 	struct mm_struct *mm = current->active_mm;
7801 
7802 	BUG_ON(cpu_online(smp_processor_id()));
7803 	BUG_ON(current != this_rq()->idle);
7804 
7805 	if (mm != &init_mm) {
7806 		switch_mm(mm, &init_mm, current);
7807 		finish_arch_post_lock_switch();
7808 	}
7809 
7810 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7811 }
7812 
7813 static int __balance_push_cpu_stop(void *arg)
7814 {
7815 	struct task_struct *p = arg;
7816 	struct rq *rq = this_rq();
7817 	struct rq_flags rf;
7818 	int cpu;
7819 
7820 	raw_spin_lock_irq(&p->pi_lock);
7821 	rq_lock(rq, &rf);
7822 
7823 	update_rq_clock(rq);
7824 
7825 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
7826 		cpu = select_fallback_rq(rq->cpu, p);
7827 		rq = __migrate_task(rq, &rf, p, cpu);
7828 	}
7829 
7830 	rq_unlock(rq, &rf);
7831 	raw_spin_unlock_irq(&p->pi_lock);
7832 
7833 	put_task_struct(p);
7834 
7835 	return 0;
7836 }
7837 
7838 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7839 
7840 /*
7841  * Ensure we only run per-cpu kthreads once the CPU goes !active.
7842  *
7843  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
7844  * effective when the hotplug motion is down.
7845  */
7846 static void balance_push(struct rq *rq)
7847 {
7848 	struct task_struct *push_task = rq->curr;
7849 
7850 	lockdep_assert_rq_held(rq);
7851 
7852 	/*
7853 	 * Ensure the thing is persistent until balance_push_set(.on = false);
7854 	 */
7855 	rq->balance_callback = &balance_push_callback;
7856 
7857 	/*
7858 	 * Only active while going offline and when invoked on the outgoing
7859 	 * CPU.
7860 	 */
7861 	if (!cpu_dying(rq->cpu) || rq != this_rq())
7862 		return;
7863 
7864 	/*
7865 	 * Both the cpu-hotplug and stop task are in this case and are
7866 	 * required to complete the hotplug process.
7867 	 */
7868 	if (kthread_is_per_cpu(push_task) ||
7869 	    is_migration_disabled(push_task)) {
7870 
7871 		/*
7872 		 * If this is the idle task on the outgoing CPU try to wake
7873 		 * up the hotplug control thread which might wait for the
7874 		 * last task to vanish. The rcuwait_active() check is
7875 		 * accurate here because the waiter is pinned on this CPU
7876 		 * and can't obviously be running in parallel.
7877 		 *
7878 		 * On RT kernels this also has to check whether there are
7879 		 * pinned and scheduled out tasks on the runqueue. They
7880 		 * need to leave the migrate disabled section first.
7881 		 */
7882 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7883 		    rcuwait_active(&rq->hotplug_wait)) {
7884 			raw_spin_rq_unlock(rq);
7885 			rcuwait_wake_up(&rq->hotplug_wait);
7886 			raw_spin_rq_lock(rq);
7887 		}
7888 		return;
7889 	}
7890 
7891 	get_task_struct(push_task);
7892 	/*
7893 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
7894 	 * Both preemption and IRQs are still disabled.
7895 	 */
7896 	preempt_disable();
7897 	raw_spin_rq_unlock(rq);
7898 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7899 			    this_cpu_ptr(&push_work));
7900 	preempt_enable();
7901 	/*
7902 	 * At this point need_resched() is true and we'll take the loop in
7903 	 * schedule(). The next pick is obviously going to be the stop task
7904 	 * which kthread_is_per_cpu() and will push this task away.
7905 	 */
7906 	raw_spin_rq_lock(rq);
7907 }
7908 
7909 static void balance_push_set(int cpu, bool on)
7910 {
7911 	struct rq *rq = cpu_rq(cpu);
7912 	struct rq_flags rf;
7913 
7914 	rq_lock_irqsave(rq, &rf);
7915 	if (on) {
7916 		WARN_ON_ONCE(rq->balance_callback);
7917 		rq->balance_callback = &balance_push_callback;
7918 	} else if (rq->balance_callback == &balance_push_callback) {
7919 		rq->balance_callback = NULL;
7920 	}
7921 	rq_unlock_irqrestore(rq, &rf);
7922 }
7923 
7924 /*
7925  * Invoked from a CPUs hotplug control thread after the CPU has been marked
7926  * inactive. All tasks which are not per CPU kernel threads are either
7927  * pushed off this CPU now via balance_push() or placed on a different CPU
7928  * during wakeup. Wait until the CPU is quiescent.
7929  */
7930 static void balance_hotplug_wait(void)
7931 {
7932 	struct rq *rq = this_rq();
7933 
7934 	rcuwait_wait_event(&rq->hotplug_wait,
7935 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
7936 			   TASK_UNINTERRUPTIBLE);
7937 }
7938 
7939 #else
7940 
7941 static inline void balance_push(struct rq *rq)
7942 {
7943 }
7944 
7945 static inline void balance_push_set(int cpu, bool on)
7946 {
7947 }
7948 
7949 static inline void balance_hotplug_wait(void)
7950 {
7951 }
7952 
7953 #endif /* CONFIG_HOTPLUG_CPU */
7954 
7955 void set_rq_online(struct rq *rq)
7956 {
7957 	if (!rq->online) {
7958 		const struct sched_class *class;
7959 
7960 		cpumask_set_cpu(rq->cpu, rq->rd->online);
7961 		rq->online = 1;
7962 
7963 		for_each_class(class) {
7964 			if (class->rq_online)
7965 				class->rq_online(rq);
7966 		}
7967 	}
7968 }
7969 
7970 void set_rq_offline(struct rq *rq)
7971 {
7972 	if (rq->online) {
7973 		const struct sched_class *class;
7974 
7975 		update_rq_clock(rq);
7976 		for_each_class(class) {
7977 			if (class->rq_offline)
7978 				class->rq_offline(rq);
7979 		}
7980 
7981 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7982 		rq->online = 0;
7983 	}
7984 }
7985 
7986 static inline void sched_set_rq_online(struct rq *rq, int cpu)
7987 {
7988 	struct rq_flags rf;
7989 
7990 	rq_lock_irqsave(rq, &rf);
7991 	if (rq->rd) {
7992 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7993 		set_rq_online(rq);
7994 	}
7995 	rq_unlock_irqrestore(rq, &rf);
7996 }
7997 
7998 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
7999 {
8000 	struct rq_flags rf;
8001 
8002 	rq_lock_irqsave(rq, &rf);
8003 	if (rq->rd) {
8004 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8005 		set_rq_offline(rq);
8006 	}
8007 	rq_unlock_irqrestore(rq, &rf);
8008 }
8009 
8010 /*
8011  * used to mark begin/end of suspend/resume:
8012  */
8013 static int num_cpus_frozen;
8014 
8015 /*
8016  * Update cpusets according to cpu_active mask.  If cpusets are
8017  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8018  * around partition_sched_domains().
8019  *
8020  * If we come here as part of a suspend/resume, don't touch cpusets because we
8021  * want to restore it back to its original state upon resume anyway.
8022  */
8023 static void cpuset_cpu_active(void)
8024 {
8025 	if (cpuhp_tasks_frozen) {
8026 		/*
8027 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
8028 		 * resume sequence. As long as this is not the last online
8029 		 * operation in the resume sequence, just build a single sched
8030 		 * domain, ignoring cpusets.
8031 		 */
8032 		partition_sched_domains(1, NULL, NULL);
8033 		if (--num_cpus_frozen)
8034 			return;
8035 		/*
8036 		 * This is the last CPU online operation. So fall through and
8037 		 * restore the original sched domains by considering the
8038 		 * cpuset configurations.
8039 		 */
8040 		cpuset_force_rebuild();
8041 	}
8042 	cpuset_update_active_cpus();
8043 }
8044 
8045 static int cpuset_cpu_inactive(unsigned int cpu)
8046 {
8047 	if (!cpuhp_tasks_frozen) {
8048 		int ret = dl_bw_check_overflow(cpu);
8049 
8050 		if (ret)
8051 			return ret;
8052 		cpuset_update_active_cpus();
8053 	} else {
8054 		num_cpus_frozen++;
8055 		partition_sched_domains(1, NULL, NULL);
8056 	}
8057 	return 0;
8058 }
8059 
8060 static inline void sched_smt_present_inc(int cpu)
8061 {
8062 #ifdef CONFIG_SCHED_SMT
8063 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8064 		static_branch_inc_cpuslocked(&sched_smt_present);
8065 #endif
8066 }
8067 
8068 static inline void sched_smt_present_dec(int cpu)
8069 {
8070 #ifdef CONFIG_SCHED_SMT
8071 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8072 		static_branch_dec_cpuslocked(&sched_smt_present);
8073 #endif
8074 }
8075 
8076 int sched_cpu_activate(unsigned int cpu)
8077 {
8078 	struct rq *rq = cpu_rq(cpu);
8079 
8080 	/*
8081 	 * Clear the balance_push callback and prepare to schedule
8082 	 * regular tasks.
8083 	 */
8084 	balance_push_set(cpu, false);
8085 
8086 	/*
8087 	 * When going up, increment the number of cores with SMT present.
8088 	 */
8089 	sched_smt_present_inc(cpu);
8090 	set_cpu_active(cpu, true);
8091 
8092 	if (sched_smp_initialized) {
8093 		sched_update_numa(cpu, true);
8094 		sched_domains_numa_masks_set(cpu);
8095 		cpuset_cpu_active();
8096 	}
8097 
8098 	scx_rq_activate(rq);
8099 
8100 	/*
8101 	 * Put the rq online, if not already. This happens:
8102 	 *
8103 	 * 1) In the early boot process, because we build the real domains
8104 	 *    after all CPUs have been brought up.
8105 	 *
8106 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8107 	 *    domains.
8108 	 */
8109 	sched_set_rq_online(rq, cpu);
8110 
8111 	return 0;
8112 }
8113 
8114 int sched_cpu_deactivate(unsigned int cpu)
8115 {
8116 	struct rq *rq = cpu_rq(cpu);
8117 	int ret;
8118 
8119 	/*
8120 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8121 	 * load balancing when not active
8122 	 */
8123 	nohz_balance_exit_idle(rq);
8124 
8125 	set_cpu_active(cpu, false);
8126 
8127 	/*
8128 	 * From this point forward, this CPU will refuse to run any task that
8129 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8130 	 * push those tasks away until this gets cleared, see
8131 	 * sched_cpu_dying().
8132 	 */
8133 	balance_push_set(cpu, true);
8134 
8135 	/*
8136 	 * We've cleared cpu_active_mask / set balance_push, wait for all
8137 	 * preempt-disabled and RCU users of this state to go away such that
8138 	 * all new such users will observe it.
8139 	 *
8140 	 * Specifically, we rely on ttwu to no longer target this CPU, see
8141 	 * ttwu_queue_cond() and is_cpu_allowed().
8142 	 *
8143 	 * Do sync before park smpboot threads to take care the RCU boost case.
8144 	 */
8145 	synchronize_rcu();
8146 
8147 	sched_set_rq_offline(rq, cpu);
8148 
8149 	scx_rq_deactivate(rq);
8150 
8151 	/*
8152 	 * When going down, decrement the number of cores with SMT present.
8153 	 */
8154 	sched_smt_present_dec(cpu);
8155 
8156 #ifdef CONFIG_SCHED_SMT
8157 	sched_core_cpu_deactivate(cpu);
8158 #endif
8159 
8160 	if (!sched_smp_initialized)
8161 		return 0;
8162 
8163 	sched_update_numa(cpu, false);
8164 	ret = cpuset_cpu_inactive(cpu);
8165 	if (ret) {
8166 		sched_smt_present_inc(cpu);
8167 		sched_set_rq_online(rq, cpu);
8168 		balance_push_set(cpu, false);
8169 		set_cpu_active(cpu, true);
8170 		sched_update_numa(cpu, true);
8171 		return ret;
8172 	}
8173 	sched_domains_numa_masks_clear(cpu);
8174 	return 0;
8175 }
8176 
8177 static void sched_rq_cpu_starting(unsigned int cpu)
8178 {
8179 	struct rq *rq = cpu_rq(cpu);
8180 
8181 	rq->calc_load_update = calc_load_update;
8182 	update_max_interval();
8183 }
8184 
8185 int sched_cpu_starting(unsigned int cpu)
8186 {
8187 	sched_core_cpu_starting(cpu);
8188 	sched_rq_cpu_starting(cpu);
8189 	sched_tick_start(cpu);
8190 	return 0;
8191 }
8192 
8193 #ifdef CONFIG_HOTPLUG_CPU
8194 
8195 /*
8196  * Invoked immediately before the stopper thread is invoked to bring the
8197  * CPU down completely. At this point all per CPU kthreads except the
8198  * hotplug thread (current) and the stopper thread (inactive) have been
8199  * either parked or have been unbound from the outgoing CPU. Ensure that
8200  * any of those which might be on the way out are gone.
8201  *
8202  * If after this point a bound task is being woken on this CPU then the
8203  * responsible hotplug callback has failed to do it's job.
8204  * sched_cpu_dying() will catch it with the appropriate fireworks.
8205  */
8206 int sched_cpu_wait_empty(unsigned int cpu)
8207 {
8208 	balance_hotplug_wait();
8209 	return 0;
8210 }
8211 
8212 /*
8213  * Since this CPU is going 'away' for a while, fold any nr_active delta we
8214  * might have. Called from the CPU stopper task after ensuring that the
8215  * stopper is the last running task on the CPU, so nr_active count is
8216  * stable. We need to take the tear-down thread which is calling this into
8217  * account, so we hand in adjust = 1 to the load calculation.
8218  *
8219  * Also see the comment "Global load-average calculations".
8220  */
8221 static void calc_load_migrate(struct rq *rq)
8222 {
8223 	long delta = calc_load_fold_active(rq, 1);
8224 
8225 	if (delta)
8226 		atomic_long_add(delta, &calc_load_tasks);
8227 }
8228 
8229 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8230 {
8231 	struct task_struct *g, *p;
8232 	int cpu = cpu_of(rq);
8233 
8234 	lockdep_assert_rq_held(rq);
8235 
8236 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8237 	for_each_process_thread(g, p) {
8238 		if (task_cpu(p) != cpu)
8239 			continue;
8240 
8241 		if (!task_on_rq_queued(p))
8242 			continue;
8243 
8244 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8245 	}
8246 }
8247 
8248 int sched_cpu_dying(unsigned int cpu)
8249 {
8250 	struct rq *rq = cpu_rq(cpu);
8251 	struct rq_flags rf;
8252 
8253 	/* Handle pending wakeups and then migrate everything off */
8254 	sched_tick_stop(cpu);
8255 
8256 	rq_lock_irqsave(rq, &rf);
8257 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8258 		WARN(true, "Dying CPU not properly vacated!");
8259 		dump_rq_tasks(rq, KERN_WARNING);
8260 	}
8261 	rq_unlock_irqrestore(rq, &rf);
8262 
8263 	calc_load_migrate(rq);
8264 	update_max_interval();
8265 	hrtick_clear(rq);
8266 	sched_core_cpu_dying(cpu);
8267 	return 0;
8268 }
8269 #endif
8270 
8271 void __init sched_init_smp(void)
8272 {
8273 	sched_init_numa(NUMA_NO_NODE);
8274 
8275 	/*
8276 	 * There's no userspace yet to cause hotplug operations; hence all the
8277 	 * CPU masks are stable and all blatant races in the below code cannot
8278 	 * happen.
8279 	 */
8280 	mutex_lock(&sched_domains_mutex);
8281 	sched_init_domains(cpu_active_mask);
8282 	mutex_unlock(&sched_domains_mutex);
8283 
8284 	/* Move init over to a non-isolated CPU */
8285 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
8286 		BUG();
8287 	current->flags &= ~PF_NO_SETAFFINITY;
8288 	sched_init_granularity();
8289 
8290 	init_sched_rt_class();
8291 	init_sched_dl_class();
8292 
8293 	sched_smp_initialized = true;
8294 }
8295 
8296 static int __init migration_init(void)
8297 {
8298 	sched_cpu_starting(smp_processor_id());
8299 	return 0;
8300 }
8301 early_initcall(migration_init);
8302 
8303 #else
8304 void __init sched_init_smp(void)
8305 {
8306 	sched_init_granularity();
8307 }
8308 #endif /* CONFIG_SMP */
8309 
8310 int in_sched_functions(unsigned long addr)
8311 {
8312 	return in_lock_functions(addr) ||
8313 		(addr >= (unsigned long)__sched_text_start
8314 		&& addr < (unsigned long)__sched_text_end);
8315 }
8316 
8317 #ifdef CONFIG_CGROUP_SCHED
8318 /*
8319  * Default task group.
8320  * Every task in system belongs to this group at bootup.
8321  */
8322 struct task_group root_task_group;
8323 LIST_HEAD(task_groups);
8324 
8325 /* Cacheline aligned slab cache for task_group */
8326 static struct kmem_cache *task_group_cache __ro_after_init;
8327 #endif
8328 
8329 void __init sched_init(void)
8330 {
8331 	unsigned long ptr = 0;
8332 	int i;
8333 
8334 	/* Make sure the linker didn't screw up */
8335 #ifdef CONFIG_SMP
8336 	BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
8337 #endif
8338 	BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
8339 	BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
8340 	BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
8341 #ifdef CONFIG_SCHED_CLASS_EXT
8342 	BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
8343 	BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
8344 #endif
8345 
8346 	wait_bit_init();
8347 
8348 #ifdef CONFIG_FAIR_GROUP_SCHED
8349 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8350 #endif
8351 #ifdef CONFIG_RT_GROUP_SCHED
8352 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8353 #endif
8354 	if (ptr) {
8355 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8356 
8357 #ifdef CONFIG_FAIR_GROUP_SCHED
8358 		root_task_group.se = (struct sched_entity **)ptr;
8359 		ptr += nr_cpu_ids * sizeof(void **);
8360 
8361 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8362 		ptr += nr_cpu_ids * sizeof(void **);
8363 
8364 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8365 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
8366 #endif /* CONFIG_FAIR_GROUP_SCHED */
8367 #ifdef CONFIG_EXT_GROUP_SCHED
8368 		root_task_group.scx_weight = CGROUP_WEIGHT_DFL;
8369 #endif /* CONFIG_EXT_GROUP_SCHED */
8370 #ifdef CONFIG_RT_GROUP_SCHED
8371 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8372 		ptr += nr_cpu_ids * sizeof(void **);
8373 
8374 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8375 		ptr += nr_cpu_ids * sizeof(void **);
8376 
8377 #endif /* CONFIG_RT_GROUP_SCHED */
8378 	}
8379 
8380 #ifdef CONFIG_SMP
8381 	init_defrootdomain();
8382 #endif
8383 
8384 #ifdef CONFIG_RT_GROUP_SCHED
8385 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8386 			global_rt_period(), global_rt_runtime());
8387 #endif /* CONFIG_RT_GROUP_SCHED */
8388 
8389 #ifdef CONFIG_CGROUP_SCHED
8390 	task_group_cache = KMEM_CACHE(task_group, 0);
8391 
8392 	list_add(&root_task_group.list, &task_groups);
8393 	INIT_LIST_HEAD(&root_task_group.children);
8394 	INIT_LIST_HEAD(&root_task_group.siblings);
8395 	autogroup_init(&init_task);
8396 #endif /* CONFIG_CGROUP_SCHED */
8397 
8398 	for_each_possible_cpu(i) {
8399 		struct rq *rq;
8400 
8401 		rq = cpu_rq(i);
8402 		raw_spin_lock_init(&rq->__lock);
8403 		rq->nr_running = 0;
8404 		rq->calc_load_active = 0;
8405 		rq->calc_load_update = jiffies + LOAD_FREQ;
8406 		init_cfs_rq(&rq->cfs);
8407 		init_rt_rq(&rq->rt);
8408 		init_dl_rq(&rq->dl);
8409 #ifdef CONFIG_FAIR_GROUP_SCHED
8410 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8411 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8412 		/*
8413 		 * How much CPU bandwidth does root_task_group get?
8414 		 *
8415 		 * In case of task-groups formed through the cgroup filesystem, it
8416 		 * gets 100% of the CPU resources in the system. This overall
8417 		 * system CPU resource is divided among the tasks of
8418 		 * root_task_group and its child task-groups in a fair manner,
8419 		 * based on each entity's (task or task-group's) weight
8420 		 * (se->load.weight).
8421 		 *
8422 		 * In other words, if root_task_group has 10 tasks of weight
8423 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8424 		 * then A0's share of the CPU resource is:
8425 		 *
8426 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8427 		 *
8428 		 * We achieve this by letting root_task_group's tasks sit
8429 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8430 		 */
8431 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8432 #endif /* CONFIG_FAIR_GROUP_SCHED */
8433 
8434 #ifdef CONFIG_RT_GROUP_SCHED
8435 		/*
8436 		 * This is required for init cpu because rt.c:__enable_runtime()
8437 		 * starts working after scheduler_running, which is not the case
8438 		 * yet.
8439 		 */
8440 		rq->rt.rt_runtime = global_rt_runtime();
8441 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8442 #endif
8443 #ifdef CONFIG_SMP
8444 		rq->sd = NULL;
8445 		rq->rd = NULL;
8446 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
8447 		rq->balance_callback = &balance_push_callback;
8448 		rq->active_balance = 0;
8449 		rq->next_balance = jiffies;
8450 		rq->push_cpu = 0;
8451 		rq->cpu = i;
8452 		rq->online = 0;
8453 		rq->idle_stamp = 0;
8454 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8455 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8456 
8457 		INIT_LIST_HEAD(&rq->cfs_tasks);
8458 
8459 		rq_attach_root(rq, &def_root_domain);
8460 #ifdef CONFIG_NO_HZ_COMMON
8461 		rq->last_blocked_load_update_tick = jiffies;
8462 		atomic_set(&rq->nohz_flags, 0);
8463 
8464 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8465 #endif
8466 #ifdef CONFIG_HOTPLUG_CPU
8467 		rcuwait_init(&rq->hotplug_wait);
8468 #endif
8469 #endif /* CONFIG_SMP */
8470 		hrtick_rq_init(rq);
8471 		atomic_set(&rq->nr_iowait, 0);
8472 		fair_server_init(rq);
8473 
8474 #ifdef CONFIG_SCHED_CORE
8475 		rq->core = rq;
8476 		rq->core_pick = NULL;
8477 		rq->core_dl_server = NULL;
8478 		rq->core_enabled = 0;
8479 		rq->core_tree = RB_ROOT;
8480 		rq->core_forceidle_count = 0;
8481 		rq->core_forceidle_occupation = 0;
8482 		rq->core_forceidle_start = 0;
8483 
8484 		rq->core_cookie = 0UL;
8485 #endif
8486 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
8487 	}
8488 
8489 	set_load_weight(&init_task, false);
8490 	init_task.se.slice = sysctl_sched_base_slice,
8491 
8492 	/*
8493 	 * The boot idle thread does lazy MMU switching as well:
8494 	 */
8495 	mmgrab_lazy_tlb(&init_mm);
8496 	enter_lazy_tlb(&init_mm, current);
8497 
8498 	/*
8499 	 * The idle task doesn't need the kthread struct to function, but it
8500 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8501 	 * if we want to avoid special-casing it in code that deals with per-CPU
8502 	 * kthreads.
8503 	 */
8504 	WARN_ON(!set_kthread_struct(current));
8505 
8506 	/*
8507 	 * Make us the idle thread. Technically, schedule() should not be
8508 	 * called from this thread, however somewhere below it might be,
8509 	 * but because we are the idle thread, we just pick up running again
8510 	 * when this runqueue becomes "idle".
8511 	 */
8512 	init_idle(current, smp_processor_id());
8513 
8514 	calc_load_update = jiffies + LOAD_FREQ;
8515 
8516 #ifdef CONFIG_SMP
8517 	idle_thread_set_boot_cpu();
8518 	balance_push_set(smp_processor_id(), false);
8519 #endif
8520 	init_sched_fair_class();
8521 	init_sched_ext_class();
8522 
8523 	psi_init();
8524 
8525 	init_uclamp();
8526 
8527 	preempt_dynamic_init();
8528 
8529 	scheduler_running = 1;
8530 }
8531 
8532 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8533 
8534 void __might_sleep(const char *file, int line)
8535 {
8536 	unsigned int state = get_current_state();
8537 	/*
8538 	 * Blocking primitives will set (and therefore destroy) current->state,
8539 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8540 	 * otherwise we will destroy state.
8541 	 */
8542 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8543 			"do not call blocking ops when !TASK_RUNNING; "
8544 			"state=%x set at [<%p>] %pS\n", state,
8545 			(void *)current->task_state_change,
8546 			(void *)current->task_state_change);
8547 
8548 	__might_resched(file, line, 0);
8549 }
8550 EXPORT_SYMBOL(__might_sleep);
8551 
8552 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
8553 {
8554 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
8555 		return;
8556 
8557 	if (preempt_count() == preempt_offset)
8558 		return;
8559 
8560 	pr_err("Preemption disabled at:");
8561 	print_ip_sym(KERN_ERR, ip);
8562 }
8563 
8564 static inline bool resched_offsets_ok(unsigned int offsets)
8565 {
8566 	unsigned int nested = preempt_count();
8567 
8568 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
8569 
8570 	return nested == offsets;
8571 }
8572 
8573 void __might_resched(const char *file, int line, unsigned int offsets)
8574 {
8575 	/* Ratelimiting timestamp: */
8576 	static unsigned long prev_jiffy;
8577 
8578 	unsigned long preempt_disable_ip;
8579 
8580 	/* WARN_ON_ONCE() by default, no rate limit required: */
8581 	rcu_sleep_check();
8582 
8583 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
8584 	     !is_idle_task(current) && !current->non_block_count) ||
8585 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8586 	    oops_in_progress)
8587 		return;
8588 
8589 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8590 		return;
8591 	prev_jiffy = jiffies;
8592 
8593 	/* Save this before calling printk(), since that will clobber it: */
8594 	preempt_disable_ip = get_preempt_disable_ip(current);
8595 
8596 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
8597 	       file, line);
8598 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8599 	       in_atomic(), irqs_disabled(), current->non_block_count,
8600 	       current->pid, current->comm);
8601 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
8602 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
8603 
8604 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
8605 		pr_err("RCU nest depth: %d, expected: %u\n",
8606 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8607 	}
8608 
8609 	if (task_stack_end_corrupted(current))
8610 		pr_emerg("Thread overran stack, or stack corrupted\n");
8611 
8612 	debug_show_held_locks(current);
8613 	if (irqs_disabled())
8614 		print_irqtrace_events(current);
8615 
8616 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
8617 				 preempt_disable_ip);
8618 
8619 	dump_stack();
8620 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8621 }
8622 EXPORT_SYMBOL(__might_resched);
8623 
8624 void __cant_sleep(const char *file, int line, int preempt_offset)
8625 {
8626 	static unsigned long prev_jiffy;
8627 
8628 	if (irqs_disabled())
8629 		return;
8630 
8631 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8632 		return;
8633 
8634 	if (preempt_count() > preempt_offset)
8635 		return;
8636 
8637 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8638 		return;
8639 	prev_jiffy = jiffies;
8640 
8641 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8642 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8643 			in_atomic(), irqs_disabled(),
8644 			current->pid, current->comm);
8645 
8646 	debug_show_held_locks(current);
8647 	dump_stack();
8648 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8649 }
8650 EXPORT_SYMBOL_GPL(__cant_sleep);
8651 
8652 #ifdef CONFIG_SMP
8653 void __cant_migrate(const char *file, int line)
8654 {
8655 	static unsigned long prev_jiffy;
8656 
8657 	if (irqs_disabled())
8658 		return;
8659 
8660 	if (is_migration_disabled(current))
8661 		return;
8662 
8663 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8664 		return;
8665 
8666 	if (preempt_count() > 0)
8667 		return;
8668 
8669 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8670 		return;
8671 	prev_jiffy = jiffies;
8672 
8673 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8674 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8675 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8676 	       current->pid, current->comm);
8677 
8678 	debug_show_held_locks(current);
8679 	dump_stack();
8680 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8681 }
8682 EXPORT_SYMBOL_GPL(__cant_migrate);
8683 #endif
8684 #endif
8685 
8686 #ifdef CONFIG_MAGIC_SYSRQ
8687 void normalize_rt_tasks(void)
8688 {
8689 	struct task_struct *g, *p;
8690 	struct sched_attr attr = {
8691 		.sched_policy = SCHED_NORMAL,
8692 	};
8693 
8694 	read_lock(&tasklist_lock);
8695 	for_each_process_thread(g, p) {
8696 		/*
8697 		 * Only normalize user tasks:
8698 		 */
8699 		if (p->flags & PF_KTHREAD)
8700 			continue;
8701 
8702 		p->se.exec_start = 0;
8703 		schedstat_set(p->stats.wait_start,  0);
8704 		schedstat_set(p->stats.sleep_start, 0);
8705 		schedstat_set(p->stats.block_start, 0);
8706 
8707 		if (!rt_or_dl_task(p)) {
8708 			/*
8709 			 * Renice negative nice level userspace
8710 			 * tasks back to 0:
8711 			 */
8712 			if (task_nice(p) < 0)
8713 				set_user_nice(p, 0);
8714 			continue;
8715 		}
8716 
8717 		__sched_setscheduler(p, &attr, false, false);
8718 	}
8719 	read_unlock(&tasklist_lock);
8720 }
8721 
8722 #endif /* CONFIG_MAGIC_SYSRQ */
8723 
8724 #if defined(CONFIG_KGDB_KDB)
8725 /*
8726  * These functions are only useful for KDB.
8727  *
8728  * They can only be called when the whole system has been
8729  * stopped - every CPU needs to be quiescent, and no scheduling
8730  * activity can take place. Using them for anything else would
8731  * be a serious bug, and as a result, they aren't even visible
8732  * under any other configuration.
8733  */
8734 
8735 /**
8736  * curr_task - return the current task for a given CPU.
8737  * @cpu: the processor in question.
8738  *
8739  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8740  *
8741  * Return: The current task for @cpu.
8742  */
8743 struct task_struct *curr_task(int cpu)
8744 {
8745 	return cpu_curr(cpu);
8746 }
8747 
8748 #endif /* defined(CONFIG_KGDB_KDB) */
8749 
8750 #ifdef CONFIG_CGROUP_SCHED
8751 /* task_group_lock serializes the addition/removal of task groups */
8752 static DEFINE_SPINLOCK(task_group_lock);
8753 
8754 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8755 					    struct task_group *parent)
8756 {
8757 #ifdef CONFIG_UCLAMP_TASK_GROUP
8758 	enum uclamp_id clamp_id;
8759 
8760 	for_each_clamp_id(clamp_id) {
8761 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8762 			      uclamp_none(clamp_id), false);
8763 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8764 	}
8765 #endif
8766 }
8767 
8768 static void sched_free_group(struct task_group *tg)
8769 {
8770 	free_fair_sched_group(tg);
8771 	free_rt_sched_group(tg);
8772 	autogroup_free(tg);
8773 	kmem_cache_free(task_group_cache, tg);
8774 }
8775 
8776 static void sched_free_group_rcu(struct rcu_head *rcu)
8777 {
8778 	sched_free_group(container_of(rcu, struct task_group, rcu));
8779 }
8780 
8781 static void sched_unregister_group(struct task_group *tg)
8782 {
8783 	unregister_fair_sched_group(tg);
8784 	unregister_rt_sched_group(tg);
8785 	/*
8786 	 * We have to wait for yet another RCU grace period to expire, as
8787 	 * print_cfs_stats() might run concurrently.
8788 	 */
8789 	call_rcu(&tg->rcu, sched_free_group_rcu);
8790 }
8791 
8792 /* allocate runqueue etc for a new task group */
8793 struct task_group *sched_create_group(struct task_group *parent)
8794 {
8795 	struct task_group *tg;
8796 
8797 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8798 	if (!tg)
8799 		return ERR_PTR(-ENOMEM);
8800 
8801 	if (!alloc_fair_sched_group(tg, parent))
8802 		goto err;
8803 
8804 	if (!alloc_rt_sched_group(tg, parent))
8805 		goto err;
8806 
8807 	scx_group_set_weight(tg, CGROUP_WEIGHT_DFL);
8808 	alloc_uclamp_sched_group(tg, parent);
8809 
8810 	return tg;
8811 
8812 err:
8813 	sched_free_group(tg);
8814 	return ERR_PTR(-ENOMEM);
8815 }
8816 
8817 void sched_online_group(struct task_group *tg, struct task_group *parent)
8818 {
8819 	unsigned long flags;
8820 
8821 	spin_lock_irqsave(&task_group_lock, flags);
8822 	list_add_rcu(&tg->list, &task_groups);
8823 
8824 	/* Root should already exist: */
8825 	WARN_ON(!parent);
8826 
8827 	tg->parent = parent;
8828 	INIT_LIST_HEAD(&tg->children);
8829 	list_add_rcu(&tg->siblings, &parent->children);
8830 	spin_unlock_irqrestore(&task_group_lock, flags);
8831 
8832 	online_fair_sched_group(tg);
8833 }
8834 
8835 /* RCU callback to free various structures associated with a task group */
8836 static void sched_unregister_group_rcu(struct rcu_head *rhp)
8837 {
8838 	/* Now it should be safe to free those cfs_rqs: */
8839 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
8840 }
8841 
8842 void sched_destroy_group(struct task_group *tg)
8843 {
8844 	/* Wait for possible concurrent references to cfs_rqs complete: */
8845 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
8846 }
8847 
8848 void sched_release_group(struct task_group *tg)
8849 {
8850 	unsigned long flags;
8851 
8852 	/*
8853 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
8854 	 * sched_cfs_period_timer()).
8855 	 *
8856 	 * For this to be effective, we have to wait for all pending users of
8857 	 * this task group to leave their RCU critical section to ensure no new
8858 	 * user will see our dying task group any more. Specifically ensure
8859 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
8860 	 *
8861 	 * We therefore defer calling unregister_fair_sched_group() to
8862 	 * sched_unregister_group() which is guarantied to get called only after the
8863 	 * current RCU grace period has expired.
8864 	 */
8865 	spin_lock_irqsave(&task_group_lock, flags);
8866 	list_del_rcu(&tg->list);
8867 	list_del_rcu(&tg->siblings);
8868 	spin_unlock_irqrestore(&task_group_lock, flags);
8869 }
8870 
8871 static struct task_group *sched_get_task_group(struct task_struct *tsk)
8872 {
8873 	struct task_group *tg;
8874 
8875 	/*
8876 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
8877 	 * which is pointless here. Thus, we pass "true" to task_css_check()
8878 	 * to prevent lockdep warnings.
8879 	 */
8880 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8881 			  struct task_group, css);
8882 	tg = autogroup_task_group(tsk, tg);
8883 
8884 	return tg;
8885 }
8886 
8887 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
8888 {
8889 	tsk->sched_task_group = group;
8890 
8891 #ifdef CONFIG_FAIR_GROUP_SCHED
8892 	if (tsk->sched_class->task_change_group)
8893 		tsk->sched_class->task_change_group(tsk);
8894 	else
8895 #endif
8896 		set_task_rq(tsk, task_cpu(tsk));
8897 }
8898 
8899 /*
8900  * Change task's runqueue when it moves between groups.
8901  *
8902  * The caller of this function should have put the task in its new group by
8903  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8904  * its new group.
8905  */
8906 void sched_move_task(struct task_struct *tsk)
8907 {
8908 	int queued, running, queue_flags =
8909 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8910 	struct task_group *group;
8911 	struct rq *rq;
8912 
8913 	CLASS(task_rq_lock, rq_guard)(tsk);
8914 	rq = rq_guard.rq;
8915 
8916 	/*
8917 	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
8918 	 * group changes.
8919 	 */
8920 	group = sched_get_task_group(tsk);
8921 	if (group == tsk->sched_task_group)
8922 		return;
8923 
8924 	update_rq_clock(rq);
8925 
8926 	running = task_current(rq, tsk);
8927 	queued = task_on_rq_queued(tsk);
8928 
8929 	if (queued)
8930 		dequeue_task(rq, tsk, queue_flags);
8931 	if (running)
8932 		put_prev_task(rq, tsk);
8933 
8934 	sched_change_group(tsk, group);
8935 	scx_move_task(tsk);
8936 
8937 	if (queued)
8938 		enqueue_task(rq, tsk, queue_flags);
8939 	if (running) {
8940 		set_next_task(rq, tsk);
8941 		/*
8942 		 * After changing group, the running task may have joined a
8943 		 * throttled one but it's still the running task. Trigger a
8944 		 * resched to make sure that task can still run.
8945 		 */
8946 		resched_curr(rq);
8947 	}
8948 }
8949 
8950 static struct cgroup_subsys_state *
8951 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8952 {
8953 	struct task_group *parent = css_tg(parent_css);
8954 	struct task_group *tg;
8955 
8956 	if (!parent) {
8957 		/* This is early initialization for the top cgroup */
8958 		return &root_task_group.css;
8959 	}
8960 
8961 	tg = sched_create_group(parent);
8962 	if (IS_ERR(tg))
8963 		return ERR_PTR(-ENOMEM);
8964 
8965 	return &tg->css;
8966 }
8967 
8968 /* Expose task group only after completing cgroup initialization */
8969 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8970 {
8971 	struct task_group *tg = css_tg(css);
8972 	struct task_group *parent = css_tg(css->parent);
8973 	int ret;
8974 
8975 	ret = scx_tg_online(tg);
8976 	if (ret)
8977 		return ret;
8978 
8979 	if (parent)
8980 		sched_online_group(tg, parent);
8981 
8982 #ifdef CONFIG_UCLAMP_TASK_GROUP
8983 	/* Propagate the effective uclamp value for the new group */
8984 	guard(mutex)(&uclamp_mutex);
8985 	guard(rcu)();
8986 	cpu_util_update_eff(css);
8987 #endif
8988 
8989 	return 0;
8990 }
8991 
8992 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8993 {
8994 	struct task_group *tg = css_tg(css);
8995 
8996 	scx_tg_offline(tg);
8997 }
8998 
8999 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9000 {
9001 	struct task_group *tg = css_tg(css);
9002 
9003 	sched_release_group(tg);
9004 }
9005 
9006 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9007 {
9008 	struct task_group *tg = css_tg(css);
9009 
9010 	/*
9011 	 * Relies on the RCU grace period between css_released() and this.
9012 	 */
9013 	sched_unregister_group(tg);
9014 }
9015 
9016 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9017 {
9018 #ifdef CONFIG_RT_GROUP_SCHED
9019 	struct task_struct *task;
9020 	struct cgroup_subsys_state *css;
9021 
9022 	cgroup_taskset_for_each(task, css, tset) {
9023 		if (!sched_rt_can_attach(css_tg(css), task))
9024 			return -EINVAL;
9025 	}
9026 #endif
9027 	return scx_cgroup_can_attach(tset);
9028 }
9029 
9030 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9031 {
9032 	struct task_struct *task;
9033 	struct cgroup_subsys_state *css;
9034 
9035 	cgroup_taskset_for_each(task, css, tset)
9036 		sched_move_task(task);
9037 
9038 	scx_cgroup_finish_attach();
9039 }
9040 
9041 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
9042 {
9043 	scx_cgroup_cancel_attach(tset);
9044 }
9045 
9046 #ifdef CONFIG_UCLAMP_TASK_GROUP
9047 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9048 {
9049 	struct cgroup_subsys_state *top_css = css;
9050 	struct uclamp_se *uc_parent = NULL;
9051 	struct uclamp_se *uc_se = NULL;
9052 	unsigned int eff[UCLAMP_CNT];
9053 	enum uclamp_id clamp_id;
9054 	unsigned int clamps;
9055 
9056 	lockdep_assert_held(&uclamp_mutex);
9057 	SCHED_WARN_ON(!rcu_read_lock_held());
9058 
9059 	css_for_each_descendant_pre(css, top_css) {
9060 		uc_parent = css_tg(css)->parent
9061 			? css_tg(css)->parent->uclamp : NULL;
9062 
9063 		for_each_clamp_id(clamp_id) {
9064 			/* Assume effective clamps matches requested clamps */
9065 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9066 			/* Cap effective clamps with parent's effective clamps */
9067 			if (uc_parent &&
9068 			    eff[clamp_id] > uc_parent[clamp_id].value) {
9069 				eff[clamp_id] = uc_parent[clamp_id].value;
9070 			}
9071 		}
9072 		/* Ensure protection is always capped by limit */
9073 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9074 
9075 		/* Propagate most restrictive effective clamps */
9076 		clamps = 0x0;
9077 		uc_se = css_tg(css)->uclamp;
9078 		for_each_clamp_id(clamp_id) {
9079 			if (eff[clamp_id] == uc_se[clamp_id].value)
9080 				continue;
9081 			uc_se[clamp_id].value = eff[clamp_id];
9082 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9083 			clamps |= (0x1 << clamp_id);
9084 		}
9085 		if (!clamps) {
9086 			css = css_rightmost_descendant(css);
9087 			continue;
9088 		}
9089 
9090 		/* Immediately update descendants RUNNABLE tasks */
9091 		uclamp_update_active_tasks(css);
9092 	}
9093 }
9094 
9095 /*
9096  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9097  * C expression. Since there is no way to convert a macro argument (N) into a
9098  * character constant, use two levels of macros.
9099  */
9100 #define _POW10(exp) ((unsigned int)1e##exp)
9101 #define POW10(exp) _POW10(exp)
9102 
9103 struct uclamp_request {
9104 #define UCLAMP_PERCENT_SHIFT	2
9105 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
9106 	s64 percent;
9107 	u64 util;
9108 	int ret;
9109 };
9110 
9111 static inline struct uclamp_request
9112 capacity_from_percent(char *buf)
9113 {
9114 	struct uclamp_request req = {
9115 		.percent = UCLAMP_PERCENT_SCALE,
9116 		.util = SCHED_CAPACITY_SCALE,
9117 		.ret = 0,
9118 	};
9119 
9120 	buf = strim(buf);
9121 	if (strcmp(buf, "max")) {
9122 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9123 					     &req.percent);
9124 		if (req.ret)
9125 			return req;
9126 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9127 			req.ret = -ERANGE;
9128 			return req;
9129 		}
9130 
9131 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
9132 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9133 	}
9134 
9135 	return req;
9136 }
9137 
9138 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9139 				size_t nbytes, loff_t off,
9140 				enum uclamp_id clamp_id)
9141 {
9142 	struct uclamp_request req;
9143 	struct task_group *tg;
9144 
9145 	req = capacity_from_percent(buf);
9146 	if (req.ret)
9147 		return req.ret;
9148 
9149 	static_branch_enable(&sched_uclamp_used);
9150 
9151 	guard(mutex)(&uclamp_mutex);
9152 	guard(rcu)();
9153 
9154 	tg = css_tg(of_css(of));
9155 	if (tg->uclamp_req[clamp_id].value != req.util)
9156 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9157 
9158 	/*
9159 	 * Because of not recoverable conversion rounding we keep track of the
9160 	 * exact requested value
9161 	 */
9162 	tg->uclamp_pct[clamp_id] = req.percent;
9163 
9164 	/* Update effective clamps to track the most restrictive value */
9165 	cpu_util_update_eff(of_css(of));
9166 
9167 	return nbytes;
9168 }
9169 
9170 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9171 				    char *buf, size_t nbytes,
9172 				    loff_t off)
9173 {
9174 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9175 }
9176 
9177 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9178 				    char *buf, size_t nbytes,
9179 				    loff_t off)
9180 {
9181 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9182 }
9183 
9184 static inline void cpu_uclamp_print(struct seq_file *sf,
9185 				    enum uclamp_id clamp_id)
9186 {
9187 	struct task_group *tg;
9188 	u64 util_clamp;
9189 	u64 percent;
9190 	u32 rem;
9191 
9192 	scoped_guard (rcu) {
9193 		tg = css_tg(seq_css(sf));
9194 		util_clamp = tg->uclamp_req[clamp_id].value;
9195 	}
9196 
9197 	if (util_clamp == SCHED_CAPACITY_SCALE) {
9198 		seq_puts(sf, "max\n");
9199 		return;
9200 	}
9201 
9202 	percent = tg->uclamp_pct[clamp_id];
9203 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9204 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9205 }
9206 
9207 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9208 {
9209 	cpu_uclamp_print(sf, UCLAMP_MIN);
9210 	return 0;
9211 }
9212 
9213 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9214 {
9215 	cpu_uclamp_print(sf, UCLAMP_MAX);
9216 	return 0;
9217 }
9218 #endif /* CONFIG_UCLAMP_TASK_GROUP */
9219 
9220 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9221 static unsigned long tg_weight(struct task_group *tg)
9222 {
9223 #ifdef CONFIG_FAIR_GROUP_SCHED
9224 	return scale_load_down(tg->shares);
9225 #else
9226 	return sched_weight_from_cgroup(tg->scx_weight);
9227 #endif
9228 }
9229 
9230 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9231 				struct cftype *cftype, u64 shareval)
9232 {
9233 	int ret;
9234 
9235 	if (shareval > scale_load_down(ULONG_MAX))
9236 		shareval = MAX_SHARES;
9237 	ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
9238 	if (!ret)
9239 		scx_group_set_weight(css_tg(css),
9240 				     sched_weight_to_cgroup(shareval));
9241 	return ret;
9242 }
9243 
9244 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9245 			       struct cftype *cft)
9246 {
9247 	return tg_weight(css_tg(css));
9248 }
9249 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9250 
9251 #ifdef CONFIG_CFS_BANDWIDTH
9252 static DEFINE_MUTEX(cfs_constraints_mutex);
9253 
9254 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9255 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9256 /* More than 203 days if BW_SHIFT equals 20. */
9257 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9258 
9259 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9260 
9261 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9262 				u64 burst)
9263 {
9264 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
9265 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9266 
9267 	if (tg == &root_task_group)
9268 		return -EINVAL;
9269 
9270 	/*
9271 	 * Ensure we have at some amount of bandwidth every period.  This is
9272 	 * to prevent reaching a state of large arrears when throttled via
9273 	 * entity_tick() resulting in prolonged exit starvation.
9274 	 */
9275 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9276 		return -EINVAL;
9277 
9278 	/*
9279 	 * Likewise, bound things on the other side by preventing insane quota
9280 	 * periods.  This also allows us to normalize in computing quota
9281 	 * feasibility.
9282 	 */
9283 	if (period > max_cfs_quota_period)
9284 		return -EINVAL;
9285 
9286 	/*
9287 	 * Bound quota to defend quota against overflow during bandwidth shift.
9288 	 */
9289 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9290 		return -EINVAL;
9291 
9292 	if (quota != RUNTIME_INF && (burst > quota ||
9293 				     burst + quota > max_cfs_runtime))
9294 		return -EINVAL;
9295 
9296 	/*
9297 	 * Prevent race between setting of cfs_rq->runtime_enabled and
9298 	 * unthrottle_offline_cfs_rqs().
9299 	 */
9300 	guard(cpus_read_lock)();
9301 	guard(mutex)(&cfs_constraints_mutex);
9302 
9303 	ret = __cfs_schedulable(tg, period, quota);
9304 	if (ret)
9305 		return ret;
9306 
9307 	runtime_enabled = quota != RUNTIME_INF;
9308 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9309 	/*
9310 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9311 	 * before making related changes, and on->off must occur afterwards
9312 	 */
9313 	if (runtime_enabled && !runtime_was_enabled)
9314 		cfs_bandwidth_usage_inc();
9315 
9316 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
9317 		cfs_b->period = ns_to_ktime(period);
9318 		cfs_b->quota = quota;
9319 		cfs_b->burst = burst;
9320 
9321 		__refill_cfs_bandwidth_runtime(cfs_b);
9322 
9323 		/*
9324 		 * Restart the period timer (if active) to handle new
9325 		 * period expiry:
9326 		 */
9327 		if (runtime_enabled)
9328 			start_cfs_bandwidth(cfs_b);
9329 	}
9330 
9331 	for_each_online_cpu(i) {
9332 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9333 		struct rq *rq = cfs_rq->rq;
9334 
9335 		guard(rq_lock_irq)(rq);
9336 		cfs_rq->runtime_enabled = runtime_enabled;
9337 		cfs_rq->runtime_remaining = 0;
9338 
9339 		if (cfs_rq->throttled)
9340 			unthrottle_cfs_rq(cfs_rq);
9341 	}
9342 
9343 	if (runtime_was_enabled && !runtime_enabled)
9344 		cfs_bandwidth_usage_dec();
9345 
9346 	return 0;
9347 }
9348 
9349 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9350 {
9351 	u64 quota, period, burst;
9352 
9353 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9354 	burst = tg->cfs_bandwidth.burst;
9355 	if (cfs_quota_us < 0)
9356 		quota = RUNTIME_INF;
9357 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9358 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9359 	else
9360 		return -EINVAL;
9361 
9362 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9363 }
9364 
9365 static long tg_get_cfs_quota(struct task_group *tg)
9366 {
9367 	u64 quota_us;
9368 
9369 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9370 		return -1;
9371 
9372 	quota_us = tg->cfs_bandwidth.quota;
9373 	do_div(quota_us, NSEC_PER_USEC);
9374 
9375 	return quota_us;
9376 }
9377 
9378 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9379 {
9380 	u64 quota, period, burst;
9381 
9382 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9383 		return -EINVAL;
9384 
9385 	period = (u64)cfs_period_us * NSEC_PER_USEC;
9386 	quota = tg->cfs_bandwidth.quota;
9387 	burst = tg->cfs_bandwidth.burst;
9388 
9389 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9390 }
9391 
9392 static long tg_get_cfs_period(struct task_group *tg)
9393 {
9394 	u64 cfs_period_us;
9395 
9396 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9397 	do_div(cfs_period_us, NSEC_PER_USEC);
9398 
9399 	return cfs_period_us;
9400 }
9401 
9402 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
9403 {
9404 	u64 quota, period, burst;
9405 
9406 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
9407 		return -EINVAL;
9408 
9409 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
9410 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9411 	quota = tg->cfs_bandwidth.quota;
9412 
9413 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9414 }
9415 
9416 static long tg_get_cfs_burst(struct task_group *tg)
9417 {
9418 	u64 burst_us;
9419 
9420 	burst_us = tg->cfs_bandwidth.burst;
9421 	do_div(burst_us, NSEC_PER_USEC);
9422 
9423 	return burst_us;
9424 }
9425 
9426 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9427 				  struct cftype *cft)
9428 {
9429 	return tg_get_cfs_quota(css_tg(css));
9430 }
9431 
9432 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9433 				   struct cftype *cftype, s64 cfs_quota_us)
9434 {
9435 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9436 }
9437 
9438 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9439 				   struct cftype *cft)
9440 {
9441 	return tg_get_cfs_period(css_tg(css));
9442 }
9443 
9444 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9445 				    struct cftype *cftype, u64 cfs_period_us)
9446 {
9447 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
9448 }
9449 
9450 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
9451 				  struct cftype *cft)
9452 {
9453 	return tg_get_cfs_burst(css_tg(css));
9454 }
9455 
9456 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
9457 				   struct cftype *cftype, u64 cfs_burst_us)
9458 {
9459 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
9460 }
9461 
9462 struct cfs_schedulable_data {
9463 	struct task_group *tg;
9464 	u64 period, quota;
9465 };
9466 
9467 /*
9468  * normalize group quota/period to be quota/max_period
9469  * note: units are usecs
9470  */
9471 static u64 normalize_cfs_quota(struct task_group *tg,
9472 			       struct cfs_schedulable_data *d)
9473 {
9474 	u64 quota, period;
9475 
9476 	if (tg == d->tg) {
9477 		period = d->period;
9478 		quota = d->quota;
9479 	} else {
9480 		period = tg_get_cfs_period(tg);
9481 		quota = tg_get_cfs_quota(tg);
9482 	}
9483 
9484 	/* note: these should typically be equivalent */
9485 	if (quota == RUNTIME_INF || quota == -1)
9486 		return RUNTIME_INF;
9487 
9488 	return to_ratio(period, quota);
9489 }
9490 
9491 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9492 {
9493 	struct cfs_schedulable_data *d = data;
9494 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9495 	s64 quota = 0, parent_quota = -1;
9496 
9497 	if (!tg->parent) {
9498 		quota = RUNTIME_INF;
9499 	} else {
9500 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9501 
9502 		quota = normalize_cfs_quota(tg, d);
9503 		parent_quota = parent_b->hierarchical_quota;
9504 
9505 		/*
9506 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9507 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
9508 		 * inherit when no limit is set. In both cases this is used
9509 		 * by the scheduler to determine if a given CFS task has a
9510 		 * bandwidth constraint at some higher level.
9511 		 */
9512 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9513 			if (quota == RUNTIME_INF)
9514 				quota = parent_quota;
9515 			else if (parent_quota != RUNTIME_INF)
9516 				quota = min(quota, parent_quota);
9517 		} else {
9518 			if (quota == RUNTIME_INF)
9519 				quota = parent_quota;
9520 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9521 				return -EINVAL;
9522 		}
9523 	}
9524 	cfs_b->hierarchical_quota = quota;
9525 
9526 	return 0;
9527 }
9528 
9529 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9530 {
9531 	struct cfs_schedulable_data data = {
9532 		.tg = tg,
9533 		.period = period,
9534 		.quota = quota,
9535 	};
9536 
9537 	if (quota != RUNTIME_INF) {
9538 		do_div(data.period, NSEC_PER_USEC);
9539 		do_div(data.quota, NSEC_PER_USEC);
9540 	}
9541 
9542 	guard(rcu)();
9543 	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9544 }
9545 
9546 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9547 {
9548 	struct task_group *tg = css_tg(seq_css(sf));
9549 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9550 
9551 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9552 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9553 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9554 
9555 	if (schedstat_enabled() && tg != &root_task_group) {
9556 		struct sched_statistics *stats;
9557 		u64 ws = 0;
9558 		int i;
9559 
9560 		for_each_possible_cpu(i) {
9561 			stats = __schedstats_from_se(tg->se[i]);
9562 			ws += schedstat_val(stats->wait_sum);
9563 		}
9564 
9565 		seq_printf(sf, "wait_sum %llu\n", ws);
9566 	}
9567 
9568 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
9569 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
9570 
9571 	return 0;
9572 }
9573 
9574 static u64 throttled_time_self(struct task_group *tg)
9575 {
9576 	int i;
9577 	u64 total = 0;
9578 
9579 	for_each_possible_cpu(i) {
9580 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
9581 	}
9582 
9583 	return total;
9584 }
9585 
9586 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
9587 {
9588 	struct task_group *tg = css_tg(seq_css(sf));
9589 
9590 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
9591 
9592 	return 0;
9593 }
9594 #endif /* CONFIG_CFS_BANDWIDTH */
9595 
9596 #ifdef CONFIG_RT_GROUP_SCHED
9597 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9598 				struct cftype *cft, s64 val)
9599 {
9600 	return sched_group_set_rt_runtime(css_tg(css), val);
9601 }
9602 
9603 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9604 			       struct cftype *cft)
9605 {
9606 	return sched_group_rt_runtime(css_tg(css));
9607 }
9608 
9609 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9610 				    struct cftype *cftype, u64 rt_period_us)
9611 {
9612 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9613 }
9614 
9615 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9616 				   struct cftype *cft)
9617 {
9618 	return sched_group_rt_period(css_tg(css));
9619 }
9620 #endif /* CONFIG_RT_GROUP_SCHED */
9621 
9622 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9623 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
9624 			       struct cftype *cft)
9625 {
9626 	return css_tg(css)->idle;
9627 }
9628 
9629 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
9630 				struct cftype *cft, s64 idle)
9631 {
9632 	int ret;
9633 
9634 	ret = sched_group_set_idle(css_tg(css), idle);
9635 	if (!ret)
9636 		scx_group_set_idle(css_tg(css), idle);
9637 	return ret;
9638 }
9639 #endif
9640 
9641 static struct cftype cpu_legacy_files[] = {
9642 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9643 	{
9644 		.name = "shares",
9645 		.read_u64 = cpu_shares_read_u64,
9646 		.write_u64 = cpu_shares_write_u64,
9647 	},
9648 	{
9649 		.name = "idle",
9650 		.read_s64 = cpu_idle_read_s64,
9651 		.write_s64 = cpu_idle_write_s64,
9652 	},
9653 #endif
9654 #ifdef CONFIG_CFS_BANDWIDTH
9655 	{
9656 		.name = "cfs_quota_us",
9657 		.read_s64 = cpu_cfs_quota_read_s64,
9658 		.write_s64 = cpu_cfs_quota_write_s64,
9659 	},
9660 	{
9661 		.name = "cfs_period_us",
9662 		.read_u64 = cpu_cfs_period_read_u64,
9663 		.write_u64 = cpu_cfs_period_write_u64,
9664 	},
9665 	{
9666 		.name = "cfs_burst_us",
9667 		.read_u64 = cpu_cfs_burst_read_u64,
9668 		.write_u64 = cpu_cfs_burst_write_u64,
9669 	},
9670 	{
9671 		.name = "stat",
9672 		.seq_show = cpu_cfs_stat_show,
9673 	},
9674 	{
9675 		.name = "stat.local",
9676 		.seq_show = cpu_cfs_local_stat_show,
9677 	},
9678 #endif
9679 #ifdef CONFIG_RT_GROUP_SCHED
9680 	{
9681 		.name = "rt_runtime_us",
9682 		.read_s64 = cpu_rt_runtime_read,
9683 		.write_s64 = cpu_rt_runtime_write,
9684 	},
9685 	{
9686 		.name = "rt_period_us",
9687 		.read_u64 = cpu_rt_period_read_uint,
9688 		.write_u64 = cpu_rt_period_write_uint,
9689 	},
9690 #endif
9691 #ifdef CONFIG_UCLAMP_TASK_GROUP
9692 	{
9693 		.name = "uclamp.min",
9694 		.flags = CFTYPE_NOT_ON_ROOT,
9695 		.seq_show = cpu_uclamp_min_show,
9696 		.write = cpu_uclamp_min_write,
9697 	},
9698 	{
9699 		.name = "uclamp.max",
9700 		.flags = CFTYPE_NOT_ON_ROOT,
9701 		.seq_show = cpu_uclamp_max_show,
9702 		.write = cpu_uclamp_max_write,
9703 	},
9704 #endif
9705 	{ }	/* Terminate */
9706 };
9707 
9708 static int cpu_extra_stat_show(struct seq_file *sf,
9709 			       struct cgroup_subsys_state *css)
9710 {
9711 #ifdef CONFIG_CFS_BANDWIDTH
9712 	{
9713 		struct task_group *tg = css_tg(css);
9714 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9715 		u64 throttled_usec, burst_usec;
9716 
9717 		throttled_usec = cfs_b->throttled_time;
9718 		do_div(throttled_usec, NSEC_PER_USEC);
9719 		burst_usec = cfs_b->burst_time;
9720 		do_div(burst_usec, NSEC_PER_USEC);
9721 
9722 		seq_printf(sf, "nr_periods %d\n"
9723 			   "nr_throttled %d\n"
9724 			   "throttled_usec %llu\n"
9725 			   "nr_bursts %d\n"
9726 			   "burst_usec %llu\n",
9727 			   cfs_b->nr_periods, cfs_b->nr_throttled,
9728 			   throttled_usec, cfs_b->nr_burst, burst_usec);
9729 	}
9730 #endif
9731 	return 0;
9732 }
9733 
9734 static int cpu_local_stat_show(struct seq_file *sf,
9735 			       struct cgroup_subsys_state *css)
9736 {
9737 #ifdef CONFIG_CFS_BANDWIDTH
9738 	{
9739 		struct task_group *tg = css_tg(css);
9740 		u64 throttled_self_usec;
9741 
9742 		throttled_self_usec = throttled_time_self(tg);
9743 		do_div(throttled_self_usec, NSEC_PER_USEC);
9744 
9745 		seq_printf(sf, "throttled_usec %llu\n",
9746 			   throttled_self_usec);
9747 	}
9748 #endif
9749 	return 0;
9750 }
9751 
9752 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9753 
9754 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9755 			       struct cftype *cft)
9756 {
9757 	return sched_weight_to_cgroup(tg_weight(css_tg(css)));
9758 }
9759 
9760 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9761 				struct cftype *cft, u64 cgrp_weight)
9762 {
9763 	unsigned long weight;
9764 	int ret;
9765 
9766 	if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
9767 		return -ERANGE;
9768 
9769 	weight = sched_weight_from_cgroup(cgrp_weight);
9770 
9771 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9772 	if (!ret)
9773 		scx_group_set_weight(css_tg(css), cgrp_weight);
9774 	return ret;
9775 }
9776 
9777 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9778 				    struct cftype *cft)
9779 {
9780 	unsigned long weight = tg_weight(css_tg(css));
9781 	int last_delta = INT_MAX;
9782 	int prio, delta;
9783 
9784 	/* find the closest nice value to the current weight */
9785 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9786 		delta = abs(sched_prio_to_weight[prio] - weight);
9787 		if (delta >= last_delta)
9788 			break;
9789 		last_delta = delta;
9790 	}
9791 
9792 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9793 }
9794 
9795 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9796 				     struct cftype *cft, s64 nice)
9797 {
9798 	unsigned long weight;
9799 	int idx, ret;
9800 
9801 	if (nice < MIN_NICE || nice > MAX_NICE)
9802 		return -ERANGE;
9803 
9804 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9805 	idx = array_index_nospec(idx, 40);
9806 	weight = sched_prio_to_weight[idx];
9807 
9808 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9809 	if (!ret)
9810 		scx_group_set_weight(css_tg(css),
9811 				     sched_weight_to_cgroup(weight));
9812 	return ret;
9813 }
9814 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9815 
9816 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9817 						  long period, long quota)
9818 {
9819 	if (quota < 0)
9820 		seq_puts(sf, "max");
9821 	else
9822 		seq_printf(sf, "%ld", quota);
9823 
9824 	seq_printf(sf, " %ld\n", period);
9825 }
9826 
9827 /* caller should put the current value in *@periodp before calling */
9828 static int __maybe_unused cpu_period_quota_parse(char *buf,
9829 						 u64 *periodp, u64 *quotap)
9830 {
9831 	char tok[21];	/* U64_MAX */
9832 
9833 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9834 		return -EINVAL;
9835 
9836 	*periodp *= NSEC_PER_USEC;
9837 
9838 	if (sscanf(tok, "%llu", quotap))
9839 		*quotap *= NSEC_PER_USEC;
9840 	else if (!strcmp(tok, "max"))
9841 		*quotap = RUNTIME_INF;
9842 	else
9843 		return -EINVAL;
9844 
9845 	return 0;
9846 }
9847 
9848 #ifdef CONFIG_CFS_BANDWIDTH
9849 static int cpu_max_show(struct seq_file *sf, void *v)
9850 {
9851 	struct task_group *tg = css_tg(seq_css(sf));
9852 
9853 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9854 	return 0;
9855 }
9856 
9857 static ssize_t cpu_max_write(struct kernfs_open_file *of,
9858 			     char *buf, size_t nbytes, loff_t off)
9859 {
9860 	struct task_group *tg = css_tg(of_css(of));
9861 	u64 period = tg_get_cfs_period(tg);
9862 	u64 burst = tg->cfs_bandwidth.burst;
9863 	u64 quota;
9864 	int ret;
9865 
9866 	ret = cpu_period_quota_parse(buf, &period, &quota);
9867 	if (!ret)
9868 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
9869 	return ret ?: nbytes;
9870 }
9871 #endif
9872 
9873 static struct cftype cpu_files[] = {
9874 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9875 	{
9876 		.name = "weight",
9877 		.flags = CFTYPE_NOT_ON_ROOT,
9878 		.read_u64 = cpu_weight_read_u64,
9879 		.write_u64 = cpu_weight_write_u64,
9880 	},
9881 	{
9882 		.name = "weight.nice",
9883 		.flags = CFTYPE_NOT_ON_ROOT,
9884 		.read_s64 = cpu_weight_nice_read_s64,
9885 		.write_s64 = cpu_weight_nice_write_s64,
9886 	},
9887 	{
9888 		.name = "idle",
9889 		.flags = CFTYPE_NOT_ON_ROOT,
9890 		.read_s64 = cpu_idle_read_s64,
9891 		.write_s64 = cpu_idle_write_s64,
9892 	},
9893 #endif
9894 #ifdef CONFIG_CFS_BANDWIDTH
9895 	{
9896 		.name = "max",
9897 		.flags = CFTYPE_NOT_ON_ROOT,
9898 		.seq_show = cpu_max_show,
9899 		.write = cpu_max_write,
9900 	},
9901 	{
9902 		.name = "max.burst",
9903 		.flags = CFTYPE_NOT_ON_ROOT,
9904 		.read_u64 = cpu_cfs_burst_read_u64,
9905 		.write_u64 = cpu_cfs_burst_write_u64,
9906 	},
9907 #endif
9908 #ifdef CONFIG_UCLAMP_TASK_GROUP
9909 	{
9910 		.name = "uclamp.min",
9911 		.flags = CFTYPE_NOT_ON_ROOT,
9912 		.seq_show = cpu_uclamp_min_show,
9913 		.write = cpu_uclamp_min_write,
9914 	},
9915 	{
9916 		.name = "uclamp.max",
9917 		.flags = CFTYPE_NOT_ON_ROOT,
9918 		.seq_show = cpu_uclamp_max_show,
9919 		.write = cpu_uclamp_max_write,
9920 	},
9921 #endif
9922 	{ }	/* terminate */
9923 };
9924 
9925 struct cgroup_subsys cpu_cgrp_subsys = {
9926 	.css_alloc	= cpu_cgroup_css_alloc,
9927 	.css_online	= cpu_cgroup_css_online,
9928 	.css_offline	= cpu_cgroup_css_offline,
9929 	.css_released	= cpu_cgroup_css_released,
9930 	.css_free	= cpu_cgroup_css_free,
9931 	.css_extra_stat_show = cpu_extra_stat_show,
9932 	.css_local_stat_show = cpu_local_stat_show,
9933 	.can_attach	= cpu_cgroup_can_attach,
9934 	.attach		= cpu_cgroup_attach,
9935 	.cancel_attach	= cpu_cgroup_cancel_attach,
9936 	.legacy_cftypes	= cpu_legacy_files,
9937 	.dfl_cftypes	= cpu_files,
9938 	.early_init	= true,
9939 	.threaded	= true,
9940 };
9941 
9942 #endif	/* CONFIG_CGROUP_SCHED */
9943 
9944 void dump_cpu_task(int cpu)
9945 {
9946 	if (cpu == smp_processor_id() && in_hardirq()) {
9947 		struct pt_regs *regs;
9948 
9949 		regs = get_irq_regs();
9950 		if (regs) {
9951 			show_regs(regs);
9952 			return;
9953 		}
9954 	}
9955 
9956 	if (trigger_single_cpu_backtrace(cpu))
9957 		return;
9958 
9959 	pr_info("Task dump for CPU %d:\n", cpu);
9960 	sched_show_task(cpu_curr(cpu));
9961 }
9962 
9963 /*
9964  * Nice levels are multiplicative, with a gentle 10% change for every
9965  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9966  * nice 1, it will get ~10% less CPU time than another CPU-bound task
9967  * that remained on nice 0.
9968  *
9969  * The "10% effect" is relative and cumulative: from _any_ nice level,
9970  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9971  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9972  * If a task goes up by ~10% and another task goes down by ~10% then
9973  * the relative distance between them is ~25%.)
9974  */
9975 const int sched_prio_to_weight[40] = {
9976  /* -20 */     88761,     71755,     56483,     46273,     36291,
9977  /* -15 */     29154,     23254,     18705,     14949,     11916,
9978  /* -10 */      9548,      7620,      6100,      4904,      3906,
9979  /*  -5 */      3121,      2501,      1991,      1586,      1277,
9980  /*   0 */      1024,       820,       655,       526,       423,
9981  /*   5 */       335,       272,       215,       172,       137,
9982  /*  10 */       110,        87,        70,        56,        45,
9983  /*  15 */        36,        29,        23,        18,        15,
9984 };
9985 
9986 /*
9987  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
9988  *
9989  * In cases where the weight does not change often, we can use the
9990  * pre-calculated inverse to speed up arithmetics by turning divisions
9991  * into multiplications:
9992  */
9993 const u32 sched_prio_to_wmult[40] = {
9994  /* -20 */     48388,     59856,     76040,     92818,    118348,
9995  /* -15 */    147320,    184698,    229616,    287308,    360437,
9996  /* -10 */    449829,    563644,    704093,    875809,   1099582,
9997  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
9998  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
9999  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10000  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10001  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10002 };
10003 
10004 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10005 {
10006         trace_sched_update_nr_running_tp(rq, count);
10007 }
10008 
10009 #ifdef CONFIG_SCHED_MM_CID
10010 
10011 /*
10012  * @cid_lock: Guarantee forward-progress of cid allocation.
10013  *
10014  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
10015  * is only used when contention is detected by the lock-free allocation so
10016  * forward progress can be guaranteed.
10017  */
10018 DEFINE_RAW_SPINLOCK(cid_lock);
10019 
10020 /*
10021  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
10022  *
10023  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
10024  * detected, it is set to 1 to ensure that all newly coming allocations are
10025  * serialized by @cid_lock until the allocation which detected contention
10026  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
10027  * of a cid allocation.
10028  */
10029 int use_cid_lock;
10030 
10031 /*
10032  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
10033  * concurrently with respect to the execution of the source runqueue context
10034  * switch.
10035  *
10036  * There is one basic properties we want to guarantee here:
10037  *
10038  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
10039  * used by a task. That would lead to concurrent allocation of the cid and
10040  * userspace corruption.
10041  *
10042  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
10043  * that a pair of loads observe at least one of a pair of stores, which can be
10044  * shown as:
10045  *
10046  *      X = Y = 0
10047  *
10048  *      w[X]=1          w[Y]=1
10049  *      MB              MB
10050  *      r[Y]=y          r[X]=x
10051  *
10052  * Which guarantees that x==0 && y==0 is impossible. But rather than using
10053  * values 0 and 1, this algorithm cares about specific state transitions of the
10054  * runqueue current task (as updated by the scheduler context switch), and the
10055  * per-mm/cpu cid value.
10056  *
10057  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
10058  * task->mm != mm for the rest of the discussion. There are two scheduler state
10059  * transitions on context switch we care about:
10060  *
10061  * (TSA) Store to rq->curr with transition from (N) to (Y)
10062  *
10063  * (TSB) Store to rq->curr with transition from (Y) to (N)
10064  *
10065  * On the remote-clear side, there is one transition we care about:
10066  *
10067  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
10068  *
10069  * There is also a transition to UNSET state which can be performed from all
10070  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
10071  * guarantees that only a single thread will succeed:
10072  *
10073  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
10074  *
10075  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
10076  * when a thread is actively using the cid (property (1)).
10077  *
10078  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
10079  *
10080  * Scenario A) (TSA)+(TMA) (from next task perspective)
10081  *
10082  * CPU0                                      CPU1
10083  *
10084  * Context switch CS-1                       Remote-clear
10085  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
10086  *                                             (implied barrier after cmpxchg)
10087  *   - switch_mm_cid()
10088  *     - memory barrier (see switch_mm_cid()
10089  *       comment explaining how this barrier
10090  *       is combined with other scheduler
10091  *       barriers)
10092  *     - mm_cid_get (next)
10093  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
10094  *
10095  * This Dekker ensures that either task (Y) is observed by the
10096  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
10097  * observed.
10098  *
10099  * If task (Y) store is observed by rcu_dereference(), it means that there is
10100  * still an active task on the cpu. Remote-clear will therefore not transition
10101  * to UNSET, which fulfills property (1).
10102  *
10103  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
10104  * it will move its state to UNSET, which clears the percpu cid perhaps
10105  * uselessly (which is not an issue for correctness). Because task (Y) is not
10106  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
10107  * state to UNSET is done with a cmpxchg expecting that the old state has the
10108  * LAZY flag set, only one thread will successfully UNSET.
10109  *
10110  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
10111  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
10112  * CPU1 will observe task (Y) and do nothing more, which is fine.
10113  *
10114  * What we are effectively preventing with this Dekker is a scenario where
10115  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
10116  * because this would UNSET a cid which is actively used.
10117  */
10118 
10119 void sched_mm_cid_migrate_from(struct task_struct *t)
10120 {
10121 	t->migrate_from_cpu = task_cpu(t);
10122 }
10123 
10124 static
10125 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
10126 					  struct task_struct *t,
10127 					  struct mm_cid *src_pcpu_cid)
10128 {
10129 	struct mm_struct *mm = t->mm;
10130 	struct task_struct *src_task;
10131 	int src_cid, last_mm_cid;
10132 
10133 	if (!mm)
10134 		return -1;
10135 
10136 	last_mm_cid = t->last_mm_cid;
10137 	/*
10138 	 * If the migrated task has no last cid, or if the current
10139 	 * task on src rq uses the cid, it means the source cid does not need
10140 	 * to be moved to the destination cpu.
10141 	 */
10142 	if (last_mm_cid == -1)
10143 		return -1;
10144 	src_cid = READ_ONCE(src_pcpu_cid->cid);
10145 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
10146 		return -1;
10147 
10148 	/*
10149 	 * If we observe an active task using the mm on this rq, it means we
10150 	 * are not the last task to be migrated from this cpu for this mm, so
10151 	 * there is no need to move src_cid to the destination cpu.
10152 	 */
10153 	guard(rcu)();
10154 	src_task = rcu_dereference(src_rq->curr);
10155 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10156 		t->last_mm_cid = -1;
10157 		return -1;
10158 	}
10159 
10160 	return src_cid;
10161 }
10162 
10163 static
10164 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
10165 					      struct task_struct *t,
10166 					      struct mm_cid *src_pcpu_cid,
10167 					      int src_cid)
10168 {
10169 	struct task_struct *src_task;
10170 	struct mm_struct *mm = t->mm;
10171 	int lazy_cid;
10172 
10173 	if (src_cid == -1)
10174 		return -1;
10175 
10176 	/*
10177 	 * Attempt to clear the source cpu cid to move it to the destination
10178 	 * cpu.
10179 	 */
10180 	lazy_cid = mm_cid_set_lazy_put(src_cid);
10181 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
10182 		return -1;
10183 
10184 	/*
10185 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10186 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10187 	 * between store to rq->curr and load of prev and next task's
10188 	 * per-mm/cpu cid.
10189 	 *
10190 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10191 	 * rq->curr->mm_cid_active matches the barrier in
10192 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10193 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10194 	 * load of per-mm/cpu cid.
10195 	 */
10196 
10197 	/*
10198 	 * If we observe an active task using the mm on this rq after setting
10199 	 * the lazy-put flag, this task will be responsible for transitioning
10200 	 * from lazy-put flag set to MM_CID_UNSET.
10201 	 */
10202 	scoped_guard (rcu) {
10203 		src_task = rcu_dereference(src_rq->curr);
10204 		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10205 			/*
10206 			 * We observed an active task for this mm, there is therefore
10207 			 * no point in moving this cid to the destination cpu.
10208 			 */
10209 			t->last_mm_cid = -1;
10210 			return -1;
10211 		}
10212 	}
10213 
10214 	/*
10215 	 * The src_cid is unused, so it can be unset.
10216 	 */
10217 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10218 		return -1;
10219 	return src_cid;
10220 }
10221 
10222 /*
10223  * Migration to dst cpu. Called with dst_rq lock held.
10224  * Interrupts are disabled, which keeps the window of cid ownership without the
10225  * source rq lock held small.
10226  */
10227 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10228 {
10229 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10230 	struct mm_struct *mm = t->mm;
10231 	int src_cid, dst_cid, src_cpu;
10232 	struct rq *src_rq;
10233 
10234 	lockdep_assert_rq_held(dst_rq);
10235 
10236 	if (!mm)
10237 		return;
10238 	src_cpu = t->migrate_from_cpu;
10239 	if (src_cpu == -1) {
10240 		t->last_mm_cid = -1;
10241 		return;
10242 	}
10243 	/*
10244 	 * Move the src cid if the dst cid is unset. This keeps id
10245 	 * allocation closest to 0 in cases where few threads migrate around
10246 	 * many CPUs.
10247 	 *
10248 	 * If destination cid is already set, we may have to just clear
10249 	 * the src cid to ensure compactness in frequent migrations
10250 	 * scenarios.
10251 	 *
10252 	 * It is not useful to clear the src cid when the number of threads is
10253 	 * greater or equal to the number of allowed CPUs, because user-space
10254 	 * can expect that the number of allowed cids can reach the number of
10255 	 * allowed CPUs.
10256 	 */
10257 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10258 	dst_cid = READ_ONCE(dst_pcpu_cid->cid);
10259 	if (!mm_cid_is_unset(dst_cid) &&
10260 	    atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
10261 		return;
10262 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10263 	src_rq = cpu_rq(src_cpu);
10264 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10265 	if (src_cid == -1)
10266 		return;
10267 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10268 							    src_cid);
10269 	if (src_cid == -1)
10270 		return;
10271 	if (!mm_cid_is_unset(dst_cid)) {
10272 		__mm_cid_put(mm, src_cid);
10273 		return;
10274 	}
10275 	/* Move src_cid to dst cpu. */
10276 	mm_cid_snapshot_time(dst_rq, mm);
10277 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10278 }
10279 
10280 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10281 				      int cpu)
10282 {
10283 	struct rq *rq = cpu_rq(cpu);
10284 	struct task_struct *t;
10285 	int cid, lazy_cid;
10286 
10287 	cid = READ_ONCE(pcpu_cid->cid);
10288 	if (!mm_cid_is_valid(cid))
10289 		return;
10290 
10291 	/*
10292 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
10293 	 * there happens to be other tasks left on the source cpu using this
10294 	 * mm, the next task using this mm will reallocate its cid on context
10295 	 * switch.
10296 	 */
10297 	lazy_cid = mm_cid_set_lazy_put(cid);
10298 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10299 		return;
10300 
10301 	/*
10302 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10303 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10304 	 * between store to rq->curr and load of prev and next task's
10305 	 * per-mm/cpu cid.
10306 	 *
10307 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10308 	 * rq->curr->mm_cid_active matches the barrier in
10309 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10310 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10311 	 * load of per-mm/cpu cid.
10312 	 */
10313 
10314 	/*
10315 	 * If we observe an active task using the mm on this rq after setting
10316 	 * the lazy-put flag, that task will be responsible for transitioning
10317 	 * from lazy-put flag set to MM_CID_UNSET.
10318 	 */
10319 	scoped_guard (rcu) {
10320 		t = rcu_dereference(rq->curr);
10321 		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10322 			return;
10323 	}
10324 
10325 	/*
10326 	 * The cid is unused, so it can be unset.
10327 	 * Disable interrupts to keep the window of cid ownership without rq
10328 	 * lock small.
10329 	 */
10330 	scoped_guard (irqsave) {
10331 		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10332 			__mm_cid_put(mm, cid);
10333 	}
10334 }
10335 
10336 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10337 {
10338 	struct rq *rq = cpu_rq(cpu);
10339 	struct mm_cid *pcpu_cid;
10340 	struct task_struct *curr;
10341 	u64 rq_clock;
10342 
10343 	/*
10344 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
10345 	 * while is irrelevant.
10346 	 */
10347 	rq_clock = READ_ONCE(rq->clock);
10348 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10349 
10350 	/*
10351 	 * In order to take care of infrequently scheduled tasks, bump the time
10352 	 * snapshot associated with this cid if an active task using the mm is
10353 	 * observed on this rq.
10354 	 */
10355 	scoped_guard (rcu) {
10356 		curr = rcu_dereference(rq->curr);
10357 		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10358 			WRITE_ONCE(pcpu_cid->time, rq_clock);
10359 			return;
10360 		}
10361 	}
10362 
10363 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10364 		return;
10365 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10366 }
10367 
10368 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10369 					     int weight)
10370 {
10371 	struct mm_cid *pcpu_cid;
10372 	int cid;
10373 
10374 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10375 	cid = READ_ONCE(pcpu_cid->cid);
10376 	if (!mm_cid_is_valid(cid) || cid < weight)
10377 		return;
10378 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10379 }
10380 
10381 static void task_mm_cid_work(struct callback_head *work)
10382 {
10383 	unsigned long now = jiffies, old_scan, next_scan;
10384 	struct task_struct *t = current;
10385 	struct cpumask *cidmask;
10386 	struct mm_struct *mm;
10387 	int weight, cpu;
10388 
10389 	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
10390 
10391 	work->next = work;	/* Prevent double-add */
10392 	if (t->flags & PF_EXITING)
10393 		return;
10394 	mm = t->mm;
10395 	if (!mm)
10396 		return;
10397 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
10398 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10399 	if (!old_scan) {
10400 		unsigned long res;
10401 
10402 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10403 		if (res != old_scan)
10404 			old_scan = res;
10405 		else
10406 			old_scan = next_scan;
10407 	}
10408 	if (time_before(now, old_scan))
10409 		return;
10410 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10411 		return;
10412 	cidmask = mm_cidmask(mm);
10413 	/* Clear cids that were not recently used. */
10414 	for_each_possible_cpu(cpu)
10415 		sched_mm_cid_remote_clear_old(mm, cpu);
10416 	weight = cpumask_weight(cidmask);
10417 	/*
10418 	 * Clear cids that are greater or equal to the cidmask weight to
10419 	 * recompact it.
10420 	 */
10421 	for_each_possible_cpu(cpu)
10422 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10423 }
10424 
10425 void init_sched_mm_cid(struct task_struct *t)
10426 {
10427 	struct mm_struct *mm = t->mm;
10428 	int mm_users = 0;
10429 
10430 	if (mm) {
10431 		mm_users = atomic_read(&mm->mm_users);
10432 		if (mm_users == 1)
10433 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10434 	}
10435 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
10436 	init_task_work(&t->cid_work, task_mm_cid_work);
10437 }
10438 
10439 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10440 {
10441 	struct callback_head *work = &curr->cid_work;
10442 	unsigned long now = jiffies;
10443 
10444 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10445 	    work->next != work)
10446 		return;
10447 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10448 		return;
10449 	task_work_add(curr, work, TWA_RESUME);
10450 }
10451 
10452 void sched_mm_cid_exit_signals(struct task_struct *t)
10453 {
10454 	struct mm_struct *mm = t->mm;
10455 	struct rq *rq;
10456 
10457 	if (!mm)
10458 		return;
10459 
10460 	preempt_disable();
10461 	rq = this_rq();
10462 	guard(rq_lock_irqsave)(rq);
10463 	preempt_enable_no_resched();	/* holding spinlock */
10464 	WRITE_ONCE(t->mm_cid_active, 0);
10465 	/*
10466 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10467 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10468 	 */
10469 	smp_mb();
10470 	mm_cid_put(mm);
10471 	t->last_mm_cid = t->mm_cid = -1;
10472 }
10473 
10474 void sched_mm_cid_before_execve(struct task_struct *t)
10475 {
10476 	struct mm_struct *mm = t->mm;
10477 	struct rq *rq;
10478 
10479 	if (!mm)
10480 		return;
10481 
10482 	preempt_disable();
10483 	rq = this_rq();
10484 	guard(rq_lock_irqsave)(rq);
10485 	preempt_enable_no_resched();	/* holding spinlock */
10486 	WRITE_ONCE(t->mm_cid_active, 0);
10487 	/*
10488 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10489 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10490 	 */
10491 	smp_mb();
10492 	mm_cid_put(mm);
10493 	t->last_mm_cid = t->mm_cid = -1;
10494 }
10495 
10496 void sched_mm_cid_after_execve(struct task_struct *t)
10497 {
10498 	struct mm_struct *mm = t->mm;
10499 	struct rq *rq;
10500 
10501 	if (!mm)
10502 		return;
10503 
10504 	preempt_disable();
10505 	rq = this_rq();
10506 	scoped_guard (rq_lock_irqsave, rq) {
10507 		preempt_enable_no_resched();	/* holding spinlock */
10508 		WRITE_ONCE(t->mm_cid_active, 1);
10509 		/*
10510 		 * Store t->mm_cid_active before loading per-mm/cpu cid.
10511 		 * Matches barrier in sched_mm_cid_remote_clear_old().
10512 		 */
10513 		smp_mb();
10514 		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
10515 	}
10516 	rseq_set_notify_resume(t);
10517 }
10518 
10519 void sched_mm_cid_fork(struct task_struct *t)
10520 {
10521 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10522 	t->mm_cid_active = 1;
10523 }
10524 #endif
10525 
10526 #ifdef CONFIG_SCHED_CLASS_EXT
10527 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
10528 			    struct sched_enq_and_set_ctx *ctx)
10529 {
10530 	struct rq *rq = task_rq(p);
10531 
10532 	lockdep_assert_rq_held(rq);
10533 
10534 	*ctx = (struct sched_enq_and_set_ctx){
10535 		.p = p,
10536 		.queue_flags = queue_flags,
10537 		.queued = task_on_rq_queued(p),
10538 		.running = task_current(rq, p),
10539 	};
10540 
10541 	update_rq_clock(rq);
10542 	if (ctx->queued)
10543 		dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
10544 	if (ctx->running)
10545 		put_prev_task(rq, p);
10546 }
10547 
10548 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
10549 {
10550 	struct rq *rq = task_rq(ctx->p);
10551 
10552 	lockdep_assert_rq_held(rq);
10553 
10554 	if (ctx->queued)
10555 		enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
10556 	if (ctx->running)
10557 		set_next_task(rq, ctx->p);
10558 }
10559 #endif	/* CONFIG_SCHED_CLASS_EXT */
10560